
VAXcluster Systems
Introduction to
VAXcluster Application Design

Order Number: AA-JP326-TE

September y 989

This manual provides VAXcluster-specific information to the application
designer and application programmer who are: migrating a VMS application
or designing and coding a new application to run on a VAXcluster system.

Revision/Update Information: This is a revised manual.

operating System and Version: VMS Version 5.2

Optional Software Versions:

Product: Version:
DECintact Version 1.OA
VAX ACMS Version 3.0
VAX DBMS Version 4.0
VAX DNS Version 1.1
VAX PA Version 2.0
VAX PCA Version 2.0
VAX SPM Version 3.2
VAX VMS/Rdb Version 3.0

digital equipment corporation
maynard, massachusetts

First Printing, October 1987
Second Printing, September 1989

The information in this document is subject to change without notice and should not be construed as a
commitment by Digital Equipment Corporation. Digital Equipment Corporation assumes no responsibility for
any errors that may appear in this document.

The software described in this document is furnished under a license and may be used or copied only in
accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment that is not supplied by Digital
Equipment Corporation or its affiliated companies.

Copyright ©1987, 1989 Digital Equipment Corporation

All Rights Reserved.
Printed in U.S.A.

The Reader's Comments form on the last page of this document requests the user's critical evaluation to assist in
preparing future documentation.

The following are trademarks of Digital Equipment Corporation:
CI KDB50
DECintact MicroVAX
DECnet-VAX MSCP
DECwindows PrintServer 40
DIBOL ReGIS
DSS I U DA50
ESE20 VAX ALMS
Ethernet VAXcluster
HSC VAX DATATRIEVE
KDA50 VAX DBMS

VAX DNS
VAX RdbNMS
VAX RMS Journaling
VAX SPM
VAXstation
VAX Volume Shadowing
VMS
VMS RMS

d
a9auou ry

USA"`
Digital Equipment Corporation
P.O. Box CS2008
Nashua, New Hampshire 03061

HOW TO ORDER ADDITIONAL DOCUMENTATION
DIRECT MAIL ORDERS

CANADA INTERNATIONAL
Digital Equipment
of Canada Ltd.
100 Herzberg Road
Kanata, Ontario K2K 2A6
Attn: Direct Order Desk

Digital Equipment Corporation
PSG Business Manager
Go Digital's local subsidiary
or approved distributor

In Continental USA, Alaska, and Hawaii call 800—DIGITAL.
In Canada call 800-267-6215.
*Any order from Puerto Rico must be placed with the local Digital subsidiary (809-754-7575).
Internal orders should be placed through the Software Distribution Center (SDC), Digital Equipment Corporation, Westminster, Massachusetts 01473.

Contents

PREFACE x~

CHAPTER 1 ADVANTAGES OF A VAXCLUSTER APPLICATION
ENVIRONMENT 1-1

1.1 VAXCLUSTER SYSTEM HARDWARE ADVANTAGES 1-1

1.1.1 Hardware Availability 1-2

1.1.2 System and Data Availability 1-4
1.1.3 Mass Storage Device Availability 1-5

1.1.4 Workload Balancing 1-8

1.1.5 Supported VAXciuster Systems 1-9

1.2 VAXCLUSTER SYSTEM SOFTWARE ADVANTAGES 1-11

1.2.1 Connection Manager 1-12

1.2.2 Distributed VMS Lack Manager 1-13

1.2.3 Distributed Fite System 1-14

1.2.4 Distributed Job Controller 1-14

CHAPTER 2 USING THE VAXCLUSTER SYSTEM FOR APPLICATION
DEVELOPMENT 2-1

2.1 TWO TYPES OF VAXCLUSTER APPLICATION ACTIVITY 2-2

2.1.1 I/O-intensive Application 2-5

2.1.2 CPU-intensive Application 2-7

2.2 CHARACTERISTICS OF AN APPLICATION SUITABLE FOR A
VAXCLUSTER SYSTEM 2-g

2.3 APPLICATIONS THAT MAY NOT BE SUITABLE FOR A VAXCLUSTER
SYSTEM 2-12

2.4 IS AN APPLICATION A CANDIDATE FOR DISTRIBUTION BY
REPLICATION ACROSS VAXCLUSTER CPUS? 2-13

iii

Contents

2.5 IS AN APPLICATION A CANDIDATE FOR DISTRIBUTION BY
DECOMPOSITION ACROSS VAXCLUSTER CPUS? 2-18

CHAPTER 3 PRC)GRAMMING TOOLS FOR VAXCLUSTER
APPLICATION DEVELOPMENT 3-1

3.~ VMS LOCK MANAGER 3-2
3.1.1 Lock Management System Services 3-3
3.1.2 Lock Modes 3-~fi
3.1.3 Locking Levels 3-S
3.1.4 Lock Queues 3-9
3.1.5 Lock Value Block 3-12
3.1.6 Using ASTs and Blocking ASTs for Synchronization of

fnterprocess Events 3-12

3.2 VMS RECORD MANAGEMENT SERVICES 3-14

3.2.1 VMS RMS and UIC-Based Protection 3-16

3.2.2 VMS RMS and Clusterwide Record Locking 3-16
3.2.3 VMS RMS Buffering and Global Buffering for a VAXciuster

Application 3-17

3.2.4 VMS RMS and $QIO System Services 3-18
3.2.5 VMS RMS and XQP Operations 3-18

3.3 VMS BATCH FACILITY 3-19

3.4 CLUSTERWIDE PROCESS SERVICES 3-20
3.4.1 Process Control System Services 3-22
3.4.2 Process Information System Services ($GETJPI and

$PROCESS_SCAN) 3-24

3.5 D ECN ET-VAX 3-25
3.5.1 Transparent DECnet-VAX Task-to-Task Communication - 3-28
3.5.2 Nontransparent DECnet-VAX Task-to-Task

Communication 3-29

3.6 SINGLE-NODE PROGRAMMING TOOLS NOT AVAILABLE
CLUSTERWIDE 3-~2

iv

Contents

CHAPTER 4 APPLICATION DESIGN MODELS FOR VAXCLUSTER
SOFTWARE 4-1

4.1 FILE SHARING MODEL 4-2

4.2 CLIENT-SERVER MODEL
4.2.1 One-to-One Client-Server Model
4.2.2 Many-to-One Client-Server Model

4-6

4-7

4-11

4.3 PARALLELISM MODEL 4-17

CHAPTER 5 DESIGNING DISTRIBUTED APPLICATIONS FOR A
VAXCLUSTER SYSTEM 5-1

5.1 DESIGNING AN APPLICATION FOR INCREASED AVAILABILITY 5-1

5.2 DESIGNING AN APPLICATION FOR FASTER COMPLETION OF A
TASK 5-3

5.3 DESIGNING AN APPLICATION FOR MAXIMUM THROUGHPUT 5~-4

5.4 COMPARISON OF APPLICATION DESIGN MODELS WITH
APPLICATION DESIGN GOALS 5-6

5.5 DESIGNING A VAXCLUSTER APPLICATION USING PRODUCTS
CLOSELY ASSOCIATED WITH THE VMS OPERATING SYSTEM 5-7
5.5.1 VAX RMS Journaling 5-7
5.5.2 VAX Volume Shadowing 5-9
5.5.3 VMS DECwindows 5-10

5.6 DESIGNING A VAXCLUSTER APPLICATION USING LAYERED
PRODUCTS BASED ON THE VMS OPERATING SYSTEM 5-12
5.6.1 DECintact 5-13
5.6.2 VAX ACMS 5-15
5.6.3 VAX DBMS 5-18
5.6.4 VAX Rdb/VMS 5-20
5.6.5 VAX DNS 5-21

v

Contents

CHAPTER 6 PROGRAMMING TECHNIQUES FOR VAXCLUSTER
APPLICATIONS 6-1

6.1 REMOTE PROCESS CREATION 6-1
6.1.E Using Transparent DECnet-VAX Communications 6-2
6.1.2 Using Nontransparent DECnet-VAX Communications 6-~
6.1.3 Using the VMS Batch Facility 6-~

6.2 DATA SHARING 6-16
6.2.1 Using DECnet-VAX Communications 6-17
5.2.2 Using VMS RMS to Control Record Granularity for Multiple

Access 6-29

6.2.3 Using Read-Only Global Sections 6-33

6.3 PROCESS SYNCHRONIZATION 6-41
6.3.1 Using Ciusterwide Process Services 6-41
6.3.2 Using Lock Management System Services 6-57

6.3.2.1 Using Simple Lock for Exclusive Access to a Shared
Resource •6-58

6.3.2.2 Using Completion ASTs and Blocking ASTs with Lock
Management System Services to Synchronize Simultaneous
Processes • 6-58

6.3.2.3 Using the Lock Value Block to Pass Information •6-64
6.3.3 Coordinating Processes Using DECnet-VAX

Communications 6-69

6.4 EXCEPTION CONDITIONS 6-74
6.4.1 Recovery from Interprocess Communication Failures 6-75
6.4.2 Recovery from Cluster State Transition Due to Node

Failure 6-$1

CHAPTER 7 VAXCLUSTER SYSTEM PERFORMANCE
CONSIDERATIONS 7-1

7.y USING VMS UTILITIES TO MONITOR THE CLUSTER AND IDENTIFY
BOTTLENECKS 7-2

7.2 POTENTIAL BOTTLENECKS FOR AN 1/O-BOUND APPLICATION
ENVIRONMENT 7-4

vi

Contents

7.3 POTENTIAL BOTTLENECKS FOR AMEMORY-BOUND APPLICATION 7-13

7.4 POTENTIAL BOTTLENECKS FOR ACPU-BOUND APPLICATION
ENVIRONMENT 7-14

7.5 LAYERED PRODUCTS AVAILABLE FOR MONITORING CLUSTER
PERFORMANCE 7-y6
7.5.1 VAX Software Performance Monitor 7-17
7.5.2 VAX Performance and Coverage Analyzer 7-y 7
7.5.3 VAX Performance Advisor 7-18

CHAPTER 8 SAMPLE APPLICATION FOR A VAXCLUSTER SYSTEM 8-1

8.~ APPLICATION DESIGN 8-~

8.2 APPLICATION IMPLEMENTATION

GLOSSARY

8-9

Glossary-1

INDEX

FIGURES
1-y Conceptual Relationship of the Four Software Components in the

VAXcluster System _ . ~-12

2-1 Comparing the Direction of Information Flow for an I/O-intensive
Application Distributed by Replication and aCPU-Intensive
Application Distributed by Decomposition _._. __ _ . 2-~

2-2 I/O-intensive Application (PROG A1) Executing Multiple Copies on
a VAXcluster System 2-r6

2-3 Distributing Work for aCPU-Intensive Application Executing on a
VAXcluster System .. 2-8

2-4 Sample Banking Application on a VAXcluster System 2-17

3-1 Functional Relationship of VAXcluster System Programming
3-2

3-2 VAXcluster Programming Tool: VMS Lock Manager 3^-,3

3-3 Resource Granularity Locking 3--8

3-4 Lock Queues of the VMS Lack Manager 3-10

3-5 VAXcluster Programming Tool: VMS RMS 3-'14

Tools

vii

Contents

3-fi Application Software Levels Interfacing with the VMS Lock
Manager 3-15

3-7 VAXcluster Programming Tool: VMS Batch Facility 3-19
3-8 VAXcluster Programming Tool: Process Control and Process

Information System Services 3-21
3-9 VAXcluster Programming Tool: DECnet-VAX 3-25
3-10 Transmitting DECnet-VAX Task-to-Task Data 3-28
3'-y 1 One-to-Many or Many-to-One Nontransparent Communications ~. 3-~1
4-1 File Sharing Model Using Distribution by Replication 4-2
4-2 Log In to the Application 4-5
4-~ Search and Display All Available Courses According to a

Keyword 4-5
4-~ Select a Course and View a Course Description 4-fi
4-~ Register or Withdraw from a Selected Course 4-fi
4-fi One-to-One Client-Server Model 4-7
4-7 Using aOne-to-One Client-Server Model for Parallel Processing 4-10
4-8 Many-to-One Client-Server Model as a File Server 4-12
4-9 Many-to-One Client-Server Model as a File Server for a Corporate

Data base 4-17
4-10 Parallelism Model 4-18
4-11 Parallelism Model Using Self-Scheduling and Queueing 4-19
4-12 Car Crash Simulation 4-24
5-1 Running VMS DECwindows in a VAXcluster System 5-12
5-2 The Components of DECintact 5-13
5-3 Running VAX ACMS on Two VAXcluster CPUs 5-1 fi
fi-1 Flow Diagram for Programming Example 1 fi-7
f>-2 Coordinating the Use of Process Control System Services with the

Process Information System Services fi-~2
fi-3 Deadman Lock Scheme fi-59
fi-4 Doorbell Lock Scheme fi-fi1
fi-5 Format of Lock Status Block fi-fi5
fi-fi Determining Who is First with a Lock Value Block Scheme fi-68
fi-7 A Process Designed for Failover in a VAXcluster System fi-82
7-1 IIO Pathways in aMixed-Interconnect VAXcluster System 7-~
8-1 Diagram of a Demonstration Application 8-2
8-2 Function of Demonstration Application 8-3
8-3 SERVER.EXE Set-Up Activities 8-5
8-4 USER_IFACE.EXE Message Sending Activities 8-6
8-5 RR AST Routine Broadcast Protocol Activities 8-S
8-fi Modules for Demonstration Application 8-10

viii

Contents

Ti4BLES
1-1 Comparing the CI-Based, Local Area VAXcfuster, and

Mixed-Interconnect VAXcfuster Systems 1-10
2-1 CI Adapter Throughput Capacity (Fastest to Slowest) 2-14
2-2 Ethernet Adapter Throughput Capacity {Fastest to Slowest) 2-14
2-~ Disk Type I/O Rates (Fastest to Sf owest) 2-14
2--A~ Goals for Distributing an Application Across VAXcfuster CPUs 2-18
3-1 Lack Management System Services 3-4
3-2 Lock Modes 3-6
3-3 Lock Made Compatibility 3-7
3-~4 Multiple Lock Requests Creating a Deadlock 3-11
3-5 Supported VMS System Services for Process Control 3-22
3-6 Process Control System Services Status Codes 3-23
3-7 Using Nontransparent DECnet-VAX Communication 3-30
3-S Transparent and Nontransparent DECnet Communication 3-32
5-1 Comparison of Application Design Models with Application Design

Goals 5-6
6-1 Required Modules for Two-iNay, Transparent, Task-to-Task

Communications 6-17
6-2 Parameters for Lock Management System Services 6-57
7-1 VMS Utilities and Commands for Monitoring a VAXcfuster System 7-3
7-2 Summary of VMS Documentation Resources for Identifying

Bottlenecks 7-~
7-~ Layered Products for Monitoring a Cluster 7-16

ix

Preface

A VAXcluster system provides you with greater availability of computer
processors and data storage than a single VMS system. This manual
describes how to design and implement an application program to take
advantage of the hardware and software features of a VAXcluster system.

VAxcluster systems include:

• CI-based VAXcluster systems in which CPUs are interconnected by a
CI bus

• Loeal Area VAXcluster (LAVc) systems in which CPUs are
interconnected by an Ethernet cable

• Mixed-Interconnect VAXcluster (MIVc) systems in which CPUs are
interconnected by a CI bus and an Ethernet cable

This manual refers to these VAX.cluster types (CI-based, LAVc, and MNc)
as one entity, a VAxcluster system, unless otherwise stated.l

intended Audience
This manual is written for the application designer or application
programmer who is designing and implementing abusiness/commercial
application or a scientific/engineering application on a VAxcluster system.

This manual assumes that the application designer and application
programmer are familiar with the VMS operating system, have experience
in programming ahigh-level language, and can determine when an
application is I/O-intensive or CPU-intensive.

The primary focus of this manual is for programming development in a
common-environment VAXcluster system using RMS files.

Purpose of This Document
The purpose of this manual is to provide VAXcluster information to the
application designer and application programmer engaged in designing a
new application or migrating an existing VMS application to a VAXcluster
system.

fi nis

manual is structured to aid the application designer and
application programmer in making application design decisions based
on programming tools, application design models, and implementation
techniques to optimize the processing capability of their VAXcluster
system.

1 To make this manual easier to read, the word cluster is frequently used to refer to a VAXcluster system.

xi

P

re

f

ace

Goals

This manual presents:

• The VAXcluster concept of system availability based on the features of
VAXcluster hardware and software components

• A discussion of an I/O-intensive application and aCPU-intensive
application on a VAXeluster system

• A discussion of application types appropriate for use in a VAXcluster
system

• VMS programming tools available for the development of VAXcluster
software

• Design models for VAXcluster applications with conceptual evaluations
of their implementation requirements

• Programming techniques for implementing interprocess
communication and synchronization requirements for a VAXcluster
application

• Programming techniques for designing an application for greater
speed, increased availability, and maximum throughput

• General performance considerations related to UO-bound, memory-
bound, and CPU-bound VAXcluster applications

• A brief product summary of some Digital software products that
an application designer may consider for VAXcluster application
development (for example, DECintact and VAX ACMS)

• A programming example of an application on a VAXcluster system
using some of the models and programming implementation techniques
explained in the manual

Non-Goals

This manual does not present:

• Programming techniques for a single VAX processor

• Programming techniques for distributing an application across a
network

• Parallel programming techniques for a Symmetric Multiprocessor
(SMP) VAXcluster node

• Programming techniques for system-level applications (for example,
device drivers)

• Guidelines for when to use a VAXcluster system rather than an SMP
system to implement a paralleled application

• Guidelines for performing system analysis

• Guidelines for configuring VAXcluster hardware for a specific
application

• An evaluation of performance for the application design models based
on hard data

xii

Preface

• Decision analysis tools for comparing the relative merits of the
application design models with the use of one or more VAX products
(for example, DECintact and VAX ALMS)

• Information on VAXcluster system management

• Techniques for use of specific programming languages

• VAXcluster hardware and software internals

Associated Documents and Referenced Document
This manual assumes that the application designer and application
programmer are familiar with the VMS Documentation Set.l~ When
appropriate, this manual provides references to manuals in the VMS
Documentation Set. In addition, this manual provides references to the
following documentation:

Associated Documents

• Guidelines for VAXcluster ,system Conf ~gurations

• Guide to VAX SPM

• HSC User Guide

• VAXcluster Software Vv.2 ,Software Product Description 29.78.02

• VAX Distributed Name Service Management Guide

• VMS Operating System, Version 5.2, Software Product Description
2~.0~.32

• VAX Performance Advisor User's Guide

• VAX Performance and Coverage Analyzer User's Guide

• VAX RMS Journaling Manual

• VAX Systems and Options Catalog

• VAX Volume Shadowing Manual

Referenced Document

Refer to the VMS VAXcluster Manual for a summary of the supported
VAXcluster configurations, a discussion of quorum, and a brief description
of the following VAXcluster software components:

• Connection Manager

• Distributed File System

• Distributed Lock Manager

• Distributed Job Controller

• Mass Storage Control Protocol (MSCP) Server

1 When referring to the VMS Documentation Set for information pertaining to Section 3.4, Clusterwide Process Services,

and Section 6.3.1, Using Clusterwide Process Services, use the VMS Version 5.2 New Features Manual if you are not

accessing VMS Version 5.2 documentation using the DECwindows Bookreader.

Preface

Organization of This Manual
The contents of this manual are as follows:

Chapter 1 discusses the hardware and software advantages that a
VAXcluster system provides for application development.

Chapter 2 presents the concepts of an I/Q-intensive and aCPU-intensive
application in the context of a VAXeluster environment, and describes the
characteristics of an application suitable for a VAXcluster system.

Chapter 3 explains the VMS programming tools that are available for
developing an application on a VAXcluster system.

Chapter 4 explores three potential application design solutions. After
determining if your application will be I/~-intensive or CPU-intensive,
you can use the appropriate application design model presented in this
chapter.

Chapter 5 presents three application design goals as related to the
application design models discussed in Chapter 4. Also, this chapter
describes other Digital software products (for example, DECintact and
VAX ALMS) that you can use for application design on a VAXcluster
system.

Chapter 6 demonstrates some of the available programming techniques
that you can use to implement the application design models presented in
Chapter 4.

Chapter 7 discusses performance considerations for the three primary
system resources (CPU, memory, and I/O system) in your VAXcluster
system.

Chapter S presents a sample application to demonstrate a distributed
application that is designed to use lock management system services for
explicit interprocess communications.

Conventions
This manual uses the following conventions:

Convention Meaning

Bold Bold typeface indicates emphasis.

Italics Italicized typeface indicates a manual or a new term
located i n the Glossary.

code example Smaller typeface indicates programmable code.

xiv

Advantages of a VAXcluster Application Environment

A VAXcluster system is aloosely-coupled multiprocessor system comprised
of standard VAX computers. A VAXcluster system contains separate
processors and memories connected by amessage-oriented interconnect,
running instances of the same copy of the VMS operating system. The
VAXcluster system is thus limited to a bounded number of nodes within
a local geographical scope. The interconnection or clustering of processors
and storage controllers in a VAXcluster system, along with the VMS
operating system's distributed components, enable you to design and run
applications in a common system environment.

Worl~ng on a VAXcluster system, you can design and implement an
application to take advantage of the VAXcluster system's multiple CPU
resources, as well as VAXcluster shared disk and print resources. With
the proper use of the available programming techniques, a wide variety of
VAXcluster application environments can be supported, intrinsically, with
no need to redesign or recompile aVMS-based application that is being
migrated from a standalone VMS system.

Chapter 1 presents the hardware and software advantages of the
VAXcluster environment as an overview for the reader who is unfamiliar
with the VAXcluster concept. If you are already familiar with the
VAXcluster concept, it is suggested that you begin reading Chapter 2,
Using the VAXcluster System for Application Development.

y .1 VA~c~uster System Hardware Advantages
VAXcluster system hardware provides a site with growth potential,
extensive data storage potential, and configuration flexibility. The
hardware advantages of the VAXcluster system are:

• Hardware Availability

Using redundant hardware components, a VAXcluster system can be
configured to survive single hardware failures. (See Section 1.1.1.)

• System and Data Availability

The system environment of a VAXcluster system is flexible; the
VAXcluster system can be configured as acommon-environment or
a multiple-environment. (See Section 1.1.2. }

Advantages of a VAXciuster Application Environment

• Mass Storage Device Availability

The VAXcluster system offers many options for sharing mass storage
devices. (See Section 1.1.3.)

• Workload Balancing

By using the capability of a VAXcluster system to support multiple
CPUs, terminal servers connected to the Ethernet, and elusterwide
batch and print queues, you can balance the cluster's workload. (See
Section 1.1.4.)

1.1.1 Hardware Availability
The two key elements to providing a high level of hardware availability are
system modularity and redundancy. Modularity provides independence
of multiple components in the VAXcluster system so that the failure of
one component has minimal effect on the system. Redundancy ensures
that a particular component has a counterpart so that one component is
always available, even if the other is not. VAXcluster systems can provide
automatic recovery from hardware failures through hardware redundancy
provided by:

• Multiple-access paths to disk and disk failover

• Multiple CPUs

• Multiple printers

• Terminals connected with Local Area Transport (LAT) hardware and
software

• CI cables and the Star Coupler connections

• VAX Volume Shadowing

Multiple-Access Paths to Disk and Disk Failover

The VMS operating system supports multiple-access paths to disks
and failover of disks between pairs of HSC subsystems, between local
controllers, and between disk servers. Failover occurs when one controller
or cable malfunctions and causes one path to break. When the path
breaks, the device using that path automatically fails over to the other
path. Failover of disk drives between HSC subsystems, between local
controllers (for example, UDA50, KDA50, KDB50), or between disk servers
helps to provide high data availability. Note that when a disk server fails
in configurations that include multiple servers, satellite access to disks
fails over to another server.

Multiple CPUs

The processing power of all CPUs is potentially accessible to all users
in the cluster. That is, in acommon-environment system, the same
application can be run on all CPUs. Therefore, if one CPU is removed
from the cluster, the application is still available through other CPUs.

1-2

Advantages of a VAXcluster Application Environment

In a VAXcluster system, multiple CPUs can function as disk server nodes.
By configuring a primary and secondary disk server for a VAXcluster
satellite node, that satellite can have multiple-access paths to a local
or HSC-connected disk. If the primary disk server fails, the disk access
request is processed by the secondary disk server.

Also, multiple CPUs on a VAXcluster system increase the availability of
batch queues for clusterwide batch requests. A batch job can be executed
on any available CPU; if a CPU executing a batch job fails, the job may be
restarted (depending on the type of job) on another CPU.

Multiple Printers

A VAXcluster system can have multiple print queues which afford the
application clusterwide or local access to printers. Redundant print
queues and elusterwide print queue failover capabilities provide flexibility
and printer availability for the users. If a print job fails due to a printer
malfunction, the job can be requeued to the print queue for an operating
printer.

Terminals Connected with LAT Hardware and Software

Terminals with LAT connections are connected to a terminal server on
the Ethernet and run the Local Area Transport (LAT) protocol. These
terminals have access to all VAXcluster CPUs through the Ethernet,
unless the LAT software for the terminal server is set up otherwise. If all
user terminals are connected to the VAXcluster system through a single
terminal server, the terminal server can become a single point of failure
for user access to a VAXcluster system.

CI Gables and the Star Coupler Connections

CI cables, the Star Coupler, and the Computer Interconnect Star Coupler
Extender (CISCE) are designed with dual paths. If one path fails, the
remaining path automatically maintains the message traffic

VAX Volume Shadowing

VAX Volume Shadowing is an optional product that duplicates data on one
or more disks in a shadow set. In a shadow set:

• The data on each disk of the shadow set is identical to the data on all
other disks in the set. Write operations from any VAXcluster CPU are
directed to all disks in the set. when data is updated on one disk, it
is automatically updated on all disks. If a disk becomes unavailable,
users still have access to the same data from another shadow set
member.

• R,ead requests from any VAXcluster CPU are distributed over the
shadow set to improve performance.

VAX Volume Shadowing can provide a marked performance increase in
certain applications. For additional information on Volume Shadowing, see
the VAX Volume Shadowing Manual.

1--3

Advantages of a VAXcluster Application Environment

7.1.2 System and Data Availability
Based on the application and performance, the VAXcluster system
environment can be configured as one of the following:

• Common-environment, for ease of use and ease of management

• Multiple-environment, for specialized needs

• Combination of common-environment and multiple-environment

Common-Environment VAXcluster Configuration

A common-environment VAXcluster configuration offers high availability
of resources for applications, because it lets you run the same application
on all VAX CPUs in the VAXcluster system. The main characteristics of a
common-environment cluster are:

• A startup command procedure sets up the same system environment
for all VAXcluster CPUs with:

— Identical installed known images

— Identical logical names defined at startup

— Same set of shared mass storage devices and queues

• Acommon-environment VAXcluster configuration uses a single User
Authorization File (UAF) to set up the same user environment for all
VAXcluster CPUs. The UAF defines which users can log on, and the
environment of each user, such as:

— Default disk

— Default directory

User privileges

— User Identification Code (UIC)

The UIC determines access to resources and provides the basis for
clusterwide protection. Users and applications have the same data access
from each CPU. If a CPU fails or is removed, the user can log in on any
other CPU in the cluster and continue working.

Multiple-Environment VAXcluster Configuration

A multiple-environment VAXcluster configuration is defined by the system
manager. The main characteristics of amultiple-environment cluster are:

• Each CPU in a VAXcluster system can be configured with its own
known images, logical names, and devices that are different from other
VAXcluster CPUs. Therefore, certain software, devices, and files on
one CPU may not be available to other CPUs in the cluster.

• Each CPU in the cluster can have a different UAF.

• An application using multiple CPU resources may require a more
complicated design.

y —4

Advantages of a VAXcluster Application Environment

I~owever, a multiple-environment configuration does not take advantage of
the unique accessibility features of a VAXcluster system. A failure on one
CPU affects all users on that CPU because they may be unable to access
their data from another CPU.

Combination of Common-Environment and Multiple-Environment
VAXcluster Configuration

Most multiple-environment clusters are actually a combination of common-
environment and multiple-environment characteristics that include either:

• All CPUs sharing some subset of the resources

• Some CPUs sharing all resources, while other CPUs have their own
nonshared resources

For example, you can have athree-CPU VAXcluster system in which
two CPUs are sharing the same user environment, queues, and access to
mass storage devices, and the third CPU is restricted to the personnel
department accessing payroll files. For more information on common-
environment and multiple-environment operating system configurations,
refer to the VMS VAXcluster 1Vlanual.

1.1.3 Mass Storage Device Availability
The VAXcluster system offers many options for configuring mass storage
devices. Typically, a VAXcluster environment includes some of the
following configurations:

• Disks available clusterwide through an HSC controller

• Disks available clusterwide from a CPU

• Disks dual-ported between HSC controllers

• Disks dual-ported between CPUs

• DSSI-connected disks in dual-host LAVc configurations

• Disks that are part of a shadow set

• System disks

• Tape configurations

Disks Avaitabie clusterwide Through an HSC Controller

This disk configuration offers the capability for clusterwide shared disk
resources (except in a LAVc; see Table 1-1). Two important advantages for
sharing disks are:

• Users and applications on multiple CPUs can access the same data.

• Users and applications have access to the same files from any CPU in
the cluster. Therefore, if one CPU fails, the disk data is still available
from another CPU.

Any disk in a cluster can be accessible clusterwide.

y-5

Advantages of a VAXcluster Application Environment

Disks Available Clusterwide from a CPU

Disks connected locally to a VAX CPU require additional system manager
or user action to be made available clusterwide. (Refer to the ~~VIS
VAXcluster Manual for more information about using the MSCP server
to make local disks available clusterwide.)

Disks Dual-Ported Between HSC Cantrollers

In a VAXcluster system (except LAVc; see Table 1-1), adual-ported disk
can be physically connected between two HSC nodes. Thus, adual-ported
disk has multiple-access paths and it can be accessed clusterwide in a
coordinated way through either HSC controller. when a disk is dual-
ported and one of the HSC controllers to which it is connected fails, the
remaining HSC controller still provides access to the disk. For more
information about dual-ported disks, refer to the VMS VAXcluster Manual
and the VAXcI uster Software V5.2 Software Product Description 29.78.02.

Disks Dual-Ported Between CPUs

In a VAXcluster system, adual-ported disk can be physically connected
between two CPU nodes. Thus, adual-ported disk has multiple-access
paths and it can be accessed clusterwide. When a disk is dual-ported and
one of the local controllers to which it is connected fails, the remaining
disk controller still provides access to the disk. This is done transparently
by software when the active controller fails.

DSSI-Connected Disks in Dual-Host LAVc Configurations

In dual-host configurations of the MicroVAX 3300/3400 or 3800/3900, you
can connect Integrated Storage Element (ISE) disks (RF series disks) on a
Digitial Small Storage Interconnect (DSSI) bus between pairs of MicroVAX
3300/3400 or 3800/3900 CPUs set up as boot/disk servers. The disks
are simultaneously accessible to both servers and can be served to all
satellites by either server. If one of the servers fails, the remaining server
and satellites can continue to access the disks. For more information on
dual-host configurations, refer to the VAX Systems and Options Catalog
and the appropriate installation and operations guides.

Disks that are Part of a Shadow Set

The shadow set created with the VAX Volume Shadowing product is a
single virtual unit designed to protect against hardware failure. When the
shadow set members are dual-ported between two HSC controllers and
one HSC controller fails, the first CPU in the cluster to access the shadow
set reconstructs the shadow set for the entire cluster, and switches the set
to the alternate HSC controller. For more information about shadow sets,
refer to the VAX Volume Shadowing Manual.

~-6

Advantages of a VAXcluster Application Environment

System Disks

When using a common system disk for a VAXcluster system, the following
characteristics apply:

• All CPUs share a common directory.

• All operating system and layered product files are stored in a common
root directory, and therefore need to be installed only once to be
available to all VAXcluster CPUs.

• Each CPU has a unique root directory where node-specific information
is stored, such as the DECnet-VAX node name.

• In a CI-based VAXcluster system, a common system disk must be
connected to an HSC. In a MNc system, the system disk does not need
to be connected to an HSC and the LAVc rules for system disks apply.
In a LAVc system, a common system can be a locally connected disk on
a LAVc boot node. And, in a dual-host configuration for a LAVc system,
any disk on the DSSI-connected ISE can be a common system disk.

when you design your application, it is important to remember that if a
single, common system disk fails, all CPUs booting from that disk also fail.

fiherefore, there are some advantages to using multiple, common system
disks instead of a single, common system disk:

• For systems that do not have a single, common system disk that is
volume shadowed, if a system disk fails, multiple common system
disks enable the unaffected CPUs in the VAXcluster system to keep
running.

• T~iere is less likelihood of an UO bottleneck when a VAX luster system
has multiple, common system disks.

It is also possible to have a local system disk for a VAXcluster CPU.
However, for each local system disk, the system manager must install the
known images, logical names, and queue resources to initialize the system
environment for the booting CPU. Also, it is possible to create a. system
environment for a VAXcluster system using a combination of: local system
disks; a single, common system disk; and multiple, common system disks.
For more information about setting up a system disk, refer to the VMS
VAXcluster 1Vlanual.

Tape Configurations

As with disks, you can connect tape drives to:

• Individual CPUs

• An HSC controller

• A pair of HSC controllers

If a tape drive is connected to an individual CPU, it is available to that
CPU only. If a tape drive is connected to an HSC, it is available to any
CI-connected CPU in the VAXcluster system through that HSC controller.

~ —7

Advantages of a VAXcluster Application Environment

VMS supports dual-ported tape drives between two HSC controllers. If one
HSC controller fails, the tape drive mounted through that HSC controller
automatically fails over to the remaining HSC controller. The tape is then
available to the application through the remaining HSC controller.

1.1.4 Workload Balancing
The flexibility of a VAXcluster system offers possibilities for workload
balancing. The VAXcluster system provides three methods to balance the
workload:

• CPU power

• Distributed print and batch queues

• Terminal configurations

CPU Power

If the VAXcluster application environment is compute-bound, the
workload throughput can be improved by adding an additional CPU to
the VAXcluster system. The additional cluster member increases overall
VAXcluster throughput by providing more computing power at times of
high load. In addition, during nonpeak periods, an additional CPU helps
to ensure high availability in the event that a VAXcluster CPU fails.

Distributed Print and Batch Queues

The VAXcluster system enables the system manager to define clusterwide
generic batch and print queues. Any batch or print job that is queued to
the generic batch or generic print queue is automatically executed on the
batch or print queue of the VAXcluster system with the most available
capacity.

Terminal Configurations

Terminals in a VAXcluster system can be connected to:

• Individual CPUs

• A terminal switch

• A terminal server connected to the Ethernet to which the VAXcluster
system is also connected

If you connect a terminal to an individual CPU, the terminal can access
the cluster only when that CPU is available.

If you connect one or more terminals to a terminal switch or terminal
server:

• Terminal use is independent of the availability of any one CPU.

• Each terminal has access to all CPUs in the cluster.

Advantages of a VAXcluster Application .Environment

with terminals connected to a terminal server, the Ethernet cable connects
the terminal server with CPUs and information processing products in the
cluster. Terminal I/CJ performance is essentially the same as a terminal
directly connected to a CPU. However, terminal servers provide a variety
of unique benefits not provided by locally-connected terminals or terminal
switches. These benefits include:

• Multiple terminal access to the same or different CPUs that are
connected to the Ethernet and are running the LAT protocol.

• Job load balancing at login time to the VAXcluster CPU with the
greatest available computing capacity. This can occur as long as a
cluster service group name, known to the LAT protocol, has been
assigned. Refer to the VMS VAXcluster Manual for more information
on using the cluster service group name.

• Failover access to another node if the current node fails. The terminal
server does not provide automatic failover when a CPU fails. However,
if the CPU to which you are connected fails, the terminal server
lets you switch your session to another CPU. Assuming acommon-
environment cluster, you can then log in to that CPU and reestablish
the same application.

• Terminal servers offload some of the I/O overhead from the VAXcluster
CPUs, permitting the CPUs to devote more time to the application.

• Terno.inal locking to prevent unauthorized use of a terminal, thus
providing increased data security.

1.1.5 Supported VAXcluster Systems
There are three types of VAXcluster configurations:

• Computer-Interconnect VAXcluster system (CI-based)

• Local Area VAXcluster system (LAVc)

• Mixed-Interconnect VAXcluster system (MNc)

Table 1-1 compares the major hardware components of the CI-based
VAXcluster system, Local Area VAXcluster system, and Mixed-Interconnect
VAXcluster system.

y —9

Advantages of a VAXcluster Application Environment

Yable y-1 Comparing the CI-Based, Local Area VAXcluster, and Mixed-Interconnect VAXcluster
Systems

Characteristic CI-Based LAVc MI Vc

Communication bus

Supported CPUs'

HSC controllers

Multiple-access paths to
disk

VAX Volume Shadowing

Single common system
disk2

Multiple common system
disks2

Local system disk2

Disks available
cl usterwide

Duaf-path CI bus

CPUs with a CI-port

Yes

Dual porting of certain
disks between H$Cs,
or between CPUs, with
automatic failover. Also,
dual-host, RF-series
access.

Yes

Supported

Supported

Supported

Yes

Single-path Ethernet

CPUs with an Ethernet-
port

No

Dual porting of certain
disks between CPUs
with automatic failover.
Also, dual-host, RF-
series access.

No

Supported

Supported

Supported

Yes

Both CI bus and Ethernet

All CPUs require an Ethernet-
port, and CPUs in CI-portion
require a CI-port

Yes, on the Cf-portion

Dual porting of certain disks
between HSCs with automatic
failover on the CI-portion and
dual porting of certain disks
between CPUs with automatic
failover. Also, dual-host,
RF-series access.

Yes, on the CI-portion3

Supported

Supported

Supported

Yes

'Refer to the VAXcluster Software V5.2 Software Product Description 29.78.02 and the Guidelines for VAXcluster
System Configurations for a list of the supported CPUs for each type of VAXcluster system.
2 Refer to the VMS VAXcluster Manual for a discussion on how to configure a system disk for each type of
VAXcluster system.

3Shadow sets can also be served to satellite nodes by a CI-based CPU acting as a disk server.

V

Advantages of a VAXcluster Application Environment

~ .2 VAXcluster System Software Advantages
while most software components available to a VAXcluster system are the
same as those available to a programmer using a single VAX CPU, some
VMS software components have enhanced features for the VAXcluster
system environment. These software components are:

• Connection Manager

The connection manager manages membership of VAXcluster CPUs in
the cluster. (See Section 1.2.1.)

• Distributed VMS Lock Manager

The distributed VMS lock manager synchronizes the use of clusterwide
shared resources. (See Section 1.2.2.)

• Distributed + 'le System

The distributed file system coordinates file operations throughout the
cluster. (See Section 1.2.3.)

• Distributed Job Controller

The distributed job controller manages clusterwide batch and print
queues . (See Section 1.2.4.)

These software components, resident on each node as part of VMS,
intercommunicate to maintain a consistent view of the clusterwide lock
database and the cluster membership. These four software components,
resident on every VAXcluster CPU, are highly integrated in a VAXcluster
system and act as a distributed operating system.

Figure 1-1 represents the central importance of the distributed VMS
lock manager for the synchronization of the VAXcluster file system. With
the distributed VMS lock manager, the VAXcluster file system uses the
concept of clusterwide access for individual processes, and each process can
uniquely own a mass storage resource. In a VAXcluster system, these four
software components communicate to:

• Dynamically update the locking database for changes in clusterwide,
lock ownership and cluster membership

• Adjust the cluster membership for a VAXcluster member node joining
or leaving the cluster

• Provide coordinated access to the distributed file system

• Distribute print and batch job requests to the most available
clusteryvide queue, and restart batch and print jobs in the event of
a VAXcluster CPU failure

Advantages of a VAXcluster Application Environment

Figure 1-1 Conceptual Relationship of the Four Software Components
in the VAXcluster System

SCS Communications on CI or Ethernet

Connection
Mangy

User

M R-2282-RA

1.2.1 Connection Manager
The connection manager:

• Has no user programming interface

• Runs on each active CPU in the cluster

Advantages of a VAXcluster Application Environment

• Determines cluster membership and coordinates cluster state
transitions

The connection manager creates a cluster when the first active CPU is
booted, and manages cluster reconfigurations as additional CPUs
join the cluster or existing CPUs leave the cluster. As a cluster
configuration changes, a cluster state transition occurs.

• Prevents cluster partitioning

A partitioned cluster exists when two or more cluster members, each
unaware of the others, share the same data resources. Partitioning
can cause disk file corruption since there must be coordination between
all VAXcluster CPUs sharing the resource.

The connection manager prevents partitioning by using System
Communication Services (SCS) and aquorum-based algorithm.
Proper use of the quorum scheme requires participation by the cluster
system manager. For more information on the implementation of the
quorum scheme and its use by the system manager, refer to the VMS
VAXcluster Manual.

1.2.2 Distributed VMS Lock Manager
In a VAXcluster environment, the VMS operating system provides the
same data integrity as it does on a single VAX CPU because the VMS lock
manager is distributed between all cluster members. The distributed VMS
lock manager:

• Is accessed through the same programming interface in a cluster
environment as on a standalone VMS system

• Is used by several VMS software components to coordinate the sharing
of VAXcluster resources, such as data, devices, print and batch queues.
Access to shared resources is transparent to the user.

In a VAXcluster system, the distributed VMS lock manager runs on
each VAXcluster CPU to enable applications to coordinate the sharing
of resources. The distributed VMS lock manager is used by:

The distributed file system

VMS Record Management Services ('VMS RMS)

— The distributed job controller

— User-written VAXcluster applications

• Exists on each member of the cluster

• Stores resource names and information in a name space called resource
blocks

• Stores lock information in the clusterwide lock database, and
communicates this information to all cluster members

See Section 3.1, VMS Lock Manager, for more information.

1-13

Advantages of a VAXcluster Application Environment

1.2.3 Distributed File System
The distributed file system has enhanced capabilities in a VAXcluster
system. It allows:

• All available disk volumes to appear to any process as if they are local
to every VAXcluster CPU

• All cluster users to have the same access to disk volumes and disk files
clusterwide

To access disks directly connected to VAX CPUs, the distributed file system
uses software called Mass Storage Control Protocol (MSCP) Server. The
Mass Storage Control Protocol (MSCP) Server implements the MSCP
protocol, which is used to communicate with a controller for Digital
Standard Architecture (DSA) disks. For more information on using the
MSCP Server, refer to the VMS VAXcluster Manual.

The functions of the distributed file system include:

• Creating, deleting, extending, and truncating files

• Maintaining file directories

• Mapping virtual to logical U(~

• Arbitrating runtime access to files

• Enforcing file protection

• Enforcing and maintaining disk usage quotas

Because these activities can affect shared data, they must be coordinated.
This coordination is achieved by distributing locl~ng information
throughout the cluster. The distributed file system uses the distributed
VMS lock manager's clusterwide lock database to arbitrate access to
shared file resources. For more information on the programmer's use of
VMS RMS to interface with the distributed file system, see Section 3.2,
VMS Record Management Services. For more information on non-RMS use
of the distributed file system, see the VMS I lQ User's Reference Manual.

y.2.4 Distributed Jab Controller
The distributed job controller lets users submit batch and print jobs to
generic queues. It then distributes the ~ print or batch processing workload
across cluster nodes, using the distributed VMS lock manager to signal
each local job controller on each VAXcluster CPU to examine its own
queues for print or batch jobs that need processing. The distributed job
controller lets a print or batch job execute on any clusterwide queue from
any cluster node. Refer to Section 3.3 for information on how you can use
the VMS Batch Facility to interface with the distributed job controller.

Using the VAXcluster System for Application
Development

The application environment of a VAXcluster system offers you the same
VMS environment as a single VMS system. Consequently, in most cases,
you will not need to redesign your application in order to make your
application "work" on a VAXcluster system, when you run an application
written for the VMS operating system on a VAXcluster system, either one
of two possible situations will occur:1

• Application works clusterwide

• Application works on only one node in the elu.ster

The rationale for some applications worl~ng clusterwide and others only
working on a single node is based on the technology of a VAXcluster
system. When the VAXcluster system was designed, some parts of the
VMS operating system were distributed to all VAXcluster members
(for example, the distributed VMS lock manager, distributed file
system, and distributed job controller), and some parts of the VMS
operating system were not distributed (for example, management of
CPU memory). The distributed parts of the VAXcluster VMS operating
system support clusterwide processes. However, applications that depend
on an undistributed part (CPU memory management) for interprocess
communications cannot be distributed across nodes in a VAXcluster
system.

There are several programming mechanisms that enable VMS processes
to communicate with each other. Some of these mechanisms do not
work between processes executing on different VAXcluster CPUs. The
following programming tools work on a single CPU, but are not supported
clusterwide:

• Permanent and temporary mailboxes

• Common event flags

• Logical names

• $CREPRC2

• Writable global sections

There are several ways you can modify your programs to achieve
clusterwide comparable services. For information and suggestions on
modifying single-node software to run in a VAXcluster environment, see
Section 3.6, Single-Node Programming Tools Not Available Clusterwide.

1 All known occurrences of an application not being able to run in a VAXcluster system are attributed to prOgrammin~

errors. A common programming error that will cause an application to not run in a VAXcluster environment is if
an application does not know what to make of the "node$" prefized to certain device specifications. For ezample, an
application might depend on having VMS return disk names of the "DUA47:" format rather than "FRED$DUA47:".

2 A specific group of Process Control and Process Information system services are supported clusterwide in VMS Version
5.2. See Section 3.4 for a discussion of the Clusterwide Process Services.

2—'1

Using the VAXcluster System for Application Development

All three types of VAXcluster configurations (CI-based, LAVc, and MNe)
offer the capability for incremental growth, transparent data sharing,
efficient resource sharing, and centralized system management. Using
the combined advantages of VAXcluster system hardware and software
components, you can modify aVMS-based application to optimize the
processing capabilities of your installation's VAXcluster system. By
modifying an application that can only run on one VAXcluster CPU at
a time to a clusterwide application, you can realize several benefits:

• Increased application availability

When multiple CPUs in a VAXcluster system provide the same
software environment for an application, the application has increased
availability for the users because the application can be run from any
node.

• Higher throughput

With multiple copies of the same program executing on multiple CPUs,
throughput can be increased because multiple CPUs provide more
CPU cycles for concurrent executions of a program.

• Faster completion of a single application

If a single application is divisible into multiple units, each unit can
execute separately in parallel; consequently, an application can execute
faster by using multiple VAXcluster nodes.

• Improved utilization of VAXcluster CPU resources

By using the VAXcluster features of the distributed batch facility,
the distributed VMS lock manager, the distributed file system, the
distributed job controller, and Clusterwide Process Services (see
Section 3.4), the application designer can use the VAXcluster system
as a single programming environment.

2.1 Two Types of VAXcluster Application Activity
VAXcluster system application activity can generally be divided into two
categories:

• UO-intensive activity

• CPU-intensive activity

The two categories map directly into the most abundant hardware
resources on a VAXcluster system: data storage and multiple CPUs.
The concepts of I / O-intensive or CPU-intensive applications represent a
starting point for VAXcluster application design. To help in application
design, the application designer and programmer should consider the
application's U~ and CPU requirements.

Using the VAXcluster System for Application Development

Applications can often be categorized as being either UO-intensive or
CPU-intensive, when the application activity falls primarily in one
category. Other applications have some parts that are I/O-intensive and
others that are CPU-intensive.

With an I/O-intensive application, the greatest activity is disk UOs
generated by file access requests or updates to display devices.3 The
VAXcluster system enables multiple users from multiple VAXcluster CPUs,
all running the same application, to transparently use the VAXcluster
hardware and software components for extensive and flexible resource
sharing.

With aCPU-intensive application, the application primarily uses
CPU compute cycles. The programmer can execute aCPU-intensive
application on one VAXcluster CPU, or take advantage of the unique
hardware and software components of a VAXcluster system and distribute
CPU-intensive application tasks to multiple VAXcluster CFUs. In this
way, the application can be designed to take advantage of the VAXcluster
system's multiple CPU resources by executing multiple instruction streams
concurrently.

These two types of work or activity for an UO-intensive or CPU intensive
application are represented in Figure 2-1. The vertical arrows show
the direction of information flow in an I/O-intensive application, and
the horizontal arrows show the direction of information flow in a
CPU-intensive application.

Notes on Figure 2-y

The processing activities along the vertical lines are the disk UOs
requested by APPL2, an I/O-intensive application distributed by
replication (see Section 2.1.1). The processing activities across the
horizontal line are the interprocess communications required for
distributing APPL1, aCPU-intensive application, by decomposition.
(See Section 2.1.2.)

s In this manual, application I/O-intensiveness refers primarily to disk UOs, not terminal UOs. For information on
application design considerations for terminal I/Os, refer to the VMS Device Support Manuacl and the Guide to VMS
Performance Management.

2-3

Using the VAXcluster System for Application Development

Figure 2—y Comparing the Direction of Information Flow for an t/O-
Intensive Application Distributed by Replication and a
CPU-Intensive Application Distributed by Decomposition

•
•
•
•
•
•
•
•
•
•
•

VD intensive ~
•

• • •
•

•

CPU—intensive

> =>'~~~'

~ ' ~~:s:._..._....-----...-----.--------------.

>
>

CI

•

s
t

•
 •

•
•

•

•
•
•
•

~ i/~ Intensive

• •
•

MR-2281—RA

Z~

Using the VAXcluster System for Application Development

2.y .1 I/a-Intensive Application
An I/O-intensive VAXcluster application is characterized by one or more
users accessing clusterwide data resources. With multiple users running
the same application, clusterwide file sharing is arbitrated by the VMS
Record Management Services (VMS RMS) and the distributed VMS
lock manager. Typically, the programmer designs the application using
read and write operations to perform disk operations accessing the file
resources. The application designer must work within the site-specific
hardware configuration to optimize performance.

Figure 2-2 represents distributing an I/O-intensive application (PROG A1}
by replication on a VAXcluster system. PROG Al is a generic order entry
application that performs the following file-related functions: order entry,
order edit, and master-order file update. When PROG Al is executed
by multiple users on different VAXcluster CPUs, PROG Al executing on
VA►XA is simultaneously requesting the same files and possibly the same
records as the second copy of PROG Al executing on V.~►XB. As V~►XA

and V~►XB simultaneously execute copies of PROG A1, the distributed
file system and distributed VMS lock manager work together to arbitrate
concurrent access requests for the same data element.

By specifying file and record access modes from ahigh-level language, the
programmer automatically uses VMS RMS to interface with VAXcluster
software components. Transparent to the application PROS Al, VMS
RMS uses the distributed VMS lock manager and the distributed file
system to synchronize multiple access requests for the same data elements.
(See Section 3.2 and Section 6.2.2 for more information on using VMS
RMS.)

I/O-intensive applications distributed by replication on a VAXcluster
system enable users scattered across the VAXcluster system to have
synchronized read or write access to the same disk files down to the
record level. This functionality is exactly the same as on a standalone
VMS system. However, in a VAXcluster system, VMS RMS and the
distributed file system use the clusterwide lock database maintained
by the distributed VMS lock manager as an arbitrator for processes
concurrently accessing the same data.

2-5

Using the VAXcluster System for Application Development

Figure 2-2 I/O-Intensive Application (PRIG A1) Executing Multiple
Copies on a VAXcluster System

Order Entry
Program
Executing
on VAX A

user 1

::~~ ~ ~

PROG Al

f:::

Order
Entry

Order
Edit

Master—Order
F{e Update

User 2

Order Entry
Program
Executing
on VAX B

MR-2392-RA

When distributing an I/a-intensive application by replication on a
VAXcluster system, the programmer realizes the following advantages:

• Tie VAXcluster system supports file sharing by multiple processes on
multiple VAXcluster CPUs; consequently, having a greater number of
CPUs running an application increases an application's availability.

Note: Assi~m~ng the VAXcluster hardware configuration remains
unchanged, the critical factor is the total number of users
executing an application. A.s the total number of users
increases, there is the potential for an Il0 bottleneck if all
of the users are seeking access to the same devices..

• Executing multiple copies of an application on multiple CPUs takes
advantage of the VAXcluster system's capability to synchronize
clusterwide file access by using the distributed file system and the
distributed VMS lock manager.

2-6

Using the VAXcluster System for Application Development

Distributing Il0 activity can have the following disadvantages:

• Distributing I/O-intensive applications can cause increased traffic over
the VAXcluster interconnects and slower I/O activity. For example,
shifting I/O requests from adisk-serving node in a LAVc to the
satellites increases Ethernet traffic and, potentially, could shift an UO
bottleneck from a disk drive to the Ethernet. (For more information
on potential I/O bottlenecks in a VAXcluster system, see Section 7.2,
Potential Bottlenecks for an UO-Bound Application Environment.)

• Distributing I/O activity targeted to a single file requires that the file
be shared and the access coordinated; this can slow down each UO
when compared to performing the I/O from a single process.

See Section 2.4 for further information on how to distribute an application
by replication. In Chapter 4, the File Sharing and Client-Server Models
discuss considerations for implementing an I/O-intensive application,
and Section 7.2 discusses performance considerations for UO-intensive
applications.

Also, refer to the Guide to V1VIS mile Applications for a discussion of
I/O and locking performance considerations when programming for
"VAXcluster Shared Access."

2.1.2 CPU~Intensive Application
A CPU-intensive application can be executed using a single CPU in a
VAXcluster system. However, dividing the work of an application into one
or more discrete functional units for execution on different VAXcluster
nodes can effectively decrease execution time and increase throughput. A
CPU-intensive application can usually be divided into functional units and
distributed to multiple CPU resources for synchronous or asynchronous
execution.

For optimal performance of CPU-intensive application distributed by
decomposition, the application designer should take into account the
site-specific hardware configuration.

Figure 2-3 represents aCPU-intensive application for producing an
insurance amortization table based upon a statistical analysis of many
client-supplied variables. The user executes APP BC on VA►XA to input
alI the required information to perform a statistical analysis of the client's
insurability. Depending on the type of insurance requested, as sP'ec~fied
by a rate entry key, different statistical computations must be performed.
The work or statistical analysis of this application is distributed to either
APP B running on V~►XB, or APP C running on VAXC.

Using the VAXcluster System for Application Development

Figure 2~ Distributing Work for aCPU-Intensive Application Executing
on a VAXcluster System

?~~ge~„
O

 1

l

~:

MR-2393-RA

0 Rate Entry Program for Insurance Rates executing on V1~►XA as
APP BC.

~ when Rate Entry key is 1 to 1000, input is verified by APP B, and
if successful, APP B performs statistical analysis to produce an
amortization table.

Q when Rate Entry key is greater than 1000, input i s verified by APP C,
and if successful, APP C performs statistical analysis to produce an
amortization table.

The distribution of CPU-intensive work illustrated in Figure 2--3 shows
how the input program APP BC, executing on VA►XA, can become
more responsive for multiple users on V~►XA. The screen presentation
and entry functions performed by APP B C have been separated from
the CPU-intensive functions of the application. By distributing the
CPU-intensive functions to APP B and APP C on different VAX CPUs,
APP BC becomes more responsive to the users on V~~:~A, because this
part of the application is only managing screen presentation for the user's
input. Once the user's input is captured, the input ca.n be sent to either
APP B on V~►XB or APP C on VAXC for statistical analysis and production
of the client's amortization table. While APP_B or AFP C are executing,
APP BC can begin to process the next input item for a new client.

2-8

Using the VAXcluster System for Application Development

In general, you can realize the following advantages by distributing an
application's work to multiple VAXcluster CPUs:

• The user's response time is improved because an application's
CPU-intensive processing activities can be performed on another
VAXcluster CPU as a dedicated CPU.

• fihe functions of an application can be distributed to the VAXcluster
CPU best suited for the processing activity. Typically, the criterion for
this choice is the power of a CPU.

• The application's throughput is increased because by distributing
CPU-intensive work to multiple VAXcluster CPUs, more CPU cycles
per unit time are applied to the CPU-intensive task.

Note: If a VAXcluster CPU fails, there is no automatic failover for
any programs on the failed CPU. If high availability is a
requirement of the application tasks distributed on multiple
VAXcluster CPUs, the programmer must include code for
failover in the event of a CPU failure. See Section 6.4.2,
Recovery from Cluster State Transition Due to Node Failure,
for more information.

Distributing CPU-intensive work may have the following disadvantages:

• Implementing a VAXcluster application distributed by decomposition
may increase an application's complexity and the effort required to
maintain that application.

• Distributing units of an application's work may increase the total CPU
cycles required to complete that application's work.

See Section 2.5 for more information on how to design an application for
distribution by decomposition. Chapters 3 and 5 of this manual present
discussions of application design models and programming implementation
techniques for distributing work to VAXcluster CPU resources. See
Section 7.4 for considerations related to performance of CPU-intensive
tasks.

2.2 Characteristics of an Application Suitable for a VAXcluster System
As a general rule, applications that run on a single VAX CPU can also
run on a single CPU in a VAXcluster system without modification.
I/O-intensive applications that run poorly on a single VAX CPU will
also tend to run poorly on a VAXcluster system. (For a specific application,
there may be an improvement in UO performance by using VAX Volume
Shadowing.) However, aCPU-intensive application that runs poorly on
a single VAX CPU can, with modification, sometimes run better on a
VAXcluster system.

VAXcluster software enables the application designer to plan for work
distribution using the multiple CPU resources or concurrent access to
the shared disk data of the VAXcluster system. The programmer can
implement an application design based upon using either distribution of
multiple program copies or multiple instruction streams.

2-9

Using the VAXcluster System for Application Development

• I/O-intensive applications are often designed with multiple copies
of the application that run on multiple VAXcluster nodes, as shown
in Figure 2-2. If a single user I/~-intensive application is executed
on a VAXcluster system, the single user application may require
modification to support multiple users. However, an UD-intensive
application designed for multiple users and not involving explicit
interprocess communication can usually run on multiple CPUs in
the VAXcluster system without modification. See Section 4.1, File
Sharing Model, for further information.

• CPU-intensive applications are often designed as multiple instruction
streams, with execution for each instruction stream distributed
to multiple VAXcluster CPUs. ACPU-intensive application that
distributes work to multiple CPUs is a complex application design
which requires explicit interproeess communications to synchronize
the work. A distributed CPU-intensive application requires
some modification to take advantage of the communication and
synchronization mechanisms available on a VAXcluster system. Refer
to Section 4.2 and Section 4.3 for further information.

Applications that can benefit from running on a VAXcluster system
generally have the following requirements:

• High availability

Some applications are critical, requiring a high percentage of system
availability. The VAXcluster system lets applications access data from
multiple nodes and can be designed to provide failover access to data
if a CPU or HSC system in the cluster fails. For more information on
programming for exception conditions, see Section 6.4.

• Ease of system growth

As the needs of your application grow, you may need to add devices
such as disks, tapes, and CPUs. Flexibility of your VAXcluster system
enables the system to grow to accommodate these devices.

• High performance

Some applications use significant amounts of CPU time. when
designing these applications, the CPU-intensive sections of code can be
divided into separate tasks. when implementing the application, the
CPU-intensive tasks can be distributed to multiple CPUs to improve
an application's execution time and increase the VAXcluster system's
overall throughput.

• A shared file system

The application requires access to shared data. VMS software
components, using the distributed file system and the distributed
VMS lock manager, provide the capability for clusterwide arbitration
for shared file access. See Section 4.1, File Sharing Model, for more
information on application design for a shared file system.

Using the VAXcluster System for Application Development

The VAXcluster system provides you with the following resources for
clusterwide programming development: a common system environment for
accessing the run-time libraries, the VMS linker, and shareable images.
Typical examples of application environments that may be developed to
run on a VAXcluster system are:

• Z4~ansaction processing

• Batch processing

• Time sharing

Transaction Processing

When a transaction processing application is implemented on a VAXcluster
system, the front-end processing activities can take advantage of a
VAXcluster hardware redundancy for increased application availability,
while back-end processing activities take advantage of the VAXcluster
system's multiple CPUs to increase an application's throughput. For more
information on Digital's Online Transaction Processing (OLTP) products,
see Section 5.6.1, DECintact, and Section 5.6.2, VAX ACMS.

Batch Processing

A typical batch processing application is non-interactive, long running,
and is submitted and controlled from a Digital Command Language
(DCL) job stream. The advantage of executing a batch application
on a VAXcluster system is the availability of multiple batch queues.
Consequently, there can be parallel execution for independent tasks within
the batch application and, in the event of a CPU failure on an executing
batch queue, you can use DCL to provide an automatic failover to an
operating batch queue on another VAXcluster CPU. For more information
on using DCL to restart a batch job, refer to Section 3.3 .

Time Sharing

A timesharing application takes advantage of the cluster's multiple
CPUs because each user is independent of other users; this allows
a high degree of concurrency. Communication and synchronization
between the independent user processes are achieved through VMS and
the distributed file system's arbitration for shared disks and files. A
timesharing application can also take advantage of a VAXcluster system's
hardware availability. If one CPU in a VAXcluster system fails, users
from that CPU can generally continue working on another VAXcluster
CPU. However, failover from a failed CPU to an alternate VAXcluster CPU
is not automatic; each timesharing user must log in again to continue
working.

Using the VAXcluster System for Application Development

2.3 Applications That May Not Be Suitable for a VAXcluster System
Applications that may not behave as expected in a cluster environment
are those that require:

• Nonstop prncessing

Such an application is one that requires realtime access to
nonreproducible data. It cannot tolerate pauses such as those that
occur when a system joins or leaves the cluster.

