8/

| e

)

US CRAPTER

THE NEWSLETTER FOR THE BASIC SPECIAL INTEREST GROUP
July 1982 Vol. 3 No. 38

BASIC-PLUS-2 DEVELOPMENT SUPPORT TEAM

PROGRAM SEGMENTATION IN BP2

Two types of segmentation exist in BASIC: the subprogram and CHAINing.
When wusing subprograms, control passes from the main program to a
subprogram within the same task. CHAINing passes control from one main
program to an entirely different main program which is not contained in
the task. BASIC-PLUS-2 allows subprograms to be written either in
BASIC-PLUS-2 or MACRO-11,.

Subprograms, like functions and subroutines, are ways for writing
frequently used procedures. A subprogram also allows you to divide a
large task into smaller, more manageable units. You compile subprograms
separately from the main program and include them in the task through
the BUILD command.

1.8 BASIC-PLUS-2 SUBPROGRAMS
1.1 Transfer To And From

Transfer is passed from one program segment to another through the call
statement. The call statement ha- the format:

CALL name [(orgl,arg2,...arg8)]

where
name is a unique one to six character name.
Subprograms, MAPS, or COMMON statements
cannot have the same name.

argl,arg2,...arg8 represent zero to eight
arguments to be passed to the subprogram.
These arguments will be referred to as the
actual parameters.

Copyright ©Digital Equipment Corporation 1982
All Rights Reserved

It is assumed that all articles submitted 10 the editor of this newsletter are with the authors' permission to publish in any DECUS
publication. The articles are the responsibility of the authors and, therefore, DECUS, Digital Equipment Corporation, and the
editor assume no responsibility or liability for articles or information appearing in the document. The views herein expressed are
those of the authors and do not necessarily express the views of DECUS or Digital Equipment Corporation.

EFHESE ARE THE NEVER ENDING CHRONICLES
OF MAN’S NEVER ENDING _

BASIC \WARS

-y
LNk ki L 1S

NS

Green Fungus & White Fuzz

by Clair W. Goldsmith
University of Texas Health Science Center

At the University of Texas Helth Science Center we had a DEC 20
that was having intermittent errors. Of course we couldn't find any
reason for these errors, so we called those wonderful people from DEC.
What tne heck, they built the thing, so they should be able to make it
work, right.

The Data Center at the University of Texas Health Science
Center is one story below ground level. The area had been prepared
for a computer. The basement was dug out, A raised floor was
installed. A false ceiling was put in. And all contact with outside
air was sealed off, well almost all contact.

Those nice people from DEC tried everything they knew how to do
to cause the same errors that the DEC 20 was having all by itself,
Parts came out, parts went in until someone noticed something strange
about a backplane. It was a funny color. It was a bit green, Could it
be that when a computer gets sick it turns green,

It turns out that the green color came from a green fungus. It
seems that not all outside air was kept from the computer. The fungus
would grow on that backplane, make contact, cause an error and zap
itself breaking contact.

Southwest Texas State was blessed with a deionzer. This
deionzer had filters that had to be replaced by the crack maintenance
crew of the University.

2 Continued page 36

PROGRAM SEGMENTATION IN BP2

The name used in the call can be either a quoted or unquoted string. The
actual parameters must agree in type and number with the arguments used
in the SUB statement of the subprogram. For example:

10 CALL 'LEED' (X,Y)
19 CALL LEED ({(X,Y)

Lines 1@ above call the same subprogram. You cannot use string variables
to call a subprogram.

85 NAMS$ = 'SUBPGM'
16 CALL NAMS (X,Y)

In this case BASIC will try to call a routine with the name "NAMS" not a
routine called "SUBPGM".

The CALL statement 1is wvalid in main programs, subprograms, and
multi-~line DEF's. Recursion is not allowed in the current version of
BASIC-PLUS~2. When the CALL is executed, control transfers from the main
program to the first 1line of the subprogram. This is the only entry
point of a BASIC-PLUS-2 subprogram. The first line of a BP2 subprogram
must be a SUB statement. The SUB statement has the form:

SUB name [(argl,arg2,...arg8)]
where
name is the one to six character name used
in the CALL statement. Again, note that
SUBprograms, MAPs, or COMMONs cannot have
the same name,

argl,arg2,...arg8 represent zero to eight arg-
uments passed to the subprogram by the
CALLing program. These arguments will be
referred to as the formal parameters.

The formal parameters must agree in number and type with the actual
parameters.

Once control passes to the subprogram, execution continues until a
SUBEND statement is encountered. The SUBEND statement marks the end of
the SUBprogram. The format is:

SUBEND

The SUBEND statement must be the last statement in the SUBprogram. When
executed, BSUBEND transfers control back to the calling program to the
statement immediately following the CALL statement.

BASIC-PLUS-2 also has a SUBEXIT statement. SUBEXIT, like SUBEND is wvalid
only in SUBprograms. When executed, SUBEXIT causes immediate transfer to
the SUBEND of the current subprogram. The format of the SUBEXIT
statement is:

SUBEXIT
You can open and access files in the main program or the subprogram.
Opened files remain opened wuntil one of three things happens: the

channel is closed by a CLOSE statement, another file is opened on the
same channel, or the END statement in the main program is encountered.

3

PROGRAM SEGMENTATION IN BP2

The internal file pointer, which defines the current record, is the same
for all modules. Thus each time you sequentially access the file, you
get the next record, whether BASIC performs the access operation in the
main program or a subprogram.

Main programs and subprograms can use the same variable names and line
numbers. All variables are local to the subprogram unless they are:

o Formal parameters
o Elements of a COMMON or MAP

BASIC provides data communication between the calling program and the
subprogram three dJifferent ways: passing parameters, COMMON and MAP
areas, and virtual arrays {(and files in general).

A function defined in a subprogram is local to that subprogram. You
cannot use a variable name in the function definition if it is one of
the SUB's formal parameters. For example:

10 SUB SUBWDF (AS$,B%,C)
20 @

15000 DEF FNDUM(AS$,B%,C)

15620 FNEND
32767 SUBEND

will result in an error message (?Illegal dummy argument at line 3¢
statement 1) at compile time because the parameters used in the
definition of the function FNDUM are the same as the formal parameters
passed to the subroutine.

Data statements are local to the subprogram also. READs in the
subprogram do not affect the DATA pointer in the calling program. Each
time the main program calls a subprogram, the data pointer returns to
the beginning of the subprogram's data.

1.2 Data Communication

1.2,1 Parameters -

Paramaters are the arguments in the CALL and SUB statement. In the CALL
statement they are referred to as the actual parameters. In the SUB
statement they are referred to as the formal parameters., Parameters are
handled by BP2 in two different ways.

The two ways that BASIC-PLUS-2 passes prarameters are by reference or by
descriptor. If a parameter is passed by reference, its address is placed
in the argument list. If it is passed by descriptor, the address of a
descriptor is placed in the argument list. The descriptor contains the
address of the storage assigned to the argument,

4

PROGRAM SEGMENTATION IN BP2

Parameters are of two types; modifiable and non-modifiable. For a
modifiable parameter, the actual parameter is passed by one of the two
mechanisms above. Thus, assigning a value to the parameter in the SUB
changes the value of the argument in the main program. For
non-modifiable parameters, a local copy is made of the parameter in the
calling program. The local copy is then passed to the SUB by reference
but the actual parameter in the calling program will never be modified.

BASIC treats several types of parameter as non-modifiable. They are
constants, expressions, function calls (user defined as well as BP2
functions), and array elements. In the example below all parameters
passed are non-modifiable. Notice that the actual parameters match the
formal parameters in type and number.

Main program

19 DIM A$(5%),C(5%,5%)

2@ FOR I% = 1% TO 5% {INITIALIZE THE ARRAYS

30 AS$(I%) = 'AAAA’ IINITIALIZE A$ TO BE 'AAAA'

5@ FOR J% = 1% TO 5% IINITIALIZE THE MATRIX TO BE 4.8
60 C(I%,J%) = 4.0

79 NEXT J%

80 NEXT 1%

94 ! NOW PRINT THE VALUES OF PARAMTERS BEFORE THE CALL

199 PRINT A$(1%),C(1l%,1%)

118 CALL SUB1(AS(1%),C(1%,1%))

126 PRINT AS$(1%),C(1%,1%)

13¢ PRINT \PRINT 'THE SECOND CALL:'

140 PRINT AS(2%)+A$(2%), FNSQR(C(2%,2%))
150 CALL SUBl(AS$(2%), FNSQR(C(2%,2%)))
176 PRINT A$(2%)+AS$(2%), FNSQR(C(2%,2%))
1600 DEF FNSQR (DUMMY)

1910 FNSQR = DUMMY ** 2%

1020 FNEND

32767 END

Subprogram

19 SUB SUB1(STR.INGS$, RE.AL)
2¢ PRINT 'THE VALUES OF THE FORMAL PARAMETERS ARE:'

3@ PRINT 'STR.INGS$ = '; STR.INGS
4¢ PRINT 'RE.AL = '; RE.AL
5¢ STR.ING$ = 'HI THERE'

55 RE.AL = 8.0

60 PRINT 'THE NEXT VALUES WILL BE PRINTED BY THE MAIN PROGRAM'
7% PRINT

32767 SUBEND

When executed gives:

AAAA 4

THE VALUES OF THE FORMAL PARAMETERS ARE:

STR.INGS$ = AAAA

RE.AL = 4

THE NEXT VALUES WILL BE PRINTED BY THE MAIN PROGRAM

PROGRAM SEGMENTATION IN BP2

AAAA 4

THE SECOND CALL:

AAAAAAAA 16

THE VALUES OF THE FORMAL PARAMETERS ARE:
STR.INGS = AAAA

RE.AL = 16
THE NEXT VALUES WILL BE PRINTED BY THE MAIN PROGRAM

AAAAAAAA 16

As you can see, the value of the array elements did not change during
the <call even though the values of the formal parameters that represent
them did. This is what is meant by non-modifiable.

