REFERENCE MATERIALS

The Reference Materials RM1-4 and RM5-16 provide reference information for the
user of the PS 390 system. Summaries of the ASCII commands, intrinsic functions,
initial function instances and GSRs are contained in the first part of the volume.
Included in the second part of the volume are sections covering interactive devices,
interfaces and options, host input data flow, system function network diagrams,
diagnostic utilities, system errors and host communications. The final section con-
tains an index to the complete PS 390 Document Set.

RM1 Command Summary

This section contains a summary of the ASCII form of each PS 390 com-
mand. The long form and acceptable short form of each command are
given, together with information on parameters, default values, and other
requirements. Where a command creates a node in a display structure, the
type of node is indicated. If that node can be updated with values from an

m interactive device, the inputs to the node and acceptable data types are
shown in the diagram. Examples of the use of commands are given when
appropriate, and related information is included as notes. The summary is
alphabetized for ease of use. Appendices list commands by classification,
give the syntax of each command, and provide a cross-reference to the
GSRs found in Section RM4.

RM2 Intrinsic Functions

This section contains a summary of information about each PS 390 intrinsic
user function and each intrinsic system function. Functions are represented
as boxes with numbered inputs and outputs and acceptable data types. De-
fault values, associated functions, notes and examples are listed when ap-
propriate. An appendix lists the functions by classification.

RM3 Initial Function Instances

This section contains a summary of information about PS 390 initial func-
tion instances. Initial function instances are represented as boxes with num- ‘

bered inputs and outputs and acceptable data types. Default values, associ-
, ated functions, notes and examples are listed when appropriate. An
ﬁ appendix lists the initial function instances by classification.

RM4 Graphics Support Routines

This section contains a summary of the Graphics Support Routines (GSRs).
GSRs corresponding to ASCII commands and utility and raster routines are
included. Descriptions of the VAX and IBM FORTRAN, VAX and IBM
Pascal, and UNIX/C GSRs are listed. An appendix provides a cross-
reference to the ASCII commands documented in Section RM1.

RM1. COMMAND SUMMARY

CONTENTS
APPLIED TO/THENttt ittt inininnennnnnnnnnns 3
ATTRIBUTES ... ittt ittt ittt teteneenennes 4
BEGIN...END ...iitiiiiiiiiititititinnennenenenenennnans 7
BEGIN_FONT...END _FONT0iiuiiriiininnnnnnnnnnnn. 8
BEGIN _S...END S ... ittt ittt ittt ettt it in i 10
BSPLINE . ittt it ittt e e e e 13
CANCEL XFORM ..\ttt ittt ieeteinetnenenennenennennns 16
CHARACTER FONT ...ttt it it it it it et ettt en i 17
CHARACTER ROTATE ...ttt it it inin e 18
CHARACTERS ...ttt ittt ittt it et et et et it ennenens 20
CHARACTER SCALEttt it it i i it ce et et et eiennenn 22
COMMAND STATUS ..ttt ittt ittt ettt e e ieeenns 24
CONFIGUREttt ittt it ettt et e it 25
610) O 26
10) S 27
DECREMENT LEVEL _OF DETAILc0ivuiiininnnnnn. 29
) 01) 30
DISCONNECT ..ttt ittt ittt ittt ettt eenennns 31
1) 13 7. N 32
ERASE PATTERN FROM ... ittt ittt iiinnnnnennnns 33
D 4 34
FIELD _OF _VIEW ... ittt iittintintnneennenneennenns 36
FINISH CONFIGURATIONiitiiiiiiniiiininnnnnnnennnns 38
FOLLOW WITH ...ttt iitiittintnnenennennenennenenns 39
FORGET (Structures)oueeeneeenneeennneennneeenneeennas 41
FORGET (Units) . ..vvvtititiiinerneneenenennenennennenennens 42
(Function Instancing)ccitiiiiiiiiiinnnnnnennn. 43
GIVE UP_CPU ...ttt ittt ittt itinenennnnennnnns 44
IF CONDITIONAL BITo iiitiiiiiiiiinenennenannnnnnns 45
IFLEVEL OF DETAILottt iiiitetntnnnannnans 47

IF PHASE . ..o i i i it it it i e 49

ILLUMINATION ..ottt ittt ittt tintennnnannnens 50
INCLUDE ... ittt it et ittt ttateneeennonneas 52
INCREMENT LEVEL OF DETAILcoiiiiiiiiiniiinnnnnn 53
INITIALIZE . . ittt ittt it ittt teneenaeennenaees 54
INSTANCE OF .. ittt ittt ittt ii et inienennns 56
LABELS ..ttt ittt itttetrnneenesnasenssensennsas 57
LOAD VIEWPORTttt ittt itnieneenennnennn 59
710 10) 61
MATRIX 2X2 ittt ittt ittt ittt inenennenennes 64
MATRIX 3X3 .ttt ittt ittt ittt ittt et eiinnnenrenennns 66
MATRIX X3 ottt ittt ittt ittt ittt ittt 68
MATRIX 4X4 ..ottt ittt ittt ittt it ittt iiinnneennn 70
(Naming of Display Structure Nodes)o, 72
1 73
OPTIMIZE MEMORYt iiiiiiiiiiiiiiitrttennnnnanns 74
OPTIMIZE STRUCTURE;...END OPTIMIZE; 75
PATTERN ..ottt ittt ittt ittt eteieenneenennns 77
PATTERN WITH ittt ittt iiiienenannnn 78
POLYGON ..ttt ittt ittt ittt eeneennennaens 79
POLYNOMIAL ...ttt it ittt iintntenneennens 82
PREFIX WITH ... ittt iiitiinitnenenennnens 84
RATIONAL BSPLINE ...ttt iiiinnennnnannnn 85
RATIONAL POLYNOMIAL ... itiiiiiiiiiiieeneneannnnn 89
RAWBLOCK ..ttt it ittt e it it eteneeeneanennn 92
REBOOT ..ttt ittt ittt ittt itenenenneanennnn 94
REMOVE ..ttt ittt ittt e it eennennennnns 95
REMOVE FOLLOWER ... ittt iii i 96
REMOVE FROM ...ttt iiiiiitiinernneennennenn 97
REMOVE PREFIX ... ittt iiiiiitiiiinntennennneanens 98
RESERVE_WORKING STORAGE, 99
RESET it i i et i ittt 101
) 0 7\ 102
SCALE ..ottt it e e e e e e 104
SECTIONING _PLANE i it i i 106
SELECT FILTERottt ittt et e e i i eneannn 108
SEND i e e e e e e e 110
SEND number*mode0itiiiitiiniiirnnennnnnn. 111
SEND VL i i i e ittt ittt ianeanen 112
SET BLINKING ON/OFFttt 113
SET BLINK RATE ittt it i i 114
SET CHARACTERSottt ittt ittt i e neennn 115

ii

SET COLOR ...ttt ittt ittt ittt it et inaeanns 116

SET CONDITIONAL _BITottt 118
SET CONTRAST ...ttt it it i i it i 120
SET DEPTH_CLIPPINGc.iiiiiiiiiiii it 122
SET DISPLAYS ...t i i it e it 124
SET INTENSITY ... i i it e i 126
SET LEVEL _OF DETAILco ottt 128
SET LINE TEXTUREottt it 130
SET PICKING ..ottt ittt ittt ittt it eineneenneens 132
SET PICKING IDENTIFIERcc i, 134
SET PICKING LOCATION ... ittt i e 135
SET PRIORITY ..ttt ittt it it iii e 137
SET RATE ... i i i i i i 138
SET RATE EXTERNALottt i 140
SETUP CNESS ...t i i it e e 142
SETUP INTERFACE ... it i i 144
SETUP PASSWORD ittt i i 145
SHOW INTERFACE ...ttt it i 146
SOLID_RENDERINGttt it iiii e 147
STANDARD FONT ... i i e 152
STORE ..t i it et e e 153
SURFACE RENDERINGiuiitiiiiiiiiiiiiiiiiinennenn 154
TEXT SIZE . ..ottt i ittt ettt e e 159
TRANSLATE ... i i i i it it e 161
VARIABLE ... i it it c e 163
VECTOR_LIST ..o i i i e 164
VIEWPORT ... i i i i i 169
WINDOW L it e 172
WITH PATTERN ... i i 174
WRITEBACK .. i i i i i 176
XFORM i e 178

Appendix A
PS 390 Commands by Categorycoiiiiiiennnnnn.. 180

Appendix B
PS 390 Command Syntaxcvuitiiintiiiiiiineennnenns 185

Appendix C
ASCII Commands
and Corresponding GSRsot 197

ASCII Character Code Setoii ittt ittt ite i et 205

iii

Section RM1
Command Summary

This section is a PS 390 command language reference for graphics programmers
who are familiar with the basic operation of the PS 390. It contains a summary of
the PS 390 commands. The commands are ordered alphabetically on a letter-by-
letter basis. The following information, where relevant, is given for each com-
mand:

e Name
* Category and subcategory
e Syntax
e Description
m e Parameters
e Defaults
* Notes
e Display structure node created
e Inputs for updating node
e Notes on inputs
e Associated functions

» Examples

Appendix A contains a summary of the commands grouped into categories. Ap-
pendix B contains an alphabetical listing of the command syntax. Appendix C
contains a list of the commands and the corresponding GSRs.

This section also contains the following system commands.

The SETUP PASSWORD, CONFIGURE, and FINISH CONFIGURATION com-
mands allow you to enter and exit the configure mode.

E&S reserves the right to change the content of the CONFIG.DAT file and the
ﬁ implementation of the CONFIG.DAT file without prior notice. Use of any named

Command Summary RMI-1

entities or networks instanced in configure mode that have names identical to any u
names found in the CONFIG.DAT file will result in unpredictable system behavior.
E&S will not use any names that are preceded with the three characters CM_.

The SHOW INTERFACE and SETUP INTERFACE commands are used to show
or change the default values on ports 1 through S on the PS 390 control unit.

The SET PRIORITY command sets the execution priority of a function.

Since some commands require the ASCII decimal equivalent of characters in their
parameters, an ASCII chart with decimal values is included after the appendices.

u

RM1-2 Reference Materials

(ﬂn‘

APPLIED TO/THEN

TYPE
STRUCTURE — Explicit Referencing

FORMAT

name :
name :

operation_command [APPLied to namel];
operation_command [THEN namel];

DESCRIPTION

Associates a command to the structure which is to be affected by the com-
mand.

PARAMETERS

operation_command — A command that creates an operation node in a
display structure.

namel — Structure that will be affected by the command.

NOTE

APPLied to and THEN are synonyms. The terms are completely inter-
changeable.

DISPLAY STRUCTURE NODE CREATED

The command node with a pointer to the structure namel.

EXAMPLE

A:= ROTate in X 45 THEN B;
B:= VECtor_list n=5§ 1,1 -1,1 -1,-1 1,-1 1,1;

Command Summary

RMI-3

RM1-4

TYPE

ATTRIBUTES

RENDERING — Data Structuring

FORMAT

name := ATTRIBUTES attributes [AND attributes];

DESCRIPTION

Specifies the various characteristics of polygons used in the creation of
shaded renderings. For a detailed explanation of defining and interacting
with shaded images, consult Section GT13 Polygonal Rendering.

PARAMETERS

attributes — The attributes of a polygon are defined as follows:

[COLOR h[,s[,i]]] [DIFFUSE d] [SPECULAR s] [OPAQUE t]

where

h — is a real number specifying the hue in degrees around the
color wheel. Pure blue is 0 and 360, pure red is 120, and pure
green is 240.

s — is a real number specifying saturation. No saturation (gray) is
0 and full saturation (full toned colors) is 1.

i — is a real number specifying intensity. No intensity (black) is 0,
full intensity (white) is 1.

d — is a real number from 0 to 1 specifying the proportion of color
contributed by diffuse reflection versus that contributed by
specular reflection. Increasing d makes the surface more matte.
Decreasing d makes it more shiny.

s — is an integer from 0 to 255 which adjusts the concentration of
specular highlights. The more metallic an object is, the more con-
centrated the specular highlights.

t — is a real number from 0 to 1 specifying the transparency of the
polygon, with 1 being fully opaque and 0 being fully transparent
(invisible).

Reference Materials

W

W

m

ATTRIBUTES
(continued)

DEFAULTS

If no color is specified, the default is white (s = 0, i = 1). If saturation and
intensity are not specified, they default to 1. If only hue and saturation are
specified, intensity defaults to 1. If no diffuse attribute is given, d defaults
to .75. If no specular attribute is given, s defaults to 4. If no opaque attrib-
ute is given, the default is 1 (fully opaque).

NOTES

1. Polygon-attribute nodes are created in mass memory but are not part of
a display structure. The attributes specified in an ATTRIBUTES com-
mand are assigned to polygons which include a WITH ATTRIBUTES
clause. The attributes specified in a WITH ATTRIBUTES clause of a
POLYGON command apply to all subsequent polygons until superseded
by another WITH ATTRIBUTES clause. If no WITH ATTRIBUTES op-
tion is given for a polygon node, default attributes are assumed. The
default attributes are 0,0,1 for COLOR, 0.75 for DIFFUSE, 4 for
SPECULAR, and 1 for OPAQUE.

2. The various attributes may be changed from a function network via in-
puts to an attribute node, but the changes have no effect until a new
rendering is created.

3. A second set of attributes may be given after the word AND in the
ATTRIBUTES command. These attributes apply to the obverse side of
the polygon(s) concerned. In other words, the two sides of an object may
have different attributes. The attributes defined in the first attributes
pertain to front-facing polygons. Those in the AND attributes clause per-
tain to back-facing polygons.

DISPLAY STRUCTURE NODE CREATED

Polygon-ATTRIBUTES definition node. This node resides in mass memory,
but is not included in a display structure.

Command Summary

RMI-5

ATTRIBUTES \/
(continued)

INPUTS FOR UPDATING NODE

name

Real, 2D, 3D —>»{ <1> Updates hue, saturation, intensity
Real ———>»| <2> Updates diffuse value
Integer ——>»] <3> Updates specular value
Real —» <4> Updates opaque value

. Undefined

Real, 2D, 3D —»] <11> Updates hue, saturation, intensity
Real ———» <12> Updates diffuse value
Integer ——»] <13> Updates specular value
Real ———»{_<14> Updates opaque value

Polygon Attributes u

U390266

NOTES ON INPUTS

1. Inputs <1> and <11> accept a real number as hue, a 2D vector as hue
and saturation, and a 3D vector as hue, saturation and intensity.

2. Values sent to inputs <1>, <2>, and <3> specify the color and attrib-
utes for shading the front of the polygon(s) or for both sides if no
obverse attributes are given. (Values sent to inputs <11>, <12>, and
<13> specify the color and attributes for shading the obverse side of
the polygon.)

3. Inputs <4> and <14> accept a real number to update the opaque
value of the polygon’s attributes.

4. If anything other than a 3D vector is sent to input <1> or <11>, de-
fault values for the other variables are assumed.

RM1I1-6 Reference Materials

ﬁ BEGIN...END

TYPE
GENERAL — Command Control and Status

FORMAT

| BEGIN
command;
command ;

command;
END;

DESCRIPTION

Defines a “batch” of commands which take effect in a single screen update,
ﬁ so that they appear to be executed simultaneously.

PARAMETER

command — Any PS 390 command.

NOTE

Although any command may be used inside a BEGIN...END structure,
only commands that create, display, or delete objects will happen “si-
multaneously.”

EXAMPLE

BEGIN

DISPlay A;

A:= VECtor_list N=51,1 -1,1 -1,-1 1,-1 1,1;
DISPlay B;

B:= VECtor_list N=4 0,0 1,0 1,1 0,0;

END;

(‘!‘ {A and B will be displayed simultaneously.}

Command Summary RM1-7

BEGIN_FONT...END_FONT \/

TYPE
MODELING — Character Font

FORMAT

name := BEGIN_Font
[C[O]: N=n {itemized 2D vectors};]

[C[i]: N=n {itemized 2D vectors};]

[C[127]: N=n {itemized 2D vectors};]
END_Font ;

DESCRIPTION

Defines alternative character fonts, using itemized 2D vector lists to de- u
scribe each character. Up to 128 PS 390 character codes may be defined for
each font.

PARAMETERS

n — Number of vectors in 2D vector list.

i — Decimal ASCII code to be defined. The square brackets around the
ASCII number from 0 to 127 are required.

{itemized 2D vectors} — Vectors making up the ASCII character being de-
fined (P x1, y1, L x2, y2, etc.).

NOTES

1. Not all ASCII codes need to be defined for a font. Nothing is output for
an undefined character.

2. There is no restriction on the range of values for the 2D vector making
up a character, but for correct spacing and orientation to adjacent char-
acters, the range in X and Y should be kept between 0 and 1.

v

RM1I-8 Reference Materials

} ﬁ BEGIN_FONT...END_FONT
| (continued)
|

DISPLAY STRUCTURE NODE CREATED

Alternate-character-font definition node. This node resides in mass memory
but is not part of a display structure. To specify an alternate font, the char-
acter FONT command is used. This creates a character FONT node in a
display structure which points to the appropriate alternate font definition.

