
PS 300 DOCUMENT SET

VOLUME 3b

PROGRAMMER REFERENCE

The contents of this volume are not to be reproduced or
copied in whole or in part without the prior written
permission of Evans &Sutherland.

Many concepts in this volume are proprietary to Evans &
Sutherland, and are protected as trade secrets or covered by
U.S. and foreign patents or patents pending.

Evans & Sutherland assumes no responsibility for errors or
inaccuracies in this document. It contains the most complete
and accurate information available at the time of
publication, and is subject to change without notice.

PS1, PS2, MPS, and PS 300 are trademarks of the Evans &
Sutherland Computer Corporation.

Copyright o 1984
EVANS &SUTHERLAND COMPUTER CORPORATION

P.O. Box 8700, 580 Arapeen Drive
Salt Lake City, Utah 84121

PS 300 DEC VAXIWS PASCAL U2 GRAPHICS SUPPORT ROUTINES

USER'S VANUAL

Supported Under PS 300 Graphics Firmware Release A 1

V

The contents of this document are not to be reproduced or
copied in whole or in part without the prior written
permission of Evans &Sutherland.

Many concepts in this document are proprietary to Evans &
Sutherland, and are protected as trade secrets or covered by
U.S. and foreign patents or patents pending.

Evans & Sutherland assumes no responsibility for errors or
inaccuracies in this document. It contains the most
complete and accurate information available at the time of
publication, and is subject to change without notice.

PS 1, PS2, MPS, and PS 300 are trademarks of the Evans &
Sutherland Computer Corporation.

Copyright o 1984
E1/ANS &SUTHERLAND COMPUTER CORPORATION

P.O. Box 8700, 580 Arapeen Drive
Salt Lake City, Utah 84121

PS 300 DEC VAX/VMS PASCAL GSR

CONTENTS

SECTION I

INTRODUCTION 1

Applications 2
Graphics Support Routines Conventions 3
Utility Procedures 4
Application Procedures 4

EXCEPTIONS 6

EXCLUDED COMMANDS 7

ERROR HANDLING 8

EXAMPLES OF THE PROCEDURES 9

PROGRAMMING SUGGESTIONS 12

SECTION II

INDEX TO THE PROCEDURES I3

UTILITY PROCEDURES 21

APPLICATION PROCEDURES 3I

ERROR TABLES 165

PS 300 DEC VAX/VMS PASCAL GSR

~./

SECTION II[

APPENDIX A. SAMPLE PROGRAMS

APPENDIX B. HOST MESSAGE

PS 300 DEC UAXIVMS PASCAL GSR — 1

INTRODUCTION

The PS 300 VAX PASCAL V2 Graphics Support Routines (GSRs) are a package of Pascal
procedures that are executed on the host computer. These procedures allow the host to
communicate PS 300 commands directly to the PS 300 Command Interpreter. The GSRs
provide procedures for most commands acceptable by the PS 300 Graphics System.

The GSRs described here are written in PASCAL V.2 and are supported only in a
VAX/VMS environment.

The purpose of this document is to provide a cross reference between the PS 300
command language and the corresponding Pascal procedures of the GSRs.

This document should be used in conjunction with the PS 300 Command Summary. No
attempt has been made in this document to provide tutorial information on the use of
the PS 300 command language or syntax.

The GSRs are supported under PS 300 Graphics Firmware Release P5.V03 and higher.
There are no specific hardware requirements.

This manual is divided into three sections. The first section is a guide to the GSRs. It
contains information on the conventions and definitions used in the GSRs. There are
several PS 300 commands that have not been implemented in the GSRs. These
commands are documented under Excluded Commands.

A section titled Programming Suggestions has been provided that lists the GSR Pascal
CONSTant declarations that may be helpful to the user.

An error handling scheme has been employed to catch errors detected by the Graphics
Support Routines. A table of the error codes and definitions follows the listing of the
Utility and Application Procedures.

2 — PS 300 DEC VAX/VMS PASCAL GSR

The second section of the manual lists each GSR procedure with its corresponding
PS 300 command. The procedures are presented in alphabetical order with parameters
and the corresponding PS 300 command syntax.

When an example is given, it is shown with both the PS 300 command syntax and the
procedure parameters. Any notes following a procedure describe discrepancies or
restrictions that apply to the procedure but may not apply to the corresponding PS 300
command.

An alphabetical listing of the PS 300 Commands, the corresponding Pascal procedure,
and the appropriate page reference is provided at the front of the description of the
procedures.

The third section of the manual contains the appendices. Appendix A contains a sample
program that illustrates the use of the GSRs and an example of an error—handling
procedure. Appendix B contains a description of the PS 300 system function
HOST_MESSAGE. Installation instructions are in the Systejn Manager Refereriee,
Volume 5 of this document set.

The (GSRs} were developed at Evans and Sutherland as a standard communication path
between the PS 300 and the application program. Prior to this interface,
communication with the PS 300 was supported by the Host Resident I/O Routines
(PSIO). All commands were sent to the PS 300 as ASCII character strings (with the
exception of vector lists). It was the responsibility of the application to format
graphical information into the proper PS 300 commands. Typically, this was
accomplished using FORTRAN ENCODE/DECODE and FORMAT statements, or
equivalents, to build character strings to be sent to the Parser via PSSEND. PSVECS
provided a faster communication path by formatting vector data into a "binary" format
and including the proper routing information to bypass the Parser and communicate
directly with the Command Interpreter.

The GSRs provide a set of procedures that perform all formatting and routing duties for
the application. They take advantage of the fact that all data formatting is performed
by E&S supported code. The GSRs communicate nearly all commands directly to the
Command Interpreter and achieve significant performance improvement over the ASCII
form of the commands.

Applications

Typically, the procedures will be used for the following applications:

• Attach to the graphics device

• Create and modify display structures

• Create, connect and modify function networks

• Receive data from the graphics device

PS 300 DEC VAX/VMS PASCAL GSR — 3

Graph-lies Support Routil~es Corlve~ltio«s

The Pascal V2 version of the Graphics Support Routines make use of the
following program —defined Pascal TYPE definitions.

P_VaryingType
P_VaryBu f Type
P_KnotArrayType
P_MatrixType
P_VectorType

= VARYING [P_MaxVaryingSize] OF CHAR;
= VARYING [P_Max1/aryBufSize] OF CHAR;
= ARRAY [l..P_MaxKnots] OF REAL;
= ARRAY [1..4, 1..4] OF REAL
= RECORD

Draw :BOOLEAN;
V4 :ARRAY [1..4] OF, REAL;
END;

P_VectorListType =ARRAY [l..P_MaxVecListSize] OF P_VectorType
P_PatternType =ARRAY [1...32] of INTEGER;

The Pascal V2 version of the Graphic Support Raster Routines make use of the
following program —defined Pascal CONSTANT definitions:

P_MaxRunclrSize =User specified maximum length run color array

P_ColorType = RECORD
RED : INTEGER;
GREEN : INTEGER;
BLUE : INTEGER;

End;

P_RunColorType = RECORD
COUNT : INTEGER
RED : INTEGER;
GREEN : INTEGER;
BLUE : INTEGER;

End;

P_RunClrArrayType = ARRAY [l..P_MaxRunclrSize] of P_RunColorType;

The following parameters can be changed by the user to any appropriate value
WITHOUT having to recompile the GSRs:

P_MaxKnots = 10
P MaxVecListSize = 200
P_MaxVaryingSize = 255
P MaxVaryBu f Size = 512

The procedures are listed by their respective Pascal EXTERNAL declarations. A
brief description of the procedures and an explanation of the parameters is given
where required.

~ - PS 300 DEC VAX/VMS PASCAL GSR

Utility Procedl~res

There are two types of supporting procedures. Utility Procedures are specific to
the operation of the Graphics Support Routines. These calls are used to attach
the PS 300, select multiplexing channels, send and receive messages, and detach.

Application Procedures

The Application Procedures correspond almost one for one with the standard
PS 300 Commands. Exceptions and exclusions are given following the text on the,
Application Procedures.

In most cases, the names for the Application Procedures were derived by
choosing an abbreviation of the PS 300 command and prefixing it with a P.
Parameter ordering generally coincides with the PS 300 commands as well.

Examples of some of the application procedures are below.

Example 1

For commands which build operate display structures, such as

Name:=operate parameter l ,parameter2,..., then apply;

The procedure call is:

Poper('rlarne',paralneterl,parameter2,...,'appl~', Error_Harldler);

where:

open is an abbreviated form of the PS 300 command such as rotate in x --
Pro t x

'ilalne' is a character string containing the name to be associated with the
operate

parameterl,paraineter2,..., are the parameters to be used in computing the
operation. These may be booleans, integers, reals, vectors, or matrices.

'apply' is a character string containing the name of the object to which this
operate applies.

Error_Handler is the user-defined error-handler procedure.

PS 300 DEC 1/AX/1/MS PASCAL GSR — 5

Example 2

For commands to "send" to functions or display structures, such as

Send datum to < input > dest;

The procedure call is:

PSNDtyp(dateim,input,'dest', F.rror_Harldler);

where:

'typ' is an abbreviated form of the PS 300 command such as PSndFiX,
PSndM2D,...

datuirl is what is to be sent. It may be Boolean, integer, real, character
string, vector, or matrix.

input is an integer which specifies which input of the destination is being
sent to.

'dest' is a character string containing the name of the display structure or
function.

Error_Haildler is the user—defined error—handler procedure.

Example 3

For commands which create functions and connections such as:

Name := f:genfcn;
Name := f:genfcn(n);
Conn name<output>:<input>dest;
DISCONN name<output>:<input>dest;

The procedures are:

Pt~NINST ('name', 'g'erifeii', Error_I~aI-idler);
PENINSTN ('lia.me', 'g'eilt~cll', Il, Error_l~aridler);
PCONNECT ('ilalne',output, input,'dest', Error_Ha.ildler);
PDISC ('name',output,illput,'dest', Error_Halldler);

where:

'IlaI11e' is a character string containing the name associated with the
function instance.

6 — PS 300 DEC VAX/VMS PASCAL GSR

'gen~en' is a character string containing the name of the system generic
function.

ft is an integer specifying the number of input/outputs for this function
instance.

oiitput,in~tit are integers specifying the output and input numbers.

dest is a character string containing the name of the display data structure

Error I-Iand~er is the user—defined error—handler procedure.

Note that the function names in the GSRs are specified without the "F:" prefix
that is used in the standard PS 300 command language.

EXCEPTIONS

There are two PS 300 commands that use three procedures. These are the
PS 300 LABEL command and the VECTOR LIST command. For both these
commands, the Graphics Support Routines require three separate calls.

To create, specify and complete a label block, the user must call:

PLabBegn — To create and open a label block

PLabAdd —May be called multiple times to add to a previously opened label
block

PLabEnd — To complete the creation of a label block.

Together these three procedures implement the PS 300 command:

Name := LABELS x, y, z, 'string'

x, y, z, 'string';

In the same way, the user must use PVecBegn to begin a vector list, PVecList to
send a piece of a vector list, and PVecEnd to end a vector list.

An example of a procedure that varies slightly from the PS 300 command is
PBSPL; the PS 300 BSPLINE command. In the PS 300 command language, some
of the parameters are optional. In the procedure they are all required. This is
also the case for the PRBSPL, PPOLY, and PRPOLY procedures.

PS 300 DEC VAX/VMS PASCAL GSR - 7

The PS 300 syntax allows for instancing multiple display entities and for creating
multiple variables. In the PS 300 command language the commands would be:

NAME:= INSTANCE a,b,c,d;

for instancing multiple display entities, and

VARIABLE s,y,z,w,t,q;

for multiple variables.

To perform the equivalent instancing of multiple display entities or for creating
multiple variables, the following GSR procedures should be used.

For the multiple instance case:

PINST('NAME', 'A', Error_Handler);
PINCL{'B', 'NAME', Error_Handler);
PINCL('C', 'NAME', Error_Handler);
PINCL('D', 'NAME', Error_Handler);

For the multiple variable case:

PUAR ('S', Error_Handler);
PURR ('Y', Error_Handler);
PUAR ('Z', Error_Handler);
PUAR ('W', Error_Handler};
PUAR ('T', Error_Handler);
PUAR ('Q', Error_Handler);

EXCLUDED COMMANDS

There are several classes of commands that were not implemented in the
Graphics Support Routines. These include unit commands, commands that are
currently being reworked in the PS 300 Graphics Firmware, commands that
duplicate functionality, and commands that report the status or the
configuration of the PS 300.

Units are handled exclusively by the Parser, and as such cannot be passed as
binary data to the Command Interpreter. Commands that are currently being
reworked in the firmware will be added to the Graphics Support Routines at a
later date. The command status and system configuration commands have no
applications in an interactive program.

A list of the excluded commands and the reason for their exclusion is shown in
the following table.

8 — PS 300 DEC VAX/VMS PASCAL GSR

TABLE 1

COMMAND

Begin_Font;
End_Font;
Store;
Look From;
Command Status
Setup/Show Interface

REASON FOR EXCLUSION

Currently being reworked
Currently being reworked
Duplicated functionality (use SEND TO)
Duplicated functionality (use Look AT)
Status command
System configuration command

Except for the exclusions mentioned above, each PS 300 command corresponds to
one or more procedures in the Graphics Support Routines. Commands not
implemented in the GSRs are sendable via the PPUTP procedure which sends the
command to the PS 300 Parser.

ERROR HANDLING

An error handling scheme has been employed to catch errors detected by the
Graphics Support Routines. Examples of errors detected by the Graphics Support
Routines are:

Prefix not followed by an operate.
Follow not followed by an operate.
Multiple calls to P1/ecList for block normalized vector list data.
Invalid characters in a name.

Command Interpreter errors and warnings are not detected by the Graphics
Support Routines. Examples of these errors are:

Destination does not yet exist.
Message rejected by destination.
Connection not made.

Error checking will be performed within the GSRs to insure that only valid
characters are sent within names, and that procedures are called in the proper
order, in cases where order is required. No attempt has been made to capture
errors and/or warnings from the Command Interpreter.

PS 300 DEC VAX/VMS PASCAL GSR — 9

Each procedure call includes an argument that specifies the user written error
handler. This error handler is of the form:

PROC EUURE Error_~Iandler (Error : I[VT:EGER);

where ERROR is an integer error code corresponding to one of the errors.

It is the responsibility of the user to provide an error—handling scheme to decide
what action should be taken when an error is detected. The GSRs do not attempt
to terminate execution or log errors.

A sample error—handling procedure appears in both of the program examples in
Appendix A of this manual. It is a sophisticated error handler that may be
incorporated by the user into an error—handling scheme, or used as an example of
what an error handler should look like.

The name, description, and error code of each detectable error is given in tables
following the description of the Utility and Application Procedures.

EXAMPLES OF T FIE PROCEDURES

The following two examples show how the procedures are described in this
manual.

10 - PS 300 DEC VAX/VMS PASCAL GSR

EXAMPLE - 1

PS 300 DEC VAX/VMS PASCAL GSR PROTX

Name:= ROTATE in X

APPLICATION PROCEDURE AND PARAMETER

PROCEDURE PRotX (%DESCR Name : P VaryingType;
Angle :REAL;

%DESCR AppliedTo : P_VaryingType;
PROCEDURE Error Handler (Err : INTEGER));

DEFINITION

This procedure creates a 3x3 rotation matrix that rotates an object (AppliedTo)
around the x axis relative to world space origin. It has the following parametric
definitions:

• Angle is the rotation angle in degrees

PS 300 COMMAND AND SYNTAX

Name := ROTate in X Angle (APPLied to Apply);

R

To use the PROTX call, instead of sending the ASCII command string:

xrot := ROTate in X 37 applied to object;

the application program would call the X-rotation procedure:

PRotX ('mot', 37, 'object', Error_Ha.ildler);

where 'xrot' is the name of the display structure, 37 is the angle of X rotation,
'object' is the display structure to which the X rotation is to be applied, and the
Error_Handler is the user-defined procedure that handles errors detected by the
Graphics Support Routines.

The ROTATE IN X example is fairly straight forward, as are the majority of the
procedures.

The description of the PCONNECT procedure and its parameters is given in the
following example.

PS 300 DEC VAX/VMS PASCAL GSR — 11

EXAMPLE — 2

PS 300 DEC VAX/VMS PASCAL GSR PCONNECT

Name:= CONNECT

APPLICATION PROCEDURE AND PARAMETERS

PROCEDURE PConnect (%DESCR Source : P._VaryingType;
Out : INTEGER;
Inp : INTEGER;

%DESCR Dest : P_VaryingType;
PROCEDURE Error_Handler (Err : INTEGER));

DEFINITION

This procedure connects the output (Out) of the function instance (Source) to the
input (Inp) of the function instance or display data structure (Dest).

PS 300 COMMAND AND SYNTAX

CONNECT Source <Out>:<Inp> Dest;

Continuing this example, we connect 'name' to the display structure 'xrot' using
PConnect as follows.

PConnect ('name', 1, 1, 'mot', Error_l~a~ldler);

where output < 1 > of 'name' is connected to input < 1 > of the display structure
'xrot'.

The PS 300 command syntax for this same operation is:

CONNECT name< 1 >:< 1 >xrot;

12 - PS 300 DEC VAX/VMS PASCAL GSR

PROGRAMMING SUGGESTIONS

The file PROCONST.PAS contains definitions for constants used by the Graphics
Support Routines. It is often convenient to think of these constants by name
rather than by remembering numbers. Specifically, in the usual PS 300 command
syntax, inputs to display structures are often referred to by name such as
< append > and < clear> for vector_lists and < position > and <step > for character
strings. There are also <delete>, <last>, and others. Other useful constants such
as values for conditional tests for level of detail, and vector list class are
obtainable from PROCONST.PAS.

PROCONST.PAS also contains a complete set of error/warning code definitions.
These values may be referenced by name by the user procedure if
PROCONST.PAS is INCLUDED in the procedure. The Error Tables in the final
section of this manual provide a list of the mnemonics and error codes. Using
the mnemonics provides an easy way of checking for the correct error code value.

There are two other files that must be INCLUDED by the user. These additional
files and their descriptions are:

PROTYPES.PAS -contains the GSR Pascal TYPE definitions
PROEXTRN.PAS -contains the VAX GSR EXTERNAL Procedure Definitions

The following is an abbreviated list derived from PROCONST.PAS of the
constants which should be most useful to the user.

GSR private constant declarations:

Name Value Meaning

P_Append = 0; <Append> input number.
P_Delete = -1; < Delete > input number.
P_Clear = -2; <Clear> input number.
P_Step = -3; < Step > input number.
P_Position = -4; <Position> input number.
P_Last = -5; < Last > input number.
P_Substitute = -6; <Substitute> input number.
P_LES = 0; "Less" level of detail comparison operator.
P_EQL = 1; "Equal" level of detail comparison operator.
P_LEQL = 2; "Less-equal" level of detail comparison operator.
P_GTR = 3; "Greater" level of detail comparison operator..
P_NEQL = 4; "Not-equal" level of detail comparison operator.
P_GEQL = 5; "Greater-equal" level of detail comparison operator.
P_Conn = 0; Vector list "Connected" class type.
P_Dots = 1 Vector List "Dots" class type.
P_Item = 2; Vector List "Itemized" class type.
P_Sepa = 3; Vector List "Separate" class type.

INDEX TO THE PROCEDURES

The following list from left to right gives an alphabetical listing of the PS 300
Command Name and the Pascal Application Procedure Name in this manual where the
procedure is listed with its parameters.

PS 300 COMMAND NAML APPLICATION PROCEDURE PAGE

ALLOCATE PLOTTER PALLPLOT 31

ATTRIBUTES PATTRIB 32

ATTRIBUTES ... AND PATTRIB2 33

BEGIN PBEGIN 34

BEGINS PBEGINS 35

BSPLINE PBSPL 3 7

CANCEL XFORM PXFCANCL 161

CHARACTER FONT PFONT 61

CHARACTER ROTATE PCHARROT 38

CHARACTER SCALE PCHARSCA 40

CHARACTERS [STEP] PCHARS 39

CONNECT PCONNECT 41

COPY PCOPYVEC 42

DEALLOCATE PLOTTER PDALLPLT 43

DECREMENT LEVEL OF DETAIL PDECLOD 44

DEL NAMES PDELWILD 47

DELETE PDELETE 46

DISCONNECT PDISC 48

DEC PASCAL — 13

PS 300 COMMAND NAME APE'LICATION PROC~:nLTI~,F. PAG_~

DISCONNECT ALL PDISCALL 49

DISCONNECT < OUT> PDISCOUT 50

DISPLAY PDISPLAY 51

ENABLE/DISABLE RASTER UIDEO PRASUI 100

END PEND 52

END OPTIMIZE PENDOPT 54

ENDS PENDS 53

ERASE PATTERN FROM PERAPATT 55

ERASE RASTER SCREEN PRASER 96

EYE BACK PEYEBACK 56

F:FUNCTION NAME PFNINST 58

F:FUNCTION NAME (INOUTS) PFNINSTN 59

FIELD OF VIEW PFOU 63

FOLLOW WITH PFOLL 60

FORGET PFORGET 62

IF CONDITIONAL BIT PIFBIT 64

IF LEUEL OF DETAIL PIFLEUEL 65

IF PHASE PIFPHASE 66

IELUMINATION PILLUMIN 67

INCLUDE PINCL 68

INCREMENT LEUEL OF DETAIL PINCLOD 69

INITIALIZE PINIT 70

INITIALIZE CONNECTIONS PINITC 71

INITIALIZE DISPLAYS PINITD 72

INITIALIZE NAMES PINITN 73

DEC PASCAL - 14

P5 300 COMMAND NAME: APPLICATION PROCEI)UR,E PAGE

INSTANCE OF PINST 74

LABELS PLABADD 75
PLABBEGN 76
PLABEND 77

LOAD PIXEL VALUE PRASWP 101

LOOK AT FROM PLOOKAT 78

MATRIX 2X2 ~ PMAT2X2 79

MATRIX 3X3 PMAT3X3 80

MATRIX 4X 3 PMAT4X 3 81

MATRIX 4X4 PMAT4X4 82

NAME := NIL PNAMENIL 83

OPTIMIZE STRUCTURE POPTSTRU 84

PATTERN PDEFPATT 45

PATTERN Name I WITH Name2 PPATWITH 85

POLYGON (ATTRIBUTES) PPLYGATR 86

POLYGON (BEGIN) PPLYGBEG 87

POLYGON (END) PPLYGEND 88

POLYGON (LIST) PPLYGLIS 89

POLYGON (OUTLINE) PPLYGOTL 91

POLYNOMIAL PPOLY 92

PREFIX NAME WITH PPREF 94

RATIONAL BSPLINE PRBSPL 103

RATIONAL POLYNOMIAL PRPOLY 1 12

RAWBLOCK PRAWBLOC 102

REMOVE FOLLOWER OF NAME PREMFOLL 106

REMOVE FROM PREMFROM 107

DEC PASCAL — I5

PS 300 COMMAND NAME APPLICATION PIZ,UCFD U RF PAGE

REMOVE NAME PREM 105

REMOVE PREFIX PREMPREF 108

RESERVE WORKING STORAGE PRSVSTOR 114

ROTATE IN X PROTX 109

ROTATE IN Y PROTY 1 10

ROTATE IN Z PROTZ 1 1 1

SCALE PSCALEBY 1 15

SECTIONING PLANE PSECPLAN 116

SEND 2D MATRIX TO PSNDM2D 139

SEND 2D VECTOR TO PSNDV2D 145

SEND 3D MATRIX TO PSNDM3D 140

SEND 3D VECTOR TO PSNDV3D 146

SEND 4D MATRIX TO PSNDM4D 141

SEND 4D VECTOR TO PSNDV4D 147

SEND BOOLEAN TO PSNDBOOL 137

SEND COUNT~DRAWMV TO PSNDPL 142

SEND FIX TO PSNDFIX 138

SEND REAL NUMBER TO PSNDREAL 143

SEND STRING TO PSNDSTR 144

SEND VALUE TO PSNDVAL 148

SEND VECTOR LIST PSNDVL 149

SET CHARACTERS SCREEN ORIENTED PSETCHRS 120

SET CHARACTERS SCREEN ORIENTED/FIXED PSETCHRF 1 19

SET CHARACTERS WORLD ORIENTED PSETCHRW 121

SET COLOR PSETCOLR 123

DEC PASCAL - 16

PS 3n0 COMMAND NAME A~'PLICATION PROC~DUR,E PA(_~E

SET COLOR BLENDING PSETBLND 1 18

SET CONDITIONAL BIT PSETBIT 1 17

SET CONTRAST PSETCONT 124

SET CSM PSETCSM 125

SET DEPTH CLIPPING PSETDCL 127

SET DISPLAY PSETDONF 128

SET DISPLAYS ALL PSETDALL I26

SET INTENSITY PSETINT 129

SET LEVEL OF DETAIL PSETLOD 130

SET LOGICAL DEVICE COORDINATES PRASLD 97

SET LOOK UP TABLE RANGE PRASLR 98

SET PICKING INDENTIFIER PSETPID 131

SET PICKING LOCATION PSETPLOC 132

SET PICKING SWITCH PSETPONF 134

SET PIXEL LOCATION PRASCP 95

SET PLOTTER PSETPLOT 13 3

SET RATE PSETR 135

SET RATE EXTERNAL PSETREXT 136

SETUP CNESS PSETCNES 122

SOLID RENDERING PSOLREND 150

STANDARD FONT PSTDFONT 152

SURFACE RENDERING PSURREND 151

TRANSLATE PTRANSBY 153

VARIABLE NAME PVAR 154

DEC PASCAL - 17

PS 300 (;OMMANI~ NAME APPLIC;AT[UN Px,U(;LI)URE PA(~I~:

VECTOR_LIST PVECBEGN 155
PVECEND 157
PVECLIST 158

VIEWPORT PVIEWP 159

WINDOW PWINDOW 160

WRITE LOOK UP TABLE ENTRIES PRASLU 99

XFORM MATRIX PXFMATRX 1 b2

XFORM VECTOR LIST PXFVECTR 163

DEC PASCAL — 18

The following is a list of the Utility Procedures.

UTILITY PRICED URE PAGE

PATTACH 21

PDETACH 22

PGET 2 3

PGETWAIT 24

PMUXCI 25

PMUXG 26

PMUXPARS 27

PPURGE 28

PPUTG 29

PPUTPARS 30

DEC PASCAL — 19

DEC VAX/VMS PASCAL GSR PATTACH

UTILITY PROCEDURE

UTILITY PROCEDURE AND PARAMETERS

PROCEDURE PAttach C ~IoDESCR Modifiers P_VaryingType;
PRQCEDURE Error_Handler CError INTEGER));

DEFINITION

This procedure attaches the PS 300 to the communications channel.

If this procedure is not called prior to use of the Application Procedures, the
error code value corresponding to the name: PSE NotAtt: (The PS 300
communications link -has not been established) is generated.

The parameter (Modify) must contain the phrases:

LOGDEVNAM=name/PHYDEVTYP=type

where 'name' refers to the logical name of the device that the GSRs will
communicate with, i.e. TTA6:, TTB2: XMEO:, PS:, etc. and 'type' refers to the
physical device type of the hardware interface that the GSRs will communicate
through. This last argument can only be one of the following three interfaces:

ASYNC (standard RS-232 asynchronous communication interface)
DM R-1 1 (DM R-1 1 high speed interface
PARALLEL (Parallel interface option)

The parameter string must contain EXACTLY one "/" somewhere between the
above phrases. Blanks are NOT allowed to surround the "_" in the phrases. The
Pattach parameter string is not sensitive to upper or lower case.

Example: PAttach ('logdevnam=tta2:/phydevtyp=async', Error_Handler);

where tta2: is the logical device name of the PS 300, and the hardware interface
is standard asynchronous RS-2 3 2.

Example: PAttach ('logdevnam=ps:/phydevtyp=dmr-11', Error_Handler);

where the physical device type is a DMR-11 interface, and where the user has
informed the VAX that the logical symbol: PS refers to the name of the logical
device that the GSRs will communicate with using the following ASSIGN
command:

$ ASSIGN XMDO: PS
$ RUN <application—pgm>

DEC PASCAL — 21

DEC VAX/VMS PASCAL GSR PDETACH

UTILITY PROCEDURE

UTILITY PROCEDURE AND PARAMETERS

PROCEDURE PDetach (PROCEDURE Error Handler (Error INTEGER)>;

DEFINITION

This procedure detaches (disconnects) the communications link established
between the host and the PS 300. This procedure should always be the LAST
GSR procedure invoked by an application program.

DEC PASCAL — 22

DEC VAX/VMS PASCAL GSR PGET

UTILITY PROCEDURE

UTILITY PROCEDURE AND PARAMETERS

PROCEDURE PGet C %DESCR Str P_VaryBufType;
PROCEDURE Error Handler CError INTEGER));

DEFINITION

The Peet procedure is used to ~ poll the PS 300 for input records by requesting a
message that has been sent to the PS 300 function HOST_MESSAGE. The actua,~
message contents and number of bytes read from the PS 300 are returned in: Str.

WARNING

The parameter CStr) MUST be declared to be a
P VaryBuf Type .

If a Peet call is issued and no message exists to be sent back to the host, then the
returned length of the message is 0. Otherwise, the length of the message is greater
than 0, and indicates the true number of bytes in the message.

NOTE

If the default value for input <2> or input <3> of
HOST_MESSAGEB is changed by the user to be something
other than a single carriage return, then the above
description no longer applies. The user should refer to
Appendix B of this manual for a description of
HOST MESSAGEB and its inputs.

DEC PASCAL — 23

DEC VAX/VMS PASCAL GSR PGETWAIT

UTILITY PROCEDURE

UTILITY PROCEDURE AND PARAMETERS

PROCEDURE PGetWait C yoDESCR Str P_VaryBufType;
PROCEDURE Error_Handler CError INTEGER));

DEFINITION

The PGetWait procedure is used to query the PS 300 for input records by
requesting a message that has been sent to the PS 300 function
HOST_MESSAGE. If no message exists to be read, the PGetWait procedure will
wait until a message arrives from HOST_MESSAGE. The actual message
contents and number of bytes read are returned in: Str.

WARNING

The parameter CStr) MUST be declared to be a
P_VaryBufType.

NOTE

If the default value for input <2> of HOST MESSAGEB is
changed by the user to be something other than a single
carriage return, the above description no longer applies.
The user should refer to Appendix B of this manual for a
description of the function and its inputs.

DEC PASCAL — 24

DEC VAX/VMS PASCAL GSR PMUXCI

UTILITY PROCEDURE

UTILITY PROCEDURE AND PARAMETERS

PROCEDURE PMuxCI (NewCIChan INTEGER;
PROCEDURE Error Handler CError INTEGER));

DEFINITION

This procedure defines a new CIROUTE output channel to be accessed as the
Binary CI channel. The standard and default CI channel is 2.

The parameter for NewCIChan is an INTEGER that represents the actual output
channel to be accessed as the Binary CI channel.

This procedure is provided to allow for a PS 300 to be configured with multiple
Command Interpreters.

DEC PASCAL — 25

DEC VAX/VMS PASCAL GSR PMUXG

UTILITY PROCEDURE

UTILITY PROCEDURE AND PARAMETERS

PROCEDURE PMuxG C NewMuxChan INTEGER;
PROCEDURE Error Handler CError INTEGER>);

DEFINITION

The procedure defines the CIROUTE output channel being currently accessed as
the "generic" channel by PPutG. The call is provided to support the future
implementation of custom user—functions connected to various outputs of
CIROUTE.

The parameter for NewMuxChan is the new CI output channel to be used by
PPutG. Examples are shown below:

MuxChn = l : Send to parser. CIROUTE < 3 >
MuxChn = 2: Send to READSTREAM CIROUTE<4>
etc.

DEC PASCAL — 26

~'"'1 DEC VAX/VMS PASCAL GSR PMUXPARS

UTILITY PROCEDURE

UTILITY PROCEDURE AND PARAMETERS

PROCEDURE PMuxPars C NewParseChan INTEGER;
PROCEDURE Error Handler CError INTEGER>>;

DEFINITION

This procedure defines the CIROUTE output channel to be accessed by
PPutPars. This procedure allows for the implementation and support of multiple
Parsers. The standard and default Parser channel• is 1.

DEC PASCAL — 27

DEC VAX/VMS PASCAL GSR PPURGE

UTILITY PROCEDURE

UTILITY PROCEDURE AND PARAMETERS

PROCEDURE PPurge (PROCEDURE Error Handler (Error INTEGER));

DEFINITION

The GSRs alwa; s buffer the output to the PS 300 to achieve maximum I/O
efficiency. PPurge allows the user to explicitly purge the output buffer.

DEC PASCAL — 28

DEC VAX/VMS PASCAL GSR PPUTG

UTILITY PROCEDURE

UTILITY PROCEDURE AND PARAMETERS

PROCEDURE PPutG C ~oDESCR Str P_VaryingType;
PROCEDURE Error Handler CError INTEGER>);

DEFINITION

This procedure sends the bytes specified in the buffer: Str to the current generic
demultiplexing channel of CIROUTE established by: PMuxG.

DEC PASCAL — 29

DEC VAX/VMS PASCAL GSR PPUTPARS

UTILITY PROCEDURE

UTILITY PROCEDURE AND PARAMETERS

PROCEDURE PPutPars C %DESCR Str P_VaryingType;
PROCEDURE Error Handler CError INTEGER>);

DEFINITION

This procedure sends the ASCII characters specified in the buffer: Str to the
PS 300 parser.

DEC PASCAL — 30

DEC VAX/VMS PASCAL GSR PALLPLOT

ALLOCATE PLOTTER

APPLICATION PROCEDURE AND PARAMETERS

PROCEDURE PALLPLOT C N INTERGER;
PROCEDURE Error Handler (Err INTERGER));

DEFINITION

This procedure allocates the plotter specified in PLOT to the calling user. When
the plotter is allocated, formfeed after plot is disabled.

PS 300 COMMAND AND SYNTAX

ALLOCATE PLOTTER Plot;

DEC PASCAL - 31

DEC VAX/VMS PASCAL GSR PATTRIB

ATTRIBUTES

APPLICATION PROCEDURE AND PARAMETERS

PROCEDURE PATTRIB C 9'oDESCR Name P_Varyi ng Type ;
Hue REAL;
Saturation REAL;
Intensity REAL;
Reserved REAL;
Diffused REAL; {default . 75}
Specul ar REAL; {default 4}

Procedure Error Handler CErr INTERGER)>;;

DEFINITION

This procedure defines polygon characteristics used by the rendering firmware in
the PS 340 to produce shaded renderings. Hue, Saturation, and Intensity define
the color of the polygon. Hue specifies an angle between 0 and 360 indicating
the color on a color wheel with full blue begin 0, red being 120 and green being
240. Saturation specifies the saturation of the color with 0 being no co~-lor and 1
being full saturation. Intensity specifies the intensity of the color with 0 being
no color (black) and 1 being full intenstty. Diffused is the proportion of color
contributed by defuse reflection versus that contributed by specular reflection
with a value of 1 eliminating all specular highlighting and a value of 0
eliminating all diffuse reflectivity. Specular adjusts the concentration of
specular highlights in the range of 0 to 10.

PS 300 COMMAND AND SYNTAX

Name := ATTRIBUTES [COLOR Hue[,Sat[Intens]]]
[DIFFUSE Dif fus]
[SPECULAR Specul];

DEC PASCAL — 32

DEC VAX/VMS PASCAL GSR PATTRIB2

Name := ATTRIBUTES ... AND

APPLICATION PROCEDURE AND PARAMETERS

PROCEDURE PATTRIB2 C ~oDESCR Name P_Varying Type;
Huel REAL;
Saturation) REAL;
Intensity) REAL;
Reserved) REAL;
Di ffusedl REAL; {default .75}
Specularl REAL; {default 4}
Hue2 REAL;
Saturation2 REAL;
Intensity2 REAL;
Reserved2 REAL;
Diffused2 REAL; {default .75}
Specularl REAL; {default 4}

Procedure Error Handler CErr INTERGER));;

DEFINITION

This procedure defines polygon characteristics used by the rendering firmware in
the PS 340 to produce shaded renderings. This is similar to the PATTR
procedure but allows f or a second set o f artributes to be defined for the back
side of polygons.

PS 300 COMMAND AND SYNTAX

Name := ATTRIBUTES [COLOR Hue[,Sat[Intens]]]
[DIFFUSE Diffus]
[SPECULAR Specul];

AND [COLOR Hue2[,Sat2[,Inten2]]]
[DIFFUSE Dif f u 2]
[SPECULAR Specu2];

DEC PASCAL — 33

DEC VAXIVMS PASCAL GSR

Name := BEGIN

PBEGIN

APPLICATION PROCEDURE AND PARAMETERS

PROCEDURE PBegin (PROCEDURE Error Handler (Err INTEGER));

DEFINITION

This call is used with the PEND procedure to group a set of viewing and/or
modeling commands so that they appear to be executed simultaneously.

PS 300 COMMAND AND SYNTAX

Name := BEGIN

DEC PASCAL — 34

r1 DEC VAX/VMS PASCAL GSR PBEGINS

Name := BEGIN S

APPLICATION PROCEDURE AND PARAMETERS

PROCEDURE PBegins C ~IoDESCR Name P_VaryingType;
PROCEDURE Error_Handler CErr INTEGER));

DEFINITION

This procedure is used with the PENDS procedure to group a set of viewing
and/or modeling commands so that each element does not need to be explicitly
named to be accessed.

PS 300 COMMAND AND SYNTAX

Name := BEGIN Structure

DEC PASCAL — 35

DEC VAX/VMS PASCAL GSR PBSPL

Name := BSPLINE

APPLICATION PROCEDURE AND PARAMETERS

PROCEDURE PBspl (%DESCR Name P_VaryingType;
Order INTEGER;
OpenClosed: BOOLEAN;
NonPer_Per: BOOLEAN;
Dim INTEGER;
N Vertices: INTEGER;

VAR Vertices P_VectorListType;
KnotCount INTEGER;

VAR Knots P_KnotArrayType;
Chords INTEGER;

PROCEDURE Error Handler CErr INTEGER));

DEFINITION

This procedure evaluates a B—spline curve, allowing the parametric description
of the curve form without having to specify the coordinates of each vector. In
the parametric definitions: -

• Name specifies the name to be assigned to the computed B—spline
~ Order is the order of the curve
• OpenClosed is TRUE for Open and FALSE for Closed
• NonPer_Per is TRUE for Non/periodic and FALSE for Periodic
• Dim is 2 or 3 (2 or 3 dimensions respectively)
• N—Iertices specifies the number of vertices
• lertices specifies the vertices of the B—spline
• KnotCoun ~ specifies the number of knots
• Knots specifies the knot sequence to be used in computing the B—spline
• Chords is the number of vectors to be created
• Error—handler is the user—defined error handler procedure

(Continued on next page)

DEC PASCAL — 36

DEC VAX/VMS PASCAL GSR PBSPL

Name := BSPLINE

(continued)

PS 300 COMMAND AND SYNTAX

Name := BSPLINE
ORDER =Order
OPEN/CLOSED
NONPE RIODIC/PERIODIC
N = N Vert
VERTICES = X(1), Y(1), (Z(1))

X(2), Y(2), (Z(2))
• •1

X(N) •Y(N) .(Z(N))
>

>

KNOTS =Knots (1), ... Knots (KntCnt)
CHORDS =Chords;

NOTE

None of the parameters in the application procedure PBSPL
are optional. The dimension must be specified in the PBSPL
application procedure. In the PS 300 command, dimension is
implied by syntax.

If KnotCount = 0, then the default knot sequence is
generated and the knots array is ignored.

DEC PASCAL — 37

DEC VAX/VMS PASCAL GSR PCHARROT

Name := CHARACTER ROTATE

APPLICATION PROCEDURE AND PARAMETERS

PROCEDURE PCharRot C %DESCR Name P_VaryingType;
Angle REAL;

%DESCR AppliedTo P_VaryingType;
PROCEDURE Error Handler CErr INTEGER>>;

DEFINITION

This procedure rotates the specified characters (AppliedTo) and has the following
parametric definition:

• Angle is the Z-rotation angle in degrees

PS 300 COMMAND AND SYNTAX

Name := CHARacter ROTate Angle (APPLied to AppliedTo};

DEC PASCAL - 38

DEC VAX/VMS PASCAL GSR PCHARS

CHARACTERS CSTEP]

APPLICATION PROCEDURE AND PARAMETERS

PROCEDURE PChars C %DESCR Name P_VaryingType;
TranX REAL;
TranY REAL;
TranZ REAL;
StepX REAL;
StepY REAL;

%DESCR Chars P_VaryingType;
PROCEDURE Error Handler CErr INTEGER));

DEFINITION

This procedure defines a character string (Chars) and specifies its location and
placement. It has the following parametric definitions:

• TranX, TranY, TranZ give the x,y,z coordinates of the location of the
beginning of the character string

• Step X, StepY give the spacing between characters in character unit size

PS 300 COMMAND AND SYNTAX

Name := CHARacters TranX,TranY,TranZ STEP StepX,StepY 'Chars';

DEC PASCAL — 39

DEC VAX/VMS PASCAL GSR PCHARSCA

Name := CHARACTER SCALE

APPLICATION PROCEDURE AND PARAMETERS

PROCEDURE PCharSca C %DESCR Name P_VaryingType;
ScaleX REAL;
ScaleY REAL;

%DESCR AppliedTo P_VaryingType;
PROCEDURE Error Handler CErr INTEGER));

DEFINITION

This procedure creates a uniform 2x2 scale matrix to scale the specified
characters (AppliedTo). It has the following parametric definition:

• ScaleX, ScaleY give the scaling factors for the x,y axes

PS 300 COMMAND AND SYNTAX

Name := CHARacter SCALE ScaleX, ScaleY (APPLied to AppliedTo);

DEC PASCAL — 40

n DEC VAX/VMS PASCAL GSR PCONNECT

Name := CONNECT

APPLICATION PROCEDURE AND PARAMETERS

PROCEDURE PConnect C %DESCR Source P VaryingType;
Out INTEGER;
Inp INTEGER;

iovL.~t.~~ vc ~ ~ ~ _v u~ ~r ~ ~~y ~ yNc ~

PROCEDURE Error Handler CErr INTEGER));

DEFINITION

This procedure connects the output (Out) of the function instance (Source) to the
input (Inp) of the function instance or display data structure (Dest).

PS 300 COMMAND AND SYNTAX

CONNECT Source <Out>:<Inp> Dest;

DEC PASCAL — 41

DEC VAX/VMS PASCAL GSR PCOPYVEC

name := COPY

APPLICATION PROCEDURE AND PARAMETERS

PROCEDURE PCopyVec (%DESCR Name P_VaryingType;
~oDESCR CopyFrom P_VaryingType;

Start INTEGER;
Count INTEGER;

PROCEDURE Error Handler CErr INTEGER>>;

DEFINITION

This procedure creates a vector list (Name) containing a group of consecutive
vectors copied from another vector list (CopyFrom) where 'Start' is the first
vector to be copied and 'Count' is the number of vectors to be copied.

PS 300 COMMAND AND SYNTAX

Name := COPY CopyFrom (START=) Start (,) (COUNT=) Count;

DEC PASCAL — 42

DEC VAX/VMS PASCAL GSR PDALLPLT

Name := DEALLOCATE PLOTTER

APPLICATION PROCEDURE AND PARAMETERS

PROCEDURE PDALLPLT C N INTEGER;
PROCEDURE Error Handler CErr INTEGER));

DEFINITION

This procedure deallocates a plotter previously allocated to the calling user.

PS 300 COMMAND AND SYNTAX

DEALLOCATE PLOTTER Plot;

DEC PASCAL — 43

DEC VAX/VMS PASCAL GSR PDECLOD

Name := DECREMENT LEVEL OF DETAIL

APPLICATION PROCEDURE AND PARAMETERS

PROCEDURE PDecLOD C %DESCR Name P_VaryingType;
%DESCR AppliedTo P_VaryingType;

PROCEDURE Error Nandler CErr INTEGER));

DEFINITION

This procedure decrements the current level of detail by 1.

PS 300 COMMAND AND SYNTAX

Name := DECrement LE1/el_of_detail (APPLied to AppliedTo);

DEC PASCAL — 44

DEC VAX/VMS PASCAL GSR PDEFPATT

Name := PATTERN

APPLICATION PROCEDURE AND PARAMETERS

PROCEDURE PDEFPATT (~oDESCR Name 1 P_VaryingType;
Segments INTEGER;

VAR Pattern P_PatternType;
Continuous BOOLEAN;
Match BOOLEAN;
Length REAL;

PROCEDURE Error Handler C Err INTEGER>);

DEFINITION

This procedure defines a pattern that can be used to pattern a vector list or
curve. Segs defines the number of integers used to define the pattern, those
integers given by pattrn. Contin tells whether or not patterning is to go across
multiple vectors. Match tells if the pattern length is to be adjusted to make the
patterning terminate precisely at the endpoints. Length gives the pattern length.

PS 300 COMMAND AND SYNTAX

Name := PATTERN Pattrn [Pattrn(2)...Pattrn(Segs)]
[AROUND CORNERS] [MATCH/NOMATCH] LENGTH
Length;

DEC PASCAL — ~5

DEC VAXIVMS PASCAL GSR PDELETE

DELETE

APPLICATION PROCEDURE AND PARAMETERS

PROCEDURE PDelete C %DESCR Name P_VaryingType;
PROCEDURE Error Handler CErr INTEGER));

DEFINITION

This procedure deletes any previously defined data structure name (Name).
After a PDelete call is issued, all functions and data structures referring to
(Name) will no longer include the data that was associated with (Name).

PS 300 COMMAND AND SYNTAX

DELete Name;

DEC PASCAL — 46

DEC VAX/VMS PASCAL GSR PDELWILD

DEL NAME*

APPLICATION PROCEDURE AND PARAMETERS

PROCEDURE PDELWILD C %DESCR Name P_VaryingType;
PROCEDURE Error Nandler C Err INTEGER>);

DESCRIPTION

This procedure deletes all names that begin with the characters specified in the
parameter Name.

PS 300 COMMAND AND SYNTAX

DELETE Name;

DEC PASCAL - 47

DEC VAX/VMS PASCAL GSR PDISC

DISCONNECT

APPLICATION PROCEDURE AND PARAMETERS

PROCEDURE PDisc (%DESCR Source P VaryingType;
Out INTEGER;
Inp INTEGER;

%DESCR Dest P_VaryingType;
PROCEDURE Error Handler CErr INTEGER));

DEFINITION

This procedure disconnects the specified output number (Out) of function
instance (Source) from the input (Inp) of the function instance or display data
structure (Dest).

PS 300 COMMAND AND SYNTAX

DISCONNect Source <Out>:<Inp> Dest;

DEC PASCAL — 48

DEC VAX/VMS PASCAL GSR PDISCALL

DISCONNECT Source:ALL

APPLICATION PROCEDURE AND PARAMETERS

PROCEDURE PDiscAll C %DESCR Source P_VaryingType;
PROCEDURE Error Handler (Err INTEGER));

DEFINITION

This procedure disconnects all outputs of (Source) from all inputs to function
instances or display data structures that it was previously connected to.

PS 300 COMMAND AND SYNTAX

DISCONNect Source:ALL;

DEC PASCAL — 49

DEC VAX/VMS PASCAL GSR PDISCOUT

DISCONNECT <OUT>

APPLICATION PROCEDURE AND PARAMETERS

PROCEDURE PDisc0ut (%DESCR Source P_VaryingType;
Out INTEGER;

PROCEDURE Error Handler CErr INTEGER));

DEFINITION

This procedure disconnects the output (Out) of the function instance (Source)
from all inputs to function instances or display data structures that it was
previously connected to.

PS 300 COMMAND AND SYNTAX

DISCONNect Source <Out>:ALL;

DEC PASCAL — 50

DEC VAX/VMS PASCAL GSR PDISPLAY

DISPLAY

APPLICATION PROCEDURE AND PARAMETERS

PROCEDURE PDisplay (%DESCR Name P_VaryingType;
PROCEDURE Error Handler CErr INTEGER>);

DEFINITION

This procedure displays a data structure (Name).

PS 300 COMMAND AND SYNTAX

DISPIay Name;

DEC PASCAL - 51

GEC VAX/VMS PASCAL GSR

END

PEND

APPLICATION PROCEDURE AND PARAMETERS

PROCEDURE PEnd (PROCEDURE Error Handler (Err INTEGER));

DEFINITION

This procedure is used with the PBEGIN procedure to group a set of viewing
and/or modeling commands so that they appear to be executed simultaneously.

PS 300 COMMAND AND SYNTAX

END;

DEC PASCAL — 52

DEC VAX/VMS PASCAL GSR PENDS

END S

APPLICATION PROCEDURE AND PARAMETERS

PROCEDURE PEnds (PROCEDURE Error Handler (Err INTEGER));

DEFINITION

This procedure is used with the PBEGINS procedure to group a set of viewing
and/or modeling commands so that each element does not need to be explicitly
named to be accessed.

PS 300 COMMAND AND SYNTAX

END_Structure;

DEC PASCAL — 5 3

DEC VAX/VMS PASCAL GSR PENDOPT

END OPTIMIZE

APPLICATION PROCEDURE AND PARAMETERS

PROCEDURE PEndOpt (PROCEDURE Error_Handler CErr INTEGER));

DEFINITION

This procedure is used with the POptStru procedure. U`~'hen POptStru is called, it
places the PS 300 in an "optimization mode" in which certain elements of the
display data structure are created in a way that minimizes Display Processor
traversal time. PEndOpt must be called to complete the sequence.

It is strongly suggested that users familiarize themselves with the OPTIMIZE
command documentation in the PS 300 Command Summary before using this
procedure to learn the full ramifications and contraints of this command.

PS 300 COMMAND AND SYNTAX

END OPTIMIZE;

DEC PASCAL - 54

DEC VAX/VMS PASCAL GSR PERAPATT

ERASE PATTERN FROM

APPLICATION PROCEDURE AND PARAMETERS

PROCEDURE PERAPATT C %DESCR Namel P_VaryType;
PROCEDURE Error_Handler C Err INTEGER));

DESCRIPTION

This procedure removes a pattern from name if name is a patterned vector list
or curve.

PS 300 COMMAND AND SYNTAX

ERASE PATTERN FROM Name;

DEC PASCAL — 55

DEC VAX/VMS PASCAL GSR PEYEBACK

Name : = EYE BACK

APPLICATION PROCEDURE AND PARAMETERS

PROCEDURE PEyeBack C %DESCR Name P_VaryingType;
Di stBack REAL;
Di stHori z REAL;
DistVert REAL;
Wide REAL;
Front REAL;
Back REAL;

%DESCR AppliedTo PVaryingType;
PROCEDURE Error Handler (Err INTEGER));

DEFINITION

This procedure specifies a viewing pyramid with the following parametric
definitions:

• DistBack is the perpendicular distance of the eye from the plane of the
viewport

• DistHoriz is the distance of the eye right or left from the viewport
center (positive for right/negative for left)

• Distl/ert is the distance from the eye up or down from the viewport
center (positive for up/negative for down)

• Wide is the width of the viewport

• Front is the front boundary of the frustum of the viewing pyramid

• Back is the back boundary of the frustum of the viewing pyramid

PS 300 COMMAND AND SYNTAX

Name := EYE BACK distback
[left]/[right] disthoriz
[up]/[down] distvert
width of the viewport
Front Boundary =front
Back Boundary =back
(APPLied to Apply);

(Continued on next page)

DEC PASCAL — 56

DEC VAX/VMS PASCAL GSR PEYEBACK

Name := EYE BACK

(continued)

NOTE

PS 300 syntax allows specification of both left and right and
up and down in the same command, which results in an
accumulation of right/left and up/down. PEYEBACK allows
only signed real numbers that if positive specify right and
up, and if negative specify left and down.

The following example illustrates this point.

Example:

eye_spec:= eye back .6 left 2.5 right 3 up 2.1 down 6 from screen area 2
wide front=.0001 back=100 then apply;

is equivalent to:

eye spec:= eye back .6 right .5 down -3.9 from screen area 2 wide
front=.0001 back=100 then apply;

and has the same effect as:

PEYEBACK ('EYE_SPEC', 0.6,0.5,-3.9,2,0.0001,100,'APPLY',Error_Handler);

DEC PASCAL - 57

DEC VAX/VMS PASCAL GSR PFNINST

Name := F:FUNCTION NAME

APPLICATION PROCEDURE AND PARAMETERS

PROCEDURE PFnInst C %DESCR Name P_VaryingType;
%DESCR FcnName P_VaryingType;

PROCEDURE Error Handler CErr INTEGER>);

DEFINITION

This procedure creates an instance o f an intrinsic PS 300 function.

PS 300 COMMAND AND SYNTAX

Name := F:FcnName;

DEC PASCAL - 58

DEC VAX/VMS PASCAL GSR PFNINSTN

Name := F: FUNCTION NAME CINOUTS)

APPLICATION PROCEDURE AND PARAMETERS

PROCEDURE PFnInstN C %DESCR Name P_VaryingType;
%DESCR FcnName P_VaryingType;

In_Outs INTEGER;
PROCEDURE Error_Handler CErr INTEGER)>;

DEFINITION

This procedure creates an instance of an intrinsic PS 300 function where either
the number of inputs or outputs is user—defined. The function name (Name) is
followed by a number (In_Outs) that describes the number of inputs or outputs to
be created with that function. Intrinsic functions that are used by this procedure
are F:Route(n), F:RouteC(n), F:Inputs_Choose(n), and F:SYNC(n).

