< -
S
g -~ 28
i :
3 - 3
3
3

GENERAL @3 ELECTRIC

NUMERICAL EQUIPMENT CONTROL DEPARTMENT WAYNESSORO, VIRGINIA

Mark Century

GECENT

Postprocessor

Computer Programmer Manual

MANUALNO. — e

~MARTIN, EARNEST okt
" President
ISSUED TO Martin Tool Works, Inc.
. 3320 Tollview Drive
" Rolling Meadows, Illinois 60008

GENERAL @3 ELECTRIC

NUMERICAL EQUIPMENT CONTROL DEPARTMENT, WAYNESBORO, VIRGINIA

DISCLAIMER

Although the GECENT* Postprocessor has been extensively
tested by the General Electric Company, no warranty,
expressed or implied, is made by the Company as to the
accuracy and functioning of the GECENT Postprocessor or
related program material or services, and no responsi-
bility is assumed by the General Electric Company in

connection therewith.

@ COPYRIGHT 1962, 1963, 1964, 1970
by

GENERAL ELECTRIC COMPANY, USA

Regulations of the U.S. Department of Commerce prohibit
the reexportation of this technical data to Albania,
Bulgaria, Communist China,the Communist controlled area
of Vietnam, Cuba, Czechoslovakia, East Germany,Estonia,
Hungary, Latvia, Lithuania, North Korea,Outer Mongolia,
Poland, Rumania and the U.S.S.R.

WAYNESBORO, VIRGINIA

GENERAL ELECTRIC COMMUNIFATION AND

COMPANY CONTROL DEVICES

............. TELEPHONE 703—942-8161 DEPARTMENT

We are pleased to present you with your personal copy of the GECENT Postprocessor
Computer Programmer's Manual. It has been registered in your name at the address
given on the title page.

The documentation for the GECENT III program is in two volumes, one for the computer
programmer and a separate volume for the part programmer. Some of you will receive
both volumes; but in some cases, the Part Programmer's Manual will be mailed to
another designated individual in your company.

Additional copies of either manual may be purchased at $42 each should others in your
organization require them. Contact your local General Electric Industrial Salesman.

Please check your address. It is almost impossible to keep our mailing list up-to-date.
If your address changes or if you transfer this manual to another person, please let me
know immediately. I will be updating this manual periodically; therefore, it is to your
advantage to keep me posted if your address changes.

This is your manual. We want it to serve you well. Should you find errors or omis-
sions in this documentation, please send them to me. Your comments and criticisms
will be appreciated.

meA [ﬁmm

Richard A. Thomas, SOFTWARE COORDINATOR

RAT:mh

Enclosure

WAYNESBORO, VIRGINIA 22980 TELEPHONE 703-—942-8161

GENERAI‘ ELECTRIC NUMERICAL EQUIPMENT

COMPANY
CONTROL DEPARTMENT

December 15, 1970
SUBJECT: GECENT Postprocessor Computer Programmer Manual

Attached is the first revision to your GECENT Postprocessor Computer
Programmer's Manual. Not only is new copy enclosed, but you will notice a
new format is being used. When you attempt to open your book, you will discern
why.

It will be necessary for you to drive the closing stick open using a screw driver
and mallet, as the contents are too tightly packed. Remove pages 6-1 through
6-60 in your manual and replace with the attached pages.

The new material, and more to follow, will reduce the number of pages and

permit normal entry to the manual. This mailing is a part of our continuing
effort to keep your manual as current as possible.

m o JA @m -
R. A. Thomas, SOFTWARE COORDINATOR
RAT/pm

Attachment

FORWARD

This manual completely describes the GECENT III Postprocessor
System as to its computer design, theory of organization, and
details of operation.

It has been assumed that the reader is familiar with APT, FORTRAN
IV, and with general computer practices and furthermore, has a
knowledge and understanding of the postprocessor part programming
vocabulary. The GECENT III Part Programmers Manual is a
supplement to this manual and is referred to many times.

The various subsections of this document are complete in
themselves. A relevant section may be identified so that further
investigation into the subject may be made. Mandatory readings
are Sections 1 and 2, since these sections delineate the
fundamentals which must first be known before proceeding with
further detail. Section 3 gives a detailed description of the
elements of the entire postprocessor, and Section 4 itemizes
some of the special functions of the postprocessor. Section 5
should be read by anyone who plans to work with the
postprocessor, modifying it or simply maintaining it.

For further information or assistance on a part of this manual or
the postprocessor, the reader is directed to:

The GECENT Postprocessor Program
General Electric Company
Building 305, Mail Drop H-8
Evendale, Ohio 45215

February 1970

[;H:[NI I" POSTPROCESSOR ...for the computer programmer

TABLE OF CONTENTS

Page

1.0 INTRODUCTION 1-1
2.0 GENERAL DESCRIPTION 2-1
2.1 Theory of Operation 2-1
2.2 Overlay Structure 2-3
2.2.1 Naming Conventions for the GECENT III

Postprocessor 2-4
2.2.2 Overlay Loading Technique 2-5
2.2.3 Sample Postprocessor Structures 2-8
2.3 Description of Program Flow 2-9
2.3.1 Fixed Order and Assignments of DBFSEG 2-10
2.3.2 Command Block Identification Codes 2-12
2.3.3 Schematic of Program Flow 2-16
2.4 Program Flow by Machine Type 2-17
2.4.1 Positioning Machines 2-18
2.4.1.1 Positioning Machine Characteristics 2-19
2.4.1.2 Positioning Machine Program Flow 2-20
2.4.2 Lathes 2-22
2.4.2.1 Lathe Characteristics 2-22
2.4.2.2 Lathe Program Flow 2-23
2.4.2.2.1 Linear Interpolation Flow 2-23
2.4,2.2.2 Circular Interpolation Flow 2-25
2.4.3 Three-Axis Milling Machines 2-29
2.4.3.1 Milling Machine Characteristics 2-29
2.4.3.2 Milling Machine Program Flow 2-30
2.4.4 Multiaxis Milling Machines 2-30
2.4.4.1 Multiaxis Milling Machine Characteristics 2-31
2.4.4.2 Multiaxis Milling Machine Program Flow 2-33
2.4.5 Multihead Machines 2-37
2.4.5.1 Multihead Machine Characteristics 2-38
2.4.5.2 Multihead Machine Program Flow 2-44
3.0 DETAILED DESCRIPTION 3.0-1
3.1 Control Element 3.1-1
3.1.1 Postprocessor Initialization (GEINIT) 3.1-2
3.1.1.1 Selecting the Postprocessor and Machine

Subroutine 3.1-3
3.1.1.1.1 PTONLY/2 Run 3.1-5
3.2 Input Element 3.2-1
3.2.1 General Input Flow 3.2-1
3.2.1.1 Hexadecimal Tape Records 3.2-4
3.2.1.2 Non-hexadecimal Tape Records 3.2-4
3.2.2 Input Sequences for IBM System 360 and

RCA Spectra 70 Computers 3.2-5
3.2.3 Input Sequence for UNIVAC Computers 3.2-6

l;H:[NI I" POSTPROCESSOR ...for the computer programmer

TABLE OF CONTENTS (con't)

2.4 Input Sequence for GE600 Series Computer 3.2-6

2.5 Input Sequence for CDC Computers 3.2-7

.3 Auxiliary Element 3.3-1

3.1 Record Type 1000 - BCD Part Program
Statement 3.3-2

3.3.2 Record Type 2000 Postprocessor

Statement

Major Word List

Minor Word List

Record Type 3000 - Surface Data

Record Type 5000 - Motion Records

Record Type 6000 - ARELEM Flags

Record Type 9000 - ARELEM Parameters

Record Type 14000 - FINI

Motion Element

Obtaining Motion Data from the CL Tape

Motion Record Subtype

Subtype 3 FROM Point

Subtype 4 GODLTA Point

Subtype 5 GOTO Point

Subtype 6 Continuation Record

Processing A Motion Record

Processing A Linear Interpolation Motion

Segmentation of A Linear Move

Segmentation Proof

Processing a Circular Interpolation Motion

Special Case Conditions

Processing a Rotary Motion

Rotary Absolute System Processing

Rotary Incremental System Processing

Segmentation of a Rotary Move

Selecting the Preparatory Function G Code

Selecting the G Code for a Linear Move

Selecting the G Code for a Circular Move

Selecting the G Code for a Rotary Move

Processing a Multiaxis Motion

Multiaxis Circular Interpolation

Rotary Motion with ROTREF

Linearity Error and Correction

Description of Problem

Method of Solution

Processing Method of Subroutine LINRTY

Processing in a Multihead Environment

First-Pass Considerations

Second-Pass Considerations

Merging of Blocks

Single Feedrate Register Merging

Theory of Operation

Programmed Procedure

w w

*C WWWWWWs o
| w w

|

.
[\
1

e« ® s o
1 1
e
WOHMFOMOMOAANUVTIO JN

.
NooibdwihN
wWwwwww

B b wwwwwww

.

