
Introduction to VMS

Order Number: AA—LA04A—TE

April 1988

This book introduces the new user to VMS. It describes the DIGITAL
Command Language (DCL), the Mail and Phone utilities, file manipulation,
program development, and basic system concepts.

Prevision/Update Information:

Software Version:

digital equipment corporation
maynard, massachusetts

This document supersedes the
Introduction to VAX/VMS, Version
4.0.

VMS Version 5.0

April 1988

The information in this document is subject to change without notice and should
not be construed as a commitment by Digital Equipment Corporation. Digital
Equipment Corporation assumes no responsibility for any errors that may appear
in this document.

The soft~r~~are described in this document is furnished under a license and may be
used or copied only in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment
that is not supplied by Digital Equipment Corporation or its affiliated companies.

Copyright ©1988 by Digital Equipment Corporation

All Rights Reserved.
Printed in U.S.A.

The postpaid READER'S COMMENTS form on the last page of this document
requests the user's critical evaluation to assist in preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

DEC 1.
DEC/CMS
DEC/MMS
DECnet
DECsystem-10
DECSYSTEM-20
DECUS
DECwriter

DIBOL
EduSystem
IAS
MASSBUS
PDP
PDT
RSTS
RSX

UNIBUS
VAX
VAXcluster
VMS
VT

d D 9 DD a TM

ZK4510

HOW TO ORDER ADDITIONAL DOCUMENTATION
DIRECT MAIL ORDERS

USA &PUERTO RICO*

Digital Equipment Corporation
P.O. Box CS2008
Nashua, New Hampshire
03061

CANADA

Digital Equipment
of Canada Ltd.
100 Herzberg Road
Kanata, Ontario K2K 2A6
Attn: Direct Order Desk

INTERNATIONAL

Digital Equipment Corporation
PSG Business Manager
c/o Digital local subsidiary
or approved distributor

In Continental USA and Puerto Rico call 800-258-1710.
In New Hampshire, Alaska, and Hawaii call 603-884-6660.
In Canada call 800-267-6215.

Any prepaid order from Puerto Rico must be placed with the local Digital subsidiary (809-754-7575).
Internal orders should be placed through the Software Distribution Center (SDC), Digital Equipment
Corporation, Westminster, Massachusetts 01473.

Production Note
This book was produced with the VAX DOCUMENT electronic publishing
system, a software tool developed and sold by DIGITAL. In this system,
writers use an ASCII text editor to create source files containing text and
English-like code; this code labels the structural elements of the document,
such as chapters, paragraphs, and tables. The VAX DOCUMENT software,
which runs on the VMS operating system, interprets the code to format the
text, generate a table of contents and index, and paginate the entire document.
Writers can print the document on the terminal or line printer, or they can ® e
DIGITAL-supported devices, such as the LN03 laser printer and PostScript
printers (PrintServer 40 or LN03R ScriptPrinter), to produce atypeset-quality
copy containing integrated graphics.

PostScript is a trademark of Adobe Systems, Inc.

Contents

PREFACE xi

CHAPTER 1 GETTING STARTED 7-1

1.1 INTERACTION WITH THE SYSTEM 1-1
1.1.1 Logging In 1-1
1.1.2 Using the DIGITAL Command Language 1-3
1.1.2.1 Parameters and Qualifiers • 1-4
1.1.2.2 Responding to Command Prompts • 1-4
1.1.2.3 Editing Command Lines • 1-5
1.1.3 Recognizing System Responses 1-6
1.1.3.1 What Are Defaults? • 1-6
1.1.3.2 Looking at Informational Messages • 1-6
1.1.3.3 Looking at Error Messages • 1-7
1.1.3.4 Is the System Still Functioning? • 1-7
1.1.4 Using the DCL Command HELP 1-8
1.1.4.1 Exploring Several HELP Topics • 1-8
1.1.5 Logging Out 1-9

1.2
1.2.1
1.2.1.1
1.2.1.2
1.2.1.3
1.2.1.4
1.2.1.5
1.2.1.6
1.2.1.7
1.2.1.8
1.2.1.9
1.2.1.10
1.2.1.11
1.2.2
1.2.2.1
1.2.2.2
1.2.2.3
1.2.2.4
1.2.2.5
1.2.2.6

USING UTILITIES
What Is MAIL?

Sending Mail • 1-11
Reading Mail • 1-11
Forwarding Mail • 1-12
Replying to Mail • 1-12
Listing Mail Messages • 1-12
Organizing Mail into Folders • 1-12
Deleting Mail • 1-13
Extracting Mail • 1-14
Printing Mail • 1-14
Getting Help in Mail • 1-14
Exiting from MAIL • 1-14

What Is PHONE?
How to Phone Another User • 1-15
Answering a Phone Call • 1-15
Rejecting a Phone Call • 1-17
Displaying a List of Users You Can Call • 1-17
Getting Help in PHONE • 1-17
Exiting from PHONE • 1-17

1-15

v

Contents

CHAPTER 2 WORKING WITH FILES 2-1

2.1 WHAT IS A FILE? 2-1
2.1.1 Looking at File Names, Types, and Versions 2-1
2.1.2 Using Wildcard Characters 2-3

2.2 CREATING FILES 2-4

2.3 DELETING FILES 2-4

2.4 PURGING FILES 2-5

2.5 DISPLAYING FILES AT YOUR TERMINAL 2-5

2.6 LISTING FILES IN A DIRECTORY 2-6

2.7 PRINTING FILES 2-7

2.8 RENAMING FILES 2-7

2.9 PROTECTING FILES 2-8

CHAPTER 3 UNDERSTANDING DIRECTORY STRUCTURE 3-1

3.1 DISSECTING A COMPLETE FILE SPECIFICATION 3-1
3.1.1 Looking at Nodes 3-1
3.1.2 Looking at Devices ~ 3-4
3.1.3 Looking at Directories 3-5
3.1.4 Looking at Subdirectories 3-7
3.1.4.1 Creating Subdirectories • 3-8
3.1.4.2 Changing Your Default Directory • 3-8

3.2 USING LOGICAL NAMES 3-8
3.2.1 How to Use Logical Names 3-9
3.2.2 System Default Logical Names 3-10

vi

Contents

CHAPTER 4 PROGRAM DEVELOPMENT 4-1

4.1 CREATING THE PROGRAM 4-1

4.2 COMPILING OR ASSEMBLING THE PROGRAM 4-1

4.3 LINKING THE OBJECT MODULE 4-2

4.4 EXECUTING THE PROGRAM 4-3

4.5 LOOKING AT SAMPLE PROGRAMS 4-3
4.5.1 An Introductory BASIC Program 4-5
4.5.2 A FORTRAN Program 4-6
4.5.2.1 Creating the Source Program • 4-7
4.5.2.2 Compiling the Source Program • 4-7
4.5.2.3 Linking the Object Module • 4-8
4.5.2.4 Running the Program • 4-9
4.5.2.5 Debugging the Program • 4-10
4.5.3 A MACRO Program 4-10
4.5.3.1 Creating the Source Program • 4-10
4.5.3.2 Assembling the MACRO Source Program • 4-12
4.5.3.3 Linking the Object Module • 4-13
4.5.3.4 Running the Program • 4-13
4.5.3.5 Debugging the Program • 4-14

4.6 USING LOGICAL NAMES FOR PROGRAMMING NEEDS 4-14

CHAPTER 5 USING SYMBOLS AND COMMAND PROCEDURES 5-1

5.1 ABBREVIATING DCL COMMANDS WITH SYMBOLS 5-1

5.2 CREATING AND EXECUTING A COMMAND PROCEDURE 5-3
5.2.1 Passing Information 5-5
5.2.1.1 Requesting Information with the INQUIRE Command • 5-5
5.2.1.2 Displaying Information with the WRITE Command • 5-5
5.2.2 Using Logic 5-6
5.2.3 Extracting Information with Lexical Functions 5-8
5.2.4 What Is a LOGIN.COM File? 5-9
5.2.5 Submitting Batch Jobs to Avoid Delays 5-10
5.2.6 Displaying Command Lines During Execution 5-11

vii

Contents

CHAPTER 6 MORE ABOUT DCL COMMANDS 6-7

6.1 PRINTING FILES 6-1
6.1.1 Sending a File to a Queue 6-1
6.1.2 Looking at Jobs in the Print Queue 6-2
6.1.3 Removing a Job from the Print Queue 6-2
6.1.4 Stopping a Job That is Currently Printing 6-2

6.2 WHAT I S A BATC H JOB? 6-3
6.2.1 Starting Batch Jobs 6-3
6.2.2 Looking at Jobs in the Batch Queue 6-3
6.2.3 Removing a Job from the Batch Queue 6-4
6.2.4 Stopping a Job That is Currently Executing 6-4

6.3 SORTING, SEARCHING, APPENDING, COMPARING, AND
COPYING FILES 6-4

6.3.1 Reorganizing Lists 6-4
6.3.2 Searching for a String 6-6
6.3.3 Appending Files 6-6
6.3.4 Comparing Files 6-7
6.3.5 Copying Files 6-8

6.4 CONTROLLING THE VMS ENVIRONMENT 6-9
6.4.1 Changing the System Prompt 6-10
6.4.2 Saving Time by Defining Keys 6-10
6.4.3 .Looking at Processes 6-11
6.4.4 Displaying Previously Entered Commands 6-12
6.4.5 Showing Terminal Characteristics 6-13
6.4.6 Changing Terminal Characteristics 6-14
6.4.6.1 Using the /ECHO and the /NOECHO Qualifiers • 6-14
6.4.6.2 Using the /INSERT and the /OVERSTRIKE Qualifiers • 6-15
6.4.6.3 Using the /NUMERIC_KEYPAD and /APPLICATION_KEYPAD

Qualifiers • 6-15
6.4.6.4 Using the /WIDTH Qualifier • 6-16
6.4.6.5 Using the /WRAP and /NOWRAP Qualifiers • 6-16

6.5 WORKING WITH PHYSICAL DEVICES 6-16

viii

Contents

GLOSSARY Glossary-1

INDEX

FIGURES
1-1 The VT240 Terminal 1-2
1-2 Looking at a PHONE Screen Display 1-16
3-1 Relationship Between Parts of Full File Specification 3-2
3-2 Full File Specification 3-2
3-3 Relationship Between Parts of

DRACUL::VAMP:[MCNALLY]STORIES.TXT 3-3
3-4 Relationship Between Parts of

LOTUS::DEVO:[LAWRENCE]ZAP.LIS 3-4
3-5 Files in [MARSTON] Directory 3-6
3-6 Files in [BENTLY. PRIVATE] Subdirectory 3-7
3-7 Assigning a Logical Name 3-9
4-1 Program Development 4-4
4-2 Four Steps in Program Development 4-5
4-3 Commands for FORTRAN Program Development 4-6
4-4 Commands for MACRO Program Development 4-11
4-5 Using Logical Names 4-15
5-1 Looking at a LOGIN.COM File 5-9
5-2 The First Line of a LOGIN.COM file 5-10
6-1 Using the SHOW PROCESS Command 6-12

TABLES
1-1 Command Line Editing Keys 1-5
4-1 Default File Types for Source Program Files 4-1
4-2 DCL Commands to Invoke Language Processors 4-2
5-1 Conditional Operators 5-7
5-2 Common lexical Functions 5-9

ix

Preface

This manual provides an overview of the VMS operating system. Topics
presented include logging in and out, file manipulation, logical names,
program development, command procedures, utilities, and the DIGITAL
Command Language (DCL).

Intended Audience
This manual is intended for new users of the VMS operating system.

Document Structure
This manual is divided into six chapters and a glossary:

• Chapter 1 describes logging in, using DCL, recognizing system responses,
the HELP command, the MAIL and PHONE utilities, and logging out.

• Chapter 2 describes how to create, delete, purge, display, list, print,
rename, and protect files.

• Chapter 3 examines the parts of a full file specification and describes how
to use logical names.

• Chapter 4 describes- how to create, compile, link, and execute programs.

• Chapter 5 explains how to use command procedures.

• Chapter 6 details additional DCL commands.

Associated Documents
The following documents contain additional information about the topics
discussed in this manual:

• Guide to Using VMS

• VMS DCL Dictionary

• Guide to VMS Text Processing

• VAX EDT Reference Manual

• VMS Mail Utility Manual

• VMS Phone Utility Manual

• VMS DCL Concepts Manual

• VMS Sort/Merge Utility Manual

• Guide to Using VMS Command Procedures

• Guide to VMS Files and Devices

• Guide to VMS System Security

• VMS Access Control List Editor Manual

xi

Preface

• VMS Networking Manual

• VMS Linker Utility Manual

• VMS Debugger Manual

Conventions
Convention Meaning

RET

CTRL/C

a I I commands are

$ SHOW TIME
05-JUN-1988 1 1:55:22

$ TYPE MYFILE.DAT

input-file, . . .

[logical-name]

quotation marks
apostrophes

In examples, a key name (usually abbreviated)
shown within a box indicates that you press
a key on the keyboard; in text, a key name is
not enclosed in a box. In this example, the key
is the RETURN key. (Note that the RETURN
key is not usually shown in syntax statements
or in all examples; however, assume that you
must press the RETURN key after entering a
command or responding to a prompt.)

A key combination, shown in uppercase with a
slash separating two key names, indicates that
you hold down the first key while you press the
second key. For example, the key combination
CTRL/C indicates that you hold down the key
labeled CTRL while you press the key labeled C.
In examples, a key combination is enclosed in a
box.

All terms shown in italics are defined in the
glossary at the back of the book.

In examples, system output (what the system
displays) is shown in black. User input (what
you enter) is shown in red.

In examples, a vertical series of periods, or
ellipsis, means either that not all the data that
the system would display in response to a
command is shown or that not all the data a
user would enter is shown.

In examples, a horizontal ellipsis indicates
that additional parameters, values, or other
information can be entered, that preceding
items can be repeated one or more times, or
that optional arguments in a statement have
been omitted.

Brackets indicate that the enclosed item is
optional. (Brackets are not, however, optional
in the syntax of a directory name in a file
specification or in the syntax of a substring
specification in an assignment statement.)

The term quotation marks is used to refer
to double quotation marks (") . The term
apostrophe (') is used to refer to a single
quotation mark.

xii

1 Getting Started

This chapter introduces basic system concepts such as interacting with the
system and using utilities. It describes logging in, logging out, the DIGITAL
Command Language (DCL), system messages, the HELP facility, and the
MAIL and PHONE utilities.

1.1 Interaction with the System
VMS is an interactive operating system. You and the system conduct a
dialogue: you enter a command, the system responds, you respond, and
so on.

A batch user, in contrast, communicates with the system by submitting all
commands at one time in a batch job. After a batch job is submitted, it
executes without interaction from the user. This manual emphasizes how to
use VMS interactively.

You use a terminal connected to the computer to tell VMS what to do. When
you enter a command on the keyboard, the system responds by executing
your command or by displaying an error message at your terminal if it cannot
interpret what you entered.

The keyboard you use to enter commands has the same basic configuration
as a typewriter keyboard. A terminal keyboard, however, has additional keys
called function keys. These keys send special signals to the operating system
and are discussed later in this chapter.

The terminals that display the information entered at the keyboard fall into
two categories: video display terminals and hardcopy terminals. Video display
terminals show your input and system responses on a screen similar to that
of a television. Hardcopy terminals print on continuous forms of paper.
Figure 1-1 shows the VT240 video display terminal.

1.1.1 Loggingln
Before you can enter a command or use system resources, you must log in.
Logging in consists of getting the system's attention and identifying yourself
as an authorized user.

In order to log in, you need an account on the system. Your system manager,
or whoever authorizes system use at your installation, usually sets up
accounts. This person provides you with a user name and a password.

Your user name is a unique name that identifies you to the system and
distinguishes you from other users. In many cases, a user name is your first
or last name.

Your password is for your protection. If you maintain its secrecy, other users
cannot use system resources under your user name.

Getting Started
1.1 Interaction with the System

Figure 1-1 The VT240 Terminal

ZK-6349-HC

Use the following procedure to log in to the system:

1 Make sure your terminal is plugged in and the power is turned on.

2 If your terminal has aLOCAL/REMOTE switch, set the switch to
REMOTE.

3 Press RETURN to signal the system that you want to log in. (You may
need to press RETURN several times.) The system responds by displaying
a prompt for your user name.

4 Enter your user name and press RETURN. The system displays your user
name on the screen as you type it. _After you enter your user name and
press RETURN, the system prompts you for your password.

5 Enter your password and press RETURN. The system does not display
your password as you type it; this preserves the secrecy of your password.

If you made a mistake entering your user name or password, the system
displays the message "User authorization failure." You are not logged in. This
message means that you made a typing mistake when entering your user
name or password or that your user name or password is incorrect.

A login can also fail if the terminal is not properly connected to the computer,
or if the baud rate (the speed at which the terminal transmits or receives
characters) is not correctly set. If you have any problems with the login
procedure, get help from the system operator or system manager.

Getting Started
1.1 Interaction with the System

The following example shows a successful login:

RET

Username: CASEY
Password:

Welcome to VAX/VMS version 5.0
Last interactive login on Saturday, 31-DEC-1988 08:41
Last non-interactive login on Saturday, 31-DEC-1988 11:05

RET

RET

If your login was successful, you will see a dollar sign symbol ($) in the left
margin of your terminal. This prompt indicates that you are at the DIGITAL
Command Language (DCL) level and can begin entering commands.

Because DCL uses the dollar sign as the default system prompt, all the
examples in this manual use the dollar sign as the prompt character.
However, both you and your system manager can change the system prompt
to some other character or string. (See the SET PROMPT command in
Chapter 6.)

1.1.2 Using the DIGITAL Command Language
Use the DIGITAL Command Language (DCL) to communicate with VMS. The
DIGITAL Command Language is made up of DCL commands, which are read
and translated by the command interpreter.

DCL commands are words, generally verbs, that describe the functions they
perform. You can type them in uppercase or lowercase. The following
example demonstrates the DCL command SHOW TIME:

$ SHOW TIME RET

The system responds to this command by displaying the current date and
time, as follows:

31-DEC-1988 11:55:40

SET PASSWORD is another DCL command you may want to use after you
log in for the first time. This command allows you to change your password.
Enter the command as follows:

$ SET PASSWORD RET

The system prompts you for the following information, which you must
supply:

Old password:
New password:
Verification

Enter your old password at the first prompt, and press RETURN. Enter your
new password at the next prompt, and press RETURN. Finally enter your
new password again, and press RETURN to confirm your choice.

Getting Started
1.1 Interaction with the System

1.1.2.1 Parameters and Qualifiers
DCL, like any language, has its own vocabulary and rules of grammar. The
vocabulary consists of commands, parameters, and quali fi'ers. The grammar
consists of rules for using these terms.

Command parameters define what the command will act upon, and command
qualifiers further define how that action will occur. For instance, the following
PRINT command requires an object (parameter) to indicate what is to be
printed:

$ PRINT MYFILE.LIS RET
Job MYFILE (queue SCALE_PRINT, entry 210) started on SYS$PRINT

In this command, MYFILE.LIS is a parameter for the PRINT command,
indicating the name of the file to be printed.

Note: Always separate a command from a parameter with a space.

You can use command qualifiers to restrict or modify the function the
command is to perform. The following example shows how to use the
/COPIES qualifier to specify that two copies of the file MYFILE.LIS be
printed:

$ PRINT/COPIES=2 MYFILE.LIS RET
Job MYFILE (queue SCALE_PRINT, entry 210) started on SYS$PRINT

The command string includes the command and any parameters or qualifiers
it may have. The keywords (commands, qualifiers, and parameters) that make
up DCL have predefined meanings. Therefore, you must use them exactly as
defined, and in some cases, supply a value to complete them. For example,
the /COPIES qualifier for the PRINT command requires a value: you supply
the number of copies you want printed.

The rules of grammar and syntax for DCL (that is, the order of the words,
the spacing, and the punctuation) are also defined. The VMS DCL Dictionary
contains a dictionary of DCL commands and discusses the rules of grammar
and syntax.

1.1.2.2 Responding to Command Prompts
When you enter a command at the terminal, you do not need to enter the
entire command on one line. If you enter a command without specifying
required parameters, the system prompts you for the additional information it
requires, as the following example shows:

$ PRINT RET
$_File : MYFILE . DAT RET

If a command requires two or more parameters, it prompts you for each
parameter. In response to each prompt, you can enter just the prompted
parameter or all the remaining parameters. In the following example, each
file name parameter is entered separately:

$ COPY
$_From:FILEI.DAT
$_To:FILE2.DAT

RET

RET

RET

You could, however, enter both file names after the first prompt, as in the
following example:

$ COPY RET
$_From:FILEI.DAT FILE2.DAT RET

1-4

Getting Started
1.1 Interaction with the System

You could also enter the entire command string on one line:

$ COPY FILEI.DAT FILE2.DAT RET

In each of these examples, the data in FILEI .DAT would be copied into
FILE 2 . DAT.

1.1.2.3 Editing Command Lines
Some keyboard keys provide editing functions you can use to correct mistakes
you make while typing commands. Following are the three types of keyboard
keys used to edit command lines:

• Right, left, up, and down arrow keys.

• Control keys, which are entered by pressing the CTRL key and, at
the same time, another keyboard key. Control keys are referred to as
CTRL/x, where x is a keyboard key.

• Function keys, which are located above the main keyboard on VT200
series terminals, and to the right of VT 100 series main keyboards.
Function keys are referred to as Fx, where x is the number associated
with a particular function key.

