WAR CORRESPONDENTS

‘The BASIC SIG is looking
for a few good pens

There are alot of you out there in the
trenches. We need your war stories.

The BASIC SIG will pay you five
dollars for each BASIC war
story that you send in and

is printed in the news letter.

So for five fast bucks (a fast fin)
jot down a quick line and send it in.

- JANUARY 1984 ISSUE

Printed in the U.S.A.

The following are trademarks of Digital Equipment Corporation:
DEC DIBOL PDT
DECnet Digital Logo RSTS
DECsystem-10 EduSystem RSX
DECSYSTEM-20 IAS UNIBUS
DECUS MASSBUS VAX
DECwriter PDP VMS
VT

UNIX is a trademark of Bell Laboratories.

Copyright © Digital Equipment Corporation 1984
All Rights Reserved

It is assumed that all articles submitted to the editor of this newsletter are with the authors’ permission to publish in any DECUS
publication. The articies are the responsibility of the suthors and, therefore, DECUS, Digital Equipment Corporation, and the
editor assume no responsibility or liability for articles or information appearing in the document. The views herein expressed are
those of the authors and do not necessarily express the views of DECUS or Digital Equipment Corporation.

BE A WAR CORRESPONDENT

THE BASIC SIG IS LOOKING
FOR A FEW G0OD PENS....
AND WE ARE WILLING TO PAY

FOR THEM 1111}

THERE ARE A BUNCH OF YOU OUT
THERE IN THE TRENCHES,

Tue BASIC SIG wiLL PAY you $5
FOR EACH BASIC WAR STORY THAT
GIVE TO US,

So FOR FIVE QuICK BUCKS (FAST FIN)
GET IN THOSE WAR STORIES.

1B A.Eenk

\%EN&LEﬁEQ_
EDITOR.

[_oolune ﬁrz 4 Logo

Te OASIC Si6 LELnvey o6~ A Loso was 0 okbER, So

WE SET 0uvT ON THE TRREL,

FIRST WE LOoKEN A T CHAACTER (0o MLt s
brLJCE I LQDNDEALWD,QOT WE Db T LIKE T (ood AMSd

IT WasS QLREPOY Takeld.

THed WE LOokED AT A Sorey AVMAL Bor THAT JosT DT

FLY,

THEN (D% Looen 67 pow wE (ComE VP WiTH ENHALVCEmME LTS

DY TDRESS NG vp ovk Boss,

?o‘«' THEN WE DEUDED oo Yoo R, BASIC WDQRAMMER.

So Yoo Wice SEE EP T ‘chu QBMM/MC) ISSOES,

=2 &
EN HANCE MENT

DATA COMMUNTICATIONS

GLOSSARY.

ADAPTIVE EQUALIZATION Busing

AMPLITUDE MODULATION
ASCIT

AUTOMATIC CALLING UNIT

BAUD

81T

BIT RATE

BROAD BAND

BYTE RATE

ENVELOPE DELAY

ERROR RATE
FREQUENCY MODULATION
FULL DUPLEX

HIGH SPEED LINE
HOLLERITH

KILOCYCLE
MICROWAVE

MODEN

PARITY CHECK
PARITY ERROR
PHASE JITTER

POISSON DISTRIBUTION
REAL TIME

SEMICONDUCTOR
SYNCH CODE
TELETYPEURITER
TIELINE
TUISTED PAIR

Feast or famine

A Chinese question
Teenager with a telephone
Lady of the evening

12 1/2 cents

How often you’re bitten

An all girl orchestra

How often you bite

The U.S. NMail System

Result of Frequency Modulation
The Rhythm System

No Vacancies

Romeo in a hurry

Uhat thou dost when thy phone
is out of order

A 1,000 wheeled vehicle
Signal from a friendly HMicro

Southern for °more of them®
Agricultural subsidy

The check is late

Nervous reaction to the full moon

Serving line at a fish fry
See 9BAUD®

Part-time railroad employee

S.0.5. from the Titanic

Talk it over with your Smith-Corona

The latest in neckwear

A couple of perverts

Z23-Sep-1983

Corning Glass Works
MP—-BH-3
Cornindg, M. Y. 14831

Editar, BASICSIG Newslietter
DECUS

One Ivon Way, MROZ-1/C11
Marlboro, Mass 01732

Dear Editor,

I belisve the patch contained in the fAudgust issus
{allowindg BPZ VYi.4& tasks to rtun under RETS/E Y8.0) will
not function properly. fs I reczall, I tried this once
while installindg a new, patched uversion of RMSRES. Mot
wantind to break all my curvent programs, I wanted to
haue both the oridinal unpatched versziocn and the new
patched version availables at the same time. To do this,
I altered the library name in the file headers of all
the old tasks. I found whern RMSREEE tries to attach to
a given portion of its code using its dynamic APR, it
had 3 hard—coded entry of ‘RMERESY in the sttach
command. The prodgram will then crash with a ‘Library
not resident’ error. It will be necessary o also patch
the ‘0ild’ wversion of RMSRES to chande the library
reference to RMSOLD.

Unfortunately, I no londer have acocess to my old RETS/E
system and so perhaps Bill Taber {(or some other wizard?

can supply the necessary paich.

Sincerely yours,

VAT N

Pasquale F. Scopelliti

October 5, 1983

DECUS
1 Iron Way, MR0O2-1/C11
Marlboro, MA 01752

Gentlemen:

[have just received a first copy of the BASIC/SIGG and find that it illustrates
clearly a problem which I find intensely frustrating. Basic + 2 for RSTS and
RSX is an excellent language, well supported and enthusiastically received.
Basic for RT-11 is archaic, inadequate and lacks notable features which are
clearly identified in some of the articles in this BASIC/SIGG issue. Variable
names, inadequate local references and a small list of other factors which are
serious, indeed almost fatal flaws.

CPM, which has taken the personal computer world by storm, supports a much
better version of basic. RT-11 is a vastly superior operating system to CPM and
in fact served as the model for CPM. If only Digital would provide an adequate
version of basic to run on RT-11, they could offer serious competition to CPM
because of the relatively large program libraries available.

As an RT-11 user, responsible presently for five LSI-1l's with planned purchases
of more computers (which may or may not be Nigital machines depending upon
whether or not support is provided) I would like to register a very strong vote
in favor of upgrading fasic under RT-11 to a competitive language. I believe
that if this were done, the relative friendliness and quality of RT-11 would
serve as a superb entry into more elaborate operating systems which the
corporation has made its primary areas of support.

I thank you for your attention in this matter,

Sincerely,)}
ﬁ//\)la { /{/ %(/_

Allen K., Ream, M.,D.

Associate Professor of Anesthesia

Chief, Cardiovascular Anesthesia

Nirector, Institute of Engineering
Design in Medicine

AKR/vg

GIDECUS

DIGITAL EQUIPMENT COMPUTER USERS SOCIETY

November 3, 1983

Mr. Ted Bear
2185 Cox Road
Aptos, CA 95003

Dear Ted:

ONE IRON WAY, MARLBORO, MASSACHUSETTS 01752
TEL. (617) 481-9511 ext. 4100/ TWX 710-3470212 TELEX 948457

I just received the September issue of the BASIC SIG Newsletter and was very
pleased to see that you had included abstracts of programs from the DECUS
Library. I appreciate your including them as I feel that the SIG Newsletters
are the best vehicle DECUS has for publicizing the Library.

Keep up the good work!

Sincerely,

7 -
KKZ:Vﬁéﬁzng C?/-,Qégélaa4fﬁa

(Ms.) Ardoth A. Hassler
Decus U.S. Program
Library Coordinator

Assistant Director for
Academic Services

Computer Center

Catholic University of America
Washington, D.C.

AAH/d1

cc: Dan Esbensen
Charles Mustain
Brent Lapham
Paula Morin
Lee Otsubo

For your convenience and information listed below are the current DECUS

ATTACHMENT B

DECUS PROCEEDINGS

Proceedings that are available and can be ordered through the DECUS

office in Marlboro, Massachusetts.

will be updated.

Europe

U.S. Fall
Canada

U.S. Spring
Australia

Europe

U.s. Fall
Canada

U.S. Spring
Europe

U.S. Fall
U.S. Spring

* Available

PLEASE NOTE:

the symposium.

1980
1980
1981
1981
1981

1981
1981
1982
1982
1982

1982
1983

from Geneva only.

Amsterdam, Holland
San Diego, California
Montreal, Quebec
Miami, Florida
Brisbane, Australia

Hamburg, Germany*

Los Angeles, California
Toronto, Canada
Atlanta, Georgia
Warwick, United Kingdom

Anaheim, California
St. Louis, Missouri

DECUS
Part No.

PRO-81/V@7.1
PRO-81/V837.2
PRO-81/V#7.3
PRO-81/V87.4
PRO-81/V@7.5

PRO-82/V@8.1
PRO-82/V@8.,2
PRO-82/V@8.3
PRO-82/V@38.4
PRO-EUR-82

PRO-ANA-82
PRO-STLO-83

As availability changes this list

Media
Service
Codes

YA
YA
YA
YA
YA

YA
YA
Ya
YA
YA

YA
YA

None available until further notice.

The DECUS Proceedings are no longer grouped together in
one volume; they are each listed separately.
Australian Proceedings will be listed by the year, date and place of

(Spring or Fall) and place of the symposium.

European, Canadian and

U.S. Proceedings will be listed by the year, season

new
11-sp-54

BASIC Business Package

Version: May 1983

Author: Glenn C. Everhart et. al., RCA Corporation, Mt, Holly, NJ
Operating System: IAS, RSX-11D, RSX-11M, VAX/VMS

Source Language: BASIC, FORTRAN-IV PLUS, MACRO-11

This submission contains a grab-bag of utilities for general use
after some mods. Included is Michael Reese BASIC for RSX (or
compatibility mode VMS) from the RSX SIG tapes, and several
utility sets with their own documentation. Two business packages
and a DBMS seed package in PASCAL from the CP/M User Group are
included. The better of these includes G/L, A/P, A/R, payroll,
etc. Source files are present; binary files pertaining to CP/M
have been generally excluded, though images of the CP/M floppies
are provided. These can be used directly by those with The
Bridge.

The Reese BASIC.MAC files are corrected by the .cmp files already
and should be ready to build. The writeup with the kit describes
where the submissions are.

No guarantees are made as to the completeness, usability, or
quality of the programs on the tape. The material has not been
checked or reviewed, and documentation may or may not be included.

Note: CPMUG Vol. 43 is not intact and Vols. 43-45 only include
most sources of Osborn package. Businessmaster II package
is complete.

Restrictions: Some work will be needed to convert CBASIC and
MBASIC dialects to DEC BASIC,

Documentation on magnetic media.

Media (Service Charge Code): 2400' Magtape (PC)

Format: RMSBCK with ANSI Labels (Blocked at 2048)
Keywords: Finance, BASIC,
Languages
Category Index: 15

Operating System Index:
RSX-11/IAS, VAX/VMS

10

new
11-8P-55
KERMIT and CPMUG Grab Bag

Version: V1.8, June 1983
Author: Glenn C. Everhart, RCA Corporation, Mt. Holly, NJ

Operating System: RSX-11D, RSX-11M, RT-11, VAX/VMS, CP/M, M5DO5,
UNIX

Source Language: BASIC, BLISS, MACRO-10, MACRO-11, PASCAL, C

This submission contains a Kermit distribution package for
reliable communications over terminal lines between PDP-11, VAX,
CP/M-80 based micros, IBM PC's, DECl@s, DEC28s, IBM 378s and/or
Apples. It comes from Columbia University and appears reliable.
Note that there isn't an RSX Kermit yet, but one may be buildable
with the contents here. Alsoc a good deal of CP/M User Group
software (sources only, no binaries) is included. Enough of it is
in dialects of C, PASCAL, or BASIC to be used in non-CP/M
environments.

For those with VAXes, there is an 88680 emulator and CP/M hooks for
VAX/VMS on the Australian VAX SIG '82 DECUS tape, available
through the Library, it will let you use these packages directly.
Also there is a replacement for COMLIB in the RSX11M V4 BRU
utility to (hopefully) allow BRU to be used to already initialized
disks under VMS., It is untried but should work.

No guarantees are made as to the completeness, usability, or
quality of the programs on the tape. The material has not been
checked or reviewed and documentation may or may not be included.

Note: Some elements have only the HEX files. However, most items
are in source,

Restrictions: CPMUG files may or may not be complete. Most
appear to be. You will need Kermit or something similar to move
files to CP/M. Any binaries here are useless and most are
deleted.

Documentation on magnetic media.

Media (Service Charge Code): 2400' Magtape (PC)

Format: RMSBCK with ANSI Labels (Blocked at 2848)
Keywords: Communication,
Utility
Category Index: 7

Operating System Index:
RSX-11, RT~11, VAX/VMS, CP/M

11

new
11-643

Extension Routines for MU-BASIC
Version: July 1983

Author: Harald Wiessmann, Wiessmann, Schaltenwurte, Ing. Buro,
Reutlingen, Germany

Operating System: RT-11 V4.8 or later

Source Language: MACRO-11

Memory Required: 27KW

Other Software Required: MU-BASIC V2.0 or later

The extension routines enable additional functions in MU-BASIC
such as: set time and date, signal wait, input/output of any
installed DL line with device time out capability, pack and unpack
float values (single precision) to octal and vice versa, clear
ring buffer. Except for multiuser I/0 functions the extension

routines can also be applied under BASIC-11.

Restrictions: The above functions add about 5 blocks to the Basic
interpreter. All comments in source are made in German.

Documentation on magnetic media.

Media (Service Charge Code): Listing (German) (BA), Floppy
Diskette (KA), 608' Magtape (MA)

Format: RT-11
Keywords: Extension Routines,
BASIC, MU-BASIC

Category Index: 7
Operating System Index: RT-11

November 7, 1983

12

new
11-653

RENUM/PRENUM BASIC Renumberer

Version: V1.0, July 1983

Author: William B. Leng, Southern Connecticut University,
New Haven, CT

Operating System: RSTS/E V6 or later
Source Language: BASIC~PLUS2
Memory Required: 19KW

Special Hardware Required: VT100 or Control Sequence-Compatible
Video

RENUM numbers .BAS or .B2S programs starting with any new line
number and by any increment. All statement references are also
translated.

PRENUM renumbers any .BAS or .B2S programs using any increment,
but only between statements 1040 and 18999. Statements 1404,
10006, 15000 and 190008 are not changed, following the convention
given in the PDP-11 BASIC+2 Language Reference Manual, Section
E.2. Renumbering starts at line 160%# and restarts at lines 100040
and 15000.

Documentation on magnetic media.

Media (Service Charge Code): Floppy Diskette (KA) Format: RT-11,
60¢' Magtape (MA) Format: DOS-11

Keywords: Renumber, BASIC
Category Index: 9
Operating System Index: RSTS

November 7, 1983

13

new
11-654

Student Terminal Management System —
Version: V1.0, March 1983

Author: William B. Leng, Southern Connecticut State University,
New Haven, CT

Operating System: RSTS/E V6 or later
Source Language: BASIC-PLUS2
Memory Required: 17KW

Other Software Required: Uses RSTS/E System Calls
Special Hardware Required: Uses VT100 cursor commands

A Terminal management system to automatically handle scheduling of
student terminals on a first-come, first served (one-hour-on,
one-hour-off) basis. Provisions are made to send messages to all
STUDENT terminals and to ascertain who's on them and what they are
running. Terminal usage can be formatted for printout to teachers
or usade percentage can be plotted on a VT100 with hard-copy
backup to use for justification of resource changes. The
available terminal list can be dynamically changed at any time.

Documentation on magnetic media. ‘\/
Media (Service Charge Code): Write-Up (AA), Floppy Diskette (KA)
Format: RT-11, 680' Magtape Format:
DOS-11.
Keywords: Terminal Management,
Utility
Category Index: 7
Operating System Index: RSTS
November 7, 1983
S

14

new
11-654
Student Terminal Management System

Version: V1.0, March 1983

Author: William B. Leng, Southern Connecticut State University,
New Haven, CT

Operating System: RSTS/E V6 or later

Source Language: BASIC-PLUS2

Memory Required: 17KW

Other Software Required: Uses RSTS/E System Calls
Special Hardware Required: Uses VT100 cursor commands

A terminal management system to automatically handle scheduling of
student terminals on a first-come, first served {(one-hour-on,
one-hour~off) basis. Provisions are made to send messages to all
STUDENT terminals and to ascertain who's on them and what they are
running. Terminal usage can be formatted for printout to teachers
or usage percentage can be plotted on a VT160 with hard-copy
backup to use for justification of resource changes. The
available terminal list can be dynamically changed at any time.

Documentation on magnetic media.
Media (Service Charge Code): Write-Up (AA), Floppy Diskette (KA)

Format: RT-11, 6640' Magtape Format:
DOS-11.

Keywords: Terminal Management,
Utility

Category Index: 7

Operating System Index: RSTS

November 14, 1983

15

Movember 4, 1983

Ted Bear

BASIC SIG Newsletter FRditor
2185 Cox Road

Aptos, CA 95003

Dear Ted:
Please accept this contribution to the BASIC SIG newsletter. It's a couple

of programs to answer Wish #10. It works on both RSTS/E BASIC PLUS anc
RSTS/FE BASIC+2 V1.6 .

Sincerely,

M\\‘) Q;f: ?J\@L

John F. Priebe

WISH GRANTED

by Johnn Fe Priebe

Wish number 00010 on the RASIC SI6 wishlist wanted the MID function
to work on the left side of the eaual sidgn’y an examrle being

MID(A%,5,3) = "CAT®

This is certainly rossibler but makes BASIC kluddier thanm it alresdwu

iss and it’s no mean trick to write some code wourself to do it. I
submit the following two functions which do the same thing {only
differentlu).,

The first function rerlaces & substring within 8 string starting at
a8 diven character rosition.

16

pry
b

def frires
ey

lace

L0 orig.sty
mwi.+>xr$ az

% reslzce
originsl

vatrdy

Al

string
new substring
to start replscing A
new string
pa-lEY

! rerlace.stbrd = the
! e char position
! ayit friverlaceld = Lhe
frveslaceld = leftiorig.strd.
rerlace.strd 4
rigntiorig.aotrdy

Atlenirerlasce.astr$lr)

o A o

v Friend
20 THNOOONE LIKES

friverlasceld(
e d

Al

i CaTs . "
mu s

TRAT®

HTRA R G
omued
v orErint

D4

194 3

o

o

G el

e the examele abover Tunction *rerlacel® would set and return the

shrings:

N OME LIKES
MO ONE LIKES

DEAD
DEAD

ChaTs.
RATS,

{(CAT -2 RATI

The second function rerlaces a substring within g string by searching

Tor a sear
character
aspstring

\\
\
20
A
5,
A
Im this se

strimgsi

N
NO

e o string,. This is
eositions but wou
with another.,

oo

orig.strds
grig.strd =
sesrch.sbr$ =
rerlace.strd =
frirerlacedd = L

instell¥sy orig.strds

frrerlaceld = orig.stbrd

def frnrerlacedd!
entry

@it

L34

frandy when
krniow that

searceh.strés
origingl
the

LEa

aoan 't
want to e

1 WO
2O

rer
string
atring to bhe
the new
e new string
T"C‘hb :-l %)

rnmw &

rlace.strd

rerlsced

substring

AT om% o= Q%
frrerlacels

ny]

if search.stré$

nat found

left{ori

destrds

rerlace.strd +
rightiorig.stris

FL-1%) +

rhEtleni{ses

rensstrdld

if oe¥ 0%

frernd

"M ONE LIRKEZ
frirerlacel$!
mws

DEAD
mad e

s
weEoE =
F‘"‘ r. .j‘ r.' .l‘.'

@i
function

cond exameles

ONE LIKES
ONE RATES

DEAD
HEAD

CATS.
CATS.

17

"rerlacel’

CATS . "
FLIRY

"RAT*)

(LIKes -

would dHget and return

RaTes:?

rarticulasr
nange one

RO D0 B I OC A L0 0 A DO 0P R0 o

e fe

the

Eﬂgﬂnan SOFTWARE CORPORATE BPR NO.1 8 1 2 8 7 2
PERFORMANCE i
REPORT
¥ TO SET UP FOR PROPER ALIGNMENT, START AT MARK BELOW. PAGE OF.
OPERATING SYSTEM VERSION SYSTEM PROGRAM OR DOCUMENT TITLE VERSION OR DOCUMENT PART NO. DATE
MS V3.l BASIC,EXE V2.2 11/29/87 {
DEC OFFICE AND CONTACT PERSON DO YOU HAVE

Joseph W, Kmoch

SOURCE

AME: C Brookfield, WI M, Booker ves uo[{ﬂ
e, Milwaukee Public Schools ——— 3
’ 2525 N, Shermen Blvd, EFRIT RN SHIg R 1] |HEAVY sYSTEM IMPACT
Milwaukee, Wl 53210 PROBLEM/ERROR 2. MODERATE SYSTEM IMPACT
— SUGGESTED ENHANCEMENT 3 [XX MINOR SYSTEM IMPACT
0/0 Wash:’mgton High School OTHER 4. NO SIGNIFICANT IMPACT
CUST. NO.: NEDS~191-3 5. DOCUMENT A TION/SUGGESTION
SUBMITTED BY: PHONE:
sane (l;,ll.',) 14,9~9L00 CAN THE PROBLEM BE REPRODUCED AT WILLY v:s@ NOD
ATTACHMENTS

MAG TAPE D FLOPPY DISKS

[sl]

DECTAPED

COULD THIS SPR HAVE BEEN PREVENTED BY
BETTER OR MORE DOCUMENTATION?

PLEASE EXPLAIN IN PROVIDED SPACE BELOW.

ves| | wolxx]

g::::;E SERIAL NO. MEMORY S1ZE DISTRIBUTICON MEDIUM SYSTEM DEVICE DC MOT PUBLISH
11/750 | 82CL6401H | 14.25 mb mt 1600 m €0]

[EHORT NAME,

MEIDMRFX XY REXPXMXMIMX

USE OF /REAL=GFLOAT AND /REAL=HFLOAT produces unusable code

$ CREATE TEST.BAS
10I=0

20 END

AZ

Rkt

$ BASIC/REAL=HFLOAT TEST

$ LINK TEST
¢ RUN TEST

$SYSTEM-F~OPCDEC, opcode reserved to DIGITAL

A similar message occurs when using the GELOAT option.

Axy program which uses real values and which is com_piled with the GFLOAT or HFLOAT
qualifiers will fail.

Here is a program and associated commands that will demonstrate this problem:

ALL SUBMISSIONS BECOME THE PROPERTY
M T GAT, L

NT, GRP,

XFER GRP,.

OF DIGITAL EQUIPMENT CORPORATION.

PL .

FATE RECEIVED (

L IDATE TO MAINTAINER,

[xFeRr payz,‘ ;o

{LOGGED ON

PRB. TYPE

DATE RECEIVED (ASG

DATE RECEIVED FROM MAINTAINER |

LOGGED OFF :

EN-01044-07-REVI (35C)

18

& DECUS »
= DIGITAL EQUIPMENT COMPUTER USERS SOCIETY

FOR IMMEDIATE RELEASE..... Sep tember 23, 1983

DECUS ANNOUNCES PRO-350 SOFTWARE

(Marlboro, MA) The Digital Equipment Computer Users Society (DECUS)
recently announced the first Professional-350 sof tware to become
available from their user program library. Thies software package is a
developer‘s kit for the PRO-350 which includes an advanced text editor
(TECO) a sophisticated directory listing utility (SRD) a utility for
reproducing floppy diskettes (COPY), and a "command line interface"
(MCR) which provides a software development envircenment similar to
Digital‘s RSX-11M operating system.

The command line interface provides the folloiwng fourteen functions;
SET terminal attributes, SHOW terminal attributes, SHOW partitions,
SHOW commons. SHOW tasks, SHOW active, SHOW memory, SHOW logicals, RUN
filespec, INSTALL filespec, REMOVE filespec, SHOW TRANSLATIONS logname,
ASSIGN logname value, and DEASSIGN logname. Although MCR was written
for use with P/0S Version 1.0, source files are provided, along with
hints for adapting it for use with future versions of Digital‘s P/0S
operating system. TECO and SRD are equivalent to the corresponding
— programs commonly used on Digital’s PDP~1l computers.