C WWW W
.
NGNS N
1

& w N
I

!
BB D W W N e e |

. o o
* o

s e
L) .
||

WWWWWWLWWWWWWWWWWwwWwww
. e * e * e ®
. e e o

e o o

NN

.

—
* e L]

I

=

¢ o
o
. .
1

L L]
WN
|

L S
|

L e g A R N N N N N)
|

¢ o
w N =

e o o o
. L] .
11

.
. e o & o
e o o

* e

[

wWWwwwhN

wNH-

L] e o
L
s ® L []
hhhhbu&n?hh&hn&hb»&
! |

. L]
.
i 1
WO NNIgoonoaou utul U

OOOWOVOWOOONNNINIJOAOAAO NIV U DWWWWNRNNDN DN

it R N R O T O N N N N T N N S N

WWWLLWwWWWwwWwWwWwWwWwwwwwwwwwwwwwwwwww

WWWWwWWWwWwWWwwuwwwwwwwwwwwwwww

o
] L]

N

1

HOUUWOYWIOOONONUINONAWHNWHOBNROOO

GHINI'" POSTPROCESSOR

...for the computer programmer

TABLE OF CONTENTS (con't)

Page
3.4.8.2.1. Double Feedrate Register Merging *
3.4.8.2.1. Theory of Operation *
3.4.8.2.1. Programmed Procedure *
3.4.8.2.1. Common Axis Segmentation 3.4-107
3.4.8.2.1. Theory of Operation 3.4-107
3.4.8.2.1. Programmed Procedure 3.4-114
3.4.8.2.2 Multihead Output 3.4-119
3.4.8.2.2.1 Linear-Linear 3.4-123
3.4.8.2,2.2 Linear-Circular or Circular-Linear 3.4-124
3.4.8.2.2.3 Circular-Circular 3.4-125
3.5 Output Element 3.5-1
3.5.1 Conversion to Tape Image 3.5-1
3.5.2 Printout Variable Format 3.5-2
3.5.3 General Output Flow 3.5-5
3.5.3.1 Initialization 3.5-6
3.5.3.2 Output Processing 3.5-8
3.5.4 GEOUT1 (Summary Printout) 3.5-15
3.5.4.1 Detailed Description of CALCPl 3.5-21
3.5.5 GEOUT2 (Combined Printout) 3.5-23
3.5.6 GEOUT3 (Multiple Printout - Multihead) 3.5-31
3.5.7 GEOUT4 (Multiple Printout - Non-multihead) 3.5-47
4.0 SPECIAL SEQUENCES 4-1
4.1 Feedrate 4-1
4,1.1 Contouring Feedrate Commands 4-2
4,1.1.1 Feedrate Number Command 4-3
4.1.1.2 Inverse Time Feedrate Command 4-8
4,1.1.3 EIA "Magic 3" Feedrate Command 4-10
4.1.2 Positioning Feedrate Commands 4-11
4.1.2.1 Feed Type 0 4-12
4.1.2.2 Feed Type 1 4-13
4,1.2.3 Feed Type 2 4-13
4.1.2.4 Feed Type 3 4-15
4.1.2.5 Feed Type 4 4-15
4.1.2.6 Feed Type 5 4-17
4.1.2.7 Feed Type 6 4-19
4.1.2.8 Feed Type 7 4-20
4.1.2.9 Feed Type 8 4-20
4,1.2.1 Feed Type 4-21
4.1.3 Positioning Machine Rotary Feedrate Command 4-22
4,1.3.1 Rotary Feed Type 1 4-22
4,1.4 Rapid Traverse 4-24
4,1.5 Feedrate Optimization 4-26
4,1.5.1 G Code Segmentation 4-26
4,1.5.2 Variable Maximum Feedrate on Each Axis - 4-=27
4,1.5.2.1 Variable Maximum Feedrate on Multiaxis
Machines 4-32

* TInformation not available for this distribution

GHINII" POSTPROCESSOR

...for the computer programmer

TABLE OF CONTENTS (con't)

L]

[S20K0; |
L] L]
> W

LR R T o S S e o i S S SN
. L] L] . * o
WWWNNPNNDNDNDNDNONNDODN =
L . L L4
VoJauld W

L] . . L] . * . .
S
'—l

. o
bW

L Y

¢« o o « o e
WwWwwwwww
> W NN
¢« o .
N =

e e

L S S S S Y

;oo ot ww
.
N =

Lo
. L] L]
=W w
.
|

Feedrate Multiplier Constant
Rapid Traverse Optimization
Multiaxis Transform Classes

Class
Class
Class
Class
Class
Class
Class
Class
Class

1

oo d WwWN

Acceleration-Deceleration Testing (A/D)
Servo Analysis of A/D Problem

Path Errors on Corners Formed by Two
Connecting Straight Lines

Location of Slowdown Point

Location of Speedup Point

Feedrate Limitation on Arcs
Non-Tangent Arcs

Derivation of Formulae

Undershoot Error on Corner When F

Feedrate on Circle

2 7. F
Due To Steady Sta%e

Servo Errors

A/D Dynamics Considered by the Postprocessor

A/D Programmed Procedure
Surface Feet Per Minute (SFM)
Spindle Types

Type
Type

Type
Type
Type
Type

Type
Type

Type
Type

Type

0:
1:

2:
3:
4:

5:
6:

7:
8.

9:

Combination Range and Row

EIA 3-Digit Code Number

(Variable Spindle)

Associated Speed Code

Protective Multiple Shifting
Associated Speed Code with Range
and/or Direction M Code

Quasi-EIA 3-Digit Code Number With
Range and Direction M Code
Discrete EIA 3-Digit Code Number
Discrete EIA 3-Digit Code Number-
Selective Search

(presently undefined)

Associated Speed Code Independent
Of Range

Associated Speed Code Related to
Tool Number

* Information not available for this distribution

G[[;[N] I" POSTPROCESSOR ...for the computer programmer

TABLE OF CONTENTS (con't) ‘ Page

4.5.11 Type 10: Variable Speed With Range and
Direction M Code 4-102
4,5.11.1 Type 10: Protective Multiple Shifting 4-103
4.5.12 Type 1ll: Table Lookup 4-104
4.5.13 Type 12: Spindle Command Equal to
Selected Speed 4-105
4,5.14 Type 13: Expanded Quasi EIA 3-Digit Code 4-105
4.5.15 Type 1l4: Speed Changes by Mode 4-107
4,5.16 Type 15: Ratio Between Ranges 4-108
4,5.17 Type 16: Spindle 4-111
4,.5,18 Type 17: Spindle 4-112
4.5.19 Type 18: Spindle 4-113
4.5.20 Type 19: Spindle 4-114
4.6 Threading Procedures 4-115
4.7 Automatic Reinstatement of Program
Conditions 4-122
4.8 Variable Format by G Code 4-125
4.9 Leading Zero Suppression 4-128
4,10 Dwell Blocks 4-128
4,11 OPSKIP Processing 4-130
4,12 Cut and Dwell Times 4-130
5.0 POSTPROCESSOR PROGRAM DETAILS 5-1
5.1 Labelled COMMONSs 5-1
5.1.1 " Parameter Definitions 5-3
5.1.2 Customer COMMON 5-59
5.2 Description of Subroutines 5-59
5.2.1 Subroutines in Each Overlay 5-60
5.3 Flow Charts 5-69
5.4 Cross Tracing of Subroutines 5-87
5.4.1 Subroutines Calling Subroutines 5-87
5.4.2 Subroutines Called By Subroutines 5-103
5.4.3 Computer Dependant Subroutines 5-117
5.5 Information Blocks 5-123
5.6 The Machine Subroutine 5-127
5.6.1 Table of Preparatory Functions (TABLEG) 5-130
5.6.2 Table of Miscellaneous Functions (TABLEM) 5-139
5.6.3 Table of Registers (REGSTR) 5-151
5.6.4 Table of Register Formats (REGFOR) 5-153
5.6.5 Table of Options (OPTAB) 5-159
5.6.5.1 Customer Options 5-217
5.6.5.2 Categorized Options *
5.6.5.3 Options Numerically Ordered (KWIK-OP) *

