
REFERENCE MATERIALS

The Reference Materials RMl —4 and RMS-16 provide reference information for the
user of the PS 390 system. Summaries of the ASCII commands, intrinsic functions,
initial function instances and GSRs are contained in the first part of the volume.
Included in the second part of the volume are sections covering interactive devices,
interfaces and options, host input data flow, system function network diagrams,
diagnostic utilities, system errors and host communications. The final section con-
tains an index to the complete PS 390 Document Set.

RM 1 Command Summary

This section contains a summary of the ASCII form of each PS 390 com-
mand. The long form and acceptable short form of each command are
given, together with information on parameters, default values, and other
requirements. Where a command creates a node in a display structure, the
type of node is indicated. If that node can be updated with values from an
interactive device, the inputs to the node and acceptable data types are
shown in the diagram. Examples of the use of commands are given when
appropriate, and related information is included as notes. The summary is
alphabetized for ease of use. Appendices list commands by classification,
give the syntax of each command, and provide across-reference to the
GSRs found in Section RM4.

RM2 Intrinsic Functions

This section contains a summary of information about each PS 390 intrinsic
user function and each intrinsic system function. Functions are represented
as boxes with numbered inputs and outputs and acceptable data types. De-
fault values, associated functions, notes and examples are listed when ap-
propriate. An appendix lists the functions by classification.

RM3 Initial Function Instances

This section contains a summary of information about PS 390 initial func-
tion instances. Initial function instances are represented as boxes with num-
bered inputs and outputs and acceptable data types. Default values, associ-

ated functions, notes and examples are listed when appropriate. An

appendix lists the initial function instances by classification.

RM4 Graphics Support Routines

This section contains a summary of the Graphics Support Routines (GSRs).
GSRs corresponding to ASCII commands and utility and raster routines are
included. Descriptions of the VAX and IBM FORTRAN, VAX and IBM
Pascal, and UNIX/C GSRs are listed. An appendix provides a cross-
reference to the ASCII commands documented in Section RMl.

RMl. COMMAND SUMMARY

coNTENTs

APPLIED TOITHEN 3
ATTRIBUTES 4
BEGIN... END 7
BEGIN_FONT...END_FON'T g
BEGIN_S...END_S 10
BSPLINE 13
CANCEL XFORM 16
CHARACTER FONT 17
CHARACTER ROTATE 1 g
CHARACTERS 2 0
CHARACTER SCALE 22
COMMAND STATUS 24
CONFIGURE 25
CONNECT 26
COPY 27
DECREMENT LEVEL OF DETAIL 29
DELETE 30
DISCONNECT 31
DISPLAY 32
EF~ASE PATTERN FROM 33
EYE 34
FIELD_OF_VIEW 3 6
FINISH CONFIGURATION 38
FOLLOW WITH 39
FORGET (Structures) 41
FORGET (Units) 42
(Function Instancing) 43
GIVE_UP_CPU 44
IF CONDITIONAL BIT 45
IF LEVEL OF DETAIL 47

t

IF PHASE 49
ILLUMINATION 50
INCLUDE 52
INCREMENT LEVEL OF DETAIL 53
INITIALIZE 54
INSTANCE OF 56
LABELS 57
LOAD VIEWPORT 59
LOOK 61
MATRIX_2x2 64
MATRIX_3x3 66
MATRIX_4x3 68
MATRIX 4x4 70
(Naming of Display Structure Nodes) 72
NIL 73
OPTIMIZE MEMORY 74
OPTIMIZE STRUCTURE;...END OPTIMIZE; 75
PATTERN 77
PATTERN WITH 78
POLYGON 79
POLYNOMIAL 82
PREFIX WITH 84
RATIONAL BSPLINE 85
RATIONAL POLYNOMIAL 89
RAWBLOCK 92
REBOOT 94
REMOVE 95
REMOVE FOLLOWER 96
REMOVE FROM 97
REMOVE PREFIX 9 8
RESERVE WORKING STORAGE 99
!RESET 101
ROTATE 102
SCALE x.04
SECTIONING PLANE 106
SELECT FILTER 108
SEND 110
SEND number*mode 111
SEND VL 112
SET BLINKING ON/OFF 113
SET BLINK RATE 114
SET CHARACTERS 115

it

SET COLOR 116
SET CONDITIONAL BIT 118
SET CONTRAST 120
SET DEPTH CLIPPING 122
SET DISPLAYS 124
SET INTENSITY 126
SET LEVEL OF DETAIL 128
SET LINE TEXTURE 130
SET PICKING 132
SET PICKING IDENTIFIER 134
SET PICKING LOCATION 135
SET PRIORITY 13 7
SET RATE 13 8
SET RATE EXTERNAL 140
SETUP CNESS 142
SETUP INTERFACE 144
SETUP PASSWORD 145
SHOW INTERFACE 146
SOLID_RENDERING 147
STANDARD FONT 152
STORE 153
SURFACE_RENDERING 154
TEXT SIZE 159
TRANSLATE 161
VARIABLE 163
VECTOR LIST 164
VIEWPORT 169
WINDOW 172
WITH PATTERN 174
WRITEBACK 176
XFORM 178

Appendix A
PS 390 Commands by Category 180

Appendix B
PS 390 Command Syntax 185

Appendix C
ASCII Commands
and Corresponding GSRs 197

ASCII Character Code Set 205

Section RM1

Command Summary

This section is a PS 390 command language reference for graphics programmers
who are familiar with the basic operation of the PS 390. It contains a summary of
the PS 390 commands. The commands are ordered alphabetically on a letter-by-
letter basis. The following information, where relevant, is given for each com-
mand:

• Name

• Category and subcategory

• Syntax

• Description

• Parameters

• Defaults

• Note s

• Display structure node created

• Inputs for updating node

• Notes on inputs

• Associated functions

• Examples

Appendix A contains a summary of the commands grouped into categories. Ap-
pendix Bcontains an alphabetical listing of the command syntax. Appendix C
contains a list of the commands and the corresponding GSRs.

This section also contains the following system commands.

The SETUP PASSWORD, CONFIGURE, and FINIISH CONFIGURATION com-
mands allow you to enter and exit the configure mode.

E&S reserves the right to change the content of the CONFIG.DAT file and the
implementation of the CONFIG.DAT file without prior notice. Use of any named

Command Summary RM1-1

entities or networks instanced in configure mode that have names identical to any
names found in the CONFIG.DAT file will result in unpredictable system behavior.

E&S will not use any names that are preceded with the three characters CM_.

The SHOW INTERFACE ~ and SETUP INTERFACE commands are used to show
or change the default values on ports 1 through 5 on the PS 390 control unit.

The SET PRIORITY command sets the execution priority of a function.

Since some commands require the ASCII decimal equivalent of characters in their
parameters, an ASCII chart with decimal values is included after the appendices.

RMI-2 Reference Materials

APPLIED TO/THEN

TYPE

STRUCTURE —Explicit Referencing

FORMAT

name := operation command [APPLied to namel];

name := operation command [THEN namel];

DESCRIPTION

Associates a command to the structure which is to be affected by the com-

mand.

PARAMETERS

operation_command — A command that creates an operation node in a
display structure.

namel —Structure that will be affected by the command.

NOTE

APPLied to and THEN are synonyms. The terms are completely inter-
changeable.

DISPLAY STRUCTURE NODE CREATED

The command node with a pointer to the structure name 1.

EXAMPLE

A:= ROTate in X 45 THEN B;

B:= VECtor list n=5 1,1 -1,1 -1,-1 1,-1 l,l;

Command Summary RMI-3

ATTRIBUTES

TYPE

RENDERING —Data Structuring

FORMAT

name := ATTRIBUTES attributes [AND attributes];

DESCRIPTION

Specifies the various characteristics of polygons used in the creation of
shaded renderings. For a detailed explanation of defining and interacting
with shaded images, consult Section GT13 Polygonal Rendering.

PARAMETERS

attributes —The attributes of a polygon are defined as follows:

[COLOR h [, s [, i]]] [DIFFUSE d] [S PECULAR s] [OPAQUE t]

where

h — is a real number specifying the hue in degrees around the
color wheel. Pure blue is 0 and 360, pure red is 120, and pure
green is 240.

s — is a real number specifying saturation. No saturation (gray) is
0 and full saturation (full toned colors) is 1.

i — is a real number specifying intensity. No intensity (black) is 0,
full intensity (white) is 1.

d — is a real number from 0 to 1 specifying the proportion of color
contributed by diffuse reflection versus that contributed by
specular reflection. Increasing d makes the surface more matte.
Decreasing d makes it more shiny.

s — is an integer from 0 to 255 which adjusts the concentration of
specular highlights. The more metallic an object is, the more con-
centrated the specular highlights.

t — is a real number from 0 to 1 specifying the transparency of the
polygon, with 1 being fully opaque and 0 being fully transparent
(invisible).

RMI-4 Reference Materials

ATTRIBUTES
(continued)

DEFAULTS

If no color is specified, the default is white (s = 0, i = 1). If saturation and
intensity are not specified, they default to 1. If only hue and saturation are
specified, intensity defaults to 1. If no diffuse attribute is given, d defaults
to .75. If no specular attribute is given, s defaults to 4. If no opaque attrib-
ute is given, the default is 1 (fully opaque) .

NOTES

1. Polygon-attribute nodes are created in mass memory but are not part of
a display structure. The attributes specified in an ATTRIBUTES com-
mand are assigned to polygons which include a ATTRIBUTES
clause. The attributes specified in a WITH ATTRIBUTES clause of a
POLYGON command apply to all subsequent polygons until superseded
by another WITH ATTRIBUTES clause. If no WITH ATTRIBUTES op-
tion is given for a polygon node, default attributes are assumed. The
default attributes are 0, 0,1 for COLOR, 0.75 for DIFFUSE, 4 for
SPECULAR, and 1 for OPAQUE.

2. The various attributes may be changed from a function network via in-
puts to an attribute node, but the changes have no effect until a new
rendering is created.

3. A second set of attributes may be given after the word AND in the
ATTRIBUTES command. These attributes apply to the obverse side of
the polygons) concerned. In other words, the two sides of an object may
have different attributes. The attributes defined in the first attributes
pertain to front-facing polygons. Those in the AND attributes clause per-
tain to back-facing polygons.

DISPLAY STRUCTURE NODE CREATED

Polygon-ATTRIBUTES definition node. This node resides in mass memory,
but is not included in a display structure.

Command Summary RMl -S

ATTRIBUTES

(continued)

INPUTS FOR UPDATING NODE

name

Real, 2D, 3D
Real

Integer
Real

Real, 2D, 3D
Real

Integer
Real

NOTES ON INPUTS

<1> Updates hue, saturation, intensity
<2> Updates diffuse value
<3> Updates specular value
<4> Updates opaque value

• Undefined

<11 > Updates hue, saturation, intensity
<12> Updates diffuse value
<13> Updates specular value
<14> Updates opaque value

Polygon Attributes

0390266

1. Inputs < 1 > and < 11 > accept a real number as hue, a 2D vector as hue
and saturation, and a 3D vector as hue, saturation and intensity.

2. Values sent to inputs <1>, <2>, and <3> specify the color and attrib-
utes for shading the front of the polygons) or for both sides if no
obverse attributes are given. (Values sent to inputs <11>, <12>, and
<13> specify the color and attributes for shading the obverse side of
the polygon.)

3. Inputs <4> and <14> accept a real number to update the opaque
value of the polygon's attributes.

4. If anything other than a 3D vector is sent to input <1> or <11>, de-
fault values for the other variables are assumed.

RMl-6 Reference Materials

BEGIN...END

TYPE

GENERAL —Command Control and Status

FORMAT

BEGIN

command;

command;

command;

END;

DESCRIPTION

Defines a "batch" of commands which take effect in a single screen update,
so that they appear to be executed simultaneously.

PARAMETER

command —Any PS 390 command.

NOTE

Although any command may be used inside a BEGIN...END structure,
only commands that create, display, or delete objects will happen "si-
multaneously."

EXAMPLE

BEGIN

DISPlay A;

A:= VECtor list N=5 l,l -1,l -1,-1 1,-1 1, 1;

DISPlay B;

B:= VECtor list N=4 0,0 1,0 1,1 0, 0;

END;

{A and B will be displayed simultaneously.}

Command Summary RMI - 7

BEGIN FONT...END FONT

TYPE

MODELING —Character Font

FORMAT

name := BEGIN Font

[C [0] : N=n {itemized 2D vectors} ;]

[C [i] : N=n {itemized 2D vectors} ;]

[C [127] : N=n {itemized 2D vectors} ;]

END Font;

DESCRIPTION

Defines alternative character fonts, using itemized 2D vector lists to de-
scribe each character. Up to 128 PS 390 character codes may be defined for
each font.

PARAMETERS

n —Number of vectors in 2D vector list.

i —Decimal ASCII code to be defined. The square brackets around the
ASCII number from 0 to 127 are required.

{itemized 2D vectors} —Vectors making up the ASCII character being de-
fined (P xl, yl, L x2, y2, etc.).

NOTES

1. Not all ASCII codes need to be defined for a font. Nothing is output for
an undefined character.

2. There is no restriction on the range of values for the 2D vector making
up a character, but for correct spacing and orientation to adjacent char-
acters, the range in X and Y should be kept between 0 and 1.

RMI-8 Reference Materials

BEGIN FONT...END FONT

(continued)

DISPLAY STRUCTURE NODE CREATED

Alternate-character-font definition node. This node resides in mass memory
but is not part of a display structure. To specify an alternate font, the char-
acter FONT command is used. This creates a character FONT node in a
display structure which points to the appropriate alternate font definition.

EXAMPLE

A := BEGIN Font

C[65]: N=5 P 0,0 L .9,0 L .9,.9 L 0,.9 L 0,0;

END Font;

B := BEGIN Structure

character FONT A;

CHARacters 'ABA';

END_Structure;

DISPlay B;

{Two squares - the new A - will appear right next to each other with

the lower left corner of the first at the origin. The letter B is not

defined in character FONT A, so nothing is DISPlayed for B. Note that

this example creates a special symbol (a square) rather then defining

an alternate character font.}

Command Summary RM1-9

BEGIN S...END S

TYPE

STRUCTURE —Implicit Referencing

FORMAT

name := BEGIN Structure

[namel:=] nameable command;

[namen:=] nameable command;

END Structure;

DESCRIPTION

Groups a set of viewing and/or modeling commands so that each element
does not need to be explicitly named and APPLied to the next structure in
line. This does not, however, prevent naming nested commands directly or
explicitly applying a command to another structure via APPLied to.

PARAMETERS

namel..namen —Optional names for individual commands inside the BE-
GIN S...END_S, allowing reference to these specific commands from else-
where (see Note 3). The PS 390 prefixes these names with the name of the
outer structure and a period (.). So, for example, the command defined as
namel in the structure is referenced as name.namel.

nameable_command —Nameable commands are those that can be pre-
fixed with "name :_", with the following exceptions:

• COMmand STATus can also be used.

• Intrinsic functions cannot be instanced.

• name := NIL; cannot be used.

NOTES

1. Essentially, any data structuring command except a function instancing
command can be used.

RMI-10 Reference Materials

BEGIN S...END S
(continued)

2. A non-data command inside a BEGIN_S...END_S is applied to every
node that follows in the structure unless it is explicitly APPLied to an-
other structure, in which case it only affects the structure APPLied to
(see examples).

3. If a command inside the structure is to be modified later by a function
network or from the host, it must be named so that it can be referenced.
Its referencing name is the name with all prefixes (e.g., name.namel).

DISPLAY STRUCTURE NODE CREATED

The various nodes created by the nameable commands linked together as
specified. The top node of this structure is name and is an instance node.

INPUTS FOR UPDATING NODE

The nodes that may be updated are created by those nameable commands
that are explicitly named (see note 3). For inputs, refer to the individual
command descriptions.

EXAMPLES

A:= BEGIN Structure

TRANslate by 2,3;

BEGIN Structure

ROTate 30;

SCALE .5 THEN B;

END_Structure;

VECtor list . . .
Rot:= ROTate in X 45 THEN C;

ROTate in Y 90;

character FONT D THEN E;

Char:= CHARacters 'ABC';

Data= VECtor list . . .
END_Structure;

{To modify the X angle of rotation, a 3x3 matrix would be sent to

<1>A.rot. You could not modify the Y rotation angle since it is not

explicitly named.

Command Summary RMI -11

BEGIN S...END S
(continued)

{An equivalent display structure could be created without using

BEGIN_Structure ... END_Structure, for example:}

A : = INSTance of F ;

F:= TRANslate by 2,3 THEN G;

G:= INSTance of H,I,A.Rot,J

H : = INSTance of K;

I:= VECtor_list ...;

A.Rot:= ROTate in X 45 THEN C:

J:= ROTate in X 90 THEN L;

K:= ROTate in Y 30 THEN M;

L:= INSTance of N,A.Char,A.Dat;

M:= SCALE .5 THEN B;

N:= character FONT D THEN E;

A.Char:= CHARacters 'ABC';

A.Dat:= VECtor list ...

RMI-12 Reference Materials

BSPLINE

TYPE

MODELING —Primitives

FORMAT

name := BSpline ORDER= k

[OPEN/CLOSED] [NONPERIodic/PERIodic] [N= n]

[VERTICES =] xl,yl, [zl]

x2,y2, [z2]

xn, yn, [zn]

[KNOTS = tl,t2,...,tj]

CHORDS = q;

DESCRIPTION

Evaluates a B-spline curve, allowing the parametric description Of the curve
form without the need to specify or transfer the coordinates of each con-
stituent vector.

The B-spline curve C is defined as:

n

C (t} _ ~ piNi, k (t}
i= 1

pi = ith vertex of the defining polygon of the B-spline

Ni,k = ith B-spline blending function of order k.

The parameter t of the curve and blending functions is defined over a se-

quence of knot intervals tl,t2,...,tn+k. Different knot sequences define dif-

ferent types of B-splines.

where

and

Command Summary R~~VII -13

BSPLINE

(continued)

Two common knot sequences are uniform nonperiodic and uniform peri-
odic. Auniform nonperiodic B-spline is defined by the knot sequence:

0 (for j < k)

tj = j-k (for k < j < n)

n-k+1 (f or n < j < n+k)

A uniform periodic B-spline is defined by the knot sequence:

tj = j (for j < n+k)

The blending functions can be defined recursively as

Ni,l(t) = 1 (if ti < t < ti+1), 0 otherwise

Ni,k(t) _ (t-ti)Ni,k-1(t) + (ti+k-t)Ni+l,k-1(t)

ti+k-l-ti ti+k-ti+l

The curve is evaluated at the points:

t = (1 - i) tk + itj - k + 1

q

PARAMETERS

k — The order of the curve (0 < k).

n —The number of vertices (used to anticipate storage requirements).

xl,yl,zl...xn,yn,zn —The vertices of the defining polygon of the curve. The
Z component is optional.

tl,t2,...,tj — User-specified knot sequence. Because closed B-splines are
evaluated as open B-splines with duplicate vertices, the number of knots
required is:

n+k for open B-splines

n+k+l for closed nonperiodic B-splines

n+2k-1 for closed periodic B-splines

The knots must also be nondecreasing.

q —The number of vectors to be created (0 < q < 32767).

RMI-14 Reference Materials

BSPLINE

(continued)

NOTES

1. OPEN or CLOSED is an option which describes the B-spline defining
polygon. The default is OPEN. (Note that CLOSED merely describes the
polygon, eliminating repetition of the last vertex.)

2. If no knot sequence is given, NONPERIodic or PERIodic is an option
which specifies that the nonperiodic or periodic knot sequence be used
as the knot sequence. NONPERIodic is the default for open B-splines;
PERIodic is the default for closed B-splines.

3. At least k vertices must be given, or the order k will be reduced accord-
ingly.

DISPLAY STRUCTURE NODE CREATED

B-spline vector-list data node.

INPUTS FOR UPDATING NODE

name

Integer >

Real

2D, 3D, 4D vector

NOTES ON INPUTS

<1 > Updates chords

<i> Updates knots

<i> Updates vertices

B-spline
U390268

1. The Z value of a vector defaults to 0 when a 2D vector is sent to a
3D B-spline.

2. W and Z values will be ignored when a 3D or 4D vector is sent to a
2D B-spline.

Command Summary RM1-IS

CANCEL XFORM

TYPE

MODELING —Transformed Data Attributes

FORMAT

name := CANCEL XFORM [APPLied to namel];

DESCRIPTION

This command stops transformed data processing of subsequent nodes in a
display structure.

PARAMETER

namel —The node below which to stop transformed data processing

DISPLAY STRUCTURE NODE CREATED

CANCEL XFORM operation node

RMI-16 Reference Materials

CHARACTER FONT

TYPE

MODELING —Character Font

FORMAT

name := character FONT font name [APPLied to namel];

DESCRIPTION

Establishes auser-defined alternate character font as the working font. This
font must have been previously defined with the BEGIN_Font ... END_Font
command. If the font is not defined, the current font is still used.

PARAMETERS

font name —Name of the desired font.

name 1 —Structure to use the character font.

DISPLAY STRUCTURE NODE CREATED

Character-font pointer node.

EXAMPLE

New Font := BEGIN Font

{character definitions}

END_Font

A := BEGIN Structure

CHARacters 'HERE'; {this uses standard font}

character FONT New Font;

CHARacters 0,-2 'HERE'; {this uses the font New_Font}

END Structure;

DISPlay A;

Command Summary RM1-17

CHARACTER ROTATE

TYPE

MODELING —Character Transformations

FORMAT

name := CHARacter ROTate angle [APPLied to namel];

DESCRIPTION

Rotates characters. Creates a 2x2 rotation matrix to be applied to the speci-
fied characters (in namely.

PARAMETER

angle — Z-rotation angle in degrees (unless other units are specified). When
you are looking along the positive direction of the Z axis, positive angle
values produce counterclockwise rotations.

DISPLAY STRUCTURE NODE CREATED

2x2-matrix operation node.

INPUTS FOR UPDATING NODE

2x2 matrix

NOTE ON INPUTS

Any 2x2 matrix is legal.

RMI-18 Reference Materials

CHARACTER ROTATE
(continued)

ASSOCIATED FUNCTIONS

F:MATRIX2, F: CROTATE, F: CSCALE

EXAMPLE

A:= CHARacter ROTate 90 THEN B;

B:= CHARacters 'Vertical';

{If A were DISPlayed, the text 'Vertical' would start at the origin and

read up the Y axis.}

Command Summary RMI-19

CHARACTERS

TYPE

MODELING —Primitives

FORMAT

name : = CHARacters [x, y [, z]] [STEP dx, dy] 'string' ;

DESCRIPTION

Displays character strings and (optionally) specifies their location and
placement.

PARAMETERS

x,y,z —Location in the data space of the beginning of the character string
(i . e. , the lower left corner of a box enclosing the first character) .

dx,dy —Spacing between the characters, in character-size units. The width
of the character is one dx unit; the height is one dy unit.

string —Text string to be displayed (up to 240 characters).

DEFAULT

If string is the only parameter specified, the character string will start at
0, 0, 0 and dx, dy will be 1, 0 (i . e . , regular horizontal spacing) .

DISPLAY STRUCTURE NODE CREATED

CHARAC'T'ERS data node.

RMI-20 Reference Materials

CHARACTERS
(continued)

INPUTS FOR UPDATING NODE

name

Character >

2D, 3D, 4D vector >

2D, 3D, 4D vector >

Integer >

Integer)

String -

String >

String

<last> Changes the last character

<position> Changes the starting position

<step> Changes the stepping

<clear> Clears the current string

<delete> Deletes n characters from the end}

<append> Appends to end of current string

<i> Replaces current string with new string,
starting at the i-th character

<substitute> Replaces entire current string
with new string

CHARACTERS

U390270

EXAMPLE

CHARacters 'HERE';

CHARacters 3,-3 STEP .5,1 'HERE';

CHARacters STEP -1,0 'HERE';

Command Summary RMI-21

CHARACTER SCALE

TYPE

MODELING —Character Transformations

FORMAT

name := CHARacter SCAle s [APPLied to namel];

name := CHARacter SCAle sx,sy [APPLied to namel];

DESCRIPTION

Creates a uniform (s) or nonuniform (sx,sy) 2x2 scaling matrix to scale the
specified characters.

PARAMETERS

s —Scaling factor for both axes.

sx,sy —Separate axial scaling factors.

namel —Structure whose characters are to be scaled (vector lists in the
structure are not affected).

DISPLAY STRUCTURE NODE CREATED

2x2-matrix operation node.

INPUTS FOR UPDATING NODE

2x2 matrix

NOTE ON INPUTS

Any 2x2 matrix is legal.

RMI-22 Reference Materials

CHARACTER SCALE

(continued)

ASSOCIATED FUNCTIONS

F:MATRIX2, F: CROTATE, F: CSCALE

EXAMPLE

A:= CHARacter SCAle .5 THEN B;

B:= CHARacters 'Half scale';

Command Summary RMI -23

COMMAND STATUS

TYPE

GENERAL —Command and Control Status

FORMAT

COMmand STATus;

DESCRIPTION

Used with BEGIN...END and BEGIN STRUCTURE...END STRUCTURE
commands to report the current level to which these structures are nested.

NOTES

1. If a syntactically correct command produces a parser syntax error, there
may be unENDed BEGINs or BEGIN Structures causing the PS 390 to
expect one or more ENDs or END_Structures. By sending COMmand
STATus, you can see if this is the case.

2. The !RESET command can be used to get out of unended BEGINs or
BEGIN_Structures when a problem occurs (refer to !RESET).

RMI-24 Reference Materials

CONFIGURE

TYPE

GENERAL —Command and Control Status

FORMAT

CONFIGURE password;

DESCRIPTION

This command allows you to enter the Configure mode (privileged mode).
The password can be defined in the Si1'E.DAT file using the SETUP PASS-
WORD command. If no password has been set up using SETUP PASS-
WORD, any string may be used as a password.

PARAMETER

password —the established string

Command Summary RMI-25

CONNECT

TYPE

FUNCTION —Immediate Action

FORMAT

CONNect namel<i>:<j>name2;

DESCRIPTION

Connects function instance namel's output <i> to input <j> of function in-
stance or display structure node name2.

PARAMETERS

name 1 —Function instance to be connected from.

<i> —Output number of function instance namel to be connected. Refer to
Sections RM2 Intrinsic Functions and RM3 Initial Function Instances for spe-
cific functions and acceptable values.

name2 —Function instance or display structure node to be connected to.

<j> —Input number or input name (in the case of some display structure
nodes) of name2 to be connected. Refer to Sections RM2 and RM3 for spe-
cific functions and acceptable values.

RMI-26 Reference Materials

COPY

TYPE

MODELING —Primitives

FORMAT

name : = COPY name 1 [START=] i [,] [COUNT=] n ;

DESCRIPTION

Creates a VECtor_list node containing a group of consecutive vectors cop-
ied from another vector list (namely or a LABELS node containing a group
of consecutive labels from an existing block (namely.

PARAMETERS

name —Name of new VECtor list or LABELS node.

namel -- Name of the node being copied from.

i —First vector or index of first label in namel to be copied.

n —Last vector or count of labels in namel to be copied.

NOTE

The keywords START= and COUNT= are optional, but if one is used, both
must be used.

DISPLAY STRUCTURE NODE CREATED

VECtor list or LABELS data node.

INPUTS FOR UPDATING NODE

(Refer to VECtor_list or LABELS command).

Command Summary RMI -2 7

COPY

(continued)

EXAMPLE

A := VECtor list n=5 .5, .5 -.5,.5 -.5,-.5 .5,-.5 .5,.5;

B : = COPY A 1 3 ;

{This would be the same as saying:

B := VECtor_list n=3 .5,.5 -.5,.5 -.5,-.5;}

C := COPY A START=2 COUNT=2;

{This would be the same as saying:

C := VECtor_list n=2 -.5,.5 -.5,-.5;}

RMI-28 Reference Materials

DECREMENT LEVEL OF DETAIL

TYPE

STRUCTURE —Attributes

FORMAT

name := DECrement LEVel of detail [APPLied to namel];

DESCRIPTION

"Decrements" (decreases) the current level of detail by 1 when name is
being traversed.

PARAMETER

namel -- Structure to be affected by the decreased level of detail.

NOTE

There is really only one global level of detail; this command only changes
the value of the level of detail while the named node and nodes below it in a
display structure are being traversed.

DISPLAY STRUCTURE NODE CREATED

DECrement LEVeI_of detail operation node.

EXAMPLE

A:= SET LEVel of detail TO 5 THEN B;

B:= BEGIN Structure

IF LEVel of detail = 4 THEN C;

IF LEVel of detail = 5 THEN D;

DECrement LEVel of detail;

IF LEVel of detail = 4 THEN E;

IF LEVel of detail = 5 THEN F;

END Structure;

{If A were DISPlayed, structures D and E would also be displayed.}

Command Summary RMI-29

DELETE

TYPE

GENERAL —Data Structuring and Display

FORMAT

DELete name [,name 1 ... namen] ;
DELete any string*;

DESCRIPTION

Sets name to nil, then FORGETs name. The wild card delete will set to nil
any name beginning with the string that is entered.

PARAMETERS

name —Any previously defined name.

any_string — A character string which is part of any name.

NOTES

1. After a DELete name command is issued, all function instances and
structures referring to name will no longer include the data formerly
associated with name.

2. After a DELete name command is issued, further definitions of or refer-
ences to name will not change structures which referred to name before
the DELete .

3. Compare with FQRGET, which eliminates name while preserving ob-
jects which it formerly referred to.

4. If the wild card delete is used on an object being displayed, the object
must be removed from display before entering the wild card delete com-
mand. Failure to do this will result in a small amount of memory being
used for each object still displayed.

5. If a name is created from the host, it must be deleted via the host line.
Similarly, if a name is created locally using the keyboard, the DELete
command must be entered locally.

RMI-30 Reference Materials

DISCONNECT

TYPE

FUNCTION —Immediate Action

FORMAT

DISCONNect namel[<i>]:option;

DISCONNect namel<i>:<j>name2;

DESCRIPTION

Disconnects one or all of the outputs of function instance name 1 from one
or all inputs that it has previously been connected to.

PARAMETERS

namel —Function instance to disconnect outputs) from.

<i> —The output number of namel to disconnect. If this is not specified, all
of namel's outputs are implied and the option parameter must be ALL (this
would disconnect all of name 1's outputs from everything they had previ-
ously been connected to).

ALL —Disconnect the specified output of namel (or all outputs of namely
from all function instances or display structure nodes that it was previously
connected to.

<j> —Input number or input name of name2 to be disconnected from
namel.

name2 —Function instance or named node previously connected to name 1.

Command Summary RMI-31

DISPLAY

TYPE

GENERAL —Data Structuring and Display

FORMAT

DISPlay name;

DESCRIPTION

Displays a structure. Adds name to the display processor's display list.

PARAMETER

name —Any structure name .

RMl-32 Reference Materials

ERASE PATTERN FROM

TYPE

MODELING —Primitives

FORMAT

ERASE PATTERN FROM name;

DESCRIPTION

An immediate-action command which erases a pattern from a vector list
(name) .

PARAMETER

name —The vector list containing the pattern you want to erase.

Command Summary RMl-33

EYE BACK

TYPE

VIEV'~TG —Windowing Transformations

FORMAT

name := EYE BACK z [optionl][option2] from SCREEN area w WIDE

[FRONT boundary = zmin BACK boundary = zmax]

[APPLied to namel];

DESCRIPTION

Specifies a viewing pyramid with the eye at the apex and the frustum of the
pyramid (bounded by zmin and zmax) enclosing a portion of the data space
to be displayed in perspective projection. Unlike the Field_Of View com-
mand, the EYE BACK command can create a skew (nonright) viewing pyra-
mid (compare Field_Of View and WINDOW).

PARAMETERS

z —The perpendicular distance of the eye from the plane of the viewport.

optionl — RIGHT X or LEFT X, where X is the distance of the eye right or
left of the viewport center, respectively, in relative room coordinates.

optionl — UP Y or DOWN Y, where Y is the distance of the eye up or
down from the viewport center, respectively, in relative room coordinates.

w —Width of the viewport in relative room coordinates.

zmin,zmax —Front and back boundaries of the frustum of the viewing
pyramid. (Refer to note 3 of the LOOK command for properly specifying
zmin and zmax.)

namel —Structure to which the EYE BACK viewing area is applied.

DEFAULT

None. If no EYE BACK is specified, the default WIlVDOW is assumed (par-
allel projection X = -1:1 Y = -1:1 FRONT = 10E-15 BACK = 10E+15).
Refer to the WIlVDOW command.

RMI-34 Reference Materials

EYE BACK

(continued)

NOTES

1. Notice that EYE BACK always creates square side boundaries because
the viewport width (w) is also taken to be the height; the aspect ratio is
always 1.

2. If X and Y are not specified (i.e. 0), then a right rectangle viewing
pyramid is created (compare Field_Of View).

DISPLAY STRUCTURE NODE CREATED

4x4-matrix operation node.

INPUT FOR UPDATING NODE

4x4 matrix

ASSOCIATED FUNCTIONS

F:FOV, F: OW, F:MATR.IX4

EXAMPLE

A:= BEGIN Structure

EYE BACK 24 LEFT 1.5 from SCREEN area 10 WIDE

FRONT boundary = 12

BACK boundary = 14;

LOOK AT 0,0,0 FROM 5,6.63,-10;

INSTance of sphere;

END Structure;

{If sphere is defined with a radius of 1 about the origin, A would be a

view of the sphere from 5, 6.63, -10 fully depth cued. Note that the

FROM to AT distance in the LOOK AT command is 13.}

Command Summary RMI -35

FIELD OF VIEW

TYPE

VIEV'VIl~TG —Windowing Transformations

FORMAT

name := Field Of View angle

[FRONT boundary = zmin BACK boundary = zmax]

[APPLied to namel];

DESCRIPTION

Specifies aright-rectangular viewing pyramid with the eye at the apex and

the frustum of the pyramid (bounded by zmin and zmax) enclosing a por-

tion of the data space to be displayed in perspective projection (compare

EYE and WIlVDOV~ .

PARAMETERS

angle —Angle of view from the eye (i.e., the FROM point established in the

LOOK command) in X and Y. (Refer to note 1 below.)

zmin,zmax —Front and back boundaries of the frustum of the viewing

pyramid. (Refer to note 3 of the LOOK command for properly specifying

zmin and zmax.)

namel —Structure to which the FOV is applied.

DEFAULT

None. If no Field_Of View is specified, the default WIlVDOW is assumed

instead (parallel projection X = -1:1 Y = -1:1 FRONT = 10E-15 BACK =

10E+15). Refer to the EYE command.

NOTES

1. Notice that FOV always creates square side boundaries because angle

defines both the X and the Y angles; the aspect ratio is ,always 1.

2. Refer also to notes for the OW command.

RMI-36 Reference Materials

FIELD OF VIEW
(continued)

DISPLAY STRUCTURE NODE CREATED

4x4-matrix operation node .

INPUT FOR UPDATING NODE

4x4 matrix

U390271

ASSOCIATED FUNCTIONS

F:FOV, F: OW, F:MATR.IX4

EXAMPLE

BEGIN_Structure

Field Of View 30
FRONT boundary 12

BACK boundary 14;

LOOK AT 0,0,0 FROM 5,6.63,-10;

INSTance of Sphere;

END Structure;

{If Sphere is defined with a radius of 1 about the origin, A would be a

view of the Sphere from 5, 6.63, -10 fully depth cued. Note that the

FROM to AT distance in the LOOK command is 13.}

~'ommand Summary RM1-3 7

FINISH CONFIGURATION

TYPE

GENERAL —Command and Control Status

FORMAT

FINISH CONFIGURATION;

DESCRIPTION

This command takes the PS 390 out of Configure mode and must be used at
the end of any session that has modified any part of the CONFIG.DAT file
or accessed any system-level functions.

RMI-38 Reference Materials

FOLLOW WITH

TYPE

STRUC —Modifying

FORMAT

FOLLOW name WITH option;

DESCRIPTION

Follows a named operation node (name) with another operation node.

PARAMETERS

name A named transformation, attribute, or conditional reference node
to be followed with one of the options.

option —

1. A node created by a transformation command (SCALE by,
ROTate, etc).

2. A node created by an attribute-setting command (SET
LEVeI_of detail, etc.).

3. A node created by a conditional-referencing command (IF
LEVeI of detail, etc).

NOTE

The structure name does not change association, unlike a named structure
in a PREFIX command .

DISPLAY STRUCTURE NODE CREATED

An operation node corresponding to the option phrase of the command.
This node points to whatever node name pointed to previously. The node is
also pointed to by name.

Command Summary RMl-39

FOLLOW WITH
(continued)

EXAMPLE

Shape := BEGIN Structure

Tran := TRANslate by 20,20;

Rotate := ROTate in X 90;

Triangle := VECtor_list n=4 0,0 0,3 3,0 0,0;

END_Structure;

FOLLOW Shape.Rot WITH SCALE by 2;

{This will alter the structure Shape so that Shape.Triangle is first

scaled, then rotated, then translated.}

RMI-40 Reference Materials

FORGET (Structures)

TYPE

GENERAL —Data Structuring and Display

FORMAT

FORget name;

DESCRIPTION

Removes name from the display (if name is being displayed), and removes
name from the Name dictionary.

PARAMETER

name —Any previously defined structure name.

NOTES

1. After a FORget name command is issued for a structure, all function
instances and structures referring to name will continue to refer to the
data formerly associated with name, even though name is no longer
linked with the data.

2. After a FORget name command is issued for a structure, further defini-
tions of, or references to, name will not change structures which re-
ferred to name before the FORget command.

3. Compare with DELete, which affects not only name but the content of
name also.

Command Summary RMI-41

FORGET (Units)

TYPE

GENERAL —Data Structuring and Display

FORMAT

FORget (unit name) ;

DESCRIPTION

Removes a unit definition from memory.

PARAMETER

unit name -- Any previously assigned unit name.

NOTE

Note that FORget requires unit names to be enclosed in parentheses (unlike
structure names).

RMI-42 Reference Materials

(Function Instancing)

TYPE

STRUCTURE —Explicit Referencing

FORMAT

NAME := F:function name;

DESCRIPTION

Creates an instance of a PS 390 intrinsic function.

PARAMETERS

name —Any combination of alphanumeric characters up to 240. Must be-
gin with an alpha character and can include $ or _.

function_name —Any PS 390 intrinsic function name.

EXAMPLE

Addl := F:ADD;

Add2 := F:ADD;

{This creates two different instances of the same Intrinsic Function

F:ADD.}

Command Summary RM1-43

GIVE UP CPU

TYPE

GENERAL —Command and Control Status

FORMAT

GIVE UP CPU;

DESCRIPTION

This command causes the command interpreter to terminate execution tem-
porarily and allow other functions to be activated.

NOTE

To ensure that other functions are activated, the GIVE UP CPU
command should be sent four times after sending a value to
FALLOW VECNORM.

RMI-44 Reference Materials

IF CONDITIONAL BIT

TYPE

STRUCTURE —Conditional Referencing

FORMAT

name := IF conditional_BIT n is state [THEN namel];

DESCRIPTION

Refers to a structure if an attribute bit has a specified setting (ON or OFF).
(Refer to SET conditional BIT command.)

PARAMETERS

n —Integer from 0 to 14 indicating which bit to test.

state —The setting to be tested (ON or OFF).

namel —Structure to be conditionally referenced.

DEFAULT

If bit n was not manipulated higher in the display structure, it will default to
OFF.

DISPLAY STRUCTURE NODE CREATED

IF conditional BIT operation node (conditional connection between two
structures) .

Command Summary RMI-45

IF CONDITIONAL BIT
(continued)

INPUT FOR UPDATING NODE

Integer

NOTE ON INPUT

U390272

Input <1> accepts an integer (between 0 and 14) to change the bit number to
the integer value.

EXAMPLE

A:= SET conditional_BIT 3 ON THEN B;

B:= IF conditional_BIT 3 is ON THEN C;

C:= VECtor list ..

{Initially when A is DISPlayed, C would also be displayed, indirectly.

If a function network were connected to A to change conditional bit 3

to OFF, then the test in B would fail and C would not be displayed.}

RMI-46 Reference Materials

IF LEVEL OF DETAIL

TYPE

STRUCTURE —Conditional Referencing

FORMAT

name := IF LEVel_of_detail relationship n [THEN namel];

DESCRIPTION

Refers to a structure if the level of detail attribute has a specified relation-
ship to a given number. Tests the relation between the current level of detail
and the number n (see SET LEVeI_of detail command).

PARAMETERS

relationship —The relationship to be tested (<, <_, _, <>, >_, >) .

n —Integer from 0 to 32767 indicating the number to compare the current
level of detail to.

namel —Structure to be conditionally referenced.

DEFAULT

If the level of detail is not manipulated higher in the structure by a SET
LEVeI_of detail node, it will default to 0.

DISPLAY STRUCTURE NODE CREATED

IF LEVeI_of detail operation node (conditional connection between two
structures) .

C~ommand Summary RM1-47

IF LEVEL OF DETAIL
(continued)

INPUT FOR UPDATING NODE

Integer

NOTE ON INPUT

name

<1 > Changes level
of detail

IF LEVEL_OF_DETAI

0390273

Input <1> accepts an integer (from 0 to 32767) to change the level of detail

to the integer value.

EXAMPLE

A:= SET LEVel of detail to 3 THEN B;

B:= IF LEVel_of_detail = 3 THEN C;

C:= VECtor list ...

{Initially when A is DISPlayed, C would also be displayed, indirectly.

If a function network were connected to A to change the level of detail

to something other than 3, then the test in B would fail and C would

not be displayed.}

RMI-48 Reference Materials

IF PHASE

TYPE

STRUCTURE —Conditional Referencing

FORMAT

name := IF PHASE is state THEN [namel];

DESCRIPTION

Refers to a structure if the PHASE attribute is in a specified state (ON or
OFF). (Refer to SET RATE and SET RA'1'~ EXTernal commands.)

PARAMETERS

state —Phase setting to be tested (ON or OFF).

namel —Structure to be conditionally referenced.

DEFAULT

If there is no SET RATE node or SET RATE EXTernal node higher in the
display structure, the PHASE attribute will always be OFF.

DISPLAY STRUCTURE NODE CREATED

IF PHASE operation node (conditional connection between two structures).

EXAMPLE

A:= SET RATE 10 15 THEN B;

B:= IF PHASE is ON THEN C;

C:= VECtor list ...

{If A is DISPlayed, C will also be displayed for 10 refresh frames and
not DISPlayed for 15 refresh frames repetitively.}

Command Summary RMI-49

ILLUMINATION

TYPE

RENDERING —Data Structuring

FORMAT

name : = ILLUMINATION x, y, z [COLOR h [, s [, i]]] [AMBIENT a] ;

DESCRIPTION

Specifies light sources for shaded images created with the PS 390 rendering
firmware option. An unlimited number of light sources may be specified.
For a detailed explanation of defining and interacting with shaded images,
consult Section GT13 Polygonal Rendering.

PARAMETERS

x,y,z — A vector from the origin pointing towards the light source.

h —Areal number specifying the hue in degrees around the color wheel.
Pure blue is 0 and 360, pure red is 120, and pure green is 240.

s —Areal number specifying saturation. No saturation (gray) is 0 and full
saturation (full toned colors) is 1.

i —Areal number specifying intensity. No intensity (black) is 0, full inten-
sity (white) is 1.

a —Areal number which controls the contribution Of a light source to the
ambient light. Increasing a for a light source increases its contribution t0 the
ambient light.

DEFAULT

If no ILL ATION command is used, a default white light at (0,0,-1)
with an ambient proportion of 1.0 is assumed. If intensity and saturation are
not specified, they default to 1. If only hue and saturation are specified,
intensity defaults to 1. The default for ambient proportion is 1.

RMI-50 Reference Materials

ILLUMINATION
(continued)

NOTES

1. Illumination nodes may be placed anywhere in a display structure, allow-
ing lights to be stationary or to rotate with the object, or both.

2. An unlimited number of light sources are valid for smooth-shaded ren-

derings, but only the last illumination node encountered is used in creat-
ing flat-shaded renderings.

3. Light sources are not used in wash-shaded (area-filled) images.

DISPLAY STRUCTURE NODE CREATED

ILL ATI~N operation node.

INPUTS FOR UPDATING NODE

3D ~

REAL, 2D, 3D

Real

NOTE ON INPUTS

name

<1> Update X, Y, Z

<2> Updates hue,
saturation, intensity

<3> Updates ambient
proportion

IL{LLUMINAT{ON
0390274

A real number sent to input <2> changes only the hue. In this case, satura-
tion and intensity default to 1. You cannot change just one value and retain
the remaining values. Unless a 3D vector is sent, the default values are
assumed for the variables not specified.

EXAMPLE

Light := ILLUMINATION l,l,-1 COLOR 180;

{This creates anode which defines a yellow light over the right

shoulder. Since saturation and intensity are not specified, the

defaults s = 1 and i = 1 are assumed. The ambient proportion defaults

to l.}

Command Summary RM1-S 1

INCLUDE

TYPE

STRUCTURE —Modifying

FORMAT

INCLude namel IN name2;

DESCRIPTION

Used to include (instance) another named entity (namely under a named
instance node in a display structure (name2).

PARAMETERS

name 1 —Structure to be included under instance node name2 .

name2 —Name of the instance node to include name 1.

DISPLAY STRUCTURE NODE CREATED

None. This is an immediate-action command which modifies an existing
instance node in a display structure.

EXAMPLE

Map:= INSTance of Canada, South America, United States;

INCLude Mexico IN Map;

{This would result in the instance node called Map also pointing at

Mexico.}

RMI-52 Reference Materials

INCREMENT LEVEL OF DETAIL

TYPE

STRUC —Attributes

FORMAT

NAME := INCRement LEVel of detail[APPLied to namel];

DESCRIPTION

"Increments" (increases) the current level of detail by 1 when name is being
traversed.

PARAMETER

namel —Node to be affected by the increased level of detail.

NOTE

There is really only one global level of detail; this command only changes
the value of the level of detail while the named node and nodes below it in
the display structure are being traversed.

DISPLAY STRUCTURE NODE CREATED

INCRement LEVeI_of detail operation node.

EXAMPLE

A:= INCRement LEVel of detail THEN B;

B:= INSTance of C, D;

C:= IF LEVel of detail = 1 THEN E;

D:= IF LEVel of detail = 2 THEN F;

{If A were DISPlayed, E would also be displayed but not F. Since the

default level of detail is 0, A will change the level of detail to 1,

so the test in C will pass to E, while the test in D will fail and F

will not be traversed.}

~'ommand Summary RM1-53

INITIALIZE

TYPE

GENERAL —Initialization

FORMAT

INITialize [option] ;

DESCRIPTION

INITialize (without specifying an option) restores the PS 390 to its initial

state in which:

• No user-defined names exist.

• No user-defined units exist.

• No user-created display structures exist.

• No user-defined function connections exist.

. No structures are being displayed.

You may also initialize any of the above areas selectively (without initializ-
ing others) by following INlTialize with the appropriate keyword for the area
to be initialized.

The Il~1ITialize command also automatically executes the OPTIlVIIZE MEM-
~RY command to collect any contiguous free blocks of memory into single
blocks.

PARAMETERS

option —Any of the following:

CONNections —Breaks all user-defined function connections.

DISPIay —Removes all structures from the display list.

NAMES —Clears the name dictionary of all structures and
function instance names.

UNITS —Clears all user-defined units .

RMI-54 Reference Materials

INITIALIZE
(continued)

NOTES

1. An IlVITialize command is specific to a command interpreter. It only
affects the structures which were established by the same command in-
terpreter as the initialization command itself. For example, structures
created through the host line can be removed with an Il~1ITialize from the
host, but not by an INITialize from the PS 390 keyboard.

2. The INITialize command blanks every object being displayed whether
the object was created from the host or locally.

Command Summary RMI-SS

INSTANCE OF

TYPE

STRUCTURE —Explicit Referencing

FORMAT

name := INSTance of namel[,name2...,namen];

DESCRIPTION

Groups one or more structures under a single named instance node.

PARAMETERS

name l ...namen —Structures to be grouped.

DISPLAY STRUCTURE NODE CREATED

An instance node with pointers to each of the structures referenced
(name 1... namen) .

INPUTS FOR UPDATING NODE

None; however the INCLude and REMove commands can be used to modify
the instance node.

EXAMPLE

A:= INSTance of B,C,D;

RMl-56 Reference Materials

LABELS

TYPE

MODELING —Primitives

FORMAT

name := LABELS x,y [,z] 'string'

[xi,yi [,zi] 'string'] ;

DESCRIPTION

The LABELS command, like CHARacters, defines character strings for dis-
play. However, a single LABELS command can define an indefinitely large
number of character strings .

PARAMETERS

x,y,z —Coordinates of the lower left-hand corner of the first character in
the string.

string —Text string up to 240 characters in length.

DEFAULT

If z is not specified, it is assumed to be 0.

NOTES

1. A gain in display capacity is realized whenever two or more character
strings are combined in a single LABELS command.

2. The smallest LABELS entity that can be picked is an entire string; a pick
returns an index into the list of strings of the LABELS command. Indi-
vidual characters cannot be picked as they can with CHARacters.

3. The commands SET CHARacters SCREEN oriented/[FIXED] and SET
CHARacters WORLD_oriented can be applied to LABELS in the same
way they are applied to CHARacters.

Command Summary RMl -S 7

LABELS
(continued)

4. You may SEND messages to a LABELS node as you can to a CHARac-
ters node.

DISPLAY' STRUCTURE NODE CREATED

LABELS data node.

INPUTS FOR UPDATING NODE

name

String y

Integer y

Integer ~

Label

Boolean >

String >

3D >

NOTES ON INPUTS

<last> Changes last label

<clear> Clears list

<delete> Deletes from end

<append> Appends from end

<i> TRUE = on, FALSE =off

<i> Replaces i-th label

<i> Change start location
of i-th label

LABELS
U390275

1. Sending an integer to <delete>of a LABELS node deletes that many
strings from the end of the labels block. If the integer is as large as
or larger than the number of strings in the block, then all strings are
removed except the first. This is retained to keep the step size infor-
mation, but display of that string is disabled.

2. Sending an integer to <clear> of a LABELS node deletes all labels
except the first, which is retained for step size information, but is not
displayed.

3. The <append> input accepts only special "label"-type messages that
give both the string and the position to be appended. This data type
is created by the F:LABEL function.

EXAMPLE

A:= LABELS 0,0 'FIRST LINE'

0,-1.5 'SECOND LINE';

RMI-58 Reference Materials

LOAD VIEWPORT

TYPE

VIEVVIl~TG — Veewport Specification

FORMAT

name := LOAD VIEWport HORizontal = hmin:hmax

VERTical = vmin:vmax

[INTENsity = imin:imax] [APPLied to namel];

DESCRIPTION

The LOAD VIEWPORT command loads a viewport and overrides the con-
catenation of the previous viewport. As with the standard PS 390 VIEW-
PORT command, it specifies the area of the screen that the displayed data
will occupy, and the range of intensity of the lines. It affects all objects
below the node created by the command in the display structure.

PARAMETERS

hmin,hmax,vmin,vmax — The x and y boundaries of the new viewport.
Values must be within the -1 to 1 range.

imin,imax -- Specifies the minimum and maximum intensities for the view-

port. imin is the intensity of lines at the back clipping plane; imax at the
front clipping plane. Values must be within the 0 to 1 range.

namel —The name of the structure to which the viewport is applied.

DEFAULT

The initial viewport is the full PS 390 screen with full intensity range (0 to
1) using the standard PS 390 V~WPORT command.

VIEWport HORizontal = -1:l VERTical = -1:1 INTENsity = 0:1;

NOTES

1. A new VIEWport is not defint~~l ►-t~lative to the current viewport, but to
the full PS 390 screen.

Command Summary RMI-59

LOAD VIEWPORT

(continued)

2. If the viewport aspect ratio (vertical/horizontal) is different from the
window aspect ratio (y/x) or field-of-view aspect ratio (always 1) being
displayed in that viewport, the data displayed there will appear distorted.

DISPLAY STRUCTURE NODE CREATED

This command creates a load viewport operation node that has the same
inputs as the standard viewport operation node. The matrix contained in this
node is not concatenated with the previous viewport matrix.

NOTES ON INPUTS

1. For 2x2-matrix input, row 1 contains the hmin,hmax values and row
2 the vmin,vmax values.

2. For 3x3-matrix input, column 3 is ignored (there is no 3x2-matrix
data type), rows 1 and 2 are as for the 2x2 matrix above, and row 3
contains the imin,imax values.

RMI-60 Reference Materials

LOOK

TYPE

VIEV'UIl~TG —Windowing Transformations

FORMAT

name : = LOOK AT ax , ay , az FROM f x , f y , f z

[UP ux, uy, uz] [APPLied to namel] ;
name := LOOK FROM fx,fy,fz AT ax, ay,az

[UP ux, uy, uz] [APPLied to namel] ;

DESCRIPTION

This command, in conjunction with a windowing command (OW,
Field_Of_View, or EYE), fully specifies the portion of the data space that
will be viewed, as well as the viewer's own orientation in the world coordi-
nate system.

The LOOK AT...FROM clauses specify the viewer's position with respect to
the object(s), while the optional UP clause specifies the screen "up" direc-
tion (analogous to adjusting the way the viewer's head is tilted) .

LOOK creates a 4x3 transformation matrix which:

1. Translates the data base so that the FROM point is at the origin
(0,0,0).

2. Rotates the data base so that the AT point is along the positive Z
axis at (O,O,D), where D = I I F- A I I•

3. Rotates the data base so that the UP vector is in the YZ plane.

PARAMETERS

ax,ay,az —Point being looked at, in world coordinates.

fx,fy,fz —Location of viewer's eye, in world coordinates.

ux,uy,uz —Vector indicating screen "up" direction.

name 1 —Any structure .

Command Summary RM1-61

LOOK
(continued)

DEFAULT

LOOK AT 0,0,1 FROM 0,0,0 UP 0,1,0;

NOTES

1. To be implemented properly in a display structure, the LOOK node must
follow one of the windowing nodes and may not precede any windowing
node. (Refer to OW Notes.)

2. The UP vector indicates a direction only; its magnitude does not matter.
For example, the two clauses UP 0,1,0 and UP 0,10,0 have exactly the
same effect.

3. In determining FRONT and BACK boundary parameters for an associ-
ated windowing command (OW, Field_Of_View, or EYE), re-
member that the LOOK command positions the AT point along the posi-
tive Zaxis at 0, O,D where D equals the distance of the FRAM point to
the AT point. So, for example, if the FROM to AT distance is 13, if full
depth cueing is desired, and the radius of the object is 1, then

FRONT boundary = 12

BACK boundary = 14

is used.

DISPLAY STRUCTURE NODE CREATED

4x3-matrix operation node.

INPUT FOR UPDATING NODE

name

4x3 matrix
or 4x4 matrix

<1> Changes LOOK AT
4X3 matrix

4x3 matrix

U390276

RMl -62 Reference Materials

LOOK

(continued)

NOTE ON INPUT

If a 4x4 matrix is input, the 4th column is ignored.

ASSOCIATED FUNCTIONS

F:LOOKAT, F:LOOKFROM

EXAMPLE

A:= BEGIN Structure

WINDOW X = -1:l Y = -1:l

FRONT boundary = 12

BACK boundary = 14;

LOOK AT 0,0,0 FROM 5,6.63,-10 THEN Sphere;
END_Structure;

{If Sphere is defined with a radius of 1 about the origin, A would be a
view of the sphere from 5, 6.63, -10, fully depth cued. Note that the
FROM to AT distance in the LOOK command is 13.}

Command Summary RM1-63

MATRIX 2x2

TYPE

MODELING —Character Transformations

FORMAT

name := Matrix 2x2 mll,ml2

m21,m22 [APPLied to namel];

DESCRIPTION

Creates a 2x2 transformation matrix which applies to characters in the

structure that follows (namely.

PARAMETERS

mll - m22 —Elements of the 2x2 matrix.

namel —Structure whose characters are to be transformed (any vector lists
in the display structure are left unchanged).

DISFLAY STRUCTURE NODE CREATED

2x2-matrix operation node.

INPUT FOR UPDATING NODE

2x2 ~ natrix

NOTE ON INPUT

Any 2x2 matrix is legal.

RMI-64 Reference Materials

MATRIX 2x2
(continued)

ASSOCIATED FUNCTIONS

F:Matrix2, F:CSCALE, F:CRQTA'1'E

EXAMPLE

A := Matrix 2x2 1,0

.5,1 THEN B;

{This creates a skewing matrix which is useful for italicizing text.}

Command Summary ~M1-65

MATRIX 3x3

TYPE

MODELING —Transformations

FORMAT

name := Matrix 3x3 mll,ml2,m13

m2 ~_ , m2 2 , m2 3

m31, m32 , m33 [APPLied to namel] ;

DESCRIPTION

Creates a 3x3 transformation matrix which applies to the specified data
(vector lists and/or characters).

PARAMETERS

mll - m33 —Elements of the 3x3 matrix to be created.

namel —Structure to be transformed by the matrix.

DISPLAY STRUCTURE NODE CREATED

3x3-matrix operation node.

INPUT FOR UPDATING NODE

3x3 matrix

0390277

NOTE ON INPUT

Any 3x3 matrix is legal (a rotation matrix. a scale matrix, etc.).

RMI-66 Reference Materials

MATRIX 3x3
(continued)

ASSOCIATED FUNCTIONS

F:MATRIX3, F:XROTA'l~E, F:YROTA'1'E, F:ZROTATE, F:DXROTATE,
F: DYR.OTA'1'.~, F: D ZROTA'1'E, F :SCALE, F: D S CALE

EXAMPLE

A := Matrix_3x3 1,0,0

0,1,0

0,0,1 APPLied TO B;

{This creates an identity matrix.}

~'ommand Summary R1V11-67

MATRIX 4x3

TYPE

MODELING —Transformations

FORMAT

name := Matrix 4x3 mll,ml2,ml3

m21,m22,m23

m31,m32,m33

m41,m42,m43 [APPLied to namel];

DESCRIPTION

Creates a 4x3 transformation matrix which applies to the specified data
(vector lists and/or characters).

PARAMETERS

mll - m43 —Elements of the 4x3 matrix to be created.

namel -- Structure to be transformed by the matrix.

DISPLAY STRUCTURE NODE CREATED

4x3-matrix operation node.

INPUT FOR UPDATING NODE

4x3 matrix

U390278

NOTE ON INPUT

Any 4x3 matrix is legal (a rotation matrix, a scale matrix, etc.).

RMl-68 Reference Materials

MATRIX 4x3
(continued)

ASSOCIATED FUNCTIONS

F:MATR.IX4, F:XROTATE, F:YROTA'1'E, F:ZROTATE, F:DXROTATE,
F:DYRC~TATE, F:DZROTATE, F: SCALE, F:DSCALE

EXAMPLE

A := Matrix 4x3 1,0,0

0,1,0

0,0,1

0,0,0 APPLied TO B;

~'ommand Summary RMI-69

MATRIX 4x4

TYPE

MODELING —Transformations

FORMAT

name := Matrix 4x4 mll,m12,m13,m14

m21,m22,m23,m24

m31,m32,m33,m34

m41,m42,m43,m44 [APPLied to namel];

DESCRIPTION

Creates a 4x4 transformation matrix which applies to the specified data

(vector lists and/or characters).

PARAMETERS

mll - m44 —Elements of the 4x4 matrix to be created.

namel —Structure to be transformed by the matrix.

DISPLAY STRUCTURE NODE CREATED

4x4-matrix operation node.

INPUT FOR UPDATING NODE

4x4 matrix

U390271

NOTE ON INPUT

Any 4x4 matrix is legal (a rotation matrix, a scale matrix, etc.).

RMI-70 Reference Materials

MATRIX 4x4

(continued)

ASSOCIATED FUNCTIONS

F:MATRZX4, F:XROTATE, F:YROTA'1'E, F:ZROTA'1'E, F:DXROTATE,
F: DYROTATE, F: D ZROTATE, F :SCALE, F: D S CALE

EXAMPLE

A := Matrix 4x4 1,0,0,0

0,1,0,0

0,0,1,0

0,0,0,1 APPLied TO B;

{This creates an identity matrix.}

Command Summary RMI-71

(Naming of Display Structure Nodes)

TYPE

STRUCTURE —Explicit Referencing

FORMAT

NAME := display_structure_command;

DESCRIPTIQN

Gives a name (address) to a node in a display structure so that it can be
referenced explicitly.

PARAMETERS

name —Any combination of alphanumeric characters up to 240. Must be-
gin with an alpha character and can include $and _.

display_structure_command —All data structuring commands except the
function instancing command (name := F:function_name).

NOTES

1. All nodes in a display structure must be named (addressed) either di-
rectly, using this structure naming command, or indirectly, nesting a
display structure command within a BEGIN Structure...END_Structure
command.

2. Upper and lowercase letters can be used in names, but all letters are
converted to uppercase. Thus turbine blade, Turbine_Blade, and TUR-
BINE_BLADE are equivalent names .

3. A null structure can be named using the name := NIL; form of the com-
mand. If this command were used to redefine name, name would be
kept in the name dictionary but the definition previously associated with
name would be removed. FORGET name does just the opposite (refer to
FORGET) . DELE~1'E name removes both the name and its definition
(refer to DELETE) .

RMI-72 Reference Materials

NIL

TYPE

STRUC —Explicit Referencing

FORMAT

name := NIL;

DESCRIPTION

This command names a null data structure. When this command is used to
redefine name, name is kept in the name dictionary but any data structures
previously associated with it are removed. FORGET does just the opposite
of NIL.

Command Summary RMl-73

OPTIMIZE MEMORY

TYPE

GENERAL —Command Control and Status

FORMAT

OPTIMIZE MEMORY;

DESCRIPTION

An immediate-action command which collects any contiguous free blocks Of

memory into single blocks.

NOTES

1. If you are transmitting a large vector list from the host and you suspect
that memory is being fragmented, enter this command before doing any
operations.

2. This command is executed automatically whenever an Il~TITialize com-
mand is entered.

RMl-74 Reference Materials

OPTIMIZE STRUCTURE;...END OPTIMIZE;

TYPE

CJENERAL —Command Control and Status

FORMAT

OPTIMIZE STRUCTURE;

command;

command;

END OPTIMIZE;

DESCRIPTION

Places the PS 390 in, and removes it from, "optimization mode," during
which certain elements of a display structure are created in a way that mini-
mizes display processor traversal time.

NOTES

1. Optimization mode is intended for application programs whose develop-
ment is complete. Since optimization severely restricts the kinds of
changes that may be made to a PS 390 display structure, it should not
be used with programs whose structures may be changed.

2. To enter optimization mode for a developed application program, place
the command

OPTIMIZE STRUCTURE;

at the beginning of the program (or portion of program) to be optimized,
and place the command

END OPTIMIZE;

at the end.

3. Optimization is not retroactive. The O ZE STRUC command
alone does not optimize any existing structures. On the other hand,
structures created after the command is entered remain optimized even
after END O ZE is entered, and even after legal changes are made
to the structure .

Command Summary RMl-75

OPTIMIZE STRUCTURE;...END OPTIMIZE;
(continued)

4. The following changes may not be made to structures created or in-

stanced during optimization mode:

a. PREFIXes

b. Redefinitions of data-definition commands (vECtor_list, CHAR-

acters, LABELS, and polynomial and B-spline curves), regardless

of whether or not the system is in optimization mode at the time

of redefinition. Illegal changes to optimized structures have un-

predictable effects on the display.

5. Among the types of structures for which optimization has an effect are

INSTANCEs of multiple data-definition commands and BE-

GIN_S...END_S structures containing only data-definition commands.

6. Optimization has no effect on a reference to adata-definition command
which precedes the data-definition command itself .

7. O ZE STRUCTURE, like the Il~TITialize command, affects only

those structures created at the port at which the command is entered.

S. An Il~TITialize command automatically performs an END O ZE.

RMI-76 Reference Materials

PATTERN

TYPE

MODELING —Primitives

FORMAT

name : = PATtern i [AROUND corners] [MATCH/NOMATCH] LENgth r ;

DESCRIPTION

Defines name to be a pattern. Patterns can be applied to existing vector lists
(patterned and unpatterned) created by the PA'iT1~ERN, POLYNO-

and BSPLINE commands. If curve commands are used, the
[AROUND corners] option must be used.

PARAMETERS

i — A series of up to 32 integers between 0 and 128 (delineated by spaces)
indicating the relative lengths of alternating lines, spaces, lines, etc., in the
pattern. The longer the series, the more complex the pattern of lines and
spaces, which repeats every r units.

AROUND corners —This indicates that patterning is to continue around
each of the vectors in the vector list until the end of the list or a position
vector is reached.

MATCH/NOMATCH —This indicates that the pattern length should be
adjusted to make the pattern exactly match the end points of the vector or
series of vectors being patterned. The default is MATCH.

r —The length over which i is defined and repeated.

EXAMPLE

Refer to Helpful Hint 10 in Section ~'T2.

Command Summary RMl-77

PATTERN WITH

TYPE

MODELING —Primitives

FORMAT

PATTERN namel WITH pattern;

DESCRIPTION

An immediate-action command which applies a pattern to a vector list

(namely.

PARAMETERS

pattern —The pattern to be applied to namel. The pattern can be defined

as either of the following.

name — A pattern created by the name := PATtern command, or

i [AROUND_corners] [MATCH/NOMATCH] LENgth r

where:

i is a series of up to 32 integers between 0 and 128 delineated by
spaces indicating the relative lengths of alternating lines, spaces,

lines, etc., in the pattern. The longer the series, the more complex

the pattern of lines and spaces, which repeats every r units.

AROUND_corners indicates that patterning is to continue around
each of the vectors in the vector list until the end of the list or a
position vector is reached.

MATCH/NOMATCH indicates that the pattern length should be
adjusted to make the pattern exactly match the end points of the
vector or series of vectors being patterned. The default is MATCH.

r is the length over which i is defined and repeated.

RMl -78 Reference Materials

POLYGON

TYPE

MQDELING —Primitives

FORMAT

name : _ [WITH ATTRIBUTES namel] [WITH OUTLINE h] [COPLANAR]

POLYGon vertex .., vertex;

DEsCRIPTIoN

Allows you to define primitives as solids and surfaces. For a detailed
explanation Of defining and interacting with polygons, consult Section GT13
Polygonal Rendering.

PARAMETERS

WITH ATTRIBUTES — An option that assigns the attributes defined by
namel for all polygons until superseded by another WITH ATTRIBUTES
clause.

WITH OUTLINE — An option that specifies the color of the outline to be
drawn around polygon borders in enhanced-edge shaded images, or the
color of polygon edges in hidden-line renderings.

COPLANAR —Declares that the specified polygon and the one immedi-
ately preceding it have the same plane equation.

vertex — A vertex is defined as follows:

[S] x, y, z (N x, y, z] [C h [, s [i]]]

where

S —indicates that the edge drawn between the previous vertex and
this one represents a soft edge of the polygon. If the S specifier is
used for the first vertex in a polygon definition, the edge connect-
ing the last vertex with the first is soft.

N — Indicates a normal to the surface with each vertex of the
polygon. Normals are used only in smooth-shaded renderings. Nor-
mals must be specified for all vertices of a polygon or for none of
them. If no normals are given for a polygon, they are defaulted to
the same as the plane equation for the polygon.

Command Summary RMI-79

POLYGON
(continued)

x,y,z —are coordinates in aleft-handed Cartesian system.

C — indicates a color to be assigned to the vertex. During shaded

operations, this color is interpolated across the polygon to the other

vertices. Color must be specified for all vertices of a polygon or

none of them.

h,s,i —are coordinates of the Hue-Saturation-Intensity color sys-

tem.

Polygons may be solidly colored by specifying a color through the attributes

command or the colors may be assigned to the vertices by giving a color

with each vertex specified. The color is specified by giving first the vertex

and then the color (h, s, i) . If just the hue and saturation are given, the

intensity will default to 1. If just the hue value is given, the saturation and

intensity will default to 1. If no vertex colors are given, the vertex colors will

default to those specified in the ATTRIBUTE clause.

Vertex colors must be specified for all vertices of a polygon or for none of

them. However, as with normals, some polygons may have color at their

vertices while others polygons do not have color at their vertices. This

means that it is possible to have some objects in the picture color interpo-

lated, while others are not.

Although color of polygon vertices is specified h, s, i, the colors are linearly

interpolated across the vertices in the Red-Green-Blue color system. If col-

ors are not interpolating the way you would like them to, add more vertices

to the polygon, or break up large solid volumes into smaller sub-volumes

and assign the desired colors to the new vertices in the object.

You can specify color for a polygon with both the ATTRIBUTES command

and the color by vertex specification. A new input to the SHADINGEN-

VIRQrJ1V~NT function allows you to switch between attribute-defined color

and vertex-defined color. Input <10> of SHADINGENVIROI~fN1ENT accepts

a Boolean to determine how color will be specified. To use vertex colors

rather than surface attributes, send TRUE to input <10> of SHADINGEN-

VIROr~NT. To return to using the attributes specified in the ATTRIB-

UTE command, send FALSE to input <10> of SHADINGEI~~~IRDI~fN1ENT.

RMI-80 Reference Materials

POLYGON

(continued)

NOTES

1. A polygon declared to be coplanar must lie in the same plane as the
previous polygon if correct renderings are to be obtained. The system
does not check for this condition. Coplanar polygons may be defined
without the COPLANAR specifier, unless outer and inner contours are
being associated.

2. To use the COPLANAR specifier to define a hole, the vertices of the
hole must be ordered in acounter-clockwise direction, while the vertices
of the surrounding polygon must be ordered in a clockwise direction.

3. All members of a set of consecutive coplanar polygons are taken to have
the same plane equation, that of the previous polygon not containing the
coplanar option. If coplanar is specified for the first polygon in a node,
it has no effect.

4. If the N (normal) specifier is specified for a vertex in a polygon, it must
be specified for all vertices in that polygon. The same is true for the C
(color at vertex) specifier.

5. If the S (soft) specifier is used for the first vertex in a polygon defini-
tion, the edge connecting the last vertex with the first is soft.

6. No more than 250 vertices per POLYGon may be specified.

7. The last defined vertex in the polygon is assumed to connect to the first
defined vertex; that is, polygons are implicitly closed.

8. There is no syntactical limit for the number of POLYGon clauses in a
group.

9. The ordering of vertices within each POLYGon has important conse-
quences for rendering operations.

DISPLAY STRUCTURE NODE CREATED

POLYGon data node.

INPUTS FOR UPDATING NODE

None .

Command Summary RMl-81

POLYNOMIAL

TYPE

MODELING —Primitives

FORMAT

name := POLYnomial[ORDER=i]

[COEFFICIENTS=] xi, yi, zi

xi-1, yi-1, zi-1

xo, yo, zo
CHORDS=q;

DESCRIPTION

Evaluates a parametric polynomial in the independent variable t over the

interval [0,1]. This command allows the parametric description of many

curve forms without the need to specify or transfer the coordinates of each

constituent vector.

If the polynomial to be evaluated is called C, C is an ith-order parametric
polynomial in t such that:

This polynomial may be expressed as the product of a vector (containing

the various powers of t) and a coefficient matrix with three columns and i+l

rows:

xi yi zi

xi-1 yi-1 zi-1

y0 z0

This coefficient matrix is what is specified in the polynomial command to
represent the parametric polynomial C.

RMI -82 Reference Materials

POLYNOMIAL
(continued)

PARAMETERS

i —Optional specification of the order of the polynomial used to anticipate
internal storage requirements.

xi, yi, zi —Coefficients of the polynomial.

q —The number of vectors to be created (0 < q < 32768).

NOTES

1. The interval [0,1] over which the polynomial in t is to be evaluated is
divided into q equal parts, so that C(t) is evaluated at
t=0/q,l/q,2/q,...q/q. This causes the curve's constituent vectors generally
not to be equal in length.

2. The polynomial's order is determined by the number of coefficient rows,
and if the ORDER=i clause disagrees, it is ignored.

DISPLAY STRUCTURE NODE CREATED

Polynomial vector-list data node.

INPUTS FOR UPDATING NODE

Integer >

2D, 3D, 4D vector

NOTE ON INPUTS

name

<1 > Updates Chords

<i> Updates coefficients

Polynomial

U390279

Sending a 2D vector to a 3D polynomial node causes a default value of 0 to
be used for Z. If a 4D vector is sent to a 3D polynomial or a 3D or 4D
vector is sent to a 2D polynomial, the W or Z components are ignored.

Command Summary RM1-83

PREFIX WITH

TYPE

STRUC —Modifying

FORMAT

PREFIX name WITH operation command;

DESCRIPTION

Prefixes a named data node (name) with an operation node.

PARAMETERS

name — A modeling primitive data node to be prefixed.

operation_command -- Any command that creates an operation node.

NOTE

Any connections made to name will be applied to the added prefix and
not to the modeling primitive (i.e. name now points to the new operation
node which points to the node that was previously name).

DISPLAY STRUCTURE NODE CREATED

None. This is an immediate-action command which just modifies an existing
data node.

EXAMPLE

A:= VECtor list . . . ;
PREfix A WITH SCALE by .l;

{This will make A the name of a scaling node pointing at anow-unnamed

vector list.}

RMI-84 Reference Materials

RATIONAL BSPLINE

TYPE

MODELING —Primitives

FORMAT

name := RATIonal BSpline ORDER=k

[OPEN/CLOSED] [NONPERIodic/PERIodic] [N=n]

[VERTICES =] xl,yl, [zl] ,w
x2,y2, [z2) ,w2

xn,yn, [zn] ,wn

[KNOTS = tl,t2,...,tj]

CHORDS =q;

DESCRIPTION

Evaluates a rational B-spline curve, allowing the parametric description of
the curve form without the need to specify or transfer the coordinates of
each constituent vector.

The rational B-spline curve C is defined as:

n
~ wipiNi, k (t}

C(t)=i=1
n
~ wipiNi,k(t)

i =1

where

pi ith vertex of the B-spline's defining polygon

Ni,k — ith B-spline blending function of order k

wi —weighting factor associated with each vertex (different weights
determine the shape of the curve).

The parameter t of the curve and blending functions is defined over a se-
quence of knot intervals tl,t2,...,tn+k. Different knot sequences define dif-
ferent types of B-splines.

Command Summary ~Ml-8~

RATIONAL BSPLINE
(continued)

Two common knot sequences are the uniform nonperiodic and uniform pe-

riodic knot sequences. A uniform nonperiodic B-spline is defined by the

knot sequence:

0 (for j < k)

tj = j -k (fork < j < n)

n-k+l (for n < j < n+k)

A uniform periodic B-spline is defined by the knot sequence:

t j = j (for j< n+k)

The blending functions can be defined recursively as

Ni,l(t) = 1 (if ti < t < ti+1), 0 otherwise

Ni, k(t) _ (t-ti)Ni, k-1(t) + (ti+k-t)Ni+l, k-1(t)

ti+k-l-ti ti+k-ti+l

The curve is evaluated at the points:

t = (1 - i) tk + itj - k + 1

q

for i=0,1,2,...,q.

PARAMETERS

k —The order of the curve (0 < k < 10).

n —The number of vertices (used to anticipate storage requirements} .

xl,yl,zl,wl...xn,yn,zn,wn —The vertices and weighting factor of the defin-
ing polygon of the curve. The Z component is optional.

tl,t2,...,tj — User-specified knot sequence. Because closed B-splines are
evaluated as open B-splines with duplicate vertices, the number of knots
required is:

n+k for open B-splines

n+k+l for closed nonperiodic B-splines

n+2k-1 for closed periodic B-splines

The knots must also be nondecreasing.

q —The number of vectors to be created (0 < q < 32766).

R~,~II-86 Reference Materials

RATIONAL BSPLINE
(continued)

NOTES

1. OPEN or CLOSED is an option which describes the B-spline defining
polygon. The default is OPEN. (Note that CLOSED merely describes the
polygon, eliminating repetition of vertices. A full knot sequence, if speci-
fied, must be given.)

2. NONPERIODIC or PERIODIC is an option which specifies the default
knot sequence. NONPERIODIC is the default for open B-splines; PERI-

ODIC is the default for closed B-splines.

3. At least k vertices must be given, or the order k will be reduced accord-
ingly.

4. If all the weights of a rational B-spline are the same, the curve is identi-
cal to the B-spline without the weights .

DISPLAY STRUCTURE NODE CREATED

B-spline vector-list data node.

INPUTS FOR UPDATING NODE

name

Integer

Real

2D, 3D, 4D vector

 Y <1> Updates chords

<i> Updates knots

<i> Updates vertices

Rational B-Spline

U390280

Command Summary RMI -87

RATIONAL BSPLINE
(continued)

NOTE ON INPZTTS

When a 2D vector is sent to a 3D rational B-spline, the default for Z is 0

and for W is 1. The third component of 3D and 4D vectors is used as W in

2D rational B-splines.

EXAMPLE

A third-order rational B-spline with defining polygon P1, P2, P3 defines a
conic arc:

• the arc is parabolic if w1=w2=w3

• the arc is elliptic if w1=w3>w2

• the arc is hyperbolic if w1=w3<w2

RMI-88 Reference Materials

RATIONAL POLYNOMIAL

TYFE

MODELING —Primitives

FO~:MAT

name := RATional POLYnomial[ORDER=i]

[COEFFICIENTS=] xi, yi, zi, wi

xi-1, yi-1, zi-1, wi-1

xo, yo, zo, wo
CHORDS=q;

DESCRIPTION

Evaluates a rational parametric polynomial in the independent variable t
over the interval [0,1] . This command allows the parametric description of
many curve forms without having to specify or transfer the coordinates of
each constituent vector.

If the polynomial to be evaluated is called C, C is an ith-order rational
parametric polynomial in t such that:

~~t~ _ X(t? y(t) z(t)
w(t) w(t) w(t)

This polynomial may be expressed as the product of a vector (containing
the various powers of t) and a coefficient matrix with four columns and i+l
rows:

. . t0] xi yi zi wi

xi -1 yi-1 zi-1 wi-1

x0 y0 z0 w0

This coefficient matrix is what is specified in the polynomial command to
represent the rational parametric polynomial C.

Command Summary RMI-89

RATIONAL POLYNOMIAL
(continued)

PARAMETERS

i —Optional specification of the order of the polynomial used to anticipate

internal storage requirements .

xi, yi, zi, wi —Coefficients of the polynomial.

q —The number of vectors to be created (O<q<32768) .

