
Post Office Box 579, Pacific Grove. California 93950, (408) 373-3403
;'~

'

CP/11 IRTERFACE GUIDE

COPYRIGHT (c) 1976, 1978

DIGITAL RF.SEARCH

Copyright (e) 1976, 1977, 1978 by Digital Research. All rights
reserved. No part of this publication may be reproduce~
transmitted, transcribed, stored in a retrieval system, or
translated into any language or computer language, in any
form er by any means, electronic, mechanical, magnetic,
optical, chemical, manual or otherw~ without the prior
written permission of Digital Research, Post Office Box 5'19,
Pacific Grov~ Califomia 93950.

Disclaimer

Digital Research makes no representations or warranties with
respect to the contents hereof and specifically disclaims any
implied warranties of merchantability or fitnes for any
particular purpose. Further, Digital Research reserves the
right to revise this publication and to make changes from
time to time in the content hereof without obligation of
Digital Research to notify any person of such revision or
changes.

-- .~ .. ; ·. . .
- . . . -.

-

•

1 ..

2.

3 ..

TABLE OF CONTENTS

INTRODUCTION • • • • • • • • •

1.1 CP/M Organization •••

.
.

1.2

1. 3

Operation of Transient Programs • •

Operating System Facilities ••••

BASIC I/O FACILITIES • • • • • • •. • • •

2.1 Direct and Buffered I/O ••••••

.
. . • • . . .
.
. • •

1

1

1

3

4

5

2.2 A Simple Example • • • • • • • • • • • • • • • • 5

DISK I/O FACILITIES • • • • • • • • • •

3.1 File System Organization •••

3.2 File Control Block Format ••

3.3 Disk Access Primitives ••••••

• •

. . . .
. . .

. . • •

• • • .. 9

. . .
• • •

. . .
3.4 Random Access •••••

9

10

12

18

4. SYSTEM GENERATION • • • • • • • • • • • • • • • • • • 18

4.1 Initializing CP/M from an Existing Diskette • • • 19

5. CP/M .ENTRY POINT SUMMARY • • • • • • • • • • • • • • • 20

6. ADDRESS ASSIGNMENTS • • • • • • • • • • • • • • • • • 22

7. SAMPI.E PR:>GRA!E • 23

ii

CP/M INTERFACE GUIDE

1. INTRODUCTION

This manual describes the CP/M system organization including
the structure of memory, as well as system entry points. The
intention here is to provide the necessary information required
to write programs which operate under CP/M, and which use the
peripheral and disk I/O facilities of the system.

1.1 CP/M Organization

CP/M is logically divided into four parts:

BIOS - the basic I/O system for serial peripheral control

BOOS - the basic disk operating system primitives

CCP - the console command processer

TPA - the transient program area

The BIOS and BDOS are combined into a single program with a com­
mon entry point and referred to as the FDOS. The CCP is a dis­
tinct program which uses the FDOS to provide a human-oriented
interface to the information which is cataloged on the diskette.
The TPA is an area of memory (i.e, the portion which is not used
by the FDOS and CCP) where various non-resident operating system
commands are executed. User programs also execute in the TPA.
The organization of memory in a standard CP/M system is shown in
Figure 1.

The lower portion of memory is reserved for system information
(which is detailed in later sections), including user defined inter­
rupt locations. The portion between tbase and cbase is reserved
for the transient operating system commands, while the portion
above cbase contains the resident CCP and FDOS. The last three
locations of memory contain a jump instruction to the FDOS entry
point which provides access to system functions.

1.2 Operation of Transient Programs

Transient programs (system functions and user-defined programs)
are loaded into the TPA and executed as follows. The operator
cormnunicates with the CCP by typing command lines following each
prompt character. Each command line takes one of the forms:

{

<command>

<command>

<command>
<filename>
<filename>.<filetype>

Fi9ure 1. CP/M Memory Organization

fbase: FOOS

cbase: CCP

•

TPA

tbase:

System Parameters
boot: I I I I I I I I t l.addreas field o f jump is fbaae

..
entry: the principal entry point to FOOS ia at.location 0005

which contains a JMP to fbaae. The addreaa field at
location 0006 can be used to determine the aize of
available mClory, asauminq the ca is bein9 overlayec!.

Note: The exact addresses for boot, tbase, cbase, fbaae,
and entry vary with the CP/M version (see
Section 6. for version correspondence).

2

3

Where <command> is either a built-in command (e.q., DIR or TYPE),
or the name of a transient command or program. If the <command>
is a built-in function of CP/M, it is executed immediately; other­
wise the CCP searches the currently addressed disk for a file
by the name

<command>.COM

If the file is found, it is assumed to be a memory image of a
program which executes in the TPA, and thus implicitly originates
at tbase in memory (see the CP/M LOAD command) • The CCP loads
the COM file from the diskette into memory starting at tbase,
and extending up to address cbase.

If the <command> is followed by either a <filename> or
<filename>.<filetype>, then the CCP prepares a file control­
block (FCB) in the system information area of memory. This FCB
is in the form required to access the file through the FOOS, and
is given in detail in Section 3.2.

The program then executes, perhaps using the I/O facilities
of the FOOS. If the program uses no FOOS facilities, then tne
entire remaining memory area is available for data used by the
program. If the FOOS is to remain in memory, then the transient
program can use only up to location £base as data.* In any case,
if the CCP area is used by the transient, the entire CP/M system
must be reloaded upon the transient's completion. This system
reload is accomplished by a direct branch to location •boot" in
memory.

The transient uses the CP/M I/O facilities to communicate
with the operator's console and peripheral devices, including
the floppy disk subsystem. The I/O system is accessed by passing
a "function number" and an "information address• to CP/M through
the address marked "entry" in Figure 1. In the case of a disk
read, for example, the transient program sends the number corres­
ponding to a disk read, along with the addresP of an FCB, and
CP/M performs the operation, returning with either a disk read
complete indication or an error number indicating that the disk
operation was unsuccessful. The function numbers and error in­
dicators are given in detail in Section 3.3.

1.3 Operating System Facilities

CP/M facilities which are available to transients are divided
into two categories: BIOS operations, and BOOS primitives. 'l'he
BIOS operations are listed first:**

* Address •entry• contains a jump to the lowest address in the
FOOS, and thus "entry+l" contains the first FOOS address which
cannot be overlayed.

**The device support (exclusive of the disk subsystem) corres­
ponds exactly to Intel's peripheral definition, including I/O
port assignment and status byte format (see the Intel manual
which discusses the Inteliec MOS hardware environment).

Read Console Character
Write Console Character
Read Reader Character
Write Punch Character
Write List Device Character
Set I/O Status
Interroqate Device Status
Print Console Buffer
Read Console Buff er
Interrogate Console Status

The exact details of BIOS access are given in Section 2.
primitives include the followinq operations:

Disk System Reset
Drive Select
File Creation
File Open
File Close
Directory Search
File Delete
File Rename
Read Record
Write Record
Interroqate Available Disks
Interroqate Selected Disk
Set DMA Address

The details of BDOS access are given in Section 3.

2. BASIC I/O FACILITIES

4

The BOOS

Access to common peripherals is accomplished by passing a
function number and information address to the BIOS. In general,
the function number is passed in Register C, while the informa­
tion address is passed in Register pair D,E. Note that this
conforms to the PL/M Conventions for parameter passing, and thus
the following PL/M procedure is sufficient to link to the BIOS
when a value is returned:

DECLARE ENTRY LITERALLY '0005R'1 /• XlHI'rOJt DTllY •/

MON2: PROCEDURE (FUNC, INFO) BYTE:
DECLARE FUNC BYTE, INFO ADDRESS:
GO TO ENTRY:

END MON2:

s

or

MONl: PROCEDURE 'FtJNC,INFO):
DECLARE FUNC BYTE, INFO ADDRESS:
GO TO ENTRY:
END MONl

if no returned value is expected.

2.1 Direct and Buffered I/O.

The BIOS entry points are given in Table I. In the case of
simple character I/O to the console, the BIOS reads the console
device, and removes the parity bit. The character is echoed back
to the console, and tab characters (control-I) are expanded to
tab positions starting at column one and separated by eight char­
acter positions. The I/O status byte takes the fonn shown in
Table I, and can be programmatically interrogated or changec.
The buffered read operation takes advantage of the CP/M line edit­
ing facilities. That is, the program sends the address of a read
buffer whose first byte is the length of the buffer. The second
byte is initially empty, but is filled-in by CP/M to the number
of characters read from the consol~ after the operation (not
including the terminating carriage-return). The remaining posi­
tions are used to hold the characters read from the console. The
BIOS line editing functions which are performed during this oper­
ation are given below:

break
rubout

- line delete and transmit
- delete last character typed, and echo

control-C - system rebout
control-U - delete entire line
eontrol-E - return carriage, but do not transmit

buffer (physical carriage return)
<er> - transmit buffer

The read routine also detects control character sequences other
than those shown above, and echos them with a preceding "t"
symbol. The print entry point allows an entire string of symbols
to be printed before returning from the BIOS. The string is
terminated by a "$" symbol.

