REFERENCE MATERIALS

The Reference Materials RM1-4 and RM5-16 provide reference information for the
user of the PS 390 system. Summaries of the ASCII commands, intrinsic functions,
initial function instances and GSRs are contained in the first part of the volume.
Included in the second part of the volume are sections covering interactive devices,
interfaces and options, host input data flow, system function network diagrams,
diagnostic utilities, system errors and host communications. The final section con-
tains an index to the complete PS 390 Document Set.

RMS Host Communications

This section includes descriptions of the RS-232 specifications and pin
connector definitions, PS 390 transmission protocol, port values and
defaults, and the PS 390 system data reception functions.

RM6 Interfaces / Options

This section contains information about the PS 390/host interfaces.

RM7 Host Input Data Flow
This section covers information on the host input data flow, including rout-
ing functions and routing byte definitions.

RMS8 System Function Network

This section contains diagrams of the PS 390 system function network. The
diagrams show the logical paths of the routing bytes and functions.

RMO9 Initial Structures

This section describes initial data structures created at power-up. Configure
mode is discussed and a runtime system is defined.

RM10 Terminal Emulator

This section gives instructions for changing the modes and features of the
terminal emulator by either sending escape sequences from the host,
entering PS 390 commands in the SITE.DAT file, or sending the
appropriate ASCII characters to terminal emulator functions.

RM11 System Errors

This section is a compendium of all user error messages (informational,
recoverable, fatal, and warning). Error messages are listed in numerical
order. The text of the message is given with an indication of common
causes of the error and, where appropriate, ways to correct it.

RM12 Diagnostic Utilities
This section provides a reference for the utility commands that are on the
PS 390 diagnostic utility diskette.

RM13 Interactive Devices

This section describes how the PS 390 interactive devices work and are con-
nected to the system. Interactive devices include a peripheral multiplexer,
keyboard, data tablet, function buttons, control dials and mouse.

RM14 GSR Internals

This section describes the data formats expected by the PS 390 command

interpreter. It is provided for advanced programmers to write their own
GSRs.

RM15 Release Notes

A divider is provided for information supplied with future releases of soft-
ware.

RM16 Index

This section contains an index to the complete PS 390 Document Set.

C

™

RMS. HOST COMMUNICATIONS

CONTENTS
1. HOST/PS 390 INTERFACE it iiiinnnnnn 1
1.1 RS-232-C Specificationscoviiiiiiiiiiiiininennnn. 3
1.1.1 Signal Definitionsc ittt rnnnnns 4
1.2 RS-232-C Cabling, Connectors and Pins 5
2. PS 390 SERIAL COMMUNICATION CHARACTERISTICS 6
2.1 Asynchronous Port Defaults i, 7
2.2 Changing Port Statusottt iennnennnn 8

2.3 Changing PS 390/Host Interface Values
Using the SITEDAT File, 11

3. PS 390 TRANSMISSION PROTOCOL AND ERROR DETECTION 11

3.1 PS 390 Transmission Protocol, 12
3.1.1 Data Reception and Transmission 12
3.1.2 Data Transmission Without XON_XOFF 13
3.1.3 Transmission Errorsc.oiiiiiiiiienereeeeennnnn 13
3.2 Transmission Error Detection 13
321 Parity Errors e, 14
3.22 Framing Errors i 15
3.2.30verrun Errors ... cviiii ittt ittt i e e et i e 16

4. METHODS OF COMMUNICATION OVER THE HOST LINE .. 16

4.1 Data Communications — Escape and Count Mode 17
4.1.1 Escape Modeciitiiiiitiiiiiiiniiniiennnneenns 18
4.1.2 Count Modeovvntiiiiiiiiiiitiinitinneennnas 19
4.2 Using the Routing Bytes for Local Data Flow 20
4.3 Changing the <ESC>, And/Or <SOP> Sequence Characters

in the SITELDAT Fileottt 21

5. PS 390/IBM HOST COMMUNICATIONScoontnn 22

5.1 PS 390 Data Communicationcoiiiiiiiineeennenns 22
5.2 Data Destinationsc.uttiiieieeneenneeeeecoanaannnas 23
5.3 Write Structured Fieldciiiiiiiiiiiiiiieiiinienenns 23
5.3.1 Programmed Symbolsottt 23
5.3.2 Load Programmed Symbolsoiiiiiiiiiiinn, 26
5.4 Configuration of the 3274 Control Unit 27
5.5Data FIow OVerviewcovveiiiieeeroneneeoooneesononcsas 27
5.5.1 Modification of Pool Sizescciiiiiiiiiierennannas 30
TABLE
Table 5-1. RS-232-C Connector Pin Definitions 3

7]

m

Section RM5
Host Communications

The PS 390 communicates with a variety of host computers by way of communica-
tions interfaces. The standard PS 390 interface is the RS-232-C asynchronous se-
rial communication protocol. Also supported are the Ethernet, Parallel, IBM 3278,
and IBM 5080 interfaces.

This section describes the data flow between the PS 390 and the host processor.
The initial sections introduce some of the basic concepts of data communication,
particularly those directly affecting the interface to be set up between the PS 390
graphics system and the host computer.

1. Host/PS 390 Interface

One of the most important considerations in setting up the configuration
characteristics of a PS 390 graphics system is the interface between the host
computer system and the PS 390.

The standard data communication interface to the PS 390 is an RS-232-C
asynchronous serial line. The terms “asynchronous” and “serial” refer to
two important communication characteristics.

Binary data may be transferred between electronic devices in “serial”, over
a single line, or in “parallel”, over several lines at once, by changes in
current or voltage. In serial transmission, the bits that represent a character
are sent down a single wire, one after the other. These serial signals are
converted to parallel form at the reception end by shift registers. (In most
data communications applications, serial transmission is preferable to paral-
lel transmission, since fewer wires must be run. However, parallel transmis-
sion is faster, as more data can be sent across the line at once.)

Host Communications

RM5-1

Data transfers may be of a “synchronous” nature, where the exact bit
framing of each byte of information is coordinated for the entire message
by the transmission of two or more synchronization characters at the
beginning of the message. All characters that follow these characters occur
within a specific time frame called a “character time.”

Or, data transfers may be of an “asynchronous” nature, where each
character is self-defined by the use of a start bit and one or more stop bits.
The start and stop bits occur before and after the byte of data. For this
reason, this mode of transmission is referred to as “Start/Stop
Transmission.” In this mode, the arrival time of each character is random.
Each end of the transmission line must know what the transmission rate is
to sample the line at correct intervals following the receipt of a start bit.

Under PS 390 graphic system protocol, the RS-232-C standard interface
sends data signals over a single, serial line using asynchronous transmis-
sion. The PS 390 may also be interfaced to a DEC/PDP11 or a DEC/VAX
host over an asynchronous parallel line.

RS-232-C refers to a standard for interface communication set by the Elec-
tronic Industries Association (EIA). The RS-232-C standard contains:

e The electrical signal characteristics.
o The interface mechanical characteristics.
e A functional description of the interchange circuits.

o A list of standard subsets of specific interchange circuits for specific
groups of communication system applications.

It is important when reviewing specifications for computer/system interfaces
to understand what the various interface leads do, and which are essential
for proper interface between the PS 390 graphics system and the host
computer.

RMS5-2 Reference Materials

(’ 1.1 RS-232-C Specifications

The physical connection between the PS 390 and the host is made through
plug-in, 25-pin connectors (Cannon or Cinch DB Series). These connectors
are keyed for 13 pins on the top row, and 12 pins on the bottom row. The
PS 390 ports on the communication connector panel provide the male ele-
ment for the interface. The pin assignments and signal definitions supported
by the PS 390 graphics system are given in Table 5-1.

RS-232-C standard states that the cable between the data communications
equipment should be no longer than 50 feet. However, longer cabling dis-
tances have been used successfully.

For the PS 390 EIA RS-232-C communication ports, a Control-ON (logical

0), or “SPACE” condition exists if the voltage present is greater than +5

volts and less than +25 volts with respect to signal ground. A Control-OFF

(logical 1), or “MARK?” condition exists if the voltage present is less than -5

volts and greater than -25 volts with respect to signal ground. This assumes

that the PS 390 signal ground and the communication data device signal
m ground are at the same potential.

Table 5-1. RS-232-C Connector Pin Definitions

PIN # EIA LABEL ABBREV. NAME SIGNAL NAME DIRECTION
1 AA GND Protective ground N/A
2 BA TXD Transmit data To DCE*
3 BB RXD Receive data From DCE
4 CA RTS Request to send To DCE
5 CB CTS Clear to send From DCE
6 cC DSR Data set ready From DCE
7 AB GND Signal ground N/A
8 CF DCD Data carrier detect From DCE
15 DB TXCA Transmit clock From DCE
17 DD RXC Receive clock From DCE
20 CD DTR Data terminal ready To DCE
24 DA TXCB External transmit clock To DCE

* DCE = Data Communication Equipment

N

Host Communications RM5-3

1.1.1 Signal Definitions

The following are definitions of the RS-232-C signals shown in Table 5-1.

e AA, AB (Protective Ground and Signal Ground) — These two
grounds are electrically independent. Protective Ground connects to
the power ground. Signal Ground connects to the logic ground. No
direct frame grounding occurs at the connector. Strict EIA RS-232-C
standard definitions are not directly applicable.

e BA (Transmit Data) — Data from the PS 390 are transmitted on this
line. The signal is generated by the PS 390 processor.

o BB (Receive Data) — Data are sent to the PS 390 on this line. The
signal is passed to the PS 390 via the data communications equip-
ment.

o CA (Request to Send) — This signal is generated by the PS 390 proc-
essor. The output may be programmed to conform with EIA
RS-232-C protocol. Generally, an “ON” CA (request to send) signal
indicates the PS 390 processor is ready to transmit information.

e CB (Clear to Send) — This signal may be generated by data commu-
nication equipment. An OFF condition will terminate data transmis-
sion. An ON condition allows data transmission to resume. If no
connection is made, an internal pull-up resistor will assert this line to
an ON condition (+12V) for non-standard RS-232-C communication.

e CC (Data Set Ready) — This signal may be generated by the data
communication equipment. The function of this signal is controlled
by software within the PS 390 processor. Usually, an ‘ON’ CC (data
set ready) is sent by the data communication equipment to indicate
that it is ready to transmit.

o CF (Data Carrier Detect) — This signal may be generated by the data
communication equipment. ON assertion of this signal allows BB (re-
ceive data) to be accepted by the PS 390 processor. If no connection
is made, this line will be pulled to an ON condition (+12V) to allow
non-standard EIA RS-232-C communication. To disable the BB (re-
ceive data) communication, an OFF condition must exist. Definition
of this pin is software controlled for Port 1 of the PS 390 processor.

RM5-4 Reference Materials

‘ ﬁ e CD (Data Terminal Ready) — This signal is generated by the PS 390
processor and is under software control. When asserted to an ON
level, CD indicates that the PS 390 processor is ready to
communicate.

e DA TXCB (Transmit Clock B) — This signal is generated by the
PS 390 processor. DA provides a timing clock to indicate the center
of each element of data. This timing clock can either be equal to the
transmitted data frequency, or equal to 16 times the data frequency.
DA TXCB is under software control. Port 1 of the PS 390 processor
does not directly generate this signal. It relies on TXCA (transmit
clock A) to generate this clock.

e DB TXCA (Transmit Clock BA) — This input signal is generated by
external transmitting data communications equipment. This clocking
signal input can control the rate at which the PS 390 processor
transmits data out. The ability to use this clock input is software
controlled.

e DD RXC (Receive Clock) — This input signal is generated by exter-

nal transmitting data communications equipment. This clock deter-

m mines the rate at which the PS 390 processor receives data. The abil-
ity to use this clock is software controlled.

1.2 RS-232-C Cabling, Connectors and Pins

All cabling and connectors used in the interface between the PS 390 and the
host system must be provided by the user.

A null-modem cable configuration may be necessary to correctly connect
the pin signals through the RS-232-C interface.

Cables and the 25-pin connectors for RS-232-C are available through most
major computer product supply centers.

The cables running from the host to the PS 390 processor should terminate
with a female connector, as the PS 390 data communication ports house
male elements.

The decision to use shielded or unshielded cable is left to the user. Shielded
cable is highly recommended in noisy environments, but typically it has a
higher capacitance per foot than unshielded cable, which may reduce the

m operating speed.

Host Communications RMS5-5

2.

RMS5-6

PS 390 Serial Communication Characteristics

This section describes the serial I/O parameters the PS 390 graphics system
has defined for each port. The defaults (values assigned to each port when
the system is powered on in standard configuration) for the data character-
istics are listed in this section. For information on how these values can be
configured in a bootable file on the PS 390 graphics firmware diskette, refer
to section 2.3. The following information applies to PS 390 graphics sys-
tems asynchronous transmission:

The baud rates available on Ports 1, 3, and 4 on the PS 390 are:
300, 600, 1200, 1800, 2000, 2400, 3600, 4800, 9600, and 19200.
Port 5 runs at 19200.

The PS 390 may be configured for S, 6, 7, or 8 bits per character,
although the host port must pass all characters of the 7-bit ASCII
character set (for example 7 or 8 bits per character).

Only one start bit will be accepted (and generated) by the PS 390.

The PS 390 will accept (and generate) 1 or 2 stop bits.

The PS 390 and the host can communicate using an XON_XOFF
protocol. In this protocol, control sequences are generated that tell
the sender (either the PS 390 or the host) when to start (XON), or
stop (XOFF) data transmission. These control sequence values de-
fault to CTRL S (DEC 17 character) for XON, and CTRL Q (DEC 19
character) for XOFF. Under XON_XOFF, bit stripping is controlled
by the /MASK_TO_7 BITS option.

Additionally, there are available values for data characteristics that
are unique to the XON_XOFF protocol. These values and their defi-
nitions are shown in section 2.2.

e The PS 390 will run with even, odd, or no parity. Parity is a charac-
ter checking device that operates by adding non-information bits to
data, making the total number of ones in each grouping of bits either
odd for odd parity, or even for even parity. This permits error detec-
tion for an odd number of incorrect bits in each group.

Reference Materials

~

e Each port may be configured to cause a trap to the PS 390 Debugger
in the event a break is detected on that port.

e The PS 390 may be set to hold a maximum number of 127 buffers to
hold data transmitted from the host. The default is eight buffers.
Each buffer may be set to a maximum of 32,767 bytes, with the
default at 48 bytes per buffer. This option allows the user to specify
the amount of memory space to be allocated for data reception from
the host. The user may specify the number of free input buffers
below which the host will be sent an XOFF to suspend transmission.
The number of free buffers above which the host will be sent an
XON to resume transmission may also be specified.

2.1 Asynchronous Port Defaults
The defaults for Ports 1, 3, 4, and S are:

e Port 1 — Host Port - 9,600 baud, 8 bits per character, 1 stop bit, no
parity, no_mask_to_7_bits, transparent mode. Sends all XON_XOFF
protocol characters, ignores incoming XON_XOFF (no_hear_XON),
8 48-byte buffers with 0 STOP buffers and 1 GO buffer, and debug
break disabled.

e Port 3 — Debug Port - 9,600 baud, 8 bits per character, 1 stop bit,
no parity, non-transparent mode that accepts all XON_XOFF proto-
col characters, 8 48-byte buffers with 0 STOP buffers and 1 GO
buffer, and debug break enabled.

e Port 4 — 300 baud, 8 bits per character, 1 stop bit, no parity, non-
transparent mode that accepts all XON_XOFF protocol characters, 8
48-byte buffers with 0 STOP buffers and 1 GO buffer, and debug
break disabled

e Port S — Multiplexer Port — 19,200 baud, 8 bits per character, 1 stop
bit, no parity, transparent mode that does not recognize XON_XOFF
protocol characters, 8 48-byte buffers, and debug break disabled.

The status of all the ports may be verified by using the SHOW INTERFACE
command.

Host Communications

RM5-7

2.2 Changing Port Status

The following command sequence can be used to change any of the default
values on Ports 1, 3, 4, and 5. These new values must be within the accept-
able values for data characteristics as given in the previous section. The
port values are changed by entering the command:

SETUP INTERFACE <name>/<options>;

where name is the port being reconfigured, options refers to the option
setting the communications interface. The command:

SHOW INTERFACE <name>;
where <name> is the port, can be used to check the values of a given port.

In using these commands, the names of the ports are as follows:

Port 1 is designated port10
Port 3 is designated port30
Port 4 is designated port40
Port 5 is designated port50

The available options for SETUP INTERFACE are:

/SPEED=<baud rate> — input and output communications speed between 50
and 19200.

/EVEN_PARITY — establishes monitoring of parity on input and generation
of parity on output, using EVEN parity.

/ODD_PARITY — establishes monitoring of parity on input and generation
of parity on output, using ODD parity.

/NO_PARITY (default) — terminates the monitoring of parity on input and
generation of parity on output.

/BITS_PER_CHARACTER=<number of bits per char> — sets the width of a
character in bits (normally 8, including 7-bit ASCI).

/STOP_BITS_PER_CHARACTER=<number of stop bits per char> — sets
the number of stop bits for each character (normally 1).

/XON_XOFF — enables the PS 390 to use XON_XOFF protocol to tell the
host (or device) on this port to resume or suspend transmission. Default is
to this protocol.

RM5-8 Reference Materials

n

/NO_XON_XOFF — disables the use of XON and XOFF protocol from the
PS 390 to the host (or device) on this port to resume or suspend transmis-
sion.

/HEAR_XON — enables the use of XON_XOFF protocol for the host (or
device) on this port to tell the PS 390 to resume or suspend transmission.

/NO_HEAR_XON — disables the use of XON_XOFF protocol for the host
(or device) on this port to tell the PS 390 to resume or suspend transmis-
sion. Default is NO_HEAR_XON.

/BREAK — enables the receipt of a BREAK on this port to call the ROM
debugger.

/NO_BREAK — disables the receipt of a BREAK on this port to call the
ROM debugger. Default is NO_BREAK.

/SPEED_EXTERNAL — sets the port speed to that of an attached modem,
rather than from an internal clock. (This applies only to those ports with full
modem support.)

/NO_SPEED_EXTERNAL — tells this port to use its internal clock, at the
speed set by /SPEED=. Default is NO_SPEED EXTERNAL.

/BUFFERS=<number of buffers> — specifies the number of buffers in the
input pool. Default is 8 buffers.

/BUFFER_SIZE=<number of bytes> — specifies the size of each buffer in
the input pool. Default is 48 bytes.

NOTE

If input is received continuously, buffers will be filled
until they are full. The buffer size will, in this case,
specify the quantum of input being processed by subse-
quent functions.

If input is received at much less than the maximum
baud rate, buffers will be released to waiting functions
after 2 character times without receipt of a byte. In this
case, the strict product of <buffer size> and <number
of buffers> will not be the true amount of input
buffering.

Host Communications

RMS5-9

/N_STOP_BUFFERS=<number of buffers> — specifies the number of free
input buffers below which the sender is told to suspend transmission. This
has no effect unless the port is in /XON_XOFF mode. Default is 1 Stop
Buffers. This is for host to PS 390 communication only.

/N_GO_BUFFERS=<number of buffers> — specifies the number of free in-
put buffers above which the sender is told to resume transmission. This has
no effect unless the port is in /XON_XOFF mode. Default is 2 Go Buffers.

The following four commands allow the user to specify non-standard
X_ON-X_OFF characters:

/SEND_XON_CHAR=<char code> — specifies the character code as
an integer (defaults to decimal 17) to be sent out from the PS 390 to

tell the sender to resume transmission. This has no effect unless the
port is in /XON_XOFF mode.

/SEND_XOFF_CHAR=<char code> — specifies the character code as
an integer (defaults to decimal 19) to be sent out from the PS 390 to

tell the sender to suspend transmission. This has no effect unless the
port is in /XON_XOFF mode.

/OBEY_XON_CHAR=<char code> — specifies the character code as
an integer (defaults to decimal 17) that, when received by the
PS 390, allows the PS 390 to transmit.

/OBEY_XOFF_CHAR=<char code> — specifies the character code as
an integer (defaults to decimal 19) that, when received by the
PS 390, stops the PS 390 from transmitting.

/MASK_TO_7_BITS — specifies that incoming bytes are to have their 8th
bit, normally the parity bit, stripped off.

/NO_MASK_TO_7_BITS — (default) specifies that incoming bytes are not
to be masked.

/BREAK_TIME=<break time> — specifies the length of time in centiseconds
that an outgoing BREAK is to be held. This defaults to 10. Maximum = 127.
(Section 183 contains instructions for defining the break key.)

IASYNCHRONOUS — normal mode of operation.

All commands are terminated with a semicolon (;) and a carriage return.
The menu available with the SHOW INTERFACE command lists only those
parameters that are relevant to the interface.

RM5-10 Reference Materials

ﬁ

2.3 Changing PS 390/Host Interface Values Using the SITE.DAT File

Port values may be changed to suit specific site requirements in two ways:
the default values can be changed by using the SETUP INTERFACE
commands in configuration mode, or the SETUP INTERFACE commands
can be entered into the SITE.DAT file. If the value needs to be changed for
just one session, so that the port will go back to its default values during the
next boot-up, the SETUP INTERFACE command can be entered during a
PS 390 session. Should the new port value need to be installed more
permanently, with the new value booted instead of the default, the SETUP
INTERFACE commands should be entered into the SITE.DAT file.

Any of the SETUP INTERFACE commands can be entered in the
SITE.DAT file, using the following forms:

SETUP INTERFACE portn/option;
SETUP INTERFACE portn/option=<p>;

where n is the port name, /option is the name of the feature being set, and
<p> is the specified parameter.

Examples:

SETUP INTERFACE portl10/XON_XOFF;

would enable Port 1 to use XON_XOFF protocol to tell the host (or device)
on this port to resume or suspend transmission.

SETUP INTERFACE portl10/SPEED=2400/XON_XOFF;

would set Port 1 to a baud rate of 2400 and enable XON_XOFF protocol.

3. PS 390 Transmission Protocol and Error Detection

This section details the transmission protocol necessary to receive and trans-
mit data over the asynchronous interface. It also provides a brief description
of the three types of errors detected by the Enhanced Programmable Com-
munications Interface (EPCI) status register.