In some cases you may be able to effectively use a cluster to process
data collected in real time by using either of the following:

A separate, fully redundant system connected to a VAXcluster
system using the DEGnet network

Using DEGnet, data can be transferred from the dedicated
computer system to the VAXcluster system, where data processing
and database management take place. This type of configuration
protects the application from cluster interrupts, but not from the
failure of the dedicated node or its own resources.

An example of this type of configuration is a large VAXcluster
system in Tucson, Arizona that is used to store and process
astronomical data. The astronomical observatory requires realtime
data collection from telescopes, which must not be interrupted even
for the short period of time required by cluster state transitions.
This computing problem is solved by dedicating especial-purpose
computer to collecting the data from the telescopes. The data
is stored on media and transferred to the VAXcluster system on
a regular basis. Scientists access the astronomical data using
applications running on the VAXcluster system. The VAXcluster
system also runs software for processing the astronomical data,
formulating and testing results, and for administrative purposes.
Thus, the high fault-tolerant requirements of this application
are served by a dedicated computer system. The remaining
requirements of the computing facility are met by a VAXcluster
system, providing all the benefits of the cluster design to the
system users.

-- Devices with adequate data buffering

For example, if you are collecting data from a satellite orbiting the
earth, and the data downline loaded to a VAXcluster system for
processing, you can ensure nonstop processing by collecting the
telemetry data in a device with adequate data buffering.

Using the VAXcluster System for Application Development

• Complete fault tolerance

A VAXcluster system provides high availability of disk and CPU
resources, but does not provide 100 percent fault tolerance. Also, there
is no automatic failover of processes from one node to another.

However, in the event of a VAXcluster CPU failure, you can
write an application to be restarted on another CPU. See
Section 6.4.2, Recovery from Cluster State Transition Due to
Node Failure, for more information.

• Low-overhead communications between processes on separate VAX
CPUs

CPUs in a VAXcluster system do not share common memory.
Therefore, they require more overhead to communicate and
synchronize activity than CPUs in a tightly coupled system.

2.4 Is an Application a Candidate for Distribution by Replication Across
VAXcluster CPUs?

Typically, an UO-intensive application is a good candidate for replication
in a VAXcluster system. There are sig steps to consider when determining
whether to design a distributed application for replication on multiple
CPU resources:

1 Determine the system environment.

2 Evaluate CPU resources.

3 Evaluate I/O resources .

4 Analyze the user's demand for the application.

5 Establish the goals of the application.

6 Arrive at a decision.

Step 't —Determine the System Environment

An application is easiest to replicate in acommon-environment VAXcluster
system because in such an environment there are no restrictions on
its availability to users on any VAXcluster CPU. However, in a large
VAXcluster system containing both multiple and common-environments,
you can replicate an application on only the common-environment
segment.

Step 2 —Evaluate CPU Resources

To avoid degradation in performance, you should evaluate the existing
load capacity of the VAXcluster CPUs where you may want to execute the
image. You can then choose the VAXcluster CPUs that will execute the
replicated image most effectively.

Using the VAXcluster System for Application Development

Step 3 —Evaluate II4 Resources

The load on the I/O system is an important consideration and must be
evaluated. The VAXcluster I/O system contains: CI adapters, Ethernet
adapters, and disk drives. To evaluate the load on the I/CJ system, consider
the relative UD throughput capacity for each of these types of hardware
components in your I/C~ system.

The relative I/O throughput capacity for these components is presented in
Table 2-1, Table ~-2, and Table ~-3. For individual performance values
for these Digital hardware components, refer to the latest supplement of
the VAX Systems and C?ptions Catalog and the Guidelines for VAXcluster
System Configurations.

Table 2-1 CI Adapter Throughput Capacity (Fastest to Slowest)

Type of CI Adapter

CIBCA-B

CIBCA-A

CIBCI

ci7so

Ci750

Table 2-2 Ethernet Adapter Throughput Capacity (Fastest to Slowest)

Type of Ethernet Adapter

DEBNA, DEBNI

DEQNA, DELQA

DELUA

DEUNA

Table 2-3 Disk Type I/O Rates (Fastest to Slowest)

Type of Disk

ESE20

RA90, RA82, RA70, R F30,
RF71, RZ22, RZ23

RA81

RA60, RD52, RD53, RD54

RD31, RD32

Using the VAXcluster System for Application Development

It is important to determine if replication will overload a component of
the I/O system that is already close to being a bottleneck. For example,
if you have replicated an application and multiple images are requesting
UOs through the same Ethernet adapter, you may encounter a bottleneck
at that Ethernet adapter. Also, disk access speed is not the same for all
VAXcluster CPUs; VAXcluster CPUs accessing a disk over the Ethernet
take longer than VAXcluster CPUs that do not need to send data over the
Ethernet to access a disk.

For more information on performance considerations for an I / O-bound
application, see Section 7.2.

Step 4 —Analyze the User's Demand far the Application

Once an application is replicated, will the user's demand for that image
be fairly equal for each instance of the application that is being executed
on the VAXcluster system? For example, if there are 10 users for an
application, are each of the users running the image about the same
amount of time? Or, are one or two of the users running the application
a disproportionate amount of time? If multiple copies of this application
are replicated on multiple VAXcluster CPUs, then the number of users
assigned to each available VAXcluster CPU should be balanced according
to the amount of work the users perform on each CPU.

when the demand for the application is relatively constant among all of
the users, it is important that users follow a method for choosing from
which VAXcluster CPU to execute the image. The users may use a cluster
alias with the LAT software to assign an available CPU for logging on to
run a copy of the image. Or, each user of the application may be instructed
to only run the image from a specific VAXcluster CPU.

Step 5 —Establish the Goals of the Application

There are two objectives for replicating an application on a VAXcluster
system:

• Increasing application throughput

• Increasing application availability

when the number of users remain constant, you can reduce user response
time and i~~crease the application's throughput (assuming there are not UO
system bottlenecks and the workload is balanced equitably).

Also, when the user population for an application remains constant,
running multiple copies of an image on multiple VAXcluster CPUs enables
you to increase the application's availability because if a VAXcluster CPU
fails, the application remains available to users on other VAXcluster CPUs.

Using the VAXcluster System for Application Development

Step 6 —Arrive at a Decision

Based on your evaluation of Steps 1 to 5, consider replicating an
application on multiple VAXcluster CPUs if:

• There is a homogeneous (common-environment) segment of the
VAXcluster system.

• CPUs in the VAXcluster system are not at maximum load capacity.

• The UO system in the VAXcluster system is not at maximum load
capacity.

• There are multiple demands for the application, and the demand for
the image is fairly even among users.

• The user demand can be fairly distributed to the VAXcluster CPUs
where the image is replicated.

• For a constant user population, a replicated application can decrease
the user response time and increase system throughput for the
application.

For more information on how to design an application for replication, see
Chapter 3, Programming Tools for VAXcluster Application Development,
and Chapter 4, Application Design Models for VAXcluster Software.

2.5 Is an Application a Candidate for Distribution by Decomposition
Across VAXcluster CPUs?

Typically, aCPU-intensive application is a good candidate for distribution
by decomposition in a VAXcluster system. However, there are five steps
you should consider when determining whether your application should be
designed to distribute units of work to multiple CPU resources:

1 Determine suitability.

2 Analyze application.

3 Establish goals.

4 Determine divisibility.

5 Arrive at a decision.

Step y —Determine Suitability

Make sure the application type does not fall into one of the categories
described in Section 2.3, Applications That May Not Be Suitable for a
VAXcluster System.

Step 2 —Analyze Application

Can the application designer state the functional requirements of the
application design for the application programmer? Usually, this can
only occur after the system designer has made a thorough analysis of
the application constraints in the conte$t of the user's environment. In a
business environment, the analysis of the user's needs is very application
dependent.

z—~ s

Using the VAXcluster System for Application Development

Sample Application Analysis

For example, consider an analysis of the business problem for the following
banking application:

a. Last National Bank wants to design an application to process teller
transactions and update all the associated files in their customer
database. Figure 2~-~4 represents what the teller application must
do. In the course of servicing bank customers, each teller will
use the programmed interface to process the customers banking
transaction and the application will update all the associated
database records.

Figure 2--~ Sample Banking Application on a VAXcluster System

. : =~;~~c

i

_~ ~:
:::

.. Teier

Transaction = Recalculate Customer Balance for Master A000unt and Update Files X, Y, Z

Teller Processing Steps:
1. Input Transaction
2 Computer Must Successfully Update Files ~C,Y,Z for Each Transaction
3. Next Transaction

M R-2394-RA

b. There are several possible ways of designing an application to
accomplish the required processing steps:

— Write all daily transactions to a file for batch processing at the
end of the business day.

— Write all daily transactions to a file for batch update processing
every deltci minutes.

— Perform an online update using callable programs (shareable
images) to update files g,y,z.

-- Distribute the client (teller) input to one or more servers
performing the update function for files g,y,z and allow the
teller to begin processing the next transaction.

2-17

Using the VAXcluster System for Application Development

c. To decide which functional approach is preferable, the application
designer must determine the constraints of the business
environment for which this application is being specifically
designed. In the context of the teller application for Last National
Bank, the application designer may want to consider:

How important is it for the data to be current?

How many users will access the data?

How many transactions will occur within a time period?

what are the tasks for a transaction?

— What is the relationship between the tasks?

— what delays are acceptable?

What are the CPU resources?

Step 3 —Establish Goats

After establishing the environmental constraints, the application
designer should establish application goals relating to speed, availability,
throughput, and error tolerance. The established goals will help to
determine the approach the designer should use. See Table 2-4 to help
make this determination.

Table 2-4 Goals for Distributing an Application Across VAXcluster
CPUs

Application Goal Approach Refer To

Increased Availability

Speed

Increased Throughput

Error Tolerant Processing

Divide an application into
front end and back-end
tasks to increase the
availability of the front-end
application to the users.

Use multiple CPU
resources to obtain
greater aggregate
performance for a single
application.

Distribute the work over
multiple CPU resources to
load balance and increase
the throughput.

Distribute the work
over multiple CPUs to
approximate error tolerant
processing by providing
a failover mechanism for
VAXcluster node failures.

Section 4.2, Section 5.1

Section 4.2, Section 4.3,
Section 5.2

Section 4.1, Section 4.2,
Section 4.3, Section 5.3

Section 4.2, Section 4.3,
Chapter 8

2-18

Using the VAXcluster System for Application Development

Step 4 —Determine Divisibility

First, establish if an application can be divided into discrete functional
units:

• Can. the application be divided into functional units?

• Does each functional unit accomplish a single task?

Proceed only when you can answer the two preceding questions with
"yes." Then determine the following attributes and interrelationship of the
application's functional units:

— Are there data dependencies between functional units?

When functional units require simultaneous access to the same
data, there is a data dependency. If the simultaneous access is for
updating, the data dependent functional units cannot execute in
parallel.

— Can the functional units execute in parallel?

If there are no data dependencies between functional units, the
functional units can be designed as multiple instruction streams
executing in parallel.

— Is disk UO a significant bottleneck?

If the functional units require disk access, and the disk I/O has
been identified as a significant bottleneck, it is important that disk
I/Os be minimal. Relative to a CPU compute cycle, a disk UO is
very time-consuming. For more information on identifying disk UO
bottlenecks, see Section 7.1, Using VMS Utilities to Monitor the
Cluster and Identify Bottlenecks.

How much communication is required between the functional
units?

To synchronize the execution of functional units, interprocess
communications are required to define the interrelationship
of the functional units. when the interrelationships of the
functional components are complex, the communication overhead
for distributing the application increases.

Are the distributed functional units performing an optimal amount
of work?

Each functional unit must perform a sufficient amount of work to
offset any communication overhead incurred by the functional unit.

— What is the ratio of distributed work to the amount of
synchronization required?

As long as the amount of work performed by the functional unit is
significantly larger than the communication overhead required to
synchronize the functional unit, the application is a good candidate
for distributed application design.

Using the VAXcluster System for Application Development

Step 5 -- Arrive at a Decision

After a thorough analysis of an application using Steps 1 to 4, consider an
application designed to distribute by decomposition if:

• The gain in application performance justifies the additional effort and
expense of implementing a distributed application.

• The application goal is to increase speed (decreased wall-clock time) or
to increase system throughput by running a distributed application at
the lowest priority available on the system at a time when the cluster
is normally idle.

• The application can be divided into functional units.

• Each functional unit can be designed for one task.

• There is a low data dependency between functional units; that is, the
tasks are relatively independent of each other.

• There are minimal disk UOs required for each functional unit because
many disk UOs will tend to diminish the performance gained by
distributing the application.

• Each functional unit is used frequently.

• fihe amount of work performed by each functional unit is
large compared to the overhead associated with interprocess
communications.

For more information on how to design an application for distribution
by decomposition, refer to Chapter 3, Programming Tools for VAXcluster
Application Development, and Chapter 4, Application Design Models for
VAXcluster Software.

Programming Tools for VAXcluster Application
Development

When developing applications for use in a VAXcluster environment, you
can use several programming tools supported by VMS software and VMS
layered products. VMS supports the following programming tools:1

• The VMS Lock Manager is distributed to all VAXcluster CPUs to
coordinate clusterwide resource access. (See Section 3.1.)

• VMS Record Management Services (VMS RMS) interfaces with the
distributed VMS lock manager and the distributed file system. (See
Section 3.2.)

• The VMS Batch Facility interfaces with the distributed job controller.
(See Section 3.3.)

• Clusterwide Process Services act on any process executing on the
VAXcluster system. (See Section 3.4.)

• DECnet-VAX software creates communication links between
VAXcluster CPUs. (See Section 3.5.)

Figure 3-1 shows the relationships between these VAXcluster
programming tools.

1 See Section 5.6 for more information on programming with VMS layered products.

3-1

Programming Tools for VAXcluster Application Development

Figure 3-1 Functional Relationship of VAXcluster System Programming
Tools

Clusterwide
Process
Services

Job
Controller

User 1< ~i r

File System
XQP

Y rrr
Lock
Management
System
Services

Distributed VMS
Lock Manager

CLUSTRLOA

VMS
RMS

$QIO system
Service

DECnet
{NETDRIVER,
NETACP}

M R-2068-RA

3.1 VMS Lock Manager
fine VMS lock manager, illustrated in Figure 3-2, is the basic process
synchronization mechanism for the VAXcluster system. The lock manager
enables clusterwide synchronization by granting locks, when appropriate,
to requesting processes. By using lock management system services, you
can request, release, or query locks on a resource.

Each resource in a VAXcluster system is represented by a unique resource
name. when a process' lock request is granted for a lock on a resource
name, this resource name is placed in the distributed lock manager's
clusterwide lock database. The VMS lock manager does not actually
allocate or control the resource, and the resource name need not represent
an actual physical resource. The VMS lock manager mediates the access
of a resource by determining the compatibility of the requested locks with
those existing on the resource name in the clusterwide lock database. If
the lock modes are compatible, the lock is granted, and the requesting
process can share the actual resource. To gain access to any resource, all
processes executing on any VAXcluster CPU use lock management system
services, directly or indirectly, to interface with the VMS lock manager.

3-2

Programming Tools for VAXcluster Application Development

Figure 3-2 VAXcluster Programming Tool: VMS Lock Manager

user

Lock
Management
System Services

Distributed VMS
Lock Manager

M R-2395-RA

All resource names are known clusterwide; therefore, to determine the
location of information for all existing Iocks granted for a resource name,
the lock manager must reference the locking information for that resource
name. The VMS lock manager accomplishes this by using a directory
look-up to establish which VAXcluster CPU is the resource manager for
the resource name. Typically, the lock manager assigns a VAXcluster CPU
as resource manager for the first request for a lock on a resource name.
Subsequently, the second process requesting a lock for the same resource
name is pointed to the VAXcluster CPU that is the resource manager for
that resource name. The resource manager CPU for the resource name
maintains the clusterwide lock database for all locks that have been
granted for that resource name.

Note: You should not assume that you can predict where a lock manager
resource tree will be mastered. If you do determine where a tree
is mastered (perhaps by using $GETLKI), mastership may move to
another node at any time.

3.1.1 Lock Management System Services
Lock management system services can be used directly or indirectly
from an application. You can use the lock management system services
directly by calling a lcek management system service routine from your
application.

Programming Tools for VAXcluster Application Development

The lock management, system services are used indirectly when you utilize
components of VMS which themselves use the lock manager to synchronize
their activities, such as the following:

• Using VMS RMS to access files, either by using the inputloutput
services provided by a high-level programming language, or by
explicitly calling VMS RMS system service routines

• Using the distributed file system to create and delete files, or to
otherwise modify the structure of mass storage volumes

• Using the ALLOCATE command (or the $ALLOC system service)
to allocate a device (allocation is implemented by using a lock
representing the device}

The VMS lock management system services listed in Table 3-1 interface
with the VMS lock manager.

Table 3—y Lack Management System Services

Service Name Meaning Function

$ENQ' Enqueue lock request

$ENQW'

$GETLKI' Get lock information

$GETLKIW'

$DEQ'

Enqueue lock request
and wait

Get lock information
and wait

Release lock request
~dequeue)

Requests a lock on a resource or converts
a resource lock mode.2

Requests a lock or lock mode conversion
on a resource, and waits for the lock to be
granted or converted.

Requests information about the lock
database. $G ETLKI does not wait for the
information to be returned.

Requests information about the lock
database. $GETLKIW waits for the
information to be returned.

Performs one of the following functions:

• Unlocks a process' granted locks
• Gives up ownership of the resource
• Releases the sublock of a resource
• Cancels a queued lock request that

has not been granted

'Refer to the VMS System Services Reference Manua! for more information.
2For more details about lock modes, see Section 3.1.2 and Section 3.1.3.

When using lock management system services, you must specify a lock
mode as part of the system service argument. The VMS lock manager uses
the lock mode argument for a lock request to determine the compatibility
or incompatibility of clusterwide locking requests for the same resource
name. The VMS lock manager uses the matrix illustrated in Table 3-3 to
determine lock mode compatibility. Incompatible lock requests are queued
and granted when the conflicting lock is released or converted. In addition,
16 bytes of programmer-supplied information can be associated with each
lock granted to a resource name.

Programming Tools for VAXcluster Application Development

To request a lock on a resource, a process must use the lock management
system services, supplying the following information:

• The resource name as defined by the requesting process

The VMS lock manager uses the resource name to look for other locks
granted for that name. (Resource names are implicitly qualified by the
ITIC group number of the process from which they are requested.)

• The lock mode

The lock mode indicates whether the process wants to share the
resource with other processes, and if so, how.

• The address of the lock status block

The Zock status block for the resource name indicates the queue in
which the lock is placed:

— GRANTED The lock request has been granted.

— WAITING The lock request is waiting to be granted.

— CONVERSION The lock request has been granted at one mode and
is waiting to be granted a higher lock mode.

When the lock has been granted, the lock status block contains the
lock identification and the status of the lock. VMS uses the lock
identification to refer to a lock request after it is queued.

The lock management system services can be used to perform the following
functions:

• Coordinate clusterwide access to shared resources

Typically, a programmer uses ahigh-level language as an interface to
VMS RMS, and VMS RMS calls the lock management system services
to interface with the VMS lock manager and the file system. (See
Section 3.1.2, Section 3.1.3, and Section 3.1.4.)

• Store and pass information between all cluster processes accessing the
same resource name

All locks granted by the lock manager have a data structure, the
lock value block, that can contain 16 bytes of programmer-supplied
information. (See Section 3.1.5.)

• Synchronize interprocess events across the entire cluster

By specifying an asynchronous system trap (AST) or a blocking
asynchronous system trap (blocking AST) with the lock request, the
programmer can synchronize interprocess events. (See Section 3.1.6.)

Programming Tools for VAXcluster Application Development

3.1.2 Lock Modes
A process can access a resource by locking it in different modes. Lock
modes allow cooperating processes to:

• Share access with other processes

• Prevent access by other processes

• Coordinate access with respect to time

Table 3-2 provides a summary of the lock modes. The table presents the
lock modes in an ascending order from the less restrictive to the most
restrictive mode. For more detailed information, see the VMS System
Services Reference Manual.

Table 3-2 Lock Modes

Lock Mode Mode Name Lock Description

NULL MODE (NL) LCK$K_NLMODE This mode sets a place holder in
the name space and indicates future
interest in the resource. Later, the
lock can be converted to a higher lock
mode more quickly than if the lock
were initiated in that mode.

CONCURRENT LCK$K CRMODE This mode allows one process to read
READ (CR) data from a resource in an unprotected

manner while other processes can
modify the data. This mode is typically
used when sharing processes are
only reading data, or when additional
locking is being performed by other
processes at a finer granularity using
sublocks.

CONCURRENT LCK$K CWMODE This mode allows one process to write
WRITE (CW) data in an unprotected manner while

other processes can simultaneously
write data to the same resource. This
mode is typically used when additional
locking is being performed at a finer
granularity using sublocks.

PROTECTED READ LCK$K_PRMODE This mode allows processes to share
{PR) read access to a resource, but not to

write to the resource at the same time.

Programming Tools for VAXcluster Application Development

Table 3-2 (Cont.) Lock Modes

Lock Mode Mode Name Lock Description

PROTECTED WRITE LCK$K_PWMODE This mode allows a process write
(PW} access to the resource, and allows

other processes to read from but not
write to the resource at the same
time. The other processes must have
concurrent read access.

EXCLUSIVE (EX} LCK$K_EXMODE This mode allows write access to
the resource and prevents other
processes from reading from or writing
to the resource. This lock prevents
any other cooperating process from
taking ownership until you release the
resource.

If a process places a highly restrictive lock on a resource name, that
process can prevent other processes from accessing the resource name and
can slow the application's performance. For example, if a process places an
EXCLUSIVE (EX) lock on a resource name, it blocks all other cooperating
processes from gaining access to that resource name.

Note: Even though the VMS lock manager grants an EX lock to a
specific resource name, the VMS lock manager does not prevent
uncoordinated access to the underlying resource by other
processes. The VMS lock manager is like a traffic light. A red
traffic light does not physically stop your car. You stop your car
at a red traffic light because that is the convention. Similarly, you
do not access a resource, represented by a resource name, without
obtaining the proper lock because that is the convention. In either
situation, ignoring the conventions can cause data corruption.

Table 3-3 shows the compatibility between all lock modes. For example,
as the table shows, a PROTECTED READ lock mode can be used with a
NULL, CONCURRENT READ, or another PROTECTED READ. However,
it is not compatible with a CONCURRENT WRITE, PROTECTED WRITE,
or EXCLUSIVE lock mode.

Table 3-3 Lock Mode Compatibility

Mode NL CR C1N PR PW EX

NL Yes Yes Yes Yes Yes Yes

CR Yes Yes Yes Yes Yes No

CW Yes Yes Yes No No No

PR Yes Yes No Yes No No

PW Yes Yes No No No No

EX Yes No No No No No

3-7

Programming Toois for VAXcluster Application Development

3.1.3 Locking Levels
In conjunction with lock modes, a process can share data resources with
other processes by locking data at different levels. Many applications
find it useful to describe their components in a hierarchical fashion. For
example, a database can be considered as a hierarchy of:

• The entire database

• Files within the database

• Records within the files

The name space in the clusterwide lock database for resource names is tree
structured to allow locks at different levels. The ability to have different
lock levels on a resource name is called resource granularity. While the
use of resource granularity is optional, the concept of granularity lets you
have greater control over locking when accessing a resource, and is useful
among cooperating processes that require complex lock structures. An
example of this tree structure is shown in Figure 3-3.

Figure 3-~3 Resource Granularity Locking

Vo~xne

FYe

r~

M R-2397-RA

The degree of granularity is defined by the level of the resource being
locked. For example:

• hoarse granularity locks an entire volume of data.

• Fine granularity locks files within the volume.

• Finer granularity locks records within files.

Programming Tools for VAXcluster Application Development

when processes have locks on a database at different levels, the lock at the
highest level is the parent lock . Other locks at lower levels are sublocks.
when using the lock management system services directly, you choose the
scheme for the granularity. For example:

• Process A has an EXCLUSIVE (EX) lock on a parent, which represents
a file.

• Process A also has a CONCURRENT READ (CR) lock on a sublock,
which represents a specific record in the file.

• Another process (process B) wants a CONCURRENT WRITE (Cw)
lock on the sublock for the same record in the file.

The lock manager may or may not grant access to the sublock depending
on the scheme used by process B. If process B first requests a CR on
the parent (file), its lock request will not be granted, since CR is not
compatible with EX. Process B cannot get a lock on the sublock (specific
record in the file), since it does not hold a lock on the parent.

If instead, process B first requests a NULL (NL) lock on the parent and
then the Cw lock on the specific record in the file, both locks will be
granted. (The NL lock on the parent is only granted if there are no other
lock requests for the parent lock in the waiting or conversion queues.)

Note: when using a parent lock with sublocks, do not expect an EX
lock on a parent to automatically exclude other processes from
accessing any of the parent's sublocks. The use of a parent lock
with sublocks requires cooperating processes; any corruption of
this convention can be disastrous.

Resource management of sublocks occurs on the same node as the parent
lock. To get a sublock, a process must first be granted a lock on the
parent. As long as a lock is held on the parent, the resource manager for
all related sublocks is known. Therefore, the VMS lock manager does not
need to perform a directory look-up to determine which VAXcluster CPU
is the resource manager for each sublock. In a VAXcluster system, this
reduces the amount of time required to acquire a sublock.

3.1.4 Lock Queues
when a new lock request is made, the VMS lock manager determines
whether the resource name is known or not known. If the resource name
is not known in the clusterwide lock database, the lock manager creates
the resource name data structures, grants the lock request, and updates
the clusterwide lock database.

3-9

Programming Tools for VAXcluster Application Development

If the resource name is known, then the lock manager references the
clusterwide lock database by a directory lookup. Before the lock request
is granted, the lock manager determines if other lock requests for the
same resource name are in either the clusterwide waiting queue or the
conversion queue see Figure 3-4). If no other lock requests for the same
resource name are in the waiting or conversion queues, the locking request
is:

• Granted, if compatible with existing granted locks

• Placed in the waiting queue, if incompatible with existing locks

However, if other lock requests for the same resource name are in either
the waiting or conversion queues, then the locking request is placed at the
end of the waiting queue.

i=figure 3~-4 Lock Queues of the VMS Lock Manager

New
Lock
Rec~ested

Conversions
Granted

 I
-~

Granted
G~~e

 Compatible
Conversions

-~.

New ~
Lock Waiting Docks
Granted ~ Granted

Conversions
C1~eue

 4-

New Lock Queued

Waiting
Queue

Conversions
that are
Incompatible
are Re—queued
Until Su~ocessful

M R-2048-RA

Preventing Deadlocks

Deadlocks occur because of errors in designing locking schemes. For
example, a deadlock can occur when the holder of the lock that you are
waiting for cannot proceed because it is waiting for a lock that is currently
granted to your program. In this case, A is waiting for B, B is waiting for
C, and C is waiting for A. The distributed VMS lock manager detects these
deadlock situations. Simply waiting for a locking request to be granted
does not constitute a deadlock.

If you use VMS RMS to access files and the records therein, then VMS
RMS automatically uses the VMS lock manager to handle deadlock
situations among processes. However, if you are explicitly calling lock
management system services, then, by properly coding your locl~ng
scheme, you can avoid deadlocks.

3-10

Programming Tools for VAXcluster Application Development

Deadlocks can occur in at least the following situations

• When multiple lock requests are waiting for each other in a circular
fashion, as illustrated in Table 3-4.

Table 3-~4 Multiple Lock Requests Creating a Deadlock

Step Action of Process 1 Action of Process 2
Compati bie with
Existing Lock?

1 Takes an EXCLUSIVE
lock on Resource A

2 Requests a NULL lock
on Resource B

3

4 Requests a lock
conversion on
Resource B from
NULL to EXCLUSIVE

Takes a PROTECTED
WRITE lock on
Resource B

Requests a
PROTECTED WRITE
lock on Resource A

Yes

Yes

No

No

Note on Table 3--~

Result: In Table 3-4, Process 2 cannot get its PW lock on Resource A
until Process 1 gets its EX lock on Resource B and gives up Resource
A. However, Process 1 cannot get its EX Lock on Resource B until
Process 2 gets its lock on Resource A and gives up Resource B. This
causes a deadlock.

These conflicting requests can cause processes to wait indefinitely for
resources that may never be made available.

When the lock manager detects that a deadlock exists, it arbitrarily
chooses a victim process. If the victim has requested a new lock,
the request is denied and the deadlock is broken. If the victim has
requested a lock conversion, the request is denied and the process
retains its original lock.

In eitb er case, the SS$_DEADLUCK status is returned in the victim's
lock status block and any locks that the victim already holds are
not revoked. You might consider including code that instructs the
application to do something if the status returned in the lock status
block is SS$_DEADL~CK.

• When you want to convert a lock from one mode to another and forget
to set the LCK$M_CVT flag. For example:

a. Process 1 has a CONCURRENT READ lock on Resource A.

b. Process 1 wants to convert the lock to EXCLUSIVE.

3-~ 1

Programming Tools for VAXcluster Application Development

If you do not set the LCK$M_CVT flag first, the lock manager
perceives the lock conversion request as a new lock request. Because
EXCLUSIVE mode is not compatible with CONCURRENT READ
mode, the lock manager does not grant the lock. The program cannot
continue until the CONCURRENT READ lock is released. However,
the CONCURRENT READ lock cannot be released unless the program
continues.

3.x.5 Lock Vafue Block
When the VMS lock manager grants a requested lock, a lock value block is
associated with the lock status block; however, programmer use of the lock
value block is optional and requires care.

You can use an $ENQ or $ENQW request to retrieve the 16 bytes of
information contained in the lock value block and, when releasing or
converting a lock, you can specify a new value for the lock value block.
Consequently, as the ownership of a resource name changes, you can use
the information in the lock value block as a source of information about
the most recent state of the lock. By dynamically updating the contents of
the lock value block for each use of a specific lock, you can potentially use
the 16-byte lock value block as a clusterwide memory area.

Note: Due to the volatility of the lock value block during VAXcluster
state transitions, the programmer is advised to observe special
precautions when using the lock value block to store information.

A VAXcluster state transition occurs each time a VAXcluster CPU leaves
or joins the cluster. In the event a CPU leaves the cluster, all the locks
managed by the exiting node are distributed to the remaining VAXcluster
resource managers. In this type of state transition, the lock value block is
marked invalid when:

• Any process holding a PW or EX lock is abnormally terminated.

• The existing locks on a resource name are NL or CR.

For more information on using the lock value block, see Introduction to
VMS System Seruices and Section 6.3.2.3 in this manual.

3.1.6 Using ASTs and Blocking ASTs for Synchronization of Interprocess
Events

when you use the $ENQ or $ENQW system service, you can specify the
delivery of an asynchronous system trap (AST) or blocking asynchronous
system trap (blocking AST) with the locking request. when the AST or
blocking AST is delivered by the VMS lock manager in response to an
event external to the program, a prearranged address points to an AST or
blocking AST service routine that then executes.

Programming Tools for VAXcluster Application Development

Based upon the events triggering the delivery of an AST or blocking AST,
the programmer can code the associated AST or blocking AST service
routines to respond to:

• The granting of a requested lock for the specified resource name

• A request for an incompatible lock for the specified resource name

ASTs

when a locking request on a resource name specifies an AST, and the
locking request is granted, then the AST is delivered, interrupting
execution of the requesting process, and executing the AST service routine.

Note: The granting of a lock is not the only mechanism of the lock
manager to trigger the delivery of a completion AST. If a lock
request is aborted because of a deadlock or if a $DEQ is executed
for the lock before it is granted, the request is considered
complete. If an AST has been specified, it is delivered. Therefore,
always check the status in the lock status block every time the
lock manager notifies you of completion.

Blocking ASTs

when a resource name has acquired a lock and a blocking AST has been
specified for that granted lock, the blocking AST routine is invoked when
any new locking request for the same resource name is incompatible with
the lock currently granted for that resource name. (See Table 3-3 for a
representation of Lock Mode Compatibility.) The process requesting the
new lock for the resource name communicates to the process holding the
incompatible lock that the lock holder is in the way.

Like the execution of an AST service routine, execution of a blocking AST
service routine interrupts the process that has specified the blocl~ng AST.
when using blocking ASTs, remember the following:

• A program does not automatically know that it is blocking another
locking request. It must declare a blocl~ng AST with a lock request for
a resource name to ask for notification.

• A requesting program has no guarantee that the current holder will
release the incompatible lock.

For more information on the use of ASTs and blocking ASTs with lock
management system services, see Section 6.3.2.2, Using Completion
ASTs and Blocking ASTs with Lock Management System Services to
Synchronize Simultaneous Processes. Also refer to the Introduction to
VMS System Services and the VMS System Services Reference Manual for
more information on using ASTs and blocking ASTs with the VMS lock
manager.

Programming Tools for VAXcluster Application Development

3.2 VMS Record Management Services
VMS Record Management Services (VMS RMS), illustrated in Figure 3-5,
is the data management subsystem of the VMS operating system that
is resident on each CPU in a VAXcluster system. VMS RMS provides
a variety of disk file organizations, record formats, and record access
modes from which you can select the VMS RMS features best suited to
an application. In addition, you can use RMS utilities to manage and
maintain file organization. For example, you can use the CONVERT
utility to change from one RMS file organization to another.

Refer to the Guide to VMS File Applications for a complete discussion of
the VMS RMS features for file organization and management.

Figure 3-5 VAXcluster Programming Tool: VMS RMS

User

A

High—Level
~9~

Lock
Management
System Services

z
VMS
RMS

$ QIO System
SerVICe

NETACP
MTAAACP
(Tape ACP}

MR-2398-RA

Typically, VMS RMS is invoked from ahigh-level programming language
through language-specific processing options. In a VAXcluster system, any
application executing from any CPU on the VAXcluster system uses the
procedure-based code of a high-level programming language to call VMS
RMS system services. For example, the OPEN statement from COBOL
calls VMS RMS system services from the local VAXcluster CPU, and RMS
uses the distributed VMS lock manager and the distributed file system
to coordinate access. Sometimes the programmer may decide to call RMS
system services directly rather than using high-level language statements
for file operations. Refer to the VMS Record Managerr~ent Services Manual
for more information on the options for the VMS RMS system service.

3—~ 4

Programming Tools for VAXcluster Application Development

Figure 3-6 represents the inverse relationship between the different
software levels that an application can use to interface with the VMS
lock manager and an application's control over the I/O subsystem. That
is, as your application uses these different software levels to interface
with the VMS lock manager, your application can become more difficult to
program. However, when an application explicitly calls the $QIO and lock
management system services, that application has the greatest control of
the I/O environment.

Figure 3-6 Application Software Levels Interfacing with the VMS Lock
Manager

Ease of
Programming

RMS
System

. Services

$QIO and Lock
Management
system services

Flexibility of Controlling the VO Environment

M R-2396- RA

High-level languages may support only a subset of VMS R,MS
features. If you intend to use VMS RMS from ahigh-level
language, refer to your language manual to determine the VMS
R.MS capabilities available to you. Also, like $QIo and lock
management system services, full VMS RMS capabilities are
callable from any high-level language.

VMS RMS ensures safe and efficient clusterwide file sharing by performing
the following functions:

• Interfaces with the distributed file system and displays messages to
the requesting process for restricted file access, according to the VMS
UIC-based file protection of the requesting resource.

• Uses the clusterwide lock database and the distributed VMS lock
manager to provide automatic file and record locking to control data
integrity of common resources.

3—~ 5

Programming Tools for VAXcluster Application Development

• Provides local and global buffering to enable buffer sharing by single
or multiple processes accessing a file. RMS global buffering can be
used in an application executing on a single CPU or a VAXcluster
system to minimize I/O operations.

• Interfaces with the $QIO system services to coordinate the functions
required to process virtual I/O requests for mounted volumes.

3.2.1 VMS RMS and UIC-Based Protection
After VMS RMS requests a lock from the Lock management services to
access a file, VMS RMS uses the distributed file system to determine
the user's right to access a file based on UIC protection. If the file
has an associated Access Control List (ACL) identifier, then the ACL
specification may modify the user's right to access as determined by
UIC-based protection. For more information on file and device protection
using UIC-based protection and ACLs, refer to the Guide to VMS Files and
Devices and the Guide to VMS System Security.

3.2.2 VMS RMS and Cfusterwide Record Locking
Often an application executing on a VAXcluster system has many users
requesting concurrent access to the same file. VMS RMS provides record-
locking capability for all sequential, relative, or indexed file organizations.
VMS RMS uses automatic record locking for accessing specific records
in a shared, file. Automatic record locking allows a number of options
for coordinating record access to RMS files. For more information on
the available options for VMS RMS record locking, refer to the Guide to
VMS File Applications. When implementing record access from ahigh-
level language, you must use the language's keywords to specify the type
of sharing that you want. The implementation of VMS RMS automatic
record locking options may vary between high-level languages; therefore,
refer to your high-level language manual for a discussion of its use of VMS
RMS record locking.

VMS RMS system services interface with the distributed VMS lock
manager to ensure that no other user can access the same record until the
first user is finished with the record. VMS RMS implements individual
record locking by using the distributed lock manager's capability to
structure resource names as a resource tree. See Section 3.1.3, Locking
Levels, for more information on the VMS lock manager's support of
resource granularity.

VMS RMS implements record locking by having each stream accessing
the same file share a common parent or root lock for the file, and each
stream accessing a different record then holds a sublock that does not
allow multiple access. Using this technique, VMS RMS can lock records
in shared files to synchronize access to individual records by different
streams, thus ensuring the consistency of the data.

~y ~

Programming Tools for VAXcluster Application Development

However, although RMS files can be shared clusterwide down to the record
level, VMS RMS is largely unaware of whether the programs calling
a RMS service are executing in a VAXcluster environment; VMS RMS
always refers to the locking database of a given CPU. In the VAXcluster
system, VMS RMS uses the clusterwide lock database, maintained by the
distributed VMS lock manager, to determine the resource's accessibility
and compatibility for each locking request. When executing a file sharing
application on a VAXcluster system, the programmer should be aware
that there can be a difference in VMS RMS performance on a single
VMS system compared to that on a VAXcluster system. If the locking
request submitted by VMS RMS to the distributed VMS lock manager is
not resource managed on the local VAXcluster CPU, then VMS RMS will
wait slightly longer for the distributed VMS lock manager to process a
locking request for a resource name that is resource managed on a remote
VAXcluster CPU. This minor delay is caused by inter-CPU communications
of the distributed VMS lock manager. See Section 3.1, VMS Loek Manager,
for more information on resource management, and refer to the Guide to
VMS File Applications for a discussion of locking considerations when
programming for VAXcluster shared access.

3.2.3 VMS RMS Buffering and Global Buffering far a VAXcluster Application
VMS RMS provides you with several RMS options for specifying the size
and number of buffers. Two types of buffer caches are available using
VMS RMS: local and global. Local buffers reside within process memory
space and are not shared among processes even if multiple processes are
accessing the same file and reading the same records. Global buffers,
which are designed for applications that access the same file and may even
access the same records, are shared among processes (but are charged to
each process' working set). VMS RMS global buffers are supported on a
single CPU and across the VAXcluster system. For more information on
using VMS RMS local and global buffering on a single CPU, refer to the
Guide to VMS File Applications .

VMS RMS provides RMS global buffer caching for a VAXcluster
application. Even though RMS global buffering is supported on a
VAXcluster system, the programmer must remember that each VAXcluster
CPU has a unique, independent global section, which is not shared by
any other VAXcluster CPU. Basically, when RMS global buffering is
implemented for a shared file of a cluster application executing on multiple
VAXcluster CPUs, the VMS RMS resident on each VAXcluster CPU brings
its own copy of the file as a global buffer from disk. When a block of data
from the global buffer is updated by a process on one VAXcluster CPU,
and a second process executing on another VAXcluster CPU requests the
same block of data, the two processes are synchronized by RMS global
buffering. RMS global buffering automatically writes the current contents
of the global buffer to disk for the first process before allowing the second
process to read the updated global buffer from disk.

Programming Tools for VAXctuster Application Development

For the case where two different processes on two different VAXcluster
CPUs want to update the global buffer file, using RMS global buffering
could possibly degrade performance if the two processes are highly
contentious (for example, two processes on different nodes that are
contending for the same global buffer). However, where two processes
executing on the same VAXcluster CPU are updating a globally buffered
file, there is likely to be a performance advantage because both processes
have access to the same global buffer mapped to main memory. Refer
to the Guide to VMS File Applications for more information on the use
of global buffering for shared file access on a VAXcluster system. Also,
in this manual, see Section 7.2, Potential Bottlenecks for an I/O-Bound
Application Environment, for further information on using RMS for global
buffering to increase an application's I/O performance.

3.2.4 VMS RMS and $QIO System Services
For each process on each VAXcluster CPU attempting to access a file or
record resource on disk volumes, VMS RMS calls $QIO system services to
perform the following functions:

• Open and create files

• Close and delete files

• Read and write files

• Modify file characteristics

A number of disk and tape I/O functions are too complex for the $QIO
system service to handle. In the case of disk I/O functions, $QIO calls the
appropriate XQP procedure to perform certain functions on its behalf. The
XQP procedures perform file system management functions such as:

Allocating disk space to a file

Creating and modifying directory entries

In the case of tape I/O functions, $QIO calls the appropriate tape ancillary
control process (MTAAACP) to map logical to physical I/O. See the VMS
I / O User's Reference Manual for more information on the $QIO system
services.

3.2.5 VMS RMS and XQP Operations
XQP operations ensure that all file system functions, except for
simultaneous attempts to access the same resource, can proceed in
parallel with file system requests issued from other processes, whether
the processes are executing on the same processor or another CPU in the
VAXcluster system. See the VMS I/O User's Reference Manual for more
information on XQP operations.

3-18

Programming Tools for VAXcluster Application Development

3.3 VMS Batch Facility
The VMS batch facility, illustrated in Figure 3--7, provides you with a
clusterwide mechanism for batch process creation and resource allocation
for clusterwide batch and print queues. In a VAXcluster system (assuming
the VMS defaults for system logical names), you can submit batch jobs
on the clusterwide queue SYS$BATCH, and the distributed job controller
routes each batch job to the batch queue with the most available capacity
for execution. The VMS batch facility provides the programmer with:

• Some degree of automatic workload balancing when the batch job is
executed

• A log file as audit trail for each batch execution

• Automatic restart capability

In addition, the system manager can define local execution queues on
specific nodes for batch or print services that are available only to
that VAXcluster CPU. Refer to the ~VIS VA.~cluster Manual for more
information on setting up and managing local or generic queues in a
VAXcluster system.

Figure 3-7 VAXcluster Programming Tool: VMS Batch Facility

.lob
Controller

- . f ~ r

JBCSYSQUEDAT

User

VMS
RMS

`—~
Lock
Managemerrt
System Services

Distributed VMS
Lock Manager

MR-2399-RA

The management of batch jobs is the responsibility of a VMS process called
the job controller. While there is a job controller process executing on each
VAXcluster CPU, in a VAXcluster system, all of the job controller

3--y 9

Programming Tools for VAXciuster Application Development

processes communicate with each other to coordinate the clusterwide batch
queues. when all the distributed job processes are working together, their
combined activity can be referred to as the distributed job controller.

All the job controller processes communicate with each other using a
shared queue file and the distributed VMS lock manager. When a batch
job is submitted, the job information is written to a clusterwide queue
file, JBCSYSQUE.DAT. The job controller process on the VAXcluster CPU
where the batch job was submitted uses JBCSYSQUE.DAT to determine
the number of jobs executing on each clusterwide batch queue. Then
the job controller process determines which batch queue is least busy,
and uses the distributed VMS lock manager to notify the appropriate job
controller process on the appropriate VAXcluster CPU that there is a batch
job to execute. Upon notification, the specified job controller process reads
JBCSYSQUE.DAT to determine the batch request's location, and begins
execution. When the least busy batch queue is on the same VAXcluster
CPU as the batch request, the job controller process does not use the
distributed VMS lock manager, but handles the batch request directly.

The implementation of clusterwide print queues is similar to clusterwide
batch queues. Users can queue a request to a local print queue (for a
printer not necessarily attached to their own node} or let the distributed
job controller choose an available print queue from those in the cluster. In
addition, when using a clusterwide batch or print queue, any files to be
accessed by a batch or print job must be accessible from the CPU on which
the batch or print job executes.

Both batch and print queues can be declared restartable using the
/RESTART DCL parameter. If a VAXcluster CPU fails, restartable
jobs are either requeued to complete on another node in the cluster or
executed when the failed node reboots {for jobs that must execute on a
specific node). Also, you can request the restart of a batch or print job at
a specific point of execution by using a DCL command procedure to SET
RESTART_VALUE. For more information on using RESTART VALUE, see
Section 6.1.3 and the VMS DCL Dictionary.

3.4 Clusterwide Process Services
Process control and process information system services, illustrated in
Figure 3—S, include several programming tools that support the concept
that any process executing on a VAXcluster system is an object that can be
seen and manipulated clusterwide. These system services include:

• Selected VMS process control system services that let you perform
process control services clusterwide

• Selected VMS process information system services that let you gather
information about one process or group of processes across the entire
VAXcluster system, including:

— An extension of the $GETJPI system service to work clusterwide

— A $PROCESS_SCAN system service for use with $GETJPI for
wildcard scans throughout the cluster

3-2~

Programming Tools for VAXcluster Application Development

These services are described in the following two sections of this manual.

Figure 3-,8 VAXcluster Programming Tool: Process Contrail and
Process Information System Services

r"1

Requesting User

VMS System Service
Process Control
and Information

CLUSTRL~A

CLUS

SCS Communications on CI or Ethernet

TRLOA

Cluster Server
Process

VMS System Service
Process Control
and Information

Target Process

:..

M R-2400-RA

3-21

Programming Tools for VAXcluster Application Development

3.4.1 Process Control System Services
You can use process control system services to examine and modify
processes clusterwide. Except for $CREPRC, used to create a process,
all other VMS system services for process control on a single CPU are
supported clusterwide. By using the process control system services, a
process on one VAXcluster CPU can direct the execution of a process on
another VAXcluster CPU. VMS system services for process control across
VAXcluster CPU boundaries include the system services presented in
Table 3-5.

Table 3-ti5 Supported VMS System Services for Process Control

VMS System
Service' Function

DCL
Interface DCL Command2

$CANWAK

$DELPRC

$FORCEX

$RESUME

$SCHDWK

$SETPRI

$SUSPND

$WAKE

Cancel wakeup

Delete process

Force image exit

Resume process

Schedule wake for
process

Set priority

Suspend process

Wake process

Yes

Yes

No

Yes

No

Yes

Yes

No

CANCEL

DELETE

SET PROCESS/RESUME

SET PROCESS/PRIORITY

SET PROCESS/SUSPEND

' If you are using DECwindows Bookreader, refer to the Introduction to VMS System
Services and the VMS System Services Reference Manual for a discussion of these
VMS system services; otherwise refer to the VMS Version 5.2 New Features Manual.

2These DCL commands are extended clusterwide in VMS Version 5.2. If you are
using DECwindows Bookreader, refer to the VMS DCL Dictionary for more information;
otherwise refer to the VMS Version 5.2 New Features Manual.

when using process control system services across VAXcluster CPU
boundaries, the UIC-based GROUP/W~RLD privileges are processed
exactly as they would be on a single VMS system.l You cannot do
anything to a process on another VAXcluster CPU which you could not
do to a process on your local VAXcluster CPU.

The process identification (PID) is a unique identifier of processes across
the cluster. To reference a process on any VAXcluster CPU, specify its PID
as the pidadr argument.

Any process executing on a VAXcluster system can use process control
system services by calling the appropriate system service. All system
services that control processes use pidadr as the first argument and
prcnam as the second argument.

1 As in other instances related to system management and setup, the system manager must ensure that there are no
duplicate or overlapping UICs in amultiple-environment VAXcluster system or unpredictable results may occur.

3--22

Programming Tools for VAXcluster Application Development

The process name for the second argument prcnam has also been
extended to reflect clusterwide accessibility. To access information about
a remote process, the node name must be used as a prefix to the process
name. For example, to reference the process "PROCESS 99" on node
"ATHENS", use the name "ATHENS::PROCESS_99".

This change to process naming has the following implications:

• Process name strings can be up to 23 characters long with the
following requirements:

— 15 characters for the process name

— 6 characters for the node name

— 2 characters for the colons (::)that follow the nodename

• A process name can be local or remote. Therefore, if you specify
"ATHENS::SMITH", the system will check for a process named
"ATHENS::SMITH" on the local node before checking node "ATHENS::"
for a process named "SMITH" .

Table 3-6 presents the status codes returned from the process control
system services.

Table 3-6 Process Control System Services Status Codes

Status Explanation

SS$ INCOMPAT

SS$ NOSUCHNODE

SS$ REMRSRC

SS$_UNREACHABLE

The remote node is running a version of VMS prior to
Version 5.2, and is unable to handle the request.

The specified node is not currently a member of the
VAXcluster system.

The remote node has insufficient resources to
respond to the request (bring this error to the attention
of your system manager).

The remote node is a member of the VAXcluster
system, but is not accepting requests (this is normal
for a brief period early in the system boot process).

For more information on process control system services, see the
Introduction to VMS System Services and the VMS System Services
Reference Manual or the VMS Version 5.2 New Features Manual. Also, for
more information on programming with process control system services,
see Section 6.3.1, Using Clusterwide Process Services.

3-23

Programming Tools for VAXcluster Application Development

3.4.2 Process information System Services ($GETJPI and
$PROCESS_SCAN)

You can either use the process information system service $GETJPI
independently or with the $PROCESS_SCAN system service to obtain
clusterwide process information.

$GETJPI System Service

You can use the Get Job~Process Information ($GETJPI) system service
to examine information for a single process on a VAXcluster system or to
perform a wildcard search on a local VAXcluster CPU. Specify the process
to be examined by its process name or process identification number (PID).
If a process name or a PID is not specified, $GETJPI returns data on the
calling process. When using $GETJPI to examine a remote process across
VAXcluster CPU boundaries, remember:

• You must specify a specific PID or process name.

• All remote $GETJPI operations are asynchronous, and must be
properly synchronized.

Note: Many applications that are not correctly synchronized may seem
to work on a single CPU because many $GETJPI operations are
actually synchronous —but these applications will fail when
examining processes on remote VAgcluster CPUs. For more
information on how to synchronize $GETJPI operations, see
"Synchronizing Service Completion" and "R.ecommended Method
for Testing Asynchronous Completion" in the Introduction to VMS
System Services.

Refer to the VMS System Services Reference Manual or the VMS Version
5.2 New Reatures Manual for a detailed description of the $GETJPI system
service.

$PRQCESS_SCAN System Service

The $PROCESS_SCAN system service is used with $GETJPI to
perform wildcard searches on the local node or across the cluster.
$PROCESS_SCAN and $GETJPI must be used together to obtain process
information from a local or clusterwide search. When used with $GETJPI,
the $PROCESS_SCAN system service lets you specify local or clusterwide
wildcard scans to locate processes which match single or multiple selection
criteria. Instead of wildcarding across all processes in a VAXcluster system
to locate a few processes, $PROCESS_SCAN can locate the specified
processes by using selection criteria filters.

In addition, when $PROCESS_SCAN and $GETJPI are used to
extract a large amount of information from remote VAXcluster CPUs,
the PSCAN$_GETJPI_BUFFER SIZE item code can be used with
$PROCESS_SCAN to specify a buffer size for the execution of $GETJPI on
a remote VAXcluster CPU.

3-24

Programming Tools for VAXcluster Application Development

For more information on the use of $PROCESS_SCAN with $GETJPI,
refer to the V2VIS System Services Reference Manual or the VMS Version
5.2 New Features Manual. Also, in this manual, see Section 6.3.1 for more
information on programming with process information system services.

3.5 DECnet-VAX
DECnet-VAX software is the implementation of DECnet protocol that
enables a VMS operating system to function as a network node. A
DECnet-VAX node can communicate with other DECnet-VAX nodes
in the VAXcluster system, or with any other operating system in the
network that supports the DECnet network. As illustrated in Figure 3-9,
DECnet-VAX nodes can communicate directly with each other without
having to go through a central node.

DECnet-VAX is required in any VAXcluster system. (Refer to the VMS
VAXcluster Manual.) with DECnet-VAX:

• You can perform task-to-task communications either between
VAXcluster CPUs or to any networked CPU.

• You have access from every VAXcluster CPU to disks that are located
on another system in the network.

Figure 3-9 VAXcluster Programming Tool: DECnet-VAX

VAX A VAX B

P"1

VMS
RMS

User

DEC net-VAX

$QIO
System
Service

C I or Ethernet

Physical Link for a
VAXcluster System

User
1

DECnet-VAX VMS
RMS

$QIO
 System

Service

M R-2401-RA

DECnet Task-to-Task Operations

DECnet-VAX uses data communications hardware and software to
establish a logical link between a sending (source) program and a receiving
(target) program. For a logical link to exist between the source and target
programs, the process executing the source program must be able to create
a process on the CPU where the target program is executing.

3-25

Programming Tools for VAXcluster Application Development

There are three methods for controlling the access of a source process
attempting to create a process on the target CPU:

• The source process is given explicit access to a user account in
SYSUAF.DAT of the target CPU. A process is created on the remote
node when the source process supplies the appropriate username and
password.

• The source process is given access to an enabled proxy account in
NETUAF.DAT of the target CPU. A process is created on the remote
node if the source process is defined in the remote node's proxy
database.

• If neither of the first two conditions exist, the source process can have
default access to an enabled DECnet account in the SYSUAF.DAT of
the target CPU.

When the source process creates a process on the target program's CPU
using one of these three methods, the method of process creation defines
the type of process created according to the UIC, default directory, and
privileges in the associated SYSUAF.DAT or NETUAF.DAT. If the source
process has logged in to the target CPU using the third method, Digital
provides the following defaults for the DECnet account:

UIC [376,376)
Default directory SYS$SYSDEVICE:[DECNET]
Privilege TMPMBX, NETMBX

Even though a user can create a process on another DECnet node using
the default DECnet account, for that process to run a .EXE on the target
CPU, the remote process must have file access privilege to the executable
image.

After the logical link has been established, the application programmer
specifies a series of system service calls in both the source and target
programs to direct the operation of the logical link. See Section 3.5.1 and
Section 3.5.2 for more information.

In addition to using DECnet-VAX to connect a user program to another
user program, you can also connect a user program to a DE Cnet network
object that has been defined on the target CPU using the Network Control
Program (NCP) object database. For example, a process executing a
FORTRAN program on a source node could request a logical link to the
remote DECnet node PLUTO:

OPEN (UNIT=1, FILE='PLUTO::"TASK=XYZ"', TYPE='NEW

In this case, when the FORTRAN source program executes the OPEN
statement, the DECnet software on the target CPU searches the NCP
object database for a task that has been defined as XYZ by the system
manager using the NCP Utility. If the task has not been defined in the
NCP database for the target CPU, the DECnet software searches the
process' default directory. If, as in the preceding example, the default
DECnet account is enabled on node PLUTO, then the default DECnet
directory SYS$SYSDEVICE:[DECNET] is searched for XYZ.EXE.

3—Zs

Programming Tools for VAXcluster Application Development

In addition to using the NCP Utility for network task definitions, NCP
also contains Digital-supplied network objects. For example, when the
VMS Mail and VMS Phone Utility are used for communication between
network nodes, these network objects are referenced through the NCP
object database. See the V~VIS Networking Manual for more information
on using the NCP object database.

whether you are using DECnet-VAX to connect to a user program or to a
network object, the DECnet software that manages each end of the logical
link guarantees the following:

• All transmitted data is delivered to ,the destination node in proper
sequential order.

• AlI data received by DECnet software on the destination node is given
to the target program in proper sequence.

To guarantee proper sequencing, DECnet software numbers the segments
it transmits over a link. The receiving DECnet software, using the
transmit numbers for identification, acknowledges the delivery of the
segments. If a segment is not acknowledged within a certain period of
time, the sending DECnet software retransmits it.

Remote File and Record Access

Using DECnet-VAX, a program executing on a VAXcluster CPU can
access a file on any other network node providing that it has file access
privileges. However, as in DECnet task-to-task communication, when the
user requests access to a remote file, the user must create a process on
the remote network node. To access a remote file, the remote process must
have file access privileges to the remote file. DECnet remote file access
capab' 'ty can be used with the following:

• VMS DCL commands for remote file operations (copy, delete, submit,
append)

• Auser-written program to perform record-level operations on a remote
file

when you access a remote file using either of these remote file access
methods, a process at the remote node performs the file access on your
behalf. As in task-to-task communication, the two processes must
establish a logical link before they can begin to execute file operations.
The access control methods for remote file access are exactly the same as
those described for DECnet task-to-task operations. For more information
about DECnet-VAX remote file access, see the Guide to DECnet-VAX
Networking.

3-27

Programming Tools for VAXcluster Application Development

3.5.y Transparent DECnet-VAX Task-to-Task Communication
In a VAXcluster system, transparent DECnet-VAX techniques enable
two programs executing on different VAXcluster CPUs to perform
task-to-task communication that is, exchange data over a logical link.
With DECnet-VAX, software performing task-to-task communication is
similar to performing input/output (I/O}. The logical link represented in
Figure 3-10 between the two programs (SOURCE and TARGET) is an I/O
channel over which both programs can send and receive data.

Figure 3-~ 0 Transmitting DECnet-VAX Task-to-Task Data

SOURCE
Requests
Connection

SOURCE
Processes
Rejection as
I/O Error

TARGET
Completes
Connection

TARGET
Retests
the Data

SOURCE
Transmits
the Data

SOURCE
Disconnects
the Logical Link

MR-2402-RA

.3-28

Programming Tools for VAXcluster Application Development

Task-to-task communications are considered transparent because
DECnet-VAX software can be invoked by using standard I/O statements
from some high-level languages, for example, FORTRAN READ and
WRITE commands. The DECnet-VAX task-to-task capability translates
each DECnet-specific high-level language command into the same set
of DECnet software messages regardless of the language in which they
are programmed. Therefore, when designing task-to-task operations,
you can ignore the programming language of the executable image on
the remote network node. You must, however, consider what high-level
languages are installed on your local VAXcluster CPU since not all high-
level languages support DECnet-VAX communications. Refer to the VMS
Networking Manual for a list of the programming languages you can use
for DECnet-VAX transparent task-to-task communications and for use of
VMS DCL for this purpose.

The programmer can also invoke transparent DECnet by using the
following system service calls from MACRO or a higher-level language:

• $ASSIGN request a logical link connection

• $QI~ send (write) or receive (read) a message

• $DASSGN — terminate a logical link

Refer to the VMS Networking Manual for a discussion of the system
service calls for transparent DECnet-VAX operations.

3.5.2 Nontransparent DECnet-VAX Task-ta-Task Communication
Using nontransparent DECnet-VAX task-to-task communications enables
a source task to manage multiple connection requests created over a single
physical line by defining an I/O channel for each logical link request.
Inbound requests are queued to a network mail box, and a logical link is
assigned and deassigned. The DECnet-VAX programming mechanism for
coordinating multiple link requests from target tasks to a source task is to
associate a different AST with $QI~ requests for each target.

Table 3-7 shows the high-level protocol used between two processes
running nontransparent DECnet task-to-task communication. The
processes, called SOURCE and TARGET, are running on different
DECnet-VAX nodes in a VAXcluster system. SOURCE is designed to
send data to TARGET.

Programming Tools for VAXcluster Application Development

Table 3-7 Using Nontransparent DECnet-VAX Communication

Step SOURCE Action (Local Node) TARGET Action (Remote Node)

1 Assigns an VO channel.

2 Establishes a mailbox.

3

4

5

Sends a connect request to the
mailbox on the remote node
where TARGET is running.

6 Reads the message and
determines its action depending
on whether TARGET accepted
or rejected the connection.

7 If the connection is established,
may request information from
TARGET, or may send data to
TARGET immediately.

8

9 Receives the disconnect
message and deassigns its
I/O channel.

10

Creates a network mailbox.

Establishes a network channel
associated with the network mailbox.

Reads the network mailbox for connect
requests.
Starts an existing command file on the
remote node, which either accepts or
rejects the connect request.

Sends a message to SOURCE indicating
that the connection has been accepted
or rejected.

Responds to requests for information
and accepts data as SOURCE sends it.

When all data has been accepted, sends
a disconnect message to SOURCE.

Deassigns its I/O channel.

Using nontransparent DECnet-VAX, you can:

• Communicate with network nodes outside the VAXcluster system, just
as you can with transparent DECnet-VAX

• Establish multiple inbound or outbound logical links

Typically, a nontransparent DECnet-VAX program communicates to
or receives communications from many independent programs that
are executing on different network nodes. Figure 3-11 illustrates how
independent programs can send messages to and receive messages
from the nontransparent program using transparent DECnet-VAX
communications.

Programming Tools for VAXcluster Application Development

Figure 3-1y One-to-Many or Many-to-One Nontransparent
Communications

inbound or Outbound Communications

Using
Transparent
DECnet—VAX

Prot 1
Prx 2
Prot 3
Proc 4

~';' ~ ~ - _

~' ~_r _~~%r

.~'
.~

~~. .-

.~ .._

Ethernet

Server
Process
Using
Nontransparent
DECnet—VAX

:~:~:

M R-2403-RA

• Use network system messages to determine the status of each network
channel for multiple logical links

Monitoring DECnet-VAX system messages helps facilitate error
recovery. See Section 6.4 for more information on using DECnet-VAX
system messages for error recovery.