2.2 A Simple Example

As an example, consider the following PL/M procedures and
procedure calls which print a heading, and successively read
the console buffer. Each console buffer is then echoed back in
reverse order:

PRINTCHAR: PROCEDURE (B);
/* SEND THE ASCII CHARACTER B TO T!£ CONSOLE */
DECLARE B BYTE;
CALL MON! (2. B) ;
END PRINTCHAR;

CRLF: PROCEDURE:
/* SEND CARRIAGE-RETURN-LINE-FEED CHARACTERS */
CALL PRIN'l'CBAR (OOH): CALL PRINTCHAR (OAB):
END CRLF:

PRINT: PROCEDURE (A);
/* PRINT THE BUFFER STARTING AT ADDRESS A */
DECLARE A ADDRESS;
CALL MON! (9,A);
END PRINT:

DECLARE K>BUFF (130) BYTE;

READ: PROCEDURE;
/* READ CONSOLE CHARACTERS INTO 'RDBUFF' */
RDBUFF=l28: /* FIRST BYTE SET TO BUFFER LENGTH */
CALL MONl(lO,.RDBUFF):
END READ;

DECLARE I BYTE;

CALL CRLF; CALL PRINT (• 'TYPE INPUT LINES $ ') :
DO WHILE l; /* INFINITE LOOP-UNTIL CONTROL-C */
CALL CRLF; CALL PRINTCHAR (' *'); /* PROMPT WITH I*. *I
CALL READ; I= RDBUFF(l):

END;

DO WHILE (I :• I -1) <> 255;
CALL PRINTC~R (RDBUFF (I+2)) ;
END;

The execution of this program might proceed aa follows:

TYPE INPUT LINES
*BELLO
OLLEB ~
*WALL WALLA WASH;
BSAW AI.LAW AI.LAW
*MOM WOW,1
WOW MOM
•tc (system reboot)

6

.....

7

TABLE I

BASIC I/O OPERATIONS

FUNCTION/ ENTRY RETURNED TYPICAL
NUMBER PARAMETERS VALUE CALL

Read Console None ASCII Character I • MON2(1,0) !

1

Write Console ·ASCII Character None CALL MON l (2 I • A ')
2

Read Reader None ASCII Character I • MON2(3,0)
3 ..

Write Punch ASCII Character None CALL MONl (4, • BI)
{ 4
~

Write List ASCII Character None CALL MONl cs, •c • >
5

l
Get I/O Status None I/O Status Byte IOSTAT=MON2(7,0) I

I
7 j

I
I
I

Set X/O Status I/O Status Byte None CALL MON1(8,IOSTAT)
8

Print Buffer Address of None ·cALL MON1(9, • 'PRINT
9 string termi- THIS $')

nated by • $.

8

TABLE I (continued)

FUNCTION/ ENTRY RETURNED TYPICAL
NUMBER PARAMETERS VALUE CALL

Read Buff er Address of Read buff er is CALL MONl(lO,
10 Read Buffer* filled to maxi- .RDBOFF):

mum length with
console charac-

(See Note1> ters

Interrogate None Byte value with I • MON2(11,0)
:onsole Ready least siqnifi-

11 cant bit • 1
(true) if con-
sole character
is ready

~ote 1 : Read buffer is a sequence of memory locations of the foi:m:

I mlklc1lc2lc3I 111 lckf 111
l 'Lcurrent buffer length

Maximum buffer lenqth

lote2 : The I/O status byte is defined as three fields A,B,C, and D
2b 2b 2b 2b

I A lslcln I
MSB LSB

requirinq two bits each, listed from most significant to least
significant bit, which define the current device assignment as
follows:

D == {~ ~ ~ sole 2 BATCH
3 -

c -a· ~T READE~ B -a ~T PUNC~ .A-{~ ~:T} Reader 2 - Punch 2 - Li•t 2
- - 3

""""'

9

;~ 3. DISK I/O FACILITIES

.......

The BIXJS section of CP/M provides access to files stored on
diskettes. The discussion which follows gives the overall file
organization, along with file access mechanisms.

3.1 File Organization

CP/M implements a named .file structure on each diske.tte, pro­
viding a logical organization which allows any particular file to
contain any number of records, from completely empty, to the full
capacity of a diskette. Each diskette is logically distinct,
with a compiete operating system, disk directory, and file data
area. The disk file names are in two parts: the <filename>
which can be from one to eight alphanumeric characters, and the
<filetype> which consists of zero through three alphanumeric
characters. The <filetype> names the generic category_of a par­
ticular file, while the <filename> distinguishes a particUlar­
file within the category. The <filetype> s listed below give
some generic categories which have been established, although
they are generally arbitrary:

ASM

PRN

HEX

BAS
INT
COM

BAK,

assembler source file
assembler listing file
assembler or PL/M machine code
in "hex" format
BASIC Source file
BASIC Intermediate file
Memory image file (i.e., "Command"
file for transients, produced by LOAD)
Backup file produced by editor
(see ED manual)

$$$ Temporary files created and normally
erased by editor and utilities

Thus, the name

X.ASM

is interpreted as an assembly language aoun:e file by the CCP
with <filename> X.

The files in CP/M are organized as a logically contiguous ae­
quence of 128 byte records (although the records may not be phys­
ically contiguous on the diskette), which are normally rea~ or
written in sequential order. Random access is allowed under CP/M
however, as described in Section 3.4. No particular format with­
in records is assumed by CP/M, although some transients expect
particular formats:

and

(1) Source files are considered a sequence of
ASCII characters, where each "line" of the
source file is followed by carriage-return­
line-feed characters. Thus, one 128 byte
CP/M record could contain several logical
lines of source text. Machine code "hex"
tapes are also assumed to be in this for­
mat, although the loader does not require
the carriage-return-line-feed characters.
End of text is given by the character con­
trol-z, or real end-of-file returned by
CP/M.

(2) COM files are assmned to be absolute machine
code in memory image form, starting at tbase
in memory. In this case, control-z is .n2.S,
considered an end of file, but instead is
determined by the actual space allocated
to the file being accessed.

3.2 File Control Block Format

10

Each file being accessed through CP/M has a corresponding
file control block (FCB) which provides name ~nd allocation
information for all file operations. The FCB is a 33-byte area
in the transient program's memory space which is set up for each
file. The FCB fonnat is given in Figure 2. When accessing CP/M
files, it is the programmer's responsibility to fill the lower
16 bytes of the FCB, along with the CR field. Normally, the FN
and FT fields are set to the ASCII <filename> and <filetype>,
while all other fields are set to zero. Each FCB describes up
to 16K bytes of a particular file (O to 128 records of 128 bytes
each), and, using automatic mechanisms of CP/M, up ~o 15 addi­
tional extensions of the file can be addressed. Thus, each PCB
can potentially describe files up to 256K bytes (which is slightly
larger than. the diskette capacity).

FCB's are stored in a directory area of the diskette, and are
brought into central memory before file operations (see the OPEN
and MAKE commands) then updated in memory as file operations pro­
ceed, and finally recorded on the diskette at the termination of
the file operation (see the CLOSE command). This organization
makes CP/M file organization highly reliable. since diskette file
integrity can only be disrupted in the unlikely case of hardware
failure during update of a single directory entry.

It should be noted that the CCP constructs an PCB for all
transients by scanning the remainder of the line following the
transient name for a <filename> or <filename>.<filetype> com­
bination. Any field not specified is assumed to be all bla~s.
A properly formed FCB is set up at location tfcb (see Section 6),
with an assumed I/O buffer at tbuff. The transient can use tfcb
as an address in subsequent input or output operations on this
file.

10&.

In addition to the default fcb which i• •et-up at addreaa tfcb,. the
ca alao conatructa a aecond default fcb at address tfcb +··16 (i.e. , · the
d.iak map field of the fcb at tl:>aae). Thus, if the uaer types

PIOGNAME X.m'l' Y.r.AP

the file PR:>GNAM!.CX>M its loaded to the 'l'PA, and the default fcb at .tfcb
ia initialized to the filename X with filetype f.0'1'. Since the uaer typed
a aecond file name, the 16 byte area beginning at tfcl:) ~ + 1610 is also
initialized with the filename Y and filetype ZAP. It is the responsibility
of the program to move this ,econd filename and filetype to another area
(usually a separate file control block) before opening the file which
begins at tbase, since the open operation will fill the disk map portion,
thus cvezwriting the aecond name and type.

If no file names were specified in the original command, then the
fields beginning at tfcb and tfcb + 16 both contain blanks (20H) • If
one file name was specified, then the field at tfcb + 16 contains blanks.
If the filetype is omitted, then the field is assumed to contain blanks.
In all cases, the CCP translates lower case alphabetics to upper case
to be consistent with the CP/M file naming conventions.

