~ [BASICEY

August 1983 Issue

SN
Copyright © Digital Equipment Corporation 1983
All Rights Reserved
It is assumed that all articles submitted to the editor of this newsletter are with the authors’ permission to publish in any DECUS
publication. The articles are the responsibility of the authors and, therefore, DECUS, Digital Equipment Corporation, and the

editor assume no responsibility or liability for articles or information appearing in the document. The views herein expressed are
those of the authors and do not necessarily express the views of DECUS or Digital Equipment Corporation.

Printed in the U.S.A.

The following are trademarks of Digital Equipment Corporation:

DEC DIBOL
DECnet Digital Logo
DECsystem-10 EduSystem
DECSYSTEM-20 1AS

DECUS MASSBUS
DECwriter PDP

PDT
RSTS
RSX
UNIBUS
VAX
VMS

vT

UNIX is a trademark of Western Electric Corporation

—

Converting BASIC-PLUS-2 V1.6 Tasks to run on RSTS/E V8.0

by
William Tabor
Computer Products, Inc.
1400 N.w. 70th St.
Fort Lauderdale, Fla.

At the spring DECUS symposium in St. Louis Missouri, users of
BASIC-PLUS I1I
learned the following:

* DEC will be releasing BASIC-PLUS II
Version 2.1 shortly.

* RSTS/E Version 7.2 will not support
BASIC-PLUS II Version 2.1,

* RSTS/E Version 8.0 will not support
BASIC-PLUS II Version 2,8 or Version 1l.6.

That means that all of the BASIC-PLUS II Version 1.6 programs
that are now on your system will not run when you bring up
RSTS/E Version 8.0 and that you can not compile any program now
in BASIC-PLUS II Version 2.1.

Therefore the BASIC-PLUS 1II user is faced with the situation
that all BASIC-PLUS I1 programs MUST be compiled as soon as
RSTS/E Version 8.0 is installed before they will run.

A temporary workaround can be used so that you may be able to
use your BASIC-PLUS II Version 1.6 programs on your RSTS/E
Version 8.0 system. You will have to recompile all of your
programs at a more convient date so that they will be compiled
in BASIC-PLUS II Version 2.0.

The following four step method will allow you to move your
BASIC~PLUS II

Version 1.6 tasks from vyour RSTS/E Version 7.2 system to your
RSTS/E Version 8.0 system.

1. Copy all tasks onto your system.

2. Copy your BASIC-PLUS II Version 1.6 resident library to
the new system.

3. Copy your RMS Version 1.8 resident libraries to the new
system making sure that you rename the RMS libraries to
(continued page 2)

of the new name of RMSOLD

4, Run ONLPAT to change the name of the resident library in
the task header to access the new library name

RUN S$ONLPAT

COMMAND FILE ? <CR>

FILE TO PATCH ? <YOUR TASK NAME> <CR>

BASE ADDRESS ? @ <CR>

OFFSET ADDRESS ? 40 <CR> Octal address of first
resident library name
in the task header.

J0Qe0e 6000040 0871233 2 <LF> Note: This is the first
three letters of RMSRES
in RADS#.

000099 @U0@E42 070533 ? SOLD Enter the new "old" to
change the RMS library
name to RMSOLD.

~

googo0e 0000000 0U00008E 2 T2 To terminate the patch.

1f the value at address 40 does not match for RADS5{ gf RMS then
you need to go to the next address for library names in the task
header. To get there add an octal 34 to the previous octal
address.

For further information on the layout of the resident library
names contained in the task header please refer to the TASK
BUILDER Manual.

————

NEVER ENDING CHRONICLES
S NEVER ENDING....

LINK kh’

Y
t

Baking Peach Pies

by Shel Jones

NCA
388 Oakmead Parkway
Sunnyvale, CA 94(86-5486

The Oakland Tribune (The Peach) used a Harris 2200 automated
typesetter with a PDP-11/05 as its heart. Everyone who has any
knowledge of computers knows that they need to "keep their cool"“.
To ensure this, the thermostat in the computer room was equipted
with an alarm which rang in the security office.

While making his rounds a security guard found that the computer
room air conditioner had shut down and it was hot enough to bake
peach pies.

He opened all the doors to.cool down the room and called the
repairman to fix the air conditioning unit.

After Dbringing the wunit back on line the repairman suggested
that the heat alarm would work better if the switch was left in
the "“ON" position.

BASIC RULES

Any program, when running, is obsolete.

If a program is useful, it needs to be changed. If it is useless
it needs to be documented.

Every program expands to fill all avaiable memory.

Program complesity grows until it exceeds the capability of the
programmer who must maintain it.

Every program costs more and runs longer.

Make it possible for programmers to write BASIC programs in
English, and you will find that programmers can not write basic
English.

If at first you don't succeed, change you data.

adding programmers to a late software project makes it later.

Any time you wish to demonstrate a program, the number of faults
is proportional to the number of viewers.

Each problem solved introduces a new unsolved problem.

DECUS

What the New DECUS Will Be

Clair Goldsmith
University of Texas
San Antonio, TX

Clair Goldsmith, Session Chairperson
University of Texas
San Antonio, TX

Reported by Micheal Kintz, DECUS Scribe Service

The Organizational Development Task Force established in
1981 functions "...to evaluate and recommend methods and
practices which will benefit DECUS leadersnip and users in the
more effective delivery of DECUS services." The Task force is
developing a project designed to give DECUS a new look.

The Organizational Development project stems from the 1981
and 1982 Leadership Interning which indicated the need for:

1. Clarification of DECUS's purpose.

2. Reevaluation of DECUS's structure, control wechanisms
and interrelationships.

3. An executive board of managers and policy makers.
4. Emphasis on improved communications.
5. Career development for leadership.

6. More leadership development.

In order to achieve a new look for DECUS, the project
developed a strategic plan which consists of several phases:
mission, goals, and action plans; organizational structures;
transition plans; and human resources plans for volunteers.
Clair Goldsmith stated that the function of the strategic plan
is "to promote the exchange of information processing related
information among users of Digital Equipment Corporation
products."

The goals of the OD project are to actively represent the
interests of members, the establishment of activities to promote

information exchange, the design and implementation of
strategies to encourage active membership, effective chapter
management, maintenance of the special DECUS relationship with
Digital Equipment Corporation, and support of communications
between suppliers of products compatible with DIGITAL equipment
and users of DIGITAL equipment.

Action plans will be enacted to implement goals of the
strategic plan and will become basic activities necessary to
continued project progress in the following year.

The organizational structure proposed on May 20, 1983 will
not be rigid, but will let elements come and go as appropriate.
The currently planned elements of the organizational structure
are:

1. An Executive Board with 9 to 11 members (1 DIGITAL
representative, 6 voted in by members~at-large, and 2
from the Management Council,) The Executive Board will
be responsible for long term planning.

2, A Management Council with 13 or 14 members to include
delegates from Functional Groups, SIGs, and LUGs. The
Management Council will manage the day-to-day activity
of the organization.

3. A Chief of Staff who will manage the DECUS professional
staff. The Chief of Staff will serve on the Executive
Board as a non-voting membei.

4, A five member Recruitment Committee. The Recruitment
Committee will head new leadership development.

5. Placement of SIGs and LUGs at the national level of the
organization.

6. Several Functional Committees chartered by the
Executive Board, to include: Library, Symposium,
Publications, Standards, and Special Projects groups.

The transition plan will consist of reviewing and
incorporating the data input from the Spring U.S., Symposium,
Saint Louis, regarding the June meeting of the Task Force.
Goldsmith said that members should watch for feedback in
DECUSCOPE, the Pageswapper, and SUGgestions.

After reviewing and incorporating the data input, the Task
Force will design a transition plan, revise Bylaws, and submit
the revised Bylaws to the membership for approval. Goldsmith
said the Task Force would 1like to have the Transition Plan
completed by June 1984,

The final phase of the OD project is the human resources
plan for volunteers, which will consist of leadership and career

development and volunteer recognition and rewards.

N

DECUS Scribe Service Launched at Spring Symposium

By Ted A. Bear
BASIC SIG newsletter Editor

You might notice that there are more articles in this newsletter
than ever before. That is because Ralph Stammerjohn put together
the eight wonder of the world. His brain child 1is the DECUS
Scribe Service became a reality in St. Louis., He recruited
college students from the St. Louis area, armed them with pad,
pencils and DEC PC 3580's and sent them out to cover the sessions,
You can judge some of the fruits of their combined labors for
yourself, About the only thing that the DECUS Scribe Service can
not do is come up with BASIC War Stories, that is still up to
you.

BASIC-PLUS-2 Status & Directions

Joe Mulvey
BASIC Development Manager

Since the release of BASIC-PLUS-2 V2.0, we have been working on a
series of wupdate releases. V2.1 is now released; it fixed all V2.0
bugs known at the time it was submitted. It also provides some
incremental performance improvements for RSTS/E systems. Subsequent
update releases will address larger improvements in compile-time
performance as well as fixing bugs. Because there has been confusion in

the field with respect to BASIC-PLUS-2, we hope that the following
information will be of use to you.

1. Supported Versions of BASIC-PLUS-2

- V1.6 is currently supported on RSTS/E V7.2 and
RSX-11M/M-PLUS V4.0/2.0

- This support had been planned to be discontinued after
July, i.e., six months after V2.0 FCS. As a result of the
feedback we have been getting and requests from customers
at Spring 1983 US DECUS, we have decided to continue
support of V1.6 through November 1983. This date coincides
with the termination of support of RSTS/E V7.2 but V1.6
will be supported on both RSTS/E and RSX during this time.

- V1.6 is not supported on RSTS/E V8.0 or RSX-11M/M-PLUS
V4.1/2.1 because it does not run with RMS V2.0.

- V2.0 is supported on RSTS/E V7.2 and RSX-11M/M=-PLUS
V4.0/2.0. We will support V2.0 through November 1983.

- V2.1 is now released and is supported on RSTS/E V8.0 and

RSX-11M/M-PLUS V4.1/2.1. V2,1 will not run on RSTS/E V7.2
because of its dependency on RMS V2.0.

V2.1 will run on RSX-11M/M-PLUS V4.0/2.0 but with some
restrictions:

- you cannot use the /CLUSTER qualifier
- you cannot use the NAME AS statement

These restrictions along with other pertinent information are
detailed in the <cover letter sent with the V2.1 kit to RSX
users.

2. Transition from BASIC-PLUS-2 V1.6 to V2.0

We believe that extending the support of V1.6 beyond July

will Thelp ease the transition to BASIC-PLUS-2 V2.l and the
newer versions of the operating systems.

- In response to requests received at DECUS, we agreed that
we would also investigate what it would take to get
BASIC-PLUS~-2 V1.6 to run on RSTS/E V8.0. We have done that
investigation and as a result, we will be publishing a
Small Buffer article detailing the steps that must be taken
in order to do this. This article will cover moving files,
renaming files, changing task header names, and patching
the V1.6 code. As soon as we complete the testing now
underway and verify that these procedures are successful,
the article will be published.

- We emphasize that this is strictly an interim mechanism to

be wused only in extreme situations. We will support V1.6
only until November 1983.

3. Bugs reported in V2.0

- We always strive to have zero bugs in our products. We had
a six-month field test period (longer than usual) because
of all the new functionality in V2.0. We polled sites
several times both during and after field test. Prior to
SDC submission, we corrected all V2.0 problems reported via
QAR and detected in internal tests. Except for the areas
in V2.0 where we tightened the rules and syntax from V1.6
(which were documented as part of the documentation set),
we believed most V1.6 applications would run without
problems. Obviously our field and internal testing did not
detect all the problems that have been reported since V2.0
was released.

- In addition, information disseminated to the field by
Digital (but mnot by Engineering) about V2.0 was sometimes
inaccurate and misleading. We have attempted to solve this
since V2.0 was released, but have not been completely
successful. The development group was very much surprised
at DECUS by some of the information that the users had
received from Digital. Most surprising was information
that said that development did not intend to fix any bugs.
In V2.1, we have corrected all known problems in V2.0. We
have worked very <closely with both the CSC and US Area
support groups to insure that known problems were corrected
and that the product validated with existing test packages
and applications.

- We will continue to fix all known problems and will use the
update mechanisms available to wus from the operating
systems. We solicit your assistance in this problem

4,

solving process.

Compile Time Performance

In planning V2.0, as a result of direct user input, one of
the major goals that we addressed was programmer
productivity. We feel that programmer productivity means
features that minimize the overall <cost of writing
software. These features are improved error detection and
reporting, structured programming constructs, 1/0
performance using RMS V2.0, and new data types to support
additional processing and integration. These new features
would, of <course, affect compilation speed. Because
compiler speed is generally a small part of overall program
development and because we felt that time spent compiling
would become proportionally smaller with these new
programmer productivity features, we felt that some
compiler performance could be sacrificed. Our field test

sites and other users to whom we talked concurred with
this.

We established metrics for our (limited but representative)
benchmark programs that were met prior to submission.

In this area also, we polled all of our field test sites
during and at the <conclusion of field test to get their
feedback on performance. All reported that it was
acceptable given the new features tradeoff and that the
product could be submitted.

Now there appears to be a wide disparity between our
compile-time ©benchmark programs and those encountered at
several customer sites. We have not been able to determine
a common factor causing some sites to experience longer
compile times than others. We have, however, been able to
improve some of the problem sites’ performance by
suggesting some system tuning measures. For example,
placing the compiler on a different disk from its work
files, and, for RSTS/E systems, enabling data caching.

During our diagnosis of performance problems, we did notice
that some sites were compiling their programs on V2.0
differently than they were on V1.6. In particular, some
were compiling on V2.0 using the new V2.0 features /LIST
and /CROSSREFERENCE. These features indeed impact compiler
speed, as was explained in the Release Notes.

In V2.1 we have provided some improvement in compiler speed
on RSTS/E systems. This has included taking advantage of
the new 32Kw job limit now available in RSTS/E V8.0.

As we told users at DECUS, work is now underway to continue
improving compile time performance. We have begun planning
some V2.n releases whose main purpose 1is performance

improvement (and, of course, to fix known bugs). At this
point we hope to have the mnext point release, V2.2,
available sometime during Q2FY84 and hope to have a
follow-on release providing even further performance
improvements available during Q4FY84.

In doing any performance improvements, benchmark programs

are critical. We again ask for your assistance in
obtaining them. If you do have any programs that you feel
may be appropriate, representative of wuser code, or

beneficial for measurement, please forward those programs
to the BASIC development group. If any of your users have
such programs, we urge you to have them submit them to the
BASIC SIG, C/0 DECUS office in Marlboro. These will then
be forwarded to us.

BASIC-PLUS-2 is a key layered product in the PDP-11 space and we are

ensuring a high level of support and active response to
Please let us know of your suggestions, comments,

and benchmarks.

BASIC Version 2

Edward Vogel
Pigital Equipment Corporation
Nashua, NH

Version 2 of BASIC has been submitted to.the SDC and will be
available in the first quarter of calendar year 1983, The new
features in BASIC V2 nave already received much attention, so I
would 1like to take this opportunity to write about the new
documentation set, and what you can do to help us improve it in
the future.

In the summer of 1988, the BASIC documentation group circulated
a questionnaire to all BASIC (BASIC-PLUS,BP2 and VAX-1ll BASIC)
licensees, and to LISTNH. We received more than 130 replies, and
used the results in the design of the Version 2 documentation
set.

The transformation of questionnaire results to doc set design
was not casy. Complaints about the documentation were rather
evenly divided between "Too technical -- not for beginners" and
"Not technical enough -- no help for advanced programmers." Of
course, the replies were liberally sprinkled with pleas for
better indexes and "real-life" programming examples.

To make a 1long story short, we came up with the following
documentation set:

Beginner's Books:
Intro to BASIC (rewritten for Version 2) -
BASIC for Beginners
More BASIC for Beginners
Core Documentation:
BASIC Reference Manual
BASIC User's Guide
BASIC Pocket Reference Guide
System-specific Manuals:
BASIC on VAX/VMS Systems
BASIC on RSX-11M/M-PLUS Systems
BASIC on RSTS/E Systems
Installation Guide and Release Notes
(One each for RSTS/E,RSX-11M/M-PLUS and VAX/VMS)

Each manual contains a section labeled "To The Reader" that

explains the

structure of the documentation set, conventions used, and so on,
YOU SHOULD READ THIS SECTION BEFORE USING THE DOCUMENTATION.

However, here's a sneak preview of the documentation structure:

The "core" documentation applies to Version 2 of both PDP-11
BASIC-PLUS~2

12

and VAX-1l BASIC. The BASIC Reference Manual is the place to
find anything you ever wanted to know about BASIC, but it does
NOT make for light reading. It starts with a consise overview
of the BASIC language, followed by sections on compiler
commands, compiler directives, statements, functions and BP2
debugger commands. Each of these sections contain keywords in
alphabetical order. This format is familiar to users of VaX-1ll
BASIC V1, but may come as a surprise to BP2 users. The BASIC
User's Guide contains new and improved information, 1in the
"normal” Digital User's Guide format. The Pocket Reference
Guide contains the same syntax boxes as the reference manual,
plus a short description of each language element.

This "core" documentation should make it much easier to write
transportable code. The Reference Manual clearly labels system
specific 1language elements, and also <calls out any syntax
differences if the language element can be used on more than
one system.

The system-specific manuals perform two functions. First, each
of the BASIC on RSTS, RSX and VMS manuals tells a beginner how
to log onto the system and use compiler commands in the BASIC
environment. Second, these manuals show how to use features
that are available on only one system For example, BASIC on
VAX/VMS Systems explains the VAX-1ll BASIC RECORD statement and
now to extract record definitions from the VAX-11 Common Data
Dictionary. BASIC on RSTS/E Systems and BASIC on RSX-11M/M-PLUS
Systems explain how to use the BASIC-PLUS-2 Debugger and how to
make the most efficient use of resident libraries.

Finally, the three Installation Guide and Release Notes manuals
tell you how to install the product; they explain the tradeoffs
involved in choosing installation options. These manuals also
contain both software and documentation release notes,

Bacause one section of the release notes has a list of technical
changes in BASIC Version 2, these notes contain information
that the average programmer might find very useful.

In the past two years we've worked very hard to improve BASIC
documentation. We will continue to make it better only if you,
our audience, take the time to tell us where improvement is
nceded, To do this, you have only to fill out the postage-paid
Reader's Comment form and send it in to us.

Please note that you are not limited to reporting complaints
and documentation 'bugs.' We would be delighted to receive
suggestions for new or improved figures and tables and for any
subject area that you feel requires better treatment.

We can make no promises for other Digital documentation sets,but
we guarantee an acknowledgement of any BASIC Reader's Comment
Form you send in.

BASIC SIG Wishlist

Joe Mulvey
BASIC Development Group
Digital Equipment Corporation
110 Spit Brook Road
Nashua, New Hampshire 03062

Enclosed for publication is a printout of our Wishlist of data from
previous DECUS Symposia. The information in the attachment reflects
the state of the database prior to the Spring 1983 DECUS meeting.
Included are all Digital’s responses to the Wishlist items. After
publication, we will purge out those items that no longer apply,
e.g., "Feature is in V2", add in the items collected in St. Louis
with Digital’s response, and then submit it to you for publication.
At that time, the information published in the newsletter will
accurately reflect the status of our database and will be on-line

at the start of the Fall DECUS 1983 DECUS Symposium in Las Vegas.

BASIC 8IG WISHLIBT - PRINTED ON 31-Mavy-832 AT 02:58 PM
WISH NUMBER DATE OF WISH DATE OF RESPONSE RESOLVED
00001 04/23/80 04/24/80 b4

WISH:

INTERPRETED CODE MIXED WITH COMPILED CODE IN A CHECKOUT
SYSTEM. 3 LEVELS OF BASIC: INTERPRETED, FAST COMPILE,
AND OPTIMIZED COMPILE ALL WORKING TOGETHER.

DEC RESPONSE:
AGREE WITH THE GOAL OF EASY CHECKOUT PLUS GOOD PERFORMANCE,
THIS IS A GOAL OF DEC BASIC. (LEAVE COMPILE/INTERPRET ISSUE TO

DEC).
WIZH NUMEBER DATE OF WISH DATE OF RESPONSE RESOLVED
00002 04/23/80 04/24/80 ¥

WISH:

INLINE CODE FOR EPZ FOR INTEGER OPERATIONS AT LEAST.

DEC RESPONSE:
POSSIBLE. THINKING ABOUT IT.

WISH NUMBER DATE OF WISH DATE OF RESPONSE RESOLVED
00003 04/23/80 04/24/80 Y

WISH:
IMPLEMENT ARCCOS/ARCSIN RADIAN FUNCTIONS.

DEC RESPONSE:

WILL CONSIDER IF ENOUGH REQUESTS ARE MADE FOR IT
(FUNCTION AVAILABLE VIA *CALL* ON VAX BASIC)

WISH NUMBER DATE OF WISH DATE OF RESPONSE RESOLVED
00004 04/23/80 04/24/80 Y

WISH:

PRINT USING FORMAT THAT ALLOWS ZERQ SUPPRESSION FROM THE
RIGHT. I.E. 1.3600 = TO 1.36 BUT 1.3645 = 1,35645

DEC RESPONSE:
WILL CONSIDER
SET TO LOW PRIORITY

WISH NUMBER DATE OF WISH DATE OF RESPONSE RESOLVED
00005 04/23/80 04/24/80 Y

WISH:

MORE DATE CONVERSION RCUTINES, I.E. SYSTEMDATE AS
MMM. DD, 19YY

DEC RESPONESE:

EASY TO DO WITH USER_DEFINED FUNCTIONS, DON'T SEE NEED IN PRESENT
BASIC. NEED ARTICLE IN NEWSLETTER CONTAINING FUNCTIONS TO DO

THIS
WISH NUMBER DATE OF WISH DATE OF RESPONSE RESOLVED
00006 04/23/80 04/24/80 Y

WISH:

ALLOW MULTIBLE SUBPROGRAMS TO BE COMPILED INTO A SINGLE
OBJECT FILE FROM A SINGLE SOURCE FILE

DEC RESPONSE:
AVAILABLE IN VAX-11 BASIC. WILL CONSIDER FOR PDP-11’'s (LOW PRIORITY)

WISH NUMBER DATE OF WISH DATE OF RESPONSE RESOLVED

00007 04/23/80 04/24/80 Y
WISH:
NEW BIT FOR CVT$s FUNCTION 512 - CONVERTS "(" AND ")"

TO "C" AND "31"., THE 64 BIT WOULD TAKE PRECEDENCE OF THE
512 BIT SO0 THAT CVT$s(As,-1%) WILL WORK AS IT DID BEFORE

DEC RESPONSE:
REOUIRES MORE THOUGHT ON OUR PART TO MAKE SURE NO PROBLEMS FOLLOW.

WISH NUMBER DATE OF WISH DATE OF RESPONSE RESOLVED
00008 04/23/80 04/24/80 Y

WISH:

B2XREF TO ACCESS THE MCR/CCL ENTRY LINE S0
>B2X OUT/S0U/KEY/FUN
WOULD WORK

DEC RESPONSE:
WILL CONSIDER

WISH NUMBER DATE OF WISH DATE OF RESPONSE RESOLVED
00009 04/23/80 04/15/83 V4

WISH:

BRANCH ON NON-EXISTENT FILE (IN OPEN) AND OTHER

ERRORS3

DEC RESPONSE:
Will consider.

WISH NUMBER DATE OF WISH DATE OF RESPONSE RESOLVED
00010 04/23/80 04/24/80 Y

WISH:

BETTER DOCUMENTATION ON THE ACTION USED BY THE COMPILER
IN HANDLING STEP SIZES THAT ARE NOT EXACT BINARY FRACTIONS

DEC RESPONSE:
WILL CONSIDER A NEWSLETTER ARTICLE FOR THIS.

16

WISH NUMBER DATE OF WISH DATE OF RESPONSE RESOLVED
00011 04/23/80 10/13/82 Y

WISH:
RE-ENTRANT CODE GENERATED BY BASIC-PLUS-2 COMPILER.

DEC RESPONSE:
BP2 CODE ($CODE, BP20TS) SECTIONS FOR V2 WILL BE RE-ENTRANT IN THAT
THEY ARE PURE CODE AND CAN BE INCLUDED IN A RESIDENT LIBRARY.

WISH NUMBER DATE OF WISH DATE OF RESPONSE RESOLVED
00012 04/23/80 04/15/83 Y

WISH:
MID ON LEFT SIDE OF THE = EG. MID(As,5,3)="CAT"

DEC RESPONSE:
AGREE WITH INTENT. MAY CONSIDER.

WISH NUMBER DATE OF WISH DATE OF RESPONSE RESOLVED
00013 04/23/80 10/13/82 Y

WISH:
USER FUZZ FACTOR FOR APPROX = COMPARE

DEC RESPONSE:
WILL CONSIDER. VIEWED AS LOW PRIORITY.

WISH NUMBER DATE OF WISH DATE OF RESPONSE RESOLVED
00014 04/23/80 04/24/80 b4

WISH:
A CLOSE ALL STATEMENT TO CLOSE ALL CHANNELS

DEC RESPONSE:
WILL CONSIDER

WISH NUMBER DATE OF WISH DATE OF RESPONSE RESOLVED
00015 04/23/80 04/24/80. Y

WISH:
AN END OF FILE DETECTION FUNCTION E.G. I%=EOF(CHANNELS%)

DEC RESPONSE:
WILL CONSIDER.

17

WISH NUMBER DATE OF WISH DATE OF RESPONSE RESOLVED
00016 04/23/80 04/24/80 Y

WISH:
AN END OF DATA FUNCTION EG. I%=EOCD

DEC RESPONSE:
WILL CONSIDER

WISH NUMBER DATE OF WISH DATE OF RESPONSE RESOLVED
00017 04/23/80 04/24/80 Y

WISH:
OPTIONAL ARGUMENT FOR THE RND FUNCTION

DEC RESPONSE:
WILL CONSIDER

WISH NUMBER DATE OF WISH DATE OF RESPONSE RESOLVED
00018 04/23/80 04/24/80 Y

WISH:
STATIC PRESET (DATA INITIALIZATION) AT COMPILE TIME

DEC RESPONSE:
WILL CONSIDER. USE MACRO ROUTINES THAT DECLARE AND DEFINE ~
COMMON/MAP PSECT CONTENTS, THEN LINK INTO TASK.

WISH NUMBER DATE OF WISH DATE OF RESPONSE RESOLVED
00019 04/23/80 04/15/83 Y

WISH:
A FUNCTION TO RAISE THE ERROR FLAG

DEC RESPONSE:

CALL BASSERROR ON VAX FOR NOW, MAY CONSIDER THIS ENHANCEMENT
FOR THE FUTURE.

WISH NUMBER DATE OF WISH DATE OF RESPONSE RESOLVED
00020 04/23/80 04/15/83 Y

WISH:
RESTRICT CHANGE TO A ONE DIMENSIONAL ARRAY

DEC RESPONSE:
THIS MAY BREAK PROGRAMS.

WISH NUMBER DATE OF WISH DATE OF RESPONSE RESOLVED
00021 04/23/80 04/24/80 b4

WISH:
MAT OPERATIONS IN PLACE

DEC RESPONSE:
WILL CONSIDER

WISH NUMBER DATE OF WISH DATE OF RESPONSE RESOLVED
00022 04/23/80 04/24/80 Y

WISH:
FUNCTION FOR DETERMINANT

DEC RESPONSE:

WISH NUMBER DATE OF WISH DATE OF RESPONSE RESOLVED
060023 12/09/81 10/13/82 Y

WISH:

THE BASIC PLUS 2 EDITOR USES VALUABLE LINES ON THE CRT SCREEN
WITH BLANK LINES AND OTHER MESSAGES WHEN TRYING TO LIST A RANGE
OF PROGRAM LINES. LISTNH HELPS SCME, BUT JUST LISTING THE LINES
WITH NO EXTRA BLANK LINES ADDED AT THE END WOULD BE A BIG HELP.
IF I WANT T0 KNOW WHAT PROGRAM I AM LISTING I COULD ALWAYS DO
SOMETHING LIKE LISTH.

DEC RESPONSE:
THIS I3 A FEATURE.

WISH NUMBER DATE OF WISH DATE OF RESPONSE RESOLVED
00024 12/09/81 09/27/82 Y

WISH:
Someone once said "MORE IS NOT ALWAYS BETTER". Basis Plus 2 is a good

product as it is. This is not to say improvements would not be nice,
but a language can become too rich. Please consider new features
carefully.

DEC RESPONSE:

We think V2 shows sensitivity to the most needed regquirements of
BASIC users, in both PDP-11 and VAX environments. We’'re trying to
be responsive without overendowing the language. Let us know if
you think V2 succeeds in this goal.

WISH NUMBER DATE OF WISBH DATE OF RESPONSE RESOLVED
00025 12/709/81 10/13/82 Y

WISH:
Wish:

Add support in the RST3/E Basic-Plus-2 product for some of the n
ewer

SYSCALL’s in RETS.
Particularly the Spawn SYSCALL and especially the spool SYSCALL.

Reason:

These are particularly useful SYSCALL’'s and support really shoul
d be

forth coming.
DEC RESPONSE:

e aqree Supported RSTS SYs () calls should be supported by BP2 also.

WISH NUMBER DATE OF WISH DATE OF RESPONSE RESOLVED
00026 12710/81 10/13/82 v

WISH:

Support the spool sys call in Basic-Plus 2 as well as in
Basic-Plus

DEC RESPONSE:
Should be supported in V2.

WISH NUMBER DATE OF WISH DATE OF RESPONSE RESOLVED
00027 12/10/81 10/13/82 ¥

WISH:

HOW ABOUT "RESTORE <LINE>", READ (LINE>, OR RETURN <LINE> CAPABILITIES.
(WHERE <LINE> SPECIFIES A LINE NUMBER.)

DEC RESPONSE:

Not planned. Not consistent with the direction of "line-less"
programming.

20

WISH NUMBER DATE OF WISH DATE OF RESPONSE RESOLVED
00028 12/710/81 10/25/82 Y

WISH:

Matrix functions should work PROPERLY on arrays DIMensioned like
DIM As(0). ‘"Properly" means as documented; i.e. MAT A=ZER for

an array DIM A(0) should not affect A{0). Also, support re-dimensioning
like DIM A(100) \ MAT A=ZER(10,10) | Can be done now, but not supported

DEC RESPONSE:

WORKS OK FOR VZ. HOWEVER CHANGING THE DIMENSIONALITY OF THE
ARRAY WILL NEVER BE SUPPORTED.

WISH NUMBER DATE OF WISH DATE OF RESPONSE RESOLVED
00029 12/10/81 10713782 v

WISH:

Matrix operations like A=A*A (where A is a matrix) should work
the same as A=B#C where A,B, and C are all identical matices.
(If this works okay for scalars, why not for mats?)

DEC RESPONSE:
BP2 implementation of some MAT functions does use the array for

intermediate storage. We will look into modifying this situation
in the future.

WISH NUMBER DATE OF WISH DATE OF RESPONSE RESOLVED
00030 12/10/81 04/15/83 Y

WISH:

PLEASE ALLOW THE S3CALE COMMAND IN PROGRAM CODE (LIKE EXTEND).
REASON: SCALE AFFECTS CVTFs$ DATA AND PRECISION AND ROUNDING.

SINCE THE PROGRAM WILL NOT DO THE SAME THING UNDER DIFFERENT SCALE
FACTORS, IT SHOULD BE UNDER PROGRAMMER CONTROL TO

OVERRIDE THE SYSTEM DEFAULT.

DEC RESPONSE:
WILL BE PERMITTED IN VZ USING "OPTION" STATEMENT:

100 OPTION SCALE = 2

21

WISH NUMBER DATE OF WISH DATE OF RESPONSE RESOLVED

00031 12/10/81 10/25/82 Y
WISH: ~—
Give VAX BASIC immediate mode full functionality. For example,
allow the call of LIB$ routines that reside in STARLET.OLB only.
DEC RESPONSE:
VAX-11 BASIC cannot "LOAD" object modules other than BASIC
object modules. This is fundamentally why most LIB$ routines
are not available. NWe may consider removing this limitation
in some future version.
WISH NUMBER DATE OF WISH DATE OF RESPONSE RESOQLVED
00032 05/11/82 08/27/82 Y
WISH:
I would like to see guadword data types since this is the way in which
VAX stores dates when using the RTL routines.
DEC RESPONSE:
Not planned specifically, but you can define a gquadword data type using
the RECORD facility:
RECORD QUADWORD L
WORD Q(3) -

END RECORD

DECLARE QUADWORD A,F00(10)

and can similarly define quadword-type functions to manipulate the data
in
a quadword data type instance appropriately.

WISH NUMBER DATE OF WISH DATE OF RESPONSE RESOLVED
00033 05/11/82 10/25/82 Y

WISH:

I would like to see a bit data type. This would avoid unecessary
masking and would make the code much more readable.

DEC RESPONSE:
WILL CONSIDER

22

WISH NUMBER DATE OF WISH DATE OF RESPONSE RESOLVED
00034 05/11/82 09/702/82 Y

WISH:
Please add RESUME with a label.

Reason: Now that Basic has labels, line numbers will be used much less,
so RESUMing to a line number will have little use.

DEC RESPONSE:
Will consider.

WISH NUMBER DATE OF WISH DATE OF RESPONSE RESOLVED
00035 05/11/82 08/727/82 Y

WISH:
Please add the ONECHR function to VAX BASIC
this will make my current applications upward compatible.

DEC RESPONSE:

NOT PLANNED.
WISH NUMBER DATE OF WISH DATE OF RESPONSE RESOLVED
— 00036 05/11/82 09/27/82 Y
WISH:

Please add the functionality to be able to chain with
line to all versions of BASIC

DEC RESPONSE:
Will consider.

WISH NUMBER DATE OF WISH DATE OF RESPONSE RESOLVED
00037 05/11/82 09/27/82 Y

WISH:
allow a user to invoke an error exception
or document how it can be done

DEC RESPONSE:
Will consider.

23

WISH NUMBER DATE OF WISH DATE OF RESPONSE RESOLVED
00038 05/11/82 08/27/82 Y

WISH:
allow a the ability to add an error abort

DEC RESPONSE:
If you mean an error 51qna11nq capablllty, will consider.

WISH NUMBER DATE OF WIBH DATE OF RESPONSE RESOLVED
00039 05/11/82 10/13/82

WISH:

enhance the debugger to include

a) showing a variable as it changes

b) break on conditionals (ie IF UNTIL WHILE)

DEC RESPONSE:
Not planned for V2.

WISH NUMBER DATE OF WISH DATE OF RESPONSE RESOLVED
00040 05/11/82 10/13/82

WISH:

enhance the debugger to place " around strings when printed

DEC RESPONSE:

Wouldn’'t this be a hindrance if you're PRINTing terminal
escape sequences?

WISH NUMBER DATE OF WISH DATE OF RESPONSE RESOLVED
00041 05/11/82 10/13/82 Y

WISH:
allow for a mat print in the debugger

DEC RESPONSE:
Not planned for V2.

24

— WISH NUMBER DATE OF WISH DATE OF RESPONSE RESOLVED
00042 05712/82 09/27/82 Y

WISH:

Allow MACROs. This would really enhance the BASIC+2 product and
would seem to fit nicely with conditional assemblies.