Host Communications

RM5-11

3.1 PS 390 Transmission Protocol

The PS 390 graphics system uses an XON_XOFF handshaking protocol to
maintain orderly data communication over a full duplex, asynchronous,
serial line between itself and the host computer. The receiver of XOFF
(decimal 19) is to suspend transmission as soon as possible. The receiver of
XON (decimal 17) is to resume transmission until the next reception of
XOFF. The PS 390 will suspend transmission within one character time and
can accept up to one buffer full of characters after XOFF is sent.

The following equation shows how many bytes of an empty buffer are left
when an XOFF is sent. An XOFF will be sent to the host that many bytes
before input buffering is exhausted.

((Number of STOP buffers +1) * Number of bytes/buffer) - 1

3.1.1 Data Reception and Transmission

The PS 390 defaults to eight 48-byte buffers available to receive data from
the host computer. Transmitted characters are placed in the first free buffer
starting in the first position and continuing to the end of the buffer. When
the buffer is full, the next available buffer is used. If all allocated buffers
are full, the PS 390 will drop everything off the line until a buffer is free.

When the XON_XOFF protocol is used, the PS 390 will send an XOFF to
the host (sender), when the number of free buffers is equal to the number
of STOP buffers. The PS 390 will send XON to the host when the number
of free buffers is equal to the number of GO buffers.

An XOFF received on the host input port disables data transmission from
the host to the PS 390 until the PS 390 sends an XON. If a host transmis-
sion aborts before XON is transmitted, or if the host transmits XOFF as
part of the LOGOFF message, it is necessary to manually clear the XOFF
condition. XOFF is cleared and the port re-enabled for transmission when-
ever a SETUP or SHOW INTERFACE command is executed.

Rebooting the PS 390 will also clear the XOFF condition.

Default for the PS 390 is NO_ HEAR_XON_XOFF.

RM5-12 Reference Materials

~

()

3.1.2 Data Transmission Without XON_XOFF

Operation without support of the XON_XOFF protocol is discouraged. If
XON_XOFF protocol is not available on the host, it is up to the user to
ensure that an adequate number of buffers are allocated for data reception
on the PS 390.

3.1.3 Transmission Errors

If the XON_XOFF protocol is not used, and the number of available buffers
is not large enough to hold the incoming data from the host (sender), data
characters will be lost. These lost characters are detected and counted by
the input routines. The SHOW INTERFACE command will give the current
error counts for each port.

Messages which characterize lost input characters are:

o PARSER SYNTAX ERROR due to bad syntax generated by the lost
characters

e ERROR E 12 *** Message which function cannot handle

3.2 Transmission Error Detection

The Enhanced Programmable Communications Interface (EPCI) used on
PS 390 Ports 1, 3, 4, and 5, is able to detect three types of transmission
errors. When one of these transmission errors occurs, a bit is set in the
EPCI status register where it can be read by the graphics control processor.
The errors detected are:

e Parity errors (if parity is enabled)
e Framing errors

o Overrun errors

The SHOW INTERFACE command will display all errors detected from the
last PS 390 boot.

Host Communications

RM5-13

RM5-14

3.2.1 Parity Errors

The parity bit follows the character bits in data transmission. If there are 7
bits/characters, and parity is enabled, the total number of bits is 8 with the
parity bit being the last transmitted bit. Ignoring the start bit and stop bit(s),
the letter “A” when transmitted with EVEN parity would appear as follows:

Isb msb
1 2 3 4 5 6 7 party
1 0 0 0 0 O 1 0

where “Isb” is the least significant bit and “msb” is the most significant bit.

The same character transmitted with ODD parity would look like this:

Isb msb
1 2 3 4 5 6 7 |party
i1 0 0 0 0 0 1 1

EVEN parity sets the state of the parity bit such that the number of ones in
the 8 bits is an even number.

ODD parity sets the state of the parity bit such that the number of ones in
the 8 bits is an odd number.

If parity is enabled, the EPCI determines the parity of the received character
and compares this parity with the parity bit transmitted. If they do not
agree, the parity error flag is set in the EPCI status register.

From the example of the character “A”, it can be seen that if the host and
the PS 390 do not agree on the parity being used, every character received
or transmitted will generate a parity error.

Reference Materials

~

This vertical error detection scheme can only discern an odd number of bit
errors. For example, if bits 2 and 3 are erroneously changed to ones, so that
the character transmitted appears to be:

Isb msb
1 2 3 4 5 6 7 oparty
1 1. 0 0 O 1 0

EVEN parity — the parity bit is correct for the character received (“G”) but
incorrect for the letter sent (“A”).

The PS 390 supports ODD and EVEN parity, or NO parity.

3.2.2 Framing Errors

“Framing” is the process of determining which group of bits constitute a
character. An error in this process is called a “framing error”. Characters
are framed by the start bit and the stop bit(s). Looking at the character “A”
again (assume one stop bit):

MARK (1)

o 1 0‘ O' 0’ 0‘ of 11 0| 110 |
start 1 2 3 4 5 6 7 parity stop start Isb
Isb msb

The line is held in a MARK condition with current flowing when characters
are not being transmitted. If for some reason the EPCI failed to detect the
start bit when the signal goes to an ON, or SPACE condition, it is possible
that it would assume bit 2 was the start bit, and bit 3 was the Isb, etc. At the
time EPCI expected to see a stop bit, it would instead see the Isb of the next
character, and a framing error would occur. When a framing error does
occur, the EPCI sets the framing-error flag in the status register.

Host Communications

RMS5-15

3.2.3 Overrun Errors

An overrun error occurs when the JCP fails to read the characters in the
holding register of the EPCI before the next character received is placed in
the holding register. When this happens, the EPCI will overwrite the con-
tents of the holding register with the next character. This overwrite causes
the overrun error flag to be set in the EPCI status register.

4. Methods of Communication over the Host Line

Section 1S3 discusses the various methods of data communication that can
be used over the PS 390/host line. These methods include standard ASCI
transmission or the GSRs, an E&S supplied host-resident software package.

The GSRs perform all prepackaging of data prior to sending it in binary
format to the PS 390. The routing bytes required to channel the data to the
proper PS 390 system function are contained within the routines. The rou-
tines build data ‘packets’ that include all the necessary information to proc-
ess the data, and are in a form that is immediately acceptable by the PS 390
system function, F:CIROUTE.

In all cases, F:CIROUTE expects to receive data in a specific format called
packets. These packets may be in either ASCII or binary, and for asynchro-
nous communication, may be in either count or escape mode. Over the
parallel interface, these packets are sent only in count mode.

When communicating with standard ASCII transmission, the PS 390 system
functions (data reception functions, such as F:DEPACKET) that interface
between the system and the hardware are responsible for building the data
packets. The routing bytes that are used to channel data to the appropriate
PS 390 system function must be supplied. A brief description of the routing
bytes and their channels can be found in Section RM7.

The following sections deal with the use of count and escape mode in asyn-
chronous data transmission.

RM5-16 Reference Materials

~

m

4.1 Data Communications — Escape and Count Mode

Data is sent to the PS 390 from the host as a stream of bytes. These bytes
must contain information that is intelligible to PS 390 system functions
about the nature of the message and where it is to be sent internally in the
PS 390. The descriptions that follow describe the data transfer modes used
in host/PS 390 communication and briefly describe the system functions
that accept, examine, and route data internally in the PS 390.

Data may be transported over an asynchronous line in two modes: escape
mode or count mode. The mode used is dependent on the application and
can be selected by the user. Count mode is the faster mode, as the system
function, F:DEPACKET, that converts a stream of bytes into a stream of
packets does not have to check the identity of each byte.

A system function, F:DEPACKET, accepts data input to the PS 390 from
the host. F:DEPACKET converts a stream of bytes from the host into a
stream of Qpacket/Qmorepacket. A Qpacket is a block of character data
that can be sent from one PS 390 function to another. When data comes
from the host through the F:DEPACKET function, it contains a byte for
routing control. A Qmorepacket is a Qpacket that when coming from the
host through F:DEPACKET, has no routing byte (i.e. a Qmorepacket has
the same destination as the previous Qpacket.)

There are two instances of the F:DEPACKET function. The first,
DEPACKETO, accepts all incoming bytes from the host on input <1>. It
channels all incoming data through to output<2> until it sees the Start of
Packet (SOP) character <ACK> (ACKNOWLEDGE — decimal character
code 06, ASCII tF) that signifies the start of a count mode packet.

All the data sent through to output<2> of DEPACKETO are sent to input<1>
of the second DEPACKET function, DEPACKET20, which then checks all
incoming data for the SOP character <FS> (Field Separator — decimal char-
acter code 28, ASCII t\) that signifies the start of an escape mode packet. It
will also route all incoming bytes out output<2> until it sees the <FS> char-
acter. Output <2> of DEPACKET20 is connected to ES_TE1 (the screen).

These instances of F:DEPACKET are described below. The characters that
are used to signify SOP (<FS> and <ESC> characters) may be changed by
the user by sending the new characters to the correct inputs of
F:DEPACKET.

Host Communications

RM5-17

4.1.1 Escape Mode

In escape mode, F:DEPACKET looks at every byte to see if it is a SOP
character, which by default in escape mode is the ASCII Field Separator
<FS> character, or an <ESC> character.

Qpacket —¥<1> <1> —* Qpacket,
Qmorepacket
Qpacket —¥<2>C “FS~ (after 1st “FS”)
Qpacket —»<3>C “ESC~ <2> —» Qpacket,
Qmorepacket
Qboolean —»{ <4>C ESC mode (before 1st “FS”)
DEPACKET20
(F:DEPACKET)
(escape mode)

In escape mode, F:DEPACKET assumes that a packet is defined as either:

FS packet contents Input <4> = FALSE

or

ESC FS packet contents Input <4> = TRUE

where <FS> represents the SOP character that is by default the decimal
character code 28 (1\).

The definition of FS (one character) is taken from a single character
Qpacket on input <2>.

In the first mode (input <4> = FALSE), any FS or ESC characters within the
message packet must be escaped by prefixing them with an ESC character
(i.e. the <ESC> character, decimal character code 16 (1P)). Thus <ESC><x>
becomes <x> for all values of x.

RM5-18 Reference Materials

In the second mode (input <4> = TRUE), only ESC characters within the
message packet must be escaped by prefixing them with an ESC character.

The ESC character is defined by a single character Qpacket on Input <3>.
Output <1> outputs Qpacket and Qmorepackets of any messages after the
first SOP control character is received. Output <2> outputs Qpackets and
Qmorepackets of any messages before the first SOP control character is
received. A Qpacket is output on Output <1> each time a SOP control char-
acter is received. Otherwise Qmorepackets are output.

Output <2> is normally connected the Terminal Emulator Input and Output
<1> is connected to F:CIROUTE for both Count and Escape Modes.

The routing path will be used for data transfer until the multiplexing func-
tion sees another SOP character, and a packet with another routing byte.

4.1.2 Count Mode

In count mode, once the SOP <ACK> character is seen, F:DEPACKET
merely counts the bytes until the count is reached. No attempt is made to
decode any bytes until the count is reached. Because F:DEPACKET does
not examine the data, it is faster than escape mode, where all bytes are
checked by F:DEPACKET to see if they are <FS> or <ESC> characters.
Also, count mode allows for the use of any <SOP> or <ESC> sequences as
part of the data.

Qpacket —¥<1> <1>r—®Qpacket,
Qmorepacket
Qpacket —® <2>C “SOP”

Qinteger —® <3>C # count bytes <2>— Qpacket,
Qmorepacket
Qpacket —» <4>C base char (between packets)

Qinteger —»{ <5>C radix
DEPACKETO

(F:DEPACKET)
(count mode)

Host Communications

RM5-19

In count mode, F:DEPACKET assumes that a packet is defined as:

SOP count bytes packet contents

where SOP represents the Start of Packet character that is by default the the
ASCII <ACK> -haracter, decimal character code 06 (1F).

The definition of SOP (one character) is taken from a single character
Qpacket on input <2>.

The message count is defined by n bytes (n defined by the Qinteger on input
<3>). Each count byte is offset from the base character (the base character
is taken from a single character Qpacket on input <4>). After the base char-
acter is subtracted, each count byte becomes a digit of the message count
whose radix is defined by the Qinteger on input <5>.

Output <1> outputs Qpackets and Qmorepackets of count mode messages.
Output <2> outputs Qpackets and Qmorepackets of any messages which are
not in count mode.

The <SOP> byte and the count bytes are removed from the start of the
packet before the packet is sent to F:CIROUTE, which performs the actual
routing.

4.2 Using the Routing Bytes for Local Data Flow

For asynchronous interfaces, routing can be done in a number of different
ways; but every data transfer must be preceded by an <ACK> character
(count mode) or an <FS> character (escape mode), and a routing byte that
gives the destination of the data. If ASCII data are to be sent from the host
to the Command Interpreter (in the Escape Mode), the file containing the
Command Interpreter routing bytes must precede the data, and must con-
tain the following characters:

1\O0 where t\ is a CTRL backslash

To route the line from the Command Interpreter back to the Terminal Emu-
lator, a file should contain the following sequence:

>

RM5-20 Reference Materials

)

™

Routing back to the Terminal Emulator is essential if the Terminal Emulator
is being used to download the file. To get the host prompt back after down-
loading the file, the line must be routed back to the Terminal Emulator
mode (1>). If the routing byte was not sent, the following command can be
entered from the keyboard in command mode to route back to the Terminal
Emulator:

SEND TRUE TO <1>RESET_TE;

If the Escape Mode <FS> characters appear as data in the PS 390 command
file, they must be prefixed by the escape sequence DLE (tP). The tP (deci-
mal 16), when immediately preceding the FS characters, will identify the
characters as being non-muxing data to be passed along.

The t\ <FS> character, the tF <ACK> character, and the escape sequence
(tP) can be changed by the user in the SITE.DAT file. This should be done
when the sequences used with the PS 390 are incompatible with the host or
have another site-specific value.

4.3 Changing the <ESC>, And/Or <SOP> Sequence Characters in the
SITE.DAT File

If the <ESC>, and/or <SOP> sequence characters used by E&S are incom-
patible with the host, or have another site-specific value, these characters
can be changed by sending new values for these sequences to an instance of
F:DEPACKET in the PS 390.

These new values must be included as PS 390 commands in the SITE.DAT
file that is loaded during the system power-up. These commands should
never be sent down from the host or entered in from the PS 390 keyboard
during host transmission.

NOTE

If the <ESC> or <SOP> characters are changed in the
SITE.DAT file, this change must be incorporated in the
GSRs, as these routines use the same sequences for
routing.

Host Communications

RM5-21

The PS 390 command for changing the escape mode <SOP> (default is
<FS>, decimal character code 28, ASCII character ‘t\’) character is as fol-
lows:

SEND CHAR(I) to <2>DEPACKET20;

where 1 is the integer value corresponding to the new <SOP> character in
escape mode.

The PS 390 command for changing the escape mode <ESC> character is as
follows:

SEND CHAR(I) TO <3>DEPACKET20;

where I is the integer value corresponding to the new <ESC> sequence.

The count mode SOP character, (ASCII <ACK>, decimal character code 06,
ASCII tF), can be changed by sending the new integer value to
<2>DEPACKETO:

SEND CHAR(I) TO <2>DEPACKETO;

5. PS 390/IBM Host Communications

The following sections describe the data flow between the PS 390 and IBM
host processors. An introduction to the basic concepts of data communica-
tion, particularly those directly affecting the 3278 interface, are discussed
first.

5.1 PS 390 Data Communication

It is intended that all communication between the IBM host and the PS 390
use the cross-compatibility software provided to the user as the Graphics
Support Routines (GSRs). The GSRs reside on the host as either FORTRAN
subroutines or Pascal procedures, and are provided to support the interface
between the IBM 3274 Controller and the PS 390 Graphics System. The
PS 390 is an ASCII system, expecting and generating ASCII characters. The
IBM 3274 Controller is an EBCDIC system and is unable to generate the
ASCII characters expected by the PS 390. The GSRs provide an interface
that allows the two systems to respond to each other. Data that affect mes-
sages and message routing internally in the PS 390 are embedded with the
software communication routines and are, for the most part, transparent to
the user.

RM5-22 Reference Materials

ﬁ

™

5.2 Data Destinations

Data going from the host to the PS 390 have two possible destinations: the
PS 390 Command Interpreter (CI) or the PS 390 Terminal Emulator (TE).
Data for the CI can be initiated with a GSR or specific ASCII commands.

There are several PS 390 system functions that pass and route data through
the PS 390, prior to the command interpreter. These functions, and the data
paths, are discussed in section 5.5 and in Section RM7. The format of data
expected by the CI is given in Section RM14.

5.3 Write Structured Field

Graphics data intended for the CI are sent from the host to the PS 390 using
a special 3278 command called Write Structured Field (WSF). The WSF
command is normally used by the IBM 3274 Controller to create
non-keyboard type symbols for use in business graphics applications. All
non-WSF commands cause the terminal emulator to perform like a 3278,
but Evans & Sutherland has reserved the use of the WSF command to
transfer graphics data, because the Load Program Symbols option of the
WSF command allows binary data to be sent unchanged to the PS 390. The
use of the WSF command requires the 3274 to have support for
Programmed Symbols, an option of Configuration Support C, in the 3274
Control Unit. When the GSRs are used, the PS 390 will appear to the
graphics application exactly as it would in any other environment. The
communication routines of the software will insert the user data in a WSF
buffer, and perform all necessary data transfers with the 3278 Terminal
Emulator.

If the GSRs are not used, the user will need to have some understanding of
how Programmed Symbols work and how the 3274 sends the symbols to the
3278 to understand how the WSF data buffers are built. A detailed
description of Programmed Symbols and their use to transfer graphics data
is provided below.

5.3.1 Programmed Symbols

Each symbol displayed on the 3278 screen is composed of illuminated dots
made from a nine-by-sixteen dot matrix. The Load Program Symbols
function of the WSF command allows users to specifically illuminate any
particular set of dots in the matrix to create their own special symbol by

Host Communications

RM5-23

RM5-24

setting the corresponding bit in the matrix description to a one. The matrix
is described by overlaying it with a set of eighteen eight-bit bytes'
(9x16=8x18=144).

The following diagram shows how each character matrix is overlaid with
eighteen bytes.

CHARACTER MATRIX
(nine dots wide)

byte
byte
byte
byte
byte
byte
byte
byte 10

byte 1

© 00 3O Ut b W

LR I I K N I R
L I R A
%X X X K X X ¥
L R R B R
L R B IR 2 2 B
* X X X X X X *
%X X X X X X X
L B R R 2K R)
¥ K XX X X X ¥

(sixteen
dots long)

byte 11
byte 12
byte 13
byte 14
byte 15
byte 16
byte 17
byte 18

byte 2

L IR IR 2 R IR N
L R 2K 2 R B B
¥ O X X K X X *
¥ K X K K X X ®
¥ X X K X X X *
¥R X K X X X %
¥R X K X X X *
XK X K K X X *
* X X X X X X %

The data that describe the matrix are placed in a WSF buffer in the follow-
ing order.

byte 1 byte 2 byte 3 . v v v« v « « . . . Dbyte 18

|********I********|********| S |********l

When the 3274 gets the matrix that was sent in the data stream described
immediately above, it converts the data back to a format that looks more
like the original matrix. The data are sent in sixteen groups of two bytes
each. The first seven bits of the first byte are unused, and the last bit of the
first byte is from byte 1 or 2 of the bytes sent. The second byte is made
directly from bytes three through eighteen.

Reference Materials

W

(ﬂg’

Data sent from 3274 to the 3278

X X X X X X X * * % ok %
X X X X X X X | = x ok X
X X X X X X X x ok x x ok %k %
byte 1 byte 3
or . . . through
byte 2 byte 18
L X X X X X X X x | [x x % % % x x % x|

The PS 390 receives graphics data passed to it from the 3274 in the format
shown above. In order for the PS 390 to avoid the difficulty of reassembling
the bytes received, it simply discards the first byte of each of the sixteen
two-byte pairs for each programmed symbol. This means that the first two
bytes in each programmed symbol sent to the PS 390 cannot be used to
contain data.

The graphics data are placed in each program symbol matrix in the follow-
ing manner:

| <-—-unused >|< graphics data ————————>|
byte 1 byte 2 byte 3 byte 18
| XXXXXXXX | XXXXXXXX | *Frkkdkx | | %%k % xkokk |

The 3274 expects the WSF buffer to contain one or more complete program
symbols. If the PS 390 graphics data does not fill a complete symbol, the
full eighteen bytes of the symbol must be sent, but the remainder is ignored.
To know exactly how much graphics data is present, the first two bytes of
the graphics data should contain the length of the actual data following. The
length does not include the length itself, the first two unused bytes in each
program symbol, or any unused bytes following the data in the last program
symbol. The length is used only by the 3278 Terminal Emulator, and is
external to the graphics data and any multiplexing scheme that may be
employed.

The following diagrams show the way the data would be placed in pro-
grammed symbols in the WSF buffer.

Host Communications

RMS5-25

length

bytes unused of data <-—- data ———> unused <—- data
in each —| 1 2 3 | 4 5| ... | 18 1 | 2 3|
symbol
end of data ———> unused <——extra at end-—>
T 1718l 1 |2 | ...] 18

Note that an extra program symbol was added at the end of the buffer. It is
required by the PS 390 to verify that the previous symbol (the last symbol
containing data) was received correctly. Note also, that the data did not
completely fill the last symbol containing data, but that the full symbol was
built.

5.3.2 Load Programmed Symbols

The Load Programmed Symbols option of the WSF command that is used to
load the symbols described in preceding paragraphs is invoked by inserting
control information after the WSF command code and before the pro-
grammed symbols.

The control information contains the following data:

1. A length that includes itself, the control information and all symbols,
including the extra one at the end.

2. An identifier that indicates that this is a Load Programmed Symbol
request.

3. A flag byte that specifies which options are used.

4. Fields that identify the symbol set that the symbols would be loaded
into if this were an actual 3278. This information is not used by the
PS 390 and can be any legal value.

5. A starting code point identifier. This value would ordinarily be used
to match data from the host to the specific symbol the user wants
displayed. The PS 390 uses this value to indicate that the following
symbol will contain the data length in its first data bytes and that the
first data byte will be a code indicating which output port of the
function F:CIROUTE the data will be sent from. A value of X’41’
must be used.

The control information can be a constant that is inserted in the buffer, with
the length updated to specify the total programmed symbols length.