As an added programming convenience, the default buffer at tbuff
is initialized to hold the entire command line past the proqram name.
Address tbuff contains the number of characters, and tbuff+l, tbuff+2,
••• , contain the remaining characters up to, but not including, the
carriage return. Given that the above ccmmand has been typed at
the console, the area beqinninc; at tbuff is •et up as follows:

tbuff:

+0 +l +2 +3 +4 +5 +6 +7 +8 +9 +10 +11 +12 +13 +14 +15
12)S X Z 0 'l' .)S · Y . Z A P ? ? ?

where 12 i• the number of valid characters (in binary), and)S represents
an ASCII blank. Characters are given in ASCII upper case, with un­
initialized memory following the last valid character.

Again, it ia the responsibility of the program to extract the infor­
mation from thia buffer before any file operations are performed since
the FOOS uses the tbuff area to perfm:m directory functions.

In a •tandard at/M •Y•tan, tbe following value• are aa•med:

boot: OOOOH
entry: OOOSH
tfcb: 0050!
tfcb+l6 006CH
tbuf f OOSOH
tbase: OIOOH

·bootatrap load twarm •tart)
entry point to FOOS
first default file control block
second file name
default buffer address
baae of transient area

11

Figure 2. File Control Block Format

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 lS 16 17 18 19 •• • •• 27 2B 29 30 3132

1111111111111111111111 11I11111
\ I l _j __-------- I ~

~

"".,,,.. ________ __,

ET FN PT EX RC BR

FIELD PCB POSITIONS PURPOSE

ET 0 Entry type (currently not used,
but assumed zero)

FN 1-8 File name, padded with ASCII
blanks

FT 9-11 File type, padded with· ASCII
blanks

EX 12 File extent, normally set to
zero ..,.,

13-14 Not used, but assumed zero

RC 15 Record count is current extent
Size (O to 128 records)

DM 16-31 Disk allocation map, filled-in
and used by CP/M

· NR 32 Next record number to read or
write

£

12

3.3 Disk Access Primitives

Given that a program has properly initialized the PCB'a for
each of its files, there are several operations which can be per­
formed, as shown in Table II. In each case, the operation is ·
applied to the currently selected disk (see the disk select oper­
ation in Table II), using the file information in a specific FCB.
The following PL/M program segment, for example, copies the con­
tents of the file X.Y to the (new) file NEW.FIL:

DECLARE RET BYTE.:

OPEN:

CLOSE:

MAKE:

PROCEDURE (A)
DECLARE A ADDRESS:
RET=MON2(15,A):
END OPEN:

PROCEDURE (A):
DECLARE A ADDRESS:
RET=MON2(16,A):
END:

PROCEDURE (A) :
DECLARE A ADDRESS:
RET=MON2(22,A):
END MAKE:

DELETE: PROCEDURE (A) :
DECLARE A ADDRESS:
/* IGNORE RETURNED VALUE */
CALL MON1(19,A);
END DELETE:

READBF: PROCEDURE (A):
DECLARE A ADDRESS:
RET=MON2(20,A):
END READBF;

WRITEBF: PROCEDURE (A):
DECLARE A ADDRESS:
RET=MON2(21,A):
END WRITEBF:

INIT: PROCEDURE :
CALL MON1(13,0);
END INIT:

/* SET UP FILE CONTROL BLOCKS */
DECLARE PCBl (33) BYTE

INITIAL (O,'X ','Y ',O,O,O,O),
FCB2 (33) BYTE
INITIAL (O, 'HEW ','FIL',0,0,0,0):

CALL INIT;
/* ERASE 'NEW.FIL' IF IT EXISTS */
CALL DELETE (• FCB2) :
/* CREATE''NEW.FIL' AND CHECK SUCCESS*/
CALL MAKE (• FCB2) :
IF RET = 255 THEN CALL PRINT (.'NO DIRECTORY SPACE$'):

EOF

ELSE
DO: /* FILE SUCCESSFULLY CREATED, NOW OPEN 'X.Y' */
CALL OPEN (• FCBl) :
IF RET • 255 THEN CALL PRINT (.'PILE NOT PRESENT$');
~E
DO: /* PILE X.Y POUND AND OPENED, SET
NEXT RECORD TO ZERO FOR BOTS FILES */
FCB1(32), FCB2(32) • 0:
/* READ FILE X.Y UNTIL EOF OR ERR:>R */
CALL READBF (.FCBl): /*READ TO BOB*/

DO WHILE RET • 0:
CALL WRITEBF (• FCB2) /*WRITE FROM SOB*/
IF RET = 0 THEN /*GET ANOTHER RECORD*/

CALL READBF (• FCBl) : ELSE
CALL PRINT (.'DISK WRITE ERROR$'):

END:
IF RET < >1 THEN CALL PRINT (. .. TRANSFER ERROR $') ;
ELSE

DO: CALL CLOSE (• FCB2) :
IF RET • 255 THEN CALL PRINT (.'CLOSE ERROR$'):
END:

END:
END:

13

This program consists of a number of utility procedures for
opening, closing, creating, and deleting files, as well as two
procedures for reading and writing data. These utility procedures
are followed by two FCB's for the input and output files. In
both cases, the first 16 bytes are initialized to the <filename>
and <filetype> of the input and output files. The main program
first initializes the disk system, then deletes any existing
copy of "NEW.FIL" before starting. The next step is to create
a new directory entry (and empty file) for "NEW.FIL". If file
creation is successful, the input file •x.Y" is opened. If this
second operation is also successful, then the disk to disk copy
can proceed. The NR fields are set to zero ao that the first
record of each file is accessed on subsequent disk I/O operations.
The first call to READBF fill• the (implied) DMA buffer at BOB
with the first record from X.Y. The loop which follows copie•
the record at SOH to •NEW.FIL" and then reports any error•, or
reads another 128 bytes from X.Y. Thia transfer operation con­
tinues until either all data has been transferred, or an error
condition arises. If an error occurs, it i• reported: other­
wise the new file ia closed and the program halt•.

.,,,
I

'
FUNCTION/NUMBER

Lift Head
12

Initialize BOOS
and select disk

"A"
Set DMA address
to 80H

13

" Log-in and
select disk

x
14

Open file

15

Close file.

16

. l

4 ""\

TABLE II

DISK ACCESS PRIMITIVES

ENTRY PARAMETERS

None

None

An integer value cor­
responding to the
disk to log-in:
A•O, B=l, C=2, etc.

Address of the FCB
for the file to be
accessed

Address of an FCB
which has been .pre­
viously created or
opened

RETURNED VALUE

None
Head is lifted from
current drive

None
Side effect is that
disk A is"logged­
in" while all others
are considered "off­
line"

None
Disk X is considered
"on-line" and selec­
ted for subsequent
file operations

Byte address of the
FCB in the directory,
if found, or 255 if
file not present.
The DM bytes are set
by the BOOS.

Byte address of the
directory entry cor­
responding to the
FCB, or 255 if not
present

14

(

TYPICAL CALL

CALL MON2(12,0)

CALL MONl (13, 0)

CALL MONl (14 ,1)

(log-in disk "B")

I= MON2(1S,.FCB)

I= MON2(16;.FCB)

FUNCTION/NUMBER

.Search fpr file

17

Search for next
occurrence

18

Delete Pile
19

TABLE II (continued)

ENTRY PARAMETERS

Address of FCB con­
taining <filename>
and <filetype> to
match. ASCII •1•
in FCB matches any
character.

Sama as alove, wt
called after func­
tion 17 (no other
intermediate BOOS
calls allowed)

Address of FCB con­
taining <filename>
and <filetype> of
file to delete from
diskette

RETURNED VALUE

Byte address of first
FCB in directory that
matches input FCB, if
any1 otherwise 255
indicates no match.

Byte address of ~

None

TYPICAL CALL

I• MON2(17,.FCB)

I• MON2(18,.FCB)

I • MON2 (19, • FCi!)

--::::-:::::--:-:--:-:-:----:-:-:-----:-----------------------------------Raad Next Record
20

Address of FCB of a
successfully OPENed
file, with NR set
to the next record
to read (see note1)

0 • successful read
1 a read past end of

file

I= MON2(20,.FCB)

Hote1 1

' (

2 • reading unwritten
data in random
access

The I/O operations transfer data to/from address ROH for.the next 128 bytes unless
the DMA address baa been altered (see function 26). Further, the NR field of the
FCB is automatically incremented after the operation. If the NR field exceeds 128,
the next extent is opened automatically, and the HR field is reset to zero.

15

((
I 'it

(

FUNCTION/NUMBER

Write Next Record

21

Make File

22

,
Rename FCB

23

""'\,

' TABLE II (continued)

ENTRY PARAMETERS

Same as.above, except
NR is set to the next
record to write

Address of FCB with
<filename> and <file­
type> set. Direc­
tory entry is cre­
ated, the file is
irlitialized to empty.

