
s·p1i1fOL .370 ·:·Qtffereno•,'Ma·n-J

14 ·Mara:h. HJ84

~::i.fw~;· : .
.~~ t~~? J.:: :~~r

<~~1':ip'j:j~~ :· ts:~~, :'.'1 . .J1(;;2 .. Pr~· ~--s.~.1-~/ ·• ·· ~.:~. · . <:i r»· ;:: 5):.'i; E<!; ::'.~.;>: n.liili <?.fL~;J
c?::;t~,.:~ ·.:::"tr1--::r5~r ~J"J'.~f~ ,.:;'·~~~~.~·,~::~~~>;:·:·:: <.::: .. :.·· v.f.'.';;:1 :8<J :(fa:qiJ &t·; ,'Il;:lii:·~tc;

]'·1.Slf:~ ... ,_:- (:',1 .. ~ -::.::: $:'·.;·;:':" f~U-" <!-0 '!c\-l;C;I';•;•; , • .,,..£{.., w'i-ih ~· .:. ;' '.'~.L~. i\nL .. ::.,~'. ·' ;: .I 1F' ~;·,;::-:..

\~,.~~f\~ (·;r}.~·~

i:::di.:." !-'.r.;.l~·.::·

\~ ;::'. .. ,{.:.,ii j; ~.

P~i~!·~· J~ i~!~t''f 1~~;.i~

-~{::)~·~.tr.:~.:.~.·::' ~;;.1-;-.·r;i ,.1';~.: :.lt.\li.~,:·~·;,;·~.· ·:· ·'.·l~). ('.~1J::., ... T.>iZ.

.. ~· _:;'.~~:=;, :s..J,,
\, + !]·~.{~· ~~l~1/~

~~~~~~1 .r:~::~.: .t.\~:d ;r tr;.·;,.·:t1;.i:.":"' t!ir . .,.:w:::1t·., 
(?:::.r.t~ -,;.~:~ .'.' . .;utz; :~·· :.;,'1' ·.e:~':;;;;i.U · .. ~1':;:..;:;i;~r: 

rµ .'.{~ ~~~t,~ .. ~~~«::r.: ~~~:, ?f",' ~~~,r- ::.{:;~ ·:rii~ -~ ···~·1: ~-.. >~,. ~ !:~:i3~~mr -~· i .. ·,~~ fJl 



PREFACE 

This •·anual is based on the original SPITBOL 360 manual written by Robert B. K. 

Dewar. We thank the many people ·respons.fb1e f()r cb:rrections ·and additions to 

the SPIT!OL syst·em and this ·manual. Thanks to their involvement, the ·cur:rent 

program and docwnentation have been .greatl' refined. 

This manual assumes that the reader is f~iliar -wi~th the SNOBOL4 programming 

language. For those unfamiliar with ~sNOBOL4, 8.p,proptiate text• are cited m 

"PART TtlREE--Refe-rences" on page 97. 



ti f rl.Pi ~(, #\~f t.lf: [~:~ ~. ~ ~ ~ 

. \ • .;. \. j ~ . 

,,. :' 

i .. 

,), \.1~; ;~ .~.,~:l~rt·!i~: ... r~ .. : ~:r:,Jr .3J"'~-' f~ ~ ~. 

t·:~. ~~..;~;~)~~"'··2i·~~-· ::_·"·<:r; .... i· .; 

;)1:· T:·f.~t~~:·::·I !:~ ~q ~ .1 )': _ • 

~(, ~ i--~~-,·~·,~·.:·
1

1.(~ 2~~··1~~ Vi> A :JC Cf ~i Cf/?!}~-~~ ~: -_; 'l.5·7 ": 

.~C.'~ . .J~V-;; ~Wii.;,,1.~P.· :· -,3:' 

~~·"r1:2~/::;~.J~~·j.'_o::: ~~!.;.:"~.t~.~,1~'·-l z~j_. 

33gY';A1i:'G Tr;.::>J: 

:rr~1.i. e f ~~ ~ 
~) J:; 7 0 2 ~= .'~~<:.r 

.' '· ';.'.b ... :'J' 
'"" --+ F~ · 1· 
. i·;l~ ,;'.' 

I''.' 



PART ONE--The SPITBOL Language 

Introduction 

Notes for SPITBOL 360 Users 
Functions 
Parameters 
Interface 
Miscellany 

... 

Summary of Differen_ce• . . • • • • • • • 
Features Implemented Differently 
Additional Features •.•.• 
Other Incompatabiiities • • • • 

Datatypes and _C~h~afsions 
Datatypes In SPI~BQ~ 
Conversions in SPITBGL 

STRING --> . . • . 
INTEGER - -·> 
REAL --::-: 
DREAL -•> 
ARRAY --> ..• 
TABLES --> 
NAME --> 

Syntax 

Pattern Matching 

. . 

8 • • 

. . . . . . . . . 

. . . . 
Functions • • . . • • • • • • • • . . . • • • • 

ABS+ -- COMPUTE ABSOLt:JTE VALUE . • • . 
AND+ -- COMPUTE LOGIC·AL MW ........... . 
ANY -- GENERATE PATIERN TO MATCH SELECTED CHARACTER 
APPLY* - - APPLY FUNCTION : . • •· • • . . • • • 
ARBNO -- GENERATE PATIE·RN FOR ITERATED MATCH 
ARC COS+ - - COMPUTE ARCCOs !NE . . . . . . . . . . . . . . . 
ARC CO SH+ - - COMPUTE HYPERBOliI C ARC COS !NE • . • . • • • 
ARCSIN+ -- COMPUTE: ARCSI·NE ••••••.• 
ARCSINH+ -- COMPUTE HYPtRBOLIC ARCSINE 
ARCTAN+ - - COMPUTE ARCTANGENT, • . • • . 
ARCTANH+ -- COMPUTE HYPERBOLIC ARCTANGENT 
ARG -- OBTAIN ARGUMENT NAME • • . ••..•• 
ARRAY - - CREATE ARRAY STRUcTuRE . . . . . 
BIT+ -- EXTRACT BIT ••.••. 
BITSET+ -- SET BIT • • . • • • • . ... 
BREAK -- GENERATE SCANNING PATTERN ..•. 
BREAKX+ -- GENERATE EXTENDED SCANNING PATTERN 
CLEAR* - - CLEAR VARI ABLE STORAGE • • . . 
CODE -- COMPILE CODE • • . • • • . • • . . 
COLLECT - .. INITIATE STORAGE REGENERATION 
COMPL+ - - COMPUTE LOG I CAL COMPLEMENT . . • • 
CONVERT* - - CONVERT DATATYPES 
COPY* - - COPY STRUCTURE • . • . . 
COS+ -- COMPUTE COSINE ..•.... 
COSH+ -- COMPUTE HYPERBOLIC COSINE 
DATA -- CREATE DATATYPE ..•... 
DATATYPE* -- OBTAIN DATATYPE 
DATE - - OBTAIN DATE . • . . • . . . . • . . . • . 
DCONV+. -- DESCRIPTOR CONVERSION OF STRING TO DREAL 
DEFINE - - DEFINE A FUNCTION • . . . . • . . . • . . 

CONTENTS 

. . . . 

1 

3 

s 
5 
5 
5 
5 

7 
7 
7 
8 

9 
9 

10 
10 
11 
12 
lZ 
13 
13 
13 

15 

17 

19 
19 
19 
19 
20 
20 
20 
20 
20 
20 
21 
21 
21 
21 
21 
22 
22 
22 
23 
23 
23 
23 
24 
24 
24 
24 
24 
25 
25 
25 
25 

CC)ntents· v 



DETACH -- DETACH I/O ASSOCIATION .•.. 
DIFFER* -- TEST FOR ARGUMENTS DIFFERING 
DUMP* -- DUMP STORAGE . . • • 
DUPL -- DUPLICATE STRING . • • • • •••• 

• • • • • • • • . 25 

. ; . 
26 
·26.: 

ENDFILE* - - CLOSE FILE . • • . • • • • • • • , . • • • . • . 
• 26_ 

26_· 
EQ - - TEST FOR EQUAL . . • . . • • . • . . . . . . • • • . 26 

27 EVAL - - EVALUATE EXPRESS ION . . • . . . • . • • • • 
EXP+ - - COMPUTE EXPONENTIAL' 
FIELD -- GET FIELD NAME' .•.••••..••..•. 
FROMBIN+ -- CONVERT B!NARY STRING TO CHARACTER STRING· 
FROMDEC+ -- CONVERT PACKED DECIMAL 'STRING TO INTEGER · 
FROMHEX+ -- CONVERT HEX. STRING TO CHARACTER STRING 
GAMMA+ - - COMPUTE GAMMA . • • • . . . . • 
GE - - TEST FOR GREATER OR EQUAL • • • • • • • 

. . 21 
27 

• • . . ·27 
• • • ';~ ..•. --. • .... z7. 

/. ~; ·: fia 
• • • • • • • --~2a 

•..•.. · '2s 
GT - - TEST FOR Git.ATER • • • • • • • • • • • • • • • • • • • 28 

28 
29 

lCONV+ -- DESCRIPTOR CONVERSION ro· INTEGER ••••••••••••• 
IDENTA" - :. TEST FOR ID ENT I CAL , • ; ; ; • • • • 
INPUT*. - :.. SET INPUT ASSOCIATION , ~ . ; • • • • • • • • •· • : 29 
J~GER*. -·- TES1' FOR INTEGRli . : ; • • • • • • • 
ITEM -- SELECT ARRAY OR'TABLE. ELEMENT ••• 
LE .. - tEST FOR LESS THAN OR EQUAL , : • • 
LEN -- . GENERATE SPECIFIED tENGTH PATl'ERN • • • . • 
LEQ+ -- TEST roR LEXICALLY EQUAL •••• 
tc;E+ -- TEST FOR LEXICALLY GREATER OR EQUAL·· 
tGT -- TEST FOR LEXICALLY GREATER 
LLE+ -- TEST FOR LEXICALLY LESS OR EQUAL 
LLT+ -- TEST FOR LEXICALLY LESS •••• 
LNE+ -- TEST FOR LEXICALLY NOT EQUAL • • • • • • • 
LOAD* - - LOAD EXTERNAL FUNCTION . • • • • 
LOC - - GET NAME OF LOCAL · . • 
.LOG+' - - COMPUTE LOGARITIIM 
t.PAD+ -- LEFI' PAD STRING ..•.••• " •• 
-LT - - TEST FOR LESS THAN . • . • . . • • • • 
MAX+ .. - COMPUTE MAXIMUM VALUE . . . • . • • • 
MIN+ .... COMPUTE MINIMUM VALUE • ·• . • . . . • • 

• • .; • • • . 29 
30 . . . . . •' -· . 30 
30 
30 ...... 30 
31 

. . . . . . . . . 31 
31 
31 
31 

. . . . 32 
,. 32 
. '. 32 

32 
. • . • • 32 

MOD+ - - COMPUTE REMAINDER FOR DREALS · ·. • . • • " .• 
33 
33 
33 NOTANY -- GENERATE CHARACTER SELECT ·PATTERN 

OPSYN* -- EQUATE FUNCTIONS . . . . • • . . . . 
OR+ - - COMPUTE LOGICAL OR . ,~. . . . ~. 

OUTPUT* -- SET OUTPUT ASSOCIATION ...• ·· " rj,' • 

33 
33 

POS -- GENERATE POSITIONING PATTERN ·. .. . . .. .• .. • 
. . . . 34 
. . . . 34 

. PROTOTYPE - - RETRIEVE PROTOTYPE . . . . . . . • , . . 34 
35 
35 
35 

RANDOM+ - ... COMPUTE RANDOM NUMBER . . . • • • • • • • • • 
RCONV+ -- ·DESCRIPTOR CONVERSION TQ INTEGER. 
REMDR - • COMPUTE REMAINDER FOR INTEGERS 
REPLACE -- TRANSLATE CHARACTERS . · .•..•.• 
REVERSE+ • - REVERSE STRING · • • · . . .. 
REWIND -- REPOSITION FILE • . ·. ·. ·. • .. 
RPAD+ -- RIGHT PAD STRING ...•...... 

· RPOS -- GENERATE POSITIONING PATTERN . . ..• 
RTAB -- GENERATE TABBING PAITERN 
RTRIM+ - - REVERSE TRIM . . . . • . . . . . 
SCONV+ -- DESCRIPTOR CONVERSION TO STRING 
SETEXIT+ - - SET ERROR EXIT 
SIN+ -- COMPUTE SINE-· .............. . 
SINH+ -- COMPUTE HYPERBOLIC SINE ... . 
SIZE -- GET STRING SIZE . . . . . . 

J'.,.. ·" ·'' . .. ~ . . 
. . . • . . . . . . . . 35 

35 
. . . . 36 

. . . . . .. . 36 
. • • . . . . . 36 

. . . . . . . . 36 
36 
37 
37 

. . . . . . . . 38 
38 

. . . . 38 
-·SPAN -- GENERATE -SCANNING PATl'ERN . . . . . . . . . . . . . . . . • • . . . 38 
STOPTR* -- STOP TRACE ..... . . ... . . . . . . . . 38 
SUBSTR+ - - EXTRACT SUBSTRING . . . . 0 • • • • • • • • 39 
TAB -- GENERATE TABBING PA'ITERN. • . • • 39 
TABLE* -- CREATE TABLE STRUCTURE . . . . . . . . . . . . . 39 
TAN+ -- COMPUTE TANGENT ..•.•. 
TANH+ -- ·COMPUTE HYPERBOLIC TANGENT ...........•• 

40 
40 
40 TIME - - GET EXECUTION TIME 

• : ~ 'f ~ ' • ' 

vi SPITBOL 370 Reference Manual 



TOBIN+ -- CONVERT CHARACTER STRING TO BINARY STRING 
TODEC+ -- CONVERT INTEGER TO PACKED DECIMAL STRING 
TOHEX+ -- CONVERT CHARACTER STRING TO HEX STRING 

40 
40 
41 
41 
41 
42 
42 

TRACE* - - INITIATE TRACE . . . . . . . . . . 
TRIM* - - TRIM TRAILING CHARACTERS 
UNLOAD* -- UNLOAD FUNCTION .... 
XOR+ -- COMPUTE LOGICAL EXCLUSIVE-OR 

Keywords 
&ABEND 
&ABORT(R) . 
&ALPHABET(R) 
&ANCHOR . 
&l\RB(R) 
&BAL(R) 
&CODE 
&DUMP .... 
&E(R) 
&ERRTYPE 
&ERRLIMIT 
&FAIL(R) 
&FENCE(R) 
&FNCLEVEL 
&FTRACE 
&FULLSCAN ..... 
&INPUT 
&LASTNO(R) 
&MAXI.NGTH 
&OUTPUT 
&PI(R) 
&REM(R) 
&RTNTYPE(R) 
&STCOUNT(R) 
&STLIMIT(R) 
&STNO(R) .... 
&SUCCEED(R) 
&TRACE 
&TRIM .... 

Control Statements . • • • 
Listing Control Statements 

-EJECT 
-SPACE ....... , .. 
-TITLE ........ . 
-STITL ....... . 

Option Control Statements 
-LIST -NOLIST 
-NOCODE -CODE 
-NOPRINT -PRINT 
-SINGLE -DOUBLE 
-OPTIMIZE -NOOPTIMIZE 
- IN72 - IN80 . . . . . 
-NOSEQUENCE -SEQUENCE 
-ERRORS -NOERRORS 
-FAIL -NOFAIL 

., .• 

. . . . , . . . . ~.: ., . . 
•·.• ··e-: ... ~.,..., ·' • 

• ·- • ' •• ',.... • ..... fl! 

·~ ~ . . . . . . . . . . . . . . . . 

43 
43 
43 
43 
43 
43 

. . ' . 43 
• • . • 43 ·~-~''-~' ~·-:· ·:.•-. ~~ .. . . . . . . 

. . ··- ... _, .... ... .r • ;_~~ ( •: ':.~:·::"- ........ 'Ii ·, .! . '•. • ·- . --· 44 
. .• ·~ .. •:'.: 44 c._ ..• 

. •,-~ ._ ..... 

".: 44 
?Lr:.:."";..:'~, .. ~ ~~ ;'. ..... ,.. • , .•. ;~ . ~ ·< . ·: 44 
• :7 }~H~~::-: / ~ ~:~;·' ... ~· .:" "<, :.,< , 44 

-•. \_.·:~:.\_,:::"'~~··:,; ·;::,._·_ .... t·" • \-:-:•· • -- • • "• ~-' ..... 
• ~;,_ .:~·. :·.,. • r: • ~: . .' ""'•·• •.•; . • • • •, .• . .!~ 

ir"'' ::• •. '"~•:""•·~:·-~ .... ~-~~·: ·~"' .•. ,. .... - .• ' ••.•.•. • !'... ·-· 

. '.. . .... ... • .. . . ·•. ~. ... . . ". .... ; _. .• . . 45 

• • ..... f· ..••..• ,. . • . • 

.. ,.· ._ .. A .:~ .. • ·. •::···. '• v , • . • ,,,, .. :oe. • ' 45 

. .. 

• • • ':,_JI' • •-.· ..... 

. .-

' . 
• .~ 'f e: .~ • 111 r 

. . ~ ~~ -~ ·• . .... ' . . 

. '.; 
.. • 

.. -- . ~- ·,· . . : . 

",; 
• • r•- "!" 

. . "" .... ... .- . 
.. . . 

. • . . ~ . •'' .. ; ... 
. ·• . . . . ' . ..., . •.• 

-. . . ~ ; .• . 

• • • v .• 
'4•' ,., . , 

. e,./ •. • .•• .. : . -·. 

. . . . . . -\. ' . ·~-~-· ... -. ~- ~.-,~-·- .~ 
,.. ' ... 

•• ' '< ~'' . . . ' . . ... •.•:.• . ·:· 

·45 
45 
45 
45 
46 

. . ·' 46 
46 
46 
4.6 
46 
46 
46 
47 

49 
49 
49 
49 
49 
49 
50 
50 

.so 
'SO 
so 
51 
51 
51 
51 

-EXECUTE -NOEXECUTE . . . . . . . . 
.52 
·s2 

COPY Control Statement . . . . . 

Error Messages and Handling 
Compilation Error Messages 
Execution Error Messages 
Execution Error Code List 
System Error Codes for OS 

. . . . . . . . .. 
. . . . . . . . ........... ·· .... 

....... ": .. ., .. '• .. 

. . . . -~. . 
.. •· ·• ··-· .. 

52 

53 
53 
56 
57 
63 

Programming Notes . . . . . . . . .. . . ~.: .. 65 

Contents vii 



Space Considerations 
Speed Considerations . . . . . . . . . . . . . . . . 
PART TWO--How To Run a SPITBOL Program 

Running a SPITBOL Program 
Standard Batch SPITBOL . . . . 
Interactive SPITBOL 
System Files 
Required Datasets 

SYS IN .............. . 
SYSPRINT ... . 
SYSPUNCH . . . . 

Optional Datasets 
SYSOBJ . . . . . . . . . . ... 

Default DCB Parameters • • . • . 
Parameters to the SPITBOL Compiler . . . . . 
Execution Parameters for the SPI'l'BOL Program 
Alternate Ddnames . . . . • . . . . . . . 
User Abend Codes . . . . . . . . . . . . 
System Abend Codes ......... . 
Linking and Execution of Object Modules 

Input/Output Facilities • • • . • 
Record Format Support . . . . . . 
Input Output Association--DDNAMES 
PDS Member Support . . . . . . . . 
PDS Directory Support ..... . 
Multiple File Tape Support . . . . 
Direct Access File (BDAM) Support 
I SAM Support . . . . . . . . . . 
QSAM Update-In-Place Support 
Pseudo File Support ..... 
VTOC Support . . . . . . . . . 
Console Support . . . . . . 

. . ·. 

WYLBUR EDIT Format File Support . . . . . . . . . . . 
Extensions to SYSOPEN ........... . 
External Functions for Use with WYLBUR EDIT Format Files 

TSO Facilities . . . . . . . . . . . . . 
Attention Handling ............ . 

B Parameter . . . . . . . . . . . . . . . 
Types of Attention Handling . . . . . . . . . . . . 
External Functions for Attention Handling 

TSO Terminal I/0 External Functions . . . . 

External Functions • • • • • • • • . 
Conventions for External Functions 
Available External Functions 

SYSATNCK 
SYSATNST 
SYSDATE .... 
SYSDELTA 
SYSDIR 
SYSFEOV 
SYSFSIZE 
SYS LINE I 
SYSLINEO 
SYSOPEN 
SYSOS ... . 
SYSPARM ....... . 
SYSRELSE 
SYSTRACE 
SYSTRUNC 
SYSUSER 
TCONV 

viii SPITBOL 370 Reference Manual 

65 
65 

67 

69 
69 
69 
70 
70 
70 
70 
70 
71 
71 
71 
71 
73 
73 
74 
75 
75 

77 
77 
77 
78 
78 
79 
80 
81 
82 
83 
84 
85 
86 
86 
86 
87 
87 
87 
87 
87 
88 

89 
89 
91 
91 
91 
91 
92 
92 
92 
92 
93 
93 
93 
94 
94 
94 
94 
95 
95 
95 



TCONVO 
TGET 
TGETO 
TPt.rr 
UP ARM 

PART THREE--References 

95 
95 
96 
96 
96 

97 

Contents ix 



x SPITBOL 3 70 Reference Manual 



PART ONE--THE SPITBOL LANGUAGE 

PART ONE--The SPITBOL Language 1 



2 SPITBOL 370 Reference Manual 



INTRODUCTION 

SPITBOL 370 is an implementation of the SNOBOL4 computer language for use on the 
IBM 370, 43xx, 308x series computers running MVT, VSl, MVS, or CMS. SPITBOL is 
considerably smaller than the SIL implementation of SNOBOL4 and offers execution 
speeds up to ten times faster. For certain programs, notably those with in-line 
patterns, the gain in speed may be even greater. 

Unlike SIL SNOBOL4, SPITBOL is a true compiler which generates executable ma­
chine code. The generated code may be listed in assembly form. Of course, the 
complexity of the SNOBOL4 language dictates that system subroutines be used for 
many common functions. SPITBOL can be run as an 'in-core' system like WATFIV, 
where jobs are executed as soon as they are compiled, and jobs may be batched to­
gether. Alternately, the compiler can generate an object module for later 
execution. 

This manual is the documentation and user's guide for SPITBOL. It is assumed 
that the reader is familiar with the standard version of SIL SNOBOL4 as defined 
in Griswold et al "The SNOBOL4 Programming Language". Version 3 of SNOBOL4 is 
the reference version for comparison. There are several minor 
incompatibilities. In addition, there are several additions to the language in 
this implementation. 

In general an attempt has been made to retain upward compatibility wherever pos­
sible. Most SNOBOL4 programs which operated correctly using SIL SNOBOL4 should 
operate correctly when compiled and executed using SPITBOL. 

Introduction 3 



4 SPITBOL 370 Reference Manual 



NOTES FOR SPITBOL 360 USERS 

SPITBOL 370 is generally upward compatible with SPITBOL 360. However, both the 
compiler and OS interface use 370 instructions, which prevent SPITBOL 370 from 
running on 360 class machines. In addition, many new features have been added 
and a few functions changed. 

FUNCTIONS 

The following SPITBOL 370 functions are different from SPITBOL 360 functions. 

LOAD 
SETEXIT 
SUBSTR 
TRIM 

is now compatible with SIL SNOBOL4 
a new reserved label SCONTINUE is now available 
is NOT completely compatible with SPITBOL 360 
supports a second argument specifying the character to be trimmed 

PARAMETERS 

The support for imprecise interrupts on the 360/91 has been removed, and the I 
parameter now controls listing options. A new parameter, B, has been added for 
TSO attention handling. See "Running a SPITBOL Program" on page 69. 

INTERFACE 

The advanced operating system interface is now a standard part of the system. 
This allows for accessing PDS directories, PDS members, tape files, etc. See 
"Running a SPITBOL Program" on page 69 for more details. In addition, for a more 
complete understanding of the compatibility of SPITBOL 360 and SPITBOL 370, you 
should carefully review "Summary of Differ enc es" on page 7. 