DEC RESPONSE:
Will consider.

WISH NUMBER DATE OF WISH DATE OF RESPONSE RESOLVED
00043 05/13/82 08/27/82 Y

WISH:

Provide a cross compiler on VMS that will allow
users to develop and task build code on the VAX
for their RSX-11IM system.

DEC RESPONSE:

Will consider. In VAX BASIC V2, there is a /FLAG:BP2 switch that
will direct the compiler to recognize only the BPZ language subset.
This will permit to some extent host system compilation. Generation
of PDP-11 OBJ’'s from the VAX BASIC code generator does not exist

. {(yet).
WISH NUMBER DATE OF WISH DATE OF RESPONSE RESOLVED
00044 05/13/82 10/13/82 Y
WISH:

We need a reascnably fast inkey$ function or something like it
for single character input without a line terminator.

DEC RESPONSE:
Will consider.

25

WISH NUMBER DATE OF WISH DATE OF RESPONSE RESOLVED
00045 05/13/82 10/25/82 Y

WISH:

It would be helpful to have the ability to specify the output
width of the cross reference listing.

Since our standard size paper is 80 column, it is a hassle to change
paper.

Thanks so much.

DEC RESPONSE:
WILL CONSIDER

WISH NUMBER DATE OF WISH DATE OF RESPONSE RESOLVED
00046 05/13/82 04/15/83 Y

WISH:

Wish that basic + II would implement an ERL$ variable to trap
errors at a label. This goes along with the idea that one
should be able to resume to a label. Let’s assume that you
say IF ERL$="GET.REC" and you do not allow IF ERL$=LABELS
so that you can resolve referrences at compile time.

DEC RESPONSE:
NOT PLANNED.

WISH NUMBER DATE OF WISH DATE OF RESPONSE RE3OLVED
00047 12/06/82 04/14/83 Y

WISH:

i wish that there was an edt interface to VAX-11 BASIC.
This would allow users to access the language help
facilities and have a decent editor.

DEC RESPONSE:
This is provided in V2.

26

WISH NUMBER DATE OF WISH DATE OF RESPONSE RESOLVED
00048 12/07/82 04/15/83 Y

WISH:

Why not allow the lower bound of an array to be defined as in FORTRAN?

DEC RESPONSE:
May consider.

WISH NUMBER DATE OF WISH DATE OF RESPONSE RESOLVED
00049 12/07/82 04/14/83 Y

WISH:

There should be a way from MACRO subroutines, to return an error to the

calling program. We should be able to set the ERR variable, and then re
turn

to the ON ERROR GOTO section of the calling routine. The current techni
que

is to use the first argument as an integer, which contains the error cod
e.

Howewver, sloppy programmers don’t always (or even usually) check this
variable.

DEC RESPONSE:
MACRO operations are not formally supported in BP2.

WISH NUMBER DATE COF WISH DATE OF RESPONSE RESOLVED
00050 12/07/82 04/15/83 v

WISH:
I would like to add considerable support to wishes 2Z5.

DEC RESPONSE:
V2 does support newer SYS calls on RSTS/E.

WISH NUMBER DATE OF WIBH DATE OF RESPONSE RESOLVED
00051 12707782 04/14/83 Y

WISH:

Renumber BASIC lines while in BASIC instead of using a system utility ou
tside
of BASIC,

DEC RESPONSE:
VAX-11 BASIC provides this capability. BP2Z does not kecause
of space restrictions.

27

WISH NUMBER DATE OF WISH DATE OF RESPONSE RESOLVED

00052 12/07/82 04/14/83 Y
WISH:
Provide a method to allow chaining in RSX-11M Basic without having
to install.

DEC RESPONSE:
This is currently provided in BP2.

WISH NUMBER DATE OF WISH DATE OF RESPONSE RESOLVED
00053 12707782 04/14/83 Y

WISH:

Provide capabilility to chain to line numbers in RSX-11M Basic Plus 2

DEC RESPONSE:
May consider

WISH NUMBER DATE OF WISH DATE OF RESPONSE RESOLVED
00054 12/07/82 04/15/83 Y

WISH:
Need a single charater input without CR LF.

DEC RESPONSE:

Use ONECHR or QI0O. May consider an INKEYS$ type function
in the future.

WISH NUMBER DATE OF WISH DATE QF RESPONSE RESOLVED
00055 12/07/82 04/14/83 Y

WISH:
Line labels should be allowed to begin at the left margin.

DEC RESPONSE:

HWe reported this as a "will consider” item. Upon further
investigation, it has been determined that this is a
"can’t be done".

28

WISH NUMBER DATE OF WISH DATE OF RESPONSE RESOLVED
. 00056 12/08/82 04/15/83 Y

WISH:
I like FIELDs better than MAPs!!!

DEC RESPONSE:

Glad you like FIELD; it’'s documented. Dynamic mapping in V2
now is much more powerful.

WISH NUMBER DATE OF WIBH DATE OF RESPONSE RESQOLVED
00057 12/08/82 04/14/83 Y

WISH:

Pointer (Pascal,PL/l1 types) data types please? A compiler that does not

support immediate mode but exists only for compiling without other enhan
cements?

User control of impure areas (to support pointer types)?
Generating in-line (no threads) for very fast subprograms?
thank youl! i

DEC RESPONSE:

It is unlikely that we will provide a pointer data type. We don’'t feel
it’s in the spirit of the language.

As for a compiler that doesn’t support immediate mode, we may consider
a subset compiler.

WISH NUMBER DATE OF WISH DATE OF RESPONSE RESOLVED
00058 12/08/82 04/14/83 ¥

WISH:
COMPILED NATIVE MODE BASIC
INTRINSIC BIT MANIPULATION VIA BIT ARRAY DECLARATION

DEC RESPONSE:
May consider.

29

WISH NUMBER DATE OF WISH DATE OF RESPONSE RESOLVED
Q00E&9 12/08/82 04/15/83 4

WISH:

It would be nice if the VAX-11 BASIC compiler had the option

of multiple pass optimizations like some other languages do.

It would help the performance and the reputation of the product.

DEC RESPFONSE:
We agree in principle; will consider.

WISH NUMBER DATE OF WISH DATE OF RESPONSE RESOLVED
00060 12/08/82 04/14/83 Y

WISH:
When is VAX basic V2 due to be shipped to customers?

DEC RESPONSE:
VAX-11 BASIC V2 is the current version of the product, and is
now available.

WISH NUMBER DATE OF WISH DATE OF RESPONSE RESOLVED
00061 12/08/82 04/14/83 Y

WISH:
NEED QUADWORD DATATYPE.
REASON: PARTICULARLY FCR USE IN MANIPULATING VAX/VMS DATE TYPE AND

ACCOUNTING INFORMATION. SINCE BASIC SUPPOSEDLY IS TO PROVIDE FULL RMS

COMPATIBRILITY, HAVING A QUADWORD DATATYPE IS ONLY LOGICAL. ALSC, IT WOU
LD

PROVIDE GREATER COMPATIBILITY WITH DATATRIEVE AND CDD.

DEC RESPONSE:
This can be accompllshed with RECORD’s in VAX-11 BASIC V2.

WISH NUMBER DATE OF WISH DATE OF RESPONZE RESOLVED
00062 12/08/82 04/15/83 Y
WISH:
Ability to use ¢ and % variable suffix in a declared variable
Example:
MAP (TEST) STRING TEST1s = 3

)
, TEST2s = 4
, LONG TEST3%

, TEST4%

DEC RESPONSE:

We have had some feedback on this and may look into deing it.

In the meantime, we recommend that you don’t use these suffixes.

WISH NUMBER DATE OF WISH DATE OF RESPONSE RESOLVED
00063 12/08/82 04/15/83 ¥

WISH:
Integer or floating peoint fields in a MAP should be

aligned automatically by the compile. The programmer should not
have to add in a FILL = 1 to align the field.

DEC RESPONSE:
BP2 does this for you. It is not needed in VAX-BASIC.

WISH NUMBER DATE OF WISH DATE OF RESPONSE RESOLVED
00064 12/08/82 04/14/83 Y

WISH:

VAX BASIC should support RMS records with variable length records
with fixed length headers.

DEC RESPONSE:
May consider.

WISH NUMBER DATE OF WISH DATE OF RESPONSE RESOLVED
00065 12/08/82 04/14/83 Y

WISH:
THE CURRENT METHOD OF USING MAPS BY REQUIRING THE NAMES TO BE HARD-
CODED IS VERY INCONVENIENT. I WOULD LIKE THE CAPABILITY OF CHANGING
THE DEFAULT MAP SPECIFIED BY THE OPEN STATEMENT AT THE TIME OF THE
GET; POSSIBLY WITH THE FOLLOWING SYNTAX:

GET #CHAN%, MAP MAP_NAMES

WHERE MAP_NAMES$ CONTAINS THE MAP NAME TO CONTAIN THE DATA OBTAINED
WITH THE GET

DEC RESPONSE:
Not planned.

WISH NUMBER DATE OF WISH DATE OF RESPONSE RESOLVED
00066 12/08/82 04/14/83 Y

WISH:
Supply a task-builder for programs too big for SLOTKB.

For instance: The BP2 compiler will soon be too big for SLOTKB.
Supply a program which is even bigger (call it: VSLTKB or GNIGHT).

I also have programs (nearly) this big, and need a bigger task-builder.

DEC RESPONSE:

Thank you for your suggestion. This item should be brought to the
attention of the RSX Development Group.

WISH NUMBER DATE OF WISH DATE OF RESPONSE RESOLVED
00067 12/09/82 04/14/83 Y

WISH:

Provide a non-privileged function in BP2 to return the date in internal
format. We should not have to be privileged to avoid the string
and code overhead of converting 31-Dec-82 to 12365

DEC RESPONSE:
This is a good candidate for a BASIC SIG Library Function.

WISH NUMBER DATE OF WISH DATE OF RESPONSE RESOLVED
00068 12/09/82 04/14/83 Y

WISH:

Put the BASIC-PLUS-2 compiler on the PC (the cross-development is ugly)

DEC RESPONSE:
HWe agree. We will work this issue with the PROFESSIONAL Group.

WISH NUMBER DATE OF WISH DATE OF RESPONSE RESOLVED
00069 12/09/82 04/14/83 Y

WISH:

Put that example converter program on the VZ kit. I like it, but its
gonna be a pain to type it in

DEC RESPONSE:
Thank you for your input.

WISH NUMBER DATE OF WISH DATE OF RESPONSE RESOLVED
00070 12709782 04/14/83 Y

WISH:

Play around with this in BASIC-PLUS:

10 EXTEND \

DIM SCREEN%(127,47) \ ON ERROR GOTO 32000 \ X=65. \ V=-64. \
U%=FNSET%(INT(X) , INT(Y))
11000 DEF* FNSET%(X%,Y%) \ Screen%(X%,Y%)=1% \ FNEND

© 32000 If erl=11000% and ERR=55% then resume 11040 else print ‘err’
32767 end\

DEC RESPONSE:
Don‘t understand this. If it’s a problem, please submit an SPR.

32

WISH NUMBER DATE OF WISH DATE OF RESPONSE RESOLVED
00071 12/09/82 04/14/83 Y

WISH:
Supply BASIC-PLUS-2 V2.0 with a /VAX switch to catch those references

(we have found two so far) which work correctly on BP2 but not on VAX
basic.

DEC RESPONSE:

We agree in principle and will probably do something in the longer
term to do this.

WISH NUMBER DATE OF WISH DATE OF RESPONSE RESOLVED
00072 12/09/82 04/14/83 Y
WISH:
PLEASE -
Please check immediate RUN of an INPUT prog line in V2 -
i.e. 1 input integer_variable

RUN does NOT work !!!!i

DEC RESPONSE:
Fizxed in V2.0; sorry.

WISH NUMBER DATE OF WISH DATE OF RESPONSE RESOLVED
00073 12/09/82 04/14/83 Y

WISH:

Wish 220

Please, I know this is a repeat & it may not pertain to BASIC, but
PLEASE make ERR & ERL examinable under DEBUG!!

Thank You

DEC RESPONSE:
For BP2, it’s there. For VAX-BASIC, we’ll discuss this with
the DEBUG people.

33

WISH NUMBER DATE OF WISH DATE OF RESPONSE RESOLVED
00074 12/09/82 04/14/83 Y

WISH:

When opening a unit record device (ie TI: or LP:) if the allow
clause is ALLOW NONE please attach to the device so that

two basic programs do not over write each other.

example: Program A open LP: allow none and program B opens the LP:
and both start printing you will get intermixed i/o.

DEC RESPONSE:

For TI:, we will consider. For LP:, the RMS group is currently looking
into this issue.

WISH NUMBER DATE OF WISH DATE OF RESPONSE RESOLVED
00075 12/09/82 04/14/83 Y

WISH:
Allow the redirected terminal to be specified at task build time

so that when running a program that has a sub program in debug mode
go to another terminal.

DEC RESPONSE:
It is unlikely we’ll do anything on this item.

WISH NUMBER DATE OF WISH DATE OF RESPONSE RESOLVED
00076 12/09/82 04/14/83 4

WISH:
add the begin and end statement to basic that way I can run
my old ALGOL programs will work

DEC RESPONSE:
Not planned.

WISH NUMBER DATE OF WISH DATE OF RESPONSE RESOLVED
00077 12/09/82 04/14/83 ¥

h4

WISH:

Allow COMPILE/LABEL to keep label names for an ERLS variable.
Actually, we can do this ourselves and test the label name in the
error trap (IF ERR = 11% AND ERL$ = ‘'FOO’ THEN ...) but it
would be handy to have the system help.

DEC RESPONSE:
It is unlikely we will do this.

34

WISH NUMBER DATE OF WISH DATE OF RESPONSE RESOLVED
00078 12/09/82 04/14/83 Y

WISH:
Allow the use of longwords as array subscripts.
I need virtual arrays with dimensions larger than 32767.
.the multi-paging capabilities of virtual arrays is great!!

DEC RESPONSE:

This is provided in VAX-BASIC. In BP2, we may consider this item,

but it may increase array header size.

WISH NUMBER DATE OF WISH DATE OF RESPONSE RESQLVED
00079 12/09/82 04/14/83 Y

WISH:
PLEASE GIVE THE FUNCTIONALITY OF
COBOL TO A PRINT-USING REPLACEMENT!

DEC RESPONSE:
May consider.

WISH NUMBER DATE OF WISH DATE OF RESPONSE RESOLVED
00080 12/09/82 04/14/83 Y

WISH:
PLEASE GIVE MORE USER SESSIONS IN ST-LOUIS (!!

DEC RESPONSE:

We emphasize USER sessions. Bring this to the attention of
the BASIC SIG.

WISH NUMBER DATE OF WISH DATE OF RESPONSE RESOLVED
00081 12/09/82 04/14/83 Y

WISH:

Please have the SIG help define USEFUL
benchmarks for BASIC. I'm really tired
of hearing about Whetstones

DEC RESPONSE:
We agree; we really need something like that. We believe it is

underway with some volunteers at the SIG meeting. We need to have

them - you are the ones to get them to us.

35

WISH NUMBER DATE OF WISH DATE OF RESPONSE RESOLVED

00082 12/09/82 04/14/83 Y
WISH:
ONECHR on VAX BASIC ... QIO is a HACK }!

DEC RESPONSE:
HWe agree - it should be there (As one of the developers responded:

WISH NUMBER DATE OF WISH DATE OF RESPONSE RESOLVED
00083 12/06/82 04/14/83 Y

WISH:

When a syntax error is found, please print out the line and statements
that precede the error.

DEC RESPONSE:
This is provided in V2.

WISH NUMBER DATE OF WISH DATE OF RESPONSE RESOLVED
00084 12/06/82 04/14/83 Y

WISH:

Please allow the presence of line numbers in INCLUDE or some
other syntax thereof to allow include to work with routines
which handle errors using RESUME. ALTERNATIVE: Allow the

RESUME statement to use a statement label instead of require
a line number.

DEC RESPONSE:
More likely to see RESUME to a label.

WISH NUMBER DATE OF WISH DATE OF RESPONSE RESOLVED
00085 12/06/82 04/14/83 Y

WISH:

Allow some subset (because of what you describe as a space problem) of
the RECORD declaration on the PDP-11. Possibly to allow definition

of some simple datatypes (COMPLEX, non-repeating record format, etc.)

this would allow user expansions without requiring the contorted code
now needed.

DEC RESPONSE:
May consider.

36

WISH NUMBER DATE OF WISH DATE OF RESPONSE RESOLVED
00086 12/07/82 04/14/83 Y

WISH:
Support a sys call for BASIC-PLUS on RSTS/E to dump to a disk file.

DEC RESPONSE:

No plans.
WISH NUMBER DATE OF WISH DATE OF RESPONSE RESOLVED
00087 12/07/82 04/14/83 Y

WISH:

Allow substring assignment (MID on LHS).

DEC RESPONSE:
Good idea, may consider.

WISH NUMBER DATE OF WISH DATE OF RESPONSE RESOLVED
00088 12/08/82 04/14/83 Y

WISH:

Please consider making labels local to, for example, function
definitions, and other appropriate locations. Perhaps a
local/global designation for labels would be a solution.

Reason: How many variations of O00OPS: can I be expected to come up with?

DEC RESPONSE:
May consider.

WISH NUMBER DATE OF WISH DATE OF RESPONSE RESOLVED
00089 12/08/82 04/14/83 Y

WISH:
PROBLEM: IMPLEMENTATION OF MAILBOX COMMUNICATION
DEFINED: AT THE HIGHEST LEVELS OF BASIC CONSTRUCTS THERE EXIST FEW

SYNTAX TOOLS TC FULLY UTILIZE THE FULL SCOPE OF MBX COMMUNICATI
ON

WITHOUT RESORTING TO SYSTEM SERVICE CALLS (i.e. QIO...)
SOLVED: ADD SYNTAX CAPABILITES TO PROVIDE FOR A MORE HIGHER LEVEL
IMPLEMENTATION OF MBX COMMUNICATION FEATURES

H

DEC RESPONSE:
See next wish.

WISH NUMBER DATE OF WISH DATE OF RESPONSE RESOLVED
00090 12/08/82 04/14/83 Y

WISH:
PREVIOUS WISH CONTINUED........ .

EXAMPLE: TO PROVIDE FOR SYNC/ASYNC CAPABILITY SOMETHING SUCH AS:
00010 PUT #MBX.CHANNEL%, ASYNC

THIS WOULD ALLOW A MBX MESSAGE TO BE SENT ASYNCHRONOUSLY

AND NOT REQUIRE MESSAGE RECEIPT BEFORE PROGRAM EXECUTION
RESUMED..........

DEC RESPONSE:
We would like to have the SIG look at this and make scme

recommendatlons.
WISH NUMBER DATE OF WISH DATE OF RESPONSE RESOLVED
00091 12/08/82 04/14/83 v

WISH:

Allow RESTORE <channel#> on native-mode sequential (ASCII stream) files
on PDP~-11 to avoid overhead of closing and re-opening for each scan.

DEC RESPONSE:
This is provided in Vl

WISH NUMBER DATE OF WISH DATE OF RESPONSE RESOLVED
00092 12/09/82 04/14/83 Y

WISH:
PROBLEM: BASIC PERFORMANCE WITH DBMS CALLABLE INTERFACE

SOLVED: ADDITION OF IMBEDDED DML CAPABILITY IN THE VAX 11 BASIC COMPILE
R

S0 AS TO REAP THE 20%-30% PERFORMANCE IMPROVEMENT REALIZED BY
THOSE LANGUAGES WHERE DML IS IMBEDDED

...........

DEC RESPONSE:
Thls has been on the w1sh115t before. We are still looking into it.

38

WISH NUMBER DATE OF WISH DATE OF RESPONSE RESOLVED
00093 12/09/82 04/14/83 Y

WISH:
PLEASE PROVIDE SOME DOCUMENTATION TO ALLOW MACRO ROUTINES TO CREATE

AND ALTER STRING LENGHTS. THE MACRO ROUTINE CAN VERIFY THE LENGHT OF

A STING IN V1.6 ON THE 11’'S. HOWEVER IF THE STRING IS TO SHORT, THE
MACRC ROUTINE CAN ONLY RETURN AN ERROR. IF THE MACRO ROUTINE COULD

MAKE A LIMITED CALL TO BASIC RTS TO PROVIDE A STRING OF PROPER LENGHT
IT WOULD HELP US A LOT.

DEC RESPONSE:
Rumor has it that there will be s SIG newsletter article
stating how to do it.

WISH NUMBER DATE OF WISH DATE OF RESPONSE RESOLVED
00094 12/09/82 04/14/83 Y

WISH:
I WISH YOU WOULD NOT (PERMANENTLY) NUMBER THE WISHES. I AM TIRED
OF SUCH SETANCES AS:

"I WISH TO ADD MY SUPPORT TO #17X. THE PROBLEM WITH #34
IS THAT IT WON'T WORK IF YOU INCLUDE #99, SO #17 SHOULD BE
INCLUDED WITH THE #66JL IDEA. AND THANK YOU FOR YOUR ANSWER
IN #27, #33, AND #88."

SEE WHAT I MEAN?

DEC RESPONSE:

We agree.
WISH NUMBER DATE OF WISH DATE OF RESPONSE RESOLVED
00095 12/09/82 04/14/83 Y

WISH:

Support of MACRO from BP2. Several times I have heard people complain

about problems from MACRO, and DEC’'s response has been "MACRO I3 NOT
SUPPORTED." This is news to me, and seems strange because:

o MACRO-11 is only language universal across all PDP-11 Op. Syst
ems.
o Calling MACRO-11 is extensively documented
o DEC sometimes recommends using MACRO subroutines
...continued

DEC RESPONSE:
See next wish.

39

WISH NUMBER DATE OF WISH DATE OF RESPONSE RESOLVED
00096 12/09/82 04/14/83 Y

WISH: —
...continued

o Can offer both size and speed improvements

o CALL BY REF only works with MACRO subprograms

Solution is simple: SUPPORT MACRO!

P.3. Thanks for version 2 -- it looks fantastic!

DEC RESPONSE:

Thank you for your thoughts. It’s unlikely we’ll change
our position.

WISH NUMBER DATE OF WISH DATE OF RESPONSE RESOLVED
00097 12/07/82 04/14/83 Y

WISH:

Would like end_of_file condition handled by INPUT/GET stmts rather than
be

treated as an error condition. For example: GET/END _OF FILE=label .
o

.. 8

that control would be transfered to that label on EOF.
Reason: Cleaner code.

N

DEC RESPONSE:
May consider.

WISH NUMBER DATE OF WISH DATE OF RESPONSE RESOLVED
00098 12/07/82 04/15/83 Y

WISH:

Please stop flagging FIELD as a declining feature. We like che
diagnostics when compiling, but must use FIELDing for generalized
I/0 routines when we do not know at compile time which buffer we
will be using. Dynamic mapping does not work for this!i!i--it’'s too
limiting: each time we bring a block in, we’d have to move the
buffer to the map, and we may need 6 or 7 different ones.

DEC RESPONSE:

The declining feature flagger can be disabled with the /FLAG qualifier.

40

WISH NUMBER DATE OF WISH DATE OF RESPONSE RESOLVED
00099 12/07/82 04/14/83 ¥

WISH:
Instead of making FIELD a declining feature, enhance it by
adding other data types to it, like:
FIELD #DATA.CH%, 2% AS Z%(1%), 8% AS Z(A% + B%)
or even:
FIELD #DATA.CH%, ARRAY Z%(32%)

DEC RESPONSE:
This is inconsistent with the direction BASIC is going.

WISH NUMBER DATE OF WISH DATE OF RESPONSE RESOLVED
00100 12/07/82 04/14/83 Y

WISH:
Provide a way at run-time to change the channel of a
virtual array.

DEC RESPONSE:
May consider.

WISH NUMBER DATE OF WISH DATE OF RESPONSE RESOLVED
00101 12/07/82 04/14/83 Y

WISH:
Provide a way for variable modes of file opens in Vax Basic,
similar to the RSTS MODE clause. That is:

OPEN DATA.FILEs$ FOR INPUT AS FILE DATA.CH%, ORGANIZATION DATA.ORGS
ALLOW DATA.ALLOWS
like the RSTS
OPEN DATA.FILEs FOR INPUT AS FILE DATA.CH%, MODE DATA.MODE%
Reason: Generalized file open routines and modules.

DEC RESPONSE:

Unlikely; would drastically slow down OPEN, and cause a size problenm.

WISH NUMBER DATE OF WISH DATE OF RESPONSE RESOLVED
00102 12/07/82 04/14/83 Y

WISH:
LONG integer type for array subscripts.
Reason: Larger virtual arrays, e.g. DIM ARDATA%(80000)

DEC RESPONSE:
May con51der

41

WISH NUMBER DATE OF WISH DATE OF RESPONSE RESOLVED
00103 12/08/82 04/14/83 Y

WISH:

Inter-node file access from my VAX to my 70 and VAX-VAX, 70-70,
etc., should be as transparent as

OPEN "NODE1l::DEV1:[CACCTIFILNAM.EXT" FOR INPUT. It could also be
as nice for starting processes accross nodes.

DEC RESPONSE:
Planned for RMS V2.0 when released.

WISH NUMBER DATE OF WISH DATE OF RESPONSE RESOLVED
00104 12/08/82 04/14/83 Y

WISH:

I realize that BASIC-PLUS is a stable product,
but please don’'t leave all of us that use it
out in the cold!!il! BP2 is too slow for 100

DEC RESPONSE:
We really do agree with you. We do NOT intend to decommit
support of BASIC-PLUS at this time.

WISH NUMBER DATE OF WISH DATE OF RESPONSE RESOLVED
00105 12/08/82 04/14/83 Y

WISH:

There is a problem in BASIC+ that is almost more of

a bug than a new feature! LEFT, RIGHT, and MID should
work as LEFTS$, MIDs, RIGHTS. I realize you can’t

make LEFT, RIGHT and MID illegal -- but please

make the other version legal. It is hard to show
students what a string function is and then have

to explain LEFT, MID and RIGHT.

IN3TR%, etc.

DEC RESPONSE:

You're right. We’re not sure we can fit in it, but we will
definitely look at it.

42

WISH NUMBER DATE OF WISH DATE OF RESPONSE RESOLVED
00106 12/08/82 04/14/83 Y

WISH:
Let me code MAP (MYMAP) A$ = 1, B$ = 2, Bls = 5 REDEFINES Bs, C§ = 3

so I don’t have to use 2 maps to specify that Bl starts where B does.

This would simplify maintenance as well as program readability.
Thanks!

DEC RESPONSE:
Unllkely RECORD’s in VAX-BASIC provide this via VARIANT's.

WISH NUMBER DATE OF WISH DATE OF RESPONSE RESOLVED
00107 12/708/82 04/14/83 Y

WISH:
MAKE CALLS TO CDD AT RUN TIME
TO MAKE UNIVERBAL EDITORS ... POSSABLE

DEC RESPONSE:

This is inconsistent with what CDD provides. CDD creates
variable names at COMPILE time. To do an INCLUDE of CDD

at runtime is too late - your code has referenced all the
variables it ever will. DBMS provide Data Base Mgmt. at runtime.

WISH NUMBER DATE OF WISH DATE OF RESPONSE RESOLVED
00108 12/08/82 04/14/83 v

WISH:

I Would like to add my plea to make the Basic-plus 2 compller generate
as much in-line code as possible. V2 has done excellent things with
the Basic language. Now lets do something about its speed.

Thank you

DEC RESPONSE:

We agree in principle, but we do not want to blow away any application
programs. There may be some inline code we can do. There are of
course definite benefits to threaded code.

et o e o o o o e e 1o o ot 1 s o o o e o o o s s b o e b o e

43

WISH NUMBER
00109

DATE OF WISH
12/09/82

DATE OF RESPONSE
04/14/83 Y

WISH:

RESOLVED

When opening a Virtual type file with a large Recordsize (i.e. 4096)

separate disk accesses are made every time a different
ed,

even though the referenced block is already in the
called in. In effect this means no speed gain from
files with large buffers, even though buffer space

This problem has been mentioned to the V2
DEC RESPONSE:

This is a known problem that we are looking into fixing.

you submit an SPR.

WISH NUMBER
00110

DATE OF WISH
12/09/82

DATE OF RESPONSE
04/14/83 v

WISH:
De-stablize Basic-Plus!!
BP2 have a REAL immediate mode someday.

DEC RESPONSE:
Unlikely.

WISH NUMBER
00111

DATE OF WISH
12/09/82

DATE OF RESPONSE
04/15/83

WISH:

block is referenc
buffer previously

accessing Virtual
is allocated.

We suggest

RESOLVED

Unless you’‘re going to makre

RESOLVED
Y

Please document call to BP2 to get space (GSA) used by RMS.

I would like to be able to use the call myself.

DEC RESPONSE:

No possibility. You can use Dynamic MAP
AMAZING things for you.

44

- it will do

WISH NUMBER DATE COF WISH DATE OF RESPONSE RESOLVED
00112 12/09/82 04/15/83 Y

WISH:

MAKE PDP 11/CPU=(ALL,INCLUDING=PC3+##) BASIC COMPILER GENERATE PIC, RE-EN
TERANT, AND SHAREABLE CODE

INCLUDE A %MACRO MACRO_NAM, [ARG1]... DIRECTIVE
HAVE %INCLUDE AND %MACRO TALK TO CMS

HAVE ODL BUILDER FOR TOOL KIT BUILD MEMORY RESIDENT OVERLAYS BASIC/MEMOR
Y _USE=NOTSTUPID

DEC RESPONSE:

The first suggestion is unlikely.

%INCLUDE A %MACRC is unlikely, it just won't fit.
CMS is language independent.

For the last suggestlon, we suggest you talk to the PROFESSIONAL folks.

WISH NUMBER DATE OF WISH DATE OF RESPONSE RESOLVED
00113 12/06/82 04/14/83 Y

WISH:

WISH THAT $BPCREF WOULD CORRECTLY PRINT INFO ABOUT REAL VARS
I, L, M, R, 8, ANDT. (IT DON'T IN VERSION 7.0). PLEASE
REFER TO CORRECT PEOPLE IF NECESSARY.

DEC RESPONSE:
Ves, we will refer this to the c@rrect people.

WISH NUMBER DATE OF WISH DATE OF RESPONSE RESOLVED
00114 12/06/82 04/14/83 Y

WISH:

RM3S: It should have a ‘Fast-forward/reverse’ FIND capability.
Currently the FIND starts looking from the beginning for the key...
allow for searching forwards/backwards from current position in
the files. This is mainly for people who use duplicate keys.

FIND should also work for alternate/secondary keys.

DEC RESPONSE:
We will forward to RMS.

45

WISH NUMBER DATE OF WISH DATE OF RESPONSE RESOLVED

00115 12/06/82 04/14/83 Y
WISH:
#27 could be more meaningful with the word label substituted for
line. (How'’s that for line-less preogramming.) The point is the

functionality, not the line numbers.

DEC RESPONSE:

Doubtful.
ISH NUMBER DATE OF WISH DATE OF RESPONSE RESOLVED
00116 12/09/82 04/14/83 Y
WISH:

PLEASE MAKE BP/2 PROPERLY UPDATE THE EQF POINTER IN A

BLOCK I/0 FILE. ie OPEN "X.X" FOR INPUT AS FILE 1%, VIRTUAL
PUT #1, RECORD 9

GET #1, RECORD 6

CLOSE #1

DO A DIRECTORY X. X IS FLAG AS 6./9.

DEC RESPONSE:
An SPR has been submitted; we’ll fix it.

WISH NUMBER DATE OF WISH DATE OF RESPONSE RESOLVED
00117 12/09/82 04/14/83 Y

WISH:

PLEASE DO NOT DUPLICATE CODE IN YOUR OBJECT LIBRARY.
THERE ARE MANY CASES IN WHICH BP/2 AND RMS HAVE THE
SAVE ROUTINES BUT DIFERENT ENTRY POINT NAMES

IF BP/2 COULD USE THE SAME ONES AS RMS THIS WOULD
REDUCE THE SIZE OF MANY TASKS.

DEC RESPONSE:
Point well taken; we certainly will look into this and take
advantage of any savings that can be done.

WISH NUMBER DATE OF WISH DATE OF RESPONSE RESOLVED
00118 12/09/82 04/14/83 Y

WISH:

PLEASE DOCUMENT OR SEND TO THE S8IG NEWSLETTER THE FORMAT
OF YOUR .0BJ FILES SO THAT USERS CAN WRITE ROUTINES

THAT IN MACRO THAT CAN BE LOADED.

DEC RESPONSE:

Unlikely we’ll do this; may imply defacto MACRO support which
we do not intend to do.

46

WISH NUMBER DATE OF WISH DATE OF RESPONSE
00118 04/14/83 04/14/83

WISH:

Modify the wishlist program to:
Allow longer wishes
Use Decnet device name in file open
Make wishlist program multi-user

DEC RESPONSE:
Fixed at next DECUS.

a7

RESOLVED
Y

Introduction to BASIC

Joe Mulvey
Digital Equipment Corporation
Nashua, NH

Charles Mustain, Session Chairperson
Stark County Local School System
Louisville, OH

Reported by Marty Olevitch, DECUS Scribe Service

Joe Mulvey, BASIC Languag= Development Planner for Digital,
gave an overview of the two versions of DEC BASIC used for
commercial purposes (VAX BASIC and BASIC-PLUS-2). In general,
DEC BASIC is an extended BASIC, derived from BASIC-PLUS-2 (which
is, in turn, derived from Dartmouth BASIC). It has advanced 1/0
and string-handling capabilities; floating point, integer, and
character variables. It is available wunder RSTS/E, RSX, and
VMS, with a high degree of source compatibility. The BASIC
Development Group believes that it is very user-oriented.

In the latest version of DEC BASIC, several changes have
been made. Line numbers are now required only on the very first
statement. The '&' is used only for a statement continuation
from one line to another. Labels may Dbe wused to precede
directives or statements and be used as the target of a GOTO
statement. Finally, the symbols '%' and '$' are required for
undeclared variables only.

A special feature of the new versions 1is 1its improved
error-handling capabilities. Compile-time errors are displayed
in terms of the error's severity (I - informational, W -
warning, E -trappable, and F - fatal). The error is identified
by number, location, and a mnemonic. The text of the error Iis
given. During run-time, BASIC will diagnose and display to
allow the user facility to test the error condition and take
action. With an informational/warning error eXecution will
continue. A trappable error will, at the wuser's discretion,
terminate BASIC. A fatal error causes execution to terminate.

Another special feature is COMMON DATA feature. It allows
independent programs to access a named shared area. The area
must have the same common nanme. The program must know the
structure of the common module, for its structure is arbitrary.
The COMMON option is related to the MAP statement.

48

The phases of the system are as follows: the EDITOR
(containing the BASIC statements and commands), the COMPILER
(which process the statements), a RUN phase (for immediately
executable <code), an .0BJ phase (for linkable output from the
compiler), a LINKER (which produces an executable image), and
the RUN-TIME system to provide support for execution.

