BASIGHIg -

‘Twas the night before startur
and a3ll through the shoe
Not 2 program was workinsg
Not even a loohus,
The coders hung buw their VYT100s in deserairs
With hores that 2 miracle soon would be there.
The users were nestled all snug in their bedss
While visiens of rerorts danced in their heads.
When out in the coffee room there arose such 3 clatters
I sprang from mu cubicle to see what was the matter. ‘,__—”’
And wnat to my wondering eves should showur:
But a8 surer codery in his hand 2 DECUS coffee cur,
His resume’ showed he’d been hackindg for seasonss

He turned out clean code that used the latest version.

More rarid than sadglesr the rrodrams they cames
With whistles and bells and 6 letter discrirtive riames!?

RUN RECADD RUN INQURY RUN URDATE RUN DELETE
RUN MTHEND RUN YEREND RUN HBATJOBR RUN COMFLT

His ewes were glassyy his bodwy r3le and leans
From nights and weekends in front of the screen,

A wink of his ewer and a3 twist of his head;
Soon gave me to krow I had nothing to dread.

He sroke riot 3 wordr but went straight to his work:s
Turning seecs into codes then turned with a Jerks

And lawing his finder on the <return> keys
The sustem come ur and ran rerfectlu,

UFDATE urdateds snd DELETE, it deleteds
And when he ran COMPLT» the whole thing comrleted.

He tested each whistles he tested each bell
Not once using ON ERROR GOTOy the whole thing ran swell,

The testing was finishedy the swstem concludeds
The user’s last chandes were even included,

He ricked ur his checkr and took his DECUS coffee cuss
And when off to work for a3 friend 3t 3 start-ur.

We sidned off the svstem» and turned it all ins
and waited for the comments and praise to besgin.

Rut the user rerlied with new recuests and the taunts
"It’s exactlly what I asked fors but not what I went.®

! S A —

Printed in the U.S.A.

The following are trademarks of Digital Equipment Corporation:
DEC DIBOL POT
DECnet Digital Logo RSTS
DECsystem-10 EduSystem RSX
DECSYSTEM-20 1AS UNIBUS
DECUS MASSBUS VAX
DECwriter PDP VMS
vT

UNIX is a trademark of Bell Laboratories.

Copyright © Digital Equipment Corporation 1984
All Rights Reserved

1t is assumed that all articles submitted to the editor of this newslstter are with the suthors’ permission to publish in any ODECUS
publication. The articles are the responsibility of the authors and, therefore, DECUS, Digital Equipment Corporation, and the
editor assume no responsibility or liability for articles or information appesaring in the document. The views herein expressed are
those of the authors and do not necessarily express the views of DECUS or Digital Equipment Corporation.

()

BASIC SIG Steering Committee

Chairman
Daniel Esbensen

609 S. Escondido Blvd.
Suite 101

Escondido, CA 92025
619/743-0494

Handout Coordinator

Bob van Keuren
NCCS

2235 Meyers Avenue
Escondido, CA 92025
619/745-6006

DEC Counterpart

Joe Mulvey
DEC
ZKO0O2-3/K06 =
110 Spitbrook Road

Nashua, NH 03062 ;
603/881-2228

Touch Technologies, Inc.

\mm YNYY

Newsletter Editor

Ted Bear

2185 Cox Road

Aptos, CA 95003
408/245-7990 ext. 578

Symposium Coordinator

Ray Strackbein

ICS

180 Luring Drive

Palm Springs, CA 92262
714/320-8007

Wish List

Bill Tabor

Computer Products, Inc.
1400 NW 70th Street

Ft. Lauderdale, FL 22209
305/974-5500 ext. 269

N

BASIC Wars

I got the January ‘B4 issue of the BASIC SIG newsletter
today. 5o you want war stories, do you? Well, here’s cne

from way back in the trenches of time, at least so far as
DEC’'s seftware goes.

For all who worship at the alter of User-Friendly, particularly
from the pew of BASIC-11, version 1, (yeah, veah, we’'re ulbra-
conservative; we also don‘t have a super budget) BEWARE.

In the continual quest of user input errors in control strings
it was observed that some people had trouble remembering that
‘Y<CR»' = 'yes’, etc. 5o we began to repeat the prompts.

And then is was discovered that a simple test would suffige.
Instead of

100 IF C#<{>"Y" THEN (XXX}
He tried
100 IF SEGH(C%,1,1)<>"Y" THEN (XXX)

Works fine, too. Until a non~literal minded user {programmer,
actually) just typed a <CR}» for a negative response. OOPS!
The program promptly went out to lunch; trapped to 000004

and back into the monitor. Goodbye, application code!

It seems that BASIC-11 won’t take a segment of a null string.
One would think that since the string is carried as a null,

SEG$ would rebturn a null, and, of course, the conditional’s
test for egquality would fail. But no, SEG$ gets itself all
wrapped up. 5So it became a choice, force explicit responses
from the users (Y or N, for example) or allow them more freedom.
You have to remember that we’ye not dealing with engineers,

but secretaries, book keepers and the like. Not that the
engineers are much betbver. Allowing them to type "¥Y", "N¥,
"yes", "no", or anything else 1s easier. ¥For them. And simply
testing for a null string before taking the SEG$ has aveided the
problem.

Maybe DEC fixed %this little insect in later releases,

Good luck all,

Tim Mueller

Energy Technology, Inc.
1440 Phoenixville Pike
West Chester, PA 13380
{215} 647-6810

Letter From Spain

Simce I‘m 2 little pit far from the "Software Free Worldg®
(I‘'m 60 miles west of the Ssharas Desert)y the only information
I det is from the BASIC SIG.

I want to exchande information about CUOMFUTERS AND LAWSy softuare
will be arrrecizated. This Universitw would like to estabhlish
relations with U.8. universities researching in Laws and computers,

S0y rlease HELF mer send me some RYTES.,

c—
.1a Cuétara.

Comisidn de Inform&tica Jurfidica
Facultad de Derecho
Universidad de la Laguna
Tenerife,Espala

[BASICEY _

Dear Ted,

Attached you will find the response to the SPR
submitted by Milwaukee Public Schools concerning
their difficulties using GFLOAT and HFLOAT
datatypes in VAX BASIC.

A copy of this SPR was printed in your January
1984 issue of the BASIC SIG Newsietter and

may be confusing to anyone wishing to use
GFLOAT or HFLOAT datatypes in VAX BASIC.

It seems appropriate that the response

to this SPR be published in the next
issue of the BASIC SIG Newsletter so
that anyone interested in using

GFLOAT or HFLOAT datatypes is

provided with the correct information.

Note that the response refers to
the KU750 option, which applies to
the VAX-11/750 that this customer
was running. The name of the option
on other systems may be different,
but the same concept applies.

Tom Lavigne

DIGITAL
SPR ANSWER FORM

SPR NO. 11-63458

SYSTEM VERSION PRODUCT VERSION COMPONENT
SOFTWARE: VAX/VMS 3.4 Basic 2.2

The response received for your Software Performance Report 1is as
follows. Please contact your local office for further assistance.

PROBLEM:

Any program which uses real values and which 1is compiled with the
GFLOAT and HFLOAT qualifiers will fail.

SOLUTION:

Thank you for your SPR. The error you observe when attempting to use
GFLOAT and HFLOAT operations indicates that your system does not have
G & H microcode in operation.

In order to use GFLOAT and HFLOAT variables or constants in any
language you must have G & H microcode in your system or link your
program with LIBSESTEMU from SYSSLIBRARY:STARLET.OLB. For example:

LINK program,SYSSLIBRARY:STARLET/INCLUDE=LIBSESTEMU

If you link your program with LIBSESTEMU, the VAX/VMS run-time
library will trap any OPCDEC faults generated by use of GFLOAT/HFLOAT
instructions and then emulate the instructions in software. Please
refer to page 6-33 of the VAX-11 Run Time Library User's Guide for
more information on LIBSESTEMU.

If your system has G & H microcode support installed, no OPCDEC
faults should be (Jgenerated. The occurrance of OPCDEC faults can
indicate either that you have not chosen to install the KU750
microcode option or that you are not loading the microcde when you
boot the system.