MISCELLANY 

Many bugs have been fixed. The number of 4K blocks has been increased from 32 to 
64, allowing for much larger programs. There have been additions to the error 
codes. 

Notes for SPITBOL 360 Users 5 



6 SPITBOL 3 70 Reference Manual 



SUMMARY OF DIFFERENCES 

This section contains a summary of the significant differences between SPITBOL 
and SIL SNOBOL4. 

FEATURES IMPLEMENTED DIFFERENTLY 

The following features are implemented in SPITBOL, but the usage is different 
from that in SIL SNOBOL4 and changes in existing programs may be required. 

1. Recovery from execution errors (see "SETEXIT+ -- SET ERROR EXIT" on page 
37). 

2. I/O is somewhat different. the FORTRAN I/O routines are not used. However, a 
FORTRAN format processing routine has been included for compatibility. 

3. The required JCL is different. 

ADDITIONAL FEATURES 

The following additional features (not in SIL SNOBOL4) are included in the 
SPITBOL system. 

1. The datatype DREAL (double precision REAL). 

2. The additional functions BREAKX, LEQ, LGE, LLE, .LLT, LNE, LPAD, REVERSE, 
RTRIM, RPAD, SETEXIT, SUBSTR. 

3. The additional trigonometric functions ARCCOS, ARCOSH, ARCSIN, ARCSING, 
ARCTAN, ARCTANH, COS, COSH, SIN, SINH, TAN, TANH. 

4. The additional mathematical functions ABS, EXP, GAMMA, LOG, MAX, MIN, MOD, 
RANDOM. 

5. The additional bit manipulation functions AND, BIT, BITSET, COMPL, OR, XOR. 

6. The additional conversion functions FROMBIN, FROMDEC, FROMHEX, TOBIN, 
TODEC , TOHEX. 

7. The additional descriptor conversion functions DCONV, ICONV, RCONV, SCONV. 

8. The &FNCLEVEL keyword is writeable. 

9. The additional keywords &E and &PI. 

10. Additional flexibility in I/O. Support of all record formats recognized by 
QSAM. Format free variable record length I/O allowing simple input output of 
strings. Support for partitioned datasets and multi-file tape volumes. 

11. Additional trace facilities for files and system events. 

12. The symbolic DUMP optionally includes elements of arrays, tables and 
program-defined datatypes. 

13. Both the pattern matching stack and the function call push down stack may ex­
pand to use all available dynamic memory if necessary. 

Summary of Differences 7 



14. A number of functions are provided to perform special I/O operations and oth­
er system activities. 

OTHER INCOMPATABILITIES 

1. The value of a modifiable keyword can be changed only by direct assignment 
using =, pattern assignment cannot be used to change a keyword value and the 
NAME operator cannot be applied to a keyword. 

2. SPITBOL allows some datatype conversions not allowed in SIL SNOBOL4. For ex­
ample, a REAL value may be used in pattern alternation and is converted to a 
STRING. In general, SPITBOL will convert objects to an appropriate datatype 
if at all possible. 

3. The unary . (NAME) operator applied to a natural variable yields a NAME 
rather than a STRING. Since this NAME can be converted to a STRING when re­
quired, the difference is normally not noticed. the only points where the 
difference is apparent is in the use of the IDENT, DIFFER and DATATYPE func­
tions and when used as a TABLE subscript. 

4. SPITBOL normally operates in an optimized mode which generates a number of 
incompatabilities. This mode can be turned off if necessary, see de­
scription of the control statements "-OPTIMIZE -NOOPTIMIZE" on page 51. 

5. SPITBOL permits leading and trailing blanks on numeric strings which are to 
be converted to STRING. 

6. Several of the built-in functions are different. '11lese are identified by an 
* next to their name. See "Functions" on page 19. 

7. SPITBOL does not directly permit exponentiation of two real numbers; 
however, the EXP function is available. 

8. The BACKSPACE function is not implemented. 

9. Deferred expressions in pattern matching are not assumed to match one char­
acter in QUICKSCAN mode. 

8 SPITBOL 370 Reference Manual 



DATATYPES AND CONVERSIONS 

The following describes the various datatypes and conversions that are accepta­
ble in SPITBOL. 

DATATYPES IN SPITBOL 

STRING Strings range in length from 0 (null STRING) to 32758 characters 
(subject to the setting of &MAXLNGTH). Any characters from the 
EBCDIC set can appear. 

INTEGER INTEGERS are stored in 32 bit form allowing a range of -2**31 to 
+2**31-1. There is no negative zero. 

REAL Stored as a 32 bit short form floating point number. 

DREAL Stored using long form floating point. The low order byte is not 
available and is stored as zero, thus giving a 48 bit mantissa 
(15 decimal digits). 

ARRAY ARRAYS may have up to 255 dimensions. 

TABLE A table may have any number of elements, see description of -­
Heading id 'srtab' unknown -- for further details. Any SPITBOL 
object may be used as the name of a table element, including the 
null string. 

PATTERN PATTERN structures may range up to 32768 bytes which means there 
is essentially no limit on the complexity of a pattern. 

NAME A NAME can be obtained from any variable. Note that in SPITBOL, 
The NAME operator (unary dot) applied to a natural variable 
yields a NAME, not a STRING as in SIL SNOBOL4. 

EXPRESSION Any EXPRESSION may be deferred. 

CODE A STRING representing a valid program can be converted to CODE at 
execution time. the resulting object, of type CODE, may be exe­
cuted in the same manner as the original program. 

Datatypes and Conversions 9 



CONVERSIONS IN SPITBOL 

As far as possible, SPITBOL converts from one datatype to another as required. 
'Ibe following table shows which conversions are possible. A blank entry indi­
cates that the conversion is never possible, X indicates that the conversion is 
always possible, and F indicates that conversion· may be possible, depending on 
the value involved. 

CONVERT TO 

s I R D A T p N E c 
--------------------------------------s x F F F x x F F 

I x x x x x x x 
R x F x x x x x 
D x F x x x x x 
A x x 
T F x 
p x 
N x F F F F F 
E x 
c x 

Where: 

S is STRING 
I is INTEGER 
R is REAL 
D is DREAL 
A is ARRAY 
T is TABLE 
P is PAITERN 
N is NAME 
E is EXPRESSION 
C is CODE 

Tile following section gives detailed descriptions for each of the possible con­
versions. 

STRING --> 

1. STRING --> INTEGER 

Leading and trailing blanks are ignored. A leading sign is optional. Tile 
sign, if present, must immediately precede the digits. A null STRING or all 
blank STRING is converted to zero. 

2. STRING --> REAL 

Leading and trailing blanks are ignored. A leading sign, if present, must 
immediately precede the number. Tile number itself may be written in standard 
(FORTRAN type) format with an optional exponent. 'Ibe conversion is always 
accurate, the last bit is correctly rounded. 

10 SPITBOL 370 Reference ~1anual 



3. 

4. 

STRING --> DREAL 

The rules are the same as for STRING to REAL. Note that a STRING is consid­
ered to represent a DREAL if more than eight significant digits are given, 
or if a D is used for the exponent instead of an E. The conversion is always 
accurate, the last bit is correctly rounded. 

STRING --> PATTERN 

A pattern is creat.ed which will match the STRING value. 

5 . STRING - -> NAME 

The result is the NAME of the natural variable with a NAME of the given 
STRING. This is identical to the result of applying the unary dot operator 
to the variable in question. The null STRING cannot be converted to a NAME. 

6. STRING -->EXPRESSION 

The STRING must represent a legal SPITBOL expression. The compiler is used 
to convert the STRING into its equivalent expression and the result can be 
used anywhere an expression is permitted. 

7. STRING--> CODE 

The STRING must represent a legal SPITBOL program, complete with labels, and 
using semicolons to separate statements. The compiler is used to convert the 
STRING into executable CODE. The resulting CODE can be executed by trans­
ferring to it with a direct GOTO or by a normal transfer to a label within 
the CODE. 

INTEGER --> 

1. INTEGER --> STRING 

The result has no leading or trailing blanks. leading zeros are suppressed. 
t ~receding minus sign is supplied for negative va~ues. Zero is converted to 

0 . 

2. INTEGER -->REAL 

A REAL number is obtained by adding a zero fractional part. Note that sig­
nificance is lost in converting integers whose absolute value exceeds 
z-,':*24-1. 

3. INTEGER --> DREAL 

A DREAL is obtained by adding a zero fractional part. Significance is never 
lost in this conversion. 

4. INTEGER --> PATTERN 

First convert to STRING and then treat as STRING to pattern. 

5. INTEGER--> NAME 

First convert to STRING and then treat as STRING to NAME. 

Datatypes and Conversions 11 



6. INTEGER -->EXPRESSION 

The result is a expression which when evaluated yields the integer as its 
value. 

REAL --> 

1. REAL --> STRING 

The REAL number is converted to its standard character representation. Fixed 
type format is used if possible, otherwise an exponent (using E) is 
supplied. Seven significant digits are generated, the last being correctly 
rounded for all cases. Trailing insignificant zeros are suppressed after 
rounding has taken place. 

2. REAL --> INTEGER 

This conversion is only possible if the REAL is in the range permitted for 
integers. In this case, the result is obtained by truncating the fractional 
part. 

3 . REAL - -> DREAL 

Additional low order zeros are added to extend the mantissa. 

4. REAL --> PATI'ERN 

First convert to STRING and then treat as STRING to pattern. 

5. REAL--> NAME 

First convert to STRING and then treat as STRING to NAME. 

6. REAL -->EXPRESSION 

The result is an EXPRESSION which when evaluated yields the REAL as its val­
ue. 

DREAL --> 

1. DREAL -->STRING 

Like REAL to STRING except that 15 significant digits are given and a D is 
used for the exponent if one is required. 

2. DREAL --> INTEGER 

This conversion is only possible if the DREAL is in the range permitted for 
integers. In this case, the result is obtained by truncating the fractional 
part. 

3. DREAL --> REAL 

The low order digits of the mantissa are truncated to reduce the precision. 

12 SPITBOL 370 Reference Manual 



4. DREAL --> PATTERN 

First convert to STRING and then treat as STRING to PATTERN. 

5 . DREAL - -> NAME 

First convert to STRING and then treat as STRING to NAME. 

6. DREAL -->EXPRESSION 

The result is an EXPRESSION which when evaluated yields the DREAL as its 
value. 

ARRAY --> 

1. ARRAY -->TABLE 

The ARRAY must be two dimensional with a second dimension of two or an error 
occurs. For each entry (value of the first subscript), a TABLE entry using 
the (X,1) entry as NAME and the (X,2) entry as value is created. The TABLE 
built has the same number of hash headers (see the function "TABLE* -- CRE­
ATE TABLE STRUCTURE" on page 39) as the first dimension. 

TABLES --> 

1. TABLE -->ARRAY 

The TABLE must have at least one element which is non-null. The ARRAY gener­
ated is two dimensional. The first dimension is equal to the number of 
non-null entries in the TABLE. The second dimension is two. For each entry, 
the (X,1) element in the ARRAY is the NAME and the (X,2) element is the 
VALUE. The order of the elements in the array is the order in which elements 
were put in the table. 

NAME --> 

1. NAME -->STRING 

A NAME can be converted to a STRING only if it is the NAME of a natural vari­
able. The resulting STRING is the character NAME of the variable. 

2. NAME --> INTEGER,REAL,DREAL,PATTERN,EXPRESSION,CODE 

The NAME is first converted to a STRING (if possible) and then the conver­
sion proceeds as described for STRING. 

Datatypes and Conversions 13 



14 SPITBOL 370 Reference Manual 



SYNTAX 

Thi.s section describes differences between the syntax in SPITBOL and SIL 
SNOBOL4. These differences are minor and should not affect existing programs. 

1. Reference to elements of arrays which are themselves elements of arrays is 
possible without using the ITEM function. Thus the following are equivalent: 

A<J><K> = B<J><K> 
ITEM(A<J>,K) = ITEM(B<J>,K) 

2. The full 80 columns of input may optionally be used. See "-IN72 -INBO" on 
page 51. 

3. The only way to change the value of a keyword is by direct assignment. It is 
not permissible to use a keyword in any other context requiring a NAME. 

4. The compiler permits REAL constants to be followed by a FORTRAN style expo­
nent E+XXX or D+XXX, the latter signifies a double precision REAL (DREAL). 

Syntax 15 



16 SPITBOL 370 Reference ~1anual 



PATTERN MATCHING 

Pattern matching is essentially compatible with SNOBOL4, however some minor 
differences and extensions are described in this section. 

The stack used for pattern matching c"an expand to fill all available dynamic 
memory if necessary. Thus the diagnostic issued for an infinite pattern 
recursion is simply the standard memory overflow message. 

In QUICKSCAN mode, deferred expressions are not assumed to match one charac­
ter. This is a definite incompatibility and some left recursive patterns may 
cause problems. However, experience seems to indicate that this heuristic 
has caused more problems than it has solved, so it has been abandoned. 

In SPITBOL the values of &QUICKSCAN and &ANCHOR are obtained only at the 
start of the match. In SIL SNOBOL4, changing these values during a match can 
lead to unexpected results. 

Pattern Matching 17 



18 SPITBOL 370 Reference Manual 



FUNCTIONS 

This section defines the functions built into the SPITBOL system. The func­
tions are described in alphabetical order~ In most cases, the arguments are 
preconverted to some particular datatype. This is indicated in the function 
header by the following notation. 

FUNCTION(STRING, INTEGER, etc ... ) 

If the corresponding argument cannot be converted to the indicated datatype, 
an error with major code 1 (illegal datatype) occurs. See "Error Messages 
and Handling" on page 53. In some cases, the range of arguments permitted 
is restricted. Arguments outside the permitted domain cause the generation 
of an error with ma~or code 13 (incorrect value for function or operator). 
The usage 'ARGUMENT implies that the argument can be of any datatype. 'NU­
MERIC' implies that any numeric datatype can occur (INTEGER, REAL, or 
DREAL). 

In the following description, a single asterisk * following the name of the 
function indicates that the implementation of the function differs from that 
in SIL SNOBOL4, while a single plus sign + indicates that the function is 
not available in SIL SNOBOL4. 

ABS+ -- COMPUTE ABSOLUTE VALUE 

ABS(NUMERIC) 

ABS computes the absolute value of its argument. The datatype of the re­
turned value is the same as the argument. 

ANO+ -- COMPUTE LOGICAL AND 

AND(STRING,STRING) 

AND computes the logical "and" of its arguments by anding them together 
bit-by-bit. Both argument strings must be the same length. 

ANY -- GENERATE PATTERN TO MATCH SELECTED CHARACTER 

ANY(STRING) or ANY(EXPRESSION) 

This function returns a pattern which will match a single character selected 
from the characters in the argument STRING. A null argument is not 
permifted. 

If an expression argument is used, then the expression is evaluated during 
the pattern match and must give a non-null result. 

Functions 19 



APPLY* -- APPLY FUNCTION 

APPLY(NAME,ARG,ARG, ... ) 

The first argument is the name of a function to be applied to the (possibly 
null) list of arguments. Unlike SIL SNOBOL4, SPITBOL does not require the 
number of arguments to match. Extra arguments are ignored, and missing argu-
ments are supplied as null strings. 

ARBNO -- GENERATE PATTERN FOR ITERATED MATCH 

ARBNO(PATIERN) 

This function returns a pattern which will match an arbitrary number of oc­
currences of the pattern argument, including the null STRING (corresponding 
to zero occurrences). 

ARCCOS+ -- COMPUTE ARCCOSINE 

ARCCOS(DREAL) 

ARCCOS computes the arccosine of its argument. The result is in radians and 
has type DREAL. 

ARCCOSH+ -- COMPUTE HYPERBOLIC ARCCOSINE 

ARCCOSH(DREAL) 

ARCCOSH computes the hyperbolic arccosine of its argument. The result is 
DREAL. 

ARCSIN+ -- COMPUTE ARCSINE 

ARCSIN(DREAL) 

ARCSIN computes the arcsine of its argument. The result is in radians and 
has type DREAL. 

ARCSINH+ -- COMPUTE HYPERBOLIC ARCSINE 

ARCSINH(DREAL) 

ARCSINH computes the hyperbolic arcsine of its argument. The result is 
DREAL. 

20 SPITBOL 370 Reference Manual 



ARCTAN+ -- COMPUTE ARCTANGENT 

ARCTAN(DREAL) 

ARCTAN computes the arctangent of its argument. The result is in radians 
and has type DREAL. 

ARCTANH+ -- COMPUTE HYPERBOLIC ARCTANGENT 

ARCTANH(DREAL) 

ARCTANH computes the hyperbolic arctangent of its argument. The result is 
DREAL. 

ARG -- OBTAIN ARGUMENT NAME 

ARG(NAME,INTEGER) 

The first argument represents the name of the function. The integer is the 
formal argument number to this function. The returned result is the the se­
lected argument STRING name. ARG fails if the integer is out of range (less 
than one, or greater than the number of arguments). 

ARRAY -- CREATE ARRAY STRUCTURE 

ARRAY(STRING, ARG) 

The STRING represents the prototype of an ARRAY to be allocated. This is in 
the format 'LBD1:HBD1,LBD2:HBD2, .. 1 the low bound (LBD) may be omitted for 
some or all of the dimensions, in which case a low bound of one is assumed. 
The second argument (of any datatype) is the initial value of all the ele­
ments in the array. If the second argument is omitted, the initial value of 
all elements will be the null STRING. 

BIT+ -- EXTRACT BIT 

BIT(STRING,INTEGER) 

BIT extracts a bit from its argument. The second argument specifies the bit 
position--bit positions start with 0 as the leftmost bit in the string. The 
returned value is either an integer 0 or 1. 

Functions 21 



BITSET+ -- SET BIT 

BITSET(STRING,INTEGER,INTEGER) 

BITSET returns the result of setting a bit to 0 or 1 in the string specified 
by its first argument. The second argument ~pecifies the bit position--bit 
positions start with 0 as the leftmost bit in the string. The third argu­
ment is the new value, 0 or 1, of the specified bit. 

BREAK -- GENERATE SCANNING PATTERN 

BREAK(STRING) or BREAK(EXPRESSION) 

This function returns a pattern which will match any STRING up to but not 
including a character in the STRING argument. A null argument is not permit­
ted. 

If an expression argument is given, the resulting pattern causes the STRING 
to be evaluated during pattern matching. In this case, the evaluated result 
must be a non-null STRING. 

BREAKX+ -- GENERATE EXTENDED SCANNING PATTERN 

BREAKX(STRING) or BREAKX(EXPRESSION) 

BREAKX returns a pattern whose initial match is the same as a corresponding 
BREAK pattern. However, BREAKX has implicit alternatives which are obtained 
by scanning past the first break character found and scanning to the next 
BREAK character. 

BREAKX may be used to replace ARB in many situations where BREAK cannot be 
used easily. For example, the following replacement can be made: 

ARB ('CAT' I 'DOG') ---> BREAKX('CD' )('CAT' I 'DOG') 

For an express ion argument, the express ion is evaluated during pattern 
matching and must yield a non-null STRING value. The evaluation of the ex­
pression is not repeated on rematch attempts by extension. 

Note: BREAKX(S) = BREAK(S) ARBNO(LEN(l) BREAK(S)) 

22 SPITBOL 370 Reference Manual 



CLEAR* -- CLEAR VARIABLE STORAGE 

CLEAR(STRING, ARGUMENT) 

This function causes the values of variables to be set to null. In the sim­
ple case, where both arguments are omitted, the action is the same as in SIL 
SNOBOL4. For example, all variables are cleared to contain null. Two ex­
tensions are available in SPITBOL. The first argument may be a STRING which 
is a list of variable names separated by commas. These represent the names 
of variables whose value is to be left unchanged. In addition, if a second 
non-null argument is supplied, then all variables containing pattern values 
are left unchanged. For example: 

CLEAR('ABC,CDE,GGG' ,1) 

Would cause the value of all variables to be cleared to null except for the 
variables ABC,CDE,GGG and all other variables containing pattern values. 

CODE -- COMPILE CODE 

CODE(STRING) 

The effect of this function is to convert the argument to type CODE as de­
scribed in the section on type conversion. The STRING must represent a valid 
SPITBOL program complete with labels and using a semicolon (;) to separate 
statements or the call to CODE fails. 

COLLECT -- INITIATE STORAGE REGENERATION 

COLLECT(INTEGER) 

The COLLECT function forces a garbage collection which retrieves unused 
storage and returns it to the block of available storage. The integer argu­
ment represents a minimum number of bytes to be made available. If this 
amount of storage cannot be obtained, the COLLECT function fails. On suc­
cessful return, the result is the number of bytes actually obtained. 

Note that although the implementation of COLLECT is similar to that in SIL 
SNOBOL4, the values obtained will be quite different due to different 
internal data representations. Furthermore, the internal organization of 
SPITBOL is such that forcing garbage collections to occur before they are 
required always increases execution time. 

COMPL+ -- COMPUTE LOGICAL COMPLEMENT 

COMPL(STRING) 

COMPL computes the logical "complement" of its argument by complementing 
each bit in its argument. 

Functions 23 



CONVERT* -- CONVERT DATATYPES 

CONVERT(ARGUMENT,STRING) 

The returned result is obtained by converting the first argument to the type 
indicated by the STRING name of the datatype given as the second argument. 
The section on type conversion describes the permitted conversions. Any 
conversions which are not permitted cause failure of the convert call. 

CONVERT allows conversions of all objects to STRING as in SIL SNOBOL4. 

An additional possibility f~r the second argument is 'NUMERIC', in which 
case, the argument is converted to INTEGER, REAL or DREAL according to its 
form. 

COPY* -- COPY STRUCTURE 

COPY(ARGUMENT) 

The COPY function returns a distinct copy of the object which is its argu­
ment. This is only useful for arrays, tables, and program-defined datatypes. 
Note that, unlike SIL SNOBOL4, SPITBOL does permit the copying of tables. 

cos+ -- COMPUTE COSINE 

COS(DREAL) 

COS computes the cosine of its argument. The argument is in radians and the 
result is DREAL. 

COSH+ -- COMPUTE HYPERBOLIC COSINE 

COSH(DREAL) 

COSH computes the hyperbolic cosine of its argument. The result is DREAL. 

DATA -- CREATE DATATYPE 

DATA(STR.ING) 

The argument to DATA is a prototype for a new datatype in the form of a func­
tion call with arguments. The function name is the name of the new datatype. 
The 'argument' names are names of functions which represent the fields of 
the new datatype. 

Note: In SPITBOL, a significant increase in efficiency is obtained by 
avoiding the use of duplicate field names for different datatypes, although 
SPITBOL does allow such multiple use of field function names. 

24 SPITBOL 370 Reference Manual 



DATATYPE* -- OBTAIN DATATYPE 

DATATYPE(ARGUMENT) 

DATATYPE returns the formal identification of the datatype of its argument. 
In SPITBOL, the additional datatype name 'DREAL' is included in the list of 
possible returned results. 

DATE -- OBTAIN DATE 

DATE() 

DATE returns an eight character STRING of the form MM/DD/YY representing the 
current date. See "SYSDATE" on page 91 for alternative date string formats. 

DCONV+ -- DESCRIPTOR CONVERSION OF STRING TO DREAL 

DCONV(STRING) 

DCONV makes a copy of its argument and changes the datatype to DREAL. The 
argument string must have exactly eight characters. During conversion the 
rightmost character (low order eight bits) will be truncated. 

DCONV( FROMHEX( 1 4110000000000000 1 
) ) = 1. 

DEFINE -- DEFINE A FUNCTION 

DEFINE(STRING) or DEFINE(STRING,NAME) 

The DEFINE function is used to define program-defined functions. 

DETACH -- DETACH 1/0 ASSOCIATION 

DETACH(NAME) 

NAME is the name of a variable which has previously been input or output as­
sociated. Use of the DETACH function does not affect the file involved. 

