~ (BASICHIY

- THE NEWSLETTER FOR THE BASIC SPECIAL INTEREST GROUP
April 1983 Vol. 4 No. 1 (Part 2)

THE NEW BASIC FOR THE DEC PROFESSIONAL 350

By Artie Alvidrez, Software Project Leader, Ross Systems, Inc.

“Ross Systems, Inc., a California-based timesharing and Software producing company, was selected in 1982 as one of the
"software producers” for the new PROFESSIONAL 350 microcomputer developed by DEC. The opportunity to put a major
software application on this new system provided the company with one of the first exposures to the new BASIC language,
and it proved to be quite an experience for us.

Our application involved a financial-based decision support system called MAPS (Management Aid for Planning Strategies),

a software tool for the PDP-11 and VAX computers which has been in use since 1975. The package consists of a number of
separate tasks written in both BASIC+2 and PASCAL. Development of the software to run on the PRO 350 called for the
compilation and task building of the source on the VAX using DEC’s PROFESSIONAL TOOL-KIT, downloading to the PRO
via the unique communications interface provided for the PRO, 1o eventual running and testing on the micro. [t was a time
consuming cycle, enhanced by the availability of a new type of BASIC compiler for development called TOOL-KIT BASIC.
This new BASIC appeared to us to be an interesting merging of BASIC+2 for the PDP-11 and VAX-11 BASIC. As far as we
could tell, this TOOL-KIT BASIC contained the best of both worlds and much more. it allowed for the declaring of specific
data types like VAX-11 BASIC, and included all buiit in functions of both types of BASIC. Like the VAX, it aliows the use
of equivalent-like functions such as the string functions POS and INSTR as well as SEG$ along with LEFT, MiD, and RIGHT.
But included in this BASIC was the availability of LABELS, the use of line continuations without the need for ampersand-
backsiash combinations, uce of case-statements and other constructs such as the OTHERWISE, END-IF, and ITERATE. Built-
in to TOOL-KIT BASIC is the availability of RMS-11 for handling all file 1/O.

Even though we developed our application on the VAX, the TOOL-KIT compiler commands looked just like BASIC+2 on the
PDP-11 rather than DCL. Modules were fetched using the OLD command, and then compiied with switches like /DOUBLE,
/WORD., or /DEBUG. Compile time was very siow, much slower than it would take on a PDP-11. Since both the PRO 350
hardware and TOOL-KIT software was in field-test stage, we discovered errors in the compiler which made development a
little more frustrating than we would have liked. The support team at DIGITAL suggested that we use the /MACRO switch
for our basic compiles in order to generate a MACRO assembly source which could then be re-assembled into an object module
using the MACRO/RSX command in DCL. In order to create a task, the TOOL-KIT included an RSX-11 Task Builder which
necessitated the use of .CMD and .ODL files for the creation of a task. The .TSK file could then be downloaded to the PRO
and finally tested. If errors were found here, the cycle had to be repeated. Happily, TOOL-KIT BASIC includes a BASIC+2-
like debugger, but if your task image exceeded 24K you were out of luck.

After months of deve'opment, we finally succeeded in producing the first major application for the PROFESSIONAL 350,
a menu-driven financial modeling tool for use in the business environment called MAPS/Pro.

Copyright © Digital Equipment Corporation 1983
All Rights Reserved

It is assumed that all articles submitted to the editor of this newsletter are with the authors’ permission to publish in any DECUS
publication. The articles are the responsibility of the authors and, therefore, DECUS, Digital Equipment Corporation, and the
<ditor assume no responsibility or liability for articles or information appearing in the document, The views herein expressed are
those of the authors and do not necessarily express the views of DECUS or Digital Equipment Corporation.

STATIC INITALIZATION
OF
BASIC PROGRAMS
- or -
HOW TO SAVE PROGRAM SPACE

HOW TO SAVE EXECUTION TIME

By
Joe Mulvey
BASIC Language Development Manager

for RTL & SML

T el RPN B BACIA g L RE UIIALL AE

CONCEPTS OF DYNAMIC AND
STATIC INITIALIZATION

HOW IT WORKS:

ADVANTAGES OF
STATIC INITIALIZATION

HOW TO DO IT YOURSELF

»

o SUMMARY

LT AT

Ve o, =3 PR AR 3, S VACERA Do T (PRl 9.3 R0
"DYNAMIC®" OR "RUN~TIME INITIALIZATION"
DEFINE VALUES, DATA STRUCTURES
IN PROGRAM BY ARITHMETIC
OR STRING ASSIGNMENT EXECUTION
SHE L R AL N N IR RH ot ESL S % SnT RO ey VL T A WAL a0 K T LA ST S REETUNT L YT
RUNTIME STATIC
INITIALIZED INITIALIZED

+ + + +

| DIM ... | | DIM ... |
Tables | COMMON/MAP ... I | COMMON/MAP ... | Tables

| DECLARE ... | | DECLARE ... |

] == - == - = = | l# 2= 2% & == |
Init | READ ... | | |
Code | assignments 1 1 | Program

I o == = % 8 HoE | —me—— > | |

| ! | 1
Program | | S :

] | !

o o o ! ! | SAVED
DATA | | | ! SPACE
stmts | l | 1

+ + + +

[} ALL BASIC o SOME MACRO/BLISS

[} COSTS SPACE, TIME [¢] SAVES SPACE, TIME

2L SO SR ERR S SR S T

gt

FE R N .

PESECT X"

{ {
i | AS
| {
PROGRAM SECTION SR Be
{PSECT) {]
i i cs
1 |
NAMED SECTION OF TASK MEMORY R 1
: |
i
POSSESSES ATTRIBUTES RECOGNIZED 1 i
8Y LINKER 4 +
CONTENTS OF PSECT *CONTRIBUTED® FROM
.0BJ'S AS THEY ARE ENCOUNTERED BY ATTRIBUTES COME PROM:
LINKER g 5
] 18 MAP (X) AS = 12] PROG1.BAS
| +
] 28 MAP (X) BS = 24 { PROG2.BAS
{ |
i 3@ MAP (X) C$ = 34 | PROG3.BAS
PSECT ATTRIBUTES: BASIC (AND OTHER LANGUAGES) DEFINES
DATA STRUCTURES USING PSECTS WITH
o USED BY LINKERS ATTRIBUTES:
o LOCAL/GLOBAL
GLOBAL
o ABSOLUTE/RELOCATABLE RELOCATABLE
© READ-WRITE/READ-ONLY R B

OVERLAY (IMPORTANT!)
DATA

OVERLAY ATTRIBUTE:
PIRST OCCURRENCE OF PSECT DECLARATION
IN EACH ,0BJ CAUSES ALLOCATION TO START

AT PSECT RELATIVE ADDRESS 6

MODULE A: MODULE B: MODULE C:
.PSECT FOO OVR,... JPSECT FOO OVR,... .PSECT FOO OVR,...
A ... Bl: ... Cr wen
WHEN MODULES A,B, AND C ABQVE ARE
ASSEMBLED AND LINKED TOGETHER,
LABELS A, Bl, AND C REFERENCE THE
SAME LOCATION IN TASK MEMORY
| 1 48
! |
A = = = = = = =
| |
i | c
| |
= =~ = =~ = =~ =1
1 |
! i
| |
PSECT NAME MUST CORRESPOND TO
COMMON OR MAP NAME
IN THE BP2 PROGRAM.
MAP (FOO) ... - .PSECT FOO RW,D,GBL,REL,OVR