Nontransparent DECnet uses the following VMS system service calls:

• $ASSIGN assign an UO channel

• $Q~O —request and accept a logical link connect, and
send (write) or receive (read) a message

• $CREMBX create a mailbo$

• $CANCEL cancel UO on a channel

• $DASSGN deassign an UO channel

Refer to the VMS Networking Manual for more information on using VMS
system services for nontransparent DECnet-VAX operations.

Programming Tools for VAXcluster Application Development

Comparison of Transparent and Nontransparent DECnet Communication

Table 3-8 summarizes the differences between transparent and
nontransparent communication.

Table 3-8 Transparent and Nontransparent DECnet Communication

Transparent DECnet
Communication Nontransparent DECnet Communication

Easy to program

Less flexible

To complete link request,
requires process creation and
image activation on the remote
node

Process on remote node can
only handle a link from a single
process on local node

Harder to program

More flexible

To complete multiple link requests, requires multiple
process creations and image activations on remote
nodes

Process on remote node can receive link requests
from multiple processes by creating a mailbox and
declaring an attention AST

Can communicate with multiple processes on other
nodes

3.6 Single-Node Programming Tools Not Available Clusterwide
The following VMS programming tools work on a single VMS system, but
are not supported clusterwide:

• Permanent and temporary mailboxes

• Common event flags

• Logical names

• $CREPRC

• Writeable global sections

Note: While a writeable global section is supported clusterwide, it
is not recommended because of the progr+~Y+~+~+~+~ng comple~ty
required to handle clusterwide, concurrent update operations.

Permanent and Temporary Mailboxes

You cannot use permanent and temporary mailboxes to communicate
between processes on different VAXcluster CPUs. Either you can use
DECnet-VAX communications with a mailbox or you can use a resource
lock with a lock value block (with a capacity of 16 bytes) to store
information passed between processes.

For more information on using DECnet-VAX mailboxes for clusterwide
task-to-task communications, see Section 3.5.2 and Section 6.1.2.

3--~2

Programming Tools for VAXcluster Application Development

Common Event Flags

You cannot use common event flags as a signalling mechanism for
processes on different VAXcluster CPUs. However, if a program has
been designed to wait for a common event flag, and you want to implement
the program as part of a clusterwide application, you can use the lock
management system services as a clusterwide signalling mechanism.
You can modify the program to perform a completion or blocl~ng A.ST
routine for a lock request as a signalling mechanism for event notification
between processes. For more information on using lock management
system services for clusterwide process synchronization, see Section 3.1.6
and Section 6.3.2.

Note: The use of process-private event flags for synchronizing operations
within a single process (for example, in conjunction with $QIOs)
is allowable and necessary in a VAXcluster application since no
synchronization with other processes is involved.

Logical Names

As long as your VAXcluster is configured as acommon-environment, the
logical names will be the same on all of the VAXcluster CPUs at system
start-up. However, some applications are designed to communicate by
defining logical names in one process and translating those names in
another process. If you change a logical name on one CPU, the logical
name tables will not be updated on the other CPUs.l If you need to
dynamically change logical names on more than your local node, you may
be able to substitute a resource lock if the value of the logical name is
not more than 16 bytes. If 16 bytes of a lock value block is not sufficient,
you can use a disk file that is accessible clusterwide, or you can create a
process on each of the VAXcluster CPUs that you want to change a logical
name. For more information on methods for creating a remote process, see
Section 6.1.

$CREPRC

While some process control system services are supported clusterwide,2
$CREPRC is not supported clusterwide. In order to create a remote
process on a different VAXcluster CPU from a local process, you can use
the following programming techniques:

• VMS Batch facility

DECnet-VAX communications

1 You can use the SYSMAN Utility to update a logical name on all existing cluster nodes, but any new node joining the

cluster will not contain the logical name changes. For more information on the use of the SYSMAN Utility, refer to the

VMS SYSMAN Utility Manual.
2 A specific group of Process Control and Process Information system services are supported clusterwide in VMS Version

5.2. See Section 3.4.1 for a discussion on how to program using the Clusterwide Process Services.

3-~3

Programming Tools for VAXcluster Application Development

In addition, you can also start a process on a remote VAXcluster CPU
at system start-up and place it into hibernation. This process then can
function as a server that is awakened when there is a link request for
service. You ca.n either use DECnet-VAX communications to establish the
logical link and request service or you can use the clusterwide process
control system services. For more information on programming techniques
for remote process creation, see Section 6.1.

Writeabie Global Sections

Converting the writable global sections in an existing program that is
accessed by multiple users on the same VAXcluster CPU to a clusterwide
application is difficult. In order to accomplish this, you need to carefully
consider the interproeess communication requirements so that each
process that accesses the writable global section is mapping the most
current version of the global section. For more information on the use of
writable global sections for shared access on a VAXcluster system, see the
Guide to V~VIS File Applications.

Application Design Models for VAXcluster Software

This chapter introduces three application design models to consider when
you design VAXcluster software:

• File Sharing Model

• Client-Server Model

• Parallelism Model

These models use both distributing by replication and by decomposition for
designing an application for a VAXcluster system.

The model descriptions include:

• Advantages and disadvantages of using each model

• Implementation requirements for the model with respect to:

Remote Process Creation

A local process may need to create a process on a remote
VAXcluster CPU.

— Data Sharing

Processes in a VAXcluster environment can share data from a
common data resource and processes can exchange messages using
DECnet-VAX communications.

— Process Synchronization

Using a programming mechanism for interprocess communication
in a VAXcluster system, processes can synchronize their activities
based on exclusion or barriers.

With process synchronization based on exclusion, process activity
is regulated by granting only one process at a time access to a
resource. With barriers, process activity is regulated by defining
a "time" in the processing cycle when all processes must be in the
same state. A barrier can be a point of synchronization at either
the beginning or end of an application's parallel streams.

— Exception Conditions

An application that is distributed by decomposition must be
able to recover if there is an interprocess communication error
or hardware failure for a task being performed on a remote
VAXcluster CPU.

For more information on the programming techniques for these
implementation requirements, refer to Chapter 6.

• An example of an application using the model under discussion

4-1

Application Design Models for VAXciuster Software

4.1 File Sharing Model
Using the File Sharing Model, multiple users can obtain coordinated
access to shared file elements. An application using this type of model has
the following characteristics:

• Identical code is run on multiple VAXcluster CPUs.

• Multiple VAXcluster CPUs can potentially share file access.

• In a VAXcluster system, VMS RMS uses the distributed lock manager
to arbitrate concurrent file access.

Figure 4-1 illustrates the implementation of a File Sharing Model where
executable images of an application are distributed across multiple
VAXcluster CPUs. For more information on how to determine if your
application is a candidate for distribution by replication, see Section 2.4.

Figure 4—y File Sharing Model Using Distribution by Replication

M R-2949-RA

4-2

Application Design Models for VAXcluster Software

Advantages of Using the File Sharing Model

Using the File Sharing Model in a VAXcluster system offers the following
advantages:

• when the total number of users remains constant, distribution by
replication offers:

Increased application availability

Increased application throughput

• T`he File Sharing Model enables you to design applications with either
the simultaneous running of multiple copies of a given program, or the
simultaneous running of different programs, each performing different
functions but using the same data files. (There is no dependency
between the programs other than the data in the files.)

• File Sharing Model implementation is made relatively simple because
the interprocess communication required for synchronizing clusterwide
file access is implicitly handled for you through the VMS RMS
interface. You can use ahigh-level language to interface with VMS
RMS, and VMS RMS uses the distributed VMS lock manager to
coordinate file access for clusterwide users.

• Based upon a File Sharing Model, amulti-user application can be
migrated to a VAXcluster environment with no modifications to the
application.

Disadvantages of Using the File Sharing Model

Using the File Sharing Model in a VAXcluster system has the following
disadvantages:

• An increased process demand for data elements on the same disk can
create a disk Il0 bottleneck that will tend to degrade an application's
performance.

• Many users in contention for the same data element can degrade an
application's performance.

• Locking requests that are mastered by the distributed VMS lock
manager on a remote VAXcluster CPU will take slightly longer to
process than those mastered on the local VAXcluster CPU.

• If the File Sharing Model is implemented for network users, the
application's throughput for a network user will tend to degrade
because of the overhead associated with DECnet-VAX communications.
To access the image, a network user can either use DECnet-VAX
communications to SET HOST to a VAXcluster CPU or execute the
image remotely and perform file activities across a network channel.
In both cases, the network user can encounter a bottleneck on the
communications link.

Application Design Models for VAXcluster Software

Implementation Requirements for the File Sharing Model

The File Sharing Model has the following implementation requirements:

• Remote Process Creation

The File Sharing Model does not require remote process creation as an
implementation technique; the replicated image is executed on each
VAXcluster CPU. selected for distribution.

• Data Sharing

The File Sharing Model requires that multiple processes have
clusterwide access to shared data. Use VMS RMS to coordinate
multiple users that are concurrently accessing records for READ or
WRITE operations. Depending upon your application, you can use disk
file Read-Only global sections for data sharing if you are not modifying
information in a global section. In general, this type of application
design does not use DECnet-VAX communications for message passing
between processes executing the image. For more information on
performance considerations for a potentially I/O-bound application
environment, see Section 7.2.

• Process Synchronization

VMS RMS implicitly provides process synchronization by allowing you
to restrict access to a record to one process at a time. Barriers are
not commonly needed to synchronize processes; explicit interprocess
communications can create additional overhead that could degrade an
application's I/O performance.

• Exception Conditions

If a VAXcluster CPU running a distributed image fails, the user can
recover by logging onto a functioning VAXcluster CPU and re-executing
the application image. To facilitate complete recovery and help you re-
establish the transaction context when your process executing the
image failed, use VAX RMS Journaling. For more information on VAX
RMS Journaling, see Section 5.5.1.

Example of an Application Using the File Sharing Model

With the File Sharing Model, you can use your VAXcluster system to
provide the users of an electronic course registration application with
maximum availability. If a VAXcluster CPU fails, the course registration
application remains available on the functioning VAXcluster CPUs.

For example, the components of Technical University's course registration
application enable the user to do the following:

y Log in to the application

2 Search and display all available courses according to a keyword

3 Select a course and view a course description

4 Register or withdraw from a selected course

Application Design Models for VAXcluster Software

Zb use Technical University's course registration system, follow the steps
illustrated in Figure ~2, Figure 4-3, Figure 4-4, and Figure 4-5.

Figure 4-2 Log In to the Application

TECHNICAL UNIVERSITY

COURSE REGISTRATION SYSTEM

Student ID:

Password:

Press GOLD-B to EXIT

Figure 4—,3 Search and Display All Available Courses According to a
Keyword

TECHNICAL UNIVERSITY
COURSE REGISTRATION SYSTEM

key lord: Intro

Course #

CDi0i-Ci
PRi0i-Ai

--> PR102-Ai
PRi03-Ai
PRi04-Ai
PRi05-Ai
PR106-Ai
OP20i-02
THi0i-Di

Aore.. .

Course Description

Intro. to Compiler Design
Intro. to VAX ADA Prgr~n
Intro. to VAX BASIC Prgrn~
Intro. to VAX C Prgr~n
Intro. to VAX C08DL PrgrA
Intro. to VAX Fortran Prgrm
Intro. to VAX Lisp
Intro. to Operating Sys Design
Intro. Data Structures

REGISTER WITHDRAW

DAY TIME STATUS

MON
WED
THR
TUE
THR
MON
WED
FRI
TUE

6:30-9:40 PN
6:30-9:00 PM
6:30-9:00 PM
6:30-9:00 PM
6:30-9:00 PM
6:34-9:00 PM
6:30-9:00 PM
b:30-9:00 PM
6:30-g:00 PM

HELP EXIT

Press ~PF2: for HELP; press GOLD-B to go bact►, one screen.

CLOSED
OPEN
OPEN
CLOSED
CLOSED
OPEN
OPEN
OPEN
OPEN

Application Design Models for VAXcluster Software

Figure 4--~ Select a Course and View a Course Description

TE~HNI~AL UNI~fER~ITY
BOURSE RED I ~TR~T I ~N S1~STEh1

Course #: PRiO~-Ai
Title: Intro. to VAX BASIC Prgrm

This course provides the student with the necessary background
to design and develop VAX Basic programs of medium comb?lexity.

The objectives of the course are:

o To provide the student with the necessary fundamentals to
develop, compile, and run programs written in the Basic
Programming language.

o To understand recursive programming.

~aore...

REGISTER WITHDRAW HELP EXIT

Press ~PF~::` for HELP; press GOLD-B to go back one screen.

Figure 4—~5 Register or Withdraw from a Selected Course

TE~HNIrCP~L ~JNI~Ei~~ITY
C4VR3E RE~I~TF~~kTI4N ~Y~TENt

Course ~F: PR14~-A1
Title; Intro. to VAX BASIC Prgrn.

Location: Sawual AQamB Hall
Tuition: 547.83
Prerequisites: NONE

Begin Date; 49/20/94
End Data; 1~/ZQ/94

LaBt WitFidrawai; 09/7/90
Tine: 4:30-9:QOpe THR

statue, open

Stuoent ID: 999-99-9999 Registration Status
C4u2•se 1+ Course T1t18

First Nan1s; Herold
Middle Intl; H

Last Name: Higgins
Account Balance ; 6Z, 040.00

Register ?

CDi02-C1 Intro, to Compiler Design

Pre$e <PFS> for HELP; GOLD-B to go back one screen.

4.2 Client-Server Model
The Client-Server Model presents a method for decomposing an application
into its interrelated functional units; one functional unit is the client
process and the other is the server process. (For more information on
how to decompose an application, see Section 2.5.) The client-server
relationship is based on a client process requesting work to be done
on its own behalf, and a server process performing the work requested
by a client. Typically, a server process is designed to more effectively
implement a specific feature of an application. while the server process

Application Design Models for VAXcluster Software

is processing the request of the client, the client process can wait or
perform other application activities. Whether the client process waits for
the server process to complete its request or works in parallel depends
on your specific application. In general, there are two variations of the
Client-Server Model:

• One-to-One Client-Server Model

• Many-to-One Client-Server Model

These two models are based on two different client-server relationships:
a one-to-one relationship or a many-to-one relationship. These two
variations of the Client-Server Model are discussed in the following
sections of this manual.

-~ : 4.2.y One-to-One Client-Server Model
The simplest version of the One-to-One Client-Server Model is illustrated
in Figure 4-6. A client process (APPL_A on VA►XA) creates a remote server
process and waits while the remote server process (APPL_B on V~!►XB)
performs some work. when the remote server process notifies the client
process that the remote work is completed, the client process resumes
work.

Figure 4-6 One-to-one Client-Server Model

.............a:..

MR-2950-RA

4-7

Application Design Models for VAXcluster Software

Advantages of Using the Dne-to-One Client-Server Model

Using the One-to-One Client-Server Model offers the following advantages:

• A server process can provide a special function to help increase an
application's throughput.

• when you design an application as a One-to-One Client-Server Model,
it lets you decompose an application's tasks to take advantage of a
hardware resource.

• When you implement aVAXcluster-based server process for a network
client, you can improve the network client's performance by having a
server process perform disk I/Os locally.

Disadvantages of Using the One-to-One Client-Server Model

Using the One-to-One Client-Server Model has the following
disadvantages:

• It may require more system resources if each server only provides the
service to one client at a time.

• If the One-to-One Client-Server Model is implemented, based on
synchronous communications, the client process may lose some
processing time while waiting for the server process to complete
the work request.

Implementation Requirements for the One-to-one Client Server Model

The One-to-One Client-Server Model has the following implementation
requirements:

• Remote Process Creation

The server process can be created on an appropriate cluster node
at application startup or on an as-needed basis. If you are sure the
server will be needed, it probably makes sense to start it at application
startup and use interprocess communications to tell the server when
there is work. If you are not likely to need the server, it can be created
on an as-needed basis. Since process creation is expensive, it makes
sense to keep a server process alive until you are sure that it will no
longer be needed.

DECnet-VAX transparent communication is an effective technique for
remote server process creation in the One-to-One Client-Server Model,
because only one logical link is required for communications between
the client and server processes. However, if there is an elaborate
communication pattern between the client and server processes,
nontransparent DECnet-VAX communications may provide more
flexibility. In addition, when aclient-server relationship is contained
within your VAXcluster system, the client process can use process
control system services to issue $WAKE and $HIBER system service
calls to awake and hibernate the server process as needed.

The VMS batch facility is also an appropriate technique for remote
process creation, especially if the application is written in DCL.

Application Design Models for VAXcluster Software

• Data Sharing

If the client and server processes are concwrrently accessing the same
file, use VMS RMS to coordinate file access for the client and server.
Depending upon the application, data sharing can be implemented
by using disk-file Read-Only global sections. If there are ongoing
information exchanges between the client and server processes, you
can use DECnet-VAX communications for message passing. For
application performance, you must decide whether to send numerous
DECnet-VAX information exchanges for small units of data or to use
large data exchanges.

• Process Synchronization

You can construct a communication protocol for information exchanges
between the client and the remote server using DECnet-VAX
communications or lock management system services. You
can establish a communications path between the client and
server processes by using either DECnet-VAX communications
for message passing or lock management system services for
event notification. Also, you may want to use a combination of
DECnet VAX communications and resource locks with blocking ASTs
to communicate between the two processes when information is ready
to be sent or received.

With DECnet-VAX communications, the client and remote server
processes can be designed to alternate execution, as in a dialogue. In
this case, the client or server process waits and then wakes up when
an AST is delivered by the "working" processes' $QIO WRITE with the
results. Even though there is a dialogue between the client and server,
the client process remains in control of the client-server relationship
by making requests to the server.

When using lock management system services, the client and remote
server processes use lock management system services for event
notification to synchronize their activities. If the client process takes
out an EX lock on a resource name with a blocking AST, when the
remote server process completes the client's work request, the remote
server requests an incompatible lock for that resource name. This
triggers the blocking AST and the client process executes an AST
routine to get the results.

• Exception Conditions

The client process must detect DECnet-VAX error messages and
perform the appropriate recovery. If the client and server are in a
dialogue with alternating execution, the client and server should
have a time limit for their wait periods. Consequently, if either
process terminates unexpectedly or the node where it is running
fails, the remaining process can recover. In some cases, a deadman
lock scheme (see Section 6.3.2.2) may be used to terminate both the
client and server process when either process fails. It is also possible
to implement the One-to-One Client-Server with a backup server
process to take over the client's requests in the event that the primary
remote server fails.

4-9

Application Design Models for VAXcluster Software

Example of an Application Using the One-to-One Client-Server Model

The One-to-One Client-Server Model illustrated in Figure 4-7
demonstrates a client-server relationship for using a compute resource in
a VAXcluster environment. Process_A is a FQRTRAN application with a
section of code for parallel execution, and Poocess_B is a remote server for
a SMP processor. Instead of designing Process_A to execute the parallel
section by spawning subprocesses on V~~:~A, Process_B creates a process
on V~►XB to execute a program containing Process_A's parallel section of
FQRTRAN. VA►XB provides a hardware resource (a SMP processor) that
can execute the FQRTRAN parallel section more rapidly than executing
the parallel streams as subprocesses on VA►XA. A11 of the parallel streams
executed by Process_B on VAXB are synchronized to form a barrier; at the
completion of all the streams, Process_B returns control to Proeess_A.

Figure 4-7 Using aOne-to-One Client-Server Model for Parallel
Processing

Process B
is Server

Executed on
Process B

1111
Control
Returns to
Client when
All Streams
Completed

M R-2951-RA

4-10

Application Design Models for VAXcluster Software

4.2.2 Many-to-One Client-Server Model
The Many-to-One Client-Server Model uses aclient-server relationship
to manage various requests to a server for special services from multiple
clients. Typically, the server process is installed as a resident process
on a VAXcluster CPU and multiple client processes in a VAXcluster
environment tend to come and go, only using the remote server as an
interface to a resource. A remote server can provide access to a resource
by functioning as one of the following:

• Compute server

• Specialized hardware server

• Database or file server

Compute Server

A server designed as a compute resource can provide a special compute
function for several clients that are all performing the same computations.
Depending on the amount of work to be done, it may be more efficient to
execute acompute-intensive program segment for an application on one
of the fastest VAXcluster CPUs than to execute the compute-intensive
section of an application on another VAXcluster CPU. Using a remote
server process as a computer server can allow you to more efficiently use
the processors in your VAXcluster system.

Specialized Hardware Server

There are many types of specialized hardware servers: for example, a
hardware server could be a print server, a terminal server, or a network
server. For any type of hardware server, there are many clients requesting
the use of that specific hardware resource. The hardware server schedules
the client requests for use of that resource. For instance, the PrintServer
40 Supporting Host Software is a layered product that enables a suitably
configured VMS system within a DECnet Ethernet network to provide
support functions for the PrintServer 40.

Database or File Server

Figure 4-8 illustrates the implementation of a remote server process for
multiple clients requesting access to the same file or database. Each
client process communicates a file operation request to the server, and the
remote server process accesses the file or database on behalf of the client.

4—y 1

Application Design Models for VAXcluster Software

Figure 4-S Many-to-~ne Client-Server Madet as a File Server

M R-2952-RA

A file or database server is probably the most common implementation
of the Many-to-One Client-Server Model in the VAXcluster application
environment. Rather than having an application access a file directly, the
application requests file access from the remote server process.

4—y 2

Application Design Models for VAXcluster Software

There are three reasons for accessing a file through a remote file server
process:

y Restrict file access to protect a file's integrity

To restrict file access, you can design a remote server process to
serve only one client at a time. Once a client process' request is
granted by the server process, all other clients must wait until the
server completes the first request. In this way, the server process
synchronizes access to a file or database. The server is the owner of
this file or database because all clients that request access to the file or
database contents must make their request through the remote server.
This method of implementing a remote server is used to:

Enforce additional security by only letting the server process access
the resource

-- Simplify network access to a shared resource

Optimize access to a resource by keeping all users of that resource
on a single node in a single process

2 Avoid the locking overhead of simultaneous updates to the same file
from several different applications

To avoid a large locking overhead associated with numerous processes
using VMS RMS for simultaneous updates to the same file, you can
design a remote server process to manage multiple clients requesting
access to the same file. By maintaining a communication path to each
client, the server is a common collecting point for all of the clients
requesting access to the server's database. However, because all
file activities must pass through the server, the server can help you
avoid programming for simultaneous updates from several different
applications. You can build the server software to control the order
(from the application standpoint) for processing file updates that
originate from different applications. Also, you can construct the
server to let clients perform different file functions. For example, a
server process could provide every client with the following functions:

Read a database record

Change a database record

Search for a database record

3 Make more efficient use of system resources

Using one remote file server to service network access requests
from multiple clients is an efficient use of system resources. It is
often much less expensive, in terms of system resources, to use a
Many-to-One Client-Server Model and design a server process that
can service multiple clients. If each of the clients must use separate
communications paths to access a remote file resource, you must
create a separate process for each client request on the target CPU.
In addition, if a process accesses the remote file to perform a search
operation for a particular string, all the data bytes in the file must
travel over the network to the local process where the comparison
against the search string is made. However, when you perform. the

4—y 3

Application Design Models for VAXciuster Software

search operation using a server, a client sends a protocol message
saying "SEARCH FOR STRING X" and the server would take it from
there. No data would be transmitted over the network, as the search
takes place entirely within the server. Consequently, only the result of
the search needs to be transmitted from the server to the client.

To assess if your application can be designed to use any of these variations
(compute server, specialized hardware server, database or file server)
of the Many-to-One Client-Server Model, you should determine if your
application is a candidate for distribution by decomposition. For more
information on how to determine if your application is a candidate for
decomposition, see Section 2.5.

Advantages of Using the Many-to-One Client-Server Model

Using the Many-to-One Client-Server Model offers the following
advantages

• Since process creation and image activation are expensive in terms of
CPU cycles and elapsed time, it can improve performance for many
clients to share one server process.

• The end users of an application implemented with a server cannot
see any difference in the way their requests are handled between a
per-process or server application; the difference in implementation is
completely transparent.

• When a VAXcluster CPU is dedicated to a server process, there is
a performance advantage if a large database is being accessed for a
small subset of information.

• Use of the Many-to-One Client-Server Model can increase throughput
for acompute-bound application. In general, the application designer
can create the remote server process on the most powerful CPU
node and use the remote process to execute critical regions of code
that are compute-intensive. This implementation performs most
efficiently when the data from the client's request can be accessed
by the server through a DECnet $QIO. For more information on
performance considerations for a potentially CPU-bound application
environment see Section 7.4.

Disadvantages of Using the Many-to-One Client-Server Modei

Using the Many-to-One Client-Server Model has the following
disadvantages:

• Since the Many-to-One Client-Server Model does require more
communication paths and more complicated communication, it will
generally take longer to program than the One-to-One Client-Server
Model.

• When you use the Many-to-One Client-Server Model for file serving
activities, you must design interprocess communications between each
client process and the remote server. Compared to using VMS RMS for
each process to separately access a file, constructing a server process
requires implementing explicit interprocess communication.

4—~ 4

Application Design Models for VAXcluster Software

• To access large amounts of data from the database, it is more efficient
to directly access the data from each process executing the application.

• After a client sends a request to the server and the remote server
process is executing, the client usually waits for the server; thus, the
client process does not utilize the computing capability of its CPU.

• If this model is implemented without a backup server, then the failure
of the server will impact all of the clients.

implementation Requirements for the Many-to-one Client-Server Model

The Many-to-One Client-Server Model has the following implementation
requirements:

• Remote Process Creation

As with the One-to-~ne Client-Server Model, in the Many-to-One
Client-Server Model the server can be created on an appropriate
cluster node at application startup or on an as-needed basis. If you
are sure the server will be needed, it probably makes sense to start
it at application startup and use a programming mechanism for
interprocess communications to tell the server when there is work. If
you are not likely to need the server, then consider creating it on an
as-needed basis. Since process creation is expensive, keep a server
process alive until it will no longer be needed.

You can use DECnet-VAX communications or the Batch facility to
create the remote server process. If the remote server's task is time-
sensitive and you cannot wait for the Batch facility to schedule
the task, then DECnet-VAX communication is the most effective
technique for image activation on a remote VAXcluster CPU. where
the remote server's task is not time-sensitive, using the batch facility
for remote process creation is preferable. In addition, when aclient-
server relationship is contained within your VAXcluster system, any
client process can use process control system services to issue $wA►KE
and $HIBER system service calls to awake and hibernate the server
process as needed.

• Data Sharing

VMS RMS record locking must be coordinated so that any file or
record locks held by any client process are released or converted to a
compatible locking mode if the remote server process is to access the
same file or record data. Depending on the application, you can also
implement data sharing by using disk file Read-Only global sections.
Also, when multiple clients are concurrently accessing a remote server
process, a nontransparent DECnet-VAX logical link between the
remote server and each of the clients can provide communication paths
to exchange data.

4—y 5

Application Design Models for VAXciuster Software

• Process Synchronization

You can use DECnet-VAX communications or lock management system
services to establish your application's interprocess communication
needs between clients and a remote server process.

When using DECnet-VAX communications, each client process sends a
request to the remote server and then waits for an AST to be delivered.
After the remote server completes a client's work request, the remote
server process executes a $QIO WRITE to that client process. The
remote server process' $QIO WRITE may send the results back, or the
remote server may put the results in a file and the $QIO WRITE will
tell the client process where to find the results.

Using lock management system services, each client process sends a
work request to the remote server and takes out an EX lock with a
blocking AST on a unique resource name. When the remote server
completes the client's work request, the remote server requests an
incompatible lock for the resource name that corresponds to the client
process that made the work request. The appropriate client process
then executes its blocking AST routine to get the results from the
server.

• Exception Conditions

When each client process communicates to the remote server process,
there should be a time limit for the connect wait period so that, if
the remote server process dies or the server's VAXcluster CPU fails,
a client process can recover. On the other side, there should be a
recovery procedure so that the remote server process can detect and
react to a VAXcluster CPU failure for a client process' node. fiypically,
the Many-to-One Client-Server Model is implemented with a backup
server process that takes over all of the clients' requests when the
primary server process fails.

Example of an Application Using the Many-to-one Client-Server Model

An example of the Many-to-One Client-Server Model (see Figure 4-9)
is an electronic corporate phone directory implemented for clusterwide
and network access to a database. The primary server process allows
up to 15 clients to access the corporate database at one time. When a
client requests access to the database to modify a record, the record is
locked until the client completes the update. When the 16th client process
requests access to the primary server, the primary server automatically
forwards the 16th client's request to a backup server process working
in tandem with the primary server. When the backup server becomes
overloaded, requests are forwarded to the primary server which also acts
as a backup server. Using this model, a series of database servers provide
this application with high availability and high throughput.

a—~ s

Application Design Models for VAXcluster Software

Figure 4-9 Many-to-one Client-Server Model as a File Server for a Corporate Database

Users Accessing Primary Server 1

~:~i

Users
Accessing
Primary
Server 2

i ~`

 i

ff Primary Server 1 Faifs

/' _ ~''

_\

ff Primary Server 2 Fails

:•f:
:;ti::

'•r~'... • ~...f

M R-2953-RA

4.3 Parallelism Model
When you use the Parallelism Model, you can design an application to use
multiple VAXcluster CPUs to simultaneously execute multiple instruction
streams.l For more information on how to determine if your application is
a candidate for distribution by decomposition, see Section 2.5.

1 The Parallelism Model is a model for application design structure and can be implemented on multiprocessor systems

with or without shared memory. This manual describes the implementation of the Parallelism Model on a VAXcluster

system, a multiprocessor system Without shared memory.

4--17

Application Design Models for VAXcluster Software

Depending on the priority of your application, you can use the Parallelism
Model to implement an application in either of two ways:

• Use dedicated VAXcluster CPUs to decrease your application's wall-
clock time.

• Schedule the distributed application for the hours of the day that your
VAXcluster system is at a minimum load. In this way, your parallel
application can use idle VAXcluster CPU cycles on multiple VAXcluster
CPUs.

Figure 4-10 illustrates a single master process that is directing work
assigned to three remote slave processes. In this application, a single
master (APPL_A) sends work requests to each of the slave processes
(APPL_D, APPLE, and APPL_F). The master and slaves all work in
parallel. When necessary, the master process asynchronously manages a
communications path to the appropriate slave process.

Figure 4-10 Parallelism Madel

Tme

::, .
1 ~~:

., APPL A :'•~` ~
........ , r ~. .

:'

M R-2954-RA

There are two common variations for designing a Parallelism Model:

• Self-scheduling

• Queueing

4-18

Application Design Models for VAXcluster Software

Self-Scheduling

The first variation is called self-scheduling. You can design the master
process to build a queue of work items and then create an appropriate
number of remote slave processes to perform the task defined by each
work item. The remote slave processes are assigned work by executing the
task defined by the work item at the top of the master's work list. The
remote slave processes continue to perform until there are no more tasks
on the master's work list.

Queueing

The second variation is called queueing. Queueing is similar to the
implementation of self-scheduling except that the master process builds a
queue of work items, and when the remote slave processes execute, any
additional items of work created by the remote slaves during execution are
placed in the queue of work items. The remote slaves place the additional
work items at the end of the queue and, when a work item is completed,
the remote servers execute the next work item at the top of the queue.

Figure 4-11 demonstrates an implementation of the Parallelism Model
that uses self-scheduling and queueing.

Figure 4-~1 Parallelism Model Using Self-Scheduling and Queueing

.Master Wakes
Rerr~te Worker Processes

MR-2955-FAA

In this application, the master queues work requests, and the workers
self-schedule the execution of work requests from the work queue built
by the master. The work queue built by the master resides in a disk file.

4-19

Application Design Models for VQXcluster Software

The work queue data structure has a counter to keep track of how many
workers are accessing the work queue. Also, each work item on the work
queue has two flags: one flag to indicate the item is being worked on, and
one flag to indicate the item is completed.

The processing steps of this application are as follows:

~ Master process (APP A) writes work requests to a queue.

2 APP A uses PROCESS_SCAN to find available (hibernating) workers
in the VAXcluster environment.

3 APP A uses a $WAS to wake the available workers.

4 When each worker is awakened, they look at a predetermined work
queue.

5 As each worker accesses the work queue, they sign into a worker
counter and look for the first work item without a flag.

6 When a worker locates an unflagged work item on the work queue, the
worker signs out the work item by setting a flag for the appropriate
work item and begins working.

7 When a worker completes a work item, the worker returns to the work
queue and sets a second flag for the appropriate item on the work
queue to indicate that this work item has been completed.

8 If a worker has produced any additional work items while processing
its work item, the additional work is placed at the bottom of the work
queue. Then, the worker signs out the next unflagged work item.

9 When the end of the work queue list is reached and there are no more
work items, each worker finishes by removing itself from the list of
active workers and putting itself back into hibernation.

10 After all of the workers have finished, the master process starts to
prepare another work queue.

(See Programming Example 1 in Section 6.3.1 that demonstrates another
possible implementation of self-scheduling and queueing.)

Advantages of Using the Paratielism Model

Using the Parallelism Model offers the following advantages:

• You can decrease a distributed application's wall-clock time by
executing parallel tasks on multiple VAXcluster CPUs.

• You can use multiple remote slave processes as identical workers to
perform the same functions in parallel, or use each remote slave as a
specialized worker to perform a specific function.

• Where the amount of time needed to complete a task varies from
work item to work item, you can implement a Parallelism Model with
queueing and self scheduling.

a—zo

Application Design Models for VAXcluster Software

Disadvantages of Using the Parallelism Model

Using the Parallelism Model has the following disadvantages:

• Because of increased interprocess communication, the application's
performance may approach a limit where overhead becomes
unacceptable.

• A design using interproeess communications between master and
remote slave processes should include a plan for recovery from an
exception condition.

• Using Parallelism with queueing, self-scheduling, and many
workers can cause a bottleneck if all of the workers are awakened
simultaneously. Depending on the way that work items are assigned,
all the workers may attempt to concurrently access the work queue.
This can cause contention as all workers attempt to access the same
resource, and the work queue can become a bottleneck.

• It is more difficult to design, implement, and maintain a parallel
application.

Implementation Requirements for the Parallelism Model

The Parallelism Model has the following implementation requirements:

• Remote Process Creation

DECnet nontransparent communication lets you create a
communication path which connects a master process to multiple
logical links by assigning multiple UO channels. The batch facility can
also be useful for performing work from a remote slave process that is
non-interactive and compatible with the batch mode. In addition, if all
master-slave relationships for your Parallelism Model are contained
within your VAXcluster system, a master process can use process
control system services to issue $WAKE and $HIBER system service
calls to awake and hibernate a slave process as needed.

• Data Sharing

Depending upon the design of your application's master process,
you must determine the appropriate means of message passing
between master and slave processes. while a master process may
use DECnet-VAX $QIO WRITES to transmit data to remote slave
processes, this can cause timing problems. Typically, the master sends
work to the slaves and remote slave processes do the work. A timing
problem can arise when the master is waiting, synchronously, for
the results from one of the specialized workers but another worker
completes its work first. If the application permits the master to use
only one of a number of remote slave process' results at a specific point
in the master's instruction stream, consider using the event flag option
with the $QIO WRITE from the remote slave processes. Then the
master process can use the event flag to determine, asynchronously,
what procedure to execute.

4-21

Application Design Models for VAXciuster Software

If the master or slave processes are concurrently accessing the same
data, use VMS RMS record locking to coordinate access to the file.

You can also use a common VMS RMS file to pass messages between
the master and slaves.

You can also map data common to the master and slave process on
each VAXcluster CPU when you use a disk file Read-Only global
section.

• P`rocess Synchronization

You can use DECnet-VAX communications or lock management system
services to implement interprocess communication requirements.

When you use nontransparent DECnet-VAX communications, the
master process assigns work to each remote slave process over a
different eommu.nications link and waits for a completion signal
from any remote slave process. When a remote slave completes
a work request, the slave performs a $QIO WRITE on a specific
communications channel, and an AST is delivered to the master
process. The master process can respond either synchronously or
asynchronously to the remote slave process' $QIO WRITE. The remote
slave may send the results back with a $QIO WRITE, or may put
the results in a file with the $QIO wRITE telling the master process
where to find the results . If the remote slave sends the results back,
the master performs the appropriate procedure as determined by the
evaluation of an event flag delivered with the A.ST for the remote
slave's $QIO WRITE.

To use lock management system services, each remote slave process
is assigned a work item and the master process takes out an EX lock
with a blocking AST, using a different resource name for each work
item. When a remote slave completes its work item, the slave process
requests an incompatible lock for the appropriate resource name. Then
the master process executes the corresponding blocking AST routine
to get the results. In this way, the master process uses the master's
blocking AST routine to evaluate the completed work item's resource
name and determine on which channel to issue a $QIO READ to get
the results.

when the Parallelism Model is implemented using queueing and
self-scheduling, exclusion and barriers are used to affect process
synchronization. Each worker must have exclusive access to the work
queue to schedule work items, and all the workers must sign out of
the work queue before control of the application returns to the master
process.

• Exception Conditions

When you implement parallelism, you must be sure to include a means
to recover from exception conditions because the Parallelism Model
requires more interprocess communication.

4-22

Application Design Models for VAXcluster Software

The master process must be able to detect DECnet-VAX error messages
that are delivered with $QIO READs or WRITES from the remote
slave processes, and the master's event-flag-driven procedures must
contain some recovery logic for when DECnet-VAX error conditions
are detected. There must also be a recovery procedure in each remote
slave to detect DECnet-VAX communications errors from a master's
$QIO READ or WRITE to the remote slave's channel.

Example of an Application Using the Parallelism Model

A car manufacturer develops an application to test the structural integrity
of the passenger compartment for one of their new cars. After a car
is designed as an electronic model using computer aided design (CAD)
software, the manufacturer uses an application to simulate a ear crash.

In the example shown in Figure 4-12, Car A and Car B are used to
simulate a crash for different rates of speed and different angles of impact
for Car B. In the test, 60 tests are run for the crash simulation. (Each test
simulates crashes by varying the velocity of Car B from 1 to 70 mph in
increments of 1 mph and the angle of impact at 6 degree intervals.} All 60
tests could be executed in parallel, but a master process is used to assign
each test to a remote slave process executing on multiple VAXcluster
CPUs. Each time the master process assigns a test to a remote slave
process, the master process uses a lock value block to pass a message
containing the angle of impact for the test that the slave is to execute. The
master process maintains a table to track the progress of the simulation
and if any of the slave processes fail, the master process can reassign the
work item to another slave process.

The Parallelism Model is used to implement this car crash simulation
application because:

• Each code segment is performed hundreds of times.

• Multiple tasks for a specific set of iterations can run in parallel.

• Each test component for this application can be run on any VAXcluster
CPU available to this application.

By using multiple VAXcluster CPUs to run this car crash simulation, the
ear manufacturer can rapidly detect potential structural problems at the
design stage and the wall-clock time for this application is reduced.
Consequently, a car manufacturer can perform repeated car crash
simulations until the car's structural design meets their requirements.

4-23

Application Design Models for VAXcluster Software

Figure 4-y 2 Car Crash Simulation

,_ t,

,~, .~ _r _=
A __ o 6

A

M R-2825-RA

4-24

Designing Distributed Applications for a VAXcluster
System

When you design applications for a VAXcluster system, you can distribute
an application on multiple VAXcluster CPUs to achieve the following goals:

• Increased availability

• Faster completion

• Maximized throughput

These goals are discussed in Sections 5.1, 5.2, and 5.3 . Section 5.4
contains a comparison of the application design models and application
design goals. Section 5.5 and Section 5.6 provide an overview of some
Digital products that you can use when designing an application for your
VAXcluster system.

5.1 Designing an Application for Increased Availability
Designing an application for increased availability helps to ensure that
you are nearly always able to run your application. You can aEhieve
this availability by running any component of your application on any
VAXcluster CPU.1 This chapter presents three application design models
that you can use to design an application for increased availability:

• File Sharing Model

• One-to-One Client-Server Model

• Many-to-One Client-Server Model

When implementing any one of these models, do not make a component of
the application dependent upon a specific VAXcluster CPU. If a component
is moved from its initial location to a different VAXcluster CPU, other
application components must be able to continue to find it. You can use the
VAX Distributed Name Service (DNS) to ensure that your application can
find its vaY-i ous components anywhere in the cluster. For more information
on DNS, see Section 5.6.5.

Using the File Sharing Model

The File Sharing Model (see Section 4.1) provides increased availability to
users by distributing an application by replication on multiple VAXcluster
CPUs. Zb use a File Sharing Model to increase application availability
only requires acommon-environment on your VAXcluster system. (For
more information on configuring acommon-environment for a VAXcluster
system, see Section 1.1.2.)

1 Assuming that your VAXcluster hardware is properly configured. For more information on configuring your VAXcluster
hardware for high availability, see the VMS VAScluster Manuacl.

5—y

Designing Distributed Applications for a VAXcluster System

To achieve an acceptable level of application performance when
implementing the File Sharing Model, ensure that:

• The VAXcluster CPUs are not at maximum Load capacity.2

• The I/O system in the VAXcluster system is not at maximum load
capacity.

• There are multiple demands for the image.

• There is an even distribution of users on the VAXcluster CPUs where
the image is replicated.

• The total number of application users does not increase.

For more information on how to determine if your application is a
candidate for distribution by replication, see Section 2.4.

Using the One-to-One Client-Server Model

When using the One-to-One Client-Server Model to increase application
availability, replicate the one-to-one client-server application on different
VAXcluster CPUs. (If you use the same CPU for all instances of the
application, this CPU may become a single point of failure. } In addition,
you can also design an application based on the One-to-One Client-Server
Model for increased availability by providing failover mechanisms for a
backup client and backup server.

For further information on how to determine if your application is a
candidate for distribution by decomposition using the One-to-One Client-
Server Model, see Section 4.2.1.

Using the Many-to-One Client-Server Model

When your application executes on VAXcluster CPUs and non-clustered
network nodes, you can use the Many-to-One Client-Server Model (see
Section 4.2.2) to design for increased availability. You can design a file
server to manage multiple client I/O requests from inside and outside
your VAXcluster system. A file server can increase the availability of
a VAXcluster file resource to client processes outside your VAXcluster
system. It is more efficient for the server to access the database locally
and perform the requested task, than to transmit the requested file
contents to the client and have the client perform the file manipulation.

In addition to increasing the network availability of a VAXcluster resource,
you can also increase the availability of the functions of a file server
by designing a failover mechanism for a backup server. When using
the Many-to-One Client-Server Model to design a file server to increase
application availability, you should also:

• Restrict file access so that only the server process can access your file
to protect file integrity

• Coordinate client requests from any other applications that are
attempting to update a file simultaneously

2 You may consider overconfiguring CPU resources for an application based on what CPU capacity might be required for
the application to function in a degraded condition.

5-2

Designing Distributed Applications for a VAXcluster System

For further information on how to determine if your application is a
candidate for distribution by decomposition using the Many-to-One
Client-Server Model, see Section 4.2.2.

5.2 Designing an Application for Faster Completion of a Task
In Section 4.3, the Parallelism Model is presented as a means of
distributing modules of an application for parallel execution. By
decomposing your application into tasks that can be executed in parallel,
you can complete the execution of your application more rapidly (decrease
wall-clock time} because your application can simultaneously use multiple
CPU resources.

Using the Parallelism Model

Designing an application for fast completion using Parallelism requires
that:

• The application be decomposed into tasks.

• There is minimal contention between the tasks for shared resources.

• The tasks are relatively independent of each other so they can be
executed in parallel.

• The amount of work performed by each task is large compared to the
overhead associated with interprocess communications.

• There is enough potential gain in application performance to justify
the additional effort and expense of implementing a distributed
application.

• For faster execution time (decreased wall-clock time}, tasks execute on
dedicated hardware resources.

The performance of many paralleled applications is limited by the
amount of time spent performing non-paralleled operations. Typically,
non-paralleled operations have the following characteristics:

• Initialization activities

• Processing activities for which an algorithm for decomposition cannot
be constructed

• I/O processing with high contention for a common resource

In general, an application that spends 50% of the time performing non-
paralleled operations could achieve a maximum of 1.6 times performance
improvement if the paralleled part was decomposed into four tasks that
could execute in parallel on four VAXcluster CPUs.

Designing Distributed Applications for a VAXcluster System

The mathematical equation that defines this improvement in a paralleled
application is Amdahl's Law. It states that the maximum performance
gain from parallelism is calculated by dividing the percentage of the
application that can be run in parallel by the number of processors,
and adding the percent that cannot be run in parallel. In the preceding
example, this would be: (50% of paralleled time divided by 4) + 50% non-
paralleled time). The best that Amdahl's Law says this application can
achieve from parallelism is running in 62.5% of its original runtime or 1.6
times faster.

For further information on how to determine if your application is a
candidate for distribution by decomposition using the Parallelism Model,
see Section 2.5 and Section 4.3.

5.3 Designing an Application for Maximum Throughput
You can use all the models described in Chapter 5 to maximize
throughput, the total work done. All these models let you maximize
application throughput because multiple VAXcluster CPUs are used in the
implementation. When designing an application for ma~mum throughput,
consider which method of distribution is the most appropriate use of
multiple CPUs:

• Distribution by replication

• Distribution by decomposition

whether you distribute by replication or decomposition, you can design an
application to maximize throughput for either:

• A VAXcluster system running multiple applications

Each instance of an application competes with other application
images and all other processes on a specific VAXcluster CPU.

• A VAXcluster system running a single application

When a VAXcluster system is dedicated to a single application, you
should design for maximum throughput to fully utilize your VAXcluster
CPU resources.

A VAXcluster System Running Multiple Applications

If you have multiple small applications contending for the same resources,
when distributing by replication, you can maximize throughput by:

• Designing all applications to run on any CPU, with each image
running entirely on a single CPU; this avoids the need for
communication between components

• Minimizing contention for shared resources

• Balancing the workload throughout the cluster

Designing Distributed Applications for a VAXcluster System

If you have multiple applications contending for the same resources, when
distributing by decomposition, you can maximize throughput by:

• Scheduling the jobs at times oflow-activity to use idle CPU cycles

• Minimizing contention for read access to shared resources by using
disk file Read-Only global sections

A VAXcluster System Running a Single Application

If your cluster is dedicated to a single application and you are distributing
by replication, you can maximize throughput by:

• Running a copy of the same application on each CPU in the cluster

• Balancing the workload evenly

• Designing your application to use R,MS global buffers, depending on
the characteristics of file access requests (For more information on how
to use RMS global buffers, refer to Section 3.2.3 in this manual and
the Guide to VMS File Applications.)

For example, for a transaction processing application, you can:

— Use terminals connected to a terminal server on the Ethernet to
distribute users.

— Use a shared VMS RMS, DBMS, or Rdb/'VMS database.

— Distribute the file or database components over several disks to
avoid an I/O bottleneck.

— Open all the files at the start of the application, rather than
opening and closing each file for every access request. Use this
strategy when users need to access several different files at
different parts of the application.

— Dedicate different VAXcluster CPUs to run terminal handling
procedures and the transaction processing code.

If your cluster is dedicated to a single application and you are distributing
by decomposition, you can maximize throughput by:

• Decomposing application tasks into the largest possible work items

• Designing tasks that minimize contention for shared resources

• R,educing the need for interprocess communication

• Balancing the cluster work load evenly across all VAXcluster CPUs

• Designing a master process to monitor the progress of each of its
workers and reallocate task assignment if there is an exceptional delay
for the completion of an assigned unit of work

Designing Distributed Applications for a VAXcluster System

5.4 Comparison of Application Design Models with Application Design
Goals

Table 5-1 relates and compares the application design models described in
Chapter 4 with the application design goals discussed in this chapter.
In addition, Table 5-1 also compares the models with respect to
developmental complexity and network-wide access.

Table 5-1 Comparison of Application Design Models with Application Design Goals

Maximize
Design Increased Fast Completion Through- Developmental
Model Availability of Task put Complexity Network-Vtilide Access

File Sharing High Low Yes' Low Sometimes2

One-to-One Medium3 Medium4 Yes Medium Yes
Client-Server

Many-to-One Mediums Medium4 Yes Medium Yes
Client-Server

Parallelism Lows High Yes' HighB Sometimes9.'o

'Assuming that your application is not I/O bound and there is minimum contention for the same data elements.

2Network access is possible when using Digital's distributed file service (DFS). For more information on DFS, see
the associated documentation for VAX Distributed File Service.

3You can increase availability by replicating the one-to-one client-server application on different VAXcluster CPUs.
However, if one of the replications fails, that instance of the application only remains available if there is a backup
server.
4When the server is a dedicated hardware resource, the application can execute faster.

sTo ensure availability, implement this model with a backup server. This requires explicit interprocess
communications.
6Using programming techniques for VAXcluster failover, you can decrease the effect of a VAXcluster CPU failure.
For more information on VAXcluster failover mechanisms, see Section 6.4 and Chapter 8.

'You can maximize throughput by either running the parallel application on dedicated VAXcluster CPUs, or you can
run the parallel application during non-peak hours to maximize otherwise idle CPU cycles.

BProviding process synchronization for distributed application tasks requires explicit interprocess communications.

glf explicit interprocess communications are implemented using DECnet-VAX communications, then network-wide
access is possible.

tOlf explicit interprocess communications are implemented using lock management system services, then the
application is distributable only within the VAXcluster environment.

Designing Distributed Applications for a VAXcluster System

5.5 Designing a VAXcluster Application Using Products Closely
Associated with the VMS Operating System

In your application design, you can use the following products that are
closely associated with the VMS operating system:3

• VAX RMS Journaling

• VAX Volume Shadowing

• VMS DECwindows

Sections 5.5.1, 5.5.2, and 5.5.3 briefly describe these products and their
features when used on a VAXcluster system, and provide references to the
appropriate documentation.

5.5.1 VAX RMS Journaling
VAX RMS Journaling provides data integrity and data consistency to data-
intensive applications that do not require the features of a full database
management system, such as VAX DBMS or VAX Rdb/'VMS . VAX RMS
Journaling is supported to disk only; VAX RMS Journaling does not
journal to tape. VAX RMS Journaling provides three different types of
journaling:

• After-image journaling

Provides the ability to redo a series of modifications to a data file. finis
type of journaling lets a file be recovered if it is lost or corrupted, for
example, if the file is inadvertently deleted or the data is lost due to
a disk head crash. Such a recovery restores the contents of the file
from the point of the latest BACKUP copy of that file. To restore data
with after-image recovery, use the RMS Recovery Utility with the DCL
command RECaVE~;l.RMS_FILE/FORWARD, and specify the backup
copy of the data file as the parameter to the command.

• Before-image journaling

Provides the ability to undo a series of modifications to a data file.
This type of journaling lets a file be returned to a previous known
state. This is useful if a file is updated with bad or erroneous data
from, for example, a noisy data communications Line or operator error.
To restore data with before-image recovery, use the RMS Recovery
Utility with the DCL command REC~VERlRMS_FILEBACKwARD,
and specify the data file as the parameter to the command.

• Recovery unit journaling

Provides transaction integrity. A "transaction" is a series of VMS RMS
record operations on one or more files that are viewed as an atomic
operation; that is, either all or none of the operations are completed.

3 VAX RMS Journaling and VAX Volume Shadowing are system integrated products that require a separate license and
are installed separately from VMS; VMS DECwindows is installed separately from VMS Version 5.1 or higher, but does
not require a separate license.

5-7

Designing Distributed Applications for a VAXcluster System

Journaling is applied on a file-by-file basis. A file can be marked for
after-image, before-image, or recovery unit journaling, or any combination
of these. within a given application, you can use any combination of
j ournaling types .

VAX RMS Journaling stores the information necessary for data recovery
in files called "journal files." Multiple files can journal to the same journal
file.

VAXcluster

Features

Once after-image or before-image journaling has been turned on for a given
file, every WRITE access to the file from any process within a VAXcluster
system will be journaled. If an attempt to open a file for write access is
made from a VAXcluster node with VAX RMS Journaling not installed, the
open will fail.

when recovery unit journaling is used with a VAXcluster application that
is executing on multiple VAXcluster CPUs, recovery unit journaling can
segment the application into groups of file modification operations which
logically belong together. Each such group is called a recovery unit. The
database being maintained by the application is considered in an invalid
state if some, but not all, of the modifying operations within a recovery
unit have been completed. If an application fails to complete a recovery
unit, the database is rolled back to its state prior to the beginning of that
recovery unit. This provides two types of clusterwide protection:

• Protects records modified from one recovery unit from access by other
recovery units until the whole set of modifications is complete

• Protects a database from an incomplete set of updates because of
hardware or software failure

In both conditions, recovery from arecovery-unit failure is automatic.
Recovery-unit recovery is performed in the context of any process that is
executing the image because the application is programmed to include
calls to the $START RU and $END_RU system services. (In addition, a
$SET FILE/R,U_JOURNAL must be issued to all data files to be protected
by the recovery units.} These calls declare the beginning and end points
of the recovery units. In the case of a VAXcluster CPU failure or process
deletion, the recovery-unit rollback may be initiated by a process on a
different VAXcluster CPU. This occurs only if another process exists that
is currently accessing the same recovery unit journaled data files. If a
single VMS system or all VAXcluster CPUs accessing the databases fail,
recovery-unit recovery is initiated by the next process to open the recovery
unit journaled data files.

VAX RMS Journaling is a product that complements VAX ACMS (see
Section 5.6.2} by increasing the efficiency of VAX ACMS in a VAXcluster
system. VAX ALMS enables the programmer to set up a server that
controls alI data file updates and I/O operations. In a VAXcluster system,
rather than having each process act as a recovery unit, the server performs
all update transactions. Instead of having a recovery unit journal file for
each process, there is a single recovery unit journal file for the server. This
prevents the recovery unit journal disk from becoming a bottleneck.

Designing Distributed Applications for a VAXcluster System

You can use VAX RMS Journaling with VAX Volume Shadowing and VAX
ALMS to provide data integrity, data availability, and processing efficiency
benefits. For more information on VAX RMS Journaling, see the VAX RM,S
Journal ing Manual.

5.5.2 VAX Volume Shadowing
VAX Volume Shadowing is a feature available on VMS systems using HSC
controllers with RA-series disks. This product enhances data availability
by duplicating all data written to disk onto two or three compatible
disk volumes. (Compatible disks are those that have the same physical
geometry.) You can shadow any system or data disks .4

A set of two or three disks on which the data is duplicated is called a
shadow set. Shadow sets can be constituents of a bound volume set. A
disk which is part of a shadow set is called a "member." Every member
of a shadow set is identical to every other member of the shadow set. In
the event of failure of any shadow set member, disk I/O continues with
the remaining member or members of the shadow set. Since it does not
provide for recovery from accidental file deletion, volume shadowing is not
a substitute for regular BACKUP operations.

The minimum number of disks in a shadow set is one. The maximum
number of disks in a shadow set is three. The ability to have a shadow
set with only a single member allows a 2-member shadow set to continue
operation after the failure of one member. VAX Volume Shadowing also
allows normal operation of asingle-member shadow set and the addition
of a second member during a volume backup procedure.

VAXcluster Features

The shadow set appears to aet as a single disk, that is, the user need not
take any actions in the application code to have data propagated to all
members of a shadow set. VAX Volume Shadowing replicates the data on
all shadow-set members.

The syntax and semantics of reading and writing data to and from a
shadow set is identical to the syntax and semantics used for non-shadowed
I/O operations. Thus, all commands and program language features which
address d~:ta on non-shadowed disks can be used to address data on
shadowed disks.

Enabling and disabling shadowing for a particular disk requires, logically,
dismounting and remounting the disk. Disks can be added to, or removed
from, the shadow set by a system manager with minimal effect to either
the user or any application.

Shadow-set members can be dual-ported between two HSC controllers;
that is, each disk may be connected to each of the two controllers. (See
Section 1.1.1 in this manual for a discussion of automatic shadow set
failover when ashadow-set is dual-ported between two HSC controllers.)

4 If a disk does not conform to the FILES-11 ODS2 standard, see the VAX Volume Shadowing Macnuacl for information on
how to include a "foreign" disk in a shadow set.

5-9

Designing Distributed Applications for a VAXcluster System

Note: In a VAXcluster system, you cannot shadow the quorum disk. The
maximum number of disks per HSC (or per HSC pair in the case
of dual-ported disks) that may be shadowed is 18. The maximum
number of shadow sets per HSC (or per HSC pair in the case of
dual-ported disks) is 8.

Also, you can use VA,X Volume Shadowing with VAX RMS after-image
journaling (see Section 5.5.1); however, it does not completely replace
after-image journaling. After-image journaling provides the following ways
to recover data which VAX Volume Shadowing does not address:

• Mistaken deletion of a file by a system user or operator

• Corruption of file system pointers

• VMS R,MS file corruption from a software error or incomplete bucket
writes to an indexed file

VAX Volume Shadowing can provide increased data availability for your
application; in addition, it can help to maximize throughput for your
application. For more information on VAX Volume Shadowing, see the
V,AX volume Shadowing Manual.

5.5.3 VMS DECwindows
VMS DECwindows is an advanced windowing system supported by VMS
for Version 5.1 or higher. VMS DECwindows provides a windowing
environment with the following features:

• Graphics-oriented interaction with the VMS operating system

DECwindows handles all user interactions with the system. These
interactions include initializing a session, managing your environment
and resources, starting applications, and managing windows. You can
create windows, move windows, resize windows, and shrink windows
to icons.

• Consistent user interfaces

DECwindows user interfaces consist of graphic objects that look and
function the same, regardless of the application you are using. This
makes it easy to learn about and use new applications.

• A library of desktop applications

DECwindows provides a variety of applications, including: Bool~eader,
Calculator, Calendar, Cardfiler, Clock, DDIF Document Viewer, EVE
Text Editor, FileView, Mail, Notepad Text Editor, Paint Graphics
Editor, Postscript Document Viewer, and DECterm.

• Powerful libraries of routines that simplify the development of
graphics-oriented applications

These routines perform functions such as drawing and window
management. Applications using these routines run on all supported
hardware without modifications .

5-10

Designing Distributed Applications for a VAXcluster System

• Libraries for creating and accessing documents that contain text,
graphics, and scanned images

• Network-transparent application interface

The DECwindows architecture lets you run an application on a remote
node, while displaying and keying in data on a local workstation.
The network functions that make this possible are transparent; the
application appears to run locally.

Network transparency allows workstations to access the power and
resources of other systems on the network.

• Extensible architecture

The DECwindows architecture has been designed to accommodate new
technology, such as 3-dimensional graphics, as it becomes available.

The DECwindows programming environment makes it easy to develop
applications with simple, consistent, graphics-oriented interfaces. The
core of the graphics programming environment consists of the Xlib and
XUI Toolkit programming libraries. Xlib consists of low-level routines
for performing basic graphic and windowing functions. The XUI Toolkit
consists of high-level routines for creating and managing user-interface
objects like menus, scroll bars, and buttons. Applications written in any
programming language can call routines from both libraries.

XUI Toolkit routines save you time because they simplify the task of
creating a user interface. For example, you can create a menu with
one call to an XUI Toolkit routine. Creating the same menu using Xiib
routines requires many more calls and program lines. Using XUI Toolkit
routines also ensures that an application interface conforms to the XUI
style. Applications that conform to the XUI style are easy to learn and
use.

The XUI Toolkit includes additional tools that further simplify the process:
the User Interface Language (UIL} Compiler and the XUI Resource
Manager (DRM} routines. In essence, UIL and DRM let you create the
entire interface with one library call. UIL and DRM also let you separate
form and function in an application. You can store the user interface in
a file that is independent of the application, and modify the file without
recompiling the rest of the application.

VAXcluster

Features

Using VMS DECwindows support of applications based on the Client-
Server Model (see Section 4.2), you can design the server to support
asynchronous input from the user to the application and asynchronous
output from the application to a display. Figure 5-1 illustrates the
DECwindows platform for simultaneous sessions that are using different
VAXcluster CPUs as compute servers. Consequently, you can design
your application to use the most powerful VAXcluster CPUs as compute
servers to provide faster task completion. For more information on VMS
DECwindows, refer to the VMS DECwindows documentation set.

5—y 1

Designing Distributed Applications for a VAXcluster System

Figure 5-1 Running VMS DECwindows in a VAXcluster System

Window A displays output
from an application running
remotely on a VAX 8800. _....

Window B displays output
from an application running
remotely on a VAX 8300.

j.

/nnoan nannn Haan

oc000acooa oocq
00000000000000
O~cc000000000C~

no 0
caa ooaa
coc coax
0 000a coc cGao~

VAXstation 2000

Window C displays
output from an
application running
locally on the VAXstation.

M R-2969-RA

Designing a VAXcluster Application Using Layered Products Based on
the VMS Operating System

In your application design, you can use the following layered products that
are based on the VMS operating system:

• DECintact

• VAX ACMS

• VAX DBMS

• VAX R.db/VMS

• VAX DNS

Sections 5.6.1 through 5.6.5 briefly describe these products and their
features when used on a VAXcluster system, and provide references to the
appropriate documentation for more product information.

5—y 2

Designing Distributed Applications for a VAXcluster System

5.6.1 DECintact
DECintact (Integrated Application Control System) provides a foundation
for building simple and complex transaction processing applications on
one or more VAX systems under the VMS operating system. DECintact
runs as a collection of services and processes under the VMS operating
system supporting either single-threaded (per-process) or multi-threaded
(server) application program design methodologies. Multiple DECintact
applications can execute at the same time, sharing physical memory on
the same VAXcluster CPU, and be completely independent. Figure 5-2
illustrates the major components of DECintact.

Figure 5-2 The Components of DECintact

user user User User

DECintact Applications

..............