The developer‘s kit was written by Richerd J.D. Kirkman of Filetab
Support Services, London, England. It has been used with P/0S Version
1.5, and as expected, many of the MCR functions require modifications
in order to be operable. The other utilities, however, appear to work
normally under P/0S VY1.S5. Extensive, built in "HELP" messages are
included with the developer’s kit; still experience with RSX-11 soft-
ware is extremely helpful in using these programs. Sources are
included only for MCR.

The Digital Equipment Computer Users Society was established in 1561 to
advance the effective use of DIGITAL computers. DECUS is a computer
user group supported in part by Digital Equipment Corporation. A major
activity of DECUS is the Program Library which distributes sof tware
written and submitted by DECUS members. A wide range of software is
available for various Digtial computers including compilers, utilities,
and application packages. Programs and software are distributed for
nominal service charges; however, the DECUS Program Library is a clear-
ing house only —-—- it does not sell or test programs. All programs and
information are provided "AS 15", and no software support is provided
by DECUS or Digital Equipment Corp.

To order the PRO-350 Developer‘s Kit (DECUS Part No. PRO-101) call
(6l17) 467-4135. For additional information about DECUS and the DECUS
Program Library, write to DECUS Program Library, One Iron Way,

~—~ MRO2-1-/Cll, Marlboro, MA 01732.

19
ONE IRON WAY, {MR02-1/C11), MARLBORO, MA 01752 TWX 710-3470212 TELEX 948457
TELEPHONE: U.S. Activities (617) 467-4879 or 4875 Library(617)467-4178 Finance &Admin. (617) 467-4881

October 24, 1983

Understanding COTREEs

This document will explain the COTREE overlay structure and its
.0ODL file reguirements. The reader should be familiar with
.ODL file directives. The discussion will begin with a simple
.ODL file example, then progress to an example using a COTREE.

A typical .ODL file:

. ROOT USER
USER: «FCTR MAIN-PARTS
PARTS: .FCTR *(PARTl, PART2, PART3, PART4)
PARTl: .FCTR SUBl
PART2: .FCTR SUB2
PART3: .FCTR SUB3
PART4: .FCTR SUB4
. END

This .ODL file would result in a task image that looks like the
following:

s o et e s S e SR e S TS F Gk e b e we
! L ecwns .
! ! . .
! ! . M 8
! ! . A .
! The "MAIN" program ! . I s
! ! . N .
! ! . .
! ! swmaes .
tem e e e = + .
! ' ! ! I eeeen .
! ! ! ! ! . P .
! ! ! ! ! . A .
{ "SyUB1l" ! "sugB2"© ! "SuB3*" ! "sSyB4" ! . R .
! ! ! ! ! . B .
! ! ! ! ! « B .
! ! ! ! ! snsgs .
e +

€ ¢ o ¢ o e 880t B

This kind of simple task image structure works well in most
cases. However, lets look at a more complex situation. Lets
say that both "SUB1" and "SUB2" need to call "SUB3" and

20

October 24, 1983

sometimes "SUB4". 1In this case we want "SUBl1l" and "SUB2" to
use one section of memory, while "SUB3" and "SUB4" use a
different section of memory. To do this we need to define a
"COTREE", or named area of memory, in addition to the "USER"
area that we already have. The .0ODL file could look like the
following:

.ROOT USER, SECT2
USER: .FCTR MAIN-PARTS
PARTS: .FCTR *(PART1l, PART2)
PARTl: .FCTR SUB1
PART2: .FCTR SUB2
SECT2: .FCTR *MEM2

.NAME M2MAIN
MEM2: .FCTR M2MAIN-M2PRTS
M2PRTS: .FCTR *(M2PRT1l, M2PRT2)
M2PRTl: .FCTR SUB3
M2PRT2: .FCTR SUB4

-
’

. END

In this sample .0ODL file, "SECT2" is the name of a "COTREE"
section. This section of memory is to follow the "USER"
section of memory. The "COTREE" section consists of one main
area called "MEM2". The "*" in front of the name "MEM2" (the
autoload indicator) is required for any COTREE section.

Each "COTREE" section needs a "root" name to attach its parts
to. In this example, the COTREE root is a null segment named
M2MAIN. This means that the segment only exists for .0ODL
structural purposes and does not represent a subroutine. We
have attached to this root the two subroutines, "SUB3" and
"SUB4". These two subroutines will take turns occupying the
"MEM2" COTREE section of memory.

21

October 24, 1933

This .ODL file would result in a task image that looks like the

following:

o e e ——— +
! !
! !
! !
! !
! The "MAIN" program !
!]
! !
! !
e ———————— +
! $!
! ! !
! ! !
! "SUB1" ! "syB2" !
! ! !
i 1 !
! ! !
e e e +
1 "M2MAIN" area (zero length) 1
gy ey S +
! ! t
! ! !
! ! !
! ! !
! NSUBB " ! "SUB4 1] !
! ! !
! ! {
! ! !
PO g g +

Structuring the .ODL file in this manner allows

task image to be built.

Z2

® % 85 0 008000080

.

* e 0w

®

Z2rHyp X

Wy

nmdg R

handling even
complex COTREEs and other overlay structures, without coding
lengthy perenthetical expressions. The payoff is in more
readable, understandable .ODL files that clearly describe the

N O 0

Interfacing to SORT-11 from BASIC-PLUS 1I1I

By
William I. Tabor
Computer Products, Inc.

Fort Lauderdale, Florida

1.8 1Introduction

The SORT-11 Manual describes to a programmer how to
call several subroutines to sort data. The descriptions use
FORTRAN as the reference language, this cause an information
gap to occur leaving the BASIC-PLUS II programmer in the

dark until he understands how BASIC-PLUS II passes data to a
MACRO subroutine.

The purpose of this paper is to f£ill in the gaps and
describe how to interface and use SORT-11 as a callable
subroutine from a BASIC-PLUS II program.

2.0 Call by reference

In the BASIC-PLUS 11 users guide there 1s a discussion
on how to call a MACRO subroutine from BASIC-PLUS II (D.E.C
does not support the use of MACRO subroutines however). The
example in the manual wuses a mechanism know as "CALL BY
REF". CALL BY REF will pass the address of strings and
arrays instead of the address of the descriptors in the R5
(register 5) protocol packet.

For example if I had the statement in my basic program;

CALL EXAMPL BY REF (1% , BS)

Interfacing to SORT-11 from BASIC-PLUS 11

the R5 Packet would look like this

TS S, + et
; 2 ' (R5)

N)

ADDRESS OF 1% | 2 (R5)

N .

ADDRESS OF BS 4 (R5)

N i

3.8 Callable Routines of SORT-11

There are four subroutines in SORT-11, they are RSORT,
RELES RETRN, end ENDS.

3.1 RSORT - 1Initializing the sort package. e

RSORT sets up the internal variables for wuse by the
rest of the SORT-11] subroutines. The calling format to
RSORT 1is:

CALL RSORT BY REF (ERR.CODE%,
KEY.SIZE%,
MAX.REC.SIZE%,
KEY.ADDRESS%,
WORK.SPACES (),
WORK.SPACE.SIZE%,
NUM.WORK.F1LE%,
BUFF.S1ZE%,
CLUS.WINDOWS%,
ALLOC.WORK%,
F1RST.CHANNEL%)

RO RORRRRR

24

Interfacing to SORT-11 from BASIC-PLUS II

= WHERE:

ERR.CODE%

KEY.SIZE%

MAX.REC.SIZE%

KEY .ADDRESS%

WORK.SPACES ()

WORK.SPACE.SIZE%

NUM.WORK.FILE%

BUF.SIZE%

CLUS.WINDOWS%

ALLOC.WORK%

FIRST.CHANNEL%

returns error code (6 = no
error else the value is the
error number see error table
in Appendix C)

size of key in bytes (must be
even and positive)

size in bytes of largest record
to be passed to sort (must be
even, positive and not exceed
16,383 when added to the key
size)

address of the most significant
word 1in the key.

address of first word in work
space

size in bytes of work space

number of scratch files to use
in sort (must be more than
two and less than eleven)

number of 512 byte buffers to
allocate to each scratch file
(refer to Appendix D. of the
SORT-11 manual for more
information on this value)

for a RSTS/E system this value
is the clustersize to be used
in opening the scratch files.
for RSX systems tnis 1is the
number of retrieval pointers
to be used in opening the
scratch files,

number of blocks to allocate to
each scratch file when 1t is
opened.

channel number to open the
first scratch file on.

25

Interfacing to SORT-11 from BASIC-PLUS II

R 4
3.2 RELES - Passing input records to SORT-11
RELES will pass a record to SORT-11 for sorting. The
calling format for RELES is:
CALL RELES BY REF (ERR.CODE%, &
RECORD.SIZES%, &
RECORDS)
WHERE:
ERR.CODE% = returns error code (@ = no
error else the value is the
error number see error table
in Appendix C)
RECORD.SIZE$% = the size of the record being
passed to SORT-11.
RECORDS = the record being passed to
passed to SORT-11.
-

3.3 MERGE - Merging the Scratch Files

Complete the Sorting process by calling MERGE to merge
the scratch files. The calling format for MERGE is:

CALL MERGE BY REF (ERR.CODE%)

WHERE:

ERR.CODES%

H

returns error code (@ = no
error else the value is the
error number sce error table
in Appendix C)

g st

26

Interfacing to SORT-11 from BASIC-PLUS 11

3.4 RETRN - Get a record back form SORT-11 in sort sequence

RETRN will get a single record back from SQRT-11 in
sort sequence, The calling format for RETRN is:

CALL RETRN BY REF (ERR.CODE%, &
RECORD.SIZE%, &
RECORDS)
WHERE:
ERR.CODE% = returns error code (§ = no

error, negative number to
indicate end of sorted data,
else the value is the error
number see error table in
Appendix C)

RECORD.SIZE% the size of the record being

returned to the calling

T routine from SORT-11.

[

the record being returned to
the calling routine from
SORT-11

RECORDS

3.5 ENDS - Clean up and terminate the SORT-11 routines.
The calling format for ENDS is:

CALL ENDS BY REF (ERR.CODE%)

WHERE:

ERR.CODES% = returns error code (8 = no
error else the value is the
error number see error table
in Appendix C)

27

Interfacing to SORT-11 from BASIC-PLUS

4,0 Internal work space

Now that I have gone over «calls to the SORT-11
subroutines, the only other information necessary -to access
SORT-11 1is how to set wup the internal memory space for
sorting.

4.1 Declaring the work space

The simplest way to declare the internal work space for
SORT-11 1is to use the MAP statement. For example:

MAP {SRTWRK) WORK.SPACE% (11999%)

in the above example a work space of 12,000 words or 24,000
bytes has been set up.

The calculation for the minimum size of the work space
is:

SI1ZE = NUMBER.OF.SCRATCH.FILES
* (512. * NUMBER.OF.BUFFERS
+ (19¢. + RECORD.SIZE + KEYSIZE + 18.))

4.2 KEY SPACE

In addition to the work space required by SORT-11, the
location of the key has to set into a static area. This can
also be done by using the MAP statement. For example:

MAP (SRTKEY) KYS(511%) = 1%
MAP (SRTKEY) FILLS = 510% &
KY$%

28

11

JInterfacing to SORT-11 from BASIC-PLUS 1II

5.6 Building the key

The most significant character in the sort kKey must be
the right most byte of the key. For example:

A Key of "ABC" must be loaded into the key space as

KY$(511%) = "A"
KY$(518%) = "B"
KY$(509%) = "C"

To build a Key that contains a numeric packed field you
have to modify the data.

For example an integer in CVT%$ format

to convert this to a sortable string you must first reverse
the sign bit so negative numbers are sorted in the properx
order. The fellowing lines of code will accomplish this:

TEMP% = ASCII(INP.STRS)
IF TEMP% < 128%

THEN

OUT.STRS = CHRS (TEMP%+128%)
ELSE

OUT.STRS = CHRS (TEMP%-128%)
END 1IF

OUT.STRS = OUT.STRS + SEGS (INP.STRS,2%,2%)

note that the high and low order bytes have been reversed so
to place the string into the key work area the first byte
would go to the right most byte of the key. For example:

KY$(511%)

SEGS(OUT.STRS,1%,1%)
KY$(510%) 3

SEGS (OUT.STRS,2%,2%)

Won

29

lnterfacing to SORT-11 from BASIC-PLUS

The following code will generate an eight byte string
to be placed 1into the key work area for packed floating
point numbers, this routine will work for Dboth single and
double precession values.

INP.STRS = STRINGS(4%,0%)+INP.STRS
IF LEN(INP.STRS)=4%

TEMP% = ASCII (SEGS(INP.STRS,7%,7%))

IF TEMP% < 128%

THEN

OUT.STRS=CHRS (TEMP%+128%)

+ SEGS (INP.STRS,8%,8%)
+ SEGS(INP.STRS,5%,6%)
+ SEGS (INP.STRS,3%,4%)
+ SEGS(INP.STRS,1%,2%)

ELSE
OUT.STRS = CHRS$(255% XOR (TEMP%-128%))

+ CHRS$S (255% XOR ASCII(RIGHTS (INP.STRS,8%)))
OUT.STRS = OUT.STRS

+ CHRS$ (255% XOR ASCII (RIGHTS (INP.STRS,5%-2%)))
+ CHRS$S (255% XOR ASCII(RIGHTS({INP.STRS,6%-2%)))
FOR 2% = 0% TO 4% STEP 2%

6.0 Building the Task

To include SORT-11 into your task space the modules
SORTS and SIORMS must be included in to your task as well as
the RMS sequential library code.

SORTS and SIORMS are both found in the SORT.OLB in the
SORT-11 distribution kit. To include them in your Task
image include the following line in your ODL file:

SORT: .FCTR LB:SORT/LB:SORTS:SIORMS

For example:

.ROOT BASIC2-RMSROT-USER,RMSALL
USER: .FCTR SY:USEREP-SORT~LIBR

LIBR: .FCTR LB:BP20TS/LB
SORT: .FCTR LB:SORT/LB:SORTS:SIORMS
GLB:BP2IC3
@LB:RMSRLX
. END

30

II

APPENDIX A

SAMPLE PROGRAM

31

USEREF
V01,00

e i B Lo o o R N
[R S P S ey

(4>

00001
00001

USEREF V01,00

8014

3
22—

CLUDRE

ZFAGE

E °"USEREF V01.,00°
T *V01.,00°
My STZE

'USER L REC®
(USERAC)

= REAL DOURLE
LARE STRING CONSTANT FROG = "USEREF V01.00°
ERROR 60 T0O 19000

NCLUNE THE MAF FDR USER.RMS FILE

USER JNAMES
FROJECT . NUMRER$
FROGRAMER . NUMBER$
IATE .OF .ACCESSY
TIME,OF JACCESSS
KEYROARL, OF sACCESSS
JOR, NUMBRER . OF ACCESS S

18-0ct-83 09
SYIUSEREF

+
*

94 AM

WO G RO RS RS 2O

FOF-11 BASIC-FLUS-2

V2,1-00

g€

))

USEREF USEREF V01.00

18-0ct-82 09154 AM FUF~11 RASIC-FLUS-2 U2,1-00

V01,00 SYYUSEREF

00001

Q0001 8902 | S s R e e SRR R ST R s e SRR s

00001 !

0000 ! SET UF FOR S5DRT

0C001 !

Q0001 I s sssamisssins ssitnss sasmstmios SR RES e SRS I s s o Sl p e S S Gt

00001 i

00001 MAP (SORT) KY$(5117) = 1%

00002 MAP (SORT) FILLS = 510%» %

00002 1 (4

00003 MAP (WORK) WORKY(11999%)

00004 HAF (XXXX) WORK.RECS$ = 87

00005 MAP (XXXX) REC.COUNT

00005 ~FAGE

143

USEREF

AL

00005
00001
00001
00001
00001
00001
00001
00001
00002
00003
00003
00003
00004
00004
00004
00004
00001
00001
00001
00001
00001
00001

USEREF V01.00

1010

HE,START.TIMEQ = TIME(QX)

HE ,START.TIME1l = TIME(1Z)

FEN *DROILCI»254JUSERYR.RHMS" AS FILE 1%,
ORGANTZATION RELATIVE FIXED,
MAF USERAC

KEY.LENZ = LEN(USER.NAME$) + LEN (DATE.OF ,ACCESSS) 4
+ LEM(TIME.OF ,ACCESSS)

i
i
! CAaLL RSORT T40 SET
! THE FARAMETEHRS F OR
: SORTING
! R N R R N R D N L R R R R R D R R R RN I S R RS R
|
CALL RSORT BY REF (IERRZy KEY.LENZy BZy KYZs WORKZ()y
l 240007y SZy AZy 1287y 400%Zy S74)
| TERRZ = ERROR CODE RETURNED FROM RSORT (O = ND ERROR)
! KEY,.LENZ = MAXIMUM LENGTH OF KEY
! 8% = LENGTH OF RECORD (JUST RELATIVE RECORDIN NUMRER
! KYZ = AUDRESS OF MOST SIGNIFICANT WORD IN KEY
! WORKZ() = ADNURESS OF FIRST WORD 0OF WORK AREA
! 240007 = SIZE IN RYTES OF WORK AREA ((119992+1)x%x2)
! 3% = NUMBER 0OF SCRATCH FILES
! 4% = NUMBER OF 512-BYTE BUFFERS TO BE ALLOCATED
! SCRATCH FILE
| 128% = RSTS/E CLUSTERSIZE FOR SCRATCH FILES
t (IN RSX 15 THE NUMBER OF RETRIEVAL FOINTERS)
! 4007 = NUMBERNUF RLOCKS TO ALLOCATE FOR EACH SCRATCH FILE
! ON OFE
! Y, = GTARTING LUN (CHANNEL NUMBER) FOR WORRKR FILES
IF IERKY
THEN
FRINT *PERROKR IN RSORT -- ERKOR NUMBER ="3IERRY
'6o0 TO 327647
ZEAGE

FOFP-11 BASIC-PLUS-2 V2

o1

=00

HISERFF
Vh1,00

§¢

00001
00001
00001
00001
00001
00002
00003
00004
00005
00005
00005
00001
00001
00001
00001
00001
00001
00001
00001
00002
00003
00004
00004
00004
00004
00004
00004
00004
00005
00006
00007
00008
00008
00008
0000
00009
00009
00009
00009
00010
00010
00011
00011
00012
00013
00013
00001
00002
00003
00004
00005
0000%

USEREF V01.00

2000

2010

REATD INFUT FILE
A NI RELEASE L ATA
T0 S50RT

STARTL.TIMEQ = TIME(OX)
START.TIMEI TIME(LY)

REC,COUNT = 1
EOF . FLAGY = 0%
GET #17, ELOCK REC.COUNT

|
! IN LOOF FOR
; FUT FROCESSING

!

UNTIL EQFZ

KEY J.O0CZ=511%

THE.KEY$ = USER.NAME$ + DATE.OF ,ACCESS% + TIME.OF.ACCESS$

BUILD THE KEY

NOW LOAD KEY INTO KEY ERUFFER BACKWARDS

l

I

i

I

I

FOR IZ = 1% 70 KEY.LENZ

KY$(KEYJ LOCZ) = SEGS(THE.KEY$,I%,1%)
KEY.LOCX = KEY.LOCZ - 1%

NEXT 1%
i
CALL RELES RY REF (TERRYZy 87y WORK.REC$) 8
. IERRY = ERROR CODE ¢ 0 = NO ERROR)
' 87 = SI7E OF WORK.RECS$
: WORK.REC$ = RELATIVE RECORD NUMRER (REFER TO MAF SECTION
I T1ERRY

F

FFINT "?ERROR IN RELES -~ ERROR NUMEER ="jIERRZ
GO TO 327647

ELLSE

RECL,COUNT = REC.COUNT + 1

GET %1%y BLOCK REC.COUNT

NEXT

ENDIL,TIMEQ = TIME(OXL)

ENDLTIMEL = TIMEC(1Y)

FRINT 'RPlpaqP time for "sNUMISCREC,CDUNT-1)3* records"

GOSUR 10000
ZFAGE

09354 AM FOF-11 RASTC-FLUS-

2 U2 1-00

9¢

USEREF USEREF V01.00 18-0ct-83 09154 AM FOF-11 BASIC~FLUS-2 V2,1-00
V01,00 SYSUSEREF

00005

00001 3000 | spesme EoEiEso s ormseos SRS SRS SEsn S S e o eimmis SRS s

00001 1

00001 ! no A MERG

00001 !

00001 | EEEeEotoms mmaors s R e S ST s e S S S

00001 |

00001 S

00002 5

00003 ?
1
!
I

o~ o~
=g
P LY

00004
00004
00004
00004
00005
00005 FRINT *7ERROR IN MERGE -- ERROR NUMBER =°¢IERRX
00006 GD TO 32767

000046 ELSE

00007 ENINTIMEOQ TIMEC(OXL)

00008 END' TTMEL TIME(1%)

00009 PRINT

00010 PRINT °Merd Time®

00011 GOSUE 10000

00011 %PAGE

m
o
b2}
™~
1]
m
beal
pal
]
]
fapl
fwe]
=3
m
o~
<>

= NO ERROR)

USEREF
Uo1.00

LE

USEREF V01,00 18-0ct-83 09154 AM FOF-
SYLUSEREF
4000 'l 22 T I S T S S ST ST I SRS T BT Do s S S Syl e e S iiotioe s e e e
! GET DATA EACK FROM
! SORT A NTI GENERATE
: THE REFORT
[e e rrrE - T T T Tt TORISIIE BRI I B ey
!
OFEN "DRZ2IREFORT.LST" FORE OQUTFUY AS FILE 2%, %
ORGANIZATION SEQUENTIAL
START . TIMEQ=TIME(QZ)
STARTWTIMEL=TIME(LY)
CURRENT FAGE « NUMBERYZ = 0%
CURRENT.LINE.ON.FAGEYL = 447
MAXLLINE.ONJPAGEYZ = 60%
CALL RETRN BY REF (IERRZy 8%y WORK.,REC%y 0%)
i
! TERRY = ERROR CORE (O = NO ERROR)
! 8% = S51ZE OF WORK.RECS
| WORK.REC$ = RETURNED RELATIVE RECORD NUMBER IN SORTED SEQUENCE
: 0% = DUMMY ARGUMENT
GET 41%y BLOCK REC.COUNT
QLD USERNAMES = USER.NAMES$
| 4010 UNTIL TERRX
GET #1%y BLOCK REC,COUNT
IF DLOLUSERJNAMES <% USER.NAMES$
THEN
CURRENT.FAGE . NUMBERZ = 0%
HOSUE 11000
OLDWUSERNAWES = USER.NAMES
CU?RENT.LINE.ON.PQGEZ = GURRENT.LINE.ONJFAGEYXZ + 17
END IF
IF CURRENT,LINE,ON.FAGEYZ > MAX.LINE.ON.FAGEZ
THEN
GOSUR 110090
ENTt TF
FRINT #2%Zy USER.NAMES$:® [*+FROJECT +NUMRERS S &
"y " SFROGRAMER NUMRER$3 "1 *§ &
SEGS(DATE.OF yACCESSS» 3794705 /" 9 &
SEGS(IATE OF ACCESSSySXe 6725/ % §
SEGH (NATE .OF ACCESS$s 17275 " '
HR$ = SEG$(TI ME UF ACCESSS$+¢17%,27)
TIME.FLAGY = "am®
IF HES$ = *12°*
THEN
HE$ = NUMI$ (VAL (HR$)-12%)
TIME.FILAGS = "pm"
END IF
IF Hk$ = *{2°
THEN
TIME.FLAGY = "pm"
ENDIF

HR$ = STRINGS$(2Z-LENC(HR$)sASCIT(*0"))+HRS
FRINT 227y HR$3 " iSEGS(TIME.OF JACCESS$v 3%y 4%) s TIMEFLAGSS &

11 BASIC-FILUS-2 Y2.1-00

USEREF

Vo1

8¢

.00

00023
00023
00023
00024
00025
00026
00027
00028
00029
00030
00031
00032
00033
00034
00035
00036
00037
00038
00039
00040
00040