In Defense of BASIC-11

By Arthur H. Stroud

Department of Mathematics
Texas A&M University
College Station, Texas 77843

1. Introduction

It seems that most articles about BASIC are about data
processing applications. Here I will say a few words about
a scientific application. 1In particular I want to point out
some features of BASIC-11 which make it well suited to this
application and which I would hate to see omitted in future
"improvements"” of the language.

2. A Scientific Application

I am interested in algorithms for numerical analysis
calculations, in particular algorithms for the numerical
evaluation of definite integrals. There are many different
types of integrals to be considered. There are single
integrals, double integrals, triple integrals. There are
integrals over bounded regions, over unbounded regions, over
the entire space. There are integrals with special types of
weight functions, integrals with rapidly oscillating
integrands, integrals of numerical data, and so on. There
are literally hundreds of useful algorithms which are
known. (A standard reference is: P. J. Davis and P.
Rabinowitz, Numerical Integration, Academic Press, 1975.)

I am developina an interactive system of such
algorithms. Without going into a description of this
system, the main features of it will be:

1. It will contain a brief description of each
algorithm.
2. Each algorithm can be called upon to

evaluate an integral provided by the user.

3. To evaluate an integral the user will have
to provide, among other things, a subroutine
that evaluates the function to be integrated
(the integrand).

In order to be interactive as much as possible it is
desirable that the subroutine that evaluates the integrand
should not have to be compiled and linked to the main part
of the system. To my knowledge this can only be done at

present with an interpreted language. This is where
BASIC-11 comes in.

3. BASIC-11 and Enhancements

As pointed out in the article by J. Coleman and D.
Nasater, "Interpretive Business Basic with RMS-11K," pp.
76-103 in the August 1983 issue of this Newsletter, the
trend seems to be away from interpretive to compiled
BASICs. They also point out advantages of interpretive
BASIC for business applications.

To get to the point as quickly as possible I will
simply state the features that I like about BASIC-11 for my
application and the enhancements that I would make to it.

The features most important to me are:
Al - The OVERLAY statement

A2 - The ability to stop a program, enter a subroutine,
and continue without compiling and linking.

Keeping Al and A2, the enhancements that I would make
are:

Bl - Provide FORTRAN-like independent subroutines;
mainly the ability to pass arguments to the
subroutine, and independent variable names.
Independent line numbers are not that important.

B2 - Add to the OVERLAY statement the ability to shift
all line numbers in the overlay segment by a given
amount. In other words a relocatable overlay.

B3 - Have two identical versions of the same language,
an interpreted version and a compiled version,
both having features Al, A2, Bl, B2, (Now there
is a radical suggestion if there ever was one!)

I have never heard anyone mention both a compiled version
and an interpreted version of exactly the same language.
Having worked on my system for several years, I have reached
the conclusion that every language —-- BASIC, FORTRAN,
Assembly Language, whatever -- should come both ways. Why
not? Do we want to beat the Japanese or not?

4. Summary

Let's not "improve" BASIC-1ll by making it like some
other language. Let's show some imagination and really
improve it. And in the process let's not forget the
scientific user. There's no reason why DEC can't provide
the best.

BASCAL or PASIC?

A Structured Approach For
Programming in VAX BASIC

Dr. Kuriakose Athappilly
College of Business
Western Michigan University

Programming in BASIC had been very unstructured in the past. But that
situation has been changed considerably since the introduction of VAX-BASIC.
Many of the programming features in VAX-BASIC are so close to those in PASCAL
(one of the most structured languages now available) that the VAX-BASIC is
now nick-named BASCAL or PASIC. This paper attempts to show the structure
features in VAX-BASIC. While doing so, the paper will briefly deal with
some of the introductory concepts of structured programming such as the
essential features and the basic approaches.

INTRODUCTION

In the early days of computers, computer memories were limited and
more expensive than they are today. As a result, most of the programs
were written with an intent of minimal use of memory and maximum
efficiency. Experienced programmers, therefore, taxed their skills to
use complicated and nonstandard techniques in their programs.
Subseguently, the programs were extremely difficult to understand and
to use by others. Wo doubt, "debugging®™ and "maintenance" became more
and more time consuming and expensive, especially because of the
increasing salary rates of the programmers. Now, the computer costs
have decreased markedly and memory sizes increased remarkably along
with computer speed. The emphasis today is, therefore, on good design
and clarity which gave birth to the notion of structured programming.

ESSENTIALS OF A STRUCTURED PROGRAM

Structured programming is a way of designing and writing programs
so that the programs may be clearly understood and easily modified by
others. The emphasis here is on program clarity for the continued use
of it with easy debugging and maintenance tasks. Thus essential
features of a structured program are:

1. It is easy to read.
2. It is clearly understood.
3. It is easy to debug.
4. It is easy to modify.
BASIC APPROACHES TO STRUCTURED PROGRAMMING

Theoretically, any structured process must be based on two
fundamental concepts for its effective operation. These two concepts
are analysis and synthesis. In the analysis stage, we break down a
process into smaller parts until each part can be tackled in the
desired manner. In the synthesis, however, we combine the individually
tackled parts or units into one single system.

Structured programming, as it came into existence more under the
influence of natural expediency than that of a sound theory, did not
emphasize on the principles of analysis and synthesis in the
beginning. As a practical approach, therefore, structured programming
developed with the technique of the TOP-DOWN design.

TOP-DOWN DESIGN

According to TOP-DOWN design, a program is conceived as a complete
unit. This complete unit should-represent a systematic development of
a set of procedures in a certain segquence. A procedure may be simple
or complex. A complex procedure will in turn be broken down into a
sequence of simpler procedures until at last these procedures can be

written into distinct codes such that each statement in the procedure
vields exactly one statement in the program.

The top—down design has been a justifiable approach as long as the
program has not been very complex and not very large. But, when large
problems are to be solved, dependence on top-down design alone proved
to be insufficient. Subsequently, the idea of "divide and conquer"
came into existence. The technique used to implement this idea is
called modularization or modular design.

MODULAR DESIGN

According to MODULAR design, a program, because of its complexity,
is not conceived as one single unit to start with. Rather, we start
outlining the individual modules which consist of functions and
subroutines. Once we decide the number of modules and their functions,
we code and test these modules individually. Once we find that every

module in the program works as desired, we combine them into one large
module program.

In principle, these two techniques, top~down design and modular
design, are opposite in direction. But, in practice, they are
complementary. They are, indeed, the offshoots of the principles of
analysis and synthesis. To solve a sufficiently complex problem,
therefore, we may start with identifying many modules--modular
design. Here occurs the process of analysis. Then, for each module,
we may adopt a top~down design. In the end, we bring all modules
together to make it a single program——a synthesis. Thus, the two basic
approaches to structured programming are analysis and synthesis, and
two basic techniques used for the implementation of this approach are
the modular design and top-down structure,

PROGRAM STRUCTURES

After learning the two basic approaches of structured programming
we can now turn our attention to the development of structured
programming. A program, as we know, is a sequence of statements. The
way these statements are related to one another is known as the
*gtructure” of the program. In structured programming there are
basically three program structures. They are:

1., SEQUENCE STRUCTURE

2. DECISION STRUCTURE

10

SEOUENCE STRUCTURE

In a seguence structure, each statement is executed in a

sequential flow of program logic. In a flowchart form, it may appear
as follows:

. - o o - e T = e S —— cm— —

In this program structure, each procedure occurs sequentially. The
procedure may be a single statement, or, as described above, a
module. In order to implement this sequential or step by step
approach, we must carefully plan the program. We must take extreme
care to avoid unnecessary branching and the use of GOTO statements. If
we use many GOTO statements to branch back and forth, the program
becomes difficult to understand. Often such programs are referred to
as "spaghetti programs" as against structured programs. Let us suppose

that we have a problem whose programming djob consists of only three
tasks:

1. To read one record.
2. To calculate the wage.

3. To print out the result.

11

These tasks are performed with statements which are linked together in

a simple
follows:

sequence

structure, These

START-

PROCESS

OUTPUT

12

tasks can be

flowcharted as

N

The program to accomplish this task will be as follows:

KK K KK KK KK K K K K KK K 3K 3K K 3K 3K K K KK K K K K K 5K KKK K K KK KK KK KK KKK X
ILLUSTRATION 1: SEQUENCE STRUCTURE
3K K KK KK O 3K 3K K K K 3K 0K 3K 0K SK 3K K i 3K 35 K 3K K K KK K K XK KK 3K KOK KK SR KK Kok
10 INFUT "ENTER NaAME: HOURSe, AND RATE'S;NAME$s &
HOURYyRATE
20 LET WAGE = HOUR %X RATE
30 FRINTY NAME$sHOURSRATEsWAGE
40 END
REALY
RUNNH
ENTER NAMEs HOURSy AND RATET DAVIL:25+3.7
DAVID 25 3.7 2.5

——— D G - WD S . . VA W S S - — A o W S A S SV S M Sy S T W SUD SR S D T S S A W o A o ———— S

DECISION STRUCTURE

Decision structure refers to conditional branching. Conditional
branching occurs in two distinct contexts. One is the double decision
context and the other is the multiple decision context. The double

decision context is handled in two ways using IF-THEN statements and
IF-THEN~-ELSE statements.