Functions 25 



DIFFER* -- TEST FOR ARGUMENTS DIFFERING 

DIFFER(ARGUMENT,ARGUMENT) 

DIFFER is a predicate function which fails if its two arguments are identi­
cal objects. Note that DIFFER(.ABC, 'ABC') succeeds in SPITBOL since .ABC is 
a NAME. DIFFER and !DENT are the only functions in which the different im­
plementation of the NAME operator (unary dot) may give rise to problems. 

DUMP* -- DUMP STORAGE 

DUMP(INTEGER) 

Til.e DUMP function causes a dump of current values. After the dump is com­
plete, execution continues unaffected (the DUMP function returns the null 
STRING). If the argument to DUMP is one, then the dump includes values of 
all non-constant keywords and all non-null natural variables. If the argu­
ment to DUMP is two, then the dump includes values of all array and table el­
ements, and of field values of all program-defined datatypes. Til.e format of 
the latter dump is self explanatory and avoids printing any structure more 
than once. DUMP{3) causes a formatted memory dump to be printed. 

A call to DUMP with a zero argument is ignored. This allows use of a switch 
value which can be turned on and off globally. 

DUPL -- DUPLICATE STRING 

DUPL(STRING, INTEGER) 

DUPL returns a STRING obtained by duplicating the first (STRING) argument 
the number of times indicated by the second argument. 

ENDFILE* -- CLOSE FILE 

ENDFILE (STRING) 

String is the name of a file (not the name of a variable associated with the 
file). The named file is closed, all associated storage is released and all 
variables associated with the file are automatically detached. Thus ENDFILE 
should be used only when no further use is to be made of the file. If the 
file is to be reread or rewritten, REWIND should be used rather than 
ENDFILE. 

EQ -- TEST FOR EQUAL 

EQ(NUMERIC,NUMERIC) 

EQ is a predicate function which tests whether its two argum.ents are equal. 
DREAL arguments are permitted. 

26 SPITBOL 370 Reference Manual 



EVAL -- EVALUATE EXPRESSION 

EVAL(EXPRESSION) 

EVAL returns the result of evaluating its expression argument. Note that a 
STRING can be converted into an expression by compiling it into code. Thus 
EVAL in SPITBOL is compatible with SIL SNOBOL4 and handles strings in the 
same way. 

EXP+ -- COMPUTE EXPONENTIAL 

EXP(DREAL,DREAL) 

EXP computes the exponential of its first argument raised to the power of 
its second argument. The result is DREAL. 

Note: If the arguments are both integers, EXP will compute a more precise 
result in some cases. 

FIELD -- GET FIELD NAME 

FIELD(NAME, INTEGER) 

FIELD returns the name of the selected field of the program-defined datatype 
whose name is the first argument. If the second argument is out of range 
(less than one, or greater than the number of fields), the FIELD function 
fails. 

FROMBIN+ -- CONVERT BINARY STRING TO CHARACTER STRING 

FROMBIN(STRING) 

FROMBIN takes a string of binary digits and converts it to a string of 
EBCDIC characters. For example, 

FROMBIN( '1100100011001001' ) ='HI' 

FROMDEC+ -- CONVERT PACKED DECIMAL STRING TO INTEGER 

FROMDEC(STRING) 

FROMDEC takes a string of packed decimal digits and converts it to an inte­
ger. For example, 

FROMDEC( FROMHEX( '123F' ) ) = 123 

Functions 27 



FROMHEX• -- CONVERT HEX STRING TO CHARACTER STRING 

FROMHEX(STRING) 

FROMHEX takes a string of hexadecimal digits and converts it to a string of 
EBCDIC characters. For example, 

FROMHEX( 'C8C9' ) = 'HI' 

GAMMA• -- COMPUTE GAMMA 

GAMMA(DREAL) 

GAMMA computes the gamma function of its argument. The result is DREAL. 
. . 

Note: GAMMA can be used to compute factorials, because of the identity 

GAMMA(X) = (X-1)! 

GE -- TEST FOR GREATER OR EQUAL 

GE(NUMERIC,NUMERIC) 

GE is a predicate function which tests if the first argument is greater than 
or equal to the second argument. 

GT -- TEST FOR GREATER 

GT(NUMERIC,NUMERIC) 

GT is a predicate function which tests if the first argument is greater than 
the second argument. 

ICONV• -- DESCRIPTOR CONVERSION TO INTEGER 

ICONV(REAL) or ICONV(STRING) 

ICONV makes a copy of its argument and changes the datatype to integer. If 
the argument is REAL, the 32 bit real value is returned as an INTEGER 

If the argument is a STRING, there are two possible cases which affect the 
conversion process: (1) the string is fewer than four characters or (2) the 
string is four or more characters in length. If the string is fewer than 
four characters, it is padded on the left with leading binary zeros to four 
bytes and returned as an INTEGER. If the string is four or more characters, 
the first four characters are copied and returned as an INTEGER. All other 
characters are truncated on the right. For example: 

28 SPITBOL 370 Reference Manual 



ICONV('A') = 193 
ICONV( 'HI I) = 51401 
ICONV(l.O) = 1091567616 

IDENT* -- TEST FOR IDENTICAL 

IDENT(ARGUMENT,ARGUMENT) 

!DENT is a predicate function which tests if its two arguments are 
identical. Note that in SPITBOL, !DENT (.ABC,'ABC') fails since .ABC is a 
NAME in SPITBOL. Otherwise !DENT is compatible. 

INPUT* -- SET INPUT ASSOCIATION 

INPUT(NAME,STRING,INTEGER) 

The first argument is the name of a variable which is to be input 
associated. The second argument is the filename of the file to which the 
variable is to be associated. In OS, the name corresponds to the OS DDNAME 
of the file or to a pseudo-DDNAME that is specially interpreted by SPITBOL's 
operating system interface. For more details on the various forms and 
meanings of DDNAMES, see "Input/OutP,ut Facilities" on page 77. If the second 
argument is omitted, the filename SYSIN' (standard input file) is assumed. 
For compatibility with SIL SNOBOL4, the second argument may be a one or two 
digit integer, in which case, the DDNAME FTXXFOOl is used. note however, 
that the filename 5 is interpreted as SYSIN if no FT05F001 DD statement is 
supplied. Also, there is no provision for multiple files in the FORTRAN 
sense. Dataset concatenation can be used instead. 

The third argument is either zero, in which case it is ignored, or a posi­
tive non-zero integer, in which case input records longer than the given 
limit are truncated. 

A restriction in SPITBOL is that only natural variables can be input associ­
ated. It is not possible to input associate ARRAY and TABLE elements. 

INTEGER* -- TEST FOR INTEGRAL 

INTEGER(NUMERIC) 

INTEGER is a predicate function which tests whether its argument is 
integral. It fails if the argument cannot be converted to numeric, or if it 
has a non-integral value. 

Functions 29 



ITEM -- SELECT ARRAY OR TABLE ELEMENT 

ITEM (ARRAY, INTEGER, INTEGER, ... ) or 

ITEM (TABLE,ARGUMENT) 

ITEM returns the selected ARRAY or TABLE element by NAME. Note that the use 
of ITEM is unnecessary in SPITBOL because of the extended syntax for array 
references. (see " Syntax" on page 15). 

LE -- TEST FOR LESS THAN OR EQUAL 

LE(NUMERIC,NUMERIC) 

LE is a predicate function which tests whether the first argument is less 
than or equal to the second argument. 

LEN -- GENERATE SPECIFIED LENGTH PATTERN 

LEN(INTEGER) or LEN(EXPRESSION) 

LEN generates a pattern which will match any sequence of characters of the 
length. given by the argument which must be a non-negative integer greater 
than zero. 

If the argument is an expression, it is evaluated during pattern matching 
and must yield a non-negative integer. 

LEQ+ -- TEST FOR LEXICALLY EQUAL 

LEQ(STRING,STRING) 

LEQ is predicate function which tests whether its arguments are lexi"cal ly 
equal. Note that LEQ differs from the IDENT function in that its arguments 
must be strings, thus LEQ(lO, '10') succeeds as does LEQ(.ABC, 'ABC'). 

LGE+ -- TEST FOR LEXICALLY GREATER OR EQUAL 

LGE(STRING,STRING) 

LGE is a predicate function which tests whether the first argument is 
lexically greater than or equal to the second argument. 

30 SPITBOL 370 Reference Manual 



LGT -- TEST FOR LEXICALLY GREATER 

LGT(STRING,STRING) 

LGT is a predicate function which tests whether its first STRING argument is 
lexically greater than the second STRING argument. 

LLE+ -- TEST FOR LEXICALLY LESS OR EQUAL 

LLE(STRING,STRING) 

LLE is a predicate function which tests whether its first STRING argument is 
lexically less than or equal to the second argument. 

LL T+ -- TEST FOR LEXICALLY LESS 

LLT(STRING,STRING) 

LLT is a predicate function which tests whether its first argument is 
lexically less than its second argument. 

LNE+ -- TEST FOR LEXICALLY NOT EQUAL 

LNE(STRING,STRING) 

LNE is a predicate function which tests whether its arguments are lexically 
unequal. LNE differs from the DIFFER function in that its arguments must be 
strings. 

LOAD* -- LOAD EXTERNAL FUNCTION 

LOAD(STRING,STRING) 

LOAD is used to load an external function. The form of the first argument is 
the same as in SIL SNOBOL4 except that the datatype DREAL may be used. In the 
case where the datatype is unspecified, the form of the descriptor passed is 
quite different from that in SIL SNOBOL4. The form of converted arguments 
is identical. 

The second argument specifies the DDNAME of a load library containing the 
external function's load module. If the second argument is omitted, the 
standard OS job and step libraries are searched. 

See "External Functions" on page 89 for details on external functions. 

Functions 31 



LOC -- GET NAME OF LOCAL 

LOC(NAME,INTEGER) 

The value returned is the name of the indicated local of the function named 
by the first argument. LOC fails if the second argument is out of range 
(less than one, or greater than the number of locals). 

LOG• -- COMPUTE LOGARITHM 

LOG(DREAL,DREAL) 

LOG computes the logarithm of its first argument to the base specified by 
its second argument. If the second argument is null or zero, the natural 
logarithm is computed (base &E). 

Logarithms to base 2, base &E (natural logarithm), and base 10 are handled 
specially by LOG. Logarithms to other bases are computed using the 
identity: 

LOG(A,B) =LOG (A) I LOG (B). 

LPAO+ -- LEFT PAD STRING 

LPAD(STRING,INTEGER,STRING) 

LPAD returns the result obtained by padding out the first argument on the 
left to the length specified by the second argument, using the pad character 
supplied by the one character STRING third argument. If the third argument 
is null or omitted, a blank is used as the pad character. If the first argu­
ment is already long enough or too long, it is returned unchanged. LPAD is 
useful for constructing columnar output. 

LT -- TEST FOR LESS THAN 

LT(NUMERIC,NUMERIC) 

LT is a predicate function which tests whether the first argument is less 
than the second argument. 

MAX• -- COMPUTE MAXIMUM VALUE 

MAX(NUMERIC, ... ,NUMERIC) 

MAX returns the maximum value of its arguments. A maximum of 63 arguments 
can be specified. The datatype used for comparisons and the returned value 
is derived from the datatype of the highest precision argument according to 
the hierarchy DREAL, REAL, INTEGER. 

32 SPITBOL 3 70 Reference Manual 



MIN+ -- COMPUTE MINIMUM VALUE 

MIN(NUMERIC, ... ,NUMERIC) 

MIN returns the minimum value of its arguments. A maximum of 63 arguments 
can be specified. The datatype used for comparisons and the returned value 
is derived from the datatype of the highest precision argument according to 
the hierarchy DREAL, REAL, INTEGER. 

MOO+ -- COMPUTE REMAINDER FOR DREALS 

MOD(DREAL,DREAL) 

MOD computes the modulus--the first argument modulus the second argument. 
The result is DREAL. 

NOTANY -- GENERATE CHARACTER SELECT PATTERN 

NOTANY(STRING) or NOTANY(EXPRESSION) 

NOTANY returns a pattern which will match any single character not in the 
STRING argument given. A null argument is not permitted. 

If the argument is an expression, then the expression is evaluated at pat­
tern match time and must yield a non-null STRING. 

OPSYN* -- EQUATE FUNCTIONS 

OPSYN(NAME,NAME,INTEGER) 

The first argument is the name of a function defined to have the same defi­
nition as the function named in the second argument. OPSYN may be used to 
redefine operators using a third argument of 1 or 2 as in SIL SNOBOL4 with 
the following restrictions: 

A. Only the first argument can be an operator name. 

B. Only normally undefined operators can be redefined. 

QR+ -- COMPUTE LOGICAL OR 

OR(STRING,STRING) 

OR computes the logical "or" of its arguments by or-ing them together 
bit-by-bit. Both argument strings must have the same length. 

Functions 33 



OUTPUT* -- SET OUTPUT ASSOCIATION 

OUTPUT(NAME,STRING,STRING) 

The first argument is the name of a variable to be ouput associated. The 
second argument is the name of the file to which the association is to be 
made. In OS, this name corresponds to the OS DDNAME of the file or to a 
pseudo-DDNAME that is interpreted by SPITBOL's operating system interface. 
For more details on the various forms and meanings of DDNAMEs see 
"Input/Output Facilities" on page 77. If the second argument is omitted, 
the filename 'SYSPRINT' (standard output print file) is assumed. For com­
patibility with SIL SNOBOL4, the filename may be a one or two digit integer, 
in which case the DDNAME FTXXFOOl is used. Note however, that the filenames 
6, 7 are interpreted as SYSPRINT and SYSPUNCH if the corresponding FTXXFOO 1 
DD statements are not supplied. 

The third argument is the format. It may be entirely omitted. In this case, 
all parameters are taken from the dataset definition. Strings are transmit­
ted directly. If a STRING exceeds the specified length (maximum record 
length for variable length records), then it is split into segments as re­
quired. 

The second possibility for a format is a single character. This is used for 
print files. The character given is a control character which is appended to 
the start of each record. Thus the definition of the standard print file is: 

OUTPUT ( . OUTPUT, , ' ' ) 

A third possibility for the format is a FORTRAN format. Tiiis is supplied 
for compatibility with SIL SNOBOL4 and should not be used except where re­
quired since format processing is inherently time consuming. 

A restriction on the output function in SPITBOL is that only natural vari­
ables may be associated. It is not possible to output associate array and 
table elements. 

PCS -- GENERATE POSITIONING PATTERN 

POS(INTEGER). or POS(EXPRESSION) 

POS returns a pattern which matches the null STRING after the indicated num­
ber of characters has been matched. The argument must be a non-negative in­
teger. 

If an expression argument is given it is evaluated during pattern matching 
and must yield a non-negative integer. 

PROTOTYPE -- RETRIEVE PROTOTYPE 

PROTOTYPE(ARRAY) or PROTOTYPE(TABLE) 

PROTOTYPE returns the first argument used in the array or table function 
cal 1 which created the argument. 

34 SPITBOL 370 Reference ~1anual 



RANDOM+ -- COMPUTE RANDOM NUMBER 

RANDOM(INTEGER,INTEGER,INTEGER) 

RANDOM returns a random number generated by the linear congruential method. 
The first two arguments specify respectively the lower and upper bounds of 
the range from which the number is chosen. The third argument is the seed 
value, which can be changed at any time. 

If the second argument is null, the upper bound is set to the maximum posi­
tive integer. If the third argument is null, the seed is defaulted to 31. 

A call to RANDOM with no arguments, RANDOM (), will return a positive random 
integer. 

RCONV+ -- DESCRIPTOR CONVERSION TO INTEGER 

RCONV(INTEGER) or RCONV(STRING) 

RCONV makes a copy of its argument and changes the datatype to REAL. If the 
argument is INTEGER, the 32 bit integer value is returned as REAL. If the 
argument is a STRING, it must have exactly four characters. 

RCONV ( 0 ) = 0 . 

REMDR -- COMPUTE REMAINDER FOR INTEGERS 

REMDR(INTEGER,INTEGER) 

REMDR returns the remainder of dividing the first argument by the second, 
the remainder has the same sign as the first argument. 

REPLACE -- TRANSLATE CHARACTERS 

REPLACE(STRING,STRING,STRING) 

REPLACE returns the result of applying the transformation represented by the 
second and third arguments to the first argument. REPLACE fails if the sec­
ond and third arguments are unequal in length or null. 

REVERSE• -- REVERSE STRING 

REVERSE(STRING) 

REVERSE returns the result of reversing its STRING argument. Thus 
REVERSE( I ABC I) = I CBA I. 

Functions 35 



REWIND -- REPOSITION FILE 

REWIND(STRING) 

String is the name of an external file (not the name of a variable associ­
ated with the file). The named file is repositioned so that the next read or 
write operation starts at the first record of the file. Existing associ­
ations to the file are unaffected. 

RPAO+ -- RIGHT PAD STRING 

RPAD(STRING,INTEGER,STRING) 

RPAD is similar to LPAD except that the padding is done on the right. 

RPOS -- GENERATE POSITIONING PATTERN 

RPOS(INTEGER) or RPOS(EXPRESSION) 

RPOS creates a pattern which will match null when the indicated number of 
characters remain to be matched. The integer argument must be non-negative. 

If an expression argument is used, it is evaluated during the pattern match 
and must yield a non-negative integer. 

RTAB -- GENERATE TABBING PATTERN 

RTAB(INTEGER) or RTAB(EXPRESSION) 

RTAB returns a pattern which matches from the current location to the point 
where the indicated number of characters remain to be matched. The argument 
must be a non-negative integer. If an expression is used, it is evaluated 
during pattern matching and must yield a non-negative integer. 

RTRIM• -- REVERSE TRIM 

RTRIM(STRING,STRING) 

RTRIM returns the result of trimming leading characters from its first argu­
ment. Argument 2 specifies the character to be trimmed. If argument 2 is 
omitted or null, a blank is assumed. 

Note: RTRIM(S,C) = REVERSE(TRIM(REVERSE(S),C)) 

36 SPITBOL 370 Reference ~anual 



SCONV+ -- DESCRIPTOR CONVERSION TO STRING 

SCONV(NUMERIC) 

SCONV makes a copy of its argument and changes the datatype to a STRING. If 
the argument is an INTEGER or REAL, the resulting STRING is four characters 
long. If the argument is DREAL, the resulting string is seven characters 
long. If the argument is STRING, it is coerced to numeric before 
conversion. 

TOHEX(SCONV(l)) = '00000001' 
TOHEX(SCONV(4095)) = 'OOOOOFFF' 

SETEXIT+ -- SET ERROR EXIT 

SETEXIT(NAME) or SETEXIT() 

The use of SETEXIT allows interception of any execution error. The argument 
to SETEXIT is a label to which control is passed if a subsequent error oc­
curs, providing th.at the value of the keyword &ERRLIMIT is non-zero. The 
value of &ERRLIMIT is decremented when the error trap occurs. The SETEXIT 
call with a null argument causes cancellation of the intercept. A Subsequent 
error will terminate execution as usual with an error message. 

The result returned by SETEXIT is the previous intercept setting (i.e., a 
label name or null if no intercept is set). This can be used to save and re­
store the SETEXIT conditions in a recursive environment. 

The error intercept routine may inspect the error code stored in the keyword 
&ERRTYPE (see "Keywords" on page 43) and take one of the following actions: 

1. Terminate execution by transferring to the special label ABORT. This 
causes error processing to resume as though no error intercept had been 
set. 

2. Branching to the special label CONTINUE. This causes execution to resume 
by branching to the failure exit of the statement in error. 

3. Branching to the special label SCONTINUE. This causes execution to re­
sume at the point of error, by branching into the statement. 

4. Continue execution elsewhere by branching to some section of the 
~rogram. Note that if the error occurred inside a function, we are still 

down a level. ' 

The occurrence of an error cancels the error intercept. Thus the error in­
tercept routine must reissue the SETEXIT if required. 

Note: When a SETEXIT routine is entered due to exceeding &STLIMIT, the pro­
gram is given about 5 additional statements in which &STLIMIT can be in­
creased. 

Functions 37 



SIN• -- COMPUTE SINE 

SIN(DREAL) 

SIN computes the sine of its argument. The argument is in radians and the 
result is DREAL. 

SINH+ -- COMPUTE HYPERBOLIC SINE 

SINH(DREAL) 

SINH computes the hyperbolic sine of its argument. The result is DREAL. 

SIZE -- GET STRING SIZE 

SIZE(STRING) 

SIZE returns an integer count of the length of its STRING argument. 

SPAN -- GENERATE SCANNING PATTERN 

SPAN(STRING) dr SPAN(EXPRESSION) 

SPAN creates a pattern which matches a non-null sequence of characters con­
tained in the first argument. This argument must be a non-null STRING. 

If an expression argument is used, it is evaluated during pattern matching 
and must yield a non-null STRING value. 

STOPTR* -- STOP TRACE 

STOPTR(NAME,STRING) 

STOPTR terminates tracing for the name given by the first argument. The sec­
ond argument designates the respect in which the trace is stopped as 
follows: 

'VALUE' or 'V' or null (omitted) value 

'LABEL' or 'L' label 

'FUNCTION' or 'F' function call & return 

'CALL' or 'C' function call 

'RETURN' or 'R' function return 

'KEYWORD' or 'K' keyword 

38 SPITBOL 370 Reference Manual 



SUBSTR+ -- EXTRACT SUBSTRING 

SUBSTR(STRING,INTEGER,INTEGER) 

SUBSTR extracts a substring from the first argument. The second argument 
specifies the position of the first character and the third argument speci­
fies the number of characters. 

The second argument may be positive or negative. A value of 1 specifies the 
first character, 2 specifies the second character, and so on. A value of -1 
specifies the last character, -2 specifies the next-to-last character, and 
so on. 

If the third argument is omitted or zero, the remainder of the string will 
be returned. If the third argument is larger (greater) than the number of 
characters remaining, all remaining characters are returned. 

Note: SUBSTR works differently than in SPITBOL 360. 

TAB -- GENERATE TABBING PATTERN 

TAB(INTEGER) or TAB(EXPRESSION) 

TAB creates a pattern which matches from the current position to the point 
where the indicated number of characters have been matched. The argument to 
TAB is a non-negative integer. 

If an expression argument is used, it is evaluated during pattern matching 
and must yield a non-negative integer. 

TABLE* -- CREATE TABLE STRUCTURE 

TABLE (INTEGER) 

The TABLE function creates an associative TABLE as in SIL SNOBOL4. However, 
in SPITBOL, the TABLE is implemented internally using a hashing algorithm. 
The integer argument to TABLE is the number of hash headers used. The aver­
age number of searches is about M/2N where M is the number of entries in the 
table, and N is the number of hash headers. Since the overhead for hash 
headers is small compared to the size of a TABLE element, a useful guide is 
to use an argument which is an estimate of the number of entries to be stored 
in the table. Since using even numbers of headers causes anomalies in the 
hashing algorithm, TABLE forces its argument odd by incrementing even argu­
ments by one. 

Note: This implementation of TABLE is compatible in that the call used in 
SIL SNOBOL4 will work, though possibly not with maximum efficiency. 

Functions 39 



TAN+ -- COMPUTE TANGENT 

TAN(DREAL) 

TAN computes the tangent of its argument. The argument is in radians and 
the result is DREAL. 

TANH• -- COMPUTE HYPERBOLIC TANGENT 

TANH(DREAL) 

TANH computes the hyperbolic tangent of its argument. The result is DREAL. 

TIME -- GET EXECUTION TIME 

TIME() 

TIME returns the integer number of milliseconds of processor time since the 
start of execution. Note that the values obtained will be different 
(smaller) than those obtained with SIL SNOBOL4. 

See "SYSDATE" on page 91 for information on how to obtain the time of day. 