* Information not available for this distribution

GHIN]I" POSTPROCESSOR

...for the computer programmer

TABLE OF CONTENTS (con't)

e o o s s e ° o e o & o
N oo oo oo oo oy

(S E, O, NG, N, NE, NE RO O N, NN, NS,

] L] L] L] . L] L] .
00 CO 00 0O 00 0O ~I O O\ O O O
L] L] L] L]
W N

.
’_l

Writing a Machine Subroutine

TAG Array

TORDER Vector

FRTAB Table

Machine Subroutine Checklist

Machine Subroutine Functions (MACFUN)
Sample Machine Subroutines
Positioning Machine

Lathe

Three-Axis Mill

Multiaxis Mill

Multihead Machine (Lathe)

Error Diagnostics and Warning Comments
Fatal Errors

SUBROUTINE DESCRIPTIONS
APPENDIX

EIA "Magic 3" Conversion Method

Error Accumulation Analysis
Definitions and Abbreviations
Determination of Optimum Length for a
Rapid Traverse Move '
GECENT III Postprocessor Supplementary
Conditions of Sale

EIA Punched Paper Tape Code (RS-2443)
ASCII Punched Paper Tape Code (RS-358)
Arc Tangent Definitions

GECENT III Common Parameter Cross
Reference

-

G[C[N] "I POSTPROCESSOR ...for the computer programmer

1.0 INTRODUCTION

The GECENT* III Postprocessor System is a highly generalized,
modularized computer program for processing an APT CL tape for a
General Electric Mark Century numerical control system. Except
for a few output subroutines, the program is written in FORTRAN
IV and uses many of the FORTRAN IV capabilities such as: DATA
statements, logical IF statements, labelled COMMONs, and
overlays.

The GECENT III postprocessor is designed for all third generation
computers which have an APT system; it requires no more than the
equivalent complement of core that APT may use; for, depending
upon the NC machine type, the postprocessor may require as little
as 20K words of storage or as much as APT uses in one core load.
For multihead processing, the postprocessor requires two scratch
devices (TAPES2 and TAPES3).

Approximately five output subroutines are written in machine
language.** This was done to minimize computational time.

In order to overcome possible computer incompatibilities and also
to reduce subroutine compilation sizes, the floating point
numbers 0 through 5, 10, 100, and 360 are defined as FLZ, FL1 and
sO on. The integers 0 through 7 are defined as INTZ, INT1, INT2,
and so on.

The structure and design of the postprocessor adheres to the
recommended ALRP postprocessor guidelines, and consistancy with
EIA, ASA, and NAS standards has been kept.

bl
Processing through the postprocessor is in one pass for 214 NC
machines except multihead machines which inherently require two
passes. Processing speeds are extremely fast since optimum
programming methods have been utilized where possible.

* Trade mark of General Electric Co. *¥*¥ Only two machine
language subroutines are used with the IBM 360 System.

';[C[N] "I POSTPROCESSOR ...for the computer programmer

1.0 INTRODUCTION (cont'd)

The postprocessor can produce four types of printout and three
types of punched output. There are a number of other special
features which permit a greater ease in part programming and
increase the scope of applications. These are all itemized and
documented in detail.

Before proceeding, some important definitions must be
established. With respect to the word "command" as used in this
manual, a "command" refers to the programmed coded symbol fed to
the NC machine control; the command initiates the NC machine
action. Thus, a feedrate and a feedrate command, although
related, are two entirely different things. The feedrate is the
actual value rated in IPM, while the feedrate command is the
coded F number fed to the NC machine control. The same
interpretation applies to the spindle and spindle speed command.

In the same sense, a "command block" is a set of coded data in
command form which is fed to the NC machine control for the
execution of one or more functions.

The abbreviations NC for "Numerical Control", IPM for Inches Per
Minute, and RPM for Revolutions Per Minute are used throughout
this manual.

The convention of using 1lower case 1letters for the part
coordinates and capital 1letters for machine coordinates is
consistent throughout. Thus, xyzijk refer to the three 1linear
axes xyz of the part coordinate system, and ijk refer to the
direction cosines of the backward directed vector of the tool
axis. The corresponding machine coordinates are then XYZABC,
where XYZ are the linear axes and ABC are the rotary axes of the
NC machine.

The notation <¥erm$> is used to indicate that an integer result
is obtained from the terms in the brackets. For example,

X = 10 = 3.3333,
3

but

X = <¥> = 3.

-

G[[:[N] ”I POSTPROCESSOR ...for the computer programmer

1.0 INTRODUCTION (cont'd) REPLALE ™ mMP U/D?‘k'/‘?f" PELe e

One final but very important restriction must be mentioned; in
the use of the parameters TEMP and ITEMP which are located in
COMMON, TEMP is dimensioned at 10. These parameters serve the
general purpose of providing a temporary storage space for a
subroutine. In order to avoid any potential error, the rule is
never to use TEMP or ITEMP in any subroutine which calls another
subroutine (except 1library subroutines). For if subroutine A
uses TEMP and calls subroutine B which also uses TEMP, then
subroutine B will have destroyed TEMP for subroutine A. These
types of errors are extremely difficult to find, so for safety's
sake, the above restriction must be observed.

The parameter names in the body of the manual are IBM 360 names.
App;wu sEcTion 7,9 GIVES THF QEEEREEE FPAR A M ETER

CRoss PEFERENCE . 7HE SyrmBoc "R sPEc,Fres
N Mormser of PearwKks,

G[E[N] "I POSTPROCESSOR ...for the computer programmer

2.0 GENERAL DESCRIPTION

In the sections which follow there is given a brief but detailed
survey of the postprocessor, its theory of operation,
characteristics of programming flow, and general structure. A
discussion of each major NC machine type is made with particular
emphasis concerning the affect upon the logical structure and
flow of the rostprocessor.

Sections 2.1, 2.2, and 2.3 should be read for the general
overview of the postprocessor while the various subsections of
Section 4 should be consulted for information regarding a
particular type of NC machine.

2.1 THEORY OF OPERATION

The GECENT III postprocessor is a generalized, modularized system
of subroutines which optimizes processing operation by loading
and utilizing only those postprocessor segments required for a
given machine tool. The structure of the postprocessor is based
upon overlays which are selected at 1load time +to form the
requisite body of subroutines for postprocessing a part program.

The GECENT program is written completely in FORTRAN IV except for
basic output subroutines such as CONBCD. (See Section 2.4.2)
These subroutines have been deliberately kept in machine language
SO as to obtain maximum processing computer speed.

The GECENT III structure and theory of operation is based upon
the commonality of features which exist in postprocessors for the
various types of machine tools. In every postprocessor there are
common functions which must be performed; whereas, certain other
functions are required only for a specific type of NC machine.
By grouping these functions and using them as needed, it is
possible to put the postprocessor together at 1load time as a
function of the specific NC machine being processed.

Some items which are common to all postprocessors are: CL tape
reading, producing punched and printed output, processing of
standard postprocessor statements, such as, PARTNO, PPRINT,
MACHIN, and so on. These common functions are therefore grouped
together into the basic overlay.

In a similar manner, other postprocessor functions can be grouped
according to their common usage by positioning machines, lathes,
mills, or whatever the machine class may be.

(;[[:[N] "I POSTPROCESSOR ... for the computer programmer

2.1 THEORY OF OPERATION (cont'd)

In brief, the technique of operation is as follows. Upon entry
into APT Section IV, the postprocessor control element loads in
a basic overlay which represents the minimum structure of the
postprocessor. To this basic structure are added those overlay
modules which are required by the selected machine. These may
include the machine subroutine and possibly a spindle type
subroutine, interpolation module, and one of the multiple printed
output modules, as well as the main module for a lathe, mill, or
whatever type NC machine is being processed. In any event, after
primary initialization, there resides in core only those overlays
pertinent to the machine tool for which the given part program is
being processed.