In the edit phase of operation, the commands are: NEW (to
establish the name of a new program), OLD (to bring an existing
file from disk to one's area of memory), APPEND (to merge an
existing file with the current file), RENAME (to change the name
of a file), UNSAVE (to delete a file), SAVE (to store a file on
disk for the first time), REPLACE (to store subsequently),
SEQUENCE and RESEQUENCE (to assign line numbers and references),
DELETE (to eliminate lines), LIST (to print the lines), EDIT (to
edit lines either by 1) invoking the editor or 2) entering the
edit mode).

In the compiling phase, there are the following commands:
SET (which allows us to select among the default options), SHOW
(which will display the defaults), COMPILE (to create the object
module) . Some of the qualifiers are /CROSSREFERENCE, /DEBUG,
/LIST, /PAGESIZE, and /TYPEDEFAULT.

In preparation for execution (including the obj/link/run
phases), the commands are BUILD (to create command and overlay
controls), LOAD (to bring in the object module), and RUN (to
execute the program). The qualifiers are /BYTE, /DEBUG, /LINE,
/TYPEDEFAULT, and /SINGLE (or /DOUBLE).

Commands available during run time are CONTINUE ,which
enables one to resume execution after an interruption, and the
debugging commands BREAK, ERL, ERR, LET, PRINT, STEP, and TRACE.

The procedure for invoking BASIC is, of course, dependent
on the operating system. The other commands on the environment
level are HELP/INQUIRE ,which allows the wuser to request
ascistance, IDENTIFY, to display a header, SCALE, to control
round-off, ASSIGN, which will equate logical names, and EXIT, to
leave the BASIC environment. The prefix '$' can be used to

execute an operating system command.

In summary, the BASIC Development Group believes that this
version of BASIC, with its computing and 1/0 power, is the state
of the art. It has integer and decimal math, single and double
precision real arithmetic, GFLOAT, and HFLOAT, and both string
and matrix arithmetic. There are virtual arrays, block 1/0, and
terminal format, sequential, relative, and indexed files. It
improves programmer productivity because it is easy to learn,
easy to read and maintain, and is a structured language.

49

Introduction to UNIX

Mark Bartelt
HSC Research Development Corporation
Toronto, Ontario

Dorothy Geiger, Session Chairperscn
Cal Poly
San Luis Obispo, CA
Reported by Kevin Carlin, DECUS Scribe Service

UNIX (a trademark of Bell Systems) is, 1in the DEC

environment, a timesharing system for ths PDP-11 and VAX
processors. Some of the applications to which UNIX 1is suited
include text processing, phototypesetting, communications,

networking, and language development. The UNIX environment 1is
designed to be friendly to the programmer, especially, but not
- exclusively, the systems programmner.

The UNIX Command Line Interpreter (CLI), or "shell," is not
a privileged program, any programmer can define or redefine
their shell command set at the interpreter level as well as the
standard command file levels.

A powerful symbolic debugging tool is available.

The following languages are standard with the UNIX
distributed by Digital: C, FORTRAN 77, RATFOR, STRUCT (a
FORTRAN 77 to RATFOR utility), BASIC, DC, and BC,

Some optional languages available for the UNIX system are:
ALGOL 68, PASCAL, SNOBOL, and APL.

There are certain features UNIX is definitely not designed
to support, and these include real time applications,
asynchronous I/0, and generalized interprocess communications.

Some of the more interesting tools available from DEC UNIX

are:

MAKE reviews symbolic dependencies between between multiple
source files

LINT program to do all the type checking and sloppy code

flagging the C compiler doesn't

50

YACC/LEX language development tools for syntax definition and
analysis

ROFF a RUNOFF ancestor now somewhat obsolete
NROFF a ROFF ancestor which permits macro definition
TROFF a typesetting version of NROFF .

Most of the operating system is in C to promote ease of
transportability and modification. Approximately 7800-10007
lines of C code, as opposed to l000-2000 lines of assembly code,
appear in the kernel. The system utilities are virtually 100%
C.

The file system is expressed in the following diagram:
<K<Insert diagram 1 from my notes -- KEC>>>

A special convention for designating the wuser's current
position in the tree 1is ".", while ".." is the user's root
directory.

Cd is a system command to change the wuser's current
directory. The command

cd ..

relocates the user's directory to the root of his current
directory, popping him up a level.

cd ../..

relocates the user to the root directory of his current root
directory, popping him up two levels.

No internal file structure is defined for UNIX. All file
structures are user defined. There is a buffer cache scheme
that supports the functions delayed write and advanced read,
which permits better efficiency in system I/0. 1/0 protocols
are always the same on UNIX, regardless of whether the
interaction is with files, devices, or pipes.

The three standard predefined files employed by UNIX are ¢,
standard input, 1, standard output, and 2, a standard error
file.

The I/0 primitives used by C are:

fd = open(file,mode)

fd = create(file,prot)

nb = read(fd,buf,nbytes)
nb = write(fd,buf ,nbytes)
close (£4d)

pipe(fd)

51

lseek(fd,position) (a random access primitive)
fdz = dup(£fdl)
dup2 (£dl,£d2)

There is a special structure for beginning (or cloning) a
sub-process from whatever process is in progress. The function:

status = fork();

initiates the new process, which will always be identical to the
current process. The parent (or original process) and tha child
(or newly generated process) know who they are 1in relation to
the other by the value returned by fork (yes, execution of the
new process begins at the fork function, not at the initial
entry into the process). If status equals -1, then the attempt
to fork failed., If status equals @, then the process knows it
is the «c¢hild. 1If status is greater than 1 then the process is
the parent and the value in status can be used to identify the
child,

A procedure which renders fork more useful is:
exec(file,args);
which replaces the current process with a new one (which 1is
entered at 1its Dbeginning). These are very common among
children.

exit({status);

is a procedure which terminates the current process and returns
the user defined value status to the parent process.

Special error routines may be placed below either of these
two procedures since, if the process behaved as it should, it
would never get there,.

There are several commands to redirect standard 1/0 to user
defined files, structures, or pipes.

There is also a facility for having e shell command be
dealt with as a background process in the command line which
looks as follows:

shellcommand &

The syntax also allows for the standard output of a process to
be included as part of a shell command line:

... shellcommand ...

where the dots represent an enveloping command 1line. Multiple
commands may be combined on a command line as follows:

shellcommandl; shellcommand2; shellcommand 3;

52

But the command line:

shellcommandl; shellcommand2; shellcommand3 &
will probably not have the result desired. If the intention was
to set up all three processes as a background process, then the
syntax should be:

(shellcommandl; shellcommand2; shellcommandl3;) &

to force more than just the last process into the background.

Pipelines are used to make the output of one command the
input for the next. The syntax for this is:

shellcommandl | shellcommand2 | shellcommand3
Three special shell command operators can be used to redirect
the standard 1I/0 devices. These operators are "<", ">" and
">>", The command construction:

shellcommand > file

redirects the standard output for that shell command to file.
The construction:

shellcommand >> file
redirects the output to that file, appending if the file 1is
already present. And so the redirection of input looks like
this:

shellcommand < file

These redirections can be combined in a single command, a simple
example being:

shellcommand < ifile > ofile
The utilities offered with the UNIX system are dgenerally small
and stupid. The small is better philosophy, with a few notable
and necessary exceptions, is the universal philosophy of UNIX

utilities. Some of these utilities are:

who —-- which lists the login name and terminal number of all
logged in users.

ls -- which lists the contents of the user's current directory.

wc -- which returns the number of words, lines, and characters
in the input file.

sort file -- which sorts the file "file" into sorted text.

53

grep string file -~ searches for occurences of "string" in

"file,"

hm file -- lists the symbol table elements 1in an object code
file.

ar t lib -- lists the contents of an archive file.

tee file -- copies standard input to standard output.

cat filel file2 -- copies files to standard output.

tr {[options] stringl string2 -- replaces stringl with string2

while copying standard in to standard out.

uniq [options] -- Copies input to output, deleting repeated
occurences of lines.

Shell scripts ars UNIXs version of indirect command files.
If a file is specified for a process which contains a shell
command and seems to be a shell script, the shell spawns itself
(just as fork permitted a process to spawn a child above) and
uses the script as its standard input. Shell scripts may be
constructed and used as command language which includes multiple
line for, while, and until constructions. '

Bibliography:

Bell System Technical Journal)
Volume 57, number 6, part 2, July - August 1978

Software Tools
B. Kernighan and P. J. Plauger

The C Programming Language
B. Kernighan and Ritchie

54

S~

How to Make BASIC Run Faster

Richard Baldwin
North County Computer Services, Inc.
Escondido, CA

Bill Tabor, Session Chairperson
Racal-Milgo
Miami, FL

Reported by Todd Svangler, DECUS Scribe Service

One of the main objects in the computer world 1is to
minimize the amount of time required to perform a job. The
problem has almost always rested in the hands of the programmer.
It is the job of the programmer to make the code as 2fficient as
possible, both in memory conservation and CPU time. In the
presentation by Richard Baldwin of North County Computer
Services, Inc., the problem is taken from the hands of the
programmer and placed in the hands of the hardware people.

In the BASIC language there is one option to be considered.
By placing a floating point processor or floating point
accelerator on the CPU, the speed of many commands can be
quickened. Using the processor, the math operations and related
internal functions such as sin, cos, tan, =tc., will be handled
much faster. To demonstrate this increase, an experiment using
a simple for-next loop was tried.

In this experiment, the for-next loop was run without any
additional instructions in the loop and timed by itself. From
this, the CPU time calculated with statements in the loop minus
the for-next time will be the time used of the instruction. By
iterating the for-next loop twenty to thirty thousand times,
accurate time calculations can be made and compared with the run
times of the same se2t of instructions wusing a floating point
accelerator. When the figures are compared, one can see that
there is almost always a significant difference whan the
accelerator is used.

There are four variables to be considered which influence
CPU time. The type of machine and the type of compiler play an
important role. Also, the hardware options and the capabilities
of the programmer will be crucial to the operations of the
machine, The experiment shows that virtually no matter what
machine or type of Basic is used, the program floating point
operations will always run faster when using the floating point
accelerator. Otherwise, variances will be machine dependent and
can be found using similar for-next 1loops. In gen=ral, the
floating point accelerator will enhance the operations of the
computer.

55

BASIC Magic (and other tall tales)

Daniel Esbensen
Touch Technologies
Escondido, CA

Bill Tabor
Computer Products
Ft. Laudexrdale, FL

Reported by Laura Havlin, DECUS Scribe Szrvice

The main topic of discussion was centered around the idea
of creating a standard form of BASIC. The version that is now
up for public review by the standards committee, as the groun
discussed 1it, seemed to be unacceptable. Although many people
had heard about the specific version, very few people had seen a
copy of it. Several people even said that they had sent checks
with their requests for a copy of the standard version, had
received a cancelled check several months ago, but still had not
received a copy yet.

As Daniel Esbensen said that the committee cannot allow
this standard version of BASIC because: (1) There are no
integer data types, (2) There is no bit manipulation, (3) You
cannot open files and write or read from them, and (4) You
cannot resume a line number. Everyone present agreed that, yes,
it would be difficult to program with these restrictions, but
the main problem was that this standard version of BASIC could
not meet the business nesds of the community.

Since BASIC is really used for business and the proposed
standard version cannot meet all the business needs, the
gquestion was then asked what can be done to prevent this version
to become the standard BASIC,

The only solution suggested was to write a substantial
amount of objection letters to the committee. These letters
should address all aspects of the version, because the committee
is required to answer all letters recceived. If enough letters
are sent to the committee, then the proposed version has to go
through another public review. It was stressed that all areas
of objection must be dealt with before another review, because
once it was reviewed for one specific objection, then that
objection cannot be brought un again(so that there isn't an
infinite loop of reviews). Emphasis was placed on the fact that
the letters need to be sent out immediately.

After the discussion of standardizing BASIC was finished,
the group told war stories. One topic covered was scale factors
and the differences and complications that arise when using sale
factors of zero or six. Another topic dealt with was BASIC PLUS3
and how when doing a listing, every single character generates
an I/0 call. The next meeting will be held in September in San
Francisco.,

56

BASIC-PLUS-2 Installation Tuning

BEdward F.

Vogel

Digital Equipment Corporation

Nashua

Ray Strac

Session Cha
ICs

Palm Dese

Reported
Todd Span
DECUS Scribe

Installing BASIC-PLUS-2 requires
effect the efficiency of the
the BASIC Davelopment Group,
explained the importance of the
overlays, mappings, and the

He also explained how each of
performance.
Depending on the system and

libraries are the BP2RES and
to 20K of system memory, while
RSX and 235 blocks under RSTS/E.
and is larger than the BPZ3ML.
contains more address space, it
system), it can share code and

library also has the capability
With BP2SML, §X of virtual
disk usage is 45 blocks under

The advantages of smaller library
better than not using a library
shareable code, and has a smaller
no library. The task file here is
BP2RES, and 1is smaller than the
library. Another difference is
customized,

Memory and run time are trade-
libraries. When possible, build
By default, one should link to
requires less memory and has a sm

57

; NH

kbein,
irperson

rt, Ca

by

gler,

Service

many considerations which will

system, Edward F. Vogel from
Digital Equipment Corporation
use of resident libraries,

installation of the RUN command
these features affect the system

memory available, two resident
BP2SML. BP2RES will require 18K

disk usage is 158 blocks under
BP2RES takes longsy to execute
BP2RES advantages are that it

is clusterable (depending on the
nas a smaller task file. The
to link RUN to it.

address space is required. The
RSX and 109 blocks under RSTS/E.
aroe that it 1is smaller, it is
at all, it is clusterable, has
task file than a system with
slightly larger than that of the
task file of a system with no
that the smaller library can be

offs involved with the choice of
both libraries into the system.
the smaller library since it
all task file. If memory becomes

a problem, the next step is to cluster the smaller library with
RMSRES if it is in the system. This will conserve memory and run
time. If there are still oproblems with memory, one can use the
larger resident library, BP2RES. This results in slower execution
time , although the exact slow down is wundetermined. Again, the
choice is up to the needs of the usesrs. If at all possible try
to avoid clustering as this imposes a large overhead which can
slow the system by as much as 30 percent.

The next consideration is whether or not to install RUN, which

closely fits in with the use of resident libraries. If a resident

library is not used, every user using RUN has his own copy of RUN

which will cost 20¢ blocks per user. Using resident libraries

will considerably reduce thz memory requirements. Using BP2RES

with run increases the execution time, but requires less disk

space since there is no disk overlay. This can be done in version

2.8 only. In version 2,1 all resident libraries will again

increase execution time and use less disk space. In version 1.6,
RUN is available in all systems and is fully functional, including
matrix statements, a calculator mode, run/debug and more address
space. The increased address space will allow larger programs to
be executed under the RUN command. Installing remote file access
can also be helpful. It will allow the system to access another
DECnet node, but will reduce usable address space.

File placement also affects run time; the proper placement can
also reduce compile time. In order to minimize compile times a
good choice of devices is important. A fast disk will improve the
compile time as will kceping the compiler on a separate disk from
the system disk. This also applies to the work files which should
be kept separate from system and compile files. If there are not
enough disks available it is better to combine the compiler and
the system in order to maximize efficiency. Other tips include
caching compiler work files and marking the compiler for data
cache (this is possible only on RSTS/E).

The system hardware configuration will determine what features
work best. If the system has a big disk and large memory, install
all libraries, use RUN and remote file access. With a small disk
and large memory, use the resident libraries and try not to
install RUN. If RUN is needed, link it with the 1libraries. With
a big disk and small memory, use RUN without the resident
libraries. With a small disk and small memory, trade-offs must be
tailored to the individual system. 1In all cases, there are no
"rules" to follow since each system reguirements are unique,

58

Using New Compiler Directives in BASIC V2.0

Edward Vogel
Digital Equipment Corporation
Mashua, NH

Bob Van Ksuren, Session Chairperson
North County Computer S=rvices
Escondido, CA

Reported by Susan Miller, DECUS Scribe Service

Compiler directives in BASIC have not been effective for
some users. Speaker Edward Vogel of DIGITAL gave a presentation
on "Using New Compiler Directives in BASIC V2.¢." Vogel said,
"I'm gonna tell you what they're good for, not how to use them.”
But his presentation did not convince some audience members.
These users cited problems they had experienced and problems
that they anticipated with compiler directives,.

In his speech, Vogel said that DIGITAL tells users that a
compiler directive will control listing file, will include code
from another file and will conditionally compile programs. But
what they really do is provide more maintainable code, provide
transportable code, ald in debugging and increass developaent
time., He gave these general rules:

1. Begin with percent sign.
2, Cannot begin in first column.
3. Must be the only text on the line.

4, Cannot be within a quoted string.

To list file directives, Vogel says to use S&TITLE, $SBTTL
(subtitle) and 3PAGE. This provides amodule information,
readability and makes it easier to maintain code.

directives include 3NOLIST, SLIST, %IOCROS3S
NOLIST for the old working code and SLIST for

Anothexr set of
se %
ile SCROBS is placed at information needed for

e
and %CROSS. Us
the new code. Wh
future reference.

Vogel said that $IDENT would modify listing and output

files, track versions of source, aid in debugging and could be
seen in task map.

59

To include code from another £file, the directive 1is
$INCLUDE. This helps data definitions, constant definitions,
commonly used functions and subroutines. Then the code will be
2asier to modify, more reliable and transportable.

In the control compilation, normal integer operations can
be used with the lexical constants. The controlling compilation
consists of %LET, %VARIAWT, %IF, S%THEN, 2%ELSE and 3%ABORT. The
FVARIANT 1is evaluated when you complete file. If the equation
is falsa, everything between then and else is not in the output.
Thz %ABORT stops program compilation and gives error checking
ability.

After Vogel's 3G-minute presentation, some audience members
were eager to fire guestions. Sheila Kelly from Michigan asked,
can you on the 11/7¢, like on the VAX, compile and 1link and
avoid the switch on the BASIC. Vogel said, "MNot at this time.
That 1s also a strongly requested item."

Greg wWhitier of Kimcorp Computer asked, "what's the change
of getting V2.0 compiler to run faster than the taskbuilder?"
Vogel said that a V2.0 will be available in a few weeks.

"On RSTS systems you should see some improvement. It is
our highest priority. That and fixing bugs to improve compiler
performanca", Vogel answered,

Jeff Harrolock of Georgia Company gave a personal
observation of the compiler directives. "When the system was
busy with the disks in heavy use, it wasn't wunusual to get 19
to 11 times longer." In another observation, he noted, "In the
real world in a large commercial shop, all the points that vyou
maka about overall maintenance of the compile software have some
merit. You can't take a shop that is wusing 1its computer
already at a reasonable figure of its maximum ability and
guadruple or worse the compilation times and still expect
them to be able to get their work done, You can't do it; not
in the real world," About half of the audience showed their
agreement with this comment by clapping. Vogel said that the
point was well taken. "Wz improve compiler performance by about
four times between field test two and field test three. We are
looking into it."

Another user complained about the time wasted with the
compiler directives., "When I took 15 minutes to compile before
and it takes an hour now, that is totally unacceptable. It's
just out of the question for us to swallow that kind of thing."
Vogel said that the reason performance is too slow is because of
added features. These features were added because of requests
from people at DECUS sessions.

The conflict between DIGITAL and users could be eased with
the realization of tradeoffs. The systems cannot handle all the
features and maintain maximum performance. Compiler directives
may have advantages, but there are problems that need to be
worked out,

60

Using External MACRO-11 Functions in BASIC-PLUS-2

Brian A, Hetrick
Digital Equipment Corporation
ZKO2-3 /Ku7
Spit Brook Road, Nashua NH (3062.

This article describes undocumented, unsuppocrted features of
PDP-11 BASIC-PLUS-2. It lays bare the secrets of writing
MACRO-11 functions that can be invcked from PDP-11 BASIC-PLUS-2.
Of course, none of this 1is supported in any way, shape, or form,
by Digital, the author, or anyone else. I repeat: unsupported.
Let the reader beware. With that provison, you can be using

MACRO-11 functions from BASIC-PLUS-2 within an hour.

1f you're @ DBASIC-PLUS-2 version 2 wizard, then what you need
is ths second sentence of the first paragraph of "Writing the
external function". Otherwise, read on,

Introduction

External functions are supported in PDP-11 BASIC-PLUS-2 version
2. Like SUB subprograms, these are separately compiled modules
linked together with the task builder; 1like DEF functions and
BASIC built-in functions, they return values that can be used
directly in expressions without going through a temporary
variable,

However, the BASIC-PLUS-2 documentation does not describe how to
write MACRO-11 functions, and the linkage conventions used are
unique to PDP-11 BASIC-PLUS-2. As far as BASIC is concerned,
this doesn't matter: MACRO subprograms aren't supported anyway.
There is fine line dividing what 1s and what isn't supported.
The semantics of the CALL BY {DESC | REF | VALUE} statement are
supported at entry to the subprogram, the parameter list looks
a certain way. However, no use of this statement is supported.
Is this clear? Good.

But this makes it rather difficult to write external functions
in MACRO-11 that are "callable" from BASIC-PLUS-2.

Now, before we g2t to the good stuff, a note about the
terminology used in this article: an ACTUAL PARAMETER is what
a calling program sends a subprogram, a FORMAL PARAMETER is
what the subprogram receives from the calling program, and a
just plain PARAMETER is both at once. The equivalent FORTRAN
terms are "actual argument," "dummy argument," and "argument;"
(the equivalent COBOL terms are "argument," "argument," and
“argument.")

Daclaring the external function
In the BASIC-PLUS-2 program, the external function must be
declared before it can be used: otherwise, the compiler treats

the function invocation as a reference to an element of an array.
The syntax for the declaration of an external function is:

61

{DESC
EXTERNAL resulttype FUNCTION name [BY REF]
VALUE}

[(formalparameter [, ...]) 1

"Resulttype" 1is the data type of the function result. This can
be RFA or any numeric type: BYTE, WORD, LONG, SINGLE, or DOUBLE.
The INTEGER and REAL keywords can also be used, but this is
dangerous, as then the assumed datatype for the function result
depends wupon the compilation switches for or the OPTION
statement in the «calling program. Using STRING as a result
datatype is VERY dangerous, unless you really know the ins and
outs of the BASIC-PLUS-2 OTS;

.....and that has to wait for another article.

"Name" 1is the name of the external function. Unlike the
EXTERNAL SUB statement, the EXTERNAL FUNCTION statement does not
permit a quoted string for the name, so this name must be both a
legal BASIC-PLUS-2 name and a legal external name. It must be 1
to 6 characters 1long, start with a letter, and continue with
letters, digits, dollar signs, and periods.

The BY {DESC | REF | VALUE} clause, immediately following "name,"
is optional. If present, it has two effects:

The thread generated at invocations of the function is CBRS,
rather than CALS. This avoids certain context saving
action, and results in a quicker running program.

The default parameter passing mechanism is set to BY DESC,
BY REF, or BY VALUE, as specified, for all parameters of the
function.

If the external function 1is written in BASIC-PLUS-2, the "BY
{DESC | REF l VALUE}" clause must NOT be specified, because
BASIC-PLUS-2 external functions can't receive formal parameters
by anything but the default passing mechanisms, and the CBRS
thread doesn't save enough context to call a BASIC-PLUS-2
progran.

If the external function is written in MACRO-11, the "BY {DESC |
REF | VALUE}" clause need not be specified, but the program will
run faster if it is specified.

The formal parameter list description as a whole is optional. If
present, it specifies the number of formal parameters to the
function, and specifies the type, structure, and parameter
passing mechanism for each formal parameter. At most eight
formal parameters can be described in the formal parameter list
description. Each "formalparameter" has the syntax:

{DESC

[datatypel [DIM ([,...]1)] [= length] [BY REF]
VALUE}

62

—

"Datatype"” is the data type of the formal oparameter. This can
be any BASIC type (BYTE, WORD, LONG, SINGLE, DOUBLE, STRING, or
RFA). The INTEGER and REAL keywords can also be used, but this
is dangerous, as then the assumed datatype for the function
formal parameter depends upon the compilation switches for or
the OPTION statement in the <c¢alling program. If the datatype
keyword 1s omitted, tha datatype of the preceeding formal
parameter is assumed., In the description of the first formal
parameter, “datatype” must be present.

The "DIM ([,...]1)}" clause is optional. 1If present, it specifies
that the formal parameter is an entire array with a particular
nunber of dimensions. 1Its absence specifies that the formal
parameter is not an array.

The "= length" clause is optional, and may be given only if the
data type for the formal parameter is STRING. If present, it
specifies that the formal parameter is a static string (i.e., a
string from a COMMON or MAP), and is "length" characters long.
If the datatype is given as STRING and the "= length" clause is
not given, then the actual patameter can be either a static
string or a dynamic string.

Finally, the "BY {DESC | REF | VALUE}" clause is optional. If
present, it specifies the parameter passing mechanism to be used
for the parameter. If absent, it specifies that the "BY {DESC |
RLF | VALUE}" clause appearing after "name" specifies the
parameter passing mechanism. If neither "BY {DESC | REF | VALUE}"
clause is present, the passing mechanism to be used for the
parameter depends on the datatype and structure of the parameter:
this is BY REF for unsubscripted numeric and RFA items, and BY
DESC for strings or for entire arrays. The "BY {DESC | REF
VALUE}" clause at the parameter level does NOT affect the thread
generated at invocations of the function.

There 1s one special cas2 that is not covered above. If the
formal parameter 1list 1is described as () then the function is
explicitly declared as having zero parameters. If the formal
varameter list description is merely omitted, then nothing is
implied about the parameters.

There are botn advantages and disadvantages to giving formal
parameter descriptions in the EXTERNAL statement. The big
advantage is that BASIC-PLU3-2 won't let you mismatch the actual
and the formal parameters. It will convert the actual parameter
to the type of the formal parameter, 1if possible (and give an
informational message 1f the conversion means that the actual
parameter is no longer modifiable), check the structure of the
actual parameter against the formal parameter, and pass the
actual parameter by the mechanism specified in the formal
parameter description. The big disadvantage is that BASIC-PLUS-2
won't let you mismatch the actual and the formal parameters. If
you have an external function that takes a variable number of
parameters, or where the datatype of the parameter changes from
invocation to invocation, BASIC-PLUS-2 won't let you invoke the
function. But, you don't have to describe the formal parameters
in the EXTERNAL statement, so there is an escape hatch.

Invoking the external function

63

The syntax for an invocation of an external function is:

{variable {DESC
name [([expression [BY REF 11 0, «001) 1]
entire array} VALUE}

"Name" is the name of the function as given in the EXTERNAL
statement.

Unlike the CALL statement, the function invocation does not
permit a "BY {DESC | REF | VALUE}" «clause on the function
invocation as a whole.

The actual parameter list as a whole is sometimes mandatory,
sometimes optional, and sometimes forbidden, depending on the
formal parameter list specification in the EXTERNAL statement:

If the formal parameter list description was given as () in
the EXTERNAL statement, then the actual parameter list is
forbidden.

If the formal parameter list was specified in the EXTERNAL
statement as anything but () ,then the actual parameter list is
mandatory.

If the formal parameter list was not specified in the EXTERNAL
statement, then the actual parameter list is optional.

If the parameter list is specified at all, then there is at
least one parameter. For example, 1f () is given as the
parameter list, there is one parameter, and it is omitted (sce
below). This differs from the syntax in the EXTERNAL statement,
where () is wused to explictly indicate that there are zero
parameters.

An entire parameter may be omitted. Omitting a parameter in
BASIC-PLUS-2 1is the same as specifying '-1'W BY VALUE that is,
the word value -1 1is passed instead of an address in the
parameter list. Even 1if the parameter was described in the
EXTERNAL statement, omitting the parameter is legal.

If a parameter 1s not omitted, it can be an expression, an
unsubscrionted variable, or an antire array. [Subscripted
variables are essentially expressions.] Theare's a whole big
blurb in the Language Reference Manual about what can be passed
now, and whether it is modifiable, so that won't be covered here

If the parameter list was described in the EXTERNAL statement,
then the actual parameters in a function invocation can not
contradict the formal parameters in the EXTERNAL statement.
However, the actual parameters don't need to exactly match the
formal parameters; BASIC-PLUS-2 will perform conversions to get
the actual parameter to be the same type as the formal parameter
if possible, and will pass the parameter by the mechanism
specified in the EXTERNAL statement. However, if the formal
parameter list was not described in the EXTERNAL statement, then
the function 1invocation c¢an do what it pleases, even if it
specifies actual parameter lists that differ totally from actual
parameter lists in other invocations of the same function, and
BASIC-PLUS-2 won't get in the way.

64

e

Writing the external function

Writing a MACRO-11 external function to be called by
BASIC-PLUS-2 is just like writing a MACRO-11l external subprogram
to be called by BASIC-PLUS-2, except, of course, that it's
different. The difference is that the function result is the
first formal parameter of the function. Here's where the
difference between actual parameters and formal parameters can
really bite you!!! This trick 1is called the "hidden first
parameter convention," and BASIC-PLUS-2 picked it up from the
VAX. 1It's a little strange, but makes some sense: the function
can't return a LONG, SINGLE, DOUBLE, or RFA value in R&, but can
return one with a hidden first parameter.

In terms of what it means to the function,the EXTERNAL statement:
EXTERNAL datatype FUNCTION name [BY clause] [(parameterlist)]
is equivalent to the EXTERNAL statement:

EXTERNAL SUB name [BY clause]
(datatype BY defaultmechanism [, parameterlist])

The result is always passed as the first actual parameter, by

the default mechanism for that type ("defaultmechanism" above):

for RFA and all numeric types, this is BY REF.

Suppose that a BASIC-PLUS-2 program has the declaration:
EXTERNAL WORD FUNCTION FOO (WORD)

and the function invocation X = FOO (1.5) where X is a WORD
variable. The parameter list the function FOO would get would be:

e o e +
R5: | undefined | 2 |
Fomm e g +
| Address of result temporary |
g S +
| Address of temporary word 1 |
gy +

Note that BASIC-PLUS-2 has converted the floating point constant
1.5 to the word integer 1%, put that word 1% into a temporary,
and then passed the temporary BY REF (that being the default
passing mechanism for WORD values). This 1is the effect of
specifying "WORD" in the formal parameter description of the
EXTERNAL statement. Also, the function 1is essentially a

subprogram with two formal parameters: the first formal
parameter is the function result temporary, while the second
formal parameter is the first parameter at the function

invocation site.
The formal parameters received by the function are the same as

the formal parameters described by the EXTERNAL statement, with
the addition of a first parameter that is the function result.

65

The external function FOO could be written in BASIC-PLUS-2 with
the FUNCTION statement:

FUNCTION WORD FOO (WORD Y)
Here, Y 1is the formal parameter, and assignment to FOC within
the body of the function would give a value to the function

which, in the main program, would be given to X.

Suppose the function's action was to return the value of its
parameter. The BASIC function would be:

14 FUNCTION WORD ¥OO (WORD X)
FOO = X
END FULNCTION

while the equivalent MACRO-11 function would be:

FOO:: MOV @4 (R5),82 (R5)
RTS PC
. END

How about a function that can't be easily done in BASIC-PLUS-2:
a word left rotate? The function declaration would be:

EXTERNAL WORD FUNCTION ROTATE (WORD BY VALUE, WORD BY VALUE)

The first parameter 1is the word to be left rotated, and the
second parameter 1is the number of bits by which the first
parameter is to be rotated. The function itself would be:

.GLOBL S$SAVVR

ROTATE: : JSR R2, SSAVVR ; Save registers @-2
MOV 6(R5),R2 ; Get number of bits to rotate
BIC #177769,R2 ; Take modulo 16
SUB T420,R2 ; Get ASHC count
MOV 4 (R5) ,R0O ; Get word to rotate
MOV RU,R1 ; Copy it to make longword
ASHC R2, R0 ; Rotate into R1
MOV R1,@2 (R5) ; Store result
RTS PC ; Restore registers and return
. END

An invocation of the function might be:

ROTATE (QUANTITY__VALUE, ROTATE__ AMOUNT)

66

The parameter list given to thz function is:

Fom e S +
R5: | undefined | 3 |
S e +
§ Pointer to result word |
e +
| Word value of QUANTITY_ VALUE |
o e e e e e e DR +
] Word valus of ROTATE AMOUNT]
g +

Although the function has two parameters, they are at 4(R5) and
6 (R5) (rathar than 2(R5) and 4 (R5)) because of the hidden first
parameter result convention. The paramcters are at 4(R5) and
6 (R5) instead of @4 (R5) and @6 (R5) because they are passed BY
VALUE rather than BY REF. Finally, the result has to be put into
@2 (R5) rather than R{, again because of the hidden first
parameter result convention.

Writing the external function "compatibly"

Suppose that the MACRO-11 function is to be usable from both
FORTRAN and BASIC-PLUS-2 «calling programs. There are several
difficulties:

The same object file couldn't be linked with a FORTRAN pnrogram
and a BASIC-PLUS-2 program, because of the hidden first
parameter convention used by BASIC-PLUS-2.

The passing mechanism couldn't be BY DESC or BY VALUE, because
FORTRAN passes everything BY REF.

But, if the function accepts all its parameters BY REF and uses
conditional assembly, the same source code (at least) could be
used, as follows:

_.IIF NDF BP2 BP2 = 1 ; Assume BASIC-PLUS-2 linkage
JIF EQ 3P2 ; Following for FORTRAN linkage

WORD = 2 ; Word to shift

SHIFT = 4 ; Amount by which to shift

_.IFF ; Following for BP2Z linkage

WORD = 4 ; Word to shift

SHIFT = 6 ; Amount by which to shift

__<ENDC ; End of linkage conditional

.GLOBL .SAVR1

ROTATE: :JSR R5, .SAVR1 ; Save registers 1-5
MOV @SHIFT(R5) ,R2 ; Get number of bits to rotate
BIC _#177760,R2 ; Take modulo 16
508 _#k20,R2 ; Gzt ASHC count
MOV @WORD (R5) ,RG ; Get word to rotate
MOV R@,R1 ; Copy it to make longword
ASHC R2, RO ; Rotate into R1
_.IF EQ BP2 ; Following for FORTRAN linkage
MOV R1,RE ; Put result into R¥
.IFF ; Following for BP2 linkage
- MOV R1,82 (R5) ; Store result
. ENDC ; End of linkage conditional
- RTS PC ; Restore registers and return
. END

67

In order to write a function so that it is callable from both
BASIC-PLUS-2 and TFORTRAN (although using conditional assembly,

and hence with different object files for the two languages), it
was necessary to:

Pass all parameters BY REF, as FORTRAN can't pass parameters BY
VALUE or BY DESC.

Use symbols for the offsets of the parameters in the parameter
list, and conditionaliza these symbols based on the linkage
convention, as they are different in the FORTRAN and the
RASIC-PLUS-2 cases.

Use a different register save co-routine, so that the value can
be returned in RZ in the FORTRAN case.

Conditionalize the storing of the return value, putting it into
RO in the FORTRAN case and into @2 (RS5) in the BASIC-PLUS-2 case.

The function can be declared in BASIC-PLUS-2 with:
EXTERNAL WORD FUNCTION ROTATE (WORD, WORD)
and in FORTRAN with:
INTEGER _* 2 ROTATE

Of course, FORTRAN won't <check that there are two actual
parameters, and that they are words; BASIC-PLUS-2 will.

summary

The EXTERNAL statement is used to declare an external function.
An exXxternal function 1is invoked with syntax that is a cross
between a DEF function invocation and an external subprogram
invocation. The external function receives a parameter list
where the first formal parameter is the function result, and the
remaining formal parameters are the actual parameters specified
at the function invocation. Finally , conditionalized MACRO-11
source code can be used for external functions callable from
both BASIC-PLUS~2 and FORTRAN, although separate object files
are required.

