JIDIGITAL RESEARCH

Post Office Box 579, Pacific Grove, California 93950, (408) 373-3403
{ -

CP/M INTERFACE GUIDE

COPYRIGHT (c) 1976, 1978
DIGITAL RESEARCH

Copyright (e) 1976, 1977, 1978 by Digital Research. All rights
reserved. No part of this publication may be reproduced,
transmitted, transcribed, stored in a retrieval system, or
translated into any language or computer language, in any
form or by any means, electronic, mechanical, magnetic,
optical, chemical, manual or otherwise, without the prior
written permission of Digital Research, Post Office Box 579,
Pacific Grove, California 93950.

Disclaimer

Digital Research makes no representations or warranties with
respect to the contents hereof and specifically disclaims any
implied warranties of merchantability or fitness for any
particular purpose. Further, Digital Research reserves the
right to revise this publication and to make changes from
time to time in the content hereof without obligation of
Digital Research to notify any person of such revision or
changes.

_—

P . TABLE OF CONTENTS

l L INTRODUCTION - - - L] . L] L] L L] L] L 2 . L ® L] L) L L]
l.1 CP/M Organization . ¢ ¢« ¢« o o o ¢ o ¢ o o «

1.2 Operation of Transient Programs «

1.3 Operating System Facilities . . « ¢« « « . &

2 L] BASIC I/o FACILITIES L] L] L] L] . [] LI [] L] [) L] L] [] []
2.1 Direct and Buffered I/0 « ¢ ¢ « ¢ « o o o o

2.2 A Simple Example . . o ¢ o o « s & o o & &

3. DISK I/O FACILITIES . o« « ¢ o o s o s o o o o o

3.1 File System Organization . . ¢« ¢« ¢ « « « &

3.2 File Control Block Format « « « « &

-~ 3.3 Disk Access PrimitivesS .« . « o « o o o o o

3.4 Random ACCESS ¢ ¢ « « o o ¢ o o o » o o s o

4 L] SYS TEM GENEMTION L] L L] L] L] L L[] L] L] L] L * L] . L

4.1 Initializing CP/M from an Existing Diskette

5. CP/M ENTRY POINT SUMMARY « « « o o « « o o o o &«

6 - ADDMSS ASSIGNMENTS L] L - L d L4 L d L L L] L . . L] L

7. smm Pm L] L] L] * L] L] L] L] L4 L L L L] L] L] L] L] L] L] . L]

W e

o

10
12
18

18
19

20
22

23

Y 4

W

CP/M INTERFACE GUIDE

1. INTRODUCTION

This manual describes the CP/M system organization including
the structure of memory, as well as system entry points. The
intention here is to provide the necessary information required
to write programs which operate under CP/M, and which use the
peripheral and dlsk I1/0 facilities of the system.

1.1 CP/M Organization

CP/M is logically divided into four parts:
BIOS the basic I/0 system for serial peripheral control
BDOS -~ the basic disk operating system primitives

CCP - the console command processer
TPA - the transient program area

The BIOS and BDOS are combined into a single program with a com-
mon entry point and referred to as the FDOS. The CCP is a dis-
tinct program which uses the FDOS to provide a human-oriented
interface to the information which is cataloged on the diskette.
The TPA is an area of memory (i.e, the portion which is not used
by the FDOS and CCP) where various non-resident operating system
commands are executed. User programs also execute in the TPA.
The organization of memory in a standard CP/M system is shown in
Figure 1.

The lower portion of memory is reserved for system information
(which is detailed in later sections), including user defined inter-
rupt locations. The portion between tbase and cbase is reserved
for the transient operating system commands, while the portion
above cbase contains the resident CCP and FDOS. The last three
locations of memory contain a jump instruction to the FDOS entry
point which provides access to system functions.

1.2 Operation of Transient Programs

Transient programs (system functions and user-defined programs)
are loaded into the TPA and executed as follows. The operator
communicates with the CCP by typing command lines following each
prompt character. Each command line takes one of the forms:

<command>
<command> <filename>
<command> <filename” ,<filetype>

Figure 1. CP/M Memory Organization

-
fbase: FDOS
cbase: CCP
TPA
_—
tbase:
System Parameters
boot: [MTTIIII1l

t-add.reu field of jump is fhase

entry: the princiﬁal entry point to FDOS is at location 0005
which contains a JMP to fbase. The address field at
location 0006 can be used to determine the size of
available memory, assuming the CCP is being overlayed.

W

Note: The exact addresses for boot, tbase, cbase,

and entry vary with the CP/M version (see -
Section 6. for version correspondence). ' .

fbase,

Where <command> is either a built-in command (e.g., DIR or TYPE),
or the name of a transient command or program. If the <command>
is a built-in function of CP/M, it is executed immediately; other-
wise the CCP searches the currently addressed disk for a file

by the name

<command>.COM

If the file is found, it is assumed to be a memory image of a
program which executes in the TPA, and thus implicitly originates
at tbase in memory (see the CP/M LOAD command). The CCP loads
the COM file from the diskette into memory starting at tbase,

and extending up to address cbase.

If the <command> is followed by either a <filename> or
<filename>. <f11etype> then the CCP prepares a file control-
block (FCB) in the system information area of memory. This FCB
is in the form requlred to access the file through the FDOS, and
is given in detail in Section 3.2.

The program then executes, perhaps using the I/0 facilities
of the FDOS. 1If the program uses no FDOS facilities, then the
entire remaining memory area is available for data used by the
program. If the FDOS is to remain in memory, then the transient
program can use only up to location fbase as data.* In any case,
if the CCP area is used by the transzent, the entire CP/M system
must be reloaded upon the transient's completion. This system
reload is accompllshed by a direct branch to location "boot" in
memory.

The transient uses the CP/M I/O facilities to communicate
with the operator's console and peripheral devices, including
the floppy disk subsystem. The I/0 system is accessed by passing
a "function number" and an "information address" to CP/M through
the address marked "entry" in Figure 1. 1In the case of a disk
read, for example, the transient program sends the number corres-
ponding to a disk read, along with the address of an FCB, and
CP/M performs the operation, returning with either a disk read
complete indication or an error number indicating that the disk
operation was unsuccessful. The function numbers and error in-
dicators are given in detail in Section 3.3.

1.3 Operating System Facilities

Cp/M facilities which are available to transients are divided
into two categories: BIOS operations, and BDOS primitives. The
BIOS operations are listed first:*+*

* Address "entry" contains a jump to the lowest address in the
FDOS, and thus "entry+l" contains the first FDOS address which
cannot be overlayed.

**The device support (exclusive of the disk subsystem) corres-
ponds exactly to Intel's peripheral definition, including I/0
port assignment and status byte format (see the Intel manual
which discusses the Imtellec MDS hardware environment).

Read Console Character
Write Console Character
Read Reader Character
Write Punch Character

Write List Device Character
Set I/0 Status

Interrogate Device Status
Print Console Buffer

Read Console Buffer
Interrogate Console Status

The exact details of BIOS access are given in Section 2. The BDOS
primitives include the following operations:

Disk System Reset

Drive Select

File Creation

File Open

File Close

Directory Search

File Delete

File Rename

Read Record

Write Record

Interrogate Available Disks
Interrogate Selected Disk
Set DMA Address

The details of BDOS access are given in Section 3.

2. BASIC 1/0 FACILITIES

Access to common peripherals is accomplished by passing a
function number and information address to the BIOS. 1In general,
the function number is passed in Register C, while the informa-
tion address is passed in Register pair D,E. Note that this
conforms to the PL/M Conventions for parameter passing, and thus
the following PL/M procedure is sufficient to link to the BIOS
when a value is returned:

DECLARE ENTRY LITERALLY 'O005H'; /* MONITOR ENTRY */
MON2: PROCEDURE (FUNC, INFO) BYTE:

DECLARE FUNC BYTE, INFO ADDRESS:

GO TO ENTRY:

END MON2;

Y

or

MONl: PROCEDURE (FUNC,INFO):
DECLARE FUNC BYTE, INFO ADDRESS;
GO TO ENTRY;
END MON1

if no returned value is expected.

2.1 Direct and Buffered 1/0.

The BIOS entry points are given in Table I. 1In the case of
simple character 1I/0 to the console, the BIOS reads the console
device, and removes the parity bit. The character is echoed back
to the console, and tab characters (control-I) are expanded to
tab positions starting at column one and separated by eight char-
acter positions. The I/0 status byte takes the form shown in
Table I, and can be programmatically interrogated or changed.