Authorization
and Security

Restart/
Recovery

Terminal
Managernerrt

Data
Management

Network
A~ocess

C~ueue
Managemenrt

VAX Toils

VMS RMS System Services

VMS

M R-3100- RA

5-13

Designing Distributed Applications for a VAXciuster System

• Authorization and Security

DECintact provides an extensive security and menu system for
establishing security profiles of local and remote users.

• Restart and Recovery

Each record operation is considered as an individual unit for the
purposes of restart or recovery. Two separate recovery strategies, roll
forward and roll backward, are available. They may be combined to
ensure maximum reliability. Roll backward recoveries are supported
on line with no interruption or loss of service.

• Terminal Management

DECintact supports VT100-, VT200- and VT300- (in VT200 emulation
mode) series terminals as though they were intelligent block-mode
terminals. Programmers create screen forms interactively through the
Terminal Forms Editor (TFE).

• Data Management

DECintact uses VMS RMS for file and record access. The DECintact
Data Management component enhances the use of relative files by
means of implicit file openings, file sharing, and logically deleted
records. DECintact also supplies its own hash file access support
which provides a high performance method of inserting and retrieving
records.

• Network Acce s s

DECintact supports explicit and implicit remote access at the
menu item level and uses DECnet-VAX facilities for intersystem
communication. Network access is supported at two levels:
peer-to-peer and front-end-to-host. Peer-to-peer access allows users
with sufficient entitlement to invoke applications remotely on another
participating DECintact system. Front-end-to-host access provides a
transparent method of off-loading forms management (including both
built-in and user-written validation) and menu level security from a
host onto a VAX front-end system. A VAX front-end system also offers
automatic host failure rollover in the event that a CPU within a host
VAXcluster system fails.

• Queue Management

DECintact provides a comprehensive set of routines that support the
creation of disk and memory-based queues. By using recoverable,
distributed queueing, transactions can be designed to progress through
various states by passing data or functionality forward into a queue.
Queues can lead anywhere; for example, to a database or, on a
networked system, to another CPU. Because queues are reliable, if
a transaction has made it to a certain queue, the transaction was
successful in updating the database or file structure.

5—~ 4

Designing Distributed Applications for a VAXcluster System

VAXciuster

Features

All DECintact file accesses, as well as all disk-based queue operations,
utilize the distributed VMS lock manager to arbitrate clusterwide system
resources. DECintact support of restart and recovery strategies can be
used to simplify the implementation of a high availability application on
a VAXcluster system. DECintact allows one or more VAXcluster nodes
to attach to a given terminal. One of the nodes actually succeeds in its
allocation of the terminal while the others are placed in a queue. In the
event that the initial node fails, one of the surviving VAXcluster CPUs is
given access to the terminal, and the user can restart the application on
the node where their terminal has been reconnected. At this point, the
user can re-enter data for the transaction.

In addition, if a VAXcluster system is running a common DECintact
application, the DECintact application can perform an automatic rollback
of incomplete transactions when a VAXeluster CPU fails. Automatic
rollback provides data integrity by backing out partially completed
transactions to return the databases of a failed node to a consistent state.
Once the DECintact application backs out the incomplete transactions,
the surviving CPUs in a VAXcluster system can continue to process
transactions without fearing that the database is in an inconsistent state.
By virtue of terminal failover, the user then can re-enter, on a running
CPU, any incomplete transactions that had started on a failed node.

DECintact lets you design an Online Transaction Processing (OLTP}
application for high availability and to ensure data integrity. with
DECintact, you can set up an OLTP environment that recovers from
application and VAXcluster CPU failures. For more information
on designing an application using DECintact, see the DECintact
documentation set.

5.6.2 VAX ACMS
VAX ACMS (Application Control and Management System) is a TP
(Transaction Processing) monitor providing three different environments:

• Run-time environment for executing VAX ACMS-developed
applications

• Development environment in which to write VAX ALMS applications

• Application control and management environment for overseeing the
run-time environment

TP applications are typically applications with many users doing
predefined tasks against shared data. VAX ALMS has been used in
such transaction processing applications as order processing and inventory
control, Materials Requirement Planning (MRP) and shop floor control,
financial services applications, as well as, customer and administrative
systems across a wide variety of industries.

Designing Distributed Applications for a VAXcluster System

VAX ALMS was designed to address the following specific needs of TP
applications:

• Make more efficient use of system resources with specialized servers

• Provide flexibility in how users access data

• Improve application availability, particularly on a VAXcluster or
configurations with separate front-end processors

• Provide an integrated application development environment with
an underlying data dictionary (VAX CDD) sharing data among VAX
TDMS forms, VAX Rdb/'iTMS databases, and VAX DBMS databases

• Provide a modular development style and a utility to build
applications, task groups, and menus

• Provide utilities to manage and control these complex applications

Figure 5-3 illustrates how the VAX ALMS runtime system can include a
front-end requestor for terminal I/O and aback-end server controller for
database processing.

Figure ~-3 Running VAX ACMS on Two VAXcluster CPUs

Terminals

.~. ---
~~~..... 

ACM$DIRECTORY 

Transaction 
Definitions 

;:. 

ACM$DI RECTORY 

Forms 
Library 

M R-2968-RA 

~—~ s 



Designing Distributed Applications for a VAXcluster System 

The VAX ALMS runtime system processes include: 

• ACMS Central Controller (ACC) 

The ACMS central controller (ACC) runs on each VAX processor where 
VAX ALMS is installed and in use. Its primary purpose is to start up 
and monitor the front- and back-end processes that perform application 
work. 

• Command Process (CP) 

The command process (CP) is amulti-threaded process that handles 
terminal I/O for many users at the same time. ACMS users log in 
to the VMS operating system through the CP and therefore do not 
require their own processes. The CP is the front end of VAX ALMS 
and can run either on the same processor as the back end or on a 
separate processor. 

• Execution Controller (EXC) 

The execution controller (EXC) is amulti-threaded process that 
communicates with the CP to handle computation and database 
I/O for ACMS users. The EXC is the back end of VAX ACMS and 
controls servers for many CPs. The EXC can run either on the same 
VAX processor as the CP or on a separate processor. 

• Server Processes (SP) 

VAX ACMS servers are serially reusable under EXC control and 
handle database access for many users simultaneously, which reduces 
database contention and record-locking overhead. because ACMS 
servers are single-threaded, code problems are isolated to a server and 
do not affect the rest of the system. 

For a major transaction processing (TP) application, VAX ACMS has 
considerable advantages over standard programming methods under VMS 
because fewer VMS processes are required to support a given number of 
users. The VAX ACMS approach has the following advantages: 

• A single process services many terminal users, thus conserving 
computer resources. 

• Server processes can be started (performing initialization activities like 
opening files or databases only once) and then left dormant, available 
to service requests from any of the terminal users. 

• A database can be accessed by a limited number of server processes, 
thus avoiding the need for complex and high-overhead locking. 

• Server processes can be started and stopped cleanly, thereby effectively 
controlling the corresponding processing steps. As a result, it is 
possible to shut down part of an application without affecting the 
users. 

• VAX ACMS supports online application modification; a modified 
version of an application can be brought up without affecting the 
users. 

5-7 7 



Designing Distributed Applications for a VAXcluster System 

VAXcluster Features 

You can use VAX ACMS on a VAXcluster system to design a distributed 
application. VAX ALMS applications can improve throughput in terminal 
I/O-intensive applications by off-loading the terminal control and forms 
processing to a separate VAXcluster CPU. Also, VAX ALMS lets a user 
on one VAXcluster CPU select a task for execution and that task can be 
designed to execute on another VAXcluster CPU. In addition, you can 
change your application configuration without reprogramming by using 
logical names or by changing an ALMS definition. 

Applications developed using VAX ACMS can be used in: 

• A VAXcluster environment with terminal users distributed across the 
VAXcluster system 

• An off=loaded environment, where terminal users and resulting forms 
processing are off-loaded to a front-end processor from the back-end 
processor within alocal-area or wide-area network (the front-end 
processor could be a single node or a VAXcluster CPU.) 

VAX ALMS can increase application availability by allowing applications 
to fail over and fail back in a VAXcluster environment. If the VAXcluster 
CPU where users are worl~ng fails, they can continue on an alternate 
VAXcluster CPU without having to log into VAX ALMS again. VAX 
ACMS uses VMS search lists to specify primary and alternate VAXcluster 
CPUs for each application. When the original VAXcluster CPU becomes 
available again, the original system can again be specified as the primary 
one without stopping the VAX ACMS application. 

VAX ACMS lets you design an application for increased availability 
to eliminate any single point of hardware failure that will result 
in application downtime. Also, VAX ACMS works equally well in 
any VAXcluster configuration, allowing you to pick the VAXcluster 
configuration most appropriate for your application requirements, whether 
those requirements are for increased capacity, increased throughput, 
higher availability, or increased database performance. For more 
information on VAX ALMS, see the VAX ACMS documentation set. 

5.6.3 VAX DBMS 
VAX DBMS (Database Management System) is a multi-user, general-
purpose CC)DASYL-compliant database management system that runs 
under the VMS operating system. VAX DBMS is used to access and 
administer databases ranging in complexity from simple hierarchies to 
complex networks with multi-level relationships . 

VAX DBMS supports full concurrent access in a multi-user environment 
without compromising the integrity and security of the user's databases. 
Some of the features offered by DBMS are: 

• Full concurrent access capabilities (storage, retrieval, update, and 
deletion) in a multi-user environment 

• Record locl~ng and journaling 

• Automatic transaction rollback 

5—~ 8 



Designing Distributed Applications for a VAXcluster System 

• Multiple database support (one or more databases per process) 

• Integrated with VAX Common Data Dictionary/Plus (CDD/Plus) facility 

• Schema, Subschema, Storage Schema, and Security Schema Data 
Definition Languages (DDLs) 

• FORTRAN Data Manipulation Language (FDML) 

• COBOL DML statements supported by the VAX COBOL compiler 

• Generic DML preprocessor for BASIC, BLISS, C, DIB OL, PAS CAL, 
PL/I, and VAX Ada 

• Callable interpretive interface for any VAX language that adheres to 
the VAX calling standard 

• VAX DATATRIEVE, an optional interface to the VAX DBMS database, 
provides a nonprocedural query and report generating facility 

• DECnet-VAX database access to provide full remote read and write 
access to non-redundant distributed databases 

• Standard VMS file security (SYSTEM, OWNER, GROUP, WORLD) 
to protect database storage areas (An application program can only 
access records defined in its SUBSCHEMA.) 

VAXcluster Features 

In a VAXcluster environment, VAX DBMS allows concurrent, multiple-
node database access. VAX DBMS automatically recovers the database 
if a processor in the VAXcluster fails and provides optional after-image 
journaling to further protect the integrity of the VAXcluster database. 

VAX DBMS uses the distributed VMS lock manager to synchronize 
clusterwide updates to the database root file, to initiate the automatic 
recovery process when a node fails, and to coordinate concurrent updates 
to the same database from processes running on different nodes. 

In a properly configured VAXcluster environment, VAX DBMS lets you 
design an application for increased availability. Each VAXcluster CPU 
that accesses the database has a process, called the DBMS monitor, that 
is started at system startup time. The monitor's major responsibility is 
detecting failures and initiating the necessary recovery processes on behalf 
of failed, incomplete transactions . 

If a VAXcluster CPU fails, the automatic recovery procedure of the 
DBMS monitor lets database access continue uninterrupted. VAX DBMS 
transparently recovers a failed CPU's outstanding database activity on 
one of the remaining CPUs. Also, when a process on a VAXcluster CPU 
begins to access an existing database, the database monitor processes 
on each VAXcluster CPU establish communication with each other using 
the distributed VMS lock manager. By providing these mechanisms for 
restart and recovery, VAX DBMS ensures complete data consistency and 
integrity for all the database files residing on clusterwide disks. For more 
information on VAX DBMS, see the VAX DBMS documentation set. 

5-19 



Designing Distributed Applications for a VAXcluster System 

5.6.4 VAX RdbNMS 
VAX Rdb/VMS (Relational Database Management System) is a full-
function relational database management system designed for the 
VMS operating system. It is intended for general purpose, multi-user, 
centralized, or distributed applications. 

VAX Rdb/VMS supports a complete set of utilities and precompilers that 
enable users to maintain and manipulate databases. VAX Rdb/VMS 
includes a VAX SQL component, Digital's implementation of the Structured 
Query Language, an ANSI standard interface to relational database 
products. 

VAX Rdb/'VMS provides the following features for coneurrency: 

• Full concurrent access (storage, retrieval, update, and deletion) in a 
multi-user environment 

• Concurrent access to the same database by multiple applications 

• Optional read-only (snapshot) mode for increased concurrency in 
large retrieval and report writing applications. When aread-only 
transaction is started, the operations do not lock out other users. 

VAX Rdb/VMS provides the following features for security: 

• VMS file protection for database files 

• A set of Access Control Lists (ACLs), associated with entities in the 
database, providing rights to perform database operations 

VAXcluster Features 

Application programs developed to access VAX Rdb/VMS databases and 
which run under VMS on a given node on a VAXcluster system or in a 
DECnet network can: 

• Access Digital Standard Relational Interface (DSRI) databases on the 
same node 

• Access DSRI databases on other nodes in the network 

VAXclusters offer higher availability to VAX Rdb/VMS databases in a 
properly configured VAXcluster environment. Using VAX Rdb/'~TMS in a 
VAXcluster environment allows concurrent, multiple-processor database 
access. VAX Rdb/'VMS automatically recovers the database if a processor 
in the VAXcluster fails, and provides optional after-image journaling to 
further protect the integrity of the VAXcluster database. 

VAX Rdb/'UMS uses the distributed VMS lock manager to synchronize 
clusterwide updates to the database root file, to initiate the automatic 
recovery process when a node fails, and to coordinate concurrent updates 
to the same database from processes running on different nodes. 

5-20 



Designing Distributed Applications for a VAXcluster System 

If a VAXcluster CPU fails, the automatic recovery procedure in a 
VAXcluster for VAX Rdb/'iTMS allows database access to continue 
uninterrupted. When a process on a VAXcluster CPU begins to access 
an existing database, the database monitor processes on each VAXcluster 
CPU establish communication with each other using the distributed VMS 
lock manager. 

In addition, the Data Base Administrator (DBA) has complete control over 
the placement of database files, called storage areas, on multiple disks. 
A DBA can use the VAX Rdb/'VMS database structuring capabilities to 
significantly reduce I/O bottlenecks by mapping storage areas to specific 
disks at the physical design stage. 

For more information on VAX Rdb/'VMS, refer to the VAX Rdb/VMS 
documentation set. 

5.6.5 VAX DNS 
VAX Distributed Name Service (DNS) provides selected Digital products 
with a DECnet-wide name-to-attribute mapping service. DNS presents 
and maintains a consistent, network-wide set of names for network 
resources, also known as objects. Objects can be files, disks, CPUs, 
queues, mailboxes, and , so forth. The object names are constructed without 
including any location information in them, thus permitting users to 
reference these network resources independent of their physical location. 
Because VAX DNS names are location independent, users and applications 
do not need to know on which CPU an object resides. DNS translates an 
object's name to a set of attributes; its network address is one of these 
attributes. 

VAX DNS is based on aclient-server design, in which two cooperating 
components of software, the client and the server, work together to 
make the service function. Install VAX DNS on a DNS server CPU. (A 
DNS server is any CPU in your network on which DNS object names 
are stored, and the client is any application needing to access the DNS 
namespace.) You can have as many DNS servers in your network as you 
want. Applications that are designed to work with VAX DNS use DNS 
names to name their objects. For example, DNS is a prerequisite for the 
following ~ pplications 

• Remote System Manager (RSM) V2.0 

• VAX Distributed File Service (DFS) 

DFS uses DNS names to name its file access points, and RSM uses DNS 
names to name its client nodes. Over time, additional Digital applications 
will use DNS to name their objects . 

~-2y 



Designing Distributed Applications for a VAXcluster System 

VAXcf uster Features 

If an application executing on your VAXcluster system is also part of a 
network application, VAX DNS can provide the following features: 

• A network-wide name-to-attribute mapping service which allows 
selected Digital applications to create, read, modify, and delete names 
in the namespace. 

• Ability to store and manage a large number of names using a 
hierarchical structure. 

• Overall availability and performance of the name service can be 
enhanced by installing VAX DNS on multiple nodes. VAX DNS 
automatically maintains consistency of the DNS namespace across 
all VAX DNS nodes. 

• Access control to each name in the namespace. This set of access 
control rights consists of read, write, delete, test, and control. 

• Management control program to control DNS operation and display 
statistical and error information. 

• Network event logging using the standard DECnet-VAX event logging 
facility. The DECnet-VAX NCP utility can be used to enable and 
disable DNS events. 

For more information on VAX DNS, refer to the SAX Distributed Name 
Service Management Guide. 

5-22 



Programming Techniques for VAXcluster Applications 

Chapter 6 presents programming techniques to implement the following 
application requirements: 

• Remote Process Creation 

In a VAXcluster system, a process executing on a local VAXcluster CPU 
can create a process on a remote VAXcluster CPU. (See Section 6.1. ) 

• Data Sharing 

Processes executing on different VAXcluster CPUs can achieve 
coordinated access for shared data. (See Section 6.2.) 

• Process Synchronization 

Interprocess communications between processes on different 
VAXcluster CPUs can be designed to implement a VAXcluster 
application. (See Section 6.3. ) 

• Exception Conditions 

Processes can be programmed to recover from a VAXcluster CPU 
failure or an interprocess communication failure. (See Section 6.4.) 

This chapter also provides programming examples that demonstrate 
how to use these programming techniques to implement a VAXcluster 
application. when implementing the application design models presented 
in Chapter 4, Application Design Models for VAXcluster Software, apply 
the programming technique that is most appropriate for your specific 
application design. Generally, you will be able to use more than one 
programming technique to implement your application. However, when 
deciding which programming technique to use, consider your application's 
performance and availability goals, and which programming technique 
your site considers the easiest to use and maintain. 

6.1 Remote Process Creation 
Remote process creation enables you to design an application to execute 
single or multiple instruction streams on different VAXcluster CPUs. 
Remote process creation is an application requirement that is particularly 
important when implementing the Parallelism Model discussed in 
Chapter 4. The programming techniques for remote process creation 
in a VAXcluster system are: 

• Transparent DECnet-VAX communications 

• Nontransparent DECnet-VAX communications 

• VMS batch facility 

These techniques are described in the following sections of this manual. 

~—~ 



Programming Techniques for VAXcluster Applications 

fi.1.1 Using Transparent DECnet-VAX Communications 
Use transparent DECnet-VAX communications to implement aone-to-
one task-to-task communication (see Section 3.5 and Section 4.2.1). 
Using ahigh-level programming language that supports DECnet-
VAX communications, you can create a remote process and establish 
transparent task-to-task communications between a local and a remote 
process. In addition, you can use transparent DECnet-VAX task-to-task 
communications to create multiple logical links by specifying different unit 
numbers for each link request. Whether you use single or multiple links, 
the task-to-task operations for transparent DECnet-VAX communications 
are performed synchronously for each logical link. 

Transparent DECnet-VAX —Programming Example 

The following two FORTRAN programs (TASKl.FOR and TASK2.FOR) 
demonstrate the use of transparent DECnet-VAX communications for 
remote process creation. The sequence- of events for these transparent 
DECnet-VAX communications is: 

y TASKI.EXE executes on a local node and initiates a logical link 
request, supplying explicit access control information, to execute 
TARGET.COM on a remote node. 

2 The remote process created on the remote node runs TARGET.COM on 
the remote node. 

3 TARGET. COM runs TASK2. EXE to complete the logical link requested 
by TASKi.EXE. 

4 TASKI.EXE and TASK2.EXE exchange messages. 

5 TASK2.EXE and TASKI.EXE disconnect the logical link. 

• TASKI.FUR 

c This program illustrates task-to-task communication by 
c establishing a logical link to run TARGET.COM on a 
c remote node. Prior to running this program 
c the logical name REMOTE must be defined: 
c 
c $ASSIGN node"""username password"""::►""'TASK=TARGET.COM""" -
c REMOTE 
c 
c Note: The logical name REMOTE should only be defined interactively 
c because hardcoding a username and password in a command 
c procedure can create a potential security problem on your 
c system. In addition, specifying username and password is 
c only done here for the purpose of demonstrating an example. 
c In a production system, other access methods (for example, 
c access through a proxy account) should be used to ensure 
c system security. 
c 
c 
c Establish network link. 

OPEN (UNIT=1, FILE=' REMOTE' , STATUS=' NEW' ) 
DO J = 1,10 

c 
c Send a message to other task. 

WRITE (1, *) J 

6-2 



Programming Techniques for VAXcluster Applications 

TYPE *, 'Sent message ' , J 
c 
c Get message from other task. 

READ (1, *) I 

TYPE *, 'Received value ' , I 
ENDDO 

CLOSE (UNIT=1) 

END 

• TARGET.COM 

$! This command procedure is invoked by TASKI.EXE to 
$! establish task-to-task communication between 
$ ! itself and TA,SK2 . EXE . 

$! 
$ RUN DISK$WORK : [PROG .FOR] TASK2 . EXE 
$ PURGE TARGET .LOG 

• TASK2.FQR 

c This program illustrates task-to-task 
c communication . It is run by TA,SK1. EXE by 
c executing the command procedure TARGET.COM 
c on the remote node. 
c 

c Connect to network link. 
OPEN {UNIT=1, FILE='SYS$NET', STATUS='OLD') 
DO I = 1,10 

c 

c 

c 

c 

Read message from parent task. 
READ (l , *) J 
J = I * J 

Send message to other task. 
WRITE {1, *) J 
TYPE *, ' J = ' , J 

ENDDO 

CLOSE (UNIT=1) 

END 

x.1.2 Using Nontransparent DECnet-VAX Communications 
When programming an application designed to implement amany-to-one 
or a one-to-many task-to-task communications (see Section 4.2, 
Client-Server Model, and Section 4.3, Parallelism Model), use 
nontransparent DECnet-VAX communications to establish multiple 
logical links for asynchronous operations. In addition, you can use 
nontransparent task-to-task communications with a mailbox. A mailbox 
is a virtual device used to establish a queue for a specified I/O channel 
(unit number). Once a mailbox is created using a VMS system service 
and associated with a logical link, the mailbox can store all incoming 
messages. Incoming messages can be either solicited (requested) or 
unsolicited (unexpected}. Solicited messages are always normal data 
messages. Unsolicited messages either originate from a remote task or 
are issued by Network Services Program (NSP) as a notification of an 
exceptional event. For more information on using VMS system services 
to create a mailbox and NSP message types, see the VMS Networking 
Manual. 

r"1 



Programming Techniques for VAXcluster Applications 

Nontransparent DECnet-VAX -- Programming Example 

In this FORTRAN example, the local process (LOCAL 1.EXE) 
establishes a network connection with a mailbox to the remote process 
(REMOTE_1.EXE) to write a message to a disk file. 

• LOCAL 1.F~R 

PROGRAM MATMUL_TEST 

c 
c This version of the test program demonstrates the creation of the 
c remote process. The remote process will only write a message to a 
c disk file and then exit to later prove .that it was created. 
c 
c 
c This call to the Assign with Mailbox run-time library routine will 
c create the channel to the remote process. By creating this channel, 
c the remote process will be created. 
c 
c Most applications would later communicate with this remote process 
c using the QIO system services. To facilitate this, the channel 
c number that defines the communications path is stored in the 
c variable ICHANNEL. 

c 
ISTAT = LIB$ASN_WTH_MBX 

1 'NODE1::"O=REMOTE 1"', 

1 450, 
1 450, 
1 ICHtANNEL, 
1 IGNORE) 

c 
c If transparent DECnet was going to be used, the conununications link 
c could be created by the following FORTRAN statement: 
c 
c open (unit=l, file=' nodel : : "0=remote_1"' ,type='new' ) 

c 
c Exit out . 
c 

CALL EXIT (ISTAT) 
END 

• REMOTE 1.FC)R 

PROGRAM MATMUL REMOTE_TEST 

c This portion is the remote portion of the first example. This 
c program will be run on the remote system, write out a "Hello" 
c message to a disk file (to prove it ran), and exit. 
c 
c 
c Include the VMS system service definitions. 
c 

INCLUDE ' ($SSDEF)' 



Programming Techniques for VAXcluster Applications 

c 
c The first thing that is normally done is to establish the 
c communications link back to the calling program. This example will 
c also use the Assign with Mailbox run-time library routine. It is 
c important to note that this program does not need to know the name of 
c the calling program. In DECnet/VMS, the logical name SYS$NET contains 
c all the information needed to tell the system which remote link to 
c connect to. 
c 

ISTAT = LIB$ASN WTH MBX ('sys$net', 
1 450, 
1 450, 
1 ICHANNEL, 
1 IGNORE ) 

IF (ISTAT .NE. SS$ REMOTE) CALL EXIT (ISTAT) 

c 
c If transparent DECnet was going to be used, this connection to 
c the calling program could be accomplished by the following 
c FORTRAN statement: 

c 
c open (unit=l, file=' SYS$NET' ,type='old' ) 
c 

c 
c Next, open a disk file and write a message to indicate that this 
c process was created, and then exit. 
c 

OPEN (UNIT=1, FILE=' TEST_OUTPUT . DAT' ,TYPE=' NEW' ) 
WRITE (1, 10 ) 

10 FORMAT (' THE REMOTE PROCESS WAS SUCCESSFULLY CREATED.') 

CALL EXIT 

END 

6.y .3 Usi ng the VMS Batch Faci i ity 
Use the VMS batch facility to create one or more remote processes for 
batch execution. You -can either submit the batch job to a elusterwide 
batch queue, allowing the distributed job controller to assign your job to 
a batch execution queue, or your system manager can establish a local 
queue for batch processing on a dedicated VAXcluster CPU. ~n addition, 
when you implement an application design that requires remote process 
creation, the batch facility provides you with the following futures: 

• Ability to execute batch jobs in parallel using the distributed job 
controller to load balance clusterwide batch queues 

• Capability for an automatic failover and restart for any batch queues 
stopped by a hardware failure 

• Capability for a DCL command procedure to implement eheckpointing 
to prevent duplication of completed batch work during a batch restart 

f-5 



Programming Techniques for VAXcluster Applications 

Executing Batch Jobs in Parallel —Programming Example 1 

By submitting batch jobs to the clusterwide batch queue, you can use 
multiple batch execution queues to run batch jobs in parallel. In this 
example, the DCL command procedure PARALLEL.COM demonstrates 
the use of a clusterwide batch queue to speed up the processing of a 
CPU-intensive simulation program (SIMULATE.COB). 

Imagine that you are a businessman who wants to buy widgets by the 
case and you want to determine the appropriate number of cases to buy to 
maximize profits. Your supplier is willing to sell you widgets in quantities 
of 100, 200, and 300 cases. Based on a history of widget demand, you 
develop a frequency distribution and encapsulate that distribution in 
the COBOL program SIMULATE.COB. SIMULATE.COB determines the 
average profit for demand quantities of 100, 200, and 300 cases of widgets, 
if widgets could be sold over a period of 100, 000 days. 

PARALLEL.COM, see Figure 6-1, submits three batch jobs (TEST1, 
TEST2, and TESTS) to the clusterwide batch queue (SYS$BATCH). Using 
a value passed by PARALLEL. COM in the P1 parameter, each batch 
job executes SIMULATION.COM. For each of the three executions of 
SIMULATION.COM, the P1 parameter passed from PARALLEL.COM is 
evaluated and assigned a COB$SwITCHES value. SIMULATION.COM 
executes SIMULATE.EXE; depending on the COB$SWITCHES value, 
SIMULATE.EXE executes the appropriate module and writes the result 
to the output file (SIM.DAT). PARALLEL.COM reads SIM.DAT, checks 
for three records to ensure that jobs TEST1, TEST2, and TESTS have all 
completed, and displays the answer to the user. 



Programming Techniques for VAXciuster Applications 

Figure 6-1 Flow Diagram for Programming Example y 

PARALLEL.COM 

Test1 Test2 
r r 

SIMULATION.COM 

SIMULATE.COB 
{COB$SWITCHES} 
IS =1 

Write to 
SIM.DAT 

SIMULATION.COM 

SIMULATE.COB 
(COB$SWITCHES) 
IS=2 

Exit 

Write to 
SIM.DAT 

Exit 

Test✓3 

SIMULATION.COM 

Exit 

Return to 
PARALLEL.COM 

SIM.DAT 
Revd and Displayed M R-2844- RA 

6-7 



Programming Techniques for VAXcluster Applications 

• pARALLFj,.CUM 

$! NOTE: An empty sequential file SIM.DAT must be created prior 

$! to execution of this procedure. 

$! 
$ HOUSEKEEPING: 

$ SHOW TIME 
$ ON ERROR THEN EXIT 

$ SET NOON 

$ IF F$MODE() .NES. "INTERACTIVE" THEN EXIT 
$ SIM_RECORD_COUNT = 0 

$ SET ON 
$ GOSUB DEFINE 

$ GOSUB SUBMIT 

$ GOSUB DISPLAY_RESULTS 

$ DEASSIGN COMDIR 

$ DEASSIGN DEMAND$SIMULATION 

$ SHOW TIME 
$ EXIT 

$! 
$! Define logicals. 

$! 
$ DEFINE 
$ DEFINE DEMAND$SIMULATION DISK$USER:[EXAMPLES.DATA]SIM.DAT 

$ DEFINE COMDIR DISK$USER: [EXAN~LES .COM] 
$ RETURN 
$t***************************~+r****~********************************* 

$! Parallel processing. 

$! 
$! Submit batch jobs in parallel and get job entry number using 
$! the new $ ENTRY feature of VMS Version 5.2. 

$! 
$ SUBMIT: 

$ SUBMIT /NOPRINT /QUEUE=SYS$BATCH /NAME=TEST1 /KEEP /NOID /PARAM = 100 

COMDIR:SIMULATION.COM 

$ JOB_1 _ $ENTRY 

$ SUBMIT /NOPRINT /QUEUE=SYS$BATCH /NAME=TEST2 /KEEP /NOID /PAR.AM = 200 
COMDIR:SIMULATION.COM 

$ JOB_2 = $ENTRY 

$ SUBMIT /NOPRINT /QUEUE=SYS$BATCH /NAME=TEST3 /KEEP /NOID /P~►FtAM = 300 
COMDIR:SIMULATION.COM 

$ JOB_3 = $ENTRY 

$! 
$ SYNCHRONIZE: 

$ SET NOON !sync will give error if other jobs done 

$! 
$! The nett three command lines which use $SYNCHRONIZE illustrate 
$! the way to synchronize on job completion on systems running VMS 
$! versions prior to VMS 5.2. This method continues to work on V5.2 
$! systems but is slower than the method that comes after the three 
$ ! commented lines . 

$' 
$! SYNCHRONIZE /QUEUE=SYS$BATCH TEST1 
$! SYNCHRONIZE /QUEUE=SYS$BATCH TEST2 
$! SYNCHRONIZE /QUEUE=SYS$BATCH TEST3 
$t 

$ SYNCHRONIZE /ENTRY='JOB 1 
$ SYNCHRONIZE /ENTRY='JOB 2 
$ SYNCHRONIZE /ENTRY='JOB 3 

$ SET ON 
$ RETURN 

$! Straight line processing. 

$! 
$! Open the simulation file SIM.DAT and read contents. 
$! 
$ DISPLAY_RESULTS: 

$ OPEN/ERROR=NO_FILE SIMULATION DEMAND$SIMULATION 
$ WRITE SYS$OUTPUT "" 
$ GOSUB READ SIM FILE 



Programming Techniques for VAXciuster Applications 

$ CLOSE SIMULATION 

$ RETURN 
$t 

$! Error to indicate that the SIM.DAT simulation output file 
$! was not found. 

$! 
$ NO_FILE: 

$ WRITE SYS$OUTPUT "SIM.DAT SIMULATION FILE DOES NOT EXIST." 
$ RETURN 
$t 

$! Read simulation file and display information. 

$'-
$ READ SIM FILE: 

$ READ/ERROR=RETURN/END_OF_FILE=CHK_COMPLETE_STATUS SIMULATION -
SIM_RECORD_1 

$ DEMAND_QTY = F$EXTRACT(0,3,SIM RECORD_1) 
$ TOTAL PROFIT = F$CVSI(24,31,SIM RECORD_1) 
$ WRITE SYS$OUTPUT " IF YOU BUY ", DEMAND_QTY, " CASES, " -

"YOUR PROFIT WILL BE: ", TOTAL_PROFIT 
SIM RECORD COUNT = SIM RECORD COUNT + 1 
GOTO READ_SIM FILE 

$! 

$! 

$! 
$! 

Make sure all three portions of the simulation have completed 
and returned their data to SIM.DAT. 

$ CHK_COMPLETE_STATUS: 

$ IF SIM_RECORD_COUNT .LT. 3 

$ THEN TYPE SYS$INPUT 

ONE OR MORE OF THE THREE SIMULATION COMMAND PROCEDURES 
HAS FAILED. CHECK THE FILES TESTI.LOG, TEST2.LOG, AND 
TEST3.LOG FOR CAUSE OF PROBLEM. 

END IF 
RETURN 

• SIMULATION.COM 

$! The command procedure SIMULATION.COM is submitted to the 
$! SYS$BATCH queue three times. Depending on the setting of the 
$! logical COB$SWITCHES, the simulation program generates a 

$! simulation for 100, 200, and 300 cases. COB$SWITCHES is set in 
$! this command procedure. SIMULATION.COM determines what switch 
$! setting to use based on the submit parameter values of 100, 
$! 200, or 300. Parameter P1 contains the appropriate demand 
$! quantity for the simulation. 

$! 
$ DETERMINE_DEMAND: 

$ DEFINE DEMAND$SIMULATION DISK$USER:[EXAN~LES.DATA]SIM.DAT 

$ IF P1 .EQ. 100 THEN $DEFINE COB$SWITCHES "1" 
$ IF P1 .EQ . 200 THEN $DEFINE COB$SWITCHES "2" 
$ IF P1 .EQ. 300 THEN $DEFINE COB$SWITCHES "3" 
$ SWITCHES = F$TRNLNM("COB$SWITCHES") 

$ IF SWITCHES .EQS. "" THEN GOTO EXIT 

$! 
$ DEFINE_AND_RUN: 

$ ON ERROR THEN GOTO EXIT 

$ RUN DISK$USER : [EXAN~LES . EXE ]SIMULATE . EXE 

$! 

$! 
$ EXIT: 

$ DEASSIGN DEMAND$SIMULATION 

$ DEASSIGN COB$SWITCHES 

$ EXIT 

6-9 



Programming Techniques for VAXcluster Applications 

• SIMULATE.CaB 

IDENTIFICATION DIVISION. 

PROGRAM-ID. SIMULATE INITIAL. 

AUTHOR. DIGITAL. 

DATE-WRITTEN. 01-10-89. 

ENVIRONMENT DIVISION. 

CONFIGURATION SECTION. 
****************************************************************** 

* COB$SWITCHES is a COBOL specific logical name that is defined 

* in the SPECIAL NAMES paragraph and is defined external to the 

* image in SIMULATION.COM 
****************************************************************** 

SPECIAL-NAMES. 

SWITCH 1 ON IS DEMAND-100 

SWITCH 2 ON IS DEMAND-200 

SWITCH 3 ON IS DEMAND-300. 

SOURCE-COMPUTER. VAX-11. 

OBJECT-COMPUTER. VAX-11. 

INPUT-OUTPUT SECTION. 

FILE-CONTROL. 

SELECT SIM-FILE ASSIGN "DEMAND$SIMULATION" 

ORGANIZATION IS SEQUENTIAL 

FILE STATUS IS PROGRAM-IO-STATUS. 

I-O-CONTROL. 

APPLY LOCK-HOLDING ON SIM-FILE. 

DATA DIVISION. 

FILE SECTION . 

FD SIM-FILE. 

O1 SIM-RECORD. 

02 SIM-NUMBER-OF-CASES 

02 SIM-AVERAGE-PROFIT 

PIC 9 (03) . 
PIC S9 (09) COMP . 

******************************************************************* 

WORKING-STORAGE SECTION. 

O 1 WS -DAYS P IC S 9 (0 7) COMP 

O l WS -SEED P IC 9 (0 9 ) COMP . 
01 WS-TIME PIC 9 (08) . 

O1 WS-CALL-STATUS PIC S9 (09) COMP . 
O 1 WS -PROFIT P IC S 9 (0 9) COMP . 

01 WS-TOTAL-PROFIT PIC S9 {09) COMP . 
O1 WS-DEMAND-FOR-CASES PIC S9(09) COMP. 
O1 WS-RANDOM-NUMBER COMP-1. 

O1 WS-RAND-1 PIC 9V99. 
O1 WS-SCREEN-LINE PIC 9 (02) . 

O1 WS-PRODUCTION-ARRAY. 

02 WS-PRODUCTION-OF-CASES OCCURS 3 TIMES. 

03 WS-NUMBER-OF-CASES PIC 9 (03) COMP . 

03 WS-AVERAGE-PROFIT PIC S9(09) COMP. 

VALUE 100000. 

O1 WS-SUB1 PIC 9 (09) COMP . 
O1 WS-SUB2 PIC 9 (09) COMP . 
O1 WS-SUB3 PIC 9 (09) COMP . 
O 1 WS -ERROR-OCCURRED P IC X (01) VALUE SPACES . 
O1 WS-ERROR-TEXT PIC X(40) VALUE SPACES. 

* Standard COBOL error codes and variables. 

O1 ERROR-VARIABLES. 

02 PROGRAM-IO-STATUS PIC X{02) VALUE SPACES. 

~1 



Programming Techniques for VAXcluster Applications 

O1 COBOL-IO-STATUS-CODES. 
* 

* For the purposes of this example, only a subset of all the 
* possible COBOL error codes are used. Actual production programs 
* should include all error codes and the appropriate logic to trap 
* and record them. 
* 

02 STS SUCCESS PIC X(02) VALUE "00". 
02 STS+ DUPLCT ALTRT KEY WRTTN P IC X (02 ) VALUE "02" . 
02 STS_END_OF_FILE_10 PIC X(02) VALUE "10". 
02 STS_END_OF_FILE_4 6 P IC X (02 ) VALUE "4 6" . 
02 STS INVLD KEY 21 PIC X(02) VALUE "21". 
02 STS_INVLD_KEY_22 P IC X (02 ) VALUE "22" . 
02 STS INVLD KEY 23 PIC X (02 ) VALUE "23" . 
02 STS INVLD KEY 24 PIC X (02} VALUE "24" . 
02 STS RCRD_LOCKED AVLBL PIC X(02) VALUE "90". 
02 STS RCRD LOCKED NOT AVLBL PIC X(02) VALUE "92". 

PROCEDURE DIVISION. 

DECLARATIVES. 

SIM-FILE-ERROR SECTION. 

USE AFTER STANDARD ERROR PROCEDURE ON SIM-FILE. 

END DECLARATIVES. 
****************************************************************** 

MAIN SECTION. 

000-MAIN-PROCESS. 

ACCEPT WS -TIME FROM TIME . 
MOVE WS-TIME TO WS-SEED. 

IF DEMAND-100 

THEN MOVE 100 TO WS-NUMBER-OF-CASES(1) 

ELSE IF DEMAND-200 

THEN MOVE 200 TO WS-NUMBER-OF-CASES(1) 
ELSE MOVE 300 TO WS-NUI~ER-OF-CASES(1) 

END - IF 
END-IF. 

PERFORM 100-ACCEPT-DAYS THRU 100-ACCEPT-DAYS-EXIT. 

STOP RUN . 

000-MAIN-PROCESS-EXIT. EXIT. 

100-ACCEPT-DAYS. 

* The EVALUATE WS-RANDOM-NUMBER block determines the appropriate 

* demand for cases based on the number generated by the MTH$RANDOM 
* system service call. The random number range (that is, .00 
* thru .19) is based on the historical frequency of demand for 100, 
* 200 or 300 cases. For example, history has shown that for 20~ of 
* the time, 100 cases were required to satisfy demand. Profit is 
* calculated on 5 dollars per case sold. Appropriate penalties are 
* incurred if random demand is greater or less than demand set by 
* COB$SWITCHES. 

s-~~ 



Programming Techniques for VAXcluster Applications 

MOVE 0 TO WS-AVERAGE-PROFIT(WS-SUB1) 

WS-TOTAL-PROFIT 

WS-SUB2. 

MOVE 1 TO WS-SUB1. 
PERFORM VARYING WS-SUB2 FROM 1 BY 1 

UNTIL WS-SUB2 > WS-DAYS 

PERFORM 300-GET-RANDOM-NO THRU 300-GET-RANDOM-NO-EXIT 

EVALUATE WS-RANDOM-NUMBER 

WHEN .00 THRU .19 MOVE 100 TO WS-DEMAND-FOR-CASES 
WHEN .20 THRU .39 MOVE 200 TO WS-DEMAND-FOR-CASES 
WHEN .40 THRU .99 MOVE 300 TO WS-DEMAND-FOR-CASES 

END-EVALUATE 

IF WS-DEMAND-FOR-CASES = WS-NUMBER-OF-CASES(WS-SUB1) 

THEN COMPUTE WS-PROFIT ROUNDED = 

5 * WS-NUMBER-OF-CASES(WS-SUB1) 

ELSE IF WS-DEMAND-FOR-CASES > WS-NUMBER-OF-CASES(WS-SUB1) 

THEN COMPUTE WS-PROFIT ROUNDED = 

(5 * (WS-NUMBER-OF-CASES(WS-SUB1))) + 
(-3 * (WS-DEMAND-FOR-CASES -
WS-NUMBER-OF-CASES(WS-SUB1))) 

ELSE COMPUTE WS-PROFIT ROUNDED = 

(5 * WS-DEMAND-FOR-CASES) + 

(-10 * (WS-NUMBER-OF-CASES (WS-SUB1) -

WS-DEMAND-FOR-CASES)) 

END - IF 

END - IF 

COMPUTE WS-TOTAL-PROFIT ROUNDED = 

WS-TOTAL-PROFIT + WS-PROFIT 

END-PERFORM. 

COMPUTE WS-AVERAGE-PROFIT(WS-SUBl) ROUNDED = WS-TOTAL-PROFIT/WS-DAYS. 

PERFORM 400-PRINT-OUT-RESULTS THRU 400-PRINT-OUT-RESULTS-EXIT. 

100-ACCEPT-DAYS-EXIT. EXIT. 

300-GET-RANDOM-NO. 
CALL "MTH$RANDOM" USING 

BY REFERENCE WS-SEED 
GIVING WS-RANDOM-NUMBER. 

COMPUTE WS-RAND-1 ROUNDED = WS-RANDOM-NUMBER 

MOVE WS-RAND-1 TO WS-RANDOM-NUMBER. 

300-GET-RANDOM-NO-EXIT. EXIT. 

400-PRINT-OUT-RESULTS. 

OPEN EXTEND SIM-FILE 

PERFORM CHECK-ERROR-STATUS 

* 1. 

ALLOWING ALL. 

THRU CHECK-ERROR-STATUS-EXIT. 

INITIALIZE SIM-RECORD. 

MOVE WS-NUMBER-OF-CASES(1) TO SIM-NUMBER-OF-CASES. 

MOVE WS-AVERAGE-PROFIT(WS-SUB1) TO SIM-AVERAGE-PROFIT. 

IF WS-ERROR-OCCURRED = SPACES 

THEN MOVE STS_RCRD_LOCKED_NOT_AVLBL TO PROGRAM-IO-STATUS 

PERFORM UNTIL PROGRAM-IO-STATUS NOT = 
STS RCRD_LOCKED NOT AVLBL 

WRITE SIM-RECORD ALLOWING NO OTHERS 

PERFORM CHECK-ERROR-STATUS 

THRU CHECK-ERROR-STATUS-EXIT 

END-PERFORM 

END - IF . 

CLOSE SIM-FILE. 

400-PRINT-OUT-RESULTS-EXIT. EXIT. 

CHECK-ERROR-STATUS. 

f>-12 



Programming Techniques for VAXcluster Applications 

IF PROGRAM-IO-STATUS NOT = STS_SUCCESS 

AND PROGRAM-IO-STATUS NOT = STS_RCRD_LOCKED_AVLBL 

AND PROGRAM-IO-STATUS NOT = STS_DUPLCT_ALTRT_KEY_WRTTN 

AND PROGRAM-IO-STATUS NOT = STS_INVLD_KEY_21 

AND PROGRAM-IO-STATUS NOT = STS_INVLD_KEY_22 
AND PROGRAM-IO-STATUS NOT = STS_INVLD_KEY_23 

AND PROGRAM-IO-STATUS NOT = STS_INVLD_KEY_24 

AND PROGRAM-IO-STATUS NOT = STS_END_OF_FILE_10 

AND PROGRAM-IO-STATUS NOT = STS_END_OF_FILE_46 THEN 

MOVE "Y" TO WS-ERROR-OCCURRED 
END - IF . 

CHECK-ERROR-STATUS-EXIT. 

END PROGRAM SIMULATE. 

EXIT. 

Using Chedcpointing with a Batch Restart —
Programming Example 2 

SYSTEMBUILD. COM demonstrates the use of checkpointing with a 
restartable batch job to build a software product. This software product is 
built in three stages. The first stage is executed by submitting a compile 
command for all of the source code residing on PROGLIST.DAT to the 
clusterwide batch queue (SYS$BATCH} by executing COMPILEI.GOM, 
COMPILE2. COM, and COMPILE3. COM. 

After the compile stage has completed, the object library stage and 
link stage are executed by SYSTEMBUILD.COM. If during any of the 
stages of SYSTEMBUILD.COM there is a hardware failure for the batch 
execution queue running SYSTEMBUILD. COM, SYS~`EMBUILD. COM 
can recover because SYSTEMBLTILD defines a RESTART_VALUE 
to restart SYSTEMBUILD. COM at the stage where the failure 
occurred. (When a restart is executed, the entire stage is re-done.) 
SYSTEMBUILD demonstrates checkpointing by using a dynamic value 
for the RESTART VALUE . 

Note: Zoo implement checkpointing for the execution of the 
COMPILE.COM, BUILD.COM, anal LINK.COM command 
procedures submitted from SYSTEMBUII~D.COM, a 
RESTART VALUE must be defined in each of these command 
procedures. 

f—~ 3 



Programming Techniques for VAXcluster Applications 

The following example is SYSTEMBUILD.COM. 

• SYSTEMBITILD.COM 

$ DEFINE COMDIR DISK$USER:[SYNCH] 

$ DEFINE OUTDIR DISK$USER:[SYNCH.DATA] 

$ DEFINE WORKDIR DISK$USER:[SYNCH.LOG] 
$t 

$! If restarting, go to section of code last executing. 
$ SET VERIFY 

$ IF $RESTART THEN GOTO 'RESTART VALUE' 
$} —

$? Hold the code section over a restart. 
$ SET RESTART VALUE="COMPILE" 

$! 
$ COMPILE 
$ SET PROC/NAME = "COMPILE" 

$} 
$! 

$! This is the COMPILE section of code that fires off 
$! batch jobs to compile the programs in PROGLIST.DAT. 
$t****************************************************** 

$! 
$'. 
$ SUBMIT/NOPRINT/LOG=OUTDIR: /PARAMETER=(WORKDIR:PROGLIST.DAT) -
/QUEUE=SYS$BATCH /NAME=COMPILEI COMDIR:COMPILEI.COM 

$t 

$! COMPILEI.COM creates the file COMPILEDONE_l.DAT 
$! as a message flag to indicate the successful completion 
$! of COMPILEI.COM. 

$! 
$ SUBMIT/NOPRINT/LOG=OUTDIR: /PARAMETER=(WORKDIR:PROGLIST.DAT) -
/QUEUE=SYS$BATCH /NAME=COMPILE2 COMDIR:COMPILE2.COM 

$! 
$! COMPILE2.COM creates the file COMPILEDONE_2.DAT 
$! as a message flag to indicate the successful completion 
$! of COMPILE2.COM. 

$! 
$ SUBMIT/NOPRINT/LOG=OUTDIR: /P~►RAMETER=(WORKDIR:PROGLIST.DAT) 

/QUEUE=SYS$BATCH /NAME=COMPILE3 COMDIR:COMPILE3.COM 

$! 
$! COMPILE3.COM creates the file COMPILEDONE_3.DAT 
$! as a message flag to indicate the successful completion 
$! of COMPILE3.COM. 
$r 

$! 
$ SET PROCESS/NAME = "COMPILEI" 
$ CALL CHECKDONE COMDIR:COMPILEDONE_1.DAT 20 
$ SET PROCESS/NAME = "COMPILE2" 
$ CALL CHECKDONE COMDIR:COMPILEDONE_2.DAT 20 
$ SET PROCESS/NAME "COMPILE3" 
$ CALL CHECKDONE COMDIR:COMPILEDONE 3.DAT 20 $~ — 

$! 
$! 

$! 
$ SET RESTART VALUE="OBJECT LIBRARY" 
$! Hold the code section over a restart. 
$! 
$ OBJECT_LIBRARY: 
$ SET PROCESS/NAME = "OBJECT" 

$! 
$t 

$! This is the OBJECT LIBRARY section of code that 
$! fires off batch jobs to build the object libraries.* 

$r 

G—y 4 



Programming Techniques for VAXcluster Applications 

s! 
$ SUBMIT/NOPRINT/LOG=OUTDIR: /PARAMETER=(WORKDIR:OBJECTLIST.DAT) 

/QUEUE=SYS$BATCH /NAME=BUILDLIBI COMDIR:BUILDl.COM 

$! 
$! BUILDI.COM creates the file BUILDDONE_1.DAT 
$! as a message flag to indicate the successful completion 
$! of BUILDI.COM. 

$! 
$ SUBMIT/NOPRINT/LOG=OUTDIR: /PARAMETER=(WORKDIR:OBJECTLIST.DAT) -
/QUEUE=SYS$BATCH /NAME=BUILDLIB2 COMDIR:BUILD2.COM 

$! 
$! BUILD2.COM creates the file BUILDDONE_2.DAT 

$! as a message flag to indicate the successful completion 
$! of BUILD2.COM. 

$! 
$ SUBMIT/NOPRINT/LOG=OUTDIR : /P~?►RAMETER= (WORKDIR : OBJECTLIST .DAT) 
/QUEUE=SYS$BATCH /NAME=BUILDLIB3 COMDIR:BUILD3.COM 

$t 

$! BUILD3.COM creates the file BUILDDONE_3.DAT 

$! as a message flag to indicate the successful completion 
$! of BUILD3.COM. 

$! 

$! 
$ SET PROCESS/NAME _ "OBJECTI" 

$ CALL CHECKDONE COMDIR:BUILDDONE_1.DAT 20 

$ SET PROCESS/NAME = "OBJECT2" 

$ CALL CHECKDONE COMDIR:BUILDDONE_2.DAT 20 

$ SET PROCESS/NAME = "OBJECT3" 

$ CALL CHECKDONE COMDIR:BUILDDONE_3.DAT 20 

$! 
$t 

$! 

$! 
$ SET RESTART VALUE="LINK" 
$t 

$ LINK: 

$ SET PROCESS/NAME = "LINK" 

$! Hold the code section over a restart 

$! 
$r 

$! This is the LINK section of code that fires off 
$! batch jobs to build the executable images. 

$! 
$! 
$ SUBMIT/NOPRINT/LOG=OUTDIR : /P~?►RAMETER= (WORKDIR : PROGLIST .DAT) -
/QUEUE=SYS$BATCH /NAME=LINK1 COMDIR:LINKI.COM 

$! 
$! LINKI.COM creates the file LINKDONE_1.DAT 

$! as a message flag to indicate the successful completion 
$! of LINKl.COM. 

$! 
$ SUBMIT/NOPRINT/LOG=OUTDIR: /PARAMETER=(WORKDIR:PROGLIST.DAT) -

/QUEUE=SYS$BATCH /NAME=LINK2 COMDIR:LINKZ.COM 

$! 
$! LINK2.COM creates the file LINKDONE_2.DAT 

$! as a message flag to indicate the successful completion 

$! of LINK2.COM. 

$! 
$ SUBMIT/NOPRINT/LOG=OUTDIR: /PARAMETER=(WORKDIR:PROGLIST.DAT) -

/QUEUE=SYS$BATCH /NAME=LINK3 COMDIR:LINK3.COM 
$t 

$! LINK3.COM creates the file LINKDONE_3.DAT 

$! as a message flag to indicate the successful completion 
$! of LINK3.COM. 

6-~ 5 



Programming Techniques for VAXcluster Applications 

$~ 
$ SET PROCESS/NAME = "LINK1" 

$ CALL CHECKDONE CONIDIR:LINKDONE_1.DAT 20 

$ SET PROCESS/NAME = "LINK2" 

$ CALL CHECKDONE CONIDIR:LINKDONE_2.DAT 20 

$ SET PROCESS/NAME = "LINK3" 

$ CALL CHECKDONE CONIDIR:LINKDONE_3.DAT 20 
$t 

$ EXIT 
$t 

$t 

$!*************** CHECKDONE subroutine ******************** 

$! Called with filename in P1 and retry count in P2. 

$' 
$ CHECKDONE: SUBROUTINE 

$ COUNT=O 

$ RETRY: 

$ OPEN/ERROR=WAITFOR XX 'P1' 

$ CLOSE XX 

$ DELETE ' P1' ; 
$ EXIT 

$ WAITFOR: 

$ COUNT=COUNT + 1 

$ IF COUNT . GE . P 2 THEN STOP 
$ WAIT 0 00:00:30.00 

$ GOTO RETRY 

$ ENDSUBROUTINE 

$! 

$! 
$ EXIT 

6.2 Data Sharing 
When you design and implement a data sharing application on a 
VAXcluster system, you can use the following programming techniques: 

• DECnet-VAX communications 

Transmitting data between two processes using DECnet-VAX 
communications can reduce disk UO requests. 

• Using VMS RMS to control record granularity for multiple access 

A high-level programming language uses VMS RMS to provide file 
synchronization for processes using the same records. 

• Read-Only global sections 

Read-Only global sections can provide access to read-only data without 
requiring disk I/Os to access the data. 

• Manual record locking using $ QI O and the lock management system 
services 

By using $QIO and the $ENQ $DEQ system services, the 
programmer can control the locking granularity to synchronize file 
or record access. (For more information on how to use the lock 
management system services to control resource granularity, refer 
to Section 3.1.3 and the Introduction to V~VIS System Services.} 

s—~ s 



Programming Techniques for VAXcluster Applications 

All of these techniques, except the use of $QIO and lock management 
system services for file synchronization, are described in the following 
sections of this manual. 

Note: You can use $QIO and the lock management system services to 
write a"home-grown" record management service. By specifying a 
locking mode associated with an $ENQ request for a file, you can 
control the granularity of data elements at the file or record level. 
However, you cannot mix $ENQ-$DEQ file locking with VMS RMS 
file locking in the same application. 

6.2.1 Using DECnet-VAX Communications 
You can use either transparent or nontransparent DECnet-VAX 
communications to send and receive data between local and remote 
processes. Transparent DECnet-VAX communications can only be 
used for exchanging data synchronously; nontransparent DECnet-VAX 
communications can be used for a synchronous or an asynchronous 
exchange of data. In both cases, the local or remote processes can send 
the data as a whole chunk or part-by-part. ~pically, if a large chunk of 
data is generated by a local process and written to a remote process, the 
local process will sequentially read the data chunk into an array for data 
manipulation by the remote process. when data is exchanged part-by-part, 
the local and remote processes can execute an interactive "conversation." 

Data Sharing with Transparent DECnet-VAX Communications 
Programming Example ~ 

The following two COBOL programs (HOST.COB and TARGET.COB) 
demonstrate transparent DECnet-VAX communications for data sharing. 
The objective of this application is to facilitate a lookup of employee data 
from any system in a DECnet-VAX computer network by using two-way, 
transparent, task-to-task communications. The software components of 
this application are summarized in Table 6-1. 

Table 6-1 Required Modules for Two-Way, Transparent, Task-to-Task 
Communications 

HOST VAXcluster 
CPU TARGET VAXcluster CPU 

HOST.COM TARGET2.COM 

HOST.EXE TARGET.EXE 

EMPLOYEE.DAT 

f —17 



Programming Techniques for VAXcluster Applications 

The sequence of events for these COBOL transparent DECnet-VAX 
communications is: 

1 HOST.COM ,runs on the local node and initiates a logical link 
connection request to execute TARGET2.COM on the remote node. 

2 The remote process runs TARGET2.COM on the remote node, and 
TARGET2.COM executes TARGET.EXE to complete the logical link 
connection. 

3 HOST.COM executes HOST.EXE. 

4 HOST.EXE sends an employee number over the logical link to the 
program TARGET. 

5 TARGET.EXE reads the employee number and uses the number 
to perform a keyed read on the EMPLOYEE.DAT file. TARGET 
either sends the requested employee data back to HOST or sends an 
appropriate message indicating the status of the employee lookup. 

fi TARGET.EXE disconnects the network link. 

7 HOST.EXE disconnects the network link. 

8 HOST.COM disconnects the network link. 

Note: when performing network operations using the COBOL language, 
you must establish a logical link for read/write in DCL before you 
run the programs. The programs (HOST.COB and TARGET.COB) 
issue two open statements on the established link, one for input, 
the other for output. You must establish a logical link using a 
DCL command procedure before you run the COBOL programs, 
because the COBOL language does not provide a file open mode for 
a sequential file organization that supports both read and write 
operations. 

• HOST.COM 

$ i Note 
$~ 
$! This procedure assumes that the logical REMOTE has been 
$! established prior to running this command procedure. The 
$! logical is assigned as follows: 

$! 
$? DEFINE REMOTE node"""username password"""::"""task=target2.com""" 
$! 
$t 

i 

$! 
$~ 
$! 
$! 
$! 
$! 
$! 

Note: The logical name REMOTE should only be defined interactively 
because hardcoding a username and password in a command 
procedure can create a potential security problem on your 
system. In addition, specifying username and password is 
only done here for the purpose of demonstrating an example. 
In a production system, other access methods (for example, 
access through a proxy account) should be used to ensure 
system security. 

s-~8 



Programming Techniques for VAXcluster Applications 

$~ 
$~ 
$ ESTABLISH_LINK: 

$ OPEN/READ/WRITE/ERROR=NO_REMOTE LOGICAL_LINK REMOTE 
$ DEFINE/USER SYS$INPUT SYS$CONa2AND 
$ RUN HOST.EXE 

$ CLOSE LOGICAL_LINK 
$ EXIT 
$t 

$ NO_REMOTE: 
$ TEST_LOG :__ 'F$TRNLNM("REMOTE") 

$ IF TEST LOG .EQS. "" 

$ THEN WRITE SYS$OUTPUT "LOGICAL REMOTE IS NOT ASSIGNED." 
$ ELSE WRITE SYS$OUTPUT "LOGICAL LINK TO REMOTE NODE HAS FAILED." 

$ END IF 
$ EXIT 

• xosT.coB 
IDENTIFICATION DIVISION. 

PROGRAM-ID. HOST. 

AUTHOR. DIGITAL. 

DATE-WRITTEN. 01-25-89. 

ENVIRONMENT DIVISION. 

CONFIGURATION SECTION. 
********************* d e s c r i p t i o n *************** 
* * 

* This program is part of an application used to demonstrate 

* transparent task-to-task con~nunication. HOST.COB is run from the 
* command procedure HOST.COM on the local node. 
* * 
*********************************************************************** 

INPUT-OUTPUT SECTION. 

FILE-CONTROL. 

SELECT HOST-LINK-INPUT ASSIGN "LOGICAL LINK" 
ORGANIZATION IS SEQUENTIAL 
FILE STATUS IS PROGRAM-IO-STATUS. 

SELECT HOST-LINK-OUTPUT ASSIGN "LOGICAL LINK" 
ORGANIZATION IS SEQUENTIAL , 
FILE STATUS IS PROGRAM-IO-STATUS. 

DATA DIVISION. 
FILE SECTION. 

FD HOST-LINK-OUTPUT. 

O1 NETWORK-OUTPUT-RECORD. 
02 FILLER PIC X (01) VALUE SPACES . 
02 NETOUT-EMPLOYEE-NUMBER PIC 9 (0 4) VALUE SPACES . 
0 2 FILLER PIC X (4 0) VALUE SPACES . 

FD HOST-LINK-INPUT. 

O1 NETWORK-INPUT-RECORD. 

02 NETIN-STATUS 
02 NETIN-EMPLOYEE-NUMBER 
02 NETIN-EMPLOYEE-DATA. 

05 NETIN-EMPLOYEE-FIRST-NAME 
05 NETIN-EMPLOYEE-LAST-NAME 

02 REDEFINES NETIN-EMPLOYEE-DATA. 

05 NETIN-MESSAGE 

PIC X(01) . 
PIC 9 (04) . 

PIC X (15) . 
PIC X (25) . 

PIC X(40) . 

6-~ 9 



Programming Techniques for VAXcluster Applications 

****************************************************************** 
WORKING-STORAGE SECTION. 

O1 WS-ERROR-OCCURRED 

O1 WS-END-OF-FILE 

O1 WS-ERROR-TEXT 

O1 WS-RECORD-LENGTH 

Ol WS-EMPLOYEE-NUMBER 

PIC X(01) 
PIC X(O1) 

PIC X (40) 

PIC 9(03) 

PIC 9 (04) 

VALUE SPACES. 

VALUE SPACES. 

VALUE SPACES. 

VALUE ZEROS. 

VALUE ZEROS. 

****************************************************************** 

* Standard COBOL error codes and variables. 

Ol ERROR-VARIABLES. 
02 PROGRAM-IO-STATUS PIC X (02) VALUE SPACES . 

O1 COBOL IO STATUS CODES. 

* For the purposes of this example, only a subset of all the 
* possible COBOL error codes are used. Actual production programs 
* should include all error codes and the appropriate logic to trap 
* and record them. 
* 

02 STS_SUCCESS PIC X(02) VALUE "00". 
02 STS_DUPLCT_ALTRT_KEY_WRTTN PIC X(02) VALUE "02". 
02 STS_END_OF_FILE_10 PIC X(02) VALUE "10". 
02 STS_END_OF_FILE_46 PIC X(02) VALUE "46". 
02 STS_INVLD_KEY_21 PIC X (02) VALUE "21" . 
OZ STS INVLD KEY 22 PIC X (02) VALUE "22" . 
OZ STS INVLD KEY 23 PIC X (02) VALUE "23" . 
02 STS INVLD KEY 24 PIC X(02) VALUE "24". 
02 STS_RCRD_LOCKED_AVLBL PIC X(02) VALUE "90". 
02 STS RCRD LOCKED NOT AVLBL PIC X(02) VALUE "92". 

PROCEDURE DIVISION. 
****************************************************************** 

DECLARATIVES. 

HOST-LINK-INPUT-ERROR SECTION. 

USE AFTER STANDARD ERROR PROCEDURE ON HOST-LINK-INPUT. 

HOST-LINK-OUTPUT-ERROR SECTION. 

USE AFTER STANDARD ERROR PROCEDURE ON HOST-LINK-OUTPUT. 

END DECLARATIVES. 
****************************************************************** 

MAIN-PROCESS SECTION. 

BEGIN-PROCESSING. 
* 

* Establish network link. 
* 

OPEN OUTPUT HOST-LINK-OUTPUT ALLOWING ALL. 
PERFORM CHECK-ERROR-STATUS THRU CHECK-ERROR-STATUS-EXIT. 

IF WS-ERROR-OCCURRED = SPACES 
THEN OPEN INPUT HOST-LINK-INPUT ALLOWING ALL 
PERFORM CHECK-ERROR-STATUS THRU CHECK-ERROR-STATUS-EXIT 

END - IF . 
DISPLAY "" AT LINE 1 AT COLUMN 1 ERASE TO END OF SCREEN. 
MOVE 1 TO WS-EMPLOYEE-NUMBER. 
PERFORM GET-EMPLOYEE-RECORDS THRU GET-EMPLOYEE-RECORDS-EXIT 

UNTIL WS-EMPLOYEE -NUMBER = 0 OR 
WS-ERROR-OCCURRED = "Y". 

PERFORM CLOSE-FILES THRU CLOSE-FILES-EXIT. 
DISPLAY "" AT LINE 1 AT COLUNII~1 1 ERASE TO END OF SCREEN . 
STOP RUN. 

BEGIN-PROCESSING-EXIT. EXIT. 

6-20 



Programming Techniques for VAXcluster Applications 

GET-EMPLOYEE-RECORDS. 

MOVE ZEROS TO WS-EMPLOYEE-NUMBER. 

DISPLAY "" AT LINE NUMBER 5 AT COLUMN NUMBER 1 ERASE TO END OF LINE 

DISPLAY fflf AT LINE NUMBER 6 AT COLUMN NUMBER 1 ERASE TO END OF LINE 

DISPLAY "EMPLOYEE NUMBER. <CR> OR 0 TO EXIT" 

AT LINE NUMBER 3 

AT COLUMN NUMBER 1 

ERASE TO END OF LINE. 

ACCEPT WS-EMPLOYEE-NUMBER 

FROM LINE NUMBER 3 

FROM COLUMN NUMBER 36 

BOLD 

WITH CONVERSION 

END-ACCEPT. 

MOVE WS-EMPLOYEE-NUMBER TO NETOUT-EMPLOYEE-NUMBER 

WRITE NETWORK-OUTPUT-RECORD 

PERFORM CHECK-ERROR-STATUS THRU CHECK-ERROR-STATUS-EXIT 

IF WS-ERROR-OCCURRED NOT = "Y" AND 

WS-EMPLOYEE-NUMBER > 0 

THEN READ HOST-LINK-INPUT RECORD 

AT END CONTINUE 

END-READ 

PERFORM CHECK-ERROR-STATUS THRU CHECK-ERROR-STATUS-EXIT 

IF WS-ERROR-OCCURRED NOT = "Y" 

THEN PERFORM DISPLAY-EMPLOYEE-RECORD 

THRU DISPLAY-EMPLOYEE-RECORD-EXIT 

END - IF 

END - IF . 

GET-EMPLOYEE-RECORDS-EXIT. EXIT. 

DISPLAY-EMPLOYEE-RECORD. 

EVALUATE NETIN-STATUS 

WHEN "E" DISPLAY NETIN-MESSAGE 

AT LINE NUMBER 10 

AT COLUMN NUMBER 1 

ERASE TO END OF SCREEN 

WHEN "W" PERFORM DISPLAY-TITLE-HEADERS 

THRU DISPLAY-TITLE-HEADERS-EXIT 

DISPLAY NETIN-EMPLOYEE-NUMBER 

AT LINE NUMBER 14 

AT COLUMN NUMBER 21 

ERASE TO END OF LINE 

DISPLAY NETIN-MESSAGE 

AT LINE NUMBER 14 

AT COLUMN NUMBER 30 

WHEN OTHER PERFORM DISPLAY-TITLE-HEADERS 

THRU DISPLAY-TITLE-HEADERS-EXIT 

DISPLAY NETIN-EMPLOYEE-NUMBER 

AT LINE NUMBER 14 

AT COLUMN NUMBER 21 

ERASE TO END OF LINE 

DISPLAY NETIN-EMPLOYEE-FIRST-NAME 

AT LINE NUMBER 14 

AT COLUMN NUMBER 30 

DISPLAY NETIN-EMPLOYEE-LAST-NAME 

AT LINE NUMBER 14 

AT COLUMN NUMBER 49 

END-EVALUATE. 

DISPLAY-EMPLOYEE-RECORD-EXIT. EXIT. 

f -21 



Programming Techniques for VAXcluster Applications 

DISPLAY-TITLE-HEADERS. 

DISPLAY 

DISPLAY 

DISPLAY 

DISPLAY 

DISPLAY 

t~ „ 

AT LINE NUMBER 10 

AT COLUMN NUMBER 1 

ERASE TO END OF SCREEN. 

"EMPLOYEE 
AT LINE NUMBER 10 

AT COLUMN NUMBER 10 

ERASE TO END OF LINE. 

"NUMBER" 
AT LINE NUMBER 12 

AT COLUMN NUMBER 20 

ERASE TO END OF LINE. 

"FIRST NAME " 
AT LINE NUMBER 12 

AT COLUMN NUMBER 33. 

"LAST NAME" 
AT LINE NUMBER 12 

AT COLUMN NUMBER 57. 

DISPLAY-TITLE-HEADERS-EXIT. EXIT. 

CHECK-ERROR-STATUS. 

Process I-O status returned in program-io-status variable. 

IF PROGRAM-IO-STATUS NOT = STS_SUCCESS 

AND PROGRAM-IO-STATUS NOT = STS_RCRD_LOCKED_AVLBL 

AND PROGRAM-IO-STATUS NOT = STS_DUPLCT_ALTRT_MEY_WRTTN 
AND PROGRAM-IO-STATUS NOT = STS_INVLD_KEY_21 
AND PROGRAM-IO-STATUS NOT = STS_INVLD_KEY_22 

AND PROGRAM-IO-STATUS NOT = STS_INVLD_KEY_23 
AND PROGRAM-IO-STATUS NOT = STS_INVLD_KEY_24 

AND PROGRAM-IO-STATUS NOT = STS_END_OF_FILE_10 

AND PROGRAM-IO-STATUS NOT = STS_END_OF_FILE_46 THEN 
MOVE "Y" TO WS-ERROR-OCCURRED 

END - IF . 

CHECK-ERROR-STATUS-EXIT. EXIT. 

Disconnect the network link. 

CLOSE-FILES. 

CLOSE HOST-LINK-INPUT. 

CLOSE HOST-LINK-OUTPUT. 

CLOSE-FILES-EXIT. EXIT. 

• TARG~T2.C~M 

$± This DCL conunand procedure is invoked by HOST.EXE to 
$± establish task-to-task communication between 
$± itself and TARGET.EXE. TARGET2.COM is executed 
$± on the remote node and must be in the default 
$± directory of the username specified in the DEFINE 
$± command described in HOST.COM. 

$! 
$ INITIATE_TARGET: 

$ OPEN/READ/WRITE REMOTE LINK SYS$NET 

$± 

f -22 

RUN TARGET.EXE 

CLOSE REMOTE_LINK 

EXIT 



Programming Techniques for VAXciuster Applications 

• TA►RGET.COB 

IDENTIFICATION DIVISION. 

PROGRAM-ID. TARGET. 

AUTHOR. DIGITAL. 

DATE-WRITTEN. 01-25-$9. 

ENVIRONMENT DIVISION. 

CONFIGURATION SECTION. 
********************* 

* 

d e s c r i p t i o n *************** 
* 

* TARGET is part of the two-way transparent task -to -task operation 
* that receives an employee number from HOST, performs a file lookup 
* and returns employee information back to HOST for display. 

* 

*********************************************************************** 

INPUT-OUTPUT SECTION. 

FILE-CONTROL. 

SELECT TARGET-LINK-INPUT ASSIGN TO "REMOTE LINK" 

ORGANIZATION IS SEQUENTIAL 

FILE STATUS IS PROGRAM-IO-STATUS. 

SELECT TARGET-LINK-OUTPUT ASSIGN TO "REMOTE LINK" 

ORGANIZATION IS SEQUENTIAL 
FILE STATUS IS PROGRAM-IO-STATUS. 

SELECT EMPLOYEE-FILE ASSIGN "EMPLOYEE.DAT" 

ORGANIZATION IS INDEXED 

FILE STATUS IS PROGRAM-IO-STATUS. 

DATA DIVISION. 

FILE SECTION. 

FD TARGET-LINK-INPUT. 

O1 NETWORK-INPUT-RECORD. 

02 FILLER 

02 NETIN-EMPLOYEE-NUMBER 
0 2 FILLER 

FD TARGET-LINK-OUTPUT. 

O1 NETWORK-OUTPUT-RECORD. 

02 NETOUT-STATUS 

02 NETOUT-EMPLOYEE-NUMBER 
02 NETOUT-EMPLOYEE-DATA. 

05 NETOUT-EMPLOYEE-FIRST-NAME 

OS NETOUT-EMPLOYEE-LAST-NAME 

02 REDEFINES NETOUT-EMPLOYEE-DATA. 
OS NETOUT-MESSAGE 

FD EMPLOYEE-FILE 

ACCESS MODE IS DYNAMIC 

RECORD ICY IS EMPLOYEE-NUMBER. 

O1 EMPLOYEE_RECORD. 

02 EMPLOYEE_NUMBER 

02 EMPLOYEE_FIRST_NAME 
02 EMPLOYEE LAST NAME 

PIC X(01) . 
PIC 9(04) . 
PIC X (40) . 

PIC X (O1) . 
PIC 9 (04) . 

PIC X (15) . 
PIC X(25) . 

PIC X (40) . 

PIC 9 (04) . 
PIC X (15) . 
PIC X (25) . 

5-23 



Programming Techniques for VAXcluster Applications 

****************************************************************** 
WORKING-STORAGE SECTION. 

O l WS-ERROR-OCCURRED PIC X (01) VALUE SPACES . 
O 1 WS -ERROR- TEXT PIC X (4 0) VALUE SPACES . 

Ol WS-ERROR
0 2 

-MSG-LINE. 

FILLER PIC X (19) VALUE f1 "COBOL ERROR NUN~ER 

02 WS-PROGRAM-IO-STATUS PIC X (02) VALUE SPACES . 

02 FILLER PIC X(14) VALUE " HAS OCCURRED.". 

******************************************************************* 

* Standard COBOL error codes and variables. 

O1 ERROR-VARIABLES. 

02 PROGRAM-IO-STATUS PIC X(02) VALUE SPACES. 

O1 COBOL_IO_STATUS_CODES. 

* For the purposes of this example, only a subset of all the 
* possible COBOL error codes are used. Actual production programs 
* should include all error codes and the appropriate logic to trap 
* and record them. 
* 

02 STS_SUCCESS PIC X (02) VALUE "00" . 
02 STS_DUPLCT_ALTRT_KEY_WRTTN PIC X(02} VALUE "02". 
02 STS_END_OF_FILE_10 PIC X (02) VALUE "10" . 
02 STS_END_OF_FILE_46 PIC X(02} VALUE "46". 
02 STS INVLD KEY 21 PIC X (02) VALUE "21" . 
02 STS INVLD KEY 22 PIC X (02) VALUE "22" . 
02 STS INVLD KEY 23 PIC X (02) VALUE "23" . 
02 STS^ INVLD KEYr 24 PIC X (02) VALUE "24" . 
02 STS_RCRD_LOCKED AVLBL PIC X {02) VALUE "90" . 
02 STS_RCRD_LOCKED NOT AVLBL PIC X(02) VALUE "92". 

PROCEDURE DIVISION. 
******************************************************************* 

DECLARATIVES. 

TARGET-LINK-INPUT-ERROR SECTION. 

USE AFTER STANDARD ERROR PROCEDURE ON TARGET-LINK-INPUT. 

TARGET-LINK-OUTPUT-ERROR SECTION. 

USE AFTER STANDARD ERROR PROCEDURE ON TARGET-LINK-OUTPUT. 

EMPLOYEE-FILE-ERROR SECTION. 

USE AFTER STANDARD ERROR PROCEDURE ON EMPLOYEE-FILE. 

END DECLARATIVES. 
******************************************************************* 

MAIN-PROCESS SECTION. 

BEGIN-PROCESSING. 
* 

* Connect to network link and open the employee file. 
* 

OPEN INPUT TARGET-LINK-INPUT ALLOWING ALL. 
PERFORM CHECK-ERROR-STATUS THRU CHECK-ERROR-STATUS-EXIT. 
IF WS-ERROR-OCCURRED = SPACES 

THEN OPEN INPUT EMPLOYEE-FILE 

PERFORM CHECK-ERROR-STATUS THRU CHECK-ERROR-STATUS-EXIT 
IF WS-ERROR-OCCURRED = SPACES 

THEN OPEN OUTPUT TARGET-LINK-OUTPUT ALLOWING ALL 
PERFORM CHECK-ERROR-STATUS THRU CHECK-ERROR-STATUS-EXIT 

END - IF 
END - IF . 