Address of FCB with
old FN and FT in
first 16 bytes, and
new FN and FT in
second 16 bytes

RETURNED VALUE

0 = successful write
1 = error in extend­

ing file
2 = end of disk data
255 = no more dir­

ectory space
(see note

2
)

Byte address of dir­
ectory entry alloca­
ted to.the FCB, or
255 if no directory
space is available

Address of the dir­
ectory entry which
matches the first
16 bytes. The
<filename>and <file­
type> is altered
255 if no match.

f

TYPICAL CALL

I= MON2(21,.FCB)

ID MON2(22,.FCB)

I • MON2 (2 3, .FCB)

Note2 : There are normally 64 directory entries available on each diskette (can be
expanded to 255 entries), where one entry is required for the primary file,
and one for each additional extent.

16

. if

FUNCTION/NUMBER

Interrogate log-
in vector

24

Set DMA address
26

Interrogate
Allocation

27

Interrogate Drive
number

25

(
I 'if

TABLE II (continued)

ENTRY PARAMETERS

I

None
I

Address of 128 byte
DMA buffer

None

Hone

c

RETURNED VALUE

Byte value with "l"
in bit positions of
•on line• disks,
with least sign!-
ficant bit corres-
ponding to disk "A"

None
Subsequent disk I/O
takes place at spe-
cified address in
memory

Address of the allo-
cation vector for
the current disk
(used by STATUS com-
mand)

Diak nunber of currently
logqed disk (i.e., the
drive which will be used
for the next disk operation

(

(

17

TYPICAL CALL

I • MON2 (2 4, 0)

CALL MON1(26,2000H)

MOHl: PROCEDURE(•••)
ADDRESSJ

A• MON3(27,0)J

I• trlN2(25,0)1

~

18

3.4 Random Access

Recall that a single FCB describes up to a l~K segment of a
(possibly) larger file. Random access within the first 16K seg­
ment is accomplished by setting the NR field to the record number
of the record to be accessed before the disk I/O takes place.
Note, however, that if the 128~h record is written, then the
BDOS automatically increments the extent field (EX), and opens
the next extent, if possible. In this case, the program. must
explicitly decrement the EX field and re-open the previous extent.
If random access outside the first 16K segment is necessary,
then the extent number e be explicitly computed, given an absol­
ute record numbP.r r as

e = L1~0J
or equivalently,

e = SHR{r,7)

this extent number is then placed in the EX field before th~ seg­
ment is opened. The NR value n is then computed as

n = r mod 128
or

n = r AND 7FH.

When the programmer expects considerable cross-segment accesses,
it may save time to create an PCB for each of the 16K segments,
open all segments for access, and compute the relevant FCB from
the absolute record number r.

4. SYSTEM GENERATION

As mentioned previously, every diskette used under CP/M is assumed to
contain the entire system (excluding transient commands) on the first two
tracks. 'l'he operating system need not be present, however, if the diskette
is only used as secondary disk storage on drives B, C, ••• • .since the CP/M
aystem is loaded only frcm drive A.

'l'he CP/M file system is organized so that an IBM-canpatible diskette
from the factory (or from a vendor which claims IBM compatibility) looks
like a diskette with an empty directory. Thus, the user must first copy
a version of the CP/M system from an existing diskette to the first two
tracks of the new diskette, followed by a sequence of copy operations,
using PIP, which transfer the transient command files from the original
diskette to the new diskette.

1.9

NOTE: be.fore you beqin the CP /M copy operation, read your LicensiJ:lq
AqrMment.. It qives your exact leqal obliqations when mak.i.nq reproductions
of CP/M in whole or in part, and specifically requires tha.t you place the
copyright actice

Copyri9ht (c), 1976
Di9it&l Research

cm each d.ialcette which results frclll the copy operaticm..

4.1. IJU.tializinq CP/M trcm an Existing Diskette

'?he first two tracks are placed on a new diskette by runninq the tran­
sient command SYSGEN, as described in the document •An Introduction to CP/M
Features and Facilities.• 'l'he SYSGEN operation bri.nqs the CP/M system fram
an initialized diskette into memory, and then takes the memory imaqe and
places it on the new diskette.

Opon completion of the SYSGEN operation, place the oriqinal diskette
on drive A, and the initialized diskette on drive B. Reboot the system;
the response should be

indicating that drive A is active. Leg into drive B by typinq

B:

and CP/M should respond with

indicating that drive B is active. If the diskette in drive B is factory
fresh, it will contain an empty directory. Non-standard diskettes may,
however, appear as full directories to CP/M, which can be emptied by typing

when the diskette to be initialized i• active. Do not qive the ERA conMnd
if you viah to preserve f ilea on the new diskette since all files will be
·era .. d vi th this eOnannd.

After eumininq diak B, reboot the CP/M syatem. and return to drive A for
further operations.

1'be transient canmanda are then copied frail drive A to drive B uainq the
PIP proc;ram. The •quence of ccmmands shown below, for example, copy· the
principal proqrama from a ·standard CP/M diskette to the new diskette:

A)P~
*B:STAT.CX>M-STAT.CX>M~

*B:PIP.COM-PIP.COM~

*B :LOAD. COM-LOAD. COM.?
*B: ED. COM-ED. COM/

--._,,

*B:ASM.COM-ASM.CX>M~

*B:SYSGEN.CX>M-SYSGEN.COM~

*B : DDT. COM-DDT. CX>~
*;
A)

'l'he user sht)uld then loq in disk B, and type the ccmnand

DIR *• *.r>

to ensure that the files were transferred to drive B from drive A. The
various proqrams can then be tested on drive B to check that they were
transferred properly.

20

Note that the copy operation can be s:implif ied somewhat bfcre~:.ing _
a "submit" file which contains the copy comnands. The file could be
named GEN.SUB, for example, and might contain

SYSGEN_,
PIP B: STAT. COM-STAT .COM_,
PIP B:PIP.COM-PIP.CX>M;
PIP B:LOAD.COM-LOAD.CX>~
PIP B: ED. CX>M-ED. a:>M;
.PIP B :ASM. COM-ASM. CX>f\.
PIP B: SYS GEN. COM-SYSGEN. COMJ
PIP B : DDT. CX>M-DDT. COM~

The generation of a new diskette from the standard diskette is then done
by typing simply

SUBMIT GEN_,

5. CP/M ENTRY POINT SUMMARY

The functions shown below summarize the functions of the
FDOS. The function number is passed in Register C (first para­
meter in PL/M), and the information is passed in Registers D,E
(second PL/M parameter). Single byte results are returned in
Register A. If a double byte result is returned, then the high­
order byte comes back in Register B (normal PL/M return). The
transient program enters the FOOS through location •entry" (see
Section 7.) as shown in Section 2. for PL/M, or

CALL entry •

in assembly language. All registers are altered in the FDOS.

21

Function Number Inf orma ti on Result -.
0 System Reset ,.1
1 Read Cons,.,le ASCII character
2 Write Console ASCII character
3 Read Reader ASCII character
4 Write Punch ASCII character
s Write List ASCII character
6 (not used)
7 Interroqate 'I./O s ta tua 'I./O Status Byte
8 Alter I/O Status I/O Status Byte
9 Print Console Buffer Buffer Address

10 Read Console Buffer Buffer Address
ll Check Console Status True if character

Ready
12 Lift Disk Bead
13 Reset Disk System
14 Select Disk Disk number
15· Open File FCB Address Completion Code
16 Close File,,,, 17 Search First • • " II

18 Search Next .. • • ..
19 Delete File • ..
20 Read Record " .. " "
21 Write Record • ..
22 Create File " • • ..
23 Rename File • .. • ff

24 Interroqate Loqin Loqin Vector
25 I 11 te rroqa te Disk Selected Diak

Bamber
26 Sat J»tA Address ·IMA Address
27 ~nterroqate Allocation Addres• of Allo-

cation Vector

/

22

6. ADDRESS ASSIGNMENTS

'l'he standard distribution version of CP/M is organized for an Intel
MDS microcomputer developnental system with l6K of main memory, and two
diskette drives. Larger systems are available in 16IC incr•ents, providing
management of 32X, 48K, and 64K systems (the largest MOS system is 62K
since the ICM monitor provided with the MOS resides in the top 2lC of the
memory space). Por each additional 16IC increment, add 4000H to ·the values
of cbase and fbase.

'l'he address assignments

boot• OOOOH
tf c:b • OOSa!
tbuf f• OOBOB
tbase- OlOOH
chase• 2900H
fbase• 3200H
entry• OOOSH

are

WU'1ll start operation
default file control block location
default buffer location
.base of transient program area
base of console command processor
base of disk operating system
entry point to disk system fran
user programs

23

7. SAMPLE PROG~

This section cantaina two aample programs which interface with the CP/M
operating system. 'l'he first program is written in assembly language, and
ia the 80urce program for the COMP utility. 'l'he second program ia the CP /M
LOAD utility, written in PI./M.