Use the following keys to edit current DCL command lines:

Table 1-1 Command Line Editing Keys

VT200 Key VT100 Key Function

F 14,CTRL/A CTRL/A Switches between SET
TERMINAL/INSERT
and SET TERMINAL/
OVERSTRIKE

CTRL/B CTRL/B Recalls up to 20
previously entered
commands

CTRL/E CTRL/E Moves cursor to end
of line

F12,CTRL/H BACKSPACE,CTRL/H Moves cursor to
beginning of line

CTRL/R CTRL/R Repeats current
command line

CTRL/U CTRL/U Deletes characters left
of the cursor to the
beginning of the line

CTRL/W CTRL/W Refreshes the screen

C xl DELETE Moves cursor back
one character, deleting
that character

F13 LINEFEED Deletes the word left
of the cursor

DOWN ARROW DOWN ARROW Recalls the command
entered after the
current command

Getting Started
1.1 Interaction with the System

Table 1-1 (Cont.) Command Line Editing Keys

VT200 Key VT100 Key Function

RIGHT ARROW,CTRL/F RIGHT ARROW,CTRL/F Moves cursor one
character right

LEFT ARROW,CTRL/D LEFT ARROW,CTRL/D Moves cursor one
character left

UP ARROW, CTRL/6 UP ARROW, CTRL/B Recalls the command
entered before the
current command

If you are entering a command and want to cancel it, press CTRL/Y or
CTRL/C. Using CTRL/Y or CTRL/C, you can also interrupt the system while
it executes a command. After you interrupt the system using CTRL/Y, the
DCL prompt ($)returns.

By pressing CTRL/C, you can interrupt the system and still remain in a
utility (a general-purpose program that does certain common functions). For
example, if you begin typing a message in MAIL and change your mind, press
CTRL/C. The message is not sent, and you remain in the MAIL utility.

1.1.3 Recognizing System Responses
The system can respond to your command in several ways. It can execute
the command. Generally, you know your command has executed successfully
when the system prompt returns (by default, the dollar sign). It can execute
the command and inform you in a message what it has done. It can, if
execution is not successful, inform you of errors. It can even act for you,
supplying values (defaults) you have not supplied yourself.

1.1.3.1 What Are Defaults?
A default is the value supplied by the operating system when you do not
specify one yourself. For instance, if you do not specify the number of copies
as a qualifier for the PRINT command, the system uses the default value of
1. By not explicitly stating a value, the system assumes that you have chosen
the default. VMS supplies default values in several areas, including command
qualifiers and parameters. The defaults used with individual commands are
specified with each command's description in the VMS DCL Dictionary.

1.1.3.2 Looking at Informational Messages
The system responds to some commands by giving you information about
what it has done. For example, when you use the PRINT command, the
system displays the job identification number it assigned to the print job and
shows the name of the print queue the job has entered.

$ PRINT MYFILE.LIS RET

Job MYFILE (queue SCALE_PRINT, entry 210) started on SYS$PRINT

Not all commands display informational messages. Successful completion
of a command is usually indicated when the dollar sign prompt returns.
Unsuccessful completion is always indicated by one or more error messages.

Getting Started
1.1 Interaction with the System

1.1.3.3 Looking at Error Messages
If you enter a command incorrectly, the system displays an error message and
prompts you for the correct command string, as the following example shows:

$ CAPY
%DCL-W-IWERB, unrecognized command verb -check validity and spelling
\CAPY\

RET

The three-part code preceding the text of the message indicates the following:

• The message is from DCL, the default command interpreter

• The message is a warning (W) message

• The message can be identified by the mnemonic IVVERB in the VMS
System Messages and Recovery Procedures Reference Manual

You can also receive error messages during command execution if the system
cannot perform the function you have requested. For example, if you type a
PRINT command correctly, but the file you specify does not exist, the PRINT
command informs you of the error with a message like the following:

$ PRINT NOFILE.DAT
%PRINT-E-OPENIN, error opening CLASSI:[MAYMON]NOFILE.DAT; as input
-RMS-E-FNF , file not found

RET

The first message is from the PRINT command. It tells you it cannot open the
specified file. The second message indicates the reason for the first, that is,
the file cannot be found. RMS refers to the VMS file handling facility, Record
Management Services; error messages related to file handling are generally
VMS RMS messages.

1.1.3.4 Is the System Still Functioning?
If you suspect that your system is not doing what you think it should be
doing, press CTRL/T. CTRL/T displays a single line of statistical information
about the current process. When you press CTRL/T during an interactive
terminal session, it momentarily interrupts the current command, command
procedure, or image in order to display statistics.

Although CTRL/T disrupts the characters on the screen, it does not impact
any procedure or editing session. To refresh the screen, press CTR/W. The
statistical information includes node and user name, current time, current
process, CPU usage, number of page faults, level of I/O activity, and memory
usage. The following example shows a user named BEAN on node GREEN
using the EDT editor:

GREEN::BEAN 13:45:02 EDT CPU=00:00:03.33 PF=778 I0=295 MEM=315

If you know that your system is running, and CTRL/T does not display
statistical information, enter the SET CONTROL=T at the dollar sign ($)
prompt, then press CTRL/T again.

Getting Started
1.1 Interaction with the System

1.1.4 Using the DCL Command HELP

When you use the VMS operating system, you may not always have a
reference manual available at your terminal, and you may want to see the
format of a command before you enter it. The HELP facility is designed to
provide you with this information.

For example, to display a list of commands for which HELP is available, type:

$ HELP RET

The system responds by displaying the list of HELP commands and
prompting you for a choice of topic.

If you want information about a particular command, type that command
after the topic prompt. For instance, if you want information about the
PRINT command, type the following:

Topic? PRINT RET

The information displayed includes a synopsis of what the PRINT command
does, the parameters it requires, and the qualifiers it can take.

If you want to know more about one of the PRINT command qualifiers,
respond to the prompt "PRINT subtopic?" with that qualifier. (Remember
to type the slash character (/)before the qualifier.) For example, to display
information about the /COPIES qualifier of the PRINT command, type:

PRINT subtopic?/COPIES

If you know the subtopic on which you need help, type the following:

$ HELP PRINT/COPIES RET

RET

When you have finished using HELP, press CTRL/Z. The dollar sign prompt
is displayed in the left margin, indicating that VMS is ready to receive a
command.

1.1.4.1 Exploring Several HELP Topics
The topics and commands you see when you enter the HELP command cover
a wide range of subjects:

• To manipulate files, you can get information about the following DCL
commands: COPY, DELETE, PURGE, RENAME, and TYPE. (Files are
discussed in detail in Chapter 2.)

• For programming needs, you can get information about the LINK and
RUN commands.

• For information about the available language compilers, enter the HELP
command followed by the name of the compiler (for example, HELP
BASIC, or HELP FORTRAN).

• For text processing needs, you can get information about available editors
(HELP EDIT) and a text formatter (HELP RUNOFF).

• For operator needs, you can get information about the ALLOCATE,
DEALLOCATE, MOUNT, and DISMOUNT commands.

• For information by category, enter the HELP HINTS command.

Getting Started
1.1 Interaction with the System

1.1.5 Logging Out

When you have finished your session at the terminal, log out as follows:

$ LOGOUT RET

The system responds with the following:

MAYMON logged out at 31-DEC-1988 12:43:10.38

To make sure that you have logged out, always use the LOGOUT command
to end a terminal session.

Note: Shutting off your terminal or setting the REMOTE/LOCAL switch to
LOCAL does not automatically cause you to log out. If you shut a
terminal off without logging out properly, another user may be able
to turn the terminal on and use your account.

1.2 Using Utilities
VMS supports many different utilities. Each utility performs a task or set
of tasks. A utility is an environment in which you can use a specific set of
commands and qualifiers to perform a desired task.

To invoke a utility, enter the corresponding DCL command. For example,
to invoke the VMS Phone Utility (PHONE) you enter the DCL command
PHONE. After you enter the DCL command and press RETURN, you see the
utility prompt. Some utilities have a prompt that matches their name. For
example, the VMS Mail Utility (MAIL) displays the following prompt:

MAIL>

Other utilities prompt you for a file name. For example, when you enter the
DCL command SORT to invoke the VMS Sort Utility, you see the following
prompt:

_Input.

When you are using the type of utility that prompts you for a file name
(for example, BACKUP, MESSAGE, PATCH, AND SORT), you can add
qualifiers to the DCL command string in order to tailor the utility to your own
needs. The following example shows how to tailor the VMS Backup Utility
(BACKUP) by specifying qualifiers on the command string when invoking the
utility:

$ BACKUP/RECORD/IMAGE/LOG
_From:

RET

The following table lists four utilities that prompt you for a file name, the
DCL command you enter to invoke each utility, and the first DCL prompt
displayed.

Getting Started
1.2 Using Utilities

Utility DCL Command DCL Prompt

BACKUP BACKUP _From:

MESSAGE MESSAGE _File:

PATCH PATCH _File:

SORT SORT _Input:

When you are using the type of utility that displays a utility prompt (for
example, MAIL>), you can enter utility commands at the utility prompt.
Each utility responds to a different set of commands. For example, the VMS
Phone Utility recognizes the following commands because they are PHONE
commands:

• DIAL

• HOLD

• REJECT

If you invoke the VMS Mail Utility (MAIL) and enter these commands, you
see error messages displayed because PHONE commands are not recognized
by MAIL.

The following table lists three utilities that display a utility prompt, the DCL
command you enter to invoke each utility, and the utility prompt:

Utility DCL Command Utility Prompt

MAIL MAIL MAIL>

PHONE PHONE

MONITOR MONITOR MONITOR>

The following sections discuss the MAIL and PHONE utilities in more detail.
For more information about these utilities, see the VMS Mail Utility Manual
and the VMS Phone Utility Manual.

1.2.1 Whatls MAILl

The VMS Mail Utility (MAIL) allows you to send messages to other users on
your system or to users on another VAX computer connected to your system
by means of DECnet-VAX. (For information about DECnet-VAX, see the VMS
Networking Manual.) To invoke the MAIL utility, enter the MAIL command
at the DCL prompt. The twelve MAIL commands introduced in this section
enable you to perform various functions within MAIL.

This section discusses the following twelve MAIL commands:

SEND DIRECTORY EXTRACT

READ[/NEW] DELETE PRINT

FORWARD MOVE HELP

REPLY SELECT EXIT

Getting Started
1.2 Using Utilities

1.2.1.1 Sending Mail
After you invoke MAIL, try the SEND command. You can send a message
to anyone on the system by entering their node specification and user name
at the "To:" prompt. Anode is one of several computer systems that are
connected together to form a network. If your computer system is not part of
a network, you do not need to use a node specification.

If your computer system is part of a network, and you are sending mail
to someone who is not on your node, include a node specification in the
following format:

nodename::username

If the person you are sending mail to is on your node, only specify a user
name at the "To:" prompt. Refer to Chapter 3 for additional information
about nodes. The following example shows how to send a message to a user
named DAILEY on node BRUSH:

MAIL> SEND RET

To: BRUSH: :DAILEY RET

Try sending a message to yourself. Enter the SEND command at the mail
prompt (MAIL>) and press RETURN. Enter your own user name at the
prompt "To:", and press RETURN. Enter a subject when prompted, and
press RETURN again. The following example shows how to use the SEND
command:

MAIL> SEND RET

To : MI'T'CHELL

Subj: Testing. . .
Enter your message below. Press CTRL/Z when complete, or CTRL/C to quit:

When you finish entering the text of your message, press CTRL/Z. Because
you are sending the message to yourself, MAIL will display a message on
your screen announcing that you have new mail, like the following:

RET

RET

New mail on node WHIP from MITCHELL

MAIL>

1.2.1.2 Reading Mail
Next, use the READ command. To read the message you just sent to yourself,
enter the READ command with the /NEW qualifier and press RETURN, as
follows:

MAIL> READ/NEW

The only time you must specify the /NEW qualifier with the READ command
is when you want to read new mail that arrives while you are in MAIL. If
you are not in MAIL and you receive new mail, invoke MAIL, and enter
the READ command (without the /NEW qualifier) to read the new message.
Also, when you want to reread old messages (messages that you have already
read), enter the READ command. If you have just read a new message, and
you want to reread an old message, enter the following:

MAIL> SELECT MAIL

(The MAIL command SELECT is discussed later in this section.) Now you
can use the READ command to reread the old message.

Getting Started
1.2 Using Utilities

1.2.1.3 Forwarding Mail
You can forward a copy of a mail message to another user by entering
the FORWARD command. MAIL prompts you for the name of the user
to receive the message. If your system is part of a network and you are
trying to forward mail to a user on another node, you must include a node
specification on this line. The user name and node specification are separated
by two colons (::). Refer to Chapter 3 for additional information about nodes.

Try forwarding a copy of the message you just received back to yourself.
Enter your user name, and press RETURN. Supply a subject when prompted,
and press RETURN. MAIL signals that you have just received a new message.
Enter the READ/NEW command to read the forwarded message.

1.2.1.4 Replying to Mail
When you receive a message and want to respond to it, enter the REPLY
command, and press RETURN. MAIL displays the header information as
follows:

MAIL> REPLY
To: SHRED::GEEZER
Subject: Re:Official reprimand
Enter your message below. Press CTRL/Z when complete, CTRL/C to quit:

When you finish typing your response, press CTRL/Z. Again, MAIL signals
that you have just received a new message. To read the message, enter the
READ/NEW command.

1.2.1.5 Listing Mail Messages
When you want to see a list of all new mail messages you have collected,
enter the DIRECTORY command, and press RETURN. MAIL displays a list or
directory like the following:

From Date Subject

1 MURPHY 31-DEC-1988 How to Write a Memo

2 PIT::HORACE 31-DEC-1988 Using the Printer

3 NOREEN::CASEY 31-DEC-1988 Party

To see a list of all the old messages, enter the SELECT MAIL command string
followed by the MAIL command DIRECTORY.

1.2.1.6 Organizing Mail into Folders
MAIL allows you to organize your messages by moving them into folders. By
default, MAIL provides the following folders:

• MAIL-Contains messages that have been read but not deleted. This
folder cannot be deleted.

• NEWMAIL-Contains all messages that have not been read.

• WASTEBASKET-Contains messages that have been deleted. This folder
and its contents are deleted when you exit MAIL.

MAIL also allows you to create your own folders. You can create as many
folders as you want.

To move a message to a folder, enter the MOVE command (while you are
reading the message), and press RETURN. MAIL prompts you for a folder
name. Type any name, such as REVIEWS, JOKES, or STATUS~EPORTS.
When you enter the name of a new folder (one you have not created before),
MAIL asks whether or not you want to create it. Answer "Y". MAIL also

1-12

Getting Started
1.2 Using Utilities

prompts you for a file name. You can specify the default mail file by
pressing RETURN. A sample session demonstrating the MOVE command
follows. (The name of the new folder is WINNERS and the default mail file
is specified.)

MAIL> 2
MAIL> MOVE
Folder: WINNERS
FILE: RET

Folder WINNERS does not exist.
Do you want to create it (Y/N , default is N) ? y
%MAIL-I-NEWFOLDER, folder WINNERS created

To move from one folder to another, use the SELECT command. If you want
to move to the WINNERS folder, enter the following command string. (MAIL
displays a message indicating the number of messages in the folder.)

MAIL> SELECT WINNERS

%MAIL-I -SELECTED, 1 message selected

To move to a folder named JOKES, enter the following command string:

MAIL> SELECT JOKES

%MAIL-I -SELECTED, 3 messages selected

To move to your default mail folder (MAIL), enter the command string
SELECT MAIL.

You can enter the DIRECTORY command to see a list of the messages in the
folder you just selected. Enter the DIRECTORY/FOLDERS command to see a
listing of your folders.

1.2.1.7 Deleting Mail
When you want to remove a message, use the DELETE command. You can
either enter the DELETE command while you are reading the message, or
you can enter the DELETE command followed by the number (or range of
numbers) of the message you want to remove. To remove messages 2, 4, 5,
6, 8, 9, and 10 in the list, enter the following command string:

MAIL> DELETE 2,4-6,8:10

Note that you can use either a colon (:) or a hyphen (-) to define the range
of messages to be deleted.

If you enter the DIRECTORY command after you have deleted messages, you
will see the messages marked for deletion, as in the following example:

From Date

1 MURPHY 31-DEC-1988
2 (Deleted)
3 RHUMBA: :CASEY 31-DEC-1988
4 (Deleted)

Subject

How to Write a Memo

Party

When you exit from MAIL, the messages marked for deletion are removed.

Getting Started
1.2 Using Utilities

1.2.1.8 Extracting Mail
When you want to move a mail message from your mail file to a file that
you can access from the DCL command level, use the EXTRACT command.
Enter the EXTRACT command (while you are reading the message), and press
RETURN. MAIL prompts you for the name of a file. Then, when you exit
from MAIL, the file is listed in your main directory. The following example
shows how to use the EXTRACT command to move a mail message to a file
named GAMES.DAT:

MAIL> EXTRACT

File: GAMES.DAT

%MAIL-I-CREATED, DISK: [BERGERON]GAMES.DAT;1 created

MAIL>

1.2.1.9 Printing Mail
To make a hard copy of a mail message, enter the PRINT command while
you are reading the message, and press RETURN. (When you exit from MAIL,
the system responds by telling you that the message has entered the print
queue.) The following example shows how to make a hard copy of message
number 4 using the PRINT command:

MAIL> 4

#4 31-DEC-1988 09:39:20 MAIL
From: WHIP::MITCHELL
To: GEEZER
Subj: lunch
Hey Geezer, WAKE UP!!!! Is our lunch date still on?...

MAIL> PRINT
MAIL> EXIT

Job MYFILE (queue SCALE_PRINT, entry 210) started on SYS$PRINT

1.2.1.10 Getting Help in Mail
To see detailed information about MAIL, enter the HELP command at the
mail prompt (MAIL>). There are several topics to choose from. For
example, the HELP topic "Folders" describes the organization of the Mail
Utility in detail. For more information about each MAIL command, use the
HELP facility provided in MAIL, or refer to the VMS Mail Utility Manual.

1.2.1.11 Exiting from MAIL
When you are ready to leave MAIL, enter the EXIT command, and press
RETURN. Any messages marked for deletion are removed. Any messages
marked for printing enter the print queue, and a message similar to the
following is displayed:

MAIL> EXIT
Job 790 entered on queue ATLAS_PRINT

Getting Started
1.2 Using Utilities

1.2.2 What Is PHONE?

The VMS Phone Utility (PHONE) allows you to "talk" with other users on
your system or on any other VAX computer connected to your system by
means of DECnet-VAX. It is designed to closely simulate the features of a real
telephone.

Note: PHONE can be used only on video terminals with direct cursor
positioning, such as the DIGITAL VT52, VT100, and VT200 Series
terminals.

To invoke the PHONE utility, enter the PHONE command at the system
prompt. The five commands discussed in this section introduce you to
PHONE. For more information about PHONE, see the VMS Phone Utility
Manual.

This section discusses the following PHONE commands:

ANSWER DIRECTORY

REJECT HELP

EXIT

1.2.2.1 How to Phone Another User
After you invoke PHONE, you can place a call to anyone who is currently
logged in. Enter the person's node specification and user name at the switch
hook character, which by default is the percent sign (%). For example, to
phone user JACKSON On node FENDER enter the following:

FENDER: :JACKSON

If the person you are calling is on your node, or if your computer system is
not part of a network, type only a user name.

Try phoning a friend on the system, Or try phoning yourself. Enter your user
name at the switch hook character (%), and press RETURN. Because you
are calling yourself, do not include a node name. Your call is automatically
answered. PHONE displays the following message:

That person has answered your call.

Your screen display divides, showing the name of the person placing the call
in the top section of the screen and the name of the person receiving the
call in the bottom section of the screen. Figure 1-2 shows a PHONE screen
display.

1.2.2.2 Answering a Phone Call
To answer a call from another user, invoke PHONE, and enter the
ANSWER command. Your screen display divides, and you can begin typing
your conversation. Every character you type is displayed as part of the
conversation (except the percent sign (%), which is the default switch hook
character).

Getting Started
1.2 Using Utilities

Figure 1-2 Looking at a PHONE Screen Display

TAURUS::SMITH

Note: The switch hook character is always displayed in column 1
of the command input line.

ZK-898-82

While you are typing text, you can use the following key combinations to
clear parts of the screen:

Key Combination Function

CTRL/L Clears all the text in your part of the screen

CTRL/U Clears the current line

CTRL/W Restores the entire screen

To signal PHONE that you want to enter a PHONE command during a
conversation, type the switch hook character (%)followed by the command.
After PHONE executes the command, the cursor returns to its position before
you typed the switch hook character (%).

If you type the switch hook character, then decide not to enter a command,
press RETURN to continue your conversation.

Getting Started
1.2 Using Utilities

1.2.2.3 Rejecting a Phone Call
If you decide not to answer a call, PHONE keeps broadcasting the message
on your screen until either the person calling cancels the call, or you enter the
REJECT command. When you enter the REJECT command, the user placing
the call receives a terminal message that the call has not been accepted.

1.2.2.4 Displaying a List of Users You Can Call
To see a list of users you can call, enter the DIRECTORY command. If you
enter this command with a node name (as the following example shows), it
lists the users on that system:

%DIRECTORY ATLAS

Press any key to cancel the directory listing and continue.

Process Name User Name Terminal Phone Status

Mike MROSOSKY TTE1: available
Biff Riff RIFF VTA3: available

2 persons listed.

1.2.2.5 Getting Help in PHON E
When you want general information about PHONE, including descriptions
for all the available PHONE commands, enter the HELP command, and press
RETURN.

1.2.2.6 Exiting from PHONE
When you want to leave PHONE, enter the EXIT command at the switch
hook character, and press RETURN. Your entire screen clears, and the DCL
command prompt appears.

2 Working with Files

This chapter explains how to use DCL commands to manipulate files. It
describes how to identify, create, delete, and purge files; how to create and
list directories; and how to print, copy, protect, and rename files.

2.1 What Is a File?
A file contains information. One type of information a file can contain is
text. For example, to organize a book, you can create a file for each chapter.
To edit each chapter, you enter and manipulate text within each file. You
might also create a file containing a memo. You can use MAIL to send the
file containing the memo to other users, or edit the file to change the memo.

