
t

~he Wombat

XAMINER
the Circulation of Anyone in America" Volume S Number S

January 1984

It is assumecl that all articles submitted to the editor of this newsletter are .. with the author's permission to publish
in any DECUS publication. The articles are the respons,ibility of the authors and, therefore, DECUS, Digital Equipment
Corporation, and the editor assume no responsibility or liability for articles. or information appearing in the document.
The views herein expressed are those of the authors and do not necessarily express the views of DECUS or Digital
Equipment Corporation.

Printed in the U.S.A.

The following are trademarks of Digital Equipment Corporation:

DEC DIBOL PDT
DECnet Digital Logo RSTS
D ECsystem-1 0 Edu System RSX
DECSYSTEM-20 IAS UNIBUS
DECUS MASSBUS VAX
DECwriter PDP VMS

VT

UNIX is a trademark of Bell Laboratories.

Copyright© Digital Equipment Corporation 1983
All Rights Reserved

It is auumed that all articles submitted to the editor of this newsletter are with the authors' permission to publish In any DECUS
publication. The articles are the responsibility of the authors and, therefore, DECUS, Digital Equipment Corporation, and the
editor assume no responsibility or liability for articles or information appearing in the document. The views herein expressed are
those of the authors and do not necessarily express the views of DECUS or Digital Equipment Corporation.

~l!JWi.?ffiUC!l!filUllliJ0
Contributions for the newsletter can be sent to either of the following
addresses:

Editor, Datatrieve Newsletter
c/o DECUS, One Iron Way
MR2-3/E55
Marlboro, MA 17562

Virginia Sventek
Datatrieve Newsletter Editor
Computer Science and Mathematics
Building 50B, Room 3238
Lawrence Berkeley Laboratory
Berkeley, California 94720

Letters and articles for publication are requested from members of the SIG.
They may include helpful hints, inquiries to other users, reports on SIG
business, summaries of SPRs submitted to Digital or other information for
members of the Datatrieve SIG. Camera copy is appreciated, machine
readable input is highly desired,
but almost anything legible will be considered.
However, this newsletter is not a forum for job and/or head hunting, nor
is commercialism appropriate.

'iJ™ l!IT l!l!IlJ'iJC!UJU0
1 Improving Performance of RMS ISAM Files
B Some Examples Using a Single Hierarchical Domain
14 The Three Little Wombats
20 How to Write Plots in Datatrieve
32 Time in Datatrieve
33 Four Column Mailing Labels in Datatrieve
36 Digital Presentations - Fall 1983 DECUS
52 Las Vegas Magic
67 Datatrieve Masters List
69 Miscellany
70 Publication Subscription Form

This month's cover was drawn by Bart Lederman of ITI. There we were,
poor little wombats stumbling around the gaming tables.

Improving Performance of RMS ISAM Files

Harold T. Glaser
Supervising Software Engineer
James M. Montgomery, Consulting Engineers, Inc.
250 North Madison Avenue
Pasadena, California 91101

Introduction

The use of indexed files offers significant gains in overall performance
over ordinary sequential files in many Datatrieve applications. Judicious
selection of the file design and key structure will improve the speed
and reduce the performance with tradeoffs in file size and overall data­
base complexity. At JMM, we have been making extensive use of ISAM
files for both small and large databases with impressive results. How­
ever, there are certain considerations with respect to the maintenance
of these files which dramatically affect performance. We found this
to be especially true for ISAM files which are subject to frequent
update and modification. Two approaches for reloading of ISAM files are
presented, the DTR restructure and the RMS CONVERT utility.

Getting Started with Indexed Files

The advantages of indexed files (ISAM) over ordinary sequential files have
been demonstrated before. If the database designer selects a key
structure which takes advantage of common field queries during record
access, most applications will see a reduction in CPU and elapsed time.
Also, ISAM files allow the user to ERASE records from DTR. something
you can't do with sequential files. This is somewhat at the sacrifice of
disk storage overhead and overall complexity of the database. The
tradeoff becomes significant for larger databases (greater than 1,000
records or so, but don't pin me down to this) and in most cases, it's safe
to say that indexing a file will be better than leaving it sequential. Of
course, the big advantage to using Datatrieve with ISAM files is that the
whole thing is transparent to the user and relatively sirr1ple to set up by
the designer or applications programmer. As an example, consider
the sequential domain RESULTS which will be loaded to an indexed file in
the following manner:

l

Domain/Record/Fi le Definitions:

□TR> DEFINE □a1AIN RESLLTS USING
RESULT CN RESLLTS.DAT;

□TR> DEFINE RECORD RESLL T USING
01 DATA.

;

03 PRIMARY KEY
PIC 9 (4).

03 ALTERNATE KEY
P1C9{2).-

03 VALLE
l.EAQ:: IS REAL.

DlR> DEFINE FILE FOR RESULTS ! RESULTS is a sequential file.

Now setting up the new indexed file and loading taking advantage of
the VAX·11 DTR alias feature for readying domains and the DTR restruc­
ture:

OTR> READY RESULTS AS U...O READ
□TR> DEFINE FILE FOR RESULTS,

KEY= PRIMARY.$EY (NO CHANGE, OUP),
KEY= ALTERNATE KEY (CHANGE, DlP)

□TR> READY RESULTS AS NEWWRITE
□TR> NEW = OLD
□TR> FINISH ALL
□TR> READY RESULTS READ

□TR restructure
Cleaning up
No~ indexed version

At this point there is a new indexed file, RESULTS .DAT with a version
number one higher than the sequential version. NOTE: This method of
loading indexed files will work well if you have relatively few records. If
you have more than a few hundred records, keep reading!

Using Indexed Files

As stated previously, the indexed version of the file almost always
offers performance gains over the ordinary sequential file. However,
we have found that indexed files subject to updating in one or more of
the following ways require special attention:

(1) Storing new records

Random storage of new records may affect the primary key struc­
ture, especially in instances where it causes an RMS key bucket
split. (See the RMS Tuning Guide for more information on buck­
ets and bucket splitting.) If the key structure if affected, then
additional CPU time and disk storage is required to access the
records inserted in this manner as opposed to those which didn't
require a bucket split. Modification of the alternate key also has a

2

similar effect on the file.

(2) Erasing records

In general, erasing records does not release usable storage space
in indexed files (although this should be qualified by saying that
in special cases it is possible to reclaim the space). The reference
to the record is merely deleted. After a number of updates, the
file record density becomes sparse and disk space is wasted.
Again, additional CPU time is required to deal with records which
have been erased.

(3) Contiguity /File Extensions

These two pr operties are important to the efficiency of access to
your disk file. Clearly, the less work required by the disk controller
in finding your data, the more efficient your application. If the file
resides in contiguous space , less work is required. Also, extensions of
the file size with additional records should be optimized to match
your record size and application.

These are just a few of the reasons why indexed files require special
attention. Our experience shows that indexed files which have been
modified or updated as outlined above tend to lose the inital perfor­
mance gains over sequential files. This can be corrected by improving
file design and maintenance.

The VAX-11 RMS Tuning Guide discusses these and other factors such as
I/0 units, blocks, buckets, areas, fill factors and buffers with an
elegance not possible here. Because of limited space, I'll show two
alternatives for maintaining indexed files we have tried at JMM. One is
the obvious way, the other is the RIGHT way.

DTR Restructure of Indexed Files

In this method, Datatrieve restructure is used to load a new indexed file.
Once the file is loaded, the old file is replaced. The key to this method
is that all record additions are done to an empty sequential file with the
same record definition as the indexed file which makes storage much
faster. This file is merged with the indexed file by downloading the
indexed file on top of the updated records in sequential format. The
merged file is then restructured to a new indexed file.

3

Domain/Record/Fi le Definitions:

□TR> DEFINE □01AIN LPDATE USING
RESULT (JIJ UPDATE.SEQ;

□TR> DEFINE FILE FOR UPDATE
□TR> READY UPDATE WRITE

□TR> READY RESULTS SHARED READ

□TR> UPDATE= RESULTS
□lR> DEFINE FILE FOR RESULTS,

Same record definition.
Sequential
New records are stored in UPDATE
instead of RESULTS
Our sequential file from before
with assorted new records,
erasures, alternate key modifys
Dumping RESULTS down to UPDATE

KEY= PRIMARY_J:EY (NO CHANGE, DUP },
KEY = ALTERNATE_KEY (CHANGE, OLP }

□TR> READY RESULTS AS NEW WRITE
□TR> NEW= UPDATE
DlR> FINISH ALL
□TR> READY RESULTS READ

□TR restructure
Cleaning up
New updated indexed version

This new file now contains all of the records from the original indexed
RESULTS file as well as all of the new records contained in UPDATE. One
modification to the procedure which will slow things down but produce a
better RESULTS file is to sort the merged UPDATE domain before the res­
tructure is done. By experience, however, we've found that this whole
approach is only marginally better than living with the original messy
indexed file. About the only thing that is better about the new file is
that it doesn't have ERASEd records in it - that's why we even bothered
to add the UPDATE domain instead of just adding records to the original
RESULTS domain. Depending on your application, this may or may not be
worth the effort.

The restructure takes an awfully long time (if you have more than a few
hundred records) and produces an indexed file which is not at all
optimal. This is because Datatrieve uses RMS to build the new indexed
file without telling RMS anything about how that file should be built in an
optimal manner. Datatrieve, or any other language using RMS for that
matter, writes each record one at a time, using RMS $PUTs . Thus,
since RMS doesn't really know very much about where the index bucket
boundaries go, it does some pretty simple-minded stuff and takes a
long time to produce a non-optimal file. (If you non-believers think that
the problem is with Datatrieve, we suggest you try writing a program in
your favorite procedural language to write the file. You'll get the same
crummy file, and it will take just as long to run the program as it took to
run the DTR procedure. If you really want to grind a 11 /780 to a halt, try
loading a few thousand records into an ISAM file, one record at a time.
This method of killing a VAX. works best if you have lots of keys and
records with lots of duplicates.) If you want an efficient file and minimal
CPU time, we recommend the following approach instead.

4

RMS Convert of Indexed Files

In Version 3.0 or later of VMS, an RMS utility CONVERT has been provided
which does just this type of thing very well. It bypasses many of the
RMS standard calls which makes it efficient in execution. It also offers
many options and switches which have satisfied practically every strange
nuance we could think of so far. PDP-11 users are not lost. They
should refer to the IFL or Indexed File Loader utility for specifc details.
Although this example is built around VMS CONVERT, the same princi­
ples apply using IFL. In fact, we used IFL in versions of VMS before 3.0.
(VMS users take note - CONVERT is much faster than IFL, and relatively
bug-free. Don't use IFL unless you're on a PDP-11.)

To make this example a little more interesting, we'll also assume the old
file has to be available for usage while the update is in progress, a
fairly reasonable demand.

The first step is to merge the files together into a sequential file as we
did in the previous example:

Domain/Fi le Definitions:

□TR>
OTR>
□TR>
□TR>
□TR>

DEFINE OCJ1AIN lPOATE USING
RESULT Q\l lPOATE.SEQ;

DEFINE FILE FOR UPDATE;
READY UPDATE WRITE
READY RE9JLTS SHARED READ
UPDATE= RESULTS
EXIT

Al I of this is the same
as before.
Sequent i a I f i I e
New records to UPDATE
RESULTS indexed file
RESULTS records to lPDATE

At this point, we do not create a new RESULTS file, nor do we load the
file using Datatrieve restructure as we did before. Instead, we first
invoke the RMS ANALnE utility to create an FDL file of RESULTS. An
FDL (File Definition Language) file is an ordered sequence of file attri­
bute keywords and associated values which lets you access RMS capa­
bilities in a very simple way. This FDL file is then used by the CON­
VERT utility to create a new indexed version of UPDATE, named
RESULTS.DAT. Once CONVERT is complete, the old RESULTS file is
replaced with the new combined file.

8 ANALYZE/AMS/FOL RE9JLTS.DAT
S CONYERT/STATISTICS/FDL=RESULTS UPDATE.SEQ RESULTS.DAT

The new indexed RESULTS file created by CONVERT should have a
cleaner key structure, be free of erased records and will probably be
more compact in terms of disk space. Also, applications should see an
improvement in performance over the old version.

5

The next level of sophistication is to "tune" the indexed file. You can do
this using the EDIT /FDL utility together with the RESULTS.FDL file pro­
duced by the ANALYZE/RMS/FDL step. If you use the EDIT/FDL utility,
you usually would keep an FDL file that had the "tuning" information in
it. Thus, you would not need to run the ANALYZE utility each time you
reloaded the file - only if you made changes to the key structure or
drasitically changed the nature of the data in the file or it's size. The
RMS Tuning Guide has more information on tuning ISAM files.

