¢ Latest CP/M Version2.0

® Tear Out Reference Card

e Disk Allocation and Extents

e Extensive List of CP/M Software

L8

I
I d
| 4

l '

B

I -
- of

| “

CP/M'PRIMER

for the

[y

EPSON (3<-10

by
Stephen M. Murtha and Mitchell Waite

Howard W. Sams & Co., Inc.

4300 West 62nd St., Indianapolis, Indiana 46268 USA

Copyright © 1980 by Stephen M. Murtha and Mitchell Waite

FIRST EDITION
SPECIAL PRINTING—1983

All rights reserved. No part of this book shal] be reproduced,
stored in a retrieval system, or transmitted by any means,
electronic, mechanical, photocopying, recording, or otherwise,
without written permission from the publisher. No patent
liability is assumed with respect to the use of the information
contained herein. While every precaution has been taken

in the preparation of this book, the publisher assumes

no responsibility for errors or omissions. Neither is any
liability assumed for damages resulting from the use of

the information contained herein.

International Standard Book Number: 0-672-21791-0
Library of Congress Catalog Card Number: 80-53271

CPMisa registered trademark of Digital Research, Inc.

Printed in the United States of America.

PREFACE

QP/ M® (Control Program for Microcomputers) is an extremely popular
“disk operating system” for 8080, 8085, and Z80 based microcomputers.
Today almost every microcomputer manufacturer that utilizes a floppy disk
system for mass storage of programs supplies CP/M as the main operating
system for the computer product. A disk operating system “orchestrates”
the operation of various programs that may reside on the disk, as well as
supervising i/o operations, and performing the various “housekeeping”
tasks required by any computer. A program designed to operate with the
CP/M operating system can, under most conditions, be run on any other
computer that has CP/M. Hence, a huge body of programs exists for CP/ M
microcomputer owners, and this has in turn attracted ever larger numbers
of computer manufacturers to offer CP/M for their computers. With so
many people using CP/M on a daily basis, we feel there exists a need for
a clearly written book describing the features of the CP/M operating sys-
tem. This book was written for the purpose of introducing the CP/M disk
operating system to the first-time user in a clear, precise, and lucid manner.
The book is intended to get you quickly into using and working with CP/M.

Chapters 1 and 2 contain an introduction to microcomputers in general
and briefly explain many of the concepts with which a typical user will
need to be familiar in order to understand the CP/M operating system.
Chapters 3 through 8 describe in detail the operation and capabilities of
the CP/M operating system. After you have read these chapters, you should
be able to fully use the CP/M operating system in any application. How-
ever, many people are not satisfied with simply knowing the mechanics of
operating CP/M, but are also curious about why CP/M works the way it
does. For those people we have included Appendix A, which explains the
basic internal operation of CP/M. Many of the concepts which are con-
tained in Appendix A are somewhat difficult, so if you are not feeling up
to it, do not despair. Skipping Appendix A will not in any way prevent

sing and enjoying CP/M on your microcomputer.
s a list of software which is CP/M compatible. We
hope that if you do not want to do your own programming that you will
be able to use this list to secure the software which you need to use your
microcomputer for whatever application you desire.

We would like to thank Henry Dakin, Peter Kirkwood, Ken Klein, Mi-
chael Belling, Julie Arca, and Philip Lieberman for their assistance in

reviewing this manuscript. Their comments were invaluable in helping to
ore useful and valuable. In addition, a warm

make this book hopefully m
thank you needs to go out to Larry Press and the rest of the gang in Santa

you from u
Appendix B contain

! 2ir help in compiling the list of soft.
i 3 Systems Group for their help in comp |
Mm'] oy \MI::ntIJLc({ in Appendix B, Finally, we would like to acknowledye,
s v(‘vuu ertz for the drawings which capture the essence of the concepts
B(})lli)d;uwn:pput lf orth in the book, and present them in & refreshing manner.
whic)

STEPHEN MURTHA
MITcHELL Warre

CONTENTS

CHAPTER 1

INTRODUCTION To CP/M 7
What Is an Operating System?—The Hlstory of CP/ M—What Is a Mlcrocom-
puter?—Why CP/M Is so Popular—What Is the Future for CP/M?

CHAPTER 2

A CP/M MICROCOMPUTER: HARDWARE AND SOFTWARE CONCEPTS . . 15
Central Processing Unit (CPU)—Memory—Input/Output—Logical and Physi-
cal I/0—Machine Language—Assembly Language—High Level Languages—
Application Programs—Further Reading

CHAPTER 3

STARTING UP AND FIRST USING A CP/M SYSTEM . . .21
Booting a CP/M System—CP/M Memory Usage and Orgamzatlon—CP/M
Files—Resident Commands—Transient Commands (Utilities)

CHAPTER 4

SYSTEM INITIALIZATION: FORMAT, SYSGEN, ano MOVCPM . . 33
How Information Is Stored on a Diskette—Copying a CP/M System—Modify-
ing a CP/M System Image—Trying Out Your New CP/M Diskettes

CHAPTER §

STAT AND PIP ; . 389
STAT Overvnew——STAT and Dlsk Fxles—I/O Dewces and STAT Specmhzed

Uses—PIP Overview—Other PIP Features

CHAPTER 6

ED THE CP/M EDITOR . . 45
Initiating ED—ED Operatlon—-Basm Edltmg Commands—Advanced Edltmg

Features—ED Error Conditions—One Final Note

CHAPTER 7

ASM: THE CP/M ASSEMBLER . . . B3
Introduction—About ASM, the CP/M Assembler—~8080 Archltecture—-Program

Format—Arithmetic and Logical Operators—Assembler Directives—A Sample
Session

CHAPTER 8

DDT: THE CP/M DYNAMIC DEBUGGING TooL . . . 63
The Parts of DDT—DDT Commands—Loading a File—Program Display and
Modification—Tracing Program Execution—A Sample DDT Session—Saving
Your Program

APPENDIX A
THE INTERNAL STRUCTURE oF CP/M

Generalized System Call—Basic I/0 System Calls——Dlsk I/ 0 System Calls -
APPENDIX B

CP/M COMPATIBLE SOFTWARE 81
APPENDIX C

CP/M REFERENCE . R7

INDEX 89

—
[R)

= ke b) el

S
[

chapter 1

Introduction to CP/M°®”

If this is the first time you've studied CP/M or if you aren’t familiar with micro-
computer technology and operating systems, you should read this chapter before pro-
ceeding further. This chapter introduces the concept of operating systems, briefly de-
scribes what a microcomputer is, presents a brief history of CP/M, summarizes the scope
of programs available for CP/M systems today, and concludes with a description of how
this book is organized.

If you are already familiar with some aspects of CP/M, you can skip this chapter
and proceed to Chapter 2, which describes some hardware and software concepts neces-
sary to the understanding of a CP/M microcomputer system (logical and physical i/o,
languages, etc.).

In this chapter we will attempt to introduce you to CP/M and give you some idea
of what it will do. In the successive chapters we will take a look at each of the features
of the CP/M operating system in detail and give you an idea of how to use them. We
will include in each of these discussions actual examples of the points we are discussing.
The crt outline shown below will be used to show you how an example should appear on
the screen of an actual CP/M computer. If you have your own computer or have access
to a computer which runs under the CP/M operating system, we encourage you to try
on your machine the examples listed in the book.

In Chapter 2 we will look at the hardware of a typical microcomputer and see how
CP/M interfaces to it. We will briefly discuss how CP/M is structured internally so that
when we are examining some of the more advanced features later on in this book you
will know what we are talking about.

Chapter 3 will cover starting up a CP/M system. We will show you what to do when
you switch on a computer with the CP/M operating system in it and how to use the
pasic functions.

s
* CP/M is a registered trademark of Digital Research Inc.

7

CP/M system. We will cover interrogatin
and saving data; editing a flle with text
bugging an assembly language program.

and undoubtedly glean much data, the

CP/M disks.

. d in the basic

8 h h B cover the numerous utilities which are include i :
/M system. We i & the system for its status: creah.ng, moving,
or a program in it, and assembling and de-

Wherever you decide to start, keep in mind that this book is written to h-elp you use
CP/M on a real microcomputer. Although you can read the book through like a novel,

book will work best when used in conjunction
with a computer running CP/M and the set of operating man

uals that comes with the

Since its inception in 1970 the microprocessor
has quietly reshaped our world as we know it. It
has enabled “intelligence” to be incorporated into
products which we use on an everyday basis, from
automobile engines to microwave ovens, In addi-
tion to their use in enhancing the capabilities of
consumer and industrial products, microproces-
sors have been used over the past five years ag
the heart of small, but remarkably powerful, com-
puters. These computers are usually referred to
as microcomputers. These microcomputers are be-
ing used today in many business applications such
as accounting and word processing, in education
and research to interpret and compile data, and
even in the home as very sophisticated educa-
tional and entertainment devices.

How can the microcomputer be used in 80 many
unique end products? The answer is that the mi-
crocomputer responds to g unique set of machine
instructions, and the way these instructions are
grouped or arranged determines how the micro-
processor’s intelligence ig employed, be it as a
processor of words, a traffic light controller, or
a computer game, It is the flexibility and power
of these instructions which give the microproces-
sor its power and versatility.

As with most things in life,
puter applications ever seem
Therefore, one would expect tha
puter must have its own unique program to allow
it to perform its particular function, To a large
extent, this is true, However, each of these indi-
vidual programs have certain elements that are

no two microcom-
quite the same.
t each microcom-

put data from some form of console device, print
output to a printer, store and retrieve data on a
disk, and so on, The common elements of these
programs are usually grouped together into what
is referred to ag an operating system. Thus, a
brogrammer can save g tremendous amount of
time and energy. By integrating thege common
elements into the main program via the operating
system, the programmer is then free to concen-
trate on the parts of the program that are unique
to the specific application at hand.,

In the last 20 years many computer manufac-
turers have developed operating systems for their
particular hardware systems. CP/M is one of
the most popular and widely used operating sys-
tems for microcomputers. Since its introduction in
1976, CP/M has been used by dozens of manufac-
turers of microcomputers and has become as close
as anything to being the “industry standard.”
This popularity is no doubt directly related to
its ease of operation and flexibility.

WHAT IS AN OPERATING SYSTEM?

For those who have suddenly found themselves
caught up in computers and computing, terms
such as “operating system,” “RAM,” “list device,”
and the like tend to be confusing when they are
first encountered. We will make a small digres-
sion at this point to explain exactly what an
operating system is, why it is necessary, and
what it does. Those of you who are already fa-
miliar with operating systems may want to read
the rest of this section to refresh your memory,
Or you may want to skip ahead to the next section.

A computer, whether it is a $5000 microcom-
puter or a multimillion dollar IBM mainframe, is
a machine which continuously executes a series
of instructions called a program. Although a com-
puter has tremendous capabilities and often ap-
pears to have a very fast and efficient human
mind, it does not have any of the human charac-
teristics called intuition or deductive reasoning.
Thus a computer must be told what to do at all
times. The nature of computer design is such that
in addition to the requirement that the computer
have a program to execute at all times, the steps
Or sequence of instructions of that program is
critical.

In order to illustrate this point a little more
clearly, let us assume that you are out for a Sun-
day drive and you notice that your gas gauge
registers a bit on the low side. You pull into the
brand new “gas station of the future” which
MONOCO (Monolithic 0Oil Company) has just in-
stalled up the street, and you notice that there is

CP/M OPERATING SYSTEM

a computer minding the station instead of the high
school kid who used to pump the gas. You roll
down your window and say into the computer’s
grill-like ears “fill’er up,” expecting that without
further ado your gas tank will be filled with un-
leaded gas, your oil, radiator, windshield washer,
and battery levels will be checked, and your front
and back windshields will be cleaned for you just
like the old days. Right? Wrong.

To start with the computer, who speaks noth-
ing but the King’s English, does not recognize
the word “filler” as “fill her.” However, even
if it had it would not have been able to guess
what kind of gas to put in the car, although the
high school kid would have looked at the car and
figured out that since it is a 1978 car it must use
unleaded. The computer would not have checked
undar the hood for you gince you didn’t ask, and
would not have even attempted to clean your wind-
shield since “clean” is such a subjective term.

By this time of course, you have figured 01}1;
that the only intelligent plan of action at this
point is to immediately drive away and find a
good ol fashioned gas station that understands
the expression «fller up.” Of course you c?uld
have painstakingly explained in infinite detall_ to
the computer back there at the MONOCO station
exactly how to perform all of those tasks, but
after all, you wanted to go for a drive on this

particular Sunday.

Which brings us to the whole point of this dis-
cussion. If you don’t tell the computer how to
do these things, someone else has to. The whole
reason for installing the computer there at MON-
0CO was to allow you to have your car filled with
gas promptly and efficiently. So someone must
tell the computer how to perform these basic
functions, and that set of instructions is what
would be referred to as an operating system. An
operating system would know what to do when
you said “fill’er up.”

Generally, any operating system can be defined
as the interface between the computer and the
computer user. Its purpose is to provide the user
with o flexible and manageable means of control
over the resources of the computer. The three pri-
mary functions fulfilled by all operating systems
are:

1. Provide an orderly and consistent input/out-
put (i/o) environment for the various ele-
ments of the computer (i.e., terminal, printer,
hard or floppy disk, magnetic tape, ete.) to
operate in. Input/output is a generalized ex-
pression that means responding to a key be-
ing depressed on the keyboard, sending a
character to the screen or printer, etc.

2. Provide file management and status report-
ing for the data being stored in the com-
puter system. A file management system will

HURRY UP MAN (" THE GooDb
You CAN'T MAKE FoLKS FROM

US WAIT.

°
o
°

wow!

INTEL

WE NEED
AN
OPERATING

SYSTEM

THE HISTORY OF CP/M

allow a user to find out what files are on a
disk, how big the files are, how much unused
space is left on the disk, as well as man-
aging the reading and writing of informa-
tion to and from the disk.

- Provide for the loading and execution of
user programs. Many operating systems have
far more elaborate features such as the abil-
ity to execute more than one user task at
one time, the ability to keep track of the
amount of time each user spends on the
system, a system of passwords to protect
data and programs, etc. However, they all
perform the three basic functions mentioned
above in one form or another.

10

THE HISTORY OF CP/M

The microcomputer traces its roots to the first
microprocessor, the Intel 4004, The 4004 was first
introduced in 1970 and was extremely primitiv.e
by standards of today. However, elementary as it
was, it was a major advancement in integrat:ed
circuit technology. Intel followed the 4004 with
the 4040, both of which were 4-bit machines an_d
then the 8008, the first 8-bit microprocessor. Fi-
nally, in early 1978 Intel announced the 8080, the
first microprocessor which was powerful enough
to be used in a microcomputer.

The first real microcomputer, and the one that
started the current expansion of small computers,

e a eaed G Sy

.

g‘:czt:rM:TS Altair. The Altair appesred on
1976 T of Popular Electronios In Decomber of
evers‘ron p:pularity was phenomenal and {t eaught
el e l)‘r surprise. Apparently a huge unper.
$1000 market existed for computers in the under
e txl':nn-e (the MITS Altair kit went for $876
- en in its most stripped-down version).

oon there were other companies springing up to
offer additional computer producta that were com-
patible with the Altair as well ax some companios
that started making computers to compete with

hia sy connpmties wWarE I
pil, 1'rocensor Tachnedtggy, Crometnes, wiid Mt
Hinr., AN the hardware offrings il Vhoas cnipm
nles bagan to round out, initinl s tormre oA erings
in the form of aessernblers, Aiamapatitilern, whd
rudimentary BABIC interpretts Appant el |

The Initial mnss storags madisiin for the ehrty
mierocompulors Wa tha familinr rnsmatin Lt
Most of the companies offersd wn intartaes vhard
which nllowed the ussr o aituch wn orAINBTY Chs
solte tape recorder to the compniter wnd theretry

the Altalr. Bome of 1

What Is a Miorocomputer?

When discussing types of computers, tha computer Industry tands to i1y 4o

plues e
f tha

puters into one of three categories, based on the charactaristios and enpubilitias ¢
machine. The three categories most frequently used are mainfrarmes, minieom putars,
microcomputers. As technology progresses and more powerful compubtars Rppanr oh the

wnfl

These are optional peripherals

Hard Disk
Graphics Board. etc

artificial.

potential.

market, the difference between these three types of computars Is becoming stanller wnd
smaller to where it In very difficult, If not Impossible, to tell tham sprrt.

- MICROCOMPUTER ...

e TERMINAL

Fig. 1-1. A typloal CP/M microcomputer system. Drives should be 8” single or double density,
or 8% " double or quad density.

This is the case particularly with microcomputers and minicomputers, For the pur-
poses of this book we will define & microcomputer as & computer based nround an #-bit,
microprocessor, which can execute a single user's program. Fig. 1-1 shows a typleal
microcomputer. A minicomputer is a computer that is based on a 16-bit or larger central
processor which has the capability to execute the programs of one or more users. The
difeulty in distinguishing between mini and microcomputers arises from recent develop-
ments in the microprocessor fleld where 16-bit microprocessors with more power than the
16-bit CPUs (central processing units) of b yeurs ago are a reality, and the 82-bit miero-
processors are on thelr way. Thus the minl/micro distinction Is becoming mors und more

A mainframe is a very large and sophisticated computer. Mainframes typieally will
execute the programs of many users at one time at very high rates of speed, and usually
have either 82- or 64-bit CPUs, Some mainframen are so fant and powerful that they
have to have minicomputers attached to them to do the scheduling of programs through
them, and to provide the input/output interface to tape and disk drives, printers, and
the like. If these machines had people running the scheduling or if they Interfaced Aj
rectly to the peripherals they would only be able to run at a small fraction of their full

DUAL FLOPPY DISK DRIVES

This anclased aras 1s
considarad (he minimom
hardwais lo tun GPIM

CRY

KEYBOARD

S =

store and retrieve programs, data, and text. Each
company had its own programs which controlled
the tape cassette, recording method, and other
features., However, there was little or no com-
patibility between the various recording schemes
and formats. Although several attempts were
made to create a standard tape storage format

(most notably the Kansas City standard), no clear-

cut standard ever appeared. Consequently there
was very little software transportability between
different manufacturers’ devices, and programs
could not be easily traded or swapped among com-
puter owners.

Soon after the cassette recorder appeared on
the market, a few of the more innovative compa-
nies introduced a floppy disk based mass storage
device. The floppy disk offered a price/perfor-
mance increase over the cassette of several times.
With a floppy disk, a program could be loaded in
seconds, instead of minutes and a much larger
number of programs could be stored on one disk-
ette than could ever be stored on a cassette.

With the advent of the floppy disk drive, ap-
plications for the microcomputer opened up which
had not existed previously. With cassette tape as
the only mass storage medium, the microcomputer
was limited to educational, hobby, and other ap-
plications where the limitations imposed by the
use of cassette tapes as a mass storage medium
could be accepted. However, with the floppy disk,

12

Fig. 1-2. The 8080 microprocessor for
which CP/M was first created,

Courtesy Intel Corp.

business, scientific, and other higher performance
applications became possible.

While all of this was going on, Gary Kildall
(the author of CP/M) was working for Intel as
a consultant writing a language called PL/M for
Intel’s development systems. As can best be deter-
mined from microcomputer folklore (passed down
from generation to generation by the great sages),
the development of CP/M went something like
this.

At that time, paper tape was the only form of
mass storage that had been adapted for micro-
computers (consisting mainly at that time of the
Intel Intellec development systems). The most
commonly used paper tape punch and reader is
the Teletype Model 83 telex machine. For those
of you who have never used one of these beasts,
their particular brand of noisy, slow, mechanical
dependability can only be appreciated by those
who understand the sublime beauty of a Sherman
tank. Fortunately, there are very few people in
the microcomputer field who possess this state of
mind, and so it is no surprise that Gary found
the then recently developed floppy disk drive in-
triguing.

After securing a floppy disk for himself, Gary
realized that a floppy alone does not a mass stor-
age device make. A cabinet, controller, power sup-
ply, cables, and programming are also necessary.
Thus Gary enlisted the help of his friend John

b e e

«....(....a..-mﬁ.--.I.-T’gb.-.::}—T

e e

WD D WD D I G B am e By

| S—

| —

T
orode to complete the project. While Gary devel-

o
Bpggstl;e ?(1); manager (the fore.runner of CP/M’s
nally. ail wasn completed the disk controller. Fi-
tenl; gl real;te;dy and the first CP/M disk sys-
tere:t“:g the next year or so relatively little in-
as shown by tha microcomputer i
for CP/M. Int i mputer industry
though a £ nte expressed no interest, and al-
o gt theegl :zrgznnili'rclmltlic?nses were granted,
facturars expressed an ' tmlcrocomputer iy
Glenn B ¥ Interest. It was not until
2 Ing of Imsai approached Gary f
license that T Ot
t CP/M really began to take off. Out
ofl?;he filalog with Glenn came the concept ot: con-
2; l(gl;';llr\lig' all of the !mrdware dependent portions
In one section, so that anyone could buy
& copy c_)f CP/M and do his or her own modifica-
tion. With this change, the rapid proliferation of
CP/M throughout the industry began.

In order to provide the support manufacturers
and users would require, Gary started Digital Re-
search in 1976. Since that time, Digital Research
has grown and matured with the microcomputer
market, and now offers more advanced versions of
CP/M, as well as related software products such
as a macroassembler (MAC), a symbolic debugger
(SID) for debugging assembly language pro-
grams, a text formatter (TEX) which can be
used with text editors such as ED to produce pro-
fessional word processor quality text output. More
recently, products which support more than one
user at a time in the CP/M environment have
been announced. No doubt, more products will be
announced in the near future from Digital Re-

search.

7

T 2R -
“"-n'a%"’ ’

oy 2
@:‘e‘ﬂ_ ?f,‘.
<)

VoD,

CPm -m%-?ﬂ‘" 4
THE WORLD's mOST
| PULAR OPERATING SYSTEM

v

AL T IS Y TN
1.0 % °a° <

) {
N ".'. 4\
4“3{“.‘,‘,‘374,"

Gary and Digital Research added an assembler,
debugger, text editor, and a number of system
utilities to CP/M with time which allowed the
user to write programs, store and retrieve data,
and in general utilize the full capacity of 2 micro-
computer. However, its most important contribu-
tion was that CP/M was not designed around any
one manufacturer’s hardware but rather, was
written so that it could be used, with the proper
modifications, on almost any microcomputer. This
was a large step forward, since it meant that pro-
grammers could develop software such as more
sophisticated BASIC interpreters, text editors,
and other software in the CP/M environment and
be assured that it would run and be available on
the hardware of many manufacturers.

WHY CP/M IS SO POPULAR

The CP/M operating system has been around
for over five years and during that time a huge
number of programs have been written to run
under it. There are business programs, educa-
tional programs, games, programming aids, high
level languages, and other special purpose pro-
grams such as data communications programs
available for the CP/M environment.

There are over 100 companies offering software
products that run under CP/M. Appendix B lists
a sampling of these programs as well as the names
of companies to write to for more information.
Table 1-1 summarizes some of the types of pro-
grams currently available which are CP/M com-
patible. In addition to the programs listed in Table
1-1 and Appendix B, there is a vast number of

a -

;//;-'.'.r

L

1

WHY IS CP/M SO POPULAR?

games and other entertainment-oriented .programs
which can be found in computer magazines, com-
puter club newsletters, books, and other commonly

available sources.

Table 1-1. Summary of Types of Programs
Currently Available That Are CP/M Compatible

LANGUAGES:
® BASIC
® FORTRAN
e COBOL
® PASCAL

SYSTEM UTILITIES:
® MACROASSEMBLERS
® SYMBOLIC DEBUGGERS
® DISASSEMBLERS
® SYSTEM DIAGNOSTICS
@ DATA BASE MANAGEMENT SYSTEMS
© SORT/MERGE

APPLICATION PROGRAMS:
© GENERAL LEDGER
@ ACCOUNTS PAYABLE
® ACCOUNTS RECEIVABLE
@ PAYROLL
® INVENTORY
© ORDER ENTRY
@ BUSINESS SIMULATION AND MODELING
® GRAPHICS
® TAX PLANNING AND PREPARATION

® WORD PROCESSING

WHAT IS THE FUTURE FOR CP/M?

During their first five years, CP/M and Digital
Research have made a significant contribution to
the field of microcomputers, whether for personal
or business use. Without the CP/M operating sys-
tem, and its easy adaptability to many different

14

WHAT IS THE FUTURE FOR CP/M?

computers, the large body of software which is
currently available for microcomputers would not
be nearly as large or as sophisticated as it cur-
rently is.

Two recent products announced by Digital Re-
search can give us some idea of what is in store
for microcomputers and CP/M during the next
five years. MP/M and CP/Net are the two prod-
ucts and both represent the current focus in the
industry toward distributed processing and micro-
computer networks. Exciting as microcomputers
have been in the past five years, they have been
limited to single-user applications. The possibili-
ties of applications involving microcomputers ac-
cessing large common data bases or microcom-
puters strung together into large networks are
truly mind-boggling. The next five years show in-
credible promise for CP/M, MP/M, and CP/Net
as microcomputer programmers begin to explore
the capabilities of microcomputers joined together
into ever larger and more sophisticated networks.

chapter 2

A CP/M Microcomputer:
Hardware and Software Concepts

.Throughout this book we will be talking about
rrpcrocomputers and we will be using several tech-
nical terms to describe them. In order to fully
uqderstand the concepts we are presenting, we
will take a moment here to explain in detail some
of these terms and concepts. If you are already
familiar with microcomputers you may wish to
skip this chapter entirely.

CENTRAL PROCESSING UNIT (CPU)

All computers have three main types of com-
ponents in them. The first is the central processing
unit (abbreviated CPU). This is the brain or the
smarts of the computer, and in microcomputers,
the wizards of Silicon Valley (Santa Clara County,
California) have reduced it into one small inte-
grated circuit. There are many types of CPUs
and they vary in how much work they will do and
how fast they will do that work. The particular
CPU which CP/M was first written for was the
Intel 8080. Since the original introduction of the
Intel 8080, two more CPUs have entered the mar-
ket which are for the most part compatible with
the 8080 and on which CP/M will run. These
newer CPUs are the Intel 8085 and the Zilog Z80.

Each of these CPUs has its own instruction set.
An instruction set is simply the total repertoire
of commands which the CPU will recognize and
execute. The 8085 and Z80 execute a superset of
the basic 8080 set and so in order to have CP/M
run on all of these CPUs, Digital Research has
written CP/M using only the 8080 instruction set.
While the 8080, 8085, and Z80 all execute the
same 8080 instruction set, the 8085 and Z80 CPUs
operate at roughly twice the speed of the 8080.
Because of this, the microcomputers which are

15

being sold today use almost exclusively 8085 and
Z80 CPUs in them.

MEMORY

The second major component of a computer is
its memory. Memory is that part of the computer
in which programs and data are stored. There are
many types of computer memory. There is the
internal memory that the computer uses for stor-
ing the programs and data which it must execute
immediately, such as the current program. There
is also mass external storage, for storing files and
large amounts of data that are not required im-
mediately by the computer for execution. Internal
memory is either random access memory (RAM)
or read only memory (ROM). RAM is used where
data or program steps must be stored and easily
changed. RAM comprises the largest portion of
the internal memory in a typical computer instal-
lation. ROM, on the other hand, is used for small
programs which are not changed at all. The ini-
tializing program which is executed as soon as
the computer is turned on is usually stored in
ROM. CP/M operates in the RAM section of the
computer’s memory, although it is stored on the
floppy disk, so that it is preserved when the power
is turned off, since the contents of a computer’s
RAM memory are lost when power is removed.

INPUT/OUTPUT

Input/output or i/o is the third major compo-
nent of the computer. This is the portion of the
computer which allows it to communicate with
the outside world. Typical i/o devices which are
attached to a computer are printers, crt terminals,

paper tape punches, punched card readers, ete.
Fig. 2-1 shows a typical microcomputer conﬁgl.lra-
tion with the CPU, memory and i/o sections
marked. A microcomputer accomplishes this i/0
with the outside world through channels which
are called ports. The physical addresses of the i/0
ports vary from computer to computer. CP/M
gives them logical titles (crt, LST, ete.) and BI(?S
is modified for the differences. Each port has its
own unique address, very much like the memory
in the microcomputer is broken up into individu-
ally numbered addresses. The i/o ports are num-
bered 1 to 256 in a microcomputer running CP/M.
As you can see from Fig. 2-1, the devices such as
printers, crt terminals and the like are attached
to the i/o ports. For example, the crt in Fig. 2-1
may be attached to port 12. Thus, to move data
to and from the crt, the CPU must move charac-
ters in and out of port 12. If the CPU tried to
move data in and out of any other port, nothing
would show up on the screen, and the computer
would appear to ignore the keyboard input.

LOGICAL AND PHYSICAL 1/0

While Fig. 2-1 shows a typical system, it is by
no means the only configuration available. A mi-
crocomputer can have multiple printers attached

Port Address X [_OISK 110 PORT |\

Port Address Z

Note: The 8080 & 280 /0 space/ 1

is separate from RAM space.

PRINTER PORT I\
10 PORTS [N

ROM

BUSES: Address, Data & Control

16

| CONTROLLER

8080, 280, or 8085

or almost any combination of the i/0 devices listed
above. One of the purposes of CP/M is to elim-
inate the need for the programmer to worry about
the exact i/o configuration of the particular micro-
computer which the program is to run on. One
of the most common methods of eliminating this
problem is the creation of what are referred to
as “logical” i/o devices which the programmer
may program for.

The opposite of a “logical” device is not an
illogical device, but rather a ‘“physical” device.
A physical i/o device is the actual i/o device,
whereas a logical i/o device is the programming
representation we make of that physical device.

Although this may sound like an awkward way
of doing things at first glance, we actually use
this logical/physical relationship all of the time
in day-to-day life. For example, where do you go
when you leave work each day? You go home, of
course. Well when someone asks you where are
you going you tell them you are going “home.”
Now the truth of the matter is that you live at
123 Main St. Anytown, USA just like every other
John Doe. But isn’t it so much easier to tell people
that you are going “home” than you are going to
“123 Main St. Anytown, USA.” And if you have
followed us this far you should also now see that
“home” is where you have referred to for each

DISK

TERMINAL
INTERFACE

PRINTER
INTERFACE

Fig. 2-1. Logical and physical i/o.

uP

CPU

am =]
g g

Bl
e EE

)

pie

qf the ten places you have lived throughout your
life. Thus, although your actual address changes,
your response to the philosophical question of
“where are you going” doesn’t. Now doesn’t that
make life that much easier?