EXAMPLE
A := BEGIN_Font
C[65]: N=5 PO, 0L .9,0L .9,.9L 0,.9L 0,0;
END_Font;
B := BEGIN_Structure

character FONT A;
CHARacters “ABA”’;
END_Structure;
DISPlay B;

{Two squares - the new A - will appear right next to each other with

the lower left corner of the first at the origin. The letter B is not
defined in character FONT A, so nothing is DISPlayed for B. Note that
this example creates a special symbol (a square) rather then defining
an alternate character font.}

™

Command Summary RM1I-9

BEGIN_S...END_S W/

TYPE
STRUCTURE — Implicit Referencing

FORMAT

name := BEGIN_Structure
[namel:=] nameable_command;

[namen:=] nameable command;
END_Structure;

DESCRIPTION

Groups a set of viewing and/or modeling commands so that each element
does not need to be explicitly named and APPLied to the next structure in
line. This does not, however, prevent naming nested commands directly or
explicitly applying a command to another structure via APPLied to. u

PARAMETERS

namel..namen — Optional names for individual commands inside the BE-
GIN_S...END_S, allowing reference to these specific commands from else-
where (see Note 3). The PS 390 prefixes these names with the name of the
outer structure and a period (.). So, for example, the command defined as
namel in the structure is referenced as name.namel.

nameable_command — Nameable commands are those that can be pre-

”

fixed with “name :=", with the following exceptions:

e COMmand STATus can also be used.
¢ Intrinsic functions cannot be instanced.

e name := NIL; cannot be used.

NOTES

1. Essentially, any data structuring command except a function instancing |
command can be used.

RM1-10 Reference Materials

ﬁ BEGIN_S...END S
(continued)

2. A non-data command inside a BEGIN_S...END S is applied to every
node that follows in the structure unless it is explicitly APPLied to an-
other structure, in which case it only affects the structure APPLied to
(see examples).

3. If a command inside the structure is to be modified later by a function
network or from the host, it must be named so that it can be referenced.
Its referencing name is the name with all prefixes (e.g., name.namel).

DISPLAY STRUCTURE NODE CREATED

The various nodes created by the nameable commands linked together as
specified. The top node of this structure is name and is an instance node.

INPUTS FOR UPDATING NODE

m The nodes that may be updated are created by those nameable commands
that are explicitly named (see note 3). For inputs, refer to the individual
command descriptions.

EXAMPLES

A:= BEGIN_Structure
TRANslate by 2,3;
BEGIN_Structure
ROTate 30;
SCALE .5 THEN B:
END_Structure;
VECtor_list ... ;

Rot:= ROTate in X 45 THEN C;
ROTate in Y 90;
character FONT D THEN E;

Char:= CHARacters “ABC”;

Dat:= VECtor_list ... ;
END- Structure;

{To modify the X angle of rotation, a 3x3 matrix would be sent to
<1>A.rot. You could not modify the Y rotation angle since it is not

ﬂ explicitly named.}

Command Summary RMI-11

RM1-12

BEGIN_S...END_S
(continued)

{An equivalent display structure could be created without using

BEGIN_Structure ... END_Structure, for example:}
A:= INSTance of F;

F:= TRANslate by 2,3 THEN G;
G:= INSTance of H,I,A.Rot,J
H:= INSTance of K;

I:= VECtor_list ...;

A .Rot:= ROTate in X 45 THEN C:
J:= ROTate in X 90 THEN L;

K:= ROTate in Y 30 THEN M;

L:= INSTance of N,A.Char,A.Dat;
M:= SCALE .5 THEN B;

N:= character FONT D THEN E;
A.Char:= CHARacters “ABC’;
A.Dat:= VECtor_list ... ;

Reference Materials

W

W

BSPLINE

TYPE
MODELING — Primitives

FORMAT

name := BSpline ORDER= k
[OPEN/CLOSED] [NONPERIodic/PERIodic] [N= n]
[VERTICES =] x1,yl, [z1]
x2,y2, [22]

Xn,yn, [zn]

[KNOTS = t1,t2,...,tj]
CHORDS = q;
DESCRIPTION

Evaluates a B-spline curve, allowing the parametric description of the curve
form without the need to specify or transfer the coordinates of each con-
stituent vector.

The B-spline curve C is defined as:

n

C@t) = 2 piNi,k(t)
i=1

pi = ith vertex of the defining polygon of the B-spline

and

Ni,k = ith B-spline blending function of order k.

The parameter t of the curve and blending functions is defined over a se-
quence of knot intervals t1,t2,...,tn+k. Different knot sequences define dif-
ferent types of B-splines.

Command Summary RMI-13

BSPLINE
(continued)

Two common knot sequences are uniform nonperiodic and uniform peri-
odic. A uniform nonperiodic B-spline is defined by the knot sequence:
0 (for j < k)
ti = J-k (for k < j < n)
n-k+1 (for n < jJ < n+k)

A uniform periodic B-spline is defined by the knot sequence:

tj =J (for j < n+k)
The blending functions can be defined recursively as

Ni,1(t) 1 (if ti < t < ti+l), O otherwise

Ni,k(t) (t—-ti)Ni,k-1(t) + (ti+k-t)Ni+l,k-1(t)
ti+k-1-ti ti+k-ti+l

The curve is evaluated at the points:

t= (1 -1i)tk +itj -k +1
q

for i=0,1,2,...,q.

PARAMETERS

RMI-14

k — The order of the curve (0 < k).
n — The number of vertices (used to anticipate storage requirements).

x1,yl,z1...xn,yn,zn — The vertices of the defining polygon of the curve. The
Z component is optional.

t1,t2,...,tj — User-specified knot sequence. Because closed B-splines are
evaluated as open B-splines with duplicate vertices, the number of knots
required is:

n+k for open B-splines

n+k+1 for closed nonperiodic B-splines

n+2k-1 for closed periodic B-splines

The knots must also be nondecreasing.

q — The number of vectors to be created (0 < q < 32767).

Reference Materials

W

o

ﬁ BSPLINE
(continued)

NOTES

1. OPEN or CLOSED is an option which describes the B-spline defining
polygon. The default is OPEN. (Note that CLOSED merely describes the
polygon, eliminating repetition of the last vertex.)

2. If no knot sequence is given, NONPERIodic or PERIodic is an option
which specifies that the nonperiodic or periodic knot sequence be used
as the knot sequence. NONPERIodic is the default for open B-splines;
PERIodic is the default for closed B-splines.

3. At least k vertices must be given, or the order k will be reduced accord-
ingly.

DISPLAY STRUCTURE NODE CREATED

INPUTS FOR UPDATING NODE

name

ﬂ B-spline vector-list data node.
\

\ Integer ——>»{ <1> Updates chords
|

Real ——»| <i> Updates knots

2D, 3D, 4D vector ——»| <i> Updates vertices

‘ B-spline
| U390268

NOTES ON INPUTS

1. The Z value of a vector defaults to 0 when a 2D vector is sent to a
3D B-spline.

2. W and Z values will be ignored when a 3D or 4D vector is sent to a

ﬂ 2D B-spline.

Command Summary

RMI-15

CANCEL XFORM \o/

TYPE
MODELING — Transformed Data Attributes

FORMAT

name := CANCEL XFORM [APPLied to namel];
DESCRIPTION

This command stops transformed data processing of subsequent nodes in a
display structure.

PARAMETER

namel — The node below which to stop transformed data processing

DISPLAY STRUCTURE NODE CREATED
CANCEL XFORM operation node

W,

RMI-16 Reference Materials

ﬂ CHARACTER FONT

TYPE
MODELING — Character Font

FORMAT

name := character FONT font name [APPLied to namel];

DESCRIPTION

Establishes a user-defined alternate character font as the working font. This
font must have been previously defined with the BEGIN Font ... END Font
command. If the font is not defined, the current font is still used.

PARAMETERS
ﬁ font_name — Name of the desired font.

namel — Structure to use the character font.

DISPLAY STRUCTURE NODE CREATED

Character-font pointer node.

EXAMPLE
New_Font := BEGIN_Font
{character definitions}
END_Font

A := BEGIN_Structure
CHARacters “HERE’; {this uses standard font}
character FONT New_Font;
CHARacters 0,-2 “HERE’; {this uses the font New_Font}
END_Structure;
DISPlay A;

Command Summary RMI-17

CHARACTER ROTATE \/

TYPE
MODELING — Character Transformations

FORMAT

name := CHARacter ROTate angle [APPLied to namel];

DESCRIPTION

Rotates characters. Creates a 2x2 rotation matrix to be applied to the speci-
fied characters (in namel).

PARAMETER

angle — Z-rotation angle in degrees (unless other units are specified). When
you are looking along the positive direction of the Z axis, positive angle
values produce counterclockwise rotations.

DISPLAY STRUCTURE NODE CREATED

2x2-matrix operation node.

INPUTS FOR UPDATING NODE

2x2 matrix <1> Changes matrix value

2x2 matrix

U390269

NOTE ON INPUTS
Any 2x2 matrix is legal. ()

RMI1-18 Reference Materials

() CHARACTER ROTATE
(continued)

ASSOCIATED FUNCTIONS
F:-MATRIX?2, F:CROTATE, F:CSCALE

EXAMPLE

A:
B:

CHARacter ROTate 90 THEN B;
CHARacters “Vertical’;

{If A were DISPlayed, the text ‘Vertical’ would start at the origin and
read up the Y axis.}

)

Command Summary RM1-19

CHARACTERS

TYPE
MODELING — Primitives

FORMAT

name := CHARacters [X,y[,z]][STEP dx,dy] ‘string’;

DESCRIPTION

Displays character strings and (optionally) specifies their location and
placement.

PARAMETERS

x,¥,z — Location in the data space of the beginning of the character string
(i.e., the lower left corner of a box enclosing the first character).

dx,dy — Spacing between the characters, in character-size units. The width
of the character is one dx unit; the height is one dy unit.

string — Text string to be displayed (up to 240 characters).

DEFAULT

If string is the only parameter specified, the character string will start at
0,0,0 and dx,dy will be 1,0 (i.e., regular horizontal spacing).

DISPLAY STRUCTURE NODE CREATED
CHARACTERS data node.

RM1I1-20 Reference Materials

)

CHARACTERS
(continued)

INPUTS FOR UPDATING NODE

name

Character ———»
2D, 3D, 4D vector ——»
2D, 3D, 4D vector ——»

Integer —>
Integer ————»
String ——>
String ——>

String ————>

<last> Changes the last character

<position> Changes the starting position
<step> Changes the stepping

<clear> Clears the current string

<delete> Deletes n characters (rom the end)
<append> Appends to end of current string

<i> Replaces current string with new string,
starting at the i-th character

<substitute> Replaces entire current string
with new string

CHARACTERS

EXAMPLE

CHARacters “HERE’;
CHARacters 3,-3 STEP .5,1

U390270

“HERE” ;

CHARacters STEP -1,0 “HERE’;

Command Summary

RMI1-21

CHARACTER SCALE

TYPE
MODELING — Character Transformations

FORMAT

name := CHARacter SCAle s [APPLied to namel];
name := CHARacter SCAle sx,sy [APPLied to namel];

DESCRIPTION

Creates a uniform (s) or nonuniform (sx,sy) 2x2 scaling matrix to scale the
specified characters.

PARAMETERS
s — Scaling factor for both axes.
sx,sy — Separate axial scaling factors.
namel — Structure whose characters are to be scaled (vector lists in the

structure are not affected).

DISPLAY STRUCTURE NODE CREATED

2x2-matrix operation node.

INPUTS FOR UPDATING NODE

2x2 matrix <1> Changes matrix value

2x2 matrix

U3980269

NOTE ON INPUTS
Any 2x2 matrix is legal.

RM1-22 Reférence Materials

ﬁ CHARACTER SCALE
(continued)

ASSOCIATED FUNCTIONS
F:MATRIX2, F:CROTATE, F:CSCALE

EXAMPLE
A:= CHARacter SCAle .5 THEN B;
B:= CHARacters “Half scale”;

ﬂ

Command Summary RM1-23

COMMAND STATUS W/

TYPE
GENERAL — Command and Control Status

FORMAT

COMmand STATus;

DESCRIPTION

Used with BEGIN...END and BEGIN_STRUCTURE...END STRUCTURE
commands to report the current level to which these structures are nested.

NOTES

1. If a syntactically correct command produces a parser syntax error, there
may be unENDed BEGINs or BEGIN_Structures causing the PS 390 to ,
expect one or more ENDs or END_Structures. By sending COMmand u
STATus, you can see if this is the case.

2. The 'RESET command can be used to get out of unended BEGINSs or
BEGIN_Structures when a problem occurs (refer to !RESET).

RM1-24 Reference Materials

ﬂ CONFIGURE

TYPE
GENERAL — Command and Control Status

FORMAT

CONFIGURE password;

DESCRIPTION

This command allows you to enter the Configure mode (privileged mode).
The password can be defined in the SITE.DAT file using the SETUP PASS-
WORD command. If no password has been set up using SETUP PASS-
WORD, any string may be used as a password.

PARAMETER
‘ ’ password — the established string

~

Command Summary RM1-25

CONNECT W/

TYPE
FUNCTION — Immediate Action

FORMAT

CONNect namel<i>:<j>name?2;

DESCRIPTION

Connects function instance namel’s output <i> to input <j> of function in-
stance or display structure node name2.

PARAMETERS

namel — Function instance to be connected from.

<i> — Output number of function instance namel to be connected. Refer to w)
Sections RM2 Intrinsic Functions and RM3 Initial Function Instances for spe-
cific functions and acceptable values.

name2 — Function instance or display structure node to be connected to.

<j> — Input number or input name (in the case of some display structure
nodes) of name?2 to be connected. Refer to Sections RM2 and RM3 for spe-
cific functions and acceptable values.

u

RM1I-26 Reference Materials

COPY

TYPE
MODELING — Primitives

FORMAT

name := COPY namel ([START=] i [,] [COUNT=] n;

DESCRIPTION

Creates a VECtor_list node containing a group of consecutive vectors cop-
ied from another vector list (name1) or a LABELS node containing a group
of consecutive labels from an existing block (namel).

PARAMETERS
name — Name of new VECtor_list or LABELS node.

namel — Name of the node being copied from.
i — First vector or index of first label in namel to be copied.

n — Last vector or count of labels in namel to be copied.

NOTE

The keywords START= and COUNT= are optional, but if one is used, both
must be used.

DISPLAY STRUCTURE NODE CREATED
VECtor_list or LABELS data node.

INPUTS FOR UPDATING NODE
(Refer to VECtor_list or LABELS command).

Command Summary

RM1-27

COPY \W/

(continued)

EXAMPLE

>
[

VECtor_list n=5 .5,.5 -.5,.5 -.5,-.5 .5,-.5 .5,.5;
= COPY A 1 3;

o
|

{This would be the same as saying:
B := VECtor_list n=3 .5,.5 -.5,.5 -.5,-.5;}

C := COPY A START=2 , COUNT=2;

{This would be the same as saying:
C := VECtor_list n=2 -.5,.5 -.5,-.5;}

W/

RM1-28 Reference Materials

ﬂ

DECREMENT LEVEL_OF_DETAIL

TYPE
STRUCTURE — Attributes

FORMAT

name := DECrement LEVel of detail [APPLied to namel];

DESCRIPTION

“Decrements” (decreases) the current level of detail by 1 when name is
being traversed.

PARAMETER

namel — Structure to be affected by the decreased level of detail.

NOTE

There is really only one global level of detail; this command only changes
the value of the level of detail while the named node and nodes below it in a
display structure are being traversed.

DISPLAY STRUCTURE NODE CREATED

DECrement LEVel of detail operation node.

EXAMPLE

A:
B:

SET LEVel of detail TO 5 THEN B;
BEGIN_Structure

IF LEVel of_ detail 4 THEN C;
IF LEVel of detail = 5 THEN D;
DECrement LEVel of detail;

IF LEVel_of_detail = 4 THEN E;
IF LEVel_of_detail 5 THEN F;
END_Structure;

{If A were DISPlayed, structures D and E would also be displayed.}

Command Summary RM1-29

DELETE U

TYPE
GENERAL — Data Structuring and Display

FORMAT

DELete name[,namel ... namen];
DELete any_ string¥;

DESCRIPTION

Sets name to nil, then FORGETSs name. The wild card delete will set to nil
any name beginning with the string that is entered.

PARAMETERS

name — Any previously defined name.

any_string — A character string which is part of any name. ‘ i

NOTES

1. After a DELete name command is issued, all function instances and
structures referring to name will no longer include the data formerly
associated with name.

2. After a DELete name command is issued, further definitions of or refer-
ences to name will not change structures which referred to name before
the DELete.

3. Compare with FORGET, which eliminates name while preserving ob-
jects which it formerly referred to.

4. If the wild card delete is used on an object being displayed, the object
must be removed from display before entering the wild card delete com-
mand. Failure to do this will result in a small amount of memory being
used for each object still displayed.

5. If a name is created from the host, it must be deleted via the host line.
Similarly, if a name is created locally using the keyboard, the DELete
command must be entered locally.

W/

RM1-30 Reference Materials

ﬂ DISCONNECT

TYPE
FUNCTION — Immediate Action

FORMAT

DISCONNect namel([<i>]:option;
DISCONNect namel<i>:<j>name2;

DESCRIPTION

Disconnects one or all of the outputs of function instance namel from one
or all inputs that it has previously been connected to.

PARAMETERS

ﬂ namel — Function instance to disconnect output(s) from.

<i> — The output number of namel to disconnect. If this is not specified, all
of namel’s outputs are implied and the option parameter must be ALL (this
would disconnect all of namel’s outputs from everything they had previ-
ously been connected to).

ALL — Disconnect the specified output of namel (or all outputs of namel)
from all function instances or display structure nodes that it was previously
connected to.

<j> — Input number or input name of name2 to be disconnected from
namel.

name2 — Function instance or named node previously connected to namel.