68

MACRO & BASIC-PLUS-2 User Tutorial

Wef Fleischman
Software Techniques Inc.
Los Alamitos, CA

Bill Tabor, Session Chairperson
Racal-Milgo
Miami, FL

Reported by Gene Mitchell, DECUS Scribe Service

"A high-level language like BASIC is almost always the best
implementation language for maintenance and transportability
reasons., But you should recognize the potential areas for
improved performance and enhanced efficiency afforded by MACRO."

Such was the conclusion reached by Wef Fleischman of
Software Techniques, 1Inc., the spesaker at a session entitled
"MACRO and BP2 V2 Tutorial." Topics of interest were focused
into MACRO VS. BP2, likely applications of both, and
programming techniques.

A comparison of the two languages showed some of the better
features of BASIC:

1. Well organized, logical structure.

2, Protection of programmer from pitfalls. For instance,
BP2 requires all variables to be explicitly and
correctly spelled. Earlier BASIC systems allowed for
misspelled variables, which could have adverse
consequences on other sections of a progran.

3. Good maintenance characteristics--many people have a
knowledge of the language.

4. Transportable code--can migrate to many different
machines.
MACRO-11, on the other hand, said Fleischman, 1is by
comparison confusing to many. Drawbacks include:

1. MACRO-11 does not impose a logical structure.

69

2. It is sometimes difficult to understand. Programmers
will occasionally have difficulty reading each other's

code.

3. Debugging is an art, Debugging MACRO programs

adversely affect even logically independent parts.

can

4, MACRO-1l1l is not very transportable. MACRO is great for
getting at "intimate details" of the PDP-11, but not

useful on other machines.

But BASIC has some faults that do not arise in MACRO.
While BASIC is more logical, it may not be optimally efficient.

In addition, BASIC may not allow some access features that

MACRO

will, Unneeded overhead may be incurred as a result of the

overly structured BASIC program.

MACRO allows several things that BASIC may not:

1. Unrestricted access to the underlying machine

operating system.
2. Greater speed and efficiency in many cases.

3. The performance, in certain cases, of special
manipulations.

4, Explicit control of memory is allowed.

Fleischman offered three examples of incorporating
with BASIC. The first was initialization of static data.
the BASIC program was given:

1999 DECLARE INTEGER PART
MAP (PARTS) STRING DESCRIPTION (7)=8

200@ INPUT "PART NUMBER "; PART
PRINT "DESCRIPTION "; DESCRIPTION (PART)
GOTO 2000

32767 END

Next, the MACRO eguivalent was provided:

.TITLE PARTDF

.PSECT PART3,RW,D,GBL, REL, OVR

LASCII "BREATHER"
LASCII "CABLE "
.ASCII "CHOKE "
.ASCII "COVER "
LASCII "pIsToN "

70

and

data

MACRO
First

.ASCII "SOLENOID"
LASCII "SPRING "
. END

Problems of sharing data between MACRO and BP2 systems were
addressed, with two solutions being offered:

1. Through COMMONs or MAPs. According to Fleischman, the
.PSECT directive 1in MACRO corresponds directly to the
BASIC MAP or COMMON statement.

2, Through passed argument lists. An argument list is a
contiguous block of memory assigned by the BASIC main
program when the CALL statement is executed. Arguments
can be passed by reference (REF), descriptor (DESC) or
value (VAL).

The second example of incorporating MACRO with BASIC
concerned how to pass data to a MACRO subprogram, and system
function not supported by BP2, such as (the (NAME directive).
It assumes that one has fairly lengthy processing. According to
Fleischman, "This ability to «change a Jjob's name 1is not
privileged but cannot be performed in BASIC." The MACRO code to
do this is as follows:

LTITLE CHNAME
.PSECT CHNAME,RO,D,G3L,REL,OVR

CHNAME:

MOV #XRB+XRLOC, R1 ;POINT TO XRB
MOV 2 (R5),RO ;POINT TO DESCRIPTOR
MOV (RO)+, (R1) ;COPY LOCATION OF STRING
MOV (RO) , - (R1) ;COPY LENGTH OF STRING
MOV (R1) ,-(R1) ;DUPLICATE IN XLREN
CLR @} XRB+10 ;NO SPECIAL LOGICAL TABLE
.FSs ;CONVERT TO RADS50
TST @4F IROB ;ERRORS?
BNE 198 ;YES, EXIT WITHOUT EFFECT
. NAME ;CHANGE THE JOB NAME

198 RETURN ;RETURN TO CALLER
.END

Calling a MACRO-11l subprogram, such as the one above, can
be done with four steps:

1. Declare the external name.
2. Specify parameter list (if any).

3. Double-check parameters.

71

An example:

1063 EXTERNAL SUB CHNAME (STRING BY DESC)

2000 CALL CHNAME ("STEPL1")
*

*
*

CALL CHNAME ("STEP2")
*
*
*

CALL CHMAME ("STEP3")
*
*
*

(etc.)

The third example of incorporating MACRO with BASIC

demonstrating special RMS file handling.

as follows:

1689 MAP (BUF) STRING KEY=10%

2030 OPEN "LOAD.IDX" FOR OUTPUT AS FILE #1

INDEXED FIXED
ACCESS MODIFY,
MAP BUF
PRIMARY KEY

~ v N w o~

PUT #1%
32767 END

The MACRO program is as follows:

.TITLE BKTFIL

ALLOW NONE

R e

USEROPEN BKTFIL

.PSECT BKTFIL,RW,I,LCL,REL,OVR

.MCALL RABOFS,XABOFS, $STORE, SSET
.MCALL SFETCH, SCREATE, SCONNEC

BKTFIL::
MOV 2(RS) ,RU
MOV 4(R5),R2
SFETCH R1,XAB,R0
$STORE #256,,DFL,R1
SSTORE $#256.,IFL,R1
SCREATE RU
SCONNEC R2
SSET #RBSLOA, ROP,R2
RETURN
. END

Fleischman added that in creating the RMS-11 Bucket

;GET ADDRESS OF FAB
;GET ADDRESS OF RAB
;GET ADDRESS OF XAB
;SET DESIRED DATA F
;SET DESIRED INDEX
;CREATE THE FILE

;CONNECT THE RAB

;3ET "LOAD 3Y FILL"

72

ILL
FILL

is

The BASIC program

in
is

fill

control, there are four steps we must observe:
1. Specify fill factor in key XAB,.
2, Create file (SCREATE/CONNECT).
3. Set fill control bit in ROP field of RAB.

4, Load records.

The session concluded with some BASIC V1 "unsupported
routines" and other applications for MACRO-11l. Unsupported RMS

routines include:
1. RETRFA - return record file address
2, GETRFA - set record by RFA
3. NULKEY - enable a null alternate key
4, SEGKEY - define a segmented key
5. BKTFIL - define bucket fill factors
6. SETROP/CLRROP - sot record options
7. DEFALQ - seot default extension size
8., DEFFNA - set default file name

9. SETFOP

set file options

Other applications for MACZRO-11 include:

1. Passing variable number of arguments

2. Accessing job "lowcore" area

3. Patching constants via MAKSIL/ONLPAT

4., Observing/modifying BP2 OTS behavior

5. Controlling libraries explicitly (.PLAS)
6. Performing device specific I/0 (.SPEC)

7. Creating "executable" files (CRBFQ)

Fleischman concluded by reemphasizing the areas that
can affect towards improving performance. He also attempted to
dispzl the idea that MACRO is ovarly sophisticated for the needs

of many. It is on the contrary easy to learn and use.
MIACRO may decrease programming time oxr reduce the need
equipnent.

73

U
for

RMS

MACRO

se of
new

Managing FDA Labs With BASIC-PLUS-2

Larry Alber
Food and Drug Administration
Chicago, IL

Tony Seckel, Session Chairperson
McDonnell Douglas Automation
Berkeley, MO
Reported by Scott.Howell, DECUS Scribe Service

Tony Seckel introduced the sessions speaker, Larry Alber
who began his discussion with an outline of the laboratory
management systems structure. The steps are as follows:

1. Sample analysis completion date

2. BRnalysis home district

3. Operation

4. Hours

5. Position class
6. Employce number

7. Analyzing district

3. Program assignment code

Alber then introduced the symposium coordinator of the Labs
SIG, Mac Overton. Alber gave a Dbrief description of the
background of the FDA's needs for a computer system. Terminals
are scattered throughout the laboratory for easy access.
BASIC-PLUS=~2 is used to record all tests made on foods and
drugs. Included in this recoxrd is the employees who conducted
the test, the item tested, and its result from the test.

Alber issued a handout with the information that his system
employs. Wwhen searching for a record the following appears on

the screen:

A- Add new records or data to existing records

74

S

C- Change data on existing records
D~ Deslete an existing record or segment
P- Compliance program data entry menu
M- Monthly file maintenance routine
T- Lab designation table maintenance
S- Search for specific IMS records
R- LMS reports menu
E- End your data entry session
There are three keys for accessing records. They are:
1. The sample number
2. The program assignment code

3. The LID code

Bach field is edited to insure correct input. For example,
if someone entered May 33 as a date the system beeps and
requests an alternate input. The entire system took
approximately one year to install and be in working condition.
Alber concluded his thirty minute discussion with a list of the
various reports that his BASIC-PLUS-2 system makes. This report
menu is as follows:

1. A weekly report is publishead, (backlog, inprocess,
completes by lab)

2. Program assignment code summary of completed records.
3. Track/archive file special reports.

4, Employee report is published.

5. A narrative report is made.

6. A pesticide listing is made by product code.

7. A pesticide residue level tabulation is done.

8. A violative sample report is furnished.

9. A compliance/LMS sample report is completed.

75

JON COLEMAN & DAVE NASATER
COMPUTER SYSTEMS DEVELOPMENT, INC.
140 MAYHEW WAY, SUITE D700
PLEASANT HILL, CA 94523

HISTORY

Business BASIC as discussed here, was first offered in 1971 by MAI
Basic Four Corporation on their small business minicomputers. This
was the only language available on their machines. After experience
proved Basic Four unable to cope with customer needs for package
modifications and custom programs, they actively recruited independent
software vendors to provide software development and ongoing support
for their customers. In the last 13 years, 400 plus software
organizations have provided support for approximately 16,000 Basic
Four machine installations worldwide.

One software company, Science Management Corporation (SMC), had
developed an application development tool and DBMS written in
Business Basic. Their desire to market their system on other hardware
prompted them to implement an MAI Business BASIC (TM) look-alike
product, first on the IBM Series-1 and then on approximately 30 other
16-bit microcomputers.

Computer Systems Development (CSD) has been involved in Business Basic
software development since 1974, and has developed several vertical
packages that we wished to market on other hardware, particularly DEC.
Discussions between CSD and SMC determined that SMC was not going to
put their products on DEC. Experiments with converting Business Basic
applications to BASIC-PLUS-2 convinced us that some implementation of
Business Basic for DEC equipment would be the best solution.

DESIGN AND IMPLEMENTATION
General desirable characteristics of the language were deemed to be:

1. The language should be interpretive, for ease of
developmement and customer support.

2. Business math should be designed in; rounding should
be automatic, and type conversions unneeded or rare.

3. Extensive screen handling functions should be part of
the language, instead of programmer written or
included from a library.

4. Basic input verification ability should be built in.

5. Disk I/0 should include keyed (index),
relative-record, and sequential file types.

76

INTERPRETIVE BUSINESS BASIC
WITH RMS-11K

6. String handling capabilities should include all
normal business programming needs.

7. Records and files should be able to be locked.

Several design decisions were made for the initial development of the
interpreter.

1. Program execution and storage would use a compact
pseudo-code.

2., Syntax would be the same as Basic Four with minor
exceptions.

3. The compiler would be table-driven for ease of future
expansion.

4. The initial versions would be written for machines
without floating point or commercial instruction
sets.

5. RSTS/E versions would be implemented first because
business programs are suited to a synchronous
operating system, and because of the larger number of
jobs RSTS can handle.

6. RMS-11K was chosen as the file system due to DEC
support and the availability of using the same files
as other DEC supported languages.

Choosing RMS as the file system affected other design considerations.
RMS buffers must come out of the user's space. If the initial design
criteria of having the ability to open seven (7) typical files was to
be met, at least part of the buffer pool would have to be allocated
dynamically. Because of buffer space requirements for RMS, it was
decided to forego extended variable names. This had the effect of
reducing the pseudo-code space requirements by approximately 50%.

INTERPRETER VERSUS COMPILER

For several years, the larger DEC users have been gently pushed away
from interpreters towards compilers. The primary reason for this is
supposedly the much higher execution speed of compiled programs.
Secondarily, the BASIC~PLUS users needing the functionality of RMS had
to switch to BASIC-PLUS 2 to get it.

We believe that the future of COEMs and software developers is

directly linked to their ability to produce turnkey solutions at
reasonable cost. Sofiware development and maintenance costs are

77

INTERPRETIVE BUSINESS BASIC
WITH RMS-11K

typically large budget items that are sometimes difficult to relate to
direct revenue production. Using an interpreter can cut development
costs significantly.

In a test done in 1980, duplicate specifications for an Accounts
Receivable package were given to two project teams. One team was to
write the system in BASIC-PLUS-2 for a PDP 11/34 under RSTS/E, and
the other team was to write the system in MAI Business BASIC. The
results were quite different than expected. We expected that it would
take two or three times as many man-hours for the compiled versus the
interpretive versions, but the actual factor was more than seven to
one.

Research using daily task sheets submitted by programmers and
interviews revealed several reasons for the larger than expected
differential:

1. The BASIC-PLUS-2 (BP2) system had 1.85 times as many
lines of code as the Business BASIC version.

2. The BP2 programmers had to keep at least two programs
in their minds at a time, in order to be productive
during re-compile and task-build. They felt that
this divided attention caused oversights.

3. A significant amount of time was spent constructing
ODL files.

4, BP2 programmers stated that debugging with ODT was
extremely tedious. Programmers claimed they would
quickly reach a bug they could not get past, and so
would re-compile and task-build, in order to
continue.

5. Three of four programmers on the BP2 team said they
had a strong tendency to not work on anything else
while they were re-compiling and task-building a
program in test.

NOTE ON BASIC-—PLUS

BASIC-PLUS is a very powerful, easy to use interpreter, however, it
has no direct access to keyed RMS-11K files. Most business
applications, and virtually all interactive business applications can
be more effective using keyed files.

ELEMENTS OF BUSINESS PROGRAMS

Since our object was to design a business oriented interpreter, we
tried to determine what differences there are between business and
scientific programs. The following list refers to degrees of
differences for business as opposed to scientific programs.

78

3.
4.

INTERPRETIVE BUSINESS BASIC

Virtually all arithmetic, except loop control, is
oriented to produce results accurate to two decimal
places.

Less arithmetic is performed, measured as number of
instructions executed.

More string manipulation is performed.

More input/output operations are performed.

The above elements were kept under constant consideration during
implementation.

BUSINESS BASIC STATEMENT FORMAT

Business BASIC programs are made up of collections of ordered
statements. The statements have the general form of:

statement # An integer in the range of 0 to 9999. No

statement ¢ or one of 0 indicates an immediate
mode statement. Immediate mode statements are
not part of a program, but are typed in
console mode and are acted on immediately.

directive The function the statement is to perform. For

example, PRINT, INPUT, OPEN, LET ...

options Some directives require or can have statement

options. These options include I/0O channel,
key to use and error processing.

arguments The variables, literals, and/or expressions

the directive is to act on. Some directives
require no arguments.

Examples of Business BASIC statements.

a.

PRINT "HI"

Causes HI to be printed immediately, since no statement # is
given.

10 READ (1,END=1000,KEY=A$)R$,R,R1
When executed will read from channel 1 with a key of the
value of A$. The data read in will be put into variables RS,

R and R1. If end of file occurs, execution will be
tranferred to line 1000.

79

c. 100 END

When executed, will terminate the program closing all
channels. Variables remained assigned.

d. 3050 IOLIST A$,B,C(1),D$(5,6)

Defines an I/0 argument list that can be referenced later
with an IOL=3050 in the argument list. D$(5,6) refers to
bytes 5 through 10 in DS.

e. 200 WRITE RECORD (7,KEY=A$+"A",DOM=1000,ERR=9000)C$

When executed will write a single record of data without type
translation to the file opened on channel 7., The key of the
value of AS$ with the character A concatinated to it will be
used. If the key already exists, no record will be written
and execution will be transferred to 1000. Any other error
will cause execution to be transferred to 9000.

PSEUDO-CODE FORMAT & EXECUTION

Whenever a statement is entered into a program in Business BASIC, it
is compiled from the source form into a dense Pseudo-Code (P-Code).
The resulting P-Code statement is then inserted into the user's
program in the correct statement number sequence. The interpretor
executes the user program by evaluating the P-Code instructions or
atoms. The user program is always maintained in the P-Code format,
including the disk image when saved. Listing is accomplished by "De-
Compiling" the P-Code back into source statements.

The pseudo-machine the P-Code is generated for, is a high-level stack
machine. It is essentially on the same format as basic statements,
but more tightly packed. This accounts for the reason it is listable.
Basically, there is one atom for each key word (directive, operator,
function, variable, etc.). There are also atoms for control of the
execution (start of option list, end of statement, end of argument,
list etc.). Expressions (string and numeric) are stored in Reverse
Polish Notation (RPN), so there is no need for atoms for paranthesis,
etc.

The P-Code statement format follows the same lines as the basic state-
ment. The statement starts with a one-word binary statement number.
It is followed by the one byte directive atom. The options, if any,
then follow. An option is made up of a value (often a one word
statement number) followed by an option atom. After the options, come
the arguments, if any. Argquments can either be simple values and
variables or more complex expressions. Values are stored as a type
atom followed by the value. Variables are stored as a variable-type
atom, followed by the type code for the name. Expressions are stored
as values and variables followed operator or function atoms, i.e. in
standard RPN, Statements are terminated with an end of statement
atom.

80

—

Here are some examples of statements and expressions in P-Code form:

BASIC : Al + 1
SOURCE
P-CODE : 300 001 353 001 136
(OCTAL)
MEANING : NUMERIC Al SINGLE BYTE 1 +
VARIABLE CONSTANT
A-P

: STR (Y9 + 3)

: 301 211 353 003 136 200

: NUMERIC Y9 SINGLE BYTE 3 + STR()
VARIABLE CONSTANT
Q-Z

: 10 PRINT A

: 0092 045 364 360 302 013 360

: STATEMENT PRINT END OF START NUMERIC A END
NUMBER ATOM OPTIONS OF I/O VARIABLE OF

LIST (MAJOR) STATE~
A-P MENT

100 LET A = A + 1

: 000 144 111 302 013 300 013
: STATEMENT # LET NUMERIC A NUMERIC A
ATOM VARIABLE VARIABLE
(MAJOR) (MINOR)
A-P A-P
: 353 001 136 360
: SINGLE BYTE 1 + END OF
CONSTANT STATEMENT

In processing a P-Code statement, the evaluator first saves the
directive atom. Then, it processes the options, saving the values in
the appropriate locations in the task information table. Arguments
are processed in RPN fashion, leaving the resulting value for each on
the arguments stack. Each function and operator routine processes a
number of values on the stack, replacing them with its output. When
the end of statement atom is reached, the routine for the directive is
called, which processes the results of the arguments left on the
stack. The options processed, control the directive routine and/or
tell it how to handle exceptions.

81

The following illustrates the operation of the evaluator:

10 LET A=A + 1

STEP 1:

STEP 2:

STEP 3:

STEP 4:

STEP 5:

STEP 6:

Saves the atom for the directive LET.

Reads in the atoms for the first variable A, Since it is
on the left-hand side of the equal sign (major variable), an
entry for its name is made on the stack.

Reads in the atoms for the second variable A. Since this
one is one the right-hand side of the equal sign (minor
variable), the variable get routine is called to get the
current value of A. This value is then pushed onto the
stack.

The atoms for the constant are read in and the value 1 is
pushed on the stack.

At this point, the stack looks like:

TOP OF STACK -——————== >

! |
I !
I |
| |
| VALUE OF !
| A |
! |
! |
! |
! I
| i

NAME ENTRY
FOR A

The addition atom is read in. The evaluator then calls the
addition routine which adds the two top of stack entries and
replaces them with the result. Let us say that A was 15.5,
so the result is 16.5.

At this point, the stack looks like:

TOP OF STACK =~======- >

16.5

NAME ENTRY
FOR A

At this point, the evaluator reads in the end of statement

atom. This causes the directive routine to be called. The
variable put routine (LET) takes the value on top of the

stack and assigns it to the named variable in the next ~—
entry.

82

INTERPRETIVE BUSINESS BASIC

WITH RMS-11K
STEP 7: The stack is then cleared and the next program statement is
found and executed.
INTERACTION WITH RMS

To use RMS in an interpretive environment, several problems had to be
dealt with.

RMS macros generate impure code. This means the actual execution
macros had to be embedded in the user's space also. This was done by
passing an execution control word in a register generated by the
disk-driver module to the execution module in the user space. The
execution module (RMSCOD) executes a specific macro for each bit
turned on in the control word. The macros are executed in sequence as
the bits are arranged. 1In the case of any RMS error, the original
control word, the remaining to be executed control word, and the RMS
STS and STV return values are posted to the task information table
(TIT). Control is always returned to the disk-driver module, which
checks for expected and unexpected errors, before returning control to
the evaluation modules. RMSCOD always maps to the RMS Reslib with APR
5 and 6, then rewindows to the disk driver module when exiting.

RMSCOD only needs three addresses to operate: task information table,
current FAB (RMS file access block), and current RAB (record access
block). The disk driver module uses the TIT, the current record
buffer variable, and the current File Control Table (FCT) pointed to
by words in the TIT. The FCT contains all information needed to
process a file request: current key, next key, key size, current
relative record number, a FAB, RABs, a key XAB and the private I/0
buffers required for the file. Detailed information on these RMS
control blocks can be found in various DEC RMS manuals. The execution
control word passed to RMSCOD consist of Bit-0 through Bit-15,
requesting the following RMS operations in order:

$INIT, SCREATE, SOPEN, $CONNECT, $SFIND, $GET, $PUT
$DELETE, $UPDATE, $EXTEND, $SREWIND, $SERASE, $FREE,
$FLUSH, $SDISCONNECT, $CLOSE.

RMS pool and I/0 buffers had to come out of the user's address space.
If a buffer pool had been allocated permanently to handle a fixed
number of files, it would have severely restricted the program space
available. A compromise solution was chosen. Buffer pool for
internal RMS control blocks was allocated permanently. 1/0 areas are
allocated dynamically as files are opened, and de-allocated when files
are closed. Recovery of de-allocated file areas could be handled by
the variable space recovery routine, if I/0 areas and RMS control
blocks could be moved between operations. After considerable
research, we found only three sets of pointers in the RMS control
blocks that needed updating. Each set corresponds to each of the
three RMS structures stored in the FCT; the FAB, RAB, and I/0 Buffer.
These pointers appear invariant over each type of RMS file Business
BASIC deals with. (See Figure below.) The actual control block
fields that require adjustment are:

83

INTERPRETIVE BUSINESS BASIC
WITH RMS-11K

1. FAB (offset = 44 octal) in the RAB, which points to
the FAB.

2. BPA (offset = 32 octal) in the FAB, which points to
the I/0 buffer.

3. Offset 22 octal in each of the buffer descriptor
blocks (BDB's) allocated for each I/O buffer (one for
sequential and relative files, two for indexed).
NOTE: extra BDB's are allocated for indexed and
relative files for access stream sharing. Since this
feature of RMS cannot be used under RSTS/E, the
buffer addresses are zero and need not be adjusted.
The BDB's are reached via the IFAB from the FAB.

For more information on RMS internals, refer to the RMS MACRO-11
manual and the section on internals in the Programming with RMS (Vol.
2) manual.

84

WITH RMS-1lK

INDEXED (REL) SERIAL (VAR SEQ) / STREAM ASCII
—-——1 FAB |{-=%-====| RAB | ---| FAB |{===%*-—| RAB |
[| | | [| | |
| | | ! | |
| | | | | |
| I ' A v | v____ R ' A
I | | | [| | |
| | IFAB | | IRAB | | | IFAB | | IRAB]
I | | | [| | |
| | | |
| | | |
| ' A * | v
I | | [|
| | BDB |===———— > BDB [|->0 | | BDB |-->0
| | | Il |
| | | | |
| | * v | | *
| | 0 | |
| V. | V.
I | []
[=>1 I/0 BUFFER | 1=>1 I/0 BUFFER |

] | |

DIRECT/SORT (IDX)
FAB -~ Files Access Block

| | | |
-==| FAB |{<===%-—=—]| RAB | RAB - Record Access Block
[| | |
| | | IFAB - Internal File Access Block
| | |
| N A v IRAB -~ Internal Record Access Block
[| | |
I | IFAB | | IRAB | BDB - Buffer Descriptor Block
[| | |
| |
| |
| A
(. | | | | | | |
| | BDB | m—————— >| BDB | mmm >| BDB | ——mm——— >| BDB | =———— >0
I | | | | | |
| | | ! |
| | * v | * A4
| | 0 | 0
| V. \"
[|
1=>1 I/0 BUFFER |

|

* ADJUSTED POINTER

85

Currently these are some restrictions when using existing RMS files
with Business BASIC: o

1. Access is by primary key only. An option for
specifiying key-of-reference will be added in the
near future,

2. The RECORD modifier must be used with I/0 statements
for files created by non Business BASIC programs. In
these cases, the programmer must map variables to and
from the record, instead of using the IOLIST
statement.

3. Access to a keyed file (IDX) by relative record
number is not allowed unless the file was created by
a Business BASIC DIRECT or SORT statement.

Record formats are in two basic formats, depending upon whether or not
the RECORD modifier was used when writing a record.

Records written with a list of variables by a statement such as
WRITE (1,KEY=K$)AS$,B$,C,D$ will be written out using the current
length of each variable, with left zeros suppressed for numeric
variables. Each variable in the record will be followed with a
special field separator consisting of a line-feed with the high bit on
(octal 212). Any remaining bytes in the record are padded with nulls.

Records written with the RECORD option are written with one variable
with a statement of the form WRITE RECORD (1,KEY=K$)R$. No field
separator is written, and any remaining bytes are padded with nulls.
Records containing binary data should normally be read and written
with the RECORD option, as on octal 212 could occur in the binary
data.

RECORD AND FILE LOCKING

Keyed and relative-record files are normally opened in write-share
mode. If a LOCK is issued for a file, the file is closed and an
attempt is made to open it in non-shared mode. An error is signaled
if this fails. When normal reads are requested, a S$FREE command is
executed to release the currently locked blocks. When a record
locking read is requested with the EXTRACT directive, the read is
issued without the $FREE, leaving all blocks for the current bucket
locked. A subsequent input on the same file will be preceded by a
$FREE. All write or update operations are followed by a $FLUSH, which
unlocks any locked blocks for the file. If a requested bucket is
locked by another task, the requested operation is retried ten (10)
times at one second intervals before any error exit is taken.

86

LOGICAL STRUCTURE

When entered, Business BASIC first executes an Initial Program Load

(IPL) program. This program reads the configuration file and sets up
the internal tables for processing. After initializing the stack, it
calls the System Control Program (SCP). From the SCP, either a BASIC
program may be executed or control can go to the Console mode program,

The Console mode program will accept statements from the keyboard,
either to be entered into the program or to be executed immediately.
The compiler is called to convert the statements into P-Code. If an
immediate mode statement is entered, the control is returned to the
SCP for execution. When completed with the statement, control is
returned to the Console mode, unless the immediate statement was a RUN
or CALL, in which case control remains in the execution section until
an error, a program break point (ESCAPE) or a program END occurs.

The SCP controls the execution of a program. It first finds the next
statement to execution and passes control to the statement evaluator
(EVAL) . EVAL processes the program as described in the section on
P-Code execution. When end of statement is reached, the directive
routine is executed and control returns to the SCP. If this was an
immediate mode statement, the control is returned to Console mode,
otherwise the next statement is found and executed.

87

| DIRECTIVES

<G e s e

|
1<
|

—————————— | EVAL |-----|->] I/0

I
| FUNCTIONS || VAR. MGMT. |
It

|
! |
| |

<
<

88

Business Basic is composed of five highly interconnected modules.
Together they provide all the functions required by RSTS/E for
run-time systems and all the functions required for Business Basic. A
sixth module, the RMS-11 resident library, is also accessed. See the

and RMS Installation Guide for details on this
library.

SMCBAS, RTS

SMCBAS.RTS is the run-time system module. It contains the
routines to handle RSTS/E synchronous and asynchronous system
traps (memory management violations, stack overflows, etc.),
common subroutines used throughout the system, routines to handle
running programs (non-Business Basic programs), routines to
handle job creation, etc. For speed considerations the main
statement eveluator for Business Basic is also located in the
run-time system.

SMCRES.LIB

SMCRES.LIB is the main Business Basic library of routines. It
contains most of the modules required to execute and maintain
Business Basic programs. It is always resident in memory and is
shared by all Business Basic users on a system.

SMCCPL.LIB

SMCCPL.LIB is the library of routines used to compile a BASIC
source statement into the p-code that is executed. Like
SMCRES.LIB, it is also resident and shared.

SMCLST.LIRB

SMCLST.LIB is the library of routines used to list (decom-
pile) a BASIC p-code statement back into source form. Like the
other libraries, it is resident and shared.

CONSOL. EXC

CONSOL.EXC is a machine code program that is executed by the
Business Basic when a user enters the system. It sets up the
internal tables and variable area for the user. It also reads
the IPL configuation file to set up the devices and accounts that
will be used. CONSOL.EXC contains the buffers and routines
needed by RMS for file processing. One copy of CONSOL.EXC is
used by each user in Business Basic since it will contain the
user's data and BASIC

89

VIRTUAL ADDRESS SPACE

The following figure shows the layout of the virtual address space for
each user running under Business Basic. The regions marked with an
'*! are shared between all users.

The program and variable areas dynamically grow and shrink as needed.
Variables are allocated on chains by letter and type (ie all Ax
numerics are chained). Strings are allocated at the end of the
variable space and annexed in, unless they can overlay the existing
value for the variable. A compress routine is run when deleted space
becomes excessive.

Public programs are added into memory on CALLs and ADDRs. They are
placed at a higher address than the main program and the main program
is moved up, if necessary. If memory becomes too tight to add a
public program on a CALL and if the main program is larger, it will be
overlaid by the called routine. It is re-loaded when the called
routine exits. Nested called routines may also overlay each other.

90

SMCBAS .RTS

The Business BASIC
Run-Time System

000000 |]
| RSX type low-core area |
| |
| |
| Expanded stack |
| |
| |
| RMS buffer pool |
!]
! |
! Task control tables !
! |
| I
| Variable work space |
o _ ___ |
[|
[|
I v |
| |
!
| |
| Main program area T
| 11
| 11
|l ____ 11
| |
| Public program areas 1T | Resident Libraries
| 1_1
120000%* . . !
. . | SMCRES.LIB 30-32KW
. .]
. This address space is . |
. used to map between . | RMSRES.LIB 23KW
. the required resident . |
. libraries. . | I
. . | SMCCPL.LIB 8KW]
. . | |
. . | |
. . | SMCLST.LIB 6KW |
. . | !
160000* | !
[|
| !
! |
| |
! |

177777

91

INTERNAL CALLING MECHANTSM

When a module is called within the Business BASIC RTS, it is necessary
for certain things to be done before entering it. These are:

- save the registers RO - R7

- allocate workspace for the module

- map, if necessary, to the correct position in the correct
resident library

The first two were accomplished by ordinary means. Registers were
saved on the stack and workspace was allocated from the stack based
upon a size located in the module itself. The third, however,
presented a problem, since we were designing the system under RSTS/E
V7.1 - no clustered library support. This meant that the calling
mechanism was required to do its own mapping directly.

The calling mechanism was implemented by creating a table of all of
the modules (MODTAB) that contained:

- the library the module was in

- the module's size

- the module's entry point in the library
- miscellaneous flags

The caller then calls a common mapping routine with the MODTAB address

for the module to be called. The routine then uses the table infor- ——
mation with the current mapping information to determine whether or

not it is necessary to remap. A map is done if:

- the module is not in the current library and not in the RTS
- the module does not start in the current window

- the module is not wholly contained in the window

- the module is flagged to always force a map

Whenever a map is done, the current mapping information is saved on
the stack and updated. On exit, if the caller was mapped out, the
exit routine remaps it back in from the information on the stack.

A special case occurs when RMSCOD is called, since it will destroy the
current window when it maps RMSRES. A flag was set up in the MODTAB
entry for a forced remap on exit. When RMSCOD is called, the mapping
routine makes it look like it required a map. This way, exit will
remap to the caller of RMSCOD even though RMSCOD is contained in the
low-core program and no map was necessary.

92

INTERPRETIVE BUSINESS BASIC
WITH RMS-11K

The stack used in the calling routine looks like:

LOW ADDRESS

STKTOP:: | | EFFECTIVE STACK
! ! LIMIT
I
!
I EXIT ROUTINE ADDRESS {====SP
|

-------- PTR TO PREV FRAME

|

! {==--R1

!

i WORKSPACE

|

!

——————— >

OFFSET PREVIOUSLY MAPPED TO

ENTRY PT ADDRESS OF CALLER (VIRTUAL)

SAVED REGISTERS R5 TO RO

RETURN ADDRESS

!
|
|
I
|
|
!
|
|
|
|
LIB # OF CALLER ! FLAGS |
|
|
|
I
|
1
|
|
!
|
WHATEVER WAS ON STACK I
|

PTR TO PREV FRAME [—

.

END OF STACK FRAMES (0)

WHATEVER WAS ON THE STACK
BEFORE THIS ALL STARTED

8 B 8 # e e e e B 8 8 e o e e omn - ——— s e e s o oot e et

STKBOT::
HIGH ADDRESS

93

The advantages of using this method are:
1. Flexibility

During development, we were able to add modules to the
library without worrying about the ODL file and segment
sizes.

2. Ease in Testing

One of the problems in using resident libraries is testing,
since it is difficult to set breakpoints in a routine not yet
mapped. With this system, we were able to move the routine
in question into low core, change its name and MODTAB entry,
and re-TKB only CONSOL.EXC. Thus, the routine was no longer
mapped and could be modified as it ran.

The disadvantage is:

1. Since RMSRES uses S$AUTO with memory mapped overlays, it
requires two 4KW windows. We have been only able to use the
root window for our mapping, since S$AUTO has set flags in
segment descriptors for the overlay window. This slows the
system down by restricting us to a 4KW window, requiring more
frequent mapping. We are currently looking into either using
$AUTO on V7.2 or greater system, or changing the flags in the
segment descriptors to make $AUTO think RMSRES is no longer
mapped.

DEBUGGING FEATURES

Business BASIC has all of the inherent debugging features of other
interpreters and a few more. The more obvious are listed below.

CONTROL-C: Interrupts program execution. Prints out
the last statement executed. Variables may be displayed
and modified. Statements may be inserted, deleted or
modified. The execution pointer may be changed.
Processing is resumed with a RUN statement.