You can create a file and fill it with instructions using a language like
FORTRAN or Pascal. Then you use a language compiler to generate a
machine language the computer understands. This list of instructions is called
a program. By entering the appropriate DCL commands and specifying the
name of the file containing the program, you can instruct the computer to
perform the task.

If you often use the same series of DCL commands, you can create a file
containing this series. A series of DCL commands is called a command
procedure. When you want to use this series of commands, you enter the
appropriate DCL command and the name of the file containing the series. For
information about command procedures, see Chapter 5 .

2.1.1 Looking at File Names, Types, and Versions
You can identify a file by specifying its file name and file type in the following
format:

filename type

The file name can be from 0 through 39 characters chosen from the letters
A through Z, the numbers 0 through 9, an underscore (_), a hyphen (-), or
a dollar sign ($). Do not use a hyphen (-) as the first character in the file
name.

When you create files, you can give them any names that are meaningful to
you. A list of legitimate file names follows:

2409CHAP2
2409CHAP 13
APPRAISE
BASIC-EXAMPLES
FORTRAN EXAMPLES
GETTING-STARTED
MAIL
ORCHESTRA_MEMBERS
THINGS_TO_DO

2-1

Working with Files
2.1 What Is a File?

The file type can be from 0 through 39 characters and must be preceded by a
period. Again, you can choose any of the letters A through Z, the numbers 0
through 9, an underscore, a hyphen or a dollar sign for the file type. Do not
use the hyphen as the last character in the file type.

The file type usually describes the kind of data in the file. The system
recognizes many default file types used for special purposes. Some of the
more common default file types follow:

File Type Use

COM Command procedure

DAT Data file

DIS Distribution list for MAIL

DIR Directory file

EDT Start-up command file for EDT editor

EXE Executable program image file

JOU Journal file used by the EDT editor

LIS Output listing file

LN01 Output file for LN01 laser printer

LN03 Output file for LN03 laser printer

LOG Batch job output file

MAI MAIL message file

MEM Output file for DIGITAL Standard Runoff (DSR)

OBJ Object module file output from a compiler or assembler

OLB Object library file output from the Librarian Utility

RNO Input file for DIGITAL Standard Runoff (DSR)

TMP Temporary file

TXT Input file for text libraries or MAIL output command

Each high-level language has a default file type for source programs. Some of
these file types are listed in the following table:

File Type Contents

BAS Input source file for the VAX BASIC compiler

B32 Input source file for the VAX BLISS-32 compiler

C Input source file for the VAX C compiler

COB Input source file for the VAX COBOL compiler

COR Input source file for the VAX CORAL-66 compiler

FOR Input source file for the VAX FORTRAN compiler

MAR Input source file for the VAX MACRO assembler

PAS Input source file for the VAX Pascal compiler

PLI Input source file for the VAX PL/I compiler

~J

Working with Files
2.1 What Is a File?

The following list combines several previously mentioned file names with file
types:

2409CHAP2.RN0
BASIC-EXAMPLES.BAS
MAIL. MAI
ORCHESTRA~VIEMBERS.DIS
APPRAISE.REAL-ESTATE

In addition to a file name and type, every file has a version number the
system assigns to a file when the file is created or revised. When you initially
create a file, the system assigns it a version number of 1. Subsequently,
when you edit a file or create additional versions of it, the version number is
automatically increased by one.

Version 12 of a file named APPRAISE.MEM follows:

APPR.AISE.MEM;12

You rarely need to specify the version number with a file specification. The
system assumes default values for version numbers. Version number defaults
are determined as follows:

• For an input file, the system uses the highest existing version number of
the file. (Many system utilities take existing files, alter them, and produce
new files. The existing file is called an input file and the newly produced
file is called an output file.)

• For an output file, the system adds 1 to the highest existing version
number.

When you specify a version number in a file specification, precede the version
number with a semicolon (;).

2.1.2 Using Wildcard Characters
A wildcard character can be used with many DCL commands to apply the
command to several files at once, rather than specifying each file individually.
Two wildcard characters, the asterisk (*)and the percent sign (%), can be
used when you specify a file name and a file type. The asterisk can also be
used to specify version numbers.

For example, you can specify all versions of a file by using an asterisk in
place of the version number in the file specification. If you want to print all
versions of the file TESTFILE.DAT without specifying each version number
separately, enter the following command string:

$ PRINT TESTFILE.DAT;*

If there were no wildcard character in the preceding example, the PRINT
command by default would apply only to the most recent version of the file
TESTFILE.DAT.

The following command string displays a listing of all versions of all files
with the file type of DAT:

$ DIRECTORY *.DAT;*

Working with Files
2.1 What Is a File?

To print all versions of all files named TEST, enter the following command
string:

$ PRINT TEST.*;*

The percent sign character can be substituted for any single character in the
file specification (except the version number). For example, to print the latest
version of several files with a file type of TXT and a file name that begins
with CHAP but ends in a series of different numbers, as in CHAP 1.TXT,
CHAP2.TXT, and CHAP3.TXT, enter the following command string:

$ PRINT CHAP% .TXT

Note that in this example the percent sign specifies only one character.
Therefore, this PRINT command would not affect a file named CHAP.TXT or
CHAPIX.TXT.

The following example shows how to display a listing of the files beginning
with the letters CHAP and having a file type of TXT:

$ DIRECTORY CHAP*.TXT

2.2 Creating Files
To create a file, enter one of the following commands:

• EDIT

• CREATE

The EDIT command invokes an editor to create a file. The default VMS
editor is EDT. To learn how to use the EDT editor, see the Guide to VMS Text
Processing.

You can also use the CREATE command to make a new file, and specify the
file name as a parameter. You can insert text immediately, and terminate the
insertion by pressing CTRL/Z.

$ CREATE MYFILE.DAT
This is the only line.

CTRL/Z

Unlike the EDIT command, the CREATE command does not modify an
existing file.

2.3 Deleting Files
Because files take up disk space, periodically delete files you no longer need.

The DELETE command deletes specific files. When you use the DELETE
command, you must specify a file name, file type, and version number.
Having to specify a version number provides some protection against
accidental deletion. However, any of these file components can be specified
as a wildcard character. You can also enter more than one file specification
in a command string by separating the file specifications with commas. The
following table shows some examples of the DELETE command.

Working with Files
2.3 Deleting Files

Command Result

$ DELETE AVERAGE.OBJ;1 Deletes the file named AVERAGE.OBJ;1

$ DELETE ~.LIS;*

$ DELETE A.DAT;1,A.DAT;2

Deletes all files with file types of LIS
This command deletes all versions of all

program listings)

Deletes the first two versions of the same
data file

2.4 Purging Files
When you want to delete many versions of many files, you can use the
PURGE command.

The PURGE command deletes all but the most recent version of a file.
Therefore, you cannot enter a version number with the PURGE command.
The following command string deletes all files named AVERAGE.FOR except
the file with the highest version number:

$ PURGE AVERAGE.FOR RET

Use the /KEEP qualifier with the PURGE command to specify that you want
to keep more than one version of a file. The following command string
deletes all but the two most recent versions of the file TEST.DAT:

$ PURGE/KEEP=2 TEST.DAT RET

To clean up your entire directory, enter the PURGE command without any
parameters or qualifiers.

2.5 Displaying Files at Your Terminal
The TYPE command displays a file at your terminal. To display a file named
TEST.DAT, enter the following command string:

$ TYPE TEST.DAT RET

This is the first line of a f ile created with the EDT editor .

While a file is being displayed, you can suspend and resume the upward
movement, or scrolling, of the terminal display by using CTRL/S and
CTRL/Q. To temporarily stop the display from scrolling, press CTRL/S;
to continue the scrolling, press CTRL/Q.

The NO SCROLL key on VT 100 terminals and the F 1 key (Function Key 1)
on VT200 series terminals perform the same functions. Pressing NO SCROLL
once suspends scrolling; pressing it again resumes scrolling.

Working with Files
2.6 Listing Files in a Directory

2.6 Listing Files in a Directory

A directory is a file that contains a list of other files. The directory list
includes the name, type, and version number of each file in that directory.
(See Chapter 3 for more information about directories.)

To list the names of files in a particular directory, use the DIRECTORY
command. When you enter the DIRECTORY command with no parameters
or qualifiers, files listed in your default directory are displayed on the
terminal, as in the following example:

$ DIRECTORY RET

Directory BOOK2:[MALCOLM] Q
AVERAGE.EXE;2
AVERAGE.FOR;1

AVERAGE.EXE;1 AVERAGE.FOR;2
AVERAGE.OBJ;2 AVERAGE.OBJ;1

Total of 6 f files .

O The disk and directory name (see Section 3.1.2 for information about
disks)

© The file names, file types, and version numbers of each file in the
directory

© The total number of files in the directory

When you enter the DIRECTORY command, you can provide one or more
file specifications to obtain a listing of particular files. For example, to find
out how many versions of the file AVERAGE.FOR currently exist, enter the
DIRECTORY command as follows:

$ DIRECTORY AVERAGE.FOR RET

Directory BOOK2:[MALCOLM]

AVERAGE.FOR;2 AVERAGE.FOR;1

Total of 2 f files .

You can use the wildcard character (*) to display selected groups of files.
If you want to see a list of all the files in your directory beginning with the
letters "TR", enter the following command string:

$ DIRECTORY TR*

Directory CIRCUS: [PERT]

TRAINS.DAT;16 TRAPEZE.BAR;2 TRAVEL.FUN;5

Total of 3 f files .

RET

Working with Files
2.7 Printing Files

2.7 Printing Files
To make a hard copy of a file, use the PRINT command. The system cannot
always print a requested file immediately since there may be only one or two
printers for all users to share. The system enters the name of the file you
want to print in a queue, and prints the file at the first opportunity.

A printed file is preceded by a header page describing the file so you can
identify your own listing. For example, if you enter the following command
string, the header page shows your user name and the file's name, type, and
version number:

$ PRINT WRITERS: [JONES]AVERAGE.LIS

Job AVERAGE (queue GROUP_PRINT, entry 1995) started on BIG$LPAO

When you use the PRINT command, the system responds with a message
indicating the job number it assigned to the print job .

The PRINT command also has qualifiers that allow you to control the number
of copies of the file to print, the type of forms to print the file on, and other
similar functions. See the VMS DCL Dictionary for detailed information about
these qualifiers.

RET

2.8 Renaming Files
To change the identification of one or more files, use the RENAME command.
For example, the following command string changes the file name and type
of the most recent version of the file PAYROLL.DAT to TEST.OLD:

$ RENAME PAYROLL.DAT TEST.OLD RET

After you enter this command string, the file name PAYROLL.DAT no longer
exists. Its contents now reside in the file named TEST.OLD.

You can use the RENAME command to move a file from one directory to
another. For example, the following command moves TEST.OLD from the
directory [MALCOLM] to the subdirectory [MALCOLM.TESTFILES]:

$ RENAME [MALCOLM]TEST.OLD [MALCOLM.TESTFILES]

You can use wildcard characters if you want to change a number of files that
have either a common file name or file type. The following command string
changes the directory name for all versions of all files with file names of
PAYROLL:

$ RENAME PAYROLL.*;* [MALCOLM.TESTFILES]*.*;* RET

The files are now cataloged in the subdirectory [MALCOLM.TESTFILES].

Working with Files
2.9 Protecting Files

2.9 Protecting Files

To prevent others from gaining unauthorized or undesired access to a file,
enter the SET FILE/PROTECTION command. The command allows you to
define the type of file access you want to allow other users. The following
tables list the four user categories and the four access types:

User Category Type of User

OWNER The user who created the file

GROUP All users, including the owner, who have the same group
number (or group identifier) in their user identification codes
(UIC) as the owner of the file

WORLD All users

SYSTEM All users who have system privilege (SYSPRV) or low group
numbers (from 0 to the value of the system parameter
MAXSYSGROUP)

Access Type Type of Access

READ The right to examine, print, or copy a file

WRITE The right to modify or write a file

EXECUTE The right to execute a file that contains executable program
images

DELETE The right to delete a file

A user identification code (UIC) is a specification the system uses to determine
if a user can access a file. For example, a UIC can resrict access to a file to a
certain group. Oniy users with the proper UIC can access that file.

A UIC can be either a pair of numbers or a name (or optionally, a pair of
names). When a DCL command requires a UIC specification, you can use
either format. The system translates all UICs to numbers when it determines
a user's access.

A numeric UIC consists of a group number (g) and a member number (m) in
the following format:

Cg, m]

An example of two numeric UICs follows (notice that they both have the
same group number):

[360 , 055]

[360 , 223]

A UIC can also be either one or two names. These names are called a
member identifier and a group identifier), as follows:

[member-identifier]

or

[group-identif ier, member-identifier]

Working with Files
2.9 Protecting Files

An example of three UICs consisting of names follows. Notice that the first
two UICs have the same group identifier:

[PATS,BELLINI]

[PATS , FR.ANKLIN]

[RAMS , CH00]

For detailed information about UICs, group numbers, member numbers,
group identifiers, and member identifiers, see the VMS DCL Dictionary and
the Guide to Using VMS Command Procedures.

You can abbreviate user categories and access types to one letter, as the
following table shows:

User Category Access Type

O -OWNER

G -GROUP

W -WORLD

S -SYSTEM

R -READ

W -WRITE

E -EXECUTE

D -DELETE

When you use the SET FILE/PROTECTION command, separate the category
from the type of access by a colon (:). When you specify more than one
category, use a comma (,) to separate one category from another, and enclose
the list of categories in parentheses (). For example, the following command
string contains three categories separated from each other by commas and
enclosed in parentheses:

$ SET FILE/PROTECTION RESUME.TXT/PROTECTION=(O:RWE,G:RWE,W:R)

You can use the SET FILE/PROTECTION command, specifying a different
type of access for each category of user. For example, if you want all
users (WORLD category) to be allowed read access only on a file named
FRIENDS.DIS, enter the following command string:

$ SET FILE/PROTECTION FRIENDS.DIS/PROTECTION=W:R

All other access is denied. Therefore, users are not allowed fio WRITE,
EXECUTE, or DELETE the file named FRIENDS.DIS.

If you want users in the GROUP category to be able to READ but not
DELETE a file named JOKES.COM, enter the following command string:

$ SET FILE/PROTECTION JOKES.COM/PROTECTION=G:R

If you want all users (WORLD category) to have total access to a file named
GAMES.COM, enter the following command string:

$ SET FILE/PROTECTION GAMES.COM/PROTECTION=W:RWED

By default, when you create a file, it is protected in the following way:

• Both you (OWNER) and system users (SYSTEM) have total access, or the
ability to READ, WRITE, EXECUTE, and DELETE the file. This protection
information is coded in the following way:

(SYSTEM:RWED,OWNER:RWED)

Working with Files
2.9 Protecting Files

• Users in the GROUP category have READ and EXECUTE access, coded
as follows:

(GROUP:RE)

• Other users who are not in your group are considered part of the WORLD
category and have no access, coded as follows:

(WORLD :)

3 Understanding Directory Structure

This chapter describes the components of a complete file specification.

3.1 Dissecting a Complete File Specification
A complete file specification contains all information the system needs to
locate and identify a file. A complete file specification has the following
format:

node::device:[directory]filename.type;version

You must enter the punctuation marks exactly as shown (colons, brackets,
period, semicolon) to separate the components of the file specification.

Figure 3-1 shows the relationship between the parts of a full file specification.
Notice how the file is listed in a directory, that the directory resides on a
device, and that the device is located on a node.

Figure 3-2, a full file specification, contains all necessary information to
enable the system to locate and identify the file STORIES.TXT in the
[MCNALLY] directory, on device VAMP, located on node DRACUL.

Figure 3-3 shows the relationship between the parts of the previous file
specification.

3.1.1 Looking at Nodes
When computer systems are linked together, they form a network. Each
system in the network is called a node and is identified within the network
by a unique node name. Your system may or may not be part of a larger
network. For detailed information about networks and nodes, see the VMS
Networking Manual.

If your system is a network node, you may be able to gain access to a file
located at another node on the network by adding a node specification to the
first part of the file specification. (This specification allows you access to the
file only if the user owning the file has permitted other users access to it.)

For example, to access a file named ZAP.LIS, which is listed in the
[LAWRENCE] directory, stored on device DEVO on node LOTUS, enter
the following command string:

$ TYPE LOTUS: :DEVO: [LAWRENCE]ZAP.LIS

Understanding Directory Structure
3.1 Dissecting a Complete File Specification

Figure 3-1 Relationship Between Parts of Full File Specification

ZK-1622-84

Figure 3-2 Full File Specification

$ COPY ~
—FROM: DRACUL::VAMP:[MCNALLY]STORIES.TXT;7

node device directory filename file type version

ZK-1626-84

Understanding Directory Structure
3.1 Dissecting a Complete File Specification

Figure 3-3 Relationship Between Parts of
DRACU L::VAM P:[MCNALLY]STORI ES.TXT

Z K-1621-84

Figure 3-4 shows the relationship between the parts of the previous file
specification.

If you do not specify a node, the system assumes by default that the file
belongs to your own, or local, node.

You should use network defaults when possible. For example, when you
access a file on your local node, you do not need to specify the node name.
By not specifying the node name, you avoid the unnecessary overhead of
invoked network routines.

Understanding Directory Structure
3.1 Dissecting a Complete File Specification

Figure 3-4 Relationship Between Parts of
LOTUS:: DEVO: [LAWR E NC E]ZAP. LI S

ZK-1620-84

3.1.2 Looking at Devices
The second part of a file specification, the device name, identifies the physical
device on which a file is stored. Tapes and disks are examples of devices. A
device name has the following three parts:

• The device type, which identifies the hardware device (for example, an
RP06 disk is DB and a TE 16 magnetic tape is MT).

• A controller designator, which identifies the hardware controller to which
the device is attached

• The unit number, which uniquely identifies a device on a particular
controller

3-4

Understanding Directory Structure
3.1 Dissecting a Complete File Specification

Several examples of device names follow:

Name Device

DBA2 RP06 disk on controller A, unit 2

MTAO TE16 magnetic tape on controller A, unit 0

TTB3 Terminal on controller B, unit 3

You may notice that your device names are words instead of four-digit codes.
These words are logical names. Logical names are character strings used to
refer to files or devices. (For additional information about logical names, see
Sections 3.2.1 and 4.6.)

If you enter the DCL command SHOW DEFAULT and see your default device
displayed like the following example, you know that your system manager
has set up logical names to indicate the devices available to you:

$ SHOW DEFAULT
BOOKi : [MYRON]

In this example, the logical device name is BOOK 1.

You can use logical names when referring to files to avoid typing long file and
device names. If you specify a file using a logical device name, you can access
the file regardless of which physical device holds the disk or tape containing
your file. Your system manager ensures that the logical device names are
always equated to the correct physical devices.

If you want to access a file located on the same node as your own but stored
on a different device, you must specify the device name as part of the file
specification. (When you use a logical name in a file specification, you must
end the logical name with a colon.) The following example shows how to
access a file named TREES.DAT, which is stored on a magnetic tape Iabeied
TAPE 1:

$ TYPE TAPEI:TREES.DAT

You do not need to specify a node name in the previous command string
because the file TREES.DAT is located on your own node.

If you omit a device name from a file specification, the system supplies the
default value; that is, it assumes the file is on the disk assigned to you when
the system manager set up your account. This disk is your default disk.

To list all the devices on the system, enter the SHOW DEVICES command.

3.1.3 Looking at Directories
Since a disk can contain files belonging to many different users, each user of
a given disk has a directory that catalogs all of that user's files on the disk. A
directory is a file that catalogs other files. A directory file contains the names
and locations of files in a format that the system understands.

Figure 3-5 shows a disk (TEACHERS 1) containing a List of five directories (for
users LAWRENCE, STARCK, MARSTON, BARKER, and MAYMON) and the
files listed in the [MARSTON] directory.

Understanding Directory Structure
3.1 Dissecting a Complete File Specification

Figure 3-5 Files in [MARSTON] Directory

disk

directory

files

TEACHERSI:

SCIENCE.TXT

MATH.TXT

HISTORY.TXT

ENGLISH.TXT

TEACHER.LIS

CHINESE.TXT

ZK-1628-84

To access the file SCIENCE.TXT, you would enter the following command
string:

$ TYPE TEACHERSi:[MARSTON]SCIENCE.TXT

As with the default disk, if you do not specify another directory, or if you
do not specify any directory, the system applies the default; it assumes the
files to which you refer are cataloged in your default directory. You can find
out what your current default disk and directory are by entering the SHOW
DEFAULT command, as follows:

$ SHOW DEFAULT

TEACHERSI:[MALCOLM]

The system's response to the SHOW DEFAULT command indicates the user's
default device is TEACHERSI, and the default directory is [MALCOLM].

To gain access to files in other directories (including directories that
catalog files belonging to other users), specify the directory name in a
file specification. For example, to display the contents of a file named
CONTENTS.DAT belonging to a user whose directory is [JONES], enter
the TYPE command, as follows:

$ TYPE [JONES]CONTENTS.DAT RET

Understanding Directory Structure
3.1 Dissecting a Complete File Specification

Note that the file specification does not include a device name. For the TYPE
command to execute successfully, the directory [JONES] must be on your
default disk device. This is because the system always applies a default
when you omit a device name. If user JONES's directory is on the disk
RESEARCH3, you would enter the TYPE command as follows:

3.1.4

$ TYPE RESEARCH3: [JONES]CONTENTS.DAT RET

In both of these examples, it is assumed that user JONES has given other
users access to files in the directory. You can explicitly allow or restrict access
to your own files, either generally or on a file-by-file basis, with the SET
PROTECTION command. See the VMS DCL Dictionary for more information
about directory and file protection and for a detailed description of the SET
PROTECTION command.