PS 300 COMMAND AND SYNTAX

Name := F:FcnName (InOuts);

DEC PASCAL — 59

DEC VAX/VMS PASCAL GSR

FOLLOW WITH

PFOLL

APPLICATION PROCEDURE AND PARAMETERS

PROCEDURE PFoll (%DESCR Name P_VaryingType;
PROCEDURE Error Handler (Err INTEGER));

DEFINITION

This procedure follows a named operation node (Name) with another operation
node. To use the PFOLL procedure, the user must first call this procedure and,
then the user MUST IMMEDIATELY call the procedure corresponding to the
"transformation-or-attribute command".

PS 300 COMMAND AND SYNTAX

FOLLOW name WITH transformation-or-attribute command;

Example:

PS 300 command:

Follow xrot with scale by .5;

would be

VAR Vector : P 1/ectorType;

PFOLL ('xrot',Error-Handler);
PSCALEBY (",V,",Error-Handler);

DEC PASCAL - 60

DEC VAX/VMS PASCAL GSR PFONT

Name := CHARACTER FONT

APPLICATION PROCEDURE AND PARAMETERS

PROCEDURE PFont C °IoDESCR Name P_VaryingType;
%DESCR FontName P_VaryingType;
%DESCR AppliedTo P_VaryingType;

PROCEDURE Error Handler CErr INTEGER));

DEFINITION

This procedure establishes a character font (FontName) as the working font for
the specified display data structure (AppliedTo).

PS 300 COMMAND AND SYNTAX

Name := CHARACTER FONT FontName (APPLied to AppliedTo);

DEC PASCAL_ — 61

DEC VAX/VMS PASCAL GSR PFORGET

FORGE T

APPLICATION PROCEDURE AND PARAMETERS

PROCEDURE PForget C %DESCR Name P_VaryingType;
PROCEDURE Error Handler CErr INTEGER));

DEFINITION

This procedure removes (Name) from the display and from the name directory,
where (Name) is any previously defined data structure name.

PS 300 COMMAND AND SYNTAX

FORget Name;

DEC PASCAL — b2

DEC VAX/VMS PASCAL GSR PFOV

Name := FIELD OF VIEW

APPLICATION PROCEDURE AND PARAMETERS

PROCEDURE PFov C %DESCR Name P_VaryingType;
Angle REAL;
Front REAL;
Back REAL;

~aDESCR AppliedTo P_VaryingType;
PROCEDURE Error Handler CErr INTEGER));

DEFINITION

This procedure specifies a right rectangular viewing pyramid with the following
parametric definitions:

• Angle is the angle of view from the eye in degrees
• Front is the front boundary of the frustum of the viewing pyramid
• Back is the back boundary of the frustum of the viewing pyramid

PS 300 COMMAND AND SYNTAX

Name := Field_Of_View Angle
FRONT boundary =Front
BACK boundary =Back
(APPLied to AppliedTo);

DEC PASCAL — 6 3

DEC VAXIVMS PASCAL GSR PIFBIT

Name : = I F CONDITIONAL BI T

APPLICATION PROCEDURE AND PARAMETERS

PROCEDURE PIfBit (%DESCR Name P VaryingType;
BitNum INTEGER;
OnOff BOOLEAN;

%DESCR AppliedTo P_VaryingType;
PROCEDURE Error Handler CErr INTEGER>);

DEFINITION

This procedure refers to a data structure if an attribute bit has a specified
setting (On or Off), with the following parametric definitions:

• BitNu m indicates which bit to test
• OnOff is TRUE for ON and FALSE for OFF

PS 300 COMMAND AND SYNTAX

Name := IF conditional_BIT BitNum is OnOff (THEN AppliedTo);

DEC PASCAL — 64

DEC VAX/VMS PASCAL GSR PIFLEVEL

Name := IF LEVEL OF DETAIL

APPLICATION PROCEDURE AND PARAMETERS

PROCEDURE PIfLevel (goDESCR Name P_VaryingType;
Level INTEGER;
Comparison: INTEGER;

%DESCR AppliedTo P_VaryingType;
PROCEDURE Error_Handler CErr INTEGER));

DEFINITION

This procedure refers to a data structure if the level of detail attribute has a
specified relationship to a given number, with the following parametric
definitions:

• Level indicates the number to compare with the current level of detail
• Comparison corresponds to the comparison test to be performed.

PS 300 COMMAND AND SYNTAX

Name := IF LEVEL_of_detail Comp Level (THEN AppliedTo);

~ These mnemonics may be referenced directly by the user if PROCONST.PAS is
INCLUDED in the procedure. See the section on Programming Suggestions for
a description of PROCONST.PAS. A short table of the mnemonics and their
INTEGER value is given below.

Mnemonic Comparision INTEGER Value

P_LES < 0
P_EQL = 1
P_LE QL < = 2
P_G T R > 3
P_NEQL < > 4
P GEQL >= 5

DEC PASCAL — 65

DEC VAX/VMS PASCAL GSR PIFPHASE

Name := IF PHASE

APPLICATION PROCEDURE AND PARAMETERS

PROCEDURE PlfPhase C %DESCR Name P_VaryingType;
OnOff BOOLEAN;

%DESCR AppliedTo P_VaryingType;
PROCEDURE Error Handler CErr INTEGER));

DEFINITION

This procedure refers to a data structure if the PHASE attribute is in the
specified state, ON or OFF. It has the following parametric definition:

• Ono f f is TRUE for On and FALSE for 0 f f

PS 300 COMMAND AND SYNTAX

Name := IF PHASE OnOf f (THEN AppliedTo

DEC PASCAL - 6b

("1
DEC VAX/VMS PASCAL GSR PILLUMIN

Name := YLLUMINATION

APPLICATION PROCEDURE AND PARAMETERS

PROCEDURE PILLUMIN C %DESCR Name P_VaryingType;
X REAL;
Y REAL;
Z REAL ;
Hue REAL;
Saturation REAL;
Intensity REAL;
Ambient REAL: {default 1}

PROCEDURE Error_Handler ~ Err INTEGER));

DESCRIPTION

This procedure defines polygon illumination characteristics used by the rendering
firmware in the PS 340 to produce shaded renderings. The direction to the light
source is specified by x, y, z. The color is specified by Hue, Sat and Intens. Its
contribution to ambient lighting is specified by Ambien (0 to 1).

PS 300 COMMAND AND SYNTAX

Name := ILLUMINATION X, Y, Z
[COLOR Hue[,Sat[,Intens]]]
[AMBIENT Ambien];

DEC PASCAL — 67

DEC VAX/VMS PASCAL GSR PINCL

INCLUDE

APPLICATION PROCEDURE AND PARAMETERS

PROCEDURE PIncl C %DESCR Namel P_VaryingType;
%DESCR Name2 P_VaryingType;

PROCEDURE Error Nandler CErr INTEGER>);

DEFINITION

This procedure is used to include one named display data structure (Name 1) in a
named instance of another display data structure (Name2).

PS 300 COMMAND AND SYNTAX

INCLude Name 1 IN Name2;

DEC PASCAL — 6$

DEC VAX/VMS PASCAL GSR PINCLOD

Name := INCREMENT LEVEL QF DETAIL

APPLICATION PROCEDURE AND PARAMETERS

PROCEDURE PIncLOD C ~oDESCR Name P_VaryingType;
%DESCR AppliedTo P_VaryingType;

PROCEDURE ErrorHandler CErr INTEGER));

DEFINITION

This procedure increments the current level of detail by 1.

PS 300 COMMAND AND SYNTAX

Name := INCRement LEVeI_of_detail (APPLied to AppliedTo);

DEC PASCAL — 69

DEC VAX/VMS PASCAL GSR PINIT

INITIALIZE

APPLICATION PROCEDURE AND PARAMETERS

PROCEDURE PInit (PROCEDURE Error Handler CErr INTEGER));

DEFINITION

This procedure restores the PS 300 to its initial state; there are no user-defined
names, display data structures, or function connections, and no data structures
are displayed.

PS 300 COMMAND AND SYNTAX

INITialize;

DEC PASCAL - 70

DEC VAX/VMS PASCAL GSR PINITC

INITIALIZE CONNECTIONS

APPLICATION PROCEDURE AND PARAMETERS

PROCEDURE PInitC (PROCEDURE Error Handler (Err INTEGER));

DEFINITION

This procedure breaks all user—defined function connections.

PS 300 COMMAND AND SYNTAX

INITialize CONNections;

DEC PASCAL - 71

DEC VAX/VMS PASCAL GSR PINITD

INITIALIZE DISPLAYS

APPLICATION PROCEDURE AND PARAMETERS

PROCEDURE PInitD (PROCEDURE Error_Handler CErr INTEGER)>;

DEFINITION

This procedure removes all display data structures from the display list.

PS 300 COMMAND AND SYNTAX

INITialize DISPIays;

DEC PASCAL — 72

DEC VAX/VMS PASCAL GSR PINITN

INITIALIZE NAMES

APPLICATION PROCEDURE AND PARAMETERS

PROCEDURE PInitN (PROCEDURE Error Handler (Err :-INTEGER));

DEFINITION

This procedure clears the name dictionary of all display data structure and
function instance names.

PS 300 COMMAND AND SYNTAX

INITialize NAMES;

DEC PASCAL — 73

DEC VAX/VMS PASCAL GSR PINST

Name1:= INSTANCE OF

APPLICATION PROCEDURE AND PARAMETERS

PROCEDURE PInst (%DESCR Namel P_VaryingType;
%DESCR Name2 P_VaryingType;

PROCEDURE Error_Handler CErr INTEGER>>;

DEFINITION

This procedure creates an instance node (Name 1) with pointers to the data
structure referenced (Name2).

PS 300 COMMAND AND SYNTAX

Name 1:= INSTance (of Name2);

DEC PASCAL — 74

P"1
DEC VAX/VMS PASCAL GSR PLABADD

Name := LABELS Cno corresponding command)

APPLICATION PROCEDURE AND PARAMETERS

PROCEDURE PLabAdd C

DEFINITION

X REAL ;
Y REAL ;
Z REAL;

%DESCR Str P_VaryingType;
PROCEDURE Error_Handler CErr INTEGER>>;

This procedure is the middle call in creating a. label block. It must be called to
add a label to a previously opened label block_ created by the call to: PLaBegn.
To create a label block, the user must call the procedures:

PLabBegn
PLabAdd (This procedure may be called multiple times)
PLabEnd

PS 300 COMMAND AND SYNTAX

Together, ,the above 3 procedures implement the PS 300 command:

Name := LABELS x, y, z, 'string'

x, y, z, 'string';

DEC PASCAL - 75

DEC VAX/VMS PASCAL GSR PLABBEGN

Name := LABELS (no corresponding command)

APPLICATION PROCEDURE AND PARAMETERS

PROCEDURE PLabBegn (~IoDESCR Label Block: P_VaryingType;
StepX REAL;
StepY REAL;

PROCEDURE Error Handler CErr INTEGER>);

DEFINITION

This procedure must be called to create and open a label block. To complete the
label block call and specif y a label block, the user must use:

PLabBegn
PLabAdd (This procedure may be called multiple times)
PLabEnd

PS 300 COMMAND AND SYNTAX

Together, the above 3 procedures implement the PS 300 command:

Name := LABELS x, y, z, 'string'

x, y, z, 'string';

NOTE

The stepx and stepy parameters allow the steps between the
label blocks to be specified in terms of x and y. If stepx and
stepy were specified as 1 and 0 respectively, each
successive character would be displayed one unit to the
right of and horizontally aligned with the preceding
character. This applies to all labels within the label block.
It should prove useful for those users who wish to make
vertical or slanted label blocks. Users cannot send to <step>
of a label block; a message from the CI results.

DEC PASCAL — 76

DEC VAXIVMS PASCAL GSR PLABEND

Name := LABELS Cno corresponding command)

APPLICATION PROCEDURE AND PARAMETERS

PROCEDURE PLabEnd (PROCEDURE Error_Handler (Err INTEGER));

DEFINITION

This procedure must be called to complete the creation of a label block. To
completely specify a label block, the user must call the procedures:

PLabgegn,
PLabAdd (This procedure may be called multiple times), and lastly,
PLabEnd.

PS 300 COMMAND AND SYNTAX

Together, the above 3 procedures implement the PS 300 command:

Name := LABELS x, y, z, 'string'

x, y, z, 'string';

DEC PASCAL — 77

DEC VAX/VMS PASCAL GSR PLOOKAT

Name := LOOK AT FROM

APPLICATION PROCEDURE AND PARAMETERS

PROCEDURE PLookAt C %DESCR Name P_VaryingType;
VAR At P_VectorType;
VAR From P_VectorType;
VAR Up P_VectorType;

%DESCR AppliedTo P_VaryingType;
PROCEDURE ErrorHandler CErr INTEGER)>;

DEFINITION

This procedure, when used with PWINDOW, PEYEBACK, or PFOV, fully specifies
the portion of the data space that will be viewed as well as the viewer's
orientation in data space. It has the following parametric definitions:

• At is the point being looked at in data space coordinates
• From is the location of the viewer's eye in data space coordinates
• Up indicates the screen "u p" direction

PS 300 COMMAND AND SYNTAX

Name := LOOK AT At FROM From UP Up (APPLied to AppliedTo);

DEC PASCAL — 78

DEC VAX/VMS PASCAL GSR ~ PMAT2x2

Name := MATRIX 2x2

APPLICATIO(\I PROCEDURE AND PARAf~/IET`ERS

PROCEDURE PMat2x2 C yoDESCR Name P_Varyi"ngType;
- .VAR Mat P_MatrixType;

- %D~SCR App~liedTo P_VaryingType;
PROCEDURE Error_Handler CErr INTEGER));

DEFINITION

This procedure creates a special 2x2 transformation matrix that applies to the
specified .data (vector list and/or characters) that follow (AppliedTo).

PS 300 COM~/IAND AND SYNTAX .

Name := Matrix_2x2 Mat (APPLied to AppliedTo);

DEC PASCAL — 79

DEC VAX/VMS PASCAL GSR PMAT3x3

Name := MATRIX 3x3

APPLICATION PROCEDURE AND PARAMETERS

PROCEDURE PMat3x3 C %DESCR Name P_VaryingType;
VAR Mat P_MatrixType;

%DESCR AppliedTo P_VaryingType;
PROCEDURE Error Handler CErr INTEGER>);

DEFINITION

This procedure creates a special 3x3 transformation matrix that applies to the
specified data (vector lists and/or characters} that follow (AppliedTo}.

PS 300 COMMAND AND SYNTAX

Name := Matrix_3x3 Mat (APPLied to AppliedTo);

DEC PASCAL — 80

DEC VAX/VMS PASCAL GSR PMAT4x3

Name := MATRIX 4x3

APPLICATION PROCEDURE AND PARAMETERS

PROCEDURE PMat4x3 C goDESCR Name P_VaryingType;
VAR Mat ~ P_MatrixType;
VAR- Vec P_VectorType;

~IoDESCR AppliedTo P_VaryingType;
PROCEDURE Error Handler CErr INTEGER)>;

DEFINITION

This procedure creates a special 4x3 matrix that applies to the specified data
(vector lists and/or characters) that follow (AppliedTo).

The Matrix 4x3 command is sent in two parts:

1) a 3x3 matrix is sent in Mat
2) a 3d —translation vector (4th row) is sent in Vec

PS 300 COMMAND AND SYNTAX

Name := Matrix_4x3 Mat llec (APPLied to AppliedTo);

DEC PASCAL — 81

DEC VAX/VMS PASCAL GSR PMAT4x4

Name := MATRIX 4x4

APPLICATION PROCEDURE AND PARAMETERS

PROCEDURE PMat4x4 t %DESCR Name P_VaryingType;
VAR Mat P_MatrixType;

%DESCR AppliedTo P_VaryingType;
PROCEDURE Error Handler CErr INTEGER>>;

DEFINITION

This procedure creates a special 4x4 matrix that applies to the specified data
(vector lists and/or characters) that follow (AppliedTo).

PS 300 COMMAND AND SYNTAX

Name := Matrix_4x4 Mat (APPLied to AppliedTo);

DEC PASCAL — 82

DEC VAX/VMS PASCAL GSR PNAMENIL

Name := NIL

APPLICATION PROCEDURE AND PARAMETERS

PROCEDURE PNameNil C %DESCR Name P VaryingType;
PROCEDURE Error Handler (Err INTEGER));

DEFINITION

This procedure names a null data structure. When this procedure is used to
redefine (Name), (Name) is kept in the name directory but any definition
previously associated with (Name)- is removed. 'PForget does just the opposite of
PNameNil.

PS 300 COMMAND AND SYNTAX

Name := NIL;

DEC PASCAL — 83

DEC VAX/VMS PASCAL GSR POPTSTRU

OPTIMIZE STRUCTURE

APPLICATION PROCEDURE AND PARAMETERS

PROCEDURE POptStru (PROCEDURE Error_Handler (Err INTEGER));

DEFINITION

This procedure is used with the PEndOpt procedure. When POptStru is called, it
places the PS 300 in an "optimization mode" in which certain elements of the
display data structure are created in a way that minimizes Display Processor
traversal time. PEndOpt must be called to complete the sequence.

It is strongly suggested that users familiarize themselves with the OPTIMIZE
command documentation in the PS 300 Command Summary before using this
procedure to learn the full ramifications and contraints of this command.

PS 300 COMMAND AND SYNTAX

OPTIMIZE STRUCTURE;

DEC PASCAL — 84

DEC VAX/VMS PASCAL GSR PPATWITH

PATTERN Namel WITH Name2.

APPLICATION PROCEDURE AND PARAMETERS

PROCEDURE PPATWITH C %DESCR Namel P_VaryingType;
~IoDESCR PatternName P_VaryingType;
PROCEDURE Error Handler C Err INTEGER));

DEFINITION

This procedure patterns the curve of the vector list called Name with the
pattern Patnam, where Patnam has been defined with a call to the procedure
PDEFPA.

PS 300 COMMAND AND SYNTAX

PATTERN Name WITH Patnam;

DEC PASCAL — 85

DEC VAX/VMS PASCAL GSR PPLYGATR

Name := POLYGON (ATTRIBUTES - no corresponding command)

APPLICATION PROCEDURE AND PARAMETERS

PROCEDURE PPLYGATR C %DESCR Attr P_VaryingType;
PROCEDURE Error_Handler C Err INTEGER)>;

DEFINITION

This procedure specifies that the attributes named by Attr and specified in a call
to PATTR or PATTR2 apply to all subsequent polygons until superceded by
another call to PPLYGA.

This procedure is one of five procedures used to implement the PS 340 command:

Name :_ [WITH [ATTRIBUTES attr] [OUTLINE r]]
POLYGON [COPLANAR] ([S] x,y,z [N x,y,z])

[[WITH [ATTRIBUTES attr] [OUTLINE r]]
.POLYGON [COPLANAR] ([S] x,y,z [N x,y,z])];

DEC PASCAL — 86

DEC VAX/VMS PASCAL GSR PPLYGBEG

Name := POLYGON CBEGIN - no corresponding command>

APPLICATION PROCEDURE AND PARAMETERS

PROCEDURE PPLYGBEG C %DESCR Name P_VaryingType;
PROCEDURE ErrorHandler C Err INTEGER)>;

DEFINITION

This procedure begins a polygon display list. The parameter (Name) specifies the
name to be given to the polygon display list defined by PPLYGA, PPLYGO AN,D
PPLYGL.

This procedure is one of five procedures used to implement the PS 340 command:

Name :_ [WITH [ATTRIBUTES attr] [OUTLINE r]]
POLYGON [COPLANAR] ([S] x,y,z [N x,y,z])

[[WITH [ATTRIBUTES attr] [OUTLINE r]]
POLYGON [COPLANAR] ([S] x,y,z [N x,y,z])];

A sequence of 3 to 5 procedures must be called to create a polygon display
vector list:

PPLYGB: This procedure is called to begin the creation of a polygon vector list.

PPLYGA: This is an optinal procedure called to specify the attribute to be
applied to the polygon.

PPLYGO: This is an optional procedure called to specify the intensity or color
of the polygon on the calligraphic display.

PPLYGL: This procedure specifies the vectors of each polygon in the polygon
display list.

PPLYGE: This procedure closes the polygon display list.

DEC PASCAL — 87

DEC VAX/VMS PASCAL GSR PPLYGEND

Name := POLYGON LEND - no corresponding command)

APPLICATION PROCEDURE AND PARAMETERS

PROCEDURE PPlygEnd (PROCEDURE Error_Handler (Err INTEGER));

DEFINITION

This procedure ends the definition of a polygon display list. This procedure is
one of five procedures required to implement the PS 340 command:

Name :_ [WITH [ATTRIBUTES attr] [OUTLINE r]]
POLYGON [COPLANAR] ([S] x,y,z [N x,y,z])

[[WITH [ATTRIBUTES attr] [OUTLINE r]]
POLYGON [COPLANAR] ([S] x,y,z [N x,y,z])];

DEC PASCAL - 88

DEC VAX/VMS PASCAL GSR PPLYGLIS

Name := POLYGON CLIST - no corresponding command)

APPLICATION PROCEDURE AND PARAMETERS

PROCEDURE PPiygLis C Coplanar BOOLEAN;
NVertices INTEGER:

VAR Vertices P_VectorListType;
NormSpec BOOLEAN;

VAR Normals P_VectorListType;
PROCEDURE Error Handler CErr INTEGER>);

DEFINITION

This procedure defines another polygon within the polygon display list currently
being constructed. The procedure may be called many times to specif y
additional polygons for the polygon display currently under construction as
named by the PPlygBeg procedure. It has the following parametric definitions:

• Coplanar determines whether the polygon is coplanar with the previous
polygon or not.

TRUE =coplanar, FALSE =not coplanar

• NVertices specifies the number o f vertices in the polygon

• Vertices specifies the vertices of the polygon
Vertices [n].Draw =False defines the edge as 'soft'
Vertices [n].Draw =True defines the edge as 'hard'
Vertices [n].U4[1] =vertex n: x—coordinate;
Vertices [n].V4[2] =vertex n: y—coordinate;
Vertices [n].U4[3] =vertex n: z—coordinate;

• NormSpec specifies if the normals to the vectors defining the polygon
are specified. It is TRUE if normals are specified in the Normals array.
Otherwise NormSpec = FALSE. At the present time, the runtime
software does not support this option. This parameter is presently
ignored and reserved for future use.

• Normals specifies the normals to the corresponding vector and is of the
identical form as: 1ertices. This parameter is reserved for future use
when Normals are supported by the runtime software.

DEC PASCAL — 89

DEC VAXIVMS PASCAL GSR PPLYGLIS

Name := POLYGON CLIST - no corresponding command)

(continued)

This procedure is ane of five procedures required to implement the PS 340
command:

Name :_ [WITH [ATTRIBUTES attr] [OUTLINE r]]
POLYGON [COPLANAR] ([S] x,y,z [N x,y,z])

[[WITH [ATTRIBUTES attr] [OUTLINE r]]
POLYGON [COPLANAR] ([S] x,y,z [N x,y,z])];

DEC PASCAL - 90

DEC VAXIVMS PASCAL GSR PPLYGOTL

Name := POLYGON (OUTLINE - no corresponding command)

APPLICATION PROCEDURE AND PARAMETERS

PROCEDURE PPLYGOTL C %DESCR Outline REAL;
PROCEDURE Error Handler (Err INTEGER));

DESCRIPTION

This procedure specifies that Outlin be used as the color (if between 1 and 360)
or intensity (if between 0 and 1) of all polygons edges on the calligraphic display
until superceded by another call to PPLYGO.

This procedure is one of five procedures used to implement the PS 340 command:

Name :_ [WITH [ATTRIBUTES attr] [OUTLINE r]]
POLYGON [COPLANAR] ([S] x,y,z [N x,y,z])

[[WITH [ATTRIBUTES attr] [OUTLINE r]]
POLYGON [COPLANAR] ([S] x,y,z [N x,y,z])];

DEC PASCAL — 91

DEC VAX/VMS PASCAL GSR PPOLY

Name := POLYNOMIAL

APPLICATION PROCEDURE AND PARAMETERS

PROCEDURE PPoly C %DESCR Name P_VaryingType;
Order INTEGER;
Dimension INTEGER;

VAR Coeffs P VectorListType;
Chords INTEGER;

PROCEDURE Error Handler CErr INTEGER));

DEFINITION

This procedure allows the parametric description of many curve forms without
the need to specify or transfer the coordinates of each constituent vector. It has
the following parametric definitions:

• Order is the order of the polynomial

• Dimension is either 2 or 3 (2 or 3 dimensions respectively)

* Coeffs represent the x,y,z components of the curve
where: Coeffs [i].V4 [1]:= x(order —i+ 1)

Coeffs [i].1/4 [2]:= y(order —i+l)
Coeffs [i].V4 [3]:= z(order —i+1)
Coeffs [i].V4 [4] is not used

To further clarify the description:

Coeffs [1].1/4 [1] := the coefficient that will be applied to the Corder

term

Coeffs [2].V4 [1] := the coefficient that will be applied to the torder-~

term in the resultant x(t) function computed by this
command.

etc.

• Chords is the number of vectors to be created

f--

u

DEC PASCAL — 92

DEC VAX/VMS PASCAL GSR PPOLY

Name := POLYNOMIAL

(continued)

PS 300 COMMAND AND SYNTAX

Name := POLYNOMIAL
ORDER =Order
COEFFICIENTS= X(i), Y(i), Z(i)

X(i-1), Y(i-1), Z(i-1)

X(0) Y(0) • Z(0)
>

>

CHORDS =Chords;

DEC PASCAL - 93

DEC VAX/VMS PASCAL GSR PPREF

PREFIX Name WITH

APPLICATION PROCEDURE AND PARAMETERS

PROCEDURE PPref C %DESCR Name P_VaryingType;
PROCEDURE Error Handler CErr INTEGER)>;

DEFINITION

This procedure prefixes a named display structure (Name) with an operation
node. To prefix something, the user must first call this procedure and then the.
user MUST IMMEDIATELY call the procedure corresponding to the:
"transformation-or-attribute" command.

PS 300 COMMAND AND SYNTAX

PREfix Name WITH transformation-or-attribute command;

Example:

PS 300 command:

Prefix xrot with rotate in z 45;

would be

PPREF ('xrot', Error-Handler);
PROTZ (", 45, Error-Handler);

DEC PASCAL - 94

DEC VAX/VMS PASCAL GSR PRASCP

SET PIXEL LOCATION -RASTER ROUTINE

RASTER PROCEDURES AND PARAMETERS

r'1

PROCEDURE PRASCP C

DEFINITION

x INTEGER;
y INTEGER;

PROCEDURE Error Handler CErr INTEGER));

This procedure establishes the current pixel location relative to the current.

logical device coordinates. (x) and (.y) specify the x,y coordinates of the current

pixel and must be greater than or equal to 0.

(0,0) is the lower—left corner of the logical device coordinates.

DEC PASCAL — 95

DEC VAX/VNlS PASCAL GSR PRASER

ERASE RASTER SCREEN -RASTER ROUTINE

RASTER PROCEDURE AND PARAMETERS

PROCEDURE PRASER t COLOR P_ColorType;
PROCEDURE Error Handler tErr INTEGER)>;

DEFINITION

This procedure is used in WRPIX mode to erase the entire screen to the color
specified in the parameter (Color), where:

Color .red is the red index
Color ,green is the green index
Color .blue is the blue index

The index refers to the color table that contains the actual value used for display.

DEC PASCAL — 96

DEC VAX/VMS PASCAL GSR PRASLD

SET LOGICAL DEVICE COORDINATES -RASTER ROUTINE

RASTER PROCEDURES AND PARAMETERS

PROCEDURE PRASLD C Xmin INTEGER;
Ymin INTEGER;
Xmax INTEGER;
Ymax INTEGER;

PROCEDURE Error Handler CErr INTEGER));

DEFINITION

This procedure sets the logical device coordinates that are used to position the
picture in virtual address space. The raster option has a virtual pixel address
space from -32768 to 2047 in both x and y. The portion of this space that is
actually displayed is from 0 to 639 in x and from 0 to 479 in y. This procedure
can be used to reposition an image in screen space without re-calculation and
only retransmission of the data.

DEC PASCAL - 97

DEC VAX/VMS PASCAL GSR PRASLR

SET LOOK UP TABLE RANGE -RASTER ROUTINE

RASTER PROCEDURES AND PARAMETERS

PROCEDURE PRASLR C

DEFINITION

Min INTEGER;
Max INTEGER;

PROCEDURE Error_Handler CErr INTEGER>);

This procedure is used in INRLUT mode to to set the Look —Up Table range. This
procedure set the limits within which the LUT entries can be changed. (Min) and
(Max) set the minimum and maximum range of the Look —up tables: they must be
greater than or equal to 0 and less than 256.

DEC PASCAL — 98

r"1 DEC VAX/VMS PASCAL GSR PRASLU

WRITE LOOK UP TABLE ENTRIES -RASTER ROUTINE

RASTER PROCEDURES AND PARAMETERS

PROCEDURE PRASLU

DEFINITION

Num INTEGER;
Index INTEGER;

VAR Lutval P RunC~lrArrayType;
PROCEDURE Error Handler (Err INTEGER));

This procedure sets the current Look-Up Table •location and loads the Look-Up
Tables. (Num) specifies the number entries in the Lutval parameter. (Index)
specifies the location in the Look-Up Table where the entries will start being
loaded and (Lutval) is:

Lutval [x], count is the repetition count
Lutval [x]. red is the red index
Lutval [x], green is the green index
Lutval [x]. blue is the blue index

If the index is outside of the range set by PRASLR, the values are not changed in
this location.

DEC PASCAL - 99

DEC VAX/VMS PASCAL GSR PRASVI

ENA6LE/DISABLE RASTER VIDEO -RASTER ROUTINE

RASTER PROCEDURES AND PARAMETERS

PROCEDURE PRASVI (OnOff BOOLEAN;
PROCEDURE Error Handler CErr INTEGER>);

DEFINITION

This procedure is used to turn the Raster video on and off. (OnOf f) is TRUE to
turn the video on, and FALSE to turn the video off.

DEC PASCAL — 100

DEC VAX/VMS PASCAL GSR PRASWP

LOAD PIXEL VALUE -RASTER ROUTINE

RASTER PROCEDURES AND PARAMETERS

PROCEDURE PRASWP (Num INTEGER;
VAR Pixval P_RunClrArrayType;

PROCEDURE Error Handler CErr INTEGER));

DEFINITION

This procedure loads the current pixel location with the pixel values. (Num)

specifies the number of entries in (Pixval). (Pixval) is:

Pixval [x], count is the repetition count
Pixval [x], red is the red index
Pixval [x]. green is the green index
Pixval [x], blue is the blue index.

DEC PASCAL — 101

DEC VAX/VMS PASCAL GSR PRAWBLOC

Name := RAWBLOCK

APPLICATION PROCEDURE AND PARAMETERS

PROCEDURE PRAWBLOC (%DESCR Name P VaryingType;
Size INTEGER;

%DESCR AppliedTo P_VaryingType
PROCEDURE Error Handler C Err INTEGER));

DEFINITION

This procedure creates a structure consisting of a block of contiguous memory
with a length of Size bytes.

PS 300 COMMAND AND SYNTAX

Name := RAWBLOCK Size (APPLIED TO Apply);

DEC PASCAL — 102

DEC VAX/VMS PASCAL GSR PRBSPL

Name := RATIONAL BSPLINE

APPLICATION PROCEDURE AND PARAMETERS

PROCEDURE PRBspI C %DESCR Name P_VaryingType;
Order INTEGER;
OpenClosed BOOLEAN;
NonPer_Per BOOLEAN;
Dim INTEGER;
N Vertices INTEGER;
VAR Vertices: P VectorListType;
KnotCount INTEGER;
VAR Knots P KnotArrayType;
Chords INTEGER;

PROCEDURE Error Handler CErr INTEGER));

DEFINITIO N

This procedure allows the parametric description of a rational B-spline curve
form without having to specify or transfer the coordinates of each constituent
vector. It contains the following parametric definitions:

• Name specifies the name to be given to the computed rational B-spline
• Order is the order of the curve
• OpenClosed is TRUE for Open and FALSE for Closed
• NonPer Per is TRUE for Non/periodic and FALSE for Periodic
• Dim is 2 or 3 (2 or 3 dimensions respectively)
• N-iertices specifies the number of vertices
• Vertices specifies the vertices
• KnotCount is the number of knots
• Knots is the knot sequence
• Chords is the number of vectors to be created

PS 300 COMMAND AND SYNTAX

Name := RATIONAL BSPLINE
ORDER =Order
OPEN/CLOSED
NONPE RIODIC/PERIODIC
N = NVert
1/ERTICES = X(1), Y(1), { Z(1),) W(1)

X(2), Y(2), (Z(2),) W(2)

X(N), Y(N), (Z(N),) W(N)
KNOTS =Knots (1), .o. Knots (KntCnt)
CHORDS =Chords;

(Continued on next page)

DEC PASCAL - 103

DEC VAX/VMS PASCAL GSR PRBSPL

Name := RATIONAL BSPLINE

(continued>

NOTE

None of the parameters in the application procedure
PRBSPL are optional. The dimension must be specified in
the PRBSPL application procedure. In the PS 300 command,
dimension is implied by syntax.

If KnotCount = 0, then the default knot sequence is
generated and the knot array is ignored.

DEC PASCAL — 104

DEC VAX/VMS PASCAL GSR PREM

REMOVE NAME

APPLICATION PROCEDURE AND PARAMETERS

PROCEDURE PRem (%DESCR Name P_VaryingType;
PROCEDURE Error Handler CErr INTEGER)>;

DEFINITION

This procedure removes (Name) from the display list.

PS 300 COMMAND AND SYNTAX

REMove Name;

DEC PASCAL — 105

DEC VAX/VMS PASCAL GSR PREMFOLL

REMOVE FOLLOWER of name

APPLICATION PROCEDURE AND PARAMETERS

PROCEDURE PRemFoll C %DESCR Name P VaryingType;
PROCEDURE Error Handler (Err INTEGER));

DEFINITION

This procedure removes a previously placed 'follower' of (Name).

PS 300 COMMAND AND SYNTAX

REMove FOLL0INER of name;

DEC PASCAL — 106

DEC VAX/VMS PASCAL GSR

REMOVE FROM

PREMFROM

APPLICATION PROCEDURE AND PARAMETERS

PROCEDURE PRemFrom C %DESCR Namel P VaryingType;
%DESCR Name2 P_VaryingType;

PROCEDURE Error Handler CErr INTEGER>);

DEFINITION

This procedure removes an instance of a named display data structure (Name 1)
from an instance node (Name2).

PS 300 COMMAND AND SYNTAX

REMove Name 1 FROM Name2;

DEC PASCAL — 107

DEC VAX/VMS PASCAL GSR PREMPREF

REMOVE PREFIX

APPLICATION PROCEDURE AND PARAMETERS

PROCEDURE PRemPref (%DESCR Name P_VaryingType;
PROCEDURE Error Handler CErr INTEGER>);

DEFINITION

This procedure removes a previously placed prefix.

PS 300 COMMAND AND SYNTAX

REMove PREfix of name;

DEC PASCAL — 108

DEC VAX/VMS PASCAL GSR PROTX

Name := ROTATE in X

APPLICATION PROCEDURE AND PARAMETERS

PROCEDURE PRotX C %DESCR Name P VaryingType;
Ang 1 e REAL ;

%DESCR AppliedTo P_VaryingType;
PROCEDURE Error Handler (Err INTEGER));

DEFINITION

This procedure creates a 3x3 rotation matrix that rotates an object (AppliedTo)
around the x axis relative to world space origin. It has the following parametric
definition:

• Angle is the x rotation angle in degrees

PS 300 COMMAND AND SYNTAX

Name := ROTate in X Angle (APPLied to AppliedTo);

DEC PASCAL - 109

DEC VAX/VMS PASCAL GSR PROTY

Name := ROTATE in Y

APPLICATION PROCEDURE AND PARAMETERS

PROCEDURE PRotY C %DESCR Name P_VaryingType;
Angle REAL;

%DESCR AppliedTo P_VaryingType;
PROCEDURE Error Handler CErr INTEGER));

DEFINITION

This procedure creates a 3x3 rotation matrix that rotates an object (AppliedTo)
around the y axis relative to world space origin. It has the following parametric
definition:

• Angle is the y rotation angle in degrees

PS 300 COMMAND AND SYNTAX

Name := ROTate in Y Angle (APPLied to AppliedTo);

DEC PASCAL - 1 10

DEC VAX/VMS PASCAL GSR PROTZ

Name := ROTATE in Z

APPLICATION PROCEDURE AND PARAMETERS

PROCEDURE PRotZ C %DESCR Name P VaryingType;
Angle REAL;

%DESCR AppliedTo P_VaryingType;
PROCEDURE Error Handler CErr INTEGER>>;

DEFINITION

This procedure creates a 3x3 rotation matrix that rotates an object (AppliedTo)

around the z axis relative to world space origin. It has the following parametric
definition:

• Angle is the z rotation angle in degrees

PS 300 COMMAND AND SYNTAX

Name := ROTate in Z Angle (APPLied to AppliedTo);

DEC PASCAL - 1 1 1

DEC VAX/VMS PASCAL GSR PRPOLY

Name := RATIONAL POLYNOMIAL

APPLICATION PROCEDURE AND PARAMETERS

PROCEDURE PRPoIy C goDESCR Name P_VaryingType;
Order INTEGER;
Dimension INTEGER;

VAR Coeffs P_VectorListType;
Chords INTEGER;

PROCEDURE Error_Handler CErr INTEGER>);

DEFINITION

This procedure allows the parametric description of many curve forms without
having to specify or transfer the coordinates of each constituent vector. It
includes the following parametric definitions:

+ Order is the order of the polynomial

• Dimension is 2 or 3 (2 or 3 dimensions respectively)

• Coeffs represent the x,y,z components of the curve
where: Coeffs [i].V4 [1]:= x(order —i+l)

Coeffs [i].V4 [2]:= y(order —i+l)
Coeffs [i].1/4 [3]:= z(order —i+1)
Coeffs [i]. V4 [4]:= w(order —i+ 1)

To further clarify the description:

Coeffs [1].V4 [1] := the coefficient that will be applied to the torder

term

Coeffs [2].V4 [1] := the coefficient that will be applied to the torder-,

term in the resultant x(t) function computed by this
command.

etc.

• Chords is the number of vectors to be drawn

DEC PASCAL — 1 12

DEC VAX/VMS PASCAL GSR PRPOLY

Name := RATIONAL POLYNOMIAL

tcontinued>

PS 300 COMMAND AND SYNTAX

Name := RATIONAL POLYNOMIAL
ORDER =Order
COEFFICIENTS= X(i), Y(i), Z(i), W(i)

X(i-1), Y(i-1), Z(i-1), W(i-1)

X(0), Y(0), Z(0), W(0)
CHORDS =Chords;

DEC PASCAL — 1 13

DEC VAX/VMS PASCAL GSR PRSVSTOR

RESERVE WORKING STORAGE

APPLICATION PROCEDURE AND PARAMETERS

PROCEDURE PRsvStor (Bytes INTEGER:
PROCEDURE Error Handler CErr INTEGER));

DEFINITION

This procedure is used to reserve working storage space for rendering solids and
surfaces. Working storage space must be reserved explicitly using this
procedure. The parameter (Bytes) represents the number of bytes to be reserved
for working storage.

PS 300 COMMAND AND SYNTAX

Reserve_Working_Storage Bytes;

DEC PASCAL — 1 14

DEC VAX/VMS PASCAL GSR PSCALEBY

Name := SCALE

APPLICATION PROCEDURE AND PARAMETERS

PROCEDURE PScaleBy C %DESCR Name P_VaryingType;
VAR V P_VectorType;

%DESCR AppliedTo P_VaryingType;
PROCEDURE Error Handler (Err INTEGER>>;

DEFINITION

This procedure applies a scale transformation (U) to a specif ied vector list and/or
characters (AppliedTo). It contains the following parametric definition:

• V is a vector containing the x,y,z scale components

PS 300 COMMAND AND SYNTAX

Name := SCALE by V (APPLied to AppliedTo);

DEC PASCAL — 1 15

DEC VAX/VMS PASCAL GSR PSECPLAN

Name := SECTIONING PLANE

APPLICATION PROCEDURE AND PARAMETERS

PROCEDURE PSecPlan (%DESCR Name P_VaryingType;
%DESCR AppliedTo P_VaryingType;
PROCEDURE Error Handler (Err INTEGER)>;

DEFINITION

This procedure creates a sectioning-plane node designating that a descendant
polygon is asectioning-plane. The parameter (Name) supplies the name to be
given to the sectioning-plane operate node. (AppliedTo) supplies the name of the
entity that this node will be applied to.

PS 300 COMMAND AND SYNTAX

Name := SECTIONING_PLANE (Applied to AppliedTo);

DEC PASCAL - 1 16

("1
DEC VAX/VMS PASCAL GSR PSETBIT

Name := SET conditional BIT

APPLICATION PROCEDURE AND PARAMETERS

PROCEDURE PSetBit C %DESCR Name P_VaryingType;
BitNum INTEGER;
OnOff BOOLEAN;

%DESCR AppliedTo P_VaryingType;
PROCEDURE Error Handler (Err INTEGER>>;

DEFINITION

This procedure alters one of the 15 global conditional bits during the traversal of
the data structure. These conditional bits are initially set to OFF. When the
traversal is finished, the bits are restored to their previous values. It contains
the following parametric definitions:

• BitNum is an integer from 0 to 14 corresponding to the conditional bit to
be set to ON or OFF

• OnOff is TRUE for ON and FALSE for OFF

PS 300 COMMAND AND SYNTAX

Name := SET conditional BIT gitNum OnOf f (APPLied to AppliedTo);

DEC PASCAL — 1 17

DEC VAX/VMS PASCAL GSR PSETBLND

Name := SET COLOR BLENDING

APPLICATION PROCEDURE AND PARAMETERS

PROCEDURE PSetBlnd C %DESCR Name P_VaryingType;
Saturation: REAL;

%DESCR AppliedTo P_VaryingType;
PROCEDURE Error_Handler CErr INTEGER));

DEFINITION

This procedure, when used with the ColorBlending parameter of the PVecList
procedure, allows individual vector hue saturations to be set. It contains the
following parametric definition:

• Saturation is. between 0 and 1, where 0 represents no color saturation and
1 represents full color saturation

PS 300 COMMAND AND SYNTAX

Name := SET COLOR BLENDING Saturation (Applied to AppliedTo);

DEC PASCAL — 1 18

DEC VAX/VMS PASCAL GSR PSETCHRF

Name := SET CHARACTERS SCREEN oriented/FIXED

APPLICATION PROCEDURE AND PARAMETERS

PROCEDURE PSetChrF t %DESCR Name P VaryingType;
%DESCR AppliedTo P_VaryingType;

PROCEDURE Error Handler CErr INTEGER>>;

DEFINITION

This procedure sets the type of screen orientation for displayed character
strings. When PSetChrF is used, characters are not affected by rotation or
scaling transformations and they are displayed with full size and intensity.

PS 300 COMMAND AND SYNTAX

Name := SET CHARacters SCREEN oriented/FIXED (APPLied to AppliedTo};

DEC PASCAL — 1 19

DEC VAX/VMS PASCAL GSR PSETCHRS

Name := SET CHARACTERS SCREEN oriented

APPLICATION PROCEDURE AND PARAMETERS

PROCEDURE PSetChrS t %DESCR Name P_VaryingType;
%DESCR AppliedTo P_VaryingType;

PROCEDURE Error Handler (Err INTEGER));

DEFINITION

This procedure sets the type of screen orientation for displayed character
strings. When PSetChrS is used, characters are not affected by rotation or
scaling transformations, but intensity and size will still vary with depth
(Z —position).

PS 300 COMMAND AND SYNTAX

Name := SET CHARacters SCREEN oriented (APPLied to AppliedTo};

DEC PASCAL — 12Q

DEC VAX/VMS PASCAL GSR PSETCHRW

Name SET CHARACTERS WORLD ORIENTED

APPLICATION PROCEDURE AND PARAMETERS

PROCEDURE PSetChrW (%DESCR Name P_VaryingType;
%DESCR AppliedTo P_VaryingType;

PROCEDURE Error Handler CErr INTEGER>>;

DEFINITION

This procedure sets the type of screen orientation for displayed character
strings. When PSetChrW is used, characters are transformed along with any part
of the object containing them.

PS 300 COMMAND AND SYNTAX

Name := SET CHARacters WORLD oriented (APPLied to AppliedTo);

DEC PASCAL — 121

DEC VAX/VMS PASC~4L GSR PSETCNES

SETUP CHESS

APPLICATION PROCEDURE AND PARAMETERS

PROCEDURE PSETCNES C

DEFINITION

Cness BOOLEAN;
Inp INTEGER;

%DESCR Name P_VaryingType;
PROCEDURE Error Handler C Err INTEGER>>;

This procedue is used to define a particular function instance input to be a
constant or trigger input.

PS 300 COMMAND AND SYNTAX

SETUP CHESS TRUE <Inp> Name;
SETUP CHESS FALSE <Inp > Name;

DEC PASCAL -- 122

DEC VAX/VMS PASCAL GSR PSETCOLR

Name := SET COLOR

APPLICATION PROCEDURE AND PARAMETERS

PROCEDURE PSetColr C goDESCR Name P_VaryingType;
Hue REAL ;
Saturation: REAL;

%DESCR AppliedTo P_VaryingType;
PROCEDURE Error Handler CErr INTEGER));

DEFINITION

This procedure specifies the color of an object (AppliedTo). It contains the
following parametric definitions:

• Hue is greater than or equal to 0 and less than 360 with:
0 =pure blue

120 =pure red
240 =pure green

• Saturation is from 0 to 1 with:
0 = no saturation (white)
1 =full saturation

PS 300 COMMAND AND SYNTAX

Name := SET COLOR Hue,Sat (APPLied to AppliedTo);

DEC PASCAL — 123

DEC VAX/VMS PASCAL GSR PSETCONT

Name := SET CONTRAST

APPLICATION PROCEDURE AND PARAMETERS

PROCEDURE PSetCont (%DESCR Name P_VaryingType;
Contrast REAL;

%DESCR AppliedTo P_VaryingType;
PROCEDURE Error_Handler CErr INTEGER>);

DEFINITION

This procedure changes the contrast of the display data structure (AppliedTo). It
contains the following parametric definition:

• Contrast is between 0 and 1, where 0 represents the lowest contrast and
1 represents the highest contrast

PS 300 COMMAND AND SYNTAX

Name := SET CONTrast to Contrast (APPLied to AppliedTo

DEC PASCAL — 124

DEC VAX/VMS PASCAL GSR PSETCSM

Name := SET CSM

APPLICATION PROCEDURE AND PARAMETERS

PROCEDURE PSetCSM C %DESCR Name P_VaryingType;
OnOff BOOLEAN;

%DESCR AppliedTo P_VaryingType;
PROCEDURE Error Handler CErr INTEGER>);

DEFINITION

This procedure allows the CSM to be set to ON or OFF; ON provides extra
brightness and precision, OFF is the default setting and allows for the maximum
number of vectors to be displayed. It contains the following parametric
definition:

• OnOff is TRUE for On and FALSE for Off

PS 300 COMMAND AND SYNTAX

Name := SET CSM OnOf f (APPLied to AppliedTo);

DEC PASCAL — 125

DEC VAX/VMS PASCAL GSR PSETDALL

Name := SET DISPLAYS ALL

APPLICATION PROCEDURE AND PARAMETERS

PROCEDURE PSetDAll C %DESCR Name P_VaryingType;
OnOff BOOLEAN;

%DESCR AppliedTo P_VaryingType;
PROCEDURE Error Handler CErr INTEGER));

DEFINITION

This procedure sets all displays) to ON or OFF. It has the following parametric
definition:

• OnOff is TRUE for On and FALSE for Off

PS 300 COMMAND AND SYNTAX

Name := SET DISPIays ALL OnOf f (APPLied to AppliedTo);

DEC PASCAL — 126

DEC VAX/VMS PASCAL GSR PSETDCL

Name := SET DEPTH CLIPPING

APPLICATION PROCEDURE AND PARAMETERS

PROCEDURE PSetDCL C %DESCR Name P_VaryingType;
OnOff BOOLEAN;

%DESCR AppliedTo P_VaryingType;
PROCEDURE Error Handler (Err INTEGER));

DEFINITION

This procedure enables/disables depth clipping. IIV ith depth clipping Off, data
between the front clipping plane and the eye will appear at full intensity and
data behind the eye will be clipped. It has the following parametric definition:

• OnOff is TRUE for On and FALSE for Off

PS 300 COMMAND AND SYNTAX

Name := SET DEPTH Clipping OnOf f (APPLied to AppliedTo);

DEC PASCAL — 127

DEC VAX/VMS PASCAL GSR PSETDONF

Name := SET DISPLAY

APPLICATION PROCEDURE AND PARAMETERS

PROCEDURE PSetDOnF C %DESCR Name P_VaryingType;
OnOff BOOLEAN ;
N INTEGER;

%DESCR AppliedTo P_VaryingType;
PROCEDURE Error_Handler CErr INTEGER));

DEFINITION

This procedure specifies the display to be set to On or Off and has the following
parametric definitions:

• Nis the number of the display to be set to On or Off
• OnOf f is TRUE for On and FALSE for Of f

PS 300 COMMAND AND SYNTAX

Name := SET DISPIay N OnOf f (APPLied to AppliedTo);

DEC PASCAL — 128

DEC VAX/VMS PASCAL GSR PSETINT

Name := SET INTENSITY

APPLICATION PROCEDURE AND PARAMETERS

PROCEDURE PSetlnt C %DESCR Name P_VaryingType;
OnOff BOOLEAN;
Imin REAL;
Imax REAL;

%DESCR AppliedTo P_VaryingType;
PROCEDURE Error Handler CErr INTEGER>);

DEFINITION

This procedure specifies the intensity variation for depth cueing and has the
following parametric definitions:

• OnOff is TRUE for On and FALSE for Off

• IMin is real number from 0.0 to 1.0 that represents the dimmest intensity
setting

• IMax is a real number from 0.0 to 1.0 that represents the brightest
intensity setting.

PS 300 COMMAND AND SYNTAX

Name := SET INTENSITY OnOf f IMin:IMax (APPLied to AppliedTo);

DEC PASCAL — 129

DEC VAX/VMS PASCAL GSR PSETLOD

dame := SET LEVEL OF DETAIL

APPLICATION PROCEDURE AND PARAMETERS

PROCEDURE PSetLOD (%DESCR Name P_VaryingType;
Level INTEGER;

%DESCR AppliedTo P_VaryingType;
PROCEDURE Error Handler CErr INTEGER>>;

DEFINITION

This procedure alters a global level of detail value temporarily. These
temporary settings allow for conditional referencing to other data structures.
When the traversal of data is finished, the level of detail is restored to its
original level. It contains the following parametric definition:

• Level is an integer from 0 to 32767 that indicates the level of detail
value

PS 300 COMMAND AND SYNTAX

Name := SET LEUeI_of_detail TO Level (APPLied to AppliedTo);

DEC PASCAL — 130

DEC VAX/VMS PASCAL GSR PSETPID

Name := SET PICKING IDENTIFIER

APPLICATION PROCEDURE AND PARAMETERS

PROCEDURE PSetPID (%DESCR Name P_VaryingType;
%DESCR PickId P_VaryingType;
%DESCR AppliedTo P_VaryingType;

PROCEDURE Error Handler CErr INTEGER)>;

DEFINITION

This procedure specifies textual information that, will be reported back if
a

pick
occurs on the specified display data structure (AppliedTo). It contains the
following parametric definition:

• PickId is the text that wile be reported if a pick occurs anywhere within
the structure (AppliedTo)

PS 300 COMMAND AND SYNTAX

n Name := SET PIC King IDentif ier = PickId (APPLied to AppliedTo);

DEC PASCAL — 131

DEC VAX/VMS PASCAL GSR PSETPLOC

Name := SET PICKING LOCATION

APPLICATION PROCEDURE AND PARAMETERS

PROCEDURE PSetPLoc (%DESCR Name P_VaryingType;
Xcenter REAL;
Ycenter REAL;
Xsize REAL ;
Ysize REAL;

%DESCR AppliedTo P_VaryingType;
PROCEDURE Error Handler CErr INTEGER>);

DEFINITION

This procedure specifies a rectangular picking area at (x,y) within the current
viewport. It contains the following parametric definitions:

• Xcenter, Ycenter signify the center of the pick location
• Xsize, Ysize specify the boundaries of the pick rectangle

PS 300 COMMAND AND SYNTAX

Name := SET PICKING LOCation~~ = Xcenter, Ycenter, Xsize, Ysize (APPLied
to AppliedTo);

DEC PASCAL — i 32

r"1
DEC VAX/VMS PASCAL GSR PSETPLOT

Name := SET PLOTTER

APPLICATION PROCEDURE AND PARAMETERS

PROCEDURE PSETPLOT (%DESCR Name P_VaryingType;
OnOff BOOLEAN;

%DESCR AppliedTo P_VaryingType;
PROCEDURE Error Handler C Err INTEGER>);

DEFINITION

This procedure enables or disables the plotting of subsequent nodes in the data
structure.

