
REFERENCE MATERIALS

The Reference Materials RMI —4 and RMS-16 provide reference information for the
user of the PS 390 system. Summaries of the ASCII commands, intrinsic functions,
initial function instances and GSRs are contained in the first part of the volume.
Included in the second part of the volume are sections covering interactive devices,
interfaces and options, host input data flow, system function network diagrams,
diagnostic utilities, system errors and host communications. The final section con-
tains an index to the complete PS 390 Document Set.

RMS Host Communications

This section includes descriptions of the RS-232 specifications and pin
connector definitions, PS 390 transmission protocol, port values and
defaults, and the PS 390 system data reception functions.

RM6 Interfaces i Options

This section contains information about the PS 390/host interfaces.

RM7 Host Input Data Flow

This section covers information on the host input data flow, including rout-
ing functions and routing. byte definitions.

RM8 System Function Network

This section contains diagrams of the PS 390 system function network. The
diagrams show the logical paths of the routing bytes and functions.

RM9 Initial Structures

This section describes initial data structures created at power-up. Configure
mode is discussed and a runtime system is defined.

RM 10 Terminal Emulator

This section gives instructions for changing the modes and features of the
terminal emulator by either sending escape sequences from the host,
entering PS 390 commands in the S1T~.DAT file, or sending the
appropriate ASCII characters to terminal emulator functions.

RM 11 System Errors

This section is a compendium of all user error messages (informational,
recoverable, fatal, and warning) . Error messages are listed in numerical
order. The text of the message is given with an indication of common
causes of the error and, where appropriate, ways to correct it.

RM 12 Diagnostic Utilities

This section provides a reference for the utility commands that are on the
PS 390 diagnostic utility diskette.

RM13 Interactive Devices

This section describes how the PS 390 interactive devices work and are con-
nected to the system. Interactive devices include a peripheral multiplexer,
keyboard, data tablet, function buttons, control dials and mouse.

RM14 GSR Internals

This section describes the data formats expected by the PS 390 command
interpreter. It is provided for advanced programmers to write their own
GSRs.

RM15 Release Notes

A divider is provided for information supplied with future releases of soft-
ware .

RM 16 Index

This section contains an index to the complete PS 390 Document Set.

RMS. HOST COMMUNICATIONS

CONTENTS

1. HOST/PS 390 INTERFACE 1

1.1 RS-232-C Specifications 3
1.1.1 Signal Definitions 4
1.2 RS-232-C Cabling, Connectors and Pins 5

2. PS 390 SERIAL COMMUNICATION CHARACTERISTICS 6

2.1 Asynchronous Port Defaults 7
2.2 Changing Port Status 8
2.3 Changing PS 390/Host Interface Values

Using the SITE.DAT File 11

3. PS 390 TRANSMISSION PROTOCOL AND ERROR DETECTION 11

3.1 PS 390 Transmission Protocol 12
3.1.1 Data Reception and Transmission 12
3.1.2 Data Transmission Without XON XOFF 13
3.1.3 Transmission Errors 13
3.2 Transmission Error Detection 13
3.2.1 Parity Errors 14
3.2.2 Framing Errors 15
3.2.3 Overrun Errors 16

4. METHODS OF COMMUNICATION OVER THE HOST LINE . . 16

4.1 Data Communications —Escape and Count Mode 17
4.1.1 Escape Mode 18
4.1.2 Count Mode 19
4.2 Using the Routing ByTtes for Local Data Flow 20
4.3 Changing the <ESC>, AndlOr <SOP> Sequence Characters

in the SITE.DAT File 21

t

5. PS 390/IBM HOST COMMUNICATIONS 22

5.1 PS 390 Data Communication 22
5.2 Data Destinations 23
5.3 Write Structured Field 23
5.3.1 Programmed Symbols 23
5.3.2 Load Programmed Symbols 26
5.4 Configuration of the 3274 Control Unit 27
5.5 Data Flow Overview 27
5.5.1 Modification of Pool Sizes 30

TABLE

Table 5-1. RS-232-C Connector Pin Definitions 3

it

Section RMS

Host Communications

The PS 390 communicates with a variety of host computers by way of communica-
tions interfaces. The standard PS 390 interface is the RS-232-C asynchronous se-
rial communication protocol. Also supported are the Ethernet, Parallel, IBM 3278,
and IBM 5080 interfaces.

This section describes the data flow between the PS 390 and the host processor.
The initial sections introduce some of the basic concepts of data communication,
particularly those directly affecting the interface to be set up between the PS 390
graphics system and the host computer.

1. Host/PS 390 Interface

One of the most important considerations in setting up the configuration
characteristics of a PS 390 graphics system is the interface between the host
computer system and the PS 390.

The standard data communication interface to the PS 390 is an RS-232-C
asynchronous serial line. The terms "asynchronous" and "serial" refer to
two important communication characteristics.

Binary data may be transferred between electronic devices in "serial", over
a single line, or in "parallel" , over several lines at once, by changes in
current or voltage. In serial transmission, the bits that represent a character
are sent down a single wire, one after the other. These serial signals are
converted to parallel form at the reception end by shift registers. (In most
data communications applications, serial transmission is preferable to paral-
lel transmission, since fewer wires must be run. However, parallel transmis-
sion is faster, as more data can be sent across the line at once.)

Host Communications RMS-1

Data transfers may be of a "synchronous" nature, where the exact bit
framing of each byte of information is coordinated for the entire message
by the transmission of two or more synchronization characters at the
beginning of the message. All characters that follow these characters occur
within a specific time frame called a "character time."

Or, data transfers may be of an "asynchronous" nature, where each
character is self-defined by the use of a start bit and one or more stop bits.
The start and stop bits occur before and after the byte of data. For this
reason, this mode of transmission is referred to as "Start/Stop
Transmission." In this mode, the arrival time of each character is random.
Each end of the transmission line must know what the transmission rate is
to sample the line at correct intervals following the receipt of a start bit.

Under PS 390 graphic system protocol, the RS-232-C standard interface
sends data signals over a single, serial line using asynchronous transmis-
sion. The PS 390 may also be interfaced to a DEC/PDP11 or a DEC/VAx
host over an asynchronous parallel line.

RS-232-C refers to a standard for interface communication set by the Elec-
tronic Industries Association (EIA). The RS-232-C standard contains:

• The electrical signal characteristics.

• The interface mechanical characteristics.

• A functional description of the interchange circuits.

• A list of standard subsets of specific interchange circuits for specific
groups of communication system applications.

It is important when reviewing specifications for computer/system interfaces
to understand what the various interface leads do, and which are essential
for proper interface between the PS 390 graphics system and the host
computer.

RMS-2 Reference Materials

1.1 RS-232-C Specifications

The physical connection between the PS 390 and the host is made through
plug-in, 25-pin connectors (Cannon or Cinch DB Series). These connectors
are keyed for 13 pins on the top row, and 12 pins on the bottom row. The
PS 390 ports on the communication connector panel provide the male ele-
ment for the interface. The pin assignments and signal definitions supported
by the PS 390 graphics system are given in Table 5-1.

RS-232-C standard states that the cable between the data communications
equipment should be no longer than 50 feet. However, longer cabling dis-
tances have been used successfully.

For the PS 390 EIA RS-232-C communication ports, aControl-ON (logical
0), or "SPACE" condition exists if the voltage present is greater than +5
volts and less than +25 volts with respect to signal ground. AControl-OFF
(logical 1), or "MARK" condition exists if the voltage present is less than -5
volts and greater than -25 volts with respect to signal ground. This assumes
that the PS 390 signal ground and the communication data device signal
ground are at the same potential.

Table S-1. RS-232-C Connector Pin Definitions

PIN # EIA LABEL ABBREV. NAME SIGNAL NAME DIRECTIQN

1 AA GND Protective ground N/A

2 BA TXD Transmit data To DCE*

3 BB RXD Receive data From DCE

4 CA RTS Request to send To DCE

5 CB CTS Clear to send From DCE

6 CC DSR Data set ready From DCE

7 AB GND Signal ground N/A

8 CF DCD Data carrier detect From DCE

15 DB TXCA Transmit clock From DCE

17 DD RXC Receive clock From DCE

20 CD DTR Data terminal ready To DCE

24 DA TXCB External transmit clock To DCE

* DCE =Data Communication Equipment

Host Communications RMS-3

1.1.1 Signal Definitions

The following are definitions of the RS-232-C signals shown in Table 5-1.

. AA, AB (Protective Ground and Signal Ground) —These two
grounds are electrically independent. Protective Ground connects to
the power ground. Signal Ground connects to the logic ground.' No
direct frame grounding occurs at the connector. Strict EIA RS-232-C
standard definitions are not directly applicable.

. BA (Transmit Data) —Data from the PS 390 are transmitted on this
line. The signal is generated by the PS 390 processor.

BB (Receive Data) —Data are sent to the PS 390 on this line. The
signal is passed to the PS 390 via the data communications equip-
ment.

• CA (Request to Send) —This signal is generated by the PS 390 proc-
essor. The output may be programmed to conform with EIA
RS-232-C protocol. Generally, an "ON" CA (request to send) signal
indicates the PS 390 processor is ready to transmit information.

• CB (Clear to Send) —This signal may be generated by data commu-
nication equipment. An OFF condition will terminate data transmis-
sion. An ON condition allows data transmission to resume. If no
connection is made, an internal pull-up resistor will assert this line to
an ON condition (+12V) for non-standard RS-232-C communication.

• CC (Data Set Ready) —This signal may be generated by the data
communication equipment. The function of this signal is controlled
by software within the PS 390 processor. Usually, an `ON' CC (data
set ready) is sent by the data communication equipment to indicate
that it is ready to transmit.

• CF (Data Carrier Detect) —This signal may be generated by the data
communication equipment. ON assertion of this signal allows BB (re-
ceive data) to be accepted by the PS 390 processor. If no connection
is made, this line will be pulled to an ON condition (+12V) to allow
non-standard EIA RS-232-C communication. To disable the BB (re-
ceive data) communication, an OFF condition must exist. Definition
of this pin is software controlled for Port 1 of the PS 390 processor.

RMS-4 Reference Materials

• CD (Data Terminal Ready) —This signal is generated by the PS 390
processor and is under software control. When asserted to an ON
level, CD indicates that the PS 390 processor is ready to
communicate.

. DA TXCB (Transmit Clock B) —This signal is generated by the
PS 390 processor. DA provides a timing clock to indicate the center
of each element of data. This timing clock can either be equal to the
transmitted data frequency, or equal to 16 times the data frequency.
DA TXCB is under software control. Port 1 of the PS 390 processor
does not directly generate this signal. It relies on TXCA (transmit
clock A) to generate this clock.

. DB TXCA (Transmit Clock BA) —This input signal is generated by
external transmitting data communications equipment. This clocking
signal input can control the rate at which the PS 390 processor
transmits data out. The ability to use this clock input is software
controlled.

• DD ~:XC (Receive Clock) —This input signal is generated by exter-
nal transmitting data communications equipment. This clock deter-
mines the rate at which the PS 390 processor receives data. The abil-
ity to use this clock is software controlled.

1.2 RS-232-C Cabling, Connectors and Pins

All cabling and connectors used in the interface between the PS 390 and the
host system must be provided by the user.

A null-modem cable configuration may be necessary to correctly connect
the pin signals through the RS-232-C interface.

Cables and the 25-pin connectors for RS-232-C are available through most
major computer product supply centers.

The cables running from the host to the PS 390 processor should terminate
with a female connector, as the PS 390 data communication ports house
male elements .

The decision to use shielded or unshielded cable is left to the user. Shielded
cable is highly recommended in noisy environments, but typically it has a
higher capacitance per foot than unshielded cable, which may reduce the
operating speed.

most Communications RMS-S

2. PS 390 Serial Communication Characteristics

This section describes the serial UO parameters the PS 390 graphics system
has defined for each port. The defaults (values assigned to each port when
the system is powered on in standard configuration) for the data character-
istics are listed in this section. For information on how these values can be
configured in a bootable file on the PS 390 graphics firmware diskette, refer
to section 2.3. The following information applies to PS 390 graphics sys-
tems asynchronous transmission:

• The baud rates available on Ports 1, 3, and 4 on the PS 390 are:
300, 600, 1200, 1800, 2000, 2400, 3600, 4800, 9600, and 19200.
Port S runs at 19200.

• The PS 390 may be configured for 5, 6, 7, or 8 bits per character,
although the host port must pass all characters of the 7-bit ASCII
character set (for example 7 or 8 bits per character).

• Only one start bit will be accepted (and generated) by the PS 390.

. The PS 390 will accept (and generate) 1 or 2 stop bits.

The PS 390 and the host can communicate using an XON XOFF
protocol. In this protocol, control sequences are generated that tell
the sender (either the PS 390 or the host) when to start (XON), or
stop (XOFF) data transmission. These control sequence values de-
fault to CTRL S (DEC 17 character) for XON, and CTRL Q (DEC 19
character) for XOFF. Under XON XOFF, bit stripping is controlled
by the /1VIASK_TO_7 BITS option.

Additionally, there are available values for data characteristics that
are unique to the XON_XOFF protocol. These values and their defi-
nitions are shown in section 2.2.

• The PS 390 will run with even, odd, or no parity. Parity is a charac-
ter checking device that operates by adding non-information bits to
data, making the total number of ones in each grouping of bits either
odd for odd parity, or even for even parity. This permits error detec-
tion for an odd number of incorrect bits in each group.

RMS-6 Reference Materials

• Each port may be configured to cause a trap to the PS 390 Debugger
in the event a break is detected on that port.

• The PS 390 may be set to hold a maximum number of 127 buffers to
hold data transmitted from the host. The default is eight buffers.
Each buffer may be set to a maximum of 32, 767 bytes, with the
default at 48 bytes per buffer. This option allows the user to specify
the amount of memory space to be allocated for data reception from
the host. The user may specify the number of free input buffers
below which the host will be sent an XOFF to suspend transmission.
The number of free buffers above which the host will be sent an
XON to resume transmission may also be specified.

2.1 Asynchronous Port Defaults

The defaults for Ports 1, 3, 4, and 5 are:

• Port 1 — Host Port - 9,600 baud, 8 bits per character, 1 stop bit, no
parity, no_mask_to_7_bits, transparent mode. Sends all XON_XOFF
protocol characters, ignores incoming XON_XOFF (no_hear_XON),
8 48-byte buffers with 0 STOP buffers and 1 GO buffer, and debug
break disabled.

• Port 3 — Debug Port - 9,600 baud, 8 bits per character, 1 stop bit,
no parity, non-transparent mode that accepts all XON_XOFF proto-
col characters, 8 48-byte buffers with 0 STOP buffers and 1 GO
buffer, and debug break enabled.

• Port 4 — 300 baud, 8 bits per character, 1 stop bit, no parity, non-
transparent mode that accepts all XON_XOFF protocol characters, 8
48-byte buffers with 0 STOP buffers and 1 GO buffer, and debug
break disabled

• Port 5 — Multiplexer Port - 19,200 baud, 8 bits per character, 1 stop
bit, no parity, transparent mode that does not recognize XON_XOFF
protocol characters, 8 48-byte buffers, and debug break disabled.

The status of all the ports may be verified by using the SHOW INTERFACE
command.

Host Communications RMS-7

2.2 Changing Port Status

The following command sequence can be used to change any of the default
values on Ports 1, 3, 4, and 5. These new values must be within the accept-
able values for data characteristics as given in the previous section. The
port values are changed by entering the command:

SETUP INTERFACE <name>/<options>;

where name is the port being reconfigured, options refers to the option
setting the communications interface. The command:

SHOW INTERFACE <name>;

where <name> is the port, can be used to check the values of a given port.

In using these commands, the names of the ports are as follows:

Port 1 is designated portl0
Port 3 is designated port30
Port 4 is designated port40
Port 5 is designated port50

The available options for SETUP INTERFACE are:

/SPEED=<baud rate> —input and output communications speed between 5 0
and 19200.

/EVEN PARITY —establishes monitoring of parity On input and generation
of parity on output, using EVEN parity.

/ODD PARITY —establishes monitoring of parity on input and generation
of parity on output, using ODD parity.

/NO PARITY (default) —terminates the monitoring of parity on input and
generation of parity on output.

BITS PER CHARACTER=<number of bits per char> —sets the width of a
character in bits (normally 8, including 7-bit ASCII) .

/STOP BITS PER CHARACTER=<number of stop bits per char> —sets
the number of stop bits for each character (normally 1).

/XON XOFF —enables the PS 390 to use XON XOFF protocol to tell the
host (or device) on this port to resume or suspend transmission. Default is
to this protocol.

RMS-8 Reference Materials

/NO XON XOFF —disables the use of XON and XOFF protocol from the

PS 390 to the host (or device) on this port to resume or suspend transmis-

sion.

/I~AR XON —enables the use of XON XOFF protocol for the host (or
device) on this port to tell the PS 390 to resume or suspend transmission.

/NO HEAR XON —disables the use of XON XOFF protocol for the host
(or device) on this port to tell the PS 390 to resume or suspend transmis-
sion. Default is NO HEAR XON.

/BREAK —enables the receipt of a BREAK on this port to call the ROM
debugger.

/NO BREAK —disables the receipt of a BREAK on this port to call the
ROM debugger. Default is NO BREAK.

/SPEED EXTERNAL —sets the port speed to that of an attached modem,
rather than from an internal clock. (This applies only to those ports with full
modem support.)

iN0_SPEED EXTERNAL —tells this port to use its internal clock, at the
speed set by /SPEED=. Default is NO_SPEED EX'1~ERNAL.

BUFFERS=<number of buffers> —specifies the number of buffers in the
input pool. Default is 8 buffers.

BUFFER SIZE=<number of bytes> —specifies the size of each buffer in
the input pool. Default is 48 bytes.

NOTE

If input is received continuously, buffers will be filled
until they are full. The buffer size will, in this case,
specify the quantum of input being processed by subse-
quent functions.

If input is received at much less than the maximum
baud rate, buffers will be released to waiting functions
after 2 character times without receipt of a byte. In this
case, the strict product of <buffer size> and <number
of buffers> will not be the true amount of input
buffering .

Host Communications RMS-9

/N_STOP_BUFFERS=<number of buffers> —specifies the number of free
input buffers below which the sender is told to suspend transmission. This
has no effect unless the port is in /XON_XOFF mode. Default is 1 Stop
Buffers. This is for host to PS 390 communication only.

/N_GO_BUFFERS=<number of buffers> —specifies the number of free in-
put buffers above which the sender is told to resume transmission. This has
no effect unless the port is in /XON_XOFF mode. Default is 2 Go Buffers.

The following four commands allow the user to specify non-standard
X ON-X OFF characters

/SEND_XON CHAR=<char code> —specifies the character code as
an integer (defaults to decimal 17) to be sent out from the PS 390 to
tell the sender to resume transmission. This has no effect unless the
port is in /XON_XOFF mode.

/SEND_XOFF_CHAR=<char code> —specifies the character code as
an integer (defaults to decimal 19) to be sent out from the PS 390 to
tell the sender to suspend transmission. This has no effect unless the
port is in /XON XOFF mode.

/OBEY XON_CHAR=<char code> —specifies the character code as
an integer (defaults to decimal 17) that, when received by the
PS 390, allows the PS 390 to transmit.

/OBEY XOFF_CHAR=<char code> —specifies the character code as
an integer (defaults to decimal 19) that, when received by the
PS 390, stops the PS 390 from transmitting.

/MASK_TO_7 BITS —specifies that incoming bytes are to have their 8th
bit, normally the parity bit, stripped off.

/NO MASK TO_7 BITS — (default) specifies that incoming bytes are not
to be masked.

BREAK_TIlVIE=<break time> —specifies the length of time in centiseconds
that an outgoing BREAK is to be held. This defaults to 10. Maximum = 127.
(Section IS3 contains instructions for defining the break key.)

/ASYNCHRONOUS —normal mode of operation.

All commands are terminated with a semicolon (;) and a carriage return.
The menu available with the SHOW INTERFACE command lists only those
parameters that are relevant to the interface.

RMS-10 Reference Materials

2.3 Changing PS 390/Host Interface Values Using the SITE.DAT File

Port values may be changed to suit specific site requirements in two ways:
the default values can be changed by using the SETUP INTERFACE
commands in configuration mode, or the SETUP INTERFACE commands
can be entered into the SI~l'E.DAT file. If the value needs to be changed for
just one session, so that the port will go back to its default values during the
next boot-up, the SETUP INTERFACE command can be entered during a
PS 390 session. Should the new port value need to be installed more
permanently, with the new value booted instead of the default, the SETUP
INTERFACE commands should be entered into the SITE.DAT file.

Any of the SETUP INTERFACE commands can be entered in the
Sl'1'E.DAT file, using the following forms:

SETUP INTERFACE portn/option;

SETUP INTERFACE portn/option=<p>;

where n is the port name, /option is the name of the feature being set, and
<p> is the specified parameter.

Examples:

SETUP INTERFACE portl0/XON_XOFF;

would enable Port 1 to use XON XOFF protocol to tell the host (or device)
on this port to resume or suspend transmission.

SETUP INTERFACE portl0/SPEED=2400/XON_XOFF;

would set Port 1 to a baud rate of 2400 and enable XON XOFF protocol.

3. PS 390 Transmission Protocol and Error Detection

This section details the transmission protocol necessary to receive and trans-
mit data over the asynchronous interface. It also provides a brief description

of the three types of errors detected by the Enhanced Programmable Com-
munications Interface (EPCI) status register.

host Communications RMS-11

3.1 PS 390 Transmission Protocol

The PS 390 graphics system uses an XON XOFF handshaking protocol to
maintain orderly data communication over a full duplex, asynchronous,
serial line between itself and the host computer. The receiver of XOFF
(decimal 19) is to suspend transmission as soon as possible. The receiver of
XON (decimal 17) is to resume transmission until the next reception of
XOFF. The PS 390 will suspend transmission within one character time and
can accept up to one buffer full of characters after XOFF is sent.

The following equation shows how many bytes of an empty buffer are left
when an XOFF is sent. An XOFF will be sent to the host that many bytes
before input buffering is exhausted.

((Number of STOP buffers +1) * Number of bytes/buffer) - 1

3.1.1 Data Reception and Transmission

The PS 390 defaults to eight 48-byte buffers available to receive data from
the host computer. Transmitted characters are placed in the first free buffer
starting in the first position and continuing to the end of the buffer. When
the buffer is full, the next available buffer is used. If all allocated buffers
are full, the PS 390 will drop everything off the line until a buffer is free.

When the XON XOFF protocol is used, the PS 390 will send an XOFF to
the host (sender), when the number of free buffers is equal to the number
of STOP buffers. The PS 390 will send XON to the host when the number
of free buffers is equal to the number of GO buffers.

An XOFF received on the host input port disables data transmission from
the host to the PS 390 until the PS 390 sends an XON. If a host transmis-
sion aborts before XON is transmitted, or if the host transmits XOFF as
part of the LOGOFF message, it is necessary to manually clear the XOFF
condition. XOFF is cleared and the port re-enabled for transmission when-
ever aSETUP or SHOW INTERFACE command is executed.

Rebooting the PS 390 will also clear the XOFF condition.

Default for the PS 390 is NO HEAR XON XOFF.

RMS-12 Reference Materials

3.1.2 Data Transmission Without XON XOFF

Operation without support of the XON_XOFF protocol is discouraged. If
XON_XOFF protocol is not available on the host, it is up to the user to
ensure that an adequate number of buffers are allocated for data reception
on the PS 390.

3.1.3 Transmission Errors

If the XON XOFF protocol is not used, and the number of available buffers
is not large enough to hold the incoming data from the host (sender), data
characters will be lost. These lost characters are detected and counted by
the input routines. The SHOW INTERFACE command will give the current
error counts for each port.

Messages which characterize lost input characters are:

• PARSER S~C'NTAX ERROR due to bad syntax generated by the lost
characters

• ERROR E 12 * * * Message which function cannot handle

3.2 Transmission Error Detection

The Enhanced Programmable Communications Interface (EPCI) used on
PS 390 Ports 1, 3, 4, and 5, is able to detect three types of transmission
errors. When one of these transmission errors occurs, a bit is set in the
EPCI status register where it can be read by the graphics control processor.
The errors detected are:

Parity errors (if parity is enabled)

• Framing errors

• Overrun errors

The SHOW INTERFACE command will display all errors detected from the
last PS 390 boot.

Most Communications RMS-13

3.2.1 Parity Errors

The parity bit follows the character bits in data transmission. If there are 7

bits/characters, and parity is enabled, the total number of bits is 8 with the

parity bit being the last transmitted bit. Ignoring the start bit and stop bit(s),

the letter "A" when transmitted with EVEN parity would appear as follows:

Isb msb
1 2 3 4 5 6 7 parity
1 0 0 0 0 0 1 0

where "lsb" is the least significant bit and "msb" is the most significant bit.

The same character transmitted with ODD parity would look like this:

Isb msb
1 2 3 4 5 6 7 parity
1 0 0 0 .0 0 1 1

EVEN parity sets the state of the parity bit such that the number of ones in
the 8 bits is an even number.

ODD parity sets the state of the parity bit such that the number of ones in
the 8 bits is an odd number.

If parity is enabled, the EPCI determines the parity of the received character
and compares this parity with the parity bit transmitted. If they do not
agree, the parity error flag is set in the EPCI status register.

From the example of the character "A" , it can be seen that if the host and
the PS 390 do not agree on the parity being used, every character received
or transmitted will generate a parity error.

RMS-14 Reference Materials

This vertical error detection scheme can only discern an odd number of bit
errors. For example, if bits 2 and 3 are erroneously changed to ones, so that
the character transmitted appears to be

Isb msb
1 2 3 4 5 6 7 parity
1 1 1 0 0 0 1 0

EVEN parity —the parity bit is correct for the character received ("G") but
incorrect for the letter sent ("A"} .

The PS 390 supports ODD and EVEN parity, or NO parity.

3.2.2 Framing Errors

"Framing" is the process of determining which group of bits constitute a
character. An error in this process is called a "framing error" . Characters
are framed by the start bit and the stop bits) . Looking at the character "A"
again (assume one stop bit)

MARK (1 }

start 1 2 3 4 5 6 7 parity stop start Isb
Isb msb

The line is held in a MARK condition with current flowing when characters
are not being transmitted. If for some reason the EPCI failed to detect the
start bit when the signal goes to an ON, or SPACE condition, it is possible
that it would assume bit 2 was the start bit, and bit 3 was the lsb, etc. At the
time EPCI expected to see a stop bit, it would instead see the lsb of the next
character, and a framing error would occur. When a framing error does
occur, the EPCI sets the framing-error flag in the status register.

Host Communications RMS-1 S

3.2.3 overrun Errors

An overrun error occurs when the JCP fails to read the characters in the
holding register of the EPCI before the next character received is placed in
the holding register. When this happens, the EPCI will overwrite the con-
tents of the holding register with the next character. This overwrite causes
the overrun error flag to be set in the EPCI status register.

4. Methods of Communication over the Host Line

Section IS3 discusses the various methods of data communication that can
be used over the PS 390/host line. These methods include standard ASCII
transmission or the GSRs, an E&S supplied host-resident software package.

The GSRs perform all prepackaging of data prior to sending it in binary
format to the PS 390. The routing bytes required to channel the data to the
proper PS 390 system function are contained within the routines. The rou-
tines build data `packets' that include all the necessary information to proc-
ess the data, and are in a form that is immediately acceptable by the PS 390
system function, F:CIROUTE.

In all cases, F:CIROUTE expects to receive data in a specific format called
packets. These packets may be in either ASCII or binary, and for asynchro-
nous communication, may be in either count or escape mode. Over the
parallel interface, these packets are sent only in count mode.

When communicating with standard ASCII transmission, the PS 390 system
functions (data reception functions, such as F:DEPACKET) that interface
between the system and the hardware are responsible for building the data
packets. The routing bytes that are used to channel data to the appropriate
PS 390 system function must be supplied. A brief description of the routing
bytes and their channels can be found in Section RM7.

The following sections deal with the use of count and escape mode in asyn-
chronous data transmission.

RMS-16 Reference Materials

4.1 Data Communications —Escape and Count Mode

Data is sent to the PS 390 from the host as a stream of bytes. These bytes
must contain information that is intelligible to PS 390 system functions
about the nature of the message and where it is to be sent internally in the
PS 390. The descriptions that follow describe the data transfer modes used
in host/PS 390 communication and briefly describe the system functions
that accept, examine, and route data internally in the PS 390.

Data may be transported over an asynchronous line in two modes: escape
mode or count mode. The mode used is dependent on the application and
can be selected by the user. Count mode is the faster mode, as the system
function, F:DEPACKET, that converts a stream of bytes into a stream of
packets does not have to check the identity of each byte.

A system function, F:DEPACKET, accepts data input to the PS 390 from
the host. F:DEPACKET converts a stream of bytes from the host into a
stream of Qpacket/Qmorepacket. A Qpacket is a block of character data
that can be sent from one PS 390 function to another. When data comes
from the host through the F:DEPACKET function, it contains a byte for
routing control. A Qmorepacket is a Qpacket that when coming from the
host through F:DEPACKET, has no routing byte (i.e. a Qmorepacket has
the same destination as the previous Qpacket.)

There are two instances of the F:DEPACKET function. The first,
DEPACKETO, accepts all incoming bytes from the host on input <1>. It
channels all incoming data through to output<2> until it sees the Start of
Packet (SOP) character <ACK> (ACKNOWLEDGE —decimal character
code 06, ASCII tF) that signifies the start of a count mode packet.

All the data sent through to output<2> of DEPACKETO are sent to input<1>
of the second DEPACKET function, DEPACKET20, which then checks all
incoming data for the SOP character <FS> (Field Separator —decimal char-
acter code 28, ASCII t\) that signifies the start of an escape mode packet. It
will also route all incoming bytes out output<2> until it sees the <FS> char-
acter. Output Q> of DEPACKET20 is connected to ES_TE1 (the screen).

These instances of F:DEPACKET are described below. The characters that
are used to signify SOP (<FS> and <ESC> characters) may be changed by
the user by sending the new characters to the correct inputs of
F:DEPACKET.

Host Communications RMS-1 ~

4.1.1 Escape Mode

In escape mode, F:DEPACKET looks at every byte to see if it is a SOP
character, which by default in escape mode is the ASCII Field Separator
<FS> character, or an <ESC> character.

Qpacket

Qpacket

Qpacket

Qboolean

<1>

<2>C ' FS'

<3>C 'ESC'

<4>C ESC mode

DEPACKET20

(F:DEPACKET)

(escape mode)

<1>

<2>

 ► Qpacket ,

Qmorepacket

(after 1st ' FS')

 ► Qpacket ,

Qmorepacket

(before 1st ' FS')

In escape mode, F:DEPACKET assumes that a packet is defined as either:

or

FS packet contents Input <4> = FALSE

ESC FS packet contents Input <4> = TRUE

where <FS> represents the SOP character that is by default the decimal
character code 28 (t\).

The definition of FS (one character) is taken from a single character
Qpacket on input <2>.

In the first mode (input <4> =FALSE), any FS or ESC characters within the
message packet must be escaped by prefixing them with an ESC character
(i.e. the <ESC> character, decimal character code 16 (rP)). Thus <ESC><x>
becomes <x> for all values of x.

RMS-18 Reference Materials

In the second mode (input <4> =TRUE), only ESC characters within the
message packet must be escaped by prefixing them with an ESC character.

The ESC character is defined by a single character Qpacket on Input <3>.
Output <1> outputs Qpacket and Qmorepackets of any messages after the
first SOP control character is received. Output <2> outputs Qpackets and
Qmorepackets of any messages before the first SOP control character is
received. A Qpacket is output on Output <1> each time a SOP control char-
acter is received. Otherwise Qmorepackets are output.

Output <2> is normally connected the Terminal Emulator Input and Output
<1> is connected to F:CIROUTE for both Count and Escape Modes.

The routing path will be used for data transfer until the multiplexing func-
tion sees another SOP character, and a packet with another routing byte.

4.1.2 Count Mode

In count mode, once the SOP <ACK> character is seen, F:DEPACKET
merely counts the bytes until the count is reached. No attempt is made to
decode any bytes until the count is reached. Because F:DEPACKET does
not examine the data, it is faster than escape mode, where all bytes are
checked by F:DEPACKET to see if they are <FS> or <ESC> characters.
Also, count mode allows for the use of any <SQP> or <ESC> sequences as
part of the data.

Qpacket

Qpacket

Qinteger

Qpacket

Qinteger

 ~-

 ~-

<1>

<2>C 'SOP'

<3>C # count bytes

<4>C base char

<5>C radix

DEPACKETO

(F:DEPACKET)

(count mode)

<1>

<2>

► Qpacket ,
Qmorepacket

► Qpacket,

Qmorepacket

(between packets)

Host Communications RMS-19

In count mode, F:DEPACKET assumes that a packet is defined as:

SOP count bytes packet contents

where SOP represents the Start of Packet character that is by default the the
ASCII <ACK> ^haracter, decimal character code 06 (rF).

The definition of SOP (one character) is taken from a single character
Qpacket on input <2>.

The message count is defined by n bytes (n defined by the Qinteger on input
<3>). Each count byte is offset from the base character (the base character
is taken from a single character Qpacket on input <4>). After the base char-
acter is subtracted, each count byte becomes a digit of the message count
whose radix is defined by the Qinteger on input <5>.

Output <1> outputs Qpackets and Qmorepackets of count mode messages.
Output <2> outputs Qpackets and Qmorepackets of any messages which are
not in count mode.

The <SOP> byte and the count bytes are removed from the start of the
packet before the packet is sent to F: CIROUTE, which performs the actual
routing .

4.2 Using the Routing Bytes for Local Data Flow

For asynchronous interfaces, routing can be done in a number of different
ways; but every data transfer must be preceded by an <ACK> character
(count mode) or an <FS> character (escape mode), and a routing byte that
gives the destination of the data. If ASCII data are to be sent from the host
to the Command Interpreter (in the Escape Mode), the file containing the
Command Interpreter routing bytes must precede the data, and must con-
tain the following characters:

T\0 where r~ is a CTRL backslash

To route the line from the Command Interpreter back to the Terminal Emu-
lator, afile should contain the following sequence:

1\>

RMS-20 Reference Materials

Routing back to the Terminal Emulator is essential if the Terminal Emulator
is being used to download the file. To get the host prompt back after down-
loading the file, the line must be routed back to the Terminal Emulator
mode (r>). If the routing byte was not sent, the following command can be
entered from the keyboard in command mode to route back to the Terminal
Emulator:

SEND TRUE TO <1>RESET TE;

If the Escape Mode <FS> characters appear as data in the PS 390 command
file, they must be prefixed by the escape sequence DLE (rP). The tP (deci-
mal 16), when immediately preceding the FS characters, will identify the
characters as being non-muxing data to be passed along.

The T\ <FS> character, the TF <ACK> character, and the escape sequence
('(P) can be changed by the user in the S1TE.DAT file. This should be done
when the sequences used with the PS 390 are incompatible with the host or
have another site-specific value.

4.3 Changing the <ESC>, And/Or <SQP> Sequence Characters in the
SITE.DAT File

If the <ESC>, and/or <SOP> sequence characters used by E&S are incom-
patible with the host, or have another site-specific value, these characters
can be changed by sending new values for these sequences to an instance of
F:DEPACKET in the PS 390.

These new values must be included as PS 390 commands in the S11'E.DAT
file that is loaded during the system power-up. These commands should
never be sent down from the host or entered in from the PS 390 keyboard
during host transmission.

NOTE

If the <ESC> or <SOP> characters are changed in the
S1'1'E.DAT file, this change must be incorporated in the
GSRs, as these routines use the same sequences for
routing .

Host Communications RMS-21

The PS 390 command for changing the escape mode <SOP> (default is

<FS>, decimal character code 28, ASCII character ` fi \') character is as fol-

lows

SEND CHAR(I) to <2>DEPACKET20;

where I is the integer value corresponding to the new <S~P> character in

escape mode.

The PS 390 command for changing the escape mode <ESC> character is as

follows:

SEND CHAR(I) TO <3>DEPACKET20;

where I is the integer value corresponding to the new <ESC> sequence.

The count mode SOP character, (ASCII <ACK>, decimal character code 06,
ASCII fiF), can be changed by sending the new integer value to
<2>DEPACKETO:

SEND CHAR(I) TO <2>DEPACKETO;

5. PS 390/IBM Host Communications

The following sections describe the data flow between the PS 390 and IBM
host processors. An introduction to the basic concepts of data communica-
tion, particularly those directly affecting the 3278 interface, are discussed
first.

5.1 PS 390 Data Communication

It is intended that all communication between the IBM host and the PS 390
use the cross-compatibility software provided to the user as the Graphics
Support Routines (GSRs) . The GSRs reside on the host as either FGRT~
subroutines or Pascal procedures, and are provided to support the interface
between the IBM 3274 Controller and the PS 390 Graphics System. The
PS 390 is an ASCII system, expecting and generating ASCII characters. The
IBM 3274 Controller is an EBCDIC system and is unable to generate the
ASCII characters expected by the PS 390. The GSRs provide an interface
that allows the two systems to respond to each other. Data that affect mes-
sages and message routing internally in the PS 390 are embedded with the
software communication routines and are, for the most part, transparent to
the user.

RMS-22 Reference Materials

5.2 Data Destinations

Data going from the host to the PS 390 have two possible destinations: the
PS 390 Command Interpreter (CI) or the PS 390 Terminal Emulator (TE).
Data for the CI can be initiated with a GSR or specific ASCII commands.

There are several PS 390 system functions that pass and route data through
the PS 390, prior to the command interpreter. These functions, and the data
paths, are discussed in section 5.5 and in Section RM7. The format of data
expected by the CI is given in Section RM14.

5.3 Write Structured Field

Graphics data intended for the CI are sent from the host to the PS 390 using
a special 3278 command called Write Structured Field (WSF) . The WSF
command is normally used by the IBM 32 74 Controller to create
non-keyboard type symbols for use in business graphics applications. All
non-WSF commands cause the terminal emulator to perform like a 3278,
but Evans &Sutherland has reserved the use of the WSF command to
transfer graphics data, because the Load Program Symbols option of the
WSF command allows binary data to be sent unchanged to the PS 390. The
use of the WSF command requires the 3274 to have support for
Programmed Symbols, an option of Configuration Support C, in the 3274
Control Unit. When the GSRs are used, the PS 390 will appear to the
graphics application exactly as it would in any other environment. The
communication routines of the software will insert the user data in a WSF
buffer, and perform all necessary data transfers with the 3278 Terminal
Emulator.

If the GSRs are not used, the user will need to have some understanding of
how Programmed Symbols work and how the 3274 sends the symbols to the
3278 to understand how the WSF data buffers are built. A detailed
description of Programmed Symbols and their use to transfer graphics data
is provided below.

5.3.1 Programmed Symbols

Each symbol displayed on the 3278 screen is composed of illuminated dots
made from a nine-by-sixteen dot matrix. The Load Program Symbols
function of the WSF command allows users to specifically illuminate any
particular set of dots in the matrix to create their own special symbol by

Host Communications RMS-23

setting the corresponding bit in the matrix description to a one. The matrix
is described by overlaying it with a set of eighteen eight-bit bytes'
(9x16=8x18=144).

The following diagram shows how each character matrix is overlaid with
eighteen bytes.

C H A R A C T E R M A T R I X
(nine dots wide)

byte 1

* * * ~

(sixteen

dots long)

byte 2

byte 3

byte 4

byte 5

byte 6

byte 7

byte 8

byte 9

byte 10

byte 11

byte 12

byte i3

byte 14

byte 15

byte 16

byte 17

byte 18

The data that describe the matrix are placed in a WSF buffer in the follow-
ing order.

byte 1 byte 2 byte 3 . byte 18

When the 3274 gets the matrix that was sent in the data stream described
immediately above, it converts the data back to a format that looks more
like the original matrix. The data are sent in sixteen groups of two bytes
each. The first seven bits of the first byte are unused, and the last bit of the
first byte is from byte 1 or 2 of the bytes sent. The second byte is made
directly from bytes three through eighteen.

RMS-24 Reference Materials

Data sent from 3274 to the 3278

x x x x x x x
x x x x x x x
x x x x x x x

byte 1

or

byte 2

x x x x x x x

byte 3
. through

byte 18

The PS 390 receives graphics data passed to it from the 3274 in the format
shown above. In order for the PS 390 to avoid the difficulty of reassembling
the bytes received, it simply discards the first byte of each of the sixteen
two-byte pairs for each programmed symbol. This means that the first two
bytes in each programmed symbol sent to the PS 390 cannot be used to
contain data.

The graphics data are placed in each program symbol matrix in the follow-
ing manner:

~<---unused------>~<

byte 1 byte 2 byte 3

~XXXXXXXX~XXXXXXXX~********~

graphics data >~

byte 18
. I********~

The 3274 expects the WSF buffer to contain one or more complete program
symbols. If the PS 390 graphics data does not fill a complete symbol, the
full eighteen bytes of the symbol must be sent, but the remainder is ignored.
To know exactly how much graphics data is present, the first two bytes of
the graphics data should contain the length of the actual data following. The
length does not include the length itself, the first two unused bytes in each
program symbol, or any unused bytes following the data in the last program
symbol. The length is used only by the 3278 Terminal Emulator, and is
external to the graphics data and any multiplexing scheme that may be
employed.

The following diagrams show the way the data would be placed in pro-
grammed symbols in the WSF buffer.

Host Communications RMS-25

bytes

in each ->

symbol

unused

1 2

length

of data
3 ~ 4

<5-~ data ~-i8>I lnuie2 I<3 - iata

end of data -- > unused

... I i6 i7 I is
<--extra at end->

1 I a I . . . I is

Note that an extra program symbol was added at the end of the buffer. It is
required by the PS 390 to verify that the previous symbol (the last symbol
containing data) was received correctly. Note also, that the data did not
completely fill the last symbol containing data, but that the full symbol was
built.

5.3.2 Load Programmed Symbols

The Load Programmed Symbols option of the WSF command that is used to
load the symbols described in preceding paragraphs is invoked by inserting
control information after the WSF command code and before the pro-
grammed symbols.

The control information contains the following data:

1. A length that includes itself, the control information and all symbols,
including the extra one at the end.

2. An identifier that indicates that this is a Load Programmed Symbol
request.

3. A flag byte that specifies which options are used.

4. Fields that identify the symbol set that the symbols would be loaded
into if this were an actual 3278. This information is not used by the
PS 390 and can be any legal value.

5. A starting code point identifier. This value would ordinarily be used
to match data from the host to the specific symbol the user wants
displayed. The PS 390 uses this value to indicate that the following
symbol will contain the data length in its first data bytes and that the
first data byte will be a code indicating which output port of the
function F:CIROUTE the data will be sent from. A value of X'41'
must be used.

The control information can be a constant that is inserted in the buffer, with
the length updated to specify the total programmed symbols length.

RMS-26 Reference Materials

The final buffer might look like this:

WSF

command

1
F3 wl wl

LPS

ID

l
06

i i
41

symbol

set IDs unused data

5-18 1 1 1
C2I41

i

02

WSF flag required

length code pt

data unused

~ ~

data

uu_ uu dl

i
dl

data

length

remainder

of symbol

unused data

3-18 1
** uu_

extra

end symbol

** uu uu ** ** rr rr ee ee ee

uu_ ** ...

5.4 Configuration of the 3274 Control Unit

To support the transfer of graphics data to the PS 390 using the Write
Structured Field command with the Programmed Symbols option, the 3274
Control Unit that supports the interface to the PS 390 must have the Con-
figuration Support C option. Also, the 3274 Control Unit must be custom-
ized with the following options:

162 — Structured Field and Attribute Processing (SFAP)

163 — Extended Character Set Adapter

The PS 390 should be included in the total number of devices that
require SFAP. Note that this number is a maximum. When the 3274
is lnitlallzed, special control blocks needed for SFAP are allocated as
needed on a port by port basis beginning with Port 0 until this
maximum is reached. SFAP devices attached to subsequent ports will
be unable to use the SFAP features until the control unit is
re-customized.

164 — Programmed Symbols

Refer to the appropriate IBM documentation for detailed instructions on the
3274 customization procedure.

5.5 Data ~~low overview

The following diagram illustrates data flow between an application program
residing on the host system and the PS 390 system function that initiates
graphics commands. In the diagram, routines or functions that pass and/or
route data are enclosed on four sides. The format that data are passed in is
shown in curly braces .

Host Communications RMS-2 ~

PS 390/IBM 3278 Interface Data Flow Diagram

APPLICATION

PROCEDURAL INTERFACE

{ tokens }

low-level routines

{ packets }

{ WSF commands

{ WSF buffer }

}

{ TE data }

3274 ontroller

{ TE data/expanded WSF commands }

{ TE data }

Host Screen Buffer

{ packets }

F:CIROUTE

{ Qpackets/Qmorepackets } { Qpackets/Qprompts }

F•READSTREAM F:CHOP

tokens }

F:CI

RMS-28 Reference Materials

There are low-level communication routines supporting the GSRs that use
formatting routines to package data for transportation. These routines build
WSF envelopes and put the data in outbound PS 390 buffers.

The CI expects "tokens" that consist of a size, a data type, and a value. For
a given PS 390 command, the type of command is implicit in the type of
one of the tokens. The CI accepts a stream of tokens until it has enough to
carry out the command. The GSRs can be thought of as "mailing" these
tokens to the CI. The tokens are deposited into several layers or "Qpackets"
and "Qmorepackets" of nested envelopes for transportation purposes, but
when they reach the CI, they are almost identical to what was built by the
GSRs.

A WSF command contains the tokens that are to be sent to the CI. Routing
information is included at the head of the WSF command. In the standard
PS 390 system, the PS 390 General Purpose Interface Option (GPIO) card
takes the routing information and the first 238 bytes of data in a WSF
command and puts them into a Qpacket. All subsequent bytes of data in
that WSF command are put into Qmorepackets, signifying that the same
routing information is to be used. Whenever a WSF command is filled to
capacity, or a routing change is required, the current WSF is terminated and
a new WSF command is started by the low-level routines. The IBM system
I/O services maintain a WSF buffer. The size of this buffer is configurable
but generally defaults to a value specified by the routines sending the data.
More than one WSF command can go into the buffer and the buffer may be
split into smaller pieces when it is sent by the communications access
method.

All data bound for the CI are packaged in WSF envelopes. Upon receiving
information from the host, the GPIO is able to differentiate graphical data
from TE data by the WSF command; anything not in a WSF command is
TE data and goes directly to the (Host) Screen Buffer.

Data intended for the CI are passed through a PS 390 routing function,
F:CIROUTE. This function expects routing characters at the start of each
Qpacket it receives.

The software on the host processor uses routing bytes that will channel the
data to the proper PS 390 system function. The routines build the data
packets with the routing data embedded in the `vSF envelopes. The GPIO

Host Communications RMS-29

repacks these data and passes them, along with the routing information, to
the PS 390 system function, F:CIROUTE.

In all cases, F:CIROUTE expects to receive data in a specific format called
Qpackets. This function, and an overview of local data flow in the PS 390 is
discussed in Section RM~.

5.5.1 Modification of Pool Sizes

The PS 390 function SETtJPIBM allows the number of empty packets in the
input pool for the PS 390/IBM interface system to be modified. The function
has one input queue and no output queues. The input queue accepts integer
values. At system configuration, the pool size is specified as 256. An exam-
ple of PS 39~ commands used to change the pool size for the IBM system
1S'

SEND FIX(64) TO <1>IBMSETUPI;

SEND FIX(99) TO <1>IBMSETUP3;

RMS-30 Reference Materials

CUSTOMER INSTALLATION AND USER MANUAL

PS 300 ETHERNET'" INTERFACE

For VAXNMS Operating Systems

w

EVANS & SUTHERLAND

March 1987
E&S #901194-073 Al

The contents of this document are not to be reproduced or
copied in whole or in part without the prior written
permission of Evans &Sutherland.

Evans &Sutherland assumes no responsibility for errors or
inaccuracies in this document. 1t contains the most
complete and accurate information available at the time of
pubs ication, and is subject to change without notice.

PS1, PS2, MPS, PS 300, PS 330, PS 344, PS 350, and PS 390
are trademarks of the Evans & Sutherland Computer
Corporation .

UNIX is a trademark of Bel I Laboratories. DEC and VA X
are trademarks of Digital Equipment Corporation.

Ethernet is a trademark of the Xerox Corporation.

Copyright ©~ 987
EVANS &SUTHERLAND COMPUTER CORPORATION

P.O. Box 8700, 580 Arapeen Drive
Salt Lake City, Utah 84108

PS 30o ETHERNET INTERFACE

CHANGED PAGES

This manual has been updated to make i t consistent with current firmware
capabilities. Pages that have been changed are indicated with an Al revision
level at the top of the page. Because additions to Chapter 6 were fairly
extensive, the entire section shows the new revision level.

Chapter 3 and Appendix A have notes to A2. Vo2 users with J C P systems
concerning the inclusion of the network node address in the SITED AT file.

Chapter fi has new information regarding option Bit 3 in the PS Multiplex
Message. Chapter 6 also describes two new functions, Frame Count Request
and Frame Count Reply.

PS 300 ETHERNET INTERFACE

PREFACE

This manual contains two levels of customer information: customer installation
requirements and user information specific to the interface.

Part 1 of this manual I fists the steps that you, ~ as the customer, must take prior to
requesting the hardware installation of the PS 300 Ethernet T '" interface. Installation
of E&S communication hardware is the responsibi I i ty of an Evans & Sutherland
customer engineer. E&S hardware installation information given in this manual is for
reference only and should not become the basis for unauthorized installation.

Customer requirements include purchase and installation of host-to-PS 300 cabling, the
Ethernet host coot rol I er circuit board, coax i a i cable, transceivers and cab I es, and
repeaters, if necessary. ~ You are also responsible for the installation of the
host-resident software (provided by E&S) on the host system.

it is assumed that you have a working knowledge of Ethernet physical and logical layer
spec~f ~cat~ons, Ethernet design and operation, DECnet network software protocol, the
VMS operating system, VMS file structures, and VMS commands and ut i i i t ies.

The first page of Part I of this manual is the Customer Installation Checklist. You must
complete this Checklist before requesting the hardware installation of the interface.

Chapter 1 is an introduction to the PS 300 Ethernet interface and protocols. This
chapter I ~sts the customer-suppl ~ ed hardware and software comments that must be at
the si#e and installed prior to requesting installation of the interface hardware.

Chapter 2 provides a general description of the VMS/PS 30o software. It is intended for
PS 300 customers using the VAXIVMS operating system. You must install the software
before requesting hardware i nstal I at ion.

PS 300 ETHERNET INTERFACE

Chapter 3 provides instructions for assigning the PS 300 node address in the host
computer and for creating a SiTE.DAT file on the PS 300 Ethernet firmware. The
SITE.DAT file must be in place before the host can recognize and communicate with
the PS 300.

Chapter 4 provides support information on the Ethernet interface, specif icai ly DECnet
network protocol. This information is provided to ensure that you are familiar with the
PS 300 GPIO -Ethernet network protocol.

Part II of this manual contains advanced user information for the PS 300 Ethernet
interface. The PS 300 Document Set contains all the user information for the PS 300
systems. The information provided in Part II of this manual is supplemental.

Chapter 5 describes the PS 300 display data structures. Information in this chapter
supports the physical I/O capabilities of the Ethernet interface. This information is
provided for the advanced PS 300 programmer.

Chapter 6 describes the blocks of data that are used by the Ethernet GPIO to transfer
data between the host and locations in the PS 340, such as runtime functions and mass
memory. This information is provided for users who wish to write their awn host
software to communicate with the PS 300 Ethernet interface.

PS 300 ETHER NET INTER FACE

RELATED DOCUMENTS

Information related to the contents to this manual appears in the following manuals:

PS 300 Document Set

The PS' 300 Document Set contains system installation, operation, programming,
and system-management information. The information is organized into five
volumes. Volume 3B of this set describes Pascal V2 and FURTRAN-77 Graphics
Support Routines under the VAX/VMS operating system .

PS 350 User's Manual (E&S #~~ ~ 72-092)

This manual provides information specific to the operation of the PS 350 and notes
the differences, both hardware and software, between the PS 33~ and the PS 350.
This document is supplemental to the PS 300 Document Set.

The following documents are not supplied by E&S but should be available at your site
for reference.

VMS ~Aanual Set

Guide to Networking on VAXNMS

The Ethernet: A Local Area Network; Data Link Layer and Physical Layer
Specifications, Version 2.0., November ~ 982.

Xerox Corporation
Network Systems Administrative office
3333 Coyote H i I I Road
Palo A i to, California 94304

PS 300 ETHERNET INTERFACE

CONTENTS

PART I

INSTALLATION INFORMATION

CUSTOMER INSTALLATION CHECKLIST

1. INSTALLATION REQUIREI\AENTS ~ -~

lNTRQDUCTION TO THE INTERFACE 1-1

CUSTOMER-SUPPLIED SITE HARDWARE REQUIREMENTS ~ -3

Retrofit Requirements 1-4

SITE SOFTWARE R EQU I R EIVIENTS 1-4

PS 300 FirmwarelSoftware ~-5

E&S INSTALLATION PROCEDURES 1-5

2. H SST SO FT1NA R E 2-1

DESCRIPTION OF THE SOFTWARE 2-1

INSTALLING THE FORTRAN GSRs 2-2

INSTALLING THE PASCAL GSRs 2-3

ESTABLISHING HQST COMMUNICATION USING THE GSRs 2-4

PS 300 ETHERNET INTERFACE

3, DECNET NODE ADDRESS -- THE SITE.DAT FILE 3-'1

ASSIGNING THE PS 300 NODE ADDRESS ON THE HOST 3-1

INSTALLING THE SITE.DAT 3-2

lnstaf f ing the SITE.DAT Using an Asynchronous Line 3-3
Installing the SITE.DAT Locally Using the PS 300 Keyboard 3-4

4. PS 300 ETHERNET COMMUNICATION PROTOCOL 4-1

ETHERNET CONFIGURATION PROTOCOL 4-1

DECnet Routing Layer 4-1
DECnet NSP Layer 4-1
Network Management Layer 4-2

PS 300 ETHERNET lNTERPACE

PART II

USER INFflRMATiON

5. PS 300 DISPLAY DATA STRUCTURES 5-1

OVER Vi EW 5_~

NODE DESCRIPTION 5_~ 7

Operation Nodes 5-3
Data Nodes 5_g

ADVANCED PHYSICAL I/O PROGRAMMING 5-2~

RAWBLOCK 5-22

PS 35~ DISPLAY STRUCTURES 5-24

Vec3bd4 5-25
Vec2bdfl 5-27
Vec3bs2 5_29
Vec2bs2 5_30
DstringD 5-31

6. PS 300 ETHERNET DATA TRANSFER DESCRtPT10NS 6-1

WORD DESCRIPTION 6_y

FUNCTIONS 6_2

Logical Write
. Log i ca I Read
Physical Write
Physical Read Request
Phys i ca 1 Read R ep I y
Synchronous Phys i ca 1 Writ e

6-3
6-4
6-5
6-6
6-7
~-8

PS 300 ETHERNET fNTERFACE

Lookup Named Entity Request 6-9
Lookup Named Entity Reply ~-9
Frame Count Request ~-'10
Frame Count Reply 6-~ 0
Diagnostic Loopback W r i to 6-11
Diagnostic Loopback Read 6-11
GPIO Statistics Request 6-12
GPIO Statistics Reply 6-12

APPENDIX A. PROGRAM PSNODE INSTRUCTIONS A-1

PS 300 ETHERNET INTERFACE

FIGURES

Figure 1-1.
Figure 1-2.

Figure 5-1.
Figure 5-2.
Figure 5-3.
Figure 5-4.
Figure 5-5.
Figure 5-6.

Figure 5-7.
Figure 5-8.
Figure 5-9.
Figure 5-1Q.
Figure 5-11.
Figure 5-12.
Figure 5-13.
Figure 5-14.
Figure 5-15.
Figure 5-16.
Figure 5-17.
Figure 5-18.
Figure 5-19.
Figure 5-24.
Figure 5-21.

Minimal Configuration
Medium Configuration

General Operation Node Format
Operation Node -Matrix Concatenation 2x2 (Matcon2)
Operation Node -Matrix Concatenation 3x3 (Matcon3)
Operation Node -Matrix Load 4x4 (Matload4)
Operation Node -Translate
Operation Node Matrix Concatenation 3x3
and Translate Concatenation 1x3
Operation Node -Matrix Load 2x2 (Matload2)
General Data Node Format
Vector-Normalized (Full Vector) Data Node - 3D (Vec3f0)
Vector-Normalized (Full Vector) Data Node - 2D (Vec2f0)
Block-Normalized Data Node - 3D (Vec3b0)
Block-Normalized Data Node - 2D (Vec2b0)
Polygon Data Node (Vecpoly)
Character Data Node (Dchar)
Change Bits Operation Node
Rawblock Data Node
Block-Normalized Data Alode - 3D (Vec3bd0)
Block-Normalized Data Node - 2D (Vec2bd0)
Block-Normalized Data Node - 3D (Vec3bs2)
Block-Normalized Data Node - ZD (Vec2bs2)
Character String Data Node (OstringD)

1-2
1-3

5-5
5-5~
5-6
5-7
5-7

5-8
5-9

5-1Q
5-15
5-16
5-17
5-18
5-19
5-20
5-22
5-23
5-25
5-27
5-29
5-30
5-31

PART

INSTALLATION INFORMATION

CUSTOMER INSTALLATION CHECKLIST

PS 300 ETHERNET INTERFACE

VAXNMS

E

Before requesting hardware installation and testing of the PS 300 Ethernet
interface, you, as the - customer, must meet the requirements for PS 300 Ethernet
interface installation. You have met the requirements when you can answer yes to
the questions 1 fisted below. Do not request hardware installation until this 1 fist is
complete.

1. Are you running D E C net on the DEC ® VAX /V M Sa, version 4.0?

Z. Is your VAX communicating successfully using the D E Cnet network?

3. Is the Ethernet transceiver and transceiver cable to support the PS 300 installed?

4. Is the total length of your coaxial cable less than 500 meters?

5. Is the length of the transceiver cable which will link the PS 300 to the Ethernet
coaxial cable less than 50 meters?

fi. Are ail transceivers on the cable at least 2.5 meters apart?

7. If this is a field upgrade, are all the card levels in your PS 300 at the necessary
revision levels? If you do not know the level of your cards, contact the E &S
Customer Service Center at 1-800-582-4375.

8. Has your PS 300 node address been installed on your host?

9. Have you built a SITED A T file on your host system with the PS 300 address, or
are you ready to install the SI TE. D A T from the PS 300 keyboard after installation
is complete?

10. Have you made sure that a system manager or someone with system privileges
will be available during the hardware installation process?

If you have answered yes to all the questions, call E&S Customer Service Center at
1-800-582-4375 and request installation of the interface.

a

I nstal I ati on Requirements 1-1

1. INSTALLATION REQUIREMENTS

This chapter should be read carefully before beginning any installation procedures. As
the customer, you must meet several requirements before the hardware installation of
the interface by an Evans &Sutherland customer engineer can take place. Please
fallow the procedures outlined in this manual before requesting installation of the
hardware at your site.

if there are any questions regarding installation procedures or requirements, please call
the Software Support Hotline (800) 582-4375.

INTRQDUCTIQN To THE INTERFACE

The PS 300 Ethernet interface allows a PS 300 to link to an Ethernet data
communications network. Ethernet falls in a middle ground between
long-distance, low-speed networks that carry data for hundreds or thousands of
kilometers,. -and specialized, very high-speed connections that are generally
limited to tens of meters. Ethernet transmits bursts of message packets at a
speed of ten megabits per second. It is intended for use in office automation and
distributed data processing environments to allow a selected group of computers
to communicate with each other.

A I1 computers ~on the same Ethernet network are physically connected to a coaxial
cable, requiring that all computers be within a relatively close proximity. The
coaxial cable is the medium _over which the computers in the network
communicate.

Each computer in the network has a unique address that distinguishes it from the
other computers in the network. Each message (data packet) sent via the coaxial
cable includes the address of the computer for which it. is intended. Computers in
the same network ignore messages that do not contain their particular address.

There are several hardware and software layers that make up Ethernet to allow
communications via the coaxial cable.

Basically, all computers linked to Ethernet have an Ethernet controller (.circuit
board with specific Ethernet hardware). The Ethernet/GP10 board installed in the
PS 300 logic cabinet provides the Ethernet controller for the PS 300. _

1-2 PS 300 ETHER NET INTERFACE

Each computer in the network is physically tapped to the coaxial cable with a
transceiver and transceiver cable (see Figure 1-1). Up to 100 computers can be
linked to the same Ethernet, providing the distance between transceivers is at
least 2.5 meters and the coaxial cable (or cable segments} is no longer than 500
meters (see Figure 1-Z). Repeaters (shown in Figure 1-2 but not discussed in
detail in this manual) are hardware devices used to amplify signals on the coaxial
cable for larger Ethernet networks.

Coaxial Cable Segment
F (500 M max)

1
Transceiver Cable Coaxial Cable

F 50 M max

Computer
Station-->

Transceiver S~ Connection
to Coaxial Cable

(l00 max per segment)

Figure 1-1. Minimal Configuration

Installation Requirements 1-3

segment 1

Repeater

M

Segment Z

Figure 1-2, Medium Configure#ion

CUSTOMER-SUPPLIED SITE HA-RDWARE REQUIREMENTS

The customer must supply and install the following Ethernet hardware:

• Ethernet Host Controller Circuit Board
• Coaxial Cable
• Ethernet Transceiver
• Ethernet Transceiver Cable
• Ethernet Repeaters (if necessary)

As the customer, you must meet the following requirements before the hardware
installation of the interface can take place. - -

■ You should have a local area Ethernet network installed and running which
meets the Ethernet specifications.

■ Physical layer specifications of the Ethernet network include the installation
of a coaxial cable connected to the host and transceivers (plus repeaters, if
necessary) and transceiver cables for each computer station linked to the
Ethernet coaxial cable.

1-4 PS 300 ETHERNET INTERFACE

■ Coaxial cable and transceiver cable length must not exceed the maxi mum
lengths set forth in the Ethernet specifications.

■ You should install the transceiver and the transceiver cable but should not
connect them to the PS 300.

Ethernet specifications are documented in The Ethernet: A Local Area
Network; Data Link Layer and Physical Layer Specifications. Version Z.O,
November 1982. {Questions about Ethernet specifications or E &S-qualified
vendors supplying Ethernet=compatible equipment should be directed to the
area E &S account executive.)

For your reference, the hardware supplied by E &S for the PS 300 Ethernet
interface consists of:

• Card Assembly, General Purpose Interface Option (GPiO) {E&S #204179-100)
• Cable Assembly, PS 300 Ribbon (E &S #204345-005)
• Screw (E &S #802004-103)
• Lock Washer (E &S #802300-008)

Retrofit Requirernents

The PS 300 Ethernet interface requires a PS 300 system with a 2K Arithmetic
Control Processor (ACP) card E&S #204130-101 (wire-wrap) A4 or above; or
204130-100 (P C) A 3 o r above.

The PS 300 P C Graphics Control Processor (G C P) card (E &S #204111-100, P C)
must be at E C 0 revision level A3 or higher. The PS 300 wire-wrap G C P card
(E &S #204111-101) must be at E C 0 revision level BO or higher to support the
PS 300 Ethernet interface. If E C Os are required to the G C P card, they must be
completed prior to the installation of the option.

!f the Ethernet interface to the PS 300 is to be installed in an existing system,
make sure your cards are at the appropriate I eve I s. I f you do not know the I ere I
of your cards, contact the E&S Customer Service Center at 1~-800-582-4375.

SITE SOFTWARE REQUIREMENTS

The PS 300 Ethernet interface currently runs only under VMS D E Cnet and U N i X
operating systems on a DEC VAX . Separate firmware is required for each
network protocol. Any implementation of the PS 300 Ethernet interface with any
other operating system, network protocol, or host computer is not supported by
Evans &Sutherland.

v

Installation Requirements 1-5

DECnet network software must be installed and running on the VAX before the
E&S customer engineer arrives at the site to install the PS 300 Ethernet interface.

PS 30o F ~ rrnwarelSoftware

As the customer, you are responsible for installing the E&S-supplied software on
your host system. The standard firmware and software are included in the
purchase price of the interface and are shipped to the software shipping address
provided on the PS 300 sales checks fist.

The following #firmware/software packages must be available at your site prior to
requesting installation. A packing list shipped with the software provides a
complete I fist of the contents.

For PS 330 systems: PS 330 DECnet Ethernet Interface Package
E & S #904050-018

For- PS 340H systems: PS 340H DECnet Ethernet Interface Package
E &S #904050-028

For PS 3405 systems: PS 340S DECnet Ethernet Interface Package
E & S #904050-038

For PS 350 systems: PS 350 DECnet Ethernet Interface Package
E &S #904050-049

These packages contain the system firmware, interface software, diagnostic
diskettes, Performance Verification Test, and demonstration diskettes.

E&S INSTALLATION PRt)CEDURES

When you have completed all the customer installation requirements, as shown on
the customer installation checklist, you should request the hardware installation
of the interface by contacting the E&S Customer Service Center at
1-800-582-4375. Before arriving on site, the customer engineer will verify that
the system is ready for installation by going over the customer installation
check I i st with you.

At the installation, the host system manager (or someone with system privileges)
must be present to oversee PS 300 Ethernet interface card installation and create
the SITE. D A T file that is necessary for host/PS 300 communications.

Upon completion of the installation, the engineer will run interface diagnostics.
These diagnostics verify the functionality of the Ethernet interface card.

1-fi PS 300 ETHER NET INTER>=A OE

After the diagnostics have been successfully run, the engineer will run the
Performance Verification Test for the PS 300 Ethernet Interface (I PVT). This test
will verify the communication link between the PS 300 and the host system. The
communication link is tested by:

1. Loading a PS 300 function network by writing it via the Ethernet interface.
The network manipulates the binary vectors.

2. Sending a binary vector list to the PS 300 via the Ethernet interface. The
vector list can be manipulated by the function network in Step ~.

3. Performing a data recirculation test by sending various sized buffers of ASCII
text to the host and then routing i t back to the PS 300. The text is compared
after recirculation.

The IPVT .has run successfully when the binary vector list can be manipulated by
the function network that activates the control d,als and there are no errors
logged by the data recirculation test.

Upon successful completion of ail tests, you, as the customer, will sign a
Performance Verification Test acknowledgement that initiates the fi0-day product
warranty.

Host Software 2-1

2. HOST S4 FTWA R E

You are responsible for installing host-resident software on the host system prior to
requesting installation of the interface hardware.

DESCRIPTION OF THE SOFTWARE

The software that supports the Ethernet Interface is distributed on 1600-bpi
magnetic tape. The software contains the PS 300 Graphics Support Routines
(GSRs) that contain the code necessary to communicate with the D E C net
Ethernet interface. These files should be read from the tape, compiled, and
inserted in a library on the host. User application programs are linked with the
GSRs library. The PS 300 GSRs are described ~ in volume 3B of the PS 3~0
Document Set.

To read the GSR files off of the accompanying tape, the following D C L command
sequence should be used:

$ ALLOCATE MTnn: (M Tnn: refers to the physical device name of
$ MOUNT MTnn: PSDIST the appropriate tape drive unit)
$ COPY Mtnn:*.*;*
$ DISMOUNT MTnn:
$ DEALLOCATE MTn~:

The magnetic tape contains many other files that are not related to the Graphics
Support Routines. Refer to the file R E A D M E.TA P for a description of the
contents of these other files. R E A D FO R. GSR contains a short description of each
of the FORTRAN GSR files.

2-2 PS 300 ETHERNET INTERFACE

INSTALLING THE FORTRAN GSRs

This section contains brief installation instructions for the DEG/V A X
FORTRAN-77 version of the PS 300 GSRs. The GSRs will compile only under a
FORTRAN-77 compiler and are supported under VMS Version 4.2 and higher.
PS 300 Graphics Firmware Version A2.V01 or higher is required to run the
Graphics Support Routines.

Table 2-1 I fists the source files for the DEC VAX /VMS F 0 R T R A N -77 version of
the Graphics Support Routines, along with a description of each file.

The abject module library containing ALL of the DEC VAX/VMS F 0 R T R A N -77
GSR subroutines is contained in the file:

GSR F.O LB

To link your program with the DEC VAX /VMS F 0 R T R A N -77 GSRs, enter the
following command:

$ LlNK <pgm>,c...any additional user object modules...>,GSRF/L!8

Table 2-1. FORTRAN-77 Graphics Support Routines

Fide _N_a~~ __ _ ,. _ . , . _ __ _ __ =Descrip_tion -_-_
GSRF.FOR Source file for the GSRs.

PROFO~LIB.FOR Source file for the intermediate code between GSRF.FOR
and PROLlB.MAR.

PR010LIB.M A R Macro source file for the low-level 1/0 subroutines used by
the GSRs to communicate with the PS 300.

P R O C O M F. F O R Contains the global definitions of the F O R T R A N -77 V A X
GSR's and is I N C L U D Ed by GSR F. F O R.

Contains the globs! definitions for the P R O F O R Ll B. F O R.

Contains file that may be ~ I N C L l.i D Ed by the user in an
application program. Contains the constant definitions.

PROFORCOM.FOR

PROCONST.FOR

Host Software 2-3

The files CIRCI.EF.FOR and BLKLEVF.FOR contain the source code of twa VA-X
FC R T R A N-77 GSR programs which demonstrate some of the subroutine calls.
These files must be compiled and finked with the GSR library.

To recreate the DEC VA XIVMS FORTRAN -77 GSRs from the original source
files, the following DCL command sequence should be used:

$ FORTRAN GSRF
$ FORTRAN PROFORLIB
~ MACRO PROIOLIB
$ LIBRARY/CREATE GSRF GSRF,PROFORLIB,PROIOLIB

INSTALLING THE PASCAL GSRs

This section contains brief installation. instructions for the DEC VAX P AS C A 1. V2
version of the Graphics Support Routines (GSRs). . The GSRs will compile only
under a V A X PASCAL V2 compiler and are supported under VMS Version 4.2 and
higher. PS 300 Graphics Firmware Version A2.V01 or higher is required to run the
Graphics Support Routines.

Table 2-2 I fists the source files for the DEC VAX /VMS PASCAL V2 version of the
Graphics Support Routines, along with a description of each file.

Table 2-2. Pascal V2 Graphics Support Routines

F' - N ~- r~
GSRP.PAS Source file for the GSRs

PROPASLiB.PAS Source file for the intermediate i/0 procedures
conceptually residing between GSR P.PAS A N D
PROIOLiB.MAR

PROiOLIB.M AR Macro source file for the low-level I/O procedures used by
the GSRs to communicate with the PS 30~

PR0C0NST.PAS File that should be INC~UDEd by the user in an application
program. Contains C 0 NSTant definitions.

PR OTYPES.PAS File that should be IN CLU DEd by the user in an application
program. Contains TYPE definitions.

PR OEXTR N.PAS File that should be IN CLU DEd by the user in an application
program. Contains E X TE R Na! definitions.

2-4 .PS 300 ETHERNET INTERFACE

The object module library containing ALL of the DEC VAX/VMS PASCAL V2 GSR
procedures is contained in the file:

GSR P. O LB

To link your program with the DEC VAXIVMS PASCAL V2 GSRs, enter the
following command:

$ LI N ~ <pgm>, <...any additional user ob jeot rnoduies... >, GSR P/L18

The files CIR CLEP.PAS and BLKLEVP.PAS contain the source code of two VA X
PASCAL V2 GSR programs which demonstrate some of the procedures. These
files must be compiled and linked with the GSR library.

To recreate the DEC VAX/VMS PASCAL V2 GSRs from the original source files,
the following D C L command sequence should be used:

$ PAS GSRP
$ PAS PROPASI.iB
$ MACRO PROiOLIB
$ LIBRARY/CREATE GSRP GSRP,PROPAS~IB,PROIOLIB

ESTABLISHING HOST Cfl~AMUNICATION USING THE GSRs

The G RSs read a file called "PSD EVI C E. D A T" to determine which device to
access. Before a user program can run, this file must be generated with the .
following line:

LOGDEVNAM-nodenar~ne/PHYDEVTYP-ETHERNET

where nodename is the DECnet Node Name for the PS 300.

for example:

LOGDEVNAM=PS300A/PHYDEVTYP=ETHERNET

The Site. Dat File 3-1
l

3, DECNET NODE ADDRESS--THE S1TE.DAT FILE

As the customer, you are responsible for assigning and installing the PS 300 DECnet
node address on the host computer and for installing this same address in the SITE. D A T
file on the PS 300 firmware. These are both simple procedures.

The DECnet node address should be instal led on the host at the same time the
E&S-supplied software is installed, and prior to hardware installation. If this is a new
system installation, the SITE. D A T file must be created after the hardware, installation
is complete, as the process requires access to the PS 300 floppy diskette drive.

NOTE

The G PI O/Ethernet card will not start processing network
traffic until it receives a DECnet node address from the
SITE.DAT file.

This chapter provides instructions for both procedures.

ASStGN1NG THE PS 300 NODE ADDRESS ON THE HOST

The DECnet node address of the PS 300 must be known to the host before the
PS 300 can be recognized. The DECnet node address is generally selected by the _
network manager or system manager for the host computer. The DECnet node
address and name is then instal led in the DECnet volatile and permanent data
bases by the system manager. The following Network Control Program commands
show how to instal I the node address of 1.46 (area = 1, node = 46) with_ the name of
'PS300":

(• Z-
N C P> set node 1.46 name PS300

N C P> define node 1.46 name PS300
l •~

See the VAXNMS Network Control Program Reference Manual and the Guide
to Networking on VAXNMS far more details.

. 3-2 PS 30+0 ETHERNET INTERFACE

(Revision A1)

INSTALLING THE SITE.DAT

The SITE.DAT file is the final file on the PS 300 graphics firmware diskette. This
file enables users to configure features for the PS 300 system in a bootable f i ie.
The file is assumed to contain a string of ASCU commands,

if this is a new system, the PS 300 control unit, display, and keyboard must be
installed before you can create and download the SITE.DAT.

The information needed in the S1TE.DAT file may be installed in one of two ways:

1. Sy downloading ahost-resident file over an asynchronous i ine. This is the
preferred method.

2. 8y accessing the command mode on the PS 300 keyboard and entering the
information locally.

The DECnet node address for the PS 300 must be put in the SITE.DAT file of the
PS 300. The command to put in the S1TE.DAT f lie is

SEND ' xxxx' to < 1 >pi o1$;
(Note that J C P A2. V02 users must send address to < 1 >ei o1$;)

where xxxx is the DECnet node address in 4 hexidecimal digits. In the 16-bit
DECnet node address, the most significant 6 bits are the area nurnber and the
least significant 10 bits are the node _address in the above area. Note: if area
numbers are not used on your network, the area number def au! is to 1.

The algorithm to get the DECnet node address is therefore:

{area-number * 1024) + node-number

For example the DECnet n~ie address for node 1.46 is

{1 * 1024) + 46 = 1070 deci ma! = 042E hexideci mal

Thus the S1TE.DAT command would be
e~

SEND '042E' to <1 >p~ 01$;

The program PSNODE described in appendix A can be used °to convert a DECnet
node address into the form for the SITE.DAT f ile.

The Site. Dat File 3-3

y

installing the S1TE.DAT Using an Asynchronous Line

if you can communicate with the PS 300 over an asynchronous I ine, you must
perform the following steps to install information in a S1 T~E. D A T file that provides
the PS 300 DECnet node address.

N oTE

The characters "t\" represent the CTRL and backslash
keys pressed simultaneously. This control character has
an ASC 11 value of deci mai 2$.

1. Create a file on your host that contains the following:

t\: { control sequence that provides the routing byte }
{ to•w~ite ASCII data to the firmware diskette }

SEND 'x~cxx' to <1 Bpi o1$; { xxxx is the 1 fi-bit DECnet }
{ address, in hexadecimal, assigned }
{ to the PS 300 }

t\; { control sequence that provides the routing byte }
{ to close the file an the firmware diskette }

CLOSE SITE; (the PS 300 command that closes the file }

t\> { control sequence that provides the routing byte
(to route following characters to the terminal emulator

}
}

For example, the DECnet address of the node represented by 1.46 described
earlier would be installed in the SITE. D A T as:

t ~:
SEND '024E' to <1 >pi of $;
t ~;
CLOSE SITE;
1~>

2. Make a backup copy of the PS 300 graphics firmware that supports your
system. Instructions for copying the firmware are in Volume 5 of the PS 300
Document Set. For new systems, the copy can only be made after the
successful installation of .the E &S system hardware and the completion of the
PS 300 Performance Verification Test.

3-4 PS 300 ETHERNET INTERFACE

r

3. Mount the backup copy of the firmware diskette and boot the system. Booting
instructions are provided in Volume 1 of the PS 300 Document Set.

4. Copy the host-resident SITE. D A T file from the host to the PS 300 diskette
using the asynchronous fine and standard host-system utilities.

5. Reboot the system using the diskette that contains the newly created
SITE. D A T.

installing the S1TE.DAT Locally Using the PS 300 Keyboard

If you cannot communicate with the PS 300 over an asynchronous line, the
SITE. D A T file information must be entered directly from the PS 300 keyboard.
To install information in a SITE. D A T file that provides the PS 300 node address,
do the following:

1. -Make a backup copy of the PS 300 graphics firmware that supports your
system. Instructions for copying the firmware are in Volume 5 of the PS 300
Document Set. For new systems, the copy ~ can only be made after the
successful installation of the E &S system hardware and the completion of the
PS 300 Performance Verification Test.

2. Mount the backup copy of the firmware diskette and boot the system. Booting
instructions are provided in Volume 1 of the PS 300 Document Set.

3. Access command mode on the PS 300 keyboard by pressing the CTRL/LI N E
LOCAL keys simultaneously. The command prompt "C @" should appear.

4. Enter the following commands (each command line must be followed by a
RETURN):

Configure A;
SEND 'Send ' ' xxxx' ' to < 1 >pi o1$;' to < 1 > WdaO;
SEND 'Close Site;' to < 1 >WdacO;
Finish Configuration;

Note the occurrence of two single quotes before and after xxxx.

The Si te. D at File 3-5

In the above command sequence, xxxx is the 4-digit hexadecimal DECnet node
address assigned to the PS 300 preceded and followed by pairs of single
quotes. For example, the DECnet node address of node represented by 1.46
described earlier would be instal led in the S1 T E. D A T as:

+Configure A;
SEND 'Send ' ' 042 E' ' to < 1 > p i o 1$;' to < 1 > VI~da0;
SEND 'Close Site;' to < 1 > Wdac0;
Finish Configuration;

NOTE

If you enter a command incorrectly from the keyboard, and
the command 'Close Site;' has not been sent to <1 > WdacO,
you can reboot the system and start over. However, i f the
'Close Site;' command has already been sent to WdacO, you
must delete the SITE. D A T file- that now exists on the
firmware diskette before you reboot and begin again.
Instructions for deleting files on the firmware diskette are
provided in volume 5 of the PS 300 Document Set.

5. Reboot the system using the diskette that contains the newly created
SITE.DAT file.

a

Communication Protocol 4-1

4. PS 300 ETHERNET COMMUNICATION PROTOCOL

The PS 300 D E Cnet Ethernet G PI O Interface was designed so that any computer
host that supports D E Cnet, VAX Version 4.0, can establish one high speed I ink to a
PS 300 graphics terminal.

ETHERNET CONFIGURATION PROTOCOL

The GPIO supports the Ethernet Version 2.0 configuration protocol to enable
testing of the network. Refer to the Guide to Networking on VAX/VMS.

DECnet Routing Dyer

The G PI O operates as a D E Cnet Ethernet End Node. Therefore, at least one other
node on the Ethernet must be a R outing Node.

D ECnet NsP layer

The G PI O supports the full i mpiementation of the NSP Protocol, Version 4.0.0,
with the following exceptions:

1. Only one logical connection from a host to the PS300 is supported at any one
t~ me.

2. Since the PS 300 is considered a slave device to the host, the PS 300 cannot
request the GPI 0 to establ ish a connection I ink to a host.

3. Since Session Control Message Flow Control has been made obsolete by DEC,
it is not implemented in the GPI 0.

4-2 PS 300 ETHER NET INTERFACE

Networ~C Management Layer

The PS 300 does not provide support for any Network Management or Maintenance
functions except #or the Ethernet Configuration Protocol.

PART II

USER INFORMATION

v

•

PS 300 D ispiay Structures 5-1

5. PS 304 DISPLAY STRUCTURES

This chapter describes the PS 300 display structures, Information in this chapter
supports the physical I/O capabilities of the interface. This information is provided for
advanced PS 300 programmers.

ovERv~Ew

Display structures in the PS 300 represent the operations and data that form the
two- and three-dimensional objects constructed by user application programs.
The display structures are traversed each refresh cycle by the display processor.
These structures are contained in a structured display file which is created and
modified under control of the Graphics Control Processor (GCP), the 88000
processor in the system.

NODE DESCRIPTION

Display structures are organized as an acyclic hierarchy of nodes that are either:

• Operation nodes that change the "state of ~ the machine" for descendent data
nodes.

• Data nodes (dots, lines, polygons, or characters).

• Instance nodes, sometimes known as set nodes, that group lists of branches of
the acyclic hierarchy tha# are to be traversed.

Every type of node may be named. Naming a node causes the name to be entered
into a dictionary table (hash -table), along with a pointer indicating where the node
associated with that name resides in PS 300 mass memory. The name in the hash
table is located in what is called an alpha block. The address of the alpha block
remains constant as long as the named node is not deleted or referenced by
another node (or function) in the system.

5-Z PS 300 ETHERNET INTERFACE

When a node in the system references another node, an alpha pointer is placed to
the alpha block to link the current node with that name. This means that a level
of indirection is introduced for every reference to an entity in the system. The
indirection is a small penalty for the flexibility this procedure provides. It also
implies tfiat there is an alpha block for every node, regardless of whether the user
has chosen to associ ate a nam a with the node.

The display structures are constantly being traversed for display by the display
processor. . When a node is changed, the G C P makes a copy of the changed node,
changes the elements, and then changes the pointer to the node in the alpha
block. This occurs whenever a matrix is changed, a new display is enabled, etc.
1n essence, then, every change to the display structures causes the change to be
"double buffered" unti i the display processor makes the change at the end of each
refresh cycle. If the G C P changes that data structure, a named entity is never in
the same location in mass memory. Conversely, the PS 300 never performs
"garbage collection" on existing named entities.

if the node is never referenced by a function network (or externally from the host)
a named entity is always, in the same location in mass memory. This permits the
physical I/O capabilities to provide extremely close coupling of the host and
PS 300 display structures {not the PS 300 system}.

The Lookup Named Entity I/O function implemented by the PS 300 device driver
returns the actual mass memory address of the node rather than the pointer to the
alpha block. This means that values in the node can be changed directly.
However, if the node is being displayed, the A C P may traverse the node during
the brief but finite time frame when are being changed. This may result in .an
improper picture being displayed (new x value with old y value; or a matrix with
mixed values -- part new, part old), but should never cause the display processor
to traverse the display structures improperly .as long as no pointers are changed.
(Pointers should never be changed with the physical I/O facilities; that is best left
to the GCP).

Thus, given the exact formats of the display structures and the Read Physical and
Write Physical I/O requests, display structures can be written directly under host
control (without any inter#erence by the G C P) as long as the named entities to be
updated are:

1. Created i n i t i al i y by the G C P using standard PS 300 commands.

2. Not involved in any way with local operations (function networks). However,
see N 0 TE below.

3. Not changed by the host program in any way except by using the physical I/O
facilities.

PS 300 Display Structures 5-3

NOTE

Nodes that precede nodes to be updated using the
physical IIO capability can be involved with local
operations. For example, viewing operations can be
performed locally while updating modeling
transformations using the physical I/O facility.

Most often only matrices and/or data nodes are modified
using the physical I/O requests. However, all named
entities can be modified in the same manner given the
same assumptions. The exact data formats for some
operation nodes (matrices) and data nodes follow.

operation Nodes.

An operation node is a data structure element that modifies the state of the
display processor. An operation node consists of:

• an integer that indicates the display structure is an operation node (=1).

• an integer that specifies the particular type of operation node, the descendant
alpha, and a variable number of fields required by tie particular type of
operation node.

Because an operation node modifies the state of the Arithmetic Control Processor
(A C P), the A C P state must be saved before traversing a hierarchical branch which
includes an operation node.

The state is then restored before traversing the next hierarchical branch. For any
operation node, bit 15 of the operation type is a conditional bit. If this bit is set
(and if bit 15 Cthe blink bitl in the Condition Mask of the A CP State is zero), the
associated operation node is not executed. In al! other cases, the operation node
is executed. In all cases, descendent operation nodes are traversed.

NOTES

1. Each element of the following blocks of data is a
16-bit element. Double elements, shown as
"~-- .--~", are 32-bit elements.

5-4 PS 300 ETHERNET INTERFACE

NOTES (continued)

2. In the 32-bit mantissas (fractions) used for translates
that are shown as:

-- Tx(H)
Tx(L)

-- Ty(H)
TY(l)

-- Tz(H)
Tz(L)

the most significant bit of the second word should
always be 0 (zero), as shown in the figure below. This
is also true for the PS 350 32-bit mantissas.

--
0

Tz(H)
. Tz(L)

This also applies to the matrix mantissas show as:

--
M L1 ,1(H)]

M [1,1(L)]

where the most significant bit of the second word
should always be 0 (zero), as shown in the figure
below.

M L1,1(H)~

3. A "C" in the left corner of the Operation Type field
indicates the Conditional Bit (bit 15).

The following figures provide the formats for the operation nodes.

PS 300 D ispiay Structures 5-5

Operation Node 1

C Operation Type

-- Descendant Alpha --

Field 1

Field 2

Field n

figure 5-1. General Operation Node Format

Operation Node 1

C Operation Type 2

-- Descendant Alpha --

Exponent

M [1,1]

M L1,2]

M [2,1]

M [2,2]

- Matcon2

Figure 5-2. operation Node - Matrix Concatenation 2x2 (Matcon2)

5-6 PS 300 ETHERNET INTERFACE

Operation Node 1

C Operation Type 3

-- Descendant Alpha --

Expanent

M [~,2(L)l

Tran Flag 0

- Matcon3

0 = No Translation
Fol lows

Figure 5-3. Operation Node - Matrix Concatenation 3x3 tMatcon3)

PS 300 Display Structures 5-7

Operation Node 1

C Operation Type 4

-- Descendant Alpha --

Exponent

Exponent

M L1,1(H)J

--

M L1,2~H)~

M ~1~2(L)]

M [4,4(H)~

- Matload4

(Row 4)

(Rows 1-3)

figure 5-4. Operation Node - Matrix Load 4x4 (Matload4)

Operation Node 1

C Operation Type 5

-- Descendant Alpha --

Exponent

-- Tx(H)
Tx(L)

--

-- Ty(H)
Ty(L)

--

Tz(L)

- Translate

Figure 5-5. Operation Node - Transiate

5-8 PS 300 ETHERNET INTERFACE

Operation Node 1

C Operation Type i 4

-- Descendant Alpha --

Exponent

--
M [1 ,1(L)]

--
M C1 ,2(H) ~

-
- --

Tran Flag 1

Exponent

Tx(L)
-- Ty(H)

Ty(L)
--

Tz(L)

- Mat3 Trans

1 = T raps I at i on
Fol lows

Figure 5-6. Operation Node Matrix Concatenation 3x3
and Translate Concatenation 1x3

PS 300 Display Structures 5-9

Operation Node 1

C Operation Type 28

-- Descendant Alpha --

Exponent

M [1 ,1]

M [1 ,2J

M [2,1J

' M C2,2J

- flat 1 oad2

Figure 5-~. operation Node -Matrix Load 2x2 tMatload2)

Data Nodes

A data node is the display structure primitive that causes the display processor to
convert data into a picture. A data node consists of:

• An integer that indicates this display structure is a data node (=2).

• An 8-bit field that specifies the mode of vectors in the data node.

• An 8-bit integer that specifies the particular type of data node.

• A 32-bit integer which points to the next data node of identical data type.

• An integer (n) that specifies the number of vectors, polygons or characters in
the data node.

• A 16-bit integer that specifies the pick index.

• Either vector data (including polygons) or character data.

Vector data consist of the two- or three-dimensional vectors (preceded by
polygon attribute information if the data are polygons).

5-10 PS 300 ETHERNET INTERFACE

Character data consist of an initial translation, spacing information, and the
character string.

Figure 5-8 shows the general data node format.

Data Node 2

Mode Data Type

-- Pointer to Next Data Node --

n

Pick Index

Vector/Character Data

Figure 5-8. General Data Node Format

Mode, data type, pointer to next data node, pick index, and vector/character data
are detailed further below.

Mode Field

The mode field of a data node consists of:

15 12 11 10 9

Dot Mode

Data Type

Dot Mode = 0 for no endpoint intensification
Dot Mode = 1 for endpoint intensification

PS'300 Display Structures 5-11

The dot mode field of a data node is a single bit that specifies how the vectors are
to be drawn. When dot mode = 0, vectors are drawn normally. When dot mode =
1, each endpoint of the vector list is drawn as an intensified dot.

Data Type

The data type field specifies the particular format of the data node. The display
processor accepts vectors of two formats:

1. Vector-normalized data (ful i vectors).

Vector-normalized data consist of 16-bit, signed binary fractions that share a
common ~8-bit, signed integer exponent and an explicit=_ 7-bit, intrinsic
intensity for each vector. For the vector:

(x, y, z, i~: x=2e*f x, y=2e*f y, z=2e*fz, i = i

where a is the signed 8-bit integer exponent; the !6-bit significant digit fields
f x, fy, and f z satisfy -1 <f <1; and the 7-bit intrinsic intensity field i satisf ies
0<i<1.

2. Block-normalized data

Block-normalized data consist of 16-bit signed binary fractions that share a
common 7-bit signed integer exponent and an explicit 8-bit intrinsic intensity
for each block of vectors. For the vectors:_

x1 - 2e*fx1, yi = 2e*fy1, z1 - 2e*fz1, i-i
x2 = 2e*f x2, y2 = 2e*fy2, z2 = 2e*fz2, i = i

xn - 2e*f xn, yn = 2e*fyn, zn = 2e*fzn, i - i

where a is the signed 8-bit integer exponent; the 16-bit significant digit fields
fx, fy, and fz satisfy -1 <f<1; the 7-bit intrinsic intensity field i satisfies 0<i<1.

Block-normalized data may be treated as -16-bit fixed point data by
applications that (1) only require 16 bits of precision and (2) wish to avoid
converting integers to PS 300 data formats.

5-12 PS 300 ETHERNET INTERFACE

3. Polygon Data

Vectors contained within polygon nodes consist of 3D vector-normalized data
as described above.

4. Character Data

Character data consist of a character string, an initial translation that
positions the character string, and information that controls the spacing
between characters.

Next Data Node Field

The next data node field contains a 32-bit pointer to the next data node of
identical type (0 =nil pointer). This pointer allows a set of character strings to be
grouped together (Label Block). It also replaces the need to have a VecSet node
group a set of vector I fists together.

Pick Index Field

The pick index field of a data node is reported with the vector count when a pick
occurs, identifying the vector list in which the pick occurred.

A (though the number of vectors that may be contained in a data node is 65,535 (if
n is treated as a 16-bit unsigned number), by convention the maxi mum number of
vectors that are specified in a given data node block is 2,048. (The actual number
of vectors is usually much smaller to avoid memory fragmentation.) This is less
than the maxi mum number of vectors that may be counted during pick processing.

The software that creates data nodes ensures that the index is correct for a given
data node and that the reported index (together with the vector count) allows the
vector that was picked to be correctly identified.

Vector Data

All vector data processed by the display processor are numbers of normalized,
floating-point form, such as 2e*f, where a is asigned-integer exponent and the
significant digit field, f, satisfies -1 <f<1. Rather than provide an exponent for
each coordinate of a vector, the display processor associates a single exponent
with each vector or block of vectors.

PS 300 Display Structures 5-13

All vector data are two- or three-dimensional (i.e., x,y or x,y,z), with an implicit,
homogenous coordinate equal to 1 (i.e., x,y,z,1). The dynamic range gained by
explicit use of~ the homogenous coordinate is provided by representing vector data
in the normalized, floating-point form.

Po f ygon Data

Polygon nodes contain vectors that define the polygon as well as a pointer (ptr) to
another node describing the attributes of the polygon.

In addition, polygon vectors have implicit closure; that is, there is an implied
vector from the last point of the polygon to the first point. The A C P
automatically displays this implied vector.

Character Data

Character data consist of a character string, an initial translation that positions
the character string, and information that controls the spacing between
characters.

The initial translation consists of 16-bit, signed binary fractions for x, y, and z,
with an implicit, homogeneous coordinate equal to 1 (i.e., x,y,z,1), and a .shared
8-bit, signed integer exponent. Thus, the translation:

x, y, z,1 x-2e*fx, y=2e*fy, and z-2e*f z,

where a is the signed, 8-bit integer exponent, and where the 16-bit significant
digit fields fx, fy, and fz satisfy -1 <= f < 1.

The spacing information consists of a delta x and a delta y, each a 16-bit, signed
binary fraction, sharing an i mp! led exponent equal to zero. The delta x and delta
y values determine the separation between characters in the x and y directions.
They are given in the coordinate space of the characters themselves, satisfying
the range: -1 <= delta x, delta y < 1.

For each character in a string of characters, the corresponding character stroke
block is read from mass memory to provide the vectors which make up the
individual character.

5-14 PS 300 ETHERNET INTERFACE

The foiiow~ng figures provide descriptions of the data nodes for:

Vector-normalized (Full Vector) 3D (Vec3f0) data node
Vector-normalized (Full Vector) 2D (Vec2f0) data node
Block-normalized 3D (Vec3b0) data node
81ock-normalized 2D (Vec2b0) data node
Polygon (Vecpoly) data node
Character (Dchar) data node

PS 300 Display Structures 5-15

DATA NODE 2

Mode 0

-- Pointer to next data node --

n

Pick Index

X1

Y1

Z1

Exponent 1 Intensity 1 d

X2

Y2

Z2

Exponent 2 Intensity 2 d

Xn

Yn

Zn

Exponent n Intensity n d

= Vec3 #0

Figure 5-9. Vector-Normalized (Fui I Vector) Data Node - 3D (Vec3f0)

5-16 PS 300 ETHERNET INTERFAOE

DATA NODE 2

Mode 1

-- Pointer to next data node --

n

Pick Index

X1

Y1

Exponent 1 intensity 1 d

X2

Y2 '

Exponent 2 Intensity 2 d

Xn

Yn

Exponent n Intensity n d

= Vec2f0

Figure 5-10, Vector-Normalized (Full Vector) Data Node - 2D (Vec2f0)

PS 300 Display Structures 5-17

DATA NODE 2

Mode 2

-- Pointer to next data node --

n

Pick Index

Exponent Intensity

X1
Y1
Z1 d

X2
Y2
ZZ d

Xn
Yn
Zn d

= Vec3b0

Figure 5-~ 1. Biocic-Normalized Data Node - 3D {Vec3b0)

5-18 PS 300 ETHERNET INTERFACE

DATA NODE 2

Mode 3

-- Pointer to next data node --

n

Pick Index

Exponent Intensity

X1
Y1 d

X2
Y2 d

Xn
Yn d

= Vec2bo

Figure 5-12. Block-Normalized Data Node -- 2D tVec2bo)

PS 300 Display Structures 5-19

DATA NODE 2

Mode 8

-- Pointer to next data node --

Number of Polygons

Pick Index
Number of bytes to Node's end

Polyfi l l (Usual ly 0)

Pointer to
Attribute Node

Number of Vert ices

Pointer to Normals of Polygon

X1

Y1

Z1

EXP 1 Intensity (Color) d

X2

Y2

Z2

EXP 2 Intensity (Color) d

Xn

Yn

Zn

EXP n Intensity (Color) d

= Vecpoly

Figure 5-13. Polygon Data Node (Vec~oly~

5-20 PS 300 ETHER NET INTERFACE

Data Node 2

Mode 4

-- Pointer to next data node --

Number of Characters

Pick Index

Tx

Ty

TZ

Exponent ///////////////
///////////////

Delta x

Delta y

Char 0 Char 1

Char 2 Char 3

= Dchar

Figure 5-7 4. Character Data Node (Dchar)

PS 300 Display Structures 5-21

ADVANCED PHYSICAL I/O PROGRAMMING

The physical !/0 process can produce distorted pictures when it is updating display
structures at the same time the display processor is traversing them.

To avoid this "single buffer" phenomenon, these display structures can be "double
buffered." This is done by creating two copies of the named entities to be
updated with different names (like Data1 and Data2). The data structures are
then alternately updated and displayed using either the ! F LEVE L_0 F_D E T A ~ L or
!F CDNDITIQNAL BIT commands such as:

IF LEVEL = 1 THEN_Data1;
IF LEVEL = Z THEN Data2;

or

IF BIT 0 ON THEN Data1;
iF BIT 0 OFP THEN Data2;

These commands are used in conjunction with a node higher in the structured
display file that either sets the level of detail (SETLEVEL) or sets the conditional
bit (SET BIT).

The node that performs the SET BIT and SET LEVEL operation is the change bits
operation node and is shown in Figure 5-15. This operation node is also used to
set displays, set character orientation, set contrast, set CSM, set depth clipping,
set plotter, set rate external, set blinking (PS 350 only), and set line texture
(PS 350 only).

5-22 PS 300 ETHERNET INTERFACE

Wordindex = 0 - LOD value
1 -Conditional bits

Operation Node 1

C Operation Type 8

-- Descendant Alpha --

Wordindex

Offmask

Qnmask

- Change Bits

Figure 5-15. Change Bits Operation Node

This SET LFVE L or SET BIT node is updated using the physical I/ 0 to "swap
buffers." The physical I/O Write command updates multiple blocks of data in
mass memory in one ll4 operation (including the change to the SET LEVEL or SET
6l T node as the last operation) -and ensures that the buffers are swapped on the
next refresh.

The physical I/O Write/Sync operation ensures that each buffer gets at feast one
refres~i before allowing the next write operation.

The A C P turns off the bits specified in 0 F F M ASK. The A C P then turns on tt~e
bits specified in ONMASK.

RAWBLOCK

The R A WBLO C K command is used to allocate memory that can be directly
managed by auser-written function or by the physical I/O capabilities of the
PS 300.

The command:

<name> := R A WBL~ C K i;

PS 300 D ispiay Structures 5-23

carves a contiguous block of memory such that there are "i" bytes available for
use. Since this has to be a display structure and one contiguous memory, it is
structured so that it looks like Figure 5-16.

RAWBLOCK 9

0 l 0

-- Descendent Alpha --

-- Datum Pointer --

= No_op

Points to next
long word

Figure 5-16. Ra~vblock Data Node

Initial ly NIL

The block looks like an operation node to the ACP. The descendent alpha points
to the next long word in the block. What the ACP expects in this word is the
.datum pointer of the alpha block. (The .datum pointer points to the first
structure to be traversed by the ACP. This is the address in memory where the
data associated with a named entity is located.)

To use this block, the physical I/O operation (or auser-written function) fills in
the appropriate structure following the .datum pointer. -when this is complete, it
changes the .datum pointer to the proper value and paints to the beginning of the
data. After the ACP examines this structure, it displays the newly-defined data.
Use the A C PPR D 0 F procedure to change the .datum pointer with auser-written
function. For more information on user-written functions, refer to "User-written
Function Facility" in the PS 300 Document Set, Volume 4.

1Nhen changing the .datum pointer using physical I/0, write the first (high-order)
word to 4, write the correct (low-order) word, and then write the correct first
(high-order) word. This prevents the display processor from interpreting the
.datum field as a wrong pointer. (The ACP microcode interprets ahigh-order
word as 0 and a N I L pointer, regardless of the contents of the low order word.)

5-24 PS 300 ETHERN~T INTERFACE

More than one data structure at a ti me can exist in a R A W B L 0 C K. It is up to the
user to manage all data and pointers in a R A WBLO C K.

A R A WBLO C K may be displayed or deleted like any other named data structure in
the PS 300 e.g., DISPLAY "name"; or DELETE "name";). When a R A WBLO C K is
returned to the free storage pool, the PS 300 firmware recognizes that i t is a
R A WBLO C K and does not delete any of the data structures linked to R A WBLO C K.

PS 350 DISPLAY STRUCTURES

The following section contains the new data formats for the PS 350 graphics
system. These formats are provided for users with parallel interface capabi I ities
and for those users who access internal data in the PS 350.

Asterisked fields are neither used nor accessed by normal ASCII and GSR
commands. The top bit in the second word of each of these formats (labeled "A ")
is a flag which, if clear, tells the display structure walker to process these fields.
This bit is set by default and there exists no command to clear it. However,
functions and programs using physical read/write facilities may choose to make
use of these fields.

PS 300 Display Structures 5-25

Vec3bd0

Vec3bd0 are 3D vectors, block-normalized, with 32-bit precision mantissas for x,
y, and z. They give greater precision when displayed than the standard PS 330
vectors because the concatenation with the transformation matrix is done in
double precision and their mantissas are 32 bits.

NOTE

Mantissa values are given in a peculiar format: The
low-order word of each 32-bit value is shifted down one
bit, with a leading zero added in bit position 15.

DATA NODE 2

A~ Mode ! 14

-- Pointer to next data node --

n

Pick Index

Line Texture ~ Traverse Count

Color

Exponent ~ Intensity

X1 (H)
0~ X1 (L)

Y1 (H)
0~ Y1 (L)

Z1 (H)
0~ Z1 (L) (d

X2 (H)
0~ X2 (L)

Vec3bd0

Figure 5-17. Block-Normalized Data Node - 3D (Vec3bdo)

(continued next page)

5-26 PS 300 ETHERNET INTERFACE

(continued from previous page)

o~
Y2 (H)
Y2 (L)

a~
Z2 (H)
Z2 (L) i d

o~
Xn (H)
Xn (L)

a~
Yn (H)
Yn tL)

o~
Zn (H)
Zn (L). i d

Figure 5-17. Block-Normalized Data Node - 3D (Vec3bdo)

Double precision vectors, double precision matrix multiply.

PS 300 Display Structures 5-27

Vec2bd0

Vec2bd0 are 2D vectors, block-normalized, with 32-bit precision mantissas for x,
and y. They give greater precision when displayed than the standard PS 330
vectors because concatenation with the transformation matrix is done in double
precision and mantissas are 32 bits long.

NOTE

M antissa values are given in a peculiar format: The
low-order word of each 32-bit value is shifted down one
bit, with a leading zero added in bit position 15.

DATA NOOE 2

Aj Mode ~ 15

-- Pointer to next data node --

n

Pick Index

Line Texture ~ Traverse Count

Color

Exponent ~ Intensity

X1 (H)
0~ X1 (L)

Y1 (H)
0) Y1 (L) ~d

X2 (H)
0~ X2 (L)

Y2 (H)
0) Y2 (L) ~d

Vec2bd0

Figure 5-1 S. Block-Normalized Data Node - 2D (Vec2bdo)

(continued next page)

5-28 PS 300 ETHER NET INTERFA CE

(continued from previous page)

o~
Xn (H)
Xn (L)

a~
Yn (H) -
Yn (L) i d

Figure 5-y 8. Block-Normalized Data Node - 2D (Vec2bdo)

Double precision vectors, double precision matrix multiply.

PS 300 Display Structures 5-29

Vec3bs2

Vec3bs2 are 3D vectors, block-normalized, with 16-bit precision mantissas for x,
y, and z. They give greater precision when displayed than the standard PS 330
vectors because the concatenation with the transformation matrix is done in
double precision. They are provided because they can be used when a faster
update rate is required with greater precision. They are approximately 1.5 times
as fast as a Vec3bd.