PSECT MUST BE DEFINED
APPROPRIATELY IN TASK OVERLAY
STRUCTURE (.ODL) TO BE
ASSOCIATED WITH
BP2 MODULES THAT
REFERENCE SAME PSECT

9

AL IR S BT VI G B A T A

CORRESPONDENCE OF BASIC DATA TYPES

AND MACRO DECLARATIONS

INTEGER DATA TYPES

MACRO DIRECTIVE) SYSTEM SPECIFIC

TYPE

TYPE +
T BYTE | .BYTE <value> ‘ l
+ | R
| WORD { .WORD <value>]' :
i [
* -11 MACRO-32 |
| .LONG <value> | VAX-L
: Lolic [2 HORD) { .WORD <low-order value> | PDP-11 MACRO-11 |
i | .WORD <high-order value> | 1
CORRESPONDENCE OF BASIC DATA TYPES
AND MACRO DECLARATIONS
FLOATING POINT DATA TYPES
TYPE MACRO DIRECTIV‘F_J SYS.TEM SPECIFIC
| SINGLE | JPLOAT <value> | VAX-11 MACRO-32 |
: | .FLT2 <value> | PDP-11 MACRO-11 |
1 | |
| DOUBLE | .DOUBLE <value> | VAX-11 MACRO-~32 |
| | .FLT4 <value> | PDP-11 MACRO-11l |
1] | |
| G-FLOATING (VAX ONLY) | .G FLOATING <value> | |
| | = I |
| H-FLOATING (VAX ONLY) | .H_FLOATING <value> ! !
A SIS R P AR L U P N e BT

CORRESPONDENCE OF BASIC DATA TYPES
AND MACRO DECLARATIONS

MISCELLANEOUS DATA TYPES

MACRO DIRECTIVE

PACKED DECIMAL (VAX ONLY) | .PACKED <value>,<symbcl>

—— -

STATIC STRING

| .ASCIl /string data/
| .BLKB <#% of characters>

12

+————t

& IR

AR S

SUMMARY

(-] SAVE PROGRAM SPACE

~ NO DATA STATEMENTS

- NO "TEMPORARY" STORAGE

o SAVE EXECUTION TIME

= NO VARIABLE ASSIGNMENT

~ NO READ STATEMENT

SUMMARY

[USE MACRO/BLISS + LINKER

- CAN BE AUTOMATED
- REQUIRES SOME EXPERTISE

~ CAN USE BP2 BUILD COMMAND

13

8P28LD for BASIC-PLUS-2?
o rHas expsnded and explanatory Bp2BLD dieloque

o Allows you te take & dednult inatallation
o Pravides on=1ine HELP in response to a ?
o Summarizes the options vou selected

o Allows vou to chenge answers during the dialogue

o Generates command file of selected optiona automaticelly

o Instells specific 8P2 ytilities

o Updates BASIC~PLUS=2

R Yl N T AR Z A b A L s

8P2BLD for version 1,6

P D @ o @ -0 ® 0 D e T D D e e D T D 4D o D P

} Basic Pius Two Build Version 81,60 !
| Input device <HMMA:> MM1: t
| CCL/MCR Name <AP2> EIS t
{ Default HISEG/LIBR for BUILD <EISCOM> NONE {
| Specify Location of Disk Library <NO> !
| Uee BP2 Resident Library <NO> YES . {
i Absolute Address = BP2 Library <7?7?> 352 !
i Specify Locstion BP2 Res Lib <NO>

' a !
= L] '
{ .]
i Build BP2 Utilities <NO> {
{ Specify Location of Utitities <NO> {
i Customize only 7 <NO> ¢
{ {
+ +

IO P, ST D e TS e 2 AT ¥ A RSTRE W L AT TR PPAT AR AT T T A s -V SRE G eyt s e

8P2BLD for Version 2

B D e s e B P L B T e

“hat device {s the distribution medium mounted on <MM@:> ([§]:
.

{ {
H !
i i
' !
| . {
| Do vou want the defeult installation <YES> !
{ #het name do you went tc use to invoke BP2 <AP2> i
: Here is a summary of the options you hsve salected: |
” !
] o
: : I
i Do vou wish to change any of your snswers <NN» !
| The BP2BLD dialoque (3 comolete. {
I The installation will take sbout sn 1 hour to complete, H
{ H
v +

O e D B B O BB ®E =D 5o DS = - " o - w0 B > = o o = 23 = s = > B

16

NEW BP2 INSTALLATION FEATURES

L L e R Y P T TS T T L L TR TR LT)

! New Resident } BP2RES snd RAP2SMLg t

] Libreries } One, both, or rone]

| SRS e S m e ma e | e e Ao e S S SRS S SRR SR S e m S |
Optional H RUN, LOAD, and

Run Suoport { Immediate Mode
D T TS YRRy PUPNNI PR ISP RPI RSP PRI ORI S
New Choices H Link Run support with BP2RES?
' Default for resident Yibrary?
| Thstall Resequencer?
i Inatall Dump Analyzer? (RSTS)
| Device and sccount for compiler work files?
cencnusuncssencana |
New Defaults i Dates tyce
i Datas type size
! CROSS . REFERENCE: KEYWORDS
} SYNTAX_ CHECK
| FLAG: DECLINIMNG
] Listing page Yength and wioth

{
|
]
|
!
|
!
§
T T T e L L LT T L P T T Y |
]
]
]
!
!
l
L T L L e T T T TR Y P T P P RS R P P L PSR DR L L L o2 4

!
|
{
§
!
!
!
:
!
{
!
§
{
i
+

OLD BP2BLD

Use BP2 Resident Library <NO>

NEW BP2BLD
Do you want to install BP2RES <NO>

Do you want to install BP2SML <NO>
which 8P2 resident librery do vou want as the default <NONE>

R AN T TR RS S T N

BN AT N SRR e A s

QLD BP2BLD

Build BP2 Utilitias <NO>
Specify Location of Utilities <NO>

NEw BPZ2BLD
Do you went to instal) the BP2 Resecuencer <NO>
Enter the device and account for the SP2 Reseauencer <LB:[i{,54}>

Do vou want to install the BP2 Dump Analyzer <NO>
Enter the device and account for the BP2 Dump Analyzer <SY:>

17

For All Svatems and Specific Systems:

trmoamcund tecneraneneaeend

8ASIC

User’s

eoeoeensed

{
{
|
{
|
{
!
{
| Guide
|
I
|
!
|
|
¢

tovnvnasanns f !
zzz» | RASIC on | =za> ! !
1 VAX/YMS |] !
temcuncanmey ! !

{ BASIC t

tomevnansvuy 1 |

| BASIC on | { i

zzx> | ASXw1iM/ | zzs> | !
| M=PLUS ' “enual {
| !

| !

H !

{ {

! 1

H !