The buffered read operation takes advantage of the CP/M line edit-
ing facilities. That is, the program sends the address of a read
buffer whose first byte is the length of the buffer. The second
byte is initially empty, but is filled-in by CP/M to the number
of characters read from the console after the operation (not
including the terminating carriage-return). The remaining posi-
tions are used to hold the characters read from the console. The
BIOS line editing functions which are performed during this oper-
ation are given below:

break - line delete and transmit

rubout - delete last character typed, and echo
control-C - system rebout

control-U - delete entire line

control-E - return carriage, but do not transmit
buffer (physical carriage return)

<cr> -~ transmit buffer

The read routine also detects control character sequences other
than those shown above, and echos them with a preceding "t"
symbol. The print entry point allows an entire string of symbols
to be printed before returning from the BIOS. The string is
terminated by a "$" symbol.

2.2 A Simple Example

As an example, consider the following PL/M procedures and
procedure calls which print a heading, and successively read
the console buffer. Each console buffer is then echoed back in
reverse order:

PRINTCHAR: PROCEDURE (B):
/* SEND THE ASCII CHARACTER B TO THE CONSOLE */ -
DECLARE B BYTE:
CALL MON1l(2,B):
END PRINTCHAR;

CRLF: PROCEDURE:;
/* SEND CARRIAGE-RETURN-LINE-FEED CHARACTERS */
CALL PRINTCHAR (ODH); CALL PRINTCHAR (0AH);
END CRLF:

PRINT: PROCEDURE (A):
/* PRINT THE BUFFER STARTING AT ADDRESS A ¥/
DECLARE A ADDRESS:
CALL MON1(9,A);]
END PRINT; -

DECLARE FRDBUFF (130) BYTE;

READ: PROCEDURE:;
/* READ CONSOLE CEARACTERS INTO ‘'RDBUFF' */
RDBUFF=128; /* FIRST BYTE SET TO BUFFER LENGTH */
CALL MON1 (10, .RDBUFF) ;
END READ:; oo

DECLARE I BYTE;

CALL CRLF; CALL PRINT (.'TYPE INPUT LINES $'):;
DO WHILE 1l; /* INFINITE LOOP-UNTIL CONTROL-C */
CALL CRLF; CALL PRINTCHAR ('*'); /* PROMPT WITH ‘'w' %/
CALL READ; I = RDBUFF(1);
DO WHILE (I:= I -1) <> 255;
CALL PRINTCHAR (RDBUFF(I+2));
END: :
END:;

The execution of this program might proceed as follows:

TYPE INPUT LINES

*HEIJ&b

OLLEH

*WALL WALLA WASKH,

HSAW ALLAW ALLAW

*MOM WOW,

WOW MOM

*1C (system reboot)

W

(‘%‘

TABLE I

BASIC I/0 OPERATIONS

FUNCTION/ ENTRY RETURNED TYPICAL
NUMBER PARAMETERS VALUE CALL
Read Console None ASCII Character I = MON2(1,0)
1l
Write Console -ASCII Character None CALL MON1(2,'A"')
2
Read Reader None ASCII Character I = MON2(3,0)
3
Write Punch ASCII Character None CALL MON1 (4, ‘B')
4
Write List ASCII Character None CALL MON1 (5, ‘'c')
5
Get I/0 Status None I1/0 Status Byte IOSTAT=MON2(7,0)
7
Set I/0 Status I1/0 Status Byte None CALL MON1 (8, IOSTAT)
8 .
Print Buffer Address of None "CALL MON1 (9, .'PRINT
9 string termi- THIS $')
nated by '$*

8
TABLE I (continued) ‘g'
FUNCTION/ ENTRY RETURNED TYPICAL
NUMBER PARAMETERS VALUE CALL
Read Buffer Address of Read buffer is CALL MON1(10,
10 : Read Buffer* filled to maxi- -RDBUPFF) ;
mum length with
console charac-
(See Notel) ters
Interrogate None ‘| Byte value with I = MON2(1l1l,0)
Console Ready least signifi-
1 cant bit = 1
(true) if con-
sole character
is ready

-
Jotelz Read buffer is a sequence of memory locations of the form:
mikicylca|cs Sk
I;1Lcurrent buffer length
Maximum buffer length
Iotezz The I1I/0 status byte is defined as three fields A,B,C, and D
2b 2b 2b 2b
| A|BIC|D |
MSB LSB
requiring two bits each, listed from most significant to least
significant bit, which define the current device assignment as
follows:
0 TTY TTY ™Y . 0 ™Y >
D = 1 CRT C = /1 FAST READER B = /1 FAST PUNCH A =) 1 CRT -
sole 2 BATCH Reader \ 2 - Punch) 2 - List\ 2 -
3 - - - 3 -

3. DISK 1/0 FACILITIES

The BDOS section of CP/M provides access to files stored on
diskettes. The discussion which follows gives the overall file
organization, along with file access mechanisms.

3.1 File Organization

CP/M implements a named file structure on each diskette, pro-
viding a logical organization which allows any particular file to
contain any number of records, from completely empty, to the full
capacity of a diskette. Each diskette is logically distinct,
with a complete operating system, disk directory, and file data
area. The disk file names are in two parts: the <filename>
which can be from one to eight alphanumeric characters, and the
<filetype> which consists of zero through three alphanumeric
characters. The <filetype> names the generic category of a par-
ticular file, while the <filename> distinguishes a particuliar -
file within the category. The <filetype>s listed below give
some generic categories which have been established, although
they are generally arbitrary:

ASM assembler source file
PRN assembler listing file

HEX assembler or PL/M machine code
~in "hex" format

BAS BASIC Source file
INT BASIC Intermediate file

COM Memory image file (i.e., "Command"
file for transients, produced by LOAD)

BAK - Backup file produced by editor
(see ED manual)

$$$ Temporary files created and normally
erased by editor and utilities

Thus, the name
X.ASM

is interpreted as an assembly language source file by the CCP
with <filename> X.

The files in CP/M are organized as a logically contiguous se-
quence of 128 byte records (although the records may not be phys-
ically contiguous on the diskette), which are normally read or
written in sequential order. Random access is allowed under CP/M
however, as described in Section 3.4. No particular format with-
in records is assumed by CP/M, although some transients expect
particular formats:

10

(1) Source files are considered a sequence of
ASCII characters, where each "line" of the
source file is followed by carriage-return-
line-feed characters. Thus, one 128 byte
CP/M record could contain several logical
lines of source text. Machine code "hex"
tapes are also assumed to be in this for-
mat, although the loader does not require
the carriage-return~-line-feed characters.
End of text is given by the character con-
trol-z, or real end-of-file returned by
CP/M.

and

(2) coM files are assumed to be absolute machine
code in memory image form, starting at tbase
in memory. 1In this case, control-z is not
considered an end of file, but instead is
determined by the actual space allocated
to the file being accessed.

3.2 File Control Block Format

Each file being accessed through CP/M has a corresponding
file control block (FCB) which provides name and allocation
information for all file operations. The FCB is a 33-byte area
in the transient program's memory space which is set up for each
file. The FCB format is given in Figure 2. When accessing CP/M
files, it is the programmer's responsibility to fill the lower
16 bytes of the FCB, along with the CR field. Normally, the FN
and FT fields are set to the ASCII <filename> and <filetype~,
while all other fields are set to zero. Each FCB describes up
to 16K bytes of a particular file (0 to 128 records of 128 bytes
each), and, using automatic mechanisms of CP/M, up to 15 addi-
tional extensions of the file can be addressed. Thus, each FCB

can potentially describe files up to 256K bytes (which is slightly
- larger than the diskette capacity).

FCB's are stored in a directory area of the diskette, and are
brought into central memory before file operations (see the OPEN
and MAKE commands) then updated in memory as file operations pro-
ceed, and finally recorded on the diskette at the termination of
the file operation (see the CLOSE command). This organization
makes CP/M file organization highly reliable, since diskette file
integrity can only be disrupted in the unlikely case of hardware
failure during update of a single directory entry.

It should be noted that the CCP constructs an FCB for all
transients by scanning the remainder of the line following the
transient name for a <filename> or <filename>.<filetype> com-
bination. Any field not specified is assumed to be all blanks.

A properly formed FCB is set up at location tfcb (see Section 6),
with an assumed I/0 buffer at tbuff. The transient can use tfcbh
as an address in subsequent input or output operations on this
£ile. ‘

Y 4

10a

In addition to the default fcb which is set-up at address tfcb,. the
CCP also constructs a second default fcb at address tfcb+16 (i.e., the
disk map field of the fcb at tbase). Thus, if the user types

PROGNAME X.Z0T Y.ZAP

the file PROGNAME.COM is loaded to the TPA, and the default fcb at .tfch

is initialized to the filename X with filetype 20T. Since the user typed
a second file name, the 16 byte area beginning at tfchb-~ + 1616 is also
initialized with the filename Y and filetype ZAP. It is the responsibility
of the program to move this second filename and filetype to another area
(usually a separate file control block) before opening the file which
begins at tbase, since the open operation will £ill the disk map portion,
thus overwriting the second name and type.