With CP/M this concept of logical devices is
not only nice, it is a necessity. Since there are ver-
sions of CP/M for over 100 different computers,
CP/M must allow programs to simply say “send
this home” and know that the particular version
of CP/M which is running on that machine will
translate that into “send this to 123 Main Street
Anytown, USA” or “gend this to 999 Square Street
Nowheresville, USA” or whatever is appropriate.
This translation is done for the programmer by
CP/M.

Thus if a program sends information to the crt
gcreen it will say, in essence “output to screen”
(perhaps via a statement like PRINT in BASIC).
Your particular version of CP/M has been cus-
tomized (usually by the manufacturer of your
computer) 8o it interprets “output to screen’’ cor-
rectly and sends the information to the correct
physical place in the computer’s structure to ac-
complish this command.)

cal i/o devices that it talks

has four logi
G/ Sne the LIST de-

. They are the CONSOLE device,
- d device, and the READER device.

vice, the PUNCH :
Of these, the PUNCH and READER devices are

d in actual day-to-day applications.
to punch and read paper tapes.
f relatively low-cost floppy disk

ldom used as a storage me-

very rarely use
They are used
With the advent o
drives, paper tape is se

17

LOGICAL and PRYSICAL T/0

dium. For this reason we will ignore the PUNCH
and READER dzvices and concentrate on the
CONSOLE and LIST devices throughout the rest
of the book. However, understand that you may
occasionally see READER and PUNCH used for

some other i/o0 device than paper tape.
The CONSOLE device is the device through

which the operator makes his or her wishes known
to the computer. The CONSOLE logical device is
usually a crt terminal, although almost any device
that allows two-way communication with the com-
puter may be used. The LIST device is the princi-
pal output device used for hard-copy (a fancy
name for paper) output, such as a printer.

MACHINE LANGUAGE

CP/M has been written to run on either an 8080,
8085, or Z80 microprocessor. The actual CP/M
program is written in 8080 machine language,
but since both the 8085 and Z80 will execute 8080
machine language as well as certain instructions
of their own, CP/M may be run on those com-
puters. If all of this talk about machine language,
instruction sets, and the like has you slightly
confused at this point don’t panic. We will deal
with the topic only peripherally at this point. We
will talk in much more detail about all of this in
Chapters 7 and 8 when we discuss the CP/M As-
sembler (ASM) and Dynamic Debugging Tool
(DDT) in detail.

When talking about progamming, there are
usually three classes of programs recognized by

CAl
EDUCATION PACKAGE
AGES 6-12

PROCESS
CONTROL
SYSTEM

MAILING LIST
PACKAGE

d Nucleus: 1/0, disk, etc.
Assembly language programs

== High level language programs

D Application programs

users, programmers, and the like, They are as-
sembly languages, high level languages, and appli-
cation programs. The differences between these
levels of programming are somewhat arbitrary,
but are based on a hierarchy shown in Fig. 2.2,
As you can see from the diagram, an operating
System of one kind or another is required to per-
form i/o and System-oriented functions, Assembly
language programs are the next level of programs,
followed by high level language interpreters, and
finally, application programs,

ASSEMBLY LANGUAGE

This is programming at its most basic level.
Assembly languages are the first level of program-
ming that must be done for any machine. All
programs written in assembler are written using
the native instructiong of the particular central
Processor which the computer is based upon. In

BUSINESS

SMALL

PACKAGE
GL, AR,
efc.

FORTRAN

Fig. 2-2. The software hierarchy as
seen in a CP/M system.

the case of CP/M of course, this is the 8080, 8085,
or Z80 instruction sets. Fig. 2-8 shows a portion
of a sample program written in 8080 Assemblfer.
Again, don’t worry if it looks like hierog{yphxcs
to you. We will discuss the specifics of reading an
assembly language program listing as well as ex-
plain the use of a machine language assembler.

HIGH LEVEL LANGUAGES

The next level of programming is referred to
as high level languages. These are the languages
that programs are written in which are not mat-
chine dependent. In other words they are no
written to utilize the instruction set of any one
CPU. Languages such as BASIC, FORTRAN,
COBOL, PASCAL, and others are referred to as
high level languages. Most programming is do;:e
in these languages, rather than in assembler. The
reasons for this are twofold.

DIRECT: CALL FOPEN :OPEN FILE
(L:)S D,DIR$BUF
LL FSETBUF :SET
Soes 'SET NEW BUFFER
MVI L3 ;LOAD C
] : OUNTER
CALL FREAD ;MOVE FIRST RECORD
LOOP4: SSP D ;GET DISK BUFFER
SH H ;GET REG L OUT OF
‘THE WAY
LXI H,128
DAD D ;ADD 128 TO DISK
:‘BUFFER AND SAVE
XCHG :AS NEW BUFFER
CALL FSETBUF
POP H :GET REG L BACK
PUSH D :SAVE NEW BUFFER
CALL FREAD :READ NEXT RECORD
DCR L
JNZ LOOP4 -TEST FOR MORE

Fig. 2-3. Assembly language program listing. Here the
language is for the 8080 microprocessor.

First, high level languages are easier to pro-
gram in. Single statements in these languages
often take hundreds of machine language instruc-
tions to implement. Thus the programmer saves
tremendous amounts of time, as well as reducing
the numbar of mistakes which will eventually
have to be tracked down and corrected. There is
a penalty for this however. In assembly languages,
the central processor executes the instructions di-
rectly. With high level languages, a set of machine
level instructions interprets the instructions in
the high level language and in effect translates
them into machine level instructions. This means
that an application which is programmed in a
high level language is going to execute much more
slowly than the same program written in assem-
bler. Fig. 2-4 shows a portion of a program writ-
ten in BASIC. Notice that without even knowing
anything about the structure and the syntax of
a BASIC program, you can still figure out, with-
out too much work, what this program is supposed
to do (come on, I know you can). (0.K,, you
can’t . . . it simulates a pocket calculator.)

The second reason for programming in a high
level language is the transportability from one
computer to another computer of the program
(this idea of machine independence). The BASIC
program listed in Fig. 2-4 could be run on almost
any computer, regardless of the central processor,
which has a BASIC language interpreter written
for it which adheres to the ANSI standard for
BASIC. As a matter of fact, this last feature of
high level languages is so important that each of

19

10 INPUT “ENTER TWO NUMBERS" X,Y
20 PRINT “ENTER 1 TO ADD”
30 PRINT " 2 TO SUBTRACT”
40 PRINT " 3 TO MULTIPLY"
50 PRINT“ 4 TO DIVIDE”
INPUT |
gg REM- - -BRANCH TO PROPER OPERATION
ON | GOTO 100,200,300,400
gg REM- - ~ANYTHING ELSE CAUSES PROGRAM
TO END
95 GOTO 900
100 REM- - -ADDITION
110 LETZ=X+Y
120 GOTO 500
200 REM- - -SUBRTACTION
210 LETZ=X-Y
220 GOTO 500
300 REM- - ~-MULTIPLICATION
310 LETZ=XxY
320 GOTO 500
400 REM- - -DIVISION
410 LET Z=X/Y
500 REM- - -PRINT THE ANSWER AND DO IT
AGAIN
510 PRINT “THE ANSWER 1S”;Z
520 GOTO 10
900 END

g. 2-4. High level language program listing. Here the
language is BASIC.

F

the major high level languages has a standard so
that the interpreters offered by each manufacturer
on their particular central processor will all be
the same. The American National Standards In-
stitute (abbraviated ANSI) maintains the stan-
dards for BASIC, FORTRAN, and COBOL, which
are by far the three most commonly used high
level languages.

APPLICATION PROGRAMS

The final level of programming is application
programs. These are the programs that perform
the desired task for the end user. Typical appli-
cation programs are accounts receivable process-
ing, order entry, inventory control, and the like.
Fig. 2-5 shows the operator’s screen for a typical

GENERAL LEDGER MASTER MENU

1-STATUS REPORTS:

2-INPUT TRANSACTIONS 7-CHART OF ACCOUNTS
3-EDIT LIST 8-TRIAL BALANCE

4-POST TRANSACTIONS 9-JOURNALS
10-REGISTERS

11-GENERAL LEDGER
12-FINANCIAL STATEMENTS

5-END OF MONTH
6-FILE MAINTENANCE

WHICH OPTION WOULD YOU LIKE?

Fig. 2-5. Application program output.

application program. Here the program is pre-
sented to the user as a “menu” from which to
choose a particular general ledger function for a
small business. Application programs are typically
written in one of the common high level languages
although some are also written in pure assembly
and many are a combination of high level and
assembly language. They are often written so that
one or more programs interact, creating a larger
and more sophisticated system than if all tasks
were performed separately from each other. A
good example of this is an accounting system
where the general ledger, accounts receivables,
accounts payables, payroll, inventory, order entry,
and word processing are all tied together into
one large system.

FURTHER READING

We will cover some additional concepts relating
to microcomputer systems in other sections of the

book. As we explain in greater detail how CP/M
works, you will gain further insight into the in-
ternal workings of a microcomputer.

This book will not, however, make you an ex-
pert in microcomputers. Before you panic, please
realize that it is not necessary for you to become
an expert in the internal workings of microcom-
puters to own, use, and enjoy one. We will bring
you to that stage during the course of this book.
If, on the other hand, you are very anxious to
learn more about the internal goings-on of a typi-
cal microcomputer and computers in general, then
we would like to encourage you to seek out one
or more of the many books written on microcom-
puter basics. Not only will a greater knowledge
of computers make CP/M that much easier to
understand, but it will introduce you to the many
exciting applications that microcomputers are cur-
rently opening up. Happy reading!

chapter 3

Starting Up and First Using a
CP/M System

In order to start using CP/M, you must first
secure the use of a microcomputer which has a
version of CP/M already installed on it. By this,
we mean that the manufacturer of the micro-
computer has already licensed CP/M from Digital
Research, and distributes a copy of CP/M (with
the BIOS module already modified for that micro-
computer) with every machine that he sells. This
is the usual method for a user to get a copy of
CP/M. If for some reason, the manufacturer of
your microcomputer does not distribute the CP/ M
operating system, there is a possibility that you
may buy a copy of CP/M already modified for
your microcomputer from one of several software
companies (the most prominent being Lifeboat
Associates in New York) who sell CP/M with
the BIOS module already modified for a particu-
lar brand of microcomputer. If this does not work
then you have trouble. You must purchase a copy
of CP/M from Digital Research, and modify it
for your particular microcomputer. This, unfor-
tunately, is not an easy task. You will also be
on your own as far as this book is concerned, six?ce
an explanation of the steps required to modify
BIOS is beyond the scope of this book.

From this point on, we will be giving examples
of tha CP/M operating system in actual use. If
you own or have access to a microcomputer with
CP/M already installed on it, we encourage you
to actually do the examples we give on the com-
puter. We will show you what to expect on the
screen or printer as output, and what you should
input so that you will be able to re-create the ex-
amples we have listed. (If you don’t have CP/M
you can still read the chapter, but you'll have: to
accept that CP/M outputs the way we show it.)

The first thing you must always do when you
start the computer up is load CP/M into the com-

21

puter’s memory so that it can begin executing it.
(Remember, CP/M is nothing more than a very
special assembly language program, and as we
discussed in Chapter 1, a computer always needs
an operating system program to execute in order
to do anything useful.) Almost all microcomputers
have some sort of very primitive program stored
in ROM or PROM (so that it will be there when
the power is turned off and then turned back on
again) which will do things such as examine and
change locations in memory, and input and out-
put bytes from the computer ports. This program
is referred to as the “monitor” or “executive.”
Most manufacturers also include in the monitor
the ability to load an operating system program
from the disk into the computer’s memory. This
process is referred to as “booling the system,” or
“bootstrapping the system.”

Booting CP/M, and other similar operating
gystems for that matter, usually remains a mys-
tery for most people. Therefore, let’s digress for
a while and learn more about it.

BOOTING A CP/M SYSTEM

As we explained earlier in the book, an opzrat-
ing system is the program that, among other
things, allows the computer to read and write
data and other programs from a mass storage de-
vice such as a floppy disk drive. A program, such
as an operating system, i3 necessary to allow this
function to be performed. So we have a bit of a
Catch-22 here; in order to get the operating sys-
tem off the disk and into the microcomputer mem-
ory when we turn the power on, the operating sys-
tem must already be in memory! The solution to
this problem is the “bootstrap loader.”

A microcomputer can be built in such a way
that it reads the first sector of the first track of
a disk drive into the lowest memory locations
every time power is turned off and then on, or
the RESET switch is depressed. If a small program
is stored on the disk in Track 0, Sector 1, which
in turn loads in a larger program (the operating

22

system), then we can get around this problem.
This is shown in Figs. 3-1A and 3-1B. _
Once the CP/M system is booted, it will display
the screen shown at the top of the next page.
This will mean that CP/M is reserving the first
xxK bytes of memory for its use and the use of
programs under its control. Here xx will be

some number between 16 and 64. Please note that
it is possible to have more RAM in your computer
than the number specified in xx. It is not un-
common to find people using a 82K or 48K CP/M
system ir.n a computer with 64K of RAM. Y.y is
the version number of the particular type of
CP/M being used. As we are writing this book,
the latest version number for CP/M is 2.2. There
»Yill undoubtedly be new versions of CP/M with
time, and all of the information contained in the
examples may not be completely correct for your
particular version. However, don’t despair. In
most cases your CP/M manual will explain what-
ever differences there might be between the vari-
ous versions. Enough said.

This process of booting is called a “cold boot.”
It is very similar to starting a cold car in the
morning; it was not running recently enough to
do us any good. A cold boot on & microcomputer
happens after the power has been turned off and
then back on. The other type of boot is, oddly
enough, a “warm boot,” which happens after we
run a program or utility and exit back to CP/M
and the CCP. As we saw, a cold boot reads in the
whole CP/M operating system. A warm boot, on
the other hand, reads in only a portion of CP/M.
The rest of CP/M is assumed to be intact since
there has been no power down, and the program
or utility if operating properly, will not alter the
memory containing the other part of the CcP/M
operating system.

CP/M MEMORY USAGE AND
ORGANIZATION

As we discussed in Chapter 1, a microcomputer
has three basic components; the CPU, the mem-
ory, and the i/o ports. In all CP/M computers,
the maximum amount of memory which the CPU
can address is 65,536 bytes. (This will be denoted
as 64K throughout the remainder of the book
where K = 1024.) What we mean by this is that
every memory location has an address, just like
the ones that the Post Office gives us. They are
numbered consecutively from 0 to 65,636. This
allows the programmer to issue commands such

PROM directs loading
—of bootstrap program
off disk and into RAM.

DISKETTE Bootstrap loader now DISKETTE
directs loading of CP/M

system into top of RAM

TRACK 0

TRACK 1

TRACK 0. SECTOR 1

(B) Reading all sectors of Tracks 0 and 1 into upper RAM—

ck 0, Sector 1Into low RAM—CP/M
CP/M system_

(A) Reading Tra
pootstrap program.

Fig. 3-1. Bootstrapping CP/M into RAM.

23

Transient
Program

Area

Reserved e
for CP/m

{@?_

NO MAN’S
LAND

2—

CP/M MEMORY USAGE

as “copy the byte of information at 1,253 into
45,892” and allows the CPU to easily execute these
commands.

The CP/M operating system divides the avail-
able memory into a number of distinct blocks and
reserves certain specific areas for its own use.
The only memory locations which are reserved
for CP/M are located in the lowest portion (the
section with the lowest addresses) so that a CP/M
system may be run on a microcomputer system
containing anywhere from 16K bytes to 64K bytes
of main memory. Fig. 8-2 shows the memory lay-
out of a 64K microcomputer running under CP/M.

If there is less than 64K of main memory, then the
TOP OF MEMORY address is lower. Since the
size of the CP/M operating system remains the
same, the way CP/M adjusts to different amounts
of memory is by expanding or compressing the
amount of memory allocated for programs to run
in. However, there are times when it is useful to
store and run a program outside of this area.
One of the features of the CP/M operating system
is its ability to run under many different combina-
tions of memory and i/o devices. Thus it is per-
fectly acceptable to have CP/M occupy the first
42K of main memory and have a 24K program

e

BEREROR

™

—

|

e

i

TOP OF MEMORY
65,535 >

256 >

0>
BOTTOM OF MEMORY

Flg.s-zﬂmyhyoutmcwuhuul(bylommm
of memory is used by CP/M.

reside in the upper memory. Fig. 3-3 shows this.
This flexibility of location in memory is super-
vised by the MOVCPM utility. At this point it will
suffice to say MOVCPM takes each of the indi-
vidual modules in the CP/M operating system
(BDOS, BIOS, and CCP) and modifies them in
such a way as to allow them to operate in the
locations which they will be occupying in the new
size system. Chapter 4 will deal in depth with
SYSGEN and MOVCPM, the two utilities which
are used to modify and move CP/M systems.

Transient Program Area (TPA)

The TPA is very simply the area in main mem-
ory, between memory location 256D or 0100H, the
top of the lower memory reserved for CP/M, and
the bottom of BDOS. It is where user programs
are stored and executed under CP/M. CP/M loads
user programs into this area starting at location
0100H and works upward, filling bytes until either
the program is completely loaded, or the system
is out of memory available for the TPA. You will
note that the diagram of the CP/M memory al-
location (Fig. 3-2) shows a line between them.
However the TPA and the CCP can overlap each
other. Whenever a program is too large to reside

only in the TPA, CP/ M will load a program right
over the CCP in order to gain the additional room
needed for the program. When the program has
finished and wishes to return control to the CCP,
the CCP is reloaded from the disk in what is re-
ferred to as a “warm boot.” The TPA'’s size varies
with the amount of available RAM in your com-
puter. CCP, BDOS, and BIOS are fixed in size.

CCP (Console Command Processor)

The CCP is the portion of CP/M which controls
all of the interaction with the operator in the
«command” mode of operation, i.e.,, when a user
program is not running and in control of the com-
puter. We will deal with the CCP in more detail
further on in the chapter when we talk about
resident commands. For now we will leave it that
the CCP is the part of CP/M which allows pro-
grams to be loaded into the TPA and run, files to
be listed, created, deleted, and other “housekeep-
ing” functions performed.

BDOS (Basic Disk Operating System)

BDOS is the portion of the CP/M which han-
dles all of the basic disk file transactions such as
reading and writing a record from or to a disk,
the dynamic allocation and deallocation of disk
space, and other disk-oriented tasks. BDOS, un-

NEW TOP
OF MEMORY
43.007 >

This memory area is free
~——1or special use by you. It
was freed by lowering
CP/M's top of memory.

256 >

0>
BOTTOM OF MEMORY

Fig. 3-3. A memory arrangement for CP/M where a free
memory area is obtained above BDOS.

like BIOS, is entirely machine-independent; in
other words, BDOS is the same for all microcom-
puters, regardless of the particular disk drive
interface or the particular combination of input
and output devices hooked up to the computer.
BDOS may be considered the core, or the heart,
of CP/M.

BIOS (Basic Input/Output System)

BIOS is the third major subsection of the CP/M
operating system. BIOS contains all of the pro-
gramming in CP/M that is machine-dependent.
Thus it is in BIOS that all input/output programs
(such as those for the console device, the disk
controller interface, and the list device) are con-
tained. It is through the BIOS/BDOS concept that
as many microcomputers as there are are able to
all run CP/M.

CP/M FILES

The beauty of CP/M, and one reason for its
popularity is its file handling ability. A file is any
collection of data, text, or program instructions
which is stored on a floppy disk. All files are
referenced by an eight character “filename” and
a three character “file type” designator or exten-

sion. Examples of valid CP/M filenames are given
below.

STAT.COM
PROGRAM.BAS

GENLEDG.DAT
PROGRAM.PRN

BOOK.TXT
BOOK.BAK

The filename may contain any ASCII character

With the exception of (‘?”, “*”’ l‘.’,’ ‘(’”’ ‘(=’,’ and

“:”. Thus the following CP/M file names are in-
valid.

PAY12:79.DAT
INVENTORY.BAS

Uses the character *:"
Filename too long

Wild Cards, Ambiguous, and
Unambiguous Filenames

CP/M has a clever feature which allows the
user to refer to more than one file at a time, and
to perform operations on a group of related files.
It accomplishes this by allowing what is referred
to as ambiguous filenames (ves, as opposed to un-
ambiguous file names). The examples of filenames
which we gave above are unambiguous filenames
—they reference one and only one CP/M file. An
ambiguous filename on the other hand will refer-
ence one or more CP/M files. CP/M accomplishes
this with the use of “wild cards,” which are used
exactly like wild cards are used in poker or other
card games. The two CP/M wild cards are the
characters “*” and “?”. The *“?” character means
“match any character” in this location in the file-

26

name. Thus the following files would all be ref-

erenced by typing the ambiguous filenames of
PAY??-79.DAT

PAY01-79.DAT PAY02-79.DAT PAY03-79.DAT
PAY04-79.DAT PAY05-79.DAT PAY06-79.DAT
PAY07-79.DAT PAY08-79.DAT PAY09-79.DAT

The utility of this is not having to type the
name of each and every file in order to have CP/M,
or one of the CP/M utilities, reference it. Thus
if you were running a payroll program and you
wanted to find out which of the above data files
were on the current disk drive, you would simply
type the following example. The “*” wild card
simply means “pad with ‘?s.” Thus if you wanted
to find all the BASIC program files with a file
type of .BAS, you could type either

?7?7?????2.BAS or *.BAS

As we get further into the specific CP/M com-
mands and utilities, you will begin to see more
and more the value of unambiguous filenames. We
will abbreviate unambiguous filename as “ufn”
and ambiguous file name as “afn.”

File Types

There are several file types which have a special
meaning to either CP/M or one or more of the
standard CP/M utilities, or one of the high level
languages and other programs available for use
with CP/M. In order to avoid confusion at a later
date, it is best to use the following file types f?r
their specific purpose only. This way you will
not be surprised later on when you want to erase
all BASIC program source code files from the
disk and you have forgotten that some time before
you gave the only copy of a valuable text ﬁle_the
file type .BAS. Here are the accepted extensions
for CP/M.

P e g g pe— p— p—" e p— p—

ASM source code
ED generated backup
BASIC-E, CBASIC, or MBASIC
source code
Relocatable assembi ross-reference
COBOL source e fe
ASCII Data (FORTRAN default)
FORTRAN source code
BASIC-E. CBASIC object code
Relocatable assembler source
BASIC-E, CBASIC listing
90@0(. compiler overlay
:es:)ncga tLuem FORTRAN, COBOL, etc.)
object (Relocatabl
FORTRAN, etc.) S ———
SUBMIT command file

¢ A336ER3289 BE

:X Assembler Symbol Table
RE Absolute assembler cross-reference table

Dynamic File Allocation

A file under CP/M can be as short as zero bytes
of data, or as large as the total amount of space
available on a disk. One of the functions of the
BDOS module in CP/M is the management and
allocation of disk space for the files. As a file gets
larger, CP/M allocates additional space on the disk
for that particular file. This is all very straight-
forward. However, what sets CP/M apart from
some of the other operating systems available is
its ability to reclaim allocated space from a file
as that file gets smaller. This process of assigning
disk space as a file gets larger, and reclaiming
disk space as a file gets smaller is called dynamic
file allocation.

The actual mechanics of the CP/M dynamic
file allocation are very similar to the way a typical
business establishment files its records. The disk
can be equated with a file cabinet, and a file with
a certain drawer in that file cabinet. Thus if you
would like to get the payroll records for July,
you go to the file cabinet with the payroll records
in it (place the payroll disk in the disk drive),
and open the drawer marked “July Records” (ac-
cess the file PAYO07-79.DAT). Once inside the

drawer of the file cabinet you will find a series of
folders, each of which contains some amount of

data. CP/M breaks its files up into “records” of

up to the amount of

available space on the disk, just as you can have
as many folders in a drawer of a file cabinet as
it will physically hold. CP/M will allow you to
ask for the 15th record in file PAY07-79.DAT.
It will then transfer the 128 bytes of information
in that record into the microcomputer memory
where it can be examined and/or changed, and

then CP/M will transfer the record containing

the new information back to the 15th record of
PAY07-79.DAT.

CP/M keeps track of where all of the records
in a given file are on the disk in a special location
also on the disk called the directory. The directory
has an entry for each of the files on the disk,
which tells how long each of the files is, and where
it is located on the disk. Files are created or
erased on a disk by either writing or erasing a

directory entry.

RESIDENT COMMANDS

The CCP is the portion of CP/M that most
users will have the most interaction with. Thus
we will spend some time here discussing some of
the things that the CCP can do for you.

CP/M will execute two types of commands,
resident and transient. Resident commands are
the commands whose programs are permanently
resident in the CCP and may be used at any time.
Transient commands are commands whose pro-

are stored on a disk. Transients may or
may not be called upon at any time, depending
on whether they are present on the disk currently
in the system. In order to help further distinguish
between the two, transient commands are usually
called system utilities.

CP/M provides several resident commands for
the user. These commands are interpreted and im-
mediately executed by the CCP. The CCP alerts
the user to its readiness, willingness, and ability
to jump to the user’s aid by displaying what is
called the “prompt.” The prompt is a rather in-
nocuous little thing that appears on the console
screen as shown below. The letter “A” with the
“greater than” symbol lets the user know that
disk A is the “current” disk, that is the disk which
will be assumed to be referenced until further
notice, and that it is ready to accept a command.

VE
1Y y@

me alist o-Fn"i?es on
disk A;and make it fast !
/

A>DIR A

Oo

OOO
OOOOO oHIL'rg‘,"Toooooo
5 0| ooaoz

o
—_ () 0 ¢l

—=opolo ZGIEAE
@500"

THE CONSOLE COMMAND PROCESSOR

CP/M assumes that the disk from which the
operating system was booted is the A disk, and
that the A disk is the disk “currently” being ad-
dressed. The other drives in the system are refer-
enced B, C, D, etc. The A> tells us that subse-
quent CP/M commands will assume the A drive
is the drive which you would like referenced. In
order to change the current disk to one of the
other disks in the system the user simply types
the following

Typing B: says “switch to drive B:” to CP/M.
CP/M will return with the B> prompt to let the
user know that drive B is now the current drive.

A word of caution is in order at this point. If
you try and log into a drive which is not currently
physically in your system, i.e., you try to reference
drive D: in a two drive system, CP/M will go off
into never-never land and you will have to cold
boot your system to get it to snap out of it.

CP/M has five built-in or resident commands
(as opposed to transient commands which are
loaded in from the disk and then executed). The
resident commands are

DIR Returns a directory of the current disk

ERA Erases a file from a disk

REN Renames a file

TYPE Types out the contents of a file to the cur-
rent console device such as the crt

SAVE Saves the contents of memory as a file on
the disk

We will now explain each of these special and
often used resident commands.

Perhaps the command you’ll use more often
than any other is DIR. The DIR or DIRECTORY
command allows the user to interrogate the disk
to determine what files are on that disk. With
DIR the user can either ask for a specific file, a
group of files (using an unambiguous filename),
or simply a general directory of a disk. The DIR
function also allows the user to access a disk other

Epinlalinlalialalal

'mEm

?"qr"ﬂ

=_|

B L B

:il;:l? t%; current one without changing “current”
som;e . thls is 'done by either typing DIR B: or
o DIRelra finve reference (C, D, etc.) or by typ-
i .BOOK.TXT where an ambiguous or
e gcuous ﬁ]ena.me 1s preceded by a disk desig-
. gn P/M vers§on 1.4 and earlier will return

e directory as a line of filenames, with each file-
name preceded by its drive designation. In ver-
sions 2.0 and later, the directory will be laid out
in four columns.

If the user were to type, for example

CP/M would return all of the files with a file type
of .COM on disk B. Recall “*” is a wild card.

TYPE

The TYPE command will type out the contents
of a file to the console device (usually the crt).
This is usually the best way to quickly examine a
file. The file must be a text file (i.e., it must con-
tain ASCII characters) and it must have an un-
ambiguous filename. The reason that the file must
be a text file (such as .BAS, .FOR) is that object
code files (files with file types of .COM, .REL,
CRF, etc.) have characters in them which might
be interpreted as control characters and will tend
to make the screen go crazy. In addition, since
object code is machine readable, it is usually not
human readable. Text files, data files, and pro-
gram source listings will be readable using the
TYPE command. Some of the file types that can
be typed are .BAS, .FOR, .ASM, .MAC, .PRN,
.LST, etc. The following example illustrates how
to invoke the TYPE command.

This example will list the program source code
for a BASIC program called GENLEDG.BAS to
the console device. If a crt is being used as a
console device, it is desirable to have the display
pause as the screen will often scroll much faster
than you can read. At any time, a CONTROL-S

can be typed to cause the display to freeze. When-
ever another CONTROL-S is typed the display
scrolling will resume. You may abort the listing
of a file by typing any character other than a
CONTROL-S while the listing is under way.

TYPE will not accept ambiguous filenames.
Thus the following is an unacceptable use of
TYPE. (In this case how would CP/M know what
BASIC file you wanted typed?)

However, multiple files may be typed with one
command. This is accomplished by separating each
filename with a comma:

A>TYPE LEDGER.BAS,MONTH.DAT,BOOK.TXT

ERA

The ERA or ERASE command is used to erase
one or more files from the currently logged disk
The ERA command will accept both ambiguous;
anc! unambiguous filenames. Since ERA *.* is a
valid command using an unambiguous ﬁl'ename
and considering that this command will erase all
files on the currently logged disk, CP/M will
prompt the console with “ALL FILES (Y/N) ?”

and wait for a Y response before it proceeds with
such a potentially destructive command. As a
safety precaution it is always a good idea to pre-
cede the ERA command with a DIR command so
that you are sure you are erasing the file from
the correct disk. One of the most commonly made
mistakes using ERA in a multidrive system is
erasing the right file, but on the wrong drive!

The preceding command will erase all BASIC
source code files on the current disk.