1, DOUBLE DECISION AND IF-THEN STATEMENT

In the double decisicn structure, a test condition along with
two possible resulting paths are presented. One of these two
paths will be chosen depending on whether or not a particular
condition is met. In flowchart, this situation is shown as
follows:

NO YES

STATEMENTS

N0 THoIcEN/ES

[STATEMENTS] ISTATERENTS

| 9

In VAX-BASIC double decision situations can be tackled either by IF-
THEN statements or by IF-THEN-ELSE statements.

Suppose in the previous example, we have to decide the wage on
overtime and reqular time basis. The computer, therefore, must make a
check after it reads the record.

The corresponding program will be:

- — - i o —— — — —— — ——— - — — — > " W " S o —_— T D W M WM bd Wk S S e S SO T W W S — - S - U o

ILLUSTRATION 2: IF-THEN SELECTION STRUCTURE
10 INPUT °"TYFE IN YOUR NAME, HOURS» AND RATE®; &
NAME$»HOURSyRATE
20 IF HOURS * 40 THEN 50
30 LET WAGE = HOURS X RATE
40 GO TO &40
S0 WAGE = (40 ¥ RATE) + (HOURS = 40) %(RATE x 1.35)
60 PRINT NAME$»HOURSsRATE»WAGE
70 END

——— . . i A W T VT S S S - d— Y —— — S S D Ty Sy T =) T G AP D S S —— T G — . S — ——_ ——— - " o — ——

TYFE IN YOUR NAME» HOURS, AND RATET DAVID BRENT,40,3
DAVID ERENT 40 3 120

- - . = —— — T T S — . —— — T — . — ———— —— " T =D WS U W T DS AP U S > s S e T — o T Uy Ve o o

14

Here the condition is tested in line 20. 1If the condition is false, we
have to use our unconditional branching in line 40 to continue the
execution.

2. DOUBLE DECISION AND IF-THEN-ELSE STATEMENT

VAX-BASIC provides a convenient feature to avoid the GO TO
statement in line 40 of the previous program. This feature is the
IF-THEN-ELSE statement as we have seen in the chapter dealing with
control statements.

The previous program using IF-THEN-ELSE statements is as
follows:

—— . ——— . St =it S —— " — — 7 o S — —— —— T —— S Y G — - " ———— > — — T W " v v m- T — —

ILLUSTRATION 3: IF-THEN-ELSE SIMFLE SELECTION STRUCTURE
10 INFUT *"TYFE IN YOUR NAMEy HOURS AND RATE®: &
N%» HOUR s RATE
20 IF HOUR » 40
THEN WAGE = (40 X RATE) + (HOUR-40)X(RATEX 1.%5)
ELSE
WAGE = HOUR % RATE
30 PRINT N$sHOUR»RATEsWAGE
40 END
TYFE IN YOUR NAMEy HOURS AND RATE? DAVID ERENT»42,3
pDAVID BRENT 42 3 129

o ———————— 0 M} ——— — S0 S G G FE G S T = et WP SN A AN . VEA WA W G WD T T M S S D S S SR S S M TS e S S WS e S

We did not use any GO TO statements in this program. But when we have
many tasks to accomplish in either selections a simple IF-THEN-ELSE
statement would be inadequate. For example, the previous problem may
be elaborated as follows:

Let us assume that there are three tasks to be accomplished in
either case. Let these three tasks be:

1. determination of the number of overtime or regular time,
2. calculation of wage.
3. total wage in each category.

In a situation shown above, we may use the IF-THEN-ELSE statement as
follows:

15

ILLUSTRATION 4! IF-THEN-ELSE COMFLEX SELECTION STRUCTURE

" O a0 b S TS TISS Gis A am Ame w— —— o — VA ovn . MRS MR ey ey e St e M e Loy e e et T twm Seee ek e i com 4 oMb tm b i e o e

10 INPUT "TYFE IN YOUR NAME, HOURS AND RATE'; 8
N s HOUR » RATE
20 IF HOUR » 40 THEN S0 ELSE 120
B0 e
40 REM THE "THEN®' FART EEGINS
45 |

S0 LET WAGE = (40%RATE) + (HOUR-40)%RATE

60 LET OVER_TIME = QUER_TIME + 1

70 LET TOTAL_OVER_WAGE = TOTAL_OVER_WAGE + WAGE

80 GO TO 160

90 REM THE "THEN® FART ENLS

100 o e e
110 REM THE *ELSE® FART EEGINS

115 !

120 LET WAGE = HOUR % RATE

130 LET REG.TIME = RET.TIME + 1

140 LET TOTAL_REG.WAGE = TOTAL_REG_WAGE + WAGE

150 REM THE *ELSE® FART ENDS

160 o e e e e

3. MOLTIPLE DECISIONS OR CASE STRUCTURE

The IF-THEN-ELSE statement is convenient if there are only

two alternatives to test. When there are more than
alternatives to choose from, we enter into a case structure.

techniques which VAX-BASIC provides for case structure are the ON-

G0-TO statements and the NESTED~IF-THEN-ELSE statements.

A, THE ON-GO~TO STATEMENT

Suppose we want to determine the wages according to
categories of working hours. Let us assume that the firm

determines the rates according to the table given below.

D D D D GER S — P i S G ——— S G WS S WD Sl M S G A A S Y S G S A St e S W G P St S D i S . T —

HOURS WORKED CATEGORY COMMISSION RATE
LESS THAN 20 FART TIME $5.00
20 - LESS THAN 40 REG-TIME $6.00

40 - LESS THAN 60 OVER TIME $92.00

60 - LESS THAN 80 DOUELE TIME $12.00

- — . — — - - T o S S G S . D D G S i G SRS D AR YD M e b AN T — S S S — T —— —— — T A T - —— o

16

The case structure for the above situation can easily be
calculated by applying a simple arithemtic expression to the
ON-GO-TO expression. The ON-GO-TO statement might be as
follows:

10 ON (HOURS/20 + 1) GO TO 100,200,300,400

Suppose we have Peter, John, Jacob, Tom, Dick and Harry who
have worked 15, 35, 50, and 70 hours. A simple program
involving case structure with ON-GO-TO statement will be as
follows:

s . s T . EB S P = — - TS " o o — — T T —— > - — TS B = . D ———n i

ILLUSTRATION S ON-GO-TO CASE STRUCTURE

ITHIS FROGRAM CALCULATES WAGES ACCORDING TO

{FOUR DIFFERENT RATES. IT UTILIZES CASE STRUCTURE.
!THE TECHNIQUE IS ON-GO-TO

PRINT "NAME®»"HOURS®s*CATEGORY" s "WAGE"
F’RINT l_____.l,.____l" ________ I’l_____l,l _____]
READ NAME$sHOUR

IF NAME$ = STOF THEN 440

ON (HOUR/40 + 1) GO TO 100y200y300,400
i

REM CASE1: HOURS < 20

4

WAGE = HOUR % S

RATE$ = "PART TINE®

GO TO 420

!