An important point to note is that once the proper overlays are
established in core there is no further processing of the
overlays; that if, an overlay is not repeatedly pulled into core,
overlayed later by another overlay, then the original overlay
pulled is again, and so on. With the exception of the
initialization overlay, no other segment overlay is replaced
during the processing of any non-multihead machine tool part
program.

Multihead processing inherently requires a two-pass system to
merge the output data of each head. (See Section 2.4.5) In this
case, an additional overlay replaces the basic structure overlays
when head merging is performed. But once again there is no flip-
flopping of overlays.

It bears repeating: when an overlay is pulled into core, it
resides there wuntil its function is completed at which time it
may be overlayed by a new function overlay; but once used, it is
never pulled back into core.

‘;H:[NI ”I POSTPROCESSOR ... for the computer programmer

2.2 OVERLAY STRUCTURE

The general overlay structure is given in Diagram 2.2A

SECTION 0
GEMON
GEBASE
GEMFUN
GESPIN
GETERP
G G G G G G G G G G G G
E E E E E E E E E E E E
I P P L M F D Y W S M D
N L 0 A I L R T I P U U
I A S T L A A L N E L M
T D H L M F D o T P
G
E
M
A
X
S
‘GEOUT

Diagram 2.2A

(;[[:[N] "l POSTPROCESSOR ... for the computer programmer

2.2.1 NAMING CONVENTIONS FOR THE GECENT III POSTPROCESSOR

Each major overlay is identified by the prefix "GE". Cmas

o s ey Y o B e 7

Overlays Function

GEMON The monitor overlay which directs the selection
and processing of all other overlays.

GEINIT The initializing overlay which establishes the
starting conditions for postprocessing.

GEPLAD The planning overlay which preduces tool setups
and machinability features for positioning
machines

GEBASE The basic overlay which contains the postprocessor
subroutines common to all machine tools

GEPOS The position machine overlay

GELATH The lathe overlay

GEMILL The 3-axis mill overlay

GEMAXS The multiaxis overlay

GEMULT The multihead sequence overlay

GEOUT The output overlay

GETERP The interpolation overlay containing 1linear and
circular processing.

GEFLAM Flame cutter overlay

GEWIND Filament winder overlay

GEDRAF Drafting machine overlay

GESPEC Special purpose overlay

GEVTL Vertical turret lathe (special cases).

GEWELD Welding machine overlay

GEDUMP The error dump overlay

GH:[N] I” POSTPROCESSOR ... forthe computer programmer

2.2.2 OVERLAY LOADING TECHNIQUE

The method used in the GECENT III postprocessor to load the
proper overlay modules is to interrogate the table data provided
in the machine subroutine which has been selected by the input
part program. (See Section 5.6 for a description and usage of
the machine subroutine.)

When control is transferred to the postprocessor from APT Section
IV, the control monitor overlay GEMON pulls in the initialization
overlay GEINIT and transfers control to it. Within the GEINIT
overlay are contained the machine subroutines and other basic
initialization subroutines. The CL tape is read until the MACHIN
statement is found. When found, the machine number is used to
select and call the corresponding machine subroutine. For
example, the statement MACHIN/GECENT, 4 causes machine subroutine
MACHO4 to be selected and called.

When the machine subroutine is called, the machine tool
characteristic tables TABLEG, TABLEM, OPTAB, and SRTAB are set
up. The postprocessor can now determine the required overlays by
interrogating the pertinent option set in OPTAB. This is done
after control is returned to overlay GEMON.

Upon return to GEMON, overlay GEBASE is loaded in. The other
overlays are pulled in dependant upon the following option
settings:

If option 1 = 0, contouring is designated and overlay GETERP is
called.

If option 1 = 1, positioning is designated and overlay GEPOS is
called. (See Section 5.6.2 for the special negative setting of
this option.)

The technique of pulling in an overlay is dependant upon the
computer used. Most computers (€1 pull in an overlay when a
subroutine in that overlay is called from a higher level overlay.
Program control is then transferred +to the called subroutine.
Other computers ¢€(2) can pull in an overlay by name, as the
overlay GELATH, without necessarily transferring control to that
overlay. ‘

(1) For example: IBM360 Models 40, 50, 65, 75; UNIVAC 1107, 1108;
CDC 3600, 3800, 6400, 6600; RCA Spectra 70.
(2) For example: GE625, 635.

[;H:[NI "l POSTPROCESSOR ...for the computer programmer

2.2.2 OVERIAY LOADING TECHNIQUE (cont'd)

In the descriptions which follow, when reference is made to an
overlay being selected by an option, the actual loading of the
overlay occurs by either of the above mentioned two techniques.
For example, the reference to option 132 for a lathe implies that
the actual loading of the overlay takes place by either of the
following two methods:

(A) Pull in the overlay GELATH when a lathe subroutine is
required, e.g., subroutine SFMO.

(B) Pull in the overlay GELATH by name when option 132
is zero.

(See Section 5.4.1.2 for the complete description of the overlay
loading methods used by the different computers.)

Continuing with the selective loading of overlays:
When option 132 is 0, pull in GELATH.
When option 132 is 1, pull in GEMILL.

When option 132 is 2, positioning is designated, but GEPOS would
already be pulled in under control of option 1.

When option 132 is 3, pull in GEDRAF. (drafting machine) *
When option 132 is 4, pull in GEFLAM. (flame cutter) ¥

When option 132 is 5, pull in GEWELD. (welder) *

When option 132 is 6, pull in GEWIND. (filament winder) *

When option 132 is 7, pull in GEVTL. (vertical turret lathe) *
Other main overlays can be definéd and used as needed. |

If option 116 # 0, multiaxis processing is indicated and overlay
GEMAXS is called.

The GEOUT overlay can be one of five print sequences; viz.,
GEOUT1, GEOUT2, GEOUT3, or GEOUT4, See Section 3.5.

* These settings for option 132 are not currently used.

2-6

[;H;[NI ”I POSTPROCESSOR ...for the computer programmer

2.2. OVERLAY LOADING TECHNIQUE (cont'd)

If option 164 = 1, use GEOUT1.
If option 164 = 2, use GEOUT2.
If option 164 = 3, use GEOUT3 for multihead machines.

If option 164

]

4, use GEOUTH for non-multihead machines.

Other pertinent items for postprocessing, though not necessarily
for loading overlays, are:

A. Option 19 for spindle type. Any one of several types may be
used. (See Section 4.9.)

B. If option 133 is non-zero, a special function is to be
performed for the given machine tool. The particular MACFUN
will have to be used. (See Section 5.6.1.)

C. If the modifier PLAN is given in the MACHIN statement and
option 1 is + 1, the GEPLAD overlay is called in to process
and redevelop a new CL tape before continuing with the regular
GECENT III sequence. (See Section 4.10 on GEPLAD.)

D. If multihead postprocessing is in operation (flag MULTHD is
non-zero) , the overlay GEMULT is called in when the first pass
through the postprocessor is completed. (See Section 2.4.5 on
multihead processing.)

E. Whenever a fatal error occurs, the overlay GEDUMP is
automatically pulled in to produce a comprehensive print of
all the pertinent postprocessor parameters. (See Section
5.7.)

Once all of the overlays are loaded into core, control is given
to GEBASE which processes the entire CL tape, and upon
completion, returns control back to GEMON which then calls DISPAT
to return control back to APT Section IV.

...for the computer programmer

GHIN]'" ?OSTPROCESSOR

2.2.3 SAMPLE POSTPROCESSOR STRUCTURES

GEMON

AHZHEAQ®Q

GEBASE

GETERP

GELATH

GEOUT1

GEMON

HHZ A

(wih- allvics)}

GEBASE

GEMFUN

GEPOS

GEOUT1

GEMON

HHZHMEBEO

GEBASE

GETERP

GEMILL

GEMAXS

GEOUT4

Lathe

OPTAB(1)
OPTAB(132)
OPTAB (164)

Drill

OPTAB(1)
OPTAB(132)
OPTAB (133)
OPTAB(164)
MACHIN/GECENT,

Multiaxis

nun

nn

S0

- O O
o & 9
(@]

OPTAB(1)
OPTAB (116)
OPTAB (132)
OPTAB (164)

I nu

G[[:[Nl "I POSTPROCESSOR ...for the computer programmer

2.2 3 SAMPLE POSTPROCESSOR STRUCTURES (cont'd)

GEMON Multihead Mill
G

c GEBASE E OPTAB(1) = 0.
E M OPTAB(132) = 1.0
I GETERP U OPTAB(164) = 3.0
N L
T GEMILL T COMBIN is given
T designating multihead

GEOUT3 operation.

