apgss | THE DATA MANAGERS

NEWSLETTER OF THE DATA MANAGEMENT SYSTEMS SPECIAL INTEREST GROUP

FEBRUARY Vol.4--No.2 1982

Please address contributions to:

Paul D. Clayton, Editor
c/o DECUS
One Iron Way, MR2-3/Eb5
Marlboro, Mass. 01752

CALL FOR MENU INPUT

- MENU RESPONSES

SAMPLE PROGRAMS
VAX INFO. ARCH.

- WORD PROCESSING

(DETAILS INSIDE) =
- (NEWS AT 11:00)

ye nEE
VBCQO Copyright © 1982, Dipital Equipment Corporation
All Rights Reserved

It is assumed that all articles submitted to the editor of this newsletter are with the authors’ permission to publish in any DECUS
publication. The articles are the responsibility of the authors and, therefore, DECUS, Digital Equipment Corporation, and the
editor assume no responsibility or liability for articles or information appearing in the document. The views herein expressed are
those of the authors and do not necessarily express the views of DECUS or Digital Equipment Corporation.

GOT OUR
MiXeo UpP

YEAH, THEY MUST'®

NAMES

BUT AFTER AWHILE

75 sTRae gt | |
'ONE'S eNTRGLIFé - 1:] OF
REDUCED TO A - 5

()

3| DATA TAPE.
H e\ g

[ow 1 ever
AT [} KD OF GROWS | | =AW

YOU MY
WIFe AND kDS 2

&3 E
[\ 2

| 1T WAS simeLy WOW / THEY CAN WHICH REMINDS Me..
| A MATTER OF RECORD YOUR WHOLE| | HOW'S YOUR
REPUNCHING MY LIFG BY PUNCHING | | STOMACH. BiLL 2
ume/rmv HOLES / O/
P¥o) i]

Reprinted by permission of the Philadelphia Bulletin

and the Register and Tribune Syndicate

*

Sed.
NO .

=
o

e

£] L]

e
.

W N

AU WWNDNDNHERFEO

N b RO N W N

NN N

WWwWwwwwwww

WWWwwwhoNHO

e o o o . s 8 e » .
e e o . L] LI * o e o
DT W NN

LR S = =T~ = S T S
®

WWWwWwwwWWwWwNhHFHHO
.

O UT b W N N

Page
No.

1-1

Cov.
Cov.
Cov.

NNNNMI\lJNNNNN
HUOWHNHENREFIH

[|
o

o

LI
[yl

w

(I |
f aad

~J

U WK

W L W W w
= W

~l Ut

hbbsbnbulb:b»b»brbrb
P = e O 00 WN]

DMS SIG Newsletter Cumulative Index
Feb. 1982

Brief Description

Index

The Irony of Progress
Final Exam
Graves Inc. Cartoon on the Computer Industry

SIG Business

New Newsletter Ed., desc. new layout and SIG resources. V3-4.
New items of interest from Newsletter Editor. V4-1.

Points of Interest from Newsletter Editor. V4-2.

Letter from Sat Mohan, desc. current events in the SIG. V3-4.
Letter from New SIG Chairman, Sandy Krueger. V4-2.

Letter to members for Menu input and newsletter articles.V3-4.
Call for Menu Input. V4-2.

Open request for DMS-500 interest from DOW Chemical. V3-4.
DECUS Fall '81 Menu Ballot for EVERYONE to VOTE on. V4-1.

DMS SIG Steering Committee Member List. V3-4.

Updated DMS SIG Steering Committee Member List. V4-2.

RMS Interests

Request for an RMS Product Group Chairman. V4-1.

RMS-11 Menu Respones to Spring '81 DECUS. V3-4.

RMS-11 Menu Response to Fall '81 DECUS. V4-2.

Sample Relative RMS-11 program corrected from DEC doc. V3-4.
Commenting "DEF" Command Files. V4-1.

Larry Craig's unfortunate experience with RMS-11. V4-1.
RMS~11 Workshop Session Transcription from Miami 81. V4-2.
OMSI Pascal Interface to RMS-11K. V4-2.

FMS Interests

FMS Working Group Survey from Judy Kessler. V3-4.
FMS sessions at Los Angeles DECUS, Fall '81. V4-1.
FMS Menu Responses to Spring '81 DECUS. V3-4.
Patching FMS-11 Forms for VT-100 Special Features. V3-4.
General Comments on FMS-11 from Sebern Eng.. V3-4.
FMS-11 Internal Form Structure. V4-l.

Performance Optimization of FMS on RSX-11M. V4-1.
FMS Interface with OMSI Pascal Ver. 1.2G. V4-1.
CAI FMS Program from Bob Nusbaum. V4-2.

FMS Interface with OMSI Pascal Ver. 2.0. V4-2.

FMS Application Handout from Miami '81. V4-2.

1-1

e o @ o s e o
e » o e * o

WwwhokFFEEHH-EO

(G2 E NG N OO O)]

WNHHWND

DBMS Interests

5-7 DBMS-11 Issues: Miami to Los Angles., V4-1.

5-11 DBMS 10/20 Co-ordinator Report. V4-2.

5-11 DBMS-11 Los Angles Report from Mike Antin. V4-2.

5-1 DBMS-11 Menu responses to Spring '81 DECUS. V3-4.

5-2 Using DBMS-11 at NASA in spacecraft command and control. V3-4.
5-9 New Features of DBMS-11 Ver. 1.8. V4-1.

5-12 DBMS-11 Technical Session From L.A. Symposium. V4-2.

TECO Interests

6—-1 Letter to TECO calling for input and positions available.V3-4.
6-8 Letter From TECO Newsletter Co-ordinator. V4-2.
6-9 TECO Utility for BP2 Compilation., Vv4-2.
6-3 Request for information on TECO written in UNIX for VAX.V3-4.
6-3 Req. for info on TECO sources for ver 36 and VAX support.V3-4.
6-4 Req. for answers to problems and about a screen editing ver.
of TECO. V3-4.

6-4 Req. for doc. for TECO macros distributed with RT11-V4. V3-4.
6-5 New Co-ordinator for TECO newsletter items,interest. V4-1.
6-5 Users guide for screen text editor based on TECO. V4-1.

VAX Information Architecture Interests
7-1 Overview of the complete VAX Information Package. V4-2.

Word Processing Interests
8-1 Letter from Chairman, Paul D. Clayton. V4-2.
8-1 Word Processing Advanced Hints and Techniques. V4-2.

1-2

otL-c

Seq. 2.1.3

Items of Interest from the Newsletter Editor
Paul D. Clayton

The Los Angles Symposium is a memory and a successful one at
that. There were a number of events which bear acknowledgement.

First, the DMS SIG has a new SIG Chairman, Sandy Krueger, Sandy's
opening letter is enclosed.

Second, VAX now has Information Architecture which is a complete
package of data management software. Doug Dickey has the position of
Product Group Chairman for the VAX Information Architecture products. If
you have any questions, problems, reports, please call Doug. As I said in
my first issue, the setup of this newsletter was expandable, and Vax
info., Arch. is now section 7.0 of the index. This issue has a brief
overview of the products, with a better report due for the next issue.

Third, we now have a section on word processing interests that
can be of value to you. This issue contains some comments I have
concerning the DEC software package DX/IAS, and an article from the DECUS
Proceedings of Miami, 1981. Some advanced concepts are explained about
using DEC's word processing in a day-to~day environment. Word processing
will be section 8.0 in the index from this day on.

Fourth, a number of SIG Steering Committee members have moved,
assumed new roles or been added to the list. Please note the inclusion of
a new membership list and update your notebock accordingly.

X¥E DMS SIG Newsletter Articles on SIG Tapes **%

As the newsletter editor, I have entered into machine readable
media (WS200 & PDP 11/70) most of the articles that have appeared in this
newsletter since I took over. What I have done is to take the articles
that I have and submit them to all the DEC Operating System SIG's
(RSX/IAS, RT, VAX, DEC10 and DEC20) tape copy program which is sponsored
at each symposium. They should appear in the L.A. tape with file
extensions of '.DMS'. There is a copy of the cummulitive index so that
you can tell what articles you want. I hope to continue and expand this
in the future so that everyone can get there copies as they need them. As
far as I can tell, this is a first for any newsletter!!

% New Name for This Newletter ***%*
We have changed our name to the 'The Data Managers'. The t?tle of
'*The Schema' is retired as of this issue. It is my hope that this name

will continue to cover the broad areas the DMS SIG is responsible for,

Paul D. Clayton

Seq. 2.2.2

Letter from DMS SIG Chairman
January 25, 1982

The worst part about being DMS SIG Chairman is the constant
ache in the back of your head where you have made a mental note that
paul Clayton is expecting a letter for the next SIG Newsletter.

So here goes.

The best place to begin is by thanking the past chairman and
father of us all, Sat Mohan, for bringing us as far as we've gone and
leaving me with the excellent organization that we now have. I'm also
pleased to report that even though Sat is moving up into the upper
echelon of DECUS, he has consented to continue with us for awhile as
Planning Coordinator. For my money, a little Mohan is better than none.

Los Angeles was an important symposia for the SIG, primarily
with the annoucement of the VAX Information Architecture product set.
I expect to see a great deal of renewed interest in DEC information
management software. Special thanks is due to the DEC contingent that
attended L.A., led by Anita Moeder and Fred Howell. Some, but I'm sure
not all, of the others were Rick Landau, Harri Rantiainen, Jim Donnelly,
Tom McIntyre, Bill Noyes and Bill Harrelson.

The SIG Steering Committee was out in full force at L.A. and
did a real bang-up job. While Sat and I were busy transferring batons,
everything kept running because of their efforts. Thanks again.

L.A. was important also because we had an opportunity to get
together with the VAX and DATATRIEVE Sig's and do some advance
"Coordinated” planning for Atlanta. Our three SIG's are jointly
sponsoring an Information Management Theme Day at Atlanta where we will
have a continuous run of sessions for both technical and managerial types,
headed by a keynote speaker. Check the symposia catalog, when it arrives,
for more details.

Another first at Atlanta will be half hour business sessions for
each of our Product groups and some proposed Working groups where SIG
members can get together, discuss needed activities and sessions, and
hopefully volunteer to help organize some of the SIG activities in those
areas. I hope to make these sessions a regular part of all future symposia.

Now some notes about direction changes. The SIG in the past
has existed primarily to support DEC products (i.e. DBMS-11, RMS, FMS,
etc). We will continue to do so. But more and more we run into people
at symposia, looking to discuss issues related to data management
(i.e. DBMS with Decision Support Systems, DBMS on Micros, DBMS in a
Scientific Environment, etc). In the past we have supported sessions
when we could find them. 1In the future, I hope to have Working groups
operating at the same level that our Product Groups operate, even to the
extent of having DEC counterparts. The Working Group business sessions
mentioned above will be our first attempt at setting them up. I hope
to generate some support and alot of ideas for these groups. Please
participate. Iets get issue oriented!

Sandy Krueger

| o | abed

z'e'z bes
| o | abed

€'1°g 'bag

LL-¢

(Left to Right)

Doug Dickey, Sandy Krueger, Now if they could only make the
Sat Mohan, Steve Pacheco RMS-11 Manual understandable!
and Chris Wool

The new wave for DEC

The only notable operating
system not shown was |AS!

Books Anyone?

Anything your heart and wallet
could want.

[4%4

Seq. 2.3.2

MENU PROCESS

The DMS SIG is changing the format of the MENU Procedure
used to pass questions and comments to DEC for formal response.

The goal of the new procedure is to obtain a faster response
from DEC when their answer is known or obvious. We will ask the
various groups within DEC to respond to menu items during the SIG
closing session at subsequient symposia. These answers will also
appear in the newsletter. Questions which will require analysis
effort on DEC's part will also appear 1in the newsletter allong
with their answers.

The elevators were not
for the weak stomached!

Newsletter readers are requested to send in MENU items prior
to each symposia. These will be combined with the MENU items
collected at the symposia and ranked based on frequency. The
upper half of each group: DBMS-11, DBMS-32, DBMS-10/20, RMS,
FMS, TECO, and any other data management related product produced
by DEC and supported on the PDP-11, VAX and 10/20 systems.

This change is being made to allow an immediate response to
questions which arise at the symposia. We hope this will benifit
the people who are unable to attend symposia.

Please write down your requests for answers to bugs,
enhancements or general questions on paper in as easily understood
form as possible. Mail all menu items to the address listed below.

Steve Pacheco
Athena Systems Inc.
206 S. Broad Str.
Pawcatuck, CT. 06379

Now you know why it takes so
long to get things delivered!
DEC uses Blimps!

L 40 | obeg
z'e'e bss

€Lz

DMS SIG Steering Committee Members
Feb 8, 1982

Seq. 2.6.2

If you have any questions or concerns contact the person that has

the responsibility for the area you want to discuss.

SIG Chairman
Sany Krueger
AMAX Copper Inc.
833 Roosevelt Ave.
Cartaret, N.J., 07008

(201) 541-8347

Symposia Co-ordinator
Barbara Mann
TRW Inc.
One Space Park, R3/2030
Redondo Beach, Calif. 90278

(213) 536-4190

Publications Co~-ordinator
Stephen Pacheco
Athena Systems Inc.
206 S. Broad Str.
Pawcatuck, CT. 06379

(203) 599-3061

Newsletter Editor
Paul D. Clayton
Republic Management Systems
One Neshaminy Interplex, Suite 306
Trevose, Pa., 19047

(215) 441-2708

Product Groups Co~-ordinator
Robert F. Curley (215) 662-3083
Department of Radiation Therapy
University of Pennsylvania Hospital
3400 Spruce Street
Philadelphia, Pa. 19104

DBMS-11 Product Group Chairman
Michael Antin
Polaroid Corp.
1265 Main Street W4-2B
Waltham, MA, 4570

(617) 684-7308

DBMS 10/20 Product Group Chairman
Robert F. Curley
Same as above

RMS Product Group Chairman
Robert F. Curley
Same as above

FMS Product Group Chairman
Judy Kessler (617) 742-3146
Eye Research Institute of Retina Foundation
20 Staniford Street
Boston, Mass. 02114

TECO Product Group Chairman
Carl Marbach
RSTS Professional
Box 361
Fort Washington, Pa. 19034

(215) 542-7008

Vax Information Architecture Product Group Chairman
Doug Dbickey {703) 556-7400
CTEC Inc.
6862 Elm Str.
McLean, Virg. 22101

Seminars Co-ordinator
Sandy Krueger
Same as above

Performance Working Group Co-ordinator
Burt Weaver (612) 571-1249
Consulting Engineer
Weaver & Associates Inc.
2852 Anthony Lane South
Minneapolis, Minn. 55418

User Support Co-ordinator
Douglas Dickey
Same as above

Planning Co-ordinator
Satish Mohan
TIW Industries Ltd.
Metals Group
629 Eastern Ave.
Toronto, Ontario
M4M 1E4

(416) 461-8111 Ext. 269

Projects Co-ordinator
T. Chris Wool
E.I. DuPont
Louviers Building
Wilmington, Delaware, 19898

(302) 366-4610

DEC Counterpart
Anita L. Moeder
Digital Equipment Corp.
MK1-2/D03
Continental Blvd.
Merrimack, N.H. 03054

TECO Newsletter Co-ordinator
Greg Steinkuhler
TRT Telecommunications
P.O. Box 8876
Ft. Lauderdale, Fl. 33301

(305) 792-5100

Seq. 2.6.2

L jo | afiegd
2'9'C "bes

DMS SIG Site Profile

The purpose of this questionnaire is to obtain a profile of the sites of

the members of the DMS SIG.

return it to:

Wilmington, DE

Name:

19898.

Address:

Company :

Please take a few moments fill it out and
T.C. Wool, E.I. DuPont, Engineering Dept. Louviers Bldg.,

Phone:

Please circle the appropriate items below:

CPU Type: PDP-11 VAX System 10
Model:
Memory Size: (Specify Units)
Disk Drives: RKO5 RKO06 RKO07 RLO1
RMO03 RMO5 RM80 RPQ2
RP05 RP0O6 RPO7 RP20
Tape Drives: TEl6 TS11 TU10 TUl6
TU70 TU72 TU77 TU78
Operating RSX-11M RSX-~11M+
System:
RSTS/E RT-11
VMS
TOPS-10 TOPS-20
IAS
Languages: FORTRAN COBOL
BASIC PL/1
Layered RMS FMS
Products:
DBMS~-11 VAX-11 DBMS
DECNET TECO

Note - Respondees will receive a copy of all responses.

System 20

RLO2 RM0O 2

RPO3 RP0O4

Other

TU40 TU45

Other

version

Version

Version

Version

Version

PASCAL

Other

DATATRIEVE

DBMS-10/20

Seq. 3.3.4
Page 1 of 2

RMS-11 Workshop Session
Spring 1981 DECUS Symposlum
Miami, Florida :

Speaker: Tim Day - RMS Development Group

Prepared Questions Answered:

Q:

R:

?IO

An initial sequential GET by KRF field for an index file was done. The
person then did a GET by RFA and RMS ignored the KRF field, the
retrieve got the next record on the primary key. Why?

This is a user error in that it is well documented that a GET by RFA
has no meaning except in the context of the primary key. When you have
done a GET by RFA you have set your context into the primary key. Any
values placed into the KRF field are meaningless and ignored.

Why not place the index of a file on a separate device? This could be
done by keeping the name of the index file in the prologue of the data
file and opening it on a separate channel.

This will probably not come to life because of the large amount of
problems that can arise in maintaining, tracking, backing-up and
recovering that form of a file. If someone wanted to be really tricky
and modify the RMS code on their own, it MIGHT be doable. Doing this
with a "shared file" would cause problems!! The reason for doing this
is really for a performance increase, DEC's overall committment to
performance is by other means such as buckets, areas and placement.

What is the best way to load an index file, last or first record
first?

If a file is loaded in descending order you will end up with a file
that is longer than necessary with records not packed to the best they
could be. The smallest, densest file will result from loading the file
in ascending order.

Someone wanted a utility to compress a file on-line and in-place.
No committment to this from DEC, although a show of hands showed an
interest in it.

Another question was raised about "hashed indexes" for a file and its
possible implementation in RMS.

This is just another way to retrieve data from a file in a much faster
way than by using indices as RMS does. The proper use of hashed
indices should get ANY record at random in two (2) I/O's. In the
current use of indices, it COULD take many more I/0's to a device.

Questions From Attendees:

Q:

R:

What about placing the indices into a temporary file when an OPEN is
executed, possibly on a separate disk to increase performance?

This might work for a file in a single-user per file environment. In a
file openned for sharing, the indices would be extremely hard to
maintain without corruption., If RMS were to become part of an
operating system and have knowledge of everything going on, this might
be feasible. Right now though, there are too many drawbacks to this
idea.

3-15

9l-g

R:

What is the true story about reclaiming space left from deleted
records in an index file?

There are a lot of different types of deletes that take place. The
worst case being that for a shared file with duplicate keys. The
problem arises because RMS has to leave enough of the record to
describe the primary key, which oddly enough is the only way RMS can
tell that a record has been deleted. This is needed because another
person may have your current record as his next record. Generally
speaking, the remains (or fossils) of any deleted records are
compressed in the buckets to leave a contiguous space which is then
available to hold a record IF the record length PLUS any RMS overhead
is smaller than the space available. The remains of deleted records
will stay in the file for the life of the file or until it is
reloaded, using IFL for example.

What methods are available for optimizing the structure of a file such
as that found on the VAX?

DEC is exploring the possibility of developing a utility to aid in
defining a file with performance kept in mind.

POINTS OF INTEREST:

Concerning ODL Files and Resident Libraries.

An ODL file is a way to do disk overlaying and under the RMS
implementation, if you use a non-overlayed version, you are going to
get between 7 and 44KB of RMS code/buffers added to your task space.
In an overlayed environment, RMS will get down to about 10KB of your
task space in some situations. This may not apply when using RMS from
a High Leval Langauge, such as Fortran Iv+. The above numbers were
gotten from using MACRO-11 assembly language. The disadvantages of
disk overlays are many. First, the program execution speed can be
affected depending on the sequence of operations and the overlay
structure itself. This is because overlay implies I/0O. Second,
optimizing an ODL file is plain hard work. Third, the task image on
disk will grow depending on the tree structure defined. This may cause
problems for those systems cramped for disk room. Fourth, the time
needed to task build an overlayed program increases depending on the
tree structure.

The cure for many of these problems is the use of resident
libraries. In terms of RMS, this means that you have a single, shared
copy of RMS code placed into physical memory which all tasks are
linked to at task build time. The first advantage is that there are no
overlay I/0 operations as all the library is resident together.
Second, you don't need complex overlay files for RMS code. The ODL
file that you would use is 3 lines long, which account for approx.
1.5KB of RMS code in your task image. Third, the task images on disk
become smaller and the program should execute faster because of the
lack of overlay I/O operations. The disadvantage to using libraries is
that you give up 2 APR's (or 8KW of your task space), plus the little
extra RMS code in your 24KW (remember you "lost" 2 APR's) task space.

The breakeven point at which to change from having separate copies
of RMS code in everyone's task space and installing a resident RMS
library which will consume approx. 46KB of physical memory is four (4)
simultaneous memory resident tasks using RMS. This would decrease your
OVERALL memory requirements with a possible increase in execution
speed.

Goals of RMS.