~~~ 


Programming Techniques for VAXcluster Applications

IF WS-ERROR-OCCURRED = SPACES

THEN PERFORM UNTIL WS-ERROR-OCCURRED = "Y" OR

NETIN-EMPLOYEE-NUMBER = 0

PERFORM PROCESS-NETWORK-LINK

THRU PROCESS-NETWORK-LINK-EXIT
PERFORM CHECK-ERROR-STATUS

THRU CHECK-ERROR-STATUS-EXIT
IF WS-ERROR-OCCURRED = SPACES

THEN PERFORM SEND-RESPONSE-TO-HOST

THRU SEND-RESPONSE-TO-HOST-EXIT

END- IF

END-PERFORM

END - IF .

IF WS-ERROR-OCCURRED = "Y"

THEN MOVE "E" TO NETOUT-STATUS

MOVE PROGRAM-IO-STATUS TO WS-PROGRAM-IO-STATUS

MOVE WS-ERROR-MSG-LINE TO NETOUT-MESSAGE

PERFORM SEND-RESPONSE-TO-HOST

THRU SEND-RESPONSE-TO-HOST-EXIT
END - IF .

PERFORM CLOSE-FILES

STOP RUN.

BEGIN-PROCESSING-EXIT. EXIT.

THRU CLOSE-FILES-EXIT.

* *

* 1.) Read the customer identifier passed from the source program
* over the network line.

* *

* 2.) Use the customer identifier to perform a keyed read on the

* employee file.
*

*

PROCESS-NETWORK-LINK.

READ TARGET-LINK-INPUT

AT END CONTINUE

END-READ.

PERFORM CHECK-ERROR-STATUS THRU CHECK-ERROR-STATUS-EXIT

IF WS-ERROR-OCCURRED = SPACES

THEN MOVE NETIN-EMPLOYEE-NUMBER TO EMPLOYEE-NUMBER

READ EMPLOYEE-FILE RECORD

KEY IS EMPLOYEE-NUMBER

INVALID KEY INITIALIZE NETOUT-MESSAGE

MOVE "W" TO NETOUT-STATUS

MOVE EMPLOYEE-NUMBER

TO NETOUT-EMPLOYEE-NUMBER

MOVE "EMPLOYEE WITH THIS # DOES NOT EXIST."

TO NETOUT-MESSAGE

END-READ

PERFORM CHECK-ERROR-STATUS THRU CHECK-ERROR-STATUS-EXIT

IF PROGRAM-IO-STATUS = STS-SUCCESS

THEN INITIALIZE NETWORK-OUTPUT-RECORD

MOVE EMPLOYEE-NUMBER TO NETOUT-EMPLOYEE-NUMBER

MOVE EMPLOYEE-LAST-NAME TO NETOUT-EMPLOYEE-LAST-NAME

MOVE EMPLOYEE-FIRST-NAME TO NETOUT-EMPLOYEE-FIRST-NAME

END- IF

END - IF .

PROCESS-NETWORK-LINK-EXIT. EXIT.

SEND-RESPONSE-TO-HOST.

WRITE NETWORK-OUTPUT-RECORD.

PERFORM CHECK-ERROR-STATUS THRU CHECK-ERROR-STATUS-EXIT.

SEND-RESPONSE-TO-HOST-EXIT. EXIT.

f -2rJ

Programming Techniques for VAXcluster Applications

CHECK-ERROR-STATUS.
*

* Process I-O status returned in program-io-status variable.

IF PROGRAM-IO-STATUS NOT = STS_SUCCESS

AND PROGRAM-IO-STATUS NOT = STS_RCRD_LOCKED_AVLBL

AND PROGRAM-IO-STATUS NOT = STS_DUPLCT_ALTRT_KEY_WRTTN

AND PROGRAM-IO-STATUS NOT = STS_INVLD_KEY_21

AND PROGRAM-IO-STATUS NOT = STS_INVLD_KEY_22

AND PROGRAM-IO-STATUS NOT = STS_INVLD_KEY_23

AND PROGRAM-IO-STATUS NOT = STS_INVLD_KEY_24

AND PROGRAM-IO-STATUS NOT = STS_END_OF_FILE_10

AND PROGRAM-IO-STATUS NOT = STS_END_OF_FILE_46 THEN

MOVE "Y" TO WS-ERROR-OCCURRED

END - IF .

CHECK-ERROR-STATUS-EXIT. EXIT.

Disconnect the network link.

CLOSE-FILES.

CLOSE TARGET-LINK-INPUT.

CLOSE TARGET-LINK-OUTPUT.

CLOSE EMPLOYEE-FILE.

CLOSE-FILES-EXIT. EXIT.

Data Sharing with Nontransparent DECnet-VAX
Communications — Programming Example 2

In this FCRTF►ArT example, nontransparent DECnet-VAX communications
are used to send the contents of two input arrays from the local process
(LOCAL_2.EXE) to the remote process (REMQTE_2.EXE). The remote
process then performs matrix multiplication using the input arrays, and
returns the results to the local process.

• LUCAL 2.F4R

PROGRAM MATMUL_TEST

c
c In this example program, the contents of the two input arrays are
c sent to the remote process. The remote process then performs the
c matrix multiplication and returns the results.
c

EXTERNAL IO$_READVBLK, IO$_WRITEVBLK

INTEGER SYSQIO, SYSQIOW, READ FUNCTION, WRITE FUNCTION

INCLUDE ' ($SSDEF)'

PARAMETER ISIZE=100
INTEGER IN_ARRAYI (ISIZE, ISIZE) , IN A~tRAY2 {ISIZE, ISIZE) ,
1 RESULTS (IS IZE, IS IZE)
INTEGER*2 IOSB (4)

READ FUNCTION = $LOC(IO$ READVBLK)
WRITE FUNCTION = $LOC(IO$ WRITEVBLK)

c
c Put sample data into the input arrays for the matrix multiplication.
c

DO I = 1, ISIZE

DO J = 1, ISIZE
IN_ARRAYl {I, J) = J- (ISIZE/2)
IN ARRAY2 (I, J) = J- (ISIZE/2)

ENDDO

ENDDO

s—Zs

Programming Techniques for VAXcluster Applications

c
c Open the channel to the remote process.
c

ISTAT LIB$ASN_WTH_MSX

1 'NODE1::"O=REMOTE 2"',

1 450,
1 450,
1 ICHANNEL,

1 IGNORE)

IF (ISTAT .NE. SS$ REMOTE) CALL EXIT (ISTAT)

c
c Send all the data to the remote process.

c

c Note that to make this example more realistic, the size of the

c arrays (250 by 250) has been selected to be too large to fit

c into a single QIO call. The arrays are therefore sent one row

c at a time .
c

DO J = 1, ISIZE
ISTAT = SYS$QIO (, $VAL (ICHANNEL) , $VAL (WRITE FUNCTION)

1 ,IOSB,,,IN_ARR.AYl(1,J),~VAL(ISIZE*4),,,,)
ISTAT = SYS$QIO (, $VAL (ICHANNEL) , $VAL (WRITE FUNCTION)

1 ,IOSB,,,IN_ARRAY2(1,J),$VAL(ISIZE*4),,,,)
ENDDO

c
c Finally, wait for the results to be sent back. They are
c sent back row by row.
c

c
c Set up to receive a message back from this node.
c

DO J 1, ISIZE
ISTAT = SYS$QIOW (, OVAL (ICH[ANNEL) , OVAL (READ FUNCTION) , IOSB, , ,

1 RESULTS (l, J) , $VAL (ISIZE*4) , , , ,)
ENDDO

c
c This completes the work performed on the remote portion. Deassign
c the I/O channel and exit the program.
c

CALL SYS$DASSGN ($VAL(ICHANNEL))

CALL EXIT

END

• REMOTE 2.FOR

PROGRAM MATMUL REMOTE_TEST

c
c This is the remote portion of the example that will perform a
c matrix multiply on a remote node.
c

EXTERNAL IO$_READVBLK, IO$_WRITEVBLK

P~F►R.AMETER ISIZE=100
INTEGER IN_ARRAYl {ISIZE, ISIZE) , IN_ARRAY2 {ISIZE, ISIZE) ,
1 RESULTS(ISIZE,ISIZE), READ FUNCTION, WRITE FUNCTION

INTEGER*2 IOSB (4)

C

c Establish the communication link back to the calling
c program.

f -27

Programming Techniques for VAXcluster Applications

c
ISTAT = LIB$ASN WTH MBX ('sys$net',
1 450,
1 450,
1 ICHANNEL,

1 IGNORE)

READ FUNCTION = $LOC(IO$ READVBLK)

WRITE FUNCTION = $LOC(IO$ WRITEVBLK)

c
c
c
c
c

c
c
c
c
c
c
c
c
c

c

c

Start by getting all the data. Since the calling program sends
the data one row at a time, this program must receive the data in
the same array-location order.

DO J = 1, IS IZE
ISTAT = SYS$QIOW (, $VAL (ICHANNEL) , $VAL (READ FUNCTION) , IOSB, , ,

1 IN_ARRAYI(1,J),$VAL(ISIZE*4),,,,)
IF (ISTAT .NE. SS$_NORMAI,} CALL EXIT (ISTAT)
ISTAT = SYS$QIOW (, $VAL (ICHANNEL) , $VAL (READ FUNCTION} , IOSB, , ,

1 IN_ARRAY2(1,J),$VAL(ISIZE*4},,,,}
IF (ISTAT .NE. SS$_NORMAL) CALL EXIT (ISTAT)

ENDDO

All the data is here. Perform the matrix multiplication on
each row.

Note that as a performance optimization, each row is sent back
as it is calculated. Thus, the time spent performing the QIOs
overlaps with the calculations of the next rows.

loop for every row in the results array
DO J = 1, IS IZE

and for every column in the results array
DO I 1, IS IZE

This is the inner loop of the matrix multiply.
RESULTS (I, J) = 0
DO K = 1, ISIZE

RESULTS (I, J) = RESULTS (I, J) + (IN_ARRAYI (I, K)
1 IN_ARFtAY2 (K, J))

ENDDO

ENDDO

c
c Now that an entire row is completed, send it back.
c

ISTAT = SYS$QIOW {, $VAL (ICHANNEL) , $VAL (WRITE FUNCTION)
1 , IOSB, , ,RESULTS (1, J) , $VAL (ISIZE*4) , , , ,)

ENDDO

c
c All done.
c
c Exiting from the program breaks the network link. To
c avoid breaking this link before the local program received all the
c data, this next read operation keeps this program active until
c the local program terminates the link from its end.
c

ISTAT SYS$QIOW (, $VAL (ICHANNEL) , $VAL (READ FUNCTION) , IOSB, , ,
1 IN ARRAYI(l,l),$VAL(ISIZE*4),,,,)

CALL SYS$DASSGN ($VAL(ICHANNEL))

CALL EXIT
END

~~$

Programming Techniques for VAXcluster Applications

6.2.2 Using VMS RMS to Control Record Granularity for Multiple Access
High-level languages can be programmed to control resource granularity
which is the mig of file and record access paths. Some high-level languages
can be programmed to specify the degree of file sharing at the record level.
Consult the user manual of your high-level language's to determine the
capabilities of your language.

Using VMS RMS to Control Record Granularity —
Programming Example

The following COBOL program (EMPLOYEE.COB) demonstrates the use
of VMS RMS automatic record locking. In this program, multiple users
are allowed concurrent read access to the employee file (EMPLOYEE.DAT)
except in the case where a record of the employee file is locked exclusively
by another user for updating.

• ENiPLOYEE.0 QB

IDENTIFICATION DIVISION.

PROGRAM-ID. EMPLOYEE.

AUTHOR. DIGITAL.

DATE-WRITTEN. 01-04-89.

******************** d e s c r i p t i o n *****************

* This Cobol program demonstrates the use of automatic record locking

* in an environment where multiple users are allowed access to the

* employee file (Concurrent Readj. No other users are allowed access

* to a given employee record when that record is locked exclusively by

* another user.
*

* This program assumes the EMPLOYEE.DAT file exists and contains

* several records for modification.

ENVIRONMENT DIVISION.

CONFIGURATION SECTION.

SOURCE-COMPUTER. VAX-11.

OBJECT-COMPUTER. VAX-11.

INPUT-OUTPUT SECTION.

FILE-CONTROL.

SELECT EMPLOYEE-FILE ASSIGN "EMPLOYEE.DAT"

ORGANIZATION IS INDEXED

FILE STATUS IS PROGRAM-IO-STATUS.

**

DATA DIVISION.

FILE SECTION.

FD EMPLOYEE-FILE

ACCESS MODE IS DYNAMIC

RECORD KEY IS EMPLOYEE-NUMBER.

O1 EMPLOYEE_RECORD.

02 EMPLOYEE_NUMBER PIC 9 (04) .

02 EMPLOYEE_FIRST_NAME PIC X(15) .

0 2 EMPLOYEE LAST NAME PIC X (25) .

*

f>-29

Programming Techniques for VAXciuster Applications

**

WORKING-STORAGE SECTION.

O1 WS-ERROR-OCCURRED PIC X(O1) VALUE SPACES.

Ol WS-END-OF-FILE PIC X(01) VALUE SPACES.

O1 WS-ERROR-TEXT PIC X (40) VALUE SPACES.

O1 WS-SAVE-EMPLOYEE-RECORD PIC X(44) VALUE SPACES.

Ol WS-LAST-NAME-MSG-LINE.
0 2 FILLER

VALUE "CHANGE LAST NAME FROM: "
02 WS-EMPL-LAST-NAME

Ol WS-FIRST-NAME-MSG-LINE.
02 FILLER

VALUE "CHANGE FIRST NAME FROM
02 WS-EMPL-FIRST-NAME

PIC X(23)

PIC X(25) .

PIC X (24)
fT

PIC X(15) .

**

* Standard COBOL error codes, and variables.

O1 ERROR-VARIABLES.

02 PROGRAM-IO-STATUS

O1 COBOL IO STATUS CODES.

PIC X (02) VALUE SPACES .

* For the purposes of this example, only a subset of all the
* possible COBOL error codes are used. Actual production programs
* must include all error codes and the appropriate logic to trap
* and record them.

*

02 STS_SUCCESS PIC X (0 2) VALUE t1 0 0 1T

02 STS_DUPLCT_ALTRT_KEY WRTTN PIC X (0 2) VALUE H0211

02 STS_END_OF_FILE_10 PIC X (0 2) VALUE "10" .
02 STS_END_OF_FILE_46 PIC X (0 2) VALUE "46" .
02 STS_INVLD_KEY_21 PIC X (02) VALUE "21" .
02 STS_INVLD_KEY_22 PIC X (02) VALUE "22" .
02 STS_INVLD_KEY_23 PIC X (0 2) VALUE "23" .
02 STS_INVLD_KEY_24 PIC X (0 2) VALUE „24rf

02 STS_RCRD_LOCKED_AVLBL PIC X (0 2) VALUE rf 9 0 rf .

02 STS RCRD LOCKED NOT AVLBL PIC X (0 2) VALUE rr92r, .

PROCEDURE DIVISION.

DECLARATIVES.

EMPLOYEE-FILE-ERROR SECTION.

USE AFTER STANDARD ERROR PROCEDURE ON EMPLOYEE-FILE.

END DECLARATIVES.
**

MAIN-PROCESS SECTION.

BEGIN-PROCESSING-EMPLOYEES.
*

*

Open the employee file for concurrent access.

OPEN I -O EMPLOYEE-FILE ALLOWING ALL.
PERFORM CHECK-ERROR-STATUS THRU CHECK-ERROR-STATUS-EXIT.
MOVE 1 TO EMPLOYEE-NUMBER.
DISPLAY "" LINE 1 COLUMN 1 ERASE TO END OF SCREEN.
PERFORM GET-EMPLOYEE-RECORDS THRU GET-EMPLOYEE-RECORDS-EXIT

UNTIL EMPLOYEE-NUMBER = 0 OR
WS-ERROR-OCCURRED = "Y".

STOP RUN .

BEGIN-PROCESSING-EMPLOYEES-EXIT. EXIT.

Programming Techniques for VAXcluster Applications

GET-EMPLOYEE-RECORDS.

MOVE ZEROS TO EMPLOYEE-NUMBER.
DISPLAY "" AT LINE NUMBER 5 AT COLUMN NUMBER 1 ERASE TO END OF LINE
DISPLAY "" AT LINE NUMBER 6 AT COLUMN NUN~ER 1 ERASE TO END OF LINE

DISPLAY "EMPLOYEE NT?N~ER. <CR> OR 0 TO EXIT"
AT LINE NUMBER 3

AT COLUMN NUMBER 1

ERASE TO END OF LINE.

ACCEPT ENS LOYEE -NUMBER
FROM LINE NUMBER 3

FROM COLUMN NUMBER 36
BOLD

WITH CONVERSION

END-ACCEPT.

IF EN~LOYEE-NUMBER > 0

THEN READ EMPLOYEE-FILE RECORD

KEY IS EMPLOYEE-NUMBER

INVALID KEY DISPLAY "EMPLOYEE WITH THAT NUMBER DOES NOT EXIST.

" TRY AGAIN"
AT LINE NUMBER 26
AT COLUMN NUN~ER 3
WITH BELL

ERASE TO END OF LINE
END-READ

IF PROGRAM-IO-STATUS = STS RCRD LOCKED NOT AVLBL
THEN DISPLAY "EMPLOYEE WITH THAT NUMBER IS BEING ACCESSED BY

" ANOTHER USER. TRY LATER."
AT LINE NUMBER 26

AT COLUMN NUMBER 3

WITH BELL

ERASE TO END OF LINE
ELSE PERFORM CHECK-ERROR-STATUS THRU CHECK-ERROR-STATUS-EXIT

END - IF

IF PROGRAM-IO-STATUS STS_SUCCESS AND
WS-ERROR-OCCURRED SPACES
THEN MOVE EMPLOYEE-RECORD TO WS-SAVE-EMPLOYEE-RECORD

DISPLAY "" AT LINE NUMBER 26

AT COLUMN NUMBER 3

ERASE TO END OF LINE
PERFORM MODIFY-EMPLOYEE-DATA

THRU MODIFY-EMPLOYEE-DATA-EXIT

END-IF

END - IF .

GET-EMPLOYEE-RECORDS-EXIT. EXIT.

MODIFY-EMPLOYEE-DATA.

MOVE EMPLOYEE-FIRST-NAME

DISPLAY WS-FIRST-NAME-MSG-LINE

AT LINE NUMBER 5

AT COLUMN NUMBER 3
ERASE TO END OF LINE.

ACCEPT WS-EMPL-FIRST-NAME
FROM LINE NUMBER 5

FROM COLUMN NUMBER 50
END-ACCEPT.

IF WS-EMPL-FIRST-NAME NOT = SPACES

THEN MOVE WS-EMPL-FIRST-NAME

MOVE EMPLOYEE-LAST-NAME

DISPLAY WS-LAST-NAME-MSG-LINE

AT LINE NUMBER 6

AT COLUMN NUMBER 3

ERASE TO END OF LINE.

ACCEPT WS-EMPL-LAST-NAME

FROM LINE NUMBER 6
FROM COLUMN NUMBER 50

END-ACCEPT.

TO WS-EN~L-FIRST-NAME .

TO EMPLOYEE -FIRST -NAME .

TO WS-EMPL-LAST-NAME.

6--31

Programming Techniques for VAXcluster Applications

IF WS-EMPL-LAST-NAME NOT = SPACES

THEN MOVE WS-EMPL-LAST-NAME TO EMPLOYEE-LAST-NAME.

IF WS-SAVE-EMPLOYEE-RECORD NOT = EMPLOYEE-RECORD
THEN REWRITE EMPLOYEE-RECORD

INVALID KEY DISPLAY "RECORD NOT REWRITTEN. CALL 888-8888

" FOR ASSISTANCE"

AT LINE NUMBER 26

AT COLUMN NUMBER 3

ERASE TO END OF LINE
END-REWRITE

ELSE UNLOCK EMPLOYEE-FILE RECORD
END - IF .
PERFORM CHECK-ERROR-STATUS THRU CHECK-ERROR-STATUS-EXIT.

MODIFY-EMPLOYEE-DATA-EXIT. EXIT.

CHECK-ERROR-STATUS.

IF PROGRAM-IO-STATUS NOT = STS_SUCCESS

AND PROGRAM-IO-STATUS NOT = STS_RCRD_LOCKED_AVLBL
AND PROGRAM-IO-STATUS NOT = STS_DUPLCT_ALTRT_KEY_WRTTN
AND PROGRAM-IO-STATUS NOT = STS_INVLD_KEY_21

AND PROGRAM-IO-STATUS NOT = STS_INVLD_KEY_22
AND PROGRAM-IO-STATUS NOT = STS_INVLD_KEY_23

AND PROGRAM-IO-STATUS NOT = STS_INVLD_KEY_24
AND PROGRAM-IO-STATUS NOT = STS_END_OF_FILE_10
AND PROGRAM-IO-STATUS NOT = STS_END_OF_FILE_46 THEN

MOVE "Y" TO WS-ERROR-OCCURRED
END - IF .

CHECK-ERROR-STATUS-EXIT. EXIT.

CLOSE-FILE .
CLOSE EMPLOYEE-FILE.

CLOSE-FILE-EXIT . EXIT .

END PROGRAM EMPLOYEE.

1~J

Programming Techniques for VAXcluster Applications

6.2.3 Using Read-Only Global Sections
A disk file Read-Only global section allows multiple processes to read
common data elements by using the VMS system service, $CRMPSC, to
map a file to an address space in memory. In general, you can use a disk
file Read-Only global section for processing I/O without explicitly accessing
a disk.

Disk file Read-only global sections are disk files, or portions of disk files
that are mapped into the memory of a single VAXcluster CPU. Therefore,
only processes on the same VAXcluster CPU can map a disk file global
section. when a process calls the $CRMPSC system service to map a
disk file Read-Only global section, the service only maps to memory
on the VAXcluster CPU on which the process is executing. To map the
same disk file Read-Only global section to different processes on different
VAXcluster CPUs, you must map the same global section into memory on
each VAXcluster CPU.

In order to create a global section, you must use the SEC$M_GBL flag for
$CRMPSC; otherwise, the default setting for $CRMPSC opens the disk file
as a private section. Also, when using $CRMPSC with the SEC$M_GBL
flag, your program should not attempt to modify the contents of the global
section as the results are unpredictable. If your program only needs
read access to the file data, using the $CRMPSC with SEC$M_GBL flag
will provide a slight performance improvement since the contents of the
Read-only global section do not have to be written back to the disk file
when the Read-Only global section is closed.

If the data in the global section is to be modified, the $CRMPSC call
should include the SEC$M_GBL flag and the SEC$M WRT flag to open
the section file for both reading or writing. When this type of global
section is closed, all of the section data in memory is written back to the
file when the global section is deleted. Generally, when implementing a
VAXcluster application, it is not advantageous to use Read-write global
sections for concurrent access streams because it is difficult to synchronize
global section updates.

If the disk file Read-only global section is commonly accessed by many
programs in the VAXcluster application environment, then the disk file
global section can be installed as a known image. The system manager
can install a disk file Read-Only global section as a known image on
a specific CPU or on all VAXcluster CPUs (depending on whether the
VAXcluster system is acommon-environment or multiple-environment
configuration). By installing a disk file global section as a known image,
you can reduce the time required to locate the global section on the disk.
When your system manager installs a disk file Read-Only global section
as a known image, a pointer is created on the system disk for the location
of that file on the disk.l For more information on using the $CRMPSC
system service to create or map a disk file Read-Only global section, see
the Introduction to VMS System Services and the VMS System Services
Reference Manual.

1 For details on how to create and identify shareable images and how to link them with private object modules, see the
VMS Linker Utility Manual. For information about how to install shareable images and make them available for sharing
as global sections, see the Guide to Maintaining a VMS System.

6-33

Programming Techniques for VAXcluster Applications

Disk File Read-Only Global Section —Programming Example

In the following example, INIT GLOBAL.BAS maps a global section as
writeable and puts calendar data into the section, and RO_GLOBAL.BAS
maps the already existing global section as read-only and reads calendar
data from the global section. (A more realistic example would be federal,
state, and local tax tables because these would be read frequently but only
occasionally updated.)

The macro routines (SECWOPEN.NJCAR and SECROPEN.MAR) are called
by the BASIC file open routines to set the proper RMS attributes and
return the internal channel number to the main program. The channel
number is needed by the $CRMPSC system service. SECWOPEN.MAR is
for the routine that is used by IlVIT GLOBAL.BAS to write the section,
and SECROPEN.112AR is used by RO_GLOBAL.BAS to read the section.

Use INIT GLOBAL_BUILD.COM and RO_GLOBAL_BUILD.COM
to compile and link the read-only global section example. This
example is designed for INIT GLOBAL.EXE to be run first and then
RO_GLOBAL.EXE. IlVIT GLOBAL.F~ will not function properly
if RO_GLOBAL.FXF is active. To coordinate access between these two
programs, you can use lock management system services. This is left as
an egeraise for the reader.

• IrTIT GLOBAL BUILD.COM

$ tINIT GLOBAL BUILD.COM

BASIC/LIST

MACRO/LIST
INIT_GLOBAL

SECWOPEN

LINK/MAP INIT_GLOBAL,-

SECWOPEN,-

SYS$INPUT/OPT
!This is the OPTIONS file

! Option to cause the psect/common for
page aligned.

PSECT_ATTR=CUM_DAYS, PIC, OVR, REL, GBL, SHR,
$ EXIT !INIT GLOBAL BUILD

!Complile main program
!Assemble user open routine
!Now link them...
! The main program
! The user open routine

The options file follows this

the global section to be

NOEXE, RD, NOWRT, PAGE

Programming Techniques for VAXcluster Applications

• I11TIT GL~BAL.$AS

PROGRAM INIT_GLOBAL !
!
!
t

!
t
f

Initialize a section for the read-only

global section example.
Since this program is very similar to
the one that read the section, only

those places where they differ have
been commented.

$IDENT "V1.00"

$TITLE "INIT GLOBAL"

~SBTTL "Declare and init data"

OPTION TYPE = EXPLICIT,
SIZE = INTEGER LONG,

~
&

CONSTANT TYPE = INTEGER

DECLARE LONG I,
INADDR (1 TO 2) ,
RETADDR (1 TO 2) ,
FLAGS,
RETURN STATUS,

STRING FYLE,
SECTION NAME

&
&
&
&
&

&
&

EXTERNAL LONG FUNCTION &

SYS$CRMPSC

EXTERNAL LONG CONSTANT &
!Flags (bits) to control &
! section creation. &
SEC$M DZRO, ! Demand zero flag ~
SEC$M WRT, ! Writable section flag &

SEC$M_GBL, &
SS$ NORMAL

COMMON (SECWCOM)
WORD SEC_CHAN

COMMON (CUM DAYS) &
LONG CUMULATIVE DAYS (1 TO 12)

FY'LE _ "DATE INFO"
SECTION_NAME "RO GSECT"
$PAGE
~SBTTL "Open file and create/map to section."
!OPEN file with user open for writeable section
OPEN FYLE FOR OUTPUT AS FILE ~2, &

ORGANIZATION SEQUENTIAL FIXED, &

RECORDSIZE 512, &
RECORDTYPE NONE, &

USEROPEN SECWOPEN, !User open routine for a &
! writable section &

FILESIZE 1, &
DEFAULTNAME ".DAT"

Programming Techniques for VAXcluster Applications

!Create and Map section
FLAGS = (SEC$M GBL !Global section. Default is private &

OR !boolean OR of flag bits &
SEC$M DZRO !Start with zeroed pages, send to section &

! file after they are modified &
OR !Boolean OR of flag bits &~
SEC$M WRT) !Writable section. Default is read-only

INADDR (1) = LOC { CUMULAT IVE_DAYS (1))
INADDR (2) = LOC (CUMULATIVE DAYS { 12))

RETURN_STATUS = SYS$CRMPSC(! Arg name &
INADDR (1) , ! INADR &
RE TADDR { 1) , ! RE TADR &

!ACMODE &
FLAGS BY VALUE, !FLAGS &

SECTION_NAME, !GSDNAM &

!IDENT &

! RELPAG &
SEC CHAN BY VALUE, !GRAN &
1 BY VALUE, !PAGCNT &

!VBN &

!PROT ~

,) ! PFC

IF (RETURN STATUS AND 1) = 0 THEN

PRINT "Create section failure."
PRINT "Status =";RETURN STATUS
GOTO ABNORMAL EXIT

ELSE

PRINT "Section created."
END IF
$PAGE
$SBTTL "Do something with the section."
!Initialize the array and, therefore, the section
! (Leap years are ignored)
CUMULATIVE_DAYS(1) = 0 !No days before Jan

CUMULATIVE_DAYS (2) = CUMULATIVE_DAYS (1) + 31 !Days in Jan
CUMULATIVE_DAYS(3) = CUMULATIVE_DAYS(2) + 28 !Days in Feb
CUMULAT IVE_DAYS (4) = CUMULAT IVE_DAYS (3 } + 31 !Days in Mar
CUMULAT IVE_DAYS (5) = CUMULAT IVE_DAYS (4) + 3 0 !Days in Apr
CUMULATIVE_DAYS (6) = CUMULATIVE_DAYS (5 } + 31 !Days in May
CUMULAT IVE_DAYS (7) = CUMULAT IVE_DAYS (6) + 3 0 !Days in Jun
CUMULATIVE_DAYS (8) = CUMULATIVE_DAYS (7) + 31 !Days in Jul
CUMULAT IVE_DAYS (9) = CUMULAT IVE_DAYS (8) + 31 !Days in Aug
CUMULATIVE_DAYS(10)= CUMULATIVE_DAYS(9) + 30 !Days in Sep

CUMULATIVE DAYS (11) = CUMULAT IVE_DAYS (10) + 31 !Days in Oct
CUMULATIVE_DAYS(12)= CUMULATIVE_DAYS(11)+ 30 !Days in Nov

PRINT CUMULATIVE_DAYS(I) FOR I = 1 TO 12

! Erit s
NORMAL_EXIT:

ABNORMAL EXIT:

CLOSE 2
END PROGRAM

!Sanity check

Programming Techniques for VAXcluster Applications

• SECWOPEN.I~ZAR

.TITLE SECWOPEN

This is a routine called while a file is being opened
for use as the backing file for a writable global
section. This routine is similar to the read-only
useropen routine and is documented only where they
differ .

.IDENT /V1.00/

. PSECT SECWCOM P IC, OVR, REL, GBL, SHR, NOEXE, RD, WRT, LONG
;This PSECT name must match
the COMMON name in BASIC program

SEC CHAN: .BLKW 1

. PSECT CODE EXE, NOWRT, LONG
.ENTRY SECWOPEN, ^M<R2>

;Entry point must match
USEROPEN clause in BASIC program

MOVL 4 { AP) , R2

INSV #1, ~FAB$V CIF,-
~1, FAB$L FOP (R2)

INSV #1, ~FAB$V CTG,-
~1, FAB$L FOP (R2)

INSV $1, ~FAB$V UFO, -
~1, FAB$L FOP (R2)

INSV ~1, ~FAB$V UPI, -
~1, FAB$B SHR (R2)

$CREATE FAB = { R2)

BLBC R0, 10$

MOVW FAB$L STV(R2), SEC CHAN

MOVL ASS$ NORMAL, RO

10$: RET

.END

• RD_GL~BAL BUII~D.CUM

$!RO GLOBAL BUILD.COM

BASIC/LIST

MACRO/LIST

RO_GLOBAL

SECROPEN

LINK/MAP RO_GLOBAL,-

SECROPEN, -

SYS$INPUT/OPT

! This is the OPTIONS file .
! Option to cause the psect/common for the global section
! to be page aligned.
PSECT_ATTR=CUM_DAYS, PIC, OVR, REL, GBL, SHR, NOEXE, RD, NOWRT, PAGE
$ EXIT !RO GLOBAL BUILD

;Create if not there

;Call RMS to create the file

;SECWOPEN user open routine.

!Complile main program
!Assemble user open routine
!Now link them...

The main program
! The user open routine
! The options file follows this

Programming Techniques for VAXcluster Applications

• RO GLOBAL.BA~

PROGRAM RO_GLOBAL

$IDENT "V1.00"
TITLE "R/O GLOBAL"

$SBTTL "Declare and init data"

!Read-only global section example

OPTION TYPE = EXPLICIT,
SIZE = INTEGER LONG,

CONSTANT TYPE = INTEGER

DECLARE LONG

STRING

EXTERNAL LONG

EXTERNAL LONG

FLAGS ,
RETURN_STATUS,

FYLE,
SECTION NAME

DAY, ! Day of month from user
MONTH, !Month from user

I, !Loop index

INADDR(1 TO 2), !Desired section boundaries
RETADDR(1 TO 2),!Actual section boundaries

!Flags for section creation

!system Service return status
!Filename to map section to
! Name for section

FUNCTION SYS$CRMPSC

CONSTANT

SEC$M_GBL,
SS$ NORMAL

!Create and Map Section
! System Service

!Global section flag &
!System Service success value

!Common area to communicate with USEROPEN routine.

! The name of the common area must match the PSECT name in
! the USEROPEN routine.
t

COMMON (SECRCOM)
WORD SEC_CHAN

!Map the date array into a common area.
! This will get mapped to a private section.

COMMON (CUM DAYS)

LONG CUMULATIVE_DAYS(1 TO 12)
!Days in the year through preceding
! month.

FYLE _ "DATE INFO"

SECTION_NAME "RO GSECT"

PAGE
$SBTTL "Open file and create/map to
!OPEN the section file specifying a

OPEN FYLE FOR INPUT AS FILE #2, &
ORGANIZATION SEQUENTIAL, FIXED,
RECORDSIZE 512,

RECORDTYPE NONE,
USEROPEN SECROPEN,

i
!

DEFAULTNAME " . DAT"

section."
user open routine.

! This name must match the
.ENTRY name in the USEROPEN
routine .

Programming Techniques for VAXcluster Applications

!Create and map the section.
f

FLAGS (SEC$M GBL) !Make it a global section. {Private

! section is the default .)

INADDR(1) LOC (CUMULATIVE_DAYS (1)) !Longword containing the
! desired starting
! address of the section.

INADDR (2) = LOC (CUMULATIVE, DAYS (12)) ! Longword containing the
! desired ending address
! of the section.

RETURN STATUS = SYS$CRMPSC(! Arg Name &
INADDR (1) ! inadr &
RETADDR { 1) , ! retadr &

!acmode &
FLAGS BY VALUE, !flags &

SECTION~NAME, ! gsdnam &
!ident &

! re 1p ag &
SEC_CHAN BY VALUE, !chap &

1 BY VALUE, !pagcnt &

!vbn &
! prot &
!pfc

IF (RETURN STATUS AND 1) = 0 THEN !Always check return status.
PRINT "Create section failure . "
PRINT "Status =";RETURN STATUS

GOTO ABNORMAL EXIT

ELSE
PRINT "Section created." !Sanity check

END IF

!In case we should need to debug this, remove the continent
! character from the next line.
!PRINT CUMULATIVE DAYS (I) FOR I 1 TO 12

$PAGE
$SBTTL "Do something with the section."
!Read and use the information from the section.
i

READ LOOP:
± Get information from the user. The user is assumed to be
! a perfect typist, familiar with the Gregorian calendar and
! rationale.
t

PRINT

INPUT "Month (number) in question"; MONTH
GOTO NORMAL EXIT IF MONTH = 0 !Escape route

INPUT "Day in question";DAY

PRINT
PRINT USING " <0>#/<0>~ is day number ~$~.",

MONTH,DAY,CUMULATIVE DAYS (MONTH)+DAY

! This will print the answer in the form
! "nun/dd is day number nnn."

PRINT

GOTO READ_LOOP

! Exit s
NORMAL_EXIT:

ABNORMAL EXIT:

CLOSE 2

END PROGRAM

Programming Techniques for VAXcluster Applications

• SE~R,OPEN.I~ZAR

.TITLE SECROPEN

This is a routine called while a file is being opened
for use a the backing file for a read-only global
section. It allows us to modify the way RMS will handle
the file. It also allows access to the internal
channel number that would normally not be available
to a high level language.

.IDENT /V1.00/

. PSECT SECRCOM PIG, OVR, REL, GBL, SHR, NOEXE, RD, WRT, LONG
;This PSECT name must match

;COMMON name in BASIC program.
SEC CHAN: .BLKW 1

. PSECT CODE Ems, NOWRT, LONG

.ENTRY SECROPEN, ^M<R2>

Entry point name must match name
in USEROPEN clause in BASIC program.

MOVL 4(AP) R2

INSV #1, #FAB$V CTG,-
#1, FAB$L FOP (R2)

INSV #1, #FAB$V UFO,-
#1, FAB$L FOP (R2)

INSV #1, #FAB$V UPI, -
#1, FAB$B SHR (R2)

$OPEN FAB = (R2)

BLBC R0, 10$

MOVW FAB$L STV(RZ), SEC

MOVL #SS$ NORMAL, RO

10$: RET

. END

;Fetch FAB address

;Contiguous

;User File Open

;User Provided Interlocking

;Call RMS to open the file.
RO will contain completion status.

If error, return with it .

_GRAN ;Store channel number assigned
by RMS where mainline code
can find it .

;Return success

;SECROPEN user open routine.

Programming Techniques for VAXcluster Applications

6.3 Process Synchronization
When designing and implementing VAXcluster software, process
synchronization is critical for applications that have been decomposed
to execute discrete functional units of work on multiple VAXcluster
CPUs. when coordinating two or more processes to accomplish one
function, the programmer must use the programming technique of proees s
synchronization. Most interprocess communication requirements for
process synchronization can be implemented by using the following VMS
programming tools:

• Clusterwide process services

• Lock management system services

• DECnet-VAX communications

These techniques are described in the following sections of this manual.2

6.3.E Using Clusterwide Process Services
You can use the following process control system service calls to
synchronize process execution across VAXcluster node boundaries:

• $C~►NWAK —cancel wakeup

• $DELPRC delete process

• $FORCER —force image exit

• $RESUME resume process

• $SCHDWK schedule wake for process

• $SETPRI set priority

• $SUSPND suspend process

• $WAKE wake process

In addition to these process control system service calls, some of these
system services are supported from DCL commands. For more information
on using the process control system services, see the VMS System Services
Reference Manual, the VMS DCL Dictionary, and the VMS Version 5.2
New Features Manual.

Also, you can obtain clusterwide process information by using the process
information system services: $GETJPI or $PROCESS_SCAN with
$GETJPI. From DCL, you can use the F$GETJPI or F$CONTEXT lexical
functions. For more information on using the process information system
services, see the VMS System Services Reference Manual, the VMS DCL
Dictionary, and the VMS Version ~'.2 New Features Manual.

2 Lock management system services for process synchronization are slightly faster than DECnet techniques, but the
implementation of complex synchronizations using the VMS lock manager may be more difficult to maintain. Conversely,
if an application is being designed to run on a VAXcluster system and a network, use DECnet for process synchronizations
because lock management system services and clusterwide process services are cluster-specific.

s-~'I

Programming Techniques for VAXcluster Applications

Note: When you use either of the process control or process information
system services across VAXcluster nodes, the UIC-based
GROUP/WORLD privileges are processed exactly as they would
be on a single node. You are not allowed to do anything to a
process on another node unless you could do it on a local node.

You can design an application that coordinates the use of the process
control system services with the process information system services. In
Figure 6-2, a Master Process is using $PROCESS_SCAN with $GETJPI to
determine the process state of a selected group of Worker Processes. After
the eligible (non-active} processes are identified, the Master Process can
assign work and then use the appropriate process control system service to
wake the Worker Processes.