TOBIN+ -- CONVERT CHARACTER STRING TO BINARY STRING 

TOBIN(DREAL) 

TOBIN takes a string and converts it to a string of binary digits. For exam­
ple, 

TOBIN( 'HI' ) = '1100100011001001' 

TODEC+ -- CONVERT INTEGER TO PACKED DECIMAL STRING 

TODEC(INTEGER) 

TODEC takes an integer and converts it to a string of packed decimal digits. 
For example, 

TOHEX( TODEC( 123 ) ) = '000000000000123C' 

40 SPITBOL 370 Reference Manual 



TOHEX+ -- CONVERT CHARACTER STRING TO HEX STRING 

TOHEX(STRING) 

TOHEX takes a string of decimal digits and converts it to a string of 
hexadecimal digits. For example, 

TOHEX( 'HI' ) = 'C8C9' 

TRACE* -- INITIATE TRACE 

TRACE(NAME,STRING,ARGUMENT,NAME) 

The TRACE function initiates a trace of the item whose name is given by the 
first argument. The second argument specifies the sense of the TRACE as fol­
lows: 

'VALUE' or 'V' or null (omitted) 

'LABEL' or 'L' 

'FUNCTION' or 'F' 

'CALL' or 'C' 

'RETURN' or 'R' 

'KEYWORD' or 'K' 

value 

label 

function call & return 

function call 

function return 

keyword 

Program defined trace functions are available and compatible with SIL 
SNOBOL4. However, the tracing of array or table elements is a feature of the 
SIL SNOBOL4 TRACE function which is not implemented: 

Note: Keyword tracing is available for the keywords &STCOUNT, &FNCLEVEL, 
and &ERRTYPE. 

TRIM* -- TRIM TRAILING CHARACTERS 

TRIM(STRING,STRING) 

TRIM returns the result of trimming trailing characters from argument 1. 
Argument 2 specifies the character to ~e trimmed. If argument 2 is omitted 
or null, a blank is assumed. 

Functions 41 



UNLOAD* ·- UNLOAD FUNCTION 

UNLOAD(STRING) 

String is the name of an external function which is to be unloaded. The re­
striction in SIL SNOBOL4 concerning functions OPSYNed to loaded functions 
?oes not apply in SPITBOL. A function is not actually unloaded until all 
functions OPSYNed to it have been unloaded. SPITBOL also allows the names of 
ordinary functions to appear in calls to UNLOAD. In this case, the result is 
merely to undefine the function. 

XOR+ -- COMPUTE LOGICAL EXCLUSIVE-OR 

XOR(STRING,STRING) 

XOR computes the logical "exclusive-or" of its arguments by exclusive-oring 
them together bit-by-bit. Both argument strings must have the same length. 

42 SPITBOL 370 Reference Manual 



KEYWORDS 

The following is a list of the keywords implemented in SPITBOL. The notation 
(R) after the name indicates that the keyword is read only, that is, its 
value may not be modified by assignment. 

Note: A restriction in SPITBOL is that the only way to change a keyword val­
ue is by a direct assignment. Keywords may not appear in any other context 
requiring a name (for example as the right argument of binary$). 

&ABEND 

Normally set to zero. If it is set to one when execution terminates, an 
abend dump is given. This is normally used only for system checkout. 

&ABORT(R) 

Contains the value of the pattern abort. 

&ALPHABET(R) 

Contains the 256 characters of the EBCDIC set in their natural collating se­
quence. 

&ANCHOR 

Set to zero for unanchored mode and one for anchored pattern matching mode. 

&ARB(R) 

Contains the value of the pattern ARB. 

&BAL(R) 

Contains the pattern BAL. 

&CODE 

The value in &CODE is used as a system return code if this job is the last in 
a batch. It is normally set to zero. 

Keywords 43 



&DUMP 

The standard value is zero. If the value is zero at the end of execution, 
then no symbolic dump is given. a value of one gives a dump including values 
of keywords and natural variables. If the value is two, the dump includes 
non-null array, table and program defined datatype elements as well. ·The 
dump format is self explanatory and deals with the case of branched struc­
tures including circular lists. If this value is 3 a hexadecimal dump of the 
compiler work areas will be generated. 

&E(R) 

&E contains the base for natural logarithms. Its datatype is DREAL. 

&ERR TYPE 

If an execution error is intercepted with the use of the SETEXIT function, 
then the error code is stored as an integer in &ERRTYPE. The value stored is 
lOOO*majorcode+minorcode. Thus the error code 13.026 is stored as the inte­
ger 13026. &ERRTYPE may be assigned a value in which case an immediate error 
is signalled. This may be useful in signalling program detected errors. If 
such an error is intercepted, then either the standard error message appro­
priate to the major code assigned is printed, or a standard message user is· 
sued error message is printed if the major code is not in the standard range 
(~-14). 

&ERRLIMIT 

The maximum number of errors which can be trapped using the SETEXIT 
function. &ERRLH1IT is initially zero and is decremented each time a SETEXIT 
trap occurs. SETEXIT has no effect on normal error processing if &ERRLIMIT 
is zero. 

&FAIL(R) 

Contains the value of the pattern fail. 

&FENCE(R) 

Contains the value of the pattern FENCE. 

44 SPITBOL 3 70 Reference Manual 



&FNCLEVEL 

Contains the current function nesting level. 

&FNCLEVEL is writable and can be set to any integer between zero and its 
current value. The function returns triggered by decreasing its value do 
not trigger programmer defined trace functions or trace functions on 
&FNCLEVEL. Writing to &FNCLEVEL is useful in certain types of error recov­
ery. 

&FTRACE 

The standard value is zero. If it is set to one, then all function calls and 
returns are traced. 

&FULLSCAN 

The standard value is zero (QUICKSCAN pattern matching mode). Value is set 
to one to obtain FULLSCAN mode. 

&INPUT 

Set to one for normal input (standard value). If set to zero, all input as­
sociations are ignored. 

&LASTNO(R) 

Contains the number of the last statement executed. 

&MAXLNGTH 

Contains the maximum permitted STRING length. This value may not exceed 
32758. 

&OUTPUT 

Set to one for normal output (standard value). If set to zero, all output 
associations are ignored. 

Keywords 45 



&Pl(R) 

&PI contains pi, the familiar constant. Its datatype is DREAL. 

&REM(R) 

Contains the pattern REM. 

&RTNTYPE(R) 

Contains 'RETURN', 'FRETURN' or 'NRETURN' depending on the type of function 
return most recently executed. 

&STCOUNT(R) 

The number of statements executed so far. 

&STLIMIT(R) 

The maximum number of statements allowed to be executed. The initial value 
is 5000. The maximum value allowed is 2**31-1. 

&STNO(R) 

Contains the number of the current statement. 

&SUCCEED(R) 

Contains the pattern succeed. 

&TRACE 

If the value is zero or negative, no TRACE output is generated. Each line of 
TRACE output decrements the value by one. The initial value is 0. 

46 SPITBOL 370 Reference ~1anual 



&TRIM 

Set to zero for normal input mode (standard value). If the value is set to 
one, all input records are automatically trimmed (trailing blanks removed). 

Keywords 47 



48 SPITBOL 370 Reference Manual 



CONTROL STATEMENTS 

Control statements are identified by a minus sign in column one. They may 
occur anywhere in a source program and take effect when they are 
encountered. Most of these control statement types are special features of 
SPITBOL and are not implemented in SIL SNOBOL4. 

LISTING CONTROL STATEMENTS 

Listing control statements are used to alter the appearance of the listing. 
They have no other effect on the compilation or execution of the program. 
Listing control statements always occur individually. 

-EJECT 

The -EJECT control statement causes the compilation listing to skip to the 
top of the next page. The current title and sub-title (if any) are printed 
at the top of the page. 

-SPACE 

The -SPACE control statement causes spaces to be skipped on the current 
page. If -SPACE occurs with no operand, then one line is skipped. Alternate­
ly, an unsigned integer can be given (separated by at least one space from 
the -SPACE) which represents the number of lines to be skipped. If there is 
insufficient space on the current page, -SPACE acts like a -EJECT and the 
listing is spaced to the top of the next page. 

-TITLE 

The -TITLE statement is used to supply a title for the source program list­
ing. The text of the title is taken from columns 8-72 of the -TITLE state­
ment. The subtitle (if any), is cleared to blanks, and an eject to the next 
page occurs. 

-STITL 

The -STITL statement is used to supply a sub-title for the source program 
listing. An eject occurs to the top of the next page and the current 
title(if any) and the newly supplied sub-title are printed. The text for the 
sub-title is taken from columns 8-72 of the -STITL statement. Note that if 
both title and sub-title are to be changed, then the -TITLE statement should 
precede the -STITL statement. 

Control Statements 49 



OPTION CONTROL STATEMENTS 

Option control statements allow selection of various compiler options. In 
each case, there are two modes. Two control statements allow switching from 
one mode to the other. The mode may be flipped back and forth within a single 
program. The full names are given for each control statement, however, only 
the first four characters are examined, and the names may thus be abbrevi­
ated to four characters. Several control options may be specified on the 
same control statement by separating the names with commas (no intervening 
spaces should occur). For example: 

-CODE,LIST,PRINT 

In each of the cases listed below, the default option is the the one repres­
ented by the first of the two control options listed. 

-LIST -NOLIST 

Normally, the source statements are listed (-LIST option). The -NOLIST op­
tion causes suppression of this printout. This may be useful for established 
programs known to work, or for terminal output. Note that line numbers are 
always listed on the left which is convenient for terminal output. If compi­
lation errors are detected, the offending statements are printed regardless 
of the setting of the list mode. 

-NOCODE -CODE 

The -CODE option causes a printout of the generated code in assembly lan­
guage type format. This listing may be useful in determining how SPITBOL 
handles the compilation of various types of statements. The -NOCODE control 
option resets the normal mode of no code listing. It is permissible to use 
these statements in combination to obtain listings for selected sections of 
the source program. The code listing occurs after the end of the source 
listing starting on a. separate page so that the source listing is not af­
fected. 

-NOPRINT -PRINT 

Normally, control statements are not printed (-NOPRINT). The -PRINT option 
causes control statements to be listed (provided that the -LIST option is in 
effect). This option may be useful if serialization is used for updating 
purposes. 

-SINGLE -DOUBLE 

The compilation listing is normally single spaced (-SINGLE). The -DOUBLE op­
tion causes double spacing to be used, with a blank line between each listed 
line. 

50 SPITBOL 3 70 Reference Manual 



-OPTIMIZE -NOOPTIMIZE 

The SPITBOL compiler operates in an optimized mode where the following as­
sumptions are made: 

1. The values of BAL, ARB, FENCE, ABORT, REM, FAIL and SUCCEED are not mod­
ified during execution. 

2. The standard system functions are not redefined. 

3. Function calls in a statement do not result in modification of values of 
variables referenced elsewhere in the same statement. 

The -NOOPTIMIZE control statement specifies that the compiler not make the 
above assumptions. This results in a higher level of compatibility with SIL 
SNOBOL4 at the expense of both space and speed. In some cases, the loss of 
speed may be as much as a factor of ten. The optimizing mode may be switched 
on and off so that only isolated statements are compiled in non-optimized 
mode. 

Note: It is the references to redefined functions which cause the trouble, 
not the actual definition itself. 

-IN72 -INSO 

Normally, the compiler reads only columns 1-72 of the input images. Columns 
73-80 may be used for serialization. The serialization will be listed on the 
source listing separated from the program text by a column of dots (this is 
to prevent accidentally punching past column 72). The -IN80 option causes 
all 80 columns of the input statements to be read. The -IN72 statement re­
sets the normal option. -IN80 should be used from a terminal device, as it 
eliminates output on the right side of the page. 

-NOSEQUENCE -SEQUENCE 

This option is only relevant if -IN72 is in effect. The normal mode 
(-NOSEQUENCE) ignores any serialization occurring in columns 73-80. If the 
-SEQUENCE option is taken, then the SPITBOL compiler tests to see whether 
the serialization is in correct ascending sequence. If an out of sequence 
statement occurs, a message is printed, but no other action is taken (unless 
-NOERRORS is also specified at the time of the sequence error). 

-ERRORS -NOERRORS 

Normally execution is allowed even if compilation errors occur (-ERRORS). If 
a compilation error or a sequence error (-SEQUENCE on) occurs and the 
-NOERRORS option has been specified, then the execution of the program is 
suppressed. 

Control Statements 51 



-FAIL -NOFAIL 

In SIL SNOBOL4, and in SPITBOL with the -FAIL mode set, a failure in a state­
ment with no conditional GOTO is ignored and the program execution resumes 
with the next statement in sequence. This convention often results in errors 
going undetected, particularly in the case of array references with out of 
range subscripts and pattern matches which are expected to always succeed. 
The -NOFAIL option changes this convention. If a statement having no condi­
tional GOTO is compiled under the -NOFAIL mode, and a failure occurs when 
the statement is executed, an execution error occurs and a suitable message 
is generated. The -NOFAIL operation is particularly useful for student jobs 
and other situations where many small programs are being debugged. 

-EXECUTE -NOEXECUTE 

Normally execution is initiated following compilation. The -NOEXECUTE op­
tion, if .set at the end of compilation, inhibits execution. This is often 
useful in conjunction with the option to generate object modules. 

COPY CONTROL STATEMENT 

-COPY FILENAME 

The ·COPY control statement allows a section of coding to be copied into the 
source from an external file. The compiler proceeds as though the text in 
the file had been read instead of the -COPY statement. Filename is any 
filename wich would be legal as the second argument to the input function. 
In particular, OS allows member names to be supplied in parentheses after 
the DDNAME which allows sections of code (for example, function 
definitions), to be stored as members of a partitioned dataset. The text 
copied in may itself contain -COPY statements to a maximum nesting of eight 
levels. 

52 SPITBOL 370 Reference Manual 



ERROR MESSAGES AND HANDLING 

There are two major divisions of error messages which include compilation 
type errors and execution type errors. 

COMPILATION ERROR MESSAGES 

When the compiler detects an error, a flag is placed under the point in the 
statement where the error was discovered and processing of the statement in 
error is discontinued. Compilation continues with the next statement. Exe­
cution is not suppressed unless the -NOERRORS option has been set (see "Con­
trol Statements' on page 49). If an attempt is made to execute a statement 
found erroneous by the compiler, an execution error occurs. Compiler error 
messages are surrounded by k***** so they are easy to find. The following 
section describes the various error messages. 

******ATI'ENTION RECEIVED****** 

An attention was received during compilation. 

******ERROR IN GO TO FIELD•h\ loHo't 

The GOTO field is incorrectly formed. 

~Hrn***ERROR IN NUMERIC ITEM.".>'dc.\/.:t 

A numeric item is illegally constructed. 

:c:..uo't.\EXPRESSION IS TOO COMPLEX FOR THE COMPILERAMoHn\ 

The expression being compiled overflows work areas in the SPITBOL. The 
expression must be broken into two or more statements. 

**:.:.~*ILLEGAL CHARACTER****** 

The compiler detected a character which has no syntactic meaning in the 
SNOBOL4 language outside a STRING literal. 

~nh':***ILLEGAL CONTINUATION****** 

The compiler detected an illegal continuation of a statement. 

******ILLEGAL TRANSFER ADDRESS**m':** 

The operand on an end statement is not a simple variable. The operand is 
ignored and execution starts with the first statement. 

Error Messages and Handling 53 



AU/c/n'•ILLEGAL USE OF , ****** 
A comma has been used in an illegal context. The only legal uses of com­

ma are to separate array subscripts and function arguments. Note that 

this error can be caused by inserting a blank between the function name 

and the left parenthesis. 

/.,'ti• A A A ILLEGAL USE OF < lo/ddo'd: 

The character < (array left bracket) has been used in a context where an 

array left bracket cannot legally occur. 

******ILLEGAL USE OF ) AAAAAA 

A right parenthesis is used in an illegal context. 

:.: ...... ,.,,\ILLEGAL USE OF > 1.,,..,.,,.,,.,,., 

An array right bracket has been used in an illegal context. This charac­

ter can be used only to terminate a list or array subscripts. 

s\l•.\AA•'•ILLEGAL USE OF = l•h 1• 1'••'••'• 

An equal sign has been used in an illegal context. only one equal sign 

may occur in a statement. 

As" •• \s\ s\ A INPUT RECORD TOO LONG*ltlo'o\s'• 

The compiler read an input record that was too long. 

W+.+.l • .'•/.INVALID -COPY CARDM .. As'ci\A 

A· -COPY statement has an incorrect filename (this could result from an 

error in system control statement setup), or -COPY has been nested more 

than eight levels. compilation proceeds after ignoring the erroneous 

st:atement. 

lo\::u:cLABEL HAS BEEN PREVIOUSLY DEFINEDs\/o'cAsH• 

The statement has a label which has already been used. Compilation of 

the statement is discontinued and the earlier definition of the label is 

retained. 

m't***MISSING END CARD SUPPLIED·\'•\.'o'4.\/c 

An end of file was read on the system input file (SYSIN) during compila­

tion. The compiler supplies an end statement and initiates execution un­

less the -NOERRORS option is set. 

54 SPITBOL 370 Reference Manual 



**,'rlr**MI SS ING OPERAND,hh':*** 

This message is generated when the compiler expects an operand and none 
is found. For example: 

A I I B, (C+) 

*****AMISSING OPERATOR****** 

The compiler expected an operator and no operator was found. This occurs 
in situations like (X)A, where an operator is expected after the right 
parenthesis. This message is also given when the blanks surrounding a 
binary operator are omitted. 

******NON-RECOVERABLE INPUT ERROR****** 

A non-recoverable input error has been signalled on the system input 
file (SYSIN). This is a fatal error which terminates compilation and 
prevents execution. Note that it also cancels any subsequent jobs when a 
batched run is being processed. 

******PAGE LIMIT EXCEEDED****** 

The number of pages produced exceeds the value specified by the P param­
eter. 

,':*****PROGRAM TOO LONG FOR AVAILABLE STORAGE****** 

The storage required by the program exceeds available storage. Increase 
the region allocated and/or the H parameter in the compiler parameter 
field. Note that storage for execution time use has not yet been allo­
cated. This must be taken into consideration in deciding how much addi­
tional memory to allocate. This is a fatal error which terminates 
compilation a~d prevents execution. 

*m'r***TIME LIMIT EXCEEDED****** 

The time limit exceeded that specified by the T parameter. 

m':m'r**UNBALANCED ( ) OR <> ****** 

This occurs if the parentheses or array brackets in a statement are not 
properly balanced. 

The label used on an END statement is not defined. The operand is ig­
nored, and execution starts with the first statement. 

A STRING literal has been started but not properly terminated. Note that 
STRING literals cannot be split over continuation statements. 

Error Messages and Handling 55 



EXECUTION ERROR MESSAGES 

The execution package performs extensive error checking. When an error is 
detected, execution is terminated with an error message unless the error is 
intercepted by means of the SETEXIT function. The message is accompanied by 
an error code of the form AA.BBB, where AA is the major code and BBB is the 
minor code. The major code refers to the message given (see below). The mi­
nor code further identifies the exact error. The following is a list and ex· 
planation of the error messages together with their major codes. 

Major= 1 Illegal DATATYPE 

In a context where a definite datatype is required, a value of the wrong 
datatype is and the attempt to convert it to the correct datatype fails. 

Major = 2 Unexpected failure 

A statement having no conditional GOTO failed with the ·NOFAIL option 
set. This usually corresponds to an error such as an unexpected out of 
range subscript. 

Major = 3 Error in ARRAY reference 

An array reference is incorrect. Either the object referenced is not an 
array or table, or the wrong number of subscripts is given. 

Major = 4 Compiler detected error 

An attempt was made to execute a statement found erroneous by the compiler. 
This message is also issued from statement number 'zero' if compiler errors 
were detected with the -NOERRORS option set. 

Major = 5 Error in reference to keyword 

An error was made in a keyword reference. Either the operand of & is in­
correct, or the value stored is incorrect. 

Major = 6 Memory overflow 

Dynamic memory is exhausted. Note that this can occur as a result of 
runaway recursion in function references or pattern matching. 

Major = 7 Evaluation of GOTO failed 

If a complex expression is used in the GOTO field, it is not allowed to 
fail. Such a failure within a GOTO expression did occur. 

Major = 8 Error in GOTO 

The operand of a GOTO must be a natural variable which is a defined la­
bel. Some other value was given. This error message is also given on a 
return from level zero. 

56 SPITBOL 370 Reference Manual 



Major = 9 Call to undefined function or operator 

A reference was made to an undefined function, or an undefined operator 
was used. 

Major = 10 Error in arithmetic operation 

This message covers a variety of arithmetic errors such as overflow, di­
vision by zero, etc. 

Major = 11 Keyword or system limit exceeded 

This message is issued when any of the following limits is exceeded -­
time, page or statement system limits, &MAXLNGTH, &STLIMIT keyword lim­
it. 

Major = 12 Input/output or other system error 

An error has been signalled by one of the operating system routines. 
Some examples are non-recoverable I/O error, LOAD on a non-existent 
function, etc. 

Major = 13 Incorrect value for function or operator 

An argument to a function or op~rand of an operator was of the right 
datatype, but outside the range of values permitted for some particular 
use. For example, the null STRING is an illegal argument for the BREAK 
function. 

Major = 14 Value returned where NAME is required 

In a context requiring a NAME (left side of =, GOTO expression, right 
argument of$ or.) 

User issued error message 

This message is given if &ERRTYPE is assigned a value greater than 
14999, or less than 1000. 

EXECUTION ERROR CODE LIST 

This section gives the complete list of all execution error codes. 