REM CASE2: HOURS - 20 - LESS THAN 40
WAGE = HOUR % 6%

RATE$ = *REGULAR®

GO TO 420

!

REM CASE3: HOURS 40 TO = 60
RATE$ = "OVER TIME®

WAGE = HOUR % 9%

GO TO 420

|

REM CASE4: HOURS &0 TO < 80
WAGE = HOUR % 12%

RATE$ = "DOURLE TIME®

FRINT NAME$,HOURsRATESsWAGE
GO TO 70

!

DATA *FETER® 15, " JOHN® 35, " JACOE" 50
DATA "TOM®»205 *LUICK" » 70y "HARRY " » 55, "STOF*» 0
END

17

——— " — - =0 — o —— = e e > WA s S e Wen o o e Y o —— o b e tm—— . —— — b

RUNNH

NAME HOURS CATEGORY WAGE
FETER 15 FART TIME 75
JOHN 35 REGULAR 210
JACOR S0 OVER TIME 45
TOM 20 REGULAR 120
DICK 59 OVER TIME 493
HARRY 70 DQURLE TIME 840

———— T —— ———— — - ——— ey T ——— — — . ——— > " O Y —— o - ot T o — - ——

It must be noted, that the ON~GO-TO statement necessitates the
use of GO TO statements. Yet the ON-GO-TO statement is an
efficient tool for structured programming because of its
ability to classify into specific categories.

A, NESTED IF-THEN-ELSE STATEMENT
The ON-GO-TO statement is convenient to use as long as

there is a relationship between the case number of the
expression in the ON-GO-TO statement and the breakdown of the
data to =2nalyze. If the relationship does not exist, we have
to wuse NESTED IF-THEN-ELSE statements to handle case
structure. Let us try to find wages for a different set of
rates as described below.

HOURS WORKED CATEGORY RATE

LESS THAN 13 FART TIME $5.00

15 - LESS THAN 40 REGULAKR $6.00

40 - LESS THAN 50 OVER TIME $92.00

S0 ~ LESS THAN 70 DOUBLE TIME $12.00

18

The NESTED IF-THEN ELSE statements in this case may be
represented as follows:

Flowcharts

Task 1 ?
Code=
el Task 2
* ; =
EESEES Task 3 f///// Case 4 Case 3 l‘f \f
! i
Y N/ g
| N 4
a =1 rg i
Eode > Task 4 , - . v

The program on commissions can be rewritten with NESTED IF-
THEN-ELSE statements with one line change. The line number 90

might be replaced as follows:

- s DL G RS D e W S) D — —— " W T ———— —— > T— —— —— - ——— P W T — o — " S G W e s - 4 o -

ILLUSTRATION &! NESTED IF-THEN-ELSE CASE STRUCTURE

D M e M S RS S S WD S T S O VD ot W e — . — — s M AP e b fmn i St e WS S Gy hebe W W b Wt - = e st

10 ITHIS FROGRAM CALCULATES WAGES ACCORLDING TO

20 IFOUR DIFFERENT RATES. IT UTILIZES CASE STRUCTURE.

30 ITHE TECHNIQUE IS ON-GO-TO

80 e e
S0 FRINT *NAME®s"HOURS®y*CATEGORY®, *WAGES®
60 FRINT ®mmmm®y fmmme b (O PSR -

70 REAL NAMES$yHOUR
80 IF NAMES$ = STOPFP THEN 440

2?0 IF HOUR <= 15 &
THEN 100 &
ELSE IF HOUR < 40 &
THEN 200 &
ELSE IF HOUR < 50 &
THEN 300 &
ELSE 400
100 REM CABEL! HOURS < 15

105 |

110 WAGE = HOUR % 5%

115 RATES$ = °"FART TIME®

120 GO TO 420

125 |

200 REM CASE2: HOURS - 20 T0 < 40
210 WAGE = HOUR X 6%

215 RATE$ = 'REGULAR"

220 GO TO 420

225 |

300 REM CASE3: HOURS 40 TO < 50
305 RATE$ = "OVER TIME®

310 WAGE = HOUR % 9%

320 GO TO 420

325 |

400 REM CASE4: HOURS 50 1O « 70
410 WAGE = HOUR % 12%

415 RATE$ = "DOUBLE TIME®

420 FRINT NAME%$ HOUR,RATES$»WAGE
430 GO TO 70

440)

450 DATA "FETER®":15»"JOHN" 35, * JACOER" 50
460 DATA "TOM®"+20,"DICK" 245y "HARRY*yS5y*STOF"»0
470 END

- D T - M T s B, S S s . S St W S SOV U S it) S T A A T N ST Yo Sl S S S Sl - D SRS Y VR W it i S -

READY

RUNNH

NAME HOURS CATEGORY WAGE
FPETER 13 FART TIME 75
JOHN 35 REGULAR 210
JACOER 50 OVER TIME 45
TOM 20 REGULAR 120
DICK 35 OVER TIME 495
HARRY 70 DOUBLE TIME 840

Care must be taken in a case structure for proper indentation

and the continuation symbol

statement.

LOOP STRUCTURE

(&) required for the multiline

The loop structure is also known as the ITERATION STRUCTURE., 1In
flowchart one can depect a loop structure as follows:

[EVENT

True

False

|

cv
IV FOR FV
Ss
N
TASK 1 CV:- Control Variable
IV:- Initial Value
. FV:~ Final Value
H S§S:-~ Step Size
s s W L e
[n
{ }
! TASK X :
__._r___._i

In VAX-BASIC we have learned two ways of constructing loop structures:

1.

2.

Use of counter, and test for exit.

Use of FOR-NEXT statements.

For example, consider the following two program statements:

21

T — —— - ————— YD - t—— — ———— . o——— i " M A > " - - = s e mee — v A Amm S WA W ems e — o o

ILLUSTRATION 7% LOOF STRUCTURE WITHOUT FOR-NEXT

- o o v o —— v — - — - - T— e — W . D W S A e AR M08 St e e W e e S 4 Fes S e S0 et et i e bt e Sm vy e

10 LET C =0
20 LET C = C
0

+ 1
30 IF C > 20 THEN 60
40 FRINT C» C™2

S0 GO 70 20
60 END

- S e G o . S — S p— o S 1000 W W " S R HE T TS Wve W Ame AL e G e PN M GGa NS B LS A 8 S v o e

s 0 s s — > — o SO . " Ut s U TV S D, oy s S i s kD GO0 D i G ew Al A S TR B M =imb Cobe TN VA e M v ve S s e Sre

10 FOR C = 1 70 20

20 FRINT C» C2
30 NEXT C
40 END

S G > Y — — o —— GO WS Gt S ——— I T M W LD S o ik S > S Y T G T S T —) S S Wi G Y G e o S0

It may be noted that the segment 2 is more easy to understand, and has
less number of statements than segment 1. In segment 1, we need to
initialize the counter, make a test for exit with the IF-THEN state-
ment, and often we may have to use GO TO statements too. Thus,
counters and tests tend to clutter a program and in a way obscure the
purpose of the loop. Hence, it is a good practice to use FOR-NEXT
statements for loop-structure whenever possible.

In some cases, knowing the exact number of loopings will be
difficult or impractical. In such contexts, modified versions of FOR-
NEXT provided by VAX-BASIC may be used. These modifiers for looo—~
structure are FOR-UNTIL and FOR-WHILE as discussed in the chapter on
CONTROL STATEMENTS.