Figure 6-2 Coordinating the Use of Process Control System Services
with the Process Information System Services

~:~ ~~:

Worker
Process 1

(Hibernating)

Use $PROCESS SCAN
to See Who is Available
(not active)

Y

Use $WAKE to Wake Up
Hibernating Processes
and Assign Work

:.~.
':~~~ ~ = •

~~~ 

y: 

::, .:~: 
:~~: 

Worker 
Process 2 

{Hibernating) 

: : 

:;: i'' :...................... . 

., Worker 
Process 3 
(Active} 

MR-2845-RA 

Process Control System Services Programming Example 1 

In this example, 11/IASTER. COB is run on one VAXcluster CPU and 
SLAVE.COB on another. Either 11/IASTER.EXE or SLAVE.EXE can be 
run first. If 111IASTER.EXE is run first, work requests to add two numbers 
are stored in a file, and when SLAVE.EXE runs, the requests from the 
file are processed. If SLAVE.EXE runs first, there will be no requests in 
the work file, and SLAVE.EXE will hibernate until MASTER.EXE places 
a work request in the work file and issues awake-up (SYS$WAKE) to 
SLAVE . EXE . 

5--~2 



Programming Techniques for VAXcluster Applications 

• m~sTER.cos 
IDENTIFICATION DIVISION. 

PROGRAM-ID. APPL MASTER. 
* 

* This is the `master' program of this example application. In this 
* program we collect two numbers to be added by our slave. We put 
* the numbers in a file and wake up the slave. 
* 

* With VMS V5.2 the services used here ($HIBER and $WAKE) have been 
* extended to allow the master and slave to be on different nodes in 
* the cluster. We use the $PROCESS SCAN service to find the slave. 

* If the slave is not working now we can still collect numbers to be 
* added later. 
* 
* 

* Written in VAX COBOL V4.2-41, under VMS V5.2 
* 

* To link this program you must include the symbol definitions from 
* the $PSCANDEF macro. Put the following lines in a small MACRO 

* program, and link the resulting object file with this program. 
* 

* $pscandef GLOBAL 
* .end 
*_ 

ENVIRONMENT DIVISION. 

INPUT-OUTPUT SECTION. 

FILE-CONTROL. 

* The work-file is declared as optional so that it can be created by 
* the open statement if it does not already exist. 

SELECT OPTIONAL WORK-FILE ASSIGN TO "APPL WORK FILE" 

ORGANIZATION IS INDEXED 

ACCESS IS DYNAMIC 

RECORD KEY IS WORK-TIMESTAMP 

FILE STATUS IS FILE-STATUS. 

DATA DIVISION . 

FILE SECTION. 

FD WORK-FILE. 

Ol WORK RECORD. 

02 WORK-TIN~STAMP PIC S9 (18) COMP . 

02 WORK-SLAVE-NAME P IC X (15) . 

02 WORK-FIRST-NO P IC 9 (0 9) . 
02 WORK-SECOND-NO P IC 9 (0 9 ) . 

02 WORK-SUM-TOTAL PIC 9 (09) . 

WORKING-STORAGE SECTION. 

O1 RETURN-STATUS 

88 SS$_NORMAL 

88 SS$ NOMOREPROC 

O1 FILE-STATUS 

Ol IS-WORK-FILE-OPEN 
88 WORK-FILE-NOT-OPEN 

88 WORK-FILE-IS-OPEN 

O1 WS-SLAVE-NAME 

O1 WS-ENTERED-NAME 

Ol WS-NODE-WILDCARD 
O1 WS-PID-CONTEXT 

P IC S 9 (0 9 } COMP VALUE ZERO . 

VALUE EXTERNAL SS$_NORMAL. 

VALUE EXTERNAL SS$ NOMOREPROC. 

PIC X(02) 

PIC 9 (Ol) 

PIC X(15) 

PIC X (15) 

VALUE SPACES. 

VALUE 0. 

VALUE 0. 
VALUE 1. 

VALUE "APPL SLAVE 

VALUE SPACE. 

P IC X (01) VALUE "*" . 
P IC S 9 (0 9 ) COMP VALUE ZERO . 

H 



Programming Techniques for VAXcluster Applications 

O1 WS-PSCAN-ITMLST. 

02 BUF-LEN PIC 9 (04) COMP VALUE 1. 

02 ITM-CODE PIC 9 (04) COMP VALUE EXTERNAL PSCAN$_NODENAME. 

02 PTR USAGE IS POINTER VALUE REFERENCE WS-NODE-WILDCARD. 

02 ITM-FLAGS PIC 9 (09) COMP VALUE EXTERNAL PSCAN$M WILDCARD. 

02 BUF-LEN P IC 9 (0 4 ) COMP VALUE 10. 

02 ITM-CODE P IC 9 (0 4 ) COMP VALUE EXTERNAL PSCAN$_PRCNAM. 

02 PTR USAGE IS POINTER VALUE REFERENCE WS-SLAVE-NAME . 

02 ITM-FLAGS PIC 9 (09) COMP VALUE EXTERNAL PSCAN$M CASE BLIND. 

02 TERMINATOR PIC S9 (04) COMP VALUE ZERO. 

O1 WS-JPI-EVENT-FLAG PIC S9 (09) COMP VALUE ZERO. 

O1 WS-JPI-IOSB PIC S9 (18) COMP VALUE ZERO. 

O1 WS-SLAVE-P ID PIC S9 (09) COMP VALUE ZERO. 

Ol WS-JPI-ITMLST. 

02 BUF-LEN 

02 ITM-CODE 

02 PTR 

02 ITM-LEN 

02 TERMINATOR 

PIC S9 (04) COMP 

PIC S9 (04) COMP 

USAGE IS POINTER 

PIC S9(09) COMP 

PIC S9 (04) COMP 

O 1 WHAT -TO-DO P IC 9 (01) 

88 THE-OPERATOR-SAYS-QUIT 

88 THE-COWS-ARE-HOME 

VALUE 4. 

VALUE EXTERNAL JP I $ P ID . 

VALUE REFERENCE WS-SLAVE-PID. 

VALUE ZERO. 

VALUE ZERO. 

VALUE 0. 

VALUE 1. 

VALUE 1. 

PROCEDURE DIVISION. 

000-CONTROL. 

*+ 

* Before we start gathering work we ask for the name of the slave 

* and try to find if the slave is available for work. 
*_ 

PERFORM 500-TRY-TO-FIND-SLAVE THRU 500-END. 

*+ 

* This is the main control loop. Here we start the process of 

* collecting numbers. 
*_ 

PERFORM 050-LOOP THRU 050-END UNTIL THE-OPERATOR-SAYS-QUIT. 

*+ 

* The user is finished, so close the file if it was opened and exit. 
*_ 

IF WORK-FILE-IS-OPEN THEN CLOSE WORK-FILE. 

STOP RUN. 

000-END. 

0 5 0 -LOOP . 

*+ 

* Here's the main logic of the program. We get two numbers from the 

* user, then we get the system time for a unique key, write the 

* record in the data file, and then tell the slave to get busy adding 

* the numbers. 
*_ 

050-END. 

PERFORM 100-GET-NUMBERS THRU 100-END. 

IF THE-OPERATOR-SAYS-QUIT 
THEN NEXT SENTENCE 

ELSE PERFORM 200-GET-TIME-NAME THRU 200-END 
PERFORM 300-WRITE-RECORD THRU 300-END 

PERFORM 400-WAKE-SLAVE THRU 400-END. 



Programming Techniques for VAXcluster Applications 

100-GET-NUMBERS. 

*+ 

* Here we prepare the work. This involves getting two numbers that 
* are to be added together from the user. If the user enters zero 
* for both numbers, then the program will exit. 

*_ 

INITIALIZE WORK RECORD. 

*+ 

* Display a brief header for the user to read.... 
*_ 

DISPLAY " ". 

DISPLAY " This is the master program that will ask you for two " 
DISPLAY " numbers to be added together by the slave. " 
DISPLAY " (To exit enter 0 for both numbers.) " 
DISPLAY tr n 

*+ 

* Get the first number. 
*_ 

DISPLAY rr rr 

DISPLAY " Enter the first number " WITH NO ADVANCING. 
ACCEPT WORK-FIRST-NO WITH CONVERSION. 

*+ 

* Get the second number. 
*_ 

DISPLAY " " . 

DISPLAY " Enter the second number " WITH NO ADVANCING. 

ACCEPT WORK-SECOND-NO WITH CONVERSION. 

*+ 

* If the user enters zero for both numbers, then we stop asking 

* questions and exit from the program. 
*_ 

IF (WORK-FIRST-NO) = 0 AND (WORK-SECOND-NO = 0) 

THEN SET THE-OPERATOR-SAYS-QUIT TO TRUE. 

100-END. 

200-GET-TIME-NAME . 

*+ 

* If the user signaled that we should write a shutdown record, then 

* move a large number in to the timestamp field, other wise use the 

* system time. This ensures for at least a few more years that the 

* shutdown record will be the last record in the file. 
*_ 

CALL "SYS$GETTIM" USING BY REFERENCE WORK-TIMESTAMP 

GIVING RETURN-STATUS 

IF NOT S S $_NORMAL 

THEN DISPLAY "..Error getting system time...exiting.." 

CALL "LIB$STOP" USING BY VALUE RETURN-STATUS. 

*+ 

* Insert the name of the slave to do the work into the record. 
*_ 

MOVE WS-SLAVE-NAME TO WORK-SLAVE-NAME. 

200-END. 

300-WRITE-RECORD. 

*+ 

* Here we go to write the collected data into the file. If the file 

* has not been opened, then open it and note that it is open. 
*_ 

IF WORK-FILE-NOT-OPEN 

THEN OPEN I-O WORK-FILE ALLOWING ALL 

SET WORK-FILE-IS-OPEN TO TRUE. 



Programming Techniques for VAXcluster Applications 

*+ 
* Since we are using the clock time for a key, we should seldom get 

* an invalid condition here, but if we do, send a nice message and 

* exit. 
*_ 

WRITE WORK-RECORD 

INVALID DISPLAY "Invalid key (Status=" FILE-STATUS 

") on write of WORK-RECORD ...exiting" 

CALL "LIB$STOP" USING BY VALUE RETURN-STATUS. 

300-END. 

400-WAKE-SLAVE. 

*+ 

* Here we call the $WAKE service to let the slave know that there 

* is work to be done. We can use process name because we know that the 

* slave is in the same UIC group as the calling program. 
*_ 

CALL "SYS$WAKE" USING BY REFERENCE WS-SLAVE-P ID, 

OMITTED, 

GIVING RETURN-STATUS. 

*+ 

* Here we check to see if the slave has woken properly. If not, then 

* we display a message. 
*_ 

IF NOT SS$_NORNIAL 

THEN DISPLAY "Slave must have died....work will not be performed 

DISPLAY " until another slave is started.". 

400-END. 

500-TRY-TO-FIND-SLAVE. 

*+ 

* Here we ask the user the name of the slave to do the work. The 

* default offerred is the same as the default name for the slave . If 

* the user enters nothing, then we use the default value. 
*_ 

DISPLAY "Master process starting...." 

DISPLAY "Enter name of slave [APPL SLAVE] " WITH NO ADVANCING 

ACCEPT WS-ENTERED-NAME PROTECTED WITH CONVERSION 

IF WS-ENTERED-NAME NOT = SPACES 

THEN MOVE WS-ENTERED-NAME TO WS-SLAVE-NAME. 

*+ 

* Now we search for the slave process using the $PROCESS SCAN service 

* to establish a context for the following $GETJPI call. The node is 

* wildcarded to search for the slave on any node in the cluster. 
*_ 

CALL "SYS$PROCESS SCAN" USING BY REFERENCE WS-PID-CONTEXT 

BY REFERENCE WS-PSCAN-ITMLST 

GIVING RETURN-STATUS. 

IF NOT SS$_NORMAL 

THEN DISPLAY "..Error setting procscan context....exiting.." 

CALL "LIB$STOP" USING BY VALUE RETURN-STATUS. 



Programming Techniques for VAXcluster Applications 

*+ 
* Here we issue a $GETJP I call to return the P ID of the slave which 
* will be unique across the cluster. We will later use the PID in 
* the calls to $WAKE when we put the slave to work. 
*_ 

CALL "SYS$GETJPIW" USING BY VALUE WS-JPI-EVENT-FLAG 
BY REFERENCE WS-PID-CONTEXT 
OMITTED 
BY REFERENCE WS-JPI-ITMLST 

BY REFERENCE WS - JP I - IOSB 
OMITTED 

OMITTED 

GIVING RETURN-STATUS. 

IF SS$_NOMOREPROC 

THEN DISPLAY "..Slave process was not found...." WS-SLAVE-NAME 
DISPLAY " work will be performed when slave is started.... 

*+ 
* The GETJPI completes asynchronously so we MUST use the $SYNCH 

* service to ensure proper completion of the JPI call. 
*_ 

CALL "SYS$SYNCH" USING BY VALUE WS-JPI-EVENT-FLAG 

BY REFERENCE WS - JP I - IOSB 
GIVING RETURN-STATUS. 

~~ 

IF NOT SS$ NORMAL 
THEN DISPLAY "..Error getting proc information ....exiting.." 

CALL "LIB$STOP" USING BY VALUE RETURN-STATUS. 

500-END. 

• s~vE.coB 
IDENTIFICATION DIVISION. 

PROGRAM-ID. APPL SLAVE. 

*+ 

* This is the slave program that performs the work of addition in 
* our conceptual application. Once the master has collected the two 
* numbers to be added and written them into a file, the slave will 
* read the file and add the numbers together and display the result 
* on the screen. 
* 

* The program performs the work and then HIBERnates again, waiting 

* for another opportunity to serve its master. When the slave starts 
* work we must check to see if there is any work outstanding, and the 
* slave must not stop working until all the work is done. 
*_ 
* 

* Written in VAX COBOL V4.2-41, under VMS V5.2 
* 
*_ 

ENVIRONMENT DIVISION. 

INPUT-OUTPUT SECTION. 

FILE-CONTROL. 

* The work-file is listed as optional so the open will create 

* an empty file if one does not already exist. 

SELECT OPTIONAL WORK-FILE ASSIGN TO "APPL WORK FILE" 

ORGANIZATION IS INDEXED 

ACCESS IS DYNAMIC 
RECORD KEY IS WORK-TIMESTAMP. 



Programming Techniques for VAXcluster Applications 

DATA DIVISION. 

FILE SECTION. 

FD WORK-FILE. 

01 WORK RECORD . 
02 WORK-TIMESTAMP PIC S9 (18) COMP . 
02 WORK-SLAVE-NAME P IC X (15) . 
02 WORK-FIRST-NO PIC 9 (09) . 
02 WORK-SECOND-NO PIC 9 (09) . 
02 WORK-SUM-TOTAL PIC 9 (09) . 

WORKING-STORAGE SECTION. 

O1 RETURN-STATUS 

88 SS$ NORMAL 

O1 WORK-FILE-POINTER 

88 NOT-END-OF-FILE 

88 END-OF-FILE 

O1 IS-WORK-FILE-EMPTY 

88 WORK-FILE-NOT-EMPTY 

88 WORK-FILE-IS-EMPTY 

O1 WS-PROCESS-NAME 

O1 WS-ENTERED-NAME 

Ol WS-LEN-CTR 

O1 WHERE-ARE-THE-COWS 

88 THE-COWS-COME-HOME 
88 THE-COWS-ARE-HOME 

PROCEDURE DIVISION. 

000-CONTROL. 

P IC S 9 (0 9 ) CONS VALUE ZERO . 
VALUE EXTERNAL SS$ NORMAL. 

PIC 9(02) 

PIC 9(01) 

PIC X(15) 
PIC X (15} 
PIC 9 (09) COMP 

PIC 9 (02} 

VALUE ZERO. 

VALUE 0. 
VALUE 2. 

VALUE 0. 

VALUE 0. 
VALUE 1. 

VALUE "APPL SLAVE 

VALUE SPACES. 

VALUE ZERO. 

VALUE ZERO. 

VALUE 1. 

VALUE 1. 

*+ 

* Set the name of the slave to whatever the user enters as the 
* default . 
*_ 

PERFORM 300-SET-PROCESS-NAME THRU 300-END. 

*+ 
* Open the data file. 
*_ 

OPEN I-O WORK-FILE ALLOWING ALL 

~~ 

*+ 

* Here we start the main processing loop, basically an infinite loop. 
* For the purposes of this example, the slave must be interrupted by 
* control-Y. A proper application should have some way of sending a 
* message to the slave to cause a normal shutdown. 
*_ 

PERFORM 100-WORK-SLEEP-LOOP THRU 100-END UNTIL THE-COWS-COME-HOME. 
STOP RUN . 

000-END. 

100-WORK-SLEEP-LOOP. 
*+ 
* This is the main processing loop for the program. Here we start the 
* file pointer at the beginning and loop thru reading the file and 
* adding records, and when all the work is done we take a break. 
*_ 



Programming Techniques for VAXcluster Applications 

*+ 
* Set file pointer to first record in file. We assume there is 
* something in the file and set the pointer. If the operation fails, 
* the file must be empty. 

*_ 

SET WORK-FILE-NOT-EMPTY TO TRUE. 

SET NOT-END-OF-FILE TO TRUE. 
INITIALIZE WORK-RECORD. 

START WORK-FILE KEY NOT LESS THAN WORK-TIMESTAMP 

INVALID KEY DISPLAY "File is empty....waiting for work..." 
SET work-FILE-IS-EMPTY TO TRUE. 

*+ 

* If the file is not empty, then we will loop through it to see if 
* there is any work to be done. 

*_ 

IF work-FILE-NOT-EMPTY 

THEN SET BEGINNING-OF-FILE TO TRUE 

PERFORM 200-READ-LOOP THRU 200-END UNTIL END-OF-FILE. 

*+ 

* All the work has been done, so we can take a break. This section of 

* the program will place the slave process in a hibernate state waiting 

* to be awakened by the master. We can only take a short break and must 

* be ready when the master has more work for us....we go to sleep using 

* the $HIBER service. 
*_ 

DISPLAY "Sleeping " 

CALL "SYS$HIBER" GIVING RETURN-STATUS. 

100-END. 

200-READ-LOOP. 

*+ 

* This is the read loop that processes the data file and adds the 

* fields in the records displaying the work. We then delete the record 

* from the file. The addition should probably have some size/error 

* control in order to handle overflow conditions better. 
*_ 

*+ 

* Read the next record. If no more records, we can take a break. 
*_ 

READ WORK-FILE NEXT RECORD 

AT END SET END-OF-FILE TO TRUE 

GO TO 200-END. 
*+ 
* Just set this....we are no longer at the beginning or end of 
* the file. 

*_ 

SET MIDDLE-OF-FILE TO TRUE. 

*+ 

* Check record to see if this is our work and add them if it is... 
*_ 

IF (WS-PROCESS-NAME = WORK-SLAVE-NAME) 

THEN ADD WORK-FIRST-NO TO WORK-SECOND-NO GIVING WORK-SUM-TOTAL 

DISPLAY "Adding  " WORK-FIRST-NO WITH CONVERSION 

" + " WORK-SECOND-NO WITH CONVERSION 

" _ " WORK-SUM-TOTAL WITH CONVERSION 

DELETE WORK-FILE 

INVALID KEY DISPLAY "Invalid on delete...". 

200-END. 



Programming Techniques for VAXciuster Applications 

300-SET-PROCESS-NAME. 

*+ 

* Here we set our process name to whatever the user enters, or the 

* default if nothing is entered. The name must be unique so if the 

* task fails, we exit the program. 
*_ 

DISPLAY "Slave processing starting " 

DISPLAY "Enter name for slave [APPL SLAVE] " WITH NO ADVANCING 

ACCEPT WS-ENTERED-NAME PROTECTED WITH CONVERSION 

IF WS-ENTERED-NAME NOT = SPACES 

THEN MOVE WS-ENTERED-NAME TO WS-PROCESS-NAME. 

INSPECT WS-PROCESS-NAME TALLYING WS-LEN-CTR 

FOR CHARACTERS BEFORE INITIAL SPACE. 

*+ 
* 

*_ 
Here we set our process name. This must be unique or we must exit. 

CALL "SYS$SETPRN" USING BY DESCRIPTOR WS-PROCESS-NAME(1:WS-LEN-CTR) 

GIVING RETURN-STATUS. 

IF NOT S S $ NORMAL 

THEN DISPLAY "Already a slave by this name....exiting." 

CALL "LIB$STOP" USING BY VALUE RETURN-STATUS. 

300-END. 

END PROGRAM APPL_SLAVE. 

Process Information System Services —
Programming Example 2 

• PSCAN.BAS 

on error goto error routine 

Program name 

Author 

Date 

BASIC version --
VMS Version --

pscan.bas 

Digital 

11-May-89 

3.3 

5.2 or higher 

! Program Description 

This program demonstrates the use of the $PROCESS SCAN and 
$GETJPI system service calls to obtain information about 

processes on all nodes in a VAXcluster system. Process 
information is obtained and displayed on the terminal. 

! Compile/link Instructions 

t 

6-50 

In order to obtain the process scan definitions, create the 
following PSCANDEF.MAR macro program: 

$pscandef GLOBAL 
.END 

$MACRO PSCANDEF.MAR 

$BASIC P SCAN .BAS 
$LINK PSCAN, PSCANDEF 

Modification Log 

Date 

11-May-89 

Name 

----

Digital 

Modification 

Initial Release 



Programming Techniques for VAXcluster Applications 

t External References 

external long function sys$getjpiw(long by value, 
long BY REF „ 

item list by REF, 
iosb_record BY REF „), 

sys$process_scan(long BY REF, 
pscan_descriptors 

ots$cvt_1_tz(Long BY REF, 

string BY DESC, 

long BY VALUE,), 

sys$synch(long BY VALUE, 
iosb_record BY REF), 

lib$stop(long by value,,,,,) 

external long constant ss$_normal, & 
ss$_nomoreproc, & 
ss$_nopriv, & 
jpi$ nodename, & 
jpi$ username, & 
jpi$~rcnam, & 
jpi$~aid, ~ 
jpi$_imagname, & 
jpi$ nodename, & 
pscan$ nodename, & 
pscan$_getjpi buffer size, & 
pscan$m wildcard 

! special datatypes 

record item_list 

group item ( 5 ) 
variant 

case 
word 
word 
long 
long 

case 
long 

end variant 
end group item 

end record 

buffer_length 
item_code 
buffer_address 
length address 

list terminator 

declare item list getjpi_item list 

record pscan_descriptors 
group pscan_item ( 2 ) 

variant 
case 

word buffer_length 
word item_code 
long buffaddr_itemval 
long item spec flags 

case 
long list terminator 

end variant 
end group pscan_item 

end record 
declare pscan_descriptors pscan descriptor list 

by REF) , & 



Programming Techniques for VAXcluster Applications 

record print record record 
variant 
case 

string nodename = 6 
string pid = 8 
string username = 12 
string procname = 15 
string imagename = 30 

case 
string all_data = 71$ 

end variant 
end record 
declare print_record_record print_record 

record iosb_record 
word iosb field(1 to 4) 

end record 
declare iosb record 

! variable declaration sect ion 

declare word 

declare long 

map (getjpi user) string 

dim integer 

iosb 

getjpi username length, & 
getjpi~rcname_length, & 
get jpi~id_length, & 
getjpi_imagename length,& 
getjpi_nodename length, & 
pscan_nodename_length 

pid context, 
event_f lag, 
getjpi_status, 
synch_status, 
pscan_status, 
of s_st atus, 
getjpi pid, 
imagname_location, 
nodename_location, 
print_array subscript, 
array subscript, 
process_to~print, 
process_count 

node_wildcard 1~, & 
getjpi username = 12~, & 
get jpi~rcname = 15$, & 
getjpi_imagename = 80$, & 
getjpi_nodename = 6$, & 
ots_character_string = 8$ 

nodename_ascii_array(6~) 

! constant declaration section 

declare long constant pscan_getjpi buffer_size = 800 

declare word constant getjpi username_buff = 12$, 
get jpi~rcname buff = 15~, 
getjpi pid buff = 4~, 
getjpi_imagename buff = 64$, 
getjpi_nodename buff = 6~, 
ots_number_of_digits = 8~ 



Programming Techniques for VAXcluster Applications 

declare string constant title heading = "VAXcluster P rocess Scanner", & 
top_of_screen = "", & 
header_one = " NODE", & 

header two = " NAME P ID USERNAME" & 
~, TT 

+ " 

PROCESS NAME IMAGE NAME 

print line = 'LLLLL 'LLLLLLL 

'LLLLLLLLLLLLLL 'LLLLLLLLLLLLLLLLLLLLLLLLLL", 

dashed line 80 = " 

~, 

'LLLLLLLLLLL" & 

  ~~ 

+ " ,t 

center 80 = "'CCCCCCCCCCCCCCCCCCCCCCCCCCCCC" 

+ "CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC" 

t******************************************************************* 

! program control section 
t 

gosub build_item lists 
gosub call~rocess_scan 
gosub call_getjpi 
gosub display~rocess_info 
got o exit~rogram 

! This routine builds the item lists for both $getjpi and 
$process_scan. The process information returned by $getjpi includes: 

! username, process name, process identification (PID), image name, 
! and node name. 
r 

I Control information passed to $process scan includes a wildcard 

! directive and a process information buffer. The $getjpi call 

! utilizes this buffer to store information from processes obtained 

! from a remote node. Process information is packed into the buffer 
± on the remote node and transmitted back in a single message to the 

! calling node. For this example, information from approximately ten 

~ processes can be transmitted at once. Use of buffering can 
t significantly improve the performance of wildcard scans. 

build item lists: 

getjpi item list 
getjpi_item list: 

getjpi item list 
getjpi_item list: 

getjpi item list: 
getjpi item list: 
getjpi item list: 

getjpi_item list: 

getjpi item list: 

getjpi item list: 

getjpi item list: 

getjpi item_list: 

getjpi item list. 
getjpi_item list: 

getjpi item list: 
getjpi_item list: 

:item(0) . 
:item(0) . 
:item(0) . 
:item(0) . 

. item (1) . 
item { 1) . 
item (1) . 
item(1) . 

:item(2) . 
item (2) . 
item { 2) . 

.item(2) . 
:item(3) . 
:item(3) . 
:item(3) . 
item (3) . 

getjpi item_list : :item (4) . 
getjpi item list : :item (4) . 
getjpi item list : :item (4) . 
get jpi_item list : :item (4) . 

get jpi_item list : :item (5) 

:buffer_length = getjpi username buff 

:item code = jpi$_username 

:buffer_address = loc(getjpi username) 

:length_address = & 
loc(getjpi_username_length) 

:buffer_length = getjpi~rcname buff 
:item code = jpi$~rcnam 
:buffer_address = loc(getjpi~rcname} 

:length_address = & 
loc(getjpi~rcname_length) 

:buffer length = getjpi~id buff 
:item code = jpi$~id 
buffer_address = loc (get jpi~id) 
:length address = loc(getjpi~id_length) 

:buffer_length = getjpi_imagename buff 

:item code = jpi$_imagname 

:buffer_address = loc(getjpi_imagename) 

:length_address = & 
loc(getjpi_imagename_length} 

:buffer_length = getjpi_nodename buff 

:item code = jpi$_nodename 
:buffer_address = loc(getjpi_nodename) 

:length_address = & 
loc(getjpi_nodename_length) 

:list terminator = 0~ 



Programming Techniques for VAXcluster Applications 

! assign pscan items 
f 

node_wildcard = "*" 
pscan_descriptor_list::pscan_item(0)::buffer_length = & 

len (node wildcard) 
pscan_descriptor_list::pscan_item(0)::item code = & 

pscan$ nodename 
pscan_descriptor_list::pscan_item(0)::buffaddr_itemval = & 

loc(node_wildcard) 

pscan_descriptor_list::pscan_item(0)::item spec_flags = & 
pscan$m wildcard 

pscan_descriptor_list::pscan_item(1)::buffer_length = 0~ 
pscan_descriptor_list::pscan_item(1)::item code = & 

pscan$_getjpi_buffer_size 

pscan_descriptor_list::pscan_item(1)::buffaddr itemval = & 
pscan_getjpi buffer_size 

pscan_descriptor_list::pscan_item(1)::item spec_flags = 0$ 

pscan_descriptor_list::pscan_item(2)::list_terminator = 0~ 

return ± end build item lists 

± Call the $process_scan function to create a wildcard context for 
± use by $getjpi. 

call~rocess_scan: 

pscan_status = sys$process_scan(pid context by ref, & 
pscan_descriptor_list by ref) 

if (pscan_status and 1$} = 0$ 
then 

call lib$stop(pscan_status by value,,,,,) 
end if 

return ± exit call~rocess_scan 

! The $getjpi call utilizes the wildcard context established by 
! $process_scan to obtain information about processes across a 
! VAXcluster system. The context describes the selective search for 
! $getjpi. Once process information is obtained, it is stored in the 
! print_line_array for further processing. 
t 

! ***** Important ***** 
t 

! Since all remote $getjpi calls are asynchronous, a call to $synch 
! is used to wait for the completion of $getjpi. The status of the 
! call is returned in getjpi_status. The status of the remote 
! operation is returned in the I/O status block (iosb). Alternatively, 
! an ast could have been used to notify this program that $getjpi has 
! completed. Regardless of the method, all $getjpi calls MUST be 
! synchronized. 

call_getjpi: 

print_array subscript = 50~ 
dim string print_line_array(print array subscript) 
get jpi_status = sys$get jpiw (event_flag BY VALUE, ~ 

pid_context BY REF „ ~ 
getjpi_item list BY REF, ~ 
iosb BY REF„ ) 



Programming Techniques for VAXcluster Applications 

synch_status = sys$synch(event_flag BY VALUE, iosb BY REF) 

if (synch_status and 1~) = 0~ 
then 

call lib$stop(synch_status by value,,,,,) 
else 

if (iosb : : iosb_field (1) <> ss$_nomoreproc) and 
(iosb : : iosb_field (1) <> ss$_normal) and 
(iosb: :iosb_field(1) <> ss$_nopriv) 
then 

call lib$stop(synch_status by value,,,,,) 
end i f 

end i f 

while iosb::iosb field{1) <> ss$ nomoreproc 

if iosb : : iosb_field {1) <> ss$_nopriv 
then 

imagname_location = 1 
until imagname_location = 0 

imagname_location = pos (getjpi_imagename, "] ", 0$) 
getjpi_imagename = right$(getjpi_imagename, & 

imagname_location + 1) 

next 

ots_status = ots$cvt_1_tz(getjpi~id by ref, & 
ots_character_string by desc, & 

ots_number_of_digits by value,) 

change getjpi_nodename to nodename_ascii_array 

for array subscript = 0 to 6 

if nodename_ascii_array(array_subscript) = 0 

then 
nodename_ascii_array(array_subscript) = 32 

end if 
next array subscript 
change nodename_ascii_array to getjpi_nodename 

print_record::nodename = getjpi_nodename 

print_record::pid = ots_character_string 

print_record::username =getjpi username 

print_record::procname = edit$(getjpi_prcname,4~) 

print_record::imagename = edit$(getjpi_imagename,4$) 

process_count = process_count + 1 

if process_count > print_array subscript 

then 
gosub redimension~rint_line_array 

else 
print_line_array(process_count) = print_record::all_data 

end if 
end i f 

getjpi_status = sys$getjpiw( event_flag BY VALUE,pid context BY REF „ 

getjpi_item list BY REF, 
iosb by REF„ ) 

synch_status = sys$synch(event_flag BY VALUE, iosb BY REF) 

if (synch_status and 1~) = 0~ 
then 

call lib$stop(synch_status by value,,,,,) 

else 
if (iosb: : iosb_field (1) <> ss$_nomoreproc) and & 

(iosb: : iosb_field (1) <> ss$_normal) and & 
(iosb: : iosb_field (1) <> ss$_nopriv) 
then 

call lib$stop(synch_status by value,,,,,) 

end if 
end if 

next 

return ! end of call getjpi 

! Display information collected during the process search on the 

terminal. 

f>-55 



Programming Techniques for VAXcluster Applications 

display~rocess_info 

print top_of_screen 
print using center_80, title heading 
print "" 
print header_one 
print header_two 
print dashed line_80 
print "" 

for process_to~rint = 1 to process count 
print_record::all data = print_line_array(process_to~rint) 
print using print line, print_record::nodename, & 

print_record::pid, & 
print record::username, & 
print_record::procname, & 
print_record::imagename 

next process_to~rint 

return ± end display~rocess_info 

This routine dynamically allocates array storage as required 
in intervals of 50 elements. 

redimension~rint_line_array: 

dim string save~rint line_array(print_array subscript) 
for array subscript = 1 to print array subscript 

save~rint_line_array(array subscript) _ & 
print line array array subscript) 

next array subscript 

print array subscript = print array subscript + 1 
dim string print line_array(print_array subscript) 
for array subscript = 1 to (process count - 1$) 

print line array(array subscript) _ & 
save~rint line_array(array subscript) 

next array subscript 
print_line_array(process_count) = print_record::all_data 

return t 

error routine: 

resume exit~rogram 

exit~rogram 

end 

• PSCAN.BAS TERMINAL DISPLAY 

VAXcluster Process Scanner 

NODE 
NAME P ID USERNAME PROCESS NAME IMAGE NAME 

VAXA 20205C2F SMITH SMITH_1 
VAXB 27E00079 SMITH SMITH 2 PSCAN 2.EXE;24 



Programming Techniques for VAXcluster Applications 

6.3.2 Using Lock Management System Services 
Lock management system services offer several programming techniques. 
The flexibility of lock management system services is based upon your 
selection of the parameters for each instance of a lock management 
system service call. Lock management system services have the following 
parameters: 

• Event flag efn 

• Lock mode lkmode 

• Loek status block lksb 

• Modify lock action flags 

• Resource name resnam 

• Parent lock ID parid 

• Address of AST routine astadr 

• Parameter passed to AST routine astprm 

• Address of blocking AST routine blkast 

• Access mode acmode 

Table 6-2 presents the required and optional [ ]parameters for each of the 
lock management system services. 

Table 6-2 Parameters for Lack Management System Services 

Function 
System 
Service Parameters 

Queue a new lock or $ENQ' 
lock conversion on a 
resource 

Queue a lock request $ENQW' 
and wait 

Release locks and $DEQ' 
cancel lock requests 

Get information about $GETLKI' 
the lock database 

Queue an information $G ETLKIW' 
request and wait 

[efn], lkmode, Iksb, [flags], 
[resnam], [parid], [astadr], 
[astprm], [blkast], [acmode], nullarg 

[efn], lkmode, Iksb, [flags], 
[resnam], [paridJ, [astadr], 
[astprm], [blkast], [acmode], nullarg 

[Ikid], [valblk], (acmode], [flags] 

[efn], Ikidadr, itmist, 
[iosb], [astadr], [astprm], nullarg 

[efn], Ikidadr, itmist, 
[iosb], [astadr], [astprm], nullarg 

' For more information on the arguments used with the lock management system 
services parameters, see the VMS System Services Reference Manual. 

s-s7 



Programming Techniques for VAXcluster Applications 

By selecting the appropriate parameter values for each lock management 
system service call, you can implement process synchronization techniques 
using the following fundamental capabilities of lock management system 
services: 

• Simple lock 

• AST and blocking AST 

• Lock value block 

6.3.2.y Using Simple Lock for Exclusive Access to a Shared Resource 
If Process_A executes a lock request and the lock mode (lkmode) parameter 
specifies an EX lock mode for a resource name, by convention, when the 
lock is granted, Process_A has exclusive access to the resource. You 
can use an exclusive lock to synchronize clusterwide access to a critical 
resource. For example, you can use an EX lock on a resource name, that 
represents a shared global section, to coordinate access to the global 
section so only one process at a time can modify the global section. 

Using Simple Lock Conversion for Event Notification 

Lock conversion is a variation of using an EX lock mode for exclusive 
access. By converting the lock on a resource name to another lock mode, 
you can establish a new lock condition that may, indirectly, act as a signal 
to other processes. For example, Process_A on Node A is holding an EX 
lock on a resource name for updating, and upon completion, Process_A 
converts the EX lock mode to a CR lock mode. Then, all other processes 
in the VAXcluster system with locking requests for that resource in the 
waiting queue are serviced by the distributed VMS lock manager on a 
first-in /first-out basis. 

6.3.2.2 Using Completion ASTs and Blocking ASTs with Lock Management 
System Services to Synchronize Simultaneous Processes 
Using completion ASTs and blocking ASTs with lock management system 
services allows you to send direct signals for clusterwide, interprocess 
communication. By specifying the required parameters for an AST or 
blocking AST, you can implement the following types of interprocess 
communications 

• Deadman lock 

• Doorbell lock 



Programming Techniques for VAXcluster Applications 

Deadman Lock 

There are two cooperating processes (call them SERVER and CLIENT) 
that communicate with each other and are dependent upon each other; if 
one process fails, the other must also terminate. For example, if SERVER 
is the only process providing access to a database, and SERVER fails, 
then CLIENT needs an immediate notification. By implementing a lock 
strategy called a deadman lock, each process requests a lock with an AST 
on the lock held by the other process. when either process terminates, the 
lock requested by the other process is granted, triggering the AST, and the 
existing process executes an AST routine to notify the operator console and 
terminate the remaining process. Figure f~3 illustrates a deadman lock 
scheme. 

Figure 6-~3 Deadman Lock Scheme 

Client 

Requests and 
Receives EX 
Lock for Green 

Requests EX Lock 
with Completion AST 
for Red 

Requests EX Lock 
with Completion AST 
for Green 

MR-2846-RA 

Doorbell Lock 

A doorbell lock strategy allows one process (VISITOR) to notify another 
process (BUTLER) that there is work to be done. In order to be notified, 
the BUTLER holds a lock on the resource name DOORBELL. To 
implement the doorbell scheme, the BUTLER process acquires a PW 
lock mode on DOORBELL and specifies a blocking AST. At this point, the 
BUTLER process can hibernate and wait for notification of work to be 
done. 



Programming Techniques for VAXcluster Applications 

When the VISITOR process has work for the BUTLER process, the 
VISITOR requests a PW lock mode on DOORBELL. This triggers the 
BUTLER's blocking AST. The BUTLER process then converts the PW 
mode lock on DOORBELL to CR mode. This allows the VISITOR's PW 
lock request to be granted. When the VISITOR acquires the PW lock, 
the VISITOR knows that the BUTLER "heard" the DOORBELL and can 
release the PW lock. 

When the BUTLER process converts the PW lock to a CR lock for 
DOORBELL, the BUTLER process also requests (using an $ENQW) 
an EX lock for the resource DOORBELL. When the VISITOR process 
releases the PW lock, the BUTLER process acquires the EX lock and 
begins performing the appropriate "work" activities. When the BUTLER 
process completes the "work," the EX lock for DOORBELL is converted to 
a PW lock with a blocking AST, and the BUTLER process goes back into 
hibernation until the doorbell rings again. The doorbell lock scheme is 
represented in Figure 6-4. 

Note: The doorbell lock scheme illustrated in Figure 6-4 is a simplified 
example. when implementing a doorbell lock scheme, you must 
be aware that timing windows may exist. In this example, the 
BUTLER process does not get AST notification of additional 
VISITOR requests until the BUTLER process has completed "work" 
firom the first VISITOR request for work. In this doorbell scheme, 
the VISITUR process must operate on the assumption that a delay 
in acquisition of the resource DUQRBELL means the BUTLER 
must be busy. 



Programming Techniques for VAXcluster Applications 

Figure 6--4 Doorbell Lock Scheme 

Time 

EX for DOORBELL 
Converted to PW 
with Blocking AST 

M R-2847-RA 

s-sy 



Programming Techniques for VAXcluster Applications 

Doorbell Scheme Using a Blocking AST —
Programming Exarr~le 

The following is an example FORTRAN application that implements the 
doorbell scheme described in Figure 6-4. 

• BUTLER.F~R 

C 

C 

C 

C 

This program uses the blocking AST feature of 

the VMS lock manager to implement a doorbell lock. 

IMPLICIT 

INCLUDE 

CHARACTER*8 

CHARACTER*16 

D IMENS ION 
COMMON /LOCK_ 

COMMON 

VOLATILE 

EXTERNAL 

INTEGER*4 (A-Z) 

' ($ LCKDEF) ' 
SHARE ITEM /'DOORBELL' / 

VAL BLOCK 

S TATBLK (2 ) 
STAT_BLK/ STATBLK,VAL_BLOCK 

DONE,WAS SLEEPING,ACTIVE REQUESTS 

DONE,WAS SLEEPING,ACTIVE REQUESTS 

BLOCKING 

WAS_SLEEPING = 0 

DONE = 0 

C Place a PW lock on DOORBELL 

TYPE *, 'Placing a PW lock on DOORBELL...' 

S TAT= SYS $ENQW (%VAL (1) , %VAL ( LCK$K PWMODE) , 

C 

C 

C 

C 

C 
C 

C 

C 

C 

C 

C 

C 

1 
2 
3 
IF (.NOT. 

IF (.NOT. 

S TATBLK„ 
SHARE_ITEM,,,, 

BLOCKING„ ) 
STAT) CALL LIB$STOP ( %VAL ( STAT) ) 
S TATBLK (1) ) CALL LIB $STOP (%VAL (S TATBLK (1)) ) 

This is the section where the work is done 

DO WHILE (.NOT. DONE) 

TYPE *, ' About to sleep waiting for work' 
STAT = SYS$HIBER() 

IF ( .NOT . STAT) CALL LIB$STOP ( %VAL ( STAT) ) 

TYPE *, ' Returned from AST about to convert' 
FLAG= LCK$M_CONVERT 

STAT= SYS$ENQW (%VAL (1) , %VAL ( LCK$K_PWMODE) , 

1 S TATBLK, %VAL (FLAG) , 
2 SHARE_ITEM,,,, 

3 BLOCKING „ ) 

IF ( .NOT . STAT) CALL LIB$STOP ( %VAL ( STAT} ) 

IF ( .NOT . S TATBLK (1) ) CALL LIB $STOP (%VAL (S TATBLK (1)) ) 
TYPE *, ' Lock converted from NL to PW mode' 

END DO 

TYPE *, 'Finished.' 

END 

SUBROUTINE BLOCKING 

This is used as a blocking AST routine. It 
may be entered from hibernation or when the 
the main converts to PW with blocking. 



Programming Techniques for VAXcluster Applications 

IMPLICIT 

INCLUDE 

CHARACTER*8 

CHARACTER*16 

DIMENSION 
COMMON /LOCK_ 

VOLATILE 

COMMON 

VOLATILE 

INTEGER (A-Z) 

' ( $ LCKDEF) ' 
SHARE ITEM /'DOORBELL' / 
VAL BLOCK 

LCK_STATBLK(2) 

STAT_BLK/ LCK_STATBLK,LCK_VAL_BLOCK 

LCK_STATBLK,LCK_VAL_BLOCK 

DONE,WAS_SLEEP ING,ACTIVE_REQUESTS 

DONE,WAS SLEEP ING,ACTIVE REQUESTS 

TYPE *, 'MY lock is blocking another lock.' 

STAT=SYS$WAKE(,) 

IF ( .NOT . STAT) CALL LIB$STOP { $VAL ( STAT) ) 

Convert PW lock to CR so VISITOR gets the lock. 

TYPE *, 'Converting to concurrent read' 

FLAG= LCK$M_CONVERT 

SEVERITY= SYS $ENQW ($VAL (3) , $VAL ( LCK$K_CRMODE) , 

1 LCK_STATBLK, 

2 $VAL ( FLAG) , 

3 SHARE_ITEM,,,,,,) 

IF (.NOT. SEVERITY) CALL LIB$STOP( $VAL( SEVERITY)) 

IF ( .NOT . LCK S TATBLK (1) ) CALL LIB$ S TOP ($VAL (LCK_S TATBLK (1)) ) 

Try to get the lock back. When I do the VISITO~'t has 

written the work request. 

SEVERITY= SYS $ENQW ($VAL (2) , $VAL ( LCK$K_EXNIODE) , 

1 LCK_STATBLK, 

2 $VAL ( FLAG) , 

3 SHARE_ITEM,,,,,,) 

IF ( .NOT . SEVERITY) CALL LIB$ STOP ( $VAL { SEVERITY) ) 

IF ( .NOT . LCK STATBLK (1) ) CALL LIB$ STOP ($VAL (LCK S TATBLK (1)) ) 

Here the program would get the work request and then perform 

the requested work. 

DO I=1, 50 
TYPE *, 'Doing work' 

END DO 

TYPE *, 'Finished work' 

RETURN 

END 

f-63 



Programming Techniques for VAXciuster Applications 

• VISITQR.FQR 

C This program queues rings to the BUTLER's "doorbell," 

C places a work request in a known location, and then 
C gives up the lock. 

C 

IMPLICIT INTEGER*4 (A-Z} 

INCLUDE ' ($LCKDEF)' 

CHARACTER*8 SHARE_ITEM /'DOORBELL'/ 

CHARACTER*16 VAL_BLOCK 

DIMENSION STATBLK (2 ) 

COMMON /LOCK STAT BLK/ STATBLK, VAL BLOCK 
C 

C Place a PW lock request on DOORBELL 

TYPE *, 'Placing a PW lock on DOORBELL ... ' 

STAT= SYS $ENQW (%VAL (1) , %VAL ( LCK$K_PWMODE } , 

1 STATBLK„ 

2 SHARE_ITEM,,,,,,) 

IF (.NOT . STAT) CALL LIB$STOP ( %VAL ( STAT) ) 
IF (.NOT . STATBLK (1)) CALL LIB$ STOP (%VAL (STATBLK (1)) ) 

C 

C 

C 

C 

C 

C 

c 

C 

In an actual application this program would place a work 

request in a file or possibly in the lock value block. 

DO I = 1, 3 0 

TYPE *, 'Placing work request in known location' 
END DO 

Give up the PW lock on DOORBELL so that the BUTLER knows 
the work request has been written. 

STAT= SYS $ DEQ (%VAL (STATBLK (2)) , , , ) 
IF (.NOT . STAT) CALL LIB$STOP ( %VAL ( STAT) ) 
TYPE *, 'Finished.' 

END 

6.3.2.3 Using the Lock Vafue Block to Pass Information 
The lock value block illustrated in Figure 6-5 is a 16-byte area in the lock 
status block for data storage. The use of the lock value block is optional. 
By specifying an appropriate value for the address of the lock status 
block (lksb}, allocating memory for the lock value block, and setting the 
LCK$M VALBLK flag for the lksb, you can read and possibly modify the 
contents of the lock value block. 

• You can read the lock value block when: 

A new lock is granted. 

The existing lock is converted to a higher lock mode. 

• You can modify and store the lock value block when: 

The lock is dequeued from an EX or PW lock mode. 

The lock is converted from EX or PW lock mode to the same or 
lower mode. 



Programming Techniques for VAXcluster Applications 

Figure f-ti5 Format of Lock Status Block 

Reserved ~ Condition Code 

Lock ID 

{OPTIONAL} 
16-Byte Lock Value Block 

{Used Only When LCK$M_VALBLK is Set) 

M R-2848-RA 

Passing information with the Lock Value Bfock —
Programming Example 

In this programming example, first WR,ITELOCK.EXE requests a PW 
lock with a blocking AST for the resource name DATABASE . Then, 
READLOCK.EXE executes and requests a PR lock mode for the resource 
DATABASE. The blocking AST routine of WRITELOCK.EXE executes, 
and WRITELOCK.EXE converts the PW lock mode to a NL lock mode 
and writes 16 bytes of information to the lock value block for the resource 
name DATABASE. After READLOCK.EXE acquires the PR lock mode 
for DATABASE, READLOCK.EXE reads the lock value block written by 
WRITELOCK.EXE. 

o WRIZ'ELQ~K.FOR 

c 
c 
c 
c 
c 
c 
c 

C 

WRITELOCK.FOR is executed first. This program 
uses the blocking AST feature of the VMS lock manager 
for notification that another process (READLOCK.FOR) 
has placed a locking request for the resource DATABASE. 
WRITELOCK.FOR writes 16 bytes of information to the lock value 
block of DATABASE and converts the PW lock to a NL lock. 

IMPLICIT 

INCLUDE 

CHARACTER*8 

CHARACTER*16 

DIMENSION 

COMMON /LOCK_ 

COMMON 

VOLATILE 

EXTERNAL 

INTEGER*4 (A-Z) 

' ($ LCKDEF } ' 

SHARE ITEM /' DATABASE' / 
VAL_BLOCK 

S TATBLK (2 ) 
STAT_BLK/ STATBLK, VAL_BLOCK 

HAVELOCK 

HAVELOCK 

BLOCKING 

DONE = 0 

c Place a PW lock on DATABASE. 

TYPE *, 'Placing a PW lock on DATABASE...' 
30 STAT= SYS$ENQW ($VAL (1) , $VAL ( LCK$K_PWMODE) , 

1 STATBLK„ 

2 SHARE_ITEM, , , , 
3 BLOCKING„ ) 
IF (.NOT . STAT) CALL LIB$STOP ( $VAL ( STAT) ) 
IF (.NOT . STATBLK (1)) CALL LIB$STOP (~SVAL (STATBLK (1)) ) 

c 
40 HAVELOCK = 1 

DO 70 _WHILE ((HAVELOCK .EQ. 1) 

1 .AND . (DONE . EQ . 0) ) 

s-s5 



Programming Techniques for VAXcluster Applications 

c Operations which require write access 

c to the resource could be performed here. 

c Set DONE to 1 when finished. 

70 END DO 

c 
c Convert PW lock to NL and write to the lock value block. 

VAL_BLOCK='1234567812345678' 

FLAG= LCK$M CONVERT .OR. LCK$M VALBLK 

SEVERITY= SYS$ENQW($VAL(2), $VAL( LCK$K NLMODE}, 

1 S TATBLK, 

2 $VAL ( FLAG) , 

3 SHARE_ITEM,,,...) 

IF (.NOT. SEVERITY) CALL LIB$STOP{ OVAL( SEVERITY)) 

IF ( .NOT . S TATBLK (1) ) CALL LIB$ S TOP (o VAL (S TATBLK (1)) ) 

TYPE *, ' Lock converted from PW to NL mode' 

c 
c 
c 
c 
c 

c 
c 

c 
c 
c 
c 
c 

c 

Here we could test if done = 1. If not, 

we should call $ENQW to convert lock mode to PW 

and go back to statement 40. 

TYPE *, ' Finished . ' 

END 

SUBROUTINE BLOCKING 

This is used as a blocking AST routine. It 

tells the main program (by means of a flag) to 
release its lock, which is blocking another lock. 

IMPLICIT 

COMMON 

VOLATILE 

INTEGER (A-Z) 

HAVELOCK 

HAVELOCK 

HAVELOCK = 0 

TYPE *, 'Our lock is blocking another lock.' 

RETURN 

END 

• LOCK.F~R 

c This program is run after WRITELOCK.FOR executes. 

c READLOCK.FOR enqueues a null lock on the 

c resource DATABASE, which is later converted 

c to a protected read (PR) lock which triggers the blocking 

c AST held by WRITELOCK.FOR on the resource DATABASE. 

c When READLOCK acquires the PR lock, the lock value block 

c o f DATABASE i s read . 
c 

IMPLICIT 

INCLUDE 

INCLUDE 

CHARACTER*8 
CHARACTER*16 

DIMENSION 

COMMON /LOCK 

INTEGER*4 (A-Z ) 

' ($ LCKDEF) ' 

' ($SSDEF)' 

SHAFtE_ITEM /'DATABASE' / 
VAL_BLOCK 

S TATBLK (2 ) 
STAT BLK/ STATBLK, VAL BLOCK 

c 
c Place a null lock on DATABASE. 

c 
TYPE *, 'Placing a NL lock on the resource...' 

STAT= SYS $ENQW ($VAL { 1) , $VAL ( LCK$K_NLMODE) , 

1 STATBLK„ 

2 SHARE_ITEM,,,,,,) 

IF ( .NOT . STAT) CALL LIB$STOP ( $VAL ( STAT) ) 
IF ( .NOT . STATBLK (1) ) CALL LIB$ STOP ( $VAL (STATBLK (1)) ) 

c 
c Operations not requiring access to the 
c resource could be performed here. 
c 
c Convert null lock to PR. 

s—ss 



Programming Techniques for VAXcluster Applications 

c 
FLAG = LCK$M_CONVERT .OR. LCK$M_VALBLK 

TYPE *, 'Converting lock from NL to PR mode...' 

SEVERITY= SYS $ENQW (%VAL (2) , $VAL ( LCK$K_PRMODE) , 

1 STATBLK, 

2 %VAL ( FLAG) , 

3 SHARE_ITEM,,,,,,) 

IF (.NOT . SEVERITY) CALL LIB$STOP ( OVAL ( SEVERITY) ) 

c 
IF (STATBLK (1) . EQ . S S $ VALNOTVALID) THEN 

c 
c Perform appropriate actions based on knowledge that a 
c code with the capability to write to the value block 
c has terminated unexpectedly. 

c 
TYPE *, 'Value block is invalid' 

ELSE IF (.NOT. STATBLK(1)) THEN 

CALL LIB$ S TOP ($VAI, (STATBLK (1)) ) 

ELSE 

c 
c Operations requiring access to the resource 
c could be performed here. 
c 

TYPE *, 'Value block contains ' , VAL BLOCK 

END IF 

TYPE *, 'Finished.' 

END 

For more information on using the LCK$M VALBLK flag to allocate 
memory for the lock value block, see the Introduction to VMS System 
Services and the VMS ,System Services Reference Manual. 

Using the Lock Value Block to Determine Who is First 

When multiple processes of an application are attempting to access a 
common resource, it can be important for any process accessing the shared 
resource to determine if it is the first to access the resource. For example, 
if multiple VAXcluster nodes are executing a SERVER process accessing 
a shared database and the VAXcluster system enters a state transition, 
it may be important for a SERVER process re-accessing the database to 
perform cleanup activities. Once the VAXcluster system is reestablished, 
the first SERVER process started in the VAXcluster system must delete 
invalid data Ieft in the database from before the system failure. Only 
the first SERVER process must perform a cleanup routine to identify any 
invalid data in the database; other SERVERS must not because they might 
delete vale d data from SERVERS that have already started. 

By using the lock value block (see Figure 6-6), any SERVER process 
accessing the database can identify if it is first. This is accomplished 
by having each S~;RVER request an EX mode lock for resource name 
STARTUP. Only the first SERVER process to request the EX lock on 
STARTUP is granted the lock; all other SERVER processes are placed on 
the waiting queue. The first SERVER to be granted the EX lock reads the 
lock value block for the resource name STARTUP. If the lock value block is 
zeros, then the SERVER process is the first process to access the database. 
The first SERVER process continues to hold the EX lock on STARTUP 
and performs a cleanup routine. (If the lock value block is non-zero, the 
process converts the EX lock to a NL and performs regular work.) 



Programming Techniques for VAXcluster Applications 

.After completing the cleanup routine, the first SERVER process writes 
"DON'T DELETE" into the lock value block. Then, the first SERVER 
process converts the EX lock on STARTUP to a NL lock. Consequently, 
after the first SERVER process converts the EX lock to a NL lock, the 
SERVER process at the top of the waiting queue acquires the EX lock for 
resource name STARTUP. This SERVER process then reads the Ioek value 
block and determines if the contents are zeros. when the SERVER process 
evaluates the lock value block as non-zero, the SERVER process converts 
the EX lock to a NL and performs regular work. 

Figure 6—~6 Determining Who is First with a Lock Value Block Scheme 

Proflesses 
Request EX 
for STARTUP ~ 

~equ~s 
cx,e~,ed 

3 10 C 

~.~ Distributed 
Lock Manager 

11 (followed by 4 to 6 } Queue 

F rst Process 
Gets Lock ~ 

Reads Lock 
Value Block 

Cleanup 
Routine 

Write to 
Lock Value 
Block 

EX Converted to NULL 
Lock STARTUP 
Relinquished g 

Not Written 
to Lock 
Value Block 

EX Converted to NULL 
Lock STARTUP 
Re~nquished B 

MR-2849-RA 



Programming Techniques for VAXcluster Applications 

Notes on Figure 6-6 

In this example, it is not necessary for the SERVER to check for an invalid 
lock value block when reading the lock value block. The first SERVER 
process acquires access to the resource STARTUP and begins clean-up 
work. If the first SERVER should encounter a CPU failure, a new message 
will not be written to the lock value block. Thus, the next SERVER process 
to access STARTUP will read the lock value block as zeros and begin the 
clean-up work that was never completed by the first SERVER. 

6.3.3 Coordinating Processes Using DECnet-VAX Communications 
DECnet-VAX communications can be used to coordinate processes 
synchronously or asynchronously. In transparent DECnet-VAX 
communications, you can use the $QIO system service or high-level 
language READS and WRITEs to coordinate processes synchronously. That 
is, first one process writes and the second reads, then the second writes 
and the first reads. However, when you use nontransparent DECnet-VAX 
communications which supports asynchronous communications, you have 
greater flexibility for implementing complex interprocess communications. 

Coordinating Processes Using Nontransparent DECnet-VAX 
Communications — Programming Example 

The following nontransparent DECnet-VAX example demonstrates a local 
server process (LOCAL_3.EXE) responding asynchronously to requests 
from multiple remote processes (REMOTE_3.EXE). LOCAL_3.EXE assigns 
segments of work, as chunks of an array, and each REMOTE_3.EXE 
performs matrix multiplications on the assigned input. When each 
REMOTE_3.EXE has completed the assigned work, they wait, 
asynchronously, for the LOCAL 3.EXE to assign a new chunk of the 
array as input. 

• PART3.INC 

PARAMETER ICHAN_MAX = 10 

PARAMETER IMAX_BUFFER = 450 

PARAMETER ISIZE = 100 

INTEGER*2 ICHANNEL(ICHAN_MAX) 
BYTE ICOL_STAT (ISIZE } 

INTEGER IN_ARRAYI (ISIZE, ISIZE) , IN_ARRAY2 (ISIZE, ISIZE) , 
1 RESULTS (ISIZE, ISIZE}, IREC BUF(ISIZE,IMAX BUFFER}, 

1 ICOL_ASSIGNED(ICHAN_MAX), READ FUNCTION, WRITE FUNCTION 
REAL* 8 IOSB (I CHAN MAX ) 

INTEGER SYS$QIO, SYS$QIOW, SYS$ASSIGN, SYS$DASSGN 

EXTERNAL IO$_READVBLK, IO$ WRITEVBLK, IO$M NOW, IO$M NORSWAIT 

COMMON /DIST_DATA/ READ FUNCTION, WRITE FUNCTION, ICHANNEL, 
1 IOSB, IO RECEIVED_ADDR, IN ARRAYI, IN ARRAY2, RESULTS, 
1 IANSWER, ICOL ASSIGNED 

s-sg 



Programming Techniques for VAXcluster Applications 

• LOCAL 3.FOR 

PROGRAM MATMUL_TEST 

c 

c In this version of the sample program, the single client - single 
c server model is replaced with a single master - multiple slaves 
c model. In this example, two remote nodes, both executing the 
c REMOTE_3.FOR code, cooperate on performing this matrix multiply. 
c 

c Get the array definitions for this example. 
c 

INCLUDE 'PART3.INC' 

EXTERNAL IO RECEIVED 

READ FUNCTION = $LOC(IO$ READVBLK) 

WRITE FUNCTION = %LOC(IO$ WRITEVBLK) 

IO RECEIVED ADDR = oLOC(IO RECEIVED) 

c 

c Set up the initial parameters for the matrix multiply. 
c The matrix is divided among the multiple remote processes by 
c each slave sending a message to this program asking for the next 
c piece of work that is available. The work is assigned in full 
c columns. For example, the first remote process that requests work 
c is directed to perform the calculations for the first column of the 
c output array. This does add some additional work as compared to 
c just splitting the work "50/50" between the two nodes at the start, 
c but it properly handles the case where the remote systems are not 
c identical -- either in hardware or in system loading. Using this 
c technique, whichever system can do more work will do more work 
c instead of having the fastest node waiting for the slowest to 
c complete its "half". 
c 
c To keep track of the next piece of work, the "INERT" variable 
c defines the next column to be allocated. "ITOTAL COLS DONE" 

c monitors how many have been completed (that is, the calculations 
c done and the data returned) and "IOTHER NODES" denotes how many 
c remote nodes are going to be used. 
c 

INERT = 1 

ITOTAL_COLS_DONE = 0 

IOTHER NODES = 2 

c 

c First step, open the remote channels. 
c 

ISTAT = LIB$ASN_WTH_MBX 

1 'NODE1::"O=REMOTE 3"', 

1 450, 
1 450, 
1 ICHANNEL (1) , 

1 IGNORE ) 

ISTAT = LIB$ASN_WTH_MBX 
1 'NODE2::"O=REMOTE 3"', 
1 450, 
1 450, 
1 ICHANNEL (2) , 

1 IGNORE) 

s-7o 



Programming Techniques for VAXcluster Applications 

G 

c Start by sending all the data to the remote nodes. 
c 

DO I = 1,IOTHER NODES 

DO J = 1, ISIZE 

ISTAT = SYS$QIO (, oVAL (ICHANNEL (I)) , oVAL (WRITE FUNCTION) 

1 ,IOSB{KHAN) ,,,IN_ARR.AY1(1,J),$VAL(ISIZE*4),,,,) 
ISTAT = SYS$QIO (, $VAL (ICHANNEL (I)) , $VAL (WRITE FUNCTION) 

1 ,IOSB(KHAN),,,IN_ARRI~Y2(1,J),~VAL(ISIZE*4),,,,} 

ENDDO 

c 

c Since we are now dealing with multiple remote processes, 
c asynchronous QIOs must be set up to handle an I/O being sent 

c from any remote slave. When an I/O arrives, the IO RECEIVED 

c routine will be called. 
c 

ISTAT = SYS$QIO ( , OVAL { ICHANNEL (I)) , 

1 $VAL (READ FUNCTION) , IOSB (I) , $VAL (IO RECE IVED_ADDR) , $VAL (I) , 
1 IREC BUF(1,I),$VAL(ISIZE*4),,,, } 

ENDDO 

c 
c This call to SYS$HIBER suspends this main routine until all 
c remote calculations are completed. Once all data has been 

c received, a SYS$WAKE is executed; this reawakens this process. 

c 
CALL SYS$HIBER 

CALL EXIT 

END 

c 

SUBROUTINE IO RECEIVED (KHAN BY VALUE) 

c 
c Execute this routine when an incoming packet is received. If the 

c length of this packet = 4, the packet is a request for the next 

c piece of work to be done. If the length is greater, the remote 
c process is returning the column that it has calculated. 

c 

INCLUDE 'PART3.INC' 

c 

c First, get a local copy of the parameter coming into this routine 
c "by value" instead of the usual "by reference." 
c 

KHAN = oLOC (KHAN BY VALUE ) 

c 
c Determine the length of the incoming packet from the I/O Status 

c Block. 
c 

CALL CNVT IOSB STATUS (IOSB(ICHAN), ISTATUS, IBUF LEN) 



Programming Techniques for VAXciuster Applications 

c 
c If the length was four, this is a request for more work. 
c 

IF (IBUF LEN .EQ. 4) THEN 
c 
c Yes, it was a request. Get the next column number that is 
c available. 
c 

IF (INEXT .LE. ISIZE) THEN 

ICOL ASSIGNED(ICHAN) = INEXT 

INEXT = INEXT + 1 

ELSE 
c 
c No more columns left, return -1 to tell the remote process to exit. 
c 

ICOL_ASSIGNED(ICHAN) _ -1 

END IF 

c 
c Send the column number back to the remote process. 
c 

ISTAT = SYS$QIO (, %VAS, (ICHANNEL (KHAN)) , %VAL (WRITE FUNCTION) 
1 , IosB (ICHAN> , , , IcoL ASSIGNED (KHAN) , %vAL (4) , , , , ) 
ELSE 

c 
c This is not a request for work but is a column of data being 
c returned. 
c 

ITOTAL COLS DONE = ITOTAL COLS DONE + 1 

c 
c Move the column from the receive buffer into the real place for it. 
C 

DO I = 1, ISIZE 
RESULTS (I, ICOL_ASSIGNED (KHAN) ) = IREC_BUF (I, KHAN) 

ENDDO 

END IF 
c 
c Decide if everything is done and a SYS$WAI~E should be executed 
c or not . 
c 

IF (ITOTAL COLS DONE .GE. ISIZE) THEN 

c 
c Yes, everything is done. Signal the remote process to exit and do 
c a SYS$WAKE on our own process. 

c 
ICOL_ASSIGNED(ICHAN) _ -1 

ISTAT = SYS$QIO (, %VAL (ICHANNEL (KHAN)) , %VAL (WRITE FUNCTION) 
1 ,IOSB(KHAN),,,ICOL A,SSIGNED(ICHAN),%VAL(4),,,,) 

CALL SYS$WAKE (,) 

ELSE 

c 
c Nope, not done yet. Reissue the QIO for the next incoming packet 
c from this remote system. 

c 
ISTAT = SYS$QIO (, %VAL (ICHANNEL (KHAN) } , 

1 %VAL (READ FUNCTION) , IOSB (KHAN) , %VAIa (IO RECEIVED ADDR) , 
1 %VAL(KHAN),IREc_BUF(1,ICHAN),%VAL(ISIZE*4),,,,) 
END IF 

RETURN 

END 

f —72 



Programming Techniques for VAXciuster Applications 

SUBROUTINE CNVT_IOSB_STATUS (IOSB_QUAD, ISTATUS, IBUF_LEN) 
c 

c Routine to pull the iosb status field out of the quadword (defined 
c as double precision for array convenience) and put it into the 
c integer field. 

c 

INTEGER*2 IOSB_QUAD (4 ) 

INTEGER ISTATUS, IBUF LEN 

ISTATUS = IOSB_QUAD (1) 

IBUF_LEN = IOSB_QUAD(2) 
RETURN 

END 

• REMOTE 3.FOR 

PROGRAM MATMUL REMOTE TEST 
c 

c This is the remote portion of this example program. Most of 
c this program is identical to the previous, but there is the 
c addition of the arbitration to determine which of these remote 
c systems will execute which column. 
c 

c Note that since each remote process does not calculate the entire 

c output array and calculates only one column at a time, the 
c answers will be put into a ISEND_BUF array that is large enough 

c for just a single column of data. 
c 

INCLUDE 'PART3.INC' 

INCLUDE ' ($SSDEF)' 

INTEGER ISEND BUF(ISIZE), MY COL 

c 

c Open the channel back to the local program. 

c 

ISTAT = LIB$ASN WTH MBX {'sys$net', 

1 IMAX_BUFFER, 

1 IMAX_BUFFER, 

1 ICHANNEL (1 } , 

1 IGNORE ) 

READ FUNCTION = $LOC(IO$ READVBLK) 

WRITE FUNCTION = oLOC(IO$ WRITEVBLK) 

c 

c Start by getting all the data. 
c 

write (6,123) 

123 format (' reading the data' ) 

DO J = 1, ISIZE 

ISTAT = SYS$QIOW (, $VAL (ICHANNEL (1)) , 

1 $VAL (READ FUNCTION) , IOSB (1) , , , 

1 IN_ARRAYI(1,J),$VAL(ISIZE*4),,,,) 

IF (ISTAT .NE. 1) CALL EXIT (ISTAT) 

ISTAT = SYS$QIOW (, $VAL (ICHANNEL (1)) , 

1 °sVAL (READ FUNCTION) , IOSB (1) , , , 

1 IN_ARRAY2 (1, J) , $VAL (ISIZE*4) , , , , ) 

IF (ISTAT .NE. 1) CALL EXIT (ISTAT) 
ENDDO 

f>-73 



Programming Techniques for VAXcluster Applications 

c 

c OK, all the data is here. Ask the master process what column 

c is available for processing. To do this, send a packet of length 

c of four to it. (Note that the signal is the packet length, not 

c the contents of the variable being sent.) 

c 

100 write (6, 151) 

151 format (' requesting a column') 

ISTAT = SYS$QIO (, $VAL (ICHANNEL (1)) , $VAL (WRITE FUNCTION) 

1 ,IOSB(1),,,MY COL,$VAL(4),,,,) 

write (6, 162 ) 

162 format (' reading the column') 

ISTAT = SYS$QIOW (, $VAL (ICHANNEL (1)) , oVAL (READ FUNCTION) 

1 ,IOSB(1),,,MY COL,$VAL(4),,,,) 

IF (ISTAT .NE. 1) CALL EXIT (ISTAT) 

c 

c No more rows? Exit. 

c 

IF (MY COL .EQ. -1) CALL EXIT 

c 

c Got the column number. Do this calculation and then return the 

c data. 

c 

DO I = 1, ISIZE 

ISEND_BUF (I) = 0 

DO K = 1, ISIZE 

ISEND_BUF (I) = ISEND_BUF (I) + (IN ARR.AY1 (I, K) * IN_ARRAY2 (K, I) ) 

ENDDO 

ENDDO 

c 

c Send this column back to the local process. 

c 

11 

write { 6, 11) 

format (' sending the data back' ) 

ISTAT = SYS$QIO (, $VAL (ICHANNEL (1)) , $VAL (WRITE FUNCTION) 

1 ,IOSB{1),,,ISEND BUF,$VAL(ISIZE*4},,,,) 

IF (ISTAT .NE. 1) CALL EXIT (ISTAT} 

c 

c Go back for more. 

c 

GO TO 100 

END 

6.4 Exception Conditions 
Exception conditions must be explicitly defined when considering an 
application designed for distribution by decomposition. In some designs 
for decomposed distributed applications, there may be more single points 
of failure than in non-distributed applications because a distributed 
application uses multiple VAXcluster CPUs. In addition to normal 
exception conditions, when designing a distributed application, you must 
plan for recovery from the following exception conditions: 

• Failure of an interproeess communication 

• Failure of a VAXcluster CPU 

Programming techniques for recovering from these exception conditions 
are described in the following sections of this manual. 

6-74 



Programming Techniques for VAXcluster Applications 

6.4.1 Recovery from I nterprocess Communication Fai I u res 
Basically, interprocess communication failures can occur for three reasons: 

• fihe process you are communicating with aborts. 

• There is a failure in the DECnet-VAX transmission link. 

• The VAXcluster CPU on which the process you are communicating 
with has a hardware failure. 

In the first and second cases, it may be possible to recover by 
retransmitting. However, recovery in the third case requires implementing 
a failover capability as part of your application design. 

Using Nontransparent DECnet-VAX Communications to 
Recover from (nterprocess Communication Failures 
— Programming Example 

In this nontransparent DECnet-VAX programming example, the master 
process (LOCAL_4.EXE) is designed to transmit all of the elements of an 
input array to multiple remote slave processes. Each remote slave process 
(REMOTE_4.EXE) performs a computation for a part of the array, returns 
the result, and requests another part of the array for computation from 
the master. To recover from a remote slave process failure, the master 
process tracks what parts of the array have been allocated to a remote 
slave process for computation and what parts of the array have been 
computed. If there is a communications failure of any kind, the part of the 
array allocated to the failed remote process is declared "unallocated," and 
is re-allocated to another remote slave process. 

• FART4.INC 

P~?►RAME TER ICHAN_MAX = 10 

P p►RAME TER INSAX_BUFFER = 4 5 0 
PARAMETER ISIZE = 100 

INTEGER*2 ICHANNEL(ICHAN_MAX) 

BYTE ICOL_STAT(ISIZE) 

INTEGER IN_ARRAYI (ISIZE, ISIZE) , IN_ARRAY2 {ISIZE, ISIZE) , 

1 RESULTS (ISIZE, ISIZE), IREC_BUF(ISIZE,IMAX_BUFFER), 

1 ICOL_ASSIGNED(ICHAN MAX), READ FUNCTION, WRITE FUNCTION 

REAL*8 IOSB (KHAN MAX) 

INTEGER SYS$QIO, SYS$QIOW, SYS$ASSIGN, SYS$DASSGN 

EXTERNAL IO$ READVBLK, IO$ WRITEVBLK, IO$M NOW, IO$M NORSWAIT 

COMMON /DIST DATA/ READ FUNCTION, WRITE FUNCTION, ICH~ANNEL, 

1 IOSB, IO_RECEIVED_ADDR, IN_ARR.AY1, IN_ARRAY2, RESULTS, 

1 IANSWER, (COL STAT, ICOL ASSIGNED 

6-75 



Programming Techniques for VAXcluster Applications 

• LOCAL 4.FQR 

PROGRAM MATMUL TEST 

c 

c This example shows one type of error handling that can be done in a 
c single client as master - multiple remote processes as slaves model. 
c Rather than having a single variable containing the "next column" to 
c be allocated, a "column status" array is used to keep track of what 
c columns have been allocated and which are completed. Each element 
c in the column status array (ICOL STAT) will have one of the 
c following values: 

c 

c 0 = column not yet assigned to any process 
c -1 = column assigned, but answers not yet back 
c 1 = column assigned, answers back (column totally done) 
c 

c The way the columns are allocated is that a search is made 
c of the column status array to find the first unallocated column and 
c then that column number is returned. (For clarity of code, the 
c search always starts at the base of the array. For performance, 
c there should be a variable to control where the searching begins.) 
c 

c If there is a communications error of any kind, the column 
c currently allocated to that remote process will be declared 
c "unallocated". 

c 

c Get the array definitions for this example. 
c 

INCLUDE 'PART4.INC' 

INCLUDE ' ($SSDEF)' 

EXTERNAL IO RECEIVED 

IO RECEIVED ADDR = $LOC(IO_RECEIVED) 
WRITE_FUNCTION = $LOC(IO$_WRITEVBLK) 
READ_FUNCTION = $LOC(IO$ READVBLK) 

ITOTAL COLS DONE = 0 
IOTHER NODES = 2 

c 

c Initialize the column status array and the array storing which 
c column is currently allocated to which process. 
c 

DO I = 1,ISIZE 

ICOL_STAT (I) = 0 
ENDDO 

DO I = 1,IOTHER NODES 

ICOL_ASSIGNED (I) _ -1 
ENDDO 

c 

c First step, open the remote channels. 
c 

ISTAT = LIB$ASN_WTH_MSX 
1 'NODE1::"O=REMOTE 4"', 
1 450, 

1 450, 
1 ICHANNEL (1) , 
1 IGNORE) 

ISTAT = LIB$ASN_WTH_MBX 
1 'NODE2::"O=REMOTE 4"', 
1 450, 
1 450, 
1 ICHANNEL (2) , 
1 IGNORE) 

s-7s 



Programming Techniques for VAXcluster Applications 

c 
c Initialize the arrays to test values. 

c 

DO I = 1, IS IZE 
DO J = 1, ISIZE 

IN_ARFtAYl (I, J) = I - ( ISIZE/2 ) 
IN_ARR.AY2 (I, J) = J - (ISIZE/2) 

ENDDO 

ENDDO 

c 
c Start by sending all the data to the remote nodes. 

c 
DO I = IOTHER_NODES, 1, -1 

DO J = 1, ISIZE 
ISTAT = SYS$QIO (, %VAL (ICHANNEL (I)) , %VAL (WRITE FUNCTION) 

1 ,IOSB(I),,,IN_ARRAYI(1,J),%VAL(ISIZE*4),,,,) 
ISTAT = SYS$QIO (, %VAL (ICHANNEL (I)) , %VAL (WRITE FUNCTION) 

1 ,IOSB(I),,,IN ARRAY2(1,J),%VAL(ISIZE*4),,,,) 
ENDDO 

c 
c Since we are now dealing with multiple remote slaves, asynchronous 

c QIOs must be set up to handle an I/O being sent from any remote 

c slave to the master. When an I/O arrives, the IO_RECEIVED routine 

c will be called. 

c 
ISTAT = SYS$QIO (, %VAL (ICHANNEL (I)) , 

1 %VAL (READ FUNCTION) , IOSB (I) , %VAL (IO RECEIVED ADDR) , %VAL (I) , 

1 IREC BUF(1,I),%VAL(ISIZE*4),,,,) _ — 

ENDDO 

c 
c This call to SYS$HIBER suspends this main routine until all 

c remote calculations are completed. Once all the data has been 

c received, a SYS$WAKE is executed which reawakens this process. 

c 
CALL SYS$HIBER 

c 
c Sum up all of the locations in the answer to confirm that this test 

c worked properly. 

c 
ITOTAL = 0 

DO I = 1, IS IZE 
DO J = 1, ISIZE 

ITOTAL = ITOTAL + RESULTS (I, J) 

ENDDO 

ENDDO 

IF (ITOTAL .EQ. 833500000) THEN 

WRITE (6, 10) 
10 FORMAT (' The results from this test are correct .' ) 

ELSE 
WRITE ( 6, 2 0 ) ITOTAL 

20 FORMAT (' The results are not correct from this test. 

1 ' Anticipated answer: 835500000',/, 

1 Obtained answer : ' , i) 

END IF 

CALL EXIT 

END 

c 

SUBROUTINE IO RECEIVED (KHAN BY VALUE) 

c 
c Execute this routine when an incoming packet is received. If the 

c length of this packet = 4, the packet is a request for the next 

c piece of work to be done. If the length is greater, the remote 

c process is returning the column that it has calculated. 

c 

6—~ 



Programming Techniques for VAXciuster Applications 

INCLUDE 'PART4.INC' 

INCLUDE ' ($SSDEF)' 

c 
c First, get a local copy of the channel parameter that was passed 

c to this routine by value instead of by reference. 
c 

KHAN = $LOC(ICHAN BY VALUE) 

c 
c Determine the length of the incoming packet from the I/O Status 
c Block. 

c 

CALL CNVT IOSB STATUS (IOSB(ICHAN), ISTATUS, IBUF LEN) 

c 
c Check the status of the I/O that just completed. 
c 

IF {ISTATUS .NE. SS$ NORMAL) THEN 

c 
c Something went wrong. Since there can be two kinds of packets 
c coming back (data or a request for the next column), check to see 
c which packet type it is by determining if there is a column 
c currently assigned to the process. If there is, deassign it. 
c In either case, deassign the I/O channel {which stops the remote 
c process if it has not already stopped for some reason) and return 
c without setting up another QIO. 
c 

IF ( ICOL_ASS IGNED {KHAN) . GT . O ) THEN 
ICOL_STAT(ICOL_ASSIGNED(ICHAN)) = 0 

END IF 

CALL SYS$DA~SSGN ( $VAL (KHAN) ) 
RETURN 

END IF 

c 
c If the length was four, this is a request for more work. 
c 

IF ( IBUF LEN . EQ . 4 ) THEN 
c 
c Yes, it was a request. Get the next column number that is 
c available. Search through the column status array for the 
c first entry containing a zero. 
c 

c 
c Note, the value of icol_assigned(ichan) equals -1 coming into this 
c section, so if no free columns are found, an "exit out" message is 
c sent back to the remote process. 
c 
c As an aside, if this loop determines that there are no free columns 
c available, we could do a performance optimization based on the fact 
c that the calculations of each column are not destructive, that is: 
c multiple remote processes could all be calculating row 5 at once 
c without interfering with each other. If we had 5 remote processes 
c and 4 of them are executing columns and 1 just realized that there 
c were no more columns to execute, we could "doubly assign" one of 
c the columns to the "idle" remote process and take the data of 
c whichever one completes first. This will be left as an "exercise 
c for the reader" to implement. 
c (Hint: the remote process has to use asynchronous QIOs to permit 
c an I/O message from the local program saying, "forget what you are 
c doing since someone else already completed it.") One caution, this 
c technique can get better performance as measured in wall-clock time, 
c but adds to the overhead as measured in terms of raw CPU cycles used 
c since multiple nodes are calculating the same answers. Use this 
c technique sparingly, preferably on standalone systems. 

6-78 



Programming Techniques for VAXcluster Applications 

c 

DO I = 1, ISIZE 

IF (ICOL_STAT(I) .EQ. 0 .AND. ICOL ASSIGNED(ICHAN) .LT. 0) THEN 

ICOL STAT (I) _ -1 

ICOL ASSIGNED (KHAN ) = I 

ENDIF 

ENDDO 

c 

c And send the column number back to the remote process. 

c 
ISTAT = SYS$QIO (,OVAL(ICHANNEL(ICHAN)),oVAL(WRITE_FUNCTION) 

1 , IOSB (KHAN) , , , ICOL ASSIGNED (KHAN) , $VAL (4) , , , , ) 

ELSE 

c 

c This is not a request for work but rather is a column of data being 

c returned. 

c 

ITOTAL COLS DONE = ITOTAL COLS DONE + 1 

c 

c Move the column from the receive buffer into the real place for it. 

DO I = 1, ISIZE 

RESULTS (I, ICOL_ASS IGNED {KHAN) ) = IREC BUF (I, KHAN) 

ENDDO 

c 

c And now adjust the column status array to reflect that it is done. 

c In addition, change the status of the icol_assigned array to reflect 

c that this remote process now has no columns assigned to it. 

c 
ICOL_STAT(ICOL_ASSIGNED(ICHAN)) = 1 

ICOL ASSIGNED (KHAN) _ -1 

ENDIF 

c 

c Decide if everything is done and a SYS$WAKE should be executed 

c or not. 

c 

IF (ITOTAL COLS DONE .GE. ISIZE) THEN 

c 

c Yes, everything is done. Signal the remote process to exit and do 

c a SYS$WAKE on our own process. 

c 
ICOL_ASSIGNED (KHAN) _ -1 

ISTAT = SYS$QIO (, $VAL (ICHANNEL (KHAN}) , $VAL (WRITE FUNCTION) 

1 , IOSB (KHAN) , , , ICOL_AS S IGNED (KHAN) , $VAL (4) , , , , ) 

CALL SYS$WAKE (,) 

ELSE 

c 

c Nope, not done yet. Reissue the QIO for the next incoming packet 

c from tris remote system. 

c 
ISTAT = SYS$QIO (,$VAL(ICHANNEL(ICHAN)), 

1 $VAL (READ FUNCTION) , IOSB (KHAN) , $VAL (IO RECEIVED ADDR) , 

1 OVAL (KHAN) , IREC BUF (1, KHAN) , $VAL (ISIZE*4) , , , , ) 

ENDIF 

RETURN 

END 

SUBROUTINE CNVT IOSB STATUS (IOSB QUAD, ISTATUS, IBUF LEN) 

c 

c Routine to pull the iosb status field out of the quadword (defined 

c as double precision for array convenience) and put it into the 

c integer field. 

6 79 



Programming Techniques for VAXcluster Applications 

c 

INTEGER*2 IOSB_QUAD (4 ) 
INTEGER ISTATUS, IBUF LEN 

ISTATUS = IOSB_QUAD (1) 
IBUF_LEN = IOSB_QUAD(2) 
RETURN 

END 

• REMOTE 4.FOR 

PROGRAM MATMUL REMOTE TEST 

c 

c This is the remote portion of this example program. Most of this 
c program is identical to the previous, but adds the arbitration to 
c determine which of these remote systems will execute which column. 
c 

c Note that since each remote process does not calculate the entire 
c output array and that only one column at a time is calculated, the 
c answers are put into a ISEND BUF array that is only large enough 
c for a single column of data. 
c 

INCLUDE 'PART4.INC' 

INCLUDE ' ($SSDEF)' 

INTEGER ISEND BUF(ISIZE), MY COL 

c 

c Open the channel back to the local program. 
c 

ISTAT = LIB$ASN_WTH_MBX ('SYS$NET', 

1 IMAX_BUFFER, 
1 IMAX_BUFFER, 
1 ICHANNEL (1) , 
1 IGNORE ) 

READ FUNCTION = $LOC(IO$ READVBLK) 
WRITE FUNCTION = $LOC(IO$ WRITEVBLK) 

c 

c Start by getting all the data. 
c 

DO J = 1, ISIZE 

ISTAT = SYS$QIOW (, $VAL (ICHANNEL (1)) , 
1 $VAL (READ FUNCTION) , IOSB (1) , , , 
1 IN_ARRAYl(1,J),$VAL(ISIZE*4),,,,) 

IF ( ISTAT . NE . 1) CALL EXIT { ISTAT) 

ISTAT = SYS$QIOW (, $VAL (ICHANNEL (1)) , 
1 $VAL (READ FUNCTION) , IOSB {1) , , , 
1 IN_ARRAY2 (1, J) , $VAL (ISIZE*4) , , , , ) 

IF ( ISTAT . NE . 1) CALL EXIT ( ISTAT ) 
ENDDO 

c 

c Ok, all the data is here. Ask the master process what column 
c is available for processing. To do this, send a packet of length 
c of four to it. {Note that the signal is the packet length, not 
c the contents of the variable being sent.) 
c 

100 ISTAT = SYS$QIO (, $VAL {ICHANNEL (1)) , $VAL (WRITE FUNCTION) 
1 ,IosB(1),,,MY coL,$vAL(4),,,,) 

ISTAT = SYS$QIOW (, $VAL (ICHANNEL (1)) , $VAL (READ FUNCTION) 
1 ,IOSB(1),,,MY COL,$VAL(4),,,,) 

IF (ISTAT .NE . 1) CALL EXIT (ISTAT) 



Programming Techniques for VAXcluster Applications 

c 
c No more rows? Exit. 

c 

IF (MY COL .EQ. -1) CALL EXIT 

c 

c Got the column number. Do this calculation and then return 
c the data. 
c 

DO I = 1, ISIZE 

ISEND_BUF (I) = 0 

DO K = 1, ISIZE 

ISEND BUF (I) = ISEND_BUF (I) + (IN AFtRAY1 (I, K) * IN_ARRAY2 (K, I) } 

ENDDO 

ENDDO 

c 

c Send this column back to the local process. 
c 

ISTAT = SYS$QIO (, $VAL (ICHANNEL (1)) , $VAL (WRITE FUNCTION) 

1 , IOSB (1) , , , ISEND_BUF, OVAL {ISIZE*4) , , , , ) 

IF (ISTAT .NE. 1) CALL EXIT (ISTAT) 

c 

c Go back for more. 
c 

GO TO 100 
END 

6.4.2 Recovery from Cluster State Transition Due to Node Failure 
If the execution of a process is critical to an application, the process can 
be designed to have failover capability. Figure 6-7 demonstrates a method 
for ensuring a failover capability of ProcessX. If a hardware failure occurs 