NOTES

1. The interval [O,1] over which the polynomial in t is to be evaluated, is

divided into q equal parts, so that C(t) is evaluated at

t=0/q,1 /q, 2/q, ... q/q.

2. Note that the curve's constituent vectors are not generally equal in

length.

3. The polynomial's order is determined by the number of coefficient rows,

and if the ORDER=i clause disagrees, it is ignored.

DISPLAY STRUCTURE NODE CREATED

Rational-polynomial vector-list data node.

INPUTS FOR UPDATING NODE

name

Integer

2D, 3D, 4D vector

<1> Updates Chords

<i> Updates coefficients

Rational Polynomial

U390281

RMI-90 Reference Materials

RATIONAL POLYNOMIAL
(continued)

NOTE ON INPUTS

Sending a 2D vector to a 3D polynomial node causes a default value of 0 to
be used for Z and 1 for W. If a 4D vector is sent to a 3D polynomial or a
3D or 4D vector is sent to a 2D polynomial, the W or Z and W components
are ignored. The third component of 3D and 4D vectors is used as W in a
2D rational polynomial.

EXAMPLES

Circle:= BEGIN Structure

RATional POLYnomial

—2, 0, 0, 2
_2~ _2~ 0~ _2

0, 1, 0, 1

CHORDS = 25;

RATional POLYnomial

—2, 0, 0, 2

2, -2, 0, -2

0, 1, 0, 1

CHORDS = 25;

END_Structure;

{This will create right and left semicircles of radius 1.}

Command Summary RMI-91

RAWBLOCK

TYPE

ADVANCED PROG G -- Memory Allocation

FORMAT

name := RAWBLOCK i;

DESCRIPTION

Used to allocate memory that can be directly managed by auser-written
function or by the physical I/O capabilities of the Parallel or Ethernet Inter-
faces.

PARAMETER

i —bytes available for use.

NOTES

1. The command carves a contiguous block of memory such that there are
"i" bytes available for use.

2. The block looks like an operation node to the ACP. The descendent
alpha points to the next long word in the black. What the ACP expects
in this word is the .datum pointer of the alpha block. (The datum pointer
points to the first structure to be traversed by the ACP. This is the ad-
dress in memory where the data associated with a named entity is lo-
cated.)

3. To use this block, the interface or user-written function fills in the appro-
priate structure following the .datum pointer. When this is complete, it
changes the .datum pointer to the proper value and points to the begin-
ning of the data. After the ACP examines this structure, it displays the
newly-defined data. (Use the ACPPROOF procedure to change the .da-
tum pointer .with auser-written function.)

4. More than one data structure at a time can exist in a RAWBLOCK. It is
up to the user to manage all data and pointers in RAWBLOCK.

RMI-92 Reference Materials

RAWBLOCK

(continued)

5. A RAWBLOCK may be displayed or deleted like any other named data
structure in the PS 390. When a RAWBLOCK is returned to the free
storage pool, the PS 390 firmware recognizes that it is a RAWBLOCK
and does not delete any of the data structures linked to RAWBLOCK.

DISPLAY STRUCTURE NODE CREATED

Rawblock data node.

Command Summary RMI -93

REBOOT

TYPE

GENERAL —Command Control and Status

FORMAT

name := REBOOT password;

DESCRIPTION

Causes the PS 390 to reboot just as if it had been powered up; that is, it

starts the confidence tests beginning with "A."

PARAMETER

password —System password

NOTES

1. If a password has been set up, an incorrect password will give an error

message. If no password has been setup, any character string will cause

the PS 390 to reboot.

2. REBOOT may be used inside a BEGIN_Structure ... END_Structure or

outside.

RMl -94 Reference Materials

REMOVE

TYPE

GENERAL Data Structuring and Display

FORMAT

REMove name;

DESCRIPTION

Stops the display of name, that is, removes name from the display list.

PARAMETER

name —Any structure name .

NOTE

Does not affect any structures in memory.

Command Summary RMI-95

REMOVE FOLLOWER

TAPE

STRUC —Modifying

FORMAT

REMove FOLLOWER of name;

DESCRIPTION

Removes a previously placed follower of name (see FOLLOW WITH com-
mand) .

PARAMETER

name —Structure that was previously modified with a FOLLOW WITH
command.

EXAMPLE

(Refer to the example given in the FOLLOW WITH command.)

REMove FOLLOWER of Shape. Rot;

{This command will restore the structure Shape to what it was

originally (i.e. before the FOLLOW WITH command was given.)}

RMI-96 Reference Materials

REMOVE FROM

TYPE

STRUCTURE —Modifying

FORMAT

REMove namel FROM name2;

DESCRIPTION

Used to remove a named node (namely from a named instance node
(name2) in a display structure.

PARAMETERS

name 1 —Node to be removed from instance node name2 .

name2 —Instance node that will no longer point to name 1.

DISPLAY STRUCTURE NODE CREATED

None. This is an immediate-action command which modifies an existing
instance node.

EXAMPLE

Map:= INSTance Canada, South_America, United_States;

REMOVE South America FROM Map;

{This makes the instance of Map point at Canada and United_States

only.}

Command Summary RMI-97

REMOVE PREFIX

TYPE

STRUC —Modifying

FORMAT

REMove PREfix of name;

DESCRIPTION

Removes a previously placed prefix (see PREFIX WITH command).

PARAMETER

name — Structure that was previously modified by a PREFIX WITH
command .

NOTE

This immediate-action command restores name to what it was before
being modified by a PREFIX command.

EXAMPLE

A:= VECtor list . . . ;
PREfix A WITH SCALE by .1;

REMove PREfix o f A ;

{This will remove the previously PREfixed SCALE node, and A will once

again be the name of the VECtor_list.}

RMI-98 Reference Materials

RESERVE WORKING STORAGE

TYPE

GENERAL —Immediate Action

FORMAT

RESERVE WORKING_STORAGE size;

DESCRIPTIQN

Reserves a contiguous block of mass memory for sectioning plane, hidden-
line removal, and backface removal renderings of solid objects defined as
polygons.

PARAMETER

size —The number of bytes of mass memory that are reserved.

NOTES

1. Renderings and saved renderings reside in mass memory along with the
rest of the display structure. The original polygon is also stored in mass
memory.

2. Each polygon of a solid object with four vertices will require approxi-
mately 15o bytes of reserve working storage. Memory needs will vary
from figure to figure dependent upon the complexity of the object, the
operations to be performed, and the view.

3. After one reserve-working-storage request is made, subsequent requests
do not add to the original memory block —they replace the original
memory block.

4. If a contiguous block of memory cannot be allocated, no working storage
is allocated and any previous storage is deallocated.

5. The best time to use RESERVE_~'~RI~Il~TG_SToRAGE is after booting,
when large requests can be filled more easily. However, the command
may be entered at any time.

Command Summary RMl-99

RESERVE WORKING STORAGE
(continued)

6. Typically, 200, 000 to 400, 000 bytes of working storage should be re-

served at the beginning of a session.

7. A previously allocated block of memory is released prior to filling the

request for a new block. Thus, a request for a smaller working storage

area can always be fulfilled. However, because the working storage must

be a contiguous block of memory, even slight increases in the working

storage size may not be satisfied.

8. If working storage is too small or has not been reserved, additional
storage will be allocated, which may not be contiguous. Rendering will
be performed but at a slower rate than if the working storage were a
contiguous block.

RMI-100 Reference Materials

!RESET

TYPE

GENERAL —Command Control and Status

FORMAT

!RESET;

DESCRIPTION

The !RESET command is used to get out of unended BEGINs or BE-
GIN Structures when a problem occurs. (Refer also to COMmand STATus.)

Command Summary RMI-1 of

ROTATE

TYPE

MODELING —Transformations

FORMAT

name : = ROTate in [axis] angle [APPLied to namel] ;

DESCRIPTION

Rotates a structure (namely. Creates a 3x3 rotation matrix which rotates
the specified data (vector lists and/or characters) about the designated axis,
relative to the world coordinate system's origin. When you look in the posi-
tive direction of a given axis, positive angle values cause counterclockwise
rotations (following the left-hand rule).

PARAMETERS

axis — X, Y, or Z. If no axis is specified, the default is Z.

angle —Rotation angle in degrees (if no other units have been specified as
default, and if no other units are explicitly specified in the ROTate com-
mand).

namel —Structure to be rotated.

DISPLAY STRUCTURE NODE CREATED

3x3-matrix operation node.

RMI-102 Reference Materials

ROTATE

(continued)

INPUT FOR UPDATING NODE

3x3 matrix

U390277

NOTE ON INPUT

Any 3x3 matrix is legal (any rotation matrix, a scaling matrix, a compound
3x3 matrix, etc. .

ASSOCIATED FUNCTIONS

F:MATRIX3, F:XROTA'1'E, F:YROTA'1'E, F:ZROTATE, F:DXROTATE,
F:DYROTATE, F:DZROTA'1'E, F: SCALE, F:DSCALE

EXAMPLE

A:= ROTate in X 45 THEN B;

B:= VECtor list . . .

Command Summary RM1-103

SCALE

TYPE

MODELING —Transformations

FORMAT

name := SCALE by s [APPLied to namel];

name : = SCALE by sx , sy [, sz] [APPLied to namel] ;

DESCRIPTION

Scales an object. Applies a uniform (s) or nonuniform (sx,sy,sz) 3x3 scaling
matrix transformation to the specified data (vector lists and/or characters).

PARAMETERS

s —Uniform scaling factor (same along all axes).

sx,sy,sz —Axial scaling factors. If sz is not specified, it is assumed to be 1
(no Z-scaling).

name 1 —Object to be scaled .

DISPLAY STRUCTURE NODE CREATED

3x3-matrix operation node.

INPUT FOR UPDATING NODE

3x3 matrix

U390277

RMI-104 Reference Materials

SCALE

(continued)

NOTE ON INPUT

Any 3x3 matrix is legal (another scaling matrix, a rotation matrix, etc.).

ASSOCIATED FUNCTIONS

F:MATR.IX3, F:XROTA'1'E, F:YROTATE, F:ZROTATE, F:DXROTATE,
F:DYROTATE, F:DZROTATE, F: SCALE, F:DSCALE

EXAMPLE

A:= SCALE by 5,2,3 THEN B;

B:= VECtor list . . .

Command Summary RMI -IOS

SECTIONING PLANE

TYPE

RENDERING —Data Structuring

FORMAT

name := SECTioning plane [APPLied to namel];

DESCRIPTION

Defines a sectioning plane, which is needed to produce a sectioned render-
ing of an object.

PARAMETER

namel — Either a POLYGon command or an ancestor of a POLYGon com-

mand.

NOTES

1. Defining, displaying, and positioning a sectioning plane are the first
steps in producing a sectioned rendering of an object. Hidden-line re-
moval and backface removal do not require sectioning planes, but they
can be used in conjunction with sectioned renderings.

2. The data which actually define a sectioning plane are contained in a
POLYGon node; SECTioning~lane simply indicates that a given
POLYGon represents a sectioning plane rather than an object to be
rendered.

3. The sectioning plane is the plane in which a specified POLYGon lies.
The polygon itself need not intersect the object to be sectioned, as long
as some part of the plane does.

4. The sectioning plane is the plane containing the polygon defined by the
first POLYGon clause of the first polygon node encountered by the dis-
play processor as it traverses the branch beneath asectioning-plane
node.

RMI-106 Reference Materials

SECTIONING PLANE
(continued)

5. If the polygon node has more than one POLYGon, only the first polygon
determines the sectioning plane. The other polygons have no effect on
sectioning operations but are displayed along with the defining polygon.
This can be put to good use in designing an indicator which shows the
side of the plane at which sectioning will remove (or preserve) polygon
data.

6. Anode may be a descendant of a sectioning-plane node if and only if it
may be a descendant of a rendering operation node. Refer to the Notes
on the SOLID_rendering command for permitted and prohibited descen-
dant nodes.

7. If objects are to be sectioned, matrix-transformation nodes may be
placed above the sectioning-plane node when and only when they are
also ancestors of the objects' SOLID_Rendering or SURFACE_Render-
ing node(s). Failure to observe this rule results in bad renderings.

8. No SOLID rendering or SURFACE_rendering operation node, whether
below or above the sectioning-plane node, may be an ancestor of a sec-
tioning plane's defining POLYGon. These POLYGons are interpreted as
objects to be rendered rather than as sectioning-plane definitions, and
issues a "Sectioning plane not found" message when a sectioning at-
tempt is made. Other nodes which do not represent matrix viewing
transformations, such as SET RATE, may be placed either above or
below the sectioning-plane node as needed.

9. Before an object can be sectioned, the sectioning-plane node must be
part of a structure which is DISPlayed. If the plane's defining POLYGon
is itself DISPlayed but its sectioning-plane node is not, no renderings can
be created.

DISPLAY STRUCTURE NODE CREATED

SECtioning~lane operation node.

Command Summary RMI -107

SELECT FILTER

TYPE

V~V'VIl~TG —Appearance Attributes

FORMAT

namel := Select Filter n THEN name2;

DESCRIPTICJN

This command selects one of the four line filters supported on the PS 390.

The filters determine the type of aliased or antialiased line the system will

draw.

PARAMETERS

n — 0,1, 2, 3 line filter selected where,

0. SIN(X)/X filter

1. narrow Gaussian (default)

2. wide Gaussian

3. jagged (no filter)

name2 —node to which filter is applied

DEFAULT

The default line filter is n=1, narrow Gaussian. Values outside the 0-3
range default to the narrow Gaussian with the following warning message:

W2045 ** Illegal filter selection, default filter 1 used

NOTES

1. The SIN(X)/X filter (filter 0) produces the sharpest, best quality lines
and works well with images such as text characters that require fine
detail. However, the SIN(X)/X filter only works with limited background
colors; it works best with light background colors, such as gray. The
SIN(X)/X filter produces more artifacts than the Gaussian filters when
multiple lines overlap.

RMI-108 Reference Materials

SELECT FILTER
(continued)

2. The default line filter is the narrow Gaussian filter (filter 1). The narrow
Gaussian filter is the best general-purpose filter and produces good qual-
ity, sharp lines. It works with any background color and works well with
detailed images such as those that contain radial lines.

3. The wide Gaussian filter (filter 2) creates wider lines with less defini-
tion. The wide Gaussian filter produces no artifacts and works well with
primitives such as dots.

4. The jaggy filter (filter 3) produces unfiltered, abased lines.

DISPLAY STRUCTURE NODE CREATED

SELECT FILTER Operation Node

Command Summary RMl-109

SEND

TYPE

FUNCTION —Immediate Action

FORMAT

SEND option TO <n>namel;

DESCRIPTION

Sends a value to input n of function instance, node, or variable namel.

PARAMETERS

option —The value to be sent. This can be any of the following forms:

i —Areal number (with or without decimal point).

FIX(i) — Designates i to be an integer value (without decimal point) .

V2D (i, j) — 2D vector.

V3D (i, j,k) — 3D vector.

V4D (i, j,k,l) — 4D vector.

M2D (a 11, a 12 a21, a22) — 2x2 matrix.

M3D(all,a12,a13 a21,a22,a23 a31,a32,a33) — 3x3 matrix

M4D(all,a12,a13,a14 a21,a22,a23,a24 a31,a32,a33,a34 a41,a42,a43,
a44) — 4x4 matrix

Boolean —TRUE or FALSE

'string' — A character string of one or more characters .

CHAR(m) — A single character whose decimal ASCII value is m.

P,L —Position or line.

VALUE(variable_name) —The value currently in variable_name,
where variable_name is a previously declared PS 390 variable.

EXAMPLE

Timer:= F:CLCSECONDS;

SEND FIX(10) TO <1>Timer;

{This puts an integer 10 on input 1 of TIMER.}

RMI -110 Reference Materials

SEND number*mode

TYPE

FUNCTION —Immediate Action

FORMAT

SEND number*mode TO <n>namel;

DESCRIPTION

Sends to a vector list or labels node to change a specified number of vectors
from position vectors to line vectors, or to turn a specified number of labels
on or off.

PARAMETERS

number — An integer specifying the number of vectors or labels.

mode — Either a P or L. For vector lists, P indicates a position vector and L
indicates a line vector. For a labels block, P turns the label off, L turns it
on.

n — An integer which identifies the first vector or label to receive the new
specification.

namel —The destination vector-list or labels node.

Command Summary RM1-111

SEND VL

TYPE

FUNCTION —Immediate Action

FORMAT

SEND VL(namel) TO <i>name2;

DESCRIPTION

Overwrites or appends vectors in vector lists or labels in label blocks.

PARAMETERS

name 1 —Name of vector list, character string, or label block to be sent.

name2 —Name of the destination vector-list or labels node.

i — An integer that specifies the first vector or first label to be replaced in
name2 with vectors or labels in name 1.

NOTES

1. The parameter i can be replaced with last or append.

2. If i exceeds the number of vectors or labels in name2, the command will
be ignored.

RMI-112 Reference Materials

SET BLINKING ON/OFF

TYPE

STRUC —Attributes

FORMAT

name := SET BLINKing switch [APPLied to namel];

DESCRIPTION

This command turns blinking on and off. It affects all objects below the
node created by the command in the display structure.

PARAMETERS

switch —Boolean value. TRUE indicates that blinking will occur in the
displayed objects. FALSE turns blinking off.

name 1 —The name of the structure that will be affected by the command.

DISPLAY STRUCTURE NODE CREATED

This command creates a set blinking on/off operation node in the display
structure that determines whether blinking will occur in the objects posi-
tioned below it in the display structure.

INPUT FOR UPDATING NODE

The blinking on/off operation node can be modified by sending a Boolean
value to input < 1 >.

Command Summary RM1-113

SET BLINK RATE

TYPE

STRUC —Attributes

FORMAT

name := SET BLINK RATE n [APPLied to namel];

DESCRIPTION

This command specifies the blinking rate in refresh cycles to be applied to
all objects below the node created by the command in the display structure.

PARAMETERS

n — An integer designating the duration of the blink in refresh cycles. The
blinking data will be on for n refreshes and off for n refreshes.

name 1 —The name of the structure to which the blinking rate is applied.

DISPLAY STRUCTURE NODE CREATED

This command creates a set blinking rate operation node in the display
structure that specifies the blinking rate for all objects below it.

INPUT FOR UPDATING NODE

The node can be modified by sending an integer to input <1> which will
change the blinking rate.

RM1-114 Reference Materials

SET CHARACTERS

TYPE

VIEV'VIl~TG —Appearance Attributes

FORMAT

name := SET CHARacters orientation [APPLied to namel];

DESCRIPTION

Sets the type of screen orientation you want for displayed character strings.

PARAMETERS

orientation —Three types of orientation may be set:

WORLD_oriented -- Characters are transformed just like any part of the
object containing them.

SCREEN_oriented —Characters are not affected by ROTate or SCALE

transformations. Intensity and size of characters still vary with depth
(Z-position).

SCREEN oriented/FIXED —Characters are not affected by ROTate or
SCALE transformations. They are always displayed with full size and
intensity.

namel —Structure affected by the SET CHARacters node.

DEFAULT

SET CHARacters WORLD oriented;

DISPLAY STRUCTURE NODE CREATED

SET C~[ARacters operation node.

Command Summary RMI -11 S

SET COLOR

TYPE

VIEV'VING —Appearance Attributes

FORMAT

name := SET COLOR hue, sat [APPLied to namel];

DESCRIPTION

Specifies the color of an object (namely.

PARAMETERS

hue —Areal number greater than or equal to 0 and less than 360, where:
0 =pure blue, 120 =pure red, 240 =pure green, 360 =pure blue.

sat —Areal number from 0 to 1 where:
0 = no saturation (white), and 1 =full saturation.

namel —Structure to be colored.

DEFAULT

The default setting for both hue and sat is 0.

NOTE

Zero saturation in any hue is white.

DISPLAY STRUCTURE NODE CREATED

SET COLOR operation node.

RMI-116 Reference Materials

SET COLOR
(continued)

INPUTS FOR UPDATING NODE

U390282

EXAMPLE

A:= SET COLOR 240,1 THEN B;

B:= Vector list

{If A is displayed, the vector list described by B will be displayed in

a pure green hue.}

Command Summary RMI -11 ~

SET CONDITIONAL BIT

TYPE

STRUCTURE —Attributes

FORMAT

name := SET conditional BIT n switch [APPLied to namel];

DESCRIPTION

Temporarily alters one of the 15 global conditional bits during the traversal
of a branch of a display structure. These temporary settings may be tested
further down the display structure, possibly allowing conditioned reference

to other structures (see IF conditional BIT command). When traversal of
the branch is complete, the bits are restored to their previous values.

PARAMETERS

n — An integer from 0 to 14, corresponding to the conditional bit to be set
ON or OFF by the command (Refer to Note 1 below).

switch — ON or OFF.

name —Structure to follow the conditional bit node.

DEFAULT

All 15 conditional bits are initially set to OFF.

NOTES

1. Although only one conditional bit can be set ON or OFF by this com-
mand, afunction network could be tied into this node to set any condi-
tional bit ON or OFF.

2. Note that there is really only one bank of 15 conditional bits and that
this command only changes the values of these bits temporarily, while
namel is being traversed. However, descendants of namel could also be
SET conditional_BTT nodes. These are saved and restored as part of the
state of the machine during the traversal of different branches of the
display structure.

RMI-118 Reference Materials

SET CONDITIONAL BIT
(continued)

DISPLAY STRUCTURE NODE CREATED

SET conditional BIT operation node.

INPUTS FOR UPDATING NODE

name

Boolean

Integer

Integer

Integer

Integer

<1 > Sets the original bit (n} to be
ON(T} or OFF(F)

<2> Sets bit number input (0-14} ON

<3> Sets bit number input (0-14} OFF

<4> Disables bit number input (0-14) from
being effected by this node.

<5> Complements (toggles) bit number
input (0-14)

SET CONDITIONAL BIT

EXAMPLE

A:= SET conditional_BIT 3 ON THEN B;

B:= IF conditional_BIT 3 is ON THEN C;

C:= IF conditional_BIT 6 is ON THEN D;

D:= VECtor list ..

U390283

{A function network should be tied to A so that the state of any of the
conditional bits can be changed, not just the one that was initially
set ON or OFF.}

Command Summary RM1-119

SET CONTRAST

TYPE

vIEVVIl~TG —Appearance Attributes

FORMAT

name := SET CONTrast to c [APPLied to namel];

DESCRIPTION

Changes the contrast of the PS 390 display.

PARAMETERS

c — A number from 0 to 1 (0 =lowest contrast, 1= highest contrast).

namel —Structure using this contrast setting.

DEFAULT

SET CONTrast to 1;

NOTES

1. Setting contrast to 1 provides the highest contrast and thus the greatest
perception of depth cueing (all else being equal).

2. Although any real value from 0 to 1 is legal for c, c is mapped to one of
four values (o., . 33, .67,1.) .

DISPLAY STRUCTURE NODE CREATED

SET CONTrast operation node.

RMI-120 Reference Materials

SET CONTRAST
(continued)

INPUT FOR UPDATING NODE

Reai

U390284

EXAMPLE

A:= SET CONTrast to 0 THEN B;

B:= VECtor list ...

{This is a minimum contrast setting.}

Command Summary RMI-121

SET DEPTH CLIPPING

TYPE

VIEV'VIl~TG —Appearance Attributes

FORMAT

name := SET DEPTH CLipping switch [APPLied to namel];

DESCRIPTION

Enables/disables Z-plane (depth) clipping.

PARAMETERS

switch — ON or OFF.

name 1 -- Structure affected .

DEFAULT

SET DEPTH_CLipping OFF;

NOTE

With depth clipping on (TRUE), data between the eye and the front
clipping plane will be clipped, data between the front clipping plane and
back clipping plane will appear with an intensity gradient, and data be-
hind the back clipping plane will be clipped.

With depth clipping off (FALSE), data between the eye and front clip-
ping plane will appear at full intensity, data between the front clipping
plane and back clipping plane will appear with an intensity gradient, and
data behind the back clipping plane will appear at minimum intensity.

DISPLAY STRUCTURE NODE CREATED

SET DEPTH_CLipping operation node.

RMI-122 Reference Materials

SET DEPTH CLIPPING
(continued)

INPUT FOR UPDATING NODE

Boolean <1 > Disables (F} /enables
(T} depth clipping

U390285

EXAMPLE

A:= SET DEPTH_CLipping ON THEN B;

B•=

{This enables Z clipping.}

Command Summary RM1-123

SET DISPLAYS

TYPE

vIEVVIl~TG —Appearance Attributes

FORMAT

name := SET DISPlays ALL switch [APPLied to namely :

name : = SET DI SPlay n [, m . . .] switch [APPLied to name 1] ;

DESCRIPTION

Sets the scope which receives display information to on/off.

PARAMETERS

switch — ON or QFF

n[,m...] — 0,1,2, 3. Numeric designation for PS 390 Scope.

namel —structure to be displayed

NOTE

The PS 390 only supports Scope 0.

DEFAULT

SET DISPLAY 0 ON;

DISPLAY STRUCTURE NODE CREATED

SET DISPIay operation node

RMI-124 Reference Materials

SET DISPLAYS
(continued)

INPUT FOR UPDATING NODE

Boolean ~~ ~ Turns indicated
displays ON(T}
or OFF(F)

U390460

EXAMPLE

A:=SET DISPlay 0 ON THEN B;

B:=VECtor_list... ;

{This channels B to be displayed on scope 0}

Command Summary RMI-125

SET INTENSITY

TYPE

VIEV'VIl~TG — Viewport Specification

FORMAT

name := SET INTENsity switch imin: imax [APPLied to namel];

DESCRIPTION

Specifies intensity variation for depth cueing, and may be used to override

the intensity specification associated with the VIEWPORT command or pre-

vious SET INTENsity commands.

PARAMETERS

switch —Two settings may be specified: ON and OFF. The default setting
is ON, which enables the effect of this node in the display structure. OFF
disables the effect.

imin —Areal number ranging from 0.0 to 1.0, imin represents the dimmest
intensity setting.

imax —Areal number ranging from 0.0 to 1.0, imax represents the bright-
est intensity setting.

name 1 —Structure to be affected .

NOTE

The last SET INTENsity node that is ON in a display structure deter-
mines the intensity range.

DISPLAY STRUCTURE NODE CREATED

SET INTENsity operation node.

RMI-126 Reference Materials

SET INTENSITY
(continued)

INPUTS FOR UPDATING NODE

name

Boolean

2D vector

<1 > T/F enable/disable the
effect of this node

<2> Change min :max intensity
range

SET INTENSITY

EXAMPLE

Refer to Helpful Hint 15 in Section TT2.

U390286

Command Summary RMl -12 ~

SET LEVEL OF DETAIL

TYPE

STRUC —Attributes

FORMAT

name := SET LEVel of detail ton [APPLied to namely ;

DESCRIPTION

Temporarily alters a global level of detail value during the traversal of a
specified branch of a display structure. These temporary settings may be
tested further down the display structure, possibly allowing conditioned ref-
erence to other structures (see IF LEVeI_of_detail command) . When tra-
versal of the branch ~ is complete, the level of detail is restored to its original
value .

PARAMETERS

n — An integer from 0 to 32767 indicating the level of detail value.

name —Structure to be affected by the level of detail.

DEFAULT

The level of detail is initially 0.

NOTE

There is really only one global level of detail value; this command only
changes the value of the level of detail temporarily, while the namel
structure is being traversed.

DISPLAY STRUCTURE NODE CREATED

SET LEVeI_of detail operation node.

RMI-128 Reference Materials

SET LEVEL OF DETAIL
(continued)

INPUT FOR UPDATING NODE

name

Integer ,l <1 > Changes the level OF
detail (0-32767}

SET LEVEL OF DETAIL

U390287

EXAMPLE

A:= SET LEVel_of_detail to 2 THEN B;
B:= IF LEVel_of_detail = 2 THEN C;
C•=

{A function network should be tied to A to change the level of detail
for conditional referencing of C.}

Command Summary RMI -129

SET LINE TEXTURE

TYPE

MODELING —Line Pattern

FORMAT

name := SET LINe_texture [AROUnd_corners] pattern [APPLied to namel];

DESCRIPTION

Specifies the line texture pattern to be used in drawing the vector lists that
appear below the node created by this command. There are up to 127 hard-
ware-generated line textures possible. The parameter pattern is an integer
between 1 and 127. The desired line texture is indicated by the setting or
clearing of the lower 7 bit positions in pattern when represented in binary.
An individual pattern unit is 1.1 centimeters in length. Some of the more
common patterns and their corresponding bit settings are shown below:

Pattern Bit representation Line Texture (repeated twice)

127 1111111 Solid

124 1111100 Long Dashed

122 1111010 - - Long Short Dashed

106 1101010 - - - - Long Short Short Dashed

PARAMETERS

AROUnd_corners —Boolean value used to set a flag to indicate if the
specified line texture should continue from one vector to the next. If
AROUnd corners is TRUE, the line texture will continue from one vector to
the next through the endpoint. If AROUnd_corners is FALSE, the line tex-
ture will start and stop at vector endpoints.

pattern — An integer between 1 and 127 that specifies the desired line
texture. When pattern is less that 1 or greater than 127, solid lines are
produced.

namel —The name of the structure to which the line texture is applied.

RMI-130 Reference Materials

SET LINE TEXTURE
(continued)

DEFAULT

The default line texture is a solid line.

NOTES

1. Since 7 bit positions are used, it is not possible to create a symmetric
pattern.

2. When line-texturing is applied to a vector, the vector that is specified is
displayed as a textured, rather than solid line. If the line is smaller than
the pattern length, then as much of the pattern that can be displayed
with the vector is displayed. If the line is smaller than the smallest ele-
ment of the pattern, then the line is displayed as solid.

3. The With Pattern and curve commands create multiple vectors in mem-
ory. To the line-texturing hardware, each vector in a pattern or curve is
seen as an individual vector. Line-texturing a patterned line or curve is
the same as line-texturing a number of small segments. Curves and pat-
terns affect line-texturing only in that they tend to create short vectors
that may be too short to be completely textured.

DISPLAY STRUCTURE NODE CREATED

This command creates a line texture operation node with line texture to be
applied to all vectors below in the display structure hierachy. Sending a
Boolean value to input <1> of the node turns the continuous texture feature
on or off. Sending an integer value to the node changes the pattern.

EXAMPLE

Refer to Helpful Hint 10 in Section TT2.

Command Summary RMI-131

SET PICKING

TYPE

MODELING —Picking Attributes

FORMAT

name := SET PICKing switch [APPLied to namel] ;

DESCRIPTION

Enables or disables picking for a specified structure.

PARAMETERS

switch — ON or OFF for enabling or disabling picking.

namel —Structure to be affected.

NOTES

1. For picking to be reported, there must also be a SET PICKing IDentifier
node in the structure to be pickable.

2. Refer also to SET PICKing LOCation and SET PICKing IDentifier.

DISPLAY STRUCTURE NODE CREATED

SET PICKing operation node (information to enable/disable hardware pick-
ing) .

RMI-132 Reference Materials

SET PICKING
(continued)

INPUT FOR UPDATING NODE

name

Boolean

EXAMPLE

A:= SET PICKing OFF THEN B;

B•=

<1 > Enable (TRUE) /disable
(FALSE} picking of structure
that follows

SET PICKING

U390288

{A function network should be tied to A to SET PICKing ON when needed

in order to make structure B pickable.}

Command Summary RMI-133

SET PICKING IDENTIFIER

TYPE

MODELING —Picking Attributes

FORMAT

name := SET PICKing IDentifier = id_name [APPLied to namel];

DESCRIPTION

Specifies textual information that will be reported back if a pick occurs
further down the structure namel. Nested pick identifier names are all re-
ported, separated by commas.

PARAMETERS

id_name —Text that will be reported if a pick occurs anywhere within the
structure name 1. This must be a legal PS 390 name.

namel —Structure to which the pick ID applies.

NOTES

1. At least one pick ID must precede any pickable entity for picking to be
reported.

2. id_name cannot be updated by a function network.

DISPLAY STRUCTURE NODE CREATED

SET PICKing IDentifier operation node .

EXAMPLE

A:= SET PICKing OFF THEN B;

B:= SET PICKing IDentifier = Structure_C THEN C;
C:= VECtor list ..

{If a vector in C is picked, the ID name reported in the pick list will
be Structure_C.}

RMI-134 Reference Materials

SET PICKING LOCATION

TYPE

MODELING —Picking Attributes

FORMAT

name := SET PICKing LOCation = x,y size_x, size_y;

DESCRIPTION

Specifies a rectangular picking area at (x,y) within the current viewport.
The rectangle is bounded by (x > size_x) and (y > size_y).

If an appropriate picking network is set up and apick-sensitive vector list
(vectors or dots) is drawn within the pick location, it will be reported as
picked.

PARAMETERS

x,y —The center of the pick location.

size x,size~ —Offsets from the x,y center specifying the bounds of the
picking rectangle (the rectangle bounds must be within the range) 0-1.

DEFAULT

A default pick location is set up in the configuration file that is loaded when

the system is booted. The x,y center is tied to the position of the data tablet
stylus, and size_x,size_y are both set to .01, (i.e., a box whose dimensions
are .02 on each side).

NOTES

1. In most applications, the picking location needs to be moveable, so the

x,y center is usually updated by a function network that specifies where

the center should be.

2. The data tablet's x,y value is usually the source for specifying the pick
location center.

Command Summary RMI -135

SET PICKING LOCATION
(continued)

DISPLAY STRUCTURE NODE CREATED

SET PICKing LOCation operation node (information for hardware picking).

INPUTS FOR UPDATING NODE

U390289

ASSOCIATED FUNCTION

F:PICK

EXAMPLE

PICK_LOCATION := SET PICKing LOCation = 0,0 .02,.02;

{This redefines the default picking area set up in the configuration

file, making the picking area twice as large as the default.}

RMI-136 Reference Materials

SET PRIORITY

TYPE

GENERAL -- Command and Control Status

FORMAT

Set Priority of name to i;

DESCRIPTION

This command sets the execution priority of a function (name) .to some
integer (i) between 0 and 15. All functions instanced by the user and most
functions instanced by the system at boot time have a default value of 8.
Lowering a function's priority number raises its priority and causes it to run
before any functions with a larger number. A typical use of this command is
to give a function a priority number greater than 8 so it runs only when no
other functions are running (i.e., functions at default priority 8) . Assigning
priority numbers less than 8 could be potentially very "dangerous," since
their execution could lock up the system.

Since this command will affect the execution of other functions in a func-
tion network, careful consideration must be given to its use. E&S does not
recommend the use of this procedure by anyone who does not have a com-
plete understanding of functions and their interrelationships.

Command Summary R1VI1-13~

SET RATE

TYPE

STRUCTURE —Attributes

FORMAT

name := SET RATE phase_on phase_off [initial state] [delay]
[APPLied to namel];

DESCRIPTION

Temporarily alters two global duration values (phase_on and phase_off, in
refresh frames) during the traversal of a specified branch of a display struc-
ture. These temporary settings may be tested further down the display struc-
ture, possibly allowing conditioned reference to other structures (see IF
PHASE command). When traversal of the branch is complete, the durations
are restored to their original values.

PARAMETERS

phase_on,phase_off —Integers designating the durations of the on and off
phases, respectively, in refresh frames.

initial_state — ON or OFF, indicating the initial phase.

delay — Integer designating the number of refresh frames in the
initial state.

name 1 —Structure to follow the SET RATE command .

DEFAULT

The default phase is OFF and never changes unless a SET RATE node is
encountered.

NOTES

1. This structure attribute is useful for controlling blinking, the alternating
display of two structures, the alternating display of a single structure in
two different views (stereo), etc.

RMI-138 Reference Materials

SET RATE

(continued)

2. Note that there are only two rate values (phase_on, phase off) and that
this command only changes those values for the structures) that follow.

DISPLAY STRUCTURE NODE CREATED

SET RATE operation node.

INPUTS FOR UPDATING NODE

name

Integer

Integer

Boolean

Integer

/<1> changes the phase_on value

<2> changes the phase off viaue

<3> Changes the initial state
ON (T} /OFF (F}

<4> Changes the delay

SET RATE

EXAMPLE

A:= BEGIN Structure

rate:= SET RATE 10 100;

IF PHASE is ON THEN B;

END Structure;

B:= VECtor list ..

U390290

{If A is DISPlayed, then vector list B will be displayed for 10 frames

and not displayed for 100 frames repetitively.}

Command Summary RMI -139

SET RATE EXTERNAL

TYPE

STRUCTURE —Attributes

FORMAT

name := SET RATE EXTernal [APPLied to Hamel] ;

DESCRIPTION

Sets up a structure that can be used to alter the PHASE attribute via an
external source, such as a function network or a message from the host
computer. This PHASE attribute can be tested further down within the dis-
play structure, allowing conditional references to other structures (see IF
PHASE command) . See also the SET RATE command which alters the
PHASE attribute based on refresh cycles.

PARAMETER

Hamel —Structure to follow the SET RATE EXTernal command.

DEFAULT

The default phase is ON when a SET R.A'1'E EXTernal node is encountered.

NOTES

1. The PHASE attribute is changed by sending a Boolean value to input 1
of SET RATE EXTernal node .

2. See also notes for SET RATE command.

DISPLAY STRUCTURE NODE CREATED

SET RATE EXTernal operation node.

RMI-140 Reference Materials

SET RATE EXTERNAL
(continued)

INPUT FOR UPDATING NODE

Boolean

name

<1 > Changes the PHASE state
ON (T} /OFF (F}

SET RATE
EXTERNAL

EXAMPLE

A:= BEGIN Structure

Rate:= SET RATE EXTernal;

IF PHASE is ON THEN B;

END_Structure;

B:= VECtor list ...

0390291

{A function network should be connected to A.Rate to set the PHASE ON

and OFF in order to conditionally display vector list B.}

Command Summary RM1-141

SETUP CNESS

TYPE

FUNCTION —Immediate Action

FORMAT

SETUP CNESS queue type <i>name;

DESCRIPTION

Allows you to specify whether or not an input queue to a function instance
is to be a constant queue.

PARAMETERS

queue_type —TRUE sets the queue type to constant, FALSE sets it to
active.

name —Most intrinsic function names, except those listed in the notes.

NOTES

1. This feature should only be used when a function is first instanced. Input
queues should not be changed between active and constant after the
function has started processing data.

2. The SETUP CNESS command can be used for all intrinsic functions
except the following.

F:BOOLEAN CHOOSE

. F:CI(n)

F:CLCSECONDS

F:CLFRAMES

F:CLTICKS

• F: GATI~R GENFCN

F:INPiTTS_CHOOSE(n)

• F:K2ANSI

RMI-142 Reference Materials

SETUP CNESS
(continued)

• F:LINEEDITOR

• F:LIST

• F :PICK

• F:RAS'1`ER

• F:TEDUP

• F:VT10

3. Functions which specify their queue characteristics by their name, e.g.,
F:ADDC, will continue to be instanced with their default active and con-
stant queues .

C'©mmand Summary R1V~1-143

SETUP INTERFACE

TYPE

GENERAL —Command and Control Status

FORMAT

SETUP INTERFACE portn/option=<n>;

DESCRIPTION

This command can be used to change any of the default values. These new
values must be within the acceptable range of values for data characteris-
t1CS.

PARAMETERS

portn —the port being reconfigured

option —the name of the value being changed

<n> — a legal parameter that is specific to the option

NOTES

1. In using this command, the port names are as follows:

• Port 1 is designated port 10

• Port 3 is designated port 30

• Port 4 is designated port 40

• Port 5 is designated port 50

2. The PS 390 does not have to be in Configure mode for this command.

EXAMPLE

SETUP INTERFACE portl0/SPEED=300;

In this example, port 10 is the port being reconfigured, SPEED refers to the
baud rate, and 300 is a legal speed for the communications interface. The
effective baud rate for portl0 is changed to 300.

Refer to HElpful Hint 14 in Section TT2.

RMI-144 Reference 1~laterials

SETUP PASSWORD

TYPE

GENERAL —Command and Control Status

FORMAT

SETUP PASSWORD password;

DESCRIPTION

This command allows you to establish and modify the password required to
enter the Configure mode. This command can be included in the S11'~.DAT
file, or may be set up at any time. This command can only be entered while
in Configure mode.

PARAMETER

password —the established string

Command Summary RM1-145

SHOW INTERFACE

TYPE

GENERAL —Command and Control Status

FORMAT

SHOW INTERFACE <name>;

DESCRIPTION

This command can be used to check the values of a given port.

The menu available with the SHOW INTERFACE command when no pa-
rameter is given lists only those parameters that are relevant to the inter-
face. For example, in synchronous mode, the X_ON/X_OFF parameter
would not be listed.

PARAMETER

<name> —the port being checked

NOTES

1. In using this command, the port names are as follows:

• Port 1 is designated port 10

• Port 3 is designated port 30

• Port 4 is designated port 40

• Port 5 is designated port 50

2. The PS 390 does not have to be in Configure mode for this command.

RMI-146 Reference Materials

SOLID RENDERING

TYPE

MODELING —Data Structuring

FORMAT

name := SOLID_rendering [APPLied to namel];

DESCRIPTION

Declares a polygon object to be a solid and marks the object so that render-
ing operations can be performed on it. This command creates a rendering
node.

PARAMETER

namel — Either a POLYGon node or an ancestor of one or more POLYGon
nodes.

NOTES

1. If non-POLYGon data nodes (VECtor_list, CHARacters, LABELS,
POLYnomial, and BSPLINE) are included in namel, these data objects
are displayed along with the polygon objects prior to rendering but are
omitted from renderings. The rendering operations have no effect on
these data nodes. However, special vector lists output from
F:XFO~:MDATA used to display spheres and lines in the static viewport
can be used and will be displayed if rendered.

2. IF and SET Conditional_BIT, IF and SET LEVeI_of detail, INCRement
LEVeI_of_detail, DECrement LEVeI_of_detail, IF PHASE, SET RATE,
SET RATE EXTernal, SET DEPTH_CLipping, and BEGIN_Structure ...
END_Structure may be placed between a rendering node and its data. A
rendering takes into account any effects of these nodes at the time the
request is made; for example, if IF PHASE and SET RA'T'E are being
used to blink an object and that object is "off" at the moment the re-
quest is made, the object is excluded from the rendering.

The nodes in the above paragraph may also be placed above the render-
.
ing node.

Command Summary RMI -14~

SOLID RENDERING
(continued)

3. The transformations ROTate, TR.ANslate, SCALE, Matrix 2X2, Ma-
trix_3X3, Matrix_4X3, and LOOK may be placed between a rendering

node and its data node (s) . However, these nodes should be used with
caution, since, like the operation nodes mentioned above, their effects

will be incorporated into renderings, and precision problems may result.

Since most vertices in an object usually belong to more than one poly-
gon, each vertex must be defined with the same numerical value in each
of its polygons; otherwise, precision discrepancies may cause inaccurate
renderings. The transformation nodes mentioned above may also be
placed above the rendering node.

4. The five nodes OW, VIEWport, EYE, Field_Of View, and Ma-
trix_4X4 should not, in general, be made descendants of a rendering
node. Like other transformations, these five are incorporated into the
output data from a rendering operation. However, this rendered data is
generally displayed within a framework that already includes global
4x4-matrix transformations of its own. Including these transformations
as part of the rendering, then, usually has the net effect of applying an
unwanted double- OW (double-VIEWport, etc.) to the rendered ob-

J ect.

5. SOLID_rendering, SURFACE rendering, and SECTioning~lane may
not be descendants of a rendering node, especially if multiple-instanced
rendering nodes are involved. If this rule is not observed, bad renderings
or a system crash may result. The system does not check for this condi-
tion.

6. Other nodes, including character transformations and the SET nodes
(SET RATE, SET COLOR) not mentioned above, are ignored by render-
ing operations. Data nodes other than POLYGon are also ignored.

7. Before an object can be rendered, its rendering node must be part of a
structure which is DISPlayed. If the object itself is DISPlayed but its
rendering node is not, no renderings can be created.

RMI-148 Reference Materials

SOLID RENDERING
(continued)

8. Any input to input <1> of a rendering node causes an output. Inputs sent
to input <2> will not cause an output to be sent. If output <1> has not
been connected, and an integer, string, or Boolean is sent to input <1>, a
message will appear on the screen upon successful completion of the
rendering operation. An error message will appear if the rendering was
not completed.

9. Input <3> of the rendering node accepts a transformed vector list (from
output <1> of F:XFORMDATA) and interprets the vectors as "moves"
and "draws" for raster-line rendering.

10. Input <4> of the rendering node accepts a transformed vector list (from
output <1> of F:XFORIVIDATA) and interprets each vector as an x,y,z
spherical primitive.

ll. Input <5> of the rendering node accepts the name of the original vector
list (sent to F:XFORMDATA with its output <1> sent to input <4> of the
rendering node) to enable accurate scaling for rendering raster lines and
spheres.

12. Toggling between the current rendering and the original object (sending
a fix(0) to input <1> of the SOLID rendering or SURFACE rendering
node) works only after requesting backface pictures, sectioned pictures,
or cross-sectioned pictures.

13. Sending a fix(7) to input <1> of the SOLID rendering or SUR-
FACE_rendering node produces a type of Phong shading. Phong shading
is made by interpolating the surface normal between vertices of the poly-
gon and then calculating the correct lighting at each pixel. This is the
highest quality of smooth shading currently supported.

14. Sending a fix(8) to input <1> of the SOLID_rendering or SUR-
FACE rendering node will produce a type of Gouraud shading. Gouraud
shading is made by calculating the correct lighting at the vertices of the
polygon only and interpolating the intensity across the polygon to pro-
duce asmooth-shaded picture. An image produced with Gouraud shad-
ing will not be the quality of an image produced with Phong shading, but
the Gouraud-shaded image will be produced at a faster rate. The user
must supply normals at each of the polygons for the object to be smooth-
shaded.

Command Summary RM1-149

SOLID RENDERING

(continued)

15. Sending data to anon-existent rendering node input will cause the sys-
tem to crash.

DISPLAY STRUCTURE NODE CREATED

Rendering operation node.

INPUTS FOR UPDATING NODE

Instance name

Integer, String,
or Boolean
Boolean for Polygon
Solid/Surface
XFORMDATA
Vector List (raster Lines)

XFORMDATA
Vector List (spherical data

Name of Original
Vector List

U390292

NOTES ON INPUTS

Input < 1 >

Boolean

0: Toggles between the current rendering and the original object in
the dynamic viewport.

1: Creates and displays across-section of an object (solid only) de-
fined by the sectioning plane in the dynamic viewport.

2: Creates and displays a sectioned rendering in the dynamic view-
port.

3: Creates and displays a rendering using backface removal (solid
only) in the dynamic viewport.

RMI-ISO Reference Materials

SOLID RENDERING
(continued)

4: Creates and displays a rendering using hidden-line removal in the
static viewport.

5: Generates awash-shaded image in the static viewport.

6: Generates aflat-shaded image in the static viewport.

7: Generates a Phong-shaded image in the static viewport.

8: Generates a Gouraud-shaded image in the static viewport.

String: Causes the current rendering to be saved under the name given in
the string (dynamic viewport only).

False: Sets the original view. The original descendent structure of the
rendering operation node is displayed.

True: Sets the rendered view. The rendered view of the original descen-
dent structure of the operation rendering node.

Input <2>

True: Declares the object to be a solid.

False: Declares the object to be a surface.

Input <3>

Accepts a transformed vector list from output <1> of
F:XFORIVIDATA to define raster lines.

Input <4>

Accepts a transformed vector list from output <1> of
F:XFORNIDATA to define spherical centers.

Input <5>

Accepts the original vector list to enable accurate spherical scaling.

Output <1>

True: Rendering is displayed.

False: Rendering is not displayed.

Command Summary RMI -1 SI

STANDARD FONT

TYPE

VIEV'VIl~TG —Appearance Attributes

FORMAT

name := STANdard FONT (APPLied to namel];

DESCRIPTION

Establishes the standard PS 390 95-character font as the working font.

PARAMETER

namel —Structure to use the standard font.

DEFAULT

If no other font is specified, the standard font is the default font.

NOTE

This command is necessary only if the standard font is to be used in a
display structure that uses another font higher in the same structure.

DISPLAY STRUCTURE NODE CREATED

Character-font pointer node.

EXAMPLE

Slant := BEGIN Font

(character definitions)

END_Font;

A := BEGIN Structure

character FONT Slant;

CHARacters 'HERE';

STANdard FONT;

CHARacters 0,-2 'HERE';

END_Structure;

DISPlay A;

{'HERE' at 0,0 will be in the Slant font 'HERE' at 0,-2 will be in the
standard font.}

RMI-152 Reference Materials

STORE

TYPE

FUNCTION

FORMAT

STORE option IN namel;

DESCRIPTION

Sends a value to input <1> of function instance, node, or variable namel.

PARAMETERS

option —See SEND command.

namel —function instance name, node name, or variable name to receive
value on input < 1 >.

NCJTE

This command is another way of doing a special case of the SEND com-
mand. It is synonymous with SEND option TO <1>namel;

EXAMPLE

Timer:= F:CLCSECONDS;

STORE FIX(10) IN Timer;

{This is equivalent to: SEND FIX(10) TO <1>Timer;}

Command Summary RMI-153

SURFACE RENDERING

TYPE

MODELING —Data Structuring

FORMAT

name := SURFACE rendering [APPLied to namel];

DESCRIPTION

Declares a polygon object to be a surface and marks the object so that
rendering operations can be performed on it. This command creates a ren-
dering node.

PARAMETER

namel — Either a POLYGon node or an ancestor of one or more POLYGon
nodes.

NOTES

1. If non-POLYGon data nodes (such as VECtor_list, CHARacters, LA-
BELS, POLYnomial, and BSPLINE) are included in name 1, these data
objects are displayed along with the polygon objects prior to rendering
but are omitted from renderings. The rendering operations have no ef-
fect on these data nodes. However, special vector lists output from
F:XFORMDATA used to display spheres and lines in the static viewport
can be used and will be displayed if rendered.

2. IF and SET conditional BTT, IF and SET LEVeI_of_detail, INCRement
LEVeI_of detail, DECrement LEVeI_of detail, IF PHASE, SET RATE,
SET RATE EXTernal, SET DEPTH_CLipping, and BEGIN_Structure ...
END_Structure may be placed between a rendering node and its data. A
rendering takes into account any effects of these nodes at the time the
request is made; for example, if IF PHASE and SET RA'1~E are being
used to blink an object and that object is "off" at the moment the re-
quest is made, the object is excluded from the rendering.

The nodes in the above paragraph may also be placed above the render-
.
ing node.

RMI-154 Reference Materials

SURFACE RENDERING

(continued)

3. The transformations ROTate, TR.ANslate, SCALE, Matrix 2X2, Ma-
trix_3X3, Matrix_4X3, and LOOK may be placed between a rendering
node and its data node (s) . However, these nodes should be used with
caution, since, like the operation nodes mentioned above, their effects
will be incorporated into renderings, and precision problems may result.

Since most vertices in an object usually belong to more than one poly-
gon, each vertex must be defined with the same numerical value in each
of its polygons; otherwise, precision discrepancies may cause inaccurate
renderings. The transformation nodes mentioned above may also be
placed above the rendering node.

4. The five nodes OW, VIEWport, EYE, Field_Of View, and Ma-
trix_4X4 should not, in general, be made descendants of a rendering
node. Like other transformations, these five are incorporated into the
output data from a rendering operation. However, this rendered data is
generally displayed within a framework that already includes global
4x4-matrix transformations of its own. Including these transformations
as part of the rendering, then, usually has the net effect of applying an
unwanted double- OW (double-VIEWport, etc.) to the rendered ob-
ject.

5. SOLID rendering, SURFACE_rendering, and SECTioning_plane may
not be descendants of a rendering node, especially if multiple-instanced
rendering nodes are involved. If this rule is not observed, bad renderings
or a system crash may result. The system does not check for this condi-
tion

6. Other nodes, including character transformations and the SET nodes
(SET RATE, SET COLOR) not mentioned above, are ignored by render-
ing operations. Data nodes other than POLYGon are also ignored.

7. Before an object can be rendered, its rendering node must be part of a
structure which is DISPlayed. If the object itself is DISPlayed but its
rendering node is not, no renderings can be created.

Command Summary RM1-155

SURFACE RENDERING
(continued)

8. Any input to input <1> of a rendering node causes an output. Inputs sent

to input <2> will not cause an output to be sent. If output <1> has not

been connected, and an integer, string, or Boolean is sent to input <1>, a

message will appear on the screen upon successful completion of the

rendering operation. An error message will appear if the rendering was

not completed.

9. Input of the rendering node accepts a transformed vector list (from out-

put <1> of F:XFORNIDATA) and interprets the vectors as "moves" and

"draws" for raster-line rendering.

10. Input <4> of the rendering node accepts a transformed vector list (from

output <1> of F:XFOR.MDATA) and interprets each vector as an x,y,z

spherical primitive.

11. Input <5> of the rendering node accepts the name of the original vector

list (sent to F:XFORIVIDATA with its output <1> sent to input <4> of the

rendering node) to enable accurate scaling for rendering lines and

spheres.

12. Toggling between the current rendering and the original object (sending

a fix(0) to input <1> of the SOLID rendering or SURFACE_rendering

node) works only after requesting backface pictures, sectioned pictures,

or cross-sectioned pictures.

13 . Sending a fix (7) to input < 1 > of the SOLID rendering or SUR-
FACE_rendering node produces a type of Phong shading. Phong shading

is made by interpolating the surface normal between vertices of the poly-

gon and then calculating the correct lighting at each pixel. This is the

highest quality of smooth shading currently supported.

14. Sending a fix(8) to input <1> of the SOLID_rendering or SUR-
FACE_rendering node will produce a type of Gouraud shading. Gouraud
shading is made by calculating the correct lighting at the vertices of the
polygon only and interpolating the intensity across the polygon to pro-

duce asmooth-shaded picture. An image produced with Gouraud shad-

ing will not be the quality of an image produced with Phong shading, but

the Gouraud-shaded image will be produced at a faster rate. The user

must supply normals at each of the polygons for the object to be smooth-

shaded.

RMI-156 Reference Materials

SURFACE RENDERING

(continued)

15. Sending data to anon-existent rendering node input will cause the sys-
tem to crash.

DISPLAY STRUCTURE NODE CREATED

Rendering operation node.

INPUTS FOR UPDATING NODE

Instance name

Integer, String,
or Boolean
Boolean for Polygon
Solid/Surface
XFORMDATA
Vector List (raster Lines)

XFORMDATA
Vector List (spherical data

Name of Original
Vector List

U390292

NOTES ON INPUTS

Input < 1 >

Boolean

0: Toggles between the current rendering and the original object in
the dynamic viewport.

1: Creates and displays across-section of an object defined by the
sectioning plane (solid only) in the dynamic viewport.

2: Creates and displays a sectioned rendering in the dynamic view-
port.

3: Creates and displays a rendering using backface removal (solid
only) in the dynamic viewport.

Command Summary RMI-157

SURFACE RENDERING
(continued)

4: Creates and displays a rendering using hidden-line removal in the
static viewport.

5: Generates awash-shaded image in the static viewport.

6: Generates aflat-shaded image in the static viewport.

7: Generates a Phong-shaded image in the static viewport.

8: Generates a Gouraud-shaded image in the static viewport.

String: Causes the current rendering to be saved under the name given in
the string (dynamic viewport only).

False: Sets the original view. The original descendent structure of the
rendering operation node is displayed.

True: Sets the rendered view. The rendered view of the original descen-
dent structure of the rendering operation node is displayed.

Input <2>

True: Declares the object to be a solid.

False: Declares the object to be a surface.

Input <3>

Accepts a transformed vector list from output <1> of
F:XFOR.MDATA to define raster lines.

Input <4>

Accepts a transformed vector list from output <1> of
F:XFOR.MDATA to define a spherical center.

Input <5>

Accepts the original vector list to enable accurate spherical scal-
ing .

Output <1>

True: Rendering is displayed.

False: Rendering is not displayed.

RMI-158 Reference Materials

TEXT SIZE

TYPE

MODELING —Character Transformations

FORMAT

name := TEXT SIZE x (APPLied to namel] ;

DESCRIPTION

Creates a 2X2 uniform scale matrix which defines character size.

PARAMETERS

x —The size of the characters.

name 1 —Structure containing the characters .

NOTES

1. The text size (x) is a multiple or fraction of the default character size,
i.e. 1.

2. A TEXT SIZE node in a display structure overrides any previous charac-
ter sizes that may have been created using the CHARacter SCAIe or
CHARacter SIZE commands. In other words, the 'TEXT SIZE scaling
matrix is not concatenated into any other 2X2 matrix.

3. A TEXT SIZE node will also override CHARacter ROTate and Ma-
trix 2X2 nodes.

DISPLAY STRUCTURE NODE CREATED

2x2-matrix operation node.

Command Summary RM1-159

TEXT SIZE

(continued)

INPUT FOR UPDATING NODE

2x2 matrix

NOTE ON INPUT

Any 2x2 matrix is legal.

ASSOCIATED FUNCTIONS

F:MATRIX2, F:CSCALE

EXAMPLE

String := CHARacters 'This is only a test';

Scale := CHARacter SCAle 2 THEN String;

New_Scale := CHARacter SCAle 3 THEN Scale;

Change_Size := TEXT SIZE .5 THEN String;

{The Scale matrix creates characters twice the default size. The

New Scale matrix is concatenated with the Scale matrix to create

characters six times the default size. The Change Size matrix, however

is not concatenated, and so returns the characters to one half of the

default size . }

RMI-160 Reference Materials

TRANSLATE

TYPE

MODELING —Transformations

FORMAT

name : = TRANslate by tx, ty (, tz) [APPLied to namely ;

DESCRIPTION

Translates an object by applying a translation vector to it.

PARAMETERS

tx,ty,tz —Distances to translate in each coordinate direction, in world coor-
dinates.

namel —Structure to be translated.

DEFAULT

tz is 0 if not specified.

DISPLAY STRUCTURE NODE CREATED

3D translation-vector operation node.

INPUT FOR UPDATING NODE

name

3D Vector <1> Changes the translation
vector

U390294

Command Summary RMI-161

TRANSLATE
(continued)

ASSOCIATED FUNCTIONS

F:XVECToR, F:~C'VECTCJR, F:ZVECTQR

EXAMPLE

A:= TRANslate by 5,7 THEN B;

B:= VECtor list ...

RMI-162 Reference Materials

VARIABLE

TYPE

FUNCTION —Data Structuring

FORMAT

VARiable namel[,name2 .., namen];

DESCRIPTION

Declares a storage place (or places) for any PS 390 function data type. A
value can be stored in variable namel either by SENDing (or STOREing) a
value to input <1> of namel, or by CONNecting a function instance to input
<1> of namel. The current value of variable namel can be obtained by
using either the F:FETCH function or the SEND VALUE (variable name)
option of the SEND command, where variable_ name in this case is namel.

PARAMETER

namel,name2... —Variable names.

EXAMPLE

VARiable Current_XY, X, Y, Z, Save;

Command Summary RM~-163

VECTOR LIST

TYPE

MODELING —Primitives

FORMAT

name := VECtor list [options) [N=n) vectors;

DESCRIPTION

Defines an object by specifying the points comprising the geometry of the
object and their connectivity (topology).

PARAMETERS

name —Any legal PS 390 name.

options —Can be none, any, or all of the following four groups, but only
one from each group, and in the order specified below. (The exception to
this rule is that i1'EMized can be specified along with TA..Bulated. If ITEM-
ized is not specified, a TABulated vector list is treated by default as con-
nected.)

1. BLOCK normalized —All vectors will be normalized to a single
common exponent.

2. Connectivity:

• CONNECTED lines —The first vector is an undisplayed position
and the rest are endpoints of lines from the previous vector.

• SEParate_lines —The vectors are paired as line endpoints.

• DOTs —Each vector specifies a dot.

• I'1'EMized —Each vector is individually specified as a move to
position (P) or a line endpoint (L) .

• TABulated —This clause is used to specify an entry into a table
that is used for specifying colors for raster lines and for specifying
colors, radii, diffuse, and specular attributes for raster spheres.
This option is also used to alter the attribute table itself .

RM1-164 Reference Materials

VECTOR LIST

(continued)

When the TABulated option is used, the T=t clause replaces the I=i
clause (for intensities) and the H=hue clause (for vector hues) . The
default is 127 (table entry 127) .

11'EMized can be included with the TABulated option. If itemized
is not specified, TABulated vector lists default to CONNECTED,
where the first vector is an undisplayed position; all subsequent
vectors represent endpoints of lines from the previous vector, re-
gardless of P and L syntax.

There are 0 to 127 entries into the Attribute table. The Attribute
table may be modified via input <14> of the SHADINGENVIRON-
MENT function.

3. Y and Z coordinate specifications (for constant or linearly changing
Y and/or Z values):

Y = y[DY=delta_y] [Z = z[DZ=delta_z]]

where y and z are default constants or beginning values, and delta_y
and delta_z are increment values for subsequent vectors.

4. INTERNAL units —Vector values are in the internal PS 390 units
[LENGTH] . Specifying this option speeds the processing of the vec-
tor list, but this also requires P/L information to be specified for each
vector, and it doesn't allow default Y values or specified intensities.

n —Estimated number of vectors.

vectors —The syntax for individual vectors will vary depending on the op-
tions specified in the options area. For all options except I'I'EMized and
TABulated the syntax is:

xcomp [,ycomp [,zcomp]] [I=i]

where xcomp, ycomp and zcomp are real or integer coordinates and i is a
real number (0.0 < i < 1.0) specifying the intrinsic intensity for that point
(1.0 =full intensity).

Command Summary RMI -165

VECTOR LIST
(continued)

For ITEMized vector lists the syntax is:

P xcomp [,ycomp [,zcomp]] [I=i]

or

L xcomp [,ycomp [,zcomp]] [I=i]

where Pmeans amove-to-position and L means a line endpoint.

If default y and z values are specified in the options area, they are not
specified in the individual vectors.

For TABulated vector lists (TAB), the syntax is:

xcomp [,ycomp [,zcomp]] [T=t]

where t is an integer between 0 and 127 specifying a table entry. Note that P
and L can be specified if ITEMized is included with the TABulated option.

DEFAULTS

If not specified, the options default to:

1. block normalized

2. connected

3. no default Y or Z values are assumed (refer to Note 5)

4. Expecting internal units

Unspecifed vectors default to:

xcomp ,ycomp [,zcomp] [I=i]

If i is not specified, it defaults to 1.

Tabulated vectors default to:

xcomp ,ycomp [,zcomp] [T=t]

If the table entry is not specified, it defaults to 127 (table entry 127) .

NOTES

1. If n is less than the actual number of vectors, insufficient allocation of
memory will result; if greater, more memory will be allocated than is
used. (The former is generally the more severe problem.)

RMI-166 Reference Materials

VECTOR LIST
(continued)

2. All vectors in a list must have the same number of components.

3. If y is specified in the options area, z must be specified in the options
area.

4. If no default is specified in the options area and no Z components are
specified in the vectors area, the vector list is a 2D vector list. If a Z
default is specified in the same case, the vector list is a 3D vector list.

5. The first vector must be a position (P) vector and will be forced to be a
position vector if not.

6. Options must be specified in the order given.

7. If COl~TNECTED_lines, SEParate_lines, or DOTS are specified in the
options area but the vectors are entered using P/L, then the option speci-
fied takes precedence.

8. Block-normalized vector lists generally take longer to process into the
PS 390, but are processed faster for display once they are in the system.

DISPLAY STRUCTURE NODE CREATED

Vector-list data node.

INPUTS FOR UPDATING NODE

name

Vector

Integer

Integer

Vector

Boolean }

Vector y

<last> Changes last vector

<clear> Clears list

<delete> Deletes from end

<append> Appends from end

<i> TRUE =Line: FALSE =Position

<i> Replaces ith vector

VECTOR LIST
0390295

Command Summary RMI -167

VECTOR LIST
(continued)

NOTES ON INPUTS

1. Vector list nodes are in one of two forms:

• If DOTS was specified in the options area of the command, a
DOTS-mode vector-list node is created. The Boolean input to <i> is
ignored in this case as well as the P/L portion of input vectors, and
all vectors input are considered new positions for dots.

• All other vector-list nodes created can be considered to be 2D or
3D ITEMized with intensity specifications after each vector, and if
a 3D vector is input to a 2D vector-list node, the last component
modifies the intensity.

2. If a 2D vector is sent to a 3D vector list, the Z value defaults to 0.

3. When you replace the ith vector, the new vector is considered a line
(L) vector unless it was first changed to a position vector with F:PO-
SITTON LINE.

EXAMPLES

A := VECtor list BLOCK SEParate INTERNAL N=4

P l,l L -1,l L -1,-1 L 1,-1;

B := VECtor list n=5

1,1 -1,1 I=.5

-1,-1 1,-1 I=.75

1,1;

C := VECtor list ITEM N=5

P 1,1

L -1,l

L -1, -1

P 1, -1

L 1, 1;

D := VECtor list TABulated ITEM N=5 {for drawing raster lines}
P 0,1,0

L 0,0,0 t=5

L 1,0,0 t=2

P 1,1,0 t=3

L 0,1,0 t=4;

RMI-168 Reference Materials

VIEWPORT

TYPE

VIEV'VIl~TCT — Veewport Specification

FQRMAT

name := VIEWport HORizontal = hmin:hmax

VERTical = vmin:vmax

[INTENsity = imin:imax] [APPLied to namel];

DESCRIPTION

Specifies the area of the screen that the displayed data will occupy, and the
range of intensity of the lines.

PARAMETERS

hmin,hmax,vmin,vmax — The X and Y boundaries of the new viewport.
Values must be within the -1 to 1 range relative to the current viewport,
implying that each viewport may be no larger than its predecessor.

imin,imax -- Specifies the minimum and maximum intensities for the view-
port. imin is the intensity of lines at the back clipping plane; imax at the
front clipping plane. Values must be within the 0 to 1 range relative to the
current viewport, implying that each viewport may have no greater intensity
range than its predecessor.

namel —Structure to which the viewport is applied.

DEFAULT

The initial viewport is the full PS 390 screen with full intensity range (0 to 1):

VIEWport HORizontal = -l:l VERTical = -l:l INTENsity = 0:1;

NOTES

1. A new V~Wport is defined relative to the current viewport, whose

boundaries are always taken to be -1:1 horizontally and vertically for the

purposes of the command. (The "current" viewport is the one estab-

lished by the most recent VIEWport command.)

Command Summary RMl -169

VIEWPORT

(continued)

2. Viewports can be nested to any level.

3. If the viewport aspect ratio (vertical/horizontal) is different from the
window aspect ratio (Y/X) or field-of-view aspect ratio (always 1) being
displayed in that viewport, the data displayed there will appear distorted.

DISPLAY STRUCTURE NODE CREATED

3x3 viewport-matrix operation node.

INPUTS FOR UPDATING NODE

2x2 matrix

3x3 matrix

NOTES ON INPUTS

name

<1> Changes viewport
boundaries (and
intensity range if
3x3 matrix is input)

3x3
r

3x3 viewport
matrix

U390296

1. For 2x2-matrix input, row 1 contains the hmin,hmax values and row
2 the vmin, vmax values .

2. For 3x3-matrix input, column 3 is ignored (there is no 3x2-matrix
data type), rows 1 and 2 are as for the 2x2 matrix above, and row 3
contains the imin, imax values .

ASSOCIATED FUNCTIONS

F :MATRIX 2 , F : MATR.IX 3

RMI-170 Reference Materials

VIEWPORT
(continued)

EXAMPLE

A:= VIEWport HORizontal = 0:1

VERTical = 0:1

INTENsity = .5:1 THEN B;

B•=

{If A is displayed, structure B will be displayed in the upper right

quadrant of the screen with the intensity ranging from .5 to 1 instead

of 0 to 1. }

Commend Summary RMI-171

WINDOW

TYPE

VIEWING —Windowing Transformations

FORMAT

name := WINDOW X = xmin:xmax

Y = ymin:ymax

[FRONT boundary = zmin BACK boundary = zmax]

[APPLied to namel] ;

DESCRIPTION

Specifies a right rectangular prism enclosing a portion of the world coordi-
nate system to be displayed in parallel projection (compare Field_Of View).

PARAMETERS

xmin...zmax —The window's boundaries along each axis (Refer to Note 3.)

namel —Structure to which the window is applied.

DEFAULT

WINDOW X=-l:l Y=-1:1 FRONT=O BACK=100000;

NOTES

1. The windowing commands (WII~TDOW, Field_Of View, and EYE)
should always be the highest level element (the outermost transforma-
tion) ir. a display structure since these transformations override any pre-
vious transformations in the structure. Note that VIEWport is a mapping
operation not a transformation of the data and thus is not affected by a
windowing command.

2. These commands should also be followed by a LOOK command to fully
specify the viewing transformation. (Refer to the LOOK command.)

RMI-172 Reference Materials

WINDOW

(continued)

3. The front and back boundaries should be specified relative to the AT
point's position along the positive Z axis (O,O,D) (refer to the notes on
the LOOK command). So, FRONT should equal (D minus delta min)
and BACK should equal (D plus delta_max), where delta_min and
delta max are the distances before and after the AT point that are to be
included in the window, respectively. (Refer also to Note 3 of the LOOK
command.)

DISPLAY STRUCTURE NODE CREATED

4x4-matrix operation node.

INPUT FOR UPDATING NODE

4x4 matrix

ASSOCIATED FUNCTIONS

F: OW, F:FOV, F:MATR.IX4

EXAMPLE

A:= BEGIN Structure

WINDOW X = -1:1 Y = -1:1

FRONT boundary = 12

BACK boundary = 14;

LOOK AT 0,0,0 FROM 5,6.63,-10 THEN Sphere;
END_Structure;

{If Sphere is defined with a radius of 1 about the origin, A would be a
view of the Sphere from 5,6.63,-10, fully depth cued. Note that the
FROM to AT distance in the LOOK command is 13.}

Command Summary RMI-173

WITH PATTERN

TYPE

MODELING —Primitives

FORMAT

name := WITH PATtern i [AROUND_corners] [MATCH/NOMATCH] LENgth r

VECtor list;

DESCRIPTION

Uses line patterns (dashes, center lines, etc.) in drawing a vector list. The
line pattern is created over the length r, so lines will have the pattern re-
peated as many times as necessary to the end of the line.

PARAMETERS

i — A series of up to 32 integers between O and 128 indicating the relative
lengths of alternating lines, spaces, lines, etc., in the pattern. The longer the
series, the more complex the pattern of lines and spaces, which repeats
every r units.

AROUND_corners —indicates that patterning is to continue around each of
the vectors in the vector list until the end of the list or a position vector is
reached.

MATCH/NOMATCH —indicates that the pattern length should be adjusted
to make the pattern exactly match the end points of the vector or series of
vectors being patterned. The default is MATCH.

r —The length over which i is defined and repeated.

VECtor list —indicates standard VECtor list command with all options
available except DOTs.

NOTES

1. The VECtor_list parameter n should be the estimate for the total num-
ber of vectors that will result from the command (not the number of
vectors specified in the vector list).

RMI-174 Reference Materials

WITH PATTERN
(confinued)

2. As r approaches 0, n approaches infinity.

3. If r is greater than a vector line segment, that segment will be drawn

solid; no pattern will be used.

DISPLAY STRUCTURE NODE CREATED

Vector list data node.

INPUTS FOR UPDATING NODE

See VECtor list command.

NOTES QN INPUTS

Remember that the vectors in the node are the patterned vectors, so it is
nontrivial to update a vector.

EXAMPLES

WITH PATTERN 1 1 LENgth 1 VECtor list N=2 0,0 3,0;

WITH PATTERN 1 1 LENgth 3 VECtor list N=2 0,0 3,0;

WITH PATTERN 1 1 LENgth 4 VECtor list N=2 0,0 3,0;

WITH PATTERN 1 1 1 1 LENgth 2 VECtor list N=2 0,0 3,0;

{same as the first example}

WITH PATTERN 1 .25 .125 .25 .125 .25 1 LENgth 3

VECtor list N=2 0,0 3,0;

Command Summary RMI-1 ~S

WRITEBACK

TYPE

MODELING —Transformed Data Attributes

FORMAT

name := WRITEBACK [APPLied to Hamel] ;

DESCRIPTION

The WRITEBACK command creates a WRITEBACK operation node and
delineates the data structure below the node for writeback operations. When
the BACK operation node is activated, writeback is performed for
Hamel.

PARAMETER

Hamel —The name of the structure or node to which writeback is applied.

NOTES

1. This node delimits the structure from which writeback data will be re-
trieved. Only the data nodes that are below the WRITEBACK operation
node in the data structure will be transformed, clipped, viewport sealed,
and sent back to the host.

2. Only a structure that is being displayed can be enabled for writeback.
This means that the VVRI'1'EBACK operation node must be traversed by
the display processor and so must be included in the displayed portion
of the structure. If the writeback of only a portion of the picture is de-
sired, WRITEBACK nodes must be placed appropriately in the display
structure.

3. Any number of WRITEBACK nodes can be placed within a structure .
Only one writeback operation can occur at a time. If more than one node
is triggered, the writeback operations are performed in the order in
which the corresponding nodes were triggered. If the user creates any
WRITEBACK nodes (other than the WRITEBACK node created initially
at boot-up), these nodes must be displayed before being triggered. If the
nodes are triggered before being displayed, an error message will result.

RMI-176 Reference Materials

WRITEBACK

(continued)

4. Terminal emulator and Message Display data will not be returned to the
host.

DISPLAY STRUCTURE NODE CREATED

BACK operation node.

Command Summary RMI-177

XFORM

TYPE

MODELING —Transformed Data Attributes

FORMAT

name := XFORM output data type APPLied to Hamel;

DESCRIPTION

Allows transformed data to be saved either as a vector list or a 4x4 matrix
at the point in the display structure where this XFORM data node is posi-
boned.

PARAMETERS

output_data_type —Specifies what type of transformed data (MATRIX or
VECTOR) is to be saved.

MATRIX — A single 4x4 matrix representing the concatenation of all trans-
formation matrices currently in effect.

VECtor — A vector list specifying the transformed coordinates of the object
(namely.

Hamel —The object whose transformed data are to be saved.

NOTE

This node indicates to the F:XFO~:MDATA function the point in the
display structure where transformed data are requested.

DISPLAY STRUCTURE NODE CREATED

XFORM operation node.

RMI-178 Reference Materials

XFORM
(continued)

ASSOCIATED FUNCTIONS

F: XFORNIDATA, F:LIST, F: SYNC (2) .