PS 300 COMMAND AND SYNTAX

Name := SET PLOTTER OnOf f (APPLIED TO Apply);

DEC PASCAL — 13 3

DEC VAX/VMS PASCAL GSR PSETPONF

Name := SET PICKING Switch

APPLICATION PROCEDURE AND PARAMETERS

PROCEDURE PSetPOnf C %DESCR Name P_VaryingType;
OnOff BOOLEAN;

%DESCR AppliedTo P_VaryingType;
PROCEDURE Error Handler tErr INTEGER>>;

DEFINITION

This procedure enables/disables picking for a specified display data structure
(AppliedTo). It contains the following parametric definition:

• OnOff is TRUE for On and FALSE for Off

PS 300 COMMAND AND SYNTAX

Name := SET PICKing On.Of f (APPLied to AppliedTo);

DEC PASCAL — 134

DEC VAX/VMS PASCAL GSR PSETR

Name := SET RATE

APPLICATION PROCEDURE AND PARAMETERS

PROCEDURE PSetR C %DESCR Name P_VaryingType;
Phase0n INTEGER;
Phase0ff INTEGER;
InitOnOff BOOLEAN;
Delay INTEGER;

%DESCR AppliedTo P_VaryingType;
PROCEDURE Error Handler CErr INTEGER>);

DEFINITION

This procedure sets two global duration values (PhaseOn and PhaseOf f) during
the traversal of a specified data structure (AppliedTo). The default phase is off
and never changes unless a SET RATE node is encountered. The procedure has
the following parametric definitions:

• PhaseOn designates the duration of the ON phase
• PhaseOff designates the duration of the OFF phase
• InitOnOff is TRUE for On and FALSE for Off
• Delay is the number of refresh frames in the initial state

PS 300 COMMAND AND SYNTAX

Name := SET RATE PhaOn PhaOf f IniOnF Delay (APPLied to AppliedTo);

DEC PASCAL — 135

DEC VAX/VMS PASCAL GSR PSETREXT

Name := SET RATE EXTERNAL

APPLICATION PROCEDURE AND PARAMETERS

PROCEDURE PSetRExt C %DESCR Name P_VaryingType;
%DESCR AppliedTo P_VaryingType;

PROCEDURE Error Handler CErr INTEGER)>;

DEFINITION

This procedure sets up a data structure that can be used to alter the Phase
attribute using an external source, such as a function network or a message from
the host computer.

PS 300 COMMAND AND SYNTAX

Name := SET RATE EXTernal (APPlied to AppliedTo);

DEC PASCAL — 136

DEC VAX/VMS PASCAL GSR PSNDBOOL

SEND BOOLEAN TO

APPLICATION PROCEDURE AND PARAMETERS

PROCEDURE PSndBool C

DEFINITION

B BOOLEAN;
Inp INTEGER;

%DESCR Dest P_VaryingType;
PROCEDURE Error Handler CErr INTEGER)>;

This procedure sends a Boolean value to input QInp) of a specified function
instance, display data structure, or variable (Dest). It has the following
parametric definitions:

• B is the Boolean value to be sent, TRUE or FALSE

• Inp is the input of the display data structure, function instance, or
variable

PS 300 COMMAND AND SYNTAX

SEND TRUE TO <Inp> Dest;
SEND FALSE TO <Inp> Dest;

~ This mnemonic may be referenced directly by the user if PROCONST.PAS is
INCLUDED in the procedure. See the section on Programming Suggestions for
a description of PROCONST.PAS. A description of inputs to display data
structures and their INTEGER value is given below.

Mnemonic <Input> INTEGER Value

P LAST <LAST> —5

DEC PASCAL — 137

DEC VAX/VMS PASCAL GSR PSNDFIX

SEND FIX TO

APPLICATION PROCEDURE AND PARAMETERS

PROCEDURE PSndFix C

DEFINITION

i INTEGER;
Inp INTEGER;

%DESCR Dest P_VaryingType;
PROCEDURE Error Handler CErr INTEGER>>;

This procedure sends the value of (i) to the specified input (Inp) of the display
data structure, function instance, or variable (Dest). It has the following
parametric definitions:

• i is the integer to be sent

• *Inp is an INTEGER corresponding to the input of a display data
structure, function instance, or variable

PS 300 COMMAND AND SYNTAX

SEND FIX (i) TO < Inp > Dest;

~ These mnemonics may be referenced directly by the user if PROCONST.PAS is
INCLUDED in the procedure. See the section on Programming Suggestions for
a description of PROCONST.PAS. A description of inputs to display data
structures and their INTEGER value is given below.

Mnemonic <Input> INTEGER Ualue

P_Delete
P Clear

<DELETE>
< CLEAR >

—1
_2

DEC PASCAL — 138

DEC VAX/VMS PASCAL GSR PSNDM2D

SEND 2D MATRIX TO

APPLICATIJN PROCEDURE AND PARAMETERS

PROCEDURE PSndM2d

DEFINITION

VAR Mat P_MatrixType;
Inp INTEGER;

%DESCR Dest P_VaryingType;
PROCEDURE Error Handler tErr INTEGER));

This procedure sends a 2x2 matrix to the specified input (Inp) of a display data
structure, function instance, or variable (Dest).

PS 300 COMMAND AND SYNTAX

SEND M2D (Mat) TO <Inp> Dest;

DEC PASCAL — 139

DEC VAX/VMS PASCAL GSR PSNDM3D

SEND 3D MATRIX TO

APPLICATIOf~I PROCEDURE AND PARAMETERS

PROCEDURE PSndM3d

DEFINITION

VAR Mat P_MatrixType;
Inp INTEGER;

%DESCR Dest P_VaryingType;
PROCEDURE Error Handler tErr INTEGER>>;

This procedure sends a 3x3 matrix to the specified input (Inp} of a display data
structure, function instance, or variable (Dest).

PS 300 COMMAND AND SYNTAX

SEND M3D (Mat) TO <Inp> Dest;

DEC PASCAL — 140

DEC VAX/VMS PASCAL GSR PSNDM4D

SEND 4D MATRIX TO

APPLICATION PROCEDURE AND PARAMETERS

PROCEDURE PSndM4d t

DEFINITION

VAR Mat P_MatrixType;
Inp INTEGER;

%DESCR Dest P_VaryingType;
PROCEDURE Error Handler tErr INTEGER>);

This procedure sends a 4x4 matrix to the specified input (Inp) of a display data
structure, function instance, or variable (Dest).

PS 300 COMMAND AND SYNTAX

SEND M4D (Mat) TO <Inp> Dest;

DEC PASCAL — i 41

DEC VAX/VMS PASCAL GSR PSNDPL

SEND Count*DrawMv TO

APPLICATION PROCEDURE AND PARAMETERS

PROCEDURE PSndPL C

DEFINITION

Count INTEGER;
DrawMove BOOLEAN;
Inp INTEGER;

%DESCR Name P_VaryingType;
PROCEDURE Error Handler CErr INTEGER));

This procedure specifies (Count) number of Draws or Moves to be sent to input
(Inp) of a vector list (Dest). It contains the following parametric definitions:

• Count is the number of Draws/Moves
• DrawMove is TRUE for Draw and FALSE for Move

PS 300 COMMAND AND SYNTAX

SEND Count~DrawMove TO <Inp> Dest;

DEC PASCAL — 142

DEC VAX/VMS PASCAL GSR PSNDREAL

SEND Real-number TO

APPLICATION PROCEDURE AND P,~RAMETERS

PROCEDURE PSndReal C

DEFINITION

r REAL ;
inp INTEGER;

%DESCR Dest P_VaryingType;
PROCEDURE Error Handler (Err INTEGER>);

This procedure sends a real number (r) to a specified input (Inp) of a display data
structure, function instance, or variable (Dest).

PS 300 COMMAND AND SYNTAX

SEND r TO <Inp> Dest;

DEC PASCAL - 143

DEC VAX/VMS PASCAL GSR PSNDSTR

SEND 'Str' TO

APPLICATION PROCEDURE AND PARAMETERS

PROCEDURE PSndStr C %DESCR Str P_VaryingType;
Inp INTEGER;

%DESCR Dest P_VaryingType;
PROCEDURE Error Handler CErr INTEGERS);

DEFINITION

This procedure sends the character string (Str) to input (Inp) of (Dest).

PS 300 COMMAND AND SYNTAX

SEND 'Str' TO <Inp> Dest;

~ These mnemonics may be referenced directly by the user if PROCONST.PAS is
INCLUDED in the procedure. See the section on Programming Suggestions for
a description of PROCONST.PAS. A description of inputs to display data
structures and their INTEGER value is given below.

Mnemonic <Input> INTEGER ilalue

P_LAST < LAST > —5
P Substitute <SUBSTITUTE> —6

DEC PASCAL — 144

DEC VAX/VMS PASCAL GSR PSNDV2D

SEND 2D VECTOR TO

APPLICATION PROCEDURE AND PARAMETERS

PROCEDURE PSndV2d C

DEFINITION

VAR V P_VectorType;
Inp INTEGER;

%DESCR Dest P_VaryingType;
PROCEDURE Error Handier CErr INTEGER>);

This procedure sends a 2D vector to the specified input (Inp) of a display data
structure, function instance, or variable (Dest).

PS 300 COMMAND AND SYNTAX

SEND 1/2D (V) TO <Inp> Dest;

~ These mnemonics may be referenced directly by the user if PROCONST.PAS is
INCLUDED in the procedure. See the section on Programming Suggestions for
a description of PROCONST.PAS. A description of inputs to display data
structures and their INTEGER value is given below.

Mnemonic <Input>

P_Append
P_Step
P_Position
P LAST

< APPEND >
<STEP>
< POSITION >
< LAST >

INTEGER 1lalue

0
_3
_ t~
—5

DEC PASCAL — 145

DEC VAX/VMS PASCAL GSR PSNDV3D

SEND 3D VECTOR TO

APPLICATION PROCEDURE AND PARAMETERS

PROCEDURE PSndV3d C

DEFINITION

VAR V P_VectorType;
Inp INTEGER;

%DESCR Dest P_VaryingType;
PROCEDURE Error Handler CErr INTEGER)>;

This procedure sends a 3D vector to the specified input (Inp) of a display data
structure, function instance, or variable (Dest).

PS 300 COMMAND AND SYNTAX

SEND V3D (U) TO <Inp> Dest;

~ These mnemonics may be referenced directly by the user if PROCONST.PAS is
INCLUDED in the procedure. See the section on Programming Suggestions for
a description of PROCONST.PAS. A description of inputs to display data
structures and their INTEGER value is given below.

Mnemonic <Input>

P_Append
P_Step
P_Position
P Last

<APPEND>
<STEP>
< POSITION >
<LAST>

INTEGER l/alue

0
_3

—4
—5

DEC PASCAL — 146

DEC VAX/VMS PASCAL GSR PSNDV4D

SEND 4D VECTOR TO

APPLICATION PROCEDURE AND PARAMETERS

PROCEDURE PSndV4d C

DEFINITION

VAR V P_VectorType;
Inp INTEGER;

%DESCR Dest P_VaryingType;
PROCEDURE Error Handler CErr INTEGER>);

This procedure sends a 4D vector to the specif ie~! input (Inp) of a display data
structure, function instance, or variable (Dest).

PS 300 COMMAND AND SYNTAX

SEND 1/4D (U) TO <Inp> Dest;

~ These mnemonics may be referenced directly by the user if PROCONST.PAS is
INCLUDED in the procedure. See the section on Programming Suggestions for
a description of PROCONST.PAS. A description of inputs to display data
structures and their INTEGER value is given below.

Mnemonic <Input> INTEGER i/alue

P_Append < APPEND > 0
P_Step <STEP> -3
P_Position < POSITION > -4
P Last <LAST> -5

DEC PASCAL - 147

DEC VAX/VMS PASCAL GSR PSNDVAL

SEND VALUE TO CVariable)

APPLICATION PROCEDURE AND PARAMETERS

PROCEDURE PSndVal C %DESCR Varname P VaryingType;
Inp INTEGER;

%DESCR Dest P_VaryingType;
PROCEDURE Error Handler CErr INTEGER>>;

DEFINITION

This procedure sends the current value in variable (1/arname) to input (Inp) of a
display data structure, function instance, or variable (Dest).

PS 300 COMMAND AND SYNTAX

SEND VALUE (11arName) TO <Inp> Dest;

~ These mnemonics may be referenced directly by the user if PROCONST.PAS is
INCLUDED in the procedure. See the section on Programming Suggestions for
a description of PROCONST.PAS. A description of inputs to display data
structures and their INTEGER value is given below.

Mnemonic

P_Append
P_Delete
P_Clear
P_Step
P_Position
P_Last
P Substitute

<Input> INTEGER Ualue

<APPEND>
< DELETE >
< CLEAR > -2
<STEP> -3
< POSITION > -4
<LAST>
< SUBSTITUTE > -6

0
-1

-5

DEC PASCAL - 148

DEC VAXIVMS PASCAL GSR PSNDVL

SEND VECTOR LIST

APPLICATION PROCEDURE AND PARAMETERS

PROCEDURE PSndVL C %DESCR Namel P_VaryingType;
Inp INTEGER;

%DESCR Name2 P_VaryingType;
PROCEDURE Error Handler CErr INTEGER));

DEFINITION

This procedure replaces vectors beginning at vector (Inp) of the vector list
(Name2) with the vectors from the vector list (Name 1).

PS 300 COMMAND AND SYNTAX

SEND UL (Namely TO <Inp> Name2;

~ This mnemonic may be referenced directly by the user if PROCONST.PAS is
INCLUDED in the procedure. See the section on Programming Suggestions for
a description of PROCONST.PAS. A description of inputs to display data
structures and their INTEGER value is given below.

Mnemonic <Input> INTEGER i/alue

P_Append <APPEND> 0
P Last < LAST > —5

DEC PASCAL — 149

DEC VAX/V~IS PASCAL GSR PSOLREND

Name := SOLID RENDERING

APPLICATION PROCEDURE AND PARAMETERS

PROCEDURE PSolRend (%DESCR Name P_VaryingType;
%DESCR AppliedTo P_VaryingType;

PROCEDURE Error Handler CErr INTEGER>>;

DEFINITION

This procedure defines a solid —rendering operate node, marking its descendent
structure so that solid renderings can be performed on it. The parameter (Name)
supplies the name to be given to the solid —rendering operate node. (AppliedTo)
supplies the name of the entity that this operate node will be applied to.

PS 300 COMMAND AND SYNTAX

Name := SOLID_RENDERING (Applied to AppliedTo);

DEC PASCAL — 150

DEC VAXlVMS PASCAL GSR PSURREND

Name := SURFACE RENDERING

APPLICATION PROCEDURE AND PARAMETERS

PROCEDURE PSurRend C %DESCR Name P VaryingType;
%DESCR AppliedTo P_VaryingType;

PROCEDURE Error Handler (Err INTEGER>);

DEFINITION

This procedure defines asurface-rendering operate node, marking its descendent
structure so that surface renderings can be performed on it. The parameter
(Name) supplies the name to be given to the surf ace-rendering operate node.
(AppliedTo) supplies the name of the entity that this operate node will be applied
to.

PS 300 COMMAND AND SYNTAX

Name := SURFACE RENDERING (Applied to AppliedTo);

DEC PASCAL - 151

DEC VAX/VMS PASCAL GSR PSTDFONT

Name := STANDARD FONT

APPLICATION PROCEDURE AND PARAMETERS

PROCEDURE PStdFont C %DESCR Name P_VaryingType;
%DESCR AppliedTo P_VaryingType;

PROCEDURE Error Handler CErr INTEGER>>;

DEFINITION

This procedure establishes the standard PS 300 character font as the working
font.

PS 300 COMMAND AND SYNTAX

Name := STANdard FONT (APPLied to AppliedTo);

DEC PASCAL — x.52

DEC VAX/VMS PASCAL GSR PTRANSBY

Name := TRANSLATE

APPLICATION PROCEDURE AND PARAMETERS

PROCEDURE PTrans6y t %DESCR Name P_VaryingType;
VAR Vec P VectorType;

%DESCR AppiiedTo P_VaryingType;
PROCEDURE Error Handler tErr INTEGER>);

DEFINITION

This procedure applies a translation vector (l/ec) to the specified data structure
(AppliedTo).

All three components (x,y,z) must be specified.

Specifically:

Vec.V4 [1]:= X translation;
vec.V4 [2]:= Y translation;
Vec.V4 [3]:= Z translation;

PS 300 COMMAND AND SYNTAX

Name := TRANslate by Vec (APPLied to AppliedTo);

DEC PASCAL — 153

DEC VAX/VMS PASCAL GSR PVAR

VARIA6LE Name

APPLICATION PROCEDURE AND PARAMETERS

PROCEDURE PVar C %DESCR Name P_VaryingType;
PROCEDURE Error Handler CErr INTEGER)>;

DEFINITION

This procedure defines a PS 300 variable where (Name} contains the nar~~e of the
variable to be created.

PS 300 COMMAND AND SYNTAX

VARiable Name;

DEC PASCAL - 154

DEC VAX/VMS PASCAL GSR PVECBEGN

Name := VECTOR LIST (no corresponding command)

APPLICATION PROCEDURE AND PARAMETERS

PROCEDURE PVecBegn (%DESCR Name P_VaryingType;
VectorCount INTEGER;
B1ockNormalized BOOLEAN;
ColorBlending BOOLEAN;
Dimen INTEGER;
Class INTEGER;

PROCEDURE Error Handler CErr INTEGER)>;

DEFINITION

This procedure must be called to begin a vector list. To send a vector list, the
user must call the procedures:

PVecBegn

PUecList (This procedure may be called multiple times for vector—normalized
vector lists)

PUecEnd

It contains the following parametric definitions:

• Name specifies the name to be given to the vector list

• VectorCount is the number of vectors to be created

• BlockNormalized is TRUE for Block Normalized and FALSE for Uector
Normalized

• ColorBlending is TRUE for Color Blending and FALSE for normal depth
cueing

• Dimen is 2 or 3 (2 or 3 dimensions respectively)

• Class corresponds to a vector class

• Error Handler is the user—defined error—handler procedure

(Continued on next page)

DEC PASCAL — 155

DEC VAX/VMS PASCAL GSR PVECBEGN

Name := VECTOR_~IST Cno corresponding command)

(continued)

Together, the above 3 procedures implement the PS 300 command:

Name := VECTOR_LIST (DOTS, CONNECTED, ITEMIZED, SEPARATE) N=n
<vectors>;

NOTE

The dimension must be specified in the PI/ECBEGN
application procedure. In the PS 300 command, dimension is
implied by syntax.

~ These mner~~onics may be referenced directly by the user if PROCONST.PAS is
INCLUDED in the procedure.

Mnemonic Meaning INTEGER 1/alue

P_Conn Connected 0
P_Dots Dots 1
P Item Itemized 2
P_Sepa Separate 3

DEC PASCAL - 156

DEC VAX/VMS PASCAL GSR PVECEND

Name := VECTOR LIST Cno corresponding command>

APPLICATION PROCEDURE AND PARAMETERS

PROCEDURE PVecEnd CPROCEDURE Error Handler CErr INTEGER>>;

DEFINITION

This procedure must be called to end a vector list. To send a vector list, the
user must call the following procedures:

PVecBegn

PVecList (This procedure may be called multiple times for
vector—normalized vector lists)

P1/ecEnd

Together, the above 3 procedures implement the PS 300 command:

Name := VECTOR LIST (DOTS, CONNECTED, ITEMIZED, SEPARATE} N=n
<vectors>;

DEC PASCAL — 157

DEC VAX/VMS PASCAL GSR PVECLIST

Name := VECTOR_LIST Cno corresponding command)

APPLICATION PROCEDURE AND PARAMETERS

PROCEDURE PVecList C

DEFINITION

NumberOfVectors INTEGER;
VAR Vectors P_VectorListType;

PROCEDURE Error Handler tErr INTEGER>);

This procedure must be called to send a piece of a vector list. For vector
normalized vector lists, this procedure can be called repeatedly many times to
send the vector list down in pieces. For block —normalized vector lists, this
procedure can only be called once. Multiple calls to this procedure are not
permitted for the Block —normalized vector list case. To send a vector list, the
user must call the procedures:

P1/ecBegn

P1/ecList (This procedures r ay be called multiple times for
vector—normalized vector lists)

P1/ecEnd

Together, the above 3 procedures implement the PS 300 command:

Name := 1/ECTOR_LIST (DOTS, CONNECTED, ITEMIZED, SEPARATE) N=n
<vectors>;

Vectors is the array containing the vectors of the vector list.

where: i/ectors [n].V4[1] := Vector n x—component
Vectors [n].V4[2] := Vector n y-component
1/ectors [n].V4[3] := l/ector n z —component
Vectors [n].U4[4] := l/ector n intensity

0 <= vectors [n].1/4[4] <=1

1/ectors [n].Draw := True if vector n is adraw/line vector.
Vectors [n].Draw := False if vector n is amove/position vector.

The 4th position in VECTORS is always the intensity regardless of the dimension
of~ the vector list. In block normalized, the 1st vector's 4th position is the
intensity for the entire vector list.

If specifying P_Conn, P_Dots, or P_Sepa the vector's draw section of the vector
list is generated by the procedure. P_Items require that the move/draw nature of
each vector be defined by the user.

DEC PASCAL — 158

DEC VAXlVMS PASCAL GSR PVIEWP

Name := VIEWPORT

APPLICATION PROCEDURE AND PARAMETERS

PROCEDURE PViewP C %DESCR Name
Xmi n
Xmax
Ymin
Ymax
Imin
I ma x

%DESCR App 1 i edTo

DEFINITION

P VaryingType;
REAL ;
REAL;
REAL;
REAL ;
REAL ;
REAL;
PVaryingType;

PROCEDURE Error Handler CErr INTEGER>>;

This procedure specifies the area of the screen that the displayed data will
occupy, and the range of intensity of the lines. It contains the following
parametric definitions:

• XMin, Xmax (horizontal) specify the horizontal boundaries of the new
viewport

• YMin, Ymax (vertical) specify the vertical boundaries of the new
viewport

• IMin, IMax specify the minimum and maximum intensities for the
viewport

PS 300 COMMAND AND SYNTAX

Name := 1/IEWport HORizontal = Xmin:Xmax
VERTical = Ymin:Ymax
INTENsity =Imin:Imax
(APPLied to AppliedTo};

DEC PASCAL — 159

DEC VAX/VMS PASCAL GSR PWINDOW

Name := WINDOW

APPLICATION PROCEDURE AND PARAMETERS

PROCEDURE PWindow C %DESCR Name P_VaryingType;
Xmin REAL;
Xmax REAL;
Ymin REAL;
Ymax REAL;
Front REAL;
Back REAL;

%DESCR AppliedTo P_VaryingType;
PROCEDURE Error Handler CErr INTEGER));

DEFINITION

This procedure specifies a right rectangular prism enclosing a portion of the data
space to be displayed in parallel projection. It contains the following parametric
definitions:

• XMin, Xmax (horizontal) specify the window's boundaries along the x axis
• YMin, Ymax (vertical) specify the window's boundaries on the y axis
• Front specifies the front boundary
• Back specifies the back boundary

PS 3~J0 COMMAND AND SYNTAX

Name := ININDOIN X = Xmin:Xmax
Y = Ymin:Ymax
FRONT boundary =Front
BACK boundary =Back
(APPLied to AppliedTo);

DEC PASCAL — 160

DEC VAX/VMS PASCAL GSR PXFCANCL

Name := CANCEL XFORM

APPLICATION PROCEDURE AND PARAMETERS

PROCEDURE PXFCANCL C %DESCR Name P_VaryingType;
%DESCR AppliedTo P_VaryingType;

PROCEDURE Error Nandler (Err INTEGER>);

DEFINITION

This procedure stops transform data processing of subsequent nodes.

PS 300 COMMAND AND SYNTAX

Name := CANCEL XFORM (APPLIED TO Apply);

DEC PASCAL — 161

DEC VAX/VMS PASCAL GSR PXFMATRX

dame := XFORM MATRIX

APPLICATION PROCEDURE AND PARAMETERS

PROCEDURE PXFMATRX C %DESCR Name P_VaryingType;
%DESCR AppliedTo P_VaryingType;
PROCEDURE Error Handler C Err INTEGER));

DEFINITION

This procedure allows subsequent nodes to be processed to produce a
transformation matrix.

PS 300 COMMAND AND SYNTAX

Name := XFORM MATRIX (APPLIED TO Apply);

DEC PASCAL — 162

("'1
DEC VAX/VMS PASCAL GSR PXFVECTR

Name := XFORM VECTOR LIST

APPLICATION PROCEDURE AND PARAMETERS

PROCEDURE PXFVECTR C %DESCR Name P_VaryingType;
%DESCR AppliedTo P_VaryingType;
PROCEDURE Error Handler C Err INTEGER)>;

DEFINITION

This procedure allows subsequent nodes to be processed to produce a
transformation vector list.

PS 300 COMMAND AND SYNTAX

Name := XFORM VECTOR LIST (APPLIED TO Apply);

DEC PASCAL — 163

PS 300 DEC VAX/VMS PASCAL GSR ERRORS — 165

PS 340 GSR PASCAL ERROR DEFINITIONS

The tables listed in this section define the possible error codes used to identify warning
or error conditions that may arise while using the Graphics Support Routines.

The set of possible error codes is divided into several regions reserved for specific
severity and machine dependency levels:

1...255 =Machine INDEPENDENT warning conditions.
256...51 1 =Machine DEPENDENT warning conditions.
512...767 =Machine INDEPENDENT error conditions.
768...1023 =Machine DEPENDENT error conditions.

1024...1279 =Machine INDEPENDENT fatal error conditions.
1280...1535 =Machine DEPENDENT fatal error conditions.

F:R~.OR TABLE — 1

The following warning codes allow successful completion of the GSR procedure, but
indicate a probable user error.

Error
Code Mnemonic Mealll[l~;

1 PSW_BadNamChr Bad name character. Any PS 300 invalid name
character is translated to the underscore character.

2 PSW NamTooLon Name too long. Name truncated to 256 characters.

3 PSW StrTooLon String too long. String truncated to 240 characters.

30 PSW_PixCouGre The Pixel Count is greater than the screen size in call
to PRASW P. (Reserved for P6.V01 Raster procedures.)

31 PSW_PixCouLes The Pixel Count is less than 1 in call to PRASWP.
(Reserved for P6.V01 Raster procedures.)

32 PSW_RepCouGre Repetition count greater than 255 in call to PRASLU.
(Reserved for P6.V01 Raster procedures.)

33 PSW_RepCouLes Repetition count less than 1 in call to PRASLU.
(Reserved for P6.V01 Raster procedures.)

166 - PS 300 DEC VAX/VMS PASCAL GSR ERRORS

Error
COde MIIE'Inolllc MedIllR~'

256 PSw AttAlrpon Attach already done.

257 PSW_AtnKeySee Attention key seen. This tells the error-handling
routine that the user hit the Attention key (IBM
version only).

258 PSw_BadGenChr The string specified to be sent to the "generic" output
channel of CIROUTE via the PPutGX subroutine.
contained an invalid character that has been
translated to a blank space character. This error code
CANNOT be caused by invoking the subroutine:
PPutG which does NOT perform any translation on the
specified string (IBM version only).

259 PSW_BadStrChr Bad string character. Any invalid string character is
converted to a blank space character.

260 PSW_BadParChr The string specified to be sent to the PS 300 Parser
via tr~E PPutP subroutine contained an invalid
character that has been translated to a blank space
character.

~~RROR TABLE - 2

For the following errors, the GSRs abort the current command sequence (if there is one)
and ignore the out-of -sequence command that (probably) caused this error.

~:rror
C OCHE' MIlE' IY1 OIl1C l~E'~I.I11I1~'

515 PSE PreOpeExp Prefix operate node call expected.

516 PSE FolOpeExp Follow operate node call expected.

517 PSE LabBlkExp Label block call expected.

518 PSE_VecLisExp Vector List call expected.

519 PSE_AttMulVec Attempted multiple PVecList call sequence for block
normalized vectors prohibited.

520 PSE_MisLabBeg Missing Begin Label block call.

PS 300 DEC VAX/VMS PASCAL GSR ERRORS — 167

Error
Code Mn~mouic Me~~.nln~'

521 PSE_Misl/ecBeg Missing Begin Vector List call.

5 29 PSE_MisPolBeg The Begin polygon call, PPlygBeg is missing.
PPlygAtr, PPlygLis, or PPlygEnd was called without
the prerequisite call to PPLygBeg.

5 30 PSE_PAtPliPen A call to PPlygAtr, PPlygLis, or PPlygEnd was
expected.

5 31 PSE PLiPEnExp A call to PPlygLis or PPlygEnd was expected.

532 PSE_PAtPLiExp A call to PPlygAtr or PPlygLis was expected.

533 PSE_PLiExp A call to PPlygLis was expected.

ERROR TABLE — 3

The following errors are user errors and are generated by invalid parameters or by an
unsuccessful attempt to attach.

Error
Code Mlleln011le Meanill~'

512 PSE_InvMuxCha Invalid multiplexing channel argument specified in a
call to PMuxP, PMuxCI, or PMuxG. The multiplexing
channel assigned to the Parser, CI, or Generic channel
is not changed.

513 PSE_InvVecCla Invalid vector list class specified in call to PVecBegn.
Command is ignored.

514 PSE_Inv1/ecDim Invalid vector list dimension specified in call to
PVecBegn. Command is ignored.

522 PSE_NulNam A null name is not permitted in this procedure
context. The command is ignored.

523 PSE_BadComTyp Bad Comparison type operator specified. If Level =
command ignored.

168 - PS 300 DEC VAX/VMS PASCAL GSR ERRORS

V

Error
Code 1Vlnelno~~ic~ 1VIea~~in~~

524 PSE InvFun(~lam Attempted PS 300 function instance call failed
because the named function cannot possibly exist. The
function name identifying the function type to
instance was longer than 256 characters.

525 PSE_NulNamReq Null name was required for parameter in operate node
call following a PPref or PFoll subroutine.

526 PSE_TooManEnd Too many PEnds calls for the number of preceding
PBegs calls. Command ignored.

527 PSE_NotAtt The PS 300 communications link has not been
established. The user failed to call PAttach or an
error occurred in the attach procedure preventing the
communications link from being created.

528 PSE_OveDurRea An overrun occurred during a READ operation. The
user-suppled input buffer was too small and
truncation has occurred.

534 PSE_MaxPolExc The polygon specified by the call to PPlygLis contains
more than 250 vertices. The polygon is ignored.

5 35 PSE LesMinPol The polygon specified by the call to PPLygLis contains
fewer than 3 vertices. It is therefore a degenerate
polygon and is ignored.

536 PSE Il1PoiAtr Illegal polygon attributes) specified in the call to
PPlygAtr. Attributes) ignored.

550 PSE_Il1CurPix Illegal Current Pixel specification in call to PRASCP.
(Reserved for P6.V01 Raster procedures.)

552 PSE_IndOutRan Index out of range: 0...255 in call to PRASLU.
(Reserved for P6.U01 Raster procedures.)

553 PSE_Il1LDCpe Illegal LDC specification in call to PRASLD.
(Reserved for P6.V01 Raster procedures.)

554 PSE_SLUNumLes NUM parameter less than 1 in call to PRASLD.
(Reserved for P6.V01 Raster procedures.)

PS 300 DEC VAX/VMS PASCAL GSR ERRORS — 169

furor
(;Ode N[Ileirl OIl1(, MedIl It1~,'

555 PSE_MinGreMax Minimum > Maximum in call to PRASLR. (Reserved
for P6.V01 Raster procedures.)

556 PSE_MinOutRan Minimum out of range 0...255 in call to PRASLR.
(Reserved for P6.V01 Raster procedures.)

557 PSE_MaxOutRan Maximum out of range 0...255 in call to PRASLR.
(Reserved for P6.V01 Raster procedures.)

558 PSE_SWPNumLes NUM parameter less than 1 in call to PRASINP.
(Reserved for P6.V01 Raster procedures.)

At the present time, the following three error messages (780, 781, 782) are only
meaningful for Digital Equipment Corporation (.DEC) VAX/VMS . All three errors
indicate that the parameter passed as a string in PAttch was not successfully parsed

and that the Attach call failed.

Frror
Code 1V[I le I110I11('

780 PSE_PhyDevTyp

781 PSE_LogDevNam

782 PSE AttDelExp

f'ATAI. ERRORS

MP.~,[llil~;

This error indicates that a missing or invalid Physical
Device Type was specified in a call to PAttch.

This error indicates that a missing or invalid Logical
Device Name was specified in a call to PAttach.

This error indicates that an Attach parameter string
was expected in a call to PAttach.

The errors listed below indicate a very serious error condition. If the user's error

handler is invoked with any of the error codes listed below, then program execution

should be aborted.

Trademark of the Digital Equipment Corporation, Maynard, Massachusetts

170 - PS 300 DEC VAX/VMS PASCAL GSR ERRORS

ERROR TABLE - 4

Error
Code Milerr~orli~

1024 PSF Il1FraCom

1280 PSF PhyAetFai

1281 PSF PhyDetFai

1282 PSF PhyDetFai

1283 PSF PhyDutFai

Mealli~l~~

Illegal frar~ie command specified in call to:
PSUTIL RasMode. This error code indicates an
internal validity check error. E&S Software Support
should be contacted.

Physical Attach operation failed.

Physical Detach operation failed.

Physical Get operation failed.

Physical Put operation failed.

The following three errors are only applicable to the DEC VAX/VMS version of the
GSRs. All three error codes indicate an internal GSR validity error. E&S Software
Support should be contacted if these errors are detected.

Error
Code MIIeIYlonic Meallin~'

1290 PSF_BufTooLar Buffer too large in a call to PSPUT. Internal validity
check error.

1291 PSF_WroNumArg Wrong number of arguments to low-level I/O
procedure in PROIOLIB.MAR. Internal validity check
error.

1292 PSF_ProTooLar Prompt too large in call to PSFRCV. Internal validity
check error.

PS 300 DEC VAX/VMS PASCAL GSR A — 1

APPENDIX A. SAMPLE PROGRAMS

This appendix contains sample Pascal programs that illustrate the use of the PS 300
DECIUAX PASCAL U2 Graphics Support Routines. The programs contain examples of
error—handler procedures.

This is a PASO AL network creation example.

PROGRAM B1kLevp (INPUT, OUTPUT);

CONST
Deg_rad = 0.017453292;
%INCLUDE 'PROCONST.PAS'

TYPE
%INCLUDE 'PROTYPES.PAS'

VAR
Front P_UectorListType;
Uecs : P_UectorListType;
Zero_vec : P_UectorType;
Y_Up P_UectorType;
At P UectorType;
From P_UectorType;
Up : P_UectorType;
Name P_UaryingType;
Theta :REAL;
DTheta :REAL;
i : INTEGER;
k : INTEGER;
1 : INTEGER;
Times : INTEGER;

A — 2 PS 300 DEC VAX/VMS PASCAL GSR

%INCLUDE: 'PROE~~1`RN.P~S'

{ The following Error Handler demonstrates the
{ general overall recommended form that the user's
{ own error handler should follow.
{
{ This error handler upon being invoked writes ALL

messages to the data file: 'PROERROR.LOG' for 2
reasons:

1. The error handler should NOT immediately
write information out on the PS 300 screen
since the explanatory text defining the
error or warning condition may be taken as
data by the PS 300 and therefore wind up
not being displayed on the PS 300 screen
(as in the case of a catastrophic data
transmission error.

2. The logging of errors and warnings to a
logfile allows .any errors and/or warnings
to be reviewed at a later time.

PROCEDURE Err (Error code: Integer);

VAR
VMSdef, PIdef : P_VaryingType;
Error_Log : [STATIC] TEXT;
ErrorFileOpen : [STATIC] BOOLEAN := FALSE;

[EXTERNAL] PROCEDURE LIB$STOP
(%IMMED CompletionCode : INTEGER); EXTERN;

PROCEDURE IBM_Specific;
BEGIN

WRITE (Error_Log, 'This error/warning is ');
WRITE (Error_Log, 'applicable ONLY to the IBM ');
WRITELN (Error_Log, 'version of the');
WRITELN (Error_Log, 'Procedural Interface (GSR).');

END;

PS 300 DEC VAX/1/MS PASCAL GSR A - 3

PROCEDURE VAX_Specific;
BEGIN

WRITE (Error_Log, 'This error/warning is ');
WRITE (Error_Log, 'applicable ONLY to the DEC ');
WRITELN (Error_Log, '1/AX/VMS version of');
WRITE (Error_Log, 'the Procedural Interface ');
WRITELN (Error_Log, '(GSR).');

END;

PROCEDURE UnknownError;
BEGIN

WRITE (Error_Log, 'PS-W-UNRCOMCOD: ');
WRITE (Error_Log, 'Procedural Interface ');
WRITE (Error_Log, '(GSR) completion ');
IF Error code < 512

THEN WRITE (Error_Log, 'warning ')
ELSE IF Error code < 1024

THEN WRITE (Error_Log, 'error ')
ELSE WRITE (Error_Loq, 'fatal error ');

WRITELN (Error_Log, 'code is unrecognized.');
WRITE (Error_Log, 'Probable Procedural ');
WRITE (Error_Log, 'Interface (GSR) Internal ');
WRITELN (Error_Log, 'validity check error.');

END;

PROCEDURE Identif yCompletionCode
(Error_code : INTEGER);

BEGIN
WRITE (Error_Log, 'PS-I-PROERRWAR: Procedural ');
WRITE (Error_Log, 'Interface (GSR) warning/'};
WRITE (Error_Log, 'error completion code was ');
WRITELN (Error_Log, 'received.');

{ Identify warning codes }

IF Error Code < 512 THEN CASE Error_Code OF
PSW BadNamChr:
BEGIN

WRITE (Error_Log, 'PS-W-BADNAMCHR: Bad ');
WRITE (Error_Log, 'character in name was ');
WRITELN (Error_Log, 'translated to: "_".');

END;
PSW NamTooLon:
BEGIN

WRITE (Error_Log, 'PS-W-NAMTOOLON: Name too ');
WRITE (Error_Log, 'long. Name was truncated to ');

A - 4 PS 300 DEC 1/AX/1/MS PASCAL GSR

WRITELN (Error Log, '256 characters.');
END;
PSW StrTooLon:
BEGIN

WRITE (Error_Log, 'PS-W-STRTOOLON: String too ');
WRITE (Error Log, 'long. String was truncated ');
WRITELN (Error Log, 'to 240 characters.');

END;
PSW AttAlrpon:
BEGIN

WRITE (Error Log, 'PS-W-ATTALRDON: Attach ');
WRITE (Error_Log, 'already done. Multiple call ');
WRITELN (Error_Log, 'to PAttach without');
WRITE (Error_Log, 'intervening PDetach call ');
WRITELN (Error Log, 'ignored.');

END;
PSW AtnKeySee:
BEGIN

WRITE (Error_Log, 'PS-W-ATNKEYSEE: Attention ');
WRITELN (Error_Log, 'key seen (depressed).');
IBM Specific;

END;
PSW BadGenChr:
BEGIN

WRITE (Error_Log, 'PS-W-BADGENCHR: Bad generic ');
WRITE (Error Log, 'channel character. Bad ');
WRITELN (Error_Log, 'character in string sent via:');
WRITE (Error Log, ' PPutGX was translated to ');
WRITELN (Error_Log, 'a blank.');
IBM Specific;

END;
PSW BadStrChr:
BEGIN

WRITE (Error_Log, 'PS-W-BADSTRCHR: Bad '.);
WRITE (Error Log, 'character in string was ');
WRITELN (Error_Log, 'translated to a blank.');
IBM_Specific;

END;
PSW BadParChr:
BEGIN

WRITE (Error_Log, 'PS-W-BADPARCHR: Bad parser ');
WRITE (Error_Log, 'channel character. Bad ');
WRITELN (Error_Log, 'character in string sent to'};
WRITE (Error_Log, 'PS 300 parser via: PPutP ');
WRITELN (Error_Log, 'was translated to a blank.');
IBM_Specific;

END;
OTHERWISE UnknownError;

END

PS X00 DEC UAX/UMS PASCAL GSR A - 5

{ Identify errors }

ELSE IF Error code < 1024 THEN CASE Error_Code OF
PSE InvMuxCha:
BEGIN

WRITE (Error_Log, 'PS-E-INUMUXCHA: Invalid ');
WRITE (Error_Log, 'multiplexing channel ');
W RITEI~N (Error_Log, 'specified in call to:');
WRITELN (Error_Log, 'PMuxCI, PMuxP, or PMuxG.');

END;
PSE InvUecCla:
BEGIN

WRITE ~ (Error_Log, 'PS-E-INUUECCLA: Invalid ');
WRITE (Error_Log, 'vector list class specified ');
WRITELN (Error_Log, 'in call to: PUecBegn.');

END;
PSE Inv1/ecDim:
BEGIN

WRITE (Error_Log, 'PS-E-INUUECDIM: Invalid ');
WRITE (Error_Log, 'vector list dimension ');
WRITELN (Error Log, 'specified in call to');
WRITELN (Error Log, 'PUecBegn.');

END;
PSE PreOpeExp:
BEGIN

WRITE (Error_Log, 'PS-E-PREOPEEXP: Prefix ');
WRITELN (Error Log, 'operator call was expected.');

END;
PSE FolOpeExp:
BEGIN

WRITE (Error_Log, 'PS-E-FOLOPEEXP: Follow ');
WRITELN (Error Log, 'operator call was expected.');

END;
PSE LabBlkExp:
BEGIN

WRITE (Error Log, 'PS-E-LABBLKEXP: Call to ');
WRITE (Error_Log, 'PLabAdd or PLabEnd was ');
WRITELN (Error Log, 'expected.');

END;
PSE UecLisExp:
BEGIN

WRITE (Error_Log, 'PS-E-UECLISEXP: Call to ');
WRITE (Error_Log, 'PUecList or PUecEnd was ');
WRITELN (Error_Log, 'expected.');

END;
PSE AttMulUec:
BEGIN

WRITE (Error_Log, 'PS-E-ATTMULUEC: Attempted ');

A - 6 PS 300 DEC VAX/VMS PASCAL GSR

WRITE (Error_Log, 'multiple call sequence to ');
WRITELN (Error_Log, 'PVecList is NOT permitted');
WRITELN (Error._Log, 'for BLOCK normalized vectors.');

END;
PSE MisLabBeg:
BEGIN

WRITE (Error_Log, 'PS-E-MISLABBEG: Missing ');
WRITE (Error_Log, 'label block begin call. ');
WRITELN (Error_Log, 'Call to PLabAdd or PLabEnd.'};
WRITELN (Error_Log, 'without call to: PLabBegn.');

END;
PSE_MisVecBeg:
BEGIN

WRITE (Error_Log, 'PS-E-MISVECBEG: Missing '};
WRITE (Error_Log, 'vector list begin call. ');
WRITELN (Error_Log, 'Call to PVecList or PVecEnd');
WRITELN (Error log, 'without call to: PVecBegn.');

END;
PSE NulNam:
BEGIN

WRITE (.Error_Log, 'PS-E-NULNAM: Null name ');
WRITELN (Error_Log, 'parameter is not allowed.');

END;
PSE_BadComTyp:
BEGIN

WRITE (Error_Log, 'PS-E-BADCOMTYP: Bad ');
WRITE (Error_Log, 'comparison type operator ');
WRITELN (Error_Log, 'specified in call to:');
WRITELN (Error_Log, 'PIfLevel.');

END;
PSE InvFunNam:
BEGIN

WRITE (Error_Log, 'PS-E-INVFUNNAM: Invalid ');
WRITE (Error_Log, 'function name. Attempted PS ');
WRITELN (Error_Log, ' 300 function instance failed');
WRITE (Error_Log, 'because the named function ');
WRITE (Error_Log, 'cannot possibly exist. The ');
WRITELN (Error_Log, 'function name identifying the');
WRITE (Error_Log, 'function type to instance ');
WRITE (_Error_Log, 'was longer than 256 ');
WRITELN (Error_Log, 'characters.');

END;
PSE_NulNamReq:
BEGIN

WRITE (Error_Log, 'PS-E-NULNAMREQ: Null name ');
WRITE (Error_Log, 'parameter is required in ');
WRITELN (Error_Log, 'operate node call following');
WRITE (Error_Log, 'a PPref or PFoll procedure ');
WRITELN (Error_Log, 'call.'};

END;

PS 300 DEC VAX/VMS PASCAL GSR A - 7

PSE TooManEnd:
BEGIN

WRITE (Err.or_Log, 'PS-E-TOOMANEND: Too many ');
WRITELN (Error_Log, 'END_STRUCTURE calls invoked.');

END;
PSE NotAtt:
BEGIN

WRITE (Error_Log, 'PS-E-NOTATT: The PS 300 ');
WRITE (Error_Log, 'communications link has not ');
WRITELN (Error_Log, 'yet been established.');
WRITE (Error_Log, 'PAttach has not been called '};
W RITELN (Error_Log, 'or failed.');

END;
PSE OveDurRea:
BEGIN

WRITE (Error_Log, 'PS-E-OVEDURREA: An overrun ');
WRITE (Error_Log, 'occurred during a read ');
W RITELN (Error__Log, 'operation.');
WRITE (Error_Log, 'The specified input buffer '};
WRITE (Error_Log, 'in call to: PGET or: PGETW');
W RITELN (Error_Log, 'was too small and truncation'};
W RITELN (Error_Log, 'has occurred.');

END;
PSE PhyDevTyp;
BEGIN

WRITE (Error_Log, 'PS-E-PHYDEVTYP: Missing or ');
WRITE (Error Log, 'invalid physical device type ');
W RITELN (Error Log, 'specifier in call to PAttach.');
VAX_Specif ic;

END;
PSE LogDevNam:
BEGIN

WRITE (Error Log, 'PS-E-LOGDEVNAM: Missing or ');
WRITE (Error Log, 'invalid logical device name ');
W RITELN (Error Log, 'specifier in call to PAttach.');
VAX_Specif ic;

END;
PSE AttDelExp:
BEGIN

WRITE (Error Log, 'PS-E-ATTDELEXP: Attach '>;
WRITE (Error Log, 'parameter string delimiter ');
W RITELN (Error_Log, "'/" was expected.');
VAX Specific;

END;
OTHERWISE UnknownError;

END

A — 8 PS 300 DEC 1/AX/1/MS PASCAL GSR

{ Identify fatal errors }

ELSE Case Error Code ~F
PSF PhyAttFai:
BEGIN

WRITE (Error_Log, 'PS—F—PHYATTFAI: Physical ');
W RITELN (Error_Log, 'attach operation failed.');

END;
PSF PhyDetFai:
BEGIN

WRITE (Error_Log, 'PS—F—PHYDETFAI: Physical ');
W RITELN (Error_Log, 'detach operation failed.');

END;
PSF PhyGetFai:
BEGIN

WRITE (Error_Log, 'PS—F—PHYGETFAI: Physical ');
WRITELN (Error_Log, 'get operation failed.');

END;
PSF PhyPutFai:
BEGIN

WRITE (Error_Log, 'PS—F—PHYPUTFAI: Physical ');
W RITELN (Error_Log, 'put operation failed.');

END;
PSF Bu f TooLar:
BEGIN

WRITE (Error_Log, 'PS—F—BUFTOOLAR: Buffer too ');
WRITE (Error_Log, 'large error in call to: ');
WRITELN (Error_Log, 'PSPUT.');
WRITE (Error_Log, 'This error should NE1/ER ');
WRITE (Error_Log, 'occur and indicates a ');
W RITELN (Error_Log, 'Procedural Interface (GSR)');
WRITELN (Error_Log, 'validity check.');
1/AX_Specif ic;

END;
PSF WroRlumArg:
BEGIN

WRITE (Error_Log, 'PS—F—WRONUMARG: Wrong ');
WRITE (Error_Log, 'number of arguments in call ');
W RITELN (Error_Log, 'to Procedural Interface (GSR)');
WRITE (Error_Log, 'low—level I/O procedure '};
WRITELN (Error_Log, '(source file: PROIOLIB.MAR).');
WRITE (Error_Log, 'This error should NEVER ');
WRITE (Error_Log, 'occur and indicates a ');
WRITELN (Error Log, 'Procedural Interface (GSR> '};
WRITELN (Error_Log, 'validity check.');
1/AX Specific;

END;

PS 300 DEC UAX/VMS PASCAL GSR A - 9

PSF ProTooLar:
BEGIN

WRITE (Error_Log, 'PS-F-PROTOOLAR: Prompt ');
WRITE (Error_Log, 'buffer too large error in ');
WRITELN (Error Log, 'call to: PSPRCU.');
WRITE (Error_Log, 'This error should NEVER ');
WRITE (Error_Log, 'occur and indicates a ');
WRITELN (Error_Log, 'Procedural Interface (GSR) ',);
WRITELN (Error_Log, 'validity check.');
UAX_Specific;

END;
OTHERWISE UnknownError;

END;

IF (Error code >= PSF PhyAttFai) AND
(Error code <= PSF PhyPutFai) THEN BEGIN
Pspvmserr (UMSdef, PIdef);
WRITELN (Error Log, 'DEC UAX/VMS Error definition is:');
WRITELN (Error_Log, UMSdef);
WRITE (Error Log, 'Procedural Interface (GSR) ');
WRITE (Error_Log, 'Interpretation of '};
WRITELN (Error Log, 'DEC UAX/VMS completion code:');
WRITELN (Error_Log, PIdef);
WRITE (Error Log, 'DEC UAX/VMS Error code value ');
WRITELN (Error_Log, 'was: ', Psvmserr);

END;
WRITELN (Error_Log);

END;

PROCEDURE DetachErrorHan (Detach Error : INTEGER);
BEGIN

WRITE (Error_Log, 'PS-I-ERRWARDET: Error/warning ');
WRITE (Error_Log, 'trying to Detach ');
WRITELN (Error_Log, 'the communications link between ');
WRITELN (Error_Log, 'the PS 300 and the host.');
IdentifyCompletionCode (Detach_Error);

END;

BEGIN
IF NOT ErrorFileOpen THEN BEGIN

~ Open error file for the logging of errors }

OPEN (Error Log, 'Proerror.log', History := NEW);
REWRITE (Error Log);
ErrorFileOpen := TRUE;

END;

A - 10 PS 300 DEC UAX/VMS PASCAL GSR

IdentifyCompletionCode (Error_Code);
IF Error code >= 512 THEN BEGIN

WRITE (Error_Log, 'PS-I-ATDCOMLNK: Attempting ');
WRITE (Error_Log, 'to detach PS 300');
WRITELN (Error_Log, '/Host comr~~unications link.');

{ Use different error handler so as
{ not to get caught in a recursive
{ loop if we consistently get an
{ error when attempting to detach

PDetach (DetachErrorHan);
CLOSE (Error_Log);
IF (Error code >= PSF PhyAttFai) AND

(Error code <= PSF_PhyPutFai)
{ identify VMS error if there was one }

THEN LIB$STOP (PsVMSerr)
ELSE HALT;

END;
END;

FUNCTION Uppercase (Chary :CHAR) :CHAR;
BEGIN

IF (Chary >_ 'a') AND (Chary <_ 'zU
THEN Uppercase := CHR (ORD (Chary) - 32)
ELSE Uppercase := Chary;

END;

PROCEDURE Attach;

VAR
DeviceSpec :CHAR;
DeviceName :VARYING [5] OF CHAR;
AttachParr~~ : P_VaryingType;

BEGIN
DeviceSpec :_ ' ';
REPEAT
IF DeviceSpec < > ' 'THEN

WRITELN (OUTPUT, 'Invalid device type specified.');
WRITE (OUTPUT, 'Device Interface type = (PARALLEL, ');
WRITE (OUTPUT, 'DM R-1 1, Asynchronous): _');
IF EOLN (INPUT)

THEN DeviceSpec :_ ' '

PS 300 DEC UAX/UMS PASCAL GSR A - 1 1

ELSE DeviceSpec := Uppercase (INPUT);
READLN (INPUT);

UNTIL (DeviceSpec = 'P') OR (DeviceSpec = 'D') OR
(DeviceSpec = 'A');

REPEAT
WRITE (OUTPUT, 'Physical device name (i.e. ');
WRITE (OUTPUT, 'TT, TTA6, XMDO): _');
READLN (INPUT, Device(~lame);

UNTIL LENGTH (DeviceName) > 0;
AttachParm :_ 'Logdevnar~~=' +DeviceName + ':/Phydevtyp=';
IF Uppercase (DeviceSpec) _ 'P'

THEN AttachParm := AttachParm + 'PARALLEL'
ELSE IF Uppercase (DeviceSpec) _ 'D'

THEN AttachParm := AttachParm + 'DMR-1 1'
ELSE AttachParm := AttachParm + 'Async';

Pattach (AttachParm, ERR);
END;

PROCEDURE Computename (NameId : INTEGER;
UAR Name P_UaryingType);

VAR
j : INTEGER;

BEGIN
Name :_ 'List000';
j •= 7•
WHILE (NameId > 0) DO BEGIN

Name [j] := CHR (NameId MOD 10 + ORD ('0')
NameId := NameId DIU 10;

END;
END;

PROCEDURE ComputelNave (Theta :REAL;
UAR UecList : P_UectorListType);

CONST
Amp = 0.8;
Alpha = -0.02;
Beta = 0.2513274123;

UAR
i : INTEGER;
Addr : INTEGER;
Iaddr : INTEGER;

A — 12 PS 300 DEC UAX/UMS PASCAL GSR

BEGIN
Iaddr := 0;
FOR i := 0 TO 49 DO BEGIN

Iaddr := SUCC (Iaddr);
UecList [Iaddr].U4 [1] := i / 50.0;
UecList [Iaddr].U4 [2] := Amp * EXP (Alpha ~ i)

~ COS (Theta — Beta ~ i);
UecList [Iaddr].U4 [3] := 0;
UecList [Iaddr].U4 [4] := 1 — i/ 150.0;
UecList [Iaddr].Draw := TRUE;
Iaddr := SUCC (Iaddr);
UecList [Iaddr].U4 [1] := UecList [PRED (Iaddr)].U4 [1];
UecList [Iaddr].U4 [2] := 0;
UecList [Iaddr].U4 [3] := 0.5;
UecList [Iaddr].U4 [4] := UecList [PRED (Iaddr)].U4 [4];
UecList [Iaddr].Draw := TRUE;

END;
END;

BEGIN
Attach; { Do the Attach }

PInit (Err);
PEyeBack ('eye', 1.0, 0.0, 0.0, 2.0, 0.0,

1000.0, 'inten', Err);
PSetInt ('inten', TRUE, 0.5, 1.0, 'look', Err);
PLookat ('look', At, From, Up, 'pic', Err);
PFnlnst ('atx', 'xvec', Err);
PFnlnst ('aty', 'yvec', Err);
PFnlnst ('atz', 'zvec', Err };
PFnlnst ('fromx', 'xvec', Err };
PFnlnst ('fromy', 'yvec', Err);
PFnlnst ('fromz', 'zvec', Err);
PFnlnst ('ac_at', 'accumulate', Err);
PFnlnst ('ac_from', 'accumulate', Err };

PS 300 DEC VAXIVMS PASCAL GSR A - 13

PFnInst ('add_up', 'addc', Err);
PFnInstN ('sync_up', 'sync', 3, Err);
PFnInst ('f ix_sync', 'nop', Err);
PConnect ('sync_up', 3, 1, 'fix_sync', Err);
PConnect ('fix sync', 1, 3, 'sync_up', Err);
PSndBool (TRUE, 3, 'sync_up', Err);
PFnInst ('look_at', 'lookat', Err);
PConnect ('dials', 1, 1, 'atx', Err);
PConnect ('dials', 2, 1, 'aty', Err);
PConnect ('dials', 3, 1, 'atz', Err);
PConnect ('dials', 5, 1, 'fromx', Err);
PConnect ('dials', 6, 1, 'fromy', Err);
PConnect (.'dials', 7, 1, 'fromz', Err);
PConnect ('atx', 1, 1, 'ac_at', Err);
PConnect ('aty', 1, 1, 'ac_at', Err);
PConnect ('atz', 1, 1, 'ac_at', Err);
PConnect ('fromx', 1, 1, 'ac_from', Err);
PConnect ('fromy', 1, 1, 'ac_from', Err };
PConnect ('fromz', 1, 1, 'ac_from', Err };
PConnect ('ac_at', 1, 1, 'sync_up', Err);
PConnect ('ac_at', 1, 1, 'add_up', Err);
PConnect ('add_up', 1, 2, 'sync_up', Err };
PConnect ('sync_up', 1, 1, 'look_at', Err };
PConnect ('sync_up', 2, 3, 'look_at', Err);
PConnect ('ac_from', 1, 2, 'look_at', Err ,);
PSndV 3 D (At, 2, 'ac_at', Err);
PSndV3D (From, 2, 'ac_from', Err);
PSndV3D (Y_up, 2, 'add_up', Err);
PConnect ('look_at', 1, 1, 'look', Err);
PFnInst ('fix_at', 'const', Err);
PConnect ('ac_f ro m', 1, 1, 'f ix_at', Err);
PConnect ('f ix_at', 1, 1, 'ac_at', Err);
PSndV3D (Zero_vec, 2, 'fix_at', Err);
PSndV3D (Zero_vec, 1, 'ac_from', Err);
PInst ('pic', ", Err);
Dtheta := 10.0 ~ Deg_rad;
Theta :_ -Dtheta;
FOR i := 1 TO 36 DO BEGIN

Theta := Theta +Dtheta;
Computewave (Theta, Vecs);
FOR k := 1 TO 50 DO BEGIN

FOR 1 := 1 TO 4 DO Front [k].V4 [1]
:= Vecs [SUCC (PRED (k) ~ 2)].V4 [1];

Front [k].Draw := Vecs [SUCC (PRED (k) ~ 2)].Draw;
END;
Computename (i, Name);
PBegins (Name, Err);
PSetR (", 1, 35, FALSE, i, ", Err);

A — 14 PS 300 DEC 11AX/1/MS PASCAL GSR

PIfPhase (", TRUE, ", Err);
P1/ecBegn (", 100, FALSE, FALSE, 3, P_Sepa, Err)
PI/ecList (100, 1/ecs, Err);
PVecEnd (Err);
P1/ecBegn (", 50, FALSE, FALSE, 3, P_Conn, Err);
P1lecList (50, Front, Err);
P1IecEnd (Err);
PEnds (Err);
PIncl (Name, 'plc', Err);

END;
PDisplay ('eye', Err);
PSndStr ('X', 1, 'Dlabell ', Err);
PSndStr ('Y', 1, 'Dlabel2', Err);
PSndStr ('Z', 1, 'Dlabel3', Err);
PSndStr ('Look At', 1, 'Dlabel4', Err);
PSndStr ('X', 1, 'Dlabel5', Err);
PSndStr ('Y', 1, 'Dlabel6', Err);
PSndStr ('Z', 1, 'Olabel7', Err);
PSndStr ('From', 1, 'Dlabel8', Err);
Pdetach (Err);

END.

