
(EASl(]@I9
THE NEWSLETTER FOR THE BASIC SPECIAL INTEREST GROUP

July 1982 Vol. 3 No. 3

BASIC-PLUS-2 DEVELOPMENT SUPPORT TEAM

PROGRAM SEGMENTATI ON IN BP2

Two types of segmentation exist in BASIC: the subprogram and CHAINing.
When us ing subprograms, control passes from the main program to a
subprogram within the same task. CHAINing passes control fr om one main
program to an entirely different main program which is not contained in
the task. BASIC-PLUS-2 allows subprograms to be written either in
BASIC-PLUS-2 or MACR0-11.

Subprograms, like function s and subroutines, are ways for writing
frequently used procedures. A s ubprogram also allows you to divide a
large task into smaller,· more manageable units. You compile subprograms
separately from the main program and include them in the task through
the BUILD comm and.

1.0 BASIC-PLUS-2 SUBPROGRAMS

1.1 Transfer To And From

Transfer is passed from one program segment to ano ther thr ough the call
statement. The call statem en t ha w the format:

CALL name [(argl,arg2, ••• arg8)]

where
name is a unique one to six character n~me.

Subprograms, MAPS, or COMMON statements
cannot have the same name.

a rgl,arg2, •.. arg8 represent zero to eight
arguments to be pa ssed to the subprogram.
These arguments will be referr ed to as the
actual param e ters.

Copyright ©Digital Equipment Co rporation 1982
All _Rights Reserved

It is auumed that all articles submitted to the editor of this newsletter are w i{h the authors' permission to publish in any DECUS
pu b lication. The articles are the responsibility of the authors and, therefore, DECUS, Digita l Equ ipment Corporation, and the
editor assume no responsibility or liability for articles or information appearing in the document. The views herein expressed are
those of the authors and do not necessarily express the views of DECUS or Digital Equipment Co rporation.

i/HESE ARE THE NEVER ENDING C.HRON ICLES
or:- MAN 1 S NEVER END1NG

BASIC WAR vy

Green Fungus & White Fuzz

by Clair W. Goldsmith
University of Texas Health Science Center

At the University of Texas Helth Science Center we had a DEC 20
that was having intermit_tent errors. Of course we couldn't find any
reason for these errors, so we called those wonderful people from DEC.
What tne heck , they built the thing, so they should be able to make it
work, right.

The Data Center at the University of Texas Health Science
Center is one story below ground level. The area had been prepared
for a computer. The basement was dug out. A raised floor was
installed. A false ceiling was put in. And all contact with outside
air was sealed off, well almost all contact.

Those nice people from DEC tried everything they knew how to do
to cause the same errors that the DEC 20 was having all by itself.
Parts came out, parts went in until someone noticed something strange
about a backplane. It was a funny color. It was a bit green . Could it
be that when a computer gets sick it turns gr een.

It turns out that the green color came from a green fungus. It
seems that not all outside air was kept from the computer. The fungus
would grow on that backplane, make contact, cause an error and zap
itself breaking contact.

Southwest Texas State was blessed with a deionzer. This
deionzer had filters that had to be replaced by the crack maintenance
crew of the University.

2 Continued page 36

PROGRAM SEGMENTATION IN BP2

The name used in the call can be either a quoted or unquoted string. The
actual parameters must agree in type and number with the arguments used
in the SUB statement of the subprogram. For example :

10 CALL 'LEED' (X, Y)

10 CALL LEED (X,Y)

Lines 10 above call the same subprogram. You cannot use string variables
to c all a subprogram.

05
10

NAM$= 'SUBPGM'
CALL NAM$(X,Y)

In this case BASIC will try to call a routine with the name "NAM$" not a
routine called "SUBPGM".

The CALL statement is valid in main programs, subprograms, and
multi-line DEF's. Recursion is not allowed in the current version of
BASIC-PLUS-2. When the CALL is executed, control transfers from the main
pr?gram to the first line of the subprogram. This is the only entry
point of a BASIC-PLUS-2 subprogram. The first line of a BP2 subprogram
must be a SUB statement. The SUB statement has the form:

where
SUB name I (argl,arg2, ••• arg8))

name is the one to six character name used
in the CALL statement. Again, note that
SUBprograms, MAPs, or COMMONs cannot have
the same name.

argl,arg2, ••• arg8 represent zero to eight arg-
uments passed to the subprogram by the
CALLing program. These arguments will be
referred to as the formal parameters.

The formal parameters must agree in numb e r and type with
parameters.

the actual

Once control passes to the subprogram, execution continues until a
SUBEND statement is encountered. The SUBEND statement marks the end of
the SUBprogram. The format is:

SUB END

The SUBEND statement must be the last statement in the SUBprogram. When
executed, SUBEND tran sfe rs control back to the calling program to the
statement immediately following the CALL sta tement.

BAS IC-PLUS-2 also has a SUB EXIT statement. SUBEXIT, like SUBEND is valid
on ly in SUBprograms. When executed , SUBEXIT causes immediate transfer to
the SUBEND of the current subprogram. The form at of the SUBEXIT
statement is:

SUB EX IT

You can open and access files in the main program or the subprogram.
Opened files remain opened until one of three things happens: the
channel is closed by a CLOSE statement, another file is opened on the
same channe l, or the END stateme+it in t .he main program is encountered.

3

PROGRAM SEGMENTATION IN BP2

The internal file pointer, which defines the current record, is the same
for all modules. Thus each time you sequentially access the file, you
get the next record, whether BASIC performs the access operation in the
main program or a subprogram.

Main programs and subprograms can use the same variable names and
numbers. All variables are local to the subprogram unless they are:

0 Formal parameters

0 Elements of a COMMON or MAP

line

BASIC provides data communication between the calling program and the
subprogram three different ways: passing parameters, COMMON and MAP
areas, and virtual arrays (and files in general).

A function defined in a subprogram is local to that subprogram. You
cannot use a variable name in the function definition if it is one of
the SUB's formal parameters. For example:

10 SUB SUBWDF(A$,B%,C)
20

15000 DEF FNDUM(A$,B%,C)

15020 FNEND
32767 SUBEND

will result in
statement 1)
definition of
passed to the

an error message (?Illegal dummy argument at line 30
at compile time because the parameters used in the

the function FNDUM are the same as the formal parameters
subroutine.

Data statements are local to the subprogram
subprogram do not affect the DATA pointer in the
time the main program calls a subprogram, the data
the beginning of the s ubprogram's data.

also. READs in the
calling program. Eac~

pointer returns to

1.2 Data Communication

1. 2 .1 Parameters -

Paramaters are the arguments in the CALL and SUB statement. In the
statement they are referred to as th e actual parameters. In the
statement they are referred to as the form al parameters. Parameters
handled by BP2 in two different ways.

CALL
SUB
a r e

The two ways that BASIC-PLUS-2 passes praram e ters are by reference o r b~
descriptor. If a parameter is passed by reference, its address is placed
in the argument list. If it is passed by descriptor, the address of a
descriptor is placed in the argumen t 1 ist. The descr iptor c ontains the
addres s of the storage assigned to the argument.

4

PROGRAM SEGMENTATION IN BP2

Parameters are of two types; modifiable and non-modifiable. For a
modifiable parameter, the actual parameter is passed by one of the two
mechanisms above. Thus, assigning a value to the parameter in the SUB
changes the value of the argument in the main program. For
non-modifiable parameters, a local copy is made of the parameter in the
calling program. The local copy is then passed to the SUB by reference
but the actual parameter in the ~alling program will never be modified.

BASIC treats several types of parameter
constants, expressions, function calls
functions), and array elements. In the
passed are non-modifiable. Notice that
formal parameters in type and number.

Main program

as non-modifiable. They are
(user defined as well as BP2

example below all parameters
the actual parameters match the

10 DIM A$ (5%) ,C(5%,5%)
20 FOR I%= 1% TO 5%
30 A$(I%) = 'AAAA'
50 FOR J% = 1% TO 5%
60 C(I%,J%) = 4.0
70 NEXT J%

!INITIALIZE THE ARRAYS
!INITIALIZE A$ TO BE 'AAAA'
!INITIALIZE THE MATRIX TO BE 4.0

80 NEXT I%
90 NOW PRINT THE VALUES OF PARAMTERS BEFORE THE CALL
100 PRINT A$(1%),C(l%,1%)
110 CALL SUBl(A$(1%),C(l%,1%))
120 PRINT A$(1%),C(l%,1%)
130 PRINT \PRINT 'THE SECOND CALL:'
140 PRINT A$(2%)+A$(2%), FNSQR(C(2%,2%))
150 CALL SUBl(A$(2%), FNSQR(C(2%,2%)))
170 PRINT A$(2%)+A$(2%), FNSQR(C(2%,2%))
1000 DEF FNSQR(DUMMY)
1010 FNSQR =DUMMY** 2%
1020 FNEND
32767 END

Subprogram

10 SUB SUBl(STR.ING$, RE.AL)
20 PRINT 'THE VALUES OF THE FORMAL PARAMETERS ARE:'
30 PRINT 'STR.ING$ = '; STR.ING$
40 PRINT 'RE.AL , RE.AL
50 STR.ING$ = 'HI THERE'
55 RE.AL= 8.0
60 PRINT 'THE NEXT VALUES WILL BE PRINTED BY THE MAIN PROGRAM'
70 PRINT
32767 SUB END

When executed gives:

AAAA
THE VALUES
STR. ING$
RE.AL

4
OF THE FORMAL PARAMETERS ARE:
AAAA
4

THE NEXT VALUES WILL BE PRINTED BY THE MAIN PROGRAM

5

PROGRAM SEGMENTATION IN BP2

AAAA 4

THE SECOND CALL:
AAAAAAAA 16
THE VALUES OF THE FORMAL PARAMETERS ARE:
STR.ING$ AAAA
RE.AL 16
THE NEXT VALUES WILL BE PRINTED BY THE MAIN PROGRAM

AAAAAAAA 16

As you can see, the value of the array elements did not change during
the call even though the values of the formal parameters that represent
them did. This is what is meant by non-modifiable.