BASIC treats all other types of parameters as modifiable. This includes
entire arrays of all types, simple string variables, simple integer
variables, and simple real variables. These types of parameters may have
their values changed while the subprogram is executing.

The way to pass entire arrays is to specify the name, parentheses, and a
comma {if necessary), without the actual row (and column) number. For
example:

Main program

19 DIM A$(5%,5%), B%(2%)

2@ FOR I% = 1% TO 5% IINITIALIZE AS
30 FOR J% = 1% TO 5%

40 AS(I%,J%) = 'AAA'

50 NEXT J%

60 NEXT I%
70 B%(1%),B%(2%) = 32767%

75 X$ = "XXXXXXX' \Y% = 9999% \Z = 88.88
80 PRINT 'HERE ARE THE VALUES BEFORE THE CALL:'
98 MAT PRINT AS$, \PRINT

168 PRINT B%(1%),B%(2%)

185 PRINT X$,Y%,Z

118 CALL BP2SUB(AS(,),5%,B%{(),2%,X$,Y%,2)

120 PRINT \PRINT 'HERE ARE THE VALUES AFTER THE CALL:'
13¢ MAT PRINT AS, \PRINT

149 PRINT B%(1%),B%(2%)

158 PRINT X$,Y%,Z

9¢@8@ END
Subprogram

10 SUB BP2SUB (ARY$(,),D1%, INRY%(),D2%,STRGS, IN%,R)

20 FOR I% = 1% TO Dl%

30 FOR J% = 1% TO D1%

40 ARY$ (1%,J%) = 'BBB'

50 NEXT J%

60 NEXT I%

70 FOR I% = 1% TO D2%

80 INRY%(I%) = -1%

90 NEXT I%

100 STRGS = 'A STRING'
110 IN% = 1234%

129 R = 12E-4

9098 SUBEND

PROGRAM SEGMENTATION IN BP2

Results in:

HERE ARE THE VALUES BEFORE THE CALL:

AAA AAA AAA AAA AAA
AAA AAA AAA AAA AAA
ARAA AAA AAMA AAA AAA
AAA AAA AAA AAA AAA
AAA AAA AAA AAA AAA
32767 32767

XXXXXXX 98999 88.88

HERE ARE THE VALUES AFTER THE CALL:

BBB BBB BBB BBB BBB
BBB BBB BBB BBB BBB
BBB BBB BBB BBB BBB
BBB BBB BBB BRBB BBB
BBB BBB BBB BBB BBB
-1 =1

A STRING 1234 .B812

In the example above, BASIC passes the arrays AS and B% by descriptor,
the string X$ by descriptor and all others by reference. The constants
5% and 2% are the only parameters passed that are non-modifiable. The
values of the arrays and simple variables are changed by the subprogram
and the changes effect the actual parameters in the main program as
well.

Be sure to note that the statements

19 DIM A%(1080%),B$(15%)
29 CALL XXX (A%(109%),B$(15%))
result in only one element in each array being passed (non-modifiably)

to the subprogram, not the whole .rrays.

1.2.2 COMMON And MAPs -

COMMON and MAP is another method of data communication between the
calling program and the subprogram. Special placement consideration must
be given to these two statements when overlaying your programs. See the
overlay section of this article for more information.

PROGRAM SEGMENTATION IN BP2

The COMMON and MAP statements define a named, shared area of memory
called a COMMON block. This block contains values available for reading
or changing by any BASIC subprogram with a COMMON or MAP of the same
name.

The COMMON statement has the form.t:

COM[MON] [(name)] 1list

where:
name can be from 1 to & characters long and must be different
from any MAP in the same program module, or any
subprogram names in the task.
list specifies the variables whose values are stored in the

COMMON area.

Variables stored in COMMON areas can be simple or subscripted. Simple
numeric variables reserve fixed amounts of storage space:

o Integers reserve 2 bytes
o Floating-point numbers reserve 4 bytes for single precision
systems or 8 bytes for double precision.
NOTE

Examples and explanations in this section assume
single-precision.

String variables reserve fixed amounts of storage. Sixteen bytes is the
default, Longer or shorter string 1lengths can be specified in the
format:

fcoMMon}
{ MAP } str-variable-name = n%
where:
n% is the number of bytes of storage you want the

variable to reserve.
For example:
Main Program Subprogram
1% COMMON (Al) AS,BS = 10%,C% 19 COMMON (Al) X$%,2$ = 18%,Y%
Creates a COMMON block made up of:

o A 16 byte string field called A$ by the main program and X$ by the

PROGRAM SEGMENTATION IN BP2

subprogram

o A 10 byte string field called B$ by the main program and Z$ by the
subprogram

o A 2 byte integer field called C% by the main program and Y% by the
subprogram

If the COMMON statement in the subprogram were:
10 COMMON (Al) X$,z$

the first variable, X$, references same storage as A$, because they are
both 16-byte strings. The second variable, Z$, references the next 16
bytes of storage in the COMMON. Because the main program defined B$ as a
19-byte string, the variable Z$ references these 10 bytes, plus the two
bytes specified by the variable C%, plus the contents of the next four
bytes of memory. This will result in Z$ containing garbage on entry into
the subprogram.

Each element of a MAP or COMMON should start on a word boundary. When
defining strings of odd lengths, you should add a " ,FILL$=1% " before
defining any other variables, otherwise the compiler will generate an
warning.

Areas in COMMON blocks can be subdivided. For example:
Main Program
14 COMMON AS$ = 10%,B%(10%)
Subprogram
1@ COMMON AS = 5%, BS = 5%, B1l%(4%), B2%(5%)

In the main program, A$ is a 18 character string. In the subprogram, AS
is the first 5 «characters and B$ is the next five characters of this
same string. Arrays in COMMON allocate storage for row and column zero.
Thus to access the array B% as Bl% and B2% in the subprogram, you must
account for the zero element of the array.

To align the variables correctly, use the FILL functions. They are place
holders and do not place any values in the locations they hold. They
move a pointer so that subsequent variables point to the correct values.
See the FILL function 1in the file chapter of the Language Reference
Manual for details.

BASIC dimensions arrays that appear in a COMMON statement. Therefore,
you cannot also name them in a DIM statement. Specifying a DIM statement
returns the compile-~time warning:

% Multiply allocated variable

A MAP is a fixed length area often used as a buffer for an I/0 channel.
It behaves much 1like a COMMON. The values in a MAP or COMMON are

PROGRAM SEGMENTATION IN BP2

available for access by any BASIC subprogram with a MAP or COMMON of the
same name. Once a file is opened in a main or subprogram, any subprogram
which defines a MAP of the same name can read data from it and place
data in it. The subprogram can place data 1in the MAP either by
performing a GET or by assigning values to the variables defined in the
MAP.

There is a difference in the way BASIC allocates space for MAPs and
COMMONs within a single program unit. BASIC concatenates storage for
each COMMON area of the same name (that is places them end to end),
while MAPs of the same name in a single program unit re-map the same
storage (that is the MAPs ovedlay each other). The length of any MAP Iis
the 1length of the longest single MAP statement with the same MAP name,
while the length of a COMMON is the sum of the 1lengths of each
individual COMMON. The order of elements in the COMMON list and the
order of the COMMON statements, determines the order of values in the
shared area. For example:
Program with COMMON Program with MAP
14 COMMON (A) AS = 140 19 MAP(B) AS$ = 10
20 COMMON (A) A%,B%,C%,D%,E% 20 MAP(B) A%,B%,C%,D%,E%

Both the MAP and COMMON statements reserve shared, named areas of
memory. However, the COMMON statement program reserves a total of 28
bytes of storage: 10 bytes for strings, and 2 bytes for each of five
integers. The MAP statement program reserves a total of 10 bytes: the 10
bytes for strings, and those same 18 bytes subdivided into 5 separately
accessible 2-byte sections that the program can reference as integers.

The COMMON statement stores values accessed by different program
modules. It also stores values that change from module to module. When a
module changes the value in COMMON, all later references to that wvalue
return the changed value. For example, the following main program and
subprogram access an array stored in a COMMON named ALPHA. The
subprogram changes one of the elements in this array, and the main
program then prints this element.