EXAMPLE

Xform := BEGIN_Structure {Set up switch mechanism}

X := SET Conditional BIT 1 ON;

IF conditional BIT 1 is ON THEN VIEW;

IF conditional BIT 1 is OFF THEN TRAN;

END_Structure;

Tran := BEGIN_Structure {To be used while getting transformed data}

Matrix 4x4 1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1;

INSTance of Ob j ;

END Structure;

View := BEGIN_Structure {To be used while viewing and designing}

{Viewing commands: Field_Of_View, WINDOW

EYE BACK, or 4x4 Matrix}

INSTance of Ob j ;

END Structure;

Obj := BEGIN_Structure {Setup transformed-data request}

{Transformation commands:

ROTATE, TRANSLATE, and/or SCALE}

Xform Request := XFORM VECtor;

INSTance of Data;

END Structure;

XformData := F:XFORMDATA; {Build transformed-data network}

Sync2 := F:SYNC(2);

List := F:LIST;

CONN Sync2<1>:<1>XFORMDATA;

CONN XformData<1>:<1>List;

CONN List<1>:<1>HOST_MESSAGE; {Send transformed data to host}

CONN List<2>:<2>Sync2; {"Task completed" flag}

SEND <any message> TO <2>Sync2;

SEND 'OBJ.XFORM REQUEST' TO <2>XformData;

SEND 'XDATA' TO <3>XformData;

DISPLAY Xform ;

Command Summary RMI-1 ~9

Appendix A

PS 390 Commands by Category

Advanced Programming (Memory Allocation)

RAwBLocK

Function (Data Structuring)

VA~:IABLE

Function (Immediate Action)

CONNECT

DISCONNECT

SEND

SEND number *mode

SEND VL

SETUP CHESS

STORE

General (Immediate Action -Command Control and Status)

BEGIN... END

CO STATUS

CONFIGURE

FIlVISH CONFIGURATION

GIVE_UP CPU

O ZE MEMORY

O ZE STRUCTURE...END OPTIlVIIZE

REBOOT

RESERVE ~VORI~ING STORAGE

RMI-180 Reference Materials

!RESET

SET PRIORITY

SETUP I)vTERFACE

SETUP PASSWORD

SHOW ~vTERFACE

General (Immediate Action -Data Structuring and Display)

DELETE

DISPLAY

FORGET (structures)

FORGET (units)

REMOVE

General (Immediate Action -Initialization)

Il~TITIALIZE

Modeling (Data Structuring -Character Font)

B E GIN_F O NT ...END _FONT

C CTER FONT

STANDARD FONT

Modeling (Data Structuring -Character Transformations)

C C'1'ER ROTATE

C CTER SCALE

MATF.IX 2x2

TEXT SIZE

Modeling (Data Structuring -Line Pattern)

PA'1T1'ERN

PA'iTl'ERN

SET LINE TEX

Command Summary RMI -181

Modeling (Data Structuring -Picking Attributes

SET PICKING

SET PICK:Il~TG IDEN'1'Ir'IER

SET PICK:Il~TG LOCATION

Modeling (Data Structuring -Primitives)

BSPLINE

CHARACTERS

coPY
ERASE PATTERN FROM

LABELS

PATTERN

PATTERN

POLYGON

POLYNO

RATIONAL BSPLINE

RATIONAL POLYNOMIAL

VECTOR LIST

WITH PATTERN

Modeling (Data Structuring -Transformed Data Attributes)

CANCEL XFORM

WRITEBACK

XFORM

Modeling (Data Structuring -Transformations)

MATRIX_3x3

MATRIX_4x3

MATRIX_4x4

ROTATE

SCALE

T~SLA'1'E

RM1-182 Reference Materials

Rendering (Data Structuring)

ATTRIBUTE S

ILL ATION

SECTIOr1E~TG PLANE

S OLID_RENDERING

SURFACE_RENDERING

Structure (Data Structuring -Attributes)

DECREMENT LEVEL_OF DETAIL

INCREMENT LEVEL OF_DETAIL

SET BL G ON/OFF

SET BLANK RATE

SET CONDITIONAL BIT

SET LEVEL OF_DETAIL,

SET RATE

SET RATE EXTERNAL

Structure (Data Structuring -Conditional Referencing)

IF CONDITIONAL BIT

IF LEVEL OF_DETAIL

IF PHASE

Structure (Data Structuring -Explicit Referencing)

APPLIED TO/THEN

(Function Instancing)

INSTANCE OF

(Naming of Display Structure Nodes)

NIL

Structure (Data Structuring -Implicit Referencing)

BEGIN STRUC ...END STRUC

Command Summary RM1-183

Structure (Immediate-action -Modifying)

FOLLOW

INCLUDE

PREFIX

REMOVE FOLLOWER

REMOVE FROM

REMOVE PREFIX

Viewing (Data Structuring -Appearance Attributes)

SELECT FILTER

SET CHARACTERS

SET COLOR

SET CONTRAST

SET DEPTH CLIPPING

SET DISPLAYS

Viewing (Data Structuring - Viewport Specification)

LOAD VIEWPORT

SET INTENSITY

VIEWPORT

Viewing (Data Structuring -Windowing Transformations)

EYE

FIELD_OF_VIEW

LOOK

OW

RMI-184 Reference Materials

Appendix B

PS 390 Command Syntax

APPLIED TOITHEN

name := operation command [APPLied to namel];

name := operation_command [THEN namel];

ATTRIBUTES

name := ATTRIBUTES attributes [AND attributes];

BEGIN...END

BEGIN

command;

command;

command;

END;

BEGIN FONT... END FONT

name := BEGIN Font

[C [0] : N=n {itemized 2D vectors} ;]

[C [i] : N=n {itemized 2D vectors} ;]

[C [127] : N=n {itemized 2D vectors} ;]

END_Font;

Command Summary RMI -I85

BEGIN_S...END_S

name := BEGIN Structure

[namel:=] nameable command;

[namen:=] nameable command;

END Structure;

BSPLINE

name := BSpline ORDER=k

[OPEN/CLOSED] [NONPERIodic/PERIodic] [N=n]

[VERTICES =] xl , yl , [zl]

x2,y2, [z2]

xn, yn, [zn]

[KNOTS = tl,t2,...,tj]

CHORDS = q;

CANCEL XFORM

name := CANCEL XFORM [APPLied to namel];

CHARACTER FONT

name := character FONT font name [APPLied to namel];

CHARACTER ROTATE

name := CHARacter ROTate angle [APPLied to namel];

CHARACTERS

name := CHARacters [x,y[,z]][STEP dx,dy] 'string';

CHARACTER SCALE

name := CHARacter SCAle s [APPLied to namel];

name := CHARacter SCAle sx,sy [APPLied to namel];

RM1-186 Reference Materials

COMMAND STATUS

COMmand STATus;

CONFIGURE

CONFIGURE password;

CONNECT

CONNect namel<i>:<j>name2;

COPY

name : = COPY name 1 [START=] i [,] [COUNT=] n ;

DECREMENT LEVEL OF DETAIL

name:= DECrement LEVel_of_detail[APPLied to namel];

DELETE

DELete name [, namel ... namen] ;

DELete any string*;

DISCONNECT

DISCONNect namel [<i>] :option;

DISCONNect namel<i>:<j>name2;

DISPLAY

DISPlay name;

ERASE PATTERN FROM

ERASE PATTERN FROM name;

EYE BAC K

name := EYE BACK z [optionl][option2] from SCREEN area w WIDE

[FRONT boundary = zmin BACK boundary = zmax]

[APPL i e d t o name 1];

Command Summary RMI -18 7

FIELD_OF VIEW

name := Field Of View angle

[FRONT boundary = zmin BACK boundary = zmax]

[APPLied to namel] ;

FINISH CONFIGURATION

FINISH CONFIGURATION;

FOLLOW WITH

FOLLOW name WITH option;

FORGET (structures)

FORget name;

FORGET (units)

FORget (unit name);

(Function Instancing)

name := F:function name;

GIVE UP CPU

GIVE UP_CPU;

IF CONDITIONAL BIT

name := IF conditional_BIT n is state [THEN namel];

IF LEVEL OF DETAIL

name := IF LEVel_of_detail relationship n [THEN namel];

IF PHASE

name := IF PHASE is state THEN [namel];

RMI-188 Reference Materials

ILLUMINATION

name : = ILLUMINATION x, y, z [COLOR h [, s [, i]]] [AMBIENT a] ;

INCLUDE

INCLude namel IN name2;

INCREMENT LEVEL OF DETAIL

name:= INCRement LEVel_of_detail[APPLied to namel];

INITIALIZE

INITialize [option];

INSTANCE OF

name : = I NSTanc e o f name 1 [,name 2 ... namen] ;

LABELS

name := LABELS x, y,[,z] 'string'

[xi,yi [,zi] 'string'] ;

LOAD VIEWPORT

name := LOAD VIEWport HORizontal = hmin:hmax

VERTical = vmin:vmax

[INTENsity = imin:imax] [APPLied to namel];

LOOK

name := LOOK AT ax, ay,az FROM fx,fy,fz

[UP ux , uy , uz] [APPLied to namel] ;

name : = LOOK FROM f x , f y , f z AT ax , ay , az

[UP ux,uy,uz] [APPLied to namel];

MATRIX_2x2

name := Matrix_2x2 mll,ml2

m21,m22 [APPLied to namel];

Command Summary RMI -18 9

MATRIX 3x3

name := Matrix 3x3 mll,ml2,m13

m21,m22,m23

m31,m32,m33 [APPLied to namel];

MATRIX 4x3

name := Matrix 4x3 mll,ml2,m13

m21,m22,m23

m31, m32 , m33

m41,m42,m43 [APPLied to namel];

MATRIX 4x4

name := Matrix 4x4 mll,m12,m13,m14

m21,m22,m23,m24

m31,m32,m33,m34

m41,m42,m43,m44 [APPLied to namel];

(Naming of Display Structure Nodes)

name:= display structure command;

NIL

name := NIL;

OPTIMIZE MEMORY

OPTIMIZE MEMORY;

OPTIMIZE STRUCTURE; END OPTIMIZE;

OPTIMIZE STRUCTURE;

command;

command;

END OPTIMIZE;

PATTERN

name := PATtern i [AROUND_corners][MATCH/NOMATCH] LENgth r;

RMI-190 Reference Materials

PATTERN WITH

PATTERN namel WITH pattern;

POLYGON

name : _ [WITH ATTRIBUTES namel] [WITH OUTLINE h] [COPLANAR]

POLYGon vertex ... vertex;

POLYNOMIAL

name:= POLYnomial[ORDER=i]

[COEFFICIENTS=] xi, yi, zi

xi-1, yi-1, zi-1

xo, yo, zo
CHORDS= q;

PREFIX WITH

PREFIX name WITH operation command;

RATIONAL BSPLINE

name := RATIonal BSpline ORDER=k

[OPEN/CLOSED] [NONPERIodic/PERIodic] [N=n]

[VERTICES =] xl , yl , [zl] , w

x2,y2, [z2] ,w2

xn,yn, [zn],wn

[KNOTS = tl,t2,...,tj]

CHORDS = q;

RATIONAL POLYNOMIAL

name:= RATional POLYnomial[ORDER=i]

[COEFFICIENTS=] xi, yi, zi, wi

xi-1, yi-1, zi-1, wi-1

xo, yo, zo,
wo

CHORDS= q;

Command Summary RMI-191

RAWBLOCK

name := RAWBLOCK i;

REBOOT

name := REBOOT password;

REMOVE

REMove name;

REMOVE FOLLOWER

REMove FOLLOWER of name;

REMOVE FROM

REMove namel FROM name2;

REMOVE PREFIX

REMove PREf ix of name;

RESERVE WORKING STORAGE

RESERVE WORKING_STORAGE size;

!RESET

!RESET;

ROTATE

name : = ROTate in [axis] angle [APPLied to namel] ;

SCALE

name := SCALE by s [APPLied to namel];

name : = SCALE by sx, sy [, sz] [APPLied to namel] ;

SECTIONING PLANE

name := SECTioning_plane [APPLied to namel];

RMI-192 Reference Materials

SELECT FILTER

namel := SELECT FILTER n THEN Name2;

SEND

SEND option TO <n>namel;

SEND number* mode

SEND number*mode TO <n>namel;

SEND VL

SEND VL(namel) TO <i>name2;

SET BLINKING ON/OFF (PS 350)

name := SET BLINKing switch [APPLied to namel];

SET BLINK RATE

name := SET BLINK RATE n [APPLied to namel];

SET CHARACTERS

name := SET CHARacters orientation [APPLied to namel];

SET COLOR

name := SET COLOR hue, sat [APPLied to namel];

SET CONDITIONAL BIT

name := SET conditional BIT n switch [APPLied to namel];

SET CONTRAST

name := SET CONTrast to c [APPLied to namel];

SET DEPTH CLIPPING

name := SET DEPTH CLipping switch [APPLied to namel];

Command Summary RMI -193

SET DISPLAYS

name := SET DISPlays ALL switch [APPLied to namel];

name : = SET DISPlay n [, m. . .] switch [APPLied to namel] ;

SET INTENSITY

name := SET INTENsity switch imin:imax [APPLied to namel];

SET LEVEL OF DETAIL

name := SET LEVel_of_detail ton [APPLied to namel];

SET LINE TEXTURE

name := SET LINe_texture [AROUnd_corners] pattern

[APPLied to namel] ;

SET PICKING

name := SET PICKing switch [APPLied to namel];

SET PICKING IDENTIFIER

name := SET PICKing IDentifier = id name

[APPLied to namel] ;

SET PICKING LQCATI~N

name := SET PICKing LOCation = x,y size x, size y;

SET PRIORITY

Set Priority of name to i;

SET RATE

name := SET RATE phase_on phase off [initial state] [delay]

[APPLied to namel];

SET RATE EXTERNAL

name:= SET RATE EXTernal [APPLied to namel];

RMI-194 Reference Materials

SETUP CNESS

SETUP CNESS queue type <i>name;

SETUP INTERFACE

SETUP INTERFACE portn/option=<n>

SETUP PASSWORD

SETUP PASSWORD password;

SHOW INTERFACE

SHOW INTERFACE <name>;

SOLID RENDERING

name := SOLID rendering [APPLied to namel];

STANDARD FONT

name := STANdard FONT [APPLied to namel];

STORE

STORE option IN namel;

SURFACE RENDERING

name := SURFACE rendering [APPLied to namel]•

TEXT SIZE

name := TEXT SIZE x [APPLIED to namel];

TRANSLATE

name := TRANslate by tx,ty[,tz] [APPLied to namel];

VARIABLE

VARiable namel[,name2 ... namen];

Command Summary RM1-195

VECTOR LIST

name := VECtor_list [options] [N=n] vectors;

VIEWPORT

name := VIEWport HORizontal = hmin:hmax

VERTical = vmin:vmax

[INTENsity = imin:imax] [APPLied to namel];

WINDOW

name := WINDOW X = xmin:xmax Y = ymin:ymax

[FRONT boundary = zmin BACK boundary = zmax]

[APPLied to namel] ;

WITH PATTERN

name := WITH PATtern i [AROUND_corners][MATCH/NOMATCH]

LENgth r VECtor list;

WRITEBACK

name := WRITEBACK [APPLied to namel];

xFoRM

name := XFORM output_data_type [APPLied to namel];

RMI-196 Reference Materials

Appendix C

ASCII Commands

and Corresponding GSRs

This appendix contains a list of the PS 390 ASCII commands and the correspond-
ing FORTRAN, Pascal and LJNIC/C GSRs. The names of the utility and raster
routines and the corresponding GSRs are also included. GSR descriptions will be
found in Section R:M4.

The user should note the following when using this appendix:

The left column lists the ASCII command or routine name in alphabetical
order. The right three columns list the corresponding FORTRAN, Pascal
and UNIX/C GSR. N/A means that there is no GSR.

In general, there is a one-to-one correspondence between ASCII commands
and the corresponding GSRs. The following three ASCII commands require
more than one GSR:

• LABELS

• POLYGON

• VECTOR LIST

The utility and raster routines do not have a corresponding ASCII com-
mand .

ASCII commands with different parameters have separate GSRs. The name
of the corresponding ASCII command will contain the parameter. For exam-
ple, the ROTA'T'E command has the following three corresponding GSRs:

• ROTATE IN X

• ROTATE IN Y

• ROTA'T'E IN Z

Command Summary RMI -197

ASCII Command/Routine Name FORTRAN Pascal UNIX/C

Attach PS 390 to Communication PAttch PAttach PAttach

Device - utility GSR

ATTRIBUTES PAttr PAttrib PAttrib

ATTRIBUTES PAttr2 PAttrib2 PAttrib2

BEGIN...END PBeg PBegin PBegin

BEGIN...END PEnd PEnd PEnd

Begin Saving GSR Data - N/A N/A PSavBeg

utility GSR

BEGIN_STRUCTURE...END_STRUCTURE PBegS ~ PBeginS PBeginS

BEGIN STRUCTURE...END STRUCTURE PEndS PEndS PEndS

BSPLINE PBspl PBspl PBspl

CANCEL XFORM PXfCan PXfCancl PXfCancl

CHARACTER FONT PFont PFont PFont

CHARACTER ROTATE PChRot PCharRot PCharRot

CHARACTERS PChs PChars PChars

CHARACTER SCALE PChSca PCharSca PCharSca

CONNECT PConn PConnect PConnect

Convert HSI to RGB - PSURGB PSUTIL HSIRGB PSUTIL HSIRGB

utility GSR

COPY PCopyV PCopyVec PCopyVec

DECREMENT LEVEL OF DETAIL PDeLOD PDecLOD PDecLOD

DELETE PDelet PDelete PDelete

DELETE STRING PDe1W PDelWild PDelWild

Detach PS 390 from Communication PDtach PDetach PDetach

Device - utility GSR

DISCONNECT PDi PDisc PDisc

DISCONNECT ALL PDiAll PDiscAll PDiscAll

DISCONNECT OUTPUT PDiOut PDiscOut PDiscOut

RMI-198 Reference Material

(continued)
ASCII Command/Routine Name FORTRAN Pascal UNIX/C

DISPLAY PDisp PDisplay PDisplay

End Saving GSR Data - utility GSR N/A N/A PSavEnd

ERASE PATTERN FROM PEraPa PEraPatt PEraPatt

Erase Screen - raster GSR PRasEr PRasEr PRasEr

EYE BACK PEyeBk PEyeBack PEyeBack

FIELD OF VIEW PFov PFov PFov

FOLLOW WITH PFoll PFoll PFoll

FORGET (Structures) PForg PForget PForget

(Function Instancing) PFn PFnInst PFnInst

(Function Instancing) PFnN PFnInstN PFnInstN

GIVE UP_CPU PGUCPU PGiveUpCPU PGiveUpCPU

IF CONDITIONAL BIT PIfBit PIfBit PIfBit

IF LEVEL OF DETAIL PIfLev PIfLevel PIfLevel

IF PHASE PIfPha PIfPhase PIfPhase

ILLUMINATION PIllum PIllumin PIllumin

INCLUDE PIncl PIncl PIncl

INCREMENT LEVEL OF DETAIL PInLOD PIncLOD PIncLOD

INITIALIZE PInit PInit PInit

INITIALIZE CONNECTIONS PInitC PInitC PInitC

INITIALIZE DISPLAY PInitD PInitD PInitD

INITIALIZE NAMES PInitN PInitN PInitN

INSTANCE OF PInst PInst PInst

Command Summary RMI-199

(continued)
ASCII Command/Routine Name FORTRAN Pascal UNIX/C

LABELS PLaAdd PLabAdd PLabAdd

PLaBeg PLabBegn PLabBegn

PLaEnd PLabEnd PLabEnd

Load Pixel Data - raster GSR PRasWP PRasWP PRasWP

Load Saved GSR Data - utility GSR N/A N/A PLoad

LOOK PLookA PLookAt PLookAt

MATRIX 2X2 PMat22 PMat2x2 PMat2x2

MATRIX 3X3 PMat33 PMat3x3 PMat3x3

MATRIX 4X3 PMat43 PMat4x3 PMat4x3

MATRIX_4X4 PMat44 PMat4x4 PMat4x4

NIL PNil PNameNil PNameNil

OPTIMIZE STRUCTURE;...END OPTIMIZE; POpt POptStru POptStru

OPTIMIZE STRUCTURE;...END OPTIMIZE; PEndOp PEndOpt PEndOpt

PATTERN PDefPa PDefPatt PDefPatt

PATTERN WITH PPatWi PPatWith PPatWith

Poll PS 390 for Messages - PGet PGet PGet

utility GSR

POLYGON PP1ygA PPlygAtr PP1ygAtr

PPlygB PP1ygBeg PPlygBeg

PP1ygE PP1ygEnd PP1ygEnd

PPlygB PP1ygHSI PP1ygLisHSI

PP1ygL PP1ygLis PPlygLis

PPlygo PPlygotl PPlygotl

PP1ygR PP1ygRGB PP1ygLisRGB

POLYNOMIAL PPoly PPoly PPoly

PREFIX WITH PPref PPref PPref

Purge Output Buffer - utility GSR PPurge PPurge PPurge

RMI-200 Reference Material

(continued)
ASCII Command/Routine Name FORTRAN Pascal UNIX/C

Query GSR Device Status - PDInfo PDevInfo N/A

utility GSR

RATIONAL BSPLINE PRBspl PRBspl PRBspl

RATIONAL POLYNOMIAL PRPoly PRPoly PRPoly

RAWBLOCK PRawBl PRawBloc PRawBloc

Read Messages from PS 390 - PGetW PGetWait PGetWait

utility GSR

REMOVE PRem PRem PRem

REMOVE FOLLOWER PRemFo PRemFoll PRemFoll

REMOVE FROM PRemFr PRemFrom PRemFrom

REMOVE PREFIX PRemFr PRemPref PRemPref

RESERVE WORKING STORAGE PRsvSt PRsvStor PRsvStor

ROTATE IN X PRotX PRotX PRotX

ROTATE IN Y PRotY PRotY PRotY

ROTATE IN Z PRotZ PRotZ PRotZ

SCALE PScale PScaleBy PScaleBy

SECTIONING PLANE PSecPl PSecPlan PSecPlan

SEND 2D MATRIX PSnM2d PSndM2d PSndM2d

SEND 2D VECTOR PSnV2d PSndV2d PSndV2d

SEND 3D MATRIX PSnM3d PSndM3d PSndM3d

SEND 3D VECTOR PSnV3d PSndV3d PSndV3d

SEND 4D MATRIX PSnM4d PSndM4d PSndM4d

SEND 4D VECTOR PSnV4d PSndV4d PSndV4d

Command Summary RMI-201

(continued)
ASCII Command/Routine Name FORTRAN Pascal UNIX/C

SEND BOOLEAN PSnBoo PSndBool PSndBool

Send Bytes to Generic Output PPutG PPutG PPutG

Channel - utility GSR

Send Bytes to Generic Output PPutGX PPutGX N/A

Channel - utility GSR

Send Bytes to Parser Output PPutP PPutPars PPutPars

Channel - utility GSR

SEND FIX PSnFix PSndFix PSndFix

SEND number*mode PSnPL PSndPL PSndPL

SEND RAW STRING PSnRSt PSndRStr N/A

SEND REAL NUMBER PSnRea PSndReal PSndReal

SEND STRING PSnSt PSndStr PSndStr

SEND VALt1E PSnVal PSndVal PSndVal

SEND VL PSnVL PSndVL PSndVL

SET CHARACTERS SCREEN ORIENTED PSeChS PSetChrS PSetChrS

SET CHARACTERS SCREEN ORIENTED/FIXED PSeChF PSetChrF PSetChrF

SET CHARACTERS WORLD ORIENTED PSeChW PSetChrW PSetChrW

SET COLOR PSeCol PSetColr PSetColr

SET CONDITIONAL BIT PSeBit PSetBit PSetBit

SET CONTRAST PSeCon PSetCont PSetCont

Set Current Pixel Location - PRasCp PRasCp PRasCp

raster GSR

Set Delimiting Character - PDelim N/A N/A

utility GSR

SET DEPTH CLIPPING PSeDCL PSetDCL PSetDCL

RMI-202 Reference Material

(continued)
ASCII Command/Routine Name FORTRAN Pascal UNIX/C

SET DISPLAY PSeDOF PSetDOnF PSetDOnF

SET DISPLAYS ALL PSeDAl PSetDAll PSetDAll

Set Global Binary Output Channel - PMuxCI PMuxCI PMuxCI

utility GSR

Set Global Generic Channel - PMuxG PMuxG PMuxG

utility GSR

Set Global Parser Channel - PMuxP PMuxPars PMuxPars

utility GSR

SET INTENSITY PSeInt PSetInt PSetInt

SET LEVEL OF DETAIL PSeLOD PSetLOD PSetLOD

SET LINE TEXTURE PSeLnT PSetLinT PSetLinT

Set Logical Device Coordinates - PRasLd PRasLd PRasLd

raster GSR

SET PICKING PSePOf PSetPOnf PSetPOnf

SET PICKING IDENTIFIER PSePID PSetPID PSetPID

SET PICKING LOCATION PSePLo PSetPLoc PSetPLoc

Set Raster Mode to Write Pixel PRaWRP PRaWRP PRaWRP

Data - raster GSR

SET RATE PSeR PSetR PSetR

SET RATE EXTERNAL PSeREx PSetRExt PSetRExt

SETUP CNESS PseCns PSetCnes PSetCnes

SOLID RENDERING PSolRe PSolRend PSolRend

STANDARD FONT PStdFo PStdFont PStdFont

SURFACE RENDERING PSurRe PSurRend PSurRend

TRANSLATE PTrans PTransBy PTransBy

Command Summary ~M1-203

(continued)
ASCII Command/Routine Name FORTRAN Pascal UNIX/C

VARIABLE PVar PVar PVar

VECTOR LIST PVcBeg PVecBegn PVecBegn

PVcEnd PVecEnd PVecEnd

PVcLis PVecLis PVecLis

PVcMax PVecMax PVecMax

VIEWPORT PViewP PViewP PViewP

WINDOW PWindo PWindow PWindow

WRITEBACK PWrtBk PWrtBack PWrtBack

XFORM MATRIX PXfMat PXfMatrx PXfMatrx

XFORM VECTOR LIST PXfVec PXfVec tr PXf Vec tr

RMI -204 Reference Material

ASCII Character Code Set

Decimal ASCII Decimal ASCII Decimal ASCII

value Character Value Character Value Character

0 NUL 44 88 X

1 SOH 45 — 89 Y

2 STX 46 90 Z

3 ETX 47 / 91 [

4 EOT 48 0 92 \

5 ENQ 49 1 93]

6 ACK 50 2 94 T or

7 BEL 51 3 95 E- or
8 BS 52 4 96 `

9 HT 53 5 97 a

10 LF 54 6 98 b

11 vT 55 7 99 c

12 FF 56 8 100 d

13 CR 57 9 101 e

14 SO 58 102 f

15 SI 59 103 g

16 DLE 60 < 104 h

17 DCl 61 = 105 i

18 DC2 62 > 106 ' J
19 DC3 63 ? 107 k

20 DC4 64 @ 108 1

21 NAK 65 A 109 m

22 SYN 66 B 110 n

23 ETB 67 C 111 0

24 CAN 68 D 112 p

25 EM 69 E 113 q

26 SUB 70 F 114 r

27 ESC or ALT 71 G 115 s

28 FS 72 H 116 t

29 GS 73 I 117 u

30 RS 74 L 118 v

31 VS 75 K 119 w

32 SP 76 L 120 x

33 ! 77 M 121 v

34 " 78 N 122 z

35 # 79 0 123 {

36 $ 80 P 124

37 % 81 Q 125 }

38 & 82 R 126 ~ TILDE

39 83 S 127 Rubout or DEL

40 (84 T

41) 85 U

42 * 86 V

43 + 87 W

Command Summary RMI -2 OS

RM2. INTRINSIC FUNCTIONS

CONTENTS

1. INTRINSIC FUNCTIONS 1

2. FUNCTION REPRESENTATION 2

3. CONJUNCTIVE/DISJUNCTIVE SETS 3

4. CONSTANT AND ACTIVE QUEUES 4

5. QUEUE DATA TYPES 6

6. INTRINSIC USER FUNCTIONS 7

F:ACCUMULATE 8
F:ADD 11
F:ADDC 12
FALLOW VECNORM 13
F:AND 14
F:ANDC 15
F:ATSCALE 16
F:AVERAGE 18
F:BOOLEAN CHOOSE 19
F:BROUTE 20
F:BROUTEC 21
F:CBROUTE 22
F:CCONCATENATE 23
F:CDIV 24
F:CEILING 25
F:CGE 26
F:CGT 27
F:CHANGEQTYPE 28

F:CHARCONVERT 29
F:CHARMASK 31
F:CHOP 32
F:CI(n) 33
F:CIROUTE(n) 35
F:CLCSECONDS 37
F:CLE 39
F:CLFRAMES 40
F:CLT 42
F:CLTICKS 43
F:CMUL 45
F:COMP STRING 46
F:CONCATENATE 47
F:CONCATENATEC 48
F:CONCATXDATA(n) 49
F:CONSTANT 50
F:CROTATE 51
F:CROUTE(n) 52
F:CSCALE 53
F:CSUB 54
F:CVEC 55
F:CVT6T08 56
F:CVT8T06 57
F:CVTASCTOIBM 58
F:CVTIBMTOASC 59
F:DELTA 60
F:DEMUX(n) 61
F:DEPACKET 63
F:DIV 65
F:DIVC 66
F:DSCALE 67
F:DXROTATE 69
F:DYROTATE 70
F:DZROTATE 71
F:EDGE DETECT 72
F:EQ 73
F:EQC 74
F:FCNSTRIP 75
F:FETCH 76
F:FIND STRING 77
F:FIX ~g
F: FLOAT 79

it

F:FOV gp
F:GATHER GENFCN 82
F:GATHER STRING 83
F:GE 84
F:GEC 85
F:GT 86
F:GTC g7
F:HOLDMESSAGE gg
F:INPUTS_CHOOSE(n) 90
F:LABEL 91
F:LBL EXTRACT 92
F:LE 93
F:LEC 94
F:LENGTH_STRING 95
F:LIMIT 96
F:LINEEDITOR 98
F:LIST 101
F:LOOKAT 102
F:LOOKFROM 103
F:LT 104
F:LTC 105
F:MAKEPACKET 106
F:MATRIX2 107
F:MATRIX3 108
F: MATRIX4 109
F:MCAT STRING(n) 110
F:MINMAX(n) 111
F:MOD 112
F:MODC 113
F:MUL 114
F: MULC 115
F:MUX 116
F:NE 117
F:NEC 118
F:NOP 119
F:NOT 120
F:NPRT PRT 121
F:OR 122
F:ORC 123
F:PACKET 124
F: PARTS 126
F:PASSTHRU(n) 127

111

F:PICKINFO 128
F:POSITION LINE 131
F:PRINT 132
F:PVT STRING 136
F:RANGE SELECT 137
F:READDISK 139
F:READSTREAM 140
F:RESET 141
F:ROUND 142
F:ROUTE(n) 143
F:ROUTEC (n) 144
F:SCALE 145
F:SCREENSAVE 146
F:SEND 147
F:SINCOS 148
F:SPLIT 149
F:SQROOT 150
F:STRING TO NUM 151
F:SUB 152
F:SUBC 153
F:SYNC(n) 154
F:TAKE STRING 156
F:TIMEOUT 157
F:TRANS STRING 159
F:VEC 160
F:VECC 161
F:VEC_EXTRACT 162
F:WINDOW 163
F:WRITEDISK 165
F:WRITESTREAM 166
F:XFORMDATA 167
F:XOR 170
F:XORC 171
F:XROTATE 1 ~2
F:XVECTOR 173
F:YROTATE 174
F:YVECTOR 175
F: ZROTATE 176
F:ZVECTOR 1~~

7. INTRINSIC SYSTEM FUNCTIONS 178

F:F_I1_IBM
F:F_I2 IBM 179

tv

F:F W IBM 180
-

-

F:IBMDISP 181
F:IBM KEYBOARD 182
F: K2ANSI 18 4
F: RASTER 18 5
F: RASTERSTREAM 18 6
F:SETITPIBM 187
F: STATDIS 18 8
F:TEDUP 189
F:USRTOF 190
F:VT10 191

APPENDIX A
INTRINSIC FUNCTIONS BY CATEGORY 192

Classification of Functions 192
Intrinsic User Functions 193
Intrinsic System Functions 196
ASCII Character Code Set 197

v

Section RVI2

Intrinsic Functions

A function is the processing component of a function network. It performs one or
more operations by accepting input, processing that input, and producing output.
In the PS 390 there are two types of functions: intrinsic functions and user-written
functions .

There are two types of intrinsic functions: intrinsic user functions and intrinsic
system functions. Intrinsic user functions may be instanced by a user to create a
function network. Intrinsic system functions should not be instanced by the user.
Intrinsic functions are documented in this section.

A user-written function is a function written by a PS 390 user for a specific appli-
cation. That application may perform operations not provided by the PS 390 intrin-
sic functions or perform operations that would require a large network of intrinsic
functions to accomplish. User-written functions are documented in Section APS.

Functions must be "instanced" before they can be incorporated into a function
network. Instancing is the process of creating a unique case of the function. The
unique case is identified by the user- or system-given name, and the input and
output connections of the function.

1. Intrinsic Functions

Intrinsic functions are the master set of function "templates" which are
instanced and used in building function networks. These functions are of the
form

F:identifier

where "identifier" is the name of the function (e.g., ROUTE, MUL, CON-
CATENATE) . Using the Name := F:identifier; command, the user can cre-
ate uniquely named instances of intrinsic functions.

Intrinsic Functions RM2-1

For example,

Adder := F:ADD;

creates a function called Adder, which is a uniquely named instance Of the
F:ADD intrinsic function. Inputs and outputs of user-instanced functions are
connected to create function networks for handling data input from the in-
teractive devices, from the host computer, or from other functions . For ex-
ample,

CONNECT Adder<1>:<1>Multiply;

connects output 1 of the function instance Adder to input queue 1 of the
function instance Multiply.

Whenever the PS 390 is booted, certain intrinsic functions are automatically
instanced for use, and are called initial function instances. Initial function
instances are documented in Section RM3.

Intrinsic functions are documented in this section. Intrinsic user functions
and listed first, followed by the intrinsic system functions. Appendix A con-
tains alisting of the intrinsic user and system functions by category.

Since some functions use the ASCII decimal equivalent of characters, an
ASCII chart with decimal codes is included after Appendix A.

Unless noted, all strings consist of 8-bit ASCII characters.

2. Function Representation

Functions are represented as "black boxes" with numbered inputs and out-
puts enclosed in angle brackets. Valid data types are shown in abbreviated
form at each input and output. A "C" in the function name usually indicates
that one or more input queues contain a constant value. A constant input is
shown by the letter "C" following the input number in angle brackets. The
following is a key tO the abbreviations used.

RM2-2 Reference Materials

KEY TO VALID DATA TYPES

Any Any message
B Boolean value
C Constant vaaue

CH Character
I Integer

Label Data input to LABELS node
M 2x2, 3x3, 4x3, 4x4 matrix
PL Pick list
R Real number
S Any string

Special Special data type
V Any vector

2D 2D vector
3D 3D vector
4D 4D vector
2x2 2x2 matrix
3x3 3x3 matrix
4x3 4x3 matrix
4x4 4x4 matrix

3. Conjunctive/Disjunctive Sets

Some PS 390 functions have conjunctive or disjunctive inputs and outputs.
A function with conjunctive inputs must have a new message on every input
before it will fire. A function with conjunctive outputs will send a message
on every output when the function is fired.

Conversely, a disjunctive input function does not require a new message on
every input to fire. A disjunctive output function may not send a message on
each output (or any output) every time it receives a complete set of input
messages.

The F:ADD function, for example, has conjunctive inputs. A value must be
sent to each of the two inputs before the function will fire. The inputs are
then added together, which produces an output that is the sum of the inputs.
The output is conjunctive. Unlike F:A.DD, F:ADDC is a disjunctive input
function; it does not require a new message on every input.

F:BRQUTE, on the other hand, is a conjunctive input, disjunctive output
function. Both inputs require messages to fire the function. However, a mes-
sage will be sent out only one of the outputs, depending on the value re-
ceived on input 1.

Intrinsic Functions RM2-3

F:ACCUMULATE is an example of a different sort of disjunctive output.
Every input does not produce an output. The function activates each time a
new message is received on input 1, but the output fires at specified inter-
vals rather than each time the function is activated.

The following notation is used in to indicate disjunctive or conjunctive in-
puts and outputs .

KEY TO CONJUNCTIVE/DISJUNCTIVE SYMBOLS

CC conjunctive inputs, conjunctive outputs
CD conjunctive inputs, disjunctive outputs
DC disjunctive inputs, conjunctive outputs
DD disjunctive inputs, disjunctive outputs

4. Constant and Active Queues

Function input queues are of two different types:

1. Constant queues, where the queue retains a message until another
message is received on that input, and any previous message on that
queue is removed. Constant queues cannot be emptied unless the
data on the queue is of an inappropriate type. The message is not
"used up" by the function.

2. Active queues (sometimes called trigger queues), where all data are
collected on the queue, and then input to the function on a "first in
first out" basis as soon as the function is activated. Messages on
active queues are "used up" by the function.

A function usually requires something to be on every input queue before it
can execute .

The programmer has the ability to change the type of input queues on a
function. The following PS 390 command:

SETUP CNESS TRUE <n>Name ; makes It a constant queue}
SETUP CNE S S FALSE <n>Name ; {makes i t an active queue}

will set the nth queue of the function Name to be a Constant queue if TRUE
is entered, and to be a Active queue if FALSE is entered. Unless specified
otherwise, input queues are by default Active queues.

RM2-4 Reference Materials

This feature should be used only when a function is first instanced. Input

queues should not be changed between active and constant at any time after

the function has started processing data.

This feature is accessible for most user instanceable functions. Functions

which specify their queue characteristics by their name (i.e. F:ADDC) will

continue to be instanced with the same defaults as before. There are a few

functions which, because of their nature, are not allowed to change queue

characteristics. These functions are:

• F:BOOLEAN CHOOSE

• F : CI (n)

• F:CLCSECONDS

• F: CLF S

• F: CLTICKS

• F: GATHER GENFCN

• F:INPUTS_CHOOSE(n)

• F:K2ANSI

• F:LINEEDITOR

• F:LIST

• F:PICK

• F:RAS'1'ER

• F:'1'EDUP

• F:VT10

When this command is applied to one of these functions, the following error

message is given:

E 102 * * * Cannot affect Cness for its generic function : (Name)

When this command is applied to a name that is not a function instance the

following error message is given:

E 95 *** Name must be a function instance

The user should exercise caution when setting Cness. For example, if all

input queues were set to constant, the function would be constantly firing.

Changing Cness in one of the functions named above will have no effect or

may cause the function to work in an unpredictable manner. The user is

advised to exercise caution when setting Cness for other functions.

Intrinsic Functions RM2-S

5. Queue Data Types

Blocks of data passed between functions are referred to as Qdata message
blocks. The names and definitions of the general data types acceptable by
function input queues are given in the following table:

Qdata Type DEFINITION

Qreset Dataless: reset a function instance

Qprompt Dataless: Flush the CI pipeline

Qboolean Normal carrier of Boolean values

Qinteger Normal carrier of integer values

Qreal Normal carrier of floating point values

Qpacket Normal carrier of byte strings

Qmorepacket Alternate to Qpacket as carrier of byte string
on input to PS 390 (only occurs as output
from F:DEPACKET, F:CIROUTE)

Qmove2 2D vector including P bit

Qdraw2 2D vector including the L bit

Qvec2 2D vector with no PIL bit (normal vector)

Qmove3 3D vector including P bit

Qdraw3 3D vector including the L bit

Qvec3 3D vector with no P/L bit (normal vector)

Qmove4 4D vector including P bit

Qdraw4 4D vector including the L bit

Qvec4 4D vector with no P/L bit (normal vector)

Qmat2 2x2 matrix (all matrices use 4x4 indexing)

Qmat3 3x3 matrix

Qmat4 4x4 matrix

RM2-6 Reference Materials

6. Intrinsic User Functions

Following is a summary of the Intrinsic User Functions. The functions are
ordered alphabetically on aletter-by-letter basis.

The following information, where relevant, is given for each function:

• Name

• Type/Category

• Purpose

• Description of inputs and outputs

• Defaults

• Note s

• Associated functions

• Examples

Intrinsic Functions RM2-7

F:ACCUMULATE

TYPE

Intrinsic User Function —Arithmetic and Logical

F:ACCUMULATE

R, 2D, 3D, 4D, B

R, 2D, 3D, 4D
R

R, 2D, 3D, 4D

R, 2D, 3D, 4D

R, 2D, 3D, 4D

PURPOSE

 > <1 >

> <2> C

 > <3> C

 > <4> C

 > <5> C

 ~ <6> C

D D

<1> > R, 2D, 3D, 4D

Accumulates a series of input values and sends the sum at specified inter-
vals.

DESCRIPTION

INPUTS

<1> — value to be accumulated

<2> — initial value (constant)

<3> — output interval (constant)

<4> — scale factor (constant)

<5> — upper limit on sum (constant)

<6> — lower limit on sum (constant)

OUTPUT

<1> — sum

DEFAULTS

Input <3> defaL~lts to 0, input <4> defaults to 1.

RM2-8 Reference Materials

F:ACCUMULATE
(continued)

NOTES

1. The input values may be scaled, and the output values may be limited to
a specified range as in F:LIMIT. Note that this combination of opera-
tions is especially useful for handling input from the control dials.

2. An initial value must be sent to input <2>; subsequent values are sent to
input <1>. All values at input <1> are scaled by input <4> before adding.

3. The sum is output whenever it differs from the previous F:ACCUMU-
LATE output (or zero if there was no previous output) by more than the
value at input <3>. (If vectors are being accumulated, this difference and
the value at input <3> are taken to be vector lengths and, therefore, real
numbers. Vector lengths are considered to be n(x,y) _ ~x~+~Y~,
not n(x,y) = x2 + y 2 .

4. Inputs <5> and <6> specify limits (upper and lower, respectively) to be
applied to the accumulated sum. A sum falling outside the range is ad-
justed to the nearer limit, and any further accumulations operate on the
limited sum.

5. Inputs <1> and <2> must be of the same data type. To change the data
type of the sum to be accumulated, send a new initial value of the appro-
priate type to <2>. Note that the data type of the accumulated sum may
not be changed simply by starting to send different data types to
<1>—these will only generate an "Incompatible inputs" error message.

6. If input <2> is a real number, then inputs <4>, <5>, and <G> must be real
numbers. ~n the other hand, if input <2> is a vector, then each of inputs
<4>, <5>, and <6> may be either a vector of the same dimension as <2>
or a real number.

7. If vectors are being accumulated, but the scale factor at <4> is real, then

each coordinate of each vector accumulated at <1> is multiplied by the
real scale factor before the vector is added in. If the scale factor at <4>

is a vector, each of its coordinates is multiplied by the corresponding

coordinate of the accumulated vector.

Intrinsic Functions RM2-9

F:ACCUMULATE

(continued)

8. If vectors are being accumulated, but both the upper sum limit at <5>
and the lower sum limit at <6> are real, then these real numbers are the

limits for each coordinate of the sum. If <5> and <6> are vectors, each

of their respective coordinates is applied as a limit to the corresponding

coordinate of the sum.

9. If input <1> is Boolean (regardless of value), the current sum is immedi-

ately sent to output <1>. If you send a new value to input <2> and then

send a Boolean value to input <1>, the accumulator will be reset to the

new value and this value is immediately sent to output <1>.

10. Vector types may not be mixed in an F:ACC ATE operation; all

vectors must be either 2D, 3D, or 4D.

EXAMPLE

Refer to Application Note 10 in Section TTI.

RM2-10 Reference Materials

F:ADD

TYPE

Intrinsic User Function —Arithmetic and Logical

F:ADD

I, R, 2D, 3D, 4D
2x2 , 3x3 , 4x4

I, R, 2D, 3D, 4D
2x2, 3x3, 4x4

PURPOSE

<1> <1>

<2>

CC

 > I, R, 2D, 3D, 4D
2x2 , 3x3 , 4x4

Accepts two inputs and produces an output that is the sum of those inputs.

DESCRIPTION

INPUTS

<1> —

<2> —

OUTPUT

NOTE

input value

input value

<1> — sum

The two input values must be of the same data type (except that a com-
bination of a real number and an integer is allowed); the output data
type depends on the input data type(s). If an integer is added to a real
number the output is a real number.

ASSOCIATED FUNCTION

F:ADDC

Intrinsic Functions RM2-11

F:ADDC

TYPE

Intrinsic User Function —Arithmetical and Logical

F:ADDC

I, R, 2D, 3D, 4D
2x2 , 3x3 , 4x4

I, R, 2D, 3D, 4D >
2x2, 3x3, 4x4

PURPOSE

<1> <1>

<2> C

DC

 > I, R, 2D, 3D, 4D
2x2 , 3x3 , 4x4

Accepts two inputs and produces an output that is the sum of those inputs.

Input <2> is a constant.

DESCRIPTION

INPUTS

<1> —

<2> —

OUTPUT

NOTE

input value

input value (constant)

<1> — sum

The two input values must be of the same data type (except that a com-

bination of a real number and an integer is allowed); the output data

type depends on the input data type(s). If an integer is added to a real

number the output is a real number.

ASSOCIATED FUNCTION

F:ADD

RM2-12 Reference Materials

FALLOW VECNORM

TYPE

Intrinsic User Function —Data Conversion

FALLOW VECNORM

B ~

PURPOSE

<1> <1> ~ Boolean TRUE
when completed

F:ALLOW_VECNORM allows vector-normalized vector lists to be created
locally or downloaded from the host to the PS 390. Enhanced CPK firmware
is dependent on vector-normalized data to perform renderings.

DESCRIPTION

INPUT

<1> — Boolean value

OUTPUT

<1> — Boolean TRUE when completed

NOTE

A Boolean TRUE sent to input <1> of FALLOW VECNORM allows
vector-normalized data to be created by the PS 390. A Boolean FALSE
sent on input <1> will reset the PS 390 and cause vector-normalized data
to be converted to block-normalized data. A Boolean TRUE is sent from
output <1> when the function has run to completion.

Intrinsic Functions RM2-13

F:AND

TYPE

Intrinsic User Function —Arithmetic and Logical

F:AND

PURPOSE

 <1>

 > <2>

CC

<1> >B

Accepts two Boolean values as input and produces a Boolean value output
that is the logical A►ND of the two inputs.

DESCRIPTION

INPUTS

<1> — Boolean value input

<2> — Boolean value input

otrrPUT

<1> — logical A.ND of the two inputs

ASSOCIATED FUNCTION

F:ANDC

RM2-14 Reference Materials

F:ANDC

TYPE

Intrinsic User Function —Arithmetical and Logical

F:ANDC

<1>

<2> C

DC

<1>

PURPOSE

 >B

Accepts two Boolean values as input and produces a Boolean value output
that is the logical A►ND of the two inputs. Input <2> is a constant.

DESCRIPTION

INPUTS

<1> — Boolean value input

<2> — Boolean value input (constant)

OUTPUT

<1> — logical AND of the two inputs

ASSOCIATED FUNCTION

F:AND

Intrinsic Functions RM2-1 S

F:ATSCALE

TYPE

Intrinsic User Function —Data Selection and Manipulation

F:ATSCALE

R, 2D, 3D, 4D)

R)

R)

PURPOSE

<1>

<2> C

<3> C

DC

<1> > R, 2D, 3D, 4D

Like F:ACC ATE, F:ATSCALE accumulates the sum of a series of

real numbers or vectors. Unlike F:ACC ATE, its sum is cleared after

output.

DESCRIPTION

INPUTS

<1> — value to be accumulated

<2> — scale factor (constant)

<3> delta (constant)

OUTPUT

<1> —

DEFAULTS

accumulated sum

Input <2> = 1.0, Input <3> = 0.0

NOTES

1. Each value on input <1> is scaled by the value on input <2>, then added

to the internally stored current sum of scaled input <1> values. When the

accumulated sum differs from the last value sent out output <1> by at

least the amount on input <3>, the accumulated sum is output and the
internal accu~1~ulated sum is cleared.

RMZ-16 Reference Materials

F:ATSCALE

(continued)

2. If vectors are input on <1>, the difference on input <3> is taken to be
vector length. Vector length is the linear distance from a vector location
to the origin of the world coordinate system (i.e., the Euclidean norm,

3. Sending a Boolean TRUE or FALSE to input <1> forces the accumulated
sum to be output and cleared from internal storage.

Intrinsic Functions RM2-17

F:AVERAGE

TYPE

Intrinsic User Function —Arithmetic and Logical

(, R, 2D, 3D, 4D

I, R, 2D, 3D, 4D

PURPOSE

F:AVERAGE

<1 > <1 >

<2> <2>

CC

 > i, R, 2D, 3D, 4D

 > I, R, 2D, 3D, 4D

Accepts two inputs, outputs the average of the two inputs on output <1>,
and outputs the value of input <2> unchanged on output <2>.

DESCRIPTION

INPUTS

< 1 > — any value

<2> — any value

OUTPUTS

<1> — average of the two input values

<2> — value of input <2> unchanged

NOTE

The two input values must be of the same data type (except that a com-
bination of a real number and an integer is allowed); the outputs are
also of that data type. If an integer is averaged with a real number, a
real number is output on <1>.

RM2-18 Reference Materials

F:BOOLEAN CHOOSE

TYPE

Intrinsic User Function —Data Selection and Manipulation

F:BOOLEAN CHOOSE

B > <1>

Any > <2> C

Any <3> C

DC

<1>

PURPOSE

 > Any

Uses the Boolean value on input <1> to select the constant message on input
<2> or input <3>, outputting the selected message on output <1>.

DESCRIPTION

INPUTS

<1> — Boolean value

<2> — any message (constant)

<3> any message (constant)

OUTPUT

<1> — message on input <2> when input <1> is TRUE or message
on input <3> when input < 1 > i s FALSE

Intrinsic Functions RM2-19

F:BROUTE

TYPE

Intrinsic User Function —Data Selection and Manipulation

B

Any

PURPOSE

F:BROUTE

<1> <1>

<2> <2>

CD

 > Any

 > Any

Acts as a Boolean routing function, accepting a Boolean value on input <1>
and any message on input <2>. When a TRUE is received on input <1>, the
message appears at output <1>. When a FALSE is received on input <1>,
the message appears at output <2>.

DESCRIPTION

INPUTS

<1> trigger

<2> — any message

OUTPUTS

<1> — message on input <2> when input <1> is TRUE

<2> — message on input <2> when input <1> is FALSE

ASSOCIATED FUNCTIONS

F:BROUTEC, F: CBROUTE

RM2-20 Reference Materials

F:BROUTEC

TYPE

Intrinsic User Function —Data Selection and Manipulation

B

Any

PURPOSE

F:BROUTEC

<1> <1>

<2> C <2>

D D

 > Any

 > Any

Acts as a Boolean routing function, accepting a Boolean value on input <1>

and any message on constant input <2>. When a TRUE is received on input
<1>, the message appears at output <1>. When a FALSE is received on

input <1>, the message appears at output <2>.

DESCRIPTION

INPUTS

<1> trigger

<2> — any message (constant)

oUTPUTs

<1> — message on input <2> when input <1> is TRUE

<2> — message on input <2> when input <1> is FALSE

ASSOCIATED FUNCTIONS

F : BROUTE, F : CBROUTE

Intrinsic Fi~nctions RM2-21

F:CBROUTE

TYPE

Intrinsic User Function —Data Selection and Manipulation

B

Any

PURPOSE

F:CBROUTE

<1> C <1>

<2> <2>

D D

 > Any

 > Any

Acts as Boolean routing function, sending the message on input <2> to out-
put <1> when the constant Boolean value on input <1> is TRUE or to output
<2> when the constant Boolean value on input <1> is FALSE.

DESCRIPTION

INPUTS

<1> — trigger (constant)

<2> — any message

OUTPUTS

<1> — message on input <2> when input <1> is TRUE

<2> — message on input <2> when input <1> is FALSE

ASSOCIATED FUNCTIONS

F : BROUTE, F : BROUTEC

RM2-22 Reference Materials

F:CCONCATENATE

TYPE

Intrinsic User Function —Data Selection and Manipulation

PURPOSE

F:CCONCATENATE

 > <1> C <1>

 > <2> <2>

DC

 >S

Accepts two ASCII character strings and outputs on output < 1 > a string that

is formed by concatenating the string on input <2> behind the string on

input <1>. The length of the resulting string is sent on output <2>. Input <1>

is a constant.

DESCRIPTION

INPUTS

<1> — ASCII string (constant)

<2> — ASCII string

OUTPUTS

< 1 > — concatenated string

<2> — length of the concatenated string

ASSOCIATED FUNCTIONS

F: CONCA'1'ENA'1'E, F: CONCA~1'ENATEC

Intrinsic Functions RM2-23

F:CDIV

TYPE

Intrinsic User Function —Arithmetic and Logical

F:CDIV

I, R, 2D, 3D, 4D >
2x2 , 3x3 , 4x4

I, R >

PURPOSE

<1> C <1>

<2>
DC

 > I , R, 2D, 3D, 4D
2x2, 3x3, 4x4

Accepts two inputs and produces an output that is the quotient of the two
inputs (input <1> divided by input <2>). Input <1> is a constant.

DESCRIPTION

INPUTS

<1> — dividend (constant)

<2> — divisor

OUTPUT

<1> — quotient

NOTE

The output is the same data type as input <1> (except when <1> is an
integer and input <2> is a real number; then a real number is output).
Input <2> should not be 0.

ASSOCIATED FUNCTIONS

F:DIV, F:DIVC

RM2-24 Reference Materials

F:CEILING

TYPE

Intrinsic User Function —Data Conversion

F:CEILING

<1> <1>

CC

PURPOSE

Rounds a real number away from zero to the nearest integer.

DESCRIPTION

INPUT

<1> —

OUTPUT

<1> —

real number to be rounded

nearest integer

ASSOCIATED FUNCTION

F: FIX

Intrinsic Functions RM2-25

F:CGE

TYPE

Intrinsic User Function —Comparison

F:CGE

R, i ~

R, I ~

<1> C <1>

<2>

DC

PURPOSE

 > B

Accepts any combination of real numbers and integers at its two inputs and

produces a Boolean value output that is TRUE if input <1> is greater than or

equal to input <2>, and FALSE otherwise. Input <1> is a constant.

DESCRIPTION

INPUTS

<1> — real number or integer to be compared (constant)

<2> — real number or integer to be compared

OUTPUT

<1> — Boolean value

ASSOCIATED FUNCTIONS

F:GE, F:GEC

RM2-26 Reference Materials

F:CGT

TYPE

Intrinsic User Function —Comparison

F:CGT

R, I

R, I ~

<1 > C <1 >

<2>

DC

PZTRPOSE

 ~ B

Accepts any combination of two real numbers or integers at its inputs and
produces a Boolean value output that is TRUE if input <1> is greater than
input <2>, and FALSE otherwise. Input <1> is a constant.

DESCRIPTION

INPUTS

<1> — real number or integer to be compared (constant)

<2> — real number or integer to be compared

OUTPUT

<1> — Boolean value

ASSOCIATED FUNCTIONS

F: GT, F: GTC

intrinsic Functions RM2-27

F:CHANGEQTYPE

TYPE

Intrinsic User Function —Data Conversion

F:CHANGEQTYPE

A ny~--->

Qinteger-~

PURPOSE

<1>

<2>

<1> y Type specified
on input <2>

This function receives messages of any type on input <1> and sends out
Qdata messages with the type field changed to the type specified by the
ORD of the integer on input <2>.

DESCRIPTION

INPUTS

<1> — Any

<2> Qinteger

OUTPUT

<1> — Type specified on input <2>

NOTE

This function should be used with extreme caution. Changing the type

field will cause the system to treat it like the new type. It is a good rule

to never change to or from message t~~pes which have pointer fields

included in ~1~~ rn. It is possible to change types between the Qdata types
listed in sect i ~~n ~ .

RM2-28 Reference Materials

F:CHARCONVERT

TYPE

Intrinsic User Function —Data Conversion

F:CHARCONVERT

<1> <1>

<2> C
DC

PURPOSE

Converts the bytes of the string on input <1> into a stream of integers, one
integer per byte.

DESCRIPTION

INPUTS

<1> — any string

<2> — Boolean value (constant)

OUTPUT

<1> —

DEFAULT

stream of integers

Boolean TRUE on input <2>.

NOTES

1. The condition of the Boolean value determines the range of bytes as
integers as follows:

TRUE =0to255
FALSE _ -1 ? ~ to 127 (2's complement}

Intrinsic Functions RM2-29

F:CHARCONVERT

(continued)

2. Note that if a TRUE is on input <2>, a value from 0-255 is output on
<1>. If a FALSE is on input <2> and the value on input <1> is from
0-127, the value output is the same value that was input on <1>. If a
FALSE i s on input <2> and the value on input < 1 > i s 12 8-2 5 5 , a corre-
sponding value between -128 and -1 is output.

EXAMPLE

'A' becomes 65
'AB' becomes 65 followed by 66

RM2-30 Reference Materials

F:CHARMASK

TYPE

Intrinsic User Function —Data Selection and Manipulation

PURPOSE

}

F : CHARMASK

<1> <1>

<2> C

DC

 > S

Masks each of the bytes of the string on input <1> by A,NDing it with the
integer on the constant input <2>, then outputs the masked string.

DESCRIPTION

INPUTS

<1> any string

<2> — integer (constant)

OUTPUT

<1> —

NOTE

masked string

Only the low-order byte of the integer is used in the mask, i.e., integer

256 would be a 0 mask. Therefore, numbers between 0-255 are recom-
mended.

Intrinsic Functions RM2-31

F:CHOP

TYPE

Intrinsic User Function —Data Conversion

Qpacket
Qmorepacket
Qprompt
Qsynterr

PURPOSE

F:CHOP

<1 > <1 >

<2>

<3>

 > Special

 > error messages

 > Special

This function chops and parses the input command language generating
proper messages for an instance of the function F:CI(n).

NOTES

1. Output <1> outputs special data which goes to F:CI(n) function, which is
the only function that can accept this type of data.

2. Output <3> outputs special data that directs the printing of syntax error
messages.

RM2-32 Reference Materials

F:CI(n)

TYPE

Intrinsic User Function —Miscellaneous

F:CI(n}

Qchopitems >
Qprompt

PURPOSE

<1> <1>

<2>

<3>

<4>

<5>

<6>

<7>

 > unused

 >unused

 >error messages

 > Qboolean

 >Qprompt

 >unused

 > unused

This function interprets commands, creating display structures and function
networks. It receives input either from a chop/parse function or a
READSTREAM function (if using the GSRs).

A single parameter is given when this function is instanced (for example
H_CIO:=F:CI(4);). This parameter is the "C "and is used to identify

all names and connections this CI makes. When the CI receives an II~TIT

command, it destroys only those connections it has made and only those

structures associated with the names which have its C

NOTES

1. A name is created when that name is referenced for the first time, even

if it has no associated structure. The CI that created the name is the

"owner" of tl~at name, even if the entity it refers to is created by another

CI.

Intrinsic Functions RM2-33

F:CI (n)

(continued)

2. Each function has an output <0> that is used to send error messages
(such as illegal input error messages). The connection from this output
is made automatically by the CI that creates the function. The CI finds
the appropriate error function to connect output <0> to by looking on its
own output <3>.

3. Output <4> sends out a Qboolean with a TRUE value when an IlVIT
command is entered. This output is connected to the initial function
instance CLEAR LABELS to clear out the labels on the keyboard and
dials.

RM2-34 Reference Materials

F:CIROUTE(n)

TYPE

Intrinsic User Function —Data Selection and Manipulation

F:CIROUTE(n)

Qpacket >
Qmorepacket
Qreset

Qstring

Qprompt
Qreset

Qinteger

PURPOSE

<1>

 > <2> C

 > <3> C

 > <4> C

<1>

<2>

<n>

 > Qinteger

 > Qpacket, Qmorepacket

 > Qpacket, Qmorepacket

F:CIROUTE(n) demultiplexes a stream of Qpackets/Qmorepackets from in-
put <1> to one of the n output channels. The first byte of an incoming
Qpacket is assumed to be the multiplexing byte -equal to the base character
(from input <2>) + K, where K is the channel number. If K > (n-3) or K < 0,
there is no channel for this output and a pair of messages are sent on
outputs <1> and <2>. These can be used to allow for later remultiplexing or
further demultiplexing. An integer giving the indicated output port is sent
on output <1> and the message for which there was no defined output is
sent on output <2>. Whether or not K is within the limits implied by the
number of outputs of F:CIROUTE(n), the m~~ltiplexing byte is removed
from the start of the packet.

F:CIROUTE(n) passes incoming Qmorepackets out the current channel (as
defined by the last Qpacket). Initially, after a Qreset is received, the current
channel is -1.

When instancing this function, a parameter is required to specify the num-
ber of outputs .

Intrinsic Functions RM2-35

F:CIROUTE(n)
(continued)

F:CIROUTE(n) is a special version of F:DEMUX. It assumes that it is driv-
ing parallel, asynchronous paths to a common destination (the Command
Interpreter). It synchronizes those paths by sending out a Qprompt on a
channel at the end of using that channel and waiting for it to come back
around before switching to the next channel. This assumes that the common
destination can strip Qprompts and send them back (which the CI does).
Input <4> gives the maximum channel number, m, for which path flushing

is desired. F:CIROUTE(n) flushes channels 0<=K <= m with Qprompts.

DESCRIPTION

INPUTS

<1> — Qpacket -switch multiplexing channel &send
Qmorepacket -send on current channel
Qreset - re-init &purge queue 3.

<2> — Qstring -base character of multiplexing byte (constant)

<3> — Qprompt (back from the CI) (constant)
Qreset -acts like Qprompt (constant)

<4> — Qinteger -max channel # to get prompts (default 0) must
be an individual output (not <1>,<2>) (constant)

OUTPUTS

<1> — Qinteger - (i) when output port <3+i> doesn't exist

<2> — Qpacket, Qmorepacket - stream which didn't have any
valid destination

<3+i> — Qpacket, Qmorepacket -output stream (i) where destina-
tion was given as [base-char + (i)) (possibly) Qprompt (if i
<_ [input <4>])

NOTE

Because of the synchronizing nature of CIROUTE, it should be hooked
to its complete destination network before its input <1> is connected.

EXAMPLES

Refer to f-Ielpfu 1 1 I i n t~ 7 and 9 in Section TT2.

RM2-36 Reference Materials

F:CLCSECONDS

TYPE

Intrinsic User Function —Miscellaneous

F:CLCSECONDS

I

B

i

I

PURPOSE

 <1> C <1>

 ~ <2> C <2>

 ~ <3> C <3>

 y <4> C

 <5> C

 ~ <6> C

D D

 > B

Generates outputs at timed intervals as specified by the inputs. All inputs to
F:CLCSECONDS are constants. All outputs occur at the same timed inter-
val. (Output <1> may be disabled.)

DESCRIPTION

INPUTS

<1> — timed interval (constant)

<2> — number of time intervals (constant)

<3> — gate (constant)

<4> — integer A (constant)

<5> — integer B (constant)

<6> TRUE =run, FALSE =stop (constant)

OUTPUTS

<1> — integer A+B if input <3> is TRUE

<2> — integer A+B

<3> "I~I:UE if input <2> is not exceeded

Intrinsic Functions RM2-37

F:CLCSECONDS

(continued)

NOTES

1. Input <1> is an integer that specifies a timed interval in hundredths of a
second. outputs from the function occur at this interval. Thus, a 10 on
input <1> would specify a time interval of 1/10 second.

2. Input <2> is an integer that specifies the number of time intervals (dura-
tion) that the Boolean value on output <3> will be TRUE. When this
number of intervals is exceeded, the Boolean value will be output as
FALSE on each succeeding interval. Input <2> may be reset at any time,
since the value at this input is decremented by 1 with each execution.

3. Input <3> is a Boolean value that is used to gate the integer on output
<1>. If the Boolean value is TRUE, the integer (A+B) is output at each
timed interval. If the Boolean value is FALSE, output <1> is disabled.

4. Inputs <4> and <5> are integers A and B, respectively. The sum of these
integers is output as an integer on output <1> if the Boolean value on
input <3> is TRUE. This sum (A+B) is output as an integer on output
<2>, independent of the condition of the Boolean value on input <3>.

5. Input <6> is an optional switch. If input <6> receives no messages, the
timer will run when there is a message on all of inputs <1> through <5>.
If a Boolean FALSE is received on input <6>, the timer waits for a
Boolean TRUE to be received on input <6> before running. No outputs
are generated so long as input <6> is FALSE.

ASSOCIATED FUNCTIONS

F: CLF S, F: CLTICKS

EXAMPLE

Refer to Application Notes 11 and 12 in Section TTI.

RM2-38 Reference Materials

F:CLE

TYPE

Intrinsic User Function —Comparison

F:CLE

R, I

R, I }

PURPOSE

<1> C <1>

<2>
DC

 > B

Accepts any combination of real numbers or integers at its inputs, and pro-
duces aBoolean value output that is TRUE if input <1> is less than or equal
to input <2> and FALSE otherwise. Input <1> is a constant.

DESCRIPTION

INPUTS

<1> — value to be compared (constant)

<2> value to be compared

OUTPUT

<1> — Boolean value

ASSOCIATED FUNCTIONS

FILE, F:LEC

Intrinsic Functions RM2-39

F:CLFRAMES

TYPE

Intrinsic User Function —Miscellaneous

F:CLFRAMES

I

B

I

I

PURPOSE

 ~ <1 > C <1 >

 <2> C <2>

 ~ <3> C <3>

 y <4> C

 ~ <5> C

 <6> C

D D

 > B

Identical to F:CLCSECONDS and F:CLTICKS, except that the time source
is refresh frames.

DESCRIPTION

INPUTS

<1> — timed interval (constant)

<2> — number of time intervals (constant)

<3> — gate (constant)

<4> — integer A (constant)

<5> integer B (constant)

<6> — TRUE =run, FALSE =stop (constant)

OUTPUTS

<1> — A+B if input <3> is TRUE

<2> — A+B

<3> — TRUE if input <2> is not exceeded

RM2-40 Reference Materials

F:CLFRAMES

(continued)

NOTES

1. Input <1> is an integer that specifies a timed interval in frames. A frame
is the length of time the display processor takes to draw the current
structure once. The refresh rate is the number of frames per second.
Outputs from the function occur at this interval.

2. Input <2> is an integer that specifies the number of timed intervals (du-
ration) that the Boolean value on output <3> will be TRUE. When this
number of intervals is exceeded, the Boolean value will be output as
FALSE on each succeeding interval. Input <2> may be reset at any time.

3. Input <3> is a Boolean value that is used to gate the integer on output
<1>. If the Boolean value is TRUE, the integer (A+B) is output each
timed interval. If the Boolean value is FALSE, output <1> is disabled.

4. Inputs <4> and <5> are integers A and B, respectively. The sum of these
integers is output as an integer on output <1> if the Boolean value on
input <3> is TRUE. This sum (A+B) is output as an integer on output
<2>, independent of the condition of the Boolean value on input <3>.

5. Input <6> is an optional switch. If input <6> receives no messages, the
timer will run when there is a message on all of inputs <1> through <5>.
If a Boolean FALSE is received on input <6>, the timer waits for a
Boolean TRUE to be received on input before running. No outputs
are generated so long as input is FALSE.

Intrinsic Functions RM2-41

F:CLT

TYPE

Intrinsic User Function —Comparison

F:CLT

R, I

R, I

PURPOSE

<1> C <1>

<2>
DC

 > 6

Accepts any combination of real numbers or integers at its inputs, and pro-
duces aBoolean value output that is TRUE if input <1> is less than input
<2>, and FALSE otherwise. Input <1> is a constant.

DESCRIPTION

INPUTS

<1> — value to be compared (constant)

<2> — value to be compared

OUTPUT

<1> — Boolean value

ASSOCIATED FUNCTIONS

F:LT, F:LTC

RM2-42 Reference Materials

F:CLTICKS

TYPE

Intrinsic User Function —Miscellaneous

F:CLTICKS

I

6

I

I

PURPOSE

 <1 > C <1 >

 ~ <2> C <2>

 ~ <3> C <3>

 ~ <4> C

 ~ <5> C

 ~ <6> C

D D

 > B

Identical to F: CLCSECONDS and F: CLF S, except that the time
source is ticks of the 20 Hz system clock.

DESCRIPTION

INPUTS

<1> — timed interval (constant)

<2> — number of time intervals (constant)

<3> — gate (constant)

<4> — integer A (constant)

<5> — integer B (constant)

<6> — TRUE =run, FALSE =stop (constant)

OUTPUTS

<1> — A+B if input <3> is TRUE

<2> — A+B

<3> — TRUE if input <2> is not exceeded

Intrinsic Functions RM2-43

F:CLTICKS

(continued)

NOTES

1. Input <1> is an integer that specifies a timed interval in ticks (where a
tick is half the duration of the alternating current supply, 1/20 second in

the U.S.). Outputs from the function occur at this interval.

2. Input <2> is an integer that specifies the number of timed intervals (du-
ration) that the Boolean value on output <3> will be TRUE. When this

number of intervals is exceeded, the Boolean value will be output as

FALSE on each succeeding interval. Input <2> may be reset at any time.

3. Input <3> is a Boolean value that is used to gate the integer output <1>.

If the Boolean is TRUE, the integer (A+B) is output each timed interval.
If the Boolean is FALSE, output <1> is disabled.

4. Inputs <4> and <5> are integers A and B, respectively. The sum of these
integers is output as an integer on output <1> if the Boolean value on
input <3> is TRUE. This sum (A+B) is output as an integer on output
<2>, independent of the condition of the Boolean value on input <3>.

5. Input <6> is an optional switch. If input <6> receives no messages, the
timer will run when there is a message on all of inputs <1> through <5>.
If a Boolean FALSE is received on input <6>, the timer waits for a
Boolean TRUE to be received on input <6> before running. No outputs
are generated so long as input <6> is FALSE.

RM2-44 Reference Materials

F:CMUL

TYPE

Intrinsic User Function —Arithmetic and Logical

F:CMUL

I, R, 2D, 3D, 4D
2x2 , 3x3 , 4x4

I, R, 2D, 3D, 4D >
2x2 , 3x3 , 4x4

PURPOSE

<1 > C <1 >

<2>

DC

 > I, R, 2D, 3D, 4D
2x2, 3x3, 4x4

Accepts two inputs and outputs the product of the two inputs. Input <1> is a
constant.

DESCRIPTION

INPUTS

<1> —

<2> —

OUTPUT

NOTE

multiplier (constant)

multiplicand

< 1 > — product

The two input values must be compatible data types; the output data
type depends on the combination of input data types. Vectors are taken

to be either row vectors (input <1>) or column vectors (input <2>).

ASSOCIATED FUNCTIONS

F : I~~IUL, F : l~TULC

Intrinsic Functions RM2-45

F:COMP STRING

TYPE

Intrinsic User Function —Comparison

F:COMP STRING

}

PURPOSE

<1>

<2>

CD

<1>

<2>

<3>

 > B

 > B

 > B

Compares two strings and sends a TRUE on output <1> if string 1 is less
than string 2, and a FALSE if otherwise. A TRUE is sent on output <2> if
string 1 is equal to string 2, and a FALSE if otherwise. A TRUE is sent on
output <3> if string 1 is greater than string 2, and a FALSE if otherwise.

DESCRIPTION

INPUTS

<1> — string

<2> — string

OUTPUTS

<1> — TRUE =less than

<2> — TRUE =equal to

<3> — TRUE =greater than

RM2-46 Reference Materials

F:CONCATENATE

TYPE

Intrinsic User Function -- Data Selection and Manipulation

F:CONCATENATE

<1 > <1 >

<2> <2>

CC

 > S

PURPOSE

Accepts two ASCII character strings and outputs a string that is formed by
concatenating the string on input <2> behind the string on input <1>. The
length of the resulting string is sent on output <2>.

DESCRIPTION

INPUTS

<1> — ASCII string

<2> — ASCII string

OUTPUTS

<1> — concatenated string

<2> — length of the concatenated string

ASSOCIATED FUNCTIONS

F: CCONCA'1'ENATE, F: CONCA'1'ENA'1'EC

Intrinsic Functions RM2-47

F:CONCATENATEC

TYPE

Intrinsic ~Jser Function —Data Selection and Manipulation

F:CONCATENATEC

<1> <1>

<2> C <2>

DC

 > S

PURPOSE

Accepts two ASCII character strings and outputs a string that is formed by
concatenating the string on input <2> behind the string on input <1>. The
length of the concatenated string is sent on output <2>. Input <2> is a con-
stant.

DESCRIPTION

INPUTS

<1> — ASCII string

<2> — ASCII string (constant)

OUTPUTS

<1> — concatenated string

<2> — length of the concatenated string

ASSOCIATED FUNCTIONS

F: C C ONCATENATE, F: C ONCA'1'ENATE

RM2-48 Reference Materials

F:CONCATXDATA(n)

TYPE

Intrinsic User Function —Data Selection and Manipulation

F:CONCATXDATA(n)

XFORMDATAI

XFORMDATA2

<1>

<2>

<1> to SOLID RENDERING

XFORMDATAn ~ <n>

PURPOSE

Accepts up to 127 transformed vector lists (output from XFORMDATA
functions) and concatenates them into a single transformed vector list.

DESCRIPTION

INPUTS

<1> — output of F:XFORNIDATA (transformed vector list)

<n> output of F:XFORMDATA (transformed vector list)

OUTPUT

<1> — concatenated vector list

NOTES

1. This function is used to avoid the maximum vector restriction on the
output of F:XFORMDATA. The XFOF:MDATA function will return a
maximum of 2048 vectors. To obtain a rendering on the raster display of
greater than 2048 vectors, the output of multiple instances of
XFO~:MDATA must be concatenated into a single transformed vector
list which can be sent to the rendering node.

2. Inputs <1> through <n> accept transformed vector lists output from
F:XFORMDATA.

Intrinsic Functions RM2-49

F:CONSTANT

TYPE

Intrinsic User Function —Data Selection and Manipulation

F :CONSTANT

Any)

Any ~

<1 > <1 >

<2> C

DC

PURPOSE

 >Any

Accepts any message on inputs <1> and <2>. Input <2> is a constant. The
constant message on input <2> is output on <1> whenever a message is
received on input <1>.

DESCRIPTION

INPUTS

<1> — trigger

<2> — any message (constant)

OUTPUT

<1> — message on input <2> when triggered

RM2-SO Reference Materials

F:CROTATE

TYPE

Intrinsic User Function —Character Transformation

F:CROTATE

<1> <1>

CC

PURPOSE

Creates a 2x2 Z-rotation matrix.

DESCRIPTION

INPUT

<1> — degrees of rotation in Z

OUTPUT

<1> — 2x2 rotation matrix

NOTES

 > 2x2

1. The rotation matrix created by the function is normally used to update
2x2 matrix nodes in a display structure.

2. The "C" in the function's name stands for "character." 2x2 matrix
nodes in display structures only affect character data nodes.

Intrinsic Functions RM2-S 1

F:CROUTE(n)

TYPE

Intrinsic User Function —Data Selection and Manipulation

F: CROUTE (n}

Any

PURPOSE

<1> C <1>

<2> <n>

D D

 > Any

 > Any

Accepts an integer on input <1> to switch the message on input <2> to the
output specified by that integer. The message on input <2> may be of any
data type. The integer on input <1> is a constant.

DESCRIPTION

INPUTS

<1> — integer (valid range 1 - 127) (constant)

<2> — any message

OUTPUTS

NOTE

<1> — message on input <2> when selected

<n> — message on input <2> when selected

The "n" in the function name may be any integer from 2 to 127. If the
integer on input <1> is not a number from 1 to n, inclusive, then an
error is detected and reported.

ASSOCIATED FUNCTIONS

F:ROiTTE(n), F:ROLJTEC(n)

RM2-52 Reference Materials

F:CSCALE

TYPE

Intrinsic User Function —Character Transformation

R, 2D

PURPOSE

F:CSCALE

<1> <1>

CC

 > 2x2

Scales characters. Accepts a real number or a 2D vector as a scaling factor
for character strings. A 2x2 scaling matrix is output.

DESCRIPTION

INPUT

<1> — sealing factor

OUTPUT

<1> — 2x2 scaling matrix

NOTES

1. The scaling matrix is normally used to update a 2x2 matrix node in a
display structure. The "C" in the function's name stands for "charac-
ter." Only character data nodes are affected by 2x2 matrices.

2. If a real number is input, the scaling factor represented by the real value
is applied in X and Y. If a 2D vector is input, the X component of the
vector is the scaling factor for X and the Y component of the vector is
the scaling factor for Y.

Intrinsic Functions RM2-53

F:CSUB

TYPE

Intrinsic User Function —Arithmetic and Logical

F:CSUB

I, R, 2D, 3D, 4D >
2x2 , 3x3 , 4x4

I, R, 2D, 3D, 4D >
2x2 , 3x3 , 4x4

PURPOSE

<1 > C <1 >

<2>

DC

 > I, R, 2D, 3D, 4D
2x2 , 3x3 , 4x~

Accepts two inputs and produces an output that is the difference of the two
inputs (input <2> is subtracted from input <1>). Input <1> is a constant.

DESCRIPTION

INPUTS

<1> — minuend (constant)

<2> — subtrahend

OUTPUT

<1> — difference

NOTE

The two input values must be of the same data type (except that a com-
bination of a real number and an integer is allowed); the output data
type depends on the input data type(s).

ASSOCIATED FUNCTIONS

F:SUB, F:SUBC

RM2-54 Reference Materials

F:CVEC

TYPE

Intrinsic User Function —Data Conversion

F:CVEC

R, 2D, 3D

PURPOSE

 } <1> C

 <2>

DC

<1> > 2D, 3D, 4D

Accepts two real numbers and outputs a 2D vector; accepts a 2D vector and
a real number and outputs a 3D vector; or accepts a 3D vector and a real
number and outputs a 4D vector.

DESCRIPTION

INPUTS

<1> — real number, 2D, or 3D vector (constant)

<2> — real number

OUTPUT

<1> —

NOTE

2D vector if input <1> is a real number
3D vector if input <1> is a 2D vector
4D vector if input <1> is a 3D vector

The output vector is the constant real number or vector from input <1>
with the real number from input <2> appended as the last vector compo-
nent.

ASSOCIATED FUNCTIONS

F: VEC, F: VECC

Intrinsic Functions RM2-SS

F:CVTC,T08

TYPE

Intrinsic User Function —Data Conversion

F : CVT6T08

Qpacket ->
Qmorepacket

Qpacket

PURPOSE

<1 >

<2> C

<1>

<2>

 > Qpacket, Qmorepacket

 > Qprompt

This function converts a 6-bit stream to an 8-bit stream.

Conversion is the inverse of that described in F:CVT8T0~ with the base
character coming on input <2>.

Qprompts are passed out output <2>.

RM2-56 Reference Materials

F:CVTST06

TYPE

Intrinsic User Function —Data Conversion

F:CVT8T06

Qpacket
Qmorepacket

Qpacket

PURPosE

<1>

<2> C

<1>

<2>

 > Qpacket, Qmorepacket

 > Qprompt

This function converts an 8-bit byte stream to a 6-bit byte stream.

The conversion yields a stream with characters from base-char (from input
<2>) through base-char + 63 standing for 6-bit values in groups of 6. In
addition, the special characters take care of streams that do not have a byte
count = 0 mod 4. Prefixing the last group of 6 output bytes (encoded), the
char: base - is means the last i 8-bit bytes are not real.

Any Qprompts coming in on <1> are passed out output <2>.

Intrinsic Functions RM2-57

F:CVTASCTOIBM

TYPE

Intrinsic User Function —Data Conversion

F:CVTASCTOIBM

PURPOSE

<1> <1> >S

F:CVTASCTQIBM accepts packets of ASCII characters on input <1> and
outputs packets of EBCDIC characters on output < 1 >.

EXAMPLE

Send in char(65) —get out char(193)
Send in 'AB' —get out char(193) concatenated with char(194)

RM2-58 Reference Materials

F:CVTIBMTOASC

TYPE

Intrinsic User Function —Data Conversion

F:CVTIBMTOASC

PURPOSE

>

<1> <1> >S

F:CVTIBMTOASC accepts packets of EBCDIC characters on input <1> and
outputs packets of ASCII characters on output <1>.

EXAMPLE

Send in char(193) —get out char(65)
Send in char(193) concatenated with char(194) —get out 'AB'

Intrinsic Functions RM2-59

F:DELTA

TYPE

Intrinsic User Function —Data Selection and Manipulation

F:DELTA

I, R, 2D, 3D

I, R

PURPOSE

 ~ <1>

 <2> C

D D

<1> > I, R, 2D, 3D

Accepts integers, real numbers, 2D vectors, and 3D vectors on input <1>
and integers or real numbers on input <2>. The value on input <1> is output
on <1> if it differs in magnitude from the previous input <1> value by at
least the constant delta value on input <2>.

DESCRIPTION

INPUTS

<1> integer, real number, 2D, 3D vector

<2> — delta value (constant)

OUTPUT

<1> —

DEFAULT

value on input <1> if it differs from the previous input <1>
by at least the delta value on input <2>

The first input <1> value is compared to 0 (zero).

NOTE

The constant delta value on input <2> may be a real number or an inte-
ger. If values on input <1> are real numbers or vectors, the delta value
on input <2> must be real. If input <1> is an integer, input <2> must also
be an integer.

RM2-60 Reference Materials

F:DEMUX(n)

TYPE

Intrinsic User Function —Data Selection and Manipulation

F: DEMUX (n

Qpacket
Qmorepacket
Qreset

Qstring

PURPosE

<1>

<2> C

<1>

<2>

<n>

 > Qinteger

 > Qpacket, Qmorepacket

 > Qpacket, Qmorepacket

F:DEMUX(n) demultiplexes a stream of Qpackets/Qmorepackets from in-
put <1> to one of the n output channels. The first byte of an incoming
Qpacket is assumed to be the multiplexing byte -equal to the base character
(from input Q>) + K, where K is the channel number. If K > (n-3) or K < 0,
there is no channel for this output and a pair of messages are sent on
outputs <1> and <2>. These can be used to allow for later remultiplexing or
further demultiplexing. An integer giving the indicated output port is sent
on output <1> and the message for which there was no defined output is
sent on output <2>. Whether or not K is within the limits implied by the
number of outputs of DEMUX, the multiplexing byte is removed from the
start of the packet.