The greatest goal of RMS is reliable tracking of a user's data.
Considerable code was put into RMS to insure that data will not be
lost or corrupted. This was done at the expense of execution time.
Second, is a content addressable capability which generated the index
file organization. Third, is the ability to have multiple indices.
Fourth, good sequential access performance on the primary key. The
overall structure of RMS was towards this goal. Fifth was fair to good
access on alternate keys. This can be done by using bucket size, areas
and placement., Sixth is Relative File Address (RFA) access which is
guaranteed to be the same for the life of the file. Seventh is good
space utilization within the file structure. An area for improvement
is reclaimation of space left by deleted records.

Even if you specify no areas, you are given an area zero (0), but
you as a user don't know it. It won't even show when you "DSP /FU".
The best conditions are if your file and, hence your areas, are
contiguous. For the most part, the use of areas is a trial and error
thing in search of the best performance. Proper use of areas will
boost sequential access with little increase in random retrieval. The
use of areas does not impact the user program, this frees you to try
many schemes.

DEF Utility.

Is there any way to back up to previous entry in the case of
errors?

There is a better (?) problem area in that DEF does not attach the
terminal being used for input, which on a heavily loaded system, if
DEF is checkpointed, any user input typed while DEF is checkpointed
will be sent to MCR NOT DEF. Naturally, MCR does NOT know what a
bucket is, you let your imagine take over from here. There is a patch
in the works for this. In answer to re-entering previous parameters, a
future release of DEF will confront this issue. CTRL-Z is the
universal input to terminate an RMS utility.

Odds and Ends.

If a user has a contigious file with a bucket size that spans
physical disk blocks, RMS will issue a multi-block read/write to the
disk ACP. This increases the performance of your program.

DEC is looking at a means to zero out a file in preparation to
re-populating it. This would allow a user to maintain the physical
location of a file on a volume, This would be more controlled than
deleteing and re-creating the file on a multi-user system.

T J0 ¢ abed

y°e'e "bag

Li€

RMS-11 LA DECUS Symposium Menu Response

Menu #1 / RMS / Enhancement / There should be a common syntax for
all access methods and languages for the specification of RMS
files.

As the name implies, Record Management Services (RMS) is a set of
subroutines that interface at a 1level between the language
application program and the operating system. RMS itself has one

interface (syntax) defined, which 1is documented in the RMS-11
Macro-11 Reference Manual. Any application, and high level
languages ARE an application from the RM3 point of view,

determines its own syntax for using the RMS Macro interface,. For
most languages, I1/0 is described by a standard for the language.
Therefore, the syntax is defined by the 1language, not by the
underlying service.

Menu #2 / RMS-11 / Enhancement / Provide a new utility or change
" RMSDEF™ to calculate area sizes and recommend file factors given
information such as expected number of record, length of record,
fixed or variable length, key attributes, ete.

RMS-11 has developed such a utility. Since we have not yet field
tested it, we are not announcing this as part of the product. We
do anticipate that it will be part of our next release.

Menu #4 / RMS-11 / Enhancement / Support for RM3 in DIBOL.

This comes as a surprise to us for two reasons. First, due to the
manner in which DEC develops 1its products, it is not the
responsibility of the RMS-11 group to require languages to support
RMS. Second, and probably most confusing, is that DIBOL HAS
supported RMS for a number of years. Possibly there is another
question that is really being asked here, and we would be happy to
respond to it.

Menu #5 / RM3-11 / Enhancement / Provide a utility to compress an
indexed or relative file.

Relative file compression is currently a feature of RMSCNV, When
you specify a relative file as output and a relative file as
input, CNV reads the input file sequentially, bypassing cells in
the file without a wvalid record. It writes the output file
sequentially also, beginning with cell #1 and continuing in
ascending cell number order until end of file.

Indexed compression is also accomplished by either RMSCNV or
RMSIFL in +the sense that buckets from the input file that are
currently unused and unreclaimable by RMS will be "compressed" to
free space in the output file, depending of course upon the output
file's allocation.

PAGE 2

As to other definitions that the word compress could imply, we are
researching methods to Dbetter reclaim space within a file that
current processing algorithms cannot reclaim. We cannot predict
what the final solution, if any, will be for future space
reclamation functions.

Another meaning of compress is data compression. This 1is
being investigated as a future enhancement to RMS-11.
can't predict specifics on what solution would be chosen.

also
Again, we

Menu #7 / RMS~11 / Enhancement / Provide record locking rather
than bucket locking.
Bucket locking is’ implemented via device - logical block

contention lists kept by the operating system. Since RMS has
context only within a task, it has no means of recording what
activity 1s occuring on a file (device), and must depend upon the
operating system to enforce the locking at a device level. To
provide true record locking, RMS itself would have to be
significantly changed to manage buffers globally among other
things. Since it is our opinion that record locking is not
dramatically more efficient than bucket locking, we would probably
choose to put our development resources into other activities

(i.e. compression and space reclamation).

Menu #10 / RMS~11 / Question / There appears to be problems
associated with transferring files on DECnet using RMS. RMS has a
much lower transfer rate than using qio operations. In addition,

qio allows the
does not.

sending of blocks larger than 512 bytes and RMS

RMS-11 does not do
in its current release, If this is an RMS-32
question, then your assumptions are correct. For block 1/0,
RMS-32 does transfer one block at a time consisting of 512 bytes.
Using qio, it is possible to select a larger ‘transfer size
consisting of multiple blocks.

Again, I believe there is some confusion.

network operations

L 0 | abed
¢zg 'bag

8l-¢

OMSI Pascal Interface to RMS-11 4.0
The following is the beginning of the users manual for a package of
routines that provide a means for using RMS-11 from OMSI Pascal. The complete
package was submitted to the RSX/IAS SIG Tape for distribution on the Los
Angles, 1981 tape. Anyone can get a copy through there Local Users Group (LUG)
so PLEASE DO NOT CALL Me OR Ken for a copy. The inclusion of the following
excerpt is to wet your appetite and give you an idea of its capabilities. Our
thanks go to Ken & Co. for giving it to DECUS !!!
PRM-11 USER'S GUIDE
OMSI PASCAL INTERFACE TO RMS-11 appendix
Kenneth G. Tibesar Appendix
3M Engineering Systems and Technology Labs Appendix
st. Paul, Minnesota 55144 Appendix

Pascal Record Management User's Manual

Table Of Contents

supported by DEC.

1.0 Introduction To PRM
1.1 PRM Design
1.2 User Interface
1.3 File Operations
1.4 Record Operations
1.5 RFA
1.6 Memory Requirements
2.0 Preparing for PRM
2.1 Pre-defined Data Structures
2.2 Control Buffers
2.2.1 RmsFilebesc -~ File Description
2.2 RetRecord ~ Record Retrieval
.3 StoRecord - Record Storage
.4 IdxKeyDesc - Indexed Key Description
Record Buffers
.1l Non-Shared Buffers
.2 Shared Buffers
Key Buffers

sequenti

RSX-~11M+

developed by 3M Engineering and Systems Technology Labs.
an interim until the OMSI Pascal Compiler directly supports RMS-11.
PRM was developed and tested using V1.2G of OMSI Pascal and DEC

V1.2H due to changes in initialization procedures.
can be used only if the Version 1 switch is used.
Comments and guestions concerning PRM should be directed in writing to:

Detailed Description of PRM Routines
4.1 General Use

4,2 File Access and Creation

2.1 PRMClo

Record Retrieval and Storage
.1 PRMDel
.2 PRMFre
.3 PRMRet
4 PRMSto

A PRM program example - Access an existing RMS files
B PRM program example - RMS indexed file creation

C Command and Overlay descriptor files example

D PRM Error Codes

Preface

Record Management Services (RMS-11) is a software package written and
The package is a data management tool that supports

al, relative and indexed (ISAM) files.

Pascal Record Management (PRM-11) is a non-supported interface

PRM was developed as

operating system., Known problems will occur when using OMSI Pascal

Version 2 of OMSI Pascal

Kenneth Tibesar

3M Center, Bldg. 518-1
St. Paul, Minnesota 55144
PLEASE — NO PHONE CALLS

Introduction to PRM

2

2

3

3

3

4

5 PRM External Calls
6 Rms-11 Initialization
7 Task Build

8 User Space Optimization
9 PRM Pit-Falls
9.
9.
9
t
1
2
3
4
5

1 Record Size
2 Rug Initialization
.3 File Sharing
ailed Description of PRM Buffers
RmsFileDesc - File Description
RetRecord - Record Retrieval
StoRecord - Record Storage
IdxKeyDesc - Indexed Key Description
User Defined Record Buffers

NNNNINNOONONNNNNDNDON

AR IN:

PRM-11 is a set of routines written in OMSI Pascal with in-~line
MACRO-11 code to interface to RMS-11. DEC supported high level languages
interface to RMS-11 by using key words supported by the language compiler. The
present versions of OMSI Pascal for the PDP~11 do not support RMS-11
interface. PRM provides the interface via a set of external procedures that
are similiar to the key words used by DEC languages. PRM routines are called
by the user code when RMS-11 operations are required. The PRM routines are
linked to the user code during the task build.

PRM routines use DEC supported MACRO-11 routines to perform RMS-11
operations. RMS-11 requires attribute blocks describing the file (FAB) and
record (RAB). PRM defines fields within the attribute blocks. This allows
Pascal to directly control the contents of the files RABs and FABs. The
contents of the RABs and FABs are indirectly controlled by the PRM user by
loading pre-defined buffers and using one of the PRM external procedures.

Z 10 | abey

§'g'g 'bag

User buffers required by PRM routines are allocated in the user space.
The user defines only the number of buffers required for the application.

The buffers are loaded by the PRM user to indicate file or record access
parameters., The buffers are also used by PRM as working space. By using
buffers allocated globally (from the heap), PRM can preserve variables
between PRM calls.

Normally, RMS-1l requires the user to reserve POOL space. The POOL
space is used by RMS internal code as control structures known as BDB's (Buffer
Descriptor Blocks). The POOL space has to be allocated based on the number of
simultaneously opened files. This design would waste user space that cannot
be reclaimed even though the file is closed. To avoid this loss of valuable
user space, PRM dynamically allocates and de-~allocates the space when required
by RMS-1l. RMS-11 allows the MACRO-11 programmer to specify a GSA (Get Space)
routine. The PRM GSA routine simply calls the Pascal Run-Time-System NEW and
DISPOSE routines to manage HEAP space. RMS-11 uses the declared GSA routine
when it requires or releases space. Space is not used until a file is opened
and returned to the Pascal heap when the file is closed.

PRM was modeled after syntax used by existing DEC supported languages
that interface to RMS-11. The following is a list of PRM and high level
language comparisons:

DEC ~ Compilers support commands that perform RMS-11 file and record

operations.

PRM -~ External procedures linked to the Pascal program perform RMS-11
file and record operations.

DEC- Descriptive key words are used with RMS-11 commands to specify
attributes of the file and record operations.

PRM - Descriptive field names are used to load records passed to the
external procedures. The record fields specify attributes of
the file or record operation.

DEC -~ A completion code indicating the success or failure of each RMS
operation is made available to the user. The completion code
is available through the use of a reserved word.

PRM - A completion code is returned with each PRM call. The code is
the standard RMS~11 completion code. In addition, PRM
provides debugging completion codes for the PRM programmer.

The PRM interface to OMSI Pascal uses the Pascal internal record
structure to pass data. Pre-defined records are included in the TYPE
declaration of the User Pascal program. The Pascal programmer determines the
operation to be performed (open, close, get record, etc.) and loads the
appropriate record buffer. Once loaded, the record address is passed to the
specific PRM routine that performs the file or record operation. The PRM
routines load the RMS attribute blocks (RAB and/or FAB) with the control codes
necessary to satisfy the user request. If data is to be stored or retrieved,
the User Pascal program is also required to pass the address of a data buffer.
The data buffer is loaded with data retrieved or the contents stored.

In addition to control and data buffer addresses, an address of a
status buffer is required with all PRM calls. fthe status buffer is loaded
with a completion code. The code is a standard MACRO-11 RMS success/error
code (refer to RMS-11 User's Manual, Appendix B). In addition PRM will return
debugging error codes for the PRM user. PRM error codes are only generated
due to PRM user program procedural errors. Refer to Appendix D for detail on
PRM error codes,

The user should check the completion code following each PRM call. If
the file is not opened properly, no record operations should be performed., If
the user continues after an error in a file open or creation, PRM will catch
the error. All record operations on an improperly opened or created file are
prohibited. Any call that attempts access to an improperly opened file will
be rejected and a PRM error code will be returned.

Z 0 g abed

g'¢'g ‘bes

Elv

DEAR DECUS,

THE ATTACHED PROGRAM IS MY LAST CONTRIBUTION TO THE CAUSE AS FMS'

PRODUCT MANAGER. 1 HAVE SINCE MOVED ON TO OTHER THINGS, BUTI FhS WILL 5 REM AUTHOR: ROBERT NUSBAUM — DIGITAL EQUIPMENT CORP. - FMS PRODUCT MANAGER (RETIRED)
BE ABLY CARED FOR BY JIM DONNELLY, A FORMER FMS USER WHO HAS JOINED 10 REM QUICK AND DIRTY CAI DEMO
DIGITAL. 20 REM DESIGNED TO SHOW HOW EASY CAI BECOMES

30 REM WITH FMS-11 AND VAX-11 FMS
TH1S PROGRAM WAS INITIALLY DEVELOPED AS A GENERAL-PURPOSE CAI PRUGRAM 40 REM
TO DEMONSTRATE HOW EASY IT IS WITH FMS TO WRITE GENERIC APPLICATIUNS 50 REM THIS PROGRAM IS A GENERAL PROGRAM TO ASK QUESTIONS
THAT ARE SHAPED COMPLETELY BY THE TEXT ON THE SCREEN AND BY THE NAMED 60 REM VIA FMS FORMS AND LOG THE ANSWERS IN A FILE.
DATA PARRMETERS STORED WITH THE FORM, IT TURNS OUT TG BE EVEN MORE 70 REM ALL INFORMATION OTHER THAN THE SCREEN DISPLAYS
GENERAL THAN THAT ~= IT IS A GENERAL~PURPOSE QUESTION-ASKER AND 80 REM IS STORED WITH THE FORMS USING THE "NAMED DATA"
ANSWER=LOGGER, WITH ANSWER VALIDATION LIMITED PRIMARILY BY THE FMS V1 90 REM FACILITY OF FMS.
LIMIT OF 16 NAMED DATA PARAMETERS PER FORM. I AM NOW USING IT TO 100 REM
GATHER MARKET RESEARCH INFORMATION IN MY NEW JOB IN THE CSS PRODUCT 110 REM THIS PROGRAM WAS DEVELOPED USING BASIC+2 AND FMS/RSTS,
LINE, 120 REM THEN MOVED TO VAX, AND THENCE TO A PDT USING RT-11 AND

130 REM BASIC~11l. IF ANYONE IS INTERESTED, IT COULD ALSO BE

1T IS MY GIFT TO THE MORE THAN A THOUSAND LOYAL FMS USERS WHO ARE 40t REM RUN:'ON RSX AND IAS

ALREADY OUT THEKE AND TO THE THOUSANDS MORE OF YOU WHO HAVE NOT YET et ,

DISCOVERED THE JOYS OF THIS FLEXIBLE, STIMULATING, EASY=TO-USE, AND 160 REM THE PROGRAM TAKES ALL THE INPUT FROM THE USER AND

FUN PRODUCT. I HOPE THAT IT WILL NOT ONLY BE USEFUL TG YOU IN ITS ol S, MOMCRIBNETRS L T0WO A SINCLE SERING | NOEIEL, WAS. N

CURRENT FORM, BUT ALSO WILL PROVOKE SOME THINKING ON HOW TG USE SOME Joli Rulld LSBT HSILS [GASE SHEZUSH: THE! SR Gt 2 STROHE

OF THE MORE OBSCURE FEATURES OF THE PRODUCT. 190 REM OBJECTION TO THE FMS CONVENTION OF USING TAB FOR THE
200 REM NEXT FIELD KEY.). IF A NAMED DATA ITEM NAMED "LOG"

202 REM IS PRESENT AND HAS A VALUE OF "Y", IT WRITES A RECORD

204 REM TO DISK CONTAINING THE FORM NAME AND THE DATA FROM THE

205 REM FORM. IT THEN ATTEMPTS TO MATCH THE DATA ENTERED AGAINST

210 REM THE SET OF PRE-DEFINED (EXPECTED) ANSWERS FOR THIS

220 REM FORM, WHICH BY CONVENTION HAVE BEEN STORED AS NAMED

230 REM DATA WITH NAMES OF THE FORM

BOB NUSBAUM
DIGITAL EQUIPMENT CORPORATION

240 REM ANSN.
250 REM IF NO MATCH IS FOUND, N IS SET EQUAL TO ZERO.
260 REM

270 REM THE PROGRAM THEN RESPONDS TO THE USER IN ONE OF THREE
280 REM WAYS. THE PROGRAM RETRIEVES THE NAMED DATA ITEM WITH
282 REM THE NAME RSPN, USING THE N DETERMINED ABOVE. THEY ARE
284 REM INTERPRETED AS FOLLOWS:

290 REM

300 REM B=MESSAGE WRITE MESSAGE TO BOTTOM OF SCREEN
310 REM F=FORMNAME OVERLAY FORM ON SCREEN WITH RESPONSE
320 REM X DO NOTHING FOR RESPONSE

330 REM NO ITEM NAMED RSPN EXISTS DO NOTHING FOR RESPONSE

340 REM

350 REM

360 REM THE PROGRAM THEN TAKES ITS FLOW DIRECTIONS FROM NAMED
370 REM DATA PARAMETERS OF THE FORM ANSN. THE FIVE OPTIONS
380 REM DEFINED ARE:

390 REM

400 REM R RE-ASK THE QUESTION

410 REM N=FORMNAME GO TO NEXT FORM (SAME LIBRARY)

420 REM L=LIBSPEC (FORMNANE) GO TO NEXT FORM (CHANGE LIBRARIES)

430 REM (© ASK USER TO PRESS <CR> TO CONTINUE

435 REM (NEXT ACTION IS IN N.D. ITEM ACTNA)

440 REM X EXIT FROM PROGRAM

450 REM I
390 REM @ 9
1000 REM N
1001 REM PGM BEGINS HERE Q‘g
1002 REM ~

1010 CALL FINIT(3000)
1020 CALL FLOPEN(‘'PDO:CAI.FLB')
1030 LET M$='FIRST ‘'

4%

1040
1050
1051
1052
1060
1070
1lo0
1104
1106
1108
1110
1120
1130
1160
1170
1175
1180
1190
1200
1205
1210
1220
1222
1230
1240
1245
1250
1260
1270
1280
1290
1300
1301
1302
1310
1315
1320
1321
1330
1340
1342
1344
1346
1350
1352
1354
1356
1357
1358
1359
1360
1399
1400
1401
1402
1410
1415
1420
1430

OPEN "PD1:CUSTO" FOR OUTPUT AS FILE #2%

REM

REM TOP OF ANSWER ANALYSIS ROUTINE

REM

LET ¢ = RCTRLC

REM DISABLE CONTROL-C ABORT

CALL FCLRSH(MS)

CALL FGETAF(VS,T%,FS$,I%)

REM CODE TO TREAT <CR> LIKE <TAB> UNLESS AT END OF FORM
IF T%=0% THEN LET T%=1%

CALL FPFT(T%)

CALL FSTAT(S%)

IF S$=-19% THEN GO TO 1170

GO TO 1104

REM AT END OF FORM

CALL FRETAL(XS)

REM CHECK NAMED DATA WHETHER TO LOG ANSWERS ON THIS FORM
CALL FNDATA('LOG ',LS)

CALL FSTAT(S%) ® IF S%=-15 THEN GO TO 1220
IF L$<>'Y' THEN GO TO 1220

PRINT #2%,MS&SEGS(’® ',1%,6-LEN(MS$)) ;XS
LET I%=1%

LET BS$='

LET PS=BS

LET IS=STRS(I%)

CALL FNDATA('ANS'&IS&' ',PS)

CALL FSTAT(S%)

IF S%=-15% THEN LET I$="0" @ GO TO 1300

IF X$=P$ THEN GO TO 1300

LET I%=I%+1%

GO TO 1240

REM

REM RESPOND TO STUDENT HERE
REM

CALL FNDATA('RSP'&IS&' ',RS)
CALL FSTAT(S%)

IF S%=-15% THEN GO TO 1360

REM TREAT NO RESPONSE DEFINED AS 'X'
LET R1$=SEGS(RS$,1%,1%)

IF R1$<>'B' THEN GO TO 1350

CALL FPUTL(TRMS (SEGS (RS ,3,LEN(RS))))
CALL FGET

GO TO 1400

IF R1S<>'F' THEN GO TO 1360

CALL FSHOW(SEGS (RS ,3%,8%))

CALL FPUTL('PRESS RETURN WHEN YOU ARE READY TO CONTINUE')
CALL FGET

CALL FCLRSH(MS)

CALL FPUTAL(XS)

GO TO 1400

IF R1$='X' THEN GO TO 1400

REM

REM

REM ROUTINE TO GUIDE LESSON FLOW
REM

LET A$='

LET A9$='ACT'&IS&® '

CALL FNDATA(A9S ,AS)

CALL FSTAT(S%)

1440
1450
1460
1462
1464
1466
1470
1471
1474
1478
1482
1486
1500
1501
1510
1520
1530
1531
1538
1542
1546
1550
1551
1554
1558
1562
1566

1570
1574
1578
1582
1590
1600
1610
1800
1810
1820
5000
5005
5010
5020
5030
5040
5050
5060
9999

IF S%=-15% THEN GO TO 1600

LET Al$=SEGS$(AS,1%,1%)

IF ALS<>'R' THEN GO TO 1470

REM RE-ASK THE QUESTION

CALL FPUTAL

GO TO 1210

IF AlS<>'C' THEN GO TO 1500

REM REQUEST 'RETURN' TO CONTINUE

CALL FPUTL('PRESS RETURN WHEN YOU ARE READY TO CONTINUE')
CALL FGET

LET A9S='ACT'&IS&'A !