on VAX A, causing ProcessX to release the EX lock for SIGNAL, then a 
backup process (ProcessX_1, ProcessX 2, or ProcessX 3) begins executing 
on a different VAXcluster CPU. The backup process at the top of the 
waiting queue acquires the EX lock for SIGNAL, triggering the AST. When 
the AST routine executes, the backup process is awakened to execute a 
recovery routine and then continue the work started by ProcessX. For 
a description of a BASIC application that has been designed to use this 
failover method, see Chapter 8. 



Programming Techniques for VAXcluster Applications 

Figure f -7 A Process Designed for Failover in a VAXcluster System 

~~?~ . ~ ~= 

MR-2850-RA 



VAXcluster System Performance Considerations 

The multiple system components of a VAXcluster system are comprised 
of three primary system resources: CPU, memory, and I/O system. 
Depending on which of the system resources is most heavily used, 
computer applications are classified as: CPU-intensive, memory-intensive, 
and I/O-intensive. To ensure your VAXcluster system is properly balanced 
for the work that your application is performing, a system manager should 
understand the following: 

• The capacity of the primary system resources in your VAXcluster 
system 

• The demand placed upon these resources by the application workload 

Typically, a system manager builds a historical perspective for system 
performance by monitoring performance over some representative period 
of time. Based upon an understanding of the "normal" performance of your 
VAXcluster system, you can work with the system manager to assess the 
nature of your application's performance attributes. 

If your application places more demand on a resource than that resource 
can handle, a processing bottleneck occurs. One of the three system 
resources becomes the system-limiting or binding resource; that is, one 
of the three resources is being used to capacity before the other two. A 
bottleneck condition causes decreased throughput and increased response 
time. 

It is essential to your application that you correctly identify the 
system-limiting resource. Ignoring any of the three primary resources 
in your investigation increases the danger that you will employ an 
inappropriate remedy for your application's performance problem. Once 
you have identified the system-limiting resource, you can consider three 
approaches: 

• Increase the capacity of the limiting resource. 

This is the most obvious solution but may also be the most costly. 
Therefore, employ it only after the other two options have been 
investigated. 

• Reduce the demand on the limiting resource. 

This may be very difficult to achieve if the limiting resource is being 
used to its capacity doing useful work. However, if the resource 
is ineffectively used, then this may be the easiest and the most 
cost-effective solution. 



VAXcluster System Performance Considerations 

• Off--load the demand from the limiting resource onto one of the less 
used resources. 

This technique is possible because of the relationships that exist 
between the three primary resources; they are not autonomous. For 
example, excess memory capacity is often used to reduce the demand 
on an overworked I/O subsystem by increasing the size of each I/~, 
thereby reducing the total number of I/Us. The CPU benefits as well, 
because it needs to handle fewer I/Os. 

The following sections of this chapter discuss: 

• ~ VMS utilities for identifying bottlenecks 

• Three major types of bottlenecks that limit the performance of your 
application: 

I/O bottlenecks 

Memory bottlenecks 

CPU bottlenecks 

• VMS layered products for analyzing VAXcluster application and system 
performance 

7.1 Using VMS Utilities to Monitor the Cluster and Identify Bottlenecks 
Monitor cluster performance carefully to ensure that the data flow is not 
hampered by: 

• Inefficient resource usage 

• An overloaded CPU 

Table 7-1 lists several VMS utilities and commands available for 
monitoring a cluster. For more information on further documentation 
on these VMS utilities and commands, refer to Table 7 2. 

In addition to these VMS utilities and commands, refer to Section 7.5 for 
more information on tools for identifying bottlenecks on your VAXcluster 
system . 



VAXcluster System Performance Considerations 

Table 7-1 VMS Utilities and Commands for Monitoring a VAXcluster System 

Utility Function 

VMS MONITOR Utility: 

MONITOR CLUSTER 

MONITOR DLOCK 

MONITOR DISK 

MONITOR MSCP 

MONITOR RMS 

MONITOR PAGE 

MONITOR 
PROCESSES/TOPFAULT 

Displays clusterwide information 

Displays distributed lock management statistics 

Displays I/O request rate or depth of I/O queue 

Displays MSCP Server statistics 

Displays I/O activity for individual files 

Displays hard and soft page fault rates 

Displays which processes are generating most of the page faults 

SHOW Commands: 

SHOW CLUSTER Provides the view of the cluster as seen from a single node 

SHOW DEVICE/SERVED Shows information about MSCP-served disks on the local system 

SHOW DEVICE/FULL Shows the status of a device, and is useful for determining the configuration 
of disks 

SHOW DEVICE/FILES Lists files opened only from the local node 

HSC SETSHO Utility: 

Using SET and SHOW with Allows you to issue commands to display HSC characteristics 
commands 

Table 7-2 Summary of VMS Documentation Resources for Identifying Bottlenecks 

Resource For More Information About... 

Guide to VMS Performance Management 

VMS Show Cluster Utility Manual 

VMS DCL Dictionary 

HSC User Guide 

VMS Monitor Utility Manual 

• Calculating disk response time 
• Managing system resources 

— Understanding the CPU resource 
— Understanding the memory resource 
— Understanding the disk I/O resource 

• Diagnosing resource limitations 

Complete documentation on the SHOW CLUSTER utility 

Description of the SHOW DEVICE command 

Complete documentation on HSC utility programs 

Complete documentation on the MONITOR utility 

7-3 



VAXcluster System Performance Considerations 

7.2 Potential Bottlenecks for an Il0-Bound Application Environment 
while I/O requests may be for disk, network, or terminal I/O~s, disk I/Q 
bottlenecks are the focus of this section. I/O-bound applications are 
limited in both throughput and responsiveness by disk I/O operations. 
For example, a VAXcluster hardware configuration can only perform a 
certain number of disk I/Os per second, but an application is attempting 
to perform more than that number of disk I/O operations for every second 
of computation. Consequently, the application ends up waiting for disk 
I/Os to complete before proceeding with further computations. The I/O 
pathway (see Figure 7--1} of a VAXcluster system has several possible I/O 
bottlenecks: 

• CPU's QIO processing 

• Processor's I/O adapter (Ethernet or CI adapter) 

• Medium between the I/O adapter and the controller (the Ethernet or 
the CI) 

• Controller (HNC or MSCP serving VAX) 

• Disk drive 

CPU's QIQ Processing 

For a given I/O operation, the CPU's QIO processing that initiates the 
QIO request is on the order of hundreds of microseconds; at the most, the 
CPUs QIO processing is usually less than a millisecond.l While the CPUs 
QI~ processing is a part of an UO operation, the length of time required to 
complete this operation does not usually present an I/O bottleneck. 

Processor's I/O Adapter 

The respective attributes of the various types of Ethernet or CI adapters 
can impact your I/O throughput. For instance, when considering the 
Ethernet as the processor's I/O port with amedium-speed Ethernet 
adapter (DELUA), the transmission rate is about 0.7 Mbits per second. 
(For a disk block, this is less than 5.7 milliseconds.} When considering 
the CI as the processor's I/O port, with a slow CI adapter (CI780), the 
transmission rate is about 1.8 Mbytes per second. (For a disk block, 
this is less than 0.29 milliseconds.} For more performance information 
on Ethernet and CI adapters, see the Guidelines for VAXcI uster System 
Configurations and the VAX Systems and Options Catalog. 

The CI adapter is almost never a bottleneck in a slow VAX processor, 
but the likelihood of it being a bottleneck increases with the speed of the 
VAX CPU. For example, while larger CPUs are suitable for CPU-intensive 
applications, care should be used when considering these machines for 
applications with a significant disk I/O workload. 

1 ~O processing time is CPU dependent and can be greater than 1 millisecond on a VAX 11/780 or MicroVAX II. 

7-4 



VAXcluster System Performance Considerations 

Figure 7—y I/O Pathways in aMixed-Interconnect VAXcluster System 

{: •:i•: 

Ethernet Adapter 

Ethernet 

Ethernet Adapter 

Local Disk Controller 

CI Adapter 

CI 

>' ~: > 

MSCP Served 

MR-3165-RA 

7—~ 



VAXcluster System Performance Considerations 

Medium Between the U~ Adapter and the Controller 

The Ethernet and CI interconnects are clearly faster than the slowest 
Ethernet adapter or CI adapter; the Ethernet interconnect supports a 
transmission rate of 10 Mbits per second and the CI interconnect supports 
70 Mbits (8.75 Mbytes) per second. 

In theory, a large number of powerful VAX CPUs or workloads with high 
I/Q demands could overload the CI adapter. However, the CI interconnect 
itself is very unlikely to be the primary I/O bottleneck. 

The Ethernet interconnect may become a potential bottleneck because 
of its lower transmission rate and error checking protocols. The total 
aggregate of bandwidth of the Ethernet interconnect depends on the 
load generated by all nodes on all segments. For a very large and busy 
Ethernet, total useable bandwidth per segment is about 7 Mbits per 
second. Thus, you should consider the capacity of the Ethernet when 
configuring a cluster with many Ethernet-connected nodes or when the 
Ethernet is used to support a larger number of terminals or printers. 

Controller 

A.s with the CI interconnect, the HSC controller rarely becomes overloaded. 
An HSC channel could become overloaded if a large number of heavily 
used disks are connected to the same channel because each channel 
performs only one data transfer at a time.2 In this case, you can use 
multiple channels and balance the I/O load between the channels to 
improve performance. When disks are dual-ported and the disk load is 
split between HSC channels, it is unlikely that the HSC controller will fall 
behind the demand. 

HSC throughput depends on the block-size of the transfer. Small transfers 
are limited by the maximum U~ rate of each HSC: 

• The HSC50 rate is about 550 I/Os per second.3

• The HSC40 rate is about 800 I/Os per second.4

• The HSC70 rate is about 1150 I/Os per seeond.3

2 An HSC chancel is a18o called a k.sdi module or a requestor (from the HSC side}. 

~ With HSC Version 3.7 software. 
4 With HSC Version 3.9 software. 

7-6 



VAXcluster System Performance Considerations 

Large transfers are limited by the maximum transfer rate of the HSC's 
interface to the CI. For the HSC40, HSC50 and HSC70, this rate is about 
3.8 Mbytes per second. 

When most or all of the activity of an HSC controller originates from one 
CI-based VAX processor, the CI adapter of the VAX is more likely to be 
the limiting factor than the HSC controller. when most or all activity on a 
HSC is directed at one or a few disks, the disks themselves are more likely 
to be the bottleneck. The HSC controller is likely to be the bottleneck only 
when there is a heavy disk I/O demand from several VAXcluster CPUs 
and most of the disks attached to the HSC controller are very busy. In 
large VAXcluster systems, where several large VAX systems place heavy 
demands on most of the disks attached to an HSC controller, the HSC70 
provides better performance than the HSC40 or HSC50. 

In the case of the VAX MSCP Server using the local disk controller to 
enable clusterwide disk access to the local disk, typically aMSCP-served 
disk has over 90 percent of the performance of a local disk, provided 
sufficient memory is dedicated on the MSCP-serving CPU. However, 
if buffer allocations for the MSCP Server are not large enough, a 
larger percent of the disk access requests will encounter delays due to 
MSCP-server latency. 

Disk Drive 

When an I/O request does require action by a disk, this action consists of 
two steps: 

1 Acces s 

Access time is composed of seek time, the time it takes for the disk 
to first move its heads to the proper cylinder, and rotational delay 
time, the time it takes for the desired sectors to rotate under the 
heads. Typically fora 4 block transfer on a RA series disk, seek time 
takes about 25 milliseconds, and rotational delay time is about 8 
milliseconds. 

2 Transfer 

The disk reads or writes data as the sectors move under the heads, 
and transfers the data from the disk to the controller or from the 
controller to the disk. Fora 4 block transfer on a R.A series disk using 
an HSC50 controller, there is about a 2 millisecond transfer time for 
data being transferred from the controller to the disk or from the disk 
to the controller. 



VAXcluster System Performance Considerations 

while both of these steps take time, clearly the largest delay is the seek 
time required. The access and transfer time may vary depending on 
the type of CPU, disk drive, and controller. In addition, the following 
characteristics of the I/O requests also affect the access and transfer time: 

I/O size 

A large I/O size contributes to the amount of time spent actually 
transferring data to and from disks. 

Seek distance 

If I/O requests are randomly scattered over the whole disk, access 
times will be longer than if consecutive requests touch neighboring 
sectors . 

I/O rate 

A large number of I/O requests typically means a large number of 
head movements. This contributes to the amount of time waiting 
for access to sectors on the disks. 

In a VAXcluster system, disk drives are a common I/O bottleneck. The 
following are four common situations in which disk drives can be I/O 
bottlenecks. 

• Multiple CPUs are making I/O requests to the same disk. 

Many systems and application have one or more files that are used 
intensively by many jobs on several VAXcluster CPUs. Files are 
often located on disks primarily on the basis of available space and 
the logical organization of directory trees. This can result in an I/O 
demand that is concentrated on one or few disks. These "hot" disks 
can become I/O bottlenecks. 

For small I/O transfers on RA series disks, the maximum average rate 
for acceptable performance is between 15 and 20 I/Os per second. On 
systems doing large I/O transfers, significant delays ca.n occur at a 
lower I/O rate. Refer to the Guide to VM,S Performance Management 
for information about how to calculate disk response time. 

• Applications are requesting data that can cause a large number of seek 
operations, depending on the location of data on the disk. 

As files are created and deleted on a disk, the free space that started 
as one or two contiguous pieces becomes fragmented into numerous 
smaller areas scattered over the disk. Over time, the free space 
consists of holes left by the deletion of files. Some of these holes are 
large and some are small. when files are created or extended, the file 
system uses larger pieces of free space in order to keep the files as 
contiguous as possible. However, when a disk is nearly full, there are 
not enough large pieces of free space, and the files tend to be made 
up of many small pieces scattered over the disk. When reading or 
writing one of these fragmented files, the disk must make more head 
movements than it would if the file were one contiguous piece. For 
this reason, disks that are nearly full tend to become fragmented, and 
fragmented disks can be UO bottlenecks. 

7-S 



VAXcluster System Performance Considerations 

• CPUs are added or upgraded to be faster causing more I/O requests 
per unit of time. 

When additional CPUs are accessing the same disk for reads and 
writes, disk allocation becomes less contiguous more quickly. If disk 
fragmentation becomes too great, performance suffers because extra 
seek operations are required to complete an I/O. 

• An overloaded common system disk is used. 

In some large VAXcluster configurations with a large number of 
fast processors, a common system disk may be the cause of an 
I/O bottleneck if the aggregate amount of I/O requests exceeds the 
capability of that drive and its controller. 

Summary of Performance Considerations for 1/a in a VAXcluster System 

The only items from the I/O pathway illustrated by Figure 7-1 that depend 
on the local processor are the CPU's QIO processing, the processor's I/O 
port, and the buffer size for the MSCP-controller. These aspects of the I/O 
pathway are rarely the point of an I/O bottleneck. The disk drive is most 
often the point of an I/O bottleneck. 

In general, a VAXcluster system has a greater potential for overloading 
the disks than a single VMS system for the following reasons: 

• Multiple VAXcluster CPUs can make simultaneous I/O requests to the 
same disk. 

• Increasing the number of application users places more demand for 
concurrent I/O requests to the same disk. 

• Faster CPUs can submit more I/O requests to an I/O queue for a disk. 

Thus, running multiple copies of an I/O-bound application on different 
VAXcluster CPUs may not be beneficial if the disk drive is the cause of 
the I/O bottleneck. However, in the case where an I/O port is flooded by 
UOs to many different disks, then running multiple copies of an I/O-bound 
application on different VAXcluster CPUs may be beneficial. 

Typically, most I/O-bound applications are bottlenecked on the disk drive, 
not the processor's I/O port. There are VMS utilities for diagnosing the 
more common cases where the disk drive is the bottleneck; but, when an 
application is limited by the port, there is not a VMS utility to diagnose 
this problem . ~ 

s However, the UO load on the I/O port can be deduced by obtaining the I/O load on a disk and comparing this with the 
known UO capacity of the disk. 

7-9 



VAXcluster System Performance Considerations 

In a LAVc system, there are two sources of I/O bottlenecks: 

• System disk 

Nodes on a Local Area VAXcluster system often boot from the same 
system disk. Such a disk can become an I/O bottleneck in large 
clusters . 

• Multiple satellite nodes 

As you add more satellite nodes to a Local Area VAXcluster system, 
the chances of an I/O bottleneck may increase because of a potential 
Ethernet overload. 

For more information on how to use the VMS utilities discussed in 
Section 7.1 to identify and diagnose an I/O bottleneck, refer to the Guide 
to VMS Performance Management. 

Salving an I/O Bottleneck 

After you identify that you have an I/O bottleneck, you can take 
appropriate action to solve the bottleneck. For an I/Q bottleneck, you 
might consider the following: 

• Pre-allocate disk space when you create a file. 

Allocate enough disk space to store the file in one contiguous section 
of the disk. You should also consider allocating additional space in 
anticipation of file growth to reduce the number of required extensions. 
For more information on initial file allocation and extending a file, see 
the Guide to VMS File Applicatians. 

• Regularly backup and restore disks to alleviate fragmented disks. 

By using the Backup utility to perform an image backup, all files on 
an output disk can be stored contiguously. Contiguous storage of files 
eliminates disk fragmentation and creates contiguous free blocks of 
disk space. For more information on how to use the Backup utility to 
alleviate fragmented disks, refer to the Guide to Maintaining a VMS 
System. 

• Tune VMS RMS indexed files. 

The process of designing your files to achieve better processing 
performance is called file tuning. You can use the Analyze/RMS_File 
utility to examine the internal structure of a VMS RMS file. 
Analyze/RMS_File can check the structure of a file for errors, generate 
a statistical report on the structure and use of the file, or generate 
a File Definition Language (FDL) from a data file. If you want to 
generate a reformatted and reorganized output file, you can use the 
VMS Convert utility and specify a FDL file specification (obtained 
from the Analyze~RMS_File utility) on the Convert utility command 
line. For more information on how to use the Analyze/R,MS_File 
utility and Convert utility to optimize and redesign file characteristics, 
refer to the VMS Analyze I RMS_File Utility Manual, VMS Convert 
and Convert /Reclaim Utility Manual, and the Guide to VMS File 
Applications. 

7—y 0 



VAXcluster System Performance Considerations 

• Utilize VMS RMS global buffering. 

In cases when several processes on different VAXcluster CPUs access a 
file for mostly shared reads and there are a limited number of update 
requests, consider implementing VMS RMS global buffering. When a 
process requests a record that is located in a VMS RMS global buffer, 
the record can be transferred directly from the global buffer to the 
program, eliminating an UO read operation. Note that if the previous 
aecessor modified the record, VMS RMS writes the buffer to disk before 
returning the record to the new accessor. 

For more information on VMS RMS global buffering, refer to 
Section 3.2.3 in this manual and the Guide to CMS File Applications. 

• Disable highwater marking unless you need it for disk read security 
for a high volume of files. 

Highwater marking sometimes increases the number of disk I/Os. This 
is particularly true in fragmented volumes supporting applications 
that do a lot of file extensions and creations. If you need disk read 
security for only a few files, use SET FILE/ER►ASE_ON DELETE. This 
provides much of the same level of security as highwater marking, but 
has less impact on performances

• Move busy files to other disks. For example: 

Move all nonsystem files from a system disk to other disks. 

Place page and swap files on a less used locally-connected disk, if 
available. This reduces the I/O load on the cluster common disks. 

— Move frequently accessed system files to other disks, and use 
logical names or other pointers to access them. These files include 
user authorization files, a mail database, a job controller database, 
ERRFMT log files, DECnet-VAX accounts, and MONITOR log 
files. 

• Devote more memory to I/O using: 

Larger or more VMS RMS buffers 

Disk file Read-Only global sections (see Section 6.2.3) 

Increased MSCP Server buffers after using MONITOR MSCP to 
determine the necessity or AUTOGEN's feedback mechanism will 
automatically set the appropriate values for MSCP buffers 

s With VMS Version 5.0 and higher, if you specify the sequential only option (SQO} for access to a sequential file, you get 

optimizations for sequential access that includes hghwater marking. 

7-1 ~ 



VAXcluster System Performance Considerations 

• Balance the I/Q workload across multiple disks: 

In a CI-based cluster, connect multiple disks to HSCs and balance 
the I/O load between HSC channels. An HSC optimizes I/O when 
it has a queue of requests by: 

a. 

Performing I/O operations in the most efficient order, not 
necessarily the order in which they are requested 

b. Breaking an I/O request into fragments, if necessary, for 
efficiency 

However, instead of relying on HSC optimizations in such a 
situation, you can substantially improve performance by adding a 
disk and diverting some of the I/O load to that disk. 

Use multiple HSC disk channels. 

In a shadow set, you should use multiple disk channels to avoid a 
single point of failure as well as improve performance. when you 
use multiple channels, you can perform multiple data transfers in 
parallel. 

(Although an HSC channel can accept up to four disks, 
performance may tend to degrade if more than two busy disks 
are on the same HSC channel. ) 

Use volume sets for automatic load balancing when the write 
activity is high. 

In a volume set, each new file is placed on the volume with the 
most free space. For more information on how to use volume sets 
for load balancing, see the Guide to Maintaining a VMS System. 

Use volume shadowing if the read activity is high. 

Use search lists to combine directories on different disks into one 
logical directory. (For more information on how to use search lists, 
see the VMS Install Utility Manual.) 

Connect a local disk to the CPU that will access it the most. 

• whenever possible, run batch jobs with high I/Q activity at non-peak 
hours to lessen the impact on users during the peak hours. 

For more information on identifying program and configuration I/O 
bottlenecks, refer to Section 7.5 in this chapter and the Guide to VMS 
Performance Management. 



VAXcluster System Performance Considerations 

7.3 Potential Bottlenecks for aMemory-Bound Application 
Memory is typically the least expensive and the most versatile of the 
three major resources. Off-loading demand from the other resources at 
the expense of memory is a common trade-off inherent in the design of 
all virtual memory systems. At the same time, the overcommitment of 
memory manifests itself both as a CPU bottleneck (excessive interrupt 
stack time for hard paging and swapping) and an I/O bottleneck 
(contention for the disk containing the page and swap files). The end 
result of a memory bottleneck is that a CPU has unacceptable application 
response times. For more information on using AUTOGEN and SYSGEN 
operations to set the values of system parameters (such as the page and 
swap files), refer to the Guide to Setting Up a VMS System. 

Hardware or software upgrades to CPUs in your VAXcluster system 
can also have an impact on CPU memory requirements. Consider the 
following precautions when you make changes to CPUs in your VAXcluster 
environment: 

• Upgrading to a faster CPU 

Assuming that you are upgrading because the CPU is a bottleneck, be 
careful when you assess the memory requirements, since a faster CPU 
will reference more pages in a given unit of time. 

• Upgrading a single CPU system to a VAXcluster system 

Static memory requirements will typically be from 1 to 2 Mbytes of per 
CPU memory over and above single CPU usage. 

• Software upgrades or additions 

Assess the impact of the memory requirements for layered products 
that you may want to add to your VAXcluster system. 

For more information on the hardware and software memory 
requirements, refer to the current VAX Systems and options Catalog 
and the appropriate VMS Software Product Description. 

Solving a Memory Bottleneck 

The key to good performance of the memory subsystem is to maintain 
properly sized working sets for the resident processes on each VAXcluster 
CPU. As a rule, the total of all process working set quotas, for each 
VAXcluster CPU, should be within the amount of free memory available 
on that system. For more information on working set adjustment, refer to 
the Guide to VMS Performance Management. 

If you increase the number or size of the UO buffers at the application 
level by adjusting the VMS RMS buffer parameters, make sure that you 
adjust the working sets for these processes accordingly or you run the risk 
of trading file I/O for page faults. 



VAXcluster System Pertormance Considerations 

Install images with the appropriate attributes. when an image is accessed 
concurrently by more than one process on a routine basis, the image 
should be installed with the Install utility using the /SHARED qualifier 
so that all processes on a VAXcluster CPU use the same physical copy 
of the image. In addition, you can conserve on memory allocated for an 
installed image with a directory pointer to the disk file location for the 
image by installing the image as /OPEN~HEADER RESIDENT/SHARED. 
For more information on how to use the Install utility, refer to the ~~VIS 
File Definition Language Facility Manual. 

You may also want to consider adding memory to reduce the amount of 
I/O required in applications, thus improving overall performance. In order 
to improve application performance, dynamic memory could possibly be 
added into the VAXcluster storage hierarchy at two levels: 

• Adding main memory at the host level 

Main memory provides the fastest access to data; consequently 
accessing data from memory rather than a magnetic storage device 
can improve system throughput and response time by reducing an 
application's hard page fault rate. However, because main memory is 
volatile, use of this resource is not a viable alternative in applications 
where data is permanent and must outlive the program. 

• Adding memory at the device level 

A solid state disk, for example the Electronic Storage Element-20 
(ESE20), is a device level option for adding memory and enhancing 
I/O performance. The ESE20 operates at speeds of five to ten times 
that of magnetic storage devices and is characterized by access times 
in a range of 1 to 10 milliseconds. Consequently, an ESE20 can be 
used to decrease the disk I/O access time and significantly speed 
up a disk-based application. In addition, the ESE20 is a full MSCP 
protocol disk device that be accessed through an HSC, supports VAX 
Volume Shadowing, and is transparent to the application. For more 
information on Digital solid state disks, see the ~.AX Systems and 
Qptions Catalog. 

For more information on identifying program and configuration memory 
bottlenecks, refer to Section 7.5. 

7.4 Potential Bottlenecks for aCPU-Bound Application Environment 
CPU performance is vital to the performance of the cluster as a whole 
because the GPU provides instruction execution service to user processes. 
Therefore, it is important to keep the CPU doing useful work; not 
scheduling over-committed memory or handling a large number of I/O 
requests. 

A CPU can become overloaded when: 

• Multiple applications continually need the CPU for computations. 

• Multiple applications need to move a large amount of data within 
memory. 

?—y 4 



VAXcluster System Performance Considerations 

• You are trying to run a very large application on a CPU that is not 
powerful enough to run the application efficiently. 

• Excessive CPU cycles are required to manage memory. 

A consideration for aCPU-bound environment is the amount of locking in 
an application and the economy of the locks used. If there are extensive 
interprocess communications for an application using DECnet-VAX 
communication, then alternatives using locking techniques should 
be explored because locks have a lower overhead than DECnet-VAX 
communication. 

When using locks, there are two strategies for reducing the VMS overhead 
associated with the internal data structures for the locks: 

1 If a resource is accessed and released numerous times during a 
program's execution, then the lock should not be $ENQ—$DEQ 
for each access. Rather, the lock should be initially $ENQed and 
then converted to the NULL locking mode and reconverted for each 
subsequent access request. This strategy is useful for conserving 
locking data structures. 

2 when possible, construct a locking scheme to use resource sublocks to 
reduce lock manager data structures and improve locking performance. 

For more information on isolating a CPU limitation in your VAXcluster 
system, refer to the Guide to CMS Performance Management. 

Salving a CPU Bottleneck 

For a CPU bottleneck, consider the following: 

• Use a more powerful CPU. 

• Add one or more CPUs to the cluster. 

If you are considering adding CPU power to your VAXcluster system, 
either by upgrading or by adding a new CPU, also consider the 
effect that the additonal CPU power will have on the other primary 
resources. A change in the balance of resources will occur and may 
result in a shift in the bottleneck. For example, given that the CPU is 
the resource limiting the performance of your system, removing this 
binding condition allows more I/O requests to be generated per unit of 
time. This may result in an I/O bottleneck at a disk. 

• Design an application to run on any CPU in the cluster so the 
application can be offloaded from an overloaded CPU. (For more 
information on designing an application for high availability, refer to 
Section 5.1.) 

• If possible, break a large application into discrete components, 
and run each component on a different CPU. (Refer to Section 2.5 
and Section 4.3 for more information on how to distribute by 
decomposition. ) 



VAXcluster System Performance Considerations 

• Minimize process creations. 

Qnly create a process if there is a significant amount of work to 
do. You can use server processes (see Section 4.2) as a means of 
minimizing process creations for remote requests. 

• Minimize image activations. 

Only activate an image if you intend to do a reasonable amount 
of work; once you activate an image, stay there. For every image 
activation, there is an image rundown which can be aCPU-intensive 
operation. 

• Use the VMS batch facility. 

The job controller balances the job load across CPUs. If a generic 
batch queue is associated with more than one execution queue, the 
batch load is proportional to the job limit of each queue. 

• Use terminals connected to a terminal server on the Ethernet. 

Terminal servers balance the user load across CPUs. Each CPU 
computes a service rating based on the type of CPU and the percentage 
of idle time over a recent interval. The terminal server then connects 
each user to the CPU with the highest rating service. 

Terminal servers also allow manual load balancing. Users can log into 
whichever node they choose; usually the nodes with the best response 
time. 

For more information on identifying program and configuration CPU 
bottlenecks, refer to Section 7.5. 

7.5 Layered Products Available for Monitoring Cluster Performance 
Table 7-3 lists three layered products available for monitoring cluster 
performance. The features of these products are briefly described in the 
text following Table 7-3. 

Table 7-~ Layered Products for Monitoring a Cluster 

Product Function 

VAX Software Performance Monitor (SPM} 

VAX Performance and Coverage Analyzer 
(PCA} 

VAX Performance Advisor (VAX PA} 

Collects and reports clusterwide 
performance data in more detail than 
VAX MONITOR does. 

Gathers data on a running program, 
and produces performance histograms 
and tables. 

Identifies possible CPU and 
cluster problems, and provides 
recommendations for enhancing 
performance. 

7-1 s 



VAXcfuster System Performance Considerations 

7.5.1 VAX Software Performance Monitor 
VAX Software Performance Monitor (VAX SPM ), Version 3.2, is a software 
performance management facility for VAX and VAXcluster systems. It 
collects, displays, reports, and graphs performance information useful in 
system tuning, trend analysis, and workload forecasting. This information 
includes resource utilization and load balance data for a single VAXeluster 
CPU or a VAXcluster system. VAX SPM software is designed for use by 
system managers and system programmers. 

VAX SPM provides a flexible facility for collecting and archiving 
performance data. Data may be collected by using a variety of 
user-specified parameters. The user can start and stop data collection 
for all CPUs in a VAXcluster system from a single terminal, and can 
archive all the performance data in a single file. 

VAX SPM video displays dynamically show a variety of statistics using 
bar charts, Kiviat plots, and numerical data. These can display data 
for a single node, or for summary information for all nodes or accessible 
disks (up to eight concurrently) in a VAXcluster system. The latter is 
particularly useful for balancing the workload across several nodes or 
disks. 

VAX SPM tabular reports and graphs contain the level of detail necessary 
to quantify system resource utilization (CPU, memory, and I/O) and 
to identify system performance bottlenecks. Proper analysis of these 
reports may reveal under-utilized resources that can be traded against 
a bottleneck. Graphs and reports of data collected over Long periods of 
time show long-term trends in resource utilization. These are helpful in 
planning future hardware acquisitions. 

For more information on VAX SPM, refer to the Guide to VAX SP1V~. 

7.52 VAX Performance and Coverage Analyzer 
The VAX Performance and Coverage Analyzer (VAX PCA) is a tool to help 
VMS users analyze the execution behavior of their applications programs. 
VAX PCA has two functions: 

• To pinl.oint execution bottlenecks and other performance problems in 
application programs 

• To provide test coverage analysis by measuring what parts of a user 
program are executed or not executed by a given set of test data 

The VAX PCA is an aid in tuning the performance and testing of 
applications programs. It is not a tool for the analysis of operating system 
performance or for use as an aid in hardware resource planning. 



VAXcluster System Pertormance Considerations 

The VAX PCA consists of two parts: 

• Collector 

The Collector gathers performance and test coverage data on a running 
user program. 

• Analyzer 

The Analyzer processes and displays the collected data. 

Both the Collector and the Analyzer are fully symbolic and use the 
Debug Symbol Table (DST) information in the user program to access 
the symbolic names of program locations. Applications written in any of 
the VMS languages which produce DST information can be analyzed by 
using the VAX PCA. 

For more information on VAX PCA, refer to the VAX Performance and 
Coverage Analyzer User's Guide. 

7.5.3 VAX Performance Advisor 
The VAX Performance Advisor (VAX PA) is aVMS-layered product that 
reduces the time and effort required to manage and monitor VMS system 
performance, as well as plan for future resource requirements. It can be 
used with bath standalone VAX systems and VAXcluster systems. 

VAX PA gathers VMS system data and, through the application of expert 
system technology, analyzes the data, identifies specific conditions causing 
performance degradation, and presents detailed evidence to support its 
conclusions. Further, VAX PA provides recommendations for attaining 
improved system performance. 

In addition to its expert system analysis, the VAX Performance Advisor 
assists in capacity planning exercises by providing data archival and 
graphing capabilities for long term trend analysis, and performance 
modeling to determine future system performance given changes in 
workload or configuration. 

The components of VAX PA are: 

• Performance Knowledge Base and Rule Compiler 

The VAX Performance Advisor contains a knowledge base of rules 
and thresholds which it uses to analyze V S system data. VAX 
PA rules fall into five categories: Memory, CPU, I/O, Cluster, and 
Miscellaneous. The VAX PA knowledge base may be modified and 
expanded at the user's discretion. 



VAXcluster System Performance Considerations 

• Analysis, Reporting, and Graphing 

VAX PA aids the system manager in monitoring system activities and 
in making performance evaluations by quickly identifying performance 
problems. Through its analysis, VAX PA will also identify potential 
bottlenecks and the specific device on which the bottleneck will occur. 
VAX PA reports are generated at the request of the user and include: 
the Analysis Report, the Performance Evaluation Report, VAX PA 
Graphs, and the Raw Data Dump Report. 

Analysis Report 

The VAX PA Analysis Report contains conclusions drawn from 
the VAX PA analysis as well as recommendations for improving 
system performance. In addition to identifying performance related 
problems and recommendations, the Analysis Report contains the 
conditions under which the identified problems occurred, along 
with supporting evidence to substantiate VAX PA conclusions. 

Performance Evaluation Report 

The Performance Evaluation Report provides system statistics 
which can assist the system manager in gauging the impact 
of changes made to the system. It is particularly useful in 
monitoring system performance after implementation of a VAX 
PA recommendation. 

This report provides summaries of disk and tape activity, CPU and 
memory utilization, as well as detailed statistics on workload data, 
interactive, batch, and network processes. 

Graphs 

VAX PA provides a facility to graphically represent the data which 
has been collected in the VAX PA database. VAX PA graphing 
provides the system manager with "pictures" of the system's 
performance metrics, and is a valuable source of information 
from which a better understanding of resource utilization and 
overall workload characteristics can be obtained. A wide range of 
predefined graphs plus the ability to define custom graphs can be 
generated for a ReGIS or ANSI output device. 

Dump Report 

This report provides data from the VAX PA database in user 
readable format. The user may optionally choose to dump the full 
database record, or only a selected portion of the database record. 

• workload Characterization, Performance Modeling, "what If 'Analysis, 
and Prediction Reporting 

VAX PA allows the system manager to define the system's total 
workload in terms of manageable units which VAX PA will then 
report against. workloads and groups of workloads (workload families) 
are used in model generation and can be reported against in VAX PA's 
Performance Evaluation Reports or Graphics . 

7—y 9 



VAXcluster System Performance Considerations 

The VAX PA modeling component is used to predict performance 
of standalone or VAXcluster systems, and to determine system 
performance levels for various workloads and configurations. The 
performance statistics are provided in either summary or detailed 
reports and include: 

Resource utilization 

Response time 

Throughput per transaction class as well as aggregate 

Performance information for each CPU, HSC, disk, channel, 
adapter, and CI or Ethernet bus for both current and projected 
workloads or configurations 

System level parameters 

When using the performance modeling component of VAX PA, a 
baseline model is first generated from the current data in the VAX 
PA database and can be validated against the data in the Performance 
Evaluation Report. After validating the baseline model, the user 
can change parameters in the model input file through interactive 
prompting or by directly editing the model input. 

This process can be repeated as often as necessary until the user is 
satisfied with the performance of a given configuration and workload. 
This is often referred to as "what If 'analysis, as it allows the user to 
answer questions such as "What are the performance implications to 
my system if I increase workload x by 20%?", or "w~iat if I add another 
CPU to my VAXcluster system?" 

VAX PA provides a prediction reporting capability which automatically 
determines system performance based on an incremental workload 
of 25, 50, 75, and 100 percent, or until a system component becomes 
saturated. This report also indicates the smallest workload at which 
a component will saturate, defined by 90°Io utilization. Prediction 
Reporting identifies bottlenecks before they occur, thereby allowing 
the system manager to be proactive in eliminating bottlenecks and 
providing a consistent level of system performance to the user base. 

Data Archiving and Data Extraction 

VAX PA provides data archiving capabilities so that the VMS 
performance data collected by VAX PA on a daily basis can be used 
in long-term performance studies. 

VAX PA provides data extraction procedures which may be called 
explicitly from user written programs. This facility allows system 
and application programmers to call VAX PA library procedures for 
extraction of daily VAX PA data. VAX PA provides record definitions 
for the following languages: Ada, Basic, Bliss, C, Datatrieve, Fortran, 
Lisp, Macro, Pascal, and PLJI. 



VAXcluster System Pertormance Considerations 

• Data Collection and Storage 

VAX PA records VMS system data- for subsequent _processing by 
VAX PA. The data collector runs as a detached process and is activated 
at system startup. VAX PA supports data collection and reporting for 
a ma~mum of 1024 concurrent processes. 

In a VAXcluster system, VAX PA _uses the distributed VMS lock 
manager to synchronize the data collection on all_ nodes. All data 
records will then contain a time stamp that is ~onsisten►t across the 
entire VAXcluster system. The database files have a default retention 
period of seven days unless otherv~ise specified by the user. 

For .more information on VAX PA, refer to the SAX Performance Advisor 
User's Guide. . 





8 

n 

Sample Application for a VAXcluster System 

The following demonstration application is written in BASIC and consists 
of two components: 

• A user interface program (USER IFACE.BAS) that prompts a user to 
send a message to a server process on a particular node 

• A server program (SERVER.BAS) running on multiple nodes 

Figure ~-1 shows a diagram of the application components on a Local Area 
VAXcluster system. 

8-1 



Sample Application for a VAXcluster System 

Figure 8—~ Diagram of a Demonstration Application 

Server P ram ~9 

USER_IFACE 
Program 

<~ K3Cmtei~aE'~'~> ~>?>> 

USER (FACE 
Program 

Ethernet 

Server Program 

Server Program 

. ................... ...............:.. .. ........:.... .:.. 

Server Program 

M R-3166-RA 

8-2 



Sample Application for a VAXciuster System 

When the application is executed, multiple processes running 
USER IFACE.EXE can send messages to any one of the processes running 
SERVER.EXE in the VAXcluster environment. Qne of the server processes 
has been granted an EX mode lock for resource 1~ZAST; this server is called 
the "master." The other server processes have queued an EX mode lock 
for the 11/IAST resource; these server processes are called the "slaves." All 
processes running USER_IFACE.EXE from any VAXcluster CPU always 
"talk" to the server process which is currently functioning as the "master." 
The "master" determines if the message sent by a user process is for itself; 
if not, the message is broadcast to all slave processes. Upon receipt of 
the message broadcast from the master, each slave process evaluates the 
message to see if it is for them. Figure 8-2 illustrates the communication 
pathways for the demonstration application. 

Figure 8-2 Function of Demonstration Application 

USER_IFACE Process 
Send Message 

Slaves 

MASTER PROCESS 
If Message not for Master, 
Broadcast to All 

Slave Process 
Evacuate Message 

Slave Process 
Evaluate Message 

USER_IFACE Process 
Send Message 

Slave Process 
Evaluate Message 

Slave Process 
Evaluate Message 

MR-3167-RA 

The demonstration application illustrates: 

• A distributed application 

The user interface runs on one or more nodes; the server program runs 
on one or more other nodes. 

• High availability 

This application demonstrates a "master" server that is designed for 
high availability using redundant back-up servers. As long as there 
is at least one process that is executing SERVER.EXE, there will be a 
"master" process to coordinate communications. 

• Use of lock management system services with completion and blocking 
AST routines 

This demonstration application has several examples of using 
completion and blocking AST routines to implement Deadman and 
Doorbell locl~ng schemes. 



Sample Application for a VAXcluster System 

• Communication between nodes 

The two components communicate through the lock value block, and 
therefore the messages must be 16 or fewer bytes. 

• Reliability 

Using the lock management system services with the lock value block, 
a communication protocol is designed so that a message is never lost 
or overwritten. 

• Failover 

If the master process fails, another server gets the lock on the resource 
and becomes the new master. 

8.1 Application Design 
There are two phases for this application: 

~ Run SERVER.EXE to set-up the application environment. (Figure 8-3 
demonstrates the set-up activities by SERVER.EXE.) 

2 Run USER_IFACE.EXE to communicate to a process in the application 
environment. 

There are two phases for a communication from a user interface 
process: 

a. Send the message from any user interface process to the "master." 
(Figure 8-4 demonstrates these communication activities.) 

b. If the message is not for the "master," the "master" sends the 
message to all slave processes in the application environment. 
(Figure 8-5 demonstrates these communication activities.) 

Note on Figure 8-3 

The SERVER.EXE set-up activities perform the following steps: 

1 The first process to execute SERUER.EXE acquires the EX lock for 
resource MAST. All other processes in this application have queued 
an EX lock with a completion AST (MAST_AST routine) for resource 
MAST. The first process is the "master" and the remaining processes 
are the slaves. (The EX requests for resource 11/IAST in the lock 
manager's waiting queue is the order of succession for failover to the 
"master" role. ) 

2 The "master" executes the completion AST routine (MAST_AST 
routine) when the EX lock for the 11/iAST resource is granted. The 
"master" assumes the role of being the "special" process that the user 
interface will talk to (see Figure 8-2) by acquiring the EX lock with a 
blocking AST for resource UI. 

3 All processes (except the master) that run SERVER.EXE acquire a CR 
lock with a Blocking AST (RR AST routine) for resource RR. 



Sample Application for a VAXcluster System 

Note: In this demonstration application, after SERVER.F.XF, completes 
all of the set-up activities, the program SERVER.FXF goes to sleep 
and all of the AST and Blocking AST activities are performed 
while each SERVER.EXE process remains asleep. Ina 'Sreal world" 
application, SER,vER.EXE could include code for work for each 
server process to perform when awakened from an AST routine. 
For example, when a server (either the master or a slave server) 
is sent a message from the user interface process, the appropriate 
server could be awakened from AST level and perform code 
instructing the server to read a disk file for further instructions 
for work to be performed. 

Figure 8-~3 SERVER.EXE Set-Up Activities 

f~k;~#
:::-::~:: 

Slave 

a# '' 

~ ~~#t~6 > 

Requests and 
Receives EX Lock 
for USER_IFACE 

Request and Receives 
CR Lock with 
Blocking AST for RR 

M R-3168-RA 



Sample Application for a VAXcluster System 

Figure 8-~ USER_IFACE.EXE Message Sending Activities 

Tm~e 

................................. .................................. ................................. 

USER_IFACE 
Process 

$DEQ 

  $ E NQW EX Lock 
~ for USER (FACE 

Master 
Process 

USER (FACE AST Routine 

Gets EX Lock for 
USER_IFACE 
with LVB 

Blocking AST 
Delivered 

Put Message 
in LVB 

$DEQ 
USER_IFACE 

Clears LVB, 
Downgrades 
EX toNL 

Y 

$ ENQW EX Lock 
for USER_IFACE 

Gets EX Lock for 
USER_IFACE 

Reads LVB 

Evaluates if 
Message is for 
Master Process 

M R-3169-RA 



Sample Application for a VAXcfuster System 

Note on Figure 8-4 

The design of this demonstration application of having all user interface 
processes talk to one server (the "master") may be the best implementation 
if most of the messages sent by the user interface processes are for the 
"master." However, if a large number of messages are for other server 
processes, you may consider modifying this application so that those user 
interface processes can broadcast directly to all servers. In addition, this 
demonstration application also assumes that the master process will only 
send messages to the other servers and will not need to receive messages 
from the other servers . 

8-7 



Sample Application for a VAXcluster System 

Figure 8-5 RR AST Routine Broadcast Protocol Activities 

Sender 

~~:'.~' ~ 

Master 
Process 

If Message is not 
for Master Process 

$ENQ EX Lock 
for RR 

Receiver # 1 

Slave 
Process 

Holds CR Lock 
RR with Blocking 
AST 

Gets EX Lock 
for R R 

Bfocdng AST 
Delivered 

Executes 
RR AST 

Puts Message 
in LVB 

Downgrades 
to C R Lock 

Downgrades 
CR Lock 
to NULL 

Upgrade to CR 
Lock with Blocking 
AST 

Gets CR Lock 
for RR 

Read LVB and 
Evaluate if Message 
is for Receiver # 1 

Receiver # 2 

Slave 
Process 

Holds CR Lock 
RR with Blocking 
AST 

Blocd ng AST 
Delivered 

Executes 
RR AST 

Downgrades 
CR Lock 
to NULL 

Upgrade to CR 
Lock with Blocking 
AST 

Y 

Gets. CR Lock 
for RR 

Read LVB and 
Evaluate if Message 
is for Receiver # 2 

M R-3170-RA 



Sample Application for a VAXcfuster System 

Note on Figure 8-5 

All Receivers must be able to downgrade CR for RR to NL. If for some 
reason, a server process cannot downgrade, then the communication will 
hang. (There is no problem with the communication if a server process 
leaves the application due to a hardware failure. Only in the case where a 
server process is hung on a node, but the node remains in the cluster.) 

8.2 Application Implementation 
A flowchart of the modules of this application is presented in Figure 8-6. 
The complete BASIC code for all modules follows. In addition, there are 
compile and link instruction in BUILD_LOCK E~;.AMPLE.COM. 

8-9 



Sample Application for a VAXcluster System 

Figure 8-6 Modules far Demonstration Application 

MASTER 
SERVER.EXE 

SLAVE 

SLAVE 

Hibernates 

Executes 
MAST AST 

t 
Y 

USER_IFACE.EXE 

Send Message to 
Master or Slaves 

Blocking AST 
Delivered 

Downgrades 
EX Lock for 
USER_IFACE 

r 
Reads LVB 
for USER_IFACE 

Request EX Lock 
for USER_IFACE 

Gets EX Lock 
for USER (FACE 

Puts Message 
i n LVB 

Read LVB and 
Display Message 

Master Requests 
RR LAcc, Causing 
All Slaves to Get 
RR AST 

~-
Message is Broadcast 
to All Slaves Executing 
SERVER.EXE 

$ DEQ EX Lock 
for USER_IFACE 

M R-3171-RA 

8—~ o 



Sample Application fora VAXcluster System 

BUILD_LQCK EXAMPLE.COM 

$ ±BUILD_LOCK EXAMPLE.COM - Command procedure to build the example 

$ ± 

$ t 

$ CREATE LCKDEF.MAR 

;$ENQ/$DEQ System Service parameter definitions 

$LCKDEF GLOBAL ;Make them global definitions. 

.END ; That' s all folks . 

±Assemble the definitions. 

MACRO LCKDEF 

±Compile the subroutines and programs. 

BASIC/LIST MAST AST 

BASIC/LIST RR AST 

BASIC/LIST UI_AST 

BASIC/LIST SERVER 

BASIC/LIST USER_IFACE 

±Link the programs. 

LINK SERVER, MAST AST, RR AST, UI_AST, LCKDEF 

LINK USER IFACE, LCKDEF 

±All done. 

EXIT ±from BUILD LOCK EXAMPLE.COM 

LCKDEF.MAR 

;Lock services definition 

$LCKDEF GLOBAL 

.END 

SERVER.BAS 

1 PROGRAM SERVER 

%TITLE "Server program" 

%IDENT "V1.00" 

10 option type=explicit 

external long function sys$engw,sys$hiber,sys$enq,sys$trnlog,& 

lib$get_ef,lib$free_of 

external long constant rr_ast,mast_ast ± AST routines 

external long constant & 

lck$m system, & 

lck$m_valblk, & 

lck$m_convert, & 

lck$k_nlmode, & 

lck$k_crmode, & 

lck$k_exmode, & 

ss$ normal 

declare long ret_status, ± for system service status returns & 

mast_f lags, rr_f lags, ± f lags modifiers f or locks & 

pos colon, ± position of ":" in sys$node string & 

eflagl, eflag2 ± event flags 

declare string node ± Our node, obtained from logical SYS$NODE 

± Maps for mast and rr lock blocks. 

map (mast_lock$block) long mast_lblk(6%) 

map (rr_lock$block) long rr_lblk(6%) 

± These two are in common so they can be shared with AST routines. 

common ( scommon) long master, string our_node=6% 

master=0% ± If 1 (set by MAST AST) means we are 

± the master. 

8-11 



Sample Application for a VAXcluster System 

! Get an event flag to use for system services. 
ret_status=lib$get_ef (eflagl} 
if ret_status<>1$ then & 

print "error getting an event flag: ";ret_status 
goto 300 

end if 

! Find our own nodename by translating logical SYS$NODE. 
node=space$ (12~) ! Lots of room for _ and : . 
ret_status=sys$trnlog ("SYS$NODE", ,node, , , } 

if ret_status<>lo then & 
print "error getting our own node name: ";ret_status 
goto 300 

end if 

! Remove any leading underscore and trailing colons. 
node=right$ (node, 2~) if left$ (node, 1~) _"_" 
pos colon=instr (1$, node, " : ") 
node=left$(node,pos_colon-1~) if pos_colon<>0~ 
our_node=node 
print "our node is ";our node 

mast flags=lck$m valblk ! lck$m system not specified 
! Assumes user interface and server run 
! under the same UIC. 

! print "Enqueueing request for the MAST lock.. 
ret_status=sys$enq( eflagl by value, efn 

lck$k_er~node by value, 
mast_lblk ( ) by ref, 
MAST_FLAGS by value, 
„MAST" 

mast_ast by value, 

if not ret_status and 1$ then & 
print "error from MAST $enq 
goto 300 

end if 

. rr 

r 
r 
! 
r 
t 
! 
! 
t 
! 

lkmode 
status block 
flags 
resource name 
parent lockid 
ast addr 
ast parm 
blocking ast 

! access mode, null 

";ret_status 

If and when we get the MAST lock, the MAST AST routine will set 
MASTER to 1$, otherwise, it will remain Oo. 
The MAST AST will also obtain the user-interface lock for us. 

! In any case, we enqueue a request for the "RR" 
! CR-mode, specifying RR_AST as a blocking AST. 

! Print "ENQing round-robin lock request..." 
rr_flags=lck$m valblk !or lck$m system 
ret_status=sys$engw( eflagl by value, 

lck$k_crmode by value, 
rr_lblk ( ) by ref , 
RR_FLAGS by value, 
TtR~f1 

rr_ast by value, 

lock in 

! efn & 
! lkmode & 
! status block & 
! flags & 
! resource name & 
! parent lockid & 
! ast addr & 
! ast parm ~ 
! blocking ast & 
! access mode, null 

if not ret_status and 1~ then ! Unexpected error getting lock. 
print "Server: error queueing CR-mode RR lock ";ret status 

goto 300 
end i f 

100 if master=l$ then print "MASTER "; else print "slave "; 

200 print "hibernating, waiting for ASTs..." 
ret_status=sys$hiber ( ) 

8-y 2 



Sample Application fora VAXcluster System 

300 print "An error occured. Server exiting..." 
ret_status=lib$free_ef (eflagl) 
ret_status=lib$free_ef (eflagl) 

32767 end 

MAST AST Routine 

1 oTITLE "MAST AST routine" 

%IDENT "V1.00" 
SUB MAST AST ( LONG OUR_PARAM, R0, Rl, PC, PSL) 
OPTION TYPE = EXPLICIT 

external long function sys$engw,lib$get_ef,lib$free_ef,sys$exit 

e:~ternal long constant mast_ast,ui_ast ! AST routines 

external long constant & 

lck$m_system, & 
lck$m_valblk, & 
lck$k exmode 

declare long ret_status, ! For system service status returns & 

ui_flags, ! flags modifiers for locks & 
eflag3 ! event flag to use with system services 

! These two are in common so AST routines can get at them. 

common ( scommon) long master, string our_node=6~ 

! Maps for MAST and UI lock blocks. 

map (mast lock$block) long mast_lblk (6°s) 
map (ui_lock$block) long ui_lblk(6$) 

20 print "We got the MAST AST. We are now functioning as MASTER !" 

master=l~ 

ui_flags= lck$m valblk ! 
! 

Did not specify lck$m system. 
Assumes server and user-interface have 
same UIC. 

print "MAST AST: Requesting EX-mode lock on User interface" 

! Get an event flags to use for system service call. 

ret_status=lib$get_ef (eflag3) 

ret status=sys$engw( eflag3 by value, 
lck$k e~node by value, 
ui_lblk ( ) by ref, 
UI FLAGS by value, 
~~ U I ~~ 

ui ast by value, 

if not ret_status and l~s then 
print "MAST AST: error 

else 

end i f 

32767 END SUB 

! efn & 
! lkmode & 
! status_block & 
! f lags & 
! resource name & 
! parent lockid & 
! ast addr & 
! ast parm & 

! blocking ast & 
! access mode, null 

! Unexpected error getting lock. 

queueing UI lock: ";ret_status 

! Kill this server process. 
ret_status=sys$exit(ret_status by value) 

print "MAST AST: Got User Interface lock" 

ret status=lib$free ef(eflag3) ! Done using event flag. 

8—y 3 



Sample Application for a VAXcluster System 

1 

USER_IFACE.BAS 

PROGRAM USER IFACE 
%TITLE "User Interface" 
%IDENT "V1.00" 
!Prototype Server-wide user interface 
r 

!Program prompts for a node and a message of up to 10 
!characters. It $ENQWs an EX-mode lock on resource "UI" which is 
!held by the master server. Tn~hen it gets the lock, it puts the 
!message in the value block, causing the server (which tries to 
!keep ownership of that resource in EX-mode, but which has a 
!blocking AST that gives the lock up momentarily if someone else 
!requests it) to get the UI_AST, which reads the message. 
!If no server is running, the message simply vanishes into the 
!ether. 

10 option type=explicit 

external long function sys$engw,sys$deq 

external long constant & 
lck$m system, & 
lck$m_valblk, & 
lck$m_convert, & 
lck$k_nlmode, & 
lck$k exmode 

declare long ret_status, ! system service status & 
flags 

declare string msg string 

map (lock block) word cond, word fill, long lock_id, string msg=16% 
map (lock$block) long lblk (6%) 

on error goto 10000 
flags=lck$m valblk ! No lck$m system, assumes server has same UIC. 

! Prompt for message to send by means of the lock value block 
15 input "node:msg ";msg string 

20 ! print "Requesting UI lock..." 
ret_status=sys$engw ( 

lck$k_exinode by value, 

! 
! 

efn & 
lkmode & 

lblk ( ) by ref, ! status block & 
FLAGS 
"UI", 

by value, ! 
! 
! 
! ! 

! 
! 

flags & 
resource name & 
parent id & 
ast addr & 
ast parm & 
blocking ast & 
access mode null 

if not ret_status and 1% then 
print "error from ENQW ";ret status; 
goto 32767 

end i f 

t~ good-bye." 

print "Got UI lock . " 
print "Status :";cond 
print "Lock-id :";lock id 
print "Old-Msg : "' ;msg; ""' if edit$ (msg, 132%) <>"" 

! If lock value block has a message, it was released by another 
! user-interface process rather than by a server. In that case, 
! try again. 

8-~I 4 



Sample Application fora VAXcluster System 

If edit$ (msg, 6%) <>"" then ! characters other than spaces, nulls, etc . & 
print "Lock block already has message "'+msg+""' 
print "Letting lock go and trying again..." 
ret_status=sys$deq(lock_id by value & 

msg by ref „ ) 
if not ret_status and 1% then 
print "Error from $DEQ ";ret_status;" good-bye." 

goto 32767 
end if 
sleep 1% ! Wait 1 second to allow a server to get it. 
goto 20 ! Try again. 

else 
lset msg=left${msg_string,l6%) ! Leftmost 16 chars 
! print "Putting ' ";msg; "' in block and dequeueing . . . 
ret_status=sys$deq(lock_id by value & 

msg by ref„ ) 
if not ret status and 1% then & 

print " * Error from $DEQ ";ret_status;" good-bye." 
goto 32767 

end if 
end if 

goto 15 ! Loop prompting for messages from the user forever. 

10000 resume 32767 if err=11% ! (end of file, ctrl -z) 
print "error ";err; " at line "; erl; " "; ert$ (err) 
resume 32767 ! Exit if any BASIC error. 

32767 end 

1 

UI AST Routine 

~, 

%TITLE "UI AST routine" 
%IDENT "V1.00" 

SUB UI_AST ( LONG OUR_PARAM, R0, Rl, PC, PSL) 
! This Blocking AST gets invoked on the server which is functioning 
! as MASTER when a user interface tries to gain access to the 

! user-interface lock in exclusive mode. (This server holds 

! the UI-lock in EX-mode.) 

! It down-converts the EX-mode UI lock to NL-mode and then 

! ENQWs a request to re-convert the lock to EX-mode. 

! When that second request is satisfied, it obtains the value in 
! the UI lock's value block. 
t 

! In this particular application, we expect that data to be of the 

! form NODE:MSG. If NODE matches our own node, we simply print the 

! msg on the terminal. In a real implementation (such as we envision) 

! it COULD do something more useful, for example a QIO to write the 

! message to a mailbox which is already open on the channel passed 

! in the AST parameter. This would allow users anywhere on the 

! cluster to send messages to that mailbox, as long as messages do 

! not exceed the maximum length. 

! If the node does NOT match ours, we (the master) have to send the 
! message to all other servers. We $ENQW an upgrade to EX-mode 

! of the "RR" lock that we are holding (in CR mode). This is blocked 

! by the CR locks that all the other servers are holding, and thus 

! causes them all to get the RR AST (which lowers their lock to NL 

! and $ENQW's an upgrade to CR specifying the RR blocking AST again 

! When the $ENQW completes, the other servers read the value block.) 

! The value block for this lock contains the destination 

! node, the message, and a flag byte that the destination node can 

! set to indicate receipt of message. 

OPTION TYPE = EXPLICIT 
external long function sys$engw,lib$get_ef,lib$free_ef,sys$exit 

external long constant ui_ast,rr_ast 

8—'~ ~ 



Sample Application fora VAXcluster System 

external long constant 

lck$m system, & 
lck$m_valblk, & 
lck$m_convert, & 
lck$k_nlmode, & 
lck$k_crmode, & 
lck$k exmode 

declare long ret_status, ! system service status & 

ui_flags, pos_colon, rr_flags, eflag4 

declare string msg_string, node art, msg~art 

map (ui_lock$block) word ui_cond, word ui_fill, long ui_lock_id, & 
string ui_msg=16% 

map (ui_lock$block} long ui_lblk(6%) 

map {rr_lock$block} word rr_cond, word rr_fill, long rr_lock_id, & 
string rr_msg=16% 

map (rr_lock$block) long rr_lblk(6%) 

map (rr_lock$block) string rr_misc=8%, ~ 
string rr_node=6%,string rr msg~art=10% 

common (scommon) long master, string our_node=6% 

ret_status=lib$get_ef(eflag4) ! Get an event flag to use. 

20 ! print "UI AST: Down-grading lock on UI to NL-mode..." 
! Clear out the value in the lock value block. 
ui msg="" 

ui_flags=lck$m_valblk OR lck$m_convert !OR lck$m system 
ret_status=sys$engw ( eflag4 by value, ! 

lck$k_nlmode by value, ! 
ui_lblk() by ref, ! 
UI FLAGS by value, & 
"UI", ! 

! 

efn 
lkmode 
status block 

resource name 
parent id 
ast addr 

& 
& 
& 

& 
& 
& 

! ast parm & 
! blocking ast & 
! access mode,null 

if not ret status and 1% then 
print "UI AST: UI downgrade error from ENQW ";ret_status 
goto 32767 

end if 
! print "UI AST: Lock converted to NL-mode." 

! print "UI AST: Requesting ($ENQW) UI lock upgrade to EX-mode" 
ret_status=sys$engw ( eflag4 by value, ! efn & 

lck$k_ersnode by value, ! lkmode & 
ui_lblk() by ref, ! status block & 
UI_FLAGS by value, & 
"UI", ! resource name & 

! parent id & 
ast addr & 

! ast parm & 
ui_ast by value, ! blocking ast & 

access mode null 
if not ret_status and 1% then 

print "UI AST UI upgrade error from ENQW ";ret status; 
goto 32767 

end if 

!print "UI AST: UI Lock upgraded to EX-mode." 
!print "Status :";ui cond 
! print "Lock-id :";ui lock id 
print 'UI AST: '; 
print " (MASTER) "; if master=l% 
print ' WE GOT "' ; trm$ (ui msg) ; "" ! print user -interface msg 
goto 32767 if edit$ {ui msg, 6%) _"" 
pos_colon=instr (1%, ui_msg, " : ") 
node~art=EDIT$ (left$ (ui msg,pos_colon-1$) , 32%) ! upcase 
msg~art=right$ (ui msg, pos_colon+l%) 

s—~ s 



Sample Application fora VAXcluster System 

! Note: In any real application, we should also check the status 

! in the lock block and make sure it is not SS$_VALNOTVALID. That 

! might occur if there was a cluster transition while a requestor 

! was holding the lock in EX-mode. We'd still get the lock, but 

! couldn't trust the value in the block. (It would probably be 

! a duplicate msg.) 

if node~art=trm$ (our node) then & 
print "UI AST : msg ' "; trm$ (msg art) ; "' is for us ("; & 

node~art ; ") " 
! Master's own message processing goes here. 

goto 32767 
end if 

goto 32767 if msg~art="" ! Don't broadcast a null msg. 

! Message is not for us. 
! Request upgrade of RR lock to EX-mode. 

! Wait for slaves to release. 

!print "UI AST: Waiting for RR lock in EX-mode..." 
rr_flags=lck$m_convert !OR lck$m system 
ret_status=sys$engw ( eflag4 by value, ! efn & 

lck$k_exmode by value, ! lkmode & 
rr_lblk() by ref, ! status block & 

RR FLAGS by value, & 
"RR", ! resource name & 

! parent id & 
! ast addr & 
! ast parm & 
! blocking ast & 
! access mode,null 

if not ret_status and 1$ then 

print "UI AST: RR upgrade error ENQW ";ret_status; 

goto 32767 
end i f 
!print "UI AST: Master's CR-mode RR Lock up-graded to EX-mode." 

! Put Node and msg-part into RR lock value block. 

!set rr_node=node~art 

!set rr msg~art=msg~art 

! Downgrade round-robin lock to CR mode so slaves can get it. 

!print "UI AST: waiting for downgrade to CR of RR lock..." 

rr_flags=lck$m_convert OR lck$m_valblk !or lck$m system 
ret_status=sys$engw( eflag4 by value,! efn & 

lck$k_crmode by value, ! lkmode & 
rr_lblk() by ref, ! status block & 
RR FLAGS by value, ! flags & 

"RR", ! resource name & 

! parent lockid & 
! ast addr ~ 
! ast parm & 
! blocking ast & 
! access mode, null 

if not ret status and 1$ then ! unexpected error getting lock 

print "UI AST: RR $engw DOWNGRADE error: ";ret_status 

print "killing this server" 
ret_status=sys$exit(ret_status by value) 

end if 

!print "UI AST: RR lock downgraded to CR-mode" 

32767 ret_status=lib$free_ef(eflag4) ! Done using event flag. 

END SUB 

8-17 



Sample Application fora VAXcluster System 

1 

RR AST Routine 

SUB RR AST ( long OUR PARAM, R0, Rl, PC, PSL) 
± This blocking AST gets delivered when a slave is blocking the 
± master's request for the RR lock in EX mode. 
± If the server is MASTER, it merely logs the AST (can happen 
± once after mastership switches). 

± If the server getting this AST is a slave, it downgrades the 
± lock it holds on RR to NL-mode and waits for the lock again in 
± CR mode. When it gets the lock, it reads the value block to see 
± if the message in the block is for it. 

± There is no back-communications path from slaves back to 
± the master. 

OPTION TYPE = EXPLICIT 
external long function sys$engw,lib$getref,lib$free_ef,sys$exit,& 

lib$wait 
external long constant rr_ast 

declare long constant & 
±lck$m system=X'00000010'L, & 
lck$m_valblk=X'00000001'L, & 
lck$m_convert=X'00000002'L, & 
lck$k_nlmode=X'00000000'L, & 
lck$k_crmode=X' 00000001' L, & 
lck$k exmode=X'0000005'L 

declare long foo_status, 
rr~flags, eflag5 

map {rr_lock$block) word rr_cond, word rr_fill, long rr_lock_id, & 
string rr_msg=16$ 

map (rr lock block) long rr_lblk (6$) 
map (rr_lock$block) string rr misc=8~, & 

string rr_node=6$, string rr msg~art=10~ 

common ( scommon) long master, string our_node=6~ 

foo_status=lib$get+ef(eflag5) ± Get an event flag for system services. 

20 ±print "RR AST: Blocking mode AST delivered " 
print "RR AST: Status :";rr cond if rr_cond<>1~ 

±print "Lock-id : "; rr_lock_id 
± print ' RR AST ' ; 
±print " (MASTER) "; if master=l$ 
±print " (slave) "; if master<>1$ 

± system service status & 

if master=l$ then & 
print "RR AST: ? We are MASTER - exiting AST" 
goto 32767 

end if 

± We are slave. Convert RR lock to NL mode so master can get it 
± in EX mode. 

±print "RR AST: downgrading CR-mode RR lock to NL-mode" 
rr_flags= lck$m_convert or lck$m_valblk 
foo_status=sys$engw (eflag5 by value, ± efn & 

lck$k_nlmode by value, ± lkmode & 
rr_lblk ( ) by ref, ! status_block & 
RR FLAGS by value, ± flags & 
"RR", ± resource name & 

± parent lockid & 
± ast addr & 
± ast parm & 
± blocking ast & 
± access mode, null 

if not foo_status and l~k then ± Unexpected error getting lock. 
print "RR AST: fatal error downgrading RR lock: ";foo status 
foo_status=sys$exit (foo_status by value) ± Kill ourself . 

end if 

~--~ 8 



Sample Application for a VAXcluster System 

All slaves have to be in NL: mode at once for the master 

to be able to send the message. 

We could delay calling $getlki to make sure that there is no process 

waiting for the RR-lock in EX-mode, but instead we take the 

lazy way out. A 1 second delay should be enough time for all the 

slave servers to get the AST and downgrade their RR-lock to NL: 

foo status=lib$wait (1. 0) ! Delay 1 second . 

! Request upgrade to CR mode. Read value block when request completes. 

! Don't specify a blocking ast. 

! print "RR AST: Slave upgrading NL-mode RR lock to CR, no 

! blocking ast" 
t 
foo_status=sys$engw (eflag5 by value, ! 

lck$k_crmode by value, ! 
rr_lblk {) by ref , ! 
RR FLAGS by value, ! 

t 
! 
r 
! 
! 