MAIN PROGRAM

19 COMMON (ALPHA) A%(5%,5%)
20 FOR I% = 1% TO 5%

30 FOR J% = 1% TO 5%
40 Y% = Y% + 1%
50 A% (I%,J%) = Y%
60 NEXT J%

78 NEXT I%

80 MAT PRINT A%,

90 PRINT "NOW TO THE SUBPROGRAM"

148 CALL SUB1 .

1¢5 PRINT \ PRINT "BACK IN MAIN PROGRAM"

110 PRINT \ PRINT "CHANGED VALUE OF ELEMENT (3,3) IS ";A%(3%,3%)
12¢ END

10

PROGRAM SEGMENTATION IN BP2

SUBPROGRAM

19 suUB SUB1

20 PRINT "IN SUBPROGRAM NOW"
3@ COMMON (ALPHA) C%(5%,5%)
35 C%(3%,3%) =0

49 MAT PRINT C%,

60 SUBEND

The output is:

1 2 3 4 5

6 7 8 9 10
11 12 13 14 15
16 17 18 19 29
21 22 23 24 28

NOW TO THE SUBPROGRAM
IN SUBPROGRAM NOW
1 2

3 4 5
6 7 8 9 19
I 12 [14 15
16 17 18 19 29
21 22 23 24 25

BACK IN MAIN PROGRAM

CHANGED VALUE OF ELEMENT (3,3) IS @

1.2.3 VIRTUAL ARRAYS -

You can also pass data by DIMENSIONing virtual arrays 1in subprograms.
DIGITAL strongly recommends that vyou do not pass virtual arrays as
parameters. There is no need to do so because BASIC provides another
means of access to virtual arrays.

To access a virtual array in a subprogram, use the DIMENSION statement
with the same channel number used to define the virtual array in the
main program. You do not need to open the file on that channel in the
subprogram if the file is already open. You can also DIMENSION and open
a virtual array in a suprogram, and then access this array in the
calling program with two restrictions: (1) you cannot close the file
before exiting the subprogram, and (2) you must DIMENSION the array in
the main program on the same channel. You need not call the array by the
same name in each program, and in any case, the virtual array must be
opened BEFORE you access it. For example:

Main program

10 DIM #1%, AS(11%), A%(15%)
29 DIM #2%, B%(12%), BS$S(15%)
38 OPEN 'VIRFIL.DAT' FOR OUTPUT AS FILE #1%, VIRTUAL

11

PROGRAM SEGMENTATION IN BP2

49 A$(11%) = '11 128T'
58 CALL VvsUB1

60 B%(12%) = 12%

79 CLOSE 1%, 2%
32767 END

Subprogram

10 SUB VSUB1

20 DIM #1%, X$(11%), Z%(15%)

39 DIM #2%, CNT%(12%), ADRS(15%)

49 OPEN 'VFILE2.DAT' FOR INPUT AS FILE #2%, VIRTUAL
58 X$(3%) = ADRS(3%)

60 FOR I% = 1% TO 12%

79 Z%(I%) = CNT%(I%)

80 NEXT I%

32767 SUBEND

In this example, the main program cannot access the virtual arrays on
channel 2 until control returns from the subprogram because the file is
opened by the subprogram. The subprogram can access the arrays opened on
channel 1 immediately because this file is already opened when VSUBL1 is
called. If VSUBl had closed the file on channel 2 before returning to
the main program, then the error '?Virtual array not yet opened' would
be given at line 60 in the main program.

NOTE: Be sure that every virtual array you dimension is the same size
and type as those in any other SUB or main program on the same channel.

1.3 Error Handling In BASIC Subprograms

Error handling in subprograms is similar to error handling in main
programs. There are some error statements specifically related to
subprograms, such as ON ERROR GO BACK and the ERN$ function.

The default error handler in the main program is ON ERROR GOTO # (i.e.
all fatal errors abort execution). This 1is true for BASIC-PLUS-2
subprograms also. If there is an error handler in the main program, but
none in the subprogram, and a fatal error occurs in the SUB, then
execution will abort.

You may trap errors in a subprogram by using an error handler in the
subprogram. ON ERROR GO BACK is a statement available in subprograms
that is not available in main programs. This statement tells BASIC to
return to the calling program's error handler when an error occurs in a
subprogram. If this statement is executed when an error is pending then
control will transfer immediately, otherwise the statement sets up the
error handler for any future errors. You should explicitly state what
you want your error handler to be in subprgrams, even if it is ON ERROR
GOTO #. Future releases may change the default handler in subprograms to

‘'be ON ERROR GO BACK. By explicitly stating the type of error handling

12

PROGRAM SEGMENTATION IN BP2

you want, you can avoid any compatability problems. The following
example illustrates the use of ON ERROR GO BACK.

19 SUB ERRTRP (X,Y)
20 ON ERROR GOTO 19000
30 INPUT 1%, G.LINS ! GET A LINE

19808 PRINT ERR,ERL,ERNS
19610 IF ERR = 11% AND ERL = 38% THEN
RESUME 32767
ELSE
IF ERR = 51% THEN
ON ERROR GO BACK
ELSE
ON ERROR GOTO #

PR

32767 SUBEND

In this example, if the error is 11 and the error line is 38 then the
error condition is cleared and the subprogram exits normally. If the
error is 51 then control is transferred immediately to the error handler
in the calling program with the error conditions still set. In all other
cases, BASIC reports the fatal error and execution stops. ON ERROR GO
BACK can appear anywhere in the SUB.

ON ERROR GO BACK allows you to do all of the error handling in the main
routine no matter how deeply you nest your subprograms. If all
subprograms in a task have ON ERROR GO BACK as their error handler then
any errors will return to the error handler of the main routine. This is
because when control returns from a subprogram, the calling program
checks 1if an error is pending. If so, then that program’'s error handler
is executed. If that error handler is ON ERROR GO BACK then control
continues to return through the calling programs until one of two things
happens: an error handler is executed that is not ON ERROR GO BACK, or
no error handler is found. In the latter case BASIC reports the error
and aborts execution. Example:

Main program

10 ON ERROR GOTO 19009
20 CALL ERSU1l
3¢ PRINT 'AFTER CALL. SUCCESS'

49 GOTO 32767
19009 PRINT ERR,ERL,ERNS
19019 RESUME 32767

32767 END
Subprograms
12 SUB ERSU1l
29 ON ERROR GO BACK
30 CALL ERSU2
49 PRINT 'SUCCESS AFTER CALL. IN ERSUL®

32767 SUBEND

10 SUB ERSU2

13

PROGRAM SEGMENTATION IN BP2

28 ON ERROR GO BACK

30 CALL ERSU3

4¢ PRINT 'SUCCESS AFTER CALL. IN ERSU2'
32767 SUBEND

19 SUB ERSU3

29 ON ERROR GO BACK
30 A = VAL('12R")
32767 SUBEND

!{GENERATE ERROR

Gives the following as a result:
52 30 ERSU3
Note that lines 46 in ERSUZ and ERSUl do not get executed.

If you trap errors in subprograms be sure to RESUME before exiting the
subprogram (unless you exit through ON ERROR GOTO # or ON ERROR GO
BACK). If you just 'fall' through to the SUBEND statement, unexpected
results can occur. It is always recommended that you RESUME from your
error traps whether in the main program or a subprogram.

In applications where trapping errors is crucial, put the error handler
on the same line number as the SUB statement. This will minimize the
time between when the subprogram starts and when you can first trap an
error. For control C trapping this is especially important. For example:

18 SUB EXAMPL {DUM1) &
\ ON ERROR GO BACK

2.8 MACRO SUBPROGRAMS

BASIC allows you to call subprograms written in MACRO as well as BASIC.
This allows greater flexibility in sharing low level routines between
several languages. The restrictions are listed in this section. Read the
entire section before you start to write your subprogram.

2.1 Transfer To And From MACRO Subprograms

Transfer from a BASIC-PLUS~2 program to a MACRO subprogram is passed
through the CALL statement. For MACRO subprograms there are two forms of
the CALL. Their format is

CALL name [(argl,arg2,arg3,....)]

and

1

PROGRAM SEGMENTATION IN BP2

CALL name BY REF (argl,arg2,arg3,....)

where

name is a unique 1 to 6 character name. Subprograms, MAPs,
or COMMONs cannot have the same name. Name can appear
as a quoted or unquoted string.

argl,arg2,arg3,... are the arqguments from BASIC to
the subprogram. These arguments will be referred
to as the actual parameters.,

BY REF affects the way data is passed and the way errors are handled in
the MACRO subprogram. See the data communication section (sect 2.2) and
error handling section (sect 2.3) for more details.

BASIC-PLUS~2 can call only those MACRO subprograms that use the PDP-11
standard RS5 argument passing sequence as shown in Figure 4-1. There are
other restrictions:

o MACRO subprograms cannot perform I/O operations or
execute monitor calls.

o BASIC-PLUS-2 cannot call a FORTRAN subprogram.

o A MACRO or FORTRAN subprogram cannot call BASIC-PLUS-2.

The MACRO instruction that returns control from the MACRO
subprogram to the calling BASIC program is:

RTS PC
where:

RTS 1is the "return from subprogram" instruction.