USEREF V01.00

CALL RETRN RY REF (IERRZy 8%,

NEXT
ENDL.TIMEQ = TIME(OX)
ENDL,TIMEY = TIME(1Z)
FRINT

FPRINT *Return from sort®
GOSUR 10000
CAlLL ENDS RY REF (IERRZ)

START.TIMEO = THE.START.TIMEOQ
START.TIMEL = THE,START.TINKE1
ENDL.TIHMEQ = TIME(QX)
ENDLTIMEL = TIME(LXZ)

FRINT

FRIN1 *Tatal
GOSUE 10000
GOTO 32000
ZFAGE

Lime for Job®

KR*5
NEYROARD.,
*Joh number

WORK,

OF . ACCESQ$§"

18-0ct-83 09154
5YUSEREF

= *iJOR, NUHBFR OF ACCESSS
CURRENT LINE.ON.PAGEZ = CURRENT.LINE.ON.FAGEZ + 1%

RECS

0%)

AM

FOF-11 BASIC-PLUS-2

v2.1

-00

USEREF
Vo1.00

00040
00001
00001
00001
00001
00001
00001
00001
00001
000072

00003
00004
00005
00004
00007
00008
00009
000190
00011
00012
00013
00013
00n14
00014

6€

USEREF V01.00

18-0ct-83 09154 AM

SYIUSEREF
10000 ! #omomszsscscoorooooooormoonssrro oo mrm S S S S S DTS S TS TS
t
: TIME FRINTER
I e sz e et TSI e e ey S g S e e e S
!
ENDWTIMEQ = ENDLTIMEQ + (24%60%40)
IF FND.TIMEO ¢ START,.TIMEQ
FLAF TIME=ENDTIMED-5TART W TIMNEQ
HR = INT(Fth.TfH(/3600.)
MN = INT((ELAF.TIME-(HRX34600,))/60.)
SF = INT(ELAF.TIME —-((HRX3400,)+HNX460.))
HR$=NUM1$ (HR)
HE$=STRINGH (27~-LLEN(HR$) yASCIT("0")) +HR%
MNF=NUMT$ (MN)
MN$=GTRINGS (2%~LEN(MNS) yASCITI(*0")) +MNS
SE$=NUMI1$(5E)
SE$=STRING$(2%~- LFN(SE$)7ASCTI('0'))+SF$
FRINT *Elarsed time = "sHR$i"I"iMN$+ " 55E¢
FRINT USING "CFU time = 4%, % SECONDS®y
(ENDVTIMEL-START . TIME1) /10
RETURN
#PAGE

FIF-11 RASIC-FLUS-2

v2.1-00

USEREF
V01,00

oy

USEREF V01,00

SYIUSEREF
! =i SRS R e R R e e e e e e e
by b
! PRINT FAGE HEADERK
!
i feg—gmags g - f ot P P R R Rt R el g o e fenf =gl
!
FRINT $#2%s CHR$(127)
FRINT $2%y DATE$(OY) 1+
HEADER$ = "USER ACCESS LIST®
FRINT #2%» TABC(BOX~LEN(HEADERS$))/27)iHEADUERS$;TAR(70%) 5
CURRENT.FAGE ,NUMBERZ = CURRENT . .FAGE NUMRERZ + 1%
PRINT #27 USING “Fade #4#44°y CURRENT,FAGE.NUMRERY
FRINT #27+ TIME$(OZ)
PRINT #2X
CURRENT ,LINE.ONJFAGEZ = 4%
RETURN
ZFAGE

18-0ct-8B3 09154 AH

FOF-11 BASIC-PLUS-2 V2

o1

-00

USEREF
V01.00

It

00010
00001
00001
00001
00001
00001
00001
00001
00002
00002
00003
00003
00004
00005
00006
00006
00006
00001
00007
00003
00004
000035
00003

USEREF V01,00

19900

! 0N ERROR HANDLETR

END IF
EX = ERR
L% = ERL
FRINT *?inevpected error’
FRINT ERT$(EZ)5® at line "sNUMIS(LZ)s%® in "$PROG

RESUME 32747
LEAGE

FIIF-11 BASIC-FLUS-2

V2.1-00

USEREF
V01,00

USEREF V01,00 18-0ct~-83 09:94 AM
SYLUSEREP
32000] ::I::.:!::::z:::::::::::::::::::=::::=:::::::::::::::::::::::::::::::
T I,
: NORMAL EXIT FOINT
J crmss SESESETRICIRE e e, SojriS SRS SHSSEISRY Siion e popomiennS ST RTISRER 28 EINSEE R iy e Sy
I
FRINT #27%y CHR$(127)
CLOSE #2%
CLOSE #1%

00001 327467 END

(47

FOF~11 RASIC-FLUS-2

UQ.I‘OO

APPENDIX B

MANGLE SUBROUTINE

43

HANGLE
V02,00

144

00001 1
00002
00002
00002
00003
00004
00004
00004
00004
00004
00004
00004
00004
00004
00004
00004
00004
90004
00004
00004
00004
00004
00004
00004
00004
00004
00004
00004
00004
00004
00004
00004
00004
00004

~0ct-83 10502 AM FOP-11 BASIC-FLUS-2 U2.1-0
Hiisksie ¥

SUR MANGLE (INF,STR$y OUT.STR$)

ATITLE “MANGLE V02.00°

ZIBENT, *V02,00°

OFTION SIZE = REAL DOUBLE

?ECLARE STRING CONSTANT FROG = "MANGLE V02,00°

SUEROUTINE MANGLE

{
Ny 20w
E FURFOSE ¢ SET NUMERIC VARTIARLE TO SORTARLE STRING
! INPUT H INF.STR% = THE INFUT STRING
QUTRUT OUT.STR$ = THE OUTFUT STRING READY FOR RELEASE

TO SORT-11

! THANK YOU GARY M. RERG FOR SHOWING THE WAY.

! MODRDIFCATTION HISTORY

i 01-0CT-83 W.,I.T UFGRADE TO VERSION 2.1 OF RASIC-FLUS II

ON ERROR GO TO 19000
ZFAGE

))

MANGLE MANGLE V02.00 18-0ct-83 10102 AN POF~11 RASIC-FLUS-2 V2,1-00
Vo2,00 SY IMANGLE

00004

00001 1000 | TocoocdsotSodEE REEs s e SR e e s oy e o e ch o ch b

00001 !

00001 ! HANTILE FOR INTEGER

00001 !

00001 | S e e S e e S S S S e e e S e s

00001 !

00001 IF LENC(INF.STRS%) = 2%

00002 THEN

00002 TEMPYZ = ASCII(INF.S5TRS$)

00003 IF TEMFZ < 128%

00004 THEN

00004 QUTSTR$ = CHRS(TEMPZ+128%)

00004 ELSE

00005 OUT.5TR% = CHR$(TEMFZ-1287)

00006 ENDN IF

00007 QUT.5TR$ = OQUT.STR$ + SEG$({INF.STR$,2%Z+27)

00007 ZFAGE

Sy

MANGLE
Vo2.00

or

MANGLE V02,00

2000

SYIMANGLE

! oo eriioeiioredbemibimriveegimmibreafmiere v it eoobiasiac-fhveufire i cm st ges i o i s et birs g et e efinteihersiiiunidiesenfionsustfisenf il e oo gy
LIS I Y
: HANDLE FOR FLOATING FOINT
i Pism e o o ool oo oo el il el bio e oo favi s s i ool el et -ooimmeieeefto oo ftefies i S fiim i mefi s gl e tere i fio=nd
!
INP.STR$ = STRINGS(AZ,y0Z)+INF,5TR$

IF LENCINP,STR$) =47
IF LENCINF.STRS) = 8%
THEN ! THIS AN EIGHT BYTE FLOAT

TEMFZ = ASCIT(SEGSCINP.STR$+77%+7%))
IF TEMPYZ < 128%
THEN

QUT . STR$=CHR$ (TEMPZ+1287)
+ SEG$(INF.STR$+8%+8%)
+ SEGS(INF.STR$»5Zr67%)
+ SEGS$(INF.STR$93704%)
+ SEGHCINPSTRS91%,27)

ELSE
DUT.STR$ = CHR$(255% XOR (TEMFZ-128%))
+ CHR$(255%Z XOR ASCII(RIGHT$(INF.5TR$s8%)))
DUT.STK$ = DUT.5TR$
+ CHR$ (2557 XOR ASCII(RIGHT$(INF.STR$»5Z-27)))
+ CHR$(255%Z XOR ASCIT(RIGHT$(INF.STR$s467-2%)))
FOR Z%Z = 0% TO 4% STEF 2%

GO TO 32000
“FAGE

18-0ct~-83 10:02 AM

2C O O 0

RO O G ad

FliP-11 RASIC-PLUS-2

U?‘I‘OO

SR

MANGLE
V02400

Ly

00001
00001
00001
00001
00001
Q0001
00001
00001
00002
00003
00003

MANGLE V02,00

19000

19990

18-0ct-8B3 10102 AN
SYIMANGLE

! et i G e e B oo i fanfraci o o fef rfie e rd i Bufinufp e B e g o oo e g ol

= fIN ERROR ROUTINES

i iy cicfaceievefinnlimeoiiuieiiingimtiuritbieofbendh ateiiiiasclhns o naiivetisaribmibmie mofmeliu o osofboivfvomhoonibosnfemfiamsiusof ot susiooniborsiersibialhinshatofbmmsghovoioriongborbinfiuiodonvesgbooniiursfiouond

ET$=ERT$(ERR)

FRINT *??Error "ET3* in "$FROG?" at lime®3iERL

RESUME 32767

ZFAGE

FOF-11 BASIC-FLUS-2

V2,1-00

MANGLE MANGLE V02,00
V02.00

17

00003

18-0ct-B83 10:02 AM
SYIHANGLE

00001 32000)| ===m=crs=SsSso oo s SN TS TS NI NS S S S TSN T SO S S S SEI IS SN I SIS SIS

00001 !
00001 !
00001 |

STANDARD

EXIT POINT

00001 i S S i S AR A SRS e A R R B s teemieoees sysSiSihEN s SRR IS I S AL B

00001
00001 327467 SUBEND

g,

FOF~-11 BASIC-FLUS-2

V2.1-00

APPENDIX C

SORT-11 ERROR CODES

49

gg -
g1 -
g3 -
g4 -
p5 -

g6 -~

B8 -

g9 -

18 -

11 -

12 -

13 -

14 -

15 -

17 -

18 -

20 -~

SORT-11 ERROR CODES

No errors

Device input error

Device output error

Open(in) failure

Size of current record 1s greater than maximum size
Not enough work area

RETRN was called after it had exited with a negative
error coede (end of sort)

SORT routine called out of order (the order of the
calls should be RSORT, RELES, MERGE, RETRN, ENDS).

Sort already in progress (To do a second sort, ENDS
must be called to clean up the first sort).

Key size 1s not positive, SORTS detected a zero or
negative key size in its calling parameter

Record size 1s not positive

Key address 1s not even {(the keys must start at an
even address because SORT uses word movers).

Record address is not even
Scratch records will be too large {(the size of the
keys plus the size of the largest record must be

less than 37776 octal).

Too few scratch files are given (a minimum of 3
scratch files must be specified).

Too many scratch files are given (a maximum of 10
scratch files may be specified).

End of string record was detected where none was
expected

Unexpected end-of-file
SORT found a record larger than expected

Record length is not standard for SORTT, SORTA, SORTI.

50

STEPS IN STRUCTURED PROGRAMMING

1., PROBLEM STATEMENT

2. INPUT/OUTPUT SPECIFICATIONS

3, PROGRAM DESIGN

4, PROGRAM CODING

5., TESTING AND DEBUGGING

6. DOCUMENTATION AND COMMENTS

7., MAINTENANCE

51

18 - Key s%ze is not positive, SORT3 detected a zero
negative key size in its calling parameter

or

THE STEPS INVOLVED IN STRUCTURED DESIGN ARE :

], FIRST LOOK

2. ANALYSIS

3. SUBROUTINE BREAKDOWN
4;.UNIT BREAKDOWN
5,PROCEDURE BREAKDOWN
G.ACTIVITY BREAKDOWN

TJ.SYNTHSIS

A WHOLE VIEW OF THE PROBLEM

EXAMINE WHAT THE MAJOR TASKS ARE.

ASSIGN EACH TASK INTO A MODULE

EACH MODULE IS BROKEN INTO MAJOR UNITS

EACH UNIT IS BROKEN INTO MAJOR SUBROUTINES
EACH SUBPROCEDURE IS BROKEN INTO ACTIVITIES

COMBINING ALL MODULES TOGETHER

BREAKDOWN_OF PROGRAM COMMANDS

PROGRAM COMMANDS

| -

~NOY U B W N

CONTEXT

SYNTAX

EXAMPLE

FUNCTIONS

RULES AND CHARACTERISTICS
ILLUSTRATIONS

APPLICATION

53

IMPLEMENTATION OF STRUCTURED PROGRAMMING

For the sake of simplicity, the program we choose is very small
and less complicated. The idea is to illustrate most of the concepts
and techniques discussed in this chapter in the development of a
structured program.

The development of a structured program can be viewed as
undergoing what is sometimes known as the cycle of birth, death, and
resurrection. The birth of the structured program takes place through
the process of the input, output specifications of the problem--the
STEP 1. This is the FIRST LOOK at structured programming. At this
stage, we do not have a clear perception of its parts. We simply see
the problem as a whole, and as such it can not be tackled. Hence, we
want to have a closer look at it by dividing it into well defined
parts. Thus, in structured programming, the gradual death process
occurs through progressive and systematic breakdowns of the problem.
This breakdown begins with an ANALYTIC VIEW of the problem--the STEP 2.
Here we examine the complexity of the problem and we try to adopt the
"divide and conquer™ principle. We delineate the major tasks involved
in the oproblem. Once we delineate the tasks, we introduce the
technique of modularity, namely, we assign each task to functions or
subroutines. This marks the first-level breakdown, the SUBROUTINE
BREARDOWN-—-the STEP 3. Once each module has been defined, it is easy
to introduce the TOP-DOWN DESIGN %o each module. In this stage,
usually there is a general partitioning of each unit into three major
units. These three units in each module can usually be identified as
Preparation, Process, and Conclusion.

The preparatory unit introduces into the specified task. The
process unit does the necessary calculations and computations. 1In the
conclusion unit, the task is wrapped-up. This process may be called
the UNITS BREARDOWN=--the STEP 4.

Each of this unit is further broken down into procedures--the STEP
5. This process can be called the PROCEDURE BREARNDOWN, At this stage,
care must be taken to choose appropriate program structures such as
sequence, selection, or looping. In STEP 6, the procedures are further
broken down into subprocedures if necessary. These procedures or sub-
procedures, in turn, are broken down into activities. This may be
called the ACTIVITY BREARDOWN. The death processes ends with it.

Thus, the activities are translated into the particular codes.
Obviously, in BASIC, these activities are translated into BASIC state-
ments. After this process, we make sure that each of the modules works
as desired through testing and debugging. Comments, documentation, and
indentations are also inserted as dJdeemed appropriate. These are the
cosmetic preocesses for the funeral. Finally, we combine each of these
finished modules together and make it one single program. This is the
SYNTHES IS. This synthesis brings about resurrection--structured
program. This is STEP 8.

54

A

STEFS IN STRUCTURED FROGRAMMING

STEF EVENT DESCRIFTION ODIAGRAM
i FIRST-LGOOK A whole view

of the rFroblem

without knowing

wnat the rarts

3Tre.

[6]

ANALYSIS Examine what
the mavor tashks
are.

3 SUBROUTINES Assidn each task
BREARIIOWN into esch module
(modularization).

4 UNIT Each module is
EREARLIOWN broken down into
madJor urniits. (tor
down design bedgins)

&)

FROCEDURE Each unit is broken

BREAKLIOWN dowrn into mador
frocedures or sub-—
rrocedures,. (sele-—
ction of =rodrasm
structures).,

é ACTIVITY Each rrocedure or
BREARDIDWN subrrocedure 1s bhro-

kern down into act~
ivities tramslatsble

to langusde codes.

7 SYNTHESIS Combining all mod-
ules todether. {(Agp—
rrorriaste srodgram
structuresy commentsry
documentations inden-—
tations and remsrhks
3re necessary).

55

ILLUSTRATION OF A STRUCTURED PROGRAM
STEP l: FIRST LOOK

The problem is to generate a multiple choice quiz program which
will allow the user to answer the gquestions and will give out the
result of the quiz.

STEP 2: ANALYSIS

Obviously, the program must contain the set of multiple choice
guestions, it must receive the answers as input from the user, it must
examine its rectitude and validity if necessary, it must assess the
number of right and wrong answers and finally, it should print out the
result. It is also desirable to explain to the user the nature and
purpose of the program in the beginning.

STEP 3: FIRST-LEVEL BREARDOWN: SUBRCUTINES

In this stage we assign the major tasks delineated in the analysis
stage into different modules in the proper sequence. Thus, we might
arrive at:

MODULE l: Subroutine explaining the nature and purpcse of the
program,

MODULE 2: Subroutine to present the current question.

MODULE 3: Subroutine to answer the current guestion, to make
a validity check.

MODULE 4: Subroutine to verify the answer.
MODULE 5: Subroutine to print out the results.
STEP 4, SETP 5, AND STEP 6 (UNIT PROCEDURE AND ACTIVI'I:Y BREARDOWNS)
Step 4, Step S5, and Step 6 are combined in one table shown

below. After the modules dealing with different levels of breakdown
and coding are well defined, each module is tackled individually.

56

MODULE 1

FREFARATION
UNIT

FROCESS
UNIT

CONCLUSION
UNIT

MODULE 2

FREFARATION
UNIT

FROCESS
UNIT

STEF 4
FROCEDURE

Select 3
subroutine

Exrlain
FlITROSE
and nature

Ernd of sub-
routine.

FROCEDURE

Select 3
subroutine

1. Present
auestion
1.

STEF IS
ACTIVITY

Call s
subroutine

#rintout
FUTFOSE

srintout
rature.

Return
to main
line.

ACTIVITY

Call =
subroutine

Fresent
the ques-—
tion.

Fresent
choice 1

Fresent
choice 2.

Present
choice 3.

57

STEF 6
BASIC STATEMENT

100 GOSUE 1000

100 FRINT *FURFOSE”®

100 FRINT "NATURE"

1020 RETURN

BASIC STATEMENT

120 GOSUR 2000

120 FRINT I8

*S5X2

210 FRINT» 4

220 FRINT: 6

230 FRINT, 8

CONCLUSION
UNIT

2. Fresent
euestion
$2.

2. Present
cuestion
33,

4, Fresent
cuestion
%4,

S, Present
cuestion
5.

End the

sunroutine.

Fresent
choice 4,

Return
to main
lirne.

58

240 FRINTy

999 RETURN

10

As describsd above, the rest of the modules, namely, module 3, module

4, 2nd module 3 can be developed in a similar fashion.

After we davelop each module, STEP 7: SYNTHESIS, they should be
combined into one single program. This constitutes the Main Line of
the program. This preccess marks STEP 7-—THE SYNTHESIS. The main line
for this program may be as follcws:

100 GOSUER 100
110 FOR @ = 1 TO §

SUBROUTINE FOR EXFLANATION
Q@ = QUESTION

|
!
120 GOSUE 2000 | SUBROUTINE FOR CURRENT
, ! BUESTION.
130 GOSUE 3000 ~ SUBRODUTINE FOR ANSWER AND
! VALIDITY CHECK.
140 GOSUE 4000 ! SUBROUTINE FOR KEY AND
| CORRECTNESS.
150 NEXT @Q
160 GOSUE S000 ! SUERROUTINE FOR RESULTS.

170 STOF

The complete program is given below along with the flowchart.

59

FLOWCHART FOR THE MAIN LINE OF THE

:i
J .
! Subroutine for
} GOSUEB | Explanation of the Program
{
N
Q
l FOR 5
\{
3
] Subroutine for
GOSUR 2 Current Question in the rest

o g

Subroutine for
GOSUB 3 Answer and Validity Check

?""*"l(“’“'_j
i Subroutine for

i G0SUB 4 Key and Correctness Check

ST Y T PV

Subroutine for
GOSUB 5 Displaving the Results

~.

(=D ; 60

— e e

PROGRAM

. o o —_— — —— — . — et W s ee T e G W T - . - = Wt - M .t = e v o —

' THE FURFQSE OF THIS FROGRAM IS GO GENERATE A
PFIVE QUESTION MULTIFLE CHUICE QUIZ WHICH wWwILL
I TELL THE USER IF THE QUEESTION IS ANSWERED

I CORRECTLY AND WILL ALSO GIVE THE NUMEER RIGHT
I AT -THE END OF THE QUIZ,

GOSUR 200 ISURROUTINE FOR EXFLANATION
FOR @ =1 TO § !1Q = QUESTION
GasulRr 300 ISUBROUTINE FOR CURRENT QUESTION
GOSUE 870 ISUBROUTINE FOR ANSWER AND VALIDY CHECK
GOSUER 990 ISURROUTINE FOR KEY AND CORRECTNESS
NEXT @

GOSUR 1070 ISUBROUTINE FOR RESULTS.
!

T —— ot — 0 G ST —— T B Gt U P 0 P S e T WA A T . GO o St M Vot D et et Pede S WA St ot S S A e Sl

FPRINT * XOKKKKRRORCKAORKOK KKK K KKK KKK KRR KKK KK KKK K FKAR K
FRINT

FRINT *THE FOLLOWING IS A BASIC MATH QUIZ.

FRINT "ANSWER EACH QUESTION WITH THE LETTER OF*
FRINT *"CHOICE YOU FEEL ANSWERS THE QUESTION®

- . — - — Y Y — - S S T S S T PE WS S S S i M T M S W S MR W W Aves Slin Tovm G RS M S G YRS S S S

ON Q@ GO TO 310,4205,330,630,740

FRINT

FPRINT

PRINT "QUESTION #1°

FRINT *WHICH IS THE ANSWER TO THE FOLLOWING FOR X@*

FRINT

FRINT *X = (2%3) + ((S-1)x2)*
PRINT

FRINT »"A) 36.6"

FRINT »"RB) 9°

FRINT »*"C) 14°

PRINT »"D) -14"

RETURN

PRINT

PRINT

FRINT "QUESTION #2°

FRINT "WHICH OF THE FOLLOWING IS THE CORRECT®
FRINT °"SOLUTION FOR Y IN THE EQUATION BELOW?®
PRINT

FRINT °Y = (((3x2)-1)~2) + 1°

FRINT

FRINT »"A) 4"

61

490 FRINT »*R) -4°*

500 FRINT »*C) 3°

S10 FRINT »°I) 26°

520 RETURN

530 PRINT

$40 FRINT

S50 FRINT "QUESTION #3°

560 FRINT *"WHICH OF THE FOLLOWING IS THE CORRECT SOLUTION®
$70 FRINT “FOR Z IN THE EQUATION KELOW?*
580 FRINT

S85 FRINT "Z = ((((3%2)%(3-1)/2)-1)/1)"
S90 FRINT

395 PRINT »"A) O°
600 FRINT s"R) S°*
603 FRINT »*C) 4°
610 FRINT »*D) 2°
620 RETURN

630 FRINT

640 FRINT

630 FRINT "QUESTION #4°

660 FRINT "WHICH OF THE RELOW IS NOT A FROFER®
670 FRINT "MATHEMATICAL EXFRESSION IN VAX KASIC?®
680 FRINT

690 FRINT »"A) (AXB-4XX+Y)IX1-3/3%(1)*
700 FRINT -+ "B) 1X2%3X4%xS%6/1%1-1"°

710 PRINT »*C) 222/140°

720 FRINT »"D) 3%(S/1(2%3))"

730 RETURN

740 FRINT

750 FPRINT

760 FRINT °"QUESTION #5°

770 FRINT "WHICH OF THE BELOW IS A CORRECT VERSION®
780 FRINT "0F THE QUADRATIC FORMULAT®

790 FRINT

800 FRINT »'A) (-E + SORT(EXX2-4XAXC))/(2KA) "

810 FRINT »'E) E-4%AXC*

820 FRINT »"C) EXX2-4XA/2XA"

830 FRINT »'I) SORT(EXK2~4XAXC)*

840 RETURN

BE0 e e
860 REM - SUFROUTINE FOR VALIDITY CHECK AND! ANSWER
B e e e
870 FRINT

880 FRINT 'WHAT IS YOUR CHOICE®;
890 INFUT A%

700 IF A% = *A' THEN 960
910 IF A% = "R* THEN 940
220 IF A% = "C" THEN 960
?30 IF A$ = *"DI* THEN 9640

940 FRINT *INVALIL RESFONSE, FLEASE RETYFE ENTRY.
$S0 GO TO 880
62

760 RETURN

G 70 e o e e e o e e e e e o e e
?80 REM - SUBROUTINE FOR KEY AND CORRECTNESS

GUEIT, oo i S e, 5, 5 S AR S S S -
$90 READ R

1000 IF A3 = K% THEN 1028

1010 FRINT

1020 FRINT "INCORRECT, *#K$" WAS THE CORRECT ANSWER.*®
1022 GO 7O 1040

1025 FRINT

1030 FRINT *CORRECT!! *iK$;* IS THE CORRECT ANSWER,®
1035 LET C = C+1 | C=NUMEBER OF QUESTIONS CORKECT
1040 RETURN

1050 § = e o e e e e e e
1055 REM - SUBROUTINE FOR RESULTS

1085 o e e e e e e
1070 LET F = C/.05 | F=FERCENTAGE CORRECT

1080 FRINT

1090 FRINT °"THAT IS THE END OF OUR FIVE QUESTION QUIZ®
1100 FRINT "YQOU HAD *"3Cs* 0OUT OF FIVE QUESTIONS CORRECT.*
1108 PRINT "THAT IS "sFi"%Z."