If no file names were specified in the original command, then the
fields beginning at tfcdb and tfcb + 16 both contain blanks (20H). 1If
one file name was specified, then the field at tfcb + 16 contains blanks.
If the filetype is omitted, then the field is assumed to contain blanks.
In all cases, the CCP translates lower case alphabetics to upper case
to be consistent with the CP/M file naming conventions.

As an added programming convenience, the default buffer at tbuff
is initialized to hold the entire command line past the program name.
Address tbuff contains the number of characters, and tbuff+l, tbuff+2,
..., contain the remaining characters up to, but not including, the
carriage return. Given that the above command has been typed at
the console, the area beginning at tbuff is set wp as follows:

tbuff:

+0 +1 42 43 +4 +5 46 +7 +8 +9 +10 +11 +12 413 +14 +15
12 ¥ X . Z 0 T ¥ Y . 2 A P ? ? ?

where 12 is the number of valid characters (in binary), and ¥ represents
an ASCII blank. Characters are given in ASCII upper case, with un-
initialized memory following the last valid character.

Again, it is the responsibility of the program to extract the infor-
mation from this buffer before any file operations are performed since
the FDOS uses the tbuff area to perform directory functions.

In a standard CP/M system, the following values are assumed:

boot: 0000H ~"bootstrap load {warm start)
entry: OOOSH entry point to PDOS

tfch: 00S5CH first default file control block
tfcb+16 O006CH second file name

tbuff 0080H default buffer address

tbase: 0I!00H base of transient area

Figure 2.

11

File Control Block Format

0123 456 78 910111213141516171819.. ce. 2728 29303132

(

RC

- NR

e

PT EX

FCB_POSITIONS

o

1-8

S-11

12

13-14
15

16-31

32

. -

RC oM NR

PURPOSE

Entry type (currently not used,
but assumed zero)

File name, padded with ASCII
blanks

File type, padded with ASCII
blanks

File extent, normally set to
zero

Not used, but assumed zero

Record count is current extent
Size (0 to 128 records)

Disk allocation map, filled-in
and used by CP/M ’

Next record number to read or
write

5

12

3.3 Disk Access Primitives

Given that a program has properly initialized the FCB's for
cach of its files, there are several operations which can be per-
formed, as shown in Table II. 1In each case, the operation is
applied to the currently selected disk (see the disk select oper-
ation in Table II), using the file information in a specific FCB.
The following PL/M program segment, for example, copies the con-
tents of the file X.Y to the (new) file NEW.FIL: :

DECLARE RET BYTE;

OPEN: PROCEDURE (A)
DECLARE A ADDRESS:
RET=MON2 (15,3) ;
END OPEN:

CLOSE: PROCEDURE (A);
DECLARE A ADDRESS:;
RET=MON2 (16,A) ;
END;

MAKE: PROCEDURE (A):
DECLARE A ADDRESS:
RET=MON2 (22,3);
END MAKE;

DELETE: PROCEDURE (A);
DECLARE A ADDRESS:;
/* IGNORE RETURNED VALUE */
CALL MON1(19,A);
END DELETE:

READBF: PROCEDURE (A);
DECLARE A ADDRESS:;
RET=MON2 (20,A) ;
END READBF;

WRITEBF: PROCEDURE (A);
DECLARE A ADDRESS:
RET=MON2 (21,A);
END WRITEBF;

INIT: PROCEDURE;
CALL MON1(13,0):

END INIT:

/* SET UP FILE CONTROL BLOCKS */
DECLARE FCBl (33) BYTE
INITIAL (0,'X "'y ',0,0,0,0),
FCB2 (33) BYTE
INITIAL (O, 'NEW ','FIL',0,0,0,0);

13

CALL INIT;
/* ERASE 'NEW.FIL' IF IT EXISTS */
CALL DELETE (.FCB2):
/* CREATE' 'NEW.FIL' AND CHECK SUCCESS */
CALL MAKE (.FCB2):
IF RET = 255 THEN CALL PRINT (.'NO DIRECTORY SPACE $'):
ELSE
DO; /* FILE SUCCESSFULLY CREATED, NOW OPEN 'X.Y' */
CALL OPEN (.FCBl);
IF RET = 255 THEN CALL PRINT (.'FILE NOT PRESENT $'):
ELSE
DO; /* FILE X.Y FOUND AND OPENED, SET
NEXT RECORD TO ZERO FOR BOTH FILES ¥*/
FCBl1(32), FCB2(32) = 0:
/* READ FILE X.Y UNTIL EOF OR ERROR %/
CALL READBF (.FCBl): /*READ TO 80H*/
DO WHILE RET = 0;
CALL WRITEBF (.FCB2) /*WRITE FROM B80H*/
IF RET = 0 THEN /*GET ANOTHER RECORD*/
CALL READBF (.FCBl); ELSE
CALL PRINT (.'DISK WRITE ERROR $'):
END;
IF RET < >1 THEN CALL PRINT (.' TRANSFER ERROR $');
ELSE
DO; CALL CLOSE (.FCB2):
IF RET = 255 THEN CALL PRINT (.'CLOSE ERRORS'):

This program consists of a number of utility procedures for
opening, closing, creating, and deleting files, as well as two
procedures for reading and writing data. These utility procedures
are followed by two FCB's for the input and output files. 1In
both cases, the first 16 bytes are initialized to the <filename>
and <filetype> of the input and output files. The main program
first initializes the disk system, then deletes any existing
copy of "NEW.FIL" before starting. The next step is to create
a new directory entry (and empty file) for "NEW.FIL". If file
creation is successful, the input file "X.Y" is opened. If this
second operation is also successful, then the disk to disk copy
can proceed. The NR fields are set to zero so that the first
record of each file is accessed on subsequent disk I/O operations.
The first call to READBF fills the (implied) DMA buffer at 80OH
with the first record from X.Y. The loop which follows copies
the record at 80H to "NEW.FIL" and then reports any errors, or
reads another 128 bytes from X.Y. This transfer operation con-
tinues until either all data has been transferred, or an error
condition arises. 1If an error occurs, it is reported; other-
wise the new file is closed and the program halts.

14

(" '}’
TABLE I
DISK ACCESS PRIMITIVES
FUNCTION/NUMBER ENTRY PARAMETERS RETURNED VALUE TYPICAL CALL
Lift Head None None ' CALL MON2(12,0)
12 Head is lifted from
current drive
Initialize BDOS None CALL MON1(13,0)

and select disk
nAn

Set DMA address

to 80H

13

None

Side effect is that
disk A is"logged-
in" while all others
are considered "off-
line"”

4

Log-in and
select disk
X

14

An integer value cor-
responding to the
disk to log-in:

A’O, B=1' C=2, etc.

None

Disk X is considered
"on-line" and selec-
ted for subsequent
file operations

CALL MON1(14,1)
(log-in disk "B")

'Open file
15

!

Address of the FCB
for the file to be
accessed

Byte address of the
FCB in the directory,
if found, or 255 if
file not present.

The DM bytes are set
by the BDOS.

I = MON2(1500FCB)

Close file.
16

Address 6f an FCB

which has been pre-
viously created or
opened

Byte address of the
directory entry cor-
responding to the
FCB, or 255 if not
present

I = MON2(16;.FCB)

14

TABLE II

(continued)

FUNCTION/NUMBER

. ENTRY PARAMETERS

RETURNED VALUE

TYPICAL CALL

_séarch for file
17

1

Address of FCB con-
taining <filename>
and <«filetypes> to
match. ASCII "?2"
in FCB matches any
character.

Byte address of first
FCB in directory that
matches input FCB, if
any; otherwise 255
indicates no match.

= MON2(17,.FCB)

Search for next
occurrence

18

Same as ablove, but
called after func-
tion 17 (no other
intermediate BDOS
calls allowed)

Byte address of next

= MON2(18,.FCB)

Delete File
19

Address of FCB con-
taining <filename>
and <«filetype> of
file to delete from
diskette

None

MON2 (19, .FC2)

Read Next Record
20

Address of FCB of a
successfully OPENed
file, with NR set
to the next record
to read (see notel)

0 = successful read

1 = read past end of
file

2 = reading unwritten
data in random
access :

MON2 (20, .FCB)

Notelz The I/0 operations transfer data to/from address 80H for the next 128 bytes unless
- the DMA address has been altered (see function 26). Further, the NR field of the
FCB is automatically incremented after the operation. If the NR field exceeds 128,
the next extent is opened automatically, and the NR field is reset to zero.