DATA NODE 2

A(Mode ~ 12

-- Pointer to next data node --

n

P i c!c I ndex

Line Texture ~ Traverse Count

Color

Exponent ~ Intensity

X1
Y1
Z1 ~d

X2
Y2
Z2 ~d

Xn
Yn
Zn ~d

Vec3bs2

Figure 5-19. Black-Normalized Data Node - 3D (Vec3bs2

Single precision vectors, double precision matrix multiply.

5-30 PS 300 ETHERNET INTERFACE

Vec2bs2

Vec2bs2 are 2fl vectors, biocic-normalized, with 16-bit precision mantissas for x,
and y. They give greater precision when displayed than the standard PS 330
vectors because the concatenation with the transformation matrix is done in
double precision. They are provided because they can be used when a faster
upstate rate is required with greater precision.

DATA NODE 2

A (Mode ~ 13

-- Pointer to next data node --

n

Pick Index

Line Texture ~ Traverse Count

Color

Exponent ~ Intensity

X1
Y1 ~d

X2
Y2 ~d

Xn
Yn ~d

= Vec2bs2

Figure 5-2~. Blocfc-Normalized Data Node - 2D (Vec2bs2)

Single precision vector, double precision matrix multiply.

PS 300 Display Structures 5-31

DstringD

DstringD characters are similar to the standard PS 330 characters; however,
arithmetic used in positioning characters is performed in double precision.

DATA NODE 2

A(Mode ~ 6

-- Pointer to next data node --

Number of Characters

Pick Index

Line Texture ~ Traverse Count

• Color

-- Tx (H) --
Tx(L)

-- Ty(H) --
Ty(L)

-- Tz(H) --
Tz(L)

Exponent ~///////////////

Exponent

M[1,1J

M[1,27

M[2,11

~i[2,2]

Delta x

Delta y

DstringD

~> character
translation

> 2 x 2 character
matrix

> Spacing between
- characters
(impl ied, exponent of 8)

Figure 5-21. Character String Data Node (DstringD)

(continued on next page)

5-32 PS 300 ETHERNET INTERFACE

(continued from previous page)

Char 0 i Char 1

Char 2 i Char 3

Figure 5-2y . Character String Data Node ~DstringD~

l -bit precision characters, double-precision multiply.

Data Transfer Descriptions 6-1

(Revision A1)

fi. PS 300 ETHERNET DATA TRANSI=ER DESCRIPTIONS

Information in this chapter is provided for users who want to write their own host
software to communicate with the PS 300 through the interface.

This chapter ~ provides descriptions of the blocks of data that are used by the GPlO to
transfer data between the host and locations in the PS 30fl, such as~ system functions
and mass memory.

WORD DESCRtPT10N

The f first 4 bytes of data sent to the PS 300 are used to determine the logical or
physical 1/O function to perform. The bytes are used as two 16-bit words. The
first word is the opt ion and function word. The second word denotes the number
of bytes in the PS Multiplex Message (this does not include the two PS Multiplex
words). Note that the host computer must send the byte with the most significant
bits first for both the function and count words.

When an option asks for bytes to be swapped, bytes w i I1 be swapped on 16-bi t
word boundaries. When an option asks for bytes to be reordered in a Control Word
which is 16 bits long tnumber of blocks to write or 81ock Word Count), the bytes
w i 1 I be swapped. When an opt ion asks for the bytes to be reordered i n Con t ro I
Word Address (32 bits long), the byte order w i I 1 be reversed (bytes 3,2,1 and 0 w i I I
be reordered to 0,1,2 and 3).

PS Mu I t i pl ex Function Word

15 14 13 12 11 10 9 8
i i i

Option Bit 3
Option Bit 2
Option 81t 1
Optlon B1t 0
Function

6-2 PS 300 ETHER NET INTERFACE

(Revision A1)

FUNCTioNS

X'01' -Logical Write (from host to PS 300).
Option Sit 1 Set -Swap Bytes in Data Words.
Opt ion Bit 2 Set -Swap Bytes i n Data Words of next Log i ca I Read.

X'02' -Logical Read (from PS 300 to host).
Option Bit 1 Set -Data Words have bytes swapped.

X'03' -Physical Write (from host to PS 300 Mass Memory).
Option Bit 0 Set -Reorder Bytes in Control Words.
Option bit 1 Set -Swap Bytes in Data Words.
Option Bit 2 Set -Swap bytes in Frame Count.
Option bit 3 Set -Send Frame Count Reply when .write is complete.

X'05' -Physical Read Request (from host to GPIO).
Option Bit 0 Set -Reorder Bytes in Control Words.
Option Bit 2 Set -Swap Bytes in Data Words of Physical Read Reply.

X'06' -Physical Read Reply (from PS 300 Mass Memory to host).
Option Bit 0 Set -Control Words have bytes reordered.
Option Bit 1 Set -Data Words have bytes swapped.

X'07' -Synchronous Physical Write (from host to PS' 300 Mass Memory).
Option Bit 0 Set -Reorder Bytes in Control Words.
Option Bit 1 Set -Swap Bytes in Data Words.
Option Bit 2 Set -Swap bytes in Frame Count.
Option Bit 3 Set -Send Frame Count Reply when write is complete.

X'49' -Lookup Name Entity Request (from host to PS 300>.
Opt ion Sit 2 Set -Reorder Bytes i n Address.

X'OA' - Loo~Cup Name Entity Reply (from PS 3~ to host).
Option Bit 1 Set -Address has bytes reordered.

X'06' -Frame Count Request (from host to PS 300).
Option Bit 2 Set -Swap bytes in Frame Count Reply.

X'OC' -Frame Count Reply (from PS 300 to host).
Option Bit 1 Set -Bytes in Frame Count have been swapped

X'8~' -Diagnostic Loopback Write (from host to GPIO).

X' 82' -Diagnostic Loopback Read (from G P I O to host) .

X'83' - GPIO Statistics Request (from host to GPiO).
Option Bit 2 Set -Swap bytes in Statistical Reply Data.
Opt ion Bit 3 Set -Reset S tat i st i c s of ter they are read.

X'84' - GPIO Statistics Reply (from GPIO to host).
Option Bit 1 Set -Data Words have bytes swapped.

Data Transfer Descriptions ~-3

(Revision A1)

~ogicai Write

Logical U1lrite ~is used to transfer data between the host and the PS 300 system
function network. Up to 32K bytes can be transferred during one Logical Write.

Option Bits ~ X'Ol'

Message Byte Count

Data
Up to 32K byte s

The above- table is 16 bits wide. Data may contain an odd number of bytes, i f
Op#ion Bit 1 is set, the GPI O w~ 11 swap bytes on 16-bit word boundaries before
sending the data to the PS 304. If Option Bit 2 is set, the GPIO w i I I swap bytes of
the data in the next Logical Read.

6-4 PS 300 ETHERNET INTERFACE

(Revision A1)

Log~i ca I Read

Logical Read is used to transfer data between the PS 300 system function network
and the host. Up to 32K bytes can be transferred during one logical Read.

Option Bits J X'02'

Message Byte Count

Data
Up to 32K byte s

The above table is 16 bits wide. Data may contain an odd number of bytes. if
Option Bit 1 is set, the GPIO has swapped bytes on 16 bit word boundaries before
sending the data to the host.

Data Transfer Descriptions ~-5

(Revision A1)

Physical 1Nrite

Physical Write is used to transfer data between the host and PS 300 mass
memory. The maximum size of a Physical Write excluding the 2 Physical I/O
lvluitiplexing Words is 32K bytes.

Option bits ~ X'D3'

Message Byte Count

Number of Blocks to ~Iri to

- Block 1 Destination Addr. -

Block l word count.

Block 1 first data word
..
...

61ock 1 last data word

- Block 2 Destination Addr. -

. .

...
Block n last data word

The table is l fi bits wide. If Option Bit 0 is set, the GPIO w i 1 I reorder bytes in the
control words (number of blocks to write, block destination addresses, and block
word counts) before using them. if Option Bit 1 is set, the GP10 w i i I swap bytes
in the data words bef ore writing them to mass memory.

If Option Bit 3 is set, the GPIO will send the current PS 300 Frame Count (Frame
Count Reply) to the host after the write is complete. If Option Bit 2 is set, the
Frame Count bytes w i I I be reversed in the Frame Count Reply.

G-6 PS 300 ETHERNET I N T E R F A C E

(Revision A1)

Physical Read Request

Physical Read Request i s used to ask for the transfer of data from the PS 300
mass memory back to the host. A Physical Read R epiy w i i ! be used to transm i t
the data.

Option Bits ~ X'05'

Message Byte Count

Number of blocks to Write

- Siock i Source Addr.

Block 1 word count.

- Block Z Source Addr.

..

..
Block n word count

The table is 16 bits wide. If Option bit 0 is set, the GPIO will reorder bytes in the
control words (number of blocks to write, block destination addresses, and block
word counts) before using them. Also, if Option Bit 0 is set, the control words in
the Physical Read Reply w i i 1 be reordered. If Option Bit 2 is set, the Physical
Read Reply w i i I swap data words on 16-bit word boundaries before sending to the
host. The .maxi mum size of a Physical Read Request excluding the Physical I/O
Multiplex Words is 1024 Bytes. The total size of a Physical Read Reply generated
by a request is 32K bytes (excluding the PS Multiplexing Words).

Data Transfer Descriptions 6-7

(Revision A1)

Physica! Read Reply

Physical Read - Reply is the reply to a Physical Read Request.

Option Bits] X'06'

Message Byte Count

Number of Blocks to -Write

Block 1 Source Addr.

Block 1 word count.

Block 1 first data word
..
...

Block 1 last data word

Block 2 Source Addr.

. .

...
Block n last data word

The above table is 16 bits wide, If Option Bit 0 is set, the GPI O has reordered
bytes in the control words (number of blocks to write, block destination addresses,
and block word counts) before sending them. if Option Bit ~ is set, the GP1O has
swapped bytes in the data words before sending them to the host.

6-8 PS 300 ETHERNET INTERFACE

(Revision A1)

Synchronous Physical Write

Synchronous Physical Write is used to transfer data between the host and PS 300
mass memory. The GPIO will wait anti l a new frame is started in the PS 300
before transferring the data. The maxi mum size of a Synchronous Physical

Write

excluding the 2. Physical I/O Ivlultipiexing Words is 1024 Bytes.

Option Bits 1 X'07'

Message Byte Count

Number of Blocks to Write

61ock 1 Destination Addr. -

Block 1 word count.

Block 1 first data word
. .
. .

61ock 1 last data word

Block 2 Destination Addr. -

. .

. . .
Block n last data word

The above table is 16 bits wide. If Option bit 0 is set, the GPIO w i I I reorder bytes
in the control words (number of blocks to write, block destination, addresses, and
block word counts) before using them. If Option 6if 1 is set, the GPIO w i I I swap
bytes in the data words before writing them to mass memory.

If Option Bit 3 is set, the GPIO w i I I send the current PS 300 Frame Count (Frame
Count Reply) to the host after the write is complete. If Option Bit 2 is set, the
Frame Count bytes will be reversed in the Frame Count Reply.

. Data Transfer Descriptions n-9

{Revision A~)

Lookup -Named Entity Request

The Lookup Named Entity Request i s used to request the G C P to find an Entity
Name in memory and return the address of the Entity Name by a Lookup Named
Entity Reply.

Option Bits ~ X'09'

Message Byte Count

Entity Name
Up to 138 bytes

The above table is 16 bits wide. Data may contain an odd number of bytes. if
Option Bit 2 is set, the GPIO w i 1 I reorder the bytes 'of the returned address in the
generated L' ookup Named Entity Reply.

Lookup Named Entity Reply

Lookup Named Entity Reply. is a reply to a Lookup Named Entity Request.

Option Bits j X' OA'

Message Byte Count

- Entity Name Address i
The above table is 16 bits wide. If Option Bit 1 is set, the GPiO has reordered the
bytes of the address before sending i t to the host.

6-10 PS 300- ETHER NET INTERFACE

Revision A~)

Frame Count Request

The Frame Count Request is used to request the GPIO to return the current
PS 300 Frame Count by a Frame Count Reply.

Option Bits ~ X'OB'

0

The above table is 16 bits wide. I f Opt ion Bit 2 is set, the Frame Count bytes w i I I
be swapped in the Frame Count Reply.

Frame Count Reply

Frame Count Reply is a reply to a Frame Count Request.

Option Bits ~ X'oC'

2

Frame Count

The above table is 16 bits wide. If Option Bit 1 is set, the GPIO has swapped the
bytes of the Frame Count .

Data Transfer Descriptions 6-1 ~1

(Revision A1)

Diagnostic 1.00pb►ack Write

The Diagnostic Loopback Write i s used to transfer data from the host to the DPI O
and to generate a D i agnost i c Loopback Read with the same data.

Qption Bits X'81'

Message Byte Count

Data
Up to 512 bytes

The above table is 16 bits wide. Data may contain an odd number of bytes.

Diagnostic Loopback Read

The Diagnostic Loopback Read w i I i send data of a prev ious Diagnostic Loopback
Write back to the host.

Option bits X'82'

Message Byte Count

Data
Up to 512 bytes

The above table is 16 bi is wide. Data may contain an odd number of bytes.

6-12 PS 300 ETHERNET INTERFACE

(Revision A1)

GP10 Statistics Request

The GPIO Statistics Request is used to generate a GPIO Statistics Reply
containing various statistics from the GPIO Board.

Option 8i is ~ X' 83'

0

i

The above table is 16 bits wide. If Option Bit 2 is set, the GPIO w i i I swap bytes of
the data on the GPIO Statistics Reply. If Option bit 3 is set, the statistics w i I I
reset after they are read.

GPIO Statistics Reply

The GPIO Statistics Reply sends various statistical information from the GPIO
back to the host.

Option Bits j X'84'

46

Data
46 bytes

The above table is 16 bits wide. Opt ion Bit 1 w i I I be set i f the bytes have been
swapped in the:data. The information returned (16-bit words) is as follows:

l.J

Data Transfer Descriptions 6-13

(Revision A1)

Ethernet Transmit and Receive Counters

Word 0 -Transmit Count Word ~ (MS8)
Word 1 -Transmit Count Word 0 (LS8)
Word 2 -Receive Count Word 1 (MS8)
Word 3 -Receive Count Word 0 (LS8)

Ethernet Level Errors

Word 4 -Number of Transmit Underf lows
Word 5 -Number of Transmit Collisions
Word 6 -Number of 16 in a row Transmission Attempts
Word 7 -Number of Transmit Status T i meouts
Word 8 -Number of Receive Overf tows
Word 9 -Number of Receive CRC Errors
Word 10 -Number of Receive Dribble Errors
Word 11 -Number of Receive Short Frames

NSP Errors

Word 12 -spare
Word 13 -spare
Word 14 -spare
Word 15 -Number of NSP Connect ion T i meouts
Word 16 -Number of Retransmissions to Host

PS Multiple Level Errors and Counters

Word 17 -Number of Unknown PS Multiplex Level Messages
Word 18 -Number of Invalid PS Multiplex Level Messages
Word 19 -Number of NSP retransmissions from host because of an exhausted

resource at the PS Multiplex Level
Word 20 -Lowest Count in logical I/O Empty Queue
Word 21 -Highest Count in Logical I/O Fui ! Queue
Word 22 - 'The version number of the Microcode (2 ASCi I Characters)

~~.

Program PSNODE Instructions - A-1

(Revision A1)

APPENDI~C A. PROGRAM PSNODE INSTRUCTIONS

The program -PSNODE can be used to convert the PS 300 DECnet node number from
Area-Node format into the format required by the PS 300 SiTE.DAT fife. The following
instructions bui Id PSNODE (boldface shows what you must type):

$ FOR PSNODE.FOR
$ LINK PSNODE

The following is a sample run of PSNODE:

$ RUN PSNODE
DECnet Node Number: 1.46
The command for the SITE.DATE file is:
Send '042E' to <1 >pi_o1$;
FORTRAN STOP

Note that J C P A2. V02 users must send address to < 1 >ei o1$;

E&S CUSTOMER SERVICE TELEPHONE INFORMATION LIST

Evans &Sutherland Customer Engineering provides a central service numbered staffed by CE
representatives who are available to take requests from 9:00 a. m . Eastern Time to 5:00 p . m .
Pacific Time {7:00 a.m. to 6:00 p.m. Mountain Time} . All calls concerning customer service
should be made to one of the following numbers during these hours. Before you call , please
have available your customer site number and system tag number. These numbers are on the
label attached to your PS 300 display or control unit.

Customers in the continental United States should call toll-free:

1 + 800 + 582-4375

Customers within Utah or outside the continental United States should call Dispatch at:

(801) 582-9412

If problems arise during product installation or you have a question that has not been answered
adequately by the customer engineer or the customer service center, contact the regional
manager at one of the following Customer Engineering offices:

Eastern Regional Manager
(for Eastern and Central Time Zones}
{518} 886-4639

Western Regional Manager
{for Mountain and Pacific Time Zones}
{916} 448-0355

If the regional office is unable to resolve the problem, you may want to call the appropriate
department manager at corporate headquarters:

National Field Operations
(for field service issues)
(801) 582-5847, ext 4843

Software Support
(for sofware issues)
(801) 582-5847, ext 4810

Director of Customer Engineering
(for any unresolved problem)

(801 } 582-5847, ext 4840

Technical Support
(for hardware issues)
(801 } 582-5847, ext 4868

READER COMMENT FORM Publication Number

Title

Your comments will help us provide you with more accurate, complete, and useful
documentation. After making your comments in the space below, cut and fold this form as
indicated, and tape to secure tplease do not staple). This form may be marled free within
the United States. Thank you for your help.

How did you use this publication?

[] General information
[] Guide to operating instructions

p As a reference manual
n Other

Please rate the quality of this publication in each of the following areas.

Technical Accuracy
Is the manua! technically accurate?

Completeness
Does the manual contain enough information?

Readabi I ity
Is the manual easy to read and understand?

Clarity
Are the instructions easy to follow?

Organization
is it easy to find needed information?

t 1 lustrations and Exarnpies
Are they clear and useful?

Physical Attractiveness
What do you think of the overall appearance?

EXCELLENT GOOD FAIR POOR

o v o 0

0 0 0 0

0 0 0 0

o a o 0

0 0 o a

0 0 0 0

0 0 0 0

What erra~s did you find in the manual? (Please include page numbers)

Name Street

Title City

Department State

Company Zip Code

A ! I comments and suggestions become the property of Evans -& Sutherland.

Fgld

BUSINESS REPLY MAIL
F i R ST CLASS PERMIT NO. 4632 SALT LAKE CITY, UTAH

POSTAGE WILL BE PAID BY ADDRESSEE

EVANS &SUTHERLAND
580 Arapeen Drive
Salt Lake City, Utah 84108

ATTN: IAS TECf-fNfCAL PUBLlCAT10NS

No PosTAG E
NECESSARY
I F MAILED
iN THE

UNITED STATES

Fold

RM6. INTERFACES AND OPTIONS

CONTENTS

1. INTERFACES 1

1.1 Asynchronous 1
1.2 Parallel 1
1.3 Ethernet 2
1.4 IBM 3278 Z
1.5 IBM 5080 2

2. MULTIPLE GPIO INTERFACES 3

2.1 Interface Configuration Files 4
2.2 Ethernet/DECNET Interface 6

3. SYSTEM OPTIONS 6

3.1 Memory Card Option 6
3.2 User-Written Function Facility 6
3.3 Advanced 3D Visualization Firmware 7

TABLES

Table 6-1. Possible GPIO Combinations 3
Table 6-2. Required Interface Files 5

i

Section RM6

Interfaces and Options

This section summarizes the interfaces and options available for the PS 390. Multi-
ple interfaces, switching between interfaces, and the interface configuration files
are also described. (Users manuals supplied with each interface contain detailed
customer installation requirements and operating instructions.)

1. Interfaces

One of the most important considerations in setting up the configuration
characteristics of a PS 390 graphics system is the interface between the host

computer system and the PS 390. The standard data communication inter-
face to the PS 390 is an asynchronous serial line. Several optional interfaces
are available for the PS 390.

1.1 Asynchronous

Under PS 390 graphic system protocol, EIA. RS-232-C is the standard
interface used for serial asynchronous communication. With the exception
of interface cabling and connectors, no additional hardware is required to
interface the host with the PS 390. For a discussion of RS-2 32-C
specifications and PS 390 asynchronous communication protocols, refer to
Section RMS.

1.2 Parallel

The following optional interfaces are also available but may require addi-
tional interface hardware on the host and the PS 390.

The PS 390 UST"' Parallel Interface supports high-speed data transfers
to and from a DEC/VAX TM host computer running the VMS TM operating
system at 3.2 or higher.

The parallel interface uses the normal command processing mechanism in
the PS 390 to construct graphic data structures and establish local action
operations. When integrated with the PS 390 Graphics Support Routines,
the interface provides an even greater increase in data throughput. It is
especially useful in applications requiring a close coupling with the host
computer .

Interfaces and Options RM6-1

1.3 Ethernet

The PS 390/Ethernet T"" (DECNET T'") Interface is a high-speed communica-

tions interface connecting a PS 390 graphics system to a DEC/VAX T"' or

MicroVAXT"' host computer with a VMS TM operating system 3.2 or higher.

The PS 390/Ethernet (TCP/IP) Interface is a high-speed communications in-

terface designed to connect a PS 390 graphics system to a DEC/VAX host

computer running under LT~~TIX T"' BSD 4.2 or higher.

The Ethernet interfaces allow a PS 390 to link to an Ethernet data commu-

nications network. They are intended for use in office automation and dis-

tributed data processing environments to allow a selected group of comput-

ers to communicate with each other.

1.4 IBM 3278

The PS 390/IBM T"' 3278 Interface allows a PS 390 graphics system to be

connected to an IBM host using an IBM 3274 channel control unit to provide

high-performance graphics functions while attached in the same manner as

the 3278 terminal. The PS 390 supports an IBM terminal emulator when

configured with this interface option. All the basic functions of the 3278 are

fully supported, including basic attribute byte and keyboard functions.

1.5 IBM 5080

The PS 390/IBM T"' 5088 Interface provides ahigh-speed, channel connect
attachment between a PS 390 graphics system and an IBM host computer

via an IBM 5088 controller.

The PS 390/IBMTM 5088/V.35 Interface provides remote attachment by con-

necting the PS 390 to a V.35 broadband modem that is attached to the IBM

5088 controller.

Both interfaces support the 5080 Capability option. This firmware option

allows the user to perform most IBM 5080 operations and to run programs

from the PS 390 that were written specifically for the IBM 5080, such as

CATIA T"' and CADAM TM •

These interfaces allow the PS 390 to be connected to any IBM host comput-

er using a standard IBM 5088 channel control unit. The PS 390 can be

configured with other IBM 5080 graphics terminals on the same IBM 5088

channel control unit.

RM6-2 Reference Materials

2. Multiple GPIO Interfaces

The PS 390 runtime firmware supports up to two GPIO interfaces of
differing types as well as asynchronous communications installed in the
same system. You received two firmware diskettes with your system: a
runtime system diskette preconfigured for your site with interface
communication defaults and an interface diskette for modifying system
configuration. By renaming files on the diskettes you can change your
default to configure a different interface when the system is booted. This is
explained in section 2.1.

It is also possible to change the configuration without rebooting the PS 390
because the runtime determines which of the interfaces are in the system
and initializes them all. This is achieved through runtime identification of
up to two GPIOs at the first two addresses assigned to GPIO interface cards.
(Refer to section 2.1 for an example of changing interface communications
protocol without rebooting.)

There are some limitations to the use of multiple GPIOs. First, there cannot
be two of the same type GPIO in the same system. Second, if the IBM 3278
option is included, then only one additional GPIO may be added. The 3278
GPIO running under previous PS 300 systems is not supported under the
PS 390. Table 6-1 shows the possible GPIO combinations.

Table 6-1. Possible GPIO Combinations

1st GPIO 2nd GPIO

IBM 3278
(enabled on JCP)

IBM 5080

Parallel

Ethernet

IBM 5080
Parallel

Ethernet

Parallel
IBM 5080

Ethernet

Ethernet
IBM 5080

Parallel

Interfaces and Options RM6-3

2.1 Interface Configuration Files

The PS 390 runtime is distributed on two diskettes and contains more files
than previous PS 300 runtime diskettes. This is to allow for the many differ-
ent combinations of interfaces possible with the multiple GPIO operation.

When the PS 390 is booted, the system attempts to read the file,
INrl'r'CFG.DAT. If this file is not found, the system will boot with the
default interface of asynchronous, and display the message INTFCFG.DAT
NOT FOI:IND. To boot with a default interface in addition to asynchronous,
the appropriate interface file must be renamed to INTFCFG.DAT. This can
be done using the Diagnostic Disk Utility program described in Section
RM12 Diagnostic Utilities. For example,

Rename ETHERNET.DAT INTFCFG.DAT

would rename the default interface to Ethernet so that, at boot time, the
interface communications protocol for Ethernet would be configured.

The following is a list of the interface file names on the diskette and which
interface each file sets up.

ASYNC.DAT
IBM3278.DAT
IBM5080.DAT
UNIBUS .DAT
ETHERNET .DAT

Asynchronous communications
IBM 3278 communications
IBM 5080 communications
Parallel interface communications
Ethernet communications (for Ethernet or DECNET)

If your system hardware supports two interfaces, you can change the inter-
face during a session without rebooting by sending the name of the interface
file to input <1> of RDCFG$. For example, the following command,

Send 'UNIBUS' to <1>RDCFG$;

would change the communications protocol to the UNIBUS Parallel inter-
face to allow parallel communications.

Table 6-2 shows the files contained on the PS 390 diskettes which are
needed for a particular interface.

RM6-4 Reference Materials

Table 6-2. Required Interface Files

PS 390 File 1Vame
_

l Async 3278
_

5080 ~ Unibus l Ethernet
mmdd390J.EXS ~ ti ti ti ~
ACPCODE2.DAT ti ~ ti v Y
ASYNC. DAT ~

CHARFONT. DAT v y ` v Y
CIRCLE.DAT ti
CONFIG. DAT ti ti ~ ~ ti
DINTCODE.DAT ti

EINTCODE.DAT ~

ETHERNET.DAT

FCNDICTY.DAT Y ti ti ri Y
FCNTABLE .DAT v Y ti ti ti

FONTS 0 8 0 . DAT ti
GPIOCODE.DAT v
HMSCODE.DAT ` ~ ` ` Y
HMSCOL.DAT ` y ~ ~

HMSVEC.DAT ` ` ` ` v

IBM3278.DAT ~
IBM5080.DAT ti
IBMASCII.DAT ti ti ti ~ ti
IBMFONT. DAT ~ Y ~

IBMKEYBD.DAT v ~ ~ ti ~
INITACP. DAT ~ ti ti ~ t~
INITGPIO .DAT ti
LINLUT. DAT Y ~ ~ v ti
LUT. DAT ` Y y
MSGLIST.DAT t~ ti ti ti t~
OVERLAY2 . DAT ti js ti ti ti
PARSECODE.DAT v ~ ` v

PARSDICT.DAT ti ti v ~ ~
PINTCODE.DAT

SINE.DAT ti
THULE.DAT ti v ~ ti ~

UNIBUS.DAT v

Interfaces and Options RM6-S

All of the interface files assume that the keyboard used is a VT100-style

keyboard. A FALSE is sent to the keyboard handler (either IBMKBD or

KB LER) at the end of the file. To use an IBM-style keyboard, the

command in the interface file must be changed to send TRUE to the key-

board handler. For example,

Send True to <2>Kbhandler;

would accomplish this.

2.2 Ethernet/DECNET Interface

The GPI interface hardware for Ethernet and DECNET is the same. The

only difference is the microcode that is loaded into the GPIO. Therefore,

both microcode files are distributed on each diskette. The runtime attempts

to load a file named EIN'TCGDE.DAT. Ethernet is the default on the disk-

ette. The file for the DECNET interface is DINTC~DE.DAT. If your system

supports the DECNET interface, DINTC~DE.DAT must be renamed to
EINTC~DE.DAT to load the DECNET microcode into the GPI . This can
be accomplished by using the Diagnostic Utility program.

NOTE

For additional information on customer hardware and
software installation requirements for the various inter-
faces refer to the Customer Installation and User
Manuals supplied by E&S.

3. System Options

3.1 Memory Card Option

Up to two 1 MByte cards can be added to expand the standard JCP resident
2 MByte of memory. The cards can be installed in the PS 390 at the factory
or can be installed at the customer location.

3.2 User-Written Function Facility

The User-written Function Facility is designed to allow programmers to
write and use new functions to suit individual applications and needs.

RM6-6 Reference Materials

All PS 390 graphics systems include a set of intrinsic functions which allow
complex graphics actions to be accomplished locally within the PS 390.
These functions are the user interface between the programmer, display
structures, interactive devices, and high-performance graphics facilities in
the PS 390.

User-written functions expand the capabilities of the PS 390 by giving the
programmer the power to create unique functions, or to combine large net-
works of intrinsic functions into a single function that performs all the same
operations, yet is much simpler in design and operation.

A user-written function is written on the host computer as a procedure for
the Motorola 68000, in Pascal or Motorola 68000 assembly language.
Through the cross-compiling and linking software, the procedure is
translated into S-record host files which are then transferred to the PS 390
memory. The function is identified by its user-given name and stays in
memory as long as its name remains there. Once installed in the PS 390,
User-Written Functions can be used in the same way as the intrinsic
functions.

3.3 Advanced 3D Visualization Firmware

The Advanced 3D Visualization Firmware option allows users to create ob-
jects as polygons and to display hidden-line removed and sectioned views of
polygonally-defined wireframe objects. Smooth-shaded renderings of po-
lygonal models can be displayed that take advantage of numerous attribute
settings for color, multiple light sources, specularity, transparency, and
polygon edge enhancement. In addition the PS 390 can be used as a frame
buffer for the display of host-generated, run length-encoded images.

Interfaces and Options RM6- 7

RM7. HOST INPUT DATA FLOW

CONTENTS

1. DATA RECEPTION AND ROUTING NETti'VORK 1

2. ROUTING BYTE DEFINITIONS Z

3. OUTPUT PORT DEFINITIONS OF CIROUTEO
IN COUNT MODE 3

TABLE

Table 7-1. Routing Byte Definitions 2

i

Section RM7

Host Input Data Flow

This section discusses host input data .flow in the PS 390, and includes a descrip-
tion of the functions that direct data flow, the routing functions and routing bytes,
and the channels that data can be routed to. Function names that appear in capital
letters are instances of intrinsic system and user functions. The intrinsic system and
user functions (also capitalized) appear with the "F:" prefix.

1. Data Reception and Routing Network

Data enters the PS 390 through one or more input functions. In systems
with the asynchronous interface, an instance of F:DEPACKET (an intrinsic
user function) receives host input and passes it to an instance of
F:CIROUTE(n) (an intrinsic user function). There are two instances of
F:CIROUTE(n), one for count mode (CIROUTEO) and one for escape mode
(CIROUTE20). CIROUTEO examines the first character it receives (the
character following the count bytes in count mode or the character following
the <FS> character in escape mode) to determine where the packet message
is to be sent. This character is the routing byte, and is used to select the
appropriate channel for the data in the PS 390. Data channels may include
lines to the terminal emulator, the command interpreter, the disk writing
function, the raster function, and other intrinsic functions. A base character
(defined on Input <2> of CIROIJTEO) is subtracted from this routing charac-
ter before it is used to select the output channel. The base character de-
faults to the character zero ("0").

All other interfaces send host input through special interface functions
which pass it to a count mode instance of F:CIROUTE(n). For the Parallel
and Ethernet interfaces, the input may be routed through CIROUTE30. For
the IBM 3278 and IBM 5080 interfaces, the input is routed through
CTROUTEO. CIROUTEO, CIROLTI'E20, and CIROUTE30 are functionally
identical.

The definitions for the inputs and outputs of intrinsic system functions and
intrinsic user functions are described in Section RM2. Escape and count
modes are discussed in Section RMS.

most Input Data Flow R1V17-1

2. Routing Byte Definitions

The value of the routing bytes are given in the following table.

Table 7-1. Routing Byte Definitions

CIROUTEO Routing Channel

Output Byte Parameter Description

1 N/A N/A Reserved

2 N/A N/A Reserved

3 0 1 Parser/Command Interpreter

4 1 2 Command Interpreter via READSTREAM

5 2 3 6-bit binary

6 3 4 Reset network for GSRs

7 4 5 Unused

8 5 6 Unused

9 6 7 Download channel for user-written

functions

10 7 8 Raster

11 8 9 Polygon data

12 9 10 Unused

13 11 Write ASCII data to diskette

14 12 Close file

15 < 13 Write binary data to diskette

16 = 14 Unused

17 > 15 Channel to Terminal Emulator

18 ? 16 Host message control

19 @ 17 Reserved

20 A 18 Unused

21 B 19 Raster

NOTE

(`?') is the HOST MESSAGE request channel. An
ASCII (1 or 2) requests a single message or multiple
messages from HOST_MESSAGEB.

RM7-2 Reference Materials

3. Output Port Definitions of CIROUTEO in Count Mode

Output<1> sends out invalid routing bytes.

Output<2> sends any message that does not have a valid routing character.
The message is sent to BADROUTEO (an instance of the intrinsic user func-
tion F:CONSTANT), and the message "Routing byte not in acceptable range"
is output as an error message to ES_TE1 (an instance of the intrinsic system
function F:VT10) for screen display.

Output<3> sends messages to H_CHOPO (an instance of the intrinsic user
function F:CHOP). This function chops and parses the input command
language generating proper messages for H CIO (an instance of the intrinsic
user function F:CI). Once chopped and parsed, the message is sent on
output<1> of H CHOPO to the Command Interpreter. H_CHOPO is also
responsible for generating syntax error messages. ASCII commands should
be sent through this output.

Output<4> sends messages to READSTREAMO (an instance of the intrinsic
system function F:READSTREAM), which converts an eight-bit stream into
arbitrary messages. GSR data is sent through this output or through
output <5>.

Output<5> sends messages to SIXTOEIGHTO (an instance of the intrinsic
user function F:CVT6T08) to convert six-bit to eight-bit binary. The mes-
sage is then sent to READSTREAMO. GSR data is sent through this output
or through output <4>.

Output<6> sends messages to RESET_RS1 (an instance of the intrinsic user
function F:RESET) and RESET HOST MESSAGEI (an instance of the in-
trinsic user function F:CONSTANT), which causes the functions accepting
GSR data to be reset to the initial state.

Output<7> is unused.

Output<8> is unused.

Output<9> sends messages to SREC_GATHERO (an instance of the intrinsic
user function F:GAT'HER GENFCN), which loads user-written functions.

Output<10> sends messages to RASSTRO (an instance of the intrinsic
system function F:RASTERSTREAM), which processes pixel input using
run-length encoding of data from the host.

Host Input Data Flow RM7-3

Output<11> sends messages to HPOLYSTRO (an instance of the intrinsic

user function F:HOST POLY), which processes polygon fill commands sent

from the host.

Output<12> is unused.

Output<13> sends messages to WDAO (an instance of the intrinsic user

function F:WRITEDISK), which writes ASCII commands to the diskette.

Output<14> sends messages to WDACO (an instance of the intrinsic user

function F:CHOP), which is used to interpret the command to close the file

sent via outputs <13> and <15> to the diskette.

Output<15> sends messages to WDBCO (an instance of the intrinsic user

function F:CHOP), which is used to parse binary data that will be written to

the diskette.

Output<16> is unused.

Output<17> sends messages to ES_TE1 (an instance of the intrinsic system

function F:VT10), which processes input for the PS 390 display screen.

Output<18> sends messages to TRIGGER CONVBI (an instance of the in-
trinsic user function F:CHARCONVERT) TRIGGER CONVBI then sends

messages to input <1> of HOST MESSAGEBI (an instance of the intrinsic
user function F:HOLDMESSAGE).

Output<19> sends messages to WHO1, which sends a package with the sys-
tem information back to the host. This output has been retained for com-
patibility. It is not used on the PS 390.

Output<20> is unused.

Output<21> sends messages to RASSTRO (an instance of the intrinsic sys-
tem function F:RASTERSTREAM), which processes pixel input using run-
length encoding of data from the host. This output is the same as output
<10>, and has been retained for compatibility purposes. Output <10> is the
recommended output since it is controlled by the Qprompt flushing mecha-
nism by default.

RM7-4 Reference Materials

Section RM8

System Function Network

The block diagrams in this section show the data flow through the PS 390 system
function network. Function names that appear in capital letters in this section are
instances of intrinsic system and user functions. The intrinsic function appears
with the "F:" prefix. Intrinsic function descriptions are provided in Section RM2.

• Figure 1 shows the initial read floppy network created in the PS 390.

• Figures 2 through 26 show the host input data flow through the sys-
tem function network for a PS 390 with an RS-232 interface to a host
computer.

• Figures 27 through 49 show the host input data flow through the
system function network for a PS 390 with an IBM host computer.

• Figure 50 shows the host input data flow through the raster system
function network for a PS 390 with a DEC host computer.

• Figure 51 shows the host input data flow through the raster system
function network for a PS 390 with an IBM host computer.

• Figures 52 through 55 show the host input data flow through the
DEC Parallel Interface function network.

A discussion of specific instances of functions that direct data flow in the PS 390
will be found in Section ~M7, Host Input Data Flow.

NOTE

The diagrams in this section reflect Al firmware
functionality. We will be distributing updated diagrams
in a future release.

System Function Network RM8-1

b

Q
~

N

< ~ ..~ ti ~ ~ ~
~ ~ 0 ~ 0
~ ~ ~ ~ ~
1

V
1

V
`~

V
1

V
'~

4 n - ~n~~
u u u u u

a

I

d

cn a

n. .-~
- ca

~ ~
-~ o
Z F-

Z
V
l~

M
~ ~
.a

~A
to

M
M

O

4'

4 `
r--
i

m

La..
1

1-- M

~ Z
. J F-~1

.J

~~

-- Z
p1 d d
E ~ +'

. J

Z L.►. D

c
r
e
a
t
e
d

f
u
n
c
t
i
o
n
s

M
o
d
~

f~
e
d
;

1

0
V

W

W

R
iC

I~
~

O
~

n

Qa
Do
Z=
L.1 U

OC ~..

2

V

C W ~ (W ~ (W ~ [W

~ ~
4 ~.

w h
QO ~

Figure 8-1. PS 390 Initial Read Floppy Network Created

RM8-2 Reference Materials

Z
d

W
d

X
- J

~-

N

d

a

r

L

~

T

{~

O
f

/
W

V -

N

M

d-
.-

~-

O-

F- sC

0 t

- o
~- M
Z
W V --
t- .- -p
~ ~C d
~-' . J

-. .J

d

E O
~ Z

-- Z
d d d
E ~ i-'

.J W

Z LL. 0

O~

o
~
N

N

S
s

t
P

o
rt

 s

V 0

~
I
~
E
R
R
O
R
S
O

C
IO

,
K

_
C

IO
,
H

_
C

I2
0

~
1

~

~
1

 ~ P
O

R
 T

5
0

#

1

~
I
~
E
R
R
O
R
S
O
 h

O
O~ ~

W

0

W

4 0 ~,

~•

Q

0

4
c
-V

h

.qo,

yr

~
1

 ~ F
L
 A

 B
£
L

~
I

~ E
R

R
O

R
S

O

cJ
~

O
L

A
B

E
L

C

IO
,H

_
C

IO
,

~
J
~

O
S

E
T

II

~
1
~

P
O

R
T

5
0
#

~
1

~
T

A
B

L
E

T
O

U
T

I.

~
i

~
O

F
F

B
U

T
T

O
N

L
IG

N
. T

S
I

Q

.,,
n

I

4
0
A
4
r

C
ls

a
r_

Is
b
•l

s
,

~
I~

O
L

A
B

£
L

I-
B

I

~
I

~ O
S

E
T

 I
J

~
I

~
TA

 B
L

S
T

O
U

T
 I

~
1

~
O

F
F

B
U

T
 T

O
K

L
I6

H
T

5
I

Figure 8-2. PS 390 Host Input Data Flow (RS-232 Interface)

System Function Network RM8-3

w

O
Z
W

a
I

N
L~

X +'
. J

~w,

w,
~

t
W

t
W r

^r̂ ^~̂

i..~ ~..i

V I

N

d

d

.-~

.+d

O
}'~

N

M
In

•--

lA .~

~'' 00
~ p.
O .-
a

~ ~
d ~
cn

0
M

OD
~- U .-
O •- 'D
~- < d
I•- -J
W ~-

~- .J

d

E O
~ Z

-- Z
d d d
~ ,"~ i-i

- J

Z Li O

A

..
~ w

H~ O
W W

~.
~• V

: I
O O

Q Q ~
O O V

o W W

OI

♦ O ~ 'r
w • • V

0
Q O
Q
V

O ~.
V

~'

4

Z'

N~
W
w

w b
~ ~

O
•. ~
• h
h ~

0
ti

d
4

h
♦
1

Figicre 8-3. PS 390 Host Inpcct Data Flow (RS-232 Interface)

RM8-4 Reference Materials

M

I
o~
N

W

0

W

d
E
t0
Z

O
Z
d

co
a

N

N

d

to
a

r-.
W

O
F—

00
o-

N
♦ ..

v

M
w

~~

M

U •-
.- .O

4 d
.J

'F-
.. .~
d 'O
E O
W Z
Z
d d

.-~. +r

.J

I.L.

s
Q
0

0

ti

a

ti
0

w
0

.~ N

V
r

e

0
u

~.
r N

h

0

i

a

.~~~.
~ M

.......~
~ N

a

oc 0
z
V

r

•

1~

h
•

V

Figcire 8-4. PS 390 Host Inpcct Data Flow (RS-232 Interface)

System Fi~nction Network RM8-S

4

h

O

r

V/

V

a.

O

r~

W

r~

'A
W 1

'+"~ Q

~- M
O
d U •-

-- -p
~' 4 d

.J

.. . J

d

E O
W ~

•• Z
d d d
E ►~-+ +'

J

Z La. ~

h
V.

O
d

1
r-
u
M

r ~ ~ ~ N

L
0

H

0
n

1

W
h

r
 ~ ~ M N N

O

L

O O O O O

~ ♦ ~► a o 0 0
'~ h h ~

0
h

L t

w

~

0. Q

M

d

I

W
h

r .~ M

r~
sc

r
vo
a~

• ~ ~ N
 N N N

/+\

•

l

s

•-
W
h

W
• N

• ~ ~ N
N

Figiere 8-S. PS 390 Host Inpcct Data Flow (RS-232 Interface)

RM8-6 Reference Materials

I
0
N

X
.J

d

a.

O
Z

d

a

U p~
~ ~-

~ ~

a o
o ..
U M
~ d-
F ..

O ~
_ •—

~ ~-

a o0
o. o.
o r-

.--, ,
~ ~

Q
rn ~
c
•~ o
O M
f-
O U --
d -- ~

• < d
W _~
1— `F-

.. . ~
d "D
E

!
O

t

. Z
d d d
~ ~"~ ~'

(~ • J W

zoo

4

~. ~ ..
O ~ ~ V ~ o o ~ o

` ~
0.
1 1

y ~ y ~
~ s ~

Q ~ h~ 0 0 ~
a o W ~ a
9 ' .

1 Z h

1

V

2~

O

0
f

4 m

r b
t

• h
t h
ti i
•
O ~. ~.~
t O W

. 2 Z
o

.L` 1 1
V V

0
~ ~ 0

t ~ = W Q

« ° :' t t
• O 1 ` M ti 1 ~

~ 1

L'.
♦ 1

V
O

` ~

~ O h
~ ~ W
~ +~ . e.. .

O

V

h ~ b
~ ~ O ~

~ ~ 4 W ~
e . . ~ ~ v

C ~ ~ 1 O ~
« ..

r.

e
~ 0 ~ V ~ Z

o o ~ o 0
a

0
W e

1

e

O

1

M
e
e

D

Q Q ~ ~ i W O e ~
~ C O V ~ Z ~0 3 O O
~ ~ Q =~ W •~ Iry •. : _

~ O ~ ~
V ~1

r d h o a o i y r

4 v v ~
o .
t ~ ~ ~
V ~

h
1

~ 4

:Q Q
Q ~

i `: ~'
1

r ~

s

i o V

~ O O
~ ~ ~
.. ~ •.
O ~ ~.

i

a

V

O

.
1

0

_~
1
V

Figure 8-6. PS 390 Host Input Data Flow (RS-232 Interface)

System Function Network RM8-7

1

c
o
n
t
r
o
l

Z

a

O
d

td

O
H

G~

~..

N

st-

00
Q•
r-

D
M

d
U (~ ..

.J ~ V

A
~ Q W

W . J

Q

.• .J

E O
(0 ~

-- Z
d d d
E ~--~ i-'

• J (~

Z li D

I

Q h i z

v N Q W L
~ t ~ 0 ~

p p ~ ~
a ~ ~ . ~

Q ~ w ~ ~
r ~

Q
W
v

i
i 0

b o h

D
v

O
~► Q 1

M ♦ ♦ •
i '~ t ~ •
~• O
o W W ~ 1

0 0 .~ T~
ec

cT
 ~

>>
ac

sl
o

I

O
!!

B
(!

t
~

I►
T

A
B

t£
T

I

1
c
W
4
e

k

W
m
t

O

~ /
O

0

h

r

•

O
1r
M

c h

~. Q
O

w 4

O ~

O ~
~ ~
Q ~
W
1

v O W 4 b h

Z ♦ ~ V 0
r

+~ e
~ ► ~ ~ h ~
~ ~ • ~

t a ~ o W

;0 0 0 0 0 0 0

0

O

e
e
ti

ti

D

 r

~\

Figure 8-7. PS 390 Host Input Data Flow (RS-232 Interface)

RM8- 8 Reference Materials

0
h
4

N

O
Z
C

(0
a

I
~ '°

x +~
-~ C
~- pt
N ~-
~ ~
a a

a

0

d
U

...~

d
0

d
E
(0
z

U

4

C
~

G

Z
d

.~
~..

N

.-~

H

O'

N

M

~t'
00
o-

M

.0

d
...

.J

V

d

(~

.. •
1
• ~

A M

~ o ~.
Q
~ ~
0 0

e
o

O v

~ ~

e

1

O

O W
e

W

e

1

J

0

Figure 8-8. PS 390 Host Input Data Flow (RS-232 Interface)

System Function Network RM8-9

w

0

7

a

U

Q

z
d

~~

. J

+~
c
d
~-
co
a.

N

d

(0

r-,

(O
-F'
O

H

N

M

Q

M

"D

d
_ J

y"'
. JJ

V

0

~--^---~

W
O

1 J
~ J

V ~

~+ o e
e ,;,
o._. N ,A

e
0

f•
D

IA
L

IA
S

E
L

J
W
m

J
J

0

_..~

J
W
m

J
J

0

,..,

.J J
W
O
t

W
m
t

W
O

J
J

,,~ J
J

~
~

J
J

V ~ v ~
O

_..A c N„

O a
e
or.._~

~
,;,

1

h

a1

1

u 0
J

0

~ N A Q

1

W N
J

0

N /~

1

ti

Q

r
W

J

O

~:
~ N A

r
W
n
J

a

_« , 0

r .-
W
b

W
M

W W N
J

O

1

J

r
0

1

J

a.
e •

J

r~
a

N A ~ N A
ti
Q

~ N h ~ N A

Figure 8-9. PS 390 Host Input Data Flow (RS-232 Interface)

RM8-10 Reference Materials

v

O ~

O
Z

O1

(d
a

N

,,AA
V/

W

^~̂

~.L

ry

y
~

T

O

W

o-

v-
N

^ M

r~ ..

r~

J ~-
... ~
}~ p.

a
~ }-
7 a
O ~

O
M

U --

Q d
.J

~`"

w`.

.T

~

W V

E O
O ~
Z

d d d
E ►-~ +~

(~ - -~ (0
Z !.._ O

K
e

y
b

o
a

rd

J J J J J
W
O
t

W
Q

W
m
t

W
m
1

W
m

J
Y

1 J
I

J J
Y

J
Y

W W
Y

W
Y

W
Y

W
Y

W
V

~ N /7
v

V

n n
r

.~ H M

J J J J J J
W
m

W
O
t

W
m
t

W
O

W
O
t

W
m
t

1 J
S

J J
}

J
}

J J
Y

W W W W
Y

W
V

W

V
N A N A

V r h A
r

N M
W

~ N A N A

0
e V

N A

0

Figure 8-10. PS 390 Host Input Data Flow (RS-232 Interface)

System Function Network RM8-11

I
,o

x
.J

y"'
d

a

~r

O
0

M
+' d-
~ ..
a ~n

o ~-
00

c o.
o .-

~ }
~ Q
m ~

~ o
M

+~
01 U .-

..~ ~ ~
-D 4 d

.J

~. .J

d

E O
~ ~

~~ Z
~1 Q1 Q1

~ ~ ~
J

.Z ~1.~

J
Q

V

1

V

F
:
O
F
F
L
I
G
H
T
S
3
2

O
N

B
U

T
T

O
N

L
I6

H
T

S
!

-- N
N
('7
N
H-

J
2
0

4.
~ N TA

B
L

£
T

O
U

T
 I

1--

O
O

a
H
~,
m

4.

1
 ~

O
i'f

B
U

T
T

O
N

L
 J

6
H

T
S

I

Figure 8-11. PS 390 Host Input Data Flow (RS-232 Interface)

RM8-12 Reference Materials

1 ti 1

V V ~

O `• 2 W

e

o

a ~ o ..
..

O
Z
d

t0
a

I

C

U

U

d

Z

c
d

aW.

V

N

a

.~

~o

M

r-

Q

M

U •-

d N
.J

~"

.. .J

d

E' O
~ Z
Z
pl d
.~ ~
. J

li O

a
M

ti
V

r~
(J

O

M

O

O

_~
0
n
m
r
H

0
u
O

r
- h !~

4 m

0
u
0
~.

- w w

D

O

0
v
0

-« w

0
N
H

0
u
O

w
- w w

Q

J
O
C
H
Z
0
v
v
O
.~

W
O
O
V
W
0
u
O

V

~L
v
/a\ A

0
h
0
.. 1

n
0
z

Figure 8-12. PS 390 Host Inptict Data Flow (RS-232 Interface)

System Function 1Vetwork RM8-13

N

O
Z
01

a
i

~ ~

x +~
-~ C
~ d
N ~
L (d
~ ~

F
u
n
c
t
i
o
n
s

V /

N

d

.--~

'~'~

/

W

V -

N

M

'~

/,~.

W
A
V _

r•

D

M

U
+~ .-
~ ~
O
d

d
E
~O

•• Z
d N d
E ~-+ +'

. J

Z li O

M
o

d
if
ie

d
:

0
Q

~~

W
h

d

i

F
:
O
C
S
E
T
S
U
S
P

~ ~ N

1

Y
0

/'_"'~

a
m

h ..
~ W

LI ~
h u
~ o

O ~
•~~1

Q

~ N N N

t

- ~

s
e

n

W

~ u M o

O _ ~
t

g

0
Q

4

F
~
O
C
S
E
f
S
U
S
P

~ ' N N N

F
~
0
[
S
E
T
S
U
B
P

•- -«
N N N

h

O
Q

n
e

N

W
N
v
0

•
N

Figure 8-13. PS 390 Host Input Data Flow (RS-232 Interface)

RM8-14 Reference Materials

M

O
Z
d

(0
a

I
~ '°

x +~
. J ~A

'
~A

` t
V

(
W l~'~

r

a a

+'

a
c
.J

d
U

.J

d
0

d
E
(D
Z

N

d

.--~

(0
t~
O

'~'

M
t7'

t,f)

00
O~

a

0
M

U •-
'D

4 N
.J

~"'

d "~
E O
W Z

d d
~ ~
. J

v
t
ti

N M ~ tP1 ~O ~

Z
...
N
J
d

O

~
1

D

IA
L

 S
l

- N

N
M

~ ~
2 Z
.~,~ O

h ~
Z ~

~ m
,~ ..
~ ~

`~ N T
A

B
L
£
T

IN
I

{~
E

~
1
 s

P
 l

C
K

L

O
C

R
! T

 I
O

N

M w 1A

Z °~ •y.
~ Z
h ti ti

O W W
'~ v v

~ ~

~ ti a
~ ~ v

Figure 8-14. PS 390 Host Input Data Flow (RS-232 Interface)

System Function Network R1Vf8-15

lf)
N

W

d

Q.

.-r

00
O-

d'
N

M

•--

~t
00
O-
•--

^' O
~ M
C

.~ U --
r

ww~ 4 d
W .J

'"~'

~-

.J

C
W

G TTO

L

•• Z
d D1 01
~E ~ +~
~V •J

z ~.{.~ 0

E
m

u
la

to
r

Q

0

b
`

`s
L

r

Q
e

O
V 0

v

1

i

a
O
W
H

r W

M

W
W

J

s
O
Z

4
h

a
O
2

_ ~

I

'
 l
t
H
A
R
(
l
O
j
l
C
H
A
R
(
/
J
I

M

M
4

A
R
(
l
7
I
l
t
N
A
R
(
1
0
1
1
'
P
S
J
0
0

..
n
z
N
Y

-==

Z

0

yl

W

h

t

h

v

Figure 8-1 S. PS 390 Host Input Data Flow (RS-232 Interface)

RM8-16 Reference Materials

AAI
V_

X
.J

t
~

P.

N
e
t
w
o
r
k

N
d
U
U

N
.J

d

Z

V /

N

w
~

{i~

a.

!'ny

L
~

T

O

W

~'
N

M
ltd

V-

CA
O~
r—

O
M

U --
r- -p

d
.~

.. .J

d

0

Z

d d

. J (Q

LL

Y

~~

h Q W ~
o

V

~ w
°o ~
~ ~
k
Q

•

•
H

a
y

Q

l~J

Y
h

0

u
of

a
O

W

u
0

h

O
Q

M

O

t --

N
.~.

Q

c
y

r~

i,
Re
~o
oc
sK

O

O

Y
M

O
W
F

2

r
~ N

Y

w
0
W

o~
s

~.
~ N

~
~

i,

N
R

IT
E

S
T

R
C

A
~

1

h

a
Q
i

O
W
Q

o~

W
n

~.
0~

d
0

~.

a 0
s
u

I

4 0 s
u

~.

Figure 8-16. PS 390 Host Input Data Flow (RS-232 Interface)

System Fi~nction Network RM8-17

-~O

~7

G~

d

-t-'

OC?
O'-

N

M

~'

~. ~-
C ~p
(6 p..
Q .—
E
O }-
U

o2f
O

''-~, C')
U
~ U --
a .- -n
O 4 d

1 .J
~...~ ~-

.. -J

d

E O
co ~

-- Z
~/ d p1
E •--+ +~
(~ - -~ tG

Z LL ~

r

O Off .
y h ~

O a O

V V V
~ . ~
a ~ Z

C

V

t~

V

V

1

1 0

~ ~ ~ O
O~G~~-T

Z 4~. O ~ m

h~ ? t ~ ~ ~
W ~ h -~ v~
~ W ~ ~

t

~~
h

t

Q 1
M

O
Q

V
Li

~

Q
M

4

ti Q

i ~:
v o

h
Q

R
W ~
•

~ ~ O ~

1 W
i

V ~ ~
~ ~

: •

O e V

h
: Z

h ~ ~

•

0 ►.~
o
4 .o o z

~~
0

_ :' ti
v ~

0
ti

0
0

0

4
V

..
/~/~1

V
..

t~

V

4

2

~

~

Figure 8-17. PS 390 Host Input Data Flow (RS-232 Interface)

RM8-18 Reference Materials

r.

0
z
d

W
a

I

N

X i'
.J

Y"' N

Q.

N

d

•--~

'~'~

0
~""

0

M
st-

•--

Q`

•--

O g
.-,
U O

M

~ U
a .-
0 4
s
U

d
E
W

•• Z
d d d
E --+ +'

.J

Z 1L ~

M
o

d
if
ie

d
.

~~
O

O

W -,
a J

~
E

'R
R

O
R

S
O

w

O
ti
v

N M ~ V1 .O

H

V

N M

C
H
O
P
0
~
0
~

O
Q

Z
V

O
ti
V

- N !9

O

v

- ~

~
1
~
C
H
O
P
O

Figure 8-18. PS 390 Host Input Data Flow (RS-232 Interface)

System Function Network RM8-19

i
r

O
Z

/

W

V.

I

N ~
L~

X +'
.J

y"'

a a

N

d

a.

.-~

O
!"'

o-

N

tf~

P~

Q

N pp
a o.
o .-
~c
U >-

~ ~
_ ~

p
O t")
a
O U --
.L r- `p
U Q N

I - J

~'

.. _.J

d V

E O
O ~

•• Z
d d d
E .--~ +'

. J

Z ~L

Y

t
1

r
l

~~ _~, ~-
i o v

I

I
I

 / f

I
I

e

h ~ h ` e
o ~ o o v Q 4
w o W ~~ v

~ 1 t ~ • ~
~.

e W Z

_' o ~ w
1 ♦ 1

1.

V

V

1

0

v
s'
..
~~

 I

Figure 8-19. PS 390 Host Input Data Flow (RS-232 Interface)

RM8-2 0 Reference Materials

I
00

Z

d
Q
W

a

c

~-

M

00
M

~O
~~

o-
r-

r
4

0
M

O U •- "0

►- < d
W .J

~''-

.J

0

Q

•

4

Z

W

0
N

O

Ot
W

.~

d
o'~0 0

w
ti

h l
w

e

Z

 I

- N

~ ~ ~. _
h '~

Z ~
~~ O

W u

W ~ N

t

~~ _~

~ ti _/

0

u
ti

~i

a W

2
0

Q) ~ ~ t

V u 4
+' r 4
►~,~ ~ N m

1 ~

W

r a~
0

W

~.

/~

K
H
N

O
u

N

O
c
•

•

•

Q
~t

M
V
k

h

<u
uv

w

4

b

r
0
H

u

«r► •

r
W

Y

d
W
0

M

^..
N
V
W
a.

O

u

Figure 8-20. PS 390 Host Input Data Flow (RS-232 Interface)

System Function Network RM8-21

O

N

O
Z
d

a
I
o, ~
.-

x +r
.J

y"

t
~

^Î~

Vi

N

~A
d

r-1

O
t-

4 -
N

O~
M

00
M

-~

v
M
W

o-

Q

M
O
N (, _.

•-- 'D
~-' d d
d .J

.. . J

d

E O
W ~

-• Z
d d pl
E .-~ +'

J

Z La.. O

W

N
V
V

r
IA

r
Z

H
N
z
0
u
r

_«

O
W

v

o ' Yo o~ o
O ~ m

N~ ~ Z 2 ..
r 1

1

~

V

w

N

h

u

0

~ N

i
W,
a
H
M
0

W
of

'`

r
O ►-
•
r-

u

«~.

H

L
r

Z
O
u
~.

N

1

~ N A

-.
..
Q

`a
V

h

~\

r
M
v
W
H

O

u
r

•~N!

N

0

Figure 8-21. PS 390 Host Input Data Flow (RS-232 Interface)

RM8-22 Reference Materials

N

O
Z
d

t0
a

I
N ~
M
Li

X ~
-~ C
`F- d
Ol ~-
t- cA
d a

R
e
s
e
t
_
c
h
o
p

R
e
s
e
t
_
t
e
,

N

d

Q_

.-,
(0
+'
O
1-

00
Q-

d'
N

M

'd"
•---

o-

Q

M

U --
~- -p
Q d

.J

~'

.. .~

d

E O
~ Z
Z

d d d
E ~-+ t'

. J

Z ~L.

R
E

S
E

T
_

C
H

O
P

D

R
E

S
E

T
_

T
E

I

C
O
2;
V

~~

z

~-

z
0
U

L~
N

R
£
S

£
T

_
 T

E
I

~
1
 ~

~-
W

W

'.
j!
R

E
S

E
T

;
!R

E
S

E
T

;

Figure 8-22. PS 390 Host Input Data Flow (RS-232 Interface)

System Function Network RM8-23

r

CV

C`J

C
Z
d

;D
a

L_
L~

d

~ o-
cn _-

d ~
~ ~

I ~

U •-
~- -p

O eC pt
.J

3 ~}-
..

T
J

C
d V

G

W
• Z

d d

/E~~ ~ ~
~V .J

Z Li 0

H
O

S
T

O
U

T
I

a
0
z

F
:
W
H
O
_
A
M
_
I

1

1
V ~

1
~ H

O
S

 T
_

N
£
S

S
A

 G
£
B

 J

H
O

S
T

_
l'I

E
S

S
A

G
E

B

H
O
L
O
M
E
S
S
A
G

N l'7 r N

H
O

S
T

_
H

E
S

S
A

 G
E

 I

a
O
z

Figure 8-23. PS 390 Host Input Data Flow (RS-232 Interface)

RM8-24 Reference Materials

I
00
N

M
N

O
Z
d

a

i~'
C

a

N

d

d

.-.

O
F-

00
tt

O
O

M
~-

Q

Q

a r~
0
U U ..
'D r- ~

_- ~C d

T
~ .J

i

.. . J

d

E O

Z

d d d
E ..y f'
t0 ~.r (~

z ~L ~

P
L

O
T

S
T

~R
T

 I

~►

W

0
J
a
►~-

N

~ N M
O .- N M

N ~ 1~ m O .- ~ .- r•

~
1

~ P
L

O
T

S
T

A
R

T
 1

a
0.
V

~-
O
J
a'
~-

z

~ N M ~ V1 ff
P

L
 O

 T
 l

W
F-
F-
0
J

a

~- N

Figure 8-24. PS 390 Host Input Data Flow (RS-232 Interface)

System Function Network RM8-25

N
L►_

M
e
s
s
a
g
e
_
D
i
s
p
l
a
y

N

O
Z
d
CA
t0
a

•--

C
~[

r

^~̂

1..1.

N

V

tC
O.

r~

W
'~

O
P--

0'

N

lt')

r
~ ~

--~ a
~ ~

~ Q

M

~- U -
T

-
r' AV

``
Q W

r-+ ..r

U ~}-

d 't3
E O

.. Z
d

E r--~ +'
(D - ~ (C

Z la._ D

O
t
V

V

t,~

j

v

V

~ ~

r

f~
v

Z

n

h

W
0
y

Q)

1
a

M

O
►-

H
N

- N

-.
O

t

Z
Q.1

J
J

z
W
s

- r~•a

u
u

o:

~.
i

Y

h ~

y =

0 ..

V
K
1
h +

i tia Q
i =
v ~

~~

~~~ 

d 

.~ N 

f
:
B
O
T
S
T
A
C
K
 

ti

Z 

,~r 

O 

W 

.~ N M 

O 
t 

W 
r 

~ N h r 1A 

Figure 8-25. PS 390 Host Input Data Flow (RS-232 Interface) 

RM8-2 6 Reference Materials 



N 

O 
Z 
N 

W 
~ a 

N 
L~ 

1C ~ 
. J ~A

``
W 

t
~ ~~

77tt
r \V 

a. a 

N 

d 

t0 
d 

.--~ 
W 
+' 
O 
H 

00 
~t-

O 
O 

C7 
d' 

Cb 
o-

a 

0 
M 

- U --
U •- ~ 
lA d d 

.J .J 

.. .J 

d 

E O 

.. Z 
d d d 

E ~-+ +' 
(0 --~ (0 

Z ti.. O 

! 
~ 

TE
C

SI
~1

0 

! 
~ 
S

 T
C

S
M

O
 

~ 
1 

~ 
T

£C
O

L 
O

R
O

 

S
C

R
£

£
N

S
~

 V
£ 
1
 

F
: 

S
C

R
E

E
N

S
A

V
E

 

M
M

£R
R

O
E

 T
£C

 T
 ~`

 

t7 
W 

Figure 8-26. PS 390 Host Inpa~t Data Flow (RS-232 Interface) 

System Function Network RM8-2 7 



~
o
N 

O 
Z 
d 

t0 
a 

M 
N 

to 
d 

O 
a 

•--~ 
t0 

O 
1—

P~ 
d' 

M 

~J 
r~ 

M 
•--

el-
00 
O ~ 

Z 
t-- ~ 
< ~ 
O ~ 

~ m 
m .--. .. ~-, -- ~ 
~ ~ d 

J 

.~ .J 

d V 

E O 
W ~ 
Z 

d d d 
E ~-+ +~ 

.J W 

Z l~ O 

S
s 

t 
P

o
rt

 s
 

V 

~ 0
 ~ 

E
R

R
O

R
S

 
~ 

J 
~ 

I 
B

N
_ 

T
£
 I 

~
I
~
E
R
R
O
R
S
O
 

C
IO

, H
C

1
0

~
4

~
 

~
Z
~
P
O
R
T
S
O
~
 

\  1
N 

O~ 

~
1
~
£
R
R
O
R
S
O
 

0 `

Q 
O 

T
E

, 
P

~
 r
a
 i
 n

g
, 
fl

o
p
p
y
, 

H
a
rd

 

~
1
~

IB
N

_
T

E
 

~
0~

£R
R

O
R

S
O

 

~ 
l 

~ 
O

L 
~ 

B
E

L
 

C
IO

, 
H

_ 
C

IO
 ~

 

~
I~

O
S

E
T

II
 

~
Z

~
P

O
R

T
S

O
#
 

~ 
I 

~ 
T

~
9
L
E

T
0
!/
T

I 

~ 
I 

~
O

F
F

D
U

T
T

O
N

L 
IG

H
T

S
I 

A 
ti
Q 

• y

h ~ 
4 

~~ A 

r 
Z 

• 

• 
~O 
• 

~r ~i 

`~ 

~
1

~
O

L
A

B
E

L
I.

B
I 

~
I
D
O
S
£
T
1
I
 

~ 
I 

~ 
T

~ 
B

L 
£

T
O

U
T

 I 

~ 
I 

~ 
O

F
fB

U
 T

 T
O

N
L 

J
 S

H
T

S
 I 

Figure 8-27. PS 390 Host Input Data Flow (IBM) 

RM8-28 Reference Materials 



I 
N 

N 

O 
Z 
d 

co 
a 

.- 

C 
d 

N 

d 

^~̂ 
~.i. 

.-~ 

'"~ 

M 

~O 

O~ 
O 

W d-
+' OO 
j- Q-
O .-
a 

z 
~ ~ 
d ~ 
cn 

,~ 
~ m 
~- ,--. .. 
o r- ~ 
~ < d 
~• ~ J 

W ~ 
.. ..r 

d 'O 
E O 
~ ~ 

-• Z 
d d d 
E •-+ 4' 
(~ • J (~ 

Z 

4 

1 

Z )a 

o 

O O V 

V V o. 
l O '~ 1 
v ~ ~ V 

N 

4 
4 
Q 
W 

Q 

.. ~ 
~ ~ V 
~1ti 

ti

Z'
0 

w b 

O i 

• h rs • 

Figure 8-28. PS 390 Host Input Data Flow (IBM) 

System Function Network RM8-29 



M 

O 
Z 
N 

tC 

I 
o ~ 
N 
(.a. 

a 

N 

X 
-~ C 
`F- d 
d ~ 
t- t0 
a a 

N 

w
N 
V 

.-. 

O 

M 

~O 

o-
O 

~' 
00 
O~ 
•--

Z 
to to 

O .—
~- 4 

W 

m 

.. ~ Z 
d d d 
E ~-+ +' 
(~ -.~ td 
Z li O 

M
o
d
~

f~
e
d
: 

a 
.. 

a 
Q 
0 

0 

w 
0 
4 w 

Q 
W 
0 

0 

h 
O 

1 

r 

0 

a 
u 
~. 

r N 

0 
4 
Q 
w 

~^ ~~~ 

a 

i 
O 
i 

a 

O 
a 
0 
u 

ac 0 
z 

0 

s~ 

V 
~~ 

h 

li 

.. 
~ ti

• ~ • 
v 

Figure 8-29. PS 390 Host Input Data Flow (IBM) 

RM8-30 Reference Materials 



N 
r --

O 

Z 
W 

W 

N 

M 
N 

w

~ 
V 

Q. 

•~ 

1 

M 

~O 

O 

W 

r~ 

'w 
W ~ 

~~ 

O 

a .-. .. 
r- -o 

+~ < d 
d .J 

.. . J 

d 

0 

_' z 

d d d 
~ ~"~ f' 

. J 

Z ~.L 0 

l 
N 

~ ~ • 
0 .. 
r 

s 
oc 
O 

.. 

s 

h 
O 

~ N 

H 

O 
d 

v 
D 

1 

W 

O O O O O 

H 

4 
N 

~ h M M h 
O  
t 

•  
 N N N L 

t 

1 

0 0 

1 
O 
h 
~. 
L 

0 

Q 

~ N 

~" 

d 

r 
W 
r 

~  • ~ ~ N 
~ • 1► • •   M N N 

O 
r 
r 
L 

~ N 

O 
d 

r 
W 
q 

• ~  ~ M 
N A h 

O 

r 
L 

J 
_.. 

s 
0 
a 
1 
W 
M 

V • .+  ~ N 
N N N 

O 
ti

4 

N 
v 

O 
ti
l 
O 

_« 

s 
0 

I 

W 
N 

~ N 
N N N 

Figure 8-30. PS 390 Host Inpcct Data Flow (IBM) 

System Function Network RM8-31 



I 
M 
M 
t~ 

O 
Z 
d 

t~ 
a 

N 

M 
N 

N 
d 

(0 
d 

.-, 
tC 
i-' 
O 

.-
M 

~o 

O -
O 

00 
C- 

a 

~ ~ 
d ¢~ 

cn ..~ .. 
-- -o 

~ ~ d 
. J 

~Y 

.. . J 

d '~ 
E O 
W ~ 

-• Z 
d d d 
E .~ f-' 
~D . ~ d 

Z 1.` O 

Figicre 8-31. PS 390 Host Input Data Flow (IBM) 

RM8-32 Reference Materials 



c v 
h N ~ O 

O Q O '~ 

W W ~i l 

i 

x 
.~ 

d 

a 

~O 

Z 
d 
a 
cv 
a 

C 
d 

a 

N 

d 

^~ 

I..L 

.~•~ 

'~ 

M'~ 

U ~ 
0 .a.. 

~ .~ 

a r~ 
O .. 
U ~O 
~ r-

~. 

T

~ 

i 

~. ~-
a o0 
a o-
o .-
~, 
~- z 

a~ ~ 
c 
.J ~ 

~ r~ .. 

a ~ ~ 
< m 

W .~ 
h- ~-

.

M

. . J 

C

V 

G O 

.. Z 
d d d 
~ .--~ ~ 

.J 

Z li O 

.. 
h 

4 

~I 
h 

O h 

h 

~, 

I 

h 

0 0 ~ 
W o ~ 

e e v ~ 
i ` ~ ~ 
a ~ v 
ly ~ w 

1 e ~ ~ 

~ ~ e '

1 ~ 

~. . 

M ~ 

 ~~ J 

O h O 

e ~ o 
• ~ • ~ 

` ` ` ~ 
w . . .. 

~ W ru ~ V ~ e ~ 

~.~ ~ ~ o o ~ 
~. 1 ~ . . ~. 

v 

s 

o i 

0 0 . . 

0 

V 

t 

1 

O 
M 

V 

.. 

0 

1. • b ~ b 

/~ 

1 

I 

a a N ti o e 
i ~ o V 
4 ~ O t 

~ ~ :' o' 
1 

0 
~ ~ :~ 

C ~ 

~ O O ~ 

4 0 0 4 Z 
~ ` t I 
~ 

V 
~ 

~ ~ ~ 
V • ~ ~ 

0 
O 
i 

v 
O 
i 

v 
O 

1 

S~ 
i 

1 ~ 

 I 

I ~ 

r 
o e o• o 0 

~! g ~ ~ ~ a ~ w ~ ~ s' 
q 1 O ♦ 1 
Q ~ 1 ~ 
r ~ r 

• 

~ e V 
0 

°s i i . , 
o. 

1 

Figure 8-32. PS 390 Host Input Data Flow (IBM) 

System Function Network RM8-33 



I 

c
o
n
t
r
o
l
 

h 

0 

Z 

d 

a 

,o 

+~ 
C 
d 

M 
N 

d 

W 
a 

.-.. 
W 
r 
O 

F"' 

~' 

M 

~O 

O 

~t 

~~ 

Z 

r- 

w' 
V 

U .—. .. 
.J P- '~ 

d 

d ..r 
0 

.. .r 

m ~ 

E TTO 
L 

•• Z 
d d d 
E --~ r 
co -~ co 
Z ti ~ 

~Y 
0 

0 

.. 

1 

a ~ s s 

M O W W 
V ~ V V 

O 
Q 0 ~ ti

• ♦ ♦ '♦ n 

0 
~ ~ ti ~ 
~ ~ • 

0 
h 

O 
Q 
Ot 
W 

r 

h 
0 
Q 

e W e 
e 
w 
u ~ 

~ ~ 
~ 

0 
M ~ 
i ~ 

4 • 

Q 

h ~ ~ ~ 

~ : e Q Q 
~ ~ ~ o 0 .. .. 

~ •• ~ .. 
0 

t O V O W L 

0 O O D O O O 

e  
O 

~ / 

I 
 I 

~ v 

v ° ~ 
.. .. ~ ° , ~ ~ ~ ~ 
« o 
~ W V ~ W j 

r V ~ 
r ` ~ 0 ~ 0 

W 

e 
O 

1 

Z 

V 

Figure 8-33. PS 390 Host Input Data. Flow (IBM) 

RM8-34 Reference Materials 



W~Y~iT o a 

N 

r1 

(0 
i-~ 
0 

O 

00 
o-
.-

+r 
~ z 
a ~ 
~ ~ 

o .-

dm 
U ~--~ .. 
J ~..~ 

ww~ ~ d 

W •~ 

O 4-

..

T

J 

d V 

0 

~• Z 
d 

E ~-+ +' 
(0 •-+ (G 
Z li O 

M+

~ ~ 

• O 

i M 
p 

~• 
o 
~ ~ 
• o 
~ W 
L 0 

+► 
~c • 

b 
t~ 

w 

4 O 

M 

0 
~. ., 
~ ~ 
Q ,. ~,, 
o e ~ 

~I ~ O O 
• ~ • 

~ O 
.. 

W 

t 

Q 

M 
W 
J 

ti

4 

.. 
w ~. Z 

o 
b 

0 0 o e « .. ~ 
~ ~ ~ ~ 
~ V • ~ 
e ~ .. 
M `1 

V O 

~ ! D 

a . 
~. .. 

1 

V 

Figure 8-34. PS 390 Host Input Data Flow (IBM) 

System Function Network RM8-35 



O 

O~ 

O 
Z 
d 

~ a 

~ °° 

x +~ 
-~ C 
~ d 
d ~ 
~- t0 
a d 

M 
N 

d 
OD 
t0 
a. 

.-, 

f' 
O 

0 

V
M

A
W 

V 

y~ 

!~ 

T  Z 
7 ~ 
a ►-~ 
+~ 
~ r.. 
o ~ 
m 

~ .... .. r.. ~ -~ 
~ ~ d 
.J ~~ 

.. .J 

d V 

.. Z 
d d d 

, Y • ~ 

2 p 

~-

W e 

J 
W 
m 

J 
J 

O 

_«~ 

h 

W 

0 

.__._^ 

J 

J 
J 
t 

O 

W 
h A 

i 

1 
h 

V 

J 
W 
0 
~c 
J 
J 
t 

O 

~ M A 

h 

t 

a 

~~ 

J 
W 
0 
J 
J 
t 

D 

W 
-..w 

a 

4 

J 
W 
0 
t 
J 
J 
t 

D 

~Nw 

V 
0 

J 
W 
m 
J 
J 

O 

~ N A 

1 
• 

O 

J 
W 
b 
t 
r 
J 
t 

O 

• M • 

~ t ♦ ~ ~ t 

r 
V 
ti
J 
t 

0 

~Nw 

1 

4 
M 

r 
W 
b 
J 

O 

N w 

r 

ti
Q 

r 
W 
M 
J 

O 

r 
~ N A N 

W 
A 
..~ 

O 

N A 

1 

h 

W 
M 
J 
t 

0 

.~ w 

a. 

Q 

Y 
b 
J 

O 

w h 

r 
W 
w 
J 

r 
0 

V 
~ N A 

r 
W 
M 
J 
t 

0 

.~ M A 

Figure 8-35. PS 390 Host Input Data Flow (IBM) 

RM8-36 Reference Materials 



w 

b 
t~ 
D 

I 

x 
.J 

~" 

d 

a 

~~ 

o
u
t
p
u
t
(
L
a
b
e
l
s
)
 

M 
N 

w
~ 
V 

^~̂ 

1.i 

r~ 

L
~

T 

M 

~~ 

O 

o-
.- 

-v 
~ ~ 
co m 
o .~ .. 
~ ~ ~ 
~ ~ d 
d .~ 

Y ~F-
.. .J 

c
d 

G 

•• Z 
d W W 

G ~~ 

(0 . J ~O 
z LL 

1 

1 

W 
e 
V 

J 
W 
0 

J 

W 
Y 

~ h A 

0 
V 

J 
W 
e 

J 

W 

~ N A 

w 

W • 

J 
W 
O 
t 

s 
W 

~: 
~~w 

~~ 

J 
V 
O 
t 

~ W 
h ~' 
v 

W 

w " • • 
~ ~ 

N w 

O 

4 

J 
W 
e 
i 
J 

W 

ti
r 
M w 

v 

t 

J 
W 
0 

J 

V 
Y 
r 

.+ 

J 
W 

~ ~ 
ti 

J 
} 

V 
W 

W ~ 
• ~` 
s ~; 
`__«~ 

~ ~ ~ ~ 

.~~. 

J 
W 
O 
t 
J 

h ~ 
v 

W 

W e '~ 
~ ,~ 

«.. 

e 

J 
W 
O 
t 
J 
Y 
W 

- « w 

1 
M 
w 

J 
W 
O 
t 
J 

W 

- w w 

1 

W e 

J 
W 
O 
t 
J 
Y 
u 

w ~ 

W 

1 

J 
W 

J 
} 
W 

-«~ 

o. 

0 
W 
e e 

O 
J 
W 
O 
s 
J 

V 

0 

la1 

Figure 8-36. PS 390 Host Input Data Flow (IBM) 

System Function Network RM8-3 7 



I 
,o 

•~-

O 
Z 
~1 

a 

00 

c 

l / 

N 

N 
d 

O 
d 

+' 
O 
h- 

~' 

~--~ 

M 

~O 

J .. 
d O-
+' O 
7 
O d-

~ o-
o 
+~ 
+~ z 
m ►~ 

~ z

+' p7 
d .-.,  .. 
^~ ~ ~ 
-D ~ d 
(0 . J 

'"-

-. .J 

d 

E O 
~ Z 

-- Z 
d d d 

~-"~ 

-~ 

Z l~ O 

D
i'f

B
U

T
 T

O
N

L 
l 

G
N

T
S

 I 
~
I
~
O
C
S
C
O
 

F
:
O
F
F
L
I
G
H
T
S
3
 

O
N

B
U

T
T

O
N

L
 I

G
H

T
S

I 

~- N 
N 
M 
of 
H 

CO 

J 
2 
O 

N T
~B

L 
S

T
O

U
T

 1
 

F
:
 B
I
T
P
A
O
O
U
T
 

h 

t 
ti

~ ~ 
2 
Q 

~'  ~ 

/y

V

,~ 
V 

~ O 
`~ 1 
V V 

t 
l_\ 

 i 

Figure 8-37. PS 390 Host Input Data Flow (IBM) 

RM8-38 Reference Materials 



N 

O 
Z 
d 
O~ 
t0 

a 

C 

d 
~-

a 

M 
N 

d 

W 
d 

.--. 

'~'~ 

0 
F"' 

rMM ~ 

o

__A

I

v 

r 

~` 

~ m 
~ ~"" --
U •- 'D 

'~- d m 
v .~ 
o ~-

.. .J 

d 

0 

• Z 
d d d 
E ~-+ +' 

. J 

Z lam. O 

O 
M 

.. 

~i 

Z 

i e 

h 
2 
O 

a 

r 

V 

e 

r 

N 
O 

O 

M v 

_ „~ 
0 
n 
m 
N 
•-

0 
o ~ 
o ~ 
M ~ 

0  ~ N h 

_ .~ 0 
n 
0 
0 
h ►. 
0 
u 
O 

N A 

1 ~ ~ ~ 

_ ,~ 
0 
d 
m 

N 
r 

0 
o ~ 
O ~ 
M ~ 

~ ~ N~1~ 

_ ,~ 0 
a 
0 

h 

0 
y u 
V O 

M' 
V ~ 
C  .. N w 

O 

4 

_ ,,~ 0 
n 
m 
N 
F 

0 
o ~ ~ o 
h ~ 

4 _ N M 

0 
d 
0 

0 
u 
O 

~. 
N A 

I 
i t I 

O 

0 

~ N A • N • 
J 
O 

r 
Z 
O 
u 
u 
O 
V 

r 

~s~ 

t 
h ►. 
O 
a 

O 
M 

D 
4 d 

~► s 

Y 

h 

O 

V 
O 
O 
u 
W 
O 
u 
0 

~. 

0 
M 

O ~ cO `' o O 
V 
O 

V 

~a~ 1~ 

O 

i 
V 

/ate /ate 

Figure 8-38. PS 390 Host Input Data Flow (IBM) 

System Function Network RM8-39 



0 
z 

rn
co 

a 
I 

F
u

n
c
ti
o

n
s
 

r~ 

O 

M
~ 
W 

o-

''•7 

Z 
m 
'-"'' --

+' r-• ~ 
f- < d 
O _~ 
a ~ 

.. .J 

d 

~ O 

•• Z 
d pl Q1 
~ r. .+.r 

_~ 

Z LL.. 

N A O 
N « « 

~~: 

.7 
h 

W 
h 
v 

~. 
~  N « w 

• W 
u 
a 

• ..   • ~ M 

~ N N N 

... 
11n 

W 
h 
u 
0 

• 
N 

N 
N 

~  ~ N N 

-. 

4 

w 

0 

.. 

v 

~~ 

Figure 8-39. PS 390 Host Inplct Data Flow (IBM) 

RM8-40 Reference Materials 



I 
-o 

x 
.J 

~w, 
V 

a 

tt' 

O 
Z 
d 
01 
tC 

a 

c 
d 

~--

M 
N 

d 

W 
d 

O 
F.... 

d" 

M 

~O 

a 
O 

~' 
00 
P 
r-

+' Z 
7 ~ 
a ~ 
c 
.J r 

d 

U •-~ _. 
.J ~ 

> d d 
.J 

.. .J 

d V 

~ ~ 

~ ~ 

•- Z 
d d d 
E .--~ +' 
(0 . J (~ 

Z l.` ~ 

N M ~ ~ •O P o 

Z 
~..~ 
N 
J 

0 

N 

tt~w

_J 

V 

1 

O 

B
U
T
T
O
N
S
I
N
I
 

N 
M 
N 
Z 
O 

h- 

m 

N 

~
1
~
B
U
T
T
O
N
S
I
N
I
 

T
A

B
L

E
T

IN
I 

E~
E 

~ 
1 

~
P

IC
K

_
L

 O
C

A
T

ID
N

I 

-- N (h t' to 

2 
.... 
O 

a 
/--
..n 

m 

ev e~ r 

1 

2 

V 

Figure 8-40. PS 390 Host Input Data. Flow (IBA7) 

System Function Network RM8-41 



O 

Z 
d 

a 

~ ~ 

X +' 
.J 

`F- d 
d ~ 
t- cv 
a a 

E
m
u
l
a
t
o
r
 

r•-

o-
0 

v-
ao 
o-

co g 
c m 

. J ►-~ .. 

E .- ~ 
~ ~ d 

.J 

f"-  ~' 

.. 
T

~ 

C
~ V 

G 0 

~ ~ 
•• Z 
d d d 
E .--~ +' 

• J 

Z la_. ~ 

e n 

2 

d 
0 

s e 

W 

1 
h 
v 
Q 

Z 
V 

s 
0 
i 

a 

Z 

1 

0.
h 

d 
O 

a 
0 

0 
u 
V 

J 

w 

m 

a 

'
i
C
N
A
R
t
1
0
)
t
C
N
A
R
(
f
J
)
 

a 
h 

C
N
A
R
(
!
O
)
~
C
N
A
R
(
1
J
)
~
'
P
S
J
J
O
 

0 

0 
to 

S > 
b W 
.. ~t 

1 

g 
s a 

w 

Figure 8-41. PS 390 Host Input Data Flow (IBM) 

RM8-42 Reference Materials 



0 
4 

.a 

O 
Z 
d 

t0 
a 

,o 

a 

N
e
t
w
o
r
k
 

r-

0 ' 

o-

N ~ 

N ~ 
d ~ 
U r-
U ~ 

m 
.--• .. 

.~C .-- ~ 
N Q d 

.J .J 

Q ~` 

.. . J 

d 

E O 
W ~ 

.. z 
d d d 
E .-. +' 
co . ~ co 

z ~ O 

0 
• 

0 
4 
O 
i 

0 

s 

O 
Y 
N 
.. 
O 
W 

Y 
N 
... 
O 
W 

O 
V 

O 

.. 
oc 
s O 

Q 
O 

~ N 
O 

~ N 

1 

L 

O 

u 

4 
O 

u 

a 
Q 

Q 

L 

n 

0 
0 

u 
s 

~. 

M 

~
~

,~
~

 
Y 
h 
w 
O 
O 
t 

r 

Q 

Y 
h 

O 
O 
t 
W 

r 

0 s 
W 
n 
u 

d 
0 

.~ W 
S 

0 
a 

r 

s ti

O 

s 

Figure 8-42. PS 390 Host Input Data Flow (IBM) 

System Function Network RM8-43 



I 

C 
(D 
a 
E 
O 

U 

'O 
C 
W 

.-. ~ 
U m 

.-~ 
a _-
o Q 
t 
U 

C
d 

G 

.. Z 
d 

~t~ ~~ 

~y . J 

Z ~L 

•~- 

0 

Z 

a 

,o 

c 

M 
N 

d 

a 

co 

0 
`"' 

M 

O 

s~ 

O~ 
•--

Z 

d 
.J 

.J 

V 

T
~ 

L 

~~ ~~ 

T ~ 

4 ~p 
ti  ~ 
V to 

~ I WW

`) 

~ ~ 

V y 

V 

~
D
,
£
R
R
O
R
S
O
 

a 

O 
ti
V 

0.

d 
t 

~. 

Q 
V 
t 

Z 

O 
V 

Z 

~
I
,
£
R
R
O
R
S
O
 

H
_

C
1

0
~

~
, 

~ 
I 

,
H

O
S

T
_ 

N
£
S

S
A

 G
£
B

 1
 

~
I,

!✓
D

A
O

 

~ 
I 

~ 
Id

O
A

 C
O

 

~ 
I 

, 
N

O
B

C
O

 

~
I~

IB
M

_
T

£
1

 

~
I
,
H
 C
N
O
P
O
 

Figure 8-43. PS 390 Host Input Data Flow (IBM) 

RM8- 44 Reference Materials 



.--. 

O 
Z 
d 

(0 
a 

I 

N 
t~ 

X +' 
.J 

A
~ 

V 

a a. 

M 
N 

O1 

d 

'~ 

r -

a 
0 

O
~
E
R
R
O
R
S
O
 

O 
ti
V 

£
R
R
O
R
S
O
 

w 

O 
ti
V 

- N M 

►-~ 

U 

- N M 

Vf .O 

C
H
O
P
0
~
0
~
 

b 
0.

Z 
V 

V 

- N M ~ 

a 
0 

v 

~
I
~
C
H
O
P
O
 

Figure 8-44. PS 390 Host Input Data Flow (IBM) 

System Function Network RM8-45 



O 

d 
01 
W 
a 

r 

o-
0 

~-
00 
o-
.-

z 

m 
o ,--. .. 

~- < d 
W ..~ 
to ~}-

.. .J 

d 

-- Z 
d d O1 
~ ~-'' i-~ 

. J 

Z li ~ 

1 
4 

O 

V 

O 

0 

~~ 

~YoY oY1 r~ 

O 

~
~
C
O
N
S
T
A
N
T
 

'~ 

O 
• 

M 

f. 

u 

1 

i 

Q 

N 
O 

Q 

~ N 

W 

ti
O 

u 
a 

O o ~, 
Z N 

4 u 
~~ 2 
d rs 
Q o  -~ 

~~ 
W 
h 

Q 

N 

V 
z 
s 
n 

~ h 

0 

_`~ 

d 
0 

v 

0 

4 

Z~ 
.. 

O 
0 ►-
e 

v 

N A 

~r 

~-
W 
W 
oc 

V 
b 

h 
h 

i 
.' 
h 

Z 

~~ 
W 
h 

W 

V 

W 
Q ._ 

i ~ 
< r 

N ~ 
z ~ 
o b 
~ ~I 

~ Q 
- "' h ~~ 

1 
0 

o~ : 
W V 
S ~. 
~z 
~ u 
uv 

.._.~_.. 

w w 

1 

Figure 8-45. PS 390 Host Input Data Flow (IBM) 

RM8-46 Reference Materials 



I 
0 

H
o
s
t
o
~
t
 

H
o
s
t
_
M
e
s
s
a
g
e
,
 

Z 
d 

(0 
a 

d 

to 
a 

t~ 

0 

o,
O 

et' 
00 
o-

.-

m 
r~ .. 

~ ~ 

r
~ ~ d 

y. . J 

3 ~-
..

T
J 

C
d V 

G 0 

~D ~ 
•• Z 
d d d 
E --+ +' 
(D - -+ t0 
Z li ~ 

t 

H
O

S
T

O
U

T
 I
 

H
D

S
 T

_ 
M

£S
S

~1
 G

£
B

 ! 

F
:
C
V
T
A
S
C
T
O
I
B
 

a 
0 
z 

H
O
L
O
M
E
S
S
A
G
E
 

r N 

N
O

S
 T

_ 
1~

!£
S

S
~ G

E
 ! 

a 
0 
z 

.. 
0 
z 
3 

F
: 

W
H

O
_A

M
_I

 

O 
Z 

Figure 8-46. PS 390 Host Input Data Flow (IBM) 

System Function Network RM8-47 



N 

O 
Z 

i 

N 

d 
01 
(0 
a 

~O 

N 

N 
d 

(0 
d 

.--, 
(0 
+' 
O 
~- 

s~ 

M 

o-
O 

~' 

r- 

r 

~ Z 
O m 
U .--+ .. 

~ ~ 
~ 4 d 

- J 

.. .J 

d V 

~ O 
co ~ 

-• Z 
d d d 

.J 

z ~. o 

P
L 

O
T

S
T

~
R

T
! 

S
T
A
R
T
P
L
O
T
 

.- N Mf f O f~ O 

h 

O 
v 
C 

V 

h 

V 

O 
J 
a 
F- 

Z 

.- N M ~h N 

~
S
~
H
I
P
I
P
I
 

j 

~. 

O 
v 
q 

k 

W 

O 
J 
a 

~ N 

Figicre 8-47. PS 390 Host Input Data Flow (IBM) 

RM8-48 Reference Materials 



V V ~r~.r~ Y 
a 

I 

N 

X 
.~ 

d 
t-
a. 

M
e
s
s
a
g
e
_
D
i
s
p
 

C
l
e
a
r
 
l
a
b
e
l
s
,
 

N 
N 

O 
Z 
d 
t7~ 

a 

i-~ 
C 
d 
f-

a 

M 
N 

d 

M 

•-- 

~' 

r 

r~ 

r•~ .. 

~~ 

d 

.~ 

.. . J 

0 

•• Z 

d d d 

I/~ ~~ 

\V •~ W 

Z 1... O 

W 
O 
t 
V 

W 

V 

a 

e 
O 

r r 

A 
.. 
v 
Z 
} 
n 

ti

Q 

M 

4 

~t 

Q 

W 

O 
1 

t 
V 

C
If

►
A

A
(!

1
)t

C
M

A
A

(/
0

)l
'S

t~
e
~

 
~

a
t~

n
it

 
J 
J 

W 

- w•~n 

t 

W 
u 
O 
u 
u 
~. 

~~ 
- N 

v~
so

rs
T~

ck
 

..~
cM

o~
r_

N
a~

»o
A

! 

~rw 

Z 
0 

Z 
W 

~ M A ~ M 

Figure 8-48. PS 390 Host Input Data Flow (IBM) 

System Function 1~etwork RM8-49 



~
I
~
£
R
R
O
R
S
O
 

I 
,o 
N 

X 
.J 

f-

0 
z 
d 
a 

a 

Q. 

r 

r 

a 

• ►--~ .. 

V ~ 

Q d 
.J .J 

.. .J 

d V 

0 

•• Z 
d d d 

E ~-+ +' 
tD -~ W 

Z t.._ O 

I 
~ 

I 
T

£C
S

N
O

 

! 
~ S

T
C

S
N

O
 

F
: 

U
S

R
T

O
F

 
~ 

1
 ~ 

I 
T

£C
O

L
 O

R
O

 

S
C

R
£E

N
S

~
 Y

£ 
1
 

Fs
 S

C
R

E
E

N
S

A
Y

E
 

11
M

E
R

R
O

E
TE

O
 T

 ~
 

F
: 

M
M

M
R

EG
 

Figure 8-49. PS 390 Host Input Data Flow (IBM) 

RM8-50 Reference Materials 



x 
.J 

31 
S.. 

a 

O 
7 
L 

d 

rn
ca 

a 

+~ 
C 

f-
(O 

a 

a 

.--. 

(0 

O 
1--

O - 

O 
tf' 

~' 

.p. 

o-

.-~ ~ 

O ~0" 
.- .~. 

O M 
~d- M  .. 
M >- ~ 
U7 V7 d 
?- . ~ 
cn `!-

.. ..r 

d ~ 

E O 
W ~ 

•• Z 
d d d 
E .-, +~ 
co . ~ ao 
Z l~ O 

C
lR

O
U

T
£

 ~
?
 ! 

~ 

R
A

S
T

E
R

! 
R

A
 S

S
T

R
O

 

o~ 
W 
1-
N 

W 

R
A

S
F

lL
 £

0
 

V 

7
 ~ 

S
H

A
O

I N
G

£M
Y

I R
O

N
K

£N
 T

 1
 

R
A

 S
R

£
S

£
 T

 0
 

W 
N 
W 
OC 

( y  ~ [ y

R
£

S
£

T
_

R
S

 1
 ~

 1
 ~ 

C
H

A
R

(?
7
)d

 '
`!

; 
IH

'd
C

H
A

R
(1

7
)d

 

Figure 8-50. Raster System Host Inpait Data Flow (DEC) 

System Function Network RM8-S 1 



~f 
N 
~t
o
1 

N 

O 
Z 
N 
O) 
tG 
a 

N
a
re

r~
t:

 

•-- 

d 

d 

O 
F-

,O 
~O 

~O 
M 

O~ 
O 

fV 
~-

st' 
00 
o-

.~- ~ ~ 
m r--~ .Q 
~ 0 
O et" 
d" M --
M r- 'D 
~ Q d 
}- .~ 
C!7 ~-

.. .~ 
Ol 'U 
E O 
W ~ 

-- Z 
d d d 
E •-+ +' 

J 

Z ~.L 

C
IR

O
U

T
£
~

?
I ~

 

ti
h 
T 

R
~ 

S
S

 T
R

O
 

W 
H 
N 

R
A

S
F

IL
 E

O
 

~
7
y
S
N
A
O
I
N
6
£
N
Y
l
R
O
N
M
£
N
T
l
 

F
: 

R
E

A
O

D
IS

K
 

v 

R
if 

S
R

£
S

£
T

O
 

W 
N 
W 

RRa--' 
`~i 

lw~ 

R
£
S

£
 T

_ 
R

S
 ! 

~ 
1
 ~ 

W 
Z 
2 
O 

ti
a 
W 

0 
i 
h 
w 

V 

W 

u 

3
2

7
8

 'd
C

H
A

R
(!

0
~

 B
C

H
~

R
(1

3
1

 
C

H
A

R
(l
O

~
d
C

H
A

R
(I

3
~

d
 'P

S
3
~

0
 

Figure 8-51. Raster System Host Input Data Flow (IBM) 

RMS-52 Reference Materials 



Figure 8-52. DEC Parallel Interface Host Input Data Flow 

System Function Network RM8-53 



N 

O 
Z 
d 

C 

N 
la.. 

.~—

X ++ 
. J w~

,,
V 

a a 

m 

t0 
Z 

.-. 
a 

m 
E 
W 

Z 

.~ 

ry 

.;.I 

O 
O 

M
o
d
if
ie

d
: 

.. 
O 
1 

E
S

_ 
~

E
! ~

2
~

 

E
S

_ 
A

E
I ~

3
~

 

xe
yA

~o
c E

ar
 ~ 
i,
 

XB
N

A~
VO

L 
E

R
! ~

 S
~

 

'd
C

J,
IA

R
(l

O
~

IC
N

A
R

(1
3

~
 

• 

• 
c .~ 

P
a
r
a
l
l
~
J
 

~ ►
 vE

P~
t c

r. E
~0

 

x 

Figure 8-53. DEC Parallel Interface Host Input Data Flow 

RM8-54 Reference Materials 



4 

h~ 
W 
• 

M 

Z 

a 

M .-
4. 

X +~ 
.J 

d 

d 

a a 

C
I
R
O
U
T
E
,
C
H
O
P
,
C
I
 

A

~ 

W 

a 

E 

Z 

a 

F 
i 

1
 eN

an
~e

 

'~' 

a 
.-♦ 

~O 
0 

.. 

P 

1 

M
o
d
if
ie

d
: 

O 

a 

11 

• 
e 

v 1  ~ o 
~ ~ e 

0 
0 

..' 
0 

4 
4 

tis s .. 
e 
s 
W 
s 
~: 

i 
0 .. 

s 
v 

~Mw• 

 -1 

1 

V 
~~ 

W 
Q 

H 
u 
s s w 

. w 

N 
V 
s 
~. 

~
~
r
o
s
~
 ~c
ss

~o
~c

~a
 

M 
i 
O 
u 

-« 

a~~ 

v 

~~~~ 

~ ' I

N1~

Y

a
e
t
V
Y

M ~

Y A • i:~ «

,_ ,,
O

._.

Figccre 8-54. DEC Parallel Interface Host Input Data Flow

System Function Network RM8-SS

H
O
S
T
O
U
T
2
,
H
O
S
T
_
M
E
S
S
A
G
E
2

E
t0

z

a

F
ile

N
a
rw

e
:

t

a
m

a

ao

0
~-

,o
0

0

a

0

00
o-

z

M
o

d
 ~

f
i
e
d
:

1~

O

cf
Ro

u~
Eo

~~
e~

P
4
R
E
O
U
E
S
 T
0
~
?
~

fIO
.S

TO
U

T?
 1

H

O
S

T
_

N
£S

S
A

 6
E

B
?

 /

cf
R

ov
~E

o~
»~

Figicre 8-55. DEC Parallel Interface Host Inpcct Data Flow

RM8- S 6 Reference Materials

RM9. INITIAL STRUCTURES

CONTENTS

1. RUNTIME SYSTEM 1

1.1 The Graphics Control Program 1
1.1.1 Data Structure Definitions 2
1.1.2 Scheduler 2
1.1.3 Functions 2
1.2 Initial Data Structures Z
1.3 Code for Initial Data Structures 3

2. CONFIG.DAT 5

3. NAME SUFFIXING 6

4. USING THE CONFIGURE MODE 7

t

Section RM9

Initial Structures

This section discusses initial data structures and name suffixing including the sys-
tem configure mode and its uses. The first section describes a runtime system and

the initial data structures that are built by the PS 390 firmware. Following sections

discuss the configure mode and name suffixing procedures.

Information for systems using DEC and IBM host computers is included. It is noted
where the information for each configuration may be different.

1. Runtime System

The PS 390 is a runtime system, it does not act like a personal computer or

provide a standard programming environment. The PS 390 does not have a

file system, editor, compiler, or symbolic debugger. The runtime system is
composed of PS 390 functions linked together to form the system function
network. A PS 390 function can be viewed as self-contained program. With
minor exceptions, it has no access to disk files, and deals with the world via
messages and queues, one transaction at a time.

1.1 The Graphics Control Program

The Graphics Control Program is the collection of software that executes
whenever the PS 390 is used as an interactive computer graphics terminal.

The 68000 startup code loads the control program into local JCP memory.

The Graphics Control Program is made up of:

• Data structure definitions

• Scheduler

• Functions

Initial Structures RM9-1

1.1.1 Data Structure Definitions

The data structures are set up by Pascal procedures that define and make

use of the following:

• Named entities; data structures that can be named and referenced.

• Alpha block; data structure that contains the location of a named
entity.

• ACP state; contains the parameters the define the context of the dis-
play processor at any given time.

1.1.2 Scheduler

The PS 390 runtime system contains a scheduler that is activated once the
initialization code on the firmware has been loaded. The scheduler loops to
schedule and execute functions. When a function is instanced, it is assigned
a default priority for execution. The scheduler uses this priority number to
determine which active function will be scheduled next to be executed.

1.1.3 Functions

The PS 390 intrinsic system and user functions are described in Sections
RM2 Intrinsic Functions and RM3 Initial Function Instances .

1.2 Initial Data Structures

The initial data structures are built by the C~NFIG.DAT file. These struc-
tures set up the framework that allow you to build displayable data struc-
tures. The initial data structures form the top nodes of a display structure
that the JCP and ACP traverse to generate the display during each cycle.

RM9-2 Reference Materials

1.3 Code for Initial Data Structures

The code that supports the initial data structure follows.