1110 FPRINT

1115 IF C = © THEN 1160
1120 IF C = 4 THEN 1170
1130 IF C = 3 THEN 1180
1140 IF € < 3 THEN 1190

1150 FPRINT

1150 FPRINT "GREAT JOR. YOU 6GOT THEM ALL CORRECT!!*®
1165 GO TO 1200

1170 PRINT "G0OOD JOE, YOU ALMOST GOT THEM ALL!"
1175 GO TO 1200

1180 FRINT *"FAIR JORs THAT IS AROUT AVERAGE."
1185 GO 7O 1200

1190 FRINT *¥0OU DID NOT DO VERY WELL.®

1200 RETURN

1210 ¢

1215 DATA "C*»"A">»"R*» "Dy "A"

1220 END

READY

RUNNH

. . G, s s e . - D T O A28 I S A W S it A TS T R U N A WD IO U S S W Ut Ul e M G et S o M e oy W B TR Y 424 M S it S o S o

. D s S s S i A T T D o — T " S —— > R\ S " e e G WY SIe e il ey Mt S v et e W S Al G At S tw S

THE FOLLOWING IS A RASIC MATH QUIZ.
ANSWER EACH QUESTION WITH THE LETTER OF
CHOICE YOU FEEL ANSWERS THE GUESTION

63

Chapter 9 Structured Programming

QUESTION #1
WHICH I3 THE ANSWER TO THE FOLLOWING FOR X7

X = (2%3) + ((5-1)2%2)

A) 36.6
E) 9
C) 14
D) -14

WHAT IS YOUR CHOICE 7I

INVALILD RESFONSEs FLEASE RETYFE ENTRY."
WHAT IS YOUR CHOICE 7?C

CORRECT!! C IS THE CORRECT ANSWER.

RUESTION #2
WHICH OF THE FOLLOWING IS THE CORRECT
SOLUTION FOR Y IN THE EQUATION EELOW?
Y = (((3%2)-1)-2) + 1
A) 4
R) -4
c) 3
D) 26
WHAT IS YOUR CHOICE 7?4
CORRECT! ! A IS THE CORRECT ANSWER.
QUESTION #3
WHICH OF THE FOLLOWING IS THE CORRECT SOLUTION
FOR Z IN THE EQUATION EBELOW?T
Z = ((((3X2IX(3~-1)/2)-1>/1)
A) O
BR) S
C) 4
oy 2
WHAT IS YOUR CHOICE 7D

INCORRECTy B WAS THE CORRECT ANSUWER.

64

26

A BRAGBIC TRANSLATOR

The rpurrose of the EASIC translator is threefold! Helr move code to
V2 BASIC for BASIC-FLUS-2s convert MICROBASIC to V2s and to make the srogram
rretty srint, The rrodram is written in V2 BASICy and is eassily modified
because of heave use of instr and data tables for MICRORASIC., Unfortunstely
it is not perfect but it is free to DECUS.

Traditional BASIC-FLUS-2 code

1 LIN AC10,10)yRB(10)

2 MiN = 10

3 B{I) = RND¥200 FOR I = 1 TO N

10 FRINT *REPORT BEGINS® %
\ ACI»J) = B(IXX1I00 FOR J = 1 TO M FOR I = 1 TO N %
N PRINT &
\ FOR I =1 TO N %
AY FRINT A(IsJ) FOR J = 1 TO M &
\ IF B < 100 THERN &
AN At = " * &
\ ELSE A¢ = * °

20 FRINT A%]
AY NEXT I &
\ PRINT

?0 END

66

Ll B I

90

L 2 B I

90

Lt B2 O

20
90

Same code - {(old) CUSF convention

DIM A(10s10) R
MyN = 10
R(I) = RNDX200

{10)

FOR I =1 TO N

FRINT *REFORT BEGINS®

ACIydY = B(OIXX
PRINT
FOR I =1 TO N

100 FOR J = 1 TO M FOR I =

FRINT A(IyJd) FOR J = 1 TO M

IF B < 100 THE
A$ = I~I

ELSE A$ = * °
FRINT A%

NEXT I

FRINT

END

Same code afile
DIM ACL1010) 4R

MsN = 10
B(I) = RND%X200

N

r 3 maintziners and 2 uears
(107

FOR I =1 TGO N

FRINT *REFORT REGINS®

A(I»J) = B(I)X
PRINT

FOR I =1 TO N
FRINT ACI»J) F
IF B < 100 THE
A$ o= l-l

ELSE A% = * *
FRINT A%

NEXT I

FRINT

END

Same code - as

DIM AC10,10) R
MsN = 10
BCI) = RNDX200

100 FOR J = 1 TO M FOR I =

OrR J =1 TOM
N

it existed under RSTS/E V46

{(10)

FOR I = 1 TO N

FRINT *REFORT BEGINS®

ACT,J) = BOIX
FRINTNFOR I =
FOR 4 =1 TO M

100 FOR J = 1 TO M FOR I =
1 7O NAPRINT A(I,J}
\NIF B < 100 THEN

4% = "_*\NELSBE A% = "' °*

PRINT A$\NEXT
END

Same code - 3%

INPRINT

it started under RSTS/E V4

67

1 TO N

1 TO N

1 TO N

PP G g

-

-~

L i - -

2¢ Q0 AT G RS A A 0 A0 QO e

G 90 20 [0

DIM ACL1Os10+B(10)
MaN=10
BOI)=RNI¥200FORI=1TON

0 &'REFORT BEGINS'&
NATLy DI =B(I)X100NFORJI=1TONFORI=1TONS
VENFORI=1TONNRAC(IY U &
FORJ=1TOMNIFR(I)<100THENS
A=t " \NELSEA$=" *

20 ZASNNEXTING

90 END

[andi® L BN

Running the rrogram

$ RUN FIXIT

FIRIT U 1,0 0B104 AN

What inruyt file <TTi> (P=HELF) ? R747.R2S

What outeut file <TTix 7 B474,BAS

Is this a Microrrocessor BASIC Frogram <NO> 7 NO

Want to customize rrogram conversion ? Answer Yes or No N> 7 NO
100 200 300 400 500 400 700 1000 1300 1400

12100 Inmrut Limes from B747.BASs (1501) lines written to B747.,RAS
(99 lines of DIM and MAF statements moved.

{30) seconds elarsed time.., . (2420)1ines/minute
%

Running the rrodrzm using the customize conversion ortion

$ RUN FIXIT

FIXIT V 1.0 08104 aM

Wnat inrut file <TTix (P?=HELF) 7 DATABASE.R2S

What outrut file «<TTi> 7 DATARASE.BAS

Is this 2 Wicrorrocessor BASIC Prodram <NO> 7 NO

Want to customize rrodram conversion 7 Answer Yes or No <N» 7 YES
What line number should be used for moved DIM‘s and MAF’s <3 7 -1
What column should be used to start comments in <16> 7 32

100 ’

(137 Inrut Lines from DATABASE.B28s (143} lines written to DATABASE.ERAS
(0) lines of DIM and MAF statements moved.

;3) seconds elarsed time,,. (2740)lines/minute

Running the rrogram to convert MICRORASIC to V2 BASIC

$ RUN FIXIT

FIXIT V¥ 1.0 08104 AM

What inerut file <TTi> (P=HELP) 7 CFN.OLD

What outeut file <TTi: 7 CPM.THP

Is this 3 Microrrocessor RBASIC Prodgram <NO> 7 YES

Want to customize Pprogram conversion 7 Answer Yes or Neo N> 7
100 200 300 400 500

{(222) Inrut Lines from CFM.OLDy (514) lines written to CFM.OLD
(1) lines of DIM and MAF statements moved.

(28) secands elarsed time,..(350)lines/minute

$

Some mador suntazctic issues are comments, statement
modifierss literals and long lines. Long lime rule?d If <= 132 characters, pass
it throughs, if > 132 charsctersy force continustion breaking ont + » §) AND OR
and rereat s above.

68

Translator structure

FIXIT.BAS

P 1 DECLARATIONS bt
! _________________________________ |
! ! UBASIC.RAS
B o i et s e et o o e e o e} e e e s s o o e e 2 ot e e i 2 e e e ot e o o o
t o MAIN LOOF L et Dol o o ot e e !
L e L S (| MICRORASIC vt
b P QUTFUT FORMATTERS b by TRANSLATION !
Pt I o e e [[(LINE-BY~LINE) i
b t o} DERLOCK! IREEBLOCK ! b e !
[I i s G] T e ot st e o e e e i
I bl i DATA TARLES !
(I EXCEFTION HANDLER L b o o S S 0 e !
I [N i FROM ! TO U
B TERMINATION v | o s dom om e b oot o e e Pt
P AND b (I ! b
bt STATISTICS (I L 1 OPEN *1I°* I OFEN #..., | |
b ot tcmemomtam ettt e T S 1 I mm om o o o e et s e }
Subroutines
DEBLOCK! Invoke MICRORBASIC translation

Removes "&°"
Assemble entire (continued) line
EBreak at *\"sy"THEN*,"ELSE®'s OR *1*

REBLOCK? Count block (IFsFORYWHILE»UNTIL,UNLESS)
Chanse "REM®' to *1!°
Center comment text
Insert *END IF* 25 needed
Move COMMON/DIM/MAF

§
]
! ! DEBLOCK !
i 0 S T, 8 s om0 1 3 50, o 5 e e e e i
! ! REBLOCK !
! ! __ |
! ! SELECT LINE LENGTH «-—=mm—m-=mmmomeeen |
! b e | |
! ! ! <= 132 P 132 ! ! !
! ! B e e T ! ! !
! ! i ! BREAK LINE ! | !
! ! ! | ADD *%&* ! ! !
! ! ! QUFUT LINE I OUTRUT ! ! !
! ! ! ! SEGMENT ! ! '
! ! b m e [mmmmmm e ! ! !
! ' | EXIT ! ITERATE b e !

!

v

MICROBASIC conversion is done bus DEF‘s added at line 30000 includins!
INKEYs ATs MKSs MKIy LOF and EOF. Sraces are inserted arnd manw other
transformations zare rerformed.

Transformations

L ey o]

£ e > FRINT

/BAS e > +RAS

08T EEEocee } +DAT

LINE INFUT = e o LINFUT

LFRINT o~ b FRINT %9y

LPFRINT USING W ~wmmmee = PRINT #9 USING

REM i \REM

FRINT @ FRINT AT

H A\

WEND = NEXT
OFEM "I"»4y "ABC/DATY ~ermeeme g OFEN "ABC.DAT® FOR INPUT AS FILE #4
OPEN *"0%s5: *ARC/BASY —=rmewee— > OFEN "ABC.BAS"* FOR OUTFUT AS FILE #3
IF A2 THENWN 190 ELSE 200 -~--wr—- = IF AF2 THEN G60T0 190 ELSE GOTO 200
IF AX2 PRINT *0OK* @ —ememme—- * IF A>2Z THEN FRINT "OK*
IF AX2 INPUT B meeeme—— > IF A>2 THEN INFUT B¢
IF A»2 LET C=4 = <reeme—ee—- b IF AX2 THEN LET C=4

Functions

I INKEY ! SINGLE CARACTER INFUT i

T o i i e soas o s e e e e Sote e e v e e e oo L o soon b G e Seas SIS b o S N bk G S ks e o e W T l

! MRI$! !

} S o | !

I MKS% | DATA CONVERSION |

|| !

I MKDe ! !

§ i o et et o o o o s o o B S e e e i

V@121t A SPECIFIC LOCATION (121) !

Not handled (uet?

I CHMD { HOST MONITOR COMMAND !

! ___]

t DEFDRL ! !

t DEFFN i !

I DEFINT ! i

V' DEFSNG ! BECLARATIVE CONTROLS '

! DEFUSR i f

I DEFSTR i t

i 5 0 558 555 o s e o 5 5, e s I

I ERROR ! SIGNAL AN ERROR !

S0 55505058 S5 e e 1 s st o e 5 5 TSR i

Yooour I REVICE (PORT) OQUTRUT !

! __ [

I PEEK ! ADDRESS (READD i

!,..,4.n.,.,,..(_,._.A..«_......._.........‘._.A.,....,‘..,‘__.__._..,.._.......,.,......._..........._..4......_.__...__.!

! FOKE P ADDRESS (WRITED !

70

Some bonuses are RSTS/E derendency fladggery simrler than FIXITs faster
and the same price (free), The fladder takes file-name or @file outruts
excertions rerort (summary to terminaly detsils to <uwourr filed. It is aslso
very easily modified because it uses INSTR tests and BOSUR checks.

Using the BASIC-PLUS derendency filter

WHAT INFPUT FILE «TT3: 7 BASICFLUS.EAS
WHAT REPORT FILE <TTix T RETS.RPT

BASICPLUS,.RAS! 349 LINES PROCESSEDr 40 WRITTEN TD RSTS.RFT
PEEK

FOKE

OFEN <RSTS derendencu>
KILL <RSTS derendencuwr
NAME. .AS <RS8TS derendencul
COUNT

UNLOCK

MAGTAFE function

TIME <“rnon-zero argument’
CHAIN, .LINE

STATUS furction

SFECY function

2Y8 function

%)

[l St R R TR B RO R LR
f

lerendencies

! MODE !
! CLUSTERSIZE !
/ ! R A A A A A A SR N A I A
! “PROTECTION: N
t CreNI or (PEN) PRKILL NAME.AS
! DEVICE? v/

t CCONT ! FEEK ! STATUS !

1) s S i R R 8 S B o o e B i

! CHAIN-LINE ! FOKE !
!’,__.....,._-.......”..,...._.__..-.*. +
! MAGTAFE t SPECH I TIME !
!.’..,..‘..,‘...A..........,”.N.,.....,...__.,,...u.{. +
! !

! UNLOCK !

With all of this information wou should be able to use the rrodrams.

71

Gl

$TITLE
$£SBTYIL
SIDENT

OPTIDN

H
'
!
!
!
!
!
!
i
{
!
§
{
!
{
!
DECLARE

DECLARE

DECLARE

DECLARE

$PAGE

"FIXIT Utility for 019 BASIC Programs”
"Declarations and Variable Directory”
“FIXITY

TYPE = EXPLICIT

Author: Tom Harris August §, 1983
Pigital Equipment Corp (ZK2~3/K06)
110 Spit Brook Road
Nashua, NH USA 03062

Input: an input flle name, and conversion controls
input can be BASIC~PLUS~2 V1.6 or MicroBASIC
style programs, Keyboard input is allowed,

P L A L L e R P L R L L L L L L L L P)

Dutputs a BASIC program, formatted for V2 BASIC
Support: Here it 1s, have fun, suggestions welcome,
but no guarantees, <user-supported>

P L R T Y R L R R L L T T T L L e L T T T T Ty T Y

THIS 1S A HANDOUT DEVELOPED FOR FALL US DECUS 1983

P R LR P L e T T T TR P Y T R R R P T Y

INTEGER CONSTANT &
No..Tabs = 16 ! EDITS code &
+No.Blanks = 424 { EDITS codes &
yTrim_Front = 8 i EDITS code &
Trim_Back = 128 ! EDITS code &
'TRUE EEES |

STRING CONSTANT Break = "* ! Backslash &

STRING &
DIMs . MAP(200) { To move => top/prog. &
Fadn { Input f£ile name &
F.O0ut { putput File Name [4
JMafn { Working input buffer &
(Out { Qutput line ipage &
(Source) ! Input line image &
+S1 ,82, 83 ! Temp String

LONG &
Bad,File ! Hrror on File OPEN &
,Comment.Column ! Comments to column X &
sDIMs MAPS . .Count ! Count DIM/MAPS &
,TAB Back { Fixup indents w/this &
First.Break ! THEN/ELSE/... tests &
+Endfile ! End-of-File flag &
P ! General {ise &
¢ IF.Count ! Nesting counter &
(Lines.In ! Counts ¥ Lines input &
yLines,.Out ! Lines output &
yLoop,.Count ! Loop nesting counter &
sMicroBAsSIC ! TRUE 1f a micro BASIC &
yMAP.DIM,Line.Number ! Line ¥ for DIM/MAP’s &
(Start.Time { Seconds since 00:00 [
»Tt ,T12, T3 ! Temp working storage &
» TT.Uutput ! TRUE {f F.Out=®TT:"

€L

$PAGE

The following flags are used by the uBASIC FUNCTION
as a type of "OWN" storage, i.e., static storage

that retains values between invocations. They are
iniftlalized to 0 as the maln program starts running.

= s b o

The flags correspond to uBASIC statements or functions
for which DEC BASIC functions or subroutines must
be generated (i.e. no easy 1=1 tranSform exists),

RN

1 e.g. PRINT €128,"Hi" bhecomes PRINT AT(128)3"Hi"

! and a BASIC function named AT has to be inserted

! into the front of the converted program,

MAP (FLAGS) BYTE Action.Flag { Caller must do something &
(At.Flag § butput PRINT AT functn &
,MKS..Flag ! Dutput MKS function &
,MKI.-Flag { Output MKI functfon &
JMKD_Flag ! Dutput MKD function &
,CVS.Flag ! OQutput CVS function &
JCVI_Flag { Output CVI function &
+CVD.Flag ! OQutput CVD function &

!

<INKEY_ Flag Output INKEYS function

MAP (FLAGS) BYTE Ali.Flags(10) ! This makes initializing easier

Below, we test the LVARIANT value (use the SET VARIANT command in the BASIC environment)

to see whether we should minimize the sizé of this program by excluding HELP text and by
skipplng the call on UBASIC thus omitting that code from the executable program., Minimizing.
fn this manner lets one run FIXIT on a POP-11 system without having to overlay any code

thus getting best possible performance,

The default is NOT to minimize, To request the smaller program: SET VARIANTS$1 before compiling

B e g S S Sem Oum Pen

SLET %Small = 1% § SET VARIANT = 1 when compiiing, and the MicroBASIC code drops out,
$LET %Large = 2% ! and then you don't have to overlay the translator

%1F SVARIANT = 0%
STHEN
$LET $Size = glLarge
EXTERNAL STRING FUNCTION uBASIC(STRING) ! This EXTERNAL happens only on %Large systems
$ELSE
%LET %51ze = ¥Small
SEND %IF

YL

I = CTRLC
ON ERROR GOTD Oops

GOTO Bye 1F Bad.File ! Error Handler "QOPS" resumes here when unable to OPEN the *INPUT* file

PRINT "FIXIT V1.0=RAA "3TIMES{Q)
PRINT * *

Begin~.Processings
LINPUT "What input £ile <TT:> (7 = HELP) ";F.In

i Get an input file name, and append .BAS to it
! as a default extension ~ unless the file name
i might be a device spec, e.g. TT: or TTAI:

F,In = EDITS(F.In,No.Blanks)}

IF F.In = "3¥
THEN

GOsSuB Help

GOTU BRegin.Processing
END IF

F.ln + ".BAS" IF (F.In <>"") AND O=INSTR(1,F.In,",") AND O=INSTR({,F.In,":")
"TTsY 1F LEN(F.In) = 0

-

.

s

b
Hon

OPEN F.In FOR INPUT AS FILE #1, ACCESS READ, VARIABLE, RECORDSIZE 132
LINPUT "What output file <TT:> "Yi;fF,0ut
{ Do the same thing for the ocutput file name
F.Dut = F.,0ut + “.BAS" 1F EDITS(F,.O0ut,No.Blanks)<>"" AND 0=INSTR(1,F.0ut,".") AND O=INSTR(1,F.Qut,":")
IF EDIT$(F.Cut,No-Blanks)=""
THEN
F.Out="Tr:"
TT.0utput = True
END IF
OPEN F,.Out FOR ODUTPUT AS FILE #2,VARIABLE, RECORDSIZE 132

$PAGE

SL

MAP.DIM.Line Number = 3 i Default: move MAP/DIM‘s to line "3°®

Comment.Column = 16 § Defaults try to start comments in column 16

pImvs MAPs . Count =0 ! Global counter: tels how many DIM/MAP’s saved ub to move when program ends,
All._Flags(1l) = 0 FOR I = 0 to 10

ON ERROR GOTOD Hiccup

EINPUT "Is this a Microprocessor BASIC Program <NO»"*3Si
MicroBASIC = TRUE IF EDITS$(Left(S1+"N",1),NoBlanks)s="Y"

LINPUT "Want to customize program conversion 7 Answer Yes or No <N> ";Si

1F EDITS(LEFT(SI+"N",1),N0. Blanks) = "Y"

THEN
INPUT "What line number should be used for moved DIM’S and MAP’°s <3>"jMAP.DIM.Line.Number

MAP.DIM.Line.Number = 3 IF MAP.DIM.Line.Number = 0

INPUT "What column should be used to start comments in <i6>";Comment.Column
Comment.Column = 16 IF Comment.Column < 2 OR Comment.Column > 60

51,52,83 = "
END IF

Start.Time = TIME(0%) ! start timing the conversion
$PAGE

SL

%$SUTTL “"Majin Loop"
Main.bLoop:
WHILE TRUE
GOSUB DeBlock-Line
EXIT Main.lLoop IF Endfile AND LEN(Main)=0
GOsuUB ReBlock.Line

Break,Lines:

IF LEN(Dut) > 132 ! This is where we break a }line that is too 1long ...
THEN
T1 = INSTR(78,0ut,%"))
T2 = INSTR(78,0ut,",") ! wWe'll break on a comma, semicolon, plus, AND, DR, or paren
T3 = INSTR(78,0ut,"+")
3 = lNSTR(19,0uL," AND ") IF T3 = 0O
T3 = INSTR(78,0ut," OR %) IF T3 = 0
T = T2 IF T1 =0 OR (T2<>0 AND T2<T1)
Tt = T3 IF TY = 0 OR {T3<>0 AND T3<T1%)
TY = INSTR(78,00t,%)*) IF T = 0

PRINT #2, MID(Out,i,T1)+" (A
Lines.0ut = Lines.0ut + 1§

Out = SPACES(7)+EDITS(RIGHT(Out,Tt+1),Trim.Front)
GOYO Break.Lines

ELSE
1F LEN(Dut) <> @
THEN
PRINT 12, Out ! Here, the line f£its OK ~ no need to break it
Lines.0Out = Lines.Out + 1§
END IF
END IF
PRINT Lines.Out; 1F Lines.0ut = 100*INT(Lines.Cut/100) AND NOT TT.Output ! Show Progress...