Looking at Subdirectories
Files can also be cataloged in subdirectories. A subdirectory is a file (cataloged
in a higher level directory) that contains additional files.

Figure 3-6 shows a directory [BENTLY] containing one subdirectory
[BENTLY.PRIVATE]:

Figure 3-6 Files in [BENTLY.PRIVATE] Subdirectory

[BENTLY]

MEMO.DAT

NAMES.LIS

IMAGE.EXE

PRIVATE.DIR

[BENTLY.PRIVATE]

WILL.TXT

TAXES.DAT

LETTERS.TXT

Z K-1625-84

A subdirectory name is formed by concatenating (or joining) its name to the
name of the directory that lists it and separating the names with a period.
The following TYPE command requests a display of the file MEMO.SUM,
which is cataloged in the subdirectory [JONES.DATAFILES]. The subdirectory
file name is DATAFILES.DIR and is cataloged in the directory [JONES]:

$ TYPE [JONES.DATAFILES]MEMO.SUM

Use subdirectories to organize and separate your files.

Understanding Directory Structure
3.1 Dissecting a Complete File Specification

3.1.4.1 Creating Subdirectories
Normally, the system manager provides each system user with one directory
in which to maintain files. If you are a frequent user of the system and
work with several applications, you may find it convenient to create several
subdirectories, which are cataloged in your main directory. You can create
subdirectories in any directory in which you can create files.

Use the CREATE/DIRECTORY command to create a subdirectory. The
following command creates the subdirectory file TESTFILES.DIR in
the directory [MALCOLM], resulting in a subdirectory with the name
[MALCOLM.TESTFILES]:

$ CREATE/DIRECTORY [MALCOLM.TESTFILES]

You can specify the subdirectory name [MALCOLM.TESTFILES] in commands
or programs.

3.1.4.2 Changing Your Default Directory
To create a file in a subdirectory, you must be located at that directory,
making it your new default directory. To change your default directory, use
the SET DEFAULT command. The following example shows how to create
a file in the subdirectory [MALCOLM.TESTFILES] by changing your default
directory and then creating the file with the EDIT command:

$ SET DEFAULT [MALCOLM.TESTFILES]
$ EDIT NEWFILE.TXT
Input file does not exist
[EOB]

The new file is cataloged in the subdirectory [MALCOLM.TESTFILES].

You can also use the SET DEFAULT command to change your default disk.
The following example shows how to specify PILOT as your default disk:

$ SET DEFAULT PILOT:

After you enter this command, the system uses the disk PILOT as the default
disk for all files that you access or create.

You can change your default disk and directory as often as is convenient. The
changes you make with the SET DEFAULT command remain in effect until
you enter another SET DEFAULT command or log out of the system.

3.2 Using Logical Names
A

logical

name is a name equated to an equivalence string or to a list of
equivalence strings. An equivalence string can be any group of characters.
Most often, an equivalence string is a file specification, a device name, or
another logical name. You use logical names for the following purposes:

• To reduce typing by using logical names as a short way of specifying files
or directories you refer to frequently

• To avoid confusion about the location of volumes

• To keep your programs and command procedures independent of
physical file specifications

Understanding Directory Structure
3.2 Using Logical Names

You can use either the DEFINE command or the ASSIGN command to create
a logical name by associating it with another name, the equivalence name.
(The DEFINE and ASSIGN commands require different syntax. This chapter
shows logical names with the DEFINE command. For information about the
ASSIGN command, see the VMS DCL Dictionary.)

The following command assigns the logical name ZAP to the file specification
DRACUL::DOC1:[MALVOLIO]ZAPISTS.DAT;21:

$ DEFINE ZAP DRACUL::DOC1:[MALVOLIO]ZAPISTS.DAT;21

After you have entered this command string, you can use the logical name
ZAP in place of the longer file specification. The following command displays
the contents of the file:

$ TYPE ZAP

3.2.1 How to Use Logical Names
You can use the following syntax to assign a logical name:

$ DEFINE logical-name equivalence-name

Figure 3-7 assigns the logical name INFO to a file named
INFORMATION.DAT, which is located in a directory named [HANSCOM]:

Figure 3-7 Assigning a Logical Name

$ DEFINE INFO [HANSCOM]lNFORMATION.DAT

A

establishes the
correspondence k~etween
the equivalence name
and the logical name

logical name equivalence name
(actual file name)

ZK-1624-84

When you want to access the file INFORMATION.DAT (in the [HANSCOM]
directory), you can use the logical name INFO. To display the file, enter the
following command:

$ TYPE INFO

Understanding Directory Structure
3.2 Using Logical Names

When you create a logical name, it is maintained in a logical name table.
A logical name table contains a set of logical names and their equivalence
names. For detailed information about logical name tables, see the VMS DCL
Dictionary.

You can use the SHOW LOGICAL command to display a logical name and
its equivalence name. For example, to display the logical name HOME, you
would enter the following command:

$ SHOW LOGICAL HOME

The system searches the logical name tables for the logical name HOME.
If it finds an entry, it displays the logical name and its equivalence name,
and identifies the logical name table in which it found the logical name. In
this example, the logical name HOME occurs in the process logical name
table with the equivalence name of BOOK2:[JACK]. The system displays the
following information:

"HOME" [SUPER] _ "BOOK2 : [JACK] " (LNM$PROCESS_TABLE)

The following example shows how the DEFINE command equates the logical
name MYFILE to the file PERSONNEL.REC listed in the directory CHUCK.
To display this file on the terminal, enter the TYPE command, as follows:

$ DEFINE MYFILE [CHUCK)PERSONNEL.REC
$ TYPE MYFILE

A logical name can also define the first portion of a file specification.
The following example shows how the DEFINE command
equates the logical name TEST to the disk, device, and directory
SCIENCE4:[MALCOLM.TESTFILES]. Subsequently, the RUN command
executes the program image MEMO.EXE cataloged in this subdirectory, and
the PRINT command prints another file:

$ DEFINE TEST SCIENCE4:[MALCOLM.TESTFILES]
$ RUN TEST:MEMO
$ PRINT TEST:MEMO.LIS

The system always examines file specifications to see if the portion of the file
specification that precedes the colon (:) is a logical name; if it is (as in this
example), the system substitutes the equivalence name.

3.2.2 System Default Logical Names
When you log in to the system or submit a batch job, the system provides
several default logical names. These names are used by the command
interpreter to read your commands and to print responses or error messages.

Most system default logical names have the following format:

~ocx$name

The three-character prefix, xxx, identifies the system component that uses the
logical name. The use of a dollar sign ($)within logical names is reserved
for DIGITAL.

Understanding Directory Structure
3.2 Using Logical Names

Several system default logical names follow:

Name Use

SYS$COMMAND The default device name of your terminal.

SYS$INPUT The default input stream from which the system reads
commands and your programs read data. The default
interactive assignment for SYS$INPUT is your terminal. The
default batch assignment for SYS$INPUT is the command
procedure or batch stream.

SYS$OUTPUT The default output stream to which the system writes
responses to commands and your programs write data.
The default interactive assignment for SYS$OUTPUT is your
terminal. The default batch assignment for SYS$OUTPUT is
the batch job log file.

SYS$ERROR The default device to which the system writes all error
and informational messages. The default interactive
assignment for SYS$ERROR is your terminal. The default
batch assignment for SYS$ERROR is the batch job log file.

SYS$DISK Your default disk device. The default assignment is initially
set in your User Authorization File ~UAF) and can be changed
with the DCL command SET DEFAULT.

Enter the following command to find out the equivalence names for these and
other logical names created for your process:

$ SHOW LOGICAL

You may want to redefine SYS$OUTPUT to redirect output from your default
device to a file. For example, if you want a hard copy of an online HELP file,
you can assign an equivalence name (for example,
HELP_LOGICAL ~XAMPLES.DAT) to the logical name SYS$OUTPUT,
rechanneling output from your terminal to a file. Then, as you enter DCL
commands interactively, the output goes to the specified file (equivalence
name). To return output back to your terminal (away from the file), enter the
DEASSIGN command. The following example demonstrates how to make
a hard copy of the online HELP examples for the DCL command SHOW
LOGICAL:

$ DEFINE SYS$OUTPUT HELP_LOGICAL_EXAMPLES.DAT
$ HELP SHOW LOGICAL EXAMPLES

Topic?
$ DEASSIGN SYS$OUTPUT
$ PRINT HELP_LOGICAL_EXAMPLES.DAT

RET

If you want to capture the output from only one DCL command, use the
/USER~ViODE qualifier, as follows:

$ DEFINE/USER_MODE SYS$OUTPUT HELP_LOGICAL_EXAMPLES.DAT

$ HELP SHOW LOGICAL EXAMPLES

Topic?
$ PRINT HELP_LOGICAL_EXAMPLES.DAT

RET

When you use the /USER~ViODE qualifier, you do not need to enter the
DEASSIGN command to return the output back to your terminal. (For more
detailed information, see the description of the DEFINE command in the VMS
DCL Dictionary.)

3-11

Understanding Directory Structure
3.2 Using Logical Names

You can also use logical names in programs. For example, if you code a
program to write a file to a device named SYS$OUTPUT, the output file goes
to your terminal if you execute the program interactively, or to the batch job
log file if you execute the program in a batch job.

3-12

4 Program Development

This chapter describes the following four steps required to develop a program
in the VMS environment:

• Creating the program file

• Compiling or assembling the source program file to produce an object
module file

• Linking the object module file to produce an image

• Executing and debugging the program

4.1 Creating the Program
To run your program, you must first create a file of the program source
statements. Use a text editor to create the program. The default editor for
VMS is EDT. To invoke the EDT editor, enter the DCL command EDIT.
The Guide to VMS Text Processing describes how to use EDT. For complete
descriptions of all available EDT commands, see the VAX EDT Reference
Manual.

The default file type of the source program corresponds to the language in
which the program is written. For instance, if your program is written in VAX
BASIC, its file type default is BAS. Table 4-1 lists the default file types for
source program files written in several VAX languages:

Table 4-1 Default File Types for Source Program Files

File Type Input Source File for:

BAS VAX BASIC compiler

B32 VAX BLISS-32 compiler

C VAX C compiler

COB VAX COBOL compiler

COR VAX CORAL-66 compiler

FOR VAX FORTRAN compiler

MAR VAX MACRO assembler

PAS VAX Pascal compiler

PLI VAX PL/I compiler

4.2 Compiling or Assembling the Program
To prepare your source program for execution by the computer, a language
processor must translate it into a format the computer can read. That is, your
program must be either assembled or compiled, depending upon whether it is

4-1

Program Development
4.2 Compiling or Assembling the Program

written in assembly language or in one of the high-level languages supported
by vMs.

Both compilers and assemblers are programs that translate source programs
into binary machine code that can be interpreted by the computer. An
assembly language is usually designed for a specific computer, and it
generally assembles each line of source code into a line of machine code.
Most high-level languages, on the other hand, are designed to be universal
and usually compile one line of source code into several lines of machine
code. If your source program is written in assembly language (in this case,
VAX MACRO), you invoke the VAX MACRO assembler to translate it. If it
is written in a high-level language (such as BASIC, C, COBOL, FORTRAN,
Pascal, or PL/I), you invoke the appropriate VAX language compilers to
compile the program.

Table 4-2 lists the DCL commands you use to invoke various language
processors.

Table 4-2 DCL Commands to Invoke Language Processors

Command Language Processor Invoked

BASIC VAX BASIC compiler

BLISS VAX BLISS-32 compiler

CC VAX C compiler

COBOL VAX COBOL compiler

CORAL VAX CORAL-66 compiler

FORTRAN VAX FORTRAN compiler

MACRO VAX MACRO assembler

PASCAL VAX Pascal compiler

PLI VAX PL/I compiler

Each of these commands invokes a compiler (or assembler) to translate the
source program named in the file that follows the command. Although each
command differs slightly in its parameters and qualifiers, the command format
is essentially the same:

$ FORTR,AN MYFILE

This command invokes the FORTRAN compiler to translate the file MYFILE
into machine code, writing it to an output file called an object module. Since
no file type is specified, the compiler assumes the default file type of FOR.

4.3 Linking the Object Module
An object module is not executable; generally, it contains references to other
programs or routines that must be combined with the object module before it
can be executed. It is the function of the linker to do the combining.

The LINK command invokes the VAX Linker. (For detailed information about
the VAX Linker, see the VMS Linker Utility Manual.) The linker searches
system libraries to resolve references to routines or symbols that are not
defined within the object modules it is linking. You can request the linker to
include more than one object module as input, or specify your own libraries

4-2

Program Development
4.3 Linking the Object Module

of object modules for it to search. Following is the format of the LINK
command:

$ LINK MYFILE

Since no file type is specified, the linker supplies a default file type of OBJ for
object modules.

The linker creates an image, which is a file containing your program in an
executable format. An image file has a default file type of EXE.

4.4 Executing the Program
The RUN command executes an image; that is, it places the image created by
the linker into memory so that it can run. Following is the format of the RUN
command:

$ RUN MYFILE

Since no file type is specified, the RUN command uses the default file type
EXE for executable images.

The first time you run a program, it may not execute properly; if it has a bug
or programming error, you may be able to determine the cause of the error
by examining the output from the program. When you have determined the
cause of the error, correct your source program, and repeat the compile, link,
and run steps to test the result. Figure 4-1 illustrates these steps in program
development.

Figure 4-2 lists the four steps you follow to develop a program using the
BASIC language processor. (The name of the file containing the program is
PROG.BAS.)

4.5 Looking at Sample Programs
The following sections illustrate the steps of program development with three
sample programs: a BASIC example for novice users, a MACRO example for
assembly language users, and a FORTRAN example for high-level language
users. These sections describe the input and output files used in each step and
the naming conventions for the files. They also present optional command
qualifiers you can use to create additional output files, including program
listings.

Program Development
4.5 Looking at Sample Programs

Figure 4-1 Program Development

Use the editor to create
a disk file containing your
source program statements.
Specify the name of this file
when you invoke the compiler
or assembler.

Commands invoke language
processors that check syntax,
create object modules, and
if requested, generate
program listings.

If a processor signals any
errors, use the editor to
correct the source program.

The linker searches the system
libraries to resolve references
in the object module and create
an executable image. Optionally,
you can specify private libraries
to search, and request the linker
to create a storage map of
your program.

The linker issues diagnostic
messages if an object module
refers to subroutines or symbols
that are not available or
undefined. If the linker cannot
locate a subroutine, you must
reissue the L/NK command
specifying the modules or
libraries to include. If a
symbol is undefined, you may
need to correct the source program.

The RUN command executes a
program image. While your
program is running, the system
may detect errors and issue
messages. To determine if your
program is error-free, check
its output.

If there is a bug in your
program, determine the cause
of the error and correct the
source program.

Source
program

Compiler
or

Assembler

no

yes

Link the
object module

no

Run the
executable

image

no

SUCCESS

yes

Correct the
source program

ZK-763-82

4-4

Program Development
4.5 Looking at Sample Programs

Figure 4-2 Four Steps in Program Development

What You Do Command Line
You Enter

Input File
You Supply

Resulting
Output File

Create a source
program file $EDIT PROG.BAS PROG.BAS PROG.BAS

Compile the source
program to produce
an object module file

$BASIC PROG.BAS PROG.BAS PROG.OBJ

Link the object
module file to
produce an image

$LINK PROG.OBJ PROG.OBJ PROG.EXE

Run the executable
image $RUN PROG.EXE PROG.EXE _

ZK-6372-HC

4.5.1 An Introductory BASIC Program
The following section describes four steps you would perform to develop a
BASIC program that adds three integers:

1 Use an editor to create a file named ADD.BAS containing the following
six lines:

10 INPUT "What is the first integer" ; B
20 INPUT "What is the second integer" ;C
30 INPUT "What is the third integer" ;D
40 A = B + C + D
50 PRINT "Their sum is" ;A
60 END

2 Compile the source program file (ADD.BAS) using the following
command to produce an object module file (ADD.OBJ):

$ BASIC ADD.BAS

3 Link the object module file (ADD.OBJ) using the following command to
produce an image file (ADD.EXE):

$ LINK ADD.OBJ

4 Run the executable image using the following command:

$ RUN ADD.EXE

When you enter the RUN command, the ADD program prompts you for three
integers and gives you their sum.

Program Development
4.5 Looking at Sample Programs

4.5.2 A FORTRAN Program

The steps required to prepare a VAX FORTRAN program to run on VMS are
illustrated in Figure 4-3. Figure 4-3 also notes the default file types used by
the FORTRAN, LINK, and RUN commands. For any of these commands, you
can specify an explicit file type to override the defaults when you name an
input or output file.

Note: The VAX FORTRAN compiler is referred to as FORTRAN throughout
this manual.

Figure 4-3 Commands for FORTRAN Program Development

COMMANDS

$ EDIT/EDT AVERAGE.FOR
Use the file type of FOR to
indicate the file contains a
VAX FORTRAN
program.

$ FORTRAN AVERAGE
The FORTRAN command

assumes the file type of an

input file is FOR.

(If you use the /LIST
qualifier, the compiler
creates a listing file.)

$ LINK AVERAGE
The LINK command assumes

the file type of an input file

is OBJ.

(If you use the /MAP qualifier,
the linker creates a map file.)

$ RUN AVERAGE
The RUN command assumes
the file type of an image is
EXE.

Create a
source program

Compile the
source program

Link the
object module

Run the
executable

image

INPUT/OUTPUT FILES

AVERAGE.FOR

AVERAGE.OBJ
(AVERAGE.LIS)

libraries

AVERAGE.EXE
(AV E RAG E.MAP)

ZK-764-82

Program Development
4.5 Looking at Sample Programs

4.5.2.1 Creating the Source Program
Use an editor to create a source program interactively. For example, to create
the FORTRAN program called AVERAGE, enter the DCL command EDIT.
The following EDIT command invokes EDT, which is the default editor for
VMS:

$ EDIT AVERAGE.FOR

The program AVERAGE follows. This program includes a syntax error and
a bug to show you how to use VMS to debug a program. When you type
the input statements, you can use the TAB key to align the statement and
comments columns.

PROGRAM AVERAGE

C COMPUTES THE AVERAGE OF NUMBERS ENTERED AT TERMINAL
C TO TERMINATE THE PROGRAM, ENTER 9999

TOTAL = 0
N = 0

INITIALIZE ACCUMULATOR
INITIALIZE COUNTER

5 N = N + 1
WRITE (6,10) ! PROMPT TO ENTER NUMBER

10 FORMAT (' ENTER NUMBER, END WITH 9999')
READ (5,20) K ! READ NUMBER FROM TERMINAL

20 FORMAT I10
IF (K .EQ. 9999) GOTO 40 ! 9999 MEANS NO MORE INPUT
TOTAL =TOTAL + K ! COMPUTE TOTAL WITH NUMBER
GOTO 5

C NOW, COMPUTE AVERAGE BY DIVIDING TOTAL BY THE NUMBER OF
C TIMES THROUGH THE LOOP

40 AVERAG =TOTAL/N
WRITE (6,50) AVERAG ! DISPLAY THE RESULT

50 FORMAT (' AVERAGE IS ',F10.2)

STOP
END

When properly debugged, the program AVERAGE reads and writes lines to
the current input and output devices; it prompts you to enter numbers and
then computes the average of the numbers entered.

4.5.2.2 Compiling the Source Program
When you enter the FORTRAN command from the terminal, the FORTRAN
compiler does the following by default:

• Produces an object module that has the same file name as the source file
and a file type of OBJ

• Uses FORTRAN compiler defaults when it creates the output files
(qualifiers in the FORTRAN command string can override these defaults)

To compile the source program AVERAGE, enter the following command:

$ FORTRAN AVERAGE

Since the FORTRAN command assumes a file type of FOR, you do not need
to specify the file type when you name the file to be compiled.

Program Development
4.5 Looking at Sample Programs

If the compilation is successful (that is, if the compiler did not detect any
errors) the system displays the DCL prompt for the next command as follows:

If there are any errors, the FORTRAN compiler displays them on the terminal.
If you entered the source program AVERAGE exactly as it appeared in
Section 4.5.2.1, you received the following messages:

%FORT-F-ERROR 33, Missing operator or delimiter symbol
[FORMAT I] in module AVERAGE at line 15

%FORT-F-ENDNOOBJ, TEST2:[MALCOLM]AVERAGE.FOR;1,
completed with idiagnostic-object deleted

These fatal error messages indicate the FORMAT statement was incorrectly
coded; you must put parentheses around the format specification.

To correct the error, edit the following line in the source file:

20 FORMAT I10

The corrected line, which contains parentheses, follows:

20 FORMAT (I10)

Now you can recompile the program using the following command:

$ FORTRAN AVERAGE

By default, the FORTRAN command always uses the version of the file with
the highest version number. If the program compiles successfully this time,
you can go on to the next step. Otherwise, repeat the procedure of correcting
the source file and compiling it.

When .you compile a source program, use the /LIST qualifier with the
FORTRAN command to request the compiler to create a program Listing, as in
the following example:

$ FORTRAN/LIST AVERAGE

In addition to an object module, the FORTRAN compiler creates a file named
AVERAGE.LIS. To obtain a printed copy of the program, use the PRINT
command, as follows:

$ PRINT AVERAGE

The PRINT command uses the default file type of LIS.

4.5.2.3 Linking the Object Module
To link the program AVERAGE, enter the LINK command, as follows:

$ LINK AVERAGE

This LINK command creates a file named AVERAGE.EXE, which is an
executable program image. The linker automatically includes in the
executable image any library routines the compiler requested for input/output
handling and error routines.