GO TO 1420

IF AlIS<>'N' THEN GO TO 1530

REM 'N' MEANS GO TO NEXT FORM, SAME LIBRARY
LET M$=SEGS(AS,3%,8%)

GO TO 1100

IF Al$S<>'L' THEN GO TO 1590

REM ‘L' MEAMS GO TO NEXT FORM, CHANGE LIBRARIES
LET LS=SEGS(LS$,3%,LEN(AS))

LET L2%=POS(LS,'(',1%)

IF L2%=0% THEN GO TO 1800

LET L1$=SEGS(LS,L2%-1%)

REM GET LIBRARY FILESPEC

CALL FLCLOS

CALL FLOPEN(L1S$)

CALL FSTAT(S1%,S52%)

IF $1%<0 THEN CALL FPUTL('STATUS 1 = '&STRS(S1%)&', STATUS 2 = '&STR$(S52%&'

WHILE OPENING '&L1$)
LET R2%=POS(L$,')',L2%+1%)
IF R2%=0% THEN GO TO 1800
LET M$=SEGS(LS,L2%+1%,R2%-1%)
GO TO 1210
IF Al$='X' THEN GO TO 5000
CALL FPUTL('MISSING ACTION CODE IN FORM, EXITING LESSON')
GO TO 5000
REM BAD ACTION IN MAMED DATA
CALL FPUTL('BAD ACTION: '&AS)
sToP
REM SHUTDOWN ROUTINE
CLOSE #2%
CALL FLCLOS
CALL FLOPEN('CAI.FLB')
CALL FCLRSH('BLANK ')
CALL FLCLOS

LET C = CTRLC
GO TO 9999
END

N

¢ 40 g abey

g'c'y bag

Gi-¥

FMS PASCAL EXAMPLE

FROGRAM FasDem(DstaFile)s

WO I W e MW I I I I I I I I I N I M I I A

Same rrogram as extended examrle in Arrendix B of the FHS/RSX Softuware
reference marual, Adarted directls from the FORTRAN srodram on

g B-1éy without 811 the checking for errors from the FHS roulines.
Written for OMSI Fascal versian 1.26.

Uses the FORTRAN callable FMS HLL routines.

Recuires the following task-build command!
*TKR PasDem/CF/FP=Faallems[300s4THLLFOR,FOVLIR/LREy 30041 IFASLIR/LE
Authort
Kurt W.
Srectronixy

24590 Glen
Shorewoody

Parke
Inc.
R

MN 55331

Tel, (412) 474-0831
Edit? 10/21/81 Modifwy for OMSI Fascal 2.0H
CONST
ImrureSize = 10003 { Size of imrure ares ¥
FmsLun = 4% { LUN for FMS librarw I/0 ¥
MaxString = 7% { Maximum string lendth 2
LineLendgth = 133 { Maximum "frutl® line lensth ¥
MaxFileName = 30} { Maximum length of file nsmes
MaxDatalendth = 2553 € Maximum data (butes) for *fgetasl” >

TYFE

FACKED ARRAY [1..¥mrureSizel OF chari
ARRAY L[1.,.MauStringd OF chari

PACKED ARRAY [1..31 0OF chars

PACKED ARRAY [1..MaxFileNamel OF chari

ImrureTure =
String = FACKED
ResronseTure =
FileNameTyre =

VAR

Null § chars

DataFile § texts
ImrureArea ! ImrureTured
Size ! inteder’

Lurnn ¢ intedgers

LibName ! Strings
Resronse ! ResronseTured
Forms Forml ! Strindgi
ExitForm I Strings
FileName ! FileNameTures

{

X Globally accessible FMS routines from HLLFOR

¥

PROCEDURE Fclrsh(VAR Name ! String)s NonFascali

PROCEDURE Finit(VAR Imr ¢ ImpureTsrei VAR Biz ! integer)i NorFascals
FROCEDURE FlChan(VAR Chan ! integer)s; NonFascaly

FROCEDURE FlOren{VAR Name ¢! String)j NonFascali

PROCEDURE FrnData(VAR res { ResponseTurei VAR Fname ¢ FilaNameTure)s

PROCEDURE FlClosi

NonFascals
NonPascals

<
X Main
¥

Pprogran code

REGIN { Faslem >

Null != chr(Q)}
Asciz(/EXIT, ‘sExitForm)}
Size = ImpureSizes

Finit{(ImrureArearSizeds
Lure $= Fmsbuni
FlChan{(Lur) i
Asciz(/HDEMLIE “sLibName)s
FlOren{LibName}}

REFEAT
GatMernu('FIRSET ‘s/CHOICE ’sResronsesForml)di
IF Forml <> ExitForm THEN
BEGIN

Resronsel2] != ‘F’} Resronsel3] I= Nullj
Friltzt2(ResronsesFileName)
OrenFile(DataFilesFileName)s
REPEAT

Form $= Formlj$
FormSeries{formsDataFile)s
GetMenu('LAST ‘s ‘CHOICE
UNTIL Resronselt] ‘173
close(llataFile)
END
UNTIL (Form =
Ficlos
END. { Faslem ¥

‘sResronsesForm)

B3

ExitForm) OR (Forml = ExitForm)i

Routirne to oren @ file given an ASCIZ file name. The file neme must
be blank filled to avoid 2 swntax error from the Fascal run—time
sgstem.

Yo ¥ I A

FROCEDIURE OrenFile(VAR FileVar ! texti FileName ¢ FileNomeTure)s

VAR NullPossi | integers

BEGIN { OrenFile 1}
NullFos = 13§
WHILE FilensmelNullPos) <> Null DO NullPes (= NullFos + 14
FOR i {= NullFos TO MaxFileName DO FileNamelild $= ~ ‘3%
rewrite{FileVarsFileName)

ENDS { OrenFile ¥

Z Jo | ebey
L€'y "bag

9lv

£ <
* Foutine to follow 2 series of datz entrw forms, A&Tter esch form X Routine to rroduce am ASCIZ string from 2 blank-filled stiring.
% is disrlaved and the data stored im 3 filesr the routine looks in % This is often necessarw since 311 the FHMS FORTRAN routines reauire
* the Nazme Lata for the next form to rrocess. Tf the next form is % ASCIZ stringss and the Fascal comeiler does not inssrb a3 Aull.
* *,NONE.® the end of the seriss has been hit and the eoutine exits.,
¥
FROCEDURE Asciz(InString ¢ Strindj { Inrut string
FROCEDURE FormSeries(VAR Form { Strings { Gtarting form nsme > VAR DutString ¢ String)s { Dutesnt string >
VAR FileVar i textli { File variahle for 1/0 } BEGIN
QutBtring {= InString}
TYPE DataBuffer = ARRAY [1..MazxDatalendgthl OF charj OutStrinagCHaxString] t= Null
ENDF { Asciz ¥
VAR
CountsDataFos | intesger; ry
Dats ¢ DatsBufferi L3 Routine to get 2 menu choice from the orerater. Risrlaus the menu
DatzNamesNoneForm ¢ Stringi % and loors until the orerator tures in a valid resronse,
¥
FROCEDRNURE Fgetal (VAR buf ! Databuffer)s NonFascals
FROCEDURE Fnlata(VAR Iner § Stringi VAR Dats ! Slring)i NonFascali PROCENURE SetMenul Menu § Strings { Name of mernu to diselavw 3
Data ¢ Strindgs { Resronse field name *
BEGIN { FormSeries ¥ VAR Resronse { ResronseTures { Resronse value ¥
Asciz(’ NONE. ‘sMNoneFarm)i VAR Namedasta ! Strindg); { Name Rats of resronse Y
REFEAT
Felrsh(Form)é TYFE LineTwre = FACKED ARRAY [il..LinelLendgthl OF chari
Fagetal(Diata)s
DataFos = 1% VAR
Court = 1% Terminator: Statuss Btat?2 ! inteders
WHILE [DataillataFosl <> Null DO Errortine | LineTures
BEGIN
write(FileVarsDatalliataFosl)i FROCEDURE Frnliata (VAR res { ResronseTured VAR Dlats ! String))d
IF Count = 78 THEN NoenFascali
REGIN FROCEDURE Fget (VAR res ! ResronseTures VAR Trw ! intederi VAR Nam ! String)s
writeln(FileVar)i NonFascali
Count &= 1 FROCEDURE Fstat(VaR Stt ! intederd VAR sti12 | inteser?s NounFascalsl
END PROCEDURE Frutl(VAR line ¢ linetwre)’ NonFascals
ataFos i= DataFos + 1
ENDF { WHILE REGIN { GetMenu %
writeln(FileVar)y Errorline {= ‘Illegal Choice ‘% Errvorlinellinelensthl t= Nullj
Asciz{ "NXTFRM ‘sDatzName)? Asciz{MernrMenu)i
Frilata(liataNamesForm) # Felrsh{Menu)
UNTIL Form = NoneForms Asciz(DatarDatas)s
END'; { FormSeries ¥ REFEAT

Feet (ResronseyTerminatorsDiata)i
FrnData(ResronsesrNamellata) s
Fetat(Status,Stat2)}
IF Status <= @ THEN Frutl(ErrorlLine)
UNTIL Status » 0
ENDE { GetMenu ¥

Z 40 Z abey
L€y "beg

Ly

1.
2.

1.
2.
3.

1.
2.
3.
4.
5.

10.
11.
12,

FMS Application Programming Handout
Miami '81 Symposium

Fok kg ok ok ok okok ok FORM DRIVER *kkkkkkk

RUN~TIME COMPONENT OF RMS.

SET OF SUBROUTINES TO ALLOW AN APPLICATION PROGRAM TO ACCESS FORMS AND
CONTROL OPERATOR INTERACTION.

LINKED WITH APPLICATION PROGRAM.

*RkFxkKk FORM DRIVER FEATURES hkkkhkhk

FLEXIBLE SET OF CALLS.
INTERFACES TO COMMON PROGRAMMING LANGUAGES.
SUPPORT FOR FORM AND FIELD ATTRIBUTES SUPPORT FOR OPERATOR HELP.

khkxkkkkk FORMS CONTAIN kkkkhkxKk

CONSTANT BACKGROUND TEXT.
VARIABLE FIELDS.
ASSOCIATED NAMED DATA.

hkkkkkkk FORM ATTRIBUTES *kkkrAkKk

FORM NAME.

SCREEN WIDTH (80 OR 132 COLUMNS).
SCREEN AREA TO CLEAR.

SCREEN BACKGROUND.

HELP FORM NAME.

kkhkkdkkkk BACKGROUND TEXT *kkkkkkk

CONSTANT INFORMATION.
CANNOT BE MODIFIED BY OPERATOR.
PROMPTS FOR FIELDS OR EXPLANATORY TEXT VT100 VIDEO ATTRIBUTES.

hkkkkkhk FIELDS hkkhkkkk

IDENTIFIED BY SIX CHARACTER NAME AND INDEX.
MODIFIABLE BY APPLICATION AND/OR TERMINAL OPERATOR.
ASSOCIATION BETWEEN PROGRAM AND FIELDS MADE AT RUN TIME.

*khkkkkkkk FIELD ATTRIBUTES khkkkkkkX

VT100 VIDEO ATTRIBUTES.
DEFAULT VALUE.

HELP TEXT.

EMBEDDED TEXT CHARACTERS.
RIGHT OR LEFT JUSTIFICATION.
AUTOTAB TO NEXT FIELD.
DISPLAY-ONLY.

CLEAR CHARACTER FOR SCREEN DISPLAY.
BLANK OR ZERO FILL.

FIXED DECIMAL FOR MONEY.
INDEXED.

NO-ECHO SUPERVISOR PROTECT.

1.
2.
3.

1.
Dl
3.

2.
3.
4.
5.
6.

dea
2.

kkkkkkkk DATA VALIDATION khkRXkHkk

CHARACTER VALIDATION BASED ON FIELD PICTURE.

RESPONSE REQUIRED IN FIELD.
MUST FILL FIELD IF ANY DATA ENTERED.

kkkkkkkk HELP kkkkkkkk

HELP TEXT FOR EACH FIELD.
HELP FORM FOR EACH FORM.

HELP FORMS CAN BE CHAINED TRANSPARENT TO CALLING PROGRAM.

khkkkhkkk NAMED DATA khkkhkkkkk

ASSQCIATES ASCII DATA WITH FORM.
NOT DISPLAYED AS PART OF FORM.

CAN BE USED TO EMBED APPLICATION LOGIC IN

UP TO 60 BYTES OF TEXT PER ENTRY.
UP TO 16 ENTRIES PER FORM.
ACCESSED BY NAME OR INDEX.

#k&xxxkk pMS INITIALIZATION

SET UP FORM DRIVER IMPURE AREA.
OPEN FORM LIBRARY.

FMS CALLS TO USE:

*

*

CALL FINIT (IMPURE, 2000)
CALL FLCHAN (1)

CALL FLOPEN ('FRMLIB.FLB')

FORMS .

Khkkkkxkkk

INITIALIZE IMPURE AREA
SET FORM LIBRARY
CHANNEL

OPEN FORM LIBRARY

* NOT REQUIRED FOR MEMORY RESIDENT FORM SUPPCRT

#xxxkx%* BASTC FORM PROCESSING CALLS ****#xx%

CASE 1. DISPLAY A FCRM.
CASE 2. WRITE DATA TO A FORM.
CASE 3. GET INPUT FROM THE TERMINAL OPERATOR.
CASE 4. RETURN FIELD VALUES FROM A FORM.
CASE 5. DISPLAY APPLICATION MESSAGES.
KkkkkKkk* DISPLAY A FORM ***kkkkx

CLEAR ENTIRE SCREEN AMD DISPLAY FORM. ~ (FCLRSH)
CLEAR SPECIFIED AREA AND DISPLAY FORM. - (FSHOW)
WRITE DATA TO A FORM.

WRITE DATA TO ALL FIELDS. - {(FPUTAL)

WRITE DATA TO A SPECIFIED FIELD. - (FPUT)
GET INPUT FROM THE TERMINAL OPERATOR

GET ALL FIELDS. - (FGETAL)

GET A SPECIFIED FIELD. - (FGET)

GET ANY FIELD. - (FGETAF)

¥ 40 | abed
8¢y ‘beg

8l-v

CASE 1: NO APPLICATION PROCESSING OF INPUT IS NECESSARY AT THE FIELD LEVEL.

FMS CALLS TO USE:
WRITE DATA TO ALL FIELDS. ~ (FPUTAL)
GET ALL FIELDS. - (FGETAL)

CALL FCLRSH ('FORM')
READ RECORD INTO DATA
CALL FPUTAL (DATA)
CALL FGETAL (DATA)
WRITE RECORD FROM DATA

DISPLAY FORM

GET RECORD FROM DATA BASE
WRITE DATA TO FORM

LET OPERATOR MODIFY DATA
WRITE UPDATED RECORD

~r ne N N s

ADVANTAGES:

1. APPLICATION REQUIRES NO KNOWLEDGE TO FORM CONTENT OR LAYOUT.

2. FORM DRIVER HANDLES ALL INTERACTION WITH TERMINAL OPERATOR.

3. TERMINAL OPERATOR CAN MOVE BETWEEN FIELDS AT WILL UNTIL SATISFIED.
DISVANTAGES:

1. APPLICATION CANNOT PROCESS INPUT UNITL ENTIRE FORM IS COMPLETE.

2, ORDER OF FIELDS IN A RECORD MUST BE THE SAME AS THE ORDER IN A FORM.

CASE 2: APPLICATION PROCESSING IS NECESSARY AT THE FIELD LEVEL AND/OR THE
APPLICATION PROGRAM REQUIRES CONTROL OVER THE ORDER OF FIELD ENTRY.

FMS CALL TO USE:
GET A SPECIFIELD FIELD. -~ (FGET)

CALL FCLRSH ('ORDER')
10 CALL FGET (ACCT, TERM, 'ACCT')
PROCESS INPUT
IF ACCT NOT VALID GOTO 10
20 CALL FGET (PARTNO, TERM, 'PARTNO'Y)
PROCESS INPUT
IF PARTNO NOT VALID GOTO 20
CALL FPUT (DESC, 'DESC')
CALL FGET (QUANT, TERM, 'QUANT')

DISPLAY FORM

GET ACCOUNT NUMBER

PROCESS

IF INVALID, GET FIELD AGAIN
ELSE GET PARY NUMBER
PROCESS

IF INVALID, GET FIELD AGAIN
ELSE WRITE DESCRIPTION FIELD
GET QUANTITY TO ORDER

o NE e ne o N me we e

o

ADVANTAGES :

1. APPLICATION PROGRAM GETS IMMEDIATE CONTROL AFTER EACH FIELD IS ENTERED
TO VALIDATE INPUT, RESPOND TO ERRORS, AND UPDATE THE FORM.

2. APPLICATION PROGRAM HAS ABSOLUTE CONTROL OVER ORDER IN WHICH FIELDS
ARE ACCESSED

DISAVANTAGES :

Lo TERMINAL OPERATOR HAS NO CONTROL CVER MOVEMENT BETWEEN FIELDS.

2. APPLICATION PROGRAM MUST ACCESS ALL FIELDS IN A FORM BY NAME.

CASE 3: APPLICATION PROCESSING IS NECESSARY AT THE FIELD LEVEL AND THE
TERMINAL OPERATOR SHOULD CONTROL MOVEMENT BETWEEN FIELDS.

FMS CALLS TO USE:
GET A SPECIFIED FIELD. - (FGET)
PROCESS A FIELD TERMINATOR. ~ (FPFT)

10 CALL FGET (RESP, TERM, FIELD)
PROCESS INPUT FOR THE FIELD
IF TERM EQUAL 1 GOTO 20

GET INPUT FOR A FIELD
PROCESS INPUT

IF TERMINATOR ENTER, FORM
COMPLETE

ELSE DETERMINE NEXT FIELD TO
GET

GET FIELD NAME

GET INPUT FOR FIELD

CALL FPFT (TERM)

CALL FGCF (FIELD)
GOTO 10
20 .

.

B T T ey

USE OF FGET/FPFT CALLS:

CALL FCLRSH ('FORM')
CALL FGET (RESP, TERM, '*')
CALL FGCF (FIELD)

DISPLAY FORM
GET INPUT FOR FIRST FIELD
GET FIELD NAME

GOTO 20 PROCESS INPUT
10 CALL FGET (RESP, TERM, FIELD) GET INPUT FOR A FIELD
20 PROCESS INPUT FOR FIELD PROCESS INPUT

CALL FPFT (TERM)
CALL FGCF (FIELD)
IF TERM NOT EQUAL 1 GOTO 10

DETERMINE NEXT FIELD TO GET
GET FIELD NAME
IF TERMINATOR NOT ENTER, GET

N3 me NE wa N Ne NE N3 me e e we NR NS N

THE FIELD
CALL FSTAT (STAT) ELSE CHECK FOR INCOMPLETE
FORM
IF STAT EQUAL 2 GOTO 10 GET INPUT FOR INCOMPLETE
FIELD
ELSE DONE
ADVANTAGES :
1. TERMINAL OPERATOR CAN MOVE BETWEEN FIELDS AT WILL UNITL SATISIFED.
2. APPLICATION PROGRAM GETS IMMEDIATE CONTROL AFTER EACH FIELD IS ENTERED
TO VALIDATE INPUT, RESPOND TO ERRORS, AND UPDATE THE FORM.
3. APPLICATION PROGRAM REQUIRES NO KNOWLEDGE OF FORM LAYOUT.
DISAVANTAGES:
1. MORE COMPLEX TO IMPLEMENT THAT THE SINGLE 'GET ALL FIELDS' CALL.

CASE 4: INPUT IS REQUIRED IN ANY ONE FIELD IN A FORM.

FMS CALL TO USE:
GET ANY FIELD. - (FGETAF)

| $0 g 8bey

8¢y beg

6l

10

20

CASE 5:

CALL FCLRSH ('FORM1') DISPLAY FORM WITH TWO FIELDS
NAME AND BADGE NUMBER

CALL FGETAF (RESP, TERM, FIELD) GET INPUT FOR EITHER FIELD
IF FIELD EQUAL 'BADGE' GOTO 10 BRANCH IF BADGE NUMBER

ELSE FIND BADGE NUMBER CORRESPONDING TO NAME ENTERED

R

CALL FPUT (BADGE, 'BADGE') 3 DISPLAY BADGE NUMBER
GOTO 20

FIND NAME CORRESPONDING TO BADGE NUMBER ENTERED

CALL FPUT (NAME, 'NAME') ; ELSE DISPLAY NAME

APPLICATION PROGRAM HAS TO SYNCHRONIZE WITH THE TERMINAL OPERATOR

FMS CALL TO USE:
GET A SPEICIFIED FIELD. - (FGET)

CASE 1.
CASE 2.