ESCAPE; This is the embedded breakpoint statement. All
notes on CONTROL-C apply.

SETTRACE [(n)]l: This statement causes an execution
trace listing to be sent to an open device or file on
channel n. As a statement is executed, it is
de-compiled, and listed in original source format.
SETTRACE can be embedded anywhere in a program or used
in console mode. SETTRACE is terminated when an
ENDTRACE is executed.

94

DATA REPRESENTATION

Data handled in BASIC occurs in the form of either numeric or
alpha-numeric string data. Numeric variables or constants have a
range in standard and floating form of:

99999999999999 to -99999999999999
.99999999999999 E + 141 to -.99999999999%99 E - 113

String variables or constants can contain any 8-bit character.

Numeric variable names are A through Z9. Numeric array names are kept
in a separate variable chain and can have the same name as non-array
variables.

String variable names are A$ through Z9$. Substrings are defined as
string-var (offset,length). For example, if

A$="ABCDEFGH" then A$(4,3) is equal to "DEF". 1If no length is
specified, the substring is evaluated to the end of the parent string.
That is, for the above A$, AS$(6) is equal to "FGH".

ARITHMETIC OPERATORS RELATIONAL OPERATORS
- minus = is set equal to
+ plus > 1is greater than
* multiplied by < 1s less than
/ divided by <> or >< is not equal to
“ raised to the power of >= or => 1is greater than or equal to
**% raised to the power of <= or =< is less than or equal to
STATEMENT DESCRIPTIONS
ADD directory cache feature.
ADDR add a public program and keep resident.
BEGIN reset all variables, stacks; close all files.
CALL Call a public program and return in line.
CLOSE Close a file or device.
DEF Define a function.
DELETE Delete statements from the program.
DIM dimension an array.
DIRECT Create an RMS keyed (IDX) file.
DISABLE disable a user disk (logical) to change directory
search order.
DROP Drop a previously ADDRed public program from
resident status.
EDIT Edit a BASIC statement.

95

ENABLE
END

ENDTRACE
ENTER
ERASE
ESCAPE
EXECUTE
EXIT

EXITTO

EXTRACT
FIND

FILE

FLOATING POINT

FOR

GOSUB
GOTO

IF/THEN/ELSE

INDEXED
INPUT

IOLIST

LET
LIST

LOAD

LOCK
MERGE

NEXT

ON GOSUB
ON GOTO
OPEN
PRECISION

PRINT
PROGRAM
READ
RELEASE

REM
REMOVE

Re-establish a logical disk for directory search.
Terminate a program, reset control variables,
close all files, set execution pointer to head of
program. Terminate MERGE.

Terminate trace listing.

Define parameters passed to a public program.
Erase a file if not in use.

Breakpoint. Switch to console mode.

Compile and execute a string as a BASIC statement.
Define exit point and return code for a public
program.

Exit from subroutine or FOR/NEXT loop and clear
one entry from return stack.

Read and lock a record.

Read a record without updating the next key
pointer if not found.

Create a file using string created by FID
function.

Sets PRECISION to 14, except for output and allows
calculations with larger numbers in scientific
notation.

Estalish control variable, limits and STEP value
for FOR/NEXT loop.

Perform a subroutine.

Change execution pointer to specific statement
number.

Perform statement based upon truth of a logical
expression.

Create an RMS relative-record file.

Position cursor, output prompt, input and verify
data.

Define a variable list for use in an input/output
statement.

assign a value to a variable.

List de-compiled program statements to a file or
device.

Obtain a program from disk and set execution
pointer to beginning of program.

Obtain non-shared write access to an open file.
Merge list format program statements into current
program from a file or device.

Increment control variable specified in FOR.
Computed GOSUB.,

Computed GOTO.

Open a file or device.

Set results precision for all calculation to a
number of decimal places.

Output to printer or terminal.

Define a new program file on disk.

Read a record or variable(s).

Perform END and release task memory (Switch to
default RTS).

Remark or comment.

Delete a record from an RMS keyed file.

96

INTERPRETIVE BUSINESS BASIC

WITH RMS-1lK

RESET Reset system control variables and clear return
stack.

RUN Resume processing from console mode, or LOAD and
execute a program from disk.

SAVE Save the current program to disk.

SERIAL Create a variable length record, sequential, RMS
file.

SETDAY Change the system date.

SETERR Force all default error branches to a particular
statement number.

SETESC Set Control-C trap to a particular statement
number.

SETTIME Set system time.

SETTRACE De-compile and list each executed statement to a

file or device. Continue until BEGIN, END or
ENDTRACE encountered.

START Adjust size of user task, and RUN specified
program.

SORT Create a special format of RMS keyed file.

STOP Perform END, except do not terminate MERGE.

TABLE Define a mask and conversion table for input or
output data.

UNLOCK Reset file access to shared mode.

WAIT Wait or sleep for specified seconds.

WRITE Write a record or variable(s).

INPUT/QUTPUT OPTIONS

I/0 options are used to augment the execution of an I1/0 directive.

I/0 options are specified within the parentheses immediately following
the file number (channel). They can cause branching, set up control
to override defaults, specify a record to access, and more.

BLK=expr: Use to specify buffer size for STREAM ASCII
files.
DOM=stno: Duplicate or missing key. Control is tranferred

to the specified statement if record is not
found on an input or REMOVE operation, or if the
key specified in a WRITE operation is already in
the file. If DOM= is not used on a WRITE, and
the key already exists, the record is updated.

END=stno: At end of file, transfer control to specified
statement.

ERR=stno: Transfer control on any error to specified
statement,

IND=expr: Specify relative record number (index) to be

accessed.

97

WITH RMS-11K
ISZ=expr: Temporarily redefine (at OPEN) the record size
for a file and set type to relative.
KEY=string expr: Specify the key of a record to be accessed. —
LEN=min,max: * Specify the minimum and maximum length of an

input variable. Generates error 48 if variable
is out of range.

SEQ=expr: Used to specify relative file number to open on
tape.
SIZ=expr: Specify maximum characters to be read during an

INPUT or statement. 1Input is terminated if the
maximum characters are entered, even if a
terminator (CR) was not entered.

TBL=stno: Specify the statement number of a translation
table to be applied to data. See TABLE
directive.

IOL-stno: Specify the number of an IOLIST statement.

EUNCTIONS

Functions are used to manipulate data. They perform a variety of
operations, such as converting characters to different forms, checking

for data integrity, returning file information, converting from —
strings to numerics and vice versa, and more. 1In addition to these
pre-defined functions which are a part of Business BASIC, 52

user-defined functions are available for each program through the DEF

FNx directive.

ABS (expr [,ERR=stnol]) Returns the absolute value of a numeric
expressions.

AND (string expr,string expr [ERR=stnol]) Returns the string result of
the Boolean multiplication of two strings.

ASC (string expr [,ERR=stnol) Return the first byte of a string as a
decimal number.

ATH (string expr [,ERR=stnol]) Returns an ASCII string from conversion
of a hexadecimal string. The source string should contain only
the characters (0 - 9) and (A - F).

BIN (expr,length [,ERR=stnol) Returns a string containing the binary
value of a numeric expression. The result string is either
truncated or padded with nulls on the left to achieve the
specified length.

CHR (expr [,ERR=stnol) Returns an ASCII character representing the
numeric expression whose value is between 0 and 255.

98

CPL

CRC

DEC

EPT

FID

FNx

FPT

GAP

HSH

HTA

IND

INT

IOR

KEY

INTERPRETIVE BUSINESS BASIC
WITH RMS-11K

(string expr [,ERR=stnol]) Compiles the string containing a valid
BASIC statement into a result string that can be executed. Used
in program generators and utility programs.

(string expr) Returns a two-byte string that is a 16 bit check
sum of the specified string. Can be used with binary synchronous
communication protocol by swapping the result bytes.

(string expr [,ERR=stnol]) Returns a signed decimal number by
converting the binary string expression.

(expr [,ERR=stnol]) Returns the exponent of a numeric expression.

(fileno [,ERR=]) Returns a string containing detail information
about a specified file number. See the reference manual for full
details. The result string can be used in a FILE directive to
re-create an empty file after it has been erased.

[$] (argument list) Returns the result of a programmer-defined
function defined with the DEF directive. x is a letter from A -
Z. § is used if the function returns a string.

(expr [,ERR=stnol]) Returns the fractional part of a numeric
expression, rounded to the current PRECISION.

(string variable or literal) Generates an odd parity copy of the
source string, ignoring the high order bit of each byte in the
source string.

(string expr) Generates a two-byte hash total of the source
string. Used to verify program integrity during LOAD.

(string expr [,ERR=stnol) Returns a string containing the
hexadecimal representation in ASCII of the source string. Each
byte of the source string is represented by two bytes in the
result string.

(fileno [,ERR=stnol[,END=stnol) Returns the index or relative
record number of the next record to be accessed on the specified
file.

(expr [,ERR=stnol) Returns the ipnteger part of the numeric
expression., Any fractional digits are removed, and rounding does
not occur.

(string expr, string expr [,ERR=stnol) The inclusive or function
returns a string that is the result of combining the bits in the
specified strings. When a particular bit position in either
source string is a one, that bit position in the result string is
set to a one.

(fileno [,ERR=stnol[,END=stnol[,IND=recnol) Returns a string

containing the KEY of the next logical record to be accessed from
the file.

99

LEN

LRC

LST

MOD

NOT

PGM

POS

PUB

SGN

STR

XOR

T ET
WITH RMS-11K

(string expr [,ERR=stnol) Returns the length of the string,
including any non-printable or f£ill characters.

(string expr) Returns a one-byte string equivalent to XORing of ~
all bytes of the argument string. If the length of the source
string is currently 0, a binary zero is returned.

(string expr [,ERR=stnol) Converts a compiled BASIC statement
into LIST format.

(expr-b, expr-b [,ERR=1) Returns the remainder of the integer
division of expr—a divided by expr-b.

(string expr) Returns a string that is the result of inverting
each bit of the source string.

(string expr [,ERR=stnol]) Returns the numeric value of the
characters in the string. Legal characters in the string are 0-9
+ -, . and E.

(stno) Returns the compiled format of the specified statement
number. If the specific statement does not exist, the next
higher one is used.

(scan-string relational-operator target-string [,step valuel
[,occurancel [,ERR=stno]l) Where scan-string is the string being
searched for, relational operator is a valid comparison symbol,
target-string is the string to be searched, step value is the
incremental position at which the target-string is examined for ~—
each subsequent comparison, occurance is the occurance of
satisfying the scan. POS returns a number indicating the byte
position 1in the target-string where the specified parameters
were satisfied. A zero is returned if no substring is found that
meets the requirements.

(0) Returns a string representing all public programs resident in
this task area. Sixteen (16) bytes per program are used to
specify location, length, name, type, and disk number.

(expr [,ERR=stnol) Returns -1, 0, or 1 depending upon the sign of
the numeric expression.

(expr [:maskl[,ERR=stno]l) Converts a numeric expression to a
string using an optional edit/format mask. For example:
A=100.236;X$="$##0.00"; A$=STR(A:X$);PRINT A$ $100.24 assuming
PRECISION=2,

(string expr, string expr) Returns a string that is a combination
of the source strings such that a zero-bit is returned where
source bits are equal, and a one-bit is returned where source
bits are unequal.

100

TERMINAL MNEMONICS

The following mnemonics can be used virtually anywhere in an INPUT or
PRINT statement:

MNEMONIC

@(x)

@(x,y)
IBEI

IBII

IBOI

Ile
IBTI

ICEI

ICFV

ICHI

ICII

ICLI
ICRI
cs!

IDCI

IEEI
IEII

lEO‘

EFFECT

Position cursor or print position horizontally on same
row.

Position cursor at column x, row y.
Begin echo if echo is currently off.

Begin input transparency. Passes all data through the
terminal driver without interception.

Begin output transparency. Passes all data and control
sequences through to target device (except for 'EO').

Moves cursor back one space, erasing prev. character.
Begins type ahead if previously cancelled with 'ET'.

Clears screen from current cursor position to end of
screen,

Clear foreground. On VT131l clears bold to spaces. See
also 'SB' and 'SF'.

Cursor Home. Set cursor to (0,0) and sets foreground
mode.

Clear input. Clears all data currently in the input
buffers for this terminal.

Clear line. Clears to blank from cursor to end of line.
Carriage return, plus line feed on terminal.

Clear screen, including protected areas.

Delete character. Deletes the character at the current
cursor position, and shifts the remainder of the line
one to the left.

End Echo. Ends echo on channel 4.

Ends input transparency. See also 'BI'.

Ends output transparency. See also 'BO'.

101

IEPI

IESI

lET‘

'IC'

ILDI

ILII

VPEI

|PGI

'PS'

IRBI

chl

ISBI

ISFl

ITLI

INTERPRETIVE BUSINESS BASIC
WITH RMS-1lK

Expanded print. Prints double high characters on some
terminals.

Escape. Sends an ESC character to the device. Used as
lead in code for control sequences. Device dependent.

End type-—ahead. Cancels input buffering.

Insert character at cursor position and shifts the
balance of the line one to the right. Sets mode to
foreground. See 'SF'.

Line delete. Removes the line at the cursor position,
rolls all lines below it up one line, inserts a blank

line at the bottom of the screen, and sets the mode to
foreground, See 'SF'.

Line insert. 1Inserts a blank line at the cursor
position, rolls all lines below it down one line,
deletes the bottom line, and sets foreground mode. See
'SF'.

Protection end. Cancels 'PS' protection mode.

Page mode. Sends screen data to local printer port
from (0,0) to cursor position. (VT132)

Protect start. Begins protected display and stops
scrolling.

Ring Bell. Causes beep on terminal.

Read Cursor. Provide current cursor position. Used
with or followed by an INPUT directive.

Start background mode. Sets normal intensity on DEC
terminals, half-intensity on others. Marks background
characters as protectable, but does not begin
protection.

Start foreground mode. Sets bold on DEC terminals,
normal intensity on others., Data printed or entered in
this mode can be cleared with the 'CF' without clearing
data printed in background mode. 'SF', 'SB', 'CF' are
used to design "fill in the blank" type of screens for
repetitive data entry or display.

Transmit line. The line of screen data at the current
cursor position is transmitted to the next input
variable.

Vertical Tab. Used to support printing of reports to
the screen instead of a printer.

102

SYSTEM VARIABLES

CTL

DAY
DSZ
ERR

PSZ

TIM

indicates the last field terminator input, as follows:
VALUE LAST TERMINATOR INPUT

CR carriage return

PF-1 Program function key 1
PF-2 Program function key 2
PF-3 Program function key 3
PF-4 Program function key 4

WO

contains the system date in the form MM/DD/YR.

returns the number of available bytes in the task area.
contains the occurring error number.

returns task information: TCB(3) returns last system error
code, TCB(4) returns the current statement number, TCB(5)
returns the statement number to retry, TCB(6) returns the
statement number that SETESC is currently set to, TCB(7)
returns the statement number that SETERR is currently set to.

returns the current system time.

TSK(0) returns devices configures for task.

103

RSTS System Performance Optimization

Michael tMayfield
Morthwest Digital Software, Inc.
Mewport, WA

Ed McKay, 53551on Chairperson
GalV9st Colleg=
lveston, TX

Reported by Todd Spangler, DECUS Scribe Szrvice
System optimization is always important 1in the Dbusiness
world., Micha=sl Iayfield of UHorthwest Digital Software, Inc.
presented several ways in which a system can be optimized.
In system optimization, the ideal 1is to maximize all
features with respect to the others. This might sound a bit
awkward, but at no time will all of the features work at 100%

cperating capacity with no waste. Some goals to achieve are:

1. Less than 5% CPU idle time (time that the CPU is not in

2. §% of CPU time lost due to insufficient memory.
~o ~

3. More than 56% CPU time used for user jobs.

4. Less than 15% monitor overhead charged to a job.

o

5. Less than 55% monitor cverhead not charged to a job.

6. Minimum number of characters output to the terminal
without affecting user performance significantly.

7. Less than 10% amount of time FIP is in uses or waiting.
8. Less than 7% amount of time FIP is in use.

ss than 15% monitor overhead for interrupt
ocessing.

(D

9. L
p

10. More than 15% of small buffers not in use.

11. Less than 80% of maximum number of accesses per second
for disk type.

12, Less than 39% of maximum transfer rate per second for
disk type.

104

Whan optimizing the system, it 1is best to have a low
monitor overhead time when comparaed to the actual user time
involved, as little swapping as possible (a little swapping is
not bad), and reasonable memory management. Disk access is also
important. In order to optimize the disk, one needs to decrease
the usage of the disk and also the amount of seek distance that
the head must travel. To do this there are disk kits available
in which the most frequantly accessed files are grouped together
in one area on the disk. Secondly, the files can be grouped
furthor on the disk with respect to the numb2r of times that the
file is actually opened zand accessed the most. In other words,
group together according to UFDs. Tne UFDs can also be cut down
by maximizing the cluster size., A formula for this is:

CLUSTERSIZE= - (2INT(LOG(FILESIZE/7)/LOG(2) + .9999))

The cluster size should be adjusted to -256 if the formula
yields a number cqual to or smaller than -255. Also one should
minimize the overhead related to clustersize during random I/0
by using proper cluster sizes. Cache hit ratio verses cacdhe age
also is important because if a cachz buffer is required and the
proper data 1s not there, then there is considerable time lost
during the search for the proper data. Cacha size relates to
the =exact same ©principle, since if the data is not there then
the system must search for the proper data. FIP 1is «crucial.
The most time consuming process is FIP. In order to optimize
this, one can optimize directory structures, create contiguous
files, and maximize clusters. This will make a drastic
improvement in the system response. Small buffers needed by the
system can cause an interesting problem. If there are less than
25% of frez small buffers available, the system goes into a
first level panic. This means that the number of small buffers
allocated to ssparate devices 1is 1limited and can cause
allocation to be denied to the device. If the entage of
free small buffers goes below 20%, then a s=scond level panic
exists, At this time, many more devices will be denied access
to the small buffers. If there 1is 1less than 19% of small
buffers free, the system halts. During each of these phases,
the run time decreases, the CPU time optimization 1is good,

h ; ,
overhead time increases, so overall it 1is wise to maintain
enough small buffers.

In order to find the statistics for an individual system,
use the RPM (RSTS Performance Moniter). For individual systsms,
needs will be different, therefore the system optimization will
require that different things be adjusted. When proceeding with
optimization, change only one thing at a time since <changing
more than one thing may result in unreadable results or two good
things may cancel sach other out giving misinformation. The
final analysis will be based on the system needs.

For further information, contact:

Michael Mayfield Northwest Digital Software, Inc. Box
2-743 Spring Valley Road Newport, WA 99156

106

New Users of RSTS/E Hints & Tips

Carl B. Marbach and Dave Mallery
RSTS Professional Magazine
Fort Washington, PA

Thomas W. Robbins, Session Chairperson
Seattle Pacific University
Seattle, WA

Reported by Susan Miller, DECUS Scribe Service

Are you a RSTS Guru? If so, you probably know of the Carl
and Dave show, Carl B. Marbach and Dave Mallery of the RSTS
Professional Magazine brought their show to the DECUS Symposium.
Theixr presentation was "New Users of RSTS/E-Hints and Tips.”

Marbach began with an editorial on the restriction of the
exhibitors at the symposium. "Commercialism is not allowed at
DECU5. You are not allowed to have a hospitality suite. I am
not allowed to sell you things on the DECUS site. I am not
allowed to advertise my product and say that you can find me at
DECUS. . . Only certain exhibitors were invited to be here.
That is to say only certain exhibitors were given an exception
from the rule. Selective application of the law is the most
dangerous thing that can happen in any user community." The
audience applauded, and no one accepted his offer for rebuttal.

The audience received a handout, entitled "New User's
Manual For RSTS/E." The handout explained some of the hardware
of the computer such as:

UNIBUS--"The UNIBUS (DEC trademark) forms tha backbone of
any PDP-11 computer system. It constitutes a 56 wire party
line on which any device of the system can talk to any
other device, The ribbon cables interconnect each device
from one to the next. Inside each device, the UNIBUS takes
the form of a Dbackplane 1inte which the various circuit
boards are plugged. Eighteen of the bus lines carry
address information; another 16 lines are for the data.
The rest of the lines are used for synchronization,
handsnhaking, interrupts, and initialization signals."

CONTROLLERS--"The controllers are devices which 2xist

between a physical device (what you see) and the interface
inside the computer. They are found on mass storage

106

devices that need 1lots of preprocessing of data. For
instance, a disk drive reads and writes bits on your disk
pack, but the controller groups them into words, counts the
words as they are moved, checks the parity, and even
corrects the data if it can. It also contains all the
control and status registers that you see in an ERRDIS
printout. Controllers are also called formatters. Simpler
devices, such as terminal interfaces, have the registers
right on the interface card and do not process data.

Marbach then gave some information on different processors
offered to wusers of the PDP-11. The terms were explained in
their numerical order. Marbach has not found any logical reason
for the names of the terminology. But he did 1list some
differences:

1. The 11/20 is the first PDP-11 and also the first one to
support time sharing.

2, The Micro-11l supports up to 4 megabytes of memory. It
uses a Q-Bus system.

3. The 11/23 wuses Q-Bus and is packaged a little
differently so that additional disks can be attached.

4, The 11/24 is functionally similar to 11/23 but uses a
UNIBUS system.

5. The 11./34 is a UNIBUS which only does 18-byte
addressing.

6. The 11/44 has cache memory, which makes the memory
operate faster, and supports up to four megabytes of
memory.

7. The 11/45 is a fast processor and limited in memory.

8. The 11/60 is also limited in memory but allows a user
to write her own instructions. This 1is good for
scientific but not commercial use.

9. The 11/7% has 22-bit addressing. It has UNIBUS and
MASSBUS, which puts it through faster.

Performance information <can be obtained on the RSTS.
Marbach suggests contacting your local salesman and asking for
the Performance Handbook. "If he doesn't know what a
performance handbook is, tell him to call the home office and
ask for Al Saloky." He's responsible for most of the performance
monitoring. His group provides documented information on
performance of all Digital processors.

Hints were also given to configure a computer system. Try
to establish what you're buying. How many people will use it?

107

Decide what kind of processing and memory you need. And
configure statistics information into your systen.

The need to have a backup was strongly urged. The backup
should be kept in a different place from the work area. If the
building burned, everything would be gone. Mallery had his
backup stored in the back seat of a car until he could afford a
vault in a fireproof warehouse. Usually backups are needed most
because of a human's error, such as a wrong key stroke that
happens in a fraction of a second. The recommended having a
backup of the previous four days work., Then a weekly backup.
And of course a monthly backup for as many months or years that
you can keep it.

Mallery gave tips on how to structure disks. This 1is the
single Dbiggest factor in the RSTS system. The wuser file
directory, or UFD, should be contiguous, centered and about
one-third of the way on the disk.

The most amusing hint and who knows--maybe the most

useful--was to never use a newly released product until the
Patch Kit B has arrived.

108

New Frontiers in Training Technology

Del Lippert
Digital Equipment Corporation
Badford, MA

Adam Zavitski, Session Chairperson
Seismongraph Service Corporation
Tulsa, OK

Reported by J. Rick Mihalevich, DECUS Scribe Service

Del Lippert cf DIGITAL stated that the next ten 2ars
promise to Dbe a real challenge both in education and in
industry. Rapid technological change and the increasing
intensity of foreign competition will test our businesses. If
we react boldly, we «can provide the kind of training and
retraining environments that will keep our organizations and our
employees competitive.

He went on to describe some of the factors which are
leading us to choose educational technology as part of our
training solution in industry. He also described how DIGITAL
applies educational technology in an industrial training
environment, since their training needs are similar to those of
many industrial organizations. Finally, the he discussed some
exciting new developments in educational technology.

Why do we need to apply technological solutions to our
training needs in industry? The answer to this begins with one
word: change. As a recent report form the Office of Technology
Assessment of the U.S. Congress states,

"A key element in all of these educational needs 1is that
they will constantly change. In a rapidly advancing
technological society, it is wunlikely that the skills and
information base needed for initial employment will be those
needed for the same job a few years later."

The people hired today will not be performing the same job
in five years, or even two years in many cases. The problem is
that the working lifetime of our employees 1is now very much
greater than the development and support lifetimes of new
technologies,

This means that most employees will need to be retrained

109

more than once during their careers in order to remain
productive. For example, Jjourneyman electricians in the
automobile industry must now be retrained in electronics,
robotics, and computers. The old model of work in a trade or
profession is a long apprenticeship leading to an indefinite and
stable journeyman status. This wmodel Dbased on the medieval
guilds 1is still accepted by many people today. Change is
breeding change and we can no longer expect that the
obsolescence of skills facing our country today will be a unique
event.

Right now a typical employec can look forward to a career
that consists of cycles with alternating periods of training and
productive contribution., It used to be that the productive
period took up most of a person's working life. Childhood
schooling and sometimes college were sufficient preparation for
a lifetime of work; this is no longer the case.

The typical engineering graduate in this country is 22-23
years old. Engineers themselves state that they face their
greatest challenge around age 27, and they categorize themselves
at technologically obsolete by age 32. That is an interesting
number, because in 1982 the median age of the United States'
population was 32. Compare this with the situation projected
for 199¢, when the median age will be 48,

The challeny= facing us is to keep those who will soon
amount to most of our workforce productive in a time of great
technological change. This is more than a problem of higher
management. While good technical people can overcome poor
management, the reverse is not generally true.

Compounding this problem is the fact that many of the
qualified applicants to engineering schools were rejected in
1980 due to lack of capacity in these schools. Because it will
become increasingly difficult during the next decade to find
qualified engineering graduates, ongoing retraining must be
maintained as a source of productive technical work force.

The concept of a learning cycle that keeps people both
challenged and productive is one answer to these problems. The
learning cycle begins with formal schooling, perhaps college,
and sometimes an advanced degree, all provided by traditional
academic institutions. The cycle 1is maintained by continued
retraining to meet both Jjob needs and the need for personal
growth. This continually changing part of the learning cycle is
increasingly the task of industry itself or of industry in
partnership with educational institutions.

Th2 reliance on the learning cycle is based partly on the
faith in the adaptability of adults and partly on recent
psychological studies. Adults, like <children, continue their
intellectual development beyond the age of formal schooling, and
that people's receptiveness to change is very intense at several
times during adulthood. If we can take advantage of this aspect

110

of human adaptability we will be meeting our own human as well
as business needs.

What employers can look forward to from the learning cycle
is continued productivity and protection of their investment.
The investment of employses from age 22 to age 65 is an
investment of betwecen four and five million dollars to a
company. The reason that educational technology 1is being
considered as a way to implement the learning cycle concept is
simply, "How do we protect and maintain that investment as an
asset to the company in the most cost-effective way."

It has been estimated that corporations already spend over
$39 billion dollars per year on training, and employ 75,000
people full-time and another 75,000 part-time, The importance
of that level of investment is clear and its efficiency will
have to increased to meet projected demands.

To be more specific, the following are the five changes now
occurring in industry that are relevant to the presentation:

1. The amount and complexity of Jjob-specific training
needed to work in modern industry has increased.

2, The need for continual upgrading of work skills has
increased.

3. The number of people per year needing training has
increased.

4., The geographical dispersion of a modern company's
workforce has increased.

5. The cost of delivering training via lectures is
becoming prohibitive.

None of these changes alone points to a need for
educational technology. But taken together, they argue strongly
for decentralized training that is individualized and can meet
the continuing needs of adult learners.

One solution to achieving decentralization is to employ the
power of today's educational technologies. Experience at
DIGITAL has shown that these technologies can be used to deliver
instruction cost effectively at a large number of widely
dispersed locations, even if only a few people need to be
trained at each location.

The issues forced on us by the changing nature of American
industry are sufficiently wurgent, and the use of educational
technology sufficiently promising, that industry will be in the
forefront of the widespread use of educational technology.
Industry has a unique combination of resources and motivation to
apply technological solutions to teaching on a large scale. Our

11

traditional close partnership with colleges and universities
will be of wvalue to both higher education and industry as we
continue to make great strides in the application of technology
to education.

Industry is in the midst of decentralizing its workforce
while traditional educational institutions remain largely
centralized. A major difference today is that industry itself
must provide much of the training to its employees because of

increased specialization and technological change. Aand the
median age of the population is no longer 16, but rather 32,
This means that educational changes that influence large

percentages of the population will have to occur beyond the
years of traditional schooling.

Thus industry is in a position of needing a decentralized
approach to training and also having to provide that approach
itself. In many cases education and industry together can
cooperatively address this lifelong learning challenge.
Opportunities exist for using the resources of both institutions
to address one of our major challenges - employee obsolescence.
DIGITAL trains people which have diverse backgrounds and
learning goals. Some join DIGITAL with significant experience
while others have no Jjob-specific experience. Some study
courses to obtain detailed job skills, while others look only
for generalities. Adaptive training programs should handle each

learner slightly differently to maximize each person's
performance against their own unigue goals. In addition to
traditional classroom instruction and self-paced printed

meterials, DIGITAL presently use three classes of technology to
achieve their training goals: linear video, computer assisted
instruction, and interactive video.

Linear video is a very useful and easily decentralized
training technology. It is Thelpful in sales raining, in
pre-sales customer training, and in conveying general concepts.
This type of media presentation is supplemented with printed
material. However, the type of presentation is limited and the
level of interaction between the student and the technology is
low. In many training situations we need a way to deliver
decentralizad training that is more adaptive.

Much of this adaptability can be provided by computer
assisted instruction, which can Dbe highly interactive and
tailored to a student's individual needs. In particular, a
student using computer using computer assisted instruction can:

1. Recelive instruction at a time convenient for the
student.

2. Control the pace and order of the instruction.

3. Ask for help, advise or the definition of an unfamiliar
term.

112

4, Get feedback on what parts of a course to review.

Computer Assisted Instruction has an important role in a
technical training environment although with some limitations.
The graphic quality of today's computer assisted instruction is
excellent, and for many traininq applications this is
sufficient. However, standard computer assisted instruction
technology cannot reproduce photographs or live action sequences
with the clarity of video presentation.

Much of the material presented at
quality images. To satisfy this ne
level of adaptability providad by comput
DIGITAL has begun to produce courss
their own interactive video technology.

DIGITAL reqguires video
ed while maintaining the
er assisted 1instruction
s that take advantage of

DIGITAL has developed an interactive vidzo system that
combines the best qualities of both computer genecrated and video
displays. This system fully integrates video and computer
assisted instruction by allowing both images to be displayed on

the same screen. n addition to allow1ng two separate "windows"
into the course, this allows video images to be overlaid wi :h
computer generated graphics and text. When the video source

used 1is a videodisc player capable of randomly accessing 54,009
separate images the adaptability of this system far exceeds that
of either linear video or computer assisted instruction on its
own.

A student might be introduced to a new piece of edquipment
with a video sequence. If later evaluation shows that the
student does not understand how a particular component works,
part of the video seqguence. If later evaluation shows that the
student does not understand how a particular component works,
part of the video sequence might be repecated with the component
highlighted via computer graphics overlays. Or a student can be
taught the assembly and disassembly of a complicated piece of
equipment by allowing them to simulate the steps interactively,
thus eliminating some of the need to maintain costly esquipment
at training sites. These techniques and many other variations
allow 1interactive video systems to be extremely adantable to a
large number of student backgrounds, abilities, and learning
styles.

An example of +the advantages of decentralized training
using the adaptability of interactive video system 1is
illustrated by one of DIGITAL's major groups. The total cost of
training for this group will rise by over 4¥% during the next
five years if that training is delivered in the traditional way,
by lectures and self paced courses at training centers. These
costs include not only the cost of producing courses but also
the travel and time costs associated with training centers that
are remote from many work sites. Using a model where much of
this training is provided by interactive video systems installed
in the group's field offices, almost all of that increased

113

training cost can be saved. This results is consistent with the
general trend toward higher costs for traditional educational
delivery, which is labor intensive, versus the wuse of
educational technology, which continues to benefit from
decreased costs, especially hardware.

In addition to the cost savings, studies at DIGITAL of the
initial wuse of interactive video <courses have shown that
properly designed interactive video courses can be as effective
as lectures or self-paced courses for specific kinds of
training. We have also found that the interactive video courses
are excellent reference sources that allow employees to refresh
their skills in particular areas just when they will be needed.

With all the benefits there are some limitations. The
primary limitation with the creation of new hardware
technologies the limited availability of software support. Many
of the problems found with using educational technology are
raised by the technology itself. In fact, educational
creativity 1is outpacing the ability to implement instructional
designs that are exceedingly complex. One of the promising
developments in this regard is the wuse of artificial
intelligence techniques 1in educational technology. Resent
developments in Dboth hardware and software have now made
artificial intelligence techniques practical as an instructional
tool. The promise of using artificial intelligence is that
teaching systems can be built with all the technical knowledge
of subject matter experts and all the teaching knowledge of
psychologists and educators.

In summary, the major problem facing industry is change;
employees last longer than the need for their present skills.
The concept of the learning cycle in which a person's working
lifetime consists of alternating periods of productive work and
retraining, using some examples of specific changes in industry
that required training to be decentralized and individualized.
This combination of requirements makes educational technology a
viable solution to training problems. Industry has a
significant need to adopt educational technology on a large
scale. The traditionally close partnership between industry and
education in this country will be of great importance.

114

Maxi In Your Mini
Christopher R. Johnson

North Shore Sanitary District
Gurnee, Illinois

ABSTRACT

Does your program require RMS indexed file support? Does
your boss insist that you include Resident Libraries? Does
the program specification call for more than five files to be
open at cnce? Then the system is probably telling you that
the maximum memory has been exceeded. This paper will give
the inexperienced programmer insight into some of the
technigues that can be used to permit the necessary files to
be open, and processing to be completed. Included in this
discussion will be techniques such as program segmentation,
the efficient use of maps, and overlay structures. When
these methods are implemented, even the largest programs will
be able to execute.

INTRODUCTION

Does your program require RMS indexed file support? Does your boss
insist that you include Resident libraries? Does the program specification
call for more than five files to be open at once? If you answered "yes” to
all these questions then it is conceivable you could have a problem, Your
system may be telling you that you have exceeded the maximum memory
allocation for ycur program. The first time this problem surfaces on one of
your programs, it can be quite disturbing. Maximum memory exceeded is many
times a problem for those of us using mini-computers like Digital's PDP-11
series. But I have found, with a lot of help from my colleagues at NSSD,
that there are ways to get around this problem. This session is designed
with the inexperienced programmer in mind. I will try to show some of the
ways that I have learned to optimize the code of a program, and get those
large programs running with all the necessary components included.

Central to a discussion of making a program "fit" is the job area
allocated for each program written on the PDP-1l's. The job area for
programs is 32K words. This is because the PDP-1l's use 16-bit words to
manipulate data and instructions. A 1l6-bit word can access 2 to the 1l6th,
or 65,536 bytes, which is 32,768 words. This area is also referred to as
Virtual Address Space, since your job area does not really consist of your
program's code itself, but the addresses of where the computer will find
that code. Now, if a program was all that went into this 32K work space,
there wouldn't be too many problems fitting programs into it. But of
course, other things go into this space along with the program. Pasically,
there are three things that go into the virtual address space: the run-time
system, libraries, and the actual program.