Program Development
4.5 Looking at Sample Programs

4.5.2.4 Running the Program
To execute the program AVERAGE, use the RUN command. When you
enter the RUN command, you provide the name of an executable image.
By default, the RUN command assumes a file type of EXE. Thus, to run the
program AVERAGE, type the RUN command as follows:

$ RUN AVERAGE

AVERAGE is interactive; it prompts you to continue entering numbers and
keeps a cumulative sum of the numbers you enter. When you enter 9999, it
computes the average of all the numbers you entered. Atypical run of this
program might appear as follows:

ENTER NUMBER, END WITH 9999
33
ENTER NUMBER, END WITH 9999
66
ENTER NUMBER; END WITH 9999
99
ENTER NUMBER, END WITH 9999
9999
AVERAGE IS 49.50
FORTRAN STOP

RET

RET

RET

RET

As you can see, the program is not computing the average correctly. By
looking at the program listing, you can see that the error occurs because
the loop counter (N) is incremented a final time when you enter 9999 to
terminate entering numbers. The value N must be decremented by 1.

To correct the error, edit the following line in the source file:

40 AVERAG = TOTAL/N

The corrected line follows:

AVERAG = TOTAL/(N-1)

Now repeat the compile, link, and run steps:

$ FORTRAN AVERAGE
$ LINK AVERAGE
$ RUN AVERAGE
ENTER NUMBER, END WITH 9999
33
ENTER NUMBER, END WITH 9999
66
ENTER NUMBER; END WITH 9999
99
ENTER NUMBER, END WITH 9999
9999
AVERAGE IS 66.00
FORTRAN STOP

In this example, the bug was easy to spot. This is not usually the case,
however, and you may need to investigate a program further to debug it.

Program Development
4.5 Looking at Sample Programs

4.5.2.5 Debugging the Program
The VMS operating system has a debugger, which is a program that permits
you to find and correct errors in your programs interactively. When you want
to use the debugger, you must first compile the source program with the
/DEBUG and /NOOPTIMIZE qualifiers, as follows:

$ FORTRAN/DEBUG/NOOPTIMIZE AVERAGE

The /NOOPTIMIZE qualifier prevents the debugger from rearranging your
source code.

When the compilation completes, use the /DEBUG qualifier when you link
the object module, as follows:

$ LINK/DEBUG AVERAGE

Now when you use the RUN command to execute the program image
AVERAGE.EXE, the debugger takes control, and you can use debugging
commands to stop the execution of the program at a particular statement to
examine or modify a variable.

For online information about the debugger, enter the HELP command at the
debugger prompt, as follows:

DBG>HELP

For detailed information about the debugger, see the VMS Debugger Manual.

4.5.3 A MACRO Program
The steps required to prepare a VAX MACRO program to run with VMS are
illustrated in Figure 4-4. Figure 4-4 also notes the default file types used by
the MACRO, LINK, and RUN commands. For any of these commands, you
can specify an explicit file type to override the default when you name an
input or output file.

Note: The VAX MACRO assembler is referred to as MACRO throughout this
manual.

4.5.3.1 Creating the Source Program
Use an editor to create a source program interactively. For example, to create
the MACRO program called NAME, you can enter the DCL command EDIT.
The following EDIT command invokes EDT, which is the default editor for
VMS:

$ EDIT NAME.MAR

The program NAME is shown below Figure 4-4. When you type the input
statements, you can use the TAB key to align the operand and comments
columns.

The program uses VMS RMS to read and write lines to the current terminal;
it issues a prompting message asking for the user's name and redisplays
whatever is entered in response. The program NAME includes a syntax error
and a bug to show you how to use VMS to correct programming errors.

4-10

Program Development
4.5 Looking at Sample Programs

Figure 4-4 Commands for MACRO Program Development

COMMANDS

$ EDIT/EDT NAM E. MAR
Use the file type of MAR to
indicate the source file
contains a VAX MACRO
program.

$ MACRO NAME
The MACRO command
assumes the file type of an
input file is MAR.

If you use the /LIST
qualifier, the assembler
creates a listing file.

$ LINK NAM E
The LINK command assumes
the file type of an input file
i s OBJ.

If you use the /MAP qualifier,
the I i n ker creates a map file.

$ RUN NAME
The RUN command assumes
the file type of an image is
EXE.

Create the
source program

Assemble the
source program

Link the
object module

Run the
executa bl e

image

INPUT/OUTPUT FILES

NAM E.MA R

libraries

NAM E.OBJ
(NAM E.LIS)

libraries

NAME.EXE
(NAME.MAP)

ZK-765-82

A Sample Program: NAME

.TITLE NAME

.IDENT /O1/

.PSECT RWDATA,WRT,NOEXE

DEFINE CONTROL BLOCKS FOR TERMINAL INPUT AND OUTPUT

TRMFAB: $FAB FNM=TT:,R.AT=CR,FAC=<GET,PUT> ;FAB FOR TERMINAL

TRMRAB: $RAB FAB=TRMFAB,UBF=BUFFER,USZ=BUFSIZ, -

ROP=PMT, PBF=PMSG1, PSZ=PISIZ

BUFFER: .BLKB 132 INPUT READ BUFFER

BUFSIZ= .-BUFFER BUFFER LENGTH

Program Development
4.5 Looking at Sample Programs

PMSG1: .ASCII /ENTER YOUR NAME: PROMPT MESSAGE
P1SIZ= .-PMSG1 MESSAGE SIZE

OUTMSG: .ASCII /HELLO, YOUR NAME IS/ OUTPUT MESSAGE
OUTBUF: .BLKB 30 MOVE NAME HERE
OUTLEN: .LONG OUTBUF-OUTMSG
MSGSIZ: .BLKL i ADD LENGTHS HERE

.PSECT NAME,EXE,NOWRT

.ENTRY BEGIN,O ENTRY MASK

$OPEN FAB=TRMFAB OPEN TERMINAL FILE
BLBC RO,ERROR EXIT IF ERROR
$CONNECT RAB=TRMRAB ESTABLISH RAB
BLBC RO,ERROR EXIT IF ERROR

$GET RAB=TRMRAB ISSUE PROMPT
BLBC RO,ERROR EXIT IF ERROR

MOVE NAME ENTERED INTO OUTPUT MESSAGE, AND FIX UP LENGTH

MOVC3 TRMRAB+RAB$W_RSZ,BUFFER,OUTBUF
MOVZWL TRMRAB+RAB$W_RSZ,MSGSIZ
ADDL MSGSIZ,OUTLEN

AFTER CONSTRUCTING OUTPUT MESSAGE, OUTPUT IT

MOVAL OUTMSG,TRMRAB+RAB$L_RBF UPDATE RAB: ADDRESS
MOVW MSGSIZ,TRMRAB+RAB$W_RSZ UPDATE RAB: SIZE
$PUT RAB=TRMRAB
BLBC RO,ERROR EXIT IF ERROR

ALL DONE, CLOSE THE FILE

$CLOSE FAB=TRMFAB

ERROR:

RET
.END BEGIN

4.5.3.2 Assembling the MACRO Source Program
When you enter the MACRO command, the MACRO assembler does the
following by default:

1 Produces an object module that has the same file name as the source file
and a file type of OBj

2 Uses MACRO assembler defaults when it creates output files (qualifiers
on the command string can override these defaults)

3 Searches the system macro library for definitions for system macros, such
as the VMS RMS macros $FAB and $RAB used in the sample program
NAME.MAR

To assemble the source program NAME, enter the following command:

$ MACRO/LIST NAME

Since the MACRO command assumes a file type of MAR, you do not need
to specify the file type when you name the file to be assembled. The /LIST
qualifier indicates that you want a listing of the program; if there are any
errors in the assembly, you may need the listing to determine the errors.

If the assembly is successful (that is, if the assembler did not detect any
errors), the system displays the DCL prompt ($).

f~

Program Development
4.5 Looking at Sample Programs

If errors occur, a message is displayed at the terminal. If you entered the
source program NAME exactly as it appeared in Section 4.5.3.1, you received
the following error message:

45 47 41 53 53 45 40 20 54 50 0130
%MACRO-E-UNTERMARG, Unterminated argument
There were 1 error, 0 warnings , and 0 inf ormation messages on lines
15(1)

MACRO/LIST NAME

This message indicates the ASCII string argument coded on line 15 is
incorrect; you must terminate the string with a slash (/)character.

To correct the error, edit the following line in the source file:

PMSG1: .ASCII /ENTER YOUR NAME: PROMPT MESSAGE

The corrected line, which contains the slash character, follows:

PMSG1: .ASCII /ENTER YOUR NAME:/ PROMPT MESSAGE

Now reassemble the program by entering the following command string:

$ MACRO/LIST NAME

If the program assembles successfully, go on to the next step. Otherwise,
repeat the procedure of looking at the listing, correcting the source file, and
assembling it.

4.5.3.3 Linking the Object Module
To link the program NAME, enter the LINK command as follows:

$ LINK NAME

The LINK command creates a file named NAME.EXE, which is an executable
program image. The linker automatically includes in the executable image
any library procedures required by the VMS RMS routines used.

4.5.3.4 Running the Program
To execute the program NAME, use the RUN command. When you enter the
RUN command, you provide the name of an executable image. By default,
the RUN command assumes a file type of EXE. Thus, to run the program
NAME, type the RUN command, as follows:

$ RUN NAME

NAME is interactive; it prompts you to enter your name, then creates an
output string from the string you entered and outputs it. Atypical run of this
program might appear as follows:

ENTER YOUR NAME: YORICK
HELLO,

The program is writing only the first 6 characters of the output message. If
you examine the listing, you can see that on line 43 the MOVW instruction
places the wrong length in the buffer size field of the RAB; it uses the
MSGSIZ field (that is, the length of the string you entered) rather than the
sum of the string you entered and the OUTMSG string.

To correct the error, edit the source file again using the following commands:

$ EDIT NAME.MAR

4-13

Program Development
4.5 Looking at Sample Programs

Edit the following line in the source file

MOVW MSGSIZ, TRMRAB+R.AB$W_RSZ; UPDATE RAB: SIZE

The corrected line follows:

MOVW OUTLEN, TRMRAB+RAB$W_RSZ; UPDATE RAB:SIZE

Now repeat the assembling, linking, and running using the following
commands:

$ MACRO NAME
$ LINK NAME
$ RUN NAME
ENTER YOUR NAME: YORICK
HELLO, YOUR NAME IS YORICK

In this example, the bug was easy to spot. This is not always the case,
however, and you may need to investigate a program further to debug it.

4.5.3.5 Debugging the Program
The VMS operating system has a debugger, a program that permits you to
debug your programs interactively. When you want to use the debugger,
assemble the source program with the /ENABLE=DEBUG qualifier, as
follows:

$ MACRO/ENABLE=DEBUG NAME

This qualifier requests the assembler to include, in the object module, special
information the debugger can use. When you link the object module you
must specify the /DEBUG qualifier to link the debugger program with your
program, as the following command string shows:

$ LINK/DEBUG NAME

Now when you use the RUN command to execute the program image
NAME.EXE, the debugger takes control, and you can use debugging
commands to stop the execution of the program at a particular instruction
to examine or modify a variable.

For information on how to use the debugger, see the VMS Debugger Manual.

Using Logical Names for Programming Needs
This section discusses how to make a program more efficient by using logical
names.

When you design programs to read and write data, you can code the
programs to read or write different files each time you run them. This is
called device and file independence. In the VMS operating system, device
independence is accomplished through the use of logical names.

When you code a program, you refer to an input or output file according to
the syntax requirements of the language you are using. After the program
is compiled and linked, but before you run it, you can use the DEFINE
command to make a connection between the logical names you used in the
program and the actual files or devices you want to use when you run the
program.

Program Development
4.6 Using Logical Names for Programming Needs

Figure 4-5 shows how logical names are used. The program FICA contains
OPEN, READ, and WRITE statements in a general form; the program reads
from a file referred to by the logical name INFILE and writes to a file referred
to by the logical name OUTFILE.

Figure 4-5 Using Logical Names

Terminal Display

$ SHOW DEFAULT
YEAR1:[WELLADAYJ

$ DEFINE INFILE JANUARY.DAT~
$ DEFINE OUTFILE JANUARY.OUT
$ RUN FICA

The program, FICA.EXE contains I/O
statements to open, read, and write
files referred to by the logical names
INFILE and OUTFILE:

OPEN 'INFILE', 'OUTFILE'

READ INFILE
WRITE OUTF I LE

$ DEFINE INFILE YEAR2:FEBRUARY.DAT ~
$ DEFINE OUTFILE YEAR2:FEBRUARY.OUT
$ RUN FICA

Disk Input/Output Files

YEAR1:

YEAR2:

ZK-766-82

For different runs of the program, the DEFINE command establishes different
equivalence names for INFILE and OUTFILE. In the first example, the
program reads the file JANUARY.DAT from the device YEAR1 and writes
to the file JANUARY.OUT on the same device. In the second example, it
reads the file FEBRUARY.DAT from the device YEAR2 and writes the file
FEBRUARY.OUT to that device.

5 Using Symbols and Command Procedures

This chapter provides information on adapting the DCL command language
to your individual needs. For example, you can:

• Establish synonyms to use in place of command names and entire
command strings

• Establish default qualifiers for commands

• Create command procedures to perform a series of DCL commands

• Submit command procedures as batch jobs

You can simplify the command language to save time during interactive
terminal sessions. You can establish your own default commands and
command qualifiers and can also create command procedures. Command
procedures enable you to execute a series of DCL commands by entering one
command.

5.1 Abbreviating DCL Commands with Symbols
When using long DCL commands on a regular basis, you can save time by
equating them to symbols. For example, you can equate the symbol ST to the
DCL command SHOW TIME:

$ ST = "SHOW TIME"

After you equate a symbol to an expression (which can be a DCL command),
the symbol assumes a new identity or value. In the previous example, the
symbol ST assumes a new identity as the DCL command SHOW TIME. Now
you can use the symbol ST in place of the DCL command SHOW TIME, as
follows:

$ ST
31-DEC-1988 10:45:19

The three parts of a symbol equation follow:

• The symbol (for example, ST)

• An equal sign (_)

• The expression (for example, "SHOW TIME")

The symbol part of the equation can be any alphanumeric string that you
provide. Follow the symbol with an equal sign (_) that assigns the value of
the expression to the symbol. You also need to supply an expression. An
expression can be either a character string (for example, the command SHOW
PROCESS) or a number (for example, 8). Enclose the expression in quotation
marks (") if it is a character string.

You can simplify the use of the DCL command SHOW USERS by equating it
to the symbol LOOK, as follows:

$ LOOK = "SHOW USERS"

5-1

Using Symbols and Command Procedures
5.1 Abbreviating DCL Commands with Symbols

Instead of typing the DCL command SHOW USERS, you can now type
the word LOOK for a listing of all the current users on the system. In this
example, LOOK is the symbol, and SHOW USERS is the expression.

You can use the DCL command SHOW SYMBOL to see the value of any
symbol you create. To see the value of the symbol LOOK, enter the following
command string:

$ SHOW SYMBOL LOOK
LOOK = "SHOW USERS"

The following example shows how to equate the symbol WEIGHT to the
arithmetic expression 125:

$ WEIGHT = 125

Notice that when equating a symbol to a number, you do not enclose the
number in quotation marks ("). (For detailed information about syntax and
grammar rules, see the VMS DCL Dictionary.)

Now the symbol WEIGHT has the value of 125. You can substitute the
symbol WEIGHT for the number 125. To see the value of the symbol
WEIGHT, enter the following command string:

$ SHOW SYMBOL WEIGHT
WEIGHT = 125 Hex = 0000007D Octal = 00000000175

Notice that the system displays the numeric value of the symbol in three
forms: decimal, hexadecimal, and octal.

You can save time by equating long command strings to symbols. For
example, a user named BERGMAN would enter the following command
string to move from a subdirectory to the main directory:

$ SET DEFAULT WORK6:[BERGMAN]

To save time, BERGMAN can equate this command string to a symbol
(HOME), as follows:

$ HOME _ "SET DEFAULT WORK6:[BERGMAN]"

To move to the main directory, the user BERGMAN only needs to type the
symbol HOME, as follows:

$ HOME

Symbols can also be defined for command strings containing qualifiers.
For example, to define a synonym for the DIRECTORY command that
automatically includes the /FULL qualifier, you can define the symbol LIST,
as follows:

$ LIST = "DIRECTORY/FULL"

If you enter the following command string, the system substitutes the
command DIRECTORY/FULL for the symbol LIST:

$ LIST MYFILE.DAT

The system executes the command string DIRECTORY/FULL MYFILE.DAT,
displaying detailed information about the files in your directory.

Using Symbols and Command Procedures
5.1 Abbreviating DCL Commands with Symbols

Some symbols must be enclosed in apostrophes (`) to identify them as
symbols to the system. When the system detects the apostrophes, it knows to
perform symbol substitution. For example, you can equate a symbol to a long
file name, as follows:

$ BEST = "3145CHAPTER_ON_SONGS_OF_1990.DAT"

To type the file, all you need to enter is the TYPE command with the symbol
name enclosed in apostrophes ('), as follows:

$ TYPE 'BEST'

See the VMS DCL Dictionary and the Guide to Llsing VMS Command Procedures
for detailed information about using apostrophes with symbols.

Symbols can be concatenated (linked) with other symbols or items on a
command string. In this case, you must enclose the symbol in apostrophes
(`) to indicate to the system that it must perform symbol substitution. For
example, you can assign the symbol PQUALS to the following qualifiers for
the PRINT command:

$ PQUALS = "/COPIES=2/FORMS=4/NOBURST"

Then, to use the symbol with the PRINT command, you must enclose it in
apostrophes, as follows:

$ PRINT REPORT.DAT'PQUALS'

The system recognizes the apostrophes and substitutes the appropriate value
(in this case the following string of qualifiers) for the symbol PQUALS:

/COPIES=2/FORMS=4/NOBURST

For more information about the effect of these qualifiers on the PRINT
command, as well as rules about when to use apostrophes for symbol
substitution, see the VMS DCL Dictionary.

Note that any symbols you assign will disappear when you log out unless
you put them in a LOGIN.COM file. Section 5.2.4 explains how to create and
use a LOGIN.COM file.

5.2 Creating and Executing a Command Procedure
A command procedure is a file that contains a sequence of DCL commands.
You create a command procedure by using a text editor (such as EDT) to
create a file, then fill the file with DCL commands. When you invoke the
command procedure, the commands are executed beginning with the first
command and continuing consecutively to the end of the procedure. Each
command is executed as if you had actually typed it in on the command line.

The default file type for a command procedure file is COM.

The following example shows how to create a command procedure named
CLEAN.COM that purges your default directory and then displays the
remaining files in that directory. The exclamation mark introduces a
comment, which is text that is ignored when the command procedure is
executed.

Using Symbols and Command Procedures
5.2 Creating and Executing a Command Procedure

Use a text editor to create a file named CLEAN.COM. Copy the following
three lines of text into the file:

$! Purge files and look
$ PURGE
$ DIRECTORY

Exit from the editor. Execute the command procedure by typing an at sign
(~a) followed by the name of the file containing the commands. For example,
to execute the command procedure CLEAN.COM, enter the following
command string:

$ @CLEAN

You can invoke a command procedure from any directory. But if the
command procedure is not located in your current directory, you must
precede the command procedure name by the name of the directory in which
it is located. For example, if your current directory is [BASIL.FOREIGN],
but the command procedure you want to invoke (CLEAN.COM) is in a
different directory named [BASIL.DOMESTIC], you would enter the following
command string to invoke CLEAN.COM:

$ @ [BASIL .DOMESTIC] CLEAN . COM

Following are the rules for formatting a command procedure:

• Begin each command string with a dollar sign. If a command in your
command procedure requires information you would normally type in,
put that information on lines without dollar signs (data lines) following
the command. For example, to use MAIL from a command procedure,
put your responses to the prompts on data lines following the MAIL
command.

• Do not abbreviate commands. Although abbreviation is allowed, the
command procedure is easier to read if all commands are spelled out.

• Begin comments with an exclamation point, and use them often.
Comments explain what the procedure is doing and are especially helpful
in complex command procedures.

The following command procedure (SEND.COM) sends a message to node
EBONY, with a note to the accounting department. (The CTRL/Z that usually
ends the message is not necessary because the end of the command procedure
indicates the end of the message.)

SEND.COM
comment ->

command string ->
+---

I
data lines ->)

I
+---

$! Send a message to EBONY
$ MAIL
SEND
EBONY: :USER
Attention Accounting
Please forward the RAZORON transactions.
Thanks.

Do not put comments on data lines. If you do, DCL treats the comments
as data when it reads the information from the data lines. To change the
information on the data lines, you must edit the command procedure.

Using Symbols and Command Procedures
5.2 Creating and Executing a Command Procedure

5 2.1 Passing Information
When you want to pass information (for example, a file name) to a command
procedure, you can have the procedure request a value for a symbol. You
type in a value, and your command procedure uses the symbol equated
to that value in subsequent commands. When you want your command
procedure to pass information back to you, you can have the command
procedure display information to the terminal.

5.2.1.1 Requesting Information with the INQUIRE Command
If your command procedure needs information from you, use the INQUIRE
command to request it. The INQUIRE command prompts you for
information, then equates your response to a symbol. This command requires
two parameters: the symbol name and the prompt. Use descriptive prompts
(for example, "Enter a file name") to keep your command procedures clear.

The following example shows how the INQUIRE command displays the
prompt "File:" (DCL automatically adds the colon and space to the prompt
that you specify) and puts the user's response in the symbol OLD~ILE.
The command procedure uses OLD_FILE in the PRINT and PURGE
commands. (See the VMS DCL Dictionary and the Guide to Using VMS
Command Procedures for detailed information about using apostrophes.)

Use an editor to create a file named NEW_CLEAN.COM. Copy the following
four lines of text into the file:

$! Print all versions and purge
$ INQUIRE OLD_FILE "File"
$ PRINT 'OLD_FILE';*
$ PURGE 'OLD_FILE'

To execute the command procedure, enter the following command string:

$ @NEW_CLEAN

You will be prompted for a file name as the following example shows:

File: BILLS.DAT

The system executes the command procedure NEW_CLEAN, which prints
and purges all versions of the file BILLS.DAT.

