THE

.I' o
- iﬂi DECUS
' tntkc'ﬂlmllllHIHHIIHHHHIHHIH RT-11 SIGNEWSLETTER!HHH T

May 1984 Volume 10, Number 3
FILEX

4 Ry sy

S 1‘70/‘, RMQN o,
/4
PIP 1D , 2
N
Dy YA

R QUE%

PAT DECUS pUP
Vi
& &z, w52
O
& &
\}t\
Recoy, Ry, >
SOR ¢ QQ?
SLP
TTYSET ‘ﬂo
- CX‘O

Printed in the U.S.A.

The following are trademarks of Digital Equipment Corporation:
DEC DiBOL PDT
DECnet Digital Logo RSTS
DECsystem-10 EduSystem RSX
DECSYSTEM-20 1AS UNIBUS
DECUS MASSBUS VAX
DECwriter PDP VMS
vT

UNIX is a trademark of Bell Laboratories.

Copyright © Digital Equipment Corporation 1984
All Rights Reserved

it is assumed that all articles submitted to the editor of this newsletter are with the authors’ permission to publish in any DECUS
publication. The articles are the responsibility of the authors and, therefore, DECUS, Digital Equipment Corporstion, and the
editor assume no responsibility or liabitity for articles or information appearing in the document. The views herain expressed are
those of the authors and do not necessarily express the views of DECUS or Digital Equipment Corporation.

TN

THE

minie
- DECUS
Ia’ke'm\mmHHHHHHHHHHIHH RT-11 SIG NEWSLETTERI I HH

MAY 1984 VOLUME 10, NUMBER 3

Contributions to the newsletter should be sent to:

Ken Demers
Adaptive Automation
5 Science Park

New Haven, CT
06511

(203) 436-1029

- Other communications can be sent tos

John T. Rasted
JTR Associates
58 Rasted Lane
Meriden, Ct.
06450

(203) 634<1632

or

RT-=11 SIG

¢/0 DECUS

One Iron Way
MR2=3/E55
Marlboro, Ma.
01752

(617) L467-4141

USER

TABLE OF CONTENTS

INPUT
UCL = Command Parser Program ceeeeesessssscesessssosessssccsssns
TECO Program To Shorten Link MapS seeceeecsrsssrsenssssssscscenne
RT-ll V5 Report e 8 5 8 6 ¢ 5 5 0 2 0 0 0 0 S O D G D O G P OB OO O SO S OO YN 0D H O OCE SO
Future RT”ll Features © @ 8 8 6 00 5 0 8P OGO S S SO P OO E O S EOPOOOOECELIEEDN
Australian RT=11 SIG TAPE teeeeeosassosncnssnsns

® 8 & 0 & ¢ 8 0 00 000000

DECUS LIBRARY

PAST

TSXLIB Updated LR B B IR B L O O B B I T I BRI T BN I B N R B B R N I RN N N I B BN N N SR SR R
C Language System For The Professional 300 Series seceescecsssss
RUNOFF For The Professional 300 SerieS .ieessessccsascosssoscsssce
TTLIB - VT100 Library For The Professional 300 Series ...cesscee
COMPAG - Combine Pages Routines For The Professional 300 Series

CVLLIB - General Purpose Library For The Professional 300 Series
SORT - For The Professional 300 SEri€S seececessscscscnssccsasnsce
INDEX -~ FORTRAN Cross-Referencer For The Professional 300 Series
TECO V36 For The Professional 300 SErieS utveeesssscescscccsasssse
RENUM -~ FORTRAN Renumbering Pgm For The Professional 300 Series

CVLLIB - General Purpose Library I A I N R RN RN A
Indirect Commanrid File ProcesSS0Y cssevssswsvvnssnssasssanassssses
BRUCE - BaCkup and Restore Utility S+ 00 0000000000000 000 0NIROE
FLECS - FORTRAN With Extended Control Structure For The Prof 300
MINC A/D Routines 8 0 0 0 0 ¢ 0 8 8 OGO T O OB SO OB S0P OGSO N LSOO 0E eSO PN
Monitor Commands For Namelist PackagZe ciceceeccssccosacosssscnscse
File Manipulation COmmandS * 69 5 006000 8000005000086 008060000008000000
DIBOL '83 Screen Handler PacKAZE .ieecescsscsosscssscsssscscssse
WORD - Document Spelling Checker/Corrector ..eeeeeessccccsssocss
SYMPOSTUM INFORMATION

HOW To Write RT—ll DeVice Handlers e s e v 00000 R0OOOEOIOROOOECROIRONOEONTOIEOEORTOES

—

USER INPUT

.TITLE UCL

; This program is a UCL program for RT-11 V5.

; It provides a command parser for simply running programs residing
; on other disks then SY: or DK:

; H. H. NKG-AZG

+MCALL .PRINT, .EXIT, .CHAIN

«ENABL LC
SCLEN = 510
SCTEXT = 512
$JISW = 44
MX.LEN = 38.
CHAINS = 400
UCL:: BIT #CHAINS, @#$JISW ;Have we been chained to?
BNE UCLl1
.PRINT #IDENT
BR UCLEX ;No, take exit
UCL1: CMP $CLEN, #MX.LEN ;Yes, can print
BGT UCL2 g all error text on 1 line?

5

; See if command matches to one in the command list:

5
MOV #COMNDS , RO ;Command list pointer
MOV #PROG50,R3 ;Program list "

Enclosed you find a User Command Language program (V5) with a command
parser for executing +RU DEV:NAME by simply typing NAME 1in
response to the monitor dot. The nice thing is that it works
independent of the assignments SY: and DK:. The program NAME may

also be a little program which chains to another program or indirect
command file after e.g. menu selection.

I hope to see a lot of other/better UCL programs from RT-11 users in
the MINITASKER!

Yours sincerely,

H. Haenen

Dept. Clin. Neurology AZG

P.0. Box 30.001

9700 RB GRONINGEN / The Netherlands

NEXT:
COMPAR:

1$:

NOTHNG:

UCL2:
UCLEX:

MOV
MOV
CMPB
BEQ
TSTB
BNE
TSTB
BEQ
ADD
BR

TSTB
BNE
MOV
MOV
MOV
MOV
~CHAIN

+PRINT
MOV
ADD
MOVB
+PRINT
+PRINT
BR

+PRINT
+EXIT

@#510,R1 ;Nr. chars in input command
#512, R2 ;Pointer to command string
(ROY+, (R2)+

(RO)+ ;No match: skip rest of string

18 ;+Skip null byte

(RO) ;A second null byte? -> end of all
NOTHNG

#6 ,R3 ;Point to next program

NEXT

(RO) sNull byte?

COMPAR 3If not -> keep checking
(R3)+,E#500 ;Store program in comm area
(R3)+,@4#502

(R3)+,@#504

EXT ,@#506

#fERRMS1

#SCTEXT, RO

$CLEN,RO

#200, (RO) sSET "NO CRLF" at end of input string.
#SCTEXT

#ERRMS2

UCLEX

#RUDE

.
5

ARFA:

COMNDS :

® e s s o i e e e s e e i S i S S D A S R) o P Vo M e e o S

PROG50:

EXT:

IDENT:
ERRMS1:
ERRMS2:
RUDE:

-~ DATA AREA’S ——-mmmme—-

+BLKW 10

.ASCIZ /LISDAT/ ;Command list

.ASCIZ /STUDAT/

.ASCIZ /TABDAT/

ASCIZ /PARDAT/

.ASCIZ /CHECK/

.ASCIZ /SPELL/

.ASCIZ /L1JST/

.BYTE 0 sTerminator and End of command list
.EVEN

.RAD50 /DBSLISDAT/ ;Corresponding program list

.RAD50 /DBSSTUDAT/
.RAD50 /DBSTABDAT/
.RAD50 /DBSPARDAT/
.RAD50 /DBSCHECK /
.RAD50 /DL1SPELL /
.RAD50 /QNS5LIJST /

.RAD50 /SAV/

LASCIZ <15><12>/UCL v02.00/

LASCIT <15><12>/?7UCL-F~The command '"/<200>

LASCIZ /" has no meaning at NKG-AZG!/

LASCIZ <15><12>/All that typing... and it’s wrong/

.END UCL

I read the mini-tasker each time with a lot of pleasure. In
this letter I want to react on an article in the last
newsletter (January 1984 Vol. 10, nr. 1) and additionally I
have a contribution for you.

First my reaction on the article "Method for shortening link
maps" on pages 5 to 7. I think that the idea of shortening
link maps is good, although it should be better if changes
will be made in the link program. A wish that I have
submitted already in Ziirich, September 1983, but it was not
understood by Digital; "a linkmap is never longer than two
pages" was the answer. They don't write Fortran! So I made ny
own procedure but I did it in TECO. Below you see my solution
and it has several advantages above that in your newsletter:

1. It runs much easier:

.MUNG SHMAP
Long .MAP-file : dd:xxxxxx.MAP
Short map-file : dd:xxxxxX.SMP

2. It runs faster.

3. The line with transfer address and program size has been
removed to the top of the list. Mostly you are only
interested in these numbers.

4. It shows all routine names in the $CODE section.

! macro 5 -- read string and put it in Q9
OME =) dinput length unlimited
nM: = read not more then n characters
P8=-1 =2 ctri-Z2 entered

M
!
@ USH

CO C1 L2 £2 U3 Q3"E 25803 * ETUOC .Ul 40ET (-"T;> 14ET QU9 0,0X9 oUB

¢~TUZ 13-02"E Q1,.X9 :05U9 0; -
127-02"E .-0Q1"G 1ET B~T 32~T 8~T 14ET -D ' GO!A!
26-02"E 26°T -1UB 0; °
32-QZ7G B0!1A!
03-(.-01)"G Q28I// Q2°T '
¥y
> 13~T 10~T 01,.D QOET Q9 313 12 11 10
#

BEI## 2ED 134ET
VAGATIN!
A~A#lLong MAP-file : # 14MS
E:ER#"EQI#"U B A#File not found# 13T 10T BEOIAGAIN!
@ #Transfer address# -L 2XA
BER#"EQ9#
@ A#Ehort map-file : # 14M5
BERN#"EQ9#
Y 3L B,.P B,.K GA 13@I## 10@81## B,.FP
{@: #Segment size#; OL B,.XK Z2J A 3K J 3L B,.F
@: #sCODE#; L B,.K ZJ A 3K J @:_#0TsSg0#; 0L B,.F
3

EF HKEX

My contribution is a method to simulate include-statements in
FORTRAN-IV programs concerning common areas.

If you write FORTRAN programs with a lot of routines you
always have trouble if you have to change one or more common
areas. You have to edit each routine seperately and probably
you make one or more mistakes. These problems are now
history! In my solution I use two indirect command files and
a TECO procedure. (The TECO procedure is essential).

1. UPDCOM.COM starts the TECO procedure and recompiles the
routines changed. Command: @& UPDCOM

2. F.COM is my standard FORTRAN compilation procedure
command: @F file

3. UPDCOM.TEC changes the common areas and creates an
indirect command file "UPDATE.COM" for recompilation. (If
a routine has been changed more than once because of

changes in more than one common area, the file will be
recompiled once.)

Restrictions:

1. Every common area must be placed in a file commonname.CMN.
If the common area must be changed, edit only this file.
Do not use command-lines in this file!
Define the common area with the statement
"tab COMMON/name/" with no blanks between COMMON and / and
between name and /.

2. Enclose the common area in your routines by "C<CR>" lines.

Working of the TECO~procedure:

1. It asks "name of COMMON :" . Give it. CTRL-Z is stop.

2. The file DK:name.CMN will be searched for.

3. In all .FOR files of DK: is searched for the string:
tab COMMON/name/

4. If found the text between the C(CR) before and C(CR) after
will be deleted and the contents of file name.CMN will be
inserted. The name of the routine changed is stored
internally.

5. A recompile command file is generated.

Example:
file AREA.CMN

LOGICAL*1 FLAG
COMMON/AREA/A, B, I,FLAG,
1 D,E,F

FORTRAN routines:

SUBROUTINE R

’

COMMON/AREA/A,B, I
& D,E,F

COMMON/AREA2/....

e

To change all routines with common AREA:

@ UPDCOM
Name of COMMON: AREA
etc.