FOR/NEXT I UNTIL/NEXT

10 FOR X% = 1% TO 5 % I 5 Xi=1

20 PRINT X%; I 10 UNTIL X% = 5%

30 NEXT X%; I 20 PRINT X%

40 END I 30 X% =XL+4.1%
I 40 NEXT
I 50 END

READY I READY

RUNNH I RUNNH

1 2 3 45 1 2 3 4

22

CASE STRUCTURE USING SELECT STATEMENT

The SELECT statement is perhaps more useful than any of the
previous techniques discussed earlier in multiple decision contexts.
The general format of the SELECT statement is as follows:

SELECT Select-expression

CASE Case-~values
STATEMENTS
CASE Case-values
STATEMENTS
CASE ELSE
STATEMENTS
. END SELECT

The SELECT expression can be numeric or string. For Example, if we desire to
categorize people according to age groups in many irregular combinations,
SELECT statement can be conveniently used as follows:

B T T T T L o P g P T L

ILLUSTRATION: SELECT/CASE
IR R L R Rt L R R R R S S T R R R L PR S P R R R L L L I R B S L

SELECT AGE_OF_PERSON

CASE 15
PRINT "YOU ARE TOO YOUNG TO GET MARRIED"
PRINT '"PLEASE BE PATIENT"

CASE 16 TO 20

PRINT "YOU ARE IN RIGHT AGE TO MAKE EXPLORATIONS"
CASE 21 TO 30

PRINT "THIS IS THE MOST OPPORTUNE TIME"
CASE 31 TO 55

PRINT "TIME FOR SECONDARY AND TERTIARY EXPERIMENTS"
CASE ELSE

PRINT "YOU ARE GETTING OLD, BETTER TO GIVE UP"

END SELECT

E R TR L P T E R R T T2 3 R S S S R S F R R e

23

The modifiers are key words that qualify a statement. By qualifying a

statement, we are able to execute a statement conditionally or to create

an implied loop. The IF and UNLESS modifiers enable us to list a conditional S
expression and FOR, UNTIL, WHILE modifiers enable us to create loops.

For instance,

1. 10 PRINT "YES" IF K O is equivalent to 10 IF X 0 THEN PRINT "YES"
2. 10 PRINT "#" FOR X% = 1% TO 5% e 10 FOR X% = 1% TO 5%
20 PRINT "=*"

30 NEXT X%

3 10 PRINT "#" UNLESS K = 0 e 10 IF K 0 THEN PRINT "#*"

In short, gone are the days of BASIC spaghetti programs with innumerous
GO TO statements going up and down. With the use of the selection structures
and loop structures mentioned in the paper, we can develop reasonably sound
structured programs in VAX-BASIC. We would not be far from truth when we say
that the revised VAX-BASIC versions are as good as PASCAL to implement :
structured programs.

IMPLEMENTATION OF STRUCTURED PROGRAMMING

For the sake of simplicity, the program we chcose is very small
and less complicated. The idea is to illustrate most of the concepts
and techniques discussed in this chapter in the development of a
structured program.

The development of a structured program can be viewed as
undergoing what 1is sometimes known as the cycle of birth, death, and
resurrection. The birth of the structured program takes place through
the process of the input, output specifications of the problem--the
STEP 1, This is the FIRST LOOR at structured programming. At this
stage, we do not have a clear perception of its parts. We simply see
the problem as a whole, and as such it can not be tackled. Hence, we
want to have a closer look at it by dividing it into well defined
parts., Thus, in structured programming, the graduval death process
occurs through progressive and systematic breakdowns of the problem.
This breakdown begins with an ANALYTIC VIEW of the problem-~the STEP 2.
Here we examine the complexity of the problem and we try to adopt the
"divide and conquer™ principle. We delineate the major tasks involved
in the problem. Once we delineate the tasks, we introduce the
technique of modularity, namely, we assign each task to functions or
subroutines. This marks the first-level breakdown, the SUBROUTINE
BREARDOWN--the STEP 3, Once each module has been defined, it is easy
to introduce the TOP-DOWN DESIGN +o each module. In this stage,
usually there is a general partitioning of each unit into three madjor
units., These three units in each module can usually be identified as
Preparation, Process, and Conclusion.

The preparatory unit introduces into the specified task. The
process unit does the necessary calculations and computations. In the
conclusion unit, the task is wrapped-up. This process may be called
the UNITS BREARDOWN~--the STEP 4.

BEach of this unit is further broken down into procedures—-the STEP
5. This process can be called the PROCEDURE BREARNDOWN. At this stage,
care must be taken to choose appropriate program structures such as
sequence, selection, or looping. In STEP 6, the procedures are further
broken down into subprocedures if necessary. These procedures or sub-
procedures, in turn, are broken down into activities. This may be
called the ACTIVITY BREARDOWN. The death processes ends with it.

Thus, the activities are translated into the particular codes.
Obviously, in BASIC, these activities are translated into BASIC state-
ments. After this process, we make sure that each of the modules works
as desired through testing and debugging. Comments, documentation, and
indentations are also inserted as dJdeemed appropriate. These are the
cosmetic processes for the funeral. Finally, we combine each of these
finished modules together and make it one single program. This is the
SYNTHESIS. This synthesis brings about resurrection--structured
program. This is STEP 7.

25

STEFS

STEF

1

rJ

w

IN STRUCTURELD

EVENT

FIRST-LOOK

ANALYSIS

SUBROQUTINES
EREARDOWN

UNIT
BREAKLOWN

FROCEDURE
BEREARDOWN

ACTIVITY
EREAKIIOWN

SYNTHESIS

FROGRAMMING

DESCRIFTION DIAGRAM
A uhole view

of the rroblem

without knowindg

what the rarts

are.

Examine what
the mavor tashks
3re.

Assidgn each tashk
into each module
(modularizatior).

Each module 1is
broken down into
maJor units. {(tor
down desigrn begimns)

Each wunit is broken
gown into mador

Frocedures or sub-
rocedures., (sele-

ctiorm of rrodgram
structures).

Each srocedure or
subrrocedure is bro-
k.ern dowrn into act-
ivities tramslatsble
to languzsdge codes.,

Combinind a2ll mod-
ules togdether. (Ar-—
#ro~riate srodgdram
structuresy commentsy
documentationr inden-
tationsy and remarks
are necessary’.

26

ILLUSTRATION OF A STRICTURED PROGRAM
STEP 1l: FIRST LOOK

The problem is to generate a multiple choice quiz program which
will allow the user to answer the gquestions and will give out the
result of the quiz.

STEP 2: ANALYSIS

Obviously, the program must contain the set of multiple choice
questions, it must receive the answers as input from the user, it must
examine its rectitude and wvalidity if necessary, it must assess the
number of right and wrong answers and finally, it should print out the
result, It is also desirable to explain to the user the nature and
purpose of the program in the beginning.

STEP 3: FIRST-LEVEL BREARDOWN: SUBROUTINES

In this stage we assign the major tasks delineated in the analysis
stage into different modules in the proper sequence. Thus, we might
arrive at:

MODULE l: Subroutine explaining the nature and purpose of the
program.

MODULE 2: Subroutine to present the current question.

MODULE 3: Subroutine to answer the current question, to make
a validity check.

MODULE 4: Subroutine to verify the answer.
MODULE 5: Subroutine to print out the results.
STEP 4, SETP 5, AND STEP 6 (UNIT PROCEDURE AND ACTIVI’T'.Y BREARDOWNS)
Step 4, Step 5, and Step 6 are combined in one table shown

below. After the modules dealing with different levels of breakdown
and coding are well defined, each module is tackled individually.

27

AODULE 1

FREFARATION
UNIT

FROCESS
UNIT

CONCLUSION
UNIT

MODULE 2

FREFARATION
UNIT

FROCESS
UNIT

STEF 4
FROCEDURE

Select a
subroutine

Exrlain
FUITFOSE
and nature

End of sub-
routine.

FROCEDURE

Select 3
subroutine

1. Fresent
auestion
1.,

STEF 3
ACTIVITY

o - v ——

Call s
subroutine

rrinmtout
FUTROSEe

#rintout
nature.

Return
to main
line.

ACTIVITY

Call =
subroutine

Fresent
the cques-
tion.

Fresent
choice 1

Fresent
choice 2.

Present
choice 3.

28

STEF 6
BASGIC STATEMENT

100 GOSUR 1000

100 FRINT "FURFOSE®

100 FRINT *NATURE®

1020 RETURN

BASIC STATEMENT

120 GOSUB 2000

120 FRINT "SX2 IS*

210 FRINT, 4

220 FRINT: 6

230 FRINT, 8

S’

CONCLUSION
UNIT

2. Fresent
cuestion
32,

3. Present
cuestion
3.

4., FPresent
cuestion
¥4,

S¢ Fresent
auestion
£5.