The uaembly lanqua9e proqram begins with a number of •equatea• for sya­
tm entzy points and proqram constants. 'l'he equate

BIX>S EQO 00058

for exaJ1Ple, gives the CP/M entry point for peripheral I/O functions. 'l'he
defualt file control block address is also defined (!'CB), along with the
default buffer address (Btl!T). Note that the proqram is aet up to run at
location lOOB, which is the base of the transient program area. '?he stack
is first aet-up by saving the entry stack pointer into OLDSP, and resetting
SP to the local stack. The stack pointer upon entry belongs to the consn le
ecmmand processor, and need not be saved unless control is to return tc tae
o::P upon exit. That is, if the program terminates with a reboot (branch to
location OOOOH) then the entry stack pointer need not be aaved.

The proqram then jumps tc MAIN, past a number of subroutines which are
listed below:

BREAK - when called, checks to see if there is a console
character ready. BREAK ia used to stop the listing
at the console

PCHAR - print the character which is in register A at the
console.

CRLF - send carriaqe return and line feed to the console

PNIB print the hexadecimal value in register A in ASt:rI
at the console

PBEX - print the byte value (two ASCII characters) in
register A at the ccnaole

ERR - print error flaq In at the console, where n is

1 if file canm>t be opened
2 if c!iak read error occurred

- qet next byte of data frca the input file. %f the
IBP (input buffer pointer) exceeds the size of the
input buffer, then another disk record of 128 bytes
i8 read. Otherwise, the next character in the buffer
ia returned. IBP ia updated to point to the next
character.

24

The MAIN program then appears, which begins by calling SETUP. The.SETUP subroutine, discussed below, opens the input file and checks for errors. If the file is opened properly, the GLOOP (get loop) label gets control.

On each successive pass through the GLOOP label, the next dAta byte
is fetched usinq GNB and uve in register B. The line addresses are listed every sixteen bytes, ao there must be a cheek to see if the least signi­ficant 4 bits is zero on each output. If so, the line address is taken fran registers h and 1, and typed at the left of the line. In all cases, the byte which was previously saved in register B is brought back to
register A, following label NONOM, and printed in the output line. The
cycle through GLOOP continues until an end of file condition is detected in DISKR, as described below. Thus, the output lines appear as

0000 bb bb bb bb bb bb bb bb bb bb bb bb bb bb bb bb
0010 bb bb bb bb bb bb bb bb bb bb bb bb bb bb bb bb

until the end of file.

'l'he label FINIS gets control upon end of file. CRLF is called first to return the carriage from the last line output. The CCP stack pointer { is then reclainaed from OLDSP, followed by a RET to return to the console ._.,. command processor. Note that a JMP OOOOH could be used followinq the FINIS label, which would cause the CP/M system to be brouqht in aqain fran the diskette (this operaticm is necessary only if the CCP has been over­layed by data areas) •

The file control block format is then listed (FCBDN FCBLN) which overlays the fcb at location OSCH which is setup by the CCP when the DUMP program is initiated. That is, if the user types

DUMP X.Y

then the CCP sets up a properly formed fcb at location OSOi for the DUMP (or any other) proqram when it goes into execution. Thus, the SE'l'tlP sub­routine simply addresses this default fcb, and calla the disk system to open it. The DISJCR (disk read) routine ia called whenever GNB needs another buffer full of data. The default buffer at location SOR is used, alonq with a pointer (IBP) which counts bytes as they are processed. Normally,
an end of file condition is ta.ken as either an ASCII lAH (control-z), or an end of file detection by the DOS. 'l'he file dump proqram, however, stops only on a DOS end of file.

0100
0005 •
000F •
0014 •
0002 •
8001 •
eaes •

0e5c •
0080 •

0100 210000
0103 39
0104 220F0l
0107 315101
"10A C3C401

0100

010F
0111
0151 •

0151 ESDSC5
0154 0E0B
0156 CD0500
0159 ClOlEl
015C C9

0150 ESDSCS
0160 1£02
0162 SF
0163 Cii8580
1166 ClDlEl
0169 C9

016A 3E0D
016C CD5D01
016F 3EBA
0171 CDSD01
0174 C9

0175 E60F
0177 FE0A
0179 D281Bl

: FILE DUMP PROGRAM,
0

READS AN INPUT FILE AND PRINTS IN HEX
• ,
• , . , COPYRIGHT (C) '

ORG 1088
EOO e0ess
EOU 15
EOU 20
EOU 2
EQU 1

DIGITAL RESEARCH, 1975, 1976

1DOS EN'l'RY p0INT
;FILE OPEN
JREAD FUNCTION
JTYPE FUNCTION
JREAD CONSOLE

BOOS
OPENF
READF
TYPEF
CONS
BRKF EOU 11 JBREAK KEY FUNCTION· (TROE· IF
• ,
FCB
BUFF
• ,

EOO
EOU

SCB. ;FILE CONTROL BLOCK ADDRESS
see :INPUT DISK BUFFER ADDRESS

: ·SET UP STACK
LXI e,e
DAD SP
SHLD OLDSP
LXI SP,STKTOP
JMP MAIN

: VARIABLES
IBP: OS 2 1INPUT BUFFER POINTER
• ,
: STACK AREA
OLDSP: OS 2
STACK: DS 64
STKTOP EOU $
• ,
: SUBROUTINES
• ,
BREAK: :CHECK BREAK KEY (ACTUALLY MY KEY WILL DO)

PUSH BI PUSH D! POSH B: ENVIRONMENT SAVED

. ,

MVI C,BRKF
CALL BOOS
POP S! POP 01 POP B: ENVIRONMENT RESTORED
RET

PCBAR: ;PRINT A CHARACTER

' CRLF:

1
:

PUSH Bl PUSH 01 PUSH 8; SAVED
MVI C,TYPEF
MOV E,A
CALL BOOS
POP Bl POP 01 POP B; RESTORED
RET

MVI
CALL
MVI
CALL
RET

A,808
PC BAR
A,0AH
PC BAR

PNIB: JPRINT NIBBLE IN REG A
ANI SFB JLOW 4 BITS
CPI .le
JNC Pll

.,,,,,,,
25

CHAR READY)

1 LESS THAN OR EQUAL TO 9
017C C630 ADI • e.
017E C38301 JMP PRN

• ,
(~ • GREATER OR EQUAL TO 18 26· ,

8181 C637 Pl8: ADI .A. - 18
8183 CDSD0l PRN: CALL PCB AR
0186 C9 RET

• ,
PHEX: ;PRINT HEX CHAR IN REG A

0187 FS PUSH PSW
8188 IF RRC
0189 IF ARC
018A IF RRC
8188 SF RRC
e10c co1se1 CALL PNIB 1PRINT NIBBLE
818F Fl POP PSW
0190 CD7501 CALL PNIS
0193 C9 RET

• I

;PRINf ERR: ERROR MESSAGE
0194 CD6A01 CALL CRLF
8197 3E23 MVI A, •t.
0199 CDSD01 CALL PC HAR
019C 78 MOV A,B
0190 C630 ADI . ".
019F CDSD01 CALL PC HAR
01A2 CD6A01 CALL CRLF
01AS C3F701 JMP FINIS . ,,..,. I

GN8: 7GET NEXT BYTE
01A8 3A0D01 LOA IBP
01A8 FE80 CPI '808
01AD C2B401 JNZ GS . READ ANOTHER BUFFER I .

I .
I

01B0 CD1602 CALL DIS KR
0183 AF XRA A

• I

G0: rREAD THE BYTE AT BOFF+REG A
8184 SF MOV E,A
0185 1600 MVI D,I
0187 3C INR A
8188 320001 STA IBP

• POINTER IS INCREMENTED I

• SAVE THE CURRENT FILE ADDRESS I

llBB ES POSH B
llBC 218888 LXI B,BOFF
81BF 19 Ill.D D
e1ce 7E MOV A,M

• BYTE IS IN THE ACCUMULATOR ' ,
• I

• RESTORE FILE ADDRESS AND INCREMENT I

01Cl El POP H
01C2 23 INX H
81C3 C9 RET ,

MAIN: J READ AND PRINT SUCCESSIVE BUFFERS
81C4 CDFFll CALL SETUP JSET OP INPUT FILE

01C7 3E80
01C9 320001
e1cc 21FFFF

01CF CDA801
0102 47

0103 70
0104 £60~'
0106 C2EB81

0109 CD6AB1

01oc cos1e1
01DF 0F
01E0 DAF781

01£3 7C
01E4 CD8701
01E7 7D
01£8 C08701

01EB 3£20
01ED CD500l
01F0 78
01Fl CD8701

01F4 C3CF01

01F7 CD6A01
01FA 2A0F0l
0li'D F9
01FE C9

eesc •
0050 •
0065 •
0068 •
8068 •
Hl7C •
8070 •

SlFF 115C88
0202 8E0F
e204 coesee

0207 f'EFF
0209 C21182

• ,
GLOOP:

• ,

• ,

J

• ,
J

• I

NON OM:

• ,

MVI
STA
LXI

A,80H
IBP JSET BUFFER POINTER TO 80H
B,SFFFFB 1SET TO -1 TO START

CALL GNB
MOV B,A
PRINT BEX VALDES

CHECK
1'£JV
ANI
JNZ
PRINT
CALL

FOR LINE FOLD
A,L
8FH JCBECK LOW 4 SITS
NON UM

LINE NOMBER
C!U.F

CHECK FOR BREAK KEY
CALL BREAK
RRC
JC FINIS ;DON.T PRINT ANY MORE

MOV
CALL
MOV
CALL

MVI
CALL
MOV
CALL

JMP

A,H
PBEX
A,L
PBEX

A, • •
PCHAR
A,B
PHEX

GLOOP

EPSA: ;END PSA
1 END OF INPUT

FINIS:

1
• I

J
FCBDN
FCSFN
PCB FT
PCBRL
FCBRC
FCBCR
FCBLN
f
J

CALL
LHLD
SPHL
RET

FILE
EOC
EQU
EQU
EOO
EQO
EOtl
EOU

SETUP: JSET
J OPEN

• I

LXI
MVI
CALL
CB ECK
CPI

. JNZ

CRLF
OLDSP

CONTROL BLOCK DEFINITIONS
FCB+0 ;DISK NAME
FCB+l 7FILE NAME
FCB+9 JDISK FILE TYPE (3 CHARACTERS)
FCB+l2 ;FILE·s CURRENT REEL NOMBER
PCB+lS JFILE'S RECORD COUNT (8 TO 128)
FCB+32 1CURRENT (NEXT) RECORD NUMBER (8
FCB+33 :FCB LENGTH

UP FILE
THE FILE FOR INPOT

D,FCB
C,OPENF.
BOOS

FOR ERRORS
255
OPNOK

27

TO 127: -

920C 9601
12BE CD9481

1211 AF
1212 321cee
8215 C9

8216 ESDSCS
8219 ll5CB0
821C IJE14
021E coes19
8221 ClDlEl
8224 FEee
8226 ca
0227 FEB!
0229 CAF7Bl

022C 8602
022E CD94Bl

0231

BAD OPEN
MVI B,l JOPEN ERROR
CALL ERR

J
OPNOK: :OPEN IS OK.

. XRA A
STA FCBCR
RET

J
DISKR: :READ DISK FILE RECORD

PUSH Bl PUSH Dl PUSH B

• ,

• ,

• ,

LXI D,FCB
MVI C,READF
CALL ,aoos
POP Bl POP 01 POP B
CPI B JCBECK FOR ERRS
RZ
MAY BE EOF
CPI l
JZ FINIS

MVI
CALL

END

B,2
ERR

:DISK READ ERROR

The PL/M program which follows implements the CP/M LOAD utility. The
function is u follows. The user types

LOAD filename-

29

If filename.BEX exists on the diskette, then the LOAD utility reads the •hex"
formatted machine code file and produces the file

filename.COM

where the CX>M file contains an absolute aemofy image of the machine code,
ready for load and execution in the 'l'PA. If the file does not appear on
the c!ialtette, the LOAD pzoqram types

SOtJRCE IS READER

and reads an Addmaster paper tape reader which contains the hex file.

'l'he LOAD proqram is aet up to load and run in the TPA, and, upon ccmt­
pletion, return to the CCP without rebo0tin9 the system. 'ftlua, the pro­
qram is constructed aa a single procedure called LOADCX>M which takes the
form

O!'AB:
I.OADCOM: PROCEDORE;

/* LIBRARY PROCEDURES */
JC)Nl: •••
/* END LIBRARY PK>CEDORES */
MOVE: •••
GETCBAR: •••
PRIN'l'NIB: •••
PRINTBEX: •••
PRINTADDR.:
RELOC: •••

SETMEM:
REAillEX:
READBY'l'E :
READCS:
M1UCEDOOBI.E :
D%AGNOSE:

mm RELOC;

DECLARE STAOC (16) ADDRESS, SP ADDRESS;
SP • S'rACDTRJ S'?ACJCPTR • • ST.M:JC (I.ENG'l'B (S~)) 1

•••

• • •
S'rAC:EP!Jl • SP;
RE'l'CRN 0 J

END LOADCOM;
1
!'.OF

'30

The label OFAH at the beginning sets the origin of the canpilation to OFAH,
which causes the first 6 bytes of the compilation to be ignored when loaded
(i.e., the TPA starts at location lOOH and thus OFAH, ••• ,OFFH are deleted
from the a:>M file). In a PL/M canpilation, these 6 bytes are used to set up
the stack pointer and branch around the subroutines in the proqram. In this
case, there is only one subroutine, called U>ADCOM, which results in the
following machine memory image for LOAD

OFAH: LXI SP,plmstack 1SE'l' SP TO DEFAULT STACK
OFill: JP pastsubr 1JUMP AR:>tJND LOADCX>M
lOOH: beginning of LOADCOM procedure

end of LOADCOM procedure
RET

pastsubr:
EI
BLT

Since the machine code between OFAH and OFFH is deleted in the load,
execution actually begins at the top cf ~DCOM. Note, however, that
the initialization of the SP to the default stack has also been deleted;
thus, there is a d•claration and initialization of an explicit stack and
stack pointer before the call to RELOC at the end of LOADCOM. This is
necessary only if we wish to return to the CCP without a reboot operation:
otherwise the origin of the program is set to lOOH, the declaration of
LOADCOM as a procedure is not necessary, and termination is accomplished
by simply executing a

GO TO OOOOH;

at the end of the program. Note also that the overhead for a system re­
boot is not great (approximately 2 seconds), but can be bothersome for
system utilities which are used quite often, and do not need the extra
apace.

The procedures listed in LOADCOM as "library procedures" are a standard
set of PL/M subroutines which are useful for CP/M interface. The RELOC
procedure contains several nested subroutines for local functions, and
actually performs the load operation when called from LOADa:>M. Control
initially starts on line 327 where the atackpointer is saved and re-initialized
to the local stack. Tae default file control block name is copied to
another file control bl~ (SFCB) since two files may be open at the same
time. The program then calla SEARCH to aee if the BEX file exists1 if not,
then the high apeed·reader is used. If the file does exist, it is opened for
input (if possible) • The filetype COM is moved to the default file control
block area, and any existing copies of filename.COM files are removed from
the diskette before creating a new file. The MAKE operation creates a new
file, and, if successful, RELOC is called to read the HEX file and produce
the COM file. At the end of processing by RELOC, the COM file is closed
(line 350). Note that the HEX file does not need to be closed since it
was openod for input only. 'l'he Aata written to a file is not permanently
recorded until the file is succe•~fully closed.

Diak input character• are read through the procedure GETCBAR. on line
137. Although the CHA facilities of a»/M could be used here, the CZTCHAR
procedure instead uaes the default buffer at location BOB and moves each
buffer into a vector called SBtJFF (aource buffer) as it is read.. On exit,
the C2TalAR. procedure retuma the next input character and updatu the
aource ln1ffer pointer (SBP).

'l'he SE'?MEM procedure on line 191 perfOJ:Za the opposite function from
GE'tCBAll. !he SE'DIEM procedure •intain• a buffer of loaded machine code
in pure binary fom which acts u a •window• on the loaded ce>de. If there
i• an att•pt by REI.OC to write below thi8 window, then the data ia i;nored.
If the data is within the wind.ow, then it ia placed into MBO!T (memory
buffer). If the data is to be placed above this window, then the window
is moved up to the point where it would include the data address by writinq
the memory imaqe auccesaively (by 128 byte buffers), and movinq the base
address of the window. Osinq this technique, the proqrammer can recover
from checksum errors on the hiqh-speed reader by stoppinq the reader,
rewindinq the tape for .._ distance, then restartinq LOAD (in this car.11,
LOADinq is resumeG by interruptinq with a NOP instruction) • Aqain, the ··
SETMEM procedure uses the default buffer at location SOB to perform the
disk output by moving 128 byte segments to SOB throuqh OFFB before each
write.

.._,.