15

(I | | (

™

(({
TABLE II (continued)
FUNCTION/NUMBER ENTRY PARAMETERS RETURNED VALUE TYPICAL CALL
Write Next Record Same as above, except 0 successful write I = MON2(21,.FCB)

21

NR is set to the next
record to write

1l = error in extend-
ing file

2 end of disk data

255 = no more dir-

ectory space

(see notez)

Make File
22

Address of FCB with
<filename> and <file-
type> set. Direc-
tory entry is cre-
ated, the file is
iritialized to empty.

Byte address of dir-
ectory entry alloca-
ted to. the FCB, or
255 if no directory
space is available

I = MON2(22,.FCB)

,l .
Rename FCB

23

Address of FCB with
old FN and FT in
first 16 bytes, and
new FN and FT in
second 16 bytes

Address of the dir-
ectory entry which
matches the first

16 bytes. The
<filename>and <file-
type> is altered

255 if no match.

I = MON2(2 3,.FCB)

Note,:

2 There are normally 64 directory entries available on each diskette (can be

expanded to 255 entries), where one entry is required for the primary file,
and one for each additional extent.

16

TABLE II (continued)

FUNCTION/NUMBER

ENTRY PARAMETERS

RETURNED VALUE

TYPICAL CALL

Interrogate log-
in vector

24

None

Byte value with "1"
in bit positions of
"on line" disks,
with least signi-
ficant bit corres-
ponding to disk "A"

I = MON2(24,0)

Set DMA address
26

Address of 128 byte
DMA buffer

None

Subsequent disk I/0
takes place at spe-
cified address in
memory

CALL MON1 (26,2000H)

Interrogate
Allocation

27

None

Address of the allo-
cation vector for
the current disk
(usedby STATUS com-
mand)

MON3: PROCEDURE(...)
ADDRESS ;

A = MON3(27,0);

Interrogate Drive
number
25

None

Disk number of currently
logged disk (i.e., the
drive which will be used

for the next disk operation

[
n

;

17

I = MON2(25,0);

18

3.4 Random Access

Recall that a single FCB describes up to a 16K segment of a
(possibly) larger file. Random access within the first 16K seg-
ment is accomplished by setting the NR field to the record number
of the record to be accessed before the disk I/0 takes place.
Note, however, that if the 128th record is written, then the
BDOS automatically increments the extent field (EX), and opens
the next extent, if possible. 1In this case, the program must
explicitly decrement the EX field and re-open the previous extent.
If random access outside the first 16K segment is necessary,
then the extent number e be explicitly computed, given an absol-
ute record number r as '

by
€= leeJ

e = SHR(r,7)

or equivalently,

this extent number is then placed in the EX field before the seg-
ment is opened. The NR value n is then computed as

n r mod 128

or

n r AND 7FH.

When the programmer expects considerable cross-segment accesses,
it may save time to create an FCB for each of the 16K segments,
open all segments for access, and compute the relevant FCB from
the absolute record number r.

4. SYSTEM GENERATION

As mentioned previously, every diskette used under CP/M is assumed to
contain the entire system (excluding transient commands) on the first two
tracks. The operating system need not be present, however, if the diskette
is only used as secondary disk storage on drives B, C, ..., .s8ince the CP/M
system is loaded only from drive A.

The CP/M file system is organized so that an IBM-compatible diskette
from the factory (or from a vendor which claims IBM compatibility) looks
like a diskette with an empty directory. Thus, the user must first copy
a version of the CP/M system from an existing diskette to the first two
tracks of the new diskette, followed by a sequence of copy operations,
using PIP, which transfer the transient command files from the original
diskette to the new diskette.

19

NOTE: before you begin the CP/M copy operation, read your Licensing
Agreement. It gives your exact legal obligations when making reproductions
of CP/M in whole or in part, and specifically requires that you place the
copyright notice

Copyright (¢), 1976
Digital Research

on each diskette which results from the copy cperation.
4.1. Initializing CP/M from an Existing Diskette

The first two tracks are placed on a new diskette by running the tran-
sient command SYSGEN, as described in the document "An Introduction to CP/M
Features and Facilities.™ The SYSGEN operation brings the CP/M system from
an initialized diskette into memory, and then takes the memory image and
places it on the new diskette.

Upon completion of the SYSGEN operaticon, place the original diskette
on drive A, and the initialized diskette on drive B. Reboot the system;
the response should be

A>
indicating that drive A is active. log into drive B by typing

B:
and CP/M should respond with

B>
indicating that drive B is active. If the diskette in drive B is factory
fregh, it will contain an empty directory. Non-standard diskettes may,
however, appear as full directories to CP/M, which can be emptied by typing

. ERA *.*,

when the diskette to be initialized is active. Do not give the ERA command
if you wish to preserve files on the new diskette since all files will be
erased with this ctmmand.

After examining disk B, reboot the CP/M system and return to drive A for
further operations.

The transient cammands are then copied from drive A to drive B using the
PIP program. The sequence of commands shown below, for example, copy the
principal programs from a standard CP/M diskette to the new diskette:

ASPIP,

*B:STAT. COM=STAT.COM,
*B :PIP.COM=PIP.COM,
#B :LOAD. COM=LOAD. COM,
*B:ED.COM=ED. COM,

-

4

-

20

*B :ASM. COM=ASM. COM,
*B:SYSGEN. COM=SYSGEN. COM)
*B :DDT.COM=DDT. cou)
*

4
A

The user should then log in disk B, and type the command
DIR *.",

to ensure that the files were transferred to drive B from drive A. The
various programs can then be tested on drive B to check that they were
transferred properly.

Note that the copy operation can be simplified somewhat by creziing._
a "submit" file which contains the copy commands. The file could be
named GEN.SUB, for example, and might contain

SYSGEN,
PIP B:STAT.COM=STAT.COM,
PIP B:PIP.COM=PIP.COM,
PIP B:LOAD.COM=LOAD.COM,
PIP B:ED.COM=ED.COM,
- PIP B:ASM.COM=ASM.COM,
PIP B:SYSGEN.COM=SYSGEN.COM,
PIP B:DDT.COM=DDT.COM,

The generation of a new diskette from the standard diskette is then done
by typing simply

SUBMIT GEN.,

5. CP/M ENTRY POINT SUMMARY

The functions shown below summarize the functions of the
FDOS. The function number is passed in Register C (first para-
meter in PL/M), and the information is passed in Registers D,E
(second PL/M parameter). Single byte results are returned in
Register A. If a double byte result is returned, then the high-
order byte comes back in Register B (normal PL/M return). The
transient program enters the FDOS through location “entry" (see
Section 7.) as shown in Section 2. for PL/M, or

CALL entry .

in assembly language. All registers are altered in the FDOS.

Function

W O J O WL & WN O

-
~ O

12
13
14
15
16
17
18
19
20
21
22
23
24
25

26
27

Number

System Reset

Read Consnle

Write Console

Read Reader

Write Punch

Write List

(not used)
Interrogate I/0 Status
Alter 1/0 Status
Print Consocle Buffer
Read Console Buffer
Check Console Status

Lift Disk Head
Reset Disk System
Select Disk

Open File

Close File

Search First
Search Next
Delete File

Read Record
Write Record
Create File
Rename File
Interrogate Login
Interrogate Disk

Set DMA Address
Interrogate Allocation

Information

Ascix character

2

Resuit

S

-
ASCII character

ASCII character

ASCII character
ASCII character

I/0 Status Byte
Buffer Address
Buffer Address

I/0 Status Byte

Di

sk number -

FCB Address

-

-DMA Address

True if character
Ready

Completion Code

L]]
L] n
" ”
L] L]

Login Vector

Selected Disk
Number

Address of Allo-
cation Vector

W

22
6. ADDRESS ASSIGNMENTS

The standard distribution version of CP/M is organized for an Intel
MDS microcomputer developmental system with 16K of main memory, and two
diskette drives. Larger systems are available in 16K increments, providing
management of 32K, 48K, and 64K systems (the largest MDS system is 62K
since the ROM monitor provided with the MDS resides in the top 2K of the
memory space). For each additional 16K increment, add 4000H to the values
of cbase and fbase. '

The address assignments are

boot = 0000H warm start operation

tfch = 005CH default file control block location
tbuff= 0080H default buffer location

tbase= 0100H base of transient program area
cbase= 2900H base of console command processor
fbase= 3200H base of disk operating system
entry= OOOSH entry point to disk system fram

user programs

23

3

7. SAMPLE PROGRAMS -

This section contains two sample programs which interface with the CP/M
operating system. The first program is written in assembly language, and
is the source program for the DUMP utility. The second program is the CP/M
LOAD utility, written in PL/M.