BASIC treats all other types of parameters as modifiable. This includes
entire arrays of all types, simple string variables, simple integer
variables, and simple real variables. These types of parameters may have
their values changed while the subprogram is executing.

The way to pass entire arrays is to specify the name, parentheses, and a
comma (if necessary), without the actual row (and column) number. For
example:

Ma in program

10 DIM A$(5%,5%), B%(2%)
20 FOR I% = 1% TO 5% !INITIALIZE A$
30 FOR J% = 1% TO 5%
40 A$(I%,J%) = 'AAA'
50 NEXT J%
60 NEXT I%
70 B% (1%) ,B% (2%) 32767%
75 X$ = 'XXXXXXX' \Y% = 9999% \Z = 88.88
80 PRINT 'HERE ARE THE VALUES BEFORE THE CALL:'
90 MAT PRINT A$, \PRINT
100 PRINT B%(1%),B%(2%)
105 PRINT X$,Y%,Z
110 CALL BP2SUB(A$(,) ,5%,8%() ,2% , X$,Y%,Z)
120 PRINT \PRINT 'HERE ARE THE VALUES AFTER THE CALL:'
130 MAT PRINT A$, \PRINT
140 PRINT 8%(1%),8%(2%)
150 PRINT X$,Y%,Z
9000 END

Subprogram

10
20
30
40
50
60
70
80
90
100
110
120
9000

SUB BP2SUB(ARY$(,) ,Dl%,INRY%() ,D2%,STRG$,IN%,R)
FOR I%= 1% TO Dl%

FOR J% = 1% TO Dl%
ARY$(I%,J%) 'BBB'

NEXT J%
NEXT I%
FOR I%= 1% TO D2%

INRY%(I%) = -1%
NEXT I%
STRG$ = 'A STRING'
IN% = 1234%
R = 12E-4
SUB END

6

PROGRAM SEGMENTATION IN BP2

Results in:

HERE ARE THE VAL UE S BEFORE THE CALL:
AAA AAA AAA

AAA AAA AAA

AAA AAA AAA

AAA AAA AAA

AAA AAA AAA

3276 7 32767
xxxxxxx 9999 88 . 88

HERE ARE THE VALUES AFTER THE CALL:
BBB BBB BBB

BBB BBB BBB

BBB BBB BBB

BBB BBB BBB

BBB BBB BBB

-1 -1
A STRING 1234 .00 1 2

AAA

AAA

AAA

AAA

AAA

BBB

BBB

BBB

BBB

BBB

AAA

AAA

AAA

AAA

AAA

BBB

BBB

BBB

BBB

BBB

In t he example above, BASIC passes th e arrays AS and 8% by descriptor ,
the string X$ by descriptor and all others by reference. The constants
5% and 2% are the only parameters passed that are non-modifiable . The
values of the arr ays a nd simpl e variables are cha ng ed by the subprogram
and the changes effect the actual parameters in the main program as
well.

10
20

Be su r e to note that the statements

DIM A%(100%) ,8$(1 5%)
CALL XXX(A%(100%),B$(15%))

result in only on e e lement in each array being passed
to the s ub program, not the whole ~r ra ys.

1.2 . 2 COMMON And MAPS -

(non-mod ifiably)

COMMON and MAP is another method of data commun i cation between the
calling program and the subprogram. Special placement consideration must
be gi ven to t he se two st a tement s when ov erl ay ing yo u r programs. Se e the
overlay section of this article for more info rm ation.

7

PROGRAM SEGMENTATION IN BP2

The COMMON a n d MAP statements define a named , s ha red area of memory
call ed a COMMON block. This block contains val ues avai l able for reading
o r changing by any BASIC sub progr am with a COMMON or MAP of the same
name.

The COMMON statement has the form_t:

COM [MON) [(name) I list

where:

name can be from 1 to 6 characters long and must be di f ferent
from any MAP in the same progr am mod ule, or any
subprogram names in the task.

list specifies the variables who se values are sto r ed in the
COMMON area.

Variables stor ed in COMMON are a s can be simpl e or subscripted . Simple
numeric variables reserve fixed amounts o f s t orage space:

o Integ ers reserve 2 bytes

o Fl oating- point numbers reserve 4 bytes for sing l e precision
systems or 8 bytes for double precision .

NO TE

Examples and explanations in
single-pr ecision .

this section assume

s tring va riabl es re serve fix ed am ount s o f storage . Sixteen bytes is the
default. Longer or shorter string lengths can be specified in the
format:

{COMMON}
{ MAP } str-variable-name n%

where:

n% is the number of bytes of storage you want the
variable to reserve.

For example:

Main Program

10 COMMON(Al) A$,B$ = 10% ,C %

Creates a COMMON block made up of:

Subprogr am

10 COMMON(Al) X$,Z$ 10%,Y%

o A 16 byte string field called A$ by the main program and X$ by

8

the

PROGRAM SEGMENTATION IN BP2

subprogram

o A 10 byte string field called B$ by the main program and Z$ by the
subprogram

o A 2 byte integer field called C% by the main program and Y% by the
subprogram

If the COMMON statement in the subprogram were:

10 COMMON(Al) X$,Z$

the first variable, X$, references same storage as A$, because they are
both 16-byte strings. The second variable, Z$, references the next 16
bytes of storage in the COMMON. Because the main program defined 8$ as a
10-byte string, the variable Z$ references these 10 bytes, plus the two
bytes specified by the variable C%, plus the contents of the next four
bytes of memory. This will result in Z$ containing garbage on entry into
the subprogram.

Each element of a MAP or COMMON should start on a word boundary. When
defining strings of odd lengths, you should add a" ,FILL$=1%" before
defining any other variables, otherwise the compiler will generate an
warning.

Areas in COMMON blocks can be subdivided. For example:

Main Program

10 COMMON A$ 10%, 8% (10%)

Subprogram

10 COMMON A$= 5%, B$ 5%, Bl% (4%), B2% (5%)

In the main program, A$ is a 10 character string. In the subprogram, A$
is the first 5 characters and B$ is the next five characters of this
same string. Arrays in COMMON allocate storage for row and column zero.
Thus to access the array B% as Bl% and B2% in the subprogram, you must
account for the zero element of the array.

To align the variables correctly, use the FILL functions. They are place
holders and do not place any values in the locations they hold. They
move a pointer so that subsequent variables point to the correct values.
See the FILL function in the file chapter of the Language Reference
Manual for details.

BASIC dimensions arrays that appear in a COMMON statement. Therefore,
you cannot also name them in a DIM statement. Specifying a DIM statement
returns the compile-time warning:

% Multiply allocated variable

A MAP is a fixed length area often used as a buffer for an I/0 channel.
It behaves much like a COMMON. The values in a MAP or COMMON are

9

PROGRAM SEGMEN7ATION IN BP2

available for access by any BASIC subprogram with a MAP or COMMON of the
same name. Once a file is opened in a main or subprogram, any subprogram
which defines a MAP of the same name can read data from it and place
data in it. The subprogram can place data in the MAP either by
performing a GET or by assigning values to the variables defined in the
MAP.

There is a difference in the way BASIC allocates space for MAPs and
COMMONS within a single program unit. BASIC concatenates storage for
each COMMON area of the same name (that is places them end to end),
while MAPs of the same name in a single program unit re-map the same
storage (that is the MAPs ovedlay each other). The length of any MAP is
the length of the longest single MAP statement with the same MAP name,
while the length of a COMMON is the sum of the lengths of each
individual COMMON. The order of elements in the COMMON list and the
order of the COMMON statements, determines the order of values in the
shared area. For example:

Program with COMMON

10 COMMON(A) A$= 10
20 COMMON(A) A%,B%,C%,D%,E%

Program with MAP

10 MAP(B) A$= 10
20 MAP(B) A%,B%,C%,D%,E%

Both the MAP and COMMON statements reserve shared, named areas of
memory. However, the COMMON statement program reserves a total of 20
bytes of storage: 10 bytes for strings, and 2 bytes for each of five
integers. The MAP statement program reserves a total of 10 bytes: the 10
bytes for strings, and those same 10 bytes subdivided into 5 separately
accessible 2-byte sections that the program can reference as integers.

The COMMON statement stores values accessed by different program
modules. It also stores values that change from module to module. When a
module changes the value in COMMON, all later references to that value
return the changed value. For example, the following main program and
subprogram access an array stored in a COMMON named ALPHA. The
subprogram changes one of the elements in this array, and the main
program then prints this element.