This is a P~.scal vector list example program.

PROGRAM CircleTest (INPUT, OUTPUT);

CONST
%INCLUDE 'PROCONST.PAS'

TYPE
%INCLUDE 'PROTYPES.PAS'

VAR
circle_list P_l/ectorListType;
Dimensionality : INTEGER;
Class : INTEGER;
ClassType :CHAR;
Mode :CHAR;
B1ockNormalized :BOOLEAN;

PS 300 DEC vAX/vMS PASCAL GSR A — 15

%SIN(; I.0 D E ' P R,OEXTRN. P AS'

{ The following Error Handler demonstrates the
{ general overall recommended form that the user's
{ own error handler should follow.

{

{ This error handler upon being invoked writes ALL
{ messages to the data file: 'PROERROR.LOG' for 2
{ reasons:

{

{ 1. The error handler should NOT immediately
{ write information out on the PS 300 screen
{ since the explanatory text defining the
{ error or warning condition may be taken as
{ data by the PS 300 and therefore wind up
{ not being displayed on the PS 300 screen
{ (as in the case of a catastrophic data
{ transmission error).

{

{ 2. The logging of errors and warnings to a
{ logfile allows any errors and/or warnings
{ to be reviewed at a later time.

PROCEDURE Err (Error code: Integer);

vAR
i/MSdef, PIdef : P_VaryingType;
Error Log : [STATIC] TEXT;
ErrorFileOpen : [STATIC] BOOLEAN := FALSE;

[EXTERNAL] PROCEDURE LIB$STOP
(%IMMED CompletionCode : INTEGER); EXTERN;

PROCEDURE IBM Specific;
BEGIN

UVRITE (Error Log, 'This error/warning is ');
WRITE (Error Log, 'applicable ONLY to the IBM ');
W RITELN (Error_Log, 'version of the');
W RITELN (Error_Log, 'Procedural Interface (GSR).');

END;

A - 16 PS 300 DEC 1/AX/1/MS PASCAL GSR

PROCEDURE 1/AX_Specific;
BEGIN

WRITE (Error_Log, 'Th`is errorlwarning is ');
WRITE (Error_Log, 'applicable ONLY to the DEC ');
WRITELN (Error_Log, '1/AX/1/MS version of');
WRITE (Error_Log, 'the Procedural Interface ');
W RITELN (Error_Log, '(GSR).');

END;

PROCEDURE UnknownError;
BEGIN

WRITE (Error_Log, 'PS-W-UNRCOMCOD: ');
WRITE (Error_Log, 'Procedural Interface ');
WRITE (Error_Log, '(GSR) completion ');
IF Error code < 512

THEN WRITE (Error_Log, 'warning '
ELSE IF Error code < 1024

THEN WRITE (Error_Log, 'error ')
ELSE WRITE (Error_Log, 'fatal error ');

WRITELN (Error_Log, 'code is unrecognized.');
WRITE (Error_Log, 'Probable Procedural ');
WRITE (Error_Log, 'Interface (GSR) Internal ');
WRITELN (Error_Log, 'validity check error.');

END;

PROCEDURE IdentifyCompletionCode
(Error code : INTEGER);

BEGIN
WRITE (Error_Log, 'PS-I-PROERRWAR: Procedural ');
WRITE (Error_Log, 'Interface (GSR) warning/');
WRITE (Error_Log, 'error completion code was ');
W RITELN (Error_Log, 'received.');

{ Identify warning codes }

IF Error Code < 512 THEN CASE Error_Code OF
PSW BadNamChr:
BEGIN

WRITE (Error_Log, 'PS-W-BADNAti1CHR: Bad ');
WRITE (Error_Log, 'character in name was ');
W RITELN (Error_Log, 'translated to: "_".');

END;
PSW NamTooLon:
BEGIN

WRITE (Error_Lag, 'PS-W-NAMTOOLON: Name too ');
WRITE (Error_Log, 'long. Name vas truncated to ');
WRITELN (Error_Log, '256 characters.');

END;

PS 300 DEC VAX/1/MS PASCAL GSR A - 17

PSW StrTooLon:
B E G I Iii

WRITE (Error_Log, 'PS-W-STRTOOLON: String too ');
WRITE (Error_Log, 'long. String was truncated ');
WRITELN (Error_Log, 'to 240 characters.');

END;
PSW AttAlrpon:
BEGIN

WRITE (Error_Log, 'PS-W-ATTALRDON: Attach '};
WRITE (Error_Log, 'already done. Multiple call ');
WRITELN (Error_Log, 'to PAttach without');
WRITE (Error_Log, 'intervening PDetach call '); .
W RITELN (Error_Log, 'ignored.');

END;
PSW_AtnKeySee:
BEGIN

WRITE (Error_Log, 'PS-W-ATNKEYSEE: Attention ');
WRITELN (Error Log, 'key seen (depressed).');
IBM Specific;

END;
PSW BadGenChr:
BEGIN

WRITE (Error_Log, 'PS-W-BADGENCHR: Bad generic ');
WRITE (Error_Log, 'channel character. Bad ');
WRITELN (Error_Log, 'character in string sent via:');
WRITE (Error Log, ' PPutGX was translated to ');
WRITELN (Error Log, 'a blank.');
IBM_Specif ic;

END;
PSW BadStrChr:
BEGIN

WRITE (Error_Log, 'PS-W-BADSTRCHR: Bad ');
WRITE (Error Log, 'character in string was ');
WRITELN (Error_Log, 'translated to a blank.');
IBM Specific;

END;
PSW BadParChr:
BEGIN

WRITE (Error_Log, 'PS-W-BADPARCHR: Bad parser ');
WRITE (Error_Log, 'channel character. Bad ');
WRITELN (Error_Log, 'character in string sent to');
WRITE (Error_Log, 'PS 300 parser via: PPutP ');
WRITELN (Error_Log, 'was translated to a blank.');
IBM_Specif ic;

END;
OTHERWISE UnknownError;

END

A - 18 PS 300 DEC UAXIUMS PASCAL GSR

{ Identify errors }

ELSE IF Error code < 1024 THEN CASE Error_Code OF
PSE InvMuxCha:
BEGIN

WRITE (Error_Log, 'PS-E-INUMUXCHA: Invalid ');
WRITE (Error_Log, 'multiplexing channel ');
W RITELN (Error Log, 'specified in call to:');
WRITELN (Error_Log, 'PMuxCI, PMuxP, or PMuxG.');

END;
PSE InvUecCla:
BEGIN

WRITE (Error_Log, 'PS-E-INUUECCLA: Invalid ');
WRITE (Error_Log, 'vector list class specified ');
W RITELN (Error_Log, 'in call to: PUecBegn.');

END;
PSE InvUecDim:
BEGIN

WRITE (Error_Log, 'PS-E-INUUECDIM: Invalid ');
WRITE (Error_Log, 'vector list dimension ');
WRITELN (Error_Log, 'specified in call to');
W RI~~~ELN (Error_Log, 'PUecBegn.');

END;
PSE_PreOpeExp:
BEGIN

WRITE (Error_Log, 'PS-E-PREOPEEXP: Prefix ');
W RITELN (Error_Log, 'operator call was expected.');

END;
PSE_FolOpeExp:
BEGIN

WRITE (Error_Log, 'PS-E-FOLOPEEXP: Follow ');
WRITELN (Error_Log, 'operator call was expected.');

END;
PSE_LabBlkExp:
BEGIN

WRITE (Error_Log, 'PS-E-LABBLKEXP: Call to ');
WRITE (Error_Log, 'PLabAdd or PLabEnd was ');
W RITELN (Error_Log, 'expected.');

END;
PSE_UecLisExp:
BEGIN

WRITE (Error_Log, 'PS-E-UECLISEXP: Call to ');
WRITE (Error_Log, 'PUecList or PUecEnd was ');
W RITELN (Error_Log, 'expected.');

END;

PS 300 DEC UAX/1/MS PASCAL GSR A - 19

PSE AttMull/ec:
BEGIN

WRITE (Error_Log, +PS-E-ATTMULVEC: Attempted ');
WRITE (Error_Log, 'multiple call sequence to ');
WRITELN (Error_Log, 'P1/ecList is NOT permitted');
WRITELN (Error_Log, 'for BLOCK norr~~alized vectors.');

END;
PSE MisLabBeg:
BEGIN

WRITE (Error_Log, 'PS-E-MISLABBEG: Missing ');
WRITE (Error_Log, 'label block begin call. ');
W RITELN (Error_Log, 'Call to PLabAdd or PLabEnd');
WRITELN (Error_Log, 'without call to: PLabBegn.');

END;
PSE_MisVecBeg:
BEGIN

WRITE (Error_Log, 'PS-E-MISi/ECBEG: Missing ');
WRITE (Error_Log, 'vector list begin call. ');
W RITELN (Error_Log, 'Call to P1/ecList or P1lecEnd');
WRITELN (Error log, 'without call to: P1IecBegn.');

END;
PSE Nu 1Na m:
BEGIN

WRITE (Error_Log, 'PS-E-NULNAM: Null name ');
WRITELN (Error_Log, 'parameter is not allowed.');

END;
PSE BadCo mTyp:
BEGIN

WRITE (Error_Log, 'PS-E-BADCOMTYP: Bad ');
WRITE (Error_Log, 'comparison type operator ');
WRITELN (Error_Log, 'specified in call to: ');

W RITELN (Error_Log, 'PIfLevel.');
END;
PSE InvFunNam:
BEGIN

WRITE (Error_Log, 'PS-E-INI/FUNNAM: Invalid ');
WRITE (Error_Log, 'function name. Attempted PS ');
W RITELN (Error_Log, ' 300 function instance failed');
WRITE (Error_Log, 'because the named function ');
WRITE (Error_Log, 'cannot possibly exist. The ');
W RITELN (Error_Log, 'function name identifying the');
WRITE (Error_Log, 'function type to instance ');
WRITE (Error_Log, 'was longer than 256 ');
W RITELN (Error_Log, 'characters.');

END;

A - 20 PS 300 DEC VAX/VMS PASCAL GSR

PSE_NulNam Req:
BEGIN

WRITE (Error_Log, 'PS-E-NULNAMREQ: Null name ');
WRITE (Error_Log, 'parameter is required in ');
W RITELN (Error_Log, 'operate node call following');
WRITE (Error_Log, 'a PPref or PFoll procedure ');
W RITELN (Error_Log, 'call.');

END;
PSE TooManEnd:
BEGIN

WRITE (Error_Log, 'PS-E-TOOMANEND: Too many ');
WRITELN (Error_Log, 'END_STRUCTURE calls invoked.');

END;
PSE NotAtt:
BEGIN

WRITE (Error_Log, 'PS-E-NOTATT: The PS 300 ');
WRITE (Error_Log, 'communications link has not ');
W RITELN (Error_Log, 'yet been established.');
WRITE (Error_Log, 'PAttach has not been called ');
W RITELN (Error_Log, 'or failed.');

END;
PSE OveDurRea:
BEGIN

WRITE (Error_Log, 'PS-E-OVEDURREA: An overrun ');
WRITE (Error_Log, 'occurred during a read ');
W RITELN (Error_Log, 'operation.');
WRITE (Error_Log, 'The specified input buffer ');
1lU RITE (Error_Log, 'in call to: PGET or: PGETW');
W RITELN (Error_Log, 'was too small and truncation');
W RITELN (Error_Log, 'has occurred.');

END;
PSE_PhyDevTyp:
BEGIN

WRITE (Error_Log, 'PS-E-PHYDEVTYP: Missing or ');
WRITE (Error_Log, 'invalid physical device type ');
W RITELN (Error_Log, 'specifier in call to PAttach.');
VAX_Specific;

END;
PSE_LogDevNam:
BEGIN

WRITE (Error_Log, 'PS-E-LOGDEVNAM: Missing or ');
WRITE (Error_Log, 'invalid logical device name ');
W~RITELN (Error_Log, 'specifier in call to PAttach.');
VAX_Specif ic;

END;

PS 300 DEC VAX/VMS PASCAL GSR A - 21

PSE AttDelExp:
BEGIN

WRITE (Error Log, 'PS-E-ATTDELEXP: Attach ');
WRITE (Error Log, 'parar~~eter string delimiter ');
W RITELN (Error Log, "'/" was expected.');
VAX Specific;

END;
OTHERWISE UnknownError;
END

{ Identify fatal errors }

ELSE Case Error Code OF
PSF_PhyAttFai:
BEGIN

WRITE (Error_Log, 'PS-F-PHYATTFAI: Physical ');
W RITELN (Error_Log, 'attach operation failed.');

END;
PSF_PhyDetFai:
BEGIN

WRITE (Error Log, 'PS-F-PHYDETFAI: Physical ');
WRITELN (Error_Log, 'detach operation failed.');

END;
PSF PhyGetFai:
BEGIN

WRITE (Error_Log, 'PS-F-PHYGETFAI: Physical ');
W RITELN (Error Log, 'get operation failed.');

END;
PSF PhyPutFai:
BEGIN

WRITE (Error Log, 'PS-F-PHYPUTFAI: Physical ');
W RITELN (Error Log, 'put operation failed.');

END;
PSF Bu f TooLar:
BEGIN

WRITE (Error_Log, 'PS-F-BUFTOOLAR: Buffer too ');
WRITE (Error Log, 'large error in call to: '};
W RITELN (Error Log, 'PSPUT.');
WRITE (Error_Log, 'This error should NEVER ');
WRITE (Error Log, 'occur and indicates a '};
W RITELN (Error Log, 'Procedural Interface (GSR)');
W RITELN (Error Log, 'validity check.');
VAX Specific;

END;

A - 22 PS 300 DEC VAX/VMS PASCAL GSR

PSF_WroNumArg:
BEGIN

WRITE (Error_Log, 'PS-F-WRONUMARG: Wrong ');
WRITE (Error_Log, 'number of arguments in call ');
WRITELN (Error_Log, 'to Procedural Interface (GSR)');
WRITE (Error_Log, 'low-level I/O procedure ');
WRITELN (Error_Log, '(source file: PROIOLIB.MAR).');
WRITE (Error_Log, 'This error should NEVER ');
WRITE (Error_Log, 'occur and indicates a ');
W RITELN (Error_Log, 'Procedural Interface (GSR) ' j;
WRITELN (Error_Log, 'validity check.');
VAX_Specific;

END;
PSF ProTooLar:
BEGIN

WRITE (Error_Log, 'PS-F-PROTOOLAR: Prompt ');
WRITE (Error_Log, 'buffer too large error in ');
WRITELN (Error_Log, 'call to: PSPRCV.'};
WRITE (Error_Log, 'This error should NEVER ');
WRITE (Error_Log; 'occur and indicates a ');
WRITELN (Error_Log, 'Procedural Interface (GSR) ');
WRITELN (Error_Log, 'validity check.');
VAX_Specific;

END;
OTHERWISE UnknownError;

END;
IF (Error code >= PSF_PhyAttFai) AND

(Error code <= PSF_PhyPutFai) THEN BEGIN
Pspvmserr (VMSdef, PIdef);
W RITELN (Error_Log, 'DEC VAX/VMS Error definition is:');
WRITELN (Error_Log, VMSdef);
WRITE (Error_Log, 'Procedural Interface (GSR) ');
WRITE (Error_Log, 'Interpretation of ');
W RITELN (Error_Log, 'DEC VAX/VMS completion code:');
W RITELN (Error_Log, PIdef);
WRITE (Error_Log, 'DEC VAX/VMS Error code value ');
WRITELN (Error_Log, 'was: ', Psvmserr);

END;
W RITELN (Error_Log);

END;

PROCEDURE DetachErrorHan (Detach_Error : INTEGER);
BEGIN

WRITE (Error_Log, 'PS-I-ERRWARDET: Error/warning ');
WRITE (Error_Log, 'trying to Detach ');
WRITELN (Error_Log, 'the communications link between '};
WRITELN (Error_Log, 'the PS 300 and the host.');
Identif yCompletionCode (Detach_Error);

END;

PS 300 DEC 1iAX/1lMS PASCAL GSR A - 23

BEGIN
IF NOT ErrorFileOpen THEN BEGIN

{ Open error file for the logging o f errors }

OPEN (Error_Log, 'Proerror.log', History := NEW);
REWRITE (Error_Log);
ErrorFileOpen := TRUE;

END;
IdentifyCompletionCode (Error_Code);
IF Error code >= 512 THEN BEGIN

WRITE (Error_Log, 'PS-I-ATDCOMLNK: Attempting ');
WRITE (Error Log, 'to detach PS 300');
WRITELN (Error_Log, '/Host communications link.');

{ Use different error handler so as }
{ not to get caught in a recursive }
{ loop if we consistently get an }
{ error when attempting to detach }

PDetach (DetachErrorHan);
CLOSE (Error_Log.);
IF (Error_code >= PSF_PhyAttFai) AND

(Error code <= PSF PhyPutFai)

{ identify 1/MS error if there was one }

THEN LIB$STOP (PsVMSerr)
ELSE HALT;

END;
END;

FUNCTION Uppercase (Chara :CHAR) :CHAR;
BEGIN

IF (Chara >_ 'a') AND (Chara <_ 'z')
THEN Uppercase := CHR (ORD (Chara) - 32)
ELSE Uppercase := Chara;

END;

PROCEDURE Circle;

CONST
Deg_rad = 0.01745 3 29 2;

A — 24 PS 300 DEC VAX/VMS PASCAL GSR

VAR
Theta :REAL;
DTheta :REAL;
i : INTEGER;
Draw :BOOLEAN;

BEGIN
Draw := FALSE;
DTheta := 3.6 ~ Deg_Rad;
Theta := 0;
FOR i := 1 TO 101 DO BEGIN

circle_list [i].v4 [1] := 0.8 ~ cos (theta);
circle list [i].v4 [2] := 0.8 ~ sin (theta);
circle_list [i].v4 [3] := 0;
circle_list [i].v4 [4] := 1;
circle_list [i].Draw := Draw;
Theta := Theta +DTheta;
Draw := NOT Draw;

END;
END;

PROCEDURE Attach;

VAR
DeviceSpec :CHAR;
DeviceName :VARYING [5] OF CHAR;
AttachParm : P VaryingType;

BEGIN
DeviceSpec :_ ' ';
REPEAT
IF DeviceSpec <> ' 'THEN

WRITELN (OUTPUT, 'Invalid device type specified.');
WRITE (OUTPUT, 'Device Interface type = (PARALLEL,
WRITE (OUTPUT, 'DMR-1 1, Asynchronous): _');
IF EOLN (INPUT)

THEN DeviceSpec :_ ' '
ELSE DeviceSpec := Uppercase (INPUT¢);

READLN (INPUT);
UNTIL (DeviceSpec = 'P') OR (DeviceSpec = 'D') OR

(DeviceSpec = 'A');
REPEAT

WRITE (OUTPUT, 'Physical device name (i.e. ');
WRITE (OUTPUT, 'TT, TTA6, XMDO): _');
READLN (INPUT, DeviceName);

UNTIL LENGTH (DeviceName) > 0;

PS 300 DEC VAX/VMS PASCAL GSR A — 25

AttachParm :_ 'Logdevnam=' + Devicel~lame + ':/Phydevtyp=';
IF Uppercase (DeviceSpec) _ 'P'

THEN AttachParm := AttachParm + 'PARALLEL'
ELSE IF Uppercase (.DeviceSpec) _ 'D'

THEN AttachParm := AttachParr-n + 'DMR-1 1 '
ELSE AttachParr7~ := AttachParm + 'Async';

Pattach (AttachParm, ERR);
END;

BEGIN
WRITE (OUTPUT, '1/ector mode = (Block, Vector): _');
READLN (INPUT, Mode);
IF Uppercase (Mode) _ 'B'

THEN BlockNormalized := TRUE
ELSE BlockNormalized := FALSE;

WRITE (OUTPUT, 'Dimensionality = (2, 3): _');
READLN (INPUT, Dimensionality);
WRITE (OUTPUT, 'Class = (Connected, Dots, Itemized, ');
WRITE (OUTPUT, 'Separate): _');
READLN (INPUT, ClassType);
CASE Uppercase (ClassType) OF
'C' :Class := P_Conn;
'D' :Class := P_Dots;
'I' :Class := P_Item;
'S' :Class := P_Sepa;
OTHERWISE Class := P_Conn;

END;
Attach;
Pinit (Err);
Circle;
Pvecbegn ('circle', 101, BlockNormalized, FALSE,

Dimensionality, Class, Err);
Pveclist (101, circle list, err);
Pvecend (err);
pdisplay ('circle', err);
Pdetach (err);

END.

_~

PS 300 DEC 1/AX/11MS PASCAL GSR B — 1

APPENDIX B. HOST MESSAGE

This appendix contains the function network diagram and functional description of
HC~ST_MESSAGE (an instance of the intrinsic function HOLD_MESSAGE) that supports
the procedures PGetWait and PGET of the GSRs. This function is already part of the
PS 300 system. When using the GSRs, all messages sent from the PS 300 to the host
must be sent via this function.

The function HOST MESSAGE is a F:NOP function directly connected to the function
HOST MESSAGEB. It is recommended that the user always send PS 300 output destined
for the host computer to HOST_MESSAGE rather than HOST_MESSAGEB since the name
of the latter function may change with a future release of runtime software.

i
i

1
<1> F:NOP

----< Requests records from GSR
routines PGet and PGetWait

<1>F:HOLD <1>
MESSAGE

<2>C
<3>C

HOST MESSAGE HQST MESSAGE6

---->Records from user's network.

Connected

to HOSTOUT

Figure B-l. Hold_Messag°e Function Network Diagram

B — 2 PS 300 DEC VAX/UMS PASCAL GSR

HOLD MESSAGE:

INPUTS:

f 1 >: Qpackets of messages to be sent to the Host
and Qintegers used to trigger the r~~essages
as follows:

FIX(0): Clear any messages waiting the
FIFO queue of messages to be
sent to the Host.

FIX(1): If a message is waiting, send it.
Otherwise send the message
indicating: "No—messages" as
determined by input < 3 >.

FIX(2): If a message is waiting, send it.
Otherwise, wait until a Qpacket
message arrives on input < 1 >
and then immediately send the
message.

< 2 > C: Message Terminator Qpacket that is added to the
end of messages arriving on input < 1 > just prior
to transmission to the host.

The default input value for input <2> is a
carriage return: CHR (1 3).

<3>C: "No—messages" Qpacket. If this function receives
a FIX (1) on input < 1 >, then the message on this
constant queue is sent ONLY if there are no other
messages waiting to be sent on input < 1 >.

The default input value for input < 3> is a
carriage return: CHR (1 3).

OUTPUTS:

< 1 >: C~packet sent to the Host Computer in response
to the receipt of either a FIX (1) or FIX (2)
on input < 1 >. ~-~

u

PS 300 DEC UAX/UMS PASCAL GSR B - 3

The GSR procedures: PGet and PGetWait specifically interrogate the function:
HOST_MESSAGEB for input back to the host.

The procedure Peet is used to "poll" the PS 300 for data. If a message exists on the
FIFO queue of HOST_MESSAGEB, then that message is removed from the queue and is
returned by PGet. If no message was present in the input queue of HOST_MESSAGEB
then the special: "No-messages" message as defined by input < 3 > of HOST_MESSAGE is
returned.

The procedure PGetWait is similar in functionality to Peet with one important
difference. PGetWait will NOT return to the caller until a message has been received
from the PS 300. If no messages are present on the input queue of HOST_MESSAGEB,
then the caller of PGetWait (Get message and wait for completion) will wait until a
message is sent to input < 1 > of HOST_MESSAGEB.

NOTE

Messages received from the PS 300 via Peet and
PGetWait may need to be "trimmed" of the trailing
characters) as defined by inputs < 2 > and < 3 > of
HOST MESSAGEB if either of them is changed from the
default value of carriage return (Character 13). The
DEC UAX/UMS PASCAL GSR will remove a single
trailing carriage return from the message. Thus if a poll
operation is requested and no messages are present, the
GSR returns a zero-length message to the caller
indicating that no messages were present because the
default "No-message" message on input < 3 > of
HOST MESSAGEB is a carriage return. Similary, calls to
PGetWait return the proper length. However, if the user
chooses to change the HOST_MESSAGEB inputs < 2 > or
<3>, then the user must compensate for any side effects
so produced when calling Peet or PGetWait.

PS 300 DEC UAXIU~S FORTRA\-11 GRAPHICS SUPPORT ROUTI\

USER'S ~A\UAL

Supported Under PS 300 Graphics Firmware Release A 1

ES

The contents of this document are not to be reproduced or
copied in whole or in part without the prior written
permission of Evans &Sutherland.

Many concepts in this document are proprietary to Evans &
Sutherland, and are protected as trade secrets or covered by
U.S. and foreign patents or patents pending.

Evans &Sutherland assumes no responsibility for errors or
inaccuracies in this document. It contains the most
complete and accurate information available at the time of
publication, and is subject to change without notice.

PSI, PS2, MPS, and PS 300 are trademarks of the Evans &
Sutherland Computer Corporation.

Copyright o 1984
EUANS &SUTHERLAND COMPUTER CORPORATION

P.O. Box 8700, 580 Arapeen Drive
Salt Lake City, Utah 84121

PS 300 DEC VAX/VMS FORTRAN-77 GSR

CONTENTS

SECTION I

INTRODUCTION 1

Applications 2
Graphics Support Routines Conventions 3
Utility Subroutines 4
Application Subroutines 4

EXCEPTIONS 5

EXCLUDED COMMANDS 7

ERROR HANDLING 8

EXAMPLES OF THE SUBROUTINES 9

PROGRAMMING SUGGESTIONS 12

SECTION II

INDEX TO THE SUBROUTINES 15

UTILITY SUBROUTINES 23

APPLICATION SUBROUTINES 35

ERROR TABLES 171

PS 300 DEC VAX/VMS FORTRAN-77 GSR

SECTION III

APPENDIX A. SAMPLE PROGRAMS

APPENDIX B. HOST MESSAGE

PS 300 DEC VAX/VMS FORTRAN-77 GSR - 1

INTRODUCTION

The PS 300 VAX FORTRAN-77 Graphics Support Routines (GSRs) are a package of
FORTRAN subroutines that are executed on the host computer. These subroutines
allow the host to communicate PS 300 commands directly to the PS 300 Command
Interpreter. The GSRs provide subroutines for most commands acceptable by the
PS 300 Graphics System.

The GSRs described here are written in FORTRAN-77 and require a FORTRAN-77
compiler to compile properly.

The purpose of this document is to provide a cross reference between the PS 300
command language and the corresponding FORTRAN subroutines of the GSRs.

This document should be used in conjunction with the PS 300 Command Sulnlnary. No
attempt has been made in this document to provide tutorial information on the use of
the PS 300 command language or syntax.

The GSRs are supported under PS 300 Graphics Firmware Release P5.UO3 and higher.
There are no specific hardware requirements.

This manual is divided into three sections. The first section is a guide to the GSRs. It
contains information on the conventions and definitions used in the GSRs. There are
several PS 300 commands that have not been implemented in the .GSRs. These
commands are documented under Excluded Commands.

A section titled Programming Suggestions has been provided that lists the GSR
FORTRAN PARAMETER declarations that may be. helpful to the user.

An error handling scheme has been employed to catch errors detected by the GSRs. A
table of the error codes and definitions follows the listing of the Utility and Application
Subroutines. Appendix A contains a sample error-handling subroutine.

2 — PS 300 DEC VAX/VMS FORTRAN-77 GSR

The second section of the manual lists each GSR subroutine with its corresponding
PS 300 command. The subroutines are presented in alphabetical order with parameters
and the corresponding PS 300 command syntax.

When an example is given, it is shown with both the PS 300 command syntax and the
subroutine parameters. Any notes following a subroutine describe discrepancies or
restrictions that apply to the subroutine but may not apply to the corresponding PS 300
command.

An alphabetical listing of the PS 300 Commands, the corresponding FORTRAN
subroutine, and the appropriate page reference is provided at the front of the
description of the subroutines.

The third section contains the appendices. Appendix A contains sample programs that
illustrate the use of the GSRs. Each program has an example of an error—handling
subroutine. Appendix B contains a description of the PS 300 system function
HOST_MESSAGE. Installation instructions are in the SystelYl Manager Reference,
Volume 5 of this document set.

The GSRs were developed at Evans and Sutherland as a standard communication path
between the PS 300 and the application program. Prior to this interface,
communication with the PS 300 was supported by the Host Resident I/O Routines
(PSIO). All commands were sent to the PS 300 as ASCII character strings (with the
exception of vector lists). It was the responsibility of the application to format
graphical information into the proper PS 300 commands. Typically, this was
accomplished using FORTRAN ENCODE/DECODE and FORMAT statements, or
equivalents, to build character strings to be sent to the Parser via PSSEND. PSVECS
provided a faster communication path by formatting vector data into a "binary" format
and including the proper routing information to bypass the Parser and communicate
directly with the Command Interpreter.

The GSRs provide a set of subroutines that perform all formatting and routing duties
for the application. They take advantage of the fact that all data formatting is
performed by E&S supported code. The GSRs communicate nearly all commands
directly to the Command Interpreter and achieve significant performance improvement
over the ASCII form of the commands.

Applications

Typically, the subroutines will be used for the following applications:

• Attach to the graphics device

• Create and modify display structures

• Create, connect and modify function netv~~orks

• Receive data from the graphics device

PS 300 DEC VAX/VMS FORTRAN-77 GSR — 3

Graphics Support Rotitiries Co~iventiotis

The Graphics Support Routines make extensive use of the following data type
definitions:

Boolean =Logical value true/false, generally LOGICAL 1.
Integer =Integer value always INTEGER~4.
Real =Real (floating point) number generally REAL~4. r
String =Character string, CHARACTER~N.

For the FORTRAN version of the Graphics Support Routines, character strings
require a delimiter character for length determination. Double quote (o"o) is
the default delimiter. This delimiter may be changed using the PDELIM
subroutine. A description of PDELIM is found in the Utility Subroutine section.
The Graphics Support Routines use LEN (String) to determine the maximum
length of a string. Therefore, if the delimiter is not specified, all characters up
to LEN (String) will be used. Because of this, quoted strings may be used without
delimiters, i.e. 'THIS' is treated the same as 'THIS"'.

Utility Subroutines

There are two types of supporting subroutines. Utility Subroutines are specific
to the operation of the Graphics Support Routines. These calls are used to
attach the PS 300, set the string delimiting character, select multiplexing
channels, send and receive messages, and detach.

Application Subroutines

The Application Subroutines correspond almost one for one with the standard
PS 300 Commands. Exceptions and exclusions are given following the text on the
Application Subroutines.

In most cases, the names for the Application Subroutines were derived by
choosing an abbreviation of the PS 300 commands and prefixing it with a P.
Parameter ordering generally coincides with the PS 300 commands as well.

Examples of some of the Application Subroutines are shown below.

Example 1

For commands which build operate display structures, such as

Name:= operate parameter l ,parameter2,..., then apply;

4 - PS 300 DEC VAX/VMS FORTRAN-77 GSR

The subroutine call is:

CALL Poper('rlanle',paralneterl,parameter2,...,'apply', F.rrHnd)

where:

oper is an abbreviated form of the PS 300 command such as rotate in x --
Protx

'name' is a character string containing the name to be associated with the
operate

paraineterl,pararneter2,..., are the parameters to be used in computing the
operation. These may be logicals, integers, reals, vectors, or matrices.

'apply' is a character string containing the name of the object to which this
operate applies.

ErrHild is the user-defined error-handler subroutine.

Example 2

For commands to "send" to functions or display structures, such as

Send datum to < inpu t > dest;

The subroutine call is:

CALL PSNtyp(datuln,input,'dest', ErrHild)

where:

'typ' is an abbreviated form of the PS 300 command such as PSNFIX,
PSNM2D,...

datulYi is what is to be sent. It may be logical, integer, real, character
string, vector, or a REAL~4 two dimensional array.

input is an integer which specifies which input of the destination is being
sent to.

'dent.' is a character string containing the name of the display structure or
function.

ErrHnd is the user-defined error-handler subroutine.

Note that the function names in the GSRs are specified without the "F:" prefix
that is used in the standard PS 300 command language.

PS 300 DEC VAX/VMS FORTRAN-77 GSR - 5

Example 3

For commands which create functions and connections such as:

Name := f:genfcn;
Name := f :gen f cn(n);
Conn name<output>:<input>dest;
Disc name<output>:<input>dest;

The subroutine calls are:

CALL PE'N ('nalYie', 'genfcn', ErrHTld)
CALL PFNN ('name', 'genfcn', il, ErrHnd)
CALL PCONN ('ilalne',outptit,lriplit,'dest', ErrHnd)
CALI~ PDI ('llame',output,iilput,'dest', ErrHlid)

where:

'~la.me' is a character string containing the name associated with the
function instance.

'g~etifcil' is a character string containing the name of the system generic
function.

n is an integer specifying the number of input/outputs for this function
instance.

output,input are integers specifying the output and input numbers.

'dent' is a character string containing the name of the display structure or
function.

ErrHnd is the user-defined error-handler subroutine.

EXCEPTIONS

There are two PS 300 commands that use three subroutines. These are the
PS 300 LABEL command and the VECTOR LIST command. For both these
commands, the Graphics Support Routines require three separate calls.

To create, specify and complete a label block, the user must call:

PLaBeg - To create and open a label block

PLaAdd - May be called multiple times to add to a previously opened label
block

PLaEnd - To complete the creation of a label block.

6 - PS 300 DEC UAX/UMS FORTRAN-77 GSR

Together these three subroutines implement the PS 300 command:

Name := LABELS x, y, z, 'string'

x, y, z, 'string';

In the same way, the user must call PUcBeg to begin a vector list, PUcLis to send
a piece of a vector list, and PUcEnd to end a vector list.

An example of a call that varies slightly from the PS 300 command is the PBSPL
call; the PS 300 BSPLINE command. In the PS 300 command language, some of
the parameters are optional. In the subroutine they are all required. This is also
the case for the PRBSPL, PPOLY, and PRPOLY subroutines.

The PS 300 syntax allows for instancing multiple display entities and for creating
multiple variables. In the PS 300 command language the commands would be:

NAME := INSTANCE a,b,c,d;

for instancing multiple display entities, and

VARIABLE s,y,z,w,t,q;

for multiple variables.

To perform the equivalent instancing of multiple display entities or for creating
multiple variables, the following Graphics Support Routine subroutines should be
used.

For the multiple instance case:

CALL PINST('NAME', 'A', ErrHnd)
CALL PINCL('B', 'NAME', ErrHnd)
CALL PINCL('C', 'NAME', ErrHnd}
CALL PINCL('D', 'NAME', ERRHND)

For the multiple variable case:

CALL PUAR ('S', ERRHND)
CALL PUAR ('Y', ERRHND}
CALL PUAR ('Z', ERRHND)
CALL PUAR ('1N', ERRHND)
CALL PUAR ('T', ERRHND)
CALL PUAR ('Q', ERRHND)

PS 300 DEC VAX/VMS FORTRAN-77 GSR — 7

EXCLUDED COMMANDS

There are several classes of commands that were not implemented in the
Graphic Support Routines. These include unit commands, commands that are
currently being reworked in the PS 300 Graphics Firmware, commands that
duplicate functionality, and commands that report the status or the
configuration of the PS 300.

Units are handled exclusively by the Parser, and as such cannot be passed as
binary data to the Command Interpreter. Commands that are currently being
reworked in the firmware will be added to the Graphics Support Routines at a
later date. The command status and system configuration commands have no
applications in an interactive program.

A list of the excluded commands and the reason for their exclusion is shown in
the following table.

TABLE 1

COMMAND

Define Units;
Report Units;
Forget Units;
Initialize Units;
With Pattern;
Begin_Font;
End_Font;
Xform Vector;
Xform Matrix;
Store;
Look From;
Command Status
Setup/Show Interface

REASON FOR EXCLUSION

Unit command — does not apply
Unit command —does not apply
Unit command —does not apply
Unit command —does not apply
Currently being reworked
Currently being reworked
Currently being reworked
Currently being reworked
Currently being reworked
Duplicated functionality (use SEND TO)
Duplicated functionality (use Look AT)
Status command
System configuration command

Except for the exclusions mentioned above, each PS 300 command corresponds to one or
more subroutines in the Graphics Support Routines. Commands not implemented in the
GSRs are sendable via the PPUTP subroutine which sends the command to the PS 300
Parser.

8 — PS 300 DEC VAX/VMS FORTRAN-77 GSR

ERROR HANDLING

An error handling scheme has been employed to catch errors detected by the
Graphics Support Routines. Examples of errors detected by the Graphics Support
Routines are:

Prefix not followed by an operate.
Follow not followed by an operate.
Multiple calls to PVcLis for block —normalized vector list data.
Invalid characters in a name.

Command Interpreter errors and warnings are not detected by the Graphics
Support Routines. Examples of these errors are:

Destination does not yet exist.
Message rejected by destination.
Connection not made.

Error checking will be performed within the Graphics Support Routines to insure
that only valid characters are sent within names, and that subroutines are called
in the proper order, in cases where order is required. No attempt has been made
to capture errors and/or warnings from the Command Interpreter.

Each subroutine call includes an argument that specifies the user—written error
handler. This error—handler is of the form:

Subroutine E R R HN D (ercode)

where ercode is an integer error code corresponding to one of the errors.

WARNING

It is critical that the user specify the error handler as
EXTERNAL in all subroutines that make calls to the
Graphics Support Routines. Otherwise, the address of a real
variable will be passed as a subroutine address and
unpredictable events will occur if the error handler is called.

PS 300 DEC VAX/VMS FORTRAN-77 GSR - 9

It is the responsibility of the user to provide an error-handling routine to decide
what action should be taken when an error is detected. The Graphics Support
Routines do not atter`npt to terminate execution or log errors.

The name, description, and error code of each detectable error is given in tables
in the second section of this manual. A sample error-handler subroutine appears
in both example programs in Appendix A of this manual. It is a sophisticated
error-handler that may be incorporated by the user into an error-handling
scheme, or used as an example of what an error-handler should look like.

EXAMPLES OF THE SUBROUTINES

The following two examples show how the subroutines are described in this
manual.

10 — PS 300 DEC VAX/VMS FORTRAN-77 GSR

EXAMPLE — 1

PS 300 DEC VAX/VMS FORTRAN-77 GSR PROTX

Name := ROTATE in X

APPLICATION SUBROUTINE AND PARAMETERS

CALL PRotX (Name, Ang°le, Apply, ErrHild)

where:

Name is a CHARACTER STRING
Angle is a REAL~4
Apply is a CHARACTER STRING
ErrHnd is auser—defined error—handler subroutine.

PS 300 COMMAND AND SYNTAX

Name := ROTate in X Angle (APPLied to Apply);

To use the PROTX call, instead of sending the ASCII command string:

xrot := ROTate in X 37 applied to object;

the application program would call the X —rotation subroutine:

CALL PRotX ('xrot', 37.0, 'object', ErrHnd)

where 'xrot' is the name of the display structure, 37.0 is the angle of X rotation,
'object' is the display structure to which the X rotation is to be applied, and the
ErrHnd is auser—defined subroutine that handles errors detected by the Graphics
Support Routines.

The ROTATE IN X example is fairly straight forward, as are the majority of the
subroutines.

The description of the PCONN subroutine and its parameters is given in the
following example.

PS 300 DEC VAX/VMS FORTRAN-77 GSR - 1 1

EXAMPLE - 2

PS 300 DEC VAX/VMS FORTRAN-77 GSR PCONN

Name := CONNECT

APPLICATION SUBROUTINE AND PARAMETERS

CALL PCorul (Source, Otlt, Illp, Dest, ErrHlld)

where:

Source is a CHARACTER STRING
Out is a INTEGE R ~4
In is an INTEGER ~4
Dest is a CHARACTER STRING
ErrHnd is a user-defined error-handler subroutine.

PS 300 COMMAND AND SYNTAX

CONNECT Source <Out>:<Inp> Dest;

Continuing this example, we connect 'name' to the display structure 'xrot' using
PConn as follows.

CALL PConn ('name', 1, 1, 'mot', ErrHnd)

where output < 1 > of 'name' is connected to input < 1 > of the display structure
'xrot'.

The PS 300 command syntax for this same operation is:

CONNECT name < 1 >: < 1 > xrot;

12 - PS 300 DEC VAX/VMS FORTRAN-77 GSR

PROGRAMMING SUGGESTIONS

The file PROCONST.FOR contains definitions for constants used by the Graphics
Support Routines. It is often convenient to think of these constants by name
rather than by remembering numbers. Specifically, in the usual PS 300 command
syntax, inputs to display structures are often referred to by name such as
< append > and < clear> for vector_lists and < position > and < step > for character
strings. There are also <delete>, <last>, and others. Other useful constants such
as values for conditional tests for level of detail, and vector list class are
obtainable from PROCONST.FOR. PROCONST.FOR also contains a complete
set of error/warning code definitions. These values are given in the error table
at the end of this manual and may be referenced by name by the user subroutine
if PROCONST.FOR is INCLUDED in the subroutine.

The following is an abbreviated list derived from PROCONST.FOR of the
constants which should be most useful to the user.

GSR constant declarations:

Name Meaning

PIAPP: < Append > input number.
PIDEL: < Delete > input number.
PICLR: <Clear> input number.
PISTEP: <Step> input number.
PIPOS: < Position > input number.
PILAST: <Last> input number.
PISUBS <Substitute> input number.
PCLES: "Less" level of detail comparison operator.
PCEQL: "Equal" level of detail comparison operator.
PCLEQL: "Less-equal" level of detail comparison operator.
PCGTR: "Greater" level of detail comparison operator.
PCNEQI._: "Not-equal" level of detail comparison operator.
PCGEQL: "Greater-equal" level of detail comparison operator.
PVCONN: Vector list "Connected" class type.
PVDOTS: Vector List "Dots" class type.
PVITEM: Vector List "Itemized" class type.
PVSEPA: Vector List "Separate" class type.

INTEGER~4

PIAPP, PIDEL, PICLR,
PISTEP, PIPOS, PILAST, PISUBS, PCLES,
PCEQL, PCLEQL, PCGTR, PCNEQL, PGGEQL,
PVCONN, PVDOTS, PVITEM, PVSEPA

PS 300 DEC VAX/VMS FORTRAN-77 GSR - 13

PARAMETER

PIAPP = 0, PIDEL = -1,
PICLR = -2, PISTEP= -3, PIPOS = -4, PILAST= -5,
PISUBS = -6, PCLES = 0, PCEQL = 1, PCLEQL= 2,
PCGTR = 3, PCNEQL= 4, PCGEQL= 5, PVCONN= 0,
PVDOTS= 1, PVITEM= 2, PVSEPA= 3,)

The following example illustrate the use of PROCONST.FOR.

Example 3 : Sejld to a vector list.

PROGRAM TEST
INCLUDE ' PROCONST.FOR '
LOGICAL~I PL (100)
DIMENSION VECS(4,100), AVEC(3)
REAL*4 VECS, AVEC

C
C Always declare user error handler external
C

EXTERNAL ERRHND

C
C
C
C

Create a vector list named VLIST containing 100 connected vectors
PVCONN is defined in PROCONST.FOR

CALL PVCBEG ('ULIST', 100, .FALSE., .FALSE., 3, PVCONN, ERRHND)
CALL PVCLIS (100, VECS, PL, ERRHND)
CALL PVCEND (ERRHND)

C
C Send a 3d vector to <append> of vecs.
C PIAPP is defined in PROCONST.FOR.
C

CALL PSNV3D (AVEC, PIAPP, 'VLIST', ERRHND)
C
C Delete 2 vectors from VLIST.
C PS 300 command: Send f ix(2) to < delete > vlist;
C PIDEL is defined in PROCONST.FOR.
C

CALL PSNFIX (2, PIDEL, 'VLIST', ERRHND)

END

INDEX TO THE SUBROUTINES

The following list from left to right gives an alphabetical listing of the PS 300 Command
Name and the FORTRAN Subroutine Name in this manual where the procedure is listed
with its parameters.