5.2.1.2 Displaying Information with the WRITE Command
When you want your command procedure to display information on
your screen, use the WRITE command. The WRITE command takes two
parameters: the first parameter tells DCL where to display the text; the
second parameter tells DCL what text to display. To tell DCL that you want
the text displayed on the terminal, use the logical name SYS$OUTPUT as
the first parameter. (When you log in, the system automatically equates
SYS$OUTPUT to the output stream for your terminal. The system uses this
output stream for prompting and informational messages.)

If you want to display a line of text, enclose the text in quotation marks,
and include it as the second parameter. For example, create a file named
FUN.COM and fill it with the following line:

FUN.COM +

i
I $WRITE SYS$OUTPUT "Hello Dolly"

I

I
I
I

5-5

Using Symbols and Command Procedures
5.2 Creating and Executing a Command Procedure

Now enter the command ~a FUN to see the text "Hello Dolly".

The following command procedure prints and purges a file, then displays the
text "All versions printed; file purged."

+ CLEAN.COM +

I $PRINT 'P1';*
I $PURGE 'P1' I
I $WRITE SYS$OUTPUT "All versions printed; file purged. " I
+ +

When you want to display the value of a symbol, include the symbol as the
second parameter. For example, the third line of the following command
procedure (CLEANI.COM) contains the WRITE command followed by the
first parameter (SYS$OUTPUT) and the second parameter (P 1):

+ CLEANI.COM +
$PRINT 'P1';* I

I $PURGE 'P1' I
$WRITE SYS$OUTPUT P1

+ +

After you enter the following command string, the command procedure
CLEANI.COM displays the value of P1 as BILLS.DAT:

$ @CLEANI BILLS.DAT

If you want to display a line of text and the value of one or more symbols,
include the symbols in the text, and specify the entire line as the second
parameter. Each symbol in the text must ne preceded by two apostrophes
and followed by one apostrophe. For example, when the following command
procedure is invoked with the command string ~a CLEAN BILLS.DAT, the
procedure displays the message "All versions of BILLS.DAT were printed; file
was purged."

CLEAN.COM +
I $PRINT 'P1';*
$PURGE 'P1'
$WRITE SYS$OUTPUT -

{ "All versions of "P1' were printed; file was purged."

5.2.2 Using Logic
When you want your command procedure to choose a course of action
depending on a piece of information you provide, use the IF command.
When you want your command procedure to skip a number of steps, use the
GOTO command.

The IF command conditionally executes a command. You specify both the
condition and the command in the following format:

$ IF condition THEN command

When the command procedure reads an IF statement, it evaluates the
condition. If the condition is true, the command executes; if it is false,
the system ignores the command and executes the statement following the IF
command. A condition must be stated using the conditional operators listed
in Table 5-1.

Using Symbols and Command Procedures
5.2 Creating and Executing a Command Procedure

Table 5-1 Conditional Operators

Operator Operator Function

. EQ. .EQS. Equal to

#.NE. .NES. Not equal to

#.LE. .LES. Less than or equal to

#.LT. .LTS. Less than

#.GE. .GES. Greater than or equal to

#.GT. .GTS. Greater than

Use the GOTO command to direct the command procedure to a particular line
in your command procedure. A label indicates the exact line in the command
procedure. This command has the following format:

$ GOTO label

The following command directs the command procedure to the START label:

$ GOTO START

The command procedure reads the GOTO statement and goes to the
following line:

$ START:

The command procedure then reads the lines following the label. Notice that
the label requires a colon (:)except when it is in the GOTO command. Each
label in a command procedure must be unique.

The following command procedure uses the IF statement to see whether you
have specified a file name:

CLEAN.COM +
$! Print all versions and purge
$ INQUIRE OLD_FILE "File"
$ IF OLD_FILE .EQS. "" THEN GOTO ERR
$ PRINT 'OLD_FILE';*
$ PURGE 'OLD_FILE'
$ EXIT
$ ERR:
$ WRITE SYS$OUTPUT "No files printed or purged . "
$ EXIT

+

+

If OLD_FILE is blank (""), the command GOTO ERR executes. The
command procedure continues executing at the line labeled ERR: and displays
the message "No file printed or purged." If OLD_FILE is not blank, the file
named in OLD_FILE is printed and purged. When the command procedure
reads the EXIT command, it exits and returns the user to the DCL command
level.

Using Symbols and Command Procedures
5.2 Creating and Executing a Command Procedure

5.2.3 Extracting Information with Lexical Functions
A lexical function is like a symbol in that it is equated to a value. However, a
lexical function obtains its value by reading arguments supplied by you and
by performing a particular operation. Each lexical function performs a specific
task. For example, F$LENGTH reads a character string that you supply and
then replaces itself with the length of that character string.

To calculate the length of the string MARBLE and equate that value to the
symbol SIZE, enter the following command:

$ SIZE =F$LENGTH("MARBLE")

To see the result of the calculation (the value of the symbol SIZE), enter the
following command string:

$ SHOW SYMBOL SIZE
SIZE = 6 Hex = 00000006 Octal = 00000000006

Instead of supplying a specific value for the argument for a lexical function,
you can use a symbol. Then equate values to the symbol. For example, enter
the following command string to equate the symbol ANYTHING to the string
"BLAST":

$ ANYTHING = "BLAST"

Enter the following command string to make F$LENGTH calculate the length
of the value of the symbol ANYTHING (in this case, the symbol ANYTHING
is equated to the string BLAST):

$ SIZE =F$LENGTH (ANYTHING)

In the previous example, the symbol ANYTHING equates to the string
"BLAST". The lexical function F$LENGTH determines the length of "BLAST"
and equates this length to the symbol SIZE.

To see the result of the calculation (the value of the symbol SIZE), enter the
following command string:

$ SHOW SYMBOL SIZE
SIZE = 5 Hex = 00000005 Octal = 00000000005

When the length of the argument changes, F$LENGTH returns a different
number, as the following example shows:

$ ANYTHING = "TEA"
$ SIZE =F$LENGTH (ANYTHING)
$ SHOW SYMBOL SIZE

SIZE = 3 Hex = 00000003 Octal = 00000000003

In the previous example, the symbol ANYTHING equates to the string "TEA".
The lexical function F$LENGTH determines the length of "TEA" and equates
the symbol SIZE to this length.

Table 5-2 lists some commonly used lexical functions with their required
arguments.

Using Symbols and Command Procedures
5.2 Creating and Executing a Command Procedure

Table 5-2 Common Lexical Functions

Function Description

F$EXTRACT(offset,length,string) Returns a substring

F$LENGTH(string)

F$LOCATE(substring,string)

F$MODE()

F$STRING(expression)

Returns the length of a character
string

Returns the offset position of a
substring

Returns a character string showing
the mode in which a process is
executing

Converts a number to a character
string

F$TIME() Returns the current date and time

For detailed information about lexical functions and their required arguments,
see the VMS DCL Dictionary.

5.2.4 What Is a LOGIN.COM File?
If you become a frequent user of the VMS system, you may find that you
are entering the same sequence of commands or assignment statements every
time you log in. To avoid such repetition, you can place these commands and
statements in a special command procedure.

You must name this file containing the command procedure LOGIN.COM,
and create it in your default disk directory. Like other command procedures,
create your LOGIN.COM file using an editor, such as EDT. When you log in,
the system automatically searches for a file with this file name. If the system
locates the LOGIN.COM file, it automatically executes the commands within
that file.

A LOGIN.COM file might contain the definitions in Figure 5-1.

Figure 5-1 Looking at a LOGIN.COM File

$IF F$MODE() .NES. "INTERACTIVE" THEN EXIT
$!symbols for commands I frequently use
$ST=="SHOW TIME"
$SHQU=="SHOW QUEUE"
$!symbols for my directories
$HOME=="SET DEFAULT WORK6:[MALCOLM]"
$TEST=="SET DEFAULT [MALCOLM.TESTFILES]"
$BILLS=="SET DEFAULT [MALCOLM.BILLS]"
$!logical names for people to whom I send mail
$DEFINE AL ALBINONI
$DEFINE BRO BREATH::BROKOWITZ
$DEFINE SAL TITIAN::SALIMONI

Using Symbols and Command Rrocedures
5.2 Creating and Executing a Command Procedure

Note that all the symbols defined in the LOGIN.COM file in Figure 5-1 are
global symbols, assigned with two equal signs. If these symbols were local
(assigned with one equal sign) they would be recognized only within the
LOGIN.COM file and would therefore be useless to you.

Also note the first line in the LOGIN.COM file in Figure 5-1. This line
translates into the following:

"If the current process is not interactive, then ignore
the rest of this LOGIN.COM file".

Figure 5-2 shows the labeled line.

Figure 5-2 The First Line of a LOGIN.COM file

expression

IF F$MODE() .NES. "INTERACTIVE" THEN EXIT

DCL command that
tests the value

of the expression

lexical function that
shows the mode in
which a process is

executing

operator
meaning

"not equal to"

string indicating
an interactive

process

DCL command that
executes if the value

of the expression
is true

ZK-1623-84

You must include this line in your LOGIN.COM file because your
LOGIN.COM file may contain commands specific to an interactive
environment that would cause a batch or network job to abort. (For
information about batch jobs, see Section 5.2.5.)

5.2.5 Submitting Batch Jobs to Avoid Delays
If you have executed a command procedure, you have noticed that while
the procedure is executing, you cannot do anything else on your terminal.
This is because your process is executing the command procedure and can
execute only one command at a time. To avoid this delay, submit a command
procedure as a batch job. A batch job is executed in a process of its own:
therefore, your process is not kept waiting. However, this means that you
cannot use the terminal to send information to or receive information from
the command procedure while it executes.

Using Symbols and Command Procedures
5.2 Creating and Executing a Command Procedure

To submit a command procedure as a batch job, use the SUBMIT command.
The following example shows how to submit the command procedure
CLEAN.COM in the [ACCOUNT] directory as a batch job:

$ SUBMIT [ACCOUNT] CLEAN

The command procedure is placed in a batch job queue, where it waits to be
executed. For more information about batch jobs, see Section 6.2.

When a command procedure is submitted as a batch job, it executes as if
you had just logged in. This means that your default directory, which is not
necessarily the directory that you want to use, is probably your top level
directory. If you want a different default directory, you must include the SET
DEFAULT command in the command procedure before you reference any
files.

If you are submitting a command procedure that requires parameters, you
must use the /PARAMETERS qualifier with the SUBMIT command. The
following command submits the command procedure CLEAN.COM in
the [ACCOUNT] directory. BILLS.DAT and RECEIPTS.DAT are passed as
parameters.

$ SUBMIT [ACCOUNT]CLEAN/NOPRINTER/PARAMETERS=(BILLS.DAT,RECEIPTS.DAT)

When the batch job is finished, you get a log file containing the output
from the command procedure. This log file is given the same name as the
command procedure and a file type of LOG. It is placed in your top level
directory. By using the /NOPRINTER qualifier, the log file is not printed.

If you want to print and save the log file, use the /KEEP qualifier with the
SUBMIT command, as follows:

$ SUBMIT/KEEP [ACCOUNT]CLEAN-
_$ /PARAMETERS= (BILLS .DAT ,RECEIPTS .DAT)

5.2.6 Displaying Command Lines During Execution
By default, the command lines in a command procedure are not displayed as
they are executed. When you want to see each command line as it executes,
use the DCL command SET VERIFY. When you create your command
procedure, add the SET VERIFY command to the top of the list of commands,
as follows:

CLEAN.COM +
$! Print all versions and purge
$ SET VERIFY
$ INQUIRE OLD_FILE "File"
$ IF OLD_FILE .EQS. "" THEN GOTO ERR
$ PRINT 'OLD_FILE';*
$ PURGE 'OLD_FILE'
$ EXIT
$ ERR:
$ WRITE SYS$OUTPUT "No files printed or purged . "
$ EXIT

Using Symbols and Command Procedures
5.2 Creating and Executing a Command Procedure

When you invoke the command procedure CLEAN, you will see every
command line as it executes (except the SET VERIFY command, which is not
displayed), as follows:

$@ CLEAN
!Print all versions and purge
$ INQUIRE OLD_FILE "File"
File:memos.dat
memos.dat
$ IF OLD_FILE .EQS. ""THEN GOTO ERR
$ PRINT MEMOS.DAT
Job MEMOS (queue HAPPY_PRINT, entry 301) started on SPHERE$LPAO
$ PURGE MEMOS.DAT
$ EXIT

If you want to restore the system to its default after the command procedure
executes, use the SET NOVERIFY command. For example, in CLEAN.COM,
add the following command directly before the EXIT command:

$ SET NOVERIFY

If you add this line, the system no longer displays command lines in
command procedures as they execute.

6

s.i

More About DCL Commands

To become familiar with DCL commands, enter the HELP HINTS command.
The available DCL commands are organized by function and are listed in the
following categories:

• Batch_and_print _jobs

• Creating processes

• Files and—directories

• System~nanagement

• Command procedures

• Developing programs

• Logical _names

• Terminal _environment

• Contacting people

• Executing_programs

• Physical _devices

• User environment

This chapter introduces some of the DCL commands in these categories. For
complete information about all available DCL commands, see the VMS DCL
Dictionary.

Printing Files
Although you need to know only the DCL command PRINT to make a hard
copy of a file, it is useful to know other commands that allow you to prevent
a file from being printed after you have issued the PRINT command. This
section describes the PRINT command and related commands.

6.1.1 Sending a File to a Queue
To print a file, enter the DCL command PRINT followed by the name of the
file you want to print, as follows:

$ PRINT LIST.DAT

When you enter the PRINT command, the file you specify is placed in a print
queue. A file in the print queue is called a job and has a unique number,
called a job entry number. When you enter the PRINT command, the system
responds with a message indicating the name and job entry number of the
job, as well as the name of the print queue. The following message indicates
that a j ob named LIST with a j ob entry number of 624 was entered on a print
queue named PRINT$FUN.

6-1

More About DCL Commands
6.1 Printing Files

Job LIST (queue PRINT$FUN, entry 624) started on PRINT$FUN

For more information about printing files, see Chapter 2. For detailed
information about all available qualifiers with the PRINT command, see
the VMS DCL Dictionary.

6.1.2 Looking at Jobs in the Print Queue
You can see which files are in the print queue by entering the following DCL
command:

$ SHOW QUEUE queue-name

If you do not specify a queue name with the SHOW QUEUE command, you
see a list of all available queues. The following example shows how to see
the files in the print queue named PRINT$FUN:

$ SHOW QUEUE PRINT$FUN
Print queue PRINT$FUN
Jobname Username Entry Status

LIST BELLINI 624 Printing

6.1.3 Removing a Job from the Print Queue
When you have a j ob waiting in the print queue, and you want to remove it
before it starts printing, enter the following DCL command:

$ DELETE/ENTRY job-entry-number queue-name

You can see the job entry number of your job by entering the SHOW QUEUE
command. When you use the DELETE/ENTRY command, the system notifies
you that it has deleted the job by issuing the following message:

Job NAMES (queue PRINT$WORK, entry 755) completed
%JBC-E-JOBDELETE, job deleted before execution

This message indicates that a file named NAMES with a job entry number
of 755 was deleted from a print queue named PRINT$WORK before it was
printed.

6.1.4 Stopping a Job That is Currently Printing
If you want to stop a file that is currently printing, enter the following DCL
command:

$ STOP/QUEUE/ENTRY=job-entry-number queue-name

You can see the job entry number of your job by entering the SHOW QUEUE
command. The system notifies you that the job has been stopped with the
following message:

Job ANOTHER (queue HORACE$PRINT, entry 755) completed
%JBC-E-JOBABORT, job aborted during execution

More About DCL Commands
6.2 What Is a Batch Job?

6.2 What Is a Batch Job?
A batch job is a file containing a series of commands (and optionally input
data) that is submitted to the operating system for execution. A batch job is
executed in a process of its own. Therefore, batch jobs allow you to have two
or more processes doing different things at the same time. For example, you
may have a command procedure that you want to execute, but you also may
want to use your terminal interactively. Instead of waiting for your command
procedure to finish executing before doing interactive work, you can submit
the command procedure as a batch job. Because a batch job is executed in a
process of its own, you can work interactively at the same time.

l'~ 6.2.1 Starting Batch Jobs
To submit the command procedure LOBSTER.COM as a batch job, enter the
following DCL command:

$ SUBMIT LOBSTER.COM

The SUBMIT command requests the operating system to place a command
procedure in a batch job queue and displays the following message:

Job LOBSTER (queue BATCH$FUN, entry 442) started on BATCH$FUN

If you want the system to notify you when the job is complete, use the
/NOTIFY qualifier with the SUBMIT command.

While the system processes your batch job, you can continue interactive use
of your terminal.

6.2.2 Looking at Jobs in the Batch Queue
To see the command procedures in the batch queue, enter the following DCL
command:

$ SHOW QUEUE queue-name

The following response indicates that a command procedure named
LOOK.COM with a job entry number of 442 was submitted by user
SULLIVAN and is currently executing:

Jobname Username Entry Status

LOBSTER SULLIVAN 442 Executing

If you specified the /NOTIFY qualifier, the following message is displayed
when the batch job finishes executing:

Job LOBSTER (queue BATCH$FUN, entry 442) completed

More About DCL Commands
6.2 What Is a Batch Job?

6.2.3 Removing a Job from the Batch Queue
When you have a batch job waiting in the batch queue, and you want to
remove it before it starts executing, enter the following DCL command:

$ DELETE/ENTRY=job-entry-number queue-name

You can see the job entry number of your batch job by entering the SHOW
QUEUE command. When you use the DELETE/ENTRY command, the
system notifies you that it has deleted the batch job by issuing the following
message:

Job LOBSTER (queue BATCH$FUN, entry 442) completed
%JBC-E-JOBDELETE, job deleted before execution

6.2.4 Stopping a Job That is Currently Executing
If you want to stop a batch job that is currently executing, enter the following
DCL command:

$ STOP/QUEUE/ENTRY=job-entry-number queue-name

You can see the job entry number of your batch job by entering the SHOW
QUEUE command. If you specified the /NOTIFY qualifier, the system will
notify you that the job has been stopped with the following message:

Job LOOK (queue BATCH$FUN, entry 442) completed
%JBC-E-JOBABORT, job aborted during execution

6.3 Sorting, Searching, Appending, Comparing, and Copying Files
The following sections introduce five DCL commands to help you when
working with files:

• SORT

• SEARCH

• APPEND

• DIFFERENCES

• COPY

6.3.1 Reorganizing Lists
When you want to reorganize a list of items in a file, you can use the DCL
command SORT. You must specify an input file to be sorted as well as a
name for the newly sorted file, as follows:

$ SORT input-file output-file

More About DCL Commands
6.3 Sorting, Searching, Appending, Comparing, and Copying Files

The following example shows a file named SIMPLE_SORT.DAT containing a
list of colors:

gold
brown
yellow
blue
silver
maroon
green
beige
mauve

When you enter the SORT command, the list is reorganized alphabetically
according to the first letter of each word.

$ SORT simple_sort.dat new_simple_sort.dat

The newly sorted file, named NEW_SIMPLE_SORT.DAT, follows:

beige
blue
brown
gold
green
maroon
mauve
silver
yellow

In a file with more than one column of items, the SORT command moves
entire lines of information, not just the first column of items. But, by default,
all the columns of items are sorted by the first letter of the first word in the
first column. The following example shows a file named SORT_NA1~iES.DAT
containing three columns of information (name, social security number, and
profession):

Saxon, Nicholas 749-38-2317 teacher

Able, George 238-90-5674 writer

Drendon, Marka 948-50-3749 writer

Ralston, Celia 263-72-4677 dancer

Briggs, Georgia 374-83-3526 artist

Gregwitz, Marna 478-52-0026 guitarist

When you enter the SORT command, the names are sorted by the first letter
of the first word:

$ SORT sort_names.dat new_sort_names.dat

The newly sorted file, NEW_SORT_NAMES.DAT, follows:

Able, George

Briggs, Georgia

Drendon, Marka

Gregwitz, Marna

Ralston, Celia

Saxon, Nicholas

238-90-5674 writer

374-83-3526 artist

948-50-3749 writer

478-52-0026 guitarist

263-72-4677 dancer

749-38-2317 teacher

More About DCL Commands
6.3 Sorting, Searching, Appending, Comparing, and Copying Files

By specifying qualifiers with the SORT command, you can sort information
by number instead of by character. You can specify that the file be sorted
in descending order (ZYXWVUTSR or 87654321) instead of ascending order
(ABCDEFG or 12345678). For detailed information about sorting files, see the
VMS Sort/Merge Utility Manual.

6.3.2 Searching for a String
To find a specific string of text within a file, use the DCL command SEARCH,
as follows:

$ SEARCH file-spec search-string

If the search string contains any lowercase letters or nonalphanumeric
characters, enclose it with quotation marks. For example, a file named
TEST.DAT contains the following paragraph of text:

When you type commands, qualifiers, or parameters you do not
always need to type the full word . In fact , you never have
to type more than the first four characters , and in many
cases you can type only one or two characters. The rule to
follow is: you must type at least the minimum number of
characters necessary to make the command unique.

To search for the string "characters" in the file named TEST.DAT, enter the
following command string:

$ SEARCH test.dat "characters"

The SEARCH command will display each line containing the string
"characters" (lines 3,4, and 6), as follows:

to type more than the first four characters , and in many
cases you can type only one or two characters. The rule to
characters necessary to make the command unique.

For detailed information about the SEARCH command, see the VMS DCL
Dictionary.