Case Study

How does this all look when you put it together? Here is a case study
of an actual DCL command procedure that uses CONVERT. Note that in
this example we skip the ANALyzE step (ok, we're lazy!) and we also
don't tune the file. Instead, we just take the RMS default attributes that
Datatrieve uses when you invoke the DEFINE FILE command. The DTR
defaults basically translate to a default bucket size of 2 and def a ult
bucket fill of 50%. By skipping the ANALYZE step, we may lose quite a
bit in performance, but generally it's not a big problem. You will want to
use ANALYZE and CONVERT /FDL if you have a really big file though, or if
performance is really critical.

S!
S!
S!
$!
S!

BUILD.COM - The easy way
This command file takes a current copy of the Pub I ic Employee Fi le and
bui Ids it into the old format for use in existing programs. Thus, the
data in the old files is a strict subset of the data in the new file.

S! Pam and Phi I - Tue Nov 30 23:11:45 1982
S!
S SET DEFAULT CC.J.1140: rPUEUC.PERSO'JAL.OATAJ
S □TR
!Bui Id the public employee file •••
SET DICTIONARY COO$TOP.CC11140.PUBLIC.PERSONAL
READY NEW El"F'LDYEES AS J\EW FORMAT SHARED
DEFINE FILE FDR El'PLOYEES,ALLOCATIDN = 450; !Sequential file
READY EMPLOYEES AS OLD_fORMAT WRITE
OLD FffiMAT = NEW FORMAT
! Nciw, have □TR define another file. This one will have the □TR defaults
! for bucket sizes and fi I I percentages, but it's very easy to define from
! inside □TR and I don't have to know anything about using ANALYZE/RMS or
! the /FOL option in CONVERT.
DEFINE FILE FOR El'PLOYEES,

KEY= El'PNO (NO DUP),
KEY = LAST NAME {CHANGE, [JJp),
KEY = CCK"IP !NITS (CHANGE, □UP),
KEY = SLP _NJMBER (CHANGE, □UP) ,
KEY= COST_J;ENTER {a-1At\GE, □UP),
ALLOCATION= 600;

!Can't change the primary key.
!Pick any keys you want - it
!doesn't matter since CONVERT
!does al I the work.

!Note that we al low more space
!for the ISAM version, because
!we have bunches of keys.

6

FINISH
EXIT
S! Now convert the file to ISAM. We can use the /NOCREATE option
S! of CONVERT because we just finished creating the file we want using
S! □TR. Instead, we could have used CO\IVERT/FOL.
S CONVERT/STATISTICS/NOCREATE EMPLOYEES.OAT;-1 EMPLOYEES.OAT;0
S Pl.JRCt CC_J.1140: [PLJEUC.PERSO\IAL.OATAJEMPLOYEES.OAT
S EXIT

Comments

We have found the CONVERT utility to compare very favorably with
other techniques for loading indexed files . Typically it offers a 3 to 1 or
higher advantage in CPU time over a Datatrieve restructure . The differ­
ence in elapsed time is even more impressive. It is especially fast if you
are building an ISAM file that would cause many bucket splits if
created using a record-oriented approach, even if that approach is
implemented in a procedural language such as COBOL. All of this, of
course, depends on your system hardware configuration, disk drive per­
formance, size of database, system load, sysgen and RMS parameters and
specific file attributes. We suggest you experiment to improve perfor­
mance over the long haul. If updates to your database are fairly frequent
or routine, the whole thing can be automated with a batch job that runs
at off-hours. If you want or need to restructure your database only
occasionally, the simple method shown in the example is very easy to
do by hand, and doesn't require great knowledge of CONVERT or
ANALYSE.

At JMM, we've done a lot of work to tune our large ISAM files and to
develop fast and simple methods of building ISAM databases. In talks
planned for the next DECUS, we will present some other hints on loading
ISAM files, file design, file tuning , and present some benchmarks that
show what improvements in load time and retrieval you can expect.

7

Some Examples Using a Single Hierarchical Domain

Samuel Pitluck
Lawrence Berkeley Laboratory
Berkeley California

For the past five years we have been using Datatrieve to maintain infor­
mation about patients undergoing experimental radiotherapy cancer
treatments. We started using Datatrieve on a PDP-11 and migrated to a
VAX 11/780 in 1981. We first used the compatability mode Datatrieve on
the VAX and finally changed over to the native mode VAX-11 Datatrieve.

We started using Datatrieve with just a single domain. When the variable -
occurs clause became part of Datatrieve we continued to use the single
domain technique. One reason for this was that at the time it seemed to
be the fastest way to implement our rapidly changing record definitions .
In addition, over a three year period our users had grown accustommed
to using a single domain.

The examples described in this paper will be based on the following
domain and record definitions listed in part below:

Domain definition:

DEFif'.E OOMAIN PATS USII\C PAT_BEC ON PATS.OAT

Record definition:

01 PATIENT.

DEF It£ RECffiD PAT _REC
USI I\C

03 IOENT.

03 DIAG.

06 YR PIC 99.
06 ID PIC 999.
06 NAME PIC X{20}.

06 GRADE PIC X(6).
06 STAGE PIC X{6).
06 RX....$ITE PIC X{20).

03 DATES.
06 RXBGN USAGE DATE EDIT....$TRING IS NN/00/YY.

8

06 FCl.L(l.J l.SAG: DATE EOIT_l>TRING IS NN/00/YY.
06 APPT USAGE DA TE EDIT _l>TRIJ'I[; IS f'.l\J/00/YY.
06 000 USAGE DATE EDIT STRING IS NN/00/YY.
06 AG: COMPUTED BY FNSNINT ((FOLLOW - 008}/365.25)

EDIT_l>TRING IS Z9.
03 N.JMEER IONS PIC 9

OJERY NAME IS N IONS.
03 IONS OCCURS 0 TO 7 Til''ES DEPENDING ON NU1BER_JONS.

05 EACH Ia-J.

Examples:

06IO'J PIC x.
06 DOSE PIC 9999

EDIT_l>TRING IS ZllZ.
06 FX PIC 9999

EDIT STRING IS ZZZ.Z.
06 DAYS PIC 9999

EDIT _l>TRING IS ZZZ.Z.
06 ABE PIC 9V99

EDIT_l>TRING IS Z.ZZ.
06 COOSE PIC 9999

EDIT_l>TRIN:; IS Zl.ZZ.

A Data storage:

The initial storage of data into a record is done via a procedure that
promts the user for only certain fields in the record definition. The tech­
nique is taken from the example described by Joan Hilton and Jean Lem­
mon in the Wombat Examiner V4 #1 page 86 (Feb . 1982). For those who
do not have access to older Wombat Examiners , we list our definitions
below. First, we must define a domain and record definition which is a
duplicate of the variable-occurs portion of the patient record definition.
These definitions are defined once and placed into our dictionary. Toe
domain and record definitions respectively are:

OOMAIN IONTEl'P USif\C IONTEMPR Q\J IONTEMP.DAT

DEFir-1: RECffiO IONTEl'PR

01 IONS.
usrr-.r;

06 J(]\J PIC X.
06 DOSE PIC 9998

EDIT-STRING IS ZZZZ.
06 FX PIC 9999

EDIT-STRING iS ZZZ.Z.
06 DAYS PIC 9999
EDIT-STRING IS ZZZZ.
06 ABE PIC 9V99

9

'---•'

'-..__...,"

EDIT-STRING IS Z.ZZ.
06 COOSE PIC 9999

EDIT-STRING IS Zl.ZZ.

In order to store selectively into our patient database we invoke the fol­
lowing procedure:

DEFINE PROCEDURE SPATS
! Define a new empty iontemp file
DEFINE FILE IONTEl"P KEY=ION COJP),SUPERSE!Ei
READY PATS WiITE
READY IONTEl"P kRITE

The "store A in ••. " al lows you to reference the newly
entered data in A.field-nam,e later on

STORE A IN PATS USING
EEGIN

YR=*.YR
I □=*, ID
NAME=*,NAME
RX-SITE=*,TREATMENT-SITE
DOB = *• "DATE OF BIRTH"
RXBGN=*,RXBGN
FOLLOW="
APPT="

.

"
"

NU18ER_JONS = *·"NUMBER OF ICT\IS"
Use the number _jons just entered to control how many records are
stored in the iontemp file

REPEAT A.NUMBER.JONS STORE IONTEMP USING BEGIN
ION=*,ION
DOSE=*,DOSE
FX=*, FRACTIONS
DAYS=*• □AYS
RBE=*.RBE
COOSE=>t<.CDOSE

ENO
Copy the record in the iontemp file to the ions portion of

the main file (pats)
ions= iontemp

Clean out iontemp for the next pass through
ERASE All OF IONTEMP

END
FIN I SH IONTEMP

ENO-PROCEDURE

10

B. Modifying a field calculated from other fields in the occurs clause

One of the quantities in the list is REE. This field is calculated from other
fields in the list. One can modify this field for each ion in the following
way:

DTR> FIND PATS WITH YR=83 Al'I[) 1 □=100
□TR> saECT
□TR> FI NO IONS
□TR> :ABE

where the procedure REE is:

DEF!!'£ PROCEDLflE RBE
tECLARE RB PIC 9V99.
FOR CURRENT BEGIN

IF DOSE GT 10 THEN
BEGIN

SELECT
RB= COOSE/OOSE
MODIFY USING BEGIN

ABE = RB
END

El'I[)
00

HO-PROCEOLRE

find record of interest
select the record
make I ist current collection
invoke procedure

Note that in the above procedure it is possible to test an individual field
before carrying out the calculation. It is also possible to find the sum of
a field for each entry in the list. For example, if you want to sum all the
CDOSE values in the list you would proceed as fallows:

□TR> FIND PATS WITH YR=83 ANJ 10=100
□TR> saECT
□TR> : SUMCOOSE

where the procedure sumcdose is:

DEFII\E PROCEDURE SUl"'COOSE
DED...ARE S1 PIC 9999.
S1 = 0
FOR IO'JS BEGIN

S1 "'S1 + aJDSE
END
PRINT S1

El'l[)-PROCEDLRE

! find record of interest

11

C. Making collections based on fields in the occurs clause.

In our application we frequently need to make collections based on the
type of ION with which we treat the patient. Below is a procedure that will
find all patients treated with one particular ION.

CEFINE PROCEDJRE FION

This procedure wil I locate al I entries with only 1 ion entry and type

DECLARE ITYPE PI C X.
ITYPE =*· "lon type"
FIND PATS WITH NIONS=l AND ANY IONS WITH ION=ITYPE

ENO-PROCEDURE

Note that in order to promt for the type of ION to search for we had to
define a new variable, ITYPE. The following command does not work!

DTR.>FIND PATS WITH NIONS=l AND ANY IONS WITH ION=l!C. "ion type"

Similarly, one can make collections based on any two types of ions. Below
is such a procedure:

CEFINE PROCEIJ...JRE F2ION

! This procedure wi II locate al I entries with 2 different ion entries
!
DECLARE ITYPEl PIC X.
DECLARE ITYPE2 PIC X.
ITYPEl =)j(, "ion type 1"
ITYPE2 =-lie." ion type 2"
FIND PATS WITH NIONS=2 AND ANY IONS WITH I □N=ITYPEl AND ANY ICtJS WilH -
ICJ.J=ITYPE2

END-PRDCECURE

Suppose we want to find all patients treated with either ION = H or ION =
Hand P. The following procedure will do this :

CEFINE PRO:EllJRE LIGHT

Procedure to find patients treated with light ions

FIND PATS WITH (NIONS=l Af\O ANY IONS WITH ION="H") DR -
N IDNS=2 AND ANY IONS WITH ION= "H" AND ANY IONS WI TH ION= "P"

END_ERO:E[]JRE

Note that the parentheses are necessary!

Suppose we want to find all patients that were not treated with either ION
= H or ION = P. The following procedure will do this:

12

r.:EFINE PROCEOJRE HEAVY

Procedure to find patients treated with heavy ions only

FIND CANCS WTIH (NOT ANY IONS WITH ION="H") AND -
{NOT ANY IONS WITH ION="P"}

END..PROCE[lJRE

13

define record THE._THREK..LITTLE....WOMBATS
01 ooser.

03 wombats occurs 3 times.
05 story computed by Dan Dietterich.

Once upon a time there was small warren named Yachts. And in this war­
ren lived three wombats named Albin, Grampian and Pearson. Now these
wombats were not of the owning class, but were your basic working class
sort of wombats. They were database administrators. They spoke the
language Datatrieve , with dialectic variations, of course .

Now in the countryside around the warren there lived two kinds of beas­
ties. The first kind were the Roos. A Roos was large, brown and hairy
with big hind legs and a long tail and went hopping about. A Mama Roos
carried her young in her pouch while hopping. A Papa Roos didn't. Since
wombats also carried their young in pouches, they thought they might be
descended from the Roos. And the wombats did indeed descend into
their warren when the Roos came around. In any event, the Roos were
mostly harmless, except for being a bit jumpy.