CASE 1:

CALL FCLRSH ('FORM1')
CALL FGETAL (DATA)

DISPLAY FORM
GET INPUT FOR FORM

PROCESS INPUT PROCESS
CALL FPUT (VALUEL,'FIELD1') WRITE DATA
CALL FPUT (VALUE2,'FIELD2') WRITE DATA

CALL FGET
ACRNOWLDEGE
DISPLAY NEXT FORM

N e NE Ns we e v e

CALL FCLRSH ('FORM2')

kkkkxxk* RETURN FIELD VALUES FROM FORM ****%x%%
(NO OPERATOR INPUT ALLOWED)

RETURN A SPECIFIED FIELD VALUE
RETURN ALL FIELD VALUES

ACCESS INDIVIDUAL FIELDS IN A FORM AFTER THE FORM IS COMPLETED BY THE
TERMINAL OPERATOR IN ORDER TO: VALIDATE INPUT FOR INDIVIDUAL FIELDS.
CREATE A RECORD WITH FIELDS IN A DIFFERENT ORDER THAN THEY ARE IN THE
FORM. CREATE A RECORD CONTAINING FIELDS FORM SEVERAL SOURCES,
INCLUDING THIS FORM.

FMS CALL TO USE:
RETURN A SPECIFIED FIELD. ~ (FREIN)

WAIT FOR TERMINAL OPERATOR TO

10

20

CASE 2:

CALL FCLRSH ('FORM'}
CALL FGETAL

CALL FRETN (RESPA, ‘FIELDA')

PROCESS FIELD VALUE

IF RESPA VALID GOTO 20
CALL FGET (RESPA, TERM,
GOTO 10

*FIELDA')

CALL FRETN {(RESPB, 'FIELDB')

PRECESS FIELD VALUE

Ne e e we e sy e e e we

DISPLAY FORM

ALLOW OPERATOR TO COMPLETE
FORM BUT DON'T RETURN DATA
RETURN VALUE FORM FIELD A
PROCESS DATA

IF VALID CONTINUE

ELSE GET INPUT FOR FIELD
PROCESS

RETURN VALUE FOR FIELD B
PROCESS

RETURN THE DATA FOR AN ENTIRE FORM AS A SINGLE RECORD AFTER GETTING
OPERATOR INPUT FOR EACH FIELD INDIVIDUALLY.

FMS CALL TO USE:
RETURN ALL FIELDS. - (FRETAL)

10

20

1.
2.

CALL FCLRSH ('FORM')

CALL FGET (RESP, TERM, FIELD)

PROCESS INPUT FOR FIELD
IF TERM EQUAL 1 GOTO 20

CALL FPET (TERM)

CALL FGCF (FIELD)

GOTO 10

CALL FRETAL (DATA)
WRITE RECORD FORM DATA

F

DISPLAY FORM

GET INPUT FOR A FIELD
PROCESS INPUT

IF TERMINATOR ENTER, FORM
COMPLETE

ELSE DETERMINE NEXT FIELD TO

GET

GET FIELD NAME

GET INPUT FOR FIELD
RETURN ALL FIELD VALUES
WRITE RECORD

*kEE*KA* DISPLAY APPLICATION MESSAGES *¥kk#kx«k

ERROR MESSAGES
INFORMATIONAL MESSAGES

FMS CALL TO USE:

WRITE MESSAGE TO LAST LINE OF SCREEN. - (FPUTL)

10

20

CALL FGET (RESP, TERM,
IF RESP VALID GOTO 20

'CHOICE'")

7

GET FIELD
IF RESPONSE VALID CONTINUE
ELSE DISPLAY ERROR MESSAGE

CALL FPUTL ('INVALID RESPONSE. VALID CHOICES ARE 1, 2, OR 3.'")

GOTO 10

.

i

GET THE FIELD AGAIN

4 40 ¢ afied

8¢’y "bag

ocv

1.
2.
3.
4.

10

10

20

kkkk¥* ADDITIONAL FORM DRIVER CALLS SUPPORT ***x#%

NAMED DATA
SUPERVISOR ONLY MODE
SCROLLED AREAS
NAMED DATA USAGE

A. RANGE CHECKING

B. TABLE LOOKUPS

Cs FORM LINKAGE

D. FORM SPECIFIC INFORMATION
ACCESS NAMED DATA

a, BY NAME (FNDATA)

B. BY INDEX (FIDATA)

x%kx%%% USE OF FNDATA FOR FORM LINKAGE *¥*#x%

DISPLAY FORM

GET INPUT FOR FORM

PROCESS

GET NAME OF NEXT FORM

CHECK FOR NO NAMED DATA

IF NAMED DATA FOUND, DISPLAY
NEXT FORM

CALL FCLRSH (FORM)

CALL FGETAL (DATA)

PROCESS INPUT

CALL FNDATA ('NXTFRM, FORM')
CALL PSTAT (STAT)

IF STAT > 0 GOTO 10

kRkkxkxk USE OF FNDATA FOR MENUS ****xdxk

DISPLAY MENU FORM

GET MENU SELECTION

CHECK FOR NO NAMED DATA

IF FOUND OK

ELSE INVALID RESPONSE

GET ANOTHER SELECTION
DISPLAY FORM CORRESPONDING
TO SELECTION SUPERVISOR ONLY
MODE

CALL FCLRSH ('MENU')
CALL FGET (RESP, TERM,
CALL FNDATA (RESP,FORM)
IF STAT > 0 GOTO 20
CALL FPUTL ('INVALID SELECTION')
GOTO 10

CALL FCLRSH (FORM)

'CHOICE")

e e ne wa we e e ws we

*kkkkxkk GUPERVISOR ONLY MODE ***%#**x%

PROVIDES FIELD PROTECTION FOR DATA RETRIEVAL AND MODIFICATION CONTROL
ALLOW OPERATOR ACCESS TO SUPERVISOR ONLY FIELDS (FSPOFF)
RESTRICT OPERATOR ACCESS TO SUPERVISOR ONLY FIELDS (FSPON)

USE OF FSPOFF/FSPON:

CALL FCLRSH ('ACCESS')
CALL FGET (PASSWD, TERM,
IF PASSWD EQUAL 'XYZZY'
CALL FSPOFF

DISPLAY FORM

GET PASSWORD

IF CORRECT PASSWORD
ALLOW OPERATOAR ACCESS TO
SUPERVISOR ONLY FIELDS

'PASSED')

PROCESS FORMS

CALL FSPON

WRITE DATA TO A LINE IN A SCROLLED AREA {FOUTLN)
GET INPUT FOR A LINE IN A SCROLLED AREA (FINLN)
USE OF FOUTLN:

INITIALIZE A FIVE LINE SCROLLED AREA FROM
A DATA BUFFER.

e we we s

CALL FCLRSH ('FORM')

CALL FOUTLN ('SCRFLD' , A(l)
REPEAT FOR I = 2 TO 5

CALL FPFT (8, 'SCRFLD')
CALL FOUTLN (‘'SCRFLE' , A(1l)

END REPEAT
REPEAT 4 TIMES
CALL FPFT (9,
END REPEAT

Ne Mo we Ne ma we Ne N6 ag

'SCRFLE")

USE OF FINLN/FOUTLN:

ALLOW ENTRY AND REVIEW OF 50 LINES OF
DATA IN A SCROLLED AREA.

~s w we

CALL FCLRSH ('FORM')
I=1

10 CALL FINLN ('SCRFLD' , A(l), TERM)
IF I = 1 AND TERM = 7 OR 9

CALL FPUTL ('BEGINNING OF DATA')
GOTO 10
IF I = 50 AND TERM = 6 OR 8

CALL FPUTL ('END OF DATA')
GOTO 10
IF TERM
I=1-=
IF TERM
I =171+
20 CALL FPFT (TERM, 'SCRFLD')
CALL FOUTLN ('SCRFLD', A(I))
GOTO 10

7 OR 9

n o=

6 OR 8

i

Ne N NS NE N e he Ne Ne we ME s we me M e me e

RESET SUPERVISOR ONLY
MODE TO RESTRICT

ACCESS 10 FIELDS ACCESS
SCROLLED AREAS

DISPLAY FORM

WRITE DATA TO FIRST LINE OF
SCROLLED AREA

INITIALIZE THE REST

MOVE DOWN ONE LINE

WRITE DATA TO NEW LINE

GO BACK TO FIRST LINE
MOVE UP ONE LINE

DISPLAY FORM

INITIALIZE BUFFER INDEX

GET INPUT FOR SCROLLED LINE
CHECK FOR BEGINNING OF DATA
AND SCROLL BACKWARD

IF SO, DISPLAY MESSAGE

GET LINE AGAIN

CHECK FOR END OF DATA AND
SCROLL FORWARD

IF SO, DISPLAY MESSAGE

GET LINE AGAIN

IF SCROLL BACKWARD
DECREMENT BUFFER INDEX

IF SCROLL FORWARD

INCREMENT BUFFER INDEXZ
PRECESS TERMINATOR

WRITE DATA TO NEW LINE

GET INPUT

¥ 40 ¢ 3bed

8¢y bes

L1-G

Seq. 5.1.2

DBMS 10/20 COORBINATOR

Having heid this post {DBMS 16/2G Coordinatorj since the week or two
prior to the Spring DECUS Symposium in Miami Beach, and having been involved
with the DECUS Organization and DM3 SIG only siightly longer, I find it a mite
difficult to address the newsletler with knowledge, confidence, and authority.
I am not currently blessed with the "Black Book" so carefully developed by my
predecessor so my resource list is limited to those people I have met at the
two Symposia I have attended and those who have been mentioned in passing
during informal discussions and at get-acquainted-cocktail-party sessions. Now,
after baring my soul and off-loading the responsibility for performance in this
office, let me offer some ways of using the DBMS 10/20 Coordinator in your
site.

My understanding of the position with*the structure of the OMS 5IG is
one of providing a central information and query point through which more
information should flow than at the present time. I can not help 10/20 sites
who do not reguest advice, counsel, or assistance in the selection of a UBMS
or in the solving of vexing probiems. To date my inventory of requests is none
received and therefore, 100% successful solutions. I am not offering myself
as a DBMS 10/20 guru, though I have siept many nights on the snow covered
rocky peaks, but rather as a focal point for information about the product,
user experiences (both good and bad), and a distribution point for sciutions
to problems which more experienced hands have already solved.

My fervent nhope is that the paucity of DBMS 10/20 queries I have inter-
cepted means that the software is bullet-proof and running well everywhere.

1 know better. The installation here at the Nashville Gas Company has experienced
some extremely vexing disruptions. Out of humanity and concern for my fellow
users I would be happy to share the solutions, such as they are, with others
facing similar situations. Perhaps the inaction I witness is because you all

do not know I exist. My raucous behavior in the"computerized service lines"
during the Sympousia and at vther functions makes me doubt this excuse, however.
So nere I stand, ready to serve, DBMS 10/20 Coordinator for the DMS SIG, with
Tittle to do. Try me. Not all at once, but a few at a time and Tet's try to
generate more involvement with software probiems, successes, and solutions at
the user jevel.

I am trying to retreive the "Biack Book”. Anyone who would like to serve
as a resource for DBMS 10/20 questions, just send me a business card or a note
to that effect, and 1 wiil happily add you to the too-short iist.

A final comment about my tenure in this position. My company management
is now pursuing a different path for Data Processing, so that this cheery
greeting is also the beginning of the end. After the Fall DECUS in Los Angeles,
there will probably be a new DBMS 10/20 Coordinator to deal with. I would Tike
all tihe DBMS 10/20 users to nelp me to help the new Coordinator off to a good
start with a backlog of requests, and offers of assistance, so that my brief
tenure wili have had some positive effect.

DBMS 10/20 Coordiration and choreography provided by:

Jdack Hili

Director, Data Services

Nashville Gas Company

814 Church Street

Nashvilie, Tennessee 37203

(615) 244-7080 &AM to 5PM Central prevailing Time

Seq. 5.1.3

Lt old ol
it
e e ld

fat g
1 bhe

L TEQEULT
the

Tuls

little work
Lons of]

rection table,

T o

owon) Wonli .
O woule

irto

Qure
in
30

Lhe

winle

mOrmesty
listing which w rtoof

WO

ion. T would

Lo owavrlo.

| 40 | abed
£1°6 "bag
| 10 | abey
Z'1'g ‘bes

DBMS-11
TECHNICAL SESSION

Ann Harrison
Digital Equipment Corp

(4%

1. Version 2.0 Announcement
. DMS SIG menu response
IT. Data Dictionary Topics

1. DBMS-11 Version 2.0 Annoucement

Available in mid-January
For RSX-1iM, RSX-11M-PLUS, IAS
Replaces Versions 1.6, 1.7, & 1.8

—> Major Features
Multiple databases
Datatrieve-14

Journalling conirol

—> New features since Version 1.8

DBQ - datatypes
repeating groups

DBO - New volume on journal
Exit status from all utilities
Subschemas and CALC records
Documentation

Security

6 40 | abey
£'¢'G ‘bag

€t-g

DMS

SIG Menu response

—> Fall 1981 List Response:

Alias *
FDML translates names

Performance ¥
Timer and documentation

Restructure Utility *

Data Dictionary #
Covered later this session

» I will be in the camp ground

to talk about these questions

DMS SIG Menu response
Fall 1981 List Response:

—> Describe the implications of using
a single thread sysiem.

Two attributes that make it single
threaded:

Lack of concurrency control

All access is done through
a single program (DBM)

6 40 Z sbed
£'€'g beg

7i-g

nse
—> 1AS user information: Ti. DMS SIG Menu respo

from last session:
Operator/DBA interface changed —> Good news

tatypes: DBG supports them all
DML programs are restricted to Datatyp PP

o6 KB Performance measurement;
; DBA timer
Version 2.0 uses more node pool Described use of statistics
than Version 1.7 even for
3 single database system Journalling: End of Volume

6 Jo ¢ sbeyd
£'€°g 'bag

G1-g

DMS SIG Menu response
Concurrency Problems:

Recovery
Undetected interference can
corrupt data and pointers

Implications:

Data integrity is reduced in
concurrent update mode

Programs which don’t share data
can run safely

All requests channel through DBM

Problems:

Buffer Contention
Other requests wait for I1/0 to

complete
Context switch time

Implications:

Programs that run with others
that are 1/0 intensive suffer

All solutions are very costly in
address space and physical memory

DMS SIG menu response

Data Dictionary

Expand the data dictionary to include
comments from the schema description
subschema, DMCL, and the DBA.
Provide a utility to extract this
informat ion,

Some of it is there now:

Comment entries from Schema

DBREPS subschema report

6 40 t abey
£¢°g ‘bag

alL-g

Data Dictionary Reports:

DMCL report:
- all areas defined in the schema
- every DMCL and what it contains

Range map:

~ page range of each area in
schema

= page range of each record within
the area

Schema record description:

~ all declared attributes plus
actual DBKey positions used
length including prefix
starting position of each field
and more

Schema set description
- All sets defined in the schema
- And the CALC set
- Owner, member, and set
characteristics

Schema procedure report
Schema protocol report
- Information stored by DBCLUC

Subschema data dictionary listing
- Records from the subschema with
- Data type, offset, byte length,

character length, picture
~ and COMMENT

Even more Data Dictionary Reports
Subschema Record Description
Subschema Set Description

- fippropriate subsets of the
equivalent schema reports

- Plus privacy lock information

6 40 § abey
£'¢'g 'bag

In. Data Dictionary Topics

L1-S

Interactive Dictionary Inquiry Tool
Your old friend DBQ can do it!

Procedure:

- Define a3 new redirection table
entry

- Create a dictionary identical
in size to the target

- Compile NETSC,SCH from the kit

- Create a subschema NETSS.S8SC

which includes all records

and sets

- Compile that subschema

- DBQ> DB NETSS

~ Remove the new redirection table
entry, map to target database

- DBQ» READY

Central

Dee ﬁanory Strocfore.

Schema

$-o1v

Yeade

§- Sﬁ\%

Af&;m&r

L
header
<h-013

§-$5-020 Sh-0OL%
£A-SWA-oYD
V
S)GAer\me
na
g’%ﬁ;@i s5-53a.05/| $5A-0Y| |
$S-02.6
$4- AM-03%
§5-55R-052
&f&*(nh
Record
SsR-052 SR-SSR-006

Shema

vecord
GR-0%b

6 40 g abeg
£'¢°G bag

freAs, Fees
S-Sp-oL ¥
@
& Dmel
SD-0r3
&ho8aD- 032
”’“‘/mct-
Y sap ot

ond Dmers

Salherd
hader
§-ol0 g-sT-026
Joorma !
&3-or7
sa OF ¢-s¢- 024
Area Fele
&A-01% SF '0/‘/
a-SAF-01Y
- sAPOYE sF- sAF-08Y
A""/’r(e
sarols

/);zeﬁf» and REco RDS
Scheyna
Wea&r
S-010
/ \
Schewa
Razsed S““‘,Ta
SR~ O3 SR-SAM-068™ SA- cr;;
She
Reeocd fres
SAM-0s6
P S4 -ssa-090
Swbschewd
?LWJ/ Aub
R S€<AM- 066 SSA- ssam 048
Sbsch
Rctc::‘j Zsk-ssam-ps P SOSS:‘\(W‘&
€sR-032 ssF:r;iq

bechema
o Y\:béu'

$$- 026

A
46-5R-0066
$6-58A- ov!

o

6 10 £ abeg
£'e'g beg

/@;w rds and Frelds
Schema
heder
S-ol?
Chscheme
headar
§5-026
z .
Sobschema
Record s"k"é:?oﬂ{
s6R-032 §R- %R- 0% cR-026
GSR- SEPR- 089 SR-§dR- 068
S"G?r‘:ma SDR- S6DR -073 ‘&.ke?: W
SDR-074 SpR- 042

SDR- SpRE-07L

COM MSV\-‘
CPES-CAS”

SDR-SPOR- 192,

DTR l'-v\-Go
SopR-190

Scuemn Ser &P€E6ffy7ﬂ 7700/
Seh
 reader
&€-010
§-sR-o/&
RC COI‘d
§R-03L
SK-SoR- 0662 SB-SmR-0és/
Swner Nem ber
Sor-046 | PRISMROE | gpp-agy
SmR- 8 - 078
Corrtre!
So-o5Y

§R -SOR- 068

SPR ~Sc - o7/

6 10 g abey
£'€'g "bag

0c-g

Owner
SoR-0%%

SoR-$SOR -0y

SSR-SXCR-OYD

S bse humy
Ownar |S%oR-gm-06/ S”b’;n‘:"*:,y &)éscﬁép{n@
SsoR-03Y » el
SSrmR-06¥ SSPR- 07

SER-SSMR-o0s%
SsR sspR-as9

55-SsoR-asx,

Subschema
Record

SSR- 652~

$S-SSR-O5

&Jékkemd
hexder

§5-02¢

SDBSLHEMA Ssr /aep)zf;sﬁ/\/m-r/oxy

6 40 g sbey
£'¢'g 'beg

89

—
.,

MEMOQ FROM THE NEW TECD NEWSLETTER EDITOR
GRES STEINKUHLER
SEFTEMBER I0, 19281

The TECO SI6 is attempting a comesback. We're doing this by

establishing communications with current TECD users and interested future
TECO users. Expertise is definately not a requirement for participation.

We need yvour help and yvouwr contributions. Do vou have guestions?
Send them to us anonomously i+ desired. We*ll answer everything we can,
ared what we can®t, we'll throw out to the user community. On all
correspondance include the operatiing system and the TECO version number
at vour site (CTRL V=%$% or E0=%% will give the version number).

Do vou have a favorite macro? Let’s bave it and we’ll all share the
wealth.

By the way, did vou know that TECD is up to version 34 (for FDF-11,
DEC-10 is up to version 3 and PDF-8 is up to version 7) and that it comes
with a page editor macro called VTEDIT?

VTEDRIT requires no knowledge of TECD commands for its usage!!! But,
it yveu do know TECO, vou now have character editing, macro editing, and
page editing at vowr fingertipst!!!?

With version 34, TECD has, once again, proved itself to be "The
Frogrammable Editor®. Here are some highlights:

~the * * statement now gives TECO the ELSE capability
within the “if" block;

~the "F° statement provides for greater FLOW control within
Tloop® and "if° blocks.

i

TECO has advanced to the point that someday a TECO guru will emerge
whi, in his madness, will produce the ultimate ——— the TEDQ operating

system {(maybe someone already has and called it UNIX').

dedicate the following:

Send all “TECO GURU

OF THE

TECO BURU OF THE MONTH

by Franklin Reynolds
of TRT Telecommunications

MONTH® drawings, questions,

GREG BTEINKUHLER

TRT TELECOMMUNICATIONS
F.O. ROX 8874

FT. LAUDERDALE, FL.