End the

subroutine.

Fresent
choice 4.

Return
to main
1ir190

29

240 FPRINTy 10

999 RETURN

N

FLOWCHART FOR THE MAIN LINE OF THE PROGRAM

"..\\
[
't Start j
| !_5
i Subroutine for
5 GOSUEB } Explanation of the Program
L
Q
1 FOR 5
L4
Subroutine for
GOSUB 2 Current Question in the test
4
Subroutine for
GOSUB 3 Answer and Validity Check
—ee —\L-------—;
i | Subroutine for
60OSUB 4

Key and Correctness Check

|

Subroutine fovr
GOSUB 5 Displaying the Results

L

{ END ; 30

\..--.—-—-v et v s

As described above, the rest of the modules, namely, module 3, module
4, and module 5 can be developed in a similar fashien.

After we develop each module, STEP 7: SYNTHESIS, they should be
combined intc one single program. ‘This constitutes the Main Line of

the program. This process marks STEP 7--THE SYNTHESIS, The main line
for this program may be as follows:

100 GOSUE 100
110 FOR Q = 1 TO S

SUBROUTINE FOR EXFLANATION
Q = QUESTION

1

!

120 GOSUER 2000 ! SUBROUTINE FOR CURRENT
! QUESTION.

130 GOsSUB 3000 I SURROUTINE FOR ANSWER AND
P VALIDITY CHECK.

140 GOSUE 4000 I SUBRROQUTINE FOR KEY AND
! CORRECTNESS.

130 NEXT Q

160 GOSUE 5000 ! SURROUTINI FOR RESULTS.

170 STOP

The complete program is given below.

31

e > e — T e SN D i o (R — Y —) oo > SR Y Smw Seke teth S 408 irim e e e D =i e e e e S e —tee

T . G . T — — " { — - W et G S o ‘G e e S i T o S YD WD e . A Sem S —— S o - ——

! THE FURFOSE OF THIS FROGRAM IS G0 GENERATE A
' FIVE QUESTION MULTIFLE CHUICE QUIZ WHICH WILL
' TELL THE USER IF THE QUESTION IS ANSWERED

! CORRECTLY AND WILL ALSO GIVE THE NUMEBER RIGHT
! AT THE ENI OF THE QUIZ.

GOSUER 200 ISURROQUTINE FOR EXFLANATION
FOR Q@ = 1 TO § !Q = QUESTION
GOsSUR 300 PSUBROUTINE FOR CURRENT QUESTION
GOSUE 870 ISUBROUTINE FOR ANSWER AND VALIDY CHECK
GOSUER 990 ISUBRQUTINE FOR KEY AND CORRECTNESS
NEXT @

GOSUER 1070 ISUBROUTINE FOR RESULTS.
!

- D A S D B S P € D T . €Ay S S S S W (S fu w—— G SIS A M S G S T T AR M S S T T —— o

FRINT " RRKKELKEKKKIOK K KKK K KKK K KRR KKK KKK KKK KKKk

PRINT

PRINT *THE FOLLOWING IS A BASIC MATH QUIZ.

FRINT °*ANSWER EACH QUESTION WITH THE LETTER OF"

FRINT "CHOICE YOU FEEL ANSWERS THE QUESTION" Sl

- S - . e G G w— G W S S oS TP S TS VD KRS e A WS A ey P AP A% P IV S . e e fia S S S M M Gt S o T

ON Q@ GO TO 310,420,330,630-740

FRINT

FRINT

FRINT "QUESTION #1°

FRINT "WHICH IS THE ANSWER TO THE FOLLOWING FOR X7?°
FRINT

FRINT *X = (2%3) + ((S=-1)x%2)°"

PRINT

PRINT »"A) 36.6"
FPRINT »*R) ?°
FRINT »*C) 14°
FRINT »°D) -—-14°
RETURN

PRINT

FRINT

PRINT °"QUESTION $2°
PRINT "WHICH OF THE FOLLOWING IS THE CORRECT®

FRINT "SCOLUTION FOR Y IN THE EQUATION BELOW?®
PRINT

FRINT "Y = (((3%2)-1)-2) + 1°*
FRINT —
FRINT »°A) 4°

32

490
S00
210
$20
930
540
250
560
570
580
585
590
399
600
605
61¢
620
630
640
630
660
670
680
690
700
710
720
730
740
750
760
770
780
790
800
810
820
830
840
850
860
865
870
880
890
900
?10
220
230
240
950

FRINT »*E) -4°

FRINT »*C) 3°

FRINT »*I) 26°

RETURN

FRINT

FRINT

FRINT "QUESTION #3°

FRINT *"WHICH OF THE FOLLOWING IS THE
FRINT “FOR Z IN THE EQUATION BELOW?®
FRINT

FRINT "Z = ((((3%2)%(3~1)>/2)=1)/1)"
FRINT

FPRINT »"A) O°

FRINT »*E) S°

PRINT »°C) 4°

PRINT »*I) 2°

RETURN

PRINT

FRINT

FRINT *QUESTION #4°

CORRECT SOLUTION®

FRINT *"WHICH OF THE BELOW IS NOT A FROFER®
FRINT "MATHEMATICAL EXFRESSION IN VAX BASIC?®
FRINT

FPRINT »"A) (AXB-4X%XX+Y)X1-3/4%(1)"

FRINT »"B) 1X2X3X4%5%X46/1%1-1"

FRINT »*C) 222/140°

FRINT D) 3%(S/71(2%3))"

RETURN

FRINT

FRINT

FRINT "QUESTION #5°*

FRINT "WHICH OF THE EBELOW IS A CORRECT VERSION®
FRINT "0OF THE QUADRATIC FORMULAT®

FRINT

FRINT »"A) (-E + SQRT(BXX2-4X%XAXC))/(2%A)"
FRINT »"R) EB-4%AxC*

FRINT »"C) BXX2-4X%XA/2XA"

FRINT »"I) SQRT(EXX2-4%AXC)"

— S > W T —— T S —— — o —— e . T P — — " A" " ——— —

FRINT .

FRINT “"WHAT IS YOUR CHOICE*;
INFUT A$

IF A% = "A® THEN 260

IF A% = "R* THEN 960

IF A% = *C" THEN 960

IF A = "I* THEN 960

FRINT *"INVALILD RESFUONSE,

GO 7O 880

33

— o — 0 W e o = ——

O e T ot — s s s

FLEASE RETYFE. ENTRY.,®

960

?70

280

983

290

1000
1010
1020
1022
1029
1030
1033
1040
1050
1055
1065
1070
1080
1090
1100
11095
1110
1115
1120
1130
1140
1150
1150
1165
1170
1175
1180
1185
1190
1200
1210
1215

1220

RETURN

REM =~ SURRQUTINE FOR RKEY AND CORRECTNESS

! ________________________ v e 0 e S Al Sl R R 0 _—
READ Ks:

IF A% = K¢ THEN 1028

FRINT

FRINT *INCORRECT, *#+K$® WAS THE CORRECT ANSWER.*
GO TO 1040

FPRINT
FRINT "CORRECT!! *3;N$3* IS THE CORRECT ANSWER.*
LET C = C+1 IC=NUMBER OF QUESTIONS CORRECT
RETURN

LET P =C/.05 IP=FERCENTAGE CORRECT
FRINT
FRINT °*THAT IS THE END OF OUR FIVE QUESTION QUIZ®

FRINT ®"YOU HAD "3C3#" OUT OF FIVE QUESTIONS CORRECT.®

PRINT "THAT IS "sFi*Z.*

FRINT
IF C = S THEN 1160
IF C = 4 THEN 1170
IF C = 3 THEN 1180
IF € < 3 THEN 1190
PRINT

FRINT *"GREAT JOB» YOU GOT THEM ALL CORRECT!!®
GO TO 1200

FPRINT "GOOD JOEB, YOU ALMOST GOT THEM ALL'®
GO TO 1200

FRINT °*FAIR JOER» THAT IS AROUT AVERAGE.®
GO TO 1200

FRINT *v¥3U DID NOT DO VERY WELL.®

RETURN

!