The assembly language program begins with a number of “"equates” for sys-
tem entry points and program constants. The equate

BDOS EQU 000SH

for example, gives the CP/M entry point for peripheral 1/0 functions. The
defualt file control block address is also defined (FCB), along with the
default buffer address (BUFF). Note that the program is set up to run at
location 100H, which is the base of the transient program area. The stack
is first set-up by saving the entry stack pointer into OLDSP, and resetting
SP to the local stack. The stack pointer upon entry belongs to the consnle
command processor, and need not be saved unless control is to return to the
CCP upon exit. That is, if the program terminates with a reboot (branch to
location OOOCH) then the entry stack pointer need not be saved.

The program then jumps to MAIN, past a number of subroutines which are
listed below:

BREAK - when called, checks to see if there is a console .~ui

character ready. BREAK is used to stop the listing
at the console

PCHAR print the character which is in register A at the

cansole.
CRLF - send carriage return and line feed to the console

PNIB -~ print the hexadecimal value in register A in ASCII
at the console

PHEX ~ print the byte value (two ASCII characters) in
register A at the consocle

ERR - print error flag #n at the console, where n is

l if £ile cannot be opened
2 if disk read error occurred

GNB = get next byte of data from the input file. If the
IBP (input buffer pointer) exceeds the size of the
input buffer, then another disk record of 128 bytes
is read. Otherwise, the next character in the buffer
is returned. 1IBP is updated to point to the next
character.

4

24

The MAIN program then appears, which begins by calling SETUP. The SETUP
subroutine, discussed below, opens the input file and checks for errors.
If the file is opened properly, the GLOOP (get loop) label gets control.

On each successive pass through the GLOOP label, the next data byte
is fetched using GNB and save in register B. The line addresses are listed
every sixteen bytes, so there must be a check to see if the least signi-
ficant 4 bits is zero on each output. If 80, the line address is taken
from registers h and 1, and typed at the left of the line. 1In all cases,
the byte which was previously saved in register B is brought back to
register A, following label NONUM, and printed in the output line. The
cycle through GLOOP continues until an end of file condition is detected
in DISKR, as described below. Thus, the output lines appear as

0000 bb bb bb bb bb bb bb bb bb bb bb bb bb bb bb bb
0010 bb bb bb bb bb bb bb bb bb bb bb bb bb bb bb kb

©e e

until the end of file.

The label FINIS gets control upon end of file. CRLF is called first
to return the carriage from the last line output. The CCP stack pointer
is then reclaimed from OLDSP, followed by a RET to return to the console
command processor. Note that a JMP O000OH could be used following the
FINIS label, which would cause the CP/M system to be brought in again from
the diskette (this operation is necessary only if the CCP has been over-
layed by data areas).

The file control block format is then listed (FCBDN ... FCBLN) which
overlays the fcb at location 05CH which is setup by the CCP when the
DUMP program is initiated. That is, if the user types

DUMP X.Y

then the CCP sets up a properly formed fcb at location 05CH for the DUMP

(or any other) program when it goes into execution. Thus, the SETUP sub-
routine simply addresses this default fcb, and calls the disk system to
open it. The DISKR (disk read) routine is called whenever GNB needs another
buffer full of data. The default buffer at location B80H is used, along
with a pointer (IBP) which counts bytes as they are processed, Normally,

an end of file condition is taken as either an ASCII l1AR (control-z), or

an end of file detection by the DOS. The file dump program, however, stops
only on a DOS end of file.

FILE DUMP PROGRAM, READS AN INPUT FILE AND PRINTS IN HEX

«p W9 O ¢

COPYRIGHT (C), DIGITAL RESEARCH, 1975, 1976

W

-
25
gl00 ORG 1008
g0p5 = BDOS EQU Y- ¢+DOS ENTRY POINT
QA0F = OPENF EQU 15 +FILE OPEN
0214 = READF EQU 20 sREAD FUNCTION
0002 = TYPEF EQU 2 sTYPE FUNCTION
0001 = CONS EQU 1 s READ CONSOLE
P00B = BRKF EQU 11 sBREAKRK KEY FUNCTION (TRUE IF CEAR READY)
985C = FCB EQU 5CH. +sFILE CONTROL BLOCK ADDRESS
0080 = BUFF EQU 86H sINPUT DISK BUFFER ADDRESS
H SET UP STACK
plpe 219000 LXI B,0
103 39 DAD SP
0164 228F01 SHLD OLDSP
9187 3151801 LXI SP,STKTOP
Al0A C3C481 JMP MAIN
H VARIABLES
919D IBP: DS 2 s INPUT BUFFER POINTER
: STACK AREA
P18F OLDSP: DS 2
6111 STACK: DS 64
gls5]1 = STKTOP EQU $,
; -
H SUBROUTINES
BREAK: :CHECK BREAK KEY (ACTUALLY ANY KEY WILL DO)
8151 ESD5CS ~ PUSH H! PUSE D! PUSH B; ENVIRONMENT SAVED
8154 QEGB MVI C,BRKF
2156 CD@5480 CALL BDOS
8159 ClDlEl POP B! POP D! POP H; ENVIRONMENT RESTORED
g15C €9 RET
PCHAR: ;PRINT A CBARACTER
815D ESD5CS PUSH H! PUSH D! PUSH B; SAVED
9l60 8EQ2 MVI C,TYPEF
8162 SF MOV E,A
6163 Cros508 CALL BDOS
166 ClDlEl POP B! POP D! POP H; RESTORED
8169 C9 RET
CRLF:
@16A 3EBD ' MVI A,0DH
616C CD5D@1 CALL PCHAR
@16F 3EBA MVI A,BAH
171 CD5DA1 CALL PCEBAR -
8174 C9 RET
: -
PNIB: ;PRINT NIBBLE IN REG A
8175 E68F ANI oFH sLOW 4 BITS
9177 FE@A CPI 10

9179 D2818l JNC Plo

(\v

917C
017E

18l
8183
0186

187
0188
0189
818A
818B
218C
pl18F
0190
0193

194
8197
8199
p19C
819D
P19F
01A2
P1A5

B1A8
81AB
@1AD

0180
p1B3

g1B4
81B5
81B7

p1B8

91BB
81BC
81BF
01C@

1C1
p1C2
p1C3

81C4

C630
c38301

Cé637
CD5DB1
C9

'v:?‘Qa e
2

PHEX:

oF ;
CD7501
Fl
CD7581
C9

%Qo

CDé6ABl
3E23
CD5D@Al
78
C630
Cb5D@1
CDé6AB1
C3F701

G) ~o

NB:
3A0D01

FEBO

C2B401

- We we

CDlé682
AF

Q) ~o
[~

SF
1600
3C
326081

ES
218008
19
7E

-e wo w9

El
23
C9

MAIN:
CDFF@1

LESS THAN OR EQUAL TO 9

ADI 8

JMP PRN

GREATER OR EQUAL TO 10
ADI ‘A° - 18

CALL PCHAR

RET

sPRINT HEX CHAR IN REG A
PUSH PSW

RRC

RRC

RRC

RRC

CALL PNIB sPRINT NIBBLE
POP PSW

CALL PNIB

RET

:PRINT ERROR MESSAGE
CALL CRLF

MVI YIS

CALL PCHAR

MOV A,B

ADI ‘8°

CALL PCHAR

CALL CRLF

JMP FINIS

;GET NEXT BYTE

LDA IBP

CPI 80H

JINZ GO

READ ANOTHER BUFFER

CALL DISKR

XRA a

sREAD THE BYTE AT BUFF+REG A
MOV E,A

MVI D,®

INR A

STA IBP

POINTER IS INCREMENTED
SAVE THE CURRENT FILE ADDRESS

PUSH
LXI
DAD
MOV

B
H,BUFF
D

AM

BYTE IS IN THE ACCUMULATOR

RESTORE FILE ADDRESS AND INCREMENT

POP
INX
RET

3 READ AND PRINT SUCCESSIVE BUFFERS

CALL

H
H

SETUP $SET UP INPUT FILE

26-

Y

81C7
01C9
#1CC

61CF
01D2

1D3
01D4
81D6

#1DS

01DC
01DF
0l1EB

0lE3
PlE4
BlE7
P1ESB

PlEB
BlED
01FQ
01F1

g1F4

B1F7
P1FA
21FD
81FE

pB5C
885D
2065
pB68
0086B
887C
807D

B1FF
8202
8204

0207
p209

3E89
326001
21FFFF

Cbasgel
47

70
E6OF
C2EBO1

CD6AD1

CD51681
oF
DAF701

7C
cpg7e1
7D
cp87e1

3E20
CD5D#1
78
CD8781

C3CFrol

CDé6AB]
2ADF01
F9
Cc9

115Ce9
GEBF
CDo580

FEFF
c2l1le2

G) ~e

LOOP:

-e

-9 w0

NONUM:

EPSA:
FINIS:

.- %0

FCBDN
FCBFN
PCBFT
FCBRL
FCBRC
FCBCR
FCBLN

éETUP:

«e

MVI A,80H
STA IBP ;SET BUFFER POINTER TO 8@H

LxI H,O8FFFFH ;SET TO -1 TO START

27
CALL GNB
MOV B,A . -

PRINT HEX VALUES

CHECK FOR LINE FOLD

MOV A,L

ANI @FHd ;CHECK LOW 4 BITS
JNZ NONUM

PRINT LINE NUMBER

CALL CRLF

CHECK FOR BREAK KEY
CALL BREAK

RRC
Jc FINIS ;DON'T PRINT ANY MORE

MOV A,H

CALL PHEX

MOV a,L

CALL PHEEX

MVI A"’

CALL PCHAR

MOV a,B

CALL PHEX

JIMP GLOOP -
END PSA

“-e w0

END OF INPUT

CALL CRLF
LBLD OLDSP
SPHL

RET

FILE CONTROL BLOCK DEFINITIONS

EQU FCB+p :DISK NAME

EQU FCB+1 ;FILE NAME

EQU FCB+9 ;DISK FILE TYPE (3 CBARACTERS)

EQU FCB+12 ;;FILE'S CURRENT REEL NUMBER

EQU FCB+15 ;;PILE°S RECORD COUNT (6 TO 128)

EQU FCB+32 ;CURRENT (NEXT) RECORD NUMBER (8 TO 127
EQU FCB+33 ;FCB LENGTH '

;SET UP FILE

OPEN THE FILE FOR INPUT

LXI1 D,FCB

MVI C,OPENF |
CALL BDOS -
CHECK FOR ERRORS | :
CPI 255

" JNZ OPNOK

14

g2ecC
020E

8211
0212
8215

8216
8219
821C
B21E
221
0224
0226

227
0229

822C
022E

8231

8601
CD9481

AF
327C00
c9

E5D5C5
115Co0
PE14
CDo500
ClD1El
FEGP
cs

FE@l
CAF701

p682
CD9441

3
OPNOK:

;
DISKR:

«¢

-9

-e

BAD OPEN

END

JOPEN ERROR

$CHECK FOR ERRS

;DISK READ ERROR

MVI B,1

CALL ERR

OPEN IS OK.

XRA A

STA FCBCR

RET

sREAD DISK FILE RECORD
PUSH H! PUSH D! PUSH B
LXI D,FCB

MVI C,READF

CALL ,BDOS

POP B! POP D! POP H
CPI 8

RZ

MAY BE EOF

CPI 1

Jz FINIS

MVI B,2

CALL ERR

29

The PL/M program which follows implements the CP/M LOAD utility. The
function is as follows. The user types

V)
LOAD filenmg
1f filename.HEX exists on the diskette, then the LOAD utility reads the "hex"
formatted machine code file and produces the file
| filename.COM '
where the COM file contains an absolute memofy image of the machine code,
ready for load and execution in the TPA. If the file does not appear on
the diskette, the LOAD program types
SOURCE IS READER
and reads an Addmaster paper tape reader which contains the hex file.
The LOAD program is set up to load and run in the TPA, and, upon com-
pPletion, return to the CCP without rebooting the system. Thus, the pro-
gram is constructed as a single procedure called LOADCOM which takes the
form
OFAH:
LOADCOM: PROCEDURE;
/* LIBRARY PROCEDURES */
MONl:
- /* END LIBRARY PROCEDURES */ -

DQVE: ceo e

mm: L 2

PRINTNIB: ...

PRINTHEX: ...
PRINTADDR: ...
RELOC: ...
SETMEM:
READHEX:
READBYTE :
READCS:
MAKEDOUBLE :
DIAGNOSE:
END RELOC:;

DECLARE STACK(16) ADDRESS, SP ADDRESS:;
SP = STACKPTR; STACKPTR = .STACK(LENGTH(STACK)):

CALL RELOC;

\ STACKPIR = SP;
RETURN 0;
END LOADCOM;

}
ECF

W

iw

30

The label OFAH at the beginning sets the origin of the compilation to OFAH,
which causes the first 6 bytes of the compilation to be ignored when loaded
(i.e., the TPA starts at location 100H and thus OFAH,...,JFFH are deleted
from the COM file). 1In a PL/M compilation, these 6 bytes are used to set up
the stack pointer and branch around the subroutines in the program. 1In this
case, there is only one subroutine, called LOADCOM, which results in the
following machine memory image for LOAD :

OFAH: LXI SP,plmstack $}SET SP TO DEFAULT STACK
OFDH: JMP pastsubr sJUMP AROUND LOADCOM
100H: beginning of LOADCOM procedure

end of LOADCOM procedure

RET

pastsubr:
EX
HLT

Since the machine code between OFAH and OFFH is deleted in the load,
execution actually begins at the top of LOADCOM. Note, however, that

the initialization of the SP to the default stack has also been deleted:
thus, there is a declaration and initialization of an explicit stack and
stack pointer before the call to RELOC at the end of LOADCOM. This is
necessary only if we wish to return to the CCP without a reboot operation:
otherwise the origin of the program is set to 100H, the declaration of
LOADCOM as a procedure is not necessary, and termination is accomplished
by simply executing a

- GO TO OOOOH;

at the end of the program. Note also that the overhead for a system re-
boot is not great (approximately 2 seconds), but can be bothersocme for
system utilities which are used quite often, and do not need the extra
space.

The procedures listed in LOADCOM as "library procedures™ are a standard
set of PL/M subroutines which are useful for CP/M interface. The RELOC
procedure contains several nested subroutines for local functions, and
actually performs the load operation when called from LOADCOM. Control
initially starts on line 327 where the stackpointer is saved and re-initialized
to the local stack. The default file control block name is copied to
another file control block (SFCB) since two files may be open at the same
time. The program then calls SEARCH to see if the HEX file exists; if not,
then the high speed reader is used. If the file does exist, it is opened for
input (if possible). The filetype COM is moved to the default file control
block area, and any existing copies of filename.COM files are removed from
the diskette before creating a new file. The MAKE operation creates a new
file, and, if successful, RELOC is called to read the HEX file and produce
the OOM file. At the end of processing by RELOC, the COM file is closed
(line 350). Note that the HEX file does not need to be closed since it
was opened for input only. The Aata written to a file is not permanently
recorded until the file is successfully closed.

4

3t

Disk input characters are read through the procedure GETCHAR on line
137. Although the DMA facilities of CP/M could be used here, the GETCHAR
procedure instead uses the default buffer at location 80H and moves each
buffer into a vector called SBUFF (source buffer) as it is read. On exit,
the GETCHAR procedure returns the next input character and updates the
source buffer pointer (SBP).

The SETMEM procedure on line 191 performs the opposite function from
GETCHAR. The SETMEM procedure maintains a buffer of loaded machine code
in pure binary form which acts as a "window” on the lcaded code. If there
is an attempt by RELOC to write below this window, then the data is ignored.
If the data is within the window, then it is placed into MBUFF (memory
buffer). If the data is to be placed above this window, then the window
is moved up to the point where it would include the data address by writing
the memory image successively (by 128 byte buffers), and moving the base
address of the window. Using this technique, the programmer can recover
from checksum errors on the high-speed reader by stopping the reader,
rewinding the tape for seme distance, then restarting LOAD (in this case,
LOADing is resumed by interrupting with a NOP instruction). Again, the ”
SETMEM procedure uses the default buffer at location B80E to perform the
disk output by moving 128 byte segments to 80H through OFFH before each
write.