. ENAELE QUIET
MON/NOINI SY:UPDCOM

Compile the updated files

> s 0w

&@UPDATE
DEL UPDATE.COM

Listing UPDCOM.COM

.ENABLE QUIET
DEL/NOQ O:"P1’'.0BJ,L: 'FP1l’'.L8T
RUN SY:FORTRA O:'P1°C-11,L: P1°'C-13="P1°/S

Listing: F.COM

I macro 8 -~ read string and put it in Q9
OMS =7 input length unlimited
nMS => read not more then n characters
P8=-1 => ctrl-Z2 entered
1
E~US#
CO C1 €2 C3 U3 Q3"E 2B6U3 ' ETUO .Ul 40ET <(-"T;> 14ET 0U9 0,0X95 0UB
(~TUZ 13-02"E Q1,.X9 :09U9 0;
127-02"E .-D1"G 1ET B~T 32T 8™T 14ET -0 ¢ BOIA!
26-02"E Ze~T -1UB 0§;
32-02"G @0IA!
3-(.-Q1)"G Q2@I// Q2T
1Al
¥ 12~T 1077 Q1,.D QOET @9 12 12 1311 10
#

f

@EI## ZED 134ET 0,0XU

{AGAIN! 13~T 10T @ A#Name of COMMON : # 6MS

1+Q8"E @QIEXIT!

@:ER#09.CMN#"U B A#UPDCOM-F-COMMON file "# :G9 G A#.CMN" not found#
BO!AGAIN!

@"A# wupdated in file :# 10~T 13°T

EEN#*.FOR#

CiEEN##; G* 136I## 10BI##
J 1XF K HXD HK Y HXC HK
(GER#QF# OUF
¢ :G_# CYAE_DCOMMON/Q9/#"S HK GER#"EQF# GEW# EQF#
< : GN#EDCOMMON/ ~“EQ9/#; -1UF -GBS#

C
#
LU0 @sS## -1L Q0,.K GC
»
P07

> EC QF"S @ A# # GF 2ROT J :XU HK '

GD -Z; 0J 1¥F K HXD HK
v

HK @O!AGAIN!

'EXIT! HK @EW#UPDATE.COM# GU

16ED J ¢ .-Z; 1XF .U0 Z:GS#QF#"S QCJ K | L *© >
J <(.-Z; 3D @I# # L2R-4DL >

EX

o 1) SY:F

Listing: UPDCOM.TEC

I hope you can place these contributions in one of the
following MINI-TASKERS.

Greetings, @ g : ~

Akzo Pharma bv
SYSTEM DEVELOPMENT & AUTOMATION

Ronald Beetz

Akzo Pharma bv

Weth. v. Eschstraat 1
P.0. Box 20

5340 BH Oss

The Netherlands.

RT-11 VS Report

'm about October 1382, after the last dustralian DECUS Svmposiom, I was
asked if I wanted to bhe & Field Test site for RT-11 VS, Filled with a desire
for the latest and best from DEC, I naturally accepted at once. In due course,
after signing & number of licences, non—disclosure agreements and H-P agree-
ments, & box of floppy discs and & pile of grotty photocopies arvived., It was .
. . RT-11 v0S5.02. Far those who have not met this aspect of DEC s
code-numbering, the YV stands for "Officiasl Release Version", (supposedly free of
bugse}), a ¥ stands for "Field Test Yersion®, {(shouldn’t have too many bugs, and
the users will help find those), and an ¥ stands for "Mery Uncofficial Highle
Experimental Version" (in-house use only, and provided they can get it to linmk}.
S0 I took the photocopies home and read them, and loaded the software onto a
couple of my systems &t work and booted them. Some of the users still bear
(bare) the scars.

DEC prowvided me with 3 form called a 0&R: Quality Assurance Report,
Fortunately, it was in machine-readable form, because we sent off nearly thirty
of the things. #And quality "Assurance” has nothing to do with it: the function
af the form is "Bug Report”. I didn’t bother with UAR7ing the manuals, as the
number of typoegraphical errors was immense, but I had some confidence that DEC
could sort that cut themselves., (In fact, they did a superb job.}

In due course of time, YO05.08 arrived. One wonders where the intervening
vereions got to, or what happened to them. Y05.08 certainly remcoved a few bugs,
but it added a few new anes, Somewhere along the line the Linker lost the abkil-
ity to 0, so the only way out of it when it got hung {which it did freguently)
Was to reboot! mAnd the new SL handler mansged to get the entire system inteo
Gordian knots. Aotuslly, some of my "testere” developed gquite ingenicus wayse
around some of the bugs.

Finally came the messsge: Field Test is over. Fanic: wvou can’t release
it in that state! But releaszed it was, and I got my version very early by way
of compensation for the testing., Someone at work suggested that it wasn’t seo
much Field Testing a= Character Testing., Howewver, on inspection of the finicshed
product (msnuals toc), [was very agreeably surprised., RT-11 WS is a smooth,
reliable and well-documented product. To be sure, there are a few small bugs
{latest count is 24 SPR s, but some were due toe a faulty SYSEEM), but it's &
very great pleasure to work with. @And when I compare it with VEB...

i}

Anyhog, it was great (grate?) fun, and s real educsation. The twin marvels,
of couree, were that "they' managed toe get so many bugs intoe the system, and
that “"they”® managed to ge=t almost all of them ocut again.

Future RT-11 Features
or, Iz There Life &frer Death?

We had lote of diecussion about this at the last symposium. The DEC visi-
tay for RT-11 was Greg adamns, the nsw RT-11 Product Manager. To a large degres,
Greq is the one whe sets RT-11 policy, so he was a wvery good bloke to lean on.
He had lots of idess to fry out an us, and the welcoms news that RT is not &
dying breed at Mawvnard {as it was for a whiler. He was also wery easy to get on
with = 3z all RT users sesm to be! We definitely enjowved having him along. The

following sommary of the magic ssssions is from my notes and memaories.

First of 11, let it be noted that sll RT users at the Svmposium were wvery
sure of the need for continuing development of RT-11, despite its present (V3D
very nice state and the downwards thrust of UaX hardware. The following com-—
ments were presented to Greg inm that light.

TS+ or Multi-Tasking

There is VERY wide support for the merging of RT and TEX+. The ability to

"switoch terminals’ under TSX+ is wvery popular., The most common use of this
seems (to me, RNC) to be the ability ta interrupt an editing session to do some-
thing else, such as running & spelling checker. The wuse of KEX in the

foregaround and compilers etc in the background is & partial step in this direc-
tion, but we lack monitor access from the fereground still with this approach,
With the increassing use of the 11723(+) with =zt least 14Mb, not te mention the
rew 11473 (¢J~11 chip set), there seems to be a real demand for & multi-tasking
foarm of RT. The alternative of using REX did not seem to meet with any form of
popular or even polite support. Interestingly, quite & few users had had exper-
ience with all three, and did not wish to go to REX.

RTEM

Greg gave a talk on this, an RT-11 (FB) emulatoer under REX. He was wvery
confident asbout the quality of this product, and assured us that even the RT-11
devglopment group had been using it without prangs for some time. It does not
really provide the same functionality as TSX+, and does require & larger system
{and & going RS¥, which isn t all that easy to find), but it does present one
avenue for wusers for expansiocn, Only & few EMT s don’t work (are not support-—
ed), and those ones aren’t &ll that common.

RT1lisJd

The possibility of dropping this Monitor was discussed, and met with little
objecticn, provided that a version of FB of & similar small size becomes gvail-
able. That is, the only resl value seen in the SJ monitor was its small size.
The nuisance value of the differences betwsen SJ and FB was seen as significant
both to the users and to DEC. DEC have to support twoe different moniters,
gssentiallv, for no rvreal gain. The users have to go to all sorts of dewvious and
annoyving machinations to try to make programe behave the same under either moni-
tor. (My personal opinion is that 8J is & menace!)}

RTL11AM

Few people use this monitor at present (which was mildly embarrassing, as
Gregq more or less wrote it!), This is at least partly due to the reputation it
acquired on it’'s first release, when it was a bit wonky. The availability of
KEX may help to alter this. That is, since most users have managed without XM
in the past, there is & certain inertis acting against any change, Given good
reason, such as KEX, this could slowly change. The gquestion remains however
whether the present XM is what is really wanted. Many (most) saw a greast demand
for a revamped wersion as cutlined above under TEX+.

The MNew RT11.5Y%

Out of all the above comes & proposal for a new form of RT-11. It would
feature only one monitor, called RT11.5YS. This would be like the FB monitor,
but with many tuning options. ® emall version of limited functionality far
those vsers with very large SJ-tvpe run—time packages would be essential. An
average version for the typical FB user would be the middle-ocf-the-road offer-
ing, presumably to be known as Good 0ld RT (GORT). Only half the GORT users
might ever actually use the foreground. At a somewhat larger core-size, we
could have & virtual version of RT which offered much increased functionality.
That is, the user would (probably?) be in page 0, but most of the monitor
routines would be in virtual memory. This should lead to a very smart and fast
system. Switching to virtual memory would be done only by the monitor (via
EMT“s) for ite own purposes, &0 that there should be very few bugs and user
sof tware should stay simple. Alternately, we could have a more sophisticated
linker which would put overlays in extended memory to the extent of the space
available and the rest on disc automatically: overlay changing would then be
then Jjust & matter of juggling the PAR‘s most of the time. This would have
remarkable effects on the speed of the Fortran compiler (about 24 overlays) and
the linker itself (10 about overlays). Finally, at the high end, we would have
the multi-tasking (and why not multi-user) wersion of RT/TSX+. This might well,
irn the long run, eclipse all the others. The problem here is that, while con-
ceptually gquite different from the internals of RSX, it would effectively be

competing with it d({unless &ll RSX users migrate quickly to VMS, which seems
quite on the cards).

10

The key point here is the radical change in memory prices: there is little
difference between a 64Kb memory board and a 256Kk board (MEV11-DD € A%842 and
MEV1l~LK @ A%1755), relative to either disc prices or current "A-class" software
licences. This means that the old wave of thinking (RT in 8Kh) are now irre-
levant. That‘s NOT to say that we want the monitor to grow to REX/UNIX size!
The “wisible" <(ie in page 0) part MUST stay as small as possible. But the
extended memory could well be used to immense advantage. 1 foreses 3 problem in
retaining compatability between 16~bit (LSI11/2) and 18/22-bit systems, but this
could surely be handled with the options mentioned asbove, or with a clever bit
of ‘"paging" code, which either loads from disk or switches to extended memory.
This code would be in the vresident monitor, and would be used by the monitor as
well s CUSP s and user programs.

1 can see that somewhere along the line a degree of imcompatibility will
eventually be introduced. I sse it, I regret it, and I welcome it. The basic
GORT would hopefully hide it, while the more powerful. wversion would show it.
But if advantages cutweigh the disadvantages, I believe that it would be worth
while. MWhat do you think, and what would vou want for it to be worth while?

Mon—-5¥SGEN"ed Standard System Package

Numerous comparisons were drawn between RT and CRA-M-MS/DOE. The wirtues of
RT were not in dispute, but the price of & full licence was sesn s & major
praoblem. As many users don’t de a SYSGEN, the poessibility of & standasrd 1 or 2
Fleppy distribution kit with & single small manual, along the lines of the Rain-
bow and Decmate software hite, was brought up. This would run quite happily on
packaged systems (including the PC350 if possible), and at (=say) $300 would sell
like hot cakes. This ides partly presumes the single-monitor concept outlined
above., The monitor provided would probably be GORT,

If such an idea could be pushed through, there would need to be asnother
"full" kit available, with complete documentation and fully commented sources.
This socurce kit need not contain any compiled files (apart from MACRO and LINK,
if not included in the basic kit), as the basic kit would be quite sufficient to
get you up and going. @& price of %1000 for the full kit would be reasanable.
The kit of the full range of manuals would be = separate item again, priced at
whatever is (un)reasconsble {(as usual}.

These ideas were kicked arcund by quite a few people on seversl accasians,
and Greg was an very keen participant in the discussions. I act the message
that Greg was very intervested in finding ocut just what the users wanted: hiow
many radical changes he can push through may be another matter, of course, but
at least DEC is listening.

Roger Caffin
Agustralian RT-11 SIG Chairman

The aAustralian RT-11 816G Tape!

Thie long awsited Qeuvre approaches gestation. It has changed form & Bit
zlong the way, for a number of reasons. Many of the SIG tapes contain & lot of
repetition from year to year: this is unnecessary and even undesirable. Same
of the programs put on the tapes have been Library items, and there has been
some debate cver these. The conclusion we seem to have come to is as follows.
It is quite appropriate for a program submitter to bring hig program to the Sym-—
posium and make it available to all attendees: it is his, after allf af ter the
Symposium however it is taken off the SIG tape as it iz not in the SIG s
interest to give it away when the Library is relying on the rvevenue.