PS 300 COMMAND NAME FORT RAN SUBROUTINE PAGE

ALLOCATE PLOTTER PALLPL 35

ATTRIBUTES PATTR 36

ATTRIBUTES ... AND PATTR2 37

BEGIN PBEG 38

BEGIN STRUCTURE PBEGS 39

BSPLINE PBSPL 40

CANCEL XFROM PXFCAN 167

CHARACTER FONT PFONT 65

CHARACTER ROTATE PCHROT 42

CHARACTERS SCALE PCHSCA 44

CHARACTERS [STEP] PCHS 43

CONNECT PCONN 45

COPY PCOPYV 46

DEALLOCATE PLOTTER PDALLP 47

DECREMENT LEVEL OF DETAIL PDELOD 50

DEL NAMES PDELW 51

DELETE PDELET 49

DISCONNECT PDI 52

DEC FORTRAN — 15

PS 30~ COMMAND .NAME FORTRAN SUBROUTINE PAGE

DISCONNECT ALL PDIALL 53

DISCONNECT OUTPUT PDIOUT 54

DISPLAY PDISP 55

ENABLE/DISABLE RASTER VIDEO PRASVI 104

END PEND 56

END OPTIMIZE PENDOP 57

END STRUCTURE PENDS 58

ERASE PATTERN FROM PERAPA 59

ERASE RASTER SCREEN PRASER 100

EYE BACK PEYEBK 60

F:FUNCTION NAME PFN 62

F:FUNCTION NAME (INOUTS) PENN 63

FIELD OF VIEW PFOV 67

FOLLOW WITH PFOLL 64

FORGET PFORG 66

IF CONDITIONAL BIT PIFBIT 68

IF LEVEL OF DETAIL PIFLEV 69

IF PHASE PIFPHA 70

ILLUMINATION PILLUM 7l

INCLUDE PINCL 72

INCREMENT LEVEL OF DETAIL PINLOD 77

INITIALIZE PINIT 73

INITIALIZE CONNECTIONS PINITC 74

INITIALIZE DISPLAYS PINITD 75

INITIALIZE NAMES PINITN 76

DEC FORTRAN - 16

PS 300 COMMAND NAME _FORTRAN SUBROUTINE PAGE

INSTANCE OF PINST 78

CABLES PLAADD 79
PLABEG 80
PLAEND 81

LOAD PIXEL VALUE PRASWP 105

LOOK AT FROM PLOOKA 82

MATRIX 2X2 PMAT22 83

MATRIX 3X3 PMAT33 84

MATRIX 4X3 PMAT43 85

MATRIX 4X4 PMAT44 86

NIL PNIL 87

OPTIMIZE STRUCTURE POPT 88

PATTERN PDEFPA 48

PATTERN Namel WITH Name2 PPATWI 89

POLYGON (ATTRIBUTES) PPLYGA 90

POLYGON (BEGIN) PPLYGB 91

POLYGON (END) PPLYGE 92

POLYGON (LIST) PPLYGL 93

POLYGON (OUTLINE) PPLYGO 95

POLYNOMIAL PPOLY 96

PREFIX NAME WITH PPREF 98

RATIONAL BSPLINE PRBSPL 107

RATIONAL POLYNOMIAL PRPOLY 1 16

RAWBLOCK PRAWBL 106

REMOVE FOLLOWER OF NAME PREMFO 1 10

REMOVE FROM PREMFR 111

DEC FORTRAN - 17

~'S 300 COMMAND NAME FORTRAN SUBR,UUTINE PAGE

REMOVE NAME PREM 109

REMOVE PREFIX PREMPR 112

RESERVE WORKING STORAGE PRSVST 118

ROTATE IN X PROTX 113

ROTATE IN Y PROTY 1 14

ROTATE IN Z PROTZ 1 15

SCALE PSCALE 1 19

SECTIONING PLANE PSECPL 127

SEND (RAW) STRING TO PSNRST 148

SEND (VECTOR LIST) PSNVL 154

SEND 2D MATRIX TO PSNM2D 143

SEND 2D VECTOR TO PSNV2D 150

SEND 3D MATRIX TO PSNM3D 144

SEND 3D VECTOR TO PSNV3D 151

SEND 4D MATRIX TO PSNM4D 145

SEND 4D VECTOR TO PSNV4D 152

SEND BOOLEAN TO PSNBOO 141

SEND COUNT~DRAWMV TO PSNPL 146

SEND FIX TO PSNFIX 142

SEND REAL NUMBER TO PSNREA 147

SEND STRING TO PSNST 149

SEND VALUE TO PSNVAL 153

SET CHARACTERS SCREEN ORIENTED PSECHS 122

SET CHARACTERS SCREEN ORIENTED/FIXED PSECHF 121

SET CHARACTERS WORLD ORIENTED PSECHW 123

DEC FORTRAN - 18

PS 3~Q COMMAND NAME FORTRAN SUBROU'i'INF: PACE

SET COLOR PSECOL 125

SET COLOR BLENDING PSETCB 140

SET CONDITIONAL BIT PSEBIT 120

SET CONTRAST PSECON 126

SET CSM PSECSM 128

SET DEPTH CLIPPING PSEDCL 130

SET DISPLAY PSEDOF 131

SET DISPLAYS ALL PSEDAL 129

SET INTENSITY PSEINT 132

SET LEVEL OF DETAIL PSELOD 133

SET LOGICAL DEVICE COORDINATES PRASLD 101

SET LOOK UP TABLE RANGE PRASLR 102

SET PICKING INDENTIFIER PSEPID 134

SET PICKING LOCATION PSEPLO 135

SET PICKING OFF PSEPOF 137

SET PIXEL LOCATION PRASCP 99

SET PLOTTER PSEPLT 136

SET RATE PSE R 13 8

SET RATE EXTERNAL PSEREX 139

SETUP CHESS PSECNS 124

SOLID RENDERING PSOLRE 155

STANDARD FONT PSTDFO 156

SURFACE RENDERING PSURRE 157

TRANSLATE PTRANS 158

DEC FORTRAN - 19

PS 300 COMMAND NAME FORTRAN SU B ROUT[N~: I'AG~~

VARIABLE NAME PVAR 159

VECTOR LIST PVCBEG 160
PVCEND 162
PVCLIS 163

VIEWPORT PVIEWP 165

WINDOW PWINDO 166

WRITE LOOK UP TABLE ENTRIES PRASLU 103

XFORM MATRIX PXFMAT 168

XFROM VECTOR LIST ~ PXFVEC 169

DEC FORTRAN - 20

The following is a list of the Utility Subroutines.

UTILITY SUBROUTINE PAGE

PATTCH 23

PDELIM 25

PDTACH 26

PGET 27

PGETW 28

PMUXCI 29

PMUXG 30

PMUXP 31

PPURGE 32

PPUTG 3 3

PPUTP 34

DEC FORTRAN — 21

~-a ./s u4:Ws:eP.. . ..

PS 300 DEC VAX/VMS FORTRAN-77 GSR PATTCH

UTILITY SUBROUTINE

UTILITY SUBROUTINE AND PARAMETERS

CALL PAttch (Modify, ErrHnd)

where:

Modify is a CHARACTER STRING
ErrHnd is the user—defined error—handler subroutine.

DESC RIPTIO N

This subroutine attaches the PS 300 to the communications channel: If this
subroutine is not called prior to use of the Application Subroutines, the user's
error handler is invoked with the "The PS 300 communications link has not been
established" error code corresponding to the mnemonic: PSENOA:.

The parameter (Modify) must contain the phrases:

LOGDEI/NAM=name/PHYDEVTYP=type

where 'name' refers to the logical name of the device that the GSRs will
communicate with, i.e. TTA6:, TTB2: XMEO:, PS:, etc. and 'type' refers to the
physical device type of the hardware interface that the GSRs will communicate
through. This last argument can only be one of the following three interfaces:

ASYNC (standard RS-232 asynchronous communication interface)
DMR-1 1 (high—speed synchronous interface)
PARALLEL (high speed parallel interface

The parameter string must contain EXACTLY l "/" somewhere between the
above phrases. Blanks are NOT allowed to surround the ff_ft in the phrases. The
PAttch parameter string is not sensitive to upper or lower case.

Example: CALL PAttch ('logdevnam=tta2:/phydevtyp=async', Errhnd)

where tta2: is the logical device name of the PS 300, and the hardware interface
is standard asynchronous RS-232.

(Continued on next page)

DEC FORTRAN — 23

PS 300 DEC VAX/VMS FORTRAN-77 GSR PATTCH

UTILITY SUBROUTINE

(continued)

Example: CALL PAttch ('logdevnam=ps:/phydevtyp=dmr-11', ErrHnd)

where the physical device type is a DMR-11 interface and where the user has
informed the VAX that the logical symbol: PS refers to the name of the logical
device that the GSRs will communicate with using the following ASSIGN
command:

$ ASSIGN XMDO: PS:
$ RUN <application-pgm>

DEC FORTRAN - 24

PS 300 DEC VAX/VMS FORTRAN-77 GSR PDELIM

UTILITY SUBROUTINE

UTILITY SUBROUTINE AND PARAMETERS

CALL PDelim CNewd, ErrHnd)

where:

Newd is a single character CHARACTER STRING that is the new string
delimiter

ErrHnd is the user-defined error-handler subroutine.

DESCRIPTION

This subroutine can be used to change the string delimiting character. The
default string delimiter is " (double quote).

DEC FORTRAN - 25

PS 300 DEC VAX/VMS FORTRAN-77 GSR PDTACH

UTILITY SUBROUTINE

UTILITY SUBROUTINE AND PARAMETERS

CALL PDtach tErrHnd)

where:

ErrHnd is the user-defined error-handler subroutine.

DESCRIPTION

This subroutine detaches (disconnects) the communications link established
between the host and the PS 300.

PDtach should always be the last GSR subroutine called by the user application
program.

DEC FORTRAN - 26

PS 300 DEC VAX/VMS FORTRAN-77 GSR PGET

UTILITY SUBROUTINE

UTILITY SUBROUTINE AND PARAMETERS

CALL PGet CStr, Msglen, ErrHnd)

where:

Str is a CHARACTER STRING that contains the message read from the
PS 300

Msglen is an INTEGER~4 that returns the number of bytes read from the
PS 300

ErrHnd is the user-defined error-handler subroutine.

DESCRIPTION

The Peet subroutine is used to poll the PS 300 for input records by requesting a
message that has been sent to the P i 300 function HOST_MESSAGE. The actual
message contents are returned in: Str. The number of bytes read are returned in
Msglen.

If a Peet call is issued and no message exists to be sent back to the host, then
the returned length of the message (Msglen) is 0. Otherwise, the length of the
message is greater than 0, and indicates the true number of bytes in the message.

NOTE

If the default value for input <~> or input <3> of
HOST_MESSAGEB is changed by the user to be something
other than a single carriage return, then the above
description no longer applies. The- user should .refer to
Appendix B of this manual for a description of
HOST MESSAGEB and its inputs.

DEC FORTRAN - ~7

PS 300 DEC VAXIVMS FORTRAN-77 GSR PGETW

UTILITY SUBROUTINE

UTILITY SUBROUTINE AND PARAMETERS

CALL PGetW CStr, MsgLen, ErrHnd)

where:

Str is a CHARACTER STRING that contains the message read from the
PS 300

MsgLen is an INTEGER~4 that returns the number of bytes read from the
PS 300

ErrHnd is the user-defined error-handler subroutine.

DESCRIPTION

The PGetW subroutine is used to query the PS 300 for input records by requesting
a message that has been sent to the PS 300 function HOST_MESSAGE. If no
message exists to be read, the PGetW subroutine will wait until a message
arrives from HOST_MESSAGE. The actual message contents are returned in:
Str. The number of bytes read are returned in Msglen.

NOTE

If the default value for input < 2 > or input < 3 > of
HOST_MESSAGEB is changed by the user to be something
other than a single carriage return, then the above
description no longer applies. The user should refer to
Appendix B of this manual for a description of
HOST_MESSAGEB and its inputs.

DEC FORTRAN - 28

PS 300 DEC VAX/VMS FORTRAN-77 GSR PMUXCI

UTILITY SUBROUTINE

UTILITY SUBROUTINE AND PARAMETERS

CALL PmuxCl CCIchan, ErrHnd)

where:

CIchan is an INTEGER~4
ErrHnd is the user-defined error-handler subroutine.

DESCRIPTION

This subroutine redefines the CIROUTE output channel accessed as the Binary CI
channel. The standard and default CI channel is 2.

This subroutine is provided to allow for the implementation of multiple command
interpreters.

DEC FORTRAN - 29

PS 300 DEC VAX/VMS FORTRAN-77 GSR PMUXG

~1TI LITY SU6ROUTI NE

UTILITY SUBROUTINE AND PARAMETERS

CALL PMuxG (Muxchn, ErrHnd)

where:

Muxchn is an INTEGER~4
ErrHnd is the user—defined error—handler subroutine.

DESCRIPTION

This subroutine redefines the CIROUTE output channel being currently accessed
as the "generic" channel by PPutG. The call is provided to support the future
implementation of custom user—functions connected to various outputs of
CIROUTE.

Muxchn = l: Send to parser. CIROUTE < 3 >
Muxchn = 2: Send to READSTREAM CIROUTE<4>
etc.

DEC FORTRAN — 30

("1
PS 300 DEC VAX/VMS FORTRAN-77 GSR PMUXP

UTILITY SUBROUTINE

UTILITY SUBROUTINE AND PARAMETERS

CALL PMuxP CPrsChn, ErrHnd)

where:

PrsChn is an INTEGER~4
ErrHnd is the user-defined error-handler subroutine.

DESCRIPTION

This subroutine redefines the CIROUTE output channel accessed by PPutP. The
call allows for the implementation and support of multiple Parsers. The standard
and default Parser channel is 1.

DEC FORTRAN - 31

PS 300 DEC VAX/VMS FORTRAN-77 GSR PPURGE

UTILITY SUBROUTINE

UTILITY SUBROUTINE AND PARAMETERS

CALL PPurge (ErrHnd)

where:

ErrHnd is the user-defined error-handler subroutine.

DESCRIPTION

The GSRs always buffer the output to the PS 300. This subroutine insures that
the output buffer is flushed.

DEC FORTRAN - 32

PS 300 DEC VAX/VMS FORTRAN-77 GSR PPUTG

UTILITY SUBROUTINE

UTILITY SUBROUTINE AND PARAMETERS

CALL PPutG (String, Length, ErrHnd)

where:

String is a CHARACTER STRING
Length is an INTEGER~4
ErrHnd is the user-defined error-handler subroutine.

DESCRIPTION

This subroutine sends the bytes specified in the buffer: String to the current
generic demultiplexing channel of CIROUTE established by: PMuxG. Length
defines the number of bytes to send.

DEC FORTRAN - 33

PS 300 DEC VAX/VMS FORTRAN-77 GSR PPUTP

UTILITY SUBROUTINE

UTILITY SUBROUTINE AND PARAMETERS

CALL PPutP (String, Length, ErrHnd)

where:

String is a CHARACTER STRING
Length is an INTEGER~4
ErrHnd is the user-defined error-handler subroutine.

DESCRIPTION

This subroutine sends the characters specified in the buffer: String to the PS 300
parser. Length defines the number of bytes to send.

DEC FORTRAN - 34

PS 300 DEC VAX/VMS FORTRAN-77 GSR PALLPL

ALLOCATE PLOTTER

APPLICATION SUBROUTINE AND PARAMETERS

CALL PALLPL CPlot, ErrHnd)

where

Plot is an INTE CE R ~4
Errhnd is the user—defined error—handler subroutine

DESCRIPTION

This subroutine allocates the plotter specified in PLOT to the calling user. When
the plotter is allocated, formfeed after plot is disabled.

PS 300 COMMAND AND SYNTAX

ALLOCATE PLOTTER Plot;

DEC FORTRAN — 35

PS 300 DEC VAX/VMS FORTRAN-77 GSR PATTR

Name := ATTRIBUTES

APPLICATION SUBROUTINE AND PARAMETERS

CALL PATTR CName, Hue, Sat, Intens, Reserv, Diffus, Specul, ErrHnd)

where

Name is a CHARACTER STRING
Hue is a REAL
Sat is a REAL
Intens is a REAL
Resery is a REAL
Diffus is a REAL
Specul is an INTEGER~4
Errhnd is the user-defined error-handler subroutine

DESCRIPTION

This subroutine defines polygon characteristics used by the rendering firmware in
the PS 340 to produce shaded renderings. Hue, Sat and Intens define the color of
the polygon. Hue specifies an angle between 0 and 360 indicating the color on a
color wheel with full blue begin 0, red being 120 and green being 240. Sat
specifies the saturation of the color with 0 being no color and 1 being full
saturation. Intens specifies the intensity of the color with 0 being no color
(black) and 1 being full intenstiy. Diffus is the proportion of color contributed by
defuse reflection versus that contributed by specular reflection with a value of 1
eliminating all specular highlighting and a value of 0 eliminating all diffuse
reflectivity. Specul adjusts the concentration of specular highlights in the range
of 0 to 10.

PS 300 COMMAND AND SYNTAX

Name := ATTRIBUTES [COLOR Hue[,Sat[Intens]]]
[DIFFUSE Diffus]
[SPECULAR Specul];

DEC FORTRAN - 36

PS 300 DEC VAX/VMS FORTRAN-77 GSR PATTR2

Name := ATTRIBUTES ... AND

APPLICATION SUBROUTINE AND PARAMETERS

CALL PATTR2 (Name, Hue, Sat, Intens, Reserv, Diffus, Specul,
Hue2, Sat2, Intent, Reser2, Diffu2, Specul2, ErrHnd>

where

Name is a CHARACTER STRING
Hue is a REAL
Sat is a REAL
Intens is a REAL
Resery is a REAL
Diffus is a REAL
Specul is an INTEGER~4
Hue2 is a REAL
Sat2 is a REAL
Intent is a REAL
Reser2 is a REAL
Diffu2 is a REAL
Specul2 is an INTEGER~4
Errhnd is the user-defined error-handler subroutine

DESCRIPTION

This subroutine defines polygon characteristics used by the rendering firmware in
the PS 340 to produce shaded renderings. This is similar to the PATTR
subroutine but allows for a second set of attributes to be defined for the
backside of polygons.

PS 300 COMMAND AND SYNTAX

Name := ATTRIBUTES [COLOR Hue[,Sat[Intens]]]
[DIFFUSE Diffus]
[SPECULAR Specul];

AND [COLOR Hue2[,Sat2[,Inten2]]]
[DIFFUSE Dif f u 2]
[SPECULAR Specu2];

DEC FORTRAN - 37

PS 300 DEC VAXJVMS FORTRAN-77 GSR PBEG

Name := BEGIN

APPLICATION SUBROUTINE AND PARAMETERS

CALL PBeg CErrHnd)

where:

ErrHnd is the user-defined error-handler subroutine.

DESCRIPTION

This call is used with the PEND subroutine to group a set of viewing and/or
modeling commands so that they appear to be executed simultaneously.

PS 300 COMMAND AND SYNTAX

Name := BEGIN

DEC FORTRAN - 38

("1
PS 300 DEC VAX/VMS FORTRAN-77 GSR PBEGS

Name := BEGIN S

APPLICATION SUBROUTINE AND PARAMETERS

CAII PBegs CName, ErrHnd)

where:

Name is a CHARACTER STRING
ErrHnd is the user-defined error-handler subroutine.

DESCRIPTION

This subroutine is used with the PENDS subroutine to group a set of viewing
and/or modeling commands so that each element does not need to be explicitly
named to be accessed.

PS 300 COMMAND AND SYNTAX

Name := BEGIN Structure

DEC FORTRAN - 39

PS 300 DEC VAX/VMS FORTRAN-77 GSR PBSPL

Name := BSPLINE

APPLICATION SUBROUTINE AND PARAMETERS

CALL PBspl CName, Order, OpnCls, NonPer, Dimen, NVert, Vertic,
KntCnt, Knots, Chords, ErrNnd)

where:

Name is a CHARACTER STRING specifying the name to be assigned to the
computed B-spline

Order is an INTEGER~4 specifying the order of the B-spline

For OpnCls .TRUE. is Open and .FALSE. is Closed

For NonPer .TRUE. is Non/periodic and .FALSE. is Periodic

Dimen is an INTEGER~4 2 or 3 (2 or 3 dimensions respectively)

NVert is an INTEGER*4 specifying the number. of vertices

Vertic is defined: REAL~4 Vertic (4, NVert) specifying the vertices
where: Vertic (l,n) = x (n)

Vertic (2,n) = y (n)
Vertic (3,n}'= z (n)
Vertic (4,n) is not used.

KntCnt is an INTEGER~4 specifying the number of knots

Knots is an array (KntCnt + 1) of REAL ~4 specifying the knot sequence

Chords is an INTEGER~4 specifying the number of vectors to be created

ErrHnd is the user-defined error-handler subroutine.

DESCRIPTION

This subroutine evaluates a B-spline curve, allowing the parametric description
of the curve form without having to specify the coordinates of each vector.

(Continued on next page)

DEC FORTRAN - 40

PS 300 DEC VAX/VMS FORTRAN-77 GSR PBSPL

Name := BSPLINE

(continued)

PS 300 COMMAND. AND SYNTAX

Name := BSPLINE
ORDER =Order
OPEN/CLOSED
NONPERIODIC/PERIODIC
N = NVert
VERTICES = X(1), Y(1), (Z(1))

X(2), Y(2), (Z(2))

X(N), Y(N), (Z(N))
KNOTS =Knots (1), ... Knots (KntCnt)
CHORDS =Chords;

NOTE

None of the parameters in the application subroutine
PBSPL are optional. The dimension must be specified in
the PBSPL application subroutine. In the PS 300
command, dimension is implied by syntax.

If KntCnt = 0, then the default knot sequence is
generated and the knot array is ignored.

DEC FORTRAN — 41

PS 300 DEC VAX/VMS FORTRAN-77 GSR PCHROT

Name := CHARACTER ROTATE

APPLICATION SUBROUTINE AND PARAMETERS

Call PChRot CName, Angle, Apply, ErrHnd)

where:

Name is a CHARACTER STRING
Angle is a REAL~4
Apply is a CHARACTER STRING
ErrHnd is the user—defined error—handler subroutine.

DESCRIPTION

This subroutine rotates the specified characters (Apply) and has the following
parametric definition:

• Angle is the Z—rotation angle in degrees

PS 300 COMMAND AND SYNTAX

Name := CHARacter ROTate Angle (APPLied to Apply);

DEC FORTRAN — 42

PS 3D0 DEC VAX/VMS FORTRAN-77 GSR PCHS

CHARACTERS CSTEP]

APPLICATION SUBROUTINE AND PARAMETERS

CALL PChs CName, TranX, TranY, TranZ, StepX, StepY, Chars, ErrHnd)

where:

Name is a CHARACTER STRING
TranX, TranY, TranZ are REAL~4
StepX, StepY are REAL~4
Chars is a CHARACTER STRING
ErrHnd is the user-defined error-handler subroutine.

DESCRIPTION

This subroutine defines a character string (Chars) and specifies its location and
placement. It has the following parametric definitions:

• TranX, TranY, TranZ give the x,y,z coordinates of the location of the
beginning of the character string

• StepX, StepY give the spacing between characters in character unit size

PS 300 COMMAND AND SYNTAX

Name := CHARacters TranX,TranY,TranZ STEP StepX,StepY 'Chars';

DEC FORTRAN - 43

PS 300 DEC VAX/VMS FORTRAN-77 GSR PCHSCA

Name := CHARACTER SCALE

APPLICATION SUBROUTINE AND PARAMETERS

CALL PChSca CName, ScaleX, ScaleY, Apply, ErrHnd)

where:

Name is a CHARACTER STRING
ScaleX, ScaleY are REAL~4
Apply is a CHARACTER STRING
ErrHnd is the user—defined error—handler subroutine.

DESCRIPTION

This subroutine creates a uniform 2x2 scale matrix to scale the specified
characters (Apply}. It has the following parametric definition:

• ScaleX, ScaleY give the scaling factors for the x,y axes

PS 300 COMMAND AND SYNTAX

Name := CHARacter SCALE ScaleX, ScaleY (APPLied to Apply};

DEC FORTRAN — 44

PS 300 DEC VAX/VHiS FORTRAN-77 GSR PCONN

Name := CONNECT

APPLICATION SUBROUTINE AND PARAMETERS

CALL PConn CSource, Out, Inp, Dest, ErrNnd)

where:

Source is a CHARACTER STRING
Out is a INTEGER~4
Inp is an INTEGER~4
Dest is a CHARACTER STRING
ErrHnd is the user-defined error-handler subroutine.

DESCRIPTION

This subroutine connects the output (Out) of the function instance (Source) to the
input (Inp) of the function instance or display data structure (Dest).

PS 300 COMMAND AND SYNTAX

CONNECT Source <Out>:<Inp> Dest;

DEC FORTRAN - 45

PS 300 DEC VAXlVMS FORTRAN-77 GSR PCOPYV

Name := COPY

APPLICATION SUBROUTINE AND PARAMETERS

CALL PCopyV CName, CpyFrm, Start, Count, ErrHnd)

where:

Name is a CHARACTER STRING
CpyFrm is a CHARACTER STRING
Start is an INTEGER~4
Count is an INTEGER~4
ErrHnd is the user—defined error—handler subroutine.

DESCRIPTION

This subroutine creates a vector list (Name) containing a group of consecutive
vectors copied from another vector list (CpyFrm) where 'Start' is the first
vector to be copied and 'Count' is the number of vectors to be copied.

PS 300 COMMAND AND SYNTAX

Name := COPY CpyFrm (START=) Start (,) (COUNT=) Count;

DEC FORTRAN — 46

PS 300 DEC VAX/VMS FORTRAN-77 GSR PDALLP

DEALLOCATE PLOTTER

APPLICATION SUBROUTINE AND PARAMETERS

CALL PDALLP CPlot, ErrHnd>

where

Plot is an INTEGER~4
Errhnd is the user—defined error—handler subroutine

DESCRIPTION

This subroutine deallocates a plotter previously allocated to the calling user.

PS 300 COMMAND AND SYNTAX

DEALLOCATE PLOTTER Plot;

DEC FORTRAN — 47

PS 300 DEC VAX/VMS FORTRAN-77 GSR PDEFPA

Name := PATTERN

APPLICATION SUBROUTINE AND PARAMETERS

CALL PDEFPA CName, Segs, Pattrn, Contin, Match, Length, ErrHnd)

where

Name is a CHARACTER STRING
Segs is an INTEGER~4
Pattrn is an INTEGER~4 (Segs} Array
Contin is a LOGICAL
Match is a LOGICAL
Length is a REAL
ERRhnd is the user—defined error—handler subroutine

DESCRIPTION

This subroutine defines a pattern that can be used to pattern a vector list or
curve. Segs defines the number of integers used to define the pattern, those
integers given by pattrn. Contin- tells whether or not patterning is to go
across multiple vectors. Match tells if the pattern length is to be adjusted
to make the patterning terminate precisely at the endpoints. Length gives
the pattern length.

PS 300 COMMAND AND SYNTAX

Name := PATTERN Pattrn [Pattrn(2)...Pattrn(Segs)]
[AROUND CORNERS] [MATCH/NOMATCH] LENGTH
Length;

lr/

C~EC FORTRAN — 48

PS 300 DEC VAX/VMS FORTRAN-77 GSR PDELET

DELETE

APPLICATION SUBROUTINE AND PARAMETERS

CALL PDelet CName, ErrHnd)

where:

Name is a CHARACTER STRING
Errhnd is the user-defined error-handler subroutine.

DESCRIPTION

This subroutine deletes the previously defined data structure name. After a
PDelet call is issued, all functions and data structures referring to (Name) will
no longer include the data that was associated with (Name).

PS 300 COMMAND AND SYNTAX

DE1_ete Name;

DEC FORTRAN - 49

PS 300 DEC VAXIVMS FORTRAN-77 GSR PDELOD

Name := DECREMENT LEVEL OF DETAIL

APPLICATION SUBROUTINE AND PARAMETERS

CALL PDeLOD CName, Apply, ErrHnd)

where:

Name is a CHARACTER STRING
Apply is a CHARACTER STRING
ErrHnd is the user-defined error-handler subroutine.

DESC RiPTION

This subroutine decrements the current level of detail by 1.

PS 300 COMMAND AND SYNTAX

Name := DECrement LEVeI_of_detail (APPLied to Apply);

DEC FORTRAN - 50

PS 300 DEC VAX/VMS FORTRAN-77 GSR PDELW

DEL NAME*

APPLICATION SUBROUTINE AND PARAMETERS

CALL PDELW CName, ErrHnd)

where

Name is a CHARACTER STRING
Errhnd is the user-defined error-handler subroutine

DESCRIPTION

This subroutine deletes all names that begin with the characters specified in the
parameter name.

PS 304 COMMAND AND SYNTAX

DELETE Name;

DEC FORTRAN - 51

PS 300 DEC VAXIVMS FORTRAN-77 GSR PDI

DISCONNECT

APPLICATION SUBROUTINE AND PARAMETERS

CALL PDi CSource, Out, Inp, Dest, ErrHnd)

where:

Source is a CHARACTER STRING
Out is an INTEGER~4
Inp is an INTEGER~4
Dest is a CHARACTER STRING
ErrHnd is the user-defined error-handler subroutine.

DESCRIPTION

This subroutine disconnects the output (Out) of the function instance (Source)
from the input (Inp) of the function instance or display data structure (Dest).

PS 300 COMMAND AND SYNTAX

DISCONNect Source <Out>:<Inp> Dest;

DEC FORTRAN - 52

("1
PS 300 DEC VAX/VMS FORTRAN-77 GSR PDIALL

DISCONNECT Source:ALL

APPLICATION SUBROUTINE AND PARAMETERS

CALL PDiAII CSource, ErrHnd)

where:

Source is a CHARACTER STRING
ErrHnd is the user-defined error-handler subroutine.

DESCRIPTION

This subroutine disconnects all outputs of (Source) from all inputs to function
instances or display data structures that it was previously connected to.

PS 300 COMMAND AND SYNTAX

DISCONNec~t Source:ALL;

DEC FORTRAN - 53

PS 300 DEC VAX/VMS FORTRAN-77 GSR PDIOUT

DISCONNECT <OUT>

APPLICATION SUBROUTINE AND PARAMETERS

CALL PDiout (Source, Out, ErrHnd)

where:

Source is a CHARACTER STRING
Out is an INTEGER~4
Errhnd is the user—defined error—handler subroutine.

DESCRIPTION

This subroutine disconnects the output (Out) of the function instance (Source)
from all inputs to function instances or display data structures it was previously
connected to.

PS 300 COMMAND AND SYNTAX

DISCONNect Source <Out>:ALL;

DEC FORTRAN — 54

~"'"1
PS 300 DEC VAX/VMS FORTRAN-77 GSR PDISP

DISPLAY

APPLICATION SUBROUTINE AND PARAMETERS

CALL PDisp CName, ErrHnd)

where:

Name is a CHARACTER STRING
ErrHnd is the user-defined error-handler subroutine.

DESCRIPTION

This subroutine displays a data structure (Name).

PS 300 COMMAND AND SYNTAX

DISPIay Name;

DEC FORTRAN - 55

PS 300 DEC VAX/VMS FORTRAN-77 GSR PEND

END

APPLICATION SUBROUTINE AND PARAMETERS

CALL PEnd CErrHnd)

where:

ErrHnd is the user-defined error-handler subroutine.

DESCRIPTION

This subroutine is used with the PBEGIN subroutine to group a set of viewing
and/or modeling commands so that they appear to be executed simultaneously.

PS 300 COMMAND AND SYNTAX

END;

DEC FORTRAN - 56

PS 300 DEC VAX/VMS FORTRAN-77 GSR PENDOP

END OPTIMIZE

APPLICATION SUBROUTINE AND PARAMETERS

CALL PEndOp CErrHnd)

where:

ErrHnd is the user—defined error—handler subroutine.

DESCRIPTION

This subroutine is used with the POptSt subroutine. When POptSt is called, it
places the PS 300- in an "optimization mode" in which certain elements of the
display data structure are created in a way that minimizes Display Processor
traversal time. PEndOp must be called to complete the sequence.

It is strongly suggested that users familiarize themselves with the OPTIMIZE
command documentation in the PS 300 Command Summary before using this
subroutine to learn the full ramifications and constraints of this command.

PS 300 COMMAND AND SYNTAX

END 0 PTIMIZE;

DEC FORTRAN — 5 7

PS 300 DEC VAX/VMS FORTRAN-77 GSR PENDS

END S

APPLICATION SUBROUTINE AND PARAMETERS

CALL PEnds CErrHnd)

where:

ErrHnd is the user—defined error—handler subroutine.

DESCRIPTION

This subroutine is used with the PBEGS subroutine to group a set of viewing
and/or modeling commands so that each element does not need to be explicitly
named to be accessed.

PS 300 COMMAND AND SYNTAX

END_Structure;

DEC FORTRAN — 58

PS 300 DEC VAX/VMS FORTRAN-~7 GSR PERAPA

ERASE PATTERN FROM

APPLICATION SUBROUTINE AND PARAMETERS

CALL PERAPA CName, ErrHnd)

where

Name is a CHARACTER STRING
Errhnd is the user-defined error-handler subroutine

DESCRIPTION

This subroutine removes a pattern from name if name is a patterned vector list
or curve.

PS 300 COMMAND AND SYNTAX

ERASE PATTERN FROM Name;

DEC FORTRAN - 59

PS 300 DEC VAX/VMS FORTRAN-77 GSR PEYEBK

Narne := EYE BACK

APPLICATION SUBROUTINE AND PARAMETERS

CALL PEyeBk CName, DBack, DistLR, DistUD, Wide, Front, Back,
Apply, ErrHnd)

where:

Name is a CHARACTER STRING
DBack is a REAL~4
DistLR is a REAL~4 (positive for right/negative for left)
DistUD is a REAL~4 (positive for up/negative for down1
Wide is a REAL~4
Front is a REAL~4
Back is a REAL~4
Apply is a CHARACTER ~TRiNG
ErrHnd is the user-defined error-handler subroutine.

DESCRIPTION

This subroutine specifies a viewing pyramid with the following parametric
definitions:

• DBack is the perpendicular distance of the eye from the plane of the
viewport

• DistHoriz is the distance of the eye right or left from the viewport
center (positive for right/negative for left)

• DistVert is the distance from the eye up or down from the viewport
center (positive for up/negative for down)

• Wide is the width of the viewport

• Front is the front boundary of the frustum of the viewing pyramid

• Back is the back boundary of the frustum of the viewing pyramid

(Continued on next page)

DEC FORTRAN - 60

PS 300 DEC VAX/VMS FORTRAN-77 GSR PEYEBK

Name := EYE BACK

(continued)

PS 300 COMMAND AND SYNTAX

Name := EYE BACK distb
[left]/[right] distlr
[up]/[down] disud
from screen area wide
Front Boundary =front
Back Boundary =back
(APPLIED to Apply);

NOTE

PS 300 syntax allows specification of both left and right
and up and down in the same command, which results in
an accumulation of right/left and up/down. PEYEBK
allows only signed real numbers that if positive specify
right and up, and if negative specify left and down.

Example:

eye_spec:= eye back .6 left 2.5 right 3 up 2.1 down 6 from screen area 2
wide front=.0001 back=100 then apply;

is equivalent to:

eye_spec:= eye back .6 right .5 down —3.9 from screen area 2 wide
front=.0001 back=100 then apply;

and has the same effect as:

CALL PEYEBK ('EYE SPEC', 0.6,0.5,-3.9,2.0,.0001,100.0,'APPLY',ERRHND)

DEC FORTRAN — 61

PS 300 DEC VAXIVMS FORTRAN-77 GSR PFN

Name := F: FUNCTION NAME

APPLICATION SUBROUTINE AND PARAMETERS

CALL PFn CName, FnNam.e, ErrHnd)

where:

Name is a CHARACTER STRING
FnName is a CHARACTER STRING
ErrHnd is the user-defined error-handler subroutine.

DESCRIPTION

This subroutine creates an instance of an intrinsic PS 300 function.

PS 300 COMMAND AND SYNTAX

Name := F:FnName;

DEC FORTRAN - 62

PS 30~ DEC VAX/VMS FORTRAN-77 GSR PENN

Name := F:FUNCTION NAME CINOUTS)

APPLICATION SUBROUTINE AND PARAMETERS

CALL PFnN CName, FnName, InOuts, ErrHnd)

where:

Name is a CHARACTER STRING
FnName is a CHARACTER STRING
InOuts is an INTEGER~4
ErrHnd is the user-defined error-handler subroutine.

DESCRIPTION

This subroutine creates an instance of an intrinsic PS 300 function where InOuts

is the number of respective inputs or outputs of the function. Intrinsic functions

that are used by this subroutine are F:Route(n), F:RouteC(n), F:Inputs_Choose(n),

and F:SYNC(n).

PS 300 COMMAND AND SYNTAX

Name := F:FnName (InOuts);

DEC FORTRAN - 63

PS 300 DEC VAX/VMS FORTRAN-77 GSR PFOLL

FOLLOW WITH

APPLICATION SUBROUTINE AND PARAMETERS

CALL PFoll CName, ErrHnd)

where:

Name is a CHARACTER STRING
Errhnd is the user-defined error-handler subroutine.

DESCRIPTION

This subroutine follows a named operation node (Name) with another operation
node. To use the PFOLL subroutine, the user must first call this subroutine and
then the user MUST IMMEDIATELY call the subroutine corresponding to the
"transformation-or-attribute command".

PS 300 COMMAND AND SYNTAX

FOLLOW name WITH transformation-or-attribute command;

Example:

PS 300 Command

FOLLOW xrot WITH scale by .5,.5,.5;

would be:

REAL~4 U(3)
CHARACTERS 1 Null
DATA U,NULL /0.5,0.5,0.5,""/

CALL PFOLL ('xrot', ErrHnd)
CALL PSC ALE (Nu 11, U, Nu Il, ErrHnd)

DEC FORTRAN - 64

PS 300 DEC VAX/VMS FORTRAN-77 GSR PFONT

Name := CHARACTER FONT

APPLICATION SUBROUTINE AND PARAMETERS

CALL PFont CName, FontNm, Apply, ErrHnd)

where:

Name is a CHARACTER STRING
FontNm is a CHARACTER STRING
Apply is a CHARACTER STRING
ErrHnd is the user-defined error-handler subroutine.

DEFINITION

This subroutine establishes a character font (FontNm) as the working font for the
specified display structure (Apply}.

PS 300 COMMAND AND SYNTAX

Name := CHARACTER FONT FontNm (APPLied to Apply);

DEC FORTRAN - 65

PS 300 DEC VAX/VMS FORTRAN-77 GSR PFORG

FORGET

APPLICATION SUBROUTINE AND PARAMETERS

CALL PForg CName, ErrHnd)

where:

Name is a CHARACTER STRING
ErrHnd is the user-defined error-handler subroutine.

DESCRIPTION

This subroutine removes (Name) from the display and from the name directory,
where (Name) is any previously defined data structure name.

PS 300 COMMAND AND SYNTAX

FORget Name;

DEC FORTRAN - 66

PS 300 DEC VAX/VMS FORTRAN-77 GSR PFOV

Name := FIELD OF VIEW

APPLICATION SUBROUTINE AND PARAMETERS

CALL PFov tName, Angle, Front, Back, Apply, ErrHnd)

where:

Name is a CHARACTER STRING
Angie is a REAL~4
Front is a REAL~4
Back is a REAL~4
Apply is a CHARACTER STRING
ErrHnd is the user-defined error-handler subroutine.

DESCRIPTION

This subroutine specifies a right rectangular viewing pyramid with the following
parametric definitions:

• Angle is the angle of view from the eye
• Front is the front boundary of the frustum of the viewing pyramid
• Back is the back boundary of the frustum of the viewing pyramid

PS 300 COMMAND AND SYNTAX

Name := Field Of View Angle
FRONT boundary =Front
BACK boundary =Back
(APPLied to Apply);

DEC FORTRAN - 67

PS 300 DEC VAX/VMS FORTRAN-77 GSR PIFBIT

Name := IF CONDITIONAL BIT

APPLICATION SUBROUTINE AND PARAMETERS

CALL PIf6it CName, BitNum, OnOff, Apply, ErrHnd)

where:

Name is a CHARACTER STRING
BitNum is an INTEGER~4
OnOff is .TRUE, for ON, .FALSE. for OFF
Apply is a CHARACTER STRING
ErrHnd is the user-defined error-handler subroutine.

DESCRIPTION

This subroutine refers to a data structure if an attribute bit has a specified
setting (On or Off), with the following parametric definitions:

• Bit Number indicates which bit to test

PS 300 COMMAND AND SYNTAX

Name := IF conditional_BIT BitNu m is OnOf f (THEN Apply);

DEC FORTRAN - 68

("1 PS 300 DEC VAX/VMS FQRTRAN-77 GSR PIFLEV

Name := IF LEVEL OF DETAIL

APPLICATION SUBROUTINE AND PARAMETERS

CALL PIfLev CName, Level , Comp, Apply, ErrHnd)

where:

Name is a CHARACTER STRING
Level is an INTEGER~4
Comp an INTEGER~4 corresponding to the comparison test to be
performed.
Apply is a CHARACTER STRING
ErrHnd is the user-defined error-handler subroutine.

DESCRIPTION

This subroutine refers to a data structure if the level of detail attribute has a
specified relationship to a given number, with the following parametric
definitions:

• Level indicates the number to compare with the current level of detail

• Comparison corresponds to the comparison test to be performed.

PS 300 COMMAND AND SYNTAX

Name := IF LEVEL of detail Comp Level (THEN Apply);

~ These mnemonics may be referenced directly by the user if PROCONST.FOR
is INCLUDED in the subroutine. See the section on Programming Suggestions
for a description of PROCONST.FOR. A short table of the mnemonics and
their INTEGER~4 value is given below.

Mnemonic Comparision INTEGER~4 Value

PCLES < 0
PCEQL = 1
PCLEQL <= 2
PCGTR > 3
PCNEQL < > 4
PCGEQL >= 5

DEC FORTRAN - 69

PS 300 DEC VAX/VMS FORTRAN-77 GSR PIFPNA

Name := IF PHASE

APPLICATION SUBROUTINE AND PARAMETERS

CALL PIfPha CName, OnOff, Apply, ErrNnd>

where:

Name is a CHARACTER STRING
Onoff is .TRUE. for On and .FALSE. for Off
Apply is a CHARACTER STRING
ErrHnd is the user-defined error-handler subroutine.

DESCRIPTION

This subroutine refers to a data structure if the PHASE attribute is in the
specified state, ON or OFF.

PS 300 COMMAND AND SYNTAX

Name := IF PHASE OnOf f (THEN Apply);

DEC FORTRAN - 70

PS 300 DEC VAXlVMS FORTRAN-77 GSR PILLUM

Name := ILLUMINATION

APPLICATION SUBROUTINE AND PARAMETERS

CALL PILLUM CName, X, Y, Z, Hue, Sat, Intens, Ambien, ErrHnd)

where

Name is a CHARACTER STRING
X is a REAL
Y is a REAL
Z is a REAL
Hue is a REAL
Sat is a REAL
Intens is a REAL
Ambien is a REAL
Errhnd is the user-defined error-handler subroutine

DESCRIPTION

This subroutine defines polygon illumination characteristics used by the
rendering firmware in the PS 340 to produce shaded renderings. The direction to
the light source is specified by x,y, z. The color is specified by Hue, Sat and
Intens. Its contribution to ambient lighting is specified by Ambien (0 to 1).

PS 300 COMMAND AND SYNTAX

Name := ILLUMINATION X, Y, Z
[COLOR Hue[,Sat[,Intens]]]
[AMBIENT Ambien];

DEC FORTRAN - 71

PS 3a0 DEC VAXIVMS FORTRAN-77 CSR PINCL

INCLUDE

APPLICATION SUBROUTINE AND PARAMETERS

CALL PIncl (Namel, Name2, ErrHnd)

where:

Name 1 is a CHARACTER STRING
Na`me2 is a CHARACTER STRING
ErrHnd is the user-defined error-handler subroutine.

DESCRIPTION

This subroutine is used to include one named display data structure (Namely in a
named instance of another display data structure (Name2}.

PS 300 COMMAND AND SYNTAX

INCLude Name 1 IN Name2;

DEC FORTRAN - 72

PS 300 DEC VAX/VMS FORTRAN-77 GSR PINIT

INITIALIZE

APPLICATION SUBROUTINE AND PARAMETERS

CALL PInit CErrHnd)

where:

ErrHnd is the user-defined error-handler subroutine.

DESCRIPTION

This subroutine restores the PS 300 to its initial state; there are no user-defined
names, display data structures, or function connections, and no data structures
are displayed.

PS 300 COMMAND AND SYNTAX

INITialize;

DEC FORTRAN - 73

PS 300 DEC VAXIVMS FORTRAN-77 GSR PINITC

INITIALIZE CONNECTIONS

APPLICATION SUBROUTINE AND PARAMETERS

CALL PInitC CErrHnd)

where:

ErrHnd is the user-defined error-handler subroutine.

DESCRIPTION

This subroutine breaks all user-defined function connections.

PS 300 COMMAND AND SYNTAX

INITialize CONNections;

DEC FORTRAN - 74

PS 300 DEC VAXlVMS FORTRAN-77 GSR PINITD

INITIALIZE DISPLAYS

APPLICATION SUBROUTINE AND PARAMETERS

CALL PInitD CErrHnd)

where:

ErrHnd is the user-defined error-handler subroutine.

DESCRIPTION

This subroutine removes all display data. structures from the display list.

PS 300 COMMAND AND SYNTAX

INITialize DISPIays;

DEC FORTRAN - 75

PS 300 DEC VAX/VMS FORTRAN-77 GSR PINITN

INITIALIZE NAMES

APPLICATION SUBROUTINE AND PARAMETERS

CALL PInitN CErrHnd)

where:

ErrHnd is the user-defined error-handler subroutine.

DESCRIPTION

This subroutine clears the name dictionary of all display data structures and
function instance names.

PS 300 COMMAND AND SYNTAX

INITialize NAMES;

DEC FORTRAN - 76

PS 300 DEC VAXIVMS FORTRAN-77 GSR PINLOD

Name := INCREMENT LEVEL OF DETAIL

APPLICATION SUBROUTINE AND PARAMETERS

CALL PInLOD tName, Apply, ErrHnd)

where:

Name is a CHARACTER STRING
Apply is a CHARACTER STRING
ErrHnd is the user-defined error-handler subroutine.

DESCRIPTION

This subroutine increments the current level of detail by 1.

PS 300 COMMAND AND SYNTAX

Name := INCRement LEVeI_of_detail (APPLied to Apply);

DEC FORTRAN - 77

PS 300 DEC VAX/VMS FORTRAN-77 GSR PINST

Name1:= INSTANCE OF

APPLICATION SUBROUTINE AND PARAMETERS

CALL PInst CNamel , Name2, ErrHnd)

where:

Namel is a CHARACTER STRING
Name2 is a CHARACTER STRING
ErrHnd is the user-defined error-handler subroutine.

DESCRIPTION

This subroutine creates an instance node (Name 1) with pointers to the data
structure referenced (Name2).

PS 300 COMMAND AND SYNTAX

Name 1 := INSTance (of Name2);

DEC FORTRAN - 78

PS 300 DEC VAXIVMS FORTRAN-77 GSR PLAADD

Name := LABELS (no corresponding command)

APPLICATION SUBROUTINE AND PARAMETERS

CALL PLaAdd (X, Y, Z, Label, ErrHnd)

where:

X,Y,Z are REAL~4
Label is a CHARACTER STRING
ErrHnd is the user-defined error-handler subroutine.

DESCRIPTION

This subroutine is the middle call in creating a label block. It must be called to
add a label to a previously opened label block created by the call to: PLaBeg.
To create a label block, the user must call:

PLaBeg
PLaAdd (This call may be made multiple times)
PLaEnd

PS 300 COMMAND AND SYNTAX

Together, the above 3 subroutines implement the PS 300 command:

Name := LABELS x, y, z, 'string'

x, y, z, 'string';

DEC FORTRAN - 79

PS 300 DEC VAX/VMS FORTRAN-77 GSR PLABEG

Name := LABELS Cno corresponding command)

APPLICATION SUBROUTINE AND PARAMETERS

CALL PLaBeg CLabBlk, StepX, StepY, ErrHnd)

where:

LabBlk is a CHARACTER STRING
StepX, StepY are REAL~4
ErrHnd is the user-defined error-handler subroutine.

DESCRIPTION

This subroutine must be called to create and open a label block. To complete the
label block call and specif y a label block, the user must call:

PLaBeg
PLaAdd (This call may be made multiple times
PLaEnd

PS 300 COMMAND AND SYNTAX

Together, the above 3 subroutines implement the PS 300 command:

Name := LABELS x, y, z, 'string'

x, y, z, 'string';

NOTE

The stepx and stepy parameters allow the steps between
the Label blocks to be specified in terms of x and y. If
stepx and stepy were specified as 1.0 and 0.0
respectively, each successive character would be
displayed one unit to the right of and horizontally
aligned with the preceding character. This applies to all
labels within the label block. It should prove useful for
those users who wish to make vertical or slanted label
blocks. ~ Users cannot send to <step> of a label block; a
message from the CI results.

DEC FORTRAN - 80

PS 300 DEC VAX/VMS FORTRAN-77 GSR PLAEND

Name := LABELS Cno corresponding command)

APPLICATION SUBROUTINE AND PARAMETERS

CALL PLaEnd (ErrNnd)

where:

ErrHnd is the user-defined error-handler subroutine.

DESCRIPTION

This subroutine must be called to complete the creation of a label block. To
completely specif y a label block, the user must call:

PLaBeg,
PLaAdd (This call may be made multiple times), and lastly,
PLaEnd.

PS 300 COMMAND AND SYNTAX

Together, the above 3 subroutines implement the PS 300 command:

Name := LABELS x, y, z, 'string'

x, y, z, 'string';

DEC FORTRAN - 81

PS 300 DEC VAXIVMS FORTRAN-77 GSR PLOOKA

Name := LOOK AT FROM

APPLICATION SUBROUTINE AND PARAMETERS

CALL PLookA CName, At, From, Up, Apply, ErrHnd)

where:

Name is a CHARACTER STRING
At is defined: REAL~4 AT (3)
From is defined: REAL~4 From (3)
Up is defined: REAL~4 Up (3)
Apply is a CHARACTER STRING
ErrHnd is the user-defined error-handler subroutine.

DESCRIPTION

This subroutine, when used with PININDO, PEYEBCK, or PFOV, fully specifies
the portion of the data space that will be viewed as well as the viewer's
orientation in data space. It has the following parametric definitions:

• At is the point being looked at in data space coordinates
• From is the location of the viewer's eye in data space coordinates
• Up indicates the screen "u p" direction

PS 300 COMMAND AND SYNTAX

Name := LOOK AT At FROM From UP Up {APPLied to Apply};

DEC FORTRAN - 82

("1 PS 300 DEC VAX/VMS FORTRAN-77 GSR PMAT22

Name := MATRIX 2x2

APPLICATION SUBROUTINE AND PARAMETERS

CALL PMat22 CName, Mat, Apply, ErrHnd)

where:

Name is a CHARACTER STRING
Mat is the matrix to be sent and is defined: REAL~4 Mat (4,4)
Apply is a CHARACTER STRING
ErrHnd is the user-defined error-handler subroutine.

DESCRIPTION

This subroutine creates a special 2x2 transformation matrix that applies to the
specified data (vector lists and/or characters) that follow (Apply).

PS 300 COMMAND AND SYNTAX

Name := Matrix 2x2 Mat (APPLied to Apply);

DEC FORTRAN - 83

PS 300 DEC VAX/VMS FORTRAN-77 GSR PMAT33

Name := MATRIX 3x3

APPLICATION SUBROUTINE AND PARAMETERS

CALL PMat33 CName, Mat, Apply, ErrHnd)

where:

Name is a CHARACTER STRING
Mat is the matrix to be sent and is defined: REAL~4 Mat (4,4)
Apply is a CHARACTER STRING
ErrHnd is the user—defined error—handler subroutine.

~-

DESCRIPTION

This subroutine creates a special 3x3 transformation matrix that applies to the
specified data (vector lists and/or characters) that follow (Apply).

PS 300 COMMAND AND SYNTAX

Name := Matrix_3x3 Mat (APPLied to Apply);

DEC FORTRAN — 84

PS 300 DEC VAX/VMS FORTRAN-77 GSR PMAT43

Name := MATRIX 4x3

APPLICATION SUBROUTINE AND PARAMETERS

CALL PMat43 (Name, Mat, Vec, Apply, ErrHnd>

where:

Name is a CHARACTER STRING

Mat is the matrix to be sent and is defined: REAL~4 Mat (4,4)

Vector is the x,y,z translation to be sent and is defined: REAL~4 Vec (3)

Apply is a CHARACTER STRING

ErrHnd is the user—defined error—handler subroutine.

DESCRIPTION

This subroutine creates a special 4x3 matrix that applies to the specified data
(vector lists and/or characters) that follow (Apply).

PS 300 COMMAND AND SYNTAX

Name := Matrix_4x3 Mat Uec (APPLied to Apply);

NOTE

The matrix 4x3 command is sent in two parts:

1) a 3x3 matrix sent in Mat
2) a 3d vector (4th row) sent in Uec

DEC FORTRAN — 85

PS 300 DEC VAX/VMS FORTRAN-77 GSR PMAT44

Name := MATRIX 4x4

APPLICATION SUBROUTINE AND PARAMETERS

CALL PMat44 CName, Mat, Apply, ErrHnd)

where:

Name is a CHARACTER STRING
Mat is the matrix to be sent and is defined: REAL~4 Mat (4,4)
Apply is a CHARACTER STRING
ErrHnd is the user—defined error—handler subroutine.

DESCRIPTION

This subroutine creates a special 4x4 matrix that applies to the specified data
(vector lists and/or characters) that follow (Apply).

PS 300 COMMAND AND SYNTAX

Name := Matrix_4x4 Mat (APPLied to Apply);

DEC FORTRAN — 86

PS 300 DEC VAX/VMS FORTRAN-77 GSR PNIL

Name := NIL

APPLICATION SUBROUTINE AND PARAMETERS

CALL PNIL (Name, ErrHnd)

where:

Name is a CHARACTER STRING
ErrHnd is the user-defined error-handler subroutine.

DESCRIPTION

This subroutine names a null data structure. When this subroutine is used to
redefine (Name), (Name) is kept in the name directory but any definition
previously associated with (Name) is removed. PForget does just the opposite of
PNiI.

PS 300 COMMAND AND SYNTAX

Name := NIL;

DEC FORTRAN - 87

PS 300 DEC UAX/VMS FORTRAN-77 GSR POPT

OPTIMIZE STRUCTURE

APPLICATION SUBROUTINE AND PARAMETERS

CALL POpt CErrHnd)

where:

ErrHnd is the user-defined error-handler subroutine.

DESCRIPTION

This subroutine is used with the PEndOp subroutine. When POpt is called, it
places the PS 300 in an "optimization mode" in which certain elements of the
display data structure are created in a way that minimizes Display Processor
traversal time. PEndOp must be called to complete the sequence.

It is strongly suggested that users familiarize themselves with the OPTIMIZE
command documentation in the PS 300 Command Summary before using this
subroutine to learn the full ramifications and constraints of this command.

PS 300 COMMAND AND SYNTAX

OPTIMIZE STRUCTURE;

DEC FORTRAN - 88

PS 300 DEC VAX/VMS FORTRAN-77 GSR PPATWI

PATTERN Namel WITH Name2

APPLICATION SUBROUTINE AND PARAMETERS

CALL PPATWI CName, Patnam, ErrHnd)

where

Name is a CHARACTER STRING
Patnam is a CHARACTER STRING
Errhnd is the user—defined error—handler subroutine

DESCRIPTION

This subroutine patterns the curve of the vector list called Name with the
pattern Patnam, where Patnam has been defined with a call to the subroutine
PDEFPA.