F:DEMUX(n) passes incoming Qmorepackets out the current channel (as
defined by the last Qpacket). Initially, after a Qreset is received, the current
channel is -1.

When instancing this function, a parameter is required to specify the num-
ber of outputs .

Intrinsic Functions RM2-61

F:DEMUX (n)

(continued)

DESCRIPTION

INPUTS

<1> — Qpacket -switch multiplexing channel &send
Qmorepacket -send on current channel
Qreset -current channel becomes -1 (invalid)

<2> — Qstring -base character of multiplexing byte (constant)

OUTPUTS

<1> — Qinteger - (i) when output port <3+i> doesn't exist

<2> — Qpacket, Qmorepacket - stream which didn't have any
valid destination

<3+i> — Qpacket, Qmorepacket -output stream (i) where destina-
tion was given as [base-char + (i)]

RM2-62 Reference Materials

F:DEPACKET

TYPE

Intrinsic User Function —Data Selection and Manipulation

F:DEPACKET

Qpacket
Qmorepacket
Qreset

Qpacket

Qpacket
Qinteger

Qpacket
Qboolean

Qinteger

Qpacket

PURPOSE

<1>

<2> C

<3> C

<4> C

<5> C

<6> C

<1>

<2>

<3>

 > Qpacket, Qmorepacket

 > Qpacket, Qmorepacket

 > Qprompt

F:DEPACKET converts streams of incoming bytes to Qpacket/Qmorepacket
packages.

DESCRIPTION

INPUTS

<1> — Qpacket -source stream
Qmorepacket -treated as if it were Qpacket
Qreset -Return to initial state (in-between packets); send
Qreset out <1>

<2> Qpacket - FS: start packet character (constant)

<3> — Qpacket -ESC: escape character, if ESC mode (constant)
Qinteger - #count bytes, if count mode (the type of mes-
sage on <3> controls ESC versus count mode) (constant)

Intrinsic Functions RM2-63

F:DEPACKET

(continued)

<4> — Qpacket -base character, if count mode (constant)
Qboolean (default: FALSE) - is FS escaped?, if escape
mode (constant)

FALSE: <FS> starts packet
TRUE: <ESC> <FS> starts packet

<5> — Qinteger -radix (default 10) if count mode (constant)

<6> — Qpacket -Auto-mux prefix for between-packet streams
(constant)

ouTPUTs

<1> — Qpacket, Qmorepacket -packet stream

<2> — Qpacket, Qmorepacket -between-packet stream (In ESC
mode, once a packet is detected, nothing will ever be be-
tween packets again.)

<3> — Qprompt - pass through from <1> if any show up.
SR depacket un-escapes the contents of a packet, convert-
ing <ESC> <x> to <x>

EXAMPLE

Refer to Helpful Hint 7 in Section TT2.

RM2-64 Reference Materials

F:DIV

TYPE

Intrinsic User Function —Arithmetic and Logical

F:DIV

I, R, 2D, 3D, 4D
2x2, 3x3, 4x4

I, R

PURPOSE

 > <1> <1>

 > <2>

CC

 > I, R, 2D, 3D, 4D
2x2 , 3x3 , 4x4

Accepts two inputs and produces an output that is the quotient of the two
inputs (input <1> is divided by input <2>).

DESCRIPTION

INPUTS

<1> — dividend

<2> — divisor

OUTPUT

<1> — quotient

NOTE

The output is the same data type as input <1> (except when input <1> is
an integer and input Q> is a real number; then a real number is output).
Input <2> should not be 0.

ASSOCIATED FUNCTIONS

F:DNC, F:CDIV

Intrinsic Functions RM2-65

F:DIVC

TYPE

Intrinsic User Function —Arithmetic and Logical

F:DIVC

I, R, 2D, 3D, 4D
2x2 , 3x3 , 4x4

I, R

PURPOSE

 > <1>

 y <2> C

DC

<1> > I, R, 2D, 3D, 4D
2x2, 3x3, 4x4

Accepts two inputs and produces an output that is the quotient of the two
inputs (input <1> is divided by input <2>). Input <2> is a constant.

DESCRIPTION

INPUTS

<1> — dividend

<2> — divisor (constant)

OUTPUT

<1> — quotient

NOTE

The output is the same data type as input <1> (except when input <1> is
an integer and input <2> is a real number; then a real number is output).
Input <2> should not be 0.

ASSOCIATED FUNCTIONS

F:DIV, F: CDIV

RM2-66 Reference Materials

F:DSCALE

TYPE

Intrinsic User Function —Object Transformation

F:DSCALE

R ~ <1>

R ~ <2> C
R) <3> C

R ~ <4> C

R) <5> C

DC

<1>

<2>

PURPOSE

 > 3X3

 > R

Typically accepts real values originating from a control dial on input <1>
and forms a 3x3 scaling matrix (output <1>) from the product of accumu-
lated real values (input <1>) and the scaling factor on input <3>. Upper and
lower scaling limits may be set on inputs <4> and <5>, respectively. If the
accumulator content exceeds the upper limit (input <4>), then the upper
limit value is sent out on output <1>. Likewise, if the product is below the
lower limit, the lower limit value is sent out on output <1>.

DESCRIPTION

INPUTS

<1> — delta

<2> — accumulator set (constant)

<3> — scaling factor (constant)

<4> — upper limit (constant)

<5> — lower limit (constant)

oUTPUTs

<1> — 3x3 scaling matrix

<2> — accumulator contents

Intrinsic Functions RM2-67

F:DSCALE

(continued)

DEFAULTS

Inputs <3>, <4>, and <5> are optional. If input <3> receives no messages, a
scaling factor of 1 is the default value. If inputs <4> and/or <5> receive no
messages, no upper and/or lower limits are set.

NOTES

1. Input <2> is the accumulator. This value may be reset at any time (and
is usually set initially to 1). The current accumulator content is output on
output <2>.

2. It is sometimes valuable to limit the upper range of scaling to a value
that will not cause data to overflow the viewport. Also, lower limits may
be set to keep the object to a size that allows the object to be viewed
easily and to prevent negative scaling.

EXAMPLE

Refer to Application Note 6 in Section TTI.

RM2-68 Reference Materials

F:DXROTATE

TYPE

Intrinsic User Function —Object Transformation

F : DXROTATE

R

R)

R

PURPOSE

<1>

<2> C
<3> C

DC

<1>

<2>

 > 3X3
 > R

Typically accepts real values originating from a control dial on input <1>
and produces a 3x3 rotation matrix (output <1>) from the angle derived
from the accumulated sum of the real values on input <1>, multiplied by the
scale factor received on input <3>. Rotation is around the X axis.

DESCRIPTION

INPUTS

<1> — rotation delta

<2> — initial accumulator value (constant)

<3> — scale factor (constant)

OUTPUTS

<1> — 3x3 rotation matrix in X

<2> — current accumulator value

DEFAULT

If input <3> receives no messages, a scale factor of 1 is the default value.

NOTE

Input <2> is the accumulator. This value may be reset at any time (and

is usually set initially to 0). The current accumulator value is output on

output <2>.

Intrinsic Functions RM2-69

F:DYROTATE

TYPE

Intrinsic User Function —Object Transformation

F : DYROTATE

R)

R)

R ~

<1>

<2> C
<3> C

DC

<1>

<2>

PURPOSE

 > 3X3

 > R

Typically accepts real values originating from a control dial on input <1>
and produces a 3x3 rotation matrix (output <1>) from the angle derived
from the accumulated sum of the real values on input <1>, multiplied by the
scale factor received on input <3>. Rotation is around the Y axis.

DESCRIPTION

INPUTS

<1> — rotation delta

<2> — initial accumulator value (constant)

<3> — scale factor (constant)

OUTPUTS

<1> — 3x3 rotation matrix in Y

<2> — current accumulator value

DEFAULT

If input <3> receives no messages, a scale factor of 1 is the default value.

NOTE

Input <2> is the accumulator. This value may be reset at any time (and
is usually set initially to 0). The current accumulator value is output on
output Q>.

RM2-70 Reference Materials

F:DZROTATE

TYPE

Intrinsic User Function —Object Transformation

F:DZROTATE

R ~

R ~

R)

<1>

<2> C
<3> C

DC

<1>

<2>

PURPOSE

 > 3X3

 > R

Typically accepts real values originating from a control dial on input <1>
and produces a 3x3 rotation matrix (output <1>) from the angle derived
from the accumulated sum of the real values on input <1>, multiplied by the
scale factor received on input <3>. Rotation is around the Z axis.

DESCRIPTION

INPUTS

<1> — rotation delta

<2> — initial accumulator value (constant)

<3> — scale factor (constant)

OUTPUTS

<1> — 3x3 rotation matrix in Z

<2> — current accumulator value

DEFAULT

If input <3> receives no messages, a scale factor of 1 is the default value.

NOTE

Input <2> is the accumulator. This value may be reset at any time (and

is usually set initially to 0}. The current accumulator content is output on

output <2>.

Intrinsic Functions RM2-71

F:EDGE DETECT

TYPE

Intrinsic User Function —Miscellaneous

F:EDGE DETECT

PURPOSE

}

<1 > <1 >

<2> C

DC

<2>

 > B

 > B

Accepts Boolean values on inputs <1> and <2>. Input <2> is a constant.
Whenever the state of the Boolean value on input <1> changes to match the
state on input <2>, the Boolean value on input <1> is output on <1>, and the
complement of that value is output on output <2>.

DESCRIPTION

INPiTTS

<1> — Boolean value

<2> — Boolean value (constant)

OUTPUTS

<1> — Boolean value on input <1> when this matches input <2>

<2> — complement of output <1>

NOTE

By connecting output <2> to input <2>, all transitions are detected.

RM2-72 Reference Materials

F:EQ

TYPE

Intrinsic User Function —Comparison

F:EQ

R, I

R, I

PURPOSE

 <1>

 ~ <2>

CC

<1> >B

Accepts any combination of real numbers and integers on its two inputs and
produces a Boolean value output that is TRUE if input <1> equals input <2>,
and FALSE otherwise.

DESCRIPTION

INPUTS

<1> — real number or integer to be compared

<2> — real number or integer to be compared

OUTPUT

<1> — TRUE if input <1> equals input <2>, else FALSE

NOTE

Inputs do not have to be of the same data type .

ASSOCIATED FUNCTION

F:EQC

Intrinsic Functions RM2- 73

F:EQC

TYPE

Intrinsic User Function —Comparison

F:EQC

R, I

R, I

PURPOSE

 <1>

 ~ <2> C

DC

<1> >B

Accepts any combination of real numbers and integers on its two inputs,
and produces a Boolean value output that is TRUE if input <1> equals input
<2>, and FALSE otherwise. Input <2> is a constant.

DESCRIPTION

INPUTS

<1> — real number or integer to be compared

<2> — real number or integer to be compared (constant)

OUTPUT

<1> — TRUE if input <1> equals input <2>, else FALSE

NOTE

Inputs do not have to be of the same data type.

ASSOCIATED FUNCTION

F:EQ

RM2-74 Reference Materials

F:FCNSTRIP

TYPE

Intrinsic User Function —Data Selection and Manipulation

F : FCNSTRIP

Qeverything) <1 > <1 >

Qsometype) <2> C <2>

PURPOSE

> Qeverything 6UT
Qsometype

 > Qsometype

F:FCNSTRIP is used to either filter out some Qdata type or, alternately, to
select a given Qdata type. The type of incoming messages on <1> is com-
pared to the type of the message on the constant queue <2>. If the types are
different, then the incoming message is sent out ,output <1>, thus filtering
out the type on input <2>. If they are of the same type, then output is to
queue <2>, effectively selecting that type.

Intrinsic Functions RM2-75

F:FETCH

TYPE

Intrinsic User Function —Miscellaneous

F :FETCH

Any

PURPOSE

}

<1> <1>

<2> C

DC

 > Any

Accepts a string which is the name of a variable on input <2>. When any
message is received on input <1>, the message currently stored in the vari-
able named on input <2> is fetched and output from this function. The
message stored in the named variable may be of any data type. The arrival
of input <1> is used to fire the function, but is otherwise ignored. Input <2>
is a constant.

DESCRIPTION

INPUT'S

<1> — trigger

<2> — variable name constant)

OUTPUT

<1> — message associated with variable name on input <2>

RM2-76 Reference Materials

F:FIND STRING

TYPE

Intrinsic User Function —Data Selection and Manipulation

F:FIND STRING

<1 > <1 >

<2> <2>

CD

PURPOSE

 > B

If the string on input <2> is a substring of the string on input <1>, the
starting position of the substring and a Boolean TRUE are output. A FALSE
is output if the substring cannot be found and nothing is sent on output <1>.

DESCRIPTION

INPUTS

<1> — string

<2> — substring

OUTPUTS

<1> — starting position of the substring, if found

<2> — TRUE =substring found, FALSE =not found

Intrinsic Functions RM2- 77

F:FIX

TYPE

Intrinsic User Function —Data Conversion

PURPOSE

F:FIX

<1> <1>

CC

 >I

Accepts a real number and outputs a value that is truncated to an integer
(toward zero).

DESCRIPTION

INPUT

<1> —

OUTPUT

<1> —

real number

real on input <1> truncated to an integer

ASSOCIATED FUNCTION

F: CEILING

RM2-78 Reference Materials

F:FLOAT

TYPE

Intrinsic User Function —Data Conversion

PURPOSE

F:FLOAT

<1> <1>

CC

 >R

Accepts an integer and outputs a real number of the same value.

DESCRIPTION

INPUT

<1> —

OUTPUT

<1> —

integer

real number of the same value as input <1>

Intrinsic Functions RM2- ~9

F:FOV

TYPE

Intrinsic User Function —Viewing Transformation

F:FOV

Any > <1>

R > <2> C

R > <3> C

R > <4> C

DC

<1>

PURPOSE

 > 4x4

This is the functional counterpart of the FII-~;LD_OF_VIEW command. The
field of view that is specified by this function is used for perspective projec-
tions.

DESCRIPTION

INPUTS

<1> trigger

<2> viewing angle (constant)

<3> — front boundary (constant)

<4> — back boundary (constant)

OUTPUT

< 1 > — 4x4 matrix

NOTES

1. The message on input <1> acts as a trigger to the function.

2. The constant real value on input <2> represents the viewing angle in
degrees. This angle defines the viewing frustum.

RM2-80 Reference Materials

F:FOV

(continued)

3. The front boundary and back boundary of the viewing frustum are speci-
fied as constant real numbers on inputs <3> and <4>, respectively.

4. The field of view specified on the inputs to F:FOV is output as a 4x4
matrix.

ASSOCIATED FTJNCTIONS

F: OW, F:MATRIX4

Intrinsic Functions RM2-81

F:GATHER GENFCN

TYPE

Intrinsic User Function —Miscellaneous

F:GATHER GENFCN

Qpacket, Qmorepacket -~
Qprompt, Qreset

Qinteger ->

PURPOSE

<1>

<2>

<1>

<2>

> Qprompts to CIROUTE

 > Qcodemsg, Qpackets
Qendcodedmsg connected
to error handling fncs at
boot up

F:GATHER GENFCN is used to download the code for user-written func-
tions. The first messages contain information about the user-written func-
tion, and the remainder contain Motorola S-records. It gathers the data
specifying auser-written function on input <1> and creates a new function.

Input <2> receives a CI number to associate the function with an instance of
the CI. When the CI receives an INIT command, it will remove the functions
created by its associated gather_genfunction. This number corresponds to
the parameter given in instancing the F:CI function. Numbers less than 10
are reserved for system use. The number 4 is the default.

RM2-82 Reference Materials

F:GATHER STRING

TYPE

Intrinsic User Function -- Data Selection and Manipulation

F:GATHER STRING

("1

S }

CH ~

B ~

<1>

<2> C
<3> C

DC

<1>

<2>

PURPOSE

Collects strings that arrive at input <1> until the terminator character on
input <2> arrives. Concatenates all strings into one packet and outputs the
concatenated string on output <1>. If the Boolean value on input <3> is
TRUE, the terminator character is appended to the string. Output <2> con-
tains the length of the string . Inputs <2> and <3> are constants .

DESCRIPTION

INPUTS

<1> — string

<2> — packet terminator (constant)

<3> — TRUE =with terminator, FALSE =without terminator
(constant)

OUTPUTS

<1> — concatenated string (packet)

<2> — length of the string

Intrinsic Functions RM2-83

F:GE

TYPE

Intrinsic User Function —Comparison

F:GE

R, I

R, I

PURPOSE

 <1>

 <2>

CC

<1> >B

Accepts any combination of real numbers and integers on its two inputs and
produces a Boolean value output that is TRUE if input <1> is greater than or
equal to input <2> and FALSE otherwise.

DESCRIPTION

INPUTS

<1> — value to be compared

<2> — value to be compared

OUTPUT

<1> — TRUE if input <1> is greater than or equal to input <2>,
otherwise FALSE

ASSOCIATED FUNCTIONS

F: GEC, F: CGE

RM2-84 Reference Materials

F:GEC

TYPE

Intrinsic User Function —Comparison

F:GEC

R, I

R, I

PURPOSE

<1>

<2> C

DC

<1> >B

Accepts any combination of real numbers and integers on its two inputs and
produces a Boolean value output that is TRUE if input <1> is greater than or
equal to input <2> and FALSE otherwise. Input <2> is a constant.

DESCRIPTION

INPUTS

<1> — value to be compared

<2> — value to be compared (constant)

OUTPUT

<1> — TRUE if input <1> is greater than or equal to input <2>,
otherwise FALSE

ASSOCIATED FUNCTIONS

F: GE, F: CGE

Intrinsic Functions RM2-85

F: GT

TYPE

Intrinsic User Function —Comparison

F : GT

R, I

R, I

PURPOSE

<1>

<2>

CC

<1> >B

Accepts any combination of real numbers and integers on its two inputs and
produces a Boolean value output that is TRUE if input <1> is greater than
input <2> and FALSE otherwise.

DESCRIPTION

INPUTS

<1> — value to be compared

<2> — value to be compared

OUTPUT

<1> — TRUE if input <1> greater than input <2>, otherwise
FALSE

ASSOCIATED FUNCTIONS

F: GTC, F: CGT

RM2-86 Reference Materials

F: GTC

TYPE

Intrinsic User Function —Comparison

F :GTC

R, I

R, I

PURPOSE

<1>

<2> C

CC

<1> >B

Accepts any combination of real numbers and integers on its two inputs and
produces a Boolean value output that is TRUE if input <1> is greater than
input <2> and FALSE otherwise. Input <2> is a constant.

DESCRIPTION

INPUTS

<1> — value to be compared

<2> — value to be compared (constant)

OUTPUT

<1> — TRUE if input <1> greater than input <2>, otherwise
FALSE

ASSOCIATED FUNCTIONS

F : GT, F : C GT

Intrinsic Functions RM2-87

F:HOLDMESSAGE

TYPE

Intrinsic User Function —Miscellaneous

F:HOLDMESSAGE

<1>

<2> C

<3> C

<1>

PURPOSE

 YS

This function is used to send all messages from the PS 390 to the host when
using the GSRs.

DESCRIPTION

INPUTS

<1> — integer or any string

<2> — any string (constant)

<3> any string (constant)

OUTPUT

<1> — any string

DEFAULTS

The default input value for inputs <2> and <3> is a carriage return.

RM2-88 Reference Materials

F:HOLDMESSAGE

(continued)

NOTES

1. Input <1> contains the Qpackets of messages to be sent to the host and
Qintegers used to trigger the messages as follows:

Fix(0) clears any messages waiting in the queue of messages to be sent
to the host.

Fix(1) sends a message if it is waiting. Otherwise, the message
"no-messages" is sent as determined by input <3>.

Fix(2) sends a message if it is waiting. Otherwise, it waits until a
Qpacket message arrives on input <1> and sends the message
immediately.

2. Input <2> contains the message terminator Qpacket that is added to the
end of messages arriving on input <1> just prior to transmission to the
host.

3. Input <3> contains the "no-messages" Qpacket. If the function receives a
Fix(1) on input <1>, then the message on this constant queue is sent
only if there are no other messages waiting to be sent on input <1>.
Otherwise, the first message on the queue of messages is sent from
output <1> with the message terminator Qpacket as defined on input
<2>.

4. Output <1> sends the message to the host in response to the receipt of
either a Fix(1) or Fix(2) on input <1>.

Intrinsic Functions RM2-89

F:INPUTS CHOOSE(n)

TYPE

Intrinsic User Function —Data Selection and Manipulation

F:INPUTS CHOOSE {n)

Any

Any)

I

<1 > C <1 >

<n-1 > C

<n>

DC

 > Any

PURPOSE

Accepts an integer with a value from 1 to (n-1) on input <n> and uses that

value to choose which of inputs <1> through <n-1> to accept as an input.

The chosen message is then output.

DESCRIPTION

INPUTS

<1> — any message (constant)

<n-1>— any message (constant)

<n> — chosen message number

OUTPUT

<1> — chosen message

NOTE

To set up F:INPUTS_CHOOSE(n) for a given number of messages be-
tween 2 and 127 inclusive, add one to the number of messages and
substitute the result for "n" in the function identifier. For example,
F:INPUTS_CHOOSE(5) accepts four messages at inputs <1> through
<4>. The selector input is always input <n>. Thus, for F:IN-

PUTS_CHOOSE(5), the selector input is <5>.

RM2-90 Reference Materials

F:LABEL

TYPE

Intrinsic User Function —Data Selection and Manipulation

F:LABEL

2D, 3D) <1 >

S ~ <2>

B y <3>

CC

<1>

PURPOSE

 > Label

Creates a label to send to a LABELS node using the vector on input <1> as
the position of the label and the string on input <2> as the text of the label.
Input <3> indicates whether the label is displayed or not.

DESCRIPTION

INPUTS

<1> — X, Y, and (optionally) Z location of the label

<2> — text of the label

<3> — TRUE =displayed, FALSE =not displayed

OUTPUT

<1> —

NOTE

label for input to a LABELS node

The data type output by this function can only be used to update a labels
node. It is not accessible or printable.

Intrinsic Functions RM2-91

F:LBL EXTRACT

TYPE

Intrinsic User Function —Data Selection and Manipulation

F:LBL EXTRACT

PURPOSE

<1>

<2>

CC

<1>

<2>

<3>

<4>

 >I

 > 2D, 3D, 4D

 > S

 > B

Extracts information about a string from a LABELS node given an index
into the labels block on input <1> and the name of the labels node on input
<2>.

DESCRIPTION

INPUTS

<1> — index of the string in question

<2> — name of the LABELS node

OUTPUTS

<1> — data type

<2> — the start Location of the string in question

<3> — the text of the string

<4> — TRUE = on, FALSE = of f

NOTES

1. The integer on output <1> is the same as would be sent from output <7>
of F:PICK:INFO.

2. Output <4> indicates whether the string is on or off .

RM2-92 Reference A~aterials

F:LE

TYPE

Intrinsic User Function —Comparison

FILE

R, I

R, I

PURPOSE

<1>

CC

 ~B

Accepts any combination of real numbers and integers on its two inputs and
produces a Boolean value output that is TRUE if input <1> is less than or
equal to input <2> and FALSE otherwise.

DESCRIPTION

INPUTS

<1> —

<2> —

OUTPUT

value to be compared

value to be compared

<1> — TRUE if input <1> is less than or equal to input <2>, other-
wise FALSE

ASSOCIATED FUNCTIONS

F:LEC, F:CLE

Intrinsic Functions RM2-93

F:LEC

TYPE

Intrinsic User Function —Comparison

F:LEC

R, I

R, I

PURPOSE

 <1>

) <2> C

DC

<1>)B

Accepts any combination of real numbers and integers on its two inputs and
produces a Boolean value output that is TRUE if input <1> is less than or
equal to input <2> and FALSE otherwise. Input <2> is a constant.

DESCRIPTION

INPUTS

<1> — value to be compared

<2> — value to be compared (constant)

OUTPUT

<1> — TRUE if input <1> is less than or equal to input <2>, other-
wise FALSE

ASSOCIATED FUNCTIONS

FILE, F:CLE

RM2-94 Reference Materials

F:LENGTH STRING

TYPE

Intrinsic User Function —Data Selection and Manipulation

F:LENGTH STRING

<1> <1>

<2>

CC

 >I

PURPOSE

Outputs the length of a string .

DESCRIPTION

INPUT

<1> —

OUTPUTS

NOTE

string

<1> — length of the string

 > B

<2> — TRUE =null string, FALSE otherwise

A possible output is zero.

Intrinsic Functions RM2-95

F:LIMIT

TYPE

Intrinsic User Function —Data Selection and Manipulation

F:LIMIT

R, I

R, i

R, I

PURPOSE

}

<1>

<2> C

<3> C

D D

<1>

<2>

<3>

Accepts real number or integer values on all inputs; all three input values
must be of the same data type. The output data type is the same as the
input data type .

DESCRIPTION

INPUTS

<1> — value

<2> — upper limit (constant)

<3> — lower limit (constant)

OUTPUTS

<1> — input <1> if this value is in range

<2> — in-range value

<3> — TRUE if in-range, FALSE if out-of-range

NOTES

1. The value on input <1> is compared to the constant upper limit value on
input <2> and the constant lower limit value on input <3>.

2. If the input <1> value is in range, that value is output unchanged on
output <1> and output <2>, and a TRUE is output on <3>.

RM2-96 Reference Materials

F:LIMIT

(continued)

3. If the input <1> value is out of range, the output <1> value is adjusted to
the nearer limit (as set by inputs <2> and <3>), output <2> is disabled,
and output <3> is FALSE.

4. If the value on input <2> is less than or equal to the value on input <3>,
the function will always output the value received on input <3>.

Intrinsic Functions RM2-97

F:LINEEDITOR

TYPE

Intrinsic User Function —Data Selection and Manipulation

F:LINEEDITOR

S

S

S

PURPOSE

 > <1> <1>

 <2> C <2>

 <3> C <3>

<4>

<5>

<6>

DD

 > S

 > S

 > CH

 > S

Accepts a stream of characters and simple editing commands, accumulates
the characters in an internal line buffer, applies the commands to the con-
tents of the line buffer as they are received, and outputs the edited line
when a specified delimiter character is recognized.

DESCRIPTION

INPUTS

<1> — editing commands and material to be edited (input string)

<2> — prompt message (constant)

<3> — line delimiter (constant)

OUTPUTS

<1> — edited output

<2> — display output

<3> — integer for <clear> of CHARAC'1'~;RS

<4> — integer for <delete> of CHARACTERS

<5> — character for <append> of CHARACTERS

<6> — string for <substitute> or <replace> of CHARACTERS

RM2-98 Reference Materials

F:LINEEDITOR
(continued)

NOTES

1. In a typical application, F:LINEEDITOR receives its input from the
PS 390 keyboard and sends its edited output either to a terminal (such
as the debug terminal or the terminal emulator) or to a CHARACTERS
node in the PS 390 display structure. A specially formatted "display"
output is used for terminals; other outputs are intended as connections
into CHARACTERS to allow keyboard editing of a CHARACTERS
string .

2. F:LINEEDITOR recognizes the following editing commands:

Delete (Hex ' 7F') : Deletes the most recently received character from
the internal line buffer.

CTRL/U (Hex '15'): Deletes the entire line buffer. Redisplays a pre-
determined prompt message at any associated terminals by sending
the prompt string on the display output <2>.

CTRL/R (Hex ' 12') : Retypes the entire line (preceded by the prompt
message) at any associated terminals by sending the prompt and line
along the display output <2>.

3. Input <1> receives the stream of strings to be collected and edited, along
with all editing commands. The PS 390 keyboard is typically connected
to this input.

4. Input <2> contains a prompt message, if one is needed. The prompt
string may contain one or several characters. This prompt appears only
at output <2>, and it appears there whenever a CTRL/U, a CTRL/R, or a
delimiter is received at input <1>. The prompt message is optional and
there is no default.

5. Input <3> contains a single character designated as the delimiter. When
this character is received at input <1>, the contents of the line buffer
appear at outputs <1> and <6> (edited by the editing commands), and at
output <2> (along with the prompt) .

6. The default delimiter is <CR> (carriage return; Hex 'OD'), but this <CR>

is always expanded to <CR><LF> (carriage return/line-feed; Hex
'ODOR') for output at <1>, <2>, and <6>.

Intrinsic Functions RM2-99

F:LINEEDITOR
(continued)

7. If input <3> contains anon-<CR> delimiter <delim>, this delimiter is
passed on as is to outputs <1> and <6>, but it is always converted to
<delim><CR><LF> for output <2> (the display output). (This implies
that specifying a delimiter of <LF> produces double-spaced display out-

p

ut.

8. output <1> contains the contents of the line buffer, which in turn is
composed of the collected and edited characters from input <1>. This
output fires when a delimiter is recognized at input <1> or when 255
characters have been collected since the last firing or since initialization.

9. Output <2> is the display output. Unlike outputs <1> and <6>, this out-
put includes "editing effects" intended for terminal display (prompt
messages, displayed CTRL/Us and CTRL/Rs, character erasures corre-
sponding to deletes, and so on) . For the treatment of delimiters at output
<2>, see note 7 above.

10. Output <3> is an integer output intended as a connection into the <clear>
input of a CHARACTERS command. The integer is sent whenever a
CTRL/U is received at input <1>.

11. Output <4> always sends an integer 1 and is intended as a connection
into the <delete> input of a CHARACTERS command. The 1 is sent
whenever a delete is received at input <1>.

12. output <5> is intended as a connection into the <append> input of a
CHARACTERS command. This output passes on all characters received
at input <1> except editing commands (delete, CTRL/U, CTRL/R) . No
buffering is performed at this output—it fires once for each
non-command character, and the message is always a single character.

13. output <6> is intended as a connection into the <substitute> or <replace>
input of a CHARACTERS command. It fires whenever the function is
activated by a (single-character or multi-character) string at input <1>. In
addition, output <6> fires whenever output <1> fires.

RM2-100 Reference Materials

F:LIST

TYPE

Intrinsic User Function —Data Conversion

F:LIST

Special data >

type from F:XFORMDATA

PURPOSE

<1>

CC

<1>

<2>

 >S

 >B

Converts the output of the F:XFOR.MDATA function to an ASCII string.
This function is always used with F:XFORNIDATA.

DESCRIPTION

INPUT

<1> — data output by F:XFORI~IDATA

OUTPUTS

<1> — resulting ASCII string

<2> — Boolean value (TRUE)

NOTES

1. Input <1> is always connected to output <1> of F:XFORIVIDATA.

2. Output <2> is TRUE when processing is complete. There is no output
otherwise.

3. Output <2> should be connected to an instance of F:SYNC(2) to
synchronize F:LIST completion with the initiation of a subsequent
transformed-data request.

EXAMPLE

Refer to Helpful Hint 4 in Section TT2.

Intrinsic Functions R1~12-101

F:LOOKAT

TYPE

Intrinsic t.Jser Function —Viewing Transformation

F:LOOKAT

3D

3D

3D

PURPOSE

<1>

<2> C

<3> C

DC

<1> > 4x3

Accepts three 3D vectors that specify the position to "look at," the position
to "look from," and which direction is "up." Inputs <2> and <3> ("look
from" and "up" orientation) are constants.

I~EscRIPTION

INPUTS

<1> — look at point

<2> — look from point (constant)

<3> — up orientation (constant)

OUTPUT

<1> —

NOTES

4x3 viewing matrix

1. Input <1>, the "look at" vector, triggers the function.

2. The 3D vectors are used to generate a 4x3 matrix that may be used to
update a LOOK viewing-transformation node in a display structure.

RM2-102 Reference Materials

F:LOOKFROM

TYPE

Intrinsic User Function —Viewing Transformation

F:LOOKFROM

3D)

3D)

3D)

PURPOSE

<1> C

<2>

<3> C

DC

<1> > 4x3

Accepts three 3D vectors that specify the position to "look at," the position
to "look from," and which direction is "up." Inputs <1> and <3> ("look at"
and "up" orientation) are constants.

DESCRIPTION

INPUTS

<1> — look at point (constant)

<2> — look from point

<3> — up orientation (constant)

OUTPUT

<1> — 4x3 viewing matrix

NOTES

1. Input <2>, the "look from" vector, triggers the function.

2. The 3D vectors are used to generate a 4x3 matrix that may be used to
update a L~QK viewing-transformation node in a display structure.

Intrinsic Functions RM2-103

F:LT

TYPE

Intrinsic User Function —Comparison

F : LT

R, I

R, I

PURPOSE

<1>

<2>

CC

<1> >B

Accepts any combination of real numbers and integers on its two inputs and
produces a Boolean value output that is TRUE if input <1> is less than input
<2> and FALSE otherwise.

DESCRIPTION

INPUTS

< 1 > — value to be compared

<2> — value to be compared

~JUTPUT

<1> — TRUE if input <1> is less than input <2>, otherwise
FALSE

ASSOCIATED FUNCTIONS

F:LTC, F:CLT

RM2-104 Reference Materials

F:LTC

TYPE

Intrinsic User Function —Comparison

F:LTC

R, I

R, I ~

<1 > <1 >

<2> C

DC

PURPOSE

 ~B

Accepts any combination of real numbers and integers on its two inputs and
produces a Boolean value output that is TRUE if input <1> is less than input
<2> and FALSE otherwise. Input <2> is a constant.

DESCRIPTION

INPUTS

<1> — value to be compared

<2> — value to be compared (constant)

OUTPUT

<1> — TRUE if input <1> is less than input <2>, otherwise
FALSE

ASSOCIATED FUNCTIONS

F:LT, F: CLT

Intrinsic Functions RM2-105

F:MAKEPACKET

TYPE

Intrinsic User Function —Data Conversion

F:MAKEPACKET

Any

PURPOSE

<1> <1> > Any, except
Qmorepackets

This function is used to convert a Qmorepacket received on input <1> to a
Qpacket on output <1>. All other messages are passed through the function
unchanged.

DESCRIPTION

INPUT

<1> —

OUTPUT

<1> —

NOTE

any message

any message except Qmorepacket

F:CIROUTE(n) outputs both Qpackets and Qmorepackets. Since some
functions can accept only Qpackets, F:MAKEPACKET can be used to
accept output from F:CIROUTE(n).

RM2-106 Reference Materials

F:MATRIX2

TYPE

Intrinsic User Function —Data Conversion

F : MATRIX2

r"1

2D

2D

PURPOSE

<1> <1>

<2>

CC

Accepts two 2D vectors and produces a 2x2 matrix.

DESCRIPTION

INPUTS

< 1 > — 2D vector

<2> — 2D vector

OUTPUT

<1> — 2x2 matrix

NOTES

 2x2

1. The matrix output may be used to update a 2x2 matrix node in a display
structure or as input to another function.

2. The vector on input <1> is output as the first row of the matrix. The
vector on input <2> is output as the second row.

Intrinsic Functions I~M2-107

F:MATRIX3

TYPE

Intrinsic User Function —Data Conversion

3D

3D

3D

PURPOSE

F:MATRIX3

<1> <1>

<2>

<3>

CC

Accepts three 3D vectors and produces a 3x3 matrix.

DESCRIPTION

INPUTS

< 1 > — 3D vector

<2> — 3D vector

<3> — 3D vector

OUTPUT

<1> — 3x3 matrix

NOTES

 > 3x3

1. The matrix output may be used to update a 3x3 matrix node in a display
structure or as input to another function.

2. The vector on input <1> is output as the first row of the matrix. The
vector on input <2> is output as the second row. The vector on input <3>
is the third row.

RM2-108 Reference Materials

F:MATRIX4

TYPE

Intrinsic User Function —Data Conversion

F:MATRIX4

4D) <1>

4 D > <2>

4D > <3>

4 D > <4>

CC

<1>

PURPOSE

Accepts four 4D vectors and produces a 4x4 matrix.

DESCRIPTION

INPUTS

< 1 > — 4D vector

<2> — 4D vector

<3> — 4D vector

<4> — 4D vector

OUTPUT

< 1 > — 4x4 matrix

NOTES

 > 4x4

1. The matrix output may be used to update a 4x4 matrix node in a display
structure or as input to another function.

2. The vector on input <1> is output as the first row of the matrix. The
vector on input <2> is output as the second row. The vector on input <3>
is the third row. The vector on input <4> is the fourth row.

Intrinsic Functions RM2-109

F:MCAT_STRING (n)

TYPE

Intrinsic User Function —Data Selection and Manipulation

F:MCAT_STRING{n)

<1> <1>

<n> <2>

CC

PURPOSE

 >S

 >i

Accepts strings on inputs < 1 > through <n> and concatenates them into a
single string. Output <1> contains the resulting string and output <2> con-
tains its length.

DESCRIPTION

INPUTS

<1> — string

<n> — string

OUTPUTS

<1> —

<2> —

NOTE

concatenated string

string length

The limit to the number Of inputs to this function is 127.

RM2-110 Reference Materials

F:MINMAX(n)

TYPE

Intrinsic User Function -- Data Selection and Manipulation

F: MINMAX (n}

Qinteger
Areal

Qinteger
Areal

Qinteger
Areal

PURPOSE

<1 > <1 > ~ > Qinteger
Areal

<2> <2> > Qinteger
Areal

<n>

CC

Selects the minimum and maximum values on inputs. The number of inputs
is indicated by the parameter (n).

DESCRIPTION

INPUTS

<1> —

<2> —

Qinteger/Areal

Qinteger/Areal

<n> — Qinteger/Areal

OUTPUTS

<1> — Qinteger/Areal (maximum)

<2> — Qinteger/Areal (minimum)

NOTE

The type of input on inputs <2> through <n> must be the same type as
on input < 1 >.

Intrinsic Functions RM2-111

F:MOD

TYPE

Intrinsic User Function —Arithmetic and Logical

F:MOD

PURPOSE

 <1>

 y <2>

CC

<1> >I

Accepts two integers as inputs and produces an integer output that is the
remainder resulting from the division of the value on input <1> by the value
on input <2>. The integer on input <2> must be positive.

DESCRIPTION

INPUTS

<1> —

<2> —

OUTPUT

<1> —

NOTE

integer

integer

remainder from dividing input <1> by input <2>

F:MOD uses aPascal-like definition of modulo. For a negative integer
on input <1>, the resulting output will be negative. For example, -8 mod
3is-2.

ASSOCIATED FUNCTION

F:MODC

RM2-112 Reference Materials

F:MODC

TYPE

Intrinsic User Function —Arithmetic and Logical

F:MODC

PURPOSE

 ~ <1>

 } <2> C

DC

<1> >i

Accepts two integers as inputs and produces an integer output that is the
remainder resulting from the division of the value on input <1> by the value
on input <2>. Input <2> is a constant.

DESCRIPTION

INPUTS

<1> —

<2> —

OUTPUT

<1> —

NOTE

integer

integer (constant)

remainder from dividing input <1> by input <2>

F:MODC uses aPascal-like definition of modulo. For a negative integer
on input <1>, the resulting output will be negative. For example, -8 mod
3is-2.

ASSOCIATED FUNCTION

F:MOD

Intrinsic Functions RM2-113

F:MUL

TYPE

Intrinsic User Function —Arithmetic and Logical

F:MUL

I, R, 2D, 3D, 4D
2x2 , 3x3 , 4x4

I, R, 2D, 3D, 4D
2x2 , 3x3 , 4x4

PURPOSE

 > <1> <1>

 > <2>

CC

Accepts two inputs and outputs their product.

DESCRIPTION

INPUTS

<1> —

<2> —

OUTPUT

NOTE

multiplier

multiplicand

< 1 > -- product

 > I, R, 2D, 3D, 4D
2x2, 3x3, 4x4

The two input values must be compatible data types; the output data
type depends on the combination of input data types. Vectors are taken
to be either row or column vectors, as appropriate, to perform the multi-
plication.

ASSOCIATED FUNCTIONS

F:l~TULC, F: CI~TUL

RM2-114 Reference Materials

F:MULC

TYPE

Intrinsic User Function —Arithmetic and Logical

F:MULC

I, R, 2D, 3D, 4D >
2x2 , 3x3 , 4x4

I, R, 2D, 3D, 4D >
2x2 , 3x3 , 4x4

PURPOSE

<1> <1>

<2> C

DC

 > I, R, 2D, 3D, 4D
2x2 , 3x3 , 4x4

Accepts two inputs and outputs their product. Input <2> is a constant.

DESCRIPTION

INPUTS

<1> — multiplier

<2> — multiplicand (constant)

OUTPUT

<1> — product

NOTE

The two input values must be compatible data types; the output data
type depends on the combination of input data types. Vectors are taken
to be either row or column vectors, as appropriate, to perform the multi-
plication.

ASSOCIATED FUNCTIONS

F:MUL, F: CMUL

Intrinsic Functions RM2-11 S

F:MUX

TYPE

Intrinsic User Function —Data Selection and Manipulation

F:MUX

Qpacket
Qmorepacket

Qinteger

Qpacket

PURPQSE

<1>

<2>

<3> C

<1>

<2>

 > Qpacket

 > Qprompt

F:M[JX is the inverse of F:DEMUX. It accepts Qpacket/Qmorepackets and
prefixes each incoming bundle of types with the multiplexing character, the
base character (from input <3>) plus the channel number from input <2>.
The Qprompt on output <2> is any Qprompt which showed up on input <1>.

RM2-116 Reference Materials

F:NE

TYPE

Intrinsic User Function —Comparison

FINE

R, I

R, I

PURPOSE

<1>

<2>

CC

<1> >B

Accepts any combination of real numbers and integers on its two inputs and
produces a Boolean value output that is TRUE if input <1> is not equal to
input <2> and FALSE otherwise .

DESCRIPTION

INPUTS

<1> — value to be compared

<2> — value to be compared

OUTPUT

<1> — TRUE if input <1> is not equal to input <2>, otherwise
FALSE

ASSOCIATED FUNCTION

F:NEC

Intrinsic Functions RM2-117

F:NEC

TYPE

Intrinsic User Function —Comparison

F:NEC

R, I

R, l)

<1> <1>

<2> C

DC

PURPOSE

 >B

Accepts any combination of real numbers and integers on its two inputs and
produces a Boolean value output that is TRUE if input <1> is not equal to
input <2> and FALSE otherwise. Input <2> is a constant.

DESCRIPTION

INPUTS

<1> — value to be compared

<2> — value to be compared (constant)

OUTPUT

<1> — TRUE is input <1> is not equal to input <2>, otherwise
FALSE

ASSOCIATED FUNCTION

FINE

RM2-118 Reference Materials

F:NOP

TYPE

Intrinsic User Function —Miscellaneous

F : NOP

Any ~ <1>

CC

<1>

PURPosE

 > Any

Accepts any message and outputs that message unchanged.

DESCRIPTION

INPUT

<1> —

OUTPUT

<1> —

NOTE

any message

message on input <1>

This function is useful for tying a set of many outputs to a set of many
inputs .

intrinsic Functions RM2-119

F:NOT

TYPE

Intrinsic User Function —Arithmetic and Logical

PURPOSE

F:NOT

<1> <1>

CC

 > B

Accepts a Boolean value input and outputs its complement as a Boolean
value.

DESCRIPTION

INPUT

<1> — Boolean value

OUTPUT

<1> — logical complement of input <1>

RM2-120 Reference Materials

F:NPRT PRT

1~PE

Intrinsic User Function —Data Conversion

Qpacket) <1 > <1 >

PURPOSE

F:NPRT PRT

> Qpacket

This function converts strings containing non-printable characters to strings
of printable characters . Example : TL to <FF>.

This function is a helpful debugging aid, as it allows non-printable charac-
ters to be printed. For example, this function's input could be connected to
the function receiving input from the host, and its output connected to the
Terminal Emulator. Then all characters that enter the PS 390 from the host
could be seen.

EXAMPLE

Refer to Helpful Hint 14 in Section TT2.

Intrinsic Functions RM2-121

F:OR

TYPE

Intrinsic User Function —Arithmetic and Logical

F:OR

PURPosE

<1>

CC

 >B

Accepts two Boolean values as input and produces a Boolean value output
that is the logical OR of the two inputs.

DESCRIPTION

INPUTS

<1> — Boolean value

<2> — Boolean value

OUTPUT

<1> — logical OR of the two inputs

ASSOCIATED FUNCTION

F:ORC

RM2-122 Reference Materials

F:ORC

TYPE

Intrinsic User Function —Arithmetic and Logical

F : ORC

PURPOSE

 <1>

 y <2> C

DC

<1> >B

Accepts two Boolean values as input and produces a Boolean value output
that is the logical OR of the two inputs. Input <2> is a constant.

DESCRIPTION

INPUTS

<1> — Boolean value

<2> — Boolean value (constant)

OUTPUT

<1> — logical OR of the two inputs

ASSOCIATED FUNCTION

F:OR

Intrinsic Functions RM2-123

F:PACKET

TYPE

Intrinsic User Function —Data Selection and Manipulation

F :PACKET

Qpacket > <1 >
Qmorepacket

Qpacket > <2> C <1>

Qpacket > <3> C <2>
Qinteger

Qpacket > <4> C
Qboolean

Qinteger > <5> C

PURPosE

 > Qpacket

 > Qprompt

The F:PACKET function takes incoming Qpacket messages from input <1>
and prefixes each one with the proper packet header before sending them
on. (It is the inverse of the F:DEPACKET function.) It routes any Qprompts
arriving at input <1> off to output <2>. Like F:DEPACKET, this function
can operate in either count mode or escape mode. In count mode, F:PACK-
ET makes a packet of the following form:

FS count bytes message body from input <1 >

The definition of the FS character is taken from the single-character string
on input <2>. The count is defined to have n bytes (n taken from input <3>).
Each count type is offset from the base character (on input <4>). The radix
of the count is on input <5>.

In escape mode, the packet is defined as:

FS message body

if input <4> is false.

RM2-124 Reference Materials

F:PACKET

(continued)

If input <4> is true, it is defined as:

ESC FS message body

The definition of FS is taken from the single-character string on input <2>.
If input <4> is false, any FS character within the packet is prefixed with
ESC. In either mode, any ESC byte within the packet is also prefixed with
ESC.

Intrinsic Functions RM2-125

F:PARTS

TYPE

Intrinsic User Function —Data Conversion

F :PARTS

2D, 3D, 4D
2x2 , 3x3 , 4x4

PURPOSE

<1>

CD

<1>

<2>

<3>

<4>

 > R, 2D, 3D, 4D

 > R, 2D, 3D, 4D

 > R, 3D, 4D

 > R, 4D

Separates a vector into its elements or a square matrix into its row vectors.

DESCRIPTION

INPUT

<1> —

OUTPUTS

<1>

<2>

<3>

<4>

NOTES

any vector or matrix

X component or row vector

Y component or row vector

Z component or row vector

W component or row vector

1. If a square matrix is sent to input <1>, its row vectors appear in se-
quence at the outputs .

2. If a vector is input, its components are output as real numbers. The X
component is output on output <1>, the Y component on output <2>, and
the Z and W components (if any) on output <3> and output <4> respec-
tively.

3. Note that some outputs are not always used. For example, if a 3x3 ma-
trix or a 3D vector is sent to F:PARTS, nothing is output on output <4>.

RM2-126 Reference Materials

F:PASSTHRU (n)

TYPE

Intrinsic User Function —Data Selection and Manipulation

F:PASSTHRU (n)

Any

Any

PURPOSE

<1> <1>

<n> <n>

DD

 > Any

 > Any

Immediately passes the message which arrives at any input to all function
queues connected to its associated output.

DESCRIPTION

INPUTS

<1> — any message

<n> — any message

OUTPUTS

<1> — message on input <1>

<n> — message on input <n>

NOTES

1. A message is passed through as soon as it arrives at an input queue. The
function does not have to wait for messages on all its inputs before it
becomes active.

2. The SETUP CHESS command cannot be used with this function.

Intrinsic Functions RM2-12 7

F:PICKINFO

TYPE

Intrinsic User Function —Data Conversion

F:PICKINFO

PL)
I)

PURPOSE

<1>
<2> C

DD

<1>
<2>
<3>

<4>
<5>

<6>
<7>

<8>

<9>

> i

 > S
 > 2D, 3D

 > f
 > B

 > R

 > Special

 > 2D

Reformats picklist information for use by other functions. The output pick-
list is separated into its component parts.

DESCRIPTION

INPUTS

<1> — picklist

<2> — depth within structure reported (constant)

OUTPUTS

<1> — index

<2> — pick identifiers)

<3> — coordinates

<4> — dimension

<5> — coordinates reported

<6> — curve parameter, t

RM2-128 Reference Materials

F:PICKINFO

(continued)

<7> — data type code

<8> — name of picked element

<9> — screen coordinates of the picked point

DEFAULT

The default depth on input <2> is all.

NOTES

1. Input <1> accepts a picklist. Since the only source of a picklist is the
initial function instance PICK, instances of F:PICk:INFO must be con-
nected to PICK.

2. Input <2> accepts an integer that specifies the depth within a structure
that will be reported when a pick occurs. For example, if the picked item
were at the fiftieth level within pick identifiers (i.e., the picked data
could be appended with 49 pick identifiers separated by commas) -and
the integer 2 were input on input <2>, then only the identifier of the
picked item and the item directly above it in the structure would be
output as the string on output <2>.

3. The output information varies with the type of picklist supplied. If the
associated PICK function instance has a TRUE on input <2>, it supplies
a detailed coordinate picklist, and most or all of F:PICK:IlVFO's outputs
are activated. If the associated PICK has a FALSE on input <2>, a less
detailed picklist is supplied, and only F:PICK:IlVFO outputs <1>, <2>, and
<5> are activated.

4. The integer on output <1> is the pick index, indicating which vector (in a
vector list), character (in a character string), label (in a labels block), or
parameter value (in a POLYNOMIAL or RATIONAL POLYNONIIAL
curve) was picked. Vectors (or characters or labels) are assigned con-
secutive integer values in order of their appearance in the list (or string
or labels block), beginning with 1.

5. Output <2> is a string containing the requested pick IDs.

Intrinsic Functions RM2-129

F:PICKINFO
(continued)

6. Output <3> is a 2D or 3D vector giving the coordinates of the intersec-
tion of the pickbox with the picked vector. Its data type depends on the
data type of the picked vector (2D or 3D). Output <3> also reports the
start location of a picked character string or label. (This output is sup-
plied only for coordinate picklists.)

7. Output <4> gives the dimension (2 or 3) of the picked vector. (This
output is supplied only for coordinate picklists.)

8. Output <5> is TRUE if coordinate picking information is being sent out,
and FALSE otherwise. Output <5> is also false if coordinate picking is
attempted on a character.

9. Output <6> gives the value of a polynomial parameter t (from 0 to 1,
inclusive). This output is activated only for coordinate picklists resulting
from picking a vector created by the POLYNOMIAL command or RA-
TIONAL POLYNOMIAL command.

10. Output <7> is for an integer code specifying the data type of the object
picked. The code may have values 1 through 8, corresponding to the
following data types: (1) CHARAC'1'~RS; (2) 2D vector; (3) 3D vector
(4) 2D POLYNOMIAL or RATIONAL POLYNOMIAL; (5) 3D POLY-
NOMIAL or RATIONAL POLYNOMIAL; (6) 2D BSPLINE or RA-
TIONAL BSPLINE; (7) 3D BSPLINE or RATIONAL BSPLINE; (8) LA-
BELS.

11. When output <8> is connected to input <1> of F:PR.INT it causes
F:PRINT to produce the name of the VECTOR LIST, CHARACTERS,
LABELS, BSPLINE, RATIONAL BSPLINE, POLYNO or RA-
TIONAL POLYNO command containing the picked vector.

12. If the command containing the picked vector is not named, a null is
output at <8>.

13. Output <9> gives the physical screen coordinates.

RM2-130 Reference Materials

F:POSITION LINE

TYPE

Intrinsic User Function —Data Selection and Manipulation

F:POSITION LINE

2D, 3D, 4D

B, S)

PURPOSE

<1> <1>

<2> C

DC

 > 2D, 3D, 4D

Accepts a 2D, 3D, or 4D vector on input <1>. A Boolean value on input <2>
is used to assign a position (P) or line (L) to be associated with the vector.
A string sent to input <2> consists of either a P or an L identifier. The
vector, with the position/line condition specified by the Boolean value, is
output on output <1>.

DESCRIPTION

INPUTS

<1>

<2>

OUTPUT

<1> —

NOTE

any vector

Boolean value or string (constant)

vector with P or L identifier

A TRUE on input <2> causes a line (L) to be associated with the vector;
a FALSE on input <2> causes a position (P) to be associated with the

vector. The outputs from this function (vectors with position/line specifi-

cations) can only be applied to a vector list data node in a display struc-

ture. No function accepts such vectors as inputs.

Intrinsic Functions RM2-131

F:PRINT

TYPE

Intrinsic User Function —Data Conversion

F:PRINT

Any <1> <1>

<2> C

DC

PURPOSE

 > S

Converts any data type to string format; that is, it performs an inverse of
the operation that occurs when an ASCII string is input to the PS 390 and is
converted to one of the data types.

DESCRIPTION

INPUTS

<1> — any message

<2> Boolean value governing numeric format (constant)

OUTPUT

<1> — string

DEFAULT

The default for input <2> is FALSE, indicating decimal format.

NOTES

1. Screen coordinates, if passed to the function from F:PICK:INFO, are
added to the string output on <1>. Output <1> reports a pick in which
coordinate picking information is given.

For a vector declared in a VECTOR LIST, the output string format is:

<1><dimension><pick_x, picky, [pick_z]><index>
<pick IDs><screen x><screen y>

RM2-132 Reference Materials

F:PRINT

(continued)

For a vector within a polynomial curve the output string format is:

<2><dimension><pick_x, picky, [pick_z]><t>
<pick IDs><screen x><screen y>

2. Input <2> governs the format of real numbers and vectors (but not ma-
trix elements) in the output string. When input <2> is FALSE, these
values have the usual decimal format (e.g., '.001'). When input <2> is
TRUE, these values are in exponential format (e.g. ' 1.000000E-3') . (In-
tegers, on the other hand, are never in exponential format.) The output
character string that results from each type of input follows:

Input Data Type Output Character String

Boolean 'FALSE' or 'TRUE'.

Character The same character that was input.

String The same character string that was input.

Integer The character representation of the

integer; e.g., '129', '-107543'.

Real A character representation of the real.

e.g., '3.1416', '2.3E2' etc.

All vectors are preceded by a P (position), L (line), or V (no P or L)
designation. ("X" in the following vector descriptions indicates P, L, or
V.)

Input Data Type

2D Vector

3D Vector

4D Vector

Output Character String

Two real numbers separated by a comma;

e.g., 'X 3.5,.0715'

Three real numbers separated by commas;

e.g., 'X 3.1416,-275.012,3.5'

Four real numbers separated by commas;

e.g., 'X 3.1416,-275.012,3.5,.0715'

Intrinsic Functions RM2-133

F:PRINT
(continued)

Input Data Type Output Character String

2x2 Matrix

3x3 Matrix

4x4 Matrix

Pick list

Two 2D vectors (nine-digit precision,

exponential format) separated by a space;

e.g., '1.23456789E01, -2.56900187E-02

3.14159265E01, 2.71828183E01'}

Three 3D vectors (nine-digit precision,

exponential format) separated by spaces.

Four 4D vectors (nine-digit precision,

exponential format) separated by spaces.

The format of a picklist string depends on

whether coordinate information was

requested for the picklist (refer to

F:PICKINFO and the PICK initial

initial function instance) and, if it was

requested, whether it was given. (For

example, a vector in a character is not

susceptible to standard coordinate

picking.) All of these formats contain the

clause <pick IDs>. This clause contains

two things: first, a list of pick

identifiers established in SET PICK ID,with

the "closest" pick identifier first;

second, a space followed by the name of the
original data-definition command

corresponding to the picked object. If

this command is not named, neither a name
nor a space follows the pick identifiers.
If no coordinate picking information was

requested (input <2> of the associated

PICK function instance is FALSE), the

output string has the format

<index><pick IDs>

for a vector in a declared vector list

(including WITH PATTERN lists) or for a

character in a string or label in a block,

and

< ><pick IDS>

for a vector in a polynomial curve.

RM2-134 Reference Materials

F:PRINT

(continued)

Input Data Type Output Character String

Pick list(cont.)

If coordinate picking information was

requested and given (i.e., if input <2> of

the associated PICK is TRUE, and it was

not a character vector), then the output

string format is

<1><dimension><pick_x, picky, [pick_z]>
<index><pick IDs><screen x><screen y>

for a vector in a declared vector list and

<2><dimension><pick_x, pick_y,[pick_z]><t>

<pick IDs><screen_x><screen_y>

for a vector within a polynomial curve,

where <dimension> and <t> are as defined

for F:PICKINFO.

For a character in a string the format is

<3><dimension><start_x, start_y, start_z>

<index><pick IDs>

and for a label in a labels block, the

format is

<5><dimension><start x, start y, start z>

<index><pick IDs>

If picked coordinates were requested but

not given (i.e., input <2> of the

associated PICK is TRUE and a vector in a

character or in a polynomial curve was

picked), the output string format is

<3><index><pick IDs>

EXAMPLE

Refer to Helpful Hint 14 in Section TT2.

Intrinsic Functions RM2-135

F:PUT STRING

TYPE

Intrinsic User Function —Data Selection and Manipulation

F:PUT STRING

PURPOSE

 y <1>

 <2>

 ~ <3>

CC

<1>

<2>

 >S

 >B

Replaces characters in the string on input <1> with the string on input <3>,
starting at the position specified by the integer on input <2>. The resulting
string may be longer than the original string if the string on input <3> over-
laps. The Boolean value on output <2> is TRUE if the resulting string is the
same length as the string on input <1>, and FALSE otherwise.

DESCRIPTION

INPUTS

<1> — string

<2> — starting location for replacing characters

<3> — replacement characters

OUTPUTS

<1> — resulting string

<2> — TRUE = resulting string same length as the original,
FALSE =resulting string longer than the original

RM2-136 Reference Materials

F:RANGE SELECT

TYPE

Intrinsic User Function —Data Selection and Manipulation

F:RANGE SELECT

R, 2D, 3D

R. 2D. 3D

R, 2D, 3D

PURPOSE

}

<1>

<2> C

<3> C

D D

<1>

<2>

<3>

 > R, 2D, 3D

 > R, 2D, 3D

 > R, 2D, 3D

Compares the value on input <1> to the maximum and minimum on inputs
<2> and <3> to determine whether the value is in range or not.

DESCRIPTION

INPUTS

<1> — value

<2> — maximum (constant)

<3> — minimum (constant)

oUrPUTs

<1> — in-range, normalized

<2> — in-range, unchanged

<3> — out-of-range, unchanged

NOTES

1. Accepts real number values or 2D or 3D vectors on all inputs. The data
type must be the same on all inputs, as must the vector dimensions (that
is, all vectors must be either 2D or 3D). The type of data output from
the function is the same type that is input to the function.

Intrinsic Functions RM2-137

F:RANGE SELECT
(continued)

2. The value on input <1> is compared to the constant maximum value on
input <2> and the constant minimum value on input <3>.

3. If the value on input <1> is within the range defined by the minimum
and maximum values (input <3> <= input <1> <- input <2>) then the
value on input <1> is sent out on outputs <1> and <2>.

4. The value on output <1> is normalized to the maximum/minimum values
of inputs <2> and <3>. The value on output Q> is identical to the input
<1> value. If the value is in range, nothing is sent out on output <3>.

5. Data is normalized for output <1> by:

normal Xvalue =

normal Yvalue =

normal Zvalue =

X~ — X min

X range

Y ~ _ Y min

Y range

Z 1 — Z min

Z range

- 0.5

- 0.5

- 0.5

6. If the value on input <1> is not within range, it is output on output <3>
unchanged.

RM2-138 Reference Materials

F:READDISK

TYPE

Intrinsic User Function —Data Selection and Manipulation

F:READDISK

Qpacket >

Qboolean >

PURPOSE

<1>

<2> C

<1>

<2>

 > Qpacket

 > Qboolean

This function reads a file from the floppy disk and sends the data out <1> in
Qpackets. Input <1> accepts a Qpacket of 1 to 8 characters specifying the
name of the file to be read. All disk drives are searched for the file until
found; if the file is not found, an error message is produced.

A TRUE on input <2> tells the function to delete the file after reading. Input
<2> is a constant input queue and is initialized to FALSE.

A TRUE is output from <2> when the file is found and read successfully. A
FALSE is output when the file is not found.

NOTE

The file name sent on input <1> should not include the file extension.
The file on the disk must have the extension ".DAT" .

Intrinsic Functions RM2-139

F:READSTREAM

TYPE

Intrinsic User Function —Data Conversion

F:READSTREAM

Qpacket >
Qprompt

PU~PosE

<1> <1>

<2>

 > any type

 > Qprompt

This function converts an 8-bit stream into arbitrary messages. It takes t~vo
bytes as the count of information (including message type) and creates a
message of that size with the bytes of information that follow it. The mes-
sage format on input is:

2 bytes 2 bytes
length message type rest of message body

RM2-140 Reference Materials

F:RESET

TYPE

Intrinsic User Function —Data Selection and Manipulation

F:RESET
Anything) <1> <1>

<2>

PURPOSE

 > Qreset

 > Qprompt

This function sends a Qreset out output <1> whenever it receives input other
than a Qprompt or on input <1>. Qprompts are passed on through output
<2>.

A Qreset purges a function and returns it to an initial state. Functions that
respond to F:RESET are:

• F:CI(n)

• F:CIROUTE(n)

• F:DEMUX(n)

• F:DEPACKET

• F:GATHER GENFCN

• F:PACKET

• F:RASTER

• F:RAS'1'~;RSTREAM

• F:READSTREAM

Intrinsic Functions RM2-141

F:ROUND

TYPE

Intrinsic User Function —Arithmetic and Logical

F:ROUND

<1> <1>

CC

PURPOSE

 > I

Accepts a real number and outputs the nearest integral value.

DESCRIPTION

INPUT

<1> —

OUTPUT

<1> —

NOTE

real number

nearest integral value

Values n to n.4999...9 are rounded to n; values n.5 to n.9999...9 are
rounded to n+l. Values -n to -n.4999...9 are rounded to -n; values -n.5
to -n.999...9 are rounded to -n+(-1).

RM2-142 Reference Materials

F:ROUTE(n)

TYPE

Intrinsic User Function —Data Selection and Manipulation

F:ROUTE(n)

i

Any

PURPOSE

<1>

<2>

CD

<1>

<2>

<n>

 > Any

 > Any

 > Any

Uses the integer on input <1> to route the message on input <2> to the
output whose number matches the input <1> integer.

DESCRIPTION

INPUTS

<1> — number of selected output (1 through n)

<2> — any message

OUTPUTS

NOTE

<1> — message on input <2>

<n> — message on input <2>

The message on input <2> may be of any data type. The "n" in the
function name can be any integer from 2 to 127. If the integer on input
<1> is not a number from 1 to n inclusive, then an error is detected and
reported.

ASSOCIATED FUNCTIONS

F:ROUTEC(n), F:CROLTTE(n)

Intrinsic Functions RM2-143

F:ROUTEC (n)

TYPE

Intrinsic User Function —Data Selection and 1Vlanipulation

F:ROUTEC (n}

I)

Any)

<1>

<2> C

D D

<1>

<2>

<n>

PURPOSE

 > Any

 > Any

 > Any

Uses the integer on input <1> to switch the message on input <2> to the
output whose number matches the input <1> integer. Input <2> is a con-
stant.

DESCRIPTION

INPUTS

<1> —

<2>

OUTPUTS

NOTE

<1> —

number of selected output (1 through n)

any message (constant)

message on input <2>

<n> message on input <2>

The message on input <2> may be of any data type. The "n" in the
function name may be any integer from 2 to 127. If the integer on input
<1> is not a number from 1 to n, inclusive, then the message on input
<2> is held until a valid integer is received on input <1>.

ASSOCIATED FUNCTIONS

F:ROUTE(n), F:CROUTE(n)

RM2-144 Reference Materials

F:SCALE

TYPE

Intrinsic User Function —Object Transformation

F :SCALE

R, I, 3D - ~ <1>

CC

<1> 3x3

PURPOSE

Accepts a real value, an integer, or a 3D vector. If a real value is input, the
scaling factor represented by the real value is applied to X, Y, and Z. A 3x3
scaling matrix is output that may be used to update a scaling element of a
display structure.

DESCRIPTION

INPUT

<1> —

OUTPUT

NOTE

value

<1> — 3x3 scaling matrix

If a 3D vector is input, the X component of the vector is the scaling
factor for X, the Y component of the vector is the scaling factor for Y
and the Z component of the the vector is the scaling factor for Z.

Intrinsic Functions RM2-145

F:SCREENSAVE

TYPE

Intrinsic User Function —Miscellaneous

No explicit connections

PURPOSE

--~ No explicit connections

This function helps to protect the PS 390 screen from phosphor damage by
slowly shifting the viewport in a way that is imperceptible to the user. The
viewport moves right two line widths, up two line widths, left two line
widths, and down two line widths, and repeats this cycle as long as
F:SCREENSAVE is in effect. F:SCREENSAVE is on by default.

NOTES

1. Note that F:SCREENSAVE has no explicit inputs or outputs. The only
way to use this function is to instance it when phosphor protection is
desired and to delete the instance (using NII.) when it is not desired. To
disable screen-saving, enter the command

SCREENSAVE := NIL;

To enable the screen-saving, enter the command

SCREENSAVE := F:SCREENSAVE;

2. Screen-saving should be set to NIL before timed-exposure photographs
of the PS 390 screen are taken.

RM2-146 Reference Materials

F:SEND

TYPE

Intrinsic User Function —Data Selection and Manipulation

F:SEND

Any

S
I

PURPosE

}

<1>

<2>

<3>

C

This is the function network equivalent of the SEND command. It allows
you to send any valid data type to any named entity at any valid index.

DESCRIPTION

INPUTS

<1> — message sent

<2> — name of the destination node

<3> — index into the destination node

NOTES

1. This function has no output.

2. Input <1> accepts special data types that most functions do not accept,
such as the data type output by F:LABEL.

3. The SETUP CHESS command can be used to specify constant inputs as
default values.

Intrinsic Functions RM2-14~

F:SINCOS

TYPE

Intrinsic User Function —Arithmetic and Logical

F:SINCOS

<1>
<1>

<2>

CC

PURPOSE

 > R

 > R

Accepts a real number on input <1> which represents an angle in units of
degrees. The sine of that angle is output as a real number on output <1>,
and the cosine of that angle is output as a real number on output <2>.

DESCRIPTION

INPUT

<1> — angle

OUTPUTS

<1> — sine

<2> — cosine

RM2-148 Reference Materials

F:SPLIT

TYPE

Intrinsic User Function —Data Selection and Manipulation

F :SPLIT

<1 > <1 >

<2> C <2>

<3>

<4>

DD

PURPOSE

 > S

 > S

 > S

 > B

Accepts character strings on inputs < 1 > and <2>. The string on input <2> i s
a constant. When the string is received on input <1>, it is compared to the
string on input <2> for an exact match.

DESCRIPTION

INPUTS

<1> — string

<2> — string (constant)

OUTPUTS

<1> — characters preceding match

<2> — matching characters

<3> — characters following match

<4> — TRUE if matching inputs, FALSE otherwise

NOTES

1. If a match occurs, characters in the string on input <1> that precede the
match are output on <1>. Matching characters are output on output <2>.
Characters following the matching characters are output on output <3>.
And a Boolean TRUE is output on output <4>.

2. If ~o match is found, nothing is output on outputs <1>, <2>, and <3>,
and a Boolean FALSE is output on output <4>.

Intrinsic Functions RM2-149

F:SQROOT

TAPE

Intrinsic User Function —Arithmetic and Logical

I, R

PURPOSE

F : SQROOT

<1 > <1 >

CC

 > R

Extracts the square root of the real number or integer on input <1>.

DESCRIPTION

INPUT

<1> —

OUTPUT

NOTE

real number or integer

< 1 > — square root

The output is always real. If the input is negative, the output is 0.

RM2-1 SO Reference Materials

F:STRING TO NUM

TYPE

Intrinsic User Function —Data Conversion

F:STRING TO NUM

PURPOSE

<1> <1>

CC
<2>

 > R

 > B

Outputs the value of a string of digits as a real number. If the function
receives characters that cannot represent a number then an error message is
generated.

DESCRIPTION

INPUT

<1> — string of digits

OUTPUTS

<1> — value of string on input <1>

<2> — TRUE if the string received can be converted, FALSE
otherwise

NOTE

A valid number can contain any or all of the following components:
decimal point, 'E' expression, plus or minus sign, numerals.

Intrinsic Functions RM2-1 SI

F:SUB

TYPE

Intrinsic User Function —Arithmetic and Logical

i, R, 2D, 3D, 4D
2x2 , 3x3 , 4x4

I, R, 2D, 3D, 4D
2x2, 3x3, 4x4

PURPOSE

F:SUB

 <1> <1>

 D <2>

CC

 > I, R, 2D, 3D, 4D
2x2 , ~x3 , 4x4

Accepts two inputs and produces an output that is the difference of the two
inputs (input <2> is subtracted from input <1>).

DESCRIPTION

INPUTS

<1> — minuend

<2> — subtrahend

OUTPUT

<1> — difference

NOTE

The two input values must be of the same data type (except a combina-
tion of real number and an integer is allowed); the output data type
depends on the input data type. If a real number and an integer are
input, a real number is output.

ASSOCIATED FUNCTIONS

F:SUBC, F:CSUB

RM2-152 Reference Materials

F:SUBC

TAPE

Intrinsic User Function —Arithmetic and Logical

F:SUBC

I, R, 2D, 3D, 4D
2x2 , 3x3 , 4x4

I, R, 2D, 3D, 4D
2x2 , 3x3 , 4x4

PURPOSE

<1> <1>

<2> C

DC

I, R, 2D, 3D, 4D
2x2, 3x3, 4x4

Accepts two inputs and produces an output that is the difference of the two
inputs (input <2> is subtracted from input <1>). Input <2> is a constant.

DESCRIPTION

INPUTS

<1> — minuend

<2> — subtrahend (constant)

OUTPUT

<1> — difference

NOTE

The two input values must be of the same data type (except a combina-
tion of real number and integer is allowed); the output data type de-

pends on the input data type. If a real number and an integer are input,

a real number is output.

ASSQCIATED FUNCTIONS

F:SUB, F:CSLT~

Intrinsic Functions RM2-153

F:SYNC(n)

TYPE

Intrinsic User Function —Miscellaneous

F: SYNC {n}

Any

Any

PURPosE

<1> <1>

<n> <n>

CC

 > Any

 > Any

Synchronizes the output of a specified number of messages. The number
"n" may have any value from 2 to 127.

DESCRIPTION

INPUTS

<1> —

<n>

OUTPUTS

<1> —

<n>

NOTES

any message

any message

any message

— any message

1. F:SYNC(n) waits until a message is received on all of its "n" inputs,
then sends the messages out; for example, F:SYNC(32) synchronizes 32
messages.

RM2-154 Reference Materials

F:SYNC (n)

(continued)

2. Usually, the outputs of an F:SYNC(n) function instance are connected to
nodes in a display structure to assure that updates to displayed data are
synchronized.

3. Outputs from F:SYNC(n) are effectively simultaneous. In fact, outputs
are sequential (<1> through <n>) at a rapid rate.

Intrinsic Functions RM2-1 SS

F:TAKE STRING

TYPE

Intrinsic User Function —Data Selection and Manipulation

F:TAKE STRING

PURPOSE

<1> <1>

<2>

<3>

CC

<2>

 >S

 >B

Outputs a string consisting of the number of characters specified on input
<3> taken from the string on input <1>, starting at the position given on
input <2>. A TRUE on output <2> means that there were enough characters
left in the string. A FALSE means there were not enough characters, so the
output string was truncated.

DESCRIPTION

INPUTS

< 1 > string

<2> — starting position

<3> — number of characters to take

OUTPUTS

<1> — resulting string

<2> TRUE =enough characters, FALSE =output string
truncated

RM2-156 Reference Materials

F:TIMEOUT

TYPE

Intrinsic User Function —Miscellaneous

F:TIMEOUT

Any <1> <1>

<2> C

DC

<2>

<3>

PURPOSE

 > Any

 >B

 >B

Provides the means to detect the occurrence of consecutive messages on
input <1> within the time interval specified in centiseconds by the constant
integer on input <2>.

DESCRIPTION

INPUTS

<1> — message on input <1>

<2> — time interval (constant)

OUTPUTS

<1> — any message

<2> — TRUE =timeout, FALSE = no timeout

<3> — logical complement of output <2>

NOTES

1. Once the first message is received on input <1>, the subsequent message
must be received in the duration specified on input <2> in order to be
passed through the function. Then the third message must be received
within that specified duration after the second message, and so on.

Intrinsic Functions RM2-1 S ~

F:TIMEOUT

(continued)

2. The first message to input <1> serves only to start the timeout measure-
ment, and never generates an output.

3. If any subsequent messages are received at input <1> within the time
interval specified on input <2>, only the last message is sent on output
<1> at the end of the interval; all intervening messages are discarded.

4. If a message on input <1> is not received within the specified time, the
Boolean value on output <2> is TRUE. If a message on input <1> is
received within the interval, the Boolean value on output <2> is FALSE.
Output <3> is the complement of output <2>.

5. This function is especially useful to determine a data tablet stylus out-of-
range condition. If the message from the data tablet stylus is connected
to input <1> of this function and an appropriate duration is specified on
input <2>, then the inputs from the data tablet will be passed through
the function until the duration is exceeded.

RM2-158 Reference Materials

F:TRANS STRING

TYPE

Intrinsic User Function —Data Conversion

F:TRANS STRING

}

<1>

<2> C

<3> C

DC

<1>

PURPOSE

 >S

Translates the string on input <1> into the output string using the string on
input <3> as a translation table. The integer on input <2> is the beginning
place (i.e., the ASCII decimal equivalent or ORD) of the first character to
be translated. Inputs <2> and <3> are constants.

DESCRIPTION

INPUTS

<1> — string

<2> — first character to be translated (constant)

<3> — translation table (constant)

OUTPUT

<1> — translated string

NOTE

The upper limit of the number of characters to translate is the length of
the string on input <3>.

EXAMPLE

SEND 'ABCDEFGHIJKLMNOPQRSTUrVWXYZ' TO <3>Trans String;
SEND FIX(97) TO <2>Trans_String; {the ASCII equivalent of 'a'}
SEND 'abcdefghijklmnopgrstuvwxyz' TO <1>Trans String;

The lower case letters sent to input <1> will be translated to uppercase on
output <1>.

Intrinsic Functions RM2-159

F:VEC

TYPE

Intrinsic User Function —Data Conversion

R, 2D, 3D

R ~

PURPOSE

F:VEC

<1> <1>

<2>

CC

 > 2D, 3D, 4D

Accepts two real numbers and outputs a 2D vector, accepts a 2D vector and
a real number and outputs a 3D vector, or accepts a 3D vector and a real
number and outputs a 4D vector.

DESCRIPTION

INPUTS

<1> — real number, 2D, or 3D vector

<2> — real number

OUTPUT
<1> —

NOTE

vector consisting of the value on input <1> with the real
number on input <2> appended

The output vector is the real number or vector from input <1> with the
real number from input <2> appended as the last vector component.

ASSOCIATED FUNCTIONS

F:VECC, F:CVEC

RM2-160 Reference Materials

F:VECC

TYPE

Intrinsic User Function —Data Conversion

F:VECC

R, 2D, 3D ~

S ~

PURPOSE

<1>

<2> C

DC

<1> > 2D, 3D, 4D

Accepts two real numbers and outputs a 2D vector, accepts a 2D vector and
a real number and outputs a 3D vector, or accepts a 3D vector and a real
number and outputs a 4D vector. Input <2> is a constant.

DESCRIPTION

INPUTS

<1> — real number, 2D, or 3D vector

<2> — real number (constant)

OUTPUT

<1> —

NOTE

vector consisting of the value on input <1> with the real
number on input <2> appended

The output vector is the real number or vector from input <1> with the

real number from input <2> appended as the last vector component.

ASSOCIATED FUNCTIONS

F:VEC, F:C~EC

Intrinsic Functions I~M2-161

F:VEC EXTRACT

TYPE

Intrinsic User Function —Data Selection and Manipulation

F:VEC EXTRACT

<1>

<2>

CC

<1>

<2>

<3>

<4>

PURPOSE

 >I

 > 2D, 3D, 4D

 >R
 >B

Extracts information about a vector in a vector list node given an index into
the vector list on input <1> and the name of the vector list node on input
<2>.

DESCRIPTION

INPUTS

<1> — index of the vector in question

<2> — name of the vector list node

OUTPUTS

<1> — data type

<2> — the vector in question

<3> — intensity

<4> — TRUE =line, FALSE =position

NOTE

The integer on output <1> is the same as would be sent from output <7>
of F:PICK:.Il~TFO.

RM2-162 Reference Materials

F:WINDOW

TYPE

Intrinsic User Function —Viewing Transformation

F:WINDOW

Any - > <1>

R > <2> C

R > <3> C

R > <4> C

R > <5> C

R > <6> C

R > <7> C

DC

<1>

PURPOSE

 > 4x4

This is the functional counterpart of the WINDOW command. The window
matrix that results from this function defines a viewing area for ortho-
graphic views (parallel projections) of objects.

DESCRIPTION

INPUTS

<1> — trigger

<2> — X minimum (constant)

<3> — X maximum (constant)

<4> — Y minimum (constant)

<5> — Y maximum (constant)

<6> — Z minimum (constant)

<7> — Z maximum (constant)

OUTPUT

< 1 > — 4x4 matrix

Intrinsic Functions RM2-163

F:WINDOW

(continued)

NOTES

6. F:WIlVDOW accepts any message on input <1> to trigger the function
and constant real values on inputs <2> through <7>. These real values
define the boundaries of athree-dimensional rectangular volume within
which objects can be viewed in parallel projection (i.e. no perspective is
imposed).