11

Mote that all "files" fit on
The files are sctually floppy images,
aor XD:, or may be copied to & floppy and accessed
gpace 1% the invisible space (directory, ete) at the

Anvhow, this is the index to the collections.
a <cingle RX01, even if they look kigger.
and can be accessed via LD:
normally, The ‘extra"

front of the floppy.

The whole tape has been submitted to the DECUS library.

"File® Size Date Description

=123 DR 40F 10-Aug-83 ARchives NEMW versions of filee to = backup
BaMNLIF . DSK S0P 1i-aug-82 Banner and Life {o0ld?}

BASEXT . DEK 412k O0e-May-332 FesksPoke tvpe extensions to Basic

CAalHAE .. DSK 27F 0b6-May-B3 Decus papery on interupts in Fortran
CCHIT1.DEK 446F 01-5ep—-83 Utilities and C sxtensions

COHITZ.DEK 435F 01-Sep-83 "

CCHITR.DSK 463F 01-Sep-83 "

CDUMP . DSK 140F 07-Sep-83 Disc Dump Utility

CGW1 WDBK 434P 01-Sep-83 CB, C5PLM fereground spooler, CEPOOL, ...
CEkz .DBK 418F 01-35ep-83 LRALW Comme handlers, © bits and games
CHESS DSk 230F 1ll-Aug-83 Chess game + LOC

CHITLL.DEK 494F 28-Jun-23 Urilities and Fortran extensions
CHITLZ.DEK 434p 25~-Jun—-83 i

comM L DEK 200F z0-0ct-83 Terminal, MNet, Comms: Communications pkg’'s
COMP&G . DSK g84p 13-Jul-82 Multi-column post-RUMNOFF processar

CP LDEK 40P 10-fAug-83 Universal Copy Program

DECODE .DEK FOP 2E2-Jul-B2 POP-11 discembler

DECUSL .DBK 443F 12-May-832 Sundry bits

DEMO LDSK 8O00F 31l-Aug-83 VYTL1E2S pictures

D BCaN , DSK 1z4F 0&-Mayp-83 Floppy disc analyser

EXFILE.DEBK GBP zz-Jul-g2 Interprocessor Communications Program
FEMON L DSK FeF 07-8ep-83 Foreground Monitor for running several progs
FLECS1.DSK 435F ll-Aug-B83 Fortran Language w Extended Control Structures
FLECSZ2.D5K 300P 11-Aug-B3 = = - - -
FLECSZ.DEK 435F 1l-Aug-83 "

FLECS4.D8kK 120P 1l-Aug-83 "

FLECSS.DSK 2E5P 1l-Aug-83 “

FLOFPY .DSK 494F Z0-msug-83 Sundry {commeld, inc Screen

GAMES L DEK 471F 12-May-83 Yariocus Games

GRAFHL . DEK 340F 10-Aug-83 Graphices Sof tware

GRAPHZ . DSK 98P 10-fug-B83 i

KE .DEK SgF Zg-Jul-B2 KB device handler

LETPRO.DEK 0P 12-May-283 List Processor for letters

oDDs JDEK SO0FP 28~Jun-83 Various Games

FICAX .DSK Z6eP lz2-May-83 Program for Interactive Control and experiment
RATFOR.DEK 3g0F 11-pug-83 FATFOR; Rational Fortvan

RAYE L DSK 110P 30-Aug-83 HKMNET, PO.MAC

REZSEQ .DSK 130P 10-Aug-83 Fortran Line Mumber Resequencer

RHODES.DEK 166F 22-Jul-82 Bundry

SFOC L DEK 125F 07~Sep—-383 Structured Focal Extensians

S0RT .LSK 241F 23-fug-83 Soert Utility

SPOCL .DsK 87F 22-Jul-82 Greg ~dam's Transparent Spooler

STAGEZ.DSK FEP 11-Aug-B3 Stage 2 Macro Frocessor

STUFF .DSK 424PF 02-5ep-33 Greg Adam’s UCL.SAV, and cther bits

TSTE .DBK 240F 10~-mug-83 Time Share Terminal Emulator

TTLIB .D3K 432P 23-Aug-83 VT100 Library

UPDATE . DSK 65F 10-pug-83 Archive disk Updating program

UARRAY . DEK FEF 12-May-83 C extensions for wirtual arravs
WIRTAL.DSK 40P 10~Aug—-83 Fortran Ext“ns for Disk~based Wirtual Arrays
XAas8M o LDEK S0P 1l-Aug-83 Crouss assemblers for S080 & &800

®D . DBSK 150RP 10-Aug-83 Logical device handler

12

Far & limited time for Australian DECUS members, the individuzl DSK compo-
nents of this tape may be obtained in the normal manner. You send encugh
floppies, in & plastic bag, in reinforcing such as masoenite or metal, in 2 Jiffy
bag, with & veturn address label and return postage, to RMC. You include & list
of what files you would like, NOTE: & single "file" request will probably be

restored to the floppy as 3 directly readable disk, but multiple requests will
uysually be copied as files, packed on floppies, and vou will have to unpack
therm . Fer those who haven’t doene thie before, the following should do it with
standard RT-11:

COPYSFILE/DEY dva:iNAME.DSK dub:

This copies a file on dva: to the device dvb: itself, That is, the device
dubes is written on starting at block 0. This means that the directory struc-~
ture in the file is transferred to the dvb: toe. The device size will probably
then appear less than it should. In WS this can be fixed by SOUEEZEing the
disc.

Alternate medis supported are mag
RLOZ2 disks. Tape should be sent packa
disks is up to wou, but remember that T

tape (800 or 1600 bpi, bur SPECIFY!) and
ged like floppies. bhat vou do with RLOZ
SIRO can”t cover any costs,

Turn—around time for single floppies shoulo be shert: only & few dave.
Far requests for "lots of floppies" it will be longer. Mag tape will slso take
& bit longer, although with 24007 tape the fastest is to just dump the lot (COFY
S0 MT:a. RLOZ2 disks will also take = few dave, and again the fastest is to
dump the lot.

Sundry files in the 316 tape
Many of the "filesg" listed on the ZIG tape are cbwviously part of a system,

and o are noet listed separately. However, there are alse many little kits, in
zeversl collections., These are listed helow:

Program Size Date "File" Description

D LT 4 01-Jul-82 RHODES

ADTEST.FOR 1 01-Jul-82 RHODES

ANIMAL .DAT 32 21-mug-283 CEkE Dats for CELL

BAMNMER, , SaL 52 22-Sep-80 BaMLIF Prints large text banners

BANNER . 844 52 17-Dec-73 GAMES Frobably the sams

BB LTS 22 28-~Dec-81 CGL BE-CB package

BB PR=ro v 13 28-Desc-31 CGldl BB-CE package

BL =] 386 28-Dec-81 CGEWL BE-CB pachage

BL . SAL 7 28-Dec-81 CGHL BEEB/CE package

CAaLt L 5AY 32 (5-Feb~-81 STUFF "Calculator" on scresn (very simplel
CB LMAC 34 2ZZ-Dec-381 CGk1 BE<CB package

Ch . RNO 143 28-Dec-81 TGkl BB-CBE package

CE SN 16 22-Dec-81 CGE1 BB-CE package

CDuMpP ., 3AY 48P 06-Sep-7R STUFF CGW s special dump program

CELL .C 48 24-fug-83 LGz Picture drawing program, uses AMIMeL
CELL .COM 1 20~-Jul-83 CGNZ CELL.C

CELL ,3AV 26 24-Aug-B3 CEk2 CELL.C

CLIR .OBJ 81 zZ8-Mar-82 CEkz C library

CLIST .C 10 20-;ug-23 CiEkiz C Pretty Printer

CLIST .COM 1 21-Aug-83 Calz CLIST

CLIST .sav 15 21-Aug-22 CGk2 CLIST

CLk100.MAC 4 01-Jul-82 RHODES Clochk display

CoM MAc 32 2l-Jul-g8z achs

CoM A0 22 21-Jul-82 DECUSL

com ARG 28 24-Aug-383 Calz Interprocesscy Comme prog, uses LR, LW

13

ComM Beddt 7 24-Aug-83 CGkiz caoM

CONSOL JM&T 1 01-Jul-82 RHODES

CaPLM JMAC 27 05-Jul-8C CGkW1 CGW‘ s Foreground Spooler (good)
CSPLM (TXT 7 US-Aug-72 CElil i

CSPOOL . COM 1 03-Dec-TFB Colil "

CSPOOL . INI 1 0z2-Dec-7g CGEW1 "

CSPOOL MAG 34 03-Dec-78 CGk1 Greq Adam’s Foreground Spocler
CSPOOL.REL 7 03-Dec-78 CEWL "

CSPOOL .. TT 10 04-Dec-72 CGW1 "

DECUS . DoC & 13-Jul-82 CALHAE Interrupts in Fortran (paper)
DECUS .FOR 13 24-Jul-B2 CalHAE

DIREC .MAC 1z 02-Dec-78 G Fartran access to directory entries
DISASM, 3o 17 04-Mar-82 STUFF Disassembler

DISC .saM 3 1%-Aug-81 STUFF

D .C 27 20-Aug-B3 CGEk2 Accesses individusl sectors, (+RDREED)
0 GO 1 21-Aug-83 Calkz Dx.C

D « S 12 2l-Aug-83 CGz Dx.C

FLAaG LEal 17 le~Mar-83 STUFF Banner heading on listing

G0 LFOR g 01-Jul-82 RHODES

HANDLE . A4 7 la-May-82 STUFF Decodes block O of %%.5Y5 to TT:
HE S0 28 01-Jul-82 RHODES

HEROOL Mal 4 01-Jul-g82 RHODES

KEZ LA 23 0l-Jul-82 RHODES

LIFE .5~ 3 ZZ2~Sep-g80 BamlIF Conrow®s LIFE

LIFE .5/ 11 12-0ct-7% GAMES i

LIFE .THT 3 E22-Zep-80 BaMLIF "

LPC HMEC 34 05-Dec-78 Cal1 “lternate LP handler

LPC JTHT 7 US3-pAug-79 CEkL Alternate LP handler

LRFCF JMAC 34 12-May-78 CGHL ABlternate LFP handler

LR HMAC 1z 03~Jun-82 Cokiz LRALW Comms Handlers

LR +3YE 3 03-Jun-82 ChEkZ LRALW Comms Handlers

L LG & 03-Jun-22 . LGz LEALMW Comms Handlers

L LEYE 2 03-Jun-82 Caliz LRsLIW Comms Handlers
MACLIB.MAC 38 01~Jul-82 RHODES

MATLER . .MAC 17 28~Apr-81 DECUZ]I Types mailing labels from list
METLER ., a4 & 18~Aug-21 DECUELl MAILER.MAC

MC G 4 04-Dec-7B CGEkL Odd macros

MTCON .FOR 7 0l-Jul-g2 RHODES

MET T &0 COMM Communications

MIPAT JMAc 98 23~-Jul-82 DECUS1 WYersatile Patch program

MEZPAT L Sal 14 23-Jul-82 DECUS1T NZPaT .MaC

MEPAT LTET & 22~Aug-32 DECUSL NZPAT.MALC

FEEK. .FOR 1 ©0il-Jul-82 RHODES

FPLANE . 584 43 ig8-MHav-80 GAMES 747 landing game

PO AT 35 25-mug-83 RAYER RT-11-TEx+ DLV~-11J Port Handler
FOKE .FOR 1 01-Jul-82 RHODES

FROGRA ., 5AL & 17-Aug-82 STUFF Decodes block O of *.58W to TT:
FUSSY .CAT 103 05-Dec-20 oDDs LF Picture File

ROSEC Mal 1 1%-Aug-B3 CGz Subroutine for DX.C

RDSEC .0OBJ 1 13~fAug-83 Chilz RDSEC ., M&C

READ WME 3 2l-Aug-83 CokiZ Warious explansatory text files
RERD .ME 3 24-Jul-3:z DECUST

FREAD WME 3 24~Jul-gz apops "

RHODES . RME 2 Ql-Jul-22 RHODES

RTMOM JMAC 3% l&-HMaw-83 STUFF "Monitor" for multi-terminal
ECaMN JDOC 2 U2-Sep-83 STUFF Compares contents of tweo discs
S0AN L BAY 24 25-Jul-8&8 STUFF SCAaN