The REN or RENAME function allows you to
change the name of a file from one name to an-
other, while leaving the file itself intact. Renam-

ing has many useful applications. The general
form is as follows

The above command renames TEXT.TXT to
TEXT.BAK. It is important to remember that the
new name comes first, followed by the old name.
If a file of the new name already exists, CP/M
will abort the operation and print “FILE EX-

30

ISTS” on the console. If CP/M can’t find a file on
the current drive with the old name then it will
print “NOT FOUND” on the console. The new
name may be preceded by a drive reference if you
want to rename a file not on the current disk. The
command for this would be

A>REN B:TEXT.BAK=TEXT.TXT

To avoid confusion, CP/M will not accept am-
biguous filenames in the REN function.

SAVE

SAVE is the final CCP resident command.
SAVE is used mainly by those involved in assem-
bly language programming, thus we will discuss
SAVE only briefly here. A much more in-depth
discussion can be found in the chapter on ASM
and DDT. SAVE places n pages (256 byte blocks)
into a file on a disk from the TPA. The follow-
ing command will save the first 5 pages of mem-
ory (locations 100H through 4FFH) in the file
PROGRAM.COM.

TRANSIENT COMMANDS (UTILITIES)

The most convenient CP/M commands to use
are the five CCP commands which we just ex-
plained because they are built into the operating
system. They are always there, and are quick to
respond because you don’t have to wait for them
to be read in from the disk. However, they take
up space, and can only do so much. Therefore,
some of the more lengthy CP/M utilities must be
stored on disk and called in when they are needed.

These programs are usually called utilities, in
order to differentiate them from the resident com-
mands. They must have a file type .COM, and are
written to be loaded into memory starting at lo-
cation 256 (0100H). CP/M has several standard

utilities which are supplied with the system. They
are

TRANSIENT)
HoTelL

LoAD

STAT
ED

Louwp

o]

TRANSIENT COMMANDS

STAT.COM ED.COM DDT.COM
ASM.COM PIP.COM LOAD.COM
DUMP.COM SYSGEN.COM MOVCPM.COM

We will cover each of these utilities in much
more depth in later chapters in addition to some
other utilities which are not a part of the stock
CP/M set of programs, and which are usually
supplied by the various microcomputer manufac-
turers.

The general form to invoke a utility is to simply
type the name of the utility. Notice, however, that
only the filename, and not the .COM file type is
entered. The following will invoke the STAT

utility.

like the resident commands, usually
uest some brief instructions as to exactly what
function you would like to have performed. CP/M
has the ability to pass these instructions along to
the utilities, or if you wish, the utility will spe-
cifically ask you questions if no instructions are

Utilities,

req

31

given when the utility is invoked. In order to pass
commands on to the utility, simply type the com-
mand after the name of the utility, and before
you hit the carriage return. The following will
pass the command «x COM” on to the STAT util-
ity, load STAT into memory, and execute the com-

mand

We will cover each of the standard CP/M utili-
ties in detail in the following chapters. However,
these nine utilities are not the only ones available.
Many programmers have written utilities which
perform such necessary functions as formatting
an unused diskette, listing an ASCII file to the
list device, and other functions too numerous to
go into here.

A list of these programs as well as information
on how to join the CP/M User’s Group may be
obtained by writing the CP/M User’s Group
(CMUG) at 164 West 83rd Street, New York, NY
10024. Once you are a member you will ’have
access to all of the programs contained in the

CP/M User’s Group Library for basically the cost
of the diskettes which the programs are distrib-
uted on. If you plan to do any programming, you
should consult CMUG first to make sure that the
program you are interested in does not exist al-
ready in the Library. There is no sense re-invent-
ing the wheel, unless you want to write a pro-
gram as a learning exercise, or you just plain
enjoy programming.

32

Appendix B contains a list of vendors who have
written programs for the CP/M system, and a
brief description of their programs. Most of these
programs are not what is usually referred to as a
utility; they are more high-level languages, or
application programs. However, some of them
should be classified as utilities, and will make the
CP’M system on which they are run that much
more useful and versatile.

n

=

-

W,

-

L

j|

JF-W
—

[o |

i

| —

ST [T —— m b-

P B A g G o N S A

Catteate B

4

chapter &

System Initialization:
FORMAT, SYSGEN, and MOvCPM

In Chapter 3 we talked about the various com-
ponents of the CP/M operating system. We saw
how the various modules, the CCP, BDOS, and
BIOS interact, and the purpose for each of these
components. In this chapter, we will look at the
way in which CP/M can be modified and custom
fitted to almost any microcomputer using an 8080,
8085, or Z80 microprocessor as the CPU.

HOW INFORMATION IS STORED
ON A DISKETTE

The very first thing you will probably do when
you use CP/M is initialize a blank diskette so
that you can use it to store data, programs, text,
and most importantly make ‘“backup” copies of
your CP/M disk. Most new diskettes come from
the manufacturer initialized in some manner.
However, it is always a good idea to reinitialize
a diskette before you try and use it since your
diskette may have been subjected to magnetic
fields, x-rayed, or otherwise put in an environment
that could erase some of the information on the
diskette during transit.

For those of you who are not familiar with the
way information is stored on a diskette, the fol-
lowing discussion should help. For those of you
who are, you may skip this gection and go on to
Formatting a Blank Diskette.

Information is stored on a diskette in blocks
of 128, 256, or 1024 bytes. Each of these blocks
is referred to as a “sector.” Each sector has a
unique address or location on the diskette, and
information is stored and retrieved by telling the
disk controller to read or write information in a
specific sector. The sectors are laid out on the
diskette in concentrie, circular tracks, with a spe-

33

cified number of sectors per track, as shown in
Fig. 4-1. For example, an 8" diskette usually has
26 128-byte sectors per track, and 77 tracks on
each side of a diskette. Thus we would instruct
the disk controller to write a block of information
to Track 44, Sector 23; the controller would po-
sition the read/write head to Track 44, wait for
Sector 23 to come around, and then it would write
the information into that sector. The information
could then be later retrieved by issuing a com-
mand to the controller to read Track 44, Sector 23.

Variations In Track/Sector Arrangement

As we hinted in the previous section, there are
three formats for storing data on a diskette in
common usage in microcomputers. The most com-
mon is the one we mentioned earlier called the
“IBM 3470” configuration which is 128 bytes per
sector and 26 sectors per track. This configura-
tion uses a data recording method called single
density (cleverly entitled since it stores one half
the information per diskette as the other com-
monly used data recording method called, oddly
enough, double density). Your computer may have
the capability to record diskettes in double den-
sity, and you may wish to format your diskettes
to a double density format prior to use. The two
commonly used double density formats are 256
bytes per sector and 26 sectors per track, or 1024
bytes per sector and 8 sectors per track. With the
double density formats, you can store a consid-
erable amount of information on each diskette
For example, with a single density, 8~ diskette'
you could get 256,256 bytes of storage on oné
side, .but that number becomes 512,512 in double
density using 256 byte sectors, and 633 248 using
1024 byte sectors. Recently, many mam’lfacturers

Track 1 202>
Track 2 —%

*note there is no Sector 0!

Sadioris 4 R\M OF SURFACE

Track 0 2 é:?—:::::

—— -~

DISKETTENO. | - =
SIDE 1 PR

Drive spindle
access hole**

Fig. 4-1. Diskette track/sector layout.

Plastic Envelope Thin Mylar disk coated
with magnetic material

(recording surface)

Access hole for disk
read/write head

**rotating spindle enters this hole, grabs disk. and spins it.

have been selling double-sided disk drives. These
allow you, as the name implies, to write on both
sides of the diskette. If your computer is equipped
with these drives, then you will be able to write
on both sides of a double-sided diskette (yes, they
are different, so watch out), and store twice the
number of bytes listed above on a diskette.

Formatting a Blank Diskette

Formatting a diskette accomplishes two pur-
poses in most systems, purposes which are vital
to the error-free operation of your computer. The
first is that the diskette must be set to the “blank”
state (CP/M uses the byte E5H to denote “blank”
sectors instead of 00H or FFH as one would as-
sume). The second is that it will allow you to
change the particular format of a diskette from
one format to another. Thus if you would like to
change a diskette from single to double density

so that you can store more information on it, then
you must reformat it before you try to use it in
its new capacity.

Most manufacturers supply some sort of utility
to perform this initialization function. It is usually
a program called FORMAT.COM. However, since
this is not a utility supplied by Digital Research
as part of the stock CP/M set of programs, it may
be called something else by the manufacturer. In
order to run most FORMAT programs, you place
a diskette with the FORMAT utility in drive A:,
and place the diskette which you want to initialize
in drive B:. Then you simply type the following
command.

A>FORMAT
The FORMAT program will then typically ask

you a number of questions about the way in which
you would like your diskette formatted (single or

CCCLERER

|

‘w-q?-q_ﬂ'F-ﬂJF-'l'l-W

P e Pem—
{

e
L

jra—
4 B

|4

mebbbbbn

| §
18
Id
i

I‘-n
l\ﬂ
l‘.

FORMAT

double density, 128, 256, or 1024 bytes per sector,
ete.). After you answer these questions, the pro-
gram will then format the diskette per your
wishes, and then exit to the CP/M CCP.

At this point you can use the diskette to store
data, programs, and text. However, since it does
not have the CP/M operating system on it, it
must be used with another diskette containing
the system. A diskette like this with no system
on it is called a “Files Only” diskette, as opposed
to a “System” diskette which contains not only
data, program, and text files, but a copy of the
CP/M operating system. In a typical application,
drive A: must have a “System” diskette in it
and the other drives in the system (B:, C:, etc.)
can have either a “System” diskette or a “Files

Only” diskette.

COPYING A CP/M SYSTEM

When you are creating a System diskette, you
will want to either copy the CP/M operating sys-
tem as it is to the new diskette, or you will want
to modify it in some way first, before you copy it.
For example, you might have a 82K CP/M system.
You could either copy this 82K system to your
new diskette as is, or you could make it into &
48K system first, and then copy it. Remember,
however, when you are making this new system
that the size of the system can always be less than
the actual amount of memory you have in your
computer, but never more. Thus, while a 32K
CP/M system will run fine in a computer with
48K of memory, & 64K CP/M system will not run
at all in that computer. ‘

If you want to copy & system “image” (image
is a word often used in the computer industry to

describe an operating system program, which we
will use here since it lends itself very nicely to
allegory when we talk of copying and duplicating
the operating system), then you will use the SYS-
GEN utility. For those situations where you want
to change the system image, the MOVCPM utility
will be used.

In order to copy the CP/M system image from
the diskette drive A: to drive B: you would per-
form the following steps. First, place a diskette
with the CP/M system image, and the SYSMOV,
MOVCPM, and FORMAT utilities on it in drive
A: Then, place a blank diskette (or diskette
which you don’t mind erasing, since the following
steps will erase all information previously stored
on the diskette) in drive B:. The following com-
mands will then format the diskette, and make an
identical copy of the CP/M system image on the
diskette in drive B :.

The first line invokes the FORMAT utility to ini-
tialize the diskette. We will assume here, for the
sake of argument, that the command

MOV CP/M

FORMAT B:

will format the diskette in drive B: in the same
way that the diskette in drive A: is formatted
(i.e., same number of bytes per sector and sectors
per track). The FORMAT utility will respond
with the message

FORMATTING COMPLETE

when the entire diskette has been formatted.

The next line in our example invokes SYSGEN,
the CP/M utility which we will use to copy the
system image from diskette A: to diskette B:.
You can answer the question of “which drive to
take the system image off of” (SOURCE DRIVE
NAME:) with the name of any drive which con-
tains a diskette with the CP/M system image on
it. SYSGEN will then ask you what drive to move
the system to (DESTINATION DRIVE NAME:).
You can answer with any drive in your system
with a diskette in it, whether it has a system
image on it already or not.

Once you tell SYSGEN which drive to copy the
system image to, it will respond with a message
to tell you which drive to put the system on so

36

that you can check yourself that you have not
inadvertently typed in the wrong drive name.
When you type a carriage return SYSGEN will
then copy the system image from the source dis-
kette to the destination diskette. In order to allow
you to initialize a number of diskettes at one time,
as you will probably want to do, SYSGEN will
continue to prompt you with the question

DESTINATION DRIVE NAME:

until you answer with a carriage return, which
will terminate the SYSGEN utility and return
you to the CCP. This allows you to move the sys-
tem image to any number of diskettes, without
having to recall the SYSGEN utility each time
you move CP/M to another diskette.

MODIFYING A CP/M SYSTEM IMAGE

Often times it is necessary to change the CP/M
system image to fit different amounts of memory.
(Note that this is different than changing the
BIOS module for a different hardware configura-
tion. We are simply changing the amount of mem-
ory that the CP/M system image runs in, not the

system image itself.) This can happen when you
first get your CP/M system (which is usually a
16K system) and you need to configure it for the
actual amount of memory in your computer, or
later on, when you acquire more memory, or r;eed
to create a CP/M system image that does not use
all of your computer’s memory for one reason or
another. The MOVCPM utilty is provided for this
purpose.

The MOVCPM utility allows you to create a
sy.stem image for any memory size. It is invoked
with the following command

A>MOVCPM n *

where n is the optional memory size (in K bytes),
and * is an indicator that the new system image
sl.lould be preserved in memory for transfer to a
diskette with the SYSGEN utility. If n is omitted,
then MOVCPM will examine your computer’s
memory, starting at memory location 0100H and
find the highest available memory location. It will
then create a system image to match that amount
of memory that it determines exists.

If the current system image is for a 16K sys-
tem and we wanted to create a 32K system, and
place the new system image on disk B:, then you
would type the following commands.

37

This set of commands will modify the current
16K system image in memory to a 32K system
image. The “*” tells MOVCPM to leave the new
system image in memory so that the SYSMOV

utility can be invoked to move it to drive B:.

TRYING OUT YOUR NEW
CP/M DISKETTES

ed the steps outlined above,
e diskettes with a cP/M

system on them. You should be able to 1':ake them,
place them one by one into drive A:, hit the RE-
SET button on your computer, and have the CCP

prompt

Once you have follow
you will have one or mor

A>

appear on the screen. If any of your diskettes do
not do this, then they should be reinitialized. If
you still cannot get a diskette to boot, but you
have been able to initialize other diskettes which
boot, then you most likely have a bad diskette,
and should not use it.

At this point, the new diskettes have no data,
programs, or text on them, except the CP/M sys-
tem image which we placed there with the SYS-
GEN utility. In the next chapter we will describe
the PIP utility, which will allow us to transfer
files from other diskettes onto our newly initial-
ized diskettes on a file by file basis.

Many manufacturers have programs which
make exact duplicates of diskettes, i.e., make a
mirror image of the diskette in drive A: on the
diskette in drive B:. They are usually called
DISKCOPY or some name similar to that. These
programs accomplish the same function as SYS-
GEN and PIP together in that they copy both the
system image as well as all of the files from one

diskette to another.

chapter 5

STAT and PIP

STAT (Status) and PIP (Peripheral Inter-
change Program) are probably the most com-
mb"usedoftheCPH utility programs (or
Tarcsiem: cormmands). Recall that we call these
"mns_;enr" commands because they are .COM
rrpe::lesmd&reexecntedwhentheirnameis
tvped. They are used along with the resident com-
=ands to do all system “housekeeping” and file
sransfers. ADl operating systems have s similar
fyresior to STAT and PIP, although they may

have a different name. Moving programs and files
about the storage media is a job that must be per-

formed often in the operating system. Determin-

ing the size of a file is equally important so we
can tell whether the file to be moved will fit where
we want it to go. PIP and STAT are used ex-
tensively when making backup diskettes or copy-
k to another. We there-

ing programs from one dis
fore suggest that you pay particular attention to

this section.

STAT OVERVIEW

STAT is the transient command which allows
the user to determine the condition or STATus of
CP/M files, such as the size of files, It is a very
flexible program which allows the interrogation
of disks, files, i/0 devices, and other system func-
tions. In order to use STAT, you must have the
file STAT.COM on one of the disks in your sys-
tem. In order to check this, type

As we learned earlier, if STAT.COM is present,
the CP/M system will return as indicated above.
If STAT.COM is not on that particular drive,
CP/M will respond as shown below. This means
that the file STAT.COM is not currently present
on drive A, Not to worry . . . yet. You probably
have more than one drive in your system, so set
the current drive to B, and then C, and so on until
you find STAT.COM (this is described in detail
in Chapter 8).

If after all this searching you still haven’t found
STAT.COM, then you must find a diskette with

STAT.COM on it and put it in drive A. Once found
you are set to explore your system with the aid
of STAT. We illustrated this scenario because it
is one that happens frequently in using an oper-
ating system—finding the disk with the particu-
lar program you’re in need of—and we suggest
you keep a catalog of what disks contain what
programs just to be safe.

STAT AND DISK FILES

STAT can provide you with all kinds of infor-
mation about the number, size, and kind of files
on any given disk. (In some respects, STAT is
like a sophisticated version of the DIR command.)
It can also tell you how much room remains for
files on the disk (very important, as you will no
doubt soon find out that diskettes are far from
limitless in their size!).

STAT, like all transient commands, can accept
and interpret a command line. The command line
is typed in immediately after the name of the
transient program, and contains all input up to
the carriage return.

STAT will recognize five disk-related requests
in the command line. They are listed in Table 5-1,
along with their functions.

Table 5-1. Five Disk-Related Requests
and Their Functions

STAT If the user types in an empty (plain vanilla)
command line (i.e., typing STAT followed
by hitting the CR key), STAT will simply
display the amount of unused storage avall-

able on the currently logged-on drive.

STAT x: A variation of the empty command line
is to include a drive designation. STAT
will return the amount of unused storage

on drive x.

STAT ufn STAT can also tell the user specific
information about a file. By typing an unam-
biguous file name in the command line (ufn),
STAT will return information about the size

of a file in both bytes and records.

STAT afn A variation of the preceding command
which allows the information on a group of
files to be displayed at a single time. The
afn means, for example, ».COM which list

all of the .COM type files.

STAT x:=RIO This command line allows the user to
define an entire disk as read-only. Be sure
and note that this restriction can only be
removed by rebooting the system (either a
warm or a cold boot).

In order to see exactly how each of the five
disk-related command lines works, we will pre-
sent some examples.

- R G ‘
il B _ B _ BN B N B B BT BT ¥ B B '

The first example asks CP 'M to tell us through
STAT how much usable space is left on drive A:.
CP'M returns with a message telling us that
there are currently 185K bytes of unallocated disk
space left at our disposal. The second example
gives a little more information; it shows the vital
statistics for all of the files currently contained
on drive B:. RECS is the number of records in
each file, BYTS is the total file size in Kbytes, EX
is the number of extents the file contains, and
D:-FILENAME.TYP is the drive, filename, and
file type of the file. For an in-depth discussion
of what an extent is, please refer to Appendix A.
For now you can consider the extents a file has
as being the major sections it is subdivided into.
For example, a 50K byte file is spread across 4
extents. If you have more files on the disk than
there are lines on your console device, then the
list will simply scroll off the screen. If this hap-
pens, you can temporarily stop it by typing a
CONTROL-S. To restart the listing, type & sec-
ond CONTROL-S.

The final disk-related STAT command has to
do with the ability to define a drive as read-only.

41

This is sccomplished with thea RO ca:md
Onoeadn'vehmbeenm&rkedu}! 0. &l subse-
quent attempts to write to the drive wili gedersis
an error message, and will cause CP M 10 warm
boot.asitalwaysdoeswbena:open.ﬁusysm
This festure can be very

disk_md:hense:mts

tion is contained on &
taliv modided or

to ensure that it is not acciden

erased. By simpiy STATing the drive 10 R.O.
theﬁlesonthndrivemprmcmd from being
The R O command

renamed, medified. or erased.
can be thought of as “Jocking™
be written to.

+he disk 80 it cam™

I/0 DEVICES AND STAT:
SPECIALIZED USES

STAT also allows the user to control the logical
to physiecal device assignments, as well as the disk-
related functions we just described As we Dem-
tioned in Chapter 2, CP M allows the use of logh-
cal device names to be assigned to actual phrsical
i/0 devices so that CP M programs may be 1oz
on a large number of microcomputers.

To recap, CP M provides the user with four
logical device names that can be assigned to any
number of physical i o devices. In practice, only
two of the logical devices get much use, the CON-
SOLE device and the LIST device. (Recall the
READER device and the PUNCH device &are very
seldom used and so we will spend meost of our
time dealing with the CON: and LST: devices))

The actual physical i o devices all need some
kind of program to run them. These programs,
or “driver” subroutines as they are usually called.
are contained in BIOS. Once the subroutines bave
been included in BIOS to allow a number of 1 ©
devices to be used with CP M, these physical i o
devices may be switched around from logical de-

vice to logical device. For instance, if you had a
crt terminal driver, a high speed line printer
driver, and a modem driver installed in BIOS,
you could set the logical CON: device to be either
the modem or the terminal, and the LST: device
could be any one of the three.

CP/M has standard names assigned to several
“dummy” physical i/0 devices. These names and
their corresponding meanings are listed below.
Remember, however, that just because a driver is
assigned the name Line Printer, that does not
mean that it must actually drive a line printer.
It may actually drive a modem. The only restric-
tion is that the device must have the same i/o
characteristics as the “dummy” device would. In
other words, you would not place the driver for
an output-only device like a printer in a “dummy”’
physical i/o device which had input capability
such as a crt terminal. The point is, the drivers

in BIOS control what is actually driven by the
device names.

TTY: Teletype device (slow speed console)
CRT: Crt device (high speed console)
BAT: Batch processing

UC1: User defined console

PTR: Paper tape reader

UR1: User defined reader #1

UR2: User defined reader #2

PTP: Paper tape punch

UP1: User defined punch #1

UP2: User defined punch #2

LPT: Line printer

UL1: User-defined list device

In case all of this is a little too much to remem-
ber, CP/M will come to your aid to remind you
if you ask it to. STAT will print all of the possible
logical to physical assignments possible by simply
typing STAT VAL: as shown below.

This tells us, for instance, that the CONSOLE
device can be one of the devices assigned to the

42

TTY:, CRT:, BAT:, or UC1: drivers, but that it
can’t be the line printer device (LPT:).

The user may change any and all of the currgnt
assignments by simply typing a command line
where the left side of the equals sign is one of
the four logical devices, and the right side is one
of the “dummy” physical i/o device drivers. For
example, STAT CON :=CRT: will assign the CON-
SOLE device to the CRT screen and keyboard.
Thus to display the current i/o assignment, change
one, and then redisplay the assignments, the
following sequence would be typed.

That’s all for STAT for now. You’ll probably

find STAT will be used over and over in your
work with CP/M.

PIP OVERVIEW

PIP (Peripheral Interchange Program) is the
CP/M transient command used to move a file
from one disk to another, and to make copies of
files. PIP is one of the more often used CP/M
transients, and it can do many important things
such as outputting a file to a logical device such
as a list device. Since 99% of the time PIP is
used to transfer files from disk to disk, we will
leave it to the reader to consult the CP/M manual
“An Introduction to CP/M Features and Facil-
ities” for details on the more esoteric PIP capabil-
ities ; here we will stick with the basies.

PIP can be invoked with or without a command
line. If PIP is given a command line when it is
invoked it will execute it and then return to the
CCP and give you back the A> prompt. If no
command line is input when PIP is first invoked,
it will prompt the user (with its own prompt char-
acter “*” letting us know we are in PIP) for
command lines continuously until a null command
line is input (a null command line is when we sim-

PlY type return in response to the PIP

- prompt).

At that point PIP will return control to the CCP.
The general form of a PIP command line is

CFILENAME TYP = D FILENAME TYP

t_’ha?thcldtlideofﬂ:eequahtignistheds-
una:banﬁhfndﬂ:eﬁghtsidehthemree,and
D:gmopbonﬂdrivem'!‘hnsthefoﬂowing
will invoke PIP in the continuous command line
form and transfer the file STAT.COM from disk
A-wdisk B:.

Note that the source file still exists on drive A:,
weonlycopiadituingl’n’,mtactuallymcd
it. It is possible with PIP to eliminate the file-
namepartotihedesﬁmﬁoninthewmmandline
ifyouare:impbtrmferringaﬁlefromonedisk
o another and not renaming it. Thus the com-
mand line above could also be input

B.=A-STAT.COM

PIP will accept ambiguous filenames, so that you
could transfer all .COM files from one disk to

another by typing

PIP A:=B:

%

s
—_ o
s O

A

L)
N
LN

B:

B.=A:*.COM

OTHER PIP FEATURES

PIP will also let you rename an unambiguous
filename during a transfer by simply changing
the filename on the destination side of the equals
sign to the new filename desired. If, for instance,
we wanted to make a backup copy of this text on
drive B:, we could input the following command
line

B:CPMBOOK.BAK =A:CPMBOOK.TXT

Now the original filename is on A : with the name
CPMBOOK.TXT, and the copy is on B: with the
name CPMBOOK.BAK. Much of the time PIP is
used to make such backup copies of files. To guar-
antee that the backup is copied perfectly, an op-
tion can be specified which will cause PIP to read
back each file after it writes it, comparing the des-
tination file with the source file, and report any er-
rors detected. Ending a command line with a “V”
enclosed in right and left square brackets will in-
voke this option. Note that this is not a toggle;
the [V] must be typed at the end of every com-
mand line where verification is desired.

The sample session on page 44 shows a number
of valid PIP command lines in the continuous
command line mode.

The first line B:=A :*.COM[V] copies all .COM
type files from the A: drive to the B: drive and
verifies the copy is error free. The second line
copies the transient STAT from drive A : to drive
B:, and then verifies the transfer. The final ex-
ample copies all files with the file type .DAT from
drive A: to drive B:. In the process it renames
all of the files from file type .DAT to .BAK.

You may wish to spend time playing with PIP
and STAT as soon as you get your CP/M system

running, Coupled with FORM
you'll be able to make inny

AT (see Chapter 4),

merable coples of your
disks,

bbbk

SRR

gl 4 d

v

-

l
l
l‘

chapter 6

ED the CP/M Editor

Up to this point we have dealt specifically with
CP/M features that manipulate and move about
whole files, namely the resident commands (such
as DIRectory, ERAse, etc.) and the utilities
(STATus and PIP). But what about getting in-
side a file or creating our own files? Or what
ab?ut examining and changing the contents of
existing files?

Although there are several kinds of files (.COM,
..BAS, .TXT) the kind we “get inside” the most
is the text file. A text file is made up of charac-
ters: letters, numbers, and the common punctua-
tion symbols. A file of characters is created with
another special utility program called the “Edi-
tor” (oddly enough!). The Editor is like an elec-
tronic typewriter, but typing puts the characters
in memory instead of on paper!

ED is the name of the particular editor that
comes with the CP/M operating system. ED al-
lows you to create and alter source files for sub-
mitting to the assembler (ASM, see Chapter 7,
BASIC-E, and other languages that require a
program to be entered into a file before it is exe-
cuted. ED can be used to input, display, and/or
alter any ASCII text file under CP/M given the
file is in ED’s expected format. In addition, it can
be used to alter BASIC-E and other language
data files, and the assembly listing files produced
by ASM.

ED is a “line oriented” text editor (as opposed
to a “screen oriented” text editor), and not a
word processor in the usual sense. This is an im-
portant distinction, because if you ask ED to do
many of the things that a word processor will do,

500 copies

£0: THE CP/M EDVTOR

45

you will be disappointed. A word processor will
typically display text on the screen as it will ap-
pear on paper, including right and left justifica-
tion, underlining, page numbers, headings and
footings, and other sophisticated text enhance-
ments. ED will not do any of these things, al-
though it will provide all of the basic editing fea-
tures necessary to create and alter text files (ED
will display text files, find words and things like
that, of course). Thus if you are planning on us-
ing your computer to do extensive word process-
ing, you should purchase a word processing pack-
age from one of the dozen or so currently on the
market for use on microcomputers running under
the CP/M operating system. Enough said about
word processors. Now, on to ED!

INITIATING ED

An ED session can be initiated by typing the
CP/M console command shown below, where
FILENAME.TYP is any unambiguous filename,
optionally preceded by a drive name. The specified
filename is the file that will be altered when ED
“comes up.” If the file does not exist on the disk,
then ED will create a new, but empty file by that
name and will do so by typing

NEW FILE

on the screen, ED will then store all text entered
and edited during that session in the newly cre-
ated file. When we say ED created a file what we
mean is that CP/M now has a file allocated on
the disk, and a name is located in the disk’s direc-
tory that points to the file.

When ED is ready to accept a command, it
will prompt you with the “*” prompt character
as shown below. As with all CP/M utilities, ED
commands and command lines are terminated
with a carriage return.

46

ED OPERATION

The overall operation of ED is shown in]
6-1. ED reads the disk source file FILE.TXT i
a memory buffer. Text in the RAM based mem:
buffer may then be altered without disturbing
disk. Text which has been edited may bz writf
into the temporary file under command of t
operator at any time in the edit. Upon termin
tion of the edit, the memory buffer, along wi
any unread text coming from the disk source fi
FILE.TXT is now read into the temporary fi
FILE.$$$. The original source file FILE.TXT i
renamed to FILE.BAK and the temporary fil
FILE.$$$ is renamed as the new FILE.TXT. Thi.
allows the user to have access to not only the latest
version of the text, but also the next to the last
version. In the event that an error is made on the
latest version (like you inadvertently commanded
ED to destroy, without regard for your sanity, the
last 250 lines of the text), you can reclaim the
last good version using the ERAse and REName
commands. You would type, for example, A>ERA
SORT.FOR to erase the now ruined program, and
then A>REN SORT.FOR=SORT.BAK to make
the backup for our “new” version. You have no
backup now so you would immediately do an ED
E edit function just to be able to rewrite a new
.BAK file.

The purpose of the RAM memory buffer and
its associated commands is to allow not only the
alteration of text, but also to allow a file which
is larger than the amount of RAM memory in
your microcomputer to be edited nonetheless.
When you are working on a short file, the whole
file can be read into the memory buffer at one
time, and you can disregard thinking about the
buffer mechanism. However, the actual exact num-
ber of lines which can be read into the memory
buffer at one time depends on the number of char-
acters in a line (length of the lines), and the
amount of RAM memory you have in your com-
puter. So if your text exceeds the buffer length,
the disk would read and write additional lines into
the buffer.