PS 30o COMMAND AND SYNTAX

PATTERN Nar~e 1NITH Patnam;

QEC FORTRAN — ~9

PS 300 DEC VAX/VMS FORTRAN-77 GSR PPLYGA

Name := POLYGON (ATTRIBUTES - no corresponding command)

APPLICATION SUBROUTINE AND PARAMETERS

CALL PPLYGA CAttr , ErrHnd)

where:

Name is a CHARACTER STRING
ErrHnd is the user—defined error—handler subroutine.

DESCRIPTION

This subroutine specifies that the attributes named by Attr and specified in a
call to PATTR or PATTR2 apply to all subsequent polygons until superceded by
another call to PPLYGA.

This subroutine is one of five subroutines used to implement the PS 340 command:

Name :_ [WITH [ATTRIBUTES attr] [OUTLINE r]]
POLYGON [COPLANAR] ([S] x,y,z [N x,y,z])

[[WITH [ATTRIBUTES attr] [OUTLINE r]]
POLYGON [COPLANAR] ([S] x,y,z [N x,y,z])];

DEC FORTRAN — 90

("1
PS 300 DEC VAX/VMS FORTRAN-77 GSR PPLYGB

Name := POLYGON CBEGIN - no corresponding command)

APPLICATION SUBROUTINE AND PARAMETERS

CALL PPIygB CName, ErrHnd)

where:

Name is a CHARACTER STRING
ErrHnd is the user—defined error—handler subroutine.

DESCRIPTION

This subroutine begins a polygon display list. The parameter (Name) specifies
the name to be given to the polygon display list defined by calls to PPLYGA,
POLYGO and PPLYGL.

This subroutine is one of five subroutines used to implement the PS 340 command:

Name :_ [WITH [ATTRIBUTES attr] [OUTLINE r]]
POLYGON [COPLANAR] ([S] x,y,z [N x,y,z])

[[WITH [ATTRIBUTES attr] [OUTLINE r]]
POLYGON [COPLANAR] ([S] x,y,z [N x,y,z])];

A sequence of 3 to 5 subroutines must be called to create a polygon display
vector list:

PPLYGB: This subroutine is called to begin the creation of a polygon vector list.

PPLYGA: This is an optional subroutine called to specify the attribute to be
applied to the polygon.

POLYGO: This is an optional subroutine called to specify the intensity or color
of the polygon on the calligraphic display.

PPLYGL: This subroutine specifies the vectors of each polygon in the polygon
display list.

PPLYGE: This subroutine closes the polygon display list.

DEC FORTRAN — 91

PS 300 DEC VAX/VMS FORTRAN-77 GSR PPLYGE

Name := POLYGON LEND - no corresponding command)

APPLICATION SUBROUTINE AND PARAMETERS

CALL PPLYGE CErrHnd)

where:

ErrHnd is the user-defined error-handler subroutine.

DEFINITION

This subroutine ends the definition of a polygon display list.

This subroutine is one of five subroutines required to implement the PS 340
command:

Name :_ [WITH [ATTRIBUTES attr] [OUTLINE r]]
POLYGON [COPLANAR] ([S] x,y,z [N x,y,z])

[[WITH [ATTRIBUTES attr] [OUTLINE r)]
POLYGON [COPLANAR] ([S] x,y,z [N x,y,z))];

DEC FORTRAN - ~2

("1 PS 300 DEC VAX/VMS FORTRAN-77 GSR PPLYGL

Name := POLYGON CLIST - no corresponding command)

APPLICATION SUBROUTINE AND PARAMETERS

CALL PPLYGL (Coplan, Nverts, Verts, Vedges, NorSpec, Norms, ErrHnd>

where:

Coplan is a LOGICAL
Nverts is an INTEGER~4
Verts is a REAL~4 (4, Nverts)
Vedges is a LOGICAL 1 (N1lerts)
NorSpec is a LOGICAL
Norms is a REAL~4 (4, Nverts)
ErrHnd is the user-defined error-handler subroutine.

DEFINITION

This subroutine defines another polygon within the polygon display list currently
being constructed. The subroutine may be called many times to specif y
additional polygons for the polygon display currently under construction as
named by the PP1ygB subroutine call. It has the following parametric definitions:

• Coplan determines whether the polygon is coplanar with the previous
polygon or not.

.TRUE. =coplanar, .FALSE. =not coplanar

• NVert specifies the number o f vertices in the polygon

• Vertic specifies the vertices of the polygon
l/ertic (l , n) =vertex n: x-coordinate;
l/ertic (2, n) =vertex n: y-coordinate;
Vertic (3, n) =vertex n: z-coordinate;

• Vedges specifies the "soft" versus "hard" nature of each edge specified
by: Vertic.

Vedges (n) _ .FALSE, if "soft edge", .TRUE, if "hard edge".

(Continued on next page)

DEC FORTRAN - 93

PS 300 DEC VAX/VMS FORTRAN-77 GSR PPLYGL

Name := POLYGON (LIST - no corresponding command)

(continued)

• NorSpe specifies if the normals to the vectors defining the polygon are
specified.

NorSpe = .TRUE. if specified, NorSpe = .FALSE, if not specified.
This parameter is presently ignored and reserved for future use.

• Norms specifies a normal to correspond to each vertex. This parameter
is of the same form as: Vertic. This parameter is reserved for future
use.

This subroutine is one of five subroutines required to ir~~plement the PS 340
command:

Name :_ [WITH [ATTRIBUTES attr] [OUTLINE r]]
POLYGON [COPLANAR] ([S] x,y,z [N x,y,z])

[[WITH [ATTRIBUTES attr] [OUTLINE r]]
POLYGON [COPLANAR] ([S] x,y,z [N x,y,z])];

DEC FORTRAN — 94

PS 300 DEC VAX/VMS FORTRAN-77 GSR PPLYGO

Name := POLYGON (OUTLINE - no corresponding command)

APPLICATION SUBROUTINE AND PARAMETERS

CALL PPLYGO COutlin, ErrHnd)

where

Outlin is a REAL
Errhnd is the user-defined error-handler subroutine

DESCRIPTION

This subroutine specifies that Outln be used as the color (if between 1 and 360)
or intensity (if between 0 and 1) of all polygons edges on the calligraphic display
until superceded by another call to PPLYGO.

This subroutine is one of five subroutines used to implement the PS 340
command:

Name :_ [WITH [ATTRIBUTES attr] [OUTLINE r]]
POLYGON [COPLANAR] ([S] x,y,z [N x,y,z])

[[WITH [ATTRIBUTES attr] [OUTLINE r]]
POLYGON [COPLANAR] ([S] x,y,z [N x,y,z])];

DEC FORTRAN - 95

PS 300 DEC VAX/VMS FORTRAN-77 GSR PPOLY

Name := POLYNOMIAL

APPLICATION SUBROUTINE AND PARAMETERS

CALL PPoly CName, Order, Dimes, Coeffs, Chords, ErrHnd)

where:

Name is a CHARACTER STRING

Order is an INTEGER~4

Dimes is an INTEGER~4 2 or 3 (2 or 3 dimensions respectively)

Coeffs is defined: REAL~4 Coeffs (4,Order+l)
where: Coeffs (1,i) = x(order -i+ 1)

Coeffs (2,i) = y(order -i+l)
Coeffs (3,i) = z(order -i+ 1)
Coeffs (4,i) is not used

etc.

To further clarify the description:

Coef fs(I,1) =the coefficient` that will be applied to the torder term

Coef fs(1,2) = the coefficient that will be applied to the t order- ~ term in
the resultant x(t) function computed by this command.

Chords is an INTEGER~4

ErrHnd is the user-defined error-handler subroutine.

(Continued on next page)

DEC FORTRAN - 9b

PS 300 DEC VAX/VMS FORTRAN-77 GSR PPOLY

Name := POLYNaMIAL

(continued)

DESCRIPTION

This subroutine allows the parametric description of many curve forms without
the need to specify or transfer the coordinates of each constituent vector. It has
the following parametric definitions:

• Order is the order of the polynomial
• Coefficients represent the x,y,z components of the curve
• Chords is the number of vectors to be created

PS 300 COMMAND AND SYNTAX

Name := POLYNOMIAL
ORDER =Order
COEFFICIENTS = X(i), Y(i), Z(i)

X(0), Y(o), Z(o)
CHORDS =Chords;

DEC FORTRAN — 97

PS 300 DEC VAX/VMS FORTRAN-77 GSR PPREF

PREFIX Name WITH

APPLICATION SUBROUTINE AND PARAMETERS

CALL PPref CName, ErrHnd>

where:

Name is a CHARACTER STRING
ErrHnd is the user-defined error-handler subroutine.

DESCRIPTION

This subroutine prefixes a named display structure (Name) with an operation
node. To prefix something, the user must first call this subroutine and then the
user MUST IMMEDIATELY call the subroutine corresponding to the:
"transformation-or-attribute" command.

PS 300 COMMAND AND SYNTAX

PREfix Name WITH transformation-or-attribute command;

Example:

PS 300 Command:

Prefix xrot with translate by .5,.5,0;

would be:

REAL~4 V(3)
CHARACTER ~ 1 NULL
DATA V,NULL, /0.5,0.5,0.0,""/

CALL PREF ('xrot', ErrHnd)
CALL PTRANS (NULL, U, NULL, ErrHnd)

DEC FORTRAN - 98

PS 300 DEC VAX/VMS FORTRAN-77 GSR PRASCP

SET PIXEL LOCATION -RASTER ROUTINE

RASTER SUBROUTINES AND PARAMETERS

CALL PRASCP Cx, y, ErrHnd)

where:

x is an INTEGER~4
y is an INTEGER~4
ErrHnd is the user—defined error—handler subroutine

DEFINITION

This subroutine establishes the current pixel location relative to the current
logical device coordinates. (x) and (y) specify the x,y coordinates of the current
pixel and must be greater than or equal to 0.

(0,0) is the lower—left corner of the logical device coordinates.

DEC FORTRAN — 99

PS 300 DEC VAX/VMS FORTRAN-77 GSR PRI4SER

ERASE RASTER SCREEN -RASTER ROUTINE

RASTER SUBROUTINES AND PARAMETERS

CALL PRASER CColor, ErrHnd)

where:

Color is an INTEGER~4 (3)
ErrHnd is the user—defined error—handler subroutine

DEFINITION

This subroutine is used in WRPIX mode to erase the entire screen to the color
specified in the parameter (Color), where:

Color(1) is tfie red index
Color(2) is the green index
Color(3) is the blue index

The index refers to the color table that contains the actual value used for display.

DEC FORTRAN — 100

(~1
PS 300 DEC VAX/VMS FORTRAN-77 GSR PRASLD

SET LOGICAL DEVICE COORDINATES -RASTER ROUTINE

RASTER SUBROUTINES AND PARAMETERS

CALL PRASLD (Xmin, Ymin, Xmax, Ymax, ErrHnd)

where:

Xmin is an INTEGER~4
Ymin is an INTE GE R ~4
Xmax is an INTEGER~4
Ymax is an INTEGER~4
ErrHnd is the user-defined error-handler subroutine

DEFINITION

This subroutine sets the logical device coordinates that are used to position the
picture in virtual address space. The Raster Option has a virtual pixel address
space from -32768 to 2047 in both x and y. The portion of this space that is
actually displayed is from 0 to 639 in x and from 0 to 479 in y. This subroutine
can be used to reposition an image in screen space without re-calculation and
only retransmission of the data.

DEC FORTRAN - 101

PS 300 DEC VAX/VMS FORTRAN-77 GSR PRASLR

SET LOOK UP TABLE RANGE -RASTER ROUTINE

RASTER SUBROUTINES AND PARAMETERS

CALL PRASLR thin, Max, ErrHnd)

where:

Min is an INTEGER~4
Max is an INTEGER~4
ErrHnd is the user-defined error-handler subroutine.

DEFINITION

This subroutine is used in WRLUT mode to to set the Look-Up Table range. This
subroutine set the limits within which the LUT entries can be changed. (Min} and
(Max) set the minimum and maximum range of the Look-up tables: they must be
greater than or equal to 0 and less than 256.

DEC FORTRAN - 102

PS 300 DEC VAX/VMS FORTRAN-77 GSR PRASLU

WRITE LOOK UP TABLE ENTRIES -RASTER ROUTINE

RASTER SUBROUTINES AND PARAMETERS

CALL PRASLU Chum, Index, Lutval, ErrHnd>

where:

Num is an INTEGER~4
Index is an INTEGER~4
Lutval is an INTEGER~4 (Num,4) Array
ErrHnd is the user—defined error—handler subroutine

DEFINITION

This subroutine sets the current Look —Up Table location and loads the Look —Up
Tables. (Num) specifies the number entries in the Lutval parameter. (Index}
specifies the location in the Look —Up Table where the entries will start being
loaded and (Lutval) is the (Nu m,4) array giving the values where:

Lutval (x, l) is the repetition count
Lutval (x,2) is the red value
Lutval (x,3) is the green value
Lutval (x,4) is the blue value

If the index is outside of the range set by PRASLR, the values are not changed at
this location.

DEC FORTRAN — 103

PS 300 DEC VAX/VMS FORTRAN-77 GSR PRASVI

ENABLE/DISABLE RASTER VIDEO -RASTER ROUTINE

RASTER SUBROUTINES AND PARAMETERS

CALL PRASVI COnOff, ErrHnd)

where:

OnOf f is a LOGICAL
ErrHnd is the user-defined error-handler subroutine

DEFINITION

This subroutine is used to turn the Raster video on and off. (OnOf f) is .TRUE, to
turn the video on, and .FALSE, to turn the video off.

DEC FORTRAN - 104

PS 300 DEC VAX/VMS FORTRAN-77 GSR PRASWP

LOAD PIXEL VALUE -RASTER ROUTINE

RASTER SUBROUTINES AND PARAMETERS

CALL PRASWP (Num, Pixval, ErrHnd)

where:

Num is an INTEGER~4
Pixval is an INTEGER~4 (Num,4) Array
ErrHnd is the user-defined error-handler subroutine

DEFINITION

This subroutine loads the current pixel location with the pixel values. (Num)
specifies the number of entries in (Pixval). (Pixval) is an (Nu m,4) array where:

Pixval (x, l) is the repetition count
Pixval (x,2) is the red index
Pixval (x,3) is the green index
Pixval (x,4) is the blue index.

DEC FORTRAN - 105

PS 300 DEC VAX/VMS FORTRAN-77 GSR PRAWBL

Name := RAWBLOCK

APPLICATION SUBROUTINE AND PARAMETERS

CALL PRAWBL CName, Size, Apply, ErrHnd)

where

Name is a CHARACTER STRING
Size is a INTEGER*~
Apply is a CHARACTER STRING
ErrHnd is the user—defined error—handler subroutine

DESCRIPTION

This subroutine creates a structure consisting of a block of contiguous memory
with a length of size bytes.

PS 300 COMMAND AND SYNTAX

Name := RAWBLOCK Size (APPLIED TO Apply);

DEC FORTRAN — 106

PS 300 DEC VAX/VMS FORTRAN-77 GSR PRBSPL

Name := RATIONAL BSPLINE

APPLICATION SUBROUTINE AND PARAMETERS

CALL PRBspI (Name, Order, OpnCls, NonPer, Dimen,
& NVert, Vertic, Kntcnt, Knots,
& Chords, ErrHnd)

where:

Name is a CHARACTER STRING specifying the name to be given to the
computed rational B-spline

Order is an INTEGER~4, specifying the order of the curve

Dimes is an INTEGER~4 2 or 3 (2 or 3 dimensions respectively)

For OpnCls .TRUE, is Open and .FALSE, is Closed

For NonPer .TRUE, is Non/periodic and .FALSE. is Periodic

NVert is an INTEGER~4 specifying the number of vertices

Vertic is defined: REAL~4 Vertic (4, NVert) specifying the vertices
where: Vertic(1,n) = x(n)

Vertic(Z,n)~ = y(n)
Uertic(3,n) = z(n)
Uertic(4,n) = w(n)

Kntcnt is a INTEGER~4 specifying the number of knots

Knots is an array (Kntcnt+l) of REAL~4 specifying the knot sequence

Chords is an INTEGER~4 specifying the number of vectors to be created

ErrHnd is the user-defined error-handler subroutine.

DESCRIPTION

This subroutine allows the parametric description of a rational B-spline curve
form without having to specify or transfer the coordinates of each constituent
vector.

(Continued on next page)

DEC FORTRAN - 107

PS 300 DEC VAX/VMS FORTRAN-77 GSR PRBSPL

Name := RATIONAL BSPLINE

(continued)

PS 300 COMMAND AND SYNTAX

Name := RATIONAL BSPLINE
ORDER =Order
OPEN/CLOSED
NONPERIODIC/PERIODIC
N = NUert
VERTICES = X(1), Y(1), (Z(1),) W(1)

X(2), Y(2), (Z(2),) W(2)
..

X(N}, Y(N), (Z(N),) 1N(N)
KNOTS =Knots- (1), ... Knots (KntCnt)
CHORDS =Chords;

NOTE

None of the parameters in the application subroutine
PRBSPL are optional. The dimension must be specified
in the PRBSPL application subroutine. In the PS 300
command, dimension is implied by syntax.

If KntCnt = 0, then the default knot sequence is
generated and the knot array is ignored.

DEC FORTRAN - 108

n

PS 300 DEC VAX/VMS FORTRAN-77 GSR PREM

REMOVE NAME

APPLICATION SUBROUTINE AND PARAMETERS

CALL PRem (Name, ErrHnd)

where:

Name is a CHARACTER STRING
ErrHnd is the user—defined error—handler subroutine.

DESCRIPTION

This subroutine removes (Name) from the display list.

PS 300 COMMAND AND SYNTAX

REMove Name;

DEC FORTRAN — 109

PS 300 DEC VAX/VMS FORTRAN-77 GSR PREMFO

REMOVE FOLLOWER of name

APPLICATION SUBROUTINE AND PARAMETERS

CALL PRemFo (Name, ErrHnd)

where:

Name is a CHARACTER STRING
ErrHnd is the user-defined error-handler subroutine.

DESCRIPTION

This subroutine removes a previously placed 'follower' of (Name).

PS 300 COMMAND AND SYNTAX

REMove FOLLOWER of name;

DEC FORTRAN - 1 10

PS 300 DEC VAX/VMS FORTRAN-77 GSR PREMFR

REMOVE FROM

APPLICATION SUBROUTINE AND PARAMETERS

CALL PRemFr CNamel , Name2, ErrHnd)

where:

Name 1 is a CHARACTER STRING
Name2 is a CHARACTER STRING
ErrHnd is the user-defined error-handler subroutine.

DESCRIPTION

This subroutine removes an instance of a named display data structure (Name 1)
from an instance node (Name2)

PS 300 COMMAND AND SYNTAX

REMove Name 1 FROM Name2;

DEC FORTRAN - 1 1 1

PS 300 DEC VAX/VMS FORTRAN-77 GSR PREMPR

REMOVE PREFIX

APPLICATION SUBROUTINE AND PARAMETERS

CALL PRemPr CName, ErrHnd)

where:

Name is a CHARACTER STRING
ErrHnd is the user-defined error-handler subroutine.

DESCRIPTION

This subroutine removes a previously placed prefix.

PS 300 COMMAND AND SYNTAX

REMove PREfix of name;

DEC FORTRAN - 1 12

PS 300 DEC VAX/VMS FORTRAN-77 GSR PROTX

Name := ROTATE in X

APPLICATION SUBROUTINE AND PARAMETERS

CALL PRotX CName, Angle, Apply, ErrHnd>

where:

Name is a CHARACTER STRING
Angle is a REAL~4
Apply is a CHARACTER STRING
ErrHnd is the user-defined error-handler subroutine.

DESCRIPTION

This subroutine creates a 3x3 rotation matrix that rotates an object (Apply)
around the x axis relative to world space origin. It has the following parametric
definition:

• Angle is the x rotation angle in degrees

PS 300 COMMAND AND SYNTAX

Name := ROTate in X Angle (APPLied to Apply);

DEC FORTRAN - 1 13

PS 300 DEC VAX/VMS FORTRAN-77 GSR PROTY

Name := ROTATE in Y

APPLICATION SUBROUTINE AND PARAMETERS

CALL PRotY (Name, Angle, Apply, ErrNnd)

where:

Name is a CHARACTER STRING
Angle is a REAL~4
Apply is a CHARACTER STRING
ErrHnd is the user-defined error-handler subroutine.

DESCRIPTION

This subroutine creates a 3x3 rotation matrix that rotates an object (Apply)
around the y axis relative to world space origin. It has the following parametric
definition:

• Angle is the y rotation angle in degrees

PS 300 COMMAND AND SYNTAX

Name := ROTate in Y Angle (APPLied to Apply);

DEC FORTRAN - 1 14

PS 300 DEC VAX/VMS FORTRAN-77 GSR PROTZ

Name := ROTATE in Z

APPLICATION SUBROUTINE AND PARAMETERS

CALL PRotZ CName, Angle, Apply, ErrHnd)

where:

Name is a CHARACTER STRING
Angle is a REAL~4
Apply is a CHARACTER STRING
ErrHnd is the user-defined error-handler subroutine.

DESCRIPTION

This subroutine creates a 3x3 rotation matrix that rotates an object (Apply)
around the z axis relative to world space origin. It has the following parametric
definition:

~ Angle is the z rotation angle in degrees

PS 300 COMMAND AND SYNTAX

Name := ROTate in Z Angle (APPLied to Apply);

DEC FORTRAN - 1 15

PS 300 DEC VAX/VMS FORTRAN-77 GSR PRPOLY

Name := RATIONAL POLYNOMIAL

APPLICATION SUBROUTINE AND PARAMETERS

CALL PRPo1y CName, Order, Dimen, Coeffs, Chords, ErrHnd)

where:

Name is a CHARACTER STRING

Order is an INTEGER~4

Dimen is an INTEGER~4 2 or 3 (2 or 3 dimensions respectively)

Coeffs is defined: REAL~4 Coeffs (4, Order+l)
where: Coeffs (l ,i) = x(order —i+ 1)

Coeffs (2,i) = y(order —i+ 1)
Coeffs (3,i) = z(order —i+ 1)
Coeffs (4,i) = w(order —i+1)

etc.

To further clarify the description:

Coef fs(l, l) =the coefficient that will be applied to the torder term

Coef fs(1,2) = the coefficient that will be applied to the t order- ~ term in
the resultant x(t) function computed by this command.

Chords is an INTEGER~4

ErrHnd is the user—defined error—handler subroutine

(Continued on next page)

DEC FORTRAN — 1 16

PS 300 DEC VAX/VMS FORTRAN-77 GSR PRPOLY

Name := RATIONAL POLYNOMIAL

(continued)

DESCRIPTION

This subroutine allows the parametric description of many curve forms without
having to specify or transfer the coordinates of each constituent vector. It
includes the following parametric definitions:

• Order is the order o f the polynomial
• Coefficients represent the x,y,z components of the curve
• Chords is the number of vectors to be drawn

PS 300 COMMAND AND SYNTAX

Name := RATIONAL POLYNOMIAL
ORDER =Order
COEFFICIENTS = X(i), Y(i), Z(i), W(i)

X(i-1), Y(i-1), Z(i-1), W(i-1)

X(0), Y(0), Z(o), W(o)
CHORDS =Chords;

DEC FORTRAN - 1 17

PS 300 DEC VAX/VMS FORTRAN-77 GSR PRSVST

RESERVE WORKING STORAGE

APPLICATION SUBROUTINE AND PARAMETERS

CALL PRsvSt CBytes, ErrHnd)

where:

Bytes is an INTEGER~4
ErrHnd is the user—defined error—handler subroutine.

DEFINITION

This subroutine is used to reserve working storage space for rendering solids and
surf aces. Working storage space must be reserved explicitly using this
subroutine. The parameter (Bytes) represents the number of bytes to be reserved
for working storage.

PS 300 COMMAND AND SYNTAX

Reserve_Working_Storage Bytes;

DEC FORTRAN — 118

PS 300 DEC VAX/VMS FORTRAN-77 GSR PSCALE

Name := SCALE

APPLICATION SUBROUTINE AND PARAMETERS

CALL PScale (Name, V, Apply, ErrHnd)

where:

Name is a CHARACTER STRING
U is defined: REAL~4 V(3)
Apply is a CHARACTER STRING
ErrHnd is the user-defined error-handler subroutine.

DESCRIPTION

This subroutine applies a scale transformation (U) to a specified vector list
and/or characters (Apply). It contains the following parametric definition:

• V is a vector containing the x,y,z scale components
V(1) = x scale factor
V(2) = y scale factor
V(3) = z scale factor

PS 300 COMMAND AND SYNTAX

Name := SCALE by 1l (APPLied to Apply);

NOTE

All three components must be specified in U.

DEC FORTRAN - 1 19

PS 300 DEC VAX/VMS FORTRAN-77 GSR PSEBIT

Name := SET conditional BIT

APPLICATION SUBROUTINE AND PARAMETERS

CALL PSeBit CName, BitNum, OnOff, Apply, ErrHnd)

where:

Name is a CHARACTER STRING
Bitl\!um is an INTEGER~4
OnOf f is .TRUE. for ON, .FALSE. for OFF
Apply is a CHARACTER STRING
Errhnd is the user-defined error-handler subroutine.

DESCRIPTION

This subroutine alters one of the 15 global conditional bits during the traversal of
the data structure. These conditional bits are initially set to OFF. When the
traversal is finished, the bits are restored to their previous values. It contains
the following parametric definitions:

• BitNum is an integer from 0 to 14 corresponding to the conditional bit to
be set to ON or OFF

PS 300 COMMAND AND SYNTAX

Name := SET conditional_BIT BitNum OnOf f (APPLied to Apply);

DEC FORTRAN - I20

PS 300 DEC VAXIVMS FORTRAN-77 GSR PSECHF

Name := SET CHARACTERS SCREEN oriented/FIXED

APPLICATION SUBROUTINE AND PARAMETERS

CALL PSeChF CName, Apply, ErrHnd>

where:

Name is a CHARACTER STRING
Apply is a CHARACTER STRING
ErrHnd is the user—defined error—handler subroutine.

DESCRIPTION

This subroutine sets the type of screen orientation for displayed character
strings. When PSeChF is used, characters are not affected by rotation or scaling
transformations and they are displayed with full size and intensity.

PS 300 COMMAND AND SYNTAX

Name := SET CHARacters SCREEN oriented/FIXED (APPLied to Apply);

DEC FORTRAN — 121

PS 300 DEC VAX/VMS FORTRAN-77 GSR

Name := SET CHARACTERS SCREEN oriented

PSECHS

APPLICATION SUBROUTINE AND PARAMETERS

CALL PSeChS CName, Apply, ErrHnd?

where:

Name is a CHARACTER STRING
Apply is a CHARACTER STRING
ErrHnd is the user—defined error—handler subroutine.

DESCRIPTION

This subroutine sets the type of screen orientation for displayed character
strings. When PSeChS is used, characters are not affected by rotation or scaling
transformations, but intensity and size will still vary with depth (Z—position).

PS 300 COMMAND AND SYNTAX

Name := SET CHARacters SCREEN oriented (APPLied to Apply);

DEC FORTRAN — 122

PS 300 DEC VAX/VMS FORTRAN-77 GSR PSECHW

Name: SET CHARACTERS WORLD ORIENTED

APPLICATION SUBROUTINE AND PARAMETERS

CALL PSeChW CName, Apply, ErrHnd)

where:

Name is a CHARACTER STRING
Apply is a CHARACTER STRING
ErrHnd is the user-defined error-handler subroutine.

DESCRIPTION

This subroutine sets the type of screen orientation for displayed character
strings. When PSeChW is used, characters are transformed along with any part
of the object containing them.

PS 300 COMMAND AND SYNTAX

Name := SET CHARacters WORLD oriented (APPLied to Apply);

DEC FORTRAN - 123

PS 300 DEC VAX/VMS FORTRAN-77 GSR PSECNS

SETUP CNESS

APPLICATION SUBROUTINE AND PARAMETERS

CALL PSECNS CBool, Inp, Name, ErrHnd>

where

Bool is a LOGICAL
Inp is an INTEGER~4
Name is a CHARACTER STRING
Errhnd is the user—defined error—handler subroutine

DESCRIPTION

This subroutine is used to define a particular function instance input to be a
constant or trigger input.

PS 300 COMMAND AND SYNTAX

SETUP CNESS TRUE <Inp > Name;
SETUP CHESS FALSE <Inp> Name;

DEC FORTRAN — 124

PS 300 DEC VAX/VMS FORTRAN-77 GSR PSECOL

Name := SET COLOR

APPLICATION SUBROUTINE AND PARAMETERS

CALL PSeCoI CName, Hue, Sat, Apply, ErrHnd)

where:

Name is a CHARACTER STRING
Hue is a REAL~4
Sat is a REAL~4
Apply is a CHARACTER STRING
ErrHnd is the user—defined error—handler subroutine

DESCRIPTION

This subroutine specifies the color of an object (Apply). It contains the following
parametric definition:

• Hue is greater than or equal to 0.0 and less than 360.0 with:
0.0 =pure blue

20.0 =pure red
240.0 =pure green

• Sat is from 0.0 to 1.0 with:
0.0 = no saturation (white)
1.0 =full saturation

PS 300 COMMAND AND SYNTAX

Name := SET COLOR Hue,Sat (APPLied to Apply);

DEC FORTRAN — 125

PS 300 DEC VAX/VMS FORTRAN-77 GSR PSECON

Name := SET CONTRAST

APPLICATION SUBROUTINE AND PARAMETERS

CALL PSeCon cName, Contrast, Apply, ErrHnd>

where:

Name is a CHARACTER STRING
Contrast is a REAL~4
Apply is a CHARACTER STRING
ErrHnd is the user-defined error-handler subroutine.

DESCRIPTION

This subroutine changes the contrast of the data structure (Apply). It contains
the following parametric definition:

~ Contrast is from 0.0 to 1.0 with:
0.0 =lowest contrast
1.0 =highest contrast

PS 300 COMMAND AND SYNTAX

Name := SET CONTrast to Contrast (APPLied to Apply);

DEC FORTRAN - 126

PS 300 DEC VAX/VMS FORTRAN-77 GSR PSECPL

Name := SECTIONING PLANE

APPLICATION SUBROUTINE AND PARAMETERS

CALL PSecPI CName, Apply, ErrHnd)

where:

Name is a CHARACTER STRING~(~)
Apply is a CHARACTER STRING~(~)
ErrHnd is the user-defined error-handler subroutine.

DESCRIPTION

This subroutine creates asectioning-plane node designating a descendant polygon
as asectioning-plane. The parameter (Name) supplies the name to be given to
the sectioning-plane operate node. (Apply) supplies the name of the entity that
this node will be applied to.

n PS 300 COMMAND AND SYNTAX

Name := SECTIONING_PLANE (Applied to Apply);

DEC FORTRAN - 127

PS 300 DEC VAX/VMS FORTRAN-77 GSR PSECSM

Name := SET CSM

APPLICATION SUBROUTINE AND PARAMETERS

CALL PSeCSM (Name, OnOff, Apply, ErrHnd)

where:

Name is a CHARACTER STRING
On`Of f is a LOGICAL 1 defined: .TRUE, for On and .FALSE. for Off.
Apply is a CHARACTER STRING
ErrHnd is the user—defined error—handler subroutine.

DESCRIPTION

This subroutine allows the CSM to be set to ON or OFF; ON provides extra
brightness and precision, OFF is the default setting and allows for the maximum
number of vectors to be displayed.

PS 300 COMMAND AND SYNTAX

Name := SET CSM OnOf f {APPLied to Apply);

DEC FORTRAN — 128

PS 300 DEC VAX/VMS FORTRAN-77 GSR PSEDAL

Name := SET DISPLAYS ALL

APPLICATION SUBROUTINE AND PARAMETERS

CALL PSeDAI CName, OnOff, Apply, ErrHnd)

where:

Name is a CHARACTER STRING
OnOff is a LOGICAL*1 defined: .TRUE. for On and .FALSE, for Off.
Apply is a CHARACTER STRING
ErrHnd is the user-defined error-handler subroutine.

DESC RIPTIO N

This subroutine sets all displays) to ON or OFF.

PS 300 COMMAND AND SYNTAX

Name := SET DISPIays ALL OnOf f (APPLied to Apply);

DEC FORTRAN - 129

PS 300 DEC VAX/VMS FORTRAN-77 GSR PSEDCL

Name := SET DEPTH CLIPPING

APPLICATION SUBROUTINE AND PARAMETERS

CALL PSeDCL CName, OnOff, Apply, ErrHnd)

where:

Name is a CHARACTER STRING
OnOff is a LOGICAL~I defined: .TRUE, for On and .FALSE, for Off.
Apply is a CHARACTER STRING
ErrHnd is the user-defined error-handler subroutine.

DESCRIPTION

This subroutine enables/disables depth clipping. With depth clipping Off, data
between the front clipping plane and the eye will appear at full intensity and
data behind the eye will be clipped.

PS 300 COMMAND AND SYNTAX

Name := SET DEPTH_CLipping OnOf f (APPLied to Apply);

DEC FORTRAN - 130

PS 300 DEC VAX/VMS FORTRAN-77 GSR PSEDOF

Name := SET DISPLAY

APPLICATION SUBROUTINE AND PARAMETERS

CALL PSeDOF CName, OnOff, N, Apply, ErrHnd)

where:

Name is a CHARACTER STRING
OnOff is a LOGICAL~I defined: .TRUE, for On and .FALSE, for Off.
N is an INTEGER~4
Apply is a CHARACTER STRING
ErrHnd is the user-defined error-handler subroutine.

DESCRIPTION

This subroutine specifies the display to be set to On or Of f and has the following
parametric definitions:

• Nis the number of the display to be set to On or Of f

PS 300 COMMAND AND SYNTAX

Name := SET DISPIay N OnOff (AP~Lied to Apply);

DEC FORTRAN - 131

PS 300 DEC VAX/VMS FORTRAN-77 GSR PSEINT

Name := SET INTENSITY

APPLICATION SUBROUTINE AND PARAMETERS

CALL PSeInt CName, OnOff, IMin, IMax, Apply, ErrHnd)

where:

Name is a CHARACTER STRING
OnOff is a LOGICAL~1 defined: .TRUE. for On and .FALSE. for Off.
IMin is a REAL~4
IMax is a REAL~4
Apply is a CHARACTER STRING
ErrHnd is the user-defined error-handler subroutine.

DESCRIPTION

This subroutine specifies the intensity variation for depth cueing and has the
following parametric definition:

• IMin is a real number from 0.0 to 1.0 that represents the dimmest
intensity setting

• IMax is a real number from 0.0 to 1.0 that represents the brightest
intensity setting.

PS 300 COMMAND AND SYNTAX

Name := SET INTENSITY OnOf f IMin:IMax (APPLied to Apply);

DEC FORTRAN - 132

PS 300/IBM VS FORTRAN GSR PSELOD

Name := SET LEVEL OF DETAIL

APPLICATION SUBROUTINE AND PARAMETERS

CALL PSeLOD CName, Level, Apply, ErrHnd)

where:

Name is a CHARACTER STRING
Level is an INTEGER~4
Apply is a CHARACTER STRING
ErrHnd is the user—defined error—handler subroutine.

DESCRIPTION

This subroutine alters a global level of detail value temporarily. These
temporary settings allow for conditional referencing to other data structures.
When the traversal of data is finished, the level of detail is restored to its
original level. It contains the following parametric definition:

• Level is an integer from 0 to 32767 that indicates the level of detail
value

PS 300 COMMAND AND SYNTAX

Name := SET LEVeI of detail TO Level (APPLied to Apply);

IBM FORTRAN — 13 3

PS 300/IBM VS FORTRAN GSR PSEPID

Name := SET PICKING IDENTIFIER

APPLICATION SUBROUTINE AND PARAMETERS

CALL PSePID CName, PickId, Apply, ErrHnd)

where:

Name is a CHARACTER STRING
PickId is a CHARACTER STRING
Apply is a CHARACTER STRING
ErrHnd is the user-defined error-handler subroutine.

DESCRIPTION

This subroutine specifies textual information that will be reported back if a pick
occurs on the specified data structure (Apply). It contains the following
parametric definition:

• PickId is the text that will be reported if a pick occurs anywhere within
the structure (Apply)

PS 300 COMMAND AND SYNTAX

Name := SET PICKing IDentifier = PickId (APPLied to Apply);

IBM FORTRAN - 134

PS 300/IBM VS FORTRAN GSR PSEPLO

Name := SET PICKING LOCATION

APPLICATION SUBROUTINE AND PARAMETERS

CALL PSePLo CName, XCentr, YCentr, Xsize, Ysize, Apply, ErrHnd)

where:

Name is a CHARACTER STRING
XCentr, YCentr are REAL~4
Xsize, Ysize are REAL~4
Apply is a CHARACTER STRING
ErrHnd is the user—defined error—handler subroutine.

DESCRIPTION

This subroutine specifies a rectangular picking area at (x,y) within the current
viewport. It contains the following parametric definitions:

• XCentr, YCentr signify the center of the pick location
• Xsize, Ysize specify the boundaries of the pick rectangle

PS 300 COMMAND AND SYNTAX

Name := SET PICKING LOCation =XCentr, YCentr, Xsize, Ysize (APPLied to
Apply);

IBM FORTRAN — 135

PS 300/IBM VS FORTRAN GSR PSEPLT

Name := SET PLOTTER

APPLICATION SUBROUTINE AND PARAMETERS

CALL PSEPLT CName, Onoff, Apply, ErrHnd)

where

Name is a CHARACTER STRING
Onoff is a LOGICAL
Apply is a CHARACTER STRING
Errhnd is the user-defined error-handler subroutine

DESC RIPTIO N

This subroutine enables or disables the plotting of subsequent nodes in the data
structure.

PS 300 COMMAND AND SYNTAX

Name := SET PLOTTER Onoff (APPLIED TO Apply);

IBM FORTRAN - 136

PS 300 DEC VAX/VMS FORTRAN-77 GSR PSEPOF

Name := SET PICKING OFF

APPLICATION SUBROUTINE AND PARAMETERS

CALL PSePOF CName, OnOff, Apply, ErrHnd)

where:

Name is a CHARACTER STRING
OnOf f is a LOGICAL 1 defined: .TRUE, for On and .FALSE, for Off.
Apply is a CHARACTER STRING
ErrHnd is the user-defined error-handler subroutine.

DESCRIPTION

This subroutine enables/disables picking for a specified data structure (Apply).

PS 300 COMMAND AND SYNTAX

Name := SET PICKing OnOff (APPLied to Apply);

DEC FORTRAN - 137

PS 300 DEC VAX/VMS FORTRAN-77 GSR PSER

Name := SET RATE

APPLICATION SUBROUTINE AND PARAMETERS

CALL PSeR CName, PhaOn, PhaOff, IniOnF, Delay, Apply, ErrHnd)

where:

Name is a CHARACTER STRING
PhaOn is an INTEGER~4
PhaOff is an INTEGER~4
IniOnF is a LOGICAL 1 defined: .TRUE. for On and .FALSE for Off
Delay is an INTEGER~4
Apply is a CHARACTER STRING
ErrHnd is the user-defined error-handler subroutine.

DESCRIPTION

This subroutine sets two global duration values (PhaseOn and PhaseOff) during
the traversal of a specified data structure (Apply). The default phase is off and
never changes unless a SET RATE node is encountered. The subroutine has the
following parametric definitions:

• PhaOn designates the duration of the ON phase
• PhaOf f designates the duration of the OFF phase
• Delay is the number of refresh frames in the initial state

PS 300 COMMAND AND SYNTAX

Name := SET RATE PhaOn PhaOff IniOnF Delay (APPLied to Apply);

DEC FORTRAN - 138

PS 300 DEC VAX/VMS FORTRAN-77, GSR PSEREX

Name := SET RATE EXTERNAL

APPLICATION SUBROUTINE AND PARAMETERS

CALL PSeREx CName, Apply, ErrHnd~

where:

Name is a CHARACTER STRING
Apply is a CHARACTER STRING
ErrHnd is the user-defined error-handler subroutine.

DESCRIPTION

This subroutine sets up a data structure that can be used to alter the Phase
attribute using an external source, such as a function network or a message from
the host computer.

PS 300 COMMAND AND SYNTAX

Name := SET RATE EXTernal (APPlied to Apply);

DEC FORTRAN - 139

PS 300 DEC VAX/VMS FORTRAN-77 GSR PSETC6

Name := SET COLOR BLENDING

APPLICATION SUBROUTINE AND PARAMETERS

CALL PsetCB (Name, Sat, Apply, ErrNnd)

where:

Name is a CHARACTER STRING
Sat is REAL~4
Apply is a CHARACTER STRING
ErrHnd is the user-defined error-handler subroutine.

DESCRIPTION

This subroutine, when used with the ColorBlending parameter of the PVcLis
subroutine, allows individual vector hue saturations to be set. It contains the
following parametric definition:

• Sat is from 0.0 to 1.0 with:
0.0 = no saturation (white)
1.0 =full saturation

PS 300 COMMAND AND SYNTAX

Name := SET COLOR BLENDING Sat (Applied to Apply);

DEC FORTRAN - 140

PS 300 DEC VAX/VMS FORTRAN-77 GSR PSNBOO

SEND BOOLEAN TO

APPLICATION SUBROUTINE AND PARAMETERS

CALL PSnBoo CB, Inp, Dest, ErrHnd)

where:

B is .TRUE. or .FALSE., the logical value to be sent

Inp is an INTEGER~4 corresponding to the input of the display data
structure, function instance, or variable: Dest

Dest is a CHARACTER STRING representing the destination

ErrHnd is the user-defined error-handler subroutine.

DESCRIPTION

This subroutine sends a Boolean value to input (Inp) of a specif ied function
instance, display data structure, or variable (Dest).

PS 300 COMMAND AND SYNTAX

SEND TRUE TO <Inp> Dest;
SEND FALSE TO <Inp> Dest;

~ This mnemonic may be referenced directly by the user if PROCONST.FOR is
INCLUDED in the subroutine. See the section on Programming Suggestions for
a description of PROCONST.FOR. A description of inputs to display
structures and their INTEGER~4 value is given below.

Mnemonic <Input> INTEGER*4 Value

PILAST <LAST> -5

DEC FORTRAN - 141

PS 300 DEC VAX/VMS FORTRAN-77 GSR PSNFIX

SEND FIX TO

APPLICATION SUBROUTINE AND PARAMETERS

CALL PSnFix Ci , Inp, Dest, ErrHnd)

where:

i ts an INTEGER~4, the integer to be sent

Inp is an INTEGER~4 corresponding to the input of a display data structure,
function instance, or variable

Dest is a CHARACTER STRING

ErrHnd is the user-defined error-handler subroutine.

DESCRIPTION

This subroutine sends the value of (i) to the specified input (Inp) of the display
data structure or function instance (Dest).

PS 300 COMMAND AND SYNTAX

SEND FIX (i) TO < Inp > Dest;

~ These mnemonics may be referenced directly by the user if PROCONST.FOR
is INCLUDED in the subroutine. See the section on Programming Suggestions
for a description of PROCONST.FOR. A description of inputs to display
structures and their INTEGER~4 value is given below.

Mnemonic <Input> INTEGER~4 Value

PIDEL < DELETE > -1
PICLR <CLEAR> -2

DEC FORTRAN - 142

('1 PS 300 DEC VAX/VMS FORTRAN-77 GSR PSNMZD

SEND 2D MATRIX TO

APPLICATION SUBROUTINE AND PARAMETERS

CALL PSnM2d CMat, Inp, Dest, ErrHnd>

where:

Mat is the matrix to be sent and is defined: REAL~4 Mat (4,4)

Inp is an INTEGER~4 corresponding to the input of a variable, function
instance or display data structure

Dest is a CHARACTER STRING

ErrHnd is the user-defined error-handler subroutine.

DESCRIPTION

This subroutine sends a 2x2 matrix to the specified input (Inp) of a display data
structure, function instance, or variable (Dest).

PS 300 COMMAND AND SYNTAX

SEND M2D (Mat) TO <Inp> Dest;

DEC FORTRAN - 143

PS 300 DEC VAX/VMS FORTRAN-77. GSR PSNM3D

SEND 3D MATRIX TO

APPLICATION SUBROUTINE AND PARAMETER

CALL PSnM3d Chat, Inp, Dest, ErrHnd)

where:

Mat is the matrix to be sent and is defined: REAL~4 Mat (4,4)

Inp is an INTEGER~4 corresponding to the input of a variable, function
instance or display data structure

Dest is a CHARACTER STRING

ErrHnd is the user-defined error-handler subroutine.

DESCRIPTION

This subroutine sends a 3x3 matrix to the specified input (Inp) of a display data
structure, function instance, or variable (Dest).

PS 300 COMMAND AND SYNTAX

SEND M3D (Mat) TO <Inp> Dest;

DEC FORTRAN - 144

PS 300 DEC VAX/VMS FORTRAN-77 GSR PSNM4D

SEND 4D MATRIX TO

APPLICATION SUBROUTINE AND PARAMETERS

CALL PSnM4d (Mat, Inp, Dest, ErrHnd>

where:

Mat is the matrix to be sent and is defined: REAL~4 Mat (4,4)

Inp is an INTEGER~4 corresponding to the input of a variable, function
instance or display data structure

Dest is a CHARACTER STRING

ErrHnd is the user-defined error-handler subroutine.

DESCRIPTION

This subroutine sends a 4x4 matrix to the specified input (Inp) of a display data
structure, function instance, or variable (Dest).

PS 3Q0 COMMAND AND SYNTAX

SEND M4D (Mat) TO <Inp> Dest;

DEC FORTRAN - 145

PS 300 DEC VAX/VMS FORTRAN-77 GSR

SEND Count*DrawMv TO

PSNPL

APPLICATION SUBROUTINE AND PARAMETERS

CALL PSnPL CCount, DrawMv, Inp, Dest, ErrHnd)

where:

Count is an INTEGER~4

DrawMv is LOGICAL~I and is defined: .TRUE, is Draw and .FALSE. is Move

Inp is an INTEGER~4

Dest is a CHARACTER STRING

ErrHnd is the user-defined error-handler subroutine.

DESCRIPTION

This subroutine assigns Draw/Move specifications to consecutive vectors
beginning at vector (Inp) of the vector list (Dest). It contains the following
parametric definitions:

• Count is the number of Draws/Moves

• DrawMv is TRUE for Draw and FALSE for Move
h

• Inp corresponds to the index of the first vector to receive the
Draw/Move specifications in the vector list (Dest)

PS 300 COMMAND AND SYNTAX

SEND Count~DrawMv TO <Inp> Dest;

DEC FORTRAN - 146

PS 300 DEC VAX/VMS FORTRAN-77 GSR PSNREA

SEND Real-number TO

APPLICATION SUBROUTINE AND PARAMETERS

CALL PSnRea CR, Inp, Dest, ErrHnd)

where:

R is the REAL~4 to be sent
Inp in an INTEGER~4
Dest is a CHARACTER STRING
ErrHnd is the user-defined error-handler subroutine.

DESCRIPTION

This subroutine sends a real number (R) to a specified input (Inp) of a display
data structure or function instance (Dest).

PS 300 COMMAND AND SYNTAX

SEND Real-number TO <Inp> Dest;

DEC FORTRAN - 1 ~7

PS 300 DEC VAX/VMS FORTRAN-77 GSR PSNRST

SEND (RAW) 'Str' TO

APPLICATION SUBROUTINE AND PARAMETERS

CALL PSnRSt tStr, Inp, Dest, ErrHnd)

where:

Str is a CHARACTER STRING
~Inp is an INTEGER~4
Destination is a CHARACTER STRING
ErrHnd is the user-defined error-handler subroutine.

DESCRIPTION

This subroutine does NOT translate the character string: Str. If the character
string: Str = CHR(0) // CHR(1), then CHR(0) // CHR(1) is sent as the string.
This subroutine is similar to the PSNST call, but no translation from EBCDIC to
ASCII is performed on the string. This subroutine should be used when a
character string of some length containing arbitrary characters is to be sent to a
function network without translation.

An example of where PSNRST must be used is as follows.

Where the PS 300 command to send a string would be

SEND CHAR (1) to < 2 > CONSTANT 1;

the equivalent Graphics Support Routine call would be

Str =Char (1)
CALL PSNRST (Str, 2, 'CONSTANT 1', ErrHnd)

where Str is declared CHARACTER STRINGS 1

~ These mnemonics may be referenced directly by the user if PROCONSF~ is
INCLUDED in the subroutine. See the section on Programming Suggestions•. for
a description of PROCONSF. A description of inputs to display structures and
their INTEGER~4 value is given below.

Mnemonic <Input> INTEGER~4 Value

PILAST < LAST > -5
PISUBS < SUBSTITUTE > -6

DEC FORTRAN - 1 ~8

PS 300 DEC VAX/VMS FORTRAN-77 GSR PSNST

SEND 'Str' TO

APPLICATION SUBROUTINE AND PARAMETERS

CALL PSnSt CStr, Inp, Dest, ErrHnd)

where:

Str is a CHARACTER STRING to be sent
Inp is an INTEGER~4
Dest is a CHARACTER STRING
ErrHnd is the user—defined error—handler subroutine.

DESCRIPTION

This subroutine sends the character string (Str) to the input (Inp) of a display
data structure (Dest). The string (Str) is NOT translated from EBCDIC to ASCII.

PS 300 COMMAND AND SYNTAX

SEND 'Str' TO <Inp> Dest;

~ These mnemonics may be referenced directly by the user if PROCONST.FOR
is INCLUDED in the subroutine. See the section on Programming Suggestions
for a description of PROCONST.FOR. A description of inputs to display data
structures and their INTEGER~4 value is given below.

Mnemonic <Input> INTEGER~4 Value

PILAST < LAST > —5
PISUBS < SUBSTITUTE > —6

DEC FORTRAN — 149

PS 300 DEC VAX/VMS FORTRAN-77 GSR PSNV2D

SEND 2D VECTOR TO

APPLICATION SUBROUTINE AND PARAMETERS

CALL PSnVZd CV, Inp, Dest, ErrHnd)

where:

U is the vector to be sent and is defined: REAL~4 V(2)

Inp is an INTEGER~4 corresponding to the input of a function instance, a
variable, or a display data structure

Dest is a CHARACTER STRING

ErrHnd is the user-defined error-handler subroutine.

DESCRIPTION

This subroutine sends a 2D vector to the specified input (Inp) of a display data
structure, function instance, or variable (Dest).

PS 300 COMMAND AND SYNTAX

SEND 1/2D (U) TO <Inp> Dest;

~ These mnemonics may be referenced directly by the user if PROCONST.FOR
is INCLUDED in the subroutine. See the section on Programming Suggestions
for a description of PROCONST.FOR. A description of inputs to display data
structures and their INTEGER~4 value is given below.

Mnemonic <Input> INTEGER~4 Value

PIAPP <APPEND> 0
PISTEP <STEP> -3
PIPOS < POSITION > -4
PILAST <LAST> -5

DEC FORTRAN - 150

PS 300 DEC VAXIVMS FORTRAN-77 GSR PSNV3D

SEND 3D VECTOR TQ

APPLICATION SUBROUTINE AND PARAMETERS

CALL PSnV3d CV, Inp, Dest, ErrHnd)

where:

V is the vector to be sent and is defined: REAL~4 V(3)

Inp is an INTEGER~4 corresponding to the input of a function instance, a
variable, or a display data structure

Dest is a CHARACTER STRING

ErrHnd is the user-defined error-handler subroutine.

DESCRIPTION

This subroutine sends a 3D vector to the specified input (Inp} of a display data
structure, function instance, or variable (Dest).

PS 300 COMMAND AND SYNTAX

SEND V3D (V) TO <Inp> Dest;

~ These mnemonics may be referenced directly by the user if PROCONST.FOR
is INCLUDED in the subroutine. See the section on Programming Suggestions
for a description of PROCONST.FOR. A description of inputs to display data
structures and their INTEGER~4 value is given below.

Mnemonic <Input> INTEGER~4 Value

PIAPP < APPEND > 0
PISTEP <STEP> -3
PIPOS < POSITION > -4
PILAST < LAST > -5

DEC FORTRAN - 151

PS 300 DEC VAX/VMS FORTRAN-77 GSR PSNV4D

SEND 4D VECTOR TO

APPLICATIO(~J SUBROUTINE AND PARAMETERS

CALL PSnV4d (V, Inp, Dest, ErrHnd)

where:

V is the vector to be sent and is defined: REAL~4 V(4)

Inp is an INTEGER~4 corresponding to the input of a function instance, a
variable, or a display data structure

D.est is a CHARACTER STRING

ErrHnd is the user—defined error—handler subroutine.

DESCRIPTION

This subroutine sends a 4D vector to the specified input (Inp) of a display data
structure, function instance, or variable (best).

PS 300 COMMAND AND SYNTAX

SEND V4D (V) TO <Inp> Dest;

~ These mnemonics may be referenced directly by the user if PROCONST.FOR
is INCLUDED in the subroutine. See the section on Prograrr~ming Suggestions
for a description of PROCONST.FOR. A description of inputs to display data
structures and their INTEGER~4 value is given below.