~

Command Summary RM1-31

DISPLAY

TYPE
GENERAL — Data Structuring and Display

FORMAT

DISPlay name;

DESCRIPTION

Displays a structure. Adds name to the display processor’s display list.

PARAMETER

name — Any structure name.

RM1-32 Reference Materials

W/

ERASE PATTERN FROM

TYPE
MODELING — Primitives

FORMAT

ERASE PATTERN FROM name;

DESCRIPTION

An immediate-action command which erases a pattern from a vector list
(name).

PARAMETER

name — The vector list containing the pattern you want to erase.

ﬂ

(@)

Command Summary RM1-33

EYE BACK U

TYPE
VIEWING — Windowing Transformations

FORMAT

name := EYE BACK z [optionl] [option2] from SCREEN area w WIDE
[FRONT boundary = zmin BACK boundary = zmax]
[APPLied to namel];

DESCRIPTION

Specifies a viewing pyramid with the eye at the apex and the frustum of the
pyramid (bounded by zmin and zmax) enclosing a portion of the data space
to be displayed in perspective projection. Unlike the Field Of View com-
mand, the EYE BACK command can create a skew (nonright) viewing pyra-
mid (compare Field Of View and WINDOW).

PARAMETERS W/

z — The perpendicular distance of the eye from the plane of the viewport.

optionl — RIGHT X or LEFT X, where X is the distance of the eye right or
left of the viewport center, respectively, in relative room coordinates.

option2 — UP Y or DOWN Y, where Y is the distance of the eye up or
down from the viewport center, respectively, in relative room coordinates.

w — Width of the viewport in relative room coordinates.

zmin,zmax — Front and back boundaries of the frustum of the viewing
pyramid. (Refer to note 3 of the LOOK command for properly specifying
zmin and zmax.)

namel — Structure to which the EYE BACK viewing area is applied.

DEFAULT

None. If no EYE BACK is specified, the default WINDOW is assumed (par-
allel projection X = -1:1 Y = -1:1 FRONT = 10E-15 BACK = 10E+15).
Refer to the WINDOW command. ‘)

RM1-34 Reference Materials

ﬂ EYE BACK
(continued)

NOTES

1. Notice that EYE BACK always creates square side boundaries because

the viewport width (w) is also taken to be the height; the aspect ratio is
always 1.

2. If X and Y are not specified (i.e. 0), then a right rectangle viewing
pyramid is created (compare Field_Of View).

DISPLAY STRUCTURE NODE CREATED

4x4-matrix operation node.

INPUT FOR UPDATING NODE

<1> Changes matrix value

ﬁ 4x4 matrix

4x4 matrix

ASSOCIATED FUNCTIONS
F:FOV, F:WINDOW, F:MATRIX4

EXAMPLE

A:= BEGIN_Structure
EYE BACK 24 LEFT 1.5 from SCREEN area 10 WIDE
FRONT boundary = 12
BACK boundary = 14;
LOOK AT 0,0,0 FROM 5,6.63,-10;
INSTance of sphere;
END_Structure;

{If sphere is defined with a radius of 1 about the origin, A would be a
view of the sphere from 5, 6.63, —-10 fully depth cued. Note that the
¢!.’ FROM to AT distance in the LOOK AT command is 13.}

Command Summary RM1-35

FIELD OF_VIEW \J/

TYPE
VIEWING — Windowing Transformations

FORMAT

name := Field Of View angle
[FRONT boundary = zmin BACK boundary = zmax]
[APPLied to namell];

DESCRIPTION

Specifies a right-rectangular viewing pyramid with the eye at the apex and
the frustum of the pyramid (bounded by zmin and zmax) enclosing a por-
tion of the data space to be displayed in perspective projection (compare
EYE and WINDOW).

PARAMETERS

angle — Angle of view from the eye (i.e., the FROM point established in the U
LOOK command) in X and Y. (Refer to note 1 below.)

zmin,zmax — Front and back boundaries of the frustum of the viewing
pyramid. (Refer to note 3 of the LOOK command for properly specifying
zmin and zmax.)

namel — Structure to which the FOV is applied.

DEFAULT

None. If no Field Of View is specified, the default WINDOW is assumed
instead (parallel projection X = -1:1 Y = -1:1 FRONT = 10E-15 BACK =
10E+15). Refer to the EYE command.

NOTES

1. Notice that FOV always creates square side boundaries because angle
defines both the X and the Y angles; the aspect ratio is always 1.

2. Refer also to notes for the WINDOW command.

w/

RM1-36 Reference Materials

ﬁ FIELD_OF_VIEW
(continued)

DISPLAY STRUCTURE NODE CREATED

4x4-matrix operation node.

INPUT FOR UPDATING NODE

4x4 matrix <1> Changes matrix value

4x4 matrix

‘ . U390271

ASSOCIATED FUNCTIONS
F:FOV, F:-WINDOW, F:MATRIX4

EXAMPLE

BEGIN_Structure
Field_Of_View 30
FRONT boundary 12
BACK boundary 14;
LOOK AT 0,0,0 FROM 5,6.63,-10;
INSTance of Sphere;
END_Structure;

{If Sphere is defined with a radius of 1 about the origin, A would be a
view of the Sphere from 5, 6.63, -10 fully depth cued. Note that the
FROM to AT distance in the LOOK command is 13.}

-

Command Summary RM1-37

FINISH CONFIGURATION W

TYPE
GENERAL — Command and Control Status

FORMAT

FINISH CONFIGURATION;
DESCRIPTION
This command takes the PS 390 out of Configure mode and must be used at

the end of any session that has modified any part of the CONFIG.DAT file
or accessed any system-level functions.

o

RM1-38 Reference Materials

ﬁ FOLLOW WITH

TYPE
STRUCTURE — Modifying

FORMAT

FOLLOW name WITH option;

DESCRIPTION

Follows a named operation node (name) with another operation node.

PARAMETERS

name — A named transformation, attribute, or conditional reference node
to be followed with one of the options.

option —

1. A node created by a transformation command (SCALE by,
ROTate, etc).

2. A node created by an attribute-setting command (SET
LEVel_of_detail, etc.).

3. A node created by a conditional-referencing command (IF
LEVel of detail, etc).
NOTE

The structure name does not change association, unlike a named structure
in a PREFIX WITH command.

DISPLAY STRUCTURE NODE CREATED

An operation node corresponding to the option phrase of the command.
This node points to whatever node name pointed to previously. The node is

ﬂ also pointed to by name.

Command Summary RM1-39

FOLLOW WITH
(continued)

EXAMPLE

Shape := BEGIN_Structure
Tran := TRANslate by 20,20;
Rotate := ROTate in X 90;
Triangle := VECtor_list n=4 0,0 0,3 3,0 0,0;
END_Structure;
FOLLOW Shape.Rot WITH SCALE by 2;

{This will alter the structure Shape so that Shape.Triangle is first
scaled, then rotated, then translated.}

RM1-40 Reference Materials

U

m FORGET (Structures)

TYPE
GENERAL — Data Structuring and Display

FORMAT

FORget name;

DESCRIPTION

Removes name from the display (if name is being displayed), and removes
name from the Name dictionary.

PARAMETER

name — Any previously defined structure name.

NOTES

1. After a FORget name command is issued for a structure, all function
instances and structures referring to name will continue to refer to the
data formerly associated with name, even though name is no longer
linked with the data.

2. After a FORget name command is issued for a structure, further defini-
tions of, or references to, name will not change structures which re-
ferred to name before the FORget command.

3. Compare with DELete, which affects not only name but the content of
name also.

Command Summary RM1-41

TYPE
GENERAL — Data Structuring and Display

FORMAT

FORget (unit_name);

DESCRIPTION

Removes a unit definition from memory.

PARAMETER

unit_name — Any previously assigned unit name.

NOTE

FORGET (Units)

Note that FORget requires unit names to be enclosed in parentheses (unlike

structure names).

RM1-42

Reference Materials

(Function Instancing)

TYPE
STRUCTURE — Explicit Referencing

FORMAT

NAME := F:function_name;

DESCRIPTION

Creates an instance of a PS 390 intrinsic function.

PARAMETERS

name — Any combination of alphanumeric characters up to 240. Must be-
gin with an alpha character and can include § or _.

function_name — Any PS 390 intrinsic function name.

EXAMPLE

Addl := F:ADD;
Add2 := F:ADD;

{This creates two different instances of the same Intrinsic Function
F:ADD. }

Command Summary

RM1-43

GIVE_UP_CPU o/

TYPE
GENERAL — Command and Control Status

FORMAT

GIVE_UP_CPU;

DESCRIPTION

This command causes the command interpreter to terminate execution tem-
porarily and allow other functions to be activated.

NOTE

To ensure that other functions are activated, the GIVE UP_CPU

command should be sent four times after sending a value to ;
F:ALLOW_VECNORM. U

u

RM1-44 Reference Materials

™ IF CONDITIONAL_BIT

TYPE
STRUCTURE — Conditional Referencing

FORMAT

name := IF conditional BIT n is state [THEN namel];

DESCRIPTION

Refers to a structure if an attribute bit has a specified setting (ON or OFF).
(Refer to SET conditional BIT command.)

PARAMETERS

n — Integer from 0 to 14 indicating which bit to test.
ﬂ state — The setting to be tested (ON or OFF).

namel — Structure to be conditionally referenced.

DEFAULT

If bit n was not manipulated higher in the display structure, it will default to
OFF.

DISPLAY STRUCTURE NODE CREATED

IF conditional BIT operation node (conditional connection between two
structures).

Command Summary RM1-45

IF CONDITIONAL_BIT U

(continued)
INPUT FOR UPDATING NODE
Integer <1> Changes bit number
IF CONDITIONAL_BIT
U390272
NOTE ON INPUT
Input <1> accepts an integer (between 0 and 14) to change the bit number to u

the integer value.

EXAMPLE
A:= SET conditional BIT 3 ON THEN B;
B:= IF conditional BIT 3 is ON THEN C;
C:= VECtor_list ... ;

{Initially when A is DISPlayed, C would also be displayed, indirectly.
If a function network were connected to A to change conditional bit 3
to OFF, then the test in B would fail and C would not be displayed.}

-/

RM1-46 Reference Materials

; ﬂ IF LEVEL_OF_DETAIL

TYPE
STRUCTURE — Conditional Referencing

FORMAT

name := IF LEVel of_detail relationship n [THEN namel];

DESCRIPTION

Refers to a structure if the level of detail attribute has a specified relation-
ship to a given number. Tests the relation between the current level of detail
and the number n (see SET LEVel of detail command).

PARAMETERS
ﬂ relationship — The relationship to be tested (<, <=, =, <>, >=, >).

n — Integer from 0 to 32767 indicating the number to compare the current
level of detail to.

namel — Structure to be conditionally referenced.

DEFAULT

If the level of detail is not manipulated higher in the structure by a SET
LEVel_of_detail node, it will default to 0.

DISPLAY STRUCTURE NODE CREATED

IF LEVel_of detail operation node (conditional connection between two
structures).

Command Summary RM1-47

IF LEVEL_OF DETAIL o/

(continued)
INPUT FOR UPDATING NODE
Integer <1> Changes level
of detail
IF LEVEL_OF_DETAI
U390273
NOTE ON INPUT
Input <1> accepts an integer (from 0 to 32767) to change the level of detail U

to the integer value.

EXAMPLE
A:= SET LEVel_of_detail to 3 THEN B;
B:= IF LEVel_of_detail = 3 THEN C;
C:= VECtor_list ... ;

{Initially when A is DISPlayed, C would also be displayed, indirectly.
If a function network were connected to A to change the level of detail
to something other than 3, then the test in B would fail and C would
not be displayed.}

U

RM1-48 Reference Materials

TYPE
STRUCTURE — Conditional Referencing

FORMAT

DESCRIPTION

Refers to a structure if the PHASE attribute is in a specified state (ON or
OFF). (Refer to SET RATE and SET RATE EXTernal commands.)

PARAMETERS
ﬂ state — Phase setting to be tested (ON or OFF).

namel — Structure to be conditionally referenced.

name := IF PHASE is state THEN [namel];
\

|

|

DEFAULT

If there is no SET RATE node or SET RATE EXTernal node higher in the
display structure, the PHASE attribute will always be OFF.

DISPLAY STRUCTURE NODE CREATED

IF PHASE operation node (conditional connection between two structures).

EXAMPLE
A:= SET RATE 10 15 THEN B;
B:= IF PHASE is ON THEN C;
| C:= VECtor_list ... ;

‘!.’ not DISPlayed for 15 refresh frames repetitively.}

|
Command Summary

{If A is DISPlayed, C will also be displayed for 10 refresh frames and

IF PHASE

RM1-49

ILLUMINATION

TYPE
RENDERING — Data Structuring

FORMAT

name := ILLUMINATION x,y,z [COLOR h [,s [,i]]] [AMBIENT al;

DESCRIPTION

Specifies light sources for shaded images created with the PS 390 rendering
firmware option. An unlimited number of light sources may be specified.
For a detailed explanation of defining and interacting with shaded images,
consult Section GT13 Polygonal Rendering.

PARAMETERS

x,y,z — A vector from the origin pointing towards the light source.

h — A real number specifying the hue in degrees around the color wheel.
Pure blue is 0 and 360, pure red is 120, and pure green is 240.

s — A real number specifying saturation. No saturation (gray) is 0 and full
saturation (full toned colors) is 1.

i — A real number specifying intensity. No intensity (black) is 0, full inten-
sity (white) is 1.

a — A real number which controls the contribution of a light source to the
ambient light. Increasing a for a light source increases its contribution to the
ambient light.

DEFAULT

If no ILLUMINATION command is used, a default white light at (0,0,-1)
with an ambient proportion of 1.0 is assumed. If intensity and saturation are
not specified, they default to 1. If only hue and saturation are specified,
intensity defaults to 1. The default for ambient proportion is 1.

RM1-50 Reference Materials

ILLUMINATION
(continued)
NOTES

1. Illumination nodes may be placed anywhere in a display structure, allow-
ing lights to be stationary or to rotate with the object, or both.

2. An unlimited number of light sources are valid for smooth-shaded ren-
derings, but only the last illumination node encountered is used in creat-
ing flat-shaded renderings.

3. Light sources are not used in wash-shaded (area-filled) images.

DISPLAY STRUCTURE NODE CREATED
ILLUMINATION operation node.

INPUTS FOR UPDATING NODE

3D——>»f<1> Update X, Y, Z
REAL, 2D, 3D——>

<2> Updates hue,
saturation, intensity

Real ——»\ <3> Updates ambient

proportion

ILILLUMINATION
U390274

NOTE ON INPUTS

A real number sent to input <2> changes only the hue. In this case, satura-
tion and intensity default to 1. You cannot change just one value and retain
the remaining values. Unless a 3D vector is sent, the default values are
assumed for the variables not specified.

EXAMPLE

Light := ILLUMINATION 1,1,-1 COLOR 180;

{This creates a node which defines a yellow light over the right
shoulder. Since saturation and intensity are not specified, the
defaults s = 1 and i = 1 are assumed. The ambient proportion defaults
to 1.}

Command Summary

RMI-51

RM1-52

TYPE
STRUCTURE — Modifying

FORMAT

INCLude namel IN name2;

DESCRIPTION

INCLUDE

Used to include (instance) another named entity (namel) under a named

instance node in a display structure (name2).

PARAMETERS

namel — Structure to be included under instance node name2.

name2 — Name of the instance node to include namel.

DISPLAY STRUCTURE NODE CREATED

None. This is an immediate-action command which modifies an existing

instance node in a display structure.

EXAMPLE

Map:= INSTance of Canada, South America, United_States;
INCLude Mexico IN Map;

{This would result in the instance node called Map also pointing at

Mexico.}

Reference Materials

W

)

ﬂ INCREMENT LEVEL_OF_DETAIL

TYPE
STRUCTURE — Attributes

FORMAT

NAME := INCRement LEVel_ of_detail [APPLied to namel];

DESCRIPTION

“Increments” (increases) the current level of detail by 1 when name is being
traversed.

PARAMETER

namel — Node to be affected by the increased level of detail.

NOTE

There is really only one global level of detail; this command only changes
the value of the level of detail while the named node and nodes below it in
the display structure are being traversed.

DISPLAY STRUCTURE NODE CREATED
- INCRement LEVel _of detail operation node.

EXAMPLE
A:= INCRement LEVel of_detail THEN B;
B:= INSTance of C, D;
C:= IF LEVel of detail = 1 THEN E;
D:= IF LEVel of_detail = 2 THEN F;

{If A were DISPlayed, E would also be displayed but not F. Since the
default level of detail is O, A will change the level of detail to 1,
so the test in C will pass to E, while the test in D will fail and F

ﬁ will not be traversed.}

Command Summary RM1-53

INITIALIZE W/

TYPE
GENERAL — Initialization

FORMAT

INITialize [option];

DESCRIPTION

INITialize (without specifying an option) restores the PS 390 to its initial
state in which:

No user-defined names exist.

No user-defined units exist.

No user-created display structures exist.
No user-defined function connections exist.
No structures are being displayed. u

You may also initialize any of the above areas selectively (without initializ-
ing others) by following INITialize with the appropriate keyword for the area
to be initialized.

The INITialize command also automatically executes the OPTIMIZE MEM-
ORY command to collect any contiguous free blocks of memory into single
blocks.

PARAMETERS

option — Any of the following:
CONNections — Breaks all user-defined function connections.
DISPlay — Removes all structures from the display list.

NAMES — Clears the name dictionary of all structures and
function instance names.

UNITS — Clears all user-defined units.