NEXT
PRINT IF TT.Output
GOTO Done

%PAGE

LL

Belp:

RETURN

$SBTTL

PRINT *

"HELP Text"

%1F %51ze = $Large

S THEN

SELSE
$END 3IF

$PAGE

PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT

L]
”
L
"
"
"
»

¥ 3 8 2 T £$ 3T 2 2 3 23 3 3 2 3 3 3 3

2 2 2 3 3 3 2 3 FT R S

PRINT "

PRINT
PRINT
PRINT
PRINT

PRINT

This program converts V1 BASIC programs to a possibly more"”
readable and executable format under V2 BASIC., It handles"
BASIC-PLUS=2 Vi.x source as well as elements of MicroBASIC"
source code,"

"

NOTE: This is a sample program which {ftself f{llustrates"
capabjilities of DEC BASIC. The program has purposely been"
kept to a simple no-brains approach -~ {t does not use"
sovhisticated parsing techniagues and thus deoces not perfectliy"
convert ail of the possible program formats which the"
BASIC’s allow. However, it has proven useful for a number"
of different programs, and can no doubt be altered to handie"®
even more.,"™

"

The program moves MAPsS and DIMs, changes REM statements to"
*1', 1inserts ‘END 1IF’ statements where necessary, and”
<incidentally> indents statement blocks to indicate control"
structures while performing minor clean~ups on code,”

”

You will be asked for {input and output file names and”
whether you wish to supply customizing directions or take"
default processing parameters. Input and Output file names"
are assumed to have a .BAS extenslon, so you need not type®
it in (other extensions are permitted ~ just type ‘em in!)."
n

You will be requested to tell the FIXIT program whether"®
the input text is in space-compressed MicroBASIC format so"
that expansions can be performed (and syntax peculiar to"
that implementation can be massaged into forms acceptable on"
this system,”

"

Customizing means telling the FIXIT program whether to move"
COMMON/DIMENSION/MAP statements and what line numbetr to move”
them to (1f you give a line number 1less than 2zero, they"
won‘t be moved -~ may be advisable 1f you have truly complex"
MAP or COMMON statements), you will be asked what column to"
TRY to align comments on {(numbers bhetween 8 and 70 are DK).*
"

The program then runs, reporting each 100 <output>"
statements processed. Termination reporting tells how many"
{nput statements and how many output statements were"

processed,”
”

"Help Text is not avallable”

8L

ESBTTL "Source Input Routlne®
DeBlock...inet { Return § stmt/line in *Source*

Qut,Source,51,52 = "*

IF LEN{(Main)=0 AND NOT Endfile t #Main#* holds working text
THEN

IF LEN(S3) = 0

THEN

LINPUT #1, Main
Lines.In = Lines.In + 1
Main = EDITS$(Maln,No.Blanks)

%1F %S5ize = gfLarge
STHEN &

Main = uBASIC{Main) 1F MicroBASIC
SEND R1F

FLSE
Maln = S3
SJ:"W
END IF
END 1IF

Handle.Continuations

IF MID(Maln,LEN({(Main),1)="c" { Continuation lines => *Main¥
THEN

T1 = INSTR(1,Main;"i") _

Main = EDITS(LEFT(Main,LEN(Main)=1),Trim_Back)+" "

LINPUT #%, S1
Si = EDITS(S1,No..Blanks)
Lines.In = Lines.In ¢+

IF Ti= 0

THEN
81 = Break+™ ":351 1F LEFT(S1,1)="1"
Main = Main + EDITS(S!1,Trim.Front)
GOTO Handle.Continuation

83 = 81

LA

6L

RETURN

RETURN

RETURN

)

1 NOW, get a stmt Into *Sourcex

ED1TS(LEFT(Malin,Tl~1),Trim.Front)
EDITS(RIGHT(Maln,Ti+1),Trim_Front)
Breakt+Main IF LEN(Source) <> 0

IF LEN(Source) = O

{ Break lines on THEN, ELSE and
! work to avold being fooled by
{ comments containing THEN/ELSE

Tt = INSTR(1,Malin,Break)
1F T1 &> ¢
THEN
Source =
Main =
Main =
GOTO beBlock..Line
ELSE
Source = EDITs(Main,Trim.Front)
Main & e
END 1F
T1 = INSTR(1,Source,™!")
T2 = INSTR(1,Source,"THEN")
T3 = INSTR(1,S50urce,ELSE")
IF (T2 + T3) = 0

! <none of the above>

IF (T1<T2) AND (TI<T3) AND (T1<>0) ! <comment precedes the THEN or the ELSE>

First.Break = °999

First.Break
First.Break

St
Malin
Source

U

51

-
=

{ Aha, something(s).. pick first one

T2 IF T2 <> 0 AND T2 < First.Break AND { (T = 0) OR {(T1<>0 AND T2<Ti))

T3 IF T3 <> 0 AND T3 < First.Break -AND ((Ti

IF LEN{(Source) = 0

THEN
51
Main
Main
Source
END IF

%PAGE

LEFT(Main,4)

0) OR (T1<>0 AND T3<Ti) 1}

EDITS (LEFT(Source,First.Break~1),Trim.Front)
EDITS$(RIGHT(Source,First.Break),Trim_Front)+" "4+Main

! Handle THEN or ELSE in Column 1

= EDIT$(RIGHT(Main,5),Trim.Front)

0 u

"GOTO " + Maln
51

IF 0 <> INSTR({1,"0123456789",LEFT(Main,1)) AND LEN(Main) <> 0

08

RefBloc

RETURN

$SBTTL "Output Editing Subroutine”

k.Line: ! Do pretty tabs & text fixupS...
Source = EDITs(Source,Trim..Back)
IF LEN(Source) = (
T1 = INSTR(],Source,"!") ! Handles RSTS CUSP convention
S1 = EPITS(Left(Source,Ti~1),Trim_Back+No.Tabs)
T3 = LEN(S])
Source = S1¢+SPACES$(Comment.Column=-T3) + RIGHT(Source,Ti) IF Ti<Comment.Column AND Ti1>0
s1 = LEFT(Source,l)
T1 = ASCII(S1)
52 -
SELECT T1 { Look for Line numbers
CASE 48,49,50,51,52,53,54,55,56,57 ! Start text in column 9
T2 = INSTR(i,Source," ") { Space
T3 = INSTR(}1,Source,® *) ! TAB
T2 = T3 IF (T2 = 0)
T2 = T3 IF (T3 > 0) AND (T3 < T2)
T2 = LEN(Sourcel+l IF T2 = 0
Dut = LEFT(Source,T2~1) + SPACES(8-T2) ¢+ EDITS(RIGHT(Source,T2),Trim.Front)
Qut = Qut + "{*» If T2 = LEN(Source)+t
1I¥ 1F,.Count > O
THEN
PRINT #2, SPACES(7+4¥(Loop.Countt+(IF.Count=I)))3"END IF" FOR I=1 TO 1F.Count
Lines.0ut = Lines.Out ¢+ 1F.Count
IF.Count = 0
END IF
CASE ELSE
Out = SPACES(7)+EDITS$(Source,Trim.Front)
END SELECT

! *WHEW* BASIC source {n col~8
! Now, do f£ixupS...

Out = LEFT(Out,7)+"*! "+EDITS(RIGHT(Out,12),Trim_Front) IF MID(Out,8,3)="REM"
Out = LEFT(Out,?7) +EDITS (RIGHT(OuUt,12),Trim_Front) 1IF MID(Out,8,3)="LET"
SPAGE

I8

$SHTTL "Pretiy Print Formatting”®

Loop.Count = Loop,Count = § IF MID(Out,8,4)="NEXT"

Loop.Count = 0 IF Loop.Count < O

IF.Count = IF.Count =~ 1§ IF 0 <> INSTR(1,0ut,"END IF") AND IF.Count > 0
IF.Count = 0 IF IF.,Count < O

Ti INSTR(1,0u0t,"ELSE")

T3 = INSTR({{,0ut,"!")

TAB,Back

= 0 } <make it appear same level as IF>
TAB,Back =

IF T1 > 0 AND ((T3=0) OR (T3<>0 AND Ti1<T3))
§2 = Qut

Out = LEFT(Out,7) + SPACES(4*(If.Count~TAB.Back)) + SPACE$(4*Loop.Count) + RIGHT(Out,8)

T3 = INSTR(1,0ut,*®!") i Try to Center comments...

St = EDITS(Left(Uut,T3-1),Trim.Back)

T2 = LEN{(S1)

Out = S1+SPACES(Comment . Column=T2)+EDITS{RIGHT(Qut,T3),Trim Front) IF T3<Comment.Column AND T3>0

T1 = INSTR(1,Source,"i") f Key oft THEN (not stmt modifier)
T2 = 1INSTR(1,Source,"THEN")

IF.Count = IF.Count + IF T2<>0 AND (T1=20 OR (T1<>0 AND T2<T1))
Loop.Count = Loop.Count + 1 IF MID(S52,8,4)="FQR *

Loop.Count = Loop.Count + § IF MID(S2,8,6)="UNLESS"

Loop.Count = Loop.Count + { IF MID(S2,8,5)="UNTIL"

Loop.Count = Loop.Count + § IF MID(S52,8,5)="WHILE"

$PAGE

8

RETURN

RETURN

Add, It

RETURN

$SBTTL "Handle COMMODN/DIM/MAP Statements”

T = MID(S2,8,3)="DIH" § Test for DIMension
T2 = MID(S52,8,3)="Mpp* ! Test for MAP
T3 = MID{S52,8,3)="C0OM" ! Test for COMMON
IF T147T2+4T3 = 0 OR MAP.,DIM.Line,.Number < O
81 = LEFT{Dut,?)
gutz EDITS(RIGHT(Ouvt,8),16+1284+256+8)
I = INSTR({{,0ut,%,%)
IF I <> 0 AND T1=0
THEN
DIMs . MAPs.Count = DIMS.MAPS.Count + 1
DIMS ,MAP(DIMS MAPg.Count) = SPACES(TI+LEFT(Out, 1) +SPACES(58~1)+" &"
Dut = EDITS(RIGHT(OUL,I+1),Trim.Front)
Find.Commazs
I = INS’.‘R("Outa"'")
IF 1 >0
THEN
GUSUB Add.Item
GO0 Find.Comma
END 1¥F
DIMs,MAPs.Count = DIMs . MAPs.Count ¢ 1
DIMS ,MAP(DIMS . MAPs.Count) = SPACES{15)+0ut
ELSE
piMs . MAPs.Count = DIMs,.MAPs.Count + i
DIMS MAP(DIMs .MAPS ., Count) = SPRCES(7)+0ut
END IF
gut = LEFT(S51,7)+SPACEs(Comment.Column~-73¢%} %% MOVED COMMON, DIM, or MAP %% ¥
em:
DIiMs MAPs,Count = DIMs. MAPSs.Count + 1
DIMs . MAP(DIMs.MAPS . Count) = SPACES(15) + &
EDITS(LEFT{OUL,1),Trim.Front}+ &
SPACES(50-1)+" &%
Out = EDITS(RIGHT(Out ,I+1),Trim_Front)
$PAGE

£8

Hiccup

RESUME
Oops:

RESUME

Done:

$SBTTL *Exception Handling and Program Termination Code®

s Endfile = TRUE
PRINT IF F.O0ut < "TT:"
PRINT ERTS(ERR);" Error "JERR IF ERR <> it
9
PRINT "Sorry, unable t¢ open that ftlle, program ends"®
Bad.File = TRUE
i
H
1F If.Count > © t Put any pending END 1IF°s
THEN
PRINT K2, SPACES(7+4%(IF,.Count=I))3"END IF® FOR 1={ TD IF.Count
Lines.0ut = Lines.Out + IF.Count
END IF
1¥ DIMs, . MAPS.Count <> 0 1 Also, dump the DIM/MAP’S
THEN
PRINT #2, NUMIS(MAP.DIM,Line,Number)sTAB(Comment.Column)s "1 *¥ COMMON, DIM, and MAP’S have been moved here %% "
PRINT %2, DIMs.MAP(I) FOR I = § TO DIMs.MAPs.Count
Lines.0ut = Lines,0ut + DIMS, . MAPs,.Count 4 1§
END 1Ff

$£PAGE

2]

AT

$SBTTL "Generated DEF's (for MicroBASIC Operations)"”

IF %Size = %large
$THEN

All.Flags(10) = All.Flags(i0) + All.Flags(Il) FOR I =4 T0 9

IF All_Flags(10) <> 0

THEN
PRINT
PRINT #2, "4";TAB(Comment.Column);®! *% Added functions here *#"
PRINT "Added Line 4 ("3 IF F.Dut <> "TT3¥

IF CVI.Flag <> 0%
THEN
PRINT " CVI"; 1IF F.0ut <> "TTs"
PRINT #2, " DEF WORD CVI(STRING CVILIN)"

PRINT #2, " MAP (CVIMAP) STRING CVI.STRING = 2"
PRINT #2, " MAP (CVIMAP) WORD CVILWORD"
PRINT %2, *"
PRINT 2, " CVI_STRING = CVI_IN"
PRINT #2, * cvy = CVI.WORD"
PRINT #2, * END DEF"
PRINT #2, "%
Lines,0Dut = Lines,Dut + 8
END IF

IF CVs.Flag <> 0
THEN
PRINT * CVS™“p IF F.Qut <> "Trs"
PRINT #2, * DEF SINGLE CVS(STRING CVS.IN)"

PRINT #2, " MAP (CVSMAP) STRING CVS.STRING = 4"
PRINT %2, MAP (CVSMAP) SINGLE CVS_SINGLE"
PRINT #2, “*

PRINT #2, " CVS.STRING = CVS.IN"

PRIMT &2, * cvs = CVS.SINGLE"

PRINT #2, * END DEF"

PRINT #2, "%
Lines.0ut = Lines,0ut + 8
END ‘IF

IF CVvb.Flag <> 0
THEN
PRINT " CVD": IF F.0ut <> "TT:"
PRINT #2, " DEF SINGLE CVD(STRING CVD.IN)"

PRINT #2, * MAP (CVDMAP) STRING CVD.STRING = 8"
PRINT ¥2, " MAP (CVDMAP) SINGLE CYD..DOUBLE"
PRINT %2, n""
PRINT %2, . CVD..STRING = CVD.IN*
PRINT #2, " cvo = CVD.DOUBLE"
PRINT N2, * END DEF"™
PRINT %2, L
Lines.0ut = Lines.Out + 8
END XF
%P AGE

TN

S8

R
S
—

1F MKI.Flag <> 0
THEN
PRINT " MKI"} IF F.Qut <> "IT:*
PRINT #2, * DEF STRING MKI(WORD MKI_IN)"

PRINT %2, " MAP (MKIMAP) STRING MKI.STRING = 2"
PRINT #2, * MAP (MKIMAP) WORD MKI..WORD"

PRINT 82, "

PRINT #2, " MKI._WORD = MKI.IN"

PRINT #2, " MKIX © = MKI.SBTRING"

PRINT #2, Y END DEF*®

PRINT 2, "

Lines.0ut = Lines.Out + 8
END IF

IF MKS_Flag <> 0
THEN
PRINT ™ MKS"; IF F.Dut <> *TT:®
PRINT #2, DEF STRING MKS(SINGLE MKS.IN)"

PRINT #2, " MAP (MKSMAP) STRING MKS.STRING = 4v
PRINT #2, " MAP (MKSMAP) SINGLE MKS_SINGLE"
PRIMT 2, "¢
PRINT 42, * MKS.SINGLE = MKS_IN®
PRINT #2, * MKS = MKS.STRING"
PRINT #2, END DEF"™
PRINT ¥2, ®¢
Lines,0ut = Lines.Out + 8
END IF¥

I¥ MKD.Flag <> 0
THEN
PRINT " MKD"p IF F.Out <> "TTt* }
PRINT 82, " DEF STRING MKD(DOUBLE MKD.IN)"®

PRINT ¥2, " MAP (MKDMAP) STRING MKD.STRING = 8"
PRINT 2, * MAP (MKDMAP) SINGLE MKD..DOUBLE"
PRINT #2, ¢

PRINT p2, MKD..DOUBLE = MKD.IN"

PRINT #¥2, " MKD = MKD_.STRING"

PRINT %2, ¢ END DEF™
PRINT ¥2, ¢
Lines.Dut = Lines.Out + 8

END IF
IF At_Flag <> 0
THEN
PRINT " AT"; IF F.0ut < *TT:" ‘
PRINT #2, * DEF STRING At(WORD At.Line, At.Columpn) = ESC'+ ‘€ + NUMISCAt.Line)+’;’+NUMIS(AL.Column)s’£°”
PRINT 2, * DEF STRING CLS(WORD CLS.Line, CLS.Column) = AT(CLS.Line,CLS.Column) + Clear.Below”
PRINT 82, " "
Lines.,0Dut = Lines.0ut + 3
END 1F

$PAGE

98

IF INKEY_ Flag

THEN
PRINT
PRINT
PRINT

PRINT
PRINT
PRINT
PRINT
PRINT

PRINT
PRINT
PRINT
PRINT
PRINT
PRINT

PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT

PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PPINT
PRINT
YPAGE

82,
$2,

<>

-
=

T 3 2 2 3T 2 S 2 X 2 3

2 x 2 3 3T 2 % = 2 3

£ 3 = 2
=

0
INKEY"§ IF F.0ut <> "TT:®
$PAGE"
$SBTTL ‘Keyboard Input Routine (VMS Only)”® ¥
EXTERNAL LONG CONSTANT
108 . READVBLK
 LOSMNOECHO
¢ SSS.NORMAL"

EXTERNAL LONG FUNCTIUN SYSSASSIGN (
STRING BY DESC

« WORD
¢+ LONG
¢ LONG

BY
B8Y
BY

REF
VALUE
VALUE

EXTERNAL LONG FUNCTION SYSSQIOW (

LONG
» WORD
» LONG
+LONG
» LONG
¢ LONG
s WORD
+LONG
+ LONG
+LONG
 LONG
« LONG

DECLARE STRING CONSTANT

VALUE
VALUE
VALUE
REF
REF
VALUE
REF
VALUE
VALUE
REF
REF
VALUE

Clear.Screen
sClear.Below
«Clear.Right

sClear.Line
01,132

sBlack.Screen
Normal.Chars

sBold.Chars

(Reverse.Chars
Underscore.On

sBlink

¢Scrolil.bDown

#oun

#4H0HBHEH®

)l

)!l

ESC
ESC
EsC
EsC
ESC
£sC
ESC
ESC
ESC
ESC
ESC
ESC

R R R R

&”
[
&"

LS

PRINT ¥2, DECLARE INTEGER CONSTANT &
PRINT #2, " True =z =i [4
PRINT #2, " False = 0 &
PRINT #2, u = | &"
PRINT ﬁZ: " :Dgwn = 0 &
PRINT #2, "¢

PRINT §2, " DECLARE STRING &"
PRINT #2, * Hold.Value &"
PRINT #2, * Key.value &
PRINT i%, : .Key.fad &"
PRINT ¢ Text

PRINT 02: ®n ’

PRINT #2, * DECLARE WORD [
PRINT #2, * Chan &"
PRINT 42, * +010.Char [A
PRINT #2, ¥ ;Direction L™
PRIKT #2, "

PRINTY #2, ® DECLARE LORG &
PRINT 82, " S8.5tatus [A
PRINT #2, "%

PRINT %2, SPAGE®

PRINT #2, $SBTTL ‘Keypad (One Character) Input Function®®

PRINT #2, * DEF STRING InKey"”

PRINT 82, ° DECLARE BYTE Arrow. Key"

PRINT 842, *® S.Status = SYSSASSIGN{°TT’,Chan,,) ! <ready for QLOS>¥
PRINT #2, * PRINT °*ERROR ON SYSSASSIGN ' 1IF S.8tatus <> SSS_NORMAL"™

PRINT #2, ¥ Arrow.Key = False”

PRINT #2, " Key.Pad = CHR$(O)"

PRINT K2, "¥

PRINT #2, ¥ Ci: WHILE TRUE"®

PRINT #2, " S.5tatus = SYSSQIOwW([
PRINT #2, " Chan &"
PRINT %2, " ¢ (105 _READVBLK DR IUSM_NODECHO) &®
PRINT 2, * N [3
PRINT ¥2, " . &
PRINT #2, * ¥ &"
PRINY #2, ¥ .010.Char &"
PRINT 2, * 1% &"
PRINT &2, ’ &"
PRINY $2, " ¢ &
PRINT #2, © " "
PRINT %2, " v &"
PRINT ¥2, “ I

PRINT #2, " PRIKT "ERROR ON SYS5010W° IF S5.8tatus <> SS55.NORMAL®

PRINT #2, " Arrow.Key = True IF QIO.Char = 27 AND Avrow.Key = False®
PRINT #2, * EXIT Ct IF NOT Arrow.Key”

PRINT 2, ITERATE (1 1F QID.Char = ASCII(°(’) OR QlO.Char = ASCII(’0’)"
PRINT #2, "¢

PRINT k2, * IF 010.Char <> ASCII(°L") AND QIO.Char <> 27"

PRINT k2, " THEN"

PRINT 82, " SELECT Ql1O0.Char"

PRINT #¥2, " CASE 65"

PRINT $2, * QIo,Char = ASCII(°{°) ! ESC I A 1s up-arrow"®
PRINT $2, * CASE 66"

PRINT #2, ® gIo.Char = ASCII(v") f ESC { B 1is down-arrow®

PRINT 82, ¥ CASE 67"

88

END 1F
SEND %1F
$PAGE

PRINY
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT

Llnes-
END IF
PRINT ")"

2, " QI0o,.Char = ASCII(®*>*) s
t2, " CASE 68"
82, " QID.Char = ASCII(’'<")]
$2, ¥ CASE ELSE™
%2, Key.Pad = gHRQ(Q!D.Char)"
82, " QI0.Char = ASCIt(’?") H
e, " END SELECT™
k2, " EXIT Ci*
#2, " END IF™
2, " NEXT"
12, " InKey = CHR$(QIO.Char)"
02, " CALL SYSSDASSGN (Chan BY VALUE)"
¥2, * END DEF"
22, " SPAGE")
82, " $SBTTL ‘Program Text.,..'"
Dut = Lines.Out + 113
IF F.Out <> *TT:"

ESC £ C is right~arrow®

ESC { D 18 left-arrow”

£sC { other

is probably a keypad key*”

FEE,

68

$SATTL "Program Termination and Statistics®

Byes

CLOSE #2
CLUSE #1

I = TIME(O%) { Compute elapsed <wall> time

IfF Start.Time < }
THEN

1 =1 - Start.Time ! Daytime run
ELSE ,

I =1 + (24%60%60 - Start.Time) § Midnight run
END IF

PRINT

PRINT "E®y NUMiIS(Lines,In); ") Input Lines from " } F.ln ¢ ", ("7 &
NUMiS(Lines.Out) ; *%) lines written to " ; F.Out

PRINT “(ny NUMIS(DIMs.MAPs.Count)s®) lines of DIM and MAP statements moved,."

PRINT Y"(YENUMLIS(TI)+")Seconds elapsed time ... ("#NUMiIS(Lines,In/(I/60))+") 1lines/minute”

END

06

400 %SBTTL "Fixup MicroBASIC Funnies"®

FUNCTION STRING uBASIC(STRING Source)

' QPTION TYPE = EXPLICIT

DECLARF, LONG CONSTANT TRUE = =~1%
DECLARE LONG I, J, K, 11, T2, T3, T4, 75, Action.Code,
DECLARE STRING Keyword, New,word, Si, 82

The following flags are used by the uBASIC FUNCTION
as a type of "OWN" storage, {.e.-static storage
that retafns values between invocations. They are
initialized to 0 as the main program starts running.

s fen den o

The flags correspond to uBASIC statements or functions
for which DEC BASIC fupctions or subroutines must
be generated {i.e. no easy 1-1 transform exists),

. S Pen

e.g. PRINT @128,%“Hi" becomes PRINT AT(128)p"Hi"

H and a BASIC function named AT has to be inserted
into the front of the converted program.

e

MAP (FLAGS) BYTE Action.Flag { Caller must do something &
At_Flag { Qutput PRINT AT functn &
sMKS_Flag I Output MKS function &
JMKI_Flag ! Output MKI function &
+MKD_Flag ! gutput MKD function &
+CVS_Flag ! Output CVS function &
CVI_Flag ! Qutput CV¥I function &
LVD..Flag f Output CV¥D function &
 INKEY _Flag I Output INKEYS function

MAP (FLAGS) BYTE All1..Flags(10) ! Thls makes initializing easier

GOTO Colon IF LEN(Source) = 0 i White Space

GUSUB Lin,Num IF 0 <> INSTR(1,"0123456789" ,LEFT(Source,1})

GOTU Set IF "REM® = LEFT(EDITS(RIGHT(Source,J),=-1),3)

RESTORE

%P AGE

Here, we read from a table of DATA statements, looking for transforms

to pertorm on the line of text sent into this FUNCTION, The table consists
cf: thing~to~tind, thing-to~change-to, and a special-action~code. The

BASIC function INSTR does the lookup. The action code simply tells us

to set one of the flags checked by the calling main program ag it

determines whether to emit DEF’s at the end of the program being translated.

