
PS 300 DOCUMENT SET

VOLUME 2a

GRAPHICS PROGRAMMING

The contents of this volume are not to be reproduced or
copied in whole or in part without the prior written
permission of Evans &Sutherland.

Many concepts in this volume are proprietary to Evans &
Sutherland, and are protected as trade secrets or covered by
U.S. and foreign patents or patents pending.

Evans & Sutherland assumes no responsibility for errors or
inaccuracies in this document. It contains the most complete
and accurate information available at the time of
publication, and is subject to change without notice.

PSI, PS2, MPS, and PS 300 are trademarks of the Evans &
Sutherland Computer Corporation.

Copyright o 1984
EVANS &SUTHERLAND COMPUTER CORPORATION

P.O. Box 8700, 580 Arapeen Drive
Salt Lake City, Utah 84121

VOLUVE 2

GRAPHICS PROGRAVVI\G

Volumes 2A and 2B consist primarily of a series of tutorials which teach PS 300
programming. Both volumes are designed to instruct programmers of various levels of
expertise. Those with little computer graphics experience will want to read carefully
through each module and do each exercise.

Each tutorial module begins with an introduction and ends with a summary. Those with
some computer graphics experience may find it sufficient to read these and supplement
them with the reference material in Volume 3. Though sophisticated users may want to
rely primarily on this reference material, they are encouraged to read this volume as
well to become familiar with the approach to graphics programming taken in the
document set.

Every PS 300 programmer should read the following sections, which begin Volume 2A:

HANDS—ON EXPERIENCE

This brief section steps you through a first encounter with the PS 300. Even with
no prior graphics experience, you can quickly learn to take advantage of the
PS 300's capabilities.

GRAPI~ICS PRINCIPLES -- HIGH PERFORMANCE PS 300 DISTRIBUTED GRAP~IICS

This is the foundation of Volume 2. It presents the concepts of interactive
graphics--how to construct models in a coordinate system--and illustrates how
PS 300 programming puts these concepts into effect.

TUTORIAL DEMONSTRATION PACKAGE

The tutorial demonstration package consists of programs which illustrate many
of the graphics principles detailed in the tutorial modules. This set of software
is distributed on magnetic tape. In addition to these programs, the tape contains
2 group of primitives which are required for many of the exercises in the tutorial
modules. Before reading the tutorials, be sure to load the demonstration
package.

THE TUTORIAI, MODULI~:S

The tutorial modules in Volumes 2A and 2B contain an in-depth discussion of
PS 300 programming. They provide you with experience in creating and
manipulating an object on the screen using PS 300 commands. After reading
these modules initially, you may want to use Volumes 2A and 2B in conjunction
with Volume 3 as a reference source to program your own applications.

Specifically, the tutorial modules in Volume ZA are prerequisite to reading
Volume 2B. They should be read in the order in which they are arranged.
Volume 2B contains more specialized material based on the fundamental
principles taught in 2A. The modules in 2B can be read in any order desired.

Each tutorial consists of:

- A list of the demonstratable skills you should be able to perform on the PS 300
after reading the module.

- Any prerequisite reading you should do before reading that module.

- An introduction which is a functional overview of the contents.

- A detailed explanation of the programming concepts outlined in each
objective, including examples and practice on the PS 300. (A horizontal line
separates each practice from a feedback section.)

- A detailed summary of the module, including essential details about
fundamental concepts.

MISCELLANEOUS

Sample programs have been provided at the end of Volume 2B. Also included is a
glossary of terms, and an appendix of general user information.

NOTE

Volume 2 contains no user information that is specific to
the PS 320. Information specific to the PS 320 is
contained in Appendix A of Volume 5.

HA\DS-0\ EXPERIE\CE

INTRODUCTION TO PS 300 GRAPHICS

CONTENTS

STRATEGY 1

For Systems With allon—IBM Host 1
For Systems With an IBM Host 2
For Systems With a CSM Display 2

DISPLAYING A SQUARE 2

The Display List 4
Coordinate Values 4
Blanking the Screen 5

DISPLAYING A DIAMOND 5

DISPLAYING A STAR 6

TWO MORE VERSIONS OF STAR 7

UPDATING VALUES, CONNECTING AN INPUT DEVICE 9

ANOTHER WAY TO CLEAR THE SCREEN 10

CONNECTING A DI,4L TO SPINSTAR 10

CONCLUSION 12

HANDS—ON EXPERIENCE — 1

In this module you will begin programming the PS 300 to display a few simple objects.
Unlike the demonstration programs you have already worked with, where a
pre—programmed object was displayed and you were able to manipulate it, here you will
actually create the object before you interact with it. Everything you will be doing in
this module will be done locally on the PS 300, without any help from your host
computer.

STRATEGY

First you will build and display a square on the PS 300 screen. Next, you will
make a rotated version of that same square to display as a diamond shape. Then,
you will link these two shapes together for display as one object, an
eight—pointed star. Last, you will make two slightly modified versions of the
star and manipulate them.

First, boot the PS 300. This is described in detail in the User Operation and
Communication Guide in Volume 1. Briefly, here is what you need to do.

• Put the PS 300 Graphics Firmware Diskette in the disk drive.

• Boot the system by turning on the power.

For Systems With dNon-IBM Host

Once the system is booted, hold down the CONTROL key and press the LINE
LOCAL key. Then press the RETURN key to enter a carriage return (<CR>).
You will see this prompt

~~

which indicates the PS 300 is now in command mode. It will accept any
instructions you give it and execute them locally. (Command mode and other
modes of operation are described in the User Operation and Communication
Guide in i/olume l.)

2 —HANDS—ON EXPERIENCE

For Systems With an IBM Host

Once the system is booted, hold down the ALT key and press the LOCAL key.
This prompt will appear:

~~

This indicates the PS 300 is in Command mode and will accept any command you
give it. When your host is an IBM, remember to enter a carriage return <CR> on
the PS 300 keyboard (instead of the ENTER key) when you are working in
command mode. The ENTER key does not work in command mode. (Command
mode and other modes of operation are described in the User Operation and
Communication Guide in Volume l.)

For Systems With a CSM Display

Check with your system manager to be sure the CSM's line —drawing speed is set
correctly. If it is not, displayed objects will be distorted. To set the
line—drawing speed enter

SEND TRUE TO < 1 > CSM 1;

DISPLAYING A SQUARE

Before the PS 300 can display anything, it needs the coordinate points of the
object you want to build--the square. Any wire—frame object you define must be
specified as a collection of vectors, coordinate points and lines. The VECTOR
LIST command does this. Enter

~ ~ Square := VECTOR_LIST .5,.5 .5,—.5 —.5,—.5 —.5,.5 .5,.5; < C R >

HANDS-ON EXPERIENCE - 3

Enter this command exactly as you see it here. Pay special attention to all
punctuation and the carriage return, but do not worry about capitalization (the
PS 300 accepts either uppercase or lowercase letters). The "~ ~" prompt is
shown here only because it appears on the screen when you enter commands. It
is not something you have to enter.

If the command is accepted, another ~a ~a prompt will appear on the next line, so
this is what you should see on your screen.

~ ~ Square := 1/ECTOR_LIST .5,.5 .5,-.5 -.5,-.5 -.5,.5 .5,.5; < CR >
~ C~

If you get an error message instead, be sure you ended the line with a semicolon.
The ~ ~ prompt will not appear after an error message until you enter another
carriage return.

After an error message, enter the command again, exactly as shown above. Try
this two or three times. If the command still is not accepted, the problem lies
elsewhere. Talk to your system manager.

After the PS 300 accepts this command, it knows about an object called Square
that it will draw by going to the first point in the vector list (.5, .5) and then
drawing to the next four points in the sequence listed (you need to end up back at
.5, .5 to close the Square). The PS 300 will not display Square until you tell it to
using the DISPLAY command. Enter

~a ~a DISPLAY Square; <CR>

Square will appear centered on the screen. That is because Square is centered on
the world coordinate system's origin, which currently corresponds to the center
of the screen. By default, the part of the coordinate system viewed is from -1
to + 1 in X and Y.

4 —HANDS—ON EXPERIENCE

The Display List

As you have just seen, an object can be defined in the PS 300 and not be visible
on the screen. 1Nhen you use the DISPLAY command to display an object, the
object's name is placed on a dispZa~ Iist. The PS 300 continually checks this
list to see if any names have been added or removed and then displays or
"undisplays" the corresponding ob jectsl

Coordinate Values

Right now, the screen shows a view of only part of the coordinate system, from
plus 1 to minus 1 on both the X and Y axes. Anything to be drawn outside those
coordinates will not show up on the screen. To see an object, you have to choose
coordinates for it that are within these bounds. So, the coordinates for Square's
corners are one—half unit in X and one—half unit in Y, and they appear about
halfway from the center to the edge of the screen (Figure 1).

The Z axis, which accounts for the third dimension of "depth", will not be used in
this module. Everything will be two dimensional and take place in the plane
defined by the X and Y axes, with Z equal to zero.

0 0

This square as i t
appears on the screen.

~-- -
-1,0

10,1
1

I

0 0

If you could see the
coordinate system axes ,
they would look like this.

IAS0369

Figure 1. The Part of the Coordinate System that Appears on the Screen

HANDS—ON EXPERIENCE — 5

Blanking the Screen

Two very useful keys, TERM and GRAPH, are located to the left of the
typewriter section of the keyboard.

• Press the TERM key when you want to clear the screen of text. Labels or
titles that are part of the displayed object are unaffected. This key toggles,
so you can press it again to re—display, or "unblank," the text.

• Press the GRAPH key to blank any graphics being displayed on the screen.
This will allow you an uncluttered view of the text. Press GRAPH again to
re—display the graphics.

DISPLAYING A DIAMOND

After displaying a square, the next thing to do is to superimpose a diamond on it
to make a star shape. Create the diamond as a rotated version of Square. Enter

~a ~a Diamond := ROTATE IN Z 45 APPLIED TO Square; <CR>

which means essentially "create a new object by applying a 45—degree rotation to
the object Square."

To get a star figure to display on the screen, enter

~al La1DISPLAY Diamond; <CR>

Diamond is displayed superimposed on Square, resulting in astar—shaped object.

At this point, you have done what you set out to do, which was to display a star
shape on the screen. But if you want to do anything to the star now on the
screen, you must issue two commands, one for each of the two objects that make
it up. There is no single object named Star that you can manipulate.

6 —HANDS—ON EXPERIENCE

You can create such an object using an INSTANCE command. This command
defines some new single object as a collection of other objects. You can define
Star to be an instance of the two objects you already created. Enter

Cal ~a Star := INSTANCE OF Square, Diamond; <CR>

Now any operation you apply to Star will apply simultaneously to its two
components, Square and Diamond.

DISPLAYING STAR

Before you display Star, remove the Square and Diamond from the screen. Enter

~a ~a REMOVE Square; <CR>

and then

Cla ~a REMOVE Diamond; <CR>

The screen should now have nothing on it but text. There is a difference
between removing objects from the screen this way and toggling the GRAPH
key. When you press the GRAPH key, every object on the display list is blanked
out from the screen (or unblanked so it will show up), but the contents of the
display list stay the same.

When you REMO1/E something, it is removed from the display list and will not

display no matter how many times you press the GRAPH key.

Now enter

La1~a DISPLAY Star;<CR>

Star will appear. It looks like the two objects you just removed, but now it is
defined i-n the PS 300 as only one object.

HANDS—ON EXPERIENCE — 7

TWO MORE VERSIONS OF STAR

With the SCALE command, you can scale an object on the screen to shrink it
or enlarge it. For example, to make a new star one—fourth the size of Star, enter

~a ~a Smallstar := SCALE BY .25 APPLIED TO Star; <CR>

and

~ ~ DISPLAY Smallstar; < CR >

Smallstar will appear inside Star, centered on the screen origin.

You can use the TRANSLATE command to define an object that is a "moved"
version of some other object. Enter

~ ~ Movestar := TRANSLATE BY .75,0 APPLIED TO Smallstar; < C R >

Movestar is a new version of Smallstar moved three—fourths of a unit to the
right. The two values, .75 and 0, indicate how to move the object in X and Y.
When the Y value is 0, the object translates horizontally only. Enter

~a DISPLAY Movestar; <CR>

and the new object will appear on the screen.

Even though the two newer stars, Smallstar and Movestar, are based on Star,
they are separate objects with names of their own. You can do anything you
want to Movestar or Smallstar and not affect Star. If you rotate or scale
Smallstar, nothing will happen to Star. It will still be displayed at the center of
the screen until you remove it.

The reverse is not true. If you redefine Star in some way, that will affect
Smallstar and Movestar because they are defined in terms of Star. Redefine Star
as a triangle and watch what happens to Smallstar and Movestar. Enter

~ Star := VECTOR_LIST 0,.43 .5,—.43 —.5,—.43 0,.43; <CR>

8 -HANDS-ON EXPERIENCE

These coordinates define an approximately equilateral triangle.

As soon as you enter this command, what happens? Not only Star, but everything
defined in terms of Star, changes.

As a further illustration of how Smallstar and Movestar depend on Star, redefine
Star once more, as the word "STAR". You need a couple of commands to
accomplish this. You could do the same thing with one BEGIN STRUCTURE...
END STRUCTURE. BEGIN STRUCTURE... END_STRUCTURE is a convenient
way to group related commands together.

~a [al Star := BEGIN STRUCTURE <CR>
~ ~a CHARACTER SCALE .l; <CR>
LalLa1CHARACTER -.2, 0 'STAR'; <CR>
Cal CaIEND_STRUCTURE; <CR>

All three objects will change from triangles to the word "STAR". Smallstar is
still aquarter-size version of Star. And Movestar appears to the right of both of
them.

Briefly, here is what the two commands in the BEGIN_STRUCTURE...
END STRUCTURE did:

CHARACTERS. The CHAR instruction specifies the word you want to display
and the location of the lower left corner of the first character in the word. In
this case, the S of STAR will be placed one-fifth unit (.2) out on the negative X
axis. The characters in single quotation marks comprise the character string to
be displayed.

CHARACTER SCALE. Without scaling, each character would appear on the
screen one unit in size. The first letter would cover the entire upper right
quarter of the screen, and any letters following it would be out of view to the
right. So this instruction scales the characters to one-tenth their normal size so
they can all appear on the screen.

The intricacies of BEGIN STRUCTURE...END_STRUCTURE and the two
CHARACTER commands (CHARACTER and CHARACTER SCALE) are
explained in detail in other modules.

You can redefine Star to be the eight-pointed figure it was before. Square and
Diamond still exist in memory, so all you need to do is re-enter the command
that defines Star as an instance of those two objects. For an exercise, do that
now.

HANDS-ON EXPERIENCE - 9

UPDATING VALUES, CONNECTING AN INPUT DEVICE

If you wanted to re-position Movestar, you could do so by redefining it with new
translation values like this:

Movestar := TRANSLATE BY -.5,0 APPLIED TO Smallstar;

This would redefine Movestar at a new position to the left of the origin.

There is a way to re—position Movestar without redefining it, and that is to SEND
a new value to it. To do that, enter

~ SEND V3D(.75,.75,0) to < 1 >MO1lESTAR; <CR>

Remember that Movestar is a translation applied to another object,
Smallstar, whenever you update a translation, you must send it a
three-dimensional value; "V3D" stands for a three-valued vector. To supply
Movestar with the right kind of data, you had to deal with all three dimensions,
even though you are not making use of Z here.

This SEND command immediately updates the translation values in Movestar
(they were .75,0 with an assumed Z value of 0). Movestar shifts to the upper
right corner of the screen.

None of the definitions for any objects changed--the values changed. This is
what input devices and function networks do. without changing the basic
definitions of objects, they alter and update values; how big to scale the objects,
how much to rotate or translate them, and so on.

To illustrate this, hook a simple function network from a control dial to an
object to make it rotate.

First, create the object. The PS 300 already knows about Smallstar, the
scaled-down version of Star. Define Spinstar to be a version of Smallstar that
can rotate. Enter

~a ~a Spinstar := ROTATE IN Z 0 APPLIED TO Smallstar; <CR>

You must put 0 as the initial rotation value. Later, values coming from a dial
will update Spinstar and make it rotate.

10 —HANDS—ON EXPERIENCE

ANOTHER WAY TO CLEAR THE SCREEN

You have defined Spinstar. The next step is to display it. But first, clear the
screen of the other objects. When you did this before with Square and Diamond,
you used REMOVE for each of them. It is much more convenient to use the
INITIALIZE DISPLAY command. Enter

~a ~a INITIALIZE DISPLAY; <CR>

This clears everything from the display list. Now display Spinstar by entering

~a Ca1QISPLAY Spinstar;

CONNECTING A DIAL TO SPINSTAR

Now build a simple function network to take values from the dial and turn them
into values that can be used to update Spinstar. The PS 300 contains a "master"
function called F:DZROTATE that does that. To use it, make a copy of it and
assign it a name, "Spinner" for example. Enter

Cal Cal Spinner := F:DZROTATE; <CR>

It is convenient to think of individual functions as "black boxes" with values
coming in and other values going out. The functions are usually drawn as shown
in Figure 2, as squares with input and output lines:

HANDS—ON EXPERIENCE — 1 1

Inputs

Name of Function

SPINNER / Name of Master Function

f
F:DZROTATE

<1> <1>

<2> <2>

<3>

IAS0370

Outputs

Figure 2. "Spinner" Function Didgrdm

Connect a dial to the first input of this function and the first output to Spinstar.
Use the CONNECT command twice to do this.

~ CONNECT Dials< 1 >:< 1 >Spinner; <CR>
~ ~ CONNECT Spinner < 1 >: < 1 > Spinstar; < C R >

These commands say to connect output < 1 > of the control dials (corresponding to
the top left dial) to input < 1 > of the function Spinner. And connect output < 1 > of
Spinner to input < 1 > of Spinstar. The numbers for the inputs of a function are to
the left of the name, the output numbers are to the right.

You are not quite finished setting up your function network, because Spinner
needs to be "primed." It needs two initial values for its second and third inputs.
You have already used the SEND command to update Movestar. You can use this
command again to send 0 and 200 to Spinner's second and third inputs,
respectively.

La1Ca1SEND 0 TO <2>Spinner; <CR>
Lal Lla SEND 200 TO <3>Spinner; <CR>

12 -HANDS-ON EXPERIENCE

The function network is now ready. If you turn dial 1, Spinstar will start
turning. The values the dial generates update Spinstar so quickly that it appears
to move in real time. When you turn the dial, Movestar responds
instantaneously.

CONCLUSION

If any of what you have done is not completely clear to you, do not worry about
it right now. The purpose of this section was to give you an opportunity to
create and manipulate a few simple objects.

In the remaining modules, you will discover in more detail how you can use these
commands to create disp~ar~ trees and more complex function networks for
models. You will also learn how to save the commands in a host file so they are
more convenient to use.

GRAPHICS PRI\CIPLES

HIGH PERFORMANCE PS 300 DISTRIBUTED GRAPHICS

PREFACE

This guide introduces the concepts and terminology which you must understand to
program the PS 300. It begins by explaining concepts which are common to most
interactive graphics systems, but it soon becomes specific to the PS 300. The concept
introduced here are explained in much greater detail in the tutorial modules. In most
cases, cross references are given to appropriate modules. New terms are introduced in
italics and are explained in context. Italicized words also appear in the Glossary
of Terms in Volume 2B.

Examples of the PS 300 Command Language and of some PS 300 Functions and Function
Networks are given to show how specific computer graphics operations are performed
by the PS 300. Little attempt is made to explain the syntax of commands or to explore
all of the options of a particular command or function. Consult the PS 300 Command
Summary and PS 300 Function Summary in Volume 3A for complete information on
the commands and functions and their options.

Programmers with little or no experience of computer graphics systems should read this
guide before embarking on the tutorial modules. Experienced programmers who do not
plan to use the tutorials can read this guide as an introduction to the reference
documentation in Volumes 3A and 3B.

~~

GRAPHICS PRINCIPLES

CONTENTS

1. CREATING PRIMITIVE OBJECTS 1

COORDINATE SYSTEMS 1
Right-Hand Coordinate System 1
Left-Hand Coordinate System 2
The World Coordinate System 3

DATA BASE FOR AN OBJECT 4
Geometry 5

Coordinate Notation 6
Topology 7
Vector List 7
Polygon List 8

GRAPHICAL PRIMITIVES 8
Curve Primitives 9
Text Primitives 9
Same Geometry but Different Topologies 9
Same Topology but Different Geometries 10

SUMMARY 12

2. TRANSFORMING PRIMITIVES 13

CREATING NEW OBJECTS FROM PRIMITIVES
Applying Transformations

13
15

GRAPHICS PRINCIPLES

MODELING TRANSFORMATIONS 16
Rotation 16
Rotations Around an Axis 17
Translation 18

Translations in All Three Axes 19
Scaling 20

THE ORDERING OF TRANSFORMATIONS
Transformation Matrices

22
27

SUMMARY 30

3. CREATING COMPOUND OBJECTS 31

BUILDING WITH PRIMITIVES AND TRANSFORMATIONS 31
Creating a Star Primitive 31
Grouping Primitives and Transformations 35

SUMMARY 37

4. DESIGNING A MODEL FOR INTERACTION 39

DESIGNING A COMPLEX MODEL
Analyzing a Model as a Hierarchy

39
41

DISPLAY TREES 42
Display Tree for the Mechanical Arm 42
Display Tree Terminology 44

Nodes 44
Updating Nodes 44
Data Nodes 45
Operation Nodes 46
Instance Nodes 47
Grouping 47
Sphere of Influence 49

SUMMARY 52

GRAPHICS PRINCIPLES

5. LOOKING AT OBJECTS 53

UIEWING OPERATIONS
Displaying an Object

ESTABLISHING A LINE OF SIGHT

54
54

55

INCLUDING PART OF THE WORLD COORDINATE SYSTEM 58
Viewing Areas in the World Coordinate System 59

Orthographic Views 59
Perspective Views 62

DISPLAYING AN IMAGE IN SOME AREA OF THE SCREEN
Specifying a Viewport

VIEWING TRANSFORMATIONS AND DISPLAY TREES

67
67

70

SUMMARY 76

6. USING ATTRIBUTES

ATTRIBUTES

77

77

APPEARANCE ATTRIBUTES 78
Displaying Objects in Color 78

Displaying All Vectors in the Same Color 79
Color Blending Vectors 82
Setting and Changing Intensity Levels 83
Enabling and Disabling Depth-Clipping 84
Displaying Images on Different Screens 87
Choosing a Character Font for Text 88

STRUCTURE ATTRIBUTES 90
Conditional Referencing 91
Level-Of-Detail 93
Blinking or Alternating Displays 96

PICKING ATTRIBUTES 98

SUMMARY 102

GRAPHICS PRINCIPLES

7. INTERACTING WITH THE PICTURE

EVANS &SUTHERLAND AND INTERACTIVE GRAPHICS

PROGRAMMING THE INTERACTIVE DEVICES
Planning for Interaction
Updating a Node
Supplying the Correct Type of Data

PS 300 FUNCTIONS
Intrinsic Functions
Initial Function Instances
User-Written Functions
Creating Networks
Active and Constant Inputs
Data-Driven Networks
Why Function Networks?
Creating Function Networks

103

103

105
105
107
108

108
110

SUMMARY 1 18

GRAPHICS PRINCIPLES

ILLUSTRATIONS

Figure 1. Right-Hand Coordinate System 2
Figure 2. Left-Hand Coordinate System 3
Figure 3. The World Coordinate System 4
Figure 4. Coordinates of a Square 5
Figure 5. Location of the Square in the World Coordinate System 6
Figure 6. Primitives With the Same Geometry and Different Topologies 9
Figure 7. Primitives With the Same Topology and Different Geometries 10
Figure 8. Location of the Diamond 14
Figure 9. The Structure of the Diamond 15
Figure 10. Rotation in the World Coordinate System 16
Figure 1 1. Orientation of the Rotated Arrow 17
Figure 12. Rotation of an Object Not Centered at the Origin 18
Figure 13. Location of the Translated Square 19
Figure 14. Square Translated in X and Negative Y 20
Figure 15. Scaling the Square 21
Figure 16. Non-Uniform Scaling to Create a Rectangle 22
Figure 17. ATwo-Dimensional Arrow 23
Figure 18. Rotated Arrow 23
Figure 19. Arrow Rotated, Then Translated 24
Figure 20. The Structure of Arrow_2 24
Figure 21. Translated Arrow 25
Figure 22. Arrow Translated, Then Rotated 26
Figure 23. The Structure of Arrow_4 26
Figure 24. An Identity Matrix 2g
Figure 25. Concatenating Matrices 29
Figure 26. Location of the Star Primitive 32
Figure 27. The Star Primitive Displayed on the Screen 32
Figure 28. The Location of Trans Star on the Screen 33
Figure 29. The Structure of Trans_Star 34
Figure 30. The Structures of Trans_Square and Trans_Diamond 34
Figure 31. The Structure of Trans Starl 36
Figure 32. An Articulated Mechanical Arm 40
Figure 33. Hierarchy of Parts for the Mechanical Arm 41
Figure 34. Display Tree for the Mechanical Arm 43

GRAPHICS PRINCIPLES

Figure 35. Inputs to a Vector List Node 45
Figure 36. Inputs to a Rotation Node 46
Figure 37. The Structure of Trans_Starl 47
Figure 38. Display Tree for Trans_Star 1 48
Figure 39. Structure of the Upper Arm 49
Figure 40. A Simple Display Tree 50
Figure 41. Shape Represented by Display Tree in Figure 40 50
Figure 42. The Location of the Square on the Screen 54
Figure 43. A Cube With Labeled Faces 55
Figure 44. Displaying the Cube 5.6
Figure 45. "Looking Down" the Y Axis at the Cube 56
Figure 46. Looking Down at the Cube: the View on the Screen 57
Figure 47. How the LOOK Command Rearranges the Coordinate System 58
Figure 48. An Orthographic Viewing Area 59
Figure 49. "Visible" and "Non-Visible" Objects 60
Figure 50. Clipping Parts of an Object 60
Figure 51. Depth-Clipping of Objects 61
Figure 52. Orthographic View of a Rotated Cube 61
Figure 53. The Default Viewing Space 62
Figure 54. Perspective View of a Rotated Cube 63
Figure 55. A Viewing Area for Perspective Views 63
Figure 56. The FIELD_OF_VIEW Uiewing Pyramid 65
Figure 57. The Viewing Pyramid Created by the EYE Command 66
Figure 58. Displaying an Object With the Default Window 67
Figure 59. Distorted Views of the Arrow 69
Figure 60. A Group of Objects in the Coordinate System 70
Figure 61. Display Tree for Shapes 70
Figure 62. DISPLAYing Shapes 71
Figure 63. Adding the LOOK Node 71
Figure 64, The LOOK Transformation 72
Figure 65. Calculating the Front and Back Boundaries 73
Figure 66. Adding the FOV Node 74
Figure 67, Adding the VIEWPORT Node 75
Figure 68. The Final Display 75
Figure 69. The Color Wheel 79
Figure 70. A Simplified Display Tree for the Mechanical Arm 80
Figure 71. Display Tree With Color Nodes 81
Figure 72. An Interactive Intensity Node 84
Figure 73. Depth-Clipping Enabled for a Viewing Area 85

GRAPHICS PRINCIPLES

Figure 74. Objects Outside the Front and Back Boundaries 86
Figure 75. Display Tree With Depth-Clipping Node 87
Figure 76. Display Tree for a Group of Labeled Objects 89
Figure 77. Display Tree With Character Font Nodes 90
Figure 78. Simplified Display Tree for a Car 91
Figure 79. Display Tree With Conditional Referencing Nodes 92
Figure 80. Display Tree for a Contour Map 93
Figure 8 ~. Display Tree With Level-Of-Detail Nodes 95
Figure 82. Conditional Nodes for Blinking 96
Figure 83. Display Tree for Alternate Display of Two Objects 97~
Figure 84. The SET PICKING ON/OFF Node 99
Figure 85. Making the Components Pickable 100
Figure 86. Display Tree for Simple Interaction 106
Figure 87. The SET DEPTH CLIPPING Node 107
Figure 88. Representation of a Function 108
Figure 89. The F:DZROTATE Function 1 12
Figure 90. The Initial Function Instance DIALS 1 13
Figure 91. Inputs to a Rotate Node 1 14
Figure 92. Simple Z-Rotation Network 1 14

GRAPHICS PRINCIPLES - 1

1. CREATING PRIMITIVE OBJECTS

A graphics programmer using the PS 300 for designing, viewing, and manipulating
objects begins by creating a data base of the mathematical information that defines
the objects. Objects are defined as two-dimensional or three-dimensional shapes
consisting of points and lines or planes. Objects defined as points and the lines that
connect them are wire-frame models. Objects defined as planes differ from
wire-frame models because they contain surface or solid information.

The data space in which the programmer models objects is known as the world
coordinate system. This system provides a way of expressing the location of all the
points which define the object.

The simplest object in a graphical data base is a primitive. This consists entirely of
points and lines or planes. The points specify the geometry of the object; the lines or
planes specify the topology.

COQRDINATE SYSTEMS

The PS 300 displays convincing three-dimensional images of mathematically-
defined objects. All mathematical information that the designer enters to
create an object (the data base) must be given in terms of a
three-dimensional coordinate system. A coordinate system is a way of
specif ying athree-dimensional space in which objects can be modeled.

Right-Hand Coordinate System

One conventional method for representing three-dimensional space uses three
lines (axes) originating at a common point in space (the origin) and drawn
at right-angles to each other in the dimensions of height, width, and depth.
These axis are labelled X (width), Y (height), and Z (depth). Figure 1 represents
a commonly-used coordinate system known as the right-hand coordinate system.

2 -GRAPHICS PRINCIPLES

Y

1

i Aso644

X

Figure 1. Right-Hand Coordinate System

As Figure 1 shows, the thumb and first two fingers of the right-hand can be used
as a mnemonic for the names and positive directions of the axes in this system.

There is a disadvantage to this coordinate system for modeling with a computer
graphics system. If you consider the computer screen to be parallel to the XY
plane of this three-dimensional space, then positive values in the Z axis (depth)
increase towards the eye of the viewer. The depth of an object displayed on the
screen should be perceived as a dimension into the screen. So a coordinate
system is needed with a Z axis that has positive values which increase into the
screen away from the viewer.

Left-Hand Coordinate System

A left-hand coordinate system, employed by many computer graphics systems
including the PS 300, has a Z axis in which positive values increase away from
the viewer. Figure 2 shows a representation of the left-hand coordinate system.

GRAPHICS PRINCIPLES - 3

X

IAS0645

Figure 2. Left-Hand Coordinate System

Note that the thumb and first two fingers of the left hand indicate the positive
direction of the axes in this coordinate system.

The World Coordinate Syste m

The left-hand coordinate system with which the PS 300 graphics programmer
works is known as the world coordinate system. The world coordinate
system provides a way of expressing the mathematical data which the computer
needs to create, display, and manipulate models in three dimensions. Figure 3 is
a representation of the world coordinate system used in programming the PS 300.

4 —GRAPHICS PRINCIPLES

+Y

-3 -2 1
- X .. I ~ 1

-1

+Z

3

2

1 2 3
~ 1 t t ~..+X

o,o,o
_1

tAS0650

Figure 3. The World Coordinate Syste m

All axes have a positive direction and a negative direction, and values are
assigned for every point along an axis. The point at which the three axes meet is
the origin.

DATA BASE FOR A(V OBJECT

A data base for an object consists of points and lines (if the object is a
wire—frame model) or planes (if the object is a polygonal model) expressed
in world coordinate values. The points, lines, and planes define the geometrt~
and topology of the object.

GRAPHICS PRINCIPLES — 5

Geometry

The geometry of an object is the location in the world coordinate system of the
points which define it. If, for example, you want to create a square centered at
the origin of the world coordinate system with sides five units long, then the
coordinates of the four points A, B, C, and D that define the square are as shown
in Figure 4.

+Y

~ ~` 3 A

_Z

--1
-3 -2 -1 1 2 3

_}(I i 1 1 l ~ 1 +X

•
C

— -~

— -2

— -3

-Y

•
B

I AS0647

Figure 4. Coordinates of a Square

When these coordinates are connected with lines, the result is the square shown
in Figure 5.

6 -GRAPHICS PRINCIPLES

D A

-2 -1

_2

—1
1 Z

1 1 1 l

-- -1

,—~ - 2

-3

-Y

B

3
L. +X

IAS0646

Figure 5. Location of the Square in the World Coordinate System

Coordinate Notation

The convention for defining coordinates in three-dimensional space is to give the
X component first, then the Y component, and finally the Z component.

For example, point A is 2.5 units in the positive X axis, 2.5 units in the positive
Y axis, and zero units in the positive Z axis, since the square is a
two-dimensional figure. The notation for this coordinate is (2.5,2.5,0) or just

(2.5,2.5) with the value for Z defaulting to zero. Point B is also 2.5 units in the
positive X axis, but 2.5 units in the negative Y axis, and zero units in the positive
Z axis. The notation fo_r this coordinate is (2.5,-2.5,0) or just (2.5,-2.5).

The coordinates of the four corners of the square are as follows:

Point A: (2.5,2.5,0) or (2.5,2.5)
Point ~: (2.5,-2.5,0) or (2.5,-2.5)
Point C: (-2.5,-2.5,0) or (-2.5,-2.5)
Point D: (-2.5,2.5,0) or (-2.5,2.5)

GRAPHICS PRINCIPLES - 7

Topology

The coordinates of the points specify the geor~~etry of the square. For the
computer to draw the square, the manner in which the points are connected must
be indicated. This is called the topology of the object. In the case of the
square, A is connected to B, B to C, C to D, and D is connected back to A.
Geometry and topology form a minimum data base for displaying an object. This
combination forms a vector Zist or a polygon Iist, depending on whether
the object is defined as a set of lines or bounded planes (surfaces).

Vector List

A vector list specifies an object that is composed of lines. A vector is a set
of coordinate pairs (X,Y) or triples (X,Y,Z) and a direction. A vector list
specifies points within the world coordinate system at which lines start and end,
and the order the direction in which lines are drawn.

The following PS 300 command creates a vector list named Square.

Square := 1/ECTOR_LIST N = 5 2.5,2.5 2.5,-2.5 -2.5,-2.5
-2.5,2.5 2.5,2.5;

Notice that five items were needed in the vector list to specify the topology of
this object. The computer must be told to draw from point D to point A to
complete the square. The "N = 5" clause is an estimate of the number of vectors
so that sufficient memory can be allocated for the object.

The topology is implicit in the order in which coordinates are given. The first
coordinate indicates a starting position. Each coordinate after that is a point to
which a line is drawn. An alternative form of the VECTOR LIST command uses
the clause "ITEMIZED" and includes "P" (position) and "L" (line) identifiers to
distinguish between move-to and draw-to coordinates. The same vector list as
specified above can be written as follows.

Square := VECTOR LIST ITEMIZED N = 5 P 2.5,2.5 L 2.5,-2.5 L -2.5,-2.5
L -2.5,2.5 L 2.5,2.5;

8 -GRAPHICS PRINCIPLES

Position and line indicators are essential in vector lists for shapes that are not
closed figures. For example, to draw just the left and right sides of the square, a
vector list such as the following is needed.

Sides := 1/ECTOR LIST ITEMIZED N = 4 P -2.5,2.5 L -2.5,-2.5
P 2.5,2.5 L 2.5,-2.5;

Polygon List

A polggon is a set of points that enclose and define a plane or surface. Just
like a vector list, a polygon list contains the coordinates of the endpoints of the
lines that make up the polygon. Unlike a vector list, a polygon list does not have
to repeat the first point to close the figure, since by definition a polygon is a
closed figure.

The following command creates a square as a polygon list.

Square := POLYGON 2.5,2.5 2.5,-2.5
-2.5,-2.5 -2.5,2.5;

Only four items are needed in the polygon list to specify the topology of the
square when it is defined as a polygon. Polygons can be only created on the
PS 340 system. They are discussed fully in the tutorial module "Using the
PS 340."

GRAPHICAL PRIMITIVES

Vector lists and polygon lists contain all the information needed to specify the
geometry and topology of an object. Objects specified as vector lists or polygon
lists are known as graphical primitives. The 1/ECTOR_LIST and POLYGON
commands are the two most commonly used to create primitives locally in the
PS 300. Complex primitives are often created by a host application program and
transferred to the PS 300 to be manipulated and viewed.

GRAPHICS PRINCIPLES — 9

Curve Primitives

The examples used so far have been for primitives consisting of straight lines
only. Other commands, such as the BSPLINE and POLYNOMIAL commands
create curve primitives locally in the PS 300. For more information on these
commands refer to the Command Summary in Volume 3A.

Text Primitives

Text is also treated as a graphical primitive in the PS 300. A standard
128—character ASCII set is provided with the system. The characters which
compose this standard font are created as vector lists, so you do not have to
create your own. However, if you want to create different fonts that can be
used as a supplement to the standard font, there is a command which allows you
to do this. The BEGIN FONT ... END FONT command lets you create 128
separate vector lists defining the characters which compose the font and assign
them a single name. This font can be substituted for the standard font using the
CHARACTER FONT command. For more details, refer to the "Text Modeling"
module and the Command Summary in Volume 3A.

Same Geometry but Different Topologies

Primitive objects can have the same geometry, but different topologies. That is,
the same set of world coordinates can be connected by lines to create open
figures or polygons of different sorts, as shown in Figure 6.

! AS06~8

Figure fi . Primitives With the Same Geometry and Different Topologies

10 —GRAPHICS PRINCIPLES

For example, the capital letter "N" can be created by the following vector list.

Capital_N := VECTOR_LIST N = 4 —2.5,-2.5 —2.5,2.5
2.5,-2.5 2.5,2.5;

The bow tie shape can be created by the following vector list.

Bow_Tie := 1/ECTOR_LIST N = 5 —2.5,-2.5 —2.5,2.5 2.5,-2.5
2.5,2.5 —2.5,-2.5;

For open figures, such as the two parallel lines, position and line identifiers must
be included in the vector list. The following command creates the two parallel
horizontal lines as a single primitive.

Lines := VECTOR_LIST ITEMIZED N = 5 P-2.5,2.5 L2.5,2.5
P-2.5,-2.5 L2.5,-2.5;

Although the geometry is the same for all of these objects, their topologies are
different, and so their vector lists are different. Each object must be defined as
a separate primitive with its own vector list.

Same Topology but Different Geometries

Primitives can also share the same topology and have different geometries. All
o f the four—sided shapes in Figure 7, for instance, consist o f four points
connected in the same manner.

IAS0649

Figure 1. Primitives With the Same Topology and Different Geometries

GRAPHICS PRINCIPLES — 1 1

Each of these objects must be defined as a separate primitive. However, as the
next section (Transforming Primitives) shows, there are ways of changing the
geometry of a primitive to create a new object without creating a new primitive.

12 —GRAPHICS PRINCIPLES

SUMMARY

New Information Presented

1. To express the mathematical data which defines an object for graphical
display, a programmer uses a coordinate system.

2. The coordinate system most useful for computer graphics purposes is a
left—hand coordinate system. This coordinate system has a Z axis that has
positive values which increase away from the eye of the viewer.

3. The coordinate system used in .creating a data base for graphical objects is
called the world coordinate system.

4. To create a model of an object with a graphics computer, you need to specify
two things:

• The positions of the endpoints of each line, expressed as
three—dimensional (X, Y, Z) coordinates. This is known as the geometry
of the object.

• The way in which those points are connected by lines. This is known as
the topology of the object.

5. The geometry and topology together form a vector list or polygon list for a
graphical primitive. A primitive defined by a vector list is composed of
lines. A primitive defined by a polygon list is composed of planes or surfaces.

6. Other primitives composed of points and lines are curves and text.
Primitives of all sorts can be created locally using PS 300 comr~ands. They
can also be generated by a host application program and sent to the PS 300.

What Next?

At this point, you can create a graphical data base for a primitive. Vector lists
define wire-frame objects made of lines, and polygon lists define objects made
of planes. In the next section you will see how to apply mathematical
transformations to primitives to create new objects. These new objects will
have the same topology as the primitives, but their geometries will be different.

GRAPHICS PRINCIPLES — 13

2. TRANSFORMING PRIMITIVES

Mathematical operations called transformations can be applied to a primitive to
change its geometry by moving some or all of its points to a new location in the world
coordinate system. Transformations create a new object, based on the definition of the
old one, which has the same topology as the primitive, but a dif ferent geometry.

Using transformations, you can, in effect, move primitives around in the coordinate
system or add numerous different objects to the data base using a small number of
primitive shapes.

CREATING NEW OBJECTS FROM PRIMITIVES

The data base of shapes so far consists of a square with sides five units long. If
you want to add to the data base atwo—dimensional diamond shape with sides
that are five units long centered at the origin of the world coordinate system,
you could create it as a primitive by entering a vector list like this.

Diamond := VECTOR_LIST N = 5 0,3.54 3.54,0 0,-3.54
—3.54,0 0,3.54;

The diamond will be located in the world coordinate system as shown in Figure 8.

14 —GRAPHICS PRINCIPLES

+Y

+X

-Y IAS0651

Figure 8. Lo~dtion of the Diamond

Notice that the Diamond and the Square primitive that already exists share
several features. They are both two—dimensional figures, they are the same size
(5 units per side), and they have the same topology. In fact, the only difference
between the two figures is their geor~~etry. The points that define the four
corners of the Square and the Diamond are in different locations within the
world coordinate system. The diamond shape could be described as the square
shape rotated 45 degrees around the Z axis.

Since the two objects share these relationships, there would be no need to create
a separate primitive if there were some way to change the geometry of the
square while maintaining its topology. PS 300 commands exist which do exactly
that.

GRAPHICS PRINCIPLES - 15

Applying
Transformations

With the PS 300, you can apply mathematical operations to primitives that
already exist to move them around in the coordinate system or create new
shapes from them. The resulting objects are not defined as primitives
themselves. Instead, they are structures which consist of matrix
transformations applied to the coordinates which define a primitive.

Transformations are operations of matrix algebra which change the geometry o_f
a graphical object, but do not affect the topology. When you create a vector list
for an object, you have to calculate the coordinates of the points yourself. When
you apply transformations to existing primitives, the PS 300 calculates the new
coordinates for you. It is easier, for example, to create the diamond by rotating
the square than to calculate yourself the coordinates of the diamond primitive.
The following PS 300 command creates a diamond by rotating the square.

Diamond := ROTATE IN Z 45 APPLIED TO Square;

The structure of the diamond can be diagrammed as shown in Figure 9.

Rotation (Diamond)

Vector List (Square)

iAS0652

Figure 9. The Structure of the Diamond

The Diamond is shown as a rotation transformation applied to the vector list
defining the Square.

16 -GRAPHICS PRINCIPLES

MODELING TRANSFORMATIONS

Transformations which are used to create new objects by changing the geometry
of already defined primitives are often referred to as modeling
transformations. There are three modeling transformations: rotation,
translation, and scaling. The module called "Modeling" gives examples of
the use of modeling transformations to create and position the parts of a
complex object.

Rotation

A new object can be created by rotating a primitive through any number of
degrees in any of the three dimensions. To perform a rotation on a primitive,
the computer uses the sine and cosine of the angle specified in the rotate.
command to create a rotation matrix, which is applied ~o the points in the vector
list.

When an object is rotated in the world coordinate system, it rotates around one
of the X, Y and Z axes in the directions in Figure 10.

Y

IAS0653

Figure 10. Rotation in the World Coordinate System

GRAPHICS PRINCIPLES — 17

Rotations Around an Axis

Note the terms used to express rotations. A rotation "in X" means rotation
around the X axis or in a plane parallel to the X axis, and so on. To determine
the direction of rotation around an axis, use the left-hand coordinate mnemonic.
Point the thumb of your left hand in the positive direction of any axis, and your
fingers will curl in the direction of positive rotation.

Rotations always occur around one of the world coordinate axes. Consider a new
object called Rot_Arrow created by rotating an existing 2D arrow which is
centered at the origin through 120 degrees in positive Z.

Rot_Arrow := ROTATE IN Z 120 APPLIED TO Arrow;

The orientation of the rotated arrow will be as shown in Figure 1 1.

~Y

X

IAS0654

Figure 11. Orientation of the Rotated Arrow

The primitive arrow is drawn with dashed lines; the rotated arrow is drawn with
solid lines. Since the primitive arrow was created with its base at the origin, the
rotated arrow is based at the origin also.

If an object is not centered at the origin, however, and a rotation is applied, the
rotation about the world axis will have the effect of "swinging" the object around
the axis, as illustrated in Figure 1 Z.

18 -GRAPHICS PRINCIPLES

IAS0655

Figure 12. Rotation of an Object Not Centered at the Origin

Rotating an object while it is centered at the origin, then, effectively rotates it
about its own center. Rotating an object which is not at the origin swings that
object around one of the world axes to a new location in the world coordinate
system.

Translation

Translating an object means moving it to a new location in the world coordinate
system. An object which is translated in X is moved in the X direction. An
object translated in X and Y is moved some distance in the X direction and some
distance in the Y direction.

The PS 300 performs translations on a primitive by adding the X, Y, and Z values
specified in the translation command to the coordinates of each vector.

Consider a new square, created by translating the Square defined earlier by 2
units in the positive X axis.

Trans_Square := TRANSLATE 2,0 APPLIED TO Square;

GRAPHICS PRINCIPLES - 19

The location of Trans_Square will be as shown in Figure 13.

_3 _2 -1
t t t

D

+Y

3
A

r 2

1

-1

_Z

1 2 3 4
1 t ~ 1

C
-3

-4

-5

IAS0656

5
t

Figure 13. Location of the Translated Square

+X

Notice that in a translation in X, the X component of each coordinate is changed
(in this case, increased by 2) but the Y and Z components are not.

Translations in All Three Axes

The PS 300 performs translations in any direction (X, Y, or Z) and in any
combination of directions. For example, a translation of 2 units in positive X
and 2 units in negative Y can be applied to Square.

New_Trans_Square := TRANSLATE 2,-2 APPLIED TO Square;

The new translated square will be located as shown in Figure 14.

20 —GRAPHICS PRINCIPLES

+Y

4

-

D

3

2

1
A

1 1 T
_3 _2 _1 1 2 3 4

-1

--2

— -3

--4

5

5

+X

B IAS0657

Figure 14. Square Translated in X and Negative Y

Naturally, translations may be specified in three dimensions.

The notation used for representing translations is to give the X component, the Y
component, then the Z component, separated by commas. So, for example, a
translation of 3,-2,4 is 3 units in X, 2 units in negative Y, and 4 units in Z.

Scaling

Scaling an object makes it smaller or larger, depending on the scale factor that
is specified. The PS 300 creates a scaling matrix which multiplies the points in
the vector list by the scale factor in the scaling command to determine the new
coordinates of the scaled object.