2.3 DESCRIPTION OF PROGRAM FLOW

The following is a brief description of the method and technique
used for processing a postprocessor statement. The method
described pertains to all machine types since there is no special
flow except for the special function MACFUN. (See Section
5.6.1).

Postprocessing begins in overlay GEBASE with a call to the input
subroutine INPUT which reads a CL . record. The record is
stored in the input buffers G‘gﬁii and ICLDAT. Program flow
proceeds as a function of the contents of the input arrays; i.e.,
the flow may be either for a motion record or for a non-motion
record. In either event, the postprocessor, in processing the
data of the input arrays, sets up the command block array DBFSEG
which ultimately is converted to BCD and made output.

The DBFSEG array is dimensioned at 30 to provide storage for all
possible letters of the alphabet and to allow room for other
output parameters. The first fifteen cells of the array have
specific assignments and are the cells most commonly used by
nearly all machine tools. The other cells (up to cell 26) are
used as required for machine tools which have multiple heads,
slides, or additional registers for various and uncommon
functions.

2-9

BICAT 11 rosrerocessor

...for the computer programmer

2.3.1 FIXED ORDER AND ASSIGNMENTS OF DBFSEG

The fixed assignments of DBFSEG are given below:

DBFSEG Function

1

s W N

~N o 0

11
12
13
14
15
16
18
19
20

Sequence number

Preparatory code

Primary coordinate axis, abscissa

Primary coordinate axis, ordinate

Third primary coordinate axis

Rotary axis (for a head)

Rotary axis (for a table)

Direction cosine or arc center offset for abscissa
Direction cosine or arc center offset for ordinate

Direction cosine or arc center offset for third
primary axis

Feedrate command

Spindle command

Tool or turret code

Miscellaneous code

command block identification code
Rapid traverse

Third rotary axis

Feedrate in IPM

Spindle speed in RPM

(N)
G)
(X)
(¥)
(2)
(3)
(B)
(1)
(J)
(K)

(F)
(S)
(T)
(M)
(CODE)
(R)
(C)

GH:[NI ”I POSTPROCESSOR ...for the computer programmer

2.3.1 FIXED ORDER AND ASSIGNMENT OF DBFSEG (cont!'d)

The letters in the right column represent the BCD letter address
for these registers as set up 1in the standard REGSTR table.
Actually, any letter or Hollerith character may be used, e.g.,
DBFSEG(2) can be assigned the letter H. The only requirement is
that the DBFSEG cell be used for its assigned function; in this
case H must be the preparatory code.

The DBFSEG array in being set upr is assigned a CODE number
(stored at DBFSEG(15)) which identifies the command block type,
since at output time each command block type is processed
differently. The command block CODE is used elswhere within the
postprocessor, but its primary function is for output branching
and subsequent processing.

The reason a command block is set up and identified with a CODE
(CBFSEG(15)) instead of being made direct output, is because
under certain circumstances the block must be saved for later
possible modification as a function of other blocks which will
either precede or follow its output. For example, a command
block's feedrate may be altered because of A/D
(acceleration/deceleration) restrictions; or the block may be
merged with other blocks for multihead sequencing. Thus, each
block must be uniquely identified so that the postprocessor knows
which course of operation to follow in processing that block.

(;H:[N] "I POSTPROCESSOR ... for the computer programmer

2.3.2 COMMAND BLOCK IDENTIFICATION CODES

Contouring linear move having increments AX, AY, AZ
Non-motion block having auxiliary code by itself
Rotary absolute move, absolute system

Rotary incremental move, incremental system

Turret corrective move (generated by NOW modifier)

A preparatory code by itself, not a dwell

postprocessor warning or error comment block
postprocessor information block; not made output

Circular move CLW in XY plane

CODE Identification
0

+1 Non-motion block

-1

+2

-2

+3 A FROM point

-3

+4 A dwell block

-4

+5 An END block

-5 A RESET block

+6 An INSERT block

-6 A BREAK block

+7‘ A PPRINT block

-7 A PARTNO block

+8 A TMARK block

-8 A LEADER block
+9 A

-9 A

+10

-10

Circular move CCIW in XY plane

l;H:[N] ”I POSTPROCESSOR ... for the computer programmer

2.3.2 COMMAND BLOCK IDENTIFICATION CODES (cont'd)

+11 Circular move CLW in ZX plane
-1 Circular move CCLW in ZX plane
+12 Circular move CLW in YZ

-12 Circular move CCLW in YZ plane

+13 A thread block with a five digit lead
-13 A thread block with a six digit lead

+14 A turret correction on head 1 and a motion on head
2(multihead processing) .

-14 A turret correction on head 1 and a motion on head
1(multihead processing).

+15 An auxiliary head motion having feed command in IPM.

+16 Position move in X and Y; generated by a GOTO
statement.

-16 A positioning move in Z; generated by a CYCLE
statement.

+17 An Op/n or PRFSEQ information block.
A combined multihead move using the head 1 feedrate.

-17 A combined multihead move using the head 2 feedrate.
+18 A FINI block.

Every command block must have an identifying CODE otherwise an
erroxr is assumed.

When the command block's basic elements have been set up and the
CODE determined, subroutine OUTPUT is called. For the
appropriate CODE, this subroutine adds the feedrate, spindle
command, sequence number, preparatory code, and auxiliary code,
and essentially completes the setup of the command block.

(;H:[NI l" POSTPROCESSOR ...for the computer programmer

2.3.2 COMMAND BLOCK IDENTIFICATION CODES (cont!®d)

After the command block DBFSEG has been completely set up, it is
then sent to GEOUT for output processing. At this time the cells
of DBFSEG contain the numeric value for each particular related
register that is to be made output, except when the command block
is in BCD, as for a PARTNO. These numeric values are in floating
point format but must be converted to BCD for output. This is
accomplished by subroutine CONBCD.

Values from DBFSEG are taken cell by cell, sent through
subroutine COMBCD, and the converted BCD equivalent is stored in
the output array BCDIMG. BCDIMG (dimensioned at 38) is
originally all blanks.

Each converted BCD equivalent from DBFSEG is stored in BCDIMG at
the location indicated by that particular register's order number
and value in the REGFOR table. This is explained in greater
detail in Section 2.4. At the top of each page is printed the
register symbols (as given by the REGSTR table), and each item
stored in BCDIMG is located at the cell which lines it up with
its related letter address in the title. When the setup of
BCDIMG is complete, it is printed.

The same 1line image is then prepared for punched output.* All
that is needed for punched output is to precede each cell value
with the appropriate letter address for that register. For
example, the sequence number 240 and preparatory code 01 may be
in BCDIMG (in BCD form) as:

* The print line image referred to here is for the Incremental
Printout only since this printout is a reflection of the

- punched tape for the NC machine. The Absolute and Operator
Printouts do not necessarily represent the punched tape data.

2-14

G[[;[N] "I POSTPROCESSOR ...for the computer programmer

2.3.2 COMMAND BLOCK IDENTIFICATION CODES (cont'd)

BCDIMG

240 01 é{

This line image, when printed places the values under their
appropriate register heading, as:

N G X Y yA
240 01 etc. etc. etc. etc.

Hence, by adding in the BCD register letter address, BCDIMG is
then ready for punching.

1 2 3 4 5 6

N ' 240 G 01 ég

Thus the Incremental Printout of each register value gives the
true representation of the punched output since the print image
is also the punch image. The punch subroutines do not punch
periods or blanks; however, for convenience the print image
carries these symbols.

When output is complete, program flow returns to GEBASE which
repeats the entire process.