RM1-54 Reference Materials

ﬂ INITIALIZE

(continued)

NOTES

1. An INITialize command is specific to a command interpreter. It only
affects the structures which were established by the same command in-
terpreter as the initialization command itself. For example, structures
created through the host line can be removed with an INITialize from the
host, but not by an INITialize from the PS 390 keyboard.

2. The INITialize command blanks every object being displayed whether
the object was created from the host or locally.

Command Summary RMI-55

INSTANCE OF

TYPE
STRUCTURE — Explicit Referencing

FORMAT

name := INSTance of namel[,name2...,namen];

DESCRIPTION

Groups one or more structures under a single named instance node.

PARAMETERS

namel...namen — Structures to be grouped.

DISPLAY STRUCTURE NODE CREATED

An instance node with pointers to each of the structures referenced
(namel...namen).

INPUTS FOR UPDATING NODE

None; however the INCLude and REMove commands can be used to modify
the instance node.

EXAMPLE

A:= INSTance of B,C,D;

RM1-56 Reference Materials

o/

W/

LABELS

TYPE
MODELING — Primitives

FORMAT

name := LABELS X,y [,2z] “string”

[xi,yi [,zi] “string’];

DESCRIPTION

The LABELS command, like CHARacters, defines character strings for dis-
play. However, a single LABELS command can define an indefinitely large
number of character strings.

PARAMETERS

x,y,z — Coordinates of the lower left-hand corner of the first character in
the string.

string — Text string up to 240 characters in length.

DEFAULT

If z is not specified, it is assumed to be 0.

NOTES

1. A gain in display capacity is realized whenever two or more character
strings are combined in a single LABELS command.

2. The smallest LABELS entity that can be picked is an entire string; a pick
returns an index into the list of strings of the LABELS command. Indi-
vidual characters cannot be picked as they can with CHARacters.

3. The commands SET CHARacters SCREEN oriented/[FIXED] and SET
CHARacters WORLD _oriented can be applied to LABELS in the same
way they are applied to CHARacters.

Command Summary RM1-57

LABELS W/

(continued)

4. You may SEND messages to a LABELS node as you can to a CHARac-
ters node.

DISPLAY STRUCTURE NODE CREATED
LABELS data node.

INPUTS FOR UPDATING NODE

name
String ———» <last> Changes last label
Integer —» <clear> Clears list
Integer ———> <delete> Deletes from end

Label ——>»| <append> Appends from end
Boolean ——>»{ <i> TRUE = on, FALSE = off
String ——>»] <i> Replaces i-th label

3D ——> <i> Change start location
of i-th label

LABELS u

U390275

NOTES ON INPUTS

1. Sending an integer to <delete>of a LABELS node deletes that many
strings from the end of the labels block. If the integer is as large as
or larger than the number of strings in the block, then all strings are
removed except the first. This is retained to keep the step size infor-
mation, but display of that string is disabled.

2. Sending an integer to <clear> of a LABELS node deletes all labels
except the first, which is retained for step size information, but is not
displayed.

3. The <append> input accepts only special “label”-type messages that
give both the string and the position to be appended. This data type
is created by the F:LABEL function.

EXAMPLE

A:= LABELS 0,0 “FIRST LINE~’
0,-1.5 “SECOND LINE";

RM1-58 Reference Materials

ﬁ

LOAD VIEWPORT

TYPE
VIEWING — Viewport Specification

FORMAT

name := LOAD VIEWport HORizontal = hmin:hmax
VERTical = vmin:vmax
[INTENsity = imin:imax] [APPLied to namell];

DESCRIPTION

The LOAD VIEWPORT command loads a viewport and overrides the con-
catenation of the previous viewport. As with the standard PS 390 VIEW-
PORT command, it specifies the area of the screen that the displayed data
will occupy, and the range of intensity of the lines. It affects all objects
below the node created by the command in the display structure.

PARAMETERS

hmin,hmax,vmin,vmax — The x and y boundaries of the new viewport.
Values must be within the -1 to 1 range.

imin,imax — Specifies the minimum and maximum intensities for the view-
port. imin is the intensity of lines at the back clipping plane; imax at the
front clipping plane. Values must be within the 0 to 1 range.

namel — The name of the structure to which the viewport is applied.

DEFAULT

The initial viewport is the full PS 390 screen with full intensity range (0 to
1) using the standard PS 390 VIEWPORT command.

VIEWport HORizontal = -1:1 VERTical = -1:1 INTENsity = 0:1;

NOTES

1. A new VIEWport is not defincd relative to the current viewport, but to
the full PS 390 screen.

Command Summary

RM1-59

LOAD VIEWPORT u
(continued)

2. If the viewport aspect ratio (vertical/horizontal) is different from the
window aspect ratio (y/x) or field-of-view aspect ratio (always 1) being
displayed in that viewport, the data displayed there will appear distorted.

DISPLAY STRUCTURE NODE CREATED

This command creates a load viewport operation node that has the same
inputs as the standard viewport operation node. The matrix contained in this
node is not concatenated with the previous viewport matrix.

NOTES ON INPUTS

1. For 2x2-matrix input, row 1 contains the hmin,hmax values and row
2 the vmin,vmax values.

2. For 3x3-matrix input, column 3 is ignored (there is no 3x2-matrix
data type), rows 1 and 2 are as for the 2x2 matrix above, and row 3 u
contains the imin,imax values.

RM1-60 Reference Materials

LOOK

TYPE
VIEWING — Windowing Transformations

FORMAT

name :

LOOK AT ax,ay,az FROM fx,fy,fz

[UP ux,uy,uz] [APPLied to namel];
LOOK FROM fx,fy,fz AT ax,ay,az

[UP ux,uy,uz] [APPLied to namel];

name :

DESCRIPTION

This command, in conjunction with a windowing command (WINDOW,
Field_Of_View, or EYE), fully specifies the portion of the data space that
will be viewed, as well as the viewer’s own orientation in the world coordi-
nate system.

The LOOK AT...FROM clauses specify the viewer’s position with respect to
the object(s), while the optional UP clause specifies the screen “up” direc-
tion (analogous to adjusting the way the viewer’s head is tilted).

LOOK creates a 4x3 transformation matrix which:

1. Translates the data base so that the FROM point is at the origin
(0,0,0).

2. Rotates the data base so that the AT point is along the positive Z
axis at (0,0,D), where D = || F-A ||.

3. Rotates the data base so that the UP vector is in the YZ plane.

PARAMETERS

ax,ay,az — Point being looked at, in world coordinates.
fx,fy,fz — Location of viewer’s eye, in world coordinates.
ux,uy,uz — Vector indicating screen “up” direction.

ﬂ namel — Any structure.

Command Summary RMI-61

DEFAULT

LOOK AT 0,0,1 FROM 0,0,0 UP 0,1,0;

NOTES

LOOK

(continued)

1. To be implemented properly in a display structure, the LOOK node must
follow one of the windowing nodes and may not precede any windowing

node. (Refer to WINDOW Notes.)

2. The UP vector indicates a direction only; its magnitude does not matter.
For example, the two clauses UP 0,1,0 and UP 0,10,0 have exactly the

same effect.

3. In determining FRONT and BACK boundary parameters for an associ-
ated windowing command (WINDOW, Field Of View, or EYE), re-
member that the LOOK command positions the AT point along the posi-
tive Z axis at 0,0,D where D equals the distance of the FROM point to
the AT point. So, for example, if the FROM to AT distance is 13, if full
depth cueing is desired, and the radius of the object is 1, then

FRONT boundary = 12
BACK boundary = 14

is used.

DISPLAY STRUCTURE NODE CREATED

4x3-matrix operation node.

INPUT FOR UPDATING NODE

4x3 matrix
or 4x4 matrix

<1> Changes LOOK AT
4X3 matrix

4x3 matrix

U390276

RM1-62

Reference Materials

W,

/

LOOK
(continued)

NOTE ON INPUT

If a 4x4 matrix is input, the 4th column is ignored.

ASSOCIATED FUNCTIONS
F:LOOKAT, F:LOOKFROM

EXAMPLE

A:= BEGIN_Structure
WINDOW X = -1:1 Y = -1:1
FRONT boundary = 12
BACK boundary = 14;

LOOK AT 0,0,0 FROM 5,6.63,-10 THEN Sphere;
END_Structure;

‘ ’ {If Sphere is defined with a radius of 1 about the origin, A would be a

view of the sphere from 5, 6.63, -10, fully depth cued. Note that the
FROM to AT distance in the LOOK command is 13.}

Command Summary RMI1-63

MATRIX_2x2

TYPE
MODELING — Character Transformations

FORMAT
name := Matrix_ 2x2 mll,ml2
m21,m22 [APPLied to namel];
DESCRIPTION

Creates a 2x2 transformation matrix which applies to characters in the
structure that follows (namel).

PARAMETERS

mll - m22 — Elements of the 2x2 matrix.

namel — Structure whose characters are to be transformed (any vector lists
in the display structure are left unchanged).

DISPLAY STRUCTURE NODE CREATED

2x2-matrix operation node.

INPUT FOR UPDATING NODE

2x2 matrix <1> Changes matrix value

2x2 matrix

U390269

NOTE ON INPUT
Any 2x2 matrix is legal.

RM1-64 Reference Materials

ﬂ MATRIX 2x2
(continued)

ASSOCIATED FUNCTIONS
F:Matrix2, F:CSCALE, F:CROTATE

| EXAMPLE

‘ A := Matrix_2x2 1,0
‘ .5,1 THEN B;

{This creates a skewing matrix which is useful for italicizing text.}

()

Command Summary RMI-65

MATRIX_3x3

TYPE
MODELING — Transformations

FORMAT
name := Matrix_3x3 mll,ml2,ml3
m21,m22,m23
m31,m32,m33 [APPLied to namel];
DESCRIPTION

Creates a 3x3 transformation matrix which applies to the specified data
(vector lists and/or characters).

PARAMETERS

mll - m33 — Elements of the 3x3 matrix to be created.

namel — Structure to be transformed by the matrix.

DISPLAY STRUCTURE NODE CREATED

3x3-matrix operation node.

INPUT FOR UPDATING NODE

3x3 matrix <1> Changes matrix value

3x3 matrix

uU390277

NOTE ON INPUT

Any 3x3 matrix is legal (a rotation matrix. a scale matrix, etc.).

RM1-66 Reference Materials

MATRIX 3x3
(continued)

ASSOCIATED FUNCTIONS

F:MATRIX3, F:XROTATE, F:YROTATE, F:ZROTATE, F:DXROTATE,
F:DYROTATE, F:DZROTATE, F:SCALE, F:DSCALE

EXAMPLE

A := Matrix_3x3 1,0,0
0,1,0
0,0,1 APPLied TO B;

{This creates an identity matrix.}

Command Summary RM1-67

MATRIX_4x3

TYPE
MODELING — Transformations

FORMAT
name := Matrix_4x3 mll,ml2,ml3
m21,m22,m23
m31,m32,m33
m4l,m42,m43 [APPLied to namel];
DESCRIPTION

Creates a 4x3 transformation matrix which applies to the specified data
(vector lists and/or characters).

PARAMETERS

mll - m43 — Elements of the 4x3 matrix to be created.

namel — Structure to be transformed by the matrix.

DISPLAY STRUCTURE NODE CREATED

4x3-matrix operation node.

INPUT FOR UPDATING NODE

4x3 matrix <1> Changes matrix value

4x3 matrix

U390278

NOTE ON INPUT

Any 4x3 matrix is legal (a rotation matrix, a scale matrix, etc.).

RM1-68 Reference Materials

W/

ﬁ MATRIX 4x3
(continued)

ASSOCIATED FUNCTIONS
F:MATRIX4, F:XROTATE, F:YROTATE, F:ZROTATE, F:DXROTATE,
F:DYROTATE, F:DZROTATE, F:SCALE, F:DSCALE

EXAMPLE

A := Matrix_ 4x3

APPLied TO B;

Command Summary RM1-69

MATRIX_ 4x4

TYPE
MODELING — Transformations

FORMAT

name := Matrix_4x4 mll,ml2,ml3,ml4
m21,m22,m23,m24
m31,m32,m33,m34
m41,m42,m43,m44 [APPLied to namel];

DESCRIPTION

Creates a 4x4 transformation matrix which applies to the specified data
(vector lists and/or characters).

PARAMETERS

m1ll - md44 — Elements of the 4x4 matrix to be created.

namel — Structure to be transformed by the matrix.

DISPLAY STRUCTURE NODE CREATED

4x4-matrix operation node.

INPUT FOR UPDATING NODE

4x4 matrix <1> Changes matrix value

4x4 matrix

U390271

NOTE ON INPUT

Any 4x4 matrix is legal (a rotation matrix, a scale matrix, etc.).

RM1-70 Reference Materials

ﬂ MATRIX 4x4
(continued)

ASSOCIATED FUNCTIONS

F:MATRIX4, F:XROTATE, F:YROTATE, F:ZROTATE, F:DXROTATE,
F:-DYROTATE, F:DZROTATE, F:SCALE, F:DSCALE

EXAMPLE

A := Matrix_4x4

APPLied TO B;

{This creates an identity matrix.}

ﬂ

Command Summary RM1-71

(Naming of Display Structure Nodes)

TYPE
STRUCTURE — Explicit Referencing

FORMAT

NAME := display_structure_command;

DESCRIPTION

Gives a name (address) to a node in a display structure so that it can be
referenced explicitly.

PARAMETERS

name — Any combination of alphanumeric characters up to 240. Must be-
gin with an alpha character and can include $ and _.

display_structure_command — All data structuring commands except the
function instancing command (name := F:function_name).

NOTES

1. All nodes in a display structure must be named (addressed) either di-
rectly, using this structure naming command, or indirectly, nesting a
display structure command within a BEGIN_Structure...END_Structure
command.

2. Upper and lowercase letters can be used in names, but all letters are
converted to uppercase. Thus turbine_blade, Turbine Blade, and TUR-
BINE_BLADE are equivalent names.

3. A null structure can be named using the name := NIL; form of the com-
mand. If this command were used to redefine name, name would be
kept in the name dictionary but the definition previously associated with
name would be removed. FORGET name does just the opposite (refer to
FORGET). DELETE name removes both the name and its definition
(refer to DELETE).

RM1-72 Reference Materials

u

W/

ﬂ NIL

TYPE
STRUCTURE — Explicit Referencing

FORMAT

name := NIL;

DESCRIPTION

This command names a null data structure. When this command is used to
redefine name, name is kept in the name dictionary but any data structures

previously associated with it are removed. FORGET does just the opposite
of NIL.

m

Command Summary RM1-73

OPTIMIZE MEMORY W/

TYPE
GENERAL — Command Control and Status

FORMAT

OPTIMIZE MEMORY;

DESCRIPTION

An immediate-action command which collects any contiguous free blocks of
memory into single blocks.

NOTES

1. If you are transmitting a large vector list from the host and you suspect
that memory is being fragmented, enter this command before doing any

operations. u

2. This command is executed automatically whenever an INITialize com-
mand is entered.

o/

RM1-74 Reference Materials

ﬂ

OPTIMIZE STRUCTURE;...END OPTIMIZE;

TYPE
GENERAL — Command Control and Status

FORMAT

OPTIMIZE STRUCTURE;
command;
command ;

END OPTIMIZE;

DESCRIPTION

Places the PS 390 in, and removes it from, “optimization mode,” during
which certain elements of a display structure are created in a way that mini-
mizes display processor traversal time.

NOTES

1. Optimization mode is intended for application programs whose develop-
ment is complete. Since optimization severely restricts the kinds of
changes that may be made to a PS 390 display structure, it should not
be used with programs whose structures may be changed.

2. To enter optimization mode for a developed application program, place
the command

OPTIMIZE STRUCTURE;
at the beginning of the program (or portion of program) to be optimized,
and place the command

END OPTIMIZE;
at the end.

3. Optimization is not retroactive. The OPTIMIZE STRUCTURE command
alone does not optimize any existing structures. On the other hand,
structures created after the command is entered remain optimized even
after END OPTIMIZE is entered, and even after legal changes are made
to the structure.

Command Summary

RM1-76

OPTIMIZE STRUCTURE;...END OPTIMIZE;
(continued)

. The following changes may not be made to structures created or in-

stanced during optimization mode:

a. PREFIXes

b. Redefinitions of data-definition commands (VECtor_list, CHAR-
acters, LABELS, and polynomial and B-spline curves), regardless
of whether or not the system is in optimization mode at the time
of redefinition. Illegal changes to optimized structures have un-
predictable effects on the display.

. Among the types of structures for which optimization has an effect are

INSTANCEs of multiple data-definition commands and BE-
GIN_S...END_S structures containing only data-definition commands.

. Optimization has no effect on a reference to a data-definition command

which precedes the data-definition command itself.

. OPTIMIZE STRUCTURE, like the INITialize command, affects only

those structures created at the port at which the command is entered.

. An INITialize command automatically performs an END OPTIMIZE.

Reference Materials

W/

W)

()

PATTERN

TYPE
MODELING — Primitives

FORMAT

name := PATtern i [AROUND_corners] [MATCH/NOMATCH] LENgth r;

DESCRIPTION

Defines name to be a pattern. Patterns can be applied to existing vector lists
(patterned and unpatterned) created by the WITH PATTERN, POLYNO-
MIAL, and BSPLINE commands. If curve commands are used, the
[AROUND corners] option must be used.

PARAMETERS

i — A series of up to 32 integers between 0 and 128 (delineated by spaces)
indicating the relative lengths of alternating lines, spaces, lines, etc., in the
pattern. The longer the series, the more complex the pattern of lines and
spaces, which repeats every r units.