GRAPHICS PRINCIPLES — 21

For example, a small square can be created by scaling the square defined at the
origin of the world coordinate system by 0.5.

Small_Square := SCALE BY .5 APPLIED TO Square;

The small square will have the coordinates shown in Figure 15.

+Y

3

2

-3 -2
1

D A

-1
t

1
1
1

2 3
~ t

--1

C
_2

-3

B

IAS0658

Figure 15. Scaling the Square

+X

This type of scaling is called uniform scaling. The new object is created by
scaling the primitive by the same amount in all dimensions.

Another type of scaling, non—uniform scaling, consists of scaling, an object by
different amounts in different dimensions. For example, a rectangle can be
created by scaling the Small_Square by 2 units in X only.

Rectangle := SCALE 2,1,1 APPLIED TO Small_Square;

The rectangle will have the f ollowing coordinates (Figure 16).

22 —GRAPHICS PRINCIPLES

+Y

3

2

-3

D A
—1

-2 -1 1 2
~ ~ ~ i

--1
C

-2

-3
IAS0659

Figure 16. Non-Uniform Scaling to Create a Rectangle

Non —uniform scaling is a commonly—used modeling transformation; it distorts the
shape of a primitive to produce a new object. For example, anon —uniform scale
in Y and Z applied to a cube at the origin can create an object with the relative
dimensions of a building brick. Circles can be scaled non —uniformly to create
ellipses, and spheres to create ellipsoids, and so on.

THE ORQERING OF TRANSFORMATIONS

When a series of transformations is applied to a primitive, . the order in which the
transformations are applied always determines the final location and orientation
of the object in the world coordinate system.

For example, consider a 2D arrow which has been created within the world
coordinate system as shown in Figure 17.

GRAPHICS PRINCIPLES — 23

IAS0660

Figure 17. ATwo-Dimensional Arrow

If the arrow is rotated 45 degrees in Z, rotation occurs around the Z axis. The
rotated arrow (Arrow_1) is oriented as shown in Figure 18.

Y

Figure 18. Rotated Arrow

A new object called Arrow 2 is now created by applying a translation in positive
X and negative Y to the rotated arrow. The orientation of the translated arrow
is still a rotation of 45 degrees in the plane of the Z axis, but its location would
be something like this (Figure 19).

24 -GRAPHICS PRINCIPLES

Y

X

IAS0662

Figure 19. Arrow Rotated, Then Translated

The structure of Arrow_2 is a translation pointing to a rotation, pointing to a
vector list. It can be diagrammed as shown in Figure 20.

Translation (Arrow 2)

Rotation Arrow 1)

Vector List (Arrow)

IAS06b3

Figure 20. The Structure of Arrow_2

GRAPHICS PRINCIPLES — 25

Now consider what happens if the original arrow is translated first, and then is
rotated. Translating the arrow in positive X and negative Y creates an object
(Arrow_3) located in the world coordinate system as shown in Figure 21.

Y

X

IAS0664

Figure 21 . Translated Arrow

If a rotation of 45 degrees in Z is now applied to the translated arrow, the new
object Arrow_4 will "swing" around the Z axis to a new location in the world
coordinate system (Figure 22).

26 —GRAPHICS PRINCIPLES

Y

iAS0665

Figure 22. Arrow Translated, Then Rotated

The structure of Arrow_4 is a rotation pointing to a translation pointing to a
vector list. It can be shown as follows (Figure 23).

Rotation (Arrow 4)

Translation Arrow 3)

Vector List (Arrow)

i AS0666

Figure 23. The Structure of Arrow_4

The order in which transformations are applied to objects determines the
ultimate location and orientation of the new object in the world coordinate
system. The same transformations applied to the same primitive in a
different order produce different results. When you are applying a series
of transformations to an object, you must take care to apply those
transformations in the correct order to get the result you want.

GRAPHICS PRINCIPLES - 27

Trdnsf orm dtion M atriCes

Translations, rotations, and scalings are the three basic transformations which
are applied to data in a computer graphics system. We have called these three
modeling transformations.

As you will see in Section 5, other transformations called ~riewing
transformations can be applied to data to create different views of
objects--for example, top views, side views, or perspective views. Although
viewing transformations are more complex, they are still combinations of
translations, rotations, and scales.

Later sections also describe how transformations can be applied
interactivelt~ to data. Values from the keyboard, data tablet, dials, and
buttons can be used to apply a series of transformations in rapid succession,
giving the illusion of movement to displayed objects.

All transformations applied to graphical data are performed by matrix algebra.
The most commonly used matrices in computer graphics are 2X2
(two-dimensional rotations and scales for characters and text strings); 3X3
(three-dimensional rotations and scales for objects); and 4X3 and 4X4 (most of
the viewing transformations described in Section 5).

All matrices are governed by the laws of matrix algebra. Of particular interest
to the graphics programmer is the law that matrix A times matrix B does not
equal matrix B times matrix A. This property is known as the
non-commutativity of matrices. The non-commutativity of matrices makes
the careful ordering of transformations necessary in graphics progi amming.

When a transformation is applied to an object, the new coordinates of the
vectors which compose the object are calculated by multiplying the old
coordinates by the elements in the matrix.

When more than one transformation is applied to graphical data, the matrices
are concatenated. This means that each matrix is pre-multiplied to a matrix
called the current transformation matrix. The current transformation
matrix contains the accumulation of all transformations that are to be applied to
graphical data and preserves the order in which they are to be applied. A 4X4
current transformation matrix is large enough to handle all of the
transformations needed for computer graphics operations.

28 —GRAPHICS PRINCIPLES

Matrix concatenation works like this. Suppose you want to scale a primitive to
twice its size, rotate it 180 degrees in Z, and then translate it in X and Y.
Instead of applying three separate matrices to the points that define the object,
the PS 300 pre—multiplies the matrices that represent these transformations into
the current transformation matrix. This single matrix is then applied to the
vector list that defines the object.

The current transformation matrix (CTM) starts out as an identity matrix, as
shown in Figure 24.

1 0 0 0
0 1 0 0

0 0 1 0

0 0 o i
..~.. •

IAS0742

Figure 24. An Identity Matrix

An identity matrix is composed of ones and zeros, with the ones running in a
diagonal. Multiplying by an identity matrix is the equivalent of multiplying by
one: nothing changes. Each transformation matrix in turn--scale, rotate, and
translate--is pre-multiplied to the identity matrix. The result is a CTM which
consists of the cumulative transformations and the order in which they are to be
applied to the data. The vector list defining the object is run through. the CTM
as the last stage in the process, as shown in Figure 25.

GRAPHICS PRINCIPLES - 29

w

SCALE RQTATE

Ucctor List --~- CTM

o

TRANSLATE IpENTITY

 1

.~. I AS0741

Figure 25. Concatenating Matrices

The transformed vectors which result form the points and lines of the
newly-oriented object. If the order of the transformations were changed, then
the final CTM would be different. If this matrix were applied to the data
defining the object, the ultimate location and orientation in the world coordinate
system of the transformed object would change.

For more information about matrix algebra, consult Newman W.M. and Sproull
R.F., Principles of Interactive Computer Graphics, Second Edition, McGraw-Hill,
1979. This text contains an appendix which introduces vectors and matrices.

30 -GRAPHICS PRINCIPLES

SUMMARY

New

Information

Presented

1. New objects can be created by applying transformations to primitives.

2. Transformations change the geometry of the primitives but leave their
topology the same.

3. Three basic transformations are translations, rotations, and scales.

4. When more than one transformation is applied to an object, the order in
which the transformations are applied affects the final location and
orientation of the object in the world coordinate system.

5. All transformations are applied through matrix algebra. Transformations are
concatenated into a single matrix known as the current transformation
matrix.

6. Matrices are said to be non-commutative. That is, matrix A times matrix B
does not equal matrix B times matrix A. The non-commutativity of matrix
multiplication requires the careful ordering of transformations to be applied
to graphical data.

What Next?

By applying matrix transformations to existing primitives you are now able to
move objects around and create new objects of different sizes and shapes.

In the next section, you will see how to create compound objects. Commands
exist to group collections of primitives and transformations under one name.
The resulting compound object can be transformed as a single entity.

GRAPHICS PRINCIPLES — 31

3. CREATING COMPOUND OBJECTS

Compound objects can be created with the PS 300 using primitives and transformations..;

Primitive objects and transformed primitives can be grouped into one named object
which can be transformed as a single entity.

BUILDING WITH PRIMITIVES AND TRANSFORMATIONS

No matter how complicated an object is, you can create it as a primitive by
figuring out the vector list or polygon list needed to specify the coordinates of
all the line endpoints and the way in which those points are connected. An
alternative, however, is to use primitives and transformations as building blocks
to create new objects which are compound structures.

Cre sting d Star Primitive

If, for example, you want to create an eight—pointed star centered at the origin,
making the object out of lines (not polygons) five units long, you could create it
as a primitive by entering the following vector list:

Star := VECTOR_LIST ITEMIZED N = 10 P 0,3.54 L 3.54,0 L 0,-3.54
L —3.54,0 L 0,3.54 P 2.5,2.5
L 2.5,-2.5 L —2.5,-2.5
L —2.5,2.5 L 2.5,2.5;

Notice that- this form of the vector list has the word "itemized" and has "P" and
"L" identifiers preceding each coordinate. This is necessary because the star
shape cannot be drawn as a set of continuous lines.

32 -GRAPHICS PRINCIPLES

The new primitive, Star, created by this command is located in the world
coordinate system as shown in Figure 26.

_2

—1
-- 2 -1 1 2

1 I I 1

--1

--2

_3

-4
IAS0668

4
i

Figure 2fi. Location of the Star Primitive

When Star is displayed with the correct viewing transformations applied to it
(these are discussed in Section 5), it will be located on the screen as shown in
Figure 27.

IAS0667

Figure 21. The Star Primitive Displayed on the Screen

GRAPHICS PRINCIPLES - 33

The same shape can be displayed using existing primitives without adding a new
primitive to the graphical data base. If you display at the same time the Square
primitive and the Diamond primitive that already exist in the graphical data
base, the picture on the screen will look the same as when you displayed the Star
primitive.

The advantage of using the Square and the Diamond is that you do not have to
calculate the coordinates for the Star primitive vector list. Your task as a
programmer is simplified by using existing objects.

If however, you want to do more than just display a picture of the star--if you
want to apply transformations to the star to rotate or translate it, for
example--the new primitive is easier to use than the Square and Diamond.

If you want to create a small star and move it to the upper-right corner of the
screen, you can create the small star by scaling the primitive and then apply a
translation in positive X and positive Y to the small star.

Scale_Star := SCALE BY .25 APPLIED TO Star;
Trans_Star := TRANSLATE .5,.5 APPLIED TO Scale_Star;

When displayed, Trans_Star will appear like this on the screen (Figure 28).

i AS0669

Figure 28. The Location of Trans_Star on the Screen

34 -GRAPHICS PRINCIPLES

The structure of Trans Star can be diagrammed as shown in Figure 29.

Translate (Trans Star)

Scale (Scale Star)

Vector List (Star)
IAS0671

Figure 29. The Structure of Trans_Star

If you use the Square primitive and the Diamond structure (rotation applied to
the Square) instead of the Star primitive, however, four new objects have to be
created and displayed to get the same picture.

You must crate a scaled square, a scaled diamond, a translated small square,
and a translated small diamond, and display them together.

Scale_Square := SCALE BY .25 APPLIED TO Square;
Scale_Diamond := SCALE BY .25 APPLIED TO Diamond;

Trans_Square := TRANSLATE .5 ,.5 APPLIED TO Scale_Square;
Trans_Diamond := TRANSLATE .5 ,.5 APPLIED TO Scale_Diamond;

The two structures look like this (Figure 30).

Translate (Trans Square)

Scale(Scale Square)

Vector List(Square) Rotation (Diamond)

Vector List(Square)

Translate(Trans_Diamond~

Scale(Scale Diamond)

IAS0678

Figure 30. The Structures of Trans_Square and Trans_Diamond

GRAPHICS PRINCIPLES - 35

When they are displayed together, Trans_Square and Trans_Diamond look just like
Trans_Star. However, unless this shape can be manipulated as a single entity,
some of the programming time and effort saved by not creating the star as a
primitive will be lost.

Grouping Primitives and Transformations

The PS 300 allows you to construct a single named object from groupings of
primitives and transformed primitives. The resulting compound structure
represents an object which is composed of separate parts, but which can be
treated as a single item, much like a primitive.

The INSTANCE command lets you create compound objects such as this:

Star 1 := INSTANCE OF Diamond, Square;

The object called Starl has the same dimensions and location in the coordinate
system as Star, but it is not defined as a primitive vector list. It is a compound
object which groups the two existing definitions Diamond and Square under a
single name.

This compound object can be manipulated as easily as a primitive. A small star
can be created by scaling Star 1.

Scale_Star 1 := SCALE BY .25 APPLIED TO Star 1;

And the small star can be moved to the upper-right of the screen by translating
Scale_Star 1.

Trans_Star 1 := TRANSLATE .5,.5 APPLIED TO Scale_Star 1;

The structure for Trans_Star 1 can be diagrammed as shown in Figure 31.

36 -GRAPHICS PRINCIPLES

Translate(Trans Starl)

Scale (Scale Starl)

Instance(Starl)

Rotation(Diamond)

Vector List(Square)

~AS0679

Figure 31. The Structure of Trans_Starl

The name Trans_Star 1 identifies the translation which points to Scale_Star 1. The
scaling transformation points to the name Starl. , Starl groups the vector list
defining the Square with the rotation that defines the Diamond. Both Diamond
and Square share the same primitive definition. A complete set of commands
which would create Trans Star 1 is as follows.

Trans_Star 1 := TRANSLATE .5,.5 APPLIED TO Scale_Star 1;
Scale_Star 1 := SCALE BY .25 APPLIED TO Star 1;
Star 1 := INSTANCE OF Diamond, Square;
Diamond := ROTATE IN Z 45 APPLIED TO Square;
Square := 1/ECTOR_LIST N = 5 2.5,2.5 2.5,-2.5 -2.5,-2.5

-2.5,2.5 2.5,2.5;

Unlike the separate parts it is composed of, the compound object named Starl
created by the INSTANCE command can now be treated as a single entity. The
translation and scale transformations (Trans_Star 1 and Scale_Star 1) are applied
directly to Star 1. There is no longer any need to transform the Diamond and
Square separately, now that they are grouped into a compound object.

There is also a structuring command BEGIN STRUCTURE ... END STRUCTURE
which groups primitives and transformations into compound structures with a
single name. Refer to the "PS 300 Command Language" tutorial module .for
details on using this command.

GRAPHICS PRI(~1CIPLES — 37

SUMMARY

New information Presented

1. Compound objects can be created by grouping primitives and transformed
primitives under a single name.

2. Groupings such as these can be treated as a single object. Transformations
applied to the named compound object automatically apply to the parts it is
composed of.

What Next?

The data base of graphical objects now consists of:

• Graphical primitives

• Transformed primitives

• Compound objects: structures consisting of primitives and transformed
primitives grouped into one object.

In the next section, you will learn how compound objects are used to create
complex models with parts that can be manipulated using the PS 300's
interactive devices.

GRAPHICS PRINCIPLES — 39

4. DESIGNING A MODEL FOR INTERACTION

The transformations discussed so far have been called modeling operations. They are_
equivalent in the real world to assembling the raw materials for a model and making the
parts that the model is composed of. Complex 3D models consisting of separate parts
are made by building each part as a compound object made of primitives and
transformations. The parts are then grouped together to form the complete model.

Complex models are designed as a hierarchical structure called a display tree. The
display tree shows the dependencies of parts within the model's structure and contains
all the primitives and transformations needed to create the model in the PS 300's
memory.

Models designed as hierarchical trees are a tremendously flexible design tool.
Complicated models can be created in smaller parts and assembled as the designer
requires. Changes can be made to any component of the model without affecting other
parts. Interaction with the entire model or with any component is possible using the
PS 300's dials, buttons, function keys, and data tablet.

The tutorial module "Modeling" gives an extended example of designing a model as a
display tree.

DESIGNING A COMPLEX MODEL

The PS 300 can be used to model objects of any complexity. Consider the
articulated mechanical arm shown in Figure 32.

40 —GRAPHICS PRINCIPLES

IAS0672

Figure 32. An Articulated Mechanical Arm

The arm consists of a base, two jointed sections, and a hand. The base is fixed
and cannot move. The whole arm can rotate at she base. The two arm pieces
and hand are affected by this movement. The movement at the "elbow" affects
the upper arm and hand only. And movement at the "wrist" only affects the hand.

Clearly, a computer model which simulates this mechanical arm cannot be
created as a primitive vector list or polygon list. Even if the object were
created as a primitive by a host application program, it would not be a useful
model of the mechanical arm. Transformations could be applied to translate,
rotate, or scale the complete model, but there would be no way to interact with
the individual parts. The arm could not be made to rotate at the base, the elbow
joint would not bend, and the hand could not twist at the wrist.

GRAPHICS PRINCIPLES - 41

Analyzing a Model as a Hierarchy

Complex models such as the mechanical arm which are to be designed on the
PS 300 are analyzed to determine a hierarchy of the parts that compose the
model, and to show their dependencies. A hierarchy is a principled organization
of components. The organizing principle will vary depending on the relationship
between components which the hierarchy is designed to show. The model for the
Mechanical Arm, for example, can be represented by the hierarchy in Figure 33.
This hierarchy shows the dependent and independent motion of the components.

Mechanical Arm

Base Arm

Lower arm Piece Upper Arm

Upper Arm Piece Hand

tAS0681

Figure 33. Hierarchy of Parts for the Mechanical Arm

This hierarchy shows that the model consists of a base and an arm. The arm
consists of a lower arm and an upper arm. The upper arm is made up of the
upper-arm piece and hand.

If the whole mechanical arm moves, then all the parts that compose it move
too. If the arm moves, the lower-arm piece and upper arm move with it. If the
upper arm moves, the upper-arm piece and hand move. The hand can also move
on its own without affecting anything else.

42 -GRAPHICS PRINCIPLES

DISPLAY TREES

For a complex model designed to be manipulated interactively with the PS 300, a
hierarchy is drawn as a display tree. Much like a flowchart for a
conventional computer program, a display tree represents the graphical
primitives that must be created and the transformations that must be applied to
create this model in the PS 300's memory. It also indicates the interaction
points in the model's structure to which interactive devices will be connected to
change the model dynamically.

Display Tree for the Mechanical Arm

The hierarchy that has been established for the Mechanical Arm can be used to
create the display tree shown in Figure 34.

GRAPHICS PRINCIPLES - 43

Scale Model

Translate Model

Rotate Model

Mechanical Arm

Cube

Base

Lower Arm Piece

Cylinder

Rotate Arm

Upper Arm
Piece

Arm

Rotate_Upper Arm

Upper Arm

Rotate Hand

Hand

IAS0680

Figure 34. Display Tree for the Mechanical Arm

44 —GRAPHICS PRINCIPLES

The display tree shows details of the structure of the model in the PS 300 which
the hierarchy of parts in Figure 33 does not. In particular, it includes the
primitives, the modeling transformations which create the parts of the model
from the primitives, and the interaction points which will provide motion to the
whole model and its parts.

Display Tree Terminology

Display trees consist of nodes and the branches that connect them. A node
is an element in the hierarchy. The squares are data nodes. These are used
to represent the primitives from which individual pieces of the model are built:
the cube, the cylinder, and the hand. The triangles are instance nodes.

These represent the grouping of primitives and modeling transformations into
parts: the Upper arm, the Arm, and the complete Mechanical Arm. Circles
represent transformations and are called operation nodes. Single circles
represent the modeling transformations that are applied to primitives to create
the pieces and move them into place. Double circles represent interaction
points. These are the operation nodes in the model which will receive new
values from interactive devices such as dials or the data tablet.

Nodes

Nodes are created by PS 300 commands. Commands such as VECTOR_LIST
create data nodes. ROTATE, SCALE, and TRANSLATE commands are three of
the many which create operation nodes. The INSTANCE command creates
instance nodes.

Updating Nodes

Each data and operation node contains information. A rotation node contains a
rotation matrix, a vector list node contains point and line information, and so
on. An instance node does not contain data in the same way. It acts as a pointer
to paths in the display tree and occurs at the head of a hierarchical branch. All
operation nodes and most data nodes can have their contents changed in several
ways. You can redefine the command that created the node and change its
contents that way. You can send a new value to a node using the SEND
command. Or you can program an interactive device to send a stream of
constantly changing values to a node and so change the model dynamically.

GRAPHICS PRINCIPLES — 45

Nodes have inputs to which data can be sent. The number of inputs depends on
the type of node. An input will only accept data compatible with its contents. A
rotation node, for instance, will only accept a 3X3 matrix; a translation node will
only accept a 2D or 3D vector, and so on.

Data Nodes

Data nodes represent primitive objects. Vector lists, polygon lists, curves, and
text are all defined as graphical primitives using commands which create data
nodes. These nodes always appear at the bottom of a branch. Data nodes have
inputs so that their contents can be updated. Figure 35 shows the inputs to a
vector list data node.

name

Vector

Integer

Integer

Vector

fool can

Vector

< 1 ast > Changes 1 ast vector

< clear> Clears list

< delete > Deletes from end

< append > Appends to end

< i > True=Line; False=Position

<i > Replaces i-th vector

VECTOR ,LIST
IAS0632

Figure 35. Inputs to a Vector List Node

Most of the inputs to a vector list node are named instead of being numbered. A
new vector sent to input <last> is substituted for the last vector in the list. An
integer send to input <clear> removes the vector whose position in the list
corresponds to the number sent; for example, sending 4 will remove the fourth
vector. An integer sent to input <delete> will delete that many vectors from the
end of the vector list. Any vector sent to input <append> is added to the end of
the vector list. A Boolean true or false can be sent to a numbered input (shown
as input <i>). This will change the identifier of that vector to an L for line or a
P for position. A vector sent to any numbered input is substituted for the vector
whose position in the list corresponds to the number of the input. By sending
new values to this node, you can change the geometry and topology of an object.

46 —GRAPHICS PRINCIPLES

0 peration Nodes

Operation nodes represent transformations that are applied to objects:
translations, rotations, and scales, viewing transformations (discussed in Section
5) and attribute operations (discussed in Section 6). Operation nodes have inputs
which will accept data to update a node. Figure 36 shows the input to a rotation
node.

name

3x3 matrix <1> Changes matrix value

3x3 matrix

~aso~12

Figure 36. Inputs to a Rotation Node

The rotation node has a single input which accepts a 3X3 matrix which is
substituted for the matrix currently contained in the node.

Operation nodes may be created for modeling purposes or for interaction.

Modeling nodes represent transformations used to create the original static
model by sizing the pieces and moving or rotating them into place. These nodes
are shown as single circles in the display trees. The value contained in a
modeling node is not usually updated.

Interaction nodes represent places in the model which will be connected to
interactive devices. These are operation nodes whose contents will be updated
with data from the devices to which they are connected. Interaction nodes are
shown as a double circles in a display tree. Naturally, any node that can be
updated has the potential for being an interactive node. But certain nodes are
specifically created as interaction points in a model's structure.

In Figure 34, for example, the scale node called Base is used for modeling
purposes: it scales the vector list Cube by a fixed amount in X, Y, and Z to
create the shape which forms the base of the arm.

GRAPHICS PRINCIPLES — 47

The scale node called Scale_Model, however, serves a different purpose. It is
drawn as a double circle to show that it is an interaction point in the structure.
This node will be created with a value of one (scaling by one has no effect on the
model at all). Then a dial will be programmed to supply a 3X3 scaling matrix to
this node. Each time the dial is turned, a dif f Brent scaling matrix will be sent to
update the node and the model will grow smaller or larger on the screen.

A rotation node designed for interaction is usually created with a value of zero.
When the object is displayed, the zero rotation will have no effect on the
object's orientation. As rotation matrices are supplied to the node from a dial,
the object will rotate. Translation nodes set up for interaction are created with
a value of zero in X, Y, and Z. As new vectors are sent to the translation node,
the object will move in any of the three directions.

Instance Nodes

Instance nodes group operation nodes and data nodes into larger named entities
and set up and maintain spheres of influence in the display tree.

Grouping

Instance nodes form what were called compound objects in Section 3. They
group transformations and primitives into a single named entity. In a display
tree fora complex model, instance nodes are often at the "head" of branches
which represent the individual parts of the model.

Recall the notation used in Section 3 to show the structure of the object called
Trans_Starl.

Translate(Trans Starl)

Scale (Scale Starl)

Instance(Starl)

Rotation(Diamond)

Vector List(Square)

IAS0679

Figure 31. The Structure of Trans_Starl

48 —GRAPHICS PRINCIPLES

The name Trans_Star 1 is a translation which points to Scale_Star 1. Scale_Star 1 is
a transformation that points to Starl. Starl groups the untransform~ed vector
list defining the Square with the rotated square that defines the Diamond. Both
Diamond and Square share the same primitive definition.

If the structure Trans_Star 1 is now drawn as a display tree, it appears as shown in
Figure 38.

Trans Starl _..

Scale Start

Stan

Diamond

Square v
IAS0682

Figure 38. Display Tree for Trans_Star 1

The single instance node, Spar 1, groups all of the transformations that are
applied to the primitive Square under one name.

Because instance nodes perform this grouping function, they have more than one
branch out of them. Instance nodes are the only nodes in a display tree which
may have more than one branch coming out of them, though data nodes and
operation nodes may have more than one branch into them.

GRAPHICS PRINCIPLES — 49

Sphere of Influence

In a display tree, nodes higher up in the structure affect nodes lower down. For
example, the nodes Trans_Star 1 and Scale_Star 1 at the head of the display tree in
Figure 38 affect everything below them. If a new scaling matrix is sent to
Scale_Starl, the complete model will get bigger or smaller on the screen.

However, a node can only affect its descendants, that is other nodes below it on
the same hierarchical branch. Consider a simplified representation of the
structure for the upper arm of the mechanical arm model (Figure 39).

Upper Arm

Upper Arm Piece

Cylinder

Rotate Hand
i

Hand

I AS0683

Figure 39. Structure of the Upper Arm

When a dial is connected to the interaction node Rotate_Hand, only the hand
must move, not the upper—arm piece it is connected to. So the rotation node is
placed on a different branch from the Upper_Arm_Piece data node to restrict the
sphere of influence of the rotation. The rotation will only affect the data node
Hand.

Instance nodes govern the spheres of influence in a hierarchy. Every branch out
of an instance node is affected by operations above the instance node.
Operations below the instance node in one branch affect only data in that
branch. Instance nodes maintain the integrity of each branch they govern.
Consider the following simple tree in Figure 40.

50 —GRAPHICS PRINCIPLES

Inner Part outer Part _...

Figure 40. A Simple Display Tree

The tree in Figure 40 represents the structure of the shape in Figure 41.

IAS0675

Figure 41. Shape Represented by Display Tree in Figure 40

The shape is created in two parts from a single square primitive. The inner part
is the square rotated 45 degrees in Z. The outer part is made by scaling the
square non —uniformly in X and Y. The instance node Shape groups the primitive
and both transformations into a single compound object.

GRAPHICS PRINCIPLES — 51

Both transformations are applied to the same primitive, but they apply
independently. The instance node Shape ensures that this occurs. The rotation
in the left —most hierarchical branch out of Shape does not affect the scale in the
the right branch, and vice versa. Any transformations applied to Shape (that is,
above Shape in the display tree) would then affect both branches grouped by the
instance node.

52 -GRAPHICS PRINCIPLES

SUMMARY

New Information Presented

1. Complex models consisting of separately maneuverable parts are designed as
a hierarchy of the model's components.

2. A display tree is a hierarchy which shows the primitives, transformations, and
groupings that are used to create the model in the PS 300. Display trees
consist of data nodes, operation nodes, and instance nodes, and the branches
that connect them.

3. Data nodes and operation nodes can have their contents modified. Certain
operation nodes serve as interaction points in the model. They are designed
to be updated by values from the interactive devices. In this way, a dial can
be connected to a rotation node, for example, to allow the model to be
dynamically rotated.

What Next?

The data base now contains all of the "building blocks" for complex models.

• Primitives

~ Transformed primitives

• Compound objects

• Complex objects: hierarchical groupings of independent parts of a model,
equipped with interaction points

In the next section, you will see how viewing nodes are added to the display
tree to create different views of the model that has been created.

GRAPHICS PRINCIPLES - 53

5. LOOKING AT OBJECTS

When you have created an object as a primitive, a compound object, or a complex
model, you will want to get some view of that model on the screen.

In the real world, you can see a different view of an object by moving it. This is
simulated in a graphics system by applying modeling transformations (translations and
rotations) to the object. An alternative in the real world is for you to move. Leaving
the object alone, you can walk around it, and change your viewpoint.

The PS 300, in effect, lets you do the same thing. Using viewing operations, you
can obtain a number of "natural" views of a model on the screen.

These operations mimic the way you look at objects in real life. You decide your eye
point in the coordinate system and the direction you are looking in. You can determine
how much of the world coordinate system (and the model) will appear in your view. You
can enhance your perception of three dimensions using perspective (to make objects
further away appear smaller) and depth-cueing (to make them dimmer as they
recede). In the real world, objects at a distance or outside your range of view disappear
naturally. The PS 300 performs clipping to eliminate objects or parts of objects
that lie outside the screen boundaries.

Once you have determined the particulars of the view (the viewpoint and "window" into
the world coordinate system) you can determine where that view will appear on the
screen. Areas of the PS 300 screen can be defined as viewports in which views of
the models will appear.

Viewing operations are defined as part of a model's structure. They are represented as
operation nodes in the display tree.

54 —GRAPHICS PRINCIPLES

VIEWING OPERATIONS

The modeling transformations discussed earlier let you use primitives as building
blocks for the components of a hierarchically structured model, changing their
basic shape and moving them into position. Once the model is designed, you need
to get a picture of it on the screen. The PS 300 offers a set of viewing
operations that can be applied to a model to create various views of objects in
the world coordinate system.

Displaying an Object

With the PS 300, you can get a picture of a model on the screen by entering a
single command. Consider a square with sides one unit long. This shape can be
created by entering the following vector list.

Square := VECTOR_LIST N = 5 .5,.5 .5,—.5 —.5,—.5, —.5,.5, .5,.5;

To display this shape on the screen, it is sufficient to enter

DISPLAY Square;

The Square shape will appear on the screen as shown in Figure 42.

r

IAS068b

Figure 42. The Location of the Square on the Screen

GRAPHICS PRINCIPLES — 55

The apparent operation of a single command is, in fact, more complicated. The
PS 300 does not simply display Square; it displays a view of Square. Before the
PS 300 can display this view it needs information about

• A Line of sight--your vantage point (as viewer) in the world coordinate
system and the direction in which you are looking.

• A viewing area--what part of the world coordinate system to include in
the view.

• Aviewport--where on -the PS 300 screen to display the view.

If you do not specify a line of sight, a viewing area, and a viewport, the PS 300
uses default values. It assumes you are looking from the origin along the positive
Z axis. The viewing area extends from —1 to 1 in X and Y and from almost zero
to 10' S in Z. And the viewport is the full PS 300 screen. These three default
values are in effect when you simply display the Square.

ESTABLISHING A LINE OF SIGHT

In the real world, you establish a Zine of sight by standing in some spot,
looking towards something, and possibly tilting your head. This gives you a
specific view of the object you are looking at. The PS 300 simulates this same
ability with a LOOK command. Suppose, for example, the world coordinate
system contains a cube with its faces labeled Top, Bottom, Front, Back, Left and
Right. The cube is centered around the origin, as shown in Figure 43.

Y

i

i

~z

IAS0684

Figure 43. A Cube With Labeled Faces

56 —GRAPHICS PRINCIPLES

For clarity in the following illustrations, only three labels are shown at a time.
If you display the cube without changing the default line of sight, viewing area,
or viewport, the screen will show the picture in Figure 44.

i

FRONT

1

~. /
IAS0686

Figure 44. Displaying the Cube

If you want a picture of the top of the cube, you can think of this as moving your
eye above the cube and looking down the Y axis at it, as shown in Figure 45.

i IAS0685

Figure 45. "Looking Down" the Y Axis at the Cube

The view of the cube which will be displayed is shown in Figure 46.

GRAPHICS PRINCIPLES — 57

r

TOP

1

 J

I AS0687

Figure 46. Looking Down at the Cube: the View on the Screen

A PS 300 command which will create this view of the object is as follows:

Top_View := L.00K AT 0,0,0 FROM 0,.5,0 APPLIED TO Cube;

An optional UP clause in the command lets you specify what direction is up.
This is equivalent to tilting your head left or right.

The concept of "looking at an object" is a very natural way for humans to think.
With a graphics system, of course, every visual effect is an illusion. When you
look at an object from a location in the world coordinate system, the computer
cannot actually move your eye to that location. Instead, it applies
transformations to the points and lines that comprise the object and creates a
picture of what you would see if you could move your eye.

To get this effect, the LOOK command actually performs the following
transformations. First, it translates all points in the coordinate system so that
the FROM point is at the origin. It then rotates all points so that you are looking
along the positive Z axis towards the AT point. It also rotates points so that the
"up" vector is in the positive YZ plane. The ultimate effect of all this is to place
your "eye" at the origin and place the object you are looking at in front of your
"face" in the positive Z axis.

After you create Top_View with the LOOK command, the world coordinate
system and the points and lines defining the cube have been transformed as
shown in Figure 47.

58 —GRAPHICS PRINCIPLES

IAS0688

x

Figure 47. How the LOOK Command Rearranges the Coordinate System

This rearrangement of the world coordinate system is accomplished with a 4X3
transformation matrix, a compound matrix of rotations and translations. The
PS 300 uses the information you supply in the LOOK command to create this
matrix. It then multiplies all coordinates by this matrix to create the correct
"view" of the object for the line of sight you specified.

The tutorial module "1/iewing Operations" teaches how to use the LOOK
command with all of its options. Mastering this command lets you locate your
eye—point anywhere in the world coordinate system, look in any direction, and
specify any direction as "u p" to create a specific view of an object.

INCLUDING PART OF THE WORLD COORDINATE SYSTEM

In the real world, your view is limited by several factors. If you do not change
your position, you cannot see things that are behind you or to either side beyond
your field of view. Your view is further limited if you are looking out of a
window, or through binoculars or the view finder of a camera. You can only see
whatever part of the world is "framed" by the window or the lenses.

GRAPHICS PRINCIPLES — 59

With a graphics system, looking at the world coordinate system is much like
looking through a view finder. You must specify how much of the world will
appear in the view which is displayed on the screen. An area of the world
specified for viewing is called a viewing area or a window. To "see" an
object in the world coordinate system, that object must lie in the direction of
your line of sight and must be contained within the viewing area you specify.

Viewing Areas in the Worid Coordinate System

The PS 300 lets you create two types of viewing areas. The WINDOW command
creates a viewing area for orthographic or parallel projection views. The
FIELD_OF_VIEW and EYE commands create a viewing area for displaying objects
as perspective views.

Orthographic Views

A viewing area for orthographic views can be thought of as a box which can be
positioned anywhere in world coordinate space but oriented with its sides parallel
to the three major coordinate system planes (XY, XZ, and YZ), as shown in
Figure 48.

i

Figure 48. An Orthographic Viewing Area

60 —GRAPHICS PRINCIPLES

The viewing area defined by the box has limited X (width}, Y (height}, and Z
(depth) dimensions. In general, if an object lies within the area, it is visible; if it
is outside the space, it is not visible. The X and Y boundaries of the viewing
space are always in effect. Any object outside those boundaries is never visible.
The XY planes at the front and back of the box, however can be enabled or
disabled at will. If these planes are disabled, as long as an object lies within the
X and Y boundaries, it will be visible no matter where it is located along the
positive or negative Z axis. This is shown in Figure 49.

I ASOfi89

Figure 49. "Visible" and "Non-V1S1b1e" Objects

If an object is only partially within the XY bounds of the viewing area, only parts
of it are visible. In this case, the computer calculates which lines are visible and
clips those that are not visible from the view (Figure 50).

lASOb90

i ~

~~~3C1 ipped Lines 
~ ~ 
~~ 

Figure 50. Clipping Parts of an Object 



GRAPHICS PRINCIPLES — 61 

Clipping can also be specified in the Z dimension by enabling the front and back 
faces of the viewing space which are called clipping planes. The front 
boundary is sometimes called the hither plane; the back is called the ion 
plane. Objects or parts of objects that lie outside the front and back boundaries 
may be clipped from view. This is known as depth—clipping, and is illustrated 
in Figure 51. 

~~ Clipped Lines 
I ~~~ 1 

I 

Front Boundary• 1 

IAS0691 

Back Boundary 

Figure 51. Depth-Clipping of Objects 

Objects within an orthographic viewing area are displayed in orthographic or 
parallel projection. This produces a view in which lines that are parallel in 
the object remain parallel in the view. A rotated cube viewed in orthographic 
projection, for example, appears as shown in Figure 52. 

IAS0692 

Figure 52. Orthographic View of a Rotated Cube 



62 -GRAPHICS PRINCIPLES 

An object must be enclosed in a viewing space before it can be displayed. If you 
simply display an object (as with the Square at the beginning of this Section) 
without explicitly defining a viewing space, the PS 300 defines one for you. The 
default viewing space imposed by the system is shown in Figure 53. 

i 

Figure 53. The Default Viewing Space 

This is a viewing space for orthographic views only. It extends from -1 to 1 in 
the X and Y dimensions, and from 10 -'  S (almost zero) to 10' S in Z. 

With the PS 300, a viewing space for orthographic views is created explicitly 
with the WINDOW command. For example, the command 

New_Uiew := WINDOW X = -2:2, Y = -2:2 APPLIED TO Cube; 

creates a viewing space twice as high and twice as wide as the default space, but 
with the same depth. Optional parameters of the command allow you to change 
Z values by specifying the location of front and back clipping planes. The 
section called Defining An Orthographic Window in the "Uiewing Operations" 
module explains the WINDOW command and its options. 

Perspective Views 

One way in which the PS 300 creates the illusion of depth on a flat. screen is to 
display objects in perspective. 



GRAPHICS PRINCIPLES — 63 

In perspective views, parallel lines that go back from your eye point appear to be 
converging. A rotated cube viewed in perspective might appear as shown in 
Figure 54. 

 1 
IAS0693 

Figure 54. Perspective View of a Rotated Cube 

A perspective viewing space is a volume shaped like a frustum: a section of a 
pyramid bounded by the front and back clipping planes. If you extend the sides 
of the pyramid back, the apex of the pyramid is the eye point as defined in the 
LOOK command (Figure 55). 

/~ 
// ~ 

~= 

Eyepoi nt 
Front Boundary 

Back Boundary 

IAS0694 

Figure 55. A Viewing Area for Perspective Views 

Two PS 300 commands create perspective views: the FIELD OF_VIEW command 
and the EYE command. Both commands are used in conjunction with the LOOK 
command. 



64 —GRAPHICS PRINCIPLES 

The FIELD_OF VIEW command (abbreviated to FOV) lets you specify an angle of 

view from the eye point, which is the FROM point specified in the LOOK 
command. Optional clauses let you specify the location of front and back 

boundaries. These determine the depth of the viewing area created with this 
command. A perspective view is fully defined in conjunction with a LOOK 
transformation. If no LOOK is specified, the default values are assumed. 

The following commands set up a line of sight and a perspective view of an 
object called Cube using a viewing angle of 30 degrees. 

Look_Cube := LOOK AT 0,0,0 FROM 0,0,-5 APPLIED TO Cube; 
View_Cube := FIELD OF VIEW 30 FRONT = 4.5 BACK = 5.5 

APPLIED TO Look Cube; 

The LOOK transformation will place the center of the Cube at 5 in the positive 
Z axis, so assuming the cube is one unit square, front and back boundaries of 4.5 
and 5.5 should enclose it. When View Cube is displayed, the screen will show a 
cube seen in true perspective. 

Note that the angle you enter in the FOV command does not alter the severity of 
the perspective imposed on the object. That is determined by the distance 
between your eye and the object and depth of the object itself. Instead, the 
angle lets you see more or less of the world coordinate system. The larger the 
angle, the larger the portion of the world that will be included in the view. 

,, 

In a perspective view created using the FOV command, the lime of sight 
established by the LOOK command is always perpendicular to the from and back 
boundaries of the frustum and passes through their centers. Thy viewing 
"pyramid" is always right rectangular. This is shown in Figure 56. 



GRAPHICS PRINCIPLES — 65 

Back Boundary 
90° 

Line of Sight 

J 

Front Boundary 

1ASOb95 

Figure 56. The FIELD_OF_VIEW Viewing Pyramid 

The EYE command is used to create a view of an object as it would appear 
displayed on a screen which is positioned at an angle to your line of sight, not 
perpendicular to it. This perspective view simulates the "natural" distortion- of 
screen displays that your own eye would see if it were some distance back, up or 
down, and left or right of the PS 300 screen. 

Like the FIELD OF VIEW command, the EYE command creates a perspective 
-view of an object. The eye point and the .front and back clipping planes specify a 
pyramid—shaped viewing area. However, if the eye point is offset left, right, up, 
or down, the pyramid is skewed, unlike the right rectangular pyramid created by 
the FIELD OF VIEW command (Figure 57~. 



bb —GRAPHICS PRINCIPLES 

Line of Sight 

Front Boundary 

Back Boundary 

i 

IAS0696 

Figure 57. The Viewing Pyramid 
Created by the EYE Command 

The LOOK command must be used first to establish a line of sight on the object 
to be displayed. Then, clauses in the EYE command let you specify the front and 
back boundaries of the viewing area in world coordinates and your eye location 
relative to the center of the screen in relative room coordinates. Note the 
difference between room coordinates and world coordinates. World coordinates 
are locations in the world coordinate system where models are built and viewed. 
Room coordinates are locations within the real world (the computer room where 
the PS 300 lives) and are used to simulate the actual location of your eyes 
relative to the PS 300 screen. This is a rare instance of when it is permissible to 
mix the computer's coordinate system and real—world coordinates, since the 
room coordinate values in the command are used for ratio and proportion 
operations only. 

The following is an example of setting up a viewing area with the EYE command. 

Look_Cube := LOOK AT 0,0,0 FROM 0,0,-5 APPLIED TO Cube; 
Oblique_View := EYE BACK 20 LEFT 5 UP 12 FROM SCREEN 

AREA 20 WIDE 
FRONT = 4.5 BACK = 5.5 APPLIED TO Cube; 

In this command, the front and back boundaries are chosen to enclose the cube 
after the LOOK transformation has taken place. When Oblique_View is 
displayed, the cube will appear in the correct perspective to simulate an eye 
position that is back from the screen, over to the left and somewhat high. 



GRAPHICS PRINCIPLES — 67 

The section called Defining Perspective Windows in the "Uiewing Operations" 
modules fully explains the FIELD_OF_UIEW and EYE commands with all of their 
options. 

DISPLAYING AN IMAGE IN SOME AREA OF THE SCREEN 

Whenever you instruct the PS 300 to display an object by simply using the 
DISPLAY command, as long as the object fits within the default window (that is, 
from 1 to —1 in X and Y and from 10 -'  S to 10' S in Z) it will occupy the full 
screen. For example, a cube defined around the origin with sides 2 units long fits 
exactly in the default window. When the cube is displayed, an orthographic view 
will appear which fills the entire display area of the screen, as shown in Figure 
58. 

 1 

 J 
1 AS0687 

Figure 58. Displaying an Object With the Default Window 

Specifying a Viewport 

When an image is displayed on the screen, the view of the object contained in the 
viewing area is mapped to a viewport. A viewport is an area of the screen 
with horizontal (X) and vertical (Y) boundaries and an optional intensity range. 
The intensity range specifies the dimmest and the brightest that lines will be 
drawn on the screen. Lines at the front clipping plane of the viewing area will 
be brightest. By default, lines at the back clipping plane will be dimmest. The 
variation of intensity levels within a viewport creates an effect known as 
depth-cueing. 



68 -GRAPHICS PRINCIPLES 

Perspective views created with the FIELD_OF_VIEW or the EYE command 
naturally give the illusion of depth to any object displayed on the screen. This 
illusion is further enhanced by depth-cueing. When intensity levels have been set 
f or a viewport, the PS 300 varies the intensity of lines in the view that represent 

the Z dimension (depth) of the object. Aline that recedes in the Z axis from the 

eye point gets dimmer as positive Z values increase. This gives the impression 

that objects are being displayed in a place that is brightly lit close to you and 

more dimly lit farther away. Depth-cueing can be turned on or off. The default 

is on. 

The default viewport to which the PS 300 maps views of objects in the viewing 

area is the full screen, and the full intensity range (from 0 to 1) is in effect. The 
VIEWPORT command lets you change the size of the viewport, relocate the 
viewport anywhere on the screen, and vary the intensity. The following 
command, for example, creates a viewport in the upper-right quadrant of the 
screen, and sets an intensity range from .5 to 1. 

New_Viewport := VIEWPORT HORIZONTAL=0:1 VERTICAL=0:1 
INTENSITY=.5:1 APPL_IE D TO Cube; 

When New Viewport is displayed, a cube will appear in the upper-right quadrant 
of the screen. There will be less contrast between the brightest and the dimmest 
lines than in the original view of Cube. 

To obtain an accurate view of an object, the viewport it is displayed in must 
have the same aspect ratio as the viewing area that encloses the object. The 
aspect ratio is the ratio of height to width. Objects defined in viewing areas 
with square front and back boundaries and displayed in non-square viewports 
will appear distorted. 

An arrow enclosed in a square viewing area and displayed in non-square 
viewports, for instance, may look like this (Figure 59). 



GRAPHICS PRINCIPLES — 69 

SCREEN 

WINDOW 
r 
i 
i 

L 

Figure 59. Distorted Views of the Arrow 

IAS0697 

Distortion also occurs when non —square viewing areas are displayed in square 
viewports. The FIELD_OF_VIEW and EYE commands always create viewing areas 
with an aspect ratio of l:l, a square. The WINDOW command can be used to 
create a viewing area with an aspect ratio that is not 1:1, anon—square viewing 
area. 

Any size and any number of viewports may be displayed at the same time. In 
this way the screen can be used to show multiple views of the same object or 
different views of different objects. 

Note that viewport operations are the only viewing operations which are not 
matrix transformations of graphical data. When the contents of a viewing area 
are mapped to a viewport, this is a ratio and proportion operation, not a 
transformation of coordinates in the world coordinate system. 



70 —GRAPHICS PRINCIPLES 

VIEWING TRANSFORMATIONS AND DISPLAY TREES 

When views of objects are created, viewing operation nodes are added to the 
display tree. 

Consider, for example, the group of objects shown in Figure bo. 

r

Figure 60. A Group of Objects in the Coordinate System 

The group consists of three primitives: a sphere centered around the origin, and a 
cube and pyramid translated off the origin. These primitives have been grouped 
as an instance called Shapes. The display tree for Shapes is shown in Figure 61. 

Shapes 

I AS0699 

' a Q~ 
'~~ ~Q 

Q 

Figure 61. Display Tree for Shapes 



GRAPHICS PRINCIPLES - 71 

If you use the DISPLAY command to view Shapes, the picture on the screen will 
be as shown in Figure 62. 

IAS0700 

Figure 62. DISPLAYing Shapes 

The default viewing space is a window for orthographic projection, the default 
LOOK is in effect, and the default viewport is the full screen. To get any other 
view of Shapes on the screen, you must explicitly use the viewing commands. 

To establish a different line of sight, for instance, use the LOOK command as 
follows. Look towards the origin from a position that is left (negative X), up 
(positive Y), and back (negative Z) from the origin. 

view_Shapes := LOOK AT 0,0,0 FROM -1,1,-5 APPLIED TO Shapes; 

The LOOK command adds the following node to the display tree (Figure 63). 

V 

~¢' '~ 
r ¢, ~~ 

~~ Q 

V 

'OQ' 
v~ 

i AS0701 

Figure 6 3. Adding the LOOK Node 



72 —GRAPHICS PRINCIPLES 

Now build a viewing area around Shapes so that the objects can be seen in 
perspective projection. First calculate where the LOOK command has actually 
placed the objects in the coordinate system. Remember that all coordinates are 
translated and rotated so that the FROM point is at the origin and the AT point 
is in the positive Z axis. The new location of an object in Z is found by taking 
the square root of the following equation. 

~Xa — Xf~ 2 + (Ya — Yf~ 2 + (za — zf~ 2

In this equation, "a" is the AT point in X, Y, and Z and "f" is the FROM point. 

In a LOOK command with a FROM point of 0,0,0 and an AT of —1,1,-5, the new 
location in Z of the sphere (the one object exactly at the origin) is the square 
root of 27, or 5.1962. This is shown in Figure 64. 

+Y 

Figure fi4. The LOOK Trdnsf ormation 

For maximum depth —cueing of the objects, the front and back boundaries of the 
perspective viewing area should be close to the objects. The sphere is a 
primitive with a radius of .15, so the front boundary should be placed at 5.1962 —
0.15, which is 5.0462. The back boundary can be placed further back at about 6. 
This is shown in Figure 65. 



GRAPHICS PRINCIPLES — 73 

Back Boundary 

5.tJ462 

T►. 
 • ►J Front Boundary 

0_____ 

~aso~o3 

Figure fi 5. Calculating the Front and Back Boundaries 

Finally a viewing angle must be chosen. An angle of about 28~ should suffice. 
The command to create the perspective view, then, is as follows. 

Perspective_View := FIELD_OF_VIEW 28 FRONT = 5.0462 BACK = 6 
APPLIED TO View_Shapes; 

This adds a viewing matrix node to the display. The new structure is shown 
below (Figure 66). 



74 -GRAPHICS PRINCIPLES 

Perspective View 

View Shapes 

Shapes 

IAS070~ 

~Q' • ~ 
~~ ~~ 

~~ ~~ 
Q 

Figure 66. Adding the F 0 V Lode 

Next, create a viewport in the upper-right corner of the screen. This is where 
the view of Shapes will be displayed. Do not use the optional intensity clause, so 
Shapes will be displayed with the full intensity in effect for maximum 
depth-cueing. 

Final View := VIEWPORT HORIZONTAL=o:I VERTICAL=0:1 
APPLIED TO Perspective_View; 

The display tree for the final view is shown in Figure 67. 



GRAPHICS PRINCIPLES - 75 

Final View 

Perspective View 

View Shapes 

Shapes 

IAS0743 

Figure fi 7. Adding the V I E W P O R T Node 

When Final_1/iew is displayed, the PS 300 screen will appear as shown in Figure 
68. 