+ +

. Reference

forenunsnonnd

T T L Y
zax> | BASIC on | z=s3>
} RSTS/E !

tonccevawwny

233>

fecwmnat

~® xODO O

fsa-~ce

|
|
!
|
{
!
!
!
{
!
|
{
i
!
!
+

The BASIC User’s Guide contains language usage
{nformation common to all three systems:

o

o

Elements of a BASIC Proaram
Simple 1/0 and PMS Files

Proaram Control

Data Definition

Functions and Arrays

Formatting Output with PRINT USING
Compiler Directives

Handling Run=Time Errors

Reserved Keywords and Coding Conventions

- AR AL TR DR T T

BASIC on VAX/VMS Systems includes information on:

o Getting started and simple DCL commands

o Compiler commands and qualifiers

o DCL commanas and qualifiers

o Creating and using subproqrams

o Using the VAX=11 Symboli¢c Debugger

o Using Tibraries and shareable images

o Using system services ang hTL routines

o Using new VAX=11 BASIC feastures

o Compile~tine and run=time error messaces

o ASCI! codes and dats defimition

20

MR, S0 A LW B 7 1 T e

108 AL LR BTN

o LIANA AT P AT T

Llewiier

ML s

8ASIC

on RSX=1iM/M=PLUS Systems and BASIC on

RSTS/E Systems tnclude {nformetion ont

o

o

Getting started and simple commands
Compiler commands and qualifiers
Device=specific [/0

Program segmentation and optimization
Using the BASIC-PLUS<2 Debugger

Using Jibraries and BASIC=-PLUS=2 uttlities
Compileetime and run=time error messades

ASCII codes and data definition

I TP e e

The BASIC Reference Manua!l describes:

(]

-]

Program elements and structure
Compiler commands and directives
Statements and functions
BASIC~PLUS~2 debuager commanrds

Reserved Keywords and Coding Conventions

T

i

Format (old)

- - B DD T W e T R D e P =Y

!
}
|
N

COM{MON] [(com=nsm)] ([aata-tyoe]

nrumevbl

strevbl (2int-exp]
num=arr(numecnstlynum=cnst]})
strearr(numecnat{,num=cnet]) {snum=cnst)
Filli=ttam

PRI

21

}
}
}
}
}

{ooal
{eoal
{oca)

(.4

faoel

L T R T T e L e Y Y P L L e e PR L R R R P R R R L L el]

LTMAT St)

R e R T L e R

Record Structures in VAX-11 BASIC V2

By

Tom Benson

24

0 HECURD templates are defined by the RECORD
statsment.

© A RECOKD name can be used wherever a BASIC
data-type keyword is valid.

© RECORD data structures can be composed of

variables of any valid BASIC data type or other
RECORD types.

RECORD rgcord-name
{data-type component-name,...}

EWD RECORD {record-name)

LS

record-name is the name of the data structure.

data-type is a valid BASIC data-type keyword,
or another reco~d-name.

ﬁomponent-naqe is a variable, array, or FILL
item.

Each line of a record block can have an
opltional line number

RECOKD TEMPLATES sllocate no storage; they only
define the name a3 a data structure. Using the
TEMPLATE 2s a data-type in a declarative statement
declares a RECORD 'INSTAKCE, for which storage is
allocated.

100 RECORD EMPLOYEE
LONG EMP NUMBER
STRING FIRST_NAME = 10
STRING LAST RAME = 20
END RECORD EMPLUYEE

1000 DECLARE EMPLOYEE EMP_REC_), EMP_REC_2

25

Only assignment and comparison (equality ana
inequality) operations are allowed on entire
records. Elementary components may be wused as
normal baSIC program variables. They are specified
by. the RECORD instance name und the component naame,
se¢parated by ":i:v,

1500

2000

DECLARE EMP_WAGE_CLASS EMP

[NPUT "wage Class"; EMP::WAGE_CLASS

SELECT -EMP: :WAGE_CLASS

CASE "A"
INPUT
INPUT
INPUT

CASE "b*
INPUT
(NPUT

CASE nC»
INPUT
INPUT
INPUT

END SELECT

'Ra:e';EHP::HOURLY_HAGE
'Hegular pay';EMP::REGULAR PAY YTD
‘Overtime pay';EHP::OVERTIFE_PKY_YTD

'Salary';EMP: iSALAKLIED: : YEAKLY SAaLaKY
*Pay YTUL';ENP::SALAKIEU: :PAY_YTD

*Salary';EMP: :EXECUTIVE::YEARLY SALARY
"Pay YTL';EMP::EXECUTIVE::PAY YTD
‘Expenses';EMP: :EXPENSES_YTD

Elliptical references:

©

o

The RECORD instance must always be specified.

Any dimensioned
specified.

GROUP name must always be

Any other intermediate component
omitted.

name may be

The final component name must be specified.

1 RECORD RECTYPE
GROUP GROUP 1

END GROUP GROUP 2

INTEGER™A

GROUP GROUP 2
[NTEGER B, C

END GROUP GROUP 2

GROUP GROUP 3 (Tu)
INTEGER™D, E

END GROUP GROUP 3

END RECORD RECTYPE ~

UECLAKE RECTYPE REC

PKINT REC::GROUP1::GROUPZ::B,
PRINT HKEC::GROUPV::GROUP3(1%)::lL

REC::C

PRINT REC::GROUP3(1%)::E

28

10 RECORU COMPLEX
REAL RE
REAL IM
Exb RECORD
20 DEF COMPLEX ALD(COMPLEX 0OP1, QPZ)
ADU::RE = OP1::RE « OP2::RE
ALD::IM = OP1:: 1M « OP2::IM
EsD DEF

50 DECLAKE CGMPLEX A,B,C

40 INPUT "A = "“;A::RE,A:: 1M
IWPUT "B = ";B::RE,B::IM

C = ALDC 4, B)

PRINT "A+B = "; Ci:HE; "™, Ci:lM; "L

RECORD JP1 ITEM DESCRINTOR
WORD BUFFERTLENGTH
WORD ITEM CODE
LONG BUFFER ADDRESS
LONG RETURNTLENGTH ALDRESS
END KECORD JPL_TTEM_DERTRIPTOR

KECORD JPT _LTEM LIST
JPL_ITEM DESCRIPTOR JPI_ITEM(2)
LONG L1ST TERMINATOR

END RECORD JPT_LTEH LIST

UECLAKE JPI_LTEM_LIST ITEMS

AN

ITEMS::JPL ITEM(O)::1TEM CODE
[TEMS::JPITITEM(Q): : BUFFER _LENGTH
ITEMS::JPI_ITEM(O): :BUFFER_ADDRESS
LTEMS:: JPI_ITEM(0): :RETURN_LENGTH_ADDRESS

JP1$_PRCHAM

LEN TUSER_NAME)

LOC (USER_KAME)

LOC (USERT”NAME_LENGTH)

" oo

1]
JP1$_ACCOUNT
LEN (ACCOUNT HAME)
L0OC (ACCOUNT NAME)
LOC (ACCOUNT_LENUTH)

ITEMS::JPT_LTEM(1):: {TEM_CQDE

ITEMS: : JPI ITEM(1): :BUFFER_LENGTH

LTEMS:: JPLTITEM(1): :BUFFER_ADDRESS

ITEMS: : JPITITEM(1): :RETURN LENGTH_ALDRESS

" onon o

BN TSN LN

WA N - v 2 L

ITEMS: :JPL_ITEM(2)::ITEM CODE

2 JPLS_CPUTIM
ITEMS:: JPITITEM(2): :BUFFER_LENGTH s

ITEMS::JPI_ITEM(2): : BUFFER_ADLKESS

J

4

LOC (CPU_TIME)
ITEMS::JP U ITEM(2): : RETURN_LENGTH_AUDRESS = L

0C (CPU_TIME_LEWGTR)
ITEMS: :LIST_TERMINATOR = 0

SYS_STATUS = SYSSGETJPL(,,, ITEMS ,,,)

29

The CCD directory hierarchy can be orested and
maintained using the CDD Dictionary Management
Utility (DMU). It allows you to

o Create dictionary directories and
sub-dictionaries,
o Delete dictionary directories,

sub-dictionaries, and objects.

o Rename CLD entries.