SCREEN ., MaC 4 0il-Jul-g8z RHODES

SETUP . 5aY 7 25-fAug-83 STUFF Sends ESC string to WT100 to set it up
SLIDE .5&M 27 0z-Dec-82 STUFF Automated "slide® maker (on VUT100)

14

SNEKE L FOR 20 28-Aug-B82 Caz Game: wWorm on SCreen

SNAKE . 5AWU 31 28-Aug-82 Calz Snake.for

aP «BY8 2 06-Jun-83 STUFF Part of SPOOL

SPACE .DAT 1 24-Jul-g2 apos Space Invaders (11-510)

SPACE .FOR 66 2z2-Jul-g2 oDDs g

BPACE . S5AW el 24-Jul-82 opbs B

SPaCHK . MAC 2 22-Aug-82 uphDs *

SPOOL .DOC 2 0z2-Sep-83 STUFF Greg mdams Transparent Spooler

SPOOL .REL & 22-Aug-83 STUFF SPOOL

SPOOLX.REL 7 1ll1-pug-283 STUFF SPOOL

SPX .8Y5 2 10-Aug-83 STUFF

SRy .FOR 1 0i1-Jul-82 RHODES

88T .DOC 1ig8 08%-Jan-78 GAMES Super Star Trek

88T . SAkd 1g4 0%-Jan-78 GAMES " {(partial, lacks PLAQUE.S&V)

STDIO WH 7 lé-Mar-82 CG2 C Library

SUPORT.OBJ 1 z8-Mar-82 GGz C routines

TaB LHMAL 10 18-mug-81 DECUS1 Compresses {(TAB>/{5F> to DEC standard
TaB « 5AV S 18-&ug-81 DECUSYT Tap.Mac

TERMNL .MAC 22 COMM Communications

TICTAC.SAV 10 14-Sep-80 GAMES 3-D Tic-Tac-Toe (7}

TO JMAC 14 23-Aug-83 CEbiz TT Interceptor, Shows control ch’'s

TO . SAU 3 23-Aug-83 CGk2 TO.MAC

TRACE |, 884 17 19-Apr-83 STUFF Execution tracer. Put on 8Y:. Details?
LCL . SR 11 13-Aug-83 STUFF User Command Linkage, § Adams
USOVER.SLI 8 (02-5ep-83 STUFF Slides to go with SLIDE: shows format
VM A 21 01-Jul-82 RHODES DECUS WM handler (73

WORM1 .FOR 2 02~-0ct-81 GAMES Fatterns on screen

WORML . SAY 1?7 01-Oct-81 GAMES "

WORM3 .FOR 3 2i-May-B2 GAMES "

HORMZ |, SA 17 21-May-82 GARMES "

KFIL .MaCc 7 (03-Dec-78 CEWl File transfer, channel to channel

XNET .MAC &7 (09-pug-83 RAYER Comme Package (uses PO)

Mot all files have descriptions. Some are cbvious, some are not. The latter
lack & description for that reascon: PRHNC deesn’t know what they do. Help would
be appreciated. You might also notice some duplicates: the clean-up hasn’t

teen finished yet. But for what it is worth.....

Please note: vrequeste for files from this list will not be filled. If wou
want one, request the .DSK Tile.

R N Caffin
Australian RT-11 SIG Chairman

15

DECUS LIBRARY

TSXLIB Updated

Like RT-11, TSX-Plus offers the MACRO programmer a number
of system services via programmed requests or EMTs. RT-11 makes
its system services available to the FORTRAN programmer through
the system subroutine library, SYSLIB. TSXLIB makes the
TS8X-Plus EMTs available to the FORTRAN programmer as a library
of callable routines. The package includes the MACRO source
modules for all the routines, a user’s manual in machine read-
able form, a cross reference chart, an indirect command file to

build the library, and the implemented library.

The library has been updated to include all EMIs through
TS8X-Plus VS5.0. It is available from the DECUS Program Library
(order #11-490) on RX0L Floppy Diskette (KA) and 600-ft Magtape

(MA), both in RT-11 format. The address for the DECUS Program

Library is:

DECUS
One Iron Way

Marlboro, MA 01752

With this release, maintenance of TSXLIB has been assumed

by NAB Software Services, Inc. of Albuquerque, NM.

N. A. Bourgeois, Jr.
3-Apr-84

16

C Language System (Binary Version) for RT-11, for the
Professional-3008 Series

Version: December 1983

Author: Robert Denny, Martin Minnow, David Conroy,
Charles Forsythe

Submitted By: Tan Calhaem, Ph.D., Dept. of Scientific and
Industrail Research, Wellington, New Zealand

Operating System: RT-11 V5.1 (PRO support requires V5.1 or later)
Source Language: MACRO
Memory Required: 24KW Minimum

"C" is a general purpose programming language well suited for
professional usage. The DECUS "C" distribution contains a
complete "C" programming system including:

o A compiler for the "C" language. The entire language is
supported except for floating-point, macros with arguments, bit
fields and enumeration.

o A common runtime library (standard I/0 library) for "C" programs
running uder the RT-11 operating system. By using this library,
"C" programs may be developed on one operating system for
eventual use on another.

o Several "C" programs, including a cross-referencer lister for
"C" programs, a lexical analyser program generator,
cross-assemblers for several microcomputers, and several games.

o Extensive documentation for the compiler and runtime library.

Note: Sources are not included. All software is distributed in
Binary format. For sources users should order DECUS No.
11-SP-18, which is a more complete offering.

Restrictions: Documentation in RUNOFF format only.

Sources are not included. Documentation on magnetic media.

Media (Service Charge Code): 5 1/4" Floppy Diskettes (TB)

Format- RT-11

Keywords: Structured
Languages, PRO - 300 Series,
RT-11 - PRO

Operating System Index: RT-11

17

RUNOFF M@2.44 for RSTS, RSX and RT, for the Professional -~ 380
Series

Version: December 1983
Author: Chester Wilson

Submitted By: Ian Calhaem Ph.D., Dept. of Scientific and
Industrial Research, Wellington, New Zealand

Operating System: RT-11 V5.1 or higher for Professional-309
Series support,
P/0S V1.7 or higher as RSX files need FCS
support

Source Language: MACRO
Memory Required: B8KW to 18KW

Document preparation is greatly aided by RUNOFF. Automatic line
£i11l, right margin justification, hyphenation, pagination, index
creation and decimal notation sectioning are among the facilities
provided. This program is an updated and enhanced version of
RUNOFF (DECUS No. 11-538). This release supports the RT and P/0S
operating systems with a common baseline.

This version of RUNOFF has a modified hyphenation algorithm,
conforming to the UNIX V7 table and digram threshold values. It
also has support for transparent printer control strings which are
passed directly to the output without affecting the fill and
justify processing. This facility makes it possible to use
special features found on many letter quality printers, as well as
implementation of specialized pre-processor programs which can
provide mathematical typesetting, graphics, etc.

Restrictions: To assemble under RT-11 V5.1 set KMON NOINT.
Documentation on magnetic media.

Media (Service Charge Code): 5 1/4" Floppy Diskette (JA)

Format: RT-11

Keywords: RUNOFF, RT-11 - PRO,
Text Manipulation, PRO - 340
Series

Operating System Index:
RT-11, P/0S

TTLIB: VT84 Library, for the Professional - 304 Series
Version: December 1983
Author: Chester Wilson

Submitted By: Tan Calhaem, Ph.D., Dept. of Scientific and
Industrial Research, Wellington, New Zealand

Operating System: RT-11 V5.1 (PRO support requires V5.1 or later)
18

Source Language: MACRO

TTLIB is a library of programs to conveniently control a VT1a490
type terminal in ANSI mode. Routines allow drawing boxes and
lines, cursor positioning, screen appearance, video attributes,
screen and line clearing, screen and keyboard behavior, graphics

facilities, assorted heights and widths, tab settings and
clearings, and reporting cursor position.

Routines are provided for FORTRAN and MACRO calling programs. As
TTLIB is a library, only the routines which are actually used are
loaded into the user's programs.
Documentation on magnetic media.

Media (Service Charge Code)- 5 1/4" Floppy Diskette (JA)

Format: RT-11

Keywords: VT100 Routines,
RT-11 - Libraries, RT-11 - PRO,
PRO -~ 30¢ Series

Operating System Index: RT-11

COMPAG: Combine Pages for the Professional - 308 Series

Version: December 1983

Author: Chester Wilson

Submitted By: Ian Calhaem, Ph.D., Dept. of Scientific and
Industrial Research, Wellington, New Zealand

Operating System: RT-11 V5.1 (PRO support requires V5.1 or later)

Source Language: MACRO

COMPAG provides the ability to easily combine pages so they may be
spread across a printer form rather than taking up a page each.
It can cope with up to 8 columns within the output page, the size

of each column being determined by the width of the page.

Alternatively a series of left margins may be specified, one for
each column in sequence.

Tab conversion is usually performed on the output file, to reduce
size. This uses the DEC standard for hardware tabs. Underscoring
in the input file will be retained in the output.

COMPAG was designed to be used with RUNOFF output files, but will
work with any files,

Documentation on magnetic media.
Media (Service Charge Code): 5 1/4" Floppy Diskette (JA)

Format: RT-11

19

CVLLIB: General Purpose Library for RT MACRO and FORTRAN, for the
Professional - 348 Series

Version: December 1983

Author: Chester Wilson

Submitted By: Ian Calhaem, Ph.D., Dept. of Scientific and
Industrial Research, Wellington, New Zealand

Operating System: RT-11 V5.1 (PRO support requires V5.1 or later)
Source Language: MACRO

Special Hardware Required: FIS or FPU to make use of floating
point routines.

CVLLIB is a personal general-purpose library for the RT-11 MACRO
and FORTRAN programmer, Routines cover facilities such as reading

and writing decimal (up to triple precision) and octal (up to
double precision) integers, money formats (double and triple

precision), dates and times, filenames and RADS5# formats.

The library has been split into three segments:

General /MACRO portion CVGLIR Manual: CVLLIB

Real Number portion CVRLIB Manual: included in
CVLLIB

FORTRAN portion CVFLIB Manual: CVFLIB

The author has provided excellent documentation with this library
and it should be a valuable addition to every user's program
collection.

Documentation on magnetic media.

Media (Service Charge Code): 5 1/4" Floppy Diskettes (JC)
Format: RT-11

SORT for RT-11, for the Professional-300 Series

Version: December 1983

Author: Chester Wilson and Darrell Whimp

Submitted By: Tan Calhaem, Ph.D., Dept. of Scientific and
Industrial Research, Wellington, New Zealand

Operating System: RT-11 V5.1 (PRO support requires V5.1 or later)

Source Language: FORTRAN IV, MACRN-11

SORT is a general purpose high speed RT-11 memory/disc sort/merge
utility program, capable of coping with files as large as RT-11
cAan manage. Sorting may be ASCII or alphanumeric, and
considerable trouble was taken by the original author to enhance
the speed of the sorting. '

Documentation on magnetic media.

20

Media (Service Charge Code): 5 1/4" Floppy Diskette (.7A)
Format: RT 11

INDEX: FORTRAN Cross—Referencer, for the Professional-307 Series
Version: V5.6, December 1983
Author: Michael Levine

Submitted By: 1Ian Calhaem, Ph.D., Dept. of Scientific and
Industrial Research, Wellington, New Zealand

Operating System: RT-11 V5.1 (PRO support requires V5.1 or later)

Source Language: MACRO-11

Memory Required: 24KW

INDEX is a cross-referencing program that does for FORTRAN what
CREF does for MACRO. A source program run through INDEX will be
checked for all of its variable name and labhel usage. The names
and labels used in the program, the lines on which they were used,

and how they were used. 1If needed, the variables from the
specified programs can be saved along with those of other programs
and later printed out as a super index giving variable names and
the names of all the programs it was used in. Also included is
the capability to exclude from the index listing all variables
that appear only once in a program in a common block or type
declaration but are not used elsewhere (or list only those if
wanted). The user can also list only those variables that are
global (defined in a common block) or those that are local.

Documentation on magnetic media.
Media (Service Charge Code): 5 1/4" Floppy Diskette (JA)

Format: RT~-11

TECO V35 for RT-11, for the Professional-30g Series
Version: December 1983
Author: Andrew Goldstein, Mark Barnhall and Tan Calhaem

Submitted By: 1Ian Calhaem, Ph.D., Dept. of Scientific and
Industrial Research, Wellington, New Zealand

Operating System: RT-11 V5.1 (PRO support requires V5.1 or later)
Source Language: MACRO
Memory Required: 16KW

TECO is a powerful text editor that runs under most RT-11
operating systems. It is suitable for editing almost any form of
text file including programs, manuscripts, correspondence, and the
like. TECO is a character oriented editor, and as such is free
from many of the inconveniences associated with many line
oriented editors. 1In addition, TECO has most of the facilties

21

found in a programming language, such as arithmetic loops,
conditional execution, GOTO's etc., allowing the user to write
editing programs to alphabetize lists, reformat tables, renumber
statement labels, and much, much more.