~~~ 

IAS0744

Figure 68. The Final Display

76 —GRAPHICS PRINCIPLES

SUMMARY

New Information Presented

1. Viewing operations are matrix and non —matrix operations that let you create
a variety of views of objects and display those views anywhere on the PS 30~
screen.

2. A complete "view" is created by establishing a line of sight, defining a
viewing area in the world coordinate system, and defining a viewport on the
PS 300 screen. The PS 300 assumes default values for all three if they are
not explicitly specified.

3. A Iine of sight is a matrix operation which specifies a point to look from and
a direction to look at. You can also specify which direction is up. Whatever
values you assign to these variables, the PS 300 translates coordinates so that
the "look from" point is at the origin and the "look at" point is somewhere in
the positive Z axis. It also rotates alI coordinates so that "up" is in the YZ
plane.

4. Viewing areas result from matrix transformations which produce orthographic
or perspective views of objects. For an object to be visible, it must be
enclosed in a viewing area. Objects or parts of objects that lie outside the
viewing area are clipped, and do not appear in the view displayed on the
screen.

5. A viewport is the area of the screen in which the contents of a viewing area
are displayed. Viewports are not matrix operations. Any number of
viewports and any sized viewports can be displayed at the same time. A
difference between the aspect ratio (height to width) of the viewing area and
the aspect ratio of the viewport will result in a distorted view of the object.

6. Viewing transformations add operation nodes to the display tree for an object.

What Next?

The data base now contains display trees that represent many different views of
the basic models that have been created. By displaying these views, any number
of images can be displayed on any part of the PS 300 screen.

In the next section, you will see how attributes can be assigned to the objects
you create.

GRAPHICS PRINCIPLES — 77

fi. USING ATTRIBUTES

Modeling operations let you create objects of any complexity with the PS 300. Using
viewing operations, you can create an infinite number o f dif f Brent views of the objects
and display them anywhere on the screen.

Another set of operations add a further range of possibilities to the images that are
displayed. They let you assign attributes to an object to enhance its usefulness in
modeling and analysis applications.

ATTRIBUTES

All modeling and viewing operations (other than viewports) transform the
coordinates of objects in the world coordinate system to create new objects.
Each transformation adds an operation node which applies matrix operations to
the object definitions.

The PS 300 lets you add other operation nodes to a display tree which do not
transform graphical data and so do not create transformation matrices. These
nodes assign attributes to an object.

Attributes offer a variety of possibilities for changing the characteristics of a
displayed image. These include:

• Determining aspects of the image such as color, intensity, and the character
font in which text appears.

• Referencing objects or parts of objects for display only when certain
conditions are met.

• Marking parts of the displayed image as capable of being "picked" with a
stylus, puck, or other pointing device.

78 —GRAPHICS PRINCIPLES

Attribute settings are different from transformations because they are not
matrix operations. Attribute nodes set and change values which are stored in
registers. These registers record the current state of the machine. When the
PS 300's Display Processor encounters an attribute node in a display tree, the
contents of the node are used to check and sometimes to change the register
representing that attribute. For example, an attribute node which sets
depth-clipping can enable or disable depth-clipping, depending on the Boolean
value contained in the node.

There are three classes of attributes: appearance attributes, structure
attributes, and picking attributes.

APPEARANCE ATTRIBUTES

Appearance attributes govern the following aspects of an object when it is
displayed.

• The colors of lines that form the image.
• The intensity at which lines are drawn.
• Whether or not depth-clipping is performed on the image.
~ The character font for any text in the image.

Displaying Objects in Color

If you have the optional Color Shadow Mask (CSM) Calligraphic Display, you can
display objects or parts of objects in different colors. Color is specified as a hue
and a saturation. The hue is the color itself. There are 360 hues to choose
from. These correspond to values on a color wheel as shown in Figure 69.

GRAPHICS PRINCIPLES - 79

Yellow
18~

lAS0479

Figure fi g. The Color Wheel

Blue has a value of 0 and 360, red is 120, and green is 240. The saturation is the
amount of color versus the amount of white in the hue, and is specified as a
range from 1 to 0. Blue at high saturation is deep-toned. At low saturation, it is
sky blue, and at 0 saturation it is white.

There are two options for displaying images in color. One is to make all the
vectors that compose an object the same color. The other is to "color blend" the
individual vectors of an object.

Displaying All Vectors in the Same Color

Color is applied to an object using the SET COLOR command. A cube can be
colored red by applying the following command to Cube.

Red_Cube := SET COLOR 120,1 APPLIED TO Cube;

When Red_Cube is displayed on the GSM, the lines that form the cube will appear
in full-bodied red on the screen.

With complex objects, different parts of the object can be displayed in different
colors. Each SET COLOR command creates an operation node in the display tree
for the object. Consider the Mechanical Arm discussed in Section 4. A
simplified display tree is as shown in Figure 70.

80 —GRAPHICS PRINCIPLES

Mechanical Arm

Sa se

Lower Arm Piece
- _

Cylinder

Upper Arm ._._
Piece

Arm

Upper Arm
I

IAS0705

Hand

Figure 70. A Simplified Display Tree for the Mechanical Arm

You can use the SET COLOR command to color the parts of the model
separately. For example, the base can be colored red, the arm pieces blue, and
the hand green. The display tree with the SET COLOR nodes added is as shown
in Figure 71.

GRAPHICS PRINCIPLES — 81

Mechanical Arm

R

Lower Arm Piece

arm

ET CO! OR
240

SET COLON
360

iAS0706

Figure 71. Display Tree With Color Nodes

Nand

For more information on color nodes, refer to the section called Setting Color in
the "Viewing Operations" module.

82 -GRAPHICS PRINCIPLES

Color Blending Vectors

The other way to use color with the PS 300 is to color blend each of the vectors
in a vector list. This form of coloring is known as color blending because if two
adjacent vectors are of different hues, the hue of the line segment between them
is blended continuously between the endpoints.

Two commands are used to color-blend vectors: the SET COLOR BLENDING
command and the VECTOR LIST command.

For example, to display a line that has red and green endpoints and shades of red
and green between them, a vector list is created for the line using the optional
COLOR clause and a hue value (H} for each endpoint. The following command
will create the line.

Line := VECTOR_LIST COLOR N = 2 0,0,0 H=120, 1,1,0 H=240;

To initiate color blending of the vector, the SET COLOR BLENDING command is
used. This command has a clause which lets you determine the saturation of the
color displayed. A 1 represents full saturation for deep-toned colors; a 0
represents no saturation, that is, white. The following command initiates
full-saturation color blending for the vector list named Line.

Colored_Line := SET COLOR BLENDING 1 APPLIED TO Line;

When Colored_Line is displayed, assuming that the default LOOK, WINDOW, and
VIEWPORT are in effect and that the contrast has been set to 0, a diagonal line
will be displayed from the center of the screen to the upper-right corner of the
screen. The line will be red at the center of the screen and will gradually blend
colors along its length to green at the other endpoint.

For more information on color blending by vector, refer to the SET COLOR
BLENDING and the VECTOR_LIST commands in the Command Summart~ in Volume
3A.

GRAPHICS PRINCIPLES — 83

Setting and Changing Intensity
Levels

The PS 300 can be programmed to vary the intensity at which line segments are
drawn between endpoints. This ability is used to good effect in the process
known as depth—cueing. Depth —cueing enhances the illusion of
three—dimensional views by varying the intensity of any line that recedes in the
positive Z axis. Lines in an image which are "farther away" from the viewer
appear dimmer.

Intensity levels are associated with viewports. An option of the VIEWPORT
command allows you to specify the intensity variation for lines drawn within the
viewport. A minimum and a maximum intensity are specified as values from 0 to
1. When objects enclosed in an orthographic or perspective window are mapped
to the viewport, lines closest to the front boundary of the window are drawn at
maximum intensity, and lines closest to the back boundary are drawn at
minimum intensity.

The PS 300 also has a SET INTENSITY command which allows intensity to be
specified as a separate attribute of an object. The command creates an
attribute operation node in a display tree which overides the intensity
specification of a 1/IEWPORT command.

A SET INTENSITY node in a display tree is often used as an interactive node.
The node has two inputs. One accepts a Boolean value to enable or disable the
effect of the node. The other accepts a 2D vector to change the intensity
range. Thus a SET INTENSITY node in a display tree can be used to interactively
change the intensity setting of a displayed image. The following command
creates a node named Change_Intensity.

Change_Intensity := SET INTENSITY OFF 0.0:0.5 APPLIED TO Car;

The display tree which contains this node might be structured as in Figure 72.

84 —GRAPHICS PRINCIPLES

Change_Intensi ty

Qv+ ~ Function Key

Dial

Figure 7 2. A n Interactive Intensity Node

Function networks connect the two inputs of the node to interactive devices.
Until the SET INTENSITY node is enabled, the intensity setting of the viewport
(the default setting of 0:1) is in effect. A Boolean TRUE sent to input < 1 > from

a Function Key will enable the SET INTENSITY node. New intensity settings can
then be supplied from a dial, so that the operator can interactively change the
intensity setting while viewing an image.

For more information on setting intensity, refer to the section called Setting
Intensity in the "Uiewing Operations" module.

Enabling and Disabling Depth-Clipping

Depth—clipping is the operation of clipping (removing from the screen) objects
or parts of objects that extend outside the viewing area in Z. The PS 300
automatically clips objects or parts of objects which extend beyond the X and Y
boundaries of a window. Depth —clipping (or Z —clipping) is an optional feature
which is not in effect when the system is initialized. It is specified as an
attribute of an ob.~ect.

GRAPHICS PRINCIPLES - 85

Orthographic and perspective windows are defined with front and back
boundaries or Z-clipping planes. When depth-clipping is enabled, only objects
or parts of objects that lie within the area bounded by the Z-clipping planes will
be displayed in the viewport. This is illustrated in Figure 73.

.~.~

~ Back Clipping Plane

World Coordinate

System

Front Clipping Plane SCREEN

tAS0707

Figure 13. Depth-Clipping Enabled for a Viewing Area

When depth-clipping is disabled, objects that lie outside the Z-clipping planes in
the positive or negative Z axis will be visible. Consider the objects in Figure 74.

86 —GRAPHICS PRINCIPLES

Back C1 i ppi ng P1 ane~

Front Clipping Plane

i
IAS0708

Figure 74. Objects Outside the Front and Back Boundaries

The cube and the sphere will not be displayed if depth—clipping is on, because
they Iie outside the front and back boundaries. When depth—clipping is turned
off, however, they will be displayed.

Objects in front of the front boundary, such as the cube, will be displayed at
maximum intensity. Objects behind the back boundary, such as the sphere, will
be displayed at minimum intensity.

The following command enables depth —clipping for an object called Rotated_Car.

Z_Clip := SET DEPTH_CLIPPING ON APPLIED TO Rotated_Car;

A display tree into which the SET DEPTH_CLIPPING node is inserted is shown in
Figure 75.

GRAPHICS PRINCIPLES - 87

Z C1 ip

Rotated View

Rotated Car

Car
V

IAS0710

Function Key

Figure 75. Display Tree With Depth-Clipping Node

The node can be turned on or of f interactively. It has one input which accepts a
Boolean true or false. TRUE turns depth-clipping on; FALSE turns it off. A
Function Key can be connected to the node to toggle depth-clipping on and off.

Displaying Images on Different Screens

Another optional attribute of an object is whether or not it will appear on a
particular screen when it is displayed. Users of a PS 300 system with more than
one display station can channel an image to any of the screens by adding SET
DISPLAY nodes to the display tree of the object.

Initially, when an object is displayed it will appear on all the screens in the
configuration. For example, an installation that has one workstation and two
display stations has three displays: 0, 1, and 2. When the programmer creates an
object at the workstation and enters a DISPLAY command, the image will appear
on all three screens if the SET DISPLAY command has not been used. The
command can be used to channel the image to selected screens only.

88 —GRAPHICS PRINCIPLES

The following command stops an object called Cotter Pin from being displayed
on displays 1 and 2.

Single_Screen := SET DISPLAY 1,2 OFF APPLIED TO Cotter_Pin;

When Single_Screen is displayed, Cotter_Pin will appear on the workstation
screen (display 0) but not on the display station screens (displays 1 and 2). An

alternate version of the command has a parameter "ALL" which refers to any
displays lower in the same branch of the display tree that are set using the SET
DISPLAY command. This can be used to reset all the displays in a branch to the
same state.

For more information on selectively displaying objects, refer to the section
called Setting Displays ON and OFF in the "Viewing Operations" module.

Choosing a Character Font for Text

If text forms part of an object as a label, a menu item, or annotation, for
example, you can add attribute nodes in the display tree to allow different
character fonts to be used.

The PS 300 has a standard character font in which ~ all text appears. You also
have the ability to create alternate fonts. There is a command which allows you
to design any number of other character fonts. This command (BEGIN_FONT
END_FONT;) lets you enclose up to 128 separate vector lists defining characters
within a named structure. Each vector list defines a letter, character, or
number in the character font. For more information on the BEGIN FONT ...
END_FONT; command, consult the Command Summary in Volume 3A and the "Text
Modeling and String Handling" module. Also, in Volume 4 there is a user's guide
to MAKEFONT, a graphical character font editor program. This program allows
you to create new character fonts, to combine fonts, and to change existing
fonts.

Once an alternate font has been created, it can be used by setting an attribute
node in the display tree. Suppose that the alternate fonts Italic and Modern have
been created, and that character strings in a display tree are to be displayed in
the standard font and in Italic and Modern. Consider the display tree in Figure
76 for a group of labelled objects.

GRAPHICS PRINCIPLES — 89

~.abe~ ed Shapes

`QQa , ~?

V
~ ~~ ~`~ ~

~~ ~~ Q

~~
~~ ~

'~
~ ~~

~ ~

IA~C1745

Figure 76. Display Tree for a Group of Labeled Objects

The instance node Labeled_Shapes groups vector lists for three objects (a cube, a
sphere, and a pyramid) and character strings ("Cube", "Sphere", and "Pyramid")
to label the objects. Each character node is created by the CHARACTERS
command. The character nodes are preceded by a CHARACTER SCALE and a
TRANSLATE node to scale the characters and move them to their correct
location. When Labeled_Shapes is displayed, the three objects will appear labeled
in the standard font.

Suppose you want the word "Cube" to appear in the Italic font and "Sphere" to
appear in Modern. Two CHARACTER FONT nodes must be inserted above the
data nodes for the cube and sphere labels. The following commands create those
nodes.

Cube Label := CHARACTER FONT Italic APPLIED TO Cube;
Sphere_Label := CHARACTER FONT Modern APPLIED TO Sphere;

The modified display tree with alternate fonts specified is structured as shown in
Figure 77.

90 —GRAPHICS PRINCIPLES

Labeled Shapes

Cube Label

ti ~ ~
.~~ '~ .~~

~~ ~_ ~~
~ ~ ~

Sphere Label

~ ~ Modern

IAS0746

Figure 1]. Display Tree With Character Font Nodes

The CHARACTER FONT nodes called Cube_Label and Sphere_Label are pointers
to the fonts called Italic and Modern. The branch of the tree which ends at the
CHARACTERS node for labeling the pyramid has no CHARACTER FONT node in
it, so the string "Pyramid" will appear in the standard font.

STRUCTURE ATTRIBUTES

A display tree for an object is composed of branches which determine the paths
that the Display Processor must take when the object is being displayed. Each
branch is unconditionally traversed during each display processing cycle.
Structure attributes create nodes in a display tree at which "branching" may
occur only if certain conditions are met. These attributes allow you to:

GRAPHICS PRINCIPLES — 91

• Reference objects or parts of objects by setting conditional bits and testing
those bit settings further down the display tree.

• Add or remove detail from an object by setting Level—Of —Detail bits and
testing for them further down in the display tree.

• Control blinking or alternate displaying of images by setting a rate and an
on/off phase, then testing for the phase further down the display tree.

Conditional Referencing

Conditional referencing is generally used to display or blank parts of a complex
structure by selectively traversing or bypassing branches of a display tree. Two
commands are needed to set up and use conditional referencing. The SET
CONDITIONAL BIT command sets any of fifteen conditional bits numbered 0 to
14. This creates a SET CONDITIONAL BIT node, or SET node for short, in the
display tree. Below the SET node, an IF CONDITIONAL BIT node, or IF node, is
created. This node tests a conditional bit setting and branches to the name it is
APPLIED TO if the condition is met.

For example, consider a display tree for a car which, for simplicity, consists of
four wheels, a chassis, and a body, as shown in Figure 78.

IAS0711

Figure 78. Simplified Display Tree for a Car

92 —GRAPHICS PRINCIPLES

For some reason, you want to be able to display or blank the car body at your
whim. Use the SET command and IF command to create a pair of SET and IF
nodes in the branch which ends with Body.

Set Condition := SET CONDITIONAL BIT 1 ON THEN Condition_Met;
Condition Met := IF CONDITIONAL BIT 1 IS ON THEN Body;

Notice that the THEN form of the command is used. This is synonymous in all
cases with the APPLIED TO form of the command, but makes more syntactic
sense to readers.

Figure 79 shows the display tree with conditional referencing nodes added.

Set Condition

Condition Met

body iAso7~z

Figure 79. Display Tree With Conditional Referencing (Nodes

Initially, when Set_Condition is displayed, all the components of the car,
including Body, will be displayed. The condition that bit 1 be set on is met and
the path to the data node Body is made. The ON/OFF clause lets you control the
display of the car body. A Function Key can be connected to Set_Condition to
turn it ON (Boolean TRUE) or OFF (Boolean FALSE). When the bit is off, the car
body will not be displayed.

Refer to the section Using Conditional—Bit Attribute Settings in the "Conditional
Referencing" module for more examples of this sort.

GRAPHICS PRINCIPLES — 93

Level-~f-Detail

Level—of —detail is another form of conditional referencing that is built into a
display tree using pairs of SET and IF nodes. This form of conditional
referencing is normally used to unfold detail in a complex display. For example,
a display for a geological or seismological application might show various levels
in the earth's crust. SET and IF level—of —detail nodes can be placed in the
display tree to allow the picture to be displayed or blanked layer by layer.

Unlike conditional—bit referencing where 15 bits may be set, level—of —detail uses
only one variable. This is an integer from 0 to 32767. The SET
LEUEL_OF_DETAIL command creates a SET node in the display tree. The IF
LEVEL_OF DETAIL command creates an IF node to test the level—of —detail
setting and complete the path to a named entity accordingly.

Consider as an example a display tree for athree—dimensional contour map of an
area of land. You want to be able to turn a dial and add contour lines in 50 foot
increments from sea level to 250 feet. Before any level—of —detail nodes are
added, the display tree is simply a collection of vector lists, one for each contour
line, under a single instance node, as shown in Figure 80.

Map
I

V V

~ ~ ~
Qf~ ~~ Q~

~ ~
p/ gyp/ p/

h ,~ ~O

1 AS0713

Figure 80. Display Tree for a Contour Map

This structure was created by the following command which grouped the vector
lists.

Map := INSTANCE OF 50_Feet, 150_Feet, 200_Feet, 250_Feet;

94 -GRAPHICS PRINCIPLES

Begin allowing for level-of-detail displays by adding a SET node at the top of the
display tree.

Set Level := SET LEVEL OF DETAIL TO 1 THEN Map;

Each branch of the display tree out of the instance node Map can now be
prefixed by an IF node. Unlike conditional-bit referencing IF nodes,
LEVEL-OF-DETAIL nodes do not test an on/off state, but a relationship. These
relationships are as follows.

Less Than <
Less Than or Equal To <_
Equal To =
Not Equal To <>
Greater Than or Equal To >_
Greater Than >

A different value can be assigned to the IF node for each contour line in the
map. If the level-of-detail is 1 or greater, the fifty-foot contour is displayed.
If it is 2 or greater, the hundred-foot contour is displayed, and so on. For
example, the following command creates a node called If_1 which tests whether
or not the level-of-detail is 1 or greater and completes the path to the 50-foot
contour line.

If_1 := IF LEVEL_OF_DETAIL >= 1 THEN 50_feet;

The complete tree with all IF nodes is as shown in Figure 81.

v

GRAPHICS PRINCIPLES — 95

Set Level

Dial

Map

I

It
>=1

IL
>— 3

C C C
~ v ~

~~ ~~ ~~
~~ f ho j oo ;

ti ti

Figure 81. Display Tree With Level-Of-Detail Nodes

A function network can be connected to the SET node to supply new values to
the level—of —detail setting from a dial. As the dial is turned and the
level—of —detail changes, more of the contours will be displayed.

For more examples of this sort, refer to the section on Using Level_Of_Detail in
the "Conditional Referencing" module.

96 —GRAPHICS PRINCIPLES

Blinking or Alternating Displays

Making an object blink or alternating the display of different objects is another
form of conditional referencing which involves SET nodes and IF nodes in the
display tree. The SET node sets a rate for displaying and blanking the object.
This rate can be under control of the refresh rate of the PS 300 display, an
internal PS 300 clock, or an external clock generated by a function network or
the host computer. The IF node determines what will be displayed during the on
phase and what will be displayed during the off phase. The commands are SET
RATE and SET RATE EXTERNAL (for an external- clock), and IF PHASE.

The SET RATE commands specify durations for the on phase and the of f phase,
an optional initial state (either on or off), and an optional clause called the
delay, which specifies the number of refresh frames in the initial state. The IF
PHASE command determines what will be displayed during the on phase and what
will be displayed during the of f phase using the APPLIED TO or THEN clause to
indicate a path to a named structure.

For example, to cause the label associated with an object to blink by being
displayed for 120 refresh frames and blanked for 60, the following commands can
be used.

Blink Rate := SET RATE 120 60 THEN Phase;
Phase := IF PHASE ON THEN Object_Label;
Object_Label := CHARACTERS 'THIS IS THE OBJECT YOU CHOSE';

These nodes would be placed in a display tree as shown in Figure 82.

B1 i nk Rate

Phase

Object_Label

SR
120
60

i AS0715

Figure 82. Conditional Nodes for Blinking

GRAPHICS PRINCIPLES — 97

The words THIS IS THE OBJECT YOU CHOSE will be displayed for 120 refresh
cycles (about two seconds) and blanked for 60 (about one second) when this tree
is traversed.

The SET RATE and IF PHASE commands can also be used to display alternately
two different objects. A display tree can be created with SET and IF nodes to
display one object during the on phase and another during the of f phase, Figure
83 shows such a display tree.

Cube Pyram i d

IAS0716

Figure 83. Display Tree for Alternate Display of Two Objects

During the on phase, the cube will be displayed for two seconds. During the of f
phase, the pyramid will be displayed for two seconds.

Refer to the "Conditional Referencing" module for more information on blinking.

98 —GRAPHICS PRINCIPLES

PICKING ATTRIBUTES

In computer graphics terms, pZckinq means selecting by means of a stylus, a
cursor, or some other pointing device, a line, set of lines, or piece of text in a
display. When the pick occurs, the computer generates information in the form
of a pick Zist which identifies the lines) or text picked no matter how the
object may be oriented on the screen. This information is reported for
programming purposes. For example, in the "Tutorial Demonstration Package",
when a menu item is picked, the information returned by the pick is used to run
the correct Demonstration Program.

Picking attributes must be assigned to an object before it or any part of it can be
picked from a screen display. These attributes are nodes in the display which:

• Mark objects or parts of objects as candidates for picking, and turn picking on
or off.

• Assign a name (pick identifier) which will be reported as a text string
when a pick occurs.

The highest attribute node in the display tree must be the node that turns picking
on and off for the object. For example, to make an object called Space_Shuttle
capable of being picked from the screen, the following command can be used.

Pick := SET PICKING ON APPLIED TO Space_Shuttle;

Assuming that Space_Shuttle is an instance node grouping the various parts of the
craft, the top level of the display tree will be structured as shown in Figure 84.

GRAPHICS PRINCIPLES — ~9

Pick
SET PICKING ,_

Space Shuttle

~.~

~Aso717

Figure 84. The SET PICKING ON/OFF Node

This node can be used interactively and should be created in the OFF setting.
Picking is enabled by a Boolean TRUE, sent to the node through a Function
Network.

The node created in the command above makes the whole object called
Space_Shuttle capable of being picked. If you want the separate components of
the object to be pickable, nodes must be included in the display tree as shown in
Figure 85.

100 — GRAPE-TICS PRINCIPLES

Pick

SET PICKING

Space Shuttle

SET PICKING SET PICKING SET PICKING SET PICKING SET PICKING

V V V V

'ate O ~. 3 '~

~ _ ~ ~/
~~ ~
~ .~

Figure 85. Making the Components Pickable

Now the fuselage, nose, tail, left wing, and right wing can be made individually
pickable.

The other attribute node that must be added to the display tree assigns the pick
identifier (or pick ID) that will be reported in the pick list when a pick occurs.
Two names identify a picked object. The first is the pick ID--a character string
assigned by the SET PICKING IDENTIFIER command. The second name is the
name of the data node that contains the line or character that was picked from
the screen.

GRAPHICS PRINCIPLES — 101

The following command, for instance, assigns a pick ID to the fuselage.

Fuselage_Pick := SET PICKING IDENTIFIER = Shuttle_Fuselage
APPLIED TO Fuselage;

If any line in the fuselage section of the Space Shuttle is picked when picking is
enabled, the system will generate a pick list which reports the pick ID as
"Shuttle_Fuselage" and the data node as "Fuselage."

To use picking with the PS 300, function networks must be built to report any
picks that occur. Refer to the "Picking" module for complete information on
setting up picking networks.

102 —GRAPHICS PRINCIPLES

SUMMARY

New Information Presented

1. Attribute nodes are another type of operation node in a display tree. They
allow you to specify characteristics of the displayed image of the models you
create.

2. There are three types of attributes: appearance attributes, structure
attributes, and picking attributes.

3. Attribute nodes differ from transformation nodes in a display tree.
Transformation nodes create transformation matrices which are applied to
the geometrical data in the data nodes. Attributes, however, are non—matrix
operations. They set and change values in registers in the PS 300.

What Next?

You have now seen all of the types of nodes that can be included in a display
tree. Data nodes define primitive shapes. Modeling operation nodes shape and
position parts of complex models in the world coordinate system. Instance nodes
group separate primitives and transformations into larger named entities.
Viewing operation nodes create views of objects from any angle and from any
perspective and specify areas of the screen in which the view will be displayed.
Attribute operation nodes change aspects of the model's appearance, allow
conditional referencing, and set up picking.

In the next section, you will see how the PS 300's interactive devices are
programmed to allow interactive manipulation of models. Function networks are
created to complete the path between the devices and interaction nodes in the
display tree. These networks take values from the Control Dials, Function Keys,
and so on, and convert them to the correct type of data for the interactive node
they are connected to.

GRAPHICS PRINCIPLES - 1 Q3

). INTERACTING WITH THE PICTURE

A display tree contains three types of operation nodes. Modeling nodes represent
translation, rotation, and scale transformations that are applied to primitive data to
shape and position the parts of a model in the world coordinate system. Viewing nodes
transform the model through viewing matrices to create numerous views of the model
from different vantage points. Attribute nodes determine aspects of the model's
appearance on the screen, control which parts of a model will be displayed, and set up
picking.

Operation nodes can be set up for modeling purposes or for interaction.

For modeling purposes, translation, rotation, and scale nodes, viewing nodes, and
attribute nodes are all created with fixed values. For example, a primitive might be
rotated 60 degrees around the X axis to a permanent location in the coordinate system.
Or a model might have a permanent perspective view imposed on it with a viewing
angle of 45 degrees. Or the intensity range might be fixed at .5 to 1, and separate parts
of the model might be designated as always pickable.

Interaction nodes, on the other hand, are put in the display tree to allow you to
interactively manipulate the entire model or any separate part of it. To achieve this
interactive manipulation, the contents of these nodes must be updated with new values.
These values are supplied from a physical device such as a dial through data-handling
software called a function network to the interactive node. The network might feed a
rotation node with a series of new rotation matrices, a viewing node with a new viewing
matrix, or an attribute node with information to change its function.

EVANS &SUTHERLAND AND INTERACTIVE GRAPHICS

At Evans &Sutherland, interaction has always been the most important feature
of our graphics systems. For us, interaction means the ability to change the
picture being displayed in an easy manner and in real time.

104 —GRAPHICS PRINCIPLES

We provide ease of manipulation through offering a variety of interactive
devices. A Data Tablet and stylus can be used to control a cursor on the screen
for pointing at and selecting parts of the display. Eight Control Dials can be
programmed to translate, rotate, and scale objects and to zoom and pan. A bank
of 32 Function Buttons can be programmed to select different displays or change
details of the same display. Twelve programmable Function Keys can act as
toggle switches between different functions. These devices are all easy and
natural to use and can be arranged comfortably at your work place. Refer to the
E&S Product Data Sheets in volume 1 for more information on the interactive
devices.

Real time interaction means that the effect ~of an interactive device--for
example, turning a dial or pressing abutton--is seen instantly in the picture. If
a dial is correctly programmed to rotate a model around the Y axis, then you
perceive no delay between turning the dial and seeing the model respond. If you
turn the dial slowly the model turns slowly, and if you turn it fast the model
turns fast. When the devices are correctly programmed, minute, precise changes
can be made to the orientation of a model on the screen as you watch.

Since every owner of an interactive graphics system has a different reason for
using interactive graphics and different requirements and expectations of the
machine, the interactive devices must be programmed to suit individual needs.
Users themselves decide how they want to interact with the models they have
created, and they program the devices accordingly.

in previous Evans & Sutherland systems, the host computer controlled the
interactive devices as well as running the application programs and calling the
routines that created the graphics. Interactive devices were checked regularly
by the host computer programs to see if their state had changed. If the state
had changed, the host program had to determine how and what to do about it.

The PS 300 unburdens the host by handling the interactive devices locally. The
host computer never has to intervene in setting up the devices or interpreting
data from them. In addition, each device contains its own microprocessor. This
distribution of some intelligence to the devices themselves in turn unburdens the
PS 300's Graphics Control Processor (GCP). Devices send data that has already
been interpreted to the GCP. So, for example, instead of the Control Dials unit
sending a stream of data whenever a dial is turned, it sends significant
information only (such as which of the eight dials was turned) at significant
times (every sixteenth of a turn, for instance).

GRAPHICS PRINCIPLES — 105

PROGRAMMING THE INTERACTIVE DEVICES

The common end product of programming an interactive device is to have it
change the displayed picture in some way or send information back to the host.
For example, you might want the object being displayed to start and stop
blinking when you press Function Key 3. Or you might want Dial 2 to rotate only
the wrist joint of a mechanical arm, and Dial 4 to translate the whole model
from left to right across the screen. Or when you pick an object on the screen,
you may want information from the pick to be reported back to an application
program on the host.

Planning for Interaction

The first step in planning for interaction is designing the display tree for the
model. You must decide what sort of interaction you want and structure the
display tree accordingly. For most applications of interactive graphics, you will
want to interactively translate, rotate, and scale the model. For other purposes,
you may also want to change the viewing matrices dynamically. And in many
cases you will want to use conditional referencing, level—of —detail, and picking in
interactive operations.

Interactive- nodes, unlike modeling operation nodes, are created with values that
will later be updated from an interactive device. Consider, for example, the
simple display tree in Figure 86 for a star that can be rotated interactively.

106 -GRAPHICS PRINCIPLES

Diamond

Square

Figure 86. Display Tree for Simple Interaction

The instance node called Star groups a data node called Square and a rotation
node called Diamond. The rotation node is a modeling node. It applies a 45
degree rotation matrix to the Square to create a diamond shape. Its contents
never change. The rotation node Rot_Star, however, is not in the display tree for
modeling purposes. It is drawn as a double circle to indicate that it is an
interaction node. This rotation node is initially created with a rotation of zero
degrees, so that at first it will not have an effect on the structure. Its contents
will eventually be updated with a new rotation matrix from a function network
as a dial is turned.

The following commands will create the display tree shown in Figure 86.

Rot_Star := ROTATE 0 APPLIED TO Star;
Star := INSTANCE OF Diamond, Square;
Diamond := ROTATE IN Z 45 APPLIED TO Square;
Square := VECTOR LIST N=5 .5,.5 .5,-.5, -.5,-.5, -.5,.5, .5,.5;

GRAPHICS PRINCIPLES — 107

Updating a Node

Not every node in a display tree can be updated and so not every node can be an
interactive node. Instance nodes, for example cannot be updated. Their function
is to point to other places in the structure of the display tree. An instance node
can be redefined using the INCLUDE and REMOVE commands, but new values
cannot be sent to an instance node through a function network because instance
nodes do not contain data.

Operation nodes, however, do contain data, in the form of matrices, vectors,
numbers, and Boolean values. Most operation nodes can have their contents
changed, as long as those nodes have a direct name by which they can be
accessed. Data nodes contain vector lists, polygon lists, special vector lists for
curves, and text in various forms. There are ways to change the contents of
these nodes interactively too.

The Command Summary in Volume 3A shows the type of node a command creates
and indicates if that node has inputs which allow it to be updated. Figure 87
shows a representation of the SET DEPTH CLIPPING node.

name

Boolean ~<1> Di sabl es (F)/enables
(T) depth clipping

SET DEPTH
CLIPPING

i ASob21

Figure 87. The SET DEPTH_CLIPPING Node

This node has one input which accepts a Boolean true or false. A TRUE enables
depth—clipping for an object and a FALSE disables it.

108 -GRAPHICS PRINCIPLES

Supplying the Correct Type of Data

The Boolean value which the SET DEPTH CLIPPING node requires is supplied by
an interactive device. Logically, atwo-state device such as a Function Key or
Function Button would be programmed to act as a toggle switch, setting
depth-clipping on the first time it is pressed and setting it off when it is pressed
again. However, when a Function Key is pressed it generates an integer which
identifies the key, not a Boolean value. Some method is needed of programming
a path between the Function Key and the SET DEPTH_CLIPPING node, and of
converting the integer to a Boolean value.

PS 300 FUNCTIONS

With the PS 300, interactive devices are not programmed using a standard
programming language. Instead, the PS 300 uses functions which are combined
into networks. The individual functions which compose a network are actually
Pascal procedures, but are thought of as "black boxes" with numbered input
queues and outputs, as shown in Figure 88.

F:AND

<1>

<2>

<1>

AS~~T20

Figure 88. Representation of a Function

Each function accepts data on its input queues, performs a mathematical,
logical, data conversion, routing, or selecting operation, and sends data out of its
outputs. Inputs accept data from interactive devices, from the host, or from the
outputs of other functions. Outputs connect to inputs of other functions or
interactive nodes in a display tree.

GRAPHICS PRINCIPLES — 109

Functions are chosen and combined so that the final network will accept data
from a device and manipulate and convert the data into types that will be
accepted by the interactive nodes. There are nine categories of functions
available with the PS 300. These are as follows.

• Data Conversion

Data conversion functions, for example, change matrices into rows, rows into
scalar elements, and real numbers to integers or vectors. Data can be output
in decimal or exponential format.

• Arithmetic and Logical

These functions perform all arithmetic operations (add, divide, subtract,
multiply, square root, sine, and cosine) and logical operations (and, or,
exclusive—or, and complement).

• Comparison

Comparison functions test whether values are greater than, less than, equal
to, not equal to, greater than or equal to, and less than or equal to other
values.

• Data Selection and Manipulation

These functions are used to selectively switch functions, choose outputs, and
route data.

• Viewing Transformation

Viewing transformation functions connect to viewing operation nodes in
display trees to change line —of —sight, window size, and viewing angle,
interactively.

• Object Transformation

Object transformation functions connect to modeling operation nodes in
display trees to interactively rotate, translate, and scale objects.

1 10 —GRAPHICS PRINCIPLES

• Character Transformation

These functions are used to interactively position, rotate, and scale text.

• Data Input and Output

These functions set up and control the interactive devices (dials, function
keys, function buttons, data tablet, and keyboard) and output values to the
optional LED labels which several of the devices have.

• Miscellaneous

Other functions set up and control picking, clocking, timing, and
synchronizing operations.

The complete set of functions is loaded into memory when the PS 300 is booted.
The Function summary in Volume 3A is a reference to all available functions.

There are three types of functions: intrinsic functions, initial function
instances, and user-written functions.

Intrinsic Functions

Intrinsic functions are the set of "master" functions which you can instance to
create networks. Their names reflect the operation they perform, and are
preceded by F:, for instance F:AND, F:ROUTE, F:MATRIX.

Functions are instanced using the NAME := F:function name command. For
example, the following command Creates an instance of the ADD function
(F:ADD) and assigns it the unique name Adder.

Adder := F:ADD;

Intrinsic functions are always instanced in this way. The intrinsic function name
itself, in this case F:ADD, is never used in the network. The name of the
function instance (i.e., Adder) is used instead.

GRAPHICS PRINCIPLES — 1 1 1

Initial Function Instances

When the PS 300 is booted, the system itself instances (i.e., names) certain
functions as initial function instances. Among other things, these functions
connect to the interactive devices, connect to the host, and connect to error
detection logic. For example, inputs to the initial function instance called
DIALS are connected to the Control Dials unit at system initialization. DIALS
has eight outputs on which is sends real numbers from one to eight,
corresponding to the numbers of the eight dials. It sends values generated by the
dials out of the output that corresponds to the number of the dial.

Unlike intrinsic functions, which must always be assigned a unique name, initial
function instances are used with their system —assigned name. The name reflects
the operation the function performs, but is not preceded by F: (for example,
TABLETIN, WARNING, KEYBOARD).

User-Written Functions

You are not limited to the set of intrinsic functions and initial function instances
supplied with the system. If the functions that are available do not suit all your
needs, you can write your own using the optional User—Written Function facility.
User—written functions are instanced in the same way as intrinsic functions.
E&S provides documentation on writing Pascal procedures to create user—written
functions and documentation and software files that aid in producing and
transporting these procedures from the host to the PS 300. To understand
user—written functions, you should know Pascal well and you should have
experience in programming PS 300 function networks.

For complete information, refer to the User—Written Functions section in
Volume 4.

Creating Networks

Networks are created by connecting initial function instances, instances of
intrinsic functions, and interactive nodes in display trees using the CONNECT
command. For example, the following group of commands create a simple
network to rotate the star diagrammed in Figure 86 around the Z axis.

1 12 —GRAPHICS PRINCIPLES

Rotate := F:DZROTATE;
CONNECT DIALS<2>:> < 1 >Rotate;
CONNECT Rotate < 1 >: < 1 > Rot_Star;

The first command

Rotate := F:DZROTATE;

creates an instance of the intrinsic function F:DZROTATE named Rotate. This
intrinsic function is represented in Figure 89.

F:DZROTATE

<1> <1>

<2>C

<3> C

<2>

IAS0728

3x3

Rea 1

Figure 89. The F:DZROTATE Function

This function has three inputs. Input < 1 > accepts real numbers, usually directly
from the initial function instance DIALS. Input <3> is a magnification factor.
The very small numbers (from 0 to 1) that arrive at input < 1 > from the dial are
multiplied by this factor. Input <2> is an accumulator set for the values received
on input < 1 >. The function creates a matrix from an angle of rotation, which is
derived from the accumulator contents on input <2> multiplied by the scale
factor on input <3>. The matrix is sent on output < 1 >. Output <Z> contains the
accumulator contents from input <2>.

The second command

CONNECT DIALS< 2>: < 1 > Rotate;

connects output <2> of the initial function instance DIALS to input <2> of
Rotate. The initial function instance DIALS is diagrammed in Figure 90.

GRAPHICS PRINCIPLES — 1 13

DIALS

Connected to
Control Dial s
a t System
Initialization

<1>

<2>

<3>

<4>

<5>

<6>

< 7>

<g>

1 /1S0739

Figure 90. The Initial Function Instance DIALS

This initial function instance is connected to the Control Dials unit when the
PS 300 is booted. It produces a real number on each of its eight outputs. Every
output corresponds to one of the eight dials. Connecting output < 2> of DIALS to
input < 1 > of Rotate feeds values into the Rotate function from Dial 2 whenever
the dial is turned.

The third command

CONNECT Rotate< 1 >:< 1 >Rot_Star;

connects output < 1 > of Rotate to input < 1 > of an interaction node called
Rot_Star. Figure 91 represents a rotation node in a display tree.

1 14 —GRAPHICS PRINCIPLES

3x3 matrix

name

<1> Changes matrix value

Figure 91. Inputs to a Rotate Node

This connection feeds the rotation matrix from the Rotate function to the
interactive rotation node. Figure 92 is a diagram of the simple Z—rotation
Function Network which the commands create.

Figure 9 2. Si m p1e Z -Rotation Network

GRAPHICS PRINCIPLES - 1 15

Before the network will start to accumulate values from the dials correctly,
however, inputs < 2> and < 3 > on Rotate must be primed. The SEND command is
used to send a magnif ication value of 50 to input < 3 > and an initial value of 0 to
input <2> to set the accumulator to an initial value.

The final command file, with comments in braces, might read as follows.

Rotate := F:DZROTATE; {Instance of Z-rotate function}
CONNECT DIALS < 2 >: > < 1 > Rotate; {Connect dial 2 to rotate function}
CONNECT Rotate< 1 >:< 1 >Rot_Star; {Connect output of rotate function

to rotate node}
SEND 0 TO <2>Rotate; {Set accumulator to zero}
SEND 50 TO < 3 > Rotate; {Multiply values from dial by

magnification factor of 50}

Active and Constant Inputs

A function instance can have active or constant input queues. An active input
receives data from an interactive device or from the output of another function
instance. Input < 1 > of F:DZROTATE is an active input, for example. Each
datum or token that arrives on an active input is a trigger for the function to
execute. When the function is triggered, the datum is consumed. Constant input
queues, however, are primed with a value, usually by the SEND command, and
that value remains on the input queue until it is replaced by another constant
value from another SEND command. For example, inputs <2> and <3> of
F:DZROTATE are constant inputs. The values that are sent to those inputs
prime the function. The. value on input <2> sets the accumulator to an initial
value. The value on input < 3 > is a scale factor which is use to magnify the real
numbers sent from the dial.

The Function Sumrnar~ in Volume 3A indicates whether a function has active or
constant inputs: an input followed by a "C" in the Function Summart~ diagrams is
a constant input. There is also a command named SETUP CNESS, which allows
you to change the constant or active nature of function instance inputs. Refer
to the Command Summart~ for details.

1 16 -GRAPHICS PRINCIPLES

Data-Driven Networks

Individual functions and the networks they comprise are data driven. This
means that a function only becomes active when data arrive at its inputs to be
processed. Once a function has executed its task, it becomes dormant again until
another set of tokens arrives. An entire network is dormant until activity occurs
at the interactive device to which it is connected. As long as values are being
sent out from the device, the network is active, converting and routing the data.

Why Function Networks?

Data driven function networks differ from conventional programming languages
in that they are active only when an event occurs which produces data to be
processed. Conventional programming languages are best suited for data treated
as values to be looked at if necessary. Whenever data exist as asynchronous
events and when the arrival of such events causes an operation to occur, then
data are best handled by data-driven programs, such as function networks.
Conventional programs written to handle input from interactive devices must
regularly poll all the available devices to see if any activity has occurred. Once
activity is detected, the type of activity has to be determined and data have to
be processed accordingly.