Sst the protection of CDD entries.

List entries, their attributes, and
lists,

Make 2 backup copy of the dictionary.

Copy directories within the dictionary.

hiztory

The Data Definition Language Utility (CDDL) allows
you to enter record definitions and new dictionary
directories into the CDD.

o Create a CDDL source file containing the record
definition, using an editor.

© Invoke CDDL to insert the definition into the
dictionary.

DEFINE RECORD path-name
[DESCRIPTION {1S] /% text #/].
field-description-statement

END { {path-name }] [RECORD].
{ [given-namel]

DEFINE RECORD CDDSTOP.CORPORATE.ADDRESS_REC
LESCHIPTION IS

/% Contains standard format for addresses ¥/,
AULRESS STRUCTURE.

STREET UATATYPE IS TEXT
SIZE IS 30 CHARACTERS.
CITY DATATYPE TEXT SIZE 30.
STATE DATATYPE TEXT SIZE 2,
{1P_CODE STRUCTURE.
NEW DATATYPE 1S UNSIGNED NUMERIC

SIZE 1S 4 DIGITS
BLANK WHEN ZERO.
oLp DATATYPE IS UNSIGNED NUMERIC
SIZE IS 5 DIGITS.
END ZIP_CODE STRUCTURE.
END ADDRESS STRUCTURE.
END ADURESS_REC.

To access a CDD record definition from VAX-11 BASIC, use

$INCLUDE %FROM %CDD cdd-path-name

For example,

Or, it CDDSDEFAULT =z CDD$TOP.PERSONNEL,

32

%INCLUDE 3FROM %CDD “SERVICE.SALARY_REC"

SINCLUDE %FROM 3CDD 'CDDSTOP.PERSONNEL.SERVLCE.SALARY_REC"

¢ /SHOW:({KG)CDD DEFIMITIGNS)
~ specifies whether or not te list
racord definitions extracted from
the CDD in the listing file.

o /{NOJAUDIT(: (str-14t}]
{:{file~spes}]
~ spgcifies whether or not to log
audit entries in the CDD for racord
definitions extracted from it.

in ;edinXQn. te the str-lit or file-spsc you
specify, BASIC includes the following information
+n audit entries:

© The access was in a BASIC program
¢ The access was an extriaction (COMPILE)
o The name of the progrém aodule that requested

the extraction and the date and time of tHe
request.

DEFIKE RECORD basicdef
DESCRIPTION 1S

/% This is an example record containing #/

/* data-types native to VAX~11 BASIC %/,
employee STRUCTURE.

streaet DATATYPE TEXT SIZE 30.

city DATATYPE TEXT SIZE 30,

state DATATYPE TEXT SIZE 2.

zip _code STRUCTURE.
new DATATYPE PACKED NUMERIC SIZE 4 DIGITS.
old - DATATYPE PACKEL NUMERIC

END zip_code STRUCTURE.

emp_number DATATYPE IS SIGHED WwORD.

Wage_class DATATYPE TEXT SILE 2.

salary ytd DATATYPE 15 D_FLOATING.

END employes STRUCTURE.
END basicdef.

33

SIZE 5 DIGITS,

define racord cdd$top.busic.integers

description is
/% Test of selected integer data-types %/,
basicint structura.

my byte datatype is signed byte.

Ry _ubyte datatype i3 unsigned byte.
my_word dstatype is signed word.
umy_uword datatype is unsigned weord.
my_long datatype 18 signed longword.
my_ulong datatype {3 unsigned longword,

end basicint structure.

end integers.

c1
c1
C1
Cc1
C1
C1
c1
Cc1
c1
¢
C1
c1
<1
c1
c1

1 1 $include %from %cdd ‘integers’

1 1 Test of selected integer data-lLypes

1 RECORD BASICINT 1 UKSPECIFIED

1 BYTE MY BYTE 1 SIGNED BYTE

1 GROUP MY UBYTE . { UMSIGNED BYTE

1 BYTE BYTE_VALUE

1 END GROUP

1 WORD MY WORD ! SIGNED WORD

1 GROUP MY UWORD, § UNSIGNED WORD

1 WORD WORD_VALUE

1 END GROUP

1 LONG KY LONG t SIGNED LONGWORD
i GROUP MY ULONG . § UNSIGNED LONGWORD
1 LONG LosG_VALUE

1 EXD GROUP

1 END RECORD

If a non~zero SCALE is specified in a CDD
definition of a fixed-point (integer) or
floating point field, BASIC reports the warning
"CDDATTSCA, CDD specifies SCALE for <name>.
Not supported®.

If a BASE other than 10 is oaspecified in the
definition of an integsr or floating point
field, BASIC reports the warning *CDDATTBAS,
EDE attributes for <{name> are other than base
an,

36

define record cdd$top.basic.funnyintegers

desgription {s

/% Test of quadword and octaword integer data-types %/,

basicint structure,

my _byte datatype i3 signed byte scale 2.

my long datatype 13 signed longword base 8.
my_quad 8azatype is signed quadword scale 5.
my octa datatype i3 signed octaword base 16.

end basicint structure.

end funnyinteyers.

c1
c1
Ci
c1
c1
c1
¢
1
c1
Cc1
c1

1 %include %from %cdd ‘funnyintegers!'

! Test of quadword and octaword integer data-types

RECORD BASICINT f UNSPECIFIED
BYTE HY BYTE

GROUP MYTQUAD
STRING STRING_VALUE
END GROUP

"
©

GROUP MY OCTA { SLGNED OCTAWORD

STRING STRING_VALUE
END GROUP
END RECORD

#
-
o

_ ! SIGNED BYTE
LONG MY LONG ! SIGNED LONGWORD
! SIGNED QUADWORD

R R

if a field of type BIT is not a multiple of
elght bits in length, BASIC signals the error
"CDDBITFLD, field <name> from CDD has bit
offset or length®.

If a definition contains a field of the VIRTUAL
gata-type, BASIC signals the error "CDDUKSDAT,
data type specified in CLD for <name> not
supportea®.

37

AT RO SR PR

USING USEROPEN IN VZ BASIC

By

Stepnen Reilly

40

IXTRODUCTION

New OPEN clause feaaturas
= Whet is USEROPEN ?

= How to use USEROPEN
Usaful hincs snd waraiags
Wrap-up

NEW OPEN cLaUSES

=~ The nev clsuses are uead with BRMS f{les only

~ 0n RSX-1IM and REX-~11M~PLUS

- SQqunnttal, Relative, Ind
-~ Not Terminal forumat Eilcl‘x‘d' Tireual

NEW OPEN CLAUSES

- On VNS

= All typas of CPENs

- On RSTS/E

- Sequential, Relative, Indexed
= Not virtual or terminal format files

HEW OPEN CLAUSES
= In BASIC~-PLUS~2
L]
~ The clauses will not affect device spacific OFENs

10 OPEN “TI:” FOR LNPUT AS FILE #12

BUFFER

NEW OPEN CLAUSES

~ Sequential files aultiblock count
- Indexed and Relative files multibuffer

EXTENDSIZE

Function of the clustersize of the media on RSTS/E

RECORDTYPE

LIST
NOHE
ANY
FORTRAN

(New for BP2 only)

(New for BP2 ounly)

- DE

41

KEW OPEN CLAUSES
FAULTHRAME { Mew for BP2 only)

OPEN “ACCT.DAT" AS FILE #1X%, SEQUENTIAL FIXED,
DEFAULTNAME “SY:[1,10)TEST"