IF3L0

To his honor we

and macroas to:

| Jo | afiegd

1'2'g 'beg

69

DATAGUARD CORPORATION

15 SPINNING WHEEL ROAD
HINSDALE, ILLINOIS 60521
312-789-2277

September 21, 1981

Robert ¥, Curley
PO, Box 332
Flourtownm, PA 19031

Dear Mr, Curley:

I have enclosed a sample run and a listing of a TECO utility
which hasg proven guite useful to our BASIC+2 RSTS programmers.,

Since we are consulting on several different systems, it is con-
venient to insure our BASIC+2 modules are compiled with the

desired switches. For instance, it is quite frustrating to dis-
cover that one of your modules was compiled with the wrong math

package after a lengthy task build.

In order to eliminate these sources of errors and improve morale
at the same time, I have developed the enclosed TECO utility.
This utility will compile the last file editted with TECO, pro-

vided it has an extension of ",B25".

As the utility 1is well commented, it can be easily modified to
do any set seqguence of commands to the last file editted with
TECO,

Sincerely,

. é Zwé’?

Mark J,

Sample run (all input actually typed is underlined)

TECO A.B25/72

*EXS$$

Ready

MUNG BP2

Ready

BP2

PDP-11 BASIC-PLUS-2 V1,6 BL-01.60
BASIC2

OLD A,B2S

BASIC2
COMPILE/NOLINE/NOCHAIN/OBJECT/DOUBLE
BASIC2

EXTIT

Ready

Ready

Page 2

C 40 | afed

DATAGUARD CORPORATION e 15 SPINNING WHEEL ROAD e HINSDALE, ILLINOIS 60521 @ 312-789-2277

T'¢'9 bes

ey

Seq. 6.2.2

Page 2 of 2
t# TECO utility: BPZ.TEC
This utility will executs the ATPK CCL, whieh will comsrile the
last file edittad if it has the extensicon *.BZ28",
It is executed with @ MUNG BP2 monitor eommand er an "EGBP2¢$" command
from TECO.
*1
i Build & 2 disit leading zero Filled .dob number !
(EJ-10)"L i# Is the Job number less than sten? #!
I0¢ i® Yes?, then we need = lesding zero #i
L4
EJ\8$ i® Insert the Job number &i
(.~27.Kd i Btore the Job number in @-res. J #i
(.=2,.)D I# Delate the Job number Prom the text buffer 2|
1% Build the TECFJJ.THP File emen =i
12ERTECF® t# Uren vead, “"TECF" + #i
gJ i®# + Job number + &i
BI\.THPSA 14 + * THPS* @i
iuose i# Return the oren stEtus in @-ves O #|
HXO i#* Store the TECO *memory® file eron &f
HK 1 Clear the text huffer =t
MO% i# Attemrt the TECD “memory® file oren #i
[claldi] i# IFf the oren was unsuccesful, rercrt this and sbert #|{
*ACan’t find TECO memory file — Abortina”“AaC"C
¢
Y i# Read in the TECO memory File #i
J i# Get to the Seminnins of the bkuffer #i
:8.8B288"U i# If the lust file editted does not have #|
i an extension of *.B28%, rercrt thig a&nd abort #!
~ABASIC+2 not last Pile editted — Abortins"A”CAC
¥+
J I1# Get to the besinning of the text buffer #!
:8/%%8 i# If there are any switches delete thes &!
(.-1.2)D
’
HXF 14 Btove the BASIC + 2 Pile srecificatien #i
HK t# Ciear the text buffer #1i
t* Build the indirect command file eren #1
I1:ENBP2ZFe t# Orpen For outeut, “BP2F®" <+ #i
GJ 1% + Job number + #i
RIN.THP/MO: 15388\ % + " _THP"] Create at tor of UFD #!
1U0® 1% Return oren stgtus in G-res O &|
HXO t# Btore indireot command Ffile oren @}
HK {# Clear the text bhuffer #{
MO t# Attemet the indirect command file oren #!
ao"y t# IFf the oren was unsuccessful, rerort this fact and abert #i
"AUnable to oreate indirect command file — Abortinm*A”C*C
4
f{# Build the CCL command streas For ATPK #|
IEGS f* The exit to moniter and issue meniter command #|
Ige 1% The ATPK CCL (ocould vary by installatien) #{
I BPZ2Fe 1% “BP2F* + 8}
GJ i# + Job number + #i
BI\.THPS\ {4 + “"_THP" «|
HX3 i# Btore the ATPK CCL command line (8 SPZFJJ.THP) #i
HK 1# Clear the buffer &f
¢ Build the indirect command file &|
iBP2
OLD ¢ GF IR
COMPILE/NOLINE/NOCHAIN/OBJECT/DDUBLE
EXIT
 J
MG {# Exit to monitor, Forcina ATPK CCL cemmand line #!
1 :

6-10

6-11

noviva

!

=

[+

al EHl %

VL

1

VAX INFORMATION ARCHITECTURE OVERVIEW

The VAX information architecture is made up of a highly
integrated set of information management products that are
supported by the VAX/VMS operating system., These products were
developed on the principle that a typical user needs a variety of
approaches to meet all of his or her information management
needs.

With VAX information architecture, different users, different
departments, different applications, and different VAX systems
can have different file structures, Yet these different file
structures can all be accessed through a single set of consistent
commands.

Because the components of the architecture are arranged in layers
above the operating system, it is possible for the components on
one level to use the facilities of the other components,

On the top level, the VAX languages and VAX-t11 FMS (Forms
Management System) provide a user interface for interactive and
language-callable video forms., VAX-11 DATATRIEVE supports
English-like queries, hard-copy reports, and graphics. On the
next level is the VAX-11 Common Data Dictionary, which integrates
the other components of the architecture, and the VAX-11
DATATRIEVE high-level and distributed data access facilities.

The lowest level consists of two multi-user, data management
facilities: VAX-11 BRMS (Record Management Services) and VAX-11
DBMS (Database Management System),

Figure 1 shows these components as a series of interlocking
building blocks that fit into a well-defined software structure,

VAX INFORMATION ARCHITECTURE OVERVIEW

———— e 4

| | |
i VAY-11 i VAY-11 |
! LANGUAGES ! vMS |
: ; VAX-11 '
] | DATATRIEVE |
i VAX~11 ! i |
| COMMON DATA i] i
] DICTIONARY ! i |
VAX~11 RMS VAX-11 DBMS

e P e s

VAX/VMS

Figure 1: The VAX Information Architecture

This modular design offers several benefits. You have the
flexibility to choose the appropriate solutions for both central
and departmental applications. You gain an increase in control
over your information, which in turn provides increased integrity
and security, More efficient data processing tools mean
increased programmer productivity. Finally, you can protect your
current software investments while building a foundation for
future growth.

The following sections focus on the features and benefits of
three components of the VAX information architecture.

VAX-11 COMMON DATA DICTIONARY (CDD)

When data is managed with conventional file or record management
methods, the programmer must include a description of the data
and how it will be used in the logic of the program. To use the
data effectively, the data processor must understand how the
program is written and how the data is stored. In addition,
storing data definitions in programs can lead to different
definitions being created for the same data, which increases the
likelihood of data redundancy and inconsistency.

The Common Data Dictionary, or CDD, provides a major step towards
eliminating redundant data definitions by serving as the central
VAX/VMS storage facility for data descriptions shared by VAX-11

1'Z’L "bag

-5 -

¥ 40 | abeyg

<L

VAX INFORMATION ARCHITECTURE OVERVIEW

DBMS and DATATRIEVE. The CDD stores only the data descriptions,
not the data itself.

The CDD is organized as a hierarchy of dictionary directories and

dictionary objects, similar to the VMS directory system., This
structure allows different users to organize their portions of
the d?ctionary according to their needs. Figure 2 shows how an
organization might set up its directories under the topmost
directory, CDD$TOP.

CDD$TOP
/ \

/ / \
/ / \
MARKETING ENGINEERING EMPLOYEES
/ /
/ ’
SMITH /
MEDICAL_HIST

Figure 2: Example of CDD Hierarchy

In this example, Division A and Division B do not have access to,
or even awareness of, the other's portion of the CDD. The
departments within Division A, ~— marketing and engineering --
have their own sections of CDD space and share access to some
directories, such as "EMPLOYEES". Smith, an engineer in. Division
A, would have access to those portions of the CDD storing the
data descriptions he needs to do his job. The directory
hierarchy allows him to arrange those definitions in whatever way
he finds most useful, Each group using the CDD can use access
control lists to protect directories and prevent unauthorized
users from reading, updating, or deleting stored definitions,

The CDD structure, therefore, permits flexibility on an
organizational, departmental, and individual level. 1In addition,
because programmers no longer need to embed data definitions in
their programs, the CDD provides data independence and data
integrity.

You manage the CDD with the Dictionary Management Utility (DMOD).
You can use DMU to backup and restore the CDD, to create and
delete CDD objects, to create and delete dictionary directories,
and to create and delete control lists.

VAX INFORMATION ARCHITECTURE OVERVIEW

VAX-11 DBMS

VAX-11 DBMS is a CODASYL-compliant general purpose database
management system based on the March 1981 Working Document of the
ANSI Data Definition Language Committee, It provides multi-user
support with data security and performance features needed for
large-scale applications. At the same time, its ease-of-use
features make it suitable for developing small- and medium-scale
databases.

A database consists of database -storage files and the database
root file. The storage files are for storing database records.
The root files contain data definitions used by the Database
Control System (DBCS), the run-time controller of VAX-11 DBMS.
The major functions of the DBCS are to monitor database usage,
act as an intermediary between VAX-11 DBMS and VAX/VMS, and
manipulate database records on behalf of user programs. A
separate VMS process, the DBMS Monitor, controls access to the
database.

A major feature of database programming is that records can be
directly linked in meaningful relationships called sets. If you
were designing an inventory application, for example, you would
want the relationship between the parts you keep on hand and the
supplier who provides those parts to be accurately represented in
the database, Because VAX-11 DBMS is a network model database
management system, you can define set relationships between any
records in the database, not just those sequentially or
hierarchically above and below the record.

The schema, storage schema, and subschema contain the definitions
for records and relationships between those records. The schema
and subschema describe the data characteristics and relaticnships
of the database; the storage schema defines the physical
structure, You use data definition languages, or DDLs, to write
the three schemas. These are then compiled and stored in the
CpD.

There are several ways to process data stored in VAX-11 DBMS
databases:

e The interactive DML (data manipulation language) utility, DBQ

® Callable DBQ, which allows all languages that conform to the
VAX/VMS Calling Standard to access a VAX-11 DBMS database

¢ VAX-11 DATATRIEVE
Figure 3 shows how these various components interact at run time

with the database and the CDD. (DBCS is the VAX-11 DBMS Database
Control System; DBQ is Database Query.)

s T

t 40 g abeg

L1'g°L beg

€L

VAX INFORMATION ARCHITECTURE OVERVIEW

APPLICATION ™% INTERACTIVE
PROGRAM USER
DBQ DATATRIEVE S coD

NS/

DBCS \

MONITOR

DATABASE

Figure 3: Run-time Interaction of (DD, DATATRIEVE, and DBMS

The DBO (Database Operator) utilities provide a variety of system
procedures to help operate and maintain databases. These
procedures include database alteration, verification, reporting
statistics, and backing up and restoring databases, DBJ and DBR
are separate processes that handle journaling and recovery
functions, Certain DBO operations start these processes
automatically.

VAX-11 DATATRIEVE

VAX-11 DATATRIEVE is a data management tool for inquiry, update,

-8 -

VAX INFORMATION ARCHITECTURE OVERVIEW

and maintenance of information stored in databases. It has the
flexibility to meet the needs of casual users and professional
data processors. DATATRIEVE can serve as a single, high-level
interface to RMS files and VAX-11 DBMS databases. As a result,
if an application changes or a new one is added to the system,
data processors do not need to learn new skills,

Figure 4 feccuses on the DATATRIEVE section of the illustration
used in Figure 1 to highlight DATATRIEVE's role in the VAX
information architecture.

! QUERY AND H |
' REPORTING i GRAPHICS i
1 1 !
1 i i
| HIGH LEVEL ' DISTRIBUTED '
' DATA ACCESS ! ACCESS '
|] 1

Figure 4: VAX-11 DATATRIEVE Components

Entire applications can be written in DATATRIEVE, or programs can
use the VAX-11 DATATRIEVE Call Interface to access data and to
produce reports, A program accesses DATATRIEVE similarly to the
way an interactive user does., Programs pass command lines to
DATATRIEVE and receive back records, print lines, and messages.
Once the programs have retrieved records from DATATRIEVE, they
can perform complex statistical analyses, other varieties of
large-scale computations, and complicated report formatting;

they can also produce data and use it to modify and store
DATATRIEVE domains. The Call Interface, therefore, allows you to
combine the data manipulation power of DATATRIEVE with the
computaticnal strengths of programming languages such as COBOL,
BASIC, and FORTRAN.

The VAX-11 DATATRIEVE interface to VAX-11 DBMS lets you guery,
report, and manipulate data in CODASYL databases created and
managed by VAX-11 DBMS. The DATATRIEVE record selection
expression contains optional clauses that let you work with
database set relationships. To allow database-specific
operations, several DATATRIEVE verbs are reserved for use with
VAX~11 DBMS., In addition, the DATATRIEVE Context Searcher helps
you simplify your record selection expressions when you work with
complex set relationships,

The DATATRIEVE Report Writer helps you display data in
easy-to-real formats., You can display a report on your terminal,

=g -

40 ¢ abey

L2, beg

7L

VAX INFORMATION ARCHITECTURE OVERVIEW

VAX INFORMATION ARCHITECTURE OVERVIEW

print it on a hard-copy printing device, or store it in a VAX-11
RMS file for display or printing at a later time, The DATATRIEVE

Editor closely resembles the VAX-11 EDT Editor. It lets you edit concepts and features.

in either line or character mode and use keypad or nokeypad of each section;
commands. With the Editor, you can change the CDD definitions of booklet ,
procedures, domaing, records, and tables, and you can correct

errors that result from faulty typing, syntax, or logic in your

DATATRIEVE commands and statements.

The DATATRIEVE interface to VAX-11 FMS, a forms management
utility, lets you display, modify, and store records with a video
terminal whose screen is controlled by FMS forms definition, If
a form name is used as part of a DATATRIEVE domain definition,
DATATRIEVE automatically uses the form to collect or display the
associated data.

With DATATRIEVE Graphics, you can generate several different
types of graphs using a VT125 terminal, The graphics include pie
charts, histograms, scatter plots, and time series. 1In these
charts and graphs, you can plot field values against other field
values, against frequency of occurrence, and against dates.

The Distributed Data Manipulation Facility (DDMF) allows you to
retrieve data from remote VAX-11 DATATRIEVE nodes through DECnet
communications software. This capability makes it possible to
use DATATRIEVE to retrieve data on remote VAX systems, whether
that data is stored in RMS files or DBMS databases.

DOCUMENTATION FOR THE VAX INFORMATION ARCHITECTURE

Documenting as diverse and complex a product set as the VAX
information architecture offers many challenges, in particular
because each component can be used alone or in combination with
other parts of the architecture, The conventional user's
guide/reference manual approach seemed too limited for products
with a wide range of capabilities that would be used by
professional data processors, programmers, and casual users
alike.

Hence, the documentation sets described in the next three
sections not only document software features, they address the
tasks you may want to carry out with the software., 1In addition,
each documentation set offers comprehensive explanations of data
management concepts, complete descriptions of command syntax, and
cross-references to sources of further information.

The documentation directory that follows can guide you to the
manuals that describe the VAX information architecture components
that interest you most., Each summary explains the purpose of the
manual, describes its intended audience, and lists the manual's

- 10 -

to order manuals,

- =

Order numbers are listed at the beginning

see the last page of this

4 40 abey

1'2'L bag

Seq. 8.1.1

Word Processing Passages

Paul D. Clayton

We are using a WS248 in conjunction with a PDP 11/70 for mass storage
of all documents. The software package we use is DX/IAS which was written by
DEC. In using the software we have encountered a number of problems that when
reported to DEC fall on deaf ears. I am using this newsletter as a means of
spreading the word and providing a forum for future passages by any interested
parties. Below is a list of the changes we have made to the DX/IAS software
here at Naval Air Development Center, Pa.. If anyone is interested in how we
did what we did, feel free to call and we will see what we can work out to pass
information back and forth.

FILES MODIFIED:
WPBDIR ~ 1) ADD IN CODE FOR PAGE HEADERS TO BE PRINTED ON THE TOP OF
EACH SUCCESSIVE PAGE.
WPBPIP ~ 1) MODIFY CODE TO STORE/RETRIEVE ALL THE PRINT SETTINGS OF A
A DOCUMENT. THE REPLACEMENT CHARACTERS WERE BEING LOST
IN TRANSFERRING A DOCUMENT BACK AND FORTH.

ADD IN COMMENTS FOR DEFINING WHAT THE POSITIONS IN THE

DOCUMENT HEADER ARE.

2) MOVE THE POSITION OF THE ‘IN'
THE HEADER. THIS ELIMINATES THE CONFLICT WITH THE
(STOP BEFORE EACH PAGE) OPTIION.

IMPACTED MODULES: WPSLPT,NEWSET,DISPLA
3) PUT IN CODE TO INITIALIZE THE PRINT DARK VARIABLE ‘DA'.,

WPBLPT ~ 1)

1-8

(DIAGNOSTIC LINE NUMBERS) IN
ISEI

FILES ADDED:

WPBCHG - 1) REWORK OF 'WDE'
NAME. UP TO 64 CHARACTERS CAN BE ENTERED.
OTHER DATA IN A DOCUMENT HEADER.

IMPACTED MODULES: WP8CHG

TO PROVIDE THE CAPABILITY TO CHANGE A DOCUMENT
NO CHANGE TO ANY

?2?2TKB.CMD ~ ARE NEW TASK BUILD COMMAND FILES FOR ALL, THE DX PROGRAMS
WHICH MAKE USE OF THE FORTRAN IV RESIDENT LIBRARIES. THIS
SAVES APPROX. 10KW OF CORE FOR **EACH** COPY OF A DX PROGRAM
WHEN IT EXECUTES. CORRESPONDING CHANGES HAVE BEEN MADE
TO 'DXINS.CMD' TO USE THESE FILES.
IMPACTED MCDULES: DXINS.CMD
WP8SPE - 1) This is a spelling DETECTION program that will take a WpS file
or a standard host text file and check it for unknown words. A
listing is generated with all unknown words underlined for easy
locating of errors. The dictionary we have is approx.
forty-four (44) thousand words long. There is a means to add
words to the dictionary as new ones are found and verified.
The host operating system must have RMS-11K avaible for this
program to run.

WORD PROCESSING WITH DEC COMPUTERS

Seq. 8.2.1

ADVANCED PRACTICAL HINTS AND TECHNIQUES

Lawrence H. Eisenberg

17141 Nance Street

Encino, California 91316

ABSTRACT

This paper (¢iscusses various handy hints and kinks associat-
ed with the use of Word Processing Systems on the PDP-8 and

PDP-11 systems.

While developed primarily with WPS-8,

the

routines and hints offered generally are applicable with

WPS-11
utilizing the WPS-8 format.

and other commercially available systems currently
The discussion presented below

consists of the various matters presented at the Spring 1981
Symposium in a Panel Discussion with Vicki Ann Rose, Mana-~
ger, Marketing Development and Research -- Word Processing
and Scott Shulga, Manager, Market Planning and Development
~~= Word Processing of Digital Equipment Corporation,
Merrimack, N.H. and Lawrence H. Eisenberg.

"USING YOUR INDEX" AP!LICATION

Will Allow You To:

* CREATE OPERATOR STATISTICS
% LOG FILE/DOCUMENT LOCATION
® GENERATE TABLE OF (ONTENTS

INTRODUCTION

The following is a "super" application for develop-
ing a file (or document) loecating system, to
generate Table of Contents, or .record-operator
statistices. It is based on "adding fields" when
first creating your documents (i.e., by adding the
tfield" names to the name of your document, you
create fields which may be referenced in your
index). It has numerous uses!!! It will allow
users to build upon their index. Information such
as author <a>kac, date <d>10/10/80, typist <t>db,
location of document <loc¢>RL2:SECT10, can be includ-
ed aleong with the title. The C denotes Create from
the MAIN MENU,

Example: C "Using Your Index" <adkac <d>10/10/80
<t>db <loc>RL2:SECT10

[When you view the index of your documents, every-
thing following the left angle bracket will not be
displayed, but may be referenced using list proces-
sing. Read on -—]

Another use may be to generate Table of Contents by
typing in titles, page numbers, ete. The index then
can be used as a 1list document in 1list processing
and the form can be whatever the you require. A
field can be included to indicste that this is a
title line <tl> and used in list processing, those
not containing <t1> will not print (if you don't
define it to be printed).

The really neat thing is that the system automatic—
ally assigns the fields <n>docunent name, <#>docu-
ment number and <>end of record. Other data needed
can be created within the document name. The limit
for titles is 68 characters. The other feature of
this procedure is that when "I for index is typed,
only the information to the first "<" is displayed.

Proceedings of the Digital Equipment Computer Users Society

The other information is stored in document 1, the
system index. Please note that it is not necessary
for the list document to be vertical. The system
looks only to the next "<'" for the next field.

APPLICATION PROCEDURE

The main idea of modifying the index file generated
by Digital's word processing system is to create a
more detailed file indexing scheme. This is accom—
plished by including parameters in a list processing
format in each record of the diskette .index file.