Initial Display Data Structure:

SCO$:= SET DISPLAYS ALL ON

THEN VPF1$

VPF1$:= VIEW HORIZONTAL = -l:l VERTICAL = -l:l INTENSITY = 0:1

THEN HVPl$;

HVPl$:= VIEW HORIZONTAL = -1:l VERTICAL = -l:l INTENSITY = 0:1

THEN CSMTOPO

CSMTOPO := SET CSM OFF

THEN GTO$

SEND TRUE TO <-1>HVPl$

GTO$:= INSTANCE OF GVPO$, TVPO$, MDO$

Graphics Display Structure:

GVPO$:= VIEW HORIZONTAL = -1:1 VERTICAL = -l:l INTENSITY = 0:1

THEN PICK_LOCATIONI;

PICK_LOCATIONl: := SET PICK LOCATION = 0,0 .01, .Ol

THEN GCURO$;

GCURO$:= INSTANCE WBl, CTl,

WB$! := WRITEBACK

THEN GDO$; {All Display Commands append to GDO$}

CTl$:= TRANSLATE BY 0,0,2

THEN CURSORl;

CURSORl := VECTOR LIST ITEMIZED N=10

p .035,.035 1 -.035,-.035 p -.035,.035 1 .035,-.035

p .035,.035 1 -.035,-.035 p -.035,.035 1 .035,-.035;

Terminal Emulator Display Structure for DEC VT100:

TVPO$:= VIEW HORIZONTAL = -1:1 VERTICAL = -1:0

THEN TENOSLAVEO$;

TENOSLAVEO$:= SET DISP ALL ON

THEN TECSMO;

TECSMO := SET CSM OFF

THEN TECOLORO;

TECOLORO := SET COLOR 240.0, 1.0

THEN TDO$; {The Terminal Screen is appended to TDO$}

Initial Structures RM9-3

Terminal Emulator Display Structure for IBM 378:

IVPO$:= CHAR FONT IMBFONT$

THEN ITENOSLAVEO$;

ITENOSLAVEO$:= SET DISP ALL ON

THEN ITECSMO;

ITECSMO := SET CSM OFF

THEN ITECOLORO;

ITECOLORO := SET COLOR 240, 1

THEN IBMSCRO$;

IBMSCRO$:= INSTANCE IBMSCO$, IBMLINE$;

IBMLINE$:= VEC N = 2 -1, -.88 1, -.88;

Crash Message Display Structure:

CRASH MSGS$:=BEGIN STRUCTURE

IF LEVEL = 17 THEN C17$;

IF LEVEL = 15 THEN C16$;

IF LEVEL = 16 THEN C16$;

IF LEVEL > 17 THEN C16$;

IF LEVEL < 0 THEN C16$;

IF LEVEL = 0 THEN CO$;

IF LEVEL = 1 THEN Cl$;

IF LEVEL = 2 THEN C2$;

IF LEVEL = 3 THEN C3$;

IF LEVEL = 4 THEN C4$;

IF LEVEL = 5 THEN C5$;

IF LEVEL = 6 THEN C6$;

IF LEVEL = 8 THEN C8$;

IF LEVEL = 9 THEN C9$;

IF LEVEL = 10 THEN CA$;

IF LEVEL = 11 THEN CB$;

IF LEVEL = 12 THEN CC$;

IF LEVEL = 13 THEN CD$;

IF LEVEL = 14 THEN CE$;

END_STRUCTURE;

C16$:=CHAR 'Unknown crash';

CO$:=CHAR 'Mass memory Exhausted';

Cl$:=CHAR 'OKINT/NOINT imbalance';

C2$:=CHAR 'Free block size invalid';

C3$:=CHAR 'Attempt to activate non-function or nil';

C4$:=CHAR 'NEW call in Nomemsched failed to find memory'

C5$:=CHAR 'Attempt to queue where fcn already waiting';

C6$:=CHAR 'Systemerror';

C7$:=CHAR 'TRAP7';

C8$:=CHAR 'Mass Memory Error';

C9$:=CHAR 'TRAPS';

RM9-4 Reference Materials

CA$:=CHAR 'Multiple DISPOSE of same block';

CB$:=CHAR 'Block exponent not big enough';

CC$:=CHAR 'TRAP C';

CD$:=CHAR 'PASCAL Error';

CE$:=CHAR 'PASCAL Error';

C17$:= CHAR 'Unexpected exception';

Setup Mode Display Structure:

SVPO$:= VIEW HORIZONTAL= -1:1 VERTICAL = -1:l

THEN SZO$;

STCSMO := SET CSM OFF

THEN SSO$;

SSO$:= CHAR SCALE 0.03

THEN SSO$;

SSO$:= INSTANCE OF

S10$, S20$, S30$, S40$, S50$, S60$, S70$, S80$, S90$;

S10$:= CHAR -1,.9 'SETUP';

S20$:= CHAR -1,.8 ';

S30$:= CHAR -1,.7 'F2-SRM :T F3=Awrp:F F4=ANSI:T F5=VT52:F ';

S40$:= CHAR -1,.6 'F6=KPM :F F7=CKM :F F8=Cnum:T F9=Knum:T ' ;

S50$:= CHAR -1,.5 ';

S60$:= CHAR -1,.4 'F10= Define breakkey :"V ' •

S70$:= CHAR -1,.3 'F11= Move TE viewport, lower left corner ' •

S80$:= CHAR -1,.2 'F12= Move TE viewport, upper right corner ';

S90$:= CHAR -1,.l 'Mode: TE Term: On Graf: On ' •

SAO$:= CHAR -1,.0 'Press special key to be breakkey, Fl to exit. '•

SBO$:= CHAR -1,.0 'Move corner with cursor keys, Fl to exit. ' :

2. CONFIG.DAT

CONFIG.DAT is a file on one of the PS 390 diskettes. This file is read and
processed during system boot. It contains commands to create the initial
function instances and display structures. Before the CONFIG.DAT file
builds any of the data structures, the system must first read the file. The
firmware creates a simple function network that consists primarily of an
instance of the F:READDISK and the F:CI(n) functions. The function
network then reads the CONFIG.DAT file from the diskette. The command
interpreter is in the privileged configure mode while reading the
CONFIG.DAT file.

Initial Structures RM9-S

The command interpreter that processes the CONFIG.DAT file is separate
and distinct from the command interpreter that handles user commands.
These user command interpreters are initially in anon-privileged command
mode.

3. Name Suffixing

Whenever you name anything or instance a function, the command inter-
preter assigns a specific suffix to that name, unless the command inter-
preter is in configure mode. The suffix is determined by the suffix that has
been assigned to that instance of the command interpreter. Name suffixing
is used to separate system level names and instances from user-originated
names and instances.

In command mode, all suffixing is done by the command interpreter. How-
ever, in configure mode the command interpreter does not assign suffixes,
so you are responsible for correctly suffixing any function or structure that
is instanced when using system-level or user-level names.

The default suffix assignments for the PS 390 are as follows:

• 0 —suffix for system related functions. Names with this suffix are
not directly accessible to the user outside of configure mode.

• 1 —suffix for user-defined and accessible names. All names with
this suffix are accessible to the user.

If you are creating an instance of the command interpreter, you must name
that instance with the correct suffix to assure the other functions created by
this command interpreter will have the appropriate suffix. Only characters
0-7 are allowed as suffixes to the name of the command interpreter
instance.

If the command interpreter used is suffixed with a 0 or a 1, it will suffix
names that it creates with a 1. If it is suffixed with 2 or 3, it suffixes names
it creates with a 3. If it is suffixed with 4 or 5, it suffixes names it creates
with a 5. If it is suffixed with 6 or 7, it suffixes names it creates with a 7.

General system names are usually distinguished from all other names with
the $suffix.

RM9-6 Reference Materials

NOTE

When the F:CI(n) function is instanced, the function
creates PICK[suffix). Therefore, the command inter-
preter should be created before downloading the re-
maining program, or given a suffix that will create the
PICK[suffix] used in the program. If this is not done,
all connections from PICK[suffixJ that were made be-
fore instancing will be lost.

4. Using the Configure Mode

To access system-level functions, you must be able to access any name,
regardless of the suffix. To do this, you enter the privileged configure
mode. In this mode you have the capability of reconfiguring system func-
tions. Use the following command to enter configure mode while in the
normal mode of operation:

CONFIGURE password;

where password is the string defined by the setup password command (re-
fer to Section RMl Command Summary). If no password has been defined
(the default case), any string can be entered.

Since the command interpreter is in configure mode, you must explicitly
include suffixes on any names to affect a specific user. For example, if the
S1'1'E.DAT file (read from the diskette when the command interpreter is in
configure mode) contains commands to send a site message to FLABELO,
the appropriate suffix is included at the end of the name and the commands
in the S1'1'E.DAT file appear as:

SEND 'E&S System 11, Site Manager - Scot Jones' to <1> FLABELOl;

Initial Structures R1VI9-7

RM10. TERMINAL EMULATOR

MODES AND FUNCTIONS

CONTENTS

1. ANSI MODES OF OPERATION 2

1.1 Definition of Escape Sequences 3
1.2 SET and RESET — SM, RM 4
1.3 Send-Receive Mode (SRM) —Local Echo/Nolocal Echo 4
1.4 Send-Receive Mode (SRM) Escape Sequences 5
1.5 ANSI — VT52 Mode Escape Sequences 5
1.6 Directional Cursor Keys - (DECCKM) 5
1.7 Cursor Key Mode Escape Sequences 6
1.8 E&S Private ANSI Commands for Function Keys,

Numeric Keypad and Cursor Keys 6
1.9 Values Appearing at KBhandler<9>: 9
1.10 Numeric Keypad — (DECKPNM and DECKPAM) 9
1.11 Numeric Keypad Escape Sequences 10
1.12 Escape Sequences that Affect Screen Display 11
1.13 Cursor Movement Command Escape Sequences 11
1.14 Index, Next Line, and Reverse Index Command Escape

Sequences (IND, NEL, RI) 12
1.15 Erase Commands Escape Sequences (ED, EL) 13
1.16 Set Top and Bottom Margins Command Escape Sequence

(DECSTBM) 14
1.17 Set Graphic Rendition Command Escape Sequences (SGR) 14
1.18 Report to the Host Command Escape Sequences (CPR, DSR) 15
1.19 VT52 Command Escape Sequences 15

t

2. PS 390 TERMINAL EMULATOR FUNCTION NETWORK 17

2.1 Keyboard Manager — (KBhandlerl) 17
2.2 Terminal Emulator Display Handler (F:VT10) — ES TE1 18
2.3 Terminal Emulator Setup 19
2.4 TE Initial Data Structures 2p

3. KEYBOARD COMMUNICATION MODES 21

3.1 Keys and Outputs 21
3.2 Using the SITE.DAT File to Change Features

of the Terminal Emulator 23
3.3 Using the SITE.DAT To Send Control Sequences

to the Terminal 26

4. IBM 3278 TERMINAL EMULATION 27

4.1 Overview of the Environment 27
4.2 Keyboard Communication Functions and Modes 27
4.3 Data Structures 2g
4.4 Indicator Characters 30
4.5 Setup Mode for the Terminal Emulator 30
4.6 Using the SITE.DAT File to Change Features

of the Terminal Emulator 31

TABLES AND FIGURES

Table 10-1. Cursor Key Transmission 6
Table 10-2. Keypad Transmissions in ANSI Mode 10
Table 10-3. Keypad Transmissions in VT52 Mode 11
Table 10-4. Keys, Modes, and Outputs 23
Table 10-5. SETUP Toggling Sequence 24

Figure 10-1. F:IBM_KEYBOARD 2S
Figure 10-2. F:IBMDISP 29

it

Section RM10

Terminal Emulator

Modes and Functions

This section discusses the PS 390 terminal emulator for both the DEC VT100 and
the IBM 3278 systems. Each terminal emulator is discussed from several perspec-
tives. Sections 1, 2, and 3 will discuss VT100 terminal emulation, and section 4
will cover IBM 3278 terminal emulation.

Section 1 covers the ANSI modes and control sequences that are used to imple-
ment the DEC VT100 terminal emulation capabilities of the PS 390. Many of
DEC's private sequences and modes for the VT100 are referred to in this section.
More information on these sequences and modes is found in DEC's VT100 User
Guide (EK-VT100-UG-002) .

Section 2 covers the system functions that form the terminal emulator network and
how data is received and passed between them.

Section 3 discusses the three communication modes of operation of the keyboard
and how certain keys are translated within these modes. Operator information for
the three communication modes used by the PS 390 keyboard is covered in Section
IS3 Operation and Communication.

Section 4 discusses the PS 390 IBM 3278 terminal emulator. This section covers
the system functions that form the terminal emulator network and how data is
received and passed between them. The '1'E is also discussed in terms of the three
communication modes of operation of the keyboard. Operator information for the
three communication modes used by the PS 390 keyboard is covered in Section
IS3 Operation and Communication.

Refer to the IBM publication, IBM 3270 Information Display System 3278 Display
Station Operator's Guide (IBM #GA27-2890-3), for information on the use and
operation of the PS 390/IBM terminal and keyboard.

The terminal emulator facility has characteristics and features that can be changed
fairly easily by system programmers. Information for changing and adapting these
features for both the DEC and IBM terminal emulators will be covered throughout
the section.

Terminal Emulator RM10-1

1. ANSI Modes of Operation

The PS 390 operates under ANSI (and certain VT52) modes wherein it
recognizes and responds to certain coded sequences whose syntax and
semantics are in accordance with ANSI specifications. These modes
determine how other coded sequences are to be interpreted and how the
terminal will respond in certain situations.

Escape sequences are interpreted as control functions that set the mode of
operation, (i.e. sending a particular

escape sequence from the host to the
terminal will determine whether the numeric keypad on the PS 390
keyboard generates the numeric value of the keycaps or the escape
sequences that are used for EDT editing commands). The interpretation of
the escape sequence is dependent on the mode in which the terminal is
operating. The modes can be set or reset by sending escape sequences from
the host to the terminal.

It is difficult to categorize the modes in a straightforward manner because
some of them are dependent on the settings of other modes: if the ANSI
(VT100) mode is set to FALSE (or OFF), then logically, the terminal will
not be able to respond to any other ANSI control sequences. Some of these
modes are standard to the DEC VT100, and some are specific to the
PS 390. The modes and the escape sequences that can be used to set them
will be discussed in later sections. The list below gives some idea of the
modes and what they do.

• Send-Receive Mode (SRM (Local echo/Nolocal echo)) —determines
whether keyboard input will be echoed to the display.

ANSI Mode (DECANM) —determines whether the PS 390 will gen-
erate and respond to standard ANSI (VT100) escape sequences.

• VT52 Mode — allows the PS 390 to recognize VT52 coded
sequences.

Keypad Numeric Mode (DECKPNM) —causes the numeric keycap
values to be sent from the numeric keypad to the host.

. Keypad Application Mode (DECKPAM) —causes the keys on the
numeric keypad to transmit an escape sequence which begins with
<ESC>O to the host.

• Cursor Key Mode (DECCKM) —enables the cursor keys to transmit
the ANSI control sequences that cause the cursor movements indi-
cated on the cursor keycaps.

RMIO-2 Reference Materials

The modes listed previously, as well as other modes that are specific to the
PS 390, can be changed using the terminal emulator SETUP facility. A defi-
nition of these modes, their defaults, and how to change them is discussed
in Section IS3 Operation and Communication.

1.1 Definition of Escape Sequences

An escape sequence is a sequence of characters that is used for control
purposes to perform a control function and whose first character is the
escape <ESC> (the ASCII X' iB') control character. Escape sequences are
used to set and reset modes, as well as tell the terminal how to respond to
coded sequences. These characters are not displayed as text on the screen,
but instead cause the terminal to perform some action or change some inter-
nal parameter of operation. Control sequences are also used to change or
define characteristics of the terminal. A control sequence is an escape se-
quence that provides supplementary controls and begins with the control
sequence introducer (CSn. In VT100 emulation, the CSI is <ESC>[.

The sequences that the terminal emulator deals with take two general
forms: those that may have parameters, and those that do not. Those not
having parameters take the form <ESC>c, where c is a single character.
Those that may have parameters take the form:

<ESC>[Pl;P2; . . .Pnc

where

<ESC>[is the control sequence introducer.

P1....Pn are the parameters (none need be present).

is used to separate parameters.

c is the final character that determines which control sequence is
being defined.

The parameters are numbers expressed in their ASCII form. In sequences
that use private or non-standard parameters, the first character of the
parameter string is "?" for DEC private sequences and ">" for E&S private
sequences.

Terminal Emulator RM10-3

1.2 SET and RESET - SM, RM

The SET and RESET control sequences are used to set and reset certain
modes of the terminal. These control sequences for setting or resetting these
modes are sent from the host. The modes that can be set or reset are listed
below, along with the set and reset escape sequences.

• Send-Receive Mode (SRN

ANSI-VT52 (DECANM)

• Cursor Key Mode (DECCKM)

. E&S private sequences

The SET and RESET control sequences are:

S M : <E S C> [Pnh

RM : <E S C> [Pnl

where n is the parameter that determines which mode is to be set, i.e.,

<ESC> [? 1h

would set the Cursor Key mode (DECCK:M) .

1.3 Send-Receive Mode (SRM) -Local Echo/Nolocal Echo

The SRM mode can be set or reset from the host by sending the proper
control sequence, by using the SETUP facility of the terminal emulator
package, or by including the appropriate ASCII characters in the SiTE.DAT
file. (Refer to Section IS3 Operation and Communication for SETUP, or to
section 3.2 of this guide for information on the S1'1'E.DAT file.) This mode
determines whether the screen receives the input from the keyboard on the
host line, or from a PS 390 system function. If the host line is half duplex,
the host does not echo the keys as they are sent from the '1'E to the host.
This mode must be reset so that the characters that are received by the '1'E
from the keyboard will be displayed on the screen.

If the line to the host is full-duplex, the host retransmits the keys it receives
from the keyboard back to the terminal, and they are then displayed on the
screen. In this case, SRM should be set so that the characters will not ap-
pear on the screen twice: once as they are keyed in, and once as they are
received back from the host.

RM10-4 Reference Materials

1.4 Send-Receive Mode (SRM) Escape Sequences

" 12" is the parameter that designates SRM.

<ESC>[12h SET SRM. Do not send keyboard input to the display.

<ESC>[12l RESET SRM. Send keyboard input to the display, with

[CR] (Carriage Return) displaying as [CRLF]

(Carriage Return-Line Feed).

1.5 ANSI -VT52 Mode Escape Sequences

The ANSI-VT52 modes can be set or reset with the (SM1RM) control
sequences. The VT52 set state causes VT52 compatible escape sequences to
be interpreted and executed. The ANSI set state causes only ANSI (VT100)
compatible escape sequences to be interpreted and executed. The
ANSI-VT52 modes are private, using a private string parameter. The first
character in the string must be "?", with "2" designating ANSI-VT52 mode.
The recognition of VT52 sequences may be turned off by using the <ESC><
sequence when in the VT52 mode.

<ESC>[?2h SET ANSI mode. Escape sequences will be interpreted

as ANSI; keys will be translated accordingly.

<ESC>[?2l SET VT52 mode. Escape sequences will be interpreted

as VT52; keys will be translated accordingly.

1.6 Directional Cursor Keys - (DECCKM)

The four directional cursor keys of the keyboard have a single mode that
may be set or reset using the SM/RM control sequences. The Cursor Key
mode is similar to DEC's DECCK:M. When this mode is reset (the default at
power-up), the cursor keys transmit the ANSI control sequences that cause
cursor movement as indicated by the arrows on the keycaps. When the
Cursor Key mode is set, the keys are in an application mode, and like the
numeric keypad, transmit escape sequences.

When the VT52 mode is in effect, the sequences have no intermediate char-
acters, and are the same regardless of the setting of the Cursor Key mode.
The following table shows what is transmitted in the Reset (RM) and Set

(Slvn modes.

Terminal Emulator RM10-S

Table 10-1. CURSOR ~~EY Transmission

CURSOR
KEY

VT52 (SET -
MODE (RESET)

ANSI MODE
RE►SET MODE

ANSI MODE
SET MODE

Up
Down
Right
Left

<ESC>A
<ESC>B
<ESC>C
<ESC>D

<ESC> [A
<ESC> [B
<ESC> [C
<ESC> [D

<ESC>OA
<ESC>OB
<ESC>OC
<ESC>OD

1.7 Cursor Key Mode Escape Sequences

The Cursor Key mode is also a private mode and uses the private parameter
string . The first character in the string must be "?" . " 1 " is the parameter
that designates Cursor Key mode.

<ESC>[?1h SET Cursor Key Mode:. Cursor keys will now cause

<ESC>Oc sequences to be sent .

<ESC>[?1l RESET Cursor Key Mode. Cursor keys will now cause
the <ESC> [c sequencE~s to be sent .

1.8 E&S Private ANSI Commands for Function Keys,
Numeric Keypad and Cursor Keys

The Function keys, the numeric keypad, ar.d the cursor keys can be placed
under the control of the user-application program. The modes to do so may
be set or reset using E&S private ANSI commands.

For example, when Fkeys Always is set, the output of the Function Buttons
is always sent to FKEYS<1>. When the mode controlling the routing of the
output of the numeric keypad or the cur~~sor keys is set, the numeric value
(as input to function networks) of these keys are available to PS 390
function networks in any of the three communication modes (Terminal
Emulator, Command, or Local) . These keys (numeric keypad or cursor)
cause integers to appear at output<9> of KBhandler. (Note: KBhandler is an
instance of the function F:K2ANSI.) When reset, the key values will be sent
through KBhandler to the host, the command interpreter, SPECKEYS, etc.,
depending on the communication mode c►f the keyboard.

Multiple parameters are allowed per command, i.e., <ESC> [>10;11;12h
would cause all function keys, cursor keys, and keypad keys to go to the
user application.

RMIO-6 Reference Materials

ANSI SEQUENCES

<ESC> [>2h

<ESC> [>3h
or

<ESC>[>lh

<ESC> [>4h

<ESC>[>Sh

<ESC> [>6h

<ESC>[>7h

<ESC> [>8h

<ESC> [>9h

DESCRIPTION

Set no/local echo. The '1'E will not locally echo
keys. When reset, the '1'E locally echoes keys.

Set auto-wrap. The '1'E adds <CRLF> if it receives
more than 80 characters without getting <CRLF>.
When reset, the '1'E puts additional characters in
column 80, overwriting the last one.

Set ANSI. The 'i'E recognizes ANSI control
sequences. When reset, the '1'E responds like a
teletype terminal. When the reset sequence is sent
from the host to the PS 390, all further ANSI
commands are ignored (including <ESC> [>41) .

Set VT52. The TE will recognize VT52 control
sequences. When reset, the '1'~ will not recognize
VT52 control sequences.

Set KPM. The numeric keypad sends control
sequences. When reset, the numeric keypad sends
numbers .

Set CK:M. The cursor keys send control
sequences. When reset, the cursor keys send
cursor control sequences.

Set Cnum. The numeric keypad sends numbers in
CI mode. When reset, the numeric keypad sends
tVc in CI mode.

Set Knum. The numeric keypad sends numbers
in KB mode. When reset, the numeric keypad
sends TVc in KB mode.

Terminal Emulator RMl D-7

ANSI SEQUENCES DESCRIPTION

<ESC>[>lOh

<ESC>[>llh

<ESC>[>12h

Set Fkeys Always . Except in '1'~ SETUP, the
numeric value of the Function Keys will always
appear at F;KEYS<1>, regardless of the PS 390
communicat:ion mode. When reset, the Function

keys become VT100 keypad keys.

Set Cursor Keys Always. Except in '1'E SETUP,
the numeric value of the cursor keys will always
appear at K]3handler<9> regardless of the PS 390
communication mode.

Set Keypad Keys Always. Except in 'i'E SETUP,
the numeric value of the numeric keypad keys
will always ~~ppear at KBhandler<9> regardless of
the PS 390 ~~ommunication mode.

There are four other E&S private set and reset escape sequences that can be
used to set display features of the PS 3~}0. These escape sequences change
the status of the displays affected by the 'i'ERM and GRAPH keys.

ANSI SEQUENCES

<ESC>[>13h
<ESC>[>13l

<ESC>[>14h

<ESC>[>14l

<ESC>[>101, etc.

DESCRIPTION

Turns the T)E display ON.
Turns the T]E display OFF.

Turns the GRAPH display ON.
Turns the GRAPH display OFF.

Reset the v~~rious modes. When reset, the keys
function under the modes in effect. (For example,
if "Fkeys always" is reset, and DECKPAM is set,
the last four Function Keys will generate control
sequences used by DEC's EDT and KED editing
programs .

Any of the above modes may be set or reset by entering the appropriate
characters in the SI1'E.DAT file, or by sending the appropriate sequence to
<1>ES '1'E1.

RM10-8 Reference Materials

1.9 Values Appearing at KBhandler<9>:

When Keypad Keys Always is set, the numeric keypad keys pass their own
value (except 0) . For instance, pressing the 5 key in Keypad Keys Always
mode causes an integer 5 to be output from KBhandler<9>. The remaining
keys spiral out from the "9" key:

' -' is 10

',' is 11

ENTER is 12

' is 13

'0' is 14

Cursor keys:

Up cursor is 15

Down cursor is 16

Left cursor i s 17

Right cursor is 18

These modes may be set or reset by entering the appropriate ASCII charac-
ters in the Slrl'E.DAT file. For example:

SEND CHAR (27) & [>lOh' to <1>ES TE1 ;

would set the Fkeys Always mode.

1.10 Numeric Keypad - (DECKPNM and DECKPAM)

The characters or sequences transmitted by the numeric keypad are
dependent on a number of modes and configurations that can be set by the
programmer. Normally, the numeric keypad transmits the codes shown on
the key caps. However, in some host applications (DEC's editor utilities
EDT and KED), these keys need to be interpreted as program function keys
to cause some action to take place.

To differentiate these keys from the number and character keys on the main
keyboard, the numeric keypad has two modes; a keypad numeric mode, and
a keypad application mode. In the application mode, the keys transmit
specific sequences. (Refer to Table 10-2 and Table 10-3.)

Terminal Emulator RM10-9

1.11 Numeric Keypad Escape Sequences

The keypad modes are set up by sending two different escape sequences
from the host and eventually to the terminal emulator network (KBhandler).

<E SC»

causes the keycap values (numeric and other) to be sent to the host when
the keys are pressed. This is the keypad numeric mode that corresponds to
DEC's DECKPNM.

<ESC>=

puts the keypad in the keypad application mode (DEC's DECKPAM) . In this
mode, pressing the keys causes them to~ transmit an escape sequence that
begins with <ESC>CJ.

Setting the DEC VT52 mode (as opposed to the ANSI mode) will also affect
the translation of these keys. Table 10-2 shows what is transmitted in the
two modes when ANSI is set. Table 10-3 shows what is transmitted in the
two modes when VT52 is set.

Table 10-2. Keypad Transmissions in A1VSI Mode

KEY CAP NUMERI+C
MODE

(DECKPN:V1}

APPLICATION
MODE

(DECKPAM)

0 0 <ESC>Op
1 1 <ESC>Oq
2 2 <ESC>Or
3 3 <E S C>Os
4 4 <E S C>Ot
S S <ESC>Ou
6 6 <ESC>Ov
7 7 <ESC>Ow
S 9 <ESC>Oy
— — <ESC>Om

<ESC>Ol
<ESC>On

ENTER [CRJ <ESC>OM

* * P1(F9) <ESC>OP <ESC>OP
* * P2 (F 10} <ESC>O~~ <ESC>OQ
* * P3 (F 11) <ESC>OR <ESC>OR
* * P4 (F 11) <ESC>OS <ESC>OS

RMIO-10 Reference Materials

Table 10-3. Keypad Transmissions in VT52 Mode

KEY CAP NUMERIC
MODE

(DECKPNM)

APPLICATION
MODE

(DECKPAM)

0 0 <ESC>?p
1 1 <E S C>? q
2 2 <ESC>?r
3 3 <E S C>? s
4 4 <ESC>?t
5 S <ESC>?u
6 6 <ESC>?v
7 7 <ESC>?w
8 9 <ESC>?y
- - <ESC>?m

<E S C>? l
<ESC>?n

ENTER [CR] <ESC>?M

* * P1(F9) <ESC>P <ESC>P
* * P2 (F 10) <ESC>Q <ESC>Q
* * P3 (F 11) <ESC>R <ESC>R
* * P4 (F 12) <ESC>S <ESC>S

1.12 Escape Sequences that Affect Screen Display

There are a number of escape sequences that can be sent from the host
causing some action to take place in the terminal that affect the screen
display. These include cursor position, scrolling, deletion of text, scrolling
regions, and selective graphic rendition.

The following sections describe the escape sequence commands that
implement these actions.

1.13 Cursor Movement Command Escape Sequences

The cursor movement commands UP, DOV~►~N, FORWARD and BACK are
identical in form except for the final character. They take the form

<E SC> [Pc

where P is the number of positions to move, and c is A for UP, B for
DOWN, C for FORWARD, and D for BACK. If P is 0, 1, or absent, it is
interpreted to be 1.

These sequences, with P absent, are generated by the cursor keys when the
Cursor Key mode is reset.

Terminal Emulator RM10-11

If a given cursor command causes the cursor to move out of the display
area, the cursor is set at the edge of the display area in the direction of the
move. Scrolling does not take place. If the cursor were on the bottom line,
and the '1'E received <ESC> [26B, nothing would happen. The cursor would
remain on the bottom line, and no scrolling would take place.

<ESC>[PA CUU -Move the cursor P lines upward.

<ESC>[PB CUD -Move the cursor P lines down.

<ESC>[PC CUF -Move the cursor P columns forward.

<ESC>[PD CUB -Move the cursor P columns back (left).

The cursor position and horizontal vertical position (CUP, HVP) commands
take the same form except for the final character. They take the form

<ESC>[P1;PcC

where Pl is the line number to move to, ,Pc is the column to move to, and C
is "H" for CUP and "f" for HVP (VT1t)0 editor function). If one of these
commands would cause the cursor to move out of the display area, it is set
at the edge of the display area in the direction of the move. Scrolling does
not take place. With no parameters prey►ent, it is equivalent to a cursor to
home action.

<ESC>[Pl;PcH CUP -Move curs~~r to line Pl, column Pc.

<ESC>[Pl;Pcf HVP -Move cursor to line Pl, column Pc.

1.14 Index, Next Line, and Reverse Index Command Escape
Sequences (IND, NEL, RI)

These commands move the cursor, but may also cause scrolling to occur.
All of them take the form <ESC>c.

<ESC>D IND -Move the cursor clown one line, maintaining column

positioning. If the TE is at the bottom line of the
scrolling window when I:ND is received, a scroll-up is
performed.

RMIO-12 Reference Materials

<ESC>E NEL -Move the cursor down one line and to column 1. If

the TE is at the bottom line of the scrolling window
when NEL is received, a scroll-up is performed.

<ESC>M RI -Move the cursor up one line, maintaining column

position. If the TE is at the top line of the scrolling

window when RI is received, a scroll-down is performed.

1.15 Erase Commands Escape Sequences (ED, EL)

The Erase in Display (ED) command takes the form

<ESC>[PJ

where P selects a specific erasing action. If P is absent, it is interpreted to
be 0.

<ESC> [J or
<ESC> [oJ

<ESC> [1 J

<E SC> [2 J

Erase the display from the cursor to the end of the

screen.

Erase the display from the beginning of the screen

to the cursor.

Erase the entire screen.

The Erase in Line (EL) command takes the form:

<ESC> [PK

where P selects a specific erasing action. If P is absent, it is interpreted to
be 0.

<ESC> [K or

<ESC>[oK Erase from the cursor to the end of the line.

<ESC> [1K Erase from the beginning of the line to the cursor.

<ESC>[2K Erase the entire line.

Terminal Emulator RM10-13

1.16 Set Top and Bottom Margins Comm~~and Escape Sequence (DECSTBM)

This command allows a scrolling winclow to be defined. Inside the given
scrolling window, the lines scroll as 1:hey normally would for the entire
screen. Outside of the window, lines do not scroll. This command also
causes the cursor to be positioned in tlhe upper-left corner of the scrolling
region as defined.

The form of this command i s

<ESC>[Pt;Pbr

where Pt is the top line of the scrollin~~ window, Pb is the last line of the
sc: olling window, and r designates this command.

This command also requires that Pt < P1~ since the scrolling window must be
logical and contain a minimum of twos lines. Should an illegal set of pa-
rameters be defined, the current setting of the window remains unchanged.
For example, the sequence

<ESC>[Pt;Pbr

would make the scrolling window Pt to Pb, inclusive.

1.17 Set Graphic Rendition Command Escape Sequences (SGR)

The intent of this command is to make some part of the text displayed on
the screen stand out, in contrast to the rest of the screen. The form of the
command is

<E SC> [Pm

where P selects some form of graphic r~~ndition. If P is absent or 0, then all
forms of graphic rendition are turned off. As the most common methods
used to make the contrast are difficult. or expensive to implement on the
PS 390, the command is interpreted by underscoring the selected text in the
display.

<ESC>[Pm (where P <> 0) Begin underscoring the text in the
display.

<ESC> [Om or

<ESC> [m Stop underscoring the text in the display

RM10-14 Reference Materials

1.18 Report to the Host Command Escape Sequences (CPR, DSR)

These commands involve a query command from the host, and a response
by the terminal. The query command takes the form:

<ESC>[Pn

where P selects the type of report requested. Two values of P are recog-
nized: 5, which is a device status report, and 6, which requests a cursor
position report.

The response takes the forms:

<ESC> [On

that means "Ready, no malfunctions detected" and

<ESC> [P1; PcR

where Pl is a two-digit ASCII number givirg the current line (line 1 is at the
top) and Pc is a two-digit ASCII number giving the current column.

Host: <ESC>[5n Please report status.

TE: <ESC>[On Ready, no malfunctions detected.

Host: <ESC>[6n Please report active {cursor) position.

TE: <ESC>[P1;PcR Cursor is at line P1, column Pc.

1.19 v'I'S2 Command Escape Sequences

All VT52 commands in the PS 390 Terminal Emulator, except one, take the
form

<ESC>c

The exception, Direct Cursor Addressing, is discussed in the last paragraph
of this section.

<ESC>A Move cursor up one position. Do not scroll.

<ESC>B Move the cursor down one position. Do not scroll.

<ESC>C Move cursor right one position.

<ESC>D Move the cursor left one position.

Terminal Emulator RM10-IS

<ESC>H Move cursor to line 1, column 1.

<ESC>I Reverse line feed; re~~erse scroll if at top.
<ESC>J Erase to end of screer.~ .

<ESC>K Erase to end of line.

<ESC>= Enter alternate keypad mode.

<ESC» Exit alternate keypad mode.

<ESC>< Enter ANSI mode.

Direct Cursor addressing requires a q~-character sequence. The first two
characters are <ESC>Y. The next two characters indicate the line and the
column to move to. The desired number is obtained by subtracting 31 (Hex
1F or octal 37) from the ASCII character code of the character. The first
character, indicating the line, will be in the range of "!" ' (line 1) to "8" (line
24), and the second character, indicating the column, will be in the range of
" ~ " to "p" (column 80) . For example

<ESC>Y/@ Move the cursor to line 15, column 32.

The keypad mode commands are al~►~ays recognized apart from vT52
emulation.

RMIO-16 Reference Materials

2. PS 390 Terminal Emulator Function Network

The actual networking of the functions that build the terminal emulator is
shown in the system functions Section Of RM2 Intrinsic Functions. This sec-
tion will discuss the three main terminal emulator functions in more detail.

2.1 Keyboard Manager — (KBhandlerl)

The keyboard manager takes the stream of raw bytes from the keyboard and
distributes them to output queues (translating to ANSI control sequences if
necessary), and toggles graphics and terminal emulator displays.

F: K2ANS1 Keyboard Manager -KBhandlerl

Inputs:

<1>: Strings originating at keyboard; connected to data
concentrator demultiplexing function.

Outputs:

<1>: To KEYBOARD

<2>: To Setup

<3>: To CHOP PARSE

<4>: To host

<5>: To display handler function

<6>: Unused

<7>: To FKEYS.

<8>: To SPECKEYS

<9>: To user function-networks

<10>: Unused

<11>: Unused

Private:

None.

The first four outputs, <1> to <4>, are keyboard routes for different tasks
that the keyboard performs. Output <1> ultimately goes to a user function
network that has been connected to KEYBOARD. This output is used when
the keyboard is in the Local (interactive) communication mode. Output <2>
goes to the '1'E SETUP function; hitting the SETUP key or the CTRL SETUP
sequence toggles this mode on and off. Output <3> is the output for the
"Command" (CI) communication mode. It goes through a line editor
function to chop and parse the command line for the interpretation of
PS 390 commands. Output <4> is the Terminal Emulator ('1'E) output port
and output is sent to the host computer.

Terminal Emulator RMID-17

The other outputs are minor and special purpose to some extent. Output
<5> goes directly to the TE display data handler function for two reasons:
the first is to pass commands resulting from the CLEAR/HOME key being
pressed (PS 300-style keyboard only), the second is to implement the
local-echo option of the terminal emulator. When outputting to this queue,
the key handler expands CR (Carriage Return) to CRLF (Carriage
Return/Line Feed).

Output <7> sends out the proper Qinteger when an Fkey is pressed and
input to a user function network is desired via FKEYS.

Output <8> allows the cursor keys to b~~ used in user function networks via
SPECKEYS .

Output <9> allows the numeric value of the numeric keypad keys and the
cursor keys to be passed to user function networks.

2.2 Terminal Emulator Display Handler (F:VT10) - ES TE1

This function receives input from tree host, from an error formatting
function, and from the line editor that receives input from the keyboard in
Command (CI) mode. The primary task of the data display handler is to
make this input visible on the PS 39~ :screen.

F:VT10

Inputs:

TE uisplay handler - ES_TE1

<1>:Qpackets, Qmorepackets. Input to the TE.

<2>:Qstring. Answerback string.

Outputs:

<1>:Qpackets.

<2>:Qpackets.

<3>:Qpackets.

<4>:Qpackets.

Private:

None.

Be 11 s for the keyboard .
Status, cursor reports (to host).

Terminal ID (VT52 or VT100 to host)
Echoed unknown escape sequences.

RMIO-18 Reference Materials

Users may send an answerback string to input <2> of ES_'1'E1. When the
host sends ENQ (UE or %XS), the answerback string is sent to the host. As
most of the input stream will have an effect on the screen, or show up as
displayable data, the outputs are minor. Output <1> is used to make the
expected "beep" on receipt of a TG (the beeper is in the keyboard).

Output <2> sends data back to the host when the function receives com-
mand sequences, such as cursor position and terminal ID (I am a VT100).

Output <3> is used to send the correct control sequence back to the host
that identifies the terminal.

Output <4> is an aid for debugging and development. It sends out all
command sequences that are received, but unknown by the function. Output
<4> is not normally not used. When connected, it can be used to discover
what kind of sequences a host program might be sending (that the terminal
emulator cannot interpret) by hooking the output to a function such as
Message_Display.

2.3 Terminal Emulator Setup

TE_SETUP changes the characteristics of the terminal emulator.

Inputs:

<1>: Messages from key manager

outputs:

None.

Private:

None.

The SETUP function gets input from the keyboard function and uses it to
change the characteristics of the terminal emulator as a whole. Like the
display handler function, the setup function manipulates a display structure
that appears on the PS 390 screen and changes it in response to actions by
the user. SETUP is interactive and uses menus and the function keys.

Terminal Emulator RMI D-19

2.4 TE Initial Data Structures

The data structures used by the terrrlinal emulator are set up by the
CONFIG.DAT file and then completed by the function '1'E BIJIL.D.

The CONFIG.DAT file contains a color node. The color node sets the color
for the characters displayed on the scrE~en in the terminal emulator mode.
The color node is accessible by sending the appropriate value to
'1'~COLORI.

'1'~_BUIL,D adds a set node, a 4x4 matrix, a matcon2 (to scale characters),
and a set node (called the line set) to the name TDO$ that is established by
the CONFIG.DAT file. From the line sE~t, a structure is hung for each line
and for the cursor. The display handler function keeps various pointers into
this structure and uses them to get data on the screen, perform scrolls, etc.

RMIO-20 Reference Materials

3. Keyboard Communication Modes

The three modes of operation, Terminal Emulator (TE), Command (CI),
and Local (KB) are all modes of operation that are established by pressing a
key (or combination of keys) on the keyboard. The term "mode" is slightly
misleading as it is used here. Mode is also used to describe the operation of
the keypads, cursor keys, and other terminal emulator features. The modes
referred to here are actually determined by what output port is used by the
key manager.

The command sequences that can be sent to <1>KBhandlerl to toggle these
communication modes are:

Command CHAR (2 2) &CHAR (1 s)
Local CHAR (2 2) & ' R'

Terminal Emulator CHAR (2 2) & ' r'

For example, to boot up in Local mode, the following command would be
placed in STTE.DAT:

SEND CHAR (22) & ' R' to <1>KBhandlerl ;

The keys and the output that are generated from the keyboard manager
(KBhandler) in the three modes is discussed in the following section.

3.1 Keys and Outputs

In any of the modes listed below, if Keypad Keys Always or Cursor Keys
Always is set, the numeric value of the keys will be sent to any user func-
tion network connected to <9>KBhandler. If Fkeys Always is set, an integer
is output from FKEYS<1>.

In Local mode (KB), the numeric keypad keys will be translated into the
keycap numbers if Knum is true; otherwise they will be passed out
KEYBOARD as ASCII characters (or to output <9> as the numeric value of
the key if Keypad Keys Always is set). Fkeys always go out the FKEYS
queue as Qintegers and the cursor keys always go out to SPECKEYS as
<char>xyzw (or to output <9> as <char> if Cursor Keys Always is set).

In Command mode (Cn, the numeric keypad keys will be passed as num-
bers if Cnum is true and as sequences, (rV<char>) if Cnum is false. Output
here is only to the CI queue. Finally, Fkeys will always go out the CI queue
as tV<char>.

Terminal Emulator RM10-21

The Terminal Emulator ('1'E) mode is the most complicated. The treatment
of the numeric keypad depends on two modes: DECKPM and DECCK:M. In
DECKPM, when false, the keys are translated to their keycap values
(numeric mode).

When DECKPM is true, the keys are tr<~nslated into escape sequences. The
escape sequences that are generated depend on whether VT52 is true
(<ESC>?<char>) or false (<ESC>O<char>).

Fkeys are translated identical to their tr~~nslation in CI mode. Otherwise, the
keys become a superset of DEC's PF keys and send out <ESC>O<char>
sequences like the numeric keypad in DECKPM mode.

The cursor keys send out escape sequences (unless Cursor Keys Always is
set) . If vT52 is true, the sequences are <:ESC><char>. If the '1'E is emulating
a VT100, then the sequence depends ~~n DECCK:M. If DECCK:M is true,
then <ESC>O<char> is sent, so that the ~; ursor keys look like PF keys (or the
numeric keypad in DECKPM mode); otherwise the sequence is
<ESC>[<char>, which is the ANSI command sequence to move the cursor
one place in the direction of the arrow.,

The GRAPH and 'i'.~RM keys (or CTRL GRAPH/CTRL 'PERM sequences on
PS 390-style keyboards) allow the user to toggle the graphics and the '1'.~
displays on and off. The viewports and the set are created in the
CONFIG.DAT file.

The SETUP key (CTRL SETUP sequence on PS 390-style keyboards)
toggles the SETUP mode. In SETUP mode, all keys are passed to the
SETUP function. When SETUP is pu;~hed a second time, or the CTRL
SETUP sequence is entered again (PS 390-style keyboards), the last use and
queue are pulled.

The LINE/LOCAL key (LOCAL key one PS 390-style keyboards) is used to
multiplex the keyboard between the communication modes (except SETUP).
Refer to Section IS3 for detailed descriptions of the key sequences used to
change between communication modes.

The following table is an attempt to illustrate the keys, the modes, the out-
put of the keys in the modes, and any other combinations that are useful.
The representation in the table assumes that ANSI is set.

RMIO-22 Reference Materials

Table 10-4. Keys, Modes, and Outputs

FUNCTION KEYS

Fkeys Always

TE MQDE CI MODE

Final 4 keys used TV char
w/ DECKPAM (EDT)

Qinteger to FKEYS Same as TE

KB MODE

Qinteger to

FKEYS

Same as TE

CURSOR KEYS

DECCKM - Set Application functions

to host

DECCKM - Reset Cursor control

(w/DECKPAM set) commands to host

Cursor Keys Qinteger to

Always KBhandler<9>

Ignored

Ignored

Same as TE

Ignored

<char>to

SPECKEYS

Same as TE

Numeric KEYPAD

DECKPNM

DECKPAM

Numeric value passed Ignored Ignored
to host

Transmits control

sequences to host
for EDT utility

Keypad Keys Qinteger to
Always KBhandler<9>

Ignored Ignored

Same as TE Same as TE

3.2 Using the SITE.DAT File to Change Features of the Terminal Emulator

The S11'E.DAT file can be used to set bootable values for the SETUP
features of the terminal emulator. The following section gives the PS 390
commands that can be used to change features or defaults of the PS 390
Terminal Emulator.

'1'E characteristics are changed by sending sequences to <1>KBhandlerl.
These sequences will have the same effect as if they had been keyed in the
SETUP mode of the Keyboard and Display. (Refer to Section IS3 Operation
and Communication fora description of the SETUP feature of the Terminal
Emulator.)

Terminal Emulator RM10-23

There are four groups of commands: Toggles, BREAK Key, Mode, and

Displays, each of which is handled differently.

• Toggles

These are TE options that have two ~~alues, true and false or on and off.
In SETUP, they are changed by pressing a single Function Key that
changes the present value to its opposite. To put a command in the
SI'1'E.DAT file so that the '1'E feature comes up in its desired value at
bootup, the toggling sequence must be sandwiched between two se-
quences that represent the pressing ~~f the SETUP key. The header and
trailer sequence for the SETUP key is CHAR(22) ~ "o" .

The following chart gives the SETUP name, the definition, the default

value, and the PS 390 command sequence to change the default.

Table 10-5. SETUP ~'~oggling Sequence

Setup Default
Name Definition Setting Sequence to_toggle

SRM Local Echo OFF CHAR (22) & 'b'
Awrp Automatic line wrap OFF CHAR (22) & 'c'
ANSI ANSI sequences obeyed ON CHAR (22) & 'd'
VT52 VT52 mode OFF CHAR (22) & 'e'
KPM Keypad Application Mode OFF CHAR (22) & 'f'
CKM Cursor Key Mode oFF CHAR (22) & ' g'
Cnum Keypad Numeric CI Mode ON CHAR (22) & 'h'
Knum Keypad Numeric KB Mode oN CHAR (22) & 'i'

For example, to setup the '1'E for local echo (host is noecho) and for
automatic line-wrap, the following ~: ommand would be placed in the
Si1'E.DAT file:

SEND CHAR(22) & 'o' & CHAR(2:?) & 'b' &CHAR (22) & 'c
& CHAR (22) & ' o' to <1>KB~Zandlerl ;

It is recommended, when possible, th~~t the E&S private escape sequences
used to set/reset the various modes of the terminal emulator be placed in
the S11'E.DAT file. These commands are generally more compact and
take up less space on the diskette. Four example, to setup the 'i'E for local
echo (host is noecho) and for automatic line-wrap, the following com-
mands can be sent to ES '1'E1:

Send CHAR (27) & ' [>1; 2h' to <:1>ES TEl ;

RMIO-24 Reference Materials

• The BREAK Key

The BREAK key, like the toggles, must be sandwiched between
sequences representing the SETUP key. It also has an inner sandwich,
telling SETUP that it is the BREAK key and the end of the definition. The
important sequence in these two outer wrappings represents the special
key designated by the user to be the BREAK key. For example, to set a
key as the BREAK key, the following command would be placed in the
SI'1'E.DAT file:

SEND CHAR (2 2) & ' o' &CHAR (2 2) & ' j ' & (Key sequence)
& CHAR (22) & ' a' &CHAR (22) & ' o' to <1>KBhandlerl ;

where:

CHAR(22) & 'o' is the header/trailer sequence for the SETUP key

CHAR(22) & 'j' is the sequence for Function Key #10 (to enter the
setBREAK key mode)

(Key sequence) is the CHAR(22) sequence designating a
user-specified key as the BREAK key

CHAR(22) & 'a' is the sequence for Function Key #1 (exiting out of
set/BREAK key)

CHAR(22) & 'o' is the header/trailer sequence to exit SETUP.

• Mode

To put the keyboard into Local (interactive) mode on bootup, the
following should be put in the user's STTE.DAT file:

SEND CHAR(22) & 'R' to <1>KBhandlerl;

The PS 390 normally comes up in Terminal Emulator Mode ('1'E) mode;
that is, the keyboard outputs to the initial instance of ES_ 1'E. To change

to the other two modes (either Command or Local), the following
sequences may be inserted in the SiTE.DAT file. Note that these do not
have to be sandwiched between SETUP key sequences.

Terminal Emulator RMIO-25

MODE SEQUENCE

Command CHAR (2 2) &CHAR (1 s)
Local CHAR (2 2) & ' R'

Terminal Emulator CHAR (2 2) & ' r'

• Displays

The two displays are the TE display and the Graphics display. They are
toggled by the 'PERM and GRAPH keys (CRTL TE~:MICTRL GRAPH on
PS 390-style keyboards) and normally are on. To turn them off at boot
time, special sequences may be sent.

DISPLAY SEQUENCE

TE CHAR(22) & 's

Graphics CHAR (2 2) & ' p

For example, to turn the TE display off at boot time, the following com-
mand would be placed in S11'E.DAT:

SEND CHAR(22) & 's' to <1>KBhandlerl;

The only TE characteristic that cannot be conveniently set by a
SITE.DAT file is the size and placement of the '1'E display.

3.3 Using the SITE.DAT To Send Control Sequences to the Terminal

Control sequences that affect the screen display (as well as any other escape
sequences) can be placed in the S11'E.DAT file as ASCII sequences. The
terminal emulator function ES_TE1 can accept and translate these se-
quences. The escape sequence in the S1'1'E.DAT should take the following
form:

SEND <char> n &'[P1;P2;...Pnc' to ES_TE1;

where [is the control sequence introducer and P1 through Pn are the
parameters that may or may not be present.

RM10-26 Reference Materials

4. IBM 3278 Terminal Emulation

4.1 Overview of the Environment

In the IBM 3278 interface environment, the IBM host assumes the PS 390 is
an IBM 3278 display terminal attached to a 3274 Control Unit. In a normal
3274/3278 environment, application programs are able to send special char-
acters to a 3278 terminal by packaging them in what is referred to as a
Write Structured Field (WSF) envelope. E&S uses this formatting scheme to
send graphical data down from the host using the Load Program Symbols
option of the WSF command. This allows binary data to be sent unchanged
to the PS 390. All non-WSF data are routed to the terminal emulator that
performs like a 3278 display terminal.

4.2 Keyboard Communication Functions and Modes

The three keyboard modes, Terminal Emulator ('i'E) , Command (CI) , and
Local (KB) are all modes of operation that are established by pressing a key
(or combination of keys) on the keyboard. The Terminal Emulator mode
allows use of the PS 390 as an IBM terminal. While in the '1'E mode, the
screen is formatted as an IBM 3278 terminal. The Command mode permits
the PS 390 to be used as an independent processor. In the command mode,
the screen is formatted as a DEC vT100 terminal. Local mode allows the
keyboard to be used as a peripheral graphics device. In Local mode the
function keys and standard keyboard keys may act as inputs to any
user-created function networks that are connected to them.

The modes referred to here are actually determined by what output port is
used by the function F:IBM KEYBOARD, called the 3278 terminal emulator
keyboard handler.

The keyboard handler is a submodule of the IBM 3278 terminal emulator.
This function receives bytes of character data from the keyboard, distributes
them to the output queues, and translates them to IBM scan codes or to
ASCII characters if necessary. Translations are performed to support the
keyboard used (either VT100 style or IBIvn and the output port and
destination the data will be sent to. It also toggles the graphics and terminal
emulator displays.

Terminal Emulator RM10-2 7

F:IBM KEYBOARD

Qpacket ►

Qboolean ►

<1> <1> ►Qpacket

<2> <2> ► Qinteger

<3> ►Qpacket

<4> ~ ►Qpacket
<5> ►Qpacket

(IBMKBDI)

Figure 10-1. F: IBM KEYBOARD

F:IBM_KEYBOARD accepts character packets from the keyboard on input
<1> and based on the mode (either Terminal Emulator, Command, or
Local) , outputs packets for use by the function network, the line editor, or
an IBM host. Packets of characters for the KEYBOARD function are output
on < 1 >. Qintegers to be sent to the FKEYS function are output on <2>.
Qpackets of characters to be sent to the function, SPECKEYS, are output on
<3>. Qpackets of characters for the line editor are output on <4>. Qpackets
of IBM scan codes for an IBM host are output on <5>.

Input <2> accepts a Boolean that indicates which type of keyboard is being
used.

True = IBM-style keyboard

False = VT100-style keyboard

At system configuration, a VT100-style keyboard is specified; so, if an
IBM-style keyboard is being used, the following PS 390 command should be
entered in the S1'1,E.DAT file:

SEND TRUE TO <2>IBMKBDl;

4.3 Data Structures

The three main output ports of the keyboard handler all affect a different
data display structure. The data structures used by the terminal emulator
are set up by the CONFIG.DAT file and then completed by the function
TE BtJIL.D.

The CONFIG.DAT file contains a color node . The color node determines
the color of the characters on the screen in the terminal emulator mode.
The color node is accessible by sending the appropriate value to
'i'ECOLORI.

RMIO-28 Reference Materials

A simplified diagram of the display structure created by the terminal emula-
tor is shown below:

INPUT FROM KEYBOARD OR HOST LINE

i
KB Qocal or data mode)

GRAPHICS DISPLAY

CI (local command) TE (host line)

LOCAL TE HOST TE
DISPLAY DISPLAY
(used by F:IBMDISP} (used by GPIO TE}

The GPIO (the UO processor used for communication with the IBM host) is
able to differentiate between data that is bound for the Host Screen Buffer
(3278 terminal emulation) and data that is bound for the PS 390 command
interpreter (graphical data). All data bound for the CI is packaged in WSF
envelopes. (Refer to Section RMS Host Communications for information on
WSF commands and data flow from the host system.) Upon receiving infor-
mation from the host, the GPIO differentiates graphical data from TE data
by the WSF command; anything not in a WSF command is '1'~ data and
goes directly to the (Host) Screen Buffer.

The local TE display is set up by the F:IBNIDISP function.

Qpacket ►~

F : IBNDI SP

<1>

Figure 10-2. F:IBIVIDISP

F:IBMDISP accepts packets of ASCII characters on input < 1 >. Then, it
either inserts their equivalent IBM screen code into the local screen buffer
used by the Command mode of the terminal emulator or causes the cursor
position to be adjusted in the case of a carriage return, a line feed, or a
back space .

Terminal Emulator RMI D-29

4.4 Indicator Characters

The PS 390 supports indicator characters that indicate the status (active
mode, software exception, etc.) of the PS 390. These characters appear on
the right side of the indicator line, and are defined as follows:

H Indicates that the keyboard is communicating with the host.

C Indicates that the keyboard is communicating with the CI.

L Indicates that the keyboard is communicating with user function networks.

S Indicates that the keyboard is in the SETUP mode, i.e., the SETUP key
has been pressed.

G Indicates that the graphics display is active.

Indicates that the GPIO was unable to establish communications with the
host.

Indicates that the GPIO timed out.

t Indicates that the CAPS LOCK feature is active.

These indicator characters (with the exception of the SETiJP and the two
error indicators) may be removed from the screen by using the SETiIP
mode of the keyboard.

4.5 Setup Mode for the Terminal Emulator

The SETUP mode for the 3278 TE is accessed by pressing CTRL SETUP. In
SETUP, the Function Keys on the keyboard are used to toggle or adjust
screen display features. CTRL SETUP must be pressed again, after the ap-
propriate adjustments are made, to exit the SETUP mode.

SETUP can be entered in any communication mode and can be used to
make the following adjustments:

FKey #1 Pressing this key increases the intensity of the screen.

FKey #2 Pressing this key decreases the intensity of the screen.

FKey #3 Pressing this key raises the contrast of the screen.

RMIO-30 Reference Materials

FKey #4 Pressing this key lowers the contrast of the screen.

FKey #5 Pressing this key toggles in and out of the CAPS LOCK mode.
While in CAPS LOCK, all standard keypad keys output their
shifted value. (This is for IBM-style keyboards only.)

FKey #6 Pressing this key toggles the display of PS 390 characters.

Fkey #7 Toggles the display of the host indicator characters. The default
is the display of characters.

Fkey #8 Toggles the display of the cursor. Default is display of the cursor.

The default is the display of characters. The default is the display of characters.

Function keys F9 and F10 are used in conjunction with the PS 390/IBM
3250 Interface. Information on the use of these keys is available in the
PS 300/IBM 3250 Interface User's Manual.

4.6 Using the SITE.DAT File to Change Features of the Terminal Emulator

The adjustments made in SETUP can be entered as PS 390 commands in
the S1TE.DAT file to set the appropriate characteristics at boot time.

The list below shows the characters that should be entered into the
S1TE.DAT file for each feature.

For VT100 style keyboards, the appropriate characters) must be inserted
between a ' TVo fivo ' header and trailer sequence. (TVo is a CTRL V
lowercase "o" sequence.)

FEATURE CHARACTERS TO BE ENTERED INTO SITE. DAT

Raise Intensity

Lower Intensity

Raise Contrast

Lower Contrast

Set/Reset Caps Lock

Set/Reset Local Indicators

Set/Reset Host Indicators

Set/Reset Cursor

Set 3250 Mode

Set PS 390 Mode

SEND

SEND

SEND

SEND

SEND

SEND

SEND

SEND

SEND

SEND

' '~Vo~'Va'~Vo

' '~Vo'(Vb'~Vo

'~Vo1vcTVo
-tvoTvdtvo

'TVoTVeTVo

' '~VoTVf TVo

'tvoTvgfivo
'tVoTVhtVo

' fivo Tv i ~'vo
' fivo Tv~ T vo'

TO <1>IBMKBDI;

TO <1>IBMKBDI;

TO <1>IBMKBDl;

TO <1>IBMKBDl;

TO <1>IBMKBDl;

TO <1>IBMKBDI;

TO <1>IBMKBDI;

TO <1>IBMKBDl;

TO <1>IBMKBDl;

TO <1>IBMKBDl;

Terminal Emulator RMIO-31

For IBM-style keyboards, the appropriate characters must be inserted be-
tween a CHAR(130)&CHAR(n)&CHAR(130) sequence, where &CHAR(n)

is the character sequences) for the feature.

FEATURE CHARACTERS TO BE ENTERED INTO SITE. DAT

Raise Intensity SEND CHAR(130)&CHAR(145)&CHAR(130) TO

<1>IBMKBDl;

Lower Intensity SEND CHAR(130)&CHAR(146)&CHAR(130) TO

<1>IBMKBDI;

Raise Contrast SEND CHAR(130)&CHAR(147)&CHAR(130) TO

<1>IBMKBDl;

Lower Contrast SEND CHAR (130) &CHAR (14 8) &CHAR (130) TO

<1>IBMKBDI;

Set/Reset Caps Lock SEND CHAR(130)&CHAR(149)&CHAR(130) TO

<1>IBMKBDI;

Set/Reset Local Indicators SEND CHAR(130)&CHAR(150)&CHAR(130) TO

<1>IBMKBDI;

Set/Reset Host Indicators SEND CHAR(130)&CHAR(151)&CHAR(130) TO

<1>IBMKBDl;

Set/Reset Cursor SEND CHAR(130)&CHAR(152)&CHAR(130) TO

<1>IBMKBDl;

Set 3250 Mode SEND CHAR(130)&CHAR(153)&CHAR(130) TO

<1>IBMKBDl;

Set PS 390 Mode SEND CHAR(130)&CHAR(154)&CHAR(130) TO

<1>IBMKBDI;

When inserting multiple SETTUP options in the S1'1'E.DAT file, as many
values as needed should be entered in between the header and trailer
sequences.

For example, on VT100 style keyboards

SEND ' TVoTVatVc~'VfTVo' TO <1>IBMKBDl ;

would raise screen intensity, raise screen contrast, and toggle the local
indicator display.

For IBM style keyboards, this sequence would be

SEND CHAR(130)&CHAR(145)&CHAR(147)&CHAR(150)&CHAR(130)

TO <1>IBMKBDI;

The horizontal line running across the bottom of the terminal display can be
removed by entering the following PS 390 command in the Sl'1'E.DAT file:

IBMLINE$;=NIL;

RMIO-32 Reference Materials

Another feature that can be changed in the Sl~i'~.DAT file is status of the
displays affected by CTRL GRAPH and CTRL '1'~RM sequences.

VT140 style Sequences DESCRIPTI(JN

SEND tVp TO <1>IBMKBDI; Toggles TERM display

SEND 'CVs TO <1>IBMKBDl; Toggles GRAPH display

{BM style Sequences DESCRIPTItJN

SEND CHAR(83) TO <1>IBMKBDI; Toggles TERM display

SEND CHAR(82) TO <1>IBMKBDI; Toggles GRAPH display

Terminal Emulator R~VI10-33

"~

m

m
~o

O

Section RM11

System Errors

This section provides a description of the system error messages that you may
encounter during standard operation of the PS 390 graphics system. Errors may be
written to the debug terminal, to the keyboard LEDs, or to the Crash Dump file.
There are three types of error messages, listed in the following three tables.

NOTE

The tables list the error messages for PS 390 systems
using either DEC or IBM host computers. It is noted in
the tables where the message is host-specific.

The first table lists the error number and brief description of the traps or software
induced exceptions that might cause the system to fail.

The second table lists the error numbers (with error definitions) of system errors
that might be caused when you use the user-written function (UWF) facility.

The third table is a comprehensive list of the system error numbers. Most system
errors are generated only during the development process of the graphics firmware
and are rarely seen during normal system operation.

NOTE

Notify E&S Customer Engineering Software Support
when any error numbers are reported that are E&S
firmware errors (shown in Table 11-1 or Table 11-3).

System Errors RM11-1

Table 11-1. PS 390 Traps and Definitions

NUMBER DEFINITION

0 Not enough available memory to come up or handle request.

1 E&S firmware error.

2 Memory corrupted or over-written (could be caused by UWF).

3 Memory corrupted or over-written (could be caused by UWF).
Message for systems using IBM host only.

5 Attempt to wait on queue when function is waiting on another
device (CLOCK, UO)(could be caused by UWF).

6 System errors (refer to Table 11-3).

7

8

Double-bit mass memory error if address on LEDs is between
200 and 300; unexpected interrupt on a vector with no routine if
address is between 300 and 400.

Usually indicates double-bit mass memory error. If address on
LEDs is 22C, error occurred on memory card 200000-300000. If
address is 23C, error occurred on memory card 300000-400000
and so forth. Message for systems using DEC host only.

9 E&S Firmware Error

10 Memory corrupted or over-written (could be caused by UWF).

11 E&S firmware error.

12 Pascal in-line runtime error: usually caused by Case statement in
Pascal with no Otherwise clause (could be caused by LJWF).

RMIl-2 Reference Materials

Table 11-2. User-Written Function Error Descriptions

ERROR NUMBER

SYS'1'EMERROR # 7F

SYS'1'EMERROR #80

SYS'1'EMERROR #81

SYS'1'EMERROR #81

SYSTEMERROR #8E

SYSTEMERROR #B9

SYSTEMERROR #C9

SYS'1'EMERROR #CB

SYSTEMERROR #D9

SYS'1'EMERROR #DA

SYSTEMERROR #DB

SYS'i'EMERROR #DE

SYS'1'EMERROR #EO

DEFINITION

Exited function before re_queuing function (not
following template).

Bad parameter passed to text utility routine:
Text text, B 1 < 0 .

Bad parameter passes to text utility routine:
Char text, b < 0.

Bad parameter passes to text utility routine:
Char_text, b < 0. Message for systems using IBM
host only.

Bad parameters passed to Updates utilities:
AnnounceUpdate List tail =nil; head <> nil.

Nil or invalid parameter passed to Illegal Input
handling routines.

User written function stack overflow.

Improper redefinition of user written function
name .

Call to Ckinputs has Nmin < 0.

Call to Ckinputs has Nmin > Nmax.

Call to Ckinputs has Nmax > total number of inputs
for function.

Multiple call to Qsendcopymsg on .the same input.

Function was not in state Running when Ckinputs
was called; Cleaninputs returned a FALSE and still
called Ckinputs; Cleaninputs was not called before
calling Ckinputs the second time.

System Errors RMI 1-3

Table 11-2. User-Written Function Error Descriptions (continued)

ERROR NUMBER DEFINITION

SYSTEMERROR #E1 Function was not in state Mid_running when
Cleaninputs was called.

SYSTEMERROR #E9 Qillmessage, or Qillvalue was called for input
which does not exist.

SYSTEMERROR #EA Qillmessage, or Qillvalue was called for input
which was already dealt with; previous call to
Qillmessage, Qillvalue, or Qsendcopymsg.

SYSTEMERROR #110 Tolerance on FCnearzero is too small.

SYSTEMERROR # 111 Set node has no dummy control block.

SYS'1'.~MERROR #68 Possible overwrite of block boundary: Sending to an
unrecognized Namedentity.

SYSTEMERROR #A1 Possible overwrite of block boundary:
AppendVector, Invalid Acpdata type.

SYSTEMERROR #92 Possible overwrite of block boundary: Byte Index
Invalid Acpdata type.

SYSTEMERROR #9C Possible overwrite of block boundary: Unrecognized
type of Namedentity.

SYSTEMERROR #9D Possible overwrite of block boundary: Hasstructure.

SYSTEMERROR #A3 Possible overwrite of block boundary:
Nomemsched, Bad.Status for a fcn.

SYSTEMERROR #103 Possible overwrite of block boundary: Curfcn was
not active at entry.

SYSTEMERROR #109 Possible overwrite of block boundary: ContBlock,
nil block.

RMII-4 Reference Materials

Table 11-2. User-Written Function Error Descriptions (continued)

ERROR NUMBER DEFINITION

SYSTEMERROR #lOD Possible overwrite of block boundary: GetVector,
Not an Acpdata block.

SYSTEMERROR #l0E Possible overwrite of block boundary: GetVector,
Not a vector Acpdata block.

Motorola Exceptions:

These exceptions could be due to EIS software exceptions or to LT'V~F
memory overwrites.

Exception 2
Exception 3
Exception 4

Bus Error.
Address Error.
Illegal Structure.

The following table is the comprehensive list of system error messages. The
messages are listed numerically, but can show one of two error types:

• Possible LTVVF Error —software exceptions possibly caused by use of
the LT'V~F facility. If LTWF is not used, notify Customer Engineering
Software Support when you get this message.

• E&S Firmware Error —software exceptions that indicate that Cus-
tomer Engineering Software Support should be notified.

System Errors RMIl -S

Table I 1-3. List of System Error Messages

ERROR NUMBER DEFINITION

#64 E&S Firmware Error

#65 E&S Firmware Error

#66 E&S Firmware Error

#67 E&S Firmware Error

#68 Possible LTWF Error

#69 E&S Firmware Error

#6A E&S Firmware Error

#6B E&S Firmware Error

#6C E&S Firmware Error

#6 E&S Firmware Error

#6E E&S Firmware Error

#6F E&S Firmware Error

#70 E&S Firmware Error

71 E&S Firmware Error

72 E&S Firmware Error

7 3 E&S Firmware Error

74 E&S Firmware Error

#75 E&S Firmware Error

#76 E&S Firmware Error

7 7 E&S Firmware Error

#78 E&S Firmware Error

#79 E&S Firmware Error

7A E&S Firmware Error

RMII-6 Reference Materials

Table 11-3. List of System Error Messages (continued)

ERROR NUMBER DEFINITION

7B E&S Firmware Error

#7C E&S Firmware Error

7D E&S Firmware Error

7E E&S Firmware Error

#7F Possible LJ'V~F Error

#$0 Possible LT'WF Error

#81 Possible LT'WF Error

#85 E~iS Firmware Error

8 6 E&S Firmware Error

#87 E&S Firmware Error

#88 E&S Firmware Error

#8A F,~iS Firmware Error

#8D E&S Firmware Error

#8E Possible I.J'WF Error

#8F E&S Firmware Error

#90 E&S Firmware Error

#91 E&S Firmware Error

#92 Possible LT'WF Error

#9 3 E&S Firmware Error

#94 E&S Firmware Error

#9 5 E&S Firmware Error

#96 E&S Firmware Error

#9 7 E&S Firmware Error

System Errors RMl l - 7

Table 11-3. List of System Error Messages (continlced)

ERROR NUMBER DEFINITION

#98 E&S Firmware Error

#99 E&S Firmware Error

#9C Possible LJ'WF Error

#9D Possible LTWF Error

#9E E&S Firmware Error

#A1 Possible UVVF Error

#A3 Possible LT'WF Error

#A9 E&S Firmware Error

#AA E&S Firmware Error

#AB E&S Firmware Error

#AC E&S Firmware Error

#AD E&S Firmware Error

#AE E&S Firmware Error

#AF E&S Firmware Error

#BO EIS Firmware Error

#B3 E&S Firmware Error

#B4 E&S Firmware Error

#B8 E&S Firmware Error

#B9 Possible LJ'WF Error

#BA E&S Firmware Error

#BD E&S Firmware Error

#BF E&S Firmware Error

#CO E&S Firmware Error

RMII-8 Reference Materials

Table 11-3. List of System Error Messages (continued)

ERROR NUMBER DEFINITION

#C 1 E&S Firmware Error

#C2 E&S Firmware Error

#C3 E&S Firmware Error

#C9 Possible L7`VVF Error

#CA E~iS Firmware Error

#CB Possible LT'V~F Error

#CC E&S Firmware Error

#CD E&S Firmware Error

#CF E&S Firmware Error

#DO E&S Firmware Error

#D 1 E&S Firmware Error

#D2 E&S Firmware Error

#D3 E&S Firmware Error

#D4 E&S Firmware Error

#DS E&S Firmware Error

#D6 E&S Firmware Error

#D 7 E&S Firmware Error

#DS E&S Firmware Error

#D9 Possible LT'V~F Error

#DA Possible LTWF Error

#DB Possible LJ'WF Error

#DC E&S Firmware Error

#DE Possible LJ'V~F Error

System Errors RMll-9

Table 11-3. List of System Error Messages (continued)

ERROR NUMBER DEFINITION

#DF

#EO

#E1

#E2

#ES

#E6

#E7

#E8

#E9

#EA

#EB

#ED

#EE

#EF

#FO

#F1

#F3

#F6

#F7

#F8

#F9

#FC

#FD

E&S Firmware Error

Possible LT'1~VF Error

Possible UwF Error

E&S Firmware Error

E&S Firmware Error

E&S Firmware Error

E&S Firmware Error

E&S Firmware Error

Possible LT'VVF Error

Possible tJ'WF Error

E&S Firmware Error

E&S Firmware Error

E&S Firmware Error

E&S Firmware Error

E&S Firmware Error

E&S Firmware Error

E&S Firmware Error

E&S Firmware Error

E&S Firmware Error

E&S Firmware Error

E&S Firmware Error

E&S Firmware Error

E&S Firmware Error

RMlI-10 Reference Materials

Table 11-3. List of System Error Messages (continued)

ERROR NUMBER DEFINITION

#FE F,~S Firmware Error

#FF E&S Firmware Error

#100 E&S Firmware Error

101 E&S Firmware Error

102 E~iS Firmware Error

#103 Possible LJ'V~F Error

#104 E&S Firmware Error

#105 E&S Firmware Error

#106 E&S Firmware Error

10 7 E&S Firmware Error

#108 E&S Firmware Error

#109 Possible UV~F Error

l OA E&S Firmware Error

l OB E&S Firmware Error

10~ E&S Firmware Error

#lOD Possible tTWF Error

#l0E Possible LJ`V~F Error

l OF E&S Firmware Error

110 Possible LJ`VVF Error

#111 Possible LT'VVF Error

112 E&S Firmware Error

113 E&S Firmware Error

114 E&S Firmware Error

System Errors RM11-11

Table 11-3. List of System Error Messages (continued)

ERROR NUMBER DEFINITION

115 E&S Firmware Error

116 E&S Firmware Error

117 E&S Firmware Error

118 E&S Firmware Error

119 E&S Firmware Error

12 4 E&S Firmware Error

121 E&S Firmware Error

#122 E&S Firmware Error

12 3 E&S Firmware Error

124 E&S Firmware Error

12 5 E&S Firmware Error

12 6 E&S Firmware Error

RMII-12 Reference Materials

RM12. DIAGNOSTIC UTILITIES

c o NTENTs

1. DIAGNOSTIC UTILITY COMMANDS 1

1.1 Loading the Diagnostic Utility Diskette 1
1.2 Selecting Utility Commands 2
1.3 Utility Commands 3

2. BACKING UP FIRMti'VARE AND DIAGNOSTIC DISKETTES . . . 5

Z.1 Formatting the Destination Diskette 5
2.2 Copying the PS 390 Diskettes 6
2.2.1 Copying Using Mass Memory 6
2.2.2 Copying Using JCP Local Memory 8
2.3 Error Messages During Copying 8
2.4 Checking the Copy 8
2.5 The DELETE Command 9

t

Section RM12

Diagnostic Utilities

Diagnostic utilities and commands are used to back up diskettes and for diskette
file management. This section explains accessing the utility program that contains
the commands and then lists and gives a short description of the commands. It also
provides the steps used to back up the graphics firmware diskettes or any other
system diskettes.

1. Diagnostic Utility Commands

The utility program in the diagnostic operating system contains commands
used to format diskettes, and to check, copy, delete, modify, download, and
send back files. The utility program also has terminal emulator capabilities.
This section explains loading the diagnostic utility diskette in order to access
the commands, then lists the utility commands available.

1.1 Loading the Diagnostic Utility Diskette

To access the utility commands load the diagnostic utility diskette using the
following steps

1. Power-off the system, ensuring the activity light is off.

2. Dismount any diskettes in the PS 390 disk drives.

3. Insert the diagnostic utility diskette into drive 1. Ensure the E&S
label on the diskette faces right and the covered write-protect slot
faces up.

4. Power-up the PS 390 control unit and display. A VT100-compatible
auxiliary terminal or the PS 300 keyboard with LEDs may be used to
enter in the diagnostic commands. The auxiliary terminal is the pre-
ferred equipment to use since it fully displays system prompts.

Diagnostic Utilities RM12-1

NOTE

If an auxiliary terminal is used and you are operating it
at 300 baud, connect it to one of the available ports on
the control unit connector panel. Usually, Port 3
(debug port) is used.

5. Wait until the PS 390 finishes its power-on confidence tests and the
auxiliary terminal displays "O" and beeps before continuing.

6. Hold down the CTRL key while repeatedly typing P:

<CTRL>P

until the system responds with:

PS 300 Diagnostic operating system Ax.Vxx
Disk name = PS 300 Diagnostic Disk X Ax.Vxx
Type "HELP" for help.

The =prompt indicates the diagnostic operating system has been
successfully loaded.

7. Select the utilities program by typing:

UTILITY <CR>

1.2 Selecting Utility Commands

The following message is displayed when the utility program has been suc-
cessfully loaded.

=Utility

UTILITY; 1 loaded

PS 300 file and download Utility Px.Vxx
Type HELP for additional help.

Utility>

Enter a command at the Utility> prompt. The command is an alphabetic
string that is long enough to identify the command. For example, you can
type in the full word CHECK, or abbreviate it to CH, to call the CHECK
command. If the first character in the entered command is not alphabetic,
or if the first word in the entered command is incorrect, the system
responds with:

Invalid command.

RM12-2 Reference Materials

The system prompts you for any required parameters that are not entered
by the operator. Those commands containing parameters require more than
one line when they are entered.

When you enter the command, the utility program steps you through a se-
ries of prompts that completes the command.

1.3 Utility Commands

The following file utility commands are available:

CHECK Reads the entire diskette to check for diskette errors and

to determine if the file structure is valid.

COMPARE Compares two diskettes or two files to determine if they

are the same.

COMPRESS Compresses a diskette by copying each file over any empty

space on the diskette until all empty space resides in one

contiguous block at the end of the diskette.

COPY Copies a file from one diskette to another diskette or

copies a file from one place on a diskette to another

place on the same diskette.

COPYDISK Copies the contents of an entire diskette onto another

diskette.

CREATE Creates a file from data in memory.

CREATEBOOT Creates a boot file from an existing file.

DATE Displays and/or changes the date.

DELETE Deletes a file.

DIRECTORY Displays the diskette directory.

DRIVE Selects a diskette drive.

DUMP Dumps a file from the diskette into memory.

EXIT Returns to the Diagnostic Operating System monitor.

FORMAT Formats and initializes a diskette.

Diagnostic Utilities RM12-3

FREE Indicates the number of free blocks on a diskette.

HELP Displays a list of available commands and information about

each command.

INITIALIZE Initializes a diskette without formatting it.

MEMORY Displays memory size and allows use of either local or mass

memory.

MODIFY Modifies the host communication parameter values for baud

rate, parity, port number, etc.

PURGE Deletes all but the latest version of each file or all but

the latest version of one specific file from the diskette.

REMOVE This is a query "delete". It will selectively delete any

files on the disk as it prompts the user through the file

names.

RENAME Renames a file.

RENAMEDISK Changes the diskette title.

RESTORE Restores one of the saved (see SAVE command) files

containing the host communication value parameters.

SAVE Saves host communication parameter values modified using

the MODIFY command.

SENDBACK

TERMINAL

TRANSFER

TYPE

Transfers a f ile from the PS 390 to the host .

Software resident on the diagnostic diskette lets the user

access a line to the host system. The communication

parameters must be correct for this command to work.

Transfers a file from the host to the PS 390.

Types the contents of a file to the terminal.

Use the HELP command fora brief description of the function and syntax
of each Utility command.

RM12-4 Reference Materials

2. Backing Up Firmware and Diagnostic Diskettes

Backup copies should be made of the graphics firmware or any of the
PS 390 diskettes. The diskettes should be copied as soon as they are re-
ceived. Ablank diskettes) must be available to use as the copy disk(s). A
PS 300 keyboard with LEDs, or an auxiliary terminal may be used when
backing up. The auxiliary terminal is the preferred equipment to use since it
fully displays system prompts.

You perform the following steps when you do a backup:

• Load the PS 390 diagnostic utility diskette.

• Access the utility program on the diagnostic diskette.

• Format a blank diskette to be used as the copy diskette.

• Store data from the original diskette for transfer to the copy diskette
using either mass memory or local memory.

2.1 Formatting the Destination Diskette

The utility program in the diagnostic operating system is used to format the
blank (destination) diskette and copy the PS 390 graphics firmware.

Format the blank diskette as follows:

1. Load the diagnostic diskette and access the utility program following
the procedure described in sections 1.1 and 1.2.

2. Dismount the diagnostic software diskette.

3. Mount the blank diskette in the diskette drive. Ensure the
write-protect tape has been removed from the diskette.

4 . Type

FORMAT

The system responds with:

Utility> Format

ENTER DISK NAME

Diagnostic Utilities RM12-S

5. Although the system asks for a disk name, a response is not
necessary. The firmware or diagnostic diskette is copied onto the
destination diskette, name included. Press RETL;TRN to continue.

6. The system then formats the diskette. If the diskette is
write-protected, the system returns with this message:

*****ERROR: Disk write protected.

If this message appears, make sure the write-protect tape has been
removed. If the tape has been removed, and the message still ap-
pears, use a new diskette.

7. When the destination diskette is successfully formatted, the Utility>
prompt is displayed.

Disk formatting difficulties are usually the result of a bad disk or faulty
diskette mounting in the drive. Use the CHECK command to determine if a
diskette has been properly formatted.

2.2 Copying the PS 390 Diskettes

You can use either mass memory or local memory to copy the graphics
firmware or diagnostic diskettes. It is faster to copy diskettes using mass
memory and both disk drives. The system prompts you during the copy at
each step.

2.2.1 Copying Using Mass Memory

Initialize mass memory by typing:

MEM

The system responds with:

Memory is currently set to use xxxK of local memory.

Do you want to change using mass memory?

You must respond with YES or Y to use mass memory. NO is the default
answer. If you respond with a RETURN, NO, or N, the system uses local
memory to copy.

RM12-6 Reference Materials

When you respond with YES or Y, the system displays the current amount
of mass memory available:

xxxK of memory is available in mass memory.

and initializes mass memory to be used in the COPYDISK command. Per-
form the following steps to complete the copy.

1. Type:

COPYDISK

2. The system responds with:

Copy using 1 or 2 drives?
xxxK of memory is available in mass memory.

3. Type:

2

4. The system prompts

Enter source drive number.

Enter the number of the drive containing the source diskette. The
diskette drives are numbered 1 and 2 . The system then prompts

Enter destination drive number:

Enter the number of the drive containing the newly formatted
diskette.

5 . The system prompts

Please insert source and destination disks, then press RETURN.

6. The system loads the data from the source file into memory and
copies it onto the destination diskette. When the copy is complete,
the system prompts

The disk has been copied.

Do you want another copy of the same disk?

Repeat the procedure as needed.

diagnostic Utilities R1V,f12-7

2.2.2 Copying Using JCP Local Memory

If mass memory is not available for temporary use with the COPYDISK
utility, the system uses the JCP local memory for temporary storage. The
system uses the same prompts that appear during the mass memory copy
procedure.

To use JCP local memory when copying, enter RETURN, NO, or N at the
system prompt:

Do you want to change using mass memory?

Then follow the system prompts to complete the copy procedure.

2.3 Error Messages During Copying

There are several error messages that may appear during C~PYDISK. If the
system displays the following,

*****ERROR: Record not found during write.

reformat the diskette and try COPYDISK again.

Refer to the list of Utility commands at the front of this section for more
commands that may be helpful in backing up the PS 390 diskettes.

2.4 Checking the Copy

Use the CHECK command to determine if a diskette has been properly
formatted. The CHECK command responds with a detailed report of the
number of blocks in the header, footer, and body of each file. The message
appears as:

Header 0

Directory 1

File Name.Ex ;26 2-43

* Empty * 44-719

When the system displays the Utility> prompt, and no error messages
appear, the diskette has been properly formatted.

RM12-8 Reference Materials

When file copying is complete, use the utility DIRECTORY to check if all
files were copied from the source disk. The CHECK utility can be used to
read the diskette and display the name and number of sectors of each file,
or the COMPARE utility can be used to compare the newly copied disk with
the source disk.

2.5 The DELETE Command

Use the DELETE command to delete a file from the diskette. This utility
command should be used to delete the original S1'1'E.DAT file from the copy
of the graphics firmware before downloading the new version. If the exten-
sion is not specified, the first file found on the diskette that has a matching
file name and version number is deleted. The version number must always
be specified.

The following is an example deleting the S1'1~E.DAT;4 file from the diskette:

Utility>DELETE

Enter name of file to be deleted: SITE.DAT;4

File deleted successfully.

Utility>

The DELETE command may also be entered on one line:

Utility>DELETE SITE.DAT;4

The file name must be valid, and must include a version number. If the
version number is not specified, the system advises the operator of the error
with the following message:

Error, version number must be specified.

When a file is deleted it no longer exists on the diskette, and that space
becomes available for other files.

NOTE

For information on using the utility commands to
download a file from the host, refer to the example in
TT2 Helpful Hints, How to copy Files Between the Host
and the PS 390.

Diagnostic Utilities RM12-9

RM13A. INTERACTIVE DEVICES

PS 300 STYLE

coNTENTs

1. THE PERIPHERAL MULTIPLEXER 2

1.1 Functional Characteristics 3
1.2 Data Framing and Transmission Rates 3

2. KEYBOARD 4

2.1 Physical Configuration 4
2.2 Data Entry 5
2.3 Keyboard LED Display 14
2.4 Keyboard Display Modes 14

3. CONTROL DIALS UNIT 17

3.1 Operating Modes 17
3.2 Operation lg
3.3 LED Display Operation 20

4. FUNCTION BUTTONS UNIT 21

4.1 Communications Protocol 21

5. DATA TABLET 23

5.1 Operating Modes 23

6. THE OPTICAL MOUSE 2~

6.1 Protocol 25

t

ILLUSTRATIONS

Figure 13A-1. Front Panel of Peripheral Multiplexer 2
Figure 13A-2. Back Panel of Peripheral Multiplexer 2

TABLES

Table 13A-1. Interactive Device Transmission Rates 3
Table 13A-2. Alphabetic Key Codes 7
Table 13A-3. Standard Numeric Key Codes 8
Table 13A-4. Special Character Key Codes 9
Table 13A-5. Terminal Function Key Codes 10
Table 13A-6. Function Key Codes 11
Table 13A-7. Numeric/Application Mode Key Codes 12
Table 13A-8. Device Control Key Codes 13
Table 13A-9. Binary Data Transmission Codes 24
Table 13A-ld. Data Tablet Binary Format 24
Table 13A-11. Mouse Bit Protocol 26

it

Section RVI13A

Interactive Devices

PS 300 Style

Two sets of interactive devices are available with the PS 390: the PS 300-style
devices and the PS 390-style devices. Interactive devices from the two styles cannot
be mixed with the exception of the data tablets and the optical mouse, which are
common to both styles.

The PS 300-style interactive devices include:

• Keyboard with LEDs

• Control dials unit with LEDs

• Function buttons unit

• Data tablet (6 by 6 or 12 by 12) with puck

• Optical mouse

The light pen is not supported on the PS 390.

The PS 390 interfaces with the interactive devices through the peripheral
multiplexer which supplies the power to the interactive devices and serves as their
input/output path to the PS 390. The peripheral multiplexer combines the signals
from the interactive devices and transmits them to the PS 390.

This section describes the PS 300-style interactive devices and peripheral
multiplexer. Section RM13~ describes the PS 390-style interactive devices and
peripheral multiplexer.

Interactive Devices RM13A-1

1. The Peripheral Multiplexer

The peripheral multiplexer serves as the connection point between the

PS 390 system and the interactive devices. It provides power to the

interactive devices and combines their signals and transmits them to the

PS 390. It also routes any signals which the the system may send back to

the appropriate interactive device.

The peripheral multiplexer is housed in a metal box which fits beneath the
raster display pedestal. The interactive devices connect to the five connec-

tors on the front of the multiplexer. Each connector is uniquely dedicated to
a specific interactive device.

Figure 13A-1 shows the peripheral connections for the PS 300-style

peripheral set. Figure 13A-2 shows the backside connectors and plugs for
the peripheral multiplexer.

1

~r

1

• •

• •

• •

• •

1

• • • • • • • • • • • • •

~ •~~•

4~-

i
MOUSE BUTTONS DIALS KEYBOARD TABLET

I

i
0

e

POWER

IAS390003A2

Figure 13A-1. Front Panel of Peripheral Multiplexer

\ CONTROLLER
l

I

l

1

1
1

 I

90-130/180-250v-
2A MAX 6/3A 47-63Hz

//

O ~ O O
0 ~

D
D ~~

IAS390005A2

Figure 13A-2. Back Panel of Peripheral Micltiplexer

RM13A-2 Reference Materials

1.1 Functional Characteristics

The peripheral multiplexer consists of a circuit card which is connected to
five input ports and one output port. The five input ports support the follow-
ing interactive devices:

Keyboard with LEDs

• Control dials unit with LEDs

. Function buttons unit

. Data tablet (6 by 6 or 12 by 12) with cursor

. Optical mouse

The peripheral multiplexer receives input data from the interactive devices
and multiplexes the data through an RS-232C output port to the PS 390. It
also accepts the multiplexed data from the terminal controller,
demultiplexes the data, and routes the data to the appropriate interactive
devices.

1.2 Data Framing and Transmission Rates

The data sent to and from the peripheral multiplexer is asynchronous data
with each byte containing eight data bits with no parity, one start bit and
one stop bit. The data transmission rate of the peripheral multiplexer to and
from the PS 390 is 19,200 baud. The transmission rates between the inter-
active devices and the peripheral multiplexer are shown in Table 13A-1.

Table 13A-1. Interactive Device Transmission Rates

Device

Keyboard Part x'Bl'

Control Dials Port x'B2'

32 Func. Buttons Port x'B3'

Mouse Port x'B4'

Data Tablet Port x'B6'

Baud Rate

2400 Baud

9600 Baud

9600 Baud

9600 Baud

9600 Baud

Interactive Devices RM13A-3

2. Keyboard

The main function of the keyboard is the generation and transmission of
ASCII displayable characters, ASCII control characters, and PS 390 system

sequences. This data is transmitted to the JCP, the controlling system proc-
essor that is located in the PS 390 control unit. The transmitted data may
ultimately specify displayed characters, commands, menu/table selections,
etc.

The keyboard also displays full-line or segmented alphanumeric messages
on a 1 to 96-character LED array. These displayed characters most often
function as labels for the keyboard's 12 user-programmable function keys.
The LED characters may also be used "in tandem" to present a single mes-
sage up to 96 characters long.

2.1 Physical Configuration

The keyboard is a modular unit that connects to the system through a single
interface cable. Like the other interactive devices, the keyboard is micropro-
cessor-controlled to provide limited local processing capabilities.The proces-
sor in the keyboard controls LED displays and UO data transmissions.

The keyboard unit contains a keyboard, an LED display, and a keyboard
interface. The assembled keyboard measures 21.1 inches (53.6 cm) long by
8.25 inches (20.9 cm) deep. The keyboard stands 3.5 inches (8.9 cm) high
on four rubber feet. The system's audible alarm sounds through a speaker.

The LEDs are configured in a single row above the twelve keyboard func-
tion keys. They are arranged in twelve 8-character groups. Each LED group
may serve as a label for its associated function key, or all LED characters
may be used together to display. a single message. A space of one character
separates each 8-character LED group from the next.

An 8-conductor, flexible cable with locking modular plugs connects the key-
board to the peripheral multiplexer. The cable is similar in function and
appearance to a standard telephone "flex" cord. The cable may be stretched
to permit many different work station arrangements. The modular plugs are
identical, allowing the cable to be connected in either direction.

The keyboard should be grounded, and provision for this has been made on
the peripheral multiplexer.

RM13A-4 Reference Materials

2.2 Data Entry

The 95 keys fall into eight general categories.

• Keyboard function control

• Alphabetic

• Standard numeric

• Special character

• Terminal function

• Function

• Numeric/application mode

• Device control

Note

When instructions are given to press two or more keys
simultaneously, the key sequence will be shown in
italics . For example, CTRL V means that the CTRL and
V keys are pressed simultaneously.

2.2.1 Keyboard Function Control Keys

The keyboard function control keys are unencoded, local controls, and in-
clude the SHIFT and CTRL keys. No codes are transmitted when these keys
are pressed individually or in combination with each other. The keyboard
function control keys are used to modify the codes transmitted by other
keys. When either SHIFT key is pressed simultaneously with a displayable
character key, the uppercase code for that key is generated. If the key does
not have an uppercase function, the SHIFT key is ignored. For example,
pressing the A key causes the binary code B' 01100001 ~ for the character a
to be transmitted; and pressing the sequence SHIFT A causes the binary
code B' 01000001 ~ for the character A to be transmitted. Bit 6 is forced low
to define an uppercase character.

When CTRL is pressed simultaneously with one of keys A-Z (uppercase
only), the space bar, or the special character keys {, [,], }, or ?, an ASCII
control code is generated. For example, the CTRL Z keyboard sequence
causes the binary code B- 00011010' to be generated. The only difference
between this code and the binary code for Z (B' 01011010') is that bit 7 is
forced low to define the control code.

Interactive Devices RM13A-S

When the SHIFT and CTRL keys are pressed simultaneously, the shift func-
tion is selected in most cases. The only exceptions occur with the {and ?

keys. The SHIFT CTRL { sequence causes the control character RS
(B~00011110~) to be transmitted. The SHIFT CTRL ?sequence causes the
control character US (B' 00011111 ~) to be transmitted.

When the KEPT key is locked down, the auto-repeat feature is enabled on
all keys except: F1 - F12, HARD_COPY, SETUP, GRAPH, CLEAR HOME,
LINE_LOCAL, ~1'ERM, CA.PS_LOCK, CTRL, SHIFT (both keys) , RE ,
and all numeric pad keys. When any other key is held down with the key-
board in auto repeat mode, repeated character transmission occurs. The
initial rate is less than 2 Hz, but this increases to about 11 Hz in less than
two seconds. Pressing the REPT key a second time causes it to release up-
wards, canceling the auto repeat feature.

Pressing the CAPS_LOCK key causes it to assume alocked-down position,
asserting the "caps lock" function. This is actually a limited shift operation
that applies to the alphabetic (A-Z) keys only. Alphabetic keys struck while
the keyboard is in "caps lock" mode generate uppercase characters. Press-
ing the CAPS LOCK a second time causes it to release upward, canceling
the "caps lock" mode.

2.2.2 Alphabetic Keys

The alphabetic keys are used to produce uppercase and lowercase ASCII
displayable character codes, and ASCII control codes. Table 13A-2 shows
the code and character produced when each key is pressed alone, with the
SHIFT key, or with the CTRL key. The code in the table is shown in
hexadecimal notation.

RM13A-6 Reference Materials

Table 13A-2. Alphabetic Key Codes

KEY
LABEL

KEY ALONE SHIFT+KEY CTRL+KEY
CODE CHARACTER CODE CHARACTER CODE CHARACTER

A X' 61' a X' 41' A X' O1' SOH

B X 62 b X'42' B X'02' STX

C X'63' c X'43' C X'03' ETX

D X'64' d X'44' D X'04' EOT

E X'65' e X'45' E X'45' ENQ

F X' 66' f X' 46' F X' 06' ACK

G X'67' g X'47' G X'07' BEL

H X' 68' h X' 48' H X' 08' BS

I X' 69' i X' 49' I X' 09' HT

J X' 6A' j X' 4A' J X' OA' LF

K X' 6B' k X' 4B' K X' OB' VT

L X'6C' 1 X'4C' L X'OC' FF

M X' 6D' m X' 4D' M X' OD' CR

N X' 6E' n X' 4E' N X' OE' SO

0 X' 6 F' o X' 4 F' 0 X' OF' S

P X' 70' p X' 50' P X' 10' DLE

Q X' 71' q X' 51' Q X' 11' DC1

R X' 72' r X' S2' R X' 12' DC2

S X'73' s X'53' S X'13' DC3

T X'74' t X'54' T X'14' DC4

U X' 75' u X' S5' U X' 15' NAK

V X' 7 6' v X' S 6' V X' 16 ' SYN

W X' 77' w X' S7' W X' 17' ETB

X X' 7 8' x X' S 8' X X' 18' CAN

Y x' 79' y x' 59' Y X' 19' EM

Z X'7A' z X'SA' Z X'lA' SUB

Interactive Devices RM13A-7

2.2.3 Standard Numeric Keys

The standard numeric keys generate ASCII displayable numbers and sym-
bols. The CTRL key is ignored when used with these keys. Table 13A-3
shows the code and character produced when each key is pressed alone,
with the SHIFT key, or with the CTRL key. The code in the table is shown
in hexadecimal notation.

Table 13A-3. Standard Numeric Key Codes

KEY

LABEL

KEY ALONE SHIFT+KEY CTRL+KEY

CODE CHARACTER CODE CHARACTER CODE CHARACTER

0 X'30' 0 X'29') X'30' 0

1 X' 31' 1 X' 21' ! X' 30' 1

2 X' 3 2' 2 X' 40' @ X' 3 2' 2

3 X' 33' 3 X' 23' # X' 33 3

4 X' 34' 4 X' 24' $ X' 34' 4

5 X'35' S X'25' % X'35' 5

6 X'36' 6 X'SE' X'36' 6

7 X'37' 7 X'26' & X'37' 7

8 X' 3 8' 8 X' 2A' * X' 3 8' 8

9 X' 39' 9 X' 28' (X' 39' 9

2.2.4 Special Character Keys

The special character keys are detailed in Table 13A-4. The code in the
table is shown in hexadecimal notation. These keys can be pressed alone,
with the SHIFT key, and with the CTRL key. Note the varying response
given to the CTRL key; in some instances, the unshifted key character is
produced. In other cases, a control character is generated. In two cases,
X' 1F' and X' lE' , both the SHIFT and CTRL keys must be used with the
special character key to produce the control code shown in Table 13A-4.

RM13A-8 Reference Materials

Table 13A-4. Specia~ Character Key Codes

KEY

LABEL

KEY ALONE SHIFT+KEY CTRL+KEY

CODE CHARACTER CODE CHARACTER CODE CHARACTER

- X'2D' (minus) X'SF' (underline) X'2D' (minus)

= X' 3D' = X' 2B' + X' 2B' _

' X' 60' X' 7E' ~ X' lE' RS*

{

[X'SB' [X'7B' { X'1B' ESC

}

] X' SD'] X' 7D' } X' 1D' GS

\ X'5C' \ X'7C' ~ X'1C' FS

• X'3B' X'3A' X'3B'

~~

' X' 27' X' 22' " X' 27' '

X' 2C' X' 3C' < X' 2C' ,

X' 2E' X' 3E' > X' 2E' .

/ X'2F' / X'3F' ? X'1F' US*

*These control codes may also be produced by pressing both SHIFT

and CTRL in conjunction with the indicated key.

Interactive Devices RM13A-9

2.2.5 Terminal Function Keys

The terminal function keys produce codes used by a typical video display
terminal. These keys enable an operator to generate any commonly used
terminal control character with a single keystroke. Table 13A-5 lists the
codes and characters generated by the terminal function keys. The code in

the table is shown in hexadecimal notation.

The codes produced by these keys are identical to those generated by the
conventional two-key control sequences described in Table 13A-5.

The SHIFT and CTRL keys have no effect on the codes produced by the
terminal function keys, except for the CTRL S~ace_Bar sequence that gener-
ates an ASCII NUL character.

Table 13A-S. Terminal Function Key Codes

KEY

LABEL

KEY ALONE SHIFT+KEY CTRL+KEY

CODE CHARACTER CODE CHARACTER CODE CHARACTER

BACKSPACE X'08' BS X'08' BS X'08' BS

DEL X'7F' DEL X'7F' DEL X'7F' DEL

RETURN X'OD' CR X'OD' CR X'OD' CR

LINE FEED X'OA' LF X'OA' LF X'OA' LF

ESC X' 1B' ESC X' 1B' ESC X' 1B' ESC

TAB X'09' HT X'09' HT X'09' HT

(none) X'20' (space) X'20' (space) X'00' NUL

RM13A-10 Reference Materials

2.2.6 Function Keys

Table 13A-6 illustrates the codes produced by each function key as it is
used individually, or in combination with the SHIFT and/or CTRL keys . The
code in the table is shown in hexadecimal notation. Each transmitted code
is preceded by X' 16' .

Table 13A-6. Function Key Codes

KEY

LABEL

KEY ALONE SHIFT+KEY CTRL+KEY

CODE CHARACTER CODE CHARACTER CODE CHARACTER

F1 X'61' a X'41' A X'Ol' SOH

F2 X'62' b X'42' B X'02' STX

F3 X'63' c X'43' C X'03' ETX

F4 X'64' d X'44' D X'04' EOT

F5 X'65' e X'45' E X'05' ENQ

F6 X' 66' f X' 46' F X' 06' ACK

F7 X'67' g X'47' G X'07' BEL

F8 X' 68' h X' 48' H X' O8' BS

F9 X'69' i X'49' i X'09 HT

F10 X'6A' j X'4A' J X'OA' LF

F11 X'6B' k X'4B' K X'OB' VT

F12 X'6C' 1 X'4C' L X'OC' FF

Note: All codes are preceded by X'16' .

Interactive Devices RM13A-I1

2.2.7 Numeric/Application Mode Keys

Table 13A-7 illustrates the codes and characters produced by the numeric/
application mode keys. The code in the table is shown in hexadecimal nota-
tion. Neither SHIFT or CTRL affects the ENTER key, and no codes are
modified by the CTRL key.

Table 13A-~. Numeric/Application Mode Key Codes

KEY

LABEL

KEY ALONE SHIFT+KEY CTRL+KEY
CODE CHARACTER CODE CHARACTER CODE CHARACTER

0 X'30' 0 X'29') X'30' 0

1 X'31' 1 X'21' ! X'31' 1

2 X'32' 2 X'40' @ X'32' 2

3 X'33' 3 X'23' # X'33' 3

4 X'34' 4 X'24' $ X'34' 4

5 X'35' 5 X'25' % X'35' S

6 X'36' 6 X'SE' X'36' 6

7 X' 37' 7 X' 26' & X' 37' 7

8 X' 3 8' 8 X' 2A' * X' 3 8' 8

9 X' 39' 9 X' 28' (X' 39' 9

X'2E' X'3E' > X'2E' .

X'2C' X'3C' < X'2C ,

- X'2D'
(minus)

- X'5F'
(underline)

— X'2D'
(minus)

-

ENTER X'OD' CR X'OD' CR X'OD' CR

Note: All codes are preceded by X'16'.

RM13A-12 Reference Materials

2.2. S Device Control Keys

Table 13A-8 illustrates the codes and characters produced by the device
control keys. The codes produced by these keys are modified by SHIFT and
CTRL.

Table 13A-8. Device Control Key Codes

KEY

LABEL

KEY ALONE SHIFT+KEY CTRL+KEY

CODE CHARACTER CODE CHARACTER CODE CHARACTER

HARD

COPY X'6E' n X'4E' N X'OE' SO

SETUP X'6F' o X'4F' O X'OF' SI

GRAPH X'70' p X'50' P X'10' DLE

CLEAR

HOME X'71' q
a
X'51' Q X'll' DC1

LINE

LOCAL X'72' r X'52' R X'12' DC2

TERM X'73' s X'53' S X'13' DC3

~-- X' 77' w X' S7' W X' 17' ETB

—+ X' 7 8' x X' 5 8' X X' 18' CAN

T X'79' y X'59' Y X'19' EM

1 X' 7A' z X' 5A' Z X' lA' SUB

The Cursor Up key becomes Scroll Up when shifted.

The Cursor Down key becomes Scroll Down when shifted.

Note: All codes are preceded by X'16'.

Interactive Devices RM13A-13

2.3 Keyboard LED Display

The keyboard LED display will recognize and display the following ASCII

characters

!"#$%&'()*+,—./0123456789:;

? ~a ABCDEFGHI JKLMNOPQRSTLPJWXYZ [] ~—

In addition to the above characters, CTRL E, CTRL G, CTRL V,
BACKSPACE, DEL, RE , space, and lowercase alphabetic characters

are recognized.

Lowercase alphabetic characters are converted to uppercase and displayed.

CTRL E causes the keyboard to send the following message to the PS 390:

KBxxxD

where xxx is the PROM version number in the keyboard.

CTRL G generate s a bell tone . CTRL V, BACKSPACE, DEL, and RE
are used as described below. All other characters are ignored.

2.4 Keyboard Display Modes

The keyboard display operates in two modes:

• Line mode

• Function key label mode

2.4.1 Line Mode

In line mode, the LEDs fill from left to right as characters for display are
received. Aleft-justified line up to 96 characters long (including spaces) can
be displayed.

The DEL and BACKSPACE characters are processed only in line mode.
The BACKSPACE character causes the entire display to logically move left
one LED display position. The DEL character causes the most recently
entered character to be deleted.

All data transmitted to the LEDs for display in line mode must be termi-
nated with a RE character. After a RETLTIZN character is entered, the
display is cleared when the next valid character is received. The received
character is output to the leftmost LED character, and the LEDs are filled
left to right as before.

RM13A-14 Reference Materials

2.4.2 Function Key Label 1Vlode

Function key label mode is used to provide a descriptive label for each
function key. The data input to the keyboard for this purpose must conform
to the following format:

X' 16' Label Parameter Byte 0 to 8 Characters RETURN

The label parameter byte specifies blinking, left justification, and label
number; its format is as follows:

Not Used

Blink Label

Left Justify Bit
Label_Number

Note

Label values 0-11 correspond to function key numbers
1-12.

When the blink label bit is 1, the characters in the label location (~ - 11)
specified in bits 0-3 blinks. When this bit is 0, the segment does not blink.
To blink or unblink an existing label, it is only necessary to send X' 16' , the
label parameter byte, and a RETURN.

When the left justify bit is 1, the function key label is left-justified in the
specified label location; spaces are placed in any unused characters. When
this bit is 0, the label is automatically centered in the segment location.

The "0 to 8 Characters" specified in the above label format constitute actual
ASCII characters to display. The RETURN is a required terminator that
must appear following each LED label string.

Interactive Devices RM13A-1 S

To describe function key label mode, examples of function key labels and
the data required to produce and modify them are provided below.

1. To center an "unblinking" label X AXIS over key F6 the following
hexadecimal string is used:

Byte Meaning

X'16' CTRL V

X'05' Don't Blink;

Center; use Segment 5

X' S 8' X

X'20' Space

X' 41' A

X' 5 8' X

X' 49' I

X'53' S

X'OD' RETURN

2. To make the existing label blink, the following hexadecimal string is
used:

Byte Meaning

X'16' CTRL V

X'25' Blink;

Center; use

Segment 5

X'OD' RETURN

3. The following hexadecimal string is used to "unblink" the existing
label:

Byte Meaning

X'16' CTRL V

X'05' Don't Blink;

Center; use

Segment 5

X'OD' RETURN

RM13A-16 Reference Materials

4. To code the label Y TRANS for presentation over key F12 with the
label left-justified and blinking, use the following hexadecimal string:

Byte Meaning

X'16' CTRL V

X' 3B' Blink; Left- justify;

Use Segment 11

X' S 9' Y

X'20' Space

X'54' T

X'52' R

X'41' A

X'4E' N

X'53' S

X'OD' RETURN

3. Control Dials Unit

The control dials unit is a modular interactive device that is microprocessor
controlled. Power, ground, and communication lines are routed through a
modular phone cord from the peripheral multiplexer to the control dials
interface card. It uses a single, eight-conductor flexible interface cable with
lacking modular plugs. The dials are used to communicate dynamic,
incrementing, and decrementing data to the PS 390. There is an effective
resolution of 1024 counts per turn.