GHINII" POSTPROCESSOR

...for the computer programmer

2.3.3 SCHEMATIC OF PROGRAM FLOW*

Y CL TAPE
240 1
o] Read 5000 2 (Assume a
CL tape g 2 motion record)
0 5
MAAAAAAASST
v SEDATACK LCLDAT
_ 240 1 240
Store in 5000 2 5000
e=DATACKNG 5 3 c
ICLDAT 0 p 5
0 5 0
‘ A 6
WANAAAAAAN
Process input 1 2 3 4 5 6 1516 17
arrays and set|- 24 é{ 5;
up DBFSEG DBFSEG a1 Ax| Ayl Az 0
Convert
DBFSEG to BCD
and set up BCDIMG 240 01 ;
BCDIMG
Y
B .
CDIMG 240 01 etc. etc. etc.
Set up BCDIMG
for punching
and then punCh N240G01 etc.
* Note: Processing here assumes no A/D or

multihead sequencing.

l;[[:[NI III POSTPROCESSOR ...forthe computer programmer

2.4 PROGRAM FLOW BY MACHINE TYPE

The GECENT III postprocessor handles a variety of machine tool
types among which are positioning machines, lathes, 3-axis mills,
multiaxis mills, multihead lathes and mills, welders, flame
cutters, and other special purpose machines. The prime
requirement for these and any other machine tools is that they be
equipped with a Mark Century numerical control system.

The design of the GECENT III postprocessor is such that at load
time the postprocessor is structured for the particular machine
tool type being processed. The program flow through each type
structure is basically the same, but there are certain variants
which are unique to each type. The main type structures are for
positioning machines (drills, grinders, boring machines, etc), 2
and 3-axis contouring, multiaxis milling, and multihead
processing.

Generally with Mark Century numerical controls, contouring
machine tools such as lathes and profile mills have an
incremental system, whereas positioning machine tools, such as
drills and boring mills, have an absolute system. (See Section
3.4 for definitions of these systems.) However, there are
exceptions, such as a lathe having a positioning, absolute
control, and a drill having a contouring, incremental control.
These exceptions are special cases and are treated in a manner
slightly different from the main types.

There are still other special cases, such as a filament winder or
an electronic beam welder, which are treated separately by a
special MACFUN sequence. (See Section 5.6.1.)

In the following description, contouring machines utilize an
incremental departure system and positioning machines utilize an
absolute coordinate system. Contouring machines which have a
rotary table are assumed to have an incremental system on the
rotary table also. Positioning machine tools which have a rotary
table are assumed to have an absolute system rotary table.

Program flow through GEMON, GEINIT, GEBASE, and GEOUT is always
the same for any machine tool type. It is generally only in the
specific machine tool type overlays that program flow takes a
different course or utilizes special functions. The description
in Section 2.3 clearly defines this standard flow.

GHIN]|" POSTPROCESSOR ... for the computer programmer

2.4 FROGRAM FLOW BY MACHINE TYPE (cont'd)

Section 2.2.2 described the manner in which the machine tool type
is structured in the postprocessor by selective overlay modules.

It is at this point in the program flow that the following
descriptions continue.

Section

GEMON

GEBASE

— —— — —

GEOUT

2.4.1 POSITIONING MACHINES

The positioning overlay structure has the configuration shown in
the diagram below. Although GEOUT1 is indicated, any of the
GEOUT's could be used. GEOUT1, however, is normally sufficient
for positioning machine printout verification.

Section 0

GEMON

GEBASE

GEPOS

GEOUT1

G[E[NI I" POSTPROCESSOR ...forthe computer programmer

2.4.1.1 POSITIONING MACHINE CHARACTERISTICS

The chief characteristic of the positioning sequence is that all
output motion data is in absolute coordinates, and, unless a
TRANS statement is given, the CL print coordinate points are
identical with the postprocessor output points. The same is true
for rotary table motions.

Positioning machines may have a rotary device other than a
positioning table, e.g., a rotary indexer or a table with a few
fixed positions. In all such cases, their operation either
relies upon an auxiliary function M code or an absolute rotary
register (A,B, or C). The important point to note here is that
these and any other devices on a positioning machine utilize an
absolute reference system which makes it possible to group the
subroutine representing these features into a common overlay.
This overlay is the GEPOS overlay.

Thus, the salient feature of GEPOS is that it is the main
processing element in the GECENT III postprocessor which uses an
absolute coordinate system.

Besides the absolute coordinate system, positioning machines also
normally have discrete feedrate values; that is, only certain
values are obtainable within a given minimum and maximum range.
For example, a machine tool may accept only an integer value of
feedrate in IPM in the range of 1 IPM to 20 IPM. A value of 3.7
would be unacceptable and would be converted to 4 IPM.

The feedrate command can be formulated from any one of several
positioning feedrate types. (See option 78.) For example, in a
Type 0 feed command, FC may be such that:

Fo=2*Fipy -

Other types are defined and illustrated in Section 4.1.2.

Positioning machines which have a rotary table may also have a
separate feedrate register for the table, and the rotary table
feedrate command may also be formulated from any one of several
types. (See Section 4.1.3).

l;[c[N] "I POSTPROCESSOR ...for the computer programmer

2,4.1.2 POSITIONING MACHINE PROGRAM FLOW

After the CL tape is read and the input arrays GLDATA‘:nd ICLDAT
are set up, subroutine GEBASE branches to subroutine MOTION for
any motion record (FROM, GODLTA, GOTO). Subroutine MOTION tests
option 1 which for a positive value branches to subroutine POSMOV
to process the move as a positioning move in an absolute systemn.

Subroutine POSMOV sets up DBFSEG with the motion and feedrate
values. Various positioning machines may have differing
requirements for their motion registers. Some machines will
accept the X, ¥, and Z values all in the same block, while others
require that Z be in a separate block following the XY block.
Subroutine POSMOV tests option 130 for this requirement and
produces the desiredform of output.

This subroutine also suppresses redundant X, Y, and 2 values
since these values are modal in the control.

In setting up DBFSEG with the motion values, the subroutine
assigns the command block value CODE to identify its condition
types. CODE 1is set to +16 if X, Y, and Z are stored in one
block. CODE also is +16 for X and Y in one block, and -16 for 2
in a block by itself.

The current feedrate is next added t FSEG. If the condition
is non-rapid, DBFSEG(11) is set to FED which 1is the closest
programmable feedrate in IPM available on the machine. If the
condition is for a rapid traverse, DBFSEG(11) is set to the rapid
value FRAPID; the value stored in DBFSEG(11) is made negative to
indicate a rapid traverse condition. (See Section 4.1.4.)

Finally, before outputting the command block, the absolute values
of X, Y, and Z are tested by subroutine TSTLIM for possible
transgression of the permissible slide limits. Warning comments
are printed which identify the axes limit transgressed. When
this is fulfilled, subroutine OUTPUT is called to complete the
setup of DBFSEG and to prepare it for eventual output.

Subroutine OUTPUT does this by adding in the CL tape record
number as the sequence number in DBFSEG(1), by adding in the CODE
to DBFSEG(15), by adding in the pending spindle command SPNCOM
(if any) to DBFSEG(12), and by adding in the pending auxiliary
function M code VALUEM (if any) to DBFSEG(14). GEOUT is then
called to produce the printed and punched output.

ﬂ[[:[Nl I" POSTPROCESSOR ...for the computer programmer

2.4.1.2 POSITIONING MACHINE PROGRAM FLOW (cont'd)

Regardless of which printed output sequence is used, the basic
output for a positioning machine always derives from the flow
described below.

Subroutine POSIT is called to suppress redundant X and Y values
as a function of option 40, and then subroutine POSFED is called
to convert the feedrate in IPM to the feedrate command code.

Subroutine POSFED tests option 78 for the required positioning
feedrate type and branches accordingly. (See Section 4.1.2 for
a description of each type positioning feedrate). It might occur
that the programmed feedrate in IPM may be changed because of its
unavailability in command form. For example, the programmed
feedrate is 2.4 IPM. However, in +this range, the table of
discrete feeds permits only 2.0 or 3.0 IPM. Therefore, the
postprocessor uses the feed command corresponding to 2.0 IPM and
changes the feedrate in IPM (FEDIPM) to 2.0 IPM. Hence, the
printed value of feedrate is the true value used and is not
necessarily the programmed feedrate.

The final function that is performed in GEOUT for a positioning
machine is to put the current spindle command in the command
block of DBFSEG(12) if the block contains a T code. This is to
ensure continuance of the proper speed after a tool change
occurs.