Major = 1 Illegal Datatype Errors 

1.001 
1.002 
1.003 
1.004 
1.005 
1.006 
1.007 
1.008 
1.009 
1.010 

EVALUATED RESULT OF DEFERRED ARGUMENT TO POS IS NOT AN INTEGER 
EVALUATED RESULT OF DEFERRED ARGUMENT TO RPOS IS NOT AN INTEGER 
EVALUATED RESULT OF DEFERRED ARGUMENT TO RTAB IS NOT AN INTEGER 
EVALUATED RESULT OF DEFERRED ARGUMENT TO TAB IS NOT AN INTEGER 
EVALUATED RESULT OF DEFERRED ARGUMENT TO LEN IS NOT AN INTEGER 
EVALUATED RESULT OF DEFERRED ARGilllENT TO ANY IS NOT A STRING 
EVALUATED RESULT OF DEFERRED ARGUMENT TO NOTANY IS NOT A STRING 
EVALUATED RESULT OF DEFERRED ARGUMENT TO SPAN IS NOT A STRING 
EVALUATED RESULT OF DEFERRED ARGUMENT TO BREAKX IS NOT A STRING 
EVALUATED RESULT OF DEFERRED ARGUMENT TO BREAK IS NOT A STRING 

Error Messages and Handling 57 



1. 011 

1.012 
1. 013 
1.014 
1 .015 
1. 016 
1.017 
1.018 
1. 019 
1.020 
1. 021 
1.022 

1.023 

1.024 

1.025 

1.026 
1.027 
1.028 
1.029 
1.030 
1 .031 
1.032 
1.033 
1.034 
1.035 
1.036 
1.037 
1.038 
1.039 
1.040 
1.041 
1.042 
1.043 
1.044 
1.045 
1.046 
, .047 
1.048 
, .049 

, .050 
, .051 
1.052 
1.053 
1.054 
1.055 
1.056 
1.057 
1.058 
1.059 
1.060 
1 .061 
1.062 
1.063 
1.064 
1.065 
1.066 

1.067 
1.068 

EVALUATED RESULT OF DEFERRED EXPRESSION USED IN A PATTERN MATCH IS 
NOT A STRING OR PATIERN 
VALUE TO BE STORED IN A KEYWORD IS NOT AN INTEGER 
REAL ARGUMENT TO LOADED FUN CTI ON IS NOT A REAL 
INTEGER ARGUMENT TO LOADED FUNCTION IS NOT AN INTEGER 
STRING ARGUMENT TO LOADED FUNCTION IS NOT A STRING 
DREAL ARGUMENT TO LOADED FUNCTION IS NOT A DREAL 
OPERAND OF UNARY $ IS NOT' A NAME 
REPLACING RIGHT HAND SIDE IN A PATTERN REPLACEMENT IS NOT A STRING 
SUBJECT OF A PATTERN MATCH IS NOT A STRING 
THE PATTERN IN A PATTERN MATCH IS NOT A PATTERN 
SUBSCRIPT IN REFERENCE TO ONE DIMENSIONAL ARRAY IS NOT AN INTEGER 
SUBSCRIPT IN REFERENCE TO A MULTI-DIMENSIONAL ARRAY IS NOT AN INTE­
GER 
A FIELD FUNCTION WAS APPLIED TO AN INAPPROPRIATE PROGRAM DEFINED 
DATATYPE 
THE LEFT OPERAND FOR ALTERNATION OR CONCATENATION IS NOT A STRING OR 
PATI'ERN 
THE RIGHT OPERAND FOR ALTERNATION OR CONCATENATION IS NOT A STRING 
OR PATTERN 
THE ARGUMENT TO A FIELD FUNCTION IS NOT A PROGRAM DEFINED DATATYPE 
AN OPERAND OF BINARY + IS NON-NUMERIC 
AN OPERAND OF BINARY - IS NON-NUMERIC 
AN OPERAND OF BINARY * IS NON-NUMERIC 
AN OPERAND BINARY / IS NON-NUMERIC 
AN ARGUMENT TO NE,EQ,LE,GE,LT,GT IS NON-NUMERIC 
AN OPERAND OF BINARY -im IS NON-NUMERIC 
THE OPERAND OF UNARY + IS NON-NUMERIC 
THE OPERAND OF UNARY - IS NON-NUMERIC 
FIRST ARGUMENT TO LEQ, LNE , LGT, LLT, LGE OR LLE IS NOT A STRING 
SECOND ARGUMENT TO LEQ, LNE, LGT, LLT, LGE OR LLE IS NOT A STRING 
ARGUMENT TO SIZE IS NOT A STRING 
LEFT OPERAND OF BINARY $ OR . IS NOT A PATI'ERN 
ARGUMENT TO LEN IS NOT AN INTEGER OR EXPRESSION 
ARGUMENT TO POS IS NOT AN INTEGER OR EXPRESS ION 
ARGUMENT TO TAB IS NOT AN INTEGER OR EXPRESSION 
ARGUMENT TO RPOS IS NOT AN INTEGER OR EXPRESSION 
ARGUMENT TO RTAB IS NOT AN INTEGER OR EXPRESSION 
ARGUMENT TO SPAN IS NOT A STRING OR EXPRESSION 
ARGUMENT TO BREAKX IS NOT A STRING OR EXPRESSION 
ARGUMENT TO BREAK IS NOT A STRING OR EXPRESSION 
ARGUMENT TO NOTANY IS NOT A STRING OR EXPRESSION 
ARGUMENT TO ANY IS NOT A STRING OR EXPRESSION 
ARGUMENT TO VALUE IS NOT A STRING, NAME OR CORRECT PROGRAMMER DE -
FINED DATATYPE 
ARGUMENT TO ARBNO IS NOT A PATIERN 
FIRST ARGUMENT TO APPLY IS NOT THE NAME OF A FUNCTION 
FIRST ARGUMENT TO ARG IS NOT A NAME 
SECOND ARGUMENT TO ARG IS NOT AN INTEGER 
FIRST ARGUMENT TO ARRAY IS NOT A STRING 
FIRST ARGUMENT TO CLEAR IS NOT A STRING 
ARGUMENT TO CODE IS NOT A STRING 
ARGUMENT TO COLLECT IS NOT AN INTEGER 
SECOND ARGUMENT TO CONVERT IS NOT A STRING 
ARGUMENT TO DATA IS NOT A STRING 
FIRST ARGUMENT TO DEFINE IS NOT A STRING 
SECOND ARGUMENT TO DEFINE IS NON-NULL AND IS NOT THE NAME OF A LABEL 
ARGUMENT TO DETACH IS NOT THE NAME OF A NATURAL VARIABLE 
SECOND ARGUMENT TO DUPL IS NOT AN INTEGER 
FIRST ARGUMENT TO DUPL IS NOT A STRING 
ARGUMENT TO ENDFILE IS NOT A STRING 
ARGUMENT TO EVAL IS NOT AN EXPRESSION (OR A STRING, WHICH COULD BE 
CONVERTED INTO AN EXPRESS ION) 
FIRST ARGUMENT TO FIELD IS NOT A NAME 
SECOND ARGUMENT TO FIELD IS NOT AN INTEGER 

58 SPITBOL 370 Reference Manual 



1.069 
1.070 
1.071 
, .072 
, .073 
1.074 
1.075 
1.076 
1.077 
1.078 
1.079 
1.080 
1.081 
1.082 

1.083 
1.084 
1.085 
1.086 
1.087 
1.088 
1.089 
1.090 
1. 091 
1.092 
1.093 
1.094 
1.095 
1.096 
1.097 
1.098 
1.099 
1.100 
l. 101 
l. 102 
1.103 
1.104 
1. 105 
l. 106 
1. 107 
1. 108 
1.109 
l. 110 
1. 111 
1. 112 
1. 113 
, . , 14 
1.115 
1. 116 
1. 117 
1. 118 
1. 119 
1. 120 
1. 121 
1. 122 
1. 123 
1. 124 
1. 125 
1. 126 
1. 127 
1. 128 
1. 129 
l. 130 
1. 131 

FIRST ARGUMENT TO INPUT IS NOT THE NAME OF A NATURAL VARIABLE 
FILE NAME (SECOND ARGUMENT) TO INPUT IS NOT A STRING 
FORMAT SPECIFICATION (THIRD ARGUMENT) TO INPUT IS NOT AN INTEGER 
ARGUMENT TO LOAD IS NOT A STRING 
FIRST ARGUMENT TO LOC IS NOT A NAME 
SECOND ARGUMENT TO LDC IS NOT AN INTEGER 
THIRD ARGUMENT TO LPAD IS NOT A STRING 
SECOND ARGUMENT TO LPAD IS NOT AN INTEGER 
FIRST ARGUMENT TO LPAD IS NOT A STRING 
FIRST ARGUMENT TO OPSYN IS NOT THE NAME OF A NATURAL VARIABLE 
SECOND ARGUMENT TO OPSYN IS NOT A FUNCTION NAME 
FIRST ARGUMENT TO OUTPUT IS NOT THE NAME OF A NATURAL VARIABLE 
FILE NAME (SECOND ARGUMENT) FOR OUTPUT FUNCTION IS NOT A STRING. 
FORMAT SPECIFICATION (THIRD ARGUMENT) FOR OUTPUT FUNCTION IS NOT A 
STRING 
ARGUMENT TO PROTOTYPE IS NOT AN ARRAY OR TABLE 
SECOND ARGUMENT TO REMDR IS NOT AN INTEGER 
FIRST ARGUMENT TO REMDR IS NOT AN INTEGER 
THIRD ARGUMENT TO REPLACE IS NOT A STRING 
SECOND ARGUMENT TO REPLACE IS NOT A STRING 
FIRST ARGUMENT TO REPLACE IS NOT A STRING 
ARGUMENT TO REVERSE IS NOT A STRING 
ARGUMENT TO REWIND IS NOT A STRING 
TifIRD ARGUMENT TO RP AD IS NOT AN INTEGER 
SECOND ARGUMENT TO RP AD IS NOT AN INTEGER 
FIRST ARGUMENT TO RPAD IS NOT A STRING 
ARGUMENT TO SETEXIT IS NOT A LABEL NAME 
FIRST ARGUMENT TO SUBSTR IS NOT A STRING 
SECOND ARGUMENT TO SUBSTR IS NOT AN INTEGER 
TifIRD ARGUMENT TO SUBSTR IS NOT AN INTEGER 
ARGUMENT TO TABLE IS NOT AN INTEGER 
ARGUMENT !O TRIM IS NOT A STRING 
ARGUMENT TO UNLOAD IS NOT THE NAME OF A FUNCTION 
SECOND ARGUMENT TO LOAD IS NOT A STRING 
SECOND ARGUMENT TO TRIM IS NOT A STRING 
ARGUMENT TO ABS IS NOT NUMERIC 
FIRST ARGUMENT TO AND IS NOT A STRING 
SECOND ARGUMENT TO AND IS NOT A STRING 
ARGUMENT TO ARCCOS IS NOT A DREAL 
ARGUMENT TO ARCSIN IS NOT A DREAL 
ARGUMENT TO ARCTAN IS NOT A DREAL 
ARGUMENT TO ARCCOSH IS NOT A DREAL 
ARGUMENT TO ARCS INH IS NOT A DREAL 
ARGUMENT TO ARCTANH IS NOT A DREAL 
ARGUMENT TO COMPL IS NOT A STRING 
ARGUMENT TO COS IS NOT A DREAL 
ARGUMENT TO SIN IS NOT A DREAL 
ARGUMENT TO TAN IS NOT A DREAL 
ARGUMENT TO GAMMA IS NOT A DRE AL 
FIRST ARGUMENT TO MOD IS NOT A DREAL 
SECOND ARGUMENT TO MOD IS NOT A DREAL 
FIRST ARGUMENT TO EXP IS NOT A DREAL 
SECOND ARGUMENT TO EXP IS NOT A DREAL 
ARGUMENT TO FROMBIN IS NOT A STRING 
ARGUMENT TO FROMHEX IS NOT A STRING 
SECOND ARGUMENT TO BIT IS NOT AN INTEGER 
FIRST ARGUMENT TO BIT IS NOT A STRING 
ARGUMENT TO FROMDEC IS NOT A STRING 
INVALID ARGUMENT PASSED TO DCONV 
INVALID DATATYPE PASSED TO ICONV 
FIRST ARGUMENT TO LOG IS NOT A DREAL 
SECOND ARGUMENT TO LOG IS NOT A DREAL 
FIRST ARGUMENT TO MAX IS NOT NUMERIC 
An ARGUMENT TO MAX OTHER TifAN THE FIRST WAS NOT A REAL WHEN THE 
FIRST ARGUMENT WAS A REAL 

Error Messages and Handling 59 



1. 132 

1.133 

1.134 
1. 135 

1.136 

1. 137 

1.138 
1.139 
1.140 
1. 141 
l. 142 
1. 143 
1. 144 
1. 145 
1. 146 
1. 147 
1. 148 
1. 149 
1. 150 
1. 151 
l. 152 
1.153 
1.154 
1. 155 
1. 156 
1. 157 

An ARGUMENT TO MAX OTHER THAN THE FIRST WAS NOT AN INTEGER WHEN THE 
FIRST ARGUMENT WAS AN INTEGER 
An ARGUMENT TO MAX OTHER THAN THE FIRST WAS NOT A DREAL WHEN THE 
FIRST ARGUMENT WAS A DREAL 
FIRST ARGUMENT TO MIN rs NOT NUMERIC 
An ARGUMENT TO MIN OTHER THAN THE FIRST WAS NOT A REAL WHEN THE 
FIRST ARGUMENT WAS A REAL 
An ARGUMENT TO MIN OTHER THAN THE FIRST WAS NOT AN INTEGER WHEN THE 
FIRST ARGUMENT WAS AN INTEGER 
An ARGUMENT TO MIN OTHER THAN THE FIRST WAS NOT A DREAL WHEN THE 
FIRST ARGUMENT WAS A DREAL 
SECOND ARGUMENT TO OR IS NOT A STRING 
FIRST ARGUMENT TO OR IS NOT A STRING 
THIRD ARGUMENT TO RANDOM IS NOT AN INTEGER 
SECOND ARGUMENT TO RANDOM IS NOT AN INTEGER 
FIRST ARGUMENT TO RANDOM IS NOT AN INTEGER 
ILLEGAL ARGUMENT PASSED TO RCONV FUNCTION 
FIRST ARGUMENT TO RTRIM IS NOT A STRING 
SECOND ARGUMENT TO RTRIM IS NOT A STRING 
ILLEGAL DATATYPE PASSED TO SCONV FUNCTION 
ARGUMENT TO TOBIN IS NOT A STRING 
ARGUMENT TO TOHEX IS NOT A STRING 
ARGUMENT TO TO DEC IS NOT AN INTEGER 
SECOND ARGUMENT TO XOR IS NOT A STRING 
FIRST ARGUMENT TO XOR IS NOT A STRING 
ARGUMENT TO COSH IS NOT A DREAL 
ARGUMENT TO S INH IS NOT A DREAL 
ARGUMENT TO TANH IS NOT A DREAL 
THIRD ARGUMENT TO B ITSET IS NOT AN INTEGER 
SECOND ARGUMENT TO B ITSET IS NOT AN INTEGER 
FIRST ARGUMENT TO BITSET IS NOT A STRING 

Major = 2 Unexpected Failure Error 

2.001 FAILURE OF A STATEMENT HAVING NO CONDITIONAL GOTO WITH -NOFAIL OP­
TION IN EFFECT 

Major = 3 Array Reference Errors 

3. 001 ARRAY REFERENCE WITH ONE SUBSCRIPT REFERS TO AN OBJECT WHICH IS NEI -
THER A TABLE NOR AN ARRAY 

3.002 MULTI-DIMENSIONAL ARRAY REFERENCE REFERS TO AN OBJECT WHICH IS NOT 
AN ARRAY 

3. 003 WRONG NUMBER OF SUBSCRIPTS IN AN ARRAY REFERENCE 

Major = 4 Compiler Detected Error 

4.001 AITEMPTED EXECUTION OF A STATEMENT FOUND ERRONEOUS BY THE COMPILER. 

Major = 5 Keyword Reference Errors 

5. 001 AN AITEMPT WAS MADE TO REFERENCE THE KEYWORD A ITRI BUTE OF A 
NON-NATURAL VARIABLE 

5. 002 REFERENCE TO AN UNDEFINED KEYWORD 
5.003 AN ATIEMPT WAS MADE TO CHANGE THE VALUE OF A KEYWORD ASSOCIATED WITH 

A NON-NATURAL VARIABLE 
5. 004 ATTEMPT TO CHANGE THE VALUE OF AN UNDEFINED KEYWORD 
5. 005 ATTEMPT TO CHANGE THE VALUE OF A PROTECTED KEYWORD 

Major = 6 Memory Overflow Error 

6.001 OVERFLOW IN MAIN DYNAMIC STORAGE AREA. THIS CAN OCCUR AS A RESULT OF 
RUNAWAY RECURSION IN PATIERN MATCHING OR FUNCTION REFERENCE AS WELL 
AS FROM GENERA TI ON OF TOO ~1UCH DATA. 

60 SPITBOL 370 Reference Manual 



Major = 7 Evaluation of GOTO Error 

7. 001 THE EVALUATION OF A COMPLEX GOTO FAILED 

Major = 8 GOTO Errors 

8.001 
8.002 
8.003 

8.004 

8.005 
8.006 

RETURN FROM FUNCTION LEVEL ZERO 
TRANSFER TO AN UNDEFINED LABEL 
A TRANSFER TO THE LABEL CONTINUE OCCURRED, BUT NO PREVIOUS ERROR HAD 
BEEN INTERCEPTED 
A TRANSFER TO THE LABEL ABORT OCCURRED, BUT NO PREVIOUS ERROR HAD 
BEEN INTERCEPTED 
NAME USED AS A GOTO OPERAND IS NOT THE NAME OF A NATURAL VARIABLE 
THE OPERAND OF A DIRECT GOTO IS NOT CODE • 

Major = 9 Undefined Function Errors 

9.001 
9.002 
9.003 
9.004 
9.005 
9.006 
9.007 
9.008 
9.009 
9.010 
9.011 
9.012 

REFERENCE TO AN UNDEFINED FUNCTION 
USE OF THE UNDEFINED OPERATOR -- UNARY/ 
USE OF THE UNDEFINED OPERATOR -- BINARY & 
USE OF THE UNDEFINED OPERATOR -- BINARY ... 
USE OF THE UNDEFINED OPERATOR -- BINARY@ 
USE OF THE uNDEFINED OPERATOR -- UNARY I 
USE OF THE UNDEFINED OPERATOR - - UNARY fl 
USE OF THE UNDEFINED OPERATOR - - B !NARY fl 
USE OF THE UNDEFINED OPERATOR -- BINARY ? 
USE OF THE UNDEFINED OPERATOR -- UNARY% 
USE OF THE UNDEFINED OPERATOR -- BINARY% 
USE OF THE UNDEFINED OPERATOR - UNARY EXCLAMATION POINT. 

Major = 10 Arithmetic Operation Errors 

10. 001 OVERFLOW IN + - / OR * OF TWO DREALS 
10. 002 OVERFLOW IN + - I OR * OF TWO REALS 
10.003 REAL DIVISION BY ZERO 
10.004 DREAL DIVISION BY ZERO 
10. 005 OVERFLOW IN REAL ** INTEGER OR DREAL ** INTEGER 
10.006 INTEGER DIVISION BY ZERO 
10. 007 INTEGER ADDITION OVERFLOW 
10. 008 INTEGER SUBTRACTION OVERFLOW 
10.009 INTEGER MULTIPLICATION OVERFLOW 
10. 010 NEGATIVE EXPONENT FOR INTEGER ** INTEGER 
10. 011 OVERFLOW IN INTEGER EXPONENTIATION 
10. 012 DREAL 'tr* DREAL IS NOT PERMITTED 
10. 013 REAL ** REAL IS NOT PERMITTED 
10. 014 INTEGER OVERFLOW FOR UNARY MINUS (HAPPENS ONLY WITH LARGEST NEG NUM) 
10. 015 ATTEMPTED DIVIS ION BY ZERO IN REMDR FUNCTION 

Major = 11 Keyword or System Limit Errors 

11. 001 
11. 002 
11.003 
11.004 

11.005 

11.006 
11.007 
11.008 

11.009 
11.010 

PAGE LIMIT (P PARAMETER) EXCEEDED 
CARD LIMIT (C PARAMETER) EXCEEDED 
INPUT RECORD LONGER THAN &MAXLNGTH 
ATTEMPT TO SET &MAXLNGTH TO A VALUE GREATER THAN THE MAXIMUM ALLOWED 
(32758) 
&STLIMIT SET TO A VALUE LESS THAN THE NUMBER OF STATEMENTS ALREADY 
EXECUTED 
STATEMENT LIMIT (&STLIMIT) EXCEEDED 
ATTEMPT TO FORM A STRING LONGER THAN &MAXLNGTH BY CONCATENATION 
A PATTERN STRUCTURE HAS EXCEEDED THE MAXIMUM PERMITTED SIZE (32K 
BYTES) 
TIME LIMIT (T PARAMETER) EXCEEDED 
ATTEMPT TO FORM A STRING LONGER THAN &MAXLNGTH IN CALL TO DUPL FUNC­
TION 

Error Messages and Handling 61 



11 . 011 ATIEMPT TO FORM A STRING LONGER THAN &MAXLNGTH IN CALL TO LPAD FUNC­

TION 
11 . 012 A'ITEMPT TO FORM A STRING LONGER THAN &MAXLNGTII IN CALL TO RPAD FUNC • 

TION 
11 . 013 ATTEMPT TO SET &FNCLEVEL TO NEGATIVE 
11. 014 ATTEMPT TO INCREASE THE VALUE OF &FNCLEVEL 
11.015 EXTERNAL FUNCTION RETURNED A STRING EXCEEDING &MAXLNGTH 

11 . 016 ATTEMPT TO FORM A STRING LONGER THAN &MAXLNGTH IN CALL TO TOBIN 

FUNCTION 
11 . 017 ATTEMPT TO FORM A STRING EXCEEDING &MAXLNGTII IN CALL TO TOHEX FUNC­

TION 

Major = 12 System Errors 

12.xxx (SEE SECTION ON SYSTEM ERROR CODES) 

Major = 13 Incorrect Value Errors 

13.001 EVALUATED RESULT OF DEFERRED ARGUMENT TO PCS IS NEGATIVE 

13. 002 EVALUATED RESULT OF DEFERRED ARGUMENT TO RPOS IS NEGATIVE 

13.003 EVALUATED RESULT OF DEFERRED ARGUMENT TO RTAB IS NEGATIVE 

13. 004 EVALUATED RESULT OF DEFERRED ARGUMENT TO TAB IS NEGATIVE 
13.005 EVALUATED RESULT OF DEFERRED ARGUMENT TO LEN IS NEGATIVE 

13.006 EVALUATED RESULT OF DEFERRED ARGUMENT TO ANY IS NULL 
13. 007 EVALUATED RESULT OF DEFERRED ARGUMENT TO NOTANY IS NULL 

13.008 EVALUATED RESULT OF DEFERRED ARGUMENT TO SPAN IS NULL 

13. 009 EVALUATED RESULT OF DEFERRED ARGUMENT TO BREAKX IS NULL 

13.010 EVALUATED RESULT OF DEFERRED ARGUMENT TO BREAK IS NULL 

13. 01 1 OPERAND OF UNARY $ IS NULL 
13. 012 ARGUMENT FOR LEN IS NEGATIVE 
13. 013 ARGUMENT FOR POS IS NEGATIVE 
13. 014 ARGUMENT FOR TAB IS NEGATIVE 
13.015 ARGUMENT FOR RPOS IS NEGATIVE 
13. 016 ARGUMENT FOR RTAB IS NEGATIVE 
13.017 SPAN ARGUMENT IS NULL 
13 . 018 ARGUMENT FOR BREAKX IS NULL 
13. 019 ARGUMENT FOR BREAK IS NULL 
13 . 020 NOT ANY ARGUMENT IS NULL 
13 . 021 ANY ARGUMENT IS NULL 
13. 022 NULL FIRST ARGUMENT IN CALL TO THE ARRAY FUNCTION 

· 13. 023 AN ARRAY BOUND IN A CALL TO THE ARRAY FUNCTION IS NULL 
13. 024 AN ARRAY BOUND IN A CALL TO THE ARRAY FUNCTION IS NON-NUMERIC 

13. 025 IN THE FIRST ARGUMENT TO ARRAY, A SUBSCRIPT BOUND HAS TWO COLONS 

13.026 AN ARRAY LOWER BOUND IN A CALL TO THE ARRAY FUNCTION IS NOT IN THE 

RANGE -32768 < LBD < +32768 
13.027 AN ARRAY DIMENSION (HBD-LBD+l) IN A CALL TO THE ARRAY FUNCTION IS 

NOT IN THE RANGE 0 < DIM < 32768 
13 . 028 NAME IN CLEAR FIRST ARGUMENT IS NULL 
13. 030 ARGUMENT TO DATA IS NULL 
13.031 DATATYPE NAME IN ARGUMENT TO DATA IS NULL 
13. 032 MISSING LEFT PAREN IN DATA ARGUMENT 
13.033 FIELD NAME IS NULL IN DATA ARGUMENT 
13. 034 DATA ARGUMENT DOES NOT END W ITII ) 
13.035 TOO MANY FIELDS (MORE THAN 30), IN ARGUMENT TO DATA 
13.036 FIRST ARGUMENT TO DEFINE IS NULL 
13. 037 FUNCTION NAME IN FIRST ARGUMENT TO DEFINE IS HISSING (NULL) 

13. 038 FIRST ARGUMENT TO DEFINE IS MISSING A LEFT PAREN 
13 . 039 ARGUMENT NAME IN FIRST ARGUMENT TO DEFINE IS NULL 
13.040 FIRST ARGUMENT TO DEFINE IS MISSING A ) 
13 . 041 NULL LOCAL NAME IN FIRST ARGUMENT TO DEFINE 
13. 042 ARGUMENT TO ENDFILE IS NULL 
13. 043 ARGuMENT TO LOAD IS NULL 
13. 044 FUNCTION NAME IN ARGUMENT TO LOAD IS NULL 
13.045 MISSING ( IN ARGUMENT TO LOAD 
13. 046 MI SS ING ) IN ARGUMENT TO LOAD 

62 SPITBOL 370 Reference Manual 



I~ 

13.o47 TOO MANY ARGUMENTS (MORE THAN 64) IN FUNCTION TO BE LOADED 

13.048 ARGUMENT TO REWIND IS NULL 
13.049 ARGUMENT TO TABLE IS ZERO OR NEGATIVE 
13.050 SECOND ARGUMENT TO TRIM IS LONGER THAN ONE CHARACTER 
13. 051 ARGUMENTS TO AND ARE NOT THE SAME LENGTHS 
13.052 EVALUATION OF ARCCOS FAILED 
13.053 EVALUATION OF ARCSIN FAILED 
13.054 EVALUATION OF ARCTAN FAILED 
13.055 EVALUATION OF ARCCOSH FAILED 
13.056 EVAULATION OF ARCSINH FAILED 
13.057 EVALUATION OF ARCTANH FAILED 
13.058 EVALUATION OF COS FAILED 
13.059 EVALUATION OF SIN FAILED 
13.060 EVAULATION OF TAN FAILED 
13.061 EVALUATION OF GAMMA FAILED 
13.062 EVALUATION OF MOD FAILED 
13.063 EVALUATION OF EXP FAILED 
13.064 LENGTH OF ARGUMENT TO FROMBIN NOT A MULTIPLE OF EIGHT 
13.065 ARGUMENT TO FROMBIN CONTAINS CHARACTERS OTHER THAN ZEROES AND ONES 
13. 066 LENGTH OF ARGUMENT TO FROMHEX IS NOT A MULTIPLE OF TWO 
13. 067 ARGUMENT TO FROMHEX CONTAINS ILLEGAL HEX CHARACTERS 
13.068 SECOND ARGUMENT TO BIT IS NEGATIVE 
13 . 069 FIRST ARGUMENT TO BIT IS NULL 
13.070 SECOND ARGUMENT TO BIT IS NOT WITHIN FIRST ARGUMENT 
13.071 ARGUMENT TO FROMDEC LONGER THAN 16 CHARACTERS 
13.072 ARGUMENT TO FROMDEC IS NOT VALID PACKED DECIMAL 
13.073 EVALUATION OF LOG FUNCTION FAILED 
13. 07 4 ARGUMENTs TO OR DO NOT HA VE SAME LENGTH 
13.075 SECOND ARGUMENT TO RANDOM IS NEGATIVE 
13.076 FIRST ARGUMENT TO RANDOM IS NOT POSITIVE 
13 . 077 SCALING ERROR IN ARGUMENTS TO RANDOM 
13. 078 SECOND ARGUMENT TO RTRIM IS LONGER THAN ONE CHARACTER 
13. 079 ARGUMENTs TO XOR DO NOT HA VE THE SAME LENGTHS 
13.080 EVALUATION OF COSH FUNCTION FAILED 
13.081 EVALATION OF SINH FUNCTION FAILED 
13.082 EVALUATION OF TANH FUNCTION FAILED 
13 . 083 THIRD ARGUMENT TO BITS ET NOT ZERO OR ONE 
13.084 SECOND ARGUMENT TO BITSET IS NEGATIVE 
13 . 085 SECOND ARGUMENT TO B ITSET IS NOT WITHIN FIRST ARGUMENT 
13.086 FIRST ARGUMENT TO BITSET IS NULL 

Major = 14 Value Returned Errors 

14 . 001 A FUNCTION CALLED BY NAME RETURNED A VALUE 
14.002 AN EXPRESSION OTHER THAN A FUNCTION CALL RETURNED A VALUE WHERE A 

NAME WAS REQUIRED 

SYSTEM ERROR CODES FOR OS 

This section gives the list of all system errors that can be signalled by 
the OS interface. 