6.3.3 Appending Files
When you want to add the contents of one file to the contents of another file,
you can use the DCL command APPEND, as follows:

$ APPEND input-file-spec output-file-spec

The input-file-spec is the name of the file you want to add to the end of the
output-file-spec. The system prompts you for the name of the input-file-spec
first and then the name of the output-file-spec, as follows:

$ APPEND
_From: input-file-spec
_To: output-file-spec

The following example shows how to add the contents of a file named
ARM.FUN to the end of a file named BODY.FUN. The contents of file
ARM.FUN follow:

arm arm arm arm

More About DCL Commands
6.3 Sorting, Searching, Appending, Comparing, and Copying Files

The contents of file BODY.FUN follow:

body body body

Enter the following command string:

$ APPEND
_From: ARM.FUN
_To: BODY.FUN

Now the contents of the file named ARM.FUN are appended to the end of
the file named BODY.FUN, as follows:

body body body
arm arm arm arm

For detailed information about the qualifiers available with the APPEND
command, see the VMS DCL Dictionary.

6.3.4 Comparing Files
To compare the contents of one file with the contents of another file, use the
DCL command DIFFERENCES, as follows:

$ DIFFERENCES
_File 1: first input-file-spec
_File 2: second input-file-spec

The DIFFERENCES command lists each record in the first input file that has
no match in the second input file. The DIFFERENCES command also lists the
line following each unmatched record.

The following example shows two copies of the same letter, COPYI.DAT and
COPY2.DAT. There are two differences between them.

COPYi.DAT:

31 December 1988

Reprint Permission Department
The Doubleday Company
2709 Third Avenue
New York, New York 10022

Dear Permission Department,

I am currently writing a text processing handbook
for Digital Equipment Corporation. This handbook
describes how to format and process text on the VMS
operating system. I wish to make the handbook more
interesting by adding the three sentences (marked in your
copy) from page 22 of your book, "Flying without Fear", as
part of an example.

COPY2.DAT:

31 December 1988

Reprint Permission Department
The Doubleday Company
2709 Third Avenue
New York, New York 10022

More About DCL Commands
6.3 Sorting, Searching, Appending, Comparing, and Copying Files

Dear Permissions Department,

I am currently writing a text processing handbook
for Digital Equipment Corporation. This handbook
describes how to format and process text on the VMS
operating system. I wish to make the handbook more
interesting by adding the three sentences (marked in your
copy) from page 32 of your book, "Flying without Fear", as
part of an example.

To see the differences between COPYl.DAT and COPY2.DAT, enter the
following command string:

$ DIFFERENCES
_File 1: COPYI.DAT
_File 2: COPY2.DAT

The DIFFERENCES command lists the unmatching lines as it compares both
files:

File DISK$DOCUMENT:[KALLAS.BOOK]DIF_COPY.FUN;4
13 Dear Permission Department,
14

File DISK$DOCUMENT: [KALLAS.BOOK]NEW_DIF_COPY.FUN;3
13 Dear Permissions Department,
14

File DISK$DOCUMENT:[KALLAS.BOOK]DIF_COPY.FUN;4
20 copy) from page 22 of your book, "Flying without Fear", as
21 part of an example.

File DISK$DOCUMENT:[KALLAS.BOOK]NEW_DIF_COPY.FUN;3
20 copy) from page 32 of your book, "Flying without Fear", as
21 part of an example.

Number of difference sections found : 2
Number of dif f erenc a records found : 2

DIFFERENCES /IGNORE=()/MERGED=1-
DISK$DOCUMENT:[KALLAS.BOOK]DIF_COPY.FUN;4-
DISK$DOCUMENT: [KALLAS.BOOK]NEW_DIF_COPY.FUN;3

For detailed information about the qualifiers available with the DIFFERENCES
command, see the VMS DCL Dictionary.

6.3.5 Copying Files
To copy a file, use the COPY command. You can use it to make copies of
files in your default directory, to copy files from one directory to another
directory, to copy files from other devices, or to create files consisting of more
than one input file.

When you enter the COPY command, specify first the names of the input
files you want to copy, then the name of the output file. For example, the
following COPY command copies the contents of the file PAYROLL.TST to a
file named PAYROLL.OLD:

$ COPY PAYROLL.TST PAYROLL.OLD _RET

More About DCL Commands
6.3 Sorting, Searching, Appending, Comparing, and Copying Files

If a file named PAYROLL.OLD exists, a new version of that file is created
with a higher version number.

To copy a file from the directory [MALCOLM] to the subdirectory
[MALCOLM.TESTFILES] and give it the new name, OLDFILE.DAT, enter
the following command string:

$ COPY NEWFILE.DAT [MALCOLM.TESTFILES]OLDFILE.DAT RET

When you copy files from devices other than your default disk, you must
specify the device name with the COPY command. For example, the
following command string copies a file from your default directory onto a
disk with the logical name HOMER:

$ COPY PAYROLL.TST HOMER: RET

Note that the output file specification did not include a file name or file type;
the COPY command uses the same directory, file name, and file type as the
input file, by default.

Before you can copy any files to or from devices other than system disks, you
must gain access to these devices. You do this by following two steps:

1 Mounting the volume with the MOUNT command.

2 Ensuring the volume has a directory for cataloging the file. If no directory
exists, use the CREATE command to create one.

Note that the VMS operating system protects against users accessing private
volumes and system volumes. For details on the commands and procedures
necessary to prepare and use disks and magnetic tapes, see the Guide to VMS
Files and Devices and the VMS DCL Dictionary.

6.4 Controlling the VMS Environment
You can use several DCL commands to modify your user and terminal
environments. This section introduces the following commands:

• SET PROMPT

• DEFINE/KEY

• SHOW KEY

• DELETE/KEY

• SHOW PROCESS

• SET PROCESS

• RECALL (CTRL/B)

• SHOW TERMINAL

• SET TERMINAL

More About DCL Commands
6.4 Controlling the VMS Environment

6.4.1 Changing the System Prompt
By default, VMS displays a dollar sign ($)when you are at DCL command
level. To specify a different prompt for the DCL command level, use the
following command:

$ SET PROMPT = prompt-string

For example, to change your prompt to GOOD_MORNING > ,enter the
following command string:

$ SET PROMPT = good_morning>
GOOD_MORNING>

When you want your prompt string to retain lowercase letters, enclose the
string in quotation marks ("). Otherwise, letters are automatically converted
to uppercase.

When you log out and back in again, the default DCL command prompt, the
dollar sign, is restored.

To save a prompt from session to session, enter the SET PROMPT command
in your LOGIN.COM file, as follows:

$SET PROMPT ="SMILE>"

The prompt SMILE> remains in effect until you change or delete the
command line in your LOGIN.COM file.

For more information about the SET PROMPT command, see the VMS DCL
Dictionary.

6.4.2 Saving Time by Defining Keys
You can use the DCL command DEFINE/KEY to assign definitions to
keypad keys on VT52, VT100, and VT200 series terminals. Note that the
/APPLICATION ~CEYPAD qualifier to the SET TERMINAL command must
be in effect to use key definitions. (See Section 6.4.6.3.)

When you enter the DEFINE/KEY command, specify akey-name (such
as PF1) followed by an equivalence string (such as the DCL command,
DIRECTORY):

$ DEFINE/KEY key-name "equivalence-string"

For example, you can equate the keypad key PF1 to the DCL command
DIRECTORY:

$ DEFINE/KEY PF1 "DIRECTORY"

You must enclose an equivalence string in quotation marks (") if the string
contains any spaces.

The following example shows how to equate the keypad key PF2 to the DCL
command SHOW TIME:

$ DEFINE/KEY PF2 "SHOW TIME"

More About DCL Commands
6.4 Controlling the VMS Environment

To display a key definition, use the DCL command SHOW KEY followed by
the name of the key:

$ SHOW KEY PF2
DEFAULT keypad definitions:
PF2 = "SHOW TIME"

To see all currently defined keys, enter the SHOW KEY command with the
/ALL qualifier.

$ SHOW KEY/ALL
DEFAULT keypad definitions
PF1 = "DIRECTORY"
PF2 = "SHOW TIME"

When you enter the SHOW KEY command specifying an undefined key, DCL
displays the following message:

%DCL-W-UNDKEY , DEFAULT key PF3 i s undefined

To undefine keys, use the DELETE/KEY command, as follows:

$ DELETE/KEY key-name

For example, to undefine the key PF1, enter the following command:

$ DELETE/KEY PFl
%DCL-I-DELKEY, DEFAULT key PF1 has been deleted

To delete all your key definitions, enter the DCL command DELETE/KEY
with the /ALL qualifier.

When you log out, any key definitions you have made during the session are
deleted. To maintain key definitions from session to session, list them in your
LOGIN.COM file. The following example shows three lines containing key
definitions from a LOGIN.COM file:

$DEFINE/KEY PF1 "DIRECTORY"
$DEFINE/KEY MINUS "SHOW TIME"
$DEFINE/KEY KP1 "SET DEFAULT [TORTELLINI.LETTERS]"

For detailed information about available keys for definition and qualifiers to
use with the DEFINE/KEY command, see the VMS DCL Dictionary.

6.4.3 Looking at Processes
Use the DCL command SHOW PROCESS to display information about your
process. Figure 6-1 displays the results of the SHOW PROCESS command
with all the parts labeled.

Use the DCL command SET PROCESS to change some of the characteristics
of your process. You need various privileges to use all available qualifiers
with the SET PROCESS command. For detailed information about
restrictions, see the VMS DCL Dictionary. If you want to change your process
name, enter the SET PROCESS command with the /NAME qualifier, as
follows:

$ SET PROCESS/NAME = string

More About DCL Commands
6.4 Controlling the VMS Environment

Figure 6-1 Using the SHOW PROCESS Command

031-DEC-1988 10:13:40.82 ©TTAO: ©User: FLYNN

OPid: 2100044B ©Proc. name: Macro_writer ~UIC: [DOCI,FLYNN]

Priority : 4 ~ Def ault file spec : WORK9 : [FLYNN .EXAMPLES]

Devices allocated: TTAO:

O Date and time the SHOW PROCESS command is issued

© Device name of the current SYS$INPUT device (your terminal)

© User name

O Process identification number, which is a hexadecimal number that
uniquely identifies a process

© Process name

O User identification code specifying the type of access available to the
owner, which is either a pair of numbers, or a name (or optionally, a pair
of names)

O Base execution priority

Default directory

O Devices allocated to the process

To set your process name to Macro_Writer, enter the following command:

$ SET PROCESS/NAME _ "Macro_Writer"

To see the newly changed process name, enter the SHOW PROCESS
command.

When you log out and back in again, your original default process name
returns. To save a process name from session to session, enter the SET
PROCESS/NAME command in your LOGIN.COM file, as follows:

$SET PROCESS/NAME _ "Large_Marge"

The process name Marvelous_Mabel will remain in effect until you change or
delete the command line in your LOGIN.COM file.

6.4.4 Displaying Previously Entered Commands
During an interactive session, you may enter many command strings. To
see these command strings after you have processed them, enter the DCL
command RECALL or press CTRL/B. The DCL command RECALL allows
you to display a previously entered command. If you want to process
the command again, press RETURN. The RECALL command can act as a
reminder for previous commands or can save key strokes for long command
strings.

6-12

More About DCL Commands
6.4 Controlling the VMS Environment

The following example shows how to enter a DCL command (SHOW TIME),
and then use the RECALL command to display it again:

$ SHOW TIME
31-DEC-1988 13:43:37

$ RECALL
$ SHOW TIME
31-DEC-1988 13:44:04

Add the /ALL qualifier to the RECALL command to display the last twenty
commands you have entered. The most recently entered command is
number 1. The next to the last command entered is number 2. The RECALL
command itself is never assigned a number.

$ RECALL/ALL
1 MAIL
2 SHOW TIME
3 SET DEFAULT [BELLINI.OPER.A.COSTUMES]
4 EDIT BUSINESS_MATTERS.DAT
5 SHOW TIME
6 MAIL
7 SET DEFAULT [BELLINI.MUSICAL.STAGING]
8 SHOW USERS
9 ERASE
10 EDIT TICKET_SALES.DAT
11 TYPE TICKET_SALES.DAT
12 MAIL
13 SHOW TIME
14 PRINT TICKET_SALES.DAT
15 SHOW TERMINAL
16 ERASE
17 EDIT LETTER.FUN
18 PRINT LETTER.FUN
19 SHOW TIME
20 MAIL

You can reenter a command by typing its number with the RECALL
command, as the following example shows:

$ RECALL 14
$ PRINT TICKET_SALES.DAT

You can also enter the first character of a command to recall a command. For
example, to recall the last command entered that began with the letter "T"
(command number 11), enter the following command:

$ RECALL T
$ TYPE TICKET_SALES.DAT

If more than one command begins with the letter "T", you must specify more
than one character.

6.4.5 Showing Terminal Characteristics
To see the characteristics set for your terminal, enter the DCL command
SHOW TERMINAL. This command produces a display similar to the
following:

Terminal: _VTA732: Device_Type: VT240_Series Owner: Macro_writer(FLYNN)

Input: 9600
Output: 9600

LFfill: 0
CRf i l l : 0

Width: 80 Parity: None
Page: 24

6-13

More About DCL Commands
6.4 Controlling the VMS Environment

Terminal Characteristics:
Interactive
No Hostsync
Wrap
No Eightbit
Fulldup
No Hangup
Set_speed
No Dialup
No SIXEL Graphics
ANSI_CRT
No Edit_mode

Echo
TTsync
Scope
Broadcast
No Modem
No Brdcstmbx
Line Editing
No Secure server
No Soft Characters
No Regis
DEC_CRT

Type_ahead
Lowercase
No Remot e
No Readsync
No Local_echo
No DMA
Overstrike editing
No Disconnect
No Printer Port
No Block_mode

No Escape
Tab
No Holdscreen
Form
No Autobaud
No Altypeand
No Fallback
No Pasthru
Numeric Keypad
Advanced_video

6.4.6 Changing Terminal Characteristics
This section introduces the following qualifiers you can use with the SET
TERMINAL command to modify your terminal characteristics:

/ECHO
/NOECHO
/INSERT
/OVERSTRIKE
/NUMERIC~CEYPAD
/APPLICATION~CEYPAD
/WIDTH
/WRAP
/NOWRAP

For detailed information about all the available qualifiers, see the VMS DCL
Dictionary.

6.4.6.1 Using the /ECHO and the /NOECHO Qualifiers
The qualifiers /ECHO and /NOECHO control whether the terminal displays
(echoes) the input lines it receives. By default, /ECHO is set, allowing you to
see what you type. When you use the /NOECHO qualifier, you do not see
what you type.

The following example shows how the /ECHO and /NOECHO qualifiers
work. The fourth and sixth lines contain what you type, which is invisible.
The first undisplayed command you enter is SHOW TIME (fourth line). The
second undisplayed command you enter is SET TERMINAL/ECHO (sixth
line). Notice that after you enter the SET TERMINAL/ECHO command on
the sixth line, the commands you type are displayed again.

$ SHOW TIME
31-DEC-1988 15:43:46
$ SET TERMINAL/NOECHO

$
31-DEC-1988 15:46:15
$
$ SHOW TIME
31-DEC-1988 15:43:46

More About DCL Commands
6.4 Controlling the VMS Environment

6.4.6.2 Using the /INSERT and the /OVERSTRIKE Qualifiers
The /INSERT and /OVERSTRIKE qualifiers allow you to either insert
characters or type over characters when you are editing command strings.
By default, the /OVERSTRIKE qualifier is in effect.

Perform the following three steps to see how the /OVERSTRIKE qualifier
works:

1 Type the SHOW TIME command, but do not press RETURN.

$ SHOW TIME

2 Press the left arrow key four times, placing the cursor over the "T" in the
word "TIME".

3 Type the word "USERS". As you type each character, "USERS" replaces
"TIME".

$ SHOW USERS

Perform the following four steps to see how the /INSERT qualifier works:

1 Enter the SET TERMINAL/INSERT command.

2 Type the SHOW TIME command, but do not press RETURN.

$ SHOW TIME

3 Press the left arrow key four times, placing the cursor over the "T" in the
word "TIME".

4 Type the word "USERS". As you type each character, the v~ord "TIME"
moves to the right.

$ SHOW USERSTIME

To reinstate the overstrike characteristic, enter the SET
TERMINAL/OVERSTRIKE command.

6.4.6.3 Using the /NUMERIC_KEYPAD and /APPLICATION_KEYPAD
Qualifiers
The /NUMERIC~CEYPAD and /APPLICATION _KEYPAD qualifiers allow
you to use the keys on the keypad to type numbers and punctuation marks or
to type defined keys. By default, /NUMERIC_ICEYPAD is in effect, enabling
you to type the numbers and punctuation marks shown on the keypad. For
example, when you press the COMMA key on the keypad, you see a
comma (,).

To take advantage of the /APPLICATION _KEYPAD qualifier, define one of
the keypad keys using the DEFINE/KEY command. For example, enter the
following command string:

$ DEFINE/KEY PF1 "SHOW TIME"

%DCL-I-DEFDKEY, DEFAULT key PF1 has been defined

Then enter the SET TERMINAL/APPLICATION _KEYPAD command.
When you press the PF1 key, you see the SHOW TIME command. See the
VMS DCL Dictionary for more detailed information about the DEFINE/KEY
command and a table listing key designations for various terminals.

More About DCL Commands
6.4 Controlling the VMS Environment

6.4.6.4 Using the /WIDTH Qualifier
You can use the /WIDTH qualifier with the SE i TERMINAL command
to specify the number of characters on each input or output line. Use the
following syntax:

$ SET TERMINAL/WIDTH=n

"N" can be any number from 0 through 255. When you specify a number
that is greater than 80, your screen displays "thin" characters (on VT 100-type
and VT200 series terminals). For example, enter the following command:

$ SET TERMINAL/WIDTH=81

Immediately, all the characters on your screen become narrow. To return to
your previous character size, enter the SET TERMINAL/WIDTH command
again specifying a number less than 81.

6.4.6.5 Using the /WRAP and /NOWRAP Qualifiers
The /WRAP and /NOWRAP qualifiers control whether or not the terminal
generates a carriage return/line feed when it reaches the end of the line.
You can determine the end of a line by setting the terminal width using the
/WIDTH qualifier.

To see how a line wraps, press the letter "w" and hold it down. You will see
a string of w's on the screen. When the string of w's gets to the end of the
line, it goes to the beginning of the next line (wraps). By default, any string of
characters you enter wraps unless you enter the SET TERMINAL/NOWRAP
command.

6.5 Working with Physical Devices
A physical device is capable of receiving and storing data. Two examples
of physical devices are magnetic tapes and disks, which are mass storage
devices. You can perform the following tasks by using the corresponding
DCL commands:

• Allocate or deallocate a device (ALLOCATE, DEALLOCATE)

• Make a storage device available or unavailable for processing (MOUNT,
DISMOUNT)

• Format a storage device (INITIALIZE)

• Save or restore files from storage devices (BACKUP)

• Set characteristics for:

— Devices (SET DEVICE)

— Magnetic tapes (SET MAGTAPE)

— Line printers (SET PRINTER)

— Mounted volumes (SET VOLUME)

More About DCL Commands
6.5 Working with Physical Devices

• Display characteristics for:

— Devices (SHOW DEVICES)

— Magnetic tapes (SHOW MAGTAPE)

— Line printers (SHOW PRINTER)

For information on using these DCL commands to manipulate physical
devices, see the Guide to VMS Files and Devices.

Glossary

account: Enables access to the system software (command interpreters, compilers,
utilities).

ASCII: American Standard Code for Information Interchange. ASCII is the standard
format for sending readable text. It is a code used by many computers to translate
letters, numbers, and symbols from a keyboard into machine code, and back into
symbols again.

An ASCII file can be read both by people and by computers.

assembler: Language processor that translates a source program containing assembly
language directives and machine instructions into an object module.

assembly language: Machine oriented programming language. VAX MACRO is the
assembly language for the VAX computer.

assignment statement: Definition of a symbol name to use in place of a character
string or numeric value. Symbols can define synonyms for system commands or can
be used for variables in command procedures.

batch: Mode of processing in which all commands to be executed by the operating
system and, optionally, data to be used as input to the commands are placed in a
file or punched onto cards and submitted to the system for execution.

batch job: A noninteractive process.

baud rate: The speed at which a terminal transmits or receives characters.

buffer: A temporary storage area.

command: An instruction or request for the system to perform a particular action.
An entire command string consists of the command name with any parameters and
qualifiers.

command interpreter: The operating system component responsible for reading and
translating interactive and batch commands. The default command interpreter for
the VMS operating system interprets the DIGITAL Command Language (DCL).

command string: A command with any parameters or qualifiers.

command procedure: File containing a sequence of commands to be executed by the
operating system. The command procedure can be submitted for execution at the
terminal or as a batch job.

compiler: Language processor that translates a source program containing high-level
language statements (for example, FORTRAN) into an object module.

concatenate: To link together in a series.

Glossary-1

Glossary

CPU: Central Processing Unit. It is the hardware that handles all calculating and
routing of input and output (I/O), as well as executing images. The CPU is the part
of the computer that actually computes.

cursor: A flashing indicator used on video terminals to point to the screen position
where the next character will appear. It is called a "cursor" because it shows the
"course" or direction the printed or typed line will follow.

data: A general term used for any representation of facts, concepts, or instructions in
a form suitable for communication, interpretation, or processing. When commands
prompt you for command elements, they are asking you for data to process.