Mnemonic <Input> INTEGER~4 l/alue

PIAPP < APPEND > 0
PISTEP <STEP> —3
PIPOS < POSITION > —4
PILAST <LAST> —5

DEC FORTRAN — 152

PS 300 DEC VAX/VMS FORTRAN-77 GSR PSNVAL

SEND VALUE TO

APPLICATION SUBROUTINE AND PARAMETERS

CALL PSnVaI CVarNam, Inp, Dest, ErrHnd)

where:

VarNam is a CHARACTER STRING that is the name of the lariable

Inp is an INTEGER~4 corresponding to the input of a function instance, a
variable, or a display data structure

Dest is a CHARACTER STRING

ErrHnd is the user-defined error-handler subroutine.

DESCRIPTION

This. subroutine sends the current value in the variable (VarNam) to a designated
input (Inp) of a display data structure or function instance (Dest).

PS 300 COMMAND AND SYNTAX

SEND VALUE (1/arNam) TO <Inp> Dest;

~ These mnemonics may be referenced directly by the user if PROCONST.FOR
is INCLUDED in the subroutine. See the section on Programming Suggestions
for a description of PROCONST.FOR. A description of inputs to display data
structures and their INTEGER~4 value is given below.

Mnemonic <Input> INTEGER~4 Value

PIAPP < APPEND > 0
PIDEL < DELETE > - I
PICLR <CLEAR> -2
PISTEP <STEP> -3
PIPOS < POSITION > -4
PILAST < LAST > -5
PISUBS < SUBSTITUTE > -6

DEC FORTRAN - 153

PS 300 DEC VAX/VMS FORTRAN-77 GSR PSNVL

SEND VECTOR LIST

APPLICATION SUBROUTINE AND PARAMETERS

CALL PSnVL CNamel, Inp, Name2, ErrHnd)

where:

Name 1 is a CHARACTER STRING containing the name of the Vector list
to be sent

Inp is an INTEGER*4 corresponding to the index of the first vector to be
replaced in (Name2) with the vectors from {Name 1)

Name2 is a CHARACTER STRING containing the name of the destination
of the Vector list

ErrHnd is the user-defined error-handler subroutine.

DESCRIPTION

This subroutine replaces the vectors beginning at vector (Inp) of the vector list
(Name2) with the vectors from vector list (Name 1).

PS 300 COMMAND AND SYNTAX

SEND VL (Name 1) TO <Inp> Name2;

* This mnemonic may be referenced directly by the user if PROCONST.FOR is
INCLUDED in the subroutine. See the section on Programming Suggestions for
a description of PROCONST.FOR. A description of inputs to display data
structures and their INTEGER~4 value is given below.

Mnemonic <Input> INTEGER*4 Value

PIAPP <APPEND> 0
PILAST < LAST > -5

DEC FORTRAN - 154

PS 300 DEC VAX/VMS FORTRAN-77. GSR PSOLRE

Name := SOLID RENDERING

APPLICATION SUBROUTINE AND PARAMETERS

CALL PSoIRe (Name, Apply, ErrHnd)

where:

Name is a CHARACTER STRING~(~)
I

Apply is a CHARACTER STRING~(~)
ErrHnd is the user-defined error-handler subroutine.

DEFINITION

This subroutine defines a solid-rendering operate node, marking its descendent
structure so that solid renderings can be performed on it. The parameter (Name)
supplies the name to be given to the solid-rendering operate node. (Apply)
supplies the name of the entity that this operate node will be applied to.

PS 300 COMMAND AND SYNTAX

Name := SOLID RENDERING (Applied to Apply);

DEC FORTRAN - 155

PS 300 DEC VAX/VMS FORTRAN-77 GSR PSTDFO

Name := STANDARD FONT

APPLICATION SUBROUTINE AND PARAMETERS

CALL PStdFo (Name, Apply, ErrHnd)

where:

Name is a CHARACTER STRING
Apply is a CHARACTER STRING
ErrHnd is the user-defined error-handler subroutine.

DESCRIPTION

This subroutine establishes the standard PS 300 character font as the working
font.

PS 300 COMMAND AND SYNTAX

Name := STANdard FONT (APPLied to Apply);

DEC FORTRAN - 156

PS 300 DEC VAX/VMS FORTRAN-77 GSR PSURRE

Name := SURFACE RENDERING

APPLICATION SUBROUTINE AND PARAMETERS

CALL PSurRe CName, Apply, ErrHnd)

where:

Name is a CHARACTER STRING~(~)
Apply is a CHARACTER STRING~(~)
ErrHnd is the user-defined error-handler subroutine.

DEFINITION

This subroutine defines asurface-rendering operate node, marking its descendent
structure so that surface renderings can be performed on it. The parameter
(Name) supplies the name to be given to the surf ace-rendering operate node.
(Apply) supplies the name of the entity that this operate node will be applied to.

PS 300 COMMAND AND SYNTAX

Name := SURFACE_RENDERING (Applied to Apply);

DEC FORTRAN - 157

PS 300 DEC VAX/VMS FORTRAN-77 GSR PTRANS

Name := TRANSLATE

APPLICATION SUBROUTINE AND PARAMETERS

CALL PTrans CName, V, Apply, ErrHnd)

where:

Name is a CHARACTER STRING

V is the vector containing the x,y,z translation values and is defined:
REAL~4 1/(3)

Apply is a CHARACTER STRING

ErrHnd is the user-defined error-handler subroutine.

DESC RIPTIO N

This subroutine applies a translation vector (V) to the specified data structure
(Apply).

V(1) = x translation
U(2) = y translation
V(3) = z translation

PS 300 COMMAND AND SYNTAX

Name := TRANslate by V (APPLied to Apply);

NOTE

All 3 components in V must be specified. Z is not
optional.

DEC FORTRAN - 158

PS 300 DEC VAXIVMS FORTRAN-77 GSR PVAR

VARIABLE Name

APPLICATIO(~l SUBROUTINE AND PARAMETERS

CALL PVar (Name, ErrHnd)

where:

Name is a CHARACTER STRING containing the name of the variable to be
created.

ErrHnd is the user-defined error-handler subroutine.

DESCRIPTION

This subroutine defines a PS 300 variable where (Name) contains the name of the
variable to be created.

n PS 300 COMMAND AND SYNTAX

VARiable Name;

DEC FORTRAN - 159

PS 300 DEC VAXIVMS FORTRAN-77 GSR PVCBEG

Name := VECTOR_LIST (no corresponding command)

APPLICATION SUBROUTINE AND PARAMETERS

CALL PVcBeg CName, VecCou, BNorm, CBlend, Dimen, Class, ErrHnd)

where:

Njame is a CHARACTER STRING defining the name Of the vector list

VecCou is an INTEGER~4 specifying the total number of vectors in the
vector list

BNorm is a LOGICAL~I defined: .TRUE. for Block Normalized, .FALSE.
for 1/ector Normalized

CBlend is a LOGICAL~I defined: .TRUE. for Color Blending, .FALSE. for
normal depth cueing

Dimen is an INTEGER~4 2 or 3 (2 or 3 dimensions respectively)

Class is an INTEGER~4 defining the class of the vector list

ErrHnd is the user-defined error-handler subroutine.

This subroutine must be called to begin a vector list. To send a vector list, the
user must call:

PVcBeg
PVcLis (This may be called multiple times for vector-normalized vector

lists)
PVcEnd

Together, the above 3 subroutines implement the PS 300 command:

Name := VECTOR_LIST (DOTS, CONNECTED, ITEMIZED, SEPARATE} N=n
< vectors> ;

NOTE

The dimension must be specified in the PVCBEG
application subroutine. In the PS 300 command,
dimension is implied by syntax.

(Continued on next page)

DEC FORTRAN - 160

PS 300 DEC VAX/VMS FORTRAN-77 GSR PVCBEG

Name := VECTOR LIST Cno corresponding command)

(continued)

~ These mnemonics may be referenced directly by the user if PROCONST.FOR
is INCLUDED in the subroutine. See the section on Programming Suggestions
for a description of PROCONST.FOR. A description of the vector classes and
their INTEGER~4 value is given below.

Mnemonic Meaning INTEGER~4 Ualue

PUCONN Connected 0
PUDOTS Dots 1
PUITEM Itemized 2
PUSEPA Separate 3

DEC EORTRAIU — 161

PS 300 DEC VAX/VMS FORTRAN-77 GSR PVCEND

Name := VECTOR_LIST Cno corresponding command>

APPLICATION SUBROUTINE AND PARAMETERS

CALL PVcEnd (ErrHnd)

where:

ErrHnd is the user—defined error—handler subroutine.

DESCRIPTION

This subroutine must be called to end a vector list. To send a vector list, the
user must call:

PVcBeg

PVcLis (This may be called multiple times for vector—normalized vector
lists)

PUcEnd

Together, the above 3 subroutines implement the PS 300 command:

Name := VECTOR_LIST (DOTS, CONNECTED, ITEMIZED, SEPARATE) N=n
<vectors>;

DEC FORTRAN — 1 ~2

PS 300 DEC VAX/VMS FORTRAN-77 GSR PVCLIS

Name := VECTOR_LIST Cno corresponding command)

APPLICATION SUBROUTINE AND PARAMETERS

CALL PUcLis CNVec, Vecs, PosLin, ErrHnd)

where:

(~JUec is the number of vectors in the vector list and is defined: INTEGER~4

Uecs is the array containing the vectors of the vector list and is defined:
REAL~4 (4, N11ec)

where: 1/ecs(l,n) =vector n x-component
Vecs(2,n) =vector n y-component
Vecs(3,n) =vector n z-component
Vecs(4,n) = vector n intensity

PosLin is the array containing the move/positive -draw/line information
for each vector. PosLin is defined : LOGICAL~I PosLin(N11ec)

If PosLin(n) _ .TRUE, then vector n is a draw(line) vector.

If PosLin(n) _ .FALSE, then vector n is a move(position) vector.

ErrHnd is the user-defined error-handler subroutine.

DESCRIPTION

This subroutine must be called to send apiece of a vector list. For vector
normalized vector lists, this subroutine can be called multiple times to send the
vector list down in pieces. For block-normalized vector lists, this subroutine can
only be called once. Multiple calls to this subroutine are not permitted for the
Block-normalized vector list case. To send a vector list, the user must call:

P1/cBeg

P1IcLis (This may be called multiple times for vector normalized vector
lists)

P1/cEnd

(Continued on next page)

DEC FORTRAN - 163

PS 300 DEC VAX/VMS FORTRAN--77 GSR PVCLIS

Name := VECTOR LIST Cno corresponding command)

Ccontinued>

Together, the above 3 subroutines implement the PS 30o command:

Name := 1/ECTOR_LIST (DOTS, CONNECTED, ITEMIZED, SEPARATE) N=n
<vectors>;

NOTE

The POSLIN Array is always required, however the
CLASS specified in P1/cBeg determines how it is used.
For CONNECTED, DOTS, and SEPARATE, the user need
not specify the contents of POSLIN. For ITEMIZED, the
user-specified position/line is used.

The fourth position of VECS is the intensity of that
vector if vector-normalized, regardless of dimension. If
block-normalized, the first vector's fourth position is
used as the entire vector list intensity.

DEC FORTRA(~1 - 164

PS 300 DEC VAX/VMS FORTRAN-77 GSR PVIEWP

Name : = VI EWPORT

APPLICATION SUBROUTINE AND PARAMETERS

CALL PViewP CName, XMin, XMax, YMin, YMax, IMin, IMax, Apply,
ErrHnd)

where:

Name is a CHARACTER STRING
XMin, Xmax (horizontal) are REAL~4
YMin, Ymax (vertical) are REAL~4
IMin, IMax are REAL~4
Apply is a CHARACTER STRING
ErrHnd is the user—defined error—handler subroutine.

DESCRIPTION

This subroutine specifies the area of the screen that the displayed data will
occupy, and the range of intensity of the lines. It contains the following
parametric definitions:

• XMin, Xmax (horizontal) specify the horizontal boundaries of the new
viewport

• YMin, Ymax (vertical) specify the vertical boundaries of the new
viewport

• IMin, IMax specify the minimum and maximum intensities for the
viewport

PS 300 COMMAND AND SYNTAX

Name := VIEWport HORizontal = Xmin:Xmax
1/ERTical = Ymin:Ymax
INTENsity = Imin:Imax

(APPLied to Apply);

DEC FORTRAN — 165

PS 300 DEC VAX/VMS FORTRAN-77 GSR PWINDO

Name := WINDOW

APPLICATION SUBROUTINE AND PARAMETERS

CALL PWindo CName, Xmin, Xmax, Ymin, Ymax, Front, Back, Apply,
ErrHnd)

where:

Name is a CHARACTER STRING
XMin, Xmax (horizontal) are REAL~4
YMin, Ymax (vertical) are REAL~4
Front is a REAL~4
Back is a REAL~4
Apply is a CHARACTER STRING
ErrHnd is the user-defined error-handler subroutine.

DESCRIPTION

This subroutine specifies a right rectangular prism enclosing a portion of the
data space to be displayed in parallel projection. It contains the following
parametric definitions:

• XMin, Xmax (horizontal) specify the window's boundaries along the x axis

• YMin, Ymax (vertical) specify the window's boundaries on the y axis

• Front specifies the front boundary
Back specifies the back boundary

PS 300 COMMAND AND SYNTAX

Name := WINDOW X =Xmin:Xmax
Y =Ymin:Ymax
FRONT boundary =Front
BACK boundary =Back
(APPLied to Apply);

DEC FORTRAN - 166

PS 300 DEC VAX/VMS FORTRAN-77 GSR PXFCAN

Name := CANCEL XFORM

APPLICATION SUBROUTINE AND PARAMETERS

CALL PXFCAN CName, Apply, ErrHnd)

where

Name is a CHARACTER STRING
Apply is a CHARACTER STRING
Errhnd is the user—defined error—handler subroutine

DESCRIPTION

This subroutine stops transform data processing of subsequent nodes.

PS 300 COMMAND AND SYNTAX

Name := CANCEL XFORM (APPLIED TO Apply);

DEC FORTRAN — 16?

PS 300 DEC VAX/VMS FORTRAN-77 GSR PXFMAT

Name := XFORM MATRIX

APPLICATION SUBROUTINE AND PARAMETERS

CALL PXFMAT tName, Apply, ErrHnd)

where

Name is a CHARACTER STRING
Apply is a CHARACTER STRING
Errhnd is the user-defined error-handler subroutine

DESCRIPTION

This subroutine allows subsequent nodes to be processed to produce a
transformation matrix.

PS 300 COMMAND AND SYNTAX

Name := XFORM MATRIX (APPLIED TO Apply);

DEC FORTRAN - 168

PS 300 DEC VAX/VMS FORTRAN-77 GSR PXFVEC

Name := XFORM VECTOR LIST

APPLICATION SUBROUTINE AND PARAMETERS

CALL PXFVEC CName, Apply, ErrHnd>

where

Name is a CHARACTER STRING
Apply is a CHARACTER STRING
Errhnd is the user—defined error—handler subroutine

DESCRIPTION

This subroutine allows subsequent nodes to be processed to produce a
transformed vector list.

PS 300 COMMAND AND SYNTAX

Name := XFORM VECTOR_LIST (APPLIED TO Apply};

DEC FORTRAN — 169

_~

PS 300 DEC VAX/VMS FORTRAN-77 GSR ERRORS — 171

PS 340 GSR FORTRAN ERROR CODE -DEFINITIONS

The following tables listed in this section define the possible error codes used to
identify warning or error conditions that may arise while using the Graphics Support
Routines. The set of possible error codes is divided into several regions reserved for
specific severity and machine dependency levels.

1...255 =Machine INDEPENDENT warning conditions.
256...51 1 =Machine DEPENDENT warning conditions.
512...767 =Machine INDEPENDENT error conditions.

768...1023 =Machine DEPENDENT error conditions.
1024...1279 =Machine INDEPENDENT fatal error conditions.
1280...15 35 =Machine DEPENDENT fatal error conditions.

E R,ROR TABLE — 1

The following warning codes allow successful completion of the GSR subroutine, but
indicate a probable user error.

Error
Code MIleI110I11C Severity MearllTl~°

1 PSWBNC: Warning: Bad name character. Any invalid PS 300 name is
translated to the underscore character.

2 PSWNTL: Warning: Name too long. Name truncated to 256
characters.

3 PSWSTL: Warning; String too long. String truncated to 240
characters.

30 PSWPCG: Warning: The Pixel Count is greater than the screen size in
call to PRASWP. (Reserved for P6.V01 Raster
subroutines.)

31 PSWPCL: Warning: The Pixel Count is less than 1 in call to PRASWP.
(Reserved for P6.V01 Raster subroutines.)

32 PSWRCG: Warning: Repetition count greater than 255 in call to
PRASLU. (Reserved for P6.V01 Raster
subroutines.)

33 PSWRCL; Warning: Repetition count less than 1 in call to PRASLU.
(Reserved for P6.UOI Raster subroutines.)

172 - PS 300 DEC UAX/VMS FORTRAN-77 GSR ERRORS

Error
(Code Mrlt~ irlollic~ Severity

256 PSWAAD: Warning:

257 PSWAKS: Warning:

258 PSWBGC: Warning:

259 PSWBSC: Warning:

260 PSWBPC: Warning:

1VIe cl,Il1I1~,'

Attach already done.

Attention key seen. This tells the error-handling
routine that the user hit the Attention key (IBM
version only).

The string specified to be sent to the "generic"
output channel of CIROUTE via the PPutGX
subroutine contained an invalid character that has
been translated to a blank space character. This
error code
subroutine:
translation
only).

CANNOT be caused by invoking the
PPutG which does NOT perform any

on the specified string (IBM version

Bad string character. Any invalid string
character is converted to a blank space character.

The string specified to be sent to the PS 300
Parser via the PPutP subroutine contained an
invalid character that has been translated to a
blank space character.

ERROR TAi3LE - 2

For the following errors, the GSRs abort the current command sequence (if there is one)
and ignore the out-of-sequence command that (probably) caused this error.

Error
Code Mllemollic SevE~rity

515

516

517

518

519

PSEPOE:

PSEFOE:

PSELBE:

PSEULE:

Error:

Error:

Error:

Error:

PSEAMU: Error:

Mea,I11I1~,'

Prefix operate node call expected.

Follow operate node call expected.

Label block call expected.

Vector List call expected.

Attempted multiple PUcLis call sequence for
block normalized vectors prohibited.

PS 300 DEC UAX/VMS FORTRAN-77 GSR ERRORS — i 73

Error
Code

520

521

529

Mlle~nonic Severity

PSEMEB: Error:

PSEMVB: Error:

PSEMPB: Error:

530 PSEAEE: Error:

531

532

533

PSEEE X:

PSEAEX:

PSEEX:

Error:

Error:

Error:

Meallin~'

Missing label block begin call.

Missing vector list begin call.

The Begin polygon call is missing. PPIygA,
PPIygE, or PPIygE was called without the
prerequisite call to PPIygE.

A call to PPIygA, PPIygE, or PPIygE was
expected.

A call to PPIygE or PPIygE was expected.

A call to PPIygA or PPIygE was expected.

A call to PPIygE was expected.

ERROR TABLE — 3

The following errors are user errors and are generated by invalid parameters or by an
unsuccessful attempt to attach.

Error
C Ode MIle C110I11C SeVerlty

512 PSEIMC: Error:

5I3 PSEIVC: Error:

514 PSEIVD: Error:

522 PSENUN: Error:

5 2 3 PSEBCT: Error:

Meaning'

Invalid multiplexing channel argument specified in
a call to PMuxP, PMuxCI, or PMuxG. The
multiplexing channel assigned to the Parser, CI,
or Generic channel is not changed.

Invalid vector list class specified in call to
PUcBeg. Command is ignored.

Invalid vector list dimension specified in call to
PUcBeg. Command is ignored.

A null name is not permitted in this call context.
The command is ignored.

Bad Comparison type operator specified. If Eev~el
= command ignored.

174 - PS 300 DEC UAX/1/MS FORTRAN-77 GSR ERRORS

~ rror
Code Miletno[11C Severity l~e~~.I11I1~'`'

524 PSEIFN: Error: Attempted PS 300 function instance call failed
because the named function cannot possibly
exist. The function name identifying the function
type to instance was longer than 256 characters.

525 PSENNR: Error: Null name was required for parameter in operate
node call following a PPref or PFoll subroutine.

526 PSETME: Error: Too many PEnds calls for the nur~~ber of preceding
PBegs calls. Command ignored.

527 PSENOA: Error: The PS 300 communications link has not been
established. The user failed to call PAttch or an
error occurred in the attach procedure preventing
the communications link fror~~ being created.

528 PSEODR: Error: An overrun occurred during a read operation. The
user—supplied input buffer was too small and
truncation has occurred.

534 PSEMPX: Error: The polygon specified by the call to PPIygL
contains more than 250 vertices. The polygon is
ignored.

5 35 PSELMP: Error: The polygon specified by the cll to PPIygL
contains fewer than 3 vertices. It is therefore a
degenerate polygon and is ignored.

5 36 PSEIPA: Error:

550 PSEICP: Error:

552 PSEIOR: Error:

5 5 3 PSELDC: Error:

Illegal polygon attributes) specified in the call to
PPIygA. The attributes) are ignored.

Illegal Current Pixel specification in call to
PRASCP. (Reserved for P6.U01 Raster
subroutines.)

Index out of range: 0...255 in call to PRASLU.
(Reserved for P6.U01 Raster subroutines.)

Illegal LDC specification in call to PRASLD.
(Reserved for P6.U01 Raster subroutines.)

PS 300 DEC VAXIVMS FORTRAN-77 GSR ERRORS - 175

Error
COC~f' MlletllOillC SE'VeC'lty ME'~,[ll[l~;'

554 PSELNL: Error: NUM parameter less than 1 in call to PRASLD.
(Reserved for P6.V01 Raster subroutines.)

555 PSEMGM: Error: Minimum > Maximum in call to PRASLR.
(Reserved for P6.V01 Raster subroutines.)

556 PSEMNO: Error: Minimum out of range 0...255 in call to PRASLR.
(Reserved for P6.V01 Raster subroutines.)

557 PSEMXO: Error: Maximum out of range 0...255 in call to PRASLR.
(Reserved for P6.1/Ol Raster subroutines.,)

558 PSEPNL: Error: NUM parameter less than 1 in call to PRASINP.
(Reserved for P6.V01 Raster subroutines.)

At the present time, the following three error messages (780, 781, 782) are only
meaningful for Digital Equipment Corporation (DEC) VAX/VMS . All three errors
indicate that the parameter passed as a string in PAttch was not successfully parsed
and that the Attach call failed.

Error
Code Mnemonic Severity Meaning

780 PSEPDT: Error: This error indicates that a missing or invalid
Physical Device Type was specified in a call to
PAttch.

781 PSELDN: Error: This error indicates that a missing or invalid
Logical Device Name was specified in a call to
PAttch.

782 PSEADE: Error: This error indicates that an Attach delimiter was
expected in a call to PAttch.

Trademark of the Digital Equipment Corporation, Maynard, Massachusetts

176 - PS 300 DEC VAX/VMS FORTRAN-77 GSR ERRORS

~, ATAI. ERRORS

The errors listed below indicate a very serious error condition. If the user's error
handler is invoked with any of the error codes listed below, the program execution
should be aborted.

ERROR TABLE - 4

Error
Code MIleInOI11C Severity Meaning'

1024 PSFIFC: Fatal Error: Illegal frame command specified in call to
PSUTIL RasMode. This error code indicates an
internal validity check error. E&S Software
Support should be contacted.

1280 PSFPAF: Fatal Error: Physical Attach operation failed.

1281 PSFPDF: Fatal Error: Physical Detach operation failed.

1282 PSFPGF: Fatal Error: Physical Get operation failed.

1283 PSFPPF: Fatal Error: Physical Put operation failed.

The following three errors are only applicable to the DEC VAX/VMS version of the
Graphics Support Routines. All three error codes indicate an internal Graphics Support
Routines validity error. E&S Software Support should be contacted if these errors are
detected.

Error
Code Mnelnollic Severity Meartili~

1290 PSFBTL: Fatal Error: Buffer too large in a call to PSPUT. Internal
validity check error.

1291 PSFWNA: Fatal Error: Wrong number of arguments to low-levelI/O
subroutine in PROIOLIB.MAR. Validity error.

1292 PSFPTL: Fatal Error: Prompt too large in call to PSFRCV. Internal
validity check error.

PS 300 DEC VAX/VMS FORTRAN-77 GSR A - 1

APPENDIX A. SAMPLE PROGRAMS

This appendix contains sample FORTRAN programs that illustrate the use of the PS 300
DEC/VAX FORTRAN-77 Graphics Support Routines. The programs each contain
examples of an error-handler subroutine.

This is a FORTRAN vector list example prog~r~aln

PROGRAM CircleTest

INCLUDE 'PROCONST.FOR/NOLIST'

REAL~4 Circle_List (4, 101)
INTEGER~4 Dimensionality, Class
CHARACTER ClassType~ 1, Modems 1, DeviceSpec 1, DeviceName~S,

& AttachParameter~80
LOGICAL Blockf\lormalized
LOGICAL 1 MoveDraw (101)

CHARACTER Uppercases 1
EXTERNAL ERR, Uppercase

DeviceSpec = ' '
DO WHILE ((DeviceSpec .NE. 'A') .AND.

& (DeviceSpec .NE. 'D') .AND.
& (DeviceSpec .NE. 'P'))

WRITE (6, 1) 'Device Interface type = '
& // '(Asynchronous, DMR-1 1, '
& // 'Parallel): '

A — 2 PS 300 DEC VAX/VMS FORTRAN-77 GSR

READ (5, 2) DeviceSpec
DeviceSpec =Uppercase (DeviceSpec)
IF ((DeviceSpec .NE. 'A') .AND.

& (DeviceSpec .NE. 'D') .AND.
& (DeviceSpec .NE. 'P')) THEN

WRITE (6, ~) 'Invalid device type specified.'
END IF

END DO
DeviceName = ' '
DO WHILE (DeviceName .EQ. ' ')

WRITE (6, 1) 'Physical Device name (i.e.
& // 'TT; TTA6, XMDO, PIAO): _'

READ (5, 3) DeviceName
END DO
IF ((DeviceName (2:2)) .EQ. ' ') THEN

DeviceName (2:) _ ':'
ELSE
IF ((DeviceName (3:3)) .EQ. ' ') THEN

DeviceName (3:} _ ':'
ELSE
IF ((DeviceName (4:4)) .EQ. ' ') THEN

DeviceName (4:) _ ':'
ELSE

DeviceName (5:) _ ':'
END IF

END IF
END IF
WRITE (6, 1) 'Vector mode = (Block, Vector): _'
READ (5, 2) Mode
IF ((Uppercase (Mode)) .EQ. 'B') THEN

BlockNormalized = .TRUE.
ELSE

BlockNormalized = .FALSE.
END IF
WRITE (6, 1) 'Dimensionality = (2, 3): _'
READ (5, ~) Dimensionality
WRITE (6, 1) 'Class = (Connected, Dots,

& // 'Itemized, Separate): _'
1 FORMAT(' ', A, $)
READ (5, 2) ClassType

2 FORMAT(lA)
3 FORMAT(5A)

IF ((Uppercase (ClassType)) .EQ. 'C') THEN
Class = PVConn

ELSE IF ((Uppercase (ClassType)) .EQ. 'D') THEN
Class = PVDots

ELSE IF ((Uppercase (ClassType)) .EQ. 'I') THEN
Class = PVItem

ELSE IF ((Uppercase (ClassType)) .EQ. 'S') THEN
Class = PUSepa

PS 300 DEC VAX/VMS FORTRAN-77 GSR A — 3

ELSE
Class = PVConn

END IF
IF ((Uppercase (DeviceSpec)) .EQ. 'D') THEN

AttachParameter = 'Logdevnam=' // DeviceName
& // '/Phydevtyp=DMR-1 1'
ELSE IF ((Uppercase (DeviceSpec)) .EQ. 'P') THEN

AttachParameter = 'Logdevnam=' // DeviceName
& // '/Phydevtyp=Parallel'
ELSE

AttachParameter = 'Logdevnam=' // DeviceName
& // '/Phydevtyp=Async'
END IF
CALL Pattch (AttachParameter, ERR)
CALL PInit (Err)
CALL Circle (Circle_List, MoveDraw)
CALL Pvcbeg ('A', 101, BlockNormalized, .FALSE.,

& Dimensionality, Class, Err)
CALL Pvclis (101, circle_list, MoveDraw, Err)
CALL Pvicend (err)
CALL Pdisp ('A', err)
CALL Pdtach (err)
END

SUBROUTINE Circle (Circle_List, MoveDraw)

REAL~4 Circle_List (4, ~)
LOGICAL~I MoveDraw (~)

REAL~4 Deg_rad
PARAMETER (Deg_rad = 0.017453292)

REAL~4 Theta, DTheta
INTEGER~4 i
LOGICAL Draw

Draw = .FALSE.
DTheta = 3.6 ~ Deg_Rad
Theta = 0
DO i = 1, 101

circle list (1, i) = 0.8 ~ cos (theta)
circle_list (2, i) = 0.8 ~ sin (theta)
circle_list (3, i) = 0
circle list (4, i) = 1
MoveDraw (i) =Draw
Theta =Theta +DTheta
Draw = .NOT. Draw

END DO
RETURN
END

A — 4 PS 300 DEC VAX/VMS FORTRAN-77 GSR

CHARACTERS 1 FUNCTION Uppercase (Chara)
CHARACTER Chara*(~)
IF (((Chara (l : l)) .GE. 'a') .AND.

& ((Chara (1: l)) .LE. 'z')) THEN
Uppercase =CHAR (ICHAR (Chara (l:l)) — 32)

ELSE
Uppercase =Chara

END IF
RETURN
END

C
C
C
C The following Error Handler demonstrates the general
C overall recommended form that the user's own error
C handler should follow.
C
C This error handler upon being invoked writes ALL
C messages to the data file: 'PROERROR.LOG'. Error
C and warning explanation messages are written to
C a data file for 2 reasons:
C
C
C 1. The error handler should NOT immediately
C write information out on the PS 300 screen
C since the explanatory text defining the error
C or warning condition may be taken as data by
C the PS 300 and therefore wind up not being
C displayed on the PS 300 screen (as in the
C case of a catastrophic data transmission
C error).
C
C 2. The logging of errors and warnings to a
C logfile allows any errors and/or warnings
C to be reviewed at a later time.
C
C
C

PS 300 DEC VAX/VMS FORTRAN-77 GSR A - 5

~UBROLTTINE ERR. (ERRCOI))

C
C Procedural Interface (GSR) error handler:
C

INCLUDE 'PROCONST.FOR/NOLIST'
INTEGER~4 ERRCOD
INTEGER~4 PsVMSerr
LOGICAL FILOPN
DATA FILOPN /.FALSE./
EXTERNAL PsVMSerr, DETERH, PIDCOD

IF (FILOPN) GOTO 1
C
C
C

Open error file for logging of errors:

OPEN (UNIT=10, FILE='PROERROR.LOG', STATUS='NEW',
& DISP='KEEP', ORGANIZATION='SEQUENTIAL',
& ACCESS='SEQUENTIAL', CARRIAGECONTROL='LIST')

FILOPN = .TRUE.
C END IF

1 CALL PIDCOD (ERRCOD)
IF (ERRCOD .LT. 51 Z) GOTO 3

WRITE (10, ~) 'PS-I-ATDCOMLNK: Attempting to '
& // 'detach PS 300/Host communications '
& // 'link.'

C
C
C
C
C
C

C
C
C

When we attempt to perform the Detach, use a
different error handler so as not to get caught
in a recursive loop if we consistently get an
error when attempting to detach.

CALL PDTACH (DETERH)
CLOSE (UNIT=10)
IF ((ERRCOD .LT. PSFPAF) .OR.

& (ERRCOD .GT. PSFPPF)) GOTO 2

Identify VMS error if there was one

CALL LIB$STOP (%VAL (PsVMSerr O))
GOTO 3

C ELSE
2 STOP

C END IF
C END IF

3 RETU R N
END

A — 6 PS 300 DEC VAX/UMS FORTRAN-77 GSR

SUBROUTINE DETERH (ERRCOD)

C
C Main Error handler Detach error handler:
C

INTEGER~4 ERRCOD
EXTERNAL PIDCOD

C
C
C
C

WRITE (10, ~) 'PS—I—ERRWARDET: Error/warning
& // 'trying to Detach '
& // 'the communications'
WRITE (.10, ~) 'link between the PS 300 and the host.'
CALL PIDCOD (ERRCOD)
RETURN
END

SUBROUTINE PIDC-OD (ERRCOD)

t

PIDCOD: Identify Procedural Interface (GSR) Completion
code.

INCLUDE 'PROCONST.FOR/NOLIST'
INTEGER~4 ERRCOD
CHARACTER VMSDEF~133, PIDEF~133
INTEGER~4 PsVMSerr
CHARACTER MSSG 1 X55, MSSG2~67
PARAMETER (MSSG 1 = 'PS—W—UNRCOMCOD: Procedural '

& // 'Interface '
& // '(GSR) completion ')
EXTERNAL PsUMSerr

WRITE (10, ~) 'PS—I—PROERRWAR: Procedural '
& // 'Interface warning/'
& // 'error completion code was
WRITE (10, ~) 'received.'
IF (ERRCOD .NE. PSINBNC) GOTO 1

WRITE (10, ~) 'PS—W—BADNAMCHR: Bad character
& // 'in name was '
& // 'translated to: "_".'

GOTO 1000
C ELSE

1 IF (ERRCOD .NE. PSWNTL) GOTO 2

PS 300 DEC VAXIVMS FORTRAN-77 GSR A - 7

WRITE (10, ~) 'PS-W-NAMTOOLON: Name too '
& // 'long. Name was '
& // 'truncated to '

WRITE (10, ~) '256 characters.'
GOTO 1000

C ELSE
2 IF (ERRCOD .NE. PSWSTL) GOTO 7

WRITE (10, ~) 'PS-W-STRTOOLON: String too '
& // 'long. String '
& // 'was truncated '

WRITE (10, ~) 'to 240 characters.'
GOTO 1000

C ELSE
7 IF (ERRCOD .NE. PSWAAD) GOTO 8

WRITE (10, ~) 'PS-W-ATTALRDON: Attach '
& // 'already done. '
& // 'Multiple call to PAttch without'

WRITE (10, ~) 'intervening PDtach call ignored.'
GOTO 1000

C ELSE
8 IF (ERRCOD .NE. PSWAKS) GOTO 9

WRITE (10, ~) 'PS-W-ATNKEYSEE: Attention key
& // 'seen (depressed).'

CALL PIBMSP
GOTO 1000

C ELSE
9 IF (ERRCOD .NE. PSWBGC) GOTO 10

WRITE (10, ~) 'PS-W-BADGENCHR: Bad generic '
& // 'channel character. Bad '

WRITE (10, ~) 'character in string sent via:
& // 'PPutGX was translated to '

WRITE (10, ~) 'a blank.'
CALL PIBMSP
GOTO 1000

C ELSE
10 IF (ERRCOD .NE. PSWBSC) GOTO 1 1

WRITE (10, ~) 'PS-W-BADSTRCHR: Bad '
& // 'character in string was '
& // 'translated to a blank.'

CALL PIBMSP
GOTO 1000

C ELSE
11 IF (ERRCOD .NE. PSWBPC) GOTO 12

WRITE (10, ~) 'PS-W-BADPARCHR: Bad parser '
& // 'channel character. Bad '
& // 'character in string sent to'

WRITE (10, ~) 'PS 300 parser via: PPutP
& // 'was translated to a blank.'

CALL PIBMSP
GOTO 1000

A — 8 PS 300 DEC VAX/VMS FORTRAN-77 GSR

C ELSE
12 IF (ERRCOD .NE. PSEIMC) GOTO 13

WRITE (10, ~) 'PS—E—IN1/MUXCHA: Invalid '
& // 'multiplexing channel '
& // 'specified in call to:'

WRITE (10, ~) 'PMuxCI, PMuxP, or PMuxG.'
GOTO 1000

C ELSE
13 IF (ERRCOD .NE. PSEIVC) GOTO 14

WRITE (10, ~) 'PS—E—INVVECCLA: Invalid '
& // 'vector list class '
& // 'specified'

WRITE (.10, ~) 'in call to: PVcBeg.'
GOTO 1000

C ELSE
14 IF (ERRCOD .NE. PSEIVD) GOTO 15

WRITE (I0, ~) 'PS—E—INVVECDIM: Invalid '
& // 'vector list dimension '
& // 'specified in call to'

WRITE (I0, ~) 'PVcBeg.'
GOTO 1000

C ELSE
15 IF (ERRCOD .NE. PSEPOE) GOTO 16

WRITE (10, ~) 'PS—E—PREOPEEXP: Prefix '
& // 'operator call was '
& // 'expected.'

GOTO 1000
C ELSE

16 IF (ERRCOD .NE. PSEFOE) GOTO 17
WRITE (10, ~) 'PS—E—FOLOPEEXP: Follow '

& // 'operator call was '
c~ // 'expected.'

GOTO 1000
C ELSE

17 IF (ERRCOD .NE. PSELBE) GOTO 18
WRITE (10, ~) 'PS—E—LABBLKEXP: Call to '

& // 'PLaAdd or PLaEnd was '
& // 'expected.'

GOTO 1000
C ELSE

18 IF (ERRCOD .NE. PSEVLE) GOTO 19
WRITE (10, #) 'PS—E—VECLISEXP: Call to '

& // 'PVcLis or PVcEnd '
& // 'was expected.'

GOTO 1000

PS 300 DEC VAX/VMS FORTRAN-77 GSR A - 9

C ELSE
19 IF (ERRCOD .NE. PSEAMV) GOTO 20

WRITE (10, ~) 'PS-E-ATTMULVEC: Attempted
& // 'multiple call '
& // 'sequence to PVcLis is NOT'

WRITE (10, ~) 'permitted for BLOCK '
& // 'normalized vectors.'

GOTO 1000
C ELSE

20 IF (ERRCOD .NE. PSEMLB) GOTO 21
WRITE (10, ~} 'PS-E-MISLABBEG: Missing '

& // 'label block begin call. '
& // 'Call to PLaAdd or PLaEnd'

WRITE (10, ~) 'without call to: PLaBeg.'
GOTO 1000

C ELSE
21 IF (ERRCOD .NE. PSEMVB) GOTO 22

WRITE (10, ~) 'PS-E-MISVECBEG: Missing '
& // 'vector list begin '
& // 'call. Call to PVcLis'

WRITE (I0, ~) 'or PVcEnd without call '

GOTO 1000
C ELSE

22 IF (ERRCOD .NE. PSENUN) GOTO 23
WRITE (10, ~) 'PS-E-NULNAM: Null name '

& // 'parameter is not allowed.'
GOTO 1000

C ELSE
23 IF (ERRCOD .NE. PSEBCT) GOTO 24

WRITE (10, ~) 'PS-E-BADCOMTYP: Bad '
& // 'comparison type operator '
& // 'specified in '

WRITE (10, ~) 'call to: PIf Lev.'
GOTO 1000

C ELSE
24 IF (ERRCOD .NE. PSEIFN) GOTO 25

WRITE (10, ~) 'PS-E-INVFUNNAM: Invalid '
& // 'function name. '
& // 'Attempted PS 300'

WRITE (10, ~) 'function instance failed '
& // 'because the named '
& // 'function cannot possibly'

WRITE (10, ~) 'exist. The function name '
& // 'identifying the '
& // 'function type to instance'

WRITE (10, ~) 'was longer than 256 characters.'
GOTO 1000

A - 10 PS 300 DEC VAX/VMS FORTRAN-77 GSR

C ELSE
25 IF (ERRCOD .NE. PSENNR) GOTO 26

WRITE (10, ~) 'PS-E-NULNAMREQ: Null name
& // 'parameter is '
8c // 'required in operate node'

WRITE (10, ~) 'call f ollowing a PPref or '
& // 'PFoll procedure call.'

GOTO 1000
C ELSE

26 IF (ERRCOD .NE. PSETME) GOTO 27
WRITE (10, ~) 'PS-E-TOOMANEND: Too '

& // 'many END_STRUCTURE calls '
& // 'invoked.'

GOTO 1000
C ELSE

27 IF (ERRCOD .NE. PSENOA) GOTO 28
WRITE (10, ~) 'PS-E-NOTATT: The PS 300 '

& // 'communications link '
& // 'has not '

WRITE (10, ~) 'yet been established.
& // 'PAttch has not been '
& // 'called or failed.'

GOTO 1000
C ELSE

28 IF (ERRCOD .NE. PSEODR) GOTO 29
WRITE (10, ~) 'PS-E-OVEDUR REA: An '

& // 'overrun occurred during '
& // 'a read operation.'

WRITE (10, *) 'The specified input buffer '
& // 'in call to: PGET '
& // 'or: PGETW'

WRITE (10, ~) 'was too small and '
& // 'truncation has occurred.'

GOTO 1000
C ELSE

29 IF (ERRCOD .NE. PREICP) GOTO 38
38 IF (ERRCOD .NE. PSEPDT) GOTO 39

WRITE (10, ~) 'PS-E-PHYDEVTYP: Missing '
& // 'or invalid physical '
& // 'device type'

WRITE (10, ~) 'specifier in call to PAttch.'
CALL PVAXSP
GOTo l000

C ELSE
39 IF (ERRCOD .NE. PSELDN) GOTO 40

WRITE (10, ~) 'PS-E-LOGDEVNAM: Missing '
& // 'or invalid logical '
& // 'device name'

WRITE (10, ~) 'specifier in call to PAttch.'
CALL PVAXSP
GOTO 1000

PS 300 DEC VAX/VMS FORTRAN-77 GSR A - 1 1

C ELSE
40 IF (ERRCOD .NE. PSEADE) GOTO 41

WRITE (10, ~) 'PS-E-ATTDELEXP: Attach '
& // 'parameter string '
& // 'delimiter'

WRITE (10, ~) "'/" was expected.'
CALL PVAXSP
GOTO 1000

C ELSE
41 IF (ERRCOD .NE. PSFPAF) GOTO 42

WRITE (10, ~) 'PS-F-PHYDETFAI: '
& // 'Physical attach operation '
& .// 'failed.'

GOTO 1000
C ELSE

42 IF (ERRCOD .NE. PSFPDF) GOTO 43
WRITE (10, ~) 'PS-F-PHYDETFAI: Physical '

& // 'detach operation '
& // 'failed.'

GOTO 1000
C ELSE

43 IF (ERRCOD .NE. PSFPGF) GOTO 44
WRITE (10, ~) 'PS-F-PHYDETFAI: Physical '

& // 'GET operation failed.'
GOTO 1000

C ELSE
44 IF (ERRCOD .NE. PSFPPF) GOTO 45

WRITE (10, ~) 'PS-F-PHYDUTFAI: Physical '
& // 'PUT operation failed.'

GOTO 1000
C ELSE

45 IF (ERRCOD .NE. PSFBTL) GOTO 46
WRITE (10, *) 'PS-F-BUFTOOLA R: Buffer '

& // 'too large error in '
& // 'call to: PSPUT.'

WRITE (10, ~) 'This error should NEVER '
& I/ 'occur and indicates a '
& // 'Procedural Interface (GSR)'

WRITE (10, ~) 'internal validity check.'
CALL PVAXSP
GOTO 1000

C ELSE
46 IF (ERRCOD .NE. PSFWNA) GOTO 47

WRITE (10, ~) 'PS--F-W RONUMARG: Wrong '
& // 'number of arguments '
& // 'in call to Procedural'

A - 12 PS 300 DEC 1/AX/VMS FORTRAN-77 GSR

WRITE (10, ~) 'Interface (GSR} low-level '
& // 'I/O procedure '
& // '(source file: PROIOLIB.MAR).'

WRITE (10, ~) 'This error should NEVER '
& // 'occur and indicates a '
& // 'Procedural Interface (GSR)'

WRITE (10, ~) 'internal validity check.'
CALL PVAXSP
GOTO 1000

C ELSE
47 IF (ERRCOD .NE. PSFPTL} GOTO 48

WRITE (10, ~) 'PS-F-PROTOOLAR: Prompt
& // 'buffer too large '
& // 'error in call to: PSPRCV.'

WRITE (10, ~) 'This error should NEVER '
& i/ 'occur and indicates a '
& // 'Procedural Interface (GSR)'

WRITE (10, ~) 'internal validity check.'
CALL PVAXSP
GOTO 1000

C ELSE
C
C Unknown error message error message.
C

48 IF (ERRCOD .GE. 512) GOTO 49
MSSG2 = MSSGI // 'warning'
GOTO 51

C ELSE
49 IF (ERRCOD .GE. 1024) GOTO 50

MSSG2 =MSSG 1 // 'error '
GOTO 51

C ELSE
50 MSSG2 =MSSG 1 // 'fatal error '

C END IF
C END IF

51 WRITE (10, ~) MSSG2
WRITE (10, ~) 'code is unrecognized.'
WRITE (10, ~) 'Probable Procedural '

& // 'Interface (GSR) Internal '
& //'validity check error.'

C END IF
1000 IF ((ERRCOD .LT. PSFPAF) .OR.

& (ERRCOD .GT. PSFPPF)) GOTO 2000
CALL PSFVMSERR (1/MSdef, PIdef)
WRITE (10, ~) 'DEC VAX/VMS Error '

& // 'definition is:'
WRITE (10, ~) VMSdef
WRITE (10, ~) 'Procedural Interface '

& // '(GSR) Interpretation of '
& // 'DEC VAXIVMS completion code:'

PS 300 DEC VAX/UMS FORTRAN-77 GSR A - 13

WRITE (10, ~) Pldef
WRITE (10, ~) 'DEC VAX/UMS Error code '

& // 'value was: ', PsVMSerr ()
C END IF
2000 WRITE (10, ~)

RETURN
END

SUBROUTINE_. PIE3MSP

C
C PIBMSP: Write the "IBM version specific"
C message to the Error handler file.
C

WRITE (10, ~) 'This error/warning is '
& // 'applicable ONLY to the IBM '
& // 'version of the'
WRITE (10, ~) 'Procedural Interface (GSR).'
RETURN
END

SUBROUTINE PVAXSP

C
C
C
C
C

PVAXSP: Write the "DEC VAX/VMS Version
specific" message to the Error
handler file.

WRITE (10, ~) 'This error/warning is '
& // 'applicable ONLY to the DEC '
& // 'VAX/VMS version of
WRITE (10, ~) 'the Procedural Interface (GSR).'
RETURN
END

A — 14 PS 300 DEC VAX/VMS FORTRAN-77 GSR

This is a FO R,TRAN network creation example.

PROGRAM B1kLevF

INCLUDE 'PROCONST.FOR/NOLIST'

C
C
C

Main program:

REAL~4 Deg_rad
PARAMETER (Deg_rad = 0.017453292)

REAL~4 Theta, DTheta, Front (4, 100),
& Vecs (4, 100), Zero_vec (3),
& Y_Up (3), At (3), From (3), Up (3)
INTEGER~4 i, k, 1, Times
CHARACTER Name~63, DeviceSpec 1, DeviceName~S,

& AttachParameter~80
LOGICAL 1 PFront (100), PVecs (100)

CHARACTER Uppercases 1
EXTERNAL Err, Uppercase

DeviceSpec = ' '
DO WHILE ((DeviceSpec .NE. 'A') .AND.

& (DeviceSpec .NE. 'D') .AND.
& (DeviceSpec .NE. 'P'))

WRITE (6, 1) 'Device Interface type = '
& // '(Parallel, DM R-1 1, Asynchronous): _'

READ (5, 2) DeviceSpec
DeviceSpec =Uppercase (DeviceSpec)
IF ((DeviceSpec .NE. 'A') .AND.

& (DeviceSpec .NE. 'D') .AND.
& (DeviceSpec .NE. 'P')) THEN

WRITE (6, ~) 'Invalid device type specified.'
END IF

END DO
DeviceName = ' '
DO WHILE (DeviceName .EQ. ' ')

WRITE (6, 1) 'Physical device name (i.e. TT, '

READ (5, 3) DeviceName
1 FORMAT (' ', A, $)
2 FORMAT (1 A)
3 FORMAT (5A)
END DO
IF ((DeviceName (2:2)) .EQ. ' ') THEN

DeviceName (2:) _ ':'
ELSE

PS 300 DEC VAX/VMS FORTRAN-77 GSR A — 15

IF ((DeviceName (3:3)) .EQ. ' ') THEN
DeviceName (3:) _ ':'

ELSE
IF ((DeviceName (4:4)) .EQ. ' ') THEN

DeviceName (4:) _ ':'
ELSE

DeviceName (5:) _ ':'
END IF

END IF
END IF
IF ((Uppercase (DeviceSpec)) .EQ. 'P') THEN

AttachParameter = 'Logdevnam=' // DeviceName
& // '/Phydevtyp=PARALLEL'
ELSE

IF ((Uppercase (DeviceSpec)) .EQ. 'D') THEN
AttachParameter = 'Logdevnam=' // DeviceName

& // '/Phydevtyp=DMR-1 1'
ELSE

AttachParameter = 'Logdevnam=' Il DeviceName
& // '/Phydevtyp=Async'

END IF
END IF
CALL PAttch (AttachParameter, Err)
At (1)=0.3
At (2) = 0
At (3) = 0
From (1)=0
From (2) = 0
From (3) _ —1
Up (1) = 0.3
Up (2} = 1
Up(3)=0
Y_up(1)=0
Y up (2) = 1
Y_up(3)=0
Zero vec (1) = 0
Zero_vec (2) = 0
Zero vec (3) = 0
CALL Pinit (Err)
CALL Peyebk ('eye', 1.0, D.0, 0.0, 2.0, 0.0,

& 1000.0, 'inters', Err)
CALL Pseint ('inters', .TRUE., 0.5, 1.0,

& 'look', Err)
CALL PLooka ('look', At, From, Up, 'pic', Err)
CALL Pfn ('atx', 'xvec', Err)
CALL Pfn ('aty', 'yvec', Err)
CALL Pfn ('atz', 'zvec', Err)
CALL Pfn ('fromx', 'xvec', Err)
CALL Pfn ('fromy', 'yvec', Err)
CALL Pfn ('fromz', 'zvec', Err)

A - 16 PS 300 DEC VAX/VMS FORTRAN-77 GSR

CALL Pfn ('ac_at', 'accumulate', Err)
CALL Pfn ('ac_from', 'accumulate', Err)
CALL Pfn ('add_up', 'adds', Err)
CALL PfnN ('sync_up', 'sync', 3, Err)
CALL Pfn ('fix sync', 'nop', Err)
CALL Pconn ('sync_up', 3, 1, ' f ix_sync', Err)
CALL Pconn ('fix_sync', 1, 3, 'sync_up', Err)
CALL Psnboo (.TRUE., 3, 'sync_up', Err)
CALL Pfn` ('look_at', 'lookat', Err)
CALL Pconn ('dials', 1, 1, 'atx', Err)
CALL Pconn ('dials', 2, 1, 'aty', Err)
CALL Pconn ('dials', 3, 1, 'atz', Err)
CALL Pconn ('dials', 5, 1, 'fromx', Err)
CALL Pconn ('dials', 6, 1, ' f ro m y', Err)
CALL Pconn ('dials', 7, 1, 'fromz', Err)
CALL Pconn ('atx', 1, 1, 'ac_at', Err)
CALL Pconn ('aty', 1, 1, 'ac_at', Err)
CALL Pconn ('atz', 1, 1, 'ac_at', Err)
CALL Pconn (' f ro m x', 1, 1, 'ac_f ro m', Err)
CALL Pconn (' f ro m y', 1, 1, 'ac_f ro m', Err }
CALL Pconn (' f ro m z', 1, 1, 'ac_f ro m', Err)
CALL Pconn ('ac_at', 1, 1, 'sync_up', Err)
CALL Pconn ('ac_at', 1, 1, 'add_up', Err)
CALL Pconn ('add_up', 1, 2, 'sync_up', Err)
CALL Pconn ('sync_up', 1, 1, 'look_at', Err)
CALL Pconn ('sync_up', 2, 3, 'look_at', Err)
CALL Pconn ('ac_from', 1, 2, 'look_at', Err)
CALL Psnv3d (At, 2, 'ac_at', Err)
CALL Psnv3d (From, 2, 'ac_from', Err)
CALL Psnv3d (Y_up, 2, 'add_up', Err)
CALL Pconn ('look_at', 1, 1, 'look', Err)
CALL Pfn ('fix_at', 'const', Err)
CALL Pconn ('ac_from', 1, 1, 'f ix_at', Err)
CALL Pconn ('fix_at', 1, 1, 'ac_at', Err)
CALL Psnv3d (Zero_vec, 2, 'fix_at', Err)
CALL Psnv 3d (Zero_vec, 1, 'ac_f ro m', Err)
CALL Pinst ('pic',"", Err
Dtheta = 10.0 ~ Deg_rad
Theta = -Dtheta
DO i = 1, 36

Theta =Theta +Dtheta
CALL Computewave (Theta, Vecs, PVecs)
DO k=1, 50

DO 1=1, 4
Front (l, k) = Vecs (l, (k-1)~2+ 1)
PFront (k) =PVecs ((k-1) ~ 2 + 1)

END DO
END DO
CALL Computename (i, Name)
CALL P~begs (Name, Err)

PS 300 DEC VAX/VMS FORTRAN-77 GSR A - 17

CALL Pser ("", 1, 35, .FALSE., i, "", Err)
CALL Pifpha { fffT' ,TRUE., "", Err)
CALL Pvcbeg ("", 10~, .FALSE., .FALSE., 3,

& PVsepa, Err)
CALL Pvclis (100, Vecs, PVecs, Err)
CALL Pvicend (Err)
CALL Pvcbeg ("", 50, .FALSE., .FALSE., 3,

& PVconn, Err)
CALL Pvclis (50, Front, PFront, Err)
CALL Pvicend (Err)
CALL Pends (Err }
CALL Pincl (Name, 'pic', Err

END DO
CALL Pdisp ('eye', Err)
CALL PSnSt ('X', 1, 'Dlabel 1', Err)
CALL PSnSt ('Y', 1, 'Dlabel2', Err)
CALL PSnSt ('Z', 1, 'Dlabel3', Err)
CALL PSnSt ('Look At', 1, 'Dlabel4', Err)
CALL PSnSt ('X', 1, 'Dlabel5', Err)
CALL PSnSt ('Y', 1, 'Dlabel6', Err)
CALL PSnSt ('Z', 1, 'Dlabel7', Err)
CALL PSnSt ('From', 1, 'Dlabel8', Err)
CALL Pdtach (Err)
END

SUBROUTINE Colriputerlame (Nalneid, Nalne)

INTEGER~4 NameId
CHARACTER Name~(~)

INTEGER~4 j, L_name

Name = 'List000"'
L name = Nameid
j=7
DO WHILE (L name .GT. 0)

Name (j:j) =CHAR (MOD (L_name, 10) + ICHAR ('0'))
L name = L_name/10
j=j- 1

END DO
RETURN
END

A - 18 PS 300 DEC VAX/VMS FORTRAN-77 GSR

SUBROUTINE ComputeWave (Theta, VecList, PosLiii)

REAL~4 Theta, VecList (4, 100)
LOGICAL 1 PosLin (~)

REAL*4 Amp, Alpha, Beta
PARAMETER (Amp = 0.8, Alpha = -0.02,

& Beta = 0.2513274123}

INTEGER~4 i, IAddr

Iaddr = -1
DOi=0,49

Iaddr =Iaddr + 2
Veclist (l , Iaddr) = i / 50.0
Veclist (2, Iaddr) = Amp ~ EXP (Alpha ~ i)

& ~ cos (Theta - Beta ~ i)
Veclist (3, Iaddr) = 0
Veclist (4, Iaddr) = 1 - i/ 150.0
PosLin (Iaddr) _ .TRUE.
Veclist (1, Iaddr+ 1) =Veclist (l, Iaddr)
Veclist (2, Iaddr+ 1) = 0
Veclist (3, Iaddr+l) = 0.5
Veclist (4, Iaddr+ 1) =Veclist (4, Iaddr)
PosLin (Iaddr+l) _ .TRUE.