At this point in the program the command block is fully prepared
for output and is subsequently printed and punched. (See Section
3.5).

l;[c[Nl "I POSTPROCESSOR .. .for the computer programmer

2.4.2 LATHES

Section O

GEMON

GEBASE

GETERP

GELATH

GEOUT

A spindle type is also implied in the above structure.

2.4.2.1 LATHE CHARACTERISTICS

In nearly all cases, lathes employ an incremental contouring
system. The programmed cutter path as presented on the CL tape
is converted from its absolute coordinate form into one or more
incremental segments whose summation (disregarding a TRANS)
regenerates the origimal set of absolute data points within the
step size tolerance of the machine tool. For example, the path
from absolute X, Y coordinates (2, 6) to (6, U4) produces
increments AX=4, AY=-2. (See Section 3.4 for a complete
description of the methods used for producing incremental moves.)

Any incremental motion can be segmented into yet smaller
incremental motions. The path length may be segmented because
the original increment may be greater than the maximum allowable
departure (option 4). Any one of these segments could be further
segmented by the SFM sequence (See Section 4.5), and these
smaller segments still more segmented because of G code
optimization (See Section 4.1.5.1). In any event, the summation
of all these segments result in the original segment length.

The standard axes confiquration for a 1lathe per EIA and NAS
standards is +Z for the abscissa and -X for the ordinate. Part
programming is normally done in the first quadrant of the
standard rectangular Cartesian coordinate system, hence, the
postprocessor must rearrange and modify the XY data into its
required +Z-X output format. This rearranging is done per the
setting of option 59 and option 60. It is, of course, possible
to request any axes configuration desired; e.g., +X-Y, +X+Y, and
SO on. »

G[[;[N] I" POSTPROCESSOR ...for the computer programmer

2.4.2.1 LATHE CHARACTERISTICS (cont'd)

The feedrate ccmmand can be any one of the three contouring
types. (See option 10 and Section 4.1.1 for a complete
description.)

When a feedrate is programmed in an IPR mode, the postprocessor
converts it to IPM by multiplying the IPR value with the spindle
speed. The resultant feedrate in IPM is tested and made to be
within the minimum (option 48) and maximum (option 25) feedrate
value

Special functions normal for a lathe are threading, SFM, and
turret operations, hence, the related subroutines are located in
the GELATH overlay. Non-lathe type machine tools which have
these functions are treated by special subroutines or most
generally by a MACFUN. (See Section 5.6.1.)

2.4.2.2 LATHE PROGRAM FLOW

After the CL tape is read and the input arrays eaDATAFQnd ICLDAT
are set up, subroutine GEBASE branches to subroutine MOTION which
for a GOTO/ motion record calls subroutine TSTFLG. This
subroutine tests a series of flags for special conditions such as
a rapid traverse, reinstate, safety retract, and threading. (See
Section 4.0 for a description of these special conditions.)

Upon return from subroutine TSTFLG, subroutine MOTION tests
option 1 which for a zero value branches to subroutine GOLINE for
a linear interpolation move or to subroutine GOCIRC for a
circular interpolation move. (See Section 3.4.3 for a detailed
description of the linear interpolation mode processing and
Section 3.4.4 of the circular interpolation mode.)

Since program flow can proceed with either of these two modes,
each path is separately described.

2.4.2.2.1 LINEAR INTERPOLATION FLOW

In subroutine MOTION, the CL data points had been stored in the
part coordinate present point vector DPRESP. For a linear
interpolation move, program flow continues in subroutine GOLINE
where these data points are truncated and rounded to the machine
tool step size and then stored into the machine coordinate
present point vector DPRESM. This action occurs in subroutine
GEOM. For example, say the CL data point for X is 24.678891.

G[':[N] "I POSTPROCESSOR ...for the computer programmer

2.4.2.2.1 LINEAR INTERPOLATION FLOW (cont'd)

This value is stored in DPRESP(1). When subroutine GEOM is
called, this value is truncated and rounded by subroutine SRAREC
to become 24.6789, assuming the step size (option 14) to be
0.0001 inches. The rounded value is then stored in DPRESM(1).

Before leaving subroutine GEOM the postprocessor calls subroutine
TSTLIM to test the present machine point for possible violation
of slide limits. Warning comments are printed for all slide
violation. ‘

The postprocessor always works within the machine coordinate
system in generating additional segments, making A/D corrections,
computing departures, or in any sequence which deals with the
coordinate data.

Subroutine DEPART is called to produce the incremental departures
which are computed as the difference between the present and
previous machine points e.g.,

AX=DPRESM(1) - DPREVM(1).

The departures are now checked to see if any one of them exceeds
the maximum allowable departure (option 4). If any departure is
too great, subroutine SEGMNT is called to segment the programmed
path 1into sufficiently small segments, such that each axis
departure of each segment is less than or equal to the maximum
departure.

When the departures are acceptable and computed through
subroutine DEPART, the incremental values of each axis departure
are stored in DBFSEG, i.e., AX is stored in DBFSEG(3), AY in
DBFSEG(4), and for non-lathes, AZ in DBFSEG (5).

Two key flags are now tested to see if the program flow should be
rerouted for special items. The flag SFMFLG is checked; and if
non-zero, program flow is diverted +to subroutine SFMO which
produces and outputs a series of segments based upon the required
spindle speed variations to produce the desired SFM effect. (See
Section 4.5.)

The other key flag is the threading flag THFLAG which, if non-
zero, calls in the threading sequence THREDO. This subroutine
generates its own special output command block. (See Section
u.6-)

2-24

[;[[;[Nl III POSTPROCESSOR ...for the computer programmer

2.4.2.2.1 LINEAR INTERPOLATION FLOW (cont'd)

For 1linear moves the command block identifier CODE is set to
zero.

At this point in the program flow for linear moves DBFSEG(3),
(4) , and (5) are set to their respective AX, AY, AZ values, and
CODE=0. Subroutine OUTPUT is then called to complete the setup
and eventual output of DBFSEG. This description continues in
Section 2.4.2.2.3.

2.4.2.2.2 CIRCULAR INTERPOLATION FLOW

In subroutine MOTION, the CL data points had been stored in the
part coordinate present point vector DPRESP. For a circular
interpolation move (CIRFLG#0), program flow continues in
subroutine GOCIRC. The procedures for circular interpolation are
discussed in detail in Section 3.4.4 and should be referred to
for complete understanding. But, in brief, what takes place is
that the circle data are reduced to their axes interception
points which are stored in an array called DBUFER. Each point is
in turn taken from DBUFER and individually processed to produce
the incremental departures.

For example, assume the circle when plotted with its center at
the origin looks like:

The circular interpolation sequence uses the CL data to determine
the circle direction (CCLW), the plane of the circle (XY), the
quadrants covered by the circle (quadrants I, II, III), and the
axes interception points (B,C). The coordinate values of the
points B, C, and D are stored into DBUFER.

l;H:[NI I" POSTPROCESSOR ... for the computer programmer

2.4.2.2.2 CIRCULAR INTERPOILATION FLOW (cont'd)

Subroutine PROCQD selects each point from DBUFER and stores it
into the part coordinate present point vector DPRESP. Processing
continues exactly as described in Section 2.4.2.2.1 for a linear
move except that in addition to computing the departures, the
postprocessor also computes the arc center offsets through
subroutine OFFARC. :

The arc center offset for each axis is the absolute value of the
incremental distance between the coordinate value of the circle's
center and the coordinate value at the beginning point of the

arc, i.e., (Arc Center Offset) = |c, - DPREVP (1)l

The arc center offsets are stored in DBFSEG(8), (9), and (10) and
correspond respectively to the X, Y, and 2 registers for
DBFSEG(3), (4), and (5).
For circular moves the command block identifier code is:

+10 for CLW in the XY plane

-10 for CCLW in the XY plane

+11 for CLW in the ZX plane

-11 for CCLW in the ZX plane

+12 for CIW in the YZ plane

-12 for CCLW in the YZ plane
At this point in the program flow for circular interpolation
moves, DBFSEG(3), (4), and (5) are set to their respective AX,
AY, AZ wvalues; DBFSEG(8), (9), (10) are set to their arc center
offset values, and CODE =+10, +11, or #12. Subroutine OUTPUT is
then called to complete the setup and eventual output of DBFSEG.