AROUND_corners — This indicates that patterning is to continue around
each of the vectors in the vector list until the end of the list or a position
vector is reached.

MATCH/NOMATCH — This indicates that the pattern length should be
adjusted to make the pattern exactly match the end points of the vector or
series of vectors being patterned. The default is MATCH.

r — The length over which i is defined and repeated.

EXAMPLE
Refer to Helpful Hint 10 in Section 772.

Command Summary

RM1-77

PATTERN WITH \/

TYPE
MODELING — Primitives

FORMAT

PATTERN namel WITH pattern;

DESCRIPTION

An immediate-action command which applies a pattern to a vector list
(name1l).

PARAMETERS

pattern — The pattern to be applied to namel. The pattern can be defined
as either of the following. u

name — A pattern created by the name := PATtern command, or
i [AROUND_corners] [MATCH/NOMATCH] LENgth r

where:

i is a series of up to 32 integers between 0 and 128 delineated by
spaces indicating the relative lengths of alternating lines, spaces,
lines, etc., in the pattern. The longer the series, the more complex
the pattern of lines and spaces, which repeats every r units.

AROUND_corners indicates that patterning is to continue around
each of the vectors in the vector list until the end of the list or a
position vector is reached.

MATCH/NOMATCH indicates that the pattern length should be
adjusted to make the pattern exactly match the end points of the
vector or series of vectors being patterned. The default is MATCH.

r is the length over which i is defined and repeated.

RM1-78 Reference Materials

ﬁ POLYGON

TYPE
MODELING — Primitives

FORMAT
name := [WITH ATTRIBUTES namel] [WITH OUTLINE h] [COPLANAR]
POLYGon vertex ... vertex;
DESCRIPTION

Allows you to define primitives as solids and surfaces. For a detailed
explanation of defining and interacting with polygons, consult Section GT13
Polygonal Rendering.

PARAMETERS

WITH ATTRIBUTES — An option that assigns the attributes defined by
namel for all polygons until superseded by another WITH ATTRIBUTES

ﬂ clause.

WITH OUTLINE — An option that specifies the color of the outline to be
drawn around polygon borders in enhanced-edge shaded images, or the
color of polygon edges in hidden-line renderings.

COPLANAR — Declares that the specified polygon and the one immedi-
ately preceding it have the same plane equation.

vertex — A vertex is defined as follows:

[S]1 x,vy,2 [NXx,y,z] [C h[,s[i]]]

where:

S — indicates that the edge drawn between the previous vertex and
this one represents a soft edge of the polygon. If the S specifier is
used for the first vertex in a polygon definition, the edge connect-
ing the last vertex with the first is soft.

N — Indicates a normal to the surface with each vertex of the
polygon. Normals are used only in smooth-shaded renderings. Nor-
mals must be specified for all vertices of a polygon or for none of
them. If no normals are given for a polygon, they are defaulted to

ﬁ the same as the plane equation for the polygon.

Command Summary RM1-79

RM1I1-80

POLYGON
(continued)

x,y,z — are coordinates in a left-handed Cartesian system.

C — indicates a color to be assigned to the vertex. During shaded
operations, this color is interpolated across the polygon to the other
vertices. Color must be specified for all vertices of a polygon or
none of them.

h,s,i — are coordinates of the Hue-Saturation-Intensity color sys-
tem.

Polygons may be solidly colored by specifying a color through the attributes
command or the colors may be assigned to the vertices by giving a color
with each vertex specified. The color is specified by giving first the vertex
and then the color (h, s, i). If just the hue and saturation are given, the
intensity will default to 1. If just the hue value is given, the saturation and
intensity will default to 1. If no vertex colors are given, the vertex colors will
default to those specified in the ATTRIBUTE clause.

Vertex colors must be specified for all vertices of a polygon or for none of
them. However, as with normals, some polygons may have color at their
vertices while others polygons do not have color at their vertices. This
means that it is possible to have some objects in the picture color interpo-
lated, while others are not.

Although color of polygon vertices is specified h, s, i, the colors are linearly
interpolated across the vertices in the Red-Green-Blue color system. If col-
ors are not interpolating the way you would like them to, add more vertices
to the polygon, or break up large solid volumes into smaller sub-volumes
and assign the desired colors to the new vertices in the object.

You can specify color for a polygon with both the ATTRIBUTES command
and the color by vertex specification. A new input to the SHADINGEN-
VIRONMENT function allows you to switch between attribute-defined color
and vertex-defined color. Input <10> of SHADINGENVIRONMENT accepts
a Boolean to determine how color will be specified. To use vertex colors
rather than surface attributes, send TRUE to input <10> of SHADINGEN-
VIRONMENT. To return to using the attributes specified in the ATTRIB-
UTE command, send FALSE to input <10> of SHADINGENVIRONMENT.

Reference Materials

W/

u

ﬁ POLYGON
(continued)

NOTES

1. A polygon declared to be coplanar must lie in the same plane as the
previous polygon if correct renderings are to be obtained. The system
does not check for this condition. Coplanar polygons may be defined
without the COPLANAR specifier, unless outer and inner contours are
being associated.

2. To use the COPLANAR specifier to define a hole, the vertices of the
hole must be ordered in a counter-clockwise direction, while the vertices
of the surrounding polygon must be ordered in a clockwise direction.

3. All members of a set of consecutive coplanar polygons are taken to have
the same plane equation, that of the previous polygon not containing the
coplanar option. If coplanar is specified for the first polygon in a node,
it has no effect.

4. If the N (normal) specifier is specified for a vertex in a polygon, it must
ﬂ be specified for all vertices in that polygon. The same is true for the C
(color at vertex) specifier.

5. If the S (soft) specifier is used for the first vertex in a polygon defini-
tion, the edge connecting the last vertex with the first is soft.

6. No more than 250 vertices per POLYGon may be specified.

7. The last defined vertex in the polygon is assumed to connect to the first
defined vertex; that is, polygons are implicitly closed.

8. There is no syntactical limit for the number of POLYGon clauses in a
group.

9. The ordering of vertices within each POLYGon has important conse-
quences for rendering operations.

DISPLAY STRUCTURE NODE CREATED
POLYGon data node.

INPUTS FOR UPDATING NODE

ﬂ None.

Command Summary RM1-81

TYPE

MODELING — Primitives

POLYNOMIAL

FORMAT
name := POLYnomial [ORDER=1]
[COEFFICIENTS=] xi, yi, zi
xi-1, yi-1, zi-1
x0, yO, z0
CHORDS=q;
DESCRIPTION

RM1-82

Evaluates a parametric polynomial in the independent variable t over the
interval [0,1]. This command allows the parametric description of many
curve forms without the need to specify or transfer the coordinates of each
constituent vector.

If the polynomial to be evaluated is called C, C is an ith-order parametric
polynomial in t such that:

C(t) = [x(t) y(t) z(t)]

This polynomial may be expressed as the product of a vector (containing
the various powers of t) and a coefficient matrix with three columns and i+1
rows:

C(t) = [ti ti-1 ... t0] xi yi zi
xi-1 yi-1 zi-1

x0 y0 20

This coefficient matrix is what is specified in the polynomial command to
represent the parametric polynomial C.

Reference Materials

W

N

POLYNOMIAL
(continued)

PARAMETERS

i — Optional specification of the order of the polynomial used to anticipate
internal storage requirements.

xi, yi, zi — Coefficients of the polynomial.

q — The number of vectors to be created (0 < q < 32768).

NOTES

1. The interval [0,1] over which the polynomial in t is to be evaluated is
divided into q equal parts, so that C(t) is evaluated at
t=0/q,1/q,2/q,...q9/q. This causes the curve’s constituent vectors generally
not to be equal in length.

2. The polynomial’s order is determined by the number of coefficient rows,
and if the ORDER=i clause disagrees, it is ignored.

DISPLAY STRUCTURE NODE CREATED

Polynomial vector-list data node.

INPUTS FOR UPDATING NODE

name

Integer ———»{ <1> Updates Chords

2D, 3D, 4D vector ——>»| <i> Updates coefficients

Polynomial

U390279

NOTE ON INPUTS

Sending a 2D vector to a 3D polynomial node causes a default value of 0 to
be used for Z. If a 4D vector is sent to a 3D polynomial or a 3D or 4D
vector is sent to a 2D polynomial, the W or Z components are ignored.

Command Summary RM1-83

RM1-84

PREFIX WITH

TYPE
STRUCTURE — Modifying

FORMAT

PREFIX name WITH operation_command;

DESCRIPTION

Prefixes a named data node (name) with an operation node.

PARAMETERS

name — A modeling primitive data node to be prefixed.

operation_command — Any command that creates an operation node.

NOTE

Any connections made to name will be applied to the added prefix and
not to the modeling primitive (i.e. name now points to the new operation
node which points to the node that was previously name).

DISPLAY STRUCTURE NODE CREATED

None. This is an immediate-action command which just modifies an existing
data node.

EXAMPLE

A:= VECtor_list ...;
PREfix A WITH SCALE by .1;

{This will make A the name of a scaling node pointing at a now-unnamed
vector list.}

Reference Materials

o/

Command Summary

RATIONAL BSPLINE

TYPE
MODELING — Primitives

FORMAT

name := RATIonal BSpline ORDER=k
[OPEN/CLOSED] [NONPERIodic/PERIodic] [N=n]
[VERTICES =] x1,yl, [zl],w
x2,y2, [22],w2

xn,yn, [zn] ,wn
[KNOTS = t1,t2,...,t3]
CHORDS =q;

DESCRIPTION

Evaluates a rational B-spline curve, allowing the parametric description of
the curve form without the need to specify or transfer the coordinates of
each constituent vector.

The rational B-spline curve C is defined as:

n
S wipiNi,k(t)
Ct) =i =1
n
S wipiNi,k(t)
i =1

where

pi — ith vertex of the B-spline’s defining polygon
Ni,k — ith B-spline blending function of order k

wi — weighting factor associated with each vertex (different weights
determine the shape of the curve).

The parameter t of the curve and blending functions is defined over a se-
quence of knot intervals t1,t2,...,tn+k. Different knot sequences define dif-
ferent types of B-splines.

RM1I-85

RATIONAL BSPLINE
(continued)

Two common knot sequences are the uniform nonperiodic and uniform pe-
riodic knot sequences. A uniform nonperiodic B-spline is defined by the
knot sequence:

0 (for j < k)
tj = j-k (for k < jJ < n)
n-k+1 (for n < j < n+k)

A uniform periodic B-spline is defined by the knot sequence:
tj = j (for j < n+k)
The blending functions can be defined recursively as

Ni,1(t)

1 (if ti < t < ti+l), O otherwise

Ni,k(t) (t-ti)Ni,k-1(t) + (ti+k-t)Ni+1,k-1(t)

ti+k-1-ti ti+k-ti+l

The curve is evaluated at the points:

t = (1 - i)tk + itj -k + 1
a

for i=0,1,2,...,q.

PARAMETERS

RM1-86

k — The order of the curve (0 < k < 10).

n — The number of vertices (used to anticipate storage requirements).

x1,y1,z1,wl...xn,yn,zn,wn — The vertices and weighting factor of the defin-
ing polygon of the curve. The Z component is optional.

t1,t2,...,tj — User-specified knot sequence. Because closed B-splines are

evaluated as open B-splines with duplicate vertices, the number of knots
required is:

n+k for open B-splines
n+k+1 for closed nonperiodic B-splines
n+2k-1 for closed periodic B-splines

The knots must also be nondecreasing.

q — The number of vectors to be created (0 < q < 32766).

Reference Materials

h RATIONAL BSPLINE
(continued)

NOTES

1. OPEN or CLOSED is an option which describes the B-spline defining
polygon. The default is OPEN. (Note that CLOSED merely describes the
polygon, eliminating repetition of vertices. A full knot sequence, if speci-
fied, must be given.)

2. NONPERIODIC or PERIODIC is an option which specifies the default
knot sequence. NONPERIODIC is the default for open B-splines; PERI-
ODIC is the default for closed B-splines.

3. At least k vertices must be given, or the order k will be reduced accord-
ingly.

4. If all the weights of a rational B-spline are the same, the curve is identi-
cal to the B-spline without the weights.

‘- DISPLAY STRUCTURE NODE CREATED

B-spline vector-list data node.

INPUTS FOR UPDATING NODE

name

Integer ———»{ <1> Updates chords
Real ———»| <i> Updates knots

2D, 3D, 4D vector ———»] <i> Updates vertices

Rational B-Spline

U390280

)

Command Summary RM1I1-87

RATIONAL BSPLINE W/
(continued)

NOTE ON INPUTS

When a 2D vector is sent to a 3D rational B-spline, the default for Z is 0
and for W is 1. The third component of 3D and 4D vectors is used as W in
2D rational B-splines.

EXAMPLE

A third-order rational B-spline with defining polygon P1, P2, P3 defines a
conic arc:

e the arc is parabolic if wl=w2=w3
e the arc is elliptic if wl=w3>w2
e the arc is hyperbolic if wl=w3<w2

RM1-88 Reference Materials

(ﬂ!\

TYPE
MODELING — Primitives

FORMAT

name := RATional POLYnomial [ORDER=i]
[COEFFICIENTS=] «xi, yi, zi,

RATIONAL POLYNOMIAL

wi

xi-1, yi-1, zi-1, wi-1

X0, yO, z0,
CHORDS=q;

DESCRIPTION

wO

Evaluates a rational parametric polynomial in the independent variable t
over the interval [0,1]. This command allows the parametric description of
many curve forms without having to specify or transfer the coordinates of

each constituent vector.

If the polynomial to be evaluated is called C, C is an ith-order rational

parametric polynomial in t such that:

x(t) y@) z()
w(t) wi(t) w(t)

C(t) =

This polynomial may be expressed as the product of a vector (containing
the various powers of t) and a coefficient matrix with four columns and i+1

rows:
Cit) = [ti ti—-1 ... t0] i yi
xi — 1 yi = 1
x0 y0

zi Wi

zi -1 wi -1

20 w0

This coefficient matrix is what is specified in the polynomial command to
represent the rational parametric polynomial C.

Command Summary

RM1-89

RATIONAL POLYNOMIAL \/
(continued)

PARAMETERS

i — Optional specification of the order of the polynomial used to anticipate
internal storage requirements.

xi, yi, zi, wi — Coefficients of the polynomial.

q — The number of vectors to be created (0<q<32768).

NOTES

1. The interval [0,1] over which the polynomial in t is to be evaluated, is
divided into q equal parts, so that C(t) is evaluated at
t=0/q,1/q,2/q,...9/q.

2. Note that the curve’s constituent vectors are not generally equal in

length. u

3. The polynomial’s order is determined by the number of coefficient rows,
and if the ORDER=i clause disagrees, it is ignored.

DISPLAY STRUCTURE NODE CREATED

Rational-polynomial vector-list data node.

INPUTS FOR UPDATING NODE

name

Integer ———>»{ <1> Updates Chords

2D, 3D, 4D vector ———»| <i> Updates coefficients

Rational Polynomial

U390281

W

RM1-90 Reference Materials

ﬁ RATIONAL POLYNOMIAL
(continued)

NOTE ON INPUTS

Sending a 2D vector to a 3D polynomial node causes a default value of 0 to
be used for Z and 1 for W. If a 4D vector is sent to a 3D polynomial or a
3D or 4D vector is sent to a 2D polynomial, the W or Z and W components
are ignored. The third component of 3D and 4D vectors is used as W in a
2D rational polynomial.

EXAMPLES

Circle:= BEGIN_Structure

RATional POLYnomial
-2, 0, 0, 2
-2, -2, 0, -2
o, 1, o0, 1

n CHORDS = 25;

RATional POLYnomial
-2, 0, 0, 2
2, -2, 0, -2
o, 1, o, 1
CHORDS = 25;

END_Structure;

{This will create right and left semicircles of radius 1.}

ﬁ

Command Summary RM1I1-91

RAWBLOCK

TYPE
ADVANCED PROGRAMMING — Memory Allocation

FORMAT

name := RAWBLOCK 1i;

DESCRIPTION

Used to allocate memory that can be directly managed by a user-written
function or by the physical I/O capabilities of the Parallel or Ethernet Inter-
faces.

PARAMETER

i — bytes available for use.

NOTES

RM1-92

1.

3.

4,

The command carves a contiguous block of memory such that there are
“i” bytes available for use.

. The block looks like an operation node to the ACP. The descendent

alpha points to the next long word in the block. What the ACP expects
in this word is the .datum pointer of the alpha block. (The datum pointer
points to the first structure to be traversed by the ACP. This is the ad-
dress in memory where the data associated with a named entity is lo-
cated.)

To use this block, the interface or user-written function fills in the appro-
priate structure following the .datum pointer. When this is complete, it
changes the .datum pointer to the proper value and points to the begin-
ning of the data. After the ACP examines this structure, it displays the
newly-defined data. (Use the ACPPROOF procedure to change the .da-
tum pointer with a user-written function.)

More than one data structure at a time can exist in a RAWBLOCK. It is
up to the user to manage all data and pointers in RAWBLOCK.

Reference Materials

W

W

ﬁ RAWBLOCK
(continued)

5. A RAWBLOCK may be displayed or deleted like any other named data
structure in the PS 390. When a RAWBLOCK is returned to the free

storage pool, the PS 390 firmware recognizes that it is a RAWBLOCK
and does not delete any of the data structures linked to RAWBLOCK.

DISPLAY STRUCTURE NODE CREATED

Rawblock data node.