This version of TECO includes support for PRO-3f@ Series
terminals, which do not respond to the usual tests for VT184 type
terminals in ANSTI mode. It will therefore run under RT-11
version 5.1 or later.

Note: From RT-11 version 5.1 or later TECO is not supplied with
RT-11 distribution. It can only be obtained through DECUS.

Restrictions: Although complete sources are not included .0BJ
files are provided and the source of the terminal driver module,
so the user can configure TECO for special use. Command files are
provided to assemble both a background and a virtual (system job)
version of TECO.

Associated Documentation: To obtain the TECO manual see DECUS
No. 11-454.

Media (Service Charge Code): 5 1/4" Floppy Diskette (JA)

Format RT 11

RENUM: FORTRAN Renumbering Program, for the Professional-30%
Series

Version: V4.01, December 1983
Author: Eric Morton

Submitted By: Ian Calhaem, Ph.D., Dept. of Scientific and
Industrial Research, Wellington, New Zealand

Operating System: RT-11 V5.1 (PRO support requires V5.1 or later)

Source Language: FORTRAN-IV-PLUS

RENUM is intended to provide two useful services for the FORTRAN
programmer:

1. Replace the existing statement number in a FORTRAN program with
a new (an equivalent) series of sequential statement numbers,

2. Produce a cross-referenced table of all variable names used in

the source code showing the line numbers where all references
to each variable name occur.

The line number used for cross-referencing agree with those on a
compiler-generated listing. Either or both of these services,
along with a listing of the source code, can be produced; the two
functions are completely independent. Control is by means of
terminal-entered command strings following the standard RT-11
rules. Input files (up to six per command line) cna be on any
disk device, and output files can be directed to any device., When
renumbering, a new disk file (by the original name) is created for
the renumbered source code, and the original file is changed to
.OLD. RENUM version 4 adds several new useful features including;
the ability to specify the starting new statement numbers and the
increment between new statement numbers; a reformatted source

22

listing; flagging the range of DO loops; and improved variable
name scanning, especially in logical IF statements.

Documentation on magnetic media.
Media (Service Charge Code): 5 1/4"™ Floppy Diskette (JA)

Format: RT-11

CVLLIB: General Purpose RT-11l Library
Version: V3A, July 1983

Author: Chester Wilson

Operating System: RT-11 V3 or later
Source Language: MACRO-11

Special Hardware Required: To use floating point routines you
must have an EIS.

CVLLIB is a (personal) general purpose library for the RT-11
MACRO, FORTRAN or C programmer. Routines cover facilities such as
reading and writing decimal (up to triple precision) and octal and
hexidecimal (up to double precision) integers, money format
(double or triple precision), dates and times, filenames and
Radix50 formats. Numerous convenience routines are included.
Multiple precision arithmetic routines are included, none of which

requires an EIS or FIS. Real (floating point) routines are
included, but these require either a KEV1l or a floating-point
hardware unit (FPU),

This 3A comprises the MACRO, FORTRAN and Real number sections of
CVLLIB. The C portion is to be released separately at a later
date.

Changes and Improvements: Reorganized internally, bug fixes and
manuals updated.

Restrictions: Interfaces for DECUS 'C' will be released later as
a separate submission.

Documentation on magnetic media.

Media (Service Charge Code): Floppy Diskettes (KD),
24908"' Magtape (PA)

Format: RT-11
Indirect Command File Processing for RT-11 V4.9

Version: February 1983

Author: Russell L. Morrison 1I, Plessey Peripheral Systems,
Irvine, CA

Operating System: RT-11 V4.4

Other Software Required: RT-11 V4.8 Autopatch Revision D

Special Hardware Required: Line Time Clock
23

This manual consists of a description of a patch to the RT-11 V4.0
Indirect Command File Processor from Autopatch Revision D. Users
may patch IND.SAV which is found in the RT-11 Autopatch Revision D
in the manner described in the manual. IND.SAV provides RT-11
with RSX-like command files, having features such as parameter
substitution, terminal input (®"ASK"), limited math, and flow
control (“*.GOTO" and ".GOSUB™).

Note: The media contains a manual only.

Restrictions: The patch described in this manual is operating
system dependent. It will only work with IND.SAV from RT-11 V4.0
Autopatch Revision D. 1In order for the patch to be effective,
RT-11 must be SYSGENed with timer support in the Single Job (SJ)
monitor.

Media (Service Charge Code): Floppy Diskette (KA),
68@' Magtape (MA)

Format: RT-11

BRUCE: A Backup and Restore Utility with Consolidation and
Enhancement

Version: V86l.1, October 1983

Author: Bruce D. Sidlinger, Alcor 1lnc., San Antonio, TX
Operating System: RT-11 V5.0 or later

Source Language: RT-11 IND

Other Software Required: IND.SAV (included with RT-11 V5.0)

BRUCE, a ®"Backup and Restore Utility with Consolidation and
Enhancement®, is submitted as both a useful utility program and as
a demonstration of what can be done with the INDirect command file
processor included with RT-11 Version 5.

BRUCE copies all of the files from a disk onto another (scratch)
disk or tape of equal or larger capacity. The files appear on the
output device in EXT, FILNAM sorted order. 1If there were no
errors, BRUCE then initializes the input disk and copies the files
back. The result is a “"squeezed" (Consolidated) disk with all of
the .SYS files adjacent (hence the performance Enhancement), and
with a "neat-looking®™ (unsorted) directory.

Restrictions: BRUCE cannot restructure the current system disk
(SY:), but the Backup phase is still applicable. BRUCE also
requires some space on SY: for its work files and the output
volume must already be initialized.

Documentation on magnetic media.

Media (Service Charge Code): Floppy Diskette (KA),
6A30' Magtape (MA)

Format: RT-11

24

FLECS: FORTRAN Language with Extended Control Structures, for the
Professional - 30@ Series

Version: vV28.#2, December 1983
Author: T. Beyer, L. Yarborough and Tan Calhaem

Submitted By: TIan Calhaem, Ph.D., Dept. of Scientific and
Industrial Research, Wellington, New Zealand

Operating System: RT-11 V5.1 (PRO support requires V5.1 or later)
Source Language: FLECS
Memory Required: 28KW

FLECS is an extension of the FORTRAN language which provides the
control structures necessary to support recent concepts of
structured programming. Currently implemented as a translator
which converts FLECS programs to FORTRAN, the system is written in
FLECS and is easily adaptable to new machines and systems. The
entire system including source code and documentation has been
placed in the public domain by the author. The purpose of making
the system available is to convince as many members of the Fortran
Community as possible that structured programming when properly
supported by a lanquage is quite natural and requires
substantially less support than programming in standard Fortran.

This release supports the PRO-3808 Series computers, but many
restrictions make it difficult to compile two of the source files
on a PRN. For this reason the distribution includes these .0BJ
files as well as full source code.

Note: The source has been updated to reflect the FORTRAN 2.4
compiler,

Restrictions: The Professional-3008 Series memory restricts the
compiling of some modules. To avoid this situation .0BJ files
have been included for two modules which otherwise give dynamic
memory overflow.

Documentation on magnetic media.

Media (Service Charge Code): 5 1/4" Floppy Diskette (JA)

Format: RT-11

Airplane Landing Simulation Game, for the Professional-3@# Series
Version: December 1983

Author: Bill Green, Les Parent and Ian Calhaem

Submitted By: TIan Calhaem, Ph.D., Dept. of Scientific and
Industrial Research, Wellington, New Zealand

Operating System: RT-11 V5.1
Source Language: FORTRAN-IV

Memory Required: 16KW
25

This program is an airplane landing simulation game. It provides
a psuedo graphic display of an aircraft instrument panel with real
time updates at one second intervals. The program simulates a
real instrument landing approach from an altitude of 250008 feet to
the runway, with instructions from ground radar control. Aircraft
climbs, dives, and stalls are properly simulated. An off airport
landing as well as go-around for a missed approach are both
possible.

Source code is supplied for both VT16d4 compatible and VT52
compatible terminals, and command files are supplied to enable'
versions to be produced for background, foreground and system job.
Documentation on magnetic media.

Media (Service Charge Code): 5 1/4" Floppy Diskette (JA)

Format: RT-11

new
11-687

FORTRAN Callable Subroutines Package for Fast Continuous A/D on
the MINC

Version: V1.0, November 1983

Submitted By: Digital Equipment Corporation
Operating System: RT-11 V5.0

Source Language: FORTRAN IV, MACRO-11
Memory Required: 286 (decimal) Words

Other Software Required: MACRO-11 Assembler, RT-11 0/S, FORTRAN
IV compiler

Special Hardware Required: MNCAD-MINC A/D Module, MNCKW-MINC
Clock Module

Assembly routines, ADCONT, WAITFD, and STOPIT, constitute a
FORTRAN callable package capable of providing dedicated,
continuous (buffer management with transfer to peripheral storage)
analog-to-digital acquisition at rates two to eight times faster
than the maximum rates provided by REAL-11 routines in a fraction
of the memory space. The interface is also less complex and was
modeled after MINC BASIC. Experienced users should be able to
modify the sources for use with K and V series logic running under
RT-11. A programmable clock and A/D modules are required.

Documentation on magnetic media.

Media (Service Charge Code): Floppy Diskette (KA),
600' Magtape (MA)

Format: RT-11

26

new

11-688
Monitor Commands for Namelists Package

Version: V1.8, November 1983

Author: John Alexander, Shiva Associates, Sepulveda, CA
Operating System: RT-11

Source Language: TECO-11

Other Software Required: TECO-11

This is a group of keyboard monitor "Executives" that is intended
to allow the user to utilize a "Namelist" file to perform keyboard
monitor commands, and others on a group of modules. The
"executives” call up TECO files to perform the work. The TECO
executive gets the namelist of modules, or single files, and
creates further com lines that operate on the specified files.

This can be very useful to the user that has 5 to 165 modules that
make up a major program. A typical executive is one that will
merge files into a single file to allow global edits. When
finished the user may then utilize split .N to split them out
again. To execute any of these "executives", type in "€" in front
of the executive name and a carriage return. The executive's name
will prompt the user for inputs.

For example: To create an alphabetized name list of files type in
@NAM.N To see a directory of the available executives type in
@D.N. To copy a group of modules in a namelist to a device type
in eCOPY.N, etc.

In general any executives that end in "E" are more general
executives, e.g., COPYE.N allows the user to specify a different
file type to copy than the module names have in the name list

file. RENAME.N allows a source namelist and a destination
namelist, etc.

Restrictions: Dependent upon RT-11 Executives that utilize TECO.
Documentation on magnetic media.

Media (Service Charge Code): Write-Up (AA), Floppy Diskette (KA),
6080' Magtape (MA)

Format: RT-11

new
11-590

File Manipulation Commands

Version: V1.6, November 1983

Author: John Alexander, Shiva Associates, Sepulveda, CA
Operating System: RT-11

Source Language: TECO-11

Other Software Required: TECO-11
27

This is a group of file manipulation "Executives" that is intended
to allow the user to make "global" changes to all lines of a file.
The "executives™ call up TECO files to perform the work. The TECO
executive gets the name of modules and creates further com lines
that operate on the specified files. This can be very useful to
the user that desires to utilize the code that has already been
written and write supporting documentation, or to manipulate data
files, etc. Some examples of "operations" that can be performed
are: 1) Number all lines of a file, 2) Move a set of columns to a
new column location for all lines, 3) Pad out the end of line to a
given column, 4) Cut excessively long lines to a given column, 5)
Fix all lines (long or short) to a given column), A) Eliminate all
"tabs" from a file, 7) Replace spaces with tabs, where possible,
8) Shuffle two files together, 9) Combine columns of one file with
columns of another file, 10) Strip comments out of coede, and 11)
Strip code out of comments, etc., etc. To execute any of these
"executives", type in "@" in front of the exec name and a carriage
return. The executive's will prompt the user €for ‘input.

Restrictions: Dependent upon RT-11 Executives that utilitze TECO.
Documentation on magnetic media.