RM5-26 Reference Materials

The final buffer might look like this:

WSF LPS symbol
command ID set IDs unused data unused data

I I I I (5-18) | I (3-18)
Lr3] wilwi | o6 | 41 | cala1lo2luuluuldrfarl#*[. . [**] Tualuu*=]... |

WSF flag required data
length code pt length
remainder extra
data unused data of symbol end symbol
| I I | |
l...l**luuluul** **lrrl. .. |rr|ee|ee|‘ . .'e;]

5.4 Configuration of the 3274 Control Unit

To support the transfer of graphics data to the PS 390 using the Write

Structured Field command with the Programmed Symbols option, the 3274

Control Unit that supports the interface to the PS 390 must have the Con-

figuration Support C option. Also, the 3274 Control Unit must be custom-
m ized with the following options:

162 — Structured Field and Attribute Processing (SFAP)

163 — Extended Character Set Adapter
The PS 390 should be included in the total number of devices that
require SFAP. Note that this number is a maximum. When the 3274
is initialized, special control blocks needed for SFAP are allocated as
needed on a port by port basis beginning with Port 0 until this
maximum is reached. SFAP devices attached to subsequent ports will
be unable to use the SFAP features until the control unit is
re-customized.

164 — Programmed Symbols

Refer to the appropriate IBM documentation for detailed instructions on the
3274 customization procedure.

5.5 Data Flow Overview

The following diagram illustrates data flow between an application program

residing on the host system and the PS 390 system function that initiates

graphics commands. In the diagram, routines or functions that pass and/or

route data are enclosed on four sides. The format that data are passed in is
ﬁ shown in curly braces.

Host Communications RM5-27

PS 390/IBM 3278 Interface Data Flow Diagram

[APPLICATION J

[PROCEDURAL INTERFACE

{ tokens }

| low-level routines

{ packets }

{ WSF commands }

{ WSF buffer }

{ TE data }

2 ntr

{ TE data/expanded WSF commands }

o)

{ packets }

{ TE data }

ET

{ packets }

ot

{ Qpackets/Qmorepackets } { Qpackets/Qprompts }

: READSTREAM

{ tokens }

RM5-28

Reference Materials

™

There are low-level communication routines supporting the GSRs that use
formatting routines to package data for transportation. These routines build
WSF envelopes and put the data in outbound PS 390 buffers.

The CI expects “tokens” that consist of a size, a data type, and a value. For
a given PS 390 command, the type of command is implicit in the type of
one of the tokens. The CI accepts a stream of tokens until it has enough to
carry out the command. The GSRs can be thought of as “mailing” these
tokens to the CI. The tokens are deposited into several layers or “Qpackets”
and “Qmorepackets” of nested envelopes for transportation purposes, but
when they reach the CI, they are almost identical to what was built by the
GSRs.

A WSF command contains the tokens that are to be sent to the CI. Routing
information is included at the head of the WSF command. In the standard
PS 390 system, the PS 390 General Purpose Interface Option (GPIO) card
takes the routing information and the first 238 bytes of data in a WSF
command and puts them into a Qpacket. All subsequent bytes of data in
that WSF command are put into Qmorepackets, signifying that the same
routing information is to be used. Whenever a WSF command is filled to
capacity, or a routing change is required, the current WSF is terminated and
a new WSF command is started by the low-level routines. The IBM system
I/O services maintain a WSF buffer. The size of this buffer is configurable
but generally defaults to a value specified by the routines sending the data.
More than one WSF command can go into the buffer and the buffer may be
split into smaller pieces when it is sent by the communications access
method.

All data bound for the CI are packaged in WSF envelopes. Upon receiving
information from the host, the GPIO is able to differentiate graphical data
from TE data by the WSF command; anything not in a WSF command is
TE data and goes directly to the (Host) Screen Buffer.

Data intended for the CI are passed through a PS 390 routing function,
F:CIROUTE. This function expects routing characters at the start of each
Qpacket it receives.

The software on the host processor uses routing bytes that will channel the
data to the proper PS 390 system function. The routines build the data
packets with the routing data embedded in the WSF envelopes. The GPIO

Host Communications

RM5-29

RM35-30

repacks these data and passes them, along with the routing information, to
the PS 390 system function, F:CIROUTE.

In all cases, F:CIROUTE expects to receive data in a specific format called
Qpackets. This function, and an overview of local data flow in the PS 390 is
discussed in Section RM7.

5.5.1 Modification of Pool Sizes

The PS 390 function SETUPIBM allows the number of empty packets in the
input pool for the PS 390/IBM interface system to be modified. The function
has one input queue and no output queues. The input queue accepts integer
values. At system configuration, the pool size is specified as 256. An exam-
ple of PS 390 commands used to change the pool size for the IBM system
is:

SEND FIX(64) TO <1>IBMSETUP1;

SEND FIX(99) TO <1>IBMSETUP3;

Reference Materials

CUSTOMER INSTALLATION AND USER MANUAL
P§ 300 ETHERNET™ INTERFACE

For VAX/VMS Operating Systems

EVANS & SUTHERLAND

March 1987

E&S #901194-073 A1

The contents of this document are not to be reproduced or
copied in whole or in part without the prior written
permission of Evans & Sutherland.

Evans & Sutherland assumes no responsibility for errors or
inaccuracies in this document. It contains the most
complete and accurate information available at the time of
publication, and is subject to change without notice.

PS1, PS2, MPS, PS 300, PS 330, PS 340, PS 350, and PS 390
are trademarks of the Evans & Sutherland Computer
Corporation.

UNIX is a trademark of Bell Laboratories. DEC and VAX
are trademarks of Digital Equipment Corporation.

Ethernet is a trademark of the Xerox Corporation.

Copyright © 1987
EVANS & SUTHERLAND COMPUTER CORPORATION
P.O. Box 8700, 580 Arapeen Drive
Salt Lake City, Utah 84108

PS 300 ETHERNET INTERFACE

CHANGED PAGES

This manual has been updated to make it consistent with current firmware
capabilities. Pages that have been changed are indicated with an A1 revision
level at the top of the page. Because additions to Chapter 6 were fairly
extensive, the entire section shows the new revision level.

Chapter 3 and Appendix A have notes to A2.V02 users with JCP systems
concerning the inclusion of the network node address in the SITE.DAT file.

Chapter 6 has new information regarding Option Bit 3 in the PS Multiplex
Message. Chapter 6 also describes two new functions, Frame Count Request
and Frame Count Reply. _

PS 300 ETHERNET INTERFACE

PREFACE

This manual contains two levels of customer information: customer installation
requirements and user information specific to the interface.

Part | of this manual lists the steps that you, as the customer, must take prior to
requesting the hardware installation of the PS 300 Ethernet™" interface. Installation
of E&S communication hardware is the responsibility of an Evans & Sutherland
customer engineer. E&S hardware installation information given in this manual is for
reference only and should not become the basis for unauthorized installation.

Customer requirements include purchase and installation of host-to-PS 300 cabling, the
Ethernet host controller circuit board, coaxial cable, transceivers and cables, and
repeaters, if necessary. - You are also responsible for the installation of the
host-resident software (provided by E&S) on the host system.

It is assumed that you have a working knowledge of Ethernet physical and logical layer
specifications, Ethernet design and operation, DECnet network software protocol, the
VMS operating system, VMS file structures, and VMS commands and utilities.

The first page of Part | of this manual is the Customer Installation Checklist. You must
- complete this Checklist before requesting the hardware installation of the interface.

Chapter 1 is an introduction to the PS 300 Ethernet interface and protocols. This
chapter lists the customer-supplied hardware and software components that must be at
the site and installed prior to requesting installation of the interface hardware.

Chapter 2 provides a general description of the VMS/PS 300 software. It is intended for
PS 300 customers using the VAX/VMS operating system. You must install the software
before requesting hardware installation.

PS 300 ETHERNET INTERFACE

Chapter 3 provides instructions for assigning the PS 300 node address in the host
computer and for creating a SITE.DAT file on the PS 300 Ethernet firmware. The
SITE.DAT file must be in place before the host can recognize and communicate with
the PS 300.

Chapter 4 provides support information on the Ethernet interface, specifically DECnet
network protocol. This information is provided to ensure that you are familiar with the
PS 300 GPIO - Ethernet network protocol.

Part |l of this manual contains advanced user information for the PS 300 Ethernet
interface. The PS 300 Document Set contains all the user information for the PS 300
systems. The information provided in Part Il of this manual is supplemental.

Chapter 5 describes the PS 300 display data structures. Information in this chapter
supports the physical 1/0 capabilities of the Ethernet interface. This information is
provided for the advanced PS 300 programmer.

Chapter 6 describes the blocks of data that are used by the Ethernet GPIO to transfer
data between the host and locations in the PS 300, such as runtime functions and mass
memory. This information is provided for users who wish to write their own host
software to communicate with the PS 300 Ethernet interface.

PS 300 ETHERNET INTERFACE

RELATED DOCUMENTS

Information related to the contents to this manual appears in the following manuals:

PS 300 Document Set

The PS300 Document Set contains system installation, operation, programming,
and system-management information. The information is organized into five
volumes. Volume 3B of this set describes Pascal V2 and FORTRAN-77 Graphics
Support Routines under the VAX/VMS operating system.

PS 350 User's Manual (E&S #901172-092)
This manual provides information specific to the operation of the PS 350 and notes

the differences, both hardware and software, between the PS 330 and the PS 350.
This document is supplemental to the PS 300 Document Set.

The following documents are not supplied by E&S but should be available at your site
for reference.

VMS Manual Set
Guide to Networking on VAX/VMS
The Ethernet: A Local Aréa Network; Data Link Layer and Physncal Layer
Specifications, Version 2.0., November 1982.
Xerox Corporation
Network Systems Administrative Office

3333 Coyote Hill Road
Palo Alto, California 94304

PS 300 ETHERNET INTERFACE

CONTENTS

PARTI

INSTALLATION INFORMATION

CUSTOMER INSTALLATION CHECKLIST
1. INSTALLATION REQUIREMENTS
\ ~ INTRODUCTION TO THE INTERFACE
CUSTOMER-SUPPLIED SITE HARDWARE REQUIREMENTS
Retrofit Requirements |
SITE SOFTWARE REQUIREMENTS
PS 300 Firmware/Software
E&S INSTALLATION PROCEDURES

2. HOST SOFTWARE
DESCRIPTION OF THE SOFTWARE
INSTALLING THE FORTRAN GSRs
INSTALLING THE PASCAL GSRs
ESTABLISHING HOST COMMUNICATION USING THE GSRs

2-1
2-1

2-3
2-4

PS 300 ETHERNET INTERFACE

3. DECNET NODE ADDRESS -- THE SITE.DAT FILE
ASSIGNING THE PS 300 NODE ADDRESS ON THE HOST
INSTALLING THE SITE.DAT

Installing the SITE.DAT Using an Asynchronous Line
Installing the SITE.DAT Locally Using the PS 300 Keyboard

4. PS 300 ETHERNET COMMUNICATION PROTOCOL
ETHERNET CONFIGURATION PROTOCOL
DECnet Routing Layer

DECnet NSP Layer
Network Management Layer

3-1

3-2

3-3
3-4

PS 300 ETHERNET INTERFACE

PART 1i

USER INFORMATION

5. PS 300 DISPLAY DATA STRUCTURES 5-1
OVERVIEW 5-1
NODE DESCRIPTION 5-17

Operation Nodes ’ 5-3
Data Nodes 5-9
ADVANCED PHYSICAL 170 PROGRAMMING 5-21
RAWBLOCK 5-22
PS 350 DISPLAY STRUCTURES 5-24
Vec3bd0 5-25
Vec2bd0 5-27
Vec3bs2 : 5-29
Vec2bs2 5-30
DstringD 5-31

6. PS 300 ETHERNET DATA TRANSFER DESCRIPTIONS 6-1
WORD DESCRIPTION 6-1
FUNCTIONS 6-2

Logical Write 6-3
Logical Read . 6-4
Physical Write : 6-5
Physical Read Request 6-6
Physical Read Reply 6-7

Synchronous Physical Write ‘ 6-8

PS 300 ETHERNET INTERFACE

Lookup Named Entity Request
Lookup Named Entity Reply
Frame Count Request

Frame Count Reply
Diagnostic Loopback Write
Diagnostic Loopback Read
GPI0O Statistics Request

GPI!O Statistics Reply

APPENDIX A. PROGRAM PSNODE INSTRUCTIONS

6-9

6-9
6-10
6-10
6-11
6-11
6-12
6-12

PS 300 ETHERNET INTERFACE

Figure 1-1.
Figure 1-2.

Figure 5-1.
Figure 5-2.
Figure 5-3.
Figure 5-4.
Figure 5-5.
Figure 5-6.

Figure 5-7.
Figure 5-8.
Figure 5-9.

Figure 5-10.
Figure 5-11.
Figure 5-12.
Figure 5-13.
Figure 5-14.
_Figure 5-15.
~Figure 5-16.
Figure 5-17.
Figure 5-18.
Figure 5-19.
Figure 5-20.
Figure 5-21.

FIGURES

Minimal Configuration
Medium Configuration

General Operation Node Format

Operation Node - Matrix Concatenation 2x2 (Matcon2)
Operation Node - Matrix Concatenation 3x3 (Matcon3)
Operation Node - Matrix Load 4x4 (Matload4)
Operation Node - Translate ‘

Operation Node Matrix Concatenation 3x3

and Translate Concatenation 1x3

Operation Node - Matrix Load 2x2 (Matload?2)

General Data Node Format

Vector-Normalized (Full Vector) Data Node - 3D (Vec3f0)
Vector-Normalized (Full Vector) Data Node - 2D (Vec2f0)
Block-Normalized Data Node - 3D (Vec3b0) .
Block-Normalized Data Node - 2D (Vec2b0)

Polygon Data Node (Vecpoly)

Character Data Node (Dchar)

Change Bits Operation Node

Rawblock Data Node

Block-Normalized Data Node - 3D (Vec3bd0)
Block-Normalized Data Node - 2D (Vec2bd0)
Block-Normalized Data Node - 3D (Vec3bs2)
Block-Normalized Data Node - 2D (Vec2bs2)
Character String Data Node (DstringD)

—
|

1
~N~NOoO oD wn

o U'ICINU'IOIU'I

A I AR
WWNNMNIMNMNN - = b b a
0 00

I |
S O WNNWNOWO~NIOWULO

PART |
INSTALLATION INFORMATION

) CUSTOMER INSTALLATION CHECKLIST

P§ 300 ETHERNET INTERFACE :
VAX/VMS

Before requesting hardware installation and testing of the PS 300 Ethernet
interface, you, as the customer, must meet the requirements for PS 300 Ethernet
interface installation. You have met the requirements when you can answer yes to
the questions listed below. Do not request hardware installation until this list is
complete.

1. Are you running DECnet on the DEC® VAX/VMS®, version 4.0?

2. Is your VAX communicating successfully using the DECnet network?

m 3. Is the Ethernet transceiver and transceiver cable to suppart the PS 300 installed?
4. |s the total length of your coaxial cable less than 500 meters?
5. Is the length of the transceiver cable which will Iink the PS 300 to the Ethernet
coaxial cable less than 50 meters?
6. Are all transceivers on the cable at least 2.5 meters apart?

7. If this is a field upgrade, are all the card levels in your PS 300 at the necessary
revision levels? |f you do not know the level of your cards, contact the E&S
Customer Service Center at 1-800-582-4375.

8. Has your PS 300 node address been installed on your host?

9. Have you built a SITE.DAT file on your host system with the PS 300 address, or
are you ready to install the SITE.DAT from the PS 300 keyboard after installation
is complete? :

10. Have you made sure that a system manager or someone with system privileges
will be available during the hardware installation process?

If you have answered yes to all the questions, call E&S Customer Service Center at
1-800-582-4375 and request installation of the interface.

m

Installation Requirements 1-1

1. INSTALLATION REQUIREMENTS

This chapter should be read carefully before beginning any installation procedures. As
the customer, you must meet several requirements befare the hardware installation of
the interface by an Evans & Sutherland customer engineer can take place. Please
follow the procedures outlined in this manual before requesting installation of the
hardware at your site.

If there are any questions regarding installation procedures or requirements, please call
the Software Support Hotline (800) 582-4375.

INTRODUCTION TO THE INTERFACE

The PS 300 Ethernet interface allows a PS 300 to link to an Ethernet data
communications network. Ethernet falls in a middle ground between
long-distance, low-speed networks that carry data for hundreds or thousands of
kilometers, .and specialized, very high-speed connections that are generally
limited to tens of meters. Ethernet transmits bursts of message packets at a
speed of ten megabits per second. It is intended for use in office automation and
distributed data processing environments to allow a selected group of computers
to communicate with each other. .

All computers on the same Ethernet network are physically connected to a coaxial
cable, requiring that all computers be within a relatively close proximity. The
coaxial cable is the medium .over which the computers in the network
communicate. '

Each computer in the network has a unique address that distinguishes it from the
other computers in the network. Each message (data packet) sent via the coaxial
cable includes the address of the computer for which it is intended. Computers in
the same network ignore messages that do not contain their particular address.

There are several hardware and software layers that make up Ethernet to allow
communications via the coaxial cable.

Basically, all computers linked to Ethernet have an Ethernet controller (circuit
board with specific Ethernet hardware). The Ethernet/GPI0 board installed in the
PS 300 logic cabinet provides the Ethernet controller for the PS 300.

1-2 PS 300 ETHERNET INTERFACE

Each computer in the network is physically tapped to the coaxial cable with a
transceiver and transceiver cable (see Figure 1-1). Up to 100 computers can be
linked to the same Ethernet, providing the distance between transceivers is at
least 2.5 meters and the coaxial cable (or cable segments) is no longer than 500
meters (see Figure 1-2). Repeaters (shown in Figure 1-2 but not discussed in
detail in this manual) are hardware devices used to amplify signals on the coaxial
cable for larger Ethernet netwaorks.

Coaxial Cable Segment
P -— (500 M max)

+

Transceiver Cable Coaxial Cable
o 50 M max

Transceiver & Connection
to Coaxial Cable
(100 max per segment)

Computer
Station-->

Figure 1-1. Minimal Configuration

Installation Requirements 1-3

Figure 1-2. Medium Configuration

CUSTOMER-SUPPLIED SITE HARDWARE REQUIREMENTS
The customer must supply and install the following Ethernet hardware:

Ethernet Host Controller Circuit Board
Coaxial Cable

Ethernet Transceiver

Ethernet Transceiver Cable

Ethernet Repeaters (if necessary)

As the customer, you must meet the following requnrements before the hardware
installation of the interface can take place. _

s You should have a local area Ethernet network installed and running which
meets the Ethernet specifications.

m Physical layer specifications of the Ethernet network include the installation
of a coaxial cable connected to the host and transceivers (plus repeaters, if
necessary) and transceiver cables for each computer station linked to the
Ethernet coaxial cable.

1-4 PS 300 ETHERNET INTERFACE

s Coaxial cable and transceiver cable length must not exceed the maximum
lengths set forth in the Ethernet specifications.

s You should install the transceiver and the transceiver cable but should not
connect them to the PS 300.

Ethernet specifications are documented in The Ethernet: A Local Area
Network; Data Link Layer and Physical Layer Specifications. Version 2.0,
November 1982. (Questions about Ethernet specifications or E&S-qualified
vendors supplying Ethernet-compatible equipment should be directed to the
area E&S account executive.)

For your reference, the hardware supplied by E&S for the PS 300 Ethernet
interface consists of:

Card Assembly, General Purpose Interface Option (GP10) (E&S #204179-100)
Cable Assembly, PS 300 Ribbon (E&S #204345-005)

Screw (E&S #802004-103)

Lock Washer (E&S #802300-008)

Retrofit Requirements

The PS 300 Ethernet interface requires a PS 300 system with a 2K Arithmetic
Control Processor (ACP) card E&S #204130-101 (wire- wrap) A4 or above; or
204130-100 (PC) A3 or above.

The PS 300 PC Graphics Contral Processor (GCP) card (E&S #204111-100, PC)
must be at ECO revision level A3 or higher. The PS 300 wire-wrap GCP card
(E&S #204111-101) must be at ECO revision level BO or higher to support the
PS 300 Ethernet interface. |f ECOs are required to the GCP card, they must be
completed prior to the installation of the aoption.

If the Ethernet interface to the PS 300 is to be installed in an existing system,
make sure your cards are at the appropriate levels. If you do not know the level
of your cards, contact the E&S Customer Service Center at 1-800-582-4375.

SITE SOFTWARE REQUIREMENTS

The PS 300 Ethernet interface currently runs only under VMS DECnet and UNIX
operating systems on a DEC VAX. Separate firmware is required for each
network protocol. Any implementation of the PS 300 Ethernet interface with any
other operating system, network protocol, or host computer is not supported by
Evans & Sutherland.

Installation Requirements 1-5

DECnet network software must be installed and running on the VAX before the
E&S customer engineer arrives at the site to install the PS 300 Ethernet interface.

PS 300 Firmware/Software

As the customer, you are responsible for installing the E&S-supplied software on
your host system. The standard firmware and software are included in the
purchase price of the interface and are shipped to the software shipping address
provided on the PS 300 sales checklist.

The following firmware/software packages must be available at your site prior to
requesting installation. A packing list shipped with the software provides a
complete list of the contents.

For PS 330 systems: PS 330 DECnet Ethernet Interface Package
E&S #904050-018

For PS 340H systems: PS 340H DECnet Ethernet Interface Package
E&S #904050-028

For PS 340S systems: PS 340S DECnet Ethernet lnterface Package
E&S #904050-038

For PS 350 systems: PS 350 DECnet Ethernet Interface Package
E&S #904050-049

These packages contain the system firmware, interface software, diagnostic
diskettes, Performance Verification Test, and demonstration diskettes.

E&S INSTALLATION PROCEDURES

When you have completed all the customer installation requirements, as shown on
the customer installation checklist, you should request the hardware installation
of the interface by contacting the E&S Customer Service Center at
1-800-582-4375. Before arriving on site, the customer engineer will verify that
the system is ready for installation by going over the customer installation
checklist with you.

At the installation, the host system manager (or someone with system privileges)
must be present to oversee PS 300 Ethernet interface card installation and create
the SITE.DAT file that is necessary for host/PS 300 communications.