The two ED commands which are used to trans-
fer text between the source and temporary files
and the memory buffer, and that are used right
away with ED, are the APPEND (A) and WRITE
(W) commands. They are typed into the com-
mand line in the form nA to read or append the
next n lines from the source file into the memory
buffer, and nW to write the first n lines from the
memory buffer into the temporary file. The
WRITE command will automatically shift the

(5 | INSERTED

YORO

ED OPERATION

lines remaining in the memory buffer to the top
of the buffer. In order to better understand this,
imagine the top of the buffer is the top of the first
page of a book and the bottom is the last page.

BAK fle vt s original .TXT file
no .BAK file yet—— S

1. Move copy of original .TXT 2. Edit the file, type in new text,
text file into RAM memory insert, delete, etc.
buffer.

3. Save new text, (memory buffer * 4. a) Save everything (rest of TXT.

In both cases n represents any number between
1 and 65535. If a pound sign (#) is given in the
place of n, then the value of n is assumed to be
65535 or “all” lines. This form of the command is

.BAK file TXT file

- ————————

4
rename old .TXT
to new .BAK g i '
Ll |
4b 1
rename |
$88 to .TXT :
|
4a |
| save all '

Al

-—EDIT—

| _ 1
jj--—————==--

)

to end of file) in temp file memory buffer & .$$3 in $$$.)

(Fast forward)

b) Rename .$$$ to new .TXT

c) Rename old .TXT to new BAK
backup file.

Fig. 6-1. How ED Defines files. A file here is analogous to a reel of film (with each frame a single character)

47

useful to append a file into the memory buffer
or write a file to the temporary file from the
memory buffer, when you are unsure of the actual
file length, but know that it will fit entirely in
the memory buffer. Thus, #A would append or
read the entire file into memory, and #W would
write the entire buffer contents to the temporary
file. If you guess wrong and the buffer size is ex-
ceeded, then ED will issue you an error message,
and you may then proceed with any ED command
or function which does not increase the amount
of text in the buffer (such as WRITING some of
the text out of the buffer into the temporary file).
If n is omitted, then ED assumes that n is 1.
Thus, A and W append and write one line of
text respectively.

In addition to the memory buffer, source file,
and temporary file, ED has one more important
component, called the character pointer. ED re-
gards all text files as a series of lines of text,
each separated by a carriage return. The op-
erator can move the character pointer through
the memory buffer on command. The character
pointer (abbreviated CP here) is always located
AHEAD of the first character of the first line,
BEHIND the last character of the last line, or
BETWEEN two characters. In other words, if
you are about to edit a file, to say change a wrong
letter you need to “move” the character pointer to
the location of the bad character. The CP is the
reference point for all edit commands, so it is im-
portant that you know where the CP is at all
times while you are in an edit. The CP is always
located inside the memory buffer and cannot be
moved into either the source or temporary files.

Inserting Text

When you start ED, the memory buffer is
empty. You may at this point either append lines
from an existing file into the buffer, or you may
enter new text. New text is entered using the
insert or I command.

To initiate the insert mode you respond to the
prompt by typing an “I” followed by a carriage
return as shown at the top of the next column.
This (typing I) is a pretty common way to enter
text editors in general. As soon as you hit I and
return, ED line feeds and does a carriage return
as shown in the figure. The CP is now at the be-
ginning of the buffer (or at the top of it if you
like).

When you enter the insert mode, ED will ac-
cept all lines of text typed in, and will place them
in the memory buffer in the order you type them,
until you signal ED that you wish to stop insert-
ing text by typing a CRTL-Z and you fall back to

48

the ED command mode. The CP remains posi-
tioned after the last character entered. While in-
serting text, the rubout key may be used to delete
the last character typed (it will print the char-
acter as it deletes it so you know which character
was deleted). Also, for those large mistakes, you
can type CRTL-U to erase the entire line of input
and then simply retype it. That’s all there is to
inserting—you simply type in the program or
text or whatever and do a CRTL-Z when done to
exit the insert mode. The ED prompt (“*”) will
then reappear.

Terminating an Edit

Assuming you are in the ED command mode, an
ED session is normally ended with

E

This command writes the text in the RAM buffer
to the temporary file, copies any remaining lines
of the source file to this temporary work file, re-
names the files as previously described (source
file to type BAK, work file to the same name and
type as the source file), then initiates a system
“warm boot” (remember, from Chapter 2), re-
turning control to the Console Command Processor.

The following commands are also available for
different ways to terminate an Edit:

H Reedit: Move to head of new file and per-
form an automatic E command. Temporary
file becomes the new source file, the memory
buffer is emptied, and a new temporary file
is created (equivalent to issuing an E com-
mand, followed by & reinvocation of ED us-
ing FILE.TXT as the file to edit). You use
H when you want to update the .BAK
backup file and return to the edit mode.

O Original: Return to the original file. The
memory buffer is emptied, the temporary
file is deleted, and the pointer into the

o b e

vy SHdTeTB,

Wy

Y aa (L bde b TP PN e o e O A

P4

1
{

|

Y e T U Gl U G W |

p—

5

source file is reset so that a subsequent A
command will begin again at the beginning
c_)f. that file. The effects of the previous ed-
1tm'g commands are thus nullified.

Q Quit: Quit edit with NO file alterations
and return to CP/M. ’

. DO}ng an H command often during an ED ses-
sion is .suggested, so that if the session is inter-
rupted in any way, the state of the file as of the
last H command will be on disk and less work will
be lost. The H command is also used to start over
when you wish to make an alteration in a part of
the file you have already written out of the buffer.

Note that the Edit, H-Reedit, O-Original, and
Q-Quit commands are not accepted in command
strings.

BASIC EDITING COMMANDS

This is what an Editor is truly all about. And
you'll eventually have to learn its particular set of
commands. (Commit them to memory! To be
proficient at juggling text around you must know
them cold. However, once committed to memory,
using the editor is like riding a bicycle!) Once
there is some text in the buffer, various commands
can be issued which manipulate the CP, display
source text in the vicinity of the CP, or delete
text. A summary of these commands is presented
in Table 6-1. In the table, n represents a number
from O to 65535. If n is omitted, 1 is assumed,
as was the case of the Append and Write com-
mands which we saw earlier. Similarly, “#’ may

65535. +/—

be used in place of n and indicates
d if neither

means a + or — sign; + is assume
is given.

Any number of commands can be typed con-
tiguously (up to the capacity of the CP/M con-
sole buffer which is 256 bytes long, which is
roughly 3 lines on an 80 character screen), aqd
are executed only after the carriage return 1s
typed. The operator may use the CP/M console
command editing commands Rubout and CRTL-U
to delete a command or an entire line of commands.

ED LOAN.BAS

Q#A

47

10 REM - - - PROGRAM BY MITCHELL WAITE

20 REM —-~-WRITTEN: JULY 1978

30 REM —-—USED AS EXAMPLE IN THE BOOK BASIC
PRIMER

40 REM --—-ALL RIGHTS RESERVED WORLDWIDE

*2L

*30C

*2D

“l

80"z

]

4T

10 REM - ——-PROGRAM BY MITCHELL WAITE

20 REM —--WRITTEN: JULY 1980

30 REM ———USED AS EXAMPLE IN THE BOOK BASIC
PRIMER

40 REM -—-- ALL RIGHTS RESERVED WORLDWIDE

*H

In order to get an idea of how a “line oriented”
text editor like ED is used, we present the above
example session. In this example we’ll assume we
have a BASIC program, and we wish to modify

Table 6-1. Summary of Basic Editing Commands

Description

Move the CP to the /Bottom beginning of the memory buffer if +, and to bottom

Move CP by +/- characters (toward end of buffer if +), counting the car-
riage return/line-feed <cr> <If> as two distinct characters.

Delete n characters ahead if +.

Kill (i.e., remove) +/—n lines of source text using the CP as the current refer-
ence. |f the CP is not at the beginning of the current line when K is issued,
then the characters BEFORE the CP remain if + is specified, while the char-
acters AFTER the CP remain if — is given in the command.

If n=0, then move the CP to the beginning of the current line (if it is not already
there). If n does not equal O then move the CP to the beginning of the line
which is n lines down (if +) or up (if). The CP will stop at the top or bottom of
the memory buffer if too large a value of n is specified.

If n=0 then type the contents of the current line up to the CP. If n=1 then type
the contents of the current line from the CP to the end of the line. If n>1 and
+ is specified, then type the part of the current line after the CP along with
n-1 tines which follow. Similarly, if n>1 and - is given, type the previous n lines
up to the CP. The rubout key can be depressed to abort long type-outsj

Equivalent to +/-nLT, which moves up or down n lines and types that line.

Means Command
Move to beginning bottom +/-B
of the memory buffer if —.
Move through characters +/-nC
Delete characters +/-nD
Kill lines +/-nK
Move through lines +/-nL
Type lines +/-nT
Move to line and type +/-n

49

the program date text located at the beginning of
the BASIC text file (some REM statements).

ADVANCED EDITING FEATURES
Text Search and Alteration

Here’s where an Editor really shines . . . auto-
matically searching for a word in your text. It
is used when you have a special word used sev-
eral places in text, and you wish to change all
occurrences of it in some way. For example, sup-
pose you have the word Model-8080 several times
in a letter, and wish to change it to Model-6800.
Or suppose in a program you want to change the
variable called DELAY, which occurs on many
lines, with a new name called TIMEDELAY. Well,
quite nicely, Editors have the ability to “search”
for a particular word, or text group, or character
sequence. We call a character sequence a “string”
in computerese.

ED has a command called Find which locates
strings within the text memory buffer. The com-
mand takes the form

nF<Text>

where F means Find and <text> normally is the
string you are looking for. You may terminate
the text with a carriage return or a CTRL-Z. (You
would use the CTRL-Z in cases where you were
going to follow this command with one or more
commands in the same command string, and did
not want ED to be signaled that the command
lines had been completely input with the carriage
return.) ED scans forward through your text,
starting at the CP, searching for the first occur-
rence of the desired text. If the text is found, the
character pointer is positioned after the last char-
acter found in the string; if the text is not found
the CP is not moved. The search will be repeated n
times, and n will be evaluated to 1 if it is omitted.
If the search fails, ED prints “##” and prompts
for another command. If there were more com-
mands in the string containing the F that failed,
they are not executed.

As a convenience, a command similar to the
F-Find command is provided by ED which auto-
matically appends and writes lines as the search
proceeds so you can follow the action. The form
of N-Append and Write is

nN<Text>

where N means search for the nth occurrence of
the text. The operation of the N command is pre-
cisely the same as the F command except in the
case when the string cannot be found inside the
current memory buffer. In this case, the entire

50

memory contents is written back to disk (i.e., an
automatic #W is issued). Input lines are then
read from the file until the buffer is at least half
full, or the entire source file is exhausted. The
search then continues in this manner until the
string has been found n times, or until the source
file has been completely transferred to the tem-
porary file.

An abbreviated form of the insert command is
allowed, which is often used in conjunction with

the F command to make simple textual changes.
The form is

I <Text>

where <Text> is the string of characters to insert.
If the insertion string is terminated by a CTRL-Z,
the string inserted directly following the CP and
the CP are moved directly after the inserted text.
The action is the same if the command is fol-
lowed by a carriage return except that a <er>
<If> is automatically inserted into the text fol-
lowing the string . . . something you may or may
not wish.

ED also provides a single command which, in
effect, combines the F and I commands so you
can find and substitute one block of text for an-
other. The substitute command takes the form

nS<O0Id Text>CTRL-Z<New Text>

where S means Search and Replace, and <Old
Text> and <New Text> are any strings of char-
acters. The S command causes ED to search for
the string <Old Text>, and, if found, delete it
and insert <New Text> in its place, The CP is
left after the last character of <New Text>. This
operation is repeated n times; if n occurrences
of <Old Text> are not found, ED will signal you

by typing “##" and will await a new command
input,

Source Libraries

Often, in programming, the user will wish to
attach a preamble, heading, title, patent caution,
copyright notice, or other text to a file being
created. It could be horrendous to type this fixed
data over and over each time it is used. Is there a
way to store this special text in modules and add
them to our program? No sweat with ED. We call
them source libraries. However, there are no books
in these libraries unless you write one. You use
ED to create the file containing the often used
text. You give it a .LIB extension.

ED allows you to include separate files from
libraries into your text during the editing process
with the R command. The form of this command is

e =

P e T e T e R | \

—

R <Filename>

wh i
- zre R means Read and <Filename> is the name
e sofut:ce ﬁl'e on the disk with an assumed file
i oth .LIB’. ED r:eads the specified file, and
fhe ((e:sP e characters into the memory buffer after
, 1IN a manner similar to th
Thus, if the command ¢ 1 command

RTITLE

is 1§sue_:d by the operator, with the CP at the file
beg}nnmg, ED reads from the file TITLE.LIB
until the end of file, and automatically inserts the
characters into the memory buffer. The CP will
end up in front of the TITLE.LIB text in the buf-
fer. You can build up many .LIB files quickly and
place them on a special disk.

Repetitive Command Execution

The macro command M allows you to group ED
commands together for repeated evaluation. The
M command takes the form

nM <Command String>

where <Command String> represents a string of
ED commands, but not including another M com-
mand. ED executes the command string n times
if n>1. If n is omitted or n=0 or 1, the command

" string is executed repetitively until an error con-

dition is encountered (e.g., the end of the memory
buffer is reached with an F command).

If the command string ends in an I, S, etc.
command, that command’s string must be termi-
nated with a CRTL-Z in addition to the carriage
at the end of the line. For example the following
inserts the line “REPEATED LINE” 10 times in

a file, starting at the CP.
JOMIREPEATED LINE “L"Z<cr>

Upper and Lower Case

The Insert, Find, Search, N search for Nth com-
mands convert letters in their <Text>s to upper
case if the I, F, etc. is typed in upper case. If the
command is typed in lower case (i, f, etc.), no
such conversion will be performed.

The command

u
may be given to cause ED to convert all subse-
quent input to upper case. When U is in effect
characters are echoed in the same case as typed,
but go into the buffer in upper case. The command

—-u
turns off this lower-to-upper case conversion.

51

ED ERROR CONDITIONS

-equently execute
{ failure, such as
searching
1. BED is

In using an Editor you may fr
a command that leads to a type 0
the inability to find the siring you are
for, or typing an unrecognized comman
cularly rich in error messages, but it was
onprogrammers either
following
shown.

not parti

not intended for use by n

or to be used as a word processor. On the

error conditions, ED types the indicator

Search failure; The I, S, or N command

cannot find given string.

Unrecognized command character X. Also

occurs if E, H, Q, or O is not the only com-

mand in the command line.

00 LIB file not foundin R command.

>> Memory buffer is full (Use any of the com-
mands D, K, N, S, or W to remove charac-
ters) or F, N, or S string is too long.

27X

If the memory buffer fills up during an Append
command, >>A will be printed and the CP will
be left at the end of the buffer (normally the CP
is not moved by the A command). If the mem-
ory buffer fills up during an I command, >>x is
printed, where x is the character that could not
be inserted. In this case the CP is at the end of the
inserted text.

If the diskette fills up, or its directory is full
when ED needs to create or extend the work file,
or some other file error is reported to ED by

CP/M, ED prints
FILE ERROR

aborts, and returns to the CCP (A>).

If an edit is aborted for any reason (FILE ER-
ROR, C (warm boot), Quit command, power fail-
ure, etc.), the source file is unchanged, the pre-
vious BAK file has been erased, and the temporary
file (type $$$) is usually empty or incomplete.

Therefore, if an edit is complete, and later it
is discovered that drastic errors were made, the
original file (or its state as of the last H com-
mand, if any H’s were used) can be reclaimed by
ERAsing the new file and RENaming the BAK
file to the original type. First, we recommend
checking the contents of the BAK file, for exam-
ple, with the CCP command

TYPE FILE.BAK

where x is the file being edited. Then remove the
primary file

ERA FILE.TXT
and rename the BAK file

REN FILE.TXT=FILE.BAK

The file can then be re-edited.

ONE FINAL NOTE

There are many, many Editor programs out in
the marketplace; almost every computer has at
least several Editors available. CP/M is an ex-
treme case, perhaps, but at last count over 33
text editor, text output formatter, and word pro-

52

cessor programs were available! Someday you™l
probably be faced with learning a new Editor's
set of commands. Yes, they are all different, bt
there are many things done the same way. Usa-
ally it’s just the keys chosen 10 do these things
that change and cause the most problems. Any
new Editor can be learned quickly if you hapg 2
keyboard layout diagram next to the keybaard
which explains the action of each key. The point
is don’t be afraid to learn many Editors. Between
the authors, 7 different Editors have been used.

| N
[N

[0'

l\i
l‘i

chapter 7

ASM: The CP/M Assembler

INTRODUCTION

In most cases, BASIC, FORTRAN, COBOL, and
other high level languages are the best choice for
programming an application. High level languages
provide relatively simple Keywords for many
programming routines. For example, all high level
languages have some Keyword that will allow a
procedure or set of steps to be performed some
number of times. In BASIC, this looping is ac-
complished with the FOR..NEXT statement. This
example prints out the numbers from 1 to 10

FORI1=1TO 10
PRINT |
NEXT |

In addition to providing simple commands for
common procedures, high level languages have
specialized data handling capabilities which al-
low different types of data to be manipulated
easily. This data may be words, numbers, true/
false conditions, etc. FORTRAN has excellent
number handling features, such as various kinds
of matrix operations, that make it well suited for
number intensive applications, such as engineer-
ing and scientific research. COBOL, on the other
hand, has a file structure that makes it best suited
for business applications.

However, as with all things, high level lan-
guages are not always the best solution for all
situations. There are applications which need some
capability not found in the high level language
being used. In these situations assembly language

programs are often the solution. In many cases
the assembly program is “attached” or hooked to
the high level language. In other cases the entire
solution is a program written in assembly lan-
guage. Although in many respects programming
in assembly language is more difficult than in 2

assembly language program-
vantages over high level lan-
hat make it worth knowing.
es must convert a pro-
d structure of the high
tax and structure of

high level language,
ming has several ad
guage programming t

All high level languag
gram from the syntax an

level language into the syn
the machine language of the CPU on which it is

running. Thus, a BASIC interpreter must change
the BASIC statements listed in the prior example
into some set of machine language instructions.
The number of machine language instructions
needed to execute even this relatively simple sec-
tion of a BASIC program could be quite large.
To simply make the proper conversion from the
BASIC language to a set of instructions which
can be directly executed by the microcomputer
will require a program consisting of several thou-
sand statements or machine level instructions.
Thus, the high level BASIC program will run
more slowly than the same program written in
machine language. So speed is another reason as-
sembly language is chosen in some applications

over high level languages.

ABOUT ASM, THE CP/M ASSEMBLER

An assembler is a utility which allows the pro-
grammer to create a program which is directly
readable and executable by the microprocessor,
without having to write the code in absolute ma-
chine language. ASM is an assembler capable of
generating machine level code executable by 8080,
8085, and Z80 microprocessors.

What an Assembler Really Does

An .f.;tssembler is like a converter that changes
one thing to something that is identical in func-
tion, but different in its form. In computers, an
assembler converts a sequence of ‘“mnemonics”

NI
1
niwo e e,
) 'lollO ln‘IOO‘LI v
0'"'g

%’]
ol

THE CP/M ASSEMBLER

and “labels” created with the CP/M Editor, into
a sequence of numbers. The numbers are what
the microprocessor actually responds to; they are
called object code or machine code. The mnemon-
ics, in contrast, are called the assembly code. As-
sembly code is much easier for humans to work
in than object code. Trying to understand what
00 EA 4C 60 00 is much harder than compre-
hending NOP LDA JMP 0060. The assembler does
the conversion from mnemonics to object code.

To someone first becoming acquainted with as-

sembly language programming, the seemingly end-
less lines of meaningless phrases can be tremen-
dously confusing and intimidating. In order to
help familiarize yourself with ASM while mini-
mizing the amount of confusion, we will use a
small assembly language program to illustrate
some of the ASM features and features of assem-
blers in general.

The following program creates a pulse an exact
number of milliseconds wide at the high order bit
(bit 7) of port F0. This program is meant to be
called from a BASIC program. The reason you
would use this approach is because the BASIC
program would not be able to time the start and
stop of the time interval precisely enough. This
particular program was written to run on an 8085
based microcomputer with a clock speed of 3 MHz.
The clock speed is important for the timing loop
(starting with the DCR B instruction and going
through JNZ LOOP). A different clock speed
on the microprocessor will require more or less
NOP (No OPeration) instructions so that it
takes exactly 1 ms to go through the loop. The
BASIC program will use the POKE instruction
(or some equivalent instruction that allows data
to be placed directly in a RAM memory location)
to transfer the number of milliseconds wide the
pulse should be to the program. The calling pro-
gram will POKE the number into memory loca-

8080 Architecture

internal structure of the 8080. If

isters, two of them are special purpose,

In this chapter we will be discussing assembly language programming. This as-
sumes that you know something about the microprocessor which you are going to be
programming. We will digress here for a moment to try to give you an outline of the
you already understand the internal layout of the
8080 and its registers, then you can skip this section.

The 8080 has eight 8-bit registers and two 16-bit registers. Of the eight 8-bit reg-
but the other six may be paired off to form
from one to three 16-bit registers. These 16-bit registers created this way are called
“register pairs.” Fig. 7-1 shows the 8080 registers.

PSW ACCUMULATOR (8) FLAGS (8)
BC REGISTER B (8) REGISTERC (8)
DE REGISTER D 8) REGISTERE (8)
HL REGISTER H (8) REGISTERL (8)
PC PROGRAM COUNTER (16)
SP STACK POINTER (16)

Fig. 7-1. Internal register set for 8080,

The letters to the side are the designators used to denote the 16-bit register pairs
or registers. Data can be moved in and out any of these registers, with only a few
restrictions. For example, the instruction MVI C,80H (Move Immediate to Register
C) will load the C register with the value 80H. Likewise the instruction SHLD
0100H will store the 16-bit value from the register pair HL into memory locations
0100H and 0101H.

For a more detailed discussion of assembly language programming, we suggest
that you read any one of the many books available on the subject.

54

l
[N
|9
8
9
|9
[}
[4

[8

aoR L nd :

:.‘:: p:i? and then CALL location D800 to start
" I;:iiio‘:‘:g:ii;snl‘xst:q in Fig. 7-2. We will refer
b vt t a‘ Oﬂ-lt as we go along through
e vok ot cur discussion on ASM. The program
Jasicaly works like this. The program jum
over the ms san 3 b
T N - count location in memory to the be-
i—;& of the main program. The registers are
sav Wlth the PUSH instructions. We want to
E:rfs': set bit T on the output port to 0. We do
this by_ frst clearing the accumulator and then
outputiing the contents of the accumulator to
the port. We then get the ms count out of mem-
ory and store it in register C which we are going
0 use as the ms counter. We load the B register
with the proper number of times which we need
0 go through the timing loop to get 1 ms. Once
we have thus initialized evervthing, we are ready
to start the count. We set bit 7 on the output port
o 1 and then enter the timing loop. Every time
we go though the loop, the count in register B is
decremented, until it is zero which means that
1 ms has gone by. We then reset the B register
with the loop count in case we have to do it again.
We then decrement the ms count in register C,
and loop again if another ms is required. If not,
<hen we send a 0 to bit 7 of the output port, restore
the registers with the POP instructions, and exit
to the calling program.

In order to use ASM, you must first create a
program source file such as the one above, with
ED or some other editor. This file must have a file
tspe of ASM. You then can invoke ASM to con-
vert this source file to object code by typing

ASM [DIFILENAME

or
ASM [D.JFILENAME.PRM

where PRM is a list of parameters dealing with

some input and output option supported by ASM

which we will discuss in detail later in this chap-

ter, and [D:] is an optional disk drive name where

ASM can expeet to find the assembly language

source file.
ASM will then assemble the program and create

two output files
FILENAME HEX
and
FILENAME PAN

(provided that the option to suppress the creation
of these files has not been specified). The .HEX
fle contains the machine code corresponding to
the original program in Intel hex format, and

55

ORG 0DBOOH
OUTPORT: EQU OFOH
ON: EQU 80H TURN ON BIT 7
LTIME: EQU 100D 'LOOP COUNT =1 MS
ENTRY: JMP ENTRY +4 :JUMP PAST COUNT
COUNT: DB 0 'INITIALIZE COUNT
MAIN: PUSHH ‘SAVE REGISTERS

PUSH D

PUSH B

PUSH PSW

XRA A .CLEAR ACCUM

ouT OUTPORT :SETBIT7100

LDA COUNT :GET MS COUNT

MOV CA 'SAVE IT

MV BLLTIME .LOOP COUNT=1MS

MVI A.ON 'SETBIT7TO 1

ouT OUTPORT :START PERIOD
LOOP. DCR B 'DECR LOOP COUNT

NOP ‘TIMER FILLER

NOP

NOP

NOP

JINZ LOOP :LOOP IF MORE

MVI BLTIME ;RESET LOOP COUNT

DCR c ‘ONE LESS MS TO GO

JINZ LOOP :ONE MORE TIME!

XRA A .CLEAR ACCUM

ouT OUTPORT -END PERIOD

POP PSW ‘RESTORE REGISTERS

POP B

POP D

POP H

RET :RETURN TO BASIC

END

Fig. 7-2. A sample 1 millisecond resolution timing loop.

the .PRN file contains an annotated listing show-
ing generated machine code, error flags, and
source lines. The .PRN file can’t be run since it is
really a source file (i.e., human oriented text);
it is a combination of not only the source code,
but a hex listing of the machine code generated by
ASM, as well as a list of all errors encountered
by ASM. If errors are detected in the source code,
they will be printed in the .PRN file as well as
at the console during compilation.

As we mentioned above, ASM allows the user
to pass arguments to it so that the input and out-
put files of the assambler may be redirected some-
where besides the currently selected disk. This is
done by appending a parameter word of up to
three letters to the end of the FILENAME where
the file type usually is. Remember, the file type of
the input source file must always be .ASM ; speci-
fying parameters as a file type does not change
the name of the input file that ASM looks for.

The parameters must be in the following form
FILENAME.xyz

where x, y, and z are single letters. ASM inter-
prets these parameters in the following way.

X: A, B, etc. designates the logical disk drive
name which contains the source
file.

y: A, B, etc. designates the logical disk drive
name which the hex file will be
written to.

z suppresses the generation of the
hex file.

z: A, B, etc. designates the disk name which
will receive the print file (listing).

X directs the listing to the console
instead of in a file.
4 suppresses the generation of the

print file (listing).
Thus, the command
ASM PROGRAM.ABX

indicates that the source file (PROGRAM.ASM)
is to be taken from disk A, the hex file is to be
placed on disk B, and the listing is to be sent to
the console, instead of to a .PRN file. This is
shown in the Fig. 7-3.

The command parameter .AZZ can be used to
quickly assemble a program and check the syntax
for errors (it is quicker because ASM does not
have to write the .HEX or .PRN files to the disk).
It will suppress the generation of both the hex file

HEX hexadecimal file goes to B:

and listing file. Any errors will be listed on the
console screen. In this particular example ASM
would look for the input file on drive A, but the
first letter of the parameter set could be any valid
drive letter.

PROGRAM FORMAT

An assembly language program acceptable as
input to the assembler consists of a sequence of
statements of the form

LINE# LABEL OPERATION OPERAND ;COMMENT
such as

0031 LOOP DCR B ;DCR COUNT

where any or all of the fields may be present. The
fields must be separated by one or more spaces or
a tab character (CNTR-I), except that the oper-
and field may contain imbedded blanks, but it
must be terminated by a carriage return or semi-
colon (if a comment follows).

All lines must end with a carriage return or
“1" after the last field in the line. ASM looks for
one or the other of these characters to designate
the end of the line, since not all of the fields need
be present. The use of the “!” character in place
of the carriage return allows multiple program
statements per line, which can make the program
easier to read and the listing shorter in some cases,

In the sample program we listed in Fig. 7-2 we
used a series of POP and PUSH instructions to
save the current contents of all machine registers

| disk A: contains source PROGRAM.
ASM created by you with ED.

DISK DRIVES

TERMINAL

PRINT LISTING goes to CRT

Fig. 7-3. Result of Issuing the commond ASM PROGRAM.ABX to CP/M’s assembler. Parameters are ABX.

Hﬁ

SREREREREE

.,

| oane B vt T | ™
|

| d
i 1

PEm PpEme pEmm pEma pema pE—— pE—

upon entry into the program, and to restore them
when we exited the program. Since this is stan-
dard programming practice, the program listing
would be more readable if the PUSHes and POPs
were all on one line. By using the “!" character
we can do just that. The following two lines are
directly equivalent to the four PUSH and four

POP statement lines

PUSH H! PUSH D! PUSH B! PUSH PSW ;SAVE REGS
POP PSW! POP B! POP D! POP H :RESTORE REGS

Line # can be any decimal integer. It is ignored
by ASM, but the line number is permitted so a8
to-allow programs created on line-oriented text
editors which use numbers to be compiled by
ASM. This is useful, for instance, if you have a
program written with an editor other than ED
that you would like to compile without completely
rewriting the source code with ED.

The label is any sequence of alphanumeric char-
acters up to 16 characters in length and beginning
with an alpha character. It may or may not be
followed by a colon, depending on the program-
mer's preference. In order to increase readability,
you may imbed one or more “$” characters into
the label. For example the label

JUMPTORESTART

is much more readable if it is broken up with “$”
characters like this

JUMPSTO$RESTART

acter is not significant to ASM, i.e,
“g” characters 4nd interpret
the two examples listed above identically. The “$”
character does not count as a character either
when you are counting characters in reference to
the 16 character label length limit.

The next field in the program line is the opera-
tion field. This field must contain a valid assem-
bler directive (explained later in this chapter),
pseudo operation, or 8080 machine operation code
(mnemonic). The operation specified in the op-
n requires an operand to make

eration field ofte
any sense. The operand is placed in the next field,

the operand field, and in general consists of ex-
pressions formed out of constants and labels, as
he valid logical or arithmetic op-

well as any of t
d by ASM. For example,

The “$” char
ASM will ignore all

erators supporte
EQU OFOH
ouT OUTPORT
MV B,LTIMER

d operations that have operands.
1 field is the comment field. ASM inter-
tween the “;” and “!” or car-

are all vali
The fina
prets everything be

57

t. This
riage return as & programmer commen
y 1. and i8 ignored by ASM

field is always optional, y 4
when it creates the object code. Hov\;e.a;er, lllt is :.r:-
w ood pro ramming practiceto iberally com-
B o ou and others may

ment any program 80 that ¥)
find it easier to read the program at a later date.