2.2 Data Communication.

2.2.1 Parameters -

The argument list of a CALL statement passes arguments from BASIC
programs to MACRO subprograms. When the MACRO subprogram starts,
register 5 (R5) contains the address of an argument list, as shown in
Figure 4-1,

15

PROGRAM SEGMENTATION IN BP2

Figure 4-1: Argument List Format

| UNDEFINED | NUMBER OF |
] ARGUMENTS |

A MACRO subprogram called by a BASIC-~PLUS-2 program need not save
registers. However, as is wusual in MACRO code, register 6 (SP) must
point to the same location on entry to, and exit from, the subprogram.
Each "push"™ onto the stack must have a corresponding "pop" from the
stack before the subprogram returns control to the BASIC-PLUS-2 program.

CALL BY REF affects only two types of parameters: simple string
variables and entire arrays. CALL and CALL BY REF pass integer, real
(single-precision), and double value (double-precision) arguments the
same way, and string and array arguments in different ways. Refer to
Appendix D of your Language Reference Manual for a description of data
formats of strings and arrays.

The R5 argument list passes data formats as follows:

Integer The R5 argument list contains the address of the word holding
the integer value.

Real The R5 argument list contains the address of the high-order
word for the single-precision value.

Double The R5 argument list contains the address of the high-order
word for the double-precision value.

String When CALL is used, the R5 argument l1ist contains the address
of a two word string header. The first word of this header is
the address of the first byte in the string. The second word
is the string's length in bytes.

PROGRAM SEGMENTATION IN BP2 PROGRAM SEGMENTATION IN BP2

When the program specifies a CALL BY REF, the R5 argument list g
contains the address of the first byte in the string; the INSRT: :

string length is not available. MOV 2(R5),R8 ; RO = ADDRESS OF AS STRING HEADER
MOV 4(R5),R1 ; R1 = ADDRESS OF BS$ STRING HEADER
Array When the program has a CALL, the R5 argument list contains the MoV @6 (R5) ,R2 ; R2 = C3
address of the second word in the array header. The array BLE ERREX ; BR TO ERROR IF C% <=0 *
header contains subscript information and the address of the ADD 2(R1),R2 ; R2 = C% PLUS LENGTH OF BS
first array element. DEC R2 ; MAKE R2 A LENGTH
CMP R2,2(R%) ; WILL B$ FIT INTO AS$ 2
When the program specifies CALL BY REF, the R5 argument 1list BGT ERREX ; BR TO ERROR IF BS$ WON'T FIT INTO AS
contains the address of the first element in the array; the MOV (RG) ,RO ; R# = ADDRESS OF AS
array header is not available. MOV @6 (R5) ,R2 ; R2 = C%
DEC R2 ; R2 = C% MINUS ONE
BASIC does not allow you to pass a string array in a CALL BY ADD R2,R0 ; R = ADDRESS OF 1ST CHAR TO BE REPLACED
REF. MOV 2(R1),R2 ; R2 = LENGTH OF BS$
BEQ ERREX ;7 BR TO ERROR IF LENGTH OF BS = ¢
In MACRO subprograms, as in BASIC subprograms, BASIC still passes MOV (R1),R1 ; Rl = ADDRESS OF BS
constants, expressions, function calls, and array elements as 18 MOVB (R1)+, (RO)+ ; INSERT A CHARACTER INTO AS$ FROM BS
non-modifiable parameters. The addresses generated in the R5 1list for SOB. R2,1%
non-modifiable arguments are the local-copy addresses in the calling CLR @6 (R5) ; SET C% TO 8 (OPERATION SUCCESSFUL)
program. The local-copy value can be changed by the MACRO routine, but RTS pPC
this will never affect the actual parameters.
ERREX: MOV #-1,@6 (R5) ; SET C% TO -1 (OPERATION FAILED)
There are two other restrictions that should be noted. RTS PC
. END
o You cannot pass virtual arrays to MACRO subprograms
o MACRO subprograms cannot create strings nor change the length of Program 2: CALL BY REF Statement
existing strings.
To get around these restrictions, place strings and array elements in .TITLE INSRT

COMMON before passing them as parameters, then make updates and changes

i
to the COMMON area known to the calling and subprogram (see section 5 CALL INSRT BY REF(A$,LEN(A$),B$,LEN(BS$),C%)
2.2.2). On return to the «calling program, you can move the updated A
COMMON variables into the virtual array or strings. ; INPUTS: ARGl = ADDRESS OF AS
H ARG2 = ADDRESS OF LENGTH OF AS
Consider the MACRO subprograms in Programs 1 and 2. Program 1 shows how : ARG3 = ADDRESS OF BS
to use CALL to pass arguments; Program 2 shows how to use CALL BY REF. ; ARG4 = ADDRESS OF LENGTH OF BS
; ARG5 = ADDRESS OF C%
f
Program 1l: CALL Statement ; OUTPUTS: C% = ¢ IF OPERATION WAS SUCCESSFUL
i = -1 IF OPERATION FAILED
H CALL INSRT(AS$,BS,C%) ; EFFECTS: THIS subprogram OVERWRITES THE SUBSTRING B$ INTO
7 H THE STRING AS$ BEGINNING AT CHARACTER POSITION C%.
; INPUTS: ARGl = ADDRESS OF AS$ STRING HEADER i RETURNS @ IN C% IF THE OPERATION WAS SUCCESSFUL.
2 ARG2 = ADDRESS OF B$ STRING HEADER
7 ARG3 = ADDRESS OF C% i RETURNS -1 IN C% IF THE OPERATION FAILED.
7 7
; OUTPUTS: C% = @ IF OPERATION WAS SUCCESSFUL INSRT: :
5 = -1 IF OPERATION FAILED MOV @12 (R5),R2 ; R2 =C8
; BLE ERREX ; BR TO ERROR IF C% <= ¢
; EFFECTS: THIS subprogram OVERWRITES THE SUBSTRING B$ INTO THE ADD @13 (R5) ,R2 ; R2Z = C% PLUS LENGTH OF BS
5 STRING A$ BEGINNING AT CHARACTER POSITION C%. CMP R2,@4 (R5) ;i WILL B$ FIT INTO AS ?
H RETURNS @ IN C% IF THE OPERATION WAS SUCCESSFUL. BGT ERREX ; BR TO ERROR IF B$ WON'T FIT INTO AS
; RETURNS -1 IN C% IF THE OPERATION FAILED. Mov 2(R5),RP ; R# = ADDRESS OF AS

17 18

PROGRAM SEGMENTATION IN BP2

MOV @12 (R5),R2 ; R2 = C%
DEC R2 ; R2 = C% MINUS ONE
ADD R2,RP ; RO = ADDRESS OF AS$ PLUS C%
MOV @16 (R5) ,R2 ; R2 = LENGTH OF B$
BEQ ERREX : BR TO ERROR IF LENGTH OF BS$ = ¢
MOV 6(R5),R1 ; R1 = ADDRESS OF BS$

15: MOVB (R1)+, (RO)+ ; INSERT A CHARACTER INTO AS FROM BS$
SOB R2,1$
CLR @12 (R5) ; SET C% TO @ (OPERATION SUCCESSFUL)
RTS PC

ERREX: MOV #-1,@12(R5) : SET C% TO -1 (OPERATION FAILED)
RTS PC
. END

2.2.2 COMMON And MAPs -

BASIC allows you to access COMMONs and MAPs from subprograms written in
MACRO. This enables you share large amounts of data between your BASIC
programs and MACRO routines. Also you c¢an use a MACRO program to
initialize COMMON areas at program load time.

For each COMMON and MAP in the wuser program, BASIC generates a PSECT
definition. The example below shows a piece of a BASIC program and the
code generated by BASIC. Note the attributes that BASIC assigns to the
PSECT.

SAMPLE.B2S
19 COMMON (AAA) AS$=6%, C%, D 1 12, BYTE AREA
20 MAP (BUF) ADRRS, SS.NO$=9%, FILLS$=1%, AMNT ! 3f. BYTE AREA

Code generated

.PSECT AAA,RW,D,GBL,REL, OVR

AAA:

.PSECT BUF,RW,D,GBL,REL, OVR
BUF:

.PSECT AAA

.BLKW 6

.PSECT BUF

.BLKW 15

(numbers in the generated code are in decimal)

By defining a PSECT with the proper name and attributes you can access any
COMMON or MAP from a MACRO subprogram.

By writing MACRO routines that define the same PSECT that is generated by
the COMMON statement, you can pe-initialize COMMONs to whatever values you
like, without executing a single statement, The values are simply put in
the right place at load time.

19

PROGRAM SEGMENTATION IN BP2

Pre-defining your COMMON area can save time if the first thing your
program does 1is assign values to variables in COMMON. This can also save
space by eliminating code generated for the assignments, and storage
allocated for constants that are used only once.

Suppose you have COMMON statements to hold data that is used by the main
and subprograms. The data is constant and is used for such things as
printing common error messages, checking maximum values and so on. Your
main program might look something like this

19 COMMON (FIXSTR) OUT.STRS = 10%, &
BAD. INFOS$ = 24%, &
ATLINS = 8%
20 COMMON (FIXDAT) MAXNUMS%, &
MAXVAL, &
BADNUMS, &
FUN.STRS = 6%
30 OUT.STR$ = "Output is " &
BAD. INFO$ = "Bad information supplied" &
ATLINS = " at line'
40 MAXNUMS = 100% &
MAXVAL = 2E6 &
BADNUM% = -1% &
FUN.STRS = " FUNNY"
58 o ®

In this example seven statements are executed to initialize variables in
COMMON. Each constant ("Output is", 108%, 2E6, etc) used is allocated
storage that can not be recovered. If these constants are never used again
this space is, in a sense, wasted. Now consider the same program with only
lines 10 and 2@ and a MACRO definition of the PSECTs which has the same
effect as 1lines 30 and 48, but requires no execution and generates no
'wasted space'.