Upon completion of the installation, the engineer will run interface diagnostics.
These diagnostics verify the functionality of the Ethernet interface card.

1-6 PS 300 ETHERNET INTERFACE g "

After the diagnostics have been successfully run, the engineer will run the
Performance Verification Test for the PS 300 Ethernet Interface (IPVT). This test
will verify the communication link between the PS 300 and the host system. The
communication link is tested by:

1. Loading a PS 300 function network by writing it via the Ethernet interface.
The network manipulates the binary vectaors.

2. Sending a binary vector list to the PS 300 via the Ethernet interface. The
vector list can be manipulated by the function network in Step 1.

3. Performing a data recirculation test by sending various sized buffers of ASCII
text to the host and then routing it back to the PS 300. The text is compared
after recirculation.

The IPVT has run successfully when the binary vector Inst can be manipulated by
the function network that activates the control dials and there are no errors
logged by the data recirculation test.

Upon successful completion of all tests, you, as the customer, will sign a U
Performance Verification Test acknowledgement that initiates the 60-day product
warranty.

Host Software 2-1

2. HOST SOFTWARE

You are responsible for installing host-resident software on the host system prior to
requesting installation of the interface hardware.

DESCRIPTION OF THE SOFTWARE

The software that supports the Ethernet Interface is distributed on 1600-bpi
magnetic tape. The software contains the PS 300 Graphics Support Routines
(GSRs) that contain the code necessary to communicate with the DECnet
- Ethernet Interface. These files should be read from the tape, compiled, and
inserted in a library on the host. User application programs are linked with the
GSRs library. The PS 300 GSRs are described -in volume 3B of the PS 300
Document Set.

To read the GSR files off of the accompanying tape, the following DCL command
sequence should be used:

$ ALLOCATE MTnn: (M Tnn: refers ta the physical device name of
$ MOUNT MTnn: PSDIST the appropriate tape drive unit)

$ COPY Mtnn:* *;x *

$ DISMOUNT MTnn:

: DEALLOCATE MTnn:

- The magnetic tape contains many other files that are not related to the Graphics
Support Routines. Refer to the file README.TAP for a description of the
contents of these other files. READFOR.GSR contains a short description of each
of the FORTRAN GSR files.

2-2 PS 300 ETHERNET INTERFACE

INSTALLING THE FORTRAN GSRs

This section contains brief installation instructions for the DEG/VAX
FORTRAN-77 version of the PS 300 GSRs. The GSRs will compile only under a
FORTRAN-77 compiler and are supported under VMS Version 4.2 and higher.
PS 300 Graphics Firmware Version A2.VO1 or higher is required to run the
Graphics Support Routines.

Table 2-1 lists the source files for the DEC VAX/VMS FORTRAN-77 version of
the Graphics Support Routines, along with a description of each file.

The object module library containing ALL of the DEC VAX/VMS FORTRAN-77
GSR subroutines is contained in the file:

GSRF.0OLB

To link your program with the DEC VAX/VMS FORTRAN-77 GSRs, enter the
following command:

$ LINK <pgm>,<...any additional user object modules...>,GSRF/LIB

Table 2-1. FORTRAN-77 Graphics Support Routines

Eile Name Description
GSRF.FOR Source file for the GSRs.

PROFORLIB.FOR Source file for the intermediate code between GSRF.FOR
and PROLIB.MAR.

PROIOLIB.MAR Macro source file for the low-level 1/0 subroutines used by
the GSRs to communicate with the PS 300.

PROCOMF.FOR Contains .the global definitions of the FORTRAN-77 VAX
GSR's and is INCLUDEd by GSRF.FOR.

PROFORCOM.FOR Contains the global definitions for the PROFORLIB.FOR.

PROCONST.FOR Contains file that may be - INCLUDEd by the user in an
- application program. Contains the constant definitions.

Host Software 2-3

The files CIRCLEF.FOR and BLKLEVF.FOR contain the source code of two VAX
FORTRAN-77 GSR programs which demonstrate some of the subroutine calls.
These files must be compiled and linked with the GSR library.

To recreate the DEC VAX/VMS FORTRAN-77 GSRs from the original source
files, the following DCL command sequence should be used:

$ FORTRAN GSRF

$ FORTRAN PROFORLIB

$ MACRO PROIOLIB

: LIBRARY/CREATE GSRF GSRF,PROFORLIB,PROIOLIB

INSTALLING THE PASCAL GSRs

This section contains brief installation. instructions for the DEC VAX PASCAL V2
version of the Graphics Support Routines (GSRs). The GSRs will compile only
under a VAX PASCAL V2 compiler and are supported under VMS Version 4.2 and
higher. PS 300 Graphics Firmware Version A2.V0O1 or higher is required to run the
Graphics Support Routines.

Table 2-2 lists the source files for the DEC VAX/VMS PASCAL V2 version of the
Graphics Support Routines, along with a description of each file.

Table 2-2. Pascal V2 Graphics Support Routines

Eile Name Description _
GSRP.PAS Source file for the GSRs

PROPASLIB.PAS Source file for the intermediate 1/0 procedures
conceptually residing between GSRP.PAS AND
PROIOLIB.MAR : '

PROIOLIB.MAR Macro source file for the low-level I/0 procedures used by
the GSRs to communicate with the PS 300

PROCONST.PAS File that should be INCLUDEd by the user in an application
program. Contains CONSTant definitions.

PROTYPES.PAS File that should be INCLUDEd by the user in an application
program. Contains TYPE definitions.

PROEXTRN.PAS File that should be INCLUDEd by the user in an application
program. Contains EXTERNal definitions.

2-4 PS 300 ETHERNET INTERFACE

The object module library containing ALL of the DEC VAX/VMS PASCAL V2 GSR
procedures is contained in the file:

GSRP.OLB

To link your program with the DEC VAX/VMS PASCAL V2 GSRs, enter the
following command:

$ LINK <pgm>,<...any additional user object modules...>,GSRP/LIB

The files CIRCLEP.PAS and BLKLEVP.PAS contain the source code of two VAX
PASCAL V2 GSR programs which demonstrate some of the procedures. These
files must be compiled and linked with the GSR library.

To recreate the DEC VAX/VMS PASCAL V2 GSRs from the original source files,
the following DCL command sequence should be used:

$ PAS GSRP

$ PAS PROPASLIB

$ MACRO PROIOLIB

$ LIBRARY/CREATE GSRP GSRP,PROPASLIB, PROIOLIB

$

ESTABLISHING HOST COMMUNICATION USING THE GSRs

The GRSs read a file called "PSDEVICE.DAT" to determine which device to
access. Before a user program can run, this file must be generated with the
following line:

LOGDEVNAM=nodename/PHYDEVTYP=ETHERNET
where nodename is the DECnet Node Name for the PS 300.

for example:

LOGDEVNAM=PS300A/PHYDEVTYP=ETHERNET

The Site.Dat File 3-1

3. DECNET NODE ADDRESS--THE SITE.DAT FILE

As the customer, you are responsible for assigning and installing the PS 300 DECnet
node address on the host computer and for installing this same address in the SITE.DAT
file on the PS 300 firmware. These are both simple procedures.

The DECnet node address should be installed on the host at the same time the
E&S-supplied software is installed, and prior to hardware installation. If this is a new
system installation, the SITE.DAT file must be created after the hardware, installation
is complete, as the process requires access to the PS 300 floppy diskette drive.

NOTE

The GPI0/Ethernet card will not start processing network
traffic until it receives a DECnet node address from the
SITE.DAT file.

This chapter provides instructions for both procedures.

ASSIGNING THE PS 300 NODE ADDRESS ON THE HOST

The DECnet node address of the PS 300 must be known to the host before the
PS 300 can be recognized. The DECnet node address is generally selected by the.
network manager or system manager for the host computer. The DECnet node
address and name is then installed in the DECnet volatile and permanent data
bases by the system manager. The following Network Control Program commands
show how to install the node address of 1.46 (area = 1, node = 46) with the name of
"PS300":

{.2.
NCP> set node 1.46 name PS300

NCP> define node 1.46 name PS300
(-2~

See the VAX/VMS Network Control Program Referance Manual and the Guide
to Networking on VAX/VMS for more details.

. 3-2 PS 300 ETHERNET INTERFACE

(Revision A1)
INSTALLING THE SITE.DAT

The SITE.DAT file is the final file on the PS 300 graphics firmware diskette. This
file enables users to configure features for the PS 300 system in a bootable file.
The file is assumed to contain a string of ASCIl commands.

If this is a new system, the PS 300 control unit, display, and keyboard must be
installed before you can create and download the SITE.DAT.

The information needed in the SITE.DAT file may be installed in one of two ways:

1. By downloading a host-resident file over an asynchronous line. This is the
preferred method.

2. By accessing the command mode on the PS 300 keyboard and entering the
information locally.

The DECnet node address for the PS 300 must be put in the SITE.DAT file of the
PS 300. The command to put in the SITE.DAT file is

SEND 'xxxx' to <1>pi 01$;
(Note that JCP A2.V02 users must send address to <1>ei_01$;)

where xxxx is the DECnet node address in 4 hexidecimal digits. In the 16-bit "
DECnet node address, the most significant 6 bits are the area number and the.
least significant 10 bits are the node address in the above area. Note: If area
numbers are not used on your network, the area number defaults to 1.

The algorithm to get the DECnet node address is therefore:
(area~-number * 1024) + node-number

For example the DECnet node address for node 1.46 is
(1 * 1024) + 46 = 1070 decimal = 042E hexidecimal

Thus the SITE.DAT comrpand would be
el
SEND '042E' to <1>pi 01$;

The program PSNODE described in appendix A can be used to convert a DECnet
node address into the form for the SITE.DAT file.

The Site.Dat File 3-3

Installing the SITE.DAT Using an Asynchronous Line

If you can communicate with the PS 300 over an asynchronous line, you must
perform the following steps to install information in a SITE. DAT file that provides
the PS 300 DECnet node address.

NOTE
The characters "1\" represent the CTRL and backslash

keys pressed simultaneously. This control character has
an ASCII value of decimal 28.

1. Create a file on your host that contains the following:

\: { control sequence that provides the routing byte }
{ to-write ASCII data to the firmware diskette }

“ SEND "xxxx' to <1>pi 01$; { xxxx is the 16-bit DECnet }
{ address, in hexadecimal, assigned }
{ to the PS 300 }

T\ { control sequence that provides the routing byte }
{ to close the file on the firmware diskette }

CLOSE SITE; { the PS 300 command that closes the file }

> { control sequence that provides the routing byte }
{ to route following characters to the terminal emulator }

For example, the DECnet address of the node represented by 1.46 described
earlier would be installed in the SITE.DAT as:

T\

SEND '024E’ to <1>pi_o1 $,
T\;

CLOSE SITE;

™

2. Make a backup copy of the PS 300 graphics firmware that supports your
system. Instructions for copying the firmware are in Volume 5 of the PS 300
Document Set. For new systems, the copy can only be made after the
successful installation of the E&S system hardware and the completion of the
PS 300 Performance Verification Test.

3-4 PS 300 ETHERNET INTERFACE

3. Mount the backup copy of the firmware diskette and boot the system. Booting
instructions are provided in Volume 1 of the PS 300 Document Set.

4. Copy the host-resident SITE.DAT file from the host to the PS 300 diskette
using the asynchronous line and standard host-system utilities.

5. Reboot the system using the diskette that contains the newly created
SITE.DAT.

Installing the SITE.DAT Locally Using the PS 300 Keyboard

If you cannot communicate with the PS 300 over an asynchronous line, the -
SITE.DAT file information must be entered directly from the PS 300 keyboard.
To install information in a SITE.DAT file that provides the PS 300 node address,
do the following:

1. -Make a backup copy of the PS 300 graphics firmware that supports your
system. Instructions for copying the firmware are in Volume 5 of the PS 300
Document Set. For new systems, the copy can only be made after the
successful installation of the E&S system hardware and the completion of the
PS 300 Performance Verification Test.

2. Mount the backup copy of the firmware diskette and boot the system.' Booting
instructions are provided in Volume 1 of the PS 300 Document Set.

3. Access command mode on the PS 300 keyboard by pressing the CTRL/LINE
LOCAL keys simultaneously. The command prompt "@ @" should appear.

4. Enter the following commands (each command line must be followed by a
RETURN):

Configure A;

SEND 'Send ' 'xxxx' ' to <1>pi 01$;' to <1>Wdao0;
SEND 'Close Site;’ to <1>WdacO0;

Finish Configuration;

Note the occurrence of two single quotes before and after xxxx.

The Site.Dat File 3-5

In the above command sequence, xxxx is the 4-digit hexadecimal DECnet node
address assigned to the PS 300 preceded and followed by pairs of single
quotes. For example, the DECnet node address of node represented by 1.46
described earlier would be installed in the SITE.DAT as:

Configure A;

SEND 'Send ' '042E' ' to <1>pi_01$;' to <1>Wda0;
SEND 'Close Site;' to <1>Wdac0;

Finish Configuration;

NOTE

If you enter a command incorrectly from the keyboard, and
the command 'Close Site;' has not been sent to <1>Wdac0,
you can reboot the system and start over. However, if the
'Close Site;' command has already been sent to WdacO, you

- must delete the SITE.DAT file that now exists on the
firmware diskette before you reboot and begin again.
Instructions for deleting files on the firmware diskette are
provided in Volume 5 of the PS 300 Document Set.

5. Reboot the system using the diskette that contains the newly created
SITE.DAT file. ‘

Communication Protocol 4-1

~ 4. PS 300 ETHERNET COMMUNICATION PROTOCOL

The PS 300 DECnet Ethernet GPIO Interface was designed so that any computer
host that supports DECnet, VAX Version 4.0, can establish one high speed link to a
PS 300 graphics terminal.

ETHERNET CONFIGURATION PROTOCOL

The GPIO supports the Ethernet Version 2.0 configuration protocol to enabie
testing of the netwark. Refer to the Guide to Networking on VAX/VMS.

DECnet Routing Layer

The GPIO operates as a DECnet Ethernet End Node. Therefare, at least one other
node on the Ethernet must be a Routing Node.

DECnet NSP Layer

The GPIQ supports the full implementation of the NSP Protocol, Version 4.0.0,
with the following exceptions: '

1. Only one logical connection from a host to the PS300 is supported at any one
time.

2. Since the PS 300 is considered a slave device to the host, the PS 300 cannot
request the GP!0 to establish a connection link to a host.

‘3. Since Session Control Message Flow Control has been made obsolete by DEC,
it is not implemented in the GP10.

4-2 PS 300 ETHERNET INTERFACE

-

Network Management Layer

The PS 300 does nat provide support for any Netwaork Management or Maintenance
functions except for the Ethernet Configuration Protocol.

PART I
USER INFORMATION

PS 300 Display Structures 5-1

5. PS 300 DISPLAY STRUCTURES

This chapter describes the PS 300 display structures. Information in this chapter
supports the physical 1/0 capabilities of the interface. This information is provided for
advanced PS 300 programmers.

OVERVIEW

Display structures in the PS 300 represent the operations and data that form the
two- and three-dimensional objects constructed by user application programs.
The display structures are traversed each refresh cycle by the display processor.
These structures are contained in a structured display file which is created and
modified under control of the Graphics Control' Processor (GCP), the 68000
processor in the system.

NODE DESCRIPTION
Display structures are organized as an acyclic hierarchy of nodes that are either:

e (QOperation nodes that change the "state of the machine" for descendent data
nodes.

e Data nodes (dots, lines, palygons, or characters).

e [nstance nodes, sometimes known as set nodes, that group lists of branches of
the acyclic hierarchy that are to be traversed.

Every type of node may be named. Naming a node causes the name to be entered
into a dictionary table (hash table), along with a pointer indicating where the node
associated with that name resides in PS 300 mass memory. The name in the hash
table is located in what is called an alpha block. The address of the alpha block
remains constant as long as the named node is not deleted or referenced by
another node (or function) in the system.

5-2 PS 300 ETHERNET INTERFACE

When a node in the system references another node, an alpha pointer is placed to
the alpha block to link the current node with that name. This means that a level
of indirection is introduced for every reference to an entity in the system. The
indirection is a small penalty for the flexibility this procedure provides. It also
implies that there is an alpha block for every node, regardless of whether the user
has chosen to associate a name with the node.

The display structures are constantly being traversed for display by the dispiay
processor. When a node is changed, the GCP makes a copy of the changed node,
changes the elements, and then changes the pointer to the node in the alpha
block. This occurs whenever a matrix is changed, a new display is enabled, etc.
In essence, then, every change to the display structures causes the change to be
"double buffered" until the display processor makes the change at the end of each
refresh cycle. If the GCP changes that data structure, a named entity is never in
the same location in mass memoary. Conversely, the PS 300 never performs
"garbage collection" on existing named entities.

If the node is never referenced by a function network (or externally from the host)
a named entity is always in the same location in mass memory. This permits the
physical 1/0 capabilities to provide extremely close coupling of the host and
PS 300 display structures (nat the PS 300 system).

The Lookup Named Entity I/0 function implemented by the PS 300 device driver
returns the actual mass memory address of the node rather than the pointer to the
alpha block. This means that values in the node can be changed directly.
However, if the node is being displayed, the ACP may traverse the node during
the brief but finite time frame when are being changed. This may result in.an
improper picture being displayed (new x value with ald y value; or a matrix with
mixed values -- part new, part old), but should never cause the display processor
to traverse the display structures improperly as long as no pointers are changed.
(Pointers sl‘;ouId never be changed with the physical I/0 facilities; that is best left
to the GCP).) :

Thus, given the exact formats of the display structures and the Read Physical and
Write Physical I/0 requests, display structures can be written directly under host
control (without any interference by the GCP) as long as the named entities to be
updated are:

1. Created initially by the GCP using standard PS 300 commands.

2. Not involved in any way with local operations (function networks). However,
see NOTE below.

3. Not changed by the host program in any way except by using the physical 1/0
facilities.

PS 300 Display Structures 5-3

NOTE

Nodes that precede nodes to be updated using the
physical 1/0 capability can be involved with local
operations. For example, viewing operations can be
performed lacally while updating modeling
transformations using the physical 1/0 facility.

Most often only matrices and/or data nodes are modified
using the physical 1/0 requests. However, all named
entities can be modified in the same manner given the
same assumptions. The exact data formats for some
operation nodes (matrices) and data nodes follow.

Operation Nodes.

An operation node is a data structure element that modifies the state of the
display processor. An operation node consists of:

e an integer that indicates the display structure is an operation node (=1).

e an integer that specifies the particular type of operation node, the descendant
alpha, and a variable number of fields required by the particular type of
operation node.

Because an operation node modifies the state of the Arithmetic Control Processor
(ACP), the ACP state must be saved before traversing a hierarchical branch which
includes an operation node.

The state is then restored before traversing the next hierarchical branch. For any
operation node, bit 15 of the operation type is a conditional bit. If this bit is set
(and if bit 15 [the blink bit] in the Condition Mask of the ACP State is zero), the
associated operation node is not executed. In all other cases, the operation node
is executed. In all cases, descendent operation nodes are traversed.

NOTES

1. Each element of the following blocks of data is a
16-bit element. Double elements, shown as
"-- ~-|", are 32-bit elements.

5-4 PS 300 ETHERNET INTERFACE

NOTES (continued)

2. In the 32-bit mantissas (fractions) used for translates
that are shown as:

-— Tx(H) --
Tx(L)

- Ty(H) --
Ty(L)

- , Tz(H) --
Tz(L)

the most significant bit of the second word should
always be 0 (zero), as shown in the figure below. This
is also true for the PS 350 32-bit mantissas.

-— Tz(H) -
0 _ Tz(L) -

This also applies to the matrix mahtissas show as:

M [1,1(H)]
M [1,1(L)]

where the most significant bit of the second word
should always be 0 (zero), as shown in the figure
below.

MI[1,1(H)]

- -

0 M [1,1(L)]

3. A "C" in the left corner of the Operation Type field
indicates the Conditional Bit (bit 15).

The following figures provide the formats for the operation nodes.

PS 300 Display Structures 5-5

Operation Node 1

C Operation Type

- Descendant Alpha -

Field 1

Field 2

Field n

Figure 5-1. General Operation Node Format

Operation Node 1

C Operation Type 2 = Matcon2

- Descendant Alpha -

Exponent
M [1,1]
M [1,2]
M [2,1]
M [2,2]

Figure 5-2. Operation Node - Matrix Concatenation 2x2 (Matcon2)

5-6 PS 300 ETHERNET INTERFACE

Operation Node 1

C Operation Type 3 |= Matcon3

- Descendant Alpha

Exponent

M [1,1(H)]

M [1,1(L)]
M [1?2(H)]

M [1,2(L)]

M [3,3(H)]

M [3,3(L)]
Tran Flag 0 0 = No Translation
Fol lows

Figure 5-3. Operation Node - Matrix Concatenation 3x3 (Matcon3)

PS 300 Display Structures 5-7

Operation Node 1

C Operation Type 4 |= Matload4

- Descendant Alpha

“Exponent (Row 4)

Exponent (Rows 1-3)
MI[1,1(H)]

M [1,1(L)]
M[1,2(H)]

M [1,2(L)]

M [4,4(H)]
M [4,4(L)]

Figure 5-4. Operation Node - Matrix Load 4x4 (Matload4)

Operation Node 1

w

C Operation Type = Translate

- Descendant Alpha —

Exponent

- Tx(H) -—
Tx(L)

- Ty(H) --
Ty(L)

- Tz(H) -
Tz(L)

Figure 5-5. Operation Node - Translate

5-8 PS 300 ETHERNET INTERFACE

Operation Node 1

C Operation Type 10 |= Mat3 Trans

- Descendant Alpha

Exponent
M [1,1(H)]

M[1,1(L)]
M [1,2(H)]

M [1,2(L)]

M [3,3(H)]

M [3,3(L)]
Tran Flag 1 1 = Translation
Follows

Exponent

- Tx(H) -
Tx(L)

- Ty (H) -
Ty(L)

- Tz(H) --
Tz(L)

Figure 5-6. Operation Node Matrix Concatenation 3x3
and Translate Concatenation 1x3

PS 300 Display Structures 5-9

Operation Node 1

C Operation Type 28 = Matload2

- Descendant Alpha -

‘Exponent

M [1,1]

M [1,2]

M[2,1]
M[2,2]

Figure 5-7. Operation Node - Matrix Load 2x2 (Matload?)