This is particularly true of agsembly language

programming gince it is far less structured t'han
and hence any given

high level languages are,
statement could be performing almost any func-
tion in the program. y
The actual assembly language program 18 e'um-
ply a series of these program lines a8 described
above in a gpecific order that, when translated
from mnemonics into object code and executed

by the computer, performs & desired function.
The end of the program is designated by the end
tionally, an END state-

of the source code file or, Op
ment. ASM will ignore any and all program state-
ments in a source code file that come after an

END statement.

Numeric Constants

A numeric constant is any 8- or 16-bit value
used in the program. Due to the nature of machine
language programming, ASM will recognize a
numeric constant in any one of several bases (i.e.,
base 2, 8, 10, 16, etc.). We often find it more con-
venient to express constants in different bases,
depending on their particular function in the pro-
gram. For instance, addresses are best listed in
hexadecimal, counters in decimal, etc. In order to
indicate to ASM which base a constant is in, all
constants should be followed by one of the follow-
ing letters or indicators. ASM recognizes the

following

binary constant (base 2)

octal constant (base 8)

octal constant (base 8)

decimal constant (base 10)
hexadecimal constant (base 16)

0

D
H

The reason that the octal constant has two indi-
cators is that the character O is easily confused
with the digit 0. ASM assumes that any constant
that is not followed by an indicator is decimal.

. The following are examples of valid constants
in each base. Notice that as with labels, the “$”
?haracter is acceptable to use to increase readabil-
rty, particularly with binary constants where it
is uged between the upper and lower nibble (a nib-
ble is a 4-bit portion of an 8- or 16-bit value)
N-ot_e also that all constants must begin with 5;
digit. Since a valid hexadecimal constant may not
always begin with a digit a leading 0 should be

added if the first character is an alpha character

so ASM will not interpret the constant as a label!
Binary (base2) : 11110000B

1010$1000B

1100$1010$0000$1101B

1101101000110101B

22670

3325Q

22$56$12Q

Octal (base 8) :

Decimal (base 10) : 128

48354D
1234D
1

Hexadecimal (base16) :0FFH
81H
0DEF8H

String Constants

In addition to numeric constants, ASM will
also recognize string constants. A string constant
is any sequence of ASCII characters up to 64
characters long, which doesn’t contain any ASCII
control characters (any of the first 82 characters
in the ASCII set). A string constant is represented
by enclosing the string in apostrophe (single quote
mark) characters. Unlike other characters in the
source code file, ASM does not translate lower
case letters enclosed in a string constant into
upper case. If you want an apostrophe in the mid-
dle of a string constant, it may be represented as
two successive apostrophes. Thus ASM will recog-
nize this as an imbedded apostrophe and not the
end of the string.

The following are valid examples of string
constants.

‘ERROR CODE 9¢'

‘Please insert the diskette In drive A-’
'| said “Good Morning” to him.’

ARITHMETIC AND LOGICAL OPERATORS

As we mentioned earlier in this chapter, an
operand may be made up of constants and/or logi-
cal or arithmetic operators. This allows for more
efficient and easily readable programs to be writ-
ten. Both arithmetic and logical operators may
be used, and they may be mixed to form any math-
ematically valid expression. Table 7-1 gives a list
of the operators recognized by ASM.

As you recall in our program, we have a data
area in the middle of the program area. Thus we
must interrupt the program code flow to go around
the data area, We did this with the statement

Table 7-1. Operators Recognized by ASM

a+b unsigned arithmetic sum of a and b

a-b unsigned arithmetic ditference between aandb
+b unary plus (preduces b)
-b unary minus (identical to 0 - b)

axb

unsigned magnitude multiplication of a and b\
alb

unsigned magnitude division of a by b
a MOD b remainder after a/b |

NOTb logical inverse of b (all 0's become 1's, 1's be-l

come 0's) where b is considered a 18-bit value
a AND b bit-by-bit logical AND of a and b
aORb bit-by-bit logical OR of a and b {
aXOR b bit-by-bit logical EXCLUSIVE OR of a and b |
a SHL b the value which resuits from shifting a to the left
by an amount b, with zero fill

the value which results from shifting a to the

aSHRb

right by an amount b, with zero fill

JMP ENTRY + 4 ;JUMP PAST COUNT

which uses the “+” or sum operator. ASM will
evaluate this expression to 0D800H + 4 or 0D804H.

In order to avoid unexpected results, remember
that ASM performs all operations with 16 bits,
even if the operands are all 8 bits. Thus the ex-
pression

DDH + OFH

will be evaluated to
00ECH
not

ECH

as would normally be expected by the uninitiated.
Thus you could not load the sum of this operation
into one of the 8-bit registers in the 8080. It would
have to go into a register pair since it is 16 bits.

ASM assigns a relative importance to the op-
erators listed above. They are broken into five
levels, and in an expression with multiple opera-
tors the highest level operators are evaluated from
left to right, then the second highest level from

left to right, and so on. Of course, if you insert ‘
parentheses, ASM will interpret these first. The ‘
operators listed below on the same line have equal
importance. All operators in each line have a i
higher precedence than the operators appearing l
on a lower line. - ‘
* / MOD SHL SHR "

oS]

NOT .

AND l

OR XOR

Thus the expression

a*b4+c*d

1

—_— -

—

LB R BS

=

SRR e e,

will be evaluated as if the following parentheses
had been inserted.

(a *b) + (¢ *d

ASSEMBLER DIRECTIVES

ASM recognizes certain operations which are
not in the 8080 instruction set and which are, in-
deed, not even machine instructions at all. These
are referred to as “pseudo operations” and they
can be used to direct ASM to set aside data stor-
age areas, assemble or ignore certain sections of
code, define variables, and set starting and ending
address of the code produced by the assembler.
The pseudo operations recognized by ASM are
listed in Table 7-2.

Table 7-2. Pseudo Operations Recognized by ASM

ORG Define starting address of the program
or data section

END End program assembly

EQU Deflne a numeric constant

SET Set a numeric value

IF Begin conditional assembly

ENDIF End of conditional assembly

DB Define data byte

DW Define data word

DS Define data storage area

Pseudo operations are placed in the usual ASM
operation field and may be preceded by a label
and line number and succeeded by a comment in
the line. All pseudo operations require an argu-
ment with the exception of the END and ENDIF
directives. The arguments are placed in the op-
erand field. The specifics of the directives are de-

tailed below.

ORG:
The ORG (origin) directive sets the beginning

absolute address of the program or a data section.
It takes the form

label ORG

where “label” and ‘“‘comment” are an optional
statement label and optional comment. “Expres-
gion” is a 16-bit value or expression which evalu-
ates to a 16 value. (Remember, we are defining a
memory address, so 8-bit values are not sufficient.)
The ORG directive must come before the first
statement to be assembled starting at the address
defined by the ORG directive. A program may
have several ORG statements if sections are to
be assembled at different locations. Also be sure
that if you use an expression instead of an abso-

GXPFBSSIOH ;comment

59

lute value for the “gxpression”’ portion of .ths
he “‘expression

directive, that the labels used in t
have been defined in a prior statement. Most pro-

: . : .
ou will be assembling will be assembled
i i ansient Program Area)

run in the CP/M TPA (Tr. :
which begins at memory location 0100H. Thus,
have a statement

these programs should

ORG 0100H

somewhere in the beginning of the program. ASM
m to begin at 0000H as a

will assemble a progra ' i
default if there is no ORG directive and a pro-
dress will not run under

gram assembled at that ad 1
CP/M as the memory from 0000H to 0100H is re-

served for CP/M.

The program example, however, used a differ-

ent origin (D800H). Because it must be run with
a BASIC program, and the BASIC program is al-
ready assembled to run at memory location 0100H,
we had to find somewhere else to put the object

code. Thus the ORG statement

ORG 0oD800H

END:

The END directive will stop assembly of a
program at the line in which ASM encountered
the END directive, whether or not there are more
program lines in the input file or not. The END
directive is optional; ASM will assume an END
statement when it reaches the end of the input

file. The END directive takes the form

label END

EQU:

The EQU (equate) directive serves two pur-
poses. It assigns a numeric value to a label so
the label can be used throughout the program, and
in doing so makes the program more readable,
since labels are usually more explanatory than
numeric constants as to their function. The form

of the EQU directive is

label EQU expression

where “label” is the label to be defined, and “ex-
pression” is the expression that will be evaluated
to define the label. It is considered good program-
ming practice to define labels and use them instead
of numeric constants throughout a program. For
example, if you have decided to create a buffer
starting at address 0D000H, you would do so with

an EQU directive like the one below.
0DO00OH

Buffer EQU

When you wish to roference it later in your pro-
gram, suy to lond it into register pair H, you
would do so with the following statement

LX1 H,Buffer
instead of
LXI H,0D000H

which is o valid ASM statement, and would pro-
duce identieal machine eode. In addition to being
canler to read, If you decided to move the buffer
#o that it started at memory location 0C800H in-
stead, you would only have to change one line of
the program if you used the EQU directive, in-
ntead of each line where the label i8 used, Once
i label has been set with the EQU directive, it
cannot be reset later in the program with another
EQU directive. If you want to assign a value to
a label, but want to change it later in the program,
then use the SET directive explained below,

SET:

The SET directive is identical in form and op-
eration to the EQU directive, except that a sub-
sequent SET command can set the value of a label
to 4 new value, Thus, while the value assigned
by the EQU directive is good for the entire pro-
gram, the value assigned by the SET directive is
valid only until the next SET directive containing
the label. The SET directive is used most often in
controlling conditional assembly, explained below.

IF and ENDIF;

The 1F and ENDIF directives allow you to in-
clude or exclude portions of a program during the
ausembly process. The form of the 1F and ENDIF
directives is

label IF expression
statement #1
statoment #2
statement #n
ENDIF

ASM will evaluate the “expression” and if the
value is logical true (nonzero, usually —1) then it
will assemble statements #1 through #n. If on
the other hand, the “expression” evaluates to a
logical false (zero) value, then ASM will skip
over statements #1 through #n, and resume as-
sembly with the first valid statement after the
ENDIF is encountered.

The IF and ENDIF directives are frequently
used in the test and debugging stages of program-
ming. For example, let us say you wanted to debug
a program that contained a loop, and you wanted
to know how many times the program went

through the loop. The following program would
do this

True EQU —1
False EQU 0
Test EQU True iTest is on
Mvi A10 iTimes to loop
MVI B,0 iClear the B Reg
Loop: DCR A ;One less loop to do
IF True ;Start test routine
INC B iIncrement test counter
ENDIF
JNZ Loop ;Loop back If more

At the end of the execution of this section of
code, Reg B will contain the number of times the
program went through the loop. Once the pro-
gram has been debugged, the test section can be

removed by simply changing the third EQU above
to

Tesat EQU False iTest is off

However, it is still in the source code, and can

be turned on by simply changing Test back to
True at a later date.

DB, DW, and DS:

The DB, DW, and DS directives allow you to set
aside and, in the case of DB and DW, initialize
data storage sections. The DB directive initializes
a series of successive memory locations with 8-bit
values. The DW directive initializes a series of
16-bit values. The form of the directives is as
follows

label DB V#1, V#2, ... v#n
label bDw V#1, v#2, .., v#n
label DS expression

where “label” is an optional label, v#1 through
v#n are 8-bit values in the DB directive, and 16-
bit values in the DW directive. Note that the val-
ues in the DB directive can be a character string.
For instance the directive

Emessage DB ‘You blew it!’

is valid and will store the error message for you.
ASM will store each character in the string in a
successive memory location. Also remember that
the 8080, 8085, and Z80 microprocessors get 16-
bit values from memory with the least significant
byte stored in the lower address of the pair, and
the most significant byte stored in the upper ad-
dress of the pair. However, ASM already compen-
sates for this so don’t try and outthink it and re-
verse the order yourself; it will then be back-
ward !

The DS directive evaluates the “expression’” and
reserves the number of bytes of memory specified
by the value. The DS directive is used to reserve
memory for use as data storage by the program,

AJ

\

!

\

-\

Ees |

oy

. |

i

4
—d

r
.

o

but

ser
for

A > ASM TIMER.AAX

ASM VERS 2.06
D800 ORG
00F0 = OUTPORT: EQU
0080 = ON: EQU
0064 = LTIME: EQU
D800 C304D8 ENTRY: IMP
D803 00 COUNT: DB
D804 E5 MAIN: PUSH
pacsbe PUSH
D806 C5 PUSH
D807 F5 PUSH
D808 AF XRA
D809 D3F0 ouT
DBOB 3A03D8 LDA
D8OE 4F MOV
D8OF 0664 MVI
D811 3E80 MVI
D813 D3F0 ouT
D815 05 LOOP: DCR
D816 00 NOP
D817 00 NOP
D818 00 NOP
D819 00 NOP
D81A C215D8 JNZ
D81D 0664 MV
D81F 0D DCR
D820 C215D8 INZ
D823 AF XRA
D824 D3FO0 ouT
D826 F1 POP
D827 C1 POP
D828 D1 POP
D829 E1 POP
D82A C9 RET
D828 END

D82B

000H USE FACTOR

A>

0D800H

OFOH

80H :TURN ON BIT 7

100D :MILLISECOND LOOP COUNT

ENTRY + 4 -JUMP PAST COUNT

0 -INITIALIZE COUNT

H :SAVE REGISTERS

D

B

PSW

A :CLEAR ACCUMULATOR

OUTPORT SETBIT7TO0

COUNT :GET MS COUNT

CA ;SAVE IT

B,LTIME :LOOP COUNT FOR 1 MS

A,ON ‘SETBIT7TO1

OUTPORT ;START PERIOD

B :DECREMENT LOOP COUNT
;TIMER FILLER

LOOP ;LOOP IF MORE

B,LTIME ;RESET LOOP COUNT 1MS

C ;ONE LESS MS TO GO

LOOP ;ONE MORE TIME!

A ;CLEAR ACCUMULATOR

OUTPORT ;END PERIOD

PSW ;RESTORE REGISTERS

B

D

H
;RETURN TO BASIC PROG
;END OF ASSEMBLY

Fig. 7-4. Assembled PRN print listing of our sample timing loop program.

but which doesn’t need to be initialized to any
value. For instance the following directive will re-
serve 128 bytes of memory for a buffer to be used

for disk i/o.

Dskbuff ;Reserve 128 bytes

DS 128

A SAMPLE SESSION

The session shown in Fig. 7-4 will take the

source program we listed earlier in this chapter

61

and assemble it, placing the .HEX file on drive A:
and directing the .PRN listing to the screen in-
stead of as a file on the disk. Note that the source
code and object code are included, along with the
exact location addresses. Once ASM has assembled
TIMER, it is set to be tested and debugged using
the CP/M debugger DDT. We will cover the op-
eration of DDT, as well as continue our sample
sessions through the test and debug stages in the
next chapter.

— e e V—) S) S G o =

chapter 8

DDT: The CP/M Dynamic Debugging Tool

One of the things that makes assembly language
programming so difficult is the debugging process.
$oftware (programs) is defective by nature; that
fs to say almost all software has some kind of bug
in it. Thus the ability to detect and correct errors
in a program is critical in any programming, but
due to the complexity of many assembly language
programs, and the lack of structure inherent in
most assembly language programming, it is much
more important that assembly language program-
mers have capable and sophisticated debugging
tools at their disposal. DDT is one such tool.

DDT (Dynamic Debugging Tool) has the abil-
ity to perform most of the tasks that an 8080 as-
sembly language programmer would need to de-
bug most 8080 assembly language programs. With
DDT you can examine and modify -memory loca-
tions and/or the actual CPU registers, assemble
and disassemble binary machine language, and
perform step-by-step tracing of program steps.
In addition, it allows you to load and execute the
hex file output from ASM.

THE PARTS OF DDT

DDT is comprised of two separate sections or
modules. The first of these is the main nucleus of
DDT itself. This is the section that interprets and
executes all of the DDT commands, with the ex-
ception of the assemble/disassemble comma:nds.
The second section of DDT is the assembl)'r/dlsas-
sembly portion; we will say more about th1.s later.
The nucleus module is loaded in memory just be-
low the EDOS CP/M module Wit!’l the assem.bly'/
disassembly module right below it. When this is
done the CCP is overwritten and lost. Thus, you
must exit DDT by doing a warm boot to restore
the CCP. This sequence is initiated by typing the

command

A>DDT
DDT will respond as above with the sign-on mes-
sage

nnK DDT VER x.x
where nn is the system size (same as the CP/M

system you are currently running) and x.x is the
revision number of DDT. DDT will then display

the prompt ‘““dash” character:

which lets you know that DDT is now in the com-
mand mode and is awaiting your every command.

Fig. 8-1 shows how the DDT nucleus is loaded
into memory by the CCP when the command

A>DDT

is typed. Note that the CCP loads DDT in over
itself, and therefore must be read back in from
the disk with a warm boot at the end of the DDT
session. As seen in Fig. 8-1A, the CCP gets the

file DDT.COM from the disk and loads it into
memory. When this is done, the memory alloca-
tion becomes what is shown in Fig. 8-1B, where
the CCP has been overwritten by the DDT nu-
cleus and the DDT assembly/disassembly pOI‘th!.l,
which is the second major component of DDT is
loaded directly below the nucleus.

Note that DDT is not loaded into memory start-
ing at location 0100H as all other .COM files a‘re!
This is so that both DDT and a program starting
at 0100H can simultaneously reside in memory.
DDT can then be used to debug the program in
the TPA. Of course, it is not necessary that the
program to be debugged reside at 0100H ; it can be
anywhere in memory, 0 long as it does not over-
write either DDT or the BIOS or BDOS modules
of CP M.

Although DDT resides right below BIOS, it is
initially loaded into memory at 0100H by the CCP,
as all .COM files are, and then it relocates itself
upward. This means that whatever is in the lower
portion of the TPA will be overwritten by DDT.
Thus the program which is to be run concurrently
with DDT must be loaded in after DDT is loaded
so that it will be intact when you want to run it.

When DDT is loaded into memory, it initializes
itself, and changes two addresses in the reserved
low system memory (below 100H). The first modi-
fied address is the jump address contained in mem-
ory locations 6 and 7. This is the address of the
lowest byte in the BIOS section of CP/M. Many
programs read these locations to make sure there
is enough room in the TPA for them to operate

:Get DDT

DISK

(A) CCP processes command to get DDT off disk.

without overwriting BIOS. To make sure they
don’t overwrite DDT, this address is changed to be
the address of the lowest byte in the DDT nucleus.

However, as you can see, the assemble/disas-
semble portion can still be written over by a pro-
gram! If your program checks bytes 6 and 7, and
you want to save the assemble/disassemble sec-
tion of DDT, you might want to change bytes 6
and 7 yourself with DDT to an address below the
assemble/disassemble section with some DDT
commands which we will show you later.

The second set of addresses that DDT changes
are 038H to 03AH. These correspond to the RST 7
(restart) instruction which is recognized by the
8080, 8085, and Z80 microprocessors as a vector
to branch to in case of an interrupt. This address
is changed to a jump to a breakpoint location in
DDT. Thus, if you want to put a software break-
point in your program, simply place an RST 7 in-
struction at the desired point, and control will be
transferred to DDT when the RST 7 is encoun-
tered and executed. Also, 2 hardware RST 7 can
be generated, which will produce the same effect.
More on this later as we discuss the breakpoint
command.

Once DDT has been invoked by typing the CCP
command line

A>DDT

DDT will respond with the prompt

DDT .COM

DISK
(B) DDT is overlaid on CCP, which keeps it out of TPA where
our program to debug lies.

Fig. 8-1. How DDT overlays the CCP and why a warm boot is required when ending a DDT session.

64

Fig. 8-2. Interaction among DDT, its commands, and CP/M.

as we discussed earlier. This means that we are
in the command mode. DDT will at this point rec-
ognize a set of fixed commands. These commands
allow you to load a file, display memory or CPU
register values, assemble or disassemble program
instructions, or perform a step-by-step trace of a
program’s execution.

DDT COMMANDS

From the DDT command mode, you may select
one of many DDT submodes to operate in. Once
you have entered a command, such as display
memory, and you are done with that submode,
you must first exit to the command mode again
before you go into one of the other submodes. In
other words, you cannot transfer directly between
submodes; you must go through the command
mode each time. A warm boot returns control to
CP/M and reloads CCP. Consider each submode
as a satellite of the DDT command mode, as shown

in Fig. 8-2.

LOADING A FILE

Once DDT itself is loaded into memory, the pro-
gram to be debugged must be loaded. There are
basically two ways to do this. The first allows you
to load a file (the program to be debugged) when
you load DDT into memory. Instead of simply

typing
A>DDT

as we did in the first example, we can add a file
name to the command line, and DDT will load
that file into memory before it comes up in the
command mode. The following will, for example,
load DDT and the hex file TIMER.HEX, which we
created in the last chapter, into memory. We will
use TIMER.ASM as our test program throughout
this chapter. This is done as is shown below.
When DDT enters the command mode, DDT will
be loaded into memory as well as the Intel hex out-

put file TIMER.HEX. Although normally the file
TIMER.HEX must be loaded with LOAD.COM or
some other utility which converts the hex file into
binary code (which is executable by the com-
puter), DDT automatically does this hex-to-binary
conversion as it reads a hex file into memory.
The second way to load a program into memory
with DDT is by using the I (Input) and R (Read)
commands. The Input command loads a filename
into the File Control Block (see Appendix A for
an in-depth discussion of File Control Blocks).
For the purposes of this discussion, a File Control
Block (FCB) is a string of parameters in memory
that supervises and controls all disk reads and
writes under CP/M. Thus, by placing the filename
TIMER.HEX into the FCB, we instruct CP/M to
refer all disk read and write commands to the
file TIMER.HEX, until further notice (i.e., we
change the filename in the FCB). Note, however,

that the file must be on the current drive. Thus the
command

—ITIMER.HEX

will load the filename TIMER.HEX into the File
Control Block (FCB). This filename will remain

in the FCB until it is replaced with another file-
name.

The Read command will then read the .COM or
HEX file specified in the FCB into memory. Re-
member, as long as you don’t write over the FCB
(which is located in memory from the addresses
005CH-007FH) any number of Read commands
may be issued without issuing Input commands in
between to set up the FCB, as we mentioned be-
fore. The Read command can therefore be used to
re-read in a program which you think may have
had some instructions inadvertently altered, for
instance. The following command will read in
TIMER.HEX (since this was the last filename
we inputted to the FCB with the I command).

—R

DDT actually loads in a file when DDT is in-
voked with a filename in the command line, as we
did in the first example, by issuing internally an
Input and subsequent Read command. Thus, if
you have loaded a program into memory when you
load in DDT, the filename is in the FCB and you

may re-Read the file in at any time by simply
typing

=

in the command mode. In other words, the I com-
mand isn’t needed.

PROGRAM DISPLAY AND MODIFICATION

DDT has an extensive and sophisticated array
of commands which allow you to digplay and mod-
ify the contents of your computer's memory. With
these commands you can examine the contents of
either the computer memory or the actual CPU
registers, and change or fill them with new values
if you want. Thus, you can change data, program
instructions or the actual CPU registers.

The Display Command

The first command you will want to use is the
Display command. This command allows you to
examine the contents of any memory location or
locations in the computer’'s memory. The Display
command lists the contents of memory in blocks
of 256 bytes at a time. The memory display is ini
tiated by typing

—Dst

in the command mode where s and f are optional
start and finish addresses of the block of memory
to be displayed. If no start or finish addresses are
specified, DDT starts with 0100H and continues
to display lines, 16 at a time, each time the Display
command is entered. The contents of memory are

always displayed in lines of 16 bytes in the follow-
ing format

aaaa bb bb bb bb bbd bb bb bb bb bd bb bb bb bb bbd bd
CCECCCCCCCCCCeee

where aaaa is the address in hexadecimal of the

first byte in the string, bb are the 16 bytes of data

in hex format, and cceccecceccecece is the ASCH

value of each of the 16 bytes. If the value is not

an ASCII printing character, DDT represents it
with a “.”. For example, the value 06H is the
ASCII character CRTL-G and DDT will repre-
sent it with a “.” in the last field since control
characters are nonprinting. The value 61'H, how-
ever, is the ASCII “o” and DDT will represent it
as “0" in the last field.

Thus the left most four characters are an ad-
dress, (0000 to FFFF), and the bulk of the re-
maining line is 16 bytes of data in hex format,
followed by any ASCII characters. The ASCU
character part of the line is a feature of DD
and is not usually found in most memory dum
or monitor examine functions. Most computel
just dump hex. The ASCII display helps you ider
tify “strings” in memory. If you examine a se
tion of code that has a message imbedded in
the message will appear in the ASCII columns.

If you type an address in hexadecimal direc
after the D in the command, then DDT will st

put file TIMER.HEX. Although normally the file
TIMER.HEX must be loaded with LOAD.COM or
some other utility which converts the hex file into
binary code (which is executable by the com-
puter), DDT automatically does this hex-to-binary
conversion as it reads a hex file into memory.

The second way to load a program into memory
with DDT is by using the I (Input) and R (Read)
commands. The Input command loads a filename
into the File Control Block (see Appendix A for
an in-depth discussion of File Control Blocks).
For the purposes of this discussion, a File Control
Block (FCB) is a string of parameters in memory
that supervises and controls all disk reads and
writes under CP M. Thus, by placing the filename
TIMER.HEX into the FCB, we instruct CP/M to
refer all disk read and write commands to the
file TIMER.HEX, until further notice (i.e., we
change the filename in the FCB). Note, however,
that the file must be on the current drive. Thus the
command

—ITIMER.HEX

will load the filename TIMER.HEX into the File
Control Block (FCB). This filename will remain
in the FCB until it is replaced with another file-
name.

The Read command will then read the .COM or
JHEX file specified in the FCB into memory. Re-
member, as long as you don’t write over the FCB
(which is located in memory from the addresses
005CH-007FH) any number of Read commands
may be issued without issuing Input commands in
between to set up the FCB, as we mentioned be-
fore. The Read command can therefore be used to
re-read in a program which you think may have
had some instructions inadvertently altered, for
instance. The following command will read in
TIMER.HEX (since this was the last filename
we inputted to the FCB with the I command).

—-R

DDT actually loads in a file when DDT is in-
voked with a filename in the command line, as we
did in the first example, by issuing internally an
Input and subsequent Read command. Thus, if
you have loaded a program into memory when you
load in DDT, the filename is in the FCB and you
may re-Read the file in at any time by simply
typing

—-R

in the command mode. In other words, the I com-
mand isn’t needed.

PROGRAM DISPLAY AND MODIFICATION

DDT has an extensive and sophisticated array
of commands which allow you to display and mod-
ify the contents of your computer’s memory. With
these commands you can examine the contents of
either the computer memory or the actual CPU
registers, and change or fill them with new values
if you want. Thus, you can change data, program
instructions or the actual CPU registers.

The Display Command

The first command you will want to use is the
Display command. This command allows you to
examine the contents of any memory location or
locations in the computer’s memory. The Display
command lists the contents of memory in blocks
of 256 bytes at a time. The memory display is ini-
tiated by typing

—Ds,f

in the command mode where s and f are optional
start and finish addresses of the block of memory
to be displayed. If no start or finish addresses are
specified, DDT starts with 0100H and continues
to display lines, 16 at a time, each time the Display
command is entered. The contents of memory are
always displayed in lines of 16 bytes in the follow-
ing format

aaaa bb bb bb bb bb bb bb bb bb bb bb bb bb bb bb bb
CCCCGCCCCCCCCCCe

where aaaa is the address in hexadecimal of the
first byte in the string, bb are the 16 bytes of data
in hex format, and cccccececceceeee is the ASCII
value of each of the 16 bytes. If the value is not
an ASCII printing character, DDT represents it
with a “.”. For example, the value 06H is the
ASCII character CRTL-G and DDT will repre-
sent it with a “.” in the last field since control
characters are nonprinting. The value 6FH, how-
ever, is the ASCII “0” and DDT will represent it
as “o0” in the last field.

Thus the left most four characters are an ad-
dress, (0000 to FFFF), and the bulk of the re-
maining line is 16 bytes of data in hex format,
followed by any ASCII characters. The ASCII
character part of the line is a feature of DDT
and is not usually found in most memory dump
or monitor examine functions. Most computers
j}lst dump hex. The ASCII display helps you iden-
tify “strings” in memory. If you examine a sec-
tion of code that has a message imbedded in it,
the message will appear in the ASCII columns.

If you type an address in hexadecimal directly
after the D in the command, then DDT will start

==y

e

-l

v
1

‘———-‘. ——— P !
q = |
- o -

L1

L L s m e e ea M em BB e el

the di i i

0196 O(Ii;SI;:;ay . at _thls point instead of the usual

o .If will display 16 lines in the format listed

comm.a nda Dstart apd g.top address is typed in the

oy locati’o nng' w1l:; 1(lhsplay the value of all mem-
om the starti

Sklodine ey starting address up to the

: mod
dimplay in blosks 68 10 T o i does ok

: 16 lines. Instead, it continu-
c:lusly @ype.s lines on the screen until the final ad-
ress is displayed. Thus, on a long memory dis-

play, the values will scroll off the screen. You can
tcype a CRTL-S to stop the display and then restart
it kg‘r typing another CRTL-S.
I we wanted to display the program

whlcl'} we assembled in the last Ehagter, W’I;H:iﬁllf({i
load it mtq memory with the I and R commands
and then display it. Since it is assembled to reside
at _D800H, then the Display command should have
this address as the optional start address. This is
how this all should look on your computer.

The Set command is similar to the Display com-
mand, except that it displays only one memory
location at a time, and it allows you to change the
value of that memory location if you wish. The
form of the command is

Sa

where a is the address of the memory location you
would like displayed. DDT will return the address
and current value of the memory location. If you
type a carriage return next, the data is not altered.
However, if you would like to alter the contents
you type in the new value, in hexadecimal format,
and DDT will store it in that location. Following
a carriage return, either with or without a new
value to be stored, DDT will then display the next
address in memory, and its location. It will con-
tinue in this fashion until either a ““.” is typed by
the user, Or an invalid response is encountered.
DDT will then revert back to the command mode.