10 COMMON (FIXSTR) OUT.STRS = 10%, &
BAD. INFO$ = 24%, &
ATLINS = 8%

20 COMMON (FIXDAT) MAXNUMS, &
MAXVAL, &
BADNUMS, &
FUN.STRS = 6%

50 s o

Macro routine to initialize FIXSTR and FIXDAT.

It should be linked with the main program like any other
object module.
Values take effect at load time,

Attributes for the PSECTs MUST be as shown.
They cannot be changed

P R R R T

. ENABLE LC ; ENABLE LOWER CASE

.PSECT FIXSTR,RW,D,GBL,REL,OVR

20

PROGRAM SEGMENTATION IN BP2

.ASCII /Output is / ;OUT.STRS len = 16
.ASCII /Bad information supplied/ ;BAD.INFOS$ len= 24
.ASCII / at line/ ;ATLINS len = 8
.PSECT FIXDAT,RW,D,GBL,REL,CVR
.WORD 122. ; MAXNUMS%
LFLT2 2E6 ; MAXVAL
.WORD -1 ; BADNUM

H

.ASCII / FUNNY/ FUN.STR$ LEN = 6

. END
There are some pitfalls you should watch for.

o If you compile your BASIC program in double precsion
ALL floating point numbers must be defined with .FLT4

o Check lengths of string and floating point numbers to
be sure you line up data correctly

To include this routine in your task you can use the BUILD command and
specify the routine as if it were a subprogram. Create the MACRO program
with an editor then assemble it making sure there are no errors. The
initialization can take place only once. If you change values of variables
in COMMON, you cannot call this routine to re-initialize. It contains
definitions, not executable code. Even if you add a subprogram to these
PSECT definitions, the initialization takes place only once, regardless of
how many times you call the routine.

To write MACRO subprograms that access COMMON you need to define the
correct PSECTs as shown above. If you do not wish to initialize the COMMON
then enter a " .BLKW n.” where n is the number of words of the common
you wish to reference. Using this method, the COMMON will have whatever
values were last assigned by the CALLing program.

You will have to assign a label to each data item that you wish to
reference. It 1is a good practice to make these names correspond to their
names in the BASIC program. For an example we will use the program already
started above.

19 COMMON (FIXSTR) OUT.STRS = 10%,
BAD. INFO$ = 24%,
ATLINS = 8%
29 COMMON (FIXDAT) MAXNUME,
MAXVAL,
BADNUMS,
FUN.STRS = 6%
15 COMMON (DATUM) M3,N%,X,Y
58 INPUT 'supply an integer to convert to octal'; M%
55 PRINT
68 PRINT 'Here are initial values of all COMMONs'
70 GOSUB 500
80 CALL SAMPLE { CALL THE SAMPLE MACRO SUB
85 IF N% <> 18¢% THEN PRINT BAD, INFO$; ATLINS; 50

99 PRINT

21

PROGRAM SEGMENTATION IN BP2

95 PRINT 'The octal value of 328 is '; FUN.STRS
109 PRINT

119 PRINT 'Here are the values after the call'
120 GOSUB 508

130 GOTO 32767

509 PRINT OUT.STRS, BAD.INFOS, ATLINS

519 PRINT MAXNUM%, MAXVAL, BADNUM$%, FUN.STRS

520 PRINT M%,N%,X,Y

538 RETURN

32767 END

This is a sample routine it converts the first word of the
PSECT DATUM to an octal string and puts it in FUN.STRS.

There are no parameters, all data is shared through COMMON

~e e na e we me

.ENABIE LC ; ENABLE LOWER CASE
.PSECT FIXSTR,RW,D,GBL,REL,OVR
.ASCI1 /Output is / ;OUT.STRS len = 18
.ASCII /Bad information supplied/ ;BAD.INFOS len= 24
.ASCI1 / at line/ ;ATLINS len = 8
.PSECT FIXDAT,RW,D,GBL,REL,OVR
.WORD 106. ; MAXNUMS
.FLT2 2E6 ; MAXVAL
WORD -1 ; BADNUM

H

FUNST: .ASCII / FUNNY/ FUN.STRS LEN = 6

.PSECT? DATUM,RW,D,GBL,REL, OVR

M: .WORD @2 ; M3
N: WORD [} ; N%
X: .FLT2 ¢ : X
Y: LFLT2 [%] ; ¥
.PSECT
SAMPLE: :
MOV $FUNST, RO ; GET ADR OF STRING RESULT
MOV M,R1 ; PICK UP INTEGER
BGE 38 ; SKIP IF NEGATIVE
MOVB #'1, (RO)+ ; SET HIGHEST BIT AND CONTINUE
BR 2$; SKIP
3%: MOVB #'0, (RO)+ ; MAKE HIGH ORDER CHAR ¢
28: MOV -12.,R2 ; START TO DIVIDE AT 8%*%4
18: MOV R1,R3 ; COPY NUMBER
ASH R2,R3 ; SHIFT R3 BY R2
BIC #177770,R3 ; GET LOW ORDER THREE BYTES
ADD #68,R3 ; MAKE ASCII
MOVB R3, (R@)+ ; MOV CHARACTER
ADD #3,R2 ; DECREMENT DIVISOR
BLE 1$; CONTINUE
MOV #100.,N ; SHOW SUCCESS
RETURN
.END

22

PROGRAM SEGMENTATION IN BP2

Here is the output from the program.

Here are initial values of all COMMONs

Output is Bad information supplied at line
190 .2E 87 -1 FUNNY
-2 7] 7] 7]

The octal value of;2 is 177776

Here are the values after the call

Output is Bad information supplied at line
128 .2E 87 =1 177776
-2 1o @ 7]

2.3 Error Handling

Errors are trapped in MACRO subprograms Jjust as they are in BASIC
subprograms. However, there is no mechanism for the user to trap the error
in the subprogram itself; this must be done in tne calling program. If the
calling program contains an error handler then any MACRO subprograms
called will have their errors trapped in the calling program. The ERR
function 1is set as usual. The ERL function contains the line of the CALL
to the subprogram. If you CALLed BY REF then the ERN$ function contains
the name of the calling program. If executed a CALL without BY REF then
the ERN$ function contains the name of the subprogram you called.

If you get errors such as "?Memory Management violation" or "?0dd Address
Trap®, check that you are accessing the parameters correctly. Read the
following section on overlays if vyou are writing MACRO routines. It
contains general information on how BASIC allocates space and generates
code as well as information on how to correctly overlay your programs.

2.4 OTHER LANGUAGES

BASIC-PLUS-2 can call subprograms written in COBOL V4.0, however BASIC and
COBOL do not have the same types of data representation so it is up to the
user to convert data as necessary. There is no support for performing I/0
in any subprogram that BASIC-PLUS-2 «calls unless that subprogram is
written in BASIC also.

BASIC-PLUS-2 cannot call subprograms written in any other language (i.e.

FORTRAN or FORTRAN IV+ etc.). At the current time no languages can call a
BASIC~PLUS~-2 subprogram.

23

PROGRAM SEGMENTATION IN BP2

3.2 OVERLAY CONSIDERATIONS

3.1 BASIC-PLUS-2 Modules

When designing your BASIC-PLUS-2 application, it would be a great help to
know Jjust how large the task is or how much overlaying it will require.
Since this is usually impossible, you should plan for the overlay stage of
development in general ways. By designing your application in functional,
modular segments you can make overlaying as painless as possible.

3.1.1 Function -

By keeping your program segments small and functional you allow yourself
greater flexibility when it comes time to overlay. You can also put off
designing the overlay until your program is working correctly by testing
each small module individually. Small modular segments keep the overlay
from forcing a design on the program. Instead, you should design the
program and then work the overlay into the design.

Many segments result in more possible overlays and more choices to make,
but this 1is better than realizing you must recode a segment into two or
three smaller ones to make the overlay structure work. When it does come
to overlay time, vyou will be able to put in the root the commonly used
modules, without including initialization code and other routines that
execute only once. Put these seldomly executed routines in an overlay
where they will not waste space. Small segments also allow you to complete
the work in stages and test at each stage.

3.1.2 Testing -

Testing programs that are laden with overlays is difficult. It can be
avoided to some extent by testing at intermediate stages. Test each
subprogram by writing small drivers that feed the subprograms the same
range of data that the caller normally would.

Once convinced that your code is producing expected results, start tc
overlay 1in stages. Work out the entire design before by using maps. This
lets you get approximate sizes of object modules. As vyou build the
overlay, stop at 1logical points to test. Be sure that you know where
global symbols will be resolved (see section 3.3) and when overlays will
be brought into core at run-time. If you get errors such as "?0dd Address
Trap" or "Memory Management violation”™, check COMMON and MAP statements
for alignment, and be sure that parameters being passed match in number
and type.