12.001 
12.002 
12.003 
12.004 
12.005 
12.006 
12.007 
12.008 
12.009 

INVALID FILE NAME 
MISSING DD CARD 
MODULE NAME FOR LOAD OR UNLOAD EXCEEDS 8 CHARACTERS 
UNCORRECTABLE INPUT ERROR 
UNCORRECTABLE OUTPUT ERROR 
ATTEMPT TO READ PAST END OF FILE 
UNCORRECTABLE INPUT ERROR DURING LOAD 
MODULE NOT FOUND IN LIBRARY 
MODULE TO BE UNLOADED IS NOT LOADED 

Error Messages and Handling 63 



12.010 ATIEMPT TO REWIND SYSTEM FILE 
12. 011 ATIEMPT TO READ OUTPUT FILE (REWIND FILE FIRST) 
12.012 ATTEMPT TO WRITE INPUT FILE (REWIND FILE FIRST) 
12.013 DUPLICATION FACTOR OR TAB LOCATION IN FORMAT SPECIFICATION IS ZERO 
12.014 ILLEGAL CHARACTER IN FORMAT SPECIFICATION 
12.015 TOO MANY PARENTHESES IN FORMAT SPECIFICATION 
12.016 TOO MANY RIGHT PAREN'nlESES IN FORMAT SPECIFICATION 
12.017 MISSING NUMBER AFTER T FORMAT 
12. 018 LENGTH IN H FORMAT SPECIFICATION EXCEEDS FORMAT SPECIFICATION 

LENGTH 
12.019 OUTPUT FORMAT MISSING INITIAL LEFT PARENTHESIS 
12. 020 OUTPUT FORMAT MISSING FINAL RIGHT PARENTHESIS 
12.021 SYSIN RECORD EXCEEDS 80 BYTES 
12.022 ERROR IN OPENING FILE FOR OUTPUT 
12. 023 ERROR IN OPENING FILE FOR INPUT 
12.024 ATTEMPT TO PROCESS TWO MEMBERS OF THE SAME PDS AT ONCE 
12. 025 ATTEMPT TO PROCESS TWO FILES ON THE SAME TAPE AT ONCE 
12. 026 FORMAT DOES NOT CONTAIN ANY A-TYPE ITEMS 
12. 027 UNBALANCED QUOTES IN FORMAT SPECIFICATION LITERAL 
12. 028 ATIEMPT TO WRITE TO READ-ONLY FILE (SUCH AS PDS DIRECTORY OR 

READ-ONLY PSEUDO FILE) 
12.029 A'ITEMPT TO READ FROM WRITE-ONLY FILE (SUCH AS WRITE-ONLY PSEUDO 

FILE) 
12. 030 ATTEMPT TO TRACE SYSPRINT FILE 
12.031 INSUFFICIENT MEMORY TO COMPLETE INTERFACE FUNCTION (RAISER PARAME-

TER) 
12. 032 ERROR IN CLOS ING FILE 
12.033 A'ITEMPT TO OPEN FILE WHICH IS ALREADY OPEN 
12.034 INVALID STRING PASSED TO SYSOPEN 
12.035 ERROR IN OPENING FILE FOR UPDATE 
12.036 TWO WRITES IN A ROW TO UPDATE ·FILE 
12. 037 ATIEMPT TO USE FORTRAN FORMAT WITII UPDATE OR LENGTH OF UPDATING RE· 

CORD NOT THE SAME AS OF RECORD TO BE UPDATED 
12.038 INPUT I/O ERROR ON UPDATE FILE 
12. 039 OUTPUT I I 0 ERROR ON UPDATE FILE 
12.040 AITEMPT TO REFERENCE INPUT ASSOCIATED VARIABLE AFTER FILE HAS BEEN 

ENDFILED BUT BEFORE VARIABLE HAS BEEN DETACHED 
12 . 041 ATTEMPT TO READ A NON-EXIST ANT PDS MEMBER 
12.042 INVALID WYLBUR EDIT FORMAT 
12. 043 ATIEMPT TO GENERATE WYLBUR LINE NUMBER OVER 99999. 999 
12.044 ERROR OPENING A FILE USING WYLBUR EDIT FORMAT 
12 . 045 INVALID DDNAME PASSED AS A SECOND ARGUMENT TO THE LOAD FUNCTION 
12.046 ATIEMPT TO WRITE A RECORD LARGER THAN LRECL TO A FILE IN WHICH 

SPANNED RECORDS ARE PROHIBITED 
12. 04 7 ERROR A TIEMPTING TO OPEN A FILE FOR EXTEND 
12.098 RECORD OUT OF RANGE IN ':'rDAl FILE 
12.099 I/0 ERROR ON *DAl FILE 
12.100 ATIENTION RECEIVED 

64 SPITBOL 370 Reference Manual 



PROGRAMMING NOTES 

The internal organization of SPITBOL is quite different from that in SIL 
SNOBOL4. Consequently the relativ,e speed of various operations differs. 
This section attempts to give some idea of what is going on inside so that 
the SPITBOL programmer can achieve maximum efficiency. 

SPACE CONSIDERATIONS 

The SPAN, BREAK and BREAKX functions use trans late and test tables. For the 
case of one character arguments, the tables are built into the system and 
require no additional space. For arguments longer than one character, tables 
must be built for each call. Each such table requires 260 bytes of storage. 
If the argument is deferred, no storage is required, but the execution of 
the pattern is much slower. 

ANY and NOTANY allocate 16 byte tables (actually one bit position in a 
shared 256 byte table) 

The space required for each element of .an array is 8 bytes in addition to 
storage required for a STRING or other structure. All numeric items require 
no additional space beyond the 8 byte item. 

The space required for each non-null element of a table is 24 bytes in addi­
tion to space for a STRING or other structure. A table hash header is 4 
bytes. Thus the number of headers can be made reasonably large without using 
much additional space. 

Program defined datatypes require 8(F + 1) bytes where F is the number of 
fields. They are thus quite compact and can be used freely. 

The memory required f9r dynamically compiled code (code function) is not ra­
claimed efficiently in this version. Improvements will be attempted in fu­
ture versions . 

Each variable block requires 32 bytes. This space is a constant requirement 
whether or not the variable name has a single use or multiple uses 
(label,function,variable etc.). This space is never reclaimed once it has 
been allocated. Thus it is inefficient to use variables to build a table 
with the$ operator. Instead, use the TABLE datatype. 

The COLLECT function is used to obtain more information on memory utiliza­
tion for various structures. 

SPEED CONSIDERATIONS 

To a greater extent than is the case with SIL SNOBOL4, there is a loss of ef­
ficiency in encoding complex structures as strings. Use arrays, tables and 
program defined datatypes where possible. The latter are particularly effi­
cient in SPITBOL. 

A POS pattern may be used freely at the start of a pattern since SPITBOL op­
timizes this occurrence to prevent useless movements of the ANCHOR point. 
This optimization (which is completely transparent) occurs in both 
QUICKSCAN and FULLSCAN modes. 

Programming Notes 65 



Time for datatype conversions will be relatively more noticeable in SPITBOL. 
Where efficiency is important, avoid unnecessary conversions. 

The $pattern assignment is, if anything, faster than the pattern assignment 
and may be used more freely. 

SPITBOL precomputes all constant expressions before execution. When the op­
timize mode is on (normal case), most patterns can be precomputed, thus no 
efficiency is lost by writing patterns in line rather than predefining them. 
Use of the unary * operator to def er computation is still useful in certain 
cases. For example, consider these in-line pattern matches: 

X POS(O) ARB N 'X' 
X POS(O) ARB *N 'X' 

The second form is more efficient, since the compiler can precompute the en­
tire pattern. 

Break, BREAKX and SPAN are very fast, except that deferred arguments having 
more than one character are quite slow. ARBNO is quite slow. 

ARB is slow and should be avoided where possible. 

The actual matching process is much faster in FULLSCAN mode than in 
QUICKSCAN mode since the heuristics require time consuming tests. If a match 
does not back up much, FULLSCAN may well be faster. 

The process of obtaining the value of &LASTNO or &STNO is reasonably fast. 

11le SETEXIT error intercepts are fast and may be used for program control as 
well as debugging. 

If a variable is traced or I/O associated, references to the variable are 
substantially slowed down even if the trace and I/O associations are later 
removed. 

The unary $ (indirect) operator applied to a STRING argument works differ­
ently in SPITBOL and corresponds to a hash search of existing variables. The 
process of applying $ to a NAME (including the name of a natural variable) 
is much faster, which is why SPITBOL returns a NAME instead of a STRING when 
the unary dot (NAME) operator is used with a natural variable. Thus it is 
better to use names where possible, for example in passing labels 
indirectly. 

The REPLACE function is optimized when the second argument is &ALPHABET. In 
this case, the third argument can be used as a translate table directly, and 
there is no need to construct a table dynamically. The REPLACE function it­
self can be used to construct the necessary third argument. Thus the call: 

A= REPLACE(X,Y,Z) 

May be replaced by the two calls: 

TBL = REPLACE(&ALPHABET,Y,Z) 
A = REPLACE(X,&ALPHABET,TBL) 

The first of these calls is slow and need only appear once. The second call 
is fast and could be executed repeatedly for various values of X. 

66 SPITBOL 370 Reference Manual 



PART TWO--HOW TO RUN A SPITBOL PROGRAM 

PART TWO--How To Run a SPITBOL Program 67 



68 SPITBOL 3i0 Reference Manual 



RUNNING A SPITBOL PROGRAM 

This section discusses the components required for successfully running a 
SPITBOL program. By carefully reading this section, you should be able to 
run a SPITBOL program on your system. 

STANDARD BATCH SPITBOL 

To use SPITBOL as a standard batch program use the following Job Control 
Language (JCL) statements. 

I /xx.xx JOB (yyyy, ... ) 
// EXEC PGM=SPITBOL,PARM=' ... ' 
//STEPLIB DD DSN=SYSl.SPITBOL.LOAD,DISP=SHR 
//SYSPUNCH DD SYSOUT=B 
/ /SYSPRINT DD SYSOUT=A 
//SYSIN DD * 
- SPITBOL program goes here­
END 
- data (if any) goes here-
/* 
II 

Note: The load library containing SPITBOL is installation dependent; check 
with your systems support group. 

INTERACTIVE SPITBOL 

SPITBOL may also be executed in the foreground using TSO by using the fol­
lowing TSO commands. 

ALLOC F(SYSIN) DA(program-filename) 
ALLOC F(SYSPUNCH) DA(*) 
ALLOC F(SYSPRINT) DA(*) 
CALL ' SYS 1. SP ITBOL. LOAD (SP ITBOL) ' ' ... parms ... ' 

When an input file, such as SYSIN, is allocated to a terminal, EOF is indi­
cated by entering 'I*'. 

Running a SPITBOL Program 69 



SYSTEM FI LES 

There are required and optional datasets needed for the operation of SPITBOL 
under OS. 

REQUIRED DATASETS 

The following datasets are required for proper execution of SPITBOL under 
OS. 

SYSIN 

This file contains the source images for the source program. The LRECL on 
this dataset must not exceed 80 (84 for V format records). In addition, any 
records following the END line of the program can be accessed by the stand­
ard input variable 'INPUT'. 

Multiple programs can be batched together by using './*' statements as de­
limiters. The text of the delimiter string is an installation option; 
check with your systems support group. 

SYSPRINT 

Tiiis data set is used for printed output including listing of the source 
program, error messages and trace output. In addition, the standard output 
variable 'OUTPUT' is associated with the file SYSPRINT. SYSPRINT may be de­
fined with any convenient RECFM and LRECL, except that LRECL=l is not per­
mitted. 

SYS PUNCH 

Tiie output variable 'PUNCH' is associated to the file SYSPUNCH by default. 
Normally this file is used for punched output and is defined accordingly 
with LRECL=80 (LRECL =84 for V type records). 

70 SPITBOL 3 70 Reference Manual 



OPTIONAL DATASETS 

The following datasets are optional for execution of SPITBOL under OS. 

SYSOBJ 

If a DD statement is supplied for this file, then SPITBOL will generate an 
object module for each program com~iled. (IDR data is generated on the END 
record of an object module.) See Linking and Execution of Object Modules" 
on page 75 for information on how to link edit and run compiled programs. If 
no object module is required, then the DD statement for this file should be 
omitted. 

DEFAULT DCB PARAMETERS 

SPITBOL supplies the following DCB parameters if they are omitted: 

FILE DEFAULT DCB 

SYSIN RECFM=FB,LRECL=80,BLKSIZE=400 

SYSPRINT RECFM=VBA,LRECL=137 ,BLKSIZE=600 

· SYSPUNCH RECFM=VB ,LRECL=84 ,BLKSIZE=172 

SYSOBJ RECFM=FB, LRECL=80, BLKSIZE=400 

ASP CTC FI LES RECFM=FB, LRECL=133, BLKSIZE=1995 

OTHER FILES RECFM=VBS,LRECL=2004,BLKSIZE=400 

If the RECFM is supplied, then LRECL and BLKSIZE must also be supplied. 
LRECL and BLKSIZE may be overridden separately. Additional DCB parameters 
such as OPTCD, BUFNO may be supplied on the DD statement as required. Note 
that certain systems have special requirements for SYSPRINT DCB's. 

PARAMETERS TO THE SPITBOL COMPILER 

This section discusses the parameters to the SPITBOL compiler. 

The PARM parameter on the EXEC statement may be used to set parameters for 
the run. The following table lists all parameters, their meanings, and de­
fault values. Note that the default values can be altered during installa­
tion; check with your systems support group. 

NAME=DEFAUL T MEANING 

B=S Number of TSO attentions to be handled by SPITBOL. Each 
time an attention is received, the B value is decremented 
by one. When this value reaches O, attention handling is 
disabled. 

Running a SPITBOL Program 71 



C=100000 

0=10 

E=O 

F=O 

H=lOOOK 

l=O 

M=O 

N=SS 

P=100000 

R=18K 

S=O 

T=55 

Maximum number of punched cards. 

Maximum number of dumps. This is decremented by N each time 
DUMP(N) is executed or at end- of-job if a dump is re­
quested. When it reaches zero, no dumps are given. If 
DUMP=3 and D=O, a SYSUDUMP will be given if a //SYSUDUMP DD 
statement is provided. 

Parameter for future use. 

Maximum number of file trace lines. This parm is used in 
conjunction with the new external function SYSTRACE which 
is explained in the section entitled Exte~al Functions. 

Maximum size for allocated data area to be used by SPITBOL. 
This can be set lower to keep SPITBOL from immediately 
grabbing all available core, and is useful in 
Multi-Tasking situations. Note that the effect can also be 
obtained by the use of the R parameter. The size of the al­
located data area (ADA) in general is equal to 
MINIMUM(H,REGION SIZE)-R. 

Value controlling compiler listings. The low order 3 bits 
of this value are interpreted as follows: 

1 (bit 31) 
2 (bit 30) 
4 (bit 29) 

suppress header pages 
suppress compilation statistics 
suppress execution statistics 

For example, I=7 will suppress header pages and all sta­
tistics. 

Parameter for future use. 

Number of lines per page. 

Maximum number of pages. 

Amount of core to be reserved to the system. Both OS and 
SPITBOL's OS interface GETMAIN space out of the reserved 
area for things like buffers, work areas, control blocks 
and room for loaded modules (i.e., external functions). 
18K is sufficient for MVT;. higher values (SOK) are neces­
sary for MVS. Raise the value when processing many files, 
using files with very large BLKSIZEs, using large external 
functions, or using external functions which GETMAIN large 
amounts of core. 'Signals to raise the R parameter include 
S80A abends and error code 12. 31 (insufficient space to 
complete interface function.) 

Maximum number of system trace lines. If S is greater than 
zero, system trace messages are written on SYSPRINT and S 
is decreased by one until it reaches zero, at which point 
tracing stops. Trace messages are written any time a func­
tion is loaded or unloaded, any time a file is opened, and 
any time a file is closed (The close message includes a 
count of the number of records read or written.) 

Time limit in seconds. Note that this value should always 
be slightly lower than the time estimate on the OS job 
statement. This difference in time values allows SPITBOL 
to regain control should a program exceed its stated time 
limit. SPITBOL can then clean up and produce a dump and/or 
other diagnostic information allowing determination of 

72 SPITBOL 370 Reference Manual 



what has happened. For example, a program goes into an in­
finite loop. 

In a batched run, the parameters T,P,C are applied separately to each pro­
gram in the batch. This prevents any single program from overrunning system 
limits and aborting the run. 

Any or all of these seven parameters may be altered in the PARM field. This 
value may be expresses either as an integer, or in units of 1024 by using a K 
following an integer. For example: 

PARM='R=20000,H=16K,T=30' 

The above parm specification would reserve 20000 bytes for system use, 16384 
bytes for minimum dynamic memory, and allow up to 30 seconds of CPU time. 
The parameters may occur in any order. For parameters not specified, the ap­
propriate default from the above table is used. 

EXECUTION PARAMETERS FOR THE SPITBOL PROGRAM 

All characters following the first slash in the PARM field of the EXEC 
statement are defined as the user parameter string. This string can be ob­
tained by an executing program by calling the external function UPARM. 

Since UPARM will typically be called only once, the entire process of load­
ing it, calling it, and unloading it can be done in a single statement. (Re­
member, both LOAD and UNLOAD return the null string.) 

PARMS= LOAD('UPARM()STRING') UPARM() UNLOAD('UPARM') 

For more information, see the UPARM entry in the section see "External Func­
tions" on page 89. 

AL TERNA TE DDNAMES 

This information is o~ly useful when invoking SPITBOL from another program. 

Upon entry to SPITBOL from the calling program, register one can be zero or 
point to a variable length parameter list in standard OS format. (eg 
high-order bit in the last address is turned on to indicate end of the 
list). The first entry in the list is the address of the parameter list. The 
second entry, if supplied, points to an alternate DDNAME list. In normal in­
vocation via JCL, the first address wil be set to point to the text supplied 
for the PARM= keyword of the EXEC statement preceded by a half word length 
count by the system. 

Running a SPITBOL Program 73 



The alternate DDNAME list, if supplied, is a halfword which defines the 
length of the list, followed by the alternate DDNAME. The first 96 bytes de­
fine alternates for the following DDNAMES: 

SYSLMOD 
-not used­
SYSLIN 
SYSLIB 
SYS IN 
SY SPRINT 
SYS PUNCH 
SYSUTl 
SYSUT2 
SYSUT3 
SYSUT4 
SYS TERM 

Entries which indicate no alternate should be coded as 8X'OO' .(zeros) after 
the first 96 bytes any number of additional 16-byte entries consisting of 
8-byte DDNAMES followed by 8-byte alternates. This permits an alternate 
DDNAME to be supplied for any DDNAME. 

USER ABEND CODES 

The following user abend codes can be issued. 

CODE MEANING 

100 Internal error abort. 

Note: This abend is also generated when an external function program 
checks. 

200 Insufficient dynamic memory, increase region 

300 Permanent output error on SYSPRINT 

400 Missing DD statement for system file 

500 Error on opening system file 

800 Internal configuration mismatch in OS interface and transient mod­
ule OSINIT. 

1001 Stack overflow in OS interface. 

1001 Stack underflow in OS interface. 

74 SPITBOL 370 Reference Hanual 



SYSTEM ABEND CODES 

The following system abend codes can be issued. 

CODE MEANING 

BOA Insufficient memory reserved for system use. Increase value of R 
parameter. 

LINKING AND EXECUilON OF OBJECT MODULES 

If a DD statement for SYSOBJ is supplied to SPITBOL, an object module for 
the compiled program will be written to that file. (The program will still 
be executed as well!) This facility provides a way to avoid recompilation 
of frequently run programs and a mechanism for distribution of SPITBOL pro­
grams. However, in general, compilation is so fast that it is simpler to 
just recompile for every run. 

After creation of the object module, it must be link edited with the SPITBOL 
library routines to produce an executable load module. These library rou­
tines are contained in load module SPITPROG of the SPITBOL load library. 
SPITPROG is similar in structure to SPITBOL, but excludes routines needed 
only for compilation. The sample job below shows how to create a load mod­
ule for a previously compiled SPITBOL program. (The OS Loader can also be 
used.) 

//xx.xx JOB (yyyy, ... ) 
// EXEC LKED,PARM='LET,LIST,NCAL,TERM,XREF' 
//SYSLMOD DD DSN=your-load-library,DISP=SHR 
//SPITLIB DD DSN=SYSl.SPITBOL.LOAD,DISP=SHR 
//OBJECT DD DSN=your-object-module,DISP=SHR 
//SYSIN DD * 

INCLUDE SPITLIB(SPITPROG) 
INCLUDE OBJECT 
ENTRY OSINT 
NAME progname(R) 

/* 
11. 

Note: Only a single program's object module can be linked with the library 
routines. Thus, it is not possible to use the linkage editor (or loader) to 
combine multiple SPITBOL programs. Communication between a SPITBOL program 
and any other program must be through the interface defined for external 
functions. 