- Resultant string is SY:[1,10]ACCT.DAT

- Also uzaful because the channel ie associsted with the LUN,
If the LUX is asssiguned to a different device and the
file spec doas not have an explicit device the OPEN will
use the previous LUN assignment. (3P2 ouly)

HOW TO USE A USEROPEN ROUTIRE

10 MAP (BUF) STRING FILE_BUFFER = 807

OPEN “DAT.DAT" AS FILE #1%, SEQUENTIAL VARIABLE, MAP BUP,
USEROPEN USR

-»
CLOSE #1%
CALLING MECHANISM (-11s)
FAB

R —l _gfmeeeae —1
RSmmmmmmmassd| | ! (——
-1 2 | R
| ~mmmmmmemm| mmmmmme |

| PAB Addr | —
| (Bt

| = |

| RAB Addr

! | RAB

| e mmmmee T e e |

JR—

A SAMPLE USZROPEM ROUTINE POR THE lls

.TITLE USR
e
; This routine will link a protection XAB to
s the end of a linked list of XKABs so that the
4 file will be created with & protection code different
H from the default protection code for the disk {t {s on.
1
; INPUT:
5 2(R5) - Address to the FAB
5 4(R5) - Address to the RAB
H
; OUTPUT:
H

RO - the STS field of efther the FAB or RAB

44

; EFFPRCT:

EXTERNALS:

+MCALL
$GNCAL
§FBCAL
SRBECAL

A SAMPLE USEROPEN ROUTINZ FOR THE lls

The file is created,

a connect is done if no errors occured

Bl = R} are destroyed.

$GNCAL ,FABSE ,RABSE ,XABSB NAMSB ,SFBCAL,SRECAL

T

A SAMPLE USEROPEN ROUTINE POR THE lis

i+
H
3 Set the protection code for the XAB
-
PROCOD:
XABSH XB$PRO
IF DF RSX
X$FRO 60942 ; (R,RWED,R,R)
J1FF
K$PRO 40 ; Set pretection
.ENDC
XABSE
& SAMPLE USEROPEN ROUTINE POR THE lls
USR: MOV 2{»5),R2 ; Get FAB pointer
s
H
5 Walk down through the linked list of XABz (if any) and
H ineert the PRO XAF at the end.
-
SFETCH R3,XAB,R2 ; Get the £irst XAB addr {f any
BEQ 23 3 BR if none
1§: SFETCH Rl ,NXT,R3 ; Get the next XAB on the list
BEQ 38 ; If none left BR
MoV R1,R3 + R3 = current XAE address
BR 18 ; Cont until]l done
2%: $STORE #PROCOD,XAB,R2 ; Store our XAB address in the FAB
BR 48 ; Cont
3s: $STORE #PROCOD,NXT,R] Store ocur XAB address in the Last XAB on list

;

45

4 2ED EIAMFLE OF USHRAGPEN

i0 OPEW "ACCT.DAT” FOR INPUT AS PILE #iX, SEQUENTIAL, USRROPEY SPOOL_FILZ
CLOSE #1% i Spool the file
ZWD

A IND EXAMPLE OF USEROPEN

20 PUNCTION LONGC SPOOL_FILE (F&B OUR_FAB, LONG OUR_RAB, LONG CHANNEL)

RECORD FAB
STRING FILL = 4
LONG rop

END REZCORD

EXTERHAL LOWG PUNCTION SYS$OPEN { opea fils with FAB
EXTERKAL LONGC FUNCTION SYS3CONNECT ! comnect s fila with RAB
EXTERKAL LONG CONSTANT SS$ HORMAL ! normal return status
EXTERNAL LOMG CONSTAKT PAI;H_SPL

DECLARE LONG RMS_STATUS

A 2MD EXAKPLE OF USEROPEN

OUR_FAB::YOP = QUR_PAB::F0P OR FABSM SPL ! Set tha spool bit

]
! open and connect the file

RMS_STATUS = SYSSOPEK(OUR_FAB)

IF RMS_STATUS AND S$$ NORMAL

THEN -

BRHS_STATUS = SYS$CONNECT(OUR RAB)
END IF =

SPOOL_FILE = RMS_STATUS
END FUNCTION

48

Hints

=~ Dom’'t set the locate mode bit i{n thae ROP field of the RAB

= Could cause incorrect data
- Could also asuse accernr violstion on VAX

- Don't use the CTX, BKT and URBF with BP2 USEROPEN

= Access Creaztion and revised data
- Null keys

- File 1d

- Bucket sizing

WRAP-UP
- Remember the new clauses of the OPEN statement

- FORTRAN argument passing (for the -11's) and the VAX standard
passing mechanisa.

- Make sure that bit orieanted fields for either FAB or RAB
are treated as such

49

HOW TO USE THE REMAP STATEMENT
= All datas types are alloved
- Only strings allowed for FIELD statement

= All variabdles in the REMAP statement must be defined fa the
corresponding MAP DYNAMIC stataement.

10 MAP DYNAMIC (BUF) STRING STREET, CITY, LONG ZIP

HOW TO USE THE REMAP STATEMENT

- The MAP DYNAMIC must have a corresponding static MAP

10 MAP (BUY) STRING FILL = 1002
MAP DYNAMIC (BUF) STRING STREET, CITY, LONG ZIP

HOW TO USE THE REMAP STATEMENT

=~ The static MAP must be long enough to handle any element of
the MAP DYNAMIC

- Striangs lengths defaulted to zero

All numerics are based on their data type length

52

BASIC=-PLUS-2

BUF

] &
Streel ccvccvonmmens

; 0 H

- e o - o -

City et

R . -
S B NP S B e S W -*

Lip H

¥AL-11 BASIC

HOW TO USE THE REMAP STATEMENT

~ At each invocation of a subprogram (ig. SUB asad FUNCTIONs)
2ll REHMAP variables sre pofanting to thhk begiuning of the
buffer. (BASIC~-PLUS 2 only)

~ At each invocation of a subprogram the REMAP variables
are NOT re-initialized this is s restriction in V2.
(VAX-11 BASIC only)

- Execute the REMAP stateumsnt bdefore the 2 REMAP varisble
is raferenced.

53

REMAP ¥3 FIRLD REASOKS (BP2)
- Run with V2 of VAZ-11 BASIC2 - BP2 OT3

- 20 times faster

= REMAP buffer addrase determined at Yiank time

=~ PIELD buffer sddress detersined et rum time
- Rua with V2 of BASIC-PLUS 2

- FLELDed variable must be checked
~ 2 times faster { RSTS/E)
= Se¢ if assigned to dynamic spece

~ Daasssign space and assign to the buffer

REASONS (VAX BASIC)

- The MAP associated with & REMAP statement
« FIELD statement

- Re ro?c:nncad by a OPEN

~ Just a buffer srea
= Musc be looked up im RTL internal table - Deseriptors not ba slloceted if nct referenced
= PIELDed variable being assigaed - Commoa imclude file
~ Locked up L{n RTL {ncernal table

= Used so space associstad to 1/0 buffer not dezllocated

WRAP-U?P
- REMAP stateament

~ Dissection of & bduffar

-~ Less run time code
- No table look=-up
- Buffer sddrees daterained at link time

~ No special converszion functioas
- CVT$2

56

USING BASIC-PLUS-2 V2 FOR THE
PROFESSIONAL

By

Stephen Reilly

57

B O Y R R

FEATURES
~ REDIRECT command

-~ Mew debugger command that will radirect all debuggser 1/0 to
the debugging terminal while all progras 1/0 is unaffected

- Good if developing Porms ~ oriented spplications

- CHAILN

- With BPZ V2, on RSX-11K and R3X~-11M+ the program to be chained t«
no longer needs to be installed

- On the Professional, all tasks including those chained to must
be installed.