Check calling sequences to see if overlays are inadvertently being brought

24

PROGRAM SEGMENTATION IN BP2

into memory. Returning from a subprogram into the wrong overlay can be
done easily. How this can happen is discussed in section 3.3. Prove that
errors are not due to the overlay structure by stringing out the program.

The following sections on BASIC PSECTs and threaded code will give a
better understanding of how the generated code is affected by overlays.

3.2 Compiler Outputs

The compiler generates a kind of object code known as threaded code. To
get a better 1look at what type of code this is, compile a program into
MACRO (i.e. COM/MAC). Use the generated MACRO code for reference as you
read this section. The code is made up of a series of PSECTs and global
symbols called threads., Compiling into object code (COM/0OBJ) produces the
same code as MACRO in its object form.

3.2.1 PSECTS -

BASIC generates a number of PSECTs for each main and subprogram it
compiles. Some of them and their functions are mentioned here. Those
mentioned are included in each program, though some may be empty depending
on your code.

BASIC allocates PSECTs with certain attributes. These should never be
changed. BASIC assigns the overlay attribute to all COMMONs and MAPs, and
two PSECTs that BASIC uses for I/O: $ICIOl and $ICIO2. All other PSECTs
generated by BASIC have the concatenate attribute, This is important in
understanding how BASIC resolves addresses in the main programs and
subprograms.,

When subprograms are used, you may see a reference in the main program's
threaded code to the same offset of the same PSECT in the subprogram's
threaded code. Example:

Main program

MOFS$MS , SPDATA+16 ; #12
Subprogram
MOS$MP ,SPDATA+16 ; "zzz2"
SIDATA+4 ;25

This is a typical line of threaded code. The MOF$MS is the thread to move
a floating point number from memory to the stack. $SPDATA+16 is an address
which the thread will use. The comment tells what variable or constant the
address refers to. In the example above, both the main and subprogram
refer to $PDATA+16 but have different values for what the address refers
to. This does not mean that the same location is used for both a string
and a floating point number. In fact, the subprogram thread moves a string

25

PROGRAM SEGMENTATION IN BP2

constant from memory ($PDATA+16), through a pointer, to some other
address.

How can a main program and a subprogram both refer to $PDATA+16? When the
task builder 1is 1linking the object code, it checks the attributes of
PSECTs as it allocates space. The attributes referred to are RW, I,
LCL,REL,CON. The concatenate attribute (CON) forces the task builder to
concatenate PSECTs of the same name that are supplied by different object
modules. Thus, when the task builder see a definition to $PDATA in the
main program and a definition to $PDATA in a subprogram, it concatenates
the two by adding the length of the first definition to all references in
the subprogram.

The PSECT $CODE contains the BP2 threaded code. More will be said about
threaded code in the next section. $IDATA is the PSECT from which real and
integer variables are allocated. $IDATA, in the main program, is also
where BASIC's work area is allocated, therefore all references to $IDATA
in the threaded code of the main program will usually start at 808; the
first 8088 bytes being used for the work area. BASIC does not use static
allocation of work space in subprograms.

$5TRNG is the PSECT from which string headers are allocated. See appendix
D of the Language Reference Manual for a decription of string headers.

SPDATA is the PSECT from which all constants (string, real, and integer)
are allocated. Also, some (but not all) array headers are allocated in
this PSECT along with the contents of all DATA statements. A description
of array headers is given in appendix D of the Language Reference Manual.

$TDATA and $ARRAY are used for array headers. The array headers included
in these PSECTs are those that can be redimensioned. $SAVSP is a PSECT to
hold initial value of the stack. It is allocated only in the main progranm.

The PSECTs $ICIOl and $ICIO02, and those PSECTsS generated by BASIC for
COMMONs and MAPs are the only PSECTs generated by BASIC that have the
overlay attribute (OVR). This means that references to $ICIO1l and $ICIO2
in subprograms are referencing the same locations that the main program
does. Also, it is this overlay attribute that allows data in COMMON and
MAPs to be shared across program segments.

COMMONs and MAPs generate PSECTs using the name you specify. Thus when a
COMMON or MAP is used in a main and subprogram the PSECT generated by the
subprogram overlays the one generated by the main program.

3.2.2 Threaded Code -

Threaded code is a series of global symbols and addresses. These symbols
are names of routines that contain code to execute user programs. The
global symbol may optionally have arguments following it. These arguments
are picked up by the routine and used to reference data from the user
program. All threaded code is placed in the concatenated PSECT $CODE. For
example the line of code:

26

PROGRAM SEGMENTATION IN BP2

20 PRINT A%
generates

L28: LINS .28 ; #20
CLISS
IPT$
MOISMS ,S$SIDATA+804
PVISSI .0
EOLS

A%
#0

~ e

L20: is a label that signifies the start of each line. LIN$ is a thread
the 1line number. The threads are generally mnemonic in nature. The fourth
character of a thread is always a dollar sign and two optional ' characters
follow. The comment section, when present, provides a description of the
argument. Other articles in this sgeries will provide a more thorough
description of the threads.

At task build time the task builder resolves all of the threads (global
symbols) to a shared library if present or the BASIC object library. To
start execution of threaded cods at run-time the compiler generates one
executable instruction:

JSR R4,@#SINITM
for main programs, and

JSR R4,@#SINITS
for BASIC-PLUS-2 subprograms.

This is the first instruction executed. In both cases the instruction
causes a jump to an initializing routine of BASIC. This has the effect of
making R4 point to the first argument. Each routine uses all of the
arguments and leaves R4 pointing to the next thread. When done, the
current routine exits by doing a JMP @(R4)+ , and the cycle begins
again. This continues until BASIC executes the END$ thread which exits the
threaded code and returns control to the system.

For further discussion of threaded code see chapter 15 of "Computer
Engineering” by BELL, MUDGE, and McNAMARA. This chapter is an article by
R.F. BRENDER entitled "Turning Cousins Into Sisters".

3.3 Task Build Address Resolution

This section describes how BASIC-PLUS-2 global symbol references are
resolved at task build time. It i: assumed that the reader has read the
ODL chapter of the Task Builder Refernce Manual. You should be familiar
with the tree description of a task as well as terms such as path, path
loading, and task segment. This section discusses specifics of
BASIC~-PLUS-2 and is not meant as a general tutorial for overlaying any

27

PROGRAM SEGMENTATION IN BP2

type of program.

The global symbols that BASIC generates and that the task builder must
resolve are thread names and names of subprograms. Each call to a
subprogram generates an unresolved global symbol which is the name of the
subprogram.

First, an example to show how references are generated and resolved in a
nonoverlayed task. Below is a 1list of the calling sequence of a BASIC
program. Also included are the CMD and ODL files generated by a BUILD
command on an RSX system. They will differ slightly for each system.

Main program SUB2 SUB1 "and SUB3
CALL SUB1 CALL SUB1 no calls
CALL SUB2 CALL SUB3

CALL 5UB3
BUILD MAIN,SUB1,SUB2,SUB3

SY:MAIN/CP/FP,S5Y:MAIN/-SP=SY:MAIN/MP
LIBR=BASIC2:R0O

UNITS = 14

ASG = TI:13

ASG = SY:5:6:7:8:9:10:11:12

EXTTSK= 512

/7

.ROOT USER
USER: .FCTR SY:MAIN-SUB1-SUB2-SUB3~LIBR
LIBR: .FCTR LB:[1,1]BASIC2/LB

. END

Notice that a resident library is used. Always check your CMD file to see
if you are linked to a resident library (LIBR=BASIC2:RO0 or
RESLIB=BASICS/RO) or a runtime system (HISEG=BASIC2). This 1is very
important in understanding where global symbols will be resolved. From the
ODL we can see that all of the BASIC routines are concatenated (i.e. there
is no overlaying). The following is a 1list of the order in which the task
builder will search through the object modules to resolve undefined global
references. The order holds for overlaid as well as non-overlayed tasks.

1. The segment being processed

2. All segments on the sam_ branch towards the root
(including the root itself)

3. All segments on the same branch away from the root
4. All cotrees
B. Any specified object library

.In the above example, each object module of BASIC will generate threads

that are global symbols for the task builder to resoive. The module
MAIN.OBJ will also have three other global references to resolve, namely

28

PROGRAM SEGMENTATION IN BP2

SUB1, SUB2, and SUB3. The object module SUB2 will generate two additional
global symbols to resolve: SUBLl and SUB2,

Each BASIC object module defines the global symbol by which it 1is named.
SUB1 will define the global symbol SUBl and so forth.

The task builder will find a definition for a thread in one of two
possible places: a resident 1library (or runtime system), or the disk
object library. Note that all resident libraries and runtime systems are
given wvirtual address space from the root. The task builder tries to
resolve threads in resident libraries and run time systems before
searching the BASIC object libraries.

Using the above example and the scheme for resolving global symbols we see
that references to SUBl, SUB2, and SUB3 will all be resolved in the object
code produced by BASIC, The threads will be resolved either in the
resident 1library or the disk object library BASIC2. The resident library
is searched first, and all threads still undefined are resolved 1in the
disk library. BASIC provides a library with every thread name defined in
it. Therefore, if you do not link to a resident 1library (or run-time
system) all global references will be resolved in the disk library.