END DO
RETURN
END

CHARACTERS 1 FUNCTION Uppercase (Chars)
CHARACTER Chara~(~)
IF (((Chars (1: l)) .GE. 'a') .AND.

& ((Chars (1:l>) .LE. 'z')) THEN
Uppercase =CHAR (ICHAR (Chars (l : l }) - 32)

ELSE
Uppercase =Chars

END IF
RETURN
END

C
C
C
C
C
C

The following Error Handler demonstrates the general
overall recommended form that the user's own error
handler should follow.

PS 300 DEC VAX/1/MS FORTRAN-77 GSR A — 19

C
C This error handler upon being invoked writes ALL
C messages to the data file: 'PROERROR.LOG'. Error
C and warning explanation messages are written to
C a data file for 2 reasons:
C
C
C 1. The error handler should NOT immediately
C writs information out on the PS 300 screen
C since the explanatory text defining the error
C or warning condition may be taken as data by
C the PS 300 and therefore wind up not being
C displayed on the PS 300 screen (as in the
C case of a catastrophic data transmission
C error).
C
C 2. The logging of errors and warnings to a
C logfile allows any errors and/or warnings
C to be reviewed at a later time.
C
C
C

SUBROUTINE. ERR (ERRCOD)

C
C Procedural Interface (GSR) error handler:
C

INCLUDE 'PROCONST.FOR/NOLIST'
INTEGER~4 ERRCOD
INTEGER~4 PsUMSerr
LOGICAL FILOPN
DATA FILOPN /.FALSE./
EXTERNAL Psl/MSerr, DETERH, PIDCOD

IF (FILOPN) GOTO 1
C
C
C

Open error file for logging of errors:

OPEN (UNIT=10, FILE='PROERROR.LOG', STATUS='NEW',
& DISP='KEEP', ORGANIZATION='SEQUENTIAL',
& ACCESS='SEQUENTIAL', CARRIAGECONTROL='LIST')

FILOPN = .TRUE.
C END IF

1 CALL PIDCOD (ERRCOD)
IF (ERRCOD .LT. 512) GOTO 3

A - 20 PS 300 DEC VAX/VMS FORTRAN-77 GSR

WRITE (10, ~) 'PS-I-ATDCOMLNK: Attempting to '
& I/ 'detach PS 300/Host communications
& I! 'link.'

C
C When we attempt to perform the Detach, use a
C different error handler so as not to get caught
C in a recursive loop if we consistently get an
C error when attempting to detach.
C

CALL PDTACH (DETERH)
CLOSE (UNIT=10)
IF ((ERRCOD .LT. PSFPAF) .OR.

& (ERRCOD .GT. PSFPPF)) GOTO 2
C
C Identify VMS error if there was one
C

CALL LIB$STOP (%VAL (PsVMSerr ()))
GOTO 3

C ELSE
2 STOP

C END IF
C END IF

3 RETURN
END

SUBROUTINE DETERH (ERRCOD)

C
C
C

Main Error handler Detach error handler:

INTEGER~4 ERRCOD
EXTERNAL PIDCOD

WRITE (10, ~) 'PS-I-ERRWARDET: Error/warning '
& I/ 'trying to Detach '
& // 'the communications'
WRITE (10,) 'link between the PS 300 and the host.'
CALL PIDCOD (ERRCOD)
RETURN
END

PS 300 DEC VAX/VMS FORTRAN-77 GSR A - 21

S U f~ ROUTINE P [DC OD (F R [~C OD)

C
C
C
C

PIDCOD: Identify Procedural Interface (GSR) Completion
code.

INCLUDE 'PROCONST.FOR/NOLIST'
INTEGER~4 ERRCOD
CHARACTER VMSDEF~ 13 3, PIDEF~ 13 3
INTEGER~4 PsVMSerr
CHARACTER MSSG 1 X55, MSSG2~67
PARAMETER CMSSG 1 = 'PS-W-UNRCOMCOD: Procedural

& // 'Interface '
& // '(GSR) completion ')
EXTERNAL PsVMSerr

WRITE (10, ~) 'PS-I-PROERRWAR: Procedural '
& // 'Interface warning/'
& // 'error completion code was '
WRITE (10, ~) 'received.'
IF (ERRCOD .NE. PSWBNC) GOTO 1

WRITE (10, ~) 'PS-W-BADNAMCHR: Bad character
Bc // 'ln name was '
& // 'translated to: " ".'

GOTO 1000
C ELSE

1 IF (ERRCOD .NE. PSWNTL.) GOTO 2
WRITE (10, ~) 'PS-W-NAMTOOLON: Name too '

& // 'long. Name was '
& // 'truncated to '

WRITE (10, ~) '256 characters.'
GOTO 1000

C ELSE
2 IF (ERRCOD .NE. PSWSTL) GOTO 7

WRITE (10, ~) 'PS-W-STRTOOLON: String too
& // 'long. String '
& // 'was truncated '

WRITE (10, ~) 'to 240 characters.'
GOTO 1000

C ELSE
7 IF (ERRCOD .NE. PSWAAD) GOTO 8

WRITE (10, #) 'PS-W-ATTALRDON: Attach '
& // 'already done. '
& // 'Multiple call to PAttch without'

WRITE (10, ~) 'intervening PDtach call ignored.'
GOTO 1000

f

f

A - 22 PS 300 DEC VAX/VMS FORTRAN-77 GSR

C ELSE
8 IF (ERRCOD .NE. PSWAKS) GOTO 9

WRITE (10, ~) 'PS-W-~TNKEYSEE: Attention key
& / / 'seen (depressed).'

CALL PIBMSP
GOTO 1000

C ELSE
9 IF (ERRCOD .NE. PSWBGC) GOTO 10

WRITE (10, ~) 'PS-W-BADGENCHR: Bad generic
& // 'channel character. Bad '

WRITE (10, ~) 'character in string sent via:
& // 'PPutGX was translated to '

WRITE (10, ~) 'a blank.'
CALL PIBMSP
GOTO 1000

C ELSE
10 IF (ERRCOD .NE. PSWBSC) GOTO 1 1

WRITE (10, ~) 'PS-W-BADSTRCHR: Bad '
& ii 'character in string was '
& // 'translated to a blank.'

CALL PIBMSP
GOTO 1000

C ELSE
1 1 IF (ERRCOD .NE. PSWBPC) GOTO 12

WRITE (10, ~) 'PS-W-BADPARCHR: Bad parser '
& I/ 'channel character. Bad '
& // 'character in string sent to'

WRITE (10, ~) 'PS 300 parser via: PPutP
& // 'was translated to a blank.'

CALL PIBMSP
GOTO 1000

C ELSE
12 IF (ERRCOD .NE. PSEIMC) GOTO 13

WRITE (10, ~) 'PS-E-INVMUXCHA: Invalid '
& // 'multiplexing channel '
& // 'specified in call to:'

WRITE (10, ~) 'PMuxCI, PMuxP, or PMuxG.'
GOTO 1000

C ELSE
13 IF (ERRCOD .NE. PSEIVC) GOTO 14

WRITE (10, ~) 'PS-E-INVVECCLA: Invalid
& // 'vector list class '
& /I 'specified'

WRITE (10, ~) 'in call to: PVcBeg.'
GOTO 1000

C ELSE
14 IF (ERRCOD .NE. PSEIVD) GOTO 15

WRITE (10, ~) 'PS-E-INVVECDIM: Invalid '
& // 'vector list dimension '
& // 'specified in call to'

PS 300 DEC VAX/VMS FORTRAN-77 GSR A - 23

WRITE (10, ~) 'PVcBeg.'
GOTO 1000

C ELSE
15 IF (ERRCOD .NE. PSEPOE} GOTO 16

WRITE (10, ~) 'PS-E-PREOPEEXP: Prefix '
& // 'operator call was '
& I/ 'expected.'

GOTO 1000
C ELSE

16 IF (ERRCOD .NE. PSEFOE) GOTO 17
WRITE (10, ~) 'PS-E-FOLOPEEXP: Follow '

& // 'operator call was '
& // 'expected.'

GOTO 1000
C ELSE

17 IF (ERRCOD .NE. PSELBE) GOTO 18
WRITE (10, ~) 'PS-E-LABBLKEXP: Call to '

& // 'PLaAdd or PLaEnd was '
& // 'expected.'

GOTO 1000
C ELSE

18 IF (ERRCOD .NE. PSEVLE) GOTO 19
WRITE. (10, ~) 'PS-E-VECLISEXP: Call to '

& // 'PVcLis or PVcEnd '
& // 'was expected.'

GOTO 1000
C ELSE

19 IF (ERRCOD .NE. PSEAMV) GOTO 20
WRITE (10, ~) 'PS-E-ATTMULVEC: Attempted

& // 'multiple call '
& // 'sequence to PVcLis is NOT'

WRITE (10, ~) 'permitted for BLOCK '
& // 'normalized vectors.'

GOTO 1000
C ELSE

20 IF (ERRCOD .NE. PSEMLB) GOTO 21
WRITE (10, ~) 'PS-E-MISLABBEG: Missing '

& // 'label block begin call. '
& I/ 'Call to PLaAdd or PLaEnd'

WRITE (10, ~) 'without call to: PL.aBeg.'
GOTO 1000

C ELSE
21 IF (ERRCOD .NE. PSEMVB) GOTO 22

WRITE (10, ~) 'PS-E-MISVECBEG: Missing '
& // 'vector list begin '
& // 'call. Call to PVcLis'

WRITE (10, ~) 'or PVcEnd without call '

GOTO 1000

A - 24 PS 300 DEC VAX/UMS FORTRAN-77 GSR

C ELSE
22 IF (ERRCOD .NE. PSENUN) GOTO 23

WRITE (10, ~) 'PS-E-NULNAM: Null name '
& // 'parameter is not allowed.'

GOTO 1000
C ELSE

23 IF (ERRCOD .NE. PSEBCT) GOTO 24
WRITE (10, ~) 'PS-E-BADCOMTYP: Bad '

& // 'comparison type operator '
& // 'specified in '

WRITE (10, ~) 'call to: PIf Lev.'
GOTO 1000

C ELSE
24 IF (ERRCOD .NE. PSEIFN) GOTO 25

WRITE (10, ~) 'PS-E-INVFUNNAM: Invalid '
& // 'function name. '
& // 'Attempted PS 300'

WRITE (10, ~} 'function instance failed '
& // 'because the named '
& // 'function cannot possibly'

WRITE (10, ~) 'exist. The function name '
& // 'identifying the '
& // 'function type to instance'

WRITE (10, ~) 'was longer than 25b characters.'
GOTO 1000

C ELSE
25 IF (ERRCOD .NE. PSENNR) GOTO 26

WRITE (10, ~) 'PS-E-NULNAMREQ: Null name
& // 'parameter is '
& // 'required in operate node'

WRITE (10, ~) 'call following a PPref or '
& // 'PFoll procedure call.'

GOTO 1000
C ELSE

26 IF (ERRCOD .NE. PSETME) GOTO 27
WRITE (10, ~) 'PS-E-TOOMANEND: Too '

& // 'many END_STRUCTURE calls '
& II 'invoked.'

GOTO 1000
C ELSE

27 IF (ERRCOD .NE. PSENOA) GOTO 28
WRITE (10, ~) 'PS-E-NOTATT: The PS 300 '

& // 'cornmu~nications link '
& // 'has not '

WRITE (10, ~) 'yet been established. '
& // 'PAttch has not been '
& // 'called or failed.'

GOTO 1000

PS 300 DEC VAX/VMS FORTRAN-77 GSR A - 25

C ELSE
28 IF (ERRCOD .NE. PSEODR) GOTO 38

WRITE (10, ~) 'PS-E-OVEDURREA: An '
& // 'overrun occurred during '
& // 'a read operation.'

WRITE (10, ~) 'The specified input buffer '
& // 'in call to: PGET '
& // 'or: PGETW'

WRITE (10, ~) 'was too small and '
& // 'truncation has occurred.'

GOTO 1000
C ELSE

38 IF (ERRCOD .NE. PSEPDT) GOTO 39
WRITE (10, ~) 'PS-E-PHYDEVTYP: Missing '

& // 'or invalid physical '
& // 'device type'

WRITE (10, ~) 'specifier in call to PAttch.'
CALL PVAXSP
GOTO 1000

C ELSE
39 IF (ERRCOD .NE. PSELDN), GOTO 40

WRITE (10, ~) 'PS-E-LOGDEUNAM: Missing
& // 'or invalid logical '
& // 'device name'

WRITE (10, ~) 'specifier in call to PAttch.'
CALL PVAXSP
GOTO 1000

C ELSE
40 IF (ERRCOD .NE. PSEADE) GOTO 41

WRITE (10, ~) 'PS-E-ATTDELEXP: Attach '
& // 'parameter string '
& // 'delimiter'

WRITE (10, ~) "'/" was expected.'
CALL PVAXSP
GOTO 1000

C ELSE
41 IF (ERRCOD .NE. PSFPAF) GOTO 42

WRITE (10, ~) 'PS-F-PHYATTFAI: '
& // 'Physical attach operation '
& // 'failed.'

GOTO 1000
C ELSE

42 IF (ERRCOD .NE. PSFPDF) GOTO 43
WRITE (10, ~) 'PS-F-PHYDETFAI: Physical '

& // 'detach operation '
& // 'failed.'

GOTO 1000

A - 26 PS 300 DEC VAX/VMS FORTRAN-77 GSR

C ELSE
43 IF (ERRCOD .NE. PSFPGF) GOTO 44

WRITE (10, ~) 'PS-F-PHYGETFAI: Physical '
& // 'GET operation failed.'

GOTO 1000
C ELSE

44 IF (ERRCOD .NE. PSFPPF) GOTO 45
WRITE (10, ~) 'PS-F-PHYPUTFAI: Physical '

& // 'PUT operation failed.'
GOTO 1000

C ELSE
45 IF (ERRCOD .NE. PSFBTL) GOTO 46

WRITE (10, ~) 'PS-F-BUFTOOLAR: Buffer '
& // 'too large error in '
& // 'call to: PSPUT.'

WRITE (10, ~) 'This error should NEVER '
& // 'occur and indicates a '
& // 'Procedural Interface (GSR)'

WRITE (10, ~) 'internal validity check.'
CALL PVAXSP
GOTO 1000

C ELSE
46 IF (ERRCOD .NE. PSFWNA) GOTO 47

WRITE (10, ~) 'PS-F-WRONUMARG: Wrong '
& // 'number of arguments '
& I i 'in call to Procedural'

WRITE (10, ~) 'Interface (GSR) low-level '
& // 'I/O procedure '
& // '(source file: PROIOLIB.MAR).'

WRITE (10, ~) 'This error should NEVER '
& // 'occur and indicates a '
& // 'Procedural Interface (GSR)'

WRITE (lo, ~) 'internal validity check.'
CALL PVAXSP
GOTO 1000

C ELSE
47 IF (ERRCOD .NE. PSFPTL) GOTO 48

WRITE (10, ~) 'PS-F-PROTOOLAR: Prompt '
& // 'buffer too large '
& // 'error in call to: PSPRCV.'

WRITE (10, ~) 'This error should NEVER '
& // 'occur and indicates a '
& !/ 'Procedural Interface (GSR)'

WRITE (10, ~) 'internal validity check.'
CALL PVAXSP
GOTO 1000

C ELSE
C
C Unknown error message error message.

PS 300 DEC VAX/VMS FORTRAN-77 GSR A — 27

C
48 iF (ERRCOD .GE. 512) GOTO 49

MSSG2 =MSSG 1 // 'warning'
GOTO 51

C ELSE
49 IF {ERRCOD .GE. 1024) GOTO 50

MSSG2 =MSSG 1 / / 'error '
GOTO 51

C ELSE
50 MSSG2 =MSSG 1 // 'fatal error '

C END IF
C END IF

51 WRITE (10, ~) MSSG 2
WRITE (10, ~) 'code is unrecognized.'
WRITE (i0, ~} 'Probable Procedural '

~c // 'Interface (GSR) Internal '
& // 'validity check error.'

C END IF
1000 IF {(ERRCC~D .LT. PSFPAF) .OR.

& {ERRCOD .GT. PSFPPF)) GOTO 2000
CALL PSFVMSERR (VMSdef, PIdef)
WRITE (10, ~) 'DEC VAX/VMS Error '

& // 'definition is:'
WRITE (10, ~) VMSde f
WRITE (10, ~) 'Procedural Interface '

& // '(GSR) Interpretation of '
& // 'DEC VAX/UMS completion code:'

WRITE (10, ~) PIde f
WRITE (10, ~) 'DEC UAX/VMS Error code '

& // 'value was: ', PsVMSerr ()
C END IF
2000 WRITE (10, ~)

RETURI~I
END

SUBROUTINE: PIBMS~'

C
C
C
C

PIBMSP: Write the "IBM version specific"
message to the Error handler file.

WRITE (10, ~) 'This error/warning is '
& // 'applicable ONLY to the IBM '
& // 'version of the'
WRITE (10, ~} 'Procedural Interface (GSR}.'
RETURN
END

A — 28 PS 300 DEC VAX/VMS FORTRAN-77 GSR

SUBROUTINE PVAXSP

C
C
C
C

C

PVAXSP: Write the "DEC VAX/VMS Version
specific" message to the Error
handler file.

WRITE (10, ~) 'This error/ warning is '
& // 'applicable ONLY to the DEC '
& // 'VAX/VMS version of
WRITE (10, ~) 'the Procedural Interface (GSR).'
RETURN
END

PS 300 DEC VAX/VMS FORTRAN-77 GSR B — 1

APPENDIX B. HUS'I' MESSAGE

This appendix contains the function network diagram and functional description of

HOST MESSAGE (an instance of the intrinsic function HOLD MESSAGE} that supports

the subroutines PGETW and PGET of the GSRs. This function is already part of the

PS 300 system. When using the GSRs, all messages sent from the PS 300 to the host

must be sent via this function.

The function HOST MESSAGE is a F:NOP function directly connected to the function

HOST MESSAGEB. It is recommended that the user always send PS 300 output destined

for the host computer to HOST_MESSAGE rather than HOST_MESSAGEB since the name

of the latter function may change with a future release of runtime software.

1
<1> F:NOP

----< Requests records from GSR
~ routines PGet and PGetW
V

-->---+ >--> Connected
<1>F:HOLD <1>

MESSAGE
<2>C
<3>C

HOST MESSAGE HOST MESSAGEB

---->Records from user's network.

to HOSTOUT

Fig~lre B—l. Hold_Messag~e Ftlllction Network Diagram

B — 2 PS 300 DEC VAX/VMS FORTRAN-77 GSR

HOLD MESSAGE:

INPUTS:

< 1 >: Qpackets of messages to be sent to the Host
and Qintegers used to trigger the messages
as follows:

FIX(0): Clear any messages waiting the
FIFO queue of messages to be
sent to the Host.

FIX(1): If a message is waiting, send it.
Otherwise send the message
indicating: "No—messages" as
determined by input < 3 >.

FIX(2): If a message is waiting, send it.
Otherwise, wait until a Qpacket
message arrives on input < 1 >
and then immediately send the
message.

< 2> C: Message Terminator Qpacket that is added to the
end of messages arriving on input < 1 > just prior
to transmission to the host.

The default input value for input <2> is a
carriage return: CHR (13).

< 3 >C: "No—messages" Qpacket. If this function receives
a FTX (1) on input < 1 >, then the message on this
constant queue is sent ONLY if there are no other
messages waiting to be sent on input < 1 >. Otherwise,
the first message on the FIFO queue of messages is sent
from output < 1 > with the Message Terminator Qpacket as
defined by input <2>.

The default input value for input < 3 > is a
carriage return: CHR (13).

OUTPUTS:

< 1 >: Qpacket sent to the Host Computer in response
to the receipt of either a FIX (1) or FIX (2)
on input < 1 >.

PS 300 DEC 1/AXivMS FORTRAN-77 GSR B - 3

The GSR subroutines: Peet and PGetW specifically interrogate the function:
HOST MESSAGEB for input back to the host.

The subroutine Peet is used to "poll" the PS 300 for data. If a message exists on the
FIFO queue of HOST_MESSAGEB, then that message is removed from the queue and is
returned by Peet. If no message was present in the input queue of HOST MESSAGEB
then the special: "No-messages" message as defined by input < 3 > of HOST_MESSAGE is
returned.

The subroutine PGetW is similar in functionality to Peet with one important
difference. PGetW will NOT return to the caller until a message has been received
from the PS 300. If no messages are present on the input queue of HOST_MESSAGEB,
then the caller of PGetW (Get message and wait for completion) will wait until a
message is sent to input < 1 > of HOST_MESSAGEB.

NOTE

Messages received from the PS 300 via Peet and PGetW
may need to be "trimmed" of the trailing characters) as
defined by inputs < 2 > and < 3 > of HOST MESSAGEB i f
either of them is changed from the default value of
carriage return (Character 13). The DEC vAX/VMS
FORTRAN GSR will remove a single trailing carriage
return from the message. Thus if a poll operation is
requested and no messages are present, the GSR returns
a zero-length message to the caller indicating that no
messages were present because the default
"No-message" message on input < 3 > of HOST MESSAGEB
is a carriage return. Similary, calls to PGetW return the
proper length. However, if the user chooses to change
the HOST_MESSAGEB inputs < 2 > or < 3 >, then the user
must compensate for any side effects so produced when
calling Peet or PGetW.

USER'S ~A \UAL FOR PS 300 HOST-RESIDE\T IIO SUBROUTI\ES

Supports DEC VAX/VMS and DEC PDP-11/RSX-11M Systems

Supported Under Software Version A 1

The contents of this document are not to be reproduced or
copied in whole or in part without the prior written
permission of Evans &Sutherland.

Many concepts in this document are proprietary to Evans &
Sutherland, and are protected as trade secrets or covered by
U.S. and foreign patents or patents pending.

Evans & Sutherland assumes no responsibility for errors or
inaccuracies in this document. It contains the most
complete and accurate information available at the time of
publication, and is subject to change without notice.

PS 1, PS2, MPS, and PS 300 are trademarks of the Evans &
Sutherland Computer Corporation.

Copyright o 1984
EVANS &SUTHERLAND COMPUTER CORPORATION

P.O. Box 8700, 580 Arapeen Drive
Salt Lake City, Utah 84121

USER'S MANUAL FOR PS 300 HOST-RESIDENT I/O SUBROUTINES

CONTENTS

INTRODUCTION 1

1.1 DESCRIPTION OF THE HOST-RESIDENT I/O SUBROUTINES 2
1.1.1 PSETUP 3
1.1.2 PSEXIT 4
1.1.3 PSREAD 5
1.1.4 PSPOLL 6
1.1.5 PSUECS 7
1.1.6 PSSEND 11
1.1.7 PSCHAR 12
1.1.8 PSFIXI 13

1.2 SECOND LEUEL SUBROUTINES 14
1.2.1 PSCON 15
1.2.2 PSCOFF 16
1.2.3 PSS~IDC 17
1.2.4 PSFINC 18
1.2.5 PSSNDB 19
1.2.6 PSFINB 20
1.2.7 PSFEXP 21
1.2.8 PSUNOR 22
1.2.9 PSBNOR 23
1.2.10 PSRCUC 24
1.2.11 PSTRHM 25
1.2.12 PSPKUVM 26
1.2.13 PSERR 27

APPENDIX A. HOLD MESSAGE 29

APPENDIX B. RESERUED NAMES LIST 31

USER'S MANUAL FOR PS 300 HOST—RESIDENT I/O SUBROUTINES — 1

INTRODUCTION

The PS 300 Host—Resident I/O Subroutines (PSIOs) provide the user with a standard
method of communication between the PS 300 and the host system. The subroutines are
distributed on magtape to each customer. These subroutines must be loaded, linked,
and compiled on the host system by the user. The package is supported under Digital
Equipment Corporation VAX/VMS (Version 2.3) and RSX-1 1 M (Version 3.2) operating
systems.

The user of this package should be familiar with FORTRAN, the PS 300 command
language, and the command language for VMS and/or RSX-1 1M operating systems.

The PSIO package is supported under FORTRAN IV PLUS (FFP) and FORTRAN IV.

The PSIO package described in this manual is supported only under PS 300 Graphic
Software Version P5 and higher.

This manual is intended for users who are fully acquainted with the PS 300 graphic
system conventions and commands. No attempt has been made to define the terms used
in this manual.

There are two levels of routines in the subroutines. The first level contains the
subroutines PSETUP, PSEXIT, PSREAD, PSPOLL, PSVECS, PSSEND, PSCHAR, and
PSFIXI. These routines will run on machines that support Logical ~ 1 variables.

The second level of subroutines is written for the particular machine that the I/O
subroutines will run on. These routines are written in FORTRAN and assembly language

to get the maximum possible throughput. The routines at the second level will support

input and output to more than one device, such as a terminal or DMR 1 1 driver, that can

be selected at execution time.

2 —USER'S MANUAL FOR PS 300 HOST—RESIDENT I/O SUBROUTINES

To install the PSIOs, refer to Volume 5 of this document set. Volume 5 also contains
data communication inf orr~nation for those users wishing to write their own I/O
subroutine package.

Appendix A contains a functional description of HOLD_MESSAGE that supports the
subroutine PSREAD and PSPOLL.

Appendix B lists reserved words that are used by E&S to name subroutines, COMMON
blocks, functions, or BLOCK DATA in the PS 300 Host —Resident Subroutines.

1.1 DESCRIPTION OF THE HOST—REST D F: NT I/O SUBROUTINES

This section describes the top—level subroutines. These subroutines are written
for transportability between host systems. Section 1.2 describes the second
level subroutines that are written specifically for different operating systems.
The top level subroutines and their arguments are:

• PSETUP (IN, IOUT, INIT, LEN, IA R RAY)

• PSEXIT (LEN, IARRAY)

• PSREAD (INLEN, INBUF, NUMBYT)

• PSPOLL (INLEN, INBUF, NUMBYT)

• PSVECS (IVT, IVC, VECS, IPL, DELIM, IOSTAT)

• PSSEND (LEN, IOUTBF)

• PSCHAR (LEN, IOUTBF, FLUSH)

• PSFIXI (DFTINI}

USER'S MANUAL FOR PS 300 HOST-RESIDENT I/O SUBROUTINES - 3

1.1.1 PSET~TP

The PSETUP subroutine sets up the communications link to the PS 300. If the
"INIT" argument is true, a reset message is sent to the PS 300. The routine
initializes all LEVEL 1 COMMON BLOCKS.

FORTRAN Calling Sequence:

CALL PSETUP (IN, IOUT, INIT, LEN, IARRAY)

Where:

• IN (INTEGER) is the input logical unit number used for the asynchronous line
under RSX-1 1 M. (Machine dependent for systems other than RSX-1 1 M and
vAx.>

• IOUT (INTEGER) is the output logical unit number for the DMR 1 1 line under
RSX-1 1 M. (Machine dependent for systems other than RSX-1 1 M and VAX.)

• INIT (LOGICAL) indicates whether or not to initialize the PS 300. A .TRUE.
indicates that the command is to be issued and a .FALSE, indicates that no
command is to be issued. If this parameter has other than a logical value,
.FALSE, is assumed.

• LEN (INTEGER) is an integer (>=2) that specifies the length of the array.

• IARRAY (INTEGER)

PASSED - IARRAY(2) specifies the input/output device:
0 =Low speed device
1 =High Speed Device

3 ..n (Machine Dependent)

RETURNED - IARRAY(1) =Error Status
No error (0) is always returned.

Example

I=7
IO=7
INIT=.TRUE.
L=2
IARRAY (2)=1
CALL PSETUP (I,IO,INIT,L,IARRAY)

4 -USER'S MANUAL FOR PS 300 HOST-RESIDENT I/O SUBROUTINES

1.1.2 PSEXIT

The PSEXIT subroutine disconnects the communication link to the PS 300. This
subroutine does not issue any commands to the PS 300. Therefore, when PSEXIT
is called, the PS 300 is left "as is".

FORTRAN Calling Sequence:

CALL PSEXIT (LEN, IARRAY)

Where:

• LEN (INTEGER} is an integer (>=1) that specifies the length of the array.

• IARRAY (INTEGER)

Returned - IARRAY(1} =Error Status.

No error (0) is always returned.

Examples

CALL PSEXIT (I,IARRAY)

or

L=1
CALL PSEXIT (L,IARRAY)

USER'S MANUAL FOR PS 300 HOST-RESIDENT I/O SUBROUTINES - 5

1.1.3 PSREAD

The PSREAD subroutine reads a character buffer from the PS 300 up to 256
bytes in length from the PS 300 via HOST_MESSAGE. The subroutine will wait
until a message is returned from the PS 300 before it returns to the calling
program.

PSREAD will only return one non-null message when called. If more than one
message is in HOST_MESSAGE's input queue, PSREAD must be called repeatedly
until all messages have been processed.

FORTRAN Calling Sequence:

CALL PSREAD (INLEN, INBUF, NUMBYT)

where:

• INLEN (INTEGER) specifies the size of the input array in bytes.

• INBUF (LOGICAL 1) is the input buffer for the record that is read from the
PS 300. The input_array can be any data type (except CHARACTER) but
must be accessed as if it were EQUIVALENCEd to a LOGICAL 1 array or
BYTE array of length input_array_length.

• NUMBYT (INTEGER) returns the actual number of characters in INBUF.

Example

CALL PSREAD (72, INBUF, NUMBYT)

or

I=72
CALL PSREAD (I, INBUF, NUMBYT)

6 -USER'S MANUAL FOR PS 300 HOST-RESIDENT I/O SUBROUTINES

1.1.4 PSPOLL

The PSPOLL subroutine requests a character buffer up to 256 bytes long from
the PS 300, via HOST_MESSAGE, if and only if a record is available at the time
the subroutine is called. If there is no message waiting in the PS 300 to be sent
to the host, PSPOLL returns control to the calling program with a buffer count
of zero. PSPOLL is used to poll the PS 300 for input records.

PSPOLL will only return one null message or one non-null message when called.
If more than one message is in HOST_MESSAGES's input queue, PSPOLL must be,
called again to obtain the next message. PSPOLL will return with a null message
when all messages have been read.

FORTRAN Calling Sequence:

CALL PSPOLL (INLEN, INBUF, NUMBYT)

Where:

• INLEN (INTEGER) specifies the size of the input array in bytes.

• INBUF (LOGICAL ~ 1) is the input buffer for the record that is read from the
PS 300. INBUF can be any type (except CHARACTER) but must be accessed
as if it were EQUIVALENCEd to a LOGICAL 1 array or BYTE array of length
input_array_length.

• NUMBYT (INTEGER) returns the actual number of characters in INBUF.

Example

CALL PSPOLL (72, INBUF, NUMBYT)

or

I=72
CALL PSPOLL (I, INBUF, NUMBYT)

USER'S MANUAL FOR PS 300 HOST-RESIDENT I/O SUBROUTINES - 7

1.1.5 PSVEC S

The PSUECS subroutine sends a vector list to the PS 300. On the first call to
this routine, it will send either the character message '1/2D' or 'V3D' to the
PS 300 for the respective vector type. PSUECS allows an array of
single-precision real numbers to be output without the user program having to
ENCODE them as character strings. All numbers sent to the PS 300 are in a

T

compact 8-bit binary form.

If a vector list is to be block normalized, only one call to PSUECS is allowed to
define the entire list. Multiple calls to PSUECS are allowed to define a given
vector-normalized vector list. The restriction to a single call is not imposed on
the vector-normalized vector list because the normalization occurs on a per
vector basis, rather than on a set of vectors.

Once the block-normalized vectors have been sent to the PS 300, no mechanism
is currently available to renormalize them, should subsequent calls to PSUECS
require it.

If the vector count passed in a call to PSUECS is larger than the actual vector
count, a fatal access violation error will occur.

The vector list command sent (via PSSEND) to the PS 300 prior to the initial
PSUECS call must agree in type to the vector type parameter passed to PSUECS.

The vector list command and PSUECS-supported vector list options must be sent
to the PS 300 in a prior call to PSSEND. The scope of PSUECS-supported vector
Iist options is as follows:

The subroutine PSFIXI is used to change the default vector intensity used in
PSUECS.

Supported Vector List Options

• BLOCK NORMALIZED (Default is vector normalized.)

• DOTS or ITEMIZED (No default. Vector list command must explicitly state
DOTS or ITEMIZED.)

• Implicit Z = 0 for 2D vector lists.

8 —USER'S MANUAL FOR PS 300 HOST—RESIDENT I/O SUBROUTINES

Unsupported Vector List Options

• WITH PATTERN (Therefore, the user program must generate all coordinate
values for a patterned vector list.)

• CONNECTED or SEPARATE (Therefore, the user program must set up the
position/line array such that the vectors are itemized as follows:

CONNECTED — P,L,L,...L
SEPARATE — P,L,P,L,...P,L

• Y = y Z = z DY = delta y DZ =delta z
(Therefore, the user program must generate all coordinate values for
constant or linearly varying y and z.)

• INTERNAL UNITS are not necessary, as the binary format is in internal units.

FORTRAN Calling Sequence:

CALL PSVECS (IVT, IVC, VECS, IPL, DELIM, IOSTAT)

Where:

• IVT (INTEGER) specifies the vector type:

1) vector normalized 2D with specified intensities
2) vector normalized 3D with specified intensities
3) vector normalized 2D with default intensity
4) vector normalized 3D with default intensity
5) block normalized ZD with default intensity
6) block normalized 3D with default intensity

These types are illustrated in Table 1-1. If this parameter has a value outside
the defined range of vec_types, a fatal error occurs.

• IVC (INTEGER) specifies the count of vectors in VECS and count of logical
values in the IPL. If the count is zero or negative, no vector data are sent to
the PS 300. (See DELIM)

• VECS (REAL) is an array of single—precision real numbers representing the
vector coordinates and [intensities]. PSVECS accesses VECS as though it was
one dimensional. Therefore, if the user program defines VECS as
multi—dimensional, it will be accessed by column.

USER'S MANUAL FOR PS 300 HOST—RESIDENT I/O SUBROUTINES — 9

• IPL (LOGICAL) is an array of logical values (.TRUE. or .FALSE.) that
itemizes the associated vector in the vec_array as a position vector (.FALSE.)
or line vector (.TRUE.). There must be a logical value for each vector;
otherwise, the routine assumes it is a position vector (.FALSE.).

• DEI.IM (LOGICAL) indicates whether the vector list will be delimited after
the current group of vectors is sent. A .TRUE, indicates that the vector list
is to be delimited and a .FALSE, indicates that the vector list is not to be
delimited. The latter case allows multiple calls to PSUECS to define a vector
list. If this parameter has other than a logical value, .FALSE. is assumed.

• IOSTAT (INTEGER) is used to report error status.

Returned —Error Status

No error (0) is always returned.

Example

CALL PSUECS (4, 50, UECS, IPL, .TRUE.,IOSTAT)

or

IUT=4
Ivc=So

DELIM=.TRUE.
CALL PSUECS (IUT, IUC, UECS, IPL, DELIM, IOSTAT)

10 -USER'S MANUAL FOR PS 300 HOST-RESIDENT I/O SUBROUTINES

Table 1- l . Types of Vectors in IVT

vec-type
number

l~ X,Y
2~ X,Y,Z
3~ X,Y
4~ X,Y,Z
5~~ X,Y
6~~ X,Y,Z

Description of
vec-array contents

and intrinsic intensity specified
and intrinsic intensity specified
default intensity
default intensity
default intensity
default intensity

Size of
vec-array

vec-count~3
vec-count~4
vec-count~2
vec-count~3
vec-count~2
vec-count~3

Size of position
line-array

vec-count
vec-count
vec-count
vec-count
vec-count
vec-count

~ Vec-types numbers 1, 2, 3, and 4 are vector normalized.
~~ Vec-types numbers 5 and 6 are block normalized.

Default intensity is initially 1.0 or determined by PSFIXI.

CAUTION

Once transmission of binary data has started, the
complete vector list must be transmitted. If the
program should fail in the middle of a vector list
transmission, the PS 300 will be left in an unknown state
and must be rebooted.

USER'S MANUAL FOR PS 300 HOST—RESIDENT I/O SUBROUTINES — 1 1

1.1.6 PSSEND

The PSSEND subroutine sends a character buffer up to 256 bytes in length to the
PS 300. The buffer is sent immediately.

FORTRAN Calling Sequence:

CALL PSSEND (LEN, IOUTBF)

Where:

• LEN (INTEGER) specifies the number of bytes in the number of characters to
send. If the byte_count is zero or negative no bytes are written to the PS 300.

• IOUTBF (LOGICAL ~ 1) is the array of characters to send. IOUTBF can be
any data type except character, but must be accessed as if it were
EQUIVALENCEd to a LOGICAL 1 array or BYTE array.

Example

CALL PSSEND (20, IOUTBF)

or

ICNT=20
CALL PSSEND (ICNT, IOUTBF)

Please Note: In calls to PSSEND and PSCHAR, lines of text that do not end in a
";", should be terminated with a ' ' (space).

12 -USER'S MANUAL FOR PS 3,00 HOST-RESIDENT I10 SUBROUTINES

1.1.7 PSCHAR

The PSCHAR subroutine sends a character buffer to the PS 300. The message is
packed with the previous PSCHAR messages that had the FLUSH flag set to
FALSE before being sent to the PS 300. When the FLUSH flag is set to TRUE,
this message and any previous messages it might contain are sent to the PS 300.

FORTRAN Calling Sequence:

CALL PSCHAR (LEN, IOUTBF, FLUSH)

Where:

• LEN (INTEGER) is the number of characters in the buffer to be sent.

• IOUTBF (LOGICAL) is the array of characters to send.

• FLUSH (LOGICAL) is the flag to send or not send this message. When FLUSH
is .TRUE., this message and any previous messages (that had their flag set to
FALSE) are sent immediately to the PS 300. When FLUSH IS .FALSE., the
message is not sent, but is placed in the buffer and waits until another call to
PSCHAR is made with the flag set to TRUE or when the buffer is full.

Example

CALL PSCHAR (l, IOUTBF,.TRUE.)

or

LEN=1
FLUSH=.TRUE.
CALL PSCHAR (LEN, IOUTBF, FLUSH)

USER'S MANUAL FOR PS 300 HOST—RESIDENT I/O SUBROUTINES — 13

1.1. $ PSFIXI

The subroutine PSFIXI changes the default vector intensity used by the
Subroutine PSIIECS at program execution time Initial value is 1.0. (full
intensity).

FORTRAN Calling Sequence:

CALL PSFIXI (DFTINI)

Where:

• DFTINI (REAL) is a real number between 0.0 and 1.0 that specifies the
maximum intensity.

Example

CALL PSFIXI (1.0)

or

DFTINI=1.0
CALL PSFIXI (DFTINI)

14 -USER'S MANUAL FOR PS 300 HOST-RESIDENT I/O SUBROUTINES

1.2 SECOND LEVEL SUBROUTINES

These secondary subroutines are designed for specific systems. The definitions
below generally outline what the subroutines do. Amore specific description of
each routine follows.

A description of the escape and count mode referred to below and used by the
PS 300 for host communication is described in Volume 5, System Manager
Reference.

VAX Set -These subroutines send the data to the PS 300 over an asynchronous
serial line in 8-bit character count mode and over the DMR 1 1 in 8-bit form. The
error subroutine generates error messages in trace back form.

RSX Set -These subroutines send the data to the PS 300 over an asynchronous
serial line in 8-bit character count mode and over the DMR 1 1 in 8-bit form. The
error subroutine generates error r~~essages in trace back form.

Brief DescriptioTi of 8-fit Cotult Mode Format. for Asychro~lous Lille

8-Bit Count Mode Format:

Byte 1 Transmitted -Frame Start Character
Byte 2 Transmitted -Most Significant Bits of 16-bit message count.
Byte 3 Transmitted -Least Significant Bits of 16-bit message count.
Bytes 4 through n - 8-bit data.

The first 3 bytes are not included in message count. Byte 4 is actually the
muxing character "1 ".

USER'S MANUAL FOR PS 300 HOST—RESIDENT I/O SUBROUTINES — 15

1.2.1 PSCON

This subroutine establishes the connection between the PS 300 and host I/O
device. After the connection to the PS 300 has been made, the subroutine calls
PSPKWM which pokes the PS 300 Who Message Function. This subroutine then
reads the reply from the PS 300 and sets the value of QBIN in COMMON BLOCK
BINPAR. This subroutine also resets the host message function and initializes
the LEVEL 2 COMMON BLOCKS.

FORTRAN Calling Sequence:

PSCON (IN, IOUT, IODEV)

Where:

• IN (INTEGER~2) input logical unit number (Machine Dependent}.

• IOUT (INTEGER~2) output logical unit number (Machine Dependent).

• IODE~ (INTEGER~2) specifies the input/output device:

0) Low speed device.
1) High speed device.

3 .. n) other devices.

16 -USER'S MANUAL FOR PS 300 HOST-RESIDENT I/O SUBROUTINES

1.2.2 PSCOFF

This subroutine terminates the connection between the PS 300 and host I/O
device.

FORTRAN Calling Sequence:

PSCOFF

USER'S MANUAL FOR PS 300 HOST—RESIDENT I/O SUBROUTINES — 17

1.2.3 PSSNDC

This subroutine loads a character buffer into a Queue Buffer for output to the

PS 300. If the current Queue Buffer becomes full, it will be transmitted and

another Queue Buffer will be loaded. These Queue Buffers will be routed

through Ciroute Output ~~3 {routine byte = "0").

FORTRAN Calling Sequence:

PSSNDC (LEN, IOUTBF)

Where:

• LFN (INTEGER~2) Number of characters to output.

• IOUTBF (LOGICAL 1) Buffer of characters to output.

18 —USER'S MANUAL FOR PS 300 HOST—RESIDENT I/O SUBROUTINES

1.2.4 PSFINC

This subroutine sends out the last remaining Queue Buffer of characters (if there
is one) to the PS 300. The Queue Buffer will be routed through Ciroute Output
~~3 (routine byte = "0"}. The routine will clear the I/O output state flag.

FORTRAN Calling Sequence

PSFINC

USER'S MANUAL FOR PS 300 HOST-RESIDENT I/O SUBROUTINES - 19

1.2.5 PSSN~B

This subroutine loads a 16-bit array into a Queue Buffer for output to the

PS 300. If the current Queue Buffer becomes full, it will be transmitted and

another Queue Buffer will be loaded. These Queue Buffers will be routed

through Ciroute Output ~~4 if the host device supports 8-bit data. Note: the

most significant byte of the 16-bit word will be sent first.

FORTRAN Calling Sequence:

PSSRIDB (LEN, IARRAY)

Where:

• LEN (INTEGER*2} Number of 16-bit numbers to output.

• IARRAY (INTEGER~2) Array of 16-bit numbers to output.

20 —USER'S MANUAL FOR PS 300 HOST—RESIDENT I/O SUBROUTINES

1.2.6 PSFINB

This subroutine sends out the last remaining Queue Buffer of 16—bit numbers (if
there is one) to the PS 300. The Queue Buffer will be routed through Ciroute
Output ~~4 if the host device supports 8—bit data. The routine will clear the I/O
output estate flag.

FORTRAN Calling Sequence:

PSFINB

USER'S MANUAL FOR PS 300 HOST-RESIDENT I/O SUBROUTINES - 21

1.2.7 P~FEXP

This subroutine finds the largest exponent of an array of REAL numbers.

FORTRAN Calling Sequence:

PSFEXP (N, ARRAY, MAXEXP)

Where:

~ N (INTEGER~2) number of values to search.

• ARRAY (REAL) Array of values to be searched.

• MAXEXP (INTEGER~2) returned maximum exponent.

22 -USER'S MANUAL FOR PS 300 HOST-RESIDENT I/O SUBROUTINES

1.2.8 PSVNOR

This subroutine normalizes values from a REAL array into PS 300
vector-normalized format and stores the values into a 16-bit array.

FORTRAN Calling Sequence:

PSVNOR (N, ARRAY, IARRAY, MAXEXP)

Where:

• N (INTEGER~2) number of values to normalize.

• ARRAY (REAL) array of values to normalize.

• IARR,AY (INTEGER~2) array to receive the normalized data.

• MAXEXP (INTEGER~2) the exponent used for normalization.

USER'S MANUAL FOR PS 300 HOST-RESIDENT I/O SUBROUTINES - 23

1.2.9 PSBNOR

This subroutine normalizes values from a REAL array into PS 300
block-normalized format and stores the values into a 16-bit array.

FORTRAN Calling Sequence:

PSB'~IOR (N, ARRAY, IARRAY, MAXEXP)

Where:

• N (INTEGER~2) number of values to normalize.

• ARRAY (REAL) array of values to normalize.

• IARRAY (INTEGER~2) array to receive the normalized data.

• MAXExP (INTEGER~2) the exponent used for normalization.

24 -USER'S MANUAL FOR PS 300 HOST-RESIDENT I/O SUBROUTINES

1.2.10 PSRCVC

This routine receives a buffer of characters from the PS 300. The PS 300
message terminator character <CR> is stripped off.

FORTRAN Calling Sequence:

PSRCVC (INLEN, INBUF, NUMBYT)

Where:

• INLEN (INTEGER~2) maximum number of characters that can be received.

• INBUF (LOGICAL 1) array to receive the characters.

• NUMBYT (INTEGER~2) actual number of characters received.

USER'S MANUAL FOR PS 300 HOST—RESIDENT I/O SUBROUTINES — 25

1.2.11 PSTRHM

This subroutine sends a message to the PS 300 Ciroute output ~~ 18 (routine byte
"~") to trigger the Host Hold —Message Function.

FORTRAN Calling Sequence:

PSTRHM (MODE)

Where:

MODE (INTEGER~2) trigger mode:

0 = Flush all messages waiting to be sent to host; reset host message.
1 = Send next message. If one is not waiting, send "No Message".
2 = Send next message. If one is not waiting, wait for one to come available.

26 —USER'S MANUAL FOR PS 300 HOST—RESIDENT I/O SUBROUTINES

1,2.12 PSPKWM

This subroutine sends a message to the PS 300 Ciroute output ~~ 19 (routine byte =
"2") to poke the Who Message Function,

FORTRAN Calling Sequence:

PSPKHM

USER'S MANUAL FOR PS 300 HOST—RESIDENT I/O SUBROUTINES — 27

1.2.13 PSERR

This subroutine is called by other PSIO routines when an error is encountered.

FORTRAN Calling Sequence:

PSERR (N)

Where:

N (INTEGER~2) Error Number:

1) PSETUP has been called again before PSEXIT has been called.
2) A PSIO routine has been called before PSETUP has been called.
3) A PSIO routine which outputs to the PS 300 has been called before a

Character Queue Buffer has been flushed.
4) A PSIO routine which outputs to the PS 300 has been called before a

Binary Queue Buffer has been flushed.
5) A PSIO routine was called with a negative or zero buffer count.
6) PSVECS was called to output one type of vector list while in the middle

of sending another type of vector List.
7} PS1/ECS was called with an invalid vector type.
8) A PSIO routine was called with an invalid intensity parameter.
9) PS1/ECS was called to output a Block Normalized vector list while in the

middle of sending another Block Normalized vector list.
50..n) Machine Dependent Errors.

USER'S MAI~IJAL FOR PS 300 HOST-RESIDENT I/O SUBROUTINES - 29

APPENDIX A. HOLD MESSAGE

This appendix contains the function network diagram and functional description of
HOLD_MESSAGE, an intrinsic f unction that supports the subroutines PSREAD and
PSPOLL. This function is already part of the PS 300 System. All that is necessary is to
connect to input 1 of HOST_MESSAGE.

Requests for records from
PSREAD and PSPOLL.

<1>
<1>

F:NOP

<1>
<1>

F:HOLD
MESSAGE

Connected

to HOSTOUT

HOST MESSAGE: HOST MESSAGEB

--Records from user's network.

Figure A-l. Function Network Diagram

30 —USER'S MANUAL FOR PS 300 HOST—RESIDENT I/O SUBROUTINES

HOLD MESSAGE

PROCEDIJRE Msg'hold

INPUTS

< 1 >: Qpackets of messages to be sent to the host. And Qintegers used to
trigger the messages as follows:

Value of 0 — Clear any messages waiting in the private queue to be sent
to the host.

Value of f 1 If a message is waiting, send it. Otherwise send the "NO
Message" Qpacket from input < 3>.

Ualue of 2 If a message is waiting, send it. Otherwise set the Send
Immediate Flag so that the next message will be sent
immediately to the host.

<2>C: Message Terminator Qpacket that is added to the end of the input < 1 >
message before it is sent to the host.

< 3 > C: "No Message" Qpacket.

Note: Inputs < 2 > and < 3 > default to carriage returns.

OUTPUTS

< 1 >: Qpacket to the Host Computer.

Private: Send Immediately Flag.

Queue of Qpackets waiting to be sent to the host.

USER'S MANUAL FOR PS 3Q0 HOST—RESIDENT I/O SUBROUTINES — 31

APPENDIX B. RESERVED NAMES LIST

This appendix contains the reserved —word list. A word is reserved if it already names a
subroutine, COMMON block, or function in the E&S—supplied Host I/O Subroutines.
These words should not be used to name user functions.

SUBROtIT(NF. AND FUNCTION NAMI~:S

PSIO.FTN ,PSIO.FOR,
VAXPSIO.FOR, and

RSXPSIO.FTN
VAXPSSER.MAR and VAXPSDMR.MAR and

RSXPSSER.MAC RSXDMR.MAC

PSETUP PSLSET PSHSET
PSEXIT PSLOUT PSHOUT
PSPOLL PSLINQ PSHIN
PSREAD PSLIN PSHFIN
PSSEND PSLFIN PSHERR
PSVECS PSLERR
PSCHAR
PSFIXI
PSCON
PSCOFF
PSSNDC
PSFINC COMMON AREA NAMES
PSSNDB
PSFINB PSIOFL
PSFEXP PSVNOR
PSERRC PSBPAR
PSBNOR PSDEV
PSRCVC PSQUE
PSTRHM PSCIRT
PSPKWM
PSE R R