W

(v

- 90R4l

LLL
00002
00003
20004
90005
20006
00007
20008
20009
00010
0081l
20012
20013
ESS */
20014
20015
20016
s
26017
00018
08019
00020
00021
00022
*/

00023
00024
ROM THE
08825
S THE MA
00826

*/
00027

RkkkRk
9060628
080629
00030
TLEN
20032
98033
98834
28035
280636
00837
20038
20039
000640

H

»

NN OMOLDDWLWWWNNNDWWW WDDWWWWNDNODN N (SH PN N NN NN NON NN NN bt =t ot et et et et et

00042
00043
P0B44
80045
pOP46
00047
o048
0049
006050

32

@FAH: DECLARE BDOS LITERALLY °@@885H°;
/* TRANSIENT COMMAND LOADER PROGRAM

COPYRIGHT (C) DIGITAL RESBARCB
JUNE, 1975
*/

LOADCOM: PROCEDURE BYTE;
DECLARE FCBA ADDRESS INITIAL (5CH):
DECLARE FCB BASED FCBA (33) BYTE;

DECLARE BUFFA ADDRESS INITIAL(8PH), /* 1/0 BUFFER ADDR
BUFFER BASED BUFFA (128) BYTE:;
DECLARE SFCB(33) BYTE, /* SOURCE FILE CONTROL BLOCK ¥

BSIZE LITERALLY °1024°, —

EOFILE LITERALLY °“1AH’,

SBUFF (BSIZE) BYTE /* SOURCE FILE BUFFER */
INITIAL (EOFILE),

RFLAG BYTE, /* READER FLAG */

SBP ADDRESS; /* SOURCE FILE BUFFER POINTEK

/* LOADCOM LOADS TRANSIENT COMMAND FILES TO THE DISK F

CURRENTLY DEFINED READER PERIPHERAL. THE LOADER PLACE

CODE INTO A FILE WHICH APPEARS IN THE LOADCOM COMMAND
/* *ksskrxkkwwswwwxwv [TRRARY PROCEDURES FOR DISKIO #*wwxx%

MON1l: PROCEDURE (F,A):
DECLARE F BYTE,
A ADDRESS;
GO TO BDOS;
END MON1;

MON2: PROCEDURE(F,A) BYTE;
DECLARE F BYTE,
A ADDRESS;
GO TO BDOS:
END MON2;

READRDR: PROCEDURE BYTE;
/* READ CURRENT READER DEVICE */
RETURN MON2(3,8);
END READRDR;

DECLARE
TRUE LITERALLY “1°,
FALSE LITERALLY ‘87,
FOREVER LITERALLY "WHILE TRUE’,
CR LITERALLY °13°,

80851
80852
p0B53
90054
98855
80056
p00657
gaeess
p8AS9
p0R60

- 90061

06062
p0063
pB064
80065
008066
00067
pe068
.80069
00070
80071
p00B72
peR73
poe74
00875
000676
08077
poa7e
pBB79
ppO8o
0@o8l
p0@82
po083
pae84
08085
po0O86
00087
0088
po@89
p00R90
90091
00092
90093
00094
82095
80896
000697
peo98
90099
00190
28101
00182
pales
00104
#0105
98106
p0187
pplos
80109
001190

wwuwmwuwwwwuwuwuwwwuwwwwuwwwwwuwwNuwwwMquwwwwnnwwwNNuwwwuuw

LF LITERALLY °18 ,
WEAT LITERALLY “637;

PRINTCHAR: PROCEDURE (CHAR) ; 33
DECLARE CHAR BYTE; ~
CALL MON1(2,CHAR):
END PRINTCHAR;

CRLF: PROCEDURE;
CALL PRINTCHAR(CR);
CALL PRINTCHAR(LF):
END CRLF;

PRINT: PROCEDURE(A):
DECLARE A ADDRESS:
/* PRINT THE STRING STARTING AT ADDRESS A UNTIL THE
NEXT CDOLLAR SIGN IS ENCOUNTERED */
CALL CRLF;
CALL MON1(9,A):
END PRINT;

DECLARE DCNT BYTE;

INITIALIZE: PROCEDURE;
CALL MON1(13,0);
END INITIALIZE:;

SELECT: PROCEDURE (D) :
DECLARE D BYTE;
CALL MON1(14,D):
END SELECT;

OPEN: PROCEDURE (FCB) ;
DECLARE FCB ADDRESS:
DCNT = MON2(15,FCB);
END OPEN;

CLOSE: PROCEDURE(FCB):;
DECLARE FCB ADDRESS:;
DCNT = MON2(16,FCB):
END CLOSE;

SEARCH: PROCEDURE (FCB) ;
DECLARE FCB ADDRESS;
DCNT = MON2(17,FCB); -
END SEARCH;

SEARCHN: PROCEDURE;
DCNT = MON2(18,0):
END SEARCHN;

DELETE: PROCEDURE (FCB) ;
DECLARE FCB ADDRESS;
CALL MON1(19,FCB); -
END DELETE;

4

DISKREAD: PROCEDURE (FCB) BYTE; -
DECLARE FCB ADDRESS; -
RETURN MON2(28,FCB);

END DISKREAD;

80111

2

00112 2 DISKWRITE: PROCEDURE(FCB) BYTE;

#0113 3 DECLARE FCB ADDRESS;

00114 3 RETURN MON2(21,FCB); 2
80115 3 END DISKWRITE;

00116 2

80117 2 MAKE: PROCEDURE (FCB):

#0118 3 DECLARE FCB ADDRESS;

60119 3 DCNT = MON2(22,FCB);

#0120 3 END MAKE:

#0121 2 .

80122 2 RENAME: PROCEDURE (FCB):

#6123 3 DECLARE FCB ADDRESS;

00124 3 CALL MON1(23,FCB);

#0125 3 END RENAME;

00126 2 A

80127 2 /% kkkkkkA*hkdkkw*x*** END OF LIBRARY PROCEDURES *###saws~
XRXRER®R t/ :

80128 2 .

80129 2 MOVE: PROCEDURE(S,D,N);

#0130 3 DECLARE (S5,D) ADDRESS, N BYTE,

80131 3 A BASED S BYTE, B BASED D BYTE;

#0132 3 DO WHILE (N:=N-1) <> 255;

#0133 3 B = A; S=S+1; D=D+]1;

P0134 4 END;

60135 3 END MOVE;

80136 2

#8137 2 GETCHAR: PROCEDURE BYTE;

p0138 3 /* GET NEXT CHARACTER */

#6139 3 DECLARE 1 BYTE;

80140 3 IF RFLAG THEN RETURN READRDR;

00141 3 IF (SBP := SBP+l) <= LAST(SBUFF) THEN

0142 3 RETURN SBUFF (SBP) ;

#0143 3 /* OTHERWISE READ ANOTHER BUFFER FULL */
p0144 3 DO SBP = ¢ TO LAST(SBUFF) BY 128;

0145 3 IF (I:=DISKREAD(.SFCB)) = @ THEN

P0146 4 CALL MOVE(8@H,.SBUFF (SBP),808H); ELSE
P0147 4 DO; IF I<K>1 THEN CALL PRINT(. DISK READ ER
RORS ") ;

#0148 5 SBUFF (SBP) = EOFILE;

80149 S SBP = LAST (SBUFF) ;

28158 S -END;

86151 4 END;

90152 3 SBP = @; RETURN SBUFF;

80153 3 END GETCHAR;

08154 2 DECLARE

06155 2 STACKPOINTER LITERALLY “STACKPTR®;

p08156 2

806157 2 .

08158 2 PRINTNIB: PROCEDURE (N);

pB8159 3 DECLARE N BYTE; :
006160 3 IF N > 9 THEN CALL PRINTCHAR(N+°A°-10); ELSE
#8161 3 _ CALL PRINTCHAR(N+°8°);

p0162 3 END PRINTNIB; '

00163 2

8164 2 PRINTHEX: PROCEDURE (B);

80165 3 DECLARE B BYTE;

#0166 3 CALL PRINTNIB(SHR(B,4)); CALL PRINTNIB(B AND @FH) ;
00167 3 END PRINTHEX; .
pB8l168 2

3

00169 2 PRINTADDR: PROCEDURE(A);

00170 3 DECLARE A ADDRESS;

98171 3 CALL PRINTHEX (HIGH(A)); CALL PRINTHEX(LOW(A)) ;

00172 3 END PRINTADDR;

00173 2 as -

08174 2 4 :

00175 2 /* INTEL BEX FORMAT LOADER */

00176 2

86177 2 RELOC: PROCEDURE;

02178 3 DECLARE (RL, CS, RT) BYTE;

08179 3 DECLARE

00180 3 LA ADDRESS, /* LOAD ADDRESS */

#0181 3 TA ADDRESS, /* TEMP ADDRESS */

06182 3 SA ADDRESS, /* START ADDRESS */

80183 3 FA ADDRESS, /* FINAL ADDRESS */

00184 3 NB ADDRESS, /* NUMBER OF BYTES LOADED */

00185 3 SP ADDRESS, /* STACK POINTER UPON ENTRY TO REL
0C */

00186 3

08187 3 MBUFF (256) BYTE,

20188 3 P BYTE,

00189 3 L ADDRESS;

0019¢ 3

80191 3 SETMEM: PROCEDURE (B);

28192 4 /* SET MBUFF TO B AT LOCATION LA MOD LENGTH (MBUFF)

*x/

99193 4 DECLARE (B,I) BYTE;