3.1 Operating Modes

The control dials unit operates in the following modes.

• Message

The control dials unit outputs rotational values in message mode
only when enabled to do so by a setup command from the JCP.
Each dial is individually programmable. The message mode may
be entered any time after initial power-up and is entirely under the
control of the PS 390.

• LED Label Mode

This mode allows each eight-character LED label to be individually
defined.

Interactive Devices RM13A-17

3.2 Operation

The control dials unit outputs pulses when any of the dials are turned. From
the pulses, the control dials interface determines:

• Which dial is being turned.

• What direction the dial is turning.

• How far the dial is rotated. Dial position is evaluated in terms of the
number of changes of delta.

After the control dials interface analyzes dial motion, rotational information
is transmitted to the JCP. The following paragraphs describe data formats
and codes exchanged in dial and LED display operation.

Two messages set up the operating mode for the control dials unit. One
command specifies the minimum rotation count delta required before a
sample is output to the PS 390, and the other command specifies the maxi-
mum rate at which the control dials unit sends a new delta update to the
PS 390. The control dials unit outputs relative delta values only; that is, the
position of each dial is reported in terms of its last sampled location. These
inputs can come from the initial function instance DSETI...DSET8, and
must be done before any output can occur after power-up.

The message to specify the rotation count delta for a particular control dial
consists of the following four-byte sequence:

X' 16' Control Byte MSB LSB

The control byte specifies the dial number in the following format:

1xOxxnnn

where the n's specify the dial number between 000 and 111 (0 - 7.), and the
x's may be either zero or one.

The most significant byte (MSB) and least significant byte (LSB) together
specify the 16-bit delta value. This number may be any value between 1 and
65535; use of negative or zero values is not recommended.

RM13A-18 Reference Materials

The message that specifies the maximum update in seconds is in the
following four-byte format:

X' 16' Control byte Reserved

The control byte is in the following format:

lxlxxxxx

Time Count

where all x's may be either zero or one. This means that the specified
maximum update applies to all dials.

The next byte is reserved for possible future use.

The final byte consists of a binary number that specifies the sample time
value. The following sample times are available:

Hex Decimal Updates/Sec.
05 5 60
OA 10 30
lE 30 10

3.2.1 Dial Setup Programming Examples

To specify a maximum update rate of 10 updates per second:

Byte Meaning
X'16' CTRL V

X'90' Setup maximum update rate

X'00' Reserved byte

X'lE' 10 updates per second

(decimal 30)

To set dial four for the minimum rotation count delta required before a
sample is output:

Byte Meaning
X'16' CTRL V

X'84' Setup Dial 4

X'00' Delta MSB

X'06' Delta LSB

Interactive Devices RM13A-19

The data format that is output from the control dials unit takes the following
form:

X'16' Dial Number Sample MSB Sample LSB

3.3 LED Display Operation

The control dials unit has eight 8-character LED displays. Each display
functions as a label for a dial. The LED displays are much like those on the
keyboard, displaying the same characters and responding to the same codes.
The control dials unit LEDs operate in label (segment) mode. That is, each
display is separately programmed and functions independently of the other
LEDs.

The LED label message format is as follows:

X' 16' Control Byte 0 to 8 Characters

The X' 16' character indicates the beginning of a command string. The
control byte specifies blinking, left justification, and LED label number.

Not Used

Blink Label

Left Justify Bit

Label Number

5

The control byte format is as follows:

• Bit 7 in the control byte is always 0.

• Bit 6 is not used.

When the blink label bit (bit 5) is 1, the label blinks. When this bit is 0, the
label does not blink.

When the left justify bit (bit 4) is 1, the label is left-justified in the specified
label location. When this bit is 0, the label is automatically centered in the
label location.

RM13A-20 Reference Materials

The label number bits (bits 3-0) specify the LED label location (0-7).

The "0 to 8 characters" are the ASCII characters to be displayed on the
selected LED label. If there is no label message (character count = 0), then
the current message in the LED label is set up according to the values of bit
5 in the control byte (that is, the LED will blink or not blink).

4. Function Buttons Unit

The function buttons unit gives an expanded capability for program
selection, providing 32 programmable function buttons in addition to the 12
function keys on the keyboard. Power and communications for the function
buttons unit are provided through a single modular phone cord that
connects to the peripheral multiplexer. The function buttons are lighted by
incandescent bulbs. As with the function keys on the keyboard, pressing a
function button results in auser-specified action.

The function buttons unit is arranged with one row of four buttons, four
rows of six buttons, and a f final row of four buttons . The buttons are num-
bered from left to right, beginning at the top row of four buttons, with the
first button labeled 0. Buttons can be programmed from the PS 390 to light
when activated and go out when not activated.

During operation, the function buttons respond to valid characters from the
PS 390 and send a character to the PS 390 if a button is pressed. Inputs to
the PS 390 from the function buttons unit are sent to the appropriate func-
tion network which determines the button functions. The activity of the
lights backing the buttons is determined by messages sent from the PS 390
to the function buttons unit.

4.1 Communications Protocol

During operation, the PS 390 and the function buttons unit use the commu-
nications protocol outlined below.

NOTE

The displayed messages (such as X' OS ~ , Ctrl E) in this
section show both the ASCII equivalent (X' OS ~) and
the actual character (Ctrl E) . When "KEY" is entered
as the actual character, it indicates the key entered by
the user.

Interactive Devices RM13A-21

Turn ON All Lights Message (From PS 390)

This message from the PS 390 turns ON all 32 lights in the function buttons

unit:

<S I>, X' 0 F' ,Ctrl O

Turn OFF All Lights Message (From PS 390)

This message from the FS 390 turns OFF all 32 lights in the function

buttons unit:

<S O>, X' 0 E' ,Ctrl N

Turn ON Light KEY Message (From PS 390)

This message from the PS 390 turns ON one of the 32 lights in the function

buttons unit (no other lights are affected):

(X'40'+ KEY)

The value chosen for KEY (which should be a hex number from [X' 00'] to
[X~1F~]) determines the specific light selected. If the designated light is
already ON, this message has no affect.

Turn OFF Light KEY Message (From PS 390)

This message from the PS 390 turns OFF one of the 32 lights in the func-
tion buttons unit (no other lights are affected):

(X'60'+ KEY)

The value chosen for KEY (which should be a hex number from [X' 00'] to
[X' 1F']) determines the specific light selected. If the designated light is
already OFF, this message has no affect.

Key Down, Light ON Message (From Buttons)

This message from the function buttons unit reports to the PS 390 that a
KEY has been pressed down and that the status of the light in that KEY is
ON:

(X'40'+ KEY)

The value of KEY should be a number (X' 00') to (X~ 1F~) corresponding to
one of the 32 keys in the function buttons unit.

RM13A-22 Reference Materials

Key Down, Light OFF Message (From Buttons)

This message from the function buttons unit reports to the PS 390 that a
KEY has been pressed down and that the status of the light in that KEY is
OFF:

(X' 6 0' + KEY)

The value of KEY should be a number (X'00') to (X~1F~) corresponding to
one of the 32 keys in the function buttons unit.

5. Data Tablet

There are two data tablets available for use with the PS 390. Both tablets
are identical for the PS 300 style and the PS 390 style interactive devices.
There is a 6-inch by 6-inch and a 12-inch by 12-inch tablet, each with a
four-button puck. Both are alike, except for their active areas, and both
provide digitizing and picking functions for the PS 390.

5.1 Operating Modes

Data tablet modes may be controlled externally under program control. The
following operating modes are available:

• Point mode

Pressing a puck button at a given tablet location causes one X,Y
coordinate pair (sample) to be transmitted.

• Stream mode

X,Y coordinate pairs are generated continuously at the selected
sampling rate when the puck is near the active area of the tablet.

• Switched stream mode

Pressing a button on the puck causes X,Y coordinate pairs to be
output continuously at the selected sampling rate until the button is
released.

Interactive Devices RM13A-23

Both the mode and the sampling rate may be changed under program con-
trol from the PS 390 by sending the data tablet an ASCII character.

Table 13A-9 lists the ASCII codes.

Table 13A-9. Binary Data Transmission Codes

Mode Binary Rate Uppercase ASCII Character

Stop - S
Point - P
Switched Stream 2 Cap

4 A
10 B
20 C
35 D
70 E
141 F
141 G

Stream 2 H
4 I
10 J
20 K

35 L
70 M
141 N
141 0

5.1.1 Binary Data Format

The binary formatted RS-232 interface is a five-byte count output. Binary
format is shown in Table 13A-10.

Table 13A-10. Data Tablet Binary Format

Byte Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
1 P 1 F3 F2 F1 FO 0 0
2 P 0 X5 X4 X3 X2 X1 XO
3 P 0 X11 X10 X9 X8 X7 X6
4 P 0 Y5 Y4 Y3 Y2 Y1 YO
5 P 0 Yll Y10 Y9 Y8 Y7 Y6

RM13A-24 Reference Materials

6. The Optical Mouse

The optical mouse transforms position information into a digital form
acceptable to the PS 390. The optical mouse uses athree-button mouse unit
in conjunction with a reflective pad to provide X- and Y-axis position
information.

The mouse uses LEDs reflecting off the pad to provide directional informa-
tion to the control logic in the mouse. This movement is then translated into
relative X and Y movement information. The data is transmitted serially to
the PS 390 through the peripheral multiplexer.

NOTE

The optical mouse pad must be oriented horizontally to
the user for proper mouse operation. Furthermore, the
mouse cord (tail) should lead away from the user.

6.1 Protocol

The mouse protocol is 9600 baud asynchronous serial with one start bit, one
stop bit, and eight data bits. The least significant data bit is transmitted
first. Blocks of five bytes are sent whenever there is a change of mouse state
(switches or position) since the last transmission. The protocol is as follows:

1. Byte 1: Bits 3 through 7 represent the sync for the start of the data
block with bit 7 = 1 and bits 3-6 = 0. Bits 0 through 2 define switch
status (0 switches the depressed state) . With the mouse oriented so
that the cord is facing away from the user, the right switch status is
indicated by bit 0, the middle switch status by bit 1, and the left
switch status is indicated by bit 2.

2. Byte 2: Bits 0 through 7 represent the incremental change in the
X-direction since the last complete report up to the time Byte 1 starts
transmission. The data is in the two's complement form and has a
value limit of +/- 127. With the mouse cord facing away from the
user, moving the mouse to the right produces positive X values and
moving the mouse to the left produces negative X values.

Interactive Devices R1V113A-25

3. Byte 3: Bits 0 through 7 represent the incremental change in the
Y-direction since the last complete report up to the time Byte 1 starts
transmission. The data is in the two's complement form and has a
value limit of +/- 127. Moving the mouse towards its mouse cord
produces positive X values and moving the mouse away from its cord
produces negative Y values.

4. Byte 4: Bits 0 through 7 follow the same format as Byte 2 and repre-
sent the data acquired since the beginning of Byte 1 transmission.

5. Byte 5: Bits 0 through 7 follow the same format as Byte 3 and repre-
sent the data acquired since the beginning of Byte 4 transmission.

Table 13A-11. Mouse Bit Protocol

MSB LSB
Bit No. 7 6 5 4 3 2 1 0

Byte 1 1 0 0 0 0 L M R

Byte 2 X7 X6 X5 X4 X3 X2 Xl XO

Byte 3 Y7 Y6 Y5 Y4 Y3 Y2 Yl YO

Byte 4 X7 X6 X5 X4 X3 X2 Xl XO

Byte 5 Y7 Y6 Y5 Y4 Y3 Y2 Yl YO

RM13A-26 Reference Materials

RM13B. IN1'~;RACTIVE DEVICES

PS 390 ST'PLE

coNTENTs

1. THE PERIPHERAL MULTIPLEXER 1

1.1 Functional Characteristics 2
1.2 Data Framing and Transmission Rates 3

2. THE PS 390 KEYBOARD 3

2.1 Interface Cable 5
2.2 Keyboard Operation 5
2.2.1 Data Entry 5
2.2.2 Keyboard Function Control Keys 6
2.2.3 Alphabetic Keys 7
2.2.4 Standard Numeric Keys 9
2.2.5 Special Character Keys 10
2.2.6 Terminal Function Keys 11
2.2.7 PS 390 Function Keys 12
2.2.8 Numeric/Application Mode Keys 13
2.2.9 Device Control Keys 14

3. THE CONTROL DIALS 15

3.1 Control Dial Responses 15
3.2 Commands to the Control Dials 16
3.3 Transmission Characteristics 16

4. THE 32-KEY LIGHTED FUNCTION BUTTONS 16

4.1 Light Control 17
4.2 Reporting Selections 18
4.3 Self Test Command and Report 18
4.4 Transmission Characteristics 18

t

5. DATA TABLET 19

5.1 Operating Modes 19
5.1.1 Binary Data Format 20

6. THE OPTICAL MOUSE 21

6.1 Protocol 21

li

ILLUSTRATIONS

Figure 13B-1. Backside Connectors for the Peripheral Multiplexer 2
Figure 13B-2. Connectors for the PS 390 Style Interactive Devices 3
Figure 13B-3. The PS 390 Style Keyboard 4

TABLES

Table 13B-1. Interactive Device Transmission Rates 3
Table 13B-2. Alphabetic Key Codes 7
Table 13B-2. Alphabetic Key Codes (cont.) 8
Table 13B-3. Standard Numeric Keys Codes 9
Table 13B-4. Special Character Keys 10
Table 13B-5. Terminal Function Keys 11
Table 13B-6. PS 390 Function Key Codes 12
Table 13B-7. Numeric/Application Mode Key Codes 13
Table 13B-8. The Device Control Key Codes 14
Table 13B-9. Control Dial Response Data Format 15
Table 13B-10. Control Dial Command Data Format 16
Table 13B-11. Function Button Light Control Message Byte 17
Table 13B-12. Function Button Light Groups 17
Table 13B-13. Function Button Self Test Responses 18
Table 13B-14. Binary Data Transmission Codes 20
Table 13B-15. Data Tablet Binary Format 20
Table 13B-16. Mouse Bit Protocol 22

111

Section RM13B

Interactive Devices

PS 390 Style

Two sets of interactive devices are available with the PS 390: the PS 300-style
devices and the PS 390-style devices. The interactive devices from the two styles
cannot be mixed with the exception of the data tablets, and the optical mouse,
which are common to both styles.

The PS 390-style interactive devices include:

• Keyboard without LEDs

• Control dials unit without LEDs

• Function buttons unit

• Data tablet (6x6 or 12x12) with puck

• Optical mouse

The light pen is not supported on the PS 390.

The PS 390 interfaces with the interactive devices through the peripheral
multiplexer which supplies the power to the interactive devices and serves as their
input/output path to the PS 390. The peripheral multiplexer combines the signals
from the interactive devices and transmits them to the PS 390.

This section describes the PS 390-style interactive devices and peripheral
multiplexer. Section RM~3A describes the PS 300-style interactive devices and
peripheral multiplexer.

1. The Peripheral Multiplexer

The peripheral multiplexer serves as the connection point between the
PS 390 system and the interactive devices. It provides power to the
interactive devices and combines their signals and transmits them to the
PS 390. It also routes any signals which the the system may send back to

the appropriate interactive device.

Interactive Devices RM13B-1

The peripheral multiplexer is housed in a metal box which fits beneath the

raster display pedestal. The interactive devices connect to the five connec-

tors on the front of the multiplexer. Each connector is uniquely dedicated to

a specific interactive device.

The peripheral multiplexer provides programmed logic which allows the

data from the interactive devices to be multiplexed over a single RS-232C

line into the controller via Port 5 on the rear of the PS 390.

1.1 Functional Characteristics

The peripheral multiplexer consists of a circuit card which is connected to
five input ports and one output port. The five input ports support the
following interactive devices:

. Keyboard

• Control dials unit

Function buttons unit

• Data tablet (6 by 6 or 12 by 12) with puck

• Optical mouse

Figure 13B-1 shows the backside connectors and plugs for the peripheral
multiplexer. Figure 13B-2 shows the peripheral connections for the
PS 390-style peripheral set.

\ONTROLLER

I

I

I I

I 1
 I

1

90-130/180-250v-
2A MAX 6/3A 47-63Hz /~

O ~ O O
~ ~ O

Figure 13B-1. Backside Connectors for the Peripheral Mccltiplexer

RM13B-2 Reference Materials

III •• • • • • • • • • • • •

~ •~.•

MOUSE BUTTONS DIALS KEYBOARD TABLET POWER

Figure 13B-2. Connectors for the PS 390 Style Interactive Devices

1.2 Data Framing and Transmission Rates

The data sent to and from the peripheral multiplexer is asynchronous data
with each byte containing eight data bits with no parity, one start bit and
one stop bit. The data transmission rate of the peripheral multiplexer to and
from the PS 390 is 19,200 baud. The transmission rates between the inter-
active devices and the peripheral multiplexer are shown in Table 13B-1.

Table 13B-1. Interactive Device Transmission Rates

Device

Keyboard Port x'Bl'

Control Dials Port x'B2'

32 Func. Buttons Port x'B3'

Mouse Port x'B4'

Data Tablet Port x'B6'

Baud Rate

1200 Baud

9600 Baud

9600 Baud

9600 Baud

9600 Baud

2. The PS 390 Keyboard

The PS 390 Keyboard's main function is to generate and transmit ASCII
displayable characters, ASCII control characters, and PS 390 system
sequences.

The PS 390 keyboard must plug into the peripheral multiplexer which sup-
ports the PS 390 peripheral set.

The keyboard measures 19.76 inches (50.19 cm) long by 8.26 inches (20.98
cm) deep. The keyboard stands 1.40 inches (3.56 cm) high on four rubber

pads.

Interactive Devices RM13B-3

 i~

a

 r~

'

 i

w

r

W

~ I ~d ~ ~./

C7 ~ ~ a
♦ ~t l -

N E

a

to ~ a ~ OO
~ ~ ~ -- ~ E

 r ~~ ~,

~

~.

~ ~

m
d

J

N

1
ti

d

r

f

r

O

r

t

V

W

ti

i

v

a

N

m

N

1

ti

'\ 1 ~

.-.

a

~~

1 ~

W

1 .
~ l

t

~ i
.. ..

J

ti

I

Y

l

L

U

~ 1 ~ 1►

r
r ti

"~

1

~ r

L

N
r~

r

1

n.

 I

S

N

l

l

t

m

ti

Figure 138-3. The PS 390 Style Keyboard

RM13B-4 Reference Materials

2.1 Interface Cable

The Interface Cable is a 5-conductor, flexible cable with a shielded DIN
plug which connects the PS 390 Keyboard to the front of the Peripheral
Multiplexer. The cable may be stretched to permit many different work
station arrangements.

2.2 Keyboard Operation

The PS 390 Keyboard allows the operator to input ASCII characters and
other sequences to the Joint Control Processor by means of a typewriter-
like keyboard. Keyboard operation is discussed in detail in the following
paragraphs.

2.2.1 Data Entry

The keys fall into eight general categories:

• Keyboard Function Control

• Alphabetic

• Standard Numeric

• Special Character

• Terminal Function

• PS 390 Function

• Numeric/Application Mode

• PS 390 Device Control

NOTE

When instructions are given to press two or more keys
simultaneously, the key sequence will be shown in ital-
ics. For example, CTRL V means that the CTRL and V
keys are pressed simultaneously.

The following is a detailed description of the eight general key categories.

Interactive Devices RM13B-S

2.2.2 Keyboard Function Control Keys

The Keyboard Function Control keys are unencoded, local controls. No
codes are transmitted when these keys are pressed individually or in combi-
nation with each other.

The Keyboard Function Control keys are as follows:

• Shift Key (2)

• CTRL (Control) Key

The Keyboard Function Control keys are used to modify the codes transmit-
ted by other keys, as follows:

• When either SHIFT key is pressed simultaneously with a displayable
character key, the uppercase code for that key is generated. If the
key does not have an uppercase function, the SHIFT key is ignored.
For example, striking the A key causes the code B' 01100001 ~ for the
character a to be transmitted; the sequence SHIFT A causes the code
B' 01000001 ~ for the character A to be transmitted. Note that bit 6 is
forced low to define an uppercase character.

• When CTRL is pressed simultaneously with one of keys A-Z (upper-
case only) , the space bar, or the Special Character keys , [,] , ~ , , or
?, an ASCII control code is generated. For example, the CTRL Z
keyboard sequence causes the code B' 00011010' to be generated.
Note that the only difference between this code and that for Z (B'O10
11010') is that bit 7 is forced low to define the control code.

When the SHIFT and CTRL keys are pressed simultaneously, the CTRL
function is selected in most cases. The only exceptions occur with the N and
/ keys. SHIFT CTRL ~ causes the control character RS (B' 00011110 ~) to be
transmitted. SHIFT CTRL /causes the control character US (B' 00011111 ~)
to be transmitted. The auto-repeat feature is enabled on all keys except:
F 1 - F 12 , SETUP, GRAPH, HOST, CI~iINND, LOCAL, TERM, LOCK, CTRL,
SHIFT (both keys), RETURN, and all numeric pad keys. When any other
key is held down, repeated character transmission occurs. The rate is 15 +/-
2 H~.

Pressing the LOCK key enables the "shift lock" function. This is a shift
operation that applies to all keys. Pressing either of the two shift keys
causes the "shift lock" mode to be disabled.

RM13B-6 Reference Materials

2.2.3 Alphabetic Keys

The Alphabetic Keys are used to produce uppercase and lowercase ASCII
displayable character codes and ASCII control codes. Table 13B-2 shows
the code and character produced when each key is pressed alone, with the
SHIFT key, or with the CTRL key.

Table 138-2. Alphabetic Key Codes

Key
Label

Key Alone SHIFT---Key CTRL -f-Key
Code ~ Char Code i Char Code Char

A X'61'
97

a X'41'
65

A X'01'
1

SOH

B X'62'
98

b X'42'
66

B X'02'
2

STX

C X'63'
99

c X'43'
67

C X'03'
3

ETX

D X'64'
100

d X'44'
68

D X'04'
4

EOT

E X'65'
101

e X'45'
69

E X'45'
5

ENQ

F X'66'
102

f X'46'
70

F X'06'
6

ACK

G X'67'
103

g X'47'
71

G X'07'
7

BEL

H X'68'
104

h X'48'
72

H X'os'
8

BS

I X'69'
105

i X'49'
73

I X'09'
9

HT

J X'6A'
106

j X'4A'
74

J X'OA'
10

LF

K X'6B'
107

k X'4B'
75

K ~ X'oB'
11

vT

L X'6C'
108

1 X'4C'
76

L X'OC'
12

F F

M X'6D'
109

m X'4D'
77

M X'OD'
13

CR

N X'6E'
110

n X'4E'
78

N X'OE'
14

SO

Interactive Devices RM13B- 7

Table 13B-2. Alphabetic Key Codes (cont.)

Key
Label

Key Alone SHIFT-f Key CTRL -f-Key
Code Char ~ Code Char Code Char

O X'6F'
111

o X'4F'
79

O X'OF'
15

SI

P X'7o'
112

p X'50'
80

P X' lo'
16

DLE

Q X' 71'

113

q X' 51'

81

Q X' 11'

17

D C 1

R X'72'
114

r X'52'
82

R X' 12'
18

DC2

S X'73'
115

s X'53'
83

S X'13'
19

DC3

T X' 7 4'
116

t X' S 4'
84

T X' 14'
20

D C 4

U X'75'
117

u X'55'
85

U X' 15'
21

NAK

V X'76'
118

v X'56'
86

V X' 16'
22

SYN

W X'77'
119

w X'57'
87

W X' 17'
23

ETB

X X'78'
120

x X'58'
88

X X'18'
24

CAN

Y X' 79'
121

y X' 59'
89

Y X' 19'
25

EM

Z X' 7A'
122

z X' 5A'
90

Z X' 1 A'
26

SUB

RM13B-8 Reference Materials

2.2.4 Standard Numeric Keys

The shiftable Standard Numeric keys are similar to the shiftable numeric/
symbol keys that appear on a typewriter; they generate ASCII displayable
numbers and symbols. The CTRL key is ignored when used with these keys.
Table 13B-3 shows the code and character produced when each key is
pressed alone, with the SHIFT key, or with the CTRL key.

Table 138-3. Standard Numeric Keys Codes

Key
Label

Key Alone SI~I~'T-f Key CTRL-f Key
Code Char Code Char Code Char

0 X'30'
48

0 X'29'
41

) X'30'
48

0

1 X' 31'
49

1 X' 21'
33

! X' 31'
49

1

2 X'32'
50

2 X'40'
64

@ X'32'
50

2

3 X'33'
51

3 X'23'
35

~ X'33'
51

3

4 ~ X'34'
52

4 X'24'
36

$ X'34'
52

4

5 X'35'
53

5 X'25'
37

°J X'35'
53

S

6 X' 36'
54

6 X' 5E'
94

n X' 36'
54

6

7 X'37'
55

7 X'26'
38

& X'37'
55

7

8 X'38'
56

8 X'2A'
42

* X'38'
56

8

9 X' 39'
57

9 X' 28'
40

(X' 39'
57

9

Interactive Devices RM13B- 9

2.2.5 Special Character Keys

The shiftable Special Character keys are used to produce both ASCII

displayable characters and ASCII control characters. Table 13B-4 shows the

. codes and characters produced when these keys are activated alone, with

the SHIFT key, and with the CTRL key. Note the varying response given to

the CTRL key; in some instances, the unshifted key character is produced.
In other cases, a control character is generated.

Table 13B-4. Special Character Keys

Key
Label

Key Alone SHIFT-f Key CTRL- fKey
Code Char Code Char Code Char _

_
-

X'2D'
45

_
-

(minus
X'SF'
95

_

(underline

__
X'2D'
45

-
(minus

-}-

=
X' 3 D'

61 =
X' 2 B'

43 ~-
X' 3 D'

61 =
X'60'
96 ~

X' 7 E'
126

X' 1 E'
30 RS

{
[

X' 5 B'
91 [

X' 7 B'
123 {

X' 1 B'
27 ESC

} X'5D'
93 ~

X'7D'
125 }

X'1D'
29 GS

X' 5 C'
92 ~

X' 7 C'
124 ~

X' 1 C'
28 FS

X'3B'
59

X'3A'
58

X'3B'
59 ;

"
'

X'27'
39

X'22'
34

X'27'
39 '

< X'2C'
44

X'3C'
60 <

X'2C'
44 ,

> X'2E'
46

~ X'3E'
62 >

X'2E'
46

1

?
/

X'2F'
47 /

X'3F'
63 ?

X'1F'
31 US

>
<

X'3C'
60 <

X'3E'
62 >

X'3C'
60 <

RM13B-10 Reference Materials

2.2.6 Terminal Function Keys

The Terminal Function keys in produce codes used by a typical video dis-
play terminal. These keys enable an operator to generate any commonly
used terminal control character with a single keystroke. (The codes pro-
duced by these keys are identical to those generated by the conventional
two-key control sequences.)

Note that the SHIFT and CTRL keys have no effect on the codes produced
by the Terminal Function keys, except for the CTRL Space Bar sequence
that generates an ASCII NUL character.

Table 13B-5 lists the codes and characters generated by the Terminal
Function keys .

Table 13B-S. Terminal Function Keys

Key
Label

Key Alone SHIFT-~-Key CTRL-Key
Code Char Code Char Code Char

BREAK
X' AO'
160

X' AO'
160

X' AO'
160

SCROLL
LOCK

X'9F'
159

X'9F'
159

X'9F'
159

BACK
SPACE

X'08'
8 BS

X'08'
8 BS

X'08'
8 BS

DELETE
X'7F'
127 DEL

X'7F'
127 DEL

X'7F'
127 DEL

RETURN
X'OD'
13 CR

X'OD'
13 CR

X'OD'
13 CR

LINE
FEED

X'oA'
10 LF

X'OA'
10 LF

X'oA'
10 LF

ESC
X'1B'
27 ESC

X'1B'
27 ESC

X'1B'
27 ESC

TAB
x'o9'
9 HT

x'o9'
9 HT

x'o9'
9 HT

(none;
space bar)

X'20'
32 (space

X'20'
32 (space

X'00'
0 NUL

Interactive Devices RM13B-11

2.2.7 PS 390 Function Keys

The PS 390 Function Keys are used to transmit special 2-byte system
sequences. Table 13B-6 shows the the codes for these keys.

Table 138-6. PS 390 Function Key Codes

Key
Label

Key Alone SHIFT-f--Key CTRL-f Key
Code Code Code

F 1 X'1661 X'1641' X'1601'

F2 X'1662 X'1642' X'1602'

F3 X' 1663' X' 1643' X' 1603'

F 4 X' 1664' X' 1644' X' 1604'

F 5 X' 1665' X' 1645' X' 1605'

F6 X' 1666' X' 1646' X' 1606'

F 7 X' 1667' X' 1647' X' 1607'

F8 X'1668' X'1648' X'1608'

F9 X' 1669' X' 1649' X' 1609'

F 10 X' 166A' X' 164A' X' 160A'

F 11 X' 166B' X' 164B' X' 160B'

F 12 X' 166C' X' 164C' X' 160C'

RM13B-12 Reference Materials

2.2.8 Numeric/Application Mode Keys

The numeric application mode keys generate special 2-byte PS 390 system
sequences similar to those produced by the PS 390 Function keys.

Note that neither SHIFT nor CTRL affects the ENTER key, and that no
codes are modified by the CTRL key.

Any code generated by a Numeric/Application Mode key may be duplicated
by entering CTRL SHIFT V, followed by the appropriate displayable charac-
ter or control character.

Table 13B-7 illustrates the codes and characters produced by the Numeric/
Application Mode keys.

Table 138-7. 1Vumeric/Application Mode Key Codes

Key
Label

Key Alone SHIFT-f Key CTRL--f-Key
Code Char Code Char Code Char

0 X' 1630' X' 1629'
_ _

X' 163U'
1 X' 1631' X' 1621' X' 1673'
2 X' 1632' X' 1640' X' 1644'
3 X' 1633' X' 1623' X' 1633'
4 X' 1634' X' 1624' X' 1670'
5 X' 1635' X' 1625' X' 166F'
6 X' 1636' X' 165 E' X' 1636'
7 X' 1637' X' 1626' X' 1652'
8 X' 1638' X' 162A' X' 1612'
9 X' 1639' X' 1628' X' 1639'

X' 16 2 E' X' 16 3 E' > X' 16 2 E'
X'162C' X'163C' < X'162C' ,
X' 162D' (minus X' 165F' (underline X' 162D'

ENTER X'160D' CR X'160D' CR X'160D' CR

Interactive Devices RM13B-13

2.2.9 Device Control Keys

The Device Control keys generate two-byte sequences similar to those de-

scribed in 2.2.7 and 2.2.8. The codes produced by these keys are modified

by SHIFT and CTRL as shown in Table 13B-8.

Any code generated by a Device Control key may also be produced by en-
tering CTRL SHIFT V, followed by the appropriate displayable character or
control character.

Table 13B-8. The Device Control Key Codes

Key
Label

Key Alone SHIFT f Key CTRL-f-Key
Code Code Code

1
TERM

_
X' 1631'

_
X' 1621' X' 1673'

2
NRMTST

X' 1632' X' 1640' X' 1644'

4
GRAPH

X' 1634' X' 1624' X' 1670'

5
SET UP

X' 163 5' X' 1625' X' 166F'

7
LOCAL

X' 1637' X' 1626' X' 1652'

8
CMND

X' 1638' X' 162A' X' 1612'

~--
X' 1677' X' 1657' X' 1617'

-->
X' 1678' X' 1658' X' 1618'

fi

X' 1679' X' 1659' X' 1619'

X' 167A' X' 165A' X' 161 A'

PF 1
HOST

X'A9' X'A9' X' 1672'

P F 2
5080

X'AA' X'AA' X' 1674'

The Cursor Up key becomes Scroll Up when shifted.
The Cursor Down key becomes Scroll Down when shifted.

RM13B-14 Reference Materials

3. The Control Dials

The Control Dials consist of an array of 8 shaft encoders arranged in a 2
column x 4 row design, with the number 1 dial being the upper left-hand
dial and the number 5 dial being the upper right-hand dial when the Dials
are situated in their vertical orientation. The Control Dials report to the
Joint Control Processor the number of counts rotated between sampling in-
tervals. The Joint Control Processor may specify the number of counts to be
accumulated between sampling intervals and may set a sampling time for
all the dials. (Default value for the Dials is 1024 counts per revolution at 4
count increments and 30 samples per second.)

3.1 Control Dial Responses

The Control Dials output relative delta values only. For example; each dial's
position is reported in terms of its last sample location. The data format
used to report the count is:

Table 13B-9. Control Dial Response Data Format

Byte Number Description

1

2

Control V = ~ 00010110

Byte = ~ OOOOOnnn~ ,

Where nnn is a binary number 000 thru 111 (0 thru
7 decimal which specifies the dial.)

3 Most significant byte of a 16-bit signed integer
(sign indicates direction).

4 Least significant byte of the 16-bit signed
integer (two's complement notation).

Interactive Devices RM13B-1 S

3.2 Commands to the Control Dials

The Control Dials must respond to two commands. The first is in the same
format as the response message except that the second byte is ~ 100xxnnn~
and no sign is legal on the 16-bit integer. It specifies the delta value which
must be accumulated before the delta count is reported to the host (meaning
how many counts between reports).

The second command is formatted as follows and applies a sampling time
to all the dials:

Table 13B-10. Control Dial Command Data Format

Byte Number Description

1 Control V = ~ 00010110
2 Control Byte = ~ 1 x 1 xxxxx ~ , (x=don't care)
3 Reserved unused byte.
4 Time count in binary,

Where x' OS ~ = 60 samples/second
Where x' OA' = 30 samples/second
Where x' lE' = 10 samples/second

This time indicates how often the Control Dials samples to see if sufficient
counts have been accumulated on any dial to respond to the processor.

3.3 Transmission Characteristics

The data sent to and from the Control Dials is asynchronous with each byte
containing eight data bits with no parity, one start bit and one stop bit. The
data transmission rate of the Control Dials is 9600 baud.

4. The 32-Key Lighted Function Buttons

The Lighted Function Buttons consists of an array of 32 lighted function
keys. The Joint Control Processor sends the message to the Function Button
Unit that lights the keys which are candidates to be selected to invoke spe-
cific program functions. The same message may also turn off some of the
lights which are already on. This cues the operator that he may select one of
the lighted keys by pressing the key. The Function Buttons Unit then sends a

RM13B-16 Reference Materials

message to the Joint Control Processor which indicates that a specific key
has been depressed. The software can then take actions) based upon the

key selection.

4.1 Light Control

The Function Button lights are logically grouped into eight groups of four
lights each. The lights of the box are turned on and of respectively by send-
ing amessage consisting of one to eight bytes to the unit. The four most

significant bits of each byte contains the identification number fora four-
light group; the four least significant bits contain a mask which turn on (if
the corresponding bit is set) or off (if the bit is clear) the light. This is
shown in Table 13B-11 where the Group Number is binary 0000 through
0111 and Light Mask 1's and 0's turn lights on and off.

7 6 5 4 3 2 1 0

Group Mask

Table 138-11. Function Button Light Control Message Byte

The Function Button Light Groups are defined in Table 13B-12.

Table 13B-12. Function Button Light Groups

Group Number Description

b'0000'

b'0001'

b' 0010'

b' 0011'

b'0100'

b'Olol'

b'0110'

b' 0111'

Group

Group

Group

Group

Group

Group

Group

Group

for

for

for

for

for

for

for

for

lights

lights

lights

lights

lights

lights

lights

lights

1 through 4

5 through 8

9 through 12

13 through 16

17 through 20

21 through 24

25 through 28

29 through 32

Interactive Devices RM13B-17

Any byte or combination of bytes may be sent in a message, depending on
which of the lights must be turned on or turned off. Turning all lights on,
turning all lights off or changing the state of at least one byte of each of the
eight groups requires an eight-byte message to be sent. Changing the state
of one to four lights in a single four-light group requires only cone-byte
message to be sent.

4.2 Reporting Selections

The Function Button Unit reports that a key has been pressed by sending a
single byte to the Joint Control Processor. The value of the byte is given by
adding the hexadecimal value of the key number to the hexadecimal value
x ~ 3F ~ . Thus the first sixteen keys are numbered x ~ 40 ~ to x ~ 4F ~ and the
second group of sixteen keys are numbered x' S0 ~ to x' SF' . Only one key
depression per message is reported.

4.3 Self Test Command and Report

The Function Buttons Unit has aself-test command and report that is used
for diagnostics and optionally for initialization confidence tests. The com-
mand is a single byte: x~ 80~ . The response is ~a four-byte sequence as
shown in Table 13B-13 .

Table 13B-13. Function Button Self Test Responses

Byte 1 64H, Hardware ID for the Button Box.

Byte Z xxH, where xx is the firmware revision level. This should
begin with O 1 H.

Byte 3 OOH if ROM and R.~~M test successful and 3EH if ROM or
R.~~M test failed, (R.AM and ROM refer to processor chip),
or 3DH if key down on Self Test (3E supersedes 3D)

Byte 4 OOH on successful test, or xxH, where xx is code of
keydown at Self Test.

4.4 Transmission Characteristics

The data sent to and from the Function Buttons Unit is asynchronous data
with each byte containing eight data bits without parity plus one start bit
and one stop bit. The data transmission rate of the Buttons box is 9600
baud .

RM13B-18 Reference Materials

5. Data Tablet

There are two data tablets available for use with the PS 390. Both tablets
are identical for the PS 300 style and the PS 390 style interactive devices.
There is a 6-inch by 6-inch and a 12-inch by 12-inch tablet, each with a
four-button puck. Both are alike, except for their active areas, and both
provide digitizing and picking functions for the PS 390.

5.1 Operating Modes

Data tablet modes may be controlled externally under program control. The
following operating modes are available:

• Point mode

Pressing a puck button at a given tablet location causes one X,Y
coordinate pair (sample) to be transmitted.

• Stream mode

X,Y coordinate pairs are generated continuously at the selected
sampling rate when the puck is near the active area of the tablet.

• Switched stream mode

Pressing a button on the puck causes X,Y coordinate pairs to be
output continuously at the selected sampling rate until the button is
released.

Both the mode and the sampling rate may be changed under program con-
trol from the PS 390 by sending the data tablet an ASCII character.
Table 13B-14 lists the ASCII codes.

Interactive Devices RM13B-19

Table 138-14. Binary Data Transmission Codes

Mode Binary Rate Uppercase ASCII Character

Stop - S

Point - P

Switched Stream 2 ~

4 A

10 B

20 C

35 D

70 E

141 F

141 G

Stream 2 H

4 I

10 J

20 K

35 L

70 M

141 N

141 0

5.1.1 Binary Data Format

The binary formatted RS-232 interface is a five-byte count output. Binary
format is shown in Table 13B-15 .

Table 138-1 S. Data Tablet Binary Format

Byte Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
1 P 1 F3 F2 F1 FO 0 0
2 P 0 X5 X4 X3 X2 Xl XO
3 P 0 X11 X10 X9 X8 X7 X6
4 P 0 Y5 Y4 Y3 Y2 Yl YO
5 P 0 Y11 Y10 Y9 Y8 Y7 Y6

RM13B-20 Reference Materials

6. The Optical Mouse

The optical mouse transforms position information into a digital form
acceptable to the PS 390. The optical mouse uses athree-button mouse unit
in conjunction with a reflective pad to provide X- and Y-axis position
information.

The mouse uses LEDs reflecting off the pad to provide directional informa-
tion to the control logic in the mouse. This movement is then translated into
relative X and Y movement information. The data is transmitted serially to
the PS 390 through the peripheral multiplexer.

NOTE

The optical mouse pad must be oriented horizontally to
the user for proper mouse operation. Furthermore, the
mouse cord (tail) should lead away from the user.

6.1 Protocol

The mouse protocol is 9600 baud asynchronous serial with one start bit, one
stop bit, and eight data bits. The least significant data bit is transmitted
first. Blocks of five bytes are sent whenever there is a change of mouse state
(switches or position) since the last transmission. The protocol is as follows:

1. Byte 1: Bits 3 through 7 represent the sync for the start of the data
block with bit 7 = 1 and bits 3-6 = 0. Bits 0 through 2 define switch
status (0 switches the depressed state) . With the mouse oriented so
that the cord is facing away from the user, the right switch status is
indicated by bit 0, the middle switch status by bit 1, and the left
switch status is indicated by bit 2.

2. Byte 2: Bits 0 through 7 represent the incremental change in the
X-direction since the last complete report up to the time Byte 1 starts
transmission. The data is in the two's complement form and has a
value limit of +/- 127. With the mouse cord facing away from the
user, moving the mouse to the right produces positive X values and
moving the mouse to the left produces negative X values.

Interactive Devices RM13B-21

3. Byte 3: Bits 0 through 7 represent the incremental change in the
Y-direction since the last complete report up to the time Byte 1 starts
transmission. The data is in the two's complement form and has a
value limit of +/- 127. Moving the mouse towards its mouse cord
produces positive X values and moving the mouse away from its cord
produces negative Y values.

4. Byte 4: Bits 0 through 7 follow the same format as Byte 2 and repre-
sent the data acquired since the beginning of Byte 1 transmission.

5. Byte 5: Bits 0 through 7 follow the same format as Byte 3 and repre-
sent the data acquired since the beginning of Byte 4 transmission.

Table 138-16. Mouse Bit Protocol

MSB LSB

Bit No . 7 6 5 4 3 2 1 0

Byte 1 1 0 0 0 0 L M R

Byte 2 X7 X6 X5 X4 X3 X2 X1 XO

Byte 3 Y7 Y6 Y5 Y4 Y3 Y2 Yl YO

Byte 4 X7 X6 X5 X4 X3 X2 X1 XO

Byte 5 Y7 Y6 Y5 Y4 Y3 Y2 Yl YO

RM13B-22 Reference Materials

RM14. GSR INTERNALS

CONTENTS

1. DATA TYPES 2

1.1 Routing Functions 3
1.2 Data Formats for Data Types 7
1.3 Error. Formatting 11

2. COMMAND INTERPRETER DATA FORMAT 11

2.1 Data Format Analysis 11
2.1.1 Example —Character Rotate Command 12
2.1.2 Example —Connect Command 13
2.2 Data Formats 14

3. DESCRIPTION OF SIX-BIT BINARY DATA PROTOCOL
IN THE PS 390 60

3.1 Data Storage 60
3.2 Six-Bit Binary Data Encoding Method 60
3.3 Example of Encoding Binary Data 62

t

Section RM14

GSR Internals

This section describes the data formats expected by PS 390 command interpreter
(CI) and other intrinsic functions. It provides you with the necessary information to
write your own GSRs.

NOTE

Information in this section is based on information in
other sections of this guide. Where helpful, information
will be duplicated here for clarity. Otherwise,
references will be given to other sections as necessary.

The first section discusses formats for the different data types. It is important to
note that data is received a byte at a time by the JCP. Therefore, where there is a
most significant bit (MSB) -least significant bit (LSB) specified, the MSB must be
sent first. Error formats and reset commands are also discussed. Reset commands
should be sent anytime there is an error detected during the sending of other com-
mands. Reset causes the CI to reset and begin command interpretation again. This
section also describes the intrinsic functions that internally receive, pass, and route
data.

The second section provides the data formats for each of the commands that can
be sent to the CI. The format shows the data type followed by the data that should
be sent. The data is expressed as a number, a Boolean value, an identifier or an
expression.

The final section provides the 6-bit binary encoding method that can be used by
the PS 390 for hosts that can't send binary data. This format uses 2D or 3D vector

normalized data as an example.

GSR Internals RM14-1

1. Data Types

This section gives the formats for different data types. Some of the data
types that can be passed internally in the PS 390 are defined below:

{o}
{1}

{2}

{3}

{4}

{5}

{6}

{7}

{8}

{9}

{10}

{11}

{12}

{13}

{14}

{15}

{ls}
{17}

{18}

{19}

{20}

Qreset,

Qprompt,

QBoolean,

Qinteger,

Qreal,

Qstring,

Qpacket,

Qmorepacket

Qmove2,

Qdraw2,

Qvec2,

Qmove3,

Qdraw3,

Qvec3,

Qmove4,

Qdraw4,

Qvec4,

Qmat2,

Qmat3,

Qmat4,

Qbindata

{21} Qusertype

);

{dataless: reset a function instance}

{dataless: flush the CI pipeline}

{normal carrier of Boolean values}

{normal carrier of integer values}

{normal carrier of floating point values}

{original carrier of byte strings, not used}

{carrier of byte strings}

{continuation Qpacket carrier of byte strings}
{2D vector including P bit}

vector including L bit}

vector

vector

vector

vector

vector

vector

vector

with no P/L bit (normal

including P bit}

including L bit}

with no P/L bit (normal

including P bit}

including L bit}

with no P/L bit (normal

matrix}

{3x3 matrix}

{4x4 matrix}

{definition of binary data (data part of vector
list) }

{type that user may use to define own message}

vector)}

vector)}

vector)}

{2D

{2D

{3D

{3D

{3D

{4D

{4D

{4D

{2x2

Qdtype is padded with 260 miscellaneous elements to ensure that a 16-bit
field is allocated by the Pascal compiler rather than the 8-bit field that
would be allocated otherwise.

The Qdtype is used to specify the different types of Qdata message blocks
available in the PS 390 runtime system. Qdata blocks are the primary
vehicle for communication in the PS 390. When a Qdata message is input to
a function, it checks to see if it is a valid message type (Qdtype). When a
message is output by a function, it carves a Qdata message of the
appropriate type and outputs it.

RM14-2 Reference Materials

The CI expects tokens that consist of a size, a data type, and a value. Once
given, the type of command is implicit in the type of the token, such as
"Qsetcontrast" for "Set Contrast." The CI accepts tokens until it has enough
to carry out a command.

1.1. Routing Functions

Data is sent from the host to the PS 390 as a stream of bytes. The bytes
contain information that tells the PS 390 intrinsic functions the nature of the
message and where it is to be sent internally. The following is a list of the
data transfer modes used in host/PS 390 communication and a brief de-
scription of the intrinsic functions that accept, examine, and route data in-
ternally in the PS 390.

F:DEPACKET

An intrinsic user function, F:DEPACKET, accepts data (input to the PS 390
from the host) from receiving functions (B1$, etc.). F:DEPACKET converts
a stream of bytes from the host into a stream of Qpacket/Qmorepacket. A
Qpacket is a block of character data that can be sent from one PS 390
function to another. When data comes from the host through the
F:DEPACKET function, it contains a byte for routing control. A
Qmorepacket is a Qpacket that when coming from the host through
F:DEPACKET, has no routing byte. A Qmorepacket has the same
destination as the previous Qpacket.

(F:DEPACKET}

Qpacket ►

Qpacket ►

Qinteger ►

Qpacket ►

Qinteger ►

<1>

<2>

<3>

<4>

<5>

DEPACKETO
(count mode}

<1> —► Qpacket,
Qmorepacket

► Qpacket,
Qmorepacket
(between packets}

<2>

GSR Internals RM14-3

In count mode, F:DEPACKET assumes that a packet is defined as:

<SOP> count bytes packet contents

where <SOP> represents the Start of Packet (SOP) character that is by de-
fault the the ASCII ACK character, decimal character code 06 ("F).

The definition of SOP (one character) is taken from a single character
Qpacket on input <2>.

The message count is defined by n bytes (n defined by the Qinteger on
input <3>). Each count byte is offset from the base character (the base
character is taken from a single character Qpacket on input <4>). After the
base character is subtracted, each count byte becomes a digit of the mes-
sage count whose radix is defined by the Qinteger on input <5>.

Output <1> outputs Qpackets and Qmorepackets of count mode messages.
Output <2> outputs Qpackets and Qmorepackets of any messages which are
not in count mode.

The <SOP> byte and the count bytes are removed from the start of the
packet before the packet is sent to F:CIROUTE, which does the actual
routing.

F:CIROUTE(n)

Once data has passed through an instance of F:DEPACKET, the next func-
tion to receive it is F:CIROUTE(n) . F:CIROUTE(n) has two instances, one
for count mode and one for escape mode. Count and escape mode are
functionally similar; therefore, only the count mode instance, CIROUTEO,
will be described. CIROUTEO examines the first character of the Qpackets
it receives (the character following the count bytes in count mode, or the
character following the <FS> character in escape mode) to determine where
the packet message is to be sent. These characters are routing bytes, and
are used to select the appropriate channel for data in the PS 390.

RM14-4 Reference Materials

Data channels include lines to:

Terminal emulator

. PS 390 CI (through F:READSTREAM for binary packets)

Disk writing function

• Other intrinsic functions

A base character, defined on Input <2> of CIR~UTEO, is subtracted from
this routing byte before it is used to select the output channel. The base
character defaults to the character zero ("0").

F:CIROUTE (n}

Qpacket - ► <1>
Qmorepacket
Qreset

Qstring ►► <2>C

Qprompt ► <3>C
Qreset

Qinteger ► <4>

(CIROUTEO)
(CIROUTE20}

<1>

<2>

<n>

 ►Qinteger

 ►Qpacket, Qmorepacket

 ►Qpacket, Qmorepacket

F:CIROITI'E demultiplexes a stream of Qpackets/Qmorepackets from input
<1> to one of the n output channels. The first byte of an incoming Qpacket
is assumed to be the multiplexing byte, equal to the base character (from
input <2>) + K, where K is the channel number. If K >(n-3) or K < 0, there
is no channel for this output and a pair of messages are sent on outputs <1>
and <2>. These can be used to allow for later remultiplexing or further
demultiplexing. An integer giving the indicated output port is sent on output
<1> and the message for which there was no defined output is sent on
output <2>. Whether or not K is within the limits implied by the number of
outputs of F:CIROUTE, the multiplexing byte is removed from the start of
the packet.

F:CIROUTE passes incoming Qmorepackets out the current channel (as
defined by the last Qpacket}. Initially, after a Qreset is received, the current
channel is -1.

GSR Internals RM14-S

When instancing this function, a parameter is required to specify the
number of outputs .

F:CIROUTE(n) is a special version of F:DEMUX(n). It assumes that it is
driving parallel, asynchronous paths to a common destination, the CI.
F:CIROUTE(n) synchronizes the paths by sending a Qprompt at the end of
a channel, then waiting for it to come back around before switching to the
next channel. This assumes that the CI can strip Qprompts and send them
back. Input <4> gives the maximum channel number, m, for which path
flushing is desired. F:CIROUT`E(n) flushes channels 0<=K <- m with
Qprompts.

The definitions for the inputs and outputs for F:CIROiJTE(n), and routing
bytes used by F:CIROtTTE(n) are described in Section RM2, Intrinsic
Functions.

F:READSTREAM

Binary packet data sent from F:CIROUTE(n) to the CI is sent through
F:READSTREAM. This is the same path the GSRs take.

F:READSTREAM

Qpacket ► <1>
Qprompt

Qinteger ► <2>C

Qflush ► <3>C

<1> ►any type

<2> ►Qprompt

(Readstream0, RDBSO
P4RS0}

This function converts an 8-bit stream into arbitrary messages. It takes two
bytes as the count of information (including message type) and creates a
message of that size with the bytes of information that follow it. The
message format on input <1> is:

2 bytes 2 bytes

length message type rest of message body

RM14-6 Reference Materials

F:~I

The CI accepts messages from the GSRs through an instance of
F:READSTREAM.

F:CI

Qchopitems ►
Qprompt

<1>

{H_CIO)

<1>

<2>

<3>

<4>

<5>

<6>

<7>

<8>

 ► unused

 ► unused

 ► error messages

► Qboolean
 ► Qprompt
 ► unused

 ► unused

 ~ Qflush

This function interprets commands, creating display structures and function
networks. It receives input either from a chop/parse function or a
READSTREAM function (if using the GSRs).

1.2. Data Formats for Data Types

BBOOL — BOOL 8 BIT BOOLEAN

B.00L - BOOL

0

1

FALSE

TRUE

16 BIT BOOLEAN

FALSE 0

1 TRUE

GSR Internals RM14- 7

INT8 -BYTE 8 BIT INTEGER

lNT16 -WORD 16 BIT INTEGER

MSB LSB

INT32 - LWORD 32 BIT INTEGER

MSB LSB

MSB LSB

PSREAL - REAL32 : 64 BIT REAL

S~ MSB LSB

S~ MSB LSB

MSB LSB

0

EXPONENT

MS 16 BITS OF FRACTION

LS 16 BITS OF FRACTION

PADDING BYTES

NOTE

All exponents are signed integers in the range of +/-
1024. All fractions have their sign bits in the most sig-
nificant bit of the fraction.

ID -NAME, SIZE

STRING -NAME, SIZE

CHARACTER NAME (1 }

CHARACTER NAME(SIZE}

CHARACTER STR(1 }

CHARACTER STR {SIZE}

RM14-8 Reference Materials

VECNO - V, POSLIN, DIM, COUNT

COUNT OF
2D VECTOR -MOVE

or

S~ MSB LSB

MSB LSB

EXP INTENS~O

2D VECTOR -DRAW

MSB LSB

MSB LSB

EXP INTENSE 1

3D VECTOR -MOVE

MSB LSB

MSB LSB

MSB LSB

EXP INTENS~O

3D VECTOR -DRAW

MSB LSB

MSB LSB

MSB LSB

EXP INTENS~1

X NORMALIZED FRACTION

Y NORMALIZED FRACTION

EXPONENT/INTENSITY -MOVE

X NORMALIZED FRACTION

Y NORMALIZED FRACTION

EXPONENT/INTENSITY -DRAW

X NORMALIZED FRACTION

Y NORMALIZED FRACTION

Z NORMALIZED FRACTION

EXPONENT/INTENSITY -MOVE

X NORMALIZED FRACTION

Y NORMALIZED FRACTION

Z NORMALIZED FRACTION

EXPONENT/INTENSITY -DRAW

GSR Internals RM14- 9

VBLNO - POSLIN, DIM, COUNT

EXP INTENS

FOLLOWED BY COUNT OF

or

2D VECTOR -MOVE

MSB LSB

MSB LSB ~ 0

2D VECTOR -DRAW

MSB LSB

MSB LSB ~ 1

3D VECTOR -MOVE

MSB LSB

MSB LSB

MSB LSB ~0

3D VECTOR -DRAW

MSB LSB

MSB LSB

MSB LSB ~ 1

EXPONENT/INTENSITY

X NORMALIZED FRACTION

Y NORMALIZED FRACTION -MOVE

X NORMALIZED FRACTION

Y NORMALIZED FRACTION -DRAW

X NORMALIZED FRACTION

Y NORMALIZED FRACTION

Z NORMALIZED FRACTION -MOVE

X NORMALIZED FRACTION

Y NORMALIZED FRACTION

Z NORMALIZED FRACTION -DRAW

RM14-10 Reference Materials

1.3. Error Formatting

This format is used to reset the CI after an error.

ERROR - ERRCOD

INT16 - 2

INT16 - QERRFL=143

2. Command Interpreter Data Format

This section provides the data formats for most of the commands that can
be sent to the PS 390 CI.

The format shows the data type, followed by the data that should be sent.
The data is expressed as a number, a Boolean value, an identifier, or an
expression. If an identifier begins with the letter Q, it is a subcommand type
and the value of the subcommand to be used is shown after the equal sign
(_) . If the identifier is SIZE it refers to the size or length of the string or ID
about to be transferred. All other identifiers are user supplied variables.

2.1. Data Format Analysis

To help understand how PS 390 commands are built from subcommands,
the structure of some commands is analyzed below. Note that each Qdata
(subcommand) described has the same substructure, as follows:

Number of bytes in the Qdata

The tag identifying the particular Qdata

. The data, if any

Data that may vary in size, such as character strings, is structured such that
the CI can deal with it correctly.

The following describes how the pieces of information are incorporated into
the data sent by the GSRs to the CI.

GSR Internals RM14-11

Z.1.1. Example — Character Rotate Command

The command:

Handle := CHARACTER ROTATE angle APPLIED TO Apply;

has three parts, as follows:

1. Handle :_

2. CHARACTER ROTATE angle

3. APPLIED TO Apply

This Qdata describes the Handle := part of the command.

INT16 - SIZE+8 { A Qdata always starts with a byte count }

INT16 - QLABEL=44 { This particular Qdata is a QLabel }

INT16 - SIZE { The number of bytes in the name "Handle" }

INT16 - 1 { always starts at the first byte }

ID - HANDLE,SIZE { A array of bytes containing the string "Handle"

INT16 - 0 { always a 0 }

This Qdata describes the CHARACTER ROTATE angle part of the
command.

INT16 - 10 { This particular Qdata is 10 bytes long }

INT16 - QROTTXT=77 { And is a character rotate command }

PSREAL- ANGLE { with a rotation angle of "ANGLE" }

This QData describes the APPLIED TO Apply part of the command.

}

INT16 - SIZE+8 { The byte count of the gdata}

INT16 - QNAME=45 { This particular Qdata is a QNAME }

INT16 - SIZE { the number of bytes in the name "APPLY" }

INT16 - 1 { starts a byte position 1 }

ID - APPLY,SIZE { the array of bytes containing the string "APPLY"}

INT16 - 0 { always a 0 }

Contrast this command with others of the same form such as:

Handle := TRANSLATE X,Y,Z APPLIED TO Apply;.

RM14-12 Reference Materials

2.1.2. Example —Connect Command

The command

CONNECT SOURCE<OUT>:<INP>DEST;

has several parts, as follows:

1. The command verb CONNECT

2. The source of the connection SOURCE

3. The particular output of the source <OUT>

4. The input number of the connection destination <INP>

5. The destination of the connection DEST

The Qdata sent by the GSR's for this command reflects this structure.

This Qdata tells the CI to look up the name SOURCE. Note the similarity to
QNAIVIE and QLABEL in the examples.

INT16 - SIZE+8

INT16 - QALOOK=100

INT16 - SIZE

INT16 - 1

ID - SOURCE, SIZE

INT16 - 0

This Qdata identifies the output number of SOURCE.

INT16 - 6

INT16 - QFNOUT=144

INT32 - OUT

This Qdata is another QALOOK, instructing the CI to look up the name
DEST.

INT16 - SIZE+8

INT16 -QALOOK=100

INT16 - SIZE

INT16 - 1

ID -DEST, SIZE

INT16 - 0

GSR Internals RM14-13

This Qdata identifies the input number of DEST to connect to.

INT16 - 6

INT16 - QINPIN=145

INT32 - INP

This Qdata identifies the command as a CONNECT command.

INT16 - 2

INT16 - QCON=138

Contrast this command with the DISCONNECT and SEND commands.

2.2. Data Formats

HANDLE : = ATTRIBUTES [COLOR hue [,sat [,intens]]]

[DIFFUSE diffus]

[SPECULAR specul];

INT16 - SIZE+8

INT16 - QLABEL=44

INT16 - SIZE

INT16 - 1

ID - HANDLE, SIZE

INT16 - 0

INT16 - 44

INT16 - QATTR=357

PSREAL- HUE

PSREAL- SAT

PSREAL- INTENS

PSREAL- 0.

PSREAL- DIFFUS

INT16 - SPECUL

HANDLE : = ATTRIBUTES [COLOR hue [,sat [,intens]]]

[DIFFUSE diffus]

[SPECULAR specul]

AND [COLOR hue2 [, sat2 [,intent]]]

[DIFFUSE diffu2]

[SPECULAR specu2];

INT16 - SIZE+B

INT16 - QLABEL=44

RM14-14 Reference Materials

INT16 - SIZE

INT16 - 1

ID - HANDLE, SIZE

INT16 - 0

INT16 - 86

INT16 - QOATTR=358

PSREAL- HUE

PSREAL- SAT

PSREAL- INTENS

PSREAL- 0.

PSREAL- DIFFUS

INT16 - SPECUL

PSREAL- HUE2

PSREAL- SAT2

PSREAL- INTEN2

PSREAL- 0.

PSREAL- DIFFU2

INT16 - SPECU2

BEGIN

INT16 - 2

INT16 - QBEGIN=105

HANDLE := BEGIN STRUCTURE

INT16 - SIZE+8

INT16 - QLABEL=44

INT16 - SIZE

INT16 - 1

ID - HANDLE, SIZE

INT16 - 0

INT16 - 2

INT16 - QBEGOB=103

HANDLE := BSPLINE

ORDER = ORDER

OPEN/CLOSED

NONPERIODIC/PERIODIC

N = NVERT

VERTICES = X(1) , Y(1) , (Z(1) }

X(2) , Y(2) , (Z(2))

X(N), Y(N), (Z(N))

KNOTS = KNOTS (1), ... KNOTS {NKNOTS)
CHORDS = CHORDS;

INT16 - SIZE+8

GSR Internals RM14-1 S

INT16 - QLABEL=44

INT16 - SIZE

INT16 - 1

ID - HANDLE, SIZE

INT16 - 0

INT16 - 14

INT16 - QSTRTC=152

INT8 - 1

BBOOL - .FALSE.

INT8 - ORDER

BBOOL - .FALSE.

INT8 - DIMEN

BBOOL - (.NOT.OPNCLS)

BBOOL - (.NOT.NONPER)

BBOOL - .FALSE.

INT32 - NVERT

REPEAT NVERT TIMES

INT16 - 34

INT16 - QCRVEC=296

PSREAL- V (1,1)

PSREAL- V (2,1)

PSREAL- V (3,1)

PSREAL- V (4,1)

(OPTIONAL)

REPEAT NKNOTS TIMES

INT16 - 10

INT16 - QKNOT=295

PSREAL- KNOTS (I)

INT16 - 14

INT16 - QENDCV=153

INT32 - CHORDS

PSREAL- 0

HANDLE := CHARACTER ROTATE ANGLE (APPLIED TO APPLY);

INT16 - SIZE+8

INT16 - QLABEL=44

INT16 - SIZE

INT16 - 1

ID - HANDLE, SIZE

INT16 - 0

INT16 - 10

INT16 - QROTTX=77

PSREAL- ANGLE

INT16 - SIZE+8

INT16 - QNAME=45

RM14-16 Reference Materials

INT16 - SIZE

INT16 - 1

ID - APPLY, SIZE

INT16 - 0

HANDLE := CHARACTERS TRANX,TRANY,TRANZ

STEP STEPX,STEPY 'CHARS';

INT16 - SIZE+8

INT16 - QLABEL=44

INT16 - SIZE

INT16 - 1

ID - HANDLE, SIZE

INT16 - 0

INT16 - 22

INT16 - QTXTLB=159

PSREAL- STEPX

PSREAL- STEPY

INT32 - 0

INT16 - SIZE + 6

INT16 - QDTSTR=305

INT16 - SIZE

INT16 - 1

STRING- CHARS, SIZE

INT16 - 26

INT16 - Q3DPCH=306

PSREAL- TRANX

PSREAL- TRANY

PSREAL- TRANZ

INT16 - 2

INT16 - QENDCH=304

HANDLE := CHARACTER SCALE SCALEX, SCALEY

(APPLIED TO APPLY);

INT16 - SIZE+8

INT16 - QLABEL=44

INT16 - SIZE

INT16 - 1

ID - HANDLE, SIZE

INT16 - 0

INT16 - 18

INT16 - QTXTSC=166

PSREAL- SCALEX

PSREAL- SCALEY

INT16 - SIZE+8

INT16 - QNAME=45

GSR internals RM14-17

INT16 - SIZE

INT16 - 1

ID - APPLY, SIZE

INT16 - 0

CONN SOURCE <OUT>:<INP> DEST;

INT16 - SIZE+8

INT16 - QALOOK=100

INT16 - SIZE

INT16 - 1

ID - SOURCE, SIZE

INT16 - 0

INT16 - 6

INT16 - QFNOUT=144

INT32 - OUT

INT16 - SIZE+8

INT16 - QALOOK=100

INT16 - SIZE

INT16 - 1

ID - DEST, SIZE

INT16 - 0

INT16 - 6

INT16 - QINPIN=145

INT32 - INP

INT16 - 2

INT16 - QCON=138

HANDLE := COPY CPYFRM (START=) START (,) (COUNT=) COUNT;

INT16 - SIZE+8

INT16 - QLABEL=44

INT16 - SIZE

INT16 - 1

ID - HANDLE, SIZE

INT16 - 0

INT16 - SIZE+8

INT16 - QALOOK=100

INT16 - SIZE

INT16 - 1

ID - CPYFRM, SIZE

INT16 - 0

INT16 - 6

INT16 - QCOPY=123

INT16 - START

INT16 - COUNT

RM14-18 Reference Materials

HANDLEl := PATTERN i (i) [AROUND_CORNERS] [MATCHiNOMATCH]

LENGTH 1;

INT16 - SIZE+8

INT16 - QLABEL=44

INT16 - SIZE

INT16 - 1

ID - HANDLEl, SIZE

INT16 - 0

INT16 - 46

INT16 QPATRN=149

BBOOL - .NOT. CONTIN

BBOOL - MATCH

PSREAL- LENGTH

INT8 - SEGS (0<SEGS<=32

INT$ - 0

INT8 - PATTRN (1 TO SEGS)

IF SEGS < 32 REPEAT TO EQUAL 32 INT8 VALUES

INT8 - 0

INT16 - 2

INT16 - QENDCH=304

DELETE HANDLE;

INT16 - 2

INT16 - QDELET=237

INT16 - SIZE+8

INT16 - QNAME=45

INT16 - SIZE

INT16 - 1

ID - HANDLE, SIZE

INT16 - 0

HANDLE := DECREMENT LEVEL OF DETAIL

(APPLIED TO APPLY);

INT16 - SIZE+8

INT16 - QLABEL=44

INT16 - SIZE

INT16 - 1

ID - HANDLE, SIZE

INT16 - 0

INT16 - 2

INT16 - QDECLV=134

INT16 - SIZE+8

GSA Internals RM14-19

INT16 - QNAME=45

INT16 - SIZE

INT16 - 1

ID - APPLY, SIZE

INT16 - 0

DEL HANDLE*; (WILD CARD DELETE COMMAND)

INT16 - 2

INT16 - QDELW=57

INT16 - SIZE+8

INT16 - QNAME=45

INT16 - SIZE

INT16 - 1

ID - HANDLE, SIZE

INT16 - 0

DISCONNECT SOURCE <OUT>:<INP> DEST;

INT16 - SIZE+8

INT16 - QALOOK=100

INT16 - SIZE

INT16 - 1

ID - SOURCE, SIZE

INT16 - 0

INT16 - 6

INT16 QFNOUT=144

INT32 - OUT

INT16 - SIZE+8

INT16 - QALOOK=100

INT16 - SIZE

INT16 - 1

ID - DEST, SIZE

INT16 - 0

INT16 - 6

INT16 - QINPIN=145

INT32 - INP

INT16 - 2

INT16 - QDISCN=139

DISCONN SOURCE:ALL;

INT16 - SIZE+8

INT16 - QALOOK=100

INT16 - SIZE

RM14-20 Reference Materials

INT16 - 1

ID - SOURCE, SIZE

INT16 - 0

INT16 - 2

INT16 - QALLDS=219

DISCONNECT SOURCE <OUT>:ALL;

INT16 - SIZE+8

INT16 - QALOOK=100

INT16 - SIZE

INT16 - 1

ID - SOURCE, SIZE

INT16 - 0

INT16 - 6

INT16 - QFNOUT=144

INT32 - OUT

INT16 - 2

INT16 - QALLDS=219

DISPLAY HANDLE;

INT16 - 2

INT16 - QDSPOB=118

INT16 - SIZE+8

INT16 - QNAME=45

INT16 - SIZE

INT16 - 1

ID - HANDLE, SIZE

INT16 - 0

END;

INT16 - 2

INT16 - QEND=106

END OPTIMIZE;

INT16 - 4

INT16 - QOPTIM=162

BOOL - .FALSE.

GSR Internals RM14-21

END_STRUCTURE;

INT16 - 2

INT16 - QENDOB=104

ERASE PATTERN FROM HANDLE;

INT16 - SIZE+8

INT16 - QERAPA=332

INT16 - SIZE

INT16 - 1

ID - HANDLE, SIZE

INT16 - 0

HANDLE := EYE BACK DISTB

LEFT/RIGHT DISTLR

UP/DOWN DISTUD

FROM SCREEN AREA WIDTH WIDE

FRONT BOUNDARY = FRONT

BACK BOUNDARY = BACK

(APPLIED TO APPLY);

INT16 - SIZE+8

INT16 - QLABEL=44

INT16 - SIZE

INT16 - 1

ID - HANDLE, SIZE

INT16 - 0

INT16 - 50

INT16 - QEYE=155

PSREAL- DISTLR

PSREAL- DISTUD

PSREAL- -DISTB

PSREAL- WIDE

PSREAL- FRONT

PSREAL- BACK

INT16 - SIZE+8

INT16 - QNAME=45

INT16 - SIZE

INT16 - 1

ID - APPLY, SIZE

INT16 - 0

RM14-22 Reference Materials

HANDLE := F:FNNAME;

INT16 - SIZE+8

INT16 - QLABEL=44

INT16 - SIZE

INT16 - 1

ID - HANDLE, SIZE

INT16 - 0

INT16 - SIZE + 12

INT16 QFLOOK=99

INT16 - 0

INT32 - 0

INT16 - SIZE

ID - FNNAME, SIZE

INT16 - 0

HANDLE := F:FNNAME (INOUTS);

INT16 - SIZE+8

INT16 - QLABEL=44

INT16 - SIZE

INT16 - 1

ID - HANDLE, SIZE

INT16 - 0

INT16 - SIZE + 12

INT16 - QPARFN=267

INT16 - INOUTS

INT32 - 0

INT16 - SIZE

ID - FNNAME, SIZE

INT16 - 0

FOLLOW HANDLE WITH TRANSFORMATION-OR-ATTRIBUTE COMMAND;

INT16 - 2

INT16 - QFOLLO=115

INT16 - SIZE+8

INT16 - QNAME=45

INT16 - SIZE

INT16 - 1

ID - HANDLE, SIZE

INT16 - 0

GSR Internals RM14-23

HANDLE := CHARACTER FONT FONTNM (APPLIED TO APPLY);

INT16 - SIZE+8

INT16 - QLABEL=44

INT16 - SIZE

INT16 - 1

ID - HANDLE, SIZE

INT16 - 0

INT16 - 2

INT16 - QUFONT=131

INT16 - SIZE+8

INT16 - QNAME=45

INT16 - SIZE

INT16 - 1

ID - FONTNM, SIZE

INT16 - 0

INT16 - SIZE+8

INT16 - QNAME=45

INT16 - SIZE

INT16 - 1

ID - APPLY, SIZE

INT16 - 0

FORGET HANDLE;

INT16 - 2

INT16 - QFORG=113

INT16 - SIZE+8

INT16 - QNAME=45

INT16 - SIZE

INT16 - 1

ID - HANDLE, SIZE

INT16 - 0

HANDLE := FIELD OF VIEW ANGLE

FRONT BOUNDARY = FRONT

BACK BOUNDARY = BACK

(APPLIED TO APPLY);

INT16 - SIZE+8

INT16 - QLABEL=44

INT16 - SIZE

INT16 - 1

ID - HANDLE, SIZE

INT16 - 0

INT16 - 24

INT16 - QFOV=156

RM14-24 Reference Materials

PSREAL- ANGLE

PSREAL- FRONT

PSREAL- BACK

INT16 - SIZE+8

INT16 - QNAME=45

INT16 - SIZE

INT16 - 1

ID - APPLY, SIZE

INT16 - 0

HANDLE := IF CONDITIONAL BIT BITNUM IS ONOFF

(APPLIED TO APPLY);

INT16 - SIZE+8

INT16 QLABEL=44

INT16 - SIZE

INT16 - 1

ID - HANDLE, SIZE

INT16 - 0

INT16 - 8

INT16 - QCOND=174

BOOL - ONOFF

INT32 - BITNUM

INT16 - SIZE+8

INT16 - QNAME=45

INT16 - SIZE

INT16 - 1

ID - APPLY, SIZE

INT16 - 0

HANDLE := IF LEVEL OF DETAIL COMP LEVEL

(APPLIED TO APPLY);

INT16 - SIZE+8

INT16 - QLABEL=44

INT16 - SIZE

INT16 - 1

ID - HANDLE, SIZE

INT16 - 0

INT16 - 8

INT16 - QCOND=174

INT16 - (COMP + 2) * 256

INT32 - LEVEL

INT16 - SIZE+8

INT16 - QNAME=45

INT16 - SIZE

GSR internals RM14-25

INT16 - 1

ID - APPLY, SIZE

INT16 - 0

HANDLE := IF PHASE ONOFF (THEN APPLY);

INT16 - SIZE+8

INT16 - QLABEL=44

INT16 - SIZE

INT16 - 1

ID - HANDLE, SIZE

INT16 - 0

INT16 - 8

INT16 QCOND=174

BOOL - ONOFF

INT32 - 15

INT16 - SIZE+8

INT16 - QNAME=45

INT16 - SIZE

INT16 - 1

ID - APPLY, SIZE

INT16 - 0

HANDLE := ILLUMINATION x,y,z,

[COLOR hue [,sat [, intens]]]

[AMBIENT ambien];

INT16 - SIZE+8

INT16 - QLABEL=44

INT16 - SIZE

INT16 - 1

ID - HANDLE, SIZE

INT16 - 0

INT16 - 66

INT16 - QLGHTS=355

PSREAL- X

PSREAL- Y

PSREAL- Z

PSREAL- 1.

PSREAL- HUE

PSREAL- SAT

PSREAL- INTENS

PSREAL- AMBIEN

RM14-26 Reference Materials

INCLUDE HANDLEI IN HANDLE2;

INT16 - 2

INT16 QSETAD=125

INT16.- SIZE+8

INT16 - QNAME=45

INT16 - SIZE

INT16 - 1

ID - HANDLEl, SIZE

INT16 - 0

INT16 - SIZE+8

INT16 QNAME=45

INT16 - SIZE

INT16 - 1

ID - HANDLE2, SIZE

INT16 - 0

PINIT: INITIALIZE

INT16 - 2

INT16 - QINITN=121

INT16 - 2

INT16 - QINITD=122

INT16 - 2

INT16 - QINITL=293

INITIALIZE CONNECTIONS;

INT16 - 2

INT16 - QINITC=218

INITIALIZE DISPLAYS;

INT16 - 2

INT16 - QINITD=122

INITIALIZE HANDLES;

INT16 - 2

INT16 - QINITN=121

GSR Internals RM14-2 ~

HANDLE := INCREMENT LEVEL OF DETAIL

(APPLIED TO APPLY);

INT16 - SIZE+8

INT16 - QLABEL=44

INT16 - SIZE

INT16 - 1

ID - HANDLE, SIZE

INT16 - 0

INT16 - 2

INT16 - QINCLV=133

INT16 - SIZE+8

INT16 - QNAME=45

INT16 - SIZE

INT16 - 1

ID - APPLY, SIZE

INT16 - 0

HANDLEl := INSTANCE (OF HANDLE2);

INT16 - SIZE+8

INT16 - QLABEL=44

INT16 - SIZE

INT16 - 1

ID - HANDLEI, SIZE

INT16 - 0

INT16 - 2

INT16 - QUSE=120

INT16 - SIZE+8

INT16 - QNAME=45

INT16 - SIZE

INT16 - 1

ID - HANDLE2, SIZE

INT16 - 0

INT16 - 2

INT16 QENDLS=107

HANDLE := LABEL X, Y, Z, 'STRING'

X, Y, Z, 'STRING';

INT16 - SIZE+8

INT16 - QLABEL=44

INT16 - SIZE

INT16 - 1

ID - LABBLK, SIZE

RM14-28 Reference Materials

INT16 - 0

INT16 - 26

INT16 - QDELTA=308

PSREAL- STEPX

PSREAL- STEPY

PSREAL- 0

THE NEXT 10 LINES FOR EACH LABEL

INT16 - SIZE + 6

INT16 - QDSTR=305

INT16 - SIZE

INT16 - 1

STRING- LABEL, SIZE

INT16 - 0

INT16 - 26

INT16 - Q3DPCH=306

PSREAL- X

PSREAL- Y

PSREAL- Z

INT16 - 2

INT16 - QENDCH=304

HANDLE := LOOK AT AT FROM FROM UP UP (APPLIED TO APPLY);

INT16 - SIZE+8

INT16 - QLABEL=44

INT16 - SIZE

INT16 - 1

ID - HANDLE, SIZE

INT16 - 0

INT16 - 90

INT16 - QLKAT=158

PSREAL- FROM(1)

PSREAL- FROM(2)

PSREAL- FROM(3)

PSREAL- 0

PSREAL- AT(1)

PSREAL- AT(2)

PSREAL- AT(3)

PSREAL- 0

PSREAL- UP(1)

PSREAL- UP(2)

PSREAL- UP(3)

INT16 - SIZE+8

INT16 - QNAME=45

INT16 - SIZE

GSR Internals RM14-29

INT16 - 1

ID - APPLY, SIZE

INT16 - 0

HANDLE := MATRIX_2X2 (APPLIED TO APPLY);

INT16 - SIZE+8

INT16 - QLABEL=44

INT16 - SIZE

INT16 - 1

ID - HANDLE, SIZE

INT16 - 0

INT16 - 50

INT16 - Q~ViAT2=17

PSREAL- MATRIX (1,1)

PSREAL- MATRIX (1,2)

PSREAL- 0

PSREAL- 0

PSREAL- MATRIX (2,1)

INT16 - SIZE+8

INT16 QNAME=45

INT16 - SIZE

INT16 - 1

ID - APPLY, SIZE

INT16 - 0

HANDLE := MATRIX_3X3 (APPLIED TO APPLY);

INT16 - SIZE+8

INT16 - QLABEL=44

INT16 - SIZE

INT16 - 1

ID - HANDLE, SIZE

INT16 - 0

INT16 - 90

INT16 - Q~ViAT3=18

PSREAL- MATRIX (l,l)

PSREAL- MATRIX (1,2)

PSREAL- MATRIX (1,3)

PSREAL- 0

PSREAL- MATRIX (2,1)

PSREAL- MATRIX (2,2)

PSREAL- MATRIX (2,3)

PSREAL- 0

PSREAL- MATRIX (3,1)

PSREAL- MATRIX (3,2)

RM14-30 Reference Materials

PSREAL- MATRIX (3,3)

INT16 - SIZE+8

INT16 - QNAME=45

INT16 - SIZE

INT16 - 1

ID - APPLY, SIZE

INT16 - 0

HANDLE := MATRIX_4X3 MAT VEC (APPLIED TO APPLY);

INT16 - SIZE+8

INT16 - QLABEL=44

INT16 - SIZE

INT16 - 1

ID - HANDLE, SIZE

INT16 - 0

INT16 - 122

INT16 - Q~VIATRN=206

PSREAL- MAT(1,1)

PSREAL- MAT(1,2)

PSREAL- MAT(1,3)

PSREAL- 0

PSREAL- MAT(2,1)

PSREAL- MAT(2,2)

PSREAL- MAT(2,3)

PSREAL- 0

PSREAL- MAT(3,1)

PSREAL- MAT(3,2)

PSREAL- MAT(3,3)

PSREAL- 0

PSREAL- VEC(1)

PSREAL- VEC(2)

PSREAL- VEC(3)

INT16 - SIZE+8

INT16 - QNAME=45

INT16 - SIZE

INT16 - 1

ID - APPLY, SIZE

INT16 - 0

HANDLE := MATRIX_4X4 (APPLIED TO APPLY);

INT16 - SIZE+8

INT16 - QLABEL=44

INT16 - SIZE

INT16 - 1

GSR Internals RM14-31

ID - HANDLE, SIZE

INT16 - 0

INT16 - 130

INT16 - QMAT4=19

PSREAL- MATRIX (l,l)

PSREAL- MATRIX (1,2)

PSREAL- MATRIX (1,3)

PSREAL- MATRIX (1,4)

PSREAL- MATRIX (2,1)

PSREAL- MATRIX (2,2)

PSREAL- MATRIX (2,3)

PSREAL- MATRIX (2,4)

PSREAL- MATRIX (3,1)

PSREAL- MATRIX (3,2)

PSREAL- MATRIX (3,3)

PSREAL- MATRIX (3,4)

PSREAL- MATRIX (4,1)

PSREAL- MATRIX (4,2)

PSREAL- MATRIX (4,3)

PSREAL- MATRIX (4,4)

INT16 - SIZE+8

INT16 - QNAME=45

INT16 - SIZE

INT16 - 1

ID - APPLY, SIZE

INT16 - 0

HANDLE := NIL;

INT16 - SIZE+8

INT16 - QLABEL=44

INT16 - SIZE

INT16 - 1

ID - HANDLE, SIZE

INT16 - 0

INT16 - 2

INT16 - QMKNIL=236

OPTIMIZE STRTJCTURE;

INT16 - 4

INT16 - QOPTIM=162

BOOL - .TRUE.

RM14-32 Reference Materials

PATTERN HANDLE WITH PATNAM;

INT16 - SIZE+8

INT16 - QNAMPA=316

INT16 - SIZE

INT16 - 1

ID - PATNAM, SIZE

INT16 - 0

INT16 - SIZE+8

INT16 - QAPPPA=333

INT16 - SIZE

INT16 - 1

ID - HANDLE, SIZE

INT16 - 0

HANDLE : _ [WITH [ATTRIBUTES a t t r] [OUTLINE r]]

POLYGON [Cop 1 anar] ([S] x , y , z [N x , y , z]))

[[WITH [ATTRIBUTES attr) [OUTLINE r]]

POLYGON [Coplanar] ([S] x, y, z [N x, y, z]))) ;

INT16 - SIZE+8

INT16 - QLABEL=44

INT16 - SIZE

INT16 - 1

ID - HANDLE, SIZE

INT16 - 0

INT16 - SIZE+8

INT16 - QWTATT=349

INT16 - SIZE

INT16 - 1

ID - ATTR, SIZE

INT16 - 0

INT16 - NVERTS * 8 + 4

INT16 QNORML=354

INT16 - NVERTS

VECNO - NORMS, VEDGES, DIMEN, NVERTS

INT16 - NVERTS * 8 + 4

INT16 QPOLYG=318 OR QCOPOL=319

INT16 - NVERTS

VECNO - VERTS, VEDGES, DIMEN, NVERTS

INT16 - 2

INT16 - QEPOLY=320

GSR Internals ~ RM14-33

HANDLE := POLYNOMIAL

ORDER = ORDER

(DIMEN IMPLIED IN SYNTAX)

COEFFICIENTS = X(I), Y(I), Z(I)

X(I-1), Y(I-1), Z(I-1)

X (0) , Y(0) , Z (0)

CHORDS = CHORDS;

INT16 - SIZE+8

INT16 - QLABEL=44

INT16 - SIZE

INT16 - 1

ID - HANDLE, SIZE

INT16 0

INT16 - 14

INT16 - QSTRTC=152

INT8 - 2

BBOOL - .FALSE.

INT8 - ORDER

BBOOL - .FALSE.

INT8 -DIMEN

BBOOL - (.TRUE.)

BBOOL - (.TRUE.)

BBOOL - .FALSE.

INT32 - ORDER+l

REPEAT ORDER+l TIMES

INT16 - 34

INT16 - QCRVEC=296

PSREAL- V (l,l)

PSREAL- V (2,1)

PSREAL- V (3,1)

PSREAL- V (4,1)

INT16 - 14

INT16 - QENDCV=153

INT32 - CHORDS

PSREAL- 0

PREFIX HANDLE WITH TRANSFORMATION-OR-ATTRIBUTE COMMAND;

INT16 - 2

INT16 - QPREFX=114

INT16 - SIZE+8

INT16 - QNAME=45

INT16 - SIZE

RM14-34 Reference Materials

INT16 - 1

ID - HANDLE, SIZE

INT16 - 0

HANDLE := RAWBLOCK NUMBYTE (APPLIED TO APPLY);

INT16 - SIZE+8

INT16 - QLABEL=44

INT16 - SIZE

INT16 - 1

ID - HANDLE, SIZE

INT16 - 0

INT16 - 6

INT16 - QRAWBL=350

INT32 - NUMBYTE

INT16 - SIZE+B

INT16 - QNAME=45

INT16 - SIZE

INT16 - 1

ID - APPLY, SIZE

INT16 - 0

HANDLE := RATIONAL BSPLINE

ORDER = ORDER

OPEN/CLOSED

NONPERIODIC/PERIODIC

N = NVERT

VERTICES = X(1) , Y(1) , (Z(1) ,) W(1)

X(2) , Y(2) , (Z(2) ,) W(2)

X (N) , Y (N) , (Z (N) ,) W(N)

KNOTS = KNOTS (1), ... KNOTS (NKNOTS)
CHORDS = CHORDS;

INT16 - SIZE+8

INT16 - QLABEL=44

INT16 - SIZE

INT16 - 1

ID - HANDLE, SIZE

INT16 - 0

INT16 - 14

TNT16 QSTRTC=152

INT8 - 1

BBOOL - .TRUE.

INT8 - ORDER

BBOOL - .FALSE.

GSR Internals RM14-35

INT8 - DIMEN+l

BBOOL - (.NOT.OPNCLS)

BBOOL - (.NOT.NONPER)

BBOOL - .FALSE.

INT32 - NVERT

REPEAT NVERT TIMES

INT16 - 34

INT16 - QCRVEC=296

PSREAL- V (l,l)

PSREAL- V (2,1)

PSREAL- V (3,1)

PSREAL- V (4,1)

(OPTIONAL)

REPEAT NKNOTS TIMES

INT16 - 10

INT16 - QKNOT=295

PSREAL- KNOTS (I)

INT16 - 14

INT16 - QENDCV=153

INT32 - CHORDS

PSREAL- 0

REMOVE HANDLE;

INT16 - 2

INT16 - QREMOB=119

INT16 - SIZE+8

INT16 - QNAME=45

INT16 - SIZE

INT16 - 1

ID - HANDLE, SIZE

INT16 - 0

REMOVE FOLLOWER OF HANDLE;

INT16 - 2

INT16 - QUNFOL=117

INT16 - SIZE+8

INT16 - QNAME=45

INT16 - SIZE

INT16 - 1

ID - HANDLE, SIZE

INT16 - 0

RM14-36 Reference Materials

REMOVE HANDLEI FROM HANDLE2;

INT16

INT16

INT16

INT16

INT16

INT16

ID

INT16

INT16

INT16

INT16

INT16

ID

INT16

_ 2

- QSETRM=124

- SIZE+8

QNAME=45

- SIZE

- 1

- HANDLEl, SIZE

- 0

- SIZE+8

QNAME=45

- SIZE

- 1

- HANDLE2, SIZE

- 0

REMOVE PREFIX OF HANDLE;

INT16 - 2

INT16 - QUNPFX=116

INT16 - SIZE+B

INT16 - QNAME=45

INT16 - SIZE

INT16 - 1

ID - HANDLE, SIZE

INT16 - 0

HANDLE := ROTATE IN X ANGLE (APPLIED TO APPLY);

INT16 - SIZE+B

INT16 - QLABEL=44

INT16 - SIZE

INT16 - 1

ID - HANDLE, SIZE

INT16 - 0

INT16 - 10

INT16 - QROTX=74

PSREAL- ANGLE

INT16 - SIZE+8

INT16 - QNAME=45

INT16 - SIZE

INT16 - 1

ID - APPLY, SIZE

INT16 - 0

GSR Internals RM14-37

HANDLE := ROTATE IN Y ANGLE (APPLIED TO APPLY);

INT16 - SIZE+8

INT16 - QLABEL=44

INT16 - SIZE

INT16 - 1

ID - HANDLE, SIZE

INT16 - 0

INT16 - 10

INT16 - QROTY=75

PSREAL- ANGLE

INT16 - SIZE+8

INT16 - QNAME=45

INT16 - SIZE

INT16 - 1

ID - APPLY, SIZE

INT16 - 0

HANDLE := ROTATE IN Z ANGLE (APPLIED TO APPLY);

INT16 - SIZE+8

INT16 - QLABEL=44

INT16 - SIZE

INT16 - 1

ID - HANDLE, SIZE

INT16 - 0

INT16 - 10

INT16 - QROTZ=76

PSREAL- ANGLE

INT16 - SIZE+8

INT16 - QNAME=45

INT16 - SIZE

INT16 - 1

ID - APPLY, SIZE

INT16 - 0

HANDLE := RATIONAL POLYNOMIAL

ORDER = ORDER

(DIMENSION IMPLIED IN SYNTAX)

COEFFICIENTS = X(I), Y(I), Z(I), W(I)

X(I-1) , Y(I-1) , Z(I-1) , W(I-1)

X(0) , Y(0) , Z(0) , W(0)

CHORDS = CHORDS;

INT16 - SIZE+8

INT16 - QLABEL=44

RM14-38 Reference Materials

INT16 — SIZE

INT16 — 1

ID — HANDLE, SIZE

INT16 — 0

INT16 — 14

INT16 — QSTRTC=152

INT8 — 2

BBOOL — .TRUE.

INT8 — ORDER

BBOOL — .FALSE.

INT8 — DIMEN+l

BBOOL — (.TRUE.)

BBOOL — (.TRUE.)

BBOOL — .FALSE.

INT32 — ORDER+1

REPEAT ORDER+1 TIMES

INT16 — 34

INT16 — QCRVEC=296

PSREAL— V (l,l)

PSREAL— V (2,1)

PSREAL— V (3,1)

PSREAL— V (4,1)

INT16 — 14

INT16 — QENDCV=153

INT32 — CHORDS

PSREAL— 0

RESERVE WORKING STORAGE Bytes;

INT16 — 6

INT16 — QRSVST=314

INT32 — BYTES

HANDLE := SCALE BY X,Y,Z (APPLIED TO APPLY);

INT16 — SIZE+8

INT16 — QLABEL=44

INT16 — SIZE

INT16 — 1

ID — HANDLE, SIZE

INT16 — 0

INT16 — 26

INT16 — QSCALE=164

PSREAL— X(1)

PSREAL— Y(2)

GSR Internals RM14-39

PSREAL- Z(3)

INT16 - SIZE+8

INT16 - QNAME=45

INT16 - SIZE

INT16 - 1

ID - APPLY, SIZE

INT16 - 0

HANDLE := SET CONDITIONAL BIT BITNUM ONOFF

(APPLIED TO APPLY);

INT16 - SIZE+8

INT16 - QLABEL=44

INT16 - SIZE

INT16 - 1

ID - HANDLE, SIZE

INT16 - 0

INT16 - 6

INT16 QSETBT=89 OR QCLRBT=90

INT32 - BITNUM

INT16 - SIZE+8

INT16 - QNAME=45

INT16 - SIZE

INT16 - 1

ID - APPLY, SIZE

INT16 - 0

HANDLE := SET CHARACTERS SCREEN_ORIENTED/FIXED

(APPLIED TO APPLY);

INT16 - SIZE+8

INT16 - QLABEL=44

INT16 - SIZE

INT16 - 1

ID - HANDLE, SIZE

INT16 - 0

INT16 - 6

INT16 - QCHARP=253

INT32 - 1

INT16 - SIZE+B

INT16 QNAME=45

INT16 - SIZE

INT16 - 1

ID - APPLY, SIZE

INT16 - 0

RM14-40 Reference Materials

HANDLE := SET CHARACTERS SCREEN ORIENTED

(APPLIED TO APPLY);

INT16 - SIZE+8

INT16 - QLABEL=44

INT16 - SIZE

INT16 - 1

ID - HANDLE, SIZE

INT16 - 0

INT16 - 6

INT16 - QCHARP=253

INT32 - 0

INT16 - SIZE+8

INT16 QNAME=45

INT16 - SIZE

INT16 - 1

ID - APPLY, SIZE

INT16 - 0

HANDLE := SET CHARACTERS WORLD ORIENTED

(APPLIED TO APPLY);

INT16 - SIZE+8

INT16 - QLABEL=44

INT16 - SIZE

INT16 - 1

ID - HANDLE, SIZE

INT16 - 0

INT16 - 6

INT16 - QCHARP=253

INT32 - -1

INT16 - SIZE+8

INT16 QNAME=45

INT16 - SIZE

INT16 - 1

ID - APPLY, SIZE

INT16 - 0

SETUP CNESS TRUE/FALSE <INP>HANDLE;

INT16 - SIZE + 12

INT16 - QCNESS=330

INT16 - INP

INT16 - 0 OR 1

INT16 - 0

INT16 - SIZE

ID - HANDLE, SIZE

INT16 - 0

GSR Internals RM14-41

HANDLE := SET COLOR HUE,SAT (APPLIED TO APPLY);

INT16 - SIZE+8

INT16 - QLABEL=44

INT16 - SIZE

INT16 - 1

ID - HANDLE, SIZE

INT16 - 0

INT16 - 18

INT16 - Q2COLR=167

PSREAL- HUE

PSREAL- SAT

INT16 - SIZE+8

INT16 - QNAME=45

INT16 - SIZE

INT16 - 1

ID - APPLY, SIZE

INT16 - 0

HANDLE := SET CONTRAST TO CONTRAST

(APPLIED TO APPLY);

INT16 - SIZE+8

INT16 - QLABEL=44

INT16 - SIZE

INT16 - 1

ID - HANDLE, SIZE

INT16 - 0

INT16 - 10

INT16 - QCONTR=232

PSREAL- CONTRA

INT16 - SIZE+8

INT16 - QNAME=45

INT16 - SIZE

INT16 - 1

ID - APPLY, SIZE

INT16 - 0

HANDLE := SECTIONING_PLANE (APPLIED TO APPLY);

INT16 - SIZE+8

INT16 - QLABEL=44

INT16 - SIZE

INT16 - 1

ID - HANDLE, SIZE

INT16 - 0

INT16 - 2

RM14-42 Reference Materials

INT16 - QSECPL=315

INT16 - SIZE+8

INT16 - QNAME=45

INT16 - SIZE

INT16 - 1

ID - APPLY, SIZE

INT16 - 0

HANDLE := SET DISPLAYS ALL ONOFF (APPLIED TO APPLY);

INT16 - SIZE+8

INT16 - QLABEL=44

INT16 - SIZE

INT16 - 1

ID - HANDLE, SIZE

INT16 - 0

INT16 - 4

INT16 - QSCOPS=93

BOOL - ONOFF

INT16 - SIZE+8

INT16 - QNAME=45

INT16 - SIZE

INT16 - 1

ID - APPLY, SIZE

INT16 - 0

HANDLE := SET DEPTH_CLIPPING ONOFF (APPLIED TO APPLY);

INT16 - SIZE+8

INT16 - QLABEL=44

INT16 - SIZE

INT16 - 1

ID - HANDLE, SIZE

INT16 - 0

INT16 - 4

INT16 - QDCLIP=95

BOOL - ONOFF

INT16 - SIZE+8

INT16 - QNAME=45

INT16 - SIZE

INT16 - 1

ID - APPLY, SIZE

INT16 - 0

GSR Internals RM14-43

HANDLE := SET DISPLAY N ONOFF (APPLIED TO APPLY);

INT16 - SIZE+8

INT16 - QLABEL=44

INT16 - SIZE

INT16 - 1

ID - HANDLE, SIZE

INT16 - 0

INT16 - 6

INT16 - QSTDSP=235

INT32 - N

INT16 - 2

INT16 - QDSCON=233 OR QDSCOF=234

INT16 - SIZE+8

INT16 - QNAME=45

INT16 - SIZE

INT16 - 1

ID - APPLY, SIZE

INT16 - 0

HANDLE := SET INTENSITY ONOFF IMIN:IMAX

(APPLIED TO APPLY);

INT16 - SIZE+8

INT16 - QLABEL=44

INT16 - SIZE

INT16 - 1

ID - HANDLE, SIZE

INT16 - 0

INT16 - 20

INT16 - QSTINT=301

BOOL - ONOFF

PSREAL- IMIN

PSREAL- IMAX

INT16 - SIZE+8

INT16 - QNAME=45

INT16 - SIZE

INT16 - 1

ID - APPLY, SIZE

INT16 - 0

HANDLE := SET LINE_TEXTURE PATTRN <AROUND> (APPLIED TO APPLY);

INT16 - SIZE+8

INT16 - QLABEL=44

INT16 - SIZE

RM14-44 Reference Materials

INT16 - 1

ID - HANDLE, SIZE

INT16 - 0

INT16 - 6

INT16 QTXTUR=344 OR QCTXTR=345

INT32 - PATTRN

INT16 - SIZE+8

INT16 - QNAME=45

INT16 - SIZE

INT16 - 1

ID - APPLY, SIZE

INT16 - 0

HANDLE := SET LEVEL OF DETAIL TO LEVEL

(APPLIED TO APPLY);

INT16 - SIZE+8

INT16 - QLABEL=44

INT16 - SIZE

INT16 - 1

ID - HANDLE, SIZE

INT16 - 0

INT16 - 6

INT16 - QLEVEL=88

INT32 - LEVEL

INT16 - SIZE+8

INT16 - QNAME=45

INT16 - SIZE

INT16 - 1

ID - APPLY, SIZE

INT16 - 0

HANDLE := SET PICKING IDENTIFIER = PICKID

(APPLIED TO APPLY);

INT16 - SIZE+8

INT16 - QLABEL=44

INT16 - SIZE

INT16 - 1

ID - HANDLE, SIZE

INT16 - 0

INT16 - 2

INT16 - QPCKNM=110

INT16 - SIZE+8

INT16 QNAME=45

INT16 - SIZE

GSR Internals RM14- 45

INT16 - 1

ID - PICKID, SIZE

INT16 - 0

INT16 - SIZE+8

INT16 QNAME=45

INT16 - SIZE

INT16 - 1

ID - APPLY, SIZE

INT16 - 0

HANDLE := SET PICKING LOCATION = XCENTR, YCENTR

XSIZE, YSIZE

(APPLIED TO APPLY);

INT16 - SIZE+8

INT16 - QLABEL=44

INT16 - SIZE

INT16 - 1

ID - HANDLE, SIZE

INT16 - 0

INT16 - 50

INT16 - QPCKBX=194

PSREAL- XCENTR

PSREAL- YCENTR

INT32 - 0

INT32 - 0

INT32 - 0

INT32 - 0

PSREAL- XSIZE

PSREAL- YSIZE

INT16 - SIZE+8

INT16 - QNAME=45

INT16 - SIZE

INT16 - 1

ID - APPLY, SIZE

INT16 - 0

HANDLE := SET PICKING ONOFF (APPLIED TO APPLY);

INT16 - SIZE+8

INT16 - QLABEL=44

INT16 - SIZE

INT16 - 1

ID - HANDLE, SIZE

INT16 - 0

INT16 - 8

RM14-46 Reference Materials

INT16 - QPCKNG=91

BOOL - ONOFF

INT32 - 0

INT16 - SIZE+8

INT16 - QNAME=45

INT16 - SIZE

INT16 - 1

ID - APPLY, SIZE

INT16 - 0

HANDLE := SET RATE PHASEON PHASEOFF INITIAL STATE DELAY

(APPLIED TO APPLY);

INT16 - SIZE+8

INT16 - QLABEL=44

INT16 - SIZE

INT16 - 1

ID - HANDLE, SIZE

INT16 - 0

INT16 - 34

INT16 - QBLDEF=205

PSREAL- PHASEON

PSREAL- PHASEOFF

PSREAL- INITIAL STATE (1-ON OR 0-OFF)

PSREAL- DELAY

INT16 - SIZE+8

INT16 - QNAME=45

INT16 - SIZE

INT16 - 1

ID - APPLY, SIZE

INT16 - 0

HANDLE := SET RATE EXTERNAL (APPLIED TO APPLY);

INT16 - SIZE+8

INT16 QLABEL=44

INT16 - SIZE

INT16 - 1

ID - HANDLE, SIZE

INT16 - 0

INT16 - 6

INT16 QSETBI=89

INT32 - 15

INT16 - SIZE+8

INT16 - QNAME=45

INT16 - SIZE

GSR Internals RM14-47

INT16 - 1

ID - APPLY, SIZE

INT16 - 0

SEND TRUE/FALSE TO <INP> DEST;

INT16 - 4

INT16 - QBOOL=2

BOOL - B

INT16 - SIZE+8

INT16 - QALOOK=100

INT16 - SIZE

INT16 - 1

ID - DEST, SIZE

INT16 - 0

INT16 - 6

INT16 - QINPIN=145

INT32 - INP

INT16 - 2

INT16 QSTORE=137

SEND FIX (I) TO <INP> DEST;

INT16 - 6

INT16 - QINTGR=3

INT32 - I

INT16 - SIZE+8

INT16 QALOOK=100

INT16 - SIZE

INT16 - 1

ID - DEST, SIZE

INT16 - 0

INT16 - 6

INT16 QINPIN=145

INT32 - INP

INT16 - 2

INT16 QSTORE=137

SEND M2D (MAT) TO <INP> DEST;

INT16 - 50

INT16 - QM2BLD=254

PSREAL- MATRIX (1,1)

PSREAL- MATRIX (1,2)

RM14-48 Reference Materials

PSREAL- 0

PSREAL- 0

PSREAL- MATRIX (2,1)

PSREAL- MATRIX (2,2)

INT16 - SIZE+8

INT16 - QALOOK=100

INT16 - SIZE

INT16 - 1

ID - DEST, SIZE

INT16 - 0

INT16 - 6

INT16 - QINPIN=145

INT32 - INP

INT16 - 2

INT16 QSTORE=137

SEND M3D (MAT) TO <INP> DEST;

INT16 - 90

INT16 - QM3BLD=255

PSREAL- MATRIX (1,1)

PSREAL- MATRIX (1,2)

PSREAL- MATRIX (1,3)

PSREAL- 0

PSREAL- MATRIX (2,1)

PSREAL- MATRIX (2,2)

PSREAL- MATRIX (2,3)

PSREAL- 0

PSREAL- MATRIX (3,1)

PSREAL- MATRIX (3,2}

PSREAL- MATRIX (3,3)

INT16 - SIZE+B

INT16 - QALOOK=100

INT16 - SIZE

INT16 - 1

ID - DEST, SIZE

INT16 - 0

INT16 - 6

INT16 - QINPIN=145

INT32 - INP

INT16 - 2

INT16 - QSTORE=137

GSR Internals RM14-49

SEND M4D (MAT) TO <INP> DEST;

INT16 - 130

INT16 - QM4BLD=256

PSREAL- MATRIX (1,1)

PSREAL- MATRIX (1,2)

PSREAL- MATRIX (1,3)

PSREAL- MATRIX (1,4)

PSREAL- MATRIX (2,1)

PSREAL- MATRIX (2,2)

PSREAL- MATRIX (2,3)

PSREAL- MATRIX (2,4)

PSREAL- MATRIX (3,1)

PSREAL- MATRIX (3,2)

PSREAL- MATRIX (3,3)

PSREAL- MATRIX (3,4)

PSREAL- MATRIX (4,1)

PSREAL- MATRIX (4,2)

PSREAL- MATRIX (4,3)

PSREAL- MATRIX (4,4)

INT16 - SIZE+8

INT16 - QALOOK=100

INT16 - SIZE

INT16 - 1

ID - DEST, SIZE

INT16 - 0

INT16 - 6

INT16 - QINPIN=145

INT32 - INP

INT16 - 2

INT16 - QSTORE=137

SEND COUNT*DRAWMV TO <INP> DEST;

INT16 - 6

INT16 - QNBOOL=243

BOOL - DRAWMV

INT16 - COUNT

INT16 - SIZE+8

INT16 - QALOOK=100

INT16 - SIZE

INT16 - 1

ID - DEST, SIZE

INT16 - 0

INT16 - 6

RM14-SO Reference Materials

INT16 - QINPIN=145

INT32 - INP

INT16 - 2

INT16 - QSTORE=137

SEND REAL-NUMBER TO <INP> DEST;

INT16 - 10

INT16 - QREAL=4

PSREAL- R

INT16 - SIZE+8

INT16 - QALOOK=100

INT16 - SIZE

INT16 - 1

ID - DEST, SIZE

INT16 - 0

INT16 - 6

INT16 QINPIN=145

INT32 - INP

INT16 - 2

INT16 - QSTORE=137

SEND 'STR' TO <INP> DEST;

INT16 - SIZE + 6

INT16 - QSTR=S

INT16 - SIZE

INT16 - 1

STRING- STR, SIZE

INT16 - SIZE+8

INT16 - QALOOK=100

INT16 - SIZE

INT16 - 1

ID - DEST, SIZE

INT16 - 0

INT16 - 6

INT16 QINPIN=145

INT32 - INP

INT16 - 2

INT16 - QSTORE=137

SEND V2D (V) TO <INP> DEST;

INT16 - 34

INT16 - QVEC2=10

PSREAL- V (1)

GSR Internals RM14-SI

PSREAL- V (2)

PSREAL- 0

PSREAL- 0

INT16 - SIZE+8

INT16 - QALOOK=100

INT16 - SIZE

INT16 - 1

ID - DEST, SIZE

INT16 - 0

INT16 - 6

INT16 QINPIN=145

INT32 - INP

INT16 - 2

INT16 QSTORE=137

SEND V3D (V) TO <INP> DEST;

INT16 - 34

INT16 - QVEC3=13

PSREAL- V (1)

PSREAL- V (2)

PSREAL- V (3)

PSREAL- 0

INT16 - SIZE+8

INT16 - QALOOK=100

INT16 - SIZE

INT16 - 1

ID - DEST, SIZE

INT16 - 0

INT16 - 6

INT16 - QINPIN=145

INT32 - INP

INT16 - 2

INT16 - QSTORE=137

SEND V4D (V) TO <INP> DEST;

INT16 - 34

INT16 - QVEC4=16

PSREAL- V (1)

PSREAL- V (2)

PSREAL- V (3)

PSREAL- V (4)

INT16 - SIZE+8

INT16 - QALOOK=100

INT16 - SIZE

RM14-52 Reference Materials

INT16 - 1

ID - DEST, SIZE

INT16 - 0

INT16 - 6

INT16 - QINPIN=145

INT32 - INP

INT16 - 2

INT16 - QSTORE=137

SEND VALUE (VARNAM) TO <INP> DEST;

INT16 - SIZE+8

INT16 QALOOK=100

INT16 - SIZE

INT16 - 1

ID - VARNAM, SIZE

INT16 - 0

INT16 - 2

INT16 - QFETCH=186

INT16 - SIZE+8

INT16 - QALOOK=100

INT16 - SIZE

INT16 - 1

ID - DEST, SIZE

INT16 - 0

INT16 - 6

INT16 - QINPIN=145

INT32 - INP

INT16 - 2

INT16 - QSTORE=137

SEND VL (HANDLEI) TO <INP> HANDLE2;

INT16 - SIZE+B

INT16 - QALOOK=100

INT16 - SIZE

INT16 - 1

ID - HANDLEI, SIZE

INT16 - 0

INT16 - SIZE+8

INT16 - QALOOK=100

INT16 - SIZE

INT16 - 1

ID - HANDLE2, SIZE

INT16 - 0

INT16 - 6

GSR Internals RM14-53

INT16 - QINPIN=145

INT32 - INP

INT16 - 2

INT16 - QSTORE=137

HANDLE := SOLID_RENDERING (APPLIED TO APPLY);

INT16 - SIZE+8

INT16 QLABEL=44

INT16 - SIZE

INT16 - 1

ID - HANDLE, SIZE

INT16 - 0

INT16 - 2

INT16 - QSOLRE=343

INT16 - SIZE+8

INT16 - QNAME=45

INT16 - SIZE

INT16 - 1

ID - APPLY, SIZE

INT16 - 0

HANDLE := STANDARD FONT (APPLIED TO APPLY);

INT16 - SIZE+8

INT16 - QLABEL=44

INT16 - SIZE

INT16 - 1

ID - HANDLE, SIZE

INT16 - 0

INT16 - 2

INT16 - QSTDFO=132

INT16 - SIZE+8

INT16 - QNAME=45

INT16 - SIZE

INT16 - 1

ID - APPLY, SIZE

INT16 - 0

HANDLE := SURFACE_RENDERING (APPLIED TO APPLY);

INT16 - SIZE+8

INT16 - QLABEL=44

INT16 - SIZE

INT16 - 1

ID - HANDLE, SIZE

INT16 - 0

RM14-54 Reference Materials

INT16 - 2

INT16 - QSURRE=342

INT16 - SIZE+8

INT16 - QNAME=45

INT16 - SIZE

INT16 - 1

ID - APPLY, SIZE

INT16 - 0

HANDLE ;= TEXT SIZE SIZEX SIZEY (APPLIED TO APPLY);

INT16 - SIZE+8

INT16 - QLABEL=44

INT16 - SIZE

INT16 - 1

ID - HANDLE, SIZE

INT16 - 0

INT16 - 18

INT16 - QTEXTS=339

PSREAL- SIZEX

PSREAL- SIZEY

INT16 - SIZE+8

INT16 - QNAME=45

INT16 - SIZE

INT16 - 1

ID - APPLY, SIZE

INT16 - 0

HANDLE ;= TRANSLATE BY V (APPLIED TO APPLY);

INT16 - SIZE+8

INT16 - QLABEL=44

INT16 - SIZE

INT16 - 1

ID - HANDLE, SIZE

INT16 - 0

INT16 - 26

INT16 - QTRANS=73

PSREAL- V(1)

PSREAL- V(2)

PSREAL- V (3)

INT16 - SIZE+8

INT16 - QNAME=45

INT16 - SIZE

INT16 - 1

ID - APPLY, SIZE

INT16 - 0

GSR Internals RM14-SS

VARIABLE HANDLE;

INT16 - SIZE+8

INT16 - QVARNM=204

INT16 - SIZE

INT16 - 1

ID - HANDLE, SIZE

INT16 - 0

HANDLE := VECTOR_LIST (DOTS, CONNECTED, ITEMIZED, SEPARATE) N=N

<VECTORS>;

INT16 - SIZE+8

INT16 - QLABEL=44

INT16 - SIZE

INT16 - 1

ID - HANDLE, SIZE

INT16 - 0

INT16 - 45

INT16 - Q2DVHD=147 OR Q3DVHD=148

I NT 8 - 1 (DOTS)

OR

INT8 - 3 (CONNECTED, ITEMIZED)

OR

INT8 - 4 (SEPARATE)

BBOOL - BNORM

INT32 - 0

PSREAL- 0

PSREAL- 0

PSREAL- 0

PSREAL- 0

INT32 - VECCOU

BBOOL - CBLEND

BLOCK NORMALIZED

INT16 - 4+COUNT*2*DIMEN+2

INT16 - QBNDAT=266

INT16 - COUNT*2*DIMEN+2

VBLNO - VECS, POSLIN, DIMEN, COUNT

VECTOR NORMALIZED

INT16 - 4+COUNT*(DIMEN+l)*2

INT16 - QBNDAT=266

INT16 - COUNT*(DIMEN+l)*2

VECNO - VECS, POSLIN, DIMEN, COUNT

INT16 - 2

INT16 - QENDLS=107

RM14-56 Reference Materials

HANDLE := VIEWPORT HORIZONTAL = XMIN:XMAX

VERTICAL = YMIN:YMAX

INTENSITY = IMIN:IMAX

(APPLIED TO APPLY);

INT16 - SIZE+8

INT16 - QLABEL=44

INT16 - SIZE

INT16 - 1

ID - HANDLE, SIZE

INT16 - 0

INT16 - 54

INT16 - QVIEW=160

PSREAL- XMIN

PSREAL- XMAX

PSREAL- YMIN

PSREAL- YMAX

PSREAL- IMIN

PSREAL- IMAX

INT32 - 0

INT16 - SIZE+8

INT16 - QNAME=45

INT16 - SIZE

INT16 - 1

ID - APPLY, SIZE

INT16 - 0

HANDLE := WINDOW X = XMIN:XMAX

Y = YMIN:YMAX

FRONT BOUNDARY = FRONT

BACK BOUNDARY = BACK

(APPLIED TO APPLY);

INT16 - SIZE+8

INT16 - QLABEL=44

INT16 - SIZE

INT16 - 1

ID - HANDLE, SIZE

INT16 - 0

INT16 - 50

INT16 - QWINDO=157

PSREAL- XMIN

PSREAL- XMAX

PSREAL- YMIN

PSREAL- YMAX

PSREAL- FRONT

GSR Internals RM14-S ~

PSREAL- BACK

INT16 - SIZE+8

INT16 - QNAME=45

INT16 - SIZE

INT16 - 1

ID - APPLY, SIZE

INT16 - 0

HANDLE := WR,ITEBACK (APPLIED TO APPLY);

INT16 - SIZE+8

INT16 QLABEL=44

INT16 - SIZE

INT16 - 1

ID - HANDLE, SIZE

INT16 - 0

INT16 - 2

INT16 - QWBACK=277

INT16 - SIZE+8

INT16 - QNAME=45

INT16 - SIZE

INT16 - 1

ID - APPLY, SIZE

INT16 - 0

HANDLE := CANCEL XFORM (APPLIED TO APPLY);

INT16 - SIZE+B

INT16 - QLABEL=44

INT16 - SIZE

INT16 - 1

ID - HANDLE, SIZE

INT16 - 0

INT16 - 2

INT16 - QXFCAN=273

INT16 - SIZE+8

INT16 - QNAME=45

INT16 - SIZE

INT16 - 1

ID - APPLY, SIZE

INT16 - 0

RM14-58 Reference Materials

HANDLE := XFORM MATRIX (APPLIED TO APPLY);

INT16 - SIZE+8

INT16 - QLABEL=44

INT16 - SIZE

INT16 - 1

ID - HANDLE, SIZE

INT16 - 0

INT16 - 2

INT16 - QXFMAT=270

INT16 - SIZE+8

INT16 - QNAME=45

INT16 - SIZE

INT16 - 1

ID - APPLY, SIZE

INT16 - 0

HANDLE := XFORM VECTOR_LIST (APPLIED TO APPLY);

INT16 - SIZE+8

INT16 - QLABEL=44

INT16 - SIZE

INT16 - 1

ID - HANDLE, SIZE

INT16 - 0

INT16 - 2

INT16 - QXFVEC=271

INT16 - SIZE+8

INT16 QNAME=45

INT16 - SIZE

INT16 - 1

ID - APPLY, SIZE

INT16 - 0

GSR Internals RM14-59

3. Description of Six-Bit Binary Data Protocol in the PS 390

The following sections describe how the PS 390 binary data can be encoded

into bytes with six bits of binary data per byte. This method should be used

when you need to transmit printable ASCII characters to the PS 390.