)

Command Summary

RM1-93

REBOOT \/

TYPE
GENERAL — Command Control and Status

FORMAT

name := REBOOT password;

DESCRIPTION

Causes the PS 390 to reboot just as if it had been powered up; that is, it
starts the confidence tests beginning with “A.”

PARAMETER

password — System password

NOTES

1. If a password has been set up, an incorrect password will give an error
message. If no password has been setup, any character string will cause
the PS 390 to reboot.

2. REBOOT may be used inside a BEGIN_Structure ... END_Structure or
outside.

W,

RM1-94 Reference Materials

REMOVE

TYPE
GENERAL — Data Structuring and Display

FORMAT

REMove name;

DESCRIPTION

Stops the display of name, that is, removes name from the display list.

PARAMETER

name — Any structure name.

‘) NOTE

Does not affect any structures in memory.

Command Summary RM1-95

REMOVE FOLLOWER

TYPE
STRUCTURE — Modifying

FORMAT

REMove FOLLOWER of name;

DESCRIPTION

Removes a previously placed follower of name (see FOLLOW WITH com-
mand).

PARAMETER

name — Structure that was previously modified with a FOLLOW WITH
command.

EXAMPLE
(Refer to the example given in the FOLLOW WITH command.)

REMove FOLLOWER of Shape.Rot;

{This command will restore the structure Shape to what it was
originally (i.e. before the FOLLOW WITH command was given.)}

RM1-96 Reference Materials

REMOVE FROM

TYPE
STRUCTURE — Modifying

FORMAT

REMove namel FROM name2;

DESCRIPTION

Used to remove a named node (namel) from a named instance node
(name2) in a display structure.

PARAMETERS

namel — Node to be removed from instance node name?2.

‘» ’ name2 — Instance node that will no longer point to namel.

DISPLAY STRUCTURE NODE CREATED

None. This is an immediate-action command which modifies an existing
instance node.

EXAMPLE

Map:= INSTance Canada, South America, United_ States;
REMOVE South_America FROM Map;

{This makes the instance of Map point at Canada and United_States
only.}

Command Summary RM1-97

REMOVE PREFIX

TYPE
STRUCTURE — Modifying

FORMAT

REMove PREfix of name;

DESCRIPTION
Removes a previously placed prefix (see PREFIX WITH command).

PARAMETER

name — Structure that was previously modified by a PREFIX WITH
command.

NOTE

This immediate-action command restores name to what it was before
being modified by a PREFIX WITH command.

EXAMPLE

A:= VECtor_list ...;
PREfix A WITH SCALE by .1;
REMove PREfix of A;

{This will remove the previously PREfixed SCALE node, and A will once
again be the name of the VECtor_list.}

RM1-98 Reference Materials

ﬁ

RESERVE_WORKING_STORAGE

TYPE
GENERAL — Immediate Action

FORMAT

RESERVE_WORKING_STORAGE size;

DESCRIPTION

Reserves a contiguous block of mass memory for sectioning plane, hidden-

line removal, and backface removal renderings of solid objects defined as
polygons.

PARAMETER

size — The number of bytes of mass memory that are reserved.

NOTES

1.

Renderings and saved renderings reside in mass memory along with the
rest of the display structure. The original polygon is also stored in mass
memory.

. Each polygon of a solid object with four vertices will require approxi-

mately 150 bytes of reserve working storage. Memory needs will vary
from figure to figure dependent upon the complexity of the object, the
operations to be performed, and the view.

. After one reserve-working-storage request is made, subsequent requests

do not add to the original memory block — they replace the original
memory block.

. If a contiguous block of memory cannot be allocated, no working storage

is allocated and any previous storage is deallocated.

. The best time to use RESERVE_WORKING_STORAGE is after booting,

when large requests can be filled more easily. However, the command
may be entered at any time.

Command Summary

RM1-99

RESERVE_WORKING_STORAGE \/
(continued)

6. Typically, 200,000 to 400,000 bytes of working storage should be re-
served at the beginning of a session.

7. A previously allocated block of memory is released prior to filling the
request for a new block. Thus, a request for a smaller working storage
area can always be fulfilled. However, because the working storage must
be a contiguous block of memory, even slight increases in the working
storage size may not be satisfied.

8. If working storage is too small or has not been reserved, additional
storage will be allocated, which may not be contiguous. Rendering will
be performed but at a slower rate than if the working storage were a
contiguous block.

RM1I1-100 Reference Materials

ﬁ 'RESET

TYPE
GENERAL — Command Control and Status

FORMAT

!RESET;

DESCRIPTION

The !'RESET command is used to get out of unended BEGINs or BE-
GIN_Structures when a problem occurs. (Refer also to COMmand STATus.)

)

Command Summary RMI-101

ROTATE W/

TYPE
MODELING — Transformations

FORMAT

name := ROTate in [axis] angle [APPLied to namel];

DESCRIPTION

Rotates a structure (namel). Creates a 3x3 rotation matrix which rotates
the specified data (vector lists and/or characters) about the designated axis,
relative to the world coordinate system’s origin. When you look in the posi-
tive direction of a given axis, positive angle values cause counterclockwise
rotations (following the left-hand rule).

PARAMETERS v

axis — X, Y, or Z. If no axis is specified, the default is Z.

angle — Rotation angle in degrees (if no other units have been specified as
default, and if no other units are explicitly specified in the ROTate com-
mand).

namel — Structure to be rotated.

DISPLAY STRUCTURE NODE CREATED

3x3-matrix operation node.

RM1I1-102 Reference Materials

ﬁ ROTATE

(continued)
INPUT FOR UPDATING NODE
3x3 matrix <1> Changes matrix value
3x3 matrix
u390277
NOTE ON INPUT
ﬂ Any 3x3 matrix is legal (any rotation matrix, a scaling matrix, a compound

3x3 matrix, etc.).

ASSOCIATED FUNCTIONS

F:MATRIX3, F:XROTATE, F:YROTATE, F:ZROTATE, F:DXROTATE,
F:DYROTATE, F:DZROTATE, F:SCALE, F:DSCALE

EXAMPLE

A:= ROTate in X 45 THEN B;
B:= VECtor_list ... ;

Command Summary RM1-103 \

TYPE
MODELING — Transformations

FORMAT

name := SCALE by s [APPLied to namel];

name := SCALE by sx,sy[,sz] [APPLied to namel];
DESCRIPTION

SCALE

Scales an object. Applies a uniform (s) or nonuniform (sx,sy,sz) 3x3 scaling
matrix transformation to the specified data (vector lists and/or characters).

PARAMETERS

s — Uniform scaling factor (same along all axes).

sx,sy,sz — Axial scaling factors. If sz is not specified, it is assumed to be 1

(no Z-scaling).

namel — Object to be scaled.

DISPLAY STRUCTURE NODE CREATED

3x3-matrix operation node.

INPUT FOR UPDATING NODE

3x3 matrix <1> Changes matrix value

3x3 matrix

u390277

RM1-104

Reference Materials

W

ﬁ SCALE

(continued)

NOTE ON INPUT

Any 3x3 matrix is legal (another scaling matrix, a rotation matrix, etc.).

ASSOCIATED FUNCTIONS

F:MATRIX3, F:XROTATE, F:YROTATE, F:ZROTATE, F:DXROTATE,
F:DYROTATE, F:DZROTATE, F:SCALE, F:DSCALE

EXAMPLE

A:
B:

SCALE by 5,2,3 THEN B;
VECtor_list ... ;

(ﬂa‘

Command Summary RM1I1-105

SECTIONING_PLANE (W)

TYPE
RENDERING — Data Structuring

FORMAT

name := SECTioning plane [APPLied to namel];

DESCRIPTION

Defines a sectioning plane, which is needed to produce a sectioned render-
ing of an object.

PARAMETER
namel — Either a POLYGon command or an ancestor of a POLYGon com-
mand.

NOTES

1. Defining, displaying, and positioning a sectioning plane are the first
steps in producing a sectioned rendering of an object. Hidden-line re-
moval and backface removal do not require sectioning planes, but they
can be used in conjunction with sectioned renderings.

2. The data which actually define a sectioning plane are contained in a
POLYGon node; SECTioning_plane simply indicates that a given
POLYGon represents a sectioning plane rather than an object to be
rendered. ‘

3. The sectioning plane is the plane in which a specified POLYGon lies.
The polygon itself need not intersect the object to be sectioned, as long
as some part of the plane does.

4. The sectioning plane is the plane containing the polygon defined by the
first POLYGon clause of the first polygon node encountered by the dis-
play processor as it traverses the branch beneath a sectioning-plane
node.

RM1-106 Reference Materials

m

SECTIONING_PLANE
(continued)

. If the polygon node has more than one POLYGon, only the first polygon

determines the sectioning plane. The other polygons have no effect on
sectioning operations but are displayed along with the defining polygon.
This can be put to good use in designing an indicator which shows the
side of the plane at which sectioning will remove (or preserve) polygon
data.

. A node may be a descendant of a sectioning-plane node if and only if it

may be a descendant of a rendering operation node. Refer to the Notes
on the SOLID_rendering command for permitted and prohibited descen-
dant nodes.

. If objects are to be sectioned, matrix-transformation nodes may be

placed above the sectioning-plane node when and only when they are
also ancestors of the objects’ SOLID_Rendering or SURFACE_Render-
ing node(s). Failure to observe this rule results in bad renderings.

. No SOLID_rendering or SURFACE rendering operation node, whether

below or above the sectioning-plane node, may be an ancestor of a sec-
tioning plane’s defining POLYGon. These POLYGons are interpreted as
objects to be rendered rather than as sectioning-plane definitions, and
issues a ”Sectioning plane not found” message when a sectioning at-
tempt is made. Other nodes which do not represent matrix viewing
transformations, such as SET RATE, may be placed either above or
below the sectioning-plane node as needed.

. Before an object can be sectioned, the sectioning-plane node must be

part of a structure which is DISPlayed. If the plane’s defining POLYGon
is itself DISPlayed but its sectioning-plane node is not, no renderings can
be created.

DISPLAY STRUCTURE NODE CREATED

SECtioning_plane operation node.

Command Summary

RM1I-107

RM1I1-108

SELECT FILTER

TYPE
VIEWING — Appearance Attributes

FORMAT

namel := Select Filter n THEN name2;

DESCRIPTION

This command selects one of the four line filters supported on the PS 390.
The filters determine the type of aliased or antialiased line the system will
draw.

PARAMETERS

n — 0,1,2,3 line filter selected where,

0. SIN(X)/X filter
1. narrow Gaussian (default)
2. wide Gaussian
3. jagged (no filter)
name2 — node to which filter is applied

DEFAULT

The default line filter is n=1, narrow Gaussian. Values outside the 0-3
range default to the narrow Gaussian with the following warning message:

w2045 ** Illegal filter selection, default filter 1 used

NOTES

1. The SIN(X)/X filter (filter 0) produces the sharpest, best quality lines
and works well with images such as text characters that require fine
detail. However, the SIN(X)/X filter only works with limited background
colors; it works best with light background colors, such as gray. The
SIN(X)/X filter produces more artifacts than the Gaussian filters when
multiple lines overlap.

Reference Materials

o/

ﬁ SELECT FILTER
(continued)

2. The default line filter is the narrow Gaussian filter (filter 1). The narrow
Gaussian filter is the best general-purpose filter and produces good qual-
ity, sharp lines. It works with any background color and works well with
detailed images such as those that contain radial lines.

3. The wide Gaussian filter (filter 2) creates wider lines with less defini-
tion. The wide Gaussian filter produces no artifacts and works well with
primitives such as dots.

4. The jaggy filter (filter 3) produces unfiltered, aliased lines.

DISPLAY STRUCTURE NODE CREATED
SELECT FILTER Operation Node

m

Command Summary

RM1-109

SEND

TYPE
FUNCTION — Immediate Action

FORMAT

SEND option TO <n>namel;

DESCRIPTION

Sends a value to input n of function instance, node, or variable namel.

PARAMETERS

option — The value to be sent. This can be any of the following forms:

i — A real number (with or without decimal point).

FIX(i) — Designates i to be an integer value (without decimal point).
V2D(,j) — 2D vector.

V3D(,j,k) — 3D vector.

V4D(,j,k,1) — 4D vector.

M2D(all,al2 a21,a22) — 2x2 matrix.

M3D(all,al2,a13 a21,a22,a23 a31,a32,233) — 3x3 matrix

Md4D(all,al12,a13,al14 a21,a22,a23,a24 a31,a32,a33,a34 ad41,a42,a43,
ad44) — 4x4 matrix
Boolean — TRUE or FALSE

‘string’ — A character string of one or more characters.
CHAR(m) — A single character whose decimal ASCII value is m.
P,L — Position or line.

VALUE(variable_name) — The value currently in variable name,
where variable_name is a previously declared PS 390 variable.

EXAMPLE

Timer:= F:CLCSECONDS;
SEND FIX(10) TO <1>Timer;

{This puts an integer 10 on input 1 of TIMER.}

RM1-110 Reference Materials

ﬁ SEND number*mode

TYPE
FUNCTION — Immediate Action

FORMAT

SEND number*mode TO <n>namel;

DESCRIPTION

Sends to a vector list or labels node to change a specified number of vectors
from position vectors to line vectors, or to turn a specified number of labels
on or off.

PARAMETERS

ﬁ number — An integer specifying the number of vectors or labels.

mode — Either a P or L. For vector lists, P indicates a position vector and L
indicates a line vector. For a labels block, P turns the label off, L turns it
on.

n — An integer which identifies the first vector or label to receive the new
specification.

namel — The destination vector-list or labels node.

m |

Command Summary RMI-111

SEND VL \/

TYPE
FUNCTION — Immediate Action

FORMAT

SEND VL (namel) TO <i>name2;

DESCRIPTION

Overwrites or appends vectors in vector lists or labels in label blocks.

PARAMETERS

namel — Name of vector list, character string, or label block to be sent.
name2 — Name of the destination vector-list or labels node.

i — An integer that specifies the first vector or first label to be replaced in
name2 with vectors or labels in namel.

NOTES

1. The parameter i can be replaced with last or append.

2. If i exceeds the number of vectors or labels in name2, the command will
be ignored.

RMI-112 Reference Materials

SET BLINKING ON/OFF

TYPE
STRUCTURE — Attributes

FORMAT

name := SET BLINKing switch [APPLied to namel];

DESCRIPTION

This command turns blinking on and off. It affects all objects below the
node created by the command in the display structure.

PARAMETERS

switch — Boolean value. TRUE indicates that blinking will occur in the
displayed objects. FALSE turns blinking off.

namel — The name of the structure that will be affected by the command.

DISPLAY STRUCTURE NODE CREATED

This command creates a set blinking on/off operation node in the display
structure that determines whether blinking will occur in the objects posi-
tioned below it in the display structure.

INPUT FOR UPDATING NODE

The blinking on/off operation node can be modified by sending a Boolean
value to input <1>.

Command Summary RMI-113

SET BLINK RATE

TYPE
STRUCTURE — Attributes

FORMAT

name := SET BLINK RATE n [APPLied to namel];

DESCRIPTION

This command specifies the blinking rate in refresh cycles to be applied to
all objects below the node created by the command in the display structure.

PARAMETERS

n — An integer designating the duration of the blink in refresh cycles. The
blinking data will be on for n refreshes and off for n refreshes.

namel — The name of the structure to which the blinking rate is applied.

DISPLAY STRUCTURE NODE CREATED

This command creates a set blinking rate operation node in the display
structure that specifies the blinking rate for all objects below it.

INPUT FOR UPDATING NODE

The node can be modified by sending an integer to input <1> which will
change the blinking rate.

RMI1-114 Reference Materials

SET CHARACTERS

TYPE
VIEWING — Appearance Attributes

FORMAT

name := SET CHARacters orientation [APPLied to namel];

DESCRIPTION

Sets the type of screen orientation you want for displayed character strings.

PARAMETERS

orientation — Three types of orientation may be set:

WORLD_oriented — Characters are transformed just like any part of the
object containing them.

SCREEN _oriented — Characters are not affected by ROTate or SCALE
transformations. Intensity and size of characters still vary with depth
(Z-position).

SCREEN_oriented/FIXED — Characters are not affected by ROTate or
SCALE transformations. They are always displayed with full size and
intensity.

namel — Structure affected by the SET CHARacters node.

DEFAULT

SET CHARacters WORLD oriented;

DISPLAY STRUCTURE NODE CREATED
SET CHARacters operation node.

Command Summary RMI-115

SET COLOR

TYPE
VIEWING — Appearance Attributes

FORMAT

name := SET COLOR hue,sat [APPLied to namel];

DESCRIPTION

Specifies the color of an object (namel).

PARAMETERS

hue — A real number greater than or equal to 0 and less than 360, where:
0 = pure blue, 120 = pure red, 240 = pure green, 360 = pure blue.

sat — A real number from 0 to 1 where:
0 = no saturation (white), and 1 = full saturation.

namel — Structure to be colored.

DEFAULT

The default setting for both hue and sat is 0.

NOTE

Zero saturation in any hue is white.

DISPLAY STRUCTURE NODE CREATED
SET COLOR operation node.

RMI-116 Reference Materials

m SET COLOR
(continued)

INPUTS FOR UPDATING NODE

name

Real —»[<1> Hue

Real ——»1 <2> Saturation

SET COLOR

U390282

EXAMPLE

~

B:

SET COLOR 240,1 THEN B;
Vector_list ;

{If A is displayed, the vector list described by B will be displayed in
a pure green hue.}

’!I,

Command Summary RMI1-117

SET CONDITIONAL_BIT U

TYPE
STRUCTURE — Attributes

FORMAT

name := SET conditional BIT n switch [APPLied to namel];

DESCRIPTION

Temporarily alters one of the 15 global conditional bits during the traversal
of a branch of a display structure. These temporary settings may be tested
further down the display structure, possibly allowing conditioned reference
to other structures (see IF conditional BIT command). When traversal of
the branch is complete, the bits are restored to their previous values.