- EDITS

- ZDITS(~ ,1%Z) should not be ussd when processing 8§ bic
charscter set

R A I 1SS TR Y QR A L A A S

Tk RN T T Wk Wi AR BTN 1

~ The user task must have RMS

Error messages printing on the Professionsl is done through
common toutines that require RMS.

Error messages will look a little different. Any error
printed will be preceded by the error number.
After error message is printed out, the user must type
the (RESUME> key. This continues program execution for

countinuable errors and exits applications for non-continuable
errors

60

WA T

AT LRI RIS Y ¢GRI E e T L%

fmmmmmmn | e

! I | Compile |
} Source :—-------_>| {

[|
| wmmmemmm | (R

- The Compiler '

|
- Does not support the RUN and LOAD commands \L
- Does not support immediate mode statements / \
/N R

|

/ \ | Modify |

/ \ Yes | CcMD i

/Generate \ | files t

\ Command / 2]

\\flles?/ R el
/]

!
|
| !
i
|

BUILDING AN APPLICATION PRODUCED .0ODL FILE
- Produced .CMD file: -ROOT BASIC2-RMSROT-USER,RMSALL

USER: «FCTR SY:CT-LIBR
SY:CT/CP=SY:CT/MP LIBR: «FCTR LB:(1,5]PBEOTS/LS
UNITS = 15 @LB:[1,5]PBEICI
ASG = TI:13:15

@LB:[1,5]RMSRLX
ASG = SY:5:6:7:8:9:10:11:12

.END
EXTTSK= 952
CLSTR=PBESML ,RMSRES:RO
REQUIRED EDITING TO .CMD FILE REQULEED ED LTENG 10 ,GHD BILE
; DEFINE BUFFER SIZES
SY:CT/CP=SY:C ;
UNITS/- 19 TIHE EXTSCT = MNSBUF:0 i (4540) static single choice menu
ASG = TI:13:15 EXTSCT = DM$BUF:0 ; (4540) dynamic single choice menu
ASG = SY:S‘A'7-8~9'10~11-12 EXTSCT = MM$BUF:0 ; (1000) multi-screen menu
EXTTSK= 352 TR EXTSCT = HL$BUF:0 ; { 3410) help text/menu
£ EXTSCT = MS$BUF:500 ; (3100) message record buffer
CLSTR=PBESML,PO 2
SRES RHSRES 1 RO EXTSCT = FL$BUF:O0 s (4310) file selection/specificacion
; for ODFLL and NEWFIL troutine

o s

61

WRITING BASIC-PLUS-2 PROGRAMS IN A COBOL-LIKE FORMAT

Bruce K. Snyder and Lori Vanderspool
North Shore Sanitary District
Gurnee, Illinois

ABSTRACT

The primary language of most of the programmers in our area
is COBOL thus making it difficult to.find a programmer who

has a good knowledge of BASIC.

Therefore, the District has

had to resort to hiring COBOL programmers snd training them

in BASIC.

To reduce the training time, the District has

experimented with writing its BASIC programs in a form that
is as close as possible to the structure of COBOL.

This paper shows a sample report program written in BASIC-

PLUS-2 but which is writtem in a COBOL-like structure.

Thus

all the data and report lines will have been pre-defined in

a data division,

Using this technique, not only has it been

easier for beginning programmers to learn BASIC, but there

have been other benefits as well.

easier to maintain.

Foremost, programs are

Also, a systematic review process can

ibe incorporated into the programming function.

Finally, data is presented showing that programs written with
this technique take no additional CPU time and are roughly
the same size as programs conventionally written.

REASONS FOR ADOPTING A
NEW PROGRAMMING FORMAT

Even though there are many computers manufactured

by Digital Equipment Corporation, it holds true that
most of the programmers in the market still have
COBOL as their primary language. This makes it hard
to find qualified BASIC programmers. In many cases,
then, the District has had to hire COBOL programmers
and then teach them the syntax of BASIC. The disad~
vantage of doing this is the lost time in having new
programmers learn another language.

Secondly, writing programs using a version of the
standard DEC template always resulted in programs
that appeared to take "too long" to write. Then,
once completed, the programs were very difficult to
verify as being correct since the code was hard to
understand. This same problem has also periodically
made maintaining the programs difficult.

Therefore, in addition to better design and manage~
ment controls, a better format for prograsmming had to
be derived. The above circumstances led to an inves-
tigation of using some of the advantages of COBOL

as a formatting technique when writing programs in
BASIC.

It might be mentioned here that two reasons precluded
the District from converting outright to programming
in COBOL itself. First, all the previously-written
programs in the District had been written in BASIC
and it is easier to use only one language if at all
possible. Secondly, most of the standard software
from Digital is written in BASIC.

64

DESCRIPTION OF THE EXAMPLE PROGRAM

This section of the paper discusses the program that
has been provided as an example for future reference.
The discussion is presented in four sections corres-
ponding to the four divisions of a typical COBOL
program., Note that the name of each of the four
divisions has been highlighted with asterisks. Each
subpart of a division, such as a section or paragraph,
has been highlighted with equal signs. Column nine
has been reserved only for backslashes and comment
indicators. Column ten is always blank. The above
practices are used to help the readability of the
program.

ldentification Division

The Identification Division is the first part of a
COBOL program. Thus our BASIC program also starts
with such a division. Note that in the example
program all the lines in this division are comment
lines. There are separate lines to place the name
of the program, the author, the name of the firm,
the dates of the program, and a general description
and purpose of the program.

Environment Division

The next division of the program is the Enviromment
Division. The purpose of this division is to detail
programming practices that are unique to a particular
computer. Note that there are both executable and
comment lines in this division. The comment lines
list the computers that were used to write and com-
pile the program.

The Specisl-Names statement is used to associate any
special escape sequences to variable names so that
if the code were to be transferred tc amother com-
puter, only the lines in this part of the program
would have to be changed. The variable names could
remain the same.

Finally, the assignment of files to specific channels
is also done in this part of the program.

Data Division

The third division in a COBOL program is called the
Dats Division. In this part of the program, all the
files, record layouts, and other variables used in
the program are “mapped out™. The Data Division is
divided into two sections.

The first section is called the File Section. In
this section, the record layouts of all the files,
except the print files, are laid out. In the pro-~
gram given here as an example, there are three files
that are mapped. Note that the first line of each
file is a comment line that starts with "FD", which
stands for file description. - The rest of the linmes
for a file are executable MAP and DIM statements.
Note that, for the variables that are not strings,
the length of the variable is still listed as a
comment so that all the numbers in a map can very
quickly be added to verify the accuracy of the
program,

The second section of the Data Division is called
the Working-Storage Section. The miscellaneous
variables and accumulators used in the program are
first logically grouped. In the example program,
there are three such groups: general variables,
employee accumulators, and subtotal accumulators.
Each group of variables is placed in a map. After
each such variable has been mapped, the same vari-
ables are assigned initial values through the use
of a LET statement. The combination of MAP and LET
statements thus have the same effect as the PICTURE
statement in a COBOL program. Note also that even
though gome variables do not have to be assigned
initial values, this is done anyway so that every
variable format is both explicit and consistent.