A PS 300 with a tablet, eight control dials, twelve function keys, 32 function
buttons, a keyboard, and a communications line to the host has a total of 55
independent devices which can input data. Programming in a conventional
language requires each device to be polled regularly to determine if its status
has changed. Function networks, however, capitalize on the fact that few of
these devices are ever used at the same time. A human user of the system has
only two hands and typically uses only one or two of the devices at a time. The
data-driven nature of function networks schedules operations so that devices
which are unused at any time do not burden the PS 300's central processing unit,
the Graphics Control Processor.

GRAPHICS PRINCIPLES — 1 17

Function networks are designed to filter data and perform data formatting and
selection. They filter input data, for example, reducing a stream of data
indicating tablet positions to just those data when the the tip switch of the stylus
is pressed. They reformat input data, converting a dial's value, for instance, into
a rotation matrix. And they select and route data, by connecting to a node in a
display tree, for example, or transmitting data back to the host application
program. They do not operate like conventional computer programs, as single
processes whose parts communicate via subroutine calls. Instead, they are
collections of autonomous, cooperative processes whose parts communicate via
packages of information which are sent out while the originator of the
information goes on to do something else.

Creating Function Networks

Function networks are created as ASCII files. They can be entered by hand or
generated automatically from the graphical Function Network Editor program,
NETEDIT. This program is documented in Volume 4. Briefly, networks are
created using a drawing program which lets you select and place symbols which
represent functions. Connections are made by routing arcs between outputs and
inputs, much like a wiring diagram. When a network drawing is complete, code
can be generated automatically.

A network debugging aid, NETPROBE, is also available. It too is documented in
Volume 4.

For more information on networks and their use, refer to the tutorial modules
"Function Networks I" and "Function Networks II" in this volume.

1 18 —GRAPHICS PRINCIPLES

SUMMARY

New Information Presented

1. Most operation nodes in a display tree can have their contents changed.
Nodes that are set up for interaction have their contents updated with values
from an interactive device.

2. The path between a device and a node is a function network. The network,
composed of individual functions, receives data from a physical device such
as a dial, manipulates those data, and produces the correct data type to
update the node.

3. Networks are data driven. This means that they are only active when there is
data to process.

4. Programming with PS 300 functions allows you to customize the operations of
the interactive devices to suit any programming needs.

S PS 300 TUTORIAL DE V OVSTRATIO\

Pre~rsula~
O~er~1N

• Isae~/
rlewprt

Rlel~
Ot

111 N

IAok
twti t

At
Ckare~eters Oi

Dot~tl

Mot~ork
~:ocatfoa

'/cki~y • orkspee

/ %% ,

/~~ ~~ / ~ ' iii% ~//ice
/; '~/% ~

/ ~/ / .I ! '+ ~i~i ~% / •.i/, iii i !'~ % '~ / /

• •
%/j / /

/,i / ~/

LIMITED SUPPORT DISCLAIMER

The PS 300 Tutorial Demonstrations are distributed by
Evans &Sutherland as a convenience to customers and as an
aid to understanding the capabilities of the PS 300 graphics
systems. Evans & Sutherland Customer Engineering
supports the Tutorial Demonstrations to the extent of
answering questions concerning the installation and
operation of the programs, as well as receiving reports on
any bugs encountered while the programs are running.
However, Evans & Sutherland makes no commitment to
correct any errors which may be found.

Copyright o 1985
EVANS &SUTHERLAND COMPUTER CORPORATION

P.O. Box 8700, 580 Arapeen Drive
Salt Lake City, Utah 84108

PS 300 DEMONSTRATION PACKAGE

CONTENTS

1. INTRODUCTION TO THE TUTORIAL DEMONSTRATIONS 1

THE CO~y~iPONENTS OF THE TUTORIAL DEMONSTRATION PACKAGE 3
REQUIRED INTERACTIVE DEVICES 4
HOST COMPUTER REQUIREMENTS 4

2. ACCESSING THE TUTORIAL DEMONSTRATIONS 5

USING THE TUTORIAL COMMAND FILE
USING THE PROGRAMS ON A COLOR SYSTEM

3. RUNNING THE TUTORIAL DEMONSTRATION PROGRAMS

5
6

7

Tutorial Demonstrations menu —Globe and Shuttle 9
Programming 1 1
Window/Viewport 15
Field Of View 19
Look At 21
Characters 25
Level of Detail 27
Network Execution 29
Picking 3 3
Workspace 35

PS 300 TUTORIAL DEMONSTRATIONS — 1

1. INTRODUCTION TO THE TUTORIAL DEMONSTRATIONS

The eight Tutorial Demonstration programs are designed to clarify graphics
programming concepts explained in the tutorial modules in Volumes 2A and 2B of the
PS 300 Document Set.

The programs display images you can interact with using the data tablet, control dials,
and function keys. Typically, the keys and dials are programmed to translate, rotate,
and scale the objects displayed and to change the values in the PS 300 graphics
programming commands that are being illustrated. Programmed operations are shown
in the LED displays above each control dial or function key.

The following concepts are illustrated in the programs.

Programming the PS 300

In three separate areas of the screen, you are shown a sequence of PS 300
commands, a representation of the structures these commands create in
memory, and the picture that the commands produce on the screen. As you
scroll through the commands, the contents of memory and the screen display
are changed when each command takes effect.

Windows and Viewports

This program illustrates the mapping of an orthographic window in the world
coordinate system to a viewport on the PS 300 screen. In one area of the
screen, a sphere is shown enclosed in a window. In another, the sphere is shown
as it appears when displayed on the PS 300 screen. To the side, the variables
used in the 1NINDOW and VIEWPORT commands are listed. Using function keys
and dials, you can change the dimensions of the window and the viewport and
control. the size and orientation of the sphere. The relation between windows
and viewports is clearly shown in the resulting changes to the displayed image
of the sphere.

2 - PS 300 TUTORIAL DEMONSTRATIONS

The FIELD OF VIEW Command

To demonstrate the FIELD OF 1/IEW command, a sphere is shown enclosed in a
perspective viewing area. In another portion of the display, the sphere is shown

as it would appear on the PS 300 screen. The values entered in the
FIELD OF VIEW command are listed to one side. Using dials you can change
the viewing angle and front and back boundaries of the viewing area to see how
the image of the sphere is affected on the screen.

The LOOK Command

This program shows how the LOOK command rotates and translates all points in
the world coordinate system to simulate a vantage point and a line of sight
towards an object. One area of the screen shows a collection of objects and an
eye that ca.n be moved in any direction to change values in the LOOK
command. A second area shows the rotations and translations that are
performed by the PS 300 to create the view specified in the LOOK command.
A third area shows the screen display. Dials are programmed to change the "a t"
and "from" points in the LOOK command and to change the "up" vector.

Character Modes

The three ways in which characters can be used in an image are illustrated in
this program. Three cubes are displayed with each of their faces labeled. The
cubes can be rotated, translated, and scaled using control dials. The first cube
contains world-oriented characters which are transformed with the cube. The
second cube contains screen-oriented characters which always remain at the
same size and in a plane parallel to the screen, so that they are always legible.
The third cube contains screen-oriented characters which are "fixed" so that
they do not vary in intensity as they move forwards and backwards (in the Z
axis).

Level of Detail Settings

This demonstration shows how level-of-detail nodes can be used in a structure
to display changing images of an object in response to changing values from a
function network. A display tree is shown with a SET node connected to a
network and IF nodes at the head of each of twelve hierarchial branches. As
the value in the SET node is updated from the network, a different branch is
traversed. This produces an animation sequence of 12 frames in which the ends
of a cylinder twist and untwist in opposite directions.

PS 300 TUTORIAL DEMONSTRATIONS - 3

Execution of a Function Network

This program illustrates the relationship between interactive devices, function
networks, interactive nodes in a display tree, and a dynamically changing
image. In one area of the screen, an object is shown which consists of two
wheels and atie—bar. A display tree is shown for the structure of this object.
The tree contains interactive rotation and translation nodes connected to a dial
through a function network. As you turn the dial to rotate the wheels, the
function network is shown accepting data, converting it to matrices, and
updating the nodes in the display tree.

Picking

To illustrate picking, this program shows a collection of objects consisting of
two cubes, a B—spline curve, a character string and a labels block. The display
tree for these objects is shown with the required SET PICKING node and pick
identifier nodes. A picking network is connected to the display tree. When a
vector, character, or label is picked, the branch traversed in the display tree is
highlighted and the information returned from the pick on the outputs of the
function F:PICKINFO is shown.

This manual explains how to install the Tutorial Demonstrations and how to run each
of the programs.

This section lists the components of the Tutorial Demonstrations and explains the
interactive devices and host computer requirements for running the demonstrations.

Section 2 explains how to install the Tutorial Demonstration programs on your system.

Section 3 gives complete operating instructions for each of the programs.

1.1 THE COMPONENTS OF THE TUTORIAL DEMONSTRATION PACKAGE

The PS 300 Tutorial Demonstration package consists of several files distributed
on magnetic tape.

The tape contains control networks, the Tutorial Demonstrations Menu from
which programs are chosen, the programs themselves, and several character
fonts. Also included are the vector lists for the primitives used in the tutorial
modules in Volumes 2a and 2b of the PS 300 Document Set.

4 — PS 300 TUTORIAL DEMONSTRATIONS

~.2 REQUIRED INTERACTIVE DEVICES

The following interactive devices are required to run the Tutorial
Demonstration programs.

• Data Tablet and Stylus
• Keyboard with Function Keys
• Control Dials

The data tablet and stylus are used to pick programs from the menu and to
interact with the objects displayed by some of the programs.

The function keys and control dials are programmed through function networks
to perform various graphical operations such as scaling, rotating, and
translating the images displayed and to change dynamically the values in the
PS 300 commands being illustrated. The operation controlled by each function
key and control dial is displayed in its red LED label.

1.3 HOST COMPUTER REQUIREMENTS

The eight programs that comprise the Tutorial Demonstrations are run locally
on the PS 300. There are no host computer requirements for running the
programs.

The files that are distributed on the tape must be loaded onto a host computer
and then transferred to the PS 300. There are two requirements for the host
computer for storing and transferring the files. First, it must have sufficient
memory to contain the files on the tape: approximately 1166K bytes are
needed. Second, the host must be able to communicate with the PS 300 so that
the files can be transferred.

PS 300 TUTORIAL DEMONSTRATIONS — 5

2. ACCESSING THE TUTORIAL DEMONSTRATIONS

The Tutorial Demonstrations may be run on any member of the PS 300 family of
graphics systems. The procedure for loading the files and transferring them from the
host is the same for all systems.

The complete Tutorial Demonstrations package takes between 15 and 20 minutes to
transfer from the host to the PS 300, depending on the current work load on the host.

2.1 USING THE TUTORIAL COMMAND FILE

System managers at individual sites will set up a method on the host computer
to gain access to the Tutorial Demonstrations as well as the objects that are
required by some of the tutorial modules in Volumes 2a and Zb and the Sample
Programs. A command file displaying the following menu should be available.

PS 300 GRAPHICS PROGRAMMING TUTORIAL

Set to be loaded

1. Demonstrations
2. Sports Car
3. Molecule
4. Complete Robot
5. Sphere and Cylinder
6. Sample Programs

First used in module ...

Command Language
Conditional Referencing
Function Networks I & II
Command Language &Conditional Referencing
Sample Programs

Enter the number of the selection you want. Loading is complete when the host
operating system prompt is displayed again.

6 — PS 300 TUTORIAL DEMONSTRATIONS

2.2 USING THE PROGRAMS ON A COLOR SYSTEM

If you are using a color display (the CSM Calligraphic Display) and the line
quality is poor, put the PS 300 in Command Mode by pressing the CTRL and
LINE LOCAL keys and then the RETURN key. Now enter the command:

SEND TRUE TO < 1 > CSM;

You will see the line quality and color improve. Now press the SHIFT and LINE
LOCAL keys to return the PS 300 to Interactive Mode so you can make
selections from the menu.

PS 300 TUTORIAL DEMONSTRATIONS — 7

3. RUNNING THE TUTORIAL DEMONSTRATION PROGRAMS

This section describes how to run each of the Tutorial Demonstration programs. Each
description is organized as follows.

Typical screen displays are illustrated. An abstract points out some of the features of
the PS 300 that are shown in the demonstration. The programmed functions and the
LED labels that appear on control dials and function keys are listed. Notes on usage
give instructions for running the program.

PS 300 TUTORIAL DEMONSTRATIONS - 9

Program: TUTORIAL DEMONSTRATION MENU -GLOBE AND SHUTTLE

Typical Program Display

PS 300 Series

Prograrmiing
Overview

X indow/
Viewport

Field
Oi

View

Look
At

Characters
Level
Oi

Detail

Network
Execution

Picking l~orkspace

Tutorial Demonstrations

Abstract

This program serves both as a demonstration in itself and as the menu from
which the other Tutorial Demonstration programs are picked. Several windows
and viewports are combined to produce a very complex dynamic image. In the
center of the screen is the earth spinning on its axis. Orbiting the earth is a
Space Shuttle, and closely hugging the shuttle in a tight orbit of his own is one
of the crew in a Manned Maneuvering Unit. Overlapping the globe to the right
is the menu from which the programs are selected.

10 - PS 300 TUTORIAL DEMONSTRATIONS

Programmed Functions

Control Dials

D 1 - OS X ROT (globe and shuttle)
D2 - OS Y ROT (globe and shuttle)
D3 - OS Z ROT {globe and shuttle)

Notes on Usage

Function Keys

F 10 - STRT/STP
F11 -RESET

To use this program as a menu, pick the demonstration you want to run by
positioning the cursor over the name and pressing the stylus down on the data
tablet. Whenever you exit from a program by pressing F 12, you are returned to
this display.

The function keys and dials let you interact with the spinning globe and space
shuttle displayed in the center of the screen. Dials 1 through 3 let you rotate
the globe and shuttle around the X, Y, or Z axes. The "0 S" in the dial labels
stands for Object Space. An object rotates in Object Space when it rotates
about a set of axes which are different from the world coordinate system axes.

Function key F 10 starts and stops the rotation of the globe and shuttle.

Function key F 1 1 resets the orientation of the globe and shuttle.

PS 300 TUTORIAL DEMONSTRATIONS - 1 1

Program: PROGRAMMING

Typical Program Display

Cuba..Ro t a t i on

 ~>> try

i~o —(a)

CILPr int DLABaL4

3 X 3
MATRIX

VECTOR
LIST

P S 3 0 0 Ma s s Merry r y
CUOE_ROT ,. ROTot• 0 THEN CUOEs

O1sPIor CUOE_ROt;

RENov• CUSEi

I Cub• ~ototlo~ not~o~k 1

CUOE_ROTATION s • f,01►ROTATE3
CONNoot 01ALSi4>, el>CUOE_ROTATIONs

CONNoot CUOE_ROTATION~1., <t~CU!!E_ROT;

SENO 0 to ~2•CUSE_ROTATION;

SENO 110 to ~3~CUSE_ROTATION;

CR_PRINt : • f:PRINT]

CONNoet CUOE_ROTAt10N~2►,~1~CR_PRINt;
CONNoat CR_PRINT~t~:s1.OlASEl4;

PS 300 Screen PS 300 CaYu~nds

Abstract

This is a graphical introduction to programming the PS 300 with commands and
function networks. It illustrates how PS 300 commands create structures in
memory and affect images being displayed, as well as how some of the
interactive devices are programmed with simple networks.

12 — PS 300 TUTORIAL DEMONSTRATIONS

Abstract (continued)

After an initial introductory message, the screen is divided into four viewports
representing the contents of the display list, the contents of mass memory, the
PS 300 screen, and commands which are entered. When you turn control dial 8,
commands appear in the Commands viewport. Each time a complete command
is displayed, the display in the other viewports is changed to reflect updates to
mass memory, the display list, or the PS 300 screen.

Programmed Functions

Control Dials Function Keys

D4 — (rotate the object displayed)
D8 — (progress through program)

Notes on Usage

Fl — (used with conditional
F2 —referencing commands)

F11 —RESET
F12 —EXIT

When the Programming demonstration is chosen, the following message is
displayed.

.~ntroDurtinn to

~3 3UD progrttmming tl~pnry:
— Dis}~ltty Dttttt strurturps

— Dtt~~—Driurn funrtion ttptwocks

Turn Dial 8 (bottom right dial)

clockwise to progress through

this tutorial . The effects of

PS .300 commands on the screen

and mass memory wi l l be shown.

IAS0220

PS 300 TUTORIAL DEMONSTRATIONS — 13

Notes on Usage (continued)

Dial 8 controls your progress through this program. As you turn the dial, the
PS 300 commands will scroll in the lower right viewport of the screen. As the
semicolon terminator for each command becomes visible, the effect of the
command will be reflected in the other viewports on the screen. Function keys
F 1 and F2 and control dial 4 become active as the commands controlling them
become visible.

The program starts by showing how the VECTOR_LIST command creates a data
node (shown as a square) called CUBE in memory. Nothing appears on the
screen or in the Display List, however, until the DISPLAY command is used. A
rotation node (shown as a circle) called CUBE_ROT is created in memory using
the ROTATE command. Since this command is applied to CUBE, the node
becomes part of the same display tree. The two entities are displayed
simultaneously as one bright cube, because the display processor is traversing
both nodes. CUBE is then removed from the display list and CUBE_ROT is
displayed alone.

Next, the capability of the PS 300 to do graphical manipulations locally is
shown through the use of functions. An instance of the Y —rotation function
F:DYROTATE is created and connected to control dial 4. This dial can now be
turned to rotate the cube displayed in the PS 300 Screen viewport. To see the
value of the rotation, an instance of the print function (F:PRINT) is created and
connected to dial label 4. When dial 4 is turned, the value of the rotation will
now be displayed in dial 4's LED and in the mass memory viewport.

A scale node named CUBES is now created and applied to CUBE. This shows
how one vector list can be displayed in two different ways, one through
CUBE_ROT, and one through CUBES. Now an instance node (a triangle) called
VIEW is created, the display is initialized, and UIEW is displayed. At first,
UIEW groups nothing more than the rotation node CUBE_ROT and the data node
CUBE. Then the INCLUDE command is used to include CUBE S in VIEW also,
so both CUBE ROT and CUBE S are displayed with the one display command.

CUBE S is then redefined as a 2x2 scaling matrix applied to CUBE_CHAR, a null
structure which has not yet been defined. CUBE_CHAR is then defined as the
character string "PS 300", which is displayed on the screen. CUBES is now
redefined to be a special 2x2 skewing matrix to italicize the characters. Using
an alternate character font, the string is then displayed in an Old English
character set.

The LOOK command is used to view the structure being displayed from an
arbitrary point in space. The use of BEGIN_STRUCTURE ... END_STRUCTURE

is shown as an alternative to naming every command. The FIELD_OF_VIEW
command is applied to the structure to create a perspective view of the cube.

14 — PS 300 TUTORIAL DEMONSTRATIONS

Notes on Usage (continued)

The display tree is next enhanced to include conditional references to different
branches of the hierarchy. Function keys are connected to the SET
LEVEL OF DETAIL node. F 1 controls display of one branch of the hierarchy,
F2 controls display of the other. A similar operation is performed with the SET
CONDITIONAL_BIT node, but now the objects can be displayed independent of
each other, as determined by the CONDITIONAL_BIT test. The cube is
displayed if conditional bit one is set, the text if bit two is set. Another way to
conditionally branch is shown, using the SET RATE node. The number of
refresh frames on and off are given, and a phase attribute is set so that for 20
frames, the phase attribute is on and for 40 frames it is off. By doing a test of
the phase attribute, the cube is displayed for 20 frames and the text for 40
frames.

Note that you can go back through the program by turning dial 8 in the opposite
direction.

Function key F 1 1 resets the screen to the initial display.

Function key F 12 leaves this program and displays the Tutorial Demonstrations
Menu again.

PS 300 TUTORIAL DEMONSTRATIONS — 15

Program: WINDOW/VIEWPORT

Typical Program Display

X - -1.000
Y - -1.000
Front - 4.000
Back - 6.000
(Y/X)~ - 1.000

- Viewport Paramatera

H orl:ontal - -1.000
Yertical - -1.000
lntenalt~ - 0.000
(Yert/H or)~ - 1.000

Abstract

This program shows the relationship between windows and viewports and

illustrates the use of the WINDOW and VIEWPORT commands.

Two areas of the screen show two views of the world coordinate system, one

from the +X axis, and one from an oblique angle. A sphere is shown in the

world coordinate system enclosed in an orthographic window. Another area of

the screen shows the sphere as it would de displayed on the PS 300 screen in a

full—screen viewport. Values for the WINDOW and VIEWPORT commands are

shown to the left.

16 — PS 300 TUTORIAL DEMONSTRATIONS

Abstract (continued)

In one mode of operation, dials let you change the X and Y values of the window
and the location of the front and back boundaries. In another mode, the dials
change the horizontal and vertical values of the viewport and the intensity
setting. The aspect ratio for the window (X/Y) and for the viewport
(vertical/horizontal) are also shown.

Programmed Functions

Mode 1

Control Dials

D 1 —WIN XMIN (window's minimum X value)
D2 —WIN YMIN (window's minimum Y value)
D3 —WIN ZMIN (window's minimum Z value)
D4 —unused
DS —WIN XMAX (window's maximum X value)
D6 —WIN YMAX (window's maximum Y value)
D7 —WIN ZMAX (window's maximum Z value)
D8 —unused

Mode 2

Control Dials

D 1— W X CENT (move window along X axis)
D2 — W Y CENT (move window along Y axis)
D3 — W Z CENT (move window along Z axis)
D4 —unused
D5 — OBJ XROT (rotate objects around the X axis)
D6 — OBJ YROT (rotate objects around the Y axis)
D7 — OBJ ZROT (rotate objects around the Z axis)
D8 — OBJ SIZE (scale objects)

Mode 3

Control Dials

D 1 — VP H MIN (viewport's minimum horizontal value)
D2 — VP V MIN (viewport's minimum vertical value)
D3 — VP I MIN (viewport's minimum intensity value)
D4 — VP HCENT (move viewport along X axis)

PS 300 TUTORIAL DEMONSTRATIONS — 17

Mode 3 (continued)

Control Dials

D5 — UP H MAX (viewport's maximum horizontal value)
D6 — UP U MAX (viewport's maximum vertical value)
D7 — UP I MAX (viewport's maximum intensity value)
D8 — UP UCENT (move viewport along Y axis)

Function Keys

F1 —MODE 1
F2 —MODE 2
F3 —MODE 3
F4 —DEPTH CL (depth clipping)

F 1 1 —RESET
F 12 —EXIT

Notes on Usage

In Mode 1 (when function key F 1 is pressed) the dials change the window's X, Y,
and Z minimum and maximum values.

In Mode 2 (when function key F2 is pressed) the dials let you move the window
along the X, Y, and Z axes and rotate and scale the sphere.

In Mode 3 (when function key F3 is pressed) the dials let you change the vertical
and horizontal minimum and maximum values for the viewport and the
minimum and maximum values for the intensity range. In this mode of
operation, you can also move the viewport along the X and Y axes.

Depth clipping is on when the program is first called. Use function key F4 to
turn it on and off.

Function key F 1 1 resets the program.

Function key F 12 leaves the program and displays the Tutorial Demonstrations
Menu again.

PS 300 TUTORIAL DEMONSTRATIONS — 19

Program: FIELD aF VIEW

Typical Program Display

FOV = 28.00
Front = 4.00
Back = 6.00

Abstract

Perspective views of objects are created using the FIELD_OF_VIEW command.
This program illustrates how to use that command. Two viewports show the
world coordinate system from two different vantage points. In each, a sphere is
shown enclosed in a perspective viewing area. A third viewport shows the
sphere as it would be displayed on the PS 300 screen. Values for command
variables (viewing angle and front and back boundaries) are also shown. Dials
allow you to change the viewing angle, the location of front and back
boundaries, and the size and orientation of the sphere.

20 — PS 300 TUTORIAL DEMONSTRATIONS

Programmed Functions

Cflntrol Dials

D 1 — WS X ROT
D2 — WS Y ROT
D3 — WS Z ROT
D4 —SCALE
DS — FOV ANGL (field—of —view angle)
Db —FRONT
D7 —BACK
D8 —BOTH

Notes on Usage

Function Keys

F11 —RESET
F12 —EXIT

The FIELD OF VIEW command (abbreviated to FOV) encloses an object in a
viewing space shaped like a frustum (a section of a pyramid). The eye point,
established by the LOOK command, is at the apex of the pyramid. The top and
bottom planes of the frustum are the front and back boundaries in the FOV
command.

Dials 1 through 4 manipulate the sphere, allowing you to rotate and scale it.

Dial 5 controls the viewing angle. Notice that as the angle increases, the size
of the image on the screen shrinks and vice versa. A larger viewing angle
encloses more of the coordinate system in the viewing space, a smaller viewing
angle encloses less.

Dials 6 through 8 move the front and back boundaries (clipping planes) of the
viewing area. Dial 8 moves both boundaries together.

Function key F 1 1 resets the program.

Function key F 12 leaves the program and displays the Tutorial Demonstrations
Menu again.

PS 300 TUTORIAL DEMONSTRATIONS — 21

Program: LOOK A T

Typical Program Display

f

A orld 3pace
(before Look At Xforaa)

— Look Parameters

FROM:0.00000.0.00000.-3.51563
AT :0.00000.0.00000.1.00000
U P :0.00000.1 .00000.1 .00000

w orld Space
~A~ter Look At Xiorm)

(lth a window about AT)

• •

Abstract

This deceptively simple program illustrates how the LOOK command works. In
one viewport, the world coordinate system is shown containing a cube, sphere,
cone, and cylinder, the three axes, and an eye. This viewport represents the
world coordinate system before the LOOK transformation is applied to the
objects. A second viewport shows the coordinate system after the
transformation has taken place. A third area shows the values for the "from,"
"at," and "u p" points.. A fourth area shows the PS 300 screen and the objects
being displayed.

22 - PS 300 TUTORIAL DEMONSTRATIONS

Programmed Functions

Mode 1

Control Dials

Dl -FROM X
D2 -FROM Y
D3 -FROM Z
D4 - wS Y ROT (world space Y rotation)
D5 - DOLLY X (rotate eye point around the X axis)
D6 - DOLLY Y (rotate eye point around the Y axis)
D7 - DOLLY Z (rotate eye point around the Z axis)
DS -FOR/BACK (move eye point forward and back along Z axis)

Mode 2

Control Dials

Dl - AT X
D2-ATY
D3-ATZ
D4 -unused
D5 - OBJ XROT (rotate objects around the X axis)
D6 - OBJ YROT (rotate objects around the Y axis)
D7 - OBJ ZROT (rotate objects around the Z axis)
D8 - OBJ SIZE (scale objects)

Mode 3

Control Dials

Dl - UP X
D2 - UP Y
D3-UPZ
D4 -unused
DS - OBJ XTRAN (translate objects along the X axis)
D6 - OBJ YTRAN (translate objects along the Y axis)
D7 - OBJ ZTRAN (translate objects along the Z axis)
D8 -unused

PS 300 TUTORIAL DEMONSTRATIONS - 23

Function Keys

Fl -MODE 1
F2 -MODE 2
F3 -MODE 3
F4 -DEPTH CL (depth clipping)
F5 -MOVE UP (move/don't move "up" point with the eye point}

F11 -RESET
F12 -EXIT

Notes on Usage

The LOOK transformation is a 4x3 transformation matrix. It applies a
translation and rotation to every point in the world coordinate system to
produce a view which corresponds to the "from," "at," and "up" points given in
the LOOK command.

All points are translated so that the eye is at the origin, and rotated so that the
"at" point is in the positive Z axis and the "u p" vector is in the YZ plane. These
transformations are shown in the second viewport.

A window is built around the "at" point in the second viewport so that whatever
is being looked at will appear on the PS 300 display in the third viewport.
Initially, the sphere is displayed. As you manipulate the "at" point, the window
is moved also to maintain a display on the simulated PS 300 screen.

The "up" point is shown as an asterisk. Function key FS is a toggle which lets
you move or not move the "u p" point with the "from" and "at" points.

Function key F4 is a toggle which lets you turn depth-clipping on and off.

Dial 2 in Mode 1 rotates the objects and the eye in the first viewport so you can
see better where the eye is located.

Function key F 1 1 resets the program.

Function key F 12 leaves the program and displays the Tutorial Demonstrations
Menu again.

PS 300 TUTORIAL DEMONSTRATIONS — 25

Program: CHARACTERS

Typical Program Display

eft

rout

Bott

Wor 1 ~Or i ented Screer~Or i ented

Character
Modes

Abstract

eft

root

Bott

Screen`Oriented/Fixed

This program illustrates the concept of character orientation discussed in the
"Character and Text Handling" module. It shows the three ways in which
characters can be defined with the SET CHARACTERS command. Three cubes
are displayed with their faces labeled. Characters in the first cube are created
with the WORLD ORIENTED clause (the default). They are transformed as an
intrinsic part of the cube as if they were painted on the cube's faces.
Characters in the second and third cubes are created with the
SCREEN ORIENTED clause (the default setting). No matter how the cube is

26 - PS 300 TUTORIAL DEMONSTRATIONS

Abstract (continued)

rotated, these characters always remain in a plane parallel to the screen.
Character size is unaffected by scaling. In addition to being screen-oriented,
the characters in the third cube have an additional FIXED clause. This
maintains the characters at full intensity, no matter where they are located in
the Z axis.

Programmed Functions

Control Dials

D 1 - OS X ROT
D2 - OS Y ROT
D3-OSZ ROT
D4 -SCALE
D5 -TRANS X
D6 -TRANS Y
D7 -TRANS Z
D8 -unused

Notes on Usage

Function Keys

F 1 1 -RESET
F 12 -EXIT

As you manipulate the cubes with the control dials, note that the
screen-oriented characters remain in a plane parallel to the screen but that
they do move along the Z axis when the cubes are rotated. in X and Y. Also,
when the cubes are scaled, the screen-oriented characters remain at the same
size but the starting location of each character string responds to the scaling.

To see more clearly the difference between SCREEN_ORIENTED and
SCREEN_ORIENTED/FIXED characters, turn down the intensity of the PS 30.0
display. If you turn it low enough, only the "fixed" characters will be visible.

Function key F 1 1 resets the orientation of the cubes.

Function key F 12 leaves the program and displays the Tutorial Demonstrations
Menu again.

PS 300 TUTORIAL DEMONSTRATIONS - 27

Program: LEVEL OF DETAIL

Typical Program Display

Abstract

This program shows how level-of-detail commands are used to set u
conditional branching in a display tree.

P

In one area of the screen, a display tree is shown with a SET LEVEL node at the
top. Thirteen different paths are grouped under one instance node following the
SET node. Each branch contains an IF LEVEL node and a "structure." To keep
the diagram simple, the structure is shown as a square data node, but it actually
consists of a vector list and a color node. The IF nodes contain values from 0 to
12. The SET node is connected to a f unction network,

28 - PS 300 TUTORIAL DEMONSTRATIONS

Abstract (continued)

As new values from 0 to 12 are received from the network, different branches
out of the instance node are traversed. The effect of this is seen in the lower
part of the display, where a representation of the PS 300 screen is shown. Each
of the thirteen structures is a "frame" in a sequence which shows a cylinder
whose top and bottom twist and untwist in opposite directions.

Programmed Functions

Control Dials Function Keys

D1 - WS X ROT
D2 - WS Y ROT
D3 - WS Z ROT
D4 -SCALE
DS - X TRAN
D6 - Y TRAN
D7 - Z TRAN
D8 -LEVEL

Notes on Usage

F 10 - STRT/STP
Ell -RESET
F12 -EXIT

Dials 1 through 7 are just for fun. They let you manipulate the cylinder while it
is cycling through its animation sequence.

Function key 10 starts and stops the animation. When the ~ motion is stopped,
you can use dial 8 to change the level of detail by one value at a time to step
through the animation sequence.

Note that the "W S" in the LEDs for dials one, two, and three stands for World
Space. Rotations of this sort happen about the world coordinate axes.

Function key F 1 1 resets the program.

Function key F 12 leaves the program and displays the Tutorial Demonstrations
Menu again.

PS 300 TUTORIAL DEMONSTRATIONS — 29

Program: NETWORK EXECUTION

Typical Program Display

..»

• •

~.w

~ - f1) hNrM
ft~-
11~

.w

~---fq hM
--~1

Kq ~~ tt~—•
110

lA~tt!!Q~

Clro!
V~otor
Ll~t

apo •
Vootor
Ll~t

V.otor
Ll.t

Abstract

This program shows the sequence of activities when a function network accepts
data from a dial, processes the data through the functions that make up the
network, and updates interaction nodes in a display tree with the resulting
transformation matrices.

30 - PS 300 TUTORIAL DEMONSTRATIONS

Abstract (continued)

A representation of the PS 300 screen is shown in one viewport, displaying the
object defined by the display tree: two wheels connected by a tie bar. In
another viewport,, the display tree is shown with the interactive rotation and
translation nodes that will supply motion to the object connected to a function
network. The network connects to dial 8. As you turn the dial, the values
received from it are passed through the network, converted to the correct data
types, and fed into the interactive rotation and translation nodes at the end.

Programmed Functions

Control Dials

D8 - INHEELROT

Notes on Usage

Function Keys

F11 -RESET
F12 -EXIT

There are two parts to the network which supplies new values to the interactive
rotation and translation nodes. One part handles the simultaneous rotations of
the two wheels; the other part handles the synchronized translation of the tie
bar with the motion of the wheels.

The rotation network consists of the function F:DZROTATE connected to dial
8. The magnification value on input <3> of this function increases each tiny
value received from the dial by two hundred to create significant numbers to
accumulate. The accumulator on input <2> is initially set to zero. As the
function accumulates values, it converts them to a Z-rotation matrix which is
sent out of output < 1 >. The accumulator contents are sent out of output <2>.

The translation network calculates the amount in X and Y by which the center
of the tie bar must be translated to be synchronized with the motion of the
wheels. The accumulator contents from the F:DZROTATE function
(representing degrees of rotation around the Z axis) are fed into F:SINCOS.
This function calculates the sine and cosine of the angle of rotation. These
values are output by F:SINCOS and are multiplied by a constant value of .75 in
one case and -.75 in the other to calculate the displacement of the tie bar.
(The value is .75 because the center of the tie bar is initially located at 0 in X
and .75 in Y.) The resulting values are fed into the F:VEC function and are
converted to a 2D translation vector.

PS 300 TUTORIAL DEMONSTRATIONS — 31

Notes on Usage (continued)

The outputs of F:VEC and F:DZROTATE are fed into F:SYNC(2). This
synchronizes the updating of the rotation node and the translation node.

Function key F 1 1 resets the display.

Function key F 12 leaves the program and displays the Tutorial Demonstrations
Menu again.

PS 300 TUTORIAL DEMONSTRATIONS — 33

Program: PIC KIN G

Typical Program Display

Abstract

This program shows graphically how picking can be performed on a vector list, a
curve, a character string, or a label in a labels block.

Picking requires nodes in a display tree to set picking on and off, and nodes to
identify the object that was picked (picking identifiers or pick IDs). A picking
network must also be built so that a pick can be performed with the data tablet
and information about the picked object can be returned for programming
purposes.

34 — PS 300 TUTORIAL DEMONSTRATIONS

Abstract (continued)

In one viewport, a representation of the PS 300 screen is shown displaying two

cubes, a B—spline curve, a character string, and two labels. In another

viewport, the display tree for this group of objects is shown. A SET PICKING

ON/OFF node heads the display tree. This node is connected to the picking

network. When you pick one of the vectors in the cube or B—spline, one of the

characters in the string, or one of the two labels in the block, the path

traversed in the display tree will brighten, and the function F:PICKINFO will

show on its outputs the information returned by the pick.

Programmed Functions

Control Dials Function Keys

None F 1 1 —RESET
F 12 —EXIT

Notes on Usage

The display tree shows that there are two requirements for an object to be a
candidate for picking. The display tree must have a SET PICKING ON/OFF
node that can be enabled, and the object must be identified with a pick ID.

The picking network consists of the initial function instances TABLETIN and
PICK, the initial structure PICK_LOCATION, and an instance of the function
F:PICKINFO.

As you move the pen over the tablet, notice that output < 1 > of TABLETIN sends
X and Y coordinate values to PICK LOCATION. This is positioning the invisible
pick—box so that it is centered exactly where the cursor appears on the screen.

When a pick occurs, the path traversed in the display tree is momentarily
brightened, and the outputs of F:PICKINFO show the information returned
about the vector picked.

Function key F 1 1 resets the display.

Function key F 12 leaves the program and displays the Tutorial Demonstrations
Menu again.

PS 300 TUTORIAL DEMONSTRATIONS — 35

Program: WORKSPACE

Typical Program Display

Abstract

The work space is not truly a demonstration program, but a blank screen for you
to use with the Tutorial Modules. Choose this selection from the menu when
you are studying a module such as "Viewing" or "Character and Text Handling"
that requires you to display and manipulate objects.

The work space is simply a border with the word "workspace" at the bottom
right.

36 - PS 300 TUTORIAL DEMONSTRATIONS

Programmed Functions

Control Dials Function Keys

None F 12 -EXIT

Notes on Usage

When you go to the work space, you will probably be entering commands to
create and display structures as directed in the Tutorial Modules. If you create
any other structures on your own, be aware that the names you assign may
conflict with named entities in the Tutorial Demonstration files. We
recommend that you avoid this by prefixing any name of your own devising with
your initials or some other two-letter code.

Here is a reminder of the three modes of operation of the the PS 300 and the
key sequences that enter those modes.

Command Mode

Interactive Mode

TE Mode

CONTROL/LINE LOCAL

SHIFT/LINE LOCAL

LINE LOCAL

Enter PS 300 commands at
the "~ ~" prompt.

Use the interactive devices
to perform programmed
functions.

Enter commands on the host
at the host prompt (PS 300 is
emulating a host terminal).

When you leave the work space, enter the following command.

INITIALIZE NAMES;

This will clear all object names and function instance names you have created
in Command Mode but will not affect names that are contained in the Tutorial
Demonstration files. Remember that an INITIALIZE command is specific to a
communications line. In other words, structures created through the keyboard
in Command Mode can only be initialized with a local command from the
keyboard, and structures transferred from the host can only be initialized with
a command sent from the host.

PS 300 TUTORIAL DEMONSTRATIONS — 37

If you use the INITIALIZE DISPLAY command, you will have to display the
Tutorial Demonstration Menu and programs again. To do this, type the
command

DISPLAY TUTORIAL_DEMOS;

when you are finished at the work space.

Use function key F 12 to exit and return to the Tutorial Demonstrations Menu.

PS 300 TUTORIAL NODULES

The remainder of this volume consists of four tutorial modules which detail the
fundamental concepts of PS 300 graphics programming. Each tutorial module covers a
PS 300 programming concept or group of related concepts. Because each module builds
on information contained in the previous module, it is highly recommended that you
read the modules in the established order.

The following provides a capsule description of each module:

MODELING presents the first stage of graphics modeling, analyzing the model. This
consists of breaking the model into interactive parts, organizing those parts into a
hierarchy, and transforming the hierarchy into a PS 300 display tree.

PS 300 COMMAND LANGUAGE details how to translate the hierarchical display tree
model into PS 300 command language.

FUNCTION NETWORKS I explains how to connect input devices to the model so you
can interact with it.

VIEWING OPERATIONS describes how to look at a model from different viewpoints.
This includes moving your viewpoint to another location in the coordinate system,
choosing a perspective view, and specif ying a viewing area.

NODELING

DESIGNING A CONCEPTUAL MODEL

CONTENTS

INTRODUCTION 1

OBJECTIVES 2

PREREQUISITES 2

DESIGNING AN ORGANIZATIONAL HIERARCHY 3
Exercise 6

DESIGNING A DETAILED DISPLAY TREE 9
Exercise 23

DESIGNING A COMPLEX MODEL 27
Exercise 31
Exercise 33

SUMMARY 53

.j

MODELING

ILLUSTRATIONS

Figure 1. Mechanical Arm 1
Figure 2. All-Cylinder Robot and All-Sphere Robot 2
Figure 3. Robot Made of Cylinders and Spheres 1 1
Figure 4. Square and Corresponding Display Tree 13
Figure 5. Diamond and Corresponding Display Tree 14
Figure 6. Star and Corresponding Display Tree 14
Figure 7. Transformed Star and Corresponding Display Tree 15
Figure 8. Mechanical Arm With Proportions 16
Figure 9. Cylinder Primitive for Mechanical Arm 16
Figure 10. Cube Primitive for Mechanical Arm 17
Figure 1 1. Hand Primitive for Mechanical Arm 17
Figure 12. Mechanical-Arm Hand and Corresponding Display Tree 19
Figure 13. Mechanical-Arm Upper Arm and Corresponding Display Tree 20
Figure 14. Mechanical-Arm--Final Display Tree 22
Figure 15. Sportscar 23
Figure 16. Car Primitive -- Body 24
Figure 17. Car Primitive -- Radial Tire 24
Figure 18. Car Primitive--Snow Tire 24
Figure 19. Tires Scaled and Rotated 180 Degrees 25
Figure 20. Interaction Nodes for Tire 25
Figure 21. Final Display Tree for Car 26
Figure 22. Robot--Orientation 28
Figure 23. Robot Sphere Primitive 29
Figure 24. Robot Cylinder Primitive 29
Figure 25. Robot--Proportions 30
Figure 26. Robot--Body Pieces 31
Figure 27. Robot--Informal Hierarchy 32
Figure 28. Robot--Right Hand Display Tree 34
Figure 29. Robot--Right Forearm Display Tree 35
Figure 30. Robot--Right Arm Display Tree 36
Figure 31. Robot--Shared Nodes for Hand 37
Figure 32. Robot--Left Forearm Display Tree 37
Figure 33. Robot--Display Tree for Two Arms 38
Figure 34. Robot--Head Display Tree 39
Figure 35. Robot--Upper Body Display Tree 41

MODELING

Figure 36. Robot--Foot Display Tree 42
Figure 37. Robot--Rotate and Translate for Foot 43
Figure 38. Robot--Right Calf Display Tree 44
Figure 39. Robot--Right Thigh Display Tree 45
Figure 40. Robot--Shared Nodes for Foot 46
Figure 41. Robot--Left Lower Leg Display Tree 47
Figure 42. Robot--Left Leg Display Tree 48
Figure 43. Robot--Lower Body Display Tree 50
Figure 44. Robot--Completed Display Tree 52
Figure 45. Windmill Display Tree ~~ 1 56
Figure 46. Windmill Display Tree ~~2 56
Figure 47. Correct and Incorrect Usage of Operate Nodes 57
Figure 48. Sphere of Influence 59
Figure 49. Instance Node Pointing to Three Data Nodes 60

MODELING — 1

One of the benefits of the PS 300 is the ease with which you create a model for
display. Essentially, there are three steps to creating a model which can be
manipulated interactively on the screen.

• The first step is to design the model on paper, taking into account what it will look
like and how it will move.

• The second step is to write the PS 300 code using that conceptual model as a
blueprint.

• The last step is to make the model interactive by connecting it to interactive
devices. This module details the first step, designing a conceptual model.

Designing a conceptual model is in many ways like creating an outline or blueprint of
your model. Like any outline, it allows you to organize your material in a logical,
sequential manner. It also helps you design a cor~~plex model one step at a time.

Once the conceptual model is completed, it can be analyzed more easily for errors,
repetitions, omissions, or flaws in logic because you can see its organization as a
whole. Should you find an error, it is easy to correct at this stage of design.

Designing a conceptual model allows your attention to be focused on the problems of
design. You need not be concerned with operating procedures for the PS 300 or with
the PS 300 command language. In fact, once the model is designed, you already have
the framework for the commands necessary to create that model in the PS 300.

Inherent in the design process of any model is the consideration of not only what the
model looks like, but also what it does. This is because the way in which you interact
with a model is built into the design as part of its organization. Not only can you
interact with the model as a whole, you can manipulate different parts of it as well.

Consequently, the model is organized as a hierarchy of interrelated parts. Building this
hierarchy entails:

• Knowing what the object to be modeled looks like

• Dividing the object into the pieces that comprise it

• Organizing these pieces according to movement or attributes.

The resulting hierarchy.is a representation of the model's organization.

Once you have the model organized into the pieces that comprise it, the next -step is to
detail the steps that would be necessary to create each piece in the PS 300's world
coordinate system.

2 —MODELING

To create a model in the world coordinate system, you perform a series of
transformations (such as scales or rotations) on data primitives.

Using the hierarchy as your basis of organization for the pieces, you build each piece in
the world coordinate system, performing whatever transformations are necessary; i.e.,
shaping a primitive into the desired piece, grouping the piece with other pieces
according to their interdependencies, and then moving the pieces into their respective
locations within the model.

Each of these steps is detailed in the display tree for the model. The modeled
primitives are represented in the display tree as data nodes. The transformations
you perform are represented in the display tree as operation nodes. There is a third
type of node in display trees called an instance node which is used to organize and
group the other two types of nodes. An instance node is placed wherever the display
tree branches to more than one descending node.

When completed, the display tree represents all the information necessary to create the
model, step by step. It even includes operation nodes which allow you to interact with
the model as a whole or with any of its select pieces. The display tree can then
actually be coded in the PS 300 via the PS 300 command language.

OBJECTIVES

This module details how to design a display tree for a model. You will learn how
to:

■ Design an Organizational Hierarchy

■ Design a Detailed Display Tree

■ Design a Complex Model

PREREQUISITES

Before reading this module, you should know basic computer graphics concepts,
as developed in "Graphics Principles". You should also have completed the
"Hands—On Experience" module.

MODELING - 3

DESIGNING AN ORGANIZATIONAL HIERARCHY

The first step in building a display treE is to design an organizational hierarchy
for the model.

Before you can design an organizational hierarchy, however, you must know
exactly what the model will look like. The model's dimensions and proportions
may have been provided for you initially, or you may have to provide these
yourself by drawing out a rough draft of the model on graph paper.

This rough draft can be used to divide the model into non-divisible pieces. The
basis for this division depends on what you want to do with the model.

One basis for division might be movement--what pieces you want to move
individually. You will also want to consider attributes which might differentiate
pieces, such as color, or blinking, or level of detail. For example, you may want
to show red fingers on a white hand. These attributes affect the way in which
you design the model. It is much easier to make design allowances for them
initially than to reconstruct the model later.