Media (Service Charge Code): Write-Up (AA), Floppy Diskettes
(KB), A@@' Magtape (MA)

Format: RT-11

revision
11-494

DIBOL 'B3 Screen Handlier Package
Version: V4,08, February 1984
Author: David L. Wyse, Prcjects Unlimited, Inc., Dayton, 0OH

Operating System: RSTS/E V8, RSX-11M-PLUS V2.1, Micro/RSX V1.4,
RT-11 V5.8, CTS-300 V8.4, CTS-584A V5.6, VAX/VMS V3,2

Source Language: DIBOL
Other Software Required: DNIBOL '83 Compiler

This is a Screen Handling package written in DIBOL '83 and is
transportable across all DIBOL supported cperating systems. The
package consists of three DIROL '83 subroutines: "DISPL", a screen
d@splay_§ubroutine which allows full use cof VT108 type advanced
video, line and special character drawing features and wilil format
numeric fields with decimal points; the "ACCPT" which accepts
inpgt from a VT10@ type terminal including decimal point numeric
fieids, using the optimized I0 features of DIBOL '83; and "CENT"
which uses the DISPL subroutine to disvlay a literal in the center
of a line with the capability of using the advanced and speciail
video features of VT100 type terminals.

Changes and Improvements: Subroutines have been updated to use
DIBOL '83 features including improved screen 10 and faster
execution times.

Documentation on magnetic media.

28

Media (Service Charge Code): Floppy DNiskette (XA) Format: RT-11,
633' Magtape (MA) Format: D0OS-11

new
11-694

WORD: Document Spelling Checker/Corrector

Version: June 1983

Author: R, R. DiMarco, Scuth East 014 Electricity Bocard,
Brisbane, Australia

Operating System: RSTS/E, RT-11, TSX-PLUS

Scurce Language: MACRO-11

Memory Required: 28KB

Special Hardware Required: EIS

The WORD package consists of a 15007 word dictionary file and a
number of simple programs that allow the dictionary to be used to
in the correction of speliing errors in documents. The major
components of the kit are:

WORDS,.DIC...dictionary file

WORDS.SAV,...flags possihle spelling errors

WORDE,SAV,..corrects spelling errors

SPELL.SAV...finds correct spelling from abbreviation
SOUND.SAV...finds correct spelling from scund

Documentation on magnetic media.

Media (Service Charge Code): Floppy Diskettes (XB),
686' Magtape (MA)

Format: RT-11

29

Past Symposium Information

HOW TO WRITE RT~11 DEVICE HANDLERS

Ned

w.

Rhodes

E-Systems, Melpar Division
7700 Arlington Boulevard

Falls Church, Virginia

22046

ABSTRACT

Device handlers for RT-11 are easy to develop if the proper

design methodology is followed.
know the device and its associated registers.
should be written to

loop routine
operation of the device.

should be verified with an interrupt service routine.

First the user must get to
Next a wait
check out the basic

Then the dynamic characteristics

Finally

the full device handler can be developed based upon both the
wait loop and interrupt service routines.

1. INTRODUCTION

In the real~-time environment, the system is usually
called upon to control external devices or to
collect data from external devices. Given that a
hardware interface exists between the computer and
the external device, software is required to
actually control and command the device.

The ultimate goal of this paper is to provide a
method to follow to develop device drivers. The
real key to their development is to break the
problem (handler) down into small, easily
understood steps and then to develop the handler in
an incremental fashion. A possible method is
suggested by the three types of software routines
used to control external devices. If a wait loop
routine is developed first, the structure of an
interrupt service routine follows easily.
Similarly, once the interrupt service routine has
been developed, the formal device driver is easily
implemented. The key is to experiment and to learn
about the device using progressively more complex
routines as the handler is developed.

Although the focus of this paper is on the ADV-11,
analog=to~digital (A/D) converter for the QBUS,
there is an equivalent A/D converter for the
UNIBUS, and everything that is said about the QBUS
A/D converter will pertain to the UNIBUS version.
In fact, most devices that have QBUS and UNIBUS
interfaces are software compatible. This means
that the software developed for the QBUS version
will run without change on a UNIBUS machine.

2. GENERAL DESCRIPTION OF DEVICE CONTROL
ROUTINES

2.1 Wait Loop Routines

The wait loop is the simplest of the software
routines to program. The theory behind the wait
loop is that the program will start an 1/0
operation and then sit in a tight loop that does
nothing more than test the "done"™ bit on the device
interface. The routine is called a wait loop by

30

virtue of the fact that the computer is “waiting®
for the external device or interface to complete
the operation.

This type of routine wastes computer resources
because the computer is tied up in the tight wait
loop and 1is therefore unavailable to do other

work. To solve this problem, wait loops or "do
nothing” loops can be converted to "do something"
loops. This is accomplished by testing the done

bit as usual, but then, instead of looping back to
test the bit again, a useful piece of code or
subroutine call is performed next. Once that is
completed, the bit test is again performed. While
this technique allows the computer to do additional
work while the I/O is continuing, it suffers from
the fact that the device may finish its task and be
ready to perform another while the computer is off
in the "do something" loop. This could lead to
lost or missed data. In time-critical applications
this may be a problem.

2.2 Interrupt Service Routines

An additional level of sophistication is added when
the wait loop routine is converted to an interrupt
service routine. Here, the I/0 is initiated as in
the wait loop, and then the interrupt is enabled on
the device interface card. Now, when the device
has completed the I/0, the setting of the done bit
will "vector™ the computer to an interrupt service
routine. The computer is now free to do other
tasks while the external device is performing the
I/0;: the computer will be interrupted after the 1/0
operation is completed.

This additional functionality is not added without
cost. This type of routine must properly set up
the interrupt vector and ensure that the interrupt
enable bit is set so that an interrupt will be
generated. Failure to properly set up the
interrupt vector may lead to a system crash when
the interrupt is generated because the vector does
not point to the interrupt services routine.

2.3 Device Driver Routine

There are potential problems with the interrupt

service routine approach that can be sgolved by
rewriting the routine in the framework of a device
handler. First of all, the interrupt service
routine would have to be linked with every routine
that wants to use the device, and by nature of the
fact that only one interrupt service routine can be
pointed to by the interrupt vector, simultaneous
access to a device would be prohibited.

In a device handler, the mechanics of the interrupt
service routine are formalized. Usually the
handler framework is supplied as a part of the
operating system, and the user merely adapts his
interrupt service routine to this framework. With
a device driver, access to devices can be shared,
and a copy of the routine does not have to be
included with each routine that wants to use the
device; it resides in system space, available for
use by any program.

3. ADV-11 A/D CONVERTER

Before any code can be written to control an
external device, you have to take some time to get
to know the device. In order to program the
device, you have to know how many registers the
device uses and how each bit in each of the
registers is used.

The ADV-11 is a 16-channel analog-to-digital
converter that samples analog data at specific
user-defined rates, and stores the 12-bit digital
equivalent for further processing. A/D conversions
can be initiated by program control, clock
overflow, or external events. For the purposes of
this paper, we will examine how to acquire data
under program control.

3.1 Device Registers

Two registers on the ADV-11 are used to command and
control the A/D converter. The CSR or command and
control register is used to select the desired
channel for data conversion, to enable interrupts
and to start data conversion. The other register
is the data buffer register, and it holds the
result of the A/D conversion.

3.1.1 Command and Control Register. Fiqure 1
shows the format of the command and control
register. Bit 15, the high order bit of the CSR is

the error bit. It is
condition is detected by the device. Bit 14 is the
interrupt enable bit for the error conditions. If
bit 14 is set and an error condition is detected
that will also set bit 15, then an interrupt will
be generated. For the purposes of this paper, the
error bits (14 and 15) will be ignored.

set whenever an error

Bits 12 and 13 are not used while bits 11-8 will
contain the address of the analog channel that is
currently addressed for data conversion.

Bits 1-5 are special bits that control how the
device is commanded externally and in the
maintenance mode. Again, for the purposes of this
paper, these bits will be ignored.

31

Bits 0, 6, and 7 usually have the same function on
every QBUS or UNIBUS device. Bit 0 is wusually
considered the "GO" bit. Once all the registers in
the device are set up, the I/0 transfer is usually
started by setting the "GO™ bit. This is true with
the ADV-11. Once the channel address is loaded in
the CSR, setting the "GO" bit will initiate the A/D
conversion for that channel.

Bit 7 is usually the "DONE" bit. It indicates that
the I/0 transfer has completed. Setting bit 6 will
cause an interrupt to be generated when the "DONE"
bit (bit 7) is set; no interrupt will be generated
unless bits 6 and 7 are set.

3.1.2 Data Buffer Register. The other register of
importance on the ADV~-11 is the data buffer
register and it is detailed in Figure 2. Unlike

the CSR, the data buffer register has different
functions depending upon whether the computer is
reading or writing to the register. When the data
register is read, bits 0-11 will contain the
digital representation of the analog voltage. When
data is written into the register, the offset value
of the analog data can be changed. In the read
mode, bits 13-15 are unused and bit 12 will be set
at the end of a data conversion if bit 3 of the CSR
is also set.

As mentioned above, the converted data occupies
only the 12 bits that correspond to decimal wvalues
of 0~-4095. Negative values are in the range of 0-
2047 and positive values are in the range of 2048

to 4095. 1In order to convert the digital values to
the proper 16-bit two's complement values, 2048
must be subtracted from the 12-bit quantities.

This data conversion can take place either in the
software routine that acquires the data, or in the
analysis routine. The software routines that will
be presented in this paper will convert all the
data to the proper two's complement values.

3.2 Device Bus Address

Oon PDP-11's and LSI-11's, the upper 4K words of
address space are reserved for device addresses.
When external devices are installed in QBUS or
UNIBUS systems, each device must have a unique
address on the bus so that the software routines
can address that device. The net result is that
the device registers look like memory addresses to
the software routines and no special 1/0
instructions are required of the computer.

Many devices have "standard" addresses that have
been established by the manufacturer. The use of
these standard addresses for certain types of
devices means that the software need not be
reconfigured every time a new device is added to
the system because the software can expect the
device to answer to a fixed address.

The standard address for the ADV-11 is 770400
{octal). This address is set on the card by a row
of DIP switches and the address corresponds to the
address of the CSR register. The address of the
data buffer register follows the CSR and is
770402, All of the example programs that follow
will use these standard addresses.

EZ COMMAND AND CONTROL REGISTER

15 14 13 12 1 10 09 08 07 06 05 04 03 02 01 00
MSB
;qr A\ v J I '
NOT USED MUX ADDRESS DONE EX MAINT AD
READMWRITE INT ENA START START
ENA
ERR AD CLK D NOT USED
INT ENA DONE START ENA
ENA
Figure 1
VERNIER D/A (WRITE)
A__
r)
15 14 13 12 1 10 09 08 07 06 05 04 03 02 01 00
Ms8 LSB
A —~ —
D CONVERTED DATA (READ)

Figure 2

32

3.3 Device Vector Address

Besides the bus address of the interface card, the
other item that has to be set is the device
interrupt vector. The interrupt vector is
important when the device will be programmed to use
interrupts. When a device requests an interrupt,
the CPU will save the current processor state on
the system stack and "vector™ or begin executing an
interrupt service routine whose address is stored
at the vector address.

On PDP-11 systems, vector addresses are contained
in memory from about 60-500 (octal). Vector
addresses contain two pieces of information and
occupy two words. The first word of the interrupt
vector contains the address of the interrupt
service routine while the second word contains the
processor status word (PSW) for that interrupt
service routine. The major field of interest in
the PSW is the processor priority bits. These bits
will determine the executing priority of the
interrupt service routine.

When an interrupt is taken, the CPU stores the
current processor state which consists of the
current program counter and the current processor
status word. Then it loads the program counter
with the address contained in the first word of the
interrupt vector and the PSW from the second word
of the vector. The loading of the program counter
from the interrupt vector is equivalent to jumping
to that address, which is the address of the
interrupt service routine. The RTI instruction
(ReTurn from Interrupt) restores or reloads the olad
PSW and program counter from the stack which
resumes the execution of the program where it was
interrupted.

3.4 Device Bus Grant Level

The other setable parameter on a device interface
card is the bus grant level. The bus grant level
is concerned with the order in which interrupts are
serviced in the computer. For the purposes of this
paper, only the bus grant level is of interest and
does not affect how the software routines are
developed. Additional information about the bus
grant level is contained in literature that
describes the theory and operation of the QBUS and
UNIBUS.