After the miscellaneous varisbles have been mapped
and assigned values, the print record layouts are
then mapped and assigned values. The sample pro-
gram has nine detail lines and four summary lines
that are needed. Thus each one must be mapped and
agsigned initial values. Note that there are two
differences for the print record layouts. First,
each such layout has two maps. The first map is a
detailed map showing each segment of a print line.
The second map treats the entire print line as one
variable. This is necessary since BASIC programs
cannot have group fields in the same manner as a
COBOL program. The purpose of baving a generalized
map is to reduce the coding needed whenever & given
print line needs to be printed.

The second difference is that all the variables in
a print record layout must be string variables.

This is helpful in properly aligning the report and
makes it easy to code directly from a printer layout
chart. Constant variables are assigned values with
the LET statements. Fields that should be blank

or will have values later assigned to them are at
this time assigned a blank status.

65

Procedure Division

The last division of a COBOL program is the Procedure
Division., This division contains the logic of the
program. Note that by coding a BASIC program in a
COBOL—-like format we have greatly reduced the length
of the actual logic portion. This is the most impor-~
tant aspect of programming with this technique. All
the layouts of files and records as well as the ini-
tial assignment of values to variables is coded apart
from the logic of the program.

This simple standard has two profound benefits. It
first of all enables 2 lower-level programmer, or a
non-programmer, to do the coding of the first three
divisions of the prograom directly from a program
specification. After these three divisions have been
reviewed for consistency with the specification, the
program can then be passed along to a more semior-
level programmer for the coding of the actual logic.
Thus, a shop can therefore better utilize each pro-
grammer to the fullest extent of each programmer’s
abilities.

Secondly, the simple fact of separating the data
from the logic insures that no time is wasted in
coding logic for the wromg layouts. It also has

a profound impact on the ease of coding and there~
fore the future maintainability of the program.

Note that each paragraph has only one entry point
and one exit point except for where a reference is
made to a lower-level subroutine (or subprogram for
that matter). Except for the GOIO statement that
refere the program to the END statement, the only
GOTO statements allowed are ones that call the same
line number as the GOTIO statement itself is on.

All of these coding techniques help to make the
program easy to read and verify for accuracy.

VWhen it comes time for the program to print a series
of lines, the program first formats into the prinmt
variables the values from any other variables that
need to be printed. Then, to print the series of
lines, all that is needed is one print statement
with a separate clause referencing either the
generalized map for a given print line or the name
of a field that was initialized in the Environment
Division, for such printer control statements as
line feeds and form feeds.

COMPARISON WITH CONVENTIONAL
PROGRAMMING TECHNIQUES

When the District first installed its payroll system,
the W-2 form printing program was writtem in the
conventional way using a version of DEC”s standard
template. That version of the W-2 program used 262
CPU seconds and is 15KW in size, excluding the
run-time system. The version written in the COBOL
style used 271 CPU seconds and is 16KW in aize.

Thus, there is very little differemnce. This has

held true for similar tests.

But, the important comparison comes in the savings
in programmer time. Programs written with this
technique can be written in half the time and parts
of the code can be written by programmers with less
experience. This can thus greatly improve the pro-
ductivity of the shop.

1060

1186

1208

1300

2000

3000

3966
4060

4960

!
1
4
N
\
\

\

\ PRINT

INPUT "ARE THE W-2 FORHS LOADED
\ GOTO 1108 IF LEFT(CVT S(GEN.0QS,
\ PRINT

ON ERROR GOTQ 1980¢

OPEN "PR:PRIBL.MST" FOR
, INDEXED VARIABLE

ESS READ

,ALLOW NONE
MAP PRIDLN

OPEN "PR:PRRUG.HMST" FOR
,RELATIVE FIXED
ACCESS READ

OPEN

OPEN

INPUT "IS THIS A RESTART <Y/1>'

' ALLOW NONL
,MAP PRI1GH

PROCEDURE
INITIAL PARAGRAPIH.

iNPUT

INPUT

INPUT

“LP:" FOR OUTPUT AS FILE
\ GET #PC%, RECORD 4%

§ IF LEFT(CVT$$§GEN 88é34%):l%

COSUB 380¢ UNTIL GEN.EOFS$ =

ELSE GOSUB 4000

\ GOSUB 5000

\ GOSUB 700

A S IS

P

P ol dd

g
;OR 1% 1% TO

128

RESTART PARAGRAPH.

DIVISION.

AS FILE #PM%

AS FILE #PC%

AS FILE #HS%

$#LP%

\ INPUT "ENTER YEAR ON W-2 FORMS <YyY>",

IIY"

GEN, INPUT.Y

o
) 1%)

GEN.Q§
nyn

PRINT
PRINT "ENTER THE SSN APPEARING BEFORE THE LAST ";

%g?gT "SUBTOTAL **NO DASHES**", GEN.LAST.SSNS
INPUT "ENTE%zTHE ngTROL NO. APPEARING ON THAT wW-2",
GEN.W2CTRLNO% = GEN.W2CTRLNO% + 1%
GET #HS% UNTIL HS.SSN§ = GEN.LAST.SSHS
GET #HS$ UNTIL HS.SSN$ <> GEN. LAST,SSH§ AND
(MIDS(ES. CK.DATEQ,I% 2%) = GEN, INPUT.YEARS)
RETURN
ssssmomesanzzezzzunszzs ACCUMULATOR PARAGRAPH .
EMP.EIC = EMP,.EIC + HS,.EMP.EIC
EMP.FED, TAX = EMP.FED,TAaX + HS,.FED.TAX
EMP.GROSS.PAY = EMP.GROSS,PAY + HS,GROSS,.TOTAL
EMP.DEF,COMP = EMP.DEF.COHP + HS DEF,COMP
EMP.FICA = EMP.FICA + .FICA
EMP,STATE,TAX = EMP,STATE.TAX + HS STATE .TAX
ggg SSN = HS.SSwv

IF (CVT$$(EMP SSNS, 2%)

THEN GOSUB

THEN GOSUB 6009

RETURN

READ PARAGRAPH.

GET #HS% UNTIL MIDS(HS.CK.DATES

RETURN

68

<> HS. SSIIQ) AND
EMP.GROSS.PAY > @

ELSE IF (CVT$$(EHP SSN§, Z%L

<> HS.SSN$} AND
GROSS.PAY <= 6

2%

13
GEN. fNPUT. YEARS

<y{myr GEN.0S

EARS

khkhhkhkhkkxhk bk kA rhkdhbhdhxk

Open Payroll
Historical
File

Open LP:

Get FICA max
limit

Enter year
for which
W-2's are
to be run.
1f formu are
not ready,
ask again.

If restart
do that para
else do
regular read

Continue,
Frlnt last
g 2, subto=

Clo e all
files and
finish.

Enter last
SSN and
control #
so that we
can know
where to
begin,

Find last
employee.
Go past that
em oyee
il” check

year input
ear,

eturn.