The second kind of beasty was the Ooser . Oosers came in a greater
variety than Roos, but some were large, brown and hairy. Others were
short, stout and wore bifocals. Oosers spent their time Working on
Things. They liked to use compooter terminals and query databases. The
concept, the central idea that all Oosers held tightly in their minds,
hearts and souls was the Answer: the Answer to the Query. They were
quite ferocious, especially when provoked. And nothing could provoke an
Ooser like a query that was hard to answer.

Well, one night Albin, Grampian and Pearson were out catching some
moon. It was a warm, lazy night - just the kind night for some grooming
and simple conversation. Mostly DISPLAY statements. When a rumbling
rose up and seemed to surround them. They leapt up and scattered, cry­
ing DISPLAY "Oosers! Oosers!"; but it was all just a Roos.

They re-assembled and conversed. Although they weren't in any danger
from the Roos, if it had been a real Ooser, they wouldn't have been able to
answer a single query. You see, they were rather young wombats and had
not yet built their databases . So, they made a pact that night to build
robust databases and fend off the Oosers.

14

Albin decided to build a database of straw. And his database looked like
this:

DEFII\E OOMAIN STRAW USING STRAW-REC ON STRAW.OAT;
OEFII\E RECCBO STRAW-REC USING
01 LI\ST._5TRAW.

03 ID LOt\G.
03 DESCRIPTION PIC X{40).
03 USE OCCURS 5 TIMES.

06 WI-ERE PIC X{20l.
06 WHAT_fOR PIC XC20).

Well, Albin had constructed his database when a particularly large, brown
and hairy Ooser came by. The Ooser said, "Tell me where you used the
straw from the southwest field" Well, Albin was trembling with fear, but
he managed to key in:

READY STRAW
PRINT STRAW WITH DESCRIPTION = "southwest field"

The answer came out:

WHAT
ID D:SCRIPTio-J WI-ERE Fffi

4457 southwest field Pearson's floormat
Grampian's drapes
Albin's database

He breathed a sigh of relief, but the Ooser just glared back and said ,
"Oooo. Here is a single piece of straw from the northeast field I've been
chewing on. Can you add it to your database?" Albin was shaking almost
uncontrollably, but typed:

READY STRAW WRITE
STORE STRAW

Enter ID:

He was just about to enter an ID when the Ooser growled said, "I don't
want prompts. Just store the straw directly." Now Albin was in a cold
sweat. He typed:

STORE STRAW USING
BEGIN
ID = "986"
DESCRIPTION= "northeast field "
WHERE = "Ooser' s mouth"
WHAT _fOR = ''Chew i ng"
END

15

but alas ...

"WI-ERE" is undefined or used out of context.

and that was the end of Albin's database. There is no way of storing into
the OCCURS list directly.

Grampian decided to build her database of wood. She had heard about
Albin's sad fate, so she got out her hack saw and set to work constructing
a better database. Her database was:

DEFif\E OOMAIN worn USil'C 1,()00-REC ct,J l,[)OD.DAT;
DEFINE RECCRO WOaJ-REC USING
01 WOODJ:JAVE_BEEN.

03 ID LO!'I[;.
03 DESCRIPTION PIC X{40l.
03 USE OCCURS 5 TI MES.

06 WI-ERE PIC XC20}.
06 WHAT...fOR PIC X(20}.

03 USED REDEFINES USE.
06 WI-EREl PIC X (20}.
06 WHAT...fORl PIC X{20}.
06 WHERE2 PIC X(20).
06 WHAT FOR2 PIC X(20}.
06 WI-ERE3 PIC X{20).
06 WHAT FOR3 PIC X(20}.
06 WI-ERE4 PIC X(20l.
06 WHAT FOR4 PIC X(20}.
06 WHERES PIC X(20}.
06 WHAT...fORS PIC X (20}.

She had barely gotten the database loaded when up came a lonesome
Ooser looking for someone to query.

"Tell me where you used the wood from the western forests."

Grampian, smiled and typed:

READY WOOD
PRINT WOOD WITH DESCRIPTICN = "western forests"

16

No problem. The Ooser said, "Ooo. Now here is a piece of wood from the
eastern forest. I've been gnawing on it. Store it in your database. And
by the way, don't use prompts." Grampian tensed a bit, but thought her
database would hold up:

READY WOJO WRITE
STORE WOOD USING

BEGIN
ID c "1234"
DESCRIPTION = "1~estern forest"
WHEREl = "Ooser's mouth"
WHAT_fORl = "Gna1,.1ing"
END

A brief pause ...

... and then ...

She relaxed. It would be alright. But then the Ooser grimaced and said,
"Ooo. Tell me what you use pieces of wood for. " She thought for a piece
and then typed:

PRINT ALL ALL 1.HAT_fffi CF USE OF WDCO

And the answer came out

WHAT
FOR

house
barn
lean-to

house
pr ivy

table

gna1,.1ing

She thought she was safe, but the Ooser grumbled, "You call that a
query? That's a mess." She said, "Don't do anything rash. I'll do it
again. "

17

PRINT worn moss USE RE[UCED TO l.fiAT_fffi

WHAT
FOR

barn
gnawing
house
lean-to
privy
table

"Ooo, that's better.'', said the Ooser, "but you waste a lot of space storing
duplicate items. You have two 'house' stored. Worse yet, what if I have
more than 5? Now tell me for each of those uses, the description of the
wood." Grampian was shaken, but continued to think. And she thought.. .

. . . and she thought ...

... and she thought.. .

.. . and finally typed:

Fffi IJJOD CROSS A IN USE REDUCED TO WHAT FOR
BEGIN -
PRINT WHAT_fOR
FOR I.JOO□ WITH NJY USE WITH WHAT_fDR = A.WHAT_fOR

PRINT CCL 30, DESCRIPTION
ENO

"Ooo, yuck!", said the Ooser, "That's a terr ible query. You need to loop
through the data twice to get the answer!" Grampian stiffened and
watched through tearless eyes as her database crumbled.

Now Pearson heard about poor Albin and Grampian and was determined
to do better. She took a different approach and defined a database of
bricks.

DEFlt£ OOMAIN BRICK USING BRICK-REC ON BRICK.OAT;
OEFII\E RECffiD BRICK-REC USING
01 BRICK.JT.

03 ID LONG.
03 DESCRIPTION PIG XC40}.

DEFINE OOMAIN USES USING USE-REC ON USES.DAT;
DEFINE RECCflO USE-REC USil\l;
01 USE IT.

03 ID LOM;.
03 WHERE PIC XC20).
03 WHAT_fOR PIC XC20).

18

Can you guess what is about to happen? Well sure enough, along comes
one of those short, stocky Oosers with the bifocals. And the Ooser says,
"Tell me what your red bricks are used for." Pearson calmly typed:

PRINT WHAT _fOR OF BRICK CRCSS USES OVER ID WITH DESCRIPTION = "RED"

"Oooo. Very nice.", said the Ooser, squinting to stare at the compooter
terminal. "Now, I have a brick. I use it to smush bugs. Store it into your
database. And no prompts, understand?" Pearson understood all too
well, but simply typed:

STORE BRICK USING
BEGIN
IO= 123
DESCRIPTION = "bug"
END

STORE USES USING
BEGIN
ID ,.. 123
WHERE= "In Ooser's hand"
WHAT_fOR = "Smushing"
ENO

"Oooo", said the Ooser, "I don't like the extra STORE, but you can add as
many uses as you like. What about my other brick? I use it for smushing
eggplants. Store that." Pearson went ahead and typed

STORE BRICK USING
BEGIN
IO "' 123
DESCRIPTION= "eggplant"
ENO

"Oooo. Only one store. Now tell me what bricks are used for." Pearson
smiled, her database was in normal form after all:

PRINT WHAT_fOR OF USES

"Oooo my", murmered the Ooser. "Tell me for each use what the descrip­
tion of the brick is." Pearson wiped her brow and set to work.

Fffi USES
BEGIN
PRINT WHAT_fOR
FOR BRICK WITH ID= USES.ID

PRINT CQ 30, DESCRIPTION
END

And the Ooser trundled away saying, "Ooooo! Ooooo! Ooo, my." That was
the End Ooser and that is the end of the story.

19

How to Write Plots in DTR
Don Becker
Atlas Steels
Welland, Ontario

1.0 Introduction

There is currently no documentation on how to write plots for DTR. Given
a little time to become familiar with the plots supplied with DTR, every
user comes up with their own pet plot they would like implemented.

In this article I hope to explain enough to get you started in producing
DTR plots.

This article will assume a knowledge of DTR procedures.

At Atlas Steels we have implemented plots for 2 reasons

1. Some simple plots for use on non-graphics terminals (VT100, VT52).

2. To implement some analysis unique to Atlas Steels.

2.0 Entry Points Unlike procedures, plots have multiple entry points .

Entry points have parameters (similar to procedures in Pascal, Fortran,
etc.) that allow a more flexible interface than DTR procedures. The form
of an entry statement is

ENTRV N [(Pl [: TVPE l [, Pn {: TVPEJ J) l

where

1. N is an integer literal

2. P 1 through Pn are variable names

3. TYPE is one of the valid data types (see below)

4. STATEMENT is one of the valid statements, including the BEGIN-END
compound statement

An example of an entry statement would be

20

ENTRY 1 (X :REAL, Y :REAL, CLASS :STRING)

2.1 Parameters

Parameters are declared in the Entry point statement. Each parameter
must have a data type (see below). A colon (":") separates the parameter
from its type specifier.

2.2 Entry Point O

Entry point O is used to initialize the plot. It is called with each of the
parameters on the DTR command line (DTR> PLOT ...) named in a string.
Thus the number of parameters (type STRING) in the ENTRY O statement
defines how many parameters the user must specify to execute the plot.

This entry point is called only once during the execution of the plot.

2.3 Entry Point 1

Entry Point 1 is called once for each set of values that are to be entered
in the plot function. The data types match the data types of those
parameters NAMED in Entry point 0 .

2.4 Entry Point 2

Entry Point 2 is called once during the execution of a plot. It is called
without parameters. It is used to wrap up the execution of the plot
before returning to DTR command level.

3.0 Declarations

Plots have a GLOBAL definition area (besides the definitions included as
parameters to entry points). This area immediately follows the plot
definition statement and precedes the first entry point definition (0).

3.1 Data Types

DTR supplies 3 data types, REAL, DATE, and STRING, to plot definitions.

A variable can be declared by a statement such as

DECLARE TYPE LABR [, LABa ••• J

21

where TYPE is REAL, DATE, or STRING. (the default type is REAL so the
"REAL" is optional) .

3.2 Data Structures

DTR plots allow for the use of dynamic arrays. By this I mean that there
is no need to define the length of an array, each element of the array is
created by assigning a value into it.

An array definition would look like

DECLARE TYPE VECTOR LABEL [, LABEL. •• J

Vectors can be indexed by literal integers (notice no integer date types)
or reals. The reals are rounded to the nearest integer before being used
as an index. Thus for a N element vector, the valid indexes I are 0.5 <= I
< N+0.5 .

These arrays are made useful by a SIZE function and a INCR I OVER V
statement (see later) .

This is a major improvement over DTR procedures .

4.0 Statements

Plots do not have the same set of statements as procedures, however
many of them do look similar.

Plots do have

1. assignment statement
X = 55.S

2. compound statement
BEGIN

X = 55.G
y = 89

END

3. if-then-else statement
IF X < 55 THEN
EEGIN

X = X + 55
Y = X / 3

22

4. print statement
PRINT 'P[250,44JT' ,QUOTE{'Text to go on the plot')

5. plot statement
PLOT LABEL 2 (X.11IN, YJ'.lIN, X_.YECTOR)
(See be I 01,.1}

6. sort statement
SORT(X"._YECTOR)

7. incr statement
!NCR I FR0'1 1 TO 100
or
INCR I OVER X_.YECTOR

CI varies from 1 to SIZE(X_.YECTOR)

5.0 Expressions

Plots do have REAL expressions with the normal operators (including
exponentiation **) however they do not have concatenation operators for
strings.

A full set of relational operators is not implemented (>, <, LT, LE, EQ, GE,
GT are).

6. 0 Functions

There are a number of functions that can be called. However the user
defined functions, and the DTR defined functions cannot be called.

6.1 Size

Size takes an array as a parameter and returns the number of elements
in the array.

6.2 SQRT

SQRT takes a REAL expression as a parameter and returns the square
root of the expression.

"---------''

23

6.3 MIN

MIN takes an array as a parameter an returns the minimum value of its
elements.

6.4 MAX

MAX takes an array as a parameter and returns the maximum value of its
elements.

6.5 CVT

CVT takes a REAL as a parameter and returns it as a string.

6.6 LOG

LOG takes a REAL as a parameter and returns its natural log.

6.7 INT

INT takes a REAL as a parameter and returns the closest integer.

6.8 CENTER

CENTER takes 4 values

1. A REAL value giving a X coordinate .

2. A REAL value giving a Y coordinate .

3. A STRING whose upper left corner is to be placed at the coordinate

4. The size of the characters to be displayed (in pixels).

and returns a string representing the REGIS commands to display the
string .