When the resulting load module is executed, DD statements and and PARM field 
values must be supplied as for a regular compile and execute run. However, 
since the program has already been compiled, the dynamic memory obtained is 
used only for objects created during the program's execution. The SYSIN DD 
statement should point to a file containing records to be accessed via 
standard input; i.e., variable "INPUT". The following job shows how to ex­
ecute a load module. 

Running a SPITBOL Program 75 



I /xx.xx JOB (yyyy, ... ) . 
II EXEC PGM=progname,PARM=' ... ' 
//STEPLIB DD DSN=your-load-library,DISP=SHR 
II DD DSN=SYSl.SPITBOL.LOAD,DISP=SHR 
//SYSPRINT DD SYSOUT=A 
//SYSPUNCH DD SYSOUT=B 
//SYSIN DD * 
- data (if any) goes here-
/* 
II 

The sample job above has the SPITBOL load library available during execution 
of the load module. However, this can be inconvenient to many users and is 
not necessary in all cases. To determine whether or not the SPITBOL load 
library is required during execution of a load module, use the following 
checklist: 

1. Does your site have non-resident initialization? (I.e., is module 
OSINIT loaded to initialize SPITBOL?). 

2. Does your program use LOAD to access external functions? 

3. Does your program use BDAM, ISAM, or VTOC support? 

If the answer to any of the questions above is yes, then the SPITBOL load li­
brary is required during the execution of that load module. 

Another more empirical approach is run the program with system tracing ena­
bled; entries in the system trace log will list any modules loaded, whether 
explicitly by the program or implicitly by the OS interface. See the S pa­
rameter in "Parameters to the SPITBOL Compiler" on page 71. 

76 SPITBOL 370 Reference Manual 



INPUT/OUTPUT FACILITIES 

This section discusses the facilities available for input/output. Informa­
tion in this section augments the descriptions for the INPUT and OUTPUT 
functions. 

RECORD FORMAT SUPPORT 

For variable length record formats, the ouput STRING is written as a single 
record of appropriate length if possible. If the length of the STRING ex­
ceeds the LRECL, then the STRING is split into several records as required. 
An over-size record on input causes an error. The null STRING is written and 
read as a one byte record consisting of the character X'OO' (hexadecimal ze­
ro). Spanned records are implemented. However, the input LRECL should not 
be too much larger than required, since SPITBOL must temporarily find a 
buffer of length LRECL on input. 

For the fixed length record formats, the output STRING is split into several 
logical records if its length exceeds the specified LRECL. The last, or 
only, record written is padded with blanks. This means that on input, extra 
blanks may be read. A null value is written as a blank record. 

For undefined records, the STRING is written as a block if possible, or 
split up if necessary. The null STRING is handled as for variable length re­
cords. 

It should be clear that variable length record formats are preferable for 
the input and output of SNOBOL4 strings, the F formats are implemented pri­
marily for compatibility with other OS processors. 

Note: SPITBOL ignores the A (ASA control characters) specification. If con­
trol characters are to be generated, the output association should specify 
an appropriate format. The standard association for SYSPRINT specifies 
blank control characters. 

INPUT OUTPUT ASSOCIATION--DDNAMES 

The standard mechanism for accessing a file is to provide the DDNAME as the 
second argument to an INPUT or OUTPUT function call. For example: 

INPUT(.IN, 'MYFILE') input-associates the variable IN to the dataset defined 
by the DD statement with DDNAME MYFILE. 

OUTPUT(.OUT, 'PUTOUT') output-associates the variable OUT to the dataset de­
fined by the DD statement with the DDNAME PUTOUT. 

Remember that a file is opened at the time of the first read or write, NOT 
when INPUT or OUTPUT is called. 

Input/Output Facilities 77 



POS MEMBER SUPPORT 

To input or output associate a PDS member, specify DDNAME(MEMBER) as the 
second argument to INPUT or OUTPUT. The member name can, of course, be 
specified at run-time. One restriction applies to accessing PDS members: 
only one member of a PDS can be open for writing at a time. Thus, ENDFILE 
must be used to close out a member before opening another member for 
writing. There is no restriction on the number of members open for reading. 

For example, given this DD statement 

//MYPDS DD DSN=ANY.OLD.PDS,DISP=SHR 

Member FOOBAR can be read by 

INPUT(.IN, 'MYPDS(FOOBAR)') 

When processing is completed for member FOOBAR, the file can be closed by 

ENDFILE('MYPDS(FOOBAR)') 

The member name can be specified dynamically at execution time as in 

MEMBER= 'FOOBAR' 
INPUT(.READ,'MYPDS(' MEMBER 1

)
1

) 

ENDFILE('MYPDS(' MEMBER')') 

Issuing an ENDFILE for a PDS member after completion of its processing is 
considered good practice. 

PDS DIRECTORY SUPPORT 

SPITBOL supports reading directory entries of a PDS; writing is not sup­
ported. (Other PDS directory functions are provided by the external func­
tion "SYSDIR" on page 92) The format of the second argument to the INPUT 
function is similar to that of specifying a PDS member, except that no mem­
ber is supplied; only the parentheses. For example, 

INPUT (.DIRENTRY, 1 MYPDS() 1
) 

specifies that each access of variable DIRENTRY causes the next directory 
entry of MYPDS to be read. 

PDS directory entries are of variable length between 12 and 74 bytes and 
contain the 8-byte member name, followed by a 4-byte TTRC address, followed 
by any user data which may be present in the directory entry. The last re­
cord of the directory is 16 bytes long and contains eight bytes of X'FF' 
followed by two four-byte numeric strings. Eight bytes of X'FF" are easily 
generated by DUPL(SUBSTR(&ALPHABET,256,1),8). The two numeric strings give 
the total number of directory blocks in the directory and the number which 
are unused respectively. The next reference to the variable which is input 
associated to the directory will fail, just like any other input-associated 
variable when end-of-file is reached. 

For example, to read the directory of the PDS in the example above: 

78 SPITBOL 370 Reference Manual 



LASTENTRY = DUPL(SUBSTR(&ALPHABET,256,1),8) 
INPUT(.DIRENTRY, 'MYPDS()') 

LOOP ENTRY = DIRENTRY 
MEMBER= SUBSTR(ENTRY,1,8) 
LEQ(MEMBER,LASTENTRY) 
OUTPUT = ENTRY 

:F(EXIT) 

:S(TOTAL) 
:(LOOP) 

TOTAL OUTPUT= 'OUT OF ' SUBSTR(ENTRY,9,4) 
+ ' BLOCKS, ' SUBSTR(ENTRY,13,4) ' ARE FREE' 

MULTIPLE FILE TAPE SUPPORT 

SPITBOL supports the specification of tape file numbers at run time. File 
numbers are specified in the same manner as PDS members, appearing within 
parentheses following the DDNAME. The DD statement for the tape must speci-
fy no labels, i.e. · 

LABEL=(,NL) or LABEL=( ,BLP) 

To process a standard label (SL) tape, specify the tape as NL in the JCL and 
then request the file numbered 3N-1. File 3N-1 on a NL tape is equivalent to 
file N on a labeled tape. Note that tape labels can be read from or written 
to a SL tape by simply ignoring the 3N-1 rule. (After writing such a tape, 
it could be read as a SL tape.) Only one file on a given tape can be open at 
a time. For example, having the following DD statement: 

//MYTAPE DD UNIT=9TRACK,LABEL=( ,NL) 

The third and fourth files will be written in the following manner. 

OUTPUT(.TAPEOUT,'MYTAPE(3)') 
* * ... WRITE TAPE FILE USING VARIABLE TAPEOUT 
* 
* 

* 

ENDFILE('MYTAPE(3)') 

OUTPUT(.TAPEOUT2,'MYTAPE(4) 1
) 

* ... NOW WRITE FOURTH FILE ON TAPE USING TAPEOUT2 
''r 

Input/Output Facilities 79 



DIRECT ACCESS FILE (BDAM) SUPPORT 

In SPITBOL 370 support has been added to access files of fixed-length re­
cords randomly as well as sequentially; that is to say, specific blocks from 
the file can be read or written at will. 

Random access of fixed-length files is accomplished through the use of the 
*DAl pseudo-file and its associated external functions. The block to be 
read or written is identified by its block number, an integer ranging from 
zero for the first block sequentially up to the number of the last block in 

the file. 

Before using a random-access file the file must be formatted. There are two 
ways to format a file. The first is to write the file as a standard SPITBOL 
sequential file with RECFM=F and the LRECL equal to the BLKSIZE. The second 
way, which is most suitable for files that will then be loaded in random or­
der, is to use the new external function SYSFMT. This function is loaded 
via: 

LOAD( 1 SYSFMT(STRING)INTEGER 1
) 

and is invoked as 

SYSFMT('*DAl(ddname)') 

where ddname is the OS JCL ddname of the file to be formatted. The entire 
file will be filled with blocks of binary zeroes. The value returned by 
SYSFMT is the number of blocks in the file it has just formatted. Note that 
if a file is simply to be initialized with zero blocks, SYSFMT is generally 
faster that writing out the zero blocks using a standard SPITBOL sequential 
file. Note that if SYSFMT is used, LRECL and BLKSIZE must be specified on 
the DD card defining the ddname to be formatted. 

Once the file is formatted, it can be read or written by making standard I/0 
associations to the pseudo-file *DAl(ddname). The block number to be read or 
written is specified through the SYSRECNO function that is described below. 
If the intent is to both read and write the file, it should be opened for UP­
DATE using the SYSOPEN function (e.g. SYSOPEN( 'trDAl(ddname)', 'U' )) after 
which variables can be input and output associated to it in the usual f ash­
ion. See "SYSOPEN" on page 93. 

Note that opening a *DAl pseudo-file for update does not mean the same thing 
as opening a normal sequential file for update in place. For a ~·:nAl 

pseudo-file, reads and writes can occur and be intermixed in any order; 
there is no requirement that each write be proceeded by a read as in sequen­
tial update-in-place. 

Note also that when writing blocks SPITBOL will provide blank padding up to 
the required LRECL (or BLKSIZE, which is the same in the case of ~·:DAl 

pseudo-files) but that records exceeding the LRECL cannot be written to a 
*DAl pseudo-file (this will cause a 12.046 error code to be generated). 

Associated with each ~':DAl pseudo-file is a record number, which defines the 
next record to be read or written. This record number is initialized to zero 
when the file is first opened and can be reset at will using the SYSRECNO 
function, which is loaded by: 

LOAD('SYSRECNO(STRING,INTEGER)STRING') 

and called as SYSRECNO( '*DAl(ddname)' ,blocknumber) where blocknumber 
gives the number of the next block to be read or written. SYSRECNO will al-

80 SPITBOL 3 70 Reference Manual 



ways return the null string, and will fail if the specified file is not open 
or otherwise invalid. Thus,. to open and read the third record of the *DAl 
pseudo-file with ddname MYDATA the following program fragment could be used: 

LOAD('SYSRECNO(STRING,INTEGER)STRING') 
INPUT(.R '*DAl(MYDATA)') 
SYSOPEN( 1*DA1(MYDATA)', 'I') 
RECORD3 = SYSRECNO('*DAl(MYDATA)' ,3) R 

Note that the SYSOPEN must be done before the first time that SYSRECNO is 
called. 

An attempt to read a block that does not exist (eg. is out of range) from a 
*DAI pseudo-file will result in a 12.98 error code (which can be trapped 
through use of the SETEXIT function). An I/O error in reading a record from 
a *DAl pseudo-file results in a 12.99 error. 

When working with random-access pseudo-files it is occasionally useful to 
determine the number of records in the file. This can be done using the 
SYSFSIZE function. (SYSFSIZE also works on normal RECFM=F sequential files, 
where for an input file it gives the number of records in the file, and for 
an output file it gives the number of records that the file will hold). 
SYSFSIZE is loaded by LOAD('SYSFSIZE(STRING)INTEGER') and when called it is 
passed a file name. For example, a *DAl pseudo-file is represented by 
*DAl(ddname). For more details see -- Heading id 'sysfsiz' unknown--. 

SYSFSIZE requires that its argument file be open. SYSFSIZE will fail if the 
file is not open or if the file name is invalid. Note that a file is opened 
at the time of the first read or write operation, not at the time of input or 
output association. SYSOPEN can be used to force an open before the first 
read or write is actually done to the file. Thus, in order to find out how 
many records are in a direct-access file, a sequence like 

NRECS = SYSOPEN('*DAl(ddname)') SYSFSIZE('*DAl(ddname)') 

is appropriate. 

ISAM SUPPORT 

SPITBOL supports sequential reading and writing of ISAM files. ISAM file 
access is indicated by the form of the DDNAME to the INPUT/OUTPUT function 

*ISAM(<DDNAME>) 

where <DDNAME> is the DDNAME of a DD statement defining the ISAM file to be 
processed. For example, to input associate a variable called ISAMIN to a 
ISAM file defined by a DD statement with the DDNAME ISAMFILE, use 

INPUT(. ISAMIN, ·~·'"ISAM(ISAMFILE) ') 

Input/Output Facilities 81 



QSAM UPDATE-IN-PLACE SUPPORT 

To process a sequential file or PDS member using update-in-place, the file 
must be input associated, output associated, and opened by SYSOPEN. (Refer 
to "SYSOPEN" on page 93 for details.) The reason for having both input and 
output associations is that the input association handles the reading of a 
record, while the output association handles the writing (updating) of a re­
cord. Note that the third argument, specifying a FORTRAN format to the IN­
PUT and OUTPUT functions, must not be used for files being updated-in-place. 

Update-in-place record processing proceeds as follows. Records are read us­
ing the input associated variable. If no changes are needed to the current 
record, the next record is read. However, if modification to the current 
record is necessary, an updated record is constructed and then assigned to 
the output-associated variable. This assignment causes the record to be up­
dated-in-place. Note that a write can only follow a read. 

The following restrictions apply to the modification permissible on a record 
which is to be written back to a file open for update: 

1. For RECFM=U or V files the record to be rewritten must have the same 
length as the record read. 

2. For RECFM=F files the record to be re-written must have length less than 
or equal to the file's LRECL. (this is really the same as the RECFM=U or 
V case because SPITBOL pads any record written to a RECFM=F file with 
blanks to a length equal to the file's LRECL anyway.) 

If these restrictions are not satisfied, a system error code of 12.037 (in­
valid length) will be generated. This error code will also occur on an at­
tempt to use variables input or output associated to the file with the third 
argument to the input or output function specified. 

The handling of null records for RECFM=V or U is somewhat inconsistent with 
the way SPITBOL handles null records for input-only or output-only files. 
For a update file, a null record is returned as 1 byte of binary zeroes, 
rather than as a null STRING. The following program will reverse every other 
record in a file called 'UPTEST'. 

INPUT ( . IN , 'UPTEST' ) 
OUTPUT ( . OUT' I UPTEST I ) 

LOAD('SYSOPEN(STRING,STRING)STRING') 
SYSOPEN ( I UPTEST' , 'u' ) 
UNLOAD('SYSOPEN') 

LOOP REC = IN 

END 

SW = IDENT(SW) 1 
OUT = REVERSE(REC) 
SW = 

82 SPITBOL 370 Reference Manual 

:F(END) 
:S(LOOP) 

: (LOOP) 



PSEUDO FILE SUPPORT 

A DDNAME with bit 1 of byte 0 off designates a pseudo DDNAME. This bit was 
chosen because it is on for all alphabetic, national and numeric characters. 
Pseudo files allow a SPITBOL user to perform basic I/O operations on other 
than sequential QSAM files with a DD statement supplied. Examples include 
support of an access method other than QSAM or us of "IN-CORE" I/0. The type 
of processing desired is determined by interpreting the pseudo file DD name 
as a series of special fields. 

There are 3 sources for a pseudo DDNAME: 

1. Supplied in the alternate DDNAME list. 

2. Supplied by tables within OSINT. 

3. A user-supplied DDNAME passed to an input or output association. 

A pseudo DDNAME has one of the following formats: 

1. FLAGS(l) 

NAME1(3) 
DWORDS(l) 
NAME2(3) 

2. FLAGS(l) 

NAME1(3) 
DWORDS(l) 
RECFM(l) 
LRECL(2) 

The two forms are distinguished by the flag bits in the first byte. These 
bits, and their meanings, are: 

X'SO' If on, an alternate DDNAME is used only if the old DDNAME is not in the 
task I/O table. This allows pseudo- DDNAMES which will be used only if 
no DD statement exists for the main DDNAME. 

X'40' If on, this is a pseudo DDNAME. 

X'20' If on, the NAMEl and the NAME2 (if applicable) fields are considered as 
core addresses. If off, they are concatenated to "OSINT" and treated 
as module names. 

X'lO' If on, this indicates that this is a format 4 pseudo DDNAME. 

x·oa· If on, this indicates that this is an input only file. 

X'04' If on, this indicates that this is an cutout only file. 

DWORDS gives the number of additional double words to be appended to the 
QSAM DCB for work areas, etc. 

For a format! DDNAME, NAMEl determines the module name or core address of a 
routine which will be called to do the open for the file. NAME2 determines 
the module name or core address of a routine which will do the close for the 
file. Linkage conventions are: 

Input/Output Facilities 83 



Register 1 Points to an OS open or close list containing 1 DCB address. 

Register 13 Points to a save area. 

Register 14 Contains the return address. 

Register 15 Contains the entry point address. 

The open routine can modify the DCB as desired and should set the address of 
a GET or PUT routine into the DCB. The DCBOFLGS bit X'lO' must be set on to 
indicate a successful open. 

For a format 2 pseudo DDNAME, NAMEl determines the module name or core ad­
dress of a GET or PUT routine to be placed in the DCB. The specified LRECL 
and RECFM are also set in the DCB. For update files being defined as format 
2 pseudo DDNAMES the first call to the user GET routine should result in the 
DCB as well as any other desired processing. 

The linkage conventions to all types of GET and PUT routines are as follows: 

Register 0 Points to the record or a buffer 
Register 1 Points to the DCB and user doublewords 
Register 13 Points to a save area 
Register 14 Is the return point 
Register 15 Is the entry point 

For output: 

RECFM=U LRECL is in DCB 
RECFM=V LRECL is in RDW 
RECFM=F The record is blank padded to length LRECL 

For input: 

RECFM=U LRECL in DCB must be set 
RECFM=V An RDW must be built 
RECFM=F The record must be padded to length LRECL 

The GET routine can signal end of file by loading DCBEODAD into R14 and 
branching to it. The GET or PUT routine can signal an I/O error by loading 
DCBSYNAD into R14 and branching to it. 

The routine can issue any 12.Xxx error by loading the minor code into regis­
ter zero and then branching to the contents of DCBSYNAD minus 4. 

Note: Before attempting to write pseudo-file support routines, the 
implementor should review the existing pseudo-file support routines pro­
vided with SPITBOL. 

VTOC SUPPORT 

A system pseudo-file has been implemented to allow the SPITBOL user to read 
disk VTOCs quickly and efficiently. This is based on a VTOC-reading routine 
which employs EXCP-level coding to read the VTOC with 1 EXCP per track. To 
use this facility: 

Include a DD statement of the form: 

I /<DDNAME> DD UNIT= .... , VOL=SER= ...... ,DISP=OLD 

84 SPITBOL 370 Reference Manual 



To read the VTOC of a volume, input-associate a variable to the VTOC as fol­
lows: 

INPUT ( . <VARNAME> , I 'l'tVTQC ( <DDNAME>) I ) 

References to the variable <VARNAME> will result in DSCBs from the VTOC (se­
quentially, starting from the first) in the format: 

Key 
Data 
MBBCCHHR 

44 bytes 
96 bytes 
8 bytes 

Format-a DSCBs are not returned, but are bypassed by the pseudo-file read 
module. A reference to the variable will fail at end-of-file; an I/O error 
is treated just as an I/0 error on any other input file. The R parameter 
should be increased by about 14K for the first VTOC to be read and about 9K 
for each additional VTOC being read simultaneously (for VTOCs on 3330 disks; 
other device types are supported, the rule being in general to allow about 
SK+ (148*# DSCBs/TRK for the device) for the first VTOC and about (148*# 
DSCBs/TRK) for additional VTOCs being processed simultaneously.) If system 
tracing is enabled, when the pseudo-file is closed the read count gives the 
number of calls to the variable input-associated with the VTOC (eg the num­
ber of DSCBs returned to the calling SPITBOL program) and the GET count 
gives the number of EXCP's issued by the VTOC reading routines themselves. 
(Note: if a VTOC is completely processed, the GET count should be equal to 
the number of tracks in the VTOC, since the VTOC reading routines read the 
VTOC a track at a time). 

Note: This function has not been fully tested on MVS; it is not likely to 
work properly with indexed VTOCs. 

CONSOLE SUPPORT 

Doing an OUTPUT(.CONSOUT, 'CONSOLED') will, if there is no DD statement for 
DDNAME CONSOLED, output-associate the variable CONSOUT to the OS operator's 
console (via WTO). 

Console input association is done by associating to the DDNAME CONSOLE! 
without providing a DD statement for that dataset. Each reference to the 
input associated variable will return the text of the next OS MODIFY 
command, i.e. the <TEXT> of the OS operator command: 

F <JOBNAME> , <TEXT> 

directed to the job. End of file is indicated to the program by the STOP com­
mand, i.e.: 

P <JOBNAME> 

Each reference to the input-associated variable causes the program to wait 
for a STOP or MODIFY command to be entered at the console. This wait can be 
avoided by using the CONSOLEA file as follows: 

Doing an INPUT(. <VARIABLE>,' CONSOLEA') with no DD statement for CONSOLEA 
will cause any reference to the variable <VARIABLE> to: 

Fail if no STOP or MODIFY command is available 
Return the value 'F' if a MODIFY is available 
Return the value 'p' if a STOP is available 

Input/Output Facilities 85 



WYLBUR EDIT FORMAT Fl LE SUPPORT 

Support has been added to SPITBOL to read and write WYLBUR EDIT format 
files. This requires no special effort on the part of the user program as 
long as valid WYLBUR EDIT format files are provided as input or output. 
However, as part of this support, the following features have been added. 

Note: WYLBUR EDIT file support is an installation option; check with your 
systems support group. 

Extensions to SYSOPEN 

WYLBUR EDIT files can be opened either explicitly or implicitly. Inserting 
a 'W' at the front of a valid option strin~ specifies an explicit open of a 
WYLBUR file. For example, SYSOPEN('MYFILE ,'WI'). Additionally, any disk 
file with the following DCB attributes will be implicitly opened as a WYLBUR 
EDIT file: 

RECFM=U 

LRECL=BLKSIZE 

BLKSIZE between 3156 and 7000 

Inserting an 'N' before a valid option string overrides the implicit opening 
of a WYLBUR EDIT file. This means that the file will NOT be opened as a 
WYLBUR EDIT file, even if its DCB characteristics match those above. 

External Functions for Use with WYLBUR EDIT Format Files 

External functions are provided to support WYLBUR EDIT format files. 
SYSDELTA changes the DELTA for line numbers of lines written to a WYLBUR 
file. SYSLINEI returns the line number of the last line read from a WYLBUR 
file. SYSLINEO sets the line number for the next line to be written to a 
WYLBUR file. For ·additional information, see the section "External Func­
tions" on page 89. 

86 SPITBOL 370 Reference Manual 



TSO FACILITIES 

The following facilities are available to a SPITBOL program executing under 
TSO. 

Attention Handling 

SPITBOL 370 under TSO provides attention handling. In order to provide this 
support, the following features have been added. 

B Parameter 

The B parameter specifies the number of attentions SPITBOL will handle. 
Each time an attention is received, the B parameter is decremented by one, 
and, when the count becomes zero, attention handling is turned off. See 
"Execution Parameters for the SPITBOL Program" on page 73. 

Types of Attention Handling 

SPITBOL 370 provides two types of attention handling: IMMEDIATE and DE­
FERRED. In IMMEDIATE mode, each time an attention is received, a execution 
error 12. 100 is generated. This error may be trapped by means of the 
SETEXIT function, but, if not trapped, causes the SPITBOL program to termi­
nate. In DEFERRED mode, the value of the B parameter is still decremented 
by one each time an attention is received, but the user program is not noti­
fied of any attentions until it specifically requests whether any have been 
received. This allows the user program to continue executing until it gets 
to a point at which it is ready to field attentions. 