PARAMETERS

n — An integer from 0 to 14, corresponding to the conditional bit to be set \
ON or OFF by the command (Refer to Note 1 below). U

switch — ON or OFF.

name — Structure to follow the conditional bit node.

DEFAULT
All 15 conditional bits are initially set to OFF.

NOTES

1. Although only one conditional bit can be set ON or OFF by this com-
mand, a function network could be tied into this node to set any condi-
tional bit ON or OFF.

2. Note that there is really only one bank of 15 conditional bits and that
this command only changes the values of these bits temporarily, while
namel is being traversed. However, descendants of namel could also be
SET conditional_BIT nodes. These are saved and restored as part of the
state of the machine during the traversal of different branches of the
display structure.

RM1I1-118 Reference Materials

ﬁ SET CONDITIONAL_BIT
(continued)

DISPLAY STRUCTURE NODE CREATED

SET conditional_BIT operation node.

INPUTS FOR UPDATING NODE

Boolean <1> Sets the original bit (n) to be

ON(T) or OFF(F)
<2> Sets bit number input (0-14) ON

Integer ————»
Integer———)1
ﬂ Integer ————»

Integer

<3> Sets bit number input (0-14) OFF

<4> Disables bit number input (0-14) from
being effected by this node.

<6> Complements (toggles) bit number
input (0-14)

SET CONDITIONAL_BIT

U390283

EXAMPLE

A:

SET conditional BIT 3 ON THEN B;

IF conditional BIT 3 is ON THEN C;
IF conditional BIT 6 is ON THEN D;
VECtor_list ...

B:
C:
D:

{A function network should be tied to A so that the state of any of the

conditional bits can be changed, not just the one that was initially
set ON or OFF.}

)

Command Summary RMI-119

SET CONTRAST U

TYPE
VIEWING — Appearance Attributes

FORMAT

name := SET CONTrast to ¢ [APPLied to namel];

DESCRIPTION
Changes the contrast of the PS 390 display.

PARAMETERS

¢ — A number from 0 to 1 (0 = lowest contrast, 1= highest contrast).

namel — Structure using this contrast setting.

DEFAULT
SET CONTrast to 1;

NOTES

1. Setting contrast to 1 provides the highest contrast and thus the greatest
perception of depth cueing (all else being equal).

2. Although any real value from 0 to 1 is legal for c, ¢ is mapped to one of
four values (0.,.33,.67,1.).

DISPLAY STRUCTURE NODE CREATED
SET CONTrast operation node.

RM1-120 Reference Materials

n

INPUT FOR UPDATING NODE

name

Real <1> Changes contrast

SET CONTRAST

u390284

EXAMPLE

A:
B:

SET CONTrast to O THEN B;
VECtor_list ... ;

{This is a minimum contrast setting.}

Command Summary

SET CONTRAST
(continued)

RM1-121

SET DEPTH_CLIPPING

TYPE
VIEWING — Appearance Attributes

FORMAT

name := SET DEPTH _CLipping switch [APPLied to namel];

DESCRIPTION

-Enables/disables Z-plane (depth) clipping.

PARAMETERS
switch — ON or OFF.

namel — Structure affected.

DEFAULT
SET DEPTH_CLipping OFF;

NOTE

With depth clipping on (TRUE), data between the eye and the front
clipping plane will be clipped, data between the front clipping plane and
back clipping plane will appear with an intensity gradient, and data be-
hind the back clipping plane will be clipped.

With depth clipping off (FALSE), data between the eye and front clip-
ping plane will appear at full intensity, data between the front clipping
plane and back clipping plane will appear with an intensity gradient, and
data behind the back clipping plane will appear at minimum intensity.

DISPLAY STRUCTURE NODE CREATED
SET DEPTH_CLipping operation node.

RM1-122 Reference Materials

W

ﬂ SET DEPTH_CLIPPING
(continued)

INPUT FOR UPDATING NODE

name

} Boolean <1> Disables (F)/enables

(T) depth clipping

SET DEPTH_CLIPPING

U390285

EXAMPLE

(\ A:= SET DEPTH_CLipping ON THEN B;
B: e

o

{This enables Z clipping.}

™ |

Command Summary RM1-123

SET DISPLAYS

TYPE
VIEWING — Appearance Attributes

FORMAT
name := SET DISPlays ALL switch [APPLied to namel]:
name := SET DISPlay n[,m...] switch [APPLied to name 1];
DESCRIPTION

Sets the scope which receives display information to on/off.

PARAMETERS
switch — ON or OFF

n[,m...] — 0,1,2,3. Numeric designation for PS 390 Scope.

namel — structure to be displayed

NOTE
The PS 390 only supports Scope 0.

DEFAULT

SET DISPLAY O ON;

DISPLAY STRUCTURE NODE CREATED
SET DISPlay operation node

RM1-124

Reference Materials

)

SET DISPLAYS
(continued)

INPUT FOR UPDATING NODE

name

Turns indicated
displays ON(T)
or OFF(F)

Boolean <1>

SET DISPLAY(S)

U390460

EXAMPLE

A:=SET DISPlay O ON THEN B;
B:=VECtor_list...;

{This channels B to be displayed on scope 0}

Command Summary RM1-125

SET INTENSITY

TYPE
VIEWING — Viewport Specification

FORMAT

name := SET INTENsity switch imin:imax [APPLied to namel];

DESCRIPTION

Specifies intensity variation for depth cueing, and may be used to override
the intensity specification associated with the VIEWPORT command or pre-
vious SET INTENsity commands.

PARAMETERS

switch — Two settings may be specified: ON and OFF. The default setting
is ON, which enables the effect of this node in the display structure. OFF
disables the effect.

imin — A real number ranging from 0.0 to 1.0, imin represents the dimmest
intensity setting.

imax — A real number ranging from 0.0 to 1.0, imax represents the bright-
est intensity setting.

namel — Structure to be affected.

NOTE

The last SET INTENsity node that is ON in a display structure deter-
mines the intensity range.

DISPLAY STRUCTURE NODE CREATED
SET INTENSsity operation node.

RM1-126 Reference Materials

o

ﬁ SET INTENSITY
(continued)

INPUTS FOR UPDATING NODE

<1> T/F enable/disable the
effect of this node

Boolean

2D vector——»| <2> Change min:max intensity
range

SET INTENSITY

U390286

ﬁ EXAMPLE
Refer to Helpful Hint 15 in Section TT2.

ﬁ

Command Summary RM1-127

SET LEVEL_OF_DETAIL

TYPE
STRUCTURE — Attributes

FORMAT

name := SET LEVel_of_deta.il to n [APPLied to namel];

DESCRIPTION

Temporarily alters a global level of detail value during the traversal of a
specified branch of a display structure. These temporary settings may be
tested further down the display structure, possibly allowing conditioned ref-
erence to other structures (see IF LEVel of detail command). When tra-
versal of the branch is complete, the level of detail is restored to its original
value.

PARAMETERS

n — An integer from 0 to 32767 indicating the level of detail value.

name — Structure to be affected by the level of detail.

DEFAULT

The level of detail is initially 0.

NOTE

There is really only one global level of detail value; this command only
changes the value of the level of detail temporarily, while the namel
structure is being traversed.

DISPLAY STRUCTURE NODE CREATED
SET LEVel of detail operation node.

RM1-128 Reference Materials

ﬁ SET LEVEL_OF_DETAIL
(continued)

INPUT FOR UPDATING NODE

Integer ———>» <1> Changes the level OF
detail (0-32767)

SET LEVEL_OF_DETAIL

u390287

ﬁ EXAMPLE
A:= SET LEVel of_detail to 2 THEN B;
B:= IF LEVel_of_detail = 2 THEN C;
C:= ... ;

{A function network should be tied to A to change the level of detail
for conditional referencing of C.}

ﬁ |

Command Summary RM1-129

SET LINE_TEXTURE \/

TYPE
MODELING — Line Pattern

FORMAT

name := SET LINe_texture [AROUnd_corners] pattern [APPLied to namel];

DESCRIPTION

Specifies the line texture pattern to be used in drawing the vector lists that
appear below the node created by this command. There are up to 127 hard-
ware-generated line textures possible. The parameter pattern is an integer
between 1 and 127. The desired line texture is indicated by the setting or
clearing of the lower 7 bit positions in pattern when represented in binary.
An individual pattern unit is 1.1 centimeters in length. Some of the more
common patterns and their corresponding bit settings are shown below: u

Pattern Bit representation Line Texture (repeated twice)

127 1111111 Solid

124 1111100 0 ————— e Long Dashed

122 1111010 —_——— e = Long Short Dashed

106 1101010 _— = = —— = = Long Short Short Dashed
PARAMETERS

AROUnd_corners — Boolean value used to set a flag to indicate if the
specified line texture should continue from one vector to the next. If
AROUnd_corners is TRUE, the line texture will continue from one vector to
the next through the endpoint. If AROUnd_corners is FALSE, the line tex-
ture will start and stop at vector endpoints.

pattern — An integer between 1 and 127 that specifies the desired line
texture. When pattern is less that 1 or greater than 127, solid lines are
produced. |

v

namel — The name of the structure to which the line texture is applied.

RM1-130 Reference Materials

SET LINE_TEXTURE
(continued)

DEFAULT

The default line texture is a solid line.

NOTES

1. Since 7 bit positions are used, it is not possible to create a symmetric
pattern.

2. When line-texturing is applied to a vector, the vector that is specified is
displayed as a textured, rather than solid line. If the line is smaller than
the pattern length, then as much of the pattern that can be displayed
with the vector is displayed. If the line is smaller than the smallest ele-
ment of the pattern, then the line is displayed as solid.

3. The With Pattern and curve commands create multiple vectors in mem-
ory. To the line-texturing hardware, each vector in a pattern or curve is
seen as an individual vector. Line-texturing a patterned line or curve is
the same as line-texturing a number of small segments. Curves and pat-
terns affect line-texturing only in that they tend to create short vectors
that may be too short to be completely textured.

DISPLAY STRUCTURE NODE CREATED

This command creates a line texture operation node with line texture to be
applied to all vectors below in the display structure hierachy. Sending a
Boolean value to input <1> of the node turns the continuous texture feature
on or off. Sending an integer value to the node changes the pattern.

EXAMPLE
Refer to Helpful Hint 10 in Section 7T72.

Command Summary

RMI-131

SET PICKING

TYPE
MODELING — Picking Attributes

FORMAT

name := SET PICKing switch [APPLied to namel];

DESCRIPTION

Enables or disables picking for a specified structure.

PARAMETERS
switch — ON or OFF for enabling or disabling picking.

namel — Structure to be affected.

NOTES

1. For picking to be reported, there must also be a SET PICKing IDentifier
node in the structure to be pickable.

2. Refer also to SET PICKing LOCation and SET PICKing IDentifier.

DISPLAY STRUCTURE NODE CREATED

SET PICKing operation node (information to enable/disable hardware pick-
ing).

RM1-132 Reference Materials

ﬂ

™

SET PICKING
(continued)

INPUT FOR UPDATING NODE

Boolean <1> Enable (TRUE)/disable
(FALSE) picking of structure

that follows

SET PICKING

EXAMPLE

A:= SET PICKing OFF THEN B;
B: ey

{A function network should be tied to A to SET PICKing ON when needed
in order to make structure B pickable.}

Command Summary RM1-133

RM1-134

SET PICKING IDENTIFIER

TYPE
MODELING — Picking Attributes

FORMAT

name := SET PICKing IDentifier = id name [APPLied to namel];

DESCRIPTION

Specifies textual information that will be reported back if a pick occurs
further down the structure namel. Nested pick identifier names are all re-
ported, separated by commas.

PARAMETERS

id_name — Text that will be reported if a pick occurs anywhere within the
structure namel. This must be a legal PS 390 name.

namel — Structure to which the pick ID applies.

NOTES

1. At least one pick ID must precede any pickable entity for picking to be
reported.

2. id_name cannot be updated by a function network.

DISPLAY STRUCTURE NODE CREATED
SET PICKing IDentifier operation node.

EXAMPLE

A:= SET PICKing OFF THEN B;
B:= SET PICKing IDentifier = Structure C THEN C;
C:= VECtor_list ... ;

{If a vector in C is picked, the ID name reported in the pick list will
be Structure_C.}

Reference Materials

"

ﬁ SET PICKING LOCATION

TYPE
MODELING — Picking Attributes

FORMAT

name := SET PICKing LOCation = x,y size_x,size_y;

DESCRIPTION

Specifies a rectangular picking area at (x,y) within the current viewport.
The rectangle is bounded by (x > size_x) and (y > size_y).

If an appropriate picking network is set up and a pick-sensitive vector list
(vectors or dots) is drawn within the pick location, it will be reported as
picked.

ﬁ PARAMETERS

x,y — The center of the pick location.

size_x,size_y — Offsets from the x,y center specifying the bounds of the
picking rectangle (the rectangle bounds must be within the range) 0-1.

DEFAULT

A default pick location is set up in the configuration file that is loaded when
the system is booted. The x,y center is tied to the position of the data tablet
stylus, and size_x,size_y are both set to .01, (i.e., a box whose dimensions
are .02 on each side).

NOTES

1. In most applications, the picking location needs to be moveable, so the
x,y center is usually updated by a function network that specifies where
the center should be.

2. The data tablet’s x,y value is usually the source for specifying the pick

ﬁ location center.

Command Summary RM1-135

SET PICKING LOCATION \/
(continued)

DISPLAY STRUCTURE NODE CREATED

SET PICKing LOCation operation node (information for hardware picking).

INPUTS FOR UPDATING NODE

2D vector <1> x, y center

2D vector ——»| <2> size_x, size_y boundary
offsets

SET PICKING
LOCATION

U390289

ASSOCIATED FUNCTION
F:PICK

EXAMPLE

PICK_LOCATION := SET PICKing LOCation = 0,0 .02,.02;

{This redefines the default picking area set up in the configuration
file, making the picking area twice as large as the default.}

\/

RM1-136 Reference Materials

ﬁ

SET PRIORITY

TYPE

GENERAL — Command and Control Status

FORMAT

Set Priority of name to 1i;

DESCRIPTION

This command sets the execution priority of a function (name) to some
integer (i) between 0 and 15. All functions instanced by the user and most
functions instanced by the system at boot time have a default value of 8.
Lowering a function’s priority number raises its priority and causes it to run
before any functions with a larger number. A typical use of this command is
to give a function a priority number greater than 8 so it runs only when no
other functions are running (i.e., functions at default priority 8). Assigning
priority numbers less than 8 could be potentially very “dangerous,” since
their execution could lock up the system.

Since this command will affect the execution of other functions in a func-
tion network, careful consideration must be given to its use. E&S does not
recommend the use of this procedure by anyone who does not have a com-
plete understanding of functions and their interrelationships.

Command Summary

RMI-137

SET RATE \/

TYPE
STRUCTURE — Attributes

FORMAT

name := SET RATE phase_on phase_off [initial_state] [delay]
[APPLied to namell];

DESCRIPTION

Temporarily alters two global duration values (phase_on and phase_off, in
refresh frames) during the traversal of a specified branch of a display struc-
ture. These temporary settings may be tested further down the display struc-
ture, possibly allowing conditioned reference to other structures (see IF
PHASE command). When traversal of the branch is complete, the durations
are restored to their original values.

PARAMETERS u

phase_on,phase_off — Integers designating the durations of the on and off
phases, respectively, in refresh frames.

initial_state — ON or OFF, indicating the initial phase.

delay — Integer designating the number of refresh frames in the
initial_state.

namel — Structure to follow the SET RATE command.

DEFAULT

The default phase is OFF and never changes unless a SET RATE node is
encountered.

NOTES

1. This structure attribute is useful for controlling blinking, the alternating
display of two structures, the alternating display of a single structure in
two different views (stereo), etc.

RM1-138 Reference Materials

ﬁ SET RATE
(continued)

2. Note that there are only two rate values (phase_on, phase_off) and that
this command only changes those values for the structure(s) that follow.

DISPLAY STRUCTURE NODE CREATED
SET RATE operation node.

INPUTS FOR UPDATING NODE

Integer ———>»/<1> changes the phase_on value
Integer ———>f <2> changes the phase_off viaue

ﬂ Boolean ——>»|<3> Changes the initial_state
ON(T)/OFF (F)

Integer ———>»\<4> Changes the delay

SET RATE
U390290

EXAMPLE

A:= BEGIN_Structure
rate:= SET RATE 10 100;
IF PHASE is ON THEN B;
END_Structure;

B:= VECtor_list ... ;

{If A is DISPlayed, then vector list B will be displayed for 10 frames
and not displayed for 100 frames repetitively.}

Command Summary RM1-139

SET RATE EXTERNAL

TYPE
STRUCTURE — Attributes

FORMAT

name := SET RATE EXTernal [APPLied to namel];

DESCRIPTION

Sets up a structure that can be used to alter the PHASE attribute via an
external source, such as a function network or a message from the host
computer. This PHASE attribute can be tested further down within the dis-
play structure, allowing conditional references to other structures (see IF
PHASE command). See also the SET RATE command which alters the
PHASE attribute based on refresh cycles.

PARAMETER

namel — Structure to follow the SET RATE EXTernal command.