24

6.9 LXY

LXY takes 2 REAL parameters, the X and Y coordinates, and returns a
string representing the absolute REGIS coordinates [X, Y] .

6.10 LX

LX takes l REAL parameter, the X coordinate, and returns a string
representing the absolute REGIS coordinates [X].

6.11 LY

LY takes 1 REAL parameter, the Y coorciinate, and returns a string
representing the absolute REGIS coordinates [, Y].

6.12 RXY

RXY takes 2 REAL parameters, the X and Y coordinates, and returns a
string representing the relative REGIS coordinates [+X, +Y].

6.13 RX

RX takes 1 REAL parameter, the X coordinate, and returns a string
representing the absolute REGIS coordinates [+X].

6.14 RY

RY takes 1 REAL parameter, the Y coordinate, and returns a string
representing the absolute REGIS coordinates [, +Y].

6.15 QUOTE

QUOTE takes a STRING as a parameter and returns the string surrounded
by quotes (necessary to insert it in a REGIS command) .

6.16 SEARCH

SEARCH takes a string, and an array of strings as parameters and returns
the index of the string in the array, or O if it is not found in the array.

25

7.0 Utility Plots

Utility plots are plots with whose entry points can be called directly from
the inside of another plot by using the PLOT statement.

The PLOT statement is of the form

PLOT PLOT-NAME N C PARAMETER-1 [, PARAMETER-N ••• J)

where N is a literal integer representing a entry point in the named plot.

7.1 HOUSEKEEP

HOUSEKEEP is a plot for entering and exiting graphics mode on the ter­
minal. You would normally call entry point O with no parameters to enter
REGIS and entry point 2 to exit REGIS.

7:2 LABEL

LABEL is a plot for doing a number of things, related to the mapping of
the plot to the Regis screen.

It performs the following functions:

1. Draw a boundary box on the screen, label the axis

2. Scale the X axis and array

3. Scale the Y axis

4. Scale the log of the X axis and array

5. Scale the log of the Y axis

6. Scale the X axis and array (date type)

7. Compute the linear regression

8. Scale the Y array

9. Display Y axis scale lines

10. Display X axis scale lines

11. And more ...

26

There are more utility plots that can be used to make your plotting
experience easier.

EXAMPLES

The following is an example of a VT125 plot that displays an approximate
frequency distribution of a field.

DTR:> set dictionary vt125
□TR> show frequency
PL.OT FREQLENCY
CECLARE X AXIS, Y AXIS, X LEl'-[;TH, Y L8'JGTH
CECLARE X MAX, X MIN, Y_llIN, Y _MAX
CECLARE x_pos' y _pas, K' TEMP
CECLARE I, J
CECLARE VECTCR XS, YS, XSl, YSl
CECLARE VECTCR V
CECLARE SUM, SUMSQ, MEAN, STD.JIEV, MIN_.YAL
r::ECLARE MAX_.YAL, RA~E, INTERVAL
CECLARE INTERVALS
I:ECLARE STRII'-[; LA88-
CECLARE MEAN_POINT, POINTS, STRIDE, ORIGIN, SCALE
8'JTRY 0 CX...l-ABEL : STRING}

BEGIN
PLOT HOUSEKEEP 0
X~XIS = 100 locate the axis'
Y AXIS= 360
X LEl'-[;TH = 600
Y...l-El'-[;TH = 350
LABEL= 'Frequency'
PLOT LABEL 0 {X_JIXIS, Y_AXIS, X...l-ENGTH,

Y...l-El'-[;TH, X...l-ABEL, LAB8-)
INTERVALS == 50
Slt'I = 0
Sll1SQ = 0

END
8'JTRY 1 (YAU

BEGIN
SLM= SLM+ VAL for use later in statistics
SLMSQ = SUMSQ + VAL*VAL
V(SIZE(V)+l) = VAL

END
Print scatter plot

27

ENTRY 2
BEGIN

! compute statistics
MEAN = SUM/SIZE {V)
STD _DEV = SQRT USUMSQ - SIZE {Vh<MEAN~AN) / {SIZE (V) - 1))
MIN_yAL = MIN(V}
MAX_.YAL = MAX (V)

! calculate the range and interval
RANGE= MAX VAL - MIN VAL
INTERVAL= RA!'l;E / INTERVALS
K = MIN_.YAL - CINTERVAL/2) ! calculate outside of loop
11\CR I FROM 1 TO INTERVALS
BEGIN

00

XSl(I) = (!*INTERVAL}+ K
YSUI) = 0

! calculate frequency
11\CR I FROM 1 TO SIZE(V)
BEGIN

J = ((V{l}-MIN YAL)/INTERYAL} + .5 ! inside interval j
YSl (J) = YSl {J) + 1 ! update count

ENJ
! Push boarder case of MAX_yAL back into last interval
YSl(INTERYALS) = YSl(INTERYALS} + YSl(INTERYALS+l}

! calculate min/max for sealing
!
X.J11N = MIN {XSl)
X MAX= MAX {XSl)
YMAX = MAX CYSl}
Y MIN~ MIN (YSl)
!
! strip off 0 frequencies inside of the plot
! this wi I I spruce up the look of the plot
!
11\CR I FROM 1 TO INTERVALS

IF YSl{I) >0 1HEN
BEGIN

!

XS{SIZECXS)+l) = XSl(l)
YS{SIZE{YSl+ll = YSl(I)

ENO

IF Y.J'IIN > 0
THEN Y.J1IN = 0

I scale, drawing scales on the screen
!
PLOT LABEL 2 {X MIN, X MAX, XS)
PLOT LABEL 3 (Y MIN, Y MAX)
PLOT LABEL 8 (YS)
!
! plot the frequency distribution
!

11\CR I OVER XS

28

END
END..PLOT

ffiINT CENTER {XS{I}, YS(I}-9, '+', 9)

plot stats along X axis

PLOT LABEL 10 {XJ:1IN, XJ:1AX, POINTS, STRIDE, ORIGIN}
SCALE C X LENGTH/{POINTSl!CSTRIDE}
MEAN._POINT = X..J,XIS + SCALE * { !'£AN - ORIGIN)
PRINT CENTER { MEAN_POINT , Y..J,XIS+l0, '--M', 5)
!
! and give statistics values {at bottom of the screen)
!
PRINT 'P', LXY{ 20, 393},

'T{sl)', QUOTE{'Sample Size='),
'T(s1}', OJOTE(CVT(SIZECV))

PRINT 'P', LXY(20, 415),
'T{s1)', QUOTE{'MAX = '),

'T{sl)', QUOTE{ CVT(MAX_yAL)),
'Hal)', QUOTE{', MIN= '),

'T{sl)', QUOTE(CVTCMIN VAL)
PRINT 'P', LXY(20, 437), -

'T{sl)', QUOTE('Mean = '),
'T(sl)', QUOTE(CVTCMEAN)),

'T(sl)', QUOTE(', SID DEV= ') 1

'T{sl)', (JJOTE(CVT{SID_1EV)

and cleanup before leaving
!
PLOT HOUSEKEEP 2

OTR> set dictionary -.demo
□TR> ready yachts
DTR> find yachts with price not equal 0
[50 records found]
DTR> plot frequency price of current
□TR> plot connect

The fol lowing is an example of a VT100 plot. It produces a
scatter-graph of the 2 input parameters. They use 2 utility
plots for VT100's, one draws an axis (AXIS) and one scales the X
and Y vectors.

The TERMINAL plot is included to show how support can be
added for a new terminal type, simply rewrite the 3 entry points
in TER'IINAL, all plots using TERMINAL would then support the new
term i na I.

We currently maintain 3 graphics dictionaries, VT125, VT100,
and VT52. VT125 has al I of the DEC supplied plots plus a few of
our own. VT100 and VT52 both have identical plots, a smal I
subset of VT125.

29

DTR> set dictionary vt100
DTR> show x_y
PLOT X..:J

><-y

DECLAFE VECTOR
OED..AFE
OEQAFE STRING

plot each x-y point

X,Y
I. PX, PY, L, C
PLOT_l:HAR, STR

ENTRY 0 {X.J,.ABEL: STRING, YJ,.ABEL: STRING)
BEGIN

PLOT TERMINAL 0
PLOT AXIS 0 (XJ,.ABEL,
PLOT a-JAR='*'

! clear the screen
YJ,.ABEL} ! plot axis

END

L = 1
C = 1
STR ='XV PLOT'
PLOT TERMINAL 1 (L, C, STRl

ENTRY 1 (X ELEMENT, Y _JL81ENT J
BEGIN -

ENJ
ENTRY 2
BEGIN

X(SIZE(X)+l) = X_fl.EMENT
Y{SIZE{Y}+l) = Y_ELEMENT

PLOT SCALE 0 {X)
PLOT SCALE 1 (Y}
INCA I OVER X
BEGIN

PX = XU)
PY = YU)

! plot the point

store elements as
they arrive

scale>< axis
scale y axis

PLOT TERMINAL 1 {PY,PX,PLOT.J:HAR}

END
ENO_f:'LOT

END
PLOT TERMINAL 2

□TR> show terminal
PLOT TERMINAL

TERMINAL --

! exit

~i I I clear the screen
and do cursor
addressing for vt100

ENTRY 0
BEGIN

clear screen

PRINT '<ESC>[2J'
END

ENTRY 1 (L, C, STR: STRIN3} PLACE STRING AT ADtflESS
BEGIN

30

EN□_pLOT

HO

ENTRY 2
BEGIN

HO

L = INH L)
C = INT{ C)
PRINT '<£SC>[' ,CVT{Ll,';' ,CVT{C),'H' ,STA

! exit - cursor to bottom

PRINT '<ESC>[22;1H'

□TR> set dictionary -.demo
□TR> ready yachts
□TR> find yachts with beam not equal 0 and price not equal 0
[47 records found]

31

Time In Datatrieve
Dick Azzi
Motorola
Phoenix, Arizona

I recently came upon a situation where I had to enter the time into a date
field in Datatrieve and found that there was no way to do it. I wrote a
short procedure that may be of use to others that want to do the same
thing.

You will have to declare 4 variables in the calling procedure and have
those variables loaded with data when calling the procedure to place the
time in your date field. These variables are as follows :

DECLARE FOODATE USAGE DATE.
□Ea...ARE FOOi-fl PIC 99.
DECLARE FOOMIN PIC 99.
DECLARE FOOSEC PIC 99.

Date to be in field.
Hours of time to be in field.
Minutes of time to be in field.
Seconds of time to be in field.

Once you load these variables call the following procedure and the time
and date will be returned in the variable FOODATE.

DEFINE PROCEDURE FOOTIME
DED..ARE SEC FOO CCT1PUTED BY 10000000.
DECLARE MINFOO CCT1PUTED BY SEC FOO* 60.
DECLARE ffl FOO COMPUTED BY SEC FOO* 3600.
OEa...ARE DATE FOO PIC 9 (18)
USAGE IS COl'P .
DA TE_EOO=FODDATE
DATE_EOO=DATE_FOO + FOOffll!CI-R_FOO + FOOMIN>id"IIN_EOO + F()JSECl!CSEC...fOO
FOaJATE=DATE...fOO
END...PROCEDURE

32

Four-Column Mailing Labels in Datatrieve
Timothy T. Toyne
600 South St. -Rm 1017
New Orleans, La 70130
(504)589-2972

After reading the March 83 issue of the WOMBAT EXAMINER, (WOMBAT
MAGIC - a two column list), I became interested in the possibility of print­
ing four-column mailing labels . Because of the number of mailings that
we must complete each month, and the size of the file (about 2000
records), four-column labels would be a definite time saver in our opera­
tion.

I made an effort to use the procedure for a two-column list, but I was not
able to get it to work with multiple line address requirements. Besides, I
wasn't too keen on doing this operation in the report writer . (Not that I
have anything against the report writer .)

I tried several ideas - but none worked . rSo, I went back to my standard
methodology when I have problems developing something in datatrieve:
If I were going to do this operation in COBOL (sorry, I know you can't com­
pare datatrieve to a high level programming language), how would I set
up the storage area?

The procedure speaks for itself, once I declared variables for all fields in
each address group for each column, the battle was over. By increment­
ing a counter and calling a print procedure after the fourth store in the
inner nest, we have four column labels. Be sure that you include three
dummy records at the end of the file to insure that all records print.

Example:

33

DELETE FAST_1A8ELS;
DEFINE PROCBJURE FAST_,b.ABELS

THIS PROCEDLRE PROOUCES FOffi COLU1N MAILII\G LAB8-S

DA TE: 5 DECEMBER 1983

WR IT TEN BY: Cl-0 T. T. TOYr-.E

COl't1Al'OER EIGHTH COAST GUARD DISTRICT (b)

NEW OR .. .EANS, LA

! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! l ! ! ! ! ! ! ! l ! ! ! ! ! ! ! ! ! ! ! ! !! l ! ! ! ! ! ! ! ! !