MAIN PROGRAM

10
20
30
40
50

COMMON(ALPHA) A%(5%,5%)
FOR I%= 1% TO 5%

FOR J% = 1 % TO
Y% = Y% +

60 NEXT
70 NEXT I%

A% (I%,J%)
J%

80 MAT PRINT A%,

5%
1%
= Y%

90 PRINT "NOW TO THE SUBPROGRAM"
100 CALL SUBl
105 PRINT \ PRINT "BACK IN MAIN PROGRAM"
110 PRINT \ PRINT "CHANGED VALUE OF ELEMENT (3, 3) IS "; A% (3 %, 3%)
120 END

10

PROGRAM SEGMENTATION IN BP2

SUBPROGRAM

10 SUB SUBl
20 PRINT "IN SUBPROGRAM NOW"
30 COMMON(ALPHA) C%(5% , 5%)
35 C% (3%, 3%) = 0
40 MAT PRINT C%,
60 SUBEND

The output is:

1 2
6 7
11 12
16 17
21 22

NOW TO THE SUBPROGRAM
IN SUBPROGRAM NOW

1 2
6 7
11 12
16 17
21 22

BACK IN MAIN PROGRAM

3
8
13
18
23

3
8
0
18
23

CHANGED VALUE OF ELEMENT (3,3) IS 0

1.2.3 VIRTUAL ARRAYS -

4
9
14
19
24

4
9
1 4
19
24

You can also pass data by DIMENSIONing virtual arrays
DIGITAL strongly recommends that you do not pass
parameters. There is no need to do so because BASIC
means of access to virtual arrays.

5
10
15
20
25

5
10
15
20
25

in subprograms.
virtual arrays as
provides another

To access a virtual array in a subprogram, use the DIMENSION statement
with the same channel number used to define the virtual ar ray in the
main program. You do not need to open the file on that channel i n the
subprogram if the file is already open. You can also DIMENSION and open
a virtual array in a suprog ram, and then access this array in the
calling program with two restrictions: (1) you cannot close the file
before exiting the subprogram, and (2) you must DIMENSION the array in
the main program on the same channel. You need not call the array by the
same name in each program, and in any case, the v irtual array must be
opened BEFORE you access it. For example:

Ma in program

10 DIM #1%, A$ (11%), A% (15%)
20 DIM J2%, B% (12%), B$ (15%)
30 OPEN 'VIRFIL.DAT' FOR OUTPUT AS FILE #1%, VIRTUAL

11

PROGRAM SEGMENTATION IN BP2

40
50
60
70
32767

A$(11%) = '11 12ST'
CALL VSUBl
B% (12%) = 12%
CLOSE 1%, 2%
END

Subprogram

10
20
30
40
50
60
70
80
32767

SUB VSUBl
DIM #1%, X$ (11%), 2% (15%)
DIM #2%, CNT%(12%), ADR$(1 5%)
OPEN 'VFILE2.DAT' FOR INPUT AS
X$(3 %) = ADR$(3%)
FOR I%= 1% TO 12%

Z%(I%) = CNT%(I%)
NEXT I%
SUB END

FILE #2%, VIRTUAL

In this example, the main program cannot access the virtual arrays on
channel 2 until control returns from the subprogram because the file is
opened by the subprogram. Th e subprogram can access the arrays opened on
channel 1 immediately because this fi le is already opened when VSUBl is
cal led. If VSUBl had closed the file on channel 2 before r e turning to
the main program, then the error '?Virtual array not yet opened ' would
be given at line 60 in the main program.

NOTE: Be sure that every virtual array you dimension is the same size
and type as tho se in any other SUB. or main program on the same channel.

1.3 Error Handling In BASIC Subprograms

Error handling in subprograms is similar to error handling in main
programs. There are some error statements specifically related to
subprograms , such as ON ERROR GO BACK and the ERN$ function.

The default error handler in the main program is ON ERROR GOTO 0 (i.e.
all fatal errors abort execution) . This is true for BASIC-PLUS-2
subprograms also. If there is an error handler in the main program, but
none in the subprogram, and a fatal error occurs in the SUB, then
execution will abort.

You may trap errors in a subprogram by using an error handler in the
subprogram . ON ERROR GO BACK is a statement available in subprograms
that is not available in main programs. This statement tells BASIC to
return to the calling program's error handler when an error occurs in a
subprogra m. If this statement is execu ted when an error is pending then
control will transfer lmmediately, otherwise the statement sets up the
error handler for any future errors. You should explicitly state what
you want your error handler to be in subprgrams , even if it is ON ERROR
GOTO 0. Future releases may change the default handler in subprograms to
be ON ERROR GO BACK. By explicitly sta ting the type of error handling

12

PROGRAM SEGMENTATION IN BP2

you want, you can avoid any compatability problems.
example illustrates the use of ON ERROR GO BACK.

10 SUB ERRTRP(X,Y)
20 ON ERROR GOTO 19000
30 INPUT l %, G.LIN$ GET A LINE

19000 PRINT ERR,ERL,ERN$
19010 IF ERR= 11% AND ERL 30% THEN &

RESUME 32767 &
ELSE &

IF ERR= 51% THEN &
ON ERROR GO BACK &

ELSE &
ON ERROR GOTO 0

32767 SUB END

The following

In this example, if the error is 11 and the error line is 30 then the
error condition is cleared and the subprogram exits normally. If the
error is 51 then control is transferred immediately to the error handler
in the calling program with the error conditions still set. In all other
cases, BASIC reports the fatal error and execution stops. ON ERROR GO
BACK can appear anywhere in the SUB.

ON ERROR GO BACK allows you to do all of the error handling in the main
routine no matter how deeply you nest your subprograms. If all
subprograms in a task have ON ERROR GO BACK as their error handler then
any errors will return to the error handler of the main routine. This is
because when control returns from a subprogram, the calling program
checks if an error is pending. If so, then that program's error handler
is executed. If that error handler is ON ERROR GO BACK then control
continues to return through the calling programs until one of two things
happens: an error handler is executed that is not ON ERROR GO BACK, or
no error handler is found. In the latter case BASIC reports the error
and aborts execution. Example:

Main
10
20

program

30
40
19000
19010
32767

ON ERROR GOTO 19000
CALL ERSUl
PRINT 'AFTER CALL.
GOTO 32767
PRINT ERR,ERL,ERN$
RESUME 32767
END

Subprograms
10 SUB ERSUl
20 ON ERROR GO BACK
30 CALL ERSU2

SUCCESS 1

40 PRINT 'SUCCESS AFTER CALL. IN ERSUl'
32767 SUBEND

10 SUB ERSU2

13

PROGRAM SEGMENTATION IN BP2

20
30

ON ERROR GO BACK
CALL ERSU3

40
32767

PRINT 'SUCCESS AFTER CALL. IN ERSU2'
SUB END

10
20
30
32767

SUB ERSU3
ON ERROR GO BACK
A = VAL (' l 2R')
SUBEND

!GENERATE ERROR

Gives the following as a result:

52 30 ERSU3

Note that lines 40 in ERSU2 and ERSUl do not get executed.

If you trap errors in subprograms be sure to RESUME before exiting the
subprogram (unle s s you exit through ON ERROR GOTO 0 or ON ERROR GO
BACK). If you j ust 'fall' through to the SUBEND statement, unexpe c t e d
results can o ccur. It is always recommended that you RESUME from your
error traps whether in the main program or a subprogram.

In applications where trapping errors is crucial, put the error handler
on the same l ine number as the SUB statement. This will mi nimize the
time between wh en the subprogram starts and when you can first trap an
error. Fo r cont rol C trapping this is especially important. For example:

10 SUB EXAMPL(DUMl)
\ ON ERROR GO BACK

2.0 MACRO SUBPROGRAMS

BASIC allows you to call subprograms written in MACRO as well as BASIC.
This allows greater flexibility in sharing low level routines between
several languages. The restrictions are listed in this section. Read the
entire section before you start to write your subprogram.

2.1 Transfer To And From MACRO Subprograms

Transfer from a BASIC-PLUS-2 program to a MACRO subprogram is passed
through the CALL statement". For MACRO subprograms there are two forms of
the CALL. Their format is

CALL name [(argl,arg2,arg3, ••••)]

and

14

PROGRAM SEGMENTATION IN BP2

CALL name BY REF (argl,arg2,arg3, .•••)

where

name is a unique 1 to 6 character name. Subprograms, MAPs,
or COMMONS cannot have the same name. Name can appear
as a quoted or unquoted string.

argl, arg2 ,arg3, ... are the arg ument s from BASIC to
the subprogram. These arguments will be referred
to as the actual parameters.

BY REF affects the way data is passed and the way errors are handled
the MACRO subprogram. See the data communication section (sect 2.2)
error handling section (sect 2 . 3) for more details.

in
and

BASIC-PLUS-2 can call only those MACRO subprograms that use the PDP-11
standard RS argument passing sequence as shown in Figure 4-1. There are
other restrictions:

0

0

0

MACRO subprograms cannot perform I/O operations or
execute monitor calls.

BASIC-PLUS-2 cannot call a FORTRAN subprogram.

A MACRO or FORTRAN subprogram cannot call BASIC-PLUS-2.

The MACRO instruction that returns control from the MACRO
subprogram to the calling BASIC program is:

RTS PC

where:

RTS is the "return from subprogram" instruction.

2.2 Data Communication.

2.2.l Parameters -

The argument list of a CALL statement passes arguments from BASIC
programs to MACRO subprograms. When the MACRO subprogram starts,
register S (RS) contains the address of an argument list, as shown in
Figure 4-1.