ﬁ

Data Nodes

A data node is the disp'lay structure primitive that causes the display processor to
convert data into a picture. A data node consists of:

~

e An integer that indicates this display structure is a data node (=2).

e An 8-bit field that specifies the mode of vectors in the data node.

e An 8-bit integer that specifies the particular type of data node. -

e A 32-bit integer which points to the next data node of identical data type.

e An integer (n) that specifies the number of vectors, polygons or characters in
the data node.

e A 16-bit integer that specifies the pick index.
e Either vector data (including polygons) or character data.

Vector data consist of the two- or three-dimensional vectors (preceded by
m polygon attribute information if the data are polygons).

5-10 PS 300 ETHERNET INTERFACE

Character data consist of an initial translation, spacing information, and the
character string.

Figure 5-8 shaws the general data node format.

Data Node 2

Mode Data Type

-- Pointer to Next Data Node --

n

" Pick Index

Vector/Character Data

Figure 5-8. General Data Node Format

~

Mode, data type, pointer to next data node, pick index, and vector/character data
are detailed further below.

Mode Field

The mode field of a data node consists of:

15 12 11 10 9 8 7 0
11117777777/ /77/7/7//7//77777/7/7/7/ Data Type
Dot Mode

Dot Mode = 0 for no endpaint intensification
Dot Mode = 1 for endpoint intensification

PS'300 Display Structures 5-11

The dot mode field of a data node is a single bit that specifies how the vectors are
to be drawn. When dot mode = 0, vectors are drawn normally. When dot mode =
1, each endpoint of the vector list is drawn as an intensified dot.

Data Type

The data type field specifies the particular format of the data node. The display
processor accepts vectors of two formats:

1.

Vector-normalized data (full vectors).
Vector-normalized data consist of 16-bit, signed binary fractions that share a

common 8-bit, signed integer exponent and an explicit 7-bit, intrinsic
intensity for each vector. For the vector:

(x,y,z,i): x=2e*fx, y=2e*fy, z=2e*fz, i=i

“where e is the signed 8-bit integer exponent; the I6-bit significant digit fields

fx, fy, and fz satisfy -1<f<1; and the 7-bit intrinsic intensity field i satisfies
O<i<1. :

Block-normalized data
Block-normalized data consist of I6-bit signed binary fractions that share a

common 7-bit signed integer exponent and an explicit 8-bit intrinsic intensity
for each block of vectors. For the vectors:

x1 = 2e*fx1, y1 = 2e*fy1, z1 = 2e*fz1, i=i
x2 = 2e*fx2, y2 = 2e*fy2, z2 = 2e*fz2, i=i

xn = 2e*fxn, yn = Ze;fyn, zn = 2e*fzn, i=i

where e is the signed 8-bit integer exponent; the 16-bit significant digit fields
fx, fy, and fz satisfy -1<f<1; the 7-bit intrinsic intensity field i satisfies O<i<1.

Block-normalized data may be treated as 16-bit fixed point data by
applications that (1) only require 16 bits of precision and (2) wish to avoid
converting integers to PS 300 data formats.

5-12 PS 300 ETHERNET INTERFACE

3. Polygon Data-

Vectors contained within polygon nodes consist of 3D vector-normalized data
as described above.

4. Character Data

Character data consist of a character string, an initial translation that
positions the character string, and information that controls the spacing
between characters.

Next Data Node Field

The next data node field contains a 32-bit pointer to the next data node of
identical type (0 = nil pointer). This pointer allows a set of character strings to be
grouped together (Label Block). It also replaces the need to have a VecSet node
group a set of vector lists together.

Pick Index Field

The pick index field of a data node is reported with the vector count when a pick
occurs, identifying the vector list in which the pick occurred.

Although the number of vectors that may be contained in a data node is 65,535 (if
n is treated as a 16-bit unsigned number), by convention the maximum number of
vectors that are specified in a given data node block is 2,048. (The actual number
of vectors is usually much smaller to avoid memory fragmentation.) This is less
than the maximum number of vectors that may be counted during pick processing.

The software that creates data nodes ensures that the index is correct for a given
data node and that the reported index (together with the vector count) allows the
vector that was picked to be correctly identified.

Vector Data

All vector data processed by the display processor are numbers of normalized,
floating-point form, such as 2e*f, where e is a signed-integer exponent and the
significant digit field, f, satisfies -1<f<1. Rather than provide an exponent for
each coordinate of a vector, the display processor assocuates a single exponent
with each vector or block of vectors.

PS 300 Display Structures 5-13

All vector data are two- or three-dimensional (i.e., x,y or x,y,z), with an implicit,
homogenous coordinate equal to 1 (i.e., x,y,z,1). The dynamic range gained by
explicit use of the hamaogenous coordinate is provided by representing vector data
in the normalized, floating-point form.

Polygon Data

Palygon nodes contain vectars that define the polygon as well as a pointer (ptr) to
another node describing the attributes of the polygon. '

In addition, polygan vectors have implicit closure; that is, there is an implied
vector from the last point of the polygon to the first point. The ACP
automatically displays this implied vector.

Character Data

Character data consist of a character string, an initial translation that positions
the character string, and information that controls the spacing between
characters.

The initial translation consists of 16-bit, signed binary fractions for x, y, and z,
with an implicit, homogeneous coordinate equal to 1 (i.e., x,y,z,1), and a shared
8-bit, signed integer exponent. Thus, the translation:

x,¥,2,1 x=2e*fx, y=2e*fy, and z=2e*fz,

where e is the signed, 8-bit integer exponent, and where the 16-bit significant
digit fields fx, fy, and fz satisfy -1 <=f < 1.

The spacing informatian consists of a delta x and a delta y, each a 16-bit, signed
binary fraction, sharing an implied exponent equal to zero. The delta x and deita
y values determine the separation between characters in the x and y directions.
They are given in the coordinate space of the characters themselves, satisfying
the range: -1 <= delta x, deltay < 1.

For each character in a string of characters, the corresponding character stroke
block is read from mass memory to provide the vectors which make up the
individual character.

5-14 PS 300 ETHERNET INTERFACE

The following figures provide descriptions of the data nodes for:

Vectar-narmalized (Full Vector) 3D (Vec3f0) data node
Vector-narmalized (Full Vectar) 2D (Vec2f0) data node
Block-normalized 3D (Vec3b0) data node
Block-normalized 2D (Vec2b0) data node

Polygon (Vecpoly) data node

Character (Dchar) data node

PS 300 Display Structures 5-15

DATA NODE 2

Mode 0 |= Vec3f0

—- Pointer to next data node --

n

Pick Index
X1

Y1

21

Exponent 1 Intensity 1 |d

X2
Y2
22

Exponent 2 Intensity 2 |d

Xn

Yn

Exponent n Intensity n|d

Figure 5-9. Vector-Normalized (Full Vector) Data Node - 3D (Vec3f0)

" 5-16 PS 300 ETHERNET INTERFACE

DATA NODE 2
Mode 1 |= Vec2f0
—- Pointer to next data node --
n
Pick Index
X1
Y1
“Exponent 1 Intensity 1 [d
X2
Y2
Exponent 2 Intensity 2 |d
Xn
n
Exponent n Intensity'n d

Figure 5-10. Vector-Normalized (Full Vector) Data Node - 2D (Vec2f0)

PS 300 Display Structures 5-17

DATA NODE 2

Mode 2 |= Vec3b0

-- Pointer to next data node --

n

Pick Tndex

Exponent Intensity

Xn
Yn
Zn d

Figure 5-11. Block-Normalized Data Node - 3D (Vec3b0)

5-18 PS 300 ETHERNET INTERFACE

DATA NODE 2
Mode 3 |= Vec2b0
-- Pointer to next data node --
n
Pick Index
Exponent Intensity
X1
Y1 d
X2
Y2 d
Xn
Yn d

Figure 5-12. Block-Normalized Data Node - 2D (Vec2b0)

PS 300 Display Structures 5-19

DATA NODE 2

Mode 8

-- Pointer to next data node --

Number of Polygons

Pick Index
Number of bytes to Node's end

Polyfill (Usually 0)

Pointer to
Attribute Node

Number of Vertices

“Pointer to Normals of Polygon

X1

Y1

21

EXP 1 |Intensity (Color)| d
X2
Y2

22

EXP 2 |Intensity (Color)| d

Xn

Yn

Zn

EXP n [Intensity (Color)| d

= Vecpoly

Figure 5-13. Polygon Data Node (Vecpoly)

5-20 PS 300 ETHERNET INTERFACE

Data Node 2

Mode 4 |= Dchar

— Pointer to next data node --

Number of Characters

Pick Index
Tx
Ty
Tz
Exponent ////////////)//
[/1//1111/1711777
Delta «x
Dglta y
Char 0 Char 1
Char 2 Char 3

Figure 5-14. Character Data Node (Dchar)

- PS 300 Display Structures 5-21

ADVANCED PHYSICAL I/0 PROGRAMMING

The physical 1/0 process can produce distorted pictures when it is updating display
structures at the same time the display processor is traversing them.

To avoid this "single buffer" phenomenon, these display structures can be "double
buffered." This is done by creating two copies of the named entities to be
updated with different names (like Datal and Data2). The data structures are
then alternately updated and displayed using either the IF LEVEL OF DETAIL or
IF CONDITIONAL BIT commands such as:

IF LEVEL =1 THEN Datal;
IF LEVEL =2 THEN_Data2;

or

IF BITOON THEN Datat;
IF BIT O OFF THEN Data2;

These commands are u;ed in conjunction with a node higher in the structured
disp(lay file that either sets the level of detail (SET LEVEL) or sets the conditional
bit (SET BIT).

The node that performs the SET BIT and SET LEVEL operation is the change bits
operation node and is shown in Figure 5-15. This operation node is also used to
set displays, set character orientation, set contrast, set CSM, set depth clipping,
set plotter, set rate external, set blinking (PS 350 only), and set line texture
(PS 350 only).

5-22 PS 300 ETHERNET INTERFACE

Wordindex = 0 - LOD value
1 - Conditional bits

Operation Node 1

c Operation Type 8 |= Change Bits

- Descendant Alpha -

Wordindex

Offmask

Onmask

Figure 5-15. Change Bits Operation Node

This SET LEVEL or SET BIT node is updated using the physical 1/0 to "swap
buffers." The physical 1/0 Write command updates multiple blocks of data in
mass memory in one |/0 operation (including the change to the SET LEVEL or SET
BIT node as the last operation) and ensures that the buffers are swapped on the
next refresh.

The physical 1/0 Write/Sync operation ensures that each buffer gets at least one
refresh before allowing the next write operation.

The ACP turns off the bits specified in OFFMASK. The ACP then turns on the
bits specified in ONMASK.

RAWBLOCK

The RAWBLOCK command is used to allocate memory that can be directly
managed by a user-written function or by the physical I/0 capabilities of the
PS 300. '

The command:

<name> := RAWBLOCK i;

PS 300 Display Structures 5-23

carves a contiguous block of memary such that there are "i" bytes available for
use. Since this has to be a display structure and one contlguous memory, it is
structured so that it looks like Figure 5-16.

RAWBLOCK 9
0 [0 | = No_op
-— Descendent Alpha --| Points to next
long word
- Datum Pointer --| Initially NIL

Figure 5-16. Rawblock Data Node

The block looks like an operation node to the ACP. The descendent alpha points
to the next long word in the block. What the ACP expects in this word is the
.datum pointer of the alpha block. (The .datum pointer points to the first
structure to be traversed by the ACP. This is the address in memory where the
data associated with a named entity is located.)

To use this block, the physical I/0 operation (or a user-written function) fills in
the appropriate structure following the .datum pointer. When this is complete, it
changes the .datum pointer to the proper value and points to the beginning of the
data. After the ACP examines this structure, it displays the newly-defined data.
Use the ACPPROOF procedure to change the .datum pointer with a user-written
function. For more information on user-written functions, refer to "User-Written
Function Facility" in the PS 300 Document Set, Volume 4.

When changing the .datum pointer using physical 1/0, write the first (high-order)
word to O, write the correct (low-order) word, and then write the correct first
(hlgh-order) word. This prevents the display processor from interpreting the
.datum field as a wrong pointer. (The ACP microcode interprets a high-order
word as 0 and a NIL painter, regardless of the contents of the low order word.)

5-24 PS 300 ETHERNET INTERFACE

More than one data structure at a time can exist ina RAWBLOCK. It is up to the
- user to manage all data and pointers ina RAWBLOCK.

A RAWBLOCK may be displayed or deleted like any other named data structure in
the PS 300 (e.g., DISPLAY "name"; or DELETE "name";). When a RAWBLOCK is
returned to the free storage pool, the PS 300 firmware recognizes that it is a
RAWBLOCK and does not delete any of the data structures linked to RAWBLOCK.

PS 350 DISPLAY STRUCTURES

The following section contains the new data formats for the PS 350 graphics
system. These formats are provided for users with parallel interface capabilities
and for those users who access internal data in the PS 350.

Asterisked fields are neither used nor accessed by normal ASCIl and GSR
commands. The top bit in the second word of each of these formats (labeled "A")
is a flag which, if clear, tells the display structure walker to process these fields.
This bit is set by default and there exists no command to clear it. However,
functions and programs using physical read/write facilities may choose to make
use of these fields.

PS 300 Display Structures 5-25

Vec3bdo

Vec3bd0 are 3D vectors, block-normalized, with 32-bit precision mantissas for x,
y, and z. They give greater precision when displayed than the standard PS 330
vectors because the concatenation with the transformation matrix is done in
double precision and their mantissas are 32 bits.

NOTE
Mantissa values are given in a peculiar format: The

low-order ward of each 32-bit value is shifted down one
bit, with a leading zero added in bit position 15.

DATA NODE 2

Al Mode ! T4 | Vec3bdo

-- Pointer to next data node --

n

Pick Index

*| Line Texture | Traverse Count

* Color

Exponent [TIntensity

X1 (H)
0] X1 (L)

Y1 (H)
0| Y1 (L)

21 (H)
0| Z1 (L) |d

X2 (1)
0] X2 (L)

Figure 5-17. Block-Normalized Data Node - 3D (Vec3bd0)

(continued next page)

5-26 PS 300 ETHERNET INTERFACE

(continued from previous page)

Y2 (H)
0| Y2 (L)
Z2 (H)
0] Z2 (L) |d
Xn (H)
0| Xn (L)
Yn (H)
0] Yn (L)
Zn (H)
0| Zn (L), d

Figure 5-17. Block-Normalized Data Node - 3D (Vec3bd0)

Double precision vectors, double precision matrix muitiply.

PS 300 Display Structures 5-27

Vec2bd0

Vec2bdO are 2D vectors, block-normalized, with 32-bit precision mantissas for x,
and y. They give greater precision when displayed than the standard PS 330
vectors because concatenation with the transformation matrix is done in double
precision and mantissas are 32 bits long.

NOTE

Mantissa values are given in a peculiar format: The
low-order word of each 32-bit value is shifted down one
bit, with a leading zero added in bit position 15.

DATA NODE 2

Al Mode | 15 Vec2bd0 .

-- Pointer to next data node --

n

Pick Index

*|” Line Texture | Traverse Count

* Color

Exponent [TIntensity

X1 (H)
0| X1 (L)

Y1 (H)
0| Y1 (L) |d

X2 (H)
0] X2 (L)

Y2 (H)
0| Y2 (L) |d

Figure 5-18. Block-Normalized Data Node - 2D (Vec2bd0)

(continued next page)

5-28 PS 300 ETHERNET INTERFACE

(continued from previous page)

Xn (H)
0] Xn (L)
Yn (H) -
0] Yn (L) |d

Figure 5-18. Block-Normalized Data Node - 2D (Vec2bd0)

Double precision vectors, double precision matrix multiply.

PS 300 Display Structures 5-29

Vec3bs2

Vec3bs2 are 3D vectors, block-normalized, with 16-bit precision mantissas for x,
y, and z. They give greater precision when displayed than the standard PS 330
vectors because the concatenation with the transformation matrix is done in
double precision. They are provided because they can be used when a faster
update rate is required with greater precision. They are approximately 1.5 times
as fast as a Vec3bd.

DATA NODE 2

Al Mode | 12 Vec3bs2

—— Pointer to next data node -—-

n

Pick Index

*! Line Texture | Traverse Count

Color

Exponent | Intensity

Xn
Yn
Zn |d

Figure 5-19. Block-Normalized Data Node - 3D (Vec3bs2)

Single precision vectors, double precision matrix multiply.

5-30 PS 300 ETHERNET INTERFACE

Vec2bs2

Vec2bs2 are 2D vectors, block-normalized, with 16-bit precision mantissas for x,
and y. They give greater precision when displayed than the standard PS 330
vectors because the concatenation with the transformation matrix is done in
double precision. They are provided because they can be used when a faster
update rate is required with greater precision.

DATA NODE 2

A Mode | 13 |= Vec2bs2

- Pointer to next data node --

n

Pick Index

*| Line Texture | Traverse Count

* Color

Exponent | Intensity

X1
y ld

X2
Y2 |d

Xn
Yn |d

Figure 5-20. BI&:ck—Normalized Data Node - 2D (Vec2bs2)

Single precision vector, double precision matrix multiply.

PS 300 Display Structures 5-31

DstringD

DstringD characters are similar to the standard PS 330 characters; however,
arithmetic used in positioning characters is performed in double precision.

DATA NODE 2

Al Mode l 6 DstringD

—— Pointer to next data node --

Number of Characters

Pick Index

*|" Line Texture | Traverse Count

* . Color

- Tx(H) -—|-
Tx(L) |
- Ty(H) --| > character
Ty(L) translation
- Tz(H) --
. Tz(L) -

* Exponent [777777777777777

* Exponent -
* M{1,1]
* M{1,2] > 2 x 2 character
matrix
* M(2,1] '
* M{2,2] -
Delta x -

_ > Spacing between
Delta y - characters
(implied exponent of 8)

Figure 5-21. Character String Data Node (DstringD)

(continued on next page)

5-32 PS 300 ETHERNET INTERFACE

(continued from previous page)

Char 0 | Char 1
Char 2 | Char 3

Figure 5-21. Character String Data Node (DstringD)

7-bit precision characters, double-precision multiply.

m

Data Transfer Descriptions 6-1

(Revision A1)

6. PS 300 ETHERNET DATA TRANSFER DESCRIPTIONS

Information in this chapter is provided for users who want to write their own host
software to communicate with the PS 300 through the interface.

This chapter provides descriptions of the blocks of data that are used by the GPIO to
transfer data between the host and locations in the PS 300, such as system functions
and mass memory.

WORD DESCRIPTION

The first 4 bytes of data sent to the PS 300 are used to determine the logical or
physical 1/0 function to perform. The bytes are used as two 16-bit words. The
first word is the option and function word. The second word denotes the number
of bytes in the PS Multiplex Message (this does not include the two PS Multiplex
‘words). Note that the host computer must send the byte with the most significant
bits first for both the function and count words.

When an option asks for bytes to be swapped, bytes will be swapped on 16-bit
word boundaries. When an option asks for bytes to be reordered in a Control Word
which is 16 bits long (number of blocks to write or Block Word Count), the bytes
will be swapped. When an option asks for the bytes to be reordered in Control
Word Address (32 bits long), the byte order will be reversed (bytes 3,2,1 and 0 will
be reordered to 0,1,2 and 3).

PS Multiplex Function Word

151413121110 9 8 7 6 5 4 3 2 1 O

Option Bit 3 . |
Option Bit 2
Option Bit 1
Option Bit O
Function

6-2 PS 300 ETHERNET INTERFACE

(Revisidn A1)
FUNCTIONS

X'01' - Logical Write (from host to PS 300).
Option Bit 1 Set - Swap Bytes in Data Words.
Option Bit 2 Set - Swap Bytes in Data Words of next Logical Read.

X'02' - Logical Read (from PS 300 to host).
Option Bit 1 Set - Data Words have bytes swapped.

X'03' - Physical Write (from host to PS 300 Mass Memory).
Option Bit 0 Set - Reorder Bytes in Control Words.
Option Bit 1 Set - Swap Bytes in Data Words.
Option Bit 2 Set - Swap bytes in Frame Count.
Option Bit 3 Set - Send Frame Count Reply when write is complete.

X'05' - Physical Read Request (from host to GP10).
Option Bit 0 Set - Reorder Bytes in Control Words.
Option Bit 2 Set - Swap Bytes in Data Words of Physical Read Reply.

X'06' - Physical Read Reply (from PS 300 Mass Memory to host).
Option Bit 0 Set - Control Words have bytes reordered.
Option Bit 1 Set - Data Words have bytes swapped.

X'07' - Synchronous Physical Write (from host to PS 300 Mass Memory).
Option Bit 0 Set - Reorder Bytes in Control Words.
Option Bit 1 Set - Swap Bytes in Data Words.
Option Bit 2 Set - Swap bytes in Frame Count.
Option Bit 3 Set - Send Frame Count Reply when write is complete.

X'09' - Lookup Name Entity Request (from host to PS 300).
Option Bit 2 Set - Reorder Bytes in Address.

X'0A' - Lookup Name Entity Reply (from PS 300 to host).
Option Bit 1 Set - Address has bytes reordered.

X'0B' - Frame Count Request (from host to PS 300).
Option Bit 2 Set - Swap bytes in Frame Count Reply.

X'0C' - Frame Count Reply (from PS 300 to host).
Option Bit 1 Set - Bytes in Frame Count have been swapped.

X'81' - Diagnostic Loopback Write (from host to GP10).

X'82' - Diagnostic Loopback Read (from GPIO to host).

X'83' - GPIO Statistics Request (from host to GPIQ).
Option Bit 2 Set - Swap Bytes in Statistical Reply Data.
Option Bit 3 Set - Reset Statistic s after they are read.

X'84' - GPIO Statistics Reply (from GPIO to host).
Option Bit 1 Set - Data Words have bytes swapped.

Data Transfer Descriptions 6-3
(Revision A1) ‘ »

Logical Write

Logical Write ‘is used to transfer data between the host and the PS 300 system
function network. Up to 32K bytes can be transferred during one Logical Write.