Of course it is possible that you may not want to differentiate all the pieces of a
model. For example, suppose you are designing a sportscar, and the only
moveable parts are the four wheels. In this case, the whole car body can be
thought of as one piece. The model as a whole would then consist of five pieces:

Pieces

1. right front wheel
2. left front wheel
3, right rear wheel
4, left rear wheel
5. car body

The resulting hierarchy would be:

CAR

i i

left rear right rear
wheel wheel

body
i

i

left front right front
wheel wheel

4 —MODELING

However, if you want the doors to swing open, the front windshield wipers to
move, and an antenna to retract, each of these features is distinguished as a
separate piece. The following hierarchy would then be:

CAR

I 1 1 1 1 f l I i
left rear right rear left front right front right door left door body wipers antenna

wheel wheel wheel wheel

There are also times when you may want to interact with several pieces of the
model collectively as well as individually or when the movement of one piece has
a direct result on another piece. This kind of grouping or dependency affects the
design of the hierarchy.

For example, if you were designing the arm of a robot, the arm could consist of
three pieces: the hand, the forearm, and the upper arm. The hand piece can be
moved individually. However, moving the forearm necessitates moving the hand,
and moving the upper arm necessitates moving the both the forearm and hand.
In this example, then, the three pieces have different degrees of independent
movement.

Pieces are organized in a hierarchy according to this kind of sphere of
influence. Those pieces which influence other pieces are above them in the
hierarchy. So a simple hierarchy for the robot's arm might be:

Upper arm piece

Forearm piece

Hand piece

MODELING — 5

To build the capacity for movement into this hierarchy, add two "grouping"
names:

ARM

upper arm piece LOWER ARM

i

i

forearm piece hand

Grouping names are used when pieces act collectively. In this hierarchy,
"LOWER ARM" is the grouping name used when the separate pieces, forearm and
hand, move collectively. "ARM" is the grouping name used when you want to
move the upper arm piece and the lower arm.

Grouping names make collective movement of pieces easier. Moving "ARM" is
easier than moving each of the three pieces simultaneously. Moving "LOWER
ARM" is easier than moving the forearm and hand pieces individually. Grouping
names do not identify new pieces of the model--no ARM or LOWER ARM piece
exists.

6 —MODELING

Exercise

Analyze the structure of the simplified mechanical arm in Figure 1 according to
dependent and independent movement of pieces. Then organize these into a
hierarchy accordingly. Use whatever grouping names are necessary.

IAS4425

Figure 1. Mechanical Arm

The arm consists of a base, two jointed sections, and a hand. The base is fixed
and cannot move. The whole arm can rotate at the base. The two arm pieces
and hand are affected by this movement. The movement at the elbow affects
the upper arm and hand only. Movement at the wrist only affects the hand.

MODELING — 7

So the pieces are:

Pieces

base
lower arm
forearm
hand

The pieces can be grouped accordingly: the first movement that affects more
than one piece is above the elbow. Group the forearm and the hand together to
form "UPPER ARM".

Pieces Grouping Name

hand
forearm

UPPER ARM

The upper arm moves with the lower arm piece when the whole arm rotates at
the base. Group these together to form the "ARM".

Pieces Grouping Name

lower arm piece ARM
upper arm

Finally, the base is a piece on its own. It is unaffected by the movement of the
arm and the hand.

Piece

base

Once the pieces of the model have been identified and grouped, an informal
hierarchy can be sketched out. The most inclusive pieces, in terms of
influencing other pieces, are at the top of the hierarchy.

8 — MODELING

Mechanical Arm

Base Piece Arm

Lower Arm Pi ~e Upper Arm

Forearm Piece Nand Piece

IAS0426

Since the pieces are divided according to how you can move them, it may be

helpful at this point to note in the hierarchy those points where interaction will

occur. So since the mechanical arm in the above hierarchy is divided according

to rotation movements, note the places where interactions would occur in the

above hierarchy. The interaction points are shown in parenthesis in the following

hierarchy for Mechanical Arm.

(Translation Point)

(Rotation Point)
I

(Scale~Point)

Mechanical Arm
/~-(Rotaiion Point)

Base Piece Arm
/~(Rotaiion Point)

Lower Arm Piece Upper Arm
/ ~~(Rotation Point)

Forearm Piece Hand Piece.

JASO427

MODELING - 9

DESIGNING A DETAILED DISPLAY TREE

The informal hierarchy is used as the organizational outline for the actual
display tree you will design in this section. This is reflected in the way the
model is actually built in the world coordinate system: pieces that are grouped
collectively down a hierarchical branch are often built collectively along an axis
of the world coordinate system.

The display tree conceptually represents each of the steps performed to build
each piece that comprises the model. As you identify each step necessary to
build the model, you will draw a corresponding node in the display tree. In other
words, modeling the pieces and designing the display tree are simultaneous
procedures.

The modeling steps themselves are:

• Shaping the organizational hierarchy pieces from primitives. (For
information on how to create primitives, refer to Volume 3A, Command
Summa r~.)

• Using modeling transformations to move pieces into position relative to other
pieces that are grouped within the hierarchy.

• Adding interactions where needed.

First determine the primitives you want to use. These will depend on the kind of
modeling you want to do.

• You may want an iconic model--one that looks as much as possible like
the object it models. With this kind of model, each body piece is very

distinctive and is modeled individually. For example, an iconic model of a
man might have details such as facial features, hairstyle, fingernails, and so
on. Avery large vector list is usually required to provide this kind of needed
detail.

With iconic modeling, not only is more detail_ needed for each piece, but more
pieces are needed. This requires a great many vector lists, atime-consuming
and often difficult programming task.

10 —MODELING

• You may be able to use a less detailed analog model. Analog models
minimize your task by eliminating unneeded detail. You only define pieces
that are really needed. An analog model may be as useful as an iconic one
for certain applications use an analog model if you only want to show
movement, or relative position or size, for example.

Most graphics programming is a compromise between these two types of
modeling. A model needs to be iconic enough to be recognizable, but analog
enough to be useful.

For example, a robot model designed for movement r~~ight not require a great
deal of realism. If there is no need to differentiate individual fingers on the
hand, it could be designed as an oval shape. The vector list to create this would
be simpler than one to create a detailed hand with fingers. Both the left and
right hands could be modeled from this vector Iist.

In the same way, simpler primitive shapes, like cylinders and spheres, could be
used repetitively by many different pieces of the robot. For example, a robot
could be made from nothing but cylinders by defining a cylinder primitive and
then transforming that shape to create each body piece. Changing the primitive
from a cylinder to a sphere would change the appearance of the analog model.

00
IA50428

Figure 2. A11-C;~linder Robot and All-Sphere Robot

MODELING — 11

However, both models illustrate movement, position, and size in exactly the
same way. Both use only one primitive, easing the programming task immensely.

The model in Figure 3 is only slightly more complex. It uses a sphere primitive
for the head and hands, and a cylinder primitive for the rest of the body pieces.
Two primitives are required, but the result is more aesthetically pleasing.

~~
i AS0429

Figure 3. Robot Made of Cylinders and Spheres

Clearly, there are numerous ways to model an object. In any modeling

application, there is flexibility in deciding how realistic the model will be and

how many primitives will be required.

Once you have established what primitives the model will be shaped from,

determine the actual dimensions and placement of the primitives in the world

coordinate system. To do this, it is helpful to draw the model to scale on graph

paper. The model serves as a visual aid as you determine how much to enlarge,

reduce, or reshape primitives.

12 —MODELING

The dimensions of the primitive are often determined arbitrarily and are usually
small, whole numbers. For example, it is easy to work with a sphere with a
radius of one. If you need an oval four units high and two units wide, scale the
sphere by 1 in X and 2 in Y.

When determining the initial position of primitives, consider where it is easiest
to define a primitive, and what position it needs to be in most of the time to
form pieces of the model. It is usually easiest to work with primitives located at
the origin of the world coordinate system. One reason is that rotations take
place around coordinate system axes. To apply rotations correctly to a
primitive, pieces of a model often need to be centered about, sit on, or hang
from an axis.

Any model you create will be defined by coordinate system locations. When
positioning the model, it is usually preferable to construct a model near the
origin. One reason is that the initial view of the PS 300 world is centered on the
origin. Another reason is that it is often easiest to establish symmetry if the
model is centered about the X, Y, and Z axes. Finally, because rotations and
scalings are performed relative to the origin, building the model there is easier.

Now that you know the dimensions of your model, its position in the world
coordinate system, and the primitives which compose it, you are ready to design
the model's display tree.

A display tree represents several kinds of information. First, it includes the
step—by—step information necessary to create the model in the world coordinate
system. Second, it includes the capability to differentiate parts of the model by
attributes, such as color, or by movement. Finally, it includes the capacity for
interaction with part or all of the model.

PS 300 display trees consist of up to three types of nodes.

• Primitive data, the "building blocks" for the model, are represented in the
diagrams by square data nodes. Specifically, these nodes describe the
collection of points, lines, and .characters that define primitive data. Data
nodes are always terminal nodes in a display tree.

• Any operations (such as scaling and rotation) which are performed on an
object are represented in the display tree by a circle. These nodes are called
operation nodes. An operation node can point to no more than one node
below it.

MODELING — 13

Operation nodes are used in two ways: for modeling and for interaction.
Modeling operations are performed strictly to shape the "building blocks" of a
model and move them into place. Interaction operations allow you to
interact with a model. Any operation node can be either a modeling or an
interactive node, or both kinds, depending on how it is used. In this module,
interactive nodes are represented by a double circle; modeling nodes by a
single circle.

Operation nodes are also distinguished by the fact that once they have been
coded into the display tree, you can enable or disable them interactively.
(For more information on this, refer to the "Function Networks I" module.)

• Instance nodes join one or more subparts, or hierarchical branches, into a
whole, nameable part. Instance nodes are represented by a triangle.

There is a special group of operation and data nodes that represent the
commands that allow you to display labels and character strings. For details on
these, refer to the "Text Modeling" module.

In the "Hands—On Experience" chapter, each step you took to create and display
the Star can be represented by one of the three types of nodes described above.

First, you created the square using a vector list:

Y

X Data Node

! AS0430

Figure 4. Square and Corresponding Display Tree

14 —MODELING

Then you displayed a rotated version of that square--Diamond:

Operate Node

IASO431

Figure 5. Diamond and Corresponding Display Tree

The diamond and the square were then linked together to form a star:

/ Instance Node

IAS0432

Figure ~. Star and Corresponding Display Tree

MODELING — 15

The other operations you perform on the star, scaling and translating, are
represented in the display structure by these nodes.

IAS0433

Figure 7. Transformed Star and Corresponding Display Tree

Display trees are designed beginning with the lowest nodes on the tree, the data
nodes, and moving consecutively up the tree through each operation that is
performed. This assures that the data are modified in the proper order by the
PS 300. (Operations such as scale, rotate, and translate are all performed using
matrix multiplication. The non—commutativity of matrices means you must
order transformations carefully.)

The remainder of this section describes, step by step, how to design a display
tree for the mechanical arm used in the first exercise. The mechanical arm and
its dimensions are shown in Figure 8.

16 —MODELING

` v
6

IAS0434

Figure 8. Mechanical Arm With Proportions

The mechanical arm is designed using these primitives:

1. A unit cylinder with its base on the XZ plane, centered on the positive Y axis,
with a radius of 1 and height of 1. (Figure 9)

I~~

~aso435

Figure 9. Cylinder Primitive for Mech~niCdl Arm

MODELING — 17

2. A unit cube with its base on the XZ plane, centered on the positive Y axis,
with a length, height, and width of 1. (Figure lo}

lAS0436

Figure 10. Cube Primitive for Mechanical Arm

3. A primitive consisting of lines which form the hand with its forks pointing up,
with the base on the XZ plane, centered on the positive Y axis with a height
of 2, width of 2, and depth of .5. (Figure 1 1 }.

. 5~4 0

2

lAS0437

Figure 11. Hdnd Primitive for Me~hdni~al Arm

As for initial position in the world coordin-ate system, the mechanical arm will be
placed with its base on the XZ plane, centered on the positive Y—axis. It will be
easiest to build the model up the Y axis.

18 -MODELING

As you model the mechanical arm, create the corresponding display tree using

the hierarchy as the basis:

(Translation Point)

(Rotation Point)
I

(Scale~Point)

Mechanical Arm
~~ -(Rotation Point)

Base Piece Arrr~
/ (Rotation Point)

Lower Arm Piece Upper Arm
/ ~'(Rotati n Point)

Forearm Piece Hand Piece
iAso44o

Instance nodes are used to group other nodes in the display tree. The hierarchy

branches at three places: where the mechanical arm is divided into a base and

arm, where the arm is divided into a lower arm piece and an upper arm, and

where the upper arm is divided into a forearm and ~a hand. The instance nodes
are placed accordingly:

(Translation Point)

(Rotatioi Point)

(Scale Point)

Mechanical Arm

(Rotation Point)
Base Piece

Lower Arm Piece

Forearm Piece

(Rotation Point)

Upper Arm

(Rotation Point)

Hand Piece
~ Aso4~ ~

MODELING — 19

Next remember that all terminal nodes, those which define primitives, are
represented with data nodes:

(Translation Point)

(Rotation Point)

(Scale Point)

Mechanical Arm

(Rotation Point)

Arm
Base Piece

Lower Arm Piece

(Rotation Point)

Upper Arm

(Rotation Point)

Forearm Piece

Hand Piece

IAS0442

Finally, working up from the bottom of the display tree, we will detail the steps
to model each of the primitives in the world coordinate system. Begin with the
hand.

The primitive for the hand (data node) is designed so the hand is already the
proper size and in the proper place, so no scaling or translating is necessary.
According to the hierarchy, however, a rotation node is needed to allow rotation
at the wrist. See Figure 12.

Hand

tAS0438

Figure 12. Mechanical-Arm Hand and corresponding Display Tree

20 —MODELING

Now that the hand is built, it should be positioned so it can be grouped with the
forearm piece. You might be tempted to translate the hand to its final position
in the model, build the forearm piece, and then translate that piece into its final
position. But if you do this, when you group these two pieces into upper arm and
then rotate that upper arm, both pieces will "orbit" the axis rather than rotate at
the elbow. For proper rotation of the upper arm, the hand must be grouped with
the forearm and both rotated while the forearm rests on the axis. (For more
information about rotation, refer to the "Graphics Principles" section 2.)

So next, translate the hand up the Y axis the length of the forearm piece, 7 units
in +Y. Then build the forearm at the origin by scaling the cylinder (1,7,I), and
group both the forearm and hand together as upper arm. Now if you apply a
rotation to upper arm, it will rotate properly. See Figure 13.

Y

0

Forearm ~

X

IAS0439

Figure 13. Mechanical-Arm Upper Arm and Corresponding Display Tree

A similar procedure is used to build the remainder of the arm. To assure proper
rotation, move the upper arm up the Y axis the length of the arm, build the
lower arm piece, and THEN apply the rotation to the whole arm. (Pieces do not
have to be grouped just along the Y axis. If it is easier to do so, you can build
the pieces along the X or Z axis.)

MODELING — 21

The modeling steps can be summarized as follows:

1. Move Upper Arm (forearm and hand pieces) 9 units up the +Y axis to
make room for the lower arm piece.

2. Scale the cylinder to create the lower arm piece (1,9,1).

3. Group the lower arm and upper arm to form Arm.

4. Apply a rotation to Arm.

5. Scale the cube to create the base (6,1,4).

6. Allow for interactive manipulation of the whole mechanical arm
(rotation, translation, scaling) with three interactive nodes.

The final display tree is shown in Figure 14.

22 -MODELING

Mechanical Arm

Nand

IAS0443

Figure 14. Mechanical-Arm--Final Display Tree

MODELING — 23

Exercise

Design the display tree for the sportscar in Figure 15.

IASO421

Figure 15. Sportscar

Include the capacity for movement in the four wheels (rotation) and for
movement of the car as a whole (rotation, translation).

First design an informal hierarchy. Only five parts are needed for this car: the
four wheels and the body. Because the body has no moving pieces, the whole
thing can be thought of as one piece. The hierarchy is:

CAR

Right Front Right Rear Left Front Left Rear Body
Wheel Wheel Wheel Wheel

Next, model the primitives and create the display tree concurrently. There are
two sets of tires: snow tires on the back and radials on the front. This means
three primitives: a vector list for the body of the car, one for the snow tire, and
one for the radial tire. These will be represented in the display tree by three
data nodes, as shown in Figures 16, 17 and 18.

24 -MODELING

Vec

Figure 16. Car Primitive--Body

Radial

IAS0445

Figure 17. Car Primitive--Radial Tire

Uec Snow Tire

IAS0446

Figure i 8. Cdr Primitive--Snow Tire

Body

IAS0444

MODELING — 25

The wheels are scaled to fit into the wheelwells of the car. This means the data
node for each type of fire has a scale applied to it.

Each wheel also has a hubcap on one side. Rotate the two tires on the left of the
car 180 degrees about Y so that the hubcaps face out (Figure 14).

Snow Tire Radial

IASO447

Figure 19. Tires Scaled and Rotated 180 Degrees

To allow for rotation of all four tires around the Z axis, insert interaction nodes
which can accept values from an input device or host computer via a function
network. Since these rotation values will subsequently be changed interactively,

they can be 0,0,0 for now (Figure 20).

I (Snow Tire
 1 i

Ry
~o

Radial Tire

IASO448

Figure 20. Interaction Nodes for Tire

26 — MODELII~IG

The order of the operations is important here. Moving up the display tree

branch, the interaction node applies AFTER the modeling rotate node has been

applied to the data (Rot Z is above Rot Y 180). If you build the interaction node

first and then turn the left tire out 180 degrees, it rotates in the wrong direction.

After all the rotations are applied, translate each wheel from the origin to its
proper position on the car. Then group all pieces together as Car.

Two kinds of movement might be desirable for the car as a whole: rotation and
translation. These nodes are placed at the top of the structure.

The final display structure is shown in Figure 21.

Figure 21. Final Display Tree for Car

MODELING — 27

DESIGNING A COMPLEX MODEL

This section details the steps necessary to design a complex model, an anthropoid
robot. The exercise illustrates the importance of interaction nodes, (in this case,
for movement) in the design of display trees. It also allows you to deal with
specific kinds of modeling problems, giving you practical experience and allowing
for some helpful generalizations about good programming techniques.

Design Robot with movement in mind. Robot moves at the joints: waving,
swinging his arms, nodding, bowing, kicking, and so on. All of these movements
are rotations of one kind or another about the bases of different body parts such
as the waist, shoulder, and wrist.

Robot should look like the one shown in Figure 22. Notice his initial
orientation--what position his limbs are in and where he's located in world space
coordinates. To make the design task easier, Robot is placed symmetrically
about the Y axis with his center at the origin.

28 -MODELING

Y

i~so48~

Figure 22. Robot--Orientation

Robot's body pieces consist of two primitives: a sphere for the head and hands,
and a cylinder for the remaining body pieces. These two primitives are defined

below. Note that they are three-dimensional objects requiring (X,Y,Z)

coordinate values.

1. A unit sphere centered at the origin with a radius of 1 (Figure 23).

MODELING — 29

Y
~~

1

-1 1 2

-1

X

IAS0482

Figure 2 3. Robot Sphere Primitive

The sphere is centered at the origin because it is easier to calculate the shape in
this position. Also, from this central location, the sphere can be translated along
axes easily. It will need to be translated up the Y axis when modeling the head
and down the same axis when modeling the hands.

2. A unit cylinder with the proportions (2,2,2), hanging on the XZ plane (its top
resting on the X axis), centered on the negative Y axis (Figure 24).

Y

1

_2 -1 0 1 2

-~

_2

X

InS0483

Figure 24. Robot Cylinder Primitive

30 —MODELING

The cylinder could have been centered about the origin as the sphere was.
However, it has been created down the Y axis for a reason. Almost all the body
pieces that depend on the cylinder rotate from "above". For example, the lower
arm rotates at the elbow and the upper arm at the shoulder. If the cylinder were
placed at the origin, each time a body piece was created the cylinder would have
to be translated down the Y axis for this rotation to be applied "above" the piece.

Placing the primitive below the origin initially, then, saves separately coding a
translate node for each piece you create. This is a good example of creating
your primitive to suit your design goals.

Once the proportions for primitives have been established, use these to
determine the exact size of Robot's body pieces in the world coordinate system.
For example, as shown in Figure 25, Robot's head is twice as tall as it is wide.
This means the sphere primitive will have to be scaled (1,2,1) to make the head.

w

~r ~~r

~~

~~
IASQ484

Figure 25. Robot--Proportions

MODELING — 31

Exercise

Design a hierarchy for Robot. Joints will be at the wrists, elbows, shoulders,
ankles, knees, hips, waist, and neck.

Robot is composed of the fifteen individual body pieces shown in Figure 26.

Nead

Right Upper Arm

Right Forearm

Right Hand

Right Thigh

Right Calf

Trunk

Pelvis

Left Upper Arm

Left Forearm

Left Hand

Left Thigh

Left Cal f

Right Foot ~~ Left Foot iAsouBs

Figure 26. Robot--Body Pieces

The pieces should be organized so that rotating a joint causes all appendages
affected by that joint to rotate. For example, rotating "upper body" to make
Robot bow should cause the trunk, head, and arms to rotate. Though naming may
differ somewhat, the hierarchy of named parts should basically look like the one
in Figure 27.

32 -MODELING

Upper Upper
Arm Lower Arm

Arm

i

Forearm

Hand

Forearm

Body

Left Pel vi s
Arm

Lower
Arm

Hand

Thigh

Lower Body

Right
Leg

Lower
Leg

Thigh

Calf I Calf

Foot

Figure 21. Robot--Informal Hierarchy

IAS0486

Lef t
Leg

Foot

Notice the hierarchy includes additional "grouping names" (lowerleg, rightarm,

upperbody). As with previous examples, interactive points have been added to

the hierarchy where the joints will rotate.

MODELING — 33

Exercise

Use the informal hierarchy as a guide for the display tree. "Grouping" names can
be represented by instance nodes. Data nodes will be terminal nodes at the end
of the hierarchical branches. Placement of interactive nodes has already been
established. Placement of modeling operation nodes should be carefully worked
out as you model each piece in the world coordinate system.

As you design the display tree, make note of where the body pieces for Robot's
limbs can be shared by the left and right body pieces. Consider the feet, calve,
thighs, forearms, upperarms, and hands. Right and left pieces can share nodes up
to the point where the nodes serve to distinguish the two (separate rotate and
translate nodes).

Sharing must be done carefull°~, in a way that allows parts of the model that
require individual movement to. remain independent. In any given display
structure, there are many different ways to share nodes.

The following details the modeling steps and corresponding display tree for
Robot.

Creating the Right Hand

Scale the sphere to create the elongated shape of the hand (.5,1,.5). Translate
the hand down the Y axis (0,-1) so a rotation can be applied at the origin. Insert
the rotate interaction node to simulate the wrist so the hand can "wave". For all
interactive nodes, specif y a zero value initially because values can be supplied
later from interactive devices or a host.

Notice that although you have placed only one rotate node for articulation here,
the wrist rotates around three axes (X, Y, and Z axes). (The "Function Networks
I" module describes how to allow for rotation in three dimensions with one 3x3
matrix node (rotation node).)

Since the hand must be grouped with the forearm piece, translate the hand down
the Y axis the length of the forearm piece (.0,-3) rather than translating it into
its final position in the model. Then when you apply a rotation to the lower arm,
both the hand and forearm will rotate properly "from the elbow," rather than
"orbiting" the axis.

Figure 28 illustrates the series of transformations that create the hand from the
sphere primitive.

34 —MODELING

X

Y

Trans

Sphere

tasoUs~

Figure 28. Robot--Right Hand Display Tree

Creating the Right Forearm

The forearm piece is created by scaling the cylinder to the proper size
(.5,1.5,.5). Scaling the forearm places it in the proper position to meet the hand;
there is no need to translate it.

When you rotate the right forearm from the elbow, you want the entire lower
arm (the forearm piece and hand) to rotate. To do that, define right forearm to
be an instance of forearm and hand.

Insert a rotate node above the lower arm instance to move lower arm at the
elbow. Then translate lower arm down the Yaxis--this time the length of the
upperarm piece (0,-4).

Figure 29 shows the series of transformations that create the lower arm.

MODELING — 35

Y

Scale
X

X

Y

Trans

Y Y

Instance Rot
X

Figure 29. Robot--Right Forearm Display Tree

Completing the Right Arm

Cyi fi nder

IASO488

Build the upper arm piece so you can link it with the lower arm to make the
entire arm. First scale the cylinder primitive (.5,2,.5), then link the upper arm
puce and forearm together using an instance node. Allow for manipulation by
including a rotate node above that. Then translate the arm out to its final place
in Robot (-2.5,6). This translation value is the exact X,Y coordinate location of
the shoulder (the rest of the arm "hangs" below that point).

Figure 30 shows the series of transformations that create the right arm.

36 —MODELING

X

Trans

X

Y
Scale

X ~

Y

Y
Instance

X

Y
Rot

Figure 34. Robot--Right Arm Display Tree

Creating the Left Arm

Many of the modeling steps used to create the right arm are used to create the
left arm. Rather than repeat these nodes in a second branch of the display tree,
you can "share" nodes whenever possible, reducing the total number of nodes in
the display tree.

For example, since a hand has already been modeled by scaling and translating a
sphere, these nodes can be referenced in the other arm. However, the second
hand requires a separate rotate node so the left hand can "wave" independently
(Figure 31).

MODELING — 37

Left Hand Right Nand

Figure 31. Robot--Shared Nodes for Hand

The left hand also requires its own translate node to move the hand from the
origin down the Y axis the length of the forearm piece (0,-3) (because one
transformation cannot point directly to two descendent nodes).

The forearm piece was already created in doing the right hand, so next create
left forearm as an instance of the forearm piece and the hand (Figure 32).

Figure 32. Robot--Left Forearm Display Tree

38 —MODELING

Then insert a rotate node so the lower arm moves at the elbow and translate this
part of the arm down the Y axis the length of the upper arm piece (0,-4).

The upper arm piece is already built, so it can be joined to the rest of left lower
arm with an instance node. A rotate node comes next to allow for left shoulder
manipulation. Then the left arm can be translated out to its final place in Robot
(2.5,6).

Figure 33 shows the display tree for the right and left arms.

Left
Arm

a~
i
O~
Li

W
N
J

Ri
gh
t

or
ea
rm

~ Right
Arm

• .

IAS0492

Figure 33. Robot--Display Tree for Two Arms

MODELING — 39

Besides the two arms, the upper body includes the head and trunk.

Creating the Head

Scale (1,2,1) the sphere primitive to create Robot's head. Then translate the
head (0,1) so rotations (0,0) such as nodding and shaking the head, take place at
the neck. (Notice that, in this case, translating before scaling would produce the
same result.)

The head can then be translated to its final position (0,6). See Figure 34.

Trans

X

Y

Figure 34. Robot--Head Display Tree

Creating the Trunk

Nea d <

IAS0493

With the arms and head built, you need only complete the trunk before linking all
four together as Upperbody. Scale the cylinder for the trunk (2,3,1). Then
translate the cylinder up the Y axis (0,6) to its final position. (This is the one
time in the Robot model when it would have been better to have a cylinder
primitive that rested "on top of" the X axis instead of "hanging down" from it.)

40 -MODELING

Then join the arms, head, and trunk to form the upper body with an instance
node. Finally, insert a rotate node above the upper body to allow Robot to bow
at the waist and turn from side to side.

Figure 35 shows the display tree for transformations that define the trunk and
also shows the display tree for the upper body of the robot.

MODELI(~1G — 41

X

X

X

Y

Sca 7 e

Y
Y
C

~--

Y

Trans Instance

Figure 35. Robot--Upper Body Display Tree

fAS0444

42 —MODELING

No constraints have been placed on how much Robot can turn. He can rotate his
head 360 degrees if desirable. If you are trying to model a human realistically,
you must set limits. These are put in place using function networks (refer to
Volume 2B, "Function Networks II" module for more information on this.)

The rotate node that allows Robot to bow cannot be~ put above the trunk alone.
It must be above the instance node for Upperbody in the display structure to
affect ALL the parts of Upperbody.

Now that the upper body is finished, the lower body needs to be built before they
can be linked together as an instance of BODY. Begin at the bottom of the
hierarchy with the foot and build up the display tree. In building the legs,
proceed as you did with the arms, sharing nodes whenever possible.

Creating the Right Foot

Because the foot is positioned perpendicular to the leg, the primitive cylinder
must first be rotated 90 degrees in Z. Then the cylinder can be scaled to its
proper size (.75,.5,1). Finally, the scaled foot must be translated back in Z so
the foot will be correctly placed on the leg (0,0,1). These transformations are
shown in Figure 36.

— +~

Cylinder
tASO495

Figure 36. Robot--Foot Display Tree

MODELING — 43

Above the foot, place a rotate node to allow independent movement at the
ankle. Then translate th foot down the Y axis so you can build the calf (0,-5.5)
(Figure 37).

Y

X

I AS049~

Figure 37. Robot--Rotate and Translate for Foot

Creating the Right Calf

T
0,-5.5

Build the calf by scaling the cylinder (.65,2.5,.65). Link the calf and the foot
together as an instance of lowerleg. Place a rotate node above that to allow the
knee to bend, and then translate the right lower leg down the Y axis so you can
build the thigh (0,-5). Figure 38 shows these transforrt~ations.

44 -MODELING

X

Y

Y

X

Scale

Instance Rot
X X

IASO497

Figure 38. Robot--Right Calf Display Tree

Creating the Right Thigh

To create the thigh, scale the cylinder (.75,2.5,.75). Link the thigh and the lower
leg together as an instance of right leg, and put a rotate node above that to
allow the leg to kick. Then translate the right leg into its final position (-1,-2).

Figure 39 shows the transformations that create right thigh and the display tree
for the right legs.

MODELING — 45

X

Y

Y

Instance

X

Y

Scale

X -+

r
v~ .~~
r
F--

Y

Trans

~~

IAS0498

Figure 39. Robot--Right Thigh Display Tree

v~
a
J

L

~O
...i

46 -MODELING

Creating the Left Leg

Many of the modeling steps used to create the right leg are used to create the

left leg. Rather than repeat these nodes in a second branch of the display tree,

share nodes whenever possible.

For example, since the scaled cylinders for the foot, calf, and thigh pieces are

used in both legs, a single scaled primitive for each can be used by both legs.

Since the nodes to create a foot piece are already in place, the first new node

needed to build the left leg will be a rotate node (so the left ankle can movQ
independently) (Figure 40).

R Left Foot R Right Foot

Figure 40. Robot--Shared Nodes for Foot

The left foot also requires its own translate node to move the foot from the
origin down the Y axis the length of the calf piece (0,-5.5). (Though these
translate values are the same as for the right foot, this node cannot be shared
because a translate node can have only one direct descendent node.

The calf piece was already created in doing the right leg, so create left lower leg
as an instance of the calf piece and the left foot as shown in Figure 41.

MODELING — 47

Left Lower Leg c

IAS0500

Figure 41. Robot--Left Lower Leg Display Tree

Then insert a rotate node so the lower leg moves at the knee and translate this
part of the leg down the Y axis to make room for the thigh piece (0,-5).

The thigh piece is already built, so it can be joined to the left lower leg with an
instance node. Then a rotate node can be added to allow for manipulation.
Finally, the left leg can be translated out to its final place in Robot (l ,-2).

Figure 42 shows the display tree for the left and right legs.

48 —MODELING

Left
Leg

Figure 4Z. Robot--Left Leg Display Tree

1

Right
Leg

1AS0501

MODELING — 49

Creating Lowerbody

Now build the last piece of Lowerbody, the pelvis, and then link that with the
two legs.

Scale the cylinder (2,1,1). There is no need to translate this into position, since
it is already in place below the X axis and the legs have been translated down to
fit under the pelvis.

Link the pelvis and legs together as an instance of Lowerbody:
.~

The transformations that create the pelvis, as well as the complete display tree
for lower body, are shown in Figure 43.

50 -MODELING

X

X

Scale

Y
Instance

~ ~

Figure 43. Robot--Lower Body Display Tree

MODELING - 51

Both major subparts of Robot (Upperbody and Lowerbody) are complete. To
move Robot as a whole, link the two subparts together with an instance node
called BODY. Then scale Robot (.075) to proportions visible on the screen (the
screen coordinates are positive 1 to negative 1 on the X and Y planes). Finally,
allow for rotation and translation of the whole robot with the top two nodes.

The completed display tree for Robot is shown in Figure 44.

52 - MODELING

c ~<
L

N--

Figure 44. Robot--Completed Display Tree

>Right
Leg

> Right
Lower Leg

;Right
Foot

,•
IAS038?

MODELING — 53

SUMMARY

This module details the major steps in designing a conceptual data base:

• Designing a hierarchy

• Designing a display tree

In designing a display tree, you must first be aware of what the model looks like,
-what attributes you want associated with parts, .where it's placed in the world
coordinate system, what primitives it is made of, and how you want to interact
with it.

You can then divide your model into pieces and group those pieces into a
hierarchy which shows how they relate to each other.

Finally, you should design the display tree from the bottom up, using the
hierarchy as your basis of organization. The design process is as much an art as
it is a science, requiring attention to detail, synthesis of information, and a good
knowledge of the rules governing display trees.

There are certain rules governing display trees which you should be aware of.
For your convenience, these rules have been summarized in Table 1. Amore
lengthy summary on data, operation and instance nodes follows Table 1.

The next module, "PS 300 Command Language," explains how to code a display
tree into the PS 300 using PS 300 commands. It is highly recommended that you
read that module -next.

54 —MODELING

Table 1. Rules for Display Trees

NODE TYPE FUNCTION

POINTERS
TO OTHER
NODES COMMENTS

DATA Vector_Lists, characters,
curves, polygons.

OPERATION Operation to be performed
on data further down the
hierarchy. Examples
include--Translate, Rotate,
Character_Font, Set
Level_Of_Detail, etc.

INSTANCE Point to other nodes. Save
and restore the state o f the
machine between descendent
branches.

The state of the machine
includes:

A. The current transformation
matrix (CTM)

B. Current Level Of Detail
C. Current Conditional_Bits

values
D. Pick id's active

0

0 or 1

0,1, 2,...

Data nodes are always
terminal nodes in a
data structure.

0 pointers makes this
node and the path to
it useless. All
terminal nodes in a
data structure should
be data nodes.

Except for some
debugging uses, 0 or
1 pointers from an
INSTANCE node is
an inefficient data
structure.

The following sections detail important rules to fallow when designing display
trees.

MODELING — 55

Data

Nodes

Data nodes represent the primitive shapes that compose a model. Data nodes
are always the terminal (bottom) nodes in any display structure; they never
"point to" other nodes.

The data base that defines primitives may originate from several sources. You
may have been given the geometry already from another source. For example, if
you are an architect, you may already have access to primitive shapes to define
windows, doors, roofs, and buildings.

You can specify all the vectors in a primitive, or you might use commands to
specify characters, curves, and polygonal primitives.

• Vector lists define an object in terms of its coordinate points and how to
connect them. Points and line endpoints are expressed as world coordinate
locations. The VECTOR_LIST command allows you to specify all the vectors
that make up an object.

• You can use line patterns (dashes, center lines, etc.) to draw a vector list
with the WITH PATTERN command.

• The PS 300 allows you to generate vector lists that specify curves using
POLYNOMIAL and BSPLINE commands.

• Characters are ASCII character codes that are displayed using a predefined
character font. Both the CHARACTERS and LABELS commands define an
object as a character string. (Refer to the "Text Modeling" module for
details on characters.)

• Polygons can be created to define surfaces for advanced 3D visualization
operations (PS 340). (Refer to the module "Using the PS 340--Rendering
Operations for Surfaces and Solids" for more information on this.)

• Interactive devices are commonly connected to operation nodes in a display
structure, but they can also be connected to other nodes. For example, you
can use a dial or data tablet to generate points for a vector list.

Though a data node never points to another node, it can have multiple parents
(more than one operation or instance node pointing to it). For example, to
display a windmill with four identical blades, the display structure might reuse a
single data node translated to distinct locations (Figure 45).

56 —MODELING

Base
Blades

Cylinder
IAS0503

Figure 45. Windmill Display Tree ~l

Another way to create a display tree for the same windmill is to define all four
blades in a single vector list, as in Figure 46. Creating this display tree might be
more programming work (specifying the points and lines which form each blade)
but eliminates four nodes: three operate nodes and one instance node.

W i ndmi 11

Base Cylinder i Aso5o4

Figure 46. Windmill Display Tree ~2

MODELING — 57

This model is simple. Four nodes is not a signif icant savings unless the blades
are to be instanced many times. But in a complex model, you may save nodes by
carefully analyzing the pieces of the model that are better defined with a single
vector list.

The tradeoffs: A model made of numerous transformed primitives may be easier
and quicker to code than a single vector list of plotted lines and points.
However, it often takes a longer time for the Display Processor to traverse the
extra transformation nodes than it does to traverse the single vector list. A
longer vector list uses more available memory, and may take longer to program,
but it reduces the time required for picture refresh.

To save you the trouble of plotting all the points and lines initially, the PS 300
has a group of commands and functions that convert a data base consisting of
transformed data into a single vector list for you. Refer to the module on
"Transformed Data" for more information on this.

Operation Nodes

An operation node represents an operation to be performed on data below it in
the display tree. Operation nodes are used to represent all types of operations,
including translations, rotations, and attributes such as set level of detail and
color.

As part of a display tree, an operation node affects only what is below it on a
hierarchical branch. Although an operation node can have multiple nodes
pointing to it, it can point to no more than one node below it (Figure 47).

Correct Incorrect IAS0505

Figure 47. Correct and Incorrect Usage of Operate Nodes

58 —MODELING

Operation nodes can point to a data node, an instance node, or another operation
node. However, if a display tree contains a series of operation nodes, the order
of the operations is significant. Put the node for the first operation to be
performed on the data closest to the data node. Place the second operation node
above that, and so on.

Operation nodes are used in two ways: for modeling and for interaction.
Modeling operations are done strictly to shape the "building blocks" of a model
and move them into place. Interaction operations allow you to interact with a
model. luny operation node can be one or the other, depending on how it is used.

On the display tree diagrams, an interaction node is differentiated from other
operation nodes by a double circle.

Interaction nodes allow you to interactively translate an object in X, Y, or Z;
rotate that object around any one axis; or scale the object. In addition, you can
alter the typeface of displayed text by changing the character font, apply
viewing transformations (to create a limitless number of different views of an
object), or specify viewports (different areas on the screen where the object is
displayed).

Interaction nodes receive their values either from interactive devices or from a
host computer via a function network. (For more information on function
networks, refer to the "Function Networks I" module.)

Instance Nodes

Instance nodes serve two purposes:

First, they group other nodes and branches in a display tree. Instance nodes are
the only nodes that can point to more than one descendant node in the display
tree. Consequently, they are found wherever a hierarchical display tree breaks
into more than one descending branch.

Second, instance nodes save and restore the state of the machine between
descendant branches. The state of the machine includes the current
transformation matrix, the current level of detail, current color, and status of
pick identifiers. (For more information on this, refer to the "Graphics
Principles" and to specific tutorial modules in Volume 2B.)

Instance nodes save you from having to save and store data explicitly before a
path is traversed, thus preserving the integrity of the state of the machine down
any path. As a quick review, look at the way in which the display processor
saves and restores the state of the machine in the display tree shown in Figure
62. It is an illustration of the principle of sphere of influence.

MODELING — 59

Figure 48. Sphere of Influence

When the Display Processor traverses this display tree, it saves the machine
state when it reaches the instance node. It then continues down the leftmost
branch until it reaches the data node. The data there are sent through the
current transformation matrix and out to be displayed.

The Display Processor still has to travel down the other branches under the
instance node. But the state of the machine is altered by the two operations in
the first branch, so it must be restored to what it was when the Display
Processor first transversed the instance node. Since the machine state is saved
when it first reaches the instance node, it can be restored to that state.

The Display Processor returns to the instance node, restores the state that is
saved there, and continues down the next branch to the right (the data node).
The Display Processor sends that data through the matrix and out for display,
returns to the instance node, restores the state, and travels down the last branch
in the structure.

Saving the state of the machine ensures that operations in one branch can
accumulate and affect everything below them in the display structure, and still
not affect anything in other branches.

If an instance node points directly to data nodes, the state is not saved and
restored because data nodes do not "operate" on or alter the state of the Display
Processor (Figure 49).

60 -MODELING

Instance Nod

Vec Char B(Spy I ne
IAS0507

Figure 49. Instance Nade Pointing to Three Data Nodes

Ps 30o
co

UVAND LANGUAGE

COMMUNICATING WITH THE PS 300

CONTENTS

INTRODUCTION 1

OBJECTIVES 3

PREREQUISITES 3

USING EXPLICIT NAMING 5
Exercise 8

USING BEGIN STRUCTURE...END_STRUCTURE 12
Exercise 19

USING IMMEDIATE ACTION COMMANDS 28

ENTERING CODE IN THE PS 300 31

SUMMARY 3 3

COMMAND LANGUAGE — 1

Once you have designed a model's display tree, you can code the display tree into the
PS 300 using PS 300 commands. PS 300 commands:

• Create display trees.

• Modify display trees by sending new information to nodes.

• Create and modify function networks (refer to "Function Networks 1" in this
volume).

• Instruct the Display Processor to display items or remove them from the display list.

• Query or reset the Command Interpreter (such as Command Status or !Reset).

PS 300 commands are NOT stored in memory. They are interpreted, and either execute
immediately (e.g., DISPLAY OBJECT;) or create a data entity in Mass Memory.

Two kinds of PS 300 commands are detailed in this module: data structuring commands
and immediate action commands.

Data structuring commands are the only commands that can be named, either directly
or indirectly. Data structuring commands create the data structures in Mass Memory
which correspond to a model's display tree or to a function network. (Data structuring
commands that create function networks are dealt with in the "Function Networks 1"
module.) The PS 300 associates the user—assigned name of the command with the Mass
Memory location of the data structure the command creates.

Naming can be done explicitly by giving a unique name to a single node in a display
tree, such as naming a rotation node. It can also be done via
BEGIN_STRUCTURE...END_STRUCTURE, where a single name is assigned to a group of
nodes.

Data structuring commands can be created in a file or an application program on the
host system and then downloaded to the PS 300, or an application program can send
these commands either directly in ASCII, or via the Graphics Support Routines (GSRs)
in PS 300 binary format (preparsed).

The other type of command, the immediate action command, performs immediate
operations, such as displaying an object on the screen. Because it does not create any
autonomous structures in Mass Memory, an immediate action command cannot be
named.

PS 300 commands are designed to be easy to use. Once you are familiar with how
commands are used, you can refer to the Command Summary in Volume 3A, for quick
explanations of all existing commands.

2 -COMMAND LANGUAGE

You will also want to become familiar with the Graphics Support Routines (GSRs).
These are a collection of routines or procedures which allow faster, more efficient
communication between the PS 300 and the host computer. Using a Graphics Support
Routine causes a corresponding command to be sent directly to the PS 300 without
requiring further parsing. The GSRs are contained in Volume 3B.

All commands follow these conventions:

• Commands end with a semicolon.

• The name of each command is indicative of what the command does (for example,
INITIALIZE, DISPLAY, and ROTATE).

• Commands have both a long and a short form. The short form is the shortest form
of the word that uniquely identifies the command. For example, "DELETE" can be
referenced by "DEL"; "APPLIED TO" can be referenced by "APPL". In this module,
a PS 300 command will be written out fully in capital letters. For the short form of
any command, consult the Command ,Summary.

• Commands may be entered in uppercase or lowercase letters or any combination of
these. The PS 300 does not distinguish between upper and lower case.

• The PS 300 command language is free-formatted. Comments go wherever you can
put a space and are enclosed in curly braces.

{This is a comment}

Comments, carriage returns, line feeds, spaces, and tabs are all treated as
delimiters (white space). If a command extends beyond a single line, the PS 300
reads each line as part of the command until it reads asemi-colon. For example,
the PS 300 interprets all of the following commands in the same way:

ROTATE IN X 0 {comment} THEN Object;

ROTATE IN X 0 THEN Object;

ROTATE IN X 0 <tab>THEN Object;

ROTATE IN X 0 <CR>
THEN Object;

COMMAND LANGUAGE - 3

OBJECTIVES

In this module, you will use PS 300 commands to create a model in PS 300 Mass
Memory and to display that model on the screen. To do this you will learn to:

■ Use explicit naming.

■ Use BEGIN STRUCTURE...END STRUCTURE commands.

■ Use immediate action commands.

■ Enter code into the PS 300.

PREREQUISITES

Before reading this module, you should be able to design a display tree (refer to the
"Modeling" module).

You should also be able to perform the operations detailed in the User operation
and Communication Guide in Volume 1. This includes how to switch to TE mode,
how to use the text editor on your host, and how to download a file from the host.

COMMAND LANGUAGE — 5

USING EXPLICIT NAMING

Once you have a model's display tree designed on paper, you can code the
structure into Mass Memory by entering data structuring commands into a file on
the host.

Data structuring commands create each node in a model's display tree. Each
command MUST BE NAMED either directly or indirectly. The name provides the
"address" in Mass Memory for locating the corresponding data structure.

Which commands to use are determined by the model's display tree, like using a
flowchart to determine code in conventional programming.

One way to code is to have one named command correspond to each node in the
display tree. This is called "explicit naming". Another way is to group numerous
nodes together in one named command. This is done using the
BEGIN STRUCTURE...END_STRUCTURE command. Most often, a combination
of the two methods is used.

With either method, use the following naming conventions:

• Names can be up to 240 characters long. The name can be any alphanumeric
combination but it must begin with a letter. The PS 300 does not distinguish
between uppercase and lowercase letters, so use these for clarification, such
as in the example: RightLowerArm.

• Names can include the underscore character (_), a dollar sign (~), or a period
(.). However, it is strongly recommended that you do not use periods when
explicitly naming something. (The PS 300 automatically inserts periods in the
name of nodes contained in a BEGIN STRUCTURE...END STRUCTURE. For
example, a node named "ROT" within a BEGIN_STRUCTURE...
END STRUCTURE you named HAND will automatically be named
"HAND.ROT" by the PS 300.)

• Names cannot contain a space or other "white space" (<CR>, tab, etc.).
These signal the end of a name. It may be convenient to run words together
in a name (RightArm) or to use underscores (Right_Arm).

• Names must be unique.

6 —COMMAND LANGUAGE

• The following PS 300 commands can be used in conjunction with the naming

of data structures:

— To name a data structure, use the (Naming of Display Data Structures)
Command:

Name := Display_data_structure_command;

— A null data structure can be named using:

Name := Nil;

The command can also be used to redefine a name. The command saves
the name but redefines the associated structure.

— The FORGET command deletes the name assigned to a command but saves
the associated structure.

— The DELETE command removes both the name and the associated
structure.

Primitives (data nodes) are created by specif ying a series of points and the lines
or planes that connect them. Several PS 300 commands create primitive shapes:

VECTOR LIST
POLYGON
BSPLINE and RATIONAL BSPLINE
POLYNOMIAL and RATIONAL POLYNOMIAL
CHARACTERS
LABELS

Text is also a graphical primitive. The CHARACTERS command and the
LABELS command create data nodes for displaying text.