3.1. Data Storage

The PS 390 stores its data as follows:

MSB LSB

where the MSB starts at the low address and the LSB starts at the high
address.

The host must send the MSB first, followed by the LSB. Some hosts store
their data in an address order that reverses this sequence. If this is the case,
the MSB and LSB must be reversed in the host before being sent to the
PS 390.

3.2. Six-Bit Binary Data Encoding Method

Binary data must be encoded in the following manner. This encoding proc-
ess occurs prior to sending the byte count of binary vector data.

NOTE

The byte count of binary data must not include the
count of bytes that result when the data is passed
through the encoding scheme.

1. The encoding process collects 16-bit words until it has two sets.

CAUTION

The carriage control characters must be suppressed
when transmitting binary data, or the carriage control
characters will be interpreted as binary data.

2. A two-word set is broken up into five bytes with six significant bits, and
one byte with two significant bits. These bits are extracted from the least
significant end to the most significant end of the two-word set.

RM14-60 Reference Materials

3. The order that the bytes are sent to the PS 390 reverses the order in
which they were extracted. The byte with two significant bits is sent first,
followed by the the last 6-significant-bit byte, and so on.

4. To make the bytes printable ASCII characters, a zero ' 0' character (hex
30 or decimal 48) is added to each byte prior to sending them. This
encoding process is illustrated in the example that follows. The two-
word set of 16-bits are held internally in the host in the following bit
sequence. The first two word set is:

x=

Y=

0 1 0 0 0 0 0 0 0 0~ 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

The two 16-bit words are broken up into five bytes with six bits, and one
byte with two bits in the following order:

6
0 1

2

5
0 0 0 0 0 0

0 0 0 0 0 0

4
0 0 0 0 0 0

1
0 0 0 0 0 0

3
0 0 0 1 0 0

The zero "0" character is now added to each six-bit byte:

bytel 000000 byte4 000000

+ 110000 (zero) + 110000 (zero)

110000 110000

byte2 000000 bytes 000000

+ 110000 (zero) + 110000 (zero)

110000 110000

byte3 000100 byte6 ----Ol

+ 110000 (zero) + 110000 (zero)

110100 110001

GSR Internals RM14-61

After the encoding procedure, the bits will be sent to the PS 390 in the
following sequence of bytes. Note that the sequence order of the bytes has
been reversed.

Two significant bits
byte6

bytes

byte4

byte3

byte2

byte 1

,001 1 0001 _

Six significant bits
00 1 1 0000

Six significant bits
,0.01.10000

Six significant bits
001 10100

Six significant bits
00 1 1 0000

Six significant bits
001 10000

3.3. Example of Encoding Binary Data

An example of encoding binary vector data is given in the following section.
Please note that the example assumes escape mode. Refer to Section RMS,
Host Communications, for a complete description of escape mode.

The vector list to be encoded is:

AA:= vec itemized n=4
P 1,1,0 I=1.0
L -.25, .75, .5 I= .75

P 10,5, .001 I=.5

L -.001, -.002, .003 I= .l

RM14-62 Reference Materials

The data in PS 390 Eight-bit binary format is as follows:

NOTE

The X,Y,Z mantissa's and the Vector exponent are
two's complement numbers.

0100000000000000 = 1/2 (x mantissa)

0100000000000000 = 1/2 (y mantissa)

0000000000000000 = 0 (z mantissa)

00000001 1111111 0 exponent =1 intensity= 7F(hex) p/1=p

1110000000000000 = -1x2**-2 (x mantissa) NOTE 2's complement

0110000000000000 = 3x2**-2 (y mantissa)

0100000000000000 = 1x2**-1 (z mantissa)

00000000 1100000 1 exponent=0 inten=60(hex) p/1=1

0101000000000000

0010100000000000

0000000000000010

= 5x2**-3

= 5x2**-4

= 1x2**-14

00000100 1000000 0 exp=4 int=40(hex) p/1=p

1101111100111100 = -2097x2**-13

1011111001110111 = -16777x2**-15

0110001001001101 = 25145x2**-15

11111000 0001100 1 exp= -8 int=OC(hex) p/1=1

0000000000000000 padding

For exercise, check the last vectors in decimal.

x= -2097x2**-13x2**-8

y= -1677x2**-15x2**-8

z= 25145x2**-15x2**-8

_ -2097x2**-21 = -9.99928E -4 -> -.001

_ -16777x2**-23 = 1.99997E -3 -> -.002

= 25145x2**-23 = 2.99752E -3 -> .003

GSR Internals RM14-63

The left column is the binary data re-encoded into the six-bit format. The
right column is the eight-bit data.

002P0\ 0000000000001010 = 10 (size of label+8)
0000000000101100 = 44 (Qlabel)

OOOPOI 0000000000000010 = 2 (size)
0000000000000001 = 1

11 00 0100000101000001 = AA (name)
0000000000000000 = 0

00;@2D 0000000000101101 = 45 (data byte count)
0000000010010100 = 148 (g3dvhd)

030000 0000001100000000 item= 3/bnorm= .false.
0000000000000000 = 0 (4 byte integer)

000000 0000000000000000

0000000000000000 = 0 (8 byte real)

000000 0000000000000000

0000000000000000

000000 0000000000000000

0000000000000000 = 0 (8 byte real)

000000 0000000000000000

0000000000000000

000000 0000000000000000

0000000000000000 = 0 (8 byte real)

000000 0000000000000000

0000000000000000

000000 0000000000000000

0000000000000000 = 0 (8 byte real)

000000 0000000000000000

0000000000000000

000000 0000000000000000

0000000000000000 = 4 (veccount 4 byte integer)

RM14-64 Reference Materials

001000 0000000000000100

00000000

00000000

OTO@XO 00100100

0000000100001010

00000000

OP@O10 00100000

0100000000000000

01000000

_ . false . (cblend)

= 36 (total byte count)

= 266 (gbndat)

= 32 (count*(dimen+l)*2)

= 1/2(x mantissa)

000001 00000000 = 1/2(y mantissa)

0000000000000000 = 0 (z mantissa)

00000001 exponent=l

3nhOlP 1111111 0

1110000000000000

01100000

intensity=7F(hex) p/1=p

_ -1*x**-2 (x mantissa)

00@000 00000000 = 3*2**-1 {y mantissa)

0100000000000000 = 1*2**-1 (z mantissa)

00000000 exponent=0

31DOOX 1100000 1

0101000000000000

00101000

intensity=60(hex) p/1=1

= 5*2**-3 (x mantissa)

000084 00000000 = 5*2**-4 (y mantissa)

0000000000000010 = 1*2**-14(z mantissa)

00000100 exponent=4

20gcbn 1000000 0

1101111100111100

10111110

intensity=40(hex) p/1=p

_ -2097*2**-13 (x mantissa)

1gHTgh 01110111 = -16777*2**-15 (y mantissa)

0110001001001101 = 25145*2**-15(z mantissa)

11111000 exponent=-8

OIOODO 0001100 1 intensity=OC(hex) p/1=1

0000000000000101 = 5 (data byte count - including

padding)

00000000

1 [0000 O l 101011

00000000

= 107 (gendls)

padding

GSR Internals RM14- 65

0000000000000000

002P0\OOOPO111~~0000;@2D03000

000000000

OOOOOOl0000T0@XOOP@0100000013nhOlP00C~00031D00X00008420gcbnlgHTgh0I00D01

[0000

The vector list is transmitted to the PS 390 using escape mode as follows:

<SOP>2 {route to six bit binary route}

{and send the encoded data}

If the vectors are vector normalized, an arbitrary sized vector list may be
transmitted by sending multiple packets of data as above, without the termi-
nating semicolon. When all of the vectors have been transmitted, they must
be terminated with a semicolon. However the packets must contain com-
plete vectors.

The vectors will be processed faster if the vector estimate (N=vector_esti-
mate) is equal to or greater than the actual number of vectors transmitted.
This is because the PS 390 allocates memory for the vectors based on this
estimate. If the estimate is low, the PS 390 must find a new block of con-
tinuous memory large enough for the total, copy the vectors in the original
block into the new block, and write the new vectors into the block.

RM14-66 Reference Materials

a

PS 390 RELEASE NOTES

EVANS & SZ~'I'HERLAND

April 19$7
E&S #904015-605
Rev B

The contents of this document are not to be reproduced or copied in
whole or in part without the prior written permission of Evans &
Sutherland. Evans &Sutherland assumes no responsibility for errors
or inaccuracies in this document. It contains the most complete and
accurate information available at the time of publication, and is sub-
ject to change without notice.

PS1, PS2, MPS, PS 300, PS 330, PS 340, PS 350, and PS 390 are
trademarks of the Evans & Sutherland Computer Corporation.
DEC, VAX, UNIBUS, and ULTRIX are trademarks of Digital
Equipment Corporation. UNIX is a trademark of Bell Laboratories.
IBM V'M/SP and IBM MVS/TSO are trademarks of International
Business Machines.

Copyright ®19 8 7
EVANS &SUTHERLAND COMPUTER CORPORATION

P.O. Box 8700, 580 Arapeen Drive
Salt Lake City, Utah 8 410 8

CONTENTS

1. GENERAL INTRODUCTION 1

1.1 Notes to New Users

1.2 Notes to Current Users

1.3 Notes to All Users

1.4 Release Package Contents

1.5 Distribution Tape Format and Installation Procedure

1

2

2

3

4

2. INTRODUCTION TO PS 390 5

2.1 System Hardware Overview 5

2.2 Operating Specifications 10

2.3 Multiplexing Box and Peripheral Connections 10, ,

3. RUN'T'IME MODIFICATIONS AND NEW FEATURES 13

3.1 New PS 390 Function 13

3.2 Viewport Considerations 14

3.3 "Soft Labels" Function Network 15

3.4 Multiple GPIO Interfaces 1 b

3.4.1 Interface Configuration Files 17

3.4.2 Ethernet/DECNET Interface 20

3. S Crash Dump File 21

3.6 Additions to F:PICK 22

3.7 UWF Runtime Code Modifications 23

4. PS 390 EXCEPTIONS 2~

Appendix A Crash Dump Information A-1

Error Types/Error Numbers A-1

Crash Dump Program ~ A-7

PART II

Change Pages and Previous Graphics Firmware Release Notes for the PS 300
Document Set

FIGURES AND TABLES

Figure 1. PS 390 Architectural Overiew 6

Figure 2. PS 390 Control Unit 7

Figure 3. Back of Control Unit 8

Figure 4. Port Configuration 9

Figure 5. Front `liew of Multiplexing Box 10

Figure 6. Rear Connections of Mux Box 11

Figure 7. Screen Layout for the PS 390 with Soft Labels 1G

Figure 8. Data in Crash File 21

Table 1. Possible GPIO Combinations 17

Table 2. Required Interface Files 19

M

PS 390 GRAPHICS FIRMWARE RELEASE NOTES
Version A2.V02

1. GENERAL INTRODUCTION

These release notes document functionality of the PS 390 and are intended as a supplement to
the PS 300 Document Set which describes the operation and programming of the PS 300 line of
computer graphics systems. These notes can be placed in the Document Set behind the Release
Notes tab in Volume 3A.

The PS 390 has a new hardware configuration with areduced-size cabinet and a Joint Control
Processor (JCP} card, which are explained in Section 2.1 of these Notes. The hardware
configuration and calligraphic display documented in the Document Set are not applicable to the
PS 390. New users should note that a different set of peripherals is available with the PS 394
although the peripherals documented in the Document Set are also supported under PS 390.
Procedures for using the peripherals with the multiplexing box are explained in Section 2.3.

You should assume that all programming information in the PS 30D Document Set and
accompanying installation manuals (dependent on your particular configuration} is applicable to
the PS 390 unless specifically noted in these Release Notes.

Changes and additions to the PS 300 Graphics runtime firmware and host software released since
the publication of the Document Set are contained in Part II of these Notes. This section
consolidates the information from previous release notes that applies to the PS 390, and includes
formal change pages for the Command and Function Summaries and for the Graphics Support
Routines (GSRs} in the PS 300 Document Set. Please discard the old pages in your .set and
replace with these new pages. Some new pages documenting specific PS 390 functionality and
other pages with new information are included and should be inserted in the appropriate place in
your Document Set.

1.1 Notes to New Users

New users should fa ' 'arize themselves with the information in these notes and in the
PS 300 Document Set and note where PS 390 information contained in this package
differs from information in the PS 300 Document Set.

tjersion A2.V02
April 1987

Page 1

PS 390 RELEASE N®TES

1.2 Notes to Current Users

One of the primary concerns in developing the PS 390 runtime firmware was maintaining
compatibility with previous systems so that existing PS 300 programs would run on the
PS 390 without modification, This was almost completely achieved. However, some
incompatibilities exist because Port 2 is no longer used and there is no support for
DMR-11 interface or multi-user systems. Also, scope 0 is the only scope enabled;
therefore, Set Scope commands (both ASCII and GSR) should not be used.

The PS 390 new hardware configuration with areduced-size cabinet and a Joint Control
Processor (JCP} card is explained in Section 2.1 of these Notes. If you have already
upgraded to a reduced-size cabinet, you should have already received this information.

You should also have Release Notes for Version A 1. V02 and Version A2 , VO 1 of the
graphics runtime firmware. Note that the information contained in those release notes
which reflects current functionality has been consolidated and included in Part II of these
notes .

Current PS 340 users should note that rendering capability on the PS 390 is available
only by ordering the rendering option. Without this option, you can display objects
defined as polygons on the PS 390, but you cannot perform any rendering ,operations.
For users with the rendering option, the PS 390 Rendering Option Release Notes are
included with the PS 390 Release Notes package.

Current PS 3 5 0 users should note that the PS 3 9 0 is plug compatible with PS 3 S 0
applications with the exceptions given in Section 4 of these Notes. Please~ote that the
light pen is not supported with this release. The nodes created by applications using the
Lightpen command (both ASCII and GSR) will be treated as no-operatio~i nodes.

Some PS 390 information contained in this release package is identical to information
and change pages contained in the PS 3S0 I~ser's 1Vlanual. Please note that information
in these release notes supersedes any other documentation explaining s' ' ar or identical
capab° 'ties of the PS 390.

1.3 Notes to All Users

As previously mentioned, a different set of peripherals is offered with the PS 390
although existing peripherals are still supported. Users of existing peripherals and users
with new peripherals must both use a multiplexing box as there is no data concentrator on
the display. Procedures for using the new mux boxes are given in Section 2.3 of ~ these
Notes. Documentation for the new set of peripherals is supplied as a separate document
included with this release package.

Page 2 Version A2. V02
April 1987

PS 390 RELEASE NOTES

Data formats provided for those users with the Parallel Interface or for those who access
internal data are provided in the PS 300 Advanced Programming guide included with this
release package . (PS 3 5 0 users please note that PS 3 9 0 data formats and PS 3 5 0 data
formats are identical) . No new GSRs routines- are provided with this release. GSR
routines supporting new PS 390 capability are planned for future releases.

Please take special note of Section 4 of these Release Notes, which documents PS 390
exceptions to existing PS 300 documentation.

Direct your questions and comments to the Evans &Sutherland Customer Engineering
Hotline 1-800-582-4375 (except Utah) . Within Utah, customers should call 582-9412.

1..4 Release Package Contents

This PS 390 Release Package contains the following items.

• One copy of the Graphics runtime firmware Version A2. V02

For users with the rendering option, this is on the Visualization diskette. Instructions
for loading the firmware are contained in Volume 5 of the Document Set.
Instructions for configuring your firmware diskette according to which options you
have at your installation are contained in section 3 of these Notes.

• PS 390 host software distributed on magnetic tape including (but not limited to) the
following:

- PS 300 Graphics Support Routines (GSRs) . The files READFOR.GSR and
READPAS. GSR contain descriptions of the FORTRAN and Pascal GSR software .

- The PS 300 Host-Resident I/O Subroutines

- Three programming utilities: NETEDIT, NETPROBE, and MAKEFONT (For
VAXI'VMS users only) .

- Writeback Feature

Documentation for the Writeback feature is included in this release package . More
detail on the GSRs, I/O Subroutines, and progranvning utilities can be found in
Volumes 3 and 4 of the Document Set.

• One copy of the Diagnostic Utility Diskette

This diskette provides all the utility programs described in Volume 5 , S ~ c ri o n 10 of
the Document Set. Please refer to that section for instructions on usi ns the ut' 'ty

tjersion A2. VOZ
AprYl 1987

Page 3

PS 390 RELEASE MOTES

programs for backup and file management and make note that the new Diagnostic
U ° 'ty Diskette is the only diskette that should be used to load these programs.

• PS 3 90 Raster Programming guide

This manual documents how to send run-length encoded pixel data to the PS 390.

• PS 300 Advanced Programming guide

This manual is intended for use by experienced programmers as a guide to writing
functions and as a reference for doing direct Physical I/O with the Parallel Interface.

• PS 390 Peripherals Reference Manual

1.5 Distribution Tape Format and Installation Procedure

All PS 390 VAX/~'1VIS sites will receive the distribution tape (PS 390 host software) in
VMS Backup format. To install the VAX PS 390 host software, first create a
subdirectory for the PS 390 software and set your default to that directory. Using the
VMS Backup Utility, enter the following commands°

$ Allocate MTNN:
$ Mount/Foreign MTNN:

$ Backup N[TNN : P SD I ST . BCK [. . .] * .

$ Dismount MTNN:

$ Deallocate MTNN:

where MTNN: is the physical device name of the tape drive being used.

This will create the subdirectory A2V01. DIR which is the parent directory of the PS 39 0
host software.

UNIX sites will receive a 1600-bpi distribution tape in tar format. IBM sites will receive a
1600-bpi distribution tape with a block size of 6400 and a logical record length of 80.

All PS 390 sites that are not DEC VAX/VMS, UNIX, or IBM, will receive a variable
length ANSI format distribution tape containing the PS 390 host software. Consult your
system operation manual for instructions on reading ANSI-formatted tapes.

Page 4 Version A2. X02
April 1987

PS 390 RELEASE NOTES

2. INTRODUCTION TO PS 390

The PS 390 provides the real-time interaction capability and line quality of a calligraphic
system with the flicker-free images of a raster system, combining the desirable features of
both technologies while eliminating the disadvantages of each.

These capabilities were accomplished by the development of several VLSI chips and one
custom gate array designed for the real-time manipulation of anti-aliased raster lines
matching or exceeding the quality of calligraphic lines.

The graphics pipeline of the PS 390 is 32 bits which provides high-precision processing
required for large and complex models. ~ The frame buffer is a 48-bit frame buffer,
double buffered.

With this version of the firmware, you can use the PS 390 monitor to display
host-generated pixel images. The PS 390 accepts raster data in run-length encoded
format. A discussion of how to accomplish this is contained in the PS 390 Raster
Programming manual included with this release package. Existing PS 340 applications
using run-length encoding to display host-generated images will run unchanged on the
PS 390.

The local capability to create, render, and shade polygonal models on the PS 390 is
available with the purchase of the rendering option. With this option, you can display
and manipulate a wireframe model in one viewport of the screen and display the same .
model as a shaded image in another viewport on the screen. Capability now supported on
the PS 340 graphics system is supported on the PS 390 with the rendering option. This
includes the ability to apply sectioning, back-face removal, and hidden-line rendering
operations to wireframe models and to display static images with a wash, flat, Phong, or
Gouraud shading style.

2.1 System Hardware Overview

The PS 390 is housed in a new reduced size cabinet and contains a new Joint Control
Processor (JCP) card. The JCP replaces the Graphics Control Processor, up to two mass
memory cards, and (optionally) the PS 300 IBM 3278 GPIO card. The description of
PS 300 Control Unit in the Document Set is for systems with a larger cabinet and a GCP.
The PS 390 has six basic circuit cards: JCP, Mass Memory {MM}, Arithmetic Control
Processor (ACP) , Pipeline Subsystem {PLS} , Frame Buffer and Bit-Slice Processor
{FBL/BP), and Frame buffer and Video Controller (FBRIVC) . The architecture for the
PS 390 is shown in Figure 1.

Version A2. V02
April 1987

Page ~

PS 390 RELEASE NOTES

JCP _ JOINT (GRAPHICS) CONTROL PROCESSOR
MM - MASS MEMORY (1- to 4-M6YTES)
ACP - ARITHMETIC CONTROL PROCESSOR
F'LS - PIPELINE SUBSYSTEM

IAS390002P3

FBL - FRAME BUFFER LEFT
gP - 61TSUCE PROCESSOR
FBR - FRAME BUFFER RIGHT
VC - VIDEO CONTROLLER
GPIO - GENERAL PURPOSE INTERFACE OPTION

Figure 1. PS 390 Architectural Overview

The free-standing control unit of the PS 390 requires no clearance for operation,
provided that site-specific heat dissipation requirements are met. It is mounted on casters
for easy portability and to provide return air to the unit fan.

The control unit is approximately 5 3 cm (21 inches} wide, ~ 1 cm (2 8 inches} deep, d 7
(2 6 . S inches) high, and weighs 5 5 kg (12 0 pounds) . The top holds over 2 S 0 pounds static
weight; 180 pounds rolling load. (See Figure 2.}

Page 6 Version A2. V02
April 1987

PS 390 RELEASE NOTES

O~i

0 0

0~

~ee~caera

IASRSCOOIP2

Lii L..lI

Figure 2. PS 390 Control Unit

There are two external controls on the PS 390 control unit. One is the ON/OFF circuit
breaker switch, located at the top right of the front panel. This switch is recessed and
surrounded by a protective frame. A RESET switch is located just left of the circuit
breaker. The RESET switch allows the system to be reset instead of powered off during a
system lock or reboot.

The PS 300 floppy disk drives are located at the front of the unit near the upper, right
corner.

The PS 390 uses adouble-sided, quad-density, 5-1/4 inch minifloppy diskette capable
of storing 737,2$0 formatted data bytes on 160 tracks.

At the back of the control unit, above the power distribution panel, is the
communications connector panel. See Figure 3. The panel is vertically aligned, with
ports 0-5 from the top down. . Connectors are externally accessible on the back of the
control unit.

Version A2. V02
April 1987

Page 7

PS 390 RELEASE NOTES

~~~~~~~~ 
~~~r~~~~ 
i~s~i~~~

rs~w~.~~~.~
~~~~~ii~ 

1 1 

- / IASRSCOOIP2 

~....y 

Figure 3. Back of Control Unit 

The standard PS 390 control unit comes with the cards in place. The metal casing on the 
inside of the unit replaces the Faraday cage installed in some older cabinets. 

The PS 390 is FCC Class A certified for emissions and will meet UL 478 and CSA 22.2 
# 15 4 safety standards. 

The new Joint Control Processor (JCP) card consists of two (optionally three) sections: 
Control Processor, Mass Memory, and Interface section. 

The control processor (CP) section is functionally similar to the old graphics control 
processor (GCP) and is based on a 68000 10 MHz microprocessor. 

This differs from the GCP card documented in the Document Set in that: 

- Local memory is increased from 25 6K to S 12K. 

- There is a local path to the JCP resident mass memory that is used instead of the 
Common bus path (GCP systems) thus providing faster access to mass memory from 
the 68000. 

- Four usable asynchronous RS-232 ports are supported (compared to five on the 
GCP) which reside on the Communications Connector Panel. See Figure 4. Port 0 
and Port 2 are physically present but not usable. This means that the DMR-11 
interface is not available with reduced size cabinet systems nor is multi-user 
functionality. 

Page 8 Version A2. VQ2 
April 1987 



PS 390 RELEASE NOTES 

The new port configuration for the PS 390 is as follows: 

Port 1 is the host port. 

Port 3 is the debug port, for diagnostic purposes. 

Port 4 may be used for special interface applications, including an alternate diagnostic 
port. 

Port 5 is used for the peripheral multiplexing box and therefore, is not available for 
your use. 

Interactive 
Devices 

`lti.'.'. :.~: 

Tablet Service Power 

OPTIONS 

R S 232-C 

C 7 
C  J 
C > 
C ) 
C J 
C J 

PORT 0 

PORT 1 

PORT 2 

PORT 3 

PORT 4 

PORT 5 

Figure 4. Port Configuration 

SCOPE 0 

- The Mass Memory section of the JCP card has one megabyte of memory with the 
option of a second megabyte available. 

- The interface section of the JCP provides a location for the optional IBM 3278 
interface. This option allows the PS 390 to communicate with an IBM 3274 control 
unit over a 5 6 KB line . It is functionally a quivaient to the P S 3 0 0 IBM 3 2 7 8 GPI O 
card. Separate GPIO cards are available for high-speed communication interfaces 
other than IBM 3 2 7 8 . 

Version A2. V02 
April 1987 

Page 9 



PS 390 RELEASE NOTES 

2.2 Operating Specifications 

Operating specifications for the PS 390 are as follows. 

Grounding - The PS 390 scope should -share a common ground with the control unit 

Power Requirements - 115V Single Phase ~10% 47-63 Hz, 12 amp (max) 
220V Single Phase: 7 amps (max) for the control unit 

The following limitations are placed on AC power disturbances: 

- A maximum of ~ 10% of nominal power for .1 seconds occurring no more than 
once every 10 seconds. 

- Maximum harmonic content of 5% rms, no more than 3% rms for any single 
harmonic . 

- Maximum impulse of 300V with rise time of .1 microseconds or slower, lasting no 
longer than 10 microseconds total duration. 

Power Consumption - 1380 watts maximum 

Feat Dissipation - 4710 BTUs/hour maximum 

Operating Temperature - 65 ° to 80 °F (18 ° to 27 °C) 

Relative ~-Iumidity - 20% to 80% 

2.3 Multiplexing Box and Peripheral Connections 

Peripherals for the PS 390 are connected to a multiplexing box contained in a three-inch 
pedestal that supports the raster scope. Mux boxes for either set of peripherals supported 
by PS 390 have the same operating instructions noted here. All peripheral connections 
for the mouse, function buttons, control dials, keyboard and tablet are clearly marked on 
the front panel of the mux box. Figure 5 shows the front view of the mux box. 

.___~ ... 
... 

-~J 

i 

•• 
•• 
•~ 
•• 

L„1 

i 

 - ....  ........ ................. 

i 

--~ 

1 

i 
0 

e 

MOUSE BUTTONS DIALS KEYBOARD TA6LET LIGHT POWER 
PEN 

Figure 5. Front View of Multiplexing Box 

Page 10 Version A2. V02 
April 1987 



PS 390 RELEASE NOTES 

The back panel of the multiplexing box has an RS232-C connection, three external 
power connections and two BNC connections marked LPICK and TPSW. The BNC 
connections are reserved for future use. All cables and connections are clearly marked. 
To -maintain EMI integrity, the screws on the RS232-C shielded cable must be tightly 
turned on the connection. The rear panel of the mux box is shown in Figure 6. 

a i a 
LPiCK TPSW 

0 0 

90-130/180-250v-
2A MAX 2A MAX 6/3A 47-63Hz 

~~0~ 
0 
o 

CONTROLLER 
000000000 00000000004000000 

Figure 6. Rear Connections of Mux Box 

Documentation on the new-style peripherals and multiplexing boxes is included as a 
separate manual with this release. Documentation for previous peripherals is contained in 
Volumes 1 and 5 of the PS 300 Document Set. 

version A2. V02 
April 1987 Page 11 





PS 390 RELEASE NOTES 

3. RUNTIME MODIFICATIONS AND NEW FEATURES 

PS 390 runtime firmware supports new PS 390 functionality and existing PS 300 
functionality. Assume that all functionality described in the PS 300 Document Set is 
correct and applicable to the PS 390 unless specifically noted as different in this and 
following sections. 

As previously mentioned, the primary concern in developing the PS 390 runtime was 
maintaining user software compatibility with previous systems. Some incompatibilities 
exist because the reduced-size control unit does not support ports 0 and 2 for use with 
the DMR-11 interface or multi-user systems. 

3.1 Ne~v PS 390 Function 

A new initial function instance, PS390ENV, is provided. This function sets up display 
background color, and selects cursor and cursor color. 

Input <1> is a trigger which accepts any data type to cause the function to run. 

Input <2> is a constant which accepts a 3D vector (hue, saturation -and intensity) to 
specify background color: The default background color is 0, 0, 0 (black} . Saturation 
and Intensity must be in range of [0, 1], otherwise an error message will be generated. 
Hue is in the range of [0,360] . For any value specified outside this range, multiples 
of 360 are added or subtracted to bring it into this range. 

Input <3> is a constant which accepts an integer in the range [0,7] to specify the 
cursor color where 

0 =black 
1 =blue 
2 =green 
3 =cyan 
4 =red 
5 =magenta 
6 =yellow 
7 =white (default) 

Any value outside this range generates an error. 

Version A2. V02 
April 1987 

Page 13 



PS 390 RELEASE NOTES 

Input <4> is a constant which accepts an integer to select the cursor. 

0 =update rate cursor (default) 
1 = system-defined refresh cursor 

Input <S> accepts an integer to specify the video timing format, which is output from 
the video connection on the back of the PS 390 control unit. 

0 = 1024 x 864 non-interlaced (default required by the 
PS 390 display) 

2 = 1024 x 864 interlaced 
3 = 640 x 484 interlaced (RS-170) 

NOTE 

When specifying the system-defined refresh rate cursor, you should leave 
the initial viewports HVP 1$ and GVPO $ unchanged in order to have the 
(hardware) cursor work with picking. 

3.2 Dynamic Viewport Considerations 

Although the raster screen contains 1024 by 1024 addressable pixels, the actual 
displayable area on the raster screen is a rectangle, with pixel addresses going from 0 to 
1023 in X and 0 to 863 in Y, where the physical pixel address 0,0 is in the lower left 
corner. A PS 300 viewport which spans (-1, 1) in both vertical and horizontal directions 
maps onto the full 1024 x 1024 screen so that a rectangular portion along the lower edge 
of the viewport is not displayed. To avoid this situation, all viewports in the display 
structure are initially concatenated with a default viewport in the top display structure 
which maps to a square of 8 64 x 8 64. 

The command 

VPF 1$ : = Viewport Horizontal = -0.8 2 S : 0.8 25 Vertical = -0.6 S :1 Intensity = 0 :1 
Then HVP 1$ ; 

in the boot-time configuration file accomplishes this. 

If you want to override the default and use the entire displayable rectangular screen area, 
the following command can be entered: 

Configure A; 
VPF 1$ : = Viewport Horizontal = -1:1 Vertical = -0 . b S :1 Intensity = 0 :1 

Page 14 Version A2. V02 
April 1987 



PS 390 RELEASE NOTES 

Then HVF 1$; 
Finish Configuration; 

This will cause all the subsequent VIEWPORT commands in the structure to be 
concatenated with this rectangular viewport. In doing so, however, your data must 
account for the non-square viewport. 

To re-establish the- default viewport, use either the commands 

Configure A; 
VPF i $ : = Viewport Horizontal = -0.8 25:0.8 25 Vertical = -0.6 5 :1 Intensity = 0 :1 
Then HVP 1$ ; 
Finish Configuration; 

or 

Screensave := F: Screensave; 

Note that the initialize command does not restore the original viewport. Also, note that 
you cannot override the default viewport with the LOAD VIEWPORT command. 

3.3 "Soft Labels" Function Network 

Included on the distribution tape in the PS 390 Subdirectory is the "soft labels" ASCII 
file, which sets up a structure and network to use a normally unused portion of the screen 
to display function key and dial labels. This file can be incorporated in your SITE.DAT 
file if you have the new peripherals without LED labels. The labels appear on the 
left-hand side of the screen, with the square, default, graphics viewport shifted fully to 
the right. The displayed labels provide visual feedback to the user, but they are not 
pickable. 

The structure and network requires no application software changes, except that the 
label, flabel 14, no longer exists. (This is the 9 6 character label that goes across the entire 
LED area of the standard E&S keyboard with LEDs. } Figure 7 shows this soft labels area 
as it appears on the screen. 

Version A2. V02 
April 1987 Page 1.5 



PS 390 RELEASE NOTES 

F1 

F2 
F3 

F4 

FS 

F6 

F7 

F8 

F9 

F10 
F11 

F12 

D1 DS 

D2 D6 

D3 D? 

D4 D8 

oft Labels Area 

• 

Figure ?. Screen Layout for the PS 390 with Soft Labels 

3.4 Multiple GPIO Interfaces 

The PS 390 runtime firmware supports up to two GPIO interfaces of differing types as 
well a5 asynchronous communications installed in the same system. The default 
configuration is asynchronous, but you have the ability to change your default to configure 
any interface when the system is booted. This is explained in the following section. 

It is also possible to change the configuration without rebooting the PS 390 because the 
runtime determines which of the interfaces are in the system and initializes them all. This 
is achieved through runtime identification of up to two GPIOs at the first two addresses 
assigned to GPIO interface cards. (Refer to Send `UNIBUS' command in 3.4.1 for an 
example of how to do this.) However, there are some limitations to the use of multiple 
GPIOs. First, there cannot be two of the same type GPIOs in the same system. Second, 
if the IBM 3278 option is included, then only one additional GPIO may be added. The 
3278 GPIO running under previous PS 300 systems is not supported under PS 390. Table 
1 shows the possible GPIO combinations. 

Page 16 Version A2. V02 
April 1987 



PS 390 RELEASE NOTES 
• 

Table 1. Possible GPIO Combinations 

1st GPIO 2nd GPIO 

IBM 3278 
(enabled on JCP) 

IBM 5080 

Parallel 

Ethemet/DECNET 

IBM 5080 
Parallel 

EthernetlDECNET 

Parallel 
IBM 5080 

Ethernet/DECNET 

Ethemet/DECNET IBM 5080 

Parallel 

3.4.1 Interface Configuration Files 

The PS 390 runtime is distributed on two diskettes and contains more files than previous 
PS 300 runtime diskettes. This is to allow for ~ the many different corrabinations of 
interfaces possible with the multiple GPIO operation. 

When the PS 390 is booted, the system attempts to read the file, INTFCFG.DAT. If this 
file is not found, the system will boot with the default interface of Asynchronous, and 
display the message INTFCFG. DAT NOT FOUND. To boot with a default interface in 
addition to Asynchronous, the appropriate interface file must be renamed to 
INTFCFG.DAT. This can be done using the Diagnostic Disk Utility program described in 
Volume 5, Section 10 of the document Set. For example, 

Rename ETHERNET. DAT INTFCFG. DAT 

would rename the default interface to Ethernet so that, at boot time, the communications 
interface protocol for Ethernet would be configured. 

The following is a list of the file names on the diskette and which interface each file sets 
up. 

ASYNC. DAT 
IBM3278.DAT 
IBiVI5080.DAT 
UNIBUS.DAT 
ETHERNET. DAT 

Version A2. V02 
April 1987 

Asynchronous communications 
IBM 3278 communications 
IBM 5 0 8 0 communications 
Parallel interface communications 
Ethernet communications (far Ethernet or Decnet) 

Page 17 



PS 390 RELEASE NOTES 

If your system hardware supports two interfaces, you can change the interface during a 
session without rebooting by sending the name of the interface file to input <1> of 
RDCFG$ . For example, the following command, 

Send 'UNIBUS' to < 1>RDCFG$ ; 

would change the communications protocol to the UNIBUS Parallel interface to allow 
parallel communications. 

Table 2 shows the files contained on the PS 390 diskettes which are needed for a 
particular interface. 

Page I S Version A2. V02 
April 1987 



PS 390 RELEASE NOTES 

Table 2. Required Interface Files 

PS 390 File Name ~ Async ~ 3278 5080 Unibus Ethernet 
mmdd390J.EXS Y ~ v v Y 
ACPCODE2.DAT Y Y ti ti ti 
ASYNC.DAT v 

CHARFONT. DAT Y ~ ~ ~ ~ 
CIRCLE. DAT ti 
CONFIG. DAT ~ ~ v ~ ri 
DI11jT'CODE.I?AT ti 
EiNTCODE. DAT ti 
ETHERNET. DAT Y' 
FCNDIC;TY. DAT ri ri ~ Y ~ 
FCNTABLE. DAT ~ y v ~ 

FONT5080,DAT ti 
GPiOCODE. DAT ~ 
HMSCODE.DAT ~ ~ ~ ` ~ 
HMSCOL.DAT ~ ~ ~ v ` ~ 
HMS~IEC.DAT ~ ~ Y Y ~ 
IBM3278.DAT ~ • 
IBM5080.DAT ~ v 
IBMASCII. DAT ti 

r 

ti Y ` `► 
IB MFONT. DAT y ~ ` ~,► Y

IBMKEYBD. DAT t~ t~ ti Y Y 
INITACP. DAT Y Y v y Y 
INITGPIO. DAT ti 
LINLUT. DAT ti ti is Y v 
LUT. DAT y ~ v y v► 
MSGLIST. DAT t~ ti tom' ti ~ 
OVERLAY2 . DAT ti t~ ti Y ~ 
PARSECODE.DAT t~ Y Y ~ v 
PARSDICT. DAT ~ ~ Y Y Y' 
PINTCODE. DAT ~ 
SINE. DAT tom' 
THULE.DAT ~ ~ ~ ~ ~ 

UNIBUS.DAT ti 

Version A2. V02 
April 1987 Page 19 



PS 390 RELEASE MOTES 

All of the interface files assume that the keyboard used is a V'I'100-style keyboard. A 
FALSE is sent to the keyboard handler (either IBMKBD or KB~IANDLER) at the end of 
the file. To use the IBM-style keyboard, the command in the interface file must be 
changed to send TRUE to the keyboard handler. For example, 

Send True to <Z>Kbhandler; 

would accomplish this. 

This also means that full VT100 support is provided with the IBM-style keyboard. 

(Please note that the IBM keyboard is not supported with the initial release of the 
PS 390.) 

3.4. Z Ethernet/DECNET Interface 

The GPIO interface hardware for Ethernet and DECNET is the same. The only 
difference is the microcode that is loaded into the GPIO. Therefore, both microcode files 
are distributed on each disk. The runtime attempts to load a file named 
EINTCODE.DAT. Ethernet is the. default on the disk. The file for the DECNET 
interface is DINTCODE. DAT. If your system supports a DECNET interface, you must 
rename DINTCODE.DAT to EINTCODE.DAT to load the DECNET microcode into the 
GPIO. This can be accomplished by using the Diagnostic Utility program. 

NOTE 

As documented in the Customer Installation and User 1Vfanual ~'S 300 
Ethernet Interface, you must send the assigned Ethernet address to the 
PS 300. The command to do this for the PS 390 is 

Send 'address' to <1>ei ol$; 

Please refer to that manual for instructions on doing this. 

Page 20 Version A2. V02 
April 1987 



PS 390 RELEASE NOTES 

3.5 Crash Dump File 

Another of the new features of the runtime is the writing of a Crash Dump file to the 
diskette in drive 0 when a system crash occurs. This file is always named Crash. dat;1 and 
occupies only 1 block on the diskette . 

If the file already exists it will be overwritten by the new crash information. If the file 
doesn't exist, it will be created. If there is insufficient room on the disk for the file, no 
crash dump file will be written. 

The file consists of the 8 Data, the 8 Address registers, system version, system type, 
program counter, error type, error number, 59 32-bit stack entries, and the 68000 status 
register. Figure 8 shows the structure of the data in the crash file. Appendix A gives 
more information on some of these values. 

DO 

D1 
D2 
D3 
D4 
DS 

Dd 
D7 

AO 

Al 
A2 
A3 
A4 

AS 

A6 
A7 

Sysver 
Systype 

PC 
Errtyp Errnum 

• 

Stack (Z 3 6 Bytes} 
• 

Unused SR 

Figure 8. Data in Crash File 

Version A2. V02 
April 1987 

Fage 21 



PS 390 RELEASE NOTES 
s 

Appendix A also gives an example of a host PASCAL program that reads back the 
Crash.dat file from a PS 300. This program will read the Crash.dat file from a PS 300 
and display the information in a format similar to the debug port on the PS 300. This 
information can be helpful in determining the cause of a crash. 

The READDISK function has an added constant input <2> which accepts a boolean. If 
there is a true on input <2> after the file specified on input < 1> is read, the file is deleted. 

One possible use of this function is that an application program on the host could read 
and maintain crash file information. For example, a host program could have a start up 
procedure that checks to see if a crash file exists and then logs it in a host file. By reading 
and then immediately deleting this file, the program prevents the logging of crash files that 
were already recorded. The existence of a crash file would indicate that a crash had 
occurred since the last time the host program was run. 

3.6 Additions to F:PICK 

The PS 390 pick function, F:PICK, has three additional inputs. Input <4> is a real 
number between 0 and 1 that defines the pick window half size for the ACP pass of the 
pick . This is different from the size set by the SET PICKing~LOCation operation node. 
The Line Generator or the Frame Buffer uses the operation node to determine if a pick 
has occurred, while the ACP uses input <4> to do the actual pick pass on the data. 

Input <S> is an integer specifying pick pass retries. Since it is possible that the ACP will 
not find the picked data during a pick pass, input <5> indicates the number of times to 
add the window half-size increment on input <b> and try another pick pass. 

Input <6> is a real number between 0 and 1 which specifies the amount to increase the 
pick window half size on each retry of the pick pass. 

The defaults for each input are: 

Input <4> 4.8359E-3 
Input <5> 4 
Input <b> b.8359E-3 

Page 22 Version A2. V02 
April 1987 



PS 390 RELEASE NOTES 

3.7 UWF Runtime Code Modification 

The stack allocation scheme for User-written functions (UWF) has been changed. The 
UWF stack is now allocated when functions are downloaded rather than when they 
execute. As each function is processed by the SREC_GATHER function, the stack size 
requested is checked against the size of the currently allocated stack. If the requested 
stack size is the same or smaller, no action is taken. If the requested stack size is larger 
than the currently allocated stack, the current stack is disposed and a new one is 
allocated. All UWFs therefore use the same stack area. This allocation scheme 
eliminates the time previously required to allocate and deallocate a stack block on each 
execution of a UWF. Note that when UWFs are used, the one with the largest stack 
request should be loaded first. 

Version AZ. V02 
April 1987 

Page 23 



e 



PS 390 RELEASE NOTES 
• 

4. PS 390 EXCEPTIONS 

PS 390 functionality is the same as described in existing PS 300 documentation with the 
exception of the following. 

There is no support for Port 0 and Port 2 of the control unit, DMR-11 interface, 
multi-user, or any scope other than scope 0. 

The default viewport of the PS 390 is 864x864 centered on the raster display. You can 
change this by using the commands described in Section 3.2, but you cannot modify the 
this default viewport using the Load Viewport command. 

Local hardcopy is not supported. Host hardcopy is available through the Writeback 
feature included with this release. 

Reading back of pixel data from the PS 390 to the host is not supported nor is the loading 
of user-defined color lookup tables or the display of anti-aliased objects in overlay mode. 
This functionality is planned for future releases. 

The lightpen is not supported. 

There are no vector-normalized vectors; all ASCII and GSR vector list commands which 
do not specify block-normalized vectors will create 32-bit block-normalized vectors 
internally in the PS 390. (No modifications to ASCII commands or GSR routines are 
required. ) 

There is no "per vector" intensity specification available. 

There is no color blending (color by vector) available. 

Zero length vectors cannot be picked. 

There is no allowance for the display of transformed data (data output by 
F:XFORMDATA} . However, a limited form of access to the data generated by the 
F:XFORMDATA function has been provided to allow certain user-written functions (and 
the CPK modeling firmware) to perform properly. Please note the following restrictions 
on the use of transformed data on the PS 390: 

- F:XFORMDATA outputs anon-displayable data type (vector-normalized vector 
list) . 

- Asingle-precision vector list is generated by F:XFORMDATA. 

- Only three-dimensional data can be transformed. 

F:XFORMDATA can still be connected to F:LIST to enable the host to read the 
transformed data retrieved from the PS 390. 

Version A2. V02 
April 1987 

Page 2~ 



PS 390 1tELEASE NOTES 

Existing PS 300 applications that create nodes with functionality not yet supported by the 
PS 390 will be treated as no operation nodes. 

Page 26 Version Ago V02 
April 1987 



APPENDIX A 

Crash Dump Information 

The System Version is a number generated indicating the date the runtime was created. For 
example, a value of 11148 6 means the system was created on Nov. 14, 19 8 d . 

The system type is a three digit number indicating the type of system that is being used. The first 
digit on the left is a 1 for GCP, 2 is reserved, 3 for JCP. The second digit, 1, is reserved, 2 is for 
320, 3 is for 330, 4 is for 340, 5 is for 350 and b is for 350/340. The last digit is 0 for Async or 
any JCP, 1 for IBM 3278, 2 for Parallel, 3 for IBM 3250/5080 and 4 for EthernetlDECNET. 
Digit 3 will always be 0 for JCP systems. For example a value of 350 indicates JCP 350. 

Error TypeslError Numbers 

There are three crash error types in the PS 300. Each type has a set of error numbers associated 
with the type. The three types are: 

1. System Errors 
2. Traps 
3. Exceptions 

The following is the list of errors for each type. 

Type 1 —System Errors 

1 Track number out of range 
2 Disk drive not ready 
3 Disk remains busy after a seek 
4 Block number out of range 

Version AZ. V02 
April 1987 Page A-1 



PS 390 RELEASE NOTES 

6 Lost data during read 
7 Record not found during read 
8 Data CRC error during read 

9 ID CRC error during read 

B Lost data during write 
C Record not found during write 

D Data CRC error during write 

E ID CRC error during write 
F Write fault 

10 Disk is write protected 
11 Lost data during format 
12 Write fault during format 
14 Disk drive number out of range 

15 Seek error 
16 Drive not ready during read 

1? Drive not ready during write 
18 Disk not at track ~ after restore command 

19 Disk busy after restore command 
lA Track number out of range during format 

1B Drive not ready during format 
iC Disk write protected during format 

iD Time out during read 
1 E Time out during write 
1F Tirne out during format 
64 Wait maybe called with nil argument 
b5 Wait maybe called with anon-function 
66 Wait maybe, already a function waiting 

67 Wait maybe, parameter function waiting elsewhere 

6 8 Q ship to an unrecognized Namedentity 
69 Msgcopy, Message type shouldn't be copied 
6A Msgcopy, Msg type Has structure, unknown to Msgcopy 
6B Send, ' Me' =nil 
6C Send, ' Me' not a function instance 
6D Send, No such output port for this function 
6E Rem conn/Add conn, A 1 =nil — —
6F Add conn, A2 =nil 
70 Findqueue, Named item =nil 
71 Findqueue, illegal queue number (queue no o < 0 or queue no o > no a of inputs 

for function) 
7 2 Allinpwait, Nmin > Nmax 
7 3 Allinpwait, Nmin < 1 
74 Tmessage, Waiting and n = ~ 
75 Cmessage, Waiting and n = ~ 
76 Lookmessage, Waiting and n = ~ 
77 Allinputs, Nmin > Nmax 

Page A-2 Version A2. V02 
April 1987 



PS 390 RELEASE NOTES 

78 Allinputs, Nmin < 1 
7 9 Fcnnotwait, Me =nil 
7A Findqueue, found a nil queue ! 
7B Waitnextinput, n = ~ 
7C Anyoutputs, Me =nil 
7D Anyoutputs, illegal outset number 
7E Anyoutputs, no outset where there should be 
7F Fdispatch, function failed to re-queue after running 
8 0 Text text, B 1 < ~ 
81 Char text, b < ~ 
8 5 Error during disk read 
8 D Initial structure not correct 
8E AnnounceUpdate List tail = nil;head < > nil 
8F FormatUpdate Somebody's sleeping in my bed 
90 FormatUpdate Ready Head not nil but Tail is 
91 Bad code file -- illegal Op 
92 ByteIndex Invalid Acpdata type 
93 FormatUpdate, PASCAL Head not nil but Tail is 
94 Vec_size, Invalid Acpdata type 
9 5 KillUpdate, Updfetch was < ~ 
9 6 KillUpdate, Some one was sleeping in my bed 
9 7 Vec bias, Invalid Acpdata type 
9 9 CntCapacity, Invalid Acpdata type 
9C Unknown brand of Namedentity 
9D Hasstructure knows something I don't 
9E Amuhead not a Qalphapair 
A 1 AppendVector, Invalid Acpdata type 
A3 Nomemsched, Bad .Status for a fcn 
A9 Bad update list on ACP time-out 
AA ACP Timeout during initialization 
AB Crashprepare, Name CRASH$ has not been defined 
AC DecLTpdsync, C header " . Updsync < ~ 
AD FormatUpdate, Someone waiting in C_header " . Updswait already 
AF Someone else waiting in C header " .Killer already 
BO Non-nil Qwait of a dying function 
B3 Microcode won't fit into ACP 
B 4 Implementation limit on delta waits (2'` '` 31) 
B 8 detected internal inconsistency 
B9 detected error (passed a bad parameter) 
BA diskette's parsecode table inconsistent with parser 
BD Bad boundary on binary data xfer 
BF default Devsts contains errors 
CO Inwait, f is already waiting or not a function 
C 1 Outwait, f is already waiting or not a function 
C2 ECO Level of GCP does not support 5 bK Baud Line 

Version A2. V02 
April 1987 Page A-3 



PS 390 RELEASE NOTES 

C3 Port 1 Configuration is invalid for 5 6K Baud Line Support 
C9 User generic function stack overflow 
CA Ug run_cnt has become negative 
CB User generic function has bad alpha (on private queue) 
CC Bad format of MSGLIST .DAT detected 
CD MSGLIST (or code using it) has probably been corrupted 
CF Apparent datastructure incompatibility 
DO Bad MemOKindex detected 
D 1 routine passed bad parm (e . g. , a nil ptr) 
D2 Lines to IBM system not active 
D3 Floppy disk file INITGPIO. DAT; not found or unable to read 
D4 Floppy disk file GPIOCODE.DAT; not found or unable to read 
DS Floppy disk file IBMFONT. DAT; not found or unable to read 
D6 Floppy disk file IBMKEYBD.DAT; not found or unable to read 
D7 Floppy disk file IBMASCII.DAT; not found or unable to read 
D8 IBM GPI® timeout 
D9 No. of minimum inputs is negative 
DA No. of maximum inputs < No. of minimum inputs 
DB No. of maximum inputs > #inputs for function 
DC Sendlist detected a bad list 
DE Sendmess: message to be sent is NIL 
DF Caller did not have a lock set already 
EO Curfcn in improper state to call Getinputs 
E 1 Cleanin, Curfcn in improper state to call Cleaning (e . g. , have you first called 

Getinputs?) 
E2 Somebody remembered a forgotten non-fcninstance 
ES Alpha not already locked by caller 
E6 Confusion in discarding bad message 
E7 Lock not already set by caller 
E8 Probable multiple master GCPs 
E9 RemOne, Curfcn does not have that many inputs 
EA RemOne, Message to be deleted and message pointed to by Curinputs is not the 

same 
EB Lock not already set in Gatheraupdate call 
ED Get2locks detected lock already set 
EE Error in semantic routine for polygon vertex 
EF Destination Alpha was not already locked 
FO Parent not already locked in add/remove from set 
F 1 Child not already locked in add to set 
F3 Alpha not already locked in Gpseudoaupdate 
F6 Confusion about locks or decausages 
F7 Unknown tap reason 
F8 Unanticipated state at which to see shoulder tap 
F9 Illegal number of inputs 
FC No existing DCB found for this user 

Page A- 4 Version A2. V02 
April 1987 



PS 390 RELEASE NOTES 

FD Timeout, Message on input 1 disappeared before fcn could get it 
FE Error while initializing disk drive 
FF Error while reading disk header 

100 Error while reading disk directory 
101 THULE .DAT not found on disk 
102 Error while reading THULE. DAT 
103 Curfcn was not active at entry 
104 Viewport not in structure 
105 Real simple, number of digits requested out of range (n < 1 or n > 9) 
10 b Getr~extone, illegal queue specified 
107 Getnextone, msg on head of queue and specified by Curinput do not agree 
10 8 Getnextone, no message on queue, but Curinput < > NIL 
109 ContBlock, nil block 
10A Timeout when waiting for all on-line GCPs 
10B Rehash only works first time, only time now. 
lOC No processor has right to issue this. tap 
lOD GetVector, Not an Acpdata block 
l0E GetVector, Not a vector Acpdata block 
lOF Invalid gpacket received 
110 Tolerance on FCnearzero is absurd 
111 set construct of father has no dummy control block 
112 function code has to be of type CI to have elements included and removed 
113 ShadeEnviron node encountered in non PS 340 

Type 2 -Traps 

0 No mass memory on line, or too little to come up 
1 More OKINTs than NOINTs or > 128 NOINTs 
2 Free storage block size bad (on request or in free list) 
3 Attempt to Activate anon-function (or nil} or bad software detected during startup 

(most commonly, incompatible datastru.sa detected but perhaps invalid startup 
routine sequencing (if someone has been mucking around with it) ) 

4 NEW call failed to find memory, within NOMEMSCHED 
5 Attempt to queue where a function is already waiting 
~ Systemerror (n) 
7 Badfcode (Fcn) 
8 Mass Memory Error Interrupt 
9 Utility Routine not included in this linked system 
A Probable multiple DISPOSE of the same block 
B Block exponent not big enough 
C Attempt to divide with a divisor which is too small in FixLongDivide (twice the 

dividend must be less than the divisor) 
D (Used by Motorola PASCAL) 

Version A2. V02 
Aril 1987 

Page A-.5 



PS 390 RELEASE NOTES 

'Type 3 —Exceptions 

0 Reset: Initial SSP 
1 Reset: Initial PC 
2 Bus Error (i.e. attempt to address nonexistent location in memory) 

3 Address Error (i.e. attempt to access memory incorrectly, for example an 
instruction not starting on a word boundary) . 

4 Illegal instruction 
5 Zero Divide 
6 CHK Instruction 
7 TRAFV Instruction 
8 Privilege violation 
9 Trace 

10 Line 1010 Emulator 
11 Line 1111 Emulator 
24 Spurious interrupt 

Page A-6 Version A2. VOZ 
April 1987 



PS 390 RELEASE NOTES 

Crash Dump Program 

Following is an example of a Pascal host program that writes the information from the PS 300 
crash file into a host file. 

PROGRAM CRASH (Input, Output, Outfile) ; 

CONST 
%INCLUDE `PROCONST. PASINOLIST' 

TYPE 
%INCLUDE `PROTYPES.PAS/NOLIST' 

cheat 4 =RECORD 

CASE Boolean OF 
TRUE : (i : Integer) ; 
FALSE : (c : Array[1..4] OF CHAR) 

END; 

cheat 2 =RECORD 

CASE Boolean OF 
TRUE : (i : [WORD] 0..1024) ; 
FALSE : (c : Array[1..2] OF CHAR) 

END; 

Buffer =RECORD 
CASE Boolean OF 

TRUE : (b : P_VaryBuftype) ; 
FALSE : ({ Length of P VaryBuftype is in Dummy} 

Dummy : [WORD] 0..1024; 
Dreg :Array [0..7j of Cheat_4; 
Areg :Array[0..7j of Cheat_4; 
SVer :Cheat 4; 
Stype : Cheat_4; 
PC :Cheat 4 ; 
Errtyp :Cheat 2; 
Errnum :Cheat 2; 
Stack :Array [ 1.. S 9 j of Cheat_4; 
Not Used :Cheat 2; _ _ 
SR Cheat_2} 

END; 

Version A2. V02 
April 1987 

Page A~7 



PS 390 RELEASE NOTES 

VAR 
Devtyp : Integer; 
Inbuff P VaryBuftype; 
OutBuff : Buffer; 
Found :BOOLEAN; 
Outfile : text; 

%INCLUDE ' PROEXTRN. PAS/NOLIST' 

%INCLUDE ' VAXERRHAN. PAS/NOLIST' 

PROCEDURE Init~s300; 

FUNCTIONAL DESCRIPTION: 

Initialize the comet link to the PS 300 

} 

VAR 
a, Modify : P Varyingtype; 

BEGIRT 
Write ('Enter Type of Interface (1=Async, 2=Ethernet, 3=Parallel) :' } ; 
Readln ( Devtyp ) ; 
Write ('Enter Device name :') ; 
Readln (a) ; CASE Devtyp OF 

1 
Modify :_ ' LOGDEVNAM=' + a + ' /PHYDEti'TYP=ASYNC' ; 

2: 
Modify : _ ' LOGDEVNAM=' + a + ' /PHYDEVTYP=ETHERNET' ; 

3: 
Modify : _ ' LOGDEVNAM=' + a + ' /PHYDEVTYP=PARALLEL' 

OTHERWISE 

END; 
PAttach ( Modify, PI_Error_handler) 
END; 

Page A- 8 Version A2. V02 
April 1987 



PS 390 RELEASE NOTES 

PROCEDURE Trigger_read; 

FUNCTIONAL DESCRIPTION: 

Create instance of function network to retrieve CRASH.DAT file from disk. The 
network will convert the data block to six-bit format and break it into packets of 72 
bytes which will be put on host_message. 

} 

BAR 

a :CHAR; 

PROCEDURE BREAKUP; 
{ Code generated by Network Editor 1.08 } 
{ This function network takes an incoming gpacket and breaks it } 
{ into smaller packets to be sent over a terminal line since } 
€ most terminal handlers have some limit to the input length } 
{ BREAKUP } 
BEGIN 
{ Frame 1: } 

PFnInstN (' Break_sync' , 'SYNC' , 2, 
PI_Error_handler) ; 

PFnInst ('Break route' , ' B RO UTEC' , 
PI_Error handler) ; 

PFnInst (' Add_constant' , 'CONSTANT' , 
PI_Error handler) ; 

PFnInst (' Break_add' , ' ADDC' , 
PI_Error_handler) ; 

PFnInst ('Breakup' , 'TAKE_STRING' , 
PI_Error_handler) ; 

PFnInst (' In_length' , ' LENGTH_STRING' , 
PI_Error_handler) ; 

PFnInst (' Len_compare' , ' GTC' , 
PI_Error handler) ; 

PFnInst (' Route_string' , ' B RO UTE' , 
PI_Error handler) ; 

PFnInst (' Route_start' , ' BROUTE' , 
PI_Error handler) ; 

PFnInst (' cvt' , ' CVT8TO6' , 
Pi_Error_handler) ; 

PFnlnst ('rd', 'READDiSK', 
PI_Error handler} ; 

Version A2. V02 
April 1987 Page A-9 



PS 390 RELEASE NOTES 

PFnInst (' prnt' , 'PRINT' , 
PI_Error handler) ; 

PFnlnst (' Breakup_in3' , 'CONSTANT' , 
PI_Error_handler) ; 

PConnect ('Break sync', 1, 1, 'Breakup', 
PI_Error handler) ; 

PConnect (' Break_sync' , 1, 2, ' Break_route', 
PI_Error handler) ; 

PConnect {'Break sync' , 2, 2, 'Breakup' , 
PI_Error handler) ; 

PConnect ('Break sync' , 2, 2, ' Break_sync' , 
PI_Error handler} ; 

PConnect ('Break sync' , 2, 2, 'Break add' , 
PI_Error_handler) ; 

PConnect ('Break_route', 1, 1, 'Add_constant', 
PI_Error_handler} ; 

PConnect ('Break route', 1, 2, 'Route_string', 
PI_Error handler) ; 

PConnect (' Add_constant' , 1, 1, ' Break_add' , 
PI_Error handler) ; 

PConnect ('Break add', 1, 2, 'Break add', 
PI_Error_handler) ; 

PConnect ('Break add' , 1, 2, 'Route start' , 
PI_Error handler) ; 

PConnect ('Break_add', 1, 1, 'Len_compare', 
PI_Error handler) ; 

PConnect ('Breakup', 1, 1, 'cvt', 
PI_Error handler) ; 

PConnect ('Breakup' , 2, 1, ' Break_route' , 
PI_Error handler) ; 

PConnect ('Breakup' , 2, 1, ' Breakup_in3' , 
PI_Error_handler) ; 

PConnect ('In_length', 1, 2, 'Len_compare', 
PI_Error_handler) ; 

PConnect ('Len_compare', 1, 1, 'Route_string', 
PI_Error handler) ; 

PConnect (' Len_compare' , 1, 1, 'Route start' , 
PI_Error handler) ; 

PConnect ('Route string' , 2, 1, 'Breakup' , 
PI_Error_handler) ; 

PConnect (' Route_start' , 2, 2, 'Breakup' , 
PI_Error_handler) ; 

PConnect ('cvt', 1, 1, 'host_message', 
PI_Error_handler) ; 

PConnect ('rd' , 1, 1, ' Break_sync' , 

Page A-~ 10 Version A2. V02 
April 1987 



April 1987 

PS 390 RELEASE NOTES 

PI_Error handler) ; 
PConnect ('rd' , 1, 1; ' In length' , 

PI_Error_handler) ; 
PConnect ('rd' , 2, 1, 'prnt' , 

PI_Error handler) ; 
PConnect ('prnt', 1, 1, 'host_message', 

PI_Error_handler) ; 
PConnect (' Breakup_in3' , 1, 3, 'Breakup' , 

PI_Error_handler) ; 
PSndStr(CHR(36), 2, 'cvt', 

PI_Error_handler) ; 
PSndFix (48, 3, 'Breakup', 

PI_Error_handler) ; 
PSndFix (4 8, 2, ' Breakup_in3' , 

PI_Error_handler) ; 
PSndFix (4$, 2, 'Add_constant', 

`PI_Error handler) ; 
PSndFix (1, 2, 'Break sync', 

PI_Error_handler} ; 
PPutPars ('Set priority of prnt to 9 ; ' , 

PI_Error handler) ; 
END; 

BEGIN 
IF Devtyp = 1 
THEN 

Breakup 
ELSE 

BEGIN 
PFnInst ('rd' , ' READDISK' , 

PI Error handler) ; 
PFnInst ('prnt' , 'PRINT' , 

PI_Error handler} ; 
PConnect ('rd' , 2, 1, ' prnt' , 

PI_Error_handler) ; 
PConnect ('prnt', 1, 1, 'host message', 

PI_Error handler) ; 
PConnect ('rd', 1, 1, 'host message', 

PI_Error handler) ; 
PPutPars ('Set priority of prnt to 9 ; ' , 

PI_Error handler) ; 
END; 

Write (' Do you want to delete CRASH. DAT after reading?') ; 
Readln (a) ; 

a 

Version A2. V02 Puge A-11 



PS 390 RELEASE NOTES 

THEN 
Psndbool ( TRUE, 2, 'rd' , PI_Error handler) 

ELSE 
Psndbool( FALSE, 2, 'rd', PI_Error handler}; 

Psndstr ( 'CRASH' , 1, 'rd' , PI_Error_handler} 
PPurge ( PI_Error handler ) ; 
END; 

PROCEDURE Get data block; 

{ 

FUNCTIONAL DESCRIPTION: 

Read in data from PS 300, convert to 8 bit and put in buffer 

{ 

VAR 
i,j,Temp : Integer; 
Done :BOOLEAN; 

PROCEDURE Cvt 6 8 
(Inblock : P_VaryBuftype 
VAR Outblock : P_VaryBuftype; 
Factor : Integer} ; 

VAR 
w :cheat 4; 
c_out, cycle_count,il,tc : INTEGER; 
First :BOOLEAN; 

BEGIN 
i ._ 1. .- , 
First := TRUE; 
Cycle_count : = 1; 
c out :=4; 
WHILE i <= LENGTH (Inblock} DO 

BEGIN 
tc : = ORD (Inblock [i] } -Factor; 
IF First 

THEN 
IF tc < 0 
THEN 

cout :=4+tc 
ELSE 

a 

Page A®12 Version A2. V02 
April 1987 



PS 390 RELEASE NOTES 

BEGIN 
First := FALSE; 
w.i := tc; 
cycle_count := SUCC(cycle_count} 
END 

ELSE 
BEGIN 
w.i := w.i 64; 

cycle_count := SUCC (cycle_count} 
END; 

IF cycle_count > b 
THEN 

BEGIN 
FOR it : = 1 TO c out DO 

Outblock : = Outblock + w. c [il] ; 
cycle_count : = 1; 
First : = TRUE 
END ; 

i : = SUCC (i} ; 
END ; 

END; 

BEGIN 
Done := FALSE; 
Found : = TRUE; 
WHILE NOT Done DO 

BEGIN 
Pgetwait( Inbuff, PI_Error_handler 
IF Inbuff ="'TRUE "' 
THEN 

Done := TRUE 
ELSE ` 

IF Inbuff ="'FALSE"' .<<. 
THEN 

BEGIN 
Done := TRUE; 
Found := FALSE 
END 

ELSE 
IF Devtyp = 1 

Version A2. V02 
April 1987 Page A-13 



PS 390 RELEASE NOTES 

THEN 
Cvt 6_8 ( Inbuff, Outbuff.b, 3b} 

ELSE 
FORi := 1T080D0 ' 

FOR j := 4 DOWNTO 1 DO 
Outbuf f . b : = Outbuf f . b +Inbuff [ (i-1) * 4 + j ] ; 

END; 

{ It is necessary to reverse Errnum with Errtyp } 
{ and Not_Used with SR } 

IF Found 
THEN 

WITH Outbuf f DO 
BEGIN 
Temp : = Errnum. i; 
Errnurn.i := Errtyp.i; 
Errtyp , i : = Temp ; 
Temp := Not Used.i; 
Not Used.i := SR.i; 
SR.i := Temp; 
END; 

END; 

.« 

Page A-14 ijersion AZ. V02 
April 1987 



PS 390 RELEASE NOTES 

PROCEDURE Display_crash; 

{ 

FUNCTIONAL DESCRIPTION: 

Display Crash info on terminal 

{ 
PROCEDURE Dumpit; 

VAR 
SP, j , k, slot, clot : INTEGER; 
tc :CHAR; 

Sline :PACKED ARRAY [ 1..15,1..16] OF 
CHAR; 

BEGIN 
Rewrite (Outfile) ; 
V'VITH Outbuff . DO 
BEGIN 
Writeln (Outfile} ; 
Write (Outfile,' PC=' ,HEX ( PC. i, 8 , 8)) ; 
Write (Outfile,' SR=',HEX ( SR.i, 4, 4)) ; 
Write (Outfile,' STYPE=', Stype.i: 3} ; 
Write (Outfile,' SVER=', Sver.i: 6) ; 
Write (Outfile,' ETYPE=' ,HEX ( Errtyp . i, 4, 4)) ; 
Write (Outfile,' ENUM=' ,HEX ( Errnum. i, 4, 4) } ; 
Writeln (Outfile) ; Write (Outfile,' DO-D7=') ; 
FORj :=OTO7DO 

Write(Outfiie,' ',HEX( Dreg[j].i, 8, 8)); 
Writeln (Outfile) ; 
Write (Outfile,' AO-A7=') ; 
FORj :=OTO7DO 

Write(Outfile,' ',HEX( Areg[j].i, 8, 8}); 
Writeln (Outfile} ; 
Writeln (Outfile} ; 
Writein (Outfile,' STACK=') ; S P : = Are g [ 7 ] . i + 14 ; 
FOR j := 1 TO 15 DO 

BEGIN 

Cloc : = 4 ; 
FOR k : = 1 TO 16 DO 

BEGIN 

Version A2. V02 Page A-1 ~ 
April 1987 



PS 390 REi.EASE NOTES 

IF sloc < 60 
THEN 

BEGIN 

s 

tc:= Stack[sloc~ .c [cloc] ; 
IF tc > CHR(12'7} 
THEN 

tc:= CHR(ORD (tc) — 128) ; 
IF (tc < CHR(32)) OR 

(tc = CHR(12'1)) 
THEN 

ELSE 

END 
ELSE 

C1oc : = Cloc — 1; 
IF Cloc = 0 
THEN 

BEGIN 
Cloc := 4; 
Sloc : = Sloc + 1 
END ; 

END; 

Write (Outfile, HEX ( S P, 8 , 8) ,' ') ; 

Cloc := 4; 
FOR k : = 0 TO 15 DO 

BEGIN 
IF sloc < 60 
THEN 

Write (Outfile,' ' ,HEX ( ORD (Stank [s1ocJ . c [clocj) , 2, 2} } 
ELSE 

Write (Outfile,' 00' } ; 
Cloc : = Cloc — 1; 
IF Cloc = 0 
THEN 

BEGIN 
Cloc := 4; 
$lOc . — S10C ~- 1 
END; 

END; 
Write (Outfile,' ') ; 
FORk:= 1T0 16 D0 

Write (Outfile, Sline [ j , k J) ; 

Page A~ 16 tjersion AZ. V02 
April 198? 



PS 390 RELEASE NOTES 

Writeln (Outfile) ; 
SP := SP + 16 
END 

END 
END; 

BEGIN 
IF Found 
THEN 

Dumpit 
ELSE 

Writeln (' Crash file not found ' ) 
END ; 

BEGIN 
Init~s300; 
Trigger read; 
Get data block; 

i .~ 

Display_crash; 
PDetach( PI_Error handler} ; 
END . 

Version A2. V02 
April 1987 Page A-17 





PART II 

Change Pages And Previous Graphics Firmware Release Notes 

A consolidation of Versions A 1. V02 and A2. VO 1 of the PS 300 Graphics Firmware 
Release Notes are included~in this package. Current customers should already have this 
Information. Also included are change pages specific to PS 390 functionality. 

The following commands and functionality have been added since the publication of the 
Document Set. The new commands have been formatted as supplement pages for the 
PS 300 Command Summary. The list below gives the new commands and a brief descrip-
tion. 

Load Viewport ~ Loads a viewport and overrides the previous viewport (can 
not be used to modify default viewport) . 

Set Blinking ONIOFF Creates blinking nodes to specify whether blinking is enabled 
in the specified structure. 

Set Blink Rate Specifies the blink rate. 

Set Line Texture Specifies pattern for hardware texturing of displayed lines. 

Writeback Enables writeback for the data structure below the writeback 
node. 

Rawblock Allocates memory that can be directly managed by a 
user—written function, or the Parallel or Ethernet Interfaces. 





GRAPHICS FIRMWARE RELEASE NOTES 

(1 Version A 1.1/02 -March 1985 

DOCUMENTATION INFORMATION FOR ALL USERS 

Important corrections to errors in the PS 300 Document Set are provided on the 
following pages. Please note these changes in your document set. New pages for 
previously undocumented functions are included here. 

Several documents have been changed. The documents and the changes are 
summarized below. If you would like to have the newest version of any of these 
documents, please contact your E&S Account Executive. 

• User-Written Functions: revised to correct errors in the document and 
provide templates with more complete instructions, as well as r~~or e 
information on writing various types of functions. 

NOTE 

A2.UO2 - This manual has been completely revised and 
included in the PS 300 Advanved Programming manual 
that has been provided to you as a seperate dccu r-nen t for 
the A2.V02 release. 

• NETEDIT; revised to support the new version of NETEDIT. 

• Introduction to Data Driven Programming Methodology: notes have 
been added to this document to clarify misleading information. 

• PS 300 Appl ication Notes: new Notes have been added. 



i 



GRAPHICS FIRMWARE RELEASE NOTES 

r"1 Version A1.V02 -March 1985 

Information far PS 300/IBM 3278 Interface Users 

Enhancements and New Features in the PS300/IBM 3218 Firmware 

• The PS 300/I8M 3278 Terming! Emulator Setup mode now includes keys that 
will inhibit the display of the cursor, the PS ~~~0 indicator characters, and 
the host indicator characters. Inhibition o f these screen characters is 
accessed by entering Setup mode, c ALT/GRAPH or ALT/SETUP on the IB(~1 
3278-style keyboard, SETUP on the VT 100-style keyboards) and toggling the 
appropriate keys. 

Once in Setup (shown by the display of the PS 300 indicator character 'S' on 
the bottom line of oche screen), the following new Setup features are 
available: 

FUNCTION KEY FEATURE 

F6 Toggles the display of the PS 300 characters. Default is 
the display o f the characters. 

F7 Toggles the display of the host indicator characters. 
Default is the display of the characters. 

F8 Toggles the display of the cursor. Default is display of 
the cursor. 

Function keys F9 and F10 are used in conjunction with the PS 300IIBM 3250 
Interface. Information on the use of these keys is available ire the 
PS 300/IBM 3250 Interface User's Manual . 

The adjustments made in Setup can be entered as PS 300 commands in the 
SITE.DAT file to set the appropriate characteristics at boot time. 

The list below shows the characters that should be entered into the 
SITE.DAT file for each new feature. 

For VT 100-style keyboards, the appropriate characters) must be inserted 
between a 'TVo TVo' header and trailer sequence. TVo is a CTRL V 
lowercase "o" sequence: 



GRAPHICS FIRMWARE RELEASE NOTES 

Version A 1.V02 -March 1985 

FEATURE

Set/Reset Local Indicators 
Set/Reset Host Indicators 
Set/Reset Cursor 
Set 3250 Mode 
Set PS300 Mode 

CHARACTERS TO BE ENTERED INTO SITE.DAT 

SEND ' 1'VoTVfTVo' TO < 1 ~ I BMKBD 1 ; 
SEND 'TVoTVgTVo' TO <1>IBMKBDI; 
SEND 'TVoTVhTVo' TO <i>IBMKBDI ; 
SEND 'TVoTViTVo' TO ~1>IBMKBDI; 
SEND ' TVo1'V~ TVo' TO < > > I BMKBD 1 ; 

For IBM—style keyboards, the appropriate characters must be inserted between 
a CHAR(13Q)&CHAR(n)&CHAR(130) sequence, where &CHAR(n) is the 
character sequences) for the feature: 

FEATURE CHARACTERS TO BE ENTERED INTO SITE.DAT 

Set/Reset Local Indicators SEND CHARC 130)&CHARC 150)&CHARC 130) TO <1 >IBMKBDI ; 
Set/Reset Host Indicators SEND CHARC130)&CHARC151)&CHARC]30} TO <1>IBMKBDi; 
Set/Reset Cursor SEND CHARC130)&CHARC152)&CHARC130) TO <1>IBMKBDI; 
Set 3250 Mode SEND CHARC130)&CHARC153)&CHARC130) TO <1>IBMKBDI; 
Set PS300 Mode SEND CHARC130)&CHARC154)&CHARC130) TO <I>IBMKBDI; 

• A kit containing keycap replacements for the 3278—style keyboard 
accompanies this release. The configuration of the keyboard has ehanged 
with the A 1.V02 Firmware to support additional keys required by some IBM 
applications. The keyboard reconfiguration and keycap replacements are as 
follows: 

1. The keys designated for use by IBM applications are t-he old GRAPH and 
TERM keys on the left—hand keypad of the keyboard. These keycaps will 
be replaced by blank keycaps and have no PS 300 application. 

2. The old SETUP and TESTINORM keys on the left—hand keypad will 
become dual—purpose keys. The new keycap for the SETUP key will read 
GRAPH on the top and SETUP on the front of the key. To access Setup 
mode, the key must be pressed in conjunction with the ALT key on the 
keyboard. 

The new keycap for the TEST/NORM key will read TERM on the top and 
TEST/NORM on the front. The terminal display will be toggled on and off 
by pressing the key. To access TEST/NORM, the key must be pressed in 
conjunction with the ALT key on the keyboard. 

The keycap exchange will be made by the user. Additional instructions for 
changing the keycaps are included in the kit. 



GRAPHICS FIRMUUARE RELEASE I~CTES • 

f1 Version A 1.1/02 —March 1985 

+ Two system functions (F:IBM_KEYBOARD and F:IBM_SETUP) have- been 
modified to support the new PS 300/IBM 3250 Interface. The modifications 
made to these functions are shown on the System Functions change pages. 
These pages may be inserted into Volume 5 of the PS 300 Document Set. 



e 



The following section contains the NETEDiT Release Notes. 



0 



NETEDIT RELEASE NOTES — 1 

Version A 1.V02 —March 1985 

NETEDiT V1,08 REIEASE NOTES 

A revised version of the NETEDIT programming tool is provided on the magnetic tape 
distributed with the A2.V02 PS 390 Firmware. A description of changes follows. If 
you wish a new version of the NETEDIT User's Guide, contact your E&S Account 
Executive to order the updated documentation. 

FORTRAN/Pascal CSR Code Conversion 

There are now options to produce FORTRAN or Pascal code, as well as the 
usual PS 300 ASCII commands, available under CONVERT NETWORK. 
Selecting these options produces a subroutine or procedure which can be 
compiled .and linked with auser—supplied main program and the appropriate 
GSR library. 

The Pascal code is compatible with VAXIVMS Pascal V2; the FORTRAN code 
is compatible with VAX/VMS FORTRAN-77. 

The menu items ASCII OUTPUT, FORTRAN GSR, and Pascal GSR cause the 
corresponding type of code to be generated. The other menu items toggle 
various options on and off; you should set these before you select the item to 
produce the code. 

You must take special care to see that the code for all macros referenced in 
your network have been converted to the same form {i,e., ASCII, FORTRAN, or 
Pascal) as the code to be produced for the rest of the network. For example, 
when you are generating Pascal code you cannot reference an ASCII macro. 
NETEDIT will give a warning message if you attempt to do this. 

The following discussion of how to compile and link the generated code with 
your program assumes familiarity with the GSRs. 

The generated code is output to a file with the same name as the network, with 
an .extension of .PAS for Pascal, and .FOR for FORTRAN. The code is in the 
form of a single subroutine or procedure with the same name as the network; 
this routine takes no arguments. 

Your program must perform the calls to attach and detach the PS 300 
(PAttach/PDetach for Pascal, PATTCHIPDTACH for FORTRAN), You must 
also supply an error handling routine, as described in the GSR documentation, 



2 —NETEDIT RELEASE NOTES 

Version A 1.V02 —March 1985 

For FORTRAN, the error handler must be named ERR. The output file 
produced by NETEDIT may be compiled independently, or included in a file 
containing other FORTRAN subprograms. You must then link it with your main 
program, the error handler, and the FORTRAN GSR library. 

For Pascal, the error handler must be named PI Error_Handler. The suggested 
method for compilation is to include the file containing the generated code in 
your main program file, using the %include directive. Your program must also 
include the declarations in PROCONST.PAS, PROTYPES.PAS, and 
PROEXTRN.PAS. After compiling the program, you must link it with the 
Pascal GSR library. 

literal PS 300 Commands Can 8e lnciuded in Network 

Specially flagged labels can be used to insert random PS 300 commands in a 
network. Floating comments which start with \+\ or 1—\ indicate commands to 
be inserted before or after the other code for the frame, respectively. These 
commands are always written to the output file during code conversion, 
regardless of the SUPPRESS COMMENTS setting. 

~`he statements can be ordered by including a priority number in the flag. For 
example, statements prefixed with 1-1 \ are guaranteed to be sent before 
statements prefixed with 1-2\. This is useful for sending an ordered sequence of 
constants to the same input of a function, for example. 

Typically, commands that should be inserted before the other code for a frame 
are initialize commands or display structure definitions. Commands that should 
be specified to go at the end of the code for the frame are SETUP CNESS 
commands, and SEND statements. NETEDIT does not perform any syntax or 
validity checking on the commands. 

Names of functions, variables, and display structures that are referenced in 
these commands may be prefixed with \F1 and/or \M\ to indicate that the 
appropriate frame and/or macro prefix should be substituted during code a conversion. 



NETEDIT RELEASE NOTES — 3 

Version A1.V02 —March 1985 

NETEDIT Now Uses GSRs 

NETEDIT has been changed to use the GSR library internally. This should result 
in some increase in performance for those using high—speed lines. The device 
type may be specified using the ~ AttachTo option in the parameter file. The 

.default value, for the RS-232 async line, is: 

~ ATTACHTO logdevnam=tt:/phydevtyp=async 

See the GSR user's manuals for more information on how to specify this 
parameter. 

If the Pascal GSR library is not available, a library of procedures with the same 
calls as the GSR routines, but which send the equivalent ASCII commands to the 
parser, is provided. 

Support Network Uses U w Fs 

Some parts of the support network have been replaced by user—written 
functions. No new functionality has been added, but users may notice some 
improvement in performance. NetEdit V 1.08 will not work with PS 300 
firmware that does not support UwFs (i.e., pre—A 1 firmware). 

Improved Handling of Arcs 

Users should see faster response when adding arcs as a result of changes to the 
host program and the support network. Adjacent colinear segments are now 
combined when the arc is processed. In addition, better ways for handling arcs 
when the items they are attached to have been moved should cut down on the 
need to manually reroute arcs. 

Improved Text Editing Facilities 

NETEDIT now uses an improved line editing function for text entry. This 
function behaves like cone—line screen editor, similar to EMACS in its use of 
control characters for editing effects. If you are editing an existing piece o f 
text, you do not have to retype the entire line just to make a minor change, as 
the buffer is initialized to contain the previous contents of the line being edited. 



4 — NETEDIT RELEASE NOTES 

Version A 1.V02 —March 195 

The following control characters are used for editing effects: 

TA Cursor to beginning of line 
T8 Cursor left {back) 
TD Delete character under cursor 
TE Cursor to end of line 
TF Cursor right {forward) 
TK Delete to end of line 
1'R Retype line 
TU Delete entire line 
DEL Delete character to left of cursor 
RET Flush buffer 



NETEDIT RELEASE NOTES — 5 

i/ersion A l .V02 —March 1985 (Modified for A2 —April 1987) 

Revised installation Procedures 

The PS 300 distribution tape now contains NETEDIT executables as well as 
source files. This simplifies the installation procedure for sites where no 
modifications to the source or data files are planned, or ~~vhere no Pascal 
compiler is available. Note - that the executables were built on a U'AX 780 
running VMS 3.7, and may not work properly on other versions of the hardware 
or software. 

The procedure for installing NETEDIT without rebuilding it entirely is as 
follows: 

1. Set default to Netedit subdirectory in the AZ.VOI subdirectory. 

2. Edit NETUSER.COM and -change the definition of NETROOT (marked 
!INSTALL—DEPENDENT) to the name of the directory created. Make sure 
this file is readable and executable by all users. See comr~~ents in 
Netuser.Com "Site Customization of Netuser.Com." 

3. Copy the empty user log file, NETEDITo.USR to NETEDIT.USR. Set the 
protection on this file so that it is writable by all users. 

The procedure to install the editor by rebuilding the executables is essentially 
unchanged. Note that there is an additional !INSTALL—DEPENDENT 
parameter in NETgUILD.COM which specifies the directory where the PS 300 
Pascal GSR library resides. If you do not have this library, you may use the 
dummy library supplied on the tape. See comment in NetBuild.Com "Site 
Customization of NetBuild.Com." 

Source files for the user—written functions used by NETEDIT, along with a 
command file to build the .300 files which may be downloaded to the . PS 300, 
have been provided. However, to rebuild the user —written functions, you must 
have the Motorola 68000 cross software, which is not supplied by Evans & 
Sutherland. 



f 



~_ 

V7 

Z 
W 

V 
D 

M 

tly 
~.~ 

W 
S 
i—

Z 
#—~ 

~~ 
L~ 

L'>O 

3 
O 
a 
yG 

L 
td 
3 
C 
td 

N 
O 

N 

ch - 

cn 
a 

C 
0 
•r 

L 
a~ 

N 
>t 
b 
r-• 
a 

.~.. 
Z3 

V 

L 
O 

'~ 

G~ 
fl. 

l
i
n
e-
d
r
a
w
i
n
g
 

O 
t 

•w 

~ U 

o •• 
~ r 

~ •• O 
C •v ~-
R! ~d 

~ L ~ 
V Z9 i-

r••• 

a>' o a 
L L W 
H ~ ~ 

~ y 't7 CJ ti 'O r- a ~ +~ 

O C>t O •r O O !d F•- C td 
L r O ~..~ ~ O O r° 
4- .0 V •r- L O L 

cn b F- to ~ ~ C 3 a~ 
v ~ L ~ r•- •.- L 
L C O N r- ~ r- F-
~ O L .~.~ v C cd O Q! 

L O C td ~ 17 L 

+~ ~ ~ 
•r  

~ ~ O ~ cd ~ O 
O N O ~ L 

G~ O ~ 4-• ~ V •r L G1 R7 
> t •~ V1 O O L 4o O Df O 

•r ~ f~ •O l>! O V R1 ~ 
+~ ~ C Vf ~ = O. L/1 
.r  ..• M ~ s O L ~ C 
~ ~ N 4- ch ~ W ~ ?~ O L +~ t/1 O 
•.- CO L O ~ CG y a •- O L •*- Z 
L Q1 •+- V O O C O 3 O. O L 
a ~n E•- C ~ as v 1- oc a 3 a .~.~ -~ 

r 1 O a0 L V O ~ •r O N 3 C 
O • J -*- O~ L W ~ ~ ~- > ~ •r- G1 C cd 
L I LL .~.~ t1~ O ~ ~ ~ V > •+•o O .r.. " I .r. ~ V ~ ~" O > 
.~.~ ~ +~ C I 1- to ~ O O N 3 

O -•- tJ~ V i O ~••~ L V1 td 4>I 'G O 
C~ ~' GC 4•. • • •• •r ~ Z O ~ C L C 'd 
.t ~ G~ 'G t~c'f tY H O O F•- ~d C 
.~.~ • O t3 rti •- O i-- C7 *- vs •~- cn .- 

•1•► •• W .1.i 'p U t/1 Z U  C H~ C~ r~ 
U 

L 
td 'O W M ~-- }- p L W Cf O •*- L r O cd •• • 

r fC! F"" .1 C O m L N C J •• •~ '~ V tCS 3 O~ 3 
N O Q O. •r O •N > •r ~ Zi L 4e V ~ O' td O 
C S.. J C. .= W Vf G~ 3 Z7 r ed O O L •+~ t/1 O Z3 
R! V1 aL ~G7 N F- L O O 3 GJ ~ ~ 3~ ~ C L C 
L Z7 Z C Q O r- •r O L •r •r O L t!1 O •r 
~ r- Q t~ fd .•~ J .~ O W r ~-- G~ L/~ F- C 3 C C~ *- ~d Z ~ 3 

O CL t1? ~ O ~ ~ L ~ O a L V I 'O ~ O > • • e w ~_ r- A'1 

O ~ M L ~ , V ~ ~ Li ~ ~~ r~ •r' ~ O ^~ ~'  W • w 

o ~c ~ o •r a 4- h- O~ ~ ~ ~ L~ v i i •• a~ O o L v 
+~ V'f ii V ~•+ ~ O ~ V C V1 •r- N O •r- O H C J O .0 ~ L cd L 

•• i ~.- ~ O c~. L O C a cd Q i l +~ to O~ 
C W J L ~ ~ r V1 tll F- •r 3 F-- J Q O 

T3 O Q1 H- ti C7 C M- O •r C1 L 4• C1 ~ • • Z d C •d t/1 tJ'I ~ 
C •*- L Q ... ~ td tJ~ V t O~ .-~ O •r • r Z7 O V •r- r Zi C t/7 
e~ ~ •r- ..~ C I •*- C~ ~ Gf C N Z3 > >, r•- cd N H O C O C 

b H- V1 C~ ••- ~ Z ~ D1 C1 td ••~ r' b G>t F-1 }- t/'f O ~ 2 O 

0 o J I a •r ~ H ~ ed C ~ E ~c ~ r- ~ >r. E-- ~ tr a~ ~ z 
vr-LL. tYy ~ a>' W N a•~ •~ pLa. t O V O'CO=~ ~ 

H 
~QW 

I h- L L m 0 3 Vf V ~~•r Nra C VJ~ 
~ C 3 ~ C a~ a~ o ~d ~ •r 3 3 >, a 0 

a? 4. td C~ O C1 Df C 17 4~ N Z C1 L L O W d O O t/1 ~ 
.COL .CC L •r CO O LtW C'LOO~H t.=3HW 
}- r-- }~- F•- to !- ti. H 1? Q C t-- 1- N H ~.i > ~ V1 > F-• ~ ~.+ D ~ 

eh ao 
N N 
~ ~ 

~" d' O e"? N M at! 
N r r• N N ~ M d• d• 

E
x
p
e
r
i
e
n
c
e
 

O 
I 
N 

C 
ed 
s 

to 
O Y 
a! L 
td O 
3 3 
e~ ~ 
C O 
~ Z 
J 

C 
'O O 
C •r 

v 
C 
3 

V ~+• 

~r a 
N N 

a 
N 

O
p

er
at

io
n

s 

•r 
3 
O 
.~- 

d 
N 



1~-• 

~d7 

O 
p 

O 

W 
S 
1---
Z 
f--••~ 

Cl~ 

m 
.~ 

Z 
Y 

w 

n 

n • 
N N 
~ ~ 

o a 

o •~ 

O O 
L 4-
4. O ~ ~ 

~ a~ 
cn ~ •*- E 
L O L R! 
O ~ O C 
~~ ~ 
G~ O 3 0̂O

i 
• w 

•r G~ ~ 
t G1 ~ O 

a ~ O r 
G1 L W 
V td ~ ~-

~~ oo ~ ~ 
L z U I 

t11 O ~J O ~.~ 
O ~ ~ ~ 
~ ~ J U Z7 ~ 
O ~ ~-4 ~ R3 p-
C tab Q p O O ~ 

~ W •~- L 
of W 1- *- .. 

J cd p Q p. G~ ~ 
H ~ a L r- ~ 

•• H O O ~ M 
F- et t~. Z Vt Ds . O v 
W •- O Q •*- .0 t~ 

p i o ~ 
•rn a- ~n ~ 

ti..i-t J O Q~ Z3 .+.~ 

0 10 > c  ~~ ~ •3 
W ~ J N n,C ~~ 

W ~ ~+ ~ 3 •r v ~..~ 
J 4- ~ 

D1 C Q~ ~ 2 

~o a ° o vo 
~c cna ¢c ~v 

in
te

ra
c
ti

v
e
 

se
m

ic
o
lo

n
. 

~L • 
V Vt 
•r• O 
L O 
Q~ r• 
~ cd 

r- N t/1 ~ +•~ O p V1 ~ 
3 .~ O H ~ d• v'1 

N ~ C ~ ~ C ~ > L > N ~ 
r• O O ~-- O L L +~ O L ~ r-

V T3 ~ V- 
^ to 0 

V M G3 V ~ C 
t/f L r- M L ~ v N1 p Ci O 

O Vt ~ C~ p C~ M O Cf L 
a~ o a~ •a ch t ~► L .~ C L 

.~.~ V •O C ~ ~ b ~ p ~ .~ U 
~ O G1 •- ~ C p C ~ N C V 

~1 
A
VAM~ N C O N •r ~ ~ •r .i..> 
W '~ '. w r~ ~ C Q O O 

r• L 4~ 4- r /~ tti Q lJ9 N ~ ~ C 
a L v, a~ ~ N a~ v •. ~-- as 
~ O b~ r w ~/ L V ~ • V ~ 

~~
yy

~ ~ O 
~ O a..~ 

~ 

W ~ W 

3 C •r 

~— a +~ N ~— a +~ ~ C ~ o r• 
r- n. O C O tJ1 •*- C Vf i•~ O 
O O O ~ ~ Z •r n. C O ~ •*- 4l .O 
4.. V GA t,A O C •*' a1 v9 O C'f ~ td 

`~ L~ tI9 •r C 3 a V1 C C r-
O N O >- 3 t/1 R'3 O C R td C~ 

~ O • •• .,••• ~ C J O 'C3 +~ ~ .0 ••- O ~ Vf ~ 
.0 .~L X 0 0 S C O V V'f C V .+.~ 
~ v a~ ~ a to cc~ C ~ ac a~ ~ ..• o ~ ~, ~c .. ~ C .. .ra •,-

.~G r td C P ~ ~ •*- cd sti O •*-
.. V..m a OO cd•--Ov L Lv Ca 

a •.- •v I a .~. L v ~ vs ~. +~ cd ~ 
O L td C1 ~ L D'1 ~ ~ Ri •- +~ V ~ 
~ O 4! r•- C = ~ Rd Ri 3 •r- ~e t!1 O 

~ L cd O ~ C C •r- ~ to a ~ O a L 4.• 

C ~ .+•~ L ~ ~ L O1 
~ r• 0 0 

O G. ~6-~ 
r- 0 0 
3 L]. +.~ 

O 
•r•• 

U'f O C V O C V +~ • 
•r ,~ •r Q~ ~ •r Q~ L C 

cn > cn > cd 3 
c
o
m
m
a
n
d
 m
u
s
t
 

4- ~~ r•- n a  > L ~- L  L L v  N 
O ~- - ^- L O ~ Q O O ~ •.-

'C r- ~/ O > V > 3 .~ 

~ ~ ~ ~ ~ •r W ~ • W W C 

Q Q r r- i.~ V ~ ~ ~ /~ ~ ~ •~-

• • 
V E V ed rd 3 0 C •v i~ C 0 0 ~O 

C~ Vf ..1 ~ N O d r- LL Dl •r O O C •.- ~ 
t Z7 ~-- V •+"f a s Qi C C ~ a rd V C 
~ td 9- 3 ~- tD ~ •~ O 't7 •r td O O C t O C~ O 

COQ 04 r C L V O .C~ C•~ V~ >••-
~ L J .0 J Cl ~ O ~ C V +~ 
L L o. via a ~ C 3 ~+~•+ 3 ~ p b 
Qi td 3 to L1 L O O C~ O T C C.1 O T C tr'f V > a, o ~+ ~ ,-~ C o C t .0 •~- as s L •~ a~ o 
W z C p N p Q ~-+ ~• ~•• !.- cn •• cn ~-- cn •• vs Q r-

d 

r 
r 
~3. 
N 
m 

r 
C1 td 
C C CA 

O •*- O +-
d • r• •.- O 
o~S a ~ .Q 

t+f f~ N C~ O 1~ O V! R! td 
r r tyf N ~9 N r• N ~ LY. J 

F-4 a•~i 
H M 

N N 
Y Y 
L L 
O O 
3 3 
~ ~ 
O O 
z z 

C C 
O O 
•.- •.-
J ~ 
V V 

3 3 
4. Li. 

m m e® 
N N N 

vs 
.~ 

4~ 

O 

O 
F-

m 
N 

O
p
e
r
a
t
i
o
n
s
 

C 
•r 
L 
O 

C 
0~ 

m 
N 

L 
~d 

t/1 

C 
td 

v 

c 
M 



i—
L~ 
C/'1 

Z 

~_ 
V 

D 

O 
!~~ 

a 
La.~ 

F--

Z 
~-•-! 
,.. 
Cn 
t..7 

m 

Z 
3 
n 
z 

r 

3 to o y +~ L G~ ~ C~ cn O ~ F- ~ ~ v~ ~ 
0 0~ c o o~ o .~ ~ -~► C ~ o ¢ cd ~ c o 
.0 rn a~ a .0 F- ~ .~.~ C b a a U a s •*- a 
t/~ C Vf C V O td .~ > C ~ L +~ L ~ 

td .+.a N •r G~ C b •r ~ .r . • • O .{~ O 
~ C L > C~ C ~ •O ~ O tL O t/1 O 

~ ~ as a o cn o o a ca 
r Vf .~ ~ •r U ~ C ~ V1 V1 C 
3 ~ C~ td C C ~ ~ 

G r•- 
•r ~ •r- 

O 
°'- L ~ 

O r- ~ +~ C~ ~ •r •r 
~ v L !- C •r- O td ~ O L C L 8~ ~ C •~ 
V'1 O G1 ~ V Vf ~ 'L7 ~ O O C E O N 

~..~ .+.~ t/1 C •r L C b i-- ~ ~ RS td •r b 
O V ~+d ~ G1 O N O 'O C V'! ~ y-

M C > N H 47 C~ O O H Ri ~"' ~ ~ t!~ 3 •r ~ 4~ Z3 ~ 
•*- +~ CA > O L .a.~ L ~ r- !d O ~..~ ~ C V! C1 V I 

C~ O L V O ~ ~O O ~ V •r O W•r ~ C V 
• O cd C1 O •~ O C C C ~ ~ r0 vs O 'v E 0 3 cn O ~ 

/~ ~ •*- t!1 /~ C V G~ O b Cf O et 4• 'Q L O 0' L •r ••-
N t~ L N •.- > •r' V1 •O C ~ v Q~ O L V E-• G,1 r- ~ 

C C 4,.- > C .0 O ed O H O .~.~ C H V O Zi t/1 ~ C 

C Vf C~ L C L rtS O O C d• ~ ••- 4-
~ O td • .~ C~ 4~ ~ ~ ~I o  r- ~ v  V ~ C O V vOi ~ L n~ v C 
/~ C> > O /~ /~ L C a O D O ~ +~ O O H •r- L •r r N~ 

~•- p~ ~,. •r •- •r Vf ~ •r- ~ 4.. Z r O n 
/
O
~ 

~ ~ L L ~ td V a 
~ ~ ~ ~ ~ ~ ~/ ~ W •r •' !~ ai O ~ ~ 3 ~ C C 

~ V> ed L N X ~ O v C C t!! V ~O H 
V9 C L ~ V1 •O O Vf •r- O ~ O 3 •r  >~ C1 O 17 +~ 
~ -r 3 L ~ C~ O t r-- L N r' 'd '0 N 3 C V1 C 
3 C1 V O 3 R! V DI ~ O L D •O O ~ '~ y c!1 O O cd L r- td C R7 
a C .0 4. a C .c o a~ a ~ c V L C +~ ~ ••-
C ¢ +~ C C •• v- rti to a.~► a E cn o s~. ~d a~ a> > ~ ~ 
• f ~ •r •r• 1"•' O t ~V O O 3 ~ C L ~ V1 C v~ Q~ •f~ 

~/'! ~ E C ~ C C ,t v V~ C L L r- •*- O L V L 
_ - L O ~ L O ~ 

3~ •*- 3 C~ C ~ ~ O C O V L +~ ~ C~ L G~ O ••- •~ 
O •r- v1 L O N ~ /~ O C •r D! O ~ C td V > ~ r > +~ 
L v 'd N~ ~ .1..1 ~ •.- •r 3 C O •~"' t rO C O C V 
Vf L C~ t!1 O O v~ O •r 1- O t/1 V1 U L to O O O C~ 

O Df t!f n. C Ri ~ Vf V1 ~ G~ +~ rd ••- v vs m v O v 
E 17 t C ~ C •i•~ t/7 n- V1 O • ~ O r- V1 t C 4- td 
c3 C V td t ~ •~- N ~ C •r- V1 ~ +7 r O ••- td V •r- !d O 4-
L ed ~ L L O a7 X ~ 10 m cd cd C C v'► ~ 
at 4- V C t!! ~ fl. •r Z3 Z ~ O > 4. c~ O O v1 of r- C C 
b O O t~ 3 C ~ L C t!1 • • h•i ^ O /~ 4- •r- •r- •r- •r C Ri H C1 
•r /~ •r •r O V1 •r- V +~ t!7 •r  ~ t', Li +~ ~ d• O t~ .~.~ ~ ~ tq •r O 
•p r- L ~ ~ 'D .= O O td RS W ~ O r- v O V V Vf V ~ ~ 

v N •r td Vf Of ~ ~ C O m X O /~ C^ C •r •r 
47 ~ v i~ C~ C O to O L ~ W R! ch ~ ~ 3 C O ~ ~ C C tJ~ 

~ C ~ td ~ ~ e!• •N r ! 1 1 V 4- v ~ C1 4• ..i 4• F- G~ •M- O eCi 
O V1 ~ N O~ .0 C X C O~ •• X 2 •• O ~ C~ ~ L > •r ~ 
C i•~ C~~ C r Li O ~ O V r H¢ V1 ~ +~ O O O Z O 

~ 3 O ~ N E •~- o a O: }-- I 3 a s ~-- ~n ~-+ cn ~ as N v cn 
a~ a as a v C1 O ~ C O O O ~ O ¢ F- t!1 D C~ fl. +~ s]. G~ •r O: •r ~ I* V •r C •r 
t C L C O ~ .0 r- O L ~ r-• O L Z ~[ 2 a t C O ed 'C L H L 3 N C~ S O .0 
F- -r ~ -r- 'L7 F- t/~ v V1 a H Q~ N V1 F- ~ H W h•- i--1 O v v ~-- ~A F- C v L F- 4•. F—

N 
cd 

d
o

cu
m

e
n

te
d

 

P
o
ly

n
o
m

ia
l 

L 

3 
tJ~ 

C 
ed 

V 

M 

r 
e0 

r -•-
cd ~ 
Co 
oC 
..- ~, 
aJ r 
b O 
ac a 

cc 
O 
t+. 
X F

:A
00

0M
U

LA
T

E
 

L 
b 

t/Y 

C 
O 

C 

ti 

M 

F
:L

IN
E

E
D

IT
O

R
 

m 
M

C
O

N
C

A
TE

N
A

TE
(n

) 

W F:
S

TR
IN

G
_T

O
_N

U
M

 

e
rr

o
n

e
o

u
s
ly

 

~ ~ 
~ ~ 
W U 
Y N 
t~. }-



F~ 
W 

Z 
W 

V 

D 

O 
O 
~7 

a _ 

W 
S 
!-•~ 

Z 
aE••-~ 

~~ 

1^D 

O 

u
n
d
o
c
u
m
e
n
t
e
d
.
 

P
r
e
v
i
o
u
s
l
y
 

D 
a 
W 
t/! 

{L 

G~ 4- L Df 
.~ O O O G~ 

Gi ~ ~ •r .Q 
.~ ~+~- X 

a •a f rte- Z7 ~ ~ 
Mv~a~~ 

~ > L ~ 
a a~ ~ 
~~ J Tr.~ ~ 

~ 'd 'L>` 'd t!1 O C~ +~ 
Gd O C~ N 41 ~ 

r' ~ r 1'~ " ~ Z L .~ 
a n. a a ~-• ~ o ~ ~ 
a a a a ¢ V •~ 
,,~AA ~

3
~ ~~/~ ~~A 

G v~ cn 3 
V, N N N 

W •r- G~J >r 
V1 V1 i!1 to }"' ~.d ~ b ~ 
•~ •r- •r •r H ~ ~ >~ 

C~ O O O 
N LO 

O O •~ 

cd Rf b !d ,~ .i.i ~ ~ rn 
n. a a a ~~.r  

~ -o cn c 

A, AA ,, ^^,, AA '' 

^^  L 
A

O,, G1 3 ~ ~ O 

W W W W i.~ ~ W '~'~ 

v s. a a~ r- c 
O ~ L I 4. 41 4-
r- V L ~ 0~ 
C Rf E•- C~ O >'1 D 

O .0 O  ~ Df +~ 
v •~ ~ ~ ~, 

~ ~ G~ C •*- to 

~~~H~~ ~ 
= tl9 V9 O C

of •r •r L ~.. •~-
C X O ~

cd Ca •*- ~, ~ tad ~
O '~ 4. O L

V F- ~ ~ O r 1
~¢ V~ of
V ®~ V

L O O td O

~ L !- ty C~ td ~
O Ot~tt~ b
~ V t/1 +~ ~ V 1-

u
n
d
o
c
u
m
e
n
t
e
d
.