2dd emplovee
totalsr 3

Reset ssn.
Read para,
Print wW-2 if
not same em
unless gross

ghen ;eset
para

Return

Get next
check with
same year.,

Return

PR R RPNV PR DR

5000~

5100

52080

5300

6000

PO ANy P N e A red

A S

-

IF EMP,GROSS.PAY > PC.FICA.MAX

THEN EMP.FICA.PAY =

ELSE
EMP.FICA.PAY
DL.81.W2CTRLNCS

DL.B4.EICS
DL.#5.EMP.SSNS

DL.@5.FED.TAXS
DL.85.PAY.TIPSS

DL.G5.FICAS

DL.£6.ENP, NAMES = PM,EMP,NAHES
DL.G36.FICA,PAYS = FORFATséENP FICA.PAY,GEN.F$)
DL.@7 .ADDRESSS = PM,ADDR
DL.0B.CITYS = PM.CITY
DL.09.STATES = PM.STATES
DL.09.ZIPS = NUMIS(PM.ZIP)
DL.29.ST.TAXS = FORMATS(EMP.STATE. TAX GEN.FS$)
DL.@9.ST.PAYS = FORMATS(EMP.GROSS,
1S.DEF.COMP,GEN, FS)
SUB .DEF.CONP = SUB.DEF.COMP + EMP.DEF.,COMNP
SUR.EIC = SUB.EIC + EMP.EIC
SUB. FED TAX = SUB.FED.TAX + EMP.FED,TAX
SUB.FICA = SUB.FICA + EMP.FICA
SUB. FICA PAY = SUB.FICA.PAY + EMP.FICA.PAY
SUB.GROSS, PAY = SUB.GROSS.PAY + EMP.GROSS.PAY!
PM.DED. CODE% 1%) PM DED, AMT(I%)
ggT $PNS Q CVT$S(EMP. ssns 2%) :
FOR I% = é (R%~ 324%) 16%) -1% i
\ MOVE FR M £PH3) 324% + (I%*10%) 1
.DED. éODE% {
DED,ANT(I%
i \ SL.83. éENSIONS = x" IF PM.DED.CODE%(I%) = 4%
HNEXT I% ’
PRINT $LPS%, i
LINE.FEEDS; !
LINE.FEED : i
DL.@1.ALLS; i
LINE.FEEDS;
LINE,FEEDS:;
DL.82.ALLS;
LINE, FEEDS;
DL.O3.ALLS:
LINE.FEEDS;
LINE,FEEDS;
DL.#4 .ALLS;
LINE.FEEDS;
LINE,FEEDS:
DL, B5.ALLS;
LINE.FEEDS: i
LINE.FEEDS; i
LINE.FEEDS; i
DL.86 .ALLS; i
LINE.FEEDS; i
LINE.FEEDS; i
DL..07 .ALLS: 1
DL.08.ALLS: !
DL.@89.ALLS; i
LINE.F : i
LINE.FEEDS:; i
LINE.FEEDS; i
LINE.FEED !
GEN.W2CTRLNO% = GEN.W2CTRLNO% + 1% i
FOR I$ = 1% TO 18% 1
i \ GOSUB 70aa IF GEN,W2CTRLNO% / (42% * I%) = 1% |
NEXT I% !
GOSUB 6068 i
RETURN i

S S S e S

EMP.DEF.,COMP,
EMP.EIC,
EMP.FED.TAX,
EMP.FICA,
EMP.FICA.PAY
EMP.GROSS. PAY,
EMP . STATE . TAX
EMP.SSNS = HS.SSN$

RETURN

PC.FICA.MAX
EMP.GROSS.PAY

= FORMATS (ENP.EIC,GEN.FS)
= LEFT(EMP.SSNS,3%)+" "%
MID(ENP.SSNS, 4 $)F """+

FORMA

HS.DEF

FORMATS (EMP. FICA GEN. F$)

69

EMPLOYEE W~2 FORM PRINT PARAGRAPH.

NUM1$(GEN. WZCTRLNO%)

RIGHT(EMP, SQNS15 TAX

EN
FORHATE&EMP GROSS, PAY
OMP, GEN, F$

RESET PARAGRAPH.

GEN F
1.8 $)

Determine
FICA pay.

Format_the
print line.

Accumulate
values for
subtotal wW-2

Determine if
employee is
covered by a
pension,

Print the
employee W-2

Increment
the counter,
Do a sub W-2
if count
§§v151ble by

Reset para.
Return

Zero the
accumulators

Reset emp
ssn,
Return

MNP RRIDRRIIDIDIDRDRRDODDDODN ORI DOV ORI RN R

PRI

ecis DECUS SUBSCRIPTION SERVICE ORDER FORM

All checks payable to DECUS
All orders MUST be paid in fuli
No refunds will be made

Prices indicated are FY'84 prices

RETURN TO: Subscription Service
DECUS
One tron Way, MRO2-1/C11
Martboro, MA 01752

Name DECUS Membership No.
(First) (Last)

Company/Affiliation

Mailing Address Mail Stop

City State/Country Zip Code oo Phone {)

PUBLICATIONS SUBSCRIPTION SELECTIONS

CODE PUBLICATION CODE PUBLICATION
MSL MUMPS/STRUCTURED LANGUAGES NEWSLETTER RST RSTS NEWSLETTER
LHS LABS/HMS/SITE MGMT NEWSLETTER LGS LARGE SYSTEMS NEWSLETTER
OAD OA/DIBOL/COBOL/GRAPH NEWSLETTER EDU EDUSIG NEWSLETTER
VAX VAX/VMS NEWSLETTER DTR DATATRIEVE NEWSLETTER
RSX RSX/IASNEWSLETTER NTW NETWORKS NEWSLETTER
RT RT11 NEWSLETTER SOS SS&OS NEWSLETTER
SPR Spring Proceedings BAS BASIC.NEWSLETTER
FAL Fall Proceedings APL APL NEWSLETTER
ALL ALLPUBLICATIONS PRODUCED
Insert Code Check
From Above: One:
M IGIT i

BASIC PLAN: This plan allows you to l l D Emper/D s [l e $ 12.00
receive one {1} selection for one year D Non Member $ 24.00
STANI?ARD PLAN: This plan-allows you D Member/DIGITAL Employee $ 25.00
to receive up to three (3) selections at one
low price. D Non Member $ 50.00
DELUXE PLAN: This plan allows you to

. . P . ¥ D Member/DIGITAL Employee S 45.00
receive up tosix (6) selections for one year.

D Non Member S 90.00

ALL: This will allow you to receive all D Member/DIGITAL Employee $120.00
publications listed above for one year ALL
for only one price. D Non Member $240.00

TOTAL AMOUNT OF ORDER $

I understand that neither DECUS nor Digital Equipment Corporation is responsible for any publication not published by a
Special Intetest Group or the contents of any publication published by a Special interest Group. 1 also understand that there

will be no refunds even if | decide to cancel my subscription.

Signature

Date
DIGITAL Employees Only: Badge No. C.C.
Cost Center Manager's Signature C.C

72

3/83

DIGITAL EQUIPMENT COMPUTER USERS SOCIETY
ONE IRON WAY, MRO2-1/C11
MARLBORO, MASSACHUSETTS 01752

ASSOCIATE

BULK RATE
U.S. POSTAGE
PAID
PERMIT NO. 129
NORTHBORO, MA
01532

MOViING OR REPLACING A DELEGATE?

Please notify us immediately to guarantee continuing
receipt of DECUS literature. Allow up to six weeks

for change to take effect.

{)} Change of Address
() Delegate Replacement

DECUS Membership No.:

Name:

Company:

Address:

State/Country:

Zip/Postal Code:

Mail to: DECUS - ATT: Membership
One lron Way, MR02-1/C11
Marlboro, Massachusetts 01752 USA

‘018

‘Anssaaiun ‘Aued
-wod ‘uolle(jeisul

30 auleu apnjouj

818y ssaippe
pio wnd ‘aigepnese
10U St [qey §| "8y

jaqe; Buijiew xigsy