Option Bits | X'01"

Message Byte Count

Data -
Up to 32K bytes

The above table is 16 bits wide. Data may contain an odd number of bytes. If
Option Bit 1 is set, the GPIO will swap bytes on 16-bit word boundaries before
sending the data to the PS 300. If Option Bit 2 is set, the GP1O will swap bytes of
the data in the next Logical Read.

6-4 PS 300 ETHERNET INTERFACE v J

(Revision A1) . .
Logical Read

Logical Read is used to transfer data between the PS 300 system function network
and the host. Up to 32K bytes can be transferred during one Logical Read.

Option Bits | X'02'

Message Byte Count

Data
Up to 32K bytes

The above table is 16 bits wide. Data may contain an odd number of bytes. If U
Option Bit 1 is set, the GPIO has swapped bytes on 16 bit word boundaries before A
sending the data to the host.

Data Transfer Descriptions 6-5

(Revision A1)
Physical Write

Physical Write is used to transfer data between the host and PS 300 mass
memory. The maximum size of a Physical Write excluding the 2 Physical 1/0
Multiplexing Words is 32K bytes.

Option Bits | X'03'

Message Byte Count

Number of Blocks to Write

- Block 1 Destination Addr. -

. Block 1 word count.

Block 1 first data word

Block 1 last data word

- Block 2 Destination Addr. -

Block n last data word

The table is 16 bits wide. If Option Bit 0 is set, the GPIO will reorder bytes in the
control words (number of blocks to write, block destination addresses, and block
word counts) before using them. If Option Bit 1 is set, the GPIO will swap bytes
in the data words before writing them to mass memory.

If Option Bit 3 is set, the GPIO will send the current PS 300 Frame Count (Frame
Count Reply) to the host after the write is complete. |f Option Bit 2 is set, the
Frame Count bytes will be reversed in the Frame Count Reply.

6-6 PS 300 ETHERNET INTERFACE

(Revision A1)
Physical Read Request

Physical Read Request is used to ask for the transfer of data from the PS 300
mass memory back to the host. A Physical Read Reply will be used to transmit
the data.

Option Bits | X'05'

Message Byte Count

Number of Blocks to Write

- Block 1 Source Addr. -

Block 1 word count.

- Block 2 Source Addr.

Block ﬁ'Qord count

The table is 16 bits wide. If Option Bit O is set, the GPIO will reorder bytes in the
control words (number of blocks to write, block destination addresses, and block
word counts) before using them. Also, if Option Bit 0 is set, the control words in
the Physical Read Reply will be reordered. If Option Bit 2 is set, the Physical
Read Reply will swap data words on 16-bit word boundaries before sending to the
host. The maximum size of a Physical Read Request excluding the Physical 1/0
Multiplex Words is 1024 Bytes. The total size of a Physical Read Reply generated
by a request is 32K bytes (excluding the PS Multiplexing Words).

Data Transfer Descriptions 6-7

(Revision A1) -
Physical Read Reply

Physical Read Reply is the reply to a Physical Read Request.

Option Bits | . X'06'

Message Byte Count

Number of Blocks to Write

- Block 1 Source Addr.

Block 1 word count.

Block 1 first data word

Block 1 lééi data word

- Block 2 Source Addr. -

Block n léé% data word

The above table is 16 bits wide. |f Option Bit O is set, the GPIO has reordered
bytes in the control words (number of blocks to write, block destination addresses,
and block word counts) before sending them. If Option Bit 1 is set, the GPIO has
swapped bytes in the data words before sending them to the host.

6-8 PS 300 ETHERNET INTERFACE

(Revision A1)
Synchronous Physical Write

Synchronous Physical Write is used to transfer data between the host and PS 300
mass memory. The GPIO will wait until a new frame is started in the PS 300
before transferring the data. The maximum size of a Synchronous Physical Write
excluding the 2. Physical 1/0 Multiplexing Words is 1024 Bytes.

Option Bits | X'07'

Message Byte Count

Number of Blocks to Write

- Block 1 Destination Addr.

Block 1 word count.

Block 1 first data word

Block 1 lééé data word

- Block 2 Destination Addr.

Block n last data word

The above table is 16 bits wide. If Option Bit O is set, the GPIO will reorder bytes
in the control words (number of blocks to write, block destination, addresses, and
block word counts) before using them. If Option Bit 1 is set, the GPIO will swap
bytes in the data words before writing them to mass memory.

If Option Bit 3 is set, the GPIO will 'send the current PS 300 Frame Count (Frame
Count Reply) to the host after the write is complete. If Option Bit 2 is set, the
Frame Count bytes will be reversed in the Frame Count Reply.

Data Transfer Descriptions 6-9

(Revision A1)
Lookup Named Entity Reque'st

The Lookup Named Entity Request is used to request the GCP to find an Entity
Name in memory and return the address of the Entity Name by a Lookup Named
Entity Reply.

Option Bits | X'09'

Message Byte Count

Entity Name
Up to 138 bytes

The above table is 16 bits wide. Data may contain an odd number of bytes. If
Option Bit 2 is set, the GP1O will reorder the bytes of the returned address in the
generated Lookup Named Entity Reply.

Lookup Named Entity Reply

Lookup Named Entity Reply is a reply to a Lookup Named Entity Request.

Option Bits | X'0A'

Message Byte Count

- Entity Name Address -

The above table is 16 bits wide. If Option Bit 1 is set, the GPIO has reordered the
bytes of the address before sending it to the host.

6-10 PS 300 ETHERNET INTERFACE

(Revision A1)
Frame Count Request

The Frame Count Request is used to request the GPIO to return the current
PS 300 Frame Count by a Frame Count Reply.

Option Bits | X'0B'

0

The above table is 16 bits wide. If Option Bit 2 is set, the Frame Count bytes will
be swapped in the Frame Count Reply.

Frame Count Reply

Frame Count Reply is a reply to a Frame Count Request.

Option Bits | X'0C'

2

Frame Count

The above table is 16 bits wide. If Option Bit 1 is set, the GPIO has swapped the
bytes of the Frame Count. .

Data Transfer Descriptions 6-11

(Revision A1)

Diagnostic Loopback Write

The Diagnostic Loopback Write is used to transfer data from the host to the GPIO
- and to generate a Diagnostic Loopback Read with the same data.

Option Bits X'81!

Message Byte Count

Data
Up to 512 bytes

The above table is 16 bits wide. Data may contain an odd number of bytes.

Diagnostic Loopback Read

The Diagnostic Loopback Read will send data of a previous Duagnostlc Loopback
Write back to the host.

Option Bits X'82'

Message Byte Count

Data
Up to 512 bytes

The above table is 16 bits wide. Data may contain an odd number of bytes.

6-12 PS 300 ETHERNET INTERFACE

(Revision A1)

GPI10 Statistics Request

The GPIO Statistics Request is used to generate a GPIO Statistics Reply
containing various statistics from the GP1O Board.

Option Bits | X'83' |

0

The above table is 16 bits wide. If Option Bit 2 is set, the GP1O will swap bytes of -
the data on the GPIO Statistics Reply. If Option Bit 3 is set, the statistics will
reset after they are read.

GPI0O Statistics Reply

The GPIO Statistics Reply sends various statistical information from the GPIO
back to the host.

Option Bits | X'84'

46

Data
46 bytes

The above table is 16 bits wide. Option Bit 1 will be set if the bytes have been
swapped in the:data. The information returned (16-bit words) is as follows:

m

Data Transfer Descriptions 6-13

(Revision A1)

Ethernet Transmit and Receive Counters

Word 0
Word 1
Word 2
Word 3

Transmit Count Word 1 (MSB)
Transmit Count Word 0 (LSB)
Receive Count Word 1 (MSB)
Receive Count Word 0 (LSB)

Ethernet Level Errors

Word 4
Word 5
Word 6
Word 7
Word 8
Word 9
Word 10
Word 11

NSP Errors
Word 12

Word 13
Word 14

Word 15 -
Word 16 -

Number of Transmit Underflows

Number of Transmit Collisions

Number of 16 in a row Transmission Attempts
Number of Transmit Status Timeouts

Number of Receive Overflows

Number of Receive CRC Errors

Number of Receive Dribble Errors

Number of Receive Short Frames

spare

spare

spare

Number of NSP Connection Timeouts
Number of Retransmissions to Host

PS Multiple Level Errors and Counters

Word 17
Word 18
Word 19

Word 20 -

Word 21
Word 22

Number of Unknown PS Multiplex Level Messages

Number of Invalid PS Multiplex Level Messages

Number of NSP retransmissions from host because of an exhausted
resource at the PS Multiplex Level

Lowest Count in Logical I/0 Empty Queue

Highest Count in Logical 1/0 Full Queue

‘The version number of the Microcode (2 ASCII Characters)

A

Program PSNODE Instructions - A-1

(Revision A1)

APPENDIX A. PROGRAM PSNODE INSTRUCTIONS

The program PSNODE can be used to convert the PS 300 DECnet node number from
Area-Node format into the format required by the PS 300 SITE.DAT file. The following
instructions build PSNODE (boldface shows what you must type):

$ FOR PSNODE.FOR
$ LINK PSNODE

The following is a sample run of PSNODE:

$ RUN PSNODE

DECnet Node Number: 1.46

The command for the SITE.DATE file is:
Send '042E' to <1>pi 01$;

FORTRAN STOP

Note that JCP A2.V02 u_éers must send address to <1>ei 01$;

E&S CUSTOMER SERVICE TELEPHONE INFORMATION LIST

Evans & Sutherland Customer Engineering provides a central service numbered staffed by CE
representatives who are available to take requests from 9:00 a.m. Eastern Time to 5:00 p.m.
Pacific Time (7:00 a.m. to 6:00 p.m. Mountain Time). All calls concerning customer service
should be made to one of the following numbers during these hours. Before you call, please
have available your customer site number and system tag number. These numbers are on the
label attached to your PS 300 display or control unit.

Customers in the continental United States should call toll-free:

1 + 800 + 582-4375

Customers within Utah or outside the continental United States should call Dispatch at:

(801) 582-9412

If problems arise during product installation or you have a question that has not been answered
adequately by the customer engineer or the customer service center, contact the regional
manager at one of the following Customer Engineering offices:

Eastern Regional Manager Western Regional Manager
(for Eastern and Central Time Zones) (for Mountain and Pacific Time Zones)
(518) 885-4639 (916) 448-0355

If the regional office is unable to resoclve the problem, you may want to call the appropriate
department manager at corporate headquarters: ‘

National Field Operations Software Support Technical Support
(for field service issues) (for sofware issues) (for hardware issues)
(801) 582-5847, ext 4843 (801) 582-5847, ext 4810 (801) 582-5847, ext 4868

Director of Customer Engineering
(for any unresolved problem)
(801) 582-5847, ext 4840

READER COMMENT FORM Publication Number

m Title

Your comments will help us provide you with more accurate, complete, and useful
documentation. After making your comments in the space below, cut and fold this form as
indicated, and tape to secure (please do not staple). This form may be mailed free within
the United States. Thank you for your help.

How did you use this publication?

[0 General information [Asareference manual
[1 Guide to operating instructions 0 Other

Please rate the quality of this publication in each of the following areas.

EXCELLENT GOOD FAIR POOR
Technical Accuracy

Is the manual technically accurate? | 0 0 {0 0
Completeness .

Does the manual contain enough information? 0 0 1] 0
Readability

Is the manual easy to read and understand? 0 0 0 {0
Clarity : _

Are the instructions easy to follow? 0 0 0 a

l Organization
Is it easy to find needed information? 0 0 a 0

Illustrations and Examples
Are they clear and useful? 0 -0 0 a

Physical Attractiveness
What do you think of the overall appearance? a 0 0 1]

What errors did you find in the manual? (Please include page numbers)

Name Street
Title City
~ Department ' State
h Company , Zip Code

All comments and suggestions become the property of Evans & 'Sutherland.

Fold

BUSINESS REPLY MAIL

NO POSTAGE
NECESSARY
IF MAILED
IN THE
UNITED STATES

FIRST CLASS PERMIT NO. 4632 SALT LAKE CITY, UTAH

POSTAGE WILL BE PAID BY ADDRESSEE

EVANS & SUTHERLAND
580 Arapeen Drive

Salt Lake City, Utah 84108

ATTN: IAS TECHNICAL PUBLICATIONS

Fold

Cut along dotted line

RM6. INTERFACES AND OPTIONS

CONTENTS

1. INTERFACES ... i it ittt eieenenns

1.1 Asynchronousc.iiiiiiiiiiiiiiniiiineeennnnnnnn
T2 Parallelo i i i e i e e
1.3 Ethernet . ..ottt i ittt e,

2. MULTIPLE GPIO INTERFACES i,

2.1 Interface Configuration Files,
2.2 Ethernet/DECNET Interface,

3. SYSTEM OPTIONS ..ot i it ci i

3.1 Memory Card Optioncoovviiiiiiiiiiiiiiniienennn.
3.2 User-Written Function Facility oo,
3.3 Advanced 3D Visualization Firmware

TABLES

Table 6-1. Possible GPIO Combinations
Table 6-2. Required Interface Files ot

NN DN e ek

w

(=W °N

NAN &

ﬁ

Section RM6
Interfaces and Options

This section summarizes the interfaces and options available for the PS 390. Multi-
ple interfaces, switching between interfaces, and the interface configuration files
are also described. (Users manuals supplied with each interface contain detailed
customer installation requirements and operating instructions.)

1. Interfaces

One of the most important considerations in setting up the configuration
characteristics of a PS 390 graphics system is the interface between the host
computer system and the PS 390. The standard data communication inter-
face to the PS 390 is an asynchronous serial line. Several optional interfaces
are available for the PS 390.

1.1 Asynchronous

Under PS 390 graphic system protocol, EIA RS-232-C is the standard
interface used for serial asynchronous communication. With the exception
of interface cabling and connectors, no additional hardware is required to
interface the host with the PS 390. For a discussion of RS-232-C
specifications and PS 390 asynchronous communication protocols, refer to
Section RMS5.

1.2 Parallel

The following optional interfaces are also available but may require addi-
tional interface hardware on the host and the PS 390.

The PS 390/UNIBUS™ Parallel Interface supports high-speed data transfers
to and from a DEC/VAX™ host computer running the VMS™ operating
system at 3.2 or higher.

The parallel interface uses the normal command processing mechanism in
the PS 390 to construct graphic data structures and establish local action
operations. When integrated with the PS 390 Graphics Support Routines,
the interface provides an even greater increase in data throughput. It is
especially useful in applications requiring a close coupling with the host
computer.

Interfaces and Options

RMe6-1

1.3 Ethernet

The PS 390/Ethernet™ (DECNET™) Interface is a high-speed communica-
tions interface connecting a PS 390 graphics system to a DEC/VAX™ or
MicroVAX™ host computer with a VMS™ operating system 3.2 or higher.

The PS 390/Ethernet (TCP/IP) Interface is a high-speed communications in-
terface designed to connect a PS 390 graphics system to a DEC/VAX host
computer running under UNIX™ BSD 4.2 or higher.

The Ethernet interfaces allow a PS 390 to link to an Ethernet data commu-
nications network. They are intended for use in office automation and dis-
tributed data processing environments to allow a selected group of comput-
ers to communicate with each other.

1.4 IBM 3278

The PS 390/IBM™ 3278 Interface allows a PS 390 graphics system to be
connected to an IBM host using an IBM 3274 channel control unit to provide
high-performance graphics functions while attached in the same manner as
the 3278 terminal. The PS 390 supports an IBM terminal emulator when
configured with this interface option. All the basic functions of the 3278 are
fully supported, including basic attribute byte and keyboard functions.

1.5 IBM 5080

RMe¢-2

The PS 390/IBM™ 5088 Interface provides a high-speed, channel connect
attachment between a PS 390 graphics system and an IBM host computer
via an IBM 5088 controller.

The PS 390/IBM™ 5088/V.35 Interface provides remote attachment by con-
necting the PS 390 to a V.35 broadband modem that is attached to the IBM
5088 controller.

Both interfaces support the 5080 Capability option. This firmware option
allows the user to perform most IBM 5080 operations and to run programs
from the PS 390 that were written specifically for the IBM 5080, such as
CATIA™ and CADAM™.

These interfaces allow the PS 390 to be connected to any IBM host comput-
er using a standard IBM 5088 channel control unit. The PS 390 can be
configured with other IBM 5080 graphics terminals on the same IBM 5088
channel control unit.

Reference Materials

W

m

)

2. Multiple GPIO Interfaces

The PS 390 runtime firmware supports up to two GPIO interfaces of
differing types as well as asynchronous communications installed in the
same system. You received two firmware diskettes with your system: a
runtime system diskette preconfigured for your site with interface
communication defaults and an interface diskette for modifying system
configuration. By renaming files on the diskettes you can change your
default to configure a different interface when the system is booted. This is
explained in section 2.1.

It is also possible to change the configuration without rebooting the PS 390
because the runtime determines which of the interfaces are in the system
and initializes them all. This is achieved through runtime identification of
up to two GPIOs at the first two addresses assigned to GPIO interface cards.
(Refer to section 2.1 for an example of changing interface communications
protocol without rebooting.)

There are some limitations to the use of multiple GPIOs. First, there cannot
be two of the same type GPIO in the same system. Second, if the IBM 3278
option is included, then only one additional GPIO may be added. The 3278
GPIO running under previous PS 300 systems is not supported under the
PS 390. Table 6-1 shows the possible GPIO combinations.

Table 6-1. Possible GPIO Combinations

1st GPIO 2nd GPIO
IBM 5080
IBM 3278 Parallel
(enabled on JCP)
Ethernet
Parallel
IBM 5080 Ethernet
IBM 5080
Parallel Ethernet
Ethernet Lol
Parallel

Interfaces and Options

RM6-3

2.1 Interface Configuration Files

The PS 390 runtime is distributed on two diskettes and contains more files
than previous PS 300 runtime diskettes. This is to allow for the many differ-
ent combinations of interfaces possible with the multiple GPIO operation.

When the PS 390 is booted, the system attempts to read the file,
INTFCFG.DAT. If this file is not found, the system will boot with the
default interface of asynchronous, and display the message INTFCFG.DAT
NOT FOUND. To boot with a default interface in addition to asynchronous,
the appropriate interface file must be renamed to INTFCFG.DAT. This can
be done using the Diagnostic Disk Utility program described in Section
RM 12 Diagnostic Utilities. For example,

Rename ETHERNET.DAT INTFCFG.DAT

would rename the default interface to Ethernet so that, at boot time, the
interface communications protocol for Ethernet would be configured.

The following is a list of the interface file names on the diskette and which
interface each file sets up.

ASYNC.DAT Asynchronous communications

IBM3278. DAT IBM 3278 communications

IBMS080.DAT IBM 5080 communications

UNIBUS.DAT Parallel interface communications
ETHERNET.DAT Ethernet communications (for Ethernet or DECNET)

If your system hardware supports two interfaces, you can change the inter-
face during a session without rebooting by sending the name of the interface
file to input <1> of RDCFGS$. For example, the following command,

Send “UNIBUS’ to <1>RDCFGS$;

would change the communications protocol to the UNIBUS Parallel inter-
face to allow parallel communications.

Table 6-2 shows the files contained on the PS 390 diskettes which are
needed for a particular interface.

RM6-4 Reference Materials

l ' Table 6-2. Required Interface Files

PS 390 File Name Async | 3278 | 5080 | Unibus | Ethernet
mmdd390J.EXS v v v v
ACPCODE2.DAT vV V Vv V
ASYNC.DAT
CHARFONT.DAT
CIRCLE.DAT
CONFIG.DAT
DINTCODE.DAT
EINTCODE.DAT
ETHERNET.DAT
FCNDICTY.DAT
FCNTABLE.DAT
FONT5080.DAT
GPIOCODE.DAT
HMSCODE.DAT
HMSCOL.DAT
HMSVEC.DAT

IBM3278.DAT
IBMS5080.DAT

IBMASCII.DAT
ﬁ IBMFONT.DAT
IBMKEYBD.DAT
INITACP.DAT
INITGPIO.DAT
LINLUT.DAT
LUT.DAT
MSGLIST.DAT
OVERLAY2.DAT
PARSECODE.DAT
PARSDICT.DAT
PINTCODE.DAT
SINE.DAT
THULE.DAT
UNIBUS.DAT

AYAYANA

Vv vV

\

\
\
AYAVA

AYAYAYAYANA

ANAN
ANA
AWAY

AYANA

ANAYAY
AAYATARA
ANAYAY
ANAYAY
ANAYAY

AYAVANA
AYAYAYANA
ANAVANAY
AYAYATAY

AYAYAYATANA
AYAYAYAYANAYAYAYAYARAY
AYAYAYARANA
AYAYANAYANA

AYAYAVANAYANAY

\
\
N
AWAY
\

)

Interfaces and Options RM6-5

-

All of the interface files assume that the keyboard used is a VT100-style U
keyboard. A FALSE is sent to the keyboard handler (either IBMKBD or

KBHANDLER) at the end of the file. To use an IBM-style keyboard, the

command in the interface file must be changed to send TRUE to the key-

board handler. For example,

Send True to <2>Kbhandler;

would accomplish this.

2.2 Ethernet/DECNET Interface

The GPIO interface hardware for Ethernet and DECNET is the same. The
only difference is the microcode that is loaded into the GPIO. Therefore,
both microcode files are distributed on each diskette. The runtime attempts
to load a file named EINTCODE.DAT. Ethernet is the default on the disk-
ette. The file for the DECNET interface is DINTCODE.DAT. If your system
supports the DECNET interface, DINTCODE.DAT must be renamed to
EINTCODE.DAT to load the DECNET microcode into the GPIO. This can
be accomplished by using the Diagnostic Utility program.

NOTE

For additional information on customer hardware and
software installation requirements for the various inter-
faces refer to the Customer Installation and User
Manuals supplied by E&S.

3. System Options

3.1 Memory Card Option

Up to two 1 MByte cards can be added to expand the standard JCP resident
2 MByte of memory. The cards can be installed in the PS 390 at the factory
or can be installed at the customer location.

3.2 User-Written Function Facility

The User-written Function Facility is designed to allow programmers to
write and use new functions to suit individual applications and needs.

RM6-6 Reference Materials

m

ﬁ

All PS 390 graphics systems include a set of intrinsic functions which allow
complex graphics actions to be accomplished locally within the PS 390.
These functions are the user interface between the programmer, display

structures, interactive devices, and high-performance graphics facilities in
the PS 390. ‘

User-written functions expand the capabilities of the PS 390 by giving the
programmer the power to create unique functions, or to combine large net-
works of intrinsic functions into a single function that performs all the same
operations, yet is much simpler in design and operation.