DCL: DIGITAL Command Language. It provides a means of communication between
the user and the operating system. DCL is designed for ease of use. Commands are
English words, and if necessary elements are not typed in, DCL will prompt you for
them.

debugger: Interactive program that allows you to display and modify program
variables during execution and to step through a program to locate and detect
programming errors.

default: Value supplied by the system when a user does not specify a required
command parameter or qualifier.

default disk: The disk from which the system reads and to which the system writes,
by default, all files that you create. The default is used whenever a file specification
in a command does not explicitly name a device.

delimiter: A character that separates, terminates, or organizes elements of a character
string or statement. For example, in the file specification, STORIES.DAT, the
period (.) is the delimiter that enables the system to tell the difference between the
file name STORIES and the file type DAT.

device: Any peripheral hardware connected to the processor and capable of receiving,
storing, or transmitting data. Line printers and terminals are examples of record-
oriented devices. Magnetic tapes and disks are examples of mass-storage devices.
Terminal line interfaces and interprocessor links are examples of communications
devices. All devices have names either in the form ddnn:, where dd is atwo-letter
mnemonic, nn is an octal number, and the colon(:) is a required terminator or as a
logical name.

device name: Identification of a physical device (for example, DBA2) or a logical name
(for example, SYS$OUTPUT) that is equated to a physical device name.

directory: A file that briefly catalogs a set of files stored on disk or tape. The directory
includes the name, type, and version number of each file in the set.

disk: High-speed, random-access devices. There are several kinds of disks. Floppy
disks are small, flexible disks. Hard disks are either fixed in place or removable.
Removable disk types include a single hard disk enclosed in a protective case and a
stacked set of disks enclosed in a protective case.

echo: The display of a character either on the screen or hard copy that was typed on a
terminal keyboard. Terminals are dual devices, sending input and receiving output.
Typing on the terminal is sending input to the computer. Echoing is receiving
output from the computer.

Glossary-2

Glossary

editor: Program that creates or modifies files. In VMS, the default system editor is
EDT, which is interactive.

equivalence name: Character string equated to a logical name. When a command
or program refers to a file or device by its logical name, the system translates the
logical name to its predefined equivalence name.

error message: Sent by the system when some action you have requested fails.
Each error message identifies the particular part that detected the error. Most error
messages result from typing mistakes or mistakes in syntax. Often, you can correct
the error by retyping the command.

field: Usually refers to a portion of a command or a command element. For example,
the file name and file type are two fields of a file specification.

file: Collection of data treated as a unit; generally used to refer to data stored on
magnetic tapes or disks.

file name: The name component of a file specification.

file specification: Unique identification of a file. A file specification describes the
physical location of the file, as well as file name and file type identifiers that describe
the file and its contents.

file type: The type component of a file specification. A file type generally describes the
nature of a file or how it is used. For example, FOR indicates a FORTRAN source
program.

folder: A subdivision of a file in which you can store mail messages.

form feed: Analogous to a line feed, but instead of moving down one line to resume
printing, the line printer moves past the perforations in the paper to the top of a
new form or page. A form feed consists of a number of line feeds.

function keys: Keyboard keys that send special signals to the operating system.
Function keys are referred to as Fx, where x is the number associated with that key.
For example, by pressing F9 in MAIL you are telling the system you want to forward
a message.

global symbol: A symbol defined with an assignment statement recognized in any
command procedure that is executed.

hanging: A terminal or process that appears to be going nowhere or doing nothing.
Hung terminals are sometimes described as static, dormant, or locked. Hung
terminals may result from a busy system, a crash, or unavailability of system
resources.

hardcopy terminal: A terminal that prints output on paper.

hardware: The physical computer equipment, including such mechanical devices as
the line printer, the terminals, the mass-storage devices, and so forth.

header page: Printed page at the beginning of a listing that identifies the printed file.

help file: A text file in a format suitable for use with the HELP command. Help files
can provide up to nine levels of search.

Glossary-3

Glossary

high-level language: Transportable programming language, such as BASIC,
FORTRAN, or COBOL. Programs in these languages are not tied to a particular kind
of computer, and must be compiled. Each programming statement in a high-level
language is translated into several machine-language instructions.

image: Output from the linker, created from processing one or more object modules.
An image is the executable version of a program.

input file: File containing data to be transferred into the computer.

Often input and output files are confused. DCL usually prompts for these files, but
most system utilities require you to identify your input and output files by position
in a command line. Be sure of the syntax for the command you are using.

interactive: Mode of communication with the operating system in which a user enters
a command, and the system executes it and responds.

job: (1) The accounting unit equivalent to a process; jobs are classified as batch or
interactive. (2) A print job.

K: A unit for measuring the size of memory or similar resources. K is short for kilo and
is used roughly to mean 1000, although actually K is equal to 1024.

keyboard: An input device that can be operated similarly to a typewriter.

keypad: The set of keys next to the main keyboard on a terminal.

keyword: A command name, qualifier, or option. Keywords must be typed verbatim
or truncated according to the rules of DCL.

lexical function: A command language construct that the command interpreter
evaluates and substitutes before it parses a command string. Lexical functions return
information about the current process (for example, the UIC or default directory)
and about character strings (for example, their length or the location of substrings).

line editor: Program that allows you to make additions and deletions to a file line by
line.

line printer: An output device that prints one line at a time. It is used for printing
large amounts of output.

linker: Program that creates an executable program, called an image, from one or more
object modules produced by a language compiler or assembler. Programs must be
linked before they can be executed.

loca I symbol: A symbol defined with an assignment statement that is recognized only
within the command procedure in which it is defined.

log in: To perform a sequence of actions at a terminal that establishes a user's
communication with the operating system and sets up default characteristics for
the user's terminal session.

log out: To terminate interactive communication with the operating system. The
LOGOUT command executes the procedure and ends a terminal session.

Glossary-4

Glossary

logical name: Substitute character string used to refer to files or devices by other
than their original names. Frequently used as a form of shorthand. A command or
program can refer to a file by a logical name; the logical name can be equated to an
equivalence name at any time; when the command or program refers to the logical
name, the system translates the logical name to its defined equivalence name.

logical name table: A table that contains a set of logical names and their equivalence
names for a particular process, a particular group, or the system.

machine code: A sequence of binary machine instructions in a form executable by the
computer.

magnetic tape: Medium on which data can be stored and accessed.

mass-storage device: An input/output device where data and other types of files
are stored while they are not being used. Typical mass-storage devices include
disks, magnetic tapes, floppy disks, and DECtapes. Each mass-storage device uses a
particular magnetic medium to hold its data.

memory: A series of physical locations into which data or instructions can be placed
in the form of binary words. Each location in memory can be addressed, and its
contents can be altered.

network: A collection of interconnected computer systems.

node: An individual computer system in a network that can communicate with other
computer systems in the network.

node specification: The component of a file specification that identifies the location of
a computer system in a network of computer systems.

object module: Output from a language compiler or assembler that can be linked with
other object modules to produce an executable image. An object module is a file
with a file type of OBJ.

operating system: The system software that controls the operations of the computer.

output file: File to which the computer transfers data.

parameter: Defines what the command acts upon. A parameter can be a file
specification, a symbol value passed to a command procedure, or a word defined by
DCL.

parse: Separate a command string into its elements to interpret it.

password: Character string that user provides at login to show authorization to access
the account.

peripheral devices: Any device used for input/output operations with the CPU.
Terminals, line printers, and disks are peripheral devices.

priority: A rank assigned to a process to determine its precedence in obtaining system
resources when the process is running.

program: A series of instructions written for the computer to follow.

Glossary-5

Glossary

prompt: A symbol used by the system to signal that the system is ready to accept
input from you.

protection code: Specifies what access different categories of system users can have to
the file and what they can do to the file when they access it.

qualifier: Describes how the operation of a command occurs. A qualifier is always
preceded by a slash character (/).

queue: Aline of items waiting to be processed.

random access: A method of accessing files or records in memory or on a device.
Using this method, records are accessed using their known address, instead of using
the records that precede them in storage. On a random access disk, all information
is equally accessible, regardless of its location. Compare to

sequential

access.

range specification: Used with the EDT line editor to define the lines to be affected
by the editing command.

real-time system: A system in which inquiries and data entered on a terminal are
processed based on need and priority.

reverse video: A feature of some terminals that reverses the default video contrast.
If having black figures on a white background is the default, reverse video displays
white on black. Reverse video is used with some EDT keypad commands to
highlight a range of text.

RMS: Record Management Services. RMS is a sophisticated set of routines used to
open and close files, read from files, and extend and delete files.

scrolling: When more than one screen of output is sent to a video terminal, the
output scrolls up. New output appears at the bottom of the screen and eventually
disappears when it reaches the top.

sequential access: Records or files are read one after another in the order in which
they appear in the on the device. Magnetic tape is asequential-access medium. For
example, if you are half way through a tape and wish to read some record that is a
third of the way through the tape, you must go back to the beginning of the tape.
You must read through until you get to the record that you want or until the end of
the tape.

software: The collection of images, procedures, rules, and documentation associated
with the operation of a particular computer system. For example, the operating
system is software.

source program: A program written in text form that must be compiled or assembled
to be used.

string: A sequence of characters. When you use an editor to search for a word or
phrase, you are searching for a string. The sequence of characters that forms a
command is often called a command string.

subdirectory: A directory within a directory. Subdirectories can contain additional
files belonging to the owner of the directory, and offer a method of file organization.

Glossary-6

Glossary

subroutine: A routine that can be used as part of another routine. For instance, you
might write a routine to print the time in large numbers on your terminal. You
could then call that routine as a subroutine in some task that required printing the
time in large numbers.

switch hook character: The Phone Utility prompt (%). When you are "talking" to
someone in the PHONE utility, you must type the switch hook character (a percent
sign by default) before you enter a PHONE command.

symbol: A variable that is defined or given a value. For instance you can equate the
symbol ST with the value SHOW TIME. When you type ST, the computer translates
the symbol, giving it the value SHOW TIME.

syntax: The exact form that a command must follow for the system to attempt to
execute it. Misspelled words are the most common syntax errors.

system operator: Person responsible for maintaining the system. Within small
systems, the job may be combined with that of the system manager or informally
divided among several people. The responsibilities of the operator include changing
ribbons, rebooting the system, and keeping records.

system manager: Person who makes resources available to users and sets up
restrictions governing the use of such resources.

terminal: Hardware communication device with atypewriter-like keyboard that
receives and transmits information between users and the system.

timesharing: A system in which each user gets equal computer time in turn. This is in
contrast to the allocation based on need and priority in a real-time system.

UIC: User identification code. This code identifies a user by a group number and a
member number. (Both numbers are enclosed in brackets.)

user name: Name by which the system identifies a particular user. To gain access to
the system, a user specifies a user name followed by a password.

uti I ity: Ageneral-purpose program provided with the operating system that performs
tasks. Common utility functions are editing and file handling.

version number: Numeric component of a file specification. When a file is edited, its
version number is increased by one.

video display terminal: A terminal where your keystrokes and system responses are
displayed on a screen similar to that of a television.

volume: The largest logical unit of the file structure. A volume contains files and
corresponds to a physical unit of mass storage.

wildcard character: A symbol that can be used with many DCL commands in place
of all or part of a file specification to refer to several files rather than specifying them
individually.

Glossary-7

Index

Q

Account • 1-1
/ALL qualifier

with DELETE/KEY command • 6-1 1
with RECALL command • 6-13
with SHOW KEY command • 6-1 1

ANSWER command (PHONE] • 1-15
APPEND command (DCL) • 6-6
/APPLICATION _KEYPAD qualifier • 6-15
Assembler•4-2
Assembly language•4-2
ASSIGN command (DCL) • 3-9

B
Batch job • 5-10

definition • 1-1, 6-3
starting • 6-3

C
Command interpreter • 1-3
Command procedure • 2-1, 5-1, 5-3

creating • 5-3
Command string • 1-4

editing • 1-5
parts of • 1-4

Compiler•4-2
Controller designator• 3-4
COPY command (DCL) • 6-8
CREATE/DIRECTORY command (DCL) • 3-8
CREATE command (DCL) •2-4
CTRL/Q

resuming scrolling of terminal display• 2-5
CTRL/S

stopping scrolling of terminal display • 2-5
CTRL/T

checking the status of your process• 1-7

D
DCL (DIGITAL command language)

defined • 1-3
DCL commands • 1-3
Debugger • 4-10, 4-14
Default

definition • 1-6
DEFINE/KEY command (DCL) • 6-10
DEFINE command (DCL) • 3-9
DELETE/ENTRY command (DCL)

using with a batch queue • 6-4
using with a print queue•6-2

DELETE/KEY command (DCL) • 6-1 1
DELETE command (DCL) • 2-4
DELETE command (MAIL) • 1-13
Device • 3-1, 3-4

name • 3-4, 3-5
physical • 6-16
type • 3-4

DIFFERENCES command (DCL) • 6-7
Directory

definition•3-5
role in file specification • 3-1

DIRECTORY command (DCL) • 2-6
DIRECTORY command (MAIL) • 1-12
DIRECTORY command (PHONE) • 1-17

E
/ECHO qualifier • 6-14
EDIT command (DCL) • 2-4
Equivalence name•3-9
Error message

description of • 1-7
EXIT command (MAIL) • 1-14
EXIT command (PHONE) • 1-17
EXTRACT command (MAIL) • 1-14

F
F$LENGTH (lexical function► • 5-8

Index-1

Index

File
copying • 6-8
creating • 2-4
definition • 2-1
deleting • 2-4
displaying • 2-5
listing • 2-6
name • 2-1
printing • 2-7
protecting • 2-8
purging•2-5
renaming•2-7
type • 2-2
version • 2-3

File specification • 3-1
Folders (MAIL)

default • 1-12
FORTRAN command (DCL) • 4-7
FORWARD command (MAIL) • 1-12
Function Keys • 1-1

G
GOTO command (DCL) • 5-6

H
Header page • 2-7
HELP command (DCL) • 1-8
HELP command (MAIL) • 1-14
HELP command (PHONE) • 1-17
High-level language • 4-2

i

IF command (DCL) • 5-6
Image • 4-1
INQUIRE command (DCL► • 5-5
/INSERT qualifier • 6-15

K
/KEEP qualifier • 5-1 1
Keyboard keys • 1-1

Keywords • 1-4

L
Lexical function • 5-8

F$LENGTH • 5-8
LINK command (DCL) • 4-2, 4-8, 4-13
Linker • 4-2
Logical name • 3-8, 4-14

system default • 3-10
use in programming • 4-14

Login • 1-1
failure • 1-2
procedure • 1-2

LOGIN.COM file • 5-9
Logout • 1-9
LOGOUT command (DCL) • 1-9

M
Machine code•4-2
MACRO command (DCL) • 4-12
Mail Utility (MAIL) • 1-10
MOVE command (MAIL) • 1-12

N
Network • 3-1
Node • 3-1
Node specification • 3-1
/NOECHO qualifier • 6-14
/NOWRAP qualifier • 6-16
/NUMERIC_KEYPAD qualifier • 6-15

0
Object module • 4-1

linking•4-8
/OVERSTRIKE qualifier • 6-15

Index-2

Index

P
Parameter

definition • 1-4
use of • 1-4

/PARAMETERS qualifier • 5-1 1
Password • 1-1
Phone Utility (PHONE) • 1-15
PRINT command (DCLj • 2-7, 6-1
PRINT command (MAIL) • 1-14
Process

checking status with CTRL/T • 1-7
Program • 2-1

assembling • 4-1
compiling • 4-1
creating • 4-1
debugging • 4-10, 4-14
developing •4-3
developing a BASIC•4-5
developing a FORTRAN •4-6
developing a MACRO.4-10
executing • 4-3
running • 4-9, 4-13
using logical names in • 4-14

Prompt • 1-3
PURGE command (DCL) • 2-5

Q
Qualifier

definition • 1-4
use of • 1-4

Queue • 6-1
batch • 6-3
looking at jobs in • 6-2, 6-3
print • 6-1
removing jobs from • 6-2, 6-4
stopping jobs in • 6-2, 6-4

R
READ command (MAIL) • 1-1 1
RECALL command (DCL) • 6-12

/ALL qualifier•6-13
REJECT command (PHONE) • 1-17
RENAME command (DCL) • 2-7

REPLY command (MAIL) • 1-12
RUN command (DCL) • 4-3, 4-9, 4-13

S
Scrolling • 2-5
SEARCH command (DCL) • 6-6
SELECT command (MAIL) • 1-13
SEND command (MAIL) • 1-1 1
SET DEFAULT command (DCL) • 3-8
SET FILE/PROTECTION command (DCL) • 2-8
SET PASSWORD command (DCL) • 1-3
SET PROCESS command (DCL) • 6-1 1
SET PROMPT command (DCL) • 6-10
SET PROTECTION command (DCL) • 3-7
SET TERMINAL command (DCL) • 6-14

/APPLICATION_KEYPAD qualifier • 6-15
/ECHO qualifier • 6-14
/INSERT qualifier • 6-15
/NOECHO qualifier • 6-14
/NOWRAP command • 6-16
/NUMERIC_KEYPAD qualifier • 6-15
/OVERSTRIKE qualifier • 6-15
/WIDTH qualifier • 6-16
/WRAP command • 6-16

SHOW command (DCL) • 1-3
SHAW DEFAULT command (DCL) • 3-6
SHOW DEVICES command (DCL►•3-5
SHOW KEY command (DCL) • 6-1 1
SHOW LOGICAL command (DCL) • 3-10
SHOW PROCESS command (DCL) • 6-1 1
SHOW QUEUE command (DCL)

with a batch queue • 6-3
with a print queue• 6-2

SHOW SYMBOL command (DCL) • 5-2
SHOW TERMINAL command (DCL) • 6-13
SHOW TIME command (DCL) • 1-3
SORT command (DCL) • 6-4
Source program • 4-1

creating • 4-7, 4-10
STOP/QUEUE/ENTRY command (DCL)

with a batch job • 6-4
with a print job • 6-2

Subdirectory • 3-7
how to create • 3-8

SUBMIT command (DCL) • 5-1 1, 6-3
Switch hook character (PHONE) • 1-15
Symbol • 5-1

Index-3

Index

SYS$COMMAND (system default logical name) •
3-11

SYS$DISK (system default logical name) • 3-1 1
SYS$ERROR (system default logical name) • 3-1 1
SYS$INPUT (system default logical name) • 3-1 1
SYS$OUTPUT (system default logical name) •

3-11
SYS$OUTPUT (system logical name) • 5-5

T
Terminal

hardcopy• 1-1
video display • 1-1

TYPE command (DCL) • 2-5

U
UIC (user identification code) • 2-8
Unit number • 3-4
User identification code (UIC) • 2-8
User name • 1-1
Utility

definition • 1-9
invoking • 1-9
mail • 1-10
phone • 1-15
prompt • 1-9

V
Version number•2-3

W
/WIDTH qualifier• 6-16
Wildcard character • 2-3
/WRAP qualifier • 6-16
WRITE command (DCL) • 5-5

Index-4

Reader's Comments Introduction to VMS
AA—LA04A—TE

Please use this postage-paid form to comment on this manual. If you require a written reply to a software
problem and are eligible to receive one under Software Performance Report (SPR) service, submit your
comments on an SPR form.

Thank you for your assistance.

I rate this manual's: Excellent Good Fair Poor

Accuracy (software works as manual says) ❑ ❑ ❑ ❑

Completeness (enough information) ❑ ❑ ❑ ❑

Clarity (easy to understand) ❑ ❑ ❑ ❑

Organization (structure of subject matter) ❑ ❑ ❑ ❑

Figures (useful) ~ ❑ ❑ ❑ ❑

Examples (useful) ❑ ❑ ❑ ❑

Index (ability to find topic) ❑ D ❑ ❑

Page layout (easy to find information) ❑ ❑ ❑ ❑

I would like to see more/less

What I like best about this manual is

What I like least about this manual is

I found the following errors in this manual:

Page Description

Additional comments or suggestions to improve this manual:

I am using Version of the software this manual describes.

Name/Title Dept.

Company Date

Mailing Address

Phone

— — Do Not Tear -Fold Here and Tape

d a
TM

- — Do Not Tear -Fold Here

No Postage
Necessary
if Mailed

in the
United States

BUSINESS REPLY MAIL
FIRST CLASS PERMIT N0. 33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

DIGITAL EQUIPMENT CORPORATION
Corporate User Publications—Spit Brook
ZK01-3/J35 110 SPIT BROOK ROAD
NASHUA, NH 03062-9987

Ill~~~~~ll~ll~~~~ll~~~~l~ll~i~~l~i~~l~~l~l~~~l~li~~l

C
u

t
A

lo
n

g
 D

o
tt

e
d

 L
in

e

Reader's Comments Introduction to VMS
AA—LA04A—TE

Please use this postage-paid form to comment on this manual. If you require a written reply to a software
problem and are eligible to receive one under Software Performance Report (SPR) service, submit your
comments on an SPR form.

Thank you for your assistance.

I rate this manual's: Excellent Good Fair Poor

Accuracy (software works as manual says) ❑ ❑ ❑ ❑

Completeness (enough information) ❑ ❑ ❑ ❑

Clarity (easy to understand) ❑ ❑ ❑ ❑

Organization (structure of subject matter) ❑ ❑ ❑ ❑

Figures (useful) D ❑ ❑ ❑

Examples (useful) ❑ ❑ ❑ ❑

Index (ability to find topic) ❑ ❑ ❑ ❑

Page layout (easy to find information) ❑ ❑ ❑ ❑

I would like to see more/less

What I like best about this manual is

What I like least about this manual is

I found the following errors in this manual:

Page Description

Additional comments or suggestions to improve this manual:

I am using Version of the software this manual describes.

Name/Title Dept.

Company Date

Mailing Address

 Phone

— — Do Not Tear -Fold Here and Tape

d BsB~ a
TM

— — Do Not Tear -Fold Here

No Postage
Necessary
if Mailed

in the
United States

BUSINESS REPLY MAIL
FIRST CLASS PERMIT N0. 33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

DIGITAL EQUIPMENT CORPORATION
Corporate User Publications Spit Brook
ZK01-3/J35 110 SPIT BROOK ROAD
NASHUA, NH 03062-9987

III~~~~~II~II~~~~II~~~~I~II~I~~I~I~~I~~I~I~~~I~II~~I

C
u

t
A

lo
n
g
 D

o
tt
e
d
 L

in
e