The term "list processing format"™ means a variable
name enclosed in brackets "<" and ">" usually with a
value following the closing bracket.

e.g., <m>manual A.
These fields or parameters can be edited directly
into the system generated index file, document file
one (1), or when a new file is created on a diskette
or RLO, the parameter can be included in the file
name . For example, in creating a normal non-
modified file the format would be:

C filename
But with the modifications it could look like:

C filename <fieldi>valuel <field2>value2

<field3>valuel
An example of its use would be:
C Letter to John Jones <adkac <d>10/10/80 <t>db

This would translate as:

C= Create Letter to John Jones
<a> = author, kac n-:“
<d> = date, 10/10/80 e
<E> = typist, db et
(=]
BENEFIT ..,
_— o

Modifying the file index without altering the normal
system created values does not hamper the original

Miami Beach - May 198§

1'2'8 'bag
| Jo | afieg

1'1'8 'bag

Z8

intent of the diskette Index. When the file is
deleted the parameters added to the index file are
also deleted. The only requirement when passing
these parameters to the index file is that one space
must follow the filename. Spacing between the other
added fields is not necessary.

Because cur index is a document, fields can be added
or deleted at any time. If it is necessary to ex-
ceed the 68 character limit - keep in mind that this
restraint is only during CREATING titles, once docu-
ment one is called up for editing, the one line
1limit no longer applies. That is, you may add as
much as you feel is necessary to the description in
document one, so long as you do not disturb the
required sequence following your descriptive matter.

On Digital's word processing system the index is
created automatically and maintained by the system
for each diskette with one index file per diskette.
When a file name is created an associated document
pumber 1is assigned by the system and that newly
created file can be accessed by either the file name
or document number. Upon inspection of this system
index file the information was stored in a list
processing format of:

<n> TITLE OF EACH DOCUMENT <#>2<>

Recognizing the fact that the '<n>' is the name of
the document and the '<#>' is the associated
document position on each diskette.

An overview of 1list processing is a method of
processing variable names and the data associated
with each name against a standard form letter and
producing a separate letter for each grouping of
variable names. A common application of list
processing 1is where a form Jetter is created for
each address of a malling list. Sorting and
selection criteria may be performed on the 1list
processing file. In the example of the mailing list
the addresses could be sorted on zip code and then
only one state could be selected to produce the form
letter.

By modifing the system created index, which Dby DEC
design is always document number one, more variable
names and values may be added without affecting the
indexing concept of the word processor. Thus, the
following variable names (or parameters) and values

could be entered for each document in the index
file.

Parameters Values

<flpy> Diskette Number

 Manual Number

<s> Section number of the

manual
<35> Sub-section number

Now, a file exists that contains the desired
information and can be copied, combined with other
indexes to produce a master index and printed using
list processing.

To illustrate how these parameters are entered for a
new file for Manual 1, Section 3, Sub-section 5 on
diskette number 12 the command would be:

€ NEW FILENAME <flpy>121<s>3<83>5

This command with a space after the file name
establishes the parameters in the diskette index for
each file created by this procedure. Several func-
tions now may be performed on this medified index
file. Producing sorted indexes according to the
desired formats and printing selected file informa-
tion is the biggest advantage. For example, an
alphabetical list of file names for one diskette of
a documentation manual may be produced indicating
the diskette number; manual number, section and
sub-section; amd document position en the diskette.

ADVANTAGE

811 of the above procedures have been designed in
order to ease the task of indexing, editing, print-
ing, cross-referencing, and filing of word proces-
sing documentation.

Using your index in this manner allows the user to:

#% Record Operator Statistics (author, date,
typist, ete.)

¢ Mechanical Procedures Manual <a>kac
<d>10/10/80<t>db

"E Record File Llocations (diskette #, RL#,

ete.)

C Mechanical Procedures Manual <d>12A or
<ri>2<sec>10

#* Generate Table of Contents (code in vitles,
page numbers, etec.)

C MPM <tld>Mechanical Procedures Manual
<pg>12 <chart>IIl

* Break down documents for ease of editing by
section, page, etc.

C MPM/1 <pg>10 <div>h

L Keep track of correspondence by topic,
case, KEYWORDS.

¢ J.Jones <e>#12568-80 <red>litigation
<k>drunken driving

*# Use the word processor for a database in
KEY areas by coding in keywords and then
sorting on those needed.

** If a document changes — <r’revised dates
can be added.

#* If it is a master <m> document - it can be

denoted.
#% Using Document 1 - Allows for index
flexibility because it can be edited.

Information can be added deleted or
changed.

Adding <fields> + values to document one (1) can
give the user a lot of flexibility in Table of
Contents generation, archival information, allow to
sort on <kw>key words, <re>topics, <gedgeneral
correspondence, add <rorevised dates, sort on date
for deletion or archiving, and in conjunction with
list processing and the wild card <*> feature, opens

a lot of areas. TRY ITti{!!. All that is needed are
a few fields that they require and can be adapted to
their needs. It is NOT necessary to have the fields
identical in the index, the system will bypass those
it does not need and use only the ones specified.
If you are looking for the same information, it must

be coded in that matter. If <re> is used for
regarding, it must always be <re> and not <RE> or
<R>.

A1l the the normal list processing rules are in

Have you ever been asked if you could track any of
the following? Using this procedure, NOW YOU CAN.

<t >typist <tl>title line
<arauther <flpy>floppy number
<d>date <secd>section number
<{div>division <dod>due out date
<{di>date in <p>page number
<1>letter <ta>turn-around time
<w>what <m>meme

<e>case title <{redregarding: topic
<atdattorney <eit>case number
<rdrevised date <{rep>response to
<kwdkeywords <info>sent information
<dist.>district <sreprsales rep

Use a little imagination and you have indexing by
page, section, table of contents generation,
tracking of correspondence, turn-around times,
revised dates, logon information, storing of
keywords, a 1list of who to send literature to,
product announcements, etc.

PLEASE NOTE:; IF this procedure is going to be used,
especially by new operators, do a GO GET DOCUMENT®
and make a back-up of the index document (#1) to
protect file information. Remember that document 1
is the system generated document and cannot be
deleted or the Index will be lost. To recreate a
lost Index, however, you may edit each document by
document number and pick up the document name. You
then may recreate the Index, using the field identi-
fiers normally created in the Index.

LIST PROCESSING HINTS
FIELD IDENTIFIERS AND DATA PROCESSING

The ®lists® which are developed in list processing
often sre useful for data processing activities as
well as many of the Word Processing and List Proces—
sing purposes. For PDP-11 users, many of the data
files developed under Word Processing may be addres—
sed directly by data processing. However, for FDP-8
users the WPS-8 files (which are saved in a format
similar toe C0S-310) cannct be addressed directly by
C05~310 or 0S/8. While the WS-200 series originally
was disigned to provide for direct communication
between Word Processing and C0S-310, this feature no
longer is supported and the WS-200, as with all
other WPS-8 systems, requires conversion to utilize
the files. (Conversion utilities for WPS-8 to both
€05-310 and O0S/B are available through the DECUS
LIBRARY. These utilities transfer list processing
type files between the various systems. The conver-
sion procedures are not discussed in this paper.)

It is most helpful, therefore, to maintain the
LIST FIELD IDENTIFIERS as upper case characters.
While the DEC WPS manuals show the field identifiers
(e.g. -~ <field1>) as lower case fields (indeed, the
entire article, above, uses lower case), such was
not meant to be a required form for identifying the
fields. The use of lower case by DEC was a throw-
back to computer manuals which used lower case to
indicate operator decisions, as opposed to upper
case which indicated mandatory acts.

Since each of the WPS-8 systems utilizes special
characters to indicate lower (and upper) case
shifts, any conversion program is going teo require
considerable additional (and wasted) time in order
to perform the conversion, as each of the special
characters will have to be stripped from the field
before the data can be used by the data processing
system.

If there is even the remotest possibility that your
list files will be used in data processing, it is
important to avoid the use of hard [the RETURN key]
returns except at the end of a field identifier. In
other words use one identifier for every line of
text. For example:

DO NOT USE

<NAME>John Doe
<ADDRES>123 Any Street
Our Town, U.S.A.

00123

DO USE

<NAME>John Doe
<ADD31>123 Any Street
<ADDS2>Our Town, U.S.A.
<ADDS3>

<ADDSH>

<ZIP>00123

In many conversion programs, and nearly all data
processing pregrams, the carrier returns within a
field may be read as a terminator, and the informa-
tion following the return may be lost during the
conversion or use by the program.

While the use of several fields may appear somewhat
cumbersome at first, the benefits scon become very
apparent. Also, the more available fields, the
easier it is to edit and to SORT!

SELECTION SPECIFICATION -
CHARACTER EXISTS

T0 SELECT ONLY IF SOME

The DEC manuals fail to disclose the selection
specification which can be used to select a record
only if a field has information. The wild card

specifications presented by DEC are <?> and <¥®.
The <?> is used te replace a letter (i.e., it must
be preceded or followed by some character other than
a <?). The <*> is used to define a field as
containing ANY OR NO characters.

From time to time it is necessary to select a record
ONLY IF A GIVEN FIELD HAS SOME INFORMATION. E.g.:

(1) if<field5> =<2><®>
then process record

6 40 g sbeyd

12’8 bos

€8

(2) not if<field5> =
then process record

Of the examples given, each should result in the
record being processed only if the information is
present. Example 1 is believed to be more reliable.

DELETING UNUSED LINES FROM FINAL OUTPUT WHERE THERE
IS NO DATA

This is a repeat of an article dealing with this
same subject in the last Symposium Papers. It does
include some updated information which may prove
helpful to you.

DEFINING THE PROBLEM: EMPTY FIELDS ON LINES WHICH
SHOULD NOT BE PRINTED. The problem which often is
encountered is how to eliminate blank lines which
are printed when there is a field which is empty,
but which has been defined in the form. We will use
an address block as an example.

<NAME>
<TITLE>
<COMPANY>
<APT/SUITE#>
<ADDR 1>
<ADDR2>
<ADDR3>
KCI/ST/ZP>
<DROP>

In the example presented it is obvious that several
of the fields might not be present in the final
printout. The individual may have no title; s/he
may not be associated with a company; there may be
no apartment or suite number; there may only be a
single . address. line. ‘However,. ~if the FORM is
created in the .manner indicated, which, in the
example {(and only by way of illustration) would be
the same as the LIST, the final output would be
printed with blank lines for each line on which
there is missing data.

There is a solution. It takes a little planning,
but once understood, it is simple to apply to every
situation. (Just keep in mind, however, that this
solution will cause each missing field to disappear
and to bring the following 1line up one line feed!
You must remember to allow for this, if the missing
lines could affect other line-count features of your
form.)

The first step is in the creation of a FORM. To
accomplish the desired result for any set of circum—
stances it is necessary to create two FORMS. [NOTE:
If you are pasitive that there are no spaces follow-
ing any blank field, then the FIRST FORM is not re-—
quired, i.e., you may proceed directly from your
1ist as with the second form described below.] The
first FORM should include only the variable informa-
tion, and will, itself, become the LIST which then
will be used to create the actual FORM or PRINTOUT.
THERE CAN BE NO SPACES OR TABS ON ANY LINE WHICH MAY
»DISAPPEAR", EITHER IN THE ORIGINAL LIST OR ON THE
FORM. (Adjust the Left Ruler in lieu of a single
tab, if indentation is desired.)

The FIRST FORM is created to determine which, if
any, fields are not present and automatically to
create a "wrap", as opposed to a HARD RETURN, for
each such field. It also is used to create the

second LIST. To accomplish this, it is necessary to
create "soft" returns on each line _which may not
have information upon a field. This is done by
using dummy rulers after each line which reasonably
is expected to "wrap". Using the LIST above, and
assuming that EVERY LINE may possibly have a missing
field, we could create a form as follows [NOTE THE
RULERS!]:

L R-
. 1 . 2 - 3 - L

RN I
1

<<KNAME><NAME>

a0 nsaiions sweilewwmmencns O

{<TITLE>TITLE>
L

<<COMPANY ><COMPANY>
LT

<<APT/SUITE#><APT/SUITE#>
L.

<<ADDR1><ADDR1>
LT

<<ADDR2><ADDR2>
L.

<<ADDR3><ADDR3>
LT

<LCI/ST/ZP><CL/ST/ZF>

<<DROP><DROP>
LT R
<>

Note that each of the rulers is identical, except
for the dummy tab which follows every alternate
ruler. The only purpose for the tab is to create a
new ruler which can be imbedded. (If the rulers
were identical, they would all disappear, and the
method described could not be used.) Also note that
the last line, DROP, has been indented by changing
the left margin. The "indent" feature may be used
on any line and is used to avoid the insertion of
tabs or spaces which necessarily will defeat this
utility. Also note the "<<>" jdentifier to create
the new list! (Down arrows indicate hard returns
which may be observed with GOLD VIEW.)

Using the blue EDIT keys, proceed to the beginning
of each line AFTER A LINE WHICH MIGHT RESULT IN AN
EMPTY FIELD. Use the Blue LINE key to travel from
line to line. With the cursor on the left margin,
strike the RUB CHAR OUT key ONCE. (This will delete
the hard return and, upon a GOLD VIEW, will diseclose
a funny looking circle at the end of the sentence,
instead of a down arrow.) Repeat for each line
which might reasonably be expected to have an empty
field. [If it becomes necessary to edit the last
letter, back the cursor to the end of the line ~-
this will place it under the last letter -- and
insert the new characters. The last letter will
continue to travel and, if undesired, must be
deleted.] Run the List Processing feature, creating
a document. The document created by this feature
will, itself, become the LIST for the second part of
the program.

Upon completion, you will have created a form which,
when operated with the List Processing Feature, will
result in a new LIST which will have "wraps" in each
empty field, between a ruler. YOU MUST BE CAREFUL
TO AVOID TABS OR SPACES IN EMPTY FIELDS AND IN THE
FORMS or this utiiity will not work properly.

o

The SECCND STEP is to create aiother FORM, which is
identical to the first, except for the special field
indentifiers. REMEMBER — if jour original list is
free of imbedded spaces following empty fields, this
3tep may be your first step.

From the following illustration, note that that
extra field identifiers have been removed. This
will be the final list and will eliminate the spaces
between lines which otherwise would have been
created as a result of unwanted fields.

If you should find spaces between lines, the problem
most likely will be that tabs or spaces were imbed-
ded in either the FORMS or the originsl LISTS,
Check them carefully.

The following form is such an illustration:
. 1 . 2 . 3 . 4 . 5

weswalisses seaOavsvvasDosonnsn Dvscassann 0..
L R

<NAME>
LT. R
<TITLE>
L.

COMPANY>
LT R
<APT/SUITE®>
L.

<ADDR1>
LT

<ADDR2>
L

<ADDR3>
LT

<CI/ST/ZPY
1

<DROP>
LT R

As with the first FORM, line feed to the begin-
ning of each line AFTER the field which may not
be present;, and enter a RUB CHAR OUT to delete
the hard return. (If you merely copied the
document, be careful, as you may delete a
character from the preceding line. To edit this
problem, BACK UP to the preceding line (you will
be on the last character). te~type the last
character (the cone which is above the cursor)
and any character which was deleted. Finish with
a hard return. Delete the remaining character
above the cursor, which should remove the hard
return, also. {(Check with GOLD VIEW.)

Now, USING THE NEW LIST CREATED BY THE LAST FORM
AS YOUR LIST DOCUMENT, run the list processing
again, This time, the new document (which also
can be a direct PRINT) will cause all of the
empty fields to "fold" upon themselves, so that
all of the rulers with "soft" returns will col-~
lapse and final output will be without lines be-
tween information. While all rulers will appear
on the screen, there will be no returns within
them; the printer will skip to the next line of
text without printing the "empty" lines.

If it appears that there is a space between
rulers on which there was no data, check to see
if there had been a space or tab on either of

the FORMS or LISTS used for the procedure.
Check your original LIST with GOLD VIEW, Each
empty field's right arrow should be followed by
an immediate down arrow (without a space).

Remember, you only have to create the two forms
ONCE. They can be used for every processing
run. (Actually, you need create the form only
once, and then add the extra field identifiers
to one of the forms. If you should get a line
wrap, because of the extra space required by the
new field identifiers, don't worry. The program
automatically will adjust.)

PROGRAMMING NOTE: Although you can use the same
selection specification for both forms, you also
can use the simple specification of "process
record" for the second run, as you already have
specified the records to be used.

COMFORT NOTE: Although this may appear somewhat
clumsy, it actually is rather easy and once you
get the hang of it, you will find the procedure
very usefull

USING LIST PROCESSING TO CREATE AN INDEX OR
TABLE OF CONTENTS

NOTE: The following discussion provides a
method for creating an Index or Table of Con—
tents within a document. It is not the same as,
nor an alternative to, the preceding discussion
which uses the system index for a similar
result.

Prgsently there. is 1little ease with which to
create an index or a table of contents with the
existing WPS-8 or WFS-11 systems. While 1i-based
systems automatically can create an index and
Table of Contents, and other dedicated word pro-
cessing systems do the same, some ingenuity is
required to acomplish this with DEC's systems
(although we are assured that this, too, will
change some day!).

For the time being, a fairly long document can
become a LIST document using the following pro-
cedure.

First, copy the document over to another loca-
tion (or on another diskette), as you are going
to alter it (i.e., destroy it) considerably.

Second, decide on some easy shorthand for the
categories you are going to use with your index
or table of contents. For example, you might
wish to use <H> for headers; <N> for names, etc.
Choose a character to be used as a dummy field
identifier, e.g. <X>.

Enter a terminator and the dummy field identi-
fier in the PASTE buffer, as you will be using
it quite a bit during this exercise. (To enter
it in the paste buffer, type it and then cut
it.)
E.g.: O<X>
Start the document with the dummy field (e.g.,
<X>} and proceed te the first data which is to

6 40 ¢ abeq

1'¢'g 'bsg

8

be used in the Table of Contents or Index.
Lett's suppose the first data is a header, which
will use the <H> identifier. Enter a terminator
<> and field identifier <H> immediately preced-
ing the header and then enter the PASTE immedi-
ately after the header. Thus, the document
would appear something like this:

(miscellaneous data)

<O<HITITLE OF DOCUMENT<><X>

'
!
!
|
|
i
H
;
<O<HOFirst Subheading<><X> 1
'
t
|
{
i
!
s
i
{

(miscellanecus data)
<><X3<N>(desired name)<d><X>
(miscellaneous data)
§<> [entered as last character in document]
j————~bottom of page -

In the same manner, identify the different titles
throughout the document, such as names, subtitles,
books, etec., until you have identified each 1item
which will be used in your index or Table of
Contents.

CAUTION: As you proceed through the document, enter
the PASTE in a random manner (i.e., insert the dummy
field identifier <><X>) about every 2/3 screen, or
more often. This is necessary as no field may
contain more than 1500 characters, and to avold an
error message you will have to insert the dummy
field every so often. It doesn't matter how often
you use the dummy field, as it never will be
referenced during list processing.

At the very end of the document, be sure to enter a
terminator <> or an error message will occur (it
won't affect your program, but no error is more
comforting than some buzz error which might leave
some doubt).

After proceeding through the entire document, you
can create a very simple FORM and SELECTION SPECIFI.
CATION. The FORM may consist of a single entry
(e.g., <H>}. The selection specification may be
"process record". Operating the List Processing,
then, will transfer each datum identified with the
<H>, and will skip all of the rest. (If you have to
format the output, it will be much easier to do so
after running the list processing.)

Also, if you have the type of document which might
require some form of sorting, such as alphabetical
listings, you can perform some minimal alphabetical
sorting by use of the wild cards in your selection
specification. {This will require several runs
through the 1list processing; e.g.: if <N>=A% then
process record, will pick up every name starting
with an upper case A, etc.,) If there are only a few
records, then use of the cut and paste feature will
probably result in an easier, as well as faster,
alphabetical processing.

Another feature, which will result in much faster
operation if several field identifiers are being
used, is to utilize the double LIST feature {(i.e.,

create a new LIST with a single pass). To create a
new LIST, set up your FORM (for the above example}
as follows:

<KH><H>
<KNLKN>
<>

Processing the entire document will fill a new
document with each field, in a random manner, and
you then can run a second pass which will be more
Selective as to the order in which you want the
items to appear. All of the dummy <X> field data
will be omitted from the new LIST.

COMBINING TABULATED & CENTERED TEXT

Flush left, tabulated, or flush right text can print
on the same line with text which has been centered
(using GOLD CENTER), as. follows:

Using an "F" ruler, type two lines; one line is used
for the centered text and the other line is used for
the tabulated or flush date. Either line may be en-
tered first, provded that the SECOND line is input
as a superscripted line. For example:

D

F
TITLE [GOLD C]

B3 hEEE BEGR G584 84550 24
L R

Return to your normal ruler.

Upon printing, the half spsced ruler, combined with
the superscripting (half space raise) will print
everything on the same line -~ e.g.*
TITLE

FLUSH LEFT DATA FLUSH RIGHT DATA

MAINTAINING REQUIRED SPACES ON PRINTED OUTPUT

Often 1t is necessary to maintain required spaces
between words, especially with dates and names. One
way to accomplish this is available if you do not
use BOLDING in your document. Since the printer
will allow BOLD to indicate a two wheel print com-
mand, you can insert any character where your space
otherwise would appear, being certain to bold that
character. (E.g., press the select key, enter the
character, press the white bold key.)