7. This volume is defined by expressing a rectangle in terms of Xmin (in-
put <2>), Xmax (input <3>), Ymin (input <4>), and Ymax (input <5>).
The rectangle is then extended into a three dimensional volume by speci-
fying Zmin (input <5>) and Zmax (input <7>).

RM2-164 Reference Materials

F: W RITEDISK

TYPE

Intrinsic User Function —Data Selection and Manipulation

F:WRITEDISK

Qclosefile
Qpacket

Qinteger ~

<1>

<2> C

PURPOSE

No outputs, writes
directly to disk

This function writes its input messages (Qpackets) to a file on the mini-
floppy diskette. The message contents are collected in buffers which are
stored on its private queue. When a message of type Qclosefile is received,
the data in the buffers is written to disk on the drive specified on input <2>
and with the file name (with ".DAT" file extension) given in the message
Qclosefile. A Qclosefile message can only be obtained by sending a CLOSE
"filename" command to a F:~HOP function whose output is connected to
the F:VVRITEDISK function.

Intrinsic Functions RM2-165

F: W RITESTREAM

TYPE

Intrinsic User Function —Data Conversion

F:WRITESTREAM

any type
Qprompt

PURPOSE

<1> <1>

<2>

> Qpacket, Qclosefile

> Qprompt

This function takes any message and turns it into a stream of bytes in a
Qpacket (except for Qprompts and Qclosefiles). Qprompts are passed on
through to output <2> and Qclosefiles are passed onto output <1>. This is
used to create binary data files on a floppy diskette. Normally, this function
receives input from a chop/parse function and sends output to a
WRITEDISK function.

The resulting Qpackets contain:

2 bytes 2 bytes
length message type rest of message body

RM2-166 Reference Materials

F:XFORMDATA

TYPE

Intrinsic User Function —Data Conversion

F : XFORMDATA

Any >

S >

S >

~ >

<1>

<2> C

<3> C

<4> C

<5> C

DC

<1>

PURPOSE

 > Spcciai

Sends transformed data (either a vector list or a 4x4 matrix) to a specified
destination (e.g., the host, a printer, or the screen).

DESCRIPTION

INPUTS

<1> any message

<2> — name of XFORM node (constant)

<3> — name of destination object (constant)

<4> — destination vector index (constant)

<5> — number of vectors (constant)

OUTPUT

<1> — special data type used as input to F:LIST, F:PR.Il~IT, or
SURFACE_Rendering or SOLID_Rendering operation
node .

DEFAULT

Default for input <4> is 1, default for input <5> is 2048.

Intrinsic Functions RM2-16~

F:XFORn4DATA
(continued)

NOTES

1. Input <1> is a trigger for F:XFO~:NIDATA. This input would typically be
connected to a function button, either directly or via F: SYNC (2), allow-

ing transformed data to be requested easily.

2. Input <2> is a string or matrix containing the name of the XFORM com-
mand in the display structure (either XFORM MATRIX or XFORM
VECtor) . By referring to an XFORM command, this input indirectly
specifies the object whose transformed data is to be sent. If the string
names something other than an XFORM command, an error message is
displayed. If the string names a node which does not exist, an error
message is sent and the message is removed from input <2>.

3. Input <3> is a string containing the name to be associated with the trans-
formed vectors. The name need not be previously defined. If this input
does not contain a valid string, the transformed matrix or vectors will be
created without a name (an acceptable situation unless the transformed
vectors need to be referenced or displayed.) The transformed vector list
can be displayed or modified, provided a name is given on this input.
The transformation matrix cannot be used, however, so naming and
sending it to input <3> is not useful.

4. Input <4> is an integer index specifying the place in a vector list at
which the PS 390 is to start returning transformed data. This input is
only used when the command name at input <2> represents an
XFORM VECTOR command (not an XFORM MATRIX command).
The default value is 1.

5. Input <5> is an integer number of consecutive vectors for which trans-
formed data is to be returned, starting at the vector specified at input
<4>. This input is only used when the command name at input <2> rep-
resents an XFORM VECTOR command (not an XFORM MATRIX com-
mand). No more than 2048 consecutive vectors may be returned. The
default value is 2048.

RM2-168 Reference Materials

F:XFORMDATA
(continued)

6. Output <1> contains the transformed data in a format which can be
accepted by input <1> of F:LIST or F:PR.INT and inputs <3> and <4> of
a SURFACE_Rendering or SOLID_Rendering operation node. F:LIST
prints out the data in ASCII format - either a PS 390 VECTOR LIST
command or a PS 390 MATRIX_4X4 command, depending on whether
the command named at input <2> was an XFORM VECTOR or an
XF O RM MATRIX .

7. F:XFOR.MDATA is used in connection with rendering lines and spheres
on the PS 390 display.

EXAMPLE

Refer to Helpful Hints 4 and 14 in Section TT2.

Intrinsic Fi~nctions RM2-169

F:XOR

TYPE

Intrinsic User Function —Arithmetic and Logical

F:XOR

}

PURPOSE

<1>

<2>

CC

<1> >B

Accepts Boolean values on inputs <1> and <2>, performs an exclusive-OR
function on the values, and outputs the result as a Boolean value. That is, if
the Boolean values on both inputs are the same, the output is FALSE; if the
Boolean values on the inputs are different, the output is TRUE.

DESCRIPTION

INPUTS

<1> — Boolean value

<2> — Boolean value

OUTPUT

<1> — exclusive OR of inputs

ASSOCIATED FUNCTION

F:XORC

RM2-170 Reference Materials

F:XORC

TYPE

Intrinsic User Function —Arithmetic and Logical

F:XORC

PURPOSE

}

<1>
<2> C

DC

<1> >B

Accepts Boolean values on inputs <1> and <2>, performs an exclusive-OR
function on the values, and outputs the result as a Boolean value. Unlike
F:XOR, for which both inputs are active, F:XORC input <2> is a constant.
If the Boolean values on both inputs are the same, the output is FALSE; if
the Boolean values on the inputs are different, the output is TRUE.

DESCRIPTION

INPUTS

<1> Boolean value

<2> — Boolean value (constant)

OUTPUT

<1> — exclusive OR of inputs

ASSOCIATED FUNCTION

F: xoR

Intrinsic Functions RM2-171

F:XROTATE

TYPE

Intrinsic User Function —Object Transformation

R, I

PURPOSE

F:XROTATE

<1> <1>

CC

> 3x3

Accepts a real value or an integer that specifies the number of degrees
about the X axis that the rotation matrix generated by the function is to
represent.

DESCRIPTION

INPUT

<1> — degrees of rotation in X

OUTPUT

<1> — 3x3 rotation matrix

NOTE

The 3x3 rotation matrix which is output may be used to update a rota-
tion node in a display structure.

RM2-172 Reference Materials

F:XVECTOR

TYPE

Intrinsic User Function —Data Conversion

PURPOSE

F:XVECTOR

<1 > <1 >

CC

 > 3D

Accepts a real number on input <1> and outputs a 3D vector.

DESCRIPTION

INPUT

<1> —

OUTPUT

NOTE

real number

< 1 > — 3D vector

In the 3D vector which is output, X is equal to the input real, and Y and
Z are 0. For example, if 3 were input, the 3D vector output would be
3,0,0.

Intrinsic Functions R1Vf2-173

F:YROTATE

TYPE

Intrinsic User Function — abject Transformation

R, I

PURPOSE

F : YROTATE

<1> <1>

CC

 > 3x3

Accepts a real value or an integer that specifies the number of degrees
about the Y axis that the rotation matrix generated by the function is to
represent.

DESCRIPTION

INPUT

<1> — degrees of rotation in Y

OUTPUT

<1> — 3x3 rotation matrix

NOTE

The 3x3 rotation matrix that is output may be used to update a rotation
node in a display structure.

RM2-174 Reference Materials

F:I VECTOR

TYPE

Intrinsic User Function —Data Conversion

PURPOSE

F:YVECTOR

<1> <1>

CC

 D 3D

Accepts a real number on input <1> and outputs a 3D vector.

DESCRIPTION

INPUT

<1> —

OUTPUT

NOTE

real number

<1> — 3D vector

In the 3D vector which is output, Y is equal to the input real, and X and
Z are 0. For example, if 4 were input, the 3D vector output would be
0,4,0.

Intrinsic Functions RM2-175

F:ZROTATE

TYPE

Intrinsic User Function —Object Transformation

R, I

PURPOSE

F : ZROTATE

<1> <1>

CC

 > 3x3

Accepts a real value or an integer that specifies the number of degrees
about the Z axis that the rotation matrix generated by the function is to
represent.

DESCRIPTION

INPUT

<1> -- degrees of rotation in Z

OUTPUT

<1> — 3x3 rotation matrix

NOTE

The 3x3 rotation matrix that is output may be used to update a rotation
node in a display structure.

RM2-176 Reference Materials

F:ZVECTOR

TYPE

Intrinsic User Function —Data Conversion

F:ZVECTOR

<1> <1>

CC

PURPOSE

 > 3D

Accepts a real number on input <1> and outputs a 3D vector.

DESCRIPTION

INPUT

<1> —

OUTPUT

NOTE

real number

< 1 > — 3D vector

In the 3D vector which is output, Z is equal to the input real, and X and
Y are 0. For example, if 5 were input, the 3D vector output would be
0,0,5.

Intrinsic Functions RM2-1 ~~

7. Intrinsic System Functions

Following is a summary of the Intrinsic System Functions. The functions are
ordered alphabetically on aletter-by-letter basis.

The following information, where relevant, is given for each function:

• Name

• Type -Category

• Purpose

• Description of inputs and outputs

• Defaults

• Note s

• Associated functions

• Examples

RM2-178 Reference Materials

F:F Il IBn4

F:F I2 IBM

TYPE

Intrinsic System Function —Data Selection and Manipulation

F: F_I1 IBM
F:F 12 IBM

From IBM Host

PURPOSE

<1> <1> > Qpacket

F:F_I1_IBM, F:F_I2_IBM output packets of characters received from an
IBM host on output <1>.

Intrinsic Functions RM2-179

F:F W IBM

1~PE

Intrinsic System Function —Miscellaneous

F: F W IBM

PURPOSE

F:F_W IBM wakes up every frame and disposes of packets which were
passed to F:F_ol_IBM, F:F_02_IBM, F:F_K1_IBM, A,ND F:F_K2_IBM, as
well as waking up F:F_ I1_IBM ~.ND F:F_I2_IBM when data has been re-
ceived from an IBM host.

It also checks to see if the GPIo board has timed out and displays the
indicator character

' G'

on the terminal emulator screen if a timeout has occurred.

RM2-180 Reference Materials

F:IBMDISP

TYPE

Intrinsic System Function —Miscellaneous

Qpacket ~
F:IBMDISP

<1>

PURPQSE

F:IBl~~ISP accepts packets of ASCII characters on input <1> and either
inserts their equivalent IBM screen code into the local screen buffer used by
the Command mode of terminal emulator or causes the cursor position to
be adjusted in the case of a carriage return, a line feed, or a back space.

Intrinsic Functions RM2-181

F:IBM KEYBOARD

TYPE

Intrinsic System Function —Data Selection and Manipulation

F:IBM KEYBOARD

Qpacket)

QBoolean)

<1 > <1 > > Qpacket
<2> <2> > Qinteger

<3> > Qpacket
<4> ' > Qpacket
<5> > Qpacket

<6> > QBoolean

<7> > Qpacket

<8> > QBoolean
<10> > QBoolean

<11 > > QBoolean

PURPOSE

F:IBM_KEYBOARD accepts character packets from the keyboard on input
<1> and based on the mode selected by the mode keys (either the LINE
LOCAL key or the HOST, LOCAL and CO keys, depending on the
type of keyboard used), outputs packets for use by the function network, the
line editor, or an IBM host. Packets of characters for the function KEY-
BOARD are output on output <1>. Qintegers to be sent to the function
FKEYS are output on output <2>. Qpackets of characters to be sent to the
function SPECKEYS are output on output <3>. Qpackets of characters for
the line editor are output on output <4>. Qpackets of IBM scan codes for an
IBM host are output on output <5>. A QBOOLEAN TRUE used to trigger
the hardcopy functions is output on either output <6>, output <10>, or out-
put <11>, based on the mode of the keyboard.

NOTES

1. A TRUE used to trigger the loading of the IBM 3250 function network is
output on output <7> when IBM 3250 mode is selected while in SETUP
mode.

RM2-182 Reference Materials

F:IBM KEYBOARD
(continued)

2. A TRUE used to trigger the deletion of the IBM 3250 function network is
output on output <8> when the PS 390 mode is selected while in SETUP
mode.

3. Input <2> accepts a Boolean value that indicates which type of keyboard
is being used: TRUE =IBM style keyboard; FALSE = VT100 style key-
board.

Intrinsic Functions RM2-183

F:K2ANSI

TYPE

Intrinsic System Function —Data Selection and Manipulation

F:K2ANSI

Qpacket

PURPOSE

<1> <1>

<2>

<3>

<4>
<5>

<6>
<7>

<8>

<9>

< 10>

<11>

 > Qpacket to KEYBOARDI (F: NOP}

 > Qpacket to TE setup function

 > Qpacket tp CI (through line editor}

 > Qpacket to host line
 > Qpacket to ES_TE 1

 > Unused
 > Qpacket to FKEYSI (F:NOP)

 > Qpacket to SPECKEYSI (F:NOP)

 > Unused

 > Unused

 > Unused

This function takes the stream of raw bytes from the keyboard and distrib-
utes them to output queues, translating to ANSI control sequences if neces-
sary; toggles graphics and terminal emulator displays.

RM2-184 Reference Materials

F:RASTER

TYPE

Intrinsic System Function —Data Selection and Manipulation

F : RASTE R
Qfrmcom
Qpacket >
Qprompt
Qreset

Qinteger >

PURPOSE

<1>

<2>

<1>

<2>

 > Qpacket

 > Qprompt

The function passes the data from F:RASTERSTREAM to the ACP and
disposes of the information after the ACP has completed its task. When
information is read back from the raster, it prefixes each set of data with a
2 byte (16 bit) byte count and then sends two bytes of 0 after the completion
of all information requests. Qfrmcom either sets the mode for interpretation
of subsequent Qpackets received, or requests the return of raster or color
table data. Qprompt is passed to output <2>, Qreset is ignored.

Input <2> is used to specify packet size.

Intrinsic Functions RM2-185

F:RASTERSTREAM

TYPE

Intrinsic System Function —Data Selection and Manipulation

F:RASTERSTREAM

Qpacket >
Qprompt
Qreset

PURPOSE

<1> <1>

<2>

> Qpacket or Qfrmcom

> Qprompt

The function takes streams of bytes (usually from the host) and either
makes a Qpacket or Qfrmcom (special data type used by F:RASTER) from
them. It works in a count mode where it takes 2 bytes (16 bits) to specify
the count. If the count = 0, then a frame command is to be generated and
the next two bytes are the value. If the count > 0, then a Qpacket with that
many bytes is to be generated. A Qprompt is transmitted through to output
<2>. A Qreset causes any data that may be stored to be disposed and to
expect a new count to be received next.

RM2-186 Reference Materials

F:SETUPIBM

TYPE

Intrinsic System Function —Miscellaneous

QBoolean } <1> F:SETUPIBM

Qinteger > <2>

Qinteger > <3>

PURPOSE

F:SETUPIBM is used to change the parameters used by the IBM communi-
cations. Input <1> accepts an integer that specifies the maximum number of
packets that can be in the pool of empty input packets.

DESCRIPTION

INPUTS

<1> — triggers the function.

<2> — specifies the number of empty UO input packets that are to
be maintained in the UO input pool.

<3> — specifies the device address when an IBM 3250 interface is
being used.

Intrinsic Functions RM2-187

F:STATDIS

TYPE

Intrinsic System Function v Miscellaneous

F : STATDIS

Qpacket > <1>

<1>

PURPOSE

> Qpacket

This function causes messages to be displayed on the memory display line
of the PS 390 display. Output <1> is connected at system initialization for
the function labels. Whenever this function receives a bell character,
CHAR(7), it sends the character out output cl>.

RM2-188 Reference Materials

F:TEDUP

TYPE

Intrinsic System Function -- Miscellaneous

F:TEDUP
Qpacket
from KBhandler }

PURPOSE

<1>

The function allows users to change the VT100 terminal emulator configur-
able characteristics at runtime by depressing the SETUP key on the PS 390
keyboard.

Intrinsic Functions RM2-189

F:USRTOF

TYPE

Intrinsic System Function —Miscellaneous

F:USRTOF

<1>

PURPOSE

> Qcodedmsg
Qendcodedmsg

This is one of the two functions that handle ACP timeouts. When the ACP
has been processing a frame for more than the specified time limit (one
second, except when the PS 390 is performing a viewing operation) this
function is executed. It removes all user objects being displayed and sends
out a message indicating the number of timeouts since boot time.

Timeouts usually occur because a recursive structure has been displayed.

RM2-190 Reference Materials

F:VT10

TYPE

Intrinsic System Function —Data Selection and Manipulation

Qpacket, Qmorepacket
from host line ~

Qpacket ~
answerback string

PURPOSE

<1>

<2> C

F:VT10 ~~>

<2>

<3>

<4>

 > Qpacket

 > Qpacket to host out reports
status, cursor reports

 > Qpacket to host out (DA}

 > Qpacket usually unconnected
echoed unknown escape sequences

This is the VT100 terminal emulator function. It receives input from the
host, the line editor, and other sources on input <1>. The primary task of
this function is to route the input to the PS 390 display in an appropriate
manner.

Input <2> defines the answerback string that is sent to the host when this
function receives an ENQ.

Output <1> is used to make the expected "beep" on receipt of a TG (the
beeper is in the keyboard). Output <2> sends data back to the host when the
function receives command sequences, such as cursor position and terminal
ID (I'm a VT-100) . Output <3> is used to send the correct control sequence
back to the host that identifies the terminal. Output <4> is an aid for debug-
ging and development. It sends out all command sequences that are re-
ceived, but unknown. Normally output <4> is not hooked up. It can be used
to discover what kind of sequences a host program might be sending (that
the terminal emulator cannot interpret) by hooking the output to a function

like MESSAGE DISPLAY.

EXAMPLE

Refer to Helpful Hint 14 in Section TT2.

Intrinsic Functions RM2-191

Appendix A

Intrinsic Functions by Category

Classification of Functions

Functions can be classified by the operations they perform. The PS 390
functions can be classified into the following nine categories:

• Arithmetic and Logical
There functions perform all arithmetic operations (add, subtract, di-
vide, multiply, square root, sine, and cosine) and logical operations
(and, or, exclusive-or, and complement).

• Character Transformation
These functions are used to interactively position, rotate, and scale
text.

• Comparison
These functions test whether values are greater than, less than, equal
to, not equal to, greater than or equal to, and less than or equal to
other values.

• Data Conversion
These functions combine vectors into matrices, extract vectors from
matrices, form vectors from real numbers, round or truncate real
numbers to integers, float integers to equivalent real numbers, make
printable characters, and convert appropriate character strings to a
string of integers.

• Data Input and output
These functions set up and control the interactive devices (dials,
function buttons, function keys, data tablet, and keyboard) and out-
put values to the optional LED labels that several of the devices
have. These functions are also used for communications with the
host computer.

• Data Selection and Manipulation
These functions are used to selectively switch functions, choose out-
puts, and route data.

RM2-192 Reference Materials

• Miscellaneous
These functions are used to set up and control clocking, timing, and
synchronizing operations .

• Object Transformation
These functions connect to modeling operation nodes in display
structures to interactively rotate, translate, and scale objects.

• Viewing Transformation
These functions connect to viewing operation nodes in display struc-
tures to interactively change line-of-sight, window size, and viewing
angle.

Intrinsic User Functions

Arithmetic and Logical

• F:ACC 1 ATE

• F:ADD

• F:ADDC

• F:A,ND

• F:A,NDC

• F :AVERAGE

• F : CDIV

• F: CMUL

• F:CSUB

• F:DIV

• F:DIVC

• F :MOD

• F:MODC

Character Transformation

• F:MUL

• F:MULC

• F:NOT

• F:OR

• F:ORC

• F: ROL;IND

• F: SINCOS

• F: SQROOT

• F:SUB

• F: SUBC

• F:XOR

• F:XORC

• F:CROTATE • F:CSCALE

Intrinsic Functions RM2-1 ~3

Comparison

• F:CGE

• F:CGT

• F:CLE

• F: CLT

• F:COMP STRING

• F:EQ

• F:EQC

• F:GE

• F:GEC

Data Conversion

• F:ALLOW VECNORM

• F: CEILING

• F:CHANGEQTYPE

• F:CHARCONVERT

• F:CHOP

• F:CVEC

• F:CVT6T08

• F:CVT8T06

• F:CVTASCTOIBM

• F:CVTIBMTOASC

• F:FIX

• F:FLOAT

• F:LIST

• F:MAKEPACKET

• F:MATRIX2

• F:MATRIX3

• F: GT

• F: GTC

• F:LE

• F:LEC

• F:LT

• F:LTC

• F:NE

• F:NEC

• F:MATRIX4

• F:NPRT PRT

• F:PARTS

• F:PICk:Il~TFO

• F:PRINT

• F : READ S TREAM

• F: STRING TO I~~:JM

• F:T~S STRING

• F:VEC

• F:VECC

• F : WRITE S TREAM

• F: XFO~:NIDATA

• F: XVECTOR

• F:YVECTOR

• F: ZVECTOR

RM2-194 Reference Materials

Data Selection and Manipulation

• F:ATSCALE

• F:BOOLEAN CHOOSE

• F : BROUTE

• F:BROUTEC

• F : CBROUTE

• F: CCONCA'i'ENA'i'E

• F: C SK

• F : CIROUTE (n)

• F: CONCA'1'ENA'1'E

• F: CONCA'1'ENA'1'EC

• F : C ONCATXDATA (n)

• F: CONSTANT

• F:CROUTE(n)

• F :DELTA

• F:DEMtJX(n)

• F : DEPACKET

• F:FCNSTRIP

• F :FIND STRING

• F: GATHER STRING

• F:INPUTS_CHOOSE(n)

• F:LABEL

Miscellaneous

• F:CI(n)

• F:CLCSECONDS

• F:CLFRAlV1ES

• F:CLTICKS

• F:LBL EXTRACT

• F:LENGTH STRING

• F:LIlVIIT

• F:LINEEDITOR

• F:MCAT_STRING(n)

• F:MINMAX(n)

• F:MUX

• F:PACKET

• F:PASSTHRU(n)

• F:POSITTON LINE

• F:PUT STRING

• F:RANGE SELECT

• F:READDISK

• F:RESET

• F:ROUTE(n)

• F:ROUTEC(n)

• F: SEND

• F: SPLIT

• F:TAKE STRING

• F: VEC EXTRACT

• F:WRITEDISK

• F:EDGE_DETECT

• F :FETCH

• F: GATTI-~R GENFCN

• F:HOLDMESSAGE

Intrinsic Functions RMZ-195

• F:NOP • F:TIlVIEOIJT

• F: SCREENSAVE • F:USRTOF
• F: SYNC (n)

Object Transformation

• F:DSCALE • F: SCALE

• F:DXROTATE • F:XROTATE

• F : DYROTATE • F: YROTATE

• F : D ZROTATE • F : ZROTATE

Viewing Transformation

• F:FOV • F:LOOKFROM

• F:LOOKAT • F: OW

Intrinsic System Functions

Data Selection and 1Vlanipulation

• F:F I1 IBM • F:RASTER

• F:F I2 IBM • F:RASTERSTRE~,M

• F :IBM- KEYBOARD • F: VT 10

• F:K2ANSI

Miscellaneous

• F:F W IBM • F: STATDIS

• F:IBNIDISP • F:TEDUP

• F: SETUPIBM •F:USRTOF

RM2-196 Reference Materials

ASCII Character Code Set

Decimal ASCII Decimal ASCII Decimal ASCII

Value Character Value Character Value Character

0 NUL 44 88 X

1 SOH 45 — 89 Y

2 STX 46 90 Z

3 ETX 47 / 91 [

4 EOT 48 0 92 \

5 ENQ 49 1 93)

6 ACK 50 2 94 T or

7 BEL 51 3 95 E- or
8 BS 52 4 96 `

9 HT 53 5 97 a

10 LF 54 6 98 b

11 VT 55 7 99 c
12 FF 56 8 100 d

13 CR 57 9 101 e
14 SO 58 102 f

15 SI 59 103 g

16 DLE 60 < 104 h

17 DC1 61 = 105 i

18 DC2 62 > 106 j

19 DC3 63 ? 107 k

20 DC4 64 @ 108 1

21 NAK 65 A 109 m

22 SYN 66 B 110 n

23 ETB 67 C 111 0

24 CAN 68 D 112 p

25 EM 69 E 113 q

26 SUB 70 F 114 r

27 ESC or ALT 71 G 115 s

28 FS 72 H 116 t

29 GS 73 I 117 u

30 RS 74 L 118 v

31 VS 75 K 119 w

32 SP 76 L 120 x

33 ! 77 M 121 v

34 " 78 N 122 z

35 # 79 0 123 {

36 $ 80 P 124 ~

37 % 81 Q 125 }

38 & 82 R 126 ~ TILDE

39 83 S 127 Rubout or DEL

40 (84 T

41) 85 U

42 * 86 V

43 + 87 W

Intrinsic Functions RM2-19~

RM3. INITIAI, FUNCTION INSTANCES

CONTENTS

BUTTONSIN 2
CLEAR LABELS 3
DIALS 4
DLABELI...DLABEL8 6
DSETI...DSET8 8
ERROR 10
FKEYS 11
FLABELO 12
FLABEL 1... FLABEL 12 14
HOST MESSAGE
HOST MESSAGEB 16
HOSTOUT 18
INFORMATION 19
KEYBOARD 2 0
MEMORY_ALERT 21
MEMORY_MONITOR 23
MESSAGE_DISPLAY 25
MOUSEIN Z 6
OFFBUTTONLIGHTS 29
ONBUfiTONLIGHTS 30
PICK 31
PS390ENV 35
SHADINGENVIRONMENT 37
SPECKEYS 46
TABLETIN 47
TABLETOUT 50
TECOLOR 52
WARNING 53
WRITEBACK 54
CURSOR 5 6
PICK LOCATION 57

Appendix A
Initial Function Instances by Category 58

t

Section RM3

Initial Function Instances

Whenever the PS 390 is booted, certain intrinsic functions are automatically in-
stanced for use, and are called initial function instances. Initial function instances
are of the form:

Function instance name

Unlike intrinsic functions, they are not preceded by F:. They provide access to host
communication and to PS 390 interactive devices, as well as allowing for the dis-
play of messages on keyboard and control dial LEDs. Initial function instances are
not used as templates to create uniquely named function instances. Instead, they
are used in function networks by their own system-assigned name. They cannot be
renamed by the user. For example,

SEND 'EXIT' TO <1> FLABEL 12;

sends the string EXIT to the LED for function key F12.

Initial function instances are listed alphabetically in this section. Not all PS 390
initial function instances are documented. Following the initial function instances,
the initial structures CURSOR and PICK LOCATION are documented. These es-
tablish the shape of the cursor as an "X" and the pick-sensitive location as the
center of the cursor. Appendix A lists the initial function instances by category.

The following information, where relevant, is given for each Initial function in-
stance and Initial structure:

• Name

• Type -Category

• Purpose

• Description of inputs and outputs

• Defaults

• Note s

• Associated Functions

• Examples

Initial Function Instances RM3-1

BUTTONSIN

TYPE

Initial Function Instance —Data Input

BUTTONSIN
(BUTTONSIN2}

Connected to Function
Buttons Unit at System
Initialization

PURPOSE

<1> <1>

CC

<2>

 >I

 >B

Detects activity from the function buttons unit on input <1>, which is con-
nected to the system at lnitlallzatlon.

DESCRIPTION

INPUT

<1> — connected to function buttons

oUTPUTs

<1> — number of the button activated

<2> — TRUE = on, FALSE = of f

NOTE

Output occurs when one of the 32 buttons is pushed. The number of the
pushed button appears at output <1>, and its light state (TRUE for on,
FALSE for off) at output <2>.

RM3-2 Reference Materials

CLEAR LABELS

TYPE

Initial Function Instance —Data Output

CLEAR_LABELS
(CLEAR_LABELS2}

PURPOSE

<1> <1>

CC

 Connected to Dial Labels and
Function Key Labels at System
Initialization

Clears the control dial LED labels and the function key LED labels . If input
<1> is TRUE, the labels are cleared; other`~rise, no action is taken.

DESCRIPTION

INPUT

<1> — TRUE =clear labels, FALSE = no action

OUTPUT

<1> — connected to dial and function key labels

NOTE

The INITIALIZE command sends a TRUE to this function instance,
clearing all LED labels.

Initial Function Instances RM3-3

DIALS

TYPE

Initial Function Instance — Data Input

DIALS
(DIALS2}

Connected to Control Dials ~
at System Initialization

PURPOSE

<1>

CD

<1>

<2>

<3>

<4>

<5>

<6>

<7>

<8>

 > R

 > R

 > R

 > R

 > R

 > R

 > R

 > R

Produces eight real number outputs that correspond to inputs from control
dials 1 though 8.

DESCRIPTION

INPUT

<1> —

OUTPUTS

connected to control dials

< 1 > — real number

<2> — real number

<3> — real number

<4> — real number

RM3-4 Reference Materials

DIALS
(continued)

OIJTPUTS(continued)

<5> — real number

<6> — real number

<7> — real number

<8> real number

NOTES

1. The control dials are numbered from 1 through 4, left to right across the
top row, and from 5 to 8, left to right across the bottom row.

2. The message from each control dial is converted to a real number value,
which is the incremented value from the dial normalized to between -1.0
and +l.o. This value is sent out on the output (<1>...<8>) that corre-
sponds to the number of the dial that sent the message.

Initial Function Instances ~M3-S

DLABELI...DLABELB

TYPE

Initial Function Instance -- Data Output

DLABELI ... DLABEL8
(DLABEL21 ... DLABEL28}

S > <1>

B > <2> C

B ><3>C

DC

PURPosE

<1> > Connected to Dial Labels at
System {nitialization

Eight function instances are provided to separately label the LED indicators
above each control dial. DLABELI is used to label the LED indicators asso-
ciated with the first control dial (leftmost, top row); DLABEL2 is used to
label the LED indicators associated with the second control dial (second
from left, top row); and so on, through DLABEL8, which is used to label
the LED indicators associated with the eighth dial (rightmost, bottom row) .

DESCRIPTION

INPUTS

<1> — label message

<2> — blink/no blink (constant)

<3> — center/justify left (constant)

OUTPUT'

<1> -- connected to control dial labels

RM3-6 Reference Materials

DLABELI...DLABELB
(continued)

NOTES

1. Input <1> accepts the character string (up to eight characters) to be
displayed on the corresponding control dial LED indicators. The con-
stant Boolean value on input Q> selects blink (TRUE) or no blink
(FALSE) for the displayed characters. The constant Boolean value on
input <3> controls whether the displayed message will be centered in the
eight available locations (TRUE) or whether it will be justified left so
that the first character is placed in the leftmost of the eight locations
(FALSE) .

2. If inputs <2> and <3> are not used, the message will not blink and will
be centered.

3. Allowable characters for control dial labels are:

! " # $ % & () * + - / 0 1 2 3 4 5 6 7 8 9 < _ > ? @

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z []

4. Lowercase letters are converted to uppercase letters. A space may also
be specified.

5. Carriage return <CR> and line feed <LF> are not legal characters and
cause a message that follows <CR> or <LF> to be partially lost or ig-
nored.

Initial Function Instances RM3-7

DSETI...DSET8

TAPE

Initial Function Instance —Data Output

DSET1 ... DSET8
~DSET21 ... DSET28}

R,I >

PURPOSE

<1>

CC

<1> > Connected to Control Dials at
System Initialization

Eight function instances are provided to set the operating parameters for the
eight control dials. DSET1 is used to set parameters for the first control dial
(leftmost, top row); DSET2 is used to set parameters for the second control
dial (second from left, top row); and so on, through DSET8, which is used
to set parameters for the eighth control dial (rightmost, bottom row).

DESCRIPTION

INPUT

<1> --

OUTPUT

<1> --

DEFAULTS

real number =delta value, integer =sample rate

connected to control dials

All control dials default to an enabled condition in relative mode (each
value from a dial reflects the amount of change [delta] from the last output
value). There is no absolute mode for the control dials.

The default sample rate is 20 per second.

RM3-8 Reference Materials

DSETI...DSETB
(continued)

NOTES

1. Input <1> accepts real numbers or integers that set the delta value and
sample rate. The default sample rate is 20 samples per second.

2. Real numbers set the delta value relative to one complete dial rotation.
For example, if .25 were the real number input, the dial would have to
be rotated 90 degrees (.25 x 360) before an output from the dial would
be generated.

3. An integer is applied to input <1> to indicate the sample rate. Sample
rate is specified in samples per second. For example, the integer 10
causes the dial to be sampled 10 times per second.

4. Output <1> is used to set the dial parameters as specified by the real
number or integer on input <1>.

Initial Function Instances RM3-9

ERROR

TYPE

Initial Function Instance —Miscellaneous

ERROR
(ERROR2}

Connected to System at
Initialization

PURPOSE

Enables and disables the display of error messages.

DESCRIPTION

INPUTS

<1> —

Connected to Terminal
Emulator at Initialization

Unused

TRUE =enable, FALSE =disable (constant)

<2> — connected to system

OUTPUTS

<1> — connected to terminal emulator

<2> — unused

NOTE

The INITIALIZE command automatically sends a TRUE to input <1> to
enable the display of error messages.

RM3-10 Reference Materials

FKEYS

TYPE

Initial Function Instance —Data Input

FKEYS
(FKEYS2}

Connected to the KEYBOARD >
Initial Function Instance at
System Initialization

PURPOSE

<1>

CC

<1> >I

Converts a character received from a keyboard function key to an integer
code.

DESCRIPTION

INPUT

<1> — connected to KEYBOARD

OUTPUT

<1> — integer code (1-36)

NOTE

Characters are converted as follows:

Integer Output Corresponds To

1-12 Function keys F1-F12

13-24 Function keys F1-F12 with the shift key pressed.

25-36 Function keys F1-F12 with the control key pressed.

Initial Function Instances RM3-I1

FLABELO

TYPE

Initial Function Instance —Data Output

FLABELO
(FLABEL20}

S >

PURPOSE

<1>

CC

<1> > Connected to Keyboard at
initialization

This initial function instance is similar to the FLABELI through FLABELI2
initial function instances in that it allows the user to specify characters to be
displayed in the LED indicators above the function keys. However, unlike
FLABELI through FLABELI2, which are used to separately specify the
8-character display above each function key, FLABELO allows a single char-
acter string (to a maximum of 96 characters) to be specified for display in
the twelve 8-character displays. FLABELO treats the 96 LED displays as a
single string of characters and spaces.

DESCRIPTION

INPUT

<1> —

OUTPUT

<1> —

string for label

connected to keyboard

RM3-12 Reference Materials

FLABELO

(continued)

NOTES

1. The string of characters on input <1> is displayed starting in the leftmost
LED location (the first of the 8 LEDs over the first function key).

2. Allowable characters for the function key LED indicators follow:

! " # $ % & () * + - / 0 1 2 3 4 5 6 7 8 9 < _ > ? @

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z []

3. Lowercase letters are converted to uppercase letters for display. A space
may also be specified.

4. Carriage return <CR> and line feed <LF> are not legal characters and
cause a message that follows <CR> or <LF> to be partially lost or ig-
nored.

5. This function is not valid if using a softlabels network.

Initial Function Instances RM3-13

FLABELI...FLABELI2

TYPE

Initial Function Instance —Data Output

FLABELI ... FLABELI2
(FLABEL21 ... FLABEL212}

S

B

B

PURPOSE

 >- <1 >

 > <2> C

 >~ <3> C

DC

<1> > Connected to Keyboard at
Initialization

Twelve initial function instances are provided to label the eight LED indica-
tors above each of the twelve function keys. FLABELI is used to label the
eight LED indicators associated with the first function key; FLABEL2 is
used to label the eight LED indicators for the second function key; and so
on, through FLABELI2, which is used to label the eight LED indicators for
the twelfth function key.

DESCRIPTION

INPUTS

<1> — label message

<2> — blink/no blink (constant)

<3> — center/justify left (constant)

OUTPUT

<1> — string to function key LED

RM3-14 Reference Materials

FLABELI...FLABELI2

(continued)

NOTES

1. Input <1> accepts a character string (up to eight characters) to be dis-
played on the corresponding function key LED indicators. The constant
Boolean value on input <2> selects blink (TRUE) or no blink (FALSE)
for the displayed characters. The constant Boolean value on input <3>
controls whether the displayed message will be centered in the eight
available locations (TRUE) or whether it will be justified left so that the
first character is placed in the leftmost of the eight locations (FALSE).

2. If inputs <2> and <3> are not used, the message will not blink and will
be centered.

3. Allowable characters for Function Key labels are:

! # $ % & () * + - / 0 1 2 3 4 5 6 7 8 9 < _ > ? @

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z []

4. Lowercase letters are converted to uppercase letters for display. A space
may also be specified.

5. Carriage return <CR> and line feed <LF> are not legal characters and
cause a message that follows <CR> or <LF> to be partially lost or ig-
nored .

6. The FLABELl through FLABELI2 function instances are used to sepa-
rately program the 8-character LED displays associated with a particular
function key. If the entire set of 96 LEDs (12 function keys x 8 charac-
ters per function key) is to be programmed as a single message, then
FLABELO must be used.

Initial Function Instances RM3-1 S

HOST MESSAGE
HOST MESSAGEB

TYPE

Initial Function Instance —Miscellaneous

~^ Requests records from GSR
routines PGet and PGetWait

<1>

<1>

>+
<1> <1>

<2> C
<3> C

Connected

HOST MESSAGE HOST MESSAGEB

Records from user's network

PURPOSE

to HOSTOUT

HOST MESSAGEB is an initial function instance of the function
F:HOLDMESSAGE. It supports the PGetW and Peet FORTRAN routines
and the PGetWait and Peet Pascal and UNIX routines. All messages are
sent from the PS 390 to the host via this function when using the GSRs.

HOST MESSAGE is an initial function instance of the function F:NOP. It is
recommended that the user always send PS 390 output destined for the host
to HOST MESSAGE rather than HOST MESSAGEB, since the name of the
latter may change with a future release of runtime software.

The routines Peet and PGetW specifically interrogate the initial function
instance HOST_MESSAGEB for input back to the host.

The routine Peet is used to "poll" the PS 390 for data. If a message exists
on the queue of HOST_MESSAGEB, then that message is removed from
the queue and is returned by Peet. If no message was present in the input
of HOST_MESSAGEB, then the special "no-messages" message as defined
by input <3> of HOST_MESSAGEB is returned.

RM3-16 Reference Materials

HOST MESSAGE
HOST MESSAGES

(continued)

The routine PGetW is similar in functionality to Peet with one important
difference. PGetW will not return to the caller until a message has been
received from the PS 390. If no messages are present on the input of
HOST MESSAGEB, then the caller of PGetW (Get message and wait for
completion) will wait until a message is sent to input <1> of HOST_MES-
SAGEB.

Messages received from the PS 390 via Peet and PGetW may need to be
trimmed of the trailing characters) as defined by inputs <2> and <3> of
HOST_MESSAGEB if either of them is changed from the default value of
carriage return (Character 13) . The GSR will remove a single trailing car-
riage return from the message. Thus, if a poll operation is requested and no
messages are present, the GSR returns azero-length message to the caller
indicating that no messages were present because the default "no-message"
message on input <3> of HOST_MESSAGEB is a carriage return. Similarly,
calls to PGetW return the proper length. However, if the user chooses to
change the HOST_MESSAGEB inputs <2> and <3>, then the user must
compensate for any side effects so produced when calling Peet or PGetW.

EXAMPLE

Refer to Helpful Hint 14 in Section TT2.

initial Function Instances RM3-17

HOSTOUT

TYPE

Initial Function Instance —Data Output

HOSTOUT
(HOSTOUT2}

S

PURPosE

<1>

CC

<1> > Connected to Host
Communications Port
at System Initialization

Accepts a string on input < 1 > and outputs the string for communication to
the host. At initialization, the input to HOSTOUT is connected to a network
used for host communications.

DESCRIPTION

INPUT

<1> —

OUTPUT

<1> —

string to be sent to host

connected to host communications port

RM3-18 Reference Materials

INFORMATION

TYPE

Initial Function Instance —Miscellaneous

INFORMATION
(INFORMATION2}

Connected to System at
Initialization

PURPOSE

<1> C

<2>

D D

<1>

<2>

 > Connected to Terminal
Emulator at Initialization

 > Not Connected

Enables and disables the display of information messages.

DESCRIPTION

INPUTS

<1> — TRUE =enable, FALSE =disable

<2> — connected to system

OUTPUTS

<1> — connected to terminal emulator

<2> — not used

NOTE

The IZE command automatically sends a TRUE to input <1> to
enable the display of information messages.

Initial Function Instances RM3-19

KEYBOARD

TYPE

Initial Function Instance —Data Input

KEYBOARD
(KEYBOARD2}

Connected to Terminal
Emulator Network at
Initialization

PURPOSE

<1>

CD

<1>

<2>

 >S

 > CH (System-connected to
FKEYS}

Connected at initialization to accept an ASCII character string from the
keyboard.

DESCRIPTION

INPUT

<1> — connected to terminal emulator network

oUTPUTs

<1> — characters not preceded by CTRL/V

<2> — character preceded by CTRL/v

NOTE

Input characters are checked for a preceding CTRL/V character. If a
character is preceded by a CTRL/V, the CTRL/V is removed by the
function and the associated character is output on <2>, which is system-
connected to the input of FKEYS . Characters that are not preceded by a
CTRL/V are output on < 1 >.

RM3-20 Reference Materials

MEMORY ALERT

TYPE

Initial Function Instance —Miscellaneous

MEMORY_ALERT
(MEMORY_ALERT2}

I y <1>

Not used } <2>

I > <3>

Not used > <4>

I > <5>

DC

<1>

PURPosE

 > Connected to MESSAGE DISPLAY
at Initialization

Generates a message and a bell alarm when system memory usage reaches
a specified threshold.

DESCRIPTION

INPUTS

<1> — memory threshold percentage for reporting

<2> — unused

<3> — sampling interval

<4> — unused

<5> — integer specifying memory threshold in bytes for vector-list
creation

OUTPUT

< 1 > — connected to MESSAGE DISPLAY

DEFAULTS

The threshold specified on input <1> is set at 75% unless changed by the

user. The sampling interval is set at 10 seconds unless changed. Input <5>

defaults to 0.

Initial Function Instances RM3-21

MEMORY ALERT
(continued)

NOTES

1. The number of bytes specified on input <5> is the minimum number of
bytes that must be available in memory for the system to create vector
list. Once this threshold has been reached, a vector list will be only
partially created, or not created at all. When this occurs, the error mes-
sage "E 105 * * * cannot complete operation due to insufficient memory"
is issued. This applies to vector lists, characters, labels, polynomials,
b-splines, patterned vector lists, and polygons.

2. Memory status is sampled at 10-second intervals. The message dis-
played is of the form:

MASS MEMORY nn PERCENT FILLED.

3. If the amount of memory used falls below the threshold, the message is
removed .

4. Output <1> is connected to MESSAGE_DISPLAY at initialization.

5. If the user wishes to change the percentage that generates the alarm,
another value must be sent to input <1>. If the user wishes to specify a
sampling interval other than 10 seconds, another value must be sent to
input <3>. The value is an integer that specifies the number of seconds
to wait before rechecking memory.

RM3-22 Reference Materials

MEMORY MONITOR

TYPE

Initial Function Instance —Miscellaneous

MEMORY_MONITOR
(MEMORY_MONITOR2)

PURPOSE

 > <1>

 > <2> C

 > <3> C

D D

<1>

<2>

<3>

 > S and Bell

 >I

 >B

Notifies the user of the number of bytes that are available for use out of a
maximum number of bytes available at system initialization and of the
elapsed time since initialization.

DESCRIPTION

INPUTS

<1> — memory threshold percentage

<2> — delta value (constant)

<3> — sampling interval (constant)

OUTPUTS

<1> — message string and bell

<2> — percentage full

<3> — TRUE if threshold is exceeded, not sent if otherwise

DEFAULTS

The threshold is set at 75%, the delta value is set at 0, and the sampling rate
is set at 10 seconds unless changed by the user.

Initial Function Instances RM3-23

MEMORY MONITOR
(continued)

NOTES

1. None of the outputs from this function instance is connected upon sys-
tem initialization. The user must connect output <1> of MEM-
ORY MONITOR input <1> of MESSAGE_DISPLAY. This causes the
message to be displayed in the message display area of the screen and a
bell to be sent to the keyboard. The message displayed is of the form:

nnnnnn bytes free out of nnnnnnnn bytes maximum at dd hh:mm:ss

2. Output <2> is an integer representing the percentage of memory filled.
Unless a change on input <2> (since the last report) is equal to or
greater than the previous value on input <2>, no report is given.

3. Output <3> is a Boolean value that is output as a TRUE if the threshold
indicated on input <1> is crossed.

RM3-24 Reference Materials

MESSAGE DISPLAY

TYPE

Initial Function Instance —Miscellaneous

MESSAGE_DISPLAY
(MESSAGE_DISPLAY2}

PURPOSE

>

<1>

DC

<1> > S and Beil

Displays error messages and informational messages in the MES-
SAGE_DISPLAY area of the PS 390 display. At initialization, input <1> is
connected by the system to output <1> of MEMORY_ALERT and error-de-
tection functions. Output <1> is connected to input <1> of FLABELO so that
bell messages can be sent to the keyboard.

DESCRIPTION

INPUT

<1> —

OUTPUT

<1> —

NOTE

connected to MEMORY ALERT and error-detection func-
tions

string and bell connected to FLABELO

Each string received is treated as a complete message. Incoming charac-
ters are displayed at position 1 and replace the previous message.

EXAlYIPLE

Refer to Helpful Hint 14 in Section TT2.

Initial Function Instances RM3-25

MOUSEIN

TYPE

Initial Function Instance —Data Input

MOUSEIN

Connected to Mouse at >
Initialization

PURPosE

<1>

I ~ <2> C

S > <3> C

2 p > <4> C

DD

<1>

<2>

<3>

<4>

<5>

<6>

<7>

 > 2D

 > B

 > B

 > Dummy queue

 > 2D

 >I

Connected at system initialization to accept data from the mouse on in-

put<1>. MOUSEIN is similar to TABLETIN.

DESCRIPTION

INPUTS

<1> — trigger (connected to mouse at firmware load)

<2> — integer (counts full scale of work area)

<3> — string (define active outputs)

<4> 2D vector (X,Y cursor position)

OUTPUTS

<1> — normalized 2D vectors

<2> — mouse switch open/closed (TRUE=closed)

<3> — raw switch byte (bit encoded) (sum of the buttons that are
pressed)

RM3-26 Reference Materials

MOUSEIN
(continued)

OUTPUTS (continued)

<4> — tip-switch transitioned to state

<5> — dummy output queue for TABLETIl~T compatibility

<6> — 2D vector on true edge detect

<7> — switch number translated to range 0-3

NOTES

1. The mouse protocol is as follows:

Bit No . 7 6 5 4 3 2 1 0

Byte 1 1 0 0 0 0 L M R

Byte 2 X X X X X X X X

Byte 3 Y Y Y Y Y Y Y Y

Byte 4 X X X X X X X X

Byte 5 Y Y Y Y Y Y Y Y

L,M,R refer to the Left, Middle and Right buttons. There are two rela-
tive change samples of X and Y in two's complement format. To deter-
mine the actual change in position, the two X values must be added
together and the two Y values must be added together.

2. When the MOUSEIN function is active and output <3> is enabled, the
possible outputs are 0-7. If no buttons are pressed, the integer 0 is sent
on output <3>. The following integer values correspond to the buttons
pressed:

R -> 1

M -> 2

M+R -> 3

L -> 4

L+R -> 5

L+M -> 6

L+M+R -> 7

Initial Function Instances RM3-2 ~

MOUSEIN
(continued)

3. When the MOUSEIN function is active and output <7> is enabled, the

possible outputs are 0-3. If no buttons are pressed the integer 0 is sent

on output <7>. The following integer values correspond to the buttons
pressed:

R -> 1

M -> 2

M+R -> 2

L -> 3

L+R -> 3

L+M -> 3

L+M+R -> 3

4. Input <1> accepts input from the mouse. This input is connected by the
system at firmware loading. When the function activates, it may have
part of a report, many reports, or any combination.

5. Input <2> counts full scale. Theoretically, this is the dimension of the
work area in inches multiplied by the resolution in counts per inch (200) .

6. Input <3> defines which outputs are to be used and defines cursor up-
date enable/disable. An 8-character string is expected on input <3>,
where each position in the string represents an output queue. A string of
less than seven characters defaults to all T. Following are two examples:

'TFFFFFFT~ (queue 1 enabled—first T; all others disabled; cursor will be
updated—last T)

z' (all queues enabled; cursor updating enabled)

RM3-28 Reference Materials

OFFBUTTONLIGHTS

TYPE

Initial Function Instance —Data Output

OFFBUTTONLIGHTS
(OFFBUTTONLIGHTS2)

<1>

CC

<1>

PURPOSE

 > Connected to Function
Buttons at Initialization

Turns off lighted buttons on the function buttons unit.

DESCRIPTION

INPUT

<1> —

OUTPUT

NOTES

integer (1-32) indicating the button number

<1> — connected to function buttons

1. Each button may be turned off independently or all buttons may be
turned off by a single message. A zero (0) or any out-of-range integer
at input <1> turns off all button lights. An integer from 1 to 32 at input
<1> turns off the corresponding button light.

2. Function buttons are arranged in one row of four, four rows of six, and
another row of four. They are numbered from left to right starting from
the top row. The top row is numbered 1 through 4; the second row 5
through 10, and so on until the last row, 29 through 32.

Initial Function Instances RM3-29

ONBUTTONLIGHTS

TYPE

Initial Function Instance —Data Output

ONBUTTONLIGHTS
{ONBUTTONLIGHTS2}

<1>

CC

<1>

PURPOSE

 > Connected to Function
Buttons at Initialization

Turns on lighted buttons on the function buttons unit.

DESCRIPTION

INPUT

<1> —

OUTPUT

NOTES

integer (1-32) indicating the button number

<1> — connected to function buttons

1. Each button may be turned on independently or all buttons may be
turned on by a single message. A zero (0) or any out-of-range integer at
input <1> turns on all button lights. An integer from 1 to 32 at input <1>
turns on the corresponding button light.

2. Function buttons are arranged in one row of four, four rows of six, and
another row of four. They are numbered from left to right starting from
the top row. The top row is numbered 1 through 4; the second row 5
through 10, and so on until the last row, 29 through 32.

RM3-30 Reference Materials

PICK

TYPE

Initial Function Instance —Data Input

PICK
(PICK2}

Any > <1>

B > <2> C
I > <3> C
R > <4>
I > <5>
R > <6>

D D

<1>

<2>

<3>

PURPOSE

 > PL

 >B

 >B

Interfaces with the hardware picking circuitry. Any message on input <1>
arms the PICK function. Once PICK is enabled, when a pick occurs, the pick
list associated with the picked data is sent out on output <1> and a Boolean
FALSE is sent out on output <2>. Typically, this Boolean value is used to
disable picking of a set of objects by connecting it to a SET PICK:Il~TG ON/
OFF node in a display structure.

DESCRIPTION

INPUTS

<1> — function trigger

<2> — TRUE =coordinate, FALSE =index (constant)

<3> — timeout duration (constant)

<4> — defines pick window half size for the ACP pass of the pick

<5> — retry count

<6> — half-size increment to be added to window half-size on
each retry

Initial Function Instances RM3-31

PICK
(continued)

OUTPUTS

<1> — pick list

<2> — FALSE =pick enabled

<3> — FALSE = timeout elapsed

NOTES

1. Input <2> selects the kind of pick list that will be output on output <1>.
A FALSE on input <2> indicates that the output pick list will be the pick
identifier and an index into the vector list or the character string. (The
index into the vector list identifies its position in the list; e.g., vector 3 is
the third vector in a vector list. The index into a character string identi-
fies the picked character by its position in the string; character 5 is the
fifth character in a string.)

2. A TRUE on input <2> indicates that the output pick list will include, in
addition to the pick identifier and the index, the picked coordinates and
the dimension of the picked vector. If the vector is part of a polynomial
curve, its parameter value, t, is supplied instead of the index.

3. Coordinate picking on a character string returns an index into the string,
not its picked coordinates.

4. Coordinate picking cannot be performed on a vector over 500
[LENGTH] units long .

5. The pick list on output <1> is typically connected to an instance of
F:PICk:INFO to convert the pick list to a locally useful format. If the pick
list is to be printed out, output <1> may be connected to F:PRINT to
convert the pick list code to printable characters.

6. When several vectors are picked, the first vector drawn by the line gen-
erator is reported as picked. For example, if three vectors in a single
vector list were picked simultaneously (at a point of intersection), the
first vector listed in the object definition would be reported as picked.

RM3-32 Reference Materials

PICK
(continued)

7. The integer on input <3> specifies a pick timeout period in refresh
frames. This pick timeout period allows the user to determine whether a
pick has occurred within the specified amount of time. Timing starts
when the PICK function is armed with a message on active input <1>.
Allowable integers for input <3> are from 4 through 60.

8. If input <3> is not used, all picks will be reported once the function is
armed because no timeout duration has been specified.

9. Typically, the FALSE at output <3> would be used to turn off picking in
a display structure (at a SET PICKING ON/OFF node) or to send a "NO
PICK" message (probably via F:SYNC(2)) back to the host.

10. The user has three means of canceling an existing pick timeout duration:

a. Send an IZE command. This will remove the PICK func-
tion and replace it with a new instance of the PICK function.

b. Send anon-integer (and ignore the "Bad message" error).

c. Send an integer less than 4 or greater than 60 to input <3> (and
ignore the "Bad message" error).

11. Input <4> is a real number between 0 and 1 that defines the pick window
half-size for the ACP pass of the pick. This is different from the size set
by the SET PICK:Il~TG LOCATION operation node. The line generator or
the frame buffer uses the operation node to determine if a pick has
occurred; whereas the ACP uses input <4> to do the actual pick pass on
the data. Default is 6.8359E-3.

12. Input <5> is an integer specifying pick pass retries. Since it is possible
that the ACP will not find the picked data during a pick pass, input <5>
indicates the number of times to add the window increment on input <6>
and try another pick pass. The default is 4.

13. Input <6> is a real number between 0 and 1 which specifies the amount
to increase the pick window half-size on each retry of the pick pass.
Default is 6.8359E-3.

Initial Function Instances RM3-33

PICK
(continued)

EXAMPLE

If a 10 is sent to constant input <3>, then the PICK function is armed with a
message on input <1>. The function waits 10 refresh frames from the time
the input <1> message is received before checking to see if a pick has oc-
curred. If a pick has occurred within that period, the function outputs the
appropriate pick list. If a pick has not occurred, the function outputs a
FALSE on output <3>. In either case, the PICK function is disarmed and
must be rearmed via input <1> before further picking can be reported.

RM3-34 Reference Materials

PS390ENV

TYPE

Initial Function Instance —Miscellaneous

PS390ENV

Any >

3D

 >

<1>

<2>

<3>

<4>

<5>

<1>

PURPOSE

 > PS 390 DISPLAY

This initial function instance sets up display background color, and selects
cursor and cursor color.

DESCRIPTION

INPUTS

<1> — trigger which accepts any data type to cause the function
to run.

<2> — constant which accepts a 3D vector (hue, saturation and
intensity) to specify background color.

<3> — constant which accepts an integer in the range [0,7] to
specify the system-defined refresh cursor color, where:

0 =black

1 =blue
2 = green

3 =cyan

4 =red

5 =magenta

6 =yellow

7 =white (default)

Initial Function Instances RM3-35

PS390ENV

(continued)

INPUTS (continued)

<4> — constant which accepts an integer to select the cursor

0 =update rate cursor (default)

1 = system=defined refresh cursor

<5>

OUTPUT

accepts an integer to specify the video timing format,
which is output from the video connection on the back of
the PS 390 control unit

0 = 1024 x 864 non-interlaced (default

required by the PS 390 display)

2 = 1024 x 864 interlaced

3 = 640 x 484 interlaced (RS-170)

<1> — connected to the PS 390 display

DEFAULTS

The default background color on input <2> is 0,0,0 (black). Saturation and
Intensity must be in the range of [O,lJ, otherwise an error message will be
generated. Hue is in the range of [0,360]. For any value specified outside
this range, multiples of 360 are added or subtracted to bring it into this
range.

On input <3> any value outside [0, 7] generates an error.

NOTE

When specifying the system-defined refresh rate cursor, you should
leave the initial viewports HVP1$ and GVPO$ unchanged in order to
have the (hardware) cursor work with picking.

RM3-36 Reference Materials

SHADINGENVIRONMENT

TYPE

Initial Function Instance —Miscellaneous

SHADINGENVIRONMENT

R, 2D, 3D ~ <1 >

R, 2D, 3D ~ <2>

3 D } <3>

R ~ <4>

I ~ <5>

R ~ <6>

B, I ~ <7>

Reserved > <8>

B ~ <9>

B } <10>

B y <11>

B ~ <12>

B ~ <13>

S } <14>

I, B, R ~ <15>

I y <16>

Any } ~~ 7>

I y < 18>

I ~ <19>

PURPOSE

<1> > PS 390 Display

This function allows you to control various aspects of shaded renderings
displayed in the static viewport.

DESCRIPTION

INPUTS

<1> — ambient color

<2> — background color

Initial Function Instances RM3-37

SHADINGENVIRONMENT
(continued)

INPUTS (continued)

<3> — static viewport

<4> — exposure

<5> — edge-smoothing (antialiasing) control

<6> — depth cueing

<7> — screen wash

<8> — reserved

<9> — overlay/refresh control

<10> — color by vertex control

<11> — opaque (transparency) control

<12> — specular highlights control

<13> — special color blending for spheres control

<14> — update attribute table

<15> — line Z-value control (polygon edge enhancement)

<16> — resolve rendering visibility

<17> — restore gamma-corrected system look-up table

<18> — vertex normal control

<19> — stereo rendering

OUTPUT

<1> —

NOTES

connected to the PS 390 display

1. Ambient color: input <1> accepts a real number as hue, a ZD vector as
hue and saturation, and a 3D vector as hue, saturation, and intensity, to
specify the ambient color. The ambient color is combined with the result
obtained from the light sources to determine the color of ambient light.
The default ambient color is white, with a default intensity of 0.25.

RM3-38 Reference Materials

SHADINGENVIRONMENT
(continued)

2. Background color: input <2> accepts a real number as hue, a 2D vector
as hue and saturation, and/or a 3D vector as hue, saturation, and inten-
sity to specify the background color. Refer to the COLOR parameter of
the ATTRIBUTES command for the meaning of the values. The current
static viewport will be colored with the background color prior to any
shaded rendering done in the refresh mode (refer to input <9>) . The
default background color is black (0,0,0).

3. Static viewport: input <3> accepts a 3D vector which specifies physical
pixel locations for the viewport where shaded renderings are displayed.
Static viewports are always square, the lower left corner being given by
the X and Y coordinates of the vector, and its size given by the Z coordi-
nate, such that the upper right corner is at (X+Z,Y+Z) . Values are
rounded to the nearest pixel. The default viewport is V3D(80, 0, 863) .

The viewport can be used for rendering multiple images side by side on
the raster display. For example, send V3D(0,-80,1023) would be a valid
command to specify the largest recommended value for the static view-
port. This viewport encompasses the entire displayable screen as well as
the undisplayable area in Y that is in excess of 863. Images in this
viewport are clipped to the physical raster for which 0<X<1024 and
0<Y<864.

4. Exposure: input <4> accepts a real number as the exposure, controlling
the overall brightness of the picture. The exposure is like that on a cam-
era. If a picture is taken of an object with a very bright specular high-
light, it may be so bright that the rest of the object is darkened. If three
light sources exist, the object would be about three times brighter, mak-
ing the object too bright. The exposure can be brought down to control
this.

The exposure is multiplied by the intensity at each pixel and the result
clipped to the maximum intensity. This enables the overall brightness of
a rendering to be increased without causing bright spots to exceed maxi-
mum intensity (instead forming "plateaus" of maximum intensity) . Rec-
ommended exposure values may vary between 0.3 and 3.0. The default
exposure is 1.

Initial Function Instances RM3-39

SHADINGENVIRONMENT
(continued)

5. Edge smoothing (antialiasing) control: input <5> accepts an integer
which allows users to choose between having a relatively fast rendering
with jagged edges along the edges of polygons or having a slower render-
ing with smoother edges. Antialiasing is accomplished by taking 16 sam-
ples per pixel instead of only one. You are given the choice of having no
edge smoothing at all, smoothing along the edges only, or sampling 16
times within every pixel for every polygon. The default value in this
input is 0.

Sending Fix(0) to this input produces no smooth edges, and produces
the fastest renderings. Polygons are rendered with one sample per pixel.

Sending Fix(1) produces smooth edges, but may not correctly resolve
visibility between surfaces that are extremely close in z-values or that
are interpenetrating. The 16 samples are taken only where the edges of
the polygon touch a pixel. The interior of the polygons are still rendered
with one sample per pixel. This has a speed intermediate between a
Fix(0) and a Fix(2).

Sending Fix(2) to this input produces full antialiasing. This method pro-
duces the slowest renderings, but it produces full visibility resolution. 16
samples are taken for every pixel in every polygon.

6. Depth cueing: input <6> accepts a real number in the range of 0 to 1 to
control depth cueing in the shaded image (1 specifying no depth cueing
and 0 specifying maximum depth cueing). As perceived depth from the
viewer increases, the colors are mixed with the ambient light color.
Thus, if a 3D vector(0,0,0) (black) is sent to the ambient input <1> and
if a 0 is sent to input <6>, the objects will be rendered with a ramp
ending in black at the back clipping plane. A 1 sent to input <6> will
turn off depth cueing. The default is 0.2 giving a fairly large depth
cueing effect.

7. Screen wash: input <7> accepts a Boolean value or an integer, and pro-
duces an immediate visual effect. Sending a TRUE to this input clears
the entire screen to static and causes a screen wash with the current
static background color. Sending FAT,SF, to this input clears the cur-
rently specified static viewport and causes the viewport to be filled with
the current static background color.

RM3-40 Reference Materials

SHADINGENVIRONMENT
(continued)

Sending Fix(0) to input <7> has the same effect as sending TRiIE.

Sending Fix(1) to input <7> has the same effect as sending FALSE.

Sending Fix(2) to input <7> clears the entire screen to dynamic and
causes a screen wash with the current dynamic background color. This
may be done to clear a shaded image before displaying a new dynamic
image .

Sending Fix(3) to input <7>, clears the currently specified static viewport
with the current dynamic background color.

8. Reserved

9. Clear/Overlay Control: input <9> accepts a Boolean value which deter-
mines whether the screen is to be cleared with the current background
color before the rendering is performed. Sending a TRUE to this input
causes the current object to be rendered on top of the image currently
being displayed in the static viewport. Sending FALSE causes the static
viewport to be washed clean with the current background color before an
object is rendered. The default is FALSE.

10. Color by Vertex Control: input <10> accepts a Boolean value which
turns off or on the use of vertex colors. Color by vertex is accomplished
by defining a color for each vertex in the polygon. A TRUE sent to this
input enables the colors to be defined at each vertex. A FALSE sent to
this input enables the colors specified in the ATTRIBUTES command.
The default value for this input is FALSE.

11. Opaque (Transparency) Control: input <11> accepts a Boolean value
which enables or disables the transparency assigned to the polygon with
the OPAQUE clause of the ATTRIBUTE command. Transparent poly-

gons are created by modifying the ATTRIBUTE command as follows:

Name : = ATTRIBUTE [Co 1 or h [, s [, i]]] [OPAQUE t]

[Diffuse d] [Specular s] ;

where t refers to a value between 0 and 1, with 1 being a fully opaque
polygon and 0 being a fully transparent polygon. When t=0, the object is
completely invisible. The default value for this input is FALSE (fully

opaque).

Initial Function Instances RM3-41

SHADINGENVIRONMENT
(continued)

12. Specular Highlight Control: input <12> accepts a Boolean value which
allows you to turn specular highlights on and off. Flat, Gouraud, and
Phong shading use a shading equation that can process multiple light
sources and calculate specular highlights. The default value is TRUE,
which means that specular highlights are turned on.

13. Special Color Blending for Spheres: input <13> accepts a Boolean value
which turns off or on the color blending used for correct spherical ren-
dering. Sending a TRUE turns on special color blending. Sending a
FALSE turns off special color blending. The default is FALSE.

14. Update Attribute Table: input <14> accepts a string which is the name of
a 3D tabulated vector list to update the attribute table that specifies
color, radii, diffuse, and specular highlights for spheres and lines. The
attribute table has 0 to 127 entries with six table components for each
entry. The attribute table can be updated by encoding the table entries
into a named PS 390 vector list and then sending the name of the vector
list to input <14>. The six table components are encoded into two con-
secutive 3D tabulated vectors of the vector list.

The table has the following components: hue, saturation, intensity, ra-
dius, diffuse, and specular. Hue is a real number in the range 0 to 360.
Saturation and intensity are real numbers in the range 0 to 1. Radius is a
real number greater than 0. Diffuse is a real number in the range 0 to 1.
Specular is an integer in the range 0 to 255.

The table is initialized as follows:

RM3-42 Reference Materials

SHADINGENVIRONMENT
(continued)

INDEX Hue Sat Intensity Radius Diffuse Specular

0 0 0 0.5 1.8 0.7 4 (Gray)

1 0 0 1 1.2 0.7 4 (White)

2 120 1 1 1.35 0.7 4 (Red)

3 240 1 1 1.8 0.7 4 (Green)

4 0 1 1 1.8 0.7 4 (Blue)

5 180 1 1 1.7 0.7 4 (Yellow)

6 0 0 0.7 1.8 0.7 4 (Gray)

7 300 1 1 2.15 0.7 4 (Cyan)

8 60 1 1 1.8 0.7 4 (Magenta)

9 0 0 0 1.8 0.7 4 (Black)

10-127 (Color Wheel)

Spheres use all six of these components. Lines use only the hue, saturation,
and intensity components.

The t field of each 3D tabulated vector is used as an index into this table.

15. Raster Lines Z-value Control: input <15> accepts a Boolean value, or a
real number in the range 0-1, or an integer in the range 0-2. A real
value sent to this input adds an offset to the Z-values of lines causing
them to be displayed in front of other objects with the same Z-value.

Sending a Boolean value to this input allows you to toggle the display of
polygon edges on and off. A TRUE causes lines to be drawn along poly-
gon borders, thus enhancing the edges, and temporarily turns on full
antialiasing. A FALSE causes polygons to be rendered normally without
edge enhancement.

Sending Fix(0) to <15> causes polygons to be rendered without en-
hanced edges (edges shown on the rendered image). This is the same as
sending a FALSE.

Initial Function Instances RM3-43

SHADINGENVIRONMENT

(continued)

Sending Fix(1) causes polygon edges to be enhanced, and causes all
edges including those marked as soft to be displayed. This is the same
as sending a TRiJE.

Sending Fix(2) causes polygon edges to be enhanced, but only those
edges marked as hard edges are displayed.

16. Resolve rendering visibility: input <16> accepts an integer value of 1 or
0 to choose between one of two possible algorithms for resolving visibil-
ity in a rendering.

Sending Fix(0) causes ascan-line Z-buffer algorithm to be applied. This
algorithm is used in rendering solids; it causes all backfacing polygons
to remain undisplayed.

Sending Fix(1) causes the painters algorithm to be applied to the render-
ing. This algorithm renders an image by filling (painting) each polygon.

17. Restore gamma-corrected system look-up table: any value sent to this
input restores the gamma-corrected system look-up table which is the
table responsible for producing antialiased lines of good line quality.
Sending a value to this input has an immediate visual effect.

18. Vertex normal control: input <18> accepts an integer value in the range
[0..2]. Values sent to this input affect vertex normals.

Sending Fix(0) causes vertex normals to remain unchanged from their
original definition. This is the default.

Sending Fix(1) inverts vertex normals that are backwards and that are
on backfacing polygons to make the polygons appear forward. This is
useful for the user who knows the desired direction for normals to point,
but who does not necessarily specify polygon vertices in a consistently
clockwise fashion. This is applicable to surface renderings only. The
AND specifier of the ATTRIBUTES command should not be used when
using this input to reverse normals.

Sending Fix(2) inverts vertex normals that are backwards and are on
polygons that are front-facing to make the polygons appear forward.
This is useful for performing mirrored modeling operations; i.e., using a
-Y scale factor to produce an image mirrored about the XZ plane.
Again, this is applicable only to surface renderings.

RM3-44 Reference Materials

SHADINGENVIRONMENT
(continued)

19. Stereo Rendering: Sending Fix(1024) to input <19> causes renderings to
be produced on the entire display, including the (usually) missing 160
scan lines at the bottom of the screen. This input is used for rendering
solid polygons, spheres, and raster lines in 3 dimensional stereo (using
the Tektronix LCD screen).

Initial Function Instances R1VI3-45

SPECKEYS

TYPE

Initial Function Instance —Data Input

SPECKEYS
(SPECKEYS2)

Connected to Terminal Emulator >
Network at Initialization

PURPOSE

<1>

CC

<1> >S

Connected at initialization to accept an ASCII character string from the
keyboard. Input characters are checked for a preceding CTRL/V character.
If a character is preceded by a CTRL/V, SPECKEYS removes the CTRL/V
and outputs the associated character on output <1>. (Characters not pre-
ceded by a CTRL/V appear at the output of KEYBOARD instead.)

DESCRIPTION

INPUT

<1> —

OUTPUT

<1> —

NOTE

connected to terminal emulator

string

Note that neither SPECKEYS nor KEYBOARD outputs function key val-
ues. The Initial Function Instance FKEYS supplies these values.

RM3-46 Reference Materials

TABLETIN

TYPE

Initial Function Instance —Data Input

TABLETIN
(TABLETIN2}

Connected to Data
Tablet at initialization S

I

PURPOSE

R ~ <1> C
<2>

<3> C

<4>

<5>

<6>

<7>
DD

<1>

<2>

<3>

<4>

<5>

<6>

 > 2D

 > B

 >I

 > B

 > B

 > 2D

Connected at system initialization to accept data from the data tablet on
input <2>. This data includes 2D vectors, an indication of the open/closed
condition of the stylus tipswitch (or 4-button cursor), and an indication of
the switch number for systems using a 4-button cursor instead of a stylus.

DESCRIPTION

INPUTS

<1> — delta X,Y (constant)

<2> — string (system connected to tablet)

<3>

<4>

<5>

<6>

<7>

tablet size (constant)

wait time

X origin of surface

Y origin of surface

TRUE =cursor ON, FALSE =cursor OFF if puck is out of
proximity

Initial Function Instances RM3-47

TABLETIN

(continued)

oUTPUTs

<1> — X,Y coordinate (position/line)

<2> — TRUE =switch closed, FALSE =switch open

<3> — switch number

<4> — tipswitch transition

<5> — range transition

<6> — X,Y when switch closed

DEFAULTS

The default delta X,Y on input <1> is .002. The default tablet size on input

<3> is 2200. The default wait time on input <4> is 8 centiseconds.

NOTES

1. Input <1> accepts a real number that specifies the minimum change in X

or Y required on input <2> before output <1> is sent. The default value

is .002.

2. Input <3> accepts an integer that specifies the number of points full-

scale for the data tablet being used. The default value is 2200, corre-
sponding to the standard 11-inch x 11-inch data tablet.

3. Input <4> is a wait time for the data tablet in centiseconds; a FALSE is

sent on output <5> if the tablet stops sending data for longer than this
duration. The default value is 8. It should never be necessary to SEND

to this input, since TABLETOLIT sends an appropriate value here auto-
matically (see TABLETOUT).

4. The Boolean value on output <2> indicates the condition of the stylus
tipswitch (or cursor button) as follows:

TRUE =Stylus tipswitch closed or cursor button pressed.
FALSE =Stylus tipswitch open or cursor button not pressed.

5. The integer on output <3> is the sum of the numbers of the pressed
buttons on the 4-button cursor. The buttons are numbered 1, 2, 4, and 8.
If button 1 and button 4 are pressed sll»ultaneously, 5 is output.

RM3-48 Reference Materials

TABLETIN

(continued)

6. A TRUE appears at output <4> whenever the tipswitch goes from open
to closed, and a FALSE whenever the tipswitch goes from closed to
open. For button-type cursors, output <4> is TRITE when a button is
pushed and FALSE when the button is released.

7. Output <5> indicates transitions in stylus proximity (i.e., from "receiving
data" to "not receiving data" and vice versa) . A TRUE appears here
when data is received from the tablet after a period of no data. A
FALSE is sent when data does not arrive from the tablet in time. The
time is the number of hundredths of a second specified at input <4>.

8. Output <6> is the (X,Y)-position of the stylus when the tipswitch goes
from open to closed.

9. Inputs <5> and <6> allow the user to redefine the origin of the tablet.

Initial Function Instances RM3-49

TABLETOUT

TYPE

Initial Function Instance —Data Input

TABLELOUT
(TABLETOUT2}

PURPosE

<1>

DD

<1>

<2>

 > Connected to the Data
Tablet at Initialization

 > Connected to <4>TABLETIN
at Initialization

Provides the means to set operating parameters in the data tablet by sending

a character to input <1>. The character also determines a value to be sent to
<4>TABLETIl~T, setting the timeout interval of the tablet. If a multicharacter
string is sent to input <1>, only the final character of the string is used.

DESCRIPTION

INPUT

< 1 > — character or string

OUTPUTS

<1> — connected to data tablet

<2> — connected to <4>TABLETIN

NOTES

1. Characters for mode settings are shown in the following table.

RM3-SO Reference Materials

TABLETOUT

(continued)

TIMEOUT INTERVAL

CHARACTER MODE SAMPLING RATE (IN CENTISECONDS)

S Stop Idle

P Point* Manual control

@ Switched Stream** 2 52

A 4 27

B 10 12

C 20 8

D 35 5

E Switched Stream 70 3

H Stream*** 2 52

I 4 27

J 10 12

K 20 8 (default)

L 35 5

M Stream 70 3

**

Pressing the stylus on the tablet or the button on the cursor sends out the
single X,Y coordinate pair.

Pressing the stylus on the tablet surface or the button on the cursor causes
X,Y coordinate pairs to be output continuously at the selected sampling
rate until the stylus is lifted or the cursor button is released.

X,Y coordinate pairs are generated continuously at the selected sampling
rate when the stylus or cursor is in the proximity of the tablet surface.
Pressing the stylus on the tablet surface or pressing the cursor button
sets the flag character (F) in the output stream.

Initial Function Instances RM3-51

TECOLOR

TYPE

Initial Function Instance —Miscellaneous

TECOLOR
(TECOLOR2}

<1>

CC

<1>

PURPi~SE

 > Connected to Terminal
Emulation at Initialization

Specifies the hue of terminal emulator and setup output.

DESCRIPTION

INPUT

<1> — hue

OUTPUT

<1> — connected to terminal emulator

DEFAULT

The default hue is 240, pure green.

NOTES

The range of acceptable values is the 0-360 "color wheel" used by the
SET COLOR command, in which 0 represents pure blue, 120 pure red,
and 240 pure green. The default is 240. Out-of-range values are clamped
to the nearest in-range value (0 or 360 -hence always blue) .

RM3-52 Reference Materials

WARNING

TYPE

Initial Function Instance —Miscellaneous

WARNING
(WARNING2)

Connected to System
at Initialization

PURPOSE

 > <1> C <1>

 > <2> <2>

D D

 > Connected to Terminal
Emulator at Initialization

 > Not Connected

Enables and disables the display of warning messages.

DESCRIPTION

INPUTS

<1> — enable/disable warning messages (constant)

<2> connected to system

oUTPUTs

<1> — connected to terminal emulator

<2> — not used

NOTE

A TRUE at input <1> enables warning messages. A FALSE at input <1>
disables them. The Il~TITIALIZE command automatically sends a TRUE
to input <1> enabling the display of warning messages.

Initial Function Instances RM3-53

WRITEBACK

TYPE

Initial Function Instance —Miscellaneous

WRITEBACK

<1> <1>

PURPOSE

 > Qpacket

WRITEBACK is initialized by the system and is used to send encoded
writeback data to user function networks .

This function is not activated by the normal input queue triggering mecha-
nism. It is activated by sending a TRUE to any WRI'1'~BACK operation
node.

DESCRIPTION

INPUT

<1> — integer specifying the size of Qpackets to be output by the
function

OUTPUT

<1> — passes the encoded writeback data as Qpackets

DEFAULT

The default size on input <1> is 512. Minimum and maximum sizes are 16
and 1024. If the size specified on the input is not within this range, the
default size will be used.

RM3-54 Reference Materials

WRITEBACK
(co~ztinued)

NOTES

1. WRITEBACK will return all data that is under the WRITEBACK opera-
tion node. Host-resident code will be responsible for recognizing the
start-of-writeback and end-of-writeback commands. Attribute informa-
tion, such as color, must be interpreted by host code to ensure that the
hardcopy plots are correct.

2. On the PS 3~0, viewport translations have not been applied to the data.
To correctly compute the position of endpoints, the host program inter-
preting the writeback code must add a viewport center to each endpoint.
The initial viewport center is established with a VIEWPORT CENTER
command. The VIEWPORT CENTER command is sent following the
start-of-writeback command. Any changes to the viewport center will be
indicated through this sequence of commands: CLEAR DDA,
CLEAR SAVE POINT, position endpoint, CLEAR SAVE POINT. The
position endpoint becomes the new viewport center.

Initial Function Instances RM3-SS

CURSOR

TYPE

Initial Structure

CURSOR
(CURSOR2)

Cursor := VECTOR LIST ITEMIZED N = 4

P .035, .035 L — .035, — .035
P —.035, .035 L .035, —.035;

PURPOSE

This initial structure is a vector list as shown above, which creates a displa-

yable cursor in the form of a cross when the system is initialized.

DESCRIPTION

INPUT

Vector List

otrrPUT

Displayable "X"-shaped cursor

NOTES

1. The cursor is controlled by a function network which positions it On the

PS 390 screen in response to stylus movement over the data tablet sur-

face. The intensity of the cursor increases when the stylus tip switch is
pressed down.