A user-written function is written on the host computer as a procedure for
the Motorola 68000, in Pascal or Motorola 68000 assembly language.
Through the cross-compiling and linking software, the procedure is
translated into S-record host files which are then transferred to the PS 390
memory. The function is identified by its user-given name and stays in
memory as long as its name remains there. Once installed in the PS 390,
User-Written Functions can be used in the same way as the intrinsic
functions.

3.3 Advanced 3D Visualization Firmware

The Advanced 3D Visualization Firmware option allows users to create ob-
jects as polygons and to display hidden-line removed and sectioned views of
polygonally-defined wireframe objects. Smooth-shaded renderings of po-
lygonal models can be displayed that take advantage of numerous attribute
settings for color, multiple light sources, specularity, transparency, and
polygon edge enhancement. In addition the PS 390 can be used as a frame
buffer for the display of host-generated, run length-encoded images.

Interfaces and Options

RM6-7

RM7. HOST INPUT DATA FLOW

CONTENTS

1. DATA RECEPTION AND ROUTING NETWORK
2. ROUTING BYTE DEFINITIONS,

3. OUTPUT PORT DEFINITIONS OF CIROUTE(
INCOUNT MODE ... i i

TABLE

Table 7-1. Routing Byte Definitionso i,

)

Section RM7
Host Input Data Flow

This section discusses host input data flow in the PS 390, and includes a descrip-
tion of the functions that direct data flow, the routing functions and routing bytes,
and the channels that data can be routed to. Function names that appear in capital
letters are instances of intrinsic system and user functions. The intrinsic system and
user functions (also capitalized) appear with the “F:” prefix.

1. Data Reception and Routing Network

Data enters the PS 390 through one or more input functions. In systems
with the asynchronous interface, an instance of F:DEPACKET (an intrinsic
user function) receives host input and passes it to an instance of
F:CIROUTE(n) (an intrinsic user function). There are two instances of
F:CIROUTE(n), one for count mode (CIROUTEO() and one for escape mode
(CIROUTE20). CIROUTEOQ examines the first character it receives (the
character following the count bytes in count mode or the character following
the <FS> character in escape mode) to determine where the packet message
is to be sent. This character is the routing byte, and is used to select the
appropriate channel for the data in the PS 390. Data channels may include
lines to the terminal emulator, the command interpreter, the disk writing
function, the raster function, and other intrinsic functions. A base character
(defined on Input <2> of CIROUTED) is subtracted from this routing charac-
ter before it is used to select the output channel. The base character de-
faults to the character zero (“07).

All other interfaces send host input through special interface functions
which pass it to a count mode instance of F:CIROUTE(n). For the Parallel
and Ethernet interfaces, the input may be routed through CIROUTE30. For
the IBM 3278 and IBM 5080 interfaces, the input is routed through
CIROUTEO. CIROUTEO, CIROUTE20, and CIROUTE30 are functionally
identical.

The definitions for the inputs and outputs of intrinsic system functions and
intrinsic user functions are described in Section RM2. Escape and count
modes are discussed in Section RMS.

Host Input Data Flow

RM7-1

2. Routing Byte Definitions

The value of the routing bytes are given in the following table.

Table 7-1. Routing Byte Definitions

CIROUTEO Routing Channel

Output Byte Parameter Description

1 N/A N/A Reserved

2 N/A N/A Reserved

3 0 1 Parser/Command Interpreter

4 1 2 Command Interpreter via READSTREAM
5 2 3 6-bit binary

6 3 4 Reset network for GSRs

7 4 5 Unused

8 5 6 Unused

9 6 7 Download channel for user-written

functions

10 8 Raster

11 8 9 Polygon data

12 9 10 Unused

13 : 11 Write ASCII data to diskette
14 ; 12 Close file

15 < 13 Write binary data to diskette
16 = 14 Unused

17 > 15 Channel to Terminal Emulator
18 ? 16 Host message control
19 @ 17 Reserved
20 A 18 Unused
21 B 19 Raster

NOTE

(‘) is the HOST MESSAGE request channel. An
ASCII (1 or 2) requests a single message or multiple
messages from HOST_MESSAGEB.

RM?7-2 Reference Materials

()

3. Output Port Definitions of CIROUTEOQ in Count Mode

Output<1> sends out invalid routing bytes.

Output<2> sends any message that does not have a valid routing character.
The message is sent to BADROUTEO (an instance of the intrinsic user func-
tion F:CONSTANT), and the message “Routing byte not in acceptable range”
is output as an error message to ES_TE1 (an instance of the intrinsic system
function F:VT10) for screen display.

Output<3> sends messages to H_ CHOPO (an instance of the intrinsic user
function F:CHOP). This function chops and parses the input command
language generating proper messages for H_CI0 (an instance of the intrinsic
user function F:CI). Once chopped and parsed, the message is sent on
output<1> of H_ CHOPO to the Command Interpreter. H_CHOPQ is also
responsible for generating syntax error messages. ASCIl commands should
be sent through this output.

Output<4> sends messages to READSTREAMO (an instance of the intrinsic
system function F:READSTREAM), which converts an eight-bit stream into
arbitrary messages. GSR data is sent through this output or through
output <5>.

Output<5> sends messages to SIXTOEIGHTO (an instance of the intrinsic
user function F:CVT6TOS) to convert six-bit to eight-bit binary. The mes-
sage is then sent to READSTREAMO. GSR data is sent through this output
or through output <4>.

Output<6> sends messages to RESET _RS1 (an instance of the intrinsic user
function F:RESET) and RESET_HOST _MESSAGE1 (an instance of the in-
trinsic user function F:CONSTANT), which causes the functions accepting
GSR data to be reset to the initial state.

Output<7> is unused.
Output<8> is unused.

Output<9> sends messages to SREC_GATHERO (an instance of the intrinsic
user function F:GATHER_GENFCN), which loads user-written functions.

Output<10> sends messages to RASSTRO (an instance of the intrinsic
system function F:RASTERSTREAM), which processes pixel input using
run-length encoding of data from the host.

Host Input Data Flow

RM7-3

RM7-4

Output<11> sends messages to HPOLYSTRO (an instance of the intrinsic
user function F:HOST_POLY), which processes polygon fill commands sent
from the host.

Output<12> is unused.

Output<13> sends messages to WDAO (an instance of the intrinsic user
function F:WRITEDISK), which writes ASCII commands to the diskette.

Output<14> sends messages to WDACO (an instance of the intrinsic user
function F:CHOP), which is used to interpret the command to close the file
sent via outputs <13> and <15> to the diskette.

Output<15> sends messages to WDBCO (an instance of the intrinsic user
function F:CHOP), which is used to parse binary data that will be written to
the diskette.

Output<16> is unused.

Output<17> sends messages to ES_TE1 (an instance of the intrinsic system
function F:VT10), which processes input for the PS 390 display screen.

Output<18> sends messages to TRIGGER_CONVBI1 (an instance of the in-
trinsic user function F:CHARCONVERT). TRIGGER_CONVBI1 then sends
messages to input <1> of HOST_MESSAGEBI1 (an instance of the intrinsic
user function FFHOLDMESSAGE).

Output<19> sends messages to WHO1, which sends a package with the sys-
tem information back to the host. This output has been retained for com-
patibility. It is not used on the PS 390.

Output<20> is unused.

Output<21> sends messages to RASSTRO (an instance of the intrinsic sys-
tem function F:RASTERSTREAM), which processes pixel input using run-
length encoding of data from the host. This output is the same as output
<10>, and has been retained for compatibility purposes. Output <10> is the
recommended output since it is controlled by the Qprompt flushing mecha-
nism by default.

Reference Materials

o/

Section RMS8
System Function Network

The block diagrams in this section show the data flow through the PS 390 system
function network. Function names that appear in capital letters in this section are
instances of intrinsic system and user functions. The intrinsic function appears
with the “F:” prefix. Intrinsic function descriptions are provided in Section RM2.

Figure 1 shows the initial read floppy network created in the PS 390.

o Figures 2 through 26 show the host input data flow through the sys-
tem function network for a PS 390 with an RS-232 interface to a host
computer.

‘ ’ e Figures 27 through 49 show the host input data flow through the
system function network for a PS 390 with an IBM host computer.

o Figure 50 shows the host input data flow through the raster system
| function network for a PS 390 with a DEC host computer.
|

| o Figure 51 shows the host input data flow through the raster system
| function network for a PS 390 with an IBM host computer.
|

e Figures 52 through 55 show the host input data flow through the
DEC Parallel Interface function network.

A discussion of specific instances of functions that direct data flow in the PS 390
will be found in Section RM7, Host Input Data Flow.
NOTE

The diagrams in this section reflect A1 firmware
functionality. We will be distributing updated diagrams
m in a future release.

System Function Network RMS8-1

#5053
0003
tg0cr <G
t2015
toc @

8L50sv)

1
@S:

HYOJINT * 4
[RLEL

-

—NMmT Vo~

Jd344
#7744

€ dOHJ t4

\QQ%MKQ.

~
-

1

G <1450
& /408
& </r4co
<1sé28

<4418

A A

4
}

AS100V3Y:d

#58 \—— . 570m05.

xutf?i <02 4129Y

| :on26egd

14

juaduey

Ix140244

| is28ed [e30) €h'SSECi0l ¥861L-934-€1 P2YFIPOW 231E(

LINIIY :eweN2[1

SYd'LININJ4 Aq p@2ieadd suo13ouny [e13}1uf touey

Figure 8-1. PS 390 Initial Read Floppy Network Created

Reference Materials

RMS§-2

RM8-3

(N °
S
o
S
-~
S
ISIHIT INOLING IS0 13 1SIHIIINOL1NESS0< | >
o
11N04378VIc]s 1100437GV1¢1> M\/.J
#05180d <2 #0S180d 2> 111350¢1» 11135G¢1> A
$10ZIIH OII™HOII ‘OIIH 019 138V10< 1> 18-1738V10¢4> S
0SHOYYT <12 0SYOYYT <> 13GVTIL> 077gv1s<ts “9v313ct> [— W
A 4 ~88 4 - ~3
1317ST<t> 0SHOHYT 0> 0S40887<0> 131767t [\ LTI 000N TeLeqRs TRl R
$)u404)85 ‘840443 hm_xﬂknn\zw\\i‘n}wosk\mcwhkil-.wk +Z %o $cq m
7 0 ~77] ¥ S
Q
2
,
=
-
_ |
0SYOddT< 1> S
2377 T
= S
52 04 0z N
o
(95}
) R
N
©0
e
s S
6160svI 20 S
= 3
. . n
| :oNeSeq -- ijuadeq Gz is26eq [e30] 86 '$T1ES bl bBOL-AVW-0E :P2141POW 238Q S
JIvy ieweNa[1y m
T4 ix1424yg LYQ "LW3LSAS i2ueN =
R
1S
)
a
=N
So]

N

13178742 $05190d¢2>
3400 3o

4

+ % [{r]

1347834

#IOZIITNOIITHOID
0SHON¥TC (>

43178712 054008310
asousy

8051404 2>

{

“$202137H 01T W .!uu

0s¥0s87ct> v

$ % 7]

0590483770 \

<

ioN26ey

Gz :ie26eq [ej3o0)

86 'vZ €S b

¥861-AVH-0E iP2131poN 231eg
Jly reweNa[1y
83404 P@W -OLOLLM i2duweN

Figure 8-3. PS 390 Host Input Data Flow (RS-232 Interface)

Reference Materials

RM8-4

j < <ssemsr

< <zromisy

—q coromar

AY

PR L LU ERY N 2241348

1 i

A O——

INOTLYNBOINT
s

Itnowea 14
7 C \ 4

s500-Gh P i '

>
LN =T e
1ININS YN $I0CIITNQIITHOIT

anys R

fo11vugoang 14
MR TUTTTERY] : 4
3 1] :

_ oswyossgesr \
Vizzs3¢1 : s.h&tw foson
04 osvosuzc0sG 05800030 ~A

s way<0-G—§ or0s80043

g io0N20eq g :ijusuey Gz is28eq [8310) 86'b2:CSibl HBOL-AVW-0E :P2141pOK 231eQ
h Jly ieweNa[14
T6Z4 X124y S404u] t2uepN

RMS8-5

Figure 8-4. PS 390 Host Input Data Flow (RS-232 Interface)

System Function Network

)

I n
cgr905340g iz It
L4 L2
.l o
04043404 " "
L [1
0r40Ls 404 "" n"
. "
«gre0Ci4od <t L)
T £}
vasc0-@] 021013404 . o
.]
. L]
I3 &
. ?
w2 8| 1]
" L] *
" . 1u04T13sS 4] ; 104713514}
" 7] . /] L}
o 9047304 PoFi7e4
s
13 \
[
u 90514002 \
"
”
4
L}
s I n
* 114 "
s o3 [11
1] (1 [
- L1
; 1w0dT138 14} " o
Ve [L} " “
" o
1} (1}
£ 4 n
" n
. "
4 3
1]
¢ s
v L]
H] s
* .
- . - €|
, AuodT13s:af . LW04T13S 4]
» L—1 ' L~ 1
h”ao::ao...: ¥ 9051404 V011444
— N L L /
Visz=sae1s !
75
ecocs
p toNeBeq Z iiusuey gz :isebeq [e10] 86 PZESibl HBLL-AVW-QE :P2141POW 23e(
v ‘2WeN2[1y
—Z14 ix13244 sjd40d 3ag ioueyp

Reference Materials

Figure 8-5. PS 390 Host Input Data Flow (RS-232 Interface)

RM8-6

RMS8-7

N
m N
— o2ean<s> ’ N >
| oavowcis o
oran<ss rm
1879VSSINTLISOK < L2 183ISVSSINTUSOH 1> W
-
10HN < (> 10HN<i2
. =
noys ‘.] =~ M
420K essey~)eoy ‘oyy 132278304
ZZ % 017 - - o
‘0IITN 01 JOHITH L OdOHI™H el o
Pvosio0dc2s — osaosazess odawzess 000K <15 o~
WY 1
ﬁ«\‘QN\hlk.Qxhllahsh th”&Q”~§~ §s.“-~ (22482 S
vedeoy 3 1379997 \ L/
Boconsases 0sN1J0<1s DIGON<1 X
(RS 144 /
OSYOHNTcLr OIVON<() W
D ;
Pocaoans s 0580883°0> OVON<(s 3
P) ~
5T (2] e
S
™\ m
#5ur30415 4
/ -
12014441 > 1SINSLTINGLINGS 01> (SIH91 INOILNGII0 (> =
_ t91anes 1470130v1 41> T TITIT w.
140791441 H A toraerisens A 0 14235001> e ~
{
141d3H S 0doK3<ts 1347S2e4s NI\ #0s100d°20 178v10<1» 7 Tavia k>
148v15107d¢ 1) ViS107d¢t> ONYHEX 1> 1 138YT4¢1> \Qqhi\ﬂ.\n\vA %
Agospamy vorerney jeujmsey [043u00 @o)reg
204 277 ¥ 8 2] [l rZ %
\ o
4 0N
_ / P
13175740\
o
]
el
v -~
g 5
5 E
F M
S
§ i0N26eq | :juaded Gz :e2beq [ero) 8Y '00 €+ Sl ¥8LI-AVH-0E iP2Y14+1POK 231E(Q =
Jly iewsNa[1ly m
T0Z4 ix1324y JQ‘AdoopueyrAddo[4 Bursuaeq]| towepN rm
D
g
o
“

s»&.?@ 05019
v&&u«ﬁ‘t <42 rsiygacis
evopzouny 140g
T8 57
X -¥S180d¢1> OSNIIOC 1> e
¥ rosrio0ess 4051804 ¢8> 04530<1>
s 0353015
11719v1¢2> 00530¢1»
Sw01106¢1> 03530¢1>
1SINI0ts 08530 1s
v:c ToNTHGX <1+ o ersaaci’
eussog
IR 37
|
}
INTI2TGVL c$r
22 L L T
nisNoL1ngets [
tstrgets f————r
anduy eajaeg
Iz 77
N r130vsess 108000015 1S1491 1335.&.2%
0453045 1310VLe1> DD
03830<(> 411350<1» 11136017
00530¢4s 178v70¢15 TR
— ovsager> 10178V1<ss Te176r7700\
Jndino so100g
7 (7]
9 :ioNoDey tyuaded GZ is206eq [e3r0] 86 P2 'ES bl PBLI-AVH-0E P2131POKW 231e(
ioweNa[14
ixyjpodg [043U0D B031A2(Q tawey

Figure 8-7. PS 390 Host Input Data Flow (RS-232 Interface)

Reference Materials

RM8-8

N
ﬁilh.ﬁié. INILIT8V1 8)
Voss3aess 10453042 4084s0712 (SIHSIINGLLNGII0< (> |
d
Vosrssaers 0253012 13T8¥111> 11001376v2 (> Y
sndino veping g borqey
(IR 7I7
1143501 £
N e :ER.TV
Vods3acis 0853G¢1> 138vI0¢c1> YT 2T
andrno e10)g
755 7
h 4
Povsaaeis ors30<4> 10778V1415 Tomerizer
@70qe7)sndrno pieogqley
4 % Sts
L ioNo®beq ¢ :iuauey gz:isabey [e}o0] 86'¥Z1SS ikl $86L-AVH-0E :P2111pOy 23eq

|MUL HXMVQLQ

Jly ‘ouweN2[14
}ndino 2914A2(t2weyN

Figure 8-8. PS 390 Host Input Data Flow (RS-232 Interface)

RM8-9

System Function Network

1351014}
S 1 L] Sa———“
13611044 791350
) [et
1873870 R
13610048
1 1} S —
- 721350
13eviIvIaa]
1 L) oommm—
— iZi3evia .
1381014
y— | L] B—
. 791350
13ev 1Y —n".‘n
j‘i- L}
(r136vio 1387v10 145
] W m m M TN
13ev1vea s 151350
V1 L] sunmmmmmmm—
15778v10 ¢
1387v10145
y————1 Wf—
RECVRRTIC RV 1#1350
S e——] Ll p—
v :
13810145
Vv L] e——
13evivia- 4} T 1§10
|, — '
75738v70 .
13510045
y———— |1 L] S ——
RECTARIT IV 171350
—) e
4Z178v70 R
131004 L)
R f ! : 112350747
13ev1IvLa s 711350
) ¢ ' H > 18-1138v1017 \
08530<1> H {1738v70
7/
g :oNwbeq [fjuadey gz isabedq [eyo0] 86 'vZiCS Pl $BOHI-AVH-0E P2Y41POW 231e(
J1Vv idweN2[14
Tyl 4 ix1r044 yndino sjexq i2uepN

Figure 8-9. PS 390 Host Input Data Flow (RS-232 Interface)

Reference Materials

RMS8-10

RMS8-11

~
DV
S
o
Yy
=
3
o~
o
0138¥1443 y ../.~
- :3.#3.\ 10138r14<> \ 95}
&
RECIRYEE VRN >
t [Q
12778V74 H
RECVRTS P PI R S
. L} a
RELIRVSE VRN 77136V D
l]
TZT734V 74 RECIATEPPRNM m
P a——] 1
138Y1AINI 14 75738V 74 w.
y— ' ~
141739¢ 74 ._unt.;Uu.:._” Al
12
)] 0
130¥IAINS 4] T¥13aV 74 H
L]
107778V 14 RECTRTS PRI S
0 — ' (@
AECIAYETFEFY 1c77av 71 o
Tllﬂ —— 1] 1
76738V _ ._ua‘,.:!:m nD\“...
\ 130YIAINS 14§ Y S F T, <
Vd
ors3a<1s ﬂ L N ~
@713av14 RELIRTE VNN '
p, \ . o)
71138v74 © bum
5 S
S =
.0 =
~ M
S
6 ON2beq / :3juaiey Gz isabeyq [e3ro0] 86'$2:C€S bl $B8OHL-AVW-0E :P2141POW 231eQ =
31y ieweNa[1y 2
TGl M ixyrpaay (s{2q9e)indino paeoqghay towepN M
Y
=
EN
©“

INI13T8VL <> /
\ . LNoovdLIg:y
Vo1520¢ 4> ‘ ! N
11N01378V1
(ZESLHITING 4,
] [}
/S1H91 INOIINGND
ZESIHOI1440 ¢4
7 _ _ 4
g% 1 ISIHITINOILNG SISO <1 >
075701 (SIHST INGIINGSI0
\ Vi
11701378v1 1>\
01 :oN26eq [:juausy Gz isabeq [e10] 8V '00:CH Sl $#B86L-AVW-0EC :P2141pOKW 23reE(
Jly tQWEeND2[14
Q14 ix1p244g ¥ndino uoiling g y2[qej tawey

Reference Materials

Figure 8-11. PS 390 Host Input Data Flow (RS-232 Interface)

RMS8-12

V41 vs100d71>

dON 4 _
'

.
0SSL1H0d™IINT

T0¥iINOGIJAL 1S

v / Vi
V05180022 d OSNIIG 1>
04@NS1N020:4;
H
. 1 4
07530 04530<1>
0491510030 1 47 Y
L} L} \
[E— = 075301
1n030 143
y— 1t 1 4
00530 0asaa<is\
Hyosensinodaa f
4 1 4
uﬁ.% 038204+
y 1n030'4,
y—] 4
08530 0as3a<1+
. £4048N51N020 4 N y
1
Pesociss 7550 avsaa<is |
N "
L \, /il.i.
.
Vini1718v1 05 & :
INISWOLING<1* \ .
L]
1swra1» AN "
Viazronrwgrcss : 30023030+
Il :oN26eq ¢ :jueusy GZieebeq [e310) 86 "2 ES Pl PBOL-AVH-0E :P2141pOKW 231eg
Jly ieweNa[1y
T$q4 ix13244g suoj0q i2uwey

C

Figure 8-12. PS 390 Host Input Data Flow (RS-232 Interface)