115

RUN-TIME SYSTEMS AND LIBRARIES

One of the first things to take up some of your job area is the
run-time system. Whether you have chosen BASIC2, BP2COM, or RSX, all these
take up some space in your job area. BASIC2 takes up 16K words, fully half
of your job area, while BP2COM and RSX take only 4K. This space is
allocated in the high address part of the job area, i.e. from 28K to 32K for
BP2COM and RSX. RSX has the added feature of being a "disappearing®
run-time system, if the RSTS/E monitor was installed with "RSX directive
emulation”. This means that RSX will occupy 4K of the job area while it
loads your program, and will "disappear" at execution time, leaving you 31K
{you never have all 32K) for your program at execution time. Resident
libraries also share the job space with the run-time system and your
program. Depending on the files your program tries to access, and other
factors, the resident libraries you chose to link to your program take from
4 to 16K, always in increments of 4K. At our installation at the NSSD, when
BUILDing our pregrams, the defaults taken for the run-time system and
libraries, take a total of 16K words, leaving us with 16K words for our
programs.

THE ACTUAL PROGRAM

To fit large programs into this 16K word area takes some efficient
coding. Although efficient coding is good practice whether the program is
large cor not, it is critical for the larger ones. Some of the ways that I
have found to help make programs fit include program segmentation and
overlay structures, the efficient use of maps, and using IF statements and
implied IF's in the right places. These three areas alone, when used well,
will save valuable space, and allow programs to fit into the allotted area
that otherwise would not. All of the methods I am about to describe are
things that we at the NSSD have found reduce the size of a program. The
figures are by no means exact, but come from experimentation with the

different structures to be discussed.
Program segmentation and Overlay structures

The first thing to do when a maximum memory exceeded message comes
up, is to think about the ways that you can segment your program into
smaller, more manageable pieces. When you have decided what things should
go together, they can be put into subprograms. Then all of these pieces can
be "overlayed" according to the program's Overlay Description Language file,
or CDL file for short. FEach of these separate subprograms must be
"logically independent”, in other words they must not call each other. This
is because only one of the programs that are overlayed can be in the job
area at any given time. This is better explained using an example.

Be foce.

#x Abtec

\ o g

M On Moun o
conkrol

Pfﬁf)ﬁkm Q(O&J(’O’»V“ﬂ

/

116

suly su's

A LB

K

Unused £onaa
i

17K

In the diagram above, the program is shown before and after segmentation.

In the before stage, the program is self-contained. There are no
subprograms to be overlayed. When maximum memory exceeded results, the
programmer "cut up" the program into subprograms A and B. Now subprograms A
and B can be cverlayed in the job area and gain more space for the program
to run. This is accomplished by "swapping” the overlayed programs in and
out of the job area as they are called by the main or control program. When
the main program calls A, the computer will move A into the job area and
then proceed tc¢ do whatever A calls for. When A is finished running,
control returns to the main program, with A remaining in the job area.
Should A be called again, before B, this subprogram will still be there.
When B is called by the main, A is removed from the job area and replaced by
B. The processing called for by B is then done and control ultimately
returns to the main program., This swapping is done until the program is
completed. As you can see this procedure could save considerable space when
a large program is cut into small pieces that can be overlayed.

Programs can be overlayed at several different levels, with one
program calling another, but this can also defeat the purpose of having the
programs overlayed, For instance, subprogram A could in turn call
subprogram Al, A2, and A3. These three subprograms can be overlayed within
the structure of subprogram A's overlay. The tree below helps to show what
can be done:

T ‘ l
<ub Sub b
A\ B e
RN 5 7
‘QK [i, I]]
A o¥ - ™~

The main program is the root, and each subprogram has been overlayed on one
level or the other. 1In this example, subprograms A, B, and C overlay each
other, while on the next level subprograms Al, A2, A3, and Cl overlay each
other, Bl and B2 overlay each other, and Cl, C2, and C3 overlay each other.
Subprograms Al, A2, and A3 cannot be called by any program but A, although
subprogram Al could be included in another path of the tree, for example as
2 subprogram called by B. As you can see, subprogram Cl is included as a
subprogram of both A and C. This is a perfectly legal structure even though

117

it is somewhat self-defeating. If a certain subprogram is included in many
different paths of the overlay tree, it may be beneficial to include that
subprogram on the first level, with the main program. Then it is always in

the program's job space and is available for any other subprogram to call
without control actually passing back to the main program. If all of the
subprograms are approximately the same size, the maximum space saving is
achieved. But if there are one or two subprograms that are quite a bit
larger®than the rest, adding another level to that subroutine path would
probably be of help. In this way, different parts of these large
subprograms can be overlayed, thus saving space and making these large
subprograms more manageable. One important point must be remembered when
you are deciding how much your program needs to be segmented. Setting up
the subprogram itself takes up space. You may lose more space by having the
subprogram than you gain by the segmentation.

The way to see how effective your program segmentation has been is to
generate a "Memory Allocation Map" when you task build your program. The
first page of the allocation map is all that concerns us presently and an
example of one is shown below:

UCR831.,7TSK Memory allocation map TKB £7.204 Page 1

2-MAY-83 15:09
: GEN
16RE

Task UIC : [2,29]

Stack limits: 901060 @01777 801000 BB512.

PRG xfr address: 8210854

ress windows: 4. ~—

image size : 10016. words
Task address limits: Q0002900 047607
isk blk limits: 000002 098054 GEBOS53 O0H43.,

UCR831.TSK Overlay description:

Base Top Length

pogeea 932773 B32774 13820. $ICIO2
932774 035503 @P2510 ©1348. UCR83A
932774 @43657 018664 @4532. UCR83B
043660 ©45153 001274 00700. R3PUT
$45154 047067 081634 08924. R3UPDA

The program overlay description is what interests us. There are five
columns, the BASE, the TOP, two columns under LENGTH, one in octal and one
in decimal, and the program segment names., We are concerned with the LENGTH
columns and the name column. The two subprograms, UCR83A and UCR83B are the
subprograms that are overlayed in this program. Subprogram UCR83A is 1348
bytes long and subprogram UCR83B is 4532 bytes. This disparity between the
sizes of these subprograms was not critical in this instance but it could
be. If the main were still too large, the program may run while processing

118 —

is controliled by the main program or subprogram A, and then bomb with the
maximum memory exceeded message when B is called. Should this happen, it is
necessary to examine the allocation map and check the size of the program
where the maximum memory was exceeded (the message will tell you what
program this happened in). Any programs that are larger than the guilty
program should be cut further to avoid more maximum memory exceeded messages
on subsequent testing runs. This is the main reason that all the
subprograms should be approximately the same size.

Maps

Most of the programs we write at the NSSD include maps. When maps
are used, each individual variable name uses approximately four bytes of the
job area. If there are three or four maps in your program, with a lot of
fields in those maps, this can add up to quite a bit of program space.
Unless you use 21l of the fields of each map in the program, it is not
necessary tc have all those field names declared in the program. For every
variable name that is not used in the program, you can save the four bytes
that name would have used. When this is added up among all the saved
variable names, it can mean major savings. The way this savings is
accomplished is illustrated below.

9¢5 ! &
! FD Inveice file map. &
MAP &
IM.INVOICE.NOS = 8 ! Invoice number. &

B ACCT.NOS = 15 ! NSSD customer acc't number. &
;IN,LIEN.NOS = 7 ! Lien number, if any. &
,IN.INV.DATES = 6 ! Date of invoice (YYMMDD). &

, IN,DJE ,DATES = 6 ! Date by which payment is due &

! (YYMMDD) . &

,IN.PAID.DATES = 6 ! Date paid in full (YYMMDD). &

, IN.BALANCE I= 8 Balance due. &

, IN,ORIGINAL,AMT 1= 8 Original invoice amount. &

; IN.,REFERENCES = 3 ! Reference. &
yIN.STATUSS = 1 ! Status -- open, closed, &

! prepaid. &

&

&

68 Total length

In the file description shown above, 211 of the field names would take up
about forty bytes of the job area. But if the program only used the invoice
number and the balance in the program, it would be beneficial to replace and
combine the field names that are not used into a FILLS field as follows.

The account number, lien number, invoice date, due date, and paid date would
be grouped into one field called FILL$ and with a field length equal to the
sum of the field names removed, or forty. The original amcunt, reference
and status could alsc be grouped together in a similar fashion, also with
the field name FILLS. The file description would then look like this:

905 ! &
L FD UCF1:UCIf5 . MET~—mmmm—m———— Invoice file map. &

MAP (UCIBS) &
IN.INVOICE.NOS = 8 ! Invoice number. &

19

,FILLS = 49
+ IN.BALANCE 1= 8 Balance due.
PILLS = 12

=208 -c IR -< I -2l °2]

68 Total length

In this way eight field names have been eliminated (FILLS does not take up
any space) and a savings of thirty-two bytes is the result, This is a small
file description but ample enough to show the savings that can result. It
is important tc remember that when subprograms are called, the data in the
buffer area for a specific map is passed to the subprogram only if the map
is included in both the calling program and the subprogram. But it is not
necessary for the maps in each program to have the same fields declared.

The main program may get the data from a certain file, but not use it
anywhere within the program. If this is the case then it is necessary to
include the map in the main program; but it can consist of just one field
name, FILLS$, having a length equal to the total file length size. When this
program calls a subprogram, the data will be passed to the subprogram if
there is a correspending map in the subprogram. Then the subprogram can use
what data it needs, by declaring the field names used, and leaving the rest
as FILLS fields. This way space is saved in the main program and in the
subprogram as well,

IF's, Implied IF's and Line Numbers

The use of IF statements in our programs is one of the most important
parts of any program. Without IF statements, no decisions could be made
based on any data available. It is a good thing they are around. 1In
BASIC-plus~2 any regqular IF statement must be ended by a line number for the
next line. 1In the new version, BASIC-2, the IF statement can be ended in
this way or by the new END IF statement. The problem with the BASIC~plus-2
way is that line numbers take up approximately sixteen bytes of your job
area. When fitting a large program into a small space, unnecessary line
numbers become an unaffordable luxury. If your site has installed the new
version, then the END IF statement should be used to end any IF-THEN or
IF-THEN~ELSE blocks of code. When running under the old version, deciding
between implied IF's and regqular IF-THEN blocks becomes important. If there
are reqular IF statements in your program that have only one statement in
them, it is beneficial to change that to an implied IF and take out the line
number to end the IF-THEN blcck. On the other hand, trying to save too many
line numbers by changing multi-statement IF's to a bunch of implied IF's to
save line numbers does no good, in fact you lose some space. It is clear
that line numbers should only be used where absolutely needed, such as the
target lines of GOTO's and GOSUB's, and to end multi-statement IF's.
Programs can be broken up in other ways. The use of a blank line is one
example. It is much better than using a line number, since a blank line
takes up none of the job area.

There are other things that can be eliminated when you are trying to
conserve space for your program. One of the most important of these is the
use of unmapped conctants. For example, if a program compares many strings
to "A" and does not use a variable to represent "A", each time that constant
"A" appears in the program, sixteen bytes are used. To declare an unmapped
variable equal to "A" would take four bytes for the variable name (no matter
the size of the variable, i.e. LETTER.AS takes the same amount of space as

120

AS$) . four bytes for the assignment statement, sixteen for the string
constant in the assignment statement for a total of twenty-four bytes.
There are four bytes used for each additional reference to the variable
name, So you can see that if that constant "A" where used ten times in a
program, it would result in 160 bytes used. If the variable was used those
same ten times, there would be only sixty-four bytes used. Another quick
way to save some space is to use GOSUBs instead of functions. 1In
BASIC-plus~2, functions are added to the code wherever they are called, but
GOSUB routines are only included once in the program.

CONCLUSION

These are not the only ways to save space in a program that is large.
I have arrived at these figures and examples while working with large
programs we have written at the NSSD. Program segmentation, maps, IF
statements, andé unmapped strings are not the only space saving techniques.
More advanced asures are availlable, COTREES being one example. But for
the programmer inexperienced in the problems of making programs fit, the
topics covered here give him or her a great head start.

e

121

RSTS/E Tips

Jeffrey Killeen, Session Chairperson
Information Design and Management
Sherborn, MA

Reported by Joseph Lowery, DECUS Scribe Service

Q. On EMT logging in the switch register, now that you've given
us everything on the switch register between 1 and 15, why
not let us select 6 or 7, or however many switches are left,
so we can turn the subset of the EMT loggers off and on?

A. We're looking at a more generic way of handling that.

Q. What are some hints with regard to what I need to look at in
the DDB of a modem controlled line to tell if someone is
connected to the line but not logged in?

A, There's a variable offset in the DDB called MODCLOCK, vyou
have to look up that value in your monitor SIL, If the most
significant bit is set then the modem line is hung up.

Comment: In terms of turning off and on a subset of the EMT
logging vyou can do it yourself from your basic program by
peeking at the switch register location.

Q. When RSTS runs low on small buffers, what starts happening?

A. As it starts to run out, it will quit doing things. Around
75 or so it will logging errors, at 40 it will quit logging
in, and as it keeps getting lower it will keep slowing down
until it hits zero, when it will stop until things free up.
If any interrupts occur and DSQs get freed up from disc IO,
then things will gradually come back.

Q. Is there any other reason you can think that would caus= the
system to keep people from logging in at about 24 users
online when there is sufficient swap space and the jobmax is
3¢2

A. Small buffers, swap space, or if, after you added the swap
file, vyou forgot to reenable logins to force recalculation

122

of the new maximum,

I have a tip with regard to the HELP program. If you put
SHELP.HLP as the first file in the $ directory to make it
contiguous, it helps quite a bit. Do you know why this is?

It does a sequential search through the directory to £find
your HELP file. If it's at the end of the directory, it
takes a while to get to it. Sequential caching would help
as well. Also, depending on the indirect references to
other HELP files within the HELP, you could position the
more frequently accessed HELP files at the beginning of the
directory.

We've had some problems with NPR devices, specifically the
DMR-11. It will start hitting the bus with heavy NPR
activity, and there's almost no way to notice what's going
on. RSTS never seems to get the time to notice that. Is
there any way to tell if anything is actually hitting on the
NPR?

Use the logic analyzer, since the software can't tell what
the bus is doing.

If RSTS is keeping count of small buffers, as was earlier
mentioned, is there a global peak address I can look at so
that I can keep count and broadcast a warning message to
appropriate terminals?

FREES+2, but that will change in each of your SILs.

What happens when the buffer levels get down to 20% free and
25% free?

Those two percentages deal with buffer quotas for character
oriented devices. As long as you are over both 20 and 25
percent free, character oriented devices will be allowed to
use as many small buffers as they like to buffer their IO,
with the exception of a terminal that has been stopped with
xoff. When you start to drop below those values, then it
will no longer be allowed to exceed its buffer quota. The
difference between the 20% and 25% figures is that at 20% it
will no longer let it get its quotas, and you'll get caught
in a buffer stall in the BF state.

On disabling terminal lines, we often use a DH port, and
found that setting speed =zero on a DH works fine for
shutting it down and trying to run login on both sides. On
DZzs, which don't have zero speed on the hardware, how can
you set zero speed? Is the monitor looking at the speed?

123

A,

If the monitor sees speed zero, then it will disable
transmits and ignore receives.

With an 11/76 with four RMU3s, two of them set up as DMs and
two as DRs, two different controllers, how awful is this?
Is the CPU being beaten on by both of those controllers so
much that it is not really thinking very much?

It's actually a pretty good configuration, since you can not
only overlap seek on both drives, but you can overlap the I0
operations as well through the two controllers.

What exactly is a missed error?

A missed error is when you get below 75 buffers and it can't
log it, or 1if the error copy program has exceeded its
message limit and gone into hibernation. This can also
happen 1if you are in the error logger when you get another
one; in this case the second error is missed.

124

Computer Center Relocation

Larry W. Hicks
R.J. Rzynolds Tobacco Company
winston-3alem, NZ

Emily Kitchen, Session Chairperson
A.H. Robins Company
Richmond, VA

Reported by Scott Howell, DECU3 Scribe Service

After being introduced by the session chair, Lmily Kitchen,
th2 speak=sr, Larry Hicks discussad how hz successfully planned
and completed the relocation of the computer center of R.J.

Reynolds Tobacco Company.

Hicks began the presentation by discussing the background
to his particular relocation. He had to move a single
DECSYSTENM-2060 supporting threc departments. The DECSYSTEM-2060
was in the corporate computer center, while users and technical
support were in the tobacco company, a subsidiary.

Hicks described the method to plan the move, the most
important <factor of which is early preparation. To do this one
must:

1. Destermine tho major activities.
2. Determine the impact of each phase of the move.
3. Datermine the lead times and critical events.

4., Break sach phase into steps.
a. identify all steps.
b. determine step and activities dependent upon thea.
c. determine how to perform each step.
d. estimate time for each step. (be conservative)

5. Validate information of each step.
a. check other considerations.
b. verify time estimations.
c. check overlapping response.

6. Prepare preliminary time table for move.
a. establish desired move date.

125

10.

11.

12.

The
computer
do after

7.

b. determine initial activity and the earliest starting
date.

c. 2stablish earliest move date.

d. set realistic move date.

Formalize time-table.

a. solicit comments on the preliminary time table.
-from user department
-from vendors
~-from other parties in move

b. modify time table and schedule.

Prepare for implementatior
a. determine "go/no go" points in schedule.
b, decide action if "no go".

Implement move schedule.

a. publish implementation or move scnedule.

b. add detail.

c. request immediate notification of problems and
guestions.

Track completion of each step.

a. have one person with ultimate authority.
b. review steps weekly.

. check daily during the last two weeks.

. monitor "go/no go" points.

L0

Publish decisions.

Schedule periodical report.

preceding are all the necessary steps needed in a
center relocation. Hicks added several things one must
the project is completed.

Evaluate move.

Review problems.

Analyze slack time.

Evaluate accuracy.

Determine move's impact.

Raview your own action.

Thank involved parties in the move.

Hicks concluded his session with a summary of how to make a
successful transition of a computer center. These are four
basic easy steps.

126

~

Make detailed advanced planning.
Allow for a conservative schedule.
Make a close monitoring of progress.

Publish results.

127

VAX Security Panel —

Stephen Tihor
New York University
New York, NY

Ross Miller
Online Systems
Spokane, WA

Dave Schmidt
Management Science Association
Pittsburgh, PA

Frank Kieltyka
Los Alamos MNational Laboratory
Los Alamos, HNM

Almon Sorrell
Westinghouse Defense and Electronics Center
Baltimore, MD —

Andy Goldstein
Digital Eguipment Corporation
Nashua, NI

C. Douglas Brown, Session Chairperson
Sandin National Labs
Albuquerque, NM

o

Reported by J. Rick Mihalevich, DECUS Scribe Servic
Dave Schmidt from Management Science Association discussed
security from the commercial perspective. Security on large
networks is an issue of great concern. Special commercial
security concerns are:

1., Client data p»rotection
e

2. Accounting protection

128

3. Personnel and planning data protection

4. Simple pitfalls

Addressing the problem of client data protection requires

consideration and monitoring of a wvariety of computing
functions. First, a consideration of cach client as a unique
group must be maintained. Access across clients should be

protected to prevent "world access" to a client's directory; 1In
addition to online consideration of data protection, there is an
equally pressing issue of offline data protection.

Offline procedures must be monitored to prevent accidental
or unauthorized access. Possible areas of security penetration
are uncontrolled hardcopy output, backup tapes, communication
lines, data tapes, and delivery and shipping mistakes.

One goal of commercial security is to provide an easy way
to use tool for «controlled access to client directories by
support persons. In this case, the SETUIC (fall 1979 SIG tape)
was implemented. This allows for installed images, screens UIC
access by a control list, and can be modified to log access 1if
desired.

In terms of accounting protection, SNDACC allows entry of
transactional or value added billing entries to the system
accounting file, however this is not available from DCL. SNDACC
does provide a secure record that is difficult to transfer with
and can be used with a command procedure and wuser written
program to do royalty record keeping for leased software.

The second approach in accounting protection is to provide
a tool for support personal to easily change the VMS account
field in the billing records with which they work. 1In order to
accomplish this goal the use of ACCSET (fall 1980 SIG tape) was
used as will as the installing of image.

The issue of personnel and planning data protection has
some very serious security protection problems. If it is
essential that security be maintained with total certainty, then
a microcomputer and its processes in a stand-alone environment
is the only alternative. It 1is impossible at this ‘time to
protect data from system programmers and managers. Even the use
of data encryption is not a viable alternative. A dumb terminal
requires plain text data transmission that can be intercepted
easily. Also, SDA and other tools allow investigations of a
running process's memory space.

It is possible for a system manager to become any user,
allowing several methods in which to penetrate the system.

In summary there exist some simple pitfalls. Awareness of
these and the implementation measures to prevent them will do
much to improve protection. The first suggestion from this

129

presentation is: do not install AUTHORIZE or INSTALL utilities.
Secondly, monitor and require management accountability of all
users with highly privileged accounts. This is done knowing
that most computer crime is traced to a parson in this category
or one with access to these accounts. Also, try to actively
penetrate your own system and involve senior management in the
monitoring and accountability. Thirdly, don't leave terminals
logged in and unattendaed. Fourth, thoroughly check all details
of changes to operating procedures and computer room
environment. The fifth suggestion given was do not write down
and file passwords in a central place for record keeping
convenience. The final suggestion given was not to rely on user
ignorance of W8, There are currently computer science majors
being graduated with 4 vyears of VM5 experience and growing
numbers of other persons are now familiaxr with VS,

Ross Miller of Online Systems, another representative from
the commercial sector, was the second presenter.

In regard to complex security systems, it was mentioned
that one can reduce the number of combinations and permutations
with simpler or more manageable security systems.

Another item of concern is manager mobility within a system
and their availability to a number of passwords, therefore
increasing access and penetration protection.

To combat the problems of system ponetration the
implementation of +the "CHANGE" facility was suggested. This
facility removes default devices and default directories.
Another feature of this facility is that it monitors logon
sessions and creates a record of user/time/location information.

A final precaution is the use of time out screen management
chniques. This requires the user to maintain interaction with
o

t
t system otherwise termination of the job will occur.

2
n

Steve Tihor from New York University discussed the problems
of security in the academic world. In the academic computing
world there ai2 often users which differ greatly, £from faculty
research and records to administrative functions to student
assignments and projects. The challenge of system security 1is
to find the middle ground between too much access to system and
too much security. Users are in effect, handcuffed.

Efforts to discourage system penetrations by the tracking
of logons are often very effective. This produces a thorough
report of all sessions.

The selection of passwords are often too predictable and
sometime result 1in a problem with penetration within certain
system domains.

Frank Keieltyka of Los Alamos National Labs who works in
the classified environment addressed the network security and

130

the use of proxy logins.

In protecting the default DECnet account the best solution
Wwas not to have one. Otherwise prevent interactive use, prevent
batch jobs, and prevent "task" access. The proxy 1login allows
for selective mapping between systemns' user bases. however this
is an experimental, unsupported implementation in VS5 V3.0, The

DECnet access control provides default access. Which 1is
non~-selective, insufficient protection, and insufficient
accessibility. The explicit access control, on the other hand,

is cumbersome, hard to audit, and there 1is risk of password
compromise.

Current vulnerabilities are wire tapping, integrity of
remote systems and node impersonation. Future directions will
require greater flexibility, possibility of encryption, and the
use of non-discretionary security support.

Almon Sorrell of Westinghouse defense and electronics an
Department of Defense contractor. This presentation addressed
the problem of label marked printouts with classified levels.
The implementation of a utility called "CLASSPRIN" and another
utility used with great success which 1s available through
Software Services.

Three comments were made regarding general system security.
the first is the wuse of auto logout wutilities to protect
unattended terminals. Secondly, protecting against field
service personnel who use the same password between classified
and non-classified routes, and the use of patterned passwords.
The final comment is that PFT systems are not suitable for
privileged files.

131

Security Mechanisms for VAX/VMS

Mark Pilant
Digital Bquipment Corporation
Nashua, NH

Douglas Brown, Session Chairperson
Sandia National Labs
Albuquerque, NM

Reported by Omar El-Ghazzawy, DECUS3 Scribe Service

The session on V4SS security, presented by Mark Pilant of

DIGITAL, discussed various security mechanisms and their
implementation in future releases of the VAX/VMS operating
system. The security mechanisms covered were access control

list (ACL), non-discretionary contreols and audit logging.

The term security was applied to the need to protect
information from unauthorized distribution and/or modification.
The protection services required to achieve these objectives
were the ability to grant or deny a request, and the ability to
monitor request. Currently, the VaX/VMS (version 3.2) operating
system's main security mechanism is the use of UIC to determine
access.,

In the security environment each request 1is comprised of
three components :

1. object - anything which is protected (i.e. file, disk)

2. agent - anything which requests access to an object
(i.e. process, device)

3, identifier - a unique method of identifying the agent.
In the VAX/VHMS environment the identifier is externally
represented by an alphanumeric name and internally by a
unique 32-bit number which may be defined at several
levels - system wide, group wide and per user. In the
access control list (ACL) mechanism an identifier list
composed of access control entries (ACE) is constructed
that determines what access 1is to be allowed by an
agent to an object. Some specifications on ACL are :

1. an ACL may contain one or more ACEs

132

2, an object may have only one ACL

3. for files, ACLs are propagated from the previous
version of the file, or the parent directory.

A second mechanism is the use of non-discretionary controls
which provide protection by containing access to an object by an
agent. In contrast to the previous mechanism the owner has no
direct control over this method of protection, all changes in
protection require the intervention of the system manager. Two
forms were presented :

1. Integrity defined as a measure of trustworthiness.

2. Security definad as a measure of sensitivity.

The integrity level, which ranges from I’} (least
trustworthy) to 255 (most trustworthy) is used to control

modifications to the objects. It properties are such that an
agent cannot read less trustworthy information or write more

trustworthy information than he 1is allowed access to. In
addition integrity compartments can be created which are
functions of 64-bit mask identifiers. The security 1level is

identical in structure, it also ranges from ¥ (least security)
to 255 (most security), and is used to control access to the
objects. Its properties are that an agent cannot read more
sensitive information or write less sensitive information then
he is privileged. Similarly, security compartments can be
created which are functions of 64-bit mask identifiers.

During the question and answer period the addition of group
level bypass orivilege to the VAX/VIS operating system, and a
mechanism for the encryption of data transmitted via DECnet were
mentioned by DIGITAL personnel as possible future additions.

133

Challenges for the 80’s

Information, Resource Management--Challenge for the Eighties

Albert B. Crawford
Digital Equipment Corporation
Concord, MA

Sanford Kruegar, Session Chairperson
AMAX Copper Inc.
Carteret, NJ

Reported by Susan Miller, DECUS Scribe Service
Albert B. Crawford of DIGITAL presented his vision of

computer management in the '80s. Businesses need a strategic
computing plan because of obsolete techniques in 1information

processing and data management systems. Crawford's speech,
entitled "Information, Resource Management--Challenge for the
Eighties," was Dbased on his paper about DIGITAL's current and

future management plans.

The scope of information resource management connotes
breath of function and that data is a resource which needs to be
managed. Management should cover data processing, text/image
processing, office systems, process control and
telecommunications. The technology of the backbone network
helps with information management.

DIGITAL's business environment can be described as high
technology manufacturing, sustained high growth, expanding
competitive market, multinational, and a high rate of change.
While the organization/management environment contains persons
who act as entreprensurs, a dependence on matrices, an organized
product manufacturing, decentralized decision making, and also a
high rate of chang=.

Technology is influencing business with computer literacy,
cheaper computer power, the fifth generation architecture and
tools, and the use of the expanding application portfolio. The
portfolio has strategic planning, management control and
opcrational control. These layers are also divided by
departments. The sales and engineering departments are behind
in automation unlike the finance departmant which has full
automation. Crawford described the Dbottom layer as generic
tools. The purpose of the tools is to optimize technology for
something like electronic mail.

134

Changes are evolving throughout the work force and the role
of the information resource management director. The work force
faces sociological changes and is Dbecoming mnulti-cultural.
Spanish is developing into a second language and about 50
percent of the work force will need to speak it. Employees of a
business are becoming more dispersed with persons working out of
their homes. Crawford thinks a management director needs these
changes: a business orientation, to act more like a staff
consul tant, define context not content, drive hunan resource
management and facilitate technological transfer.

"A Strategic Computing Vision for the '80s" was created for
DIGITAL, This vision embraces the idea of end-user computing.
It has to be implemented with wiring up. There would Dbe a
dramatic shift in computer use with an information specialist
and end user, along with an application portfolio mix.

Crawford wants to readjust his portfolio, though he is not
sure how to do it. There would be a shift from the '81 figures
to the target for the '86 to '88 period:

Year '8l
(Target) '86-'88
Operational Control 30% 20%
Management Planning/Control 10% 58%
Strategic Planning 45% 15%
Generic Tools F5% 15%

Their strategy for the mid '89s involves more control of
data elements. The programs need timeliness and accessibility.
End wusers face certain problems that restrict their
accessibility. The languages are too complex. Data =2lements
need to be consistently defined in terminology and levels of
summarization. Users need help in navigating through the
structure of the multiple files and logical design. And the
multiple tools should be simplified.

Crawford said, "The real payback 1is +to go after the

knowledge worker.” This includes managers, professionals,
secretaries and administrators to squal the corporation's goals.
DIGITAL <doesn't wuse public terminals, Employees have their

individual terminals and about one-third in the electronic mail
service have a terminal at home. They can work at =avenings or
on the weekend.

Computers have caused behavioral changes in people.
Workers feel they have more productivity. The quality of their
work has improved. This helps the working relationship within a
business. As long as business manages their computers and
information, it helps if all employzes can punch their own
system.

135

Field Service Overview
Field Service Overview---Issues and Innovations

DIGITAL Field Service
Digital Equipment Corporation
Stow, MA

Emily Kitchen, Session Chairperson
A.H. Robins Company
Richmond, VA

Reported by Joseph Lowery, DECUS Scribe Service

The Digital Equipment Corporation is making plans for the
future to improve service to its customers. That's the topic
that a panel of speakers representing DIGITAL's field service
department addressed Dbefore a large crowd of conventioneers
Tuesday morning.

The speakers, Jay Atlas, Larry Fox, Jeff Holmes, Tom
Karpowski, Dan Fatte, and Don Hauger each concentrated on a
different aspect of some major innovations that Digital
users can expect to see finalized this summer. The innovations
were grouped into three major areas: (1) the integration
of hardware =and software maintenance, (2) new services for
network users and (3) a system for improving logistics
conditions.

Fox began the session with a presentation of four issues
requiring an increased amount of attention. The first is that
of problem escalation. Fox noted the importance of Digital
service providing timely and prudent solutions to the users
problems. With this in mind Fox described the already existent
Action Outage Program employed with the goal that eventually all
DIGITAL's best resources would always be available for wuse by
the customers. Fox also alluded to two changes that he feels
will be made: (1) to more efficiently handle the initial call
for service via improved conditions on call handling systems and
(2) integration of DIGITAL's customer service functions.

The second issue addressed was the specific handling of
intermittent problems, which were then subclassified into the
areas of (1) better recognizing the oproblems through the
diagnostic SPEAR program and customer input, (2) taking action
on the problem by focusing attention on the customer and
employing a systematic approach through a standardizing process
targeted to be finalized in June and implemented by July, and

136

(3) to stand committed to a policy of ensuring success in the
areas of service.

Fox's third 1issue entailed 1increasing the quality of
service in all of its branches by employing data attained
through customer feedback. He added that the key metrics in
this situation need to be monitoring the levels of customer
satisfaction, repeat customers, service time and response time.

The fourth and final issue pressnted by Fox concerned the
realm of servicing non-DIGITAL products, a field that they hope
to improve on to meet the customer's needs more successfully.

Holmes followed and spoke on the first of the three
innovations presented earlier in the session: the integration
of hardware and software service corps. Holmes described the
problem in the past of customers having vague ideas on which
area a problem might lie, and hence not being sure of which
service to call. DIGITAL's goal in this integration program,
then, is to perhaps alleviate this problem by requiring the
customer to make only one call for service and yet still retain
the high quality service that Digital has provided in the past.

The customers would then benefit from the program in two

ways. First, 1in the aspect of service product innovations,
systems agreements, network services and guaranteed uptime will
all improve. Second, the implementation of service delivery

innovations, such as the aforementioned call handling process
and the wuse of a single point of contact for entire networks,
will increase both speed and quality of service.

Karpowskxli then took the podium to introduce the wplans for
the field of network service. Plannced are three major programs:
(1) a comprehensive service for all networks, including wide and
local area, integrated and mixed vendor networks, (2) Life Cycle
Services, to be enmployed in the areas of the design,
installation, operation and further evolution of networks, and
(3) a program for customer training, so that certain problems
that arise may be resolved without Digital service at all.

Karpowskil concluded that this plan, 1if successful, will
prove to provide a complete service program for all of DIGITAL's
network customers,

The final speaker, Don Fatte, addressed the problems to be
overcome in the realm of logistics. He listed the three main
cbjectives as: (1) to deliver no parts to the service call that
arrive inoperative, or "dead on arrival" as he termed them, (2)
to keep no repair calls on hold because of the company's
inability to locate the needed the part, and (3) to avoid making
repeat trips on sorvice calls., Fatte proffered that these goals
can be attained by concentrating on thres areas., The first was
to keep stockrooms well filled and close to the customers. The
second was to cmploy a frequent replenishment of supplies and a
nlanned, as opposed to a random, distribution schedule.

137

The third, and final, point Dbrought up was done with
respect to the repairs themselves. The decentralization of
repair shops to field locations, tighter control of engineering
processes and shorter lead times were all proposed as being
beneficial to faster and higher quality repairs.

138

PRO300 Communications

Ray Shapiro
Digital Equipment Corporation
Maynard, MA

Jeffrey H. Rudy
Digital Equipment Corporation
Maynard, MA

Stephen G. Finch, Session Chairperson
Emulex Corporation
Costa Mesa, CA

Reported by Gene Mitchell, DECUS Scribe Service

Communication was the subject of a heavily-attended session
entitled "Professional 300 series communications." Speaker Ray
Shapiro of Digital discussed communications services, telephone
management systems, IBM communications and some future plans.
Communications services include:

1. End user interface.
2, Callable service routines.

3. File transfer at speeds up to 9640 bytes. This may
require an extra memory board. This file transfer also
offers, among other options, a new command file
transfer, password protection, and command terminal
support,

Shapiro added that when the version 1.7 comes out, file
transfer will be possible from Professional to Professional. Ha
speculated that by the end of the year, the following might be
included in the 1.5 or 1.7:

1. Tha menu could contain communications set-up, eonter
terminal-emulation mode, Professional-to-Professional
file transfer, and call control services.

2, The 1.5 menu may include set default line

characteristics, modify current line characteristics,
and restore dafault line characteristics.

139

The file transfer set-up menu should allow the user to:
1. Accept or reject copying file.
2. Accept or reject incoming file.

3. Supersede or reject new files with previously-used
names.

4., Password protection.

The terminal-emulator set-up menu includes both terminal
echo and terminal type. The terminals emulated are: The VI52,
VT102, VT125, and the Professional. Also available are:

1. Log keyboard input to file.

2, Access communications set-up from terminal menu.