2. The user is free to redefine CURSOR using any other vector list.

RM3-56 Reference Materials

PICK LOCATION

TYPE

Initial Structure

PICK_LOCATION
(PICK_LOCATION2)

PURFOSE

PICK_LOCATION is the name assigned at initialization to the system-
created picking location.

DEFAULT

At system initialization, the pick location is defined as the center of the
cursor.

NOTE

The initial TABLETIN function instance is connected to PICK LOCA-
TION and the system-initialized CURSOR points to its center.

Initial Function Instances RM3-57

Appendix A

Initial Function Instances by Category

. Data Input

BUTTONSIN
DIALS
FKEYS
KEYBOARD
MOUSEIN
PICK
SPECKEYS
TABLETIl~T
TABLETOUT

. Data Output

CLEAR LABELS
DLABELI...DLABEL8
DSETI...DSET8
FLABELO
FLABELI...FLABELI2
HOSTOUT
OFFBUTTONLIGHTS
ONBUTTONLIGHTS

. Miscellaneous

ERROR
HOST_MESSAGE
HOST_MESSAGEB
INF0~1'VIATION
MEMORY ALERT

RM3-58 Reference Materials

• Miscellaneous (continued)

MEMORY MONI'T'OR

MESSAGE DISPLAY
PS390ENV
SHADINGENVIRONMENT
'1'~;COLOR
WARNIl~IG
WRITEBACK

Initial Function Instances RM3-59

RM4. GRAPHICS SUPPORT ROUTINES

coNrENrs

1. PS 390 GSR Error Code Definitions 2

PAttch
PAttach 8
PAttr
PAttrib 11
PAttr2
PAttrib2 13
PBeg
PBegin 16
PBegS
PBeginS 17
PBspl 18
PChRot
PCharRot 21
PChs
PChars 22
PChSca
PCharSca 24
PConn
PConnect 26
PCopyv
PCopyVec 28
PDefPa
PDefPatt 30
PDelet
PDelete 32

PDelim 33
PDeLOD
PDecLOD 34

PDeIW
PDelWild 35

t

PDi
PDisc 36
PDiAII
PDis cAll 3 8
PDInfo
PDevInfo 39
PDiOut
PDisc~ut 40
PDisp
PDisplay 41
PDtach
PDetach 42
PEnd 43
PEndOp
PEndOpt 44
PEndS 45
PEraPa
PEraPatt 46
PEyeBk
PEyeBack 47
PFn
PFnInst 49
PFnN
PFnInstN 50
PFoll 52
PFont 53
PForg
PForget 54
PFov 55
PGet 5 ~
PGetW
PGetWait 59
PGUCPU
PGiveUpCPU 61
PIfBit 62
PIfLev
PIfLevel 64
PIfPha
PIfPhase 66
PIllum
PIllumin 6S
PIncl ~p

it

PInit 71
PInitC 72
PInitD 73
PInitN 74
PInLOD
PIncLOD 75
PInst 76
PLaAdd
PLabAdd 77
PLaBeg
PLabBegn 79
PLaEnd
PLabEnd 81
PLoad 82
PLookA
PLookAt 83
PMat22
PMat2x2 85
PMat33
PMat3x3 86
PMat43
PMat4x3 87
PMat44
PMat4x4 89
PMuxCI 90
PMuxG 91
PMuxP
PMuxPars 92
PNiI
PNameNil 93
POpt
POptStru 94
PPatyVi
PPatWith 9 5
PP1ygA
PP1ygAtr 9 6
PP1ygB
PP1ygBeg 97
PP1ygE
PP1ygEnd 99
PP1ygH
PPIygHSI
PP1ygLisHSI 100

.

.

ttt

PP1ygL
PP1ygLis 104

PPlygO
PPlygOtl 107
PP1ygR
PP1ygRGB
PPlygLisRGB 109
PPoly 113
PPref 115

PPurge 116

PPutG 117
PPutGX 118
PPutP
PPutPars 119
PRasCp 120
PRasEr 122
PRasLd 124
PRasWP 126
PRawBI
PRawBlo 128
PRaWRP' 129
PRBspI 130
PRem 133
PRemFo
PRemFoll 13 4
PRemFr
PRemFrom 13 5
PRemFr
PRemPref 136
PRotX 137
PRotY 138
PRotZ 139
PRPoIy 140
PRsvSt
PRsvStor 143
PSavBeg 144
PSavEnd 145
PScale
PScaleBy 146
PSeBit
PSetBit 147
PSeChF
PSetChrF ~ 149

tv

PSeChS
PSetChrS 151
PSeChW
PSetChrW 153
PSeCns
PSetCnes 155
PSeCoI
PSetColr 156
PSeCon
PSetCont 15 8
PSecPI
PSecPlan 159
PSeDAI
PSetDAll 160
PSeDCL
PSetDCL 161
PSeDOF
PSetDOnF 163
PSeInt
PSetInt 164
PSeLnt
PSetLinT 166
PSeLOD
PSetLOD 169
PSePID
PSetPID 171
PSePLo
PSetPLoc 172
PSePOf
PSetPOnf 174
PSeR
PSetR 175
PSeREx
PSetRExt 177
PSnBoo
PSndBool 178
PSnFix
PSndFix 180
PSnM2d
PSndM2d 182
PSnM3d
PSndM3d 184

v

PSnM4d
PSndM4d 186
PSnPL
PSndPL 18 8

PSn~Zea
PSndReal 190

PSnRSt
PSndRStr 191

PSnSt
PSndStr 193

PSnV2d
PSndV2d 195

PSnV3d
PSndV3d 197

PSnV4d
PSndV4d 199
PSnVaI
PSndVal 201
PSnVL
PSndVL 203
PSo1Re
PSolRend 20 5
PStdFo
PStdFont 206
PSURGB
PSUTIL HSIR~B 207
PSurRe
PSurRend 208
PTrans
PTransBy 209
PVar 211
PVcBeg
PVecBegn 212
PVcEnd
PVecEnd 215
PVcLis
PVecList 216
PVcMax
PVecMax 219
PViewP 220
PWindo
PWindow 222

Vl

PWrtBk
PWrtBack 224
PXfCan
PXfCancl 225
PXfMat
PXfMatrx 226
PXfVec
PXfVectr 227

Appendix A
GSRs and Corresponding ASCII Commands 228

vil

TABLES

Table 4-1. Warning Codes 2
Table 4-2. Command Error Codes 3
Table 4-3. User Error Codes 4
Table 4-4. Parsing Error Codes 6
Table 4-5. Fatal Error Codes 7
Table 4-6. Internal GSR Validity Fatal Error Codes 7

Section RM4

Graphics Support Routines

This section contains a listing of the VAX FORTRAN and Pascal, IBM FORT
and Pascal, and UNIX/C Graphics Support Routines (GSRs), and error tables
which define the possible error codes used to identify warning, error or fatal error
conditions that may arise while using the GSRs. Section TT3 Using the GSRs
discusses GSR conventions and definitions, error handling, and programming
suggestions.

Utility Routines and Application Routines are the two types of GSRs. Utility Rou-
tines are specific to the operation of the GSRs, and are used to attach the PS 390,
set the string delimiting character, select multiplexing channels, send and receive
messages, and detach. Application Routines correspond almost one for one with
the standard PS 390 commands. The raster routines do not have a corresponding
ASCII command. In most cases, the names for the Application Routines were de-
rived by choosing an abbreviation of the PS 390 commands and prefixing it with a
P. Parameter ordering generally coincides with the PS 390 command as well. In
this section, the Utility and Application Routines for each language and operating
system are grouped together. They are listed in alphabetical order according to the
FORTRAN GSR. Appendix A lists the GSRs and the corresponding ASCII com-
mand or utility or raster routine name.

The upper left corner lists the PS 390 command if it is an Application Routine or

notes that it is a Utility Routine. The upper right corner lists the name of the GSR

for the FORTRAN, Pascal and LT~~TIX/C languages in that order. The name of the

GSR in a particular language is listed only once if it is identical to another lan-

guage.

The GSRs are listed in the following order: VAX and IBM FORTRAN, VAX Pas-

cal, IBM Pascal, and LT~~TIX/C. The names of the FORTS GSRs are limited to

six characters, and there is no character limit for the names of the Pascal and

UNIX/C GSRs. The LT~~TIX/C GSRs are case-sensitive, and the FORTRAN and Pas-

cal GSRs are not case-sensitive. Note that parameter names, not variable names,

are listed in the GSRs.

Following the listing of the GSRs, a .description summarizes the purpose and
operation of the GSR, and contains comments and notes. The PS 390 Command

Graphics Support Routines RM4-1

and Syntax is listed for the Application Routines. Cross references to related GSRs
are listed under SEE ALSO. Cross reference entries are almost exclusively to
PS 390 commands and not to the name of the GSR.

1. PS 390 GSR Error Code Definitions

The following tables define the possible error codes used to identify warning
or error conditions that may arise while using the Graphics Support Rou-
tines. The set of possible error codes is divided into several regions reserved
for specific severity and machine dependency levels. When there is a differ-
ence in routine names, the Pascal name is given in parentheses. These error
codes apply to DEC VAX/'VMS FORTRAN, DEC VAX/'1l1VIS Pascal, IBM
FGRT~ and IBM Pascal GSRs.

1...255 = Machine INDEPENDENT warning conditions.

256...511 = Machine DEPENDENT warning conditions.

512...767 = Machine INDEPENDENT error conditions.

768...1023 = Machine DEPENDENT error conditions.

1024...1279 = Machine INDEPENDENT fatal error conditions.

1280...1535 = Machine DEPENDENT fatal error conditions.

The following warning codes allow successful completion of the GSR, but
indicate a probable user error.

Table 4-1. Warning Codes

Error
Code Mnemonic ,Meaning,

1 PSWBNC Bad name character. Any invalid PS 390 name
PSw BadNamChr character is translated to the underscore

character.

2 PSWNTL

PSW_NamTooLon

3 PSWSTL

PSW_StrTooLon

Name too long. Name truncated to 256

characters.

String too long. String truncated to 240

characters.

30 PSWPCG The Pixel Count is greater than the screen size
PSW PixCouGre in call to PRASWP. (Reserved for P6.V01 Raster

routines.)

31 PSWPCL

PSW PixCouLes

32 PSWRCG

PSW_RepCouGre

The Pixel Count is less than 1 in call to

PRASWP. (Reserved for P6.V01 Raster routines.)

Repetition count greater than 255 in call to

PRASLU. (Reserved for P6.V01 Raster routines.)

RM4-2 Reference Materials

Table 4-1. (continued)

Error
Code Mnemonic Meaning,

33 PSWRCL

PSW RepCouLes

256 PSWAAD

PSW AttAlrpon

Repetition count less than 1 in call to PRASLU.

(Reserved for P6.V01 Raster routines.)

Attach already done.

257 PSWAKS Attention key seen. This tells the

PSW AtnKeySee error-handling routine that the user hit the

Attention key (IBM version only).

258 PSWBGC The string specified to be sent to the

PSW BadGenChr "generic" output channel of CIROUTE via the

PPutGX routine contained an invalid character

that has been translated to a blank space

character. This error code cannot be caused by

invoking the routine PPutG which does not

perform any translation on the specified string

(IBM version only).

259 PSWBSC Bad string character. Any invalid string

PSW BadStrChr character is converted to a blank space

character.

260 PSWBPC The string specified to be sent to the PS 390

PSW BadParChr Parser via the PPutP (PPutPars) routine

contained an invalid character that has been

translated to a blank space character.

For the following errors, the GSRs abort the current command sequence (if

there is one) and ignore the out-of-sequence command that (probably)

caused this error.

Table 4-2. Command Error Codes

Error
Code Mnemonic Meaning

515 PSEPOE Prefix operate node call expected.

PSE PreOpeExp

516 PSEFOE

PSE FolOpeExp

517 PSELBE

PSE LabBlkExp

Follow operate node call expected.

Label block call expected.

Graphics Support Routines RM4-3

Table 4-2. Command Error Codes (continued)

Error
Code Mnemonic Meaning

518 PSEVLE

PSE VecLisExp

Vector List call expected.

519 PSEANN Attempted multiple PVcLis (PVecList) call

PSE AttMulVec sequence for block normalized vectors

prohibited.

520 PSEMLB

PSE MisLabBeg

521 PSEMVB

PSE MisVecBeg

Missing label block begin call.

Missing vector list begin call.

529 PSEMPB The Begin polygon call is missing. PPLYGA

PSE MisPolBeg (PP1ygAtr), PPLYGL (PPlygLis), or PPLYGE

(PP1ygEnd) was called without the prerequisite

call to PP1ygB (PP1ygBeg).

530 PSEALE

PSE PAtPliPen

531 PSELEX

PSE_PLiPEnExp

532 PSEALX

PSE_PAtPLiExp

533 PSELX

PSE PLiExp

A call to PPLYGA (PP1ygAtr), PPLYGL (PPlygLis),

or PPLYGE (PP1ygEnd) was expected.

A call to PPLYGL (PPlygLis) or PPLYGE

(PP1ygEnd) was expected.

A call to PPLYGA (PPlygAtr) or PPLYGL

(PPlygLis)was expected.

A call to PPLYGL (PPlygLis) was expected.

The following errors are user errors and are generated by invalid parame-
ters or by an unsuccessful attempt to attach.

Table 4-3. User Error Codes

Error
Code Mnemonic ,Meaning,

512 PSEIMC Invalid multiplexing channel argument specified

PSE_InvMuxCha a call to PMuxP (PMuxPars), PmuxCI (PMuxCI), or

PMuxG. The multiplexing channel assigned to the

Parser, CI, or Generic channel is not changed.

513 PSEIVC

PSE_InvVecCla

Invalid vector list class specified in call to

PVcBeg (PVecBegn). Command is ignored.

RM4-4 Reference Materials

Table 4-3. User Error Codes (continued)

Error
Code Mnemonic Meaning

514 PSEIVD

PSE InvVecDim

522 PSENUN

PSE NulNam

523 PSEBCT:

PSE BadComTyp

524 PSEIFN

PSE InvFunNam

525 PSENNR

PSE Nu1NamReq

Invalid vector list dimension specified in call

to PVcBeg (PVecBegn). Command is ignored.

A null name is not permitted in this call

context. The command is ignored.

Bad Comparison type operator specified.

If Level = command ignored.

Attempted PS 390 function instance call failed

because the named function cannot possibly

exist. The function name identifying the

function type to instance was longer than 256

characters.

Null name was required for parameter in operate

node call following a PPref or PFoll routine.

526 PSETME Too many PEndS calls for the number of

PSE TooManEnd preceding PBEGS (PBeginS) calls. Command

ignored.

527 PSENOA The PS 390 communications link has not been

PSE NotAtt established. The user failed to call PAttch

(PAttach) or an error occurred in the attach

routine preventing the communications link from

being created.

528 PSEODR An overrun occurred during a read operation.

PSE OveDurRea The user-supplied input buffer was too small

and truncation has occurred.

534 PSEMPX The polygon specified by the call to PPLYGL

PSE MaxPolExc (PP1ygLis) contains more than 250 vertices.

The polygon is ignored.

535 PSELMP The polygon specified by the call to PPLYGL

PSE LesMinPol (PP1ygLis) contains fewer than 3 vertices. It

is therefore a degenerate polygon and is

ignored.

536 PSEIPA Illegal polygon attributes) specified in the

PSE 111PolAtr call to PPLYGA (PPlygAtr). The attributes)

are ignored.

550 PSEICP

PSE Il1CurPix

Illegal Current Pixel specification in call to

PRASCP. (Reserved for P6.V01 Raster routines.)

Gra hics Support Routines RM4-S
p

Table 4-3. User Error Codes (continued)

Error
Code Mnemonic Meaning

552 PSEIOR

PSE_IndOutRan

553 PSELDC

PSE Il1DCpe

554 PSELNL

PSE_SLUNumLes

555 PSEMGM

PSE MinGreMax

Index out of range: 0...255 in call to

PRASLU. (Reserved for P6.V01 Raster routines.)

Illegal LDC specification in call to PRASLD.

(Reserved for P6.V01 Raster routines.)

NUM parameter less than 1 in call to PRASLD.

(Reserved for P6.V01 Raster routines.)

Minimum > Maximum in call to PRASLR. (Reserved

for P6.V01 Raster routines.)

556 PSEMNO Minimum out of range 0...255 in call to

PSE MinOutRan PRASLR. (Reserved for P6.V01 Raster routines.

557 PSEMXO Maximum out of range 0...255 in call to

PSE MaxOutRan PRASLR. (Reserved for P6.V01 Raster routines.)

558 PSEPNL

PSE_SWPNumLes

NUM parameter less than 1 in call to PRASWP.

(Reserved for P6.V01 Raster routines.)

At the present time, the following three error messages (780, 781, 782) are
only meaningful for Digital Equipment Corporation (DEC) VAX/VMS*
(*Trademark of the Digital Equipment Corporation, Maynard, Massachu-
setts). All three errors indicate that the parameter passed as a string in
PAttch (PAttach) was not successfully parsed and that the Attach call failed.

Table 4-4. Parsing Error Codes

Error
Code Mnemonic Meaning

780 PSEPDT

PSE PhyDevTyp

781 PSELDN

PSE_LogDevNam

782 PSEADE

PSE AttDelExp

This error indicates that a missing or invalid

Physical Device Type was specified in a call to

PAttch (PAttach).

This error indicates that a missing or invalid

Logical Device Name was specified in a call to

PAttch (PAttach).

This error indicates that an Attach delimiter

was expected in a call to PAttch (PAttach).

RM4-6 Reference Materials

The errors listed below indicate a very serious error condition. If the user's
error handler is invoked with any of the error codes listed below, the pro-
gram execution should be aborted.

Table 4-S. Fatal Error Codes

Error
Code Mnemonic

1024 PSFIFC

PSF_I11FraCom

1280 PSFPAF

PSF PhyAttFai

1281 PSFPDF

PSE PhyDetFai

1282 PSFPGF

PSF PhyGetFai

1283 PSFPPF

PSE PhyPutFai

Meaning

Illegal frame command specified in call to

PSUTIL RasMode. This error code indicates an

internal validity check error. E&S Software

Support should be contacted.

Physical Attach operation failed.

Physical Detach operation failed.

Physical Get operation failed.

Physical Put operation failed.

The following three errors are only applicable to the DEC VAX/`VMS ver-
sion of the Graphics Support Routines. All three error codes indicate an
internal Graphics Support Routines validity error. E&S Software Support
should be contacted if these errors are detected.

Table 4-6. Internal GSR Validity Fatal Error Codes

Error
Code Mnemonic

1290 PSFBTL

PSF BufTooLar

1291 PSFWNA

PSF WroNumArg

1292 PSFPTL

PSF ProTooLar

Meaning

Buffer too large in a call to PSPUT.

Internal validity check error.

Wrong number of arguments to low-level I/O

routine in PROIOLIB.MAR. Internal validity

check error.

Prompt too large in call to PSFRCV.

Internal validity check error.

Graphics Support Routines RM4-~

UTILITY ROUTINE

IBM FORTRAN UTILITY ROUTINE

CALL PAttch (Modifiers, ErrHnd)

where:

PAttch
PAttach

Modifiers is a CHARACTER STRING reserved for future use by the Evans &Sutherland
Computer Corporation. It is currently ignored by the IBM GSRs.
ErrHnd is the user-defined error-handler subroutine.

IBM PASCAL UTILITY ROUTINE

PROCEDURE PAttach (CONST Modifiers P VaryingType;

PROCEDURE Error Handler (Error : INTEGER));

where

Modifiers is a CHARACTER STRING reserved for future use by the Evans &Sutherland
Computer Corporation. It is currently ignored by the IBM GRSs.
ErrHnd is the user-defined error-handler subroutine.

DESCRIPTION

This routine attaches the PS 390 to the communications channel. If it is not
called prior to use of the application routines, the error code value
corresponding to PSENOA (PSE NotAtt —Pascal) is generated, indicating that
the PS 390 communications link has not been established.

VAX FORTRAN UTILITY ROUTINE

CALL PAttch (Modifiers, ErrHnd)

VAX PASCAL UTILITY ROUTINE

PROCEDURE PAttach (%DESCR Modifiers P VaryingType;

PROCEDURE Error_Handler (Error INTEGER));

DESCRIPTION

This procedure attaches the PS 390 to the communications channel. If this
procedure is not called prior to use of the Application Procedures, the error

RM4-8 Reference Materials

UTILITY ROUTINE PAttch
PAttach

(continued)

code value corresponding to the name, PSENOA (PSE_NotAtt —Pascal), is

generated, indicating that the PS 390 communications link has not been

established. The parameter, Modifiers, must contain the phrases:

LO GDEVNAM=name /PHYDEVTYP=typ e

where `name' refers to the logical name of the device that the GSRs will

communicate with, i . e . TTA6: , '1T1'132 : XMEO : , PS : , etc . and `type' refers to the

physical device type of the hardware interface that the GSRs will communicate

through. This last argument can only be one of the following three interfaces:

ASYNC (standard RS-232 asynchronous communication interface)
PARALLEL (Parallel interface option)
ETHERNET (DECnet Ethernet option)

The parameter string must contain E~:ACTLY one "/" and blanks are NOT

allowed to surround the "_" in the phrases. The Patach parameter string is not

sensitive to upper or lower case.

Example: PAttach ('logdevnam=tta2:/phydevtyp=async ' , Error_Handler);

where `tta2:' is the logical device name of the PS 390, and the hardware

interface is standard asynchronous RS-232.

Example: PAttach ('logdevnam=ps:/phydevtyp=ethernet' , Error Handler);

where the physical device type is an Ethernet interface, and where the user has

informed the VAX that the logical symbol `ps:' refers to the name of the logical

device that the GSRs will communicate with using the following ASSIGN

command

$ ASSIGN XNIDO: PS

$ RUN <application-pgm>

Graphics Support Routines RM4-9

UTILITY ROUTINE

UNIX/C UTILITY ROU'T'INE

#include <ps300/gsrext.h>

PAttach(devname

where

string devname;

DDS CRIPTION

PAttch
PAttach

(continued)

PAttach establishes a communication channel between a UNIX process and the
PS 390. The devname parameter is a character string specifying the
communication channel. The following channels are supported:

ASYNC (RS-232 asynchronous interface)
To use the asynchronous serial communications channel to the PS 390,
devname should be "—" in the case of stdout and "/dev/ttyxx" otherwise.

PARALLEL (parallel interface option)
To use the Unibus Parallel Interface device, devname should be a string of the
form "/dev/pixy", where pixy is a special file referring to a parallel interface
device unit. Check with your system manager to get the names) of the Parallel
Interface special

files)

for your system.

ETHERNET (Ethernet interface option)
To use the Ethernet interface, devname should be a string representing the
network node as listed in the /etc/hosts file.

PAttach returns 0 (Zero) on successful attach and 1280 (PSF_PhyattFai) on
unsuccessful attach. The PAttach function must be called prior to any other
routine in the GSR library.

SEE ALSO

PDtach, PDetach

RM4-10 Reference Materials

ATTRIBUTES

VAX and IBM FORTRAN GSR

PAttr

PAttrib

CALL PAttr (Name, Hue, Saturation, Intensity, Opaque, Diffused,

Specular, ErrHnd)

where

Name is a CHARACTER STRING
Hue is a REAL
Saturation is a REAL
Intensity is a REAL
Opaque is a REAL
Diffused is a REAL
Specular is an INTEGER * 4
Errhnd is the user-defined error-handler subroutine

VAX PASCAL GSR

PROCEDURE PAttrib (%DESCR Name P Varying_Type;

Hue REAL;

Saturation REAL;

Intensity REAL;

Opaque REAL;

Diffused REAL; {default .75}

Specular REAL; {default 4}

Procedure Error_Handler (Err INTEGER));

IBM PASCAL GSR

PROCEDURE PAttrib (CONST Name STRING;

Hue REAL;

Saturation REAL;

Intensity REAL;

Opaque REAL;

Diffused REAL; {default .75}

Specular REAL; {default 4}

Procedure Error_Handler (Err INTEGER));

Graphics Support Routines RM4- I 1

ATTRIBUTES

UNIX/C GSR

PAttr
PAttrib

(continued)

#include<ps300/gsrext.h>

PAttrib (name,hue,saturation,intensity, opaque, diffused, specular)

where:

string name;
double hue, saturation, intensity, opaque, dif fused;
integer specular;

DESCRIPTION

This routine defines polygon characteristics used by the rendering firmware in
the PS 390 to produce shaded renderings. Hue, saturation and intensity define
the color of the polygon. Hue specifies an angle between 0 and 360 indicating
the color on a color wheel with pure blue being 0, red being 120 and green
being 240. Saturation specifies the saturation of the color with 0 being no color
and 1 being full saturation. Intensity specifies the intensity of the color with 0
being no color (black) and 1 being full intensity. Opaque specifies how
transparent the polygon is with 1 being fully opaque and 0 being fully
transparent. Diffused is the proportion of color contributed by diffuse
reflection versus that contributed by specular reflection with a value of 1
eliminating all specular highlighting and a value of 0 eliminating all diffuse
reflectivity. Specular adjusts the concentration of specular highlights in the
range of 0 to 10.

PS 390 Command and Syntax

Name : = ATTRIBUTES [COLOR h [, s [i]]] [DIFFUSE d] [SPECULAR s] [OPAQUE t] ;

SEE ALSO

POLYGON

RM4-12 Reference Materials

ATTRIBUTES

VAX and IBM FORTRAN GSR

PAttr2
PAttrib2

CALL PAttr2 (Name, Hue, Saturation, Intensity, Opaque, Diffused,

Specular, Hue2, Saturation2, Intensity2, Opaque2,

Diffused2, Specular2, ErrHnd)

where:

Name is a CHARACTER STRING

Hue is a REAL

Saturation is a REAL

Intensity is a REAL

Opaque is a REAL

Diffused is a REAL

Specular is an INTEGER* 4

Hue2 is a REAL
Saturation2 is a REAL

Intensity2 is a REAL

Opaque2 is a REAL

Diffused2 is a REAL

Specular2 is an INTEGER* 4

Errhnd is the user-defined error-handler subroutine

VAX PASCAL GSR

PROCEDURE PAttrib2 (%DESCR Name P_Varying_Type;

Hue REAL;

Saturation REAL;

Intensity REAL;

Opaque REAL;

Diffused REAL; {default .75}

Specular REAL; {default 4}

Hue2 REAL;

Saturation2 REAL;

Intensity2 REAL;

Opaque2 REAL;

Diffused2 REAL; {default .75}

Specular2 REAL; {default 4}

Procedure Error Handler (Err INTEGER));

Graphics Support Routines RM4-13

ATTRIBUTES

IBM PASCAL GSR

PAttr2
PAttrib2

(continued)

PROCEDURE PAttrib2 (CONST Name STRING;

Hue REAL;

Saturation REAL;

Intensity REAL;

Opaque REAL;

Diffused REAL; {default .75}

Specular INTEGER; {default 4}

Hue2 REAL;

Saturation2 REAL;

Intensity2 REAL;

Opaque2 REAL;

Diffused2 REAL; {default .75}

Specular2 : INTEGER; {default 4}

Procedure Error_Handler (Err INTEGER));

C UNIX/C GSR

#include <ps300/gsrext.h>

PAttrib2 (name,huel,saturationl,intensityl,opaquel,diffusedl,specularl,

hue2,saturationl,intensityl, opaque2,diffused2,specular2)

where:

string name;
double hue 1, saturation 1, intensity 1, opaque 1, dif fused 1;
integer specularl;

string name;
double hue2,saturationl,intensity2,opaque2,diffused2;
integer specularl;

DESCRIPTION

This routine defines polygon characteristics used by the rendering firmware in
the PS 390 to produce shaded renderings. This routine allows for a second set
of attributes to be defined for the backside of polygons.

RM4-14 Reference Materials

ATTRIBUTES PAttr2

PAttrib2

(continued)

PS 390 Command and Syntax

Name : = ATTRIBUTES [COLOR h [, s [i]]] [DIFFUSE d] [SPECULAR s] [OPAQUE t] ;

AND [COLOR h2 [, s2 [i2]]] [DIFFUSE d2] [SPECULAR s2]

[OPAQUE t 2] ;

Graphics Support .Routines RM4-1 S

BEGIN

VAX and IBM FORTRAN GSR

CALL PBeg (ErrHnd}

where

ErrHnd is the user-defined error-handler subroutine.

VAX PASCAL GSR

PROCEDURE PBegin (PROCEDURE Error Handler (Err INTEGER));

IBM PASCAL GSR

PROCEDURE PBegin (PROCEDURE Error_Handler (Err INTEGER));

UNIX/C GSR

#include <ps300/gsrext.h>

PBegin();

DESCRIPTION

PBeg
PBegin

This routine is used with the END routine to group a set of viewing and/or
modeling commands so that they appear to be executed simultaneously.

PS 390 Command and Syntax

Name := BEGIN...END;

sEE ~s o

END

RM4-16 Reference Materials

BEGIN STRUCTURE

VAX and IBM FORTRAN GSR

CALL PBegS (Name, ErrHnd)

where

Name is a CHARACTER STRING
ErrHnd is the user-defined error-handler subroutine.

VAX PASCAL GSR

PROCEDURE PBeginS (%DESCR Name P_VaryingType;

PROCEDURE Error_Handler (Err : INTEGER));

IBM PASCAL GSR

PROCEDURE PBeginS (CONST Name STRING;

PROCEDURE Error_Handler (Err INTEGER));

UNIX/C GSR

#include <ps300/gsrext.h>

PBeginS(name) ;

where:

string name;

DESCRIPTION

PBegS
PBeginS

This routine is used with the END STRUCTURE routine to group a set of
viewing and/or modeling commands so that each element does not need to be
explicitly named.

PS 390 Command and Syntax

Name := BEGIN Structure...END Structure;

SEE ALSO

END STRUCTURE

Graphics Support Routines RM4-17

BSPLINE PBspl

VAX and IBM FORTRAN GSR

CALL PBspl (Name, Order, OpenClosed, NonPeriodic_Periodic, Dimension,

Nvertices, Vertices, KnotCount, Knots, Chords, ErrHnd)

where

Name is a CHARACTER STRING
Order is an INTEGER* 4 specifying the order of the B-spline
OpenClosed is a LOGICAL * 1
NonPeriodic Periodic is a LOGICAL * 1
Dimension is an INTEGER* 4
Nvertices is an INTEGER* 4 specifying the number of vertices
Vertices is defined: REAL * 4 Vertices (4, Nvertices} specifying the vertices

where: Vertex (l,n) = x (n)

Vertex (2,n) = y (n)

Vertex (3,n) = z (n)

Vertex (4,n) is not used.

KnotCount is an INTEGER * 4 specifying the number of knots
Knots is an array (KnotCount+ 1) of REAL * 4 specifying the knot sequence
Chords is an INTEGER* 4 specifying the number of vectors to be created
ErrHnd is the user-defined error-handler subroutine.

VAX PASCAL GSR

PROCEDURE PBspl (%DESCR Name P_VaryingType;

Order INTEGER;

OpenClosed BOOLEAN;

NonPeriodic_Periodic: BOOLEAN;

Dimension : INTEGER;

N_Vertices INTEGER;

VAR Vertices P_VectorListType;

KnotCount INTEGER;

VAR Knots P_KnotArrayType;

Chords INTEGER;

PROCEDURE Error_Handler (Err INTEGER));

RM4-18 Reference Materials

BSPLINE

IBr/I PASCAL GSR

PBspl

(continued)

PROCEDURE PBspl (CONST Name STRING;

Order INTEGER;

Openclosed BOOLEAN;

NonPeriodic Periodic: BOOLEAN;

Dimension INTEGER;

N Vertices INTEGER;

CONST Vertices P VectorListType;

Knotcount INTEGER;

CONST Knots P_KnotArrayType;

Chords INTEGER;

PROCEDURE Error_Handler (Err INTEGER));

UNIx/C GSR

#include <ps300/gsrext.h>

PBspl(name,order,openclosed,nonperiodic_periodic,dimension,n_vertices,

vertices, knotcount, knots,chords)

where

string name;
integer order, dimension, n_vertices, knotcount, chords;
boolean Openclosed, nonperiodic~eriodic;
P_VectorListType vertices;
P_KnotArrayType knots;

DES cRIPTION

This routine evaluates a B-spline curve, allowing the parametric description of
the curve form without having to specify the coordinates of each vector.

In the parametric definitions

• Name specifies the name to be assigned to the computed B-spline.
• Order is the order of the curve.
• Openclosed is TRUE for open and FALSE for closed.
• NonPeriodic_Periodic is TRUE for nonperiodic and FALSE for periodic.

Dimension is 2 or 3 (2 or 3 dimensions respectively).

Graphics Support Routines R~V14-19

BSPLINE Pi~spl

(continued)

• N Vertices specifies the number of vertices.
• Vertices specifies the vertices of the B-spline.
• Knotcount specifies the number of knots.
• Knots specifies the knot sequence to be used in computing the B-spline.

• Chords is the number of vectors to be created.

NOTE

None of the parameters in the routine are optional. If
Knotcount = 0, then the default knot sequence is generated
and the knot array is ignored. In the PS 390 command,
dimension is implied by the syntax.

PS 390 Command and Syntax

Name := BSPLINE ORDER = k [OPEN/CLOSED] [NONPERIODIC/PERIODIC] [N = n)

[VERTICES =] X1,Y1,Z1

X2,Y2,Z2

Xn,Yn,Zn

[KNOTS] = tl,t2,...,tj

CHORDS = q;

SEE ALSO

RATIONAL BSPLINE, POLYNOI~'IIAL, RATIONAL POLYNO

RM4-20 Reference Materials

4~

CHARACTER ROTATE

VAX and IBM FORTRAN GSR

CALL PChRot (Name, Angle, Apply, ErrHnd)

where

Name is a CHARACTER STRING
Angle is a REAL * 4
Apply is a CHARACTER STRING
ErrHnd is the user-defined error-handler subroutine.

VAX PASCAL GSR

PROCEDURE PCharRot (%DESCR Name P VaryingType;

Angle REAL;

%DESCR AppliedTo P_VaryingType;

PROCEDURE Error_Handler (Err INTEGER));

IBM PASCAL GSR

PROCEDURE PCharRot (CONST Name STRING;

Angle SHORTREAL;

CONST AppliedTo STRING;

PROCEDURE Error_Handler (Err : INTEGER));

UNIXIC GSR

#include <ps300/gsrext.h>

PCharRot(name, angle,appliedto)

where

string name, appliedto;
double angle;

DESCRIPTION

PChRot
PCharRot

This routine rotates the specified characters (Apply/AppliedTo), where

Angle is the Z-rotation angle in degrees.

PS 390 Command and Syntax

Name := CHARacter ROTate Angle [APPLied to namel];

Graphics Support Routines RM4-21

CHARACTERS PChs

PChars

VAX and IBM FORTRAN GSR

CALL PChs (Name, TranX, TranY, TranZ, StepX, StepY, Chars, ErrHnd)

where

Name is a CHARACTER STRING
TranX, TranY, TranZ are REAL * 4
StepX, StepY are REAL * 4
Chars is a CHARACTER STRING
ErrHnd is the user-defined error-handler subroutine.

VAX PASCAL GSR

PROCEDURE PChars

IBM PASCAL GSR

(

%DESCR Name P VaryingType;

TranX REAL;

TranY REAL;

TranZ REAL;

StepX REAL;

StepY REAL;

%DESCR Chars P VaryingType;

PROCEDURE Error Handler (Err INTEGER)).;

PROCEDURE PChars (CONST Name STRING;

TranX SHORTREAL;

TranY SHORTREAL;

TranZ SHORTREAL;

StepX SHORTREAL;

StepY SHORTREAL;

CONST Chars STRING;

PROCEDURE Error Handler (Err INTEGER));

UNIXIC GSR

#include <ps300/gsrext.h>

PChars(name,tranx,trany,tranz,stepx,stepy,chars)

where

string name, chars;
double tranx,trany,tranz,stepx,stepy;

RM4-22 Reference Materials

CHARACTERS

DES CRIP~'ION

PChs
PChars

(continued)

This routine defines a character string Chars and specifies its location and
placement. It has the following parametric definitions:

TranX, TranY, and TranZ give the x,y,z coordinates of the location of the
beginning of the character string .

StepX, StepY give the spacing between characters in character unit size.

PS 390 Command and Syntax

Name : = CHARacters [x, y [, z] [STEP dx, dy] 'string' ;

SEE A.~SO

CHARAC'1'.~R ROTATE, C CTER SCALE, SET C C'1'ERS

Graphics Support Routines RM4-23

CHARACTER SCALE

VAX and IBM FORTRAN GSR

CALL PChSca (Name, ScaleX, ScaleY, Apply, ErrHnd)

where

Name is a CHARACTER STRING
ScaleX, ScaleY are REAL * 4
Apply is a CHARACTER STRING
ErrHnd is the user-defined error-handler subroutine.

VAX PASCAL GSR

PROCEDURE PCharSca (%DESCR Name P VaryingType;

ScaleX REAL;

ScaleY REAL;

%DESCR AppliedTo P VaryingType;

PROCEDURE Error Handler (Err INTEGER));

IBM PASCAL GSR

PROCEDURE PCharSca CONST Name STRING;

ScaleX SHORTREAL;

ScaleY : SHORTREAL;

CONST AppliedTo STRING;

PROCEDURE Error_Handler (Err INTEGER));

UNIX/C GSR

#include <ps300/gsrext.h>

PCharSca(name,scalex,scaley,appliedto)

where:

string name, appliedto;
double scalex, scaley;

PChSca
PCharSca

RM4-24 Reference Materials

~""1 CHARACTER SCALE

DESCRIPTION

PChSca
PCharSca

(continued)

This routine creates a uniform 2x2 scale matrix to scale the specified
characters (Apply/Applied to}, where ScaleX and ScaleY give the scaling
factors for the x and y axes.

PS 390 Command and Syntax

Name := CHARacter SCAle s [APPLied to namel];

Name := CHARacter SCAle sx,sy [APPLied to namel];

SEE ALSO

CHARACTER ROTATE, C C'1'ERS, SET CHARACTERS

Graphics Support Routines RM4-25

CONNECT

VAX and IBM FORTRAN GSR

CALL PConn (Source, Output, Input, Destination, ErrHnd)

where

Source is a CHARACTER STRING
Output is an INTEGER * 4
Input is an INTEGER * 4
Destination is a CHARACTER STRING
ErrHnd is the user-defined error-handler subroutine.

VAX PASCAL GSR

PROCEDURE PConnect (%DESCR Source

Output

Input

%DESCR Destination

IBM PASCAL GSR

P VaryingType;

INTEGER;

INTEGER;

: P VaryingType;

PROCEDURE Error Handler (Err : INTEGER));

PROCEDURE PConnect (CONST Source

Output

Input

CONST Destination

STRING;

INTEGER;

INTEGER;

STRING;

PROCEDURE Error Handler (Err : INTEGER));

UNIX/C GSR

#include <ps300/gsrext.h>

PConnect(source,output,input,destination)

where:

string source, destination;
integer output, input;

PConn
PConnect

RM4-26 Reference Materials

CONNECT

DESCRIPTION

PConn
PConnect

(continued)

This routine connects the Output of the function instance Source to the Input
of the function instance or display structure Destination.

PS 390 Command and Syntax

CONNECT namel<i>:<j>name2;

SEE ALSO

DISCOI~INECT

Graphics Support Routines RM4-2 7

CGPY PCopyV

PCopyVec

VAX and IBM FORTRAN GSR

CALL PCopyV (Name, CopyFrom, Start, Count, ErrHnd) where:

Name is a CHARACTER STRING
CopyFrom is a CHARACTER STRING
Start is an INTEGER * 4

Count is an INTEGER* 4
ErrHnd is the user-defined error-handler subroutine.

VAX PASCAL GSR

PROCEDURE PCopyVec (%DESCR Name P VaryingType;

%DESCR CopyFrom : P VaryingType;

Start INTEGER;

Count INTEGER;

PROCEDURE Error_Handler (Err INTEGER));

IBM PASCAL GSR

PROCEDURE PCopyVec (CONST Name STRING;

CONST CopyFrom STRING;

Start INTEGER;

Count INTEGER;

PROCEDURE Error_Handler (Err : INTEGER));

UNIX/C GSR

#include <ps300/gsrext.h>

PCopyVec(name,copyfrom,start,count)

where

string name, copyfrom;
integer start, count;

RM4-28 Reference Materials

COPY

DESCRIPTION

PCopyV

PCopyVec

(continued)

This routine creates a vector list Name containing a group of consecutive
vectors copied from another vector list CopyFrom or a labels node containing a
group of consecutive labels, where Start is the first vector to be copied and
Count is the number of vectors to be copied.

PS 390 Command and Syntax

Name : = COPY name 1 [START=] i [,] [COUNT=] n ;

Graphics Support Routines RM4-2 9

PATTERN

VAX and IBM FORTRAN GSR

PDefPa

PDefPatt

CALL PDefPa (Name, Segments, Pattern, Continuous, Match, Length,

ErrHnd)

where

Name is a CHARACTER STRING
Segments is an INTEGER* 4
Pattern is an INTEGER* 4 (Segments) Array
Continuous is a LOGICAL
Match is a LOGICAL
Length is a REAL
ErrHnd is the user-defined error-handler subroutine

VAX PASCAL GSR

PROCEDURE PDefPatt (%DESCR Name 1 P VaryingType;

Segments INTEGER;

VAR Pattern P_PatternType;

Continuous BOOLEAN;

Match BOOLEAN;

Length REAL;

PROCEDURE Error Handler (Err INTEGER));

IBM PASCAL GSR

PROCEDURE PDefPatt (CONST Name 1 STRING;

Segments INTEGER;

CONST Pattern P_PatternType;

Continuous BOOLEAN;

Match BOOLEAN;

Length REAL;

PROCEDURE Error_Handler (Err : INTEGER));

UNIX/C GSR

#include <ps300jgsrext.h>

PDefPatt(namel,segments,pattern,continuous,match,length

where:

string name 1;
integer segments;
P_PatternType pattern;
boolean continuous, match;
double length;

RM4-30 Reference Materials

PATTERN

DESCRIPTION

PDefPa
PDefPatt

(continued)

This routine defines a pattern that can be used to pattern a vector list or curve.
Segments defines the number of integers used to define the pattern, those
integers given by pattern. Continuous tells whether or not patterning is to go
across multiple vectors. Match tells if the pattern length is to be adjusted to
make the patterning terminate precisely at the endpoints. Length gives the
pattern length.

PS 390 Command and Syntax

Name := PATtern i [AROUND_CORNERS][MATCH/NOMATCH] LENgth r;

Graphics Support Routines RM4-31

DELETE

VAX and IBM FORTRAN GSR

CALL PDelet (Name, ErrHnd)

where:

Name is a CHARACTER STRING
Errhand is the user-defined error-handler subroutine.

VAX PAS CAL GS R

PROCEDURE PDelete (%DESCR Name P_VaryingType;

PROCEDURE Error Handler (Err INTEGER));

IBM PASCAL GSR

PROCEDURE PDelete (CONST Name STRING;

PROCEDURE Error Handler (Err : INTEGER));

UNIX/C GSR

#include <ps300/gsrext.h>

PDelete(name)

where:

string name;

DESCRIPTION

PDelet
PDelete

This routine deletes the name of any previously defined data structure name.
After this routine is issued, all functions and data structures referring to name
will no longer include the data that was associated with name.

PS 390 Command and Syntax

DELete name(,namel...namen];

sEE also

NIL,, FORGET

RM4-32 Reference Materials

r'""1 UTILITY ROUTINE PDelim

VAX FORTRAN UTILITY ROUTINE

CALL PDelim (Newd, ErrHnd)

where:

Newd is a single character CHARACTER STRING that is the new string delimiter

ErrHnd is the user-defined error-handler subroutine.

DESCRIPTION

This routine can be used to change the string delimiting character. The default
string delimiter is " (double quote).

Graphics Support Routines RM4-33

DECREMENT LEVEL OF DETAIL PDeLOD
PDecLOD

VAX and IBM FORTRAN GSR

CALL PDeLOD (Name, Apply, ErrHnd)

where

Name is a CHARACTER STRING
Apply is a CHARACTER STRING
ErrHnd is the user-defined error-handler subroutine.

VAX PASCAL GSR

PROCEDURE PDecLOD (%DESCR Name P VaryingType;

%DESCR AppliedTo P VaryingType;

PROCEDURE Error Handler (Err : INTEGER));

IBM PASCAL GSR

PROCEDURE PDecLOD (CONST Name STRING;

CONST AppliedTo STRING;

PROCEDURE Error Handler (Err : INTEGER));

UNIX/C GSR

#include <ps300/gsrext.h>

PDecLOD(name,appliedto)

where:

string name, appliedto;

DESCRIPTION

This routine decrements the current level-of-detail by 1.

PS 390 Command and Syntax

Name := DECrement LEVel of detail [APPLied to namel];

SEE ALSO

INCREl~IENT_LEVEL_OF DETAIL, IF LEVEL OF DETAIL

RM4-34 Reference Materials

DELETE ANY_STRING*

VAX and IBM FQRTRAN GSR

CALL PDe1W (Name, ErrHnd)

where

Name is a CHARACTER STRING
Errhnd is the user-defined error-handler subroutine

VAX PAS CAL GS R

PROCEDURE PDelWild (%DESCR Name P VaryingType;

PROCEDURE Error Handler (Err INTEGER));

IBM PASCAL GSR

PROCEDURE PDelWild (CONST Name STRING;

PROCEDURE Error Handler (Err : INTEGER));

UNIX/C GSR

#include <ps300/gsrext.h>

PDelWild(name)

string name;

DESCRIPTION

PD e1W
PDelWild

This routine deletes all names that begin with the string specified by name.

PS 390 Command and Syntax

DELete ANY STRING*;

SEE ALSO

N]L, FORGET

Graphics Support Routines RM4-3S

DISCONNECT

VAX and IBM FORTRAN GSR

CALL PDi (Source, Output, Input, Destination, ErrHnd)

where

Source is a CHARACTER STRING
Output is an INTEGER * 4
Input is an INTEGER* 4
Destination is a CHARACTER STRING
Errhnd is the user-defined error-handler subroutine.

VAX PASCAL GSR

PROCEDURE PDisc (%DESCR Source P VaryingType;

Output : INTEGER;

Input : INTEGER;

%DESCR Destination P VaryingType;

PROCEDURE Error_Handler (Err INTEGER));

IBM PASCAL GSR

PROCEDURE PDisc CONST Source STRING;

Output INTEGER;

Input : INTEGER;

CONST Destination STRING;

PROCEDURE Error_Handler (Err INTEGER));

UNIX/C GSR

#include <ps300/gsrext.h>

PDisc(source, output, input, destination)

where:

string source, destination;
integer output,input;

DESCRIPTION

PDi
PDisc

This routine disconnects the output number Output of the function instance
Source from the Input of the function instance or display structure
Destination.

RM4-36 Reference Materials

DISCONNECT

PS 390 Command and Syntax

DISCONNect namel<i>:<j>name2;

SEE ALSO

CONNECT

PDi

PDisc

(continued)

Graphics Support Routines RM4-37

DISCONNECT ALL

VAX and IBM FORTRAN GSR

PDiAll (Source, ErrHnd)

where:

Source is a CHARACTER STRING
ErrHnd is the user-defined error-handler subroutine.

VAX PAS CAL G S R

PROCEDURE PDiscAll (%DESCR Source : P VaryingType;

PROCEDURE Error Handler (Err : INTEGER));

IBM PASCAL GSR

PROCEDURE PDiscAll (CONST Source STRING;

PROCEDURE Error_Handler (Err INTEGER));

UNIX/C GSR

#include <ps300/gsrext.h>

PDiscAll(source)

where

string source;

DESCRIPTION

PDiAII
PDiscAll

This routine disconnects all outputs of Source from all inputs to function
instances or display structures.

PS 390 Command and Syntax

DISCONNect namel:ALL;

SEE ALSO

coNNECT

RM4-38 Reference Materials

UTILITY ROUTINE

VAX FORTRAN UTILITY ROUTINE

CALL PDInfo (Channel, Device, Status, ErrHnd)

where

Channel is an INTEGER * 4 that is the VAX Q I/O channel number

Device is an INTEGER * 4 that is the device code, where
1 is unused
2 is the code for asynchronous interface
3 is the code for the parallel interface
4 is the code for the Ethernet interface

Status is an INTEGER* 4 that is the status, where;
0 is not attached
1 is attached

ErrHand is the user-defined error-handler subroutine

VAX PASCAL UTILITY ROUTINE

PDInfo
PDevInfo

[GLOBAL] PROCEDURE PDevInfo (VAR Channel_num : INTEGER;

VAR DEVICE TYPE : INTEGER;

VAR Dev status INTEGER;

PROCEDURE Error Handler (Err : INTEGER));

where:

Channel num is the VAX Q I/O channel number

Device_type is the device code, where
1 is unused
2 is the code for asynchronous interface

3 is the code for the parallel interface

4 is the code for the Ethernet interface

Dev status is the status, where;
0 is not attached
1 is attached

DESCRIPTION

This procedure is used to return the Q UO channel number so that users do not

need to detach from the GSRs while doing Physical UO.

Graphics Support Routines RM4-3 9

DISCONNECT OUTPUT

VAX and IBM FORTRAN GSR

CALL PDiOut (Source, Output, ErrHnd)

where

Source is a CHARACTER STRING
Output is an INTEGER * 4
Errhnd is the user-defined error-handler subroutine.

VAX FAS CAL GS R

PROCEDURE PDiscOut (%DESCR Source P VaryingType;

Output INTEGER;

PROCEDURE Error Handler (Err INTEGER));

IBM PASCAL GSR

PROCEDURE PDiscOut (CONST Source STRING;

Output : INTEGER;

PROCEDURE Error Handler (Err INTEGER));

UNIX/C GSR

#include <ps300/gsrext.h>

PDiscOut(source, out

where:

string source;
integer out;

DESCRIPTION

PDiOut
PDiscOut

This routine disconnects the Output of the function instance Source from all
inputs to function instances or display structures.

PS 390 Command and Syntax

DISCONNect namel<i>:ALL;

SEE ALSO

CONNECT

RM4-40 Reference Materials

DISPLAY

VAX and IBM FORTRAN GSR

CALL PDisp (Name, ErrHnd)

where

Name is a CHARACTER STRING
ErrHnd is the user-defined error-handler subroutine.

VAX PASCAL GSR

PROCEDURE PDisplay (%DESCR Name P VaryingType;

PROCEDURE Error_Handler (Err INTEGER));

IBM PASCAL GSR

PROCEDURE PDisplay (CONST Name STRING;

PROCEDURE Error_Handler (Err INTEGER));

UNIX/C GSR

#include <ps300/gsrext.h>

PDisplay(name)

where:

string name;

DESCRIPTION

This routine displays a data structure Name.

PS 390 Command and Syntax

DISPlay Name;

SEE ALSO

REMOVE

PDisp
PDisplay

Graphics Support Routines RM4- 41

UTILITY ROUTINE

VAX and IBM FORTRAN UTILITY ROUTINE

CALL PDtach (ErrHnd)

where

ErrHnd is the user-defined error-handler subroutine .

VAX and IBM PASCAL UTILITY ROUTINE

PROCEDURE PDetach (PROCEDURE Error_Handler (Error : INTEGER));

UNIX/C UTILITY ROUTINE

#include <ps300/gsrext.h>

PDetach()

DESCRIPTION

PDtach
PDetach

This routine detaches (disconnects) the communications link established
between the host and the PS 390. This routine should always be the last GSR
routine called by the application program.

SEE ALSO

PAttch, PAttach

RM4-42 Reference Materials

P'1
END PEnd

VAX and IBM FORTRAN GSR

CALL PEnd (ErrHnd)

where

ErrHnd is the user-defined error-handler subroutine.

VAX PASCAL GSR

PROCEDURE PEnd (PROCEDURE Error_Handler (Err : INTEGER));

IBM PASCAL GSR

PROCEDURE PEnd (PROCEDURE Error_Handler (Err : INTEGER));

UNIX/C GSR

#include <ps300/gsrext.h>

PEnd () ;

DESCRIPTION

This routine is used with the BEGIN routine to group a set of viewing and/or
modeling commands so that they appear to be executed simultaneously.

PS 390 Command and Syntax

Begin...END;

SEE ALSO

BEGIN

Graphics Support Routines RM4-43

END OPTIMIZE

VAX and IBM FORTRAN GSR

CALL PEndop (ErrHnd)

where:

ErrHnd is the user-defined error-handler subroutine

VAX PAS CAL GS R

PROCEDURE PEndOpt (PROCEDURE Error_Handler (Err INTEGER));

IBM PASCAL GSR

PROCEDURE PEndOpt (PROCEDURE Error_Handler (Err INTEGER));

UNIX/C GSR

#include <ps300/gsrext.h>

PEndOpt();

DESCRIPTION

PEndOp

PEndOpt

This routine is used with the O ZE STRUC routine, which places
the PS 390 in an "optimization mode" in which certain elements of the display
structure are created in a way that minimizes Display Processor traversal time.
This routine must be called to complete the sequence. It is strongly suggested
that users familiarize themselves with the O ZE command documentation
in the PS 390 Command Summary before using this routine to learn the full
ramifications and constraints of this command.

PS 390 Command and Syntax

OPTIMIZE STRUCTURE;...END OPTIMIZE;

SEE ALSO

O ZE STRUC

RM4-44 Reference Materials

END STRUCTURE PEndS

VAX and IBM FORTRAN GSR

CALL PEndS (ErrHnd)

where:

ErrHnd is the user-defined error-handler subroutine.

VAX PASCAL GSR

PROCEDURE PEndS (PROCEDURE Error_Handler (Err : INTEGER));

IBM PASCAL GSR

PROCEDURE PEndS (PROCEDURE Error_Handler (Err INTEGER));

UNIXIC GSR

#include <ps300/gsrext.h>

PEndS();

DESCRIPTION

This routine is used with the BEGIN STRUCTURE routine to group a set of
viewing and/or modeling commands so that each element does not need to be
explicitly named.

PS 390 Command and Syntax

Name := BEGIN_Structure...END_Structure;

SEE ALSO

BEGIN STRUCTURE

Graphics Support Routines RM4-45

ERASE PATTERN FROM

VAX and IBM FORTRAN GSR

CALL PEraPa (Name, ErrHnd)

where

Name is a CHARACTER STRING
Errhnd is the user-defined error-handler subroutine

VAX PASCAL GSR

PROCEDURE PEraPatt (%DESCR Namel : P VaryingType;

PROCEDURE Error Handler (Err INTEGER));

IBM PASCAL GSR

PROCEDURE PEraPatt (CONST Namel STRING;

PROCEDURE Error_Handler (Err : INTEGER));

UNIX/C GSR

#include <ps300/gsrext.h>

PEraPatt(name)

where:

string name;

DESCRIPTION

PEraPa
PEraPatt

This routine removes a pattern from name if name is a patterned vector list or
curve .

PS 390 Command and Syntax

ERASE PATTERN FROM Name;

SEE ALSO

PAT'1'~RN, PATTERN WITH

RM4-46 Reference Materials

EYE BACK

VAX and IBM FORTRAN GSR

PEyeBk
PEyeBack

CALL PEyeBk (Name, DistBack, DistHoriz, DistVert, Wide, Front, Back,

Apply, ErrHnd)

where

Name is a CHARACTER STRING
DistBack is a REAL * 4
DistHoriz is a REAL * 4 (positive for right/negative for left)
DistVert is a REAL * 4 (positive for up/negative for down)
Wide is a REAL*4
Front is a REAL * 4
Back is a REAL * 4
Apply is a CHARACTER STRING
ErrHnd is the user-defined error-handler subroutine.

VAX PASCAL GSR

PROCEDURE PEyeBack (%DESCR Name

DistBack
DistHoriz

DistVert

Wide

Front

Back

IBM PASCAL GSR

P VaryingType;

REAL;

REAL;

REAL;

REAL;

REAL;

REAL;

%DESCR AppliedTo P_VaryingType;

PROCEDURE Error_Handler (Err INTEGER));

PROCEDURE PEyeBack (CONST Name STRING;

DistBack SHORTREAL;

DistHoriz SHORTREAL;

DistVert SHORTREAL;

Wide SHORTREAL;

Front : SHORTREAL;

Back : SHORTREAL;

CONST AppliedTo STRING;

PROCEDURE Error Handler (Err INTEGER));

Graphics Support Routines R~V14- 4 ~

EYE BACK

UNIX/C GSR

PEyeBk

PEyeBack

(continued)

#include <ps300/gsrext.h>

PEyeBack(name,distback,disthoriz,distvert,wide,front,back,appliedto)

where:

string name;
double distback,disthoriz,distvert,wide,front,back;
string appliedto;

DESCRIPTION

This routine specifies a viewing pyramid with the following parametric
definitions:

DistBack is the perpendicular distance of the eye from the plane of the
viewport.

DistHoriz is the horizontal distance of the eye, right or left from the viewport
center (positive for right/negative for left).

DistVert is the vertical distance of the eye, up or down from the viewport
center (positive for up/negative for down).

Wide is the width of the viewport.

Front is the front boundary of the frustum of the viewing pyramid.

Back is the back boundary of the frustum of the viewing pyramid.

PS 390 Command and Syntax

Name : = EYE BACK z [optionl] [option2] from screen area w WIDE [FRONT

Boundary = zmin BACK Boundary = zmax] [APPLied to namel];

SEE ALSO

FIELD OF VIEW, OW

RM4-48 Reference Materials

F: FnName
(Function Instancing)

VAX and IBM FORTRAN GSR

CALL PFn (Name, FunctionName, ErrHnd)

where:

Name is a CHARACTER STRING
FunctionName is a CHARACTER STRING
ErrHnd is the user-defined error-handler subroutine.

VAX PASCAL GSR

PROCEDURE PFnInst (%DESCR Name P VaryingType;

%DESCR FunctionName P VaryingType;

PROCEDURE Error_Handler (Err INTEGER));

IBM PASCAL GSR

PROCEDURE PFnInst (CONST Name STRING;

CONST FunctionName STRING;

PROCEDURE Error_Handler (Err INTEGER));

UNIXIC GSR

#include <ps300/gsrext.h>

PFnInst(name,functionname)

where

string name, fcnname;

DESCRIPTION

This routine creates an instance of an intrinsic PS 390 function.

PS 390 Command and Syntax

Name := F:FnName;

PFn

PFnInst

Graphics Support Routines RM4-49

F:FnName(n)

(Function Instancing)

VAX and IBM FORTRAN GSR

CALL PFnN (Name, FunctionName, InOuts, ErrHnd)

where

Name is a CHARACTER STRING
FunctionName is a CHARACTER STRING
InOuts is an INTEGER* 4
ErrHnd is the user-defined error-handler subroutine.

VAX PAS CAL GS R

PROCEDURE PFnInstN (%DESCR Name P_VaryingType;

%DESCR FunctionName P_VaryingType;

In_outs INTEGER;

PROCEDURE Error_Handler (Err INTEGER));

IBM PASCAL GSR

PROCEDURE PFnInstN (CONST Name STRING;

CONST FunctionName STRING;

In_Outs INTEGER;

PROCEDURE Error_Handler (Err : INTEGER));

UNIXIC GSR

#include <ps300/gsrext.h>

PFnInstN(name,functionname,in outs)

where:

string name,functionname;
integer in_outs;

PFnN

PFnInstN

RM4-50 Reference Materials

F:FnName(n)
(Function Instancing)

DESCRIPTION

PFnN

PFnInstN

(continued)

This routine creates an instance of an intrinsic PS 390 function where InOuts is
the number of respective inputs or outputs of the function. Intrinsic functions
that are used by this routine are:

F:CI(n)
F:CIROLTTE(n)
F:CONCATXDATA(n)
F:CROUTE(n)
F:DEMUX(n)
F:INPiJTE_CHOOSE(n)
F:MCAT_STRING(n)
F:I~~NNNMAX (n)
F:PASSTHRU(n)
F:ROIJTE(n)
FROVfEC(n)
F: SYNC (n) .

PS 390 Command and Syntax

Name : = F' : FnName (n) ;

Graphics Support Routines RM4-SI

FOLLOW WITH PFoll

VAX and IBM FORTRAN GSR

CALL PFoll (Name, ErrHnd)

where

Name is a CHARACTER STRING
Errhnd is the user-defined error-handler subroutine.

VAX PAS CAL GS R

PROCEDURE PFoll (%DESCR Name P VaryingType;

PROCEDURE Error_Handler (Err INTEGER));

IBM PASCAL GSR

PROCEDURE PFoll (CONST Name STRING;

PROCEDURE Error_Handler (Err : INTEGER));

UNIX/C GSR

#include <ps300/gsrext.h>

PFoll(name)

where

string name;

DESCRIPTION

This routine follows a named operation node name with another operation
node. The user must first call this routine, and then DIATELY call the
routine corresponding to the "transformation-or-attribute command."

PS 390 Command and Syntax

FOLLOW name WITH option;

SEE ALSO

REMOVE FOLLOWER

RM4-52 Reference Materials

n

CHARACTER FONT PFont

VAX and IBM FORTRAN GSR

CALL PFont (Name, FontName, Apply, ErrHnd)

where:

Name is a CHARACTER STRING
FontName is a CHARACTER STRING
Apply is a CHARACTER STRING
ErrHnd is the user-defined error-handler subroutine.

vAX PASCAL GSR

PROCEDURE PFont (%DESCR Name P_VaryingType;

%DESCR FontName P VaryingType;

%DESCR AppliedTo P_VaryingType;

PROCEDURE Error Handler (Err INTEGER));

IBM PASCAL GSR

PROCEDURE PFont (CONST Name STRING;

CONST FontName STRING;

CONST AppliedTo STRING;

PROCEDURE Error Handler (Err INTEGER));

UNIX/C GSR

#include <ps300/gsrext.h>

PFont(name,fontname,appliedto)

where:

string name, fontname, appliedto;

DESCRIPTION

This routine establishes a character font FontName as the working font for the

specified display structure Apply/AppliedTo .

PS 390 Command and Syntax

Name := character FONT fontname [APPLied to namely ;

Graphics Support Routines RM4-53

FORGET (Structures)

VAX and IBM FORTRAN GSR

CALL PForg (Name, ErrHnd)

where

Name is a CHARACTER STRING
ErrHnd is the user-defined error-handler subroutine .

VAX PASCAL GSR

PROCEDURE PForget (%DESCR Name P VaryingType;

PROCEDURE Error Handler (Err INTEGER));

IBM PASCAL GSR

PROCEDURE PForget (CONST Name STRING;

PROCEDURE Error_Handler (Err : INTEGER));

UNIX/C GSR

#include <ps300/gsrext.h>

PForget(name)

where:

string name;

DESCRIPTION

PForg
PForget

This routine removes Name from the display and from the dictionary of names.
Name is any previously defined data structure name.

PS 390 Command and Syntax

FORget Name;

SEE ALSO

DELETE, NIL

RM4-54 Reference Materials

r"1
FIELD OF VIEW

VAX and IBM FQRTRAN GSR

CALL PFov (Name, Angle, Front, Back, Apply, ErrHnd)

where:

Name is a CHARACTER STRING
Angle is a REAL * 4
Front is a REAL* 4
Back is a REAL * 4
Apply is a CHARACTER STRING
ErrHnd is the user-defined error-handler subroutine.

VAX PASCAL GSR

PROCEDURE PFov (%DESCR Name P VaryingType;

Angle REAL;

Front REAL;

Back REAL ;

%DESCR AppliedTo P VaryingType;

PROCEDURE Error Handler (Err INTEGER));

IBM PASCAL GSR

PROCEDURE PFov (CONST Name STRING;

Angle SHORTREAL;

Front SHORTREAL;

Back SHORTREAL;

CONST AppliedTo STRING;

PROCEDURE Error Handler (Err INTEGER));

UNIXIC GSR

#include <ps300/gsrext.h>

PFov(name, angle,front,back,appliedto)

where:

string name, appliedto;
double angle, front,back;

PFov

Graphics Support Routines RM4-SS

FIELD OF VIEW PFov

(continued)

DESCRIPTION

This routine specifies a right rectangular viewing pyramid with the following

parametric definitions:

Angle is the angle of view from the eye.

Front is the front boundary of the frustum of the viewing pyramid.

Back is the back boundary of the frustum of the viewing pyramid.

PS 390 Command and Syntax

Name := Field Of View Angle FRONT boundary = zmin

BACK boundary = zmax [APPLied to namel];

SEE ALSO

EYEBACK, oW

RM4-56 Reference Materials

UTILITY ROUTINE PGet

VAX and IBM FORTRAN UTILITY ROUTINE

CALL PGet (String, MessageLength, ErrHnd)

where:

String is a CHARACTER STRING that contains the message read from the PS 390
MessageLength is an INTEGER* 4 that is the length of String
ErrHnd is the user-defined error-handler subroutine.

VAX PASCAL UTILITY ROUTINE

PROCEDURE PGet (%DESCR String : P VaryBufType;

PROCEDURE Error Handler (Error INTEGER));

NOTE

The parameter String must be declared to be a
P VaryBufType.

IBM PASCAL UTILITY ROUTINE

PROCEDURE PGet (VAR String STRING;

PROCEDURE Error Handler (Error INTEGER});

UNIXIC UTILITY ROUTINE

#include <ps300/gsrext.h>

PGet(string,max len)

where:

string string;
integer max_len;

Graphics Support Routines RNI4-S 7

UTILITY ROUTINE

DESCRIPTION

PGet

(continued)

The Peet routine is used to poll the PS 390 for input records by requesting a

message that has been sent to the PS 390 function HOST_MESSAGE. The
actual message contents are returned in String. The number of bytes read are
returned in MessageLength. If a PGet call is issued and no message exists to
be sent back to the host, then the returned length of the message
MessageLength is 0. Otherwise, the length of the message is greater than 0,
and indicates the true number of bytes in the message.

NOTE

If the default value for input <2> or input <3> of
HOST MESSAGEB is changed by the user to be something
other than a single carriage return, the above description no
longer applies.

RM4-58 Reference Materials

n

UTILITY ROUTINE

VAX and IBM FORTRAN UTILITY ROUTINE

CALL PGetW (String, MessageLength, ErrHnd)

where:

PGetyV
PGetWait

String is a CHARACTER STRING that contains the message read from the PS 390

MessageLength is an INTEGER* 4 that is the length of String

ErrHnd is the user-defined error-handler subroutine.

VAX PASCAL UTILITY ROUTINE

PROCEDURE PGetWait (%DESCR String : P VaryBufType;

PROCEDURE Error_Handler (Error INTEGER)) ;

NOTE

The parameter String must be declared to be a
P_VaryBufType.

IBM PASCAL UTILITY ROUTINE

PROCEDURE PGetWait (VAR String STRING;

PROCEDURE Error Handler (Error INTEGER)) ;

UNIX/C UTILITY ROUTINE

#include <ps300/gsrext.h>

PGetWait{string,max_len)

where

string string;

integer max_len;

Graphics Support Routines RM4-S 9

UTILITY ROUTINE

DESCRIPTION

PGetW
PGetWait

(continued)

The PGetW routine is used to poll the PS 390 for input records by requesting a

message that has been sent to the PS 390 function HOST MESSAGE. If no

message exists to be read, the PGetW routine will wait until a message arrives

from H~ST_MESSAGE. The actual message contents are returned in String.

The number of bytes read are returned in MessageLength.

NOTE

If the default value for input <2> of H~ST_MESSAGEB is
changed by the user to be something other than a single
carriage return, the above description no longer applies.

Ri1~14-60 Reference Materials

GIVE UP_CPU

VAX and IBM FORTRAN GSR

CALL PGUCPU (ErrHnd}

VAX PASCAL GSR

PGUCPU
PGiveUpCPU

PROCEDURE PGiveUpCPU (PROCEDURE Error Handler (Error : INTEGER));

IBM PASCAL GSR

PROCEDURE PGiveUpCPU (PROCEDURE Error Handler (Error INTEGER));

UNIX/C GSR

#include <ps300/gsrext.h>

PGiveUpCPU ()

DESCRIPTION

This routine is used to avoid potential timing problems when using the
F:ALLOW_VECNORM function for CPK renderings. It causes the command
interpreter to terminate execution temporarily and allow other functions to be
activated.

Graphics Support Routines RM4-61

IF CONDITIONAL BIT PIfBit

VAX and IBM FORTRAN GSR

CALL PIfBit (Name, BitNumber, OnOff, Apply, ErrHnd) where:

Name is a CHARACTER STRING
BitNumber is an INTEGER* 4
OnOff is a LOGICAL* 1
Apply is a CHARACTER STRING
ErrHnd is the user-defined error-handler subroutine.

VAX PASCAL GSR

PROCEDURE PIfBit (%DESCR Name P VaryingType;

BitNumber : INTEGER;

OnOff BOOLEAN;

%DESCR AppliedTo P VaryingType;

PROCEDURE Error Handler (Err INTEGER));

IBM PASCAL GSR

PROCEDURE PIfBit (CONST Name STRING;

BitNumber INTEGER;

OnOff : BOOLEAN;

CONST AppliedTo STRING;

PROCEDURE Error Handler (Err INTEGER));

UNIX/C GSR

#include <ps300/gsrext.h>

PIfBit(name,bitnumber,onoff,appliedto)

where

string name,appliedto;
integer bitnumber;
Boolean onoff;

DESCRIPTION

This routine refers to a data structure if an attribute bit has a specified setting
(On or Off), where BitNumber indicates which bit to test and OnOff is TRUE
for ON and FALSE for OFF.

RM4-62 Reference Materials

IF CONDITIONAL BIT

PS 390 Command and Syntax

Name := IF conditional BIT n is OnOff [THEN namel];

SSE ALSO

SET CONDITIONAL BIT

Graphics Support Routines

PIfBit

(continued)

RM4-63

IF LEVEL OF DETAIL

VAX and IBM FORTRAN GSR

CALL PI f t~ev (Name , Leve 1 , Comparison , Apply , Errt~nd)

where ;

PIfLev
PIfLevel

Name is a CHARACTER STRING
Level is an INTEGER * 4

*Comparison is an INTEGER*4 corresponding to the comparison test to be performed

Apply is a CHARACTER STRING
ErrHnd is the user-defined error-handler subroutine.

VAX PASCAL GSR

PROCEDURE PIfLevel (%DESCR Name P VaryingType;

Level INTEGER;

Comparison: INTEGER;

%DESCR AppliedTo P VaryingType;

PROCEDURE Error Handler (Err : INTEGER));

IBM PASCAL GSR

PROCEDURE PIfLevel (CONST Name STRING;

Level : INTEGER;

Comparison: INTEGER;

CONST AppliedTo STRING;

PROCEDURE Error_Handler (Err INTEGER));

UNIXfC GSR

#include <ps300/gsrext.h>

PIfLevel (name, level, test,appliedto)

where

string name, appliedto;
integer level,test;

DES CRIPTI ~1 N

This routine controls the traversal of a display structure based on the result of
the relationship (comparison,test) between the current level of detail and the
specified level.

RM4-64 Reference Materials

IF LEVEL OF DETAIL

PS 390 Command and Syntax

Name : = IF LEVEL_of_detai 1 relationship n [THEN namel] ;

PIfLev
PIfLevel

(continued)

* These mnemonics may be referenced directly by the user if the file containing
the declarations is INCLUDED in the routine. See Section TT3 Using the GSRs
for a description of this file. A description of inputs t0 display structures and
their ~~1TEGER*4 value is given below.

FORTRAN

Mnemonic Comparison INTEGER*4 Value

PCLES < 0

PCEQL = 1

PCLEQL <= 2

PCGTR > 3

PCNEQL <> 4

PCGEQL >= 5

Pascal and UNIX

Mnemonic Comparison INTEGER*4_Value

P_LES < 0

P EQL = 1

P LEQL <= 2

P_GTR > 3

P NEQL <> 4

P GEQL >= 5

SEE ALSO

SET LEVEL OF DETAIL

Graphics Support Routines RM4-65

IF PHASE

VAX and IBM FORTRAN GSR

CALL PIfPha {Name, OnOff, Apply, ErrHnd)

where:

Name is a CHARACTER STRING
Onoff is a LOGICAL* 1 defined
Apply is a CHARACTER STRING
ErrHnd is the user-defined error-handler subroutine.

VAX PASCAL GSR

PROCEDURE PIfPhase (%DESCR Name P VaryingType;

OnOff : BOOLEAN;

%DESCR AppliedTo P VaryingType;

PROCEDURE Error Handler (Err INTEGER));

IBM PASCAL GSR

PROCEDURE PIfPhase (CONST Name STRING;

OnOff BOOLEAN;

CONST AppliedTo STRING;

PROCEDURE Error Handler (Err INTEGER));

UNIXiC GSR

#include <ps300/gsrext.h>

PIfPhase(name, onoff,appliedto)

where

string name, appliedto;
Boolean onoff;

DES CI~IP~'ION

PIfPha
PIfPhase

This routine controls the traversal of a data structure apply if the PHASE
attribute is in the specified state, ON or OFF. Onoff is TRUE for ON and
FALSE for OFF. The state of the phase attribute is controlled by the Set Rate
and Set Rate External routines.

RM4-66 Reference Materials

f"'1
IF PHASE

PS 390 Command and Syntax

Name : = IF PHASE state [THEN namel] ;

SEE ALSO

SET RATE, SET RATE EXTERNAL

Graphics Support Routines

PIfPha
PIfPhase
(continued)

RM4-6 ~

ILLUMINATION

VAX and IBM FORTRAN GSR

PIllum

PIllumin

CALL PIllum (Name, X, Y, Z, Hue, Saturation, Intensity, Ambient,

ErrHnd)

where

Name is a CHARACTER STRING
X is a REAL * 4
Y is a REAL* 4

Z is a REAL * 4

Hue is a REAL * 4
Saturation is a REAL * 4

Intensity is a REAL * 4
Ambient is a REAL * 4

Errhnd is the user-defined error-handler subroutine

VAX PASCAL GSR

PROCEDURE PIllumin

IBM PASCAL GSR

(

%DESCR Name

X

Y

Z

Hue

Saturation

Intensity

Ambient

P_VaryingType;

REAL;

REAL;

REAL;

REAL;

REAL;

REAL;

REAL : { de f au 1 t 1 }

PROCEDURE Error_Handler (Err INTEGER));

PROCEDURE PIllumin (CONST Name

X

Y

Z

Hue

Saturation

Intensity

Ambient

STRING;

REAL;

REAL;

REAL;

REAL;

REAL;

REAL;

REAL: {default 1}

PROCEDURE Error Handler (Err INTEGER));

RM4-68 Reference Materials

ILLUMINATION

UNIX/C GSR

#include <ps300/gsrext.h>

PIllumin (name, x, y, z,hue, saturation, intensity, ambient)

where

string name;
double x, y, z, hue, saturation, intensity;
double ambient;

DESCRIPTION

PIllum
PIllumin

(continued)

This routine defines polygon illumination characteristics used by the rendering
firmware in the PS 390 to produce shaded renderings. The direction to the light
source is specified by x, y, z. The color is specified by Hue, Saturation, and
Intensity. Its contribution to ambient lighting is specified by Ambient (0 to 1) .

PS 390 Command and Syntax

Name : = ILLUMINATION X, Y, Z [COLOR h [, s [, i]]] [AMBIENT] ;

Graphics Support Routines RM4-69

INCLUDE PIncl

VAX and IBM FQRTRAN GSR

CALL PIncl (Namel, Name2, ErrHnd)

where

Name 1 is a CHARACTER STRING
Name2 is a CHARACTER STRING
ErrHnd is the user-defined error-handler subroutine.

VAX PASCAL GSR

PROCEDURE PIncl (%DESCR Namel P VaryingType;

%DESCR Name2 P VaryingType;

PROCEDURE Error Handler (Err INTEGER));

IBM PASCAL GSR

PROCEDURE PIncl CONST Namel STRING;

CONST Name2 STRING;

PROCEDURE Error Handler (Err INTEGER));

UNIX/C GSR

#include <ps300/gsrext.h>

PIncl(namel,name2)

where:

string name 1,name2;

DESCRIPTION

This routine is used to include one named data structure Name 1 in a named
instance of another data structure Name2.

PS 390 Command and Syntax

INCLude namel IN name2;

SEE ALSO

REMOVE FROM

RM4-70 Reference Materials

INITIALIZE PInit

VAX and IBM FORTRAN GSR

CALL PInit (ErrHnd)

where:

ErrHnd is the user-defined error-handler subroutine.

VAX PASCAL GSR

PROCEDURE PInit (PROCEDURE Error Handler (Err INTEGER));

IBM PASCAL GSR

PROCEDURE PInit (PROCEDURE Error Handler (Err : INTEGER));

UNIX/C GSR

#include <ps300/gsrext.h>

PInit();

DESCRIPTION

This routine restores the PS 390 t0 its initial state. There are no user-defined
names, data structures, or function connections; and no data structures are
displayed.

PS 390 Command and Syntax

INITialize;

SEE ALSO

Il~IITIALIZE COI~TNECTIONS, IZE DISPLAY, IZE N~~S

Graphics Support Routines RM4- 71

INITIALIZE CONNECTIONS PInitC

VAX and IBM FORTRAN GSR

CP,LL PInitC (ErrHnd)

where

ErrHnd is the user-defined error-handler subroutine .

VAX PASCAL GSR

PROCEDURE PInitC (PROCEDURE Error Handler (Err INTEGER)};

IBM PASCAL GSR

PROCEDURE PInitC (PROCEDURE Error Handler (Err INTEGER));

UNIXIC GSR

#include <ps300/gsrext.h>

PInitC();

DESCRIPTION

This routine breaks all user-defined function connections.

PS 390 Command and Syntax

INITialize CONNections;

SEE ALSO

IZE DISPLAY, IZE N~~MES

RM4-72 Reference Materials

INITIALIZE DISPLAY PInitD

VAX and IBM FORTRAN GSR

CALL PInitD (ErrHnd)

where:

ErrHnd is the user-defined error-handler subroutine.

VAX PASCAL GSR

PROCEDURE PInitD (PROCEDURE Error_Handler (Err INTEGER));

IBM PASCAL GSR

PROCEDURE PInitD (PROCEDURE Error_Handler (Err : INTEGER));

UNIX/C GSR

#include <ps300/gsrext.h>

PInitD () ;

DESCRIPTION

This routine removes all display structures from the display list.