Very simply, there are four bus grant levels
available and the bus arbitration logic on the PDP-
11 will only grant an interrupt to a device whose
bus grant level is greater than the current
execution priority of the CPU. For example, the
CPU normally operates at priority O. If an
interface requests an interrupt and its bus grant
level is 5, then the interrupt will be granted and
an interrupt service routine will begin
execution. The priority of the interrupt service
routine 4is contained in the second word of the
interrupt vector and is set when the interrupt
service routine is entered. If the interrupt
service routine is operating at priority 5 and
another device at bus grant level 5 requests an
interrupt, the request is queued and held off until
the processor priority falls below 5. This
lowering of the priority can occur under software

33

control, or by the RTI instruction at the end of
the interrupt service routine.

4. DESIGN METHOD FOR DEVELOPING DEVICE DRIVERS

Now, this paper will address how device drivers can
be easily developed. As was suggested before, the
easiest path to a device driver involves writing
two routines before the actual device driver
itself. First a wait loop routine should be
designed and tested. Then, based upon what is
learned from that routine, an interrupt service
routine should next be developed. Finally, the
interrupt service routine should be formalized and
incorporated into a full device driver. It has
been my experience that, if this development path
is followed, the device driver is easy to develop
and its design will follow logically from the wait
loop and interrupt service routines.

The examples that follow all implement a way to
acquire data from the ADV-11. In each example, two
pieces of information are required from the user.
First of all, since the A/D converter can convert
up to 16 channels of information, the user must
provide the number of channels that must be
converted. In order to make things easier, all the
routines will assume that the channels are
connected in sequential order so that the
individual channel numbers will not be required.
That means that if three channels are reguested,
then the routine knows that channels 0, 1 and 2 are
being requested. Although random access of the
individual channels is supported with this device,
the examples will not implement that particular
feature.

5. WAIT LOOP

Listing 1 shows an implementation of a software
routine that collects data from the A/D converter
using the wait loop approach. Because the routine
is FORTRAN callable, arguments are passed to the
routine using the standard parameter block (Figure
3). In the parameter block, the first parameter
contains the number of parameters being passed,
followed by the addresses of the parameters.
Register 5 points to this parameter block upon
entry to the routine.

The first few instructions merely set up the
parameters for the routine. The number of channels
to acquire is stored in register 1 and the address
of the buffer to receive the converted values is
stored in register 2. The next instruction clears
the A/D CSR register which has the effect of
setting the channel address {(bits 8-11) to zero.
The instruction that increments the CSR register
will set the "GO" bit and will begin the conversion
for channel 0.

The wait 1loop itself <consists of the two
instructions at the label "LOOP:". Here the
routine does a byte test on the lower half (bits 0~
7) of the CSR register. When the conversion is
done, bit 7 will be set. If we consider only the
lower eight bits of the CSR as a two's complement
number, bit 7 corresponds to the sign bit.
Therefore, the branch positive (BPL) will be taken
if bit 7 is not set or the conversion is not

ready. Note that a bit test instruction could have
been used to explictly test for the done bit
instead of the test byte instruction.

The next few instructions read in the data from the
A/D converter and start the next conversion.
First, the number of channels to acquire (R1) is
decremented. If it is 0, then the desired number
of conversions has been performed and the branch is
taken to "DONE:", where the data is read from the
data register and stored in the user's buffer. If
there are more channels to acquire, the channel
address is incremented by one with the INCB
instruction. This instruction affects the top byte
of the CSR which will 4increment the channel
address. Next the converted data is read from the
data register and stored in the user's buffer. The
number 2048 is subtracted from the data to put it
in the proper two's complement form and the A/D
converter is started again by the INC instruction
which sets the "GO" bit. Now the routine returns
to the wait loop to wait for the conversion to
finish.

The routine exits when the last channel is
converted and the data is stored in the user
buffer. This type of routine is an excellent way
to start handler development and it is easy to
debug such an application because a debugger can be
used in the wait loops and print statements can be
used to follow the program execution. Because
interrupts are not used in this routine, any
programming errors that are encountered are usually
non-fatal.

6. INTERRUPT SERVICE ROUTINE

Once the basic operation of the device is
established through the wuse of the wait loop
routine, the interrupt service routine approach can
be addressed. In the interrupt service routine,
the basic structure of the wait loop will be
changed so that the software can take advantage of
the fact that the device can generate interrupts.

Listing 2 shows the form of the interrupt service
routine for the ADV-11. The interrupt service
routine usually contains three separate parts. The
first part, which starts at "INIT:", sets up the
interrupt vector and the PSW for the interrupt
service routine. Note that once the device
generates an interrupt, the routine "ADISR" will be
entered and the priority of the the interrupt
service routine will be 7 as indicated by the 340
{octal) in the interrupt vector. In addition to
setting up the interrupt vector, the A/D status
register is cleared to halt any operations that may
have been started earlier.

With an interrupt service routine such as this one,
the basic philosophy is to dinitiate the 1I/0
operation and then perform another task while the
1/0 is being performed. The problem that the
software designer then needs to address is how to
determine when the I/0 operation is complete so
that other I/0 operations can be started or that
analysis of the acquired data can begin. If the
device generates an interrupt at the completion of
all the I/0, then that interrupt can be used. If,
on the other hand, an interrupt is generated at the

34

end of each word of the I/0 transfer, another
method must be used to indicate that the entire
operation is completed.

Many routines use a flag or semaphore to indicate
that an operation is totally complete. In that
case, the I/O operation can be started, and when
the flag is set, the main calling routine knows
that all the I/0 has finished.

The second portion of the interrupt service routine
is the initiation section which starts at "START:"
in Listing 2. The function of the initiation
section is to initially start the I/0 and clear the
user's done flag. In this case, once the I/0 is
started, the interrupt service routine portion of
the routine will continue to acquire data until the
requested number of channels have been read.

The initiation section begins by storing the number
of channels to convert in the memory location
"LENGTH". Next the data buffer address and the
address of the done flag are stored in other memory
locations. Memory locations have to be used in
this case, because the contents of the general
purpose registers will not be known when the
interrupt portion of the routine is entered. The
user's flag is then cleared to indicate that the
transfer is not completed and then the A/D
converter is started.

The way in which the A/D converter is started
deserves further attention. Because the CSR
register was initially cleared in the initiation
section, the channel address was also set to
Zero. In order to begin the 1/0 transfer, the
software routine must set the "GO" bit. 1In order
to allow the computer to respond to the interrupt,
the "interrupt enable" bit on the interface card
must also be set. The interrupt enable bit is
usually bit 6 and so loading a 101 (octal) into the
A/D CSR register performs the dual function of
setting the "GO" bit and enabling the device
interrupt.

Now, all the rest of the work will be performed by
the interrupt service portion of the routine. The
interrupt service portion begins at label
"ADISR:". The code in the interrupt service
routine looks very similar to the code in the wait
loop routine except that memory locations are used
instead of general purpose registers. First, the
number of channels to acquire is decremented. If
the last channel was converted, the routine jumps
to the completion section at label "DONE:". 1f
this was not the 1last channel, then the channel
address in the CSR is incremented by one, the data
is moved from the A/D data buffer register and
stored in the user's buffer using an indirect store
instruction (the memory location "BUFFER" points to
the user's buffer). Now, the next A/D conversion
is started again by setting the "GO" bit on the
interface card. There is no need to set the
interrupt enable bit again as it is already set
from the initiation section.

A few clean-up items must be performed at this
point. First, the converted data must be unbiased
and put into the proper 16-bit two's complement
form by subtracting 2048. Finally the buffer

EZ FORTRAN PARAMETER BLOCK

R5 ™ £ of arguments
Addr of argument #1

lAddx of argument #2
Addr of argument #3

//'
TN/

Addr of Argument ¢n

Figure 3

E: QUEUE ELEMENT

| NAME OFESET CONTENTS
0. Link g Link to next Queue element
CSHW 2 Pointer to channel statns word
Q. BLKN 4 Block number
0. FUNC reservedJob UNIT |[Special function
IQ.UNIT 6 1 bit |number Hame code 8 bits
Q. INUM 4 bits 3 bit
Q. BUFF 10 User buffer address
Q. WLNT 12 Word count
completion g = wait
Q. COMP routine 1 = asynchronous
14 code even = completion
routine
addr
Q. PAR 16 Programmable address reg. 1 value Par 1
20 RESERVED
22 RESERVED
Figure 4

35

address stored in "BUFFER" must be adjusted to
point to the next memory location in the user's
buffer. Because the PDP-11 is byte addressable,
two must be added instead of one. The interrupt
service routine now completes with the RTI
instruction and the computer resumes execution
where it was interrupted.

The completion section of the interrupt service
routine reads in the last channel converted and
subtracts 2048 to unbias the data. Now, the user's
flag is set to indicate that the 1I/0 is completed,
the CSR is cleared to reset the interrupt enable
bit and to reset the channel address to 0, and the
interrupt service routine is exited with the RTI
instruction.

Debugging this type of routine is significantly
harder than the wait loop routine because most
debuggers will not work within an interrupt service
routine and the routine cannot use RT-11 gystem
services within an interrupt service routine
without performing some synchronization with the
operating system. This routine will allow the I/O
to continue while other calculations are being
performed. The calling routine is free to sit in a
tight loop waiting for the flag to be set, or to do
other work and check the done flag periodically.

7. DEVICE DRIVER

In order +to incorporate +the interrupt service
routine into the operating system, it has to be
formalized and placed in the framework called the
device driver. In general, device drivers have
three parts. The first is the initiation section
where the I/0 is started. The second section is
the interrupt service portion or the continuation

section. Finally, when the I/O request is
completed, the completion section is used. Listing
3 contains an implementation of a handler to

acquire data from the ADV-11.
sections mentioned, this paper will discuss the
macros that RT-11 provides to help make handler
development easier and the data structure known as
the gueue element. Further explanation of these
macros and the structure of device drivers can be
found in the Software Support Manual for the RT-11
Operating System.

Besides the three

7.1 RT-11 Oueue Element

One of the reasons to develop an operating system
is to adopt standard conventions in the area of
system communications and input and output to
external devices. The queue element is the data
structure used by RT-11 to initiate I1/0
operations. Its structure is shown in Figure 4.
I1/0 works as follows under RT-11. First a program
decides that it will perform 1/0 to a particular

device. Using RT-11 system calls, the routine will
associate a channel number with a particular
device. From then on, all I/O to a device is

referred to by channel number. Now, the software
routine invokes an RT-11 macro to perform the
1/0. In order to service the request, the system
"buys" a queue element from the list of available
queue elements and transfers the parameters of the
I/0 operation to the gqueue element. Next, the
queue element is placed in a queue for the

36

particular device handler. If the handler is
currently busy with another I/0 request, the gqueue
element remains on the queue and will be processed
when the previous I/0 has completed. If the

handler is not busy, the operating system calls the
handler at the initiation section. Note that the
handler can always assume that the current gqueue
element is the first one on the gqueue for the
handler.

7.2 RT-11 Device Macros

In what is known as the preamble section of the
handler, various options and constants are set
up. RT-11 provides a set of macros that define the
fields in the gqueue element (.QELDF) and sets up
the various communications paths to the operating
system (.DRBEG, .DRAST, .DRFIN, .DREND, .FORK).
This section also contains conditional assembly
parameters for the various options supported by the
operating system such as Extended Memory, Error
Logging and Timeout support. In addition, various
status words and constants can be set up in the
preamble section. These types of parameters and
constants are well documented in the Software
Support Manual for the RT=-11 Operating System and
will not be repeated here as they do not help
considerably in understanding how device drivers
operate.

7.3 1Initiation Section

This section of the device driver initiates or
starts the I/0 operation and is called the "header"
section in RT-11. The macro .DRBEG sets up the
entry point to the initiation section and provides
information about the device registers, name, size
and status.

Upon entry to the initiation section, the device
must validate the I/0 request. For example, write-
only devices will not perform read regquests and
read-only devices will not perform write
requests. This validation of the type of request
is performed by examining the word count field of

the gqueue element. Normally, the address of the
queue element is held in R4 and all other
references to the queue element are made as

symbolic offsets to the address in R4.

By convention, a word count of 0 is a seek request
and may be used to position a mechanical device to
a particular area. In the case of this device, a
seek has no meaning and the I/0 request can be
completed right away. A write request is signified
by a negative word count and since this is a read-
only device, write requests will abort and return
an error code. Read requests have a positive word
count field in the gqueue element.