15

PROGRAM SEGMENTATION IN BP2

Figure 4 -1: Argument List Format

RS-----------------+

I UNDEFINED
I

I
V

NUMBER OF
ARGUMENTS

ADDRESS OF ARGUMENT l

ADDRESS OF ARGUMENT 2

ADDRESS OF ARGUMENT n

A MACRO subprogram called by a BASIC-PLUS-2 program n eed not save
registers. However, as is usual in MACRO code, register 6 (SP) must
point to the same location on entry to, and exit from, the subprogram.
Each "push" onto the stack must have a corresponding "pop" from the
stack before the subprogram return s control to the BASIC-PLUS-2 program.

CALL BY REF affects only two types of parameters: simple string
variables and entire arrays. CALL and CALL BY REF pass integer, real
(single-precision), and double value (do uble-precisio n) arguments the
same way, and string and array arguments in different ways. Refer to
Appendix D of your Language Reference Manual for a description of data
formats of strings and arrays .

The RS arg ument lis t passes data formats as follows:

Integer

Real

Double

String

The RS argument list contains the addre ss of the word holding
the integer value.

The RS argument list contains the address of the high-order
word for the singl e-precision value.

The RS argument list contains the address of the high-order
word for the do uble-pr ecision value.

When CALL is used, the RS argument list conta ins the address
of a two word str ing header. The first word of this header is
the address of the first byte i n the string. The second word
is the string's length in byte s .

16

PROGRAM SEGMENTATION IN BP2

Array

When the program spec ifie s a CALL BY REF, the R5 argument list
contains the address of t he first byte in th e string; t he
string length is not av ailable.

When the program has a CALL , the R5 argument list contains the
address of the second wo rd in the array header. The array
header contains subscript information and the address of the
first array element.

When the program spec if ies CALL BY REF, the R5 argument lis t
contains the ad dress of the fir st elem ent in th e ar ra y; the
a rr ay header is not avai l able .

BASIC does not allow you to pass a string array in a CALL BY
REF.

In MACRO subprograms, as in BASIC subprograms, BASIC
constants , expressions, function calls , and array
non-modifiable parameters. The addresses generated in the
non-modifiable arguments are the local-copy a dd r esses
program . Th e local-copy value can be changed by the MACRO
this will never affect the actual parameters.

still passes
e l ements as

R5 lis t for
in the ca ll ing
routine, but

There are two other restrictions that should be noted .

o You cannot pass virtual arrays to MACRO subprograms

o MACRO subprograms cannot create strings nor change the length of
existing strings .

To ge t a r ound these restrictions, plac e strings and array elem en ts in
COMMON before passing them as parameters, then make updates and changes
to the COMMON area known to the calling and subprogram (see section
2. 2. 2) . On return to the calling program, yo u can move the updated
COMMON variables into the virtual a rray or s tri ngs .

Consider the MACRO subprograms in Programs 1 and 2 . Program 1 shows how
to use CALL to pass arguments; Program 2 shows how to use CALL BY REF.

I NPUTS:

OUTPUTS:

EFFECTS:

Program 1: CALL Statement

CA LL INS RT (A$, B$, C%)

ARGl ADDRESS OF A$ STRING HEADER
ARG2 ADDRESS OF B$ S TRING HEADER
ARG3 ADDRESS OF C%

C% 0 IF OPERATION WAS SUCCESSFUL
- 1 IF OPERATION FAILED

THIS subprogram OVERWR ITES THE SUBSTRING B$ INTO THE
STR ING A$ BEGINNING AT CHARAC TER POSITION C% .
RETURNS 0 INC% IF THE OPERATI ON WAS SUCCESSFUL .
RETURNS -1 INC % IF THE OPERATI ON FAILED.

17

PROGRAM SEGMENTATI ON IN BP2

INSRT::
MOV 2(R5),R0 R0 ADDRESS OF A$ STRING HEADER
MOV 4(R5),Rl Rl ADDRESS OF B$ STRING HEADER
MOV @6 (R5) ,R2 R2 C%
BLE ERREX BR TO ERROR IF C% <= 0
ADD 2(Rl) ,R 2 R2 = C% PL US LENGTH OF B$
DEC R2 ; MAKE R2 A LENGTH
CMP R2 , 2(R0) WILL B$ FIT INTO A$?
BGT ER REX BR TO ERROR IF B$ WON'T FIT INTO AS
MOV (R0) , R0 R0 ADDRESS OF A$
MOV @6 (R5) ,R2 R2 C%
DEC R2 R2 C% MINUS ONE
ADD R2,R0 R0 ADDRESS OF 1ST CHA R TO BE REPLACE D
MOV 2(Rl),R2 R2 LENGTH OF B$
BEQ ERREX BR TO ERROR IF LENGTH OF B$ = 0
MOV (Rl), Rl Rl = ADDRESS OF B$

1$: MOVB (R l)+, (R0)+ ;INS ERT A CHARACTER INTO A$ FROM B$
SOB R2 ,1 $
CLR @6 (R5) ; SET C% TO 0 (OPERATION SUCCESSFUL)
RTS PC

ERREX: MOV #-l,@6(R5) SET C% TO -1 (OPERATION FAILED)
RTS PC
.END

Program 2: CALL BY REF Statement

• TITLE INS RT

INPUTS:

OUTPUTS:

EFFECTS:

' INSRT::
MOV
BLE
ADD
CMP
BGT
MOV

CALL INSRT BY REF(A$,LEN(A$),B$,LEN(B$),C%)

ARGl
ARG2
/\ RG3
ARG4
/\RG5

ADDRESS OF A$
ADDRESS OF LENGTH OF A$
ADDRESS OF B$
ADDRESS OF LENGTH OF B$
ADDRE SS OF C%

C% = 0 IF OPERA TION WAS SUCC ESSFUL
-1 IF OPERATION FAILED

THIS subprogram OVERWRITES THE SUBSTRING B$ INTO
THE STRING A$ BEGINNING AT CHARACTER POSITION C%.
RETURNS 0 INC% IF THE OPERA TI ON WAS SUCCESSFUL .

RETURNS -1 INC% IF THE OPERA TION FAILED .

@12 (R 5) , R2
ERREX
@10(R5) ,R 2
R2 , @4 (RS)
ER REX
2 (RS) , R0

R2 = C%
BR TO ERROR IF C% <= 0
R2 = C% PLUS LENGTH OF B$
WILL B$ FIT INTO A$?
BR TO ERROR IF B$ WON'T FIT INTO A$
R0 = ADDRESS OF A$

18

PROGRAM SEGMENTATION IN BP2

MOV @12 (RS) ,R2 R2 C%
DEC R2 R2 C% MINUS ONE
ADD R2,R0 R0 ADDRESS OF A$ PLUS C%
MOV @10 (RS) ,R2 R2 LENGTH OF B$
BEQ ERREX BR TO ERROR IF LENGTH OF B$ = 0
MOV 6(R5),Rl Rl = ADDRESS OF B$

1$: MOVB (Rl)+, (R0)+ ;INSERT A CHARACTER INTO A$ FROM B$
SOB R2,1$
CLR @12 (RS) ; SET C% TO 0 (OPERATION SUCCESSFUL)
RTS PC

ERREX: MOV i-l,@12(R5) SET C% TO -1 (OPERATION FAILED)
RTS PC
.END

2.2.2 COMMON And MAPs -

BASIC allows you to access COMMONs and MAPs from subprograms written in
MACRO. This enables you share large amounts of data between your BASIC
programs and MACRO routines. Also you can use a MACRO program to
initialize COMMON areas at program load time.

For each COMMON and MAP in the user program, BASIC generates a PSECT
definition. The example below shows a piece of a BASIC program and the
code generated by BASIC. Note the attributes that BASIC assigns to the
PSECT.

SAMPLE.B2S
10 COMMON (AAA) A$=6%, C%, D 12. BYTE AREA
20 MAP (BUF) ADRR$, SS.NO$=9%, FILL$=1%, AMNT

Code generated

.PSECT AAA,RW,D,GBL,REL,OVR
AAA:

BUF:
.PSECT BUF,RW,D,GBL,REL,OVR

.PSECT AAA
• BLKW 6
. PSECT BUF
• BLKW 15

(numbers in the generated code ar e in decimal)

30. BYTE AREA

By defining a PSECT with the proper name and attributes you can access any
COMMON or MAP from a MACRO subprogram.

By writing MACRO routines that define the same PSECT that is generated by
the COMMON statement, you can pe-initialize COMMONS to whatever values you
like, without executing a single statement. The values are simply put in
the right place at load time.

19

PROGRAM SEGMENTATION IN BP2

Pre-defining your COMMON area can save time if the first thing your
program does is assign values to variables in COMMON. This can also save
space by eliminating code generated for the assignments, and storage
allocated for constants that are used only once.

Suppose you have COMMON statements to hold data that is used by the main
and subprograms. The data is constant and is used for such things as
printing common error messages, checking maximum values and so on. Your
main program might look something like this

10

20

30

40

50

COMMON(FIXSTR) OUT.STR$
BAD. INFO$
ATLIN$

COMMON(FIXDAT) MAXNUM%,
MAXVAL,
BADNUM%,
FUN.STR$

"Output is"

10%, &
24%, &
8%

= 6%

&

&
&

OUT.STR$ =
BAD. INFO$ =
ATLIN$
MAXNUM%
MAXVAL
BADNUM%
FUN.STR$

"Bad information supplied"
"at line'

&

&

100%
2E6
-1%
" FUNNY"

&

&
&

In this example seven statements are executed to initialize variables in
COMMON. Each constant ("Output is", 100%, 2E6, etc) used is allocated
storage that can not be recovered. If these constants are never used again
this space is, in a sense, wasted. Now consider the same program with only
lines 10 and 20 and a MACRO definition of the PSECTs which has the same
effect as lines 30 and 40, but requires no execution and generates no
'wasted space'.