PS 390 Command and Syntax

INITialize DISPlay;

SEE ALSO

INITIALIZE CONNECTIONS, IZE NA,IVIES

Graphics Support Routines RM4- 73

INITIALIZE NAMES PInitN

VAX and IBM FORTRAN GSR

CALL PInitN (ErrHnd)

where

ErrHnd is the user-defined error-handler subroutine.

VAX PASCAL GSR

PROCEDURE PInitN (PROCEDURE Error_Handler (Err INTEGER));

IBM PASCAL GSR

PROCEDURE PInitN (PROCEDURE Error_Handler (Err INTEGER));

UNIXIC GSR

#include <ps300/gsrext.h>

PInitN();

DESCRIPTION

This routine clears the name dictionary of all user-defined structures and
function instance names.

PS 390 Command and Syntax

INITialize NAMES;

SEE ALSO

Il~TITIALIZE CONNECTIONS, INITIALIZE DISPLAY

RM4-74 Reference Materials

/~II~ INCREMENT LEVEL_OF_DETAIL

VAX and IBM FORTRAN GSR

CALL PInLOD (Name, Apply, ErrHnd)

where:

Name is a CHARACTER STRING
Apply is a CHARACTER STRING
ErrHnd is the user-defined error-handler subroutine.

VAX PASCAL GSR

PROCEDURE PIncLOD (%DESCR Name P VaryingType;

%DESCR AppliedTo P VaryingType;

PROCEDURE Error_Handler (Err INTEGER));

IBM PASCAL GSR

PROCEDURE PIncLOD (CONST Name STRING;

CONST AppliedTo STRING;

PROCEDURE Error_Handler (Err INTEGER));

UNIXIC GSR

#include <ps300/gsrext.h>

PIncLOD(name,appliedto)

where

string name,appliedto;

DESCRIPTION

This routine increments the current level of detail by 1.

PS 390 Command and Syntax

Name := INCRement LEVel of detail[APPLied to namel];

SEE ALSO

DECREMENT LEVEL OF DETAIL,, IF LEVEL_OF DETAIL,

PInLOD
PIncLOD

Graphics Support Routines RM4- 75

INSTANCE OF PInst

VAX and IBM FORTRAN GSR

CALL PInst (Namel, Name2, ErrHnd)

where

Name 1 is a CHARACTER STRING
Name2 is a CHARACTER STRING
ErrHnd is the user-defined error-handler subroutine.

VAX PAS CAL GS R

PROCEDURE PInst (%DESCR Namel P VaryingType;

%DESCR Name2 P VaryingType;

PROCEDURE Error Handler (Err INTEGER)); DEFINITION

IBM PASCAL GSR

PROCEDURE PInst CONST Namel STRING;

CONST Name2 STRING;

PROCEDURE Error Handler (Err : INTEGER));

UNIX/C GSR

#include <ps300/gsrext.h>

PInst(namel,name2)

where

string name l,name2;

DESCRIPTION

This routine creates an instance node Namel with pointers to the data structure
referenced Name2.

PS 390 Command and Syntax

Namel : = INSTance of name2 [, , namen] ;

RM4-76 Reference Materials

LABELS PLaAdd
PLabAdd

VAX and IBM FORTRAN GSR

CALL PLaAdd (X, Y, Z, Label, ErrHnd)

where:

X, Y, Z are REAL * 4

Label is a CHARACTER STRING

ErrHnd is the user-defined error-handler subroutine.

VAX PASCAL GSR

PROCEDURE PLabAdd

IBM PASCAL GSR

PROCEDURE PLabAdd

X REAL;

Y REAL ;

Z REAL;

%DESCR Str P_VaryingType;

PROCEDURE Error Handler (Err INTEGER));

X SHORTREAL;

Y SHORTREAL;

Z : SHORTREAL;

CONST Str STRING;

PROCEDURE Error Handler (Err INTEGER));

UNIX/C GSR

#include <ps300/gsrext.h>

PLabAdd(x,y,z,str)

where:

double x,y,z;
string str;

Graphics Support Routines RM4- 77

LABELS

DESCRIPTION

PLaAdd

PLabAdd

(continued)

This routine is the middle call in creating a label block. It must be called to
specify or add a label to a previously opened label. A complete label block
requires routines for Begin, Add, and End.

PS 390 Command and Syntax

Together, the above three routines implement the PS 390 command:

Name : = LABELS x , y [, z .] 'string'

xi , yi [, z i] 'string' ;

u

RM4-78 Reference Materials

LABELS

VAX and IBM FORTRAN GSR

CALL PLaBeg (LabelBlock, StepX, StepY, ErrHnd)

where:

LabelBlock is a CHARACTER STRING
StepX and StepY are REAL * 4

ErrHnd is the user-defined error-handler subroutine.

VAX PASCAL GSR

PROCEDURE PLabBegn

IBM PASCAL GSR

PROCEDURE PLabBegn

(

%DESCR LabelBlock: P VaryingType;

StepX REAL;

StepY : REAL;

PROCEDURE Error Handler (Err : INTEGER));

CONST LabelBlock: STRING;

StepX SHORTREAL;

StepY SHORTREAL;

PROCEDURE Error Handler (Err : INTEGER));

UNIX/C GSR

#include <ps300/gsrext.h>

PLabBegn(labelblock,stepx,stepy)

where

string labelblock
double stepx, stepy;

DESCRIPTION

PLaBeg
PLabBegn

This routine must be called to create and open a label block. A complete label

block requires routines for Begin, Add, and End.

Graphics Support Routines RM4- 79

LABELS PLaBeg
PLabBegn

(continued)

NOTE

The stepx and stepy parameters allow the steps between the
label blocks to be specified in terms of x and y. If stepx and
stepy were specified as 1.0 and 0.0 respectively, each
successive character would be displayed one unit to the right
of and horizontally aligned with the preceding character. This
applies to all labels within the label block. It should prove
useful for those users who wish to make vertical or slanted
label blocks. Users cannot send to <step> of a label block; a
message from the CI results.

PS 390 Command and Syntax

Together, the three routines implement the PS 390 command:

LABELS x, y [,z] string' Name :_ '

xi , yi [, z i] 'string' ;

RM4-80 Reference Materials

LABELS

VAX and IBM FORTRAN GSR

CALL PLaEnd (ErrHnd)

where:

ErrHnd is the user-defined error-handler subroutine.

VAX PAS CAL G S R

PROCEDURE PLabEnd (PROCEDURE Error_Handler (Err : INTEGER));

IBM PASCAL GSR

PROCEDURE PLabEnd (PROCEDURE Error_Handler (Err INTEGER));

UNIXIC GSR

#include <ps300/gsrext.h>

PLabEnd();

DESCRIPTION

PLaEnd
PLabEnd

This routine must be called to complete the creation of a label block. A
complete label block requires routines for Begin, Add, and End.

PS 390 Command and Syntax

Together, the above three routines implement the PS 390 command:

Name := LABELS x, y [,z] 'string'

xi , yi [, z i] 'string' ;

Graphics Support Routines RM4-81

UTILITY ROUTINE PLoad

UNIX/C UTILITY ROUTINE

#include <ps300/gsrext.h>

PLoad (muxbyte ,buf , buf len)

integer muxbyte,buflen;
char *buf;

DESCRIPTION

PLoad sends the data in buf to the current GSR library output device. It
prefixes the data in buf with the muxbyte and four more bytes of output device-
dependent preamble before sending it. Therefore, the application program
should only store binary data starting at buf[5]. Buflen is the size of buf in
bytes. The value of the mux byte (also called the routing byte) determines
where the PS 390 CIROiJTE function will route the data sent along with it.
Refer to Section RM7 Host Input Data Flow for complete definitions of routing
byte values.

SEE ALSO

PSavBeg, PSavEnd

RM4-82 Reference Materials

LOOK PLookA

PLookAt

VAX and IBM FORTRAN GSR

CALL PLookA (Name, At, From, Up, Apply, ErrHnd)

where

Name is a CHARACTER STRING
At is defined as REAL * 4 At (3)
From is defined as REAL * 4 From (3}

Up is defined as REAL * 4 Up (3)
Apply is a CHARACTER STRING
ErrHnd is the user-defined error-handler subroutine.

VAX PASCAL GSR

PROCEDURE PLookAt (%DESCR Name

VAR At

VAR From

IBM PASCAL GSR

P VaryingType;

: P VectorType;

: P VectorType;

VAR Up P_VectorType;

%DESCR AppliedTo P_VaryingType;

PROCEDURE Error Handler (Err INTEGER));

PROCEDURE PLookAt (CONST Name STRING;

CONST At P VectorType;

CONST From P VectorType;

CONST Up P VectorType;

CONST AppliedTo STRING;

PROCEDURE Error Handler (Err INTEGER));

UNIX/C GSR

#include <ps300/gsrext.h>

PLookAt(name,at,from,up,appliedto)

where:

string name, appliedto;
P_VectorType at, from,up;

Graphics Support Routines RM4-83

LODK

DESCRIPTION

PLookA
PLookAt

(continued)

This routine, when used with OW, EYE BACK, or FIELD_OF_VIEW
routines, fully specifies the portion of the data space that will be viewed as well
as the viewer's orientation in data space. It has the following parametric defini-
Mons:

At is the point being looked at in data space coordinates.
From is the location of the viewer's eye in data space coordinates.
Up indicates the screen "up" direction.

PS 390 Command and Syntax

Name : = LOOK AT ax , ay , az FROM f x , f y , f z [UP ux , uy , uz] [APPL i ed to name 1] ;

Name : = LOOK FROM f x , fy , f z AT ax , ay , az [UP ux , uy , uz] [APPL i ed to Hamel] ;

RM4-84 Reference Materials

MATRIX 2x2

VAX and IBM FORTRAN GSR

CALL PMat22 (Name, Mat, Apply, ErrHnd)

where:

Name is a CHARACTER STRING
Mat is the matrix to be sent and is defined: REAL * 4 Mat (4, 4)
Apply is a CHARACTER STRING
ErrHnd is the user-defined error-handler subroutine.

VAX PASCAL GSR

PROCEDURE PMat2x2 (%DESCR Name P VaryingType;

VAR Mat P MatrixType;

%DESCR AppliedTo P VaryingType;

PROCEDURE Error Handler (Err INTEGER));

IBM PASCAL GSR

PROCEDURE PMat2x2 (CONST Name STRING;

CONST Mat : P MatrixType;

CONST AppliedTo STRING;

PROCEDURE Error Handler (Err INTEGER));

UNIX/C GSR

#include <ps300/gsrext.h>

PMat2x2(name,matrix,appliedto)

where:

string name,appliedto;
P_MatrixType matrix;

DESCRIPTION

PMat22
PMat2x2

This routine creates a special 2x2 transformation matrix that applies to charac-

ters in the data structure that follows Apply/AppliedTo.

PS 390 Command and Syntax

Name := Matrix 2x2 mll, m12,

m21, m22 , [APPLied to namel] ;

Graphics Support Routines RM4-85

MATRIX 3x3

VAX and IBM FORTRAN GSR

CALL PMat33 (Name, Mat, Apply, ErrHnd)

where

Name is a CHARACTER STRING

Mat is the matrix to be sent and is defined: REAL * 4 Mat (4, 4)

Apply is a CHARACTER STRING

ErrHnd is the user-defined error-handler subroutine .

VAX PASCAL GSR

PROCEDURE PMat3x3 (%DESCR Name P VaryingType;

VAR Mat P MatrixType;

%DESCR AppliedTo P VaryingType;

PROCEDURE Error Handler (Err INTEGER));

IBM PASCAL GSR

PROCEDURE PMat3x3 CONST Name STRING;

CONST Mat P MatrixType;

CONST AppliedTo STRING;

PROCEDURE Error Handler (Err INTEGER));

UNIX/C GSR

#include <ps300/gsrext.h>

PMat3x3(name,matrix,appliedto)

where:

string name, appliedto;
P_MatrixType matrix;

DESCRIPTION

PMat33
PMat3x3

This routine creates a special 3x3 transformation matrix that applies to the
specified data (vector lists and/or characters) that follow Apply/AppliedTo.

PS 390 Command and Syntax

Name := Matrix 3x3 mll, m12, ml3

m21, m22, m23

m31, m32, m33 [APPLied to namel];

RM4-86 Reference Materials

MATRIX 4x3

VAX and IBM FORTRAN GSR

CALL PMat43 (Name, Mat, Vec, Apply, ErrHnd)

where

Name is a CHARACTER STRING
Mat is the matrix to be sent and is defined: REAL * 4 Mat (4, 4)

Vec is the x,y, z translation to be sent and is defined: REAL * 4 Vec (3)
Apply is a CHARACTER STRING
ErrHnd is the user-defined error-handler subroutine.

VAX PASCAL GSR

PROCEDURE PMat4x3 (%DESCR Name P VaryingType;

VAR Mat P MatrixType;

VAR Vec P VectorType

%DESCR AppliedTo P VaryingType;

PROCEDURE Error Handler (Err INTEGER));

IBM PASCAL GSR

PROCEDURE PMat4x3 CONST Name STRING;

CONST Mat P MatrixType;

CONST Vec : P VectorType

CONST AppliedTo STRING;

PROCEDURE Error Handler (Err INTEGER));

UNIX/C GSR

#include <ps300/gsrext.h>

PMat4x3(name,matrix,vec,appliedto)

where

string name, appliedto;
P_MatrixType matrix;
P_VectorType vec;

PMat43
PMat4x3

Graphics Support Routines RM4-87

MATRIX 4x3

DESCRIPTION

PMAT43
PMat4x3

(continued)

This routine creates a special 4x3 matrix that applies to the specified data
(vector lists and/or characters) that follow Apply/Applied to.

PS 390 Command and Syntax

Name := Matrix 4x3 mll, m12, m13

m21, m22, m23

m31, m32, m33

m41, m4 2, m4 3 [APPL i e d t o name 1];

NOTE

The matrix_4x3 command is sent in two parts:
1) a 3x3 matrix sent in Mat.
2) a 3D-translation vector (4th row) sent in Vec.

RM4-88 Reference Materials

MATRIX 4x4

VAX and IBM FORTRAN GSR

CALL PMat44 (Name, Mat, Apply, ErrHnd)

where:

Name is a CHARACTER STRING
Mat is the matrix to be sent and is defined: REAL * 4 Mat(4, 4)
Apply is a CHARACTER STRING
ErrHnd is the user-defined error-handler subroutine.

VAX PASCAL GSR

PROCEDURE PMat4x4 (%DESCR Name

VAR Mat

IBM PASCAL GSR

: P VaryingType;

: P MatrixType;

%DESCR AppliedTo P VaryingType;

PROCEDURE Error Handler (Err : INTEGER));

PROCEDURE PMat4x4 (CONST Name STRING;

CONST Mat P MatrixType;

CONST AppliedTo STRING;

PROCEDURE Error Handler (Err INTEGER));

UNIX/C GSR

#include <ps300/gsrext.h>

PMat4x4(name,matrix,appliedto)

where:

string name, appliedto;
P_MatrixType matrix;

DESCRIPTION

PMat44
PMat4x4

This routine creates a special 4x4 matrix that applies to the specified data
(vector lists and/or characters) that follow Apply/AppliedTo.

PS 390 Command and Syntax

Name := Matrix 4x4 mll, m12, m13, ml4

m21, m22, m23, m24

m31, m32, m33, m34

m41, m42, m43, m44 [APPLied to namel];

Graphics Support Routines RM4-89

UTILITY SUBROUTINE PMuxCI

VAX and IBM FORTRAN UTILITY PROCEDURE

CALL PMuxCI (CIchan, ErrHnd)

where

CIchan is an INTEGER * 4

ErrHnd is the user-defined error-handler subroutine.

VAX PASCAL UTILITY ROUTINE

PROCEDURE PMuxCI (NewCIChan INTEGER;

PROCEDURE Error Handler (Error : INTEGER));

IBM PASCAL UTILITY ROUTINE

PROCEDURE PMuxCI (NewCIChan INTEGER;

PROCEDURE Error Handler (Error : INTEGER));

UNIX/C GSR

#include <ps300/gsrext.h>

PMuxCI(new_ci_chan)

where

integer new ci_chan;

DESCRIPTION

This routine redefines the CIROUTE output channel accessed as the Binary CI
channel. The standard and default CI channel is 2. This routine is provided for
the implementation of multiple command interpreters .

RM4-90 Reference Materials

UTILITY ROUTINE PMuxG

VAX and IBM FORTRAN UTILITY PROCEDURE

CALL PMuxG (MuxChn, ErrHnd)

where:

MuxChn is an INTEGER * 4

ErrHnd is the user-defined error-handler subroutine .

'VAX PASCAL UTILITY ROUTINE

PROCEDURE PMuxG (NewMuxChan INTEGER;

PROCEDURE Error_Handler (Error INTEGER));

IBM PASCAL UTILITY ROUTINE

PROCEDURE PMuxG (NewMuxChan : INTEGER;

PROCEDURE Error_Handler (Error INTEGER));

UNIX/C GSR

#include <ps300/gsrext.h>

PMuxG(new mux than)

where:

integer new_mux_chan;

DES CRIPTI01 ~

The routine redefines the CIR~UTE output channel being currently accessed as
the "generic" channel by PPutG and PPutGX. The call is provided to support
the future implementation of custom user-functions connected to various out-
puts of CIR~UTE.

MuxChn = 1: Send to parser. CIROUTE<3>
MuxChn = 2: Send to READSTREAM CIROUTE<4> etc.

Graphics Support Routines RM4-91

UTILITY ROUTINE

VAX and IBM FORTRAN UTILITY ROUTINE

CALL PMuxP (PrsChn, ErrHnd)

where

PrsChn is an INTEGER * 4
ErrHnd is the user-defined error-handler subroutine.

VAX PASCAL UTILITY ROUTINE

PROCEDURE PMuxPars (NewParseChan INTEGER;

PROCEDURE Error_Handler (Error : INTEGER));

IBM PASCAL UTILITY ROUTINE

PROCEDURE PMuxPars (NewParseChan : INTEGER;

PROCEDURE Error_Handler (Error : INTEGER));

UNIX/C UTILITY ROUTINE

#include <ps300/gsrext.h>

PMuxPars(new_parse_chan)

where:

integer new~arse_chan;

DESCRIPTION

PMuxP
PMuxPars

This routine redefines the CIROUTE output channel accessed by PPutP(ars).
The call allows for the implementation and support of multiple Parsers. The
standard and default Parser channel is 1.

RM4-92 Reference Materials

NIL

VAX and IBM FORTRAN GSR

CALL PNil (Name, ErrHnd)

where:

Name is a CHARACTER STRING
ErrHnd is the user-defined error-handler subroutine.

VAX PASCAL GSR

PROCEDURE PNameNil (%DESCR Name P VaryingType;

PROCEDURE Error Handler (Err : INTEGER));

IBM PASCAL GSR

PROCEDURE PNameNil (CONST Name STRING;

PROCEDURE Error Handler (Err INTEGER));

UNIX/C GSR

#include <ps300/gsrext.h>

PNameNil(name)

where:

string name;

DESCRIPTION

PNiI
PNameNil

This routine names a null data structure. When this routine is used to redefine
Name, Name is kept in the name dictionary but any data structures previously
associated with it are removed. Forget does just the opposite of Nil.

PS 390 Command and Syntax

Name := NIL;

SEE ALS O

DELETE, FORGET

Graphics Support Routines RM4-93

OPTIMIZE STRUCTURE

VAX and IBM FORTRAN GSR

CALL POpt (ErrHnd)

where:

ErrHnd is the user-defined error-handler subroutine .

VAX PASCAL GSR

PROCEDURE POptStru (PROCEDURE Error Handler (Err INTEGER));

IBM PASCAL GSR

PROCEDURE POptStru (PROCEDURE Error Handler (Err INTEGER));

UNIX/C GSR

#include <ps300/gsrext.h>

POptStru();

DESCRIPTION

POpt
POptStru

This routine is used with the End optimize routine. When it is called, it places
the PS 390 in an "optimization mode" in which certain elements of the display
structure are created in a way that minimizes Display Processor traversal time.
The End optimize routine must be called to complete the sequence. It is
strongly suggested that users familiarize themselves with the OPTIlVIIZE com-
mand documentation in the PS 390 Command Summary before using_ this rou-
tine to learn the full ramifications and constraints of this command.

PS 390 Command and Syntax

OPTIMIZE STRUCTURE;...END OPTIMIZE;

SEE ALSO

EIVD
o

zE

RM4-94 Reference Materials

PATTERN WITH

VAX and IBM FORTRAN GSR

CALL PPatWi (Name, PatternName, ErrHnd)

where

Name is a CHARACTER STRING
PatternName is a CHARACTER STRING
Errhnd is the user-defined error-handler subroutine

VAX PASCAL GSR

PROCEDURE PPatWith (%DESCR Namel : P VaryingType;

%DESCR PatternName P VaryingType;

PROCEDURE Error Handler (Err INTEGER));

IBM PASCAL GSR

PROCEDURE PPatWith (CONST Namel STRING;

CONST PatternName STRING;

PROCEDURE Error Handler (Err INTEGER));

UNIX/C GSR

#include <ps300/gsrext.h>

PPatWith(curvename,patternname)

where

string curvename,patternname;

DESCRIPTION

PPatWi
PPatWith

This routine patterns the curve of the vector list called Name (curvename) with

the pattern PatternName, where PatternName has been defined with a call to

the (define) PA'1"1'~RN routine.

PS 390 Command and Syntax

PATTERN Name WITH PatternName;

SEE ALSO

PATTERN

Graphics Support Routines R~VI4-95

POLYGON

VAX and IBM FORTRAN GSR

CALL PP1ygA (Name, ErrHnd)

where

Name is a CHARACTER STRING
ErrHnd is the user-defined error-handler subroutine.

VAX PASCAL GSR

PROCEDURE PPlygAtr (%DESCR Name P VaryingType;

PROCEDURE Error Handler (Err INTEGER));

IBM PASCAL GSR

PROCEDURE PPlygAtr (CONST Name STRING;

PROCEDURE Error Handler (Err INTEGER));

UNIX/C GSR

#include <ps300/gsrext.h>

PP1ygAtr(name)

where

string name;

DESCRIPTION

PP1ygA
PPlygAtr

This routine specifies that the attributes named by Name and specified in a call
to the ATTRIBUTES routine apply to all subsequent polygons until superseded
by another call to this routine. This routine is one of five routines used to
implement the PS 390 polygon command.

PS 390 Command and Syntax

Name : _ [WITH ATTRIBUTES namel] [WITH OUTLINE h] [Coplanar]

POLYGon vertex ... vertex;

where vertex is defined as:

[S] x, y, z [N x, y, z] (C h [, s [, i]]]

SEE ALSO

ATTRIBUTES

RM4-96 Reference Materials

POLYGON

VAX and IBM FORTRAN GSR

CALL PP1ygB (Name, ErrHnd)

where:

Name is a CHARACTER STRING
ErrHnd is the user-defined error-handler subroutine.

VAX PASCAL GSR

PROCEDURE PPlygBeg (%DESCR Name P VaryingType;

PROCEDURE Error_Handler (Err INTEGER));

IBM PASCAL GSR

PROCEDURE PPlygBeg (CONST Name STRING;

PROCEDURE Error_Handler (Err : INTEGER));

UNIX/C GSR

#include <ps300/gsrext.h>

PPlygBeg(name)

where

string name;

DESCRIPTION

PPIygB
PPlygBeg

This routine begins a polygon display list. The parameter Name specifies the
name to be given to the polygon display list defined by calls to Polygon Attrib-
utes, Polygon Outline, and Polygon List routines (or alternatively Polygon RGB
List or Polygon HSI List). This routine is one of five used to implement the
PS 390 POLYGON command.

A sequence of 3 to 5 routines must be called to create a polygon list.

Graphics Support Routines RM4-97

POLYGON
(BEGIN - no corresponding command)

Polygon (Begin):

This routine is called to begin the creation of a polygon list.

PP1ygB

PPLYGBEG
PP1ygBeg

(continued)

Polygon (Attributes):

This is an optional routine called to specify the attributes to be applied to the
polygon. This routine may be called multiple times.

Polygon (Outline):

This is an optional routine called to specify the intensity or color of the poly-
gon. This routine may be called multiple times.

Polygon (List, RGBList, HSIList):
This routine specifies the vertices of each polygon in the polygon list. These
routines may be called multiple times.

Polygon (End)
This routine closes the polygon list.

PS 390 Command and Syntax

Name : _ [WITH ATTRIBUTES namel] [WITH OUTLINE h] [Coplanar]

POLYGON vertex ... vertex;

where vertex is defined as:

[s] x, y, z [N x, y, z] [C h [, s [, i]]]

RM4-98 Reference Materials

POLYGON PP1ygE
PP1ygEnd

VAX and IBM FORTRAN GSR

CALL PP1ygE (ErrHnd)

where:

ErrHnd is the user-defined error-handler subroutine .

VAX PASCAL GSR

PROCEDURE PP1ygEnd (PROCEDURE Error_Handler (Err : INTEGER));

IBM PASCAL GSR

PROCEDURE PP1ygEnd (PROCEDURE Error_Handler (Err : INTEGER));

UNIXIC GSR

#include <ps300/gsrext.h>

PP1ygEnd();

DESCRIPTION

This routine ends the definition Of a polygon display list. This routine is one of
from three to five routines required to implement the PS 390 POLYGON com-
mand .

PS 390 Command and Syntax

Name : _ [WITH ATTRIBUTES namel] [WITH OUTLINE h] [Coplanar]

POLYGON vertex ... vertex;

where vertex is defined as:

[S] x, y, Z [N x, y, Z] [C h [, s [, i]]]

Graphics Support Routines RM4-99

POLYGON

VAX and IBM FORTRAN GSR

PPIygH

PPlygHSI

PPlygLisHSI

CALL PP1ygH (Coplanar, Nvertices, Vertices, Vedges, Normalspec,

Normals, ColorSpec, Colors, ErrHnd)

where

Coplanar is a LOGICAL
Nvertices is an INTEGER* 4
Vertices is a REAL*4 (4,Nvertices)
Vedges is a LOGICAL * 1 (Nvertices)
Normalspec is a LOGICAL
Normals is a REAL * 4 (4, Nvertices)
ColorSpec is a LOGICAL
Colors is a REAL * 4 (4, Nvertices)
ErrHnd is the user-defined error-handler subroutine.

VAX PASCAL GSR

PROCEDURE PPlygHSI

IBM PASCAL GSR

PROCEDURE PPlygHSI

Coplanar

NVertices

VAR Vertices

Normalspec

VAR Normals

Colorspec

VAR Colors

BOOLEAN;

INTEGER:

P VectorListType;

BOOLEAN;

P VectorListType;

BOOLEAN;

P VectorListType;

PROCEDURE Error Handler (Err : INTEGER));

CONST

CONST

CONST

Coplanar

NVertices

Vertices

Normalspec

Normals

Colorspec

Colors

BOOLEAN;

INTEGER:

P_VectorListType;

: BOOLEAN;

P VectorListType;

BOOLEAN;

P VectorListType;

PROCEDURE Error Handler (Err : INTEGER));

RM4-100 Reference Materials

u

POLYGON

UNIX/C GSR

#include <ps300/gsrext.h>

PP1ygH
PP1ygHSI
PP1ygLisHSI

(continued)

PPlygLisHSI(coplanar,nvertices,vertices,normalspec,normals,colorspec,

colors)

where:

Boolean coplanar,normspec,colorspec;
integer nvertices;

PVectorListType vertices, normals, colors;

DESCRIPTION

This routine defines a polygon within the polygon display list currently being
constructed. The routine may be called many times to specify additional poly-
gons for the polygon display currently under construction as named by the
Polygon Begin routine. It has the following parametric definitions:

Coplanar determines whether the polygon is coplanar with the previous
polygon or not.

.TRUE. =coplanar, .FALSE. =not coplanar

Nvertices specifies the number of vertices in the polygon
Vertices specifies the x, y, and z vertices of the polygon

Vedges specifies the "soft" versus "hard" nature of each edge specified by
Vertices.

Vedges (n) _ .FALSE. if "soft edge", .TRUE. if "hard edge".

NormalSpec specifies if the normals to the vectors defining the polygon are
specified.

NormalSpec = .TRUE. if specified, NormalSpec = .FALSE. if not specified.

Normals specifies a normal to correspond to each vertex. This parameter is of
the same form as: Vertices.

Graphics Support Routines R11~4-101

POLYGON PP1ygH
PP1ygHSI
PP1ygLisHSI

(continued)

ColorSpec specifies if the colors attached to the polygon vertices are specified.

ColorSpec = .TRUE. if specified, ColorSpec = .FALSE. if not specified.

Colors specifies the colors of the vertices of the polygon. It is of the same form
as Vertices for FORTRAN programmers:

Colors(l,n) =Hue n
Colors(2,n) =Saturation n
Colors(3,n) =Intensity n

For Pascal and iJIVIX/C programmers, Colors is of the same form as vertices,
where:

Colors [n] .Draw -Not used
Colors[n].V4[1] =Hue value mapped to a range 0-360.0;
Colors(n].V4[2] =Saturation value mapped to range 0-1;
Colors[n].V4[3] =Intensity value mapped to a range 0-1;

Saturation and intensity values are clamped to the nearest range without warn-
.

ing.

NOTE

In the UNIX/C and Pascal GSRs, Vedges is not a separately
specified parameter; however Vertices (and Normals) have
the following parametric definitions:

Vertices [n].Draw =False defines the edge as `soft'
Vertices [n].Draw =True defines the edge as `hard'
Vertices [n].V4[1] =vertex n: x-coordinate;
Vertices [n].V4[2) =vertex n: y-coordinate;
Vertices [n].V4[3] =vertex n: z-coordinate;

RM4-102 Reference Materials

r"1
POLYGON PPIygH

PP1ygHSI
PP1ygLisHSI

(continued)

This routine is one Of five required t0 implement the PS 390 POLYGON com-
mand.

PS 390 Command and Syntax

Name : _ [WITH ATTRIBUTES namel] [WITH OUTLINE h] [Coplanar]

POLYGON vertex ... vertex;

where vertex is defined as:

[S] x, y, z [N x, y, z] [C h [, s [, i]]]

Graphics Support Routines RM4-103

POLYGON

VAX and IBM FORTRAN GSR

PP1ygL

PP1ygLis

CALL PP1ygL (Coplanar, Nvertices, Vertices, Vedges, Normalspec,

Normals, ErrHnd)

where

Coplanar is a LOGICAL
Nvertices is an INTEGER * 4

Vertices is a REAL * 4 (4, Nvertices)
Vedges is a LOGICAL * 1 (Nvertices)
Normalspec is a LOGICAL
Normals is a REAL * 4 (4, Nvertices)
ErrHnd is the user-defined error-handler subroutine.

VAX PASCAL GSR

PROCEDURE PP1ygLis (Coplanar : BOOLEAN;

NVertices INTEGER:

VAR Vertices P VectorListType;

Normalspec BOOLEAN;

VAR Normals P VectorListType;

PROCEDURE Error Handler (Err INTEGER});

IBM PASCAL GSR

PROCEDURE PP1ygLis Coplanar BOOLEAN;

NVertices INTEGER:

CONST Vertices P VectorListType;

Normalspec BOOLEAN;

CONST Normals P VectorListType;

PROCEDURE Error Handler (Err : INTEGER));

UNIX/C GSR

#include <ps300/gsrext.h>

PP1ygLis(coplanar,nvertices, vertices,normspec,normals)

where:

Boolean coplanar, normspec;
integer nvertices;
PVectorListType vertices,normals;

RM4-104 Reference Materials

POLYGON

DESCRIPTION

PP1ygL

PPlygLis

(continued)

This routine defines a polygon within the polygon display list currently being
constructed. The routine may be called many times to specify additional poly-
gons for the polygon display currently under construction as named by the
PPIygB routine call. It has the following parametric definitions:

Coplanar determines whether the polygon is coplanar with the previous
polygon or not.

.TRUE. =coplanar, .FALSE. =not coplanar

Nvertices specifies the number of vertices in the polygon

vertices specifies the x, y, and z vertices of the polygon

Vedges specifies the "soft" versus "hard" nature of each edge specified by
Vertices.

Vedges (n) _ .FALSE. if "soft edge" , .TRUE. if "hard edge" .

NormalSpec specifies if the normals to the vectors defining the polygon are
specified.

NormalSpec = .TRUE. if specified, NormalSpec = .FALSE. if not specified.

Normals specifies a normal to correspond to each vertex. This parameter is of
the same form as: vertices.

NOTE

In the LT~~:IX/C and Pascal GSRs, Vedges is not a separately
specified parameter; however vertices has the following
parametric definitions

Vertices [n].Draw =False defines the edge as `soft'
Vertices [n].Draw =True defines the edge as `hard'
Vertices [n].V4[1] =vertex n: x-coordinate;
Vertices [n] .V4 [2] =vertex n: y-coordinate;
Vertices [n].V4[3] =vertex n: z-coordinate;

Graphics Support Routines RM4-105

POLYGON PP1ygL

PP1ygLis

(continued)

This routine is one of five required to implement the PS 390 POLYGON com-
mand.

PS 390 Command and Syntax

Name : _ [WITH ATTRIBUTES namel] [WITH OUTLINE h] [Coplanar]

POLYGON vertex ... vertex;

where vertex is defined as

[s] x, y, z [N x, y, z] [C h [, s [, i]]]

RM4-106 Reference Materials

l~1 POLYGON

VAX and IBM FORTRAN GSR

CALL PP1yg0 (Outline, ErrHnd)

where

Outline is a REAL * 4

Errhnd is the user-defined error-handler subroutine

VAX PASCAL GSR

PROCEDURE PPlygotl (%DESCR Outline REAL;

PROCEDURE Error_Handler (Err INTEGER));

IBM PASCAL GSR

PROCEDURE PP1ygOt1 (CONST Outline REAL;

PROCEDURE Error_Handler (Err : INTEGER));

UNIX/C GSR

#include <ps300/gsrext.h>

PP1ygOt1(outline);

where

double outline;

DESCRIPTION

PPlygo
PP1ygOt1

This routine specifies that Outline be used as the color (if between 1 and 360)
or intensity (if between 0 and 1) of all polygons edges until superseded by
another call to the Polygon Outline routine.

Graphics Support Routines RM4-10 7

POLYGON PPlygO
PPlygOtl

(continued)

PS 390 Command and Syntax

This routine is one of five used t0 implement the PS 39~ POLYGON command:

Name : _ [WITH ATTRIBUTES namel] [WITH OUTLINE h] [Coplanar]

POLYGON vertex ... vertex;

where vertex is defined as:

[s] x, y, z [N x, y, z] [C h [, s [, i]]]

RM4-108 Reference Materials

POLYGON

VAX and IBM FORTRAN GSR

PP1ygR
PP1ygRGB
PPlygLisRGB

CALL PP1ygR (Coplanar, Nvertices, Vertices, Vedges, Normalspec,

Normals, ColorSpec, RGBVal, ErrHnd)

where

Coplanar is a LOGICAL

Nvertices is an INTEGER * 4

Vertices is a REAL * 4 (4, Nvertices)
Vedges is a LOGICAL * 1 (Nvertices)
Normalspec is a LOGICAL

Normals is a REAL * 4 (4, Nvertices}
ColorSpec is a LOGICAL
RGBVal is a REAL * 4 (3,Nvertices)
ErrHnd is the user-defined error-handler subroutine.

VAX PASCAL GSR

PROCEDURE PP1ygRGB

IBM PASCAL GSR

PROCEDURE PP1ygRGB

Coplanar

NVertices

VAR Vertices

Normalspec

VAR Normals

Colorspec

VAR RGBList

BOOLEAN;

INTEGER:

P VectorListType;

BOOLEAN;

P VectorListType;

BOOLEAN;

P PolyColorType;

PROCEDURE Error Handler (Err INTEGER));

Coplanar

NVertices

CONST Vertices

Normalspec

CONST Normals

Colorspec

CONST RGBList

BOOLEAN;

INTEGER:

P VectorListType;

BOOLEAN;

P VectorListType;

BOOLEAN;

P PolyColorType;

PROCEDURE Error Handler (Err INTEGER));

Graphics Support Routines RM4-109

POLYGON

UNIX/C GSR

#include <ps300/gsrext.h>

PP1ygR

PP1ygRGB

PP1ygLisRGB

(continued)

PP1ygLisRGB (coplanar,nvertices,vertices,normalspec,normals,colorspec,

rgblist)

where:

boolean coplanar,normalspec,colorspec;
integer nvertices;
PVectorListType vertices,normals;
PPolyColorType rgblist;

DESCRIPTION

This routine defines a polygon within the polygon display list currently being
constructed. The routine may be called many times to specify additional poly-
gons for the polygon display currently under construction as named by the
PP1ygB routine call. It has the following parametric definitions:

Coplanar determines whether the polygon is coplanar with the previous
polygon or not.

.TRUE. =coplanar, .FALSE. =not coplanar

Nvertices specifies the number of vertices in the polygon

Vertices specifies the x, y, and z vertices of the polygon

Vedges specifies the "soft" versus "hard" nature of each edge specified by
Vertices.

Vedges (n) _ .FALSE. if "soft edge", .TRUE. if "hard edge" .

NormalSpec specifies if the normals to the vectors defining the polygon are
specified.

NormalSpec = .TRUE. if specified, NormalSpec = .FALSE. if not specified.

Normals specifies a normal to correspond to each vertex. This parameter is of
the same form as: Vertices.

RM4-110 Reference Materials

POLYGON PPIygR
PP1ygRGB
PP1ygLisRGB

(continued)

ColorSpec specifies if the colors attached to the polygon vertices are specified.

ColorSpec = .TRUE. if specified, ColorSpec = .FALSE. if not specified.

RGBVaI specifies the colors of the vertices of the polygon. It is of the same
form as Vertices for FORTRAN programmers:

Colors(l,n) =Red intensity n (range 0..255)
Colors(2,n) =Green intensity n (range 0..255)
Colors(3,n) =Blue intensity n (range 0..255)

Out-of-range values are converted to the nearest in-range value without
warning.

For Pascal and iJ1vIX/C programmers, RGBList specifies the colors associated
with the polygon vertices, where:

RGBList[l,n] =Red
RGBList[2,n] =Green
RGBList[3,nJ =Blue

P PolycolorType is defined as:
P PolycolorType =ARRAY [1..3, 1..P MaxpolygonSize] OF INTEGER;

All Red, Green, Blue values are mapped to the range 0-255. Out-of-range
values are clamped to the nearest in-range value without warning.

NOTE

In the UNIX/C and Pascal GSRs, Vedges is not a separately
specified parameter; however Vertices have the following
parametric definitions

Vertices [n] .Draw =False defines the edge as `soft'
Vertices [n].Draw =True defines the edge as `hard'
Vertices [n].V4[1] =vertex n: x-coordinate;
Vertices [n] .V4 [2] =vertex n: y-coordinate;
Vertices [n].V4[3] =vertex n: z-coordinate;

Graphics Support Routines RM4-111

POLYGON PP1ygR
PP1ygRGB
PP1ygLisRGB

(continued)

This routine is one Of five required to implement the PS 390 POLYGON com-
mand.

PS 390 Command and Syntax

Name : _ [WITH ATTRIBUTES namel] [WITH OUTLINE h] [Coplanar]

POLYGON vertex ... vertex;

where vertex is defined as:

[s] x, y, z [N x, y, z] [C h [, s [, i]]]

RM4-112 Reference Materials

POLYNOMIAL PPoly

VAX and IBM FORTRAN GSR

CALL PPoly (Name, Order, Dimension, Coeffs, Chords, ErrHnd)

where

Name is a CHARACTER STRING
Order is an INTEGER* 4
Dimension is an INTEGER * 4
Coeffs is defined: REAL * 4 (4, Order+l)
Chords is an INTEGER * 4
ErrHnd is the user-defined error-handler subroutine.

VAX PASCAL GSR

PROCEDURE PPoly (%DESCR Name

Order

Dimension

VAR Coeffs

IBM PASCAL GSR

PROCEDURE PPoly

P VaryingType;

INTEGER;

INTEGER;

P VectorListType

Chords INTEGER;

PROCEDURE Error Handler (Err INTEGER));

CONST Name

Order

Dimension

VAR Coef f s

Chords

STRING;

INTEGER;

INTEGER;

: P_VectorListType;

: INTEGER;

PROCEDURE Error_Handler (Err : INTEGER));

UNIX/C GSR

#include <ps300/gsrext.h>

PPoly(name,order,dimension,coeffs,chords)

where:

string name;
integer order, dimension, chords;
P_VectorListType Coeffs;

Graphics Support Routines RM4-113

POLYNOMIAL

DESCRIPTION

PPoly

(continued)

This routine allows the parametric description of many curve forms without the
need to specify or transfer the coordinates of each constituent vector. It has the
following parametric definitions:

Order is the order of the polynomial.
Dimension is either 2 or 3 (for 2 or 3 dimensions respectively) .
Coeffs represent the x,y,z components of the curve. For UNIX/C and VAX
Pascal the parameter takes the following form.

Coeffs [i] .V4 [1] := x(order -i+1)
Coeffs [i] .V4 [2] := y(order -i+1)
Coeffs [i] .V4 [3] := z(order -i+l)
Coeffs [i] .V4 [4] is not used

To further clarify the description:

Coeffs [1] .V4 [1] := the coefficient that will be applied to the t order term.

Coeffs [2] .V4 [1] := the coefficient that will be applied to the t order-~

term in the resultant x(t) function computed by this
command.

etc.

Chords is the number of vectors to be created.

NOTE

The definition for Coeffs in IBM Pascal takes the form
Coeffs(.i.).V4(.1.):=x(order—i+l). VAX FORTRAN and IBM
FORTRAN take the form Coeffs(l,i) = x(order—i+l). The de-
scription of the parameter is otherwise identical for each of
the programming languages.

PS 390 Command and Syntax

Name := POLYNOMIAL

ORDER = Order COEFFICIENTS = X(i), Y(i), Z(i)

X(i-1) , Y(i-1) , Z(i-1)

X(0) , Y(O} , Z(0)
CHORDS =Chords;

RM4-114 Reference Materials

P1
PREFIX WITH PPref

VAX and IBM FORTRAN GSR

CALL PPref (Name, ErrHnd)

where

Name is a CHARACTER STRING
ErrHnd is the user-defined error-handler subroutine.

VAX PASCAL GSR

PROCEDURE PPref (%DESCR Name P VaryingType;

PROCEDURE Error_Handler (Err : INTEGER));

IBM PASCAL GSR

PROCEDURE PPref (CONST Name STRING;

PROCEDURE Error_Handler (Err INTEGER));

UNIX/C GSR

#include <ps300/gsrext.h>

PPref (name)

where:

string name;

DESCRIPTION.

This routine prefixes a named data structure Name with an operation node. To
prefix something, the user must first call this routine and then DIATELY
call the routine corresponding to the PS 390 "transformation-or-attribute" com-
mand .

PS 390 Command and Syntax

PREfix Name WITH operation command;

Graphics Support Routines RM4-11 S

UTILITY ROUTINE PPurge

VAX and IBM FORTRAN UTILITY ROUTINE

CALL PPurge (ErrHnd)

where:

ErrHnd is the user-defined error-handler subroutine.

VAX PASCAL UTILITY ROUTINE

PROCEDURE PPurge (PROCEDURE Error_Handler (Error INTEGER));

IBM PASCAL UTILITY ROUTINE

PROCEDURE PPurge (PROCEDURE Error_Handler (Error : INTEGER));

UNIX/C UTILITY ROUTINE

#include <ps300/gsrext.h>

PPurge();

DESCRIPTION

The GSRs always buffer the output to the PS 390 to achieve maximum I/O
efficiency. This routine explicitly flushes the output buffer and sends any buff-
ered data to the PS 390.

RM4-116 Reference Materials

UTILITY ROUTINE PPutG

VAX and IBM FORTRAN UTILITY ROUTINE

CALL PPutG (String, Length, ErrHnd)

where:

String is a CHARACTER STRING
Length is an INTEGER* 4
ErrHnd is the user-defined error-handler subroutine.

IBM NOTE

No translation from EBCDIC to ASCII is performed by the
routine. If translation is required, then the PPutGX routine
should be used.

VAX PASCAL UTILITY ROUTINE

PROCEDURE PPutG (%DESCR String P VaryingType;

PROCEDURE Error_Handler (Error INTEGER));

IBM PASCAL UTILITY ROUTINE

PROCEDURE PPutG (CONST String STRING; (* send generic *)

PROCEDURE Error_Handler (Error INTEGER));

UNIX/C UTILITY ROUTINE

#include <ps300/gsrext.h>

PPutG(buffer,length)

where:

string buffer;
integer length;

DESCRIPTION

This routine sends the bytes specified in the buffer String to the current generic
demultiplexing channel of CIROIJTE established by PMuxG. Length defines
the number of bytes to send.

Graphics Support Routines RM4-11 ~

UTILITY ROUTINE PPutGX

IBM FORTRAN UTILITY ROUTINE

CALL PPutGX (String, Length, ErrHnd)

where:

String is a CHARACTER STRING
Length is an INTEGER * 4
ErrHnd is the user-defined error-handler subroutine .

IBM PASCAL UTILITY ROUTINE

PROCEDURE PPutGX (CONST Str STRING; (* send generic xlat *)

PROCEDURE Error Handler (Error INTEGER));

DES CRIRTION

PPutGX: (Put Generic) and translate. This routine sends the bytes specified in
the buffer String to the current generic demultiplexing channel of CIROUTE
established by PMuxG. If translation is not required, then the PPutG routine
should be used.

RM4-118 Reference Materials

~1
UTILITY ROUTINE

VAX and IBM FORTRAN UTILITY ROUTINE

CALL PPutP (String, Length, ErrHnd)

where

String is a CHARACTER STRING
Length is an INTEGER * 4
ErrHnd is the user-defined error-handler subroutine.

VAX PASCAL UTILITY ROUTINE

PROCEDURE PPutPars (%DESCR Str P VaryingType;

PROCEDURE Error_Handler (Error INTEGER));

IBM PASCAL UTILITY ROUTINE

PROCEDURE PPutPars (CONST Str STRING; (* SEND ASCII *)

PROCEDURE Error_Handler (Error : INTEGER));

UNIX/c UTILITY ROUTINE

#include <ps300/gsrext.h>

PPutPars(string)

where:

string string;

DESCRIPTION

PPutP

PPutPars

This routine sends the characters specified in the buffer String to the PS 390
Parser.

Graphics Support Routines RM4-119

SET CURRENT PIXEL LOCATION -RASTER GSR PRasCp

VAX and IBM FORTRAN GSR

CALL PRasCP (x, y, ErrHnd)

where

x is an INTEGER* 4
y is an INTEGER* 4
ErrHnd is the user-defined error-handler subroutine

VAX PASCAL GSR

PRasCp x : INTEGER;

y INTEGER;

PROCEDURE Error Handler (Err INTEGER));

IBM PASCAL GSR

PRasCp x INTEGER;

y INTEGER;

PROCEDURE Error Handler (Err INTEGER));

UNIX/C GSR

#include <ps300/gsrext.h>

PRasCp(x,y);

where:

integer x,y;

DESCRIPTION

This routine establishes the current pixel location relative to the current logical
device coordinates. x and y specify the x,y coordinates of the current pixel and
must be greater than or equal to 0. The lower-left corner of the logical device
coordinates is given by (0,0).

RM4-120 Reference Materials

SET CU~.RENT PIXEL LOCATION -RASTER GSR

PS 390 Command and Syntax

There is no ASCII command corresponding to PRasCP.

SEE ALSO

Load Pixel Data,
Set Logical Device Coordinates

PRasCp

(continued)

Graphics Support Routines RM4-121

ERASE SCREEN -RASTER GSR PRasEr

VAX and IBM FORTRAN GSR

CALL PRasER (Color, ErrHnd)

where

Color is an INTEGER * 4 (3)
ErrHnd is the user-defined error-handler subroutine

Color(1) is the red index
Color(2) is the green index
Color(3) is the blue index

VAX PASCAL GSR

PROCEDURE PRasEr (COLOR P ColorType;

PROCEDURE Error Handler (Err INTEGER));

Color.red is the red index
Color.green is the green index
Color.blue is the blue index

IBM PASCAL GSR

PROCEDURE PRasEr (COLOR P_ColorType;

PROCEDURE Error_Handler (Err INTEGER));

Color.red is the red index
Color. green is the green index
Color.blue is the blue index

UNIX/C GSR

#include <ps300/gsrext.h>

PRasEr (color)

where:

P_ColorType color;

Color.red is the red index
Color.green is the green index
Color.blue is the blue index

RM4-122 Reference Materials

n ERASE SCREEN -RASTER GSR

DESCRIPTION

PRasEr

(continued)

This routine is used in V~~RPIX mode to erase the entire screen to the color
specified, which is a set of three indexes into the color lookup table (LUT}, one
each for red, green, and blue. The LUT contains the actual values used for
display.

PS 390 Command and Syntax

There is no ASCII command corresponding to PRasER.

Graphics Support Routines RM4-123

SET LOGICAL DEVICE COORDINATES -RASTER GSR PRasLd

VAX and IBM FORTRAN GSR

CALL PRasLd (Xmin, Ymin, Xmax, Ymax, ErrHnd)

where:

Xmin is an INTEGER * 4
Ymin is an INTEGER * 4
Xmax is an INTEGER * 4
Yrnax is an INTEGER* 4

ErrHnd is the user-defined error-handler subroutine

VAX PASCAL GSR

PROCEDURE PRasLd (Xmin INTEGER;

Ymin INTEGER;

Xmax INTEGER;

Ymax INTEGER;

PROCEDURE Error Handler (Err INTEGER));

IBM PASCAL GSR

PROCEDURE PRasLd (Xmin INTEGER;

Ymin INTEGER;

Xmax INTEGER;

Ymax : INTEGER;

PROCEDURE Error_Handler (Err INTEGER));

UNIX/C GSR

#include <ps300/gsrext.h>

PRasLd(xmin,ymin,xmax,ymax)

where:

integer xmin,ymin,xmax,ymax;

RM4-124 Reference Materials

f"1
SET LOGICAL DEVICE COORDINATES -RASTER GSR

DESCRIPTION

PRasLd

(continued)

This routine sets the logical device coordinates that are used to position the
picture in virtual address space. The PS 390 has a virtual pixel address space
from -32768 to 2047 in both x and y. The portion of this space that is actually
displayed is from 0 to 1023 in x and from 0 to 863 in y. This routine can be
used to reposition an image in screen space without recalculation and only
retransmission of the data.

PS 390 Command and Syntax

There is no ASCII command corresponding to PRasLD.

SEE ALSO

Load Pixel Data,
Set Current Pixel Location

Graphics Support Routines RM4-12 S

LOAD PIXEL DATA -RASTER GSR PRasWP

VAX and IBM FORTRAN GSR

CALL PRasWP (Number, Pixval, ErrHnd)

where

Number is an INTEGER * 4
Pixval is an INTEGER* 4 (4,Num) Array
ErrHnd is the user-defined error-handler subroutine

VAX PASCAL GSR

PROCEDURE PRasWP (

IBM PASCAL GSR

PROCEDURE PRasWP

Number INTEGER;

VAR Pixval : P RunClrArrayType;

PROCEDURE Error Handler (Err : INTEGER));

Number INTEGER;

VAR Pixval P RunClrArrayType;

PROCEDURE Error Handler (Err INTEGER));

UNIX/C GSR

#include <ps300/gsrext.h>

PRasWP(number,pixval)

where:

integer number;
P_RunColorType Pixval [] ;

DESCRIPTION

This routine loads the current pixel location with the pixel values. Number
specifies the number of entries in Pixval array. Each value in Pixval has the
following structure:

FORTRAN UNIX/C or Pascal

Pixval (x,l) or Pixval[x].count is the repetition count
Pixval (x,2) or Pixval[x].red is the red index

Pixval (x,3) or Pixval[x].green is the green index
Pixval (x,4) or Pixval[x].blue is the blue index.

RM4-126 Reference Materials

P1
LQAD PIXEL DATA -RASTER GSR

PS 390 Command and Syntax

There is no ASCII command corresponding to PRAS~VP.

SEE ALSO

Set Current Pixel Location,
Set Logical Device Coordinates

PRasWP

(continued)

Graphics Support Routines RM4-12 7

RAWBL~CK

VAX and IBM FORTRAN GSR

CALL PRawBl (Name, Size, Apply, ErrHnd)

where

Name is a CHARACTER STRING

Size is a INTEGER * 4
Apply is a CHARACTER STRING

ErrHnd is the user-defined error-handler subroutine

VAX PASCAL GSR

PROCEDURE PRawBloc

IBM PASCAL GSR

(%DESCR Name

Size

: P VaryingType;

INTEGER;

%DESCR AppliedTo P_VaryingType;

PROCEDURE Error Handler (Err : INTEGER));

PROCEDURE PRawBloc (CONST Name STRING;

Size INTEGER;

CONST AppliedTo STRING;

PROCEDURE Error Handler (Err INTEGER));

UNIX/C GSR

#include <ps300/gsrext.h>

PRawBloc(name, size,appliedto)

where:

string name, appliedto;
integer size;

DESCRIPTION

PRawBI
PRawBloc

This routine creates a structure consisting of a block of contiguous memory

with a length of size bytes.

PS 390 Command and Syntax

Name := RAWBLOCK i;

RM4-128 Reference Materials

n

SET RASTER MODE TO WRITE PIXEL DATA -RASTER GSR PRaWRP

VAX and IBM FORTRAN GSR

CALL PRaWR,P (ErrHnd)

where:

ErrHnd is the user-defined error-handler subroutine

VAX PASCAL GSR

PROCEDURE PRaWR,P (PROCEDURE Error_Handler (Err : INTEGER));

IBM PASCAL GSR

PROCEDURE PRaWR.P (PROCEDURE Error_Handler (Err : INTEGER));

UNIX/C GSR

#include <ps300/gsrext.h>

PRaWR,P ()

DESCRIPTION

PRaWRP is used to set the raster mode to write pixel data.

Graphics Support Routines RM4-129

RATIONAL BSPLINE PRBspl

VAX and IBM FORTRAN GSR

CALL PRBspl (Name, Order, OpenClosed, NonPeriodic_Periodic, Dimension,

Nvertices, Vertices, Knotcount, Knots, Chords, ErrHnd)

where:

Name is a CHARACTER STRING
Order is an INTEGER * 4,
OpenClosed is a LOGICAL* 1

NonPeriodic Periodic is a LOGICAL * 1
Dimension is an INTEGER* 4 (2D or 3D)

Nvertices is an INTEGER * 4

Vertices is defined: REAL * 4 Vertices (4,NVert)
Knotcount is a INTEGER* 4

Knots is an array (Knotcount + 1) of REAL * 4

Chords is an INTEGER* 4
ErrHnd user-defined error-handler subroutine.

VAX PASCAL GSR

PROCEDURE PRBspl (%DESCR Name

Order

OpenClosed

NonPeriodic Periodic

Dimension

N Vertices

VAR Vertices

Knotcount

VAR Knots

Chords

PROCEDURE Error Handler (Err

IBM PASCAL GSR

PROCEDURE PRBspl CONST Name

Order

OpenClosed

NonPeriodic Periodic

Dimension

N Vertices

CONST Vertices

Knotcount

CONST Knots

Chords

PROCEDURE Error Handler (Err

P VaryingType;

INTEGER;

BOOLEAN;

BOOLEAN;

INTEGER;

INTEGER;

P VectorListType;

INTEGER;

P_KnotArrayType;

: INTEGER;

INTEGER));

STRING;

INTEGER;

BOOLEAN;

BOOLEAN;

INTEGER;

INTEGER;

P VectorListType;

INTEGER;

P KnotArrayType;

: INTEGER;

INTEGER));

RM4-130 Reference Materials

P"1
RATIONAL BSPLINE

UNIX/C GSR

#include <ps300/gsrext.h>

PRBspI

(continued)

PRBspl(name,order,openclosed, nonperiodic_periodic,dimension,nvertices,

vertices,knotcount,knots,chords)

where

string name;
integer order, dimension, nvertices, knotcount, chords;
Boolean openclosed, nonperiodic~eriodic;
P_VectorListType vertices;
P_KnotArrayType knots;

DESCRIPTION

This routine allows the parametric description of a rational B-spline curve form
without having to specify or transfer the coordinates of each constituent vector.
It contains the following parametric definitions:

Name specifies the name to be given to the computed rational B-spline.
Order is the order of the curve.
OpenClosed is TRUE for Open and FALSE for Closed.
NonPeriodic_Periodic is TRUE for Nonperiodic and FALSE for Periodic.
Dimension is 2 or 3 (2 or 3 dimensional respectively).
Nvertices specifies the number of vertices.
Vertices specifies the vertices.
KnotCount is the number of knots.
Knots is the knot sequence.
Chords is the number of vectors to be created.

NOTE

None of the parameters in the routine PRBSPL are optional.
The dimension must be specified in the PRBSPL routine. In
the PS 390 command, dimension is implied by syntax. If
KnotCount = 0, then the default knot sequence is generated
and the knot array is ignored.

Graphics Support Routines RM4-131

RATIONAL BSPLINE

PS 390 Command and Syntax

Name := RATIONAL BSPLINE ORDER = k

[OPEN/CLOSED]

[NONPERIODIC/PERIODIC]

[N = n]

[VERTICES =] Xl , Y1, [Z1,] Wl

X2, Y2, [Z2,] W2

XN, YN, [ZN,] WN

[KNOTS = tl,t2,...tj]

CHORDS = q;

SEE ALSO

BSPLINE

PRBspI

(continued)

RM4-132 Reference Materials

REMOVE PRem

VAX and IBM FQRTRAN GSR

CALL PRem (Name, ErrHnd)

where:

Name is a CHARACTER STRING
ErrHnd is the user-defined error-handler subroutine.

VAX PASCAL GSR

PROCEDURE PRem (%DESCR Name P VaryingType;

PROCEDURE Error_Handler (Err : INTEGER));

IBM PASCAL GSR

PROCEDURE PRem (CONST Name STRING;

PROCEDURE Error_Handler (Err : INTEGER));

UNIX/C GSR

#include <ps300/gsrext.h>

PRem (name)

where:

string name;

DESCRIPTION

This routine removes Name from the display list.

PS 390 Command and Syntax

REMove Name;

SEE ALSO

DISPLAY

Graphics Support Routines RM4-133

REMOVE FOLLOWER

VAX and IBM FORTRAN GSR

CALL PRemFo (Name, ErrHnd)

where

Name is a CHARACTER STRING
ErrHnd is the user-defined error-handler subroutine .

VAX PASCAL GSR

PROCEDURE PRemFoll (%DESCR Name P_VaryingType;

PROCEDURE Error_Handler (Err : INTEGER));

IBM PASCAL GSR

PROCEDURE PRemFoll (CONST Name STRING;

PROCEDURE Error_Handler (Err : INTEGER));

UNIX/C GSR

#include <ps300/gsrext.h>

PRemFoll (name)

where

string name;

DESCRIPTION

This routine removes a previously placed follower of Name.

PS 390 Command and Syntax

REMove FOLLOWER of name;

sEE
Aso

FOLLOW

PRemFo
PRemFoll

RM4-134 Reference Materials

REMOVE FROM

VAX and IBM FORTRAN GSR

CALL PRemFr (Namel, Name2, ErrHnd)

where

Name 1 is a CHARACTER STRING

Name2 is a CHARACTER STRING
ErrHnd is the user-defined error-handler subroutine.

VAX PASCAL GSR

PROCEDURE PRemFrom (%DESCR Namel P VaryingType;

%DESCR Name2 P VaryingType;

PROCEDURE Error Handler (Err INTEGER));

IBM PASCAL GSR

PROCEDURE PRemFrom (CONST Namel STRING;

CONST Name2 STRING;

PROCEDURE Error Handler (Err : INTEGER));

UNIX/C GSR

##include <ps300/gsrext.h>

PRemFrom(namel,name2)

where:

string name 1, name 2 ;

DES CRIPTI ~N

PRemFr
PRemFrom

This routine removes an instance of a named data structure Name 1 from an
instance node Name2.

PS 390 Command and Syntax

REMove Namel FROM Name2;

SEE ALSO

INCLUDE

Graphics Support Routines RM4-135

REMOVE PREFIX

VAX and IBM FORTRAN GSR

CALL PRemPr (Name, ErrHnd)

where

Name is a CHARACTER STRING
ErrHnd is the user-defined error-handler subroutine.

VAX PASCAL GSR

PROCEDURE PRemPref (%DESCR Name P VaryingType;

PROCEDURE Error_Handler (Err : INTEGER));

IBM PASCAL GSR

PROCEDURE PRemPref (CONST Name STRING;

PROCEDURE Error_Handler (Err INTEGER));

UNIXIC GSR

#include <ps300/gsrext.h>

PRemPref (name)

where:

string name;

DESCRIPTION

This routine removes a previously placed prefix.

PS 390 Command and Syntax

REMo v e PRE f i x o f name ;

SEE ALSO

PREFIX

PRemPr
PRemPref

RM4-136 Reference Materials

P'1
ROTATE in X PRotX

VAX and IBM FORTRAN GSR

CALL PRotX (Name, Angle, Apply, ErrHnd)

where:

Name is a CHARACTER STRING
Angle is a REAL * 4
Apply is a CHARACTER STRING
ErrHnd is the user-defined error-handler subroutine.

VAX PASCAL GSR

PROCEDURE PRotX (%DESCR Name P VaryingType;

Angle REAL;

%DESCR AppliedTo P_VaryingType;

PROCEDURE Error_Handler (Err INTEGER));

IBM PASCAL GSR

PROCEDURE PRotX (CONST Name STRING;

Angle SHORTREAL;

CONST AppliedTo STRING;

PROCEDURE Error_Handler (Err : INTEGER));

UNIX/C GSR

#include <ps300/gsrext.h>

PRotX(name,angle,appliedto)

where:

string name, appliedto;
double angle;

DESCRIPTION

This routine creates a 3x3 rotation matrix that rotates an object Apply by Angle
degrees around the X axis relative to world space origin.

PS 390 Command and Syntax

Name := ROTate in X Angle [APPLied to namel];

Graphics Support Routines RM4-13 7

RaTATE in Y P Ro tY

VAX and IBM FORTRAN GSR

CALL PRotY (Name, Angle, Apply, ErrHnd)

where

Name is a CHARACTER STRING
Angle is a REAL * 4
Apply is a CHARACTER STRING
ErrHnd is the user-defined error-handler subroutine.

VAX PASCAL GSR

PROCEDURE PRotY (%DESCR Name P VaryingType;

Angle REAL;

%DESCR AppliedTo P VaryingType;

PROCEDURE Error Handler (Err : INTEGER));

IBM PASCAL GSR

PROCEDURE PRotY CONST Name STRING;

Angle SHORTREAL;

CONST AppliedTo STRING;

PROCEDURE Error Handler (Err INTEGER));

UNIX/C GSR

#include <ps300/gsrext.h>

PRotY(name,angle,appliedto)

where

string name, appliedto;
double angle;

DESCRIPTION

This routine creates a 3x3 rotation matrix that rotates an object Apply by Angle
degrees around the Y axis relative to world space origin.

PS 390 Command and Syntax

Name := ROTate in Y Angle [APPLied to namel];

RM4-138 Reference Materials

~"1
ROTATE in Z PRotZ

VAX and IBM FORTRAN GSR

CALL PRotZ (Name, Angle, Apply, ErrHnd)

where:

Name is a CHARACTER STRING
Angle is a REAL * 4
Apply is a CHARACTER STRING
ErrHnd is the user-defined error-handler subroutine.

VAX PASCAL GSR

PROCEDURE PRotZ (%DESCR Name P_VaryingType;

Angle REAL;

%DESCR AppliedTo P_VaryingType;

PROCEDURE Error_Handler (Err INTEGER));

IBM PASCAL GSR

PROCEDURE PRotZ (CONST Name STRING;

Angle SHORTREAL;

CONST AppliedTo STRING;

PROCEDURE Error_Handler (Err INTEGER));

UNIX/C GSR

#include <ps300/gsrext.h>

PRotZ(name,angle,appliedto)

where

string name, appliedto;

double angle;

DESCRIPTION

This routine creates a 3x3 rotation matrix that rotates an object Apply by Angle
degrees around the Z axis relative to world space origin.

PS 390 Command and Syntax

Name := ROTate in Z Angle [APPLied to namel];

Graphics Support Routines RM4-139

RATIONAL POLYNOMIAL PRPoly

VAX and IBM FORTRAN GSR

CALL PRPoly (Name, Order, Dimension, Coeffs, Chords, ErrHnd)

where

Name is a CHARACTER STRING
Order is an INTEGER* 4
Dimension is an INTEGER * 4
Coeffs is defined: REAL * 4 (4, Order+ 1)
Chords is an INTEGER * 4
ErrHnd is the user-defined error-handler subroutine

VAX PASCAL GSR

PROCEDURE PRPoly (%DESCR Name P VaryingType;

Order INTEGER;

Dimension INTEGER;

VAR Coeffs P VectorListType;

Chords INTEGER;

PROCEDURE Error Handler (Err INTEGER));

IBM PASCAL GSR

PROCEDURE PRPoly CONST Name

Order

Dimension

STRING;

INTEGER;

INTEGER;

CONST Coeffs P VectorListType;

Chords INTEGER;

PROCEDURE Error_Handler (Err INTEGER));

UNIXIC GSR

#include <ps300/gsrext.h>

PRPoly(name,order,dimension,coeffs,chords}

where

string name;
integer order, dimension, chords;
P_VectorListType Coeffs;

RM4-140 Reference Materials

I"1
RATIONAL POLYNOMIAL

DESCRIPTION

PRPoIy

(continued)

This routine allows the parametric description of many curve forms without
having to specify or transfer the coordinates of each constituent vector. It in-
cludes the following parametric definitions:

Order is the order of the polynomial.
Dimension is 2 or 3 (2 or 3 dimensions respectively).
Coeffs represent the x,y,z components of the curve.

Coeffs [i] .V4 [1] := x(order -i+1}
Coeffs [i] .V4 [2] := y(order -i+1)
Coeffs [i] .V4 [3] := z(order -i+1)
Coeffs [i] .V4 [4] := w(order -i+1

To further clarify the description:

Coeffs [1] .V4 [1] := the coefficient that will be applied to the t order term.

Coeffs [2] .V4 [1] := the coefficient that will be applied to the t order-1

term in the resultant x (t) function computed by this
command.

etc.

Chords is the number of vectors to be drawn.

NOTE

The definition for Coeffs in IBM Pascal takes the form
CoefJ`s(.i.).V4(.1.):=x(order-i+l). VAX FORTRAN and IBM
FORTRAN take the form Coeffs(l,i) = x(order-i+l). The de-
scription of the parameter is otherwise identical for each of
the programming languages.

Graphics Support Routines RM4-141

RATIONAL. POL,~NOMIAL

PS X90 Command and Syntax

Name := RATIONAL POLYNOMIAL ORDER = i

[COEFFICIENTS =] Xi, Yi, Zi, Wi

Xi-1, Yi-1, Zi-1, Wi-1

X0, Y0, Z0, WO

CHORDS = q;

SEE ALSO

POLYNO

PRPoIy

(continued)

RM4-142 Reference Materials

n

RESERVE WORKING_STORAGE

VAX and IBM FORTRAN GSR

CALL PRsvSt (Bytes, ErrHnd)

where:.

Bytes is an INTEGER * 4
ErrHnd is the user-defined error-handler subroutine

VAX PASCAL GSR

PROCEDURE PRsvStor (Bytes INTEGER:

PROCEDURE Error_Handler (Err INTEGER));

IBM PASCAL GSR

PROCEDURE PRsvStor (Bytes INTEGER:

PROCEDURE Error_Handler (Err : INTEGER));

UNIX/C GSR

#include <ps300/gsrext.h>

PRsvStor(nbytes)

where:

integer nbytes;

DDS CRIPTIOIV

PRsvSt
PRsvStor

This routine is used to reserve working storage space for rendering solids and
surfaces. Working storage space must be reserved explicitly using this routine.
The parameter Bytes represents the number of bytes to be reserved for working
storage.

PS 390 Command and Syntax

Reserve Working_Storage size;

Graphics Support Routines RM4-143

UTILITY ROUTINE PSavBeg

UNIX/C UTILITY ROUTINE

#include <ps300/gsrext.h>

PSavBeg filename)

where

char *filename;

DES CRIPTI DN

PSavBeg diverts the output of the GSR library from its current output device to
the disk file, filename. The Start_of text character, the byte count, and the
mux byte are stripped before saving the data. This is the only and essential
difference between using PSavBeg and specifying a disk file name as the argu-
ment to PAttach routine. The output diversion is terminated by a PSavEnd call.
The data saved thus can be reloaded using the PLoad routine.

Since the mux byte is stripped before saving the data on disk, the programmer
must ensure that all output saved together use the same mux byte. When the
mux byte is expected to change (as when calling PPutPars or PPutG) PSavEnd
should be called, and further output should be diverted to a different file by
using PSavBeg again.

SEE ALSO

PSavEnd, PLoad
Examples using PSavBeg, PSavEnd, and PLoad can be found in TT3 or in the
on-line documentation in gsrref(3G).

RM4-144 Reference Materials

UTILITY ROUTINE PSavEnd

UNIX/C UTILITY ROUTINE

#include <ps300/gsrext.h>

PSavEnd()

DESCRIPTION

PSavEnd terminates the output of the GSR library to a disk file, which was
begun by a call to PSavBeg. Any further output from the library is sent to the
output channel which was in effect before the corresponding PSavBeg call. The
data saved by the PSavBeg, PSavEnd combination can be reloaded efficiently,
using the PLoad routine.

SEE ALSO

PSavBeg, PLoad
Examples using PSavBeg, PSavEnd, and PLoad can be found in TT3 or in the
on-line documentation in gsrref(3G).

Graphics Support Routines RM4-145

SCALE

VAX and IBM FORTRAN GSR

CALL PScale (Name, Vector, Apply, ErrHnd)

where

Name is a CHARACTER STRING
Vector is defined: REAL * 4 V (3)
Apply is a CHARACTER STRING
ErrHnd is the user-defined error-handler subroutine.

VAX PASCAL GSR

PROCEDURE PScaleBy (%DESCR Name P_VaryingType;

VAR Vector P VectorType;

%DESCR AppliedTo P_VaryingType;

PROCEDURE Error Handler (Err INTEGER));

IBM PASCAL GSR

PROCEDURE PScaleBy CONST Name STRING;

CONST Vector : P VectorType;

CONST Name STRING;

PROCEDURE Error Handler (Err INTEGER));

UNIXIC GSR

#include <ps300/gsrext.h>

PScaleBy(name,vector,appliedto)

where:

string name, appliedto;
P_VectorType vector;

DES CRIPTI0IV

PScale
PScaleBy

This routine applies a uniform scale transformation matrix to a specified vector
list and/or characters specified by Apply/Applied to. Vector contains the x,y,z
scale components .

PS 390 Command and Syntax

Name := SCALE by s [APPLied to namelJ ;

Name := SCALE by sx, sy, sz [APPLied to namel];

RM4-146 Reference Materials

SET CONDITIONAL BIT

VAX and IBM FORTRAN GSR

CALL PSeBit (Name, BitNumber, OnOff, Apply, ErrHnd)

where

Name is a CHARACTER STRING
BitNumber is an INTEGER* 4
OnOff is a LOGICAL* 1
Apply is a CHARACTER STRING
Errhnd is the user-defined error-handler subroutine.

VAX PASCAL GSR

PROCEDURE PSetBit (%DESCR Name P VaryingType;

BitNumber : INTEGER;

OnOff BOOLEAN;

%DESCR AppliedTo P VaryingType;

PROCEDURE Error Handler (Err INTEGER));

IBM PASCAL GSR

PROCEDURE PSetBit (CONST Name STRING;

BitNumber INTEGER;

OnOff BOOLEAN;

CONST AppliedTo STRING;

PROCEDURE Error_Handler (Err INTEGER));

UNIX/C GSR

#include <ps300/gsrext.h>

PSetBit(name,bitnumber,onoff,appliedto}

where

string name, appliedto;
integer bitnumber;
boolean onoff;

PSeBit
PSetBit

Graphics Support Routines RM4-147

SET CONDITIONAL BIT

DESCRIPTION

PSeBit
PSetBit

(continued)

This routine alters one of the 15 global conditional bits during the traversal of
the data structure. These conditional bits are initially set to OFF. When the
traversal is finished, the bits are restored to their previous values. It contains
the following parametric definitions:

BitNumber is an integer from 0 to 14 corresponding to the conditional bit to be
set to ON or OFF.

OnOff is TRUE for ON and FALSB for OFF.

PS 390 Command and Syntax

Name := SET conditional_BIT n switch [APPLied to namel];

SEE ALSO

IF CONDITIONAL BIT

RM4-148 ~Zeference Materials

SET CHARACTERS SCREEN ORIENTED/FIXED

VAX and IBM FORTRAN GSR

CALL PSeChF (Name, Apply, ErrHnd)

where:

Name is a CHARACTER STRING
Apply is a CHARACTER STRING
ErrHnd is the user-defined error-handler subroutine.

VAX PASCAL GSR

PROCEDURE PSetChrF

IBM PASCAL GSR

PROCEDURE PSetChrF

%DESCR Name P VaryingType;

%DESCR AppliedTo P_VaryingType;

PROCEDURE Error_Handler (Err : INTEGER));

CONST Name STRING;

CONST AppliedTo STRING;

PROCEDURE Error_Handler (Err : INTEGER));

UNIXIC GSR

#include <ps300/gsrext.h>

PSetChrF (name,appliedto)

where

string name, appliedto;

DESCRIPTION

PSeChF
PSetChrF

This routine sets the type of screen orientation for displayed character strings.
When it is used, characters are not affected by rotation or scaling transforma-
tions and they are displayed with full size and intensity.

Graphics Support Routines - RM4-149

SET CHARACTERS SCREEN ORIENTED/FIXED

PS 390 Command and Syntax

Name := SET CHARacters orientation [APPLied to namel];

SEE ALSO

CHARACTERS,
CHARACTER SCALE,
SET CHARACTERS SCREEN ORIENTED,
SET C C'1'ERS WORLD ORIENTED

PSeChF
PSetChrF

(continued)

RM4-1 SO Reference Materials

r"1
SET CHARACTERS SCREEN ORIENTED

VAX and IBM FORTRAN GSR

CALL PSeChS (Name, Apply, ErrHnd)

where

Name is a CHARACTER STRING
Apply is a CHARACTER STRING
ErrHnd is the user-defined error-handler subroutine.

VAX PASCAL GSR

PROCEDURE PSetChrS

IBM PASCAL GSR

%DESCR Name P_VaryingType;

%DESCR AppliedTo P VaryingType;

PROCEDURE Error_Handler (Err : INTEGER));

PROCEDURE PSetChrS (CONST Name STRING;

CONST AppliedTo STRING;

PROCEDURE Error_Handler (Err INTEGER));

UNIXIC GSR

#include <ps300/gsrext.h>

PSetChrS(name,appliedto)

where:

string name, appliedto;

DESCRIPTION

PSeChS
PSetChrS

This routine sets the type of screen orientation for displayed character strings.
When it is used, characters are not affected by rotation or scaling trans- forma-
tions, but intensity and size will still vary with depth (Z-position).

Graphics Support Routines RM4-1 S 1

SET CHARACTERS SCREEN ORIENTED

PS 390 Command and Syntax

Name := SET CHARacters orientation [APPLied to namel];

SEE ALSO

C C'1'ERS ,
C CTER SCALE,
SET C CTERS SCREEN ORIENTED/FIXED,
SET C CTERS WORLD ORIENTED

PSeChS
PSetChrS

(continued)

RM4-152 Reference Materials

SET CHARACTERS WORLD ORIENTED

VAX and IBM FORTRAN GSR

CALL PSeChW (Name, Apply, ErrHnd)

where

Name is a CHARACTER STRING
Apply is a CHARACTER STRING
ErrHnd is the user—defined error—handler subroutine.

vAX PASCAL GSR

PROCEDURE PSetChrW

IBM PASCAL GSR

%DESCR Name P_VaryingType;

%DESCR AppliedTo P_VaryingType;

PROCEDURE Error Handler (Err INTEGER));

PROCEDURE PSetChrW (CONST Name STRING;

CONST AppliedTo STRING;

PROCEDURE Error_Handler (Err INTEGER));

UNIX/C GSR

#include <ps300/gsrext.h>

PSetChrW(name,appliedto)

where:

string name, appliedto;

DESCRIPTION

PSeChW
PSetChrW

This routine sets the type of screen orientation for displayed character strings.

When it is used, characters are transformed along with any part of the object
containing them.

Graphics Support Routines RM4-153

SET CHARACTERS WORLD ORIENTED

FS 390 Command and Syntax

Name := SET CHARacters orientation [APPLied to namel];

sEE ~,so

CHARAC' 1'ERS ,
CHARACTER SCALE,
SET C CTERS SCREEN ORIENTED/FIXED

PSeChW
PSetChrW

(continued)

RM4-154 Reference Materials

SETUP CNESS

VAX and IBM FORTRAN GSR

CALL PSeCns (Cness, Input, Name, ErrHnd)

where:

Cness is a LOGICAL
Input is an INTEGER* 4
Name is a CHARACTER STRING
Errhnd is the user—defined error—handler subroutine

VAX PAS CAL G S R

PROCEDURE PSetCnes

IBM PASCAL GSR

PROCEDURE PSetCnes

Cness BOOLEAN;

Input INTEGER;

%DESCR Name P VaryingType;

PROCEDURE Error_Handler (Err INTEGER));

Cness BOOLEAN;

Input INTEGER;

CONST Name STRING;

PROCEDURE Error_Handler (Err : INTEGER));

UNIX/C GSR

#include <ps300/gsrext.h>

PSetCnes(cness,input,name)

where

Boolean mess;
integer input;
string name;

DES CRIPTION

PSeCns
PSetCnes

This routine is used to define a particular function instance input to be a con-
stant or trigger input.