RMS-13

System Function Network

s J N
n
12z
oz
k14 a
1”7 L
o @
(1] ”
£t3 ”n E 1}
1”7 <o [
(24 " €1
" st 2
L1 . 1
g ©" [1}
” Tt .
s " 1
" o« 4
c & .
£} 1] s
L1} < L]
.l , €
. s ruea.an_u»ua;.'& 00822814
| 3 yam O [N\
K /IILaE!.ﬁ 353014} — #45190d
’ Ve U t
M 9051404
068NS 13530 14
Preoer .m ulnmw (0094)x1.
9751804
< _ J =N
' - n
172
(24
£24 .
" L
24 o
1) ”
L1 s
u £€0H ”"
L1 ” [1}
(14 11 T
[. "
" € "
1 un .
. " L)
st (1} 4
(3 4 .
£t . s
13 ‘ i
o M I.l.&.x-:mznua_..“lll& cooszIxrs)
. s 1 ' >
S #4-VS180d <1)
W 0480513630 43— o] cooserrss V51304)
A])
N 4751404
 yodunsi3sI0 4%
'Y . J
Voswoasz<ir H ! _
9351804
et
Z1 ioN2Beq g :juaued Gz :e2b6eq [e3r0] 86 'HZ:€Sibl HBOI-AVH-QE P2Y14+1POWH 231e(
Jly ‘ouweNa[4
TG4 1X1pa44d Su0132uUN4 404 t2ueN

Reference Materials

Figure 8-13. PS 390 Host Input Data Flow (RS-232 Interface)

RMS8-14

{

NIQvdl18+d

INIL378VL ¢.,v

-N®Mm 0o

14
€
T
]

IN011Y307 4210+ 15Gh

INILT78VL

anzchb:m“u«

INIL778VL 2>

¢ /
] 1
INISNOLLNG 1>
INISNOLI1NE
8
L
9
S
14
£ NIsTvIO:4
z z J
! ! 1STvIG<1>
1S7¥I0

€l

ioN2bBeq @ :ijuauaey

|O|._ iXY1}jadd

gz :is2beyq [e310]

8 '00:Ck Sl $BLL-AVH-Q0E iP2131POKW 2%°(
Jly f2uweN2[4
ynduy 2931A2(Q 2ueN

Figure 8-14. PS 390 Host Input Data Flow (RS-232 Interface)

m

RMS8-15

System Function Network

b
i107d44¢1 2 ~\
(a1dIH§?
(C1)8VNIS(0I)UVHIT | SOA'Sd 005Sd.T(OLIEYNIZ(LZINVNIL. W1 21, 3022 0VHI
4 N
dON: 3
' W
T 754333345 S 0TMIY
20 INIY
dON: 3 .
' — i | ———q o0 s
[EZF2Z, N
h Nz 01LAL g)
Vio1serisess ! — YRIID
" 131753
L
{3
ococ s~ \ ”u..:..uu.:._imlﬁ . ve.
Qnaﬁ.? ' ' —§ «so150
rg
Viiavisioraess (
NI by
L0 " "
. & (
. L] . L]
N
3 € . L]
L]) ¢ I
s H v *)
. * s |
¢ anoas 4 ——— 1! Y
N : ;ﬁ ¢ renvensd)
S— 1402138 (' ! 7 ”
zar: TR 14370V KX < 1>
€LtIwN3 dON 4
1 1
| S ————
108v0943X
bl ioNo2bBeqd G :iiuauey Gz is2beq [e}o0) 86 'v2 €SPl PB8OHL-AVW-QE P2Y41POW 231e(
Jlv iteueNa2[14
Tg4 1X1p24d 403e[NW] [euwLDd] r2uep

Figure 8-15. PS 390 Host Input Data Flow (RS-232 Interface)

Reference Materials

RMS-16

€0)x19
1]
ASIO3LLEN 4, yvutsILian g J— dond 1y)
. v ! ! ! ! 0280m<¢>
oaon 590N <0-029an 979K
12
as10dLIaN S, H doK3 14)
R : i o3vomeis
van 03 VoN)
Iz
L . ¥s100v34:4 donty
V odowa~wess ' ' ' '
7578 1107039
\ . AS100v38+4
Vodonaeis ' '
17735Vavia
1383014
[}
L MYIUISOVIN Y , JstoovIuy
013¢1+ ' '
690y TAGVNIGGV3Y
. ¢ (s ...nll& &:.JQL;\ ﬁ
OSNLIG 1> ' N AUOMIKIOH * 4
LVYHAIY ;]
) 304
Ty «§ «2r4d00248
. ¥S100v3¥t4
#aowa 1801 —rs] < .aus.
[y &7
.
Jossosa3<0s ﬂ — 02 aomrsn

G| :oN2bBeq g :ijuauey

To4 iX13244

Gz :is26eq (€30

86 'HP2:ESibl $B8HL-AVH-0E P21+1POW 23e(

Jlv
%40mI3N S8S200y Ys1Q

toweNa[14
teuey

Figure 8-16. PS 390 Host Input Data Flow (RS-232 Interface)

RMS8-17

System Function Network

h

“W.:Sf B 02¢0m¢ 1)
03voN<1 s 0Ivan«4»

P—

Jovarcis ovancis

\r 16I9VSSIN~ISON <1+ 18I3VSSINTLUSON < 1 »
 sown<s> tonncer»
Vizrszers 1317631+

HIOZIITWOIIN

0S¥04YT 4>

4
OSHOU¥T 0> JONIHel» 0dONI Wet> \
029°y3"N ‘0dayr W
77 % 27T
HI0ZIITHOIITHI1I 4ol 4
- OSHOYYI<1+ OdOHI« s 0dOHI< (>
%MQMQMG.“ osyoyy3<0> or3¢1> PYZIT] .\
6,
sooxs7 013 ‘09043
77 % TEd
91 ioNobed G :iusaegy G¢isebeq [ey0) 86 'FCES Pl HBOLL-AYW-0E :P2131poK 21eq

I ERERFLEY

Auedwo) 3 [j/doyj)

Jly

teweNa2[14
towep

Figure 8-17. PS 390 Host Input Data Flow (RS-232 Interface)

Reference Materials

RMS-18

RMS-19

Figure 8-18. PS 390 Host Input Data Flow (RS-232 Interface)

L
/. 9
AQSC ; L _ R
Vosyossgess : 13:4% N : dOHI i 4)
A : E,u J L §§<.u 000K <12)
V oseos43<0> 4| <0>000u2
c0r0r13
Wi
079¢1>
-~
L
S
=
\)
! P
S
il ioNeBeg 9| :iusueq Gz:sebed [e30] 85°00:Ch S| $86L-AVW-0E :P2141PON 23eQ g
Jlv touWEeND2T7 14 W
T1Z4 1x13244 013 ‘0doy) toueN &Y
=
3
2
A

~

C

\Y
Vorganeis <
)
02KaNis
-
Vovaneis N
Vigzsvssan~1son<is 3
) N
Viowwers 0300N <!
1 osvowess
N— o0380Kn<t 2 OVON<L)
N oavomes» 134752040
ovonct» toumess
- - -
TR 1317834 LOIIVSEINTLSON < (»
s 43021770 42013
1 oswosyzcrs osyracss OSYOBYI< 1> T1IEIAC >
A osvoswzeas wavazacss 2¥IVSFA 1> AIVIFA¢ 1>
. - - d
INTLSOH U > dOHIH<L> 0 JONIH<I» IR
0z e 2 t3s
7 %5 (17} &7 % (17
) L
Vevroz1o7w 0137w
L
Vossossz i
\.r £
0sy0837¢0> 1013117534
dONI W1 >
doya=pasey ‘s}~isasy
7% 7T~
7
81 :oN2bed 9| :juadey Ggisa06ed [e}0} 86 'v2:i€S bl HBOI-AVH-0E :P2131POW 231€(Q
Jly i2uweN2[1]
TZZ4 ix14244 0zdoy3™H ‘0doyyTH rouey

Figure 8-19. PS 390 Host Input Data Flow (RS-232 Interface)

Reference Materials

RM8-20

S

b
ngf T 4 N
Vorvawess
Y
T
ovan« 1>
N »:<»nseu£«|& L #0ues 0190130009 u) 10u 8349 BU)rnoy
V132753¢1% LY
W|I||||\ —Q31n000Y8
10NN 1>]
L EEILTEEITERYN {
Viaigyssm~1soness A ! ___!
1@ANOI™ 9223141
1 uvIaisovas s
(—|

«§ «0s015w N
H||Am 0204043°W

s .
[.
N H) «
) 3 .
\
Vaum 3 € < [}
\I.u. I P b st | N e, <G ts1x1s
' i ' i rln.:u:.e-:.:"l .0.
212K PLOHI N A NI 4NID
4 L 'F YT R ' N
N — N 03170813
—)
04INIVI 3385 voxts
N N
Vess0t77w \.
~
ANYLSNOD 4, A_ 0)xrs —
) . ..3&4»% uuﬂ.u 172VSEIN"LEON135IE (2 |
osy0487<l .A «T4ISTMi 1238F41L.
—— coszixrs
YA,
C2)anas 14 1353814 (odurua
CI? n v
L
-
T oW3 13578 ulﬁA cernts
€
Y ” »uau«;ua.#lll& co)avNI
0ZL3¥2¥d30¢1 e ! 04743v930< 17 \
013337930
<1018
h 4
05405870 0a0HTH 12)

61 :oN2Bed

8l

8lid

iyuadey

iX14244g

gz :sebeg [830]

62°'6£:82:91 $8b61-AVH-0E

J
0

tPo141PON 21e(

Iy teweNe[1y
13s rouey

Figure 8-20. PS 390 Host Input Data Flow (RS-232 Interface)

RM8-21

System Function Network

mﬁgf I P
ASETT
ﬂ.:s.: > N ANYISNOI:d II& L #8ues srqasdease u) 3ou eydq 8ujinoy,
Viie=s3e4s H ' ' N
221(0040v¢ N\ (1%
7 {13
- o1
L}
*) N \ o
m N e T H < .o. o
] t 1) 3
__ - rITT /_ rIre e I
e
f 0e
3 ' .
Al []
N ' 4
’ * .
am U e € s
13 -o.: Ve L1 dOH3 14 » »| Ixry
LY L {1231n0u13 143 .o.
27N] 0ZdONT W H H
-~ c0r0213w | — «0r02000770 TSI H
N \ .
Vess02177w 0584491\
—— asv4
r1)avn
(EYLER (82)4vn3
13 -
L M '+ LICELP R S TP
L} " —
OC&INIYI I78S
B y, R
 osvouugeis s
o—
N Ll J ﬁ N ¢
Vosyonazcas . T 13wvaaniag
V1SNDD 12
: 12277 Y, ' T .iu.a 021323v930 1> \
N 00ViYtd
Viassvssan-ssoness y
LNVL 1 s N
SNO2 : [2227] 0ZdONIH< L
37700+ d
/
0¢ :oN2bBed 8| :ijuaded GZisabed [e3ro] 62°'6£i8C91 $B84L-AVW-0E P2141POW 2318(
Jlv i2WeN231 1
Told ix14244 0Z 2§ ioweN

Figure 8-21. PS 390 Host Input Data Flow (RS-232 Interface)

Reference Materials

RMS8-22

RMS8-23

1 . 7LISIYi 13S3iL,
"

V'els 131713530

Figure 8-22. PS 390 Host Input Data Flow (RS-232 Interface)

y _.z<hmzcu“._~ z 1383y :4
N
S g0 He 1> : ! : —
O0dOHI “LISITS 13174353¢
=~
~
S
=
]
2
S
1z toNeBed 8| :iusuey Gz isobed [e30) 86 '$2:ES bl b8LL-AVH-0E iP2141PON 23e(=
Jly ieweNa[1ly =
TZE4 tXV1324y doyoT3i2s2y ‘237 3esay towenN rm
g
N
I
-
e

m

C

s
»
dON ‘4 I9YSSIHOTON 4] dON ‘4
$10¢1°Q 1 l t | |
11N01S0H 1939VSSIN 1SOH _ 139VSSIH 1SOH
/
(83IIVSSINLSOH 1> |
IHVTOHM : 4
1 1 .\
104K 1>
10HH
ZZ ‘ONdbeq G :jusaey §zisabeq [e}o) 8Y'00:EH:SL 861-AVH-0E :P2141poy @3e(
Jly idweNaT[Yy
IO—L. nxdﬁw(—& PDOVOOI \&QGWWOXIPWOI .,OIZ nQE@Z

Figure 8-23. PS 390 Host Input Data Flow (RS-232 Interface)

Reference Materials

RM8-24

¥431107dJ4:4
z {
! 1207d 474>)
o 1107d757
z
0" l 041
ot
® s Vi
. . 1d1dIH <S>
¢ .)€
9 ._.O._u.:z_.LN
s ' '
: 1dIJdIH
:\xt«:@lu 107d1¥VLS 47 y
' !
TTIVISIoT 119VLSL07d¢<L>
€2 :ON2b6ed g ijuauey Gz isebeq [ejo) 8P '00:€H Sl v8LL-AVW-0E :iP2141POW 23e(
Jly ieweNa2[1y4
T8Z4 1x13r24y Adoopuey touep

Figure 8-24. PS 390 Host Input Data Flow (RS-232 Interface)

RMS8-25

System Function Network

s

+
€ <
T NOWNIN 14
. '
1801 TKON "L YOHIN

TINININ 4

—anew

INI¥d 4y

tu<»n.a-"ul—
¢

t
— 114T TV LSONIN

S10Lvisid,

ot)avn2

[Z]

1dIYNINNT

..Iﬁ& . davayus 43015, 3(0L)WYNIZ(CI)AVNI

) S] .
14V 1610 F3VSSIN
-

Y ciasTmotinggia T, \ . R — cosrrs
» — . .

11001718V 1 10 H — s P & C1oxrs
5 * + — IA .

. pN ozixrs

ﬁumxung g ¢ amas il 1S1)avRITTP 1 JavHIT. L RISLIGVHIZCOLIEVNT 4
(o1 r7aviacss d ' 1S139YT-8¥313¢07 §
a 75930¥7 9V313

1013ar14¢<1> nwz

pZ :OoN2Oed | i3udded Gz :se6ed (&0} 86 'HZ2:CS bl $8OHL-AVH-0E P21 I1POW 23e€Q

-sZ

4 ixX1324(9

Aepdsig~@e6essay

iy
‘s[paqe[Td4€2[)

toweNa ([
towep

Figure 8-25. PS 390 Host Input Data Flow (RS-232 Interface)

Reference Materials

RM8-26

RMS8-27

N
S
S
S
-
=
9IUHHK + 4 ~
| o
$1771 3055 IWH o
e}
&
2
=
SN
JAVSNII¥IS i 4 dON : 4 8
]] S
Q
13AVSNIF835 18010331
401dsn 4 080103311 > =
) , Q
Vossosysers =
tono1 OWSILS <l > -
S
dON:4 dON i 4 H
OWSITL <l >) : . ' S
1HSI251 1HSD mw
0dOINSI <1 >
A
Ay
N
Q2
o)
-~
N s
>, =
.80 =
_ ~~ =
S
5z ioN@2beg | i3uaded Gz isebeq [eyo0] 8Y ‘00:CH Sl ¥B8OHI-AVH-0L ‘P2Y41POW 231e(m
Jly i2weNa2[1y N
TQZ4 x14244 ‘o8| t2wep rm
3
I
P>
=
A

D

L9lOSVi

20514002

€$2013KH 012

ISIHOT INGLLNE SISO < | 5
14N0L378VL ¢t
#$05140d<2> 1/13S0c1»

SOIITH 01D 738v 101>

ISIHII INOLINGSSO ¢ | >

1L1NR0L378VL</>

11135a¢<1>

/18-173gvia<1>

0SY0y57 ¢t > N OSY0ddTct> 738V 71! 0738Y14<1> “Y¥¥3I13ct>
A . e 1 . =
(13L7HEI<1> SH0887<0> 0S40083<0> F1HWGI s [\ TO/[7I4Te00C22U “ej0qe "unayy
§i404)85 ‘sSs0s43 J0°fdo3p1ey ‘Addor s -B8ursiey gy 2z %4 5C4
Z 8g 2] KL 024
0SY0YYT <t >
137"
£Z g NZZ
N /
| ioN2beq -- :ijusuey gz :s2beg [e30) Ly'SEigLiCL $86L-NNLC-L iP2141PpOK 23re
W8Iy idueN3[1y
T4 X134y LYQ ' IWEISAS idweN

Figure 8-27. PS 390 Host Input Data Flow (IBM)

Reference Materials

RM8-28

N\
N
S
R
D tnieg ael
T T \M/
Q
=
=
y =2
1717W@T 1> 05190448 405180422 .
€140 seg
L (1 m
S
Q
-
2
=
-~
12
=
f=
N
o
«400137W 013 420134 .qsuA “
osyoNNIC 1> 0S¥0dT< 1> u &~
— < 1317WRT<1> S4ONNT 0> o\)
V121 weress esniaz 05504870 oﬂ./O~
T % (17 oo
N
~
.80
~ 4
~
=)
=
)
P
<
S
-
¢ ioNeBeq | ijuadeq gzisebeq [e30] Lb 1S:91:60 $86L-NAL-1 iP2Y41POW 23eQ S
Wariyv i2uWeN2[14 _...M.
TZ4 ix13244g 83404 323G ‘S40u4u] towey £
Y
b
>
©

C

——§ crommn

— roma

< crroma

0110 e0:p—— <0s0s500003

;. ILN0eRI4, zser308
) 13
INOTLYNSOINT
01
? pIGTTT R EF) z t y
#5011 G—
LI 20134013
TININGVA
081
011YNBOINT 12)
Jinoue3 s
D H W | E——) os#0a¥T <t
Viztwarers ll:a..i 0580053
anes 0580083 ¢0sG— nugq«u.?A

¢ ioN2bBed 7z :juauey

T6Z4 ix14044

g€gisebeyq [eyo) Ly 191160 ¥861-NAL-1

ip2111poy 23req

WaIly
S40447]

ieweNa [y
tawep

Figure 8-29. PS 390 Host Input Data Flow (IBM)

Reference Materials

RM8-30

sa5 0y

0> 9053404

gr40434%¢

Q24054 <o

@r90z3404

<§ c0:0013404

] .
[(]
¢4 L
L] L]
£14 1] 1]
(14 . »
" . A¥0dT13814} o 18047125143
. Y aum I ')]
" #0439 doziiey
"
1)
{3
o 0651904 <2> \
"
L
.
L]
z T n
’ 114 (14
s (14 o
* " (1
- 1 ®
. 18067138147 o o
Ve 1) .o "
7051709 " n
. "
[1} i1}
L1} 11}
" "
L1} "
L] [}
L] L]
4 3
L] .
9| 3|
* ’
1804713614 18047138 14§
t4 2 2 1
.’ [} L} 1] .
L h”.mo:saﬂ.::) #053304 9013344
-])
131 K@rels TP
ocoes
p :oNeBed Z ijusdeg gz :sebeq [e30] Ly 1S:91 60 ¥86L-NAL-1 P2Y}1POW 238Q
WaIltyv idweN2T Y 4
214 ix1p244 sydod 31ag iauep

Figure 8-30. PS 390 Host Input Data Flow (IBM)

RM8-31

System Function Network

W8I1dN13S:4

£dNLISNG!

WB8Idn13s:4

1dNLISNET

. "A_ (952IX14

(| (o52)x14

toN26ey

4

RN}

iyuadey

IX13244

ggis2beq [ejo)

Ly 1€:91:60

$861-NNL-1 :p21p1poy eieq

NEI LYV
dnyag WgI

ioweNa[1y
towey

Figure 8-31. PS 390 Host Input Data Flow (IBM)

Reference Materials

RMS8-32

1QHN 1

10HN <L+

[~ osean<i»
[T oIrowet>

13178l

avamncts

18I9YSSINTISON 15 183YSSINTISON <12 05N130¢4 s
oy el .
i NI O ﬂ 201IHOII JONI WL OdONINel>
oz V7 (1¥}
1 osaoswicis osow3<l> [N 0dONI 1>
v.&:n\:: —— ossonarcos 01344 oraets o380n<s
) / Auedme) pue 13,9043
M.v.e:#\ﬁu — - 0SHONYT > DIVON<(>
osoaezis —1 oswosesco» ovome:s
Vosuovas<as H
N
<
7/
#5N1300»
v,
1407444¢1> 120014415 ISINSIINO11NESSO 1) IS I YIS
1d1dIH75> 161dIN 5> 14001378v4 < 1> 118013767107 Y
114v£51074¢ 4> F 110V151074¢1> N— vossia0dcer 101350415 11135042 Y
Aa - \
_— .HU.& 1 odomaects 131 weresr [\ 12 1781015 TR I
A er3aviscis ooxwgrel>) 178VTI<LS 1017871405)
worerney [oupmsny 043000 00)neg
R 77 77 vzl
\
A y,
13170110
9 :oNeBegq | :3judueq gz:s2beq [e310] Lb 1S:91:60 $8SL-NAC-1 PeYSIPOWN 23eQ

T0Z24 iX13244

ioweNa()4

70 ‘AdoopuaeyAddof 4-Bursied]} i2uweN

Figure 8-32. PS 390 Host Input Data Flow (IBM)

RM8-33

System Function Network

L4 X424y

Walty

[043U0D 221A2(Q

W
05180422 4
H osK13q¢1» ssN120<17
405180a:¢> 04530415
D y,
Pocacsaiers osHONYI <12 VS180d°1s ¥5100d<1s 03530¢1s [\ 117160145 108440<12 (SIAST WL 17
. o
suetssuns diod ri310veezs 00s30ets [1 ous30¢15 13%01005 YITTIEIT T
(R 57 y,
SKOLIngc1> 03S30¢i> e3s3a¢1» 111350¢0> T
(SI010705 0@530¢1» 0853045 130 <t> T T
12 0vs30¢1» Ors20¢i> 10138V 4¢L> \
- o1 s
INLI3TaVLers vussog sndson vorany 1013871401
INILIT8VLCE Z1 Vg] 2 V4 (7]
INISNOLIAG 1>
1ST0r0ets
andu; eajasg
»1 0 (7]
W
Vioewmaret.
[ioN20Bed ¢ :ijuadeyq gz is20eq [830] Ly 1€:91:60 $86L-NNC- L P2141POW 23eQ

ieweNa[1
tawep

Figure 8-33. PS 390 Host Input Data Flow (IBM)

Reference Materials

RMS8-34

RM8-35

o
A =
Q&\xhuﬁ‘\~s-<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>