10

20

50

COMMON(FIXSTR) OUT.STR$ 10%, &
BAD. INFO$ 24%, &
ATLIN$ 8%

COMMON(FIXDAT) MAXNUM%, &
MAXVAL, &
BADNUM%, &
FUN. STR$ 6%

Macro routine to initialize FIXSTR and FIXDAT •

It should be linked with the main program like any other
object module.

Values take effect at load time.

Attributes for the PSECTs MUST be as shown.
They cannot be changed

• ENABLE LC ENABLE LOWER CASE

.PSECT FIXSTR,RW,D,GBL,REL,OVR

20

PROGRAM SEGMENTATION IN BP2

.ASCII

.ASCII

.ASCII

• PSECT
.WORD
.FLT2
.WORD
.ASCII

.END

/Output is/
/Bad information supplied/
I at line/

FIXDAT,RW,D,GBL,REL,OVR
100.
2E6
-1
/ FUNNY/

There are some pitfalls you should watch for.

OUT.STR$ len = 10
BAD.INFO$ len= 24
ATLIN$ len = 8

MAXNUM%
MAXVAL
BADNUM
FUN.STR$ LEN 6

0 If you compile your BASIC program in double precsion
ALL floating point numbers must be defined with .FLT4

0 Check lengths of string and floating point numbers to
be sure you line up data correctly

To include this routine in your task you can use the BUILD command and
specify the routine as if it were a subprogram. Create the MACRO program
with an editor then assemble it making sure there are no errors. The
initialization can take place only once . If you change values of variables
in COMMON, you cannot call this routine to re-initialize. It contains
definitions, not executable code. Even if you add a subprogram to these
PSECT d ef initions, the initialization takes place only once, regardless of
how many times you call the routine.

To write MACRO subprograms that access COMMON you need to define the
correct PSECTs as shown above. If you do not wish to initialize the COMMON
then enter a ".BLKW n." where n is the number of words of the common
you wish to reference. Using this method, the COMMON will have whatever
values were last assigned by the CALLing program.

You will have to assign a label to
reference. It is a good practice
names in the BASIC program. For an
started above.

10

20

COMMON(FIXSTR) OUT.STR$
BAD. INFO$
ATLIN$

COMMON(FIXDAT) MAXNUM%,
MAXVAL,
BADNUM%,
FUN.STR$

15 COMMON(DATUM) M%,N%,X,Y

each data item that you wish to
to make these names correspond to their
example we will use the program already

10%,
24%,
8%

= 6%

50 INPUT 'supply an integer to convert to octal'; M%
55 PRINT
60 PRINT 'Here are initial values of all COMMONs'
70 GOSUB 500
80 CALL SAMPLE ! CALL THE SAMPLE MACRO SUB
85 IF N% <> 100% THEN PRINT BAD .INF O$; ATLIN$; 50
90 PRINT

21

PROGRAM SEGMENTATION IN BP2

95
100
110
120
130
500
510
520
530
32767

FUNST:

M:
N:
X:
Y:

SAMPLE::

PRINT 'The octal value of 328 is '; FUN.STR$
PRINT
PRINT 'Here are the values after th e call '
GOSUB 500
GOTO 32 767
PRINT OUT.STR$, BAD.INFO$, ATLIN$
PRINT MAXNUM%, MAXVAL, BADNUM%, FUN.STR$
PRINT M%,N%,X, Y
RETURN
END

This is a sample routine it converts the first word of the
PSECT DATUM to an octal string and puts it in FUN.STR$.

There are no parameters, all data is shared through COMMON

• ENABLE

.PSEC T

.ASCil

.ASCII

.ASCII

• PSECT
.WORD
. FLT2
.WORD
.ASCII
• PSECT
.WORD
.WORD
.FLT2
• FLT2

. PSEC'r

MOV
MOV
BGE
MOVB
BR

LC

FIXSTR,RW,D,GBL,REL,OVR
/Output is/
/Bad information supplied/
I at line/

FIXDAT,RW,D,GBL,REL,OVR
100.
2E6
-1
/ FUNNY/
DATUM,RW,D,GBL,REL,OVR
0
0
0
0

#FUNST,R0
M,Rl
3$
#'l, (R0)+
2$

; ENABLE LOWER CASE

;OUT.STR$ len = 10
;BAD. INFO$ len= 24
;ATLIN$ len = 8

MAXNUM%
MAXVAL
BADNUM
FUN . STR$ LEN 6

M%
N%
X
y

GET ADR OF STRING RESULT
PICK UP INTEGER
SKIP IF NEGATIVE
SET HIGHEST BIT AND CONTINUE
SKIP

3$: MOVB f'0, (R0)+ MAKE HIGH ORDER CHAR 0
START TO DIVIDE AT 8**4
COPY NUMBER

2$: MOV
1$: MOV

ASH
BIC
ADD
MOVB
ADD
BLE
MDV
RETURN
.END

-12. ,R2
Rl,R3
R2,R3
U 77770, R3
#60, R3
R3, (R0)+
#3,R2
1$
#100. ,N

22

SHIFT R3 BY R2
GET LOW ORDER THREE BYTES
MAKE ASCII
MDV CHARACTER
DECREMENT DIVISOR
CONTINUE
SHOW SUCCESS

PROGRAM SEGMENTATION IN BP2

Her e is the output from the program.

Here are initial values of all COMMONs
Output is Bad information supplied

1 00 . 2E 07 -1
-2 0 0

The octal value of-2 is 177776

Her e ar e the
Output is
100

-2

values after the call
Bad information supplied

. 2E 07 -1
100 0

2.3 Error Handling

at line
FUNNY
0

at line
1777 76

0

Errors are trapped in MACRO subprograms just as they are in BASIC
subprograms. However , there is no mechanism for the user to trap the e rror
in the subprogram itself; this must be done in tne calling program. If the
calling pr og ram contains an error handler then any MACRO subprograms
called will have their errors trapped in the calling program. The ERR
function is set as usual. The ERL function contains the line of the CALL
to the subprogram. If you CALLed BY REF then the ERN$ function contains
the name of the calling program. If executed a CALL without BY REF then
the EHN$ function contains the nam e of the subprogram you called.

If you get errors such as "?Memory Management violation" or "?Odd Address
Trap", check that you are accessing the parameters correctly. Re ad the
following section on overlays if you are writing MACRO routines. It
contains general inform a tion on how BASIC allocates space and generates
code as well as info rmation on how to correctly overlay your programs.

2.4 OTHER LANGUAGES

BASIC-PLUS-2 can call subprograms written in COBOL V4.0, howev~r BASIC and
COBOL do not have the same types of data representati.on so it is up to the
user to convert data a s necessary. There is no support for performing I/0
in any subprogram that BASIC-PLUS-2 calls unless that subprogram is
written in BASIC also.

BASIC-PLUS-2 cannot call subprograms written in any other language (i.e.
FORTRAN or FORTRAN IV+ etc.). At the current time no languages can call a
BASIC-PLUS-2 subprogram.

23

PROGRAM SEGMENTATION IN BP2

3.0 OVERLAY CONSIDERATIONS

3.1 BASIC-PLUS-2 Modules

When designing your BASIC-PLUS-2 application, it would be a grea t help to
know just how large the task is or how much overlaying it will require.
Since this is usually impossible, you should plan for the ov erlay stage of
development in general ways. By designing your application in functional,
modular segments you can make overlaying as painless as possible.

3.1.1 Function -

By ke e ping your program segments small and functional you allow yourself
greater flexibility when it comes time to overlay. You ca n also put off
designing the overlay until your program is working correctly by testing
each small module individually. Small modular segments keep the overlay
from forcing a design on the program. Instead, you should design the
program and then work the overlay into the design .

Many segments result in more possible overlays and more choices to make,
but this is better th an realizing you must recode a segment into two or
three smaller ones to make the overlay structure work. When it does come
to overlay time, you will be able to put in the root the commonly used
modules, without including initializa tion code and other routines that
execute only once. Put these seldomly executed routines in an overlay
where they will not waste space. Small segments also allow you to complete
the work in stages and test at each stage.

3.1.2 Testing -

Testing programs that are laden with overlays is difficult. It
avoided to some extent by testing at intermedi a te stages.
subprogram by writing small drivers that feed th e subprograms
range of data that the caller normally would.

can be
Test eac h
the same

Once convinced that your code is producing expected results, sta rt tc
overlay in stages. Work out the entire design before by using maps. This
lets you get approximate sizes of object modul es . As you build the
overlay, stop at logical points to test. Be sure that you know where
global symbols will be resolved (see section 3.3) and when overlays will
be brought into core at run-time. If you get errors such as "?Odd Address
Trap" or "Memory Management viol a tion", check COMMON a nd MAP statements
for alignment, and be sure that parameter s being pa ssed match in number
and type.

Check calling sequences to see if overlays are inad ve rtentl y being brought

24

PROGRAM SEGMENTATION IN BP2

into memory. Returning from a subprogram into the wrong overlay can be
done easily. How this can happen is discussed in section 3.3. Prove that
errors are not due to the overlay structure by stringing out the program.

The following sections on BASIC PSECTs and threaded code will give a
better underst a nding of how the generated code i s affected by overlays.