PS 390 Command and Syntax

SETUP CNESS TRUE

SETUP CNESS FALSE

<i>name;

<i>name;

Graphics Support Routines RM4-I55

SET COLOR

VAX and IBM FQRTRAN GSR

CALL PSeCol (Name, Hue, Saturation, Apply, ErrHnd)

where

Name is a CHARACTER STRING
Hue is a REAL * 4
Saturation is a REAL * 4
Apply is a CHARACTER STRING
ErrHnd is the user-defined error-handler subroutine

VAX PAS CAL GS R

PROCEDURE PSetColr (%DESCR Name P_VaryingType;

Hue REAL;

Saturation REAL;

%DESCR AppliedTo P VaryingType;

PROCEDURE Error_Handler (Err INTEGER));

IBM PASCAL GSR

PROCEDURE PSetColr CONST Name

Hue

Saturation

STRING;

SHORTREAL;

SHORTREAL;

CONST AppliedTo STRING;

PROCEDURE Error_Handler (Err INTEGER));

UNIX/C GSR

#include <ps300/gsrext.h>

PSetColr (name, hue, saturation,appliedto)

where:

string name, appliedto;
double hue, saturation;

PSeCoI
PSetColr

RM4-156 Reference Materials

SET COLOR PSeCoI
PSetColr

(continued)

DESCRIPTION

This routine specifies the color of an object Apply/AppliedTo. It contains the
following parametric definition:

• Hue is greater than or equal to 0.0 and less than 360.0 with:
0.0 =pure blue
120.0 =pure red
240.0 =pure green

• Saturation is from 0.0 to 1.0 with:
0.0 = no saturation (white)
1.0 =full saturation

PS 390 Command and Syntax

Name := SET COLOR hue, saturation [APPLied to namel];

SEE ALSO

POLYGON

Graphics Support Routines RM4-1 S 7

SET CONTRAST

VAX and IBM FORTRAN GSR

CALL PSeCon (Name, Contrast, Apply, ErrHnd)

where

Name is a CHARACTER STRING
Contrast is a REAL * 4
Apply is a CHARACTER STRING
ErrHnd is the user—defined error—handler subroutine .

VAX PASCAL GSR

PROCEDURE PSetCont (%DESCR Name P VaryingType;

Contrast REAL;

%DESCR AppliedTo P VaryingType;

PROCEDURE Error_Handler (Err : INTEGER));

IBM PASCAL GSR

PROCEDURE PSetCont (CONST Name STRING;

Contrast SHORTREAL;

CONST AppliedTo STRING;

PROCEDURE Error_Handler (Err : INTEGER));

UNIX/C GSR

#include <ps300/gsrext.h>

PSetCont (name,contrast,appliedto)

where:

string name, appliedto;
double contrast;

DESCRIPTION

PSeCon
PSetCont

This routine changes the contrast of the data structure Apply/Applied to. It
contains the following parametric definition:

• Contrast is from 0.0 to 1.0 with:
0.0 =lowest contrast
1.0 =highest contrast

PS 390 Command and Syntax

Name := SET CONTrast to c [APPLied to namely ;

RM4-158 Reference Materials

SECTIONING PLANE

VAX and IBM FORTRAN GSR

CALL PSecPl (Name, Apply, ErrHnd)

where

Name is a CHARACTER STRING * (*)
Apply is a CHARACTER STRING * (*)
ErrHnd is the user-defined error-handler subroutine.

VAX PASCAL GSR

PROCEDURE PSecPlan (%DESCR Name P VaryingType;

%DESCR AppliedTo P VaryingType;

PROCEDURE Error Handler (Err INTEGER));

IBM PASCAL GSR

PROCEDURE PSecPlan (CONST Name STRING;

CONST AppliedTo STRING

PROCEDURE Error Handler (Err INTEGER));

UNIX/C GSR

#include <ps300/gsrext.h>

PSecPlan (name,appliedto)

where

string name, appliedto;

DESCRIPTION

PSecPI
PSecPlan

This routine creates asectioning-plane operation node specified by Name.
Apply/AppliedTo supplies the name of the entity that contains the polygon de-
fining the sectioning plane.

PS 390 Command and Syntax

Name := SECTioning_plane [APPLied to namel];

SEE ALSO

POLYGON

Graphics Support Routines RM4-159

SET DISPLAYS ALL

VAX and IBM FORTRAN GSR

CALL PSeDAl (Name, Onoff, ErrHnd)

where

Name is a CHARACTER STRING
Onoff is a LOGICAL * 1
Apply is a CHARACTER STRING
ErrHnd is the user-defined error-handler subroutine.

VAX PASCAL GSR

PROCEDURE PSetDAll (%DESCR Name P VaryingType;

Onoff : BOOLEAN;

%DESCR AppliedTo P VaryingType;

PROCEDURE Error_Handler (Err INTEGER));

IBM PASCAL GSR

PROCEDURE PSetDAll (CONST Name STRING;

Onoff : BOOLEAN;

CONST AppliedTo STRING

PROCEDURE Error Handler (Err INTEGER));

UNIX/C GSR

#include <ps300/gsrext.h>

PSetDAl1(name,onoff,appliedto)

where:

string name, appliedto;
Boolean Onoff;

DESCRIPTION

PSeDAI
PSetDAll

This routine sets all displays) ON or OFF. Onoff is `TRUE for ON and FALSE
for OFF.

PS 390 Command and Syntax

Name := SET DISPlays ALL switch [APPLied to namel];

RM4-160 Reference Materials

~"1
SET DEPTH CLIPPING

VAX and IBM FQRTRAN GSR

CALL PSeDCL (Name, OnOff, Apply, ErrHnd)

where:

Name is a CHARACTER STRING
OnOff is a LOGICAL* 1 defined: .TRUE. for On and .FALSE. for Off.
Apply is a CHARACTER STRING
ErrHnd is the user-defined error-handler subroutine.

VAX PASCAL GSR

PROCEDURE PSetDCL (%DESCR Name P VaryingType;

OnOff : BOOLEAN;

%DESCR Name P VaryingType;

PROCEDURE Error_Handler (Err : INTEGER));

IBM PASCAL GSR

PROCEDURE PSetDCL (CONST Name STRING;

OnOff : BOOLEAN;

CONST AppliedTo STRING;

PROCEDURE Error_Handler (Err INTEGER));

UNIX/C GSR

#include <ps300/gsrext.h>

PSetDCL (name, onoff,appliedto)

where:

string name,appliedto;
boolean onoff;

PSeDCL
PSetDCL

Graphics Support Routines RM4-161

SET DEPTH CLIPPING

DESCRIPTION

PSeDCL
PSetDCL

(continued)

With depth clipping on (TRUE), data between the eye and the front clipping
plane will be clipped, data between the front clipping plane and back clipping
plane will appear with an intensity gradient, and data behind the back clipping
plane will be clipped.

With depth clipping off (FALSE), data between the eye and front clipping plane
will appear at full intensity, data between the front clipping plane and back
clipping plane will appear with an intensity gradient, and data behind the back
clipping plane will appear at minimum intensity.

PS 390 Command and Syntax

Name := SET DEPTH_CLipping switch [APPLied to namel] ;

RM4-162 Reference Materials

SET DISPLAY

VAX and IBM FORTRAN GSR

CALL PSeDOF (Name, OnOff, N, Apply, ErrHnd)

where

Name is a CHARACTER STRING
OnOff is a LOGICAL * 1
N is an INTEGER* 4
Apply is a CHARACTER STRING
ErrHnd is the user-defined error-handler subroutine.

VAX PASCAL GSR

PROCEDURE PSetDOnF (%DESCR Name P VaryingType;

OnOff BOOLEAN;

N : INTEGER;

%DESCR AppliedTo P_VaryingType;

PROCEDURE Error_Handler (Err INTEGER));

IBM PASCAL GSR

PROCEDURE PSetDOnF (CONST Name STRING;

OnOff BOOLEAN;

N : INTEGER;

CONST AppliedTo STRING

PROCEDURE Error_Handler (Err : INTEGER));

UNIX/C GSR
#include <ps300/gsrext.h>

PSetDOnF(name,onoff,n,appliedto)

where:

string name, appliedto;
boolean onoff;
int n;

DESCRIPTION

PSeDOF
PSetDOnF

This routine specifies the display number n to be set to ON or Off. Onoff is

TRUE for ON and FALSE for OFF.

PS 390 Command and Syntax

Name : = SET DISPlay n [, m...] switch [APPLied to namel] ;

Graphics Support Routines RM4-163

SET INTENSITY

VAX and IBM FORTRAN GSR

CALL PSeInt (Name, OnOff, IMin, IMax, Apply, ErrHnd)

where

Narne is a CHARACTER STRING
OnOff is a LOGICAL* 1
IMin is a REAL * 4
IMax is a REAL*4
Apply is a CHARACTER STRING
ErrHnd is the user-defined error-handler subroutine.

VAX PASCAL GSR

PROCEDURE PSetInt (%DESCR Name P VaryingType;

OnOff BOOLEAN;

Imin REAL;

Imax REAL;

%DESCR AppliedTo P VaryingType;

PROCEDURE Error_Handler (Err : INTEGER));

IBM PASCAL GSR

PROCEDURE PSetInt (CONST Name STRING;

OnOff BOOLEAN;

Imin SHORTREAL;

Imax SHORTREAL;

CONST AppliedTo STRING;

PROCEDURE Error_Handler (Err : INTEGER));

UNIX/C GSR

#include <ps300/gsrext.h>

PSetInt(name,onoff,imin,imax,appliedto)

where

string name,appliedto;

boolean onoff;
double imin, Imax;

PSeInt
PSetInt

RM4-164 Reference Materials

SET INTENSITY

DESCRIPTION

PSeInt

PSetInt

(continued)

This routine specifies the intensity variation for depth cueing and has the fol-
lowing parametric definition:

• OnOff TRUE for On and FALSE for Off.

• IMin is a real number from 0.0 to 1.0 that represents the dimmest inten-
sity setting

• IMax is a real number from 0.0 to 1.0 that represents the brightest inten-
sity setting.

PS 390 Command and Syntax

Name := SET INTENsity switch imin:imax [APPLied to namel];

SEE ALSO

VIEWPORT

Graphics Support Routines RM4-165

SET LINE TEXTURE

VAX and IBM FORTRAN GSR

CALL PSeLnt (Name, Pattern, Continuous, Apply, Errhnd)

where

Name is a CHARACTER STRING

Pattern is an INTEGER * 4

Continuous is a LOGICAL* 1

Apply is a CHARACTER STRING

Errhnd is the user-defined error-handler subroutine

VAX PASCAL GSR

PROCEDURE PSetLinT (%DESCR Name P VaryingType

Pattern : INTEGER

Continuous : BOOLEAN

%DESCR AppliedTo P VaryingType

PROCEDURE Error Handler (Err : INTEGER)

IBM PASCAL GSR

PROCEDURE PSetLinT (CONST Name STRING

Pattern INTEGER

Continuous BOOLEAN

CONST AppliedTo STRING

PROCEDURE Error_Handler (Err : INTEGER)

UNIX/C GSR

#include <ps300/gsrext.h>

PSetLinT(name,pattern,continuous,appliedto)

where

string name, appliedto;

integer pattern;

Boolean continuous;

PSeLnt
PSetLinT

RM4-166 Reference Materials

SET LINE TEXTURE

DESCRIPTION

PSeLnt

PSetLinT

(continued)

This routine specifies the line texture pattern to be used in drawing the vector
lists that appear below the node created by this command. There are up to 127
hardware-generated line textures possible. The parameter Pattern is an integer
between 1 and 127. The desired line texture is indicated by the setting or
clearing of the lower 7-bit positions in Pattern when represented in binary. An
individual pattern unit is 1.1 centimeters in length. Some of the more common
patterns and their corresponding bit settings are shown below:

Pattern Bit representation Line Texture repeated twice

127 1111111 Solid

124 1111100 Long Dashed

122 1111010 - - Long Short Dashed

106 1101010 - - - - Long Short Short Dashed

Continuous is a LOGICAL value used to set a flag to indicate if the specified
line texture should continue from one vector to the next. If TRUE, the line
texture will continue from one vector to the next through the endpoint. If
FALSE, the line texture will start and stop at the vector endpoints.

Pattern is an integer between 1 and 127 that specifies the desired line texture.
When Pattern is less that 1 or greater than 127, solid lines are produced.

Apply/AppliedTo is the name of the structure to which the line texture is
applied.

The default line texture is a solid line.

Graphics Support Routines RM4-167

SET LINE TEXTURE

NOTES

PSeLnt
PSetLinT

(continued)

Since 7 bit positions are used, it is not possible to create a symmetric pattern.
When line-texturing is applied to a vector, the vector that is specified is
displayed as a patterned, rather that solid line. If the line is smaller than the
pattern length, then as much of the pattern that can be displayed with the
vector is displayed. If the line is smaller than the smallest element of the
pattern, then the line is displayed as solid.

The With Pattern and curve commands create multiple vectors in memory. To
the line-texturing hardware, each vector in a pattern or curve is seen as an
individual vector. Line-texturing a patterned line or curve is the same as
line-texturing a number of small segments. Curves and patterns affect
line-texturing only in that they tend to create short vectors that may be too short
to be completely textured.

PS 390 Command and Syntax

name := SET LINe_texture [AROUnd_corners] pattern [APPLied to namel];

SEE ALSO

PA'1T1'~RN, PA'i~l'ERN

RM4-168 Reference Materials

SET LEVEL_OF_DETAIL

VAX and IBM FORTRAN GSR

CALL PSeLOD (Name, Level, Apply, ErrHnd)

where:

Name is a CHARACTER STRING
Level is an INTEGER * 4
Apply is a CHARACTER STRING
ErrHnd is the user-defined error-handler subroutine.

VAX PASCAL GSR

PROCEDURE PSetLOD (%DESCR Name P VaryingType;

Level INTEGER;

%DESCR AppliedTo P VaryingType;

PROCEDURE Error Handler (Err : INTEGER));

IBM PASCAL GSR

PROCEDURE PSetLOD CONST Name STRING;

Level INTEGER;

CONST AppliedTo STRING;

PROCEDURE Error Handler (Err INTEGER));

UNIX/C GSR

#include <ps300/gsrext.h>

PSetLOD(name,level,appliedto)

where

string name, appliedto;
integer level;

PSeLOD
PSetLOD

Graphics Support Routines RM4-169

SET LEVEL OF DETAIL PSeLOD
PSetLOD

(continued)

DESCRIPTION

This routine alters a global level-of-detail value temporarily. These temporary
settings allow for conditional referencing to other data structures. When the
traversal of data is finished, the level of detail is restored to its original level.
Level is an integer from 0 to 32767 that indicates the level-of-detail value.

PS 390 Command and Syntax

Name : = SET LEVel_of_detai 1 TO n [APPLied to namel] ;

SEE ALSO

DECREMENT LEVEL OF_DETAIL, IF LEVEL_OF DETAIL, INCREMENT
LEVEL OF DETAIL,

RM4-170 Reference Materials

SET PICKING IDENTIFIER

VAX and IBM FORTRAN GSR

CALL PSePID (Name, PickId, Apply, ErrHnd}

where

Name is a CHARACTER STRING

PickId is a CHARACTER STRING
Apply is a CHARACTER STRING
ErrHnd is the user-defined error-handler subroutine.

VAX PASCAL GSR

PROCEDURE PSetPID

IBM PASCAL GSR

PROCEDURE PSetPID

%DESCR Name P VaryingType;

%DESCR PickId : P VaryingType;

%DESCR AppliedTo P VaryingType;

PROCEDURE Error_Handler (Err INTEGER));

CONST Name STRING;

CONST PickId STRING;

CONST AppliedTo STRING;

PROCEDURE Error_Handler (Err INTEGER));

UNIX/C GSR

#include <ps300/gsrext.h>

PSetPID(name,pickid,appliedto)

where

string name,pickid,appliedto;

DESCRIPTION

PSePID
PSetPID

This routine specifies textual information (e.g. a character string) pickid that
will be reported back if a pick occurs anywhere on the specified display
structure Apply/AppliedTo.

PS 390 Command and Syntax

Name := SET PICKing IDentifier = id_name [APPLied to namel];

SEE ALSO

SET PICK:Il~TG, SET PICKING LOCATION

Graphics Support Routines RM4-171

SET PICKING LOCATION PSePLo
PSetPLoc

VAX and IBM FORTRAN GSR

CALL PSePLo (Name, Xcenter, Ycenter, Xsize, Ysize, Apply, ErrHnd)

where:

Name is a CHARACTER STRING
Xcenter, Ycenter are REAL * 4
Xsize, Ysize are REAL* 4

Apply is a CHARACTER STRING
ErrHnd is the user-defined error-handler subroutine.

VAX PASCAL GSR

PROCEDURE PSetPLoc (%DESCR Name P VaryingType;

Xcenter REAL;

Ycenter REAL;

Xsize REAL;

Ysize REAL;

%DESCR AppliedTo P VaryingType;

PROCEDURE Error_Handler (Err : INTEGER));

IBM PASCAL GSR

PROCEDURE PSetPLoc (CONST Name STRING;

Xcenter SHORTREAL;

Ycenter SHORTREAL;

Xsize SHORTREAL;

Ysize SHORTREAL;

CONST AppliedTo STRING;

PROCEDURE Error_Handler (Err INTEGER));

UNIX/C GSR

#include <ps300/gsrext.h>

PSetPLoc(name,xcenter,ycenter,xsize,ysize,appliedto)

where

string name, appliedto;
double xcenter,ycenter,xsize,ysize;

RM4-172 Reference Materials

SET PICKING LOCATION

DESCRIPTION

PSePLo
PSetPLoc

(continued)

This routine specifies a rectangular picking area at x,y within the current
viewport. It contains the following parametric definitions:

Xcenter, Ycenter signify the center of the pick location.
Xsize, Ysize specify the boundaries of the pick rectangle.

PS 390 Command and Syntax

Name := SET PICKING LOCation = X,Y size_x, size_y;

SEE ALSO

SET PICK:Il'~TG, SET PICKING IDENTIFIER

Graphics Support Routines RM4-1 ~3

SET PICKING OFF

VAX and IBM FORTRAN GSR

CALL PSePOf (Name, OnOff, Apply, ErrHnd)

where

Name is a CHARACTER STRING
OnOff is a LOGICAL * 1
Apply is a CHARACTER STRING
ErrHnd is the user-defined error-handler subroutine.

VAX PASCAL GSR

PROCEDURE PSetPOnf (%DESCR Name P VaryingType;

OnOff BOOLEAN;

%DESCR AppliedTo P_VaryingType;

PROCEDURE Error_Handler (Err : INTEGER));

IBM PASCAL GSR

PROCEDURE PSetPOnf (CONST Name STRING;

OnOff BOOLEAN;

CONST AppliedTo STRING;

PROCEDURE Error_Handler (Err : INTEGER));

UNIX/C GSR

#include <ps300/gsrext.h>

PSetPOnf(name,onoff,appliedto)

where

string name, appliedto;
boolean onoff;

DESCRIPTION

PSePOf
PSetPOnf

This routine enables/disables picking for a specified display structure
Apply/AppliedTo. OnOff is TRUE for picking enabled and FALSE for disabled.

PS 390 Command and Syntax

Name := SET PICKing switch [APPLied to namel];

SEE ALSO

SET PICK:Il~TG IDENTIFIER, SET PICK:Il~TG LOCATION

RM4-174 Reference Materials

SET RATE PSeR
PSetR

VAX and IBM FORTRAN GSR

CALL PSeR (Name, PhaseOn, PhaseOff, InitOnOff, Delay, Apply, ErrHnd)

where

Name is a CHARACTER STRING
PhaseOn is an INTEGER * 4
PhaseOff is an INTEGER* 4
InitOnOff is a LOGICAL * 1 defined: .TRUE. for On and .FALSE. for Off
Delay is an INTEGER * 4
Apply is a CHARACTER STRING
ErrHnd is the user-defined error-handler subroutine.

VAX PASCAL GSR

PROCEDURE PSetR (%DESCR Name

PhaseOn

PhaseOff

InitOnOff

Delay

%DESCR AppliedTo

IBM PASCAL GSR

PROCEDURE PSetR

P_VaryingType;

INTEGER;

INTEGER;

BOOLEAN;

INTEGER;

P_VaryingType;

PROCEDURE Error Handler (Err : INTEGER));

CONST Name

PhaseOn

PhaseOff :

InitOnOff

Delay

CONST AppliedTo

STRING;

INTEGER;

INTEGER;

BOOLEAN;

INTEGER;

STRING;

PROCEDURE Error Handler (Err : INTEGER));

UNIX/C GSR

#include <ps300jgsrext.h>

PSetR(name,phaseon,phaseoff,initonoff,delay,appliedto)

where

string name, appliedto;
integer phaseon,phaseoff,delay;

boolean initonoff;

Graphics Support Routines RM4-1 ~S

SET RATE

DESCRIPTION

PSeR
PSetR

(continued)

This routine is used to control blinking of display structures. It temporarily sets
the duration of the two global ON and OFF phases of the PHASE attribute.
Each duration is specified in number of refresh frames. The default phase is
OFF and never changes unless a SET RATE node is encountered. The routine
has the following parametric definitions:

PhaseOn designates the duration of the ON phase.
PhaesOff designates the duration of the OFF phase.
InitOn~ff specifies the initial state of Phase:TRLJE for ON, FALSE for OFF.
Delay is the number of refresh frames in the initial state.

The Phase attribute is usually tested further down the display tree using IF
PHASE to conditionally display a data structure.

PS 390 Command and Syntax

Name := SET RATE phase_on phase off [initial state] [delay]
[APPL ied to namel] ;

SEE ALSO

IF PHASE, SET RATE EXTERNAL

RM4-176 Reference Materials

SET RATE EXTERNAL

VAX and IBM FORTRAN GSR

CALL PSeREx (Name, Apply, ErrHnd)

where:

Name is a CHARACTER STRING
Apply is a CHARACTER STRING
ErrHnd is the user-defined error-handler subroutine.

VAX PASCAL GSR

PROCEDURE PSetRExt

IBM PASCAL GSR

PROCEDURE PSetRExt

%DESCR Name : P VaryingType;

%DESCR AppliedTo P VaryingType;

PROCEDURE Error Handler (Err INTEGER));

CONST Name STRING;

CONST AppliedTo STRING;

PROCEDURE Error Handler (Err INTEGER));

UNIX/C GSR

#include <ps300/gsrext.h>

PSetRExt (name,appliedto)

where:

string name, appliedto;

DESCRIPTION

PSeREx
PSetRExt

This routine sets up a data structure that can be used to alter the PHASE
attribute using an external source, such as a function network or a message
from the host computer. This is in contrast to the SET RATE routine where the
PHASE attribute is changed based on refresh cycles.

PS 390 Command and Syntax

Name := SET RATE EXTernal [APPLied to namel];

SEE ALSO

IF PHASE, SET RATE

Graphics Support Routines R1VI4-177

SEND BOOLEAN

VAX and IBM FORTRAN GSR

CALL PSnBoo (B, Input, Destination, ErrHnd)

where

B is .TRUE. or .FALSE., the logical value to be sent

PSnBoo
PSndBool

Input is an INTEGER 4 corresponding to the input of the display structure, function
instance, or variable, Destination

Destination is a CHARACTER STRII~TG representing the destination

ErrHnd is the user-defined error-handler subroutine.

VAX PASCAL GSR

PROCEDURE PSndBool

IBM PASCAL GSR

PROCEDURE PSndBool

B BOOLEAN;

Input INTEGER;

%DESCR Destination P_VaryingType;

PROCEDURE Error_Handler (Err INTEGER));

B BOOLEAN;

Input INTEGER;

CONST Destination STRING;

PROCEDURE Error_Handler (Err INTEGER));

UNIX/C GSR

#include <ps300/gsrext.h>

PSndBool(b,input,destination)

where

boolean b;
integer input;
string destination;

RM4-178 Reference Materials

P'1
SEND BOOLEAN

DESCRIPTION

PSnBoo
PSndBool

(continued)

This routine sends a Boolean value to Input of a specified function instance,
display structure, or variable Destination.

* These mnemonics may be referenced directly by the user if the file containing
the declarations is INCLUDED in the routine. See Section TT3 Using the GSRs
for a description of this file. A description of inputs to display structures and
their INTEGER* 4 value is given below.

FORTRAN

Mnemonic <Input>

PILAST <LAST>

Pascal &UNIX

Mnemonic <Input>

P Last <LAST>

PS 390 Command and Syntax

SEND option TO <n>namel;

INTEGER*4 Value

-5

INTEGER*4 Value

-5

Graphics Support Routines RM4-1 ~9

SEND FIX

VAX and IBM FORTRAN GSR

CALL PSnFix (i, Input, Destination, ErrHnd)

where:

i is an INTEGER * 4, the integer to be sent

PSnFix
PSndFix

Input is an INTEGER 4 corresponding to the input of a display structure, function
instance, or variable destination

Destination is a CHARACTER STRING

ErrHnd is the user-defined error-handler subroutine.

VAX PAS CAL GS R

PROCEDURE PSndFix

IBM PASCAL GSR

PROCEDURE PSndFix

i INTEGER;

Input INTEGER;

%DESCR Destination P_VaryingType;

PROCEDURE Error_Handler (Err : INTEGER));

i INTEGER;

Input : INTEGER;

CONST Destination STRING;

PROCEDURE Error_Handler (Err : INTEGER));

UNIX/C GSR

#include <ps300/gsrext.h>

PSndFix(i,input,destination)

where

integer i;
integer input;
string destination;

RM4-180 Reference Materials

SEND FIX PSnFix
PSndFix

(continued)

DES CRIPTI oN

This routine sends the value of i to the specified Input of the display structure
or function instance Destination.

* These mnemonics may be referenced directly by the user if the file containing
the declarations is INCL~CJDED in the routine. See Section TT3 using the GSRs
for a description Of this file. A description Of inputs t0 display structures and
their INTEGER* 4 value is given below.

FORTRAN

Mnemonic <Input> INTEGER*4_Value

PIDEL <DELETE> -1

PICLR <CLEAR> -2

Pascal &UNIX

P Delete <DELETE> -1

P Clear <CLEAR> -2

PS 390 Command and Syntax

SEND option TO <n>namel;

Graphics Support Routines RM4-181

SEND 2D MATRIX

VAX and IBM FORTRAN GSR

CALL PSnM2d (Matrix, Input, Destination, ErrHnd)

where:

Matrix is the matrix to be sent and is defined: REAL * 4 Mat (4, 4)

PSnM2d
PSndM2d

Input is an INTEGER * 4 corresponding to the input of a variable, function instance or
display structure

Destination is a CHARACTER STRING

ErrHnd is the user-defined error-handler subroutine.

VAX PASCAL GSR

PROCEDURE PSndM2d

IBM PASCAL GSR

PROCEDURE PSndM2d

VAR Matrix : P MatrixType;

Input INTEGER;

%DESCR Destination P VaryingType;

PROCEDURE Error_Handler (Err INTEGER));

CONST Matrix P MatrixType;

Input INTEGER;

CONST Destination : STRING;

PROCEDURE Error_Handler (Err INTEGER));

UNIXIC GSR

#include <ps300/gsrext.h>

PSndM2d(matrix,input,destination)

where

P_MatrixType matrix;
integer input;
string destination;

RM4-182 Reference Materials

SEND 2D MATRIX

DESCRIPTION

PSnM2d
PSndM2d

(continued)

This routine sends a 2x2 Matrix to the specified Input of a display structure,
function instance, or variable Destination.

PS 390 Command and Syntax

SEND option TO <n>namel;

Graphics Support Routines RM4-183

SEND 3D MATRIX

VAX and IBM FORTRAN GSR

CALL PSnM3d (Matrix, Input, Destination, ErrHnd)

where

Matrix is the matrix to be sent and is defined: REAL * 4 Mat (4, 4)

PSnM3d
PSndM3 d

Input is an INTEGER* 4 corresponding to the input of a variable, function instance or

display structure

Destination is a CHARACTER STRING

ErrHnd is the user-defined error-handler subroutine.

VAX PASCAL GSR

PROCEDURE PSndM3d

IBM PASCAL GSR

PROCEDURE PSndM3d

VAR Matrix P MatrixType;

Input INTEGER;

%DESCR Destination: P VaryingType;

PROCEDURE Error Handler (Err INTEGER));

CONST Matrix P MatrixType;

Input INTEGER;

CONST Destination STRING;

PROCEDURE Error_Handler (Err : INTEGER));

UNIX/C GSR

#include <ps300/gsrext.h>

PSndM3d(matrix,input,destination)

where

P_MatrixType matrix;
integer input;
string destination;

RM4-184 Reference Materials

P'1
SEND 3D MATRIX

DESCRIPTION

PSnM3d
PSndM3d

(continued)

This routine sends a 3x3 Matrix to the specified Input of a display structure,
function instance, or variable Destination.

PS 390 Command and Syntax

SEND option TO <n>namel;

Graphics Support Routines RM4-185

SEND 4D MATRIX

VAX and IBM FORTRAN GSR

CALL PSnM4d (Matrix, Input, Destination, ErrHnd)

where

Matrix is the matrix to be sent and is defined: REAL * 4 Mat (4, 4)

PSnM4d
PSndM4d

Input is an INTEGER* 4 corresponding to the input of a variable, function instance or
display structure

Destination is a CHARACTER STRING

ErrHnd is the user-defined error-handler subroutine.

VAX PASCAL GSR

PROCEDURE PSndM4d {

IBM PASCAL GSR

PROCEDURE PSndM4d

VAR Matrix : P_MatrixType;

Input : INTEGER;

%DESCR Destination: P_VaryingType;

PROCEDURE Error_Handler (Err : INTEGER));

CONST Matrix

Input

P_MatrixType;

: INTEGER;

CONST Destination STRING;

PROCEDURE Error_Handler (Err INTEGER));

UNIX/C GSR

#include <ps300/gsrext.h>

PSndM4d(matrix,input,destination)

where:

P_MatrixType matrix;
integer input;
string destination;

RM4-186 Reference Materials

/"1
SEND 4D MATRIX

DES CRIPTI oN

PSnM4d
PSndM4d

(continued)

This routine sends a 4x4 Matrix to the specified Input of a display structure,
function instance, or variable Destination.

PS 390 Command and Syntax

SEND option TO <n>namel;

Graphics Support Routines RM4-18 7

SEND NUMBER* MODE

VAX and IBM FORTRAN GSR

CALL PSnPL (Count, DrawMove, Input, Destination, ErrHnd)

where:

PSnPL
PSndPL

Count is an INTEGER* 4
DrawMove is LOGICAL* 1 and is defined: .TRUE. is Draw and .FALSE. is Move
Input is an INTEGER * 4
Destination is a CHARACTER STRING
ErrHnd is the user-defined error-handler subroutine.

VAX PASCAL GSR

PROCEDURE PSndPL

IBM PASCAL GSR

PROCEDURE PSndPL

Count : INTEGER;

DrawMove BOOLEAN;

Input INTEGER;

%DESCR Name P_VaryingType;

PROCEDURE Error_Handler (Err : INTEGER));

Count INTEGER;

DrawMove BOOLEAN;

Input INTEGER;

CONST Name STRING;

PROCEDURE Error_Handler (Err INTEGER));

UNIX/C GSR

#include <ps300/gsrext.h>

PSndPL(count,drawmove,input,name)

where:

integer count,input;
Boolean drawmove;
string name;

RM4-188 Reference Materials

r"1
SEND NUMBER* MODE

DESCRIPTION

PSnPL
PSndPL

(continued)

This routine sends count number of Draw or Move specifications to
consecutive vectors beginning at vector Input of the vector list Destination.
DrawMove is TRUE for Draw and FALSE for Move .

PS 390 Command and Syntax

SEND number*mode TO <n>namel;

Graphics Support Routines RM4-189

SEND REAL NUMBER TO

VAX and IBM FORTRAN GSR

CALL PSnRea (Real, Input, Destination, ErrHnd)

where:

Real is the REAL * 4 to be sent
Input is an INTEGER* 4
Destination is a CHARACTER STRING
ErrHnd is the user-defined error-handler subroutine.

VAX PASCAL GSR

PROCEDURE PSndReal

IBM PASCAL GSR

PROCEDURE PSndReal

real REAL;

Input : INTEGER;

%DESCR Destination P VaryingType;

PROCEDURE Error_Handler (Err : INTEGER));

real SHORTREAL;

Input : INTEGER;

CONST Destination STRING;

PROCEDURE Error_Handler (Err : INTEGER));

UNIX/C GSR

#include <ps300/gsrext.h>

PSndReal (real, input,destination)

where:

double real;
integer input;
string destination;

DESCRIPTION

PSnRea
PSndReal

This routine sends a real number Real to a specified Input of a display
structure or function instance Destination.

PS 390 Command and Syntax

SEND option TO <n>namel;

RM4-190 Reference Materials

SEND RAW STRING

VAX and IBM FORTRAN GSR

CALL PSnRSt (String, Input, Destination, ErrHnd)

where

String is a CHARACTER STRING
*Input is an INTEGER * 4

Destination is a CHARACTER STRING
ErrHnd is the user-defined error-handler subroutine.

VAX PAS CAL G S R

PROCEDURE PSndRStr (%DESCR String : P_VaryingType;

Input INTEGER;

%DESCR Destination : P VaryingType;

PROCEDURE Error_Handler (Err : INTEGER));

IBM PASCAL GSR

PROCEDURE PSndRStr (CONST String STRING;

Input INTEGER;

CONST Destination STRING;

PROCEDURE Error_Handler (Err : INTEGER));

UNIX/C GSR

There is no corresponding UNIX routine.

DESCRIPTION

PSnRSt
PSndRStr

This routine does NOT translate the character String. If the character string =
CHR(0) // CHR(1), then CHR(0) // CHR(1) is sent as the string. This routine is
functionally identical to the SEND STRING call for VAX systems. For IBM

systems no translation from EBCDIC to ASCII is performed on the string. This

routine should be used when a character string of some length containing

arbitrary characters is to be sent to a function network without translation. An

example of where SEND RAW STRING must be used is as follows.

Graphics Support Routines RM4-1 ~ ~

SEND RAW STRING

Where the PS 390 command to send a string would be,

SEND CHAR (1) to <2> CONSTANTl;

the equivalent Graphics Support Routine call would be,

String =Char (1)

CALL PSnRSt (Str, 2, 'CONSTANTl', ErrHnd)

where String is declared CHARACTER STRING* 1

PSnRSt
PSndRStr

(continued)

* These mnemonics may be referenced directly by the user if the file containing
the declarations is INCLUDED in the routine. See Section TT3 Using the GSRs
for a description of this file. A description of inputs to display structures and
their INTEGER* 4 value is given below.

FORTRAN

Mnemonic <Input> INTEGER*4 Value

PILAST <LAST> -5

PISUBS <SUBSTITUTE> -6

Mnemonic

Pascal &UNIX

<Input> INTEGER*4 Value

P Last <LAST> -5

P Substitute <SUBSTITUTE> -6

PS 390 Command and Syntax

SEND option TO <n>namel;

RM4-192 Reference Materials

P'1
SEND STRING

VAX and IBM FORTRAN GSR

CALL PSnSt (String, Input, Destination, ErrHnd)

where:

String is a CHARACTER STRING to be sent

Input is an INTEGER 4
Destination is a CHARACTER STRING

ErrHnd is the user-defined error-handler subroutine.

VAX PASCAL GSR

PROCEDURE PSndStr

IBM PASCAL GSR

%DESCR String P VaryingType;

Input INTEGER;

%DESCR Destination P VaryingType;

PROCEDURE Error Handler (Err INTEGER));

PROCEDURE PSndStr (CONST String STRING;

Input INTEGER;

CONST Destination STRING;

PROCEDURE Error Handler (Err : INTEGER));

UNIX/C GSR

#include <ps300/gsrext.h>

PSndStr(string,input,destination)

where

string string;
integer input;

string destination;

DESCRIPTION

PSnSt
PSndStr

This routine sends the character String to the Input of a display structure

Destination. (On VAX systems no translation is required. On IBM systems the

String is translated from EBCDIC to ASCII.)

Graphics Support Routines RM4-193

SEND STRING PSnSt
PSndStr

(continued)

* These mnemonics may be referenced directly by the user if the file containing
the declarations is INCLUDED in the routine. See Section TT3 Using the GSRs
for a description of this file. A description of inputs to display structures and
their I]vTEGER* 4 value is given below.

FORTRAN

Mnemonic <Input> INTEGER*4 Value

PILAST <LAST> -5

PISUBS <SUBSTITUTE> -6

Mnemonic

Pascal &UNIX

<Input> INTEGER*4 Value

P_Last <LAST> -5

P Substitute <SUBSTITUTE> -6

PS 390 Command and Syntax

SEND option TO <n>namel;

RM4-194 Reference Materials

I"1
SEND 2D VECTOR To

VAX and IBM FORTRAN GSR

CALL PSnV2d (Vector, Input, Destination, ErrHnd)

where

Vector is the vector to be sent and is defined: REAL * 4 V (2)

PSnV2d
PSndV2d

*Input is an INTEGER * 4 corresponding to the input of a function instance, a variable, or
a display structure

Destination is a CHARACTER STRING

ErrHnd is the user-defined error-handler subroutine.

VAX PASCAL GSR

PROCEDURE PSndV2d

IBM PASCAL GSR

PROCEDURE PSndV2d

VAR Vector P VectorType;

Input : INTEGER;

%DESCR Destination : P VaryingType;

PROCEDURE Error_Handler (Err : INTEGER)) ;

CONST Vector P_VectorType;

Input : INTEGER;

CONST Destination STRING;

PROCEDURE Error_Handler (Err : INTEGER)) ;

UNIX/C GSR

#include <ps300/gsrext.h>

PSndV2d(vector,input,destination)

where:

P_VectorType vector;

integer input;

string destination;

Graph ics Support Routines RM4-195

SEND 2D VECTOR TO

DESCRIPTION

PSnV2d
PSndV2d

(continued)

This routine sends a 2D vector to the specified Input of a display structure,
function instance, or variable Destination.

* These mnemonics may be referenced directly by the user if the file containing
the declarations is INCLUDED in the routine. See Section TT3 Using the GSRs
fora description of this file. A description of inputs to display structures and
their INTEGER* 4 value is given below.

FORTRAN

Mnemonic <Input> INTEGER*4 Value

PIAPP <APPEND> 0

PISTEP <STEP> -3

PIPOS <POSITION> -4

PILAST <LAST> -5

Pascal & UNIX

Mnemonic <Input> INTEGER*4 Value

P_Append <APPEND> 0

P_Step <STEP> -3

P Position <POSITION> -4

P Last <LAST> -5

PS 390 Command and Syntax

SEND option TO <n>namel;

RM4-196 Reference Materials

SEND 3D VECTOR

VAX and IBM FORTRAN GSR

CALL PSnV3d (Vector, Input, Destination, ErrHnd)

where:

Vector is the vector to be sent and is defined: REAL * 4 V (3)

PSnV3d
PSndV3d

*Input is an INTEGER * 4 corresponding to the input of a function instance, a variable, or

a display structure

Destination is a CHARACTER STRING

ErrHnd is the user-defined error-handler subroutine.

VAX PASCAL GSR

PROCEDURE PSndV3d

IBM PASCAL GSR

PROCEDURE PSndV3d

VAR Vector P VectorType;

Input INTEGER;

%DESCR Destination P VaryingType;

PROCEDURE Error_Handler (Err INTEGER)) ;

CONST Vector P VectorType;

Input INTEGER;

CONST Destination STRING;

PROCEDURE Error_Handler (Err INTEGER)) ;

UNIX/C GSR

#include <ps300/gsrext.h>

PSndV3d(vector,input,destination)

where:

P_VectorType vector;

integer input;

string destination;

Graphics Support Routines RM4-197

SEND 3D VECTOR TO

DESCRIPTION

PSnV3d
PSndV3d

(continued)

This routine sends a 3D vector to the specified Input of a display structure,
function instance, or variable Destination.

* These mnemonics may be referenced directly by the user if the file containing

the declarations is INCLUDED in the routine. See Section TT3 Using the GSRs
fora description of this file. A description of inputs to display structures and
their INTEGER* 4 value is given below.

FORTRAN

Mnemonic <Input> INTEGER*4 Value

PIAPP <APPEND> 0

PISTEP <STEP> -3

PIPOS <POSITION> -4

PILAST <LAST> -5

Pascal & UNIX

Mnemonic <Input> INTEGER*4 Value

P Append <APPEND> 0

P Step <STEP> -3

P Position <POSITION> -4

P Last <LAST> -5

PS 390 Command and Syntax

SEND option TO <n>namel;

RM4-198 Reference Materials

SEND 4D VECTOR TO

VAX and IBM FORTRAN GSR

CALL PSnV4d (Vector, Input, Destination, ErrHnd)

where:

Vector is the vector to be sent and is defined: REAL * 4 V (4)

PSnV4d
PSndV4d

*Input is an INTEGER * 4 corresponding to the input of a function instance, a variable, or
a display structure

Destination is a CHARACTER STRING

ErrHnd is the user-defined error-handler subroutine.

VAX PASCAL GSR

PROCEDURE PSndV4d

IBM PASCAL GSR

PROCEDURE PSndV4d

VAR Vector : P VectorType;

Input INTEGER;

%DESCR Destination P VaryingType;

PROCEDURE Error Handler (Err INTEGER));

CONST Vector P VectorType;

Input INTEGER;

CONST Destination STRING;

PROCEDURE Error Handler (Err INTEGER});

UNIX/C GSR

#include <ps300/gsrext.h>

PSndV4d(vector,input,destination)

where:

P_VectorType vector;
integer input;
string destination;

Graphics Support Routines RM4-199

SEND 4D VECTOR TO

DESCRIPTION

PSnV4d
PSndV4d

(continued)

This routine sends a 4D vector to the specified Input of a display structure,
function instance, or variable Destination.

* These mnemonics may be referenced directly by the user if the file containing
the declarations is INCLUDED in the routine. See Section TT3 Using the GSRs
fora description of this file. A description of inputs t0 display structures and
their INTEGER* 4 value is given below.

FORTRAN

Mnemonic <Input> INTEGER*4 Value

PIAPP <APPEND> 0

PISTEP <STEP> -3

PIPOS <POSITION> -4

PILAST <LAST> -5

Pascal & UNIX

Mnemonic <Input> INTEGER*4 Value

P Append <APPEND> 0

P_Step <STEP> -3

P Position <POSITION> -4

P Last <LAST> -5

PS 390 Command and Syntax

SEND option TO <n>namel;

RM4-200 Reference Materials

SEND VALUE

VAX and IBM FORTRAN GSR

CALL PSnVal (VarNam, Input, Destination, ErrHnd)

where

VarNam is a CHARACTER STRING that is the name of the Variable

PSnVaI
PSndVal

Input is an INTEGER 4 corresponding to the input of a function instance, a variable, or
a display structure

Destination is a CHARACTER STRING

ErrHnd is the user-defined error-handler subroutine.

VAX PASCAL GSR

PROCEDURE PSndVal

IBM PASCAL GSR

%DESCR Varnam : P_VaryingType;

Input INTEGER;

%DESCR Destination : P_VaryingType;

PROCEDURE Error_Handler (Err INTEGER));

PROCEDURE PSndVal (CONST Varnam STRING;

Input INTEGER;

CONST Destination STRING;

PROCEDURE Error_Handler (Err : INTEGER));

UNIX/C GSR

#include <ps300/gsrext.h>

PSndVal(varname,input,destination)

where:

string varname ;
integer input;
string destination;

Graphics Support Routines RM4-201

SEND VALUE TO

DES CRIPTI ~N

PSnVaI
PSndVal

(continued)

This routine sends the current value in the variable VarNam to a designated
Input Of a display structure or function instance Destination.

* These mnemonics may be referenced directly by the user if the file containing
the declarations is INCLUDED in the routine. See Section TT3 Using the GSRs
fora description of this file. A description of inputs to display structures and
their INTEGER* 4 value is given below.

FORTRAN

Mnemonic <Input> INTEGER*4 Value

PIAPP <APPEND> 0

PIDEL <DELETE> -1

PICLR <CLEAR> -2

PISTEP <STEP> -3

PIPOS <POSITION> -4

PILAST <LAST> -5

PISUBS <SUBSTITUTE> -6

Pascal & UNIX

Mnemonic <Input> INTEGER*4 Value

P_Append <APPEND> 0

P Delete <DELETE> -1

P Clear <CLEAR> -2

P_Step <STEP> -3

P Position <POSITION> -4

P Last <LAST> -5

P Substitute <SUBSTITUTE> -6

PS 390 Command and Syntax

SEND option TO <n>namel;

RM4-202 Reference Materials

SEND VECTOR LIST PSnVL
PSndVL

VAX and IBM FORTRAN GSR

CALL PSnVL (Namel, Input, Name2, ErrHnd)

where

Name 1 is a CHARACTER STRING containing the name of the vector list to be sent

Input is an INTEGER 4 corresponding to the index of the first vector to be replaced in
(Name2} with the vectors from (Name 1)

Name2 is a CHARACTER STRING containing the name of the destination of the vector
list

ErrHnd is the user-defined error-handler subroutine.

VAX PASCAL GSR

PROCEDURE PSndVL (%DESCR Namel : P VaryingType;

Input : INTEGER;

%DESCR Name2 P VaryingType;

PROCEDURE Error_Handler (Err INTEGER));

IBM PASCAL GSR

PROCEDURE PSndVL (CONST Namel STRING;

Input : INTEGER;

CONST Name2 STRING;

PROCEDURE Error_Handler (Err : INTEGER));

UNIX/C GSR

#include <ps300/gsrext.h>

PSndVL(namel,input,name2)

where

string name 1, name 2 ;
integer input;

Graphics Support Routines R1V14-203

SEND VECTOR LIST

DESCRIPTION

PSnVL
PSndVL

(continued)

This routine replaces the vectors beginning at vector Input of the vector list
Name2 with the vectors from vector list Namel .

* These mnemonics may be referenced directly by the user if the file containing
the declarations is INCLUDED in the routine. See Section TT3 Using the GSRs
for a description of this file. A description of inputs to display structures and
their I]~1TEGER* 4 value is given below.

FORTRAN

Mnemonic <Input> INTEGER*4 Value

PIAPP <APPEND> 0

PILAST <LAST> -5

Pascal &UNIX

Mnemonic <Input> INTEGER*4 Value

P Append <APPEND>

P Last <LAST>

PS 390 Command and Syntax

SEND VL (Namely TO <i> Name2;

0

-5

RM4-204 Reference Materials

SOLID RENDERING

VAX and IBM FORTRAN GSR

CALL PSolRe (Name, Apply, ErrHnd)

where

Name is a CHARACTER STRING * (* }
Apply is a CHARACTER STRING * (* }
ErrHnd is the user-defined error-handler subroutine.

VAX PASCAL GSR

PROCEDURE PSolRend

IBM PASCAL GSR

PROCEDURE PSolRend

%DESCR Name P_VaryingType;

%DESCR AppliedTo P_VaryingType;

PROCEDURE Error_Handler (Err : INTEGER));

CONST Name STRING;

CONST AppliedTo STRING;

PROCEDURE Error_Handler (Err INTEGER));

UNIX/C GSR

#include <ps300/gsrext.h>

PSolRend name, appliedto)

where:

string name, appliedto;

DESCRIPTION

PSoIRe
PSolRend

This routine defines asolid-rendering operation node, marking its descendent
structure so that solid renderings can be performed on it. Name supplies the
name to be given to the solid-rendering operation node. Apply/AppliedTo
supplies the name of the entity that this operation node will be applied to.

PS 390 Command and Syntax

Name := SOLID_RENDERING [Applied to namel];

SEE ALSO

SURFACE_RENDERING

Graphics Support Routines RM4-205

STANDARD FaNT

VAX and IBM FORTRAN GSR

CALL PStdFo (Name, Apply, ErrHnd)

where:

Name is a CHARACTER STRING
Apply is a CHARACTER STRING
ErrHnd is the user-defined error-handler subroutine.

VAX PASCAL GSR

PROCEDURE PStdFont

IBM PASCAL GSR

%DESCR Name P VaryingType;

%DESCR AppliedTo P VaryingType;

PROCEDURE Error Handler (Err INTEGER));

PROCEDURE PStdFont (CONST Name STRING;

CONST AppliedTo STRING;

PROCEDURE Error Handler (Err INTEGER));

UNIX/C GSR

#include <ps300/gsrext.h>

PStdFont(name,appliedto)

where

string name, appliedto;

DESCRIPTION

PStdFo
PStdFont

This routine establishes the standard PS 390 character font as the working font.

PS 390 Command and Syntax

Name := STANdard FONT [APPLied to name 1] ;

SEE ALSO

C C'1'~R FONT

RM4-206 Reference Materials

CONVERSION UTILITY ROUTINE - HSI TO RGB PSURGB
PSUTIL HSIRGB

VAX and IBM FORTRAN GSR

CALL PSURGB (Red, Green, Blue, Hue, Saturation, Intensity)

where

Red, Green, Blue are INTEGER* 4
Hue, Saturation, Intensity are REAL * 4

VAX and IBM Pascal GSR

PROCEDURE PSUTIL_HSIRGB (VAR red, green blue INTEGER;

VAR Hue, Saturation, Intensity : REAL);

UNIX/C GSR

#include <ps300/gsrext.h>

PSUTIL_HSIRGB(red,green,blue,hue, saturation, intensity)

where

integer *red, *green, *blue;
double hue, saturation, intensity;

DESCRIPTION

This procedure converts Hue, Saturation, and Intensity color specifications to
Red, Green, and Blue color specification. For a given Hue, Saturation, and
Intensity the routine returns RGB values as integers between 0 and 255, and
uses a color wheel where a Hue of 0 is blue, a Hue of 120 is red, and a Hue of
240 is green.

Graphics Support Routines RM4-207

SURFACE RENDERING

VAX and IBM FORTRAN GSR

CALL PSurRe (Name, Apply, ErrHnd) where:

Name is a CHARACTER STRING * (*)
Apply is a CHARACTER STRING* (*)
ErrHnd is the user-defined error-handler subroutine.

VAX PAS CAL G S R

PROCEDURE PSurRend

IBM PASCAL GSR

%DESCR Name P VaryingType;

%DESCR AppliedTo P VaryingType;

PROCEDURE Error_Handler (Err : INTEGER));

PROCEDURE PSurRend (CONST Name STRING;

CONST AppliedTo STRING;

PROCEDURE Error_Handler (Err : INTEGER));

UNIX/C GSR

#include <ps300/gsrext.h>

PSurRend (name, appliedto)

where:

string name, appliedto;

DESCRIPTION

PSurRe
PSurRend

This routine defines a surface-rendering operation node, marking its
descendent structure so that surface renderings can be performed on it. Name
supplies the name to be given to the surface-rendering operation node.
Apply/AppliedT6 supplies the name of the entity that this operation node will
be applied to.

PS 390 Command and Syntax

Name := SURFACE_RENDERING [Applied to Hamel];

SEE ALSO

SOLID RENDERING

RM4-208 Reference Materials

I"1
TRANSLATE

VAX and IBM FORTRAN GSR

CALL PTrans (Name, Vector, Apply, ErrHnd)

where:

PTrans
PTransBy

Name is a CHARACTER STRING
Vector is the vector containing the x,y,z translation values and is defined: REAL*4 V(3)
Apply is a CHARACTER STRING
ErrHnd is the user-defined error-handler subroutine.

VAX PASCAL GSR

PROCEDURE PTransBy

IBM PASCAL GSR

PROCEDURE PTransBy (

%DESCR Name P VaryingType;

VAR Vector P VectorType

%DESCR AppliedTo P_VaryingType;

PROCEDURE Error_Handler {Err : INTEGER));

CONST Name STRING;

CONST Vector P VectorType;

CONST AppliedTo STRING;

PROCEDURE Error Handler (Err : INTEGER));

UNIX/C GSR

#include <ps300/gsrext.h>

PTransBy (name, vector,appliedto)

where:

string name, appliedto;
P_VectorType vector [1] ;

Graphics Support Routines RM4-209

Name := TRANSLATE

DESCRIPTION

PTrans
PTransBy

(continued)

This routine applies a translation vector to the specified data structure
Apply/AppliedTo.

FORTRAN UNIX

V(1) = x translation Vec.V4[0]:= x translation

V (2) = y translation Vec . V4 [1] : = y translation

V (3) = z translation Vec . V4 [2] : = z translation

VAX Pascal

Vec . V4 [1] : = x translation

Vec . V4 [2] : = y translation

Vec . V4 [3] : = z translation

IBM Pascal

Vec.V4(.l.):= x translation

Vec.V4(.2.):= y translation

Vec.V4(.3.):= z translation

NOTE

All 3 Vector components must be specified. Z is not optional
in the GSR.

PS 390 Command and Syntax

Name := TRANslate by tx,ty[,tz][APPLied to namel];

RM4-210 Reference Materials

f"1
VARIABLE PVar

VAX and IBM FORTRAN GSR

CALL PVar (Name, ErrHnd)

where

Name is a CHARACTER STRING containing the name of the variable to be created.

ErrHnd is the user-defined error-handler subroutine.

VAX PASCAL GSR

PROCEDURE PVar

IBM PASCAL GSR

%DESCR Name P_VaryingType;

PROCEDURE Error_Handler (Err : INTEGER)) ;

PROCEDURE PVar (CONST Name STRING;

PROCEDURE Error_Handler (Err INTEGER)) ;

UNIXIC GSR

#include <ps300/gsrext.h>

PVar (name)

where

string name;

DESCRIPTION

This routine defines a PS 390 variable, where Name contains the name of the
variable to be created.

PS 390 Command and Syntax

VARiable Namel[,name2 . . . namen] ;

SEE ALSO

SEND VALUE

Graphics Support Routines RM4-211

VECTOR LIST PVcBeg

PVecBegn

VAX and IBM FORTRAN GSR

CALL PVcBeg (Name, VectorCount, BlockNormalized, ColorBlend, Dimension,

Class, ErrHnd)

where

Name is a CHARACTER STRING defining the name of the vector list

VectorCount is an INTEGER * 4 specifying the total number of vectors in the vector list

BlockNormalized is a LOGICAL* 1 defined: .TRUE. for Block Normalized, .FALSE. for
Vector Normalized

ColorBlend is a LOGICAL* 1 defined: .TRUE. for Color Blending, .FALSE. for normal
depth cueing

Dimension is an INTEGER* 4 2 or 3 (2 or 3 dimensions respectively)

*Class is an INTEGER*4 defining the class of the vector list

ErrHnd is the user-defined error-handler subroutine.

VAX PASCAL GSR

PROCEDURE PVecBegn (%DESCR Name P VaryingType;

VectorCount INTEGER;

BlockNormalized: BOOLEAN;

ColorBlending BOOLEAN;

Dimension INTEGER;

Class INTEGER;

PROCEDURE Error_Handler (Err : INTEGER));

IBM PASCAL GSR

PROCEDURE PVecBegn CONST Name STRING;

VectorCount INTEGER;

BlockNormalized: BOOLEAN;

ColorBlending BOOLEAN;

Dimension INTEGER;

Class INTEGER;

PROCEDURE Error Handler (Err INTEGER));

RM4-212 Reference Materials

VECTOR LIST PVcBeg
PVecBegn

(continued)

UNIX/C GSR

#include <ps300/gsrext.h>

PVecBegn(name,vectorcount,blocknormalized,colorblending,dimension,class)

where:

string name;
integer vectorcount, dimension, class;
Boolean blocknormalized,colorblending;

DES CRIPTI oN

This routine must be called to begin a vector list. To send a vector list, the user
must call the routines for Begin, List, and End.

NOTE

The dimension must be specified in the application routine. In
the PS 390 command, dimension is implied by syntax.

* These mnemonics may be referenced directly by the user if the file containing
the declarations is INCLUDED in the routine. See Section TT3 Using the GSRs
for a description of this file. A description of inputs to display structures and
their INTEGER*4 value is given below.

FORTRAN

Mnemonic Meaning INTEGER*4 Value

PVCONN Connected 0

PVDOTS Dots 1

PVITEM Itemized 2

PVSEPA Separate 3

PVTAB Tabulated 4

Graphics Support Routines R~V14-213

VECTOR LIST

Pascal &UNIX

Mnemonic Meaning INTEGER*4 Value

P Conn Connected 0

P Dots Dots 1

P Item Itemized 2

P_Sepa Separate 3

P Tab Tabulated 4

PVcBeg

PVecBegn

(continued)

Together, the Begin, List, and End routines implement the PS 390 command:

PS 390 Command and Syntax

Name : = VECTOR LIST [options] [N=n] vectors;

RM4-214 Reference Materials

VECTOR LIST

VAX and IBM FORTRAN GSR

CALL PVcEnd (ErrHnd)

where:

ErrHnd is the user-defined error-handler subroutine.

VAX PASCAL GSR

PROCEDURE PVecEnd (PROCEDURE Error_Handler (Err : INTEGER));

IBM PASCAL GSR

PROCEDURE PVecEnd (PROCEDURE Error Handler (Err INTEGER));

UNIX/C GSR

#include <ps300/gsrext.h>

PVecEnd()

DESCRIPTION

PVcEnd
PVecEnd

This routine must be called t0 end a vector list. To send a vector list, the user
must call the routines for Begin, List, and End.

PS 390 Command and Syntax

Name : = VECTOR LIST [options] [N=n] vectors;

Graphics Support Routines RM4-21 S

VECTOR LIST

VAX and IBM FORTRAN GSR

CALL PVcLis (NumberOfVectors,Vectors,PosLin,ErrHnd)

where:

PVcLis
PVecList

NumberofVectors is the number of vectors in the vector list and is defined: INTEGER* 4

Vectors is the array containing the vectors of the vector list and is defined: REAL * 4 (4,

NVec) where:

Vectors (1, n) =vector n x-component

Vectors (2, n) =vector n y-component

Vectors (3, n) =vector n z-component
Vectors(4,n) = vector n intensity (or hue)

0 <= Vectors (4, n) <=1 or

0 <= Vectors (4,n) <=127 if the vector list is tabulated.

PosLin is the array containing the move/position -draw/line information for each vector.

PosLin is defined : LOGICAL * 1 PosLin (NVec)
If PosLin(n) _ .TRUE. then vector n is a draw(line) vector.

If PosLin (n) _ .FALSE. then vector n is a move (position) vector.

ErrHnd is the user-defined error-handler subroutine.

NOTE —FORTRAN

The POSLIN Array is always required, however the CLASS
specified in PVcBeg determines how it is used. For
CONNECTED, DOTS, and SEPARATE, the user need not
specify the contents of POSLIN. For i'1'EMIZED, the
user-specified position/line is used.

VAX PASCAL GSR

PROCEDURE PVecList

IBM PASCAL GSR

PROCEDURE PVecList

NumberofVectors INTEGER;

CONST Vectors P VectorListType;

PROCEDURE Error Handler (Err : INTEGER));

NumberofVectors INTEGER;

VAR Vectors P VectorListType;

PROCEDURE Error Handler (Err INTEGER));

RM4-216 Reference Materials

VECTOR LIST

UNIXIC GSR

#include <ps300/gsrext.h>

PVecList (numberofvectors,vectors)

where:

integer numberofvectors;
P_VectorListType vectors;

DES CRIP~'ION

PVcLis
PVecList

(continued)

This routine must be called to send a piece of a vector list. For
vector-normalized vector lists, this procedure can be called repeatedly to send
the vector list down in pieces. Multiple calls to this procedure are not permitted
for the block-normalized vector list case, unless the procedure PVecMax
(PVcMax) is called first. To send a vector list, the user must call the routines
for Begin, List, and End.

Vectors is the array containing the vectors of the vector list. The format of this
parameter is shown below for V~~X Pascal, IBM Pascal and LT~~TIX.

VAX Pascal
Vectors [n] . V4 [1] : = vector n x-component

Vectors [n] . V4 [2] : = vector n y-component
Vectors [n] . V4 [3] : = vector n z -component
Vectors [n] . V4 [4] : = vector n intensity (or hue)

0 <= Vectors [n] . V4 [4] <=1 or

0 <= Vectors [n] . V4 [4] <=127 if the vector 1 i st i s tabulated .
Vectors [n].draw :=TRUE if vector n is a draw/line vector.
Vectors [n].draw :=FALSE if vector n is a move/position vector.

IBM Pascal
Vectors (.n.).V4(.l.):= vector n x-component

Vectors (.n.).V4(.2.):= vector n y-component
Vectors (.n.).V4(.3.):= vector n z-component

Vectors (.n.).V4(.4.):= vector n intensity (or hue)
0 <= Vectors (.n.).V4(.4.) <=1 or

0 <= Vectors (.n.).V4(.4.) <=127 if the vector list is tabulated.
Vectors (.n.).draw :=TRUE if vector n is a draw/line vector.
Vectors (.n.).draw :=FALSE if vector n is a move/position vector.

Graphics Support Routines RM4-21 ~

VECTOR LIST

UNIX/C

Vectors

Vectors

Vectors

Vectors

0 <_

0 <_

Vectors

Vectors

[n] . V4 [o] : = vector
[n] . V4 [1] : = vector

[n] . V4 [2] : = vector

[n] . V4 [3] : = vector

n x-component

n y-component

n z-component

n intensity (or hue)

PVcLis

PVecList

(continued)

Vectors [n] . V4 [3] <=1 or

Vectors [n] . V4 [3] <=127 if the vector list is tabulated.

[n].draw :=TRUE if vector n is a draw/line vector.

[n].draw :=FALSE if vector n is a move/position vector.

The fourth position of Vectors is the intensity of that vector if
vector-normalized, regardless of dimension. If block-normalized, the first
vector's fourth position is used as the entire vector list intensity.

Together, the above 3 procedures implement the following PS 390 command.

PS 390 Command and Syntax

Name := VECTOR_LIST [options][N=n]vectors;

RM4-218 Reference Materials

VECTOR LIST

VAX and IBM FORTRAN GSR

CALL PVcMax (Max, ErrHnd)

where

Max is a REAL * 4

VAX PAS CAL GS R

PVcMax
PVecMax

[GLOBAL, CHECK(NOBOUNDS)] PROCEDURE PVecMax (Maxcomp REAL;

(PROCEDURE Error_Handler (Err INTEGER));

IBM PASCAL GSR

PROCEDURE PVecMax (Maxcomp : REAL;

(PROCEDURE Error Handler (Err INTEGER));

UNIX/C GSR

#include <ps300/gsrext.h>

PVecMax(MaxComp)

where

float Maxcomp;

DESCRIPTION

This routine must be called to set the maximum component of a vector list for
multiple calls to PVcList (PVecList) with block-normalized vectors.

PS 390 Command and Syntax

Name : = VECTOR LIST [options] [N=n] vectors;

Graphics Support Routines RM4-219

VIEwPORT PViewP

VAX and IBM FORTRAN GSR

CALL PViewP (Name, XMin, XMax, YMin, YMax, IMin, IMax, Apply, ErrHnd)

where

Name is a CHARACTER STRING
XMin, Xmax (horizontal) are REAL * 4

YMin, Ymax (vertical) are REAL* 4
IMin, IMax are REAL * 4
Apply is a CHARACTER STRING
ErrHnd is the user-defined error-handler subroutine.

VAX PASCAL GSR

PROCEDURE PViewP (%DESCR Name P VaryingType;

Xmin REAL;

Xmax REAL;

Ymin REAL;

Ymax REAL;

Imin REAL;

Imax REAL;

%DESCR AppliedTo P VaryingType;

PROCEDURE Error Handler (Err INTEGER));

IBM PASCAL GSR

PROCEDURE PViewP (CONST Name STRING;

Xmin SHORTREAL;

Xmax SHORTREAL;

Ymin SHORTREAL;

Ymax SHORTREAL;

Imin SHORTREAL;

Imax SHORTREAL;

CONST AppliedTo STRING;

PROCEDURE Error_Handler (Err : INTEGER));

UNIX/C GSR

#include <ps300/gsrext.h>

PViewP(name,xmin,xmax,ymin,ymax,imin,imax,appliedto)

where

string name, appliedto;
double xmin, xmax, ymin, ymax, imin, imax;

RM4-220 Reference Materials

VIEWPORT

DESCRIPTION

PViewP

(continued)

This routine specifies the area of the screen that the displayed data will occupy,
and the range of intensity of the lines. It contains the following parametric
definitions:

• Xmin, Xmax specify the horizontal boundaries of the new viewport

• Ymin, Ymax specify the vertical boundaries of the new viewport

• Imin, Imax specify the minimum and maximum intensities for the viewport.

PS 390 Command and Syntax

Name := VIEWport HORizontal = Xmin:Xmax

VERTical = Ymin:Ymax

[INTENsity] = Imin:Imax[APPLied to Hamel];

SEE ALSO

SET INTENSITY

Graphics Support Routines RM4-221

WINDOW PWindo
PWindow

VAX and IBM FORTRAN GSR

CALL PWindo (Name, Xmin, Xmax, Ymin, Ymax, Front, Back, Apply, ErrHnd)

where:

Name is a CHARACTER STRING

XMin, Xmax (horizontal) are REAL * 4

YMin, Ymax (vertical) are REAL * 4

Front is a REAL * 4
Back is a REAL * 4
Apply is a CHARACTER STRING

ErrHnd is the user-defined error-handler subroutine .

VAX PASCAL GSR

PROCEDURE PWindow (%DESCR Name

Xmin

Xmax

Ymin

Ymax

Front

Back

%DESCR AppliedTo

PROCEDURE Error Handler

IBM PASCAL GSR

PROCEDURE PWindow (CONST

CONST

PROCEDURE

P VaryingType;

REAL;

REAL;

REAL;

REAL;

REAL;

REAL;

P VaryingType;

(Err : INTEGER))

Name STRING;

Xmin SHORTREAL;

Xmax SHORTREAL;

Ymin SHORTREAL;

Ymax : SHORTREAL;

Front SHORTREAL;

Back SHORTREAL;

AppliedTo STRING;

Error Handler (Err : INTEGER));

UNIXIC GSR

#include <ps300/gsrext.h>

PWindow(name,xmin,xmax,ymin,ymax,front,back,appliedto)

where

string name,appliedto;
double xmin,xmax,ymin,ymax,front,back;

RM4-222 Reference Materials

WINDOW

DESCRIPTION

PWindo
PWindow

(continued)

This routine specifies a right rectangular prism enclosing a portion of the data
space to be displayed in parallel projection. It contains the following parametric
definitions

• Xmin, Xmax (horizontal) specify the window's boundaries along the x axis

• Ymin, Ymax (vertical) specify the window's boundaries on the y axis

• Front specifies the front boundary

• Back specifies the back boundary

PS 390 Command and Syntax

Name := WINDOW X = Xmin:Xmax

Y =Ymin:Ymax

[FRONT boundary = zmin BACK boundary = zmax]

[APPLied to namel];

SEE ALSO

EYEBACK, FIELD OF VIEW

Graphics Support Routines RM4-223

WRITEBACK

VAX and IBM FORTRAN GSR

CALL PWrtBk (Name, Namel, Errhnd)

where

Name 1 is a CHARACTER STRING
Errhnd is the user-defined error-handler subroutine

VAX PASCAL GSR

PROCEDURE PWrtBack (%DESCR Name P VaryingType;

%DESCR Namel : P VaryingType;

PROCEDURE Error Handler (Err INTEGER));

IBM PASCAL GSR

PROCEDURE PWrtBack (CONST Name P VaryingType;

CONST Namel : P VaryingType;

PROCEDURE Error Handler (Err : INTEGER));

UNIX/C GSR

#include <ps300/gsrext.h>

PWrtBack(name,namel)

where:

string name, name 1;

DESCRIPTION

PWrtBk
PWrtBack

This routine enables writeback in the data structure Name 1. Writeback is
triggered by sending a TRUE to the writeback operation node created with this
routine.

PS 390 Command and Syntax

name := WRITEBACK [APPLied to Namel];

RM4-224 Reference Materials

CANCEL XFORM

VAX and IBM FORTRAN GSR

CALL PXf Can (Name , Apply , ErrHnci)

where

Name is a CHARACTER STRING
Apply is a CHARACTER STRING
Errhnd is the user-defined error-handler subroutine

VAX PASCAL GSR

PROCEDURE PXfCancl

IBM PASCAL GSR

PROCEDURE PXfCancl

%DESCR Name P VaryingType;

%DESCR AppliedTo P_VaryingType;

PROCEDURE Error Handler (Err INTEGER});

CONST Name STRING;

CONST AppliedTo STRING;

PROCEDURE Error Handler (Err : INTEGER));

UNIX/C GSR

#include <ps300/gsrext.h>

PXfCancl(name,appliedto)

where:

string name, appliedto;

DESCRIPTION

This routine stops transform data processing of subsequent nodes.

PS 390 Command and Syntax

Name := CANCEL XFORM [APPLIED TO namel];

SEE ALSO

XFORM VECTOR LIST, XFORM MATRIX

PXfCan
PXfCancl

Graphics Support Routines RM4-225

XFORM MATRIX

VAX and IBM FORTRAN GSR

CALL PXfMat (Name, Apply, ErrHnd)

where

Name is a CHARACTER STRING
Apply is a CHARACTER STRING
Errhnd is the user-defined error-handler subroutine

VAX PASCAL GSR

PROCEDURE PXfMatrx

IBM PASCAL GSR

%DESCR Name P VaryingType;

%DESCR AppliedTo P_VaryingType;

PROCEDURE Error Handler (Err INTEGER)) ;

PROCEDURE PXfMatrx (CONST Name STRING;

CONST AppliedTo STRING;

PROCEDURE Error Handler (Err : INTEGER));

UNIXIC GSR

#include <ps300/gsrext.h>

PXfMatrx(name,appliedto)

where

string name, appliedto;

DES CRIPTI DN

PXfMat
PXfMatrx

This routine allows subsequent nodes to be processed to produce a
transformation matrix.

PS 390 Command and Syntax

Name := XFORM output_data_type [APPLied TO namel];

SEE ALSO

XFORM VECTOR LIST, XFORM CANCEL

RM4-226 Reference Materials

XFORM VECTOR LIST

VAX and IBM FORTRAN GSR

CALL PXfVec (Name, Apply, ErrHnd)

where

Name is a CHARACTER STRING
Apply is a CHARACTER STRING
Errhnd is the user-defined error-handler subroutine

VAX PASCAL GSR

PROCEDURE PXfVectr

IBM PASCAL GSR

%DESCR Name : P VaryingType;

%DESCR AppliedTo P VaryingType;

PROCEDURE Error_Handler (Err INTEGER));

PROCEDURE PXfVectr (CONST Name STRING;

CONST AppliedTo STRING;

PROCEDURE Error_Handler (Err : INTEGER));

~TNIX/C GSR

#include <ps300/gsrext.h>

PXfVectr (name,appliedto)

where

string name,appliedto;

DESCRIPTION

PXfVec
PXfVectr

This routine allows subsequent nodes to be processed to produce a transformed
vector list.

PS 390 Command and Syntax

Name := XFORM output_data_type [APPLied TO Hamel;

SEE ALSO

CANCEL XFOR:M, XFORM MATRIX

Graphics Support Routines R~tf14-227

Appendix A

GSRs and Corresponding ASCII

Commands

This appendix contains a list of the GSRs and the corresponding ASCII command
name. The names of the GSRs and the corresponding utility or raster routine are
also included. ASCII command descriptions will be found in Section RMl.

The user should note the following when using this appendix:

The left three columns list the FORT, Pascal and LT~~TIX/C GSRs in alphabeti-
cal order with the FORTRAN names. The right column lists the corresponding
ASCII command name or utility or raster routine name. N/A means that there is no
GSR.

In general, there is a one-to-one correspondence between GSRs and the corre-
sponding ASCII command. The following three ASCII commands require more
than one GSR:

LABELS
POLYGON
VECTOR LIST

The utility and raster routines do not have a corresponding ASCII command.

ASCII commands with different parameters have separate GSRs. For example, the
ROTATE command has the following three GSRs:

• PRotX (ROTA'1'~; IN X)

• PRotY (ROTA'1'~; 1N Y)

• PRotZ (ROTATE IN Z)

RM4-228 Reference Materials

FQRTRAN Pascal UNIX/C

PAttch PAttach PAttach

ASCII Command / Routine Name

Attach PS 390 to Communication

Device - utility GSR

PAttr PAttrib PAttrib ATTRIBUTES

PAttr2 PAttrib2 PAttrib2 ATTRIBUTES

PBeg PBegin PBegin BEGIN...END

PBegS PBeginS PBeginS BEGIN STRUCTURE...END STRUCTURE

PBspl PBspl PBspl BSPLINE

PChRot PCharRot PCharRot CHARACTER ROTATE

PChs PChars PChars CHARACTERS

PChSca PCharSca PCharSca CHARACTER SCALE

PConn PConnect PConnect CONNECT

PCopyV PCopyVec PCopyVec COPY

PDefPa PDefPatt PDefPatt PATTERN

PDelet PDelete PDelete DELETE

PDelim N/A N/A Set Delimiting Character -

utility GSR

PDeLOD PDecLOD PDecLOD DECREMENT LEVEL OF DETAIL

PDe1W PDelWild PDelWild DELETE

PDi PDisc PDisc DISCONNECT

PDiAll PDisCAll PDisCAll DISCONNECT

PDInfo PDevInfo N/A Query GSR Device Status -

utility GSR

PDiOut PDisCOut PDiscOut DISCONNECT

PDisp PDisplay PDisplay DISPLAY

PDtach PDetach PDetach Detach PS 390 from Communication

Device - utility GSR

PEnd PEnd PEnd BEGIN...END

PEndOp PEndOpt PEndOpt OPTIMIZE STRUCTURE;...END

OPTIMIZE;

Graphics Support Routines RM4-229

(continued)

FORTRAN Pascal

PEndS

PEraPa

PEyeBk

PFn

PFnN

PFoll

PFont

PForg

PFov

PGet

PGetW

PGUCPU

PIfBit

PIfLev

PIfPha

PIllum

PIncl

PInit

PInitC

PInitD

PInitN

PInLOD

PInst

UNIXIC

PEndS PEndS

PEraPatt PEraPatt

PEyeBack PEyeBack

PFnInst PFnInst

PFnInstN PFnInstN

PFoll PFoll

PFont PFont

PForget PForget

PFov PFov

PGet PGet

PGetWait

PGiveUpCPU

PIfBit

PIfLevel

PIfPhase

PIllumin

PIncl

PInit

PInitC

PInitD

PInitN

PIncLOD

PInst

PGetWait

ASCII Command / Routine Name

BEGIN_STRUCTURE...END_STRUCTURE

ERASE PATTERN FROM

EYE BACK

(Function Instancing)

(Function Instancing)

FOLLOW WITH

CHARACTER FONT

FORGET (Structures)

FIELD_OF VIEW

Poll PS 390 for Messages -

utility GSR

Read Messages from PS 390 -

utility GSR

PGiveUpCPU GIVE UP CPU

PIfBit

PIfLevel

PIfPhase

PIllumin

PIncl

PInit

PInitC

PInitD

PInitN

PIncLOD

PInst

IF CONDITIONAL_BIT

IF LEVEL_OF DETAIL

IF PHASE

ILLUMINATION

INCLUDE

INITIALIZE

INITIALIZE

INITIALIZE

INITIALIZE

INCREMENT LEVEL_OF_DETAIL

INSTANCE OF

RM4-230 Reference Materials

(continued)
FQRTRAN Pascal UNIX/C

PLaAdd PLabAdd PLabAdd
PLaBeg PLabBegn PLabBegn

PLaEnd PLabEnd PLabEnd

N/A N/A PLoad

ASCII Command 1 Routine Name

LABELS

Load Saved GSR Data -

utility GSR

PLookA PLookAt PLookAt LOOK

PMat22 PMat2x2 PMat2x2 MATRIX 2x2

PMat33 PMat3x3 PMat3x3 MATRIX 3x3

PMat43 PMat4x3 PMat4x3 MATRIX 4x3

PMat44 PMat4x4 PMat4x4 MATRIX 4x4

PMuxCI PMuxCI PMuxCI Set Global Binary Output

Channel-utility GSR

PMuxG PMuxG PMuxG Set Global Generic Channel -

utility GSR

PMuxP PMuxPars PMuxPars

PNil PNameNil PNameNil

POpt POptStru POptStru

PPatWi PPatWith PPatWith

Set Global Parser Channel -
utility GSR

NIL

OPTIMIZE STRUCTURE;...END

OPTIMIZE;

PATTERN WITH

PP1ygA PP1ygAtr PP1ygAtr POLYGON

PPlygB PP1ygBeg PP1ygBeg

PP1ygE PPlygEnd PP1ygEnd

PP1ygH PP1ygHSI PP1ygLisHSI

PP1ygL PP1ygLis PP1ygLis

PPlygO PP1ygOtl PP1ygOt1

PPlygB PPlygRGB PP1ygLisRGB

PPoly PPoly PPoly POLYNOMIAL

PPref PPref PPref PREFIX WITH

PPurge PPurge PPurge Purge Output Buffer -

utility GSR

PPutG PPutG PPutG Send Bytes to Generic Output

Channel - utility GSR

graphics Support Routines R1t~4-231

(continued)
FQRTRAN Pascal UNIX/C ASCII Command / Routine Name

PPutGX PPutGX N/A Send Bytes to Generic Output

Channel - utility GSR

PPutP PPutPars PPutPars Send Bytes to Parser Output

Channel - utility GSR

PRasCp PRasCp PRasCp Set Current Pixel Location -

raster GSR

PRasEr PRasEr PRasEr Erase Screen - raster GSR

PRasLd PRasLd PRasLd Set Logical Device Coordinates -

raster GSR

PRasWP PRasWP PRasWP Load Pixel Data - raster GSR

PRawBl PRawBloc PRawBloc RAWBLOCK

PRaWRP PRaWRP PRaWRP Set Raster Mode to Write Pixel

Data - raster GSR

PRBspl PRBspl PRBspl RATIONAL BSPLINE

PRem PRem PRem REMOVE

PRemFo ~ PRemFoll PRemFoll REMOVE FOLLOWER

PRemFr PRemFrom PRemFrom REMOVE FROM

PRemFr PRemPref PRemPref REMOVE PREFIX

PRotX PRotX PRotX ROTATE

PROtY PRotY PRotY ROTATE

PRotZ PROtZ PRotZ ROTATE

PRPoly PRPoly PRPoly RATIONAL POLYNOMIAL

PRsvSt PRsvStor PRsvStor RESERVE WORKING STORAGE

N/A N/A PSavBeg Begin Saving GSR Data -

utility GSR

N/A N/A PSavEnd End Saving GSR Data -

utility GSR

PScale PScaleBy PScaleBy SCALE

PSeBit PSetBit PSetBit SET CONDITIONAL BIT

RM4-232 Reference Materials