DATA "C"»"A"y"R*,"D"»"A°"

END

34

U.S. CHAPTER DECUS
: Program Library

SOFTWARE ABSTRACTS

DECUS PROCEEDINGS

For your convenience and information listed below are the current DECUS
Proceedings that are available and can be ordered through the DECUS
office in Marlboro, Massachusetts. As availability changes this list
will be updated.

DECUS Media

Part No. Service
Codes
Europe 1980 Amsterdam, Holland PRO-81/V07.1 YA
U.s. Fall 1989 San Diego, California PRO-81/V@7.2 YA
Canada 1981 Montreal, Quebec PRO-81/V07.3 YA
U.S. Spring 1981 Miami, Florida PRO-81/V07.4 YA
Australia 1981 Brisbane, Australia PRO-81/V67.5 Ya
. Europe 1981 Hamburg, Germany* PRN-82/Va8.1 YA
U.S. Fall 1981 Los Angeles, California PR0O-82/V@8.2 YA
Canada 1982 Toronto, Canada PRO-82/V88.3 YA
U.S. Spring 1982 Atlanta, Georgia PRO-82/V08.4 YA
Europe 1982 Warwick, United Kingdom PRO-EUR-82 YA
Uu.Ss. Fall 1982 Anaheim, California PRO~ANA-82 YA
U.S. Spring 1983 St. Louis, Missouri PRO-STLO-83 YA

* Available from Geneva only. None available until further notice.

PLEASE NOTE: The DECUS Proceedings are no longer grouped together in
one volume; they are each listed separately. European, Canadian and
Australian Proceedings will be listed by the year, date and place of
the symposium. U.S. Proceedings will be listed by the year, season
(Spring or Fall) and place of the symposium.

revision
VAX-403

CATALOG

Version: September 1983

Author: Lars Palmer, Ph.D.AB Hassle, Molndal, Sweden
Operating System: VAX/VMS

Source Language: Datatrieve

This is a very special offering. It consists of an index of the
DECUS Library program offerings in machine readable format. It
has been in use within Europe now for some time and is updated
regularly. The aim is to update it in the Library at least twice
a year i,e., it will contain material more recent than the current
catalog. This version is updated to correspond to the 1983/84
catalog.

The material is in the form of a large file that can be loaded
into a datatrieve ISAM file and used with the procedures enclosed.
The routines needed to load the files are on the media. 1If you do
not have datatrieve you should note that the magtapes also
contain, beside the basal files, printouts from the files sorted
by the several different criteria (the datatrieve command files to
do this sort are on the media).

Note: This material is produced as a private initiative of the
submitter. The Library has no responsibility either for
the correctness of the material or for the updating of it.

Changes and Improvments: Updated to reflect 1983/84 catalog.

Documentation on magnetic media.

Media (Service Charge Code): A@@' Magtape (MA)

Format: VAX/ANSI (Blocked at 2048)

Keywords: Catalog

Operating System Index:
VAX/VMS

February 27, 1984

36

new
V-SP-17
Symposium Tape from the VAX SIG, Spring 1983, St. Louis

Version: Spring 1983
Author: Various

Submitted By: Joe L. Bingham, Mantech International,
Alexandria, VA

Operating System: VAX/VMS V3,2

Source Language: APL, VAX-11 BASIC, BLISS-32, C, VAX-11 COBOL,
DCL, VAX-11 FORTRAN, MACRO-32, PASCAL, TECO

These programs were submitted for the Tapecopy project at the
Spring '83 DECUS Symposium. This is a very large tape, over
96,080 blocks plus about 7,508 blocks of general information and
indexes into the VAX SIG tapes. It is a potpourri on new and
revised programs, command procedures and other interesting (even
useful) material. You have to browse through the tape to
appreciate it but some of the things available are: programs to
facilitate communications between VAXes and other computers, EDT
initializer procedures, spelling and grammer checkers, command
line editors, tape manipulation routines (Need to copy a UNIX tar
tape?), a touch typing tutor, a few thousand blocks of line
printer pictures and many routines to make the VAX System
Manager's job easier -~ from monitoring resources to logging off
idle users.

No guarantees are made as to the completeness, usability, or
guality of the programs on the tape and the material has not been
checked or reviewed.

Note: Release notes (User Instructions) are distributed with the
tape.

Restrictions: See individual program documentation.

Sources may or may not be included. Documentation may or may not
be included on the magnetic media.

Media (Service Charge Code): 24008' Magtapes (PB)
Format: VMS Backup (Blocked at 2048)
Keywords: Symposia Tapes - VMS

Operating System Index:
VAX/VMS

December 12, 1983

37

new
V-5P-22

Symposium Tape from the VAX SIG., Fall 1983, Las Vegas

Version: Fall 1987
Author: Various

Submitted By: Joe L. Bingham, Mantech TInternational,
Alexandria, VA

Operating System: VAX/VMS V3.X

Source Language: VAX-11 BASIC, BLISS-32, €, DCL, VAX-11 FORTRAN,
MACRO-32, PASCAL, TECO

Other Software Required: FORTRAN Compiler. However, most FORTRAN
and all other sources using a compiler include the compiled
version.

This tape includes material submitted for the Tapecopy project at
the Fall 1983 (Las Vegas) DECUS symposium. This is a large tape
with about 73588 blocks of submitted material and 11580 blocks of
general information and indexes into the VAX SIG tapes. It is a
potpourri of new and revised programs, command procedures and
other useful material. This tape contains new releases of several
of the most asked about software packages which have appeared on
past tapes (the LBLTOOLS Unix-like overlay to VMS, Denison's
spelling and grammer checker, the KERMIT and VAXNET communications
packages, the VPW poor man's all-in-one system, the ICE command
line editor and several others) and much material appearing for
the first time (TYPIST for those aspiring to greater keyboard
skills, back issues of the pageswapper, an enhanced RUNOFF and a
graphics package, to name a few) and many utilities for general
use and for the VAX System Manager.

This tape contains the first extensive collection of games since
the Spring 1979 tape (many old, some new) and a system for
controlling access to them.

No guarantees are made as to the completeness, usability, or
quality of the programs on the tape. The material has not been
checked or reviewed and documentation may or may not be included.
Note- Release notes are distributed with each tape.

Restrictions: Complete sources are not included.

Completed sources are not included. Documentation may or may not
be on the magnetic media.

Media (Service Charge Code): 240#4' Magtapes (PB)

Format: VMS/Backup (Blocked at 7952)

Keywords: Symposia Tapes - VMS
Operating System Index:
VAX/VMS

5 February 6, 1984
8

S

new
11-685

INDENT/BASIC-PLUS-2 Programming Templates
Version: V1.8, October 1983

Author: Janet Scherer et.al., North Shore Sanitary District,
Gurnee, IL :

Operating System: RSTS/E V7.2

Source Language: BASIC-PLUS-2, INDENT

Memory Required: 32K

Other Software Required: RMS File Support

Special Hardware Required: VT52 or VT100 (latter preferable)

This package, which consists of both templates and utility
subprograms, may be used to write data entry/edit programs in
BASIC-PLUS-2 with INDENT as the screen handler. The templates
include subprograms which will add, update, inquire about, or
delete a single record from an RMS indexed file; update entire
forms; or update an individual field (allowing the programmer to
insert additional validation and/or file lookups). These
templates MUST be modified to meet the needs of your own
application.

Any of the above templates may call one or more standard utility
subprograms. Utilities include: one subprogram for each RMS verb
(e.g. GET, PUT); one subprogram for each of your common
*end-of-screen”™ prompts; a subprogram for any PINPT call; and a
subprogram for any FUPD call.

Templates for the INDENT screen definition, .CMD and .ODL files,
and some programmer aids are also included.

Note: Probably minor modifications needed for RSTS/E V8.80.
Restrictions: Should use COTREES for the overlays.
Documentation on magnetic media.