THIS SECTil1'4 CECLARES r-.ECESSARY COLUMN VARIABLES

! ! ! ! ! ! ! ! ! ! ! ! ! !! l ! ! ! ! ! ! ! !

YOU MUST BE SURE TO SET THE TERMINAL WIDTH TO 132
AND IN □TR -- THE COWMJ\S-PAGE TD 132

! ! ! ! !! ! ! ! ! ! ! ! ! ! ! ! ! ! !! ! ! ! ! ! ! ! ! l ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !!

IMPORTANT

PUT Tl-flEE DUMMY RECORDS IN THE FILE TO BE SURE THAT
ALL RECORDS PRINT

!
!
SET AOORT
READY MBR
DEU..ARE TFNAMEl
DEU..ARE TFNAME2
OEa...ARE TFNAME3
OEa...ARE TFNAME4
DEU..ARE TLNAMEl
OEO....ARE TLNAME2
OEQ...ARE TLNAME3
□EU.ARE TLNAME4
□Ea...ARE TSTRTl
□EU.ARE TSTRT2
DEa...ARE TSTRT3
DEQ...ARE TSTRT4
□EU.ARE TCITYl
OEa...ARE TCITY2
□EU.ARE TCITY3
□Ea...ARE TC ITY4
□Ea...ARE TST_lIPl
□EU.ARE TST_]IP2
□Ea...ARE TST ZIP3
DEa...ARE TST ZIP4
□EU.ARE COUNTER
COL.t.JTER:: 0

PIC IS X {15).
PIC IS X (15).
PIC IS XUS).
PIC IS X (15).
PIC IS XU5).
PIC IS X Cl5L
PIC IS X (151.
PIC IS XUS).
PIC IS X(20).
PIC IS X {20}.
PIC IS X {20).
PIC IS XC20).
PIC IS XC15).
PICISXU5).
PIC IS X (15}.
PIC IS X (15).
PIC IS X(8).
PIC IS X(8).
PIC IS XC8l.
PIC IS X (8).
PIC S.

34

FOR Mffi
BEGIN

ca.JNlER =COUNTER+ 1
IF C!JJNlER = 1 Tl-EN

BEGIN
1FNAME1 = FNAME
TLNAMEl = LNAME
TSTRTl = STAT
TCITYl = CITY
TST ZIP1 = ST ZIP

END ELSE -
IF C!JJNlER = 2 Tl-EN

BEGIN
TFNAME2 ""FNAME
TLNAME2 = LNAME
TSTRT2 = STAT
TCITY2 = CITY
TST ZIP2 = ST ZIP

END ELSE -
IF C!JJNlER = 3 Tl-EN

BEGIN
TFNAME3 = FNAME
TLNAME3 = LNAME
TSTRT3 = STRT
TCITY3 = CITY
TSTJIP3 = STJIP

END ELSE
IF C!JJNlER = 4 Tl-EN

BEGIN
TFNAME4 = FNAME
TLNAME4 = LNAME
TSTRT4 = STAT
TCITY4 = CITY
TST ZIP4 = ST ZIP
: FAST _LABB.-52 -
CXJUNTER = 0

END
END

END-PROCEDURE

DELETE FAST LABELS2;
DEFINE PROCEDURE FAST-LABELS2

THIS SECTION PRINTS THE FOI.R COLLMN LABELS
!
PRINT COL 3, Tl'EM-NOl{-}, COL 37, Tf'EM-N02(-}, COL 72, Tl"EM-N03{-),
COL 105, TMEM-t...x::J4(-}, ca... 3, TFIR-NAMll I ITSIG-NAMEl{-}, COL 37,
TFIR-NAM21 I ITSIG-NAME2(-), COL 72, TFIR-NAM31 I ITSIG-NAME3(-), COL 105,
TFIR-NAM41 I ITSIG-NAME4{-), COL 3, TSTREETl(-}, COL 37, TSTREET2{-),
COL 72, TSTREET3{-), COL 105, TSTREET4{-), COL 3, TCITYll I iTSTATEll I ITZIPl{-),
COL 37, TCITY211 ITSTATE21 I ITZIP2{-), CQ 72, TCITY31 I ITSTATE31 I ITZIP3(-},
COL 105, TCITY41 I ITSTATE41 I ITZIP4(-), SKIP 2
END-PROCEDURE

35

DISTRIBUTED DATATRIEVE ACCESS FACIIJTY (DDAF)

Terry Cassidy
Digital Equipment Corporation

Overview

MYV AX: : OLRV AX: : connect i on
OLflVAX:: DIJ'1AIN YACHTS USING YADJT ON YAD-IT. □AT

MYVAX:: READY YACHTS AT a.JRVAX
MYYAX:: PRINT YACHTS WITH LOA EQ 20

MYVAX:: OLRVAX:: connection
with VAX-11 mo, VAX-11 Files, request from MYVAX::
DTR32.EXE talking to [DMF.EXE
FEADY YACHTS AT OURVAX
PRINT YACHTS WITH LOA EQ 20

MYVAX:: Olflll:: Connection
OLflll:: DOMAIN YACHTS l.JSil',l; YACHT 0-.J YACHT.OAT

MYV AX: : READY YACHTS AT [lJRll
MYVAX:: PRINT YACHTS WITH LOA EQ 20

MYVAX:: 01..Rll:: Connection
with DTR-11 Data Dictionary, DTR-11 Files, request from MYVAX::
DTR32.EXE talking to OOMF.TSK
FEADY YACHTS AT OURll
PRINT YACHTS WITH LOA EQ 20
OISTRIElJTED ACCESS

Efficient access to remote data

Data lives on other VAXes
Data lives on PDP-11s
Define a domain that points to remote
READY a domain AT remote
Query decomposition
Maximizes parallel processing
Minimizes network traffic

36

Distributed Access Components

HOSTS

VAX
- DTR32xx.EXE, the terminal server
- Applications programs using VAX-11 DATATRIEVE

Cai I Interface

POP-11
- REM0TR.TSK, al lows access to a single remote server
- Application programs using the PDP-11 DATATRIEYE

Cal I Interface

SERVERS

VAX
- 001F><><.EXE

POP-11
- OIJ'IF.TSK

A sample session

I-OST CMYVAX)

OATATRIEVE user types command
READY YACHTS AT OURVAX

DATATRIEVE asks DECnet to
establish a link to MVAX
1,1 i th known object 30 ([)[)l"F)

0TR looks at the
initialization packet to
ensure that the object on the
other end is a OOMF and that
it is not trying to use an
obsolete protocol

SERVER <OLRVA>O

CECnet responds and starts OOMF

OOMF sends an initialization
packet

37

OTA sends an init ialization
packet of its oi.n

OTR sends a command packet li ke
FEADY YACHTS AS DTRS00 READ;
DI SPLAY "READY";

DTR receives the disp lay packet

OTR sends packets requesti ng
informati on about the READYed
doma in (f ie lds, etc)

OTA prompts the user for more
Input
DATATRIEVE user types collllltand
PRINT YACHTS WI TI-1 LOA .. 30

OTR sends this command packet
EEGIN
EEGIN

IIlMF looks at the initialization
packet to ensure that the
object on t he other end is a
legitimate host and that it
is not trying to use an
obsolete protocol

COMF processes the READY command
OOMF processes the DISPLAY
statement and sends a display
packet

DDl"F responds ~ith information
packets

CECLARE POOT OTRS0 OTRSGROUP STRUCTURE.
OTRSl DATATYPE 1S TEXT SIZE IS 10 CHARACTERS.
OTRS2 DATATYPE lS TEXT SIZE IS 10 CHARACTERS.
DTRl3 DATATYPE IS TEXT SIZE IS 6 CHARACTERS.
OTR84 DATATYPE IS TEXT SIZE IS 3 CHARACTERS.
OTRS.S DATATYPE IS l.NSIGNED f\UMERIC SIZE IS 5 DIGITS.
DTRS6 DATATYPE IS LNSIGNED r--JJMERIC SIZE IS 2 DIGITS.
OTRS7 OATATYPE IS LNSIGNED l'UMERIC SIZE IS 5 DIGITS.
END DTRSGROUP STRUCTURE.
END.;
~OR DTRS00 WITH {OTRS00.LENGTH_QVER_ALL EQ 30}
EEGIN
STOFE DTRl0 USIN3
EEGIN
OTRSl = DTRSD0.f'!ANLFACTURER;
OTRS2 = DTRS00.!'008-;

38

DTRS3 = OTRSD0.RIG;
OTRS4 = OTRSD0. LENGTH_9VER_ALL;
□TASS= OTRS00.DISPLACEMENT;
□TRIG= DTRS00.EEAM;
DTRS7 .. OTRS00.PRICE;
ENO;
ENO;
DI SPLAY "DTRS0 II;
00;
00;

□TR continues processing the
PRINT statement and prints the
column headers

MANLFACTURER 11JD8- RIG ...

□TR receives the data packets
and prints lines
ALBIN BALLAD
CAL 3-30
FISI-ER 30

SLOOP
SLOOP •••
KETCH

DTR receives the display packet
□TR prompts the user for more
input

DATATRIEVE user types command
FINISH YAD-ITS

□TR sends a command packet like
FINISH DTRSD0;
DISPLAY "FINISH";

□TR receives the display packet

□TR sends a shutdown packet

DDl'F receives the command packet
DDl'F processes the PrnT declaration
DDl'F processes the Frn statement
DDl'F processes the STORE statement
by sending data packets from the
port as they are stored

O0'1F processes the DISPLAY
statement and sends a display
packet

OCJ'1F processes the FINISH command
DCJ'1F processes the DISPLAY
statement and sends a display
packet

39

OOMF receives the shutdown packet
and has DECnet drop the link

□TR detects the dropped link
and considers the session
terminated
DTR prompts the user far mare
input

Tracking Problems

The DDMF Server

The lag file containing commands, statements, and error messages

SYSSLOGIN:NETSERVER.UX, {DECnet-VAX Phase IV)
SYSSLOGIN: □Dl"F><><. LOG illECnet-VAX Phase I I Il
[])MF.LOG (in login directory} (PDP-11s}

Example (VAX)

S SET NOVERIFY

Connect request received at 21-0CT-1983 09:43:41.31
from remote process MYVAX::"0-=00000047"
for object "SYSISYSROOT: [SYS0<El □Dl'F. COM; "

VAX-11 DATATRIEVE Remote Server
Protocol 3,1
READY YACHTS AS DTRS00 READ; DISPLAY "READY";
Statement completed successfully.
Statement completed successfully.

EEGIN EEGIN DECLARE PORT OTR$0 DTRSGROUP STRUCTURE.
OTRSl DATATYPE IS TEXT SIZE IS 10 D-iARACTERS.
OTRS2 DATATYPE IS TEXT SIZE IS 10 D-iARACTERS •

•
FINISH DTRS00; DISPLAY "FINISH";
Statement completed successfully.
Statement completed successfully.
VAX-11 DATATRIEVE Remote Server terminating with status 00000001

CASSIDY job terminated at 21-OCT-1983 09:44:07.99

40

- ·- -· - --- -·· ---·- -·- - - -- -·-- -------· ·· - - ---- -· -- - . - · - - - -- . --- --- ----··· -- - --- - --- ··· -- ·· - · -~· ~ - -- - - - - ----------

The VAX Host

$ RUN/DEBUG SYS$SYSTEM:DTR32
Some or all global symbols not accessible

DBG> GO
VAX-11 Datatrieve V2.0

DTR> READY YACHTS AT OURVAX
REMCMD> READY YACHTS AS DTR$DO READ; DISPLAY "READY";
DTR> PRINT YACHTS W1TI-I LOA = 30
REMCMD> BEGIN BEGIN DECLARE PORT DTR$0 DTR$GROUP STRUCTURE.
REMCMD> DTR$1 DATATYPE IS TEXT SI ZE IS 10 CHARACTERS .
REMCMD> DTR$2 DATATYPE IS TEXT SIZE IS 10 CHARACTERS .