When printing your document, indicate TW (two wheel)
printing. The bolded character will not print, but
the space will be fixed. ©Oh, yes. Don't forget to
stop the printer after you have printed your docu
ment. It will be waiting for the second pass.

APPLICATION NOTE: This same procedure may be used
to print out a Table of Contents, Index, or other
special purpose excerpts. You can't edit it, as
such, but you can view it.

LINE NUMBERING USING WORD PROCESSING

Presently there is no easy way to number the lines
on a document under WPS-8. Perhaps some day the
powers to be will provide us with this feature, but
for the time being it is necessary to use some
planning in order to accomplish line numbering.

At the moment, one way to number lines, whether

starting with 1 and proceeding to nnnn, or repeating
the same number of lines per page, is te do it by
brute force.

Create your document in the normal manner, but allow
sufficient extra space on the left margin ruler for
the numbers to be used plus at least two spaces.
Thus, {f you ordinarily would use the left margin
for your left ruler and expect to use three digits
for the numbers, set your left ruler, initially,
five spaces to the right. (NOTE: There will be a
slight wvariance in this procedure for inside
paragraphs. This is discussed below.)

Upon completion of the document, AND AFTER FINAL
EDITING, the line numbers can be added by re-setting
the left margin on the ruler to its normal location
AND INSERTING 4 TAB AT THE FORMER LEFT MARGIN
LOCATION, While this would ordinarily cause the
text to *re-wrap", it will make no difference.
Proceed to the beginning of each line, using the
BLUE LINE editor key.

Enter the line number and then TAB. Repeat this for
each line to be numbered. Since the text already
has been edited, the new line numbers will not
affect your prior formatting, as you are using all
of the extra space with the line numbers and tabs.

The use of the line numbers and tabs will not affect
right justification, as each line number will follow
a soft return. HOWEVER, SUBSEQUENT EDITING WILL BE
VERY DIFFICULT, Therefore, try to avoid numbering
the lines until the document is ready for final
output,

INSIDE PARAGRAPHS

To use the line numbering feature on inside para-
graphs, where the numbering is to remain on the left
margin, use a W (wrap) in the ruler instead of the L
for Left Margin. The first line of each inside

paragraph will have to be double tabbed, but you

will find it fairly easy to master after a few
attempts. When you are ready to insert the line
numbers, it will be necessary to remove the W from
the ruler, and o replace it with a T (tab). When
tabbing over from the number insertions, the text
will remain formatted in the same location as with
the W, and, as before, right justification will
remain undisturbed.

If further editing may be expected, it may be easier
to retain a copy of the document before line number
inputting, especially where the editing may be
extensive. The procedure indicated is not intended
as a solution, but, rather, as a procedure which may
make life somewhat easier for you.

INSERTION OF PORTIONS OF LONG DOCUMENTS, TOO LONG
FOR *®CUT AND PASTE", AND/OR WHERE ALL IMBEDDED
MATERIAL IS DESIRED, AND/OR WHERE A "GO GET" ROUTINE
IS NOT AVAILABLE BECAUSE THERE IS INSUFFICIENT ROOM
REMAINING ON THE DISKETTE

It is not at all unusual to have the need to use a
portion of a long document in a document presently
being created. Quite often, also, the size of the
required material exceeds the buffer space allowed
with the "cut and paste" method (which often deletes
a lot of the material you wanted); the remaining

space on the diskette is insufficient to allow you
to GO GET the old document, and then cut out the
unwanted portions (even if all you want is in the
first few pages) or you want to retain imbedded
materials, such as rulers and page markers, and the
cut and paste method won't retain them. Do not lose
hope, there is a fairly simple remedy.

SOLUTION: Edit the old document to the portions
desired. Enter a '"boilerplate library" type of
indicator at the beginning of the text to be copied,
and a <> terminator. E.g.:

<<COPY1>>text material (may be as long as
needed) <>

Use the same procedure for each section to be
copied, but identify each portion with different
names, e.g.: <<COPY1>>, <<KCOPY2>>, ete. {These
identifiers can be removed, later, quite easily by
using the blue <> key to advance through the
document and rubbing out the identifiers.)

Note the drive and document number of the old
document. Return to your new document and, with the
Gold Menu (i.e., the editor menu) feature, change
the boilerplate 1library to the drive and document
number containing the old document .

Proceed to the portion of the new document which is
to receive the old document's information, enter
GOLD LIBRARY and the neme (e.g., COPY1, COPY2,
etc.). The information will be transferred, includ-
ing all imbedded materials, such as rulers.

After using this method, be certain to reset the
boilerplate library, in the editor menu, for its
usval document location. -

ABBREVIATION AND BOILERPLATE LIBRARIES

There is no end to which the system libraries may be
utilized by the Word Processing operator. These
features not only are among the most important
individual assets of the entire system, they have
the added benefit of providing some fun and relief
from what otherwise might be a boring day.

Naturally, the needs of each user will be different.
We believe that the following hints will be of
interest toc most users.

UPPER VS, LOWER CASE FOR FIELD IDENTIFIERS.

Again, as with List Processing, there is no require-
ment that you use lower case field identifiers for
the libraries. In fact, upper case identifiers
generally are much preferable, as reference to the
library document may be made in upper or lower case
and still retrieve the document, whereas if the
library field identifier is in lower case, only a
lower case identifier will retrieve it. This
especially can be annoying if you are seeking an
abbreviationr library document (which does not echo
the input @ the screen) and you happen to have the
caps lock activated.

LOCATYON OF LIBRARIES
The Word Processing manuals and the self-paced

teaching manuals for WPS-8 identify SYSTEM 2 and
SYSTEM 3 as the location for the abbreviation and

6 40 abegd

1°2'8 bag

G-8

boilerplate libraries. Indeed, all the software for
Word Processing comes with SYSTEM 2 and SYSTEM 3
initiated as the respective libraries.

There 15 no magic in the assignment of locations for
the libraries and your own particular needs should
dictate where these libraries are located, and even
whether you might wish to change libraries ‘during
different operations (a very helpful and powerful
feature).

In a client or job oriented operation, where each
client or job is assigned an individual data disk-
ette (or RLO1 allocation) it might be most helpful
to always have the boilerplate library as the first
document. to be created on that data diskette (which
always will be document #2, as #1 i3 reserved for
the diskette's index). If this is done, data which
is repetitious for each client or job easily may be
recalled by using the same abbreviations or identi-
fiers for each diskette. For example, in our own
operations we would identify the name and address
block of our client with a field Ildentifier of
<<CLIENT>>. Since this information resides only on
the diskette in use, every time the library identi-
fier of CLIENT is used, the name and address of that
particular client is displayed in the document.

In this manner, the SYSTEM diskette's space is re-
served for other needs, and many other libraries.

ALTERNATING LIBRARIES

There is no particular requirement that the library
document always be in the same location. On the
other hand, it often is helpful to be able to have
several documents available on a given .diskette
which can be utilized as a library doctment for a
particular purpose. This especially is helpful in
creating new documents where there is going to be
repetitious use of some phrases. A new abbreviation
library can be created, for these phrases only, and
the phrases called with short entries (and no de-
lays). Wnen completed, the library contents can be
deleted (or retained, if desired) and the library
document. changed to the standard document.

The use of such a "temporary" library especially is
appreciated when one no longer has to search through
the current document for specific phrases to be "cut
and pasted®™ at a specific location.

If a library document becomes too lengthy, then it
takes a considerable period of time for the computer
to find the phrases you need. To avoid this pro-
blem, you often can break your library documents
into categories, and, knowing the category desired,
azsign that document as the library (abbreviation or
boiler plate) document for the current assignment.

USE OF THE HELP COMMAND FOR LIBRARY CONTENTS

As use of library documents increases it becomes
increasingly difficult to remember field identifier
assignments, and hard copy reminders become anti-
quated, misplaced, or unhandy. There is, however,
an on-line solution, and that is a HELP COMMAND.

When creating a library document, the first field
identifier should be <<HE>> for the abbreviation
library and <<HELP>> for the boilerplate library.
(Entering "help" will call the field in both cases,

although the extra letters ("1p") will appear on the
screen after an abbreviation library call.)

Prepare a Table of Contents which identifies each
field identifier and its meaning, which can be
called by the HELP command. As each new abbrevia~
tion 1s added to the library, the HELP section alse
is updated with the new command information. E.g.:

<<HELP>>CLIENT, OPPONENT, CAPTION, ENVELOPES<K

To seek and examine the HELP information, which only
can be accomplished while editing a document, the
operator. simply (1) enters the SELect key; (2)
enters GOLD ABBREVIATION or GOLD LIBRARY and the
word HELP (although only HE is required for an
abbreviation); and the BELP information is displayed
upon the screen. [Reference to "sub-help”™ libraries
may be followed with another GOLD LIBRARY cosmand.]
After examining the displayed information, the
operator (3) strikes the CUT key and all the
displayed information is removed from the screen to
the position where the SELect was inserted and the
1library may be accessed for the desired field.

By no means is the information provided here ex—
haustive of the potential for the HELP library. One
may use HELP as a key to provide the operator with
special instructions with respect to procedures to
be followed with specific routines or documents. In
fact, one can have a separate library entitled HELP.
(To access the 1library, the library document is
changed to [diskette/areal.HELP, from the Editor
Menu, which automatically will change the 1library
document .)

SETTING UP THE LIBRARY DOCUMENTS TO DELETE THE HARD
RETURN

There are two methods available to avoid hard
returns following a Library Document call. (I.e.,
where special formatting is required the formatting
must follow the library field identifier in order to
be imbedded.)

The first method, of course, is to have the library
information begin immediately after the field
identifier (<<field>>Data xxx).

The second utilizes the soft return described in
preceding sections. The following is an example:

R

L.
<<DOCUMENT >>
LT R
TITLE
(data)
<«

Without modification, if DOCUMENT is referenced by
the library an extra return will result, as creation
of the document necessarily required a hard return
after the field identifier.

However, with the insertion of a new ruler (a dummy
ruler is indicated, but it should represent a
required format) the hard return can be changed to a
soft return (by moving to the beginning of the line
immediately after the field identifier and striking
the RUB CHAR OUT key) and, when referenced, the sofi
return will be ignored. The imbedded ruler also will

appear. Tthe same result can be attained by using a
PRINT CONTROL (but be sure to include both the START
and the END PRINT CONTROLS). Go to the beginning of
the line on which the BEGIN PRINT CONTROL appears
and enter your RUB CHAR OUT key. The hard return
will dissolve into a soft return.

USE OF LIBRARY DOCUMENTS FOR EXTRA RULER STORAGE

Quite often the ten ruler storage availability of
the Word Processing System 1s inadequate, either
because more rulers are required or because it is
difficult to remember which is which. There is an
alternative,

Using the same technique for removing the hard
return deseribed in the foregoing sections, rulers
can be saved in a library and can be called by
document type, This especially can be helpful for
unusual documents, but also is helpful for general
documents. The following are examples of two
rulers, Expansion of the concept is quite unlimited
and, obviously, up to the individual user.
<CLETTER>>
L—=P—u-T
<«

B, 3.

<<SCHEDULES>>
L Tmmee T .

<<

—->R

Naturally, a schedule of all of the rulers can be
part of the HELP library.

SPREADIKG A TITLE OR HEADING

One additional note. The soft return also can be
used to soread .a word. or. series of words, aceross
an entire page. Provided that the RIGHT MARGIN 1s
set Wwith a J (Justification), everything on the soft
return line will be spread across the page if the
next line commences with any type of an imbedded
command (e.g., ruler, print control, page marker,
ete.). Example:

L—=Poe e Tna T 8. 7.
(Miscellaneous text to the next line)

TITLE

| PR L ORI, B 1

By creating a soft return (i.e., using the RUB CHAR
OUT at the beginning of the first line after "TITLE®
in the above example, the word “TITLE"™ will be
spread accross the page as follows:

T 1 T L E

In order to create the *soft" return, it only was
necesgary to modify some portion of the ruler, imbed
it and then delete the hard return with the RUB CHAR
OUT from the beginning of the line.

SOME ADVANCED FEATURES FOR INDEXES (INDEXI?)

In a preceding section of this paper, we have
discussed the manner in which an index or a Table of
Contents can be created, using the List Processing
features of the Word Processzing Systems. Here we
will discuss, briefly, two eshanced features -
including page numbers and sorting.

To include page numbers it is, of course, necessary
to have a "“finished" copy of the document, as you
will have to insert the page numbers after each word
to be referenced.

Using a "“finished" copy, we mark each word which is
to become part of the index. Using the techniques
described above, we enter the field identifier
before the word, or phrase, and follow it with a
space and the page number. Then, the terminating
left/right arrow and dummy field identifier follow
the number. For example, we are indexing on the
phrase "List Processing":

[Text ... <><IDList Processing 22<<X> ...]

In a long document, we do not attempt to identify
each page where the word or phrase appears, but
merely repeat the process.

Depending upon how involved the index may be, we
will either run the List Processor on the <I> field
and pick up every instance using a "sub list" which
will be SORTed, or we will use a conditional run,
based upon the first letter of the field creating a
semi alphabetical listing.

{The "sub-1ist"™ is quite simple. It is identified
as <«IXI>.]

If we create a long index, we then SORT the "sub-
1ist" index using the SORT package which is agvail-
able through your DEC WPS representative.

What's this? You say your rep doesn't know what you
are talking about? If you have any difficulty, send
this author two blank diskettes, a returnable mailer
AND RETURN POSTAGE, and we will- send you.-a copy of
the SORT package and its instructions. Two disk-
ettes are required as the SORT js in DIBOL and
operates on COS-310, whereas the instructions are on
a WPS diskette. One caveat: you must be licensed
for DIBOL (although most word processing users are).

Upon completion of the SORT, it is a fairly simple
matter to "cut® the repetitions and allow their page
numbers to flow onto the first use of the term.
(Using a RIGHT ARROW ">" as the right margin —
before the R or J — will allow these numbers to
flow backwards so you can have several numbers, with
commas, on the same line.)

PERMANENT CUTTING OF LONG SECTIONS OF A DOCUMENT

As you may realize, it is not possible to "cut® more
than about 2-1/2 pages of a document at one time.
If you want to delete several pages, and do not have
to save them for any other purpose, then this can be
accomplished with a single operation without concern
over the actual length of the material being
deleted.

The procedure requires that you proceed to the
starting point of the "cut" (which can be the end or
the beginning of the "cut") and press the white SEL
key. Then, immediately press the red CUT key. This
will remove all data from the paste buffer.

Press the white SEL key again and proceed to the
point where you wish to end the cut. Press the GULD
REPLC keys (GOLD and *). This will replace all of

610 G abeg

1¢'8 ‘bes

98

the data between the SELect position and your
current place with a single null. The cut data is
not replaceable so do not use this as a "eut and
paste" routine. [For long "CUT AND PASTE" routines,
refer to the section above which discusses changing
your document to a library document.]

TRANSPORTING RULER AND PRINT SETTINGS TO NEW SYSTEMS

Often it becomes necessary to transport your ruler

and print settings from one system diskette to
another. There is a fairly easy way to accomplish
this.

For the ruler settings, you merely create a single
document using your old system diskette and then
begin to enter ruler settings separated by some
meaningful code so you can identify the settings

when used on the new system. E.g.:
o

Loem P e T e e D .0 =R

1

D—-PmmeTmer-Toe— ... -R

ete.

Placing this document diskette under control of the
new system diskette (and the document may, of
course, reside on the new system diskette) you
merely advance below each ruler, enter GOLD RULER
and then SHIFT [number] to preserve the ruler.
Continue with each ruler until all 10 have been
transferred over (or as many as are needed).

NOTE: The same procedure can be used in your
LIBRARY to save more than tem rulers, or to call
rulers by document name. Just enter the RULER NAME
between the arrows (e.g. <<LETTER>>) and follow the
identifier with a return. Place the desired ruler
under the identifier, then enter a single RUB CHAR
OUT to remove the hard return and enter your end of
field marker (K<). Now, when you ecall the RULER
from the LIBRARY, it will appear where you want it
without extra returns.

For PRINTING COMMANDS, create up to ten separate
documents and merely file them away. Go into the
PRINT MENU for each document (either as you create
them and afterward) and call up your PRINT COMMANDS
from your old SYSTEM diskette. Save the commands on
the document by using the GOLD MENU. Placing the
diskette with your ™new" SYSTEM diskette, you merely
begin to print each of the documents. Wnen in the
PRINT MENU enter SS nn to save your PRINT COMMANDS
as reflected on the particular document.

The procedure also is available for special printing
requirements on documents where there are insuffi-
cient printer commands (i.e. — 10) available. Just
identify a document with the name of the particular
type of printer commands you want to save, and you
always can assign that to any of the numbers you
wish for special purposes. (We find that reserving
control number 9 for this purpose works out just
fine.)

CREATING A TELEPHONE LOG
(CAN BE USED FOR CREATING A MAIL LOGGING SYSTEM)

INTRODUCTION: The following application is for
creating a telephone logging system on the DIGITAL

s

word processor. It can be used by a secretary to
record all messages coming intc an office. It is
assumed that the operator is very familiar with the
word processing software and its operation.

By doing a "GLOBAL SEARCH & REPLACE" on the TELE-
PHONE LOG Application Notes, you would create T"MAIL
LOG" Application Notes. This memo serves as a briefl
explanation of both procedures.

Primarily, both applications call for an area on a
system or diskette to be dedicated to the storage of
telephone messages and & separate area for mail log-
ging. It is necessary for the user to be familiar
with list processing, creating forms, and the use of
document 1 (the INDEX). The codes in the following
application are suggested and can be "added to" or
"deleted from" depending on the company or customer
wishing to utilize this as a procedure. The method
for the telephone log and mail log is identical in
implementation. The difference is in the ¥listn
code used. One being:

<Code>Telephone Message
and the other,
<Code>Mail Message

The reports generated would have title changes and
the other information Would be the same. As with
the telephone log, the asterisk indicates "new”
information. The date may be incorporated as part
of the title as well as for ease of chronological
input.

Some coding during ecreating to designate mail type
could be:

c *1/John Jones - indicating that the mail is a

(1)etter.

¢ ¥m/John Jones - indicating that the mail is a
(m)emo.

¢ *p/John Jones - indicating that the mail is a
(plackage.

¢ *i/John Jones - indicating that the mail is
{i)nformation.

¢ ¥%cc/Jonn Jones - indicating %hat this is z

{e)arbon (e)opy from.

c %pr/John Jones - indicating that the mail is
{p)er your (r)equest.

¢ ¥p/DEC WP - .indicating that the mail is a
(b)rochure.

¢ ¥*a/Sears ~ indicating that the mail is an
(a)dvertisement.

The other codes listed in the telephone log proce-
dure also can be used designating "A" for Action,
WRR™ reply requested, or whatever is required. Using
the mail log requires that the secretary summarize
all incoming mail for quick reference by the reader.
Both applications can be implemented easily and can
be designed to meet the user's needs.

APPLICATION FOR TELEPHONE LOG

THIS IS A PROCESS WHICH ALLOWS A SECRETARY:

* to take phone messages,
* enter messages into the system in a
telephone log area,
and

% to accomplish the above in as few steps as
necessary by using User Define Keys and
List Processing.

Each message is entered by creating a separate docu-
ment and using a user define key (UDK) to call up an
empty list processing record. These field identi-
fiers will enable the user to organize the informa-—
tion into specific categories.

The reader (the person the call is directed to) then
is able to review the list of messages by looking at
the designated area's index and then proceed to take
action. By recording each message in a separate
doeument, the reader can be acting on one message
while the secretary can be entering new messages
(assuming that the reader has his/her own terminal).
Also, a message can be incorporated into another
document or sent to someone else via communications
by using the Gold:Get Document or the DX feature.
When creating the document which will hold a mes-
sage, a code is incorporated into the title of the
document which will communicate between reader and
secretary exactly what has to be looked at, by whom,
and what has been handled and no longer needs
attention.

By using field identifiers, a secretary can obtain a
print out of all calls which need to be returned or
acted upon through the list processing method. This
is especially helpful if the reader is away on a
business trip and the secretary would like to give
im a hard copy summary of calls to scan upon the
his/her return or to brief the reader in his/her
absence.

PROCEDURE FOR SETTING UP THE TELEPHONE LOG

1. ASSIGN AN AREA.

Determine which area on the system will be
devoted to telephone messages. For the purpose
of this application, the area chosen is four (4}
on a 200 System.

2. DETERMINE FIELD IDENTIFIERS.

Design field identifiers that will be most help-~
ful to organizing the telephone information. An
example of the identifiers to use are as
follows?
<Date>10/17/80 Fri Use GOLD
Date/Time
<To>
<From>
<Company>
<Subject>
<Tele No>
<Request>
<Code>Telephone Hessage
<Action>
<Follow Up>
<

12:13 -

3. RETRIEVE FIELD IDENTIFIERS VIA UDK.

BAccess the FIELD IDENTIFIERS via a user define
key (UDK) either by typing the entire identifi-~
ers or by placing them in an abbreviation 1i-
brary and typing the command assigned in the

abbreviation library into your definition in the
UDK. 7The following are examples of both methods
of setting a user define key to accomplish this.