3.2 Compiler Outputs

The compiler generates a kind of object code known as threaded code. To
get a better look at what type of code this is, compile a program into
MACRO (i.e. COM/MAC). Use the generated MACRO code for reference as you
read this section. The code is made up of a series of PSECTs and global
symbols called threads. Compiling into object code (COM/OBJ) produces the
same code as MACRO in its object form.

3. 2.1 PSECTS -

BASIC generates a number of PSECTs for each main and subprogram it
compiles. Some of them and their functions are mentioned here. Those
mentioned are included in each program, though some may be empty depending
on your code.

BASIC allocates PSECTs with certain attributes. These should never be
changed. BASIC assigns the overlay attribute to all COMMONS and MAPs, and
two PSECTs that BASIC uses for I/0: $ICI01 and $ICI02. All other PS ECTs
generated by BASIC have the concatenate attribute. This is important in
understanding how BASIC resolves addresses in the main programs and
subprograms.

When subprograms are used, you may see a reference in the main program's
threaded code to the same offset of the same PSECT in the subprogram's
threaded code. Example:

Main program
MOF$MS

Subprogram
MOS$MP

,$PDATA+l6

,$PDATA+l6
$IDATA+4

U2

"ZZZZ"
ZS

This is a typical line of threaded code. The MOF$MS is the thread to move
a floating point number from memory to the stack. $PDATA+l6 is an address
which the thread will use. The comment tells what variable or constant the
address refers to. In the example above, both the ma in and subprogram
refer to $PDATA+l6 but have different values for what the address refers
to. This · does not mean that the same location i s used for both a string
and a floating point number. In fact, the subprogram thread moves a string

25

PROGRAM SEGMENTATION IN BP2

constant from memory ($PDATA+l6), through a po inte r, to s om e o t he r
address.

How can a main program and a subprogram both refer to $ PDATA+l6? When the
task builder is linking the object code, it c heck s the attri b ut e s of
PSECTs as it allocates space. The attributes referred t o ar e RW,I,
LCL,REL,CON. The concatenate attribute (CON) forces t he task build e r t o
concatenate PSECTs of the same name.that are supplied by diffe ren t ob ject
mo~ules. Thus, when the task builder see a def i nit i on t o $ PDATA in the
main program an~ a definition to $PDATA in a subprogram, it conc a tenate s
the two by adding the length of the first definiti o n to all r e fe ren c es in
the subprogram.

The PSECT $CODE contains the BP2 thr e aded code. More wi l l be said abou t
threaded code in the next section. $IDATA is the PS ECT from wh ic h real and
integer vari~bles are allocated. $IDATA, in the ma in pr ogram, is also
where BASIC s work area is allocated, therefore all r e fer e nces to $!DATA
in the threaded code of the main program will usually start at 800· the
first 800 bytes being used for the work area. BAS IC does not use ~tatic
allocation of work space in subprograms.

$STRNG is the PSECT from which string headers are allocated. See appe ndix
D of the Language Reference Manual for a decription of string headers.

$PDATA is the PSECT from which all constants (string, real, and integer)
are allocated. Also, some (but n o t all) array headers are a l located in
this PSECT along with the contents of all DATA statements. A desc ripti on
of array headers is given in appendix D of the Languag e Reference Manual.

$TDATA and $ARRAY are used for array headers. The array headers
in these PSECTs are those that can be redimensioned. $SAVS P is a
hold initial value of the stack. It is allocated only in th e main

included
PSECT to
program.

The PSECTs $ICI01 and $ICI02, and those PSECTs generated by BASIC for
COMMONs and MAPs are the only PSECTs generated by BASIC that have the
overlay attribute (OVR). This means that references to $ICI01 and $ICI0 2
in subprograms are referencing the same locations that the main program
does. Also, it is this overlay attribute that allows data in COMMON and
MAPs to be shared across program segments.

COMMONs and MAPs generate PSECTs using the name you specify. Thus when a
COMMON or MAP is used in a main and subprogram the PSECT g e nerated by the
subprogram overlays the one generated by the main program.

3.2.2 Threaded Code -

Threaded code is a series of global symbols a nd ad d resse s. These symbol s
are names of routi~es that contain cod e to e xecut e us e r programs. The
global_symbol may optiona lly h~ve argum e nts foll owing i t. These arguments
are picked up by the routin e and used to reference data from the user
program. All threaded code is placed in the conca t e nated PS ECT $C ODE For
example the 1 ine of code: •

26

PROGRAM SEGMENTATION IN BP2

20 PRINT A%

generates

L20: LIN$
CLI$S
!PT$
MOI$MS
PVI$SI
EOL$

,20

, $IDATA+804
, 0

ll20

A%
i0

L20: is a label that signifies the start of each line. LIN$ is a thread
the line number. The threads are generally mnemonic in nature. The fourth
character of a thread is always a dollar sign and two optional characters
follow. The comment section, when present, provides a description of the
argument. Other articles in this series will provide a more thorough
description of the threads. ·

At task build time the task builder resolves all of the threads (global
symbols) to a shared library if present or the BASIC object library. To
start execution of threaded con~ ~t run-time the compiler generates one
executable instruction:

JSR R4,@t$INITM

for main programs, and

JSR R4,@i$INITS

for BASIC-PLUS-2 subprograms.

This is the first instruction executed. In both cases the instruction
causes a jump to an initializing routine of BASIC. This has the effect of
making R4 point to the first argument. Each routine uses all of the
arguments and leaves R4 pointing to the next thread. When done, the
c urrent routine exits by doing a JMP @(R4)+ , and the cycle begins
again. This continues until BASIC executes the END$ thread which exits the
threaded code and returns control to the system.

For further discussion of threaded code see chapter 15 of "Computer
Engineering" by BELL, MUDGE, and McNAMARA. This chapter is an article by
R. F. BRENDER entitled "Turning Cousins Into Sisters".

3.3 Task Build Address Resolution

This section describes how BASIC-PLUS-2 global symbol references are
r esolved at task build time. It i ~ assumed that the reader has read the
ODL c hapt e r of the Ta sk Builder Refernce Manual. You should be familiar
with the tree description of a task as well a s term s suc h as path, path
loading, and task segment. This section discusses specifics of
BASIC-PLUS-2 and is not meant as a general tutorial for overlaying any

27

PROGRAM SEGMENTATION IN BP2

type of program.

The global symbols that BASIC generates and that the task builder must
resolve are thread names and names of subprograms. Each call to a
subprogram generates an unresolved global symbol which is the name of the
subprogram.

First, an example to show how references are generated and resolved in a
nonoverlayed task. Below is a list of the calling sequence of a BASIC
program. Also included are the CMD and ODL files generated by a BUILD
command on an RSX system. They will differ slightly for each system.

Main program
CALL SUBl
CALL SUB2
CALL SUB3

SUB2
CALL SUBl
CALL SUB3

BUILD MAIN,SUB1,SUB2,SUB3

SY:MAIN ICPIFP,SY:MAINI-SP=SY:MAIN IMP
LIBR=BASIC2:RO
UNITS= 14
ASG = TI: 13
ASG = SY:5:6:7:8:9:10:11:12
EXTTSK= 512
II

.ROOT USER

SUBl "and SUB3
no calls

USER:
LIBR:

.FCTR SY:MAIN-SUB1-SUB2-SUB3-LIBR

.FCTR LB:[l,l]BASIC2ILB

.END

Notice that a resident library is used. Always check your CMD file to see
if you are linked to a resident library (LIBR=BASIC2:RO or
RESLIB=BASICSIRO) or a runtime system (HISEG=BASIC2). This is very
important in understanding where global symbols will be resolved. From the
ODL we can see that all of the BASIC routine s are concatenated (i.e. there
is no overlaying). The following is a list of th e order in which the ta s k
builder will search through the object modules to resolv e undefined global
references . The order holds for over laid as well as non-overlayed tasks.

l. The segment being processed

2. All segments on th e sam_ branch t o ward s the root
(including the root itself)

3. All segments on the same branch away from the r oot

4. All cotrees

5. Any specified object library

. In the above e xample, ea ch object mod ule o f BASIC wi l l generate threads
that are global symbols for the task buil de r to reso lve. The module
MAIN.OBJ will a lso have three other global r eferences to resolve, namely

28

PROGRAM SEGMENTATION IN BP2

SUBl, SUB2, and SUB3. The object morule SUB2 will generate two additional
global symbols to resolve: SUBl and SUB2.

Each BASIC object module defines the global symbol by which it is named.
SUBl will define the global symbol SUBl and so forth.

The task builder will find a definition for a thread in one of two
possible places: a resident library (or runtime system), or the disk
object library. Note that all resident libraries and runtime systems are
given virtual address space from the root. The task builder tries to
resolve threads in resident libraries and run time systems before
searching the BASIC object libraries.

Using the above example and the scheme for resolving global symbols we see
that references to SUBl, SUB2, and SUB3 will all be resolved in the object
code produced by BASIC. The threads will be resolved either in the
resident library or the disk object library BASIC2. The resident library
is searched first, and all threads still undefined are resolved in the
di s k library. BASIC provides a library with every thread name defined in
it. Therefore, if you do not link to a resident library (or run-time
system) all global references will be resolved in the disk library.

With overlayed code this exerci s e in deciding wh e re global symbols
(espec i ally your subprogram references) will be defined is very important
and worth further dicussion. It is easy to get UNDEFINED or AMBIGUOUSLY
DEFINED error messages from the task builder if care is not taken to
overlay your subprograms correctly

Consider the following example of a BASIC program and its overlay tree and
decription. The BASIC programs contain only calls to simplify the problem.