P
r
e
v
i
o
u
s
l
y

t-
t/~
H
J

tL

u
n
d
o
c
u
m
e
n
t
e
d
.

P
r
e
v
i
o
u
s
l
y

O
N
B
U
T
T
O
N
L
I
G
N
T
S

u
n
d
o
c
u
m
e
n
t
e
d
.

P
r
e
v
i
o
u
s
l
y

t/1

V d'

i
n
c
o
m
p
l
e
t
e

'O

.~
r~

a
O

N
•r

O

R!
a

C

C
.~
'O
td
O

r
rn
.~
E

~.

r
>`
O

N

O

H

N
a0 ~O
!'~7 1
I t~!

{,1~ v

~ _ _O

~ Li.
~ ~
~ tb b

~ ~ ~ ~
O L L Q

~*- ~ ed
~ ~ 3 r-

C L ~ U
3 •r O O
La. ~+- N J

O Q
~ ~ ~

GRAPHICS FiRMAWARE RELEASE NOTES

Version A2.Vo~

Enhancements i n Graphics Firmware Vers ~ on A 2. V01

• This release of the graphics firmware provides the new Writeback feature.
The Writeback Feature allows displayed transformed data to be sent back to
the host. This feature provides a Writeback command and a Writeback
function.

The Writeback command creates a WRiTEBACK operation node and enables
the data structure below the node for writeback operations. When the
Writeback node is activated, writeback is performed for Hamel (the name of
the structure for which writeback is applied). A default WRITEBACK
operation node is created by the system at initialization time.

The Writeback Function is initialized by the system and is used to send
encoded writeback data to user function networks. This function is not
activated by the normal input queue triggering mechanism. It is activated by
sending a TRUE to any writeback operation node in a display structure.

Writeback is described completely in the Writeback Feature User's Guide,
included with this release.

• PVecMax (PVCMax-FORTRAN) has been added to the GSRs. This procedure
sets the maxi mum component of ablock-normalized vector I ist, so that
multiple cal Is may now be made to PVecList for block-normalized vectors.

Modifications in the Graphics Firmware

• Changes to BUTTONSIN (PS 350 Only)

The initial function instance BUTTONSIN has two new inputs.

Integer <2> Enable/Disable Bit Mask
Default FIX(-1) all buttons enabled.

600lean <3> TRUE -enable use of bit mask
FALSE -disable use of bit mask.
Default FALSE

The Buttonsin bit mask is a mapping of the bits of a 32-bit integer to the
individual buttons. The Most Significant 6i t (sign bit) maps to button #~ ; the
least significant bit maps to button #32.

GRAPHICS FIRMAIIIIARE RELEASE NOTES

Version A2. V01

Most Significant Bit Least Significant Bit

J. .L
Bits of the Integer

8u~ton Nun6er

31 34 29 28 27 26 25 24 23 22 Z 1 ZO 19 18 17 1 Ca 15 14 13 1 Z 11 10 9 8 7 6 S 4 3 2 1 0
1 1 I I i l i i l l l l l l l l l i l l l l i l l l l l l l l l
i 2 ~ ~ 5 6 7 8 9 1 ~ ~] 12 13 14 ~ 16 17 18 l 910 2] 12 23 24 25 24 27 28 29 30 31 32

If the bit is set (=1), the button is enable. If the bit is off (=0), the button is
disabled.

• Changes to ONBUTTONLIGHTS and OFFBUTTONLIGHTS (PS 350 Only)

The initial function instance ONBUTTONLIGHTS/OFFBUTTONLIGHTS has one
new input.

New input
<2> Boo I can
TRUE -interpret integer on input <1 > as a bi t mask.
FALSE -interpret integer on input <1 > as a button number.

The ONBUTTONLIGHTS/OFFBUTTONLIGHTS bit mask is a mapping of the bits
of a 32 bit integer to the individual buttons. The most significant bit (sign bit)
maps to button #1; the, least significant bit maps to button #32. If the bit is set
(=1) the button light is on.

C~~A.NGE PAGES TO THE DOCUMENT SET OTHER T~:I,AN

THE C011~MAND SUMMARY, THE FUNCTION SUMMARY,

AND GRAPHICS SUPPORT ROUTINES

e

FUNCTION NETWORKS I — 3

CONVERTING INPUT DEVICE VALUES TO UPDATE AN INTERACTION NODE

The first step to selecting the appropriate function to convert input values into
values that can update an interaction node is to identify the type of values
needed by the node. To understand this, look at the the most common graphics
transformations--rotation, scaling, and translation.

Rotations and scales are done with 3x3 matrices; translations are- specified with
a Z— or 3—dimensional vector. It makes sense, then, that the type of data used
by a rotation or scale node is a 3x3 matrix, and the data type for a translation
node is a vector.

Your task, if you are trying to rotate part of a model, is to find a way to make
an input device, such as a dial, send the correct 3x3 matrices to a rotate node.
In this module, this process will be represented by a "black box" (Figure 2) that
takes one kind of value and changes it into another kind.

Input Values r ~ 3x3 Rotation
from Dials ` Black Box I matrices

L... _.__ _.__ _.._ _....j
IAS0527

Figure 2~ The "Black Box"

In the "Hands—On Experience" module, you created Diamond by specif ying a 45
degree rotation of Square. You did not need to work out what the 3x3 matrix
for 45 degrees was. Whenever you use a command to create a rotate or scale
node (such as Diamond), you only have to specify an angle using a real .number
value and the PS 300 automatically creates the associated 3x3 matrix.

Once the node is created, however, you can only update it with the type of data
it accepts--in this case, a 3x3 matrix. For example, look at the robot display
tree again (Figure 3) the names for the interactive nodes are supplied so you
'can refer to them.

4 —FUNCTION NETWORKS I

Robot.Tran

Robot.Rot

Robot.Scale

ae

a
v4Qe~

Hend.Rot

~<

Left Forearm.Rot

Left Hand.Rot

c<
i

:UpperBody. Rot

Left A m.Rot

Rig t Arm.Rot

,~• • O
■ ~o 0

Left Leg.Rot

~ r •

.,
~.
.r

a

Ri ht
Left Lower Leg.Ro

g
_ _

Arm
ht Forearm.Rot

Right Forearm
Left Foot .Rot

fight Hand.Rot
Right
Hand

.)J c~

Figure 3, Interactive Nodes in Robot D ispiay Tree

Righ t Leg.Rot

>Right
Leg

ht lower
Leg.Rot

Right
lower Leg

ght_Foot.Rot
Right.
Foot

~Aso~Se

FUNCTION NETWORKS II — 3

MAKING A SINGLE INPUT DEVICE CONTROL M ULTIPLE INTERACTIONS

In "Function Networks I," you constructed a function network for the display tree
shown in Figure 1.

Robot.Tran

Robot,Rot

Robot.Scale

a

Head.Rot

Y
C
~<
L

~t

v4

Left Forearm.Rot

Left Hand.Rot

c<
i

to
,UpperBody. Rot _ ~-~

 o
-- - ~

Left -A m.Rot

Rig t Arm.Rot

Left Leg.Rot

Right
Left Lower Leg.Ro

Arm
ht Forearm.Rot

Right Forearm
Left Foot.Rot

ight_Hand.Rot
Right
Hand

J1

,--
V

Figure 1. R obot D ispl~y Tree
e

+~
o

Righ t Leg .Rot

>Right
Leg

h t_Lowe r_
Leg.Rot

Right
Lower Leg

ght_Foot.Rot

Right
Foot

lAS0758

4 — FUNCTION NETWORKS II

This function network supplied interactions for the top three nodes of the display
tree: Robot.Scale, Robot.Rot, and Robot.Tran. Seven dials were required to
manipulate the robot: three to rotate it in the X, Y, and Z planes, three to
translate it in X, Y, and Z, and one dial to scale the model.

Only one free dial remains, but no other interactive nodes in the robot display
tree have yet been connected to functions. To supply X, Y, and/or Z rotations
for all the other interactive nodes would require dozens of other dials. This
section illustrates how to solve this problem by making one set of eight dials
perform like many sets.

The first step in doing this is to determine exactly how many additional dials you
will need by deciding how many more interactions in the model you want to
control. In addition to Robot.Rot, the robot has 14 rotation nodes. Ten of them
require three dials each three rotations for X, Y, and Z}. The two nodes for
elbows and the two for knees only use X rotations, requiring only one dial each.
The result is a total of 34 additional interactions. To handle these interactions,
each dial would have to be connected to about six nodes.

There is nothing to prevent you from connecting a dial to more than one
destination. For example, you could hook dial 1, already updating X rotations for
the Robot.Rot node, to other rotate nodes. But of course turning that one dial
would cause multiple unrelated updates.

Following is one way the dials might logically be assigned to control the
interactions.

In Mode 1, the dials would work as presently assigned:

Whole model: 1. Xrot 2. Yrot 3. Zrot 4. Scale

5. Xtran 6. Ytran 7. Ztran 8. Not Assigned

Mode 2:

Head: I. Xrot Z. Yrot 3. Zrot 4. Not /assigned

Trunk: 5. Xrot b. Yrot 7. Zrot 8. Not Assigned

Mode 3:

Right arm:

Left arm:

1. Xrot 2. Yrot

5. Xrot 6. Yrot

3 . Zro t

7. Zrot

a

4. Elbow Xrot

8. Elbow Xrot

RENDERING OPERATIONS _ 17

Given the following object (Cube):

O,I,1 1,1,1

0,1,0 1,1,0

,0,1
1,0,1

0,0,0 1,0,0

i:igur~ 12. Cubs

A correct syntax to define this object is as follows:

Cube ~_ POLYGON 0,0,0 0,1,0 1,1,0 1,0,0
POLYGON 1,0,0 1,1,0 1,1,1 1,0,1
POLYGON 1,1,1 0,1,1 0,0,1 1,0,1
POLYGON 0,1,1 0,1,0 0,0,0 0,0,1
POLYGON 0,1,1 1,1,1 1,1,0 0,1,0
POLYGON 1,0,0 1,0,1 0,0,1 0,0,0;

Associating 0 uter end inner Contours ~lith C O P L A N A R

IASOuO~

X

A polygon that represents a face of an object is called an outer Contour.
Some polygons, known as inner contours represent cavities, holes, or
protrusion sites in an object.

For the PS 34Q to interpret inner contours properly, two things must be done.
One is to observe the vertex—ordering convention for inner and outer contours.
The other is to use the COPLANAR option in the POLYGON clause to associate
inner and outer contours.

1 ~ —RENDERING OPERATIONS

The vertex ordering rule for inner and outer contours is as follows: vertices of
inner contours must run in the opposite sense to the corresponding outer
contour, Fora solid this implies that the vertices of an inner contour run
counterclockwise while outer contours runiclockwise when viewed.

The vertices of the following triangular polygon face {outer contour) with a hole
in it {inner contour) are ordered as follows.

.5,.5,0

0,0,0 0,1,0
t ASO405

Figure 13. Surface With Inner/outer Contours

A POLYGON command syntax for this object is

Object := POLYGON 0,0,0 ,5,.5,0 1,0,0 {outer contour}
POLYGON COPLANAR .5,.33,0 .33,.165,0 .66,.165,0;
{inner contour}

Note that the vertices for the inner contour in the above example are listed in
the opposite order of those of the outer contour.

LOCAL DATA FLOW AND SYSTEM NETWORKING 5-37

Version A 1.V02 —March 1985

S.2 DATA RECEPTION AND ROUTING NETWORK

F:CIR 0 UTE

Once data have passed through either instance of F:DEPACKET (described in the
previous chapter), the next function to receive it is F:CIROUTE. F:CIROUTE has two
instances, one for count mode and one for escape mode. They are functionally very
similar, and only the count mode instance, CIROUTEO will be described. CIROUTEO
examines the first character it receives {the character following the count bytes in
count mode and the character following the <FS> character in escape mode) to
determine where the packet message is to be sent. These characters are "routing"
bytes, and are used to select the appropriate channel for data in the PS 300. Data
channels include lines to the terminal emulator, the PS 300 command interpreter, the
Disk writing function, the Raster function {for PS 340 systems), and other system
functions. Abase character {defined on Input <2> of CIROUTEO) is subtracted from
this routing character before it is used to select the output channel. The base
character defaults to the character zero {"0").

Qpacket,Qmorepacket >
Qreset

Qstring >

Qprompt >
Qreset

Qinteger >

<1>

<2>C '0' base

<3>C

<4>C
CI ROUTED

F:CIROUTE
Ccount mode)

<i>

<Z>

<n>

> Qinteger

> Qpacket,
Qmorepacket

> Qpacket,
Qmorepacket

The definitions for the inputs and outputs for F:CIROUTE are described in Chapter 6
of this guide.

5-38 LOCAL DATA FLOW AND SYSTEM NETWORKING

Version A1.V02 -March 1985

x.2,1 Routing Byte definitions

The following table defines the routing bytes and channel parameters for assessing
internal PS 300 communication channels.

Table 5-1, Routing Byte Definitions

CIROUTE Routing Channel Description
Output Byte Parameter

3 0 1 Parser/Command Interpreter
4 1 2 Command Interpreter via READSTREAM
5 2 3 6-bit binary
6 3 4 Reset network for GSRs
7 4 5 Reserved
8 5 6 Reserved
9 6 7 Download channel for user-written functions

•

13 ii Write ASCII data to diskette
14 i2 Close fi 1e
15 < i3 Write binary data to diskette
16 = i4 Reserved
17 > i5 Channel to terminal emulator
18 ? i6 Host message control
19 @ 17 Who fused by PSETUP)
20 A 18 Reserved
2i B i 9 Raster

NOTE

C' ~') i.s the HOST_MESSAGE request channel. <SOP>?
followed by ASCII (1 or Z) requests a single
message or multiple messages from HOST
MESSAGES.

(' ~') any message sent on this route triggers the WHO
function. (Refer to the PS 300 Host-Resident
I/O Subroutine Manual for information on the
WHO function.)

LOCAL DATA FLOW AND SYSTEM NETWORKING 5-61

Version A1.V02 -March 1985

S,i.l Data Flow Overview

The PS 300 accepts data from the IBM host line through the General Purpose Interface
Option (GPIO) card. These data will be in two forms; either data for the terminal
emulator, or graphical data that have been sent from the host using the
cross-compatibility software. The GPIO differentiates between data designated for
the terminal emulator and graphics data packaged in the Write Structured Field (WSF)
envelopes. The GPIO puts TE data directly into a Screen Buffer in Mass Memory.
Graphics data are intercepted by the GPIO for unpacking and repackaging into
Qpackets. Routing information is always included at the head of any WSF command.
The routing information and the first 238 bytes of data are put into a Qpacket by the
GPIO. All subsequent data within the same WSF command are placed into
Qmorepackets. When a WSF command is filled to capacity, or a routing change is
required, the present WSF command is terminated and a new WSF command is started
by a PS 300 low-level communication routine.

The packets of graphical data are passed to the data reception function,
F:F I1 IBM (F:F 12 IBM). IBMII$ (an instance of F:F I1 IBM) allocates new mass - - -
memory packet buffers and puts them on a linked list for. subsequent use by the GPIO.
IBMI1$ passes data through to F:CIROUTE.

F:CIROUTE

CIROUTEO examines the first character it receives (the character following the count
bytes in count mode) to determine where the packet message is to be sent. These
characters are "routing" bytes, and are used to select the appropriate channel for data
in the PS 300. (Data channels can be chosen by the use of the parameter in the PMuxG
GSR Utility Routine. Standard GSR and PSIO calls include embedded routing bytes.)
Data channels include lines to the terminal emulator, the PS 300 command interpreter,
the disk writing function, the raster function (for PS 340 systems), and other system
functions. Abase character (defined on Input <2> of CIROI-J~T'EO) is subtracted from
this routing character before it is used to select , the output channel. The base
character defaults to the character Zero ("0"). The definitions for the inputs and
outputs for F:CIROUTE are described in Chapter 6 of this- guide.

Qpacket,Qmorepacket >
Qreset

Qstring

Qprompt
Qreset
Qinteger

<1>

<Z>C '0' Base

<3>C

<4>C
C I ROU T E O
F:CIROUTE

.<< <1>

<2>

<n>

> Qinteger

> Qpacket,
Qmorepacket

> Qpacket,
Qmorepacket

5-b2 LOCAL DATA FLOW AND SYSTEM NETWORKING

Version A1.V02 - March 1985

Se1,2 Routing Byte Definitions

`The following table defines the routing bytes and channel parameters for assessing
internal PS 300 communication channels.

Table ~-1. Routing Byte Definitions

CIROUTE Routing Channel Description
Output Byte Parameter

3 0 1 ParserlCommand Interpreter
4] 2 Command Interpreter via READSTREAM
5 Z 3 6-bit binary
b 3 4 Reset network for GSRs
7 4 5 Reserved
8 5 6 Reserved
9 6 7 Download channel for user-written functions

•

13 11 Write ASCII data to diskette
i4 12 Close file
15 < 13 Write binary data to diskette
16 = 14 Reserved
17 > 15 Channel to terminal emulator
18 ? i 6 Host messag:~ control
19 @ 17 Who Cused by PSETUP)
20 A 18 Reserved
21 B 19 Raster

NOTE

('?') is the HOST MESSAGE request channel. '?'
followed by ASCII (1 or Z) requests a single
message or multiple messages from HOST
MESSAGES.

C'~') any message sent on this route triggers the WHO
function.

6-28 SYSTEM FUNCTIONS

r"1
Version A 1.V02 -March 1985

F:IBM KEYBOARD

Qpacket >

QBoolean --->

<1>

<2>

F:IBM KEYBOARD

<1> >Qpacket

<2> >Qinteger

<4> >Qpacket

<3> >Qpacket

<5> >Qpacket

<6> >QBoolean

<7> >Qpacket

<8> >QBoolean

<10> >QBoolean
<IBMKBDI>

<11> >QBoolean

F:IBM_KEYBOARD accepts character packets from the keyboard on input < 1 > and,
based on the mode selected by the mode keys (either the LINE LOCAL key or the
HOST, LOCAL and COMMAND keys, depending on the type of keyboard used), outputs
packets for use by the function network, the line editor, or an IBM host. Packets of
characters for the function KEYBOARD are output on output < 1 >. Qintegers to be
sent to the function FKEYS are output on output <2>. Qpackets of characters to be
sent to the function SPECKEYS are output on output <3>. Qpackets of characters for
the line editor are output on output <4>. Qpackets of IBM scan codes for an IBM host
are output on output <5>. A QBOOLEAN TRUE used to trigger the hardcopy functions
is output on either output <6>, output < 10>, or output < 1 1 >, based on the mode of the
keyboard.

A TRUE used to trigger the loading of the IBM 3250 function network is output on
output <7> when IBM 3250 mode is selected while in SETUP mode.

A TRUE used to trigger the deletion of the IBM 3250 function network is output on
output <8> when the PS 300 mode is selected while in SETUP.

Input <2> accepts a Boolean that indicates which type of keyboard is being used.

True =IBM style keyboard
False ~ UT100 style keyboard

SYSTEM FUNCTIONS 6-29

Version A1.V02 —March 1985

F:IBM SETUP

QBoolean --->

Qinteger --->

Qi nteger --->

cl > F: IBM_SETUP
CIBMSETUPI)

<2 >

c3>

F:IBM SETUP is used to change the parameters used by the IBM communications.
input < 1 > accepts an integer that specifies the maximum number of packets that can
be in the pool of empty input packets.

F:IBM_SETUP is used to change certain values used by the IEM communications.

Input < 1 > is used to trigger the function.

Input <2> is used to specify the number of empty I/O input packets that are to be
maintained in the I/O input pool.

Input < 3 > is used to specify the device address when an IBM 3 250 interface is being
used.

6-1 o SYSTEM FUNCTIONS

F:CI

F:CI

Qc hop ~ terns ---- >
Qprompt

<1>

CH_CIo)
CCIo)

<1>

<2 >

<3>

<4>

<5>

----> unused

----> unused

----> error messages

----> Qboolean

----> Qprompt

----> unused

This function interprets commands, creating display structures and function networks.
It receives input either from achop/parse function or a Readstream function (if using
the GSRs).

A single parameter is given when this function is instanced (for example H
CIo:~F:CI(4);). This parameter is the "CINUM'~ and is used to identify all names and
connections this CI makes. When the CI receives an INIT command, it destroys only
those connections it has made and only those structures associated with the names
which have its CINUM.

Note: A name is created when that name is referenced for the first time, even if it has
no associated structure. The CI that created the name is the "owner" of that name,
even if the entity it refers to is created by another CI.

- Note: Each function has an output <0> that is used to send error messages (such as
illegal input error messages). The connection from this output is made automatically by
the CI that creates the function. The CI finds the appropriate error function to connect
output <o> to by looking on its own output < 3 >.

Output 4 sends out a Qboolean with a TRUE value when an INIT command is entered.
This output is connected to the initial function CLEAR_LASELS to clear out the labels
on the keyboard and dials.

0

DATA STRUCTURES, NAME SUFFIXING, AND COMMANDS 7-1 1

Version A2.V01

],~,3 Command Status Command

The command:

COMMAND STATUS;

directs the command interpreter to print the status of the command stream. The
message output lists the number of open BEGIN...END and
BEGIN_STRUCTURE...END_STRUCTURE commands, and indicates if the privileged
state is operative. The message also indicates if the optimize structure model is in
effect.

],5,4 Reboot Command

The command

REBOOT password;

reboots the PS X00 as if from power—up. if no password has been setup, then any
character string will do. Otherwise entering an incorrect password will give an error
message. The RE8O0T command can appear anywhere; it can occur within
BEGIN...END and BEGIN_STRUCTURE...END_STRUCTURE as well as without. It may
be named or not. However, it cannot be within a quote or comment.

The command causes the PS 300 to reboot just as if it had been powered up (starts the
confidence tests at "A", etc.).

1,S,S Set Priority

The command

Set Priority of name to i;

sets the execution priority of a function (name) to some_ integer (i) between 0 and 15.
All user instancibie functions and most functions instanced by the system at boot time
have a default value of 8. Lowering a function's priority number raises its priority and
causes it to run before any functions with a larger number. A typical use of this
command is to give to a function a priority number greater than 8 so it runs only when
no other functions are running (i.e. functions at default priority 8). Assigning priority
numbers less than 8 could be potentially very "dangerous," since their execution could
lock up the system.

Since this command will affect the execution of other functions° in a function network,
careful consideration must be given to its use. E&S does not recommend the use of this
procedure by anyone who does not have a complete understanding of functions and their
interrelationships.

7-12 DATA STRUCTURES, NAME SUFFIXING, AND COMMANDS

1.Sob Notes on Using_ the C 4 N FI G U R E Mode

E&S reserves the right to change the content of the CONFIG.DAT file and the
implementation of the CONFIG.DAT file witho-ut prior notice. Use of any named
entities or networks instanced in CONFIGURE mode that have names identical to any
names found in the CONFIG.DAT file will result in unpredictable system behavior. E&S
will not use any names that are preceded with the three characters CM .

9-2 SYSTEM ERR®R MESSAGES

T A B ~. E 9-1 PS 300 TRAPS end Their M ~anings
i

NUMBER DEFINITION

0 Not enough available memory to come up or handle request.
4

1 E&S firmware error.

2 Memory corrupted or over—written (could be caused by UWF).

5 Attempt to wait on queue when function is waiting on another device
(CLOCK, I/O)Ccould be caused by UWF).

6 System errors (see Table 3).

S Mass memory error if address on LEDs is between 200 and 300;
unexpected interrupt on a vector with no routine, if address is between
300 and 400. For example, if address on LEDs is 22C, error occurred
on memory card 200000-300000. If address is 23C, error occurred on
memory card 300000-400000 and so forth.

9 Utility routine was called which was not included in system link,

10 Memory corrupted or over—written (could be caused by UWF),

11 E&S firmware error.

12 Pascal in—line runtime error: usually caused by Case statement in
Pascal with no Otherwise clause (could be caused by UWF).

•

b-38 SYSTEM FUNCTIONS

Version A2.V02

F:READDISK

F:READDISK

Qpacket ---->

Q600lean --__~

<1>

<2 >

ci>

<Z>

C Readas c i i l for ASCII f i l e)
CReadbi naryl for binary)

----> Qpacket

----> QBoolean

This function reads a file from the floppy disk and sends the data out output < 1 > in
Qpackets. Input < I > accepts a Qpacket of 1 to 8 characters specifying the name of
the file to be read. All disk drives are searched for the file until found; if the file is
not found, an error message is produced.

A True on input <Z> tells the function to delete the file after reading. Input <2> is a
constant input queue and is initialized to False.

A True is output from <2> when the file is found and read successfully. A False is
output when the file is not found.

Note: The file name sent on input < 1 > should not include the file extension. The file
on the disk must have the extension ".DAT".

CHANGE PAGES TO THE C011~INIAND SI;~MMARY,

THE FUNCTION SUNi11~ARY, AND GRAPHICS SUPPORT ROUTINES

(Change pages exclusive to the Rendering Option are supplied with the
PS 390 Rendering Release Notes.)

K ~'

PS 300 COMMAND SUMMARY

PS 350 Command

LEAD VIEWPORT

FORMAT

name := LOAD UIEWport HORizontal = hmi n: hmax
VERTical = vmin:vmax
[INTENsity = i mi n : i max] [APPLied to name 1];

DESCRIPTION

The LOAD VIEWPORT command for the PS 350 loads a viewport and overrides
the concatenation of the previous viewport. As with the standand PS 300
VIEWPORT command, it specifies the area of the screen that the displayed data
will occupy, and the range of intensity of the lines. It affects all objects below
the node created by the command in the display tree.

PARAMETERS

hmi n ,hmax , vmi n , vmax — The x and y boundaries of the new viewport. Values
must be within the —1 to 1 range.

i mi n , i max — Specifies the minimum and maximum intensities for the viewport.
imin is the intensity of lines at the back clipping plane; imax at
the front clipping plane. Values must be within the 0 to 1.

Hamel —The name of the structure to which the viewport is applied.

DEFAULT

The initial viewport is the full PS 300 screen with full intensity range (0 to 1)
using the standard PS 300 Viewport corn~mand.

VIEWport HORizontal = -1,l VERTical = -1,1 INTENsity = 0:1;

LOAD VIEWPORT PS 300 COMMAND SUMMARY

PS 350 Command

(continued)

NOTES

A new VIEWport is not defined relative to the current viewport, but to the full
PS 300 screen.

If the viewport aspect ratio (vertical/horizontal) is different from the window
aspect ratio ty/x) or field—of —view aspect ratio (always 1} being displayed in
that viewport, the data displayed there will appear distorted.

DISPLAY TREE NODE CREATED

This command creates a load viewport operation node that has the same inputs
as the standard viewport operation node. The matrix contained in this node is
not concatenated with the previous viewport matrix.

NOTES ON INPUTS

1. For 2x2 matrix input, row 1 contains the hmi n , hmax values and row 2 the
vmin,vmax values. -

Z. For 3x3 •matrix input, column 3 is ignored (there is no 3x2 matrix data
type}, rows 1 and 2 are as for the 2x2 matrix above, and row 3 contains the
imin,imax values.

PS 30o COMMAND SUMMARY RAWgLOCK

("1 ADVANCED PROGRAMMING -Memory Ai location

Version A2.V01

FORMAT

name := RAWBLOCK i~

DESCRIPTION

Used to allocate memory that can be directly managed by a user—written
function or by the physical I/O capabilities of the Parallel or Ethernet Interfaces.

PARAMETERS

NOTES

i -bytes available for use.

1. The command carves a contiguous block of memory such that there are "i"

bytes available for use.

2. The block looks like an operation node to the ACP. The descendant alpha
points to the next long word in the block. What the ACP expects in this
word is the .datum pointer of the alpha block. (The datum pointer points to
the first structure to be traversed by the ACP. This is the address in
memory where the data associated with a named entity is located.)

3. To use this block, the interface or user—written function fills in the
appropriate structure following the .datum pointer. When this is complete,
it changes the .datum pointer to the proper value and points to the beginning
of the data. After the ACP examines this structure, it displays the
newly—defined data. (Use the ACPPROOF procedure to change the .datum
pointer with auser—written function.)

4. More than one data structure at a time can exist in a RAWBLOCK. It is up
to the user to manage all data and pointers in RAWBLOCK.

5. A RAWBLOCK may be displayed or deleted like any other named data
structure in the PS 300. When a RAWBLOCK is returned to the free storage
pool, the PS 300 firmware recognizes that it is a RAWBLOCK and does not
delete any of the data structures linked to RAWBLOCK.

DISPLAY TREE NODE CREATED

Rawblock data node.

•o

PS 300 COMMAND SUMMARY

PS 350 Command

FORMAT

name := SET BLINKing Swi tCh
[APPLied to name 1];

SET BLINKING ON/OFF

DESCRIPTION

This command turns blinking on and off. It affects all objects below the
node created by the command in the display tree.

PARAMETERS

Swi tCh — Boolean value. TRUE indicates that blinking will occur in the
displayed objects. FALSE turns blinking off.

NOTE

name 1 — The name of the structure that will be affected by the command.

PS 330 style blinking, done via the SET RATE and IF PHASE ON/OFF
commands, where blinking is tied to the update rate rather than the refresh
rate, will still work, but since the update rate in the PS 350 may be slower, the
visual result may be different.

DISPLAY TREE NODE CREATED

This command creates a set blinking on/off operation node in the display
structure that determines whether blinking will occur in the objects positioned
below it in the display structure.

INPUTS FOR UPDATING NODE

The blinking on/of f operation node can be modified by sending a Boolean value
to input <1>.

PS 300 COMMAND SUMMARY

PS 350 Command

SET BLINK RATE

FORMAT

name := SET BLINK RATE n
[APPLied to name l~;

DESCRIPTION

This command specifies the blinking rate in refresh cycles to be applied to all
objects below the node created by the command in the display tree.

PARAMETERS

NOTE

n — An integer designating the duration of the blink in refresh cycles. The
blinking data will be on for n refreshes and off for n refreshes.

name 1 — The name of the structure to which the blinking rate is applied.

PS 330 style blinking, done via the SET RATE and IF PHASE ON/OFF
commands, where blinking is tied to the update rate rather than the refresh
rate, will still work, but since the update rate in the PS 350 may be slower, the
visual result may be different.

DISPLAY TREE NODE CREATED

This command creates a set blinking rate operation node in the display tree that
specifies the blinking rate for all objects below it.

INPUTS FOR UPDATING NODE

The node can be modified by sending an integer to input < 1 > which will change
the blinking rate.

PS 300 COMMAND SUMMARY

PS 350 Command

SET LINE TEXTURE

FORMAT

name := SET ~INe texture [AROUnd corners] pattern
[APPLied to name 1];

DESCRIPTION

Specifies the line texture pattern to be used in drawing the vector lists that
appear below the node created - by this command. There are up to I27
hardware—generated line textures possible. The parameter pattern is an
integer between 1 and 127. The desired line texture is indicated by the setting
or clearing of the lower 7 bit positions in pattern when represented in binary.
An individual pattern unit is 1.1 centimeters in length. Some of the more
common patterns and their corresponding bit settings are shown below:

Pattern Bit representation Line Texture repeated twice

127 1111111 Solid
124 1111100 Long Dashed
122 1111010 ---- - ---- - Long Short Dashed
106 1101010 -- - - -- - - Long Short Short Dashed

PARAMETERS

ARQUnd Corners — Boolean value used to set a flag to indicate if the specified
line texture should continue from one vector to the next. If
AROUnd corners is TRUE, the line texture will continue
from one vector to the next through the endpoint. If
AROUnd_corners is FALSE, the line texture will start and
stop at vector endpoints.

pattern — An integer between 1 and 127 that specifies the desired line
texture. When pattern is less that 1 or greater than 127, solid lines
are produced.

Hamel — The name of the structure to which the line texture is applied.

SET LINE TEXTURE PS 300 COMMAND SUMMARY

PS 350 Command

Ccontinued)

DEFAULTS

The default line texture is a solid line.

NOTES

Since 7 bit positions are used, it is not possible to create a symmetric pattern.

When line—texturing is applied to a vector, the vector that is specified is
displayed as a textured, rather than solid line. If the line is smaller than the
pattern length, then as much of the pattern that can be displayed with the
vector is displayed. If the line is smaller than the smallest element of the
pattern, then the line is displayed as solid.

The With Pattern and Curve commands create multiple vectors in memory. To
the line—texturing hardware, each vector in a pattern or curve is seen as an
individual vector. Line texturing a patterned line or curve is the same as
line—texturing a number of small segments. Curves and patterns affect
linemtexturing only in that they tend to create short vectors that may be too
short to be completely textured.

NODE CREATED

This command creates a line texture operation node with line texture to be
applied to ail vectors below in the display structure hierachy. Sending a
Boolean value to input < 1 > of the node turns the continuous texture feature on
or off. Sending an integer value to the node changes the pattern.

PS 300 COMMAND SUMMARY VECTOR LIST

- MOQELING -Primitives

Version A2.V01

FORMAT

name := VECtor list [Options] [N=n] vectors;

DESCRIPTION

Defines an object by specifying the points comprising the geometry of the object
and their connectivity (topology).

PARAMETERS

name -Any legal PS 300 name.

options - Can be none, any, or all of the following five groups (but only one from
each group, and in the order specified):

1. BLOCK normal i zed - All vectors will be normalized to a single
common exponent.

2. COLOR -This option is used when specifying color-blended vectors
(refer to SET COLOR BLENDing command) to indicate that vector
colors will be specified in lieu of vector intensities. When the
COLOR option is used, the optional Iai clause used to specify the
intensity of a vector (refer to the vectors parameter below) is
replaced by the optional Hahue clause, where H is a nu tuber from 0
to 720 specifying the individual vector hues. The default is 0 (pure
blue).

The 0-720 scale for the H=hue clause is simply the SET COLOR
scale of 0-360 repeated over the interval 360-720. On this scale, 0
represents pure blue, 120 pure red, 240 pure green, 360 pure blue
again, 48Q pure red again, 600 pure green again, and 720 pure blue.
This "double color wheel" allows for color blending either clockwise
or counterclockwise around the color wheel.

3, Connectivity:

A. CONNECTED_1 i neS -The first vector is an undisplayed position
and the rest are endpoints of lines from the previous vector.

VECTOR LIST PS 300 COMMAND SUMMARY

MODELING —Primitives

Version AZ.VO1 (.continued)

PARAMETERS (continued)

B. SEParate_1 i nes —The vectors are paired as line endpoints.

C. DOTs —Each vector specifies a dot.

D. ITEMi zed —Each vector is individually specified as a move to
position (P) or a line endpoint (l.o).

E. TABU 1 ated —This clause is used to specify an entry into a table
that is used for specifying c®fors for raster lines and for
specifying colors, radii, diffuse, and specular attributes for
raster spheres. This option is also used to alter the attribute
table itself.

When the TABulated option is used, the T=t clause replaces
the iii clause (for intensities) and the H~hue clause Cfor vector
hues). The default is 127 (table entry i 27).

There are 0 to 127 entries into the Attribute table. The
Attribute table may be modified via input < 14> of the
SHADINGENVIRONMENT function.

4. Y and Z coordinate specifications (for constant or linearly changing
Y and/or Z values):

Y = yCDY=delta_y]CZ = zCDZ=delta_z]]

where y and z are default constants or beginning values, and
del ta_y and de) ta_z are increment values for subsequent vectors.

5. INTERNAL_uni is —Vector values are in the internal PS 300 units
[LENGTH]. Specifying this option speeds the processing of the vector
list, but this also requires P/L information to be specified for each
vector, and it doesn't allow default y values or specified intensities.

n —Estimated number of vectors.

PS 300 COMMAND SUMMARY VECTOR LIST

MODELING —Primitives

Version A2.V01 (continued)

PARAMETERS (continued)

vectors —The syntax for individual vectors will vary depending on the options
specified in the options area. For all options except I TEMi zed, COLOR,
and TABU 1 dted the syntax is:

xcompC,ycompC,zcomp]]CI=i]

where xcomp, ycomp and zcomp are real or integer coordinates and i is
a real number (0.0 < i < 1.0) specifying the intrinsic intensity for that
point (1.0 =full intensity).

For ITEMi Zed vector lists the syntax is:

P xcompC,ycompC,zcomp]Jtl=i]

or

~ xcompC,ycompC,zcompJ]CI=i]

where Pmeans amove—to—position and L means a line endpoint.

If default y and z values are specified in the Opti onS area, they are
not specified in the individual vectors.

For color—blended (COLOR) vector lists, the syntax is:

xcompC,ycompC,zcomp]]CH=hue]

where xcomp , ycomp and zcomp are real or integer coordinates and hue
is a real number between 0 and 720 specifying the hue, of a vector.

For TABuI dted vector lists (TAB}, the syntax is::

xcompC,ycompC,zcomp]]CT=t]

where t is an integer between 0 and 127 specifying a table entry.
.«

VECTOR LIST PS 300 COMMAND SUMMARY

MODELING —Primitives

Version A2.VOi Ccontinued)

DEFAULTS

If not specified, the options default to:

I. Vector normalized
2. Not color blended
3. Connected
4. No default y or z values are assumed (see note 5}
5. Expecting internal units

Non color—blended vectors default to:

xcomp,ycompC,zcompJCI=i]

If i is not specified, it defaults to 1.

Color—blended vectors default to:

xcomp,ycompC,zcompJCH=hue]

If hue is not specified, it defaults to 0 (pure blue}.

Tabulated vectors default to:

xcomp,ycompC,zcompJCT=t]

If the table entry is not specified, it defaults to 127 (table entry 127}.

NOTES
_.

1. If n is less than the actual number of vec-ttirs, insufficient allocation of
memory will result; if greater, more memory will be allocated than is used.
(The former is generally the more severe problem.)

2. All vectors in a list must have the same number of components.

3. If y is specified in the options area, z must be specified in the options area.

PS 300 COMMAND SUMMARY VECTOR LIST

P1

r"1

MODELING —Primitives

Version A2.V01 Ccontinued)

NOTES (continued)

4. If no default is specified in the Options area and no z components are
specified in the vectors area, the vector list is a 2D vector list. If a z
default is specified in the same case, the vector list is a 3D vector list.

5. The first vector must be a position (P) vector and will be forced to be a
position vector if not.

6. Options must be specified in the order given.

7. If CONNECTED_i i ne s, SEParate_1 ~ ne s, or DOTs are specified in the options
area but the vectors are entered using P/Ls, then the option specified takes
precedence.

8. Block normalized vector lists generally take longer to process into the
PS 300, but are-processed faster for display once they are in the system.

DISPLAY TREE NODE CREATED

Vector list data node.

VECTOR LIST PS 300 COMMAND SUMMARY

MODELING -Primitives

Version A2.V01

INPUTS FOR UPDATING NODE

Vector

Integer

integer

Vector

Boolean

Vector

<last> Changes fast vector

< clear> Clears list

< delete> Deletes from end

< append > Appends to end

< ~ > True=Li ne f Earl se=Posy ti on

Replaces i-th vector

VECTOR LIST
i AS0~32

NOTES ON INPUTS

1. Vector list nodes are in one of two forms:

Ccontinued)

A. If DOTS was specified in the options area o f the co m mend, a DOT mode
vector list node is created. The Boolean input to <i> is ignored in this
case as well as the P/L portion of input vectors, and ail vectors input are
considered new positions for dots.

8. All other vector list nodes created can be considered to be ZD or 3D
ITEMi zed with intensity specifications after each vector, and if a 3D
vector is input to a 2D vector list node, the last component modifies the
intensity.

2. If a 2D vector is sent to a 3D vector list, the z value defaults to 0.

3. When you replace the i—th vector, the new vector is considered a line (L}
vector unless it was first changed to a position vector with F;POSITION_LI(~1E.

PS 300 COMMAND SUMMARY VECTOR LIST

MODELING —Primitives

Version A2.VO1 Ccontinued)

EXAMPLES

A := VECtor list BLOCK SEParate INTERNAL N=4
P l,l L —1,1 L —1,-1 L 1,-1;

B := VECtor list n=5
1,1 —1,l I=.S
—1,-1 1,-1 I=.75
1,1;

C := VECtor_list ITEM N=5
P 1,1
L —1,1
L —1,-1
P 1,-1
L 1,1;

D := VECtor list TA6ulated N=5 {for drawing raster lines}
P Q,1,0
L 0,0,0 t=5
L 1,0,0 t=2
P 1,1,0 t=3
L 0,1,0 t=4;

0

r1
PS 300 COMMAND SUMMARY
SPECIAL

WRITE6ACK

Version A2.V0]

FORMAT

name := WRiTEBACK [APPLied to name 1];

DESCRIPTION

The WRITEBACK command creates a W RITEBAC K operation node and delineates
the data structure below the node for writeback operations. When the
WRITEBACK operation node is activated, writeback is performed for name 1.

PARAMETERS

name 1 —The name of the structure or node to which writeback is applied.

NOTES

1. This -node delimits the structure from which writeback data will be retrieved.
Only the data nodes that are below the WRITEBACK operation node in the
data structure will be transformed, clipped, viewport scaled, and sent back to
the host.

2. Only a structure that is being displayed can be enabled for writeback. This
means that the WRITEBACK operation node must be traversed by the display
processor and so must be included in the displayed portion of the structure. If
the writeback of only a portion of the picture is desired, WRITEBACK nodes
must be placed appropriately in the display structure.

3. Any number of WRiTEBACK nodes can be placed within a structure. Only one
writeback operation can occur at a time. If more than one node is triggered,
the writeback operations are performed in the order in which the
corresponding nodes were triggered. If the user creates any WRITEBACK
nodes bother than the WRITEBACK node created initially at boot—up), these
nodes must be displayed before being triggered. If the nodes are triggered
before being displayed, an error message will result.

4. The terminal emulator and message display data will not be returned to the
host.

DISPLAY TREE NODE CREATED

The command creates a WRITEBACK operation node.

e

PS 300 FUNCTION SUMMARY o 3

Table 1. Key to Abbreviations for Val id Data Types

KEY TO VALID DATA TYPES

Any
6
C
CH
I

Label
M
PL
R
S

Special
V
20
3D
4D
2x2
3x3
4x3
4x4

Any message
Boolean value
Constant value
Character
Integer
Data input to LABELS node
2x2, 3x3, 4x3, 4x4 matrix
Pick list
Real number
Any string
Special-data type
Any vector
2D vector
3D vector
4D vector
Zx2 matrix
3x3 matrix
4x3 matrix
4x4 matrix

Conjunctive/Disjunctive Sets

Some PS 300 functions have conjunctive or disjunctive inputs and outputs. A
function with conjunctive inputs must have a new message on every input
before it will activate. A function with conjunctive outputs will send a rr~essage
on every output when the function is activated.

Conversely, a disjunctive—input function does not require a new message on
every input to activate. Adisjunctive—output function may not send a message
on each output (or any output) every time it receives a complete set of input
messages.

The F:ADD function, for example, has conjunctive inputs. A value must be sent
to each of the two inputs before the function will fire. The inputs are then
added together, which produces an output that is the sum of the inputs. The
output is conjunctive. Unlike F:ADD, F:ADDC is a disjunctive—input function;
it does not require anew message on every input.

4 — PS 30Q FUNCTION SUMMARY

F:~ROUTE, on the other hand, is a conjunctive—input, disjunctive output
function. Both inputs require messages to activate the function. However, a
message will be sent out only one of the outputs, depending on the value
received on input 1.

F:ACCUMULATE is an example of different sort of disjunctive output. Every
input does not produce an output. The function activates each time anew
message is received on input 1, but the output fires ~,t specified intervals rather
than each time the function is activated.

The following notation is used in the Function Summary to indicate conjunctive
and disjunctive inputs and outputs.

KEY TO CONJUNCTIVE/DISJUNCTIVE SYMBOLS

CC
CD
DC
DD

conjunctive inputs, conjunctive outputs
conjunctive inputs, disjunctive outputs
disjunctive inputs, conjunctive outputs
disjunctive inputs, disjunctive outputs

n

Intrinsic Function
Data Conversion F:LIST

Version A1.V02

Special data >
type from F : XFORMDATA

<1>

F:LIST

CC

<1>

<2>

>S

>B

PURPOSE

Converts the output of the F:XFORMDATA function to an ASCII string. This
function is always used with F:XFORMDATA.

DESCRIPTION

INPUT
< 1 > —data output by F:XFORMDATA

OUTPUT
< 1 > —resulting ASCII string
<2> —Boolean (TRUE).

DEFAULTS

None.

NOTES

1. Input < 1 > is always connected to output < 1 > of F:XFORMDATA.

2. Output <2> is TRUE when processing is complete. There is no output
otherwise.

3. Output <2> should be connected to an instance of F:SYNCC2) to synchronize
F:LIST completion with the initiation of a subsequent transformed—data
request.

Intrinsic Function
Data Selection and Manipulation F:CONCATXDATACN)

PS 34O Version A2.Vo1

F:CONCATXDATACN)

XFORMDATAI---->

XFORMDATAZ---->

XFORMDATA >

PURPOSE

<1>

<2>

<N>

<l> > to SOLID RENDERING

Accepts up to 127 transformed vector lists Coutput from XFORMDATA functions)
and concatenates them into a single transformed vector list

DESCRIPTION

INPUT
< 1 > —output of. F:TRANSFORMDATA Ctransformed vector list)

<N> —output of F:TRANSFORMDATA (transformed vector list)

OUTPUT
<1> —concatenated vector list

Intrinsic Function
Data Se ~ ect i on and Manipulation F : CflNCATXDATA C N)

Version AZ.VoI {continued)

NOTES

1. This function is used to avoid the maximum vector restriction imposed on the
output of F;XFORMDATA. The XFORM®ATA function will return a
maximum of 2048 vectors. To obtain a rendering on the PS 340 raster display
of greater than 2048 vectors, the output of multiple instances of
XFORMDATA must be concatenated into a single transformed vector list
which can be sent to the rendering node.

2. Inputs < 1 > through <N> accept a transformed vector list output from
F;XFORMDATA.

.<<

Intrinsic Function
Miscellaneous Modified Function F:PICKINFO

PS 350 User's Manual

PL >

F:PICKINFO

<1>

<2> C

DD

<1>

<2>

<3>

<4>

<5>

<6>

<7 >

<8>

<9>

PURPOSE

Reformats picklist information for use by other functions. The output picklist
is separated into its component parts.

DESCRIPTION

II~IPUT
< 1 > -picklist
<Z> -depth within structure reported (constant)

OUTPUT
<1> -index
<2> —pick identifiers)
<3> —coordinates
<4> —dimension
<5 > —coordinates reported
 —curve parameter, t
<7> —data type code
<8> —name of picked element
<9> —screen coordinates of the picked point

Intrinsic Function
F:PICKINFO Modified Function Miscellaneous

PS 350 User's Manual Ccontinued)

PS 350 Modifications

Output <9> has been .added to F:PICKINFO. This output reports the screen
coordinates of a pick.

Intrinsic Function
Data Conversion Modified Function F: PRINT

PS 350 User's Manua

F :PRINT

Any >

B >

PURPOSE

<1>

<2> C

DC

<1> >S

Converts any data type to string format; that is, it performs an inverse of the
operation that occurs when an ASCII string is input to the PS 300 and is
converted to one of the data types,

DESCRIPTION

INPUT
< 1 > —any message
<Z> — 600lean governing numeric format Cconstant)

OUTPUT
< 1 > —string

PS 350 Modification

Screen coordinates, if passed to the function from F:PICKINFO, are added to
the string output on < 1 >. Output < 1 > has been modified to report a pick in
which coordinate picking information is given:

For a vector declared in a UECTOR_LIST, the output string format is:

< 1 > <dimension> <pick_x> <pick_y>[<pick_z>]<t>
<pick ID's><screen_x><screen_y>

For a vector v,~ithin a polynomial curve the output string format is:

<Z> <dimension> <pick_x> <pick_y>[<pick_z>]<t>
<pick ID's><screen x><screen_y>

Function
F:REFRESH RATE

PS 350 User's Manual

F:REFRESH RATE

<1>

PURPOSE

Locks refresh rate. This function accepts an integer on input < I >. The integer
must be in the range of 2 through 5. This is the number of ticks per refresh
frame (ticks occur at twice the line frequency). The actual refresh rate
depends on the Line frequency.

Ticks 60Hz SOHz

2 60 50
3 40 33
4 30 25
5 24 20

Intrinsic Function
Data Selection and Manipulation F:SEND

Version Ai.Vo2

PURPOSE

Any > <i >

S > <2>

I > <3>

. F:SEND

C

This is the function network equivalent of the SEND command. It allows you to
send any valid data type to any named entity at any valid index.

DESCRIPTION

INPUT
<1> —message sent
<2> —name of the destination node
< 3 > —index into the destination node

NOTES

1. This function has no output.

Z. Input < 1 > accepts special data types that most functions do not accept,
such as the data type output by F: LABEL.

3. The SETUP CNESS command can be used to specify constant inputs as
default values.

•

I''1
Intrinsic Function
Data. Conversion F:XFCRMDATA

Version AZ.VO1

Any

S

S

I

I

PURPOSE

F:XFORMDATA

<1> <1> > Special

<2> C

<3> C

<4> C

<5> C
DC

Sends transformed data (either a vector list or a 4x4 matrix) to a specified
destination (e.g., the host, a printer, or the screen)o

DESCRIPTION

INPUT
< 1 > —any message
<2> —name of XFORM node (constant)
< 3 > —name o f destination object (constant)
<4> —destination vector index (constant)
<5> —number of vectors (constant)

OUTPUT
< 1 > —special data type used exclusively as input to F :LIST

DEFAULTS

Default for input <4> is 1, default for input <5> is 2048.

Intrinsic Function
F:XFORMDATA Data Conversion

Version A2aV0i Ccontinued)

NOTES

1. Input < 1 > is a trigger for F:XF~RMDATA. This input would typically be
connected to a function button, either directly or via F : SYNCC 2 }, allowing
transformed data to be requested easily.

2. Input <2> is a string or matrix containing the name of the XFORM command in
the display tree (either XFORM MATRIX or XFORM VECtor). By referring to an
XFORM command, this input indirectly specifies the object whose transformed
data is to be sent. If the string names something other than an XFORM
command, an error message is displayed. If the string names a node which
does not exist, an error message is sent and the message is removed from
input <2>.

3. Input < 3 > is a string containing the name to be associated with the
transformed vectors. The name need not be previously defined. If this input
does not contain a valid string, the transformed matrix or vectors will be
created without a name Can acceptable situation unless the transformed
vectors need to be referenced or displayed.) The transformed vector list can
be displayed or modified, provided a name is given on this input. The
transformation matrix cannot be used, however, so naming and sending it to
input <3> is not useful.

4. Input <4> is an integer index specifying the place in a vector list at which the
PS 300 is to start returning transformed data. This input is only used when
the command name at input <Z> represents an XFORM VECtor command (not
an XFORM MATRIX command). The default value is 1.

5. Input <5> is an integer number of consecutive vectors for which transformed
data is to be returned, starting at the vector specified at input <4>. This
input is only used when the command name at input <Z> represents an XFORM
VECtor command (not an XFORM MATRIX command). No more than 2048
consecutive vectors may be returned. The default value is 2048.

6. Output < 1 > contains the transformed data in a format which can only be
accepted by input < 1 > of F :LIST. (F :LIST then prints out the data in ASCII
format -- either a PS 300 VECTOR FIST command or a PS 300 MATRIX 4X4
command, depending on whether the command named at input <2> was an
XFORM VECtor or an XFORM MATRIX.)

7. FoXFORMDATA is used in connection with rendering lines and spheres on the
PS 340 raster display. This functionality is described in Version AZ.VOI of
the PS 340 Graphics Firmware Release Notes.

Initial Function Instance
Miscellaneous CSM

Version A1.v02

CSM
CCSM2)

8 >

PURPOSE

<1>

CC

<1> > Connected to System
at initialization

Sets the Color Shadow Mask (CSM) calligraphic display on or off for the
Terminal Emulator, for MESSAGE_DISPLAY and for the user's data structures.

DESCRIPTION

INPUT
< 1 > —TRUE =CSM on, FALSE =CSM of f

OUTPUT
< 1 > —connected to Syste m

DEFAULT

The default is FALSE, setting the CSM off.

NOTES

1. A TRUE sent to input < 1 > of CSM slows the speed of the line generator for
the CSM calligraphic display. This results in lines that have brighter colors
and better end point match.

.~ K

y~

Initial Function Instance
Output ONBUTTONLIGHTS

Version A1.V02

PURPOSE

ONBUTTONLIGHTS
CONBUTTON~IGHTS2)

<i>

CC

<1>

Turns on lighted buttons on the Function Buttons unit.

DESCRIPTION

> Connected to
Function Buttons
at initialization

INPUT
< 1 > -integer (1 through 32) indicating the button number

OUTPUT
<1> -connected to Function Buttons

NOTES

1. Each button may be turned on independently or all buttons may be turned
on by a single message. A zero (0) or any out-of-range integer at input < 1 >
turns on all button lights. An integer from 1 to 32 at input < 1 > turns on the
corresponding button light.

2. Function buttons are arranged in one row of four, four rows of six, and
another row of four. They are numbered from left to right starting from
the top row. The top row is numbered 1 through 4; the second row 5
through 10, and so on until the last row, 29 through 32.

a

Initial Function Instance
Input Modified Function PICK

PS 35D User's Manual

PICK
tPICK2)

Any

B

I

PURPOSE

> <1>

> <2> C

> <3> C

DD

<1>

<2>

<3>

> PL

>B

>B

Interfaces with the hardware picking circuitry. Any message on input < 1 > arms
the PICK function. Once PICK is enabled, when a pick occurs, the pick list
associated with the picked data is sent out on output < 1 > and a Boolean FALSE
is sent on output <Z>. Typically, this Boolean is used to disable picking of a set
of objects by connecting it to a SET PICKING ON/OFF node in a display tree.

DESCRIPTION

INPUT
< 1 > -trigger
<2> -TRUE =coordinate, FALSE =index (constant)
<3> -timeout duration (constant)

OUTPUT
< 1 > -pick list
<2> -FALSE =pick enabled
<3> -FALSE =ACP attempted an unsuccessful pick or timeout occurred

PS 350 Modification

As noted above, output <3> of PICK now reports a FALSE when the ACP
attempts a pick and is unsuccessful as well as when the timeout specified on
input < 3 > is exceeded.

. a

0

Initial Function Instance
Input PICK

PS 3501PS 390
A2.V02 -April 1987

PICK
CPICK2)

I"1

Any > <1 > <1 >

B > <2> C <2>

I > <3> C <3>

R > <4>

I > <5>

R > <6>

D D

PURPOSE

> PL

> B

> 6

Interfaces with the hardware picking circuitry. Any message on input < 1 > arms
the PICK function. Once PICK is enabled, when a pick occurs, the pick list
associated with the picked data is sent out on output < 1 > and a Boolean FALSE
is sent out on output < 2>. Typically, this Boolean is used to disable picking of a
set of objects by connecting it to a SET PICKING ONIOFF node in a display tree.

DESCRIPTI0~1

INPUT
< 1 > -trigger
<2> -TRUE =coordinate, FALSE =index (.constant)
< 3 > - timeout duration (constant)
<4> -defines pick window half size for the ACP pass of the pick
<5 > -retry count
<6> -half-size increment to be added to window half-size on each

retry

OUTPUT
< 1 > -pick list
<2> -FALSE =pick enabled
< 3 > -FALSE = timeout elapsed

Initial Function Instance
PICK Input

PS 350/PS 390
AZ.V02 — Apri1 1987{continued>

NOTES

1. Input <2> selects the kind of pick list that will be output on output < 1 >. A
FALSE on input <2> indicates that the output pick list will be the pick
identifier and an index into the vector list or the character string. (The
index into the vector list identifies its position in the list; vector 3 is the
third vector in a vector list. The index into a character string identifies
the picked character by its position in the string; character 5 is the fifth
character in a string.)

2. A TRUE on input < 2> indicates that the output pick list will include, in
addition to the pick identifier and the index, the picked coordinates and the
dimension of the picked vector. If the vector is part of a polynomial curve,
its parameter value, t, is supplied instead of the index.

3. Coordinate picking on a character string returns an index into the string,
not its picked coordinates.

4. Coordinate picking cannot be performed on a vector over 500 [LENGTH]
units long.

5. The pick list on output < 1 > is typically connected to an instance of
F:PICKINFO to convert the pick list to a locally useful format. If the pick
list is to be printed out, output < 1 > may he connected to F :PRINT to
convert the pick list code to printable characters.

6. When several vectors are picked, the first vector drawn by the Line
Generator is reported as picked. For example, if three vectors in a single
vector list were picked simultaneously (at a point of intersection}, the first
vector listed in the object definition would be reported as picked.

7. The integer on input < 3 > specifies a pick timeout period in refresh frames.
This pick timeout period allows the user to determine whether a pick has
occurred within the specified amount of time. Timing starts when the PICK
function is armed with a message on active input < 1 >. Allowable integers
for input < 3 > are from 4 through 60.

Initial Function Instance
Input PICK

PS 35O1PS 390
A2.VO2 - April 1987 (continued)

NOTES (continued)

8. If input < 3 > is not used, all picks will be reported once the function is
armed because no tir~ieout duration has been specified.

9. Typically, the FALSE at output < 3 > ~~~,~ould be used to turn of f picking in a
display tree (at a SET PICKIiVG ON/OFF node) or to send a "!`.!0 PICK"
message (probably via F : SYNC(2) ~ back to the host.

10. The user has three means of cancelling an existing pick tir~eout duration:

a. Send an INITi dl i ze command. This will remove the PICK function and
replace it with a new instance of the PICK function.

b. Send anon-integer (and ignore the "Bad message" error).

c. Send an integer less than 4 or greater than 60 to input < 3 > (and ignore
the "Bad message" error).

11. Input <4> is a real number between 0 and 1 that defines the pick ~~vindow
half-size for the ACP pass of the pick. This is dit ferent from the size set
by the SET PICKing LOCation operation node. The Line Generator or the
Frame Buffer uses the operation node to determine if a pick has occurred;
whereas the ACP uses input <4> to do the actual pick pass on the data.

12. Input <5> is an integer specifying pick pass retries. Since it is possible that
the ACP will not find the picked data during a pick pass, input < 5 >
indicates the number of times to add the window increment on input <6>
and try another pick pass.

13. Input <6> is a real number between 0 and 1 which specifies the amount to
increase the pick window half size on each retry of the pick pass.

EXAMPLE

If a 10 is sent to constant input < 3>, then the PICK function is armed with a
message on input < 1 >. The function waits 10 refresh frames from the time the
input < 1 > message is received before checking to see if a pick has occurred. If
a pick has .occurred within that period, the function outputs the appropriate
pick list. If a pick has not occurred, the function outputs a FALSE on output
<3>. In either case, the PICK function is disarmed and must be rearmed via
input < 1 > before further picking can be reported.

~_,~,.aa za :a~ ::.::.:,N':v,~H:s~.si.F::.~uw~?~~y:~

PS 300 Function
Initial Function Instance WRITEBACK

Version A2.V01

PURPOSE

WRITEBACK

<1> <1> ----Qpacket

WRITEBACK is initialized by the system and is used to send encoded writeback
data to user function networks.

This function is not activated by the normal input queue triggering mechanism. It
is activated by sending a TRUE to any WRITEBACK operation node.

DESCRIPTION

INPUT
WRITEBACK has one input queue. Input <1> accepts integers specifying the
size of Qpackets to be output by the function. The default size is 512.
Minimum and maximum sizes are 16 and 1024. If the size specified on the
input is not within this range, the default size will be used.

OUTPUT
WRITEBACK has one output queue. Output < 1 > passes the encoded writeback
data out as Qpackets.

NOTES

WRITEBACK will return all data that are under the WRITEBACK operation node.
Host—resident code will be responsible for recognizing the start—of—writeback and
end—of—writeback commands. Attribute information, such as color, must be
interpreted by host code to ensure that the hardcopy plots are correct.

On the PS 350, viewport translations have not been applied to the data. To
correctly compute the position of endpoints, the host program interpreting the
writeback code must add a viewport center to~ each endpoint. The initial viewport
center is established with a VIEWPORT CENTER command. The VIEWPORT
CENTER command is sent following the start—of—writeback command. Any
changes to the viewport center will be indicated through this sequence of
commands: CLEAR DDA, CLEAR SAVE POINT, position endpoint, CLEAR SAVE
POINT. The position endpoint becomes the new viewport center.

/"'1
PS 300 DEC VAX/VMS PASCAL. GSR

UTILITY PROCEDURE

Version A2eV01

UTILITY PROCEDURE AND PARAMETERS

PROCEDURE PAttach C 9'vDESCR Modifiers P_Varyi ngType ;
PROCEDURE Error Handler CError INTEGER));

DEFINITION

This procedure attaches the PS 300 to the communications channel.

PATTACH

If this procedure is not called prior to use of the Application Procedures, the error
code value corresponding to the name PSE_NotAtt is generated, indicating that
the PS 300 communications link has not been established.

The parameter (Modify) must contain the phrases:

LOGDEVNAM=name/PHYDEUTYP=type

where "name" refers to the logical name of the device that the GSRs will
communicate with, i.e. TTA6:, TTB2: XMEO:, PS:, etc. and "type" refers to the
physical device type of the hardware interface that the GSRs will. communicate
through. This last argument can only be one of the following four interfaces:

ASYNC (standard RS-232 asynchronous communication interface)
PARALLEL (Parallel interface option)
ETHERNET ~DECnet Ethernet option)

The parameter string must contain EXACTLY one "/" and blanks are NOT allowed
to surround the "_" in the phrases. The PAttach parameter string is not sensitive
to upper or lower case.

Example: PAttach ('logdevnam=tta2:lphydevtyp=async', Error_Handler);

where "tta2" is the logical device name of the PS 300, and the hardware interface
is standard asynchronous RS-232.

Example: PAttach ('logdevnam=ps:/phydevtyp=dmr-11', Error_Handler);
.~t

where the physical device type is a DMR-11 interface, and where the user has
informed the VAX that the logical symbol "ps" refers to the name of the logical
device that the GSRs will communicate with using the following ASSIGN
command:

$ ASSIGN XMDO: PS
$ RUN <application—pgm>

PS 300 DEC VAX/VMS FORTRAN-77 GSR

UTILITY SUBROUTINE

Version- A2.V~1

UTILITY SUBROUTINE AND PARAMETERS

CALL PAttch (Modify, ErrHnd)

where:

Modify is a CHARACTER STRING
ErrHnd is the user—defined error—handler subroutine.

PATTCH

DESCRIPTION

This subroutine attaches the PS 300 to the communications channel. If this
subroutine is not called prior to use of the Application Subroutines, the user's
error handler is invoked with the "The PS 300 communications link has not been

established" error code corresponding to the mnemonic: PSENOA:.

The parameter (Modify) must contain the phrases:

LOGDEUNAM=name/PHYDEVTYP=type

where "name" refers to the logical name of the device that th.e GSRs will

communicate with, i.e. TTA6:, TTB2: XMEO:, PS:, etc. and "type" refers to the
physical device type of the hardware interface that the GSRs will communicate
through. This last argument can only be one of the following four interfaces:

ASYNC (standard RS-232 asynchronous communication interface)
PARALLEL (high speed parallel interface
ETHERNET (DECnet Ethernet option) -

The parameter string must contain EXACTLY 1 "/" and blanks are NOT allowed to

surround the "_" in the phrases. The Pattch parameter string is not sensitive to
upper or lower case.

Example: CALL PAttch ('logdevnam=tta2:lphydevtyp=async', Errhnd)

where "tta2" is the logical device name of the PS 300, and the hardware interface
is standard asynchronous RS-232.

(Continued on next page)

PS 300 DEC VAX/VMS FORTRAN-77 GSR PATTCH

UTILITY SUgROUTI NE

Version A2.VO1 Cc~ntinued~

Example: CALL PAttch ('logdevnam=ps:/phydevtyp=dmr-11', ErrHnd)

where the physical device type is a DMR-11 interface and where the user has
informed the VAX that the logical symbol "ps" refers to the name of the logical
device that the GSRs will communicate with using the following ASSIGN
command:

$ ASSIGN XMDO: PS:
$ RUN <application-pgm>

PS 300 DEC VAX/VMS PASCAL GSR

UTILITY PROCEDURE

PDEVINFO

Version Ai . V02 -March 1985

UTILITY PROCEDURE AND PARAMETERS

[GLOBAL] PROCEDURE PDevInfo C VAR Channel num INTEGER;
VAR Device_type : INTEGER;
VAR Dev_status INTEGER;

PROCEDURE Error_Handler [Err :..INTEGER));

DEFINITION

This procedure is used to return the Q I/O channel number so that users do not
need to detach from the GSRs while doing Physical IiO.

Channel is the UA>C Q I/O channel number.

Device is the device code, where:

1 is the code for the DRM-i 1 interface
2 is the code for the standard asynchronous interface
3 is the code for the Parallel interface

Status is the status where:

~ is not attached
1 is attached

PS 300 DEC VAX/VMS FORTRAN-77 GSR

UTILITY SUBROUTINE

PDINFO

Version Ai,V02 —March 1985

UTILITY SU6ROUTINE AND PARAMETERS

CALL PDINFO <Channel, Device, Status, ErrHnd)

where:

Channel is an INTEGER~4 that is the VAX Q I/O channel number

Device is an INTEGER~'4 that is the device code, where:

1 is the code for the D RM-11 interface
2 is the code for the asynchronous interface
3 is the code for the Parallel interface

Status is an INTEGER~4 that is the status where:

0 is not attached
1 is attached

ErrHnd is the user—defined error—handler subroutine.

DEFINITION

This subroutine is used to return the Q I/O channel number so that users do not

need to detach from the GSRs while doing Physical I/O.

a

•

O

•

0

f""1

PS 300 DEC VAXIVMS FORTRAN-77 GSR

Hame := VECTOR_LIST Cno corresponding command)

PVCBEG

Version A2.V41

APPLICATION SUBROUTINE AND PARAMETERS

CALL~PVcBeg CName, VecCou, BNorm, CBiend, Dimen, Class, ErrHnd)

where:

Name is a CHARACTER STRING defining the name of the vector list

VecCou is an INTEGER~4 specifying the total number of vectors in the
vector list

6Norm is a LOGICAL 1 defined: .TRUE. for Block Normalized, .FALSE. for
Vector Normalized _

C81end is a LOGICAL~1 defined: .TRUE. for Color Blending, .FALSE. for
normal depth cueing

Dimen is an INTEGER*4 2 or 3 {Z or 3 dimensions respectively)

Class is an INTEGER~4 defining the class of the vector list

ErrHnd is the user—defined error—handler subroutine.

Thi-s subroutine must be called to begin a vector list. To send a vector list, the
user must call:

PVcBeg

PVcLis (This may be called multiple times for vector—normalized vector
lists.)

PVcEnd

Together, the above 3 subroutines implement the PS 300 command:

Name := VECTOR LIST (DOTS, CONNECTED, ITEMIZED, SEPARATE,
TABULATED) N=n <vectors>;

NOTE

The dimension must be specified - in the PVCBEG
application subroutine. In the PS 300 command,
dimension is implied by syntax.

{Continued on next page)

PS 300 DEC VAXIVMS FORTRAN-77 GSR PVCBEG

Name e= VECTOR®LIST Cno corresponding command)

Version A2.V01 Ccontinued)

~ These mnemonics may be referenced directly by the user if PROCONST.FOR is
INCLUDED in the subroutine. See the section on Programming Suggestions for
a description ~of PROCONST.FOR. A description of the vector classes and their
INTEGER~4 value is given below.

Mnemonic Meaning INTEGER*4 Value

PVCONN Connected 0
PVDOTS Dots 1
PVITEM Itemized 2
PVSEPA Separate 3
PVTAB Tabulated 4

Note: If the vector list is class PVTAB, then the BNorm must be FALSE
and Dimen must be equal to 3; that is, tabulated vector lists must be
vector—normalized 3D vector lists.

PS 300 IBM VS FORTRAN GSR

Name := VECTOR_LIST Cno corresponding command)

PVCBEG

Version A2.VOi

APPLICATION SUBROUTINE AND PARAMETERS

CALL PVcBeg CName, VecCou, BNorm, C61end, Dimen, Class, ErrHnd)

where:

Name is a CHARACTER STRING defining the name of the vector list

VecCou is an INTEGER~4 specifying the total number of vectors in the
vector list

BNorm is a LOGICAL*1 defined: .TRUE. for Block Normalized, .FALSE. for
Vector Normalized

CBlend is a LOGICAL*1 defined: .TRUE. for Color Blending, .FALSE. for
normal depth cueing

Dimen is an INTEGER~4 2 or 3 (2 or 3 dimensions respectively)

*Class is an INTEGER~4 defining the class of the vector list

ErrHnd is the user—defined error—handler subroutine.

This subroutine must be called to begin a vector list. To send a vector list, the
user must call:

PVcBeg

PVcLis (This may be called multiple times for vector—normalized vector lists)
PVcEnd

Together, the above 3 subroutines implement the PS 300 command:

Name := VECTOR_~IST (DOTS, CONNECTED, ITEMIZED, SEPARATE,
TABULATED) N=n <vectors>;

NOTE

The dimension must be specified in the PVCBEG
application subroutine. In the PS 300 command,

.dimension is implied by syntax.

(Continued on next .page)

f'1

PS X00 IBM VS FORTRAN GSR

Name o= VECTOR_LIST Cno corresponding command)

PVCBEG

Version A2aV01 (continued)

~ These mnemonics may be referenced directly by the user if PROCONST.FOR is
INCLUDED in the subroutine. See the section on Programming Suggestions for
a description of PROCONST.FOR. A description of the vector classes and their
INTEGER~4 value is given below.

Mnemonic Meaning INTEGER~4 Value

PVCONN Connected 0
PVDOTS Dots 1
PVITEM Itemized 2
PVSEPA Separate 3
PVTAB Tabulated 4

Note: If the vector list is class PVTAB, then the BNorm must be FALSE
and Dimen must be equal to 3; that is, tabulated vector lists must be
vector normalized 3D vector lists.

PS 300 DEC VAxIVMS FORTRAN-77 GSR

Name := VECTOR_LIST tno corresponding command)

PVCLIS

Version A2.V01

APPLICATION SUBROUTINE AND PARAMETERS

CALL PVcLis CNVec, Vecs, PosLin, ErrHnd)

where:

NVec is the number of vectors in the vector list and is defined: INTEGER*4

Vecs is the array containing the vectors of the vector list and is defined:
REAL*4 (4, NVec) _

where: Vecs(l,n) =vector n x—component
. Vecs(2,n) =vector n y—component

Vecs(3,n) =vector n z—component
Vecs(4,n) = vector n intensity (or hue)

Q <= Vecs(4,n) <=127 if vector
class is tabulated.

PosLin is the array containing the move/positive —draw/line information
for each vector. PosLin is defined : LOGICAL* 1 PosLin(NVec)

If PosLin(n) _ .TRUE. then vector n is a draw(line) vector.

If PosLin(n) _ .FALSE. then vector n is a move(position) vector.

ErrHnd is the user—defined error—handler subroutine.

DESCRIPTION

This subroutine must be called to send a piece of a vector list. ~-~-For
vector—normalized vector lists, this subroutine can be called multiple times to
send the vector list down in pieces. Multiple calls to this subroutine are not
permitted for the block—normalized vector list case, unless the subroutine
PVcMax is called first. To send a vector list, the user must call: ,

PVcBeg .«

PVcLis (This may be called multiple times for vector—normalized vector lists)

PVcEnd

(Continued on next page)

~"1

PS 300 DEC VAX/VMS FORTRAN-77 GSR PVCLIS

Name := VECTOR~LIST Cno corresponding command)

Version A2.V01 Ccontinued)

The POSLIN Array is always required, however the CLASS specified in PVcBeg
determines how it is used. Eor CONNECTED, DOTS, and SEPARATE, the user
need not specify the contents of POSL,IN. For ITEMIZED and TABULATED, the
user—specified positionlline is used.

The fourth position of Vecs is the intensity of that vector if vector—normalized,
regardless of dimension. If block—normalized, the first vector's fourth position is
used as the entire vector list intensity.

The fourth position of Vecs can be used to specify color in lieu of intensity when
specifying color—blended vectors (refer to PSETCB). Use the following algorithm
to convert the acceptable range of hues (real numbers 0-720 for the PS 300
VECTOR_LIST command) to the expected range of 0-1 for the PVCLIS GSR
routine before sending.

• If the value is less -than 0 or greater than 720, clamp it to the nearest
in—range value.

• if the value is greater than or equal to 360, subtract 360.

• Divide the value by 768.

• if the original value was greater -than or equal to 360, add .5 to the result of
the division.

This has the effect of mapping hue values in the range (0-360) to (0—.46875), and
values in the range (360-720) to (.5—.96875). Values greater ~ than .46875 and less
than .5 are out of range, and are interpreted as .5 (pure blue).

If the vector class is "tabulated," the fourth position of the VE,CS is an INDEX.
Users should specify whole numbers 0< index < 127 in this case.-~~"The GSRs will
truncate the value supplied to an integer and force the value: to be in range 0 to
127.

Together, the subroutines PVcBeg, PVcLis, and PVcEnd implement the PS 300
command: K~

Name := VECTOR LIST (DOTS, CONNECTED, ITEMIZED, SEPARATE,
TABULATED) N=n <vectors>;

PS 300 I BiH VS FORTRAN GSR

Name := VECTOR_LiST tno corresponding command)

PVCLIS

Version A2 . VO 1

APPLICATION SUBROUTINE AND PARAMETERS

CALL PVcLis CNVec, Vecs, PosLin, ErrHnd)

where:

NVec is the number of vectors in the vector list and is defined: INTEGER~4

Uecs is the array containing the vectors of the vector List and is defined:
REAL*4 (4, NUec)

where: Uecs(l,n) =vector n x-component
Vecs(2,n) =vector n y-component
Uecs(3,n) =vector n z-component
Vecs(4,n) = vector n intensity (or hue)

0 <= Vecs(4,n) <=127 if vector
class is tabulated.

PosLin is the array containing the move/positive -draw/line information
for each vector: PosLin is defined : LOGICAI-~ 1 PosLin(NVec)

If PosLin(n) _ .TRUE. then vector n is a draw(line) vector.

If PosLin(n) _ .FALSE. then vector n is a move(position) vector.

ErrHnd is the user-defined error-handler subroutine.

DESCRIPTION

This subroutine must be called to send a piece of a vector list. For
vector-normalized vector lists, this subroutine can be called multiple times to
send the vector list down in pieces. Multiple calls to this subroutine are not
permitted for the block-normalized vector list case, unless the subroutine
PVcMax is called first. To send a vector list, the user must call:

PVcBeg

PUcL.is (This may be called multiple times for vector normalized vector lists)

PVcEnd

(Continued on next page)

PS 3t)G IBM US FORTRAN GSR

Name := VECTOR_LIST tno corresponding command)

PVCLIS

Version AZ.VO1 tconti Hued)

The POSLIN Array is always required, however the CLASS specified in PUcBeg
determines how it is used. For. COI`dNECTED, DOTS, and SEPARATE, the user
need not specify the contents of POSLIN. For ITEMIZED and TABULATED, the
user-specified position/line is used.

The fourth position of Vecs is the intensity of that vector if vector-normalized,
regardless of dimension. If block-normalized, the first vector's fourth position is
used as the entire vector list intensity.

The fourth position of Vecs can be used to specify color in lieu of intensity when
specifying color-blended vectors (refer to PSETCB). Use the following algorithm
to convert the acceptable range o f hues (real numbers 0-720 for the PS 300
VECTOR_LIST command) to the expected range of 0-1 for the PVCLIS GSR
routine before sending.

• if the value is less than 0 or greater than 720, clamp it to the nearest
in-range value.

• If the value is greater than or equal to 360, subtract 360.

• Divide the value by 768.

• If the original value was greater than or equal to 360, add .5 to the result of
the division.

This has the effect of mapping hue values in the range (0-360) to (0-.46875), and
values in the range (360-720) to (.5-.96875). Values greater than .46875 and less
than .5 are out of range, and are interpreted as .5 (pure blue}.

If the vector class is "tabulated," the fourth position of the VECS is an INDEX.
Users should specify whole numbers 0< index < 127 in this case. The GSRs will
truncate the value supplied to an integer and force the value to be in range 0 to
12 7.

Together, the subroutines PVcBeg, PVcLis, and PVcEnd implement the PS 300
command:

Name := VECTOR LIST (DOTS, CONNECTED, ITEMIZED, SEPARATE,
TABULATED) N=n <vectors>;

PS 300 DEC VAXIVMS FORTRAN-77 GSR PVCMAX

Name := VECTOR_LIST Cno corresponding command)

Version A2.V01

APPLICATION SUBROUTINE AND PARAMETERS

SU6ROUTINE PVCMAX CMAX, ERRHAND)

DEFINITION

This subroutine must be called before calling PVCLis if creating a creating a
block—normalized vector list with multiple calls to PVCLis. To send a vector list,
the user must call:

• PVCBeg

• PVCMax (If making calls to PVCLis and creating ablock—normalized vector
list.)

• PVCLis (This may be called multiple times for vector—normalized vector
lists.)

• PVcEnd (This must be last.)

Together, the above 4 procedures implement the PS 300 command

Name := VECTOR LIST (DOTS, CONNECTED, ITEMIZED, SEPARATE)
N=n <vectors>;

0

I'"1
PS 300 I8M VS FORTRAN GSR

Name := VECTOR LIST Cno corresponding command)

PVCMAX

Version AZ.VO1

APPLICATION SUBROUTINE AND PARAMETERS

SUBROUTINE PVCMAX CMAX, ERRNAND)

DEFINITION

This subroutine must be called before calling PVCLis if creating a creating a
block—normalized vector list with multiple calls to PVCLis. To send a vector list,
the user must call:

• PVCBeg

• PVCMax (If making calls to PVCLis and creating ablock—normalized vector
list.)

• PVCLis (This may be called multiple times for vector—normalized vector
lists.)

• PVcEnd (This must be last.)

Together, the above 4 procedures implement the PS 300 command

Name := VECTOR_LIST (DOTS, CONNECTED, ITEMIZED, SEPARATE)
N=n <vectors>;

PS 300 DEC VAX/VMS PASCAL GSR

Name := VECTOR_LIST Cno corresponding command)

PVECBEGN

Version AZ.VOl

APPLICATION PROCEDURE AND PARAMETERS

PROCEDURE PVecBegn C ~DESCR Name P_VaryingType;
VectorCount INTEGER;
BiockNormaiized BOOLEAN;
Coi oral ending BOOLEAN ;
Di men INTEGER;
C1 as s INTEGER;

PROCEDURE Error Handler CErr INTEGER));

DEFINITION

This procedure must be called to begin a vector list. To send a °vector list, the
user must call the procedures:

PUecBegn

PUecList (This procedure may be called multiple times for vector—normalized
vector lists)

PUecEnd

it contains the following parametric definitions:

• Name specifies the name to be given to the vector list

• VectorCount is the number of vectors to be created

• B1ockNormalized is TRUE for Block Normalized and FALSE for Vector
Normalized

• ColorBlending is TRUE for Color Blending and FALSE for normal depth
cueing

• Dimen is 2 or 3 (Z or 3 dimensions respectively)

• *Class corresponds to a vector class

• Error_Handler is the user—defined error—handler procedure

(Continued on next page)

PS 300 DEC VAX/VMS PASCAL. GSR PVECBEGN

Name := VECTOR_LIST tna corresponding command)

Version A2.V01 tcontinued)

Together, the above 3 procedures implement the PS 300 command:

Name := VECTOR~LiST {DOTS, CONNECTED, ITEMIZED, SEPARATE,
TABULATED) N=n <vectors>;

NOTE

The dimension must be specified in the PVEC6EGN
application procedure. In the PS 300 command, dimension is
implied by syntax.

* These mnemonics may be referenced directly by the user if PROCONST.PAS is
INCLUDED in the procedure.

Mnemonic Meaning INTEGER Value

P Conn Connected 0
P Dots Dots 1 m
P Item Itemized 2
P~Sepa Separate 3
P~Tab Tabulated 4

Note; If the vector list is class P Tab, BlockNormalized must be FALSE,
and Dimen must be equal to 3; that is, tabulated vector lists must be
vector—normalized 3D vector lists.

PS 300 IBM PASCAL/VS GSR PVECBEGN

Name := VECTOR_LIST Cno corresponding command)

Version A2.V01

APPLICATION PROCEDURE AND PARAMETERS

PROCEDI~RE PVecBegn C ~DESCR Name : P_Varyi ngType ;
VectorCount INTEGER;
B1ockNormalized BOOLEAN;
Color6iending BOOLEAN;
Di men : INTEGER;
Class INTEGER;

PROCEDURE Error Handler (Err INTEGER));

DEFINITION

This procedure must be called to begin a vector list. To send a vector list, the
user must call the procedures:

PVecBegn

PUecList (This procedure may be called multiple times for vector—normalized
vector lists)

PUecEnd
0

It contains the following parametric definitions:

• Name specifies the name to be given to the vector list

• VectorCount is the number of vectors to be created

• 61ockNormalized is TRUE for 81ock Normalized and FALSE for Vector
Normalized

• Color8lending is TRUE for Color Blending and FALSE for normal depth
cueing

• Dimen is 2 or 3 (Z or 3 dimensions respectively)

• Class corresponds to a vector class

• Error_Handler is the user—defined error—handler procedure

(Continued on next page)

PS 300 IBM PASCAL/VS GSR

Name := VECTOR_LIST Cno corresponding command)

PVECBEGN

Version A2.VOi Ccontinued)

Together, the above 3 procedures implement the PS 300 command:

Name := VECTOR LIST (DOTS, CONNECTED, ITEMIZED, SEPARATE,
TABULATED) N=n <vectors>;

NOTE

The dimension must be specified in the PVECBEGN
application procedure. In the PS 300 command, dimension is
implied by syntax,

~' These mnemonics may be referenced directly by the user if PROCONST.PAS is
INCLUDED in the procedure.

Mnemonic Meaning INTEGER Value

P Conn Connected 0
P_®Dots Dots 1
P Item Itemized Z
P~Sepa Separate 3
P~Tab Tabulated 4

Note: If the vector list is class P_Tab, 81ockNormalized must be FALSE,
and Dimen must be equal to 3; that is, tabulated vector lists must be
vector-normalized 3D vector lists.

PS 300 DEC VAX/VMS PASCAL GSR PVECLIST

Name := VECTOR_LIST Cno corresponding command)

Version A2.Vo1

APPLICATION PROCEDURE AND PARAMETERS

PROCEDURE PVecList C NumberOfVectors INTEGER;
VAR Vectors P VectorListType;

PROCEDURE Error Handler CErr INTEGER));

DEFINITION

This procedure must be called to send a piece of a vector list. For
vector—normalized vector lists, this procedure can be called repeatedly to send
the vector list down in pieces. Multiple calls to this procedure are not permitted
for the block—normalized vector list case, unless the procedure PVecMax is called
first. To send a vector list, the user must call the procedures:

PVecBegn

PVecList (This procedures may be called multiple times for
vector—normalized vector lists)

PVecEnd

Together, the above 3 procedures implement the PS 300 command:

Name := VECTOR LIST (DOTS, CONNECTED, ITEMIZED, SEPARATE,
TABULATED) N=n <vectors>;

Vectors is the array containing the vectors of the vector list.

where: Vectors [n].V4[1] := Vector n x—component
Vectors [n].V4[2] := Vector n y-component ~~
Vectors [n].V4[3] := Vector n z-component
Vectors [n].V4[4] := Vector n intensity (or hue)

0 <= vectors [n].V4[4] <=1 or 0 <_
Vectors[n].V4[4] <=127 if vector class is
tabulated.

Vectors [n].Draw := True if vector n is adraw/line vector.
Vectors [n].Draw := False if vector n is amove/position vector.

The fourth position of Vectors is the intensity of that vector if
vector—normalized, regardless of dimension. If block—normalized, the first
vector's fourth position is used as the entire vector list intensity.

PS 300 DEC VAX/VMS PASCAL GSR PVECIIST

Name := VECTOR_~IST Cno corresponding command)

Version A2.VOi {continued)

The fourth position of Vectors can be used to specify color in Lieu of intensity
when specifying color—blended vectors (refer to PSETBLND). Use the following
algorithm to convert the acceptable range of hues (real numbers 0-720 for the
PS 300 VECTOR LIST command) to the expected range of 0-1 for the PVECI~IST
GSR procedure before sending.

• if the value is less than 0 or greater than 720, clamp it to the nearest
in—range value.

• If the value is greater than or equal to 360, subtract 360.

• Divide the value by 768.

• If the original value was greater than or equal to 360, add .5 to the result of
the division.

This has the effect of mapping hue values in the range (0-360) to (0—.46875), and
values in the range (360-720) to (.5—.96875). Values greater than .46875 and less
than .5 are out of range, and are interpreted as .5 (pure blue).

If the vector class is "tabulated," the fourth position of the VECTORS is an
INDEX. Users should specify whole numbers 0 < index < 127 in this case. The GSRs
will truncate the value supplied to an integer and force the value to be in range 0
to 127.

If specifying P_Conn, P_Dots, or P_Sepa, the vector's draw section of the vector
list is generated by the procedure. P Item and P Tab require that the move/draw
nature of each vector be defined by the user.

:~}

•S ~'

PS 300 IBM PASCAL/VS GSR PVECLIST

Name := VECTOR_LIST Cno corresponding command)

Version A2 . VO 1

APPLICATION PROCEDURE AND PARAMETERS

PROCEDURE PVecList C

DEFINITION

NumberOfVectors ~ INTEGER;
VAR Vectors P VectorListType;

PROCEDURE Error Handler CErr INTEGER));

This procedure must be called to send a piece of a vector list. For
vector—normalized vector lists, this procedure can be called repeatedly to send
the vector list down in pieces. Multiple calls to this procedure are not permitted
for the block—normalized vector list case, unless the procedure PVecMax is called
first. To send a vector list, the user must call the procedures:

PVecBegn

PVecList (This procedures may be called multiple times for
vector—normalized vector lists)

PVecEnd

Together, the above 3 procedures implement the PS 300 command:

Name := VECTOR LIST (DOTS, CONNECTED, ITEMIZED, SEPARATE,
TABULATED) N=n <vectors>;

Vectors is the array containing the vectors of the vector list.

where: Vectors [n].V4[1] := Vector n x—component
Vectors [n].V4[2] := Vector n y—component
Vectors [n].V4[3] := Vector n z—component
Vectors Cn].V4[4J := Vector n intensity (or hue}

0 <= vectors [n].V4[4] <=1 or 0 <_
VectorsCn].V4[4] <=127 if vector class is
tabulated.

Vectors [n].Draw := True if vector n is adraw/line vector.
Vectors Cn].Draw := False if vector n is amove/position vector.

The fourth position of Vectors is the intensity of that vector if
vector—normalized, regardless of dimension. If block—normalized, the first
vector's fourth position is used as the entire vector list intensity.

PS 300 IBM PASCAL/VS GSR PVECLIST

Name := VECTOR_LIST {no corresponding command)

Version A2oVO1 Ccontinued)

The fourth position of Vectors can be used to specify color in lieu of intensity
when specifying color—blended vectors (refer to PSETBLND). Use the following
algorithm to convert the acceptable range of hues (real numbers 0-720 for the
PS 300 VECTOR_LIST command) to the expected range of 0-1 for the PVECLIST
GSR procedure before sending.

• If the value is Iess than 0 or greater than 720, clamp it to the nearest
in—range value.

• If the value is greater than or equal to 360, subtract 360.

• Divide the value by 768.

• If the original value was greater than or equal to 360, add .5 to the result of
the division.

This has the effect of mapping hue values in the range CO-360) to CO—.46875), and
values in the range (360-720) to (.5—.96875). Values greater than .46875 and less
than .5 are out of range, and are interpreted as .5 (pure blue).

If the vector class is "tabulated," the fourth position of the VECTORS is an
INDEX. Users should specify whole numbers 0 < index < 127 in this case. The GSRs
will truncate the value supplied to an integer and force the value to be in range 0
to 127.

If specifying P_Conn, P_Dots, or P_Sepa, the vector's draw section of the vector
list is generated by the procedure. P Item and P Tab requires that the . move/draw
nature of each vector be defined by the user.

f"'1
PS 300 DEC VAXIVMS PASCAL GSR

Name := VECTOR_LIST tno corresponding command)

PVECMAX

Version A2.V01

APPLICATION PROCEDURE AND PARAMETERS

CGl_OSAL, CHECKCNOSOUNDS)] PROCEDURE PVecMax CMaxcomp REAL)
CPROCEDURE Error Handier CErr INTEGER));

DEFINITION

This procedure must be called to set the maximum component of a vector list for
multiple calls to PVecList with block-normalized vectors. To send a vector list,
the user must call:

• PVecBegn

• PVecMax (If defining block-normalized vector with multiple calls to
PUecList)

• PVecList (This may be called multiple times.)

• PUecEnd (This is called last.)

Together, the above 4 procedures implement the PS 300 command

Name := VECTOR LIST (DOTS, CONNECTED, ITEMIZED, SEPARATE)
N=n <vectors>;

0

PS 300 IBM PASCAL/VS GSR PVECMAX

r1
Name := VECTOR_LIST tno corresponding command)

Version A2.V01

APPLICATION PROCEDURE AND PARAMETERS

PROCEDURE PVecMax CMaxcomp REAL)
tPROCEDURE Error Handler CErr :INTEGER));

DEFINITION

This procedure must be called to set the maximum component of a vector list for
multiple calls to PVecList with block—normalized vectors. To send a vector list,
the user must call:

• PUecBegn

• PVecMax (If defining block normalized—vector with multiple calls to
PVecList)

• PVecList (This may be called multiple times.)

• PVecEnd (This is called last.)

Together, the above 4 procedures implement the PS ~fl0 command

Name := VECTOR LIST (DOTS, CONNECTED, ITEMIZED, SEPARATE)
N-n <vectors>;

0

PS 300 IBM PASCAL/VS GSR PWRTBACK

Name := WRITEBACK

Version A2aV0i

APPLICATION PROCEDURE AND PARAMETERS

PROCEDURE PWRTBACK C CONST Name STRING;
CONST Namei STRING;

PROCEDURE Error Handler CErr : INTEGER));

DESCRIPTION

This procedure enables writeback in the data structure Name 1. Writeback is
triggered by sending a TRUE to the writeback operation node created with this
procedure.

PARAMETERS

Namel — The name of the structure to which writeback is applied.

PS 300 COMMAND AND SYNTAX

name := WRITEBACK [APPLied to Name i];

PS 300 DEC VAXIVMS PASCAL GSR PWRTBACK

P1

l^1

Name : = WRITEBACK

Version AZ.VO1

APPLICATION PROCEDURE AND PARAMETERS

PROCEDURE PWrtBack C 9oDESCR Name P VaryingType;
~DESCR Namel P VaryingType;

PROCEDURE Error Handler CErr INTEGER));

DEFINITION

This procedure enables writeback in the data structure Name l . Writeback is
.triggered by sending a TRUE to the writeback operation node created with this
procedure.

PARAMETERS

Namel —The name of the structure to which writeback is applied.

PS 300 COMMAND AND SYNTAX

name :~ W RITEBAC K [APPLied to Name 1];

PS 300 FORTRAN GSR PWRTBK

~"1 Name := WRITEBACK

Version A2.VOl

APPLICATION SUBROUTINE AND PARAMETERS

CALL PWRTBK t Name, Hamel, Errhnd)

where:

Hamel is a CHARACTER STRING
Errhnd is the user—defined error—handler subroutine

DEFINITION

This subroutine enables writeback in the data structure Name l . Writeback is
triggered by sending a TRUE to the writeback operation node created with this
subroutine.

PARAMETERS

Hamel —The name of the structure to which writeback is applied.

PS 300 COMMAND AND SYNTAX

name :~ WRITEBACK [APPLied to Name j];

.~ i

..;

c

PS 300 FORTRAN GSR PSEBOF

Name := SET BLINKING ON/OFF

PS 350 User's Manual

APPLICATI01~1 SUBROUTINE AND PARAMETERS

CALL. PSEBOF C Name , OnOff , Name 1 , Errhnd)

where:

Name is a CHARACTER STRING
OnOf f is a LOGICAL* 1
Name 1 is a CHARACTER STRING
Errhnd is the user—defined error—handler subroutine

DEFINITION

This procedure turns blinking on and off, it affects all objects below the node
created by the command in the display tree.

PARAMETERS

P1 OnOff — TRUE indicates that blinking will occur in the displayed objects.
FALSE turns blinking off.

Names — The name of the structure that will be affected by the command.

PS 300 COMMAND AND SYNTAX

name := SET BLINKing 5wi tCh
~APPLied to name l];

PS 300 IBM PASCAL/VS GSR

Name := SET BLINKING ON/OFF

PS 3S0 User's Manual

PSETBONF

APPLICATION PROCEDURE AND PARAMETERS

PROCED~IRE PSet80nf C CONST Name STRING;
Onoff BOOLEAN ;

CONST Namel STRING;
Procedure Error_Handler CErr : INTEGER));

DEFINITION

This procedure turns blinking on and off. It affects all objects below the node
created by the command in the display tree.

PARAMETERS

OnOff — TRUE indicates that blinking will occur in the displayed objects.
FALSE turns blinking off.

Namel — The name of the structure that will be affected by the command.

PS 30o COMMAND AND SYNTAX

name := SET BLINKing switch [APPLied to namel~];

~~

PS 300 DEC VAX/VMS PASCAL GSR PSETBONF

f'1 Name := SET BLINKING ONIOFF

PS 350 User's Manual

APPLICATION PROCEDURE AND PARAMETERS

.PROCEDURE PSetBOnf C %DESCR Name P_VaryingType;
Onoff 600LEAN ;

%DESCR Namei P VaryingType;
PROCEDURE Error Handler CErr INTEGER));

DEFINITION

This procedure turns blinking on and off. It affects all objects below the node
created by the command in the display tree.

PARAMETERS

Onoff — TRUE indicates that blinking will occur in the displayed objects.
FALSE turns blinking off.

Namei — The name of the structure that will be affected by the command.