LENGTH
OVER

MANUFACTURER MODEL RIG ALL WEIGHT BEAM PRICE

BALLAD SLOOP 30 7,276 10 $27,500 ALBIN
CAL
FISHER

3-30 SLOOP 30 10,500 10
30 KETCH 30 14,500 09

DTR> FINISH YACHTS
REMCMD> FINISH DTR$DO; DISPLAY "FINISH";

Security

SERVER

- use dictionary protections
- use user name and password in the access string

□TR> READY YADffS AT OUWAX"LSER LETMEIN"
DTR> DEFINE Oa'lAIN YACHTS USING COOSTCF.MYLIB.YACHTS AT

OURY AX "USER LETME IN";

HCST

- Pass~ord can be given at READY t ime CV/:>X only)

OTR> CEFINE 001AIN YACHTS USING CDDSTCF.MYLIB.YACHTS AT

41

OURVAX"USER *•'Password'"
DTR> READY YACHTS
Enter Password:

Restrictions

- Fffi REMDTE_JACHTS WITH BUILDER CONT *.BUILDER
- FINO REMOTE_JACHTS

saECT FIRST WITH PRICE= 0
- Validation errors cause ABORTs
- MaJIFV and STffiE of I ists
- Fffi REMOTE YAD-lTS WITH PRICE> 3%DISP
- Fffi REMOTE YACHTS CROSS REMOTE_fAMILIES

(not echoed)

- works on VAX if both domains use the same VAX server
- REDUCE (POP-11 Server)
- FROM CPOP-11 Server)
- STARTING WITH CPOP-11 Server}

42

-- .- -- - -·-· -··- --- - - ··-··· ---- ---- - -·· - ··-· -- -- · - · ---· . ·- - -- · ··--- - -· -- - - · - -----------

~..,...,...,..,...,..,,-,-,-,........-,...,.........,...,.......,..,.......,....,.........-.-"T">"""O-,...,..,...,,..,......,......,...........-r"T,..,..,...,c-r-r-,r"T"T",,--,-,-, ·~~~~~

VAX-11 DATATRIEVE TECHNICAL TUTORIAL

Terry Cassidy
Digital Equipment Corporation

What is DATATRIEVE anyway

DEC Query and Report System
High Level Application Language
Callable Data Manager

Competing Goals

Performance
Ease of use
Flexibility
Productivity

DATATRIEVE APPIJCATIONS

RIIS Key Optimazation

Exact over range retrieval
Unique over duplicates
Primary over alternate
Collections are not keyed

Checking for Key Optimization

S RUN /DEBUG SYS$SYSTEM:DTR32
Some or all global symbols not accessible

DBG> GO
VAX-11 Datatrieve V2.0

PRINT YACHTS WITH BUILDER :::: "PEARSON"
Performing EQL boolean on RMS key field YACHTS.MANUFACTURER

43

DBMS Key Optimization

Equality Booleans
EQ boolean AND
May or may not be faster

Hierarchies vs Relations

If you can, use relations
Views can make it hierarchic
Easier to manage
Join using indexed fields

FIND vs FOR

FOR is faster
FOR is more flexible

Dictionary Tables

Stored in CDD
Faster than Domain Tables
Harder to update

DEFINE TABLE RIGJABLE
"SLOOP" : "ONE MAST",
"KETCH": "TWO MASTS, BIG ONE IN FRONT",
"YAWL" : "SIMILAR TO KETCH",
"M/S" : ''SAILS AND BIG MOTOR",
ELSE "SOMETHING ELSE"
ENDJABLE

Domain Tables

Stored in a file
IN is ANY
VIA is FROM

DEFINE TABLE BUILDER.PRICE FROM YACHTS USING
BUILDER : PRICE
ELSE 0
ENDJABLE

44

---------- --- ---··--------------- - ------ -----

Equivalences

IN/ANY

IF "PEARSON" IN BUILDER..PRICE THEN .. .
IF ANY YACHTS WITH BUILDER= "PEARSON" THEN ...

VIA/FROM

PRINT "PEARSON" VIA BUILDER.PRICE
PRINT PRICE FROM YACHTS WITH BUILDER = "PEARSON"

RMS Locking

READY modes control locking
SELECTED records
Records subject to change
re-READY may force re-fetch

Readers read through locks

Writers wait for locks

Re-try for 15 secs
If LOCK~W AIT is set, then tell RMS to wait

Deadlock

May happen if:
you allow shared update
you SET LOCK-WAIT

Aborts the statement
May clear the SELECTed record

DBMS Locking

Record Level Locking
True concurrent update
Read locks on collections

Join Optimization

Use Keys
Keyed Domains last
Domain with fewest records first

45

User Functions

If you can't do it in DTR. ..
Must be position independent
Use stack or VM for storage

Plot Language Restriction

Why don't we publish the graphics language?
Not the right product
Not designed for end-user

Call Interlace

Anticipated Uses

Application programs (DTR as access method)
Canned packages (Mimic terminal interface)
Intelligent data manager (Generate requests on the fly)
Remote DATATRIEVE server

What is it good for?

Productivity
Data Independence
Database Independence
Efficiency
Distributed performance

Stall Points

Basic concept of the interface
DTR runs until it stalls
Stall tells you what to do
Need a command
Need a prompt
Have a print line
Have a message I condition
Have a record for the host program
Need a record from the host program
Service a user keyword

Ports

Com.,.'Uunication mechanism
An in-memory record
DECLARE or DEFINE and READY
Act like domains in DTR language

46

STORE of port causes "port get"
Access to port causes "port put"

Programming Hints

Use REPEAT of FOR <port> loops
Use prompts
Synchronize with DISPLAY
Make ports specific to task

DECLARE PORT FOO
01 GROUP.

03 VALUE 1 REAL.
03 VALUE2 REAL.

FOR YACHTS STORE FOO USING
BEGIN
VALUE1 = BEAM;
VALUE2 = LOA;
END;

DISPLAY "FOO";

Very flexible interface
Application may not need it at all
Build a layer for what is needed
Use the DTR$DTR call

The DTRSDTR call handles

Selected stallpoints
Messages and conditions
DTR defined keywords
DTR conditions

Efficiency

Initialize at the start
Shutdown at the end
Never put DTR$COMMAND in a loop
The more work per DTR$COMMAND the better

47

The Installation

What is happening

- Do not use $SET VERIFY
- slows down the installation
- wastes a lot of paper

- Use $@SYS$UPDATE:VMSINSTAL DTR020 MTA0: OPTIONS K,L
- K switch shows what steps are taken
- L switch logs updates

What is Installed

- the shareable image (SYS$SHARE :DTRSHR:xx.EXE) used by
the terminal server, the remote server, and
application programs using the call interface

- the terminal server (SYS$SYSTEM:DTR32xx.EXE)
- the remote server (SYS$SYSTEM:DDMFxx.EXE) and its

start up file (SYS$SYSTEM:DDMFxx.COM)
- the help file (SYS$HELP:DTRHELP.HLB)
- the message file (SYS$MESSAGE:DTRMSGS.EXE)
- ADT and Guide Mode Data Files (SYS$LIBRARY:DTRADT.DAT

and SYS$LIBRARY:DTRGUIDE.DAT)
- the start up file (SYS$MANAGER:DTRSTUPxx.COM)
- the DATATRIEVE library (DTR$LIBRARY:) containing

UETPs/Demos, object libraries, build commands,
other optional material

48

Query and Reporting Facility on the Professional 350

Digital Equipment Corporation

What is PRO /DATATRIEVE?

• Digital's new query and reporting facility on
the PROFESSIONAL 350.

• Based on DATATRIEVE-11 V3.

What can you do with PRO/DATATRIEVE?

• Describe data

• Manage data

• Query data

• Report data

Ways to describe data

• ADT (Application Design Tool)

• "DEFINE" commands

• Existing DATATRIEVE data definitions

Managing data

• Store new data

• Update existing data

• Erase existing data

Managing data made easy

49

• Guide Mode

• On-line help

• PRO/DATATRIEVE FOR BEGINNERS

Querying data

• Create groups of data based on

- boolean expressions

- subset of records

- single file

- several files (VIEW)

• Sort groups of data

Reporting data

• Create ad-hoc reports

• Print detail lines

• Print summary lines

• Print statistical information

• Control output format

Layered Application Facility
(LAF)

• Create PRO/DATATRIEVE applications

• Store applications in menu

• Choose applications through menus

• Allow applications to have unique
data dictionary elements

50

Software Requirements

• P /OS Vl.5 or later

• LAF requires PRO/DATATRIEVE

Hardware Requirements

• Professional 350 With hard disk

51

Fall DECUS 1983
Magic Session
Las Vegas, Nevada

Bert Roseberry
United States Coast Guard,
New Orleans, Louisiana.

This isn't magic in the traditional sense, but I felt the ordering numbers
for version 2.0 for DATATRIEVE was pure magic!

AA-P860A-TE Summary Description
AA..f>862A-TE VAX-11 □TR Guide to Writing Reports
AA..f>863A-TE VAX-11 □TR Guide Program Customization
AA..f>864A-TE VAX-11 □TR Pocket Gui de
AA-K0798-TE VAX-11 □TR Reference Manual
AA-K080B-TE VAX-11 □TR User's Guide
AA-LS318-TE VAX-11 □TR Graphics Guide

Andy Schneider - Developer of DATATRIEVE 11 - Digital

How to clear out a box of line printer paper in three collllllands
or Iese:

RE/IDY YAD-lTS
REPORT YACHTS (}.I IY:
AT TOP OF PAGE PRINT NEW-PAGE
PRINT LOA
END-REPORT

I sit long hours trying new things with DATATRIEVE all the time, and I
want an answer to this question on what this will do to DATATRIEVE 11.
Nobody knows? (general Laughter)

This is a feature only of DATATRIEVE 11. VAX DATATRIEVE gives you an
error saying you can't have new page at the top of page . We're not smart
enough to say that.

52

Phil Necker - Montgomery Engineers

Not to belittle all these people that are trying to discredit this fine pro­
duct - I have Wombat Magic on how to display a report one screen at a
time. Trri.s is real magic. It actually works in DATATRIEVE 11 which
surprises the heck out of me. No thats not true. It does work in DATA­
TRIEVE 11 and it is not surprising.

I don't know how many of you have done reports where you can specify
whether you want it on the screen or on the file and you've said, "Hey
I've made this thing really user friendly, even my manager can use it."

The only trouble is he doesn't know where the NO SCROLL key is on the VT
100, right? So you put a little prompt there, you know: "Enter the place
you want to put TT; if you want it on the terminal." He merrily puts in
'TI" and the thing prints out a page which is usually the wrong number of
lines because you forgot to put SET LINES = 24 or whatever. And then a
form feed comes up and the t:bJng merrily scrolls across the screen and
it does that for the whole report. And he says, "That was a stupid report."

So, the fix is actually pretty cute. It turns out that DATATRIEVE is very
very smart about prompting, and it'll even let you do things like this:

report yachts sorted by loa, bui Ider on tt:
set report-name= "Easy to Read"/"Terminal Report"
set I ines-page = 20
print builder, rig, load, price
at bottom of page print skip 1,
" "I*• "any character and <RETURN> to continue" using x
end-report

The ''At bottom of page, PRINT SKIP 1, blanks concatenated with a
Prompt, using X" will print the blank. But of course it requires the
prompt every page. So very merrily DATATRIEVE goes along, prints out
the whole page, skips a page, now you're at about line 24 on your termi­
nal. It waits for you to type something - space, A, F'oo, it doesn't matter
what it is because no matter what it is, it's only going to print the space
because its using the X. The guy hits return, and it goes up and prints up

53

the next form. That's magic.

Pam Valentine - Montgomery Engineers

I have a little magic here I think. If you read the DATATRIEVE documen­
tation it will tell you that you can not use signed numeric fields with
FMS. And I say "yes you can.' '

First you make your form in FMS, and you put N's in the fields, so that
restricts your input to your user, so that he is restricted to only putting
a sign and numbers and one decimal. Now the magic part. For your
record definition, you give it a picture of X, however many, VXX, and
DATATRIEVE magically does the right thing when it passes the records
back.

03 Amount Pie x(7}vxx
query-header is "amount"
ed it-str ing is zz,zzz.99.:R

Even if the user puts plusses in some of his records and not in others,
when it does the arithmetic it just does the right thing. I think that's
magic.

Diane Harris - Computer Services

I don't have any foils because this goes in the category of War Story,
therefore, a question. The first thing is we had a problem. We wanted to
be able to use EDT from a FORTRAN program, and we didn't know how to
do this except through SPAWN which everybody knows is drastically slow.
But we have this programmer who is very good at finding new ways of
doing things and he doesn't read the manuals. And the manual for DATA­
TRIEVE Version 1 says, "Thou shalt not try to get to EDT through the
Cobol interface."

54

Well, luckily he doesn't read such things and he was able to call EDT
through the DATATRIEVE call interface . Well, everything was well and
good and it was much faster than SPAWN. However, Version 2 comes out.
The manual states You can now use EDT from the callable DATATRIEVE
interface . Well, this is wonderful. But of course the first time my pro­
gram runs it says this is out of date so we have to compile it and we have
to link it with the appropriate DTR share and library /include EDT.
Doesn't work. OK, this is fine . Read further in the manual, and it says
you can use the terminal server. Our problem now, is that we want to
keep the user trapped in the program. We don't want the user to be able
to enter any DATATRIEVE commands. We want to put him in the editor to
edit text. How can we do it?

Phil Naecker - Montgomery Engineers

It's easy to do SPAWN not being slow. For example , this is the way SPAWN
works if you do it right: You do a SPAWN inside DATATRIEVE.