~~~~, 

efn &
lkmode &
status block &
flags &
resource name &
parent lockid &
ast addr &
ast parm &
blocking ast ~

! access mode, null

!print "RR AST: RR lock is now in CR-mode"

if not foo_status and 1$ then ! Unexpected error getting lock.

print "RR AST: fatal RR $engw upgrade error: ";foo_status

foo_status=sys$exit (foo_status by value) ! Kill ourself .

end if

! Upgrade from CR to CR, this time specify blk AST and no VBLK.

rr_flags= lck$m_convert
foo_status=sys$engw(eflag5 by value, ! efn &

lck$k_crmode by value, ! lkmode &

rr_lblk() by ref, ! status block &

RR FLAGS by value, ! flags &
! resource name &
! parent lockid ~

! ast addr &
! ast parm &

rr_ast by value, ! blocking ast &
! access mode, null

~~~~t 

~f not foo_status and l~s then & 
print "RR AST: CR CR upgrade err ";foo_status 

end if 

! Parse value block from when we got CR lock earlier. 

! Format of our value block is: rr_node (6 bytes, fined length) 

! rr msg~art (10 bytes ) 

!print "de st inat ion_node : " ; t rm$ (rr node) ; & 
~ "' msg : ' "; trm$ (rr msg_part) ; "' " 

i f t rm$ (rr node) =t rm$ (our node) then & 
print " Msg ' "; trm$ (rr msg~art) ; & 
"' is for us ! " 

else 
print " Msg ' "; trm$ (rr msg_part) ; ~ 
"' is for node "; trm$ {rr node) ; ", not for us" 

end if 

32767 foo_status=lib$free ef(eflag5) ! Done using event flag. 

END SUB 

8-~ 9 



--~ 



Glossary 

For additional definitions of commonly used terms in documentation of the VMS 
operating system, see the VMS Glossary. 

after-image journaling: A feature of VAX RMS journaling that allows you to 
reconstruct a data file up to the last transaction that was successfully completed. 

application: A set of procedures that performs a task or function. 

AST: See asynchronous system trap. 

asynchronous event: An asynchronous event does not necessarily complete 
the requested operation before allowing the requesting program to continue 
execution. 

asynchronous system trap (AST): Asoftware-simulated interrupt to auser-defined 
service routine. ASTs enable a user process to be notified asynchronously, with 
respect to the user process, of the occurrence of a specific event. If a user process 
has defined an AST routine for an event, the system interrupts the process 
and executes the AST routine when the event occurs. When the AST routine 
exits, the system resumes execution of the process at the point where it was 
interrupted. 

See also blocking AST and completion AST. 

automatic record locking: VMS RMS capability for different locking options for 
record access. 

automatic restart: The VMS batch facility has an automatic restart capability when 
a batch or print job is submitted with a /RESTART parameter. 

availability: The proportion of time that service is available from a VAXcluster 
system to perform user applications. 

back-end: The data and computational processes in a transaction processing system 
in which terminal and menu functions are handled by separate processes. 

barrier synchronization: A synchronization method that establishes some barrier or 
point that all concurrent tasks must reach before continuing their work. 

before-image journaling: A feature of VAX RMS journaling that allows you to undo 
a series of modifications to a data file to return the file to a previous known state. 

blocking AST: An AST requested using the lock management system services and 
is delivered to the process holding a lock on a resource when the lock mode is 
preventing another process from accessing that resource. 

Glossary-1 



Glossary 

boot node: A VAX CPU in a Local Area VAXcluster system or Mixed-Interconnect 
VAXcluster system responsible for booting and providing system disk service to 
one or more satellites. 

bottleneck: A condition of degraded performance caused by overcommitting a 
resource, such as: the VAXcluster I/O subsystem, memory of a CPU, or a 
VAXcluster CPU. 

channel: An HSC interface between disk drives or tape formatters and its buffer 
memory. 

Checkpointing: A method of using the RESTART VALUE command in a DCL 
command procedure to restart the appropriate segment of the DCL command 
procedure that was executing when a batch execution queue fails. 

CI-based VAXcluster system: A VAXcluster system in which all nodes are connected 
to a CI bus. 

Client: Any process requesting service from a server. 

clustering: The farmation of a VAXcluster system from independent VAX processors. 

cluster membership: At the formation of a VAXcluster system, cluster membership 
is composed of all the participating VAXcluster CPUs voting to achieve quorum. 
Anytime there is a cluster membership change, the current value for votes is 
compared to quorum. 

cluster state transition: The change in cluster membership when a node joins or 
leaves the cluster. 

cfusterwide lock database: The clusterwide database for all granted locks 
maintained by the distributed VMS lock manager. The distributed VMS 
lock manager arbitrates the access of a resource name by determining the 
compatibility of the requested locks with those existing for that resource name 
on the clusterwide lock database. 

common-environment: A VAXcluster operating environment that provides the same 
resources, devices, logical names, software, and access to every user on every 
node. 

common system disk: A VMS disk that supports the booting of two or more 
processors. 

completion AST: An AST requested using the lock management system services and 
is delivered to the process that has requested a lock when that process is granted 
access to the resource. 

computer interconnect (CI): A high-speed bus, with dual data paths that connect all 
nodes in a CI-based VAXcluster system. The bus bandwidth is 70 megabytes per 
second per path. 

concurrent access: The simultaneous use of a file or database by more than one 
user. 

Glossary-2 



Glossary 

configuration: The arrangement of interconnected nodes and their peripheral 
devices in a VAXcluster system. 

connection manager: A VMS software component that determines and maintains 
cluster membership, synchronizes cluster transitions, and prevents partitioning. 

Conversion queue: Clusterwide queue maintained by the distributed VMS lock 
manager for lock conversion requests of locking requests that have already been 
granted for one mode. 

cooperating processes: Processes that are following site-specific conventions when 
using the lock management system services. 

CPU-bound : Pertaining to slow system response caused by the number of 
computations in aCPU-intensive application. 

CPU-intensive: An application that uses a large number of CPU compute cycles. 

data dependence: A situation in which information produced by one part of a 
program is necessary before another part can produce accurate results. 

data disk: A disk that is strictly used for application (non-system) data. No system 
roots exist on it; no VAX CPU boots from it. 

data sharing: A programming technique that allows multiple users or processes to 
read and modify a common file or database. 

deadlock: A state in which a process is waiting for a particular lock that can never 
be granted. Deadlock can occur whenever processes compete for resources or 
whenever processes wait for each other to complete certain actions. 

DECnet node name: A unique name in the DECnet network associated with each 
node in the VAXcluster system. 

DECnet task-to-task communication: The DECnet service that allows one process 
to communicate with another. 

See also task-to-task communication. 

DECnet-VAX: The VMS-specific use of DECnet software that enables a VAX CPU to 
act as a network node. 

decomposition: The action of modifying asingle-stream program into a parallel 
program by creating parallel sections that can be executed concurrently. 

disk server: A VAX CPU that provides disk service to other VAXcluster nodes. 

distributed file system: The VMS software component that allows all VAX processes 
to share mass storage disks connected to a VAX CPU or an HSC. The disks 
function as though they were local to each VAX CPU. fine distributed file system 
coordinates access to files using the distributed VMS lock manager. 

distributed job controller: The VMS software component that controls the use of 
clusterwide print and batch queues. 

Glossary-3 



Glossary 

distributed VMS lock manager: The VMS software component that synchronizes 
access to shared resources on a clusterwide basis. The distributed VMS lock 
manager also detects and resolves deadlocks. 

dual-ported: Adual-ported disk can be physically connected between two HSC 
nodes or two local CPU controllers. Thus, adual-ported disk has multiple-access 
paths and it can be accessed clusterwide in a coordinated way through either 
HSC or local CPU controller. When a disk is dual-ported and one of the HSCs or 
local CPU controllers to which it is connected fails, the remaining HSC or CPU 
controller automatically provides access to the disk. 

Ethernet: The coaxial communications cable that connects nodes and information 
processing products and allows them to exchange data. The Ethernet connects: 
nodes within a cluster, and nodes in a cluster with nodes in a Local Area 
Network (LAN). 

exception condition: An event, detected by hardware or software, that causes a 
change in the flow of instruction execution. 

exclusion: A synchronization method that allows only one process at a time to 
access some critical resource. 

explicit locking: The use of calls to lock management system services from a 
high-level programming language. 

fail back: After a hardware failover has initiated a failover, an application may fail 
back when the hardware failure is corrected. 

failover: The automatic or manual action of switching to an alternate path or 
component after the failure of a path or component. For example, if the access 
path to adual-ported disk fails, the alternate path is automatically available 
to all nodes accessing the disk. Automatic failover is transparent to the user; 
manual failover must be initiated by operator intervention. 

fault tolerance: The ability of the system to guard against failures that could lower 
productivity or cause a corruption or loss of data. 

file tuning: The process of designing your files to achieve better processing 
performance. 

front-end: The processes controlling terminal and menu functions in a transaction 
processing system in which data manipulation and computation are handled by 
separate processes. 

global section: I/O buffer into which a block of disk data is read. Two or more 
processes on the same node can read from or write to this data block. In a 
VAXcluster system, processes on one node cannot access the global buffers of 
another node. Each node must read a data block from disk into its own buffer. If 
a node writes to its buffer, it must store the buffer back on disk with a lock value 
block indicating that the data is changed. 

Granted queue: Clusterwide queue maintained by the distributed VMS lock 
manager for granted lock requests. 

Glossary-4 



Glossary 

hash file: Ahigh-performance file organization which uses an algorithm to manage 
a table of keys to access records. 

hibernation: A state in which a process is inactive, but known to the system with all 
of its current status. A hibernating process becomes active again when a wake 
request is issued. It can schedule a wake request before hibernating, or another 
process can issue its wake request. A hibernating process can also become active 
long enough to service any AST it may receive while it is hibernating. 

Hierarchical Storage Controller (HSC): An intelligent mass storage subsystem, 
a non-CPU node on the CI, that provides shared access to Digital Storage 
Architecture (DSA) disks and tapes. 

high ava i I a bi I ity: An advantage found in a VAXeluster system where, if one of the 
CPUs in the VAXcluster system fails, the other VAXcluster CPUs are minimally 
affected. 

image: Procedures and data that have been bound together by the linker. There are 
three types of VMS images: executable, shareable, and system. 

implicit locking: The use of a high-level language, interfacing with VMS RMS, for 
record locking operations. 

interprocess communication: The passing of information between two or more 
processes. 

IIO-bound: The condition in which an I/O-intensive application is waiting for an I/O 
device before the application can continue to execute. 

I/O Channel: The logical connection between a user program and a file or device. 

/O-intensive: An application that uses a large number of I/O operations. 

journaling: The process of recording information about operations on a database or 
file onto a recoverable resource. The type of information recorded depends on the 
type of journal being created. 

See also after-image journaling, before-image journaling, and recovery-unit 
journaling. 

layered product: A Digital software product, such as VAX ACMS or DECintact, that 
is layered on the VMS operating system. 

Local Area VAXcluster system (LANG): A VAXcluster system in which all nodes are 
connected using the Ethernet. Disks in a LAVc system are connected to adapters 
on LAVc CPUs. 

local CPU: The VAXcluster CPU where a process is logged in. 

local node: A network or cluster node at which a terminal is logged in or a user is 
physically located. 

local system disk: A disk used as a system disk by a VAX CPU connected directly 
to it by a local adapter. If dual-ported, a local disk cannot be a local system disk. 

Glossary 



Glossary 

lock, locking: An association between a process and a resource name maintained by 
the distributed VMS lock manager. A lock is normally used to synchronize access 
by multiple processes to shared objects. 

lock manager: See distributed VMS lock manager. 

lock mode: A value associated with a request to the distributed lock manager 
indicating the type of lock requested and its compatibility with other locks. For 
example, multiple users can request CONCURRENT READ locks on the same 
resource at the same time. 

lock status block: A block that contains lock information about the status of a 
process, such as the lock mode, and the address for the resource. 

lock value block: An optional data block that is created when a resource lock is 
requested. It is also used to communicate information among processes sharing 
a resource. 

logical link: A communication path between processes running on two different 
nodes. Contrast with physical link. A logical link carries a stream of traffic 
between two user-level processes. Each logical link is a temporary data path that 
exists until one of the two processes terminates the connection. 

mailbox: A software data structure that is used for interprocess communication. 
Qne process writes data to the mailbox; another process reads the data from the 
mailbox. 

manual record locking: By explicitly calling $QIQ and lock management system 
services, the user can control the locking granularity to synchronize file or record 
access. 

Mass Storage Control Protocol (MSCP): A standardized protocol for communication 
between hosts and mass storage controllers. VMS uses MSCP to pass disk UQ 
requests to disk controllers. 

master process: A process that controls and monitors the activity of one or more 
slave processes. 

Mixed-Interconnect VAXcluster system {MIVc): A VAXcluster system in which some 
nodes are connected with the Ethernet and other nodes are connected with both 
the Ethernet and the CI. 

modularity: Modularity is a concept used when designing a cluster configuration to 
ensure that there is an independence of multiple components in the VAXcluster 
system so that the failure of one component has minimal effect on the system. 

modular programming: A method of breal~ng down a program consisting of many 
operations or large processing requirements into separate modules to enable 
multiple CPUs to share the work load and to provide software maintainability. 

MSCP server: The software that allows disks to be available to other nodes in the 
cluster by software emulation of an HSC. 

multiple-access paths: A VAXcluster system can provide multiple-access paths to 
ensure an application's ability to access a disk. 

Glossary--G 



Glossary 

multiple-environment: A VAXcluster operating environment that allows a group of 
nodes to share one set of resources, while another group shares a different set. 

node: A single VAX CPU (or SMP system) or HSC in the VAXcluster system or 
an individual computer system in a network that can communicate with other 
computer systems in the network. 

parallelism: A method of computing that occurs when a section of an application 
is divided into multiple tasks, and those tasks are executed simultaneously on 
multiple CPUs. 

parent lock: A lock held on a resource at a coarse granularity, such as an entire file, 
that can be divided into component parts, so that sublocks can be made at a finer 
granularity. 

partitioning: The division of a cluster into two or more groups. Each group is 
unaware that the other exists, and each is trying to access the same resource 
in an uncoordinated manner. This can cause corruption of disk file structures 
because a cluster only coordinates access to resources among cluster members. 

performance: The ability of an application to run efficiently without heavy demand 
on system resources. 

process: The basic entity scheduled by the VMS operating system that provides the 
context in which an image executes. A process consists of an address space and 
bath a hardware and software context. 

process control: The mechanism that allows one process to control another process 
by starting it, guiding its operations, or terminating it. 

process information: The mechanism that allows one process to obtain process 
information about processes on a local or remote nodes. 

process synchronization: The method of preventing two or more processes from 
interfering with each other when reading or modifying shared data or a set 
of constraints that affects or controls the ordering of events in a decomposed 
application. 

protocol: The conventions or rules for the format and timing of messages sent and 
received. 

quorum: An algorithm that ensures that enough nodes are present to form a cluster. 
Maintaining quorum avoids cluster partitioning. 

quorum disk: A disk that acts as a virtual node in a cluster. For more information 
on a quorum disk, see the V~VIS ~AXcluster 1Vlanual. 

Record Management Services (VMS RMS}: A set of operating system procedures 
that is called by programs to process files and records within files. RMS allows 
processes to share data at the record level. VAX RMS is an integral part of the 
VMS operating system; its procedures run in executive mode. 

recovery: The process of restoring data to a known condition after a system or 
program failure. 

Glossary-7 



Glossary 

recovery-unit journaling: A feature of VAx RMS journaling that allows you to 
perform a transaction rollback for all file or database recovery units that have 
not successfully completed. 

redundancy: The characteristic of having two or more identical features to increase 
dependability and availability. 

remote CPU: Any VAXcluster CPU other than the one at which the user is located. 

remote node: Any node other than the one at which the user is located. 

remote process creation: The method of a process on a local CPU creating a 
process on a remote CPU in the VAXcluster environment or a remote node in the 
network. 

replication: The action of running multiple copies of asingle-stream program on 
multiple CPUs in a VAXcluster system. 

resource: A physical unit, such as a file, device, or memory, required by a process to 
complete its activity. 

resource granularity: The level of resource locking being performed by a process. 
The granularity can be coarse (locking an entire database) or fine (locking records 
within a database). Granularity provides complex interlocking mechanisms and 
greater control over interactions among processes. 

resource manager: The VAXcluster CPU that controls the granting of lock requests 
on a given resource tree for which it maintains information about all granted and 
waiting lock requests. 

resource name: The name that a process uses to identify a resource when 
requesting a lock, for a specified lock mode, on that resource. 

resource tree: The hierarchical (tree-like) structure of resource names used by the 
VMS lock manager. 

response time: The time it takes a system to answer or react to a query from a 
terminal. 

rotational delay time: The time that it takes for the desired sectors to rotate under 
the heads. 

satellite node: A workstation or similar MicroVAX CPU, running VMS, connected to 
the Ethernet and booted by a boot server. 

seek time: The time it takes for a disk to move its heads to the proper cylinder. 

server process: A process that performs specific functions or activities for one or 
more clients. 

Shadow set: Two or more disks containing identical copies of data. The set is 
treated as one disk by the CPU that defined the set. when the CPU writes data, 
the data is written to both disks in the set. when the CPU reads data, the data 
is read from either disk, depending on the position of the head. 

See also volume shadowing. 

Glossary-,8 



Glossary 

sharable lock: A resource lock that allows multiple processes to lock the same 
resource at the same time. 

shared disk: A disk that is mounted on acluster-accessible device by one or more 
nodes in the cluster. 

slave process: Any process that is being controlled or monitored by a master 
process. 

Star Coupler: fine common connection point for all processor and HSC nodes 
connected to the CI bus . 

state transition: See cluster state transition. 

sublock: A lock held on a resource of a finer granularity, such as records or data 
items, than that of its parent lock. 

See also parent lock and resource granularity. 

synchronous events: Asynchronous event executes a requested operation 
simultaneously as the requesting program continues execution. 

system disk: A disk on which the VMS operating system is located. 

task: A component of work that is defined and scheduled within an application. 

task-to-task communication: fihe method used to communicate among processes in 
the DECnet networking environment. 

terminal server: A communications device that connects terminals, modems, or 
printers to an Ethernet network. 

throughput: The amount of work completed per unit of time. In a cluster 
environment, it is possible to get more work done in a certain amount of time 
than is possible on a single CPU. 

time sharing: A method of allocating computer time in which each process gets use 
of the CPU in turn. 

transaction processing: A technique for organizing multi-user, high volume, 
on-line applications that provides control over user access and updates of files or 
databases. 

VAXcluster system: An integrated organization of VAX systems that use VMS 
software and communicate over ahigh-speed communications path (the CI bus 
or Ethernet). A VAXcluster system has all the capabilities of a single-node VAX 
system, plus the ability to share CPU resources, queues, and disk and tape 
storage. Like a single VAX system, the VAXcluster system provides a single 
security and management environment. Member nodes can either share the 
same operating system environment or serve specialized needs. 

See also CI-based, Local Area, and 1t~lixed-Interconnect VAXcluster systems. 

Glossary-9 



Glossary 

victim process: In a deadlock situation, the distributed VMS lock manager 
eliminates contention for a resource by returning an error status to a chosen 
process (a "victim"} when that process makes a new lock or lock conversion 
request. 

volume shadowing: A procedure by which two or more identical copies of data are 
written to multiple disks defined as a set. This provides updated back-up copies 
of current data at all times. 

See also shadow set. 

Waiting queue: Clusterwide queue maintained by the distributed VMS lock 
manager for lock requests that are waiting to be granted. 

workload balancing: A technique used to evenly distribute multiple users and 
resources between VAX CPUs for maximum productivity. 

~./ 

Glossary-10 



Index 

A 
Application design • 4-1 to 4-24 

See Client-Server Model 
See File Sharing Model 

See Parallelism Model 
comparison of models • 5-6 
using layered products based on VMS •5-12 to 

5-22 
using products associated with VMS • 5--7 to 5--12 

Applications 
availability • 1 ~, 2-10 
demonstration application • 8-1 to 8-19 
designing for faster completion • 5-3 to 5-4 
designing for increased availability • 5-1 to 5-~ 
designing for maximum throughput • 5-4 to 5-5 
performance • 2-10, 3-7 
software levels •3-15 
suitable for a cluster • 2 9 to 2-11 
unsuitable for a cluster • 2-12 to 2-13 

ASTs 
use with lock management system services • 

3-13, 6-58 to 6-60 
Availability 

applications • 1--3, 2-10 
disks • 1-5 to 1 7 
hardware • 1-2 
resources • 3-6 

B 
Batch queues • 1-14 
Blocking ASTs 

code example •6-62 to 6-64 
use with lock management system services • 

3-13, 6-58 to 6-60 
Bottlenecks • 7-2 

See CPU bottlenecks 
See I/O bottlenecks 
See memory bottlenecks 
monitoring • 7-2 to 7-3, 7-16 to 7-21 

C 
C I adapte r 

I/O bottleneck • 7-4 
I/O capacity • 2-14 

Clbus•1-~ 
bottlenecks • 7-6 

Client-Server Model • 4~ to 4-17 
advantages of using many-to-one client-server • 

4-14 
advantages of using one-to-one client-server • 4•-S 
disadvantages of using many-to-one client-server • 

4-14 to 4-15 
disadvantages of using one-to-one client-server • 

4-8 
example of using many-to-one client-server •4-16 

to 4-17 
example of using one-to-one client-server •4-10 
illustration of many-to-one client-server •4-11 
illustration of one-to-one client-server • 4-7 
implementation requirements of many-to-one 

client-server •4-15 to 4-16 
implementation requirements of one-to-one client-

se rve r • 4-S to 4-9 
many-to-one client-server •4-11 to 4-17 
one-to-one client-server • 4-7 to 4-10 
using for increased availability • 5-2 to 5-3 
using to maximize throughput • 5-4 to 5-5 

Clusterwide lock database • 3 2 to 3-3 
Common-environment configuration • 1-4 
Common system disk 

characteristics • 1-7 
disadvantages • 1-7 

Communications 
internode, example • 8-4 

Computer Interconnect 

See CI bus 
See QSSI bus 
See Ethernet 

Compute server •4-11 

See also Client-Server Model 
Configurations 

See common-environment configuration 

See multiple-environment configuration 
determining for disks • 7--~ 

Connection manager • 1-12 to 1-13 

Index—y 



Index 

CONVERSION queue • 3-5 
CPU bottlenecks • 7-14 to 7-16 

possible solutions • 7-15 to 7-16 
C PU-intensive application • 2-7 to 2-9 

compared to I/O-intensive application • 2-3 
illustration of comparison • 2-5 

CPUs 
failover access • 1-9 

D 
$DEQ system service 

See lock management system services 
Data sharing •6-16 to 6-40 

using DECnet-VAX communications •6-17 to 
6-40 

using Read-Only global sections •6-,33 to 6^40 
using VMS Record Management Services •6-29 

to 6-,32 
Deadlocks • 3-10 to 3--12 

detecting • 3-10 to 3-12 
example • 3-10 to 3-12 
preventing • 3-10 to 3-12 

D EC i ntact •5-13 to 5-15 
features for application design •5-13 to 5-14 
using in a VAXcluster system • 5-15 

DEC-net VAX 
See also nontransparent DECnet-VAX 

communications 
See also transparent DECnet-VAX communica-

tions 
functions • 3-25 to 3-27 
illustration • 3 25 
remote file and record access • 3 27 
task-to-task operations •3-25 to 3 27 
transparent versus nontransparent • 3-~2 

Designing applications 

See applications 
Disks 

See also common system disk 

See also individual system disk 
availability • 1-2, 1-5 to 1-7 
connection to CPUs • 1-6 
connection to HSCs • 1-5, 1-6 
determining configuration of • 7-~ 
displaying information of MSCP-served • 7-3 
DSSI-connected • 1-6 
dual-ported • 1--5 
failover • 1-2 

1 n dex-2 

Disks {Coot.} 

I/O rate of type • 2-14 
multiple-access paths • 1 2, 1-5 
system • 1-7 
VAX Volume Shadowing • 1-6 

Distributed applications 
conceptual example • 2-17 
considerations for decomposition • 2-16 
considerations for designing • 2-16, 2-19 
considerations for replication • 2-13 
demonstration application designed as • 8-3 to 

8-9 
goals • 2-18 

Distributed file system 
capabilities • 1-14 

Distributed job controller 

See VMS batch facility 
Distributed lock manager 

See VMS lock manager 
Distributing 

workloads • 1-8 
DSSI bus 

connected to ISE • 1-6 

E 
$ENQ system service 

See lock management system services 
Ethernet 

connected to a terminal server • 1-9 
l/O bottleneck • 7-6 

Ethernet adapter 
I/O bottleneck • 7-,4 
I/O capacity • 2-14 

Exception conditions •6-74 to 6-82 
using DECnet-VAX communications •6-75 to 

6--81 
using lock management system services •6-51 to 

6-82 

F 
Failover 

See also exception conditions 
access to CPUs • 1-9, 6-51 
of HSC subsystem • 1-6 
of terminal server • 1-9 
process • 8-4 



Index 

File server •4-11 to 4-14 
See also Client-Server Model 

File Sharing Model • 4-2 to 4-6 
advantages of using • 4~ 
disadvantages of using • 4~ 
example of using • 4-~ to 4-~ 
illustration • 4-2 
implementation requirements • 4-4 
using for increased availability • 5-1 to ~-2 
using to maximize throughput • 5-4 to 5-5 

G 
$GETJPI system service 

See process information system services 
$G ETLKI system service 

See lock management system services 
GRANTED queue • 3-5 
Granularity • 3-8 

coarse • 3-8 
example • 3-9 
fine • 3-8 
illustration • 3-8 

H 
Hardware redundancy • 1 2 

Computer Interconnect (CI) bus • 1~ 
disks • 1 2, 1--3, 1-6 
HSCs • 1 2 
Star Coupler • 1-3 
terminals • 1-3 
VAX Volume Shadowing • 1 ~ 

Hierarchical Storage Controller 

See HSC 
High-level programming language 

use of lock management system services • 3-3 
use of transparent DECnet-VAX communications • 

3-28 
use of VMS Record Management Services • 3-14 

Highwater marking • 7-11 
HSC 

automatic recovery • 1-6 
disks • 1-6 
displaying characteristics • 7~ 
dual-ported disks • 1-£ 
I/O bottlenecks • 7-6 to 7-7 

HSC SETSHO command • 7~ 

i 
I/O bottlenecks • 7--4 to 7-12 

See also HSC 
controller • 7-6 to 7-7 
disk drive • 7-7 to 7-9 
I/O adapter • 7-4 
illustration of I/O pathway • 7-5 
medium between I/O adapter and controller • 7-6 
performance considerations • 7-9 to 7-10 
possible solutions • 7-10 to 7-12 
QIO processing • 7-4 

/O-intensive application 
advantages • 2-6 
compared to CPU-intensive application • 2~ 
illustration of comparison • 2-5 

Individual system disk • 1-7 
Internode communication, example • 8-4 

L 
LAT 

terminals • 1-~ 
terminal server • 1-3 

Local Area Transport 

See LAT 
Local Area VAXcluster 

application example • 8-1 
dual-host configuration • 1-6 

Lock management system services 
functions • 3-5 
lock value block •3-12, 6-64 to 6-65, 6-67 to 

6-69 
table of parameters •6-57 
table of services • 3-4 
use by an application • 3~, 6-58, 6-81 
used in a demonstration application • 8-2 to 8-19 
use for process synchronization •6-57 to 6-69 
using ASTs and blocking ASTs •3-12 to 3-13, 

6-58 to 6-60 
Lock manager 

See VMS lock manager 
Lock modes • 3-5, 3-6 

exclusive • 3-7 
setting up • 3--6 

Index-3 



Index 

Lock modes (Coot.} 

table for compatibilities • 3-7 
table of • 3-6 

Locks 
convention for use • 3-7, 3-9 
getting information about • 3-4 
illustration of queues • 3-10 
levels of • 3-$ to 3-9 
parent • 3-9 
releasing • 3-,4 
requesting • 3-9 
requesting conversion • 3-4 
restrictive • 3-7 
sharing • 3-6 
sublock • 3-9 
waiting for grant • 3-4 

Lock status block • 3-5 
checking for deadlock • 3-11 
CONVERSION lock status • 3-5 
GRANTED lock status • 3-5 
requesting a lock value block •6-64 
WAITING lock status • 3-5 

Lock value block 
code example •6-65 to 6-~7 
use by an application • 3-12, 6-64 to 6-65, 6-67, 

8--~ to 8-9, 8-9 

M 
Mass Storage Control Protocol 

See MSCP 
Memory bottlenecks • 7-13 to 7-14 

possible solutions • 7-13 to 7-14 
Monitoring 

cluster performance • 7-2 to 7-3, 7-16 to 7-21 
MONITOR utility • 7-3 
MSCP 

server • 1-6 
Server • 1-14 
server bottlenecks • 7-7 

Multiple-environment configuration • 1-4 

N 
Nontransparent DECnet-VAX communications • 3-29 

to 3-,31 
code example demonstrating data sharing •6-26 

to 6-28 

Index-4 

Nontransparent DECnet-VAX communications (font.) 

code example demonstrating exception conditions 
• 6-75 to 6-81 

code example demonstrating process 
synchronization •6-69 to 6-74 

code example demonstrating remote process 
creation • 6^4 to 6~ 

versus transparent DECnet-VAX communications • 
3-32 

P 
$PROCESS_SCAN 

See process information system services 
Parallelism Model •4-17 to 4-24 

advantages of using •4-20 
concept of queueing •4--19 
concept of self-scheduling •4-19 
disadvantages of using •4-21 
example of using •4-23 to 4-24 
illustration of •4-18 
implementation requirements •4-21 to 4-23 
using for faster completion • 5-~ to 5-4 
using to maximize throughput • 5-4 to 5-5 

Parent lock • 3-9 
Performance 

applications • 2-10, 3 7 
monitoring • 7-2 to 7-~, 7-16 to 7 21 

Process 
failover •6-81, 8-~ 

Process control system services 
code example demonstrating a query for process 

information • 6-50 to 6-~6 
code example demonstrating process 

synchronization •6-42 to 6-50 
function •3-22 
illustration • 3 20 
status codes • 3 23 
support of DCL •3-22 
use by an application • 3 22 

Process information system services 
function •3-24 
illustration • 3 20 
support of DCL •6-41 
use of $G ETJ P I system service • 3 24, 6-50 
use of $PROCESS_SCAN system service •3-24, 

6-50 

Process synchronization •6-41 to 6-74 
using DECnet-VAX communications •6-69 to 

6-74 



Index 

Process synchronization (font.) 

using lock management system services •6--57 to 
6-69 

using process control system services •6-41 
using process information system services • G--41 

to 6-42 
Programming techniques • 6-1 

See data sharing 

See exception conditions 

See process synchronization 

See remote process creation 
Programming toolsr—VMS 

See VMS programming tools 

Q 
Queues 

CONVERSION • 3-5 
GRANTED • 3-5 
WAITING • 3-5 

R 
Read-Only global section 

See also data sharing 
code example demonstrating data sharing •6-34 

to 6-x40 
function • 6~3 

Remote process creation • 6-1 to 6-16 
using nontransparent DECnet-VAX communica-

tions • 6--3 to 6-5 
using the VMS batch facility • 6-5 to 6-16 
using transparent DECnet-VAX communications • 

6-2 to 6--3 
Resource name 

locating on clusterwide lock database • 3-9 to 
3-10 

lock status block • 3-5 
use by VMS lock manager • 3-2, 3-5 

Resources 
accessing • 3--6 
availability • 3-6 
granularity • 3-8 
holding name space • 3-6 
preventing access • 3-7 
synchronizing access • 3-4 

S 
SHOW CLUSTER command • 7-3 
SHOW commands • 7-3 
SHOW DEVICE/FILES command • 7~ 
SHOW DEVICE/FULL command • 7-3 
SHOW DEVICE/SERVED command • 7-~ 
Single-node VMS programming tools 

common event flags •3-33 
$CREPRC system service •3-33 
logical names •3-33 
not supported clusterwide • 2-1 
permanent and temporary mailboxes • 3~2 
work arounds •3-32 to 3-34 
writeable global sections • 3-34 

Specialized hardware server •4-11 

jee also Client-Server Model 
Star Coupler • 1-3 
Sublock • 3-9 
System disks • i-7 

common • 1-7 
I/O bottlenecks • 7-9, 7-10 
individual • 1-7 

T 
Tape drive 

configurations • 1-7 
connections to CPUs • 1-7 
connections to HSC subsystems • 1-7 

Terminals 
configurations • 1-8 
connected to terminal server • 1-3 

Terminal server 
benefits • 1 9 
failover • 1-9 
LAT • 1-~ 

Transparent DECnet-VAX communications • 3 28 to 
3-29 

code example demonstrating data sharing •6-17 
to 6-26 

code example demonstrating remote process 
creation • 6-2 to 6--3 

versus nontransparent DECnet-VAX communica-
tions • 3-32 

Index-~ 



Index 

u 
UAF • 1-4 
UIC • 1-4 

with VMS lock manager • 3-5 
with VMS Record Management Services •3-16 

User Authorization File 
See UAF 

User Identification Code 
See UIC 

v 
VAX ACMS •5-15 to 5-18 

features for application design •5'15 to 5-17 
using in a VAXcluster system •5-18 

VAXcluster system 
advantages for application development • 2-1, 2 2 
CI-based • 1-9 
comparison of supported types • 1-9 
CPU-intensive application • 2-7 to 2-9 
definition • 1-1 
displaying configuration information • 7-~ 
hardware advantages • 1-1 to 1-9 
{/O-intensive applications • 2-5 to 2-7 
illustration of software components • 1-11 
Local Area • 1-9 
Mixed-Interconnect • 1-9 
monitoring performance • 7 2 to 7--3, 7-16 to 

7 21 
partitioning • 1-13 
performance considerations • 7-1 to 7-21 
state transitions • 1-13 
VMS software advantages • 1-11 to 1-14 

VAX DBMS •5-18 to 5-19 
features for application design •5-18 to 5--19 
using in a VAXcluster system •5-19 

VAX DNS • 5-21 to 5-22 
features for application design •5--21 
using in a VAXcluster system •5-22 

VAX PA • 7-18 to 7-21 
VAX PCA • 7-17 to 7-18 
VAX Performance Advisor 

See VAX PA 
VAX Performance and Coverage Analyzer 

See VAX PCA 
VAX Rdb/VMS •5--20 to 5-21 

features for application design •5--20 

Index--6 

VAX Rdb/VMS (Copt.) 

using in a VAXcluster system •5-20 to 5-21 
VAX RMS Journaling • 5-7 to 5-9 

features for application design • 5-7 to 5-8 
using in a VAXcluster system • 5-8 to 5 9 

VAX Software Performance Monitor 
See VAX SPM 

VAX SPM • 7-17 
VAX Volume Shadowing • 1-8, 5-9 to 5-10 

disks dual-ported between HSC subsystem • 1-6 
features for application design • 5-9 
hardware redundancy • 1-~ 
using in a VAXcluster system • 5-9 to 5-10 

Victim process •3-11 
VMS batch facility 

code example demonstrating checkpointing •6-13 
to 6-16 

code example demonstrating remote process 
creation • 6-6 to 6-16 

distributed job controller • 1-14 
functions • 3-19 
it{ustration • 3-19 
restart capability • 3-20 
use of checkpointing • 6-13 
use of distributed job controller • 3 20 

VMS DECwindows •5-10 to 5'-12 
features for application design •5-10 to 5-11 
using in a VAXcluster system •5-11 to 5-12 

VMS lock manager • 3-2 to 3-13 
detecting deadlocks • 3-11 
displaying statistics • 7--3 
illustration • 3-2 
interface with VMS Record Management Services 

• 3-16 
lock management system services • 3-3 to 3-5 
lock queues • 3-9 to 3-10 
overview • 1-13 
resource manager • 3-3 
resource name • 3 2, 3-5 
use of clusterwide lock database • 3-2, 3-9 to 

3--10 
VMS programm imng tools 

not supported in a VAXcluster system • 2-1 
VMS programming tools • 3-1 to 3-32 

DECnet-VAX • 3-25 to 3-32 
process control system services • 3-20 to 3-23 
process information system services •3-24 to 

3--25 
VMS batch facility • 3-19 to 3-20 
VMS lock manager • 3-2 to 3--13 
VMS Record Management Services • 3-14 to 

3-18 



Index 

VMS Record Management Services 
code example demonstrating data sharing •6-,29 

to 6-,32 
functions •3-15 to 3-16 
global buffering •3-17 
illustration •3-14 
interface with the VMS lock manager •3-16 
local buffering •3-17 
performance considerations with global buffering • 

3-18 
use of $QIO system services •3-18 
use of automatic record locking •3-16 

use of XQP operations •3-18 
use with high-level programming languages •3-14 

Volume shadowing 

See VAX Volume Shadowing 

W 
WAITING queue • 3-5 
Workloads 

distributing • 1-^8, 1-14 

Index-7 





VAxcluster Systems 
Introduction to 

VAXcluster Application Desigm 
AA-JP32B-TE 

ER'S C4i~~IlVIENTS 

Your comments and suggestions help us to improve the quality of our publications. 
For which tasks did you use this manual? {Circle your responses.) 
(a) Installation (e) Maintenance (e) Training 
(b) Operation/use (d) Programming (f) Other (Please specify.}  

Did the manual meet your needs? Yes ❑ No ❑ Why? 

Please rate the manual in the following categories. {Circle your responses.) 
Excellent Good Fair Poor Unacceptable 

Accuracy (product works as described) 5 4 3 2 1 
Clarity (easy to understand) 5 4 3 2 1 
Completeness (enough information) 5 4 3 2 1 
Organization (structure of subject 5 4 3 2 1 
matter) 
Table of Contents, Index (ability to 5 4 3 2 1 
find topic) 
Illustrations, examples (useful) 5 4 3 2 1 
Overall ease of use 5 4 3 2 1 
Page Layout (easy to find 5 4 3 2 1 
information) 
Print Quality (easy to read) 5 4 3 2 1 

what things did you like most about this manual? 

what things did you like Zeast about this manual? 

Please list and describe any errors you found in the manual. 
Page Description/Location of Error 

Additional comments or suggestions for improving this manual:  

Name  Job TYtle 
Street  Company 
City  Department 
State/Country  fielephone Number 
Postal (ZIP) Code  Date 



Fold Here and Tape 

Affix 
Stamp 
Here 

DIGITAL EQUIPMENT CORPORATION 

CORPORATE USER PUBLICATIONS 

200 FOREST STREET MRO1-3/L12 

MARLBOROUGH, MA 01752-9101 

Fold Here 