With overlayed <code this exercise in deciding where global symbols
(especially your subprogram references) will be defined is very important
and worth further dicussion. It is easy to get UNDEFINED or AMBIGUOUSLY
DEFINED error messages from the task builder if care is not taken to
overlay your subprograms correctly

Consider the following example of a BASIC program and its overlay tree and
decription. The BASIC programs contain only calls to simplify the problem.

A.B2S B.B2S C2.B2S
12 CALL B 14 CALL D1 14 CALL D1
29 CALL C1 280 CALL C1 20 CALL D2
32 CALL C2 38 CALL D3

cl.B25, D1.B2S, D2.B2S, and D3.B2S make no calls.

.ROOT USER
USER: .FCTR SY:A-B-LIBR~-*(BR1,BR2)
BR1: .FCTR SY:C1-LIBR
BR2: .FCTR SY:C2-LIBR~*(BR3,BR4,BR5)
BR3: .FCTR SY:D1-LIBR
BR4: .FCTR SY:D2-LIBR
BR5: .FCTR SY:D3-LIBR
LIBR: .FCTR LB:[1,1]1BASIC2/LB
. END

Note that each object module is concatenated with the object 1library
search default. This means that for any global symbols not found on the
paths or in the root, the object library will be searched. Only the object
modules needed are vretreived from the 1library. You should always
concatenate any BASIC-PLUs-2 object modules with BASIC's disk library.
This 1is done by adding the "-LIBR" to the BASIC modules before any
overlays are specified.

29

PROGRAM SEGMENTATION IN BP2

Below is the tree structure for task as generated by the ODL above.

Module A is the BASIC main program. All other modules could be BASIC or
MACRO subprograms. There are 2 object modules in the root: A and B.
Execution starts in A which calls B, B then calls D1. This is legal since
there 1is a path between B and Dl. This call brings in the mocdule C2 even
though it is not referenced. Therefore at this point in the execution the
modules A, B, C2, and Dl are all in memory.

Dl returns to B which then calls Cl, This brings in the Cl segment on top
of C2 and D1. Cl processes data then returns to B, which returns to A.

A now calls Cl which is still in memory, therefore no overlays are brought
in. Again Cl executes and this time returns to A, A calls C2, which brings
in the C2 overlay. Now C2 calls D1, D2, and D3 in succesion, forcing a new
overlay to be brought in for each call. When D3 finishes, control returns
to €2, which finishes and then returns to A where processing stops.

Another way of looking at the task is shown below.

J
!

Looking at the task in this diagram allows you to see two things. By
drawing a vertical line through the diagram at different points you can
see exactly what can be in core at any given time. You can also see how
big the task 1is at any given time. The highest horizontal line that
crosses any vertical line (the time slice line) indicates how 1large the

30

PROGRAM SEGMENTATION IN BP2

task is. If you have task built the program once, you can look at the map
to get the actual sizes of the segments. Remember, however, that opening
files and creating strings causes dynamic changes in the size of your
task.

It is a good idea to trace through the actual runtime control, as was done
here, to prove that the overlay structure will in fact work. Be aware that
not all tasks that get task built without warnings or errors are properly
overlayed., Consider the same overlay structure with the calling sequence
as follows:

A.B2S B.B2S C2.B2S
1¢ CALL C1 18 CALL C1 1@ CALL B
29 CALL C2 29 CALL D1
30 CALL D2
40 CALL D3

This task will task build without any error or warnings but on tracing
through the control you can see that the program will abort with an error.

A will call Cl bringing in an overlay. Cl executes and returns to A, which
then calls C2. C2 now calls B. This is legal since any module can call any
other which lay on the same path.

B now calls C1 bringing in the Cl overlay on top of the €2 overlay. Cl
finishes executing and returns to B. At this point the Cl overlay is still
in memory where C2 was when it called B. When B returns it will ¢try to
return to C2. However Cl is still in C2's place. At this point you will
usually get a "?Memory Management violation" or "0dd address trap". The
reason is that when B executes the return to C2 it returns into some
section of Cl which may not even be code.

Overlays are brought 'into your address space by auto-load vectors which
are generated by CALL statements, but it is up to the user to be sure that
the correct overlay is in memory when the called segment tries to return.

Another important point to consider is the allocation of MAPs and COMMONs
in overlay sections. As was noted earlier, MAPs and COMMONs are generated
into PSECT definitions by BASIC. The PSECTs have attributes that will
cause any references to a COMMON or MAP of the same name in an overlay, to
be allocated the same storage as any other COMMON »: MAP on the same path
below it. This 1is how the data is shared between the subprograms that
reference the same COMMON or MAP. For example:

N

PROGRAM SEGMENTATION IN BP2

A.B2S

10 COMMON (MST) AS,BS
B.B2S

10 COMMON (MST) X$ = 30%, Y$ = 2%
C.B2S

10 COMMON (MST) MS$ = 32%

with the overlay structure

In this case, all three modules use the exact same space allocated for the
PSECT MST. It is allocated in the root and no space is allocated in the
overlay.

Now consider the case where A does not define the COMMON MST. The task
builder will allocate MST from EACH overlay. Thus, whenever an overlay is
brought in, its own copy of MST will be brought in. Remember, overlays are
not written back out to the disk. Any changes to MST just disappear when a
new overlay is brought in. This new overlay has its own copy of MST with
values unrelated to the MST across the tree. PSECTs with the overlay
attribute are overlayed only if they are on the same path.

Any time COMMONs or MAPs are not allocated in the root, data contained in
them will not be wvalid once a new overlay is brought in. Therefore,
COMMONs and MAPs which are not defined in the root should only be used to
hold temporary data that is needed only while the first overlay to define
the COMMON or MAP remains in your address space.

When using co-trees (an overlay structure of more than one tree which does
not share storage among trees; see TKB manual), be sure that you khow
ahead of time where ALL global symbols (BASIC's as well as your own) will
be resolved. Notice that co-trees are searched BEFORE -the default object
library. This may lead to the resolution of BASIC threads (global symbols]}
in overlays of co-trees. The unwary user can call into a co-tree from
overlay X. This co-tree has symbols defined in overlay Y which overlays
overlay X. Execution continues until the cotree tries to return to overlay
X, which is no longer in memory. At this point your task will probably
abort with "?0dd Address Trap"”, or "Zmemory Management violation".
Co—-trees should be approached with caution and only when necessary.

32

PROGRAM SEGMENTATION IN BP2

3.4 Run-time Happenings

When a call is executed by a BASIC program, several things take place.
BASIC saves the current values of error handlers and data pointers so that
the context of the calling program can be restored on return. Arguments
are pushed on to the argument 1list stack. R5 is made to point to the
argument list and then the actual call is made.

CALL BY REF does not save the current context of error handlers and data
pointers because this type of call can be used only for MACRO routines,
which cannot change these pointers and data. It is for this reason that
the ERN$ function does not return the name of the MACRO subprogram when an
error occurs there. The name of the called module is not saved anywhere as
it is for regular calls.

Calls to subprograms in a different overlay generate autoload vectors at
task build time. When the actual call is made the overlay is brought into
memory. No checking is done to be sure that the correct overlays are still
in memory on return. It is impossible for the task builder to know to
which routine you are returning, therefore vreturns do not generate
autoload vectors. How this can 1lead to problems was discussed under
section 3.3.

When a return is executed, (1) all the context information is recovered,
(2) 1local strings created by the subprogram are destroyed, and (3) the
space returned to free space. Again, a CALL BY REF does not need to
restore 1its current context because it never changed in the first place.
Also, because no strings can be changed or created by MACRO routines, no
local strings need to be cleaned up.

4.6 Calling keywords

This section will reveiw the different types of calling subprograms and
parameter ©passing. A 1list of the VAX~11l BASIC calling conventions is
included in the table below so that you can see the differences and the
added flexibility of that implementation. First a quick review of the
terms involved.

To pass a parameter by immediate value means the value of the actual
parameter 1is passed to the formal parameter. No update is made to the
actual parameter during the subprogram or on return. It is not possible in
the current version of BASIC—~PLUS-2 to pass any parameters by value.

To pass a parameter by reference means to pass the address of the actual
parameter to the formal parameter. The value of the actual parameter is
updated when ever the formal parameter is because they point to the same
value. BASIC presently uses this method for every type of parameter passed
except two: strings and entire arrays.

To pass a parameter by descriptor means to pass the address of a
descriptor of the parameter to the subroutine. This descriptor contains
information that enables you to reference the actual parameter. This type
of parameter passing is normally used when the actual parameter is not a

33

PROGRAM SEGMENTATION IN BP2

single element such as an array. BASIC currently uses this method to pass
strings and entire arrays.

The table below includes all of the calling conventions for VAX-11 BASIC
and PDP-11 BASIC. On VAX-1l BASIC the terms BY VALUE, BY REF, BY DESC are
keywords that can be applied to the call or to each parameter individually
to allow you to specify the method of parameter passing. On PDP-11 BASIC
these terms are used only to explain how parameters are passed. Only in
one case can you specify BY REF in PDP-11 BASIC (when calling MACRO
subprograms), and this must be applied to the entire call. It affects only
two types of parameters and has other side effects that were mentioned in
the MACRO subprogram section of this article.