Next on the agenda were Telephone Management Systems (TMS).
Features include:

1. Integral modem. The unit has 390/1208 baud integral

modem with Bell 1037 and 212A asynchronous compatible

modes that fit into the Professional box.

2., Four modes of operation, including voice data, serial
data and touch-tone frequency.

3. An optional voice unit,.

4. Easy programmer interface with capabilities for both
simple and complex programming.

5. BSupports two telephone lines.

6. Professional phone book: A software program allowing
the user to maintain a directory of names and numbers.

Shapiro mentioned some sample applications: Telemarketing,
DTMF inquiry and command, voice annotation and dictation (not
done through the telephone), and teleconferencing. The TMS
driver 1is full-sequence, with a 4096-byte buffer. It was
suggested that the user use a dual-buffer avpproach for best
results.,

Shapiro concluded the TMS section by adding that it is
"well-engineered,"” offering:

1. Several timers.

140

2. An emergency cutoff switch.
3. No pre-empting of telephone use.
4., A suitable dial mode: DTMF, push-button and rotary.

5. Ability to switch to voice code.

The IBM communications section dealt with connecting the
Professional Series with IBM host computers. Three devices were
used as illustration: The Digital RJE, the 3276-3SC from
Advanced System Concepts, and the 3276 SNA from Paramim. The
3276-SNA can work as a 3287 printer emulator. The Virtual
Terminal Emulator (VTE) from Advanced System Concepts works as a
3276 emulator. The VTE also includes a computer-based packaged
tutor for the ease of the user, who need not go to the manual
for instruction.

141

PRO300 Series - Future Directions

Steve Paavola
Digital Eguipment Corporation
Maynard, MA

Steve Finch, Session Chairperson
Emulex Corporation
Costa Mesa, CA

Reported by Nick Szabo, DECUS Scribe Sesrvice

The Professional 3%0 began being a low cost, open market
product with simple hardware a crude software tools. Later,
it became a computer with low cost hardware and useful
applications. It was a PC >signed to be used as a

!

businessman's tool, which has since had rapid market growth and
a high projected growth. It then took the shape of a PC in an
overall MIS structure with growth paths to bigger systems and
across networks. The Professional 300 became a marketable
product driven by solving users long term computing need

Future directions for the Professional 349 include lower
price and more performance. It also looks forward to broadened
options with high capacity disks and higher resolution displays.
Thz Professional series will track VAX, PDP-11, and networks.
PCs will be a mainstream investment focus and they will be a
high functionality workstation.

Key trends for the Professional 308 are system integration,
which include clusters (networks), text and graphics, and text
and voice. Also, the wuser interface will ©provide graphics,
peinters, and voice.

On the office automation side, the Professiocnal 3¢0 will be
an integrated workstation with combined 0A and DP functions.
There will b= compatible functions across DEC systems and
networks, with voice being a key function.

The future key design of the Professional 3¢% will have a
hard disk system, with emphasis placed on lower cost and more
storage space.

The video aspect of the Professional 309 will include
increased screen resolution with half Oagc display and multiple
windows. New input devices will bz a Mousce and a Tablet. There
will also be video disk integration.

Communications will involve Teletex, IBM interconnect, and
DECnet.

142

PC’s as Office Network Terminals

Rembert Aranda
Digital Eguipment Corporation
Merrimack, NH

Eileen Deal, Session Chairperson
Digital Equipment Corporation
Merrimack, NH

Reported by Joseph Lowery, DECUS Scribe Service

Personal computer systems are providing a revolutionary
driving force in the field of office automation, according to
Rembert Aranda of Digital Equipment Corporation. This
information was offered in analogy to what Aranda described as
the three major revolutions that have occurred in the computer
industry.

The first of these, the introduction of mainframe systems,
occurred from the 195Js through the mid 68s, when minicomputers
were developed and initiated the second revolution. In the
1979s the third and presently existing phase, that of the
personal computer, began and started a trend that Aranda
nrojects to continue to rise even more dramatically through 1986
than it has in the past few years.

The presentation then began a comparison of the personal
computer (PC) and wmainframe based data processing terminals
(DPs.) The six major advantages of PCs were described as:

1. The Cost---PCs are less expensiva in the long run than
main-based terminals due to work station costs. PCs
may cost more initially, but can perform an estimated

75% of the tasks usually found in an office
environment, such as paper filing, word processing and
documentation. The reduced time reqguired for

performance of these tasks was noted as perhaps the
most important feature of utilizing a PC system. Since
terminals carry higher costs for labor,
hardware/software maintenance and software
acquisition/development, PCs were firmly proposed as
being a more economical choice.

2. The availability of color and graphics on PCs.

143

3. The faster response time of the PCs.

4, Users of PCs can install, acguire and develop software
applications with a greater level of ease than DP
users.

5. PCs possess greater capabilities for user tailoring.

6. PCs have available new kinds of software that do not
exist with DP systems. No further elaborations on this
topic were offerecd.

A brief comparison was then drawn with respect to the
traditional software of DPs and the "Volksware" programs of the
PC. Again most of the areas mentioned favored the PC. Included
in these were documentation, modification time, availability of
color, the number of users it can service and most strongly, the
payback period for the two options: 5-19 vyears for the
traditional software and six months to ons year for that of the

~
e

Aranda then described some of the disadvantages of the PC
systems, There exists a certain lack of flexibility with the
system, in that there are some situations where the programs are
unable to be modified at all. Other drawbacks of the system are
that the memories are often smaller than those of a DP and that
the applications requested by the user can sometimes exceed the
capabilities of the hardware.

Popular applications of the software for the PC were then
discussed. Of these were (1) modeling, (most notably the spread
sheet,) (2) data management, (3) personal word processing, and a
variety of others which were £felt to be of somewhat less
importance, such as the utilization of graphics, communications
packages, application/report generators and integrated user
environments or "shells." The latter, and also the newest, is
expected to wundergo the most rapid growth over the next 1 1/2
years.

The services provided via the online data base of the
system was then addressed, listing many of the specific features
that the system is capable of performing. Highlights of these
services are an integrated user interface, a private videotex,
an electronic filing cabinet, nonprocedural languages, database
management systems, compatibility/conversion facilities,
communication gateways, and an electronic mail service. Of
these, the electronic mail service was described as the most
useful, due to five of its primary features. These are:

1. External gateways which allow for private, as opposed
to public, transferral of information.

2, The reduced time and cost of document storage, delivery
and retrieval.

144

3. Easier processing of incoming mail.

4, The fact that it widens a given "information
community".

5. It allows the use2r to handle correspondence from home
or any remote site.
Aranda concluded his alk by listing four metrics

concarning the application space of a PC system which should be
considered before purchasing a system, namely the depth, width,
variety, and compatability of space of the system, and added
that a wide range of capabilities, (the width of the system) is
the most critical and desirable of these properties.

145

Giving Effective Presentations

Weslay E. Mullen
McDonnell Douglas Automation
Barkeley, MO

Adam Zavitski, Szssion Chairperson
Seismograph Service Corporation
Tulsa, OK

Several years ago, Mr. Mullen attended a conference where
he became quite disturbed about the lack of quality in the
presentations. He becams so disturbed that he started taking
notes. That year he attended 4 or 5 conferences and was able to
continue taking notes. They were mostly negative things, things
that disturbed him, so he started he started to put together a
presentation that would be helpful to those called upon to
present papers.

Most people have to make a pressntation at one time or
another. Tne presentation could Dbe to a larges group or to a
single parson. It could be an informal discussion or, as here
at DECU5, a formal talk. We have probably noticed that when we
begin to speak, we get weak knees, our hands shake, our voice
begins to quiver, and we g2t this general feeling of inadequacy.
The intent of this talk was to help each of you overcome these
anxieties and give more effective presentations.

Mr. Mullen noted that hesre at the Cervantes Convention

center, a group of St. Louis Dbusinessmen who created the
International Speaker's Hall of Fame Award have plagques honoring
the recipients. The award 1s for professional speakers who

speak throughout the country. Their criteria for judging are:
enthusiastic, entertaining, exciting, interesting, informative,
inspirational and motivational. Although you are not expected
to be professional spsakers, you should definitely think about
their criteria when you are preparing and giving a presentation.
Following is a discussion of the presentation itself, its
preparation, techniques for giving the presentation, and the use
of wvisual aids. If you pick up only one of the ideas presented
here, you will be leave a better speaker.

1. BE YOURSELF. It is very important to be yourself when
you are giving a talk. If you pretend to be someone
else, you won't look natural. Face vyour audience.
Smile. Don't start your talk with an apology; you
want your audience on your side. If you are prepared,

146

they will find out soon enough. Be positive about
yourself and your talk,

DOMN'T READ YOUR PAPER. HNothing is more boring than to
listen to someone read word for word from a prepared
text, There are very few people who can do this and
still keep their talk interesting. If you can't kecp
your talk interesting, you will put the audience to

sleep. Use index «cards if it will help. Use an
outline or use your visual aids as a guide. Ad lib.
Add any thoughts that may come to you as you are giving
your talk and make your talk different every time.

Keep the content flexible. For instance, Mr. Mullen
slipped the information on the Professional Speaker
Awards into his talk.

ESTABLISH AUDIENCE CONTACT. Make the audience a part
of your presentation. Establish eye contact. Find out
who they are. What do you have in common with them?
What language do they speak? What do they want?

INVOLVE YCOUR AUDIENCE. Use the words "we" and "you".
Establish objectives for them but keep them realistic.
Don't have too many objectives. It is better to have
one objective and present it well than to have too many
of them presented poorly. HMake sure that the
objectives can be accomplished in a reasonable time
frame. You need to know is going to happan because you
gave the presentation. Know where your talk is going.
You don't want to be like Alices talking to the Cheshire
cat:

"Would you tell me please which way I ought to
walk from here?"

"That depends a great deal on where you want to
get to," said the cat.

"Oh, I don't care much where," said Alice.

"Then it doesn't much matter which way you walk,"
said the cat.

“So long as I get somewhere," Alice added as an
explanation.

"Oh, you're sure to do that," said the cat. "If
you only walk long enough."

Our talks are the same way.
DO NOT ASSUME THAT ALL OF YOUR AUDIENCE UMNDERSTANDS THE
ACRONYMS AND BUZZWORDS THAT YOU USE. It is quite

possible that all of you present have had a speaker use
a buzzword that you did not know at this symposium.

147

19.

11.

12.

BEWARE OF THE PODIUM. As you approach the podium, take
it easy. Watch for wires that could trip you.
Remember that the podium hides you from the audience
and limits what you can <do. If you do use the podium,
stand erect behind the podium and don't slouch. Don't
do things that might distract your audience. Don't
pace. Let your hands be natural and, if you must stick
them in your pocket, maks sure your pockets are empty.
Jingling coins or keys is distracting to the audience.
Don't play with the telescoping pointer.

FREHCARSE, REHEARSE, REHEARSE. Do a dry run with
someone before hand. It isn't enough to simply go over
your notes, you need to get on your feet and vocally
rehearse your talk. You should be thoroughly familiar
with your talk. Rehearse enough so that you feel vyou
will be able to roll with the punches.

BE FAMILIAR WITH THE AUDIO/VISUAL EQUIPMENT. Know
where the on/off switch is on the overhead projector.
Make sure that all of the equipment is present. Have a
backup. Try the aquipment out. Anticipate problems.

BE SURE THAT YOUR AUDIENCE CAN SEE THE SCREEN. If you
will Dblock the audience's view of the screen, be
prepared to step aside when you use the screen. Will
any lights wash out the screen?

EXPEND TIME PREPARING YOUR VISUAL MATERIALS. Use white
space effectively. Be careful of character sizes.
Characters that are to small can not be seen. Keep the
visuals simple by following the K.I.S.S. (Keep It
Simple Stupid) policy. The more complicated vyour
presentation, the more things that can go wrong. Keep
the attention where you want it. After vyour audience
has seen your visual, remove it and draw the attention
back to you. If you must use a "busy" visual, use dark
strips to introduce the visual to the audience in
sections. Al ternatively, you could highlight the
important features of the visual. Put the audience's
attention where you want it. After spending all of
that time preparing a presentation, don't send it
through the airport baggage. Carry it on with vyou.
You may lose your luggage this way, but you won't lose
your presentation materials.

AVOID DATED SLIDES OR FOILS, Keep your materials
up-to-date or avoid putting dated items on the visuals.

REHEARSE WITH YOUR VISUALS. Make sure that they are in
the proper order. Know when to use your visuals. Make
sure that they come at the right time in your talk and
that you are not talking about something and you are
displaying another visual.

148

13, USE VISUALS AS A TOOL.

14, KEEP THINGS SIMPLE.

Mr. Mullen also had some additional remarks:

Don't talk in a monotone. Speed it up and slow it down,.
Add inflection and pauses to your talk., If you don't think you
have the audience's attention, stop talking. Silence is a good
way of getting their attention again. There are problems if
handouts are passed out at the start of a talk. You will £find
that your audience will spend most of their time reading the
handouts and missing much of what you have to say.

In a dark room, speak 1louder. For some reason, people
cannot hear as well when the lights are dimmed.

Beware of the "opening joke" or the “opening story". You
could kill your entire talk 1if it is not done well. 1In the
opening part of your presentation, you want to capture your
audience, you want to get their attention.

149

DECUS Library

Ardoth A. Hassler
The Catholic University of America
Washington, DC

Reported by Phil Beene, DECUS Scribe Service

During the recent DECUS Symposium held in St. Louis, Ms.
Ardoth Hassler, library coordinator for the DECUS Library Board,
led an informative working session designed to update interested
users on DECU3 Library activities.

Following her brief status report on how the Library has
been operating since the previous DECUS Symposium, SIG
representatives from the U.S. Program Library Committee
delivered short reports on how their individual groups are
progressing.

Ardoth began her report by explaining the DECUS Library's
new incentive/reward program to encourage program contributions
from DECUS wusers. Any member contributing a program will
receive a plagque from the Library acknowledging their efforts.
Although announcement brought a gesneral sense of approval from
members of the audience, many thought the program would be more
successful if the contributor were offered the alternative of
receiving credit towards one of the Library's existing listed
programs. This suggestion will be referred to the Library
Committee.

Following Ardoth's announcements, Larry Hicks gave a brief
report on his work with the Library catalog. Since the last
Symposium, the previous three existing versions of the catalog
have Dbeen compiled together into one document. A free copy of
this new version should be mailed to all DECUS wmembers around
June,

The Library will begin treating this catalog as its main
marketing tool. It will be given away in order to make more
DECUS members and others aware of the wide selection of programs
available through the Library System.

In addition to the catalog distribution the Library will
continue to improve user awareness through posters, buttons,
bootn displays and the implementation of advertising.

A discussion of the Library's current taping programs and

150

strategies elicited considerable input from members of the
audience., One suggestion which came up during this portion of
the discussion was the Library's need to make a better general
abstract listing of available tapes and the information
contained within them. The point brought up, was that many
potential Library customers can't Jjustify the tape purchase
price without a Dbetter knowledge of what they are buying.
Ardoth said the group would consider this in the future and try
to come up with a better list.

Another taping problem currently being experienced by the
Library is their need for a better copying system. A new
mass-producing copying unit 1is one of the Library's main
immediate objectives.

For those users and SIG members unable to attend the
Symposium, or Jjust wishing to obtain copies of SIG sessions,
master tapes will be available. SIGs having copies made at the
St. Louis Symposium included: R53X, RT-11, DECsystem-10/20,
VAX, and RSTS.

Copies of these tapes are available to users for about
$112., The RSX and VAX tapes are quite lengthy, and are expected
to include two tapes.

The last portion of the formal half of the session included
a discussion of 1long range planning goals. The main Library
goal is to acquire a method of determining what items and
interests users will have in the future. According to committee
members, this knowledge will enable the Library to better plan
and prepare for these needs, saving sverybody time and money in
the future.

Following the formal first half of the session, Ardoth and
other committee membars took questions from the audience.

Many of the questions concerned the alternative methods

available to create Library donor incentives, Most DECUS
members oresent agreed a credit system would be more effective
than the current plague proposal. Citing other successful

library programs, even Ardoth agreed, but said she was not
certain such a program would work in the DECUS system. She
feels the Library could =sasily become overwhelmed with nonusable
programs offered Dby users wanting free programs. Although the
DECUS Library is not a profit organization, she said such
results could destroy the system's financial stability through
increased operating costs.

On2 alternative to ths plagque systen already being
discussed, 1is the possibility of offering a RAINBOW 100 system
through a lottery which would include all program contributors.

In other pertinent discussion, some users felt that DECUS

should obtain stronger rules zpplying to users' copying and
distribution of programs obtained through the 1library. Though

151

there 1s no law which protects the programs, which are public
property, members said it would be nice if DECUS created a head
or logo least recognize their contributions to program users.
This would not only be self-rewarding to the program authors,
but would also create a (Jgreater awaren2ss among non-dDECUS
Programmers.,

In concluding the meeting, Ardoth promised all suggestions
would be carefully discussed among Library managers, and
promised to let users know results of thesz discussions as soon
as possible.

152

new
VAX-45

NEWPOKER: Video Poker Game
Version: V1.0, July 1982

Author: Charles G. Davis, British Petroleum North America
Trading, Houston, TX

Operating System: VAX/VMS
Source Language: BASIC
Memory Required: 248B
Special Hardware Required: VT100 or compatible terminal
NEWPOKER is a video poker game that plays more like a real game
than any of its predecessors. It uses a full deck of 52 cards,
displays the cards instead of telling you about them, and cannot
see what is in your hand (until time to compare the hands). It
was created for VAX/VMS (any version), but with a few
modifications will run on PDP's as well.
It works on any VT10@ compatible terminal and uses little memory.
Includes a documentation file to instruct the players, the source
code (so you can tinker with it) and the executable.
Restrictions: Currently NEWPOKER can not "check" the bet.
Documentation on magnetic media.
Media (Service Charge Code): 688' Magtape (MA)
Format: VAX/ANSI (Blocked at 2648)

Keywords: Game

Category Index: 13

Operating System Index:
VAX/VMS

163

new
11-SP~49
Symposium Tape from the RSX SIG, Spring 1981, Miami

Version: Spring 1981

Author: Various

Submitted By: Glenn C. Everhart, RCA, Mt. Holly, NJ
Operating System: TIAS, RSX-11D, RSX-11M

Source Language: BASIC, BASIC-PLUS, FORTRAN IV, FORTRAN IV-PLUS,
MACRO-11, etc.,

The following is a brief description of some the programs to be
found on the tape:

New release of RSX/IAS BASIC, including virtual arrays.

DOB - object module disassembler MRH version update

MAS - a CCL type program for IAS systems not using the full DCL

TCS services.

LUT - List logical unit table of a task

FCB - List FCB chain, giving open files on a device

WHE - show where on F4P task built with /TR:ALL is executing
(locate loops, etc.)

TTPOOL - displays free space in TT driver pool

HLP - makes MCR HELP facility FORTRAN callable

help files, plotting utilities, etc.

IAS TCP subtasking from high level languages

11M MACRO preprocessor and C runtime library for UNIX standard I/O

pack

11M front end to Command Line Interpreter software

11M - program to make multiuser programs

Help file for Evans and Sutherland PS2 program

TEDI - A formatting text editor (does justification, etc.)

LBL software tools (UNIX like Virtual 0S in RATFOR) (Release 1)

Runoff for Diablo printers

RNP - Runoff preprocessor for include files, TI: prompts,

macros...

DDT22 - a symbolic debugger/core image zapper for any PDP-11 able

to operate from a separate task or within task. Can debug any

task symbolically with as little as 200 words of space in the

task.

VD - package for RSX-11M index

VD Driver

VD - package for RSX-11M-PLUS V1 And much, much more.

No guarantees are made as to the completeness, usabiltity, or
quality of the programs on this tape. The material has not been
checked or reviewed and documentation may or may not be included
for each program.

Restrictions: Available in 1600 bpi only.
Complete sources not included. Documentation on magnetic media.
Media (Service Charge Code): 2488' Magtape (PS)
Format: BRU
Keywords: Symposia, Spring
1981, Miami, RSX-11
Category Index: 18
Operating System Index:
154 RSX-11/TAS

revision
8-931

SPEAKR.BAS: A Vented-Box Speaker Enclosure Calculator

Version: October 1982

Author: Jeff Reyer, Digital Equipment Corporation, Hudson, NH
Operating System: 0S/8

Source Language: BASIC

Memory Required: 4Kw

The SPEAKR program allows you to design a vented (ie. ported) box
speaker enclosure provided you know three parameters about the
driver:

1. 0Ots (total driver Q factor)

2. Fs (driver resonant frequency)

3. Vas (compliance equivalent volume)

It calculates the volume of the box (Vb), the diameter of the port
(Dv), the length of the port (Lv), the peak or sag in the cabinet
response (R), the -3dB cutoff frequency of the box (F3), and the
resonant frequency of the enclosure (Fb). All measurements are in
International Units: volume in liters, length in centimeters, and
response in dB.

This program uses Keele's approximation method.

Restrictions: Originally written for VT108 (ANSI mode) but user
may patch one line in sources for either VT52 or hard-copy mode.

Documentation on magnetic media.
Media (Service Charge Code): Floppy Diskette (KA)

Format: 0S/8

s1p24
830487/
Keywords: Vented-Enclosure,
Calculator
Category Index: 17
Operating System Index: 0s/8

155

revision

8-931
SPEAKR.BAS: A Vented-Box Speaker Enclosure Calculator
Version: October 1982
Author: Jeff Reyer, Digital Equipment Corporation, Hudson, NH
Operating System: 0S/8
Source Language: BASIC
Memory Required: 4KW
The SPEAKR program allows you to design a vented (ie. ported) box
speaker enclosure provided you know three parameters about the
driver:
1. OQts (total driver Q factor)
2. PFs (driver resonant frequency)
3. Vas (compliance equivalent volume)
It calculates the volume of the box (Vb), the diameter of the port
(Dv) , the length of the port (Lv), the peak or sag in the cabinet
response (R), the -3dB cutoff frequency of the box (F3), and the
resonant frequency of the enclosure (Fb). All measurements are in
International Units: volume in liters, length in centimeters, and
response in dB.

This program uses Keele's approximation method.

Restrictions: Originally written for VT100 (ANSI mode) but user
may patch one line in sources for either VT52 or hard-copy mode.

Documentation on magnetic media.

Media (Service Charge Code): Floppy Diskette (KA)

Format: 0S/8
Keywords: Vented-Enclosure,
Calculator

Category Index: 17
Operating System Index: 0S/8

156

new
11-560

LST: A Paging Utility for Non-Form Feed Devices
Version: V3.0, February 1983
Author: Howard F. Graubart-Cervone
Operating System: RSTS/E V7.0
Source Language: BASIC-PLUS-TWO
Memory Required: 14KW
Other Software Required: RMS file support (optional).
LST is a system utility for printing out text files, in a paged
format on non-form feed devices; it also works on form-feed
devices. The only format command that need be added to the actual
input files is ".PAGE", at the places where a new page is desired.
Multiple input files are allowed, as many as will fit on a command
line. Special option commands are available to suppress page
numbering, set special form lengths, print a title, denote a cover
page, pause between page output, and print the number of standard
words (5-letters per word) in a file.
The program does not perform any modification of the file itself,
i.e. filling, justification, footnoting, etc.
Media (Service Charge Code): Write-Up and Listing (DA)
Keywords: Device Driver, Form
Feed

Category Index: 12
Operating System Index: RSTS

157

new
11-627

MEMO

Version: Vla, February 1983

Author: Mark J. Gilmore, California State University at Long
Beach, Long Beach, CA

Operating System: RSTS/E V7

Source Language: BASIC-PLUS

Memory Required: 9KW

MEMO was written to help people who are usually (or constantly) at
or near a terminal during the course of a work day. It acts as a
computerized ‘'note box', giving users a quick, convenient way of
storing notes about good ideas and/or things to do where they will
not be lost (as is frequently the case with paper notes written to
oneself). Features include listing memos by subject material,
appending to previously entered memos and output to a file.

Documentation on magnetic media.

Media (Service Charge Code): Write-Up and Listing (DA),
608' Magtape (MA)

Format: DOS-11
Keywords: Utility, Memo —

Category Index: 7
Operating System Index: RSTS

158

new
11-6190

DCW Menu for RSTS/E Systems
Version: December 1982

Author: Mark DeMoss, Dallas Computer Works Corporation,
Irving, TX

Operating System: RSTS/E V7.0 or later
Source Language: BASIC-PLUS
Memory Required: 16KW

The DCW Menu supports the creation, interactive editing and use of
menus with RSTS/E systems.

The programs are written in BASIC-PLUS to run on any RSTS/E
system. The DCW Menu includes programs to initialize menu files,
add, delete and edit menus, change menu control parameters. The
program Menu is used to access menu files.

Each Menu may contain up to 36 items. Longer menus may be divided
into 2 or more linked menus, or organized into nested sub menus.

Menu has proven to be easy to learn and use for both user and
manager. It includes features to aid development and management,
such as:
- password protection of menu items
- disengaging ctrl/c in Menu
- return from program to previous menu
- enforcement of private logical names
- user-private default keyboard monitors
Restrictions: Requires Echo Control Mode
Documentation on magnetic media.
Media (Service Charge Code): 600' Magtape (MA)
Format: DOS-11
Keywords: Menu

Category Index: 7
Operating System Index: RSTS

159

new
V-SP-10
Library Miscellaneous Package

Version: V1.0, October 1982
Author: Glenn C. Everhart et. al., RCA, Mt. Holly, NJ
Operating System: IAS, RSX-11D, RSX-11M, RT-11, VAX/VMS

Source Language: APL, BASIC, FOCAL, FORTRAN IV, FORTRAN IV-PLUS,
MACREL, MACRO-11, PASCAL, TECO

Keywords: Miscellaneous

This package contains a collection of approximately 31 individual DECUS
Library program offerings. They are for the PDP-11 and VAX, mainly RSX
and VMS applications, with some RT-11 packages as well. For a further
description of these programs please refer to the individual program
abstracts within this software catalog. These abstracts may or mey not
express the versions of the programs included within this package.

Some of the programs have been or may be revised since the creation of
this collection. The following is a list of the DECUS numbers and
titles of thes programs on the tape:

11-126 ECAP

11-297 MRMLIB

11-2893 VBS: IBM to PDP-11 VBS-Format Magtape

11-397 Stage 2 for the PDP-11 Operating under RT-11

11-312 LALR(l) Parser Constructor to Translate Computer Languages

11-322 MARGOT: A MACRO-Based Generator of Command Language

11-337 EXMT: A General Purpose Magnetic Tape Handler

11-359 CALC: An Interactive Computer Language with Unlimited
Numerical Precision

11-385 (Partial) PL-11: High Level Assembler Language for PDP-11

11-413 ORC: Object to Macro Conversion

11-415 EXFILE: Exchange File Program

11-433 LISP for RSX-11

11-437 PIP10

11-447 FOCAL RT

11-455 DUPLEX: Serial Communications Between Computers

11-459 ISAM Subroutines Library

11-451 FEP2: A Finite Element Program for Two-Dimemsional and
Axisymmetric Three-Dimemsional Continua

11-464 SPACE WAR: For Cursor Addressing CRTs

11-473 FILES

11-475 ALGEB: A Language for Algebra and Number Theory

11-487 DV11/3271 Driver for RSX-11M V3.0

11-512 NDTRAN2

11-SpP-6 (Partial)DDT22: Virtual Debugger and Systems Package
11-SpP-25 APL-11 for RSX-11M and RSX-11M PLUS

VAX-5 STAT

VAX-15 CALC: A Calculator Program

VAX-16 NDTRAN2

160

Also included:

11-296 Fast Signal Processing Software Package for the PDP-11
(Note: This program is no longer available seperately
through the DECUS Library).

VAX-6 SPICE2 (Note: U.S. Government export regulations prohibit
distribution of this program outside of the United States
without appropriate export licenses).

LISP for RT-11 is also included, plus some other routines and useful
items not present elsewhere (like virtual disk for RSX).

Complete sources not available. Documentation on magnetic media.
Media (Service Charge Code): 2400' Magtape (PC)

Format: RMSBCK with ANSI Labels (Blocked at 20348)

S1041

821227/8302156
Keywords: Miscellaneous
Index Operating System:
RSX-11/1IAS, RT-11, VAX/VYS
Category: 17

161

MUMPS

MUMPS Language Tutorial

Dianne Brown
Digital Equipment Corporation
Marlboro, MA

Jim Bernard, Session Chairperson
Kettering Medical Center
Dayton, OH

Reported by Frank Fluke, DECUS Scribe Service

The MGH Utility Multi Programming System (MUMPS) is a
high-level interpretive language. Although it is compiled at
some stages, it is for the most part interpretive. Its primary
focus is on data and string manipulation, therefore it is not
very good with numbers. MUMPS 1is very easy to learn and
encourages high programmer productivity.

MUMPS was first developed at Massachusetts General Hospital
(MGH) 1in 1966 as a patient information system language. In
1971, MUMPS-11 was introduced as an operating system and a
programming language. In 1972, the MUMPS User Group {(MUG) was
formed, 1In 1976 the MUMPS Device Communication (MDC) Standard
was accepted; in 1977 it received ANSI recognition. 1In 1978,
DSM-11 was introduced as a replacement for MUMPS-11 and in 1980,
MUMPS was introduced for the VAX family.

The Syntax for MUMPS is much like BASIC. It is possible to
have multiple command argument sequences on a line up to 255
characters long. Line labels are optional. Commands can also
have multiple arguments separated by commas. Some of the more
interesting features of the MUMPS language are reviewed below.

Unlike other languages, MUMPS evaluates operators
left-to-right regardless of any predefined hierarchy. There are
no data types to be concerned about because all input variables
are strings. In string comparison with the IF statement, MUMPS
uses a "[" symbolizing a CONTAINS command or a "]" to symbolize
a FOLLOWS command.

One of the particularly strong features of MUMPS is Pattern

Verification, symbolized by a "?", for checking input. It uses
the following symbols:

162

Numerics 4 to 9

Upper Case Alphabetics A to Z
Lower Case Alphabetics a to z
Punctuation

Any Alphabetics A to Z and a to z
Control Characters

Everything

mOPoOrGc 2

For example:
IF SSN 23N1"-"2N1"-"4N WRITE "VALID SOCIAL SECURITY NUMBER"
checks to see if the given SSN is written correctly.

Another interesting feature of MUMPS is that all commands
can be abbreviated to the first character of the command.
Although this may make the code seem very cryptic, it can speed
up programming once the basic commands are mastered.

Here are a few more characteristics of the language. MUMPS
provides a Post Conditional Syntax, symbolized by a ":", which
implies the "IF" command, but insures that the rest of the 1line
will be executed even if the implied IF is false. There is a
system variable, "STEST" (all system variables begin with "$"),
which contains the truth-value of the most recent IF. It is set
to 1 if the value is true and 9 if the value 1is false. Since
declared local variables remain until the program finishes, a
KILL command is provided to delete 1local variables. You may
delete all 1local variables, only one variable, or all of the
variables but one.

MUMPS provides for multilevel subscripting and
tree-structured arrays. Nodes in the tree do not necessarily
have to contain data, the array size does not have to Dbe
defined, and when any new node is created the storage space is
allocated and the subscripts are sorted. For this mode of data
handling, the S$SNEXT function is used to return the subscript of
the next sibling (the next node to the right on the same level)
to a specified node. If no next sibling exists, then a -1 is
returned. (Because of the danger of using a -1 as a flag, a new
function, $ORDER, has been defined. It will return the null
string if no sinling exists.) $NEXT basically walks around the
tree structure, The $DATA function returns a value indicating
whether or not the specified node has a defined value and/or
descendents.

One final interesting attribute of MUMPS 1is the $ZTRAP
system variable. It eliminates the problem of cryptic error
messages by "trapping” a message within the system variable so
that when the error occurs the "trapped" message will appear.
The remaining system variables can only be read, not written to.

163

Writing Reports with VAX-11 DATATRIEVE

Seymour Kellerman
Digital Equipment Corporation
Nashua, NH

Robert R. Lott, Session Chairperson
E.I. DuPont
Nashville, TN

Reported by Susan Miller, DECUS Scribe Service

Seymour Kellerman of Digital Equipment Corporation said
that reports are needed to display a subset of data, to format
data, to group records and to summarize data. DATATRIEVE
reports can feature a report name, current date, page numbers,
column headings, detail lines and summary lines. Kellerman gave
a number of examples which showed that DATATRIEVE can produce
almost any type of report a company might require.

Kellerman gave examples of five reports based on a
fictional company. He used two domains, NEWHIRE and SALESS83.
NEWHIRE consisted of data on new employees, such as ID, nane,
company division, company location, starting date, months
employed, birth date and age. The SALES83 domain used ID, sales
date and sales amount.

The following field structure was used for a NEWHIRE recc:d
with the ID index key providing querying.

DTR> SHOW NEWHIREREC
RECORD NEWHIREREC USING
gl NEWHIREREC.

19 1D PIC IS 9(5)
EDITSTRING IS 9(5).

10 EMPLOYEEMAME PIC IS X (20).

16 DIVISION PIC X(10)
QUERYNAME IS DIV,

19 LOCATION PIC X(12)
QUERYNAME IS LOC.

18 STARTDATE USAGE IS DATE

164

DEFAULT VALUE IS "TODAY"
EDITSTRING IS MM/DD/YY.

1¢ BIRTHDATE USAGE IS DATE
EDITSTRING IS MM/DD/YY,

Data was displayed from the contents file for the
domain. Output examples have been shortened to save spac

DTR> READY NEWHIRE
DTR> PRINT NEWHIRE

ID EMPLOYEE NAME DIVISION LOCATION START

¥9@912 CHARLOTTE SPIVA SOFTWARE MILWAUKEE 9/12/72
g@891 FRED HOWL SOFTWARE ST LOUIS 4/39/76
#2943 CASS TERRY MARKETING PORTLAND 1/02/8¢
11111 ANNE DINNAN SALES MILWAUKEE 4/01/82

Because the output was not easy to read, it was brok
into a subset of records which were sorted to make it "a
bit more comprehensible", said Kellerman.

DTR> PRINT NEWHIRE WITH DIVISION = "SOFTWARE", "MARKETING
SORTED BY

CON> DIVISION, LOCATION

iD EMPLOYEE NAME DIVISION LOCATION START
32432 THOMAS SCHWEIK MARKETING MILWAUKEE 11/067/81
78923 LYDIA HARRISON MARKETING MILWAUKEE 5/19/79
87465 ANTHONY IACOBONE MARKETING MILWAUKEE 1/32/73
#2943 CASS TERRY MARKETING PORTLAND 1/32/889

To produce a control group report, identify and sort
Then divide the detail lines into groups and print the
lines. Finally, summarize data on each group and for the
report. The following specification was used to
employees into subsets selected division and location:

Report Specification: Employees by DIVISION and LOCA

DTR> SHOW NEWHIREREPORT

PROCEDURE NEWHIREREPORT

REPORT NEWHIRE WITH DIVISION = "SOFTWARE",—me---—emmea——
"MARKETING" SORTED BY DIVISION, LOCATION

SET COLUMNSPAGE = 70

SET REPORTNAME = "EMPLOYEE REPORT"

AT TOP OF DIVISION PRINT DIVISION =-mmmemm—— e

AT TOP OF LOCATION PRINT LOCATION —m---—m—m—mm—e——m—mmm e

PRINT ID, EMPLOYEENAME, STARTDATE -=---—m-—eme———m—mmmm—m

AT BOTTOM OF DIVISION PRINT SKIP, -——--mm———mmem——om—om e
"TOTAL EMPLOYEES IN"|||DIVISION|":",
SPACE, COUNT USING %9, SKIP

165

NEWHIRE
S.