Media (Service Charge Code): 6080' Magtape (MA)

FPormat: DOS-11

Keywords: Tools - Application
Development, RSTS BASIC
Operating System Index:

RSTS/E

February 28, 1984

39

new
11-677
DISPLY Enhancement

Version: V8.01, October 1983
Author: Ben Ethridge
Operating System: RSTS/E V7.2
Source Language: BASIC~-PLUS-2
Memory Required: 32K

Other Software Required: Digital Equipment Corporation's DISPLY
Program V7.2

This program performs the following functions:

User defined keyboards are sent messages from the DISPLY program
if user defined warning levels are exceeded. For example, the
user has told the DISPLY program to warn keyboards 408 and 45 of
any irreqular system static. Also, the user has set the disk
space warning level for device "DBO:" to 5080 blocks. If the
DISPLY program sees that the free disk space on DBO: has dropped
to 4000 blocks it sends a broadcast message to keyboards 40 and 45

giving the date, time, the message:"Disk DBO is at 4400 Blocks"
and a warning bell,

Actions are performed by the DISPLY program if certain warning
levels are exceeded or certain conditions are met when the DISPLY
program checks the system statistics. For example, the user has
told the DISPLY program to hold shutup if account [1,58] is still
online when shutup is run. If the DISPLY program sees that shutup
is running and [1,508] is online it changes the priority of the
shutup job to -128. It further sends all user defined keyboards a
message that [1,50] is online and shutup has been suspended.

The user may enter special "@" commands to force the DISPLY
program to detach and process the "@" command file. This gives
the user the ability to run any program the user desires from the
DISPLY program. For example, the user has predefined the "@ut"
command to mean "Log into the System Account and Run the Utility
Program."

Documentation on magnetic media.

Media (Service Charge Code): 684' magtape (MA)

Format: D0S-11
Keywords: Utility - System
Management, RSTS - Utilities

Operating System Index:
RSTS/E

40

new
11-A83

RUNOFF for RSX-11] and RSTS/E
Version: S1.4, October 1983

Author: Charles H. Spalding 111, Adept Technology, Inc.,
Mountain View, CA

Operating System: 1IAS, RSX-11M, RSTS/E
Source Language: MACRO-11
Memory Required: 16KW to 14KW

RUNOFF greatly aids the preparation of documents and manuals.
Some of the facilities provided by the program are: automatic
line £fill and right margin justification, hyphenation, section
labeling, pagination, positioning of tables and figures, and
creation of tables of contents and an index.

This version of RUNOFF is an update and enhancement of an earlier
DECUS library version. (It is not, however, derived from DECUS
No. 11-538. 1In particular, this version does NOT run under RT-1l1,
nor does it support the "transparent string®™ feature of that
version.)

This program includes several features for producing documents
which are to be copied on both sides of the paper. Other new
features include the following: the ability to combine multiple
input files; up to three tables of contents can be produced (e.g.,
Contents, Figures, and Tables; the Contents table can be
automatically generated); subentries can be recorded in the index;
the index buffer self-expands as required.

Changes and Improvements: Many bugs have been fixed and several

existing features have been enhanced. The user manual has been
extensively updated, including descriptions of all the new
features.

Documentation on magnetic media.

Media (Service Charge Code): Write-Up (AA), Manual (EB),
602" Magtape (MA)

Format: DOS-11

Keywords: Text Manipulation,
RUNOFF

Operating System Index:
RSX-11/IAS, RSTS/E

February 20, 1984

41

Bigital Offers Management Seminar

’ I know

whal Lhe experts

wilh thair Comi:u{¢rs
have to Sdy.

Bt J;st {10 B¢ on
the s3de Sldﬁ_"%

Digital's Educational Services is offering a

seminar titled, “Software project management for

small to medium sized projects." The three day

course will be of interest to anyone responsible

for software purchase, coding, usage,implementation,
management or maintenance.

Seminar leader John Rakos will be teaching project
managers a successful method for designing and
implementing software on micro and mini Digital
computers. The complete seminar will be based on
case studies from the instructor's thirteen years
of experience in software project management and
the computer training business in projects with
Digital, Bell Northern Research Laboratories, and
for the Canadain government., Several workshops in
desigining projects from start to finish will be
presented. Mr. Rankos' expertise lies in bringing
software project management tehniques previously
developed for mainframe computers to the world of
mini and micro computers, where these techniques
are just as necessary.

Seminars are scheduled for San Francisco, Chicago

New York City and Washington D.C. For information
or to register, contact Educational Services in
Bedford, Massachuseetes, at (617) 276-4949,

42

How Do You Feel Today

@

A
AN
T
s
Anxiovs
s
i(f@ @}’ }
\'i\ m:j (}
NE=
Cod
“ay
\;’J}
/'\Qj
S
DeTeRmived Disappaivtio Dissapplovung
o}
‘»\'l"\-‘ ‘i;‘jﬁ
EesTaTic ENRAGE S Euvious
RN N
(oo o3
{ ? H
: &
b N~ “51/3
o QQ'E\’IH@] Guilty Happy
HysTE@1taL Tad legrur TdioTie
Londgn Lowely Love sTRVER,
\ ®
=7,
OBsrinaTE, OpTimisTic Paned
N
O
I
?aqe;rgul Relieves SAD
— :!,- n“‘\\\
&= \ =]
_'/
Surigy Suspicrous

SubRISE D

ApclegeTic

N
2 o9 o
N

ConCENTRATING

\=/

Dispetievsng

“@CB/

\\A/

HORP.(.leD

FN,
fOO*;

}
o, .‘»”’

A

TNNOCENT

Sym PATHETIC. T#oo:,m-gul

43

IANTERECTED

.

ARRoGANT Basu Sor Bhiss ful
BB AR
& w7

QoNSnDEMr CUR:oos

Lg® D& N\

N v/ BE2
DisqusTEd Dls‘rns'r.egw EAVES DRopPING
NP
ol \&

FRiquTenER FRuUSTRATED

~ § &\
) v 7

4

Hor HuvgoveR

B
+G

Jedlous

\A \
© @

Mgt 1 niDug M SERARLE M= gaTive
2\
s
“~
Pru sy PozzlE)

'

Smug

Saoceres
[

UNDEC 1DED W TR bRy

Tuwas the Night Befare Start

‘Tuzs Lhe night before stsrtus
A 211 through the shos
Not 2 rrodgram was working
Mot even a lookus.

The codersz hung by their UT100s in dessrairs
With hores thaet 8 miracle scon would be
The ussrs dere r@atled 2ll snug in their bedsy
Whidle wisions of rerorts danced in their
Whern out in the coffee room there srose such 28 ¢

I serang from mw cubicle to

wondering
syrer coders

wnat Lo my
But &

Fals 3 . "y oo
MG B Rs

should showue:
i

i his hand & DECUS

for
used the 1

meen hackins
out clean code thnst

showed he‘d
Lurred

His resume’

M

More rapid tnaen sedglese: the erograms they cames
With whistles snd bells and & letter dis

FUIN
PN

UPDATE
BATJOR

RECADD
MTHEND

RN INQURY
RUM YEREND

RUN
RUN
fies podwe razle anmd leanys
and weekends in

eues were S13
i

From mlsh

fi owink of ard o2 twist of nhis nesds

=
9,

see wWwhal was

coffee

LRIBVBONE

Up

3

there.

neads .
laztters

the matter.,
Ll 0

¢

atest version.

crirtive names!

RUN DELETE
RUN COMPLTY

front of the screesn.

Soon gave me to krnow I ohed mnothing Lo dresd. e
Me seroke mot 2 wordsy Dubl went straight Lo his work:s
Turning seecs into codes Lthnen turned with s Jderke
fired laging his finger on the gturns kewy
The swstem come ur and ran rerfectls.
UFDATE wedabteds and HBELETE: it deletedy
find when he ven COWFLTy Lthe whole thing completed.
He tested pach whistlesr e tested ezch bell
Mot once using ON ERROR GOTOs ithe whole thing ran swell.
The teshting was fTinisheds the sustem concludeds
The wuser’s last chandes were even included.
Me sicked ur his check: and took his DECUS coffes cusy
Arg when off to work for 3 friend at s start-ur,
We signed off the sustemr and turned it all ine
and wasited for the comments and praise to begin.
Byt trne user replied with new recusstis and the taunty
"It s evschtlly what T zsked forsy bt not what I wanbt.®
S
Q%b

US CHAPTER

BASIC 596G Newsletter