Ot oo v vem o s

I

Look: WHILE TRUE
READ Keyword, New.Word, Actlion.Code
EXIT Look If Keyword = ",.."
1 =1
Again:
WHILE TRUE
I = JINSTR{I,Source,Keyvord)} i The iookup
ITERATE Look IF I =0 <unsuccessfuld>

J =
K =

INSTR(1,Source,""*)
INSTR(J+1,Source,’'™’)

<success - possibly..>
its no success 1f the find is inside a literal

o g S G

EXIT Again IF J<1 AND K>1 in that case, ignore the find. EXIT off end~of~-line
SELECT Action.Code ! <Eind>
CASE 0 H No Special Action Needed
CASE %,2,3,4,5,6,7,8 1} Need actiont set a flag
All.Flags(Action.Code) = |
Action.Flag z § and the flag that says "some flags are set"®
CASE ELSE i
EMD SELECT
Scurce = LEFT(Source,I~1) ¢ New.,Word+ RIGHT(Source,lI+Len(Keyword}) i <insert the change-to text>
] £ I + LEN(New.,Word) §f ... and scan for nex¢t word
NEXT
NEXT
Cotont | Lets turn colon-within-literal into a dash
I = INSTR{1,Source, ") i <inelegant trick>
Source = MID(Source,i,i~1)+"="4+MID{(Source,i+i,LEN(Source)~1I} IF I <> 0
GOTO Colon IF1 <> 0
I = INSTR(],Source,": "°) { ditto, for colon-space into a dash
Source = MID(Source,l,I=1}+¢"="sMID{Source,I+1,LEN(Sourcel}~1) IFf I <> ¢
GOTO Colon iF 1 <> 0
I = INSTR({1,Scurce,":" { 1f we see just a colon, that turns into a backslash
Source = LEFT(Source,I-1)+"\"+RIGHT(Source,f+i) IF I <> ¢
GUTO Colon IF I <09
Ti = INSTR(],Source,” I¥F *)
T2 = InNSTR(1,Source,® THEN ") IF T1 <> 6
GOSHUB Fix,1¥ IF (T1 <> Q) AND (T2 = 0) { special handliing for IF and DPEN
GUSUB8 ¥ix.UPEN IF 0 <> INSTR{1,Source,"UPEN")}
GOsUB Print.At IF 0 <> INSTR(!,Source,"@") ! and for PRINT £ to PRINT AT
Set:

Source = EDITS${Source,8+16+32¢1284256)
uUBASIC = Source

EXIT FURCTION

%PAGE

! discard any junk characters
{ and exfit: this line {s done,

RETURN

Fix.1F

RETURN

6

Fix.0pP

RETURN

GOTO
$PAGE

%SBTTL "Fixup MicroBASIC Syntax for DEC Systems”
Lin.bPum: J = 0 ! Inserts white space to the right of BASIC line numbers
L.Scan:
FOR 1=2 T0 LEN(Source)
IF O=INSTR(1,%0123456789",MID(Source,1,1))

THEN
J =1
EXIT L.Scan
END 1F
NEXT 1

Source = Left(Source,d~1)+" "+RIGHT(Source,J) IF J <> 0
J =T ! some varfants of IF omit the keyword "THEN"
T = INSTR(J,Source,"GO")
12 = INSTR(J,Source,"PRINT")
T3 = INSTR(J,Source,"INPUT")
T4 = INSTR(J,Source,"LET")
TS = 999
TS = T1 IF T1 < T5 ARD T1 <> 0
TS = T2 IF T2 < T5 AND T2 <> 0
TS = T3 IF T3 < TS AND T3 <> O
T5 = T4 IF T4 < T5 AND T4 <> 0
source = LEFT(Source,TS=1)+" THEN "+RIGHT(Source,T5) IF TS5 <> 999 ! insert a THEN {f {ts needed
EN¢ f the MicroBASIC OPEN has the right kind of components,
T1 = INSTR({,Source, "0"°) { OPEN FOR QUTPUT and
T2 = INSTR(1,Source, '"I"’) { OPEN FOR INPUT eea 1ty just the spelling and the ordering...

IF T147T2 = 0
S2 = "FOR INPUT®
$2 = YFOR ouTPUT" IF T1 <> 0
Tt = T2 IF T2 <> 0 AND TL = 0
T3 = INSTR(T1,Source,",") ! pickup the channel number
S1 = * AS FILE #" + M1ID(Source,T3+1,1)
T3 = INSTK(13+1,Source,",")
T2 = INSTR(T3,S0urce,”\") ! and the file name
T4 = INSTR(T3,Source,"ELSE")
T2 = T4 IF TA4<T2 AND T4<>0
T2 = LEN(Source)+1 IFT2= 0
S1 = MID(Source, T3+1, T2-T3-1) + " ® ¢ 52 + §1

Source = LEFT(Source,TI-1)+S1+RIGHT(Source,T2) ¢! and output a DEC=style OPEN statement
FIX.0PEN

€6

Print,.At: ! careful here, there are several variations of PRINT-at
1 = INSTR(}1,Source,"8") i Typical use ...

J = INSTR(I,Source,",") l PRINT ©255+413,"Hello"

J = INSTR{1,Source,";") IFJ =0 } PRINT @255+13"Hello"
[}) § J

RETURN IF J=0
Source = LEFT(Source,I-1) + "AT(" + MID(Source,I+i;J=i=1) + *);"+RIGHT(Source,Jil)
At_Flag = TRUE
Action.Flag = TRUE

RETURN

$PAGE

¥6

1000
1050
1100
1150
1160
1200
{1250
1300
2000
2200
2250
2295
2300
2350
2360
2370
2380
2390
24490
2450
2500
2550
2600
2650
2700
2750
2800
2850
2855
2900
292%
2950
3000
3005
3050
3100
3105
3110
3150
3200
3250
3255
3300
3350
3360
3375
3400
34095
3425
3450
3500
3550
355%

%*SBTTL

G G g<n gar Gon

DATA
DATA
DATA
DATA

DATA
DATA

DATA
OATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA

DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA

DATA
DATA
DATA
DATA

DATA
DATA

DATA
DATA
DATA
DATA

DATA
DATA
DATA

DATA

DATA
DATA
DATA
DATA

“Conversion DATA Tables®

GENERAL TABLE

<find this>

"AND"
HORY

new

"&ﬂ

"/BRASY
"/DATY

"CLEARY
*LLOSE™
"CLRg"
*CLR"
"CLs"
“cMD®
"cvi®
nevs®
“eyp"

"DATA®
"DEFDBLY
"DEFH®
"DEFINT®
"DEFSNG®
"RDEFUSR®
"DEFSTR"
"DELETE™
"DIM®

IIELSE”
“WEND®
"END™
"ERROR"

"FIELD"
"FOR"

"F OR"
"GET"
"GOSUR®
"GOTO®

HIF‘”
WINKEYSY
TINPUT®

"RILL®

"LET®
"LSET"
"RSET"
"LINE INPUT®

’

-~ % w

@ W W wow ™ e W W

-~ % u w @ ® %W W W e % % W

-~ a ® =

« w w @

FORMAT 1S SIMPLY...

<change to this>

" PRINT®

" .BAS"
" DALY

" § #CLEAR® ®
" CLOSE

"C.LRS™

* PRINT FOR CLR. = |
* PRINT FOR CLS, = |
" DRINT "#CMD¥* |
"cvE®

"Cvg"

scyp”

DATA ©

DECLARE DOUBLE (
(XDEFFN®) *
DECLARE HWORD (
DECLARE SINGLE (
(IDEFUSRE) "
DECLARE STRING (
DELETE "

DIM "

Cu Y e e B g

ELSE *
NEXT *
END

ERROR *

I B 2

3

FIELD { *FIELD¥ !
FOR "

Y

FOR *
GET *
Gosup ®
GoTo "

T 2 2 =3

IF "
* INKEY"®
* INPUT ¥

" KILL *

LET *
LSET *
RSET "
LINPUT "

2 % = =

TO 24 1 *CLR% *
TO 24 § *CLS* *

*DEFDBL®) "

¥DEFINT#
SDEFSNGH

-
=

DEFSTR) "

= w %

% W e W AN WwW ow e

« ™ w W W W ® w

- w e w - - o e ®

LY

- ® % &

Additional Action Code

DO O

D0

[~ - - ¥ - - B] COODAOODOD YA DOOOO

o Smo [~~~

N~ -]

$6

3600
3608
3610
3615
3645
3650
3700
3708
3600
3850
3860
3900
3905
3950
4000
4050
4060
4100
4150
4158
4200
4250
4300
4350
4400
4450
4500
4550
4600
4605
45650
4660
4700
4750
4755
4800
4850
4900
4905
4910
4950
5000
5001
5002
5005
5050
58%0
5906
3000
9999

DATA
DATA
DATA
DATA
]
DATA
DATA
!
OATA
DATA
DATA
DATA
H
DATA
DATA
DATA
DATA
DATA
DATA
!
DATA
DATRA
DATA
DATA
DATA
OATA
DATA
DATA
DATA
!
DATA
DATA
DATA
DATA
H
DATA
DATA
DATA
!
DATA
DATA
DATA
DATA
DATA
¢
DATA
¢
DATA
1

"MAX"
TMKEIS"
"MKSS"
"UKDS "

YHAKE"
“NEXT®

"F ORY
"OPEN"
"oPTION"
sourT»

"PEEK"

"POKE"

"PRINTY

"WIDTH LPRINT®
"LPRINT"

YPUT"

"RANDOM®
"RANDOM IZE"
"READ"

YREM®
"RESET®
"RESTURE"
PRESUME®
PRETURN"
"RND("

"SET"
nspw
“STEP®
"sTop®

"THENY
LE Tk
*G0O TQ®

*STOP"
*USING®

*$9, USING®
*§9, USING"
"29, USING®

“WHILE®

" "
vow

END FONCTION

- « ® w =

L A A N .) % w W e wow - w %

* w @ w

-

» % % w W

[

"MAXI®
“MKI®
MKES"
“MKD*

® NAME ¢
" NEXT *

* FOR"

" OPEN *

* 1 opTION ¥
* { ¥QUT® "

ol fPEEKY !
“? 1 POKEX ™
“PRINT *
PMARGIN %9, 7
* PRINT 4#9,"
*putr *

" RANDOMW *
* RANDOMIZE *
" READ "

"\ REM *

" RESET *

* RESTORE *
* RESUME *

* RETURN *
TRNO#E(®

* SET "
ﬂsp.“

* STEP "
* sT0P "

" THEH "
" Fp ®
"GOTo"

" STOP *

* USING *
"#9 USING"”
*$#9 USING®
"89 USINGT

" OWHILE *

- % 2w

-
CODCOODLOD QUOORO OO0 O (=X~ N WD

-

* v W W ws e e e - . ™ oW ow oW . % W w

“ v » %

SoOoCo@ SO SQooa

@

96

STITLE "BASIC~PLUS System Dependency Flagger"
$SBTTL "Declaratjons®

SIDENT
{

S B GE- . GID. PED- GAB HUB: SUD. P GED DI G G 4B Sen GBS B Pur. BOE B G P Sebs G

DECLARE

DECLARE

DECLARE

DECLARE

PRINT
PRINT

%PAGE

"BPFLAG"

A BASIC~PLUS System=-Dependency Fillter
{Works for Basic+2/RSTS Source, too)

Authort Tom Harris August {, 1983
Dilgital Equipment Corp (ZK2-3/K06)
110 Spit Brook Road
Nashua, dH USA 03062

L T YA L P L LA N P L L L L L A Pl L P L L L L L - 2

Inputs efther a filename, or an indirect @filename

{indirect presumes one filename per line in
the indirect command fiie)
Outputs Summary information to terminals
- flle-by-file use of RSTS"isms
- summary report

Report file -~ 1ists *by flle* each line
which has RSTS dependencies, &long
with the (EDT) source line number,
Also gets the summary information,

Support: Here it is, have fun, suggestions welcome,
but no guaranctees. <user~supported>

D R G D Y D D e s W P Y T S A A SR TR WD R D P WP P P R W TD R W Wy M G0 T N D G T S AP SPGB T WP ¢ B e 0 W W eB

THIS IS A HANDOUT FOR FALL EUROPEAN DECUS, 1983

CE Y P T L P R P P L L P P L L Ty 2

INTEGER CONSTANT &
True = -9 &
False = 0

BYTE &
End.of.File &
rEnd.of.Job &
Indirect

STRING &
Answer &
Text &
yTitles(50)

LONG &
Category(s0) ! For summary report &
+SuUmmary(50)

"BASIC~PLUS Dependency Filter " + TIMES(0%)

L6

$SBTTL "Initialization”

Titles(1) = "NOEXTEND"

Titles(2) = "PEEK"

Titles(3) = YPOKE"

Titles(4) & "OPEN <RSTS dependency>"
Titles(5) = "KILL <RSTS dependency>"
Titles(6) = "NAME ,. AS <RSTS dependency>"
Titlies(7) = *CCONT"

Titles(8) = "UNLOCK"

Titles(9) 2 "MAGTAPE function®
Titles(10) T *TIME <non-zero argument>"
Titles(11} = "CHAIN ., LINE"

Titles(12) = "STATUS function"
Titles(13) z "SPECY% function”
Titles(14) = "SYS function"

LINPUT "What Input File <ITi>%,Input.¥Flles
Input.Flles = "pr:* IF EDITS(Input.Fileg,~1) = *»
Indirect = False

IF "@" = LEFT(Input.Files,1)
THEN .
Control.File$ = MID(Input.File$;2,LEN(Input.Files§)~1) . _
Control.File$ = Control,Files ¢ ",COM* IF 0 = INSTR(1,Controi,Files,".")
OPEN Control.Files FOR INPUT AS FILE #3, VARIABLE, RECORDSIZE 132
Indirect = True
END IF

LINPUT "What Report File <TT:>",Output.Files

Output.Files = "TTs" IF EDITS$(Output.Fileg,=-1) = "
OPEN Output.Files FOR QUTPUT AS FILE %2, VARIABLE, RECORDSIZE 132

End.of.Job = False
Prior.Dependencies = 0

$PAGE

86

%SBTTL "Main Loop, inciudes ipdirect file processing®

Maing
WHILE True

EXIT Main IF End.of.Job

ON ERROR GOTO bone
LINPUT #3, Input.File$ IF Indirect

ON ERROR GOTO Cant.Find _ _
OPEN Input.File$ FOR INPUT AS FILE #1, VARIABLE, RECORDSIZE 132

PRINT #2,FF} IF prior.Dependencies <> 0

PRINT §2, "wecemccoammcnccenmmonamences "4 INDUL.FLlE84" comeccccnmcoravrentunnmmcncnesns

G0OSUB Process,A.Fille
GOSUB Report.Findings

Input.Files = Input.Flles +

Total.Lines = Total.lLines + Input.Lines
Total.Dependencies = fotal.Dependencies + Dependenciles
Summary{(1) = Summatry([) + Category(l) FOR I = {1 TO 50
Prior.Dependencies = pDependencies

EXIT Main 1F NOT Indirect

NEXT

GOT0 Finished
Report.findlings:

PRINT
PRINT Input.Flles + "t * ¢ NUMiIS(Input.Lines)+” jines processed";

IF Dependencles > 0

THEN
PRINT =, * 4+ NUM1S (Dependencies)+™ written to *+0utput.Files
PRINT

ELSE
PRINT

END 1F

RETURN IF OQutput.File$ = "TT:"
PRINT %2

PRINT #2, Input.Fliles + ™: * 4 NUMIS(Input.Lines)+" 1ines processed"}

IF Dependencies > ¢

THEN
PRINT #2, ", " 4+ NUMIS(Dependencies)+" written to "+0Output.Files
PRINT %2
PRINT #2, ,Category(1),Titles(l) IF Category(l)<> 0 FOR I=1 TOD 50
END IF
PRINT %2 IF Dependencies = 0
RETURN
SPAGE

TN

66

%SBTTL "File Processing®
Process.A.Files
End.of.Flle = False

ON ERROR GDTD End.File
Dependencies = 0

Input.lines = 0
Category(l) = 0 FOR I = 1 TO 50
scans
WHILE True
CLOSE #1 IF End.of.File
EXIT Scan 1IF End.of.Fille

LINPUT 21, Answer A
Text = EDIT$(Answer,32)
Ioput.Lines = Input.Lines + 1§

C = INSTR(i,Answer,"i{") <omit comments>
Text = MID(Text,i,C-{) IF C <> 0
c =1
Drop.Literals:
WHILE True)
01 = INSTIR(C,Text,’*’) t Leading quote
02 = INSTR(QI+1,Text,*""*) ! Trailing quote
02 = LEN(Téxt) 1IF Q2 = ¢
EXIT Drop.Literals . IF Qf = ¢
Text = MID(Text,1,01) + MID(Text,Q2,LEN(Text)=02)
C = 02+1
NEXT
GOSUB Got.NOEXTEND IF €0 <> INSTR{1,Text,"NOEXTEND")) AND (Input.Lines < 10)
GOSUB Got.PEEK IF 0 <> INSTR(1,Text,"PEEK")
GOSUB Got.PUKE {F 0 <> INSTR({1,Text,"POKE") ,
GOSUB Got.OPEN IF (0 <> INSTR{}1,Text,"OPEN")) AND 0 <> (INSTR(i,Text,"A5"))
GOSUB Got.NAME IF (0 <> INSTR(I,Text,"NAME")) AND 0 <> (INSTR(i,;Text,"AS"))
GOSUB Got.KI1LL IF 0 <> INSTR(},Text,"KILL"™)
GOSUB Got.SYS IF 0 <> INSTR{1,;Text,"SYS5(")
GOSUB Got.CCONT IF 0 <> INSTR(1,Text,"CCONT")
GOSUB Got.SPEC IF 0 <> INSTR(1,Text,"SPECS")
GOSUB Got.STATUS Iif 0 <> INSTR(1,Text,"STATUS")
GOSHB Got.UNLOCK IF 0 <> INSTR(1,Text,"UNLOCK")
GDSUB Got .MAGTAPE IF 0 <> INSTR{!,Text,"MAGTAPE")
Gosue Got.TIME IF 0 <> INSTR(1,Text,"TIME(")
GOSUB Got.CHAIN IF (0 <> INSTR(1,Text,"CHAIN")) AND (0 <> INSTR(1,Text,"LINE"})
NEXT
RETURN
End.File:
End.of.File = True
RESUME

E¥EAGE

001

$SBTTL "Dependency Analysis Subroutines”

Got .NUEXTEND:
Category(1) = Category(1) + 1
GOSUB Report.Depéendency
RETURN

Got .PEFK?
G0OSUB Report.Dependency
Category(2) = Category(2) + 1
RETURN

Got.PUKE? v
GOSU8 Report.Dependency
Category(3) = Category(3) + 1

RETURN
GOt OPEN?S
GOTO Report.OPEN IF 0 O
GOTO Report.OPEN IF 0 <>
GOTO Report.OPEN IF 0 O
GOTO Report.UPEN IF 0 <
GOTO Report.OPEN IF 0 O
GOT0 Report.OPEN iIF 0 O
GOTO Report.OPEN IF 0 &
GOTO Report.OPEN 1IF 0 <
GOTO Report.0OPEN IF 0 <>
GOTO Report.OPEN iF 0 O
RETURN
Report.OPEN? ‘
Category(4) = Category(4) +
GUOSUB Report.Dependency
RETURN
Got . KILL:
GOTO Report.KILL IF 0 <
GOTO Report.KILL 1IF 0 <>
GOTO Report.KILL IF 0 <>
GQTO Report.KILL IF 0 <
GOTD Report.KILL IF 0 <>
50TO Report.KILL iF 0 O
GOTO Report.KILL IF 0 <>
GUTO Report.KILL IF 0 <>
RETURN
Report .KILL?
Category(s) = Category(5s) +
GOSUB Report.Dependency
RETURN

$PAGE

INSTR(f,Text,"1%)
INSTR(1,Text,">")
INSTR(1,Text; "MODE")

INSTR({,Text,;"[")
INSTR(L,Text;"1")
INSTR(1,Text;"*(")
INSTR(1,Text,"}*™)
INSTR(;Text,;’"(°)
INSTR(1,Text;*3"*)

. g pum.

G Gus. Gam Quw G- G

Device Spec

Protection Code
RSTS/E MODE's

RSTS/E PPN
RSTS/E PPN
RSTS/E PPN
RSTS/E PPN
RSTS/E PPN
RSTS/E PPN

INSTR(!,;Text,"CLUSTERSIZE")

INSTR(L,;Text,":")
INSTR(1,Text,">")

INSTR(1,Text,"{")
INSTR(1,Text,"*1")
INSTR(1,Text," ‘(")
INSTR(1,Text,")’*"}
INSTR(1,Text; (")
INSTR(1,Text,*)™")

1

[T

Sen Gus s B e e

Device Spec

Protection Code

RSTS/E PPN
RSTS/E PPN
RSTS/E PPN
RSTS/E PPN
RSTS/E PPN
RSTS/E PPN

I01

Got.NAMES
GOTO Report.NAME IF 0 <> INSTR(1,Text,”:")
GOTD Report.NAME IF 0 <> INSTR(1,Text,">")
GUTO Report.NAME IF 0 <> INSTR(1,Text,"[")
GOTO Report.NAME IF 0 <> INSTR(1,Text,"1")
GOTO Report.NAME iF 0 <> INSTR(i,Text,;"*(")
GOTO Report.NAME 1IF 0 <> INSTR({,Text,")’'")
GOTO Report.NAME IF 0 <> INSTR(1,Text, "(’)
GOTOD Report.NAME IF 0 <> INSTR(i,Text,*}"*)
RETURN
Report,.NAME?
Category(6) = Category(6) + 1
GOSUB Report.Dependency
RETURN
Got.CCONT!

Category(7) = Category(7) + |
G0sUB Report.Dependency
RETURN

Got ,UNLOCK? ‘
Category(8) = Category(8) + 1
GOSUB Report.Dependency
RETURN

Got . MAGTAPE!:
Category(9) = Category(9) + 1
GOSUB Report.bependency

RETURN
Got.TIME:

GOTO Report,.TIME IF o
GOTO Report.TIME IF 0
GOTD Report.TIME iF 0
GOTO Report.TIME IF ¢
GOTO Report.TIME IF 0

RETURN
Report.TIME:

Category(10) = Category({
GOSUB Report.pependency
RETURN

$PAGE

<>
<>
<>
<>

0)

INSTR(1,Text,"(1")
INSTR(1,Text,"(2")
INSTR(),Text,"(3")
INSTR(I'Teth“(4")

INSTR(1,Text,"TIME(O")

o

. G $ G S

nn. pun gem pus Sam

Device Spec

Protection Code

RSTS/E PPN
RSTS/E PPN
RSTS/E PPN
RSTS/E PPN
RSTS/E PPN
RSTS/E PPN

RSTS/E TIME
RSTS/E TIME
RSTS/E TIME
RSTS/E TIME
RSTS/E TIME

201

Got .CHAIN:
Category(ii) = Category(it)
GOSUB Report.bDependency
RETURN

-+
-

Got .,STATUS
Category(12) = Category(iz) + i
GOSUB Report.Dependency
RETURN

Got.SPEC:
Category(i13) = Category(i3) + {
GOSUB Report.Dependency
RETURN

Got.S5YS¢
Category(14) = Category(14) + i
GOSUB Report.Dependency
RETURN

Report.Dependency?
Dependencies = Dependencies + 1
PRINT #2, FORMATS(Input.Lines,"##¥é# ") + LEFT(Answer,125)
RETURN ’

%PAGE

€01

$SBTTL "Program Termination”
Done:

fnd.of.Job = True
RESUME

Cant.Find?