67

In the following example we will display a mem-
ory location, modify it, and then redisplay it so
that we can be sure it really was changed.

A command which is very similar to the Set
command is the eXamine command. The eXamine
command allows you to examine and alter any of
the 8080 CPU registers, condition flags, program
counter, or stack pointer. The form of the eX-
amine command is

X

or

Xr

where r is a label representing one of the 8080
registers. If no register is specified, DDT will dis-
play all of the registers, flags, and counters in the
following format.

CiZfM{Eflf A=bb B=dddd C=dddd H=dddd S=dddd
P=dddd inst

where the capital letters refer to registers, flags,
or counters, f is 0 or 1 representing a single bit
value of a flag, bb is a single byte value and dddd
is a double byte value, and inst is the mnemonic
for the current instruction in the memory location
contained in the program counter. Table 8-1 lists
the symbol for each of the 8080 flags, registers,
and counters.

So if we wanted to find out the current state of
the accumulator, we would enter the command
mode and type

—X
and DDT would respond with

C0ZOMOEO10 A=FF B=0000 D=0000 H=0000
$=0100 P=0100 RST 7

Table 8-1. Symbols For 8080 Flags,
Registers, and Counters

Flags:
115
C Carry Flag Z Zero Flag
M Minus Flag E Even parity Flag
| Interdigit Carry Flag -
Registers:

A Accumulator
D DE register pair

B BC register pair
H HL register pair

Counters and Pointers:

(P Program Counter S Stack Pointer

In this case all of the flags and CPU registers ex-
cept the accumulator are zero, the current top of
the stack is 0100H, the next instruction to be exe-
cuted is at memory location 0100H and is an RST 7
instruction, and the accumulator has FFH in it.

The second form of the eXamine command,
which we mentioned above, allows you to display
and change the current state of any of the flags,
registers, or counters in much the same manner
as the Set command allowed us to display and
change the contents of memory. For example, if
we want to change the contents of the Accumula-
tor from FFH to 00H we would issue the follow-
ing commands

As with the Set command, DDT will wait for your
input after it displays the contents of the flag,
register, or counter. If you answer with a car-
riage return, the contents will not be altered. How-
ever, if you type in a new value, DDT will update
the contents of the flag, register, or counter with
the new value. Unlike the Set command, eXamine

will not automatically go on to the next register
(remember Set automatically displays the next
memory location unless you type a “’"), but rather
returns to the command mode.

Often it is necessary to initialize large blocks
of memory to a predetermined value, such as ini-
tializing a buffer to some “empty” value. We could
of course accomplish this task with some large
number of Set commands, but that would be very
time consuming. Instead, we could use the Fill
command. The Fill command will place data in all
memory locations from the starting memory loca-
tion to the final memory location specified in the
command. The form of the Fill command is

Fs,f,d

where s is the starting address, f is the final ad-
dress, and d is the new data, in Hex, to be placed
in these locations. Thus if we wanted to initialize
a buffer to the Hex value E5H and the buffer was
128 bytes long, starting at memory location 0080H,
the command would be

—F0080,00FF,E5

Note that the final address is filled with the value,
or in other words, the Fill command fills up to and
including the final address.

The Move command is the last of the program
display and modification commands. Move allows
you to move a block of memory from one location
to another. For instance, let’s say you decided that
for some reason you wanted to move the buffer
which we just initialized with the Fill command
to another location, say CO000H to CAFFH. We
could do this with the Move command. The form
of the Move command is

—Ms,f,d

where s is the starting address of the block to be
moved, f is the final address of the block to be
moved, and d is the starting address of the desti-
nation. Thus to move our 128 byte buffer from
0080H to CO00H we would issue the following
command to DDT

—MO0080,00FF,C000

Again, remember that the move goes up to and
includes the final address of the block to be moved,
and that you can only move a block of memory up,
not down.

Program Assembly and Listing

Often during a debugging session, you will real-
ize that you made a mistake while you were writ-
ing your program, and you would like to correct

|

‘

Py

\

1

%

Ay

|

—
o

i

-
\

1

e

— =
- S e E s s

i:‘ r

_‘h

-

-h

-

that mista i iti
g ke now, without eXiting DDT, reediting

€ program source code with ED, reassemblin
;hgea ixlllrolg):z]-)am vyxth ASM, and then entering DD’%
s ! T will allow you to make many of these
anges with the Assemble command.
The Assemble command takes the form

Am

Whe!(‘Ie m is the memory address where the com-
mand is to be assembled. DDT will then respond
?Vlth thg address and wait for you to type in an
Instruction using the standard 8080 mnemonics
(see Cha_pter 6 for a complete listing of the 8080
mnemonics) and absolute hex addresses and con-
st_.ants. DDT will then assemble the code, place the
binary machine instruction in memory, print the
address of the next instruction, and wait for an-
other command or a carriage return to terminate
the assembly session.

The following sample session will examine
memory locations 0100H to 01FFH, assemble a
CALI., instruction at location 0100H, and then re-
examine memory to see the change in the memory
cpntents. Notice that DDT recognizes the instruc-
tion CALL D800 as a three-byte instruction and
therefore displays 0103 as the next address. Had
the instruction been, for example, an RST 7 in-
struction (a single-byte instruction—FFH), the
next address displayed would have been 0101.

You must remember when working with the As-
semble command, that you are assembling in “real
time” and that DDT is assembling one line at a
time. Thus while your original program may pave
used equates, pseudo operands and mstruct:ol.ns,
the DDT assembler cannot use these. Thus the in-

struction

—A0100
0100 CALL SETBUFFER

will produce the following response from DDT

—A0100

0100 CALL SETBUFFER
?

0100

DDT prompts with a “?” whenever an invalid in-
struction is entered. In the above example, DDT
correctly recognized the fact that SETBUFFER
is not a valid hex address. However, if you know
that the original program contained the equate

SETBUFFER EQU 0D800H

and you substitute 0D800H for SETBUFFER so
that the command looks like this

—A0100
0100 CALL D800
0103

DDT will recognize and properly assemble the in-
struction.

The List command is the second command in the
Assembler/Disassembler module of DDT. With
this command you can list the program you are
currently debugging in mnemonic form. The form
for the List command is

Lsf

where s is an optional starting line number and f
is an optional final line number. If no line numbers
are given, List will start at the first line of code
(determined by the current program counter) and
list the next 12 lines. Each successive List com-
mand will disassemble 12 more lines of the pro-
gram. For example, the session at the top of pg. 70
displays the first 12 lines of our program TIMER.
Remember, however, from our discussion of the
various components of DDT earlier in the chapter
that the DDT Assemble/Disassemble module can
be overwritten if your program is large. If this is
the case, then DDT will simply return a “?” when
it is asked to list program lines. Unfortunately,
the only solution to this problem is to get more
memory into your computer system (assuming
that you are not already using 64K), or to make
your program small by reprogramming some or
all of it.

TRACING PROGRAM EXECUTION

Often when you are debugging a program of
one kind or another, it is desirable and necessary
to trace the execution of your program step by
step to make sure that it is executing the way you
had anticipated, or to find out why it is not work-

ing. DDT provides the capability to do this with
the Trace function. The Trace command takes the
form

Tn

where n is an option number (taken in hexadeci-
mal) representing the number of program steps
to be traced. If no number is entered for n, DDT
assumes a value of 1 for n, and single steps one
instruction.

While using the Trace function, a number of
things must be remembered which have a direct
bearing on the execution of the program under
test. First, Trace implements the “breakpoint”
function by executing RST 7 commands, Thus, the
user program cannot use this instruction, nor
should you place a jump to an interrupt service
routine at the RST 7 address (0038H). Secondly,
a program under Trace will execute about 500
times slower than real time due to the overhead
of the Trace command. Thus programs which exe-
cute real time functions, such as our TIMER pro-
gram, will not operate the same in the Trace mode
as they would in normal execution. For example,
if we were running the TIMER program with an
oscilloscope hooked up to pin 7 of port FOH, we
should see a 1 millisecond pulse every time we ran
the program. However, if we run TIMER under
the DDT Trace function, the pulse on pin 7 will
be significantly wider than 1 ms. Still, we would
be able to follow exactly the operation of the
TIMER program using Trace, to make sure that
it is operating correctly.

Trace will display the contents of the CPU reg-
isters, counters, and pointers after the execution

of each program step. The format of the Trace
output is as follows

70

CIZIMIEfif A=bb B=dddd D=dddd H=dddd S=dddd
P=dddd |

which is, as you can see, the same format as t
eXamine command we discussed earlier, At t
end of a trace, DDT will display the next addre
to be executed with an asterisk.

The following example is a trace of the first
steps of the TIMER program (remember, t
DDT trace function notes the number of lines
hexadecimal not decimal).

The Untrace Command

The final DDT command is the Untrace cor
mand. It is identical in function to the Trace cor
mand, with the exception that it does not displ:
the state of the CPU after every instruction, §
you might ask, what does it do, recalling that tl
output of Trace was mostly data about the CP

ing. DDT provides the capability to do this with
;he Trace function. The Trace command takes the
orm

Tn

where n is an option number (taken in hexadeci-
mal) representing the number of program steps
to be traced. If no number is entered for n, DDT
assumes a value of 1 for n, and single steps one
instruction.

While using the Trace function, a number of
things must be remembered which have a direct
bearing on the execution of the program under
test. First, Trace implements the “breakpoint”
function by executing RST 7 commands. Thus, the
user program cannot use this instruction, nor
should you place a jump to an interrupt service
routine at the RST 7 address (0038H). Secondly,
a4 program under Trace will execute about 500
times slower than real time due to the overhead
of the Trace command. Thus programs which exe-
cute real time functions, such as our TIMER pro-
gram, will not operate the same in the Trace mode
as they would in normal execution. For example,
if we were running the TIMER program with an
oscilloscope hooked up to pin 7 of port FOH, we
should see a 1 millisecond pulse every time we ran
the program. However, if we run TIMER under
the DDT Trace function, the pulse on pin 7 will
be significantly wider than 1 ms. Still, we would
be able to follow exactly the operation of the
TIMER program using Trace, to make sure that
it is operating correctly.

Trace will display the contents of the CPU reg-
isters, counters, and pointers after the execution
of each program step. The format of the Trace
output is as follows

70

CZIMIEN! A=bb B=dddd D=dddd H=dddd S=dqqq
P=dddd Ingy
which is, as you can see, the same format 2s §
eXamine command we discussed earlier, At th
end of a trace, DDT will display the next 5
to be executed with an asterisk.

The following example is a trace of the first 16
steps of the TIMER program (remember, the
DDT trace function notes the number of lines i
hexadecimal not decimal).

ddregy

The Untrace Command

The final DDT command is the Untrace com-
mand. It is identical in function to the Trace com-
mand, with the exception that it does not display
the state of the CPU after every instruction. So
you might ask, what does it do, recalling that the
output of Trace was mostly data about the CPU

e e

(|

— 1 /1

state.
controP::;rch; ;llzzvsh);(;ui:odrun a program under
you. For examp,l o {2 vers o:s not run away on
nortionofi s o) wanted to trace the last
I g program, you could use the Un-
ppigeecs 'Il‘mc 1on to get you to the end under control
= exeé uatril:)inth(;n ;se the Trace function to watch
s of t le program, In many cases of
» you could simply set the program counter
to the address of the section of the program you
wanted to debug and then use the Trace function.
However, many programs require certain vari-
a'blgs to be initialized, and skipping over the ini-
tla!lzation section of the program will often lead
to .m.v:ftlid results if the rest of the program is run
uninitialized. Thus, the Untrace function is the
only way to quickly run through a long section of
code under the control of DDT.

The form of the Untrace command is identical
to the Trace function and is Un, where n is the
n?mber of steps to Untrace. Untrace will always
display the first line of code that it executes in the
same manner as Trace. However, it will stop dis-
playing the program steps at this point and will
continue to execute program steps for the number
of steps given by n (n is in hexadecimal again).
When it has run through the required number of
steps, it will display the next value of the program
counter, and exit to the command mode. The fol-
lowing example is the same as we did for the Trace
function, but we will use the Untrace mode this

time.

A SAMPLE DDT SESSION

In this final part of this chapter, we will fol-
low a sample DDT gession with the TIMER pro-
m we wrote in the last chapter. The actual
screen output that you should see from this ses-
gion is shown in Fig. 8-3. The numbers in the left
margin are reference marks for items which we

gra

4]

will be discussing as we g0 through this sample

session.
The session starts by loading DDT into memory,
and then loading the hex file for the program
t and Read commands

TIMER in with the Inpu
(1). Next we need to set the program cou;xter'to
the starting address of TIMER. We do this with

the eXamine command. Finally, we need to set
the number of milliseconds we want TIMER to
count, since we are not calling TIMER from a
BASIC program which has initialized COUNT
with a POKE statement. We do this with the Set
command (2).

Now that we have initialized everything, we are
ready to begin our trace. We start by tracing the
first 16 (Hexadecimal 10) program steps. This
gets us through the program initialization part
and into the timing loop (3). However, we notice
that we have made a mistake, and used the DCX
(decrement register pair) instruction instead of
the DCR (decrement register) instruction when
we are decrementing our loop count (4). We can
see this with DDT because the B double register
contains 6401H after this instruction instead of
6302H as it should.

We can now use the DDT Assemble command
to fix the problem without exiting DDT, changing
the source code, and reassembling TIMER. We
change the instruction at 7815H from DCX B to
DCR B with the Assemble command and we are
back in business and ready to test the program
again (5).

However, before we Trace the program again,
we must remember that we have run 16 program
steps already, and some of the machine registers,
counters, and pointers are not what they were
when we entered the program. In order to correct
this we use the eXamine command to restore the
initial values for the stack pointer, program
counter, accumulator, and register pair B (6).

Now that we have corrected our mistake and
reinitialized the CPU and memory, we will run
the program again under the Trace command.
After looking at the first trace, we can see that
the trace did not get completely through the first
execution of the timing loop. Therefore, on this
trace we will increase the number of steps to be
run to 21 (15 hexadecimal) (7).

After running through this trace, and seeing
that the program appears to be working as it is
supposed to do, we will take a short cut. We could,
of course, continue tracing the program execution
through all of its iterations through the timing
loop; however, this is an extremely tedious and
time-consuming process. We will use the eXamine
command to decrement the millisecond and loop

counts ourselve§, instead of letting the program
:}l::t on to do this. We will set them both to 1 so
o ?;i tcsa?hzv;;otsh 1:the: execution of the program
otl;t‘e,r e (g)_0 make sure that there are no

e now have 19 more steps to go for th -
gram to complete, since we lll)ave sgt the co:nlt).::s
to 1 (don’t worry, we cheated and counted them
out first for this example; we didn’t have any idea
how many at first either). We enter the Trace
mode again and look at the next 19 steps (9). As
you can see, we successfully exit the timing loop
restore all CPU registers to their value prior tt;
the BASIC program calling this program, and re-
turn to the BASIC program (10).

®

(10

timing loop program with DDT.

Finally, we exit the session back to the CP/M
CCP by typing a CRTL-C to force a warm boot.
At this point, we can be relatively certain that
TIMER works as it is supposed to. However, the
DDT can only take you so far in the process of de-
bugging a program. Often, program errors occur
in the initial flow or logic which the program
was written to, and not in the program coding.
DDT will do well in catching and correcting the
latter errors, but the former kind must be found
and corrected by the programmer.

As you can see DDT allows you to get into the
“real guts” of the CPU’s operation. with DDT,
and some practice, you should be able to debug
the most difficult assembly language programs.

SAVING YOUR PROGRAM

Once you have finished debugging your program
with DDT, it needs to be stored on the disk. As
you recall from our discussion of ASM, the com-
piled program stored in the .HEX file cannot be
run by your computer. DDT has a mechanism for
converting a program from .HEX format into bi-
nary object code.

Since we don’t want to have to use DDT every
time we want to run a program, then we must
somehow accomplish this conversion without
DDT. This is the purpose of the LOAD utility.
LOAD will convert a .HEX file into object code
and store it as a .COM file.

Thus if we were to invoke LOAD to convert our
sample program into a .COM file we would type

A>LOAD TIMER

and LOAD would read in TIMER.HEX and con-
vert it into binary object code and write it back

74

onto the disk as TIMER.COM. Note tka: LOAD
does not erase TIMER.HEX; it will still be on
the disk.

The second way of saving a program is with the
CCP SAVE command. This is 2 much more [im-
ited way, since you have to know how mary pages
(256 byte block) long the program is, and the pro-
gram must begin at 0100H. However, in many
cases it can be the best way to get a binary object
code file. For example, if your program started a:
0100H, and you had done some extensive modiZ-
cations of the program with DDT (using the As-
semble directive, etc.) you could store the resulz-
ing program, without having to go back ard =dit
the original source code, recompile it with ASM.
and then convert it from hex format to binary
object code with LOAD.

We encourage you to play around with botk
methods and become familiar with them. There
are no real clear-cut rules for when to use which
method.

R W

-
it

[

Appendix A

The Internal Structure of cP/M

The QP/M operating system is an extremely powerful
and flexible operating system. With it, many different
types of programs can be run on many different types of
machines. CP/M accomplishes this task by setting up a
standard protocol or method of communication so that all
programs, whether they are BASIC interpreters, word
processors, or any other application program or utility,
will be able to run under CP/M.

All commands to CP/M from a program are accom-
plished through what is referred to as “system calls.”
System calls are routines in CP/M which perform specific
“low level” functions like getting a character from the
keyboard or displaying text on the crt. An 8080 CALL
instruction, sent from the program, initiates the desired
routine. System calls are used in the program whenever
control of the computer is passed over to CP/M to accom-
plish a specific task. Control is returned to the program
by CP/M when the task is complete. For example, let’s
say a program wants to output a character to the current
console device. At the appropriate output point in the
program, the character to be output to the console device,
and the proper command number (CP/M recognizes many
system calls, thus the program uses a number to distin-
guish which one it wants performed) are passed to CP/M
along with control of the computer. When CP/M returns
from the system call to the program, the character will
have been output to the console device (such as a ert

screen).
As you
rangement save

can see from the example listed above, this ar-
s the program from having to be modified

for each particular machine that the program must be run
having to know what the con-

on. Instead of the program
sole device is (i.e., is it a printer, crt, ete.), where it is
located in memory or what port or ports it is on, and how to
talk to it, the program simply issues a system call to out-
put a character to the console device, and CP/M’s BIOS
or BDOS takes care of the rest. It is this concept of system

calls that makes CP/M as flexible and widely used as it is.

GENERALIZED SYSTEM CALL

neral form to all system calls whether they
command such as output a character to the
console or list device, or whether they are a more compli-
cated disk command such as read a file record. In order to
understand the general form of a system call a few prelim-
inaries must be covered.

First, as we mentioned earlier, system calls are accom-
plished by executing an 8080 CALL instruction to the
CP/M entry point, which is contained in the reserved mem-
ory area below 0100H. The entry point is located at 0005H
and is a JMP instruction to the actual CP/M entry point

There is a ge
are a simple i/0

75

the CP/M BIOS and BDOS modules are
M which execute the system calls). The
mented this way, however, so that a
program operating under CP/M does not have to keep track
of how big a system it is running under. Because CP{M
resides in the top portion of memory, the actual entry point

will be different for each size system. F
may be TA28H, whereas for a 48K

the entry point in BIOS

system, that entry point would be higher up at BA28H.
CP/M makes sure that the JMP address at 0005H is always
correct. Part of the MOVCPM utility changes this address
whenever a new CP/M system image is being created for a
different size memory. Thus calls will always have the

same entry point, 0005H.

There are many system calls supported by CP/M. You
can consult your CP/M manuals for a detailed description
of these calls. Table A-1 summarizes these calls. Because
of the large number of system calls supported by CP/M, a

general protocol has been established, which all of the sys-
tem calls fit into. The protocol deals basically with the
passing of information to and from the CP/M operating
system by the calling program. There are several types of
information which will go back and forth between your pro-
gram and CP/M, and each type of information, or param-

eter, is passed in a specific manner.
When a program issues a CALL instruction, the most

common place where information can be passed is in the
internal registers of the CPU. If the amount of information
that needs to be passed back and forth can’t be stored in
the registers, then the protocol specifies that a “block™ of
memory be set up with the information in it and the ad-
dress of that block of memory be passed in the registers.
We will examine “parameter blocks” in greater detail
later on when we discuss the File Control Block and disk
i/o0 commands.

The first piece of information which must be passed to
the CP/M operating system is the specific call which the
program would like CP/M to execute. Each of the system
calls is assigned a number, and that number is placed in
the C register prior to executing the CALL instruction to
get to CP/M. CP/M will read the C register, determine
which call was requested, and then execute that call. (See
Table A-1.)

Often, as we mentioned, we need to pass information to
the operating system in addition to the number of the sys-
tem call we would like performed. Consider the system call
which prints a character to the console device; we will not
on}y need the system call number, but the character to be
printed will also have to be passed. Another example would
be the system call which changes the beginning memory
address of the disk i/o buffer which CP/M uses for all disk
read and write operations. In this case we would need to

in BIOS (recall
the parts of CP/
entry point is imple

Table A-1. CP/M System Call Summary

Function
Number Description

*0 Resets CP/M operating system
1 Console input (unbuffered)

2 Console output (unbuffered)

3 Reader device input

4 Punch device output

5 List output

6 Direct console /0

7 Get 1/0 status byte

8 Set /0 status byte

9 Print a string to the console
10 Read console buffer
1" Get console status
*12 Return version number

13 Reset disk drive
14 Select disk

15 Open file

16 Close flle

17 Search for first occurrence of filename
18 Search for next occurrence of filename
19 Delete file
20 Read a record sequentially
21 Write a record sequentially
22 Create a file
23 Rename a file
24 Return the disk log-in vector address
25 Return current disk drive number
26 Set disk 1/0 buffer address
27 Get allocation map address
*28 Write a protected disk
*29 Get Read Only vector address
*30 Set file attributes

*31 Get disk parameter table address

*32 Set/Get user code

*33 Read a record in random access
*34 Write a record in random access
*35 Compute file size

*36 Set random record field in FCB

*Impiemented in version 2.0 or later only

pass a 16-bit address to CP/M, as well as pass the system
call number.

In general, 8-bit values, such as characters to be output
to the console device, are passed from CP/M to the calling
program in the Accumulator (Reg A), and to CP/M in
register E. The 16-bit values, such as addresses, are passed
in registers pair D (Regs D and E).

The program shown in Fig. A-1 shows how a typical
system call is done. The CONOUT system call is number 2
and the SETDMA call is number 26. This program will set
the disk i/o buffer to 2000H and then output an asterisk
(“*”) character to the Console when it is done.

Here’s how the program performs the i/o using the sys-
tem calls, The statement at the very beginning of the pro-
gram (ORG 0100H) tells the CP/M assembler ASM what
the beginning address of this program shall be, i.e., where
to start generating object code. Following this are six
equate (EQU) directives which assign values to the six
variables at the left. The variable or symbolic name
CONOUT becomes the value 2, SETDMA is 26, and so on.
The entry point for all calls is 0005H and we call this
ENTRY. BUFFER becomes 2000H as we desire. Next, the
label START indicates the beginning of the actual code
that does the work. LXI D,BUFFER puts the value of
BUFFER (2000H, a 16-bit value) in the DE register while
the next instruction, MVI C,SETDMA, puts the value of

76

ORG 0100H :MAKE A .COM FILE
CONOUT EQU 2 ‘PRINT A CHACTER TO
"THE CONSOLE
SETDMA EQU 28 'RESET DMA BUFFER
'ADDRESS
ASTER EQU 2AH 'ASCII “*"" CHARACTER
BOOT EQU O0000H :WARM BOOT ENTRY
ENTRY EQU 0005H CPIM ENTRY POINT
BUFFER EQU 2000H :NEW BUFFER ADDRESS
START: LXI D,BUFFER ;LOAD NEW BUFFER
'ADDRESS TO D AND E
MVl C,SETDMA :LOAD SYSTEM CALL
CALL ENTRY :CALL CPM
MVI EASTER ;LOAD THE “*” CHAR
‘INTO REG E
MVl C,CONOUT :LOAD SYSTEM CALL
CALL ENTRY :CALL CPIM
UMP BOOT :EXIT AND WARM BOOT
END

Fig. A-1. An example of how a simple system call works.

SETDMA (26) in the C-register. (We use MVI because
this is a single 8-bit value.) Finally the instruction CALL
ENTRY is executed and the program transfers control to
the instruction at address 0006H, which in turn jumps to
the CP/M entry point. The BDOS module gets the function
number from the C-register, the buffer address from the
DE pair and does its thing. Control is returned to our pro-
gram in Fig. A-1, and the next instruction, MVI E,ASTER
is executed. It loads an ASCII asterisk character (‘“*”)
(its hex value=2A) into the E-register. Next we do an
MVI C,CONOUT to load the C register with the function
number for a CONOUT system call (see Table A-1) which
is 2. Finally we do a CALL ENTRY to perform the actual
system call to output the * character to the cosnole device.
system call to output the * character to the console device.
Finally the program ends with a JMP BOOT instruction
which jumps to locations 0000H and causes CP/M to per-
form a warm boot (similar to typing a control-C).

BASIC 1/0 SYSTEM CALLS

CP/M supports two different kinds of system calls. The
first are what we call basic i/o system calls, which deal
with input and output of the four logical i/o devices sup-
ported by CP/M (see Chapter 2 for more on the CP/M
logical i/o devices). The second kind are the disk i/o sys-
tem calls which provide the interface between your pro-
grams and the CP/M disk file structure.

The basic i/0 system calls provide for the input and out-
put of characters using one of the four logical i/o devices.
(As you remember, only the CONSOLE device supports
both input and output. The LIST and PUNCH devices are
output only, while the READER is an input only device.)
In order to call these functions from your program, the
appropriate system call number must be put in the C reg-
ister, and the ASCII character to be output (if it is an
output system call) in register E, prior to issuing the sys-
tem call. Of course, in the case of the input calls no char-
acter need be put in register E. When CP/M returne con-
trol _of the computer to your program, the Accumulator
‘(reg;ster A) will contain the ASCII character which was
input.

Buftered 1/0

In addition to the input/output functions described
above, CP/M supports the input and output of character

~——

A |

=

|

ﬁﬂ

.

—_— A NTTMAMMOO N

=0 T

TN am O MR a

— .

o <«

|

}
lﬁn

-

A |

il e e I I il =

P T el o0 NN]

~~

[N el el e e

| same

i

_;

F“_
-

\

|

T

T

f

1

|

I

, .
4
R EE SRR R e

I

v—

—

strings (one or more characters) through the CONSOLE
dev-lce. This allows your programs to input or output a
string of characters with one system call, instead of issu-
Ing a system call for each character.

The§e string-type system calls are referred to as buf-
/(':ﬂ'!'lyi i/o. In order to print a string of characters to the

ONSOLE device, the string must first be set up in mem-
ory and terminated with the “$” character. The starting
memory address of the string is placed in registers D and
E and th'e system call number (9) is placed in register C.
C!?/M _wlll then start at the first memory location (con-
t.amgd in DE) and output each successive character to the
CONSOL]::} until the “$” is encountered.

‘The string input system call is very similar in nature.
Your program should set a location in memory where it
wants the string to be placed by CP/M after being input
(this buffer should be at least 256 bytes in length). The
starting address of this buffer is passed to CP/M in reg-
isters D mc.l E. CP/M will then place all characters input
to t:.he CONSOLE device in successive memory locations
until a carriage return/line feed is encountered or until the
buffer ove.rﬂows (more that 256 characters are input). One
(?f the main reasons that the string input command is used
is that the usual CP/M line editing commands (see Chap-
ter 3_) are supported by the string input system call, thus
eliminating this editing burden from your program.

Changing the I/0 Status Byte

) CP/M keeps track of the current logical i/o device as-
signments (see Chapter 8) in what is called the i/0 status
byte which is stored in memory address 0004H. In most
cases, we use the STAT utility to change the current as-
signments. However, there are times when it is necessary
for a program to change the various assignments dynami-
cally. CP/M allows a program to do this with the Get and
Set i/o status byte system calls. In the case of the Get
i/0 byte call, the current value of the i/o byte is returned
in register A by the system call. The Set i/o byte call
writes the value in register E to the i/o status byte mem-
ory location (0004H).

Direct CONSOLE Access

CP/M provides two system calls to allow you to access
the CONSOLE device directly, i.e., without buffering or
the usual CP/M line editing commands. The first system
call, Get CONSOLE Status, allows you to determine if a
character has been typed at the CONSOLE. If a character
has been typed, then the value OFFH is returned in reg-
ister A; otherwise, 00H is returned.

The second call is a direct console i/o call, but is only
supported under CP/M version 2.0 and later. This will al-
low your program to perform i/o directly to and from the
CONSOLE device in those special applications where reg-
ular CONSOLE i/0 would cause problems with your pro-
gram. The Direct CONSOLE i/o system call is different
than the other logical device system calls in that the same
call supports both input and output. If register E contains
the value OFFH, then CP/M assumes an input is being
requested, and returns the next character input to the
CONSOLE in register A. If register E contains anything
but OFFH, then CP/M assumes an output call is being
requested, and will output the value in E to the CONSOLE

device.

Other Basic System Calls

There are two more basic system calls suppor_ted only
by CP/M versions 2.0 and later. The Return version num-
ber system call will return the current CP/ M version num-
ber in register L. CP/M returns the version number in
hexadecimal form, starting with 20H for version 2.0. Ver-
gion 2.1 would be returned as 21H and so on up to 2FH.
All releases of CP/M prior to 2.0 will return 00H in the

L register.

The final basic system call is the System reset cl_ll. This
call is issued when a program has finished execution and
wants to execute a warm boot and return system .cont'rol
to the CCP. This call is identical in operation to issuing
a JMP 0000H instruction, which is the way programs run-
ning under versions 1.4 and earlier execute a warm boot
(this is still a valid way to execute a warm boot under
version 2.0 and later).

DISK I/0 SYSTEM CALLS

The disk i/0 system calls are similar in structure to the
basic i/o calls. The eall number is placed in the C register
and the CP/M entry point (0005H) is called. Howev_er,
with the basic i/0 calls, we were usually only dealing with
one character at one time. Therefore we could usually pass
all of the necessary data to and from CP/M and the call-
ing program in the internal CPU registers (with 1:.he ex-
ception of the buffered input and output calls). With the
disk i/0 we are dealing with much larger blocks of data,
usually 128 bytes, and therefore we cannot use the internal
CPU registers to pass data. In addition, the complexity of
the CP/M file structure requires too many parameters to
pass them in the registers.