A.B2S
10
20
30

CALL B
CALL Cl
CALL C2

B.B2S
10
20

CALL Dl
CALL Cl

C2.B2S
10
20
30

CALL Dl
CALL D2
CALL D3

Cl.B2S, Dl.B2S, D2.B2S, and D3.B2S make no calls.

USER:
BRl:
BR2:
BR 3 :
BR4:
BRS:
LIBR:

.ROOT USER

.FCTR SY:A-B-LIBR-*(BR1,BR2)

.FCTR SY:Cl-LIBR

.FCTR SY:C2-LIBR-*(BR3,BR4,BR5)

.FCTR SY:Dl-LIBR

.FCTR SY:D2-LIBR

.FCTR SY:D3-LIBR

.FCTR LB:[l,l]BASIC2/LB

.END

Note tha t each object module is concatenated with the object l ibrary
s e arch default. This means that for any global symbols n o t found on the
paths or in the root, the object library will be searched. Only the object
modules needed are retreived from the library. You should always
concatenate any BASIC-PLUs-2 object modules with BASIC's disk library.
This is don e by adding the "-LIBR" to the BASIC modu l es b e fore any
o v erlays are specified.

29

PROGRAM SEGMENTATION IN BP2

Below is the tree structure for ta s k as generate d by the ODL above.

Cl

B
A

Dl D2 D3

C2

Module A is the BASIC main program. All other modules could b e BASIC or
MACRO subprograms. There are 2 object modules in the root: A a nd B.
Execution starts in A which calls B. B then calls Dl. This is l egal since
there is a path between Band Dl. Thi s call brings in the module C2 even
though it is not referenced. Therefore at this point in the executi o n the
modules A, B, C2, and Dl are all in memory.

Dl returns to B which then calls Cl. This brings in the Cl segment on t o p
of C2 and Dl. Cl processes data then returns to B, whi c h returns to A.

A now calls Cl which is still in memory, therefore no overlays are bro ught
in. Again Cl exec utes and this time returns to A. A calls C2 , which brings
in the C2 overl ay. Now C2 calls Dl, D2, and D3 in succesion, fo rcing a new
overlay to be brought in for each call. When D3 finishes, control returns
to C2, which finishes and then returns to A where processing stops.

Another way of looking at the task is shown below.

I I
I !--n5"
!--------! D I 2 D3
I I 1 I
I I I I I
I Cl !--------------!
I I I
I I c2 I
I I I

'---'~-- I I B 1-------- --
I ____ ~----' I A ,-----------

'---------'---- -----
Looking at the task in this . diagram allows you t o see two things.
drawing a ver ti cal line thr o ugh the diagram at different po ints you
see exactly what can be in core at a ny given tim e . You can also s e e
big the task is at any given time. The highest horizontal line
crosses any vertical line (the time s li c e line) indicate s ho w larg e

30

By
c an
how

that
the

PROGRAM SEGMENTATION IN BP2

task is. If you have task built the program once, you can look at the map
to get the actual sizes of the segments. Remember, however, that opening
files and creating strings causes dynamic changes in the size of your
task.

It is a good idea to trace through the actual runtime control, as was done
here, to prove that the overlay structure will in fact work. Be aware that
not all tasks that get task built without warnings or errors are properly
overlayed. Consider the same overlay structure with the calling sequence
as follows:

A.B2S
10
20

CALL Cl
CALL C2

B.B2S
10 CALL Cl

C2.B2S
10
20
30
40

CALL B
CALL Dl
CALL D2
CALL D3

This task will task build without any error or warnings but on tracing
through the control you can see that the program will abort with an error.

A will call Cl bringing in an overlay. Cl executes and returns to A, which
then calls C2. C2 now calls B. This is legal since any module can call any
other which lay on the same path.

B now calls Cl bringing in the Cl overlay on top of the C2 overlay. Cl
finishes executing and returns to B. At this point the Cl overlay is still
in memory where C2 was when it called B. When B returns it will try to
return to C2. However Cl is still in C2's place. At this point you will
usually get a "?Memory Management violation" or "Odd address trap". The
reason is that when B executes the return to C2 it returns into some
section of Cl which may not even be code.

Overlays are brought into your address space by auto-load vectors which
are generated by CALL statements, but it is up to the user to be sure that
the correct overlay is in memory when the called segment tries to return.

Another important point to consider is the allocation of MAPs and COMMONs
in overlay sections. As was note<l earlier, MAPs and COMMONs are generated
irito PSECT definitions by BASIC. The PSECTs have attributes that will
cause any references to a COMMON or MAP of the same name in an overlay, to
be allocated the same storage as any other COMMON _, ,: MAP on the same path
below it. This is how the data is shared between the subprograms that
reference the same COMMON or MAP. For example:

31

PROGRAM SEGMENTATION IN BP2

A.B2S
10 COMMON (MST) A$,8$

B.B2S
10 COMMON (MST) X$ 30%, Y$

C.B2S
10 COMMON (MST) M$ = 32%

with the overlay structure

B
I
I

A

C
I
I

2%

In this case, all three modules use the exact same space allocated for the
PSECT MST. It is allocated in the root and no space is allocated in the
overlay.

Now consider the case where A does not define the COMMON MST. The task
builder will allocate MST from EACH overlay. Thus, whenever an overlay is
brought in, its own copy of MST will be brought in. Remember, overlays are
not written back out to the disk. Any changes to MST just disappear when a
new overlay is brought in. This new overlay has its own copy of MST with
values unrelated to the MST across the tree. PSECTs with the overlay
attribute are overlayed only if they are on the same path.

Any time COMMONs or MAPs are not allocated in the root, data contained in
them will not be valid once a new overlay is brought in. Therefore,
COMMONs and MAPs which are not defined in the root should only be used to
hold temporary data that is needed only while the first overlay to define
the COMMON or MAP remains in your address space.

When using co-trees (an overlay structure of more than one tree which does
not share storage among trees; see TKB manual), be sure that you know
ahead of time where ALL global symbols (BASIC's as well as your own) will
be resolved. Notice that co-trees are searched BEFORE the default object
library. This may lead to the resolution of BASIC threads (global symbols)
1n overlays of co-trees. The unwary user can call into a co-tree from
overlay X. This co-tree has symbols defined in overlay Y which overlays
overlay X. Execution continues until the cotree tries to return to overlay
X, which is no longer in memory. At this point your task will probably
abort with "?Odd Address Trap", or "?memory Management violation".
Co-trees should be approached with caution and only when necessary.

32

PROGRAM SEGMENTATION IN BP2

3.4 Run-time Happenings

When a call is executed by a BASIC program, several things take place.
BASIC saves the current values of error handlers and data pointers so that
the context of the calling program can be restored on return. Arguments
are pushed on to the argument list stack. RS is made to point to the
argument list and then the actual call is made.

CALL BY REF does not save the current context of error handlers and data
pointers because this type of call can be used only for MACRO routines,
which cannot change these pointers and data. It is for this reason that
the ERN$ function does not return the name of the MACRO subprogram when an
error occurs there. The name of the called module is not saved anywhere as
it is for regular calls.

Calls to subprograms in a different overlay generate autoload vectors at
task build time. When the actual call is made the overlay is brought into
memory. No checking is done to be sure that the correct overlays are still
in memory on return. It is impossible for the task builder to know to
which routine you are returning, therefore returns do not generate
autoload vectors. How this can lead to problems was discussed under
section 3.3.

When a return is executed, (1) all the context information is recovered,
(2) local strings created by the subprogram are destroyed, and (3) the
space returned to free space. Again, a CALL BY REF does not need to
restore its current context because it never changed in the first place.
Also, because no strings can be changed or created by MACRO routines, no
local strings need to be cleaned up.

4.0 Calling keywords

This section will reveiw the different types of calling subprograms and
parameter passing. A list of the VAX-11 BASIC calling conventions is
included in the table below so that you can see the differences and the
added flexibility of that implementation. First a quick review of the
terms involved.

To pass a parameter by immediate value
parameter is passed to the formal
actual parameter during the subprogram
the current version of BASIC-PLUS-2 to

means the value of the actual
parameter. No update is made to the
or on return. It is not possible in
pass any parameters by value.

To pass a parameter by reference means to pass the address of the actual
parameter to the formal parameter. The value of the actual parameter is
updated when ever the formal parameter is because they point to the same
value. BASIC presently uses this method for every type of parameter passed
except two: strings and entire arrays.

To pass a parameter by descriptor means to pass the address of a
descriptor of the parameter to the subroutine. This descriptor contains
information that enables you to reference the actual parameter. This type
of parameter passing is normally used when the actual parameter is not a

PROGRAM SEGMENTATION IN BP2

single element s uch as an array. BASIC currently uses this method to pass
strings and entire arrays.

The table below includes all of the calling conventions for VAX-11 BASIC
and PDP-11 BASIC. On VAX-11 BASIC the terms BY VALUE, BY REF, BY DESC are
keywords that can be applied to the call or to each parameter individually
to allow you to specify the method of parameter passing. On PDP-11 BASIC
these terms are used only to explain how parameters are passed. Only in
one case can you specify BY REF in PDP-11 BASIC (when calling MACRO
subprograms), and this must be applied to the entire call. It affects only
two types of parameters and has other side effects that were mentioned in
the MACRO subprogram section of this article.