This module will not cover how to create data nodes. Rather than listing all the
points and lines required to build any data primitive in this module, a
VECTOR LIST command will be represented by the following abbreviated
notation:

Name := VECTOR_LIST ... ;

DO NOT enter this abbreviated notation into the PS 300. Any data nodes you
will need for exercises on the PS 300 have already been provided for you on the
tutorial tape.. For more information on creating data nodes, refer to the
Command Summa r~ i n Volume 3 A.

COMMAND LANGUAGE — 7

Using explicit naming, code the right forearm for the Robot that was designed in
the "Modeling" module. The display tree looked like this:

Cylinder

tAso3so

Sphere

Figure 1. Display Tree for Robot's Forearm

Start from the top down.

TranRtLowerArm := TRANSLATE BY 0,-4 APPLIED TO RotRtLowerArm;
RotRtLowerArm := ROTATE 0 APPLIED TO RtLowerArm;
RtLowerArm := INSTANCE OF ForearmPiece, TranHand;
ForearmPiece := SCALE BY .5,1.5,.5 APPLIED TO -Cylinder;
Cylinder := VECTOR_LIST ... ;
TranHand := TRANSLATE BY 0,-3 APPLIED TO RotHand;
RotHand := ROTATE 0 APPLIED TO TranSphere;
TranSphere := TRANSLATE BY 0,-1 APPLIED TO ScaleSphere;
ScaleSphere := SCALE BY .5,1,.5 APPLIED TO Sphere;
Sphere := VECTOR_LIST ... ;

8 —COMMAND LANGUAGE

Zeros are given as the values for interactive nodes such as RotRtLowerArm and
RotHand because new values will be provided interactively from function
networks.

With explicit naming a command can refer, or point, to a name that doesn't exist
yet. The name exists once the PS 300 receives a command defining the data
structure associated with that name.

Explicit naming has some disadvantages. First, it can be confusing with a
complex display tree because you may have hundreds of command names to
create and keep track of. Effective comment lines would be essential.

The major drawback of explicit naming is that it FORCES you to name every
node in a display tree. This means unnecessary work. The only nodes requiring
names are nodes you want to directly reference. There is no need to name nodes
that you can safely predict will not receive new values, or be instanced or
displayed directly.

Exercise

In the "Modeling" module, you designed a display tree for a car. That display
tree is shown in Figure 2.

COMMAND LANGUAGE — 9

Bady

Car

Snow Tire

Figure 2. Car Display Tree

Radial Tire

IASQ38i

Code this display tree from the top down using explicit naming. The values
provided below have been calculated to produce the desired transformations.

The first two nodes are interactive nodes which translate and rotate the whole
car:

TranCar := TRANSLATE BY 0,0 APPLIED TO RotCar;
RotCar := ROTATE 0 APPLIED TO Sportscar;

10 -COMMAND LANGUAGE

The car is defined as an instance of the car body and the translations applied to
each tire:

Sportscar := INSTANCE OF Car_Body, Tran_FR_Tire, Tran_FL_Tire,
Tran_RR_Tire, Tran_RL_Tire;

Define the radial on the rear, right side of the car. A translation node and an
interactive rotation node are needed:

Tran RR Tire := TRANSLATE BY -.5664,-.1598,-.3357 THEN Rot_RR_Tire;
Rot_RR_Tire := ROTATE IN Z 0 THEN Scaled_Radial_Tire;

Since both radial tires are scaled, the scaled radial fire can be defined once and
then referenced with each tire.

Scaled Radial Tire := SCALE BY .139 THEN Radial Tire;

The display tree for the radial on the rear, left side of the car also includes a
translation and rotation node:

Tran RL Tire := TRANSLATE BY -.5664,-.1598,.3357 THEN Rot_RL_Tire;
Rot RL Tire := ROTATE IN Z 0 THEN Flip_RL_Tire;

Then the tire is rotated so the hubcap faces out:

Flip_RL_Tire := ROTATE IN Y 180 THEN Scaled_Radial_Tire;

The same process is used for the snow tires. Both snow tires consist of a
translation and interactive rotation node. Then the snow fire on the front, left
side of the car is rotated so the hubcap faces out.

The code for the snow tire on the front, right side of the car would be:

Tran_FR_Tire := TRANSLATE BY .5415,-.1598,-.3357 THEN Rot_FR_Tire;
Rot_FR_Tire := ROTATE 0 THEN Scaled_Snow_Tire;

Since both snow tires are scaled, the scaled snow tire can be defined once and
then referenced twice.

Scaled_Snow_Tire := SCALE BY .139 THEN Snow_Tire;

COMMAND LANGUAGE - 1 1

The code for the front left snow tire would be:

Tran_FL_Tire := TRANSLATE BY -.5415,-.1598,.3357 APPLIED TO
Rot_FL_Tire;

Rot_FL_Tire := ROTATE 0 APPLIED TO Flip_FL_Tire;

Flip_FL_Tire := ROTATE IN Y 180 APPLIED TO Scaled_Snow_Tire;

The points and connecting lines for the three primitives also need to be defined.;
In this module, that code is represented by:

Snow_Tire := VECTOR_LIST ... ;
Radial Tire := VECTOR LIST ... ;
Car_Body := VECTOR_LIST ... ;

Since the data primitives for Snow_Tire, Radial_Tire, and Car_Body are already.
provided for you when you load the Tutorial Demonstration tape in the PS 300,
display the car by typing:

DISPLAY Sportscar;

To prepare for the new definition of Sportscar you will be coding in the next
section, enter:

INITIALIZE;

This removes the present definition of Sportscar you just coded in.

12 —COMMAND LANGUAGE

USING BEGIN STRUCTURE...END STRUCTURE

An alternative to nar-ning every node is to group nodes inside a
BEGIN STRUCTURE...END STRUCTURE. Though each node within a
BEGIN STRUCTURE...END STRUCTURE is created in Mass Memory, you only

have to name those nodes which will be accessed again. (The Display Processor

"accesses" the node every time the model is displayed.)

Besides less naming, another advantage of BEGIN_STRUCTURE...
END STRUCTUREs is that they are an effective way to organize the commands
in your file. In a complex display tree, nodes that directly affect each other can

be grouped together in the same BEGIN_STRUCTURE...END_STRUCTURE.

BEGIN STRUCTURE...END STRUCTUREs are usually used in conjunction with
explicit naming. To illustrate this, code the Sportscar using a combination of the
two. There are many ways to code a model. The following is only one possible
way of determining which type of code to use.

Before coding, identify all data nodes and any shared nodes in the car's display
tree. In this case, there are three data nodes: the car body, the radial tire, and
the snow tire. The scaled radial fire and scaled snow fire are shared nodes.

Now look at the branches above any shared nodes, data nodes, and instance
nodes, for those which have two or more operation nodes. These nodes could be
grouped into BEGIN_STRUCTURE...END_STRUCTUREs.

COMMAND LANGUAGE — I3

Body

Radial Ti r~

lAS0382

Figure 3. Possible BEGIN_STRUCTURE...END_STRUCTUREs for Car

Begin coding the display tree top down. The first two commands allow you to
see the car immediately once it is defined.

INITIALIZE DISPLAY;
DISPLAY Sportscar;

The display tree begins with a BEGIN_STRUCTURE...END_STRUCTURE:

Sportscar :=BEGIN_STRUCTURE
Tran := TRANSLATE BY 0,0;
Rot := ROTATE 0;

INSTANCE OF Car_Body, RL_Tire, RR_Tire, FL_Tire, FR_Tire;
END_STRUCTURE;

14 -COMMAND LANGUAGE

The interactive translation and rotation nodes must be explicitly named so they
can be accessed to provide values to manipulate the car. Grouping these nodes
in a BEGIN STRUCTURE...END STRUCTURE saves you from having to name the
instance node. Naming the whole structure also allows you to reference a "Car"
that can be rotated and translated.

Each fire could be defined within a BEGIN STRUCTURE...END STRUCTURE:

{Rear left wheel}

RL Tire :_

Rot •-

BEGIN_STRUCTURE
TRANSLATE BY -.5664,-.1598,.3357;
ROTATE 0;
ROTATE IN y 180 APPLIED TO Scaled_Radial_Tire;

END STRUCTURE;

{Rear right wheel}

RR Tire :_

Rot •_

BEGIN STRUCTURE
TRANSLATE BY -.5664,-.1598,-.3 357;
ROTATE 0 APPLIED 7-0 Scaled_Radial_Tire;

END_STRUCTURE;

Scaled_Radial_Tire references a scale operation node and a data node. These two
nodes can be shared by both the right and the left rear tires. Notice how the
operations within the BEGIN_STRUCTURE...END_STRUCTURE reflect the order
indicated in the display tree; i.e., translates precede rotates, which precede
scaled data.

In much the same way, the last two branches define the snow tire:

{Front left wheel}

FL Tire :_

Rot •-

BEGIN STRUCTURE
TRANSLATE BY -.5415,-.1598,.3357;
ROTATE 0;
ROTATE IN Y 180 APPLIED TO Scaled_Snow_Tire;

END_STRUCTURE;

COMMAND LANGUAGE — 15

{Front right wheel}

F R Tire :_

Rot •—

BEGIN STRUCTURE
TRANSLATE BY .5415,—.1598,—.3357;
ROTATE 0 APPLIED TO Scaled_Snow_Tire;

END_STRUCTURE;

The shared nodes for each tire are coded as:

Scaled_Radial_Tire := SCALE BY .139 APPLIED TO Radial_Tire;

Scaled_Snow_Tire := SCALE BY .139 APPLIED TO Snow_Tire;

The three primitives also need to be defined. The actual vector lists for these
have been provided for you on the Tutorial Demonstration tape, so that you may
see the Sportscar. The following abbreviated code is just to remind you that
primitives must always be defined:

Snow_Tire := 1/ECTOR_LIST ... ;
Radial_Tire := 1/ECTOR_LIST ... ;
Car_Body := VECTOR_LIST ... ;

In general, then, BEGIN_STRUCTURE...END_STRUCTUREs:

• Group associated nodes together into identifiable parts of a model.
• Reflect the order of operations shown in the display tree.
• Eliminate the unnecessary naming of nodes. Nodes within a structure are

only named if they need to be referenced; i.e., are interactive.

There is one possible disadvantage to using too many BEGIN_STRUCTURE...
END_STRUCTURE commands. Each time the PS 300 parses a
BEGIN_STRUCTURE...END_STRUCTURE command, it automatically creates
another instance node in the display tree.

The created instance node is placed above all other nodes within that
BEGIN STRUCTURE...END STRUCTURE command. The name of the
BEGIN_STRUCTURE...END_STRUCTURE is actually the name of the created
instance node. For example, if you put the following nodes into a
BEGIN STRUCTURE... END STRUCTURE:

16 -COMMAND LANGUAGE

TransMolecule :=TRANSLATE BY 0,1 APPLIED TO RotMolecule;
RotMolecule := ROTATE 0 APPLIED to ScaleMolecule;
ScaleMolecule :=SCALE 2,2 APPLIED TO Molecule;

The PS 300 would create a display tree like this:

Molecule :_

Rot •-

BEGIN STRUCTURE
TRANSLATE 0,1 APPLIED TO RotMolecule;
ROTATE 0 APPLIED TO ScaleMolecule;
SCALE 2,2 APPLIED TO Molecule;
END STRUCTURE;

~aS0383

IAS0384

Extraneous instance nodes are only costly if they are used so frequently that
they begin to affect the Display Processor's traversal time. In evaluating when
to use BEGIN STRUCTURE...END_STRUCTURE command, then, you must weigh
the advantage of grouping nodes together without having to name each node
against the disadvantage of creating an extra instance node in the display tree.

Now that you are familiar with BEGIN_STRUCTURE...END_STRUCTURE
commands, examine some rules regarding their use.

1. When using BEGIN_STRUCTURE...END_STRUCTUREs, note that an operation
is applied to everything below it in the structure unless the operation is
explicitly applied to another structure. If an operation is applied directly to
a name, nothing else listed below it in the structure is affected by that
operation.

COMMAND LANGUAGE — 17

So in the following example, the cylinder is both translated and scaled, but
the piston is only translated:

Shaft_Housing :_ BEGIN_STRUCTURE
TRANSLATE BY 0,1,0;
SCALE 2,2 APPLIED TO Cylinder;
INSTANCE OF Piston;

END_STRUCTURE;

Look at another example. Each operation applies to everything following it
in the BEGIN STRUCTURE...END STRUCTURE. So the Cube is rotated in X
30 degrees. The sphere is rotated in y 10 degrees and rotated in X 30
degrees. The pyramid is translated by 0,1,1; rotated in Y 10 degrees; and
rotated in X 30 degrees.

Shapes := BEGIN STRUCTURE
XRot:= ROTATE IN X 30;
Cube:= 1/ECTOR_LIST ...;

YRot:= ROTATE IN Y 10;
Sphere:= 1/ECTOR_LIST ...;

Trans= TRANSLATE BY 0,1, l;
Pyramid:= 1/ECTOR_LIST ...;

END_STRUCTURE;

2. Remember from the "Modeling" module that instance nodes can point to any
number of descending nodes, operation nodes can point to only one descending
node, and data nodes are terminal nodes; that is, they have no descending
nodes.

Inside a BEGIN_STRUCTURE...END_STRUCTURE, if an operation node points
to more than one other node below it, the PS 300 automatically creates an
instance node below the operation node. The operation node points to the
instance node, which points to the descendant branches.

For example, the BEGIN_STRUCTURE...END_STRUCTURE code below is
illegal because the translation applies to all three rotations below it.

18 —COMMAND LANGUAGE

Example :_

RotKnob :_

Rotbutton :_

Rotswitch :_

BEGIN STRUCTURE
TRANSLATE BY 0,2;
ROTATE IN X

APPLIED TO Knob;
ROTATE IN Y

APPLIED TO Button;
ROTATE IN Z

APPLIED TO Switch;
END STRUCTURE;

Button Switch

IAso3s5

In this case, the PS 300 automatically places an instance node below the
translation node:

Knob Button Switch
I~AS0386

You could create the instance node explicitly with the following code:

Tran := TRANSLATE BY 0,2 APPLIED TO Parts;
Parts := INSTANCE OF RotKnob, Rotbutton, Rotswitch;

COMMAND LANGUAGE — 19

3. When located inside a BEGIN STRUCTURE...END STRUCTURE, a
"user—named" node is assigned a name by the system which consists of the
BEGIN_STRUCTURE...END_STRUCTURE name, a period, and the
"user—assigned" name of the node. So in the above example of the
BEGIN_STRUCTURE...END_STRUCTURE named Shapes, the X Rotate node
can be accessed as SHAPES.XROT. The period indicates that the name
XROT is in the BEGIN STRUCTURE...END STRUCTURE named "Shapes".

The PS 300 assigns the name automatically, so you can keep your naming
procedures simple, reusing descriptive names like SCALE, ROTATE,
and TRANSLATE as long as they are not repeated in the same
BEGIN STRUCTURE...END STRUCTURE (so all names remain unique).

If a node is not named, it is just part of the hierarchical structure and cannot
be addressed explicitly. This is indirect "naming" of a node.

4. BEGIN STRUCTURE...END STRUCTUREs can be nested inside each other.
No operations within a nested BEGIN_STRUCTURE...END_STRUCTURE apply
to any nodes in the encompassing BEGIN_STRUCTURE... END_STRUCTURE.
Think of the nested BEGIN_STRUCTURE... ENDS TRUCTURE as a terminal
node in the display tree.

5. No immediate action comr~~ands should be placed in BEGIN_STRUCTURE...
END_STRUCTUREs (.with two debugging exceptions: COMMAND_STATUS
and !RESET). Refer to the next section of this rnodule on Immediate action
commands.

Exercise

In this section you will use the following display tree, which was designed in the
"Modeling" module, to code Robot into Mass Memory.

20 -COMMAND LANGUAGE

Hand

Figure 4. Robot Display Tree

FOOL IAS0388

COMMAND LANGUAGE — 21

Enter the commands in a host file as you proceed (otherwise, they cannot be
saved).

Use explicit naming and BEGIN_STRUCTURE...END_STRUCTUREs to the best
advantage. Keep in mind that you could use BEGIN_STRUCTURE...
END STRUCTUREs any number of ways to help you organize and economize on
code. This example develops one possible way.

First, isolate and identify all data nodes and any shared nodes.

Remember that the same data node--CYLINDER--has been used for all the body.
pieces except the hands and head, which are SPHERES. Shared nodes have
already been specified in the design of the display tree. These form the pieces
labeled hand, forearm, upper arn~, foot, calf, and thigh.

First code the primitives. The sphere and cylinder are vector lists that have
been provided for you on the Tutorial Demonstration tape. The following serves
only a reminder that you must always define primitives.

Sphere := VECTOR_LIST ... ;
Cylinder := VECTOR_LIST ... ;

Code the shared body pieces using both explicit naming and using
BEGIN STRUCTURE...END STRUCTUREs. Calf, thigh, forearr~~, and upper arm
each consist of one node above a data node, so each can be coded explicitly:

Upper_Arm := SCALE BY .5,2,.5 APPLIED TO Cylinder;
ForeArm := SCALE BY .5,1.5,.5 APPLIED TO Cylinder;

Thigh := SCALE BY .75,2.5,.75 APPLIED TO Cylinder;
Calf := SCALE BY .65,2.5,.65 APPLIED TO Cylinder;

The hand and foot have two or more operate nodes above data nodes and so code
them using BEGIN_S...END_STRUCTUREs:

Hand := BEGIN STRUCTURE
TRANSLATE BY 0,—l;
SCALE BY .5,1,.5 APPLIED TO Sphere;

END STRUCTURE;

Foot :_ BEGIN STRUCTURE
TRANSLATE BY 0,0,1;
SCALE BY .75, .5, l;

ROTATE IN X 90 APPLIED TO Cylinder;
END STRUCTURE;

22 —COMMAND LANGUAGE

The figure below illustrates what nodes in the display tree remain to be coded.
The nodes already accounted for are represented by name. The branches
containing two or more operation nodes above a name, a data node, or an
instance node have been circled. These could be coded using
BEGIN STRUCTURE...END STRUCTUREs. Explicit naming could be used
elsewhere.

COMMAND LANGUAGE - 23

Y
C
~<
L
H

Robot
Body

Right
Leg

Right
Lower Leg

IA~0387

Figure 5. Possible BEGIN_STRUCTURE...END_STRUCTUREs for Robot

24 -COMMAND LANGUAGE

With this in mind, begin at the top branches of the display tree and code down.

The top of the display tree can be coded in one BEGIN_STRUCTURE...
END STRUCTURE:

Robot :_
Tran :_
Rot •-.-

Scale :_

BEGIN STRUCTURE
TRANSLATE BY 0,0;
ROTATE 0;
SCALE BY .075;
INSTANCE OF Upper_Body, Lower_Body;

END STRUCTURE;

Remember that PS 300 screen coordinates are +l to -1 units, so the screen is 2

units across. Because of Robot's dimensions, he is scaled so he is viewable on

the display screen.

Each of these top nodes could have been coded explicitly since three of the four

nodes are interactive and must be named regardless:

TranRobot := TRANSLATE BY 0,0 APPLIED TO RotRobot;
RotRobot := ROTATE 0 APPLIED TO ScaleRobot;

ScaleRobot := SCALE BY .075 APPLIED TO Robot;
Robot := INSTANCE OF Upper_Body, Lower_Body;

However, the BEGIN_STRUCTURE...END_STRUCTURE saves naming one node,
the instance node, within the structure and groups all the interactive nodes under

a single name: Robot. The tradeoff, an additional instance node, is not
prohibitive in this case.

Next, Upper_Body groups all the upper body parts into one entity which can be
rotated interactively.

Upper_Body := BEGIN_STRUCTURE;
Rot := ROTATE 0;

INSTANCE OF Head, Right_Arm, Left_Arm, Trunk;
END STRUCTURE;

The above could be coded explicitly:

Rot_Upper_Body := ROTATE 0 APPLIED TO Upper_Body;
Upper_Body := INSTANCE OF Head, Right_Arm, Left_Arm, Trunk;

COMMAND LANGUAGE — 25

However, it may be more convenient to group them into a BEGIN_STRUCTURE...
END STRUCTURE under a single name. This way, "Robot" could subsequently be
coded as an instance of Upper_Body and Lower_Body instead of an instance of
Rot.Upper_Body and Lower_Body.

You could choose to code explicitly for efficiency. However, in this example,
the convenience is worth the extra instance node.

Both the trunk and head could be defined in BEGIN STRUCTURE...
END STRUCTUREs.

Trunk := BEGIN STRUCTURE
TRANSLATE BY 0,6;
SCALE BY 2,3,1 APPLIED TO Cylinder;

END STRUCTURE;

Head := BEGIN STRUCTURE
TRANSLATE BY 0,6;

Rot := ROTATE 0;
SCALE BY 1,2, l;
TRANSLATE BY 0,1 APPLIED TO Sphere;

END STRUCTURE;

Notice that only the rotation node (Head.Rot) is named so values may be sent
interactively to move the head.

Now work through the rest of the code. When you are finished, you can compare
your code with the following:

Begin with Right_Arm and code top down. The circled display tree indicates the
arm may be coded in three BEGIN_STRUCTURE...END_STRUCTUREs.

Right_Arm := BEGIN_STRUCTURE;
TRANSLATE BY —2.5,6;

Rot:= ROTATE 0;
INSTANCE OF Upper_Arm, Right_Forearm;

END STRUCTURE;

Right_Forearm := BEGIN_STRUCTURE;
TRANSLATE BY 0,-4;

Rot := ROTATE 0;
INSTANCE OF Forearm, Right_Hand;

END STRUCTURE;

26 —COMMAND LANGUAGE

Since Hand has already been coded, Right_Hand is defined as:

Right_Hand := BEGIN_STRUCTURE;
TRANSLATE BY 0,-3;

Rot := ROTATE 0 APPLIED TO HAND;
END STRUCTURE;

Left_Arm is coded like Right_Arm but with different transformation values and
name changes:

Left_Arm := BEGIN STRUCTURE;
TRANSLATE BY 2.5,6;

Rot := ROTATE 0;
INSTANCE OF Upper_Arm, Left_Forearm;

END STRUCTURE;

The pattern is similar for Left_Forearm. Note that it references Forearm and
Left_Hand, which have both been defined:

Left Forearm := BEGIN STRUCTURE;
TRANSLATE BY 0,-4;

Rot := ROTATE 0;
INSTANCE OF Forearm, Left_Hand;

END STRUCTURE;

Notice in these two structures, the instance nodes are defined on a separate line
from the rotation node because there is more than one instance node being
referenced.

Since Hand has already been coded, Left_Hand is defined as:

Left_Hand := BEGIN STRUCTURE;
TRANSLATE BY 0,-3;

Rot := ROTATE 0 APPLIED TO HAND;
END STRUCTURE;

Now the lower half of Robot can be coded. First, group the pieces of Robot's
lower body together in one line of code:

Lower Body := INSTANCE OF Pelvis, Right_Leg, Left_Leg;

COMMAND LANGUAGE - 27

Then define each piece. Pelvis can be coded explicitly:

Pelvis := SCALE BY 2,1,1 APPLIED TO Cylinder;

The legs, like the arms, consist of BEGIN_STRUCTURE..,END_STRUCTUREs:

Right_Leg :_

Rot •-

BEGIN STRUCTURE;
TRANSLATE BY - l ,-2;
ROTATE 0;
INSTANCE OF Thigh, Right_Lower_Leg;

END STRUCTURE;

Right_Lower_Leg :_

Rot •-

Right_Foot :_

Rot •-

Le f t_Leg :_

Rot •_

BEGIN STRUCTURE;
TRANSLATE BY 0,-5;
ROTATE 0;
INSTANCE OF Calf, Right_Foot;

END STRUCTURE;

BEGIN STRUCTURE;
TRANSLATE BY 0,-5.5;
ROTATE 0;
TRANSLATE BY 0,0,-.5 APPLIED TO Foot;

END STRUCTURE;

BEGIN STRUCTURE;
TRANSLATE BY 1,-2;
ROTATE 0;
INSTANCE of Thigh, Left_Lower_Leg;

END STRUCTURE;

Left_Lower_Leg := BEGIN_STRUCTURE;
TRANSLATE BY 0,-5;

Rot := ROTATE 0;
INSTANCE OF Calf, Left_Foot;

END STRUCTURE;

Left Foot :_

Rot •-

BEGIN STRUCTURE;
TRANSLATE BY 0,-5.5;
ROTATE 0; .
TRANSLATE BY 0,0,-.5 APPLIED TO Foot;

END STRUCTURE;

28 —COMMAND LANGUAGE

USING IMMEDIATE ACTION COMMANDS

Immediate action commands are executed immediately when they are received
by the system. This kind of command cannot be named. For example:

DISPLAY Smallstar;

is a command that causes the model (data structure) named Smallstar to be
displayed. The data structure Smallstar already exists in Mass Memory; the
DISPLAY command creates no additional data structure. Naming the display
command:

Name := DISPLAY Smallstar;

would cause an error message to appear.

Immediate action commands can be divided into three types:

1. Those used with function networks. (For more information on these, refer to
the "Function Networks I" module.)

CONNECT
DISCONNECT
SEND
STORE

2. General commands

ALLOCATE PLOTTER
DEALLOCATE PLOTTER
Allow you to specify up to four Versatec plotters to allocate for hardcopy or
deallocate after hardcopy.

BEGIN...END
Defines a batch of commands so they appear to execute simultaneously.

COMMAND STATUS
Reports current level to which BEGIN...END and BEGIN_STRUCTURE...
END STRUCTURE commands are nested.

COMMAND LANGUAGE — 29

DEFINE
Sets up internal conversions when using different data base units
together (such as inches and centimeters) or angular measurements other
than degrees (such as radians).

DISPLAY
REMOVE

Cause objects either to appear on or disappear from the screen.

FORGET (data structures)
Removes a name from use while leaving the data structure associated
with the name in place.

DELETE
Removes a name and its associated data structure from use.

INITIALIZE
Clears all user—defined structures from Mass Memory.

OPTIMIZE STRUCTURE...END OPTIMIZE
Places the PS 300 in, and removes it from, "optimization mode," which
minimizes Display Processor traversal time for structures created in this
mode.

!RESET
Equivalent to entering enough "END;" commands to terminate any
unENDed BEGIN STRUCTURE...END_STRUCTUREs (i.e., more
BEGIN STRUCTURE statements than END_STRUCTURE statements,
creating an "upended" structure).

3. Structuring commands

These "hybrid" commands have characteristics of both immediate action
commands and data structuring commands. Like data structuring commands,
they create data tree nodes in Mass Memory by inserting nodes into an
already—named display tree. (Note that the SEND command sends new values
to existing display tree nodes).

30 -COMMAND LANGUAGE

Unlike data structuring commands, these commands cannot be named (the
nodes they create derive their names or traversal paths from existing nodes),
so they are considered immediate-action commands.

FOLLOW WITH
REMOVE FOLLOWER

The first coR~mand follows a named operation node with another
operation node. The second command removes this added operation node.

INCLUDE
REMOVE FROM

The first command modifies an existing INSTANCE display tree node by
including one named display tree in a named INSTANCE display tree.
The second command removes this added structure.

PREFIX WITH
REMOVE PREFIX

The first command prefixes a named display tree with an operation
node. The second command removes the prefixed node.

SEND
This command sends a value to a display tree node, as well as to a
function instance or variable.

Immediate action commands are not only used for interactions such as
displaying or deleting an object on the screen. They are also useful for
making experimental or temporary changes to a model's display structure in
Mass Memory. For example, if you wanted to change the view of a given
model, you could add operation nodes to the model's display structure (in
Command Mode) by using the FOLLOW WITH command. Should the view
prove undesirable, you could remove these nodes with the REMOVE
FOLLOWER command.

If you liked the effect and wanted the nodes permanently, you could edit the
model's display tree file (in Terminal Emulator Mode) adding data structuring
commands.

COMMAND LANGUAGE — 31

ENTERING CODE IN THE PS 300

When you have determined the commands needed to create the display tree,
enter them into the PS 300. You could enter them directly, as you did in the
"Hands—On Experience" module, but this means they will not be saved.

To retain a copy of the code for further use, enter the commands into a text file
on your host computer. The procedure for this varies according to the host.
Refer to your host documentation for details.

The file can then be downloaded to the PS 300. For details on how to do this,
refer to the section on PS 300 and Host Communication in the User Operation
and Communication Guide in l/olume 1.

When the transfe~~ is completed, you can display the model using the DISPLAY
command.

For example, transfer the Robot file to the PS 300 and display the Robot model
by entering:

CTRL LINE/LOCAL
Lal ~ Display Robot;

Command Summary

Now that you are familiar with how the commands work, the Command
Summart~, 1/olume 3A should be the only reference you need. The Command
Summary serves as a quick, complete reference on all available commands.
Commands are listed alphabetically. Acceptable abbreviations, formal command
syntax, and information on data types for parameters are supplied.

Graphics Support Routines

The Graphics Support Routines (GSRs) are a collection of procedures which are
used to improve speed and efficiency in communications between the host
computer and the PS 300. They reside in the host computer.

32 —COMMAND LANGUAGE

Most of the PS 300 commands have a corresponding Graphics Support Routine.
When you call one of these routines, the corresponding PS 300 command is sent
in BINARY directly to the PS 300 to be executed.

This improves efficiency in that data is received in the format required by the
PS 300--ready for direct interpretation. Because the data requires no further
parsing, less time is required by the PS 300 to interpret commands.

Keep in mind that the GSR software does not replace the PS 300 Command
Language. It is an alternative way to invoke it. For details on the Graphics

Support Routines, refer to the Programmer Reference Manual, 1/olume 3B.

COMMAND LANGUAGE — 3 3

SUMMARY

All PS 300 commands:

• End with asemi—colon.
• Are free—formatted.
• Have a long and short form.
• Can consist of upper and/or lower case letters.

Two kinds of PS 300 commands are needed to create a model in PS 300 Mass
Memory and display it on the screen: data structuring commands and immediate
action commands.

Immediate action commands are executed immediately, and cannot be named by
the user. These are used in function networks, for general system operations
such as displaying or removing an object from the PS 300 screen, and for
temporary modifications to existing display trees in Mass Memory.

Display trees are initially created in Mass Memory using data structuring
commands. All data structuring commands must be named, either explicitly or
using BEGIN STRUCTURE...END STRUCTUREs.

Whichever method youiuse, the following naming conventions are used.

• A name can be up to 240 characters and consist of any alphanumeric
combination as long as it begins with a letter.

• A name can include underscore characters (_), a dollar sign ($), or a period
(.). However, using periods may be confusing because the PS 300
automatically inserts periods in the name of nodes contained in a
BEGIN STRUCTURE... END STRUCTURE.

• A name cannot contain a space or other delimiter (<or>, tab, etc.).

• A name is followed by a colon, an equal sign, and the command to be
associated with the name.

• Other PS 300 commands can be used in conjunction with the naming of data
structures:

— (Naming of Display Data Structures) Command
— The (name := nil) Command

The FORget command
The DELete command

34 —COMMAND LANGUAGE

Most display trees are coded using a combination of explicit naming and
BEGIN STRUCTURE...END STRUCTUREs. In general, BEGIN_STRUCTURE...
END STRUCTUREs:

• Group associated nodes together into identifiable parts of a model.
• Reflect the order of operations shown in the display tree.
• Eliminate the unnecessary naming of nodes: nodes within a structure are only

named if they need to be referenced, i.e., are interactive.

BEGIN STRUCTURE...END STRUCTURE commands follow certain conventions:

• BEGIN STRUCTURE...END STRUCTURE always creates an INSTANCE node.

• OPERATION commands inside a BEGIN STRUCTURE...END STRUCTURE
apply to everything below in the structure unless they are explicitly APPLIED
TO other structures.

• If an OPERATION node in a BEGIN STRUCTURE.,.END STRUCTURE is to be
applied to more than one branch of the hierarchy, the PS 300 creates an
INSTANCE node below the OPERATION node, and the INSTANCE node points
to the appropriate branches.

• In a BEGIN_STRUCTURE...END_STRUCTURE, the PS 300 automatically
prefixes the name of a "user—named" node with the name of the
BEGIN STRUCTURE... END_STRUCTURE. The prefixed (hierarchical) name
is first, followed by a period (.) and the "user" name.

• END STRUCTURE does not create any data node, but merely indicates to the
PS 300 that the BEGIN STRUCTURE...END STRUCTURE is finished.

• Nested BEGIN STRUCTURE...END_STRUCTUREs can be considered as
terminal nodes in the encompassing BEGIN_STRUCTURE...
END_STRUCTURE. In other words, nothing in the nested structure is applied
to anything in the rest of the encompassing BEGIN_STRUCTURE...
END STRUCTURE.

A model's display tree is coded in a text file or an application program on the
host computer and then downloaded to the PS 300. For quicker communications
between host and PS 300, use the PS 300 Graphic Support Routines. Use the
Command Summart~ as an easy reference manual of all available commands.

For information on how to connect function networks into a model's display tree,
to manipulate the model interactively, refer to the "Function Networks I"
module.

FU\CTIO NETWORKS I

INTERACTION WITH A MODEL

CONTENTS

INTRODUCTION 1

OBJECTIVES 2

PREREQUISITES 2

CONVERTING INPUT DEVICE VALUES TO UPDATE AN INTERACTION NODE 3
Exercise 16

ADDING FURTHER INTERACTION: ROTATION IN OTHER DIMENSIONS 19
Exercise 21

EXPAND THE NETWORK FOR OTHER KINDS OF INTERACTION 23
Exercise 26
Exercise 28

A CLOCK FUNCTION AS AN ALTERNATE SOURCE OF INPUT
FOR THE NETWORK 29

Exercise 31

SUMMARY 34

FUNCTION NETWORKS I

ILLUSTRATIONS

Figure 1. Sample Function Network 1
Figure 2. The "Black Box" 3
Figure 3. Robot Display Tree 4
Figure 4. F:YROTATE 7
Figure 5. Possible Y Rotation Network 7
Figure 6. Y Rotation Network With Multiplier 8
Figure 7. Adding an Accumulator 9
Figure 8. Tracing Dial Values (Part 1) 9
Figure 9. Tracing Dial Values (Part 2) 10
Figure 10. Tracing Dial Values (Part 3) 10
Figure 11. F:MUL 13
Figure 12. F:DYROTATE 14
Figure 13. F:DYROTATE Function Network 15
Figure 14. "Spinner" Function Diagram 16
Figure 15. Completed Function Network for X, Y and Z_ Rotation 18
Figure 16. Modified Display Tree With Three Rotate Nodes 19
Figure 17. F:YROTATE Network 20
Figure 18. Common Accumulator for Rotate Functions 20
Figure 19. Suggested Configuration for Dials 24
Figure 20. Translate Network 25
Figure 21. Network for Uniform Scaling 27
Figure 22. F:CLFRAMES 29
Figure 23. F:CLFRAMES as Input Source for Y Rotation 31
Figure 24. A Network That Toggles 32
Figure 25. A More Efficient Toggle Switch 3 3
Figure 26. The Completed Network 34

FUNCTION NETWORKS I — 1

This module illustrates how to construct simple function networks. Function networks
allow you to interact with a model you have created for display.

The first steps to using function networks were detailed in the "Modeling" and "PS 300"
modules. There, you analyzed a model (the robot) for movement, allowed for that
movement by including interaction nodes in the display tree, and named those nodes
when you coded the model so they could be accessed.

Interactive nodes can be accessed using function networks. For example, in the
"Hands—On Experience" module, you used a simple function network to rotate a star on
the screen (Figure 1).

r

L

_. _.__

DIALS

<1>

Spinner
F:DZROTATE

<1> <1>

-1

i

____ J

Figure 1. Sample Function Network

Spinstar

Star

R Diamond

Square ~ AS0526

This module will illustrate in greater detail how this kind of function network operates.

You will also learn how to use PS 300 interactive devices to move a more complex
model--the robot. When the robot display tree was initially coded, zero values were
assigned to the interaction nodes. In the case of rotating the model, this meant the
model would rotate zero degrees from initial position when first displayed. Ta rotate

the model, you can create a function network to send a non —zero value to the rotate
node. Specifically, this function network takes values from input devices and
transforms them into values the interaction nodes can accept.

2 —FUNCTION NETUVORKS I

Part of this process entails selecting the appropriate PS 300 functions and linking them
together into a function network. This function network may contain additional
functions which perform other kinds of tasks, such as accumulating values which are not
large enough.

As you did when you created a display tree for your model, you will first create a
diagram of your function network and then code from that. Creating a diagram of the
network first allows you to modify it easily and detect errors before they become bugs
in the code.

OBJECTIVES

In this module you will learn how to:

■ Select functions which will convert input device values into values that can
update an interaction node

■ Add functions to the network for rotation in all three dimensions

■ Expand the network for other kinds of interaction (scaling and translating)

■ Use a CLOCK function as an alternate source of input for the network.

PREREQUISITES

Before beginning this module, you should be familiar with the concepts presented
in the "Modeling" and "PS 300 Command Language" modules.

FUNCTION NETWORKS I - 3

CONVERTING INPUT DEVICE VALUES TO UPDATE AN INTERACTION NODE

The first step to selecting the appropriate function to convert input values into
values that can update an interaction node is to identify the type of values
needed by the node. To understand this, look at the the most common graphics
transformations--rotation, scaling, and translation.

Rotations and scales are done with 3x3 matrices; translations are specified with
a 2- or 3-dimensional vector. It makes sense, then, that the type of data used by
a rotation or scale node is a 3x3 matrix, and the data type for a translation node
is a vector.

Your task, if you are trying to rotate part of a model, is to f ind a way to make
an input device, such as a dial, send the correct 3x3 matrices to a rotate node.
In this module, this process will be represented by a "black box" (,Figure 2) that
takes one kind of value and ~~hanges it into another kind.

Input Values r ~ 3x3 Rotation
from Dials ~ Black Box I Matrices

tAso527

Figure 2. The "Black Box"

In the "Hands-On Experience" module, you created Diamond by specifying a 45
degree rotation of Square. You did not need to work out what the 3x3 matrix for
45 degrees was. Whenever you use a command to create a rotate or scale node
(such as Diamond), you only have to specify an angle using a real number value
and the PS 300 automatically creates the associated 3x3 matrix.

Once the node is created, however, you can only update it with the type of data
it accepts--in this case, a 3x3 matrix. For example, look at the robot display
tree again (Figure 3) the names for the nodes are supplied so you can refer to
them.

4 -FUNCTION NETWORKS I

C

L

Robot.Tran

Robot .Rot

Robot. Scal e

Figure 3. Robot Display Tree

1

Right
Leg

Right
Lowe r Leg

Right
Foot

,•
1~so528

FUNCTION NETWORKS I - 5

To move the left arm, you must send a rotation matrix to the node named
LeftArm.Rot.

Look at the other interaction nodes. Almost all of the them are rotations except
for the translate node above robot (Robot.Tran}. All of these rotate nodes
accept 3x3 rotation matrices, and Robot.Tran requires vectors.

One other node in the robot display tree is interactive: Robot.Scale, the scale
node above Robot. Unlike the rotation nodes, it currently contains a non-zero
value (.OS). Since it has been named, you can reference it and connect functions
to it. This will allow you to change the values it contains, interactively making
the robot larger or smaller.

You can control whether or not any operation node in the display tree will be
processed. Sending a Boolean value FALSE to input <-1 > of any operation node
will turn off the action specified in that node. Sending a TRUE to input <-1 >
will turn it back on. The default is ON.

Once you know what values you need to produce for interaction nodes (output
from the black box), you should identify the type of values produced from the
input device (input to the black box).

The twelve function keys across the top of the PS 300 keyboard produce discrete
integer values from 1 to 36. Consequently, they are a useful source of input for
discrete tasks such as changing states or "modes".

The data tablet is commonly used for digitizing tsketching or tracing from a
drawing), making menu selections, and picking. The values it produces are XY
vectors with fractional values between plus and minus 1.

This module focuses on the dials. Dials produce a stream of small, incremental
real numbers. This means the dials are well-suited for producing smooth motion,
so they are often used in controlling the three common transformations:
translations, rotations, and scaling.

When you turn a dial clockwise, it sends out a stream of fractional values (called
delta values) that sum to 1 after a complete rotation of the dial. If you turn
it a full turn counterclockwise, the values sum to -l.

If the delta value is . l , every time you turn the dial one-tenth of the way around,
it produces a .1. If you turned the dial one-twentieth of a turn, it will not
produce a value. By default, a dial is set to produce a delta of about .001. This
makes the dial extremely responsive. Only a slight movement of the dial will
generate a value.

6 —FUNCTION NETWORKS I

The delta values produced by the dials do not accumulate. In other words, the
dial does not send out .001 the first click, .002 the next, and so on, ending with
1.0 after one complete turn. After one complete turn, the dial still sends out the
same delta value it did when it was turned enough to produce a value. This fact
is extremely important to remember when you are designing function networks.

Once you have identified the input source and the type of values it generates,
you can use the Command Summary in Volume 3A to identify the appropriate
functions) to convert incoming values from an input device into appropriate
output. For rotations, the functions) must convert real numbers sent out by the
dials into 3x3 matrices needed for the interaction nodes.

The Command Summary contains a description of each command associated with
a node (INSTANCE OF, ROTATE, VECTOR LIST, and so on). In each description
is a list of associated functions that produce values the node can accept. For
example, if you look up ROTATE, you will find these associated functions:

F:MATRIX3, F:XROTATE, F:YROTATE, F:ZROTATE, F :DXROTATE,
F:DYROTATE,F:DZROTATE, F:SCALE, F:DSCALE

All of these functions produce 3x3 matrices, so, in theory, all of them can be
connected to a rotate node. However, those most closely associated with rotate
nodes are the ones with ROTATE in their nar~~es. These are the candidate
functions for the black box.

The Command Summary lists the following associated functions in its description
of the SCALE and TRANSLATE operation nodes:

SCALE: F:MATRIX3, F:XROTATE, F:YROTATE, F:ZROTATE,
F:DXROTATE, F:DYROTATE, F:DZROTATE, F:SCALE, F:DSCALE

TRANSLATE: F:XVECTOR, F:YVECTOR, F:ZVECTOR

As with the ROTATE command, where a number of associated functions produce
the type of output needed, the name indicates the most likely functions to use.
So if you wanted to send values to a scale node, you should use F:SCALE and.
F:DSCALE (for the differences between F:SCALE and F:DSCALE, refer to the
Function Summary).

Note that the associated functions for TRANSLATE do not have "TRAN" in their
names. Since TRANSLATE nodes accept 3D vectors as input, the associated
functions are ones that generate 3D vectors--F:XVECTOR, F:YVECTOR, and
F:ZVECTOR.

FUNCTION NETWORKS I - 7

To evaluate the functions themselves, look them up in the Function Summary
in Volume 3A. The following example illustrates how functions work, and how
the Function Summary presents the information.

Assume you want to rotate Robot in Y, that is, to make it spin around around its
vertical axis. The node to interact with is the rotate node named Robot.Rot in
the display tree. Y rotations are associated with the functions F:YROTATE and
F:DYROTATE. Under F:YROTATE in the Function Summary you will find a
diagram like the one in Figure 4.

Real or
Integer

F:YROTATE

<1> <1>

Figure 4. F:YROTATE

3x3 Matrix

IAS0529

The diagram indicates that this function has one input on the left and one output
on the right. It can accept real values which represent degrees of rotation on its
input and send out 3x3 rotation matrices as output values.

Like all PS 300 functions, it waits until an input value has arrived, performs
computations, and outputs the value. It is capable of consuming a steady stream
of input values and producing a steady stream of outputs.

F:YROTATE seems to be the likely candidate for the black box. It accepts real
numbers so it can be connected to the dials, and it produces 3x3 matrices to send
to the rotation node. Look at example shown in Figure 5.

D I A~.S
Real

Numbers

F:YROTATE

<1> <1>

Robot.Rot

Rotation Matrices

tAS053/

Figure 5. Possible Y Rotation Network

8 —FUNCTION NETWORKS I

If you were to test this function with a stream of values from the dials, you

would discover several facts. The first is that the values from the dial are very

tiny. Each one supplies only a fraction of a degree of rotation to F:YROTATE,

so the corresponding matrices that F:YROTATE sends out specify almost

insignificant amounts of rotation in the model on the screen. You need a way to

multiply the effect the dial values have. Adding a new function can do that (see

Figure 6).

DIALS

<1> .001 .001

Z00

F:iNULC

<1> <1>

<2>~

.2 .2

F:YROTATE

<1> <1>

Rabat.Rat

Figure fi. Y Rot~ti0n Network With Multiplier

iA~0532

F:MULC is a multiplying function that takes any value it receives on input < 1 >

and multiplies it by the constant value on input <2>. Many PS 300 functions

have constant inputs. Unlike regular inputs, called active inputs, constant

inputs never consume the values on them. If you place a Iarge number on input

<2> (200 is the value shown in the diagram), then each incoming dial value will be

converted to a value 200 times greater. That will specify noticeable amounts of

rotation for F:YROTATE. F:MULC converts a .001 from the dials to 0.2.

Continue to trace successive values through this modified network. When

F:YROTATE receives the 0.2 from F:MULC, it will immediately send out a

matrix to Robot.Rot that will rotate Robot 0.2 degrees.

The dial produces only a stream of incremental delta values--each one is about
0.2. As F:YROTATE receives these, it produces a stream of matrices, each
corresponding to about .2 degrees of rotation. But nothing greater than about a
fifth of a degree of rotation ever occurs. The effect of this is that the robot
rotates only a small amount and stays there. It may even look like the robot is
not responding to the dials at all.

What is needed is a way to accumulate values, so the first delta value causes .02

degree of rotation, the second value .04 degrees, and so on. This calls for

another modification of the network. Figure 7 shows one method of adding an
accumulator.

FUNCTION NETWORKS I — 9

DIALS

<Z>

F:MULC

Z00

F:YROT F:cMUL
Robot.Rot

Figure 7. Adding do Accumulator

IAS0530

Values from F:YROTATE can accumulate using a multiply function (F:CMUL) as
the accumulator. F:CMUL is the same as F:MULC, except its first input is
constant. To fire, this function needs to be "primed" the same way F:MULC did.
Place an identity matrix on input < 1 >. This ensures that F:YROTATE will
produce a product. When the first incoming value from F:YROTAT~E arrives of
at input < 2> F:CMUL, it will be multiplied by the matrix waiting on input < 1 >.

The product of these two matrices goes to update the rotation node. It also goes
back to F:CMUL input < 1 > to replace the identity matrix that was there. So the
next rotation matrix to arrive on F:CMUL input < 2> gets multiplied by the
accumulated matrix, not by the identity matrix first placed there.

This whole process repeats each time F:CMUL fires. Anew matrix, containing
the accumulated rotations is continually being sent back to input < 1 > as each
new matrix is output from the function.