CP/M sets up two memory blocks to pass data and pa-
rameters back and forth between the calling program and
the disk. The first block, the disk data buffer, a 128-byte
block of memory (which can be located anywhere in mem-
ory), is used for all disk read and write operations. The
second block is the File Control Block (FCB), which is
a 33-byte (36 bytes under version 2.0 and later) block of
memory used to pass parameters which control the disk
i/o to and from CP/M. The FCB can also be located any-
where in memory. The FCB is used very much like the
CP/M registers are used for passing parameters.

The FCB format is shown in Fig. A-2. Each field in the
FCB must be filled in properly before a disk system call
is issued. In general, the first 13 bytes are the responsi-
bility of the programmer to maintain; i.e., these are the
bytes used to pass the required information on to CP/M
as to what file should be accessed. Bytes 13 through 31 are
maintained by CP/M, and may be read by your program,
but you should not change them. The FCB is usually lo-
cated in memory starting at 005CH. However, it can be
located anywhere the programmer wishes, provided, of
course, that it does not interfere with some other system
module.

The CP/M File Structure

Records—CP/M files are constructed from basic building
blocks called records. A record is a 128-byte block of data
containing either program object code, program data, or
text. A file is therefore simply a number of these records
which are grouped together and given a name. Since a file
can have a very large number of these records in it (under
version 2.0 there can be as many as 65,536 records in each
file), CP/M must impose a higher level of internal strue-
ture to manage all of the records in a file.

Extents—CP/M does this managing with a logical data
block called an extent. An extent is 128 records, which is
the equivalent of 16,384 bytes of data. Therefore, a CP/M
file is comprised of at least one, and often more than one,
extent. The reason why CP/M uses extents has to do with
the way it keeps track of where all of the records of a file
are located on a disk.

Allocation Units—A standard 8-inch CP/M floppy disk
has 250K bytes (K =1024) of storage space on it (128
bytes per sector X 26 sectors per track X 77 tracks per
side = 256,256 bytes). Thus, there are 2002 (26 x 77 =
2002) sectors where CP/M could store a 128-byte record of
a file. In order to keep track of where 2002 sectors are, the
diskette is broken up into allocation units, where an allo-
cation unit is 8 sectors or 1024 bytes of information. Since

:]‘.i.m t:i;e:- for 6:1) directory entries. Sin

allocatio; '-“11‘_’11;- bfytes. the directory takes up the first two

bytes per entlry = ?’hoig lbtftstorage e au e O 32
Example. In order to} Se: e mllocation unita).

= : mmarize what we hav -
scn v ¢ . y
bed here, we will take a look at a representativ‘ee d‘iisek

system call, a s -
through. Lets ansiurbr?: 5 e tthe steps that CP/M goes
the file EMPLOYEE.DAT . a file e g the 167th record of
for - ~E.DAT, a file containing employee data
a payroll application program. I d 4 Ay
record under CP,'M version 1.4 or- . Iqr D GO L
to convert the 167th e) i'nt earlier, we would have
sution C(ai 0 an extent/record desig-
nce there are 128 records i i
would be the 2nd extent, 39th recordl;l- each extent, this
gr later, we can ask for ,the 167th reco;'dwz:;}cli vCelr)S}ll\?{nv%ﬁ
i: ;'lilghcgr.\;?mxon for us. The FCB for the file is shown

Since we want the seco i
the disk directory and gelt)dﬂf;(t:;%n?ipd/iM e b
the file E y 4 rectory entry for

! MPLOYEE.DAT. It will then look in the all
tion map (bytes 16-31 of the FCB/directory entry) to %caé
the allocation unit which contains the desired recgrd Sinn
theredare 8 sectors or records per allocation unit, tl{e 39:11:
:x;t T;guld :e _mst),heTith al]ocz:xt.ion .unit assigned to that

9 = 5). us, CP/M will lo_ok at byte 20 in
the FCB/directory entry for the allocation unit number

(16..17..18..19..20) . We will assume that the record is con-
tained in the 117th allocation unit (i.e., byte 20 was 74H)
although it could be in any allocation ul"lit. The 39th recor(i
o_f the file will then be the Tth record in the 117th alloca-
tion unit. In order to find the actual track/sector address
CP/M needs to find the start of the 117th allocation unit,
and then add 7 sectors to it. This would be the 37th track,
25th sector (116 allocation units X 8 sectors per allocation
unit + 7 sectors = 935th sector of the data storage area).
Thus, 35 tracks X 26 sectors per track — 910 sectors which
is a little under our 935 sectors, so 935 sectors — 910 sec-
tors = 25th sector of the 35th track of the data storage
area. This sector begins with the second track, so this
finally comes to the 37th track (35 + 2), 25th sector of the
diskette. Whew!!

Having done all of this work, CP/M will then issue a
command to the disk drive controller instructing it to read
the sector with the address track 37, sector 25. The con-
troller will then read this 128-byte sector, and store the
information in the disk i/o buffer in memory. When all of
this is complete, then CP/M will return from the system
call and return control to the program. The required infor-
mation is now in the memory buffer awaiting your pro-

gram’s use of it.

ce each directory en-

File Maintenance System Calls

In order to properly keep track of the files on a dis'k,
CP/M requires that some preliminary system calls be is-
sued by a program before actual read/write operation 1s
possible.

Creating, Deleting,
not already exist on a
the Make File system ca

and Renaming Files—If a file does
disk, it must be created first with
1. This call makes bet:: direct;x;iy
4 isk for the file. Once a file has been created,

?tn tcl:-:n ()trlll:rl\‘ ebg accessed by your program. Notg that a file
need only be created once. CP/M will automatically create
new directory entries for each new extent as they are re-
u from having to 1ssue a Make File

quired. This saves yO grows to the point where

N time your file A
system call every Lm r};d. Once a file has been created, it

i ui
snctBer GXiees L 0 Delete File system call, or you can

sed with the ;
g:el;: :r:ew name with the Rename File system call.

i losing Files—Once a file has been created,
thg-ze:vti’l!lgb‘:ugnce: or m%re directpry entries on tlge disk for
that file. In order to read or write any mfox_-mat]on, CP/M

k ow where the file resides on 1_:he disk _(recall our
B get that directory information

ust, therefore A I
?::::2{12 y %;kminbo memory so that it can use the directory

information. This is accomplished with the Open File sys-
tem call. The Open File system call reads the information
from the file's directory into the FCB contained in memory.
Prior to issuing the Open File system call the FCB in
memory for a file contains the file name and zeros in all
other fields. After the Open File call is issued the remain-
ing fields will be filed with data corresponding to the allo-
cation map on the disk for our particular file. The alloca-
tion unit map has now been read from the disk directory
entry and the FCB has been updated with this informa-
tion.

CP/M will update the allocation unit map in memory
in the FCB as it reads and writes new data to the file.
Thus, when you are done updating the file, the new allo-
cation unit map must be written back into the directory
so that it will be permanently stored. This is accomplished
with the Close File system call. While reading a file does
not change the allocation unit map in any way (no records
are being added or deleted if we are only reading), and
therefore the allocation unit map in the directory will be
the same as the one in memory, it is good programming
practice to Close all files when you are done reading. If
you write anything to a file you must always Close the
file, or the new data may be lost.

Searching for a File—CP/M provides a method for de-
termining if a file is on a disk. The Search File system
call will return a zero (00H) value in the A register if the
file named in the FCB is found on the disk. An FFH value
is returned if the file is not present. In order to support
ambiguous filenames, it is possible to place ASCII ques-
tion marks (“?”) in the filename in the FCB. If one or
more question marks are encountered in the filename, then
the Search File system call will return a 00H for the first
filename that is a match. In order to find if there are
other files that match, the Search Next File system call
must be used. The Search Next File call will return a 00H
for each file that matches the filename. When no more
matches can be found, FFH is returned.

File Read and Write System Calls

Once a file has been properly opened, you may read and
write data to the file. CP/M supports two basic kinds of
read/write operations—sequential and random access. Se-
quential access is the simplest of the two, so we will ex-
amine it first.

Sequential Read/Write Operation—Sequential access al-
lows your program to read or write successive records to a
file. Once a file is opened, each successive read or write
command will read or write the next record in the file.
CP/M automatically updates the record number to be read
or written every time a read or write system call is issued
(byte 32 of FCB in Fig. A-1). Your program may set the
initial extent and record to be read by setting bytes 12 and
32 in the FCB to the desired values. This way you can be-
gin sequentially reading a file anywhere in that file with-
out having to first read a lot of unwanted data. For ex-
ample, if you had a file containing the monthly history of
your balance sheet, and you wanted to start reading the
July balances, you could position the extent and record
count to the second half of the file so as to avoid reading
the first six month’s balances.

Despite sequential access’s relative simplicity, it has
some severe limitations which affect its use. In the above
example, what would happen if we wanted to add a record
(say a new account was added in August, and the balances
had been left out of the history file) in the middle of the
file. Every record after the one to be added would have to
be read and rewritten, a very, very time consuming process
in a large file. Because of this limitation (and other
slightly less severe problems), the second method of access
called random access is more commonly used.

Random Access—Random access allows you to read or
write any record in a file without regard to what records,
if any, come before or after it. CP/M 2.0 and later sup-

CP/M

2.0 only
e,
FIELD———
Typ hex values [00{45 4D 50 AC 4F 59 45 45[44 41 54 00[00 00f0a]11 3A 4F 2C 74 D1 EE FO CO Al BZ_dF_l_O_i]l_i)l_}E EEB(I—ULOE
ASCll——NAJE M P L OVYEE[DATES---fg------"--- NOT APPLICABLE -~~~ T
Byteno—— 0 1 2 3 4 56 7 8 9101112 13141516 17 18 19 20 21 22 23 24 25 26 27 28 23 30 3132333
T
! Random access
Current | Number of records Disk allocation map maintained
i extert | in current extent by CP/M. not user alterable. ; reco';d number
Allocation Units assigned to this Next recor
Urhée number e Useii by extent of the file EMPLOY DAT to be read
to access CP/M only are stored here. An AU = 1024 bytes. or written
FCB LAYOUT - Usually sits at 005CH i memory.
Field Byte Description
1 0 Drive number to access
0 = currently logged disk
1 = drive A:
2 = drive B:
efc.
2 1-8 File name padded with blanks.
3 9-11 File type padded with blanks.
4 12 Current extent. Usually set to 0.
5 1314 Used internally by CP/M.
Should be set to 0,0 by the user
6 15 Number of records in the current extent (byte 12).
7 16-31 Disk allocation map. Maintained by CP/M
Should not be changed by the user.
8 32 Next record to be read or written.
Under version 2.0 this applies to sequential access only
9 3335 Version 2.0 and later only. Random access record number.

Bytes 33-34 contain a 16 bit number in the range of 0 to
65535. Byte 35 must be 0 or an error will result.

Fig. A-2. CP/M format for the disk File Control Block or FCB.

the CP/M operating system image is stored in the first two
tracks (tracks 0 and 1) of the diskette, the actual data
storage area starts with Track 2, Sector 1 (for some rea-
son, tracks are numbered 0-76, while sectors are num-
bered 1-26). This is the beginning of the first allocation
unit which includes the first 8 sectors. The allocation units
are consecutively numbered until the last sector on the disk
(Track 76, Sector 26) has been included in an allocation
unit. There would'then be a total of 243 complete alloca-
tion units on a standard 8-inch diskette (128 bytes per
sector X 26 sectors per track X 75 tracks / 1024 bytes per
allocation unit = 243.75 allocation units). Thus we have
allocation units 1 to 243 since we can’t have a 0.75 allo-
cation unit.

Each time a CP/M file needs more space to write more
records to, a new allocation unit is assigned to it giving the
file 1024 new bytes even though only 128 may actually be
used. For example, if a file has 16 records in it, and we
need to write the 17th record, CP/M will assign a new
allocation unit to the file, since the previous two alloca-
tion units are now filled up. This new allocation unit will
store record 17 up to record 24 of the file even though
only record 17 is currently written. Each extent can have
up to 16 allocation units assigned to it. The number of each
allocation unit assigned to an extent is stored in one of the
bytes in field 7 of the FCB (bytes 16-31), one byte per allo-
cation unit.

78

CP/M keeps a master list in memory of all of the as-
signed allocation units currently assigned to a file and all
of the unused allocation units. Whenever a new allocation
unit is required by a file, CP/M will take the next avail-
able allocation unit, delete it from the unused list and add
it to the FCB of the file, as well as to the assigned allo-
cation unit list in memory. These lists are read into BDOS
from the diskette the first time the diskette is accessed
after a warm system boot. By assigning new allocation
units to files as they get larger, and reclaiming (into the
unused allocation unit list) allocation units as files get
smaller, or are erased altogether, CP/M can dynamically
manage all of the file space on a diskette. And a file’s data
can be spread across the disk in randomly located sectors.

Directory—The final mechanism used by CP/M to keep
track of the files on a diskette is the directory. CP/M
stores the directory information in the beginning of the
data storage area of the diskette (Track 2, Sector 1). The
directory contains an entry for each extent of each file.
Thus, a file with more than one extent will have multiple
directory entries, although when you issue a CCP DIR
command, only the first directory entry for each file is dis-
played. The directory entry is actually a copy of the first
32 bytes of the FCB for that given extent! A quick glance
back at the FCB description will show that the first 32
bytes contain the file name, extent, and allocation unit map
of the extent. In a standard CP/M system, there is space

ports full random access records, whereas CP/M 1.4 and
earlier support a kind of pseudorandom access. We will
therefore consider the two separately.

CP M 1.4 and earlier implement a kind of random ac-
cess using the sequential access system call. As you may
have noticed in the previous discussion, if we specify which
extent and record we want read or written every time we
issue a read or write system call, then we will have, in es-
sence, -random access capability. The restriction to this
which keeps it from being true random access is the fact
that under this scheme, if there are gaps in the records,
the results can be unpredictatle and troublesome. Consider,
for example, what would happen under this method if we
created a new file, opened it, wrote the 1st and 63rd rec-
ords, closed it, reopened it, and attempted to read the 32nd
record. Under CP'M 1.4 and earlier, the result that you
would get back would be anything but the proper response,
which would be that the desired record was not in the file.
However, with this limitation (which is relatively easy to
live with since very few applications would actually write
the 1st and 63rd records with nothing in between) per-
fectly adequate random access reading and writing is
possitle.

CP M 2.0 and later expanded on the random access ca-
pability of the earlier versions to where true random ac-
cess is possitle. Three new system calls, Read Random,
Write Random, and Set Random Record were added. Ran-
dom access using the sequential read/write commands, as
was done under CP/M 1.4 and earlier, is still possible so
that programs written under 1.4 and earlier can be run
under version 2.0 and later.

However, the new Read Random and Write Random sys-
tem calls have two enhancements which make true random
access possible. The first is that records do not have to
be contiguous, i.e., the example above with the 1st and
63rd record being written will be properly handled. The
second enhancement, and by far the most useful, is CP/M’s
ability under 2.0 and later to convert record numbers from
1 to 65536 internally into the proper extent/record desig-
nations. This frees your program from having to convert
say the 175th record in a file to 2nd extent, 47th record,

80

as was required under earlier versions. In order to main-
tain compatibility with the earlier versions of CP/M, 2.0
and later place the random access record number in a
three-byte field added to the tail end of the FCB (see the
FCB layout in Fig. A-2).

The Set Random Record call facilitates the switching
from sequential to random access in “midstream” so to
speak. without losing your place. If, for example, your
program had been merrily reading a file sequentially, and
you suddenly decided to do some random access, this sys-
tem call will set the random access record number (last
three bytes in the 2.0 and later FCB) to the last record
number read or written. (Remember, the read/write se-
quential calls will only update the extent and record bytes
in the FCB, not the new random access record number

bytes.)

Other Disk System Calls

Several other system calls are supported by CP/M
which will greatly facilitate your use of the CP/M file
styucture in certain situations. They are used to initialize
or interrogate certain disk functions.

The most commonly used of these is the Set DMA system
call. This system call will set the disk i/o buffer to the
128 byte block of memory beginning with the address con-
tained in the DE register pair. CP/M uses a default disk
i/o buffer address of 0080H, but any 128-byte block of
memory can be used. The Set DMA call is used whenever
you would like to change the buffer.

The remaining system calls are used mainly by CP/M
to implement the various disk related functions specified
by the CP/M utilities.

Further Information

We have tried to present an overview here of some of the
features of CP/M which are not readily apparent to the
user, such as system calls. This has, however, been just
an overview, and we strongly recommend that you read
the CP/M manuals before you start doing any assembly
language programming using system calls.

N . B o

v -

Appendix B

CP/M Compatible sSoftware

This appendix presents an extensive, but still partial list
of CP/M compatible programs and the companies that sell
them. The list represents a condensed version of a survey
put out by Small Systems Group (Box 5429, Santa Mon-
ica, CA, 90405). The complete survey can be purchased
from Small Systems Group for $1.00 plus a stamped self-
addressed envelope. The list here is divided into five pro-
gram categories: accounting programs, general applica-
tions, industrial programs, utilities, and system programs.
Within each of these five categories are further divisions
to help keep the list clear. You can add to it as you desire.

Under each heading is a name of the program product fol-

Jowed by the address of the program’s vendor. Multiple ad-
dresses are included if one vendor has more than one prod-
uct in the list to simplify your understanding of the com-
panies and what they market. You can write to the com-
pany to gather information (specs, price, terms, ete.). A
simple postcard will do. Note that you read about them in
the CP/M Primer. A careful combing of the magazines:
Byte, Kilobaud, Creative Computing, On Computing, and
Infoworld will provide advertisements of the latest devel-
opments in CP/M software.

ACCOUNTING APPLICATIONS

integrated Accounting
Program Name

Vendor and Address

Accounting Package
Complete Accounting

Moneybelt
Accounts Payable/Receivable

Integrated Business System
General Ledger
General Ledger

General Ledger
General Ledger

Micro Ledger

General Ledger
General Ledger
General Ledger

Ledger Plus
General Ledger

General Ledger
Payroll

Payroll

Payroll

Aaron Associates Inc., Box 1704,

Garden Grove, CA 92640

Micro Byte Computer Store, 2626 Union Avenue,
San Jose, CA 95124

Micro Source, 1425 W. 12th Place, Tempe, AZ 85281

Osborne Associates, Inc., Box 2036,

Berkeley, CA 94702

Serendipity Systems, 2256 Elmira Rd,,

Ithaca, NY 148560

Aaron Associates Inc., Box 1704,
Garden Grove, CA 92640
BAS, 16755 Littlefield Lane, Los Gatos, CA 95030
California Microcomputer, Box 3199,
Chico, CA 95927
CompuMax Associates, 505 Hamilton Avenue,
Palo Alto, CA 94301
Data Train Inc., 840 N.W. 6th Street,
Grants Pass, OR 97526
International Micro Systems, 3077 Merriman Lane
Kansas City, KS 66106 ’
Micro Computer Consultants, Box 255625,
%Fcramento, CA 95826
icro Source, 1425 W. 12th Place, Tem
Personal Software, 592 Weddell Drive, Az 8281
Sunnyvale, CA 94086
Serendipity Systems, 2256 Elmira Rd.,
Ithaca, NY 14860

Aaron Associates Inc., Box 170A,
Garden Grove, CA 92640

California Microcomputer, Box 8199,
Chico, CA 95927

81

Program Name

Vendor and Address

Micro Pers

Payroll

| Payroll

Payroll
Payroll

Payroll (Personnel)

Accounts Payable

| Accounts Payable
Accounts Payable

Accounts Payable
Accounts Payable
Accounts Payable
Accounts Payable

Accounts Payable

Accounts Receivable
Accounts Receivable

Accounts Receivable
Balance Forward A/R

Microree

Accounts Receivable
Balance Forward A/R
Accounts Receivable
Accounts Receivable
Accounts Receivable
Accounts Receivable
Billing

Accounts Receivable
Inventory

Inventory

Microinv

Inventory System
Inventory Control
Backorder Management
Mfr Whisale Inventory
Inventory Management

Retail Inventory

Order Entry

Order Entry System

CompuMax Associates, 505 Hamilton Avenue,
Palo Alto, CA 94'153(;’1t —
Graham Dorian Software . s
211 North Broadway, Wichita, Ksﬁﬂgim —_—
International Micro Systems, 3077 Mer)

Kansas City, KS 661Q6
Micro Data, 5622 Pacific Avenue,

Olympia, WA 98503)
Peisonal Software, 592 Weddell Drive,

Sunnyvale, CA 94086
Serendipity Systems, 225 El
Ithaca, NY 14850

mira Rd.,

e, Los Gatos, CA 95030

ittlefield Lan
i L ey 9742 Humboldt Avenue,

Commercial Computer Inc,,
Minneapolis, MN 55431
Data Train Inc., 840 N.W. 6th Street,
Grants Pass, OR 975626
Micro Byte Computer Store,
San Jose, CA 95124

Micro Data, 5622 Pacific Avenue,
Olympia, WA 98503

Rothenberg Information Systems,
Palo Alto, CA 94306

Serendipity Systems, 226 Elmira Rd.,
Ithaca, NY 14850

2626 Union Avenue,

260 Sheridan Ave.,

Aaron Associates Inc., Box 1704,

Garden Grove, CA 92640

BAS, 16755 Littlefield Lane, Los Gatos, CA 95030
California Microcomputer, Box 3199,

Chico, CA 95927

CompuMax Associates, 506 Hamilton Avenue,
Palo Alto, CA 94301

H. H. Associates, Inc., Box 19504,

Denver, CO 80219

International Micro Systems, 3077 Merriam Lane,
Kansas City, KS 66106

Micro Byte Computer Store, 2626 Union Avenue,
San Jose, CA 95124

Micro Data, 5622 Pacific Avenue,

Olympia, WA 98503

Personal Software, 592 Weddell Drive,
Sunnyvale, CA 94086

Structured Systems Group, 5208 Claremont Ave.,
Oakland, CA 94618

The Software Store, 706 Chippewa Square,
Marquette, MI 49855

Univair International, 10327 Lambert Intl. Airport,
Saint Louis, MO 63145

Aaron Associates Inc., Box 1704,

Garden Grove, CA 92640

CompuMax Associates, 505 Hamilton Avenue,
Palo Alto, CA 94301

H. H. Associates, Inc., Box 19504,

Denver, CO 80219

International Micro Systems, 3077 Merriam Lane,
Kansas City, KS 66106

International Micro Systems, 3077 Merriam Lane,
Kansas City, KS 66106

Micro Computer Consultants, Box 255625,
Sacramento, CA 95825

Personal Software, 592 Weddell Drive,
Sunnyvale, CA 94086

Serendipity Systems, 225 Elmira Rd.,

Ithaca, NY 14850

H. H. Associates, Inc., Box 19504, Denver, CO 80219

82

Program Name

Vendor and Address

cash Disbursements
Cash Disbursements

Cash Disbursements Posting

cash Recelpts
Cash Register

Job Costing
Job Costing

Fixed Assets Accounting
Fixed Assets Accounting

Data Base System

Data Management System

Pearl
Global

Categorical Information

Selector
Midas

Data Management
Text Editor

Zedit

Weed

Wordmaster

Text Editor
Text Editing System

Text Output Formatter
Top

Script 80 Professional
Textwriter

Text Processing System

Word Processor
Idsword

Pro-Type
Word Star
WpDaisy
Electric Pencil
Power Text

The Magic Wand

Aaron Associates Inc., Box 170A,
Garden Grove, CA 92640
International Micro Systems,

; 3077 Merriam Lane,
Kansas City, KS 66106

Graham Dorian Software Systems,
211 North Broadway, Wichita, KS 67202

Graham Dorian Software Systems,
211 North Broadway, Wichita, KS 67202

Data Train Inc., 840 N.W. 6th Street,
Grants Pass, OR 97526

GENERAL APPLICATIONS

Creative Computer Applications,

2218 Glenn Canyon Road, Altadena, CA 91001
Computer Pathways Unlimited,

2151 Davcor Street, S.E., Salem, OR 97302

Global Parameters, 15605 Ocean Avenue,

Brooklyn, NY 11230

H. H. Associates, Inc., Box 19504,

Denver, CO 80219

Micro-Ap, 9807 Davona Drive, San Ramon, CA 94583
Rothenberg Information Systems, 260 Sheridan Ave.,
Palo Alto, CA 94306

Univair International, 10327 Lambert Intl. Airport,
Saint Louis, MO 63145

Computer Design Labs, 342 Columbus Avenue,
Trenton, NJ 08629

Digital Marketing, 2670 Cherry Lane,

Walnut Creek, CA 94596

MicroPro International, 5810 Commerce Blvd.,
Rohnert Park, CA 94928

Software Ingenuity, Box 1964, Eugene, OR 97401
Technical Systems Consultants, Box 2574,

West Lafayette, IN 47906

Computer Design Labs, 842 Columbus Avenue,
Trenton, NJ 08629

J. Vilkaitis, Box 26, High Street Extension,
Thomaston, CT 06787

Organic Software, 1492 Windsor Way,
Livermore, CA 94550

Technical Systems Consultants, Box 2574,
West Lafayette, IN 47906

CW Applications, 1776 E. Jefferson Street,
Rockville, MD 20852

Interactive Microwave Inec., Box 771,

State College, PA 16801

MicroPro International Corp., 1299 4th Street,
San Rafael, CA 94901

InfoSoft Systems Inc., 26 Sylvan Road South,
Westport, CT 06880

Michael Shrayer Software, 1263 Viste Superba Dr.,
Glendale, CA 91205

Personal Software, 592 Weddell Drive,
Sunnyvale, CA 94086

Small Business Applications, 3220 Louisiana St.,
Houston, TX 77006

83

Vendor and Address

Program Name
Letteright

MWP/SEL

Mailing List System
Mail List

Mail Listing
Mailing List Management
Mail Merge

Postmaster

NAD

INDUSTRY APPLICATIONS

Medical
Automated Patient History

Medical Office Building
Medical Management

Legal
Law Office Billing

Dental
Dental Receivables

Construction
House Cost Estimation Package

Contractor Payroll

Property Management
Property Management

Apartment Management
Cash Flow

Membership Billing
Country Club Receivables

Utility Billing
Utility Billing

Golf Club
Golf Handicap

Insurance Agent
Insurance Agent

Lumber Company
Log/Lumber Inventory

Accounting

Master Tax
CPA G/L and Client Statement

Professional
Integrated Professional Office

Professional Client Billing

Structured Systems Group, 5208 Claremont Ave.,

Oakland, CA 94618
The Software Store,
Marquette, MI 49855

706 Chippewa Square,

Aaron Associates Inc.é4}(3)ox 170A,

Garden Grove, CA 92

Commercial Computer Inc., 9742 Humboldt Avenue,
Minneapolis, MN 55431
International Micro Systems,

Kansas City. KS 66106

InfoSoft Systems Inc., 25 Sylvan Road South,
Westport, CT 06880

Lifeboat Associates, 1661 3rd Ave,,

New York, NY 10028
Structured Systems Group, 5208 Claremont Ave.,
Oakland, CA 94618

3077 Merriam Lane,

Cybernetics Inc., 8041 Newman Avenue,
CA 92647

Hunti Beach
upsingion ,nc., Box 19504, Denver, CO 80219

H. H. Associates, I]
Univair International, 10327 Lambert Intl. Airport,

Saint Louis, MO 63145

H. H. Associates, Inc., Box 19504, Denver, CO 80219

MBA Inc., Box 2528, Pasco, WA 99302

Business Information Systems, 7905 L Street,
Omaha, NE 68129

Micro Data, 5622 Pacific Avenue,

Olympia, WA 98503

A-T Enterprises, 221 North Lois,

La Habra, CA 90631
H. H. Associates, Inc., Box 19504, Denver, CO 80219

Realty Software Inc., 2126 Lombard Street,
San Francisco, CA 94123

MBA Inc., Box 2528, Pasco, WA 99302

Micro Data, 5622 Pacific Avenue,
Olympia, WA 98503

Micro Data, 5622 Pacific Avenue,
Olympia, WA 98603

Micro Data, 5622 Pacific Avenue,
Olympia, WA 98503

Micro Data, 5622 Pacific Avenue,
Olympia, WA 98503

CPAids, 1640 Franklin Avenue, Ken
y t, 0
MBA Inc., Box 2528, Pasco, WA 99302 S

Serendipity Systems, 225 Elmi
Ithaca, NY 14850 tmira Rd.,
Serendipity Systems, 225 i
Ithaca, NY 14850 Suitrs B4

84

Program Name Vendor and Address

[Tledical or Dental
Integrated Med Dental Office

Serendipity Systems, 226 Elmira Rd.,
Ithaca, NY 14850
Serendipity Systems, 226 Elmira Rd,,

Medical. Dental Patient Billing
Ithaca, NY 14850

| school Administration
International Micro Systems, 8077 Merriam Lane,

l Student Records and Scheduling

| Engineering

| Control Systems Analysis

Bowling Alley
Bowling Bookeeper

Mathematical Routine
Development Utilities

Floating Point Package

Statistical Package
Statistics

Statpsk

iSAM Package
Kiss
Graphics

Graphic Subroutine Package

Plotting
Plotting

Finance
Finance Calculator

Communication
Download
Mcall

Intelligent Terminal

Screen Editor
Daisy

Forms-2

Form Production
Automated Forms Control

Print Spooler
Despool

Spool

Sort
Super Sort

Multi Key Sort

Kansas City, KS 66106

Compeo, 8706 North Port Washington Rd.,
Milwaukee, WI 58217

Compeo, 8706 North Port Washington Rd.,
Milwaukee, WI 53217

UTILITY APPLICATIONS

Allen Ashley, 395 Sierra Madre Villa,
Pasadena, CA 91107

Southern Systems of Birmingham, Box 3373-A,
Birmingham, AL 35206

Basic Business Software, Box 2032,
Salt Lake City, UT 84110
Northwest Analytical, Box 14430,
Portland, OR 97214