DEFAULT
The default phase is ON when a SET RATE EXTernal node is encountered.

NOTES

1. The PHASE attribute is changed by sending a Boolean value to input 1
of SET RATE EXTernal node.

2. See also notes for SET RATE command.

DISPLAY STRUCTURE NODE CREATED
SET RATE EXTernal operation node.

RM1-140 Reference Materials

W

ﬂ SET RATE EXTERNAL
(continued)

INPUT FOR UPDATING NODE

Boolean ———>»| <1> Changes the PHASE state
ON(T)/OFF (F)

SET RATE
EXTERNAL

U390291

ﬁ EXAMPLE

A:= BEGIN_Structure
Rate:= SET RATE EXTernal;
IF PHASE is ON THEN B;
END_Structure;

B:= VECtor_list ... ;

{A function network should be connected to A.Rate to set the PHASE ON
and OFF in order to conditionally display vector list B.}

n |

Command Summary RM1-141 |

TYPE

FUNCTION — Immediate Action

FORMAT

SETUP CNESS queue_type <i>name;

DESCRIPTION

SETUP CNESS

Allows you to specify whether or not an input queue to a function instance
is to be a constant queue.

PARAMETERS

queue_type — TRUE sets the queue type to constant, FALSE sets it to

active.

name — Most intrinsic function names, except those listed in the notes.

NOTES

1. This feature should only be used when a function is first instanced. Input
queues should not be changed between active and constant after the

function has started processing data.

2. The SETUP CNESS command can be used for all intrinsic functions
except the following.

RM1-142

F:BOOLEAN_CHOOSE
F:CI(n)
F:CLCSECONDS
F:CLFRAMES
F:CLTICKS
F:GATHER_GENFCN
F:INPUTS_CHOOSE(n)
F:K2ANSI

Reference Materials

W/

m

SETUP CNESS
(continued)

o F:LINEEDITOR
o F:LIST

e F:PICK

e F:RASTER

o F:TEDUP

e F:VT10

3. Functions which specify their queue characteristics by their name, e.g.,
F:ADDC, will continue to be instanced with their default active and con-
stant queues.

Command Summary

RM1-143

SETUP INTERFACE

TYPE
GENERAL — Command and Control Status

FORMAT
SETUP INTERFACE portn/option=<n>;

DESCRIPTION
This command can be used to change any of the default values. These new
values must be within the acceptable range of values for data characteris-
tics.

PARAMETERS
portn — the port being reconfigured

option — the name of the value being changed

<n> — a legal parameter that is specific to the option

NOTES
1. In using this command, the port names are as follows:

e Port 1 is designated port 10
e Port 3 is designated port 30
e Port 4 is designated port 40
e Port 5 is designated port 50

2. The PS 390 does not have to be in Configure mode for this command.

EXAMPLE

SETUP INTERFACE portl10/SPEED=300;

In this example, port 10 is the port being reconfigured, SPEED refers to the
baud rate, and 300 is a legal speed for the communications interface. The
effective baud rate for port10 is changed to 300.

Refer to Helpful Hint 14 in Section 772.

RM1-144 Reference Materials

ﬁ SETUP PASSWORD

TYPE
GENERAL — Command and Control Status

FORMAT

SETUP PASSWORD password;

DESCRIPTION

This command allows you to establish and modify the password required to
enter the Configure mode. This command can be included in the SITE.DAT
file, or may be set up at any time. This command can only be entered while
in Configure mode.

PARAMETER
‘ ’ password — the established string

Command Summary RM1-145 |

SHOW INTERFACE W/

TYPE
GENERAL — Command and Control Status

FORMAT

SHOW INTERFACE <name>;

DESCRIPTION

This command can be used to check the values of a given port.

The menu available with the SHOW INTERFACE command when no pa-
rameter is given lists only those parameters that are relevant to the inter-
face. For example, in synchronous mode, the X ON/X_OFF parameter
would not be listed.

PARAMETER u

<name> — the port being checked

NOTES
1. In using this command, the port names are as follows:

 Port 1 is designated port 10
e Port 3 is designated port 30
* Port 4 is designated port 40
e Port S is designated port 50

2. The PS 390 does not have to be in Configure mode for this command.

u

RM1-146 Reference Materials

&

SOLID RENDERING

TYPE
MODELING — Data Structuring

FORMAT

name := SOLID rendering [APPLied to namel];

DESCRIPTION

Declares a polygon object to be a solid and marks the object so that render-
ing operations can be performed on it. This command creates a rendering

node.

PARAMETER
namel — Either a POLYGon node or an ancestor of one or more POLYGon
nodes.

NOTES

1. If non-POLYGon data nodes (VECtor list, CHARacters, LABELS,
POLYnomial, and BSPLINE) are included in namel, these data objects
are displayed along with the polygon objects prior to rendering but are
omitted from renderings. The rendering operations have no effect on
these data nodes. However, special vector lists output from
F:XFORMDATA used to display spheres and lines in the static viewport
can be used and will be displayed if rendered.

2. IF and SET Conditional_BIT, IF and SET LEVel of detail, INCRement
LEVel_of_detail, DECrement LEVel of detail, IF PHASE, SET RATE,
SET RATE EXTernal, SET DEPTH_CLipping, and BEGIN_Structure ...
END_Structure may be placed between a rendering node and its data. A
rendering takes into account any effects of these nodes at the time the
request is made; for example, if [F PHASE and SET RATE are being
used to blink an object and that object is “off” at the moment the re-
quest is made, the object is excluded from the rendering.

The nodes in the above paragraph may also be placed above the render-
ing node.

Command Summary

RMI-147

RM1-148

SOLID_RENDERING
(continued)

3. The transformations ROTate, TRANslate, SCALE, Matrix_2X2, Ma-

trix_3X3, Matrix_4X3, and LOOK may be placed between a rendering
node and its data node(s). However, these nodes should be used with
caution, since, like the operation nodes mentioned above, their effects
will be incorporated into renderings, and precision problems may result.

Since most vertices in an object usually belong to more than one poly-
gon, each vertex must be defined with the same numerical value in each
of its polygons; otherwise, precision discrepancies may cause inaccurate
renderings. The transformation nodes mentioned above may also be
placed above the rendering node.

. The five nodes WINDOW, VIEWport, EYE, Field Of View, and Ma-

trix_4X4 should not, in general, be made descendants of a rendering
node. Like other transformations, these five are incorporated into the
output data from a rendering operation. However, this rendered data is
generally displayed within a framework that already includes global
4x4-matrix transformations of its own. Including these transformations
as part of the rendering, then, usually has the net effect of applying an
unwanted double-WINDOW (double-VIEWport, etc.) to the rendered ob-
ject.

. SOLID_rendering, SURFACE rendering, and SECTioning_plane may

not be descendants of a rendering node, especially if multiple-instanced
rendering nodes are involved. If this rule is not observed, bad renderings
or a system crash may result. The system does not check for this condi-
tion.

. Other nodes, including character transformations and the SET nodes

(SET RATE, SET COLOR) not mentioned above, are ignored by render-
ing operations. Data nodes other than POLYGon are also ignored.

. Before an object can be rendered, its rendering node must be part of a

structure which is DISPlayed. If the object itself is DISPlayed but its
rendering node is not, no renderings can be created.

Reference Materials

v

U

)

10.

11.

12.

13.

14.

SOLID_RENDERING
(continued)

. Any input to input <1> of a rendering node causes an output. Inputs sent

to input <2> will not cause an output to be sent. If output <1> has not
been connected, and an integer, string, or Boolean is sent to input <1>, a
message will appear on the screen upon successful completion of the
rendering operation. An error message will appear if the rendering was
not completed.

. Input <3> of the rendering node accepts a transformed vector list (from

output <1> of F:XFORMDATA) and interprets the vectors as “moves”
and “draws” for raster-line rendering.

Input <4> of the rendering node accepts a transformed vector list (from
output <1> of F:XFORMDATA) and interprets each vector as an x,y,z
spherical primitive.

Input <5> of the rendering node accepts the name of the original vector
list (sent to F:XFORMDATA with its output <1> sent to input <4> of the
rendering node) to enable accurate scaling for rendering raster lines and
spheres.

Toggling between the current rendering and the original object (sending
a fix(0) to input <1> of the SOLID_rendering or SURFACE _rendering
node) works only after requesting backface pictures, sectioned pictures,
or cross-sectioned pictures.

Sending a fix(7) to input <1> of the SOLID rendering or SUR-
FACE_rendering node produces a type of Phong shading. Phong shading
is made by interpolating the surface normal between vertices of the poly-
gon and then calculating the correct lighting at each pixel. This is the
highest quality of smooth shading currently supported.

Sending a fix(8) to input <1> of the SOLID rendering or SUR-
FACE_rendering node will produce a type of Gouraud shading. Gouraud
shading is made by calculating the correct lighting at the vertices of the
polygon only and interpolating the intensity across the polygon to pro-
duce a smooth-shaded picture. An image produced with Gouraud shad-
ing will not be the quality of an image produced with Phong shading, but
the Gouraud-shaded image will be produced at a faster rate. The user
must supply normals at each of the polygons for the object to be smooth-
shaded.

Command Summary

RM1I1-149

SOLID_RENDERING
(continued)

15. Sending data to a non-existent rendering node input will cause the sys-
tem to crash.

DISPLAY STRUCTURE NODE CREATED

Rendering operation node.
INPUTS FOR UPDATING NODE

Instance name

Integer, String, »/<1> Boolean
or Boolean

Boolean for Polygon ——f.2
Solid/Surface <2

XFORMDATA ———[<3>
Vector List (raster Lines)

XFORMDATA \

Vector List (spherical data)

Name of Original
Vector List

SOLID_rendering

U390292

NOTES ON INPUTS

Input <1>
0: Toggles between the current rendering and the original object in
the dynamic viewport.

1: Creates and displays a cross-section of an object (solid only) de-
fined by the sectioning plane in the dynamic viewport.

2: Creates and displays a sectioned rendering in the dynamic view-
port.

3: Creates and displays a rendering using backface removal (solid
only) in the dynamic viewport.

RM1-150 Reference Materials

m

S AN

String:
False:

True:

Input <2>

True:
False:

Input <3>

Input <4>

Input <35>

Output <1>

True:
False:

Command Summary

SOLID_RENDERING
(continued)

Creates and displays a rendering using hidden-line removal in the
static viewport.

Generates a wash-shaded image in the static viewport.
Generates a flat-shaded image in the static viewport.
Generates a Phong-shaded image in the static viewport.
Generates a Gouraud-shaded image in the static viewport.

Causes the current rendering to be saved under the name given in
the string (dynamic viewport only).

Sets the original view. The original descendent structure of the
rendering operation node is displayed.

Sets the rendered view. The rendered view of the original descen-
dent structure of the operation rendering node.

Declares the object to be a solid.
Declares the object to be a surface.

Accepts a transformed vector list from output <1> of
F:XFORMDATA to define raster lines.

Accepts a transformed vector list from output <1> of
F:XFORMDATA to define spherical centers.

Accepts the original vector list to enable accurate spherical scaling.

Rendering is displayed.
Rendering is not displayed.

RM1I-151

STANDARD FONT

TYPE

VIEWING — Appearance Attributes
FORMAT

name := STANdard FONT [APPLied to namel];

DESCRIPTION
Establishes the standard PS 390 95-character font as the working font.

PARAMETER

namel — Structure to use the standard font.

DEFAULT

If no other font is specified, the standard font is the default font.

NOTE

This command is necessary only if the standard font is to be used in a
display structure that uses another font higher in the same structure.

DISPLAY STRUCTURE NODE CREATED

Character-font pointer node.

EXAMPLE

Slant := BEGIN_Font
(character definitions)
END_Font;

A := BEGIN_Structure
character FONT Slant;
CHARacters “HERE’;
STANdard FONT;
CHARacters 0,-2 “HERE’;

END_Structure;

DISPlay A;

{"HERE’ at 0,0 will be in the Slant font “HERE’ at 0,-2 will be in the
standard font.}

RM1-152 Reference Materials

W/

\

ﬁ

STORE

TYPE
FUNCTION

FORMAT

STORE option IN namel;

DESCRIPTION

Sends a value to input <1> of function instance, node, or variable namel.

PARAMETERS

option — See SEND command.

namel — function instance name, node name, or variable name to receive
value on input <1>.

NOTE

This command is another way of doing a special case of the SEND com-
mand. It is synonymous with SEND option TO <1>namel;

EXAMPLE

Timer:= F:CLCSECONDS;
STORE FIX(10) IN Timer;

{This is equivalent to: SEND FIX(10) TO <1>Timer;}

Command Summary RMI-153

SURFACE_RENDERING

TYPE
MODELING — Data Structuring

FORMAT

name := SURFACE_rendering [APPLied to namel];

DESCRIPTION

Declares a polygon object to be a surface and marks the object so that
rendering operations can be performed on it. This command creates a ren-
dering node.

PARAMETER
namel — Either a POLYGon node or an ancestor of one or more POLYGon
nodes.

NOTES

1. If non-POLYGon data nodes (such as VECtor_list, CHARacters, LA-
BELS, POLYnomial, and BSPLINE) are included in namel, these data
objects are displayed along with the polygon objects prior to rendering
but are omitted from renderings. The rendering operations have no ef-
fect on these data nodes. However, special vector lists output from
F:XFORMDATA used to display spheres and lines in the static viewport
can be used and will be displayed if rendered.

2. IF and SET conditional_BIT, IF and SET LEVel of detail, INCRement
LEVel_of_detail, DECrement LEVel of detail, IF PHASE, SET RATE,
SET RATE EXTernal, SET DEPTH_CLipping, and BEGIN_Structure ...
END_Structure may be placed between a rendering node and its data. A
rendering takes into account any effects of these nodes at the time the
request is made; for example, if IF PHASE and SET RATE are being
used to blink an object and that object is “off” at the moment the re-
quest is made, the object is excluded from the rendering.

The nodes in the above paragraph may also be placed above the render-
ing node.

RMI1-154 Reference Materials

-

ﬁ

SURFACE_RENDERING
(continued)

3. The transformations ROTate, TRANslate, SCALE, Matrix_2X2, Ma-

trix_3X3, Matrix_4X3, and LOOK may be placed between a rendering
node and its data node(s). However, these nodes should be used with
caution, since, like the operation nodes mentioned above, their effects
will be incorporated into renderings, and precision problems may result.

Since most vertices in an object usually belong to more than one poly-
gon, each vertex must be defined with the same numerical value in each
of its polygons; otherwise, precision discrepancies may cause inaccurate
renderings. The transformation nodes mentioned above may also be
placed above the rendering node.

. The five nodes WINDOW, VIEWport, EYE, Field Of View, and Ma-

trix_4X4 should not, in general, be made descendants of a rendering
node. Like other transformations, these five are incorporated into the
output data from a rendering operation. However, this rendered data is
generally displayed within a framework that already includes global
4x4-matrix transformations of its own. Including these transformations
as part of the rendering, then, usually has the net effect of applying an
unwanted double-WINDOW (double-VIEWport, etc.) to the rendered ob-
ject.

. SOLID_rendering, SURFACE rendering, and SECTioning plane may

not be descendants of a rendering node, especially if multiple-instanced
rendering nodes are involved. If this rule is not observed, bad renderings
or a system crash may result. The system does not check for this condi-
tion.

. Other nodes, including character transformations and the SET nodes

(SET RATE, SET COLOR) not mentioned above, are ignored by render-
ing operations. Data nodes other than POLYGon are also ignored.

. Before an object can be rendered, its rendering node must be part of a

structure which is DISPlayed. If the object itself is DISPlayed but its
rendering node is not, no renderings can be created.

Command Summary

RM1-155

10.

11.

12.

13.

14.

RMI-156

SURFACE_RENDERING
(continued)

. Any input to input <1> of a rendering node causes an output. Inputs sent

to input <2> will not cause an output to be sent. If output <1> has not
been connected, and an integer, string, or Boolean is sent to input <1>, a
message will appear on the screen upon successful completion of the
rendering operation. An error message will appear if the rendering was
not completed.

. Input of the rendering node accepts a transformed vector list (from out-

put <1> of F:XFORMDATA) and interprets the vectors as “moves” and
“draws” for raster-line rendering.

Input <4> of the rendering node accepts a transformed vector list (from
output <1> of F:XFORMDATA) and interprets each vector as an x,y,z
spherical primitive.

Input <5> of the rendering node accepts the name of the original vector
list (sent to F:XFORMDATA with its output <1> sent to input <4> of the
rendering node) to enable accurate scaling for rendering lines and
spheres.

Toggling between the current rendering and the original object (sending
a fix(0) to input <1> of the SOLID_rendering or SURFACE_rendering
node) works only after requesting backface pictures, sectioned pictures,
or cross-sectioned pictures.

Sending a fix(7) to input <1> of the SOLID_rendering or SUR-
FACE _rendering node produces a type of Phong shading. Phong shading
is made by interpolating the surface normal between vertices of the poly-
gon and then calculating the correct lighting at each pixel. This is the
highest quality of smooth shading currently supported.

Sending a fix(8) to input <1> of the SOLID_rendering or SUR-
FACE_rendering node will produce a type of Gouraud shading. Gouraud
shading is made by calculating the correct lighting at the vertices of the
polygon only and interpolating the intensity across the polygon to pro-
duce a smooth-shaded picture. An image produced with Gouraud shad-
ing will not be the quality of an image produced with Phong shading, but
the Gouraud-shaded image will be produced at a faster rate. The user
must supply normals at each of the polygons for the object to be smooth-
s<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>