Figures 8, 9 and 10 trace a stream► of three or four values from the dial through
the network to see if the modifications that are added produce the desired
matrices.

DIALS
... .001 .001 .001

200

F:MULC

<1> <1>

<2> ~

.~ .

Figure 8. Tracing Dial Values tPart 1)

{AS0533

10 —FUNCTION NETWORKS I

As shown in Figure 8, F:MULC multiplies the first dial value by 200 to produce a
0.2. This value triggers F:YROTATE to produce a rotation matrix for one —fifth
of a degree of rotation. That travels to F:CMUL, where it will be multiplied by
an identity matrix (I) on input < 1 > (see Figure 9).

200

F:MULC
<I> <~.>

.2 .2

c.

F : Y ROTAT E

<~> <1~:
.2° ... 1

F : CiNUL
,. . , M(I ~1~~ ~1~

M(. 2 <2>

~~I (. 2 °)

Figure 9. Tracing Dial Values tPart 2)

tAS0534

Multiplying a matrix by an identity matrix has the same effect that multiplying
by 1 was on numbers. The matrix that first arrives on F:CMUL input <2> from
F:YROTATE is multiplied by the identity matrix on input < 1 > and output
unchanged from the function to the rotate node. This matrix also travels back to
F:CMUL constant input < 1 > and replaces the identity matrix that was there.

The second dial value goes through the exact same process, causing F:MULC to
send out a 0.2, which causes F:YROTATE to send out another matrix for 0.2
degree of rotation. But this second matrix gets multiplied, not by the identity
matrix as the first matrix did, but by the most recent value sitting on input < 1 >.
In this case, that value is a matrix for .2 degrees of rotation (Figure 10).

F:YROTATE

<1> <1>

M(.4°)

M(.2

M(.2°)

F : CiNUL

~1>C<1>

<2>

M(.4°) M(2°)

lAS0535

Figure 10. Tracing Dial Values (Part 3)

FUNCTION NETWORKS I - 11

The second product from F;CMUL is a new accumulated matrix for .4 degrees of
rotation that updates the rotate node and goes back to replace the .2-degree
matrix on the F:CMUL constant input. Each time a new 0.2-degree rotation
matrix comes from F:YROTATE, this process repeats, and a new cumulative
rotation matrix goes around to the F:CMUL constant input. So each time
F:CMUL fires, the matrix sent to Robot.Rot will specify a little more rotation
than the one before it.

Once this network is implemented, it handles input values from the dials so
quickly that the model will appear to rotate in real time. It also provides the
expected results when the dial is turned the other way: it generates small,
negative values which cause F:YROTATE to output rotation matrices for
negative rotation. The result is that the model rotates in the opposite direction.

Examine the diagram you have so far. It illustrates several important facts
about functions. One of the functions, F:YROTATE, is a data conversion
function. It takes one type of input and produces a different type. Other
functions do not do this. For example, F:ADD is an arithmetic operation
function. It adds two incoming values and produces the same type of data it
receives as input. F:MULC and F:CMUL, used in this network, are also examples
of functions that do arithmetic operations. Other functions perform Zogical
operations or select and route data. The classes of functions are outlined
below:

• Data Conversion

Data conversion functions combine vectors into matrices, extract vectors
from matrices; form vectors from real numbers, round or truncate real
numbers to integers, float integers to equivalent real numbers, make
printable characters and convert character strings to a string of integers.

• Arithmetic and Logical

These functions perform all arithmetic operations (add, divide, subtract,
multiply, square root, sine, and cosine) and logical operations (and, or,
exclusive-or, and complement).

• Comparison

Comparison functions test whether values are greater than, less than, equal
to, not equal to, greater than or equal to, and less than or equal to other
values.

12 —FUNCTION NETWORKS I

• Data Selection and Manipulation

These functions are used to selectively switch functions, choose outputs, and
route data.

• Viewing Transformation

Viewing transformation functions connect to viewing operation nodes in
display trees to change line —of —sight, window size, and viewing angle,
interactively.

• Object Transformation

Object transformation functions connect to modeling operation nodes in
display trees to interactively rotate, translate, and scale objects.

• Character Transformation

These functions are used to interactively position, rotate, . and scale text.

• Data Input and Output

These functions set up and control the interactive devices dials, function
keys, function buttons, data tablet, and keyboard, and output values to the
optional LED labels that several of the devices have.

• Miscellaneous

Other functions set up and control picking, clocking, timing, and
synchronizing operations.

Notice from the function network diagrams that values flow from left to right,
with the input device usually situated "upstream" at the extreme left and the
destination for the values, the nodes, "downstream" on the extreme right.

Despite this general direction of flow, values can be routed virtually anywhere in
the network. A function's output can be connected to the input of any other
function, including itself, as F:CMUL demonstrates.

FUNCTION NETWORKS I — 13

In addition, an output can be connected to more than one destination. Again,
F:CMUL illustrates _this. Its output goes to a rotate node and also back to its
own input. Similarly, an input can be fed by more than one source.

As mentioned, functions have two kinds of inputs: active and constant. Inputs in

the Function Summary diagrams are active unless they are marked with a C.
Both F:MULC and F:CMUL have constant inputs. Values coming in on an active
input are consumed as the function executes, clearing the input for the arrival of
a new value. If the function cannot execute yet because values for other inputs
have not arrived, active input values will queue up, waiting their turn to be
consumed.

Values on constant inputs stay on the input; they are not consumed when the
function executes. If another value arrives, it does not queue up; it replaces the
value that was there. In effect, then, there can only be one value at a time on a
constant input. Constant inputs are useful in a situation like the previous
network, where F:MUL_C is used to multiply a stream of values coming in on one
input by the same constant factor.

Contrast this with the multiplying function F:MUL, which has two active inputs
(Figure 11).

F:MUL
4

1>

<2>

F:MUL

~ 4 1>

 <2>

QA Value Arrives QB Second Value
on Input 1. Arrives on Input 1

and Queues Up.

F:MUL

~Aso55o

~ (4)
(3)

F:MUL

 -~l>

 ~2>

~C Ualue Arrives on
Input 2 Muliplies
the First Value Received
on Input 1 -Product
is Fired Out.

QD After Firing, Value
on Input 1 Waits
for a Ualue to Appear
on Input 2.

Figure 1 1. F: M U L

14 —FUNCTION NETWORKS I

If you sent 200 to input <2> of F:MUL, it would remain there until the first value
from the dial arrived on input < 1 >. Then the function would send out the product
and the two input values would disappear. A second value from the dial would
arrive on input < 1 > and wait, because there would be no value on input < 2 > to
multiply it by. The third, fourth, and all succeeding values from the dial would
queue up behind it on input < 1 >, all waiting for their turn to be multiplied. To
keep F:MUL working, you would need to supply it with a steady stream of fresh
200s for input <2>. Obviously, it is easier to use a constant input for this, as
with F:MULC.

This module employs PS 300 functions with fixed constant or active inputs. At
times, however, it will be useful to specify whether an input to a function is
active or constant. Refer to the Command Summary for information on the
SETUP CNESS command, which allows you to determine whether or not an input
is constant or active.

As a rule, PS 300 functions execute only when all the inputs have values. Some
functions like F:ZIIECTOR have only one input, so they fire whenever the
correct value arrives on it. Others, such as F:MUL, require a value on each of
two inputs. F:MULC and F:CMUL are this way, except that you can place a
single value on the constant input and then control the function's firing by
sending or not sending values to the active input.

Many PS 300 functions have two or more inputs which r-i7ust be accounted for.
Some function inputs have default values that do not need to be primed before
using the function. The descriptions in the Function Summand detail which
inputs are constant and which have default values provided for them.

So far you have a f unction network to serve as the black box for rotating the
robot. there is still one other function to evaluate, F:DYROTATE.
F:DYROTATE is shown in Figure 12.

F:DYROTATE

Rea 1
(Rotation Delta

Real
(Set Accumulator

Real
(Scale Factor)

<1> <1>

<Z>~ <2>

< 3> C

Figure 12. F:DYROTATE

3x3 Rotation
Matrix

Real
(Accumulator

Contents)

IAS053b

FUNCTION NETUVORKS I — 15

This function has three inputs. Input < 1 > takes values directly from the dials.
Input < 3 >, a constant input, holds a magnifying value and does the same thing
F:MULC does in the F:YROTATE network; the values coming in on input < 1 > get
multiplied by the value on F:DYROTATE's input <3>.

Input <2> is an accumulator value. It performs the same function F:CMUL does
in the other network. This input requires an initial or reset value (in this
case 0) the same way F:CMUL needs an identity matrix at input < 1 >. (You can
send a zero to input <2> and reset the accumulator whenever desired.) Output
~ 2> is not used here but consists of the constant accumulator content on input
<2>.

In short, F:DYROTATE does everything the F:YROTATE network does with one
function instead of three. Since there is no reason to use three functions where
one will do, the next task is to use PS 300 commands to implement a function
network using F:DYROTATE (Figure 13).

DY Rot

DIALS

<~>
Send 0

Send 200

F:DYROTATE

<~,>

~2>C

<3>C

Robot.Rot

<~.>-

< 2 > - ~ Not Used

1AS05~3

Figure 13, F: D Y R O T A T E Function Network

This network consists of two functions and a named node. The first function,
DIALS, is an Initial Function Instance. It has eight outputs, one for each dial.
You do not have to instance it; the PS 300 does that automatically when you turn
it on.

The second function in the network, F:DYROTATE, must be instanced and
assigned a na m e.

This network is almost identical to the one used in the "Hands—On Experience"
module.. There you rotated the star—shaped object named Spinstar by connecting
it to a F:DZROTATE function (Figure 14).

16 —FUNCTION NETWORKS I

DIAES

<1>

<2>

Spinner

F:DZROTATE

<1> <1>

Spi nstar

Star

Figure 14. "Spinner" Function Diagram

Square

Diamond

IAS0537

To use that function, you had to instance it; i.e., assign it a unique name
(Spinner). Then, using the CONNECT command, you connected DIALS< 1 > to
Spinner's input and its output to the interaction node named Spinster. Spinner
was primed by sending initial values to its two constant inputs. Then it was
ready to use. Turning the dial activated the network, causing the star to spin on
the screen. Do the same thing in the following exercise.

Exercise

Define DY_Rot to be an instance of F:DYROTATE using this command

DY_Rot := F:DYROTATE;

Now connect outputs to inputs as shown in the diagram. Connect DIALS< 1 > (the
top left dial) to DY_Rot's input and DY_Rot's output to Robot.Rot with the
CONNECT command:

CONNECT DIALS< 1 >:< 1 >DY_Rot;

CONNECT DY_Rot< 1 >:< 1 >Robot.Rot;

In the CONNECT command, the input number of a function always precedes its
name and the output number always follows it.

~"1 FUNCTION NETWORKS I — 17

Send initial values where they are indicated. There are only two in this
network: DY Rot's two constant inputs.

SEND 0 to < 2 > DY_Rot;

SEND 100 to < 3 > DY_Rot;

Everything in the function network diagram you drew is now accounted for and
implemented in the PS 300. Turn dial 1 and the model should rotate on the
screen.

Then try to enlarge the network so dials 2 and 3 control the other two rotations
in X and Z, using F:DXROTATE and F:DZROTATE in exactly the same way.
When the network is coded, move the dials and watch what happens to the model
on the screen.

Whenever you construct a function network, use the following good programming
practices:

• Always design your network before you try to code it. If you work from a
diagram, you will not forget to instance a needed function or to make a
required connection.

• Instance all required functions, and check them off in the diagram as you
instance them. If you try to connect a function that has not first been
instanced, you will create an error.

• Next, make connections from left to right in the diagram, and check them off
as you make them. Starting with the "most upstream" functions, make all
connections until you reach the outputs of the network.

• Last, prime the network with initial values. Make sure that you send a
number to a constant input whenever you need to.

Figure 15 is a diagram of a larger network that includes the other two rotations.

18 —FUNCTION ~lETWORKS I

DY Rot

F:DYROTATE

0

200
DIALS

<1>

<2>

<3>

<~> <~.>

<Z>C <2>

<3>C
DX Rot

DZ Rot

0

200

F:DZROTATE

<1>

<Z>C

<3>C

<2>

0

200

F:DXROTATE

<1>

<2>C

<3>C

<1>~

<2>

Robot.Rot

~Aso548

Figure 15. C o m pleted Function Network for X, Y dnd Z R otdtion

Probably the only differences between your network and this one will be the
names used to instance functions. If you diagrammed your network and entered
the commands correctly, you should see some unexpected jerking around in the
model if you turn one dial after turning another. The next section explains why.

FUNCTION NETWORKS I — 19

ADDING FURTHER INTERACTION: ROTATION IN OTHER DIMENSIONS

The first attempt to expand the number of rotations for Robot using
F:DXROTATE and F:DZROTATE produced some jerkiness. The jerkiness occurs
because each rotation function in this network has its own built—in accumulator
(input < 2 >). If you rotate the robot in Y 90 degrees, you have an accumulated
90 —degree rotation value in DYROTATE. Turning the X dial generates a matrix
that specifies X rotations from the initial position in X, Y, and Z. I~~ other
words, the matrix that DXROTATE produces overrides the accumulations
already in DYROTATE. The X rotation applies as if no other rotation has
occurred. So the model appears to jump back to its initial position before it
starts rotating in X.

It was not wrong to pick F:DYROTATE instead of the F:YROTATE network if
you only want to rotate a model around one axis. In that case, a DROTATE
function is simpler to use. But to add rotations in other dimensions, you need to
account for all the rotations. You could add two more rotate nodes to the
display tree for X and Z rotations as shown in Figure 16.

F:D~ROTATE

DIALS

<1>

<2>

<3>

F:DYROTATE

F:DXROTATE

Rotate Z

Rotate Y

 R Rotate X

Robot.Scale

~ lAS0538

Figure 1 fi. Modified Display Tree With Three Rotate Nodes

2Q —FUNCTION NETWORKS I

Another method is to provide a common accumulator for the whole group. Look
at the network with F:YROTATE (Figure 17).

DIALS

<1>

Zoo

F:r~)ULC

<1>

<2>

F:YROT F:cr~uL
C

Figure 11. F: Y R O T A T E Network

1as0539

This network has a separate accumulator, an instance of F:CMUL. It can serve
as the sole accumulator for all of Robot.Rot's rotations, if all three ROTATE
functions are connected to it.

DIALS
<1>

<2>

<3>

XP1UL

200

F:r~uLc

C

Rot X
F:XROT

YMUL RQt Y

200

F:MULC

C

F:YROT

Z~1UL Rot Z
F:MULC

200
F:ZRoT

Accum
F:CMUL

<~>C <1>

<2>

Robot .Rot

rAso5~2

Figure 18. Common Accumulator for Rotate Functions

This example (Figure 18) shows how a single input of a function (<2>F:CMUL) can
receive values from more than one source (F:XROTATE< 1 >, F:YROTATE< 1 >,

FUNCTION NETWORKS I — 21

Exercise

Use the DISCONNECT command to break the connections for the network you
have programmed into the PS 300. Enter:

DISCONNECT DIALS< 1 >:< 1 >DY_Rot;
DISCONNECT DIALS<2>:< 1 >DX_Rot;
DISCONNECT DIALS< 3 >:< 1 > DZ_Rot;

Now program the network shown in Figure 18. Then turn all three dials and pay
close attention to how the model moves in Y after you have moved it in Z.

First, the functions must be instanced:

Xmul := F:MULC;
Ymul := F:MULCT
Zmul := F:MULC;
Rotx := F:XROT;
Roty := F:YROT;
Rotz := F:ZROT;
Accum := F:CMUL;

Second, connections must be made between the functions:

CONNECT Dials< 1 >:< 1 >Xmul;
CONNECT Dials<2>:< 1 >Ymul;
CONNECT Dials<3>:< 1 >Zmul;

CONNECT Xmul< 1 >:< 1 >Rotx;
CONNECT Ymul< 1 >:< 1 >Roty;
CONNECT Zmul< 1 >:< 1 >Rotz;

CONNECT Rotx < 1 >: < 2 > Accu m;
CONNECT Roty < 1 > : < 2 > Accu m;
CONNECT Rotz< 1 >:<2>Accum;

CONNECT Accum < 1 >: < 1 > Accu m;
CONNECT Accum< 1 >:< 1 >Robot.Rot;

22 —FUNCTION NETWORKS I

Finally, the functions must be primed by sending initial values to their constant
inputs. This includes sending an identity matrix to initialize input < 1 > of the
accumulator.

SEND 200 to < 2> Xmul;
SEND 200 to <2>Ymul;
SEND 200 to <2>Zmul;
SEND M3D(1,0,0 0,1,0 0,0,1) to < 1 >Accum;

These rotations are called world—space rotations; they take place around the
world's axes and not the model's axes. Once you rotate Robot in Z, if you rotate
him in Y he will spin around an axis running through him that is parallel to the Y
axis of the coordinate system. When a model rotates around its own axes, that is
called object—space rotation. For a further discussion of object —space and
world —space rotations, refer to the Ps 300 AppZicat ion Notes in Uolume 4.

FUNCTION NE -TwORKS I — 23

EXPAND THE NETWORK FOR OTHER KINDS OF INTERACTION
(Scaling and Translating)

Two other transformations are possible for the robot: scaling and translations.
You have already Laid the groundwork by including a scaling node and a
translation node at the top of the robot display tree.

Dials 1, 2 and 3 now control the model's rotations. Determine which of the
remaining dials will control scaling and translation. Figure 19 shows a suggested
configuration for using the dials to control rotations, translation, and scaling for'
an object. One dial controls scaling, and three each are assigned for rotation and
translation. One dial is unassigned.

24 -FUNCTION NETWORKS I

Rot X

Tran X

Rot Y

Tran Y

Rot Z

Tran Z

SCALE

c\~
DIALS

<1>

< 2>
<3>

<4.>

<5>

<6>

<7 >

<~

iaso54o

Rot X Network

Rot Y Network

 Rot Z Network

Sca 1 e Network

Tran X Network

Tran Y Network

Tran Z Network

Unassigned

Figure 19. Suggested Configuration for Dials

FUNCTION NETWORKS I — 25

Translations take place in X, Y, and Z and need three dials: 5, 6, and 7. The
type of scaling here is uniform scaling, so one value will scale in all
dimensions equally. Only one dial needs to be used: dial 4.

Often, all the rotations you will need to make a model fully interactive will
require more than eight dials. In the proposed network you have so far, for
instance, only three nodes from the model's display tree use up seven dials. The
remaining interaction nodes in the display tree require up to three dials each.
This means about fifty dials are necessary to handle all those rotations. Away
to reuse a single set of eight dials to solve this problem is discussed in "Function
Networks II".

Now enlarge the network to translate the robot. This network will closely
resemble the one just finished for rotations. First, determine what data type the
node requires.

Translate nodes accept vectors. The TRANSLATE command's associated
functions in the Command Summart~ are F:XUECTOR, F:YUECTOR, and
F:ZUECTOR. These all take real numbers as their input and produce 3D
vectors. The input value is in the X (or Y or Z) position in the vector.
F:XUECTOR, for example, would take the real number 4.5 and send out the
vector (4.5, 0, 0). F:YUECTOR would take the same input and send out (0, 4.5,
0).

Figure 20 shows a network with VECTOR functions for translating in three
dimensions.

<5>

<6>

<7>

Tran X

~--~ F : XYEC ~—

Tran Y

Tran Totai

F:YVEC ~ ~~0,0,0

Tran Z

---~ F : ZVEC }--

1

F :ACCUMULATE

<1>

<2>C

<3>C

<4>C

<5>C

<6>C

Figure Z0. Translate Network

t AS0541

26 —FUNCTION NETWORKS I

The accumulator in this network is not the multiplying function F:CMUL but a
new one, F:ACCUMULATE. F:ACCUMULATE does the job of several functions.
There is no need, for example, to put a magnif ying function like F:MULC in this
network. To enlarge dial values, send a magnif ying factor to F:ACCUMULATE's
input <4>. In the case of this translate network, a suggested factor is 10 (that
corresponds to the 200 magnifying factor for rotations. The reset value for the
accumulator goes on input <2>.

Three inputs are not used in this application. Input < 3 > Iets you control the
smoothness of translation by setting the minimum change in position per output.
And the last two inputs control limits. If you do not want an object to move
more than a specified amount (to keep it within the limits of the screen, for
example), you can set limits on its movement with inputs <5> and <6>.

The accumulator is shared by alI three VECTQR functions just as the three
ROTATE functions share a com mon accumulator.

Exercise

Instance the functions in the translate network using the nar~~es suggested in
Figure 20, connect them to dials 6, and 7, and prime constant queues ~ 2> and <4>
of F:ACCUMULATE. Then use what you know about building networks to
diagram one for scaling the robot.

To create the translate network, first instance the functions:

Tranx := F:X1/EC;
Trany := F:YVEC;
Tranz := F:ZVEC;
Tran_total := F:ACCUMULATE;

Then connect the functions to the dials:

CONNECT Dials< 5 >: < 1 >Tranx;
CONNECT Dials<6>:< 1 >Trany;
CONNECT Dials<7>:< 1 >Tranz;

CONNECT Tranx< 1 >:< 1 >Tran_Total;
CONNECT Trany < 1 >: < 1 > Tran_Total;
CONNECT. Tranz< 1 >:< 1 >Tran_Total;
CONNECT Tran_Total < 1 >: < 1 > Robot.Tran;

FUNCTION NETWORKS I - 27

Prime the functions by sending initial values to any constant inputs.

SEND V(0,0,0) TO < 2 > Tran_Total;
SEND 1 TO <4>Tran_Total; {Note that 1 is the default for input <4>}

To construct a network for scaling, first use the Command Summary to
determine what values the model's scale node uses--3x3 matrices---and what its
associated functions are. You will find the same functions that are list~,d under
the ROTATE command, but the applicable ones here are F:SCAL.E and
F:DSCALE. To use F:SCALE, you need a separate magnifying function and a
separate accumulator.

F:DSCALE is R~ore of a "3-in-1" function like F:ACCUMULATE and the
DROTATE functions. It combines amatrix--producing function, an accumulator,
and a magnifier all in one. Sin~~e you only have one scaling factor, F:DSCALE
will be safe to use here (you do not have to worry about separate X, Y, and Z
scaling factors).

The values from the dial cor~~e in on input < 1 >. Input < 3 > is the magnifying
factor for dial values. Rather than using 100, as you did in the rotation network,
use 0.1. This smaller value is used because robot is initially scaled by .075. (See
Figure 21.)

Scale

DIALS

<4>
.0~5
0.1

0.~ 1

.O1

F : DSCALE

<1>

<2>c
<3>~

<4>0

<5>C

<1>

Robot.Scale

IAS05~6

Figure 21. Network for Uniform Scaling

F:DSCALE requires an accumulator reset value for input <2>. This should
correspond to the initial value the object is scaled to. In most cases, that is 1,
but remember the robot is already scaled to .075 so he will be small enough to
appear on the screen. Be sure to send this initial scale value (.075) to input <2>.

28 —FUNCTION NETWORKS I

F:DSCALE, like F:ACCUMULATE in the translation network, also lets you set
upper and lower limits so the object being scaled does not become too large or
small. If you sent 0.1 to input <4> and .Ol to input <5>, for example, the robot
would never become more than twice or less than one—fifth his initial size (.075)
on the screen. If you do not send limits to these two inputs, no limit is set.

Exercise

Tracing two or three of the fractional values from the dial shows that F:DSCAL~
accumulates scaling values as you expect. Now, use the nar7~es shown in Figure
21 to instance, connect, and prime the functions.

To create the scale network, first instance the function:

Scale := F:DSCALE;

Then connect the function to the dial and the interactive scale node in the robot
display tree:

CONNECT Dials<4>:< 1 >Scale;
CONNECT Scale < 1 >: < 1 > Robot.Scale;

Finally, prime the function by sending initial values to the constant inputs.

SEND .075 TO < 2 > Scale;
SEND 0.1 TO < 3 > Scale;
SEND 0.1 TO <4>Scale;
SEND .01 TO < 5 > Scale;

FUNCTION NETWORKS I — 29

A CLOCK FUNCTION AS AN ALTERNATE SOURCE OF INPUT FOR THE NETWORK

It is not always necessary to use dials, function keys, or data tablets to provide
input for a function network. You may want some action to happen
automatically or to cycle through and repeat. This section discusses how to use
a clock function to do that for Y rotations. When the network is connected to
the robot, it will automatically rotate.

Whenever you SEND an integer to a function, use FIX number). FIX indicates
the value is an integer and not a real number. If you do not use FIX, the function
will still operate, but it requires more computation time.

Use F:CLFRAMES, shown in Figure 22.

F : CLFRAh9ES

Integer
(Timed Interval

<1>C

Integer ~<2>C
(Duration)

Boolean
(Gate)

Integer
(A)

Integer
~B)

Boolean
(True = run
False = wait

<3>C

<4>C

<5>C

<6>C

<1>

<2>

<3>

Integer
(A+B, if Input <3>
is True)

Integer
~A+B)

Boolean
(True if Number of
Clock Intervals
Specified on Input
< 2> is not exceeded
then False)

tAS05~7

Figure 22. F:CLFRAMES

30 —FUNCTION NETWORKS I

The "C L" in the name indicates it is a clock function; "FRAMES" means that its
"ticking" depends on the rate at which refres_k~ frames are displayed. The
standard refresh rate for the PS 300 is about 60 frames each second. The refresh
rate can vary, however, so it is not linked to time. So F:CLFRAMES sends out a
value only when so many frames have been displayed, independent of time. The
integer you place on input < 1 > specifies how many frames you want to elapse
before F:CLFRAMES "ticks".

In all, there are six inputs and three outputs for this function. These allow you
to use F:CLFRAMES as more than just a simple counter, which is all it will be
used for in this example.

Input < 1 > is the interval measured in frames. It requires an integer, so send it a
fix(2). This will result in about 30 degrees rotation per second.

Input <2> affects output <3> but has no effect on what you are doing right now.
It requires an integer, so send it a fix(1).

Input < 3 > shuts down or opens output < 1 >. Since you will not use output < 1 >
here, send a F ALSE to input < 3 > .

Inputs <4> and <5> are constant, and contain integer values whose sum is
generated when F:CLFRAMES ticks. You can accumulate the sum by connecting
output < 2 > back around to input < 5 > and then sending f ix(1) to input < 4> and 0 to
input <5>. However, since F:C~FRAMES is to be used in a network that is
already set up to accumulate values from the dials (ACCUM), values should not
be accumulated in F:CLFRAMES. F:CLFRAMES output <2> is connected to the
rotation network you already have, as shown in Figure 23.

FUNCTION NETWORKS I — 31

F:CLFRAMES
Send Fix ~2) <1>C <1>
Send Fix (1) ~ 2~~ ~2~
Send False <3>C <3>
Send Fix (1),~4>C
Send Fix (0)

(Send True)

DIALS

<2.

<5>C

<6>C

Not Used

Plot Used

F:MUI.0

200

F:YROT

Figure 23. F:C L F R A M ES as Input Source for Y Rotation

i AS05fi9

The diagrar~~ shows initial values for inputs <Z> and <3> of F:CLF~RAMES.
Though they are not used here, they must be supplied for F:CLFRAMES to
function. In the same way that F:ADD will not fire until it has two inputs,

F:CLFRAMES requires that some value must be placed on all its inputs in order

to run. The diagram reminds you of all the values you need to send to prime the
network.

Input <6> provides a switch to operate the clock. It requires a Boolean value

value, TRUE to run the clock or FALSE to stop it.

Exercise

Instance F:CLFRAMES as "Timer" and connect the function into the network as

shown in Figure 23. Be sure to send initial values to all of the first five inputs.

Last, send a TRUE to input <6> to make the model begin spinning. Here is a list

of the commands needed to implement the network shown in Figure 23.

32 —FUNCTION NETWORKS I

Timer := F:CLFRAMES;

CONNECT Timer< 2>: < 1 > Roty;

SEND FIX(2) TO < 1 > Roty;
SEND FIX(1) TO < 2>Timer;
SEND FALSE TO < 3 >Timer;
SEND FIX(1) TO <4>Timer;
SEND FIX(0) TO < 5 > Timer;
SEND TRUE TO <6>Timer;

To stop the robot from twirling, send a FALSE to input <6>.

Remember that the dials are still connected to the robot. You now have TWO
sources of input for a function (Roty receives from DIALS through the instance
of F:MULC and from the CLOCK function). To be sure the two sources of input
do not compete, you can shut F:CLFRAMES off when you use the dials by
sending FALSE to input <6>.

You can also "unplug" it entirely by using the DISCONNECT command. Use this
command exactly as you do CONNECT:

DISCONNECT Timer<2>:< 1 >Roty;

Of course, to ensure that the dial does not interfere with the clock, you could
break the connections between the dial and the instance of F:MULC that leads to
Rot

y

When you do turn the clock off by sending FALSE to input <6 >, it would be
convenient to do so by simply pushing a button instead of typing in SEND
commands repetitively.

Since function networks are so flexible, there are dozens of ways to accomplish
something, as you have already seen with the two or three ways to control
rotations in a model. Designing a switch is just as open—ended. You could
arrange to have F:CLFRAMES start firing when you push function key 1 and stop
when you push function key 2, for instance. Or it could start if you sent it any
value larger than five, and stop if it received a value less than five. The network
shown in Figure 24, however, toggles. If you press any function key, it turns
F:CLFRAMES on; if you press it again, F:CLFRAMES turns off.

FUNCTION NETWORKS I — 33

FKEYS I F : COP~STAP~T

True
<1> <1>

<2>~
False

F:XQRC

<1> <1~-

2>C

Figure 24. A Network That Toggles

< 6 > C~FRAMES

IAS0545

In this network, F:CONSTANT can hold any value--a nur~~ber, a matrix, a
Boolean value value ---on its constant input <2> and will send out that value when
any value arrives on input < 1 >.

Place a TRUE on input < 2 > and connect the output of F:CONSTANT to another
function, F:XORC. This function performs a logical operation, exclusive
OR—ing. It compares the Boolean value it receives on input < 1 > to the Boolean
value on its constant input ~ 2> and produces a TRUE if they are different and a
FALSE if they are the saR~e. F:XORC's output is then sent back to its own
constant input and also on to the place you need to toggle (input <6> of
F:CLF RAMES).

Trace a couple of values from the function keys function FKEYS through this
network to confirm that you get alternating TRUE and FALSE values as output.

To emphasize that there are many ways to do something with function networks,
Figure 25 shows a more efficient network for a switch.

FKEYS

< 1>~

Toggl e

F.T

F:SYNC(2)

<~> <1>

<2> <2>

Unconnected

i AS0544

To< b > F : CEFRAMES

Figure 25. A More Efficient Toggle Switch

34 —FUNCTION NETWORKS I

Here the network is composed of only one function. The stackable nature of
active inputs is used to queue a FALSE and a TRUE. Then F:SYNC's output is
connected back to its own input 2 so the two Boolean values can alternate as
output values.

FUNCTION NETWORKS I — 35

SUMMARY

If you added to your function network throughout this module, the final network
diagram should look Iike the one in Figure 26.

FKEYS

i

DIAL
<1>

<2>

<3>

<4>

<5>

<6>

<7>

<$ >

(Clock Network)

(XRotsNetwork)

(YRotsNetwork)

(ZRotsNetwork)

(DScale Network)

 (XTran Network)

(YTran Network)

(ZTran Network)

CMUL

ACCUMULATE

Figure 2fi. The Completed Network

Robot.Rot

Q Robot.Scale

O Robot.Tran

IAS0549

When the diagram contains all function instance names and initial values to be
sent, it looks complicated, but its operations are fairly simple, It controls
interactions for only three display tree nodes.

R eview of Major Points

To build a function network, you must find candidate functions or function
networks (represented as a black box) which convert input device values into
values that can update interaction nodes in a display tree. To do this:

• Identify the type of output needed by interaction nodes

36 —FUNCTION NETWORKS I

• Identify sources of input and what type of values they generate

• Use the Command Summart~ to find related functions for interaction nodes

• Use the Function Summart~ to evaluate candidate functions or networks and
modify network as needed with additional functions

• Implement the network using good programming practices:

Always diagram the network first
Instance functions first
Make connections from left to right in the diagram
SEND any initial values to prime the network.

Once the basic network is built, you can expand it. In this module's network, you
added:

• Rotations in other dimensions. Some way of accumulating rotations is usually
needed.

• Other kinds of interaction--scaling and translating.

• An alternate source of input for the network--a CLOCK function. This can
be toggled on and of f with a switch network connected to a function key.

Important Fdots About PS 300 Functions

• When a complete set of input values arrives, the function executes and sends
out values on its outputs.

• Functions can have constant or active inputs.

A value on an active input disappears or is consumed when the function fires.
If values arrive on an active input faster than they are consumed, they will
queue in the order they arrive.

FUNCTION NETWORKS I — 37

Constant inputs hold only one value at atime--there is no queuing. A value
on a constant queue is not consumed when the function fires. It will remain
until it is overwritten by another value.

• Functions perform arithmetic, logical, routing, or data conversion operations.

• In a function network, values flow from left (upstream) to right (downstream).

• Functions that are directly associated with an input device, such as DIALS
and FKEYS, do not need to be instanced. These are examples of initial
function instances; they are instanced by the system.

P5 300 Commands Discussed in This Module

• Immediate action commands: CONf`JECT, DISCONNECT, SEND.

• Function —instancing commands: name := F:function name.

VIEWING OPERATIO\S

LOOKING AT THE MODEL

CONTENTS

INTRODUCTION 1

OBJECTIVES 2

PREREQUISITES 2

DEFINING A LINE OF SIGHT 3

Looking Straight Up or Straight Down 7
Exercise 10
Using a 4x4 Matrix to Specify a Line of Sight 10

DEFINING AN ORTHOGRAPHIC WINDOW 1 1

Altering the Size of a Window 13
Exercise 14
Moving the Window 15
Exercise 17
Specifying Window Depth: Depth Clipping 19
Optimizing Depth Cueing 20
Using a 4x4 Matrix to Specify an Orthographic Window 22

VIEWING

DEFINING PERSPECTIVE WINDOWS 23

Using FIELD_OF_VIE W 25
Exercise 27
Exercise 2g
Using the EYE Command 29
Exercise 33
Exercise 34
Using a 4x4 Matrix to Specify a Perspective Window 37
Exercises 39

SPECIFYING A VIEWPORT 38

Displaying Multiple Viewports 42
Exercise 42
Using Non —Square Viewports 43
Exercise 44
Exercise 45
Setting an Intensity Range for a Window in the Viewport 46

VIEWING ATTRIBUTES 4g

Setting Intensity 48
Setting Displays ON and OFF 50
Exercise 51
Setting Color 51
Exercise 53

VIEWING SUMMARY 54

VIEWING

ILLUSTRATIONS

Figure 1. LOOK Node 1
Figure 2. Default LOOK 4
Figure 3. Car 5
Figure 4, Car From Left Side 6
Figure 5. LOOK Transformation Sequence 7
Figure 6. Line of Sight Colinear with UP Direction 8
Figure 7. LOOKing Down 9 .
Figure 8. WINDOW Node 11
Figure 9. Default WINDOW 12
Figure 10. Clipped View of Car 13
Figure 1 1. Another View of Car 14
Figure 12. Display Tree for Large Window 15
Figure 13. Relocated Window 16
Figure 14. Interrelation of LOOK and WINDOW Transformations 18
Figure 15. Set Depth Clipping Display Tree 19
Figure 16. Intensity as a Function of Z Location 21
Figure 17. Orthographic Window Compared to Perspective Window 23
Figure 18. Angles Between Opposing Sides of the Pyramid 24
Figure 19. Display Tree with Field-Of -View Node 25
Figure 20. Setting Z Boundaries for Maximum Depth Cueing 26
Figure 21. Using FIELD_OF_UIEW with LOOK 27
Figure 22. Setting Front and Back Boundaries 28
Figure 23. Relative Room Coordinates 30
Figure 24. Line of Sight for LOOK and EYE 31
Figure 25. Specifying the Viewing Angle 32
Figure 26. Moving Eyepoint Back and Left 32
Figure 27. Boundaries Using the EYE Command 33
Figure 28. EYE View of Cars 35
Figure 29. EYE View of Cart 36
Figure 30. Current Viewport Dimensions 38
Figure 31. Port2 -Upper Right Quadrant 40
Figure 32. Display Tree for Port2 40
Figure 33. Port 3 and Associated Display Tree 41
Figure 34. Dimensions of allon-Square Current Viewport 43
Figure 35. Square Window Mapped to Non-Square Viewport 45
Figure 36. Non-Square Window Mapped to Non-Square Viewport 46
Figure 37. Color Wheel 52

VIEWING — 1

Once you have created a model and displayed it on the screen, you may want to look at
it from different viewpoints. One way to do this is to manipulate the model into
different positions. You have already learned how to do this using modeling
transformations--rotations and translations. Another vyay to change your view is to
keep the model in place and essentially move yourself as "viewer" about the model.
This is done on the PS 300 using viewing transformations.

There are two basic types of viewing transformations. The first type establishes the
viewer's position in the world coordinate system and the direction in which he is
looking. This is known as specifying a Zine of sight. The second type of viewing
transformation lets you specify how much of the world coordinate system will appear in
your view. This is done by defining the boundaries .of a viewing area or window.
Objects within a window may appear in either parallel projection (an orthographic
view) or in perspective projection.

Parallel projection creates a view in which the relative size of an object, or parts of an
object, is maintained as specified in the original object definition, no matter where the
object is located in Z. Perspective projection causes a distant object or parts of an
object to diminish in size as they recede into the distance toward positive Z.

In both parallel and perspective views, clipping is used to eliminate objects or parts
of objects that lie outside the boundaries of the window. In both, the illusion of depth
can be enhanced using depth cueing. Depth cueing makes objects or parts of objects
dimmer as they recede into the distance.

In addition to the two types of viewing transformations, you can specify a viewport.
A viewport is a portion of the PS 300 Display in which the window is displayed.
Viewports can be full—screen or a smaller portion of the screen. The PS 300 lets you
display multiple viewports simultaneously, so it is possible to have different views of
the same model or view different models simultaneously.

The last set of viewing operations you can specify is called viewing attributes.
These allow you to set an intensity range for displayed data, set any display on and off
interactively, and set color for displayed objects (for viewing on a calligraphic color
display).

When you turn on the PS 300, you are automatically provided with a default line of sight
(down the positive Z axis from the origin), a window (orthographic, with dimensions
from —1 to 1 in X and Y; from 10 -' S to 10' S in Z), and a viewport (which is full
screen).

All of the PS 300 viewing operations--viewing transformations, viewports, and viewing
attributes--are represented in a model's display tree structure by operation nodes.

2 -VIEWING

Windowing transformations are 4x4 matrix operations that override the current
transformation matrix. Because of this, a windowing transformation should be the
topmost operation in a display tree branch. If it is not, any operations above it in the
branch will have no effect.

OBJECTIVES

.j

In this module you will learn how to create various views of the world coordinate .
system. To do this, you should know how to:

■ Define a line of sight.

■ Define orthographic windows.

■ Define perspective windows.

■ Specif y a viewport.

■ Set an intensity range.

■ Set displays on and off.

■ Set color.

PREREQUISITES

Before reading this module, you need to know basic graphics concepts, how data
structuring is done in the PS 300, and how modeling transformations work on
data. (Refer to the "Graphics Principles," "Modeling," and "PS 300 Command
Language" modules.)

This module makes use of tutorial demonstrations. (Refer to "Tutorial
Demonstration Package.")

To ~do the exercises in this module, put the PS 300 in command mode
(<Control> LINE LOCAL).

VIEWING — 3

DEFINING A LINE OF SIGHT

There are two types of viewing transformations that alter the way in which a
model is viewed. The first kind of transformation defines a line of sight.

In the real world, you establish a line of sight by placing yourself in a particular
position relative to the object you are viewing. The line of sight is the invisible
straight line between the point you are looking from and the point you are
looking at. Changing either one of these points gives you a different line of sight.

The PS 3Q0 simulates this relative positioning with the LOOK command. The
LOOK command lets you see your model from any point in the world coordinate
system.

The LOOK command creates a 4x3 matrix operation node in the model's display
tree. For a LOOK transformation to work correctly, it should be placed above
all modeling transformations (ROTATE, TRANSLATE, SCALE) in the tree
(Figure 1).

Modeling
Transformations

Y
Data

I ASO419

Figure 1. LOOK Node

4 —VIEWING

Note that the operate node created by LOOK can be an interactive node, with
values for the AT and FROM points being changed via a function network
(F:LOOKAT and F:LOOKFROM).

The default line of sight starts at the origin and points along the positive Z axis.
The viewer looks FROM 0,0,0, AT 0,0,1 (Figure 2).

Y

Line of
Sight

AT (0,0,1)
X

FROM (0,0,0)

IASO420

Figure 2. Default LOOK

Display the Car. Notice that the orientation of the car (default line of sight) is
as shown in Figure 3.

Enter:

LalLaIDISPLAY Car;

VIEWING — 5

Figure 3. Car

To see the other side of the car, specify a LOOK (Left View) with the FROM
point on the positive Z axis (0,0,.1) looking AT the origin (0,0,0). Apply that line
of sight to Car. Then DISPLAY Left_View.

Enter:

~ Left View := LOOK FROM 0,0,.1 AT 0,0,0 APPLIED TO Car;

~~REMOVE Car;

~ DISPLAY Left_View;

You should now see the car from the left side as shown in Figure 4.

6 —VIEWING

IASO422

Figure 4. Car From Left Side

To create Left_View, the PS 300 first translates all points in the world
coordinate system to put the FROM point (0,0,.1) at the origin. Then all points
in the world coordinate system are rotated around the FROM point (the origin)
until the AT point is on the positive Z axis. This orients the car correctly for the
LOOK specified in Left_View, as shown in Figure 5. (Note that the translation
shown in Figure 5 is exaggerated for clarity.)

VIEWING - 7

Original Worl d
Coordinate
System

World Coordinate
System Translated

0,0,-.1

World Coordinate
System aotated to
Place AT on +Z Axis

~ ASQ423

Figure 5. LOOK Transformation Sequence

Looking Straight U p or Straight Down

For any LOOK, an UP direction is specified by the system if you do not specify
one yourself. The default UP direction is derived by taking the vector that
defines the AT point (X,Y,Z) and adding 1 to the Y component. The resulting
vector is placed in the positive half of the Y/Z plane, thereby defining UP. The
rotation for UP occurs after the translation that puts the FROM point on the
origin (0,0,0) and the rotations that put the AT point on the positive Z axis.

For example, if the FROM point in a LOOK is 0,1,0 and the AT point is 1, 1, 1, the
default UP point defining the Y/Z plane would be 1,2,1.

8 —VIEWING

If the FROM point of a LOOK is directly above or below the AT point, the
system has to define an alternate UP direction. What would normally be the UP
direction is now colinear with the line of sight (Figure 6).

Y
FRO

0,3,0 •

Line of Sight Parallel to,

M or colinear with, Y Axis
Z

Default
Up

0,0,0

IASO424

Figure 6. Line of Sight colinear With UP Direction

In such cases the system takes the vector that is the AT point, adds one to its Z
component, and rotates the world to place that point in the positive half of the
Y/Z plane. To demonstrate this, enter:

~ ~ REMOVE Left_View;

~ ~Top_View := LOOK FROM 0,.1,0 AT 0,0,0 APPLIED TO Car;

~ ~ DISPLAY Top_V ie w;

The direction that is positive Z in the original model of Car is now up in
Top_View (Figure 7). That direction was derived by adding 1 to the Z component
of the AT vector in Top_View, and using that point (0,0,1) to define UP as shown
in Figure 7. (Note that in Figure 7 the distance from the FROM point to the AT
point is exaggerated for clarity.)

UIEWIRIG - 9

Look FROM
0,.1,0

Look AT
o,o,o

to •~ ~ S s~ vv d by
t'~re

Look FROM
(0, ~ ,0)

Look AT

Figure 7. LOOKing Down

90°
in
X

IASOkS~

UP can be specified in a LOOK cemmand even if the line of sight does not define
a straight-up or straight-down view.

Redefine Top_Uiew to change the UP direction to what is positive X in the
original model of Car by entering:

~ ~Top_Uiew := LOOK FROM 0,.1,0 AT 0,0,0 UP 1,0,0
APPLIED TO Car;

The view is reoriented to place the up point (1,0,0) in the positive half of the Y/Z
plane (up) in Top_Uiew.

~a ~a REMOVE Top_View;

10 -VIEWING

Exercise

Refer to "Tutorial Demonstration Package" and run the LOOK demonstration
program.

Using d 4x4 Matrix to Specify a Line of Sight

You can build your own 4x3 matrix in lieu of the one created by the LOOK
command by using the MATRIX_4x3 command:

Name := MATRIX 4X3
mll,m12,m13
m21,m22,m23
m31,m32,m33
m41,m42,m43 APPLIED TO Another_Name;

VIEWING — 11

DEFINING AN ORTHOGRAPHIC WINDOW

The second type of viewing transformation defines a viewing area--a portion of
the world coordinate system that is displayed on the screen. This section
introduces the first of three possible ways to define a viewing area, using the
WINDOW command.

The WINDOW command allows you to specif y a three dimensional viewing area
(right rectangular prism) parallel to the line of sight, with its front face in the
X/Y plane. Once a window transformation is applied, everything in the world
coordinate syster~~ is translated so that the central axis of the window coincides
with the positive Z axis (the line of sight).

Objects inside a window appear in orthographic or parallel projection. That is,
far objects (relative to the front window plane) do not appear to be smaller than
near objects, so the location of an object in Z has no effect on its size on the
screen. Perspective does not exist. Farther away parts of objects will appear to
be dimmer in the default view. This is called depth cueing.

The WINDOW transformation is a 4x4 matrix operation represented by an
operation node in the model's display tree. In the PS 300, a 4x4 matrix overrides
all transformations in effect when the matrix is encountered A 4x4 matrix must
be the topmost matrix operation node along any branch in a display tree. Figure
8 illustrates this rule.

Window

Ai 1 Other Transformations

Data

IASO452

Figure 8. WINDOW Node

12 -VIEWING

Just as there is a default LOOK imposed by the PS 300, there is also a default
window. - The default window is an orthographic window that extends from -1 to
1 in the X and Y dimensions, and from 10 - ' S to 10' s in Z. Any object that
lies within this viewing area (Figure 9) will appear on the screen. Objects
outside the window in Z will be displayed unless depth clipping is enabled. Refer
to Specifying Window Depth: Depth Clipping, a following section in this module.

Figure 9. Default W I N D O W

To see an object, it must be located within the X and Y boundaries of the
viewing window. Any object outside these boundaries is removed from view via
clipping.