The default for attention handling is IMMEDIATE mode. 

External Functions for Attention Handling 

Two new external functions have been provided. Refer to "Execution Parame­
ters for the SPITBOL Program" on page 73 for aditional background informa­
tion. 

SYSATNST 

SYSATNCK 

LOAD( 1 SYSATNST(STRING)STRING 1
) 

SYSATNST('x') sets the attention handling state depending on 
the value of 'x'. An 'I' sets the state to IMMEDIATE mode and 
a 'D' sets the state to DEFERRED mode. The function returns 
the null string. 

LOAD( 1 SYSATNCK(STRING)STRING 1
) 

SYSATNCK() is called to check if any attentions have been re­
ceived while the program has been running in DEFERRED mode. 
If any attentions were received, the function succeeds and 

Input/Output Facilities 87 



returns the null string. If no attentions were received, the 
function fails. The function also fails if called while in 
IMMEDIATE mode. 

TSO Terminal 1/0 External Functions 

The following new external functions have been implemented: 

TCONV 

TCONVO 

TGET 

TGETO 

TPUT 

LOAD('TCONV(STRING)STRING') 

TCONV(STRING) is equivalent to a TPUT(STRING) followed by a 
TGET(). Thus, TCONV issues a prompt before reading a line 
from the terminal. 

TCONVO is equivalent to a TPUT(STRING) followed by a TGETO(). 
Thus, TCONVO issues a prompt before reading a line from the 
terminal. The function will fail if a null string is entered 
by the user. 

LOAD('TGET(STRING)STRING') 

TGET() reads a string from the terminal without issuing a 
prompt. The string read from the terminal is returned exactly 
as entered, and is not converted in any way. TGET will auto­
matically retry most TSO terminal I/0 error conditions. 

TGETO is similar to TGET except the function will fail if a 
NULL string is entered by the user. 

LOAD('TPUT(STRING)STRING') 

TPUT(STRING) writes its argument string to the terminal ex­
actly as given. Note that if a carriage return is desired at 
the end of the line, it must be appended to the argument 
string. The function normally returns a NULL string and will 
fail under certain error conditions such as an I/0 error. 

Note: These functions - are dependent on the TCAM translate tables. They 
function as transparently as possible, but if problems occur consult your 
systems support group. 

88 SPITBOL 370 Reference Manual 



EXTERNAL FUNCTIONS 

This section discusses the calling conventions for writing external func­
tions, as well as use of the external functions provided with the SPITBOL 
370 distribution. 

CONVENTIONS FOR EXTERNAL FUNCTIONS 

This section gives detailed information necessary for writing external 
functions in FORTRAN and Assembly Language for use in SPITBOL. To a great 
extent, compatibility with SIL SNOBOL4 is maintained but there are some dif­
ferences. 

An external function exists as a load module in one of the standard job li­
braries (system link library list, JOBLIB or STEPLIB, or a private load li­
brary). Most usually, STEPLIB is pointed to a private library containing 
the module. Concatenation may be used to introduce more than one library if 
required. Note carefully that the module name is the same.as the entry name 
and the function name. 

The function is introduced by means of the LOAD system function which is 
compatible with that supplied in SIL SNOBOL4 with minor exceptions: 

LOAD('FNAME(ARG 1,ARG 2, ... ,ARG N)RESULT', 'LIBRARY') 

FNAME 

AR Gs 

RESULT 

LIBRARY 

Is the function (and module) name. It must not be longer 
than 8 characters (there is no truncation of longer names 
as in SIL SNOBOL4) 

Are the argument datatypes which may be STRING, INTEGER, 
REAL, DREAL. Any other entry (including null) means that 
no conversion takes place. If one of these four special 
entries is used the corresponding argument is converted 
to the indicated datatype and passed in special external 
form. 

Is the result type specified in a similar manner. It may 
be omitted if no conversion is required. 

Is the DDNAME of the private load library. If null, the 
standard job libraries are searched. 

The call to the function obeys standard OS conventions: 

Register 1 

Register 13 

Register 14 

Register 15 

Points to the parameter list 

Points to save area 

Return address 

Function entry address 

Note: Register 8 points to the SPITBOL data area for use by functions which 
interact in an intimate way with the SPITBOL system. 

In accordance with OS standards, any registers used must be saved and re­
stored. (SIL SNOBOL4 allows destruction of registers). 

External Functions 89 



Parameters are given as addresses of double word quantities as follows: 

STRING 

INTEGER 

REAL 

Word 1 Starting address 

Word 2 Length in bytes 

Word 1 Integer value 

Word 2 Unused 

Word 1 Real value 

Word 2 Unused 

DREAL Words 1, 2 Long form REAL value 

UNCONVERTED Words 1, 2 Standard SPITBOL specifier 

It should be noted that the form of unconverted arguments is totally incom­
patible with SIL SNOBOL4. Strings are not aligned on any given boundary. 
Note that the converted f~rms of numeric data are suitable for use in a call 
to a FORTRAN function. 

The result is returned as follows: 

INTEGER 

REAL, DREAL 

STRING 

Register 0 has integer value 

Floating point Register 0 has REAL er long REAL value 

Register 0 points to two word block with Word 1 =Address, 
Word 2 = length in bytes. 

UNCONVERTED Register 0 points to eight byte SPITBOL value specifier 

String results are always copied to free core on return and may therefore be 
built inside the function. 

There are three ways to return from an external function: success, failure, 
or error. For a successful return use 

BR Rl4 

For a failure return use 

B 4(,R14) 

For an error return use 

LR 
B 

RO,=AL2(mm,nn) 
8 ( ,R14) 

SUCCESS RETURN 

FAILURE RETURN 

MAJOR CODE = MM, MINOR CODE = nn 
TAKE ERROR RETURN 

Where MAJOR and MINOR are the error codes to be generated. 

Special external data types may be introduced as special byte specifiers_ 
passed unconverted with the first byte set to one of the following values: 

x I 20 I , x I 22 I , x' 24' , x I 26 I , x' 28' ' x' 2A I ' x I 2C I, x' 2E I 

Such external data only has significance to external functions which recog­
nize it. 

90 SPITBOL 370 Reference Manual 



The SPIE active is one which generates a dump if an interrupt occurs which 
is unknown to SPITBOL. SPITBOL does not use a stae. There is a STIMER out­
standing. 

The program mask is all zeros on entry and must be all zeros on exit 

The call UNLOAD(.FNAME) has the effect in SPITBOL of undefining the function 
FNAME for any kind of function. SPITBOL automatically removes an external 
function from storage if all functions referring to it become undefined (or 
redefined). Thus in the normal case, UNLOAD is compatible with SIL SNOBOL4, 
but it also works in complex uses of OPSYN and function redefinition, avoid­
ing bugs which are currently present in SIL SNOBOL4. 

AVAILABLE EXTERNAL FUNCTIONS 

The following external function are supplied on the standard SPITBO~ dis­
tribution tape. 

SYSATNCK 

LOAD('SYSATNCK(STRING)STRING') 

SYSATNCK() is called to check if any attentions have been received while the 
program has been running in DEFERRED mode. If any attentions were received, 
the function succeeds and returns the null string. If no attentions were 
received, the function fails. The fun~tion also fails if called while in 
IMMEDIATE mode. 

SYSATNST 

LOAD('SYSATNST(STRING)STRING') 

SYSATNST('x') sets the attention handling state depending on the value of 
'x' . An 'I' sets the state to IMMEDIATE mode and a 'D' sets the state to DE­
FERRED mode. The function returns the null string. 

SYSDATE 

LOAD('SYSDATE(STRING)STRING') 

The SYSDATE function returns a string containing the Julian date, the time 
of day, and the Gregorian date. The format of the date string is 

mm/dd/yy hh.mm.ss ddd.yy 

Note: The format of the string returned by SYSDATE· differs from the previous 
implementation. 

External Functions 91 



SYSDELTA 

LOAD('SYSDELTA(STRING,INTEGER)STRING') 

SYSDELTA(DDNAME ,DELTA) changes the DELTA for line numbers written to a 
WYLBUR EDIT file. The first argument specifies the DDNAME of the WYLBUR ED­
IT file. The second argument specifies the new DELTA value. Note that DEL­
TA is an integer value equal to the WYLBUR line number· multiplied by 1000. 

The function fails if the specified file is not output associated or if DEL­
TA is greater than 9999999. The function returns the null string. 

SYSDIR 

LOAD ( I SYSD IR (STRING' STF nm, STRING ' ~TRI NG) STRING. ) 

SYSDIR provides general PDS directory manipula~ion facilities. TI1e oper­
ands to SYSDIR are as follows: 

SYSDIR(ddnama,membername,opcode,data> 

The first three arguments must always be supplied. The inclusion of the 
fourth argument depends on the opcode. The supported opcodes are: 

D Delete member. The data argument is ignored. 
A Add alias. The alias to be added is specified by the data argument. 
C Replace user data for member. The ne~ user data is specified by the data 

argument. 
R Rename member' ThP new member name is specified by the data argument. 

SYSFEOV 

LOAD('SYSFEOV(STRING)STRINGf) 

· SYSFEOV(DDNAME) forces end of volume on the current volume of a multiple 
volume file. The file's DDNaME must be provided as the string argument. An 
error will occur if called when the current volume is the last volume of a 
file. The function returns the null string. 

SYSFSIZE 

LOAD( 1 SYSFSIZE(STRING)INTEGER 1
) 

SYSFSIZE(DDNAME) returns the number of records in the dataset. There are a 
number of restrictions on the use of this function; see the section "Pseudo 
File Support 11 on page 83 for details. 

92 SPITBOL 370 Rehmmce ~1anual 



SYSLINEI 

LOAD('SYSLINEI(STRING)INTEGER') 

SYSLINEI(DDNAME) returns the integer line number of the last line read from 
the specified WYLBUR EDIT file. The first argument specified the DDNAME of 
the WYLBUR EDIT file. Note that the value returned is is an integer equal to 
the last line number read multiplied by 1000. 

;.i •• 

SYSLINEO 

LOAD('SYSLINEO(STRING,INTEGER)STRING') 

SYSLINEO(DDNAME,LINENUM) sets the line number for the next line to be writ­
ten to a WYLBUR EDIT file. The first argument specifies the DDNAME of the 
WYLBUR EDIT file. The second argument specifies the line number. Note that 
the line number is an integer value equal to the desired WYLBUR line number 
multiplied by 1000. · 

The function fails if the file is not output associated or if the line num­
ber is greater than 99999999. The function returns the null string. 

SYSOPEN 

LOAD('SYSOPEN(STRING,STRING)STRING') 

SYSOPEN provides additional I/O facilties beyond those provided by the 
standard OS interface. Normally, a file is opened at the time of the first 
read or write. SYSOPEN, however, opens a file when called. In addition, 
SYSOPEN provides facilties for opening files for update, specifying dataset 
names, specifying entire JFCBs, and specifying WYLBUR files. 

SYSOPEN(DDNAME,OPTION) opens a file. The file to be opened is either speci­
fied in the JCL or in the OPTION argument. The option argument has the fol­
lowing forms: 

1. 1 character string: 'I' for input, 'O' for output, or 'U' for update. 
The file specified by the DDNAME will be immediately.opened in the ap­
propriate mode. 

2. 45 character string: This is an extension of the previous case, except 
that the extra 44 characters represent a dataset name to be substituted 
into the JFCB before the open is done. Thus, the file opened is named by 
the extra 44 characters. 

The DD statement referenced by the DDNAME must be present in the JCL and 
the dataset name specified in the option must be located on the volume 
defined by the DD statement. 

3. 177 character string: This is an extension of the previous case, except 
that the extra 176 characters represent an entire JFCB to be used for 
the open. 

Build the JFCB carefully! 

External Functions 93 



SYSOPEN may be called either b~fore or after the call to INPUT or OUTPUT. 
However;. if INPllT or OUTPUT is called before SYSOPEN, }Je sure the file has 
not been opened imp Licitly by reading or writing .. a record. SYSOPEN returns 
the null string. 

WYLBUR EDIT files can be opened either explicitly or implicitly. Inserting 
a 'W' at the front of a valid option strin~ specifies an explicit open of a 
W'YLBUR file. For example, SYSOPEN('MYFILE ,.'WI'). Additionally, any disk 
file with the following DCB attributes will be implicitly opened as a WYLBUR 
EDIT file: 

RECFM=U 

LRECL=BLKSIZE 

BLKSIZE betwee.n 3156 :a.nd. 7000 
"'i"'·'' .. ""· ,. 

Inserting an 1N' befor~' ~ ~alid opti~n s.tring
1

ov-erride~ ·the implicit opening 
of a WYLBUR EDIT file. This means that the file will NOT be opened as a 
WYLBUR EDIT file, even if its DCB characteristics match those above. 

SY SOS 

LOAD( I SYSOS(ST.RING)STRING t) 

SYSOS () ret~rns the nam~; of the operating system under which the program is 
running, and indication of whether or not the program is running under TSO. 

SYSPARM 

LOAD( 'SYSPARM(STRING)STRING' )· ':.'I 

SYSPARM() returns the entire parameter field." . See also UPARM(). 

SYSRELSE 

LOAD('SYSRELSE(STRING)STRING') 
,' ')"-··· ·.· .' . : . . . . .. .. ' ... · .... 

SYSRELSR(DDNA.M.£~) :~4~s.es ~.h~·~:~·uri.~tit ~lo~k :·of an input file to be released. 
The next :ead from ··that file·wq.~,_)e·(::tl\e first record from the next block. 
The function returns the NULL string. · 

SYS TRACE 

LOAD('SYSTRACE(STRING,INTEGER,INTEGER)STRING') 

SYSTRACE is c.~1i~c(to ~n~~l'r~ fg~.,t+:acing for a fir'e other than SYSPRINT. 
When a file is):leJ~g:t~.a~e«~·';_·any··,t:ecqi;-d read from it or written to it.will be 
listed on SYSPRINT;·· The.'.Fpa:~amete?-:'llmits the number of records written to 
SYSPRINT by file tracing. 

SYSTRACE(<FILENAME>,<COUNT>,<SKIP>) 

94 SPITBOL 370 Ref.erence ~1anual 
~~ :~~.~ .9 .:t ~· 



where <FILENAME> is the name for the file to be traced, <COUNT> is the maxi­
mum number of reco·rds ·to be traced from that file, and <SKIP> is the number 
of records to be· read or written before tracing is to start. Note that 
<FILENAME> can be any filename valid as the second argument to the input or 
output functions. 

SYSTRACE always returns a nul 1 STRING. 

SYSTRUNC 

LOAD('SYSTRUNC(STRING)STRING') 

SYSTRUNC(DDNAME) forces the current QSAM buffer>to b& 1wr-itten.out. immediate­
ly, whether it is full or not. SYSTRUNC only works for OUTPUT associated 
files. The function retur:ns· ·the NULL string. ·· · 

SYS USER 

LOAD('SYSUSER(STRING)STRING') 

SYSUSER() returns the jobname under which the prog~am is rilnning. 
program is running under TSO, the TS~ userid is returned instead . 

. :t' 

TCONV 

LOAD('TCONV(STRING)STRING') 

If the 

\.' 

TCONV(STRING) is equivalent to a TPUT(STRING) followed by a TGET(). Thus, 
TCONV issues a prompt before reading a line_from the terminal. 

i } ,.: .~·; ' •• 

TCONVO 

LOAD('TCONVO(STRING)STRING') 

TCONVO is equivalent to a TPUT(STRING) followed by a TGETO(.)., .Thus, J"CONVO 
issues a prompt before reading a ·1'.i'ne from ··the ·t~rtilinai. The 'function will 
fail if a null string is entered by the user~,. ' . , .. .. . 

.. . 

TGET 

LOAD('TGET(STRING)STRING') 

TGET() reads a string from the t~:r;minal without issuing a prompt. .The 
string read from the terminal is r~turned_ exac.tly as ent~red, and is not 
converted in any way. TGET will automati,~ally te~cy: most TSO .~erininal I/O 
error conditions. .. - ·.. · · 



TGETO 

LOAD('TGETO(STRING)STRING') 

TGETO is similar to TGET except the function w-iH f~il ~f a· NUJ4.: .s.tring is 
entered by the user. 

~ l; 

;. , \.., .. ~"' ~ '"" • J. ' ,. .. ... - r; 

~·' -- ~·; :.: . ! -~rr ~ ... ,,. .. v .• 
·::.. ·, ~ ..... <> f,. ~ .\ ~. 

LOAD('TPUT(STRING)STRING') 

TPuTC~~-fiING)") w~i~~~ i~;s;,~rg~eni·~ H~?;~~t~ tt~di~biii~al ·~xi2fly ·~:c·:g:iven. 
~ote H~hari~·jJ~)4;:·C&·rrr.4.4&'9c~ r~~~~.,;~s des~;;:,q1 ~;t ~~~·. el}d ptJth~;.}!~n~.'.,:i t ~l.J~·t be 
appen,~1.i ~Q·n~A•U ~-i!.g4!Q.~~.:s;t;-~ng:~·-' -:'µl_e :~ 1.f,~,~t~~~-.,~P'?~~l~ .. r.e.t1:1;ns ~ .... NULL 
string and will fail under certain error conditions such as an I/0 "error. 

UPARM 

"' · : -· :. . c .. . _ c r: ; '-' ... h c ·-
:,, F , ::;~ ~ _.,, :~ ;_: ',:';,c:i- .: ~-~l "~!';_,~: •·, ' 

,· J.,.·,_;· 

LOAD('UPARM(STRING)STRING') 
.. J . . ; .r t • • . .:: .:-:.: .. ~~: ,.: . '-:·: """f ~,~ .... ~ q ~-- i (} r: : ... :/·~ ._::, , ·j .· <.. .. ... ·t- ... ,. ).,: ·~ ~·--.. .::· .. '. .. · }: . . :i 

UPARM() returns all characters following the· ffrs-t i;I&;Sl(J.il ~Ji. .. ~·Jparam~te·r 
field. The compiler does not process the user par'aineters ,· ·but keeps· ·-them 
~~J: late~,.r1e~er~I\Ce by,,_t~_:11xec;:1ft~g Wf;~_~1 pf,08X:~:--: _ ·-:~tc; . ,, ; 

If no slash appears in the parameter fielJ'~;···b'l if'no-fhiAgnfotlows·th.e·:~lash, 
UPARM returns the null string. 

· :·;si~ce:'upAi,r;i '~1ii'·typi:c~~i 1i 1;~;~-6~·1.rea· -onlyt:;or;ih'~·~·1::the ·~1;i'.ra ·proc;e~s·, qf -:itiad­
ing it, calling it, and unloading it can be' dona in a;'single stiitement::' ·(Re-
~embe~-,. bo~h:1 ,:,0AD~A~.'!::.~¥?~:.:~et~P:1:5~e np,Jl2 ~~5r+.~~~g)- .:J(::'.", >;-, .. : ,, . 

:,PARMS = ·1~#1c':~gPAfU1(J~,~~~·~)~~8~~tt).~q~r~P~!t~'Yt:~~-).'. : 1 
;· __ :· 

·r:.t. ~I:. .. {,, .. , . . ,,, ,, ,) ~., 

, '!'~ ·~ ' t L .. , f :~ . ,:: • '. r 

~ . . ~ 



PART THREE--REFERENCES 

-··;,..·,._·!'•• 

*****PUB·USHED B00KS~· '•' (.~· ,. :·i <"' .~ .... :._ ..,'!'° ~:::. ? £'.~~·I 

1. Dewar, Robert B.K. SPITBOL Version 2.0, SNOBOL4 Project Document S4D23, 

Chicago, Illinois: Illinois Institute of Technology, 1971. 

Original documentation for SPITBOL/360 and the basis for this maiu.81 ~ 

Out of print. 

2. Gimpel, J.ames F .. Algorithms in SNOBOL4, New York: John Wiley, 1976. 
, : r:.:-:- ~:·· ::~:~ .. t:>".~1 ,~~·ti:~.~·:T~l~.:: .9.~·~:· "~::! .~;.r>,;~''.:}i, .J115·~7!~~-~~:~.:u~ .c~.~.r af. ... ~-~~;··;;J (~)~'~I?~~~-2>:~· .. -;-:.T 

J5~scrfbes -marf1~ us~efiif -applit:at-ibb.~ :ot£ SNOBOL1i~·.: ptes~nl:JS:: pro~taitl\~urce:: 
· ·' .' an<i discusses :dHreterfcfes~ arr,bng ~thle var1ieuscSNOBOn-':~1enrentatidtlSJ.-'1·,.,::::::: 

· ,, "' · Ci ,. .. ,. · '2.~-1~..tJl...t-·~;~:<:· .. .i.:J:':': .. e.: rr,;..;....7·~:~~f~·1 ~.r~sd:;::.€.:" 2.i.£7.!· _\;.~'.~"'hr.Lt· 7;.c.., 

3. Griswold, R.E., J.F. Poage, and I.P. Polansky. The SNOBOL4 Programming 

Language, 2nd edition. Englewood Cliffs, N.J.: Prentice Hall, 1971. 
~!. ·:; j.l q ;.} 

Definitive description of SNOBOL4. Essential reference. 

4. GJ:itS.W.P~c\,.. R. E ;" am;i tf:.T:•:, G.i:~sw~l~ ;~A, ~N()Bf>L..4 ~riro~r, Englewood C}~Hs, 

.N~J.;~=~Y~r-.I.lfi~~~~~~P/=1~1 ?~1,·~~ "::tr;~~;;.;~~.~:.·::.~;;:. ~-~-.11::~: l;,~~:·;~.~:~-:~.· ·~;!>~ .. '~:,:'·~,;;.' 

A general introduction r:ta·~pt~gr8htmfog .J:i:n'.~:,\sNO'BOL41 • .:' :Uiefuf ::for persons 

. :n~t ""~~~r.te:iCFedi::~9.:~~1~~g~~·~n~!~ ~: .. : >.Ar::·::L~ ,,:'. ···~ :. , z::r ::··- .:~~ ~. :; c.;:. 

5. t)~ri~we>~~'· Ral~h.,.,.E,. ,: ~tripsi, .. a".'!d, .. Li.s~ .P~o~~"ss.ing" ~.i,n ~NQB0~4, 1 .~ngl~w~od 
. Cliffs NJ: Prentice- Hal 1- ~·1.97 5. · · .<J •• : .. · .. - - ;· ·, ··.·"' • -~ - " • ,.-:;. • · .. : • 1 

· .. · ' " · .. -, · ; /.. .. : . .;,. ·.'}:,.r~ 1!:.= ,!.~. ;: :': :,:· L ;_~. r~~ ~ ... ~);. .U l. .::-.~:.U.i ~"' ~ · , ~~ _; .. ~ 

Describes SNOBOL4 t~c.liii1.4ii~' :fcf~ !.c1~.Cdng.JS:nd:
1ll~t-~rdce~$:i.ng'·: followed by 

a discussion of v~riq~~ a~pJ,\c,~i.o~~ .... , Bo.ck. ).& •. ..Q)lt S~:f .pri11~. but can. be 
obtained for $8. 00 postp.aia frbdi"'th~uSNO~OL 'P'rdjeet' ·at·~the address given 

below. 

*****SNOBOL4 PROJECT PUBLICATIONS***** 

The SNOBOL4 Project is still active at The University of Arizona and certain 

documents can be obtained at the following address: 

SNOBOL PROJECT 
Department of Computer Science 
The University of Arizona 
Tucson, AZ 85721 

1. SNOBOL4 Information Bulletin, published irregularly. 

2. Bibliography of Documents Related to SNOBOL Programming Languages, 

TR78-18a. 

3. Bibliography of Numbered SNOBOL4 Documents, Publication S4D43. 




	Cover Page
	Preface
	Contents
	PART ONE--THE SPITBOL LANGUAGE
	PART TWO--HOW TO RUN A SPITBOL PROGRAM
	PART THREE--REFERENCES