PRINT
PRINT "#ERROR - Cannot OPEN file: “"+Input.Files
PRINT * "+ERTS (ERR)
PRINT "*Program Now Terminates“
RESUME 99
1

99 Finfished: [
Control.Files = Input.¥iles IF NOT Indirect

PRINT

PRINT Meccmorvnmmosmavonarcccvarmens SUMMATY = oo emmens ome s mnmmnmmmemn—o
PRINT _

PRINT Control.Files + " " % NUMIS(Total.Lines)+" lines processed";

PRINT ¥ from " + NUMiIS(Input.Files) + " ffile(s)"

PRINT NUMiS(Total.Dependencles)+" dependencies written to "+0utput.Files
PRINT

PRINT ,,Summary(I),Titles(I) If Summary(I)<> 0 FOR I=f TO 50

PRINT

IF Output.Fileg <> "TTé"®

THEN
PRINT #2
PRINT #2, "ermwrcumcewawoemonsenocsmeme SUMMATY %% o o mw s m o wwoewme oo ow oo ws
PRINT #2
PRINT 22, Control.Files + ™ " 4 NUMiIs(Total.Linesi+" lines processed"}
PRINT #2, " from " 4+ NUMiS(Input.Files) + " flle(s)”
PRINT ¥2, NUMi1S(Total.Dependenclies)+" dependenclies written to "+Output.Fiies
PRINT #2
PRINT #2, ,,Summary(I),Titles(I) IF Summary(I)<> 0 FOR I=t TQ 50
PRINT

END IF

CLOSE 3
CLUSE #2

END

THREADED CODE PRODUCTION BY THE BASIC-PLUS-2 COMPILER

ED P Vouel

1.0 INTRODUCTION

This article introduces the reader to the concept of threaded
code, and wuses BASIC-PLUS-2 as an example of a compiler that produces
threaded code. For those familiar with threads, and compilers that
generate threaded code the first part of this article could be skipped,
but the second part should still be of some interest.

2.0 THREADS AND THREADED CODE

This part of the article will discuss what threads and threaded
code are, how threads work, what their advantages and disadvantages
are, and why the BASIC-PLUS-2 compiler for the PDP-~11 produces threaded
code, In the strictest sense, a thread is the name of a routine that
performs some action when the program 1is running. This routine may
require certain arguments be in certain places, or it may leave a
result of some kind in a particular place (on the stack for example).
For every thread name there is an associated routine that will perform
an action (in BASIC-PLUS~2 some routines can contain several threads,
but the same thread can never point to more than one routine). At task
build time these names are mapped to the addresses of the routines, and
at runtime each of these routines is executed in an order as produced
by the compiler, the combination of threads <carries out the actions
specified by the source program.

The exact mechanics of how all this is carried out at run-time 1is
very language dependent, but a general approach would be to have a
pointer to the threads (a pseudo PC). Each routine could then, when it
was finished wupdate the pointer, and transfer control toc the routine

pointed to next. How BASIC-PLUS-2 handles this will be talked about
later in this paper.

There are two very important concepts with threaded «code. First
this type of <code contains no (or <very little) machine code. For
example the code generated by the BASIC-PLUS-2 compiler contains one
executable instruction, which is used to initialize the pseudo PC. The
second thing to realize is that the routines that are executed at
run~time may be executed many times in a given program execution. This
is to say, anytime a given operation has to take place, the same thread
will be produced by the compiler, and the same routine will be executed
at run-time, It is important to realize that each routine exists 1in
only one place in the task file, meaning the exact same code is
executed every time a routine is needed.

It should be clear to the reader by now that a threaded code
compiler really consists of two parts; the compiler itself, which
generates the threaded code; and the collection of run-time routines,
or OTS (object time system). The routines in the OTS are generally
written in assembly code (MACRO in the <case of the PDP-11). It 1is

104

BP2 THREADED CODE PRODUCTION

interesting to note that the compiler need not know a lot about the OTS
routines. All it must know is what the routines take as arguments (and
where they are expected to be), and what they produce as results (and
where the results are placed). The compiler never has to worry about
what is happening at the machine code level. The 0TS will make sure
registers and other such low-level stuff are used properly. Threads may
be <viewed as a higher level, machine indepandant language. The OTS
represents the low~level machine dependent side of the machine. For
furhter discussion on this and other philoscphical issues see Chapter
15 entitled "Turning Cousins into Sisters: an example of Software
Smoothing of Hardware Differences" in the book "Computer Engineering"
by Bell, Mudge, and McNamara. One thing that might be of interest is
that it is theoretically possible for all threaded code compilers for a
given machine to use the same 0TS, more will said on this idea later.

At this point something more must be said on the organization of
an O0TS. Until now the OTS has been described as a set of routines, such
that for every thread produced by an associated compiler, there 1is a
routine corresponding to that thread. While this is true, there is more
than just this to a typical 0OTS. An 0TS will normally have two types of
routines, one is the thread routine that has been talked about so far,
the other is a support type routine that contains code used by many of
the thread routines. That is, when a thread is executing, it may have
to call a support routine to perform a given function. These functions
are often required by many thread routines, and are usually do
something at a low level (such as allocate space for a string). These
function-type routines have no thread associated with them. They can be
considered sub-routines in the 0TS that are called only by other thread
routines. Like thread routines, support routines expect arguments in a
certain place, and return results in a certain place, and it is wup to
the «calling routine to know exactly where these things are. It should
also be noted that it is possible for a thread routine to call another
routine, which will «c¢call another routine, and so forth. This is most
common with threads that do complicated operations, for example the
ROPS$ thread in BASIC-PLUS-2 which does the file open for any type of
file. Because the 0TS works this way, its implementation can be very
tricky., That 1is to say each routine must be sure that it doesn’t kill
or change any location that any other routine might require,

Now that the principals of threaded code have been discussed, the
advantages and disadvantages of threaded code should be talked about.
First the alternative to threaded code should be defined. Many
complilers produce 1in-line <code. 1In-line <code <consists largely of
object code instructions that are actually executed at runtime,
although <calls to various system routines to perform complicated or
system functions might also be present. This type of code is what most
people think a compiler produces (and most of them do). A source code
statement gets translated into machine code statements that carry out
the desired operation.

Threaded code versus in-line <code 1s an example of the old
space/time trade-off problem. The main disadvantage of threaded code is
that it is much slower than in-1line code. The routines must Kkeep

updating the ’thread pointer’ and jumping to the next thread routine
when they are done. With in-line code none of this is necessary; the

105

BP2 THREADED CODE PRODUCTION

code to do the next operation immediately follow the code that did the
last task, no unnecessary jumping has to be done. 1In addition an
intellegent in-line code compiler will make more efficient use of the
target machine’s hardware. Since an 1in-line code compiler produces
actual machine code, it can, for example, allocate registers and other
temporary data areas more efficiently tham a threaded code compiler.
For example arguments between threads are passed on the stack, and not

in general registers this will tend to slow down the execution of
threaded code relative to in-line code.

On the other hand threaded code will usually take-up less space
than the same ©program compiled into in-line code. With in-line code
every time an operation has to be performed, the same code is produced.,
As a result a program can have a section of code occuring many times
within a program. Threaded code, on the other hand, keeps only one copy
of the machine code around, and it will be executed everytime the
operation is needed. While it is true that some small programs may
produce larger tasks with threaded code, large programs that would
exceed exceed memory if in-line code were produced, will fit wusing
threaded code generation.

There are other advantages to threaded code, especially when
transportability, or the ability for a compiler to work under different
hardware or operating systems is necessary. For example on a PDP-11,
where there are both different operation systems, and different
hardware available (hardware math packages for instance), threaded code
has many advantages. When in-line compilers produce object code, this
code must be able to rum on all of these configurations. There are
three ways to possibly do this. First the compiler could produce code
that would rumn on all possible combinations of hardware and operating
systems. Even if this were possible it would be very inefficient (math
operations would have to assume the minimum math hardware, and those
systems with more advanced hardware would not benifit from it).
Alternatively the compiler could be smart enough to generate the right
code for the system it was running on. While this is possible, the
compiler would have to be very large, and would run a lot slower, or at
the very least have a very complicated installation procedure. This is
not a very practical solution for a small machine like am 11. The 1last
solution would be to have a bunch of different compilers, one for each
possible configuration. However with BASIC-PLUS-2 on the PDP-11, there
are now 3 major operating systems (RSTS, RSX, and PRO), and 2 different
math packages (EIS, and FPU). This would mean 6 different compilers!!

Since no object code is brought into a threaded code program until
it is 1linked by the task builder, only one compiler is necessary. The
operating system, and hardware dependant code can be put in the 0TS,
and the ©proper routines will be brought in by the task builder. While
this does mean there will be 6 different 0TS’s, as an OTS is just a
library of routines, most of these routines will be the same accross
all systems. Those routines that are different can be kept track of
more easily. The Dbasic idea is to tailor the OTS to the machine, but
leave the compiler the same. To carry this point to an extreme, it
should be possible to bring threaded code to any machine that has an
OTS that will carry out the proper routines,.

106

BP2 THREADED CODE PRODUCTION

There are other reasons why a compiler might choose to produce
threaded code. If someone was in a hurry to produce a working compiler,
he might be able to “steal’ some working OTS routines from another
compiler that ran on the same system. While not all routines can be
used, things 1like math routines, that are similar accross many
languages, and take a lot of time to write, can usually be used. This
could cut down developement time considerably. This is not to say that
such a practice has been done before, but it certainly is possible.

3.0 THREADED CODE A LA BASIC-PLUS-2

As the stated before, the PDP-~11 BASIC~PLUS-2 compiler generates
threaded <code. The easiest way to see the threads that the compiler
produces is to compile a program with the /MAC option. This will
produce a macro output for the source program. If you examine this
macro output it will not look much like any other macro source you have
seen. For example the simple program:

10 PRINT "HELLO"
15 A=A+4

20 C$=C$+"BYE"
25 DZ=SQR(C)

30 END

If you were to do a COM/MAC the code portion of the output would 1look
like:

.PSECT $CODE

JSR R4,@ $INITM
.WORD 108
LLIMIT

.WORD $$BP2
.WORD $FLAGR,$FLAGT-$FLAGR

.WORD O
.WORD S$ICIOl
.WORD 0

10%: .WORD 20%

.WORD SPDATA, SPDATA+0
.WORD $IDATA+0,5
.WORD $STRNG, 2

.WORD STDATA, SARRAY, 0
.ASCII /EXAMPL/

208:

L10: LINS , 10 3 10
CLISS
IPTS
RLISM » SPDATA+16 ; "HELLO"
PVS$AI ,0 ;0
EOLS

107

BP2 THREADED CODE PRODUCTION

L15: LINS , 15 ;15
MOFSMS ,$IDATA+6 ;A
ADF$MS ,$PDATA+OQ s #a
MOF$SM ,$IDATA+6 s A
L20: LINS ,20 ;20
RLISM ,$STRNG+0 s C3
RLISM ,$PDATA+4 : "BYE"
COS$AA
MOSS$SM ,$STRNG+0 ; C$
L25: LINS ,25 ;25
MOF$MS ,$IDATA+0 ; C
SQFs
CIF$
MOISSM ,S$IDATA+4 ; D%
L30: LINS ,30 ;30
END$
.END $CODE

As stated earlier, this is a strange looking macro program. The first
line (JSR R4,@$INITM) 1is the one line of object code produced by the
compiler., This causes control to go to the routine $INITM which does
the program initializaion. The next several locations are arguments
used by $INITM to do the initialization. As mentioned earlier in the
article, a pointer is often kept that points to the threads. For
BASIC-PLUS-2 this pointer is general register R4, More will be said on
this later. The actual threaded code begins a label L10:.

These threads get mapped to their run-time routines by the task
builder. The BASIC-PLUS-2 OTS 1is an object library that has entries

who’s names correspond to the names of the threads (SQF$, MOI$SM,
etc.), and they do all the work.

108

BP2 THREADED CODE PRODUCTION

The remainder of this article will deal with the BASIC-PLUS-2

thread mnaming conventions, and will explain briefly what each thread
does.

The thread name is actually the address of the routine wused to
perform the required action. The routine is entered via an indirect
jump (JMP @(R4)+) from the previous routine and exits via another
indirect Jjump to the next routine. The PDP-11 GENERAL REGISTER 4 (R4)
is used as the BASIC+2 program counter. Some arguments for a thread
routine may also acquired through R4.

The first three letters of the thread name are arbitrarily
distinct opcode names. the fourth letter is always a §. The letters
following the §, when present, are descriptive combinations of sources
and/or destinations. For example, COS$AS can be read as COncatenate
String SOURCEl1(A) with string SOURCE2(S) and leave the address of the
result string on the stack.

Some threads require a mode. For example addition can be performed
on many data types, If a mode is required, the third character of the
thread name designates the mode of the thread. Therefore ADIgxx will be
a word integer addition. The following table describes each of the
modes and their abbreviations.

NAME ABBREVIATION DESCRIPTION

Byte B A one byte number

Integer I A one word Integer number,

Longword L A two word integer

Float F A two word single precision number .
Double D A four word double precision number
String S A 1list of ASCII characters.

RFA R An RMS RFA value

For thread that do not require a mode, the third character 1is

usually wused to Dbetter name the operation of-the thread. IPUS$, for
example, is the initialize PRINT USING thread.

A number of thread require that their operand 1locations be
specified in the thread name. The following tables describe the operand
naming conventions.

OPERANDS
ABBR NAME DESCRIPTION
S Stack The source/destination operand is the stack.

109

BP2 THREADED CODE PRODUCTION

M Memory The address of the source/destination is
pointed to by R&4.

P Pointer R4 points to the address of the address of amn
argument. This mode is used to handle sub-

program arguments, and variables that appear in

DYNAMIC MAPs

I Immediate The source is pointed to by R4. This is used
only for word integer threads.

A Address The top of the stack contains the address of
the destination, or in the case of strings
the address of the source string descriptor
or a 0 followed by a string descriptor.

It should be noted that many threads have arguments that are not
specified by any thread suffix. Most BP2 built-in functions are of this
type. The RIGHTS$ functionm will produce a RIT$ thread. The arguments and
result of this function are all on the stack. In addtion some threads
have suffixes that specify only some of their arguments. For example
VRISM will return the wvalue of a numeric array element. The "M"
signifies that the array is a memory mode array, but the indicies 1into
the array are on the stack, and the result is put on the stack, even
thought there is no "8" suffix.

110

BP2 THREADED CODE PRODUCTION

THE FOLLOWING IS A LIST OF THREADS PRODUCED BY THE BASIC-PLUS-2
COMPILER (VERSION 2.1), AND A BRIEF EXPLANATION OF EACH.

NOTE
The following 1list applies only to
BASIC~-PLUS~-2 Version 2.1. The thread
names and/or functions may change in any

future version of BP2.

ABDS - Absolute Value function, double precision, arg/res. on stack
ABFS ~ Absolute Value function, single precision, arg/res. on stack
ABIS - Absolute Value function, word integer, arg/result on stack
ABLS - Absolute Value function, long integer, arg/result on stack
ADDSMS - Double precision addition, memory + stack -> stack

ADDSPS - Double precision addition, parameter + stack ~> stack
ADDS$SS =~ Double precision addition, stack 4+ stack -> stack

ADFSMA =~ Single precision addition, memory + address -> address
ADFSMM - Single precision addition, memory + memory -> memory
ADFSMP - Single precision addition, memory + parameter =-> par.
ADF$MS - Single precision addition, memory + stack -> stack

ADFSPA -~ Single precision addition, pointer + address =-> address
ADF$PM =~ Single precision addition, parameter + memory =-> memory
ADF$PP - Single precision addition, parameter + parameter -> par.
ADF$PS - Single precision addition, parameter + stack -> stack
ADFS$SA =~ Single precision addition, stack + address -> address
ADF$SM =~ Single precision addition, stack + memory -> memory

ADF$SP - Single precision addition, stack + pointer -> pointer
ADF$SS =~ Single precision addition, staek + stack =~> stack

ADISIA - Word integer addition, immediate + address =) address
ADISIM - Word integer addition, immediate + memory -> memory

ADISIP =~ Word integer addition, immediate + parameter -~)> parameter
ADISIS - Word integer additien, immediate + stack =-> stack

ADISMA - Word integer addition, memory + address ~-> address

ADISMM - Word integer addition, memory + memory => memory

ADISMP -~ Word integer addition, memory + parameter =-» parameter
ADISMS =~ Word integer addition, memory + stack -> stack

ADISPA =~ Word integer addition, parameter + address -> address
ADISPM -~ Word integer addition, parameter + memory =-> memory

ADISPP =~ Word integer addition, parameter + parameter -)> parameter
ADISPS =~ Word integer additicon, parameter + stack -> stack

ADISSA ~ Word integer addition, parameter + address -~> address
ADISSM -~ Word integer addition, stack + memory -)> memory

ADISSP -~ Word integer addition, stack + parameter =~)> parameter
ADI$SS - Word integer addition, stack + stack -> stack

ADLSMS - Long integer addition, memory + stack -> stack

ADLS$PS - Long integer addition, parameter + stack ~-> stack

ADLS$SS - Long integer addition, stack + stack -> stack

AMISM - Begin array MOVE TO/FROM code loop, memory array

AMISP - Begin array MOVE TO/FROM code loop, parameter array

ANIS - Word integer AND thread, args/result omn stack

ANLS - Long integer AND thread, args/result on stack

ARIS$M - Get addr of numeric array element, memory array, subs on stk

111

BP2 THREADED CODE PRODUCTION

ARISP
ARISYV
ARRS
ARSSC
ARSS$M
ARSSP
ARSS$YV
ASC$
ATD$
ATFS
BEQS$
BGES
BGTS
BLES
BLTS
BNES
BRAS
BUF$
CALS
CBI$
CBRS
CCDs
CCE$
CCF$
CCP$
Gexs
CDF$
CDIS
CDLS
CFD$
CFIS
CFL$
CHAS
CHNS
CHRS
CHSS$
CIDS
CIFS
CILS
CISS
CLB3M
CLBSS
CLD$
CLD$A
CLD$M
CLDS$P
CLD$S
CLF$
CLF$A
CLF$M
CLF$P
CLF$S
CLIS
CLISA
CLISM

Get addr of num. array element, parameter array, subs on stk

Get addr of num. array element, virtual array, subs on stack e
Get descriptor of remappable array element, subs on stack

Get addr of string array elem., common/map array, subs on stk
Get addr of string array element, memory array, subs on stack
Get addr of str array element, parameter array, subs on stk
Get addr of str array element, virtual array, subs on stack
ASCII function, arg/result omn stack

Double precision ATN function, args/result on stack

Single precision ATN function, args/result on stack

Branch equal, based on hardware condition codes

Branch greater than or equal to, based on condition codes
Branch greater than, based on condition codes

Branch less than or equal to, based on condition codes

Branch less than, based on condition codes

Branch not equal, based on condition codes

Branch (unconditional) ‘

BUFSIZ function, channel number on stack, result to stack
CALL, ffparameters and routine follow

Convert word integer to byte integer, arg/res on stack

CALL BY REF, #parameters and routine follow

CVT$F with /DOU, arg/result omn stack

Enable “C trapping (CTRLC)

CVT$F with /NODOU, arg/result on stack

CCP0OS, arg/res on stack

Disable “C trapping (RCTRLC)

Convert single precision number to double, arg/res on stack .

Convert word integer to double precision, arg/res on stack
Convert long integer to double precisiom, arg/res on stack
Convert double precision to single, arg/res on stack
Convert word integer to double precision, arg/res on stack
Convert long integer to single precision, arg/res on stack
First thread in CHANGE string to array loop

CHAIN thread

CHR§ function

First thread in CHANGE array to string loop

Convert double precision to word integer

Convert single precision to word integer

Convert long word to word integer

CVT$% function

Move Q0 byte, memory argument

Move 0 byte to stack

Convert double precision to long integer

Move 0, double precision, address arg.

Move (Q, double precision, memory arg.

Move 0, double precision, parameter arg.

Move 0, double precision to stack

Convert single precision to long integer

Move 0, single precision, address arg.

Move 0, single precision, memory arg.

Move 0, single precision, parameter arg.

Move 0, single precision to stack

Convert word integer to long integer

Move 0, word integer, address arg. —
Move 0O, word integer, memory arg.

112

BP2 THREADED CODE

CLISP

CLISS

CLLSA

CLL$M

CLLSP

CLL$S

CLRS$M

CMDSMM
CMD$MP
CMD$MS
CMD$PM
CMDSPP
CMD$PS
CMD$SM
CMD§SP
CMD$SS
CMF $ MM
CMF$MP
CMF $MS
CMF $ PM
CMF$PP
CMF$PS
CMF $SM
CMF$SP
CMF$SS
CMISII
CMISIM
CMISIP
CMISIS
CMISMI
CMI$MM
CMISMP
CMISMS
CMISPI
CMI$PM
CMISPP
CMISPS
CMIS$SI
CMI$SM
CMISSP
CMISSS
CML$MM
CML§MP
CML$MS
CML$ PM
CML$PP
CMLS$PS
CML$SM
CMLS§SP
CML$SS
CMR $MM
CMRSMP
CMR$MS
CMR$PM
CMRS$PP

Move
Move
Move
Move
Move
Move s
Move O,
Compare
Compare
Compare
Compare
Compare
Compare
Compare
Compare
Compare
Compare
Compare
Compare
Compare
Compare
Compare
Compare
Compare
Compare
Compare
Compare
Compare
Compare
Compare
Compare
Compare
Compare
Compare
Compare
Compare
Compare
Compare
Compare
Compare
Compare
Compare
Compare
Compare
Compare
Compare
Compare
Compare
Compare
Compare
Comapre
Comapre
Comapre
Comapre
Comapre

"

-

-

s

’

OO O OO O

PRODUCTION

word
word
long
long
long
long
RFA arg,
double,
double,
double,
double,
double,
double,
double,
double,
double,
single,
single,
single,
single,
single,
single,
single,
single,
single,
word,
word,
word,
word,
word,
word,
word,
word,
word,
word,
word,
word,
word,
word,
word,
word,
long,
long,
long,
long,
long,
long,
long,
long,
long,
RFA,
RFA,
RFA,
RFA,
RFA,

integer,
integer to stack
integer,
integer,
integer,
integer to stack

memory arg.

memory and memory,
memory and parameter,

memory and stack,

parameter
parameter
parameter
stack and
stack and
stack and

memory and memory,
memory and parameter,

and memory,
and parameter,
and stack,

memory,

parameter,

stack,

memory and stack,

parameter
parameter
parameter
stack and
stack and
stack and

and memory,
and parameter,
and stack,

memory,

parameter,

stack,

immediate and immediate,
immediate and memory,
immediate and parameter,
immediate and stack,
memory and immediate,
memory and memory,
memory and parameter,
memory and stack,
parameter
parameter
parameter
parameter
stack and
stack and
stack and
stack and
memory and memory,
memory and parameter,

parameter arg.

address arg.
memory arg.
parameter arg.

set condition codes

set condition codes
set condition codes

set condition codes
set condition codes
set condition codes
set condition codes

set condition codes
set condition codes

set condition codes

set condition codes
set condition codes

set condition codes
set condition codes
set condition codes
set condition codes

set condition codes
set condition codes

set cond. codes

set condition codes
set condition codes
set condition codes

set condition codes
set condition codes

set condition codes

set condition codes
and immediate,
and memory,
and parameter,
and stack,
immediate,
memory, s
parameter,
stack,

set condition codes
set condition codes
set condition codes
set condition codes

set condition codes

et condition codes

set condition codes

set condition codes

set condition codes
set condition codes

memory and stack,
parameter
parameter
parameter
stack
stack
stack
memory
memory
memory
parameter and memory,
parameter and parameter,

and
and
and
and
and
and

set condition codes

and memory, set condition codes
and parameter, set condition codes
and stack, set condition codes
memory, set condition codes
parameter, set condition codes
stack, set condition codes
memory, set condition codes
parameter, set condition codes
stack, set condition codes

set condition codes

set condition codes

113

BP2 THREADED CODE PRODUCTION

CMR$PS - Comapre RFA, parameter and stack, set condition codes
CMR$SM - Comapre RFA, stack and memory, set condition codes
CMR$SP -~ Comapre RFA, stack and parameter, set condition codes
CMRS$SS - Comapre RFA, stack and stack, set condition codes
CMSSAA - Compare string, address and address, set condition codes
CNDS$ - C0S function, double precision, arg/res on stack