In order to start the 1/0, the handler merely needs
to set the channel address to zero, set the "GO"
bit and enable the interrupt. The operating system
is responsible for 1loading the interrupt vector
when the handler is loaded. The MOV instruction
loads a one into the CSR register, sets the "GO"
bit and clears out the channel address bits at the
same time. The interrupt is enabled with the Bit
Set (BIS) instruction. The initiation section is
now finished and the RETURN instruction will return

control to the

proceeds.

operating system while the I/0

7.4 Interrupt Section

The DRAST macro sets wup the entry to the
continuation section of the handler. The other two
parameters to the macro set the priority of the
interrupt service routine, while the last parameter
is the address of the abort I/O routine. The abort
I1/0 routine will be entered whenever a job is
aborted by either a control-C or error. Its
purpogse is to allow the handler to stop any I/0
that is in progress in a controlled manner.

The first thing that the continuation section must
do is point to the queue element as all the
information about the 1/0 in progress is stored
there. ©Now, the routine is ready to read the data
from the device and store it in the wuser's
buffer. The address of the user's buffer is stored
in the queue element, but this address is different
depending upon the RT-11 monitor being used. In
the unmapped environment (SJ and FB) the address in
the queue element is the direct address of the
user's buffer. In the mapped environment (XM) the
user's address consists of page references and
offsets within the page. In order to make it
easier to store and retrieve information, RT=11
provides hooks into the operating system for the
computation of the proper physical address from the
user's virtual address for the mapped environment.

In this case, the address stored at offset "BUFF"
of the queue element contains the proper address in
the unmapped environment. In that case, the data
need only be read from the data register and stored
directly in the user's buffer. Then the data can
be unbiased and the buffer address in the queue
element can be incremented to point to the next
item in the buffer. In the case of the mapped
environment, the monitor routine "$PTWRD" will take
the top item from the stack, store it in the user's
buffer, and increment the address in the gueue
element. The routine assumes that R4 points to the
gueue element and that the data to be stored is on
the top of the stack.

The saving of the data in the mapped environment is
accomplished by reading the data register and
storing the data in RO (RO and R4 are available for
use in interrupt service routines). The data is
then unbiased and stored on the stack. The routine
"$PTWRD" is then called to actually move the data
to the user's buffer.

The final task that the continuation section must
perform is either to end the data transfer if all
the data has been transferred, or start the next
transfer if it has not. As with the other routines
mentioned above, the word count is decremented. If
it is 2zero then the transfer is complete and the
routine branches to the completion section. If the
transfer is not complete, the channel address is
incremented by one and the "GO" bit is set by
adding 401 (octal) to the contents of the CSR.
Adding 400 (octal) will increment the top byte of
the CSR register which will increment the channel
address and adding 1 will set the "GO" bit in the
lower byte of the CSR. The routine can now exit

37

the continuation section and wait for the next data
conversion to complete.

7.5 Completion Section

The 1/0 completion, as the name implies, is entered
&t the completion of the I/O. 1In this section, the
routine must leave the device in the proper
termination condition. In the case of the ADV-11,
all that is required is to disable the interrupt
and then exit. In the case of other devices,
additional tasks may be required. The macro .DRFIN
performs the task of placing the current gqueue
element on the monitor's completion gqueue and
restarting the handler if there is another queue
element on the handler's queue. Once on the
completion queue, the monitor will take the proper
action depending on whether the I/O was one with
wait, no wait or completion routine requested.

7.6 Abort Section

The ".DRAST" macro has a parameter that indicates
the address of an abort routine if one is wanted.
In the case of this handler, the abort section of
the handler 1is the same as the completion
section. If the I/0 is aborted, all that is
required is to disable the interrupt and return--
the data will not be used in this case.

8. CONCLUSIONS

This paper has presented a method of design to
follow in order to simplify the development of
device handlers for RT=-11. In order to develop
device handlers, the user should first get to know
the device. That implies that he should study each
of the registers used to control a device, and the
purpose of each of the bits in the registers.
Next, armed with an understanding of how the device
works, the user should write a wait loop routine to
verify the user's understanding of the device.
Once the wait loop routine is fully operational and
debugged, an interrupt service routine should be
the next step. The interrupt service routine will
give the user confidence that he truly understands
how +the device will operate wunder interrupt
conditions.

Once the interrupt service routine is completed,
the full device handler can easily be developed.
The handler normally consists of the preamble
portion that sets up the handler data structures,
the initiation section that starts the I/0
operation, the continuation section that
reinitiates the I/0O until the regquested number of
words have been transferred, the completion section
that terminates the I/0, and the abort section that
handles abnormal termination of the I/0 operation.

During development of the device handler, there are
various timing considerations to think about. The
wait loop, although the most wasteful of computer
resources, will respond the fastest to changes in
the device. This is due to the fact that the
computer is constantly monitoring the device in a
tight loop. The interrupt service routine will
give good performance, but it has a property known
as interrupt latency. The latency is the time
required for the computer to detect the interrupt,

save its current status,
interrupt service routine.

and vector to
In time-critical

applications, this time period may be too long.

The handler, while the most

general of

routines, is probably the slowest to respond.
addition to the interrupt latency, additional

.TITLE SCAN

N me ®e me wa we

ADSTAT=170400
ADBUFF=ADSTAT+2
H
H
SCAN:: MOV (R5)+,R0
MOV (R5)+,R1
MOV {(R1),R1
Mov (R5)+,R2
CLR @#ADSTAT
INC @¥ADSTAT
LOOP: TSTB @#ADSTAT
BPL LOOP
DEC R1
BEQ DONE
INCB @#ADSTAT+1
MOV @#ADBUFF, (R2)
SUB #2048.,(R2)+
INC Q#ADSTAT
BR LOOP
DONE: MOV @#ADBUFF, (R2)
SUB #2048.,(R2)+
RTS PC
+«END

the may be spent in the operating system forwarding the
request to the handler itself. The net result is
that one should consider all the advantages and
disadvantages of the various software methods as

the they apply to your application before choosing the
In particular implementation necessary to solve your
time particular problem.
LISTING 1

This routine implements data collection from an ADV-11
A/D converter using a wait loop technique

$CSR REGISTER
sDATA REGISTER

;PASS # PARAMETERS
7ADDRESS OF LENGTH OF SCAN
;LENGTH OF SCAN

;ADDRESS OF BUFFER

;CLEAR A/D STATUS REG

$ START A/D

;DONE?

$BRANCH BACK IF NOT DONE
;IS THE SCAN DONE?

$+BRANCH TO DONE IF YES.

s INCREMENT MUX NUMBER
tMOVE VALUE FROM A/D BUFF TO DATA BUFF
sUNBIAS THE DATA

;START THE A/D AGAIN

;GET MORE DATA

s READ THE DATA

;UNBIAS THE DATA

; RETURN

LISTING 2

.TITLE SCAN -- Scan the A/D converter once with interrupts

~ e me me =

ADSTAT=170400
ADBUFF=ADSTAT+2

This routine implements data collection from an ADV-11
A/D converter using an interrupt service routine.

1 STATUS REGISTER
+DATA REGISTER

ADVECT=340 ; INTERRUPT VECTOR
i
H
H Initialization routine ~- Set up the interrupt vector
;
H
INIT:: MOV #ADISR,@#ADVECT ;INTERRUPT SERVICE ROUTINE
MOV #340,@4ADVECT+2 ;PRIORITY 7
CLR @#ADSTAT ;START OUT AT A ZERO
RETURN
H
;
H Start the conversion, flag will be set nonzero
H when it completes
H
i
START:: MOV @2 (R5) ,LENGTH :LENGTH OF SCAN
MOV 4(R5) ,BUFFER ;ADDRESS OF BUFFER
MOV 6(R5),FLAG ;ADDRESS OF DONE FLAG
CLR @FLAG ;CLEAR IT
MOV #101,@#ADSTAT sENABLE INTERRUPTS AND START IT OFF
RETURN ; AND RETURN TO CALLER

~ o~ we we

A/D interrupt service

routine

38

ADISR:: DEC LENGTH ;1S THE SCAN DONE?

BEQ DONE s BRANCH TO DONE IF YES,
INCB @#ADSTAT+1 ; INCREMENT MUX NUMBER
MOV @#ADBUFF, @BUFFER;MOVE VALUE FROM A/D BUFF TO DATA BUFF
INC @#ADSTAT ;START THE A/D AGRIN
SUB #2048.,@BUFFER ;UNBIAS THE DATA
ADD #2 ,BUFFER ;BUMP THE ADDRESS
RTI s INTERRUPT RETURN

’

H

H Get the last channel and set the flag

*

i

DONE: MOV @#ADBUFF,@BUFFER; READ THE DATA
SUB #2048. ,@BUFFER ;UNBIAS THE DATA
INC @FLAG ;SET THE FLAG
CLR @#ADSTAT ;DISABLE INTERRUPT AND CLEAR CHANNEL
RTI : INTERRUPT RETURN

H

H

LENGTH: +WORD 0 3 SCAN LENGTH

BUFFER: «WORD 0 ; BUFFER ADDRESS

FLAG: +WORD 0 3 SCAN COMPLETE FLAG
+«END

LISTING 3

«TITLE AD-11 DRIVER

This handler will scan the A/D once.
The length of the scan is determined by the number
of words requested in the I/O queue element.

w~ % wr % wn we

«IDENT /V04.0/

.

+«SBTTL PREAMBLE SECTION

~

«MCALL .QELDF,.DRBEG,.DRAST, .DRFIN, .DREND, . FORK

SYSGEN DEFAULT DEFINITIONS

~ ma we e

MMGST =1
«IIF NDF ,MMGST MMGST = 0
«IIF NDF,ERLST ERLS$G = 0
.1IIF NDF,TIMSIT TIMSIT = 0
i
H DEVICE UNIBUS RDDRESSES
i
i
«IIF NDF ,ADSVEC ADSVEC=340 iA/D VECTOR
«1IF NDF,ADSCSR ADSCSR=170400 ;A/D CSR
ADBUFF = ADSCSR + 2 ;s BUFFER REGISTER
HDERR = 1 +HARD ERROR ON CHANNEL
i
i DEVICE STATUS INFORMATION
i
¢
ADDSIZ = 0 sDEVICE BLOCK SIZE
ADSTS = 40370 ;DEVICE STATUS WORD

DEFINITION OF Q ELEMENT SYMBOLICS

P

.QELDF
WONT = Q.WCNT - Q.BLKN
BUFF = Q.BUFF - Q.BLKN

~ -

«SBTTL SET OPTIONS

~ e

NO SET OPTIONS

39

e

.~ we e

RET:

~ =,

ADERR:

ADDONE:

LISTING 3 (Continued)

«SBTTL HEADER SECTION

+DRBEG AD,ADS$VEC,ADDSIZ,ADSTS

ENTRY POINT FROM QUEUE MANAGER

MOV ADCQE,R4

TST WCNT(R4)

BEQ ADDONE

BMI ADERR

ASSUME A READ

MOV @#ADBUFF, RO

MOV #1,@#ADSCSR

BIS #100,@¥ADSCSR
RETURN

.SBTTL INTERRUPT SERVICING
.DRAST AD,4,ADDONE

MOV ADCQE,R4

.IF EQ,MMGS$T

MOV @#ADBUFF,@BUFF (R4)
SUB #2048, ,@BUFF(R4)
ADD #2,BUFF(R4)

.IFF

MOV @#ADBUFF,RO

sUB #2048, ,R0

MOV RO,-(SP)

CALL @SPTWRD

.ENDC

DEC WCNT(R4)

BEQ ADDONE

ADD #401,@4ADSCSR
RETURN

.SBTTL I/0 COMPLETION SECTION
BIS #HDERR, @Q.CSW~Q.BLKN(R4)
BIC #100, @¥ADSCSR
.DRFIN AD

.DREND AD

+END

40

;POINT TO CURRENT QUEUE ELEMENT
;WHAT DO YOU WANT??

;SEEK COMPLETES RIGHT AWAY

;WE DON'T DO WRITES

;CLEAR OUT &/D FLAG
;START A/D AT CHANNEL O
tENABLE INTERRUPT

; BYE

;POINT TO ELEMENT

sREAD THE WORD
;UNBIAS THE DATA
iBUMP BUFFER ADDRESS

;READ THE WORD
;UNBIAS THE DATA
;STACK IT

;GIVE TO THE USER

;ONE LESS WORD

iWE ARE DONE

; START NEXT CONVERSION
: RETURN

sSET ERROR BIT IN CHANNEL
;DISABLE INTERRUPT