PROGRAM SEGMENTATION IN BP2

-----------------------------!--------------------------
VAX-11 BASIC PDP-11 BASIC

-----------------------------!--------------------------
PARAMETERS

NUMERIC DATA

Var iabl es

Constants

Expressions

non-virtual
array elements

Virtual
ar r ay e l emen t s

Non-virtua l
enti r e ar ray

Virtual
entire array

STRING DATA

Variables

Cons tant s

Expressions

Non-virtual
array elements

Virtual
array elements

Non-virtual
entire arrays

Virtual
entire ar rays

BY VALUE BY REF BY DESC

YE S

YES

YES

YES

YES

NO

NO

NO

NO

NO

NO

NO

NO

NO

*YES

*Local
copy

*Loca l
copy

*YES

*Local
copy

YES

NO

YES

YES

Local
c opy

YES

Loca l
copy

YES

NO

YES

Loc a 1

co py

Local
copy

YES

Local
copy

*YES

NO

*YES

*YES

*Loca l
copy

*YES

*Loca l
copy

*YES

NO

35

by val ue by ref by desc

NO *YES NO

NO *Local NO
copy

NO *Lo cal NO
copy

NO *Local NO
copy

NO *Local NO
copy

NO ++YES *YES

NO NO NO

NO ++YE S *YES

NO ++Local *Local
copy copy

NO ++Loc al *Local
copy copy

NO *Local NO
copy

NO *Local NO
copy

NO NO *YE S

NO NO NO

PROGRAM SEGMENTATION IN BP2

* indi ca tes the de fault parameter passing mechanism for BASIC programs.

In no case sho uld you use a BY c lause when calling a BASIC s ub p r og ram
fr om a BAS IC main prog ram . The default parameter passing mechani sm s
for the CALL statement correspond precisely to the way a BASIC
subprogram expects to receive the parameters. VAX -11 BASIC permits
the use of the BY c lauses o nl y when the main and s ubprograms are
written in different languages.

++ in PDP-11 BASIC, indicates those parameters for which you can s pec ify
BY REF when call ing a MACRO routine.

Local Copy means that if a parameter is an expr ession, a function, or a
virtual array element, then it is not possible to pass the parameters
address. In these cases BASIC makes a local copy of the parameters
value, and passes thi s local copy by reference. You can force BASIC
to make a l ocal copy of a ny parameter by enclosing it in parentheses.

Green Fungus & White Fuzz (Cont.)
The crack mai ntenance team replaced the filter, but with the

wrong filter. This wrong filter caused the deionzer to blow salt
water throughout the computer center. This salt water formed as a
white fuzz all over the top of all the machines in the area. The white
fuzz attacked the disc packs, destroying almost all of them.

Texas Southern has a building problem, an "old" building
problem. And Texas Southern also has a crack maintenance crew.

The crack maintenance crew put a false ceiling in the computer
center. There was a old water pipe that wasn't used anymore. Since the
pipe wasn't to be used it should be OK to just cut the pipe off. And
Since the pipe wasn't used the crack maintence crew didn't have to go
the tne trouble of threading and capping it.

Not to long after the remodling another member of the crack
maint enance crew found a valve in the water system that was closed,
and since there shouldn't be any valves in the water system that
should be closed, he opened it - giving ne~ meaning to floating point
processor.

Hard as it is to believe, all university computer problems do
not occur in Texas. At the University of Northern Colorado the main
frame and the disc drives were provided and serviced by different
v endors. The syst em used cards for input, and the Field Service people
told the school that all of their card problems were because of static
electricty because of the low humidity in the computer room.

The director of th e center, beliving the Field Service people
to always be right, had a humidifier installed. Th en , all of a sudden,
t he main fram e would not "talk" to th e discs. Of course each vendor
point a accus i ng finger at the other.

Each vendor trace their par t of the system back to the
controller, p ronouncing their part as sound . It seems that the new
dehumidifie r was i n stalled over the controller and as long as it was
turned on the e l ectrical disturbance was enough to disrupt the f low
between the main frame and the discs.

36

BASIC-PLUS-2 TRANSLATOR ISSUES

The new BASIC Transportability Package consists of three components:

o The BASIC Transportability Manual

o The BASIC-PLUS Translator

o The BASIC-11 Translator

The Manual discusses topics including "Tips for writing transportable BASIC
programs", "Using the translators", "Overview of system differences
influencing BASIC programming". It intended to help the non-novice BASIC
programmer identify issues in moving to BASIC-PLUS-2, or in moving BP2
applications to VAX-11 BASIC.

The translators themselves are the same as those previously bundled with
the BASIC-PLUS-2 distribution kit.

This article summarizes the major issues from
article concerning the translators, to assist in
tailoring the size and several functional
translators.

A 28-K TRANSLATOR

a previous Small Buffer
providing some know-how in
characteristics of the

The version of the BASIC-PLUS translator distributed with BASIC-PLUS-2
Vl.6 is built to run in 24K. Because of this limitation, it is heavily
overlayed, and execution speed suffers. It has been suggested that a
28K version of the translator would run more quickly on systems that
support 28K tasks. Therefore a new ODL file, that produces a 28K
translator, has been written.

The installation of this new translator requires rebuilding the old
one. The procedure would be to copy the compiler object library, and
the files TRANS.ODL, TRANS.CMD, UTLICl.ODL, and BP20LB from the
rebuild tape of the BASIC-PLUS-2 distribution into a rebuild account.
Then the ODL file must be edited so that it looks like the one below.
It is then necessary to change the command and ODL files to reflect:
(1) the correct accounts (N: and OTS:), and (2) OTS object libraries
(BAXRMS and BP20LB). Then the new translator may be task-built (TKB
@TRANS), and moved to the desired system account.

This new translator should be able to run about 25 to 30 percent
faster than the old one (the larger the file, the larger the . amount
saved) .

37

BASIC-PLUS-2 TRANSLATOR ISSUES

THE ODL FILE FOR A 28K TRANSLATOR

USER:
A:
B:
C:
Cl:
C2:
C3:
C4:
C5:
C6:
C7:
E:
El:
E2:
E3:
E4:
F:
G:

.ROOT BASIC2-RMSROT-USER,RMSALL

.FCTR <COMLIB>/LB:TRANS:TRNPAT-LIBR-*(A-B,C)

.FCTR <COMLIB>/LB:TRNSIN:GETSYS:NAMSCN-LIBR

.FCTR <COMLIB>/LB:TRNSl-LIBR
• FCTR <COMLIB> /LB: TRNS2-LIBR-* (Cl-C 2-C 3-C4-C7, C5-C 6)
.FCTR <COMLIB>/LB:TRNBLI-LIBR
.FCTR <COMLIB>/LB:TRNLIN-LIBR
.FCTR <COMLIB>/LB:TRNPST-LIBR
.FCTR <COMLIB>/LB:TRNENC-LIBR
.FCTR <COMLIB>/LB:TRNSPl-LIBR
.FCTR <COMLIB>/LB:TRNSP2-LIBR
.FCTR <COMLIB>/LB:TRNCOM-LIBR-E-F-G
.FCTR <COMLIB>/LB:TRNACT-LIBR-El-E2-E3-E4
.FCTR <COMLIB>/LB:TRNBKT-LIBR
.FCTR <COMLIB>/LB:TRNDEL-LIBR
.FCTR <COMLIB>/LB:TRNREP-LIBR
.FCTR <COMLIB>/LB:TRNINS-LIBR
.FCTR <COMLIB>/LB:TRNSCA-LIBR
.FCTR <COMLIB>/LB:TRNSST-LIBR

LIBR: .FCTR
@UTLICl

BP20LB/LB

@LB: [l,l]RMSllS
.END

In the ODL file the symbol <COMLIB> is the compiler library and should
be RTSLIB on RSTS, RSXLIB on RSX,and IASLIB on IAS .

The BASIC-PLUS Translator contained on the BASIC Transportability Kit
is built to run in 28K, as is the BASIC-11 Translator. If you have
these versions of the translators, you already have the speed of the
28K translator. However, if your sys~em will not support 28K images,
or if you wish a smaller translator image, the translator can be
rebuilt to run in 24K. In this case copy the files TRANS.OLB, (or
TRANll.OLB), TRANS,CMD (or TRANll.CMD), and TRANS.ODL (or TRANll,ODL)
off the transportability Tape, and edit the ODL file so it looks like
the one below. Then task build the Translator, and move it to your
system account.

38

[g
DECUS
DIGITAL EQUIPMENT COMPUTER USERS SOCIETY
ONE IRON WAY, MR2-3/E55
MARLBORO, MASSACHUSETTS 01752

~SSOC!ATE

MOVING OR REPLACING A DELEGATE?

Please notify us immediately to guarantee continuing
receipt of DECUS literature. Allow up to six weeks
for change to take effect.

() Change of Address
() Delegate Replacement

DECUS Membership No.: _______ _

Name : ______________ _

Company: _____________ _

Address: _____________ _

State/Country : ___________ _

Zip/Postal Code : __________ _

Mail to: DECUS -ATT: Membership
One Iron Way, MR2-3
Marlboro, Massachusetts 01752 USA

~ i a·~~ i ;- ~
· ~Sc~:.:~;-

· =c.'""' c:~ .. ~!2::;3
j • o· ; ; .. co i» ~.
~?3;~[5'
!!!. n ffl • 5· - te
~ 03 0 ... ;;;· iii
..... £::,0'

a. s ~

BULK RATE
U.S. POSTAGE

PAID
PERMIT NO. 129

NORTHBORO, MA
01532

--------- -----