00194 4 IF LA < L THEN /* MAY BE A RETRY */ RETURN;

00195 4 DO WHILE LA > L + LAST(MBUFF); /* WRITE A PARA
GRAPH */ -

00196 4 DO I = 8 TO 127; /* COPY INTO BUFFER */

06197 5 BUFFER(I) = MBUEF(LOW(L)):; L = L + 1;

02198 6 END;

28199 5 /* WRITE BUFFER ONTO DISK */

08208 5 P=DP + 1;

08201 5 IF DISKWRITE (FCBA) <> @ THEN

20202 5 DO; CALL PRINT(. DISK WRITE ERRORS');

00203 6 HALT;

00204 6 /* RETRY AFTER INTERRUPT NOP */

00285 6 L =1L - 128;

00206 6 END;

00287 S END;

20208 4 MBUFF (LOW (LA)) = B;

08209 4 END SETMEM;

90210 3

98211 3 READHEX: PROCEDURE BYTE;

88212 4 /* READ ONE HEX CHARACTER FROM THE INPUT */

08213 4 DECLARE H BYTE;

98214 4 IF (H := GETCHAR) = "8° <= 9 THEN RETURN H = “0°;

08215 4 IF B~ A" > 5 THEN GO TO CHARERR:

28216 4 RETURN H - ‘A" + 18;

98217 4 END READHEX;

00218 3

08219 3 READBYTE: PROCEDURE BYTE;

20220 4 /* READ TWO HEX DIGITS */

86221 4 RETURN SHL (READHEX,4) OR READHEX; -

28222 4 END READBYTE; - - :

20223 3

00224 3 READCS: PROCEDURE BYTE;

20225 4 /* READ BYTE WHILE COMPUTING CHECKSUM */

W

(o

BYB226
00227
00228
008229
pe23e
pB231
00232
S */
008233
00234
pB235
08236
00237
08238
pB239
008240
00241
00242

08243
08244
00245
008246
008247
pB248
P0B249
pB250
@251
pB252
8253
pB254
#8255
PB256
80257
pB258
806259
00260
00261
00262
pp263
00264
808265
*/
p8266
00267
NTERED
60268
08269
H
08270
00271
pB272
008273
08274
pB275
06276
08277
08278
08279

lWWWwwwwwwe s eWwNww WWWWwWwWwwads bt &b od b b oot (V0 N NN BWWwd o bos

DECLARE B BYTE;

CS = C5 + (B := READBYTE):

RETURN B;

END READCS; 36

MAKESDOUBLE: PROCEDURE (H,L) ADDRESS;
/* CREATE A BOUBLE BYTE VALUE FROM TWO SINGLE BYTE

DECLARE (H,L) BYTE;
RETURN SHL (DOUBLE (H) ,8) OR L:
END MAKES$DOUBLE;

DIAGNOSE: PROCEDURE;

DECLARE M BASED TA BYTE;

- NEWLINE: PROCEDURE;

CALL CRLF; CALL PRINTADDR(TA); CALL PRINTCHAR(:"

CALL PRINTCHAR(® °);
END NEWLINE;

/* PRINT DIAGNOSTIC INFORMATION AT THE CONSOLE */
CALL PRINT (., LOAD ADDRESS $°); CALL PRINTADDR (TA) ;
CALL PRINT (. ERROR ADDRESS $°); CALL PRINTADDR (LA) ;

CALL PRINT(. BYTES READ:$°); CALL NEWLINE;
DO WHILE TA < LA;
IF (LOW(TA) AND @FH) = @ THEN CALL NEWLINE;
CALL PRINTHEX(MBUFF(TA-L)). TA=TA+];
CALL PRINTCHAR(® °);
END;

CALL CRLF;

BALT;

END DIAGNOSE;

/* INITIALIZ2E */

SA, FA, NB = §;

SP = STACKPOINTER;

P = @; /* PARAGRAPH COUNT */

TA,LA,L = 10PH; /* BASE ADDRESS OF TRANSIENT ROUTINES

IF FALSE THEN
CHARERR: /* ARRIVE HERE IF NON-HEX DIGIT IS ENCOU

DO; /* RESTORE STACKPOINTER */ STACKPOINTER = SP;
CALL PRINT (., “NON-HEXADECIMAL DIGIT ENCOUNTERED $7)

CALL DIAGNOSE;
END;

/* READ RECORDS UNTIL :88XXXX IS ENCOUNTERED */

DO FOREVER;

/* SCAN THE : %/
DO WHILE GETCHAR <> ‘73
END;

po280
209281
TH */
ne282
00283
00284
90285
00286
nezs7
00z88
pe289
80290
00291
08292
06293
00294
00295
20296
80297
0298
00299
p0300
00301
20302
908303
00304
@305
00306
20387
eo308
po309
80319
008311
#0312
90313
p0314
8e315
p8316
80317
00318
008319
00328
00321
08322
88323
HEX TAP
0324
808325
88326
62327
po328
00329
28330
p08331
808332
80333
p8334
p@335
88336

AN LHLLLLLELLELELELNLEDS L

VOO MNMNNNDODNNDNNTOOLUOMNWWLWWWWWWAEWWWWWWEBEOIWLU & & &

/* SET CHECK SUM TO ZERO, AND SAVE THE RECORD LENG

CS = 0;
/* MAY BE THE END OF TAPE */ 37
IF (RL := READCS) = 0 THEN

GO TO FIN;

NB = NB + RL;

TA, LA = MAKESDOUBLE (READCS,READCS) ;
IF SA = @ THEN SA = LA;

/* READ THE RECORD TYPE (NOT CURRENTLY USED) */
RT = READCS;

/* PROCESS EACH BYTE */
DO WHILE (RL := RL = 1) <> 255;
CALL SETMEM (READCS); LA = LA+l;
END:

IF LA > FA THEN FA = LA - 1;

/* NOW READ CHECKSUM AND COMPARE */
IF CS + READBYTE <> @ THEN
DO; CALL PRINT(.’CHECK SUM ERROR $71;
CALL DIAGNOSE;
 END;
END;

FIN:
/* EMPTY THE BUFFERS */
TA = LA;

DO WHILE L < TA; :

CALL SETMEM(8); LA = LA+l;

END;
/* PRINT FINAL STATISTICS */
CALL PRINT (. FIRST ADDRESS $°); CALL PRINTADDR(SA):;
CALL PRINT(. LAST ADDRESS $°); CALL PRINTADDR(FA):;
CALL PRINT(. BYTES READ $°): CALL PRINTALCDR(NB):;
CALL PRINT (. RECORDS WRITTEN $°); CALL PRINTHEX(P):;
CALL CRLF;

END RELOC:

/* ARRIVE HERE FROM THE SYSTEM MONITOR, READY TO READ THE~

/* SET UP STACKPOINTER IN THE LOCAL AREA */
DECLARE STACK(16) ADDRESS, SP ADDRESS:
SP = STACKPOINTER; STACKPOINTER = ,STACK(LENGTH(STACK)) ;

SBP = LENGTH (SBUFF) ;

/* SET UP THE SOURCE FILE */

CALL MOVE(FCBA,.SFCB,33):

CALL MOVE(.(HEX ,0) ,.SFCB(9),4);

CALL SEARCH(.SFCB):

IF (RFLAG := DCNT = 255) THEN

CALL PRINT(. SOURCE IS READERS"); ELSE
DO; CALL PRINT (. SOURCE IS DISKS');

W

(~

4

08337
pa338
ES’);
88339
ee340
00341
008342
PB343
008344
860345
66346
0347
08348
) ; ELSE
60349
B350
#8351
98352
pB353
00354
80355
80356
08357
#8358
68359
PR360

HHEBMOOOOMNW WWAN NONODNNMONNDW WW

CALL OPEN(.SFCB);
IF DCNT = 255 THEN CALL PRINT (. =CANNOT OPEN SOURC

END;
CALL CRLF; ' 8

CALL MOVE(. COM’,FCBA+9,3);

/* REMOVE ANY EXISTING FILE BY THIS NAME */
CALL DELETE (FCBA);
/* THEN OPEN A NEW FILE */

CALL MAKE(FCBA); = FCB(32) = 0; /* CREATE AND SET NEXT RECORD */
IF DCNT = 255 THEN CALL PRINT(, 'NO MORE DIRECTORY SPACES$

DO; CALL RELOC:;
CALL CLOSE (FCBA) ;
IF DCNT = 255 THEN CALL PRINT (. CANNOT CLOSE FILES

END;
CALL CRLF;

/* RESTORE STACKPOINTER FOR RETURN */
STACKPOINTER = SP;

RETURN 0;

END LOADCOM;

EOF

T

W