BIRTH

1/23 /40
4720732
6/28/20
1/24/25

en down
little

BIRTH

18/16 /39
8/29/54
9/20/39
6/28/20

data.
detail
entire
divide

TION

AT BOTTOM OF REPORT PRINT SKIP, "TOTAL EMPLOYEES:", -—==—=- >(5)
SPACE, COUNT (-) USING Z9

ENDREPORT

ENDPROCEDURE

DTR> :NEWHIREREPORT

The output on the employee report begins as follows:
EMPLOYEE REPORT
DIVISION LOCATION ID EMPLOYEE NAME START

MARKETING
MILWAUKEE
32432 THOMAS SCHWEIK 11/67/81
78923 LYDIA HARRISON 6/19/79
87465 ANTHONY IACOBONE 1/82/73

Another example shown was the employee age range report.
The preliminary work included defining a COMPUTED BY field. One
trick of the procedure report is to define an age range, and use
a variable to compute the decade of an age. Sort the records by
AGE and then group them according to AGERANGE.

Report Specification: Age Range Report

DTR> SHOW EMPLOYEEAGE
PROCEDUKRE EMPLOYEEAGE

DECLARE AGERANGE COMPUTED BY ~—-emmem e e e e e e e e e > (1)
FNSFLOOR (AGE/10) EDIT STRING IS 94.
REPORT NEWHIRE WITH DIVISION = "SOFTWARE", —-------c—=-—-—m- >(2)

"MARKETING" SORTED BY DIVISION, AGE
SET COLUMNSPAGE = 70
SET REPORTNAME = "AGE OF EMPLOYEES"
AT TOP OF DIVISION PRINT DIVISION
AT TOP OF AGE RANGE PRINT AGERANGE ("EMPLOYEES"/OVER") --->(3)
PRINT EMPLOYEENAME, BIRTHDATE
AT BOTTOM OF DIVISION PRINT SKIP, COL 18,

"AVERAGE AGE OF EMPLOYEES IN"‘[‘DIVISION]“:",SPACE,
AVERAGE AGE USING 99, SKIP

ENDRE PORT

ENDPROCEDURE

DTR> :EMPLOYEEAGE
Then the output is grouped by employee age ranges with the
report based on dates.

AGE OF EMPLOYEES

166

DIVISION EMPLOYEES OVER EMPLOYEE NAME BIRTH DATE

MARKETING
20
DAN ROBERTS 3/21/59
LOUISE DEPALMA 11/20/54
LYDIA HARRISON 8/29/54

The SALES83 domain used the following field structure:

DTR> SHOW SALES83REC
RECORD SALESB3REC USING
U1 SALES83REC,

U5 SALEDATA.
16 1D PIC IS 9(5).
19 SALESDATE USAGE DATE
EDITSTRING IS MM/DD/YY
DEFAULT VALUE IS "TODAY".

@5 AMOUNT PIC IS 9(5)V99
EDITSTRING IS $$S,585.99.

To do the sales division report, define a related record.
A flat or hierarchial record may be used. Kellerman recommends
using a flat record. "Queries come out much easier," with flat
records, he said, that it's "easier to access data and output
it." After choosing a record, the user should decide if he wants
a simple or compound key. He should also decide how the various
fields should be arranged.

To produce a sales report ordered by location and employee
you should: identify the data, join two domains, and sort by
LOCATION and ID, set up a heading for each location, group the
records, and calculate summary data for each employee. Finally,
calculate summary data for each location and all employees.

Data is needed from both domains to make an "all totals"
report. Following is an example of the steps involved:

Report Specification: An All Totals Report

REPORT SALES83 CROSS NEWHIRE OVER ID SORTED BY LOCATION,

ID -——mmm- > (1)

SET COLUMNSPAGE = 70

SET REPORTNAME = "EMPLOYEE SALES REPORT"

AT TOP OF LOCATION PRINT COL 1, LOCATION, SKIP ====-e—————- >(2)

(Column headers should also be specified)

AT BOTTOM OF ID PRINT COL 13, 1D, COL 28, EMPLOYEENAME, -->(3)
COL 41, COUNT ("M"/"O"/"S") USING 29,
COL 46, TOTAL AMOUNT USING $$5,$$$.99,

167

CoL 50,

AVERAGE AMOUNT USING $S3,588$.99

AT BOTTOM OF LOCATION PRINT SKIP, COL 25, LOCATION]|||"TOTALS;",

)

ZoL 45,
CoL 64,
TTOM OF
coL 45,
CoL 69,

ENDREPORT

TOTAL AMOUNT (-)
AVERAGE AMOUNT

REPORT
TOTAL AMOUNT (-)
AVERAGE

AT B

AMOUNT (-)

One peculiarity of this report is that it doesn't include a

PRINT SKIP,

USING $8§§,
(-) USING 8,885.99,
COL 34, "SALES FORCE:",
USING $$$8,855.99
USING

$55.99,

$5%,$55.99

SKIP

-==>(5)

detail 1line, since we are only interested in each employees
total sales. The output results are the employee total sales
report:
EMPLOYEE SALES REPORT
EMPLCYEE M TOTAL AVERAGE
LOCATION ID NAME ¢] AMOUNT AMOUNT
S
MILWAUKEE
11111 ANNE DINMAN 4 $1¢, 696,31 $2,524.,08
22222 NANCY ROTHBLATT 4 $23,139.17 $5,782,54
34567 LYDIA BARNET 4 $22,221.29 $5,555. 3%
44444 WAYNE SMITH 4 $40,943.69 $1¢, 235,92
88888 JOSEPH FREDERICK 4 $53,944, 96 $13,486, 00
MILWAUKEE TOTALS: $154,335,37 $7,516.77

Following is the procedure to follow for a sales commission ~—

report:
PROCEDURE FOR A SALES COMMISSION REPORT
DTR> SHOW SALESCOMM
PROCEDURE SALESCOMMV2
READY SALES83, NEWHIRE
FIND SALESS3 WITH FNSMONTH
DECLARE COMMPCT COMPUTED BY
CHOICE
MONTHSEMP LE 10 AND AMOUNT > 5000
MONTHSEMP LE 1@ THEN 5
AMOUNT > 10@0¢ THEN 12
ELSE 7
ENDCHOICE
EDITSTRING IS Z9%.
DECLARE RATING COMPUTED BY
CHOICE
MONTHSEMP LE 19 AND AMOUNT > 5800 THEN “ABOVE QUOTA"
AMOUNT > 10000 THEN "ABOVE QUOTA"
ELSE "BELOW QUOTA"
ENDCHOICE.
DECLARE COMMISSION COMPUTED BY (COMMPCT * AMOUNT) /100
EDITSTRING IS S,S$$S.99.

(SALESDATE) = *."month in numbers"

THEN 10

168

REPORT CURRENT CROSS NEWHIRE OVER ID SORTED BY COMMPCT

SET COLUMNSPAGE = 70

AT TOP OF PAGE PRINT COL 14,
"SALES COMMISSION FOR MONTH OF"|||FORMAT SALESDATE USING
MMM-YYYY, SKIP 2, CCLUMNHEADER

AT TOP OF COMMPZT PRINT COMMPZT, RATING

PRINT EMPLOYEENAME ("NAME"), MONTHSEMP, AMOUNT, COMMISSION

AT BOTTOM OF COMMPCT PRINT SKIP 2, COL 10,
"TOTAL AT"|||COMMPCT|"%:", SPACE, COUNT (-) USING 29,
COL 40, "“TOTAL COMMISSION:Y,
TOTAL COMMISSION USING 5,8$5.99, SKIP 2

AT BOTTOM OF REPORT PRINT COL 16,
"**7‘:**",
SKIP, COL 1§, "TOTAL SALESMEN:", SPACE, COUNT (-) USING 29,
COL 35, "GRAND TOTAL COMMISSION:",
TOTAL COMMISSION USING $$$%,5.99

ENDREPORT

ENDPROCEDURE

DTR> :SALESCOMM

Enter month in numbers: 5

After completing the above procedure, a reports of employee
sales commissions was produced. The report was sorted in
decreasing order of commissions.

SALES COMMISSION FOR MOMNTH OF MAY-1933

comMM MONTHS
PCT RATING NAME EMP AMOUNT COMM

5% BELOW QUOTA

ANNE DINNAN 9 $2,389.9¢ $119,50
JOSEPH FREDERICK 19 $5,000.00 $2590., 08
RICK LANGHART 9 $4,999.99 5250, 00
LYDIA BARNET 7 $2,598.79 $129.94
TOTAL AT 5%: 4 TOTAL COMMISSION: $749.43

A total sales report can also. be created. First, define a
temporary file to accept the totals data for each employee. The
SUPERSEDE option will delete the previous file. Then generate a
record stream of unique values for ID. Store the totals for all
the records of SALES83 matching on ID. After that, sort the
totals records by descending values for TOTSALES, so that the
top salespeople will be listed first. Finally, report on the
totals records of SALESTOTALS joined with the detail records of
SALESE83.

169

Field Test

ield Test: What is it and How Do W2 Pick Sites

Stephen R. Beason
Digital Egquipment Corporation
Maynard, MA

Angela J. Cossctte
Digital Eguipment Corporation
Maynard, MA

Thomas E. Davis
Digital Eguipment Corporation
Maynard, MA

Emily Kitchen, Session Chairperson
A.H. Robins Company
Richmond, VA

Reported by Margaret Watters, DECUS Scribs Ssrvice

Three DIGITAL representatives gave a successful talk on
what 1s a field test, and how companies can become field test
sites., Steph2n R. Beason, the Cantral Quality Group Manager
began the session by giving a general discussion on what
constitutes a field test, why they exist, and why a customer
would want to become involved in one.

A field test is the last step in the qualification period.
The main objective of a field test is to increase the quality of
DIGITAL's products. What cannot be tested in the DIGITAL
environment, can be tested in the field. The field test also is
helpful, because there are uses of products that DIGITAL had not
considered which may create some problems in the product that
DIGITAL can then look into. DIGITAL can also evaluate to what
extent the customer's reguirements and expsctations have been
met by the new product.

The customer would benefit from a field test at his site,
bzcause he would be able to be directly involved in the
development of a product that he uses every day, and thereby to
increase the quality of that product. Also, there is the
possibility that the site will experience a competitive edgs by
having the product in use up to a year earlier than the shipping
date.

170

Thomas Davis, & Software Services Representative, and
another qpeaher, felt that the major advantage to field tests is
the incre customey satisfaction they foster. He also
mentionad general guidelines that DIGITAL uses to chooses
test sites. Since DIGITAL wants real testing of their products,
the main criteria is thzt the si :st the product wall,
and that it hnhave a technical staff will Dbz abls to
communicate effectively with the DIQI”AL engineers, It is also
important for the site to have the necessary resources for the
product to bz tested (hardw: etc.). H2 also said that the
site must have a good relationship with DIGITAL.

Angela Cossaette, Administrator, discussed
now the field ast three major s=gmnents of the
process are setting up, testing, and termination. During the
testing period the people working at the site send QARs to
DIGITAL which a worked on immediately. After the termination
period, =& questionnaire wmust be filled out. In terms of the

cost to a chosen site, the site must spend the time using,
testing, and O“Oqulnq feedback, but the use of the product is
otherwise 3 One member of the audience said that the site
must also oﬂy transportation costs associated with attending a
training seminar, but there was no comment from the speakers, so
the matter remained unclear,

A site that wishes to bacome a field test site should get
in touch witnh its lOCBL Software Szrvices Manager or with Angela
Cossette directly: Digital Eguipment Corporation, P.C. BCX F,
Maynard, MA, 91754,

171

Writing User Manuals

Writing User Manuals-A Workshop

Pattli A. Petry
The Singer Company
Silver Spring, MD

Douglas Bickford, Session Chairperson
University of Vermont
Burlington, VT

Reported by Phil Beens, DECUS Scribe Service

The preparation of in-hous=2 user manuals in a frequently
undertaken and sometimes disastrously performed task. When
writing user manuals, careful planning and efficient allocation
of time can result in a written product which will be better
understood and read by more peocple.

Helping other DECUS members gain a better understanding of
structured documentation during the recent symposium in St.
Louis was Patti A. Petry, Principal Document Developer for the
Singer Company's Link Simulation Systems Division.

In her work with the Singer Company, Petry produces
in-house wuser manuals for various military and private users,
some of them adding up to 30,000 pages and requiring 50 writers.

The key to success in producing such mega-documents, Petry
says, 1is careful completion of a formal outline before ever
writing a single word of copy. "Planning is the most crucial
step in smoothly and efficiently producing quality
documentation," she said.

Petry says Singer always follows the below plan in
producing outlines for their documents:

1. Initial Planning. Always know what you are going to
do.

2, First Draft. During this process, the project engineer
edits the 1initial plan and sends his results to the
EDG.

3. Cursory Edit. All people involved in the project go
over the finished outline.

172

4, Word Processor. Outline 1is actually typed into a
printed form.

5. Complete in-depth edit. The staff go over the printed
document, making changes where needed.

6. Walkthrough. In this stage, the authoxr, project
engineer and section manager go through the copy
together, discussing the total overview of the outline
and making changes.

7. Edit Changes. Editors edit the changes wmade in the
walkthrough.

8., Word Processor. The new version of the outline 1is
printed into hard copy.

9. Project Engineer Review. P.E. 1is in charge of the
total project, and he reviews the copy to make sure the
outline is following the original strategy.

19, Printed/Shipped. The outline is printed and shipped to
the management of the company or government branch
producing the manual.

11. Government Edit. During this stage, the outline is
checked and edited by the government branch, etc.
producing the manual. (Singer does most of its work
for the U.S. HNavy.)

12, During this final stage, the outline is finally ready
to be written into the manual. All changes must be
made and approved before any copy is written. -

By following the above outline, Petry says both timc and
manhours are saved. This is especially important when dealing
with engineers and other technical writers who often require
long hours and much effort to produce properly written copy.
According to Petry, outlining the manual will also eliminate the
wasteful problem of overwriting.

Another practice Petry says is successful within the Singer
company is the creation of an author's manual for each project.
When writing a thousand-page documesnt with several authors,
keeping the entire work in track can be difficult. The author's
manual will standardize goals of the project, abbreviations
included in the work and keep the work within government
standards. This constantly updated manual will save many
mistakes and keep the staff organized, resulting in time and
money saved.

Petry discussed several other ways to keep staff efficient.

Aamong her suggestions were creating an in-house style book and
sending company engineers through technical writing refresher

173

courses at periodic intervals.

Following Petry's presentation, Douglas Bickford, session
chairman from the University of Vermont, led the audience in an
open discussion to create new ideas and input.

The guestion raised most often was how to create user
interest in the manual itself. Good indexing, a good table of
contents, bright graphics, running examples throughout the text
and a good understanding of the user audience were all listed as
key factors to the manual's success and continued use,

174

LNO1 Page Printer

Ron Iversen
Digital Equipment Corporation
Maynard, MA

Don Feinberg
Digital Equipment Corporation
Maynard, MA

Louis Banton, Session Chairperson
Staff Computer Technology Corporation
San Diego, CA

Reported by Gene Mitchell, DECUS Scribe Service

The session focused on the DIGITAL LNGl page printer.
According to DIGITAL's Ron Iversen, this printer falls into the
third major category of available printers, those that produce
less than 2@,080 pages per month. The LN§1 itself produces
about 15,000 pages per month.

Iversen listed some applications for the LN@l, including
data processing, centralized word processing, and distributed
cluster printing. DIGITAL's priorities are as follows:

1. High speed, reliability, two-sided printing, and little
need to have someone attending the machine at all
times.

2. High guality, some copying.

3. Compact size and convenience.

Market trends today, according to Iversen, are pointing
towards non-impacting, high quality printers. In addition,
laser technology is in demand, with capabilities 1in graphics
integration.

LN@1l hardware was discussed, features including:

1. Low-noise due to the non-impact printing (<55dB)

2. Approximately 12 pages per minute.

175

3. Compact resolution:300x3¢¢ dots/in.

iy
.
(45}
0]
<
0]

ral paper sizes including 8.5x11 and 8.5x14.

gh speed, making it a good replacement for multiple
Ps

6. LP1ll or DMF-32 interface compatibility.
7. GCreater graphics functionality.

8. Two ROM resident mono-spaced electronic fonts.

9. Two printing modes: (a) Portrait mode--Titan style
(SERIF) ; point, 1U pitch. (b) Landscape mode--sans

SERIF style; 6-72 point, 13,6 pitch.

10. Type-faces: Regular, italic, bold, bold italic, 6-36
pt.

The machine's major limitation is its limited capability
with sophisticated graphics. According to co-speaker Don
Feinberg of DIGITAL, this should improve in the future.

Tha support date for the following operating systems 1is
projected for sometime in June of 1983: VvMS V3.3, RSX-11 V4.1,
RSX-114V2.1, RSTS/E V7.2 and V&.0.

The software package was summarized by Feinberg, who he
emphasized that the LNl is a page-printer, printing only in
full-page increments. Fonts are stored as arrays of arbitrary
characters. 17800 unique characters can be printed on each page.

The microprocessor in the LNUl reads input band-by-band. This
prohibits font-loading during paper motion. The software

required falls into two types:

1. "Creator" software offers direct wuser interaction,
producing an "image" ready to send to the printer.

2. System software manages the printer itself and
Y N

separates Jjobs.

Fezinberg summarized by saying that the development of
DIGITAL's printers is directed toward high-quality capabilities
with laser technology and strong graphics.

176

LA12/LA100 Functions & Features

John L. Davis
Digital Equipment Corporation
Maynard, MA

E. Jory
Digital Eguipment Corporation
Maynard, MA

Reported by Frank Fluke, DECUS Scribe Service

This article is a discussion of the LAl2 and LA16¢, which
covered the construction of characters wusing dot matrix
techniques. Particular emphasis was places on what can be done
on the LAl9¢ and the construction of personal fonts, binary
image mode graphics or pixels, and new technical aspects of the
LAl12 and LAlGY products. The first part of the discussion
centered on dot matrix techniques for the LAlY0, These
techniques consist of two parts, the decomposition of characters
into small dots to get the 1image and the ©printing of those
images.

The next entity introduced was the character cell,
including its placement and definition. The size of a character
cell is called the pitch, Pitch refers to both horizontal and
vertical character size and 1is often confused with spacing.
Resolution is the distance between possible dot positions within
the character cell. For example, resolution influences how well
diagonals can be drawn and whether they look like straight lines
or steps. The LALlGY nas a resolution wnich is 1/14 of the cell
size in the vertical direction. The LNG1 has a resolution of
1/36. The VT1¢0¥s is 1/14. When discussing printer resolutions
you are talking about much greater resolutions because of the
importance of hardcopy <clarity which is often used for public
display as opposed to video output. In the horizontal
direction, the LAlOO (1/33) has a finer resolution than the LNO1
(L/30), while the VT103 remains at 1/10.

The next important parameter is dot size. On the LA1YY the
dot size is 13 mil. On the LNEGL it is 3 1/3 mil. The dot size
has two influences:

1. The finer the dots, the more detail that can be shown.

2. The finer the dots, the more dots that are needed.

177

Certain printer limitations must be faced, since the
printer which puts the most dots on paper most augments the
stress. It also increases the load on the power supply, heat
dissipation requirements, storage requirements for additional
features, CPU requirements (to process all the dots), repetition
rate for mechanical devices, and how fast the laser beam in the
should be shut on and off. Thus, a compromise must be found
between resolution, dot size, and the stress put on the printer.

One of the ways to save storage space is to avoid storing
the white space which is at the right or at the bottom of the
character. This is not always suitable for situations where
extremely high resolution is required, since the quality of the
output can be adversely affected. Another way to reduce storage
requirements is to wuse algorithms which reduce the number of
dots needed to form a character. For instance, the number of
necessary dots can be cut 1in half by leaving a space to the
right of each dot instead of having two dots adjacent to each
other. This would not affect vertical quality, diagonals, or
curves yet it cuts the stress on the printer in half, thus
allowing speed to double. This can be carried one step further
for even less quality and more speed. For medium resolution,
start dropping dots in the vertical direction. Although this
which does affect diagonals and curves, it permits a further
doubling of speed. The purpose ¢:I all this is to open up an
infinite number of characters.

This brings up the notion of a Dot Pattern Set (DPS). The
DPS <consists of a self-contained part (94 characters plus the
auxiliaries) and a secondary part which contains a 1list of
differences to be applied to the primary. In the DPS are stored
all character patterns, all character set tables, all the
character set selection data, and all supported attributes.
This allows support of any new fonts. When a new character set
is created, 1its character set table 1is placed in the DPS.
Therefore, any existing machine is able to support it. Dot
patterns can be modified in two ways:

1. Hew patterns can be defined(gives best quality).
2. Space saving algorithms can be used (saves on number of

designs needed) .

Q. What are the differences between the RA versions and the PC
versions?

=
5
6]

A. There are a lot of misconceptions going around.
differences between them are as follows:

1. We changed the code on the PC to 3-bit code. The

standard code that we use today is a subset, so if
you have either one of those and use 7-bit code

178

there should be absolutely no change. The only
place that should show a difference is in Europe.

2. The second difference is in the graphics aspect
ratios. In the PC version we have included a
choice of, I think, ten different graphics aspect
ratios, The only one of our personal computers
that wasn't quite right was the professional. It
works, it prints, but circles came out a little
flat and squares came out a little rectangular.
The PC version corrects that.

3. The third difference is the EMIRFI standards. The
RA version is FCC Class A and the PC is FCC Class B
which is more stringent., Of the changes that «can
be made, the ROMs are interchangeable. The reason
that people tell you that you can't make it into a
PC is Dbecause you still haven't made it FCC Class
B. You can make it work the same but its not FCC
Class B because that takes some power supply
changes and that's a little more extensive.

Concerning fonts, we are going to make custom fonts which I
believe is the most cost-effective way to do it. The turnaround
time is fast but we cannot be in the business of c¢reating ones
and twos for everybody. For someone with a little bit of volune
we can do it. For people with any custom fonts or symbol sets,
we should have the capability to make those for you within the
next month or two.

Some terms must be defined before discussing binary image
graphics. A pixel is defined as the smallest displayable dot.
It is a spot of light on the screen and a blob of ink on the
printer. The grid 1is the positions where you can place the
pixels. On the printer we talk about dots per inch and on the
video we talk about dots per screen. Resolution (previously
defined) is understandable in hardcopy devices but 1is not
understandable in video screens. Aspect ratio is the ratio
between width and height. Overlap (when the spot size is
significantly larger than the ©pixel) does not happen on the
video screen because the dot on the screen is the same size as
the pixel. Protocol is a way of encoding.

Some key characteristics have come into play in the
graphics area and they turn out to be 'gotchas' when it comes to
drawing things, so the differences need to be understood. With
pixels, in the casa of the printer, there exists a real problem.
On DIGITAL terminals, the size of the wire can't be changed very
easily on the fly, so it's pretty much constrained. The pixel
is defined by the size of the wire and the amount of ink that
gets put on paper. In the video, the pixel size is relative to
the screen so if there is a large screen there is a large pixel.
Horizontal resolution is determined by physical measurement and

179

on the video it 1is a simple electron beam. The vertical
resolution 1is in fact fixed by the vertical step (How much can
the stepper motor be moved?), and that is 1/48" which turns out
to be 72 dots per inch. There is an overlap between lines in
that if 72 dots per inch is divided out, it is slightly smaller
than the wire diameter. So there is a little bit of an overlap.
There are some accuracy constraints from how the paper is moved
around and the video has none of these problems because it is
all relative to the screen. These are all key constraints.

In developing the protocol, it was to be; compatible with
supported standards, compatible with the syntax, and able to
pass information. The Device Control String (DCS) was chosen
and the syntax was filled inside the DCS. This simply outlines
what cannot be done. The printable data portion 1is a simple
transformation where the received character code is transformed
into binary data. The leading parameter in the DCS is used to
define the aspect ratio. That is a key piece of information
when interpreting pixels or any image like them. There are some
aspect ratios that go from 5 to 1 down to 1 to 1. Pixels, then,
are nothing more than a way of passing around a nice, clean
image. This 1is great from the printer side because no bit map
is needed.

Q. I have an LAl2 and I tried to print something off of my
VT125 with it, but I couldn't find a way to tell the printer
using the keyboard to print out to the printer port. How
can this be done?

A. The VT125 option plugs into the serial 1line of a VT1¢4d.
There is no way, 1f you plug into a serial line, to get to a
key and redefine it to be "print the screen". what they
have provided is a kind of kludge mechanism so it can be
done. What you do is simply enter the command screen to
print the screen in your answer-back message, and then hit
control-break whenever you want to print the screen image
and it will come out. That's the hack.

Q. But only graphics?

A. Right, it only prints the graphics portion.

The LALY® is very flexible and can adapt to almost any kind
of environment. It can be; desk-top or stand-mounted, fitted
with an acoustic cover to reduca noise, and fed wusing rear or
bottom tractors or with roll paper in the back. The power
supply is an international power supply that can be run between
835 and 250 volts, and between 43 and 57 hertz. The LALOO is
Class B certified so it can be used in the home.

Communications are also flexible. The LA1lJ9 can be
connected to the host wusing any EIA connection, a 20 mA
connection, a modem, or the parallel interfacc. It has 14

180

stretch speed, 8 split speed, 8 character format, and can handle
any kind of stop bit. The transmittal rate is limited to 60 CPS
so it will not overload any host. It also has programmable
answer-back, enabling or disabling of automatic answer-back, and
coded disconnect. It supports XON/XOFF and busy. It has an
input buffer which goes between 49% and 4K and supports long and
short breaks for communication ending in a manner which is
compatible with both U.S. and European requirements.

Flexibility is also found in form handling where the LAl2
and the LAl¢U are much improved over the LA34 and the LA120.

Printing flexibility allows four print modes: draft, memo,
letter, and graphic. There are 8 horizontal pitches in draft,
2x2 horizontal pitches in letter, and 8 graphic pitches. It has
an infinite number of print styles and character sets. There
are 270 resident characters and 180 characters either resident
or plugged 1in, for a total of 458, The style as well as the
quality may be selected either from the host or from the front
panel. To improve speed, the LAlGO handles auto-underline and
does underlining on the fly.

There is flexibility in the way it handles the keyboard.
The LAlGU comes in both models RO and KSR. In KSR you can have:
auto-repeat or not, keyclick or not, 8 keyboard configurations,
disabled Dbreak key or mnot, and the RETURN can be a standard
carriage return or a new linz command.

The LAl0@ can be used as a line printer, a word processor,
a standard console, a graphic printer, or a personal computer,
each with many of the features adaptable to the chosen
environment., It 1is compatible with the LA129, LA34, LAl2, and
the LAl5, and feeds on the DECmate, PC, VT108, and the VT125,
It works under both RSTS and VMS.

Some of the changes in the new generation -~ LAl2 and LALQH
- were stressed, such as form handling and the ability to handle
the new DIGITAL 8-bit protocol which mainly doubles the
extension of a repertory of controls and extends the number of
characters that can be accessed with a single code Dby another
94, This reduces the data flow and increases the throughput of
the system.

In order to set up the LAl2, do the following:

1. Type the first character of the major piece, 1like "C"
for Communications, etc.

2. Type the first character of the subcommand that is
desired to understand or change. If you hit RETURN, it
will tell you what can be done with that command, what
the wvariations are, and then it will tell you the way
it is set at the moment.

3. The last thing is ths dialer, and if you type "D" you

can start entering the numbers. The essential thing
about the dialer is that it gives auto-dialing
capability and storage for wup to 26 numbers. The
amount of characters per number varies depending on the
numbers that you have. There is a fixed limit of 128
characters and there is an extra character needed for
every number that you want to put in there.

The other things added in the version 2 code for the LAl2
are; some bold printing capability, the variable aspect ratio,
graphics to be compatible with the PCs, and an updated APL
character set,

Keyboard dialing is actually very easy to do. To edit the
keys a little, a simple editor 1is provided along with the
facility to enter the digits, some separators so it 1looks
pretty, and some wait characters for secondary dial tone
detects. The keyboard dialer is pulse dial only and we did that
to provide the most universal base thought possible.

Q. Is that a new ROM set?

A. The keyboard dialer is combination logic board and new ROM
set. It was not the base board, it was the modem board we
had to go in and change to put in the dialer circuitry.

Q. When is that coming out on the LAl2?

A. About the first of July. The way the dialer works is that
any time you are online and not in set-up mode, if you type
"D", you go into dialer mode and it prompts and says,
"You're in dialer mode. What do you want to do?" It's that
simple.

182

Writing C for VMS & UNIX Systems

David Moore
Digital Equipment Corporation
Nashua, NH

Jim Livingston, Session Chairperson
Measurex Corporation
Cupertino, CA

Reported by Todd Spangler, DECUS Scribe Service

There are several problems when writing portable C code.
There 1is no formal standard for C. Confusion exists between
boundaries of C and UNIX and there 1is a general 1lack of
awareness of the problem, David Moore of Digital Equipment
Corporation described the differences between UNIX C and VAX/VMS
C. VAX/VMS does not use UNIX-style file specifications, fork
and exec sort utilities on standard I1/0, command line parsing
(piping and file redirection), and other routines not in the
emulation set. On VMS, RMS provides an RTL stream which is
compatible with that of the UNIX stream system. Exec-family RTL
routines only provide sharable reads between parent/child
directories and only initialization with "=" is supported. Also
supported are the += and *= operators.

To help maintain the portability of C code, it is advisable
to keep track of size of data items. On the PDP-11, a long
variable is equivalent to a short variable as far as memory is
concerned. On VAX, a short variable is half the size of a long
variable. The memory order and continuity must also be kept
track of as VMS can have variables that exist but that do not
exist in storage. When refering to this variable with a
pointer, there will be an error message created since the
variable cannot be found. On VMS, the layout of program address
space 1is important, especially wuninitialized ©pointers, end,
edata, and etext. In UNIX, there is a zero pointer, but on VMS
this ©pointer is protected. Unlike UNIX, characters are signed
on VMS. Pointer/integer exchanges are possible, but not
portable due to size conflicts. External identifiers on VMS are
31 bits long and on UNIX are 6 to 8 bits long. Unlike VMS, it
is possible to have holes in the structure alignment. The order
of operation on VMS is only forced when using the COMMA, logical
AND,and bitwise or logical OR. To be safe, one should not rely
on character set dependencies (VMS uses 7 bit ASCII). VMS does
not have an ASM program.

183

Basically, rules to follow in making C code as portable as
possible are to use DEFINE as much as possible and stay away
from manifest constants. Make use of common header (.h) files
in order to keep some record of system dependent constructs, use
SIZE OF to keep track of data, and use common routines with all
C libraries.

When writing non portable C, one should choose the right
support environment. Making use of all the compiler
capabilities is important. Using symbols like 'wvax', 'wvms', and
‘vaxlic' will identify the environment to the compiler, while
using include text libraries will improve optimization.
Allowing the compiler to manage temporary files and assign
registers will increase portability. Using constant folding,

DEF INE, MODULE, INCLUDE 1libraries, passing constants by
reference, compiler listings including symbol tables, cross
references, and preprocessor substitutions will also be helpful.
The proper use of PERROR RTL routines to diagnose errors is
desirable. With these things in mind, one can consider the
system, use the suggestions, and be on the road to writing
portable and non-portable C code.

184

UNIX Hints & Kinks

Armando P. Stettner
Digital Equipment Corporation
Merrimack, NH

Dorothy Geiger, Session Chairperson
Cal Poly
San Luis Obispo, CA

Reported by Dorothy Geiger, DECUS Scribe Service

The UNIX Hints and Kinks session was led by Armando P.
Stettner and included panelists Joe Sventek, Norman Wilson, Bill
Burns, and Vance Vaughn. Questions were as follows:

Q. Does UNIX have support for networking?

A., VMS/UUCP is being examined, as 1is DECnet for VAX/UNIX.
Software 1is available to support "tar" under WS and TCP/IP
under UNIX.

Q. Does 4.2Bsd have new networking software?

A, 4,2Bsd provides rich support for interprocess communications
between machines, including named sockets for servers,
TCP/1P, and Ethernet. In addition, processes do not require
the same parent for interprocess communications.

Q. What is the Software Tools Group's Virtual Operating System?

A. VOS is NOT OUNIX, it 1is an entire program development
environment which 1is based on the Software Tools book by
Kernighan and Plauger. It provides a variety of shells,
tools and utilities, and has been implemented for various
operating systems such as RSX and VMS. The VOS software is
available on the DECUS SIG tapes.

Q. Will DIGITAL's release of UNIX have system performance and
monitoring tools?

A. DIGITAL's current release includes "vmstat", "iostat" and
kernel profiling. There are no firm current plans for more.

185

Can files be accessed across the Network?

4.28sd provides for symbolic "links" across network nodes.
In addition, work has been done elsewhere to allow file
systems to be "mounted" across nodes. 4.3Bsd has
transparent file access as a design goal.

Will DIGITAL's VAX/UNIX release have the same basic
"goodies" as 4.2Bsd?

No decision has been made on 4.1Bsd vs 4,2Bsd. Because
4.2Bsd 1is a new release, assessments of suitability and
reliability are premature at this time,

How does one get 4.xBsd?

4.xBsd may only be supplied to holders of Bell UNIX source
licenses.

Is DIGITAL shipping UNIX source licenses?

No, pending resolution of legal questions with Bell.

Does DIGITAL support UNIX in the VAX cluster world?

Not at the present time.

It would be highly desirable for DIGITAL to provide support
in this area.

Noted. (APS)

Are there bugs in the 4.2Bsd DMF-32 driver?

None are known to the panel. However, be aware that the
DMF-32 driver only uses the serial asynchronous portion of
the DMF-32, and that the DIGITAL board have modem control on
only two lines of the eight on the board.

Will DIGITAL continue to provide free source to device
drivers as has been done in the past?

Hopefully.

What is the state of Berkeley INGRESS?

186

Good. The VAX architecture necessitates fewer processes per
user than the PDP-11 architecture. This greatly enhances
performance. NGRESS is available on the current 4.,xBsd
tape.

Are there any changes in 4,2Bsd from 4.1Bsd?

Many. For example, Bsd4.2 has a new file system which is
much better for high I/0 bandwidth applications such as VLSI
design graphics.,

What about the new F77 compiler on 4.2Bsd?

The old compiler produced code which executed about half as
fast as the VMS Fortran compiler. With the new compiler,
execution speed is about the same as VMS Fortran, but
compile times are SLOW.

Are there incompatibilities between 4.2Bsd and 4.1Bsd?

Executable images will run on both systems. Problems arise
when munging on directories, since directory formats have
changed.

How does System V differ from 4.xBsd?

System V supports a two UNIBUS configuration on the
VAX-11/780 with distinct restrictions on device placement.
4,2Bsd supports a four UNIBUS configuration with no
restrictions on device placement. In addition, VaAX-11/75¢
support is new on System V but not on 4.2Bsd,

187