I

..
90001
90002
80003
00004
e0ees
00006
00007
0000s
00009
e0e1e
90011
00012
00013

l
1
1
1
1
1
1
1
1
2
2
2
2

ESS */
90014 2
00015 2
90016 2

I
00017
00018
00019
00020
00021
00022

*/

2
2
2
2
2
2

00023 2
00024 2

ROM_ TH~
00025 2

S THE MACH
00026 2

*I
00027 2

****** *I
00028
00029
00030
90031
90032
00033
00034
00035
00036
00037
80038
8fUJ39
88848
00041
00042
90043
00044
00045
00046
00047
00048
00049
00050

2
2
3
3
3
3
2
2
3
3
3
3
2
2
3
3
3
2
2
2
2
2
2

8FAH: DECLARE BOOS LITERALLY ·eeese·,
/* TRANSIENT COMMAND LOADER PROGRAM

*I

COPYRIGHT (C) DIGITAL RESEARCH
JUNE, 1975

LOADCOM: PROCEDURE BYTEJ
DECLARE FCBA ADDRESS INITIAL(SCH)J
DECLARE FCB BASED FCBA (33) BYTEJ

31

DECLARE BUFFA ADDRESS INITIAL(88B), /* I/O BUFFER ADDR

BUFFER BASED BUFFA (128) BYTEJ

DECLARE SFCB(33) BYTE, /* SOURCE FILE CONTROL BLOCK *

BSIZE LITERALLY ·1024·, ~- '
EOFILE LITERALLY 'lAH',
SSUFF(BSIZE) BYTE /* SOURCE FILE BUFFER */

INITIAL(EOFILE),
RFLAG BYTE, /* READER FLAG */
SBP ADDRESS J /* SOURCE FILE BUFFER POIN'I·ER

/* LOADCOM LOADS TRANSIENT COMMAND FILES TO THE DISK F

CURRENTLY DEFINED READER PERIPHERAL. THE LOADER PLACE

CODE INTO A FILE WHICH APPEARS IN THE LOADCOM COMI-\AND

/* **************** LIBRARY PROCEDURES FOR DISKIO *******

MONl: PROCEDURE(F,A) J
DECLARE F BYTE,
A ADDRESS:
GO TO BDOSJ
END MONlJ

MON2: PROCEDURE(F,A) BYTE:
DECLARE F BYTE,
A ADDRESS:
GO TO BOOS:
END MON2 J

READRDR: PROCEDURE BYTEJ
/* READ CURRENT READER DEVICE */
RETURN MON2(3,0) J
END READRDR:

DECLARE
TRUE LITERALLY ·1·,
FALSE LITERALLY •9•,
FOREVER LITERALLY 'WHILE TRUE',
CR ~ITERALLY ·13·,

00051 2 LF LITERALLY ·1e ,
00052 2 WHAT LITERALLY •63.J
00053 2

13 00054 2 PRINTCHAR: PROCEDURE(CHAR) J
00055 3 DECLARE CHAR BYTEJ
00056 3 CALL MON1(2,CHAR) f ._,
00057 3 END PRINTCBAR:
00058 2
00A59 2 CRLF: PROCEDURE:
00060 3 CALL PRIN'l'CHAR (CR) J
00061 3 CALL PRINTCHAR(LF) J
00062 3 END CRLFJ
00063 2
00064 2 PRINT: PROCEDURE(A);
80065 3 DECLARE A ADDRESSJ
80066 3 /* PRINT TBE STRING STARTING AT ADDRESS A ONTIL THE
00067 3 NEXT DOLLAR SIGN IS ENCOUNTERED */
00068 3 CALL CRLF:

.00069 3 CALL MON1(9,A) J
00070 3 END PRINT:
00071 2
00072 2 DECLARE DCNT BYTE:
00073 2
00074 2 INITIALIZE: PROCEDURE:
00075 3 CALL MON1(13,0) J
00076 3 END INITIALIZE:
00077 2
00078 2 SELECT: PROCEDURE(D):
00079 3 DECLARE D BYTE:
00080 3 CALL MON1(14,D);
00081 3 END SELECT: ...,
00082 2
00083 2 OPEN: PROCEDORE(FCB):
00084 3 DECLARE FCB ADDRESS:
00085 3 DCNT • MON2(15,FCB) J
00086 3 END OPEN:
00087 2
00088 2 CLOSE: PROCEDURE(FCB):
00089 3 DECLARE FCB ADDRESS:
00090 3 DCNT • MON2(16,FCB) J
00091 3 END CLOSE;
00092 2
00093 2 SEARCH: PROCEOURE(FCB) J
80094 3 DECLARE FCB ADDRESS;
00095 3 DCNT • MON2(17,FCB)J_
80096 3 END SEARCH:
00097 2
00098 2 SEARCHN: PROCEDURE:
88899 3 DCNT • MON2(18,I);
80180 3 END SEARCBNJ
80101 2
00102 2 DELETE: PROCEDURE(FCB) r
00103 3 DECLARE FCB ADDRESSJ ~

00194 3 CALL MON1(19,FCB):
00105 3 END DELETE;
80106 2
00107 2 DISKREAO: PROCEOURE(FCB) BYTE:

.._,,
80108 3 DECLARE FCB ADDRESSJ
00109 3 RETURN MON2(21,FCB)J
00118 3 END DISKREAD:

0e111 2
00112 2
00113 3
10114 3
90115 3
00116 2
00117 2
00118 3
00119 3
80120 3
80121 2
00122 2
80123 3
00124 3
00125 3
00126 2
00127 2

***** */
00128 2
00129 2
00130 3
00131 3
00132 3
00133 3
00134 4
00135 3
00136 2
00137 2
00138 3
00139 3
00140 3
00141 3
00142 3
00143 3
00144 3
00145 3
00146 4
00147 4

ROR$.);
00148 5
00149 s
00150 s
88151 4
00152 3
80153 3
00154 2
80155 2
89156 2
18157 2
'88158 2
08159 3
80160 3
00161 3
80162 3
00163 2
80164 2
80165 J
88166 3
80167 3
80168 2

DISKWRITE: PROCEDURE(FCB) BY'l'E1
DECLARE FCB ADDRESS1
RETURN MON2(21,FCB)J
END DISKWRITE1

MAKE: PROCEDURE(FCB) 1
DECLARE FCB ADDRESS1
DCNT • MON2(22,FCB)J
END MAKE;

RENAME: PROCEDURE(FCB);
DECLARE FCB ADDRESS;
CALL MON1(23,FCB)1
END RENAME:

I* ******************* END OF LIBRARY PROCEDURES ********-

MOVE: PROCEDURE(S,D,N);
DECLARE (S,D) ADDRESS, N BYTE,
A BASED S BYTE, B BASED D BYTE;

DO WHILE (N:•N-1) <> 255;
B • A; S•S+l; 0-D+l;
END:

ENO MOVE;

GETCHAR: PROCEDURE BYTE;

DECLARE

/* GET NEXT CHARACTER */
DECLARE I BYTE;
IF RFLAG THEN RETURN READRDR;
IF (SBP :• SBP+l) <• LAST(SBUFF) THEN

RETURN SBUFF(SBP);
/* OTHERWISE READ ANOTHER BUFFER FULL */

DO SBP • 0 TO LAST(SBUFF) BY 128;
IF (I:•DISKREAD(.SFCB)) • 0 THEN

CALL MOVE(80H,.SBUFF(SBP) ,808): ELSE
D01 IF I<>l THEN CALL PRINT(•• DISK READ ER

SBUFF(SBP) • EOFILE;
SBP • LAST(SBUFF);

·END;
END1

SBP • 0; RETURN SBUFF;
END GETCHAR;

STACKPOINTER LITERALLY 'STACKPTR';

PRINTNIB: PROCEDURE(N)1
DECLARE N BYTE;

IF N > 9 THEN CALL PRINTCBAR(N+'A'-10); ELSE
CALL PRINTCHAR(N+·0·) 1

END PRINTNIB1

PRINTHEX: PROCEDURE(B)J
DECLARE B BYTE1

CALL PRINTNIB(SBR(B,4)) 1 CALL PRINTNIB(B AND IFB);
END PRINTHEX1

00169 2
00170 3
00171 3
00l'l2 3
00173 2
00174 2
00175 2
00176 2
00177 2
00178 3
00179 3
80180 3
08181 J
90182 3
80183 3
00184 3
00185 3

oc *I
00186 3
00187 3
00188 3
00189 3
00190 3
00191 3
00192 4
*I
00193 4
00194 4
00195 4

GRAPH */
00196 4
00197 s
00198 6
00199 s
00200 s
00201 s
00202 5
00203 6
00204 6
00205 6
00206 6
00207 s
80208 4
80209 4
00210 3
80211 3
80212 4
88213 4
88214 4
80215 4
80216 4
80217 4
00218 3
00219 3
80220 4
80221 4
80222 4
80223 3
80224 3
80225 4

PRINTADDR: PROCEDURE(A):
DECLARE A ADDRESS:
CALL PRINTHEX(HIGB(A)): CALL PRINTHEX(LOW(A)):
END PRINTADDR:

/* INTEL HEX FORMAT LOADER */

RELOC: PROCEDURE:
DECLARE (RL, CS,
DECLARE

LA ADDRESS._

RT) BYTE:

I* LOAD ADD.RESS *I
/* TEMP ADDRESS •/
/* START ADDRESS */
/* FINAL ADDRESS */
/* NUMBER OF BYTES LOADED */

SS

TA ADDRESS,
SA ADDRESS,
FA ADDRESS,
NB ADDRESS,
SP ADDRESS, /* STACK POINTER UPON ENTRY TO REL

~SUFF(256) BYTE,
P BYTE,
L ADDRESS:

SETMEM: PROCEDURE(B):
/* SET KBUFF TO B AT LOCATION LA MOD LENGTH (MBUFF")

DECLARE (B,I) BYTE:
IF LA < L THEN /* MAY BE A RETRY */ RETURN:

DO WHILE LA > L + LAST(MBUFF): /* WRITE A PARA

DO I • 0 TO 127: /* COPY INTO BUFFER */
BUFFER(!) • MBUFF(LOW(L)); L • L + l;
END:

/* WRITE BUFFER ONTO DISK */
p • p + l;
IF DISKWRITE(FCBA) <> 0 THEN

END:

DO: CALL PRINT(.'DISK WRITE ERROR$'):
HALT;
/* RETRY AFTER INTERRUPT NOP */
L • L - 128;
END;

MBUFF(LOW(LA)) • B:
END SETMEM;

READBEX: PROCEDURE BYTE;
/* READ ONE BEX CHARACTER FROM THE INPUT */
DECLARE B BYTE:
IF (B :• GETCBAR) - ·a· <• 9 THEN RETURN B - •9·;
IF B - •A• > 5 THEN GO TO CHARERR:
RETURN B - 'A• + 18:
END READBEX:

REAOBYTE: PROCEDURE BYTE:·
/* READ TWO HEX DIGITS */
RETURN SHL(READHEX,4) OR READHEX:
END READBY'l'E:

READCS: PROCEDURE BYTE1
j• READ BYTE WHILE COMPUTING CHECKSUM */

..._,_

UH:l:l& 4
80227 4
00228 4
88229 4
88230 3
88231 3
80232 4

s */
80233 4
00234 4
80235 4
80236 3
80237 3
00238 4
80239 4
80240 4
00241 4
80242 5 .

I

00243 5
90244 5
00245 4
00246 4
00247 4
00248 4
80249 4
00258 4
80251 4
00252 4
00253 5
80254 5
80255 5
80256 4
08257 4
08258 4
80259 3
80260 3
00261 3
08262 3
88263 3
80264 3
19265 3
*/
18266 3
88267 3

NTERED */
88268 3
88269 4

J
18278 4
88271 4
88272 3
88273 3
80274 3
80275 3
88276 3
88277 3
88278 3
80279 4

DECLARE B BYTE:
CS• CS+ (B :• READBYTE):
RETURN B:
END READCS:

MAKE$DOUBLE: PROCEDURE(H,L) ADDRESS:
/* CREATE A BOUBLE BYTE VALUE FROM TWO SINGLE BYTE

DECLARE (H,L) BYTE:
RETURN SHL(DOUBLE(H),8) OR L:
END MAKE$DOUBLE:

DIAGNOSE: PROCEDURE:

DECLARE M BASED TA BYTE:

NEWLINE: PROCEDURE:
CALL CRLF: CALL PRINTADDF (.TA) ; CALL PRINTCHAR (.. : ..)

CALL PRINTCHAR("' "'):
END NEWLINE:

/* PRINT DIAGNOSTIC INFORMATION AT THE CONSOLE */
CALL PRINT(."'LOAD ADDRESS$"'): CALL PRINTADDR(TA):
CALL PRINT(."'ERROR ADPRESS $"'):CALL PRINTADDR(LA):

CALL PRINT(... BYTES READ:$"'): CALL NEWLINE;
DO WHILE TA < LA;
IF (LOW(TA) AND 0FH) • 8 THEN CALL NEWLINE;
CALL PRINTHEX(MBUFF(TA-L)): TA•TA+l:
CALL PRINTCHAR("' "'):
END:

CALL CRLF:
HALT;
END DIAGNOSE:

/* INITIALIZE */
SA, FA, NB • 0:
SP • STACKPOINTER:
P • 8; /* PARAGRAPH COUNT */
TA,LA,L • l80H; /* BASE ADDRESS OF TRANSIENT ROUTINES

IF FALSE THEN
CHARERR: /* ARRIVE HERE IF NON~HEX DIGIT IS ENCOU

DO: /* RESTORE STACKPOINTER */ STACKPOINTER • SP:
CALL PRINT(."'NON-HEXADECIMAL DIGIT ENCOUNTERED$"')

CALL DIAGNOSE:
END:

/* READ RECORDS UNTIL :88XXXX IS ENCOUNTERED */

DO FOREVER;
/* SCAN THE : *I

DO wHILE GETCHAR <> ·:·J
END:

00280 4
00281 4

TH */
00282 4
00283 4
00284 4
00285 4
00286 4
00287 4
'10288 4
00289 4
00290 4
00291 4
80292 4
00293 4
00294 4
00295 4
00296 4

·00297 4
00298 5
00299 4
00300 4
00301 4
00302 4
00303 4
00304 5
00305 5
00306 4
00307 3
00308 3
00309 3
00310 3
00311 3
00312 3
00313 4
00314 3
00315 3
00316 3
00317 3
00318 3
00319 3
00320 3
00321 3
00322 2
00323 2
HEX TAPE
90324 2
00325 2
00326 2
00327 2
00328 2
00329 2
00330 2
00331 2
00332 2
00333 2
00334 2
00335 2
00336 2

/* SET CHECK SOM TO ZERO, AND SAVE THE RECORD LENG

cs • ":
/* MAY BE THE END OF TAPE */
IF (RL :• READCS) • 9 THEN 37

GO TO FIN:
NB • NB + RL:

~A, LA • MAKE$DOOBLE(READCS,REAOCS):
IF SA • e THEN SA • LA:

/* READ THE RECORD TYPE (NO~ CURRENTLY OSED) */
RT • READCS:

FIN:

/* PROCESS EACH BYTE */
DO WHILE (RL :• RL - 1) <> 255:
CALL SETMEM(READCS): LA • LA+l:
END:

IF LA > FA THEN FA • LA - 1:

/* NOw READ CHECKSUM AND COMPARE */
IF CS + READBYTE <> 9 THEN

_QO; CALk__f_~~lL~ECK sua. tR.~OR $_ '.l..:
CALL DIAGNOSE:
END:

END:

/* EMPTY THE BUFFERS */
TA • LA:

DO WHILE L < TA:
CALL SETMEM(0): LA • LA+l:
END:

/* PRINT FINAL STATISTICS */
CALL PRINT(•. FIRST ADDRESS $.): CALL PRINTADDR(SA):
CALL PRINT(•. LAST ADDRESS$.): CALL PRINTAOOR(FA):
CALL PRINT(•. BYTES READ $.): CALL PRINTADOR(NB):
CALL PRINT(.'RECORDS WRITTEN$'): CALL PRINTHEX(P):
CALL CRLF:

END RELOC:

/* ARRIVE HERE FROM THE SYSTEM MONITOR, READY TO READ THE-

/* SET OP STACKPOINTER IN THE LOCAL AREA */
DECLARE STACK(l6) ADDRESS, SP ADDRESS:
SP• STACKPOINTER: STACKPOINTER • .STACK(LENGTB(STACK)):

SBP • LENGTH(SBUFF):
/* SET UP THE SOURCE FILE */

CALL MOVE(FCBA,.SFCB,33):
CALL MOVE (. (.HEX. ,0), .SFCB (9) ,4):
CALL SEARCH(.SFCB):
IF (RFLAG :• DCNT • 255) THEN

CALL PRINT(.'SOORCE IS READER$.); ELSE
DO: CALL PRINT(.'SOURCE IS OISK$.):

88337 3 CALL OPEN(.SFCB);
81338 3 IF DCNT • 255 THEN CALL PRINT(.'-CANNOT OPEN SOURC

E$.) ;
08339 3 END; !8 (·..- 10340 2 CALL CRLF;
BB341 2
01342 2 CALL MOVEc.·coM',FCBA+9,3);
80343 2
88344 2 /* REMOVE ANY EXISTING FILE BY THIS NAME */
10345 2 CALL DELETE(FCBA):
00346 2 /* THEN OPEN A NEW FILE */
"0347 2 CALL MAKE (FCBA) ; : FCB (32) • 01 /* CREATE AND SET NEXT RECORD *I
00348 2 IF DCNT • 255 THEN CALL PRINT(.'NO MORE DIRECTORY SPACE$'

) : ELSE
00349 2 DO; CALL RELOC:
88358 3 CALL CLOSE(FCBA);
80351 3 IF DCNT • 255 THEN CALL PRINT(.'CANNOT CLOSE FILE$
) :
80352 3 END:
00353 2 CALL CRLF:
00354 2
00355 2 /* RESTORE STACKPOINTER FOR RETURN */
80356 2 STACKPOINTER • SP:
00357 ·2 RETURN 0:
00358 2 END LOADCOM:
00359 1 . ,
00360 1 EOF

i.--.....