□TR> spa1,.1n
(5 seconds elapsed; 2 seconds CPU)
S directory

I pop
□TR> 9='AW'J
{0.5 seconds elapsed; 0.1 seconds CPU)
I

Obviously there is this new user defined function called SPAWN. We leave
out the FN$ - in our case we don't like FN$SPAWN. We want people to
think this is DATATRIEVE doing t his , not us monkeying around with it.
And uh, by the way this is DATATRIEVE 32 - sorry 11 users . It takes about
5 seconds elapsed time on our system normally, and about 2 seconds of
CPU to spawn a sub process because you're doing this terribly slow pro­
cess create . As Gail said it takes a long time. So you do a SPAWN and you
have a directory and when you're all done with whatever you're doing
here - we have a command that we use - it's POP - some of you unix users
might recognize that - and then next time you do a SPAWN lo and behold,
it only takes about a half second elapsed - less than a tenth of a second
CPU time.

It's a fairly trivial FORTRAN program to do that. Now you can do
SPAWNS like this - the trouble is of course, in between the $ signs the
users responsible for his own input which is probably a restriction that

55

you failed to mention but - ok I'm sorry - well that's easy too because it
turns out that when you do a SPAWN you can also request that SPAWN
execute a command.

There is an argument in the LIB$SPAWN call so you can execute a com­
mand procedure over here which he has no control over which itself does
the POP to return to the SPAWNing process. The FORTRAN looks roughly
like this. This is stripped down a little bit, but if you put the declarations
and everything in they'll see and it doesn't take much longer than that.

SUffiOUTHE SPAt.f\J_OCL_PRO:ESS

CEQ..ARATIONS

.
IF CSLEPROCESS...PID .EQ. 0) THEN

STATUS• SYSSGETJPI (0,JPIREQ,PID)
WRITE CPID_TEXT, 'R3'}PID
CALL LI BSSPAWN (II ' ' "P(F: =

ATTACH/IO-'/CPID_TEXT,SLBPROCESS...PID)

CALL LIBSATTACHCSLBPROCESS_pI □}
OOIF

ERROR DETECT! ON

.
AElURN
EtfJ

Your user define function which you define as il says in the manual for
defining a user define function. You check first to see if you've done this
before . If you have created a sub process you'll have something in sub
process PID which (by the way in FORTRAN you have to do something
tricky) you have to do a save operation to keep the value of that variable
from instance to instance of the invocation in FORTRAN. Basically you
find out what your existing process is by requesting something from
GETJPI. You convert that into text then you use that in the SPAWN
cominand to say from now on use POP as being attached /ID::;whatever.
And then you retrieve you subprocess PID Process Idea subprocess. Next
time you call it you're going to take this ELSE clause and you're simply
going to attach it to the subprocess . Well, the point is that you can do
SPAWNS efficiently. You can do a SPAWN - the first time it cost you a
PROCESS CREATE which you can't get around in any way in VMS, but from

56

then on out it works as efficiently as any context which does in VMS.

Dick Azzi - Motorola

We did the same type thing with uh, I don't know who did this, but some­
body did it in BASIC.

BASIC PRffiRAM FDR SPAWN FUl'l:TION

10 SUB OTR SPAIJ\I CINPUT STRINGS)
EXTERNALLOO FUNCTI(}J LIBSSPAWAN

20 STS¾ = LIBSSPAI.J\I{ INPUT_;,TRINGS,,,,,,,,,l
PRINT 'TI-E STA1US WAS: ';STS% IF STS%o1%

32787 SUEEND

But a little idea what it does:

FORMAT Fffi EPAIJ'.l FUNCTICJ\J

□TR> PRINT FNSSPA1J'J{"COl1'1ANJ"} ON NL:

EXAMPLES:

PRINT FNSSPA!.JN ("") CNN..: - puts you in OCL; exit with logoff
PRINT FNSSPAWN C"PHOf\E") ON NL: - puts you in phone uti I ity
PRINT FNSSPAWN {"MAIL" CJ\J N_: - puts you in mai I uti Ii ty
PRINT FNSSPAWN ("SET TER1/t1JDIFIER"} ON NL: - sets terminal
PRINT FNSSPAWN {"11JNITOR PROCESS"} CN t-l.: - puts you in monitor
PRINT FNSSPAWN ("SHOW MODIFIER") ON NL: - al lows show commands

In DATATRIEVE you can do a Print FN$SPAWN and you got a whole bunch
of choices - either give it the quotes inside inside the parentheses and
that puts you in DCL and do whatever you want to do in DCL and exit with
a logoff and you're back in DATATRIEVE - or - you can put anything you
want between the quotes and it'll execute that function and if you're in
the middle of DATATRIEVE and somebody is phoning you - right? You
have got to get out of what you're doing, get back to the system manager,
phone, and all that junk. The next command, just do a PRINT FN$SPAWN
PHONE ON NL: it puts you in the phone utility - you hang up on you phone
after you talk to him, and you're back in DATATRIEVE. I do that with any­
thing, set terminals, monitor process, show stuff. What we've done is set
up some of these like phone, mail and all that, as procedures - call it
Procedure Phone - and then put those in CDD$TOP - create a global sym­
bol called DTR...PHONE and then no matter what directory you're in, just
do a :DTR..PHONE and it links up and you're in the phone utility and when
you hang up you're back in DATATRIEVE.

57

Larry Jasmann - U.S. Coast Guard

This is some serious magic. If you have a file that has a non duplicating
primary key which means that there is only one instance of any particu­
lar iteration of the primary key - in other words like social security
numbers and we've all got a separate one - that's what I'm talking about.
Here is a neat way that you can do stores, updates, and deletes all with
the same procedure and one tight little procedure. You don't have to
have a separate procedure to store, a separate procedure to modify, and
a separate procedure to delete which was the way I did things for about 4
or 5 years until Peggy Racel came along and this is at least half her magic
too .

OK, here's a little Domain/record:

RECORD SAMPLE-REC USING
01 SAl'PLE-REC.

03 KEYS.
05 PRI-KEY PIC X{S)

03 DATA.
05 STAMP-DATE USAGE IS DATE
05 REMARKS PIC X(20).

the only thing I really care about this is the primary key is PIC X5 - the
data in the second 03 level is just a couple of data fields - can be whatever
you want to make it.

The first thing we do is declare three variables:
OEU.ARE CEL PI C X.
DECLARE OJRRENT-Ca.JNT PIC 99.
DECLAFE a.JR-REC PIC X{Sl.

DEL is just PIC X, current count is PIC 99, CUR-REC has to be declared
the same as the primary key so if the primary key is PIC X(5) then CUR­
REC has to be PIC X(5) . If it's something else, then you have to make
that equal whatever that is. OK ~ we print a little print statement that
tells the user what we're doing:

PRINT "This procedure is used to store, modify, and delete records from",
col 1,
"the domain SAl'PLE. It can be adapted to any domain which has a,",
col 1,
"non-dup I i cat i ng primary key. "

and then we use a prompting statement to load the first primary key
value of the first record you want to work on into the variable CUILREC:

58

. ·-- -- . -- - · • ·-·---- - ·-- ~ ---·- -- ---·----- . -- -- -··--- - --- - - - - ----------

CUR-REC,., *•NOT C(l'.JT "Et{)"

and then we start a big while loop which says:

l.fiILE CUR-REC f\JJT CONT "ENO
BEGIN

00

DEL=*•"□ to delete or N to keep record."
CURRENT-OJJNT = COJNT OF SAMPLE WITH PRI-KEY - a.JR-REC
IF CUARENT-CXJUNT LT 1

BEGIN
PRINT "I assume that you want to add a new record!"
STCJlE SAl"PLE USING

BEGIN
PAI-KEY= CLR-REC
STAMP-DATE = *· ''Date"
REMARKS= *·"Remarks"

ENO
END

IF CURRENT -CXJUNT • 1 AND 08- t£ "O" ANO □a f'.E "d"
BEGIN

ENO

PRINT "I assume that you want to modify this record! "
PRINT ALL SAMPLE WITH PAI-KEY= aJR--REC
FOR SAMPLE WITH PRI-KEY = CUR-REC MOOIFY USit-C

BEGIN
STAMP-DATE= *•"□ate"
REMARKS"' *·"Remarks"

ENO

IF CURRENT-COUNT .. 1 ANO (DEL = "D" OR DEL "' "d")
BEGIN

PRINT ALL SAMPLE WITH PRI-KEY = aJR-REC
IF *· ''Y if you w i eh to de I ete this record" C(l'.JT

"Y" Tl-EN
FOR SAMPLE WITH PAI-KEY= CUR-REC ERASE

ENO
CUR-REC= *·"Ne><t record to update or ENO"

The next thing we do is to prompt for DEL so we get a value for DEL which
is used to decide whether or not what we want to do is delete the record
or not.

Then you get a count of domain with the PRI-KEY = CUR-REC. Now
because you have a non duplicating primary key there are only two
options. You've either got O records in there or you've got 1 record. So
CURRENT-COUNT can only either be O or 1. So now we take care of the
possible combinations. If CURRENT-COUNT is less than one, i.e. 0 then
obviously we haven't got a record in there so what we assume is that you
want to add a new record. It tells you that and then it just does a simple
store.

The next thing to do (if CURRENT-COUNT = 1 then we know you've got a
record in there) is either to modify it or delete it. So if CURRENT-COUNT

59

= 1, DEL is not = to D, then we assume that you want to modify the
record - you print out the record so that they can see what it is they are
working on, and then you "MODIFY USING BEGIN" and prompt for all the
fields in the record except for the primary key. You don't want to
prompt for the primary key because if you do that you're not supposed
to change it and DATATRIEVE will get all sorts of upset.

Finally all you have to do is take care of the other possibility: if
CURRENT-COUNT = 1 and DEL is = to D, then you print it out, ask the user
if they really want to delete it and if they says yes, then you delete it.

Finally the last thing you do is you prompt for the next primary key
value and if he puts in a primary key value other than END, it will go
back to the beginning, otherwise it ends. And that's all there is to it.

Steve Duff - Santa Fe Engineering

One of the problems we had - how many people use FMS interface in
DATATRIEVE? Could I see some hands? Oh - how many people use TDMS?
that figures. 1 One of the problems we found with the FMS interface was
that when you have a request to prompt for a specific field you have a
problem and the problem is that since you have one form definition in
DATATRIEVE, providing no mechanism for getting at a specific field,
what you have to do is play games and I realize that this probably isn't
really magic since callable DATATRIEVE lets you do just about thing. It's
sort of the keys to the kingdom as it were.

FNIGET_fIELDCRETURNS NAl'E)
FNSPUT-FIELDCNAME)
FNSSET-SLPER ("on"/ "off")

What we first tried was adding these two functions which you actually can
do without writing any code - you just put them in the DATATRIEVE Macro
definitions and once a form is active in FMS you can call the FDV$ rou­
tines that correspond to these - the GET field shouldn't say NAME, that
should say RETURNS NAME - I don't have a pen here - does anybody have
a pen?2 And these will allow you once you've activated a form to actually
have DATATRIEVE move down 35 fields in the form and prompt for the
ones so the user doesn't have to go "tab tab tab tab tab ADC, return."
And believe me, users really do like that - they're real pleased with that.
However we found that does have an awful lot of limitations, because it

1 What figures has escaped us. We don't know how many hands went up for what.
2Have we fixed it for you Steve'?

60

doesn't go through the DATATRIEVE mechanism for checking valid
clauses and so forth and that tends to make it a little bit useless really,
is what it boils down to. So we meditated on that a little bit more, it was
a good idea and we still use it for a few odds and ends here and there, but
one of the things you can do in FMS which DATATRIEVE at least as far as I
know, provides no access to is supervisor mode - and that was a real
inspiration, at least to me. What you can do is provide a call into DATA­
TRIEVE through the FNS routine - it goes into the FDV the form driver
routine to turn supervisor mode on and off and then define the field that
you don't want people to have to tab through in supervisor mode and
the form driver is smart enough to know that you shouldn't have to tab
through all those fields - it will just simply skip over them when you hit
the tab, and that allows you effectively to use a single form for multiple
applications - one thing I might note here just to close this off is that
there does seem to be a bug in V2 DATATRIEVE - it's a minor one - if you
do go ahead and do this you will probably want to define the supervisor
mode business as a function which returns no value since it really does
nothing of any consequence to give you back - and if you do that it won't
work, and you wonder why that is - and the reason it isn't working is that
it seems - maybe this is known ~ that the compiler optimizes somehow a
call to the routine which has no value and calls it before it goes ahead
and executes the routine so if you change the value of the switch while
you're executing and then come back a second time its just not going to
bother to do anything at all and the whole thing is really mysterious - it
took quite a long time to sort that out - we really thought we had a prob­
lem there, but once we decided we would just return a no value, it seems
like DATATRIEVE is happy to wait until run time to do that- and that's it.