PS 3Q0 COMMAND AND SYNTAX

name := SET BLINKing switch [APPLied to Hamel];

~~~ 



y~r 



PS 300 FORTRAN GSR PSELNT 

Name := SET LINE TEXTURE 

PS 350 User's Manual 

APPLICATION SUBROUTINE AND PARAMETERS 

CALL PSELNT tName, Pattrn, Cont, Hamel, Errhnd~ 

where: 

Name is a CHARACTER STRING 
Pattrn is an INTEGER~4 
Cont is a LOGICAL* 1 
Hamel is a CHARACTER STRING 
Errhnd is the user-defined error-handler subroutine 

DEFINITIO N 

This subroutine specifies the line texture pattern to be used in drawing the 
vector lists that appear below the node created by this command. There are up 
to 127 hardware-generated line textures possible. The parameter pattrn is an 
integer between 1 and 127. The desired line texture is indicated by the setting 
or clearing of the lower 7-bit positions in Pattern when represented in binary. 
An individual pattern unit is 1.1 centimeters in length. Some of the more 
common patterns and their corresponding bit settings are shown below: 

Pattern Bit representation Line Texture repeated twice 

127 111 1111 Solid 
124 1111100 Long Dashed 
122 11 1 1010 ---- - ---- - Long Short Dashed 
106 1101010 -- - - -- - - Long Short Short Dashed 

PARAMETERS 

Cont_ - LOGICAL value used to set a flag to indicate if the specified line 
texture should continue from one vector to the next. If Cont is TRUE, 
the line texture will continue from one vector to the next through the 
endpoint. If Cont is FALSE, the line texture will start and stop and 
_the vector endpoints. 

Pattrn - An integer between 1 and 127 that specifies the desired line texture. 
When pattern is less that 1~ or greater than 127, solid lines are 
produced. 

Hamel - The name of the structure to which the line texture is applied. 



PS 300 FORTRAN GSR PSELNT 

Name := SET LINE TEXTURE 

PS 350 User's Manual tcontinued) 

DEFAULTS 

The default line texture is a solid line 

NOTES 

Since 7 bit positions are used, it is not possible to create a symmetric pattern. 

When line—texturing is applied to a vector, the vector that is specified is 
displayed as a patterned, rather that solid line. If the line is smaller than the 
pattern length, then as much of the pattern that can be displayed with the vector 
is displayed. If the line is smaller than the smallest element of the pattern, then 
the line is displayed as solid. 

The With Pattern and Curve commands create multiple vectors in memory. To 
the line—texturing hardware, each vector in a pattern or curve is seen as an 
individual vector. Line_texturing a patterned line or curve is the same as 
line—texturing a number of ,small segments. Curves and patterns affect 
line—texturing only in that they tend to create short vectors that -may be too 
short to be completely textured. 

PS 300 COMMAND AND SYNTAX 

name := SET LINe texture (AROUnd_corners J pattern 
[APPLied to name) ]; 



f'1 
PS 300 IBM PASCAL/VS GSR 

Name := SET LINE TEXTURE 

PSETLINT 

PS 350 User's Manual 

APPLICATION PROCEDURE AND PARAMETERS 

PROCEDURE PSetLinT C CONST Name : STRING; 
Pattern INTEGER; 
AroundCorners BOOLEAN; 

CONST Namel STRING; 
PROCEDURE Error Handier CErr INTEGER)); 

DEFINITION 

This procedure specifies the line texture pattern to be used in drawing the 
vector lists that appear below the node created by this command. There are up 
to 127 hardware-generated line textures possible. The parameter pattern is an 
integer between 1 and 127. The desired line texture is indicated by the setting 
or clearing of the lower 7 bit positions in pattern when represented in binary. 
An individual pattern unit is 1.1 centimeters in length. Some of the more 
common patterns and their corresponding bit settings are shown below: 

Pattern Bit representation Line Texture repeated twice 

127 1 111111 Solid 
124 I1 11100 Long Dashed 
122 1111010 ---- - ---- - Long Short Dashed 
106 1101010 -- - - -- - - Long Short Short Dashed 

PARAMETERS 

AROUnd_corners - Boolean value used to set a flag to indicate if the specified 
line texture should continue from one vector to the next. If 
AROUnd_corners is TRUE, the line texture will continue 
from one vector to the next through the endpoint. If 
AROUnd_corners is FALSE, the line texture will start and 
stop at the vector endpoints. 

Pattern - An integer between 1 and 127 that specifies the desired line 
texture. When pattern is less that 1 or greater than 127, solid lines 
are produced. 

Name 1 - The name of the structure to which the line texture is applied. 



PS 300 IBM PASCAL/VS GSR 

Name := SET LINE TEXTURE 

PSETLINT 

PS -350 User's Manuai Ccontinued} 

DEFAULTS 

The default line texture is a solid line. 

NOTES 

Since 7 bit positions are used, it is not possible to create a symmetric pattern. 

When line—texturing is applied to a vector, the vector that is specified is 
displayed as a textured, rather that solid line. If the line is smaller than the 
pattern length, then as much of the pattern that can be displayed with the 
vector is displayed. If the line is smaller than the smallest element of the 
pattern, then the line is displayed as solid. 

The With Pattern and Curve commands create multiple vectors in memory. To 
the line—texturing hardware, each vector in a pattern or curve is seen as an 
individual vector. Line—texturing a patterned line or curve is the same as 
line—texturing a number of small segments. Curves and patterns affect 
line—texturing only in that they tend to create short vectors that may be too 
short to be completely textured. 

PS 300 COMMAND AND SYNTAX 

name := SET LINe_texture CAROUnd_corners~ pattern 
[APPLied to name i ]; 



PS 300 DEC VAXIVMS PASCAL GSR PSETLINT n 
Name := SET LINE TEXTURE 

PS 350 User's Manua 

APPLICATION PROCEDURE AND PARAMETERS 

PROCEDURE PSetLinT C ~DESCR Name P VaryingType; 
Pattern INTEGER; 
AroundCorners BOOLEAN; 

~DESCR Namel P_VaryingType; 
PROCEDURE Error_Handler CErr INTEGER)); 

DEFINITION 

This procedure specifies the line texture pattern to be used in drawing the 
vector lists that appear below the node created by this command. There are up 
to 127'hardware-generated line textures possible. The parameter pattern is an 
integer between 1 and 127. The desired line texture is indicated by the setting 
or clearing of the lower 7-bit positions in Pattern when represented in binary. 
An individual pattern unit is 1.1 centimeters in length. Some of the more 
common patterns and their corresponding bit settings are shown below: 

Pattern Bit representation Line Texture repeated twice 

127 1111111 Solid 
124 1111100 Long Dashed 
122 1111010 ---- - ---- - Long Short Dashed 
106 1101010 -- - - -- - - Long Short Short Dashed 

PARAMETERS 

AROUnd corners - Boolean value used to set a flag to indicate if the specified 
line texture should continue from one vector to the next. If 
AROUnd_corners is TRUE, the line texture will continue 
from one vector to the next through the endpoint. If 
AROUnd_corners is FALSE, the line texture will start and 
stop at the vector endpoints. 

Pattern - An integer between 1 and 127 that specifies the desired line 
texture. When pattern is less that 1 or greater than 127, solid lines 
are produced. 

Name 1 - The name of the structure to which the line texture is applied. 



PS 300 DEC VAXlVMS PASCAL GSR 

Name := SET LINE TEXTURE 

PS 350 User's Manual 

PSETLINT 

Ccontinued) 

DEFAULTS 

The default line texture is a solid line. 

NOTES 

Since 7 bit positions are used, it is not possible to create a symmetric pattern. 

When line—texturing ~ is applied to a vector, the vector that is specified is 
displayed as a textured, rather that solid line. If the line is smaller than the 
pattern length, then as much of the pattern that can be displayed with the 
vector is displayed. If the line is smaller than the smallest element of the 
pattern, then the line is displayed as solid. 

The With Pattern and Curve commands create multiple vectors in memory. To 
the line—texturing hardware, each vector in a pattern or curve is seen as an 
individual vector. Line—texturing a patterned line or curve is the same as 
line—texturing a number of small segments. Curves and .patterns affect 
line—texturing only in that they tend to create short vectors that may be too 
short to be completely textured. 

PS 300 COMMAND AND SYNTAX 

name := SET LINe texture [AROUnd corners ] pattern 
[APPLied to Hamel]; 



PS 304 FORTRAN GSR PSEBR 

Name := SET BLINK RATE 

PS 350 User's Manual 

APPLICATION SUBROUTINE AND PARAMETERS 

CALL PSEBR (Name, Rate, Name 1, Errhnd) 

where: 

Name is a CHARACTER STRING 
Rate is an INTEGER*4 
Name 1 is a CHARACTER STRING 
Errhnd is the user—defined error—handler subroutine 

DESCRIPTION 

This subroutine specifies the blinking rate in refresh cycles to be applied to all 
objects below the node created by the command in the display tree. 

PARAMETERS 

Rate — An integer designating the duration of the blink in refresh cycles. The 
blinking data will be on for the number of specified refreshes and off 
for the specified number of refreshes. 

Name i — The name of the structure to which the blinking rate is applied. 

NOTE 

PS 330 style blinking, done via the SET RATE and IF PHASE ONIOFF 
commands, where blinking is tied to the update rate rather than the refresh 
rate, will still work, but since the update rate in the PS 350 may be slower, the 
visual result may be different. 

PS 300 COMMAND AND SYNTAX 

name := SET BLINK RATE n 
[APPLied to namei~; 





PS 300 IBM PASCALivS GSR 

Name := SET 6LINK RATE 

PSETBR 

PS 350 laser's Manual 

APPLICATION PROCEDURE AND PARAMETERS 

PROCEDURE PSETBR C CONST Name STRING; 
Blinkrate INTEGER; 

CONST Namel STRING; 
PROCEDURE Error Handler tErr INTEGER)); 

DESCRIPTION 

This procedure specifies the blinking rate in refresh cycles to be applied to all 
objects below the node created by the command in the display tree. 

PARAMETERS 

B1 i nkrate — An integer designating the duration of the blink in refresh cycles. 
The blinking data will be on for the specified number of refreshes 
and off for the specified number of refreshes. 

NOTE 

Name 1 — The name of the structure to which the blinking rate is applied. 

PS 330—style blinking, done via the SET RATE and IF PHASE ON/OFF 
commands, where blinking is tied to the update rate rather than the refresh 
rate, will still work, but since the update rate in the PS 350 may be slower, the 
visual result may be different. 

PS 300 COMMAND AND SYNTAX 

name := SET BLINK RATE n 
[APPLied to Hamel]; 



a 

a 



PS 340 DEC VAXIVMS PASCAL GSR 

`~ ~ Name := SET 6LINK RATE 

PSETBR 

PS 350 User's Manual 

APPUICATION PROCEDURE AND PARAMETERS 

PRC)CEDURE PSETBR C ~DESCR Name P_VaryingType; 
Blinkrate INTEGER; 

~DESCR Namei P_VaryingType; 
PROCEDURE Error Handler CErr INTEGER)); 

DESCRIPTION 

This procedure specifies the blinking rate in refresh cycles to be applied to all 
objects below the node created by the command in the display tree. 

PARAMETERS 

61 i nkrate — An integer designating the duration of the blink in refresh cycles. 
The blinking data will be on for the specified number o f re f reshes 
and o f f f or the specified number o f re f reshes. 

NOTE 

Hamel — The name of the structure to which the blinking rate is applied. 

PS 330—style blinking, done via the SET RATE and IF PHASE- ON/OFF 
commands, where blinking is tied to the update rate rather than the refresh 
rate, will still work, but since the update rate in the PS 350 may be slower, the 
visual result may be different. 

PS 300 COMMAND AND SYNTAX 

name := SET BLINKING RATE n 
CAPPLied to name l ]; 





f"1 
PS 300 I6M PASCAL/VS GSR 

Name := LOAD VIEWport 

PVIEWI~ 

PS 350 User's Manual 

APPLICATION PROCEDURE AND PARAMETERS 

PROCEDURE PViewL C CONST Name STRING; 
Hmi n REAL; 
Hmax REAL; 
Vmin REAL; 
Vmax REAL; 
Imi n REAL; 
Imax INTEGER; 

CONST Namel STRING; 
Procedure Error Handler CErr INTEGER));; 

DEF'INiTION 

The PViewL procedure for the PS 350 loads a viewport and overrides the 
concatenation of the previous viewport. As with the standard PS 300 
VIEWPORT command, it specifies the area of the screen that the displayed data 
will occupy, and the range of intensity of the lines. It affects all objects below 
the node created by the command in the display tree. 

PARAMETERS 

Hmi n ,Hmax ,Vmin ,Vmax — The x and y boundaries of the new viewport. Values 
must be within the —1 to 1 range. 

Imi n ,Imax — Specifies the minimum and maximum intensities for the viewport. 
i mi n is the intensity of lines at the back clipping plane; i max at 
the front clipping plane. Values must be within the 0 to 1 range. 

Namel —The name of the structure to which the viewport is applied. 

PS 300 COMMAND AND SYNTAX 

name := LOAD VIEWport HORizontal = hmin:hmax 
VERTical = vmi n:vmax 
[INTENsity = i mi n : i max] [APPLied to name 1 ]; 



a 

a 



I""1 

PS 300 DEC VAX/VMS PASCAL GSR 

Name := LOAD VIEWport 

PS 350 User's Manual 

PVIEWL 

APPLICATION PROCEDURE AND PARAMETERS 

PROCEDURE PViewL C ~DESCR Name ~: P VaryingType; 
Hmin REAL; 
Hmax REAL; 
Vmin REAL; 
Vmax REAL; 
imin REAL; 
Imax : INTEGER; 

~DESCR Namel P VaryingType; 
Procedure Error Handler CErr INTEGER ));; 

DEFINITION 

The PViewL procedure for the PS 350 loads a viewport and overrides the 
concatenation of the previous viewport. As with the standand PS 300 
VIEUVPORT command, it specifies the area of the screen that the displayed data 
will occupy, and the range of intensity of the lines. 

PARAMETERS 

Hmi n ,Hmax ,Vmin ,Vmax — The x and y boundaries of the new viewport. Values 
must be within the —1 to 1 range. 

Imi n, Imax — Specifies the minimum and maximum intensities for the 
viewport. i mi n is the intensity of lines at the back clipping plane; 
i max at the front clipping plane. Values must be within the 0 to 1 
range. 

Name 1 — The name of the structure to which the viewport is applied. 

PS 300 COMMAND AND SYNTAX 

name := LOAD VIEWport HORizontal = hmi n : hmax 
VERTical = vmi n : vmax 
CINTENsity ~ i mi n : i max] CAPPLied to name 1 ]; 





PS 300 FORTRAN GSR PVIEWL 

Name := LOAD VIEWport 

PS 350 User's Manual 

APPLICATION SUBROUTINE AND PARAMETERS 

CALL PVIEWL C Name, Hmin, Hmax, Vmin, Vmax, Imin, Imax, Namei, Errhnd) 

where: 

Hmin, Hmax are REAL*4 
Umin, Umax are REAL*4 
Imin, Imax are REAL~'4 
Name 1 is a CHARACTER STRING 
Errhnd is the user—defined error—handler subroutine 

a 

DEFINITION 

The PViewL subroutine for the PS 350 loads a viewport and overrides the 
concatenation of the previous viewport. As with the standand PS 300 VIEWPORT 
command, it specifies the area of the screen that the displayed data will occupy, 
and the range of intensity of the lines. 

PARAMETERS-

Hmi n ,Hmax ,Vmin ,Vmax — The x and y boundaries of the new viewport. Values 
must be within the —1 to 1 range. 

Imin ,Imax — Specifies the minimum and maximum intensities for the 
viewport. i m1 n is the intensity of lines at the back clipping plane; 
~ max at the front clipping plane. Values must be within the 0 to 1. 

Name 1 — The name of the structure to which the viewport is applied. 

PS 300 COMMAND AND SYNTAX 

name := LOAD VIEWport HORizontal = hmi n : hmax 
VERTical = vmin:vmax 
[INTENsity = i mi n : i max] [APPLied to name 1 ]; 



a 



PS 300 WRiTEBACK FEATURE 

The Writeback feature allows displayed transformed vector data to be sent back to the 
host. The position of the writeback node in the display structure determines which 
transformations w i I 1 be applied to the writeback data, The system-generated writeback 
node w i I 1 include al I transformations (viewing and modeling). Once the host has 
received these data, they can be used to generate hardcopy plots or display 
host-generated raster images. The user is responsible for retrieval and all subsequent 
processing of data on the host system. 

This guide describes how to use the Writeback feature on al ! members of the PS 300 
family of graphics computers. Operational differences among models are specifically 
noted. 

This guide contains: 

• A description of the user interface for the Writeback feature. The user interface 
consists of the WRITEBACK operation node and the WRITEBACK initial function. 

• Constraints on the use of the WRfTEBACK operation node. 

• Descriptions of the WR ITEBACK function. 

• A I ist of the commands that may need to be interpreted by host_resident code to 
f i I ter writeback data retrieved from the PS 300. 

• An example of the sequence of data sent back to the host. 

• An example of a host program that retrieves, processes, and files writeback data 
from the PS 3~0. 

Change-pages supporting the Writeback feature are provided in this guide for the 
Command Summary, the Function Summary. and the Graphics Support Routine sections 
of the PS 300 Document Set. 



2 - PS 300 WRITEBACK FEATURE 

Writeback User interface 

The Wri teback feature is implemented by: 

• Creating the WRITEBACK operation node (or using the system-generated 
writeback node, W B$) . 

• Activating the WRITEBACK operation node. 

• Connecting the WRITEBACK function to a function network. 

WR ITEBAc K Operation Node 

When the PS 300 is booted, a WRITEBACK operation node is created. It is named 
WB$ and is placed above every user-defined display structure. This node can be 
triggered if an entire displayed picture is to be included in the writeback data. if 
writeback of only a portion of the picture is desired, the user must place other 
WRITEBACK nodes appropriately in the display structure. 

A user-defined WR 1TEBACK operation node is created by the command: 

Name :- iRITEBACK jAPPlied to Name1 ]; 

The WRITEBACK node has one input. A TRUE sent to input <~ > of the 
WRITEBACK node triggers writeback for the data structure below the node. This 
trigger is sent by the user, for example: 

SEND TRUE T~ c~ name; 

triggers that WRITEBACK node. Of course the node could be triggered through a 
function network using a function key, etc. 

A WRITEBACK operation node, delimits the structure from which the writeback 
data w i I I be collected. Only the data nodes below the WRITEBACK operation 
node in the display -structure w i I I be transformed, clipped, viewport scaled 
perspective divided (as delineated by the placement of the WRITEBACK node), 
and sent back to the host . 

NOTE 

On the PS 350, viewport translations w i i I not be applied 
to the data. 



PS 300 Writeback Feature - 3 

WRITEBACK operatian Node Constraints 

Cniy a displayed structure can be enabled for writeback. This means that the 
WRITEBACK operation node must be traversed by the display processor and 
therefore must be included in the displayed portion of the structure. The default 
WRITEBACK node WB$ is displayed as part of every displayed structure. but, if 
the user creates another WRITEBACK node and if this node is triggered before 
being displayed, the following error message w i I I result: 

E S ACP cannot find your operate node 

° Any number of WRITEBACK nodes can be placed within a structure, However, 
only one WRITEBACK operation can occur at a time. if more than one node is 
triggered, the WR iTEBACK operations are performed in the order in which the 
corresponding nodes were triggered. 

The terminal emulator and message display information w i ! ! not be returned to 
the host. 

Polygon data can be returned to the host only if the PS 340 has a 4K ACP, 

Before triggering the WRITEBACK operation, disable the SCREENSAVE function 
by entering the command "SCREENSAVE:= nil;". 

The WRITEBACK Function 

An initial function instance, WRITEBACK, is created by the system at boot up. 

WRITEBACK 

integer specifying 
size of output 
Qpackets <1> <1> ----> Qpackets to user 

function network 

WRITEBACK sends encoded writeback data received from the display processor. 
The writeback data is prefixed by a start-of -writeback command, followed by the 
encoded data, followed by an end-of-writeback or end-of-frame command. 



4 - PS 300 WRITEBACK FEATURE 

WRITEBACK has one user-accessible input queue. Input <1 > accepts integers 
specifying the size of Qpackets to be output by the function. The default size is 
512 bytes per Qpacket. The minimum and maximum size are 16 bytes per 
Qpacket and 1024 bytes per Qpacket, respectively. If the size specified by the 
user is not within this range, the default size w i I ! be used by the system. 

The input value should be chosen such that the actual size of the gpacket sent to 
the I/O port is less than or equal to the present input buffer size on the host 
computer. 

If the CVT8T06 function is used to send the binary data to the host, then the 
number of the ebytes sent to the host is approximately 3/2 *the number of bytes 
sent by the Writeback function. 

For example, if the integer sent to <1 > of the Writeback function is 8D, the 
largest Qpacket sent to the host w i 1 I be 80 * 3/2 = 120. Qpackets, ~ where the size 
is not a multiple of 4, will be padded to the next multiple of 4. For instance, 
Qpacket sizes of 77, 78, and 79, sent to CVT8T08 w i i I ai I have output sizes of 120. 

WRITEBACK has one user-accessible output queue. Output <1 > passes the 
encoded Writeback data out as Qpackets until the end-of-Writeback or 
end-of-frame command is seen. 

This function is not activated by the normal input queue triggering mechanism. It 
is activated by sending a TRUE to any WRITEBACK operation node. 

Data output by W R I T E B A C K 

WRITEBACK w i 1 I return ai 1 data below the WRITEBACK operation node. 
Host-resident code will be responsible for recognizing the start-of-Writeback and 
end-of -w r i teback or end-of-frame commands. 

Attribute information, such as color, must be interpreted by host code to ensure 
that the hardcopy plots are correct. 

On the PS 350, viewport translations w i I 1 not be apps ied to the data. Correct 
computation of the position of endpoints requires that the host program add a 
viewport center to each endpoint. The initial viewport center is established with 
a VIEWPORT CENTER command. The VIEWPORT CENTER command is sent 
following the start-of-Writeback command. Any changes to° the viewport center 
w i ! 1 be indicated through this sequence of commands: CLEAR DDA, CI.EA R 
SAVE POINT, position endpoint, CLEAR SAVE POINT. The position endpoint 
becomes the new viewport center. 

Also, on the PS 350, several commands such as ENABLE PICK and ENABLE 
BL! N K are sent to the host. These w i I I not typically be needed by the host 
program. However, these commands come directly from the refresh buffer and 
are not filtered by the PS 350. Host-resident code must f i I ter the w ri teback data 
and strip out nonessential information. 



PS 300 Writeback Feature - 5 

Data Packets Returned 

Data packets sent out the WRITEBACK function contain the following 
information: 

• If bit 15 of the first word is 0, it signals that the data that follows is a 
command. For example, if the first word is H#0200 (Hex 0200) then the Line 
Generator status w i ! I f o11ow . 

bits 15 14 Q 
0 conmand 4 conmand 

parameter 

• If bit 15 of the first word is 1, it indicates that intensity, x and y coordinate 
information w i 1 l f of low . Intensity can range f rom 0 to 127. The format of the 
data is: 

bits 15114i13i12 -- fi 15 --

bits 

bits 

i d I/ inten ~//////// 

15 - 13 12 -- 0 
I///I /// ' y c oo r d 

15 - 13 12 -- 0 
//I///// x coo rd 

NOTE 

i f d= 1, then i t i s a DRAW 
i f d= O, i t i s a 1UOVE 

In the i I lustrations of data format, the stash character is 
used to illustrate blocks of data that are unused. 

Command Descriptions 

The following list describes the commands that the host-resident code might have 
to interpret before it can recognize and filter writeback data received from the 
PS 300. These commands can be intermixed with vector data. 

I t is important to note that each command contains at least three 16-bit words. 
For example, if a command only has one parameter then the third word is unused, 
but i t i s st i 11 sent to the host . 1 f a com mand has 3, 4, or 5 parameters, then 6 • 
words will be sent for that command. 



6 - PS 300 INR{TEBACK FEATURE 

START-OF-WRITEBACK code in hex = H#Og00 
# 2816 

Parameters: 
Line texture (one word) 
LGS (one word) 

Marks the beginning of the writeback segment, of which there is 
guaranteed to be only one. 

The texture and f ine generator status are included here. They fol low 
the same format as the texture and l ine generator status shown below. 

800 
/////////~ Texture 

LGS 

END-OF-INRITEBACK code in hex = H#0000 
# 3072 

Parameters: 
None 

Marks the end of the writeback segment. For the PS 350, the 
end-of-writeback may also be indicated by the end-of-frame command. 

C00 
0 0/1 

/I////////////I////// 
0 = finished successful ly, 1 = cannot finish 

operation because of insufficient memory 

The error code (0 or 1) is currently not present in the PS 350 systems. 

LINE GENERATOR STATUS code in hex = N#0200 
# 512 

Parameters: 
Status word (one word) 

Indicates dot mode (bit 8) and which display is selected (bits 0-3). 
Normal ly, only the dot mode bit must be referenced. 

200 
LGS 

/I///////////////I/I/ 



PS 300 Writeback Feature - 7 

Line Generator Status Register (LGS): 

/I/ /// /// /// /// /// /// SHO /// /// /////// SCOPE SELECT 
/// /// /// ///_///_///_///_EPT_///_/ /_/////// D C B A 
15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00 

_B_it Logical Names 
BA 

08 SHOWENDPT Dot mode 
03 BLANKD Blank scope D (1 blanks the scope 0 enables the scope) 
02 BLANKC Blank scope C 
01 BLANKB Blank scope B 
00 BLANKA Blank scope A 

COLOR 

Parameters: 
Color value (one word) 

40.0 
Hue Saturation 

///////////////////// 

code in hex = H#0400 
# 1024 

"' I// HI HUE LO 
15 14 13 12 11 10 09 08 

/// /////////// 
//// H1 SAT LO ///////I/// 
07 06 05 04 03 02 O1 00 

TEXTURE code in hex = H#0500 
# 1280 

Parameters: 
Texture value (one word) 

500 
/////I///~ Texture 
/////////////////// 

Line Generator Texture-Register: 

I///////////I/////////////I//// Texture bit pattern 
///I/////I/I//////////////I//// 
13 14 13 12 11 10 09 08 07 Ofi 05 04 03 02 O1 00 

H#007F or H#OOFF both default to a Sol id l ine. 
For non-PS 350 users, the texture wi l l always be H#OOFF. 



8 — PS 3~ 1NRITEBACK FEATURE 

The f o! !owing commands are for PS 350 users ONLY . 

CLEAR DDA 

Parameters: 
None 

code in hex = H#0100 
# 256 

PICK BOUNDARY code in hex = H#0300 
# 768 

Parameters: 
Four Boundary Values (4 words) 

CLEAR SAVE POINT code in hex = H#0600 
# 1536 

Parameters 
None 

SET PICK !D code in hex = H#0700 
# 1792 

Parameters: 
Pick ID Pointer (two words) 

SET LightPen BODE code in hex = H#0800 
# 2048 

Parameters: 
Control Mask (1) 
New X,Y (2) 
Delta distance (1) 
Delta frames (1) (Total five words) 

ENABLE PICK 

Parameters 
None 

code in hex = H#0900 
# 2304 

DISABLE PICK 

Parameters 
None 

code in hex = H#OA00 
# 2560 



IBS 300 Writeback Feature - 9 

SET BLINK RATE 

Parameters: 
Bl ink Rate (one word) 

code in hex = H#OD00 
# 3328 

ENABLE BLINK 

Parameters: 
None 

code in hex = H#OE00 
# 3584 

DISABLE BLINK 

Parameters: 
None 

code in hex = H#OF00 
# 3840 

END-OF-FRAME 

Parameters 
None 

code in hex = H#1700 
# 5888 

Signifies that the current update cycle is completed and that any 
fol lowing data is part of the next update frame. This also signifies 
end of the writeback segment. 

VIE~VPORT CENTER code in hex = H#1800 

Parameters: 
x center (one word) 
y center (one word) 
z center (one word) 
spare (two words) 

bits 15   0 
coordinates 2's complement vector 

This value has to be added to each x,ycoordinate pair. This 
information is necessary to calculate the actual coordinates of the 
data which has been viewport scaled. Every time a new viewport is 
traversed by the Arithmetic Control Processor, a new viewport center 
command wi l l be sent. 



10 - !~S 300 WRITEBACK FEATURE 

NOTE 

Codes H#1900 - H#~ F00 are reserved for future 
commands. Code H#0000 is defined as a no-op, and 
naturally has no parameters. 

EXAMPLE OF THE SEQUENCE OF DATA SENT BACK TO THE HOST 

The following example illustrates the sequence of data and the data in byte 
format sent to the host during a WR ITE~ACK operation. 



PS 3~0 Writeback Feature - ~ 1 

B00 
///////I// Texture -

LGS 
400 

Hue Saturation 
///r//////////////////// 

Intensity 
Y -
X 

200 
LGS 

///I/////////////J////// 
500 

////////// Texture 
////////I/////////I////I 

400 
Hue Saturation 

////////I///////I/////// 
Intensity 

Y 
X 

C00 
0/1 

/////I////////////////// 

Start-of~writeback command 

Color command 

V 
E 
C 
T 
0 
R 
S 

Line Generator Status command 

Texture command 

Color command 

V 
E 
C 
T 
0 
R 
S 

End-of-wri teback command 
0 = finished successful ly, 1 = cannot 
finish because of insufficient memory 



12 - PS 3~0 WRlTEBACK ~EATl1RE 

Data in Byte Format 

00 00 Start-of-writeback command 
00 FF Texture 
04 70 lGS 
04 00 Color command 
80 00 Hue/Saturation 
00 00 Not used 
00 FF ~~ lntensi ty 
lY FF Y 
1X FF X 
00 FF Intensity 
2Y FF Y 
2X FF X 

02 00 LGS command 
04 70 LGS 
00 00 Not used 
05 00 Texture command 
00 FF Texture 
00 00 Not used 
04 00 Co for command 
80 00 Color 
00 00 Not used 
00 FF Intensity 
1Y FF Y 
1X FF X 

OC 00 End-of-writeback command 
00 00 Finshed successful ly 
00 00 Not used. 



PS 300 W r i teback Feature _ ~ 3 

SAMPLE WRiTEBACK PROGRAM 

PROGRAM Writeback(input,Output,Outfi le,Devfi ie); 
{ Program to read w r i teback data from a PS 350 . Th i s program set s up a 
{ function network to get the writeback data and processes the data and 
{ creates a data fi le on the host with the data from the PS 350. 

CONST 
INCLUDE 'PROCONST.PAS' 

Max bu f = 1024 ; 

TYPE 
I n t 16 = -32768. .32767 ; 
Max l ine = VARYING CMax buf] OF CHAR; 
XINCLUDE 'PROTYPES.PAS' 

VAR 
OUTFILE : ~ TEXT; 
DEVFILE TEXT; 
DEVSPEC P VARYINGTYPE; 
OUTNAME P_VARYINGTYPE; 
WBNAME P VARYlNGTYPE; 
COMMAND i NT16 ; 
INDEX INTEGER; 
LEN INTEGER; 
ini ine P VARYBUFTYPE; 
vx , vy , vZ REAL ; 
In DDA BOOLEAN := FALSE; 

INCLUDE 'PROEXTRN.PAS' 

PROCEDURE ERR (ERROR: INTEGER); 
{} 
{ ERROR HANDLER ROUTINE } 
{} 

BEGIN { ERR } 
{} 
WRITELN(' ERROR :=',ERROR); 
HALT ; 
{} 

END; { ERR } 

~"1 

} 
} 
} 



14 - PS 3~ WR ITEBAC;K FEATUR E 

PROCEDURE Setup; 
{ Create function network to send writeback data to host } 
{ This uses F:cvt8to6 to send 6-bit data to the host } 

BEGIN 
PFninst('cvt','cvt8',Err); 
Pconnect ('writeback',1,1,'cvt',Err); 
Pconnect ('cvt',1,1,'host_message', Err); 
PsndStr (CHR(36),2,'cvt',Err); 
Psndf i x (48 ,1 , 'writeback' , E r r) ; 
PNameNi l{'screensave',Err); 
PPurge( Err); 
END ; 

{ Uti l ity procedures} 
PROCEDURE Six_to_eight( lnbuf Max_l ine; 
VAR Qutbuf P VARYBUFTYPE); 
{ Data from PS 350 is in six-bit packed format. This procedure unpacks 

data} 

CONST Base = 36; 

TYPE 
Cheat 4 = PACKED RECORD CASE Boolean OF 
TRUE ( i s UNSIGNED); 
FALSE ( c: PACKED ARRAY [1..4] OF CHAR); 

END; 

VAR 
w : Cheat 4; 
c out,cycie_count,buf_index,i l,tc INTEGER; 
first BOOLEAN; 

BEGIN 
buf index := 1; 
first := TRUE; 
cycle_count := 1; 
tout ;=4; 
outbu f • - ' ' • .- , 
WHILE buf_index <= len DO 
BEGIN 

tc := ORD(Inbuf[buf_index]) - base; 
I F f i r s t THEN 

1F tc < 0 THEN 
c out := 4+tc 

ELSE 
BEGIN 

first := FALSE; 
w. f := tc; 
cyc ! e count :•= aSUCC (cyc ! e_coun t) ; 

END { ELSE tc >= 0 } 



PS 30~ Writeback Feature - ~ 5 

ELSE 
BEGIN 

cycle_count := SUCC(cycle_count); 
END; { ELSE } 

IF cycle count > 6 THEN 
BEGIN 

FOR i t := 4 DOWNT~ (5-c out) DO 
Outbuf := outbuf + w•cCi i]; 

cycle_count := 1; 
f i rst := true; 

END ; 
buf_index := SUCC(buf index); 

END; { WHILE } -
END ; 

PROCEDURE Next Block; 
{ Get a block of data from the PS 350 and convert from six to eight} 
{ bit format } 

VAR I nbu f f tax l i ne ; 

BEGIN 
PGETWAIT(Inbuff,err); 
Index := 1; 
len := IENGTH(Inbuff); 
Six_to_eight ( Inbuff, Inl ine); 
Len := LENGTH(Ini ine); 

END ; 

PROCEDURE Get Value( VAR a INT16); 
{ Convert two bytes of input buffer to 16 bit integer } 

VAR i 1 NTEGER ; 

BEGIN { Get Value } 
a •= 0 • - 

FOR i := 1 TO 2 DO 
BEGIN 

I ndex : _ ! ndex + 1 ; 
IF Index > Len THEN 
Next_Block; 

a := a 256 + ORD(lnl ineClndex]); 
END ; 

END;{ Get_Value } 



16 - PS 3~ WRITEBACK FEATURE 

{ Procedures for processing refresh buffer commands } 

PROCEDURE Clear DDA; 
{ CLEAR ODA - X0100 } 
{ Parameters - None } 
{ Indicates start of sequence to set viewport center } 
{ This sequence is CLEAR DDA, CLEAR SAVE POINT, Vector, CLEAR SAVE POINT} 

VAR a,b Int16; 

BEGIN 
In DDA := TRUE; 
Get value (a ); 
Get value (b ); 
Writeln(Outfi le,'{Clear DDA}'); 

END ; 

PROCEDURE Write LGS; 
{ WRITE LINE GENERATOR STATUS - XX02Q0 } 
{ Parameters - Status word (one word) } 
{ Bit 8 Dot mode. } 
{ Bit 6 Fast sweep ( Opposite of 7) } 
{ Bits 5 - 4: Contrast selection t04-min,ll-max)} 
{ Bits 3 - 0: Scope select( 1 disables,0 enables)} 

VAR lgs,a Int16; 

BEGIN 
Get_value ( Igs ); 
Get value (a ); 
Writeln(Outfi le,'{Write LGS:',HEX(lgs),'}'); 

END ; 

PROCEDURE Write Pick Bound; 
{ WRITE PICK BOUNDARY - XX0300 } 
{ Parameters - left, Right, Bottom, Top } 

VAR I,r,b,t,a Int16; 

BEGIN 
Get value ( I ); 
Get value ( r ); 
Get value (b ); 
Get value ( t ); 
Get value (a ); 
Writeln(Outfi le,'{Write_Pick_bound:',HEX(I),HEX(r),HEX(b),HEX(t),'}'); 

END; 



PS 300 Writeback Feature - ~ 7 

PROCEDURE Write Color; 
{ WRITE COLOR - XX0400 } 
{ Parameters - Color value (one Word) } 
{ Bit 15 Not Used } 
{ Bits 14 - 8 Hue (High order in 14)} 
{ Bit 7 Not Used } 
{ Bits 6 - 3 Sat (High order in 3) } 
{ Bits 2 - 0 Not Used } 

UAR c,a lntlfi; 

BEGIN 
Get_value ( c ); 
Get_value (a ); 
Wri teln(Outfi le, '{Wri te_Coior: ' ,HEX(3c), '}' ); 

END ; 

PROCEDURE Write Texture; 
{ WRITE TEXTURE - XX0500 } 
{ Parameters - Texture value (one word) } 
{ Bits 15 - 7 Not Used } 
{ Bits 6 - 0 Texture bit pattern } 

VAR t,a : Int16; 

BEGIN 
Get value ( t ); 
Get value (a ); 
Writeln(Outfi le,'{Write_Texture:',HEX(t),'}'); 

END ; 

PROCEDURE Clear Save Point; 
{ CLEAR SAVE POINT - X(0600 } 
{ Parameters - None } 

VAR a,b I nt16; 

BEGIN 
Get value (a ); 
Get value (b ); 
Writeln(Outfi le,'{Clear_Save_Point:}'); 

END ; 

PROCEDURE Set Pick Id; 
{ SET PICK ID - X0700 } 
{ Parameters - Pick Id Pointer (two words)} 

VAR a,b I nt1 fi ; 



18 - PS 3~Q WRITEBAC~K FEATURE 

BEGIN 
Get_value (a ); 
Get value (b ); 
Writeln(Outfi le,'{Set_Pick_!d:',HEX(a),HEX(b),'}'); 

END; 

PROCEDURE Set_Lightpen_Mode; 
~ SET LIGHTPEN MODE - X0800 } 
{ Parameters - Control mask } 
{ Tracking cross y 
{ Tracking cross x 
{ Delta distance 
{ Delta frames } 

} 
} 
} 

VAR cm,x,y,dd,df Int16; 

BEGIN 
Get value ( cm ); 
Get value ( x ); 
Get_value (y ); 
Get value ( dd ); 
Get value ( df ); 
Writeln(Qutfi le,.'{Set_Lightpen_mode:',HEX(cm),HEX(x),HEX(y), 

END ; 

PROCEDURE Enable Pick; 
{ ENABIE PICK - XX0900} 
{ Parameters - None } 

VAR a,b ! nt16; 

BEGIN 
Get value ~( a ); 
Get value t b ); 
Writein(Outfi le,'~Enable Pick:}'); 

END; 

PROCEDURE Disable Pick; 
{ DISABLE PICK - %XOA00 } 
4 Parameters - None } 

VAR a,b f nt16; 

BEGIN 
Get_value (a ); 
Get value (b ); 
~Iriteln(Outfi le, '{Disable_Pick:}' ) 

END ; 



PS 3D~ Writeback Feature - ~ 9 

PROCEDURE Enabie Writeback; 
{ ENABLE WRITEBACK - ~XOB00 } 
{ Parameters - Line Texture } 
{ Line-Gen Status} 

VAR a,b I nt16; 

BEGIN 
Get value (a ); 
Get value ( b ); 
Writeln(Outfi le,'{Enable_Writeback:',HEX(a),HEX(b), 

END ; 

PROCEDURE Disable Writeback; 
{ DISABLE WRITEBACK - ~X0000 } 
{ Parameters - None } 

VAR a,b 1 nt16; 

BEGIN 
Get_value (a ); 
Get value (b ); 
Writeln(Outfi le,'{Disable_Writeback:}'); 

END ; 

PROCEDURE Set Bi ink Rate; 
{ SET BLINK RATE - XXOD00 } 
{ Parameters - Bl ink rate } 

VAR a,b lntlfi; 

BEGIN 
Get_value (a ); 
Get value (b ); 
Writeln(Outfi le,'{Set_Bl ink_Rate:',HEX(a),'}'); 

END ; 

PROCEDURE Enable Bl ink; 
{ ENABLE BLINK - XXOE00 } 
{ Parameters - None } 

VAR a,b I nt16; 

BEGIN 
Get value (a ); 
Get value (b ); 
Writeln(Outfi le,'{Enable_Bl ink:}'); 

END ; 

4~! ); 



20 - PS 300 WRITEBACK FEATURE 

PROCEDURE Disable_Bl ink; 
{ DISABLE BLINK - ~XOF0O } 
{ Parameters - None } 

VAR a,b : I nt16; 

BEGIN 
Get value (a ); 
Get value (b ); 
Writeln(Outfi le,'{Disable 81 ink:}'); 

END; 

PROCEDURE End Of Frame; 
{ END OF FRAME - %X1700 } 
{ Parameters - None } 

VAR a,b Int16; 

BEGIN 
Get value (a ); 
Get_value (b ); 
Writeln(Outfi le, '{End_OfpFrame:}' ); 

END ; 

PROCEDURE Viewport_Center; 
{.VIEWPORT CENTER - X1$00} 
{ Parameters - x center } 
{ y center } 
{ z center } 

VAR xc,yc,zc,a,b Int16; 

BEGIN 
Get_value ( xc ); 
Get_value ( yc ); 
Get_value ( zc ); 
Get value (a ); 
Get value (b ); 
VX := XC; 
I F { vx >= 32768 ) THEN vx : = vx - 65536.0 ; 
vx := vx132767; ~y ._ y~. ._ , 
I F (vy >= 32768 ) THEN vy : = vy - 65536.0 ; 
vy := vyi32767; 
vz := zc; 
IF (vz >= 32768) THEN vz := vz - 65536.0; 
vz := vz132767; 
Writeln(Outfi le,'{Viewport_Center:',vx:6:6,' 

END ; 
f ,vy:6:6, ' 



PS 300 Writeback Feature - 2~ 

PROCEDURE Process Vector; 
{ Vector - Bit 15 of cor~nand = 1 } 
{ Word 1 ( command ) } 
{ Bit . 15 : Always one for vector } 
{ Bi t 14 1 = Draw, 0 = Move } 
{ Bits 12 - 6 Intensity/2 } 
{ Bits 5 - 0 Not Used } 
{ Word 2 (y coord) } 
{ Bits 15 - 13: Not Used } 
{ Bits 12 - Q: Y coordinate } 
{ Word 3 ( x coo rd ) } 
{ Bits 15 - 13: Not Used } 
{ Bits 12 - 0: X coordinate } 

VAR a,b Int1fi; 
un UNSIGNED; 
pl CHAR; 
int,x,y : REAL; 

BEGIN 
Get value (a ); 
Get value (b ); 
un:=command; 
pl :=' I ' ; 
IF (UAND(un,~X4000) _ 0) THEN pl :_ 'p'; 
un := UAND(un,XX1FC0); 
int := un; 
i F i n_DDA THEN 

vz := int/8128.0 
ELSE 

int :_ (int/8128.0 + vz) 2; 
un := a; 
un := UAND(un,XX1FFF); 
y •- un• .- , 
! F (y >_ X1000) THEN y := y - XX2000; 
IF In_DDA THEN 

vy : = y / ~XFFF~ 
ELSE 

un := b; 
un := UAND(un,XX1FFF); 
x := un; 
IF (x >= XX1000) THEN x := x -~~X2000; 
IF ln_DDA THEN 
vx = x / ~XFFF 

ELSE 

IF In DDA THEN 
BEGIN 



22 — PS 3~0 WRITE6ACK FEATURE 

Writeln(Outfi le, '{New View Center: ' ,vx:fi:fi, ' ' ,vy:fi:fi, ' ' ,vz:fi:fi, '}' ); 
In DDA := FALSE; 

END 
ELSE 
Writeln(Outfi le '{Vec ' pl ' x ' ' y ' i=' int '}')~ f f f f f f 1 1 f 

END ; 

PROCEDURE Unknown; 
VAR a,b Irttlfi; 

BEGIN 
Get value (a ); 
Get value (b ); 
Writeln(Outfi le,'{Unknown:',HEX(command),HEX(a),HEX(b),'}'); 

END; 

BEGiN {Writeback} 
Write ('Enter Output Fi ie Name:'); 
Readln(outname); 
Write ('Enter Writeback Operate Node Name:{WB$ is default mode}'); 
Readln(wbname); 
open(Outfi le,0utname,new); 
rewrite(Outfi le); 

{ Look for fi le specifying l ine for pattach procedure } 
{ Example of record in PSDEV.DAT: } 
{ 'logdevnam=tt:/Phydevtyp=async' } 
open(devfi le,'psdev',old); 
reset(devfi le); 
readln(devfi ie,devspec); 
close(devfi le); 

PATTACH(devspec,err); {Attach to PS 350 } 
Setup; { Setup w~iteback network } 

PNA~IENI L('SCREENSAVE' , ERR) ; 
PPURGE(ERR); 
~PSndBool(TRUE,1 ,wbname, Err); { Trigger write back operate } 

Next_biock; { Read in first block of writeback data} 

Index := 0; 
Command := 0; 
vx := O.o; 
vy := O.o; 
vz := o.o; 

{ Process writeback buffers unti l END OF FRAME or END WRITEBACK} 
WHILE (Command <> XX0000) AND (Command <> XX1700) DO 



PS 30q Writeback Feature - 23 

BEGIN 
Get value(Command); 
1F (Command > 32767) THEN { If bit 15 of command if set} 

Process vector 
ELSE 
CASE (Command DIV 256) OF 

X01 Clear_DDA; 
X02 : W r i t e_LGS ; 

XX03 : Write P i ck Bound ; _ _ 
X04 Write Color; 

XX05 Write Texture; 
X06 : ClearrSave Point; 
X07 set Pick Id; 

~XO8 Set_Lightpen_Mode; 
XX09 Enable Pick; 
~XOA Disable Pick; 
XX08 Enab I e Writeback ; 
XXOC Disable_Writeback; 
XXOD Set_B-l ink Rate; 
XXOE Enable Bl ink; 
XXOF Disabie_Bl ink; 
XX17 End Of F rame ; 
XX18 V i ewpo r t_Cen t e r; 
OTHERW-ISE Unknown; 

END; { CASE } 
END ; 

PFNINST(~SCREENSAVE', 'SCREENSAVE' ERR PDETACH(ERR); 
PPURGE(ERR): 
{} 

END. {Writeback} 





E&S CUSTOMER SERVICE TELEPHONE WFORMATION LIST 

Evans &Sutherland Customer Engineering provides a centra! service numbered staffed by CE 

representatives who are available to take requests from 9:00 a.m. Eastern Time to 5:00 p.m. 

Pacific Time (7:00 a.m. to 6:00 p.m. Mountain Time} . All calls concerning customer service 

should be made to one of the following numbers during these hours. Before you call, please 

have available your customer site number and system tag number. These numbers are on the 

label attached to your PS 300 display or control unit. 

Customers in the continental United States should call toll-free: 

1 + 800 + 582-4375 

Customers within Utah or outside the continental United States should call Dispatch at: 

(801) 582-9412 

If problems arise during product installation or you have a question that has not been answered 
adequately by the customer engineer or the customer service center, contact the regional 

manager at one of the following Customer Engineering offices: 

Eas#ern Regional Manager 
(for Eastern and Central Time Zones) 
(518) 885-4639 

Western Regional Manager 
(for Mountain and Pacific Time Zones} 
(916) 448-0355 

If the regional office is unable to resolve the problem, you may want to call the appropriate 

department manager at corporate headquarters: 

National Field operations 
(for field service issues) 
(801) 582-5847, ext 4843 

Software Support 
(for sofware issues} 
(801 } 582-5847, ext 4810 

Director of Customer Engineering 
(for any unresolved problem} 

(801) 582-5847, ext 4840 

Technical Support 
(for hardware issues} 
(801 } 582-5847, ext 4868 





READER COMl~AEN7 FORM Publication Number 

Title 

Your comments will help us provide you with more accurate, complete, and useful 
documentation. After making your comments in the space below, cut and fold this form as 
indicated, and tape to secure (please do not staple). This form may be mailed free within 
the United States. Thank you for your help. 

How did you use this publication? 

0 General information 
D Guide to operating instructions 

0 As a reference manna! 
p Other 

Please rate the quality of this publication in each of the- following areas. 

Technical Accuracy 
is the manual technically accurate? 

Completeness 
Does the manual contain enough information? 

Readability 
Is the manual easy to read and understand? 

Clarity 
Are the instructions easy to follow? 

t~rganization 
Is it easy to find needed information? 

Illustrations and Examples 
Are they clear and useful? 

Physical Attractiveness 
What do you think of the overall appearance? 

EX CEI.IENT GOOD FAIR P00 R 

a o 0 0 

o n o 0 

0 0 0 0 

0 0 o a 

o a o 0 

o a o a 

0 0 0 0 

What errors did you find in the manual? (Please include page numbers) 

Name  Street  

Title  City 

Department  State 

Company  Zip Code 

All comments and suggestions become the property of Evans &Sutherland. 



Fold 

BUSINESS REPLY MAIL 
FIRST CLASS PERMIT N0.4632 SALT LAKE~CITY, UTAH 

P®STAGE WILL. BE PAID BY ADDRESSEE 

EVANS &SUTHERLAND 
580 Arapeen Drive 
Salt Lake City, Utah 84108 

ATTN: IAS TECHNICAL PUBLICATIONS 

No PosTAGE 
NECESSARY 
lf= MAILED 

iN THE 
UNITED STATES 

Foid 

C
u

t 
a

lo
n

g
 d

o
tt

e
d

 I
ln

e
 



Section RM16 

Index 

Indicators 

Entries are indexed by volume, section, and page number. In cases where a topic 
appears on more than one successive page and discussion of it is continuous, page 
indicators only refer to the page of that discussion on which the topic first appears. 
There are no inclusive references. Information on a topic may be found on several 
successive pages following the page that is referenced. A reference to the first page 
of a section may indicate that the topic is discussed throughout that section. 

A sample entry is: 

Viewing operations, GT2-44; GT8-1 
attributes, GT8-48, 56 
commands, IS2-17 
default values, GT8-2, 52 
node, GT8-5 3, 5 4, 5 5 

The first reference after the main entry is to the Graphics Tutorial volume, Section 
2, page 44, where a discussion of viewing operations begins. The second reference 
is to the first page of Section 8 in the Graphics Tutorial volume. That entire section 
discusses viewing operations. The subentries refer to specific aspects of viewing 
operations. Note that in the case of the subentry "node," successive pages are 
indexed because the discussion of the topic is not continuous. 

Alphabetization 

Index entries, including abbreviations and acronyms, are alphabetized on a letter-
by-letter basis. In the order of entries and subentries, numbers come before letters. 
There is one exception, in which a number begins a main entry. 03$ is alphabet-
ized under Z, as if spelled out. Words are alphabetized up to the first mark of 
punctuation. Spaces between words, hyphens, slant lines, and underscores are ig-
nored in the entry sequence. 

Index RM16-1 



A sample ordering of entries and subentries is: 

Matrix 
2x2 
3x3 
4x4 
accumulated 
algebra 

MATR.IX2, F: 
MATRIX_2x2 
MATRIX3, F: 
MATRIX 3x3 

Cross-References 

A See cross-reference is to the entry that has been chosen in cases where alterna-
tives, such as synonyms or word order variants, existed. A See also cross-reference 
refers to an entry where indicators to additional or related information can be 
found. Not all related topics are cross-referenced. Note especially that topics whose 
entries appear in close proximity in the index (such as "Viewing operations" and 
"Viewing area") are not cross-referenced. In most cases, there are no cross-
references from a subentry to a main entry with the same wording. For example, 
there is no cross-reference from the main entry "Display structure," subentry "con-
ditional referencing" to the main entry "Conditional referencing." 

RM16-2 Reference Materials 



A 

ACCUMULATE, F: (intrinsic user function) , 
GT6-24; TT1-19 

exercise, GT6-25 
summary, RM2-8 

Accumulator. See Function, accumulator 

ACP. See Arithmetic control processor 

ACPProof . See Arithmetic control processor, 
proof 

Active or regular input. See Input/output, ac-
tive queue 

Active List. See Scheduler 

Acyclic directed graph, IS2-20 
See also Display structure 

ADD, F: (intrinsic user function) , GT2-9 5 ; 
GT6-11; GT7-31; TT2-8; APS-4 

exercise, GT7-32 
summary, RM2-11 

ADDC, F: (intrinsic user function) 
summary, RM2-12 

Address. See Mass Memory; Named entity, 
address 

Advanced 3D visualization firmware, RM6-7 
See also Polygon; Smooth shading 

Algorithm, GT 13-5 5 

Aliasing, GT 12-2, 8 
temporal, GT12-3 
See also Antialiasing 

ALLOW_VECNORM, F: (intrinsic user func-
tion) , TT2-17, 60 

summary, RM2-13 

Alpha block, AP3-1 
contents, AP2-2 
definition of, RM9-2; AP2-1 
hash table and, AP2-36 
pointers to, AP3-1 
update and, AP3-3 
See also Named entity 

ALT (key). See Key, ALT 

Alternating display, GT2-82; GT9-14, 16, 19 
See also Animation; Blinking; Conditional ref-

erencing; SET RATE 

Ambient light 
color of, GT13-45, 49 
depth cueing in, GT 13-51 
light source and, GT13-45 
See also ILLUMINATION; SHADINGEN-

VIRONMENT 

AND, F: (intrinsic user function) 
summary, RM 2 -14 

ANDC, F: (intrinsic user function) 
summary, RM 2 -15 

Animation 
clock function and, TT 1-21, 2 3 
frame, TT1-23, 44 
level-of-detail and, GT9-9, 12; TT1-23 
picking and, GT 11-13 
program example, GT3-23 
SET RATE and, GT15-42 
storing, TT 1-4 4 

ANSI private commands, RM 10-6 

ANSI mode (DECANM) , IS 3-19 ; RM 10-2 
keypad in, RM 10-10 
See also Escape sequence; SETUP facility; 

Terminal emulator mode 

Antialiasing, GT 12-2, 8 
control, GT13-51 
lookup table and, GT 13-5 5 
soft edges and, GT13-20 
See also Aliasing; Line filter; Screen; 

SHADINGENVIRONMENT 

Application program 
data flow, RMS-27 

See also Host input data flow 
display structure in, GTS-31 
examples of, GT15-1 
GSRs and, IS3-30; TT3-18, 23 
polygonal object from, GT 13-8 
primitive created by, GT2-8 

Application routine. See Graphics support rou-
tines, application 

APPLIED TO/THEN (command) , GT 1-4; 
GT2-12, 79, 83; TT9-2 

summary, RM 1-3 
syntax, RM 1-18 5 

Arc, routing, GT2-101; TT4-21 
See also NETEDIT 

Index RM16-3 



Arithmetic and logical function, IS2-24; 
GT2-93; GT6-11 

Arithmetic control processor (ACP) 
card, IS2-6 
communication with GCP, AP2-16 
description of, AP1-2 
picking and, GT 11-1, 9 

See also PICK 
proof, AP3-3 
state of, AP1-2; AP2-26; RM9-2 

See also State of the machine 
update process and, AP3-2 

Array element. See Background color; Cursor; 
Screen 

Artifact, GT 12-3, 9 
See also Line filter; Screen 

ASCII 
character as primitive, GT2-9; GT4-49 
character code set, RM1-205; RM2-197 
command language in, IS2-15; GTS-2 
data into, TT9-4 

See also LIST, F: ; Transformed data 
file, transferring, TT2-2 6; TT6-11 
font, alternate, GT10-20 

See also BEGIN_FONT.. . END_FONT; 
MAKEFONT 

font, standard, GT2-9; GT10-19 
function networks created as, GT2-101; 

TT4-29 
See also NETEDIT 

See also Character font; Character string; 
Data node 

ASCII-to-GSR converter (host-resident pro-
gram), TT6-8; TT8-1 

Aspect. See Attribute, appearance 

Aspect ratio 
definition of, GT2-59 
perspective viewing area, GT8-20 
program example, GT3-13 
viewport and viewing area, GT2-59, 66; 

GTS-45, 54 
See also Viewing area; Viewport 

Assembly language routine, AP9-37 

Asynchronous serial line, RMS-1 
applications, IS2-13 

communication characteristics, RMS-6 
data communication methods with, RMS-16 
data reception and routing with, RM7-1 
description of, RMS-1 
GSRs and, TT3-19 
host independence and, IS2-3 
interface, standard, RMS-2; RM6-1 
ports, RMS-7, 8 
protocol, RM 5 -12 
RS-232-C specifications, IS2-13, RMS-3 
system function network for, RM 8 -1 
See also Ethernet interface; IBM interface; 

Parallel interface 

At/from point. See Line of sight, at/from point 

ATSCALE, F: (intrinsic user function) 
summary, RM2-16 

Attach PS 390 to Communication Device (utility 
GSR), RM4-8 

Attribute 
appearance, IS2-17; GT2-68; GT8-48, 56 

See also Character font; Color; Depth clip-
ping; Intensity; Viewing operation, at-
tribute 

changing, GT 13-39 
classes of, GT2-67, 87 
default, GT13-39 
definition of, GT2-67 
designing for, GT4-3 
picking, GT2-84 

See also Picking 
polygon. See Polygon; POLYGON 
structure, GT2-77 

See also Blinking; Conditional referencing; 
Level-of-detail 

Attribute node 
character font lookup table, GT 10-1, 2 2 

See also CHARACTER FONT 
creating, GT13-39, 43 
definition of, GT2-67, 87 
display structure and, GT2-78, 87; 

GT 13-39 
highest, GT2-85 

See also Picking 
inputs to, GT 13-42 
uses of, GT2-88 
See also Operation node; POLYGON 

ATTRIBUTES (command), GT13-21, 39 
GSR, RM4-11 
summary, RM 1-4 
syntax, GT13-21, 40, 62; RM1-185 

RM16-4 Reference Materials 



Attribute table, GT13-53; TT2-49, 51 
See also SHADINGENVIRONMENT 

AVERAGE, F: (intrinsic user function) 
summary, RM2-18 

Axis 
coordinate system, GT1-3; GT2-2 
line of sight and, GT8-4 
object's, GT6-22 
rotation around, GT2-14 
translation in, GT2-16 
world's, GT6-22 
See also Origin; Z-axis 

B 

Back boundary. See Boundaries, front and 
back 

Backface removal, GT2-10 8 ; GT 13-3 
rendering node input, GT13-32 
saving, GT 13-3 8 
vertex order and, GT13-8 
See also Hidden-line removal; SOLID_REN-

DERING 

Background color 
black, TT2-39 

See also Erase Screen 
line filters and, GT 12-9 
screen wash and, GT 13-51 
specifying, GT12-5; GT13-49 
viewport and, GT8-42 
See also PS390ENV; SHADINGENVIRON-

MENT 

Backing up, RM 12-5 
See also Diskette; Graphics firmware 

BEGIN...END (command), GTS-25 
GSR, RM4-16, 43 
summary, RM 1-7 
syntax, RM 1-18 5 

B EGIN_FONT... END_FONT (command) , 
GT2-9, 75; GT10-19, 22; TT7-7 

summary, RM 1-8 
syntax, GT10-22, 27; RM1-185 

Begin Saving GSR Data (utility GSR) , 
RM4-144 

B EGIN_STRUCTURE ... END_STRUCTURE 
(command), GT1-7; GTS-10, 25, 29; 
GT15-1; TT6-8 

exercise, GT3-11 
GSR, RM4-17, 45 
summary, RM 1-10 
syntax, GTS-24, 30; RM 1-18 6 

Binary data 
commands in, IS2-18 
encoding six-bit, RM 14-60 

Black box, IS2-24; GT1-9; GT2-92; GT6-3 
See also Function; Function network; Input/ 

Output 

Blanking. See Screen, blanking 

Blinking, IS2-22; GT2-82; GT9-14, 19 
attribute, GT2-7 8 
data structuring and, TT 1-3 6 
definition of, GT9-1 
node. See SET/IF node 
program example, GT9 -16 
rendering and, GT 13-2 8 
uses of, GT9-16 
See also Alternating display; Conditional refer-

encing; IF PHASE; SET BLINKING ON/ 
OFF; SET BLINK RATE; SET RATE; 
SET RATE EXTERNAL 

Block 
allocating a memory, AP3-4 
types of, AP2-1 
See also Alpha block; Control block; Label; 

Named entity; RAWBLOCK; Update 
block 

BOOLEAN_CHOOSE, F: (intrinsic user func-
tion) 

summary, RM2-19 

Boolean value 
attribute node and, GT2-67 
cursor shape and, TT 1- 5 
data format, RM 14-7 
data node and, GT2-37 
depth clipping node and, GT2-9 2 
operation node and, GT6-5 
picking node and, GT11-3, 7, 8 
switch function and, TT1-32 
See also Data type 

Booting, IS3-1; GT1-1 
trouble-shooting tips, IS3-4 

Index RM16-S 



Boundaries, front and back 
default, GT8-15 
depth clipping and, GT2-72; GT8-15, 29 
depth cueing and, GT2-63, 71; GT8-16 
frustum and, GT8-19 
orthographic viewing area and, GT2-50; 

GT8-16 
perspective viewing area and, GT2-54; 

GT8-20, 24, 29 
See also Viewing angle; Viewing pyramid 

program example, GT3-13, 15 
specifying, GT8-15, 16, 24, 29 
spheres and, TT2-18 
square/nonsquare, GT8-45 
viewing pyramid and, GT2-54; GT8-20 

See also Frustum; Viewing area, perspective 
See also Clipping plane; EYE BACK; 

FIELD OF VIEW; LOOK; WINDOW 

Bounded plane. See Surface 

Branch, GT2-36, 43 
definition of, IS2-19; GT2-77 
displaying selected, GT2-78; GT9-1, 7, 17 

See also IF CONDITIONAL_BIT; SET 
CONDITIONAL_BIT 

instance node and, GT2-36, 40; GT4-2 
order of display, GT9-10 
picking, GT 11-2, 4 
program example, GT3-22 
structure attributes and, GT2-7 8 
See also Arithmetic control processor; Condi-

tional referencing; Display structure; In-
stance node; Sphere of influence 

Break key. See Key, BREAK 

Breakpoint. See Debug; User-written function 

Break sequence, TT2-41 
See also Key, BREAK 

BROUTE, F: (intrinsic user function) 
summary, RM2-20 

BROUTEC, F: (intrinsic user function), 
TT1-32 

summary, RM2-21 

BSPLINE (command), GT2-9; GT4-49; 
TT6-15 

GSR, TT3-5; RM4-18 
summary, RM 1-13 
syntax, RM 1-18 6 

Buffer. See Input/output; Byte, buffer 

Buffer, double, AP3-2; AP4-6 
See also Frame buffer; SET/IF 

LEVEL_OF_DETAIL; SET/IF CONDI-
TIONAL BIT 

Buttons. See Function button 

BUTTONSIN (initial function instance) 
summary, RM3-2 

Byte 
buffer, RMS-7, 9, 12 
encoding binary data into, RM 14-60 
See also Data; Routing byte 

C 
Calligraphic system, IS2-1; GT 12-1 

See also Raster; Screen 

Calling sequence . See Named entity; Real value 

CANCEL XFORM (command) 
GSR, RM4-225 
summary, RM 1-16 
syntax, RM 1-18 6 

Capping polygon. See Polygon, capping 

Car, GT4-3, 23; GTS-8, 11; GT8-4; 
GT9-S; GT11-3 

Card, IS2-6, 8 
configuration, IS2-10 
See also Arithmetic control processor; Joint 

control processor; Pipeline subsystem; Ras-
ter backend bit-slice processor; Raster 
backend video controller 

Cartesian system. See Coordinate system, left 
handed 

Cavity. See Contour, inner 

CBROUTE, F: (intrinsic user function) 
summary, RM2-22 

CCONCATENATE, F: (intrinsic user function) 
summary, RM2-23 

CDIV, F: (intrinsic user function) 
summary, RM2-24 

CEILING, F: (intrinsic user function) 
summary, RM2-25 

Centering. See Model; Origin 

RM16-6 Reference Materials 



CGE, F: (intrinsic user function) 
summary, RM2-26 

CGT, F: (intrinsic user function) 
summary, RM2-27 

Change bits node. See SET/IF node 

CHANGEQTYPE, F: (intrinsic user function) 
summary, RM2-28 

Character font 
alternate, GT2-9, 75; GT10-20, 27; 

TT7-2 
See also BEGIN_FONT...END_FONT; 

MAKEFONT 
attribute, GT2-67, 75; GT10-22 

See also CHARACTER FONT 
bit, TT7-8; RMS-14, 15 
block, AP2-S, 34 
definition of, GT 10-19 
design grid, TT7-5 
downloading, TT7-7 
lookup table, GT10-22 
modifying. See MAKEFONT 
node, GT2-7 6 
as primitive, GT2-9 
standard, IS2-3, 21; GT2-9, 75; GT10-1, 

19, 20; TT7-7 
See also ASCII; STANDARD FONT 

storing, TT7-8 
See also Label 

CHARACTER FONT (command), GT2-9, 76; 
GT10-20, 22 

GSR, RM4-53 
summary, RM 1-17 
syntax, GT10-22, 27; RM1-186 

Character font editor. See MAKEFONT 

Character generator. See MAKEFONT 

CHARACTER ROTATE (command) , GT 10-6, 
10; RM 14-12 

exercise, GT 10-10 
GSR, RM4-21 
summary, RM 1-18 
syntax, RM 1-18 6 

CHARACTERS (command), GT1-7; GT2-76; 
GT4-49; GTS-5; GT10-2, 5, 17, 18, 23 

exercise, GT 10-19 
GSR, RM4-22 
summary, RM 1-20 
syntax, GT 10 - 2 4 ; RM 1-18 6 

CHARACTER SCALE (command), GT1-7; 
GT2-76; GT10-6, 8 

GSR, RM4-24 
summary, RM 1-22 
syntax, GT10-7, 24; RM1-186 

Character string, GT1-7; GT10-1 
block. See Label 
commands, GT10-2, 6, 16, 24 

See also CHARACTERS; CHARACTER 
ROTATE; CHARACTER SCALE; 
LABELS; PREFIX; TEXT SIZE 

definition of, GT 10-1 
functions to manipulate, GT 10-12, 19 , 2 5 
node, GT2-76; GT10-1, 6, 11, 16, 23; 

TT1-28 
See also COPY; SEND 

orienting, GT 10-10, 25 
See also SET CHARACTERS 

pick list into. See PICKINFO, F: 
positioning, GT 10-2, 4 
primitive, GT2-9; GT4-49 
program example, GT3-2, 10, 20 
rotating, GT 10-6 

See also CHARACTER ROTATE 
scaling, GT10-3, 6 

See also CHARACTER SCALE; SCALE; 
TEXT SIZE 

screen-oriented, GT3-20; GT 10-12 
screen-oriented fixed, GT3-21; GT 10-12 
spacing, GT 10-4, 5 
transforming, GT10-6, 24 

See also CROTATE, F: ; CSCALE, F: ; MA-
TRIX_2X2 

versatility of, GT 10-5 
world-oriented, GT3-20; GT10-11 
See also Label; Pick list; Text 

Character transformation function, IS2-24; 
GT2-94; GT6-12; GT10-15 

CHARCONVERT, F: (intrinsic user function), 
RM7-4; TT1-40; GT10-13; GT11-14 

summary, RM 2 -2 9 

CHARMASK, F: (intrinsic user function), 
GT10-13 

summary, RM2-31 

CHECK (diagnostic utility command) , 
RM12-2, 8 

CHOP, F: (intrinsic user function}, TT2-33; 
RM7-3 

summary, RM2-32 

CI (n) , F : (intrinsic user function) , TT2- 8 ; 
RM7-3; RM9-2, 7; RM 14-7 

summary, RM2-33 

Index RM16-~ 



Circle, TT1-10 
See also RATIONAL POLYNOMIAL 

CIROUTE (n) , F: (intrinsic user function) , 
TT2-24, 33; RMS-16, 20, 26, 29; 
RM7-1, 3; RM 14-4 

summary, RM2-35 

CLCSECONDS, F: (intrinsic user function) , 
TT1-21, 23 

summary; RM2-37 

CLE, F: (intrinsic user iu~Iction} 
summary, RM2-39 

Clear. See Screen, blanking 

CLEAR_LABELS (initial function instance) 
summary, RM3-3 

CLFRAMES, F: (intrinsic user function), 
GT6-27; TT1-21, 23 

exercise, GT6-30 
summary, RM2-40 

Clipping 
definition of, GT2-44, 72; GT8-1 
line of sight and, GT8-11, 13, 21 
screen boundaries and, IS2-21 
size of object and, GT8-1 l 

See also WINDOW 
viewing area and, GT2-51, 66; GT8-10, 13, 

15, 53 
See also Depth clipping 

Clipping plane 
depth clipping and, GT2-51, 73; GT8-15 
depth cueing and, GT2-5 8 

See also Intensity 
rendering and, TT2-5 8 
sphere and, TT2-5 7 
See also Boundaries, front and back; EYE 

BACK; FIELD_OF_VIEW; LOOK; WIN-
DOW 

Clock 
blinking and, GT2-82; GT9-14, 19 
function, GT6-27; TT1-21, 23 

See also CLCSECONDS, F:; CLFRAMES, 
F: ; CLTICKS, F: 

level-of-detail and, GT9-12 
See also Animation 

real-time, displaying, TT1-33 
See also Alternating display; Blinking 

CLT, F: (intrinsic user function) 
summary, RM2-42 

CLTICKS, F : (intrinsic user function) , 
TT1-21, 23, 33 

summary, RM2-43 

CMUL, F: (intrinsic user function) , GT6-9 ; 
GT7-9 

exercise, GT7-15 
summary, RM2-45 

Coding. See BEGIN_STRUCTURE... 
END_STRUCTURE; Command; Display 
structure; Naming, explicit 

Color 
ambient. See Ambient light, color of 
attribute node input, GT13-42 
blending, GT13-53 
changing, GT13-40 
components, GT 14-3 

See also Color lookup table 
displaying, IS2-3; GT2-68, 69 
dynamic viewport and. See Dynamic view-

port, color in 
edge . See Edge, color of 
interpolating, GT 13-9, 22 
node, GT2-69 
pixel, GT 14-2, 3 
program example, GT13-43 
specifying, IS2-22; GT2-103; GT8-50; 

GT13-20, 21, 40, 59, 61 
See also POLYGON; SET COLOR 

transparency and, GT 13-4 2 
values, GT2-68; GT13-41, 43 

See also Hue; Intensity; Saturation 
vertex. See Vertex, color 
wheel, GT2-68; GT8-50; GT13-41 
wireframe. See Wireframe model, color of 
See also Attribute; ATTRIBUTES; Back-

ground color; SET COLOR; Shading; 
SHADINGENVIRONMENT 

Color lookup table, GT 14-1, 3, 11; TT2-39 

Command 
abbreviated, GTS-2; TT8-2 
building from subcommands, RM 14-11 
categories of, IS2-16; GTS-1, 29; 

RM 1-180 
conventions, GTS-2, 29 
data formats, RM 14-14 
data structuring, GTS-1, 4, 29 

See also BEGIN_STRUCTURE... 
END_STRUCTURE 

downloading, IS2-17 
editing. See LINEEDITOR, F: 
entering, GT 1-2 

RM16-8 Reference Materials 



error in sending, RM14-1, 11 
file . See Command file 
general, IS2-16 
GSRs and, IS2-18; IS3-30; GTS-28; 

TT3-3, 12; TTS-28; RM1-197; 
RM4-228 

immediate action, GTS-2, 25, 29 
language, IS2-15; GT4-2; GTS-1; RM1-1 

naming conventions, GTS-4, 29 
See also Name, command; Naming, explicit 

private ANSI, RM 10-6 
See also Terminal emulator mode 

rendering operation and, GT 13-31 
reset, RM 14-1, 11 
runtime code and, IS3-7 
saving, GTS-27 
special site configuration, TT2-1 

See also SITE.DAT 
status. See COMMAND STATUS 
structure, IS2-17 
syntax, TT3-7, 16; RM 1-185 
system, RM 1-1 
use of, IS2-17; GTS-1 
utility. See Diagnostic utility command 
See also Command interpreter; Display struc-

ture; Graphics support routines; Node 

Command file, APS-2 
DEC VAX/UNIX, APS-16; AP9-11 
DEC VAX/VMS, APS-1 S; AP9-1 
generating, TT4-3 
IBM MVS/TSO, AP9-24 
tutorial, GT3-S 

Command interpreter (CI), IS2-18 
alpha block and, AP2-3 
configure mode, IS3-7; RM9-6 

See also CONFIG. DAT 
data format, RM 14-1, 11 

See also Data type; Graphics support rou-
tines 

graphics support routines and, IS3-30; 
TT3-17; RMS-29 

host communications and, IS3-25, 27; 
RMS-23 

name suffixing by, RM9-6 
querying or resetting, GTS-1; RM 14-11 

See also COMMAND STATUS; !RESET 
routing to, RMS-20, 23, 27; RM7-3; 

RM14-6 
tokens expected by, RM14-3 
user-written function and, AP7-2 
See also CI (n) , F: ; Write structure field 

Command language. See Command; Graphics 
support routines 

Command mode (CI mode) 
cursor keys in, RM 10-23 
DEC VT100, IS3-17 
description of, IS3-1 S; RM 10-27 
entering commands in, IS2-17 
establishing, RM 10-21 
function keys in, RM 10-23 
IBM host, IS3-22, 24; GT1-2; RM10-27 
keyboard manager and, RM 10-17, 21 

See also K2ANSI, F: 
keypad in, RM 10-21, 23 
key sequence for, IS3-15, 22; GT3-30; 

GT10-2 
local communication, IS3-27 
non-IBM host, GT 1-1 
prompt, GT 1-1 
screen and, RM10-27 
suffixing, RM9-6 
See also Keyboard, modes of operation 

COMMAI~TD STATUS (command), GTS-1, 
17, 25 

summary, RM 1-2 4 
syntax, RM 1-18 7 

Comments, GTS-3; TT4-31; TTS-4 
See also Command, language 

Commhead, AP2-35; AP9-41 

Communication connector panel, IS2-S 

Communication interface. See Interface 

Communication mode. See Command mode; 
Keyboard, modes of operation; Local mode; 
Terminal emulator mode 

Comparison function, IS2-24; GT2-93; 
GT6-11 

Complex model. See Compound object; Model 

Compound object 
advantage of, GT2-2 8 
creating, GT2-26, 31 
grouping as, GT2-30 
instance node and, GT2-39 
See also INSTANCE; Instance node; Model; 

Named entity 

Composite sync signal, GT12-4, 11, 13 
See also Video timing format 

Index RM16-9 



COMP_STRING, F: (intrinsic user function) , 
GT10-15 

summary, RM2-46 

CONCATENATE, F: (intrinsic user function) , 
GT10-14 

summary, RM2-47 

CONCATENATEC, F: (intrinsic user function) 
summary, RM2-48 

Concatenation. See Character string, concatena-
tion; Matrix, concatenation 

CONCATXDATA (n) , F: (intrinsic user func-
tion) , TT2-5 3, 5 5 

summary, RM2-49 

Conditional bit 
function network, GT9 - 8 
setting, GT2-78; GT9-1, 7 
state of machine and, GT4-48 
using, GT9-3, 17 
See also IF CONDITIONAL_BIT; SET CON-

DITIONAL BIT 

Conditional referencing, GT9-1 
attribute, GT2-78 
definition of, GT2-78; GT9-1 
function key and, GT2-79; GT9-8 
node. See SET/IF node 
program example, GT3-11, 22 
using, GT9-17 
See also Blinking; IF CONDITIONAL_BIT; 

IF LEVEL_OF_DETAIL; IF PHASE; 
Level-of-detail; SET CONDI-
TIONAL_BIT; SET/IF node; SET 
LEVEL_OF_DETAIL; SET RATE; SET 
RATE EXTERNAL 

Condition handler, TTS-11 

Confidence tests, IS3-3, 4 

CONFIG. DAT (file) , RM 1-1 
command interpreter and, RM 9 - 6 
description of, IS3-6, 7; TT2-9; RM9-5 
initial data structure and, RM9-2 
reading, RM9-5 

See also CI (n) , F: ; READDISK, F: 
terminal emulator and, RM 10-20, 28 
See also Initial data structure; SITE.DAT 

CONFIGURE (command), GT8-40 
summary, RM 1- 2 5 
syntax, RM 1-187 

Configure mode, IS3-7 
commands, RM1-1 
definition of, TT2-7 
password. See SETUP PASSWORD 
using, TT2-7; RM9-7 
See also Command interpreter; Naming, suf-

fixing 

CONNECT (command) , GT 1-10; GT2-9 6; 
TT4-2, 28; TTS-4, 25; RM14-13 

exercise, GT6-16 
GSR, RM4-26 
summary, RM 1-26 
syntax, RM 1-18 7 

Connector, TT4-2, 19 

Constant, TT3-7, 16; TT4-20, 28 

CONSTANT, F: (intrinsic user function), 
RM7-3; GT7-33 

exercise, GT6-31 
summary, RM2-50 

Constant input. See Input/output, constant 
queue 

Control block, AP2-16, 27 
See also Display control block; Display con-

trol root 

Control sequence, RM10-2, 4, 5 
ANSI, RM 10-2, 5 
cursor and, RM 10-5 
definition of, RM 10-3 
SET (SM) and RESET (RM) , RM 10-4 
See also Escape sequence 

Control unit, IS2-4 
multiplexer and, RM 13A-3 

Converter. See ASCII-to-GSR converter 

Convert HSI to RGB (utility GSR), RM4-207 

Coordinate 
calculating, GT2-12 
character string, GT 10-4 

See also CHARACTERS 
label, GT 10-5 

See also LABELS 
logical device, GT14-2, S, 11, 18 
notation, GT2-6 
picking, GT11-7, 9 
room, GT2-56; GT8-25 

See also ESE BACK 
screen, GTS-21 

See also Viewing area 

RM16-10 Reference Materials 



values, GT1-3 
world, GT2-4, 5 6 

See also World coordinate system 
See also Vector; Vector list; VECTOR LIST 

Coordinate system 
definition of, GT2-2, 10 
left-handed, GT2-3, 10 

See also World coordinate system 
mnemonic for, GT2-2, 3, 

~ 
1~4 

portion displayed, GT1-3, 4 
right-handed, GT2-2 
world. See World coordinate system 

CPK. See Rendering operation 

Coplanar. See Polygon, coplanar; POLYGON 

COPY (command) , GT 10-16 
GSR, RM4-28 
summary, RM 1-27 
syntax, GT 10-16 ; RM 1-18 7 

COPYDISK (diagnostic utility command), 
RM12-7, 8 

COPY_VECNORM_BLOCK, F: (user-written 
function) , TT2-62 

Counter. See Clock, function. 

Count mode. See CIROUTE, F:; Data packet, 
count mode; Host communication 

Crash dump file, TT 10-1; RM 11-1 

Crash, system, RM 11-1 
error types, AP9-63; TT10-1 
physical I/O and, AP4-3 
user-written functions and, APS-23 

Cross-sectioning 
description of, GT2-110; GT 13-5, 3 6 
rendering node input, GT 13-3 2, 3 6 
See also Polygon, capping; Sectioning; Sec-

tioning plane; SECTIONING_PLANE 

Cross-compatibility software, IS2-14; APS-2; 
AP9-18 

See also Graphics support routines 

CROTATE, F: (intrinsic user function) , 
GT10-6, 15 

summary, RM 2 - 51 

CROUTE (n) , F: (intrinsic user function) , 
GT7=6, 37 

exercise, GT7-15 

summary, RM2-52 

CSCALE, F: (intrinsic user function), 
GT10-15 

summary, RM2-53 

CSUB, F: (intrinsic user function) 
summary, RM2-54 

Current state of the machine (CSM) . See State 
of the machine 

Current transformation matrix. See Matrix, cur-
rent transformation 

Cursor 
color, GT 12-5 

See also PS 39 OENV 
data tablet. See Data tablet 
default, TT1-3 
moving, RM 10-5, 9, 11, 15 
picking with, GT 11-1, 7 

See also SET PICKING LOCATION 
programmable, GT12-6 
refresh rate, GT 12-6 
shape of, TT1-3, 4; TT4-9; TT6-7 
sketching with. See Data tablet 
types of, GT 12-6 
update rate, GT 12-6 
See also Data tablet 

CURSOR (initial structure) , TT 1-3, 4 
summary, RM3-5 6 

Cursor key mode (DECCKM), IS3-20; 
RM 10-2, 4, 5, 6, 22 

See also Escape sequence; SETUP facility; 
Terminal emulator, ANSI modes 

Curve 
generating, TT 1-10 
primitive, GT2-9; GT4-49 
See also BSPLINE; POLYNOMIAL; RA-

TIONAL BSPLINE; RATIONAL POLY-
NOMIAL; Transformed data 

Customer support, I S 4 -1; I S S -1 

Cutaway view. See Sectioning 

CVEC, F: (intrinsic user function) 
summary, RM2-55 

CVT6T08, F: (intrinsic user function) , RM7-3 
summary, RM2-S 6 

CVT8T06, F: (intrinsic user function) , TT9-11 
summary, RM2-57 

Index RM16-I1 



CVTASCTOIBM, F: (intrinsic user function} 
summary, RM2-5 8 

CVTIBMTOASC, F: (intrinsic user function} 
summary, RM2-59 

D 
Data 

digital-to-analog conversion, IS2-22 
filtering and formatting, GT2-100 

See also Function network 
flow. See Host input data flow 
format, RM 14-2, 7, 11, 14 
function network and, GT2-100 
multiplexer, RM 13A-3 
reception and routing, GT2-101; RM7-1; 

RM14-3 
See also CIROUTE (n} , F: ; Host input data 

flow 
storing, RM 14-60 
transformed. See Transformed data 
type. See Data type 
See also Binary data 

Data base 
conceptual, GT4-47 
coordinate system and, GT2-2, 10 

See also world coordinate system 
graphic object's, GT2-1, 4, 6, 10; GT4-49 

See also Primitive; Geometry; Polygon list; 
Topology; Vector list 

Data channel. See Data, reception and routing; 
Host input data flow 

Data communication. See Data transmission; 
Host communication. 

Data conversion function, IS2-24; GT2-93; 
GT6-11; GT10-13 

Data-driven. See Function; Function network 

Data input and output function, IS2-25; 
GT2-94; GT6-12 

Data node 
contents of, GT2-36, 91 
definition of, GT2-36; GT4-13, 49; 

AP2-30; AP9-56 
See also Primitive 

display structure representation, GT2-36; 
GT4-13 

format of, AP2-30; AP9-56 

function, GT4-48 
See also Character string; Curve; Label; 

Vector list 
inputs to, GT2-37 
interactive device and, GT4-49 
modeling and, GT4-2 
pick index of, GT11-8; AP2-32 

See also PICK 
picking, GT3-27; GT11-4, 9 
pointer, GT4-48, 49 
polygon, GT2-103 
terminal, GT4-13, 48, 49 
updating, GT2-36; TT2-37 

See also Interactive device 
uses of, GT4-49 
See also Data type; Display structure; Node 

Data packet, RM 14-3 

commands and, IS2-18 
count mode, RMS-17, 19; RM7-1; 

TT2-23 
description of, RMS-16 
escape mode, RMS-17, 18 ; RM7-1; 

TT2-23 
writeback, TT9-10, 12 
See also CIROUTE (n} , F: ; Data, reception 

and routing; DEMUX (n) , F : ; 
DEPACKET, F: ; Host communication; 
Host input data flow; PACKET, F: 

Data selection and manipulation function, 
IS2-25; GT2-94; GT6-12; GT10-14 

Data space. See World coordinate system 

Data structure 
creating, AP3-1 

See also Joint control processor 
description of, AP2-1 
definitions set up, RM9-2 

See also Graphics control program 
displaying. See CONFIG. DAT; Initial data 

structure 
editing. See STRUCTEDIT 
function instance as, AP2-6 
function network as, TT4-2 
initial. See Initial data structure 
named entity as, AP2-1, 5 
naming, GTS-4 

See also Alpha block; BEGIN_STRUC-
TURE...END_STRUCTURE; Command; 
FORGET STRUCTURES; Named entity; 

Naming, explicit null, GTS-4 
See also Data node; Display structure; Mass 

memory; Operation node; Set node 

Data structure editor. See STRUCTEDIT 

RM16-12 Reference Materials 



P1 

n 

Data structuring command. See Command, 
data structuring 

Data tablet 
binary format, RM 13A-24; RM 13B-20 
character font selected with, TT7-3 

See also MAKEFONT 
cursor and, TT1-4 
description of, IS2-12; IS3-11; 

RM 13A-23; RM 13B-19 
editing with, TT4 
grid banding with, TT1-17 
inking with, TT 1-14 , 3 8 
menus and, TT1-25; TT4-10 
modes of operation, IS3-11; RM13A-23; 

RM13B-19 
picking with, GT 11-1, 7 , 13 
program example, GT3-7, 27 
puck, IS3-11 
rubber banding with, TT 1-15 , 17 
uses of, GT2-88; GT6-5 

See also Cursor 
values, GT6-5 

Data transmission 
high-speed, IS2-13 
multiplexer rate, RM 13A-3 
See also Host communication; Interface 

Data type 
character/label nodes and, GT 10-19 
definitions, RM2-6; RM 14-2 
formats for, RM 14-7 

See also Data, format 
functions and, GT6-11; RM2-2, 6 
graphics control program and, AP2-35 
GSRs and, TT3-2, 20 
interactive devices and, GT2-92 

See also Function network 
nodes and, GT2-91; GT6-3, 23 

See also Function 
pick list, GT 11-11 
See also PRINT, F: ; User-written function, 

message types; VARIABLE 

Datum pointer, AP2-2; AP3-1 
See also Alpha block; RAVVBLOCK 

Debug 
commands, AP7-9 
confidence test and, IS3-6 
entering, IS3-6; AP7-7 

See also Key, BREAK 
function network, TT2-43 

terminal, IS3-4 
use of, AP7-6 
See also NETPROBE; User-written function 

Debugging network. See NETPROBE 

DEC computer. See Host computer; Host com-
munications; Interface; Keyboard modes; 
Parallel interface; Terminal emulator, DEC 
VT 10 0 

DECANM. See ANSI mode 

DECCKM. See Cursor key mode 

DECKPAM. See Keypad application mode 

DECKPNM. See Key pad numeric mode 

DECREMENT LEVEL_OF_DETAIL (com-
mand) 

GSR, RM4-34 
summary, RM 1-2 9 
syntax, RM 1-18 7 

Delay, GT2-83; GT9-14 
See also Blinking, SET RATE 

DELETE (command), GTS-5, 26 
GSR, RM4-32, 35 
summary, RM 1-30 
syntax, RM 1-18 7 

DELETE (diagnostic utility command) , 
RM12-9 

Delimiter, GTS-3 
See also Command, language; 

LINEEDITOR, F: 

Delta values, GT6-5; RM 13A-18; 
RM13B-15 

See also Dials, control 

DELTA, F: (intrinsic user function) 
summary, RM2-60 

Demonstration package diskettes, IS2-14 

Demultiplexing. See Multiplexing; Input/output, 
multiple sources/destinations 

DEMUX (n) , F: (intrinsic user function) , 
RM 14-6 

summary, RM2-61 

DEPACKET, F: (intrinsic user function) , 
TT2-24; RMS-17, 21; RM7-1; RM14-3 

summary, RM 2 - 6 3 

Index RM16-13 



Dependency. See Grouping; Hierarchy; Sphere 
of influence. 

Depth clipping 
attribute, GT2-72 
definition of, GT2-51, 72 
depth cueing and, GT8-17 
display structure and, GT8-15 
enabling/disabling, GT2-72; GT8-15, 16, 54 

field-of-view and, GT8-21 
function key and, GT2-75 
node, GT2-74 
orthographic viewing area and, GT8-10, 15, 

17 
See also WINDOW 

perspective viewing area and, GT8-21, 29, 
30 

program example, GT3-14 
See also Boundaries, front and back; Clipping; 

Clipping plane; SET DEPTH_CLIPPING; 
Viewing area 

Depth cueing 
background color and, GT12-5 

See also PS390ENV 
boundaries, front and back and, GT8-S 3, 5 4 

See also Boundaries, front and back; Clip-
ping plane 

characters, GT 10-12 
definition of, IS2-2; GT2-44, 58, 71; 

GT8-1, 16, 53 
field-of-view and, GT8-21, 24 
maximum, GT2-63; GT8-16, 22, 24 
orthographic viewing area and, GT8-9, 19 
perspective viewing area and, GT2-63; 

GT8-21, 29 
shaded image, GT 13-51 
See also Intensity; SET CONTRAST; SET IN-

TENSITY; SHADINGENVIRONMENT; 
Viewport 

Depth perception, GT2-2 
See also Coordinate system; Depth cueing; 

Perspective 

Designing. See Display structure; Model; Mod-
eling transformation 

DESTROY (initial function instance), AP2-6 

Detach PS 390 from Communication Device 
(utility G S R) , RM 4- 4 2 

Detail frame. See Frame, detail 

Diagnostic utility diskette 
backing up, RM12-5 
copying, RM 12-6 
copying files with, TT2-26 
interface files on, RM6-4 

See also Asynchronous serial line; Ethernet 
interface; IBM interface; Parallel inter-
face 

loading, RM 12-1 
uses of, IS2-14; RM 12-1 

Diagnostic utility command, RM 12-1 
list of, RM 12-3 
selecting, RM 12-2 

Diagram. See NETEDIT 

Dial, control, RM 13A-1 
clock function and, GT6-30 
commands, RM 13B-16 
connecting, GT 1-9 
data formats, RM 13A-18; RM 13B-15 
data transmission characteristics, RM 13B-16 
description of, IS2-12; IS 3-11; 

RM 13A-17; RM 13B-15 
function network, GT 6-16, 21, 2 5, 3 2; 

GT7-2, 13, 22, 25 
function network editing and, TT4-14 
intensity setting with, GT2-71 
labels, IS3-10; GT7-1, 22; TT2-48; 

RM 13A-20 
See also DLABELI...DLABEL8; Light-emit-

ting diode 
level of detail and, GT2-80 
modes of operation, GT7-4, 23; GT11-13; 

RM13A-17 
multiple interactions and, GT7-1, 2, 37 
operation of, GT6-5; RM13A-18 

See also Delta values; Multiplying 
performance verification test, IS6-9 
picking network and, GT 11-13 
program example, GT3-7, 8, 13, 15, 18, 21, 

23, 25; RM 13A-19 
response, RM 13B-15 
rotating with, GT6-5, 18 
scaling with, GT6-23; TT 1-12 
setup, RM 13A-19 
transformations and, GT6-5 
translating with, GT6-23; TT1-19 
uses of, IS3-11; GT2-88 

DIALS (initial function instance), GT2-95, 97; 
GT6-15; GT7-5; GT11-15 

exercise, GT6-16, 21, 25, 32; GT7-13 
summary, RM3-4 

Dictionary. See Alpha block; Hash table 

RM16-14 Reference Materials 



Diffuse reflection, GT2-103 
attribute node input, GT13-42 
specifying, GT 13-21, 41 
values, GT 13-41; TT2-51 
See also ATTRIBUTES; Shading; Specular 

- highlight 

Digital clock. See Clock, real-time Digitizing, 
GT6-5 

See also Data tablet 

Dimension, GT1-3; GT2-1 
See also Coordinate system 

DIRECTORY (diagnostic utility command) , 
RM12-9 

DISCONNECT (command), GTS-25 
exercise, GT6-21, 30 
GSR, RM4-36, 40 
summary, RM 1-31 
syntax, RM 1-18 7 

Diskette, IS2-13; IS3-6 
backing up, RM 12-5 
drives, IS2-S; IS3-1 
formatting blank, RM 12-5 
installing, I S 3-1, 2 
See also Demonstration diskette; Diagnostic 

utility diskette; Graphics firmware; 
Performance verification test; 
WRITEDISK, F: 

Display (noun) . See Display structure; Screen 

DISPLAY (command), GT1-3; GT2-45, 57, 
61; GTS-25, 28; GT13-26 

exercise, GT3-10; GT8-35 
GSR, RM4-41 
summary, RM 1- 3 2 
syntax, RM 1-18 7 

Display control block (DCB) , AP2-20 

Display control root (DCR) , AP2-16 

Displaying, GT1-2, 4, 5; GT2-45 
alternate. See Alternating display 
conditional referencing and, GT2-78 

See also IF CONDITIONAL_BIT; SET 
CONDITIONAL BIT 

default values, GT2-46 
information needed, GT2-45 

See also Line of sight; Viewing area; View-
port 

level-of-detail and, GT2-80 
See also IF LEVEL_OF_DETAIL; SET 

LEVEL_OF_DETAIL 
off and on. See Blinking 
screen area for. See Viewport 
simultaneous. See BEGIN...END 
viewing space. See Viewing area 

Display list, GT1-3, 5 

Display processing, IS2-22 
See also Interaction; Transformation 

Display processor 
attributes and, GT2-67; GT13-39 
branches and, IS2-19; GT2-77 
description of, IS2-7; AP 1-1 

See also Arithmetic control processor 
instance node and, GT4-S 3; GTS-14 
naming and, GTS-10 
optimization mode and, GTS-26 

See also OPTIMIZE STRUCTURE; ...END 
OPTIMIZE; 

transformation and, GT4-51 

Display structure 
branching in, GT2-78 

See also Branch 
character font, GT10-23 
coding, GTS-1, 8, 11, 17; TT6-1 

See also BEGIN_STRUCTURE... 
END_STRUCTURE; Command; Nam-
ing, explicit; STRUCTEDIT 

conditional referencing, GT9-1 
data structuring commands and, I S 2 -17 ; 

GTS-1, 4, 29 
definition of, IS2-18; GT2-32, 34, 43; 

GT4-9 ; AP2-16 
designing, GT2-35, 90; GT4-9, 16, 23, 31, 

47 
editing. See STRUCTEDIT 
elements of, AP2-16 

See also Control block; Node 
function outputs as, TTS-1 

See also NETPROBE 
GSRs and, TT3-3, 5, 12, 15 
hierarchy in, IS2-18; GT2-32; GT4-3, 31 
immediate action commands and, GTS-25, 

29 
information in, GT4-13 
interaction points in, IS2-23; GT2-36, 38 
modeling steps and, GT4-2 
named entity, AP2-5 
order of operations in, GT4-5 2 ; GTS-13 

See also Operation node 
picking and, GT 11-1, 2 

Index RM16-1 S 



program example, GT15-2, 15, 28, 36, 42, 
45, 47 

rules for, GT4-4 8 
sphere of influence in, GT2-40 

See also Instance node 
terminal emulator and, RM 10-19 
terminology, GT2-36 

See also Branch; Node; Hierarchy 
transformed data and, TT9-1 
traversing, IS2-20 

See also Display processor 
updating. 

See Update 
viewing and, GT2-60; GT8-12, 15, 21, 36 

See also Viewing operation 
writeback and, TT9-9 
See also Data structure; Hierarchy; Named 

entity; (Naming of Display Structure 
Nodes) ; Node; OPTIMIZE STRUC-
TURE; ...END OPTIMIZE 

Display tree. See Display structure 

Distortion. See Aspect ratio; Viewport 

Distributed graphics, IS2-3 
See also Host input data flow; Routing; Rout-

ing byte 

DIV, F: (intrinsic user function) 
summary, RM2-65 

DIVC, F: (intrinsic user function) , TT 1-17 
summary, RM2-66 

DLABELI...DLABEL8 (initial function in-
stance), GT7-22, 37 

exercise, GT7-25 
summary, RM3-6 

Downloading, I S 3-2 6, 2 8 
diagnostic utility commands and, RM 12-1 
See also Host communications 

DSCALE, F: (intrinsic user function), GT6-25; 
TT1-13 

exercise, GT6-26 
summary, RM2-67 

DSETI...DSET8 (initial function instance) 
summary, RM 3 - 8 

DXROTATE, F: (intrinsic user function) , 
GT6-6, 18; GT7-11, 30 

exercise, GT6-17; GT7-16 
summary, RM2-69 

Dynamic viewport 
clearing to, GT8-42 
color in, IS2-3; GT8-48; GT13-20, 59 
considerations, GT8-39 
default, GT8-2, 34, 40 
dimensions of, GT8-34, 39 
display structure and, GT8-2 
intensity range, GT2-58, 71; GT8-35, 47, 

56 
program example, GT15-45 
real time and, IS2-2 
rendering operations, GT2-10 2, 10 8 , 113 ; 

GT8-34; GT13-3, 32, 56 
See also Backface, removal; Cross-section-

ing; Sectioning 
soft edge in, GT13-20 
specifying, GT2-58; GT8-34, 56 

See also LOAD VIEWPORT; VIEWPORT 
wireframe model in, GT2-44, 58; GT8-33, 

34 
See also Static viewport; LOAD VIEWPORT; 

Screen; Viewport; VIEWPORT 

DYROTATE, F: (intrinsic user function), 
GT6-6, 18 

exercise, GT3-10; GT6-16 
summary, RM2-70 

DZROTATE, F: (intrinsic user function) , 
GT1-9; GT2-96; GT6-15 

exercise, GT6-17; GT3-25 
summary, RM2-71 

E 
Edge, polygon 

color of, GT2-103; GT13-9, 20, 21, 44 
common, GT2-105, 106; GT13-11, 13, 19, 

58 
defining, GT2-102; GT13-8 
enhancement, GT13-20, 21, 54 
shading and, GT13-20 
smoothing. See Antialiasing 
soft, GT2-104; GT13-10, 19, 59 
solid, GT 13-11, 13 
surface, GT 13-10 
toggling, GT 13-5 4 
See also Polygon; POLYGON 

EDGE_DETECT, F: (intrinsic user function), 
TT1-38 

summary, RM2-72 

Ellipse, TT 1-11 
See also RATIONAL POLYNOMIAL 

RM16-16 Reference Materials 



Endpoint, TT4-21 

End Saving GSR Data (utility GSR) , RM 4 -14 5 

Enhanced programmable communications inter-
face (EPCI), RMS-13 

EQ, F: (intrinsic user function) 
summary, RM2-73 

EQC, F: (intrinsic user function} 
summary, RM2-74 

ERASE PATTERN FROM (command) 
GSR, RM4-46 
summary, RM 1- 3 3 
syntax, RM 1-18 7 

Erase Screen (raster GSR) , GT 14-11, 12, 19 ; 
TT2-39; RM4-122 

program example, GT 14-13, 15, 19 

ERROR (initial function instance) 
summary, RM3-10 

Error 
converter, TT8-2 

See also ASCII-to-GSR converter 
detection logic, GT2-9 5 
diskette copying, RM 12-6, 8 
framing, RMS-15 
formatting, RM 14-11 
handling, TT3-6, 15, 22 
input queue, RM2-5 
LEDs and, IS3-10 
message, RM 11-1 
overrun, RM 5 -16 
parity, RMS-14 
transmission, RMS-13 
See also Crash, system; ERROR; Graphics 

support routines, error code; INFORMA-
TION; WARNING 

Error code. See Graphics support routines, 
error code 

Escape character (ESC) 
changing, RMS-17, 21 

See also DEPACKET, F:; SITE.DAT 
defining, RMS-18 

See also Data packet 
parameters, RM 10-3, 6 
VT52 mode and, RM 10-5, 15 
See also Escape sequence 

Escape mode. See Data packet, escape mode; 
Host communication 

Escape sequence 
ANSI, RM 10-6 
ANSI-VT52 mode, RM 10-5 
break and, IS3-21 

See also Key, BREAK 
cursor key mode, RM 10-6 
cursor movement commands, RM10-11, 12 
definition of, RM10-3 
erase commands, RM10-13 
graphic rendition commands, RM 10-14 
host report commands, RM 10-14 
indexing commands, RM 10-12 
keypad, RM10-10 
margins commands, RM 10-14 
modes of operation and, RM 10-2 
screen display, RM 10-8, 11 
send-receive mode, RM10-5 
VT52 command, RM 10-15 
See also Control sequence; Host communica-