CNF$ - C0S function, single precision, arg/res on stack
COISIS =- Compliment word integer, immediate to stack

COI$MS =~ Compliment word ingeter, memory to stack

CO0IsPS - Compliment word ingeter, parameter to stack

C0IsSS - Compliment word ingeter, stack to stack

COL$MS <~ Compliment long ingeter, memory to stack

COLsPS - Compliment long ingeter, parameter to stack

COL$SS - Compliment long ingeter, stack to stack

COMS$ ~ String arithmetic compare, args/result on stack
COS$AA -~ Concatenate string, address and address, result on stack
COS$AS - Concatenate string, address and stack, result on stack
CO0S$SA - Concatenate string, stack and address, result on stack
C0S8§S8S - Concatenate string, stack and stack, result on stack
CPD$SM = Copy double, stack to memory

CPDsSP - Copy double, stack to parameter

CPF$SM - Copy single, stack to memory

CPF$SP - Copy single, stack to parameter

CPISSM - Copy word, stack to memory

CPI§$SP - Copy word, stack to parmeter

CsCs -~ Return smaller of 2 arguments, args/result on stack
CSDS - CVTFS$ for double precision, arg/res on stack

CSF§ - CVTFS$ for single, arg/res on stack

CSIg - CVIF% arg/res on stack

CVTs ~ CVT$$ and EDITS function, args/result on stack

DATS - DATE$ function, arg/res on stack

DCFS$M - Decrement single precision, memory argument

DCISA - Decrement word integer, address argument

DCISM - Decrement word integer, memory argument

DCISP - Decrement word integer, parameter argument

DCIS$S - Decrement top of stack

DCLS - Invoke DEF function

DFF3 -~ String arith. subtract, args/result on stack

DIDSMS =~ Divide double precision, memory to stack

DID$PS =~ Divide double precision, parameter to stack

DIDSSS - Divide double precision, stack to stack

DIFgMS =~ Divide single precision, memory to stack

DIFS$SPS - Divide single precision, parameter to stack

DIF$SS =~ Divide single precision, memory to stack

DIISIS =~ Divide word integer, immediate to stack

DIISMS - Divide word integer, memory to stack

DIISPS - Divide word integer, parameter to stack

DII§SS =~ Divide word integer, stack to stack

DIL$MS =~ Divide long integer, memory to stack

DIL$PS =~ Divide long integer, parameter to stack

DIL$SS =~ Divide long integer, stack to stack

DLNS - DEBUG line thread

DPDS - Duplicate stack, double precision

DPF§ ~ Duplicate stack, single precision

DPIS ~ Duplicate stack

114

BP2 THREADED CODE PRODUCTION

DTDS - Double determinant, result on stack

DTFS - Single determinant, result on stack

EARS ~ End of array MOVE FROM/TO loop

ECDSMM -~ Approx compare, double, memory to memory, set cond codes
ECD$MP -~ Approx compare, double, memory to parameter, set cond codes
ECD§MS5 -~ Approx compare, double, memory to stack, set cond codes
ECDSPM -~ Approx compare, double, parameter to memory, set cond codes
ECDSPP - Approx comp, double, parameter to parameter, set cond. codes
ECD$PS =~ Approx comp, double, parameter to stack, set condition codes
ECD$SM -~ Approx compare, double, stack to memory, set condition codes
ECD$SP - Approx comp, double, stack to parameter, set condition codes
ECD$SS =~ Approx compare, double, stack to stack, set condition codes
ECF$MM - Approx compare, single, memory to memory, set condition codes
ECFSMP -~ Approx compare, single, memory to parameter, set cond codes
ECFS$SMS ~ Approx compare, single, memory to stack, set condition codes
ECF$PM - Approx compare, single, parameter to memory, set cond codes
ECF¢PP -~ Approx comp, single, parameter to parameter, set cound. codes
ECF$PS - Approx comp, single, parameter to stack, set condition codes
ECF$§SM - Approx compare, single, stack to memory, set condition codes
ECF$SP -~ Approx comp, single, stack to parameter, set condition codes
ECF3SS - Approx compare, single, stack to stack, set condition codes
ECHs - ECHO function, arg on stack

ECS$AA - Exact string compare, args on stack, set condition codes
EDTs - Enable 1 character input on channel, arg on stack

EFLS$ - End of FIELD thread

EFVS -~ Dynamic dimension thread, new dims on stack

ENDS - END of program

EOLS . =~ End of I/0 list thread

EPUS - End of PRINT USING statement

EQIs - EQV of word arguments, args/res on stack

EQLS - EQV of long arguments, args/res on stack

ERLS - ERL function

ERNS - ERNS functien

ERRS - ERR function

ERTS - ERTS$ function

EXDS - Exponentiation, double precision, args/result on stack

EXF§ - Exponentiation, single, args/res on stack

FCLS - DEF* function call

FDBsSM - Return from function with byte result

FDDSM - Return from function with double result

FDF$M - Return from function with single result

FDIgM - Returmn from function with word result

FDLS$M -~ Return from function with long result

FDRSM -~ Return from function with RFA result

FDS$M -~ Return from function with string result

FFAS -~ FIND by RFA

FIDS -~ FIX function for double precision

FIFS -~ FIX function for single

FILS - FILL argument in MOVE TO/FROM

FINS - FSPS function

FLDS - FIELD statement

FLNS - Function line thread

FM38 - MOVE FROM with fixed length string

FSS$ - FSS$ function

FTDS - FORMATS$ function, double precision

115

BP2 THREADED CODE PRODUCTION

FTF$ FORMATS$ function, single precision -
FTIS FORMATS function, word

FTLS FORMATS function, long

FTSS FORMATS function, string

GFAS GET by RFA

GSCs - Computed GO SUB (ON GOSUB)

GSUS - GO SUB

ICISA - Increment word integer, address argument

ICIS$M - Increment word integer, memory argument

ICIsP - Increment word integer, parameter arg.

ICIsSS - Increment top of stack

IFLS - Initialize for FIELD

IIIS - RE-initialize for INPUT, used for INPUT with prompt

TINS - Initialize for INPUT

ILIS - RE-initialize for LINPUT, used for LINPUT with prompt

ILSS - Initilaize for INPUT LINE

IMFS - Initialize for MOVE FROM

IMIS - IMP for word integer

IMLS - IMP for long integer

IMTS - Initialize for MOVE TO

INDS - INT function for double, arg/res on stack

INFS - INT function for single, arg/res on stack

INSS -~ INSTR function, args/res on stack

I0ILsS -~ OR for word integer

IOLS - OR for long integer

IPRS - Initialize PRINT with RECORD

IPTS - Initialize for PRINT -
IPUS - Initialize for PRINT USING -
IRDS -~ Initialize for READ

IRMS - Initialize for REMAP

IVBSA - INPUT byte, address of arg on stack

IVDSA - INPUT double, address of arg on stack

IVFSA - INPUT single, address of arg on stack

IVISA - INPUT word, address of arg omn stack

IVLSA - INPUT long, address of arg on stack

IVSSA - INPUT string, address of arg on stack

JBBS - DEBUG line thread, used a labels

JMCS - Computed GOTO (ON GOTO)

KGES - End of CHANGE number to string

KILS - KILL thread

KTIS - IMP thread for word integers

KTLS - IMP thread for long integers

LCDS -~ Common LOG (LOG10) function for double precision

LCF$ - Common LOG (LOG10) function for single

LENS - LEN function

LEQS$ - Load true if equal, input is condition codes, result on stack
LFKS$ - Random FIND with KEYs

LFNS ~ Sequential FIND

LFRS - Random FIND

LFTS - LEFTS$ function

LGES - Load true if greater or equal, input is cond codes, res stack
LGKS - GET with KEYs

LGNS - Sequential GET

LGRS - Random GET —
LGTS - Load true if greater than., input is cond codes, res on stack

116

BP2 THREADED CODE PRODUCTION

LINS - LINE thread

LISS - Initialize for INPUT LINE

LITS - Re~initialize for INPUT LINE

LLES - Load true if less than or equal, input cond codes, stack res.
LLTS ~ Load true if less than, input cond codes, result on stack
LND$ -~ Natural LOG function (LOG) double precision

LNES - Load true if not equal, input is cond codes, result on stack
LNF§ - Natural log function (LOG) single precision

LPCS - Sequential PUT with count

LPNS - Sequential PUT

LPRS - Random PUT with count

LPTS - Random PUT

LSS$SAA - LSET address to address

LSSSAM - LSET address to memory

LSSSAP - LSET address to parameter

LSSSMA - LSET memory to address

LSSSPA -~ LSET parameter to address

LUCS - UPDATE with count

LUNS - UPDATE without count

LYNS - Same as ERLS

MADS ~ Convert string, second to top of stack, to address mode
MARS - Tail end of any matrix loop thread

MA1S - Verify two matricies are same size (1 dimension)
MA2S - Verify two matricies are same size (2 dimensions)
MFBS ~ MOVE FROM byte variable

MFDS$ - MOVE FROM double

MFF$S - MOVE FROM single

MFIS - MOVE FROM word

MFLS - MOVE FROM long

MFRS - MOVE FROM RFA

MFSS$ - MOVE FROM string

MGTS - MAGTAPE function

MIDS - Matrix inversion double

MIFS - Matrix inversion single

MIIS - Matrix inversion word

MISS ~ MIDS function

MM23 - Verify that matrix multiplication is legal
MOBSMA Move byte, memory to address

MOBS$MM Move byte, memory to memory

MOBSMP Move byte, memory to parameter

MOBSMS Move byte, memory to stack

MOBSPA Move byte, parameter to address

MOBSPM Move byte, parameter to memory

MOBSPP Move byte, parameter to parameter

MOBSPS Move byte, parameter to stack

MOBSSA Move byte, stack to address

MOBS$SM Move byte, stack to memory

MOBSSP Move byte, stack to parameter

MODSMA Move double, memory to address

MODSMM Move double, memory to memory

MODSMP Move double, memory to parameter

MODSMS Move double, memory to stack

MODSPA Move double, parameter to address

MODSPM Move double, parameter to memory

MODSPP Move double, parameter to parameter

117

BP2 THREADED CODE PRODUCTION

MODSPS
MOD$SA
MODS$ SM
MODSSP
MOD$SS
MOF $MA
MOF $MM
MOF $MP
MOF $MS
MOF$PA
MOF $ PM
MOFS§PP
MOFS$PS
MOF$SA
MOF $SM
MOF$SP
MOF$SS
MOISIA
MOI$IM
MOISIP
MOIS$IS
MOISMA
MOT $MM
MOISMP
MOISMS
MOISPA
MOI$PM
MOISPP
MOI$PS
MOI$SA
MOISSM
MOI$SP
MOIS$SS
MORSMA
MOR$MM
MORSMP
MORSMS
MORSPA
MORS$ PM
MORSPP
MORSPS
MORS$SA
MORSSM
MORSSP
MOSSAA
MOSSAM
MOSSAP
MOSSAS
MOS$MA
MOS$MM
MOSS$MP
MOSSMS
MOSS$PA
MOS$PM
MOSS$PP

Move
Move
Move
Move
Move
Move
Move
Move
Move
Move
Move
Move
Move
Move
Move
Move
Move
Move
Move
Move
Move
Move
Move
Move
Move
Move
Move
Move
Move
Move
Move
Move
Move
Move
Move
Move
Move
Move
Move
Move
Move
Move
Move
Move
Move
Move
Move
Move
Move
Move
Move
Move
Move
Move
Move

double,
double,
double,
double,
double,

parameter to stack
stack to address
stack to memory
stack to parameter
stack to stack

single,
single,
single,
single,
single,
single,
single,
single,

memory to
memory to
memory to
memory to
parameter
parameter
parameter
parameter

address
memory
parameter
stack

to address
to memory

to parameter
to stack

single,
single,
single,

stack to address
stack to memory
stack to parameter
stack to stack

single,
word,
word,
word,
word,
word,
word,
word,
word,
word,
word,
word,
word,
word,
word,
word,
word,
RF4,
RFA,
RFA,
RFA,
RFA,
RFA,
RFA,
RFA,
RFA,
RFA,
RF4,
string,
string,
string,
string,

immediate
immediate
immediate
immediate
memory Lo
memory to
memory to
memory to
parameter
parameter
parameter
parameter
stack to
stack to
stack to
stack to
memory to
memory to
memory to
memory to
parameter
parameter
parameter
parameter

address
address
address
address

to address
to memory
to parameter
to stack
address
memory
parameter
stack
to address
to memory
to parameter
to stack
address
memory
parameter
stack
address
memory
parameter
stack
to address
to memory
to parameter
to stack

stack to address
stack to memory
stack to parameter

to address
to memory

to parameter
to stack

string,
string,
string,
string,
string,
string,
string,

memory to
memory to
memory to
memory to
parameter
paremeter
parameter

address
memory
parameter
stack

to address
to memory

to parameter

118

BP2 THREADED CODE PRODUCTION

MOS$PS - Move string, paremeter to stack

MOS$SA - Move string, stack to address

MOS$SM - Move string, stack to memory

MOS$SP - Move string, stack to parameter

MOS$SS - Move string, stack to stack

MRSS - REMAP string with length

MR1S - Used to start loop throught 1 dimensional matrix
MR2$ - Used to start loop throught 2 dimensional matrix
MSI$IM - Same as MOISIM

MTBS - MOVE TO byte

MTDS - MOVE TO double precisicn

MTF§ - MOVE TO single precision

MTILS - MOVE TO word integer

MTLS - MOVE TO long

MTRS - MOVE TO RFA

MTSS - MOVE TO string

MOD$MS - Multiply double, memory to stack

MUDsPS -~ Multiply double, parameter to stack

MUD$SS -~ Multiply double, stack to stack

MUF$MS -~ Multiply single, memory to stack

MUF$PS -~ Multiply single, parameter to stack

MUF$SS - Multiply single, stack to stack

MUISIS =~ Multiply word, immediate to stack

MUISMS - Multiply word, memory to stack

MULI$PS ~ Multiply word, parameter to stack

MUI$SS - Multiply word, stack to stack

MULSMS =~ Multiply long, memory to stack

MULSPS - Multiply long, parameter toc stack

MUL$SS - Multiply long, stack to stack

NCHS$ - Thread to do NOECHO function

NDISM - NEXT thread for word loops with step of -1, memory counter
NDISP ~ NEXT thread for word loops with step of ~1, parameter counter
NGDS$SMS - Negate double, memory to stack

NGD$PS - Negate double, parameter to stack

NGD$SS - Negate double, stack to stack

NGF$MS -~ Negate single, memory to stack

NGF$PS - Negate single, parameter to stack

NGF$SS - Negate single, stack to stack

NGISMS - Negate word, memory to stack

NGISPS -~ Negate word, parameter to stack

NGIsSS =~ Negate word, stack to stack

NGLSMS - Negate long, memory to stack

NGLSPS - Negate long, parameter to stack

NGL$SS -~ Negate long, stack to stack

NIISM - Word NEXT with step of 1, memory mode counter

NIISP -~ Word NEXT with step of 1, parameter mode counter
NMD$ - NUM$ function for double precision

NMFs - NUM$ for single

NML3 - NUMs for LONG

NMOS - NUM function

NM2$ - NUM2 function

NOISA -~ Move -1 (word) toc address

NOISM - Move -1 (word) to memory

NOIsP - Move -1 (word) to parameter

NOISS - Move ~]1 (word) to stack

119

BP2 THREADED CODE PRODUCTION

NSSSAA
NSSSMA
NSS$PA
NVBSM
NVBSP
NVDSM
NVDS$P
NVF$M
NVFS$P
NVISM
NVISP
NVL$M
NVLS$P
NIDS
N1F$
N1L$
OEA$
0EGS
0GB$
0GS$
ONIS$A
ONISM
ONISP
ONISS
PLAS
POSS
PROS
PUDSS
PUFS$S
PUISS
PULSS
PUSSA
PVDS$SI
PVFS$SI
PVISSI
PVLSSI
PVSSAI
QUOs
RADS
RCLS
RCO$
RCTS
RDISM
RDISP
RDLS
REGS
RFAS
RFKS
RFLS
RFNS
RFRS
RGKS$
RGNS
RGRS
RISS

Null set (LET for virtual array

strings),

address to address

Null set (LET for virtual array strings), memory to address

Null set (LET for virtual array
NEXT, byte, memory counter

NEXT, byte, parameter counter
NEXT, double, memory counter
NEXT, double, parameter counter
NEXT, single, memory counter
NEXT, single, parameter counter
NEXT, word, memory counter

NEXT, word, parameter counter
NEXT, long, memory counter

NEXT, long, parameter counter
NUM1$ function, double precision
NUM1$ function, single

NUM1¢$ function, long

ON ERROR GOTO O statement

ON ERROR GOTO statement

ON ERROR GO BACK statement
Special ON ERROR GO BACK for start of
Move word 1 to address

Move word 1 to memory

Move word] to parameter

Move word 1 to stack

PLACES$ function

POS function

PRODS function

PRINT USING, double precision

PRINT USING, single

PRINT USING, word

PRINT USING, long

PRINT USING, string

PRINT, double
PRINT, single
PRINT, word
PRINT, long
PRINT, string
QUO$ function
RAD$ function
CLOSE statement,
RCTRLO function
RECOUNT function
Matrix redimension array,
Matrix redimension array,
DELETE statement

RETURN statement

GETRFA function

FIND with KEYs

REMAP FILL item
Sequential FIND

Random FIND

GET with KEYs

Sequential GET

Random GET

RESTORE with key

channel on stack

memory mode

120

strings),

parameter to addr

subprograms/DEFs

array

parameter mode arrary

BP2 THREADED CODE PRODUCTION

RITS
RLISI
RLISM
RLISP
RMB S
RMD$
RMES
RMF§
RMIS
RMLS
RMMS
RMRS
RMSS
RNDS
RNF$
RNZS
ROPS
RPCS
RPNS
RPRS
RPTS
RSCS
RSISM
RSISP
RSMS
RSRS
RSSSAA
RSSS§AM
RSSSAP
RSSSMA
RSS$PA
RSTS
RSUS
RUCS
RULS
RUNS
SBES
SEGS
SGD$
SGF$
SID$
SIF$
SLP$
SPCS
SPKS$
SQD$
SQF$
SSD$
SSF$§
SSI$
SSL$
SS
STAS
STD$
STF$

!

RIGHTS function
Move address of
Move address of
Move address of
REMAP byte

REMAP double
End of REMAP
REMAP single
REMAP word

REMAP long

Clean-up dynamic arrays at end of subprogram

REMAP RFA

REMAP string
RND function,
RND function,
RANDOMIZE statement

OPEN statement

double precision
single precision

immediate operand to stack
memory operand to stack
parameter operand to stack

Sequential PUT with count

Sequential PUT
Random PUT with count

Random PUT
SCRATCH statement

Same as MOISMS
Same as MOISPS

RESUME with line number
RESTORE with channel number
RSET address to address
RSET address to memory
RSET address to parameter
RSET memory to address
RSET parameter to address
RESTORE statement
RESUME statement
UPDATE with count
UNLOCK statement
UPDATE with no count
SUBEND statement
SEGS$ function
SGN function for
SGN function for
SIN function for
SIN function for

SLEEP function

SPACES$ function

SPECY function

SQR function for
SQR function for

Swap two
Swap two
Swap two
Swap two
Swap two

args
args
args
args
args

on
on
on
on
on

Statement thread
STRS function for double precision

STR$ function for single

double
single
double
single

double
single

top
top
top
top
top

of
of
of
of
of

precision

precision

precision

stack,
stack,
stack,
stack,
stack,

(only /DEB)

121

double precision
single

word

long

string

BP2 THREADED CODE PRODUCTION

STLS
STNS
STPS
STRS
STSS
SUDSMS
SUDSPS
SUDSSS
SUF$MA
SUFSMM
SUF $MP
SUF$MS
SUF$PA
SUF$PM
SUF$PP
SUFSPS
SUF$SA
SUF$SM
SUF$SP
SUF$SS
SUISIA
SUISIM
SULSIP
SUISIS
SUTI$MA
SUISMM
SUISMP
SUISMS
SUIS$PA
SUL$PM
SUISPP
SUISPS
SUISSA
SUISSM
SUIS$SP
SUISSS
SULSMS
SULSPS
SUL$SS
SUMS
SWES
SWIS
SWLS
SZISM
SZI§P
TABS
TAPS
TETS
TIMS
TJKS
TMSS
TND$
TNF$
TRM$
TSBS

STRS function for long

Stmt thrd (/DEB) if control
STOP statement

STRINGS function

STATUS function

can get here from within

Subtract, doubl
Subtract, doubl
Subtract, doubl
Subtract, singl
Subtract, singl
Subtract, singl
Subtract, singl
Subtract, singl
Subtract, singl
Subtract, singl
Subtract, singl

e precision,
e precision,
e precision,
e, memory to
e, memory to
e, memory to
e, memory to
e, parameter
e, parameter
e, parameter
e, parameter

memory to stack
parameter to stack
stack to stack
address

memory
parameter

stack

to address

to memory

to parameter

to stack

Subtract, single, stack to address
Subtract, single, stack to memory
Subtract, single, stack to parameter
Subtract, single, stack to stack

Subtract, word,
Subtract, word,
Subtract, word,
Subtract, word,
Subtract, word,
Subtract, word,
Subtract, word,
Subtract, word,
Subtract, word,
Subtract, word,
Subtract, word,

immediate
immediate
immediate
immediate
memory to
memory to
memory to
memory to
parameter
parameter
parameter

to address
to memory

to parameter
to stack
address
memory
parameter
stack

to address
to memory

to parameter

Subtract, word,
Subtract, word,
Subtract, word,
Subtract, word,
Subtract, word,
Subtract, long,
Subtract, long,
Subtract, long,
SUM$ function
Initialize DEF*
SWAPZ for words
SWAP%Z for long
Get array dimensions,
Get array dimensions,
TAB function thread
TAPE function
Tail of change
TIMES$ function
Initialize for DEFs thread

MOVE TC string with length

TAN function for double precision
TAN function for single precision
TRM4 function

parameter to stack
stack to address
stack to memory

stack to parameter
stack to stack
memory to stack
parameter to stack
stack to stack

thread

memory array
parameter array

string to number loop

line

Test Byte, make sure word on stack is legal byte value

122

BP2 THREADED CODE PRODUCTION

TSDSM - Test double precision value, memory arg.

TSDsP - Test double precision value, parameter arg.

TSDSS - Test double precision value, stack arg.

TSFsM - Test single value, memory arg.

TSFSP - Test single value, parameter arg.

TSFsS - Test single value, stack arg.

TSIS1I - Test word value, immediate arg.

TSIsM - Test word value, memory arg.

TSISP - Test word value, parameter arg.,

TSIsS ~ Test word value, stack arg.

TSLS$M - Test long value, memory arg.

TSLSP - Test long value, parameter arg.

TSLS$S - Test long value, stack arg.

TYDS - TIME function, double precision

IYFS - TIME function for single

ULKS - UNLOCK thread

USES - Clean up at end of DEFs and DEF*s

VLDS - VAL function for double precision

VLFS - VAL function for single

VLIS - VALY function for word

VLLS - VALY functio for long

VRISM - Return value of numeric memory array, subscripts on stack
VRISP - Return value of numeric parameter array, subs on stack
VRISV - Return value of numeric virtual array, subs on stack
VRSsC ~ Return value of string common/map array, subs on stack
VRSSM - Return value of string memory array, subs on stack
VRSSP - Return value of string parameter array, subs on stack
VRSSV - Return value of string virtual array, subs on stack
WATS - WAIT thread

XDD$ - Exponentation thread, double *%* double

XDI1§ - Exponentation thread, double *%* word

XFFS§ ~ Expounentation thread, single **% single

XF1s - Exponentation thread, single ** word

XI1s - Exponentation thread, word #*%* word

XLLS - Exponentation thread, long ** long

XLNS - Special line thread (/DEB only) used around DEFs and loops
XLTS ~ XLATES$ function

X01s$ - XOR for word integers

XO0LS - XOR for long integers

123