If a part of a model is not entirely within the X and Y boundaries of a window,
only a portion of the model appears. For example, the following line of sight
effectively moves the object so that part of the Car falls outside the viewing
area:

~ ~ Another_Uiew := LOOK AT 1,0,0 FROM 1,0,-. l
APPLIED TO Car;

The part of the Car that appears on the screen is inside the boundaries of the
default window. The part of the Car that is clipped falls outside the default
window boundaries in X (Figure 10).

VIEWING - 13

X and Y Window Boundaries

IASO454

Figure 1 Q. Clipped View of Car

Exercise

Define Another_View of Car as shown in the previous example and display
Another View to see the effect.

Altering the Size of a Window

The X, Y, and Z boundaries of the default window may be changed to affect
window size. Boundaries may be changed using the WINDOW command.

The size of the window influences the apparent size of objects being viewed. If
the window is enlarged, objects will appear smaller; if the window size is
reduced, objects will appear larger. Altering window size may cause an object to
appear so large that it is completely or partially clipped from view.

For example, the default window for Another_View clips off part of Car. You
can redefine a window for Another View that does not clip any part of the car.

14 -VIEWING

Exercise

Enlarge the window and apply the new window specification to the LOOK called

Another View (Figure 1 1).

Enter:

~a ~a Large window := WINDOW X=-2:2 Y=-2:2
APPLIED TO Another_View;

Lal ~a DISPLAY Large_Window;

~a ~a REMOVE Another_View;

fAS0455

Figure 1 1. Car in Large Window

All of the car appears in Large_Window. The car appears smaller than it did in

Another View because Large_Window encompasses more area than the default

window used in Another Uiew.

~a ~a REMOVE Large_Window;

The display tree created by the above sequence of commands is shown in Figure

12.

VIEWING — 15

Large Window

Another View

Moving the Window

Window Command

Look At Command

Sportscar (Vector List Command)

iAso~~~b

Figure 12. Display Tree far barge Window

Another way to define a window for Another_View that does not clip any part of

the car is to move the window to encompass Car. Moving a window causes the

line of sight to be shifted to a new, parallel line of sight.

1 b -VIEWING

-3,3

Initial
Line of

-3 , -3

..

Sight

0,0

Y Axi s

3,3

Initial Window
Location

i

3 -3

9,-5

New
Line of
Sight

1
9,-11

Figure 13. Relocated Window

X15 - 5

New ~ W i ndow
Location

15,-11

X Axi s

IASO457

If an orthographic window is defined as in the above diagram so that its center is
not coincident with the Z axis, the PS 300 translates everything in the world
coordinate system to center the window about the Z axis. You do not need to
use a LOOK to move the line of sight to the Z axis.

VIEWING — 17

Exercise

Define a "moved" window the same size as the default window (2 units in x by 2
units in y), but place it so that the car in Another_View will be in it:

~a ~a DISPLAY Another_View;

~a ~a Move Window := WINDOW X=-2:0 Y=-1:1
APPLIED TO Another_View;

~a ~a DISPLAY Move_Window;

~a ~a REMOVE Another_View;

Move Window clips no part of the car.

~a ~a REMOVE Move_Window;

Figure 14 shows the sequence of transformations that makes Move Window
encompass the car.

18 —VIEWING

FROM AT
Specification
of Another View

+~

Sportscar C1 ipped
in Default Window

Move Window
A Window Defined
Around Sportscar
(no clipping)

~ A~OM~

Figure 14. Interrelation of LOOK and W I N Q O W Transformations

VIEWING — 19

Specifying Window Depth: Depth Clipping

So far you have redefined the X and Y dimensions of windows. The Z dimension
of all the windows specified up to now has defaulted to 10 -' S for the front
boundary and 10' S for the back boundary.

In this section, you will specify not only the X and Y boundaries of an
orthographic window but the Z boundaries as well. The Z boundaries are
specified as part of the WINDOW command.

The PS 300 automatically clips the top, bottom, right side, and left side of the
window at the X and Y boundaries. However, clipping at the Z boundaries,
known as depth clipping, does not automatically happen when you define Z
boundaries for a displayed window. Portions of a-n object that fall in front of or
in back of the Z boundaries are not clipped until depth clipping is enabled. Depth
clipping is enabled by using the SET DEPTH CLIPPING command.

In an orthographic window, depth clipping can occur anywhere in positive and
negative Z.

The SET DEPTH CLIPPING command is an operation node in the display tree.
The node can be placed above the 4x4 WINDOW matrix because depth clipping
operations are not matrix transformations (they are not overridden by a 4x4
matrix).

Depth C1 ipping Node

Window Node

All Other Transformations

Data Node
IASO459

Figure 15. Set Depth Clipping Display Tree

20 -VIEWING

Exercise 1

Include Z boundaries in an orthographic window by entering:

Ca1CalChange_Z:= WINDOW X=-l:l Y=-1:1 FRONT=3 BACK=S
APPLIED TO Car;

~a ~a DISPLAY Change_Z;

The X and Y dimensions of Change_Z are the same as in the default window, but
the Z dimensions define front and back boundaries at 3 and 5. Since the car
extends from about -1 to about 1 in Z, none of it falls within the Z boundaries of
Change_Z. However, you still see the car because depth clipping (set to OFF in
default mode) is not in effect.

Exercise 2

To see only what is in the window, in this case from 3 to 5 in Z, enable depth
clipping by entering:

~a ~a REMOVE Change_Z;

Cal Ca1Z_Clip := SET DEPTH_CLIPPING ON APPLIED TO Change_Z;

CalCa1DISPLAY Z_Clip;

Now nothing appears on the screen because the car is outside the the Z
dimensions of the window. The entire car has been clipped from view.

Qa Qa REMOVE Z_Clip;

Optimizing Depth Cueing

One of the ways the PS 300 gives the illusion of depth to an object is to vary the
intensity between parts of the object that are near and those that are farther
away. Near portions are brighter; portions farther away are gradually dimmed.
This is called depth cueing.

VIEWING — 21

The brightest intensity occurs at the front Z boundary and the dimmest intensity
occurs at the back Z boundary. So maximum contrast in depth cueing is achieved
when the Z boundaries are set close to the object in the window.

If depth clipping is not in effect, portions of objects extending past the front
boundary are displayed at the maximum intensity, with no variation in
brightness. Portions of objects extending beyond the back boun{nary are
displayed at the minimum intensity, with no variation in brightness. See Figure
16.

Front Boundary and
Preceding -Maximum
Intensity

Exercise 1

Z

/Back Boundary and
/ Beyond -Minimum

Intensity

i
~~► X

~--Brightness Inverse
Relationship to Z Val ue

Figure 1 fi. Intensity ds d Function of Z Location

IASO460

Change the Z boundaries of the default WINDOW to see a change in depth cueing
for the Car. First display the sportscar in the default WINDOW, with Z
boundaries at 10- ' S and 10' S. To make this easier to see, first rotate the
car.

~a ~a Rot_Car:= ROTATE IN Y 1 10 APPLIED TO Car;

~a Ca1DISPLAY Rot_Car;

22 -VIEWING

Depth cueing is apparent enough to make it difficult to see the back of the car.
Now close in the Z boundaries around the car and display the new window.

(al ~a Close := WINDOW X=-1:1 Y=-I:1 FRONT=-.5 BACK=S
APPLIED TO Rot_Car;

Cal ~ DISPLAY Close;

In Z_Close, the front Z boundary is placed in negative Z (a placement that is
legal only for orthographic windows).

~ ~ REMOVE Close;

Exercise 2

Refer to "Tutorial Demonstration Package" and run the WINDOW demonstration
program.

Using a 4x4 MatriX to Specify an Orthographic Window

You can build your own 4x4 matrix in lieu of the one created by the WINDOW
command by using the following MATRIX_4x4 command below. (The operation
node this creates should be placed above all other matrix operations in a display
tree branch, because a current matrix is overridden whenever a 4x4 matrix is
encountered.)

Name := MATRIX 4X4
ml l,ml2,ml3,ml4
m 1 l ,m 12,m 13,m 14
ml l,ml2,ml3,ml4
mll,ml2,ml3,ml4

APPLIED TO Another_Name;

(For more details, refer to the Command Summary in Volume 3A.)

1lIEWING — 23

DEFINING PERSPECTIVE WINDOWS

The orthographic window is one of three possible ways to define a viewing area.
With the orthographic window, the illusion of depth is created only by depth
cueing.

The two other ways to define a viewing area employ perspective as well as
depth cueing. In a perspective view, lines that go back from your eye point
appear to be converging. So objects viewed in a perspective window appear
smaller as they recede into the distance, further enhancing the illusion of depth
and realism. The PS 300 defines perspective windows two ways: using the
FIELD_OF_VIEW command and using the EYE command.

Perspective windows are not box -shaped like orthographic windows. They are
shaped like a pyramid, with your eye at the apex, extending into world
coordinate space. The section of the pyramid in which objects are visible, called
a frustum, is defined using front and back boundaries.

Figure 17 shows how a perspective window differs from an orthographic window:

Orthographic
Window
Viewing Area

Perspective
Viewing Area

iAso46i

Figure 11. Orthographic Window Compared to Perspective Window

24 -VIEWING

In a perspective window, the X,Y size of the front and back boundaries is not
specified directly. Boundary size is determined by two factors.

The first factor is the size of the viewing angle--the angle between opposing
sides of the viewing pyramid. As the viewing angle widens, the frustum of view
encompasses more and more of the world coordinate system. So the wider the
angle, the smaller an object appears relative to the viewing area. Also, since the
angle opens equally in height and in width, the aspect ratio of perspective
windows is always 1, height equal to width.

The second factor determining the size of a perspective window is the distance
from the apex of the viewing pyramid (located at 0,0,0) to the front and back
boundaries of the frustum and the distance between the front and back
boundaries. See Figure 18.

figure 18. Angles Between Opposing Sides of the Pyramid

Unlike in an orthographic window, the front boundary of a perspective window
cannot be placed behind your eyepoint (behind the LOOK FROM location). In
perspective views, the front boundary cannot be at a location behind 10 -' S in
Z.

VIEWING — 25

Using FIELD_oF_VIEW

The easiest way to define a perspective viewing area is using the
FIELD_OF_VIEw command. Afield of view is specified in terms of the viewing
angle and the distance of the front and back boundaries from the eyepoint. This
command imposes a perspective view on objects within the frustum of vision (the
perspective window) it creates.

A field of view is like an orthographic window in that depth clipping does not
occur in a field of view unless you set depth clipping on. And also, the intensity
for depth cueing in a field of view is brightest at ,the front boundary and dimmest
at the back boundary.

Lastly, like the orthographic window transformation, the field of view
transformation is performed by a 4x4 matrix, This matrix is represented by an
operation node, which must be above all other matrix transformation nodes in a
display tree (see Figure 19).

Field of View

Look

All Other Transformations

Data
IASQ~63

Figure 19. Display Tree With FIELD-OF -VIEW Node

For maximum depth cueing effects in a field of view, you must set the front and
back boundaries close to the object. To do this, determine the distance from the
eyepoint to the object being viewed and also how large the object is. If you
place the AT point in the center of a large object and then position the front and
back boundaries too close to it, parts of that object may be clipped from view.

26 -VIEWING

If no LOOK transformation has been applied to the view, the distance to the
object is its location along the positive Zaxis--the default line of sight. If you
have defined a line of sight with a LOOK transformation, you must calculate the
distance between the AT and FROM points so you will know where to place the
front and back boundaries. To calculate this distance, find the differences
between the X, Y, and Z values of the FROM point and the AT point, square
those differences, add them, and find the square root of that sum.

For example, if you are looking from (-2,2,0) at a one-unit radius sphere
centered at (3,-2,-1), the FROM/AT distance is the square root of: 5 squared,
plus 4 squared, plus 1 squared, or 6.48, For maximum depth cueing, place the
near boundary (zmin) at 5.48 and the zmax boundary at 7.48 (see Figure 20).

FROh1
~-2,2,0)

IASO464

The result o f the LOOK command i s , o f course ,
to place FROM at 0 ,0 ,0 and AT on the positive
Z axis ; thus , the z max, z mi n designations .

Figure 20. Setting Z Boundaries for Maximum Depth Cueing

VIEWING — 27

The result of the LOOK command is, of course, to place FROM at 0,0,0 and AT
on the positive Z axis; thus, the Zmax, Zmin designations.

Exercise 1

Position the sportscar in a perspective window by specifying a FIELD_OF_VIEW
and position the car within the frustum of vision using a LOOK command.

~a ~a Perspective := FIELD_OF_VIEW 28 APPLIED TO Look;

~ Look := LOOK AT 0,0,0 FROM 0,0,-5
APPLIED TO Car;

~a ~a DISPLAY Perspective;

No front or back (Z) boundaries are specified. Because their default value is
10- ' S and 10' S, the car appears to be dim.

The 28 in the command is the number of degrees in the angle between opposing
sides of the viewing pyramid. Twenty—eight degrees is approximately the actual
viewing angle from your eye to the edges of the PS 300 screen at a comfortable
viewing distance.

The LOOK (named Look) has the effect of translating the car forward 5 degrees
in Z and placing the FROM point at the same location as the apex of the viewing
pyramid (0,0,0). The Z axis runs down the center of the pyramid (Figure 21).

Look
FROM
0,0,0

Front Boundary 10-15 z

15
Back Boundary 10 Z

IASO465

Figure 21. Using F I E L D~0 F_V I E W With LOO K

28 —VIEWING

Exercise 2

Change Perspective to specify different front and back boundaries by entering:

~a ~a Perspective := FIELD OF VIEW 28
FRONT = 4.5
BACK = 7
APPLIED TO Look;

Since the LOOK (named Look) moves the car forward so that it is centered
around 5 in Z, placing the front and back boundaries at 4.5 and 7 in Perspective
closes the boundaries around Car, maximizing depth cueing. The part of the car
nearest to the front boundary appears brighter. Figure 22 shows the car in the
frustum of view just created.

Viewing Area
(Frustum of

Vision),

28-Degree
Viewing Area

back Boundary
X/Y Plane at
Z=~

Front Boundary
X/Y Plane at

Z = 4.5

Figure 22. Setting Front and Back Boundaries

Exercise 3

IASO466

Refer to "Tutorial Demonstration Package" and run the FIELD_OF_VIEW
demonstration program. Before you begin, remove Perspective. Enter:

~~REMOVE Perspective;

VIEWING - 29

Using the EYE Command

In addition to FIELD_OF_VIEW, there is another command that creates a
perspective window. Like FIELD_OF_VIEW, the EYE command specifies a
pyramid-shaped viewing area with front and back clipping planes.

In addition, it allows you to move the eyepoint back from, above, below, and to
the side of screen center. This also moves the line of sight established by the
LOOK transformation, keeping the line of sight parallel to a line straight through
the center of the screen (where most lines of sight are situated). This effect
means that you may not see what you are LOOKing AT. The EYE command is
the only viewing command that has the effect of moving the line of sight,
established by the LOOK transformation, somewhere other than directly through
the center of the screen.

Imagine yourself in a room looking out through a porthole. The EYE command
simulates a view from any position in the room through this porthole and into the
world coordinate system. Distance and location through the porthole (that is,
FRONT and BACK BOUNDARIES) are measured in the usual PS 300 coordinate
system units. Inside the room, distance is measured in relative rooms
coordinates. These relative room coordinates are used to create the proper
proportions for the viewing pyramid in the world coordinate system.

What you see--the viewing area--is determined by the line of sight established
in the LOOK transformation, the size of the porthole, your distance back from
it, and your position in the room with respect to its center. The closer you are
to the porthole, the larger the viewing area. The EYE command allows you to
adjust how far back and/or of f-center you are from the center of the porthole.
As with all windowing commands, you may also specify front and back boundaries.

From where you stand in the room, distance and screen width are specified in
terms of relative room coordinates. These coordinates are important in terms of
the ratios they establish, which determine the viewing angle. For example, in
Figure 23 the ratio of screen width to eyeback distance is 2:2. A screen width of
4 and eyeback distance of 4 would establish the same ratio (2/2=1; 4I4=1) and so
the same view. (Figure 23).

30 -VIEWING

Relative
Room
Coordinates

Eye Back 2

Relative
Room
Coordinates

Eye Back 4

I 1

PS300 World Coordinates

Screen Width=2

PS 300 World Coordinate s

Screen Width=4 ---

iaso~2+~

Figure 23. Relative Room Coordinates

The line of sight established by the LOOK transformation may not point at what
you are looking at when you use the EYE transformation. The eye
transformation creates its own sightline relative to the line of sight established
by the LOOK transformation. As shown in Figure 24, the LOOK transformation
establishes a line of sight to the viewed object. With EYE, however, the new line
of sight may be different. So, you may not see what you are "LOOKING AT".
(You may be LOOKing AT Car 1, but see Car 2.)

VIEWING — 31

Visible Area

n ~ _
O ~

Look
Original--~
Line of
Sight

Front Bound

Eyepoint Moved

EYE
Line of
Sight

{ ASO467

Figure 24. Line of Sight f o~ LOOK and E Y E

In the simplest instance of using the EYE cor~imand, you specify only the
distance from the screen (back) and the screen width (wide). The ratio of these
two determines how much of the world coordinate system is viewable (viewing
angle) and the orientation of the viewing pyramid. (This is effectively another
way to specify a view that can be specified using FIELD_OF_VIEW.) In such a
view, the line of sight established by the LOOK transformation would aim
through the center of the screen toward the AT point. In part A of Figure 25, at
least part of all four cubes appears in the viewing area. When the eyepoint is
moved further back in part B, only two of the cubes are viewable, but they
appear to be larger than in part A.

32 —VIEWING

2 3

2 units wide

Eye Back 1 from Screen Area 2 wi de

View A

4 bac \~

wide

View B r

Eye Back 4 from Screen Area 2 wide

IAS0525

Figure 25. Specifying the Viewing Angle

Moving the eyepoint so that it is not directly over the center of the screen,
results in a different portion of the world coordinate system coming into view.
For example, in Figure Z6, moving the eyepoint back 1 unit and left 2 units has
shifted the viewing so that no part of cube 1 is visible and most of cube 4 has
come into view.

1

"Look"
Line of
Sight

1 Back

2 3 4

I ,~
AT .

~~ Front
i

"Eye"
Line of

FROM Sight I ASO468

Figure 26. Moving Eyepoint Back and Left

VIEWING — 33

As with FIELD_OF_VIEW, you must set boundaries correctly with the EYE
command to have an object appear. As expected, if depth clipping is not in
effect, any object in front of the front boundary appears at full intensity;
anything between boundaries diminishes in brightness as it approaches the back
boundary; and everything behind the back boundary appears at minimum
brightness.

As with the FIELD OF_VIEW, boundaries are specified in world coordinate system
units measured from 10- ' S in Z (the center of the screen after the LOOK
transformation is applied).

Note that with the EYE command, Z boundaries remain orthogonal to the Z axis.
For example, in Part A of Figure 27, though the eyepoint has been moved farther
back, the boundary is still placed 6 units from the original FROM point (0,0,0) at
the center of the screen. This is also the case in Part B, where the eyepoint has
been moved back and to the left. Even when EYE changes the line of sight, the
boundaries do not shift. Instead, the viewing area, the frustum of vision,
becomes skewed.

~\0 Back Boundary

\ 6 Front Bou dary

\ /2 wide

Back 2

Exercise 1

"Look"
Line of
Sight

Left 2
Back 3

10

6

'Eye"
.~-1- Line o f

Sight
2 wide

I AS01~69

Figure 21. Boundaries Using the EYE Command

Run the EYE demonstration program. (Refer to "Tutorial Demonstration
Package.")

34 - VIEiNING

Exercise 2

Create instances of Car to the right and the left of the original sportscar and
group all three instances under the name Three_Cars.

Cal Cal Cart := TRANSLATE BY 3,0,0 APPLIED TO Car;

Cal ~ Cara := TRANSLATE BY -3,0,0 APPLIED TO Car;

~ ~ Three Cars := INSTANCE OF Car, Cart, Cara;

View Three Cars using the LOOK and EYE commands. First, establish a line of

sight (Look 1).

~ ~ Look 1 := LOOK AT 0,0,0 FROM 0,0,-10
APPLIED TO Three_Cars;

This places the three cars 10 units away from your eyepoint. Now apply an EYE
command to view the cars through a porthole 1 room unit wide from a distance
of 2 room units.

Notice the following three commands include values for the front and back

boundaries. The sportscars have been placed in front of the front boundary
(depth clipping is off by default) to appear at maximum intensity.

~a ~a Eye_Locate l := EYE
BACK 2
RIGHT 0 {default}
UP 0 {default}
SCREEN l WIDE
FRONT = 9.5
BACK = 10.5
THEN Lookl;

~ ~ DISPLAY Eye_Locate;

You can see the original Car, but Cart and Cara are partially clipped on the
right and the left sides, respectively, of the window. See Figure 28.

VIEWING - 35

Visible Area

Eyepoi nt IAS0470

Figure 28, EYE View of Cars

Now move your eyepoint to the left far enough to see all of Cart (which is
partially visible to the right of the present window).

~a ~a REMOVE Eye_Locate;

~a ~a New_Eye := EYE
BACK 2
LEFT .5 {or RIGHT -.5}
UP 0 {default}
SCREEN 1 WIDE
FRONT = 9.5
BACK = 10.5
THEN Lookl;

Lal ~ DISPLAY New_Eye;

36 —VIEWING

Visible Area

..

Front Boundary

Eyepoi nt

Back 2

 v '
Left .5

IASO471

Figure 29. EYE View of Cart

Now, look at Cara (which is partially visible to the left of the present screen) by
moving your eye to the right.

~a ~a REMOVE New Eye;

~a ~a Last Eye := EYE
BACK 2
RIGHT .5 {or LEFT —.5}
UP 0
SCREEN 1 WIDE
FRONT = 9.5
BACK = 10.5
THEN Lookl;

~a ~a DISPLAY Last_Eye;

VIEWING - 37

What you see on the screen is in correct perspective only if your actual position
in the room is approximately where you specified your eye location to be in the
EYE command. In the last example, the values in the EYE command are .5 right,
back 2 from a screen 1 wide. You would need to move your head right one-half
of a screen width and back two widths from the center of the PS 300 screen to
view the cars in correct perspective. (Note in this case, you will not be able to
see the AT point specified by the LOOK command.)

If you remain seated at the PS 300 looking into the center of the screen,
displayed objects may appear distorted or skewed when the eyepoint is changed.
This is because you are looking at what should be an oblique view from a position

7

that would not normally create an oblique view.

Using a 4x4 Matrix to Specify a Perspective Window

The EYE transformation is a 4x4 matrix operation that is represented by an
operation node. This node must be above all other transformation nodes in a
display tree. The EYE operation node should also be directly above the LOOK
operation node in the display tree.

You can build your own customized 4x4 matrix in lieu of the one created by the
FIELD OF VIEW or EYE command by using the following MATRIX_4x4 command:

MATRIX_4x4:= m 1 l,m 12,m 13,m 14
mll,ml2,m13,m14
mll,ml2,ml3,ml4
m 1 l,m 12,m 13,m 14 APPLIED TO Another_Name;

(For more details, refer to the Command ,Summary in Volume 3A.)

38 -VIEWING

SPECIFYING A VIEWPORT

In addition to the two types of viewing transformations, establishing a line of
sight and specif ying a viewing window, the PS 300 lets you specif y a portion of
the full screen in which an orthographic or perspective window is displayed. Up
to this point, all windows specified in examples have been projected onto the full
screen of the PS 300. The PS 300 maps a window to the full screen by default if
no smaller portion of the screen is specified. The area of the screen that has the
window mapped to it is called a viewport.

The process of mapping a window to a viewport is not a matrix operation.
Because of this, the viewport specification can be placed virtually anywhere in
relation to matrix operations in a display tree. A logical placement, though, is
above the windowing transformation.

Each viewport is defined in terms of a current viewport; the dimensions of the
current viewport are always -1 to 1 in width and -1 to 1 in height, with the
center of the viewport corresponding to 0,0 (see Figure 30). The default
intensity range available for any viewport is from 0 to 1, or from minimum to
maximum intensity. This intensity is spread over the range from the front
boundary to the back boundary of the window being displayed in the viewport.
The values for viewport dimensions and intensity range have nothing to do with
world coordinate values.

-1 Width 1

Current
Viewport Height

-1 insoa~2

Figure 30. Current Viewport Dimensions

VIEWING - 39

Exercise 1

First display the Car in the default full-screen viewport by entering:

~a ~a INITIALIZE DISPLAY;

Ca1La1DISPLAY Car;

The car is now displayed in the current viewport, which is -1 to 1 in height and in.
width.

Exercise 2

Define a viewport to be the upper right corner of the default full-screen
viewport by entering;

LalLalPort2 := VIEWPORT
HORIZONTAL=0:1
VERTICAL=0:1 APPLIED TO Car;

~a ~a DISPLAY Port2;

[al Cal REMOVE Car;

Now the upper right corner of the screen becomes the current viewport and the
default window is mapped to it (Figure 31).

40 —VIEWING

1 ASO47 3

Figure 31. Port2 -Upper Right Quadrant

The display tree for this viewport applied to car is shown in Figure 32.

Port 2 ~~
Vi ~ewp~ t

Car
(Data)

tASO474

Figure 32. Display Tree for Port2

VIEWING — 41

Example 3

Define another viewport in terms of the now current viewport (Port2).

~ ~a Port3 := VIEWPORT
HORIZONTAL=0:1
VERTICAL=0:1 APPLIED TO Port2;

(al Cal DISPLAY Port3;

~a ~a REMOVE Port2;

Port2 is now the upper right quadrant of Port3, which is the upper right quadrant
of the default full--screen viewport. Figure 33 shows the associated display tree.

i

D

Port 3~'~
Viewport Upper Right Quadrant
~~ of Full Screen

Port 2~~
V ewport Upper Right Quadrant

of Port 2

Car
Data
 iAso~75

Figure 33. Port3 and Associated Display Tree

Before going on to the next section, remove the data structures from the display
list. Enter the INITIALIZE DISPLAY command:

Lal CaIINITIALIZE DISPLAY;

42 -VIEWING

Displaying Multiple Viewports

The PS 300 allows multiple viewports to be displayed simultaneously. The
exercises that follow create four views that can be displayed simultaneously.
The four views are:

• In the lower left quadrant, the Car is displayed as a side view in an
orthographic window

• In the lower right quadrant, the Car is displayed as a front view in an
orthographic window

• In the upper right quadrant, the Car is displayed as a top view in an
orthographic window

• In the upper Ieft quadrant, the Car is displayed in a perspective window

Exercise 1

Create the four views by applying the following VIEWPORT definitions:

~ ~ DISPLAY Four_View;

~ ~ Four_View := INSTANCE OF Side, Front, Top, Persp;

~a ~a Side := VIEWPORT
HORIZONTAL= -1:0
VERTICAL= -I:0 APPLIED TO Car;

Lal Cla Front := BEGIN STRUCTURE
VIEWPORT

HORIZONTAL=0:1
VERTICAL= 0:-I;

LOOK
AT 0,0,0
FROM .I,0,0 APPLIED TO Car;

END_STRUCTURE;

VIEWING - 43

~ ~ Top := BEGIN_STRUCTURE
VIEWPORT

HORIZONTAL= 0:-1
VERTICAL= 0:- l ;

LOOK
AT 0,0,0
FROM 0,.1,0 APPLIED TO Car;

END_STRUCTURE;

~ ~ Persp := VIEWPORT
HORIZONTAL= -1:0
VERTICAL= 0:1 APPLIED TO Perspective;

If you have rebooted, changed modes, or initialized the system since you began
this module, you will need to add the two following lines of code to the above
listing;

~a ~ Perspective := FIELD OF VIEW 28 FRONT=4.5 BACK=7
APPLIED TO Look;

~ Look := LOOK AT 0,0,0 FROM 0,0,-5 APPLIED TO Car;

Using Non-Square Viewports

Sometimes a non-square viewport is needed. Remember all viewports are
defined in terms of a current viewport having dimensions of -1 to 1 in height and
width. These dimensions apply to non-square viewports as well (see Figure 34).

-1 .1

-1

_1

-1 1

-1

i ASO476

Figure 34. Dimensions of allon-Square Current Viewport

44 —VIEWING

A non—square viewport can cause distortion of displayed data. To compensate
for such- distortion, objects can be viewed in anon—square window. This window
must have the same height to width ratio (aspect radio) as the viewport. For
example, if the aspect ratio of a viewport is 2:1, half as wide as it is high, the
window displayed in the viewport must also be half as wide as it is high to
eliminate distortion that results from viewport mapping.

Orthographic windows are the only windows that can have non —square front
boundaries. Perspective windows always have square front boundaries, so objects
are distorted if a perspective window is displayed in anon—square viewport.

Unmatched aspect ratios can sometimes be used to advantage. A variety of
effects can be achieved using this distortion. Cubes can become bricks in a
viewport that is wider than it is high. Circles can become ellipses; econo—sedans
can become sleek sports cars.

Exercise 1

Map a square window to a non—square viewport to observe the resulting
distortion. First impose the PS 300 default orthographic (square) window by
removing the previous perspective view:

~a ~a REMOVE Four_View;

Then create the non —square viewport:

~ ~ Nonsquare := VIEWPORT
HORIZONTAL=—.5:.5
VERTICAL=-1:1 APPLIED TO Car;

Lal ~a DISPLAY Nonsquare;

The default window around the Car is compressed to fit in the width of the
narrow viewport. The result is distortion: a tall car (see Figure 35).

UIEWING — 45

-.5 Nonsquare•5
Viewport li

-1

Default Window (1 to -1 i n X, 1 to -1 i n Y} tAso477

Figure 35. Square Window Mapped to Nan-Square Viewport

Exercise 2

Compensate for the distortion by creating a non—square window for the
non —square viewport by entering:

~a ~a Nonsquare_Window := WINDOW
X = —1:1
Y = —2:2 APPLIED TO Nonsquare;

Ca1Ca1 DISPLAY Non_Square_Window;

~a ~a REMOVE Non_Square;

When this window is applied to the viewport, its aspect ratio is equivalent to the
aspect ratio of the viewport, so the car appears in the Nonsquare viewport
without distortion (see Figure 36).

46 -VIEWING

Nonsquare
--5 Viewport ~5

_~

Nonsquare Window with Matching Aspect Ratio
(1 to -1 in X, 2 to -2 in Y)

IAS0478

Figure 3fi. Non-Square Window Mapped to Non -Square Uiewport

To clear the display enter:

~a ~a REMOVE Nonsquare_Window;

Setting an Intensity Range f or a Window in the Uiewport

A viewport specification can also set an intensity range for the window displayed
in the viewport. This intensity mapping is another facet of the
window-to-viewport mapping process.

Remember that the maximum and minimum intensities for an orthographic or
perspective window are anchored at the front and back boundaries of the
displayed window. The default intensity range is from 0 (dimmest, back
boundary) to 1 (brightest, front boundary).

VIEWING — 47

Set the viewport boundaries to the upper right quadrant of the screen. To
change the maximum and minimum intensities, compress the intensity range
from .25 (quarter) to .75 (three—quarters). The car in the viewport will appear
slightly dimmer.

dal ~a Display Car;

Cal ~ New_Range := VIEWPORT
HORIZONTAL=0:1
VERTICAL=0:1
INTENSITY=.25:.75
APPLIED TO Car;

Lal ~a Display New_Range;

The intensity ranges of nested viewports affect each other. If Viewport2, with a

range of .25 to .75, is defined in terms of a current viewport having an identical

intensity range of .25 to .75, Viewport2 will have an intensity range of .375 to

.625.

48 -VIEWING

VIEWING ATTRIBUTES

You are now familiar with viewing transformations, which let you create any
number of views of objects ... and with viewports, which allow you to display
objects anywhere on the screen. The last set of viewing operations you can
specify add a further range of possibilities to the images that are displayed.
These operations let you set attributes in the structure of a model to
enhance its usefulness.

In particular, viewing attributes allow you to specify the:

• Intensity at which lines are drawn
• PS 300 Displays) on which data will be appear•
• Colors of lines that form the image.

Viewing attributes differ from viewing transformations (line of sight and
windows) in that they are not matrix operations. Consequently, they can be
placed above windows (WINDOW, FIELD_OF_VIEW, EYE) and LOOK
transformations in a display tree.

Setting Intensity

Remember that with the VIEWPORT command, an intensity range can be
specified which applies to the window being displayed in the current viewport. In
addition to this method, viewport intensity can be manipulated using the SET
INTENSITY attribute.

The SET INTENSITY attribute is a non-matrix operation that overrides and
replaces the intensity range set in the viewport specification. In fact, SET
INTENSITY can be switched on and off, allowing you to easily and directly
switch intensities between the values in the viewport specification and the
values in the SET INTENSITY node.

A set intensity node can be switched on and of f via function networks. SENDing
(or CONNECTing) a Boolean value to a SET INTENSITY node toggles the
ON/OFF condition of the node. (Refer to the Command summary in Volume 3A
for details.)

VIEWING — 49

In a series of SET INTENSITY commands, the last one ON determines the
intensity range in effect. For example:

One := BEGIN STRUCTURE
a := VIEWPORT

HORIZONTAL=—l:l
VERTICAL =-1: l
INTENSITY=.5:1;

b := SET INTENSITY ON 0:1;
c := SET INTENSITY ON 1: l ;
INSTANCE OF object;
END_ST~RUCTURE;

Lal Cal DISPLAY One;

When One is displayed, the intensity range is 1:1, the 'last specified intensity
range.

A SET INTENSITY OFF command does not cancel a previous SET INTENSITY ON
command. For example:

Two := BEGIN STRUCTURE
a := VIEWPORT

HORIZONTAL=-1:l
VERTICAL=-1:l
INTENSITY=.5:1;

b := SET INTENSITY ON 0:1;
c := SET INTENSITY OFF .8: l ;
INSTANCE OF object;
END_STRUCTURE;

~a ~a DISPLAY Two;

The intensity range in effect is 0:1 since that is the range specified in the last
SET INTENSITY command to be ON in the series. You can set the intensity
range to .8:1 by SENDing a TRUE to < l >Two.c.

Other operations and definitions can affect intensity. The VECTOR_LIST
command lets you separately specify the intensity of each vector in the list. If
this is done, those vector intensities are affected by the intensity range of the
VIEWPORT. If the object has very bright vectors in the background and dim
vectors in the foreground, the effect of depth cueing could bring them to a
nearly equal intensity by brightening the near, dim vectors and dimming the far,
bright vectors. (Refer to the Command Summart~ in Volume 3A for information
on assigning intensities to vectors using the VECTOR_LIST command.)

50 —VIEWING

Setting Displays O N and O F F

If you have more than one display screen on your PS 300, the SET DISPLAY

attribute can be used to make objects appear on some displays and not appear on

others. This selection capability is built into an object's display tree by adding a
SET DISPLAY node.

By default, when an object is displayed, it appears on all the screens in the

PS 300 configuration. Selected displays can be turned on and off for an object b~
supplying a display number in the SET DISPLAYS command. For example, if you

have four displays (D, 1, 2, 3) in your system, the following commands would
cause Another Object to appear only on displays designated 2 and 3:

~a ~a Set := SET DISPLAYS 1,2 OFF APPLIED TO Another_Object;
~a ~a DISPLAY Set;

In multi—screen systems, all screens can be turned off or on for a given object by
using the following commands:

Displays_Of f := SET DISPLAYS ALL OFF APPLIED TO An_Object;

or

Displays_On := SET DISPLAYS ALL ON APPLIED TO An_Object;

If the SET DISPLAYS ALL ON(OFF) is placed above a SET DISPLAYS 0 (1, 2, 3)

node in a display tree, the displays specified in the lower node can be controlled
with the SET DISPLAYS ALL node.

For example, if

Set_All := SET DISPLAYS ALL ON THEN Set_l;
Set 1 := SET DISPLAYS 1 OFF THEN Object;

displaying Set_All will override Set_l, and Object will appear on display 1.
However, if Set_I is displayed, Object will not appear on display 1.

Both SET DISPLAYS nodes can be toggled on and off using Booleans~ (refer to
Volume 3 A , Command ,summa ry).

VIEWING — 51

Exercise

To demonstrate the effect of a SET DISPLAYS attribute in a system having just
one display, apply a SET DISPLAY 1 OFF attribute to Car.

~a ~a No_Display := SET DISPLAY 0 OFF APPLIED TO Car;

~a ~a DISPLAY No_Display;

The car does not appear on the screen. Now toggle the OFF condition to ON in
the SET DISPLAY node:

SEND TRUE TO <1> No_Display;

The Car is now displayed.

Setting Color

If your system has the optional Color Shadow Mask (CSM) Calligraphic Display,
you can specify colors for objects in two ways.

One method makes all vectors in a displayed object the same color. The second
method lets you blend color along line segments between endpoints; that is, a
different color can be specified for each vector in the VECTOR_LIST, and the
line connecting two vectors blends from the color of the first vector to the color
of the second vector. This section teaches you how to display entire objects
(entire vector lists or character strings) as a single color. (For color blending
between vectors, refer to the VECTOR_LIST command in the Command Summary
in Volume 3A.)

Color is specified in terms of hue and saturation. The hue is a color, such as red
or blue. The saturation is the amount of color versus the amount of white in the
hue. Red at high saturation is full—toned; red at low saturation is pink. All hues
are white at 0 saturation.

52 -VIEWING

The intensity, or brightness, of any hue/saturation combination depends on
factors other than the color specification. These factors include such things as
the intensity range of the viewport, the condition of a SET INTENSITY
command, and the setting of the INTENSITY dial on the PS 300 Display.

The PS 300 lets you choose from 120 hues. Selectable hues correspond to the
values on the color wheel shown in Figure 37, with blue at 0 and 360, red at 120,
and green at 240.

Yellow
180

Figure 31. Color Wheel

IASO479

In effect, then, color is specifiable in 3-degree increments around the color
wheel. Hue values from 0 to 2 select the same hue; hue values from 3 to 5 select
the same hue, etc.

The saturation of any hue is specified as a value from 1 to 0, or from full-color
saturation to no color (white). The default saturation is full (1).

Color and saturation is set as follows:

~a ~a Blue Car := SET COLOR 0,1 APPLIED TO Car;

where 0 indicates the color (blue) and 1 is the saturation (full).

VIEWING - 53

Before displaying colored objects, the refresh rate of the PS 300 Line Generator
should be slowed. Slower speed means that endpoint matching will be
optimized. (When displaying in color, running the line generator at full speed
will make endpoint matching less accurate. The 19-inch Calligraphic Color
monitor must be run at half speed for good endpoint matching.)

The Line Generator is slowed with a SET CSM ON command. This command is
usually invoked as a system default in PS 300 systems using the color monitor.
Your system manager should include such commands in the SITE.DAT (site data)
file that is loaded when the system is booted. (Refer to Volume 5 for further
SITE.DAT information.)

The following exercise assumes that the CSM ON condition has been set by the
SITE.DAT file.

Exercise

1. Make the Car red, fully saturated.

Cal Cal Redcar := SET COLOR 120,1 APPLIED TO car;

~~DISPLAY Redcar;

2. Change the color settings and watch what happens to the color of the car:

Same hue, less saturated:

~ Cal Redcar := SET COLOR 120,.3 APPLIED TO Car;

The car appears to be light pink. For a new hue, full saturation enter:

~~Redcar := SET COLOR 240,1 APPLIED TO Car;

New hue midway between red and green--yellow, full saturation:

Cal Cal Redcar := SET COLOR 180,1 APPLIED TO Car;

Make the wheels of the yellow Car a different color than the car body by
specif ying a new color (green) for the tires only.

~a Ca1PREFIX Tire WITH SET COLOR 240,1;

Cal ~a Initialize Display;

54 —VIEWING

VIEWING Sl1MMARY

Viewing consists of placing an object in front of you by defining a line of sight
(LOOK), defining a window (WINDOW, FIELD_OF_VIEW, EYE), and setting up a
portion of the PS 300 screen to display the window in (VIEWPORT).

If an object is viewed without specifying a line of sight, a window, or a viewport,
defaults are supplied by the system. The default view has a line of sight from
the origin (0,0,0) looking straight along the positive Z axis. In the default
window, objects appear as orthographic views. The default viewport is the full
screen.

The WINDOW command creates orthographic views. The FIELD_OF_VIEW and
EYE commands create perspective views. With FIELD_OF_VIEW, the line of
sight is perpendicular to the front and back boundaries o'f the frustum of vision.
With EYE, the line of sight can be offset, creating a skewed frustum of vision.

Non —matrix viewing attributes may be used to set intensity, to enable and
disable the display of objects on selected screens, and to display objects in color.

The following sections summarize concepts in this module.

Important concepts for L00K

• The LOOK transformation defines a line of sight in the world coordinate
system in terms of a point to look from and a direction in which to look.

• If no LOOK is specified, the system defaults to a LOOK from 0,0,0 along the
positive Z axis (AT 0,0,1).

• An UP direction can be specified as part of any LOOK transformation.

• If the line of sight coincides with the UP direction, the system defines
positive Y relative to the LOOK AT point to be up in the new view.

VIEWING — 55

• The command format to specify a LOOK is:

name := LOOK AT X,Y,Z FROM X,Y,Z APPLIED TO Name2;

or

name := LOOK FROM X,Y,Z AT X,Y,Z APPLIED TO Name2;

• The LOOK transformation is done in a 4x3 matrix. To work correctly, a
LOOK transformation should be placed above all modeling transformations
(ROTATE, TRANSLATE, SCALE) in the display tree and immediately below
the windowing transformation (WINDOW, FIELD_OF_VIEIN, EYE).

Important Concepts for W I N D O W

• Orthographic windows are specified in terms of X and Y and optionally Z.

• WINDOWs can be defined to be not centered around the X/Y axis.

• WINDOWs can be specified to be larger or smaller than the default window.
Large windows encompass more, and therefore make objects appear smaller
than they appear in smaller windows.

• Objects or parts of objects within a window are displayed when the window is
displayed.

• Objects or parts of objects outside a window are clipped from view.

• Depth clipping at Z boundaries is not in effect unless you put it into effect.

• Depth cueing, the variation of intensity that imparts an illusion of depth to
displayed objects, is anchored at the front and rear (Z) boundaries of the
window. Brightest intensity occurs at the front boundary and dimmest occurs
at the back boundary.

• WINDOWs are usually square. They can be nonsquare. See the section of this
module on VIEWPORTS for uses of nonsquare WINDOWS.

56 — VIEWING

• The command format to specify a WINDOW is:

name := WINDOW X=xmin:xmax Y=ymin:ymax [FRONT boundary = zmin
BACK boundary = zmax] APPLIED TO name l;

• The WINDOW transformation is done in a 4x4 matrix. To work properly, the
WINDOW transformation must be the topmost matrix node in a display tree.

Important Concepts for FIELD_OF_VIEW

• FIELD OF VIEW is specified in terms of a viewing angle and front and back
boundaries.

• The FIELD OF_VIEW is always centered about the positive Z axis. The apex
of the pyramid (your eyepoint) is always at 0,0,0.

• Since the eyepoint is always at 0,0,0, objects must be located on the positive
Z axis, far enough out to be within the frustum of vision if they are to be
seen. Usually a LOOK transformation is used to do this.

• The size of the viewing angle in no way distorts the perspective imposed on
viewed objects. However, the larger the viewing angle, the larger the area
included in the frustum of vision. Larger angles have the effect of making a
viewed object appear smaller.

• Depth clipping is not in effect unless you put in effect with a SET DEPTH
CLIPPING ON command.

• Depth cueing is anchored at the front and- back boundaries. Brightest
intensity occurs at the front boundary and dimmest occurs at the back
boundary.

• The face of a window created using FIELD_OF_UIEW is always square. That
is, it has an aspect ratio of 1.

VIEWING — 57

• The command format to specif y a FIELD_OF_VIEW is:

name := FIELD_OF_VIEW angle [FRONT boundary =zmin]
[BACK boundary =zmax] APPLIED to name l;

• The FIELD_OF_VIEW transformation is performed by a 4x4 matrix. The
FIELD_OF_VIEW operation node must be the topmost matrix node and be
directly above the LOOK node in the display tree.

Important Concepts About the EYE Command

• EYE is specified in relative room coordinates to position the eye relative to
the center of the viewport. Front and back boundaries are specified in world
coordinates.

• The face of a window created using EYE is always square.

• With the EYE transformation, the line of sight is not necessarily colinear
with the from/at line in LOOK.

• If the eye position is not colinear with the from/at line in LOOK, the viewing
pyramid is skewed. Front and back boundaries remain perpendicular to the
line of sight established in the LOOK specification.

• The larger the viewing angle, the larger the area included in the frustum of
vision. Larger angles have the effect of making a viewed object appear
smaller.

• The command format to specify EYE is:

name := EYE BACK Z [option 1] [option 2] from SCREEN area w WIDE
[FRONT boundary =zmin] [BACK boundary =zmax] APPLIED
TO name 1;

• The EYE transformation is performed by a 4x4 matrix. To work properly, the
EYE operation node must be above all other -transformation nodes and
directly above the LOOK operation node in the display tree.

58 -VIEWING

Important Concepts About Viewports

• A viewport is the area of the PS 300 screen to which a window is mapped.

• A viewport is defined in terms of a current viewport. The dimensions of any
current viewport is -1 to 1 in X and in Y.

• Uiewports may be nested in other viewports without limit.

• Multiple viewports can be displayed simultaneously.

• Non-square viewports distort displayed objects unless the viewed window has
the same aspect ratio as the non-square viewport.

• An intensity range for a window (WINDOW, EYE, etc) can be specified for a
viewport.

• The command format to specif y a VIEWPORT is:

name := UIEWport HORizontal - hmin:hmax VERtical = vmin:vmax
[INTENsity = imin:imax] APPLIED TO name l;

• Mapping a window to a viewport is not a matrix operation, so viewport
specifications can be placed anywhere in relation t~ matrix operations in a
display tree.

Important Concepts About Viewing Attributes

• Viewing attributes differ from viewing transformations in that they are
non-matrix operations. They can be placed above windows (WINDOW,
FIELD_OF_UIEW, EYE) and LOOK transformations in a display tree.

• The SET INTENSITY attribute manipulates viewport intensity. SET
INTENSITY can be switched on and off, varying intensities between values in
the viewport specification and values in the SET INTENSITY command.

VIEWING — 59

• In a series of SET INTENSITY commands, the last one ON determines the
intensity range in effect.

• A SET INTENSITY OFF command does not cancel a previous SET INTENSITY
ON command.

• The SET DISPLAY attribute is used to enable and disable the display of
objects on specific PS 300 displays. In multi—screen systems, all or some
,screens can be turned on or off for a given object using this attribute.

• The SET COLOR attribute allows you to display entire objects as a single
color. Color is specified in terms of hue and saturation. Hue is specifiable in
3—degree increments around a color wheel. Saturation is specified as a value
from 1 to 0.