EIDOS Systems Corp., 315 Wilhagan Rd.,
Nashville, TN 37217

Compco, 8705 North Port Washington Rd.,
Milwaukee, WI 53217

Basic Business Software, Box 2032,
Salt Lake City, UT 84110

Basic Business Software, Box 2032,
Salt Lake City, UT 84110

Cybernetics Inc., 8041 Newman Avenue,
Huntington Beach, CA 92647

Micro Call Services, 9655-M Homestead Court,
Laurel, MD 20810

InfoSoft Systems Inc., 25 Sylvan Road South,
Westport, CT 06880

InfoSoft Systems Inc., 25 Sylvan Road South,
Westport, CT 06880

Micro Focus Ltd., 1601 Civie Center Drive,
Santa Clara, CA 95050

H. H. Associates, Inc., Box 19504,
Denver, CO 80219

Digital Research, Box 579, Pacific Grove, CA 93950

InfoSoft Systems Inc., 25 Sylvan Road South,
Westport, CT 06880

MicroPro International, 5810 Commerce Blvd,,
Rohnert Park, CA 94928
Rothenberg Information Systems, 260 Sheridan Ave.,

Palo Alto, CA 94306

85

Program Name

Vendor and Address

Sort

Development Systems

PDS-Program Development
System
I/SAL

Z-80 Development Package
Low Precision Basic
Business Basic

UCSD Pascal
Basic Compiler

ALGOL 60 Compiler (Z-80)
CIS COBOL Compact
Basic Compiler

COBOL-80

CBASIC

Tarbell Basic

APL Interpreter

Assembler
XMAC 6800

MAC
8048 Cross Assembler

RLSAM

A-Natural Assembler

Debugging Monitor
DEBUG

DEB

SID

Utility Program
780/8080 Disassembler

Transfer
DISLOG

Expander
IBM-CP/M File Conversion

TTY Model 40 Printer Interface

DISK Utility
PRGM/MAP
Librarian
REL

Loader
Linker

LINKA

The Software Store, 706 Chippewa Square,
Marquette, MI 49856

SYSTEMS PROGRAMS

Allen Ashley, 395 Sierra Madre Villa,

Pasadena, CA 91107

InfoSoft Systems Inc., 26 Sylvan Road South,
Westport, CT 06880

Lifeboat Associates, 1651 3rd Ave.,

New York, NY 10028

Computer Design Labs., 342 Columbus Avenue,
Trenton, NJ 08629

Computer Design Labs, 342 Columbus Avenue,
Trenton, NJ 08629

Digimedics, 501 Cedar Street, Santa Cruz, CA 95060
Interactive Microwave Inc., Box 771,

State College, PA 16801

Lifeboat Associates, 1651 3rd Ave.,

New York, NY 10028

Micro Focus Ltd., 1601 Civic Center Drive,

Santa Clara, CA 95050

Microsoft, 10800 NE Eighth, Bellevue, WA 98004
Microsoft, 10800 NE Eighth, Bellevue, WA 98004
Software Systems, Box 145, Sierra Madre, CA 91024
Tarbell Electronics, 950 Dovlen Place,

Carson, CA 90746

Vanguard Systems Corp., 6712 San Pedro Avenue,
San Antonio, TX 78216

Allen Ashley, 395 Sierra Madre Villa,

Pasadena, CA 91107

Digital Research, Box 579, Pacific Grove, CA 93950
Software Ingenuity, Box 1964, Eugene, OR 97401

InfoSoft Systems Inc., 25 Sylvan Road South,
Westport, CT 06880

Whitesmiths Ltd., 127 E. 59th Street,

New York, NY 10022

Computer Design Labs, 342 Columbus Avenue,
Trenton, NJ 08629

InfoSoft Systems Inc., 256 Sylvan Road South,
Westport, CT 06880

Digital Research, Box 579, Pacific Grove, CA 93950

Affordable Computers, 16508 Hawthorne Blvd,,
Lawndale, CA 90260

Computer Services, 30 Hwy., 321, NW,
Hickory, NC 28601

Lifeboat Associates, 1651 3rd Ave.,

New York, NY 10028

MICAH, P.0. Box 22212, San Francisco, CA 94122
Smith Computer Systems, 530 Pierce Avenue,
Dyer, IN 46311

Smith Computer Systems, 530 Pierce Avenue,
Dyer, IN 46311

The Software Store, 706 Chippewa Square,
Marquette, MI 49855

The Software Store, 706 Chippewa Square,
Marquette, MI 49855

Whitesmiths Ltd., 127 E. 59th Street,

New York, NY 10022

Whitesmiths Ltd., 127 E. 59th Street,

New York, NY 10022

Computer Design Labs, 342 Columbus A
ITxi;ersﬂ;ofn.SI\TJ 08629 LGRS
nfoSoft Systems Ine., 25 Sylvan R

Westport, CT 06880 " oad South,

Courtesy Small Systems Group

P

e —

CP/M Reference

RESIDENT COMMANDS

DIR
DIR ufn
DIR afn

ERA ufn
ERA afn

REN ufn=ufn,..,ufn=ufn

SAVE n ufn

TYPE ufn,ufn,..,ufn

Type a directory of the current
disk.

Check for a file on the current
disk.

Check for one or more files on the
current disk.

Erase a file from the current disk.
Erase one or more files from the
current disk.

Rename one or more files. New
filename is left of equal sign and
old filename is to the right.

Save n 256 byte blocks of memory
in a file on the current disk.

Type one or more files to the con-

sole.

Note: An optional disk drive reference can be inserted be-
fore any ufn (d:ufn) or afn (d:afn) if the file or
files desired are not on the current disk. In the
above examples, ufn means unambiguous filename
and afn means ambiguous filename. The “?” is the
single character wildcard, and “*” is the “fill right
with “?’s” wildeard. Filenames may have up to
eight characters in them, and file types may have

up to three.

UTILITIES

STAT Check Status

STAT

STAT x:

STAT ufn
STAT afn
:;:; x=R/0
STAT dev:
STAT 1d:—pg:
STar dsk:

|

Returns the amount of unused space
on the currently logged disk.
Returns the amount of unused space
on drive x:.

Returns the size in bytes, records,
and extents of file ufn.

Returns the size in bytes, records,
and extents of the files that match
afn.

Sets drive x: as read only.

Returns the possible logical-physical
assignments for the four i/o devices.
Returns the current logical-physical
assignments for the four i/o devices.
Assigns logical device Id: as physical
device pd:.

Returns the current disks logged on
to the system.

87

Appendix C

PIP Transfer Files

PIP y:=x:ufn
PIP y:=x:afn
PIP y:ufn1=x:ufn2

Transfer a file, ufn from one drive x:
to another drive y:.

Transfer one or more files that match
the afn from drive x: to drive y:.
Transfer a file, ufn2 from drive x: to
drive y: and rename it ufnl.

MOVCPM Relocate System Image

MOVCPM*

Relocates the system image size to utilize all

available memory.

MOVCPMn*

Relocates the system image to utilize nK

bytes of memory.

Note:

The “*” instructs MOVCPM to leave
the new system image in memory (for
subsequent use by SYSMOV). If the
“*» js left out, the system image is
moved to the disk that was last booted
off of.

SYSGEN Generate a CP/M System
SYSGEN Initiates the SYSGEN dialog.

ED Edit a File

ED ufn Load ED into memory and open the file specified

by the ufn.
Commands:
nA
E
nF<Text>
H
|
nM<Comd Str>
nN<Text>
Q
(o)
Rufn

nS<OT> ZINT>

U

nwW

Append n lines of text.

End edit.

Find <Text> n times.

Save and reedit file.

Insert text.

Repeat the command string n times.
Search for the nth occurrence of
<Text> with Appends and Writes
where necessary.

Abandon edited text and restart edit-
ing session.

Abandon edited text and restore
original source file then exit edit.
Insert file ufn from library.

Search for old text <OT> and re-
place with new text <NT> n
times.*

Convert all input from lower case to
upper case.

Write n lines of text.

Move CP to beginning or end of buf-
er.

Move CP +/— n characters.

Delete n characters ahead of or be-
hind CP.

Kill n lines ahead of or behind CP.
Move CP +/—n lines in the buffer.
Type the previous or next n lines in
the buffer,

Move forward or backward n lines in
the buffer and then type that line.
*Note: Z = Control Z.

ASM Assemble a File

ASM filename.abc

Assemble FILENAME.ASN with xyz
as optional parameters as follows:

a: disk drive of source file.

b: disk drive of .HEX file or Z if
.HEX file to be suppressed.

¢: disk drive of ,PRN file or X if list-
ing to be sent to console or Z if .PRN
file to be suppressed.

Constants:

B = binary D = decimal

O or Q@ = octal H = hexadecimal

Operators:

X+y Unsigned arithmetic sum of x and y.

X =y Unsigned arithmetic difference of x
and y.

+y Unary plus.

-y Unary minus.

x*y Unsigned multiplication of x and y.

x/y Unsigned division of x by y.

x MOD y Remainder after x / y.

NOT y Logical inverse of y.

x AND y Bit-by-bit logical AND of x and y.

xORy Bit-by-bit logical OR of x and y.

x XOR y Bit-by-bit logical EXCLUSIVE OR
of x and y.

x SHL y Shift x left y bits with zero fill.

x SHR y

Shift x right y bits with zero fill.

Assembler Directives:

ORG

Define starting address of the program or data
section,

END
EQU
SET
IF
ENDIF
DB
DW
DS

End program gssembly.
Define a numeric constant.
Set a numeric value.

Begin conditional assembly.
End conditional assembly.
Define data byte.

Define data word.

Define data storage area.

DDT Debug a File

Load DDT into memory. Optional filename i

DDT ufn loaded into the default FCB (File Contrg|

Block) for future —R (Read) commangs,

Commands:

Aa Assemble code starting at _address a.

Ds,f Display memory from optional starting address
s to optional ending address f,

Fstd Fill memory from starting address s through
ending address f with hexadecimal valye ¢

G,a Begin program execution, independent ¢f DDT
with optional breakpoint at address a, ¥

lafn Insert filename into the default FCB for future
—R commands.

Ls,f List a program from optional starting address
s to optional ending address f.

Mstd Move a block of data starting with address g
and ending with address f to a new memory
block beginning with address d.

R Read the file whose filename is in the defay)
FCB into memory.

Sa Set the byte contained in memory location a to
a new value.

Tn Trace n program steps.

Un Untrace n program steps.

Xr Examine and modify CPU register r.

LOAD Convert Hex to Com File
LOAD ufn Load reads a .HEX file created with ASM and

creates a .COM file,

A

Accepted extensions for CP/M, 26-27
Access, random, 79-80
Advanced editing features, 50-51
Afn, 26
Allocation

of dynamic files, 27

units, 77
Ambiguous filenames, 26
APPEND command, 46
Application programs, 19-20
Arithmetic and logical operators, 58-b9
.ASM, 27
ASM.COM, 31
ASM, the CP/M assembler, 53
Assemble command, 69
Assembled PRN print listing, 61
Assembler

directives, 59-61

purpose of, 53-56
Assembly

code, 54

language, 18
Available CP/M programs, 14

.BAK, 27
.BAS, 27
Basic
?diting commands, 49-50
i/o system calls, 76-77
BAT:, 42

BDOS (basic disk operating system), 25-26

BIOS (basic input/output system), 26
Blank diskette, formatting, 34-35
Boot
cold, 23
warm, 23
gootmg a CP/M system, 21-23
Bootstrap loader, 21
pootstrapping CP/M into RAM, 23
uffered input/output, 76-77

Iindex

CCP SAVE command, 74
Central processing unit, 15
Changing the i/o status byte, ki
Character pointer, 48
Clock speed, 54
CMUG, 32
.COB, 27
Cold boot, 23
Command (s)

APPEND, 46

Assemble, 69

DDT, 66

Display, 66-68

eXamine, 67

execution, repetitive, 51

Fill, 68

for terminating Edit, 48-49

List, 69

Move, 68

resident, 27-30

Set, 67

Trace, 70

transient, 30-32

Untrace, 70-71

WRITE, 46
Comment field, 57
Computer, main components of, 15
Console command processor (CCP), 25
CONSOLE

access, direct, 77

device, 17
Constants

numeric, 130

string, 58
CONTROL-S, 29, 41
Copying a CP/M system, 35-36
CP/M

files, 26-27

structure, 77-79

format for FCB, 78

future of, 14

history of, 10-13

memory usage, 23-2b

CP/M—eont
resident Commands, 28
8ystem, booting, 21.93
. ;/ylzf:tr,nli;nage, modifying, 36-37
CPU, 15
reati;g, deleting, ang renaming files, 79

’

File(s) —cont

creating, deleting an Fenaming, 75
definition, 26

loading, 65-66

maintenance system calls, 74
opening and closing, 79

read and write systern cally, 7 4,
searching for, 79

structure, CP/M, 77-79

CRT:, ¢2 type, 26-27
Filename, 26
D ambiguous, 26
unambiguous, 26
.DAT, 27 Files-only diskette, 35
DB, DW, ang DS:, 60 Fill command, 68
DDT, 17 Find, 50
commands, 5 Floppy disk, introduction of, 12
nucleus module, 63 .FOR, 27
parts of, 63-65 FORMAT, 34, 35
sample session, 71.73 Format of assembly language Prograrm, 34 s
submodes, 65 Formatting a blank diskette, 24.25
DDT.COM, 31 Future of CP/M, 14
Development of CP/M, 12
DIR, 28.-29
Direct CONSOLE access, 77 G
irectives, assembler, 59-61
Directory, 78 Generalized system call, 75-76
Diskette
ﬁles-only, 36
storing information on, 33-35 H
system, 35
Disk
. H, 42
1/0 system calls, 77-80 f
-related requests and funections, 40 g;f;::v:; g;ﬁ?gﬁ_,l;&w

Display command, 66-68

Double density, 33

Double-sided diskette, 34 I
Driver subroutines, 41

Du hysical i/o devi 42
mmy physical i/o evices, | SO d, 66

DUMP.COM, 31
Dynamic file allocation, 27 IF, a‘ncl' ENDIF:, 60
Initiating ED, 46
Input/output, 15-16
E buffered, 76-77
E 4 devices, typical, 15-16
Ei)4 o status byte, changing, 77
oy ’
error conditions, 51-52 3}';:’; c;(]iljl'i
initiating, 46 disk '77 80
operation, 46-49 I g 2
ED.COM. 31 nserting text, 48
Editing ’ Instruction set, 15
commands, basic, 49-50 INT, 27 .
features, advanced, §0-51 Internal register set for 8080, 54
Introduction of floppy digk, 12

Edit, terminating, 48-49
8080 architecture, 54

END:, 59
EQU:, 59 K
ERA, 28, 29-30
EXamine command, 67 Kansas City standard, 12
Examples of valid numeric constants, 58
Extents, 77
L
e L

abels, 54
FCB, 66 Language
File(s) assembly, 18

CP/M, 26-27 high level, 18 19

machine, 17.1g

r

’ Length of file, 27

|

ries, source, 50-61

1 a
Libre e ated, 45

Line orien
LIST
command; 69
device, 17
Loading & file, 65-66
Logical and physical i/o, 16-17
LPT:, 42
LST, 27

MAC, 13,27
Machine language, 17-18
Main components of computer, 15
Memory, 16

layout, CP/M, 25

usage and organization, 23-26
Menu, 20
Microcomputer, what it is, 11
Mnemonices, 53
Modifying a CP/M system image, 36-37
MOVCPM, 25, 35, 37
MOVCPM.COM, 31
Move command, 68

MP/M, 14
N
Numerica constants, 57
examples of, 58
o

0, 42
Opening and closing files, 79
Operand field, 56
Operating system
primary functions of, 9-10
what it is, 8-10
Operation
field, 57
of ED, 46-49
Operators, arithmetic and logical, 58-59
ORG:, 59
Overview
PIP, 42-43
STAT, 40
.OVR, 27

Parts of DDT, 63-65
PIP, 39
features, 43-44
overview, 42-43
PIP.COM, 31
Pomter, character, 48
POKE, 54
POP and PUSH instructions, 56

Popularity of CP/M, 13-14

91

Ports, 16
Primary functions of an operating system, 9-10
.PRN, 27
Program (s)
application, 19-20
assembly and listing, 68-69
display and modification, 66-69
execution, tracing, 69-71
format, 56-58
saving it, 74
Prompt, 27
Pseudo operations, 59
PTP:, 42
PTR:, 42
PUNCH device, 17
PUSH, 55

Q, 42

RAM, 15

Random access, 79-80

R command, 66

READER device, 17

Read/write operation, sequential, 79
Records, 77

.REL, 27

REN, 28, 30

Repetitive command execution, b1
Resident commands, 27-30

R/O command, 41

ROM, 15

Rubout key, 48

Sample

session, 61

DDT, 71-73

timing loop, 55
SAVE, 28, 30
Saving your program, 74
Screen oriented, 45
Searching for a file, 79
Sector, 33
Sequential read/write operation, 79
SET:, 60
Set

command, 67

DMA system call, 80
SID, 13
Single density, 33
Software hierarchy, 18
Source libraries, 50-51
Special uses of i/o devices and STAT, 41-42
STAT, 39

and disk files, 40-41

overview, 40
STAT.COM, 31
Storing information on a diskette, 83-35
String, 60

constants, 58

.SUB, 27
.SYM, 27
Symbols, 68
SYSGEN, 35, 36
SYSGEN.COM, 31
SYSMOV, 35
System
calls
file maintenance, 79
file read and write, 79-80
generalized, 75-76
diskette, 35
image, 35

Teletype Model 33, 12
Terminating on Edit, 48-49
TEX, 13
Text
inserting, 48
search and alteration, 50
Trace command, 70
Tracing program execution, 69-71
Tracks, 33
Transient
commands, 30-32
program area (TPA), 25
Trying out new CP/M diskettes, 37
TTY:, 42
TYPE, 28, 29
Typical
application program, 19
input/output devices, 15-16
microcomputer configuration, 16

UC1:, 42

Ufn, 26

UL1:, 42

Unambiguous filenames, 26
Units, allocation, 77
Untrace command, 70-71
Upper and lower case, 51
UP1:, 42

UP2:, 42

URI1:, 42

UR2:, 42

Valid
CP/M filenames, 26
examples of string constants, 58

Variations in track/sector arrangement, 33-34

w

Warm boot, 23

Wild cards, 26, 29

WRITE command, 46

What an operating system is, 8-10
What is a microcomputer, 11

Why CP/M is so popular, 13-14

XRF, 27

LA

Q»/CUT HERE

FOLD HERE

CP/M Reference Card

by
Stephen M. Murtha and Mitchell Waite

RESIDENT COMMANDS

DIR Type a directory of the current
disk.

DIR ufn Check for a file on the current
disk.

DIR afn Check for one or more files on the
current disk.

ERA ufn Erase a file from the current disk.

ERA afn Erase one or more files from the

current disk.

Rename one or more files. New
filename is left of equal sign and
old filename is to the right.

Save n 256 byte blocks of memory
in a file on the current disk.

Type one or more files to the con-
sole.

REN ufn=ufn,..,ufn=ufn

SAVE n ufn

TYPE ufn,ufn,..,ufn

Note: An optional disk drive reference can be inserted be-
fore any ufn (d:ufn) or afn (d:afn) if the file or
files desired are not on the current disk. In the
above examples, ufn means unambiguous filename
and afn means ambiguous filename. The “?” is the
single character wildcard, and “*” is the ‘“fill right
with “?’s” wildeard. Filenames may have up to
eight characters in them, and file types may have
up to three.

UTILITIES

STAT Check Status

STAT Returns the amount of unused space
on the currently logged disk.

STAT x: Returns the amount of unused space
on drive x:.

STAT ufn Returns the size in bytes, records,
and extents of file ufn.

STAT afn Returns the size in bytes, records,
and extents of the files that match
afn.

STAT x:=R/0O Sets drive x: as read only.

STAT val; Returns the possible logical-physical
assignments for the four i/o devices.

STAT dev: Returns the current logical-physical

assignments for the four i/0 devices.

STAT Id:=pd:
STAT dsk:

PIP Transfer File
PIP y:=x:ufn
PIP y:=x:afn

PIP y:ufn1=x:ufn2

Assigns logical device 1d: as physical
device pd:.

Returns the current disks logged on
to the system.

Transfer a file, ufn from one drive x:
to another drive y:.

Transfer one or more files that match
the afn from drive x: to drive y:.
Transfer a file, ufn2 from drive x: to
drive y: and rename it ufni.

MOVCPM Relocate System Image

MOvCPM*

availab
MOVCPMn*

Relocates the system image size to utilize all

le memory.

Relocates the system image to utilize nK

bytes of memory.

Note:

SYSGEN Genera

The “*” instructs MOVCPM to leave
the new system image in memory (for
subsequent use by SYSMOV). If the
“*7 jg left out, the system image is
moved to the disk that was last booted
off of.

te a CP/M System

SYSGEN Initiates the SYSGEN dialog.

ED Edit a File

ED ufn Load ED into memory and open the file specified

by the ufn.
Commands:
nA
E
nF<Text>
H

|

nM<Comd Str>
nN<Text>

Q

(o]

Rufn

nSKOT> ZLINT>
u

nwW

Append n lines of text.

End edit.

Find <Text> n times.

Save and reedit file.

Insert text.

Repeat the command string n times.
Search for the nth occurrence of
<Text> with Appends and Writes
where necessary.

Abandon edited text and restart edit-
ing session.

Abandon edited text and restore
original source file then exit edit.
Insert file ufn from library.

Search for old text <OT> and re-
place with new text <NT> n
times.*

Convert all input from lower case to
upper case.

Write n lines of text.

+/—B

+/—nC
+/—nD

4/ —nK
+/—nL
+/—nT

+/—n

Move CP to beginning or end of buf-
fer.

Move CP 4/— n characters,

Delete n characters ahead of or be-
hind CP.

Kill n lines ahead of or behind CP.
Move CP +/—n lines in the buffer.
Type the previous or next n lines in
the buffer.

Move forward or backward n lines in
the buffer and then type that line.
*Note: Z = Control Z.

ASM Assemble a File

ASM filename.abc

Constants:

B = binary
O or Q = octal

Operators:

Assemble FILENAME.ASN with xyz
as optional parameters as follows:

a: disk drive of source file.

b: disk drive of .HEX file or Z if

.HEX file to be suppressed.

c: disk drive of .PRN file or X if list-
ing to be sent to console or Z if .PRN
file to be suppressed.

decimal

D =
= hexadecimal

H

Unsigned arithmetic sum of x and y.
Unsigned arithmetic difference of x
and y.

Unary plus.

Unary minus.

Unsigned multiplication of x and y.

Unsigned division of x by y.
Remainder after x / y.

Logical inverse of y.

Bit-by-bit logical AND of x and y.
Bit-by-bit logical OR of x and y.
Bit-by-bit logical EXCLUSIVE OR
of x and y.

Shift x left y bits with zero fill.

Shift x right y bits with zero fill.

Assembler Directives:

ORG Define starting address of the program or data
section.

END End program assembly.

EQU Define a numeric constant.

SET Set a numeric value.

IF Begin conditional assembly.

ENDIF End conditional assembly.

DB Define data byte.

bw Define data word.

DS Define data storage area.

DDT Debug a File

DDT ufn

Load DDT into memory. Optional filename is
loaded into the default FCB (File Control
Block) for future —R (Read) commands.

Commands:

Aa
Ds,f

Fs.fd
Ga
lafn
Ls.f

Ms,fd

R
Sa
Tn

Un
Xr

Assemble code starting at address a.

Display memory from optional starting address
s to optional ending address f.

Fill memory from starting address s through
ending address f with hexadecimal value d.
Begin program execution, independent of DDT,
with optional breakpoint at address a.

Insert filename into the default FCB for future
—R commands.

List a program from optional starting address
s to optional ending address f.

Move a block of data starting with address s
and ending with address f to a new memory
block beginning with address d.

Read the file whose filename is in the default
FCB into memory.

Set the byte contained in memory location a to
a new value.

Trace n program steps.

Untrace n program steps.

Examine and modify CPU register r.

LOAD Convert Hex to Com File

LOAD ufn

Load reads a .HEX file created with ASM and
creates a .COM file.

Notes

Notes

62020

)

DIGITAL RESEARCH OPERATING SYSTEM
END USER LICENSE AGREEMENT

Use and possession of this software package is governed by the following terms:

1. DEFINITIONS — These definitions shall govern:

A. “DRI” means DIGITAL RESEARCH INC., PO. Box 579, Pa-
cific Grove, California 93950, the author and owner of the
copyright on this computer program.

B. “CUSTOMER” means the individual purchaser and the com-

pany CUSTOMER works for, if the company paid for this .

software.

C. “COMPUTER" is the single computer on which you use this
program. Multiple CPU systems may require supplementary li-
censes.

D. “SOFTWARE" is the set of computer programs in this pack-
age, regardless of the form in which CUSTOMER may subse-
quently use it, and regardless of any modification which
CUSTOMER may make to it.

E. “LICENSE™ means this Agreement and the rights and obliga-
tions which it creates under the United States Copyright Law
and California laws.

2. LICENSE

DRI grants CUSTOMER the right to use this serialized copy of
the SOFTWARE on a single COMPUTER at a single location so
long as CUSTOMER complies with the terms of the LICENSE.
and either destroys or returns the SOFTWARE when CUS-
TOMER no longer has this right. DRI shall have the right to ter-
minate this LICENSE if CUSTOMER violates any of its
provisions. CUSTOMER owns the diskette(s) purchased, but un-
der the Copyright Law DRI continues to own the SOFTWARE
recorded on it. CUSTOMER agrees to make no more than five
(5) copies of the SOFTWARE for backup purposes and to place a
label on the outside of each backup diskette showing the serial
number, program name, version number and the DRI copyright
and trademark notices in the same form as the original copy.
LCUSTOMER agrees to pay for licenses for additional user copies
of the SOFTWARE if CUSTOMER intends to or does use it on
more than one COMPUTER. If the COMPUTER on which
CUSTOMER uses the SOFTWARE is a multi-user system, then
the LICENSE covers all users on that single system, without
further license payments, if the SOFTWARE was registered for
that computer.

3. TRANSFER OR REPRODUCTION
CUSTOMER understands that unauthorized reproduction of co-
pies of the SOFTWARE and/or unauthorized transfer of any
copy may be a serious crime, as well as subjecting CUSTOMER
to damages and attorney fees. CUSTOMER may not transfer any
copy of the SOFTWARE to another person unless CUSTOMER
transfers all copies, including the original, and advises DRI of the
name and address of that person, who must sign a copy of the
registration card, pay the then current transfer fee, and agree to
the terms of this LICENSE in order to use the SOFTWARE. DRI
will provide additional copies of the card and LICENSE upon re-
quest. DRI has the right to terminate the LICENSE, to trace se-
rial numbers, and to take legal action if these conditions are

violated.

4. ADAPTATIONS AND MODIFICATIONS

CUSTOMER owns any adaptations or modifications which
CUSTOMER may make to this SOFTWARE, but in the event
the LICENSE is terminated CUSTOMER may not use any part
of the SOFTWARE provided by DRI even if CUSTOMER has
modified it. CUSTOMER agrees to take reasonable steps to pro-
tect our SOFTWARE from theft or use contrary to this LI-
CENSE.

5

o

-

. LIMITED WARRANTY

The only warranty DRI makes is that the diskette(s) on which the
SOFTWARE is recorded will be replaced without charge, if DRI
in good faith determines that it was defective and not subject to
misuse, and if returned to DRI or the dealer from whom it was
purchased, with a copy of your registration card or other satisfac-
tory proof of date of purchase, within ten days of purchase. DRI
will do its best to notify CUSTOMER of any significant correc-
tions or errors in the SOFTWARE which DRI discovers for one
(1) year after CUSTOMER purchase, IF CUSTOMER HAS
SENT IN THE REGISTRATION CARD. DRI reserves the right
to change the specifications and operating characteristics of the
SOFTWARE it produces, over a period of time.

DISCLAIMER OF WARRANTY

NEITHER DRI NOR EPSON AMERICA, INC. MAKES ANY
OTHER WARRANTIES, EITHER EXPRESS OR IMPLIED,
AND NEITHER SHALL BE LIABLE FOR ANY IMPLIED
WARRANTIES OF MERCHANTABILITY OR FITNESS FOR
A PARTICULAR PURPOSE NOR FOR INDIRECT, SPECIAL
OR CONSEQUENTIAL DAMAGES SUCH AS LOSS OF
PROFITS OR INABILITY TO USE THE SOFTWARE. SOME
STATES MAY NOT ALLOW THIS DISCLAIMER SO THIS
LANGUAGE MAY NOT APPLY TO CUSTOMER. IN SUCH
CASE, ANY LIABILITY SHALL BE LIMITED TO REFUND
OF THE DRI LIST PRICE. CUSTOMER MAY HAVE OTHER
RIGHTS WHICH VARY FROM STATE TO STATE. CUS-
TOMER agrees that this product is not intended as “Consumer
Goods" under state or federal warranty laws.

MISCELLANEOUS

This 1s the only agreement between CUSTOMER and DRI or
Epson America, Inc. with respect to the SOFTWARE and it can-
not and shall not be modified by purchase orders, advertising or
other representations of anyone, unless a written amendment has
been signed by an officer of DRI or Epson America, Inc. When
CUSTOMER opens the SOFTWARE package or uses the SOFT-
WARE, this act shall be considered as mutual agreement to the
terms of this LICENSE. This LICENSE shall be governed by Ca-
liformia law, except as to matters which are covered by Federal
laws, and is deemed entered into at Pacific Grove, CA. by all par-
ties.

NOTICE TO USER — PLEASE READ THIS NOTICE CARE-

YOU HAVE READ THE END USER LICENSE AGREE-
MENT.

Our End User License Agreement 1s displayed on this package,
so you can read it before opening it. If you open the package and
use the materials, DIGITAL RESEARCH will assume you have
agreed to be bound by this standard agreement. If you do NOT
accept the terms of this License, you must return the package
UNOPENED to the seller from whom you purchased it, who
will refund your money. When you open the package, you need
to sign and return the Registration Card in order to become a
registered user, and thereafter to receive a number of substantial
benefits, including support and notice of updated materials
DIGITAL RESEARCH does not support unregistered users. A

DIGITAL RESEARCH

SAVE THIS LICENSE FOR FUTURE REFERENCE

SCopyright 1963, Digital Research, inc

— —

-