John Jones - FDA

I kind of feel alone in here. I'm wondering how many people are still
under PDP ll's on DATATRIEVE? OK, because that's the situation I find
myself in. It was neat coming here and hearing about words like reduce
for cutting things down, but one of the problems we've had for a long
time was concerning unique value counts. And we went along with our
users for a long time just saying DATATRIEVE doesn't do it, and we'll give
you a record count, we'll add up anything you want us to but don't ask
us for how many occurrences of something that it had.

We finally had a heavy come in and said I need the stuff and so we had
to develop something for it. And basically what we had was something
like this:

INSP-REC USING

61

01 INSP-REC.
05 FI R1-NAME
05 INSP-DATE
05 PROJ
05 PRCO

PIC X<7).
PIC X (6l.

(EQ_Aft CDMP-FLD PIC X(13}.

- what we're interested in for instance, was a count of inspections that
some people had made on various firms and we do not have unique value
keys. We are also sequenced then with inspection date and we have a lot
of other information in there. To count inspections, basically what we
had to do then was to run through and concatenate the firm number
with the inspection date and just count those occurrences.

This was fine if all you needed was sort of a grand total of inspections
over the range of the file. What was needed tho, was something that gave
us that count every time another field would change - in this case it was
the project that we were inspecting firms under. What we did was basi­
cally to create a new file for store purposes that we call the COUNT.Ji'ILE.

COL.NT-FIL-REC USit-r;
01 COLNT -REC.

0S CTL-FLD PIC X{l3).
0S UNIQUE-CTR USAG: COMP.

We went through the inspection file once, creating count file records
which contain the control field of firm number concatenated with the
inspection date and then the count that was generated every time we had
that control break.

We then set up a view of the inspection file wit h the count file linking in
to the inspection file this count file that we had just created based on the
control field of that file equaling the inspection date concatenated with
the firm number .

VIEW CF INSP-FILE. COJNT-FIL

01 INSP-ELEM OCCURS FOR INS'P-FIL.
05 FIR1-NJM FR!11 INSP-FIL

.
05 UNIQUE-PART OCOJRS Fffi COUNT-FIL WllH

COLNT-FIL WITH CTL-FLD EQ INSP-REC.FIRM-NLMjINSP-DATE
~ UNIQUE-OTA.

The AT BOTTOM STATEMENT for our report:

62

AT BOTTOM OF PRJJECT PRINT ALL UNIQl£-CTR OF UNIQUE-PART

Then we could then print basically the occurring groups from the view -
ignoring the rest of it - That was one way of getting at that problem for
us.

Peggy Racel - EG&G

I don't know how many of you were like me and found DATATRIEVE, heard
about the date type and thought it was the most fantastic thing they had
ever seen. You could subtract with dates, you could add with dates, you
could do everything you ever wanted to do with dates without having to
convert them to Julian. Well I did this and I put a lot of record descrip­
tions, put my date type in the record description and later on I changed
to write one of my routines in COBOL and suddenly I had no idea what
was in my date - and I struggled for probably 2 weeks to try to write a
subroutine that converted the date - and if anyone could do it in COBOL I
would love to see it done, but what I finally ended up having to do - I
knew somebody would - is write a subroutine in FORTRAN that converted
my date and then called the subroutine from a COBOL program:

SUffiOUTif\E Q-!GDTCDTRDT,DISPOT)
CHARACTERilc8 □TADT
INTEGERllc4 DATETMPC2)
CHARACTERittll □!SPOT
15 FORMATCA8)

ENDJ□E{l6,15,0ATETMP)DATEOTR
CALL SYSSASCTIMCDISPDT, + DATETMP,0)

CALL SYSSBINTIMCOISPOT,DATETMP)
45 FORMAT CA8)

OEaJDEC8,45,DATETl'P)
+ □TROT

The secret was my integer times 4 which repeated 2 times. Subtracting
the dates and doing all that sort of math isn't really the problem I had -
the problem was that if I wrote a program in COBOL and I wanted to
display the date and it was in 8 funny looking characters - I wanted to
have a routine that I could convert those funny looking characters to

63

something that I could display.

Bert Roseberry - U.S. Coast Guard

New person - for those of you users that don't really know how to go into
DATATRIEVE and do any modifications, create user defined functions,
such as SPAWN, this is a really neat way to answer the phone while
you're in DATATRIEVE.

□TR> READY YACHTS
Jasmann is phoning you •••
□TR> y
I SPAIJ-J
Long Message 1 2, 3, and 4
I PHOt\E/ANSI-ER

I EXIT (out of phone)
S LOGCFF
Other Long Message 1, 2, 3, and 4
I OJNTINLE
OTR> (with YACHTS sti I I readied)

I believe all the other examples they showed an example of using a user
defined function of SPAWN what you do: you're in DATATRIEVE, you ready
a domain, you get the message somebody's phoning you, you control Y
out, you're at the $ prompt, and then from there you SPAWN, you get a
long message, I don't remember what it was, you get about 4 or 5 of them
at least, then you answer the phone, talk to the person, you exit, you log
off and then you type continue, and you're right back in DATATRIEVE
again with the YACHTS still ready, so that's -- honest. This is on a VAX
system.

Unknown person: that was documented in a release notes for Version 3 of
VMS for those you who bother to read the release notes.

Steven Ward - Lockheed Georgia

I have a problem where I have people who always need a report that
takes up more than 132 columns. I do a lot of BASIC PLUS 2

64

prograrnming where I play around with the horizontal print characteris­
tics of an LA 120. I don't know how many of you others use an LA 120
but I have a way of printing up to 217 columns , a DATATRIEVE report of
217 columns and what it requires is a small procedure I call ESC so that
you can pass the escape character to the LA 120 from a DATATRIEVE
report writer procedure.

DEFINE PROCEDURE ESC
DECLARE ESC PIC X.
ESC ..
END-PROCEDURE

:ESC
REPORT ON OOODAH.TMP
SET CO..Urt-JS-PAGE = 217
AT TOP OF REPORT PRINT
ESCI I "4W",NEW-PAGE
PRINT □()(])AH-REC

And what you have to do is create a procedure called ESCAPE or I call it
ESC. You have to do this from the EDT editor because DATATRIEVE
doesn't recognize the escape character as far as I know. You create a
procedure, define procedure escape from the EDT editor, declare a vari­
able called ESC, give it a single alpha numeric field, and you say escape
= and I can't draw this in here cause you can't write an escape character,
but from EDT, if you type escape twice then it will generate the ASCII
code for escape and recognize it as such. Then you end the procedure.

Go into DATATRIEVE, build that into your DATATRIEVE dictionary, then
when you do a report, I always build my reports in procedures cause I
always have to modify them. The very first thing you do at the top of
your report is recall this procedure called ESC, then you just say report
on DOODAH.TMP whatever file or output device, and then whenever you
want to change the print characteristics of your LA 120, here I say set
columns page 217 cause that's the maximum you can do it, 16 and one
half characters per inch, before any print statement. Before you change
characteristics, you say print, I generally do at the top of the report, I
say at top of report print escape, double bar, and" whatever the charac­
ter code is that follows the escape character to change it to the particu­
lar horizontal pitch that you want. I don't exactly remember off the top
of my head what 4W is but I think that changes it to 16.5 characters per
inch, which gives you 217 columns and you can print a report on 13 inch
wide paper, 217 columns worth.

I have one where I mix it - I print a large headline and print the title
page in 5 characters per inch and then I print the entire report at 16.5
characters per inch, and as far as spacing it you can specify the column
number but I haven't figured out any algorithm that tells me exactly
what column, I usually print it and it's never where I want - I get as close
to the column and I print a sample and it doesn't come out where I want,

65

I back it up or I move it ahead a few columns till I get it exactly where I
want. Thank you.

Bert Roseberry - U.S. Coast Guard

I've been instructed to show people how to compress a common data dic­
tionary. As far as I can remember this is what you need to do it - it's
pretty simple - there's a very good help facility in CDDV just like any
other DATATRIEVE product and it explains it pretty well:

RUN SYSSSYSTEM:CDDV
CODY> COl'PRESS COD.DIC r-EW.DIC

That's all there is.

66

Datatrieve Masters

The following list of names identifies people who have agreed to provide assis­
tance to other Datatrieve Users:

Operating System Computer Name Telephone

IAS 11/70 Chuck Watson (509) 376-2227
Batlelle Northwest
Richland, Washing ton
99352

RSX 11/70 Joe Kelly (617) 839-4441
Waymon Gordon Extension 5480
Worchester Road
North Grafton,
Massachusetts 01536

Bart Lederman (212) 797-8080
ITT World Communications
67 Broad Street
New York, New York
10004

Gene Roloff (503) 627-1196
Teketronix, Inc.
Beaverton, Oregon
97077

VMS 780 Larry Jasmann (504) 865-5631
124 Caneel Court Extension 9
Gretna, Louisiana
70053

67

Operating System Computer Name Telephone

Joe Kelly (617) 839-4441
Waymon Gordon Extension 5480
Worchester Road
North Grafton,
Massachusetts 01536

David Saad (303) 594-8098
United Technologies
Micro Electronics Center
1365 Garden of the Gods Road
Colorado Springs, Colorado
80907

James Swanger (312) 982-7430
G.D. Searle & Co.
P.O. Box 5110
Chicago, Illinois
60680

Darrell Eade (206) 396-2501
Naval Undersea Water E.S.
Heyport, Washington
98345

Chris Wool (302) 366-4610
E.L DuPont
Engineering Department
Wilmington, Delaware
19898

750 Dick Azzi (602) 244-4316
Motorola Corporation
5005 E. McDowell Road
Phoenix, Arizona

68

Miscellany

A challenge was raised in the last issue: determine what is at the end of a
wombat and you'll win 35 glorious cents.

Well, Ted Bear, editor of the BASIC SIG newsletter sent in one version of
the end of a wombat. I cannot believe that this truly represents "the end
of a wombat," find the idea that someone would send our dear little
mascot hurtling through space to an ignominious and probably painful
end incredibly sad and am therefore not going to send Mr. Bear any
money. So there!

I do, however, thank him for the "entry."

69

,,--

Cl
This form is for use by U.S. chapter members only.

[E)_JS DECUS SUBSCRIPTION SERVICE ORDER FORM
RETURN TO: Subscription Service

DECUS
• All chec!<s payable to DECUS
• All orders MUST be paid in full

Check # _____ _

One Iron Way, MRO2-1/C11
Marlboro, MA 01752

• No refunds will be made Bank# ______ _

• Prices indicated are FY'84 prices
• No purchase orders accepted

Amount$ _____ _

Name ----,,::-,---,-------------,.---,-------DECUS Membersh ip No. _____ _
(First) (Last)

Company/Affiliation---------------------------------­

Mailing Address------------------------ Mail Stop------­

Phone (City _________ State/Country ______ Zip Code ____ _

CODE PUBLICATION CODE PUBLICATION

MSL MUMPS/STRUCTURED LANGUAGES NEWSLETTER RST RSTS NEWSLETTER
LHS LABS/HMS/S,ITE MGMT NEWSLETTER LGS LARGE SYSTEMS NEWSLETTER
OAD OA/DIBOL/COBOL/GRAPH/PC NEWSLETTER EDU EDUSIG NEWSLETTER
VAX VAX/VMS NEWSLETTER DTR DATATRIEVE NEWSLETTER
RSX RSX/IAS NEWSLETTER NTW NETWORKS NEWSLETTER
RT RT11 NEWSLETTER sos SS&OS NEWSLETTER

SPR Spring Proceedings BAS BASIC NEWSLETTER
FAL Fall Proceedings APL APL NEWSLETTER

ALL ALL PUBLICATIONS PRODUCED

Insert Code Check
From Above: One:

BASIC PLAN: This plan allows you to □ Member/DIGITAL Employee $ 12.00

receive one (1) selection for one year

□ Non Member $ 24.00

STANDARD PLAN: This plan allows you § □ Member/DIGITAL Employee $ 25.00
to receive up to three (3) selections at one

low price.

□ Non Member $ 50.00

DELUXE PLAN: This plan allows you to

□ $ 45.00
receive up to six (6) selections for one year.

Member/DIGITAL Employee

□ Non Member $ 90.00

ALL: This will allow you to receive all

□ Member/DIGITAL Employee $120.00
publications listed above for one year

ALL
for only one price.

□ Non Member $240.00

$20 MINIMUM REQUIRED TO CHARGE TOTAL AMOUNT OF ORDER
Please charge my order to the followin~:

D Mastercard I I I I ! I I I I I I I I I I Exp. date

D Visa I I I I I I I I I I I I I I I Exp. date

I understand that neither DECUS nor Digital Equipment Corporation is responsible for any publication not published by a
,- Special Interest Group or the contents of any publication published by a Special Interest Group. I also understand that there

will be no refunds even if I decide to cancel my subscription.

Signature---------------------------
Date ________ _

DIGITAL Employees Only: Badge No.----------------- C.C. --------­

Cost Center Manager's Signature C.C. ---------

3/83 70

"-----' '