Type dk 1 command at main menu. Any number may be
chosen from O to 9 to store the definition, i.e. dk
2, dk 3, ete. For purposes of this example, DK 1 i3

used.
TYPE DK 1 Return
ENTER:
<Date> Return <To> Return <From> Return
<Company> Return <Subject> Return <Tele No»>
Return <Request> Return <Code> Telephone
Message Return <Actiond> Return <Fellow Up>
Return <> Backup Para Advance <> Gold:\ <>
Gold Halt

RESULT:

In typing Return, Backup, Para, etc. make sure
you press the key labeled keys Return, Backup, Para,
etc. and do not spell out the actual word. Notice,
that by typing Backup Para Advance <> Gold:\ <> the
system will automatically print the identifiers,
backup to the beginning of the paragraph, advance to
the enter sign ">" in <Dated>, insert Gold Date/Time,
and advance to the next enter sign ">". The cursor
will position itself for entry and where to begin
typing the imformation at <Tod>.

or define DK 1 as follows:

Gold:=tl Backup Para Advance <> Gold:\ <>
Gold Halt

{tl = telephone log identifiers
abbreviation library.)

from

Accessing your abbreviation library gives more
flexibility in recalling telephone log information.
If the fields change or more than one person is
using this procedure, they can have their own 1list
stored.

#% Please note that in both definitions that typed
text {(words or characters) will appear to be one
space apart, They are stored this way within the
UDK but are not entered this way in the document.

4. ESTABLISH A CODE to be incorporated in the title
of the docunent which will hold a telephone message
for identifying what calls should be looked at, what
calls have been handled and require action by the
{R)eader or (S)ecretary, and what calls have been
completed.

RERRERRERGR

Coding should relate <¢he needs of @ particular
office and should be as simple as possible. Using
familiar terminology would be best. If many people
are using the telephone log, it will be necessary to
specify people, departments, etc. Coding can be as
simple as putting the person's initials in the code
to designate that their action is required if the
call is to be referred to someone else for action or
some scheme, such as the following example, may be
adopted:

6 40 g abey

1'7'8 bag

L8

® - denotes new call/information.

L7 VAR denotes a new call requiring (A)ction

R/ - denotes call was (R)ead. This is
entered by (R)eader.

SR/ - denotes call was (R)ead and _requires

action by (S)ecretary.
RN/ - denotes call was (R)ead and (N)o action
required.
R4/ -~ denotes call was (R)ead and (A)ction 1is
required by reader.
denotes call was (R)ead and can be
{D)eleted.
SRS/ - denotes call was acted on by (S)ecretary
after being (R)ead.

RD/ -

UTILIZING THE TELEPHONE LOG TO RECORD MESSAGES.

The procedure is as follows:

1. When 3 telephone message 1s received, create a
document which will record the message in the desig-
nated area for the telephone log.
Example: ¢ 4.%/John Smith 617-555-1212

The above example creates a document entitled John
Smith in area 4 (designated telephone log area).
The asterisk (*) in the title is part of the code
which tells the reader when looking at the area &
index that a call has been received from John Smith.
The "% designates that it 1s a new call and should
be read in the telephone file.

2. VWhen the new telephone message file is created,
type Gold:1 to place the field identifiers in the
document. Then type in the information correspond-
‘ing to each identifier .and. file the docunient. . . The
message is now recorded and can be referred to. As
the 1list of message documents grows with each new
call, the asterisk in the title quickly identifies
the calls that require action.

3. When a call is acted upon, it is noted by the
reader 1n the <Action> line by logging in the date
using the Gold: Date/Time next to the <Action>. The
<Follow Up> identifier provides an area for the
reader to enter a summary of the call and action
taken. The reader then edits the index (Document 1)
and codes the call by adding either with anm "RN®
denoting that the message was read and no further
action necessary, "RS" denoting instructions for
further action by the secretary, or "RA"™ denoting he
has reviewed the call but has not as yet taken
action. When further action required by the secre-
tary (all calls coded RS) is completed, she then
edits the index and codes the call by adding another
#S* or her initials. (SRS). If a summary of the
action taken by the secreatry should again be
brought to the attention of the reader it will noted
with another "#" designating that it should be
re-read.

An example of a coded index (Document 1 of an area)
is as follows:

<n>*/John Smith 617-555-1212 <GE>TO
<n>%*A/Karen Black 883-1111 <#>6<>
<n>¥*SRS/Bill Jones 888-5000 <#>5<¢>
<n>RN/Wendy Turner 4-S555 <#>L<>
<n>RA/Jane Doe 223-5555 <#>3<>
<n>RD/Mary Brown 212-555-1212 <H2<>
<n>Area 4 Index <#>1<

4, GENERATING TELEPHONE MESSAGE REPORTS

When someone i3 out of the office for a period of
time and it is necessary to print a list of messages
received, which must be acted upon, etc., it can be
done by by usling the list processing feature.

The 1ist used 1is the actual Index (Document 1) of
the designated area for the telephone log. In this
example, document 4.1.

Then a specification is created to capture and print
only those calls on the list which require action,
i.e. all calls coded with an A*. For example:

If <n>=%a/<®>
then process record

Using the <*> wild card feature of list processing,
all messages regardless of content but requiring
{A)action will be processed.

NEXT create a form which will print out the 1list
required. The following is an example of a form:

TELEPHONE LOG
FOR SALES REPRESENTATIVE: JENNIFER JOHNSON

DATE MNAME & TELE NO. File #

<18>

<Date> <n>» b.<i>

<IE>

I, SN . e

The form can contain as many or as few of the fields
required. It could be Just a 1listing as shown
above, or give all information entered by creating a
form calling for all fields to be filled in.

An example of the result:

TELEPHONE LOG

DATE NAME & TELE NUMBER File #

10/14/80 Tue %/JohnSmith 617-555-1212 4.7

10/14/80 Tue A®/Karen Black 883-1111 4.6
10/14/80 Tue #SRS/Bill Jones 888-5000 5.5
10/14/80 Tue RN/Wendy Turner 4-5555 Y

10/14/80 Tue RA/Jane Doe 223-5555 4.3

10/14/80 Tue RD/Mary Brown 212-555-1212 4.2

This precess for handling messages can be very
effective. Also, as a means of recording all mes-—
sages and documenting all action taken on each is
very efficient. You wiil discover that there are
many variations that can be employed to make this
procedure even more efficient for your particular
needs, such as entering more information into the
title of your document, using different identifiers,
setting up a form which can arrange the information
obtained in your list to suit your needs, ete.

This process proves to be time saving when someone
is out of the office but has access to a terminal
which is remotely connected to the main system in an
office. A caller, salesperson, etc., can review all
calls, communicate with the secretary regarding what
action has or should be taken without having to talk
with the secretary directly. This is particularly
helpful if the manager is visiting a different time
zone or is reviewing calls after office hours.

On occasion, it also can be used as a reminder to do
something or call someone (tickler file) by creating
a document entitled #*Notes and then typing several
notes serving as a constant reminder of issues which
should be handle along with the ecalls. Or, by
creating a document A=Jim Mclonald 4-5556 to remind
the reader that they wanted to call this person.

There are many ways in which to use this log and
many variations you can make with a little imagina-
tion and practiee. Try it, you'll like itilit

#CREATING A CALENDAR® APPLICATION

This feature was developed as a time management tool
to efficiently handle the scheduling of meetings and
appointments, whereby more detailed information on
the meetings can be presented. A list of things
that must be done each week or month can also be
incorporated into this calendar.

The setting up of a calendar on a word processing
system is a fairly simple procedure. The steps are
as follows:

1. Choose an area (or diskette) which will contain
the calendar for a full year.

2. FEach month should be created in a separate docu-
ment within the same area or diskette.

3. Choose the format you wish to use and create the
first document entitled January or the current
month. Type the calendar in the format you
have chosen and file the document,

At the top of the calendar is a date and time nota-
tion. FEach time a new item is entered in the calen-
dar, the date and time should be entered at the top
of the calendar to let the manager know when the
last notation was made.

After the area provided for Friday. you will notice
angle brackets ©"<>". This will enable you fo ad-

vance rapidly to this symbol and give you an entire
work week at a glance by pressing the "<>" key.

The format below should continue on to include the
2nd, 3rd, and U4th week of the month with a "new
page" command between each week. All you need do
once the calendar is formed is type in the meetings
or appointments in the appropriate places.

Note that at the bottom of each week, an area has
been previded for notes. This area allows more
detail when required on any meeting scheduled in
that week. The angle brackets at the end of the
note allows you to advance rapidly to the end of the
last note and continue on easily with any additional
notes as you edit the calendar during the wmonth.
EACH WEEK SHOULD BE ON A SEPARATE PAGE.

After filing the document entitled
are ready to create "February". Simply create a
document entitled *“February" and then use the
GOLD:GET DOCUMENT feature to call up the calendar
for January in the February document. Then all you
need do is edit this document by changing the
January dates to the appropriate February dates.
Continue this procedure for each of the following
months through December.

“January", you

Another helpful idea which can be incorporated into
this calendar is to create a "do list® which can be
referred to readily. Simply make a list of all the
things that must be done for the month at the top of
the calendar with a new page command after the list
and before the calendar. We have chosen to code
each item in the list to designate what has to be
done, what is presently being worked on, and what
has been completed.

An example of the "do® 1ist which has been used in
creating the following calendars is:

"Do" List

<> Call Sally Smith (617) 223-5555,

<x> Find out if Staff Meeting is Wednesday.

<x> Meet with John Smith on presentaticn.

<~> Meet with Bill Brown subj: product application.
<> Get Print Requistition for WP Manuals.

<> Process paperwork for expenses.

When each item in the list has been entered, it is
preceded with angle brackets <> as a symbol desig-
nating an item to be performed; when the item is in
the process of being completed, we add a hyphen
between the angle brackets <->; and when it has been
completed, we add an x between the angle brackets
<x>. You can also create a list on a week by week
basis by placing the list at the top of each week
separated by page markers.

The following s an example of a basic calendar on
the word processor. QOther examples to follow show
how the "do" list is incorporated. As you examine
these calendars, you might consider further auto-
mation by use of your list processing functions,

6 40 £ abed

1'¢'g "bag

8/6 - Phone Call to dJohn Smith concerns memo from him dated 6/20 (located in
6/20 mail log).

8/8 - Peter Franklin, wants to discuss the XYZ program.<>

8/26/80 Tue 9:24

MONTH: AUGUST

2nd |
Week |
Aug {08 09 10 1 12 13 14 15 16 17 18 19 20
s
e e e e e e e e e e e
Mon "} Staff
8/11 10:00

88

1
¢
i . & . - . .
Wed | Mike Jenmngs Jack Flint
8713 § 12:00 - 1:00 2:30 ~ 3:30
1
: - -
b TN o s o K e P Pt Ted Lansxng -
8/t jextended to 3:30 4:30 MK
‘
1/6 Fri Vacation Day -
8/15
Notes: O
< - . B . . - . . . - . .
An example of a calendar which has been filled in Sat i
and indorporates the "do" list is below. 8/16 i
§
MONTH: AUGUST T . . . = . . . v - . -
Sun
st | 8/17
Week | i
Aug 18 g 10 11 12 13 14 15 16 17 18 19 20
O T . - . r . - . . . Notes:
Mon {New York trip R TS SRR e e Fere e ee e e e TR AT A e e
8/4 | 8/12 - Trip to Boston to consult with Bob Griffith, 606 State Street<>
i
i I S R S T S S S S
Tues | John Brown PR |
8/5 | 9:00 - 11:00 Strategy Mtg.
) Dartmouth Room GENERAL PURPOSE HINTS above. Using the select key at the beginning of the
HS Sl Wb underscore, go to the end of the underscore and
Wed Call to John Smith The following hints have been developed over a long enter the GOLD SUPERSCRIPT., This will cause the

¢
i

8/6 | 231-2294 re:ABC
! (See Notes)
'

:
i

H

i

H Peber Franklin Mtg.
' Your Orfice

1 11:30 - lunch

i (See Notes)
)

i

'

;

'

'

i

i

8/4 ~ Delta FL 111 departs Boston 9:00 and arrives New York at 9:45, ,Take taxi
to New York office to meet with sales rep. Delta FL 222 departs New York at
4#:10 and arrives Boston #:50.

period of time and have been helpful to many of us.
We hope that they will be of some assistance to you.

PRINTING A DOUBLE UNDERSCORE — Two Methods

Quite often there is a need to print a double under-
score -~ especjally where columns of data are
involved. Two fairly successful methods can be
used.

Method One. If the double underscore is to be used
with tabulated work, and the last item in the column
is to be double underscored, use the select key at
the beginning of the item and go to the end of the
item. Enter the white "underline" key, which will
cause a single underscore. (If you want the under-
score to extend in front of the item, insert spaces
in front of the item, and underscore those spaces.)
Then, tab over to the same point on the following
line and insert your underscore, using the underline
key, s0 that it covers the same area immediately

second underscore to print one-half space up and
will give a very presentable double double under~
score. (An alternative to the superscript would be
to change the left margin in the ruler to the ®f®
for half spacing. Just be sure to change it back
again for the remaining text.)

Method Two. Several print wheels have a double
underscore character as part of their character set.
Currently, the following Diablo wheels have this
character:

Courier Legal 104
Pica Legal 10A
Prestige Elite Legal

1. When you get to the beginning of a line of text
which is to be double underscored, put in a ruler of
F for half line spacing., Tab over and type each of
the numbers to be underscored. Press RETURN,

2, Tab the first column to be doub -
seored. ress the vertical character kg)‘" 2»?) f33§§r

6 40 g abey

L'2'g ‘beg

68

case back-slash (date/time) key] once for each
character to be underlined.

3. VWhen the last long vertical character on that
line has been typed, back up the line and press
SELECT LINE GOLD SUPERSCRIPT. This will move your
double underscore right underneath the numbers.
Press RETURN twice and change your ruler back.

4, When printing the document with the Courier
Legal 10A or the Pica Legal 104 vheels, you must use
the replacement character (R1 |) from the Print
Menu. This is not necessary for the Prestige Elite
Legal wheel, as the "{" character is not on that
wheel but is, in fact, the double underscore.

TRIPLE SPACING BETWEEN DOUBLE SPACED PARAGRAPHS

It is a real pain to triple space between paragraphs
which are created with a double spaced ruler., Here
is an easy to use USER DEFINED KEY to handle the
problem. Set your UDK for: GOLD PARA, GOLD RULER,
L, RETURN, RETURN, GOLD RULER, D, RETURN. Upon
reaching the end of your paragraph simply enter the
UDK instead of- your GOLD PARA for the end of the
paragraph. [If you don't use GOLD PARA, then
replace that instruction with a RETURN. If you use
indented paragraphs, then substitute the last RETURN
with a GOLD PARA.]

CHANGING THE DEFAULT RULER OR PRINT MENU SETTING

Surprisingly, many users are unaware of the fact
that the default RULER and PRINT MENU settings are
the same as the zero settings. If you wish to alter
your default settings (i.e., the settings which are
present when the document is created initially) all
you have to do is change the settings for GOLD RULER
0 or PRINT MENU O [SS 0] to the desired defaults.

RECOVERING AN ERASED USER DEFINED KEY

Ever go into a User Defined Key to examine it and
then strike a character thereby deleting the entire

key? If you haven't, then you probably don't use
these keyst There is z way to recover the "erased"
information. But, you have to be careful (and this

is not intended for 200 systems).

If you are in a document and have gone into the UDK
from the Editor Menu, then you are going to have to
decide whether the UDK is more important than any of
the information which you may have edited. This
technique is going to lose any NEW information which
may have been input. (E.g., if you merely were
editing an -existing document, but had made no
changes, then this will not affect your document.
If you had made some changes, or if the document had
never been filed, don't take a chance -- re~type
your UDK.) If you entered the UDK from the Main
Menu, then there is no risk at all.

Upon realizing that you have lost your UDK informa-
tion, DO NOT PRESS THE GOLD HALT KEY. Simply turn
off your computer and re-start it in the usual man~
ner. The UDK will be saved.

STORING MORE THAH 10 UDKs ON NON-200 SYSTEMS
Generally, UDK storage is limited to 10 UDKs per

SYSTEM diskette. However, it is quite simple to
store as many UDKs as one wishes. Store your UDKs

on different SYSTEM diskettes, as you generally
would. You still are limited to 10 per SYSTEM
diskette, When you want to use the UDKs stored on a
different diskette, enter the F key from the Main
Menu and press RETURN. Remove the SYSTEM diskette
and replace it with the SYSTEM diskette which has
the UDKs which you want to use. Press RETURN twice
and the new UDKs now are available to you. (You
even can replace the other SYSTEM diskette at this
time, in case you have information on it which has
to be used. Just make sure that your default 1i-
braries have not been changed.

AUTOMATIC DELETION OF SEVERAL DOCUMENTS AT ONE TIME

Often it is desireable to purge a diskette of sever—
al documents at one time and you don't necessarily
want to sit there all day while you instruct the
machine to do the deleting. This can be done with a
simple USER DEFINED KEY and editing of the document
INDEX. ALWAYS USE CARE WHEN EDITING THE DOCUMENT
INDEX. IF NECESSARY, USE A GOLD GET OF DOCUMENT #71
IN A SPARE LOCATION, SO THAT IF YOU LOSE YOUR INDEX
YOU CAN RE-CREATE IT IMMEDIATELY.

Edit document #1 (the diskette'’s index) and mark the
documents to be deleted by inserting, immediately
after the "<m>" for each such document an unique
character followed by a space. For example:

<n>XX document name <#>8<>

The space between your characters and the document
name is important.

After editing the index, file it. Then, using a
USER DEFINED KEY (#1 here) which bas been defined:

D Space XX Space Return y Return GOLD:2
and a USER DEFINED KEY (2 in this example) as:
GOLD:1 GOLD:1 GOLD:1 GOLD:3 GOLD:% .,. GOLD:?

you can proceed to delete, automatically, each of
the documents which you have marked with your
special characters by entering GOLD:t. ([NOTE: The
loop which you created is limited to 10 documents at
a time.]

MOVING COLUMNS

Here's how to move columns quickly and easily. (Of
course you can use the same technique for deleting
columns and other uses, also,)

Assuming a columnur text of four columns, to move
solumn 3 to ecolumn 2's loecation and eolumn 2 to
solumn 3's location, store a user defined key:

Advance Tab Advance Tab Sel Tab Cut Backup Tab
Paste

Position your cursor at the beginning.of the 1ine
where the columns are to be transposed. Use your
UDK and the columns will be transposed. Of course
you would adjust the UDK to reflect a different
number of tab positions.

SWAPPING WORDS

Ever wish that vou had a SWAP WORD key just as the

SWAP character key? Well, uhly not create your own?
The UDK to swap a pair of words is quite simple:

Delwrd Word G-Del

Position the cursor just in front of the offending
word, enter your UDK and the words are swapped.
This is a real handy tool, especially for those
split infinitives?

4 UDK FOR PRINTING A DOCUMENT WHILE EDITING ANOTHER

If you use SE YES (stop before printing every page)
then you know that you have to enter an "R" before
the printer will start printing the next page. If
you are editing a document, this can become a pain,
but there is a simple UDK to take care of the mat-
ter. Create your UDK:

GOLD:M R Return

Entering this UDK while you are editing a document
will start the printer with a minimum of interrup-
tion to your editing. {Sorry — this won't work for
78s as they can't use UDKs and the printer at the
same time.]

SUMMARY

DEC*’s Word Processing Systems (and even those which
utilize DEC equipment) clearly are among the most

powerful available on the market today. The
potential -~ indeed the need —- for improvements is
all too obvious, if DEC intends to remain a serious
contender for the general business Word Processing
Market.

In the meantime, there are numerous routines which
are available in the existing system which can make
it work better and faster for you, and that is what
automated word processing is supposed to be all
about .

The examples provided here are but a few of the many
work saving features which are available. It
appears that these examples never previously have
been documented, at least publicly, by DEC, which
really is a shame. Now, several of the hints pro-
vided here have been made available through the
courtesy of DEC's Word Processing people who par-—
ticipated so helpfully in the presentation of the
Hints and Kinks session.

We do hope that the information provided within this
article will be of some assistance to the Word Pro-~
cesser user and that this Article may become part of
your Word Processing Manuals.

Perhaps by the time you come to Los Angeles we will
have a good deal more for you. In the meantime,
please feel free to write to us regarding any
particular matters you would like to see discussed
at future Symposia.

6 40 6 abey

1°Z'g 'bag

DECUS
DIGITAL EQUIPMENT COMPUTER USERS SOCIETY

ONE IRON WAY, MR2-3/E55
MARLBORO, MASSACHUSETTS 01752

INSTALLATION

BULK RATE
U.S. POSTAGE
PAID
PERMIT NO. 129
NORTHBORO, MA
01532

MOVING OR REPLACING A DELEGATE?

Please notify us immediately to guarantee continuing
receipt of DECUS literature. Allow up to six weeks
for change to take effect.

{) Change of Address
()} Delegate Replacement

DECUS Membership No.:

Name:

Company:

Address:

State/Country:

Zip/Postal Code:

Mail to: DECUS - ATT: Membership
One iron Way, MR2-3
Marlboro, Massachusetts 01752 USA

‘018

‘Aussanun ‘Aued
-Wwo2 ‘uoilefjersul

40 aweu apn|duj

'3y ssaippe
pio 1wund ‘sjgejiene
10U $1 {8qe| j} ‘as8y

jage| Buijiew xyy