tion; Terminal emulator 

Ethernet interface 
data reception and routing with, RM6-2; 

RM7-1 
GSRs and, TT3-18, 25 
GPIO option, IS2-8; RM6-3, 4, 6 
SITE.DAT and, TT2-1 
physical I/O and, TT2-21 

Explicit naming. See Command; Naming, ex-
plicit 

Explicit referencing. See APPLIED TO/THEN; 
(Naming of Display Structure Nodes) 

Exposure, GT 13-5 0 
See also SHADINGENVIROI~,TMENT 

EYE BACK (command), GT2-54; GT8-25, 
55 

exercise, GT8-30 
GSR, RM4-47 
summary, RM 1- 3 4 
syntax, GT2-56; GT8-55; RM1-187 

Eyepoint 
exercise, GT8-30 
moving, GT2-56; GT8-25, 28 

See also EYE BACK 
perspective view and, GT2-56; GT8-19, 21 

See also LOOK; Viewing pyramid 
transparency and, GT13-42 
See also FIELD_OF_VIEW; Line of sight, 

at/from points; Viewing angle 

Index RM16-17 



F 

FCNSTRIP, F: (intrinsic user function) 
summary, RM2-75 

FETCH, F: (intrinsic user function), GT7-34 
exercise, GT7-3 6 
summary, RM2-76 

F_I1_IBM, F: (intrinsic system function) 
summary, RM2-179 

F_I2_IBM, F: (intrinsic system function) 
summary, RM2-179 

Field, 
interlaced display, GT 12-2 
rate, GT 12-4, 11 

See also Video timing format 
See also Frame; Scan line 

FIELD_OF_VIEW (command), GT2-54; 
GT8-21, 54; GT13-47 

exercise, GT3-2, 15; GT8-23, 24 
GSR, RM4-55 
summary, RM 1- 3 6 
syntax, GT2-64; GT8-54; RM1-188 

Field-of-view angle. See Viewing angle 

Field separator character, IS3-27; TT2-23; 
RMS-17 

changing, RMS-21 
See also SITE . DAT 

defining, RMS-18 
See also DEPACKET, F: 

See also Data, reception and routing; Data 
packet, escape mode; Host input data flow 

File 
commands for, TT6-8 

See also Command file; STRUCTEDIT 
converting. See ASCII-to-GSR Converter 
copying between host and PS 390, TT2-26 
crash dump. See Crash dump file 
deleting, RM 12-9 
downloading, IS3-28; TT2-26; RMS-21 
editing, TT4-2, 34; TT6-1 

See also NETEDIT; STRUCTEDIT 
extension, GT 15-1; TT4-5, 2 8 ; TTS-3, 

TT6-1, TT8-1 
GSR output to, TT3-19 
init, TT6-7 

See also Graphic support routines 

input/output, TTS-4 
log, TT4-27 
network, TT4-26 

See also Macro 
page, TT4-17; TTS-1; TT6-2, 9, 13 
parameter, TT4-5 
saving, IS2-12 
S-record. See S-record file 
text. See Text file 
types of, TT8-1 
utility commands and, RM 12-3 
See also CONFIG.DAT; SITE.DAT; Text file; 

THULE.DAT 

FIND_STRING, F: (intrinsic user function) , 
GT10-15 

summary, RM2-77 

FINISH CONFIGURATION (command) 
summary, RM 1-38 
syntax, RM 1-18 8 

FIX, F: (intrinsic user function) 
summary, RM2-78 

FKEYS (initial function instance), GT7-6, 24, 
37; TT1-40; RM10-6, 18, 21 

exercise, GT6-31; GT7-13, 25; GT9-8 
summary, RM3-11 

FLABELO (initial function instance) 
summary, RM3-12 

FLABEL 1... FLABEL 12 (initial function in-
stance) 

summary, RM3-14 

Flat shading 
description of, GT2-112; GT 13-7 
normals and, GT13-23 
rendering node input, GT13-32 
See also Smooth shading; Wash shading 

FLOAT, F: (intrinsic user function) 
summary, RM2-79 

Flowchart. See Display structure 

FOLLOW WITH (command), GTS-26 
GSR, RM4-52 
summary, RM 1-39 
syntax, RM 1-18 8 

FORGET (Structures) (command), GTS-5, 26 
GSR, RM4-54 
summary, RM 1-41 
syntax, RM 1-18 8 

RM16-18 Reference Materials 



~'1 FORGET (Units) (command) 
summary, RM 1-42 
syntax, RM 1-18 8 

FORMAT (diagnostic utility command) , 
RM12-5 

FORTRAN 
GSR, GT14-13; TT3-1, 33, 48 

FOV, F: (intrinsic user function) 
summary, RM 2- 8 0 

Frame 
definition of, GT 12-2; TT4-17 
detail, TT4-17 
generating, TT 1-4 4 

See also Animation 
input/output, TT4-19 
level-of-detail and, GT3-23 
See also Scan line; Screen 

Frame buffer, GT13-39; GT14-1, 10, 16; 
TT9-11; RM6-7 

Frame buffer and bit-slice processor (FBL/BP) . 
See Raster backend bitslice processor 

Frame buffer and video controller (FBR/VC} . 
See Raster backend video controller 

Frame rate. See Refresh, rate 

Framing. See Character string; Error, framing 

Framing for viewing. See Viewing area 

Frustum 
definition of, GT2-54; GT8-19 
program example, GT3-16 
skewed, GT8-29, 52 

See also EYE BACK 
viewing angle and, GT8-54 
See also Clipping plane; Perspective view; 

Viewing pyramid; Viewing area, perspec-
tive 

FS. See Field separator 

Function 
accumulator, GT6-9, 18, 25; GT7-9, 21, 30 

See also ACCUMULATE, F:; ADD, F:; 
CMUL, F: ; DXROTATE, F: ; 
DYROTATE, F; DZROTATE, F: 

activating, AP3-7 
categories of, IS2-24; GT2-93; GT6-11; 

RM2-192 
commands and, GT6-6; RM 1 

conjunctive/disjunctive, RM2-3 
data driven, GT2-100 
data types input to, RM 14-2 
definition of, IS2-24; GT2-92; RM2-1; 

AP2-5 
See also Black box 

dormant, GT2-100 
See also Token 

executing, AP3-6 
See also Scheduler 

generic, AP3-5, 9 
graphics control program and, RM9-1, 2 

GSRs and, TT3-3, 13 
identifier, RM2-1 
input/output . See Input/output 
inputs block, AP2-12 
instance block, AP2-S 

See also Function instance 
instancing. See Function instance; Instance 
interaction node and, GT6-3 
interactive device and, GT6-3 
intrinsic. See Intrinsic system function; Intrin-

sic user function 
I/O, AP2-6 

See also Interactive device 
loop, TT1-29 
multiplying, GT6-8, 13 

See also MUL, F: ; MULC, F: 
naming of . See Function instance 
operation of, GT6-34; AP3-S 
outset block, AP2-13 
priming, GT2-99; GT6-9, 14, 21 

See also Input/Output 
procedure, AP3-9; APS-4 
program example, APS-4 
gdata block, AP2-13 
representation of, RM2-2 
routing, GT7-7, 22; RM7-1; RM14-3 
runtime code and, IS3-7 
shared, GT7-9 
standard, AP2-5 
states, AP3-8; APS-9 
switching, GT7-6, 37; GT11-13; TT1-27 

See also CROUTE (n) , F: 
system, AP2-6 

See also Intrinsic system function 
triggering, GT2-99; GT6-9 
See also Function network; Interactive device; 

Intrinsic user function; User-written func-
tion 

Function button 
communications protocol, RM 13A-21 
data transmission characteristics, RM13B-18 

Index ~M16-19 



description of, IS2-12; IS3-12; 
RM 13A-21; RM 13B-16 

interaction with, IS2-12 
lights, RM 13A-21; RM 13B-17 
reporting selections, RM 13B-18 
self-test command and report, RM 13B-18 
uses of, IS3-12; GT2-88 
See also OFFBUTTONLIGHTS; 

ONBUTTONLIGHTS 

Function instance 
block, AP2-5, 7 

See also Named entity 
connecting. See CONNECT 
creating, GT2-9 S ; TT4-18 ; AP2-15 
data structure, AP2-5, 14 
definition of, IS3-7; GT6-16; RM2-1 
disconnecting. See DISCONNECT 
inputs. See Input/output 
named entity, AP2-5 
programming and, GT6-17, 33 
suffix assigned, RM9-6 

See also Narne, suffixing 
See also Function; Initial function instance 

(Function Instancing) (command) , GT2-9 5 ; 
GT6-34; RM2-1 

GSR, RM4-49 
summary, RM 1-4 3 
syntax, RM 1-18 8 

Function key 
as break key, TT2-41 
character font and, TT7-2 

See also MAKEFONT 
codes, RM 13A-11; RM 13B-12 
conditional referencing and, GT2-79; 

GT9-8 
depth clipping with, GT2-74 
description of, IS 3-10 
display structure editing and, TT6-2 

See also STRUCTEDIT 
function network editing and, TT4-12 

See also NETEDIT 
intensity enabling with, GT2-71 
keyboard modes, IS3-10; RM 10-23 
labels, IS3-10; TT2-48; RM13A-15 

See also FLABELO; FLABEL 1.. . 
FLABEL 12; Light-emitting diode 

numeric key used as, TT1-40 
output displays and, TTS-1 

See also NETPROBE 
performance verification test, IS6-5 
program example, GT3-7, 9, 14, 19, 23 

SETUP mode, IS3-19 
toggle switch, GT2-89; GT6-31 
uses of, IS 3-10, 14 
user-application program and, RM 10-6 
values, GT6-5 
See also FKEYS 

Function network, GT2-9 2; GT6-1; GT7-1 
accumulator, GT6-19, 24 

See also CMUL, F: ; MULC, F: 
CPK, TT2-5 3 

See also XFORMDATA, F: 
creating, GT1-9; GT2-96, 101; GT6-33; 

RM2-2 
See also CONNECT, NETEDIT 

data-driven, GT2-100 
See also Interactive device 

data structuring commands and, GTS -1 
debugging, TT2-43; TTS-1 

See also NETPROBE; NPRT_PRT, F: ; 
PRINT, F: 

definition of, IS2-23; GT2-100 
diagramming, GT2-101; GT6-17, 32 ; 

TT4-2 
See also NETEDIT 

direction of flow in, GT6-12, 17, 33 
editing. See NETEDIT 
flexibility of, GT6-30 
immediate action commands and, GTS-25 

See also CONNECT; DISCONNECT; 
SEND; STORE 

input to, GT6-3, 33 
interactive device and, IS2-23; GT1-9; 

GT2-100; GT6-18, 22, 32 
picking, GT2-8 6; GT 11-7, 11 

See also PICK; PICKINFO, F: 
priming, GT 1-10; GT6-17 
program example, GT3-3, 24; GT15-5, 16, 

31, 37, S1 
programming practices, GT6-17, 33 
reset, GT7-21, 37 
sequencing, TT1-29 

See also SYNC, F 
substituting user-written function for, APS-1 
switching, GT 11-13 

See also SUBC, F: 
system, IS3-7; RM8-1; RM9-1 

See also CONFIG. DAT; Host input data 
flow 

updating with, GT 1- 8 
uses of, GT2-100; GT6-1 
variable in, GT7-33, 38 

See also CONSTANT, F: ; VARIABLE 

RM16-20 Reference Materials 



r'1 

Function network debugger. See NETPROBE 

Function network editor. See NETEDIT 

F_W_IBM, F: (intrinsic system function) 
summary, RM2-180 

G 
GATHER_GENFCN, F: (intrinsic user func-

tion), RM7-3; TT2-33 
summary, RM 2- 8 2 

GATHER_STRING, F: (intrinsic user function) , 
GT10-13 

summary, RM2-83 

GE, F: (intrinsic user function) 
summary, RM 2- 8 4 

GEC, F: (intrinsic user function) 
summary, RM 2 - S 5 

General purpose interface option (GPIO) 
data routing and, RMS-29; RM 10-29 
interfaces, IS2-8; AP4-2; RM6-3 
joint control processor and, IS2-7 
physical I/O commands, AP4-2 

Geometry 
changing, GT2-12, 25 

See also Matrix; Transformation 
definition of, GT2-2, 4, 10 

See also World coordinate system 
topology and, GT2-6, 8, 9, 11, 12 

See also Polygon; Vector list 
See also Topology 

GIVE_UP_CPU (command), TT2-61 
GSR, RM4-61 
summary, RM 1- 4 4 
syntax, RM 1-18 8 

Gouraud shading. See Smooth shading 

Graphics control processor (GCP) 
communication with ACP, AP2-16 
display structure control, AP2-16 
update process and, AP3-2 
See also Joint control processor 

Graphics control program 
data types, AP2-35 
description of, RM9-1; AP1-3 
loading, IS3-6 

Graphics firmware 
backing up, RM12-5 
description of, IS3-6; AP1-2 

See also CONFIG. DAT; Runtime code; 
SITE.DAT; THULE.DAT 

errors, RM 11-6; AP9-62 
installing, IS3-2 
self-tests, IS3-6 
See also Host-resident software; Runtime firm-

ware 

Graphics support routines (GSRs) 
application, TT3-2, 12; RM4-1, 11 
application programs and, TT3-18, 23 
ASCII files converted to. See ASCII-to-GSR 

Converter 
capabilities, IS3-30 
command interpreter and, RMS-29; 

RM14-11 
commands and, TT3-3, 12; RM 1-197; 

RM4-228 
See also ASCII-to-GSR Converter 

configuring, TT6-7 
data packet and, TT2-25; RMS-16 
data path taken by, RM 14-6 
data structuring commands and, GTS-2 
data types and, TT3-2, 10, 20 
description of, GTS-2, 28; IS2-15, 18; 

IS3-30; TT3-1 
display structure and, TT3-3, 5, 12, 15 
error codes, RM4-2 

See also Host communication 
error handling, IS3-31; TT3-6, 15, 22 
file, generating, TT4-3, 2 8 
FORTRAN, VAX and IBM, GT14-13; 

TT3-1, 33, 48; RM4-1 
functions and, TT3-3, 13 
host communications and, I S 3-2 5; RM 5 -16, 

22 
IBM communications and, RMS-22 
instancing and, TT3-5, 15 
interface (VAX/UNIX) , TT2-25 ; TT3-18 ; 

TT6-7 
See also STRUCTEDIT 

internals, RM 14-1 
label blocks and, TT3-5, 14 
library, TT3-18 
lint library, TT3-18 
object code, TT3-17 
Pascal, VAX and IBM, GT 14-15 ; TT3-10, 

61, 75; RM4-1 
program example, GT14-13; GT15-42; 

TT3-33, 48, 61, 75 
raster, GT 14-1, 12 
routing, RM7-3 

Index RM16-21 



routing bytes sent by, TT2-23 
S-record file transfer, APS-20 
SITE.DAT and, TT2-S 

see also SITE.DAT 
transformation matrices and, TT3-23 
types of, RM4-1 
UNIX/C, TT3-17; RM4-1 
uses of, TT3-1 
utility, RM4-1, 8; TT3-2, 12 
variables, multiple, and, TT3-5, 15 
vector list and, TT3-5, 14 
writing, RM 14-1 
See also Cross-compatibility software; Host 

communications 

Grouping 
BEGIN_STRUCTURE ... END_STRUCTURE 

and, GTS-4, 10 
display structure and, GT4-52 
hierarchy and, GT4-4 
names, GT4-5, 31 
object created by, GT2-30 

See also Compound object; Named entity 
primitives and transformations, GT2-26, 30, 

31, 39 
See also INSTANCE; Instance node 

GT, F: (intrinsic user function) 
summary, RM2-86 

GTC, F: (intrinsic user function) 
summary, RM2-87 

H 
Hardcopy. See Plotter; WRITEBACK 

Hash table, AP2-1, 36 
See also Alpha block 

Header line. See User-written function, header 
line 

HELP (diagnostic utility command) , RM 12-2, 4 

Hex. See Data packet 

Hidden-line removal 
approximation of, GT2-10 8 ; GT 13-3 

See also Backface, removal 
description of, GT2-111; GT 13- 6 
rate of, GT 13-6 
rendering node input, GT13-32 

saving, TT1-47 
steps in, GT13-6 
See also Backface, removal; SOLID REN-

DERING; Static viewport; SUR-~ 
FACE_RENDERING 

Hierarchical structure. See Display structure; 
Data structure; Hierarchy 

Hierarchical tree. See Display structure 

Hierarchy 
definition of, GT2-34 
designing, GT4-3, 47 
display structure and, IS2-18; GT2-34; 

GT4-3 
See also Grouping; Node 

interaction points in, GT4-8, 30 
movement and, GT4-6 
program example, GT4-30 
PS 390 feature, IS2-1 
sphere of influence in, GT2-41 

See also Instance node 
See also Data structure; Display structure 

Highlight. See Specular highlight 

Hither plane. See Clipping plane 

HOLDMESSAGE, F: (intrinsic user function), 
RM7-4 

summary, RM2-88 

Holes in object, creating, GT13-14, 18 
See also Polygon, contours, inner and outer 

Horizontal frequency, GT 12-4, 11 
See also Video timing format 

Host application program. See Application pro-
gram 

Host communication, IS3-25 
characteristics, RMS-6 
data and, TT2-23; RMS-17, 22 

See also Data packet, Host input data flow 
destinations, RMS-23; RM 14-5 

See also Command interpreter; Data, recep-
tion and routing; Function, routing; Ter-
minal emulator 

dynamic, AP4-1 
See also USERUPD, F: 

GSRs and, IS3-25; TT3-1, 18 
high speed, TT1-49 
IBM, RMS-22 
interface, IS2-13; RMS-1, 22; RM6-1 

See also Asynchronous serial line; Ethernet 
interface; IBM interface; Interface; Paral-
lel interface 

RM16-22 Reference Materials 



lines, IS2-13 
methods of, RMS-16 
pixel information, GT14-2, 12, 18 
port values for, RMS-7, 8, 11 

See also SHOW INTERFACE 
raster system and, GT 14-1 
SITE.DAT and, TT2-1 
standard, IS3-25 
tests, IS2-14 

See also Performance verification test; Host 
resident software 

transmission errors in, RM 5 -13 
transmission protocol for, RMS-12 
user-generated routines, GT 14-16, 19 
See also CIROUTE (n) , F: ; Data transmission; 

DEPACKET, F; Graphics support rou-
tines; Host input data flow; Host resident 
software; Interface; Physical I/O; Runtime 
environment 

Host computer 
binary encoding for, RM 14-1, 60 
commands saved on, GTS-27 
data processor use, IS3-27 
data structuring commands created on, 

GTS-2 
dynamic direction, AP4-1 

See also Physical I/O; USERUPD, F: 
generated images, displaying, GT13-39; 

GT14-1, 2 
See also Run-length encoding 

GSRs and, GTS-28 
file storage on, IS2-12 
independence. See Distributed graphics 
initial function instance and, GT2-9 5 
interactive devices and, GT2-89 

See also Interactive device; Joint control 
processor 

PS 390 interface. See Interface 
raster system and, GT 14-1 
storage device use, IS3-26 
transformed data and, TT9-1 
See also Application program; Text file 

Host input data flow, RMS-27; RM7-1 
function network diagrams, RM 8 -1 
See also CIROUTE (n) , F: ; Host communica-

tion; Function network, system 

HOST_MESSAGE (initial function instance), 
GT7-36; TT1-49; TT2-44; TT3-25; 
TT9-5, 31; RM7-2 

summary, RM3-16 

HOST_MESSAGEB (initial function instance), 
RM7-2, 4 

summary, RM3-16 

HOSTOUT (initial function instance), GT7-35; 
TT1-49 

exercise, GT7-3 6 
summary, RM3-18 

HOST_POLY, F: (intrinsic user function) , 
RM7-4 

Host-resident software, IS2-14 
See also Graphics support routines; 

Hue 
color, GT13-40 
definition of, GT2-68; GT8-50 
input to attribute node, TT2-51 

See also ATTRIBUTE 
specifying, GT8-51, 56; GT13-41 

See also SET COLOR 
values, GT13-41 
See also Color 

I 
IBM computer. See Host communications; 

IBM; Host computer; IBM interface; Key-
board, modes of operation; Terminal emula-
tor, IBM 

IBMDISP, F: (intrinsic system function) , 
RM10-29 

summary, RM2-181 

IBM interface 
3278, IS2-6, 9; IS3-22; RM6-2 
5080, IS2-8; IS3-24; RM6-2 
data flow and, RM7-1 
host communications and, RMS-22 
pool size, RMS-30 

See also SETUPIBM, F: 
SITE. DAT and, TT2-1 
system function network for, RM 8 -1 

IBM KEYBOARD, F: (intrinsic system func-
tion), RM6-6; RM 10-27 

summary, RM2-182 

Identifier. See Command, data format; Pick 
identifier; Position (P) and line (L) identifi-
ers 

Identity matrix. See Current transformation ma-
trix; Matrix, identity 

Index RM16-23 



IF CONDITIONAL_BIT (command) , GT2-7 8 ; 
AP4-6 

exercise, GT9-7 
GSR, RM4-62 
summary, RM 1- 4 5 
syntax, GT9-4, 18; RM1-188 

IF LEVEL_OF_DETAIL (command) , GT2-8 0; 
GT9-11; AP4-6 

exercise, GT3-22 
GSR, RM4-64 
summary, RM 1- 4 7 
syntax, GT9 -10, 18 ; RM 1-18 8 

IF node. See SETiIF node 

IF PHASE (command), GT2-82 
exercise, GT9-16 
GSR, RM4-66 
summary, RM 1-49 
syntax, GT9 -15 , 2 0 ; RM 1-18 8 

IF-THEN-ELSE, TT1-31 
See also Boolean value 

Illumination. See Diffuse reflection; Light 
source; Specular highlight 

ILLUMINATION (command) , GT 13-44 
GSR, RM4-68 
summary, RM 1-5 0 
syntax, GT13-45, 62; RM1-189 

Illumination node 
display structure and, GT13-46 
inputs to, GT 13-4 8 
light specification by, GT13-44 
program example, GT13-47 
See also Light source 

Image. See Display structure; Model; Object; 
Rendering; Screen 

Image buffer. See Frame buffer 

Immediate action command. See Command, 
immediate action 

INCLUDE (command) , GT2-91; GTS-27 
exercise, GT3-10 
GSR, RM4-70 
summary, RM 1-52 
syntax, RM 1-18 9 

INCREMENT LEVEL_OF_DETAIL (com-
mand) 

GSR, RM4-75 

summary, RM1-53 
syntax, RM 1-18 9 

Indicator character, RM 10-28 
See also SETUP facility 

INFORMATION (initial function instance) 
summary, RM3-19 

Informational message. See Message, informa-
tional 

Init file. See File, init 

Initial data structure 
codes for, RM9-3 
description of, RM9-2 
summary, RM3-1 
See also CONFIG. DAT; Terminal emulator 

Initial function instance 
categories of, RM3-58 
definition of, GT2-95; RM3-1 
interactive device and, GT6-34 
names, GT2-95; RM3-1; RM9-6 
network example, GT2-97 
summary, RM3-1 
See also Function; Function instance; Intrinsic 

system function 

Initial function network. See Function network, 
system 

INITIALIZE (command) , GT 1-9 ; GTS-2 6; 
GT8-41; GT13-25; TT1-3, 5; TT2-48; 
APS-22 

exercise, GT3-30 
GSR, RM4-71 
summary, RM 1-54 
syntax, RM 1-18 9 

Inking, TT 1-14, 3 8 

Inner contour. See Polygon, contour 

Input/output 
active queue, GT2-99; GT6-13, 34; 

RM2-4 
block, AP2-12 
buffering, RMS-9, 12 
conjunctive/disjunctive, RM2-3 
connecting, GT2-9 7, 101; GT6-12, 17 
constant queue, GT2-99; GT6-13, 34; 

GT7-33; RM2-2, 4 
consumed, GT6-13, 34 
data compatible with, GT2-36; GT6-3 

See also Data type; Node 
description of, GT2-9 3 

RM16-24 Reference Materials 



frame, TT4-18 
function instance and, GT2-99; AP3-6 
multiple sources/destinations, GT6-12 
output list, TTS-1 

See also NETPROBE 
sources of, GT6-6, 33 

See also Function network; Interactive de-
vice 

values, GT6-6, 13, 34 
See also Node, input to; SEND; SETUP 

CNESS; STORE; User-written function, 
input/output 

Input device. See Interactive device 

INPUTS_CHOOSE (n) , F: (intrinsic user func-
tion), GT7-24, 37 

exercise, GT7-25 
summary, RM2-90 

Installation instructions, I S 2-14 ; I S S -1 

Instance, GT 1-5 ; GT2-9 5 
GSRs and, TT3-5, 15 
See also Compound object; Function instance; 

Grouping; Initial function instance 

Instance node 
BEGIN_STRUCTURE... END_STRUCTURE 

and, GTS-13, 30 
bit settings and, GT9-3 

See also SET CONDITIONAL_BIT 
creating, GT2-36 

See also INSTANCE 
definition of, GT2-39; GT4-14, 52; 

AP2-2 6 
display processor and, GTS-14 
display structure representation, GT2-36; 

GT4-14 
format of, AP2-26 
function, GT4-48 

See also State of the machine 
grouping with, GT2-39; GT4-31 

See also Compound object 
modeling and, GT4-2 
pointer, GT2-36; GT4-48, 52 
sphere of influence and, GT2-41 

See also Hierarchy 
uses of, GT4-52 
See also Compound object; Display structure; 

Grouping; Node 

INSTANCE OF (command), GT1-5; GT2-30, 
36; TT8-3 

GSR, RM4-76 

summary, RM 1-5 6 
syntax, RM 1-18 9 

Instruction. See Command 

Integer 
data format, RM 14-8 
function keys and, GT6-5 
input, GT2-37; GT6-27 

Intensity 
attribute, GT2-71; GT8-48; TT2-51 
color, GT 13-40; GT 14-3 
depth clipping and, GT8-17 
depth cueing and, GT2-58, 71; GT8-16, 50 
dynamic viewport and, GT2-5 8, 71; 

GT8-35, 47, 48, 52 
See also LOAD VIEWPORT; VIEWPORT 

exposure and, GT 13-5 0 
interaction and, GT2-71; GT8-49; TT2-46 
node, GT2-71 
program example, GT3-13, 21; TT2-47 
setting, GT8-47, 48; TT2-46 
values for, GT 13-41 
See also Color; Depth cueing; SET INTEN-

SITY 

Interaction, GT2-88 
definition of, IS2-23 
designing for, GT2-32, 90; GT4-4, 25 
function networks and, GT6 
multiple, GT7-1, 2 

See also Dial, control; Function key 
modeling step, GT4-9 

See also Display structure 
PS 390 and, GT2-88 
See also Interactive device 

Interaction node 
definition of, IS2-23; GT2-38, 88 
dials and, GT6-5 

See also Dial, control; DIALS 
display structure representation, GT2-36; 

GT4-13 
explicit naming of, GTS-11 

See also BEGIN_STRUC-
TURE...END STRUCTURE 

function networks and, GT2- 8 8 , 9 3, 9 6 ; 
GT6-2, 5 

initial value, GT4-32 
interactive devices and, GT2-101; GT6-5 
operation node as, GT2-36, 38; GT4-13, 

52 
program example, GT3-24 
updating, GT2-88; GT6-33 
uses of, GT4-52 
See also Node; Operation node 

Index RM16-25 



Interactive device, IS2-10 
complex model and, GT2-32, 34; GT6-2 
connecting, GT1-8; GT2-97; GT4-49 

See also CONNECT 
data transmission rates, RM 13A-3; 

RM13B-3 
description of, IS2-10, 23; IS3-9; GT2-88; 

GT6-5; RM13A-1; RM13B-1 
display structure connection, GT2-3 8 
function networks and, IS2-23; GT2-92, 

100; GT6-6 
host computer and, GT2-89 
initial function instances and, GT2-95 
local manipulation with, IS2-2 
microprocessor in, GT2-89 
multiple interactions and, GT7-2 
output, GT 6 - 5 , 3 3 
picking with, GT2- 8 4 
polling, GT2-100 
program example, GT3-1, 4, 8 
programming, GT2-90, 92, 100; GT6-3, 

18, 22, 27, 32 
PS 300 style, RM 13A-1 
PS 3 9 0 style, RM 13 B -1 
styles, IS3-9 
updating with, GT1-8; GT2-43, 90; GT6-3 
See also Buttons, function; Dial, control; 

Function key; Key; Keyboard; Tablet, 
data 

Interactive mode. See Local mode 

Interface, IS2-13; RMS-1; RM6-1 
asynchronous. See Asynchronous serial line 
changing values, RMS-11 

See also SETUP INTERFACE; SITE.DAT 
configuration files, RM 6-4 
description of, RMS-1 
GSRs and, TT3-18 
multiple GPIO, RM6-3 
runtime and, TT2-23 
synchronous, RMS-2 
toggling, IS2-13; RM6-3 
See also Asynchronous serial line; Data trans-

mission; General purpose interface option; 
Ethernet interface; Host communication; 
IBM interface; Parallel interface 

Interlaced/noninterlaced. See Screen, inter-
laced/noninterlaced; Video timing format. 

INTFCFG.DAT (file), IS3-6; RM6-4 

Intrinsic system function, RM2-1 
data flow and, RMS-16; RM7-1, 3; 

RM8-1 
host communication and, IS3-25 
name suffixing and, RM9-6 

See also Configure mode 
routing, RM 14-3 
summary, RM2-178 
See also Function; Function network, system; 

Host input data flow; Initial function in-
stance 

Intrinsic user function, GT2-95; RM2-1 
data flow and, RM 7-1, 3 ; RM 8 -1 
routing, RM 14-3 
summary, RM2-7 
See also Function; Function instance; Func-

tion network 

J 
Joint control processor (JCP) 

card, IS2-6; AP1-1, 
control dials and, RM 13B-15 
data received by, RM 14-1 
description of, IS2-6; AP1-1 
function networks and, GT2-100 
interactive devices and, GT2-89, 100 
memory contents, AP1-1; IS2-6; RM12-8 
rendering and, GT13-29 
See also Graphics control processor 

K 
K2ANSI, F: (intrinsic system function) , 

RM6-6; RM10-6, 9, 10, 17, 21 
summary, RM2-18 4 

KB mode. See Local mode 

Key 
alphabetic, IS3-14; RM 13A-6; RM 13B-7 
ALT, GT 1-2 
BREAK, IS3-18, 20; TT2-41; RM10-25; 

AP7-7 
CAPS LOCK, RM13A-6 
categories of, RM 13A-5 ; RM 13B-5 
CLEAR/HOME, IS3-16; RM 10-18 
CONTROL (CTRL), GT1-1; RM10-17, 22; 

RM 12-2; RM 13A-5; RM 13B-6 
cursor, RM 10-5, 6, 11, 21 
device control, IS3-14; RM 13A-13; 

RM13B-14 

RM16-26 Reference Materials 



ENTER, GT1-2 
function. See Function key 
GRAPH, IS3-16; GT1-4, 5; RM10-8, 21, 

26 
keyboard function control, IS3-14; IS6-5, 

13; RM 13A-5; RM 13B-6 
LINE/LOCAL, GT 1-1; RM 10-21 
LOCAL, GT1-2 
LOCK, RM13B-6 
numeric/application mode. See Keypad, nu-

meric 
numeric as function key, TT1-40 

See also Function key 
REPEAT, RM 13A-6 
RETURN, GT1-1, 2; RM12-6 
SETUP, IS3-18; RM 10-17, 22, 24 

See also SETUP facility 
SHIFT, RM 13A-5; RM 13B-6 
special character, IS3-14; RM13A-8; 

RM13B-10 
standard numeric, IS3-14; RM13A-8; 

RM 13B-9 
TERM, IS3-16; GT1-4; RM10-8, 22, 26 
terminal function, I S 3-14 ; RM 13A-10 ; 

RM13B-11 
See also Function key; SPECKEYS 

Keyboard 
description of, IS2-11; IS3-13; RM13A-4; 

RM13B-3 
display modes, RM 13A-14 

See also Light-emitting diode 
interface, RM 13A-4; RM 13B-5 
modes of operation, IS3-14, 16, 22, 24; 

GT3-30; RM 10-21, 27 
See also Command mode; Local mode; Ter-

minal emulator mode 
operation, RM 13B-5 
physical configuration, RM 13A-4 
private ANSI commands, RM 10-6 
user-application control, RM 10-6 

KEYBOARD (initial function instance) , 
RM 10-17, 21 

summary, RM3-20 

Keyboard manager, RM10-17, 27 
See also K2ANSI, F: 

Keypad, numeric, IS3-14 
modes of operation, RM 10-9, 10, 21 

See also Escape sequence 
numeric/application mode, RM13A-12; 

RM13B-13 

SETUP facility and, IS3-20 
user-application program and, RM 10-6 

Keypad application mode (DECKPAM) , 
RM10-2, 9, 10 

Keypad numeric mode (DECKPNM), IS3-20, 
RM10-3, 9, 10 

Kill buffer, TT6-14 
See also UPDATE_KILLER 

L 
Label, GT 10-1 

block, GT 10-5 
See also LABEL 

copying, GT 10-16 
See also COPY 

definition of, GT 10-1, 5 
GSRs and, TT3-5, 14 
function network diagram, TT4-22 
node, GT10-S, 16, 18, 26 
See also Character string; LABEL, F: ; 

LABELS; LBL_EXTRACT, F:; SEND; 
SEND number *mode; SEND VL 

LABEL, F: (intrinsic user function) , GT 10-14 
summary, RM2-91 

LABELS (command), GT4-49; GTS-5; 
GT10-S, 18, 23 

exercise, GT 10-19 
GSR, TT3-S, 14; RM4-77 
summary, RM 1-5 7 
syntax, GT10-5, 24; RM1-189 

Laser disk, TT1-44 
See also Rendering 

LBL_EXTRACT, F: (intrinsic user function), 
GT10-15 

summary, RM2-92 

LE, F: (intrinsic user function) 
summary, RM2-93 

Least significant bit (LSB) , RM 14-1, 60 

LEC, F: (intrinsic user function} 
summary, RM2-94 

LEDs. See Light-emitting diode 

Left-hand rule, GT2-14 
See also Coordinate system, world; Rotation 

Index RM16-2 7 



LENGTH_STRING, F: (intrinsic user function) , 
GT10-15 

summary, RM2-95 

Level-of-detail 
attribute, GT2-7 8 
default, GT9-11, 18 
definition of, GT2-80 
dial and, GT2- 8 2 
order, GT9-10, 18 
program example, GT3-2, 22 
relationships list, GT2-81; GT9-10, 18 

See also IF LEVEL_OF_DETAIL 
state of machine and, GT4-4 8 
uses of, GT9-1, 9, 17 

See also Animation 
See also Conditional Referencing; DECRE-

MENT LEVEL_OF_DETAIL; IF 
LEVEL_OF_DETAIL; INCREMENT 
LEVEL_OF_DETAIL; SET 
LEVEL OF DETAIL 

Light-emitting diode (LED) 
confidence tests and, IS3-2 
control dial, GT7-1, 23; RM13A-20 
description of, IS 3-10 
error messages and, IS3-10, 13 
keyboard, IS3-13; RM 13A-4, 14 
label mode, RM13A-15, 20 
line mode, RM 13A-14 
optical mouse, RM 13B-21 

Light source 
color of, GT13-45 
direction of, GT13-45 
program example, GT 15 -4 7 
specifying, GT13-44, 62; TT2-49 
See also Ambient light; ILLUMINATION; 

Illumination node; SHADINGENVIRON-
MENT 

LIMIT, F: (intrinsic user function) , GT7-30, 
38 

exercise, GT7-32 
summary, RM2-96 

Line 
angled, in raster system, GT 12-2 
attributes, TT2-50 
crispness, TT2-46 

See also Intensity 
pattern, GT4-49; TT2-35 

See also Vector list; WITH PATTERN 
rendering, TT2-5 2 

segment, TT 1-16 
See also Data tablet, rubber banding with 

specifying, GT2-6 
texture, TT2-35 

See also SET LINE TEXTURE 
See also Aliasing; Antialiasing; Scan line 

LINEEDITOR, F: (intrinsic user function) , 
GT10-14 

summary, RM2-9 8 

Line filter, GT 12-2, 8 
See also Aliasing; Antialiasing; Scan line 

Line generation. See Display processing 

Line (L) identifier. See Position (P) and line 
(L) identifiers 

Line of sight 
at/from points, GT2-48, 62; GT8-3, 6, 22 

See also Coordinate system, world 
changing, GT2-61 
default, GT8-2, 4, 52 
definition of, GT2-45, 66; GT8-1, 3 
field of view and, GT8-23 
interactive node and, GT8-4 
matrix operation, GT2-66; GT8-3, 9 
moving, GT8-13, 25 

See also EYE BACK; Viewing area 
orthographic viewing area and, GT8-9, 13 
perspective viewing area and, GT2-54; 

GT8-22, 25 
specifying, GT2-46; GT8-3, 30, 52 

See also LOOK 
up direction, GT2-48; GT8-6 

Lint library. See Graphics support routines, lint 
library 

LISP. See STRUCTEDIT 

LIST, F: (intrinsic user function), TT2-44; 
TT9-4, 31 

summary, RM2-101 

Load Pixel Data (raster GSR), TT2-39; 
GT14-11, 12, 18; RM4-126 

program example, GT14-13, 15, 19 

Load Saved GSR Data (utility GSR), RM4-82 

LOAD VIEWPORT (command) , GT2-5 8, 71; 
GT8-34, 41, 55 

exercise, GT8-37, 38 
summary, RM 1-5 9 
syntax, GT8-5 6; RM 1-189 

Local (key) . See Key, LOCAL 

RM16-28 Reference Materials 



Local data flow. See Host communication; Host 
input data flow; Interface; Routing byte 

Local memory. See Joint control processor, 
memory 

Local mode 
booting in, RM 10-21, 25 
cursor keys in, RM 10-23 
DEC VT100, IS3-17 
description of, IS 3-1 S 
displaying and, RM 10-29 
function keys in, IS3-10; RM 10-23 
IBM 3278, IS3-23; RM10-27 
IBM 5080, IS3-25 
keyboard manager and, RM 10-26, 27 
keypad in, RM 10-21, 23 
key sequence for, IS3-15, 23; GT3-30 
See also Keyboard, modes of operation 

LOOK (command), GT2-46, 54, 61; GT8-3, 
6, 52 

exercise, GT3-1, 16, 17; GTS-23, 30 
GSR, RM4-83 
summary, RM 1- 61 
syntax, GT2-48; GT8-53; RM1-189 

LOOKAT, F: (intrinsic user function), GT8-4 
summary, RM2-102 

LOOKFROM, F: (intrinsic user function), 
GT8-4 

summary, RM2-103 

Lookup table. See Color lookup table 

LT, F: (intrinsic user function) 
summary, RM2-104 

LTC, F: (intrinsic user function) 
summary, RM 2-10 5 

M 
Macro, TT4-2, 15, 26, 30 

Magtape. See Host-resident software 

Maintenance and services, IS4-1 

MAKEFONT (Character font editor) , TT7-1 
uses of, GT2-75; GT10-23 

MAKEPACKET, F: (intrinsic user function) 
summary, RM2-106 

Mapping. See Viewing area; Viewport 

Mass memory 
backing up with, RM 12-6 
BEGIN_STRUCTURE... END_STRUCTURE 

and, GTS-10 
card, IS2-9; RM6-6 
clearing, GTS-26 

See also INITIALIZE 
data structure address, GTS-4; AP2-1 
data structuring commands and, GTS-1, 4 
description of, AP 1-1 
joint control processor and, IS2-6, 9 
loading user-written function into, AP7-2 

See also SITE.DAT 
location in, GTS-4, AP2-1 

See also Alpha block; Naming 
rendering requirements, GT2-106; 

GT13-24, 60 
See also Working storage 

structures, AP2-1 
See also Data structure; Named entity 

warning message, IS3-13 

Master function. See Function, intrinsic 

Matrix 
2x2, GT2-22; GT3-10; GT 10-1, 6, 8, 10 

See also Character string; Rotation 
3x3, GT2-22, 38; GT6-3; GT10-1, 10; 

TT1-42 
See also Rotation; Scaling 

4x3, GT2-22, 49; GT3-19; GT8-3, 9 
See also Viewing operations 

4x4, GT2-22; GT8-9, 18, 21, 33; 
GT13-29, 47 

See also Viewing operations 
accumulated, GT6-8 
algebra, IS2-1; GT2-12, 22 

See also Geometry 
characters and, GT 10-1 
concatenation, IS2-20; GT2-23; GT10-7 
current transformation (CTM), GT2-23, 25; 

GT4-48 
GSRs and, TT3-23 
identity, GT2-23; GT6-10, 21 
limiting function and, GT7-32 
multiplication, GT2-24; GT6-9 
non-commutativity of, GT2-23; GT4-16 
orthogonal, TT 1-4 3 
transformation, IS2-20; GT2-12, 22; 

TT3-23; TT9-1 
See also Rotation; Scaling; Transformed 

data; Translation 
transpose, TT1-43 
See also Transformation 

index RM16-29 



MATRIX2, F: (intrinsic user function) , 
GT10-6, 15 

summary, RM2-107 

MATRIX_2x2 (command) 
GSR, RM4-85 
summary, RM 1- 6 4 
syntax, RM 1-18 9 

MATRIX3, F: (intrinsic user function), 
TT1-42 

summary, RM2-108 

MATRIX_3x3 (command) , GT 15-2 8, 31 
GSR, RM4-8 6 
summary, RM 1- 6 6 
syntax, RM 1-190 

MATRIX4, F: (intrinsic user function} 
summary, RM2-109 

MATRIX_4x3 (command), GT8-9 
GSR, RM4-87 
summary, RM 1- 6 8 
syntax, RM 1-19 0 

MATRIX_4x4 (command), GT8-18, 33; 
TT9 -1 

GSR, RM4-89 
summary, RM 1-70 
syntax, RM 1-19 0 

MCAT STRING (n) , F: (intrinsic user function) 
summary, RM2-110 

Mechanical arm, GT2-32, 69; GT4-6, 16 

Memory 
as objects, IS2-1, 15 
See also Data structure; Display structure; 

Mass memory; OPTIMIZE MEMORY; 
RAWBLOCK 

MEMORY (diagnostic utility command) , 
RM 12-6 

MEMORY_ALERT (initial function instance) 
summary, RM3-21 

MEMORY_MONITOR (initial function instance) 
summary, RM 3-2 3 

Menu 
boundaries, TT1-25 
fill-in-the-blank, TT6-S 
MAKEFONT, TT7-2 

NETEDIT, TT4-8 
selecting, GT6-5; GT11-1; TT1-25 

See also Data tablet; Picking 
STRUCTEDIT, TT6-3 
See also File 

Message. See Error message; Token 

MESSAGE_DISPLAY (initial function instance), 
TT2-45 

summary, RM3-25 

Microcode, IS3-6 
See also Display processor; Graphics firmware 

Microprocessor, 68000, IS2-6 

MINMAX (n) , F: (intrinsic user function) 
summary, RM2-111 

Miscellaneous function, IS2-25; GT2-94; 
GT6-12 

MOD, F: (intrinsic user function) 
summary, RM2-112 

MODC, F: (intrinsic user function) , TT 1-2 3 
summary, RM2-113 

Model 
centering, GT4-13, 27 

See also Origin; Coordinate system 
complex, GT2-32, 43; GT4-27 
conceptual, GT4-1 
data base for, GT2-4 
designing, GT2-32; GT4-1, 27 
detail in, GT4-9 
display structure and, GT2-34; GT4-2 
hierarchy and, GT2-34; GT4-3; IS2-1 

See also Hierarchy 
limiting motion of. See Movement 
parts of, GT4-3, 47; GT9-1 

See also Conditional referencing; Primitive, 
graphic 

See also Compound object; Display structure; 
Object 

Modeling, GT4-1 
commands, IS2-17 
steps, GT4-9 
types of, GT4-9 

Modeling node, GT2-38, 88; GT4-52 
display structure representation, GT2-36; 

GT4-13 

RM16-30 Reference Materials 



Modeling transformation, GT2-67 
complex model and, GT2-32; GT4-2 
description of, GT2-13 

See also Rotation; Scaling; Translation 
mirrored, GT 13-5 6 
uses of, GT4-13, 5 2 
See also MATRIX_3X3; MATRIX 4X3; MA-

TRIX_4X4; ROTATE; SCALE; TRANS-
LATE 

Mode of operation. See Command mode; In-
teractive mode; Keyboard, modes of opera-
tion; Terminal emulator mode 

MODIFY (Diagnostic utility command) , 
TT2-29 

Molecule, GT9-6 

Most significant bit (MSB) , RM 14-1, 60 

Mouse. See Optical mouse 

MOUSEIN (initial function instance), IS3-12 
summary, RM3-26 

Move. See Translate 

Movement 
dependent and independent, GT2-34; 

GT4-6 
See also Grouping 

designing for, GT4-3, 10, 27 
limiting, GT7-1, 29, 31, 38 

Movie camera 
blinking and, GT9-16 

MPS character generator program. See 
MAKEFONT 

MUL, F: (intrinsic user function) , GT6-13 
summary, RM2-114 

MULC, F: (intrinsic user function) , GT6-18 ; 
GT7-9 

exercise, GT7-15 
summary, .RM2-11 S 

Multiplexing/demultiplexing, TT 1-2 7 ; 
RM 13A-3; RM 14-5 

See also Input/output, multiple sources/desti-
nations 

Mux box. See Peripheral multiplexer 

Mux byte. See Routing byte 

MUX, F: (intrinsic user function) 
summary, RM2-116 

N 
Named entity 
address, AP2-1; AP3-3 

See also Mass memory 
creating, AP3-1 
definition of, RM9-2; AP2-1, S 
instance node, GT2-39 
objects as, IS2-16 
physical I/O and, TT1-49 
types of, AP2-1, 5 

See also Character Font; Display Structure; 
Function instance 

See also Alpha block; Control block; Data 
structure 

Naming 
B EGIN_STRUCTURE ... END_STRUCTURE 

and, GTS-10, 30 
commands, GTS-1, 4, 29 
convention, IS2-15; GTS-4, 29 
data structure address, GTS-1, 4 

See also Mass memory 
explicit, GTS-4, 8, 19, 29; GT15-1 
indirect, GTS-16 
prefixing, TT8-3 

See also ASCII-to-GSR Converter 
suffixing, TT2-7; RM9-6 

See also Command Interpreter; Configure 
mode 

See also Command; Instance; Node, naming; 
PREFIX WITH 

(Naming of Display Structure Nodes) (com-
mand), GTS-S 

exercise, GTS-7 
summary, RM 1- 7 2 
syntax, RM 1-19 0 

NE, F: (intrinsic user function) 
summary, RM2-117 

NEC, F: (intrinsic user function) 
summary, RM 2 -118 

Nesting, GTS-17, 30 
See also COMMAND STATUS 

NETBUILD. COM (command file) , TT4-13, 
32; TTS-7 

NETEDIT (Function network editor) , 
GT2-101; TT4-1, 32 

Index RM16-31 



NETPROBE (Function network debugger), 
GT2-101; TTS-1 

NETUSER.COM (command file), TT4-3, 32; 
TTS-1, 7,10; TT7-1 

Network. See Function network 

NEUTIL (library) , TTS-11 

NIL (command), GTS-5 
GSR, RM4-93 
summary, RM 1-73 
syntax, RM 1-19 0 

Node 
commands for, GT2-36; GTS-4, 10, 26 
conditional referencing, GT9-17 
definition of, GT2-36 
direct host modification, AP4-2, 3 

See also Physical I/O 
editing, TT6-7 

See also STRUCTEDIT 
grouping, GT4-31; GTS-10, 13, 30 

See also BEGIN_STRUCTURE... 
END_STRUCTURE; Grouping; Instance 
node 

inputs to, GT2-3 6, 91 
inserting, TT6-11 
naming, GTS-2, 4, 10, 13, 16; AP2-36 

See also Hash table 
pointers, GT4-4 8 ; GTS-1 S 
programming path to, GT2-9 2 

See also Function; Function network 
shared, GT4-31 
terminal. See Data node 
types of, IS2-19; GT2-36; GT4-48 

See also Data node; Instance node; Opera-
tion node 

updating, GT2-36, 91 
See also Attribute node; Command; Display 

structure; FOLLOW WITH; Modeling 
node; SET/IF node; Interactive node 

Non-commutativity. See Matrix, non-
commutativity of 

Non-matrix. See Matrix 

NOP, F: (intrinsic user function) , TT 1-17 
summary, RM 2 -119 

Normal 
inverting, GT 13-5 5 

See also SHADINGENVIRONMENT 
specifying, GT2-104; GT13-9, 22, 59 
See also Polygon; POLYGON; Smooth 

Shading 

NOT, F: (intrinsic user function) 
summary, RM2-120 

NPRT_PRT, F: (intrinsic user function) , 
TT2-43 

summary, RM2-121 

NTSC Encoder, GT 12-3 

0 
Oblique view. See Eyepoint 

Object 
definition of, IS2-16; GT2-1 
See also Compound object; Display structure; 

Model; Primitive, graphical 

Object Space. See Rotation, object-space 

Object transformation function, IS2-25; 
GT2-9 4; GT6-12 

OFFBUTTONLIGHTS (initial function instance) 
summary, RM3-29 

ONBUTTONLIGHTS (initial function instance) 
summary, RM3-30 

Opacity. See ATTRIBUTE; Transparency 

Operating utilities (DEC) , IS 3-2 8 

Operation node 
contents of, GT2-36, 91 
definition of, GT2-37; GT4-13, 51; 

AP2-29 
See also Display processor; Transformation 

display structure representation, GT2-36; 
GT4-13 

format of, AP2-29; AP9-44 
function, GT4-48 

See also Character font; Level-of-detail; 
Picking 

inputs to, GT2-37 
interaction and. See Interaction node; Inter-

active device 
modeling and, GT4-2 
pointer, GT4-48, 51 

RM16-32 Reference Materials 



/"1 text/character transformation, GT 10-1 
types of, GT2-88; GT4-13, 51; AP9-45 

See also Attribute node; Interaction node; 
Modeling node; Rendering operation 
node; SET/IF node; Viewing operation 
node 

updating, GT2-36, 91, 101 
uses of, GT4-13, 51 
See also Display structure; FOLLOW WITH; 

IF node; Matrix, multiplication; Node; 
Transformation 

Optical mouse, IS2-12 
communications protocol, RM 13A-25; 

RM13B-21 
description of, IS3-12; RM13A-25; 

RM13B-21 

Optimization mode. See OPTIMIZE STRUC-
TURE; ...END OPTIMIZE; 

OPTIMIZE MEMORY (command) 
summary, RM 1-74 
syntax, RM 1-19 0 

OPTIMIZE STRUCTURE;...END OPTIMIZE; 
(command), GTS-26; TT6-10 

GSR, RM4-44, 94 
summary, RM 1-7 5 
syntax, RM 1-19 0 

OR, F: (intrinsic user function) 
summary, RM2-122 

ORC, F: (intrinsic user function) 
summary, RM2-123 

Origin 
advantages of using, GT4-12, 28 
character string and, GT 10-2, 4 
definition of, GT1-3; GT2-2, 4 

See also Axis 
line of sight and, GT2-48, 61, 66; GT8-4 

See also LOOK 
rotation and, GT2-14 
See also World coordinate system 

Orthographic view, GT2-50, 57; GT8-1, 9, 52 
program example, GT3-12 
See also LOOK; Viewing area, orthographic; 

WINDOW 

Outer contour. See Polygon, contour 

Output . See Input/Output 

Overlay, GT 13-5 2 
See also Level-of-detail 

P 

Packet. See Data packet 

PACKET, F: (intrinsic user function) 
summary, RM2-124 

Page. See File 

Panning, TT4-49 

Parallel interface, RMS-1; RM7-1 
description of, IS2-9; RM6-1; AP4-2 
GSRs and, TT3-18 
high speed communication with, TT 1-4 9 
memory allocation for, AP3-4 
physical I/O and, TT2-21 
system function network for, RM8-1 
See also Interface; Physical I/O; RAWBLOCK 

Parallel projection. See Orthographic view; 
Viewing area 

Parity, RM 5 - 6 
errors, RMS-14 
See also SETUP Interface 

Parser, IS3-25, 27; RM7-3 

PARTS, F: (intrinsic user function) 
summary, RM 2-12 6 

Pascal 
character font definitions, AP2-35 
control block definitions, AP2-18, 21 
debugger in, TTS-11 
function definitions, AP2-9, 12, 14 
function instances and, AP2-7; AP3-9 
GSRs, GT14-15; TT3-10, 61, 75 
node definitions, AP2-28, 31 
register usage, AP9-37 
standard and PS 390, AP2-7 
user-written function and, GT2-9 5 ; APS-3, 

12 

PAS STHRU (n) , F: (intrinsic user function) 
summary, RM2-127 

Password. See SETUP PASSWORD 

Index RM16-33 



PATTERN (command) , TT2-3 6 
GSR, RM4-30 
summary, RM 1-77 
syntax, RM 1-19 0 

PATTERN WITH (command), TT2-36 
GSR, RM4-95 
summary, RM 1-78 
syntax, RM 1-191 

Performance verification test (PVT) , IS2-14; 
IS6-1 

Peripheral. See Interactive device 

Peripheral multiplexer, I S 2-10 
connections, IS3-2; RM 13A-2; RM 13B-2 
data framing and transmission rates, 

RM 13A-3; RM 13B-3 
description of, RM 13A-2; RM 13B-1 
functional characteristics, RM 13A-3; 

RM 13B-2 

Perspective view 
character string and, GT 10-12 

See also SET CHARACTERS 
creating, IS2-21; GT2-54, 62; GT8-19, 

25, 52 
See also EYE BACK; FIELD OF VIEW 

definition of, IS2-2; GT2-44, 53; GT8-19 
program example, GT3-15 
See also FOV, F: ; LOOK; Viewing area, per-

spective 

Phase, on/off, GT2-82; GT9-14, 16, 19 
program example, GT3-11 
See also Blinking; IF PHASE; SET RATE; 

Refresh rate 

Phong shading. See Smooth shading 

Physical I/O 
commands, TT2-21; AP4-2 

See also Interface 
constraints, AP4-3 
named entity and, TT1-49 
operations, AP4-3 
program example, TT2-21 
programming, AP4-1, 6 
test routine, TT 1-S 1 
values and, TT1-49 
See also General purpose interface option 

PICK (initial function instance) , GT 11-1, 7, 
11, 14, 17; RM9-7 

exercise, GT3-2 8 
summary, RM3-31 

Pick identifier (pick ID) 
definition of, GT2-84; GT11-S 
depth of, GT 11-12 

See also PICKINFO, F: 
dials and, GT 11-13 
node, GT2-86; GT11-4, 16 
pick list and, GT11-8 

See also PICK 
program example, GT3-27 
state of machine and, GT4-4 8 
using, GT11-4 
See also SET PICKING IDENTIFIER 

PICKINFO, F: (intrinsic user function) , 
GT11-11, 14, 17 

exercise, GT3-2 8 
summary, RM2-128 

Picking, GT 11-1 
attribute node, GT2-84; GT11-2, 15, 16 
control block and, AP2-23 
coordinates, GT 11-9 
data tablet and, GT6-5 ; GT 11-1, 7 

See also TABLETIN 
definition of, IS2-22; GT2-84; GT11-1 
interaction and, GT2-85 
functions, GT 11-1, 7, 11, 17 

See also PICK; TABLETIN 
function network, GT 11-11 

See also PICKINFO, F:; PRINT, F:; 
SUBC, F: 

location, GT11-7, 10 
See also SET PICKING LOCATION; View-

port 
pass, GT11-9 

See also Arithmetic control processor 
program example, GT3-3, 27 
time-out, GT11-9 
window half-size, GT11-9 
See also SET PICKING 

Pick list 
converting, GT 11-11, 17 

See also PICKINFO, F: 
definition of, GT2-84; GT11-1, 16 
selecting, GT11-8 

See also PICK 
using, GT 11-1 

PICK_LOCATION (initial structure) , GT3-2 8 
summary, RM3-57 

RM16-34 Reference Materials 



Pipeline subsystem (PLS), IS2-6; AP1-2 

Pixel 
address, GT8-39; GT14-2, 3, 5 

See also Viewport 
definition of, GT 12-2 
color, GT14-3 
current location, GT 14-5 , 11, 18 
encoding, GT 14-2 
raster system and, GT14-1, 2 
rate, GT 12-4, 11 

See also Video timing format 
values, GT14-11 
viewport and, GT 13-5 0 

Plane. See Boundaries, front and back; Clip-
ping plane; Projection, planer 

Plane equation. See Polygon, coplanar 

Plotter, TT2-10 
See also Writeback 

Pointer. See Branch; Node 

Points and lines. See Vector list 

Po11 PS 390 for Messages (utility GSR), 
RM4-57 

Polygon 
attributes, GT2-103; GT13-9, 21, 39, 61 

See also Color; Diffuse reflection; Specular 
highlights; and transparency 

capping, GT13-4, 36 
See also Cross sectioning 

classes of, GT 13-10 
See also Solid; Surface 

clause, GT13-8 
color, GT13-22 

See also Edge, polygon, color of; Vertex, 
polygon, color of 

concave, GT 13-9, 5 8 
contour, inner and outer, GT 13-14, 5 9 
coplanar, GT2-103; GT 13-9, 14, 5 8, 59 

See also Contour, polygon 
defining, GT2-102, 103, 107, 112; GT13-8 
definition of, GT2-7 
degenerate, GT 13-9, 5 8 
edge. See Edge, polygon 
function networks and, GT13-S 8 
obverse side of, GT13-40, 42 
options, GT2-103; GT13-9 
primitive, GT4-49 
PS 390 feature, IS2-3 

rendering operations and, GT2-102 
See also Rendering operation 

vertex. See Vertex, polygon 

POLYGON (command) , GT2-7, 103; 
GT13-1, 8, 34, 39, 56; TT6-14 

GSR, TT3-5, 14; RM4-9 6 
summary, RM 1- 7 9 
syntax, GT2-112; GT13-9, 57; RM1-191 

Polygonal object, GT 13-1 
data base for, GT2-4 

See also Geometry; Coordinate 
definition of, GT2-1 
defining, GT2-103, 104, 107; GT13-8, 58 
rendering operations and, GT2-7, 102, 107; 

GT13-1, 26, 56 
See also Rendering operations; 

SOLID RENDERING; SURFACE REN-
DERING 

wireframe compared, GT2-7 

Polygon list 
contents of, GT2-7 
data base for, GT2-6 

See also Geometry; Topology 
primitive, GT2-8, 10; GT4-28 
See also POLYGON; Vector list 

POLYNOMIAL (command) , GT2-9 ; GT4-49 
GSR, RM4-113 
summary, RM 1- 8 2 
syntax, RM 1-191 

Port 
characteristics, RMS-6 
connector pins, RMS-3 
configuration, IS2-5 
values, TT2-1; RMS-7, 8, 11 
See also SETUP INTERFACE; SITE.DAT 

Position (P) and line (L) identifiers 
character font, GT10-20 
non-continuous lines and, GT2-2 6 
open figures and, GT2-8 
vector list inclusion, GT2-7 
See also VECTOR_LIST 

POSITION_LINE, F: (intrinsic user function) , 
TT1-17 

summary, RM2-131 

Powering up. See Booting 

Power requirements, IS2-6 

Prefix. See Naming, prefixing 

Index R1VI16-35 



PREFIX WITH (command) , GTS-27; 
GT 10-7 

GSR, RM4-115 
summary, RM 1- 8 4 
syntax, RM 1-191 

Priming. See Input/output 

Primitive, graphical 
as template, GT2-11; GT4-9 
commands for, GTS-5 
creating, GT2-8; GT4-28 

See also POLYGON; VECTOR_LIST 
data node represents, GT2-36 

See also Data node 
definition of, GT2-2, 8 

See also Polygon list; Vector list 
dimensions of, GT4-12, 2 8 
location of, GT4-12, 29 

See also Modeling transformation; Origin; 
World coordinate system 

modeling with, GT4-9 
transforming, GT2-11 

See also Transformation; Coordinate system 
types of, GT2-8, 10 

See also Character/Character string; Curve; 
Polygon list; Text; Vector list 

See also Car; Mechanical arm; Robot 

Primitive data. See Data node; Primitive, 
graphical 

PRINT, F: (intrinsic user function), GT7-36; 
GT10-13; GT11-12; TT2-43, APS-23 

exercise, GT 11-16 
summary, RM2-132 

PROCONSF FORTRAN (file), TT3-7 

PROCONST. FOR (file) , TT3-7 

PROCONST. PAS (file) , TT3-16 

Programming 
examples of, GT3-1; GT 15-1 

Programming language, function network and 
conventional, GT2-100 

Projection 
planar, demonstrated, GT 1 S-2 8, 31 
See also Perspective view; Orthographic view; 

Viewing area 

PS390ENV (initial function instance}, GT12-5 
summary, RM3-35 

Puck, IS3-1l 

Purge Output Buffer (utility GSR) , RM4-116 

PUT STRING, F: (intrinsic user function), 
GT10-14 

summary, RM2-136 

PVT. See Performance verification test 

O 
Qdata. See Data; Data type 

Qpacket. See Data packet 

Qreal. See Real value 

Queue. See Function, input/output; Input/out-
put; User-written function, private queues 

Query GSR Device Status (utility GSR), 
RM4-39 

Quotation marks. See Text, punctuation in 

R 
Radius, TT2-51 

See also Sphere 

RANGE_SELECT, F: (intrinsic user function) 
summary, RM2-137 

Raster 
command, GT 14-11, 12, 18 
display characteristics, GT 12-2 

See also Antialiasing; Pixel; Scan line; 
Screen 

mode, GT 14-10, 12, 16 
See also Write Pixel Data 

pattern. See Pixel; Scan line; Screen 
programming, GT 14-1; TT2-39 
screen. See Screen 
system, IS2-1; TT2-39; GT14-1, 2, 3 

See also Frame buffer 
system function network for, RM 8 -1 
See also Pixel; Run-length encoding; Video 

output control 

RASTER, F: (intrinsic system function} 
summary, RM 2 -18 5 

Raster backend bitslice processor (RBE/BP), 
IS2-6, 7; AP1-2 

RM16-36 Reference Materials 



f"1 

Raster backend video controller (RBE/VC) , 
IS2-6, 7; AP1-2 

Raster display. See Pixel; Screen; Video output 

Raster line. See Line, rendering 

RASTERSTREAM, F: (intrinsic system func-
tion), RM7-3 

summary, RM2-18 6 

Rate settings, GT9 -1, 14 , 2 0 
See also Alternating display; Blinking; Condi-

tional referencing; IF PHASE; SET 
RATE; SET RATE EXTERNAL 

Ratio and proportion operation, GT2-60 
See also Viewing operations 

RATIONAL BSPLINE (command) , TT6-14 
GSR, RM4-130 
summary, RM1-85 
syntax, RM 1-191 

RATIONAL POLYNOMIAL (command) , 
TT1-10 

GSR, RM4-140 
summary, RM 1- 8 9 
syntax, RM 1-191 

RAVVBLOCK (command) , AP3-4 
GSR, RM4-128 
summary, RM 1-92 
syntax, RM 1-19 2 

READDISK, F: (intrinsic user function) 
summary, RM 2-13 9 

Read Messages from PS 390 (utility GSR), 
RM4-59 

READSTREAM, F: (intrinsic user function) , 
TT2-33; RM7-3; RM 14-6 

summary, RM2-140 

Real number 
data format, RM 14-8 
dials and, GT6-6 
input, GT6-7, 24 

Real time 
definition of, IS2-2, 23; GT2-89 
dials and, GT6-11 
host communication and, TT1-49 

Real value. TT1-SO 
See also Named entity 

REBOOT (command) 
summary, RM 1-9 4 
syntax, RM 1-19 2 

Referencing 
conditional. See Conditional referencing 
explicit. See APPLIED TO/THEN 
implicit. See BEGIN_STRUCTURE... 

END STRUCTURE 

Refresh frame 
blinking and, GT2-83; GT9-14, 15 
picking and, GT 11-9 

See also PICK 

Refresh rate 
blinking with, GT2-82; GT9-14, 16, 19 
video timing format and, GT 12-4, 11 
See also Blinking; CLFRAMES, F:; Clock, 

function; SET RATE 

Refresh buffer. See Frame buffer 

Register, GT2-67, 87 
See also Attribute node; State of the machine 

REMOVE (command) , GT 1-5 ; GT2-91; 
GTS-25 

GSR, RM4-133 
summary, RM 1-95 
syntax, RM 1-19 2 

REMOVE FOLLOWER (command) , GTS -2 6 
GSR, RM4-134 
summary, RM 1-9 6 
syntax, RM 1-19 2 

REMOVE FROM (command), GTS-27 
GSR, RM4-135 
summary, RM 1-9 7 
syntax, RM 1-19 2 

REMOVE PREFIX (command), GTS-27; 
GT 10-9 

GSR, RM4-136 
summary, RM 1-9 8 
syntax, RM 1-19 2 

Rendering 
animation of, TT1-44 
compound, GT13-38 
creating, GT2-102, 107; GT13-29 

See also POLYGON; SOLID_RENDERING; 
SURFACE_RENDERING 

current, GT 13 - 31 
data, GT13-29, 37 

Index RM16-37 



displaying, GT13-29, 32 
See also DISPLAY; Joint control processor 

saving, GT13-32, 37, 61; TT1-47 
stereo, GT 13-5 6 
toggling, GT 13-32, 37 

Rendering operation, GT2-102; GT 13-1 
commands for, IS2-17; GT2-107, 112; 

GT13-1 
See also ATTRIBUTES; ILLUMINATION; 

POLYGON; SECTIONING_PLANE; 
SOLID_RENDERING; SURFACE_REN-
DERING 

completion of, GT13-33 
CPK, TT2-49, 53 
error message, GT13-33, 38 
laser disk and, TT1-44 
marking object for, GT13-26, 60 
memory requirements, GT2-106; GT13-24, 

60 
See also RESERVE_WORKING_STORAGE; 

Transient memory; Working storage 
program example, GT15-45 
types of, GT2-102, 10 8 ; GT 13-3, S 6 
See also Dynamic viewport; Polygon; 

SHADINGENVIRONMENT; Static view-
port 

Rendering operation node 
admissible descendants, GT13-27 
description of, GT2-107; GT 13-2 6 
displaying, GT 13-2 6 

See also DISPLAY 
illumination node and, GT13-46 
inputs to, GT 13-31 
node placement with, GT 13-2 8 
output from, GT13-33 
polygon data node and, GT2-10 8 ; 

GT13-26, 29, 60 
sectioning plane node and, GT13-35, 61 
transformations and, GT13-28, 60 
triggering, TT2-S 4 
See also SYNC (n) , F: 

RESERVE_WORKING_STORAGE (command) , 
GT2-106; GT13-25, 60; TT2-63 

GSR, RM4-143 
summary, RM 1-99 
syntax, GT2-113; GT3-25; RM1-192 

Resonant circuit, GT 12-2 

Reset. See Value, reset 

!RESET (command), GTS-17, 26; TT8-2 
summary, RM 1-101 
syntax, RM 1-19 2 

RESET, F: (intrinsic user function) , RM7-3 
summary, RM2-141 

Reset switch, IS2-4; IS3-5 

RGB (red, green, blue) . See Color 

Right-hand rule, GT 13-13 
See also Vertex, ordering 

Robot, GT4-10, 27, 30; GTS-18; GT6-4; 
GT7-1, 3; GT9-16; GT11-13 

Room coordinates. See Coordinates 

Rotary switch, TT1-27 

ROTATE (command) , GT 1-4, 8 ; GT2-14; 
GT6-6; TT1-7, 9 

exercise, GT3-10 
GSR, RM4-137 
summary, RM 1-10 2 
syntax, RM 1-19 2 

Rotation 
around axis, GT2-14, 19 
centered and not-centered, GT2-14 
clock function and, GT6-27, 30 
controlling multiple, GT7-2 
description of, GT2-13 
function network and, GT3-24; GT6-3, 18 
functions, GT6-6 
jerkiness in, GT6-18 
limiting, GT7-29, 30 
matrix, GT2-13, 38 

See also Matrix, 2X2; Matrix, 3X3 
node, GT2-37, 39, 98 
object-space, GT3-7; GT6-22; TT1-8 
program example, GT3-10, 24 
screen-space, TT1-7 
three-dimensional, GT6-18 
transformation order and, GT2-19 
values, GT2-8 8 ; GT6-7 
world-space, GT2-13; GT3-23; GT6-22; 

TT1-6 
See also DXROTATE, F: ; DYROTATE, F: ; 

DZROTATE, F:; Operation node; Trans-
formation; XROTATE, F:; YROTATE, 
F: ; ZROTATE, F 

ROUND, F: (intrinsic user function) 
summary, RM 2 -14 2 

RM16-38 Reference Materials 



ROUTE (n) , F: (intrinsic user function) , 
TT1-27 

exercise, GT11-15 
summary, RM2-143 

ROUTEC (n) , F: (intrinsic user function) , 
TT2-47 

summary, RM2-144 

Routing, I S 3- 2 7 
See also CIROUTE (n) , F: ; Data, reception 

and routing; Host input data flow; Values, 
routing 

Routing byte 
ASCII file, downloading with, IS3-27; 

TT2-26 
definition of, TT2-33; RM7-1 
definitions, RM7-2 

See also Host input data flow 
GSRs and, IS3-27 
host communications with, RMS-20, 29; 

RM14-3 
SITE.DAT and, TT2-2 
specifying, TT2-33 
S-record file transfer with, APS-19 

See also Graphics support routines 
See also Byte 

RS-232-C, RMS-2 

Run-length encoding, TT2-39; GT13-39; 
GT14-5 

data flow and, RM7-3 
description of, GT 14-2 
write pixel data mode, GT14-18 
See also Pixel; Raster 

Runtime code, IS3-7 
See also CONFIG. DAT; SITE. DAT; 

THULE.DAT 

Runtime environment, TT2-23; RM9-1 
See also Host communication 

Runtime firmware, RM6-4 
See also Graphics control program; Graphics 

firmware 

S 
Sample programs, GT3-1; GT 15 -1 

Saturation, GT13-40 
color, GT13-40 definition of, GT2-68; 

GT8-50 

specifying, GT8-51, 5 6 
See also SET COLOR 

values, GT 13-41 
See also Color; Hue 

SCALE (command), GT1-6; GT2-17, 28; 
GT6-6; GT10-6 

GSR, RM4-146 
summary, RM 1-104 
syntax, RM 1-19 2 

SCALE, F: (intrinsic user function) , GT6-6, 
25 

summary, RM2-145 

Scaling 
characters. See CHARACTER SCALE; Char-

acter string, scaling 
compound object, GT2-30 
definition of, GT1-6; GT2-17 
factor, GT2-17, 99 
function network and, GT6-2 S 
functions, GT6-6, 25 
matrix, GT2-17, 38 
node, GT2-38 
primitive, GT2-26 
program example, GT3-10 
proportional, TT 1-12 

See also Dial, control 
setting limits on, GT6-2 6 

See also DSCALE, F: 
uniform/non-uniform, GT2-17; GT6-23; 

GT 10-7 
values, GT6-6 
See also Modeling; Operation node; Transfor-

mation 

Scan line 
definition of, GT 12-2 
drawing, GT 12-2 

See also Screen, interlaced/non-interlaced 
See also Frame; Screen; Video timing format 

Scheduler, RM9-2; AP3-6, 8 
See also Graphics control program 

Screen 
blanking, GT1-4, 5, 9; GT13-51 

See also Display; INITIALIZE; Key, TERM 

description of, IS 3-12 
display area, IS3-13; GT2-57; GT3-1; 

GT8-1, 39, 40 
See also Viewport 

interlaced/non-interlaced, GT 12-2 
See also Scan line; Video timing format 

Index RM16-39 



labels and, TT2-4 8 
See also Softlabels 

NETEDIT, TT4-8, 39 
performance verification test, IS 6-2 
rendering operation and, GT 13-31 
resolution, GT 12-2 

See also Calligraphic system; Raster 
routing to, RM7-4 
space, GT 14-5 

See also Coordinates, logical device; View-
port; Virtual address space 

STRUCTEDIT, TT6-2 
switch, IS3-13 
thumbwheel knobs, IS3-13 
wash, GT8-42; GT13-51 

See also Background color; SHADINGEN-
VIRONMENT 

See also Picking, location; Viewport 

SCREENSAVE, F: (intrinsic user function) , 
TT9 -10 

summary, RM2-146 

Scrolling, TT1-28 

Sectioning 
definition of, GT2-109; GT13-4 
object displayed after, GT2-109 ; GT 13-4, 

35 
rendering node input, GT13-32 
saving, GT13-38 
vertex order and, GT13-8 
See also Cross sectioning; POLYGON; Sec-

tioning plane 

Sectioning plane 
cross sectioning with, GT2-110; GT 13-5 
data definition of, GT13-34, 61 

See also Polygon 
displaying, GT 13-3 6 
establishing, GT 13-34, 61 

See also SECTIONING_PLANE 
front side of, GT13-35 
interaction with, GT 13-3 6 
sectioning with, GT2-109; GT 13-4 
See also Cross-sectioning 

SECTIONING_PLANE (command) , GT 13-34 
GSR, RM4-159 
summary, RM 1-10 6 
syntax, GT 13-61; RM 1-19 2 

SELECT FILTER (command) 
summary, RM 1-10 8 
syntax, RM 1-19 3 

SEND (command), GT1-8, 10; GT2-36, 99; 
GTS-27; GT10-17; TT4-2, 28 

exercise, GT 10-19 
GSR, RM4-178, 190 
summary, RM 1-110 
syntax, GT 10 -18 ; RM 1-19 3 

SEND, F: (intrinsic user function) 
summary, RM2-147 

SENDBACK (Diagnostic utility command), 
TT2-28 

Send Bytes to Generic Output Channel (utility 
GSR} , RM4-117 

Send Bytes to Parser Output Channel (utility 
GSR) , TT2-33; RM4-119 

SEND number *mode (command) , GT 10-19 
GSR, RM4-18 8 
summary, RM 1-111 
syntax, RM 1-19 3 

Send-receive mode (local echo/nolocal echo) , 
IS3-19; RM10-2, 4, 5 

See also Escape sequence; SETUP facility; 
Terminal emulator, ANSI modes 

SEND VL (command) , GT 10-19 
GSR, RM4-203 
summary, RM 1-112 
syntax, RM 1-19 3 

SET BLINKING ON/OFF (command) 
summary, RM 1-113 
syntax, RM 1-19 3 

SET BLINK RATE (command) 
summary, RM 1-114 
syntax, RM 1-19 3 

SET CHARACTERS (command) , GT 10-12, 
25 

exercise, GT3-20 
GSR, RM4-149 
summary, RM 1-115 
syntax, GT 10-12, 2 S ; RM 1-19 3 

SET COLOR (command), GT2-69; GT8-51, 
56, GT13-20, 59 

GSR, RM4-156 
summary, RM 1-116 
syntax, RM 1-19 3 

SET CONDITIONAL_BIT (command), 
GT2-78; GT9-3; AP4-6 

exercise, GT3-11; GT9-7 

RM16-40 Reference Materials 



GSR, RM4-147 
summary, RM 1-118 
syntax, GT9-3, 17; RM 1-193 

SET CONTRAST (command) 
GSR, RM4-158 
summary, RM 1-120 
syntax, RM 1-19 3 

Set Current Pixel Location (utility GSR), 
GT14-11, 12, 18; RM4-120 

program example, GT 14-13, 15, 19 

Set Delimiting Character (utility GSR), RM4-33 

SET DEPTH_CLIPPING (command), GT2-74, 
91; GT8-15 

exercise, GT8-16 
GSR, RM4-161 
summary, RM 1-12 2 
syntax, RM 1-19 3 

SET DISPLAYS (command) 
GSR, RM4-160, 163 
summary, RM 1-12 4 
syntax, RM 1-19 4 

Set Global Binary Output Channel (utility GSR) , 
RM4-90 

Set Global Generic Channel (utility GSR) , 
TT2-33; RM4-91 

Set Global Parser Channel (utility GSR), 
RM4-92 

SET/IF node, GT2-78; GT9-1, 17 
conditional bit settings, GT2-78; GT9-4, 7, 

18 
input, GT9-4, 10, 14 
level-of-detail settings, GT2-80; GT9-10, 18 
physical I/O and, AP4-6 
program example, GT15-42 
rate settings, GT2-82; GT9-14, 20 
See also Blinking; Conditional referencing; IF 

CONDITIONAL_BIT; IF 
LEVEL OF_DETAIL; IF PHASE; Level-
of-detail; SET CONDITIONAL_BIT; SET 
LEVEL OF DETAIL; SET RATE 

SET INTENSITY (command), TT2-46; 
GT2-71; GT8-48, 50, 56 

GSR, RM4-164 
summary, RM 1-12 6 
syntax, RM 1-19 4 

SET LEVEL_OF_DETAIL (command), 
GT2-80; AP4-6 

exercise, GT3-11, 22 
GSR, RM4-169 

summary, RM 1-12 8 
syntax, GT9 -10 , 18 ; RM 1-19 4 

SET LINE_TEXTURE (command) , TT2-35 
GSR, RM4-166 
summary, RM 1-130 
syntax, RM 1-19 4 

Set Logical Device Coordinates (utility GSR), 
TT2-39; GT14-11, 12, 19; RM4-124 

program example, GT 14-13, 15, 19 

Set node, AP2-26 
See also Instance node 

Set-operate-data structures, AP 1-2 
See also Data node; Instance node; Operation 

node 

SET PICKING (command), GT2-85; GT11-3, 
16 

exercise, GT3-28; GT11-6 
GSR, RM4-174 
summary, RM 1-13 2 
syntax, GT11-5, 16; RM1-194 

SET PICKING IDENTIFIER (command), 
GT2-86; GT11-4, 16 

exercise, GT11-5, 13 
GSR, RM4-171 
summary, RM 1-13 4 
syntax, GT 11-16 ; RM 1-19 4 

SET PICKING LOCATION (command), 
GT11-10 

GSR, RM4-172 
summary, RM 1-13 5 
syntax, GT 11-10 ; RM 1-19 4 

SET PRIORITY (command) 
summary, RM 1-13 7 
syntax, RM 1-19 4 

Set Raster Mode to Write Pixel Data (utility 
GSR), GT14-12; RM4-129 

SET RATE (command), GT2-82; GT9-14 
exercise, GT3-11; GT9-16; GT 15-42 
GSR, RM4-175 
summary, RM 1-13 8 
syntax, GT9 -14 , 2 0 ; RM 1-19 4 

Index R1VI16-41 



SET RATE EXTERNAL (command) , GT2- 8 2 ; 
GT9-15, 20; TT1-36 

GSR, RM4-177 
summary, RM 1-14 0 
syntax, RM 1-19 4 

SETUP CNESS (command), APS-8; GT2-99; 
GT6-14; RM2-4 

GSR, RM4-155 
summary, RM 1-14 2 
syntax, RM 1-19 5 

SETUP facility 
description of, IS3-18; RM10-19 
definitions, IS 3-19 
function keys and, IS3-10; RM 10-30 
IBM 3278, IS3-23; RM 10-30 
menu display, IS3-18 
terminal emulator commands and, RM 10-23 

See also SITE.DAT 
See also Key, SETUP; Terminal emulator 

SETUPIBM, F: (intrinsic system function}, 
RMS-30 

summary, RM2-187 

SETUP INTERFACE (command) , IS 3-21; 
TT2-41, 44; RMS-8, 11; AP7-7 

summary, RM 1-14 4 
syntax, RM 1-19 5 

SETUP PASSWORD (command), TT2-8; 
RM9-7 

summary, RM 1-145 
syntax, RM 1-19 5 

Shaded image 
creating, GT 13-9 
depth cueing in, GT 13-51 
displaying, GT13-39 

See also Rendering operation node, input 
normals in, GT 13-2 2 
polygon edges in, GT13-20 
static viewport and, GT8-2 

See also Static Viewport 
See also SHADINGENVIRONMENT 

Shading. See ATTRIBUTES; Flat shading; 
Rendering operation; Smooth shading; Static 
viewport; Wash shading 

SHADINGENVIRONMENT (initial function in-
stance), GT2-59, 112, 113; GT13-21, 22, 
42, 45, 48, 62; TT2-50 

summary, RM3-37 

Shadowfax, IS2-1, 7; GT12-2 

Shift register, TT1-28 

SHOW INTERFACE (command) 
summary, RM 1-14 6 
syntax, RM 1-19 5 

SINCOS, F: (intrinsic user function) 
exercise, GT3-25 
summary, RM2-14 8 

SITE.DAT (file) 
changing packet characters, RMS-21 
changing SETUP features, RM 10-23, 31 
CONFIG.DAT and, IS3-7; RM9-7 
control sequences and, RM 10-26 
creating, IS3-8; TT2-1 

See also Configure mode; Graphics support 
routine s 

deleting, RM 12-9 
description of, IS3-6, 8 
host resident, I S 2-14 
interface, changing with, RMS-11 
loading, TT2-2 
user-written functions and, AP7-1 
using, TT2-1 

Site preparation, I S 5 -1 

Sketching. See Data tablet, inking with 

Smooth shading, GT2-112 
curved surface and, GT13-22; TT2-49 
description of, GT2-112; RM6-7 
Gouraud, GT 13-7, 2 3 
normals and, GT13-22 
Phong, GT13-7, 23 
rendering node input, GT13-32 

Softlabels, IS3-10; TT2-48 
See also Dial, control, labels; Dynamic view-

port; Function key labels 

Software. See Graphics firmware; Host-resident 
software 

Solid 
3D visualization of, IS2-3 

See also Rendering operations 
backface removal and, GT 13-3 

See also Backface, removal 
constructing, GT2-104; GT 13-10, 5 8 

See also SOLID_RENDERING 
cross-sectioning, GT 13-3 6 
definition of, GT2-104; GT 13-10 

RM16-42 Reference Materials 



/~1 

edges in, GT 13-11 
See also Edge, polygon 

sectioning, GT 13-4 
surface, changing to, GT13-33, 37 
vertex order and, GT2-105; GT13-8, 12, 

19 
See also Polygon 

SOLID_RENDERING (command} , GT2-105, 
107; GT13-26, 29, 58, 61; TT2-50, 53 

GSR, RM4-205 
summary, RM 1-14 7 
syntax, GT2-113; GT13-60; RM1-195 

SOP. See Start of packet character 

SPECKEYS (initial function instance), 
RM10-21, 28 

summary, RM3-46 

Specular highlight 
attribute node input, GT13-42 
control, GT 13-5 3 

See also SHADINGENVIRONMENT 
specifying, GT2-10 8 ; GT 13-21, 41 
values, GT 13-41; TT2-51 
See also ATTRIBUTES; Diffuse reflection; 

POLYGON 

Sphere rendering, GT13-33, 53; TT2-17, 49, 
52 

See also Solid; Surface; Vector 
viewing area and, TT2-57 

Sphere of influence, GT2-40; GT4-5, 53 
See also Hierarchy; Instance node 

Spheres and lines attribute table, GT 13-21 

SPLIT, F: (intrinsic user function) , GT 10-14 
summary, RM2-149 

SQROOT, F: (intrinsic user function) 
summary, RM2-150 

S-record file 
crash and, APS-23 

See also User-written function, stack size 
description of, RM 6-7; APS -14 
downloading, APS-14, 19; AP9-12, 18 

See also Cross-compatibility software; 
Graphics support routines; Routing byte 

format, AP9-34 
MAKEFONT and, TT7-2 

S specifier. See Edge, soft 

Stack. See User-written function 

STANDARD FONT (command) 
GSR, RM4-206 
summary, RM 1-15 2 
syntax, RM 1-19 5 

Star, GT1-5; GT2-26; GT4-14 

Start of packet (SOP) character, RMS-17; 
RM14-4; TT2-23 

changing, RMS-21 
See also DEPACKET, F: ; SITE. DAT 

default, RMS-18, 20 
See also Escape sequence 

Startup code, AP1-3 
See also Graphics control program 

STATDIS, F: (intrinsic system function), 
TT2-45 

summary, RM2-18 8 

State of the machine, GT2-67; GT4-48, 52 
See also Instance node 

Static viewport 
clearing to, GT8-42 

See also Screen, wash 
color in, GT 13-21 
default, GT13-50 
display structure and, GT8-2, 42 
multiple images in, GT 13-5 0 
polygon edges in, GT13-20 
program example, GT 15 -4 6, 6 6 
rendering operations, GT2-58, 102, 110, 

113; GT8-41; GT13-6, 56 
See also Hidden-line removal; Flat shading; 

Smooth shading; Wash shading 
specifying, GT2-59; GT8-41, 56; GT13-50 

See also SHADINGENVIRONMENT 
uses of, GT2-44 
See also Dynamic viewport, Viewport 

STORE (command), GTS-25; GT7-34 
summary, RM 1-15 3 
syntax, RM 1-19 5 

String. See Character string 

STRING_TO_NUM, F: (intrinsic user function), 
GT10-13 

summary, RM2-151 

Stroke lookup table, TT7-8 
See also Character font; MAKEFONT 

STRUCTEDIT (Data structure editor) , TT6-1 

Index RM16-43 



Structure. See Data structure, Display structure 

Stub, TT6-1, 14 

Stylus. See Data tablet 

SUB, F: (intrinsic user function) 
summary, RM2-152 

SUBC, F: (intrinsic user function) , GT 11-14 
summary, RM2-15 3 

Subcommand expression. See Data type 

Suffix. See Naming, suffixing 

Surface 
constructing, GT2-104; GT 13-10, 5 8 

See also SURFACE RENDERING 
curved, GT13-7, 9, 22, 59 

See also Normal 
definition of, GT2-104; GT 13-10 
faceted, GT 13-7 
obverse side attributes, GT13-40 
rendering node input, GT13-33 
solid, changing to, GT13-27, 33, 37 
vertices for, GT2-10 6; GT 13-12 
See also Polygon; Rendering operations 

SURFACE_RENDERING (command), 
GT2-105, 107; GT13-26, 29, 58, 61 

GSR, RM4-208 
summary, RM 1-154 
syntax, GT2-113; GT13-60; RM1-195 

Swinging around axis, GT2-14 
See also Origin; Rotation 

Switches, IS2-4; IS3-2, 13; GT6-31; 
GT11-13 

SYNC (n) , F: (intrinsic user function) , GT6-32; 
TT1-27, 28, 29; TT2-20, 45, 53; TT9-5; 
AP7-3o 

summary, RM2-15 4 

Synchronization, TT 1-2 9 

System configuration, IS2-4 

System function, See Function, system; Intrin-
sic system function 

System lookup table, GT13-55 

T 

TABLETIN (initial function instance) , 
TT1-16, 17 

exercise, GT3-28 
summary, RM3-47 

TABLETOUT (initial function instance) 
summary, RM3-50 

Tabulated. See VECTOR LIST 

TAKE_STRING, F: (intrinsic user function), 
GT10-14 

summary, RM2-15 6 

TECOLOR (initial function instance} , 
RM 10-20, 28 

summary, RM3-52 

TEDUP, F: (intrinsic system function) 
summary, RM2-18 9 

Terminal controller. See Control unit 

Terminal emulator (TE) , RM 10-1 
ANSI mode. See ANSI mode (DECANM) 
data structures and, RM 10-19 

See also CONFIG. DAT 
DEC VT 100, IS3-16; RM 10-2 
display handler, See VT10, F: 
display structure and, RM 10-29 
function network and, RM 10-16 

See also K2ANSI, F: ; TEDUP, F: ; VT 10, F: 
features changed, RM10-23, 31 

See also Key, BREAK; Key, TERM; 
SITE.DAT 

routing to, RMS-20 
IBM 3278, IS3-23; RM 10-27 
SETUP. See SETUP feature 
viewing area, IS 3-13, 21 
See also Host communications; Host computer 

Terminal emulator (TE) mode 
cursor keys in, RM 10-22 
DEC VT100, IS3-16; RM10-19 
description of, IS 3-15 
editing in, GTS-27 
features of, IS2-17 
function keys in, IS3-10; RM10-23 
GSRs and, TT3-25 
host system and, IS2-17; TT3-25 

See also SITE.DAT 
IBM 3278, IS3-22; RM10-27 
IBM 5080, IS3-25 

RM16-44 Reference Materials 



n 

keypad in, RM 10-23 
key sequence for, IS3-15, 25; GT3-30 
See also ANSI mode; SETUP feature 

Text 
character font for, GT2-75 ; GT 10-19 

See also BEGIN_FONT...END_FONT; 
CHARACTER FONT; MAKEFONT 

function network diagram, TT4-15 
See also NETEDIT 

interaction with, I52-3 
modeling, GT 10-1 
nodes, GT10-1, 23 
primitive, GT2-9; GTS-5 
punctuation in, GT 10-3 
size, GT10-8 

See also PREFIX; TEXT SIZE 
transforming, GT 10-1, 6, 2 4 

See also CHARACTER ROTATE; CHAR-
ACTER SCALE; TEXT SIZE 

See also Character string; Label 

Text editor, TT2-3, 27 
See also STRUCTEDIT 

Text file 
commands in, GTS-27 
display structure in, GTS-31 

See also Display structure 
editing in TE mode, GTS-27 

See also Terminal emulator mode 
See also File; Graphics support routines 

TEXT SIZE (command) , GT 10-8 
exercise, GT 10-10 
summary, RM 1-15 9 
syntax, GT10-25; RM1-195 

Texture. See SET LINE_TEXTURE 

Three-dimensional space. See Coordinate, 
world; World coordinate system 

Three-dimensional view. See View, three-
dimensional 

Three-valued vector. See Vector, 3D 

THULE.DAT (file}, IS3-6 

TIMEOUT, F: (intrinsic user function) 
summary, RM2-157 

Toggle switch, GT6~31 

Token, GT2-99; RMS-29; RM 14-3 

Topology 
definition of, GT2-6, 10 
geometry and, GT2-6, 8, 9, 12 
See also VECTOR_LIST 

TRANSFER (diagnostic utility command) , 
TT2-26 

Transformation 
compound object and, GT2-31 
control dials and, GT6-S 
description of, GT2-11, 12, 25 

See also Geometry; Matrix 
matrix. See Matrix 
modeling. See Modeling transformation 
order of, GT2-23, 25; GT4-16, 25 

See also Matrix, non-commutativity of 
pointer, GT4-35 
primitives and, GT2-11 

See also Polygon; Vector list 
processing, IS2-20 
program example, GT15-36, 37 
rendering operations and, GT13-28, 38, 60 

See also Rendering operation 
sphere of influence and, GT2-42 

See also Instance node 
types of, GT2-22, 25 

See also Rotation; Scaling; Translation 
viewing. See Viewing operation 
See also Operation node; XFORMDATA, F: 

Transformed data 
commands and, TT9-1, 3 

See also MATRIX 3X3; ROTATE; SCALE; 
TRANSLATE 

converted to command string, TT9-1 
data nodes, admissible, TT9-2 

See also Curve; Vector List 
definition of, TT9-1 

See also Matrix; Vector list 
modeling and, GT4-51 
program example, TT9-6 
rendering node input, GT13-33 
requests overlapping, TT9-5 

See also SYNC (n) , F: 
retrieving, TT9-2, 31 

See also LIST, F:; XFORM; 
XFORMDATA, F: 

retrieving restricted, TT2-12; TT9-6 
See also XFORMDATA, F: 

storing, TT9-4 
See also LIST, F: 

Transient memory, GT 13-2 6, 60 
See also Hidden-line removal 

Index RM16-45 



Translation 
definition of, GT 1-6; GT2-15 
direction of, GT2-16 
function network and, GT3-24; GT6-6, 23 
functions, GT6-6 
notation for, GT2-17 
node, GT2-39 
primitive, GT2-2 8 
program example, GT3-24 
setting limits on, GT6-24 
transformation order and, GT2-19 
updating, GT 1- 8 
values, GT1-6 

See also SEND 
See also Modeling; Operation node; Transfor-

mation 

TRANSLATE (command), GT1-6; GT2-15, 
28, 76; GT6-6, 24 

exercise, GT6-25 
GSR, RM4-209 
summary, RM 1-161 
syntax, RM 1-19 5 

Transparency, GT2-103 
attribute node input, GT13-42 
color with, GT13-42 
control, GT 13-5 2 
eyepoint effect on, GT13-42 
specifying, GT 13-21, 41 
values, GT 13-41 
See also ATTRIBUTE 

TRANS_STRING, F: (intrinsic user function) , 
GT10-13 

summary, RM 2-15 9 

Traversal. See Arithmetic control processor; 
Display processor 

Tutorial demonstration, GT3-1 

U 
Uniform scaling. See Scaling, uniform 

Update 
alpha, AP3-3 
block, AP3-2 
character and label nodes, GT 10-16, 2 6 
display structure traversal and, IS2-21 
function networks and, GT6-3, 33 
memory and, TT1-49 

See also Named entity 

nodes, GT2-36, 91, 101; GT6-3, 33 
See also Interactive device; Interaction node 

process, AP3-2 
value, GT1-8; AP3-3 
See also Function network; Input; Interaction 

UPDATE_FORMATTER (initial function in-
stance} , AP2-6; AP3-2 

UPDATE_KILLER (initial function instance) , 
AP2-6, 15 

USERLINK (file), APS-2, 14; APS-7, 10 

USERSTRUC.PAS (file}, APS-2, 6, 11, 15; 
AP8-2; AP9-25 

USERUPD, F: (intrinsic user function) , AP4-1; 
AP9-69 

User-written function, RM2-1; APS-1; 
AP8-1 

breakpoints, AP7-2 6 
See also Debug; SYNC (n) , F: 

compiling, linking, and naming, APS-14 
creating, GT2-9 5 ; APS -3 
debugging, APS-23; AP7-6 
editing, TT4-16, 36 

See also NETEDIT 
error messages, RM 11-3; AP8-40 
files, IS2-14 
header line, AP9-33 
input/output, APS-8; AP6-1, 7 
instancing, APS-21, 22; AP7-2, 3 
loading, AP7-1, 3 

See also UTILITY program 
message types, APS-8; AP6-2; APS-2 
memory allocation for, AP3-4 

See also RAWBLOCK 
network substitutions, APS-1 
private queues, AP6-4 
gdata type and, AP6-1, 11; AP8-2 
requirements, APS-2 

See also USERLINK; USERSTRUC. PAS 
restrictions, APS-22 
routing, RM7-3 
stack size, AP8-38 
transferring to PS 390, APS-18 

See also S-record file 
uses of, RM 6-7 
utility procedures, APS-7; AP8-6, 10, 24 
writing exercise, APS-4, 12; AP6-1 

User-written function facility, RM6-6 

USRTOF, F: (intrinsic system function) 
summary, RM2-190 

RM16-46 Reference Materials 



n 

UTILITY program, RM12-1; AP7-1, 2 
See also Diagnostic diskette; Diagnostic utility 

command 

Utility routines. See Graphics support routines; 
User-written function, utility procedures 

UWF. See User-written function 

v 

V3D (three-valued vector) . See Vector, 3D 
Value 

accumulate, GT6-6 
See also CMUL, F: ; MULC, F: 

constant input, GT2-9 9 ; GT6-13 
See also Input/output 

converting, GT6-3, 6, 33 
See also Function network; Interactive de-

vice 
coordinate. See Coordinate; Coordinate sys-

tem 
fixed, GT2-88 
initial, GT6-14, 17 
interaction and, GT6-2 

See also Rotation; Scale; Translation 
negative, GT2-4; GT6-5 
positive, GT2-4, 10 

See also Z-axis 
reset, GT6-15, 24 
retrieving variable, GT7-34, 38 

See also FETCH, F: 
routing, GT7-6, 37 

See also CROUTE (n) , F: ; Function network 
sending, GT2-3 6 
storing, GT7-33, 38 

See also CONSTANT, F: ; FETCH, F: ; 
VARIABLE 

updating, GT1-8 
See also Function 

See also Data; Data type 

Variable, GT7-33, 38; TT1-49; 
GSRs and, TT3-5, 15 
See also Named entity 

VARIABLE (command), GT7-34, 38; TT4-2 
exercise, GT7-37 
GSR, RM4-211 
summary, RM 1-16 3 
syntax, RM 1-19 5 

VEC, F: (intrinsic user function} 
exercise, GT3-2 S 
summary, RM2-160 

VECC, F: (intrinsic user function) 
summary, RM2-161 

VEC_EXTRACT, F: (intrinsic user function) 
summary, RM2-162 

Vector 
2D, GT6-3; GT10-20; GT11-7; RM14-9 
3D, GT1-8; GT6-3, 24; RM14-9 

See also CVEC, F: ; XVECTOR, F: ; YVEC-
TOR, F: ; ZVECTOR, F: 

block-normalized, TT2-17, 60 
See also VECTOR_LIST 

data tablet and, GT6-5 
definition of, GT 1-2; GT2-6 
drawing common edge, GT13-20 
itemized, GT 10-20 

See also Position and line identifier 
knot, TT6-14 
picking, GT 11- 8 

See also Picklist 
specifying, GT4-49 

See also VECTOR_LIST 
transformed, GT2-23; TT9-1 

See also WRITEBACK; XFORM MATRIX; 
XFORM VECTOR 

translation, GT6-3, 24; TT1-19 
vector-normalized, TT2-17, 60 
wireframe model from, GT 1-2 

Vector list 
character font, GT 10-20 
definition of, GT2-6; GT4-49 
downloading to PS 390, TT2-62 
drawing, TT2-35; GT4-49 

See also Line; PATTERN; PATTERN 
WITH; SET LINE_TEXTURE; WITH 
PATTERN 

GSRs and, TT3-5, 14 
node, GT2-36 
primitive, GT2-8, 10; GT4-28 
rendering node input, GT13-33 
single, advantage of, GT4-5 0 

See also Writeback 
single, conversion into, TT9-3 

See also XFORM VECTOR 
tabulated, TT2-17, 51 

See also ALLOW_VECNORM, F: ; Sphere 
See also Coordinates; Data node; Polygon list; 

SEND VL 

Index RM16-47 



VECTOR_LIST (command), GT1-2; GT2-6, 8, 
26; GT4-49; GTS-5; TT2-51; TT9-1, 4 

exercise, GT3-10 
GSR, TT3-5, 14; RM4-212 
summary, RM 1-16 4 
syntax, RM 1-19 6 

Vertex, polygon 
color of, GT2-104; GT13-9, 52 
defining, GT2-103 
Gouraud shading and, GT 13-7 
number of, allowed, GT2-102; GT13-8, 58 
options, GT2-104 
order of, GT2-105; GT13-8, 15, 59 

.See also Right-hand rule 
soft edge and, GT 13-19 
See also Normal; Polygon; POLYGON 

Vertex ordering rule. See Vertex, polygon, or-
der of 

Video hookup, GT 12-11 

Video output 
control of, GT12-1 
specifications for, GT 12-13 
See also Background color, Cursor, Scan line 

Video recorder, GT 12-3 

Video signal, GT 12-10, 11 

Video timing format 
alternating, GT 12-7 

See also Viewport 
custom, GT 12-12 
features of, GT 12-4, 11 
selecting, GT 12-7 

See also PS390ENV 
standards, GT 12-3 
supported by PS 390, GT12-3, 12 

View 
changing, GT8-1 
creating, GT2-45, 66; GT8-52 

See also EYE BACK; FIELD_OF_VIEW; 
WINDOW 

cutaway, GT 13-4 
See also Sectioning 

default, GT8-52 
definition of, GT2-44 
distorted, GT2-59 
multiple, GT2-60 
orthographic. See Orthographic view 
perspective. See Perspective view 

stereo, GT9-16 
See also Viewport 

three-dimensional, GT2-71; GT9-16 
See also Depth cueing; Intensity; Perspective 

view 
See also Line of sight; LOOK; Viewing area; 

VIEWPORT 

Viewing angle 
definition of, GT8-20 
frustum and, GT8-20, 54 
hidden-line rendering and, GT 13-3 
program example, GT3-15 
ratios for, GT8-25, 27 

See also Coordinate, room; Coordinate sys-
tem, world 

specifying, GT2-54, 64 
See also FIELD OF VIEW 

Viewing area 
default, GT2-52, 57; GT10-3; GT8-10, 52 

See also Orthographic view 
definition of, GT2-46, 49, 66; GT8-9 
depth of, GT8-15 

See also Depth clipping; SET 
DEPTH_CLIPPING 

display structure and, GT8-9, 21 
double, unwanted, GT13-29 
intensity mapping, GT8-47 
mapping to viewport, IS2-21; GT8-33, 45, 

47; TT2-58 
moving, GT8-13, 
orthographic, GT2-50; GT8-9, 53 

See also WINDOW 
perspective, GT2-54, 62; GT8-19, 54, 55 

See also EYE BACK: FIELD_OF_VIEW 
program example, GT3-1, 12, 15, 19 
size altered, GT8-11, 12, 20 

See also Clipping 
specifying, GT8-9, 19, 25 
types of, GT2-50 
visibility of object and, GT2-50, 66, 72 

See also Clipping; Depth cueing 
See also LOOK; MATRIX_4x4; Viewport 

Viewing operations, GT2-44; GT8-1 
attributes, ~ GT8-48, 56 

See also Attribute; Color; Intensity 
commands, IS2-17 
default values, GT2-46; GT8-2, 52 
node, GT2-60, 66, 88; GT8-53, 54, 55 
ratio and proportion, GT2-60 
transformations, GT8-1, 3, 9, 19, 52; 

TT9-5 
See also Line of sight; Viewing area 

RM16-48 Reference Materials 



Viewing pyramid, GT2-SS; GT8-19, 23, 27 
See also Clipping plane; EYE BACK; 

FIELD OF VIEW; Frustum 

Viewing transformation function, IS2-2S; 
GT2-9 4; GT6-12 

Viewport 
alternating display of, GT9-16 
clearing to dynamic/static, GT8-42 
CPK, TT2-S 9 
default, GT2-S8; GT8-2, 34, S2 

See also Dynamic Viewport 
definition of, GT2-46, S8, 66; GT8-1, 33, 

SS 
display structure and, GT8-33, 39 
double, unwanted, GT13-29 
dynamic. see Dynamic viewport 
mapping to, GT2-60; IS2-21; GT8-33, 4S, 

46, 47 
multiple, GT2-60; GT8-43 
nonsquare, GT2-S9; GT8-44 
picking location and, GT11-10 

See also SET PICKING LOCATION 
program example, GT3-1, 8, 12 
raster. See Static viewport 
reconfiguring for video timing, GT12-7 

See also Video timing format 
rendering operation and, GT 13-31 
specifying, GT2-S8, 64; GT8-33, 41, SS 

See also LOAD VIEWPORT; VIEWPORT 
static. See Static viewport 
terminal emulator, IS3-21 
types of, GT2-44; GT8-2, 33 

See also Dynamic viewport; Static viewport 
viewing areas and, GT8-33 

VIEWPORT (command) , GT2-S 8, 71; 
GT8-34, 41, SS; TT9-11 

exercise, GT3-12; GT8-3S, 36, 43 
GSR, RM4-220 
summary, RM 1-16 9 
syntax, GT8-S 6; RM 1-19 6 

Virtual address space, GT14-2, S, 11 

VT 1 O, F: (intrinsic system function) , TT2-13, 
4S; RM7-3, 4; RM10-18 

summary, RM2-191 

VTS 2 mode, IS3-20; RM 10-2, S, 1 S 
keypad in, RM 10-11 
See also Escape sequence; SETUP facility; 

Terminal emulator, ANSI modes 

W 
WARNING (initial function instance) 

summary, RM3-S3 

Warning message. See Message, warning 

Wash shading, GT2-111; GT13-7 
rendering node input, GT13-32 

See also Flat shading; Smooth shading 

WB $ (initial function instance) . See 
WRITEBACK (initial function instance) 

White space. See Delimiter 

Window. See Viewing area 

WINDOW (command) , GT2-S 3, 60; GT8-9, 
S 3; TT2-S 8 

exercise, GT3-12; GT8-12, 13, 16, 18, 46 
GSR, RM4-222 
summary, RM 1-17 2 
syntax, GT8-S4; RM1-196 

WINDOW, F: (intrinsic user function), TT2-S7 
summary., RM2-163 

Wireframe model 
color of, GT13-20 

See also SET COLOR 
data base for, GT2-4 
definition of, GT2-1 
dynamic viewport and, GT8-2, 34; GT13-3 

See also Dynamic viewport 
PS 390 feature, IS2-2, 3, S 
vectors and, GT1-2 
See also Vector list 

WITH PATTERN (command) , GT4-49 
summary, RM 1-17 4 
syntax, RM 1-19 6 

Working storage, GT2-106, 113; GT13-24, 60 
See also RESERVE_WORKING STORAGE 

Work space, GT3-29 

World coordinate system, GT2-10 
definition of, GT2-1, 3 
framing part of, GT2=49 

See also Viewing area 
line of sight in, GT8-S, 7 
locations. See Vector list 
model, location in, GT4-2, 12, 47 
program example, GT3-12, 17, 19 
translating in, GT2-1 S 

See also Axes; Translation 

Index RM16-49 



viewing area in, GT2-50; GT8-1, 9, 25, 
See also EYE BACK; FIELD_OF_VIEW; 

WINDOW 
See also Coordinate; Coordinate system; Line 

of sight; 

Wraparound, GT 14-5 

Writeback 
commands in, TT9-12 
constraints, TT9-9 
data sequence in, TT9-18 
description of, TT2-10; TT9-8 
hardcopy and, TT2-10 
node, TT9-9 
program example, TT9-20 

WRITEBACK (command), TT9-9, 31 
GSR, RM4-224 
summary, RM 1-17 6 
syntax, TT9 -9 ; RM 1-19 6 

WRITEBACK (initial function instance) , 
TT2-10; TT9-9, 10, 31 

summary, RM3-54 

WRITEDISK, F: (intrinsic user function), 
RM7-4 

summary, RM2-165 

Write Pixel Data (WRPIX) , GT 14-10, 12, 16, 
18 

WRITESTREAM, F: (intrinsic user function) 
summary, RM 2-16 6 

Write structured field (WSF), RMS-23; 
RM10-27 

X 
XFORM (command), TT2-14, 57; TT9-2 

exercise, TT9-6 
GSR, RM4-26 
summary, RM 1-178 
syntax, TT2-57; TT9-2; RM1-196 

Xform data. See Transformed data 

XFORMDATA, F: (intrinsic user function) , 
GT13-1, 33; TT2-12, 19, 44, 50, 53, 55; 
TT9-3, 6, 31 

summary, RM2-167 

XON_XOFF. See Host communication, trans-
mission protocol for 

XOR, F: (intrinsic user function) , TT 1-14 
summary, RM2-170 

XORC, F: (intrinsic user function) , GT6-31 
summary, RM2-171 

XROTATE, F: (intrinsic user function} , 
GT7-9, 30, 37; ~ TT1-7, 9 

exercise, GT6-21; GT7-15, 32 
summary, RM 2 -17 2 

XVECTOR, F: (intrinsic user function) , 
GT6-24; TT1-19 

exercise, GT6-25 
summary, RM2-173 

Y 
Yon plane. See Clipping plane 

YROTATE, F: (intrinsic user function), 
GT6-7, 15, 19 

exercise, GT6-21; GT7-15 
summary, RM2-174 

YVECTOR, F: (intrinsic user function) , 
GT6-24; TT1-19 

exercise, GT6-25 
summary, RM2-175 

Z 
Z-axis 

look at point, GT2-48, 62; GT8-4, 6, 13, 
29 

See also Line of sight 
location equation, GT2-62 
See also Axes; Boundaries, front and back; 

Coordinate system 

Z-boundary. See Boundaries, front and back 

Z-clipping. See Depth clipping 

Z-clipping plane. See Clipping plane 

03$ (initial function instance), TT2-44, 45 

Zooming, TT4-4 8 

ZROTATE, F: (intrinsic user function} 
exercise, GT6-21; GT7-15 
summary, RM2-176 

ZVECTOR, F: (intrinsic user function) , 
GT6-24; TT1-19 

exercise, GT6-25 
summary, RM2-177 

RM16-SO Reference Materials 