PROGRAM SEGMENTATION IN BP2

PARAMETERS BY VALUE BY REF BY DESC by value by ref by desc

NUMERIC DATA

Variables YES *YES YES NO *YES NO

Constants YES *Local Loca’ NO *Local NO
copy copy copy

Expressions YES *Local Local NO *Local NO
copy copy copy

non-virtual

array elements YES *YES YES NO *Local NO

copy

Virtual

array elements YES *Local Local NO *Local NO
copy copy copy

Non~virtual

entire array NO YES *YES NO ++YES *YES

Virtual

entire array NO NO NO NO NO NO

STRING DATA

Variables NO YES *YES NO ++YES *YES
Constants NO YES *ES NO ++Local *Local
copy copy
Expressions NO Local *Local NO ++Local *Local
copy copy copy copy
Non-virtual
array elements NO YES *YES NO *Local NO
copy
Virtual
array elements NO Local *Local NO *Local NO
copy copy copy
Non-virtual
entire arrays NO YES *YES NO NO *YES
Virtual
entire arrays NO NO NO NO NO NO
35

PROGRAM SEGMENTATION IN BP2

* indicates the default parameter passing mechanism for BASIC programs.

In no case should you use a BY clause when calling a BASIC subprogram
from a BASIC maln program. The default parameter passing mechanisms

for the CALL statement correspond precisely to the way a

BASIC

subprogram expects to receive the parameters. VAX-11 BASIC permits

the use of the BY clauses only when the main and subprograms

written in different languages.

are

++ in PDP-11 BASIC, indicates those parameters for which you can specify

BY REF when calling a MACRO routine.

Local Copy means that if a parameter is an expression, a function, or

a

virtual array element, then it is not possible to pass the parameters
address. In these cases BASIC makes a local copy of the parameters
value, and passes this local copy by reference. You can force BASIC
to make a local copy of any parameter by enclosing it in parentheses.

Green Fungus & White Fuzz {Cont.)

The crack maintenance team replaced the filter, but with the
wrong filter. This wrong filter caused the deionzer to blow salt
water throughout the computer center. This salt water formed as a
white fuzz all over the top of all the machines in the area. The white
fuzz attacked the disc packs, destroying almost all of them.

Texas Southern has a building problem, an "o0ld” building
problem, And Texas Southern also has a crack maintenance crew.

The crack maintenance crew put a false ceiling in the computer
center. There was a old water pipe that wasn't used anymore. Since the
pipe wasn't to be used it should be OK to just cut the pipe off. And
Since the pipe wasn't used the crack maintence crew didn't have to go
the the trouble of threading and capping it.

Not to long after the remodling another member of the crack
maintenance crew found a valve in the water system that was closed,
and since there shouldn't be any valves in the water system that
should be closed, he opened it - giving new meaning to floating point
processor.

Hard as it is to believe, all university computer problems do
not occur in Texas. At the University of Northern Colorado the main
frame and the disc drives were provided and serviced by different
vendors. The system used cards for input, and the Field Service people
told the school that all of their card problems were because of static
electricty because of the low humidity in the computer room.

The director of the center, beliving the Field Service people
to ailways be right, had a humidifier installed. Then, all of a sudden,
the main frame would not "talk" to the discs. Of course each vendor
point a accusing finger at the other.

Each vendor trace their part of the system back to the
controller, pronouncing their part as sound. It seems that the new
dehumidifier was installed over the controller and as long as it was
turned on the electrical disturbance was enough to disrupt the flow

between the main frame and the discs.
36

BASIC-PLUS-2 TRANSLATOR ISSUES

The new BASIC Transportability Package consists of three components:
o The BASIC Transportability Manual
o The BASIC-PLUS Translator
o The BASIC-11 Translator

The Manual discusses topics including "Tips for writing transportable BASIC
programs", "Using the translators”, "Overview of system differences
influencing BASIC programming”. It intended to help the non-novice BASIC
programmer identify issues in moving to BASIC-PLUS-2, or in moving BP2
applications to VAX-11 BASIC.

The translators themselves are the same as those previously bundled with
the BASIC-PLUS-2 distribution kit.

This article summarizes the major issues from a previous Small Buffer
article concerning the translators, to assist in providing some know-how in
tailoring the size and several functional characteristics of the
translators.

A 28-K TRANSLATOR

The version of the BASIC-PLUS translator distributed with BASIC-PLUS-2
V1.6 is built to run in 24K. Because of this limitation, it is heavily
overlayed, and execution speed suffers. It has been suggested that a
28K version of the translator would run more gquickly on systems that
support 28K tasks. Therefore a new ODL file, that produces a 28K
translator, has been written.,

The installation of this new translator requires rebuilding the old
one. The procedure would be to copy the compiler object library, and
the files TRANS.ODL, TRANS.CMD, UTLIC1.0DL, and BP28LB from the
rebuild tape of the BASIC-PLUS-2 distribution into a rebuild account.
Then the ODL file must be edited so that it looks like the one below.
It 1is then necessary to change the command and ODL files to reflect:
(1) the correct accounts (N: and 0TS:), and (2) 0TS object 1libraries
(BAXRMS and BP2#LB). Then the new translator may be task-built (TKB
@TRANS), and moved to the desired system account.

This new translator should be able to run about 25 to 3@ percent

faster than the old one (the larger the file, the larger the amount
saved) .

37

BASIC-PLUS-2 TRANSLATOR ISSUES

THE ODL FILE FOR A

28K TRANSLATOR

BASIC2-RMSROT~USER, RMSALL
<COMLIB>/LB:TRANS: TRNPAT-LIBR-* (A-B,C)
<COMLIB>/LB:TRNSIN:GETSYS : NAMSCN-LIBR
<COMLIB>/LB:TRNS1~-LIBR
<COMLIB>/LB:TRNS2-LIBR-*(C1-C2-C3-C4-C7,C5-C6)
<COMLIB>/LB:TRNBLI-LIBR
<COMLIB>/LB:TRNLIN-LIBR
<COMLIB>/LB:TRNPST-LIBR
<COMLIB>/LB:TRNENC-LIBR
<COMLIB>/LB:TRNSP1-LIBR
<COMLIB>/LB:TRNSP2-LIBR
<COMLIB>/LB : TRNCOM-LIBR-E-F~-G
<COMLIB>/LB:TRNACT-LIBR-E1-E2-E3-E4
<COMLIB>/LB:TRNBKT-LIBR
<COMLIB>/LB:TRNDEL~LIBR
<COMLIB>/LB:TRNREP-LIBR
<COMLIB>/LB:TRNINS-LIBR
<COMLIB>/LB:TRNSCA-LIBR
<COMLIB>/LB:TRNSST-LIBR

. ROOT
USER: . FCTR
A: .FCTR
B: .FCTR
Cci . FCTR
Gls . FCTR
C2i% . FCTR
C3: .FCTR
c4: . FCTR
C5: .FCTR
Cé6: .FCTR
C7: .FCTR
E: . FCTR
El: . FCTR
E2: . FCTR
E3: . FCTR
E4: .FCTR
F: .FCTR
G: .FCTR
LIBR: .FCTR BP24JLB/LB
QUTLIC1
@LB:[1,1]1RMS11S

. END

In the ODL file the symbol <COMLIB> is the compiler library and should

be RTSLIB on RSTS, RSXLIB on RSX,and IASLIB on IAS.

The BASIC-PLUS Translator contained on the BASIC Transportability Kit
run in 28K, as is the BASIC-11 Translator. If you have

is built to

these versions of the translators, you already have the speed

28K translator.

or if you wish a smaller translator image, the translator

rebuilt to

run in 24K. In this case copy the files TRANS.OLB,
TRAN11.0LB), TRANS.CMD (or TRAN11.CMD), and TRANS.ODL (or
off the transportability Tape, and edit the ODL file so it looks 1like

the one below. Then task build the Translator, and move it
system account.

However, if your system will not support 28K images,

TRAN11,ODL)

DECUS

DIGITAL EQUIPMENT COMPUTER USERS SOCIETY
ONE IRON WAY, MR2-3/E55
MARLBORO, MASSACHUSETTS 01752

ASSOCIATE

BULK RATE
U.S. POSTAGE
PAID
PERMIT NO. 129
NORTHBORO, MA
01532

for change to take effect.

{) Change of Address
{ } Delegate Replacement

DECUS Membership No.:

MOVING OR REPLACING A DELEGATE?

Please notify us immediately to guarantee continuing
receipt of DECUS literature. Allow up to six weeks

Name:

Company:

Address:

State/Country:

Zip/Postal Code:

‘09

Mail to: DECUS - ATT: Membership
One lron Way, MR2-3
Marliboro, Massachusetts 01752 USA

I8y ssauppe
plo wiad ‘ajgepeae
10U St jaqgef j| "848y

‘Ausiaaun ‘Aued
-0 ‘VoNTRjEISUL

10 aweu apnjou|
{aqe; butjew xiiyvy