2.4.2.2.3 OUTPUT OF AN INCREMENTAL MOVE

Subroutine OUTPUT completes the setup of the command block DBFSEG
and prepares it for eventual output. The CL tape record number
is added to DBFSEG(1) and CODE is stored in DBFSEG(15).

The feedrate in IPM is next added to DBFSEG(11). If a rapid
traverse is in mode (FRAPID # 0), the rapid feedrate is used,
otherwise the current feedrate FEDIPM is used.

[;[[:[Nl ”I POSTPROCESSOR ...forthe computer programmer

2.4.2.2.3 OUTPUT OF AN INCREMENTAL MOVE (cont'd)

All incremental moves require a dimension preparatory function G
code which is selected according to the increment size (See
Section 3.4.5.) Subroutine OUTPUT calls SELG to perform this
function. For linear moves, this subroutine obtains a G code
which is compatible with the path length of each of the linear
slide motions. If the move is a circular interpolation move,
then the subroutine obtains a G code which is compatible with the
circle's radius and direction of arc (CLW or CCLW). After
subroutine SELG obtains the proper G code, it stores it in
DBFSEG (2) .

A check is made to see if axis feedrate limitations vary on each
axis; if so, subroutine FEDLIM is called to check and modify the
feedrate accordingly. (See Section 4.1.5.2 for the complete
description of this technique.) The feedrate, if modified, is
again left in DBFSEG(11).

The command block DBFSEG is completed by adding the current
spindle command, SPNCOM to DBFSEG(12), and the pending auxiliary
function M code, VALUEM to DBFSEG(14). SPNCOM and VALUEM are
DMBITS if there is no pending value. GBOUT is then called to
produce the printed and punched output.

Regardless of which printed output sequence is used, the basic
output for any incremental move always follows the flow sequence
described below.

The first act performed for DBFSEG is to reorder it per the
requested settings of options 59 and 60. Subroutine SHUFFL
switches cell 1locations and makes the necessary modifications.
For example, for a standard lathe option 59 is set so as to have
the X value become the Z value, and the Y value to be a negative
X value. Hence, if DBFSEG is set as

100 1 8.2 4.8 |DMBITS | }

N G X Y Z

: 100 1 -4.8 |pMBITS | 8.2 ;

l;[c[NI I" POSTPROCESSOR ...for the computer programmer

2.4.2.2.3 OUTPUT OF AN INCREMENTAL MOVE (cont'd)

The shuffling effect is dependant wupon the ISHVEC vector
established in subroutine DECODE in GEINIT. (See Section 3.5).

A test is next made of option 143 to determine whether the
sequence number should remain as the CL tape record number or to
make it a unit increasing number. If the latter choice is
indicated (option 143 # 0), the unit number SEQNEW is stored in

DBFSEG(1).

Subroutine CONTUR is now called to convert the feedrate in IPM to
its feedrate command form. This conversion is done for either a
linear or a circular interpolation move for any one of the three
available contouring feedrate command formats (option 10) .
Furthermore, optimization of the feedrate by use of a multiplying
constant in registers I, J, and K is done; or if the feedrate is
for a rapid traverse, slide feedrates are used to maximize the
rapid feedrate vector. (See Section 4.0 for a detailed
description of each of these items.)

Subroutine FVARGO is called if the machine tool has a F command
format which varies as a function of the preparatory G code.
(See Section 4.1.1.2)

Further tests are made to ensure that the feedrate is not tape
reader limited, and that the feed command is within the minimum
and maximum allowable feed command range.

At the completion of all these tests, the feedrate in IPM is
redetermined from the derived feedrate command number in the
event that the feed command was not directly converted from the
original value of feedrate in IPM. The derived feed command is
stored into DBFSEG(11), and the corresponding feedrate in IPM is
saved for eventual printing in the Absolute Printout.

Before exiting from subroutine CONTUR, the cut time for the move
is ccmputed and saved.

Continuing in GEOUT, redundancies of G, F, and S are Suppressed
as requested by option settings.

At this point in the program the command block is fully prepared

to output, and is subsequernily printed and punched per Section
3.5.

2-28

GH:[NI “I POSTPROCESSOR ...for the computer programmer

2.4.3 THREE-AXIS MILLING MACHINES

The following structure illustrates a typical milling overlay
configuration. Note that any of the GEOUT's may be used for
output purposes.

A spindle type is also implied though not specified in the
configuration.

Section 0

GEMON

GEBASE

GETERP

GEMILL

GEOUT

2.4.3.1 MILLING MACHINE CHARACTERISTICS

To date, all milling machines employ incremental contouring
systems.

The programmed cutter path as presented on the CL tape is
converted from its absolute coordinate form into one or more
incremental segments whose summation (disregarding a TRANS)
regenerates the original set of absolute data points within the
step size tolerance of the machine tool. For example, the path
from absolute X, Y coordinates (2,6) to (6,4) produces increments
AX=4, AYy=-2. (See Section 3.4.3 for a complete description of
the methods used for producing incremental moves.)

Any incremental motion may be segmented into yet smaller
incremental motions. The path length may be segmented because
the original increment may be greater than the maximum allowable
departure (option 4). These segments may be further segmented
because of A/D consideration, and because of G code optimization
(See section 4.1.5.1). In any event, the summation of all these
segments results in the original segment length.

The feedrate command can be any one of the three contouring
types. (See option 10 and Section 4.1.1 for a complete
description.)

l;[c[NI "I POSTPROCESSOR ...for the computer programmer

2.4.3.1 MILLING MACHINE CHARACTERISTICS (cont'd)

A tool changer (if any) is considered to be a normal function of
a mill, therefore, the related subroutines for effecting a tool
change are all 1located in the GEMILL overlay. Special purpose
tool changers, which require a return to a home position or any
other special operation, are handled by special subroutines or
most generally by a MACFUN. (See Section 5.6.1.)

2.4.3.2 MILLING MACHINE PROGRAM FLOW

The program flow for a non-multiaxis milling machine is identical
with the sequence described in Section 2.4.2.2 for a lathe. The
only exceptions are the references made to SFM and threading. In
the case of a milling machine, a special SFM and thread sequence
are used since their operations are different from a lathe.

2.4.4 MULTIAXIS MILLING MACHINES

The overlay structure of the multiaxis configuration is like that
of a three-axis mill except that the additional overlay GEMAXS is
added. In the diagram, the overlay GECLAS is indicated to
emphasize the point that multiaxis processing requires the set of
transformation relations for converting from part coordinates to
machine coordinates.

The GEOUT referred to in the diagram must be GEOUT2, GEOUT3, or
GEOUT4; GEOUT1 cannot be used because of the insufficient number
of columns normally available on standard print sheets.

Section 0

GEMON

GEBASE

GETERP

GEMILL

GECLAS

GEMAXS

GEOUT

G[G[N] I" POSTPROCESSOR ...for the computer programmer

2.4.4.1 MULTIAXIS MILLING MACHINE CHARACTERISTICS

All multiaxis mills with Mark Century numerical controls utilize
an incremental contouring system. The definitive characteristic
of any multiaxis machine tool is the fact that the machine tool
must have at least one rotary axis in addition to its translatory
axes which can all move simultaneously. However, each rotary
motion can be separately and independently moved, as can each
translatory axis.

The rotary motions (table or head) when made output can be one of
several forms of output units. (See option 118 for the available
forms.) The translatory slides are always in inches or in
millimeters in the metric system.

Z

A

Diagram 2.4.4.1A

(Other classes are defined and further explained in Section 4.2)

GH;[N] I" POSTPROCESSOR ... for the computer programmer

2.4.4.1 MULTIAXIS MILLING MACHINE CHARACTERISTICS (cont'd)

The CL data for any motion are presented on the CL tape in
absolute part coordinate form. Each point of the path is
represented by the algebraic absolute (x,y,z) values accompanied
by the direction cosines of the backward-directed vector of the
tool. However, in order to function properly within the machine,
the part coordinate data must be converted to the machine
coordinate system.

The conversion of part coordinate data to machine coordinate data
relies upon a set of transformation equations which are unique
and dependant upon the axes configuration of each particular
machine tool. In the GECENT III postprocessor these transforms
are defined by the class in which they appear. For example,
machine tools which have the axes configuration which conform to
diagram 2.4.4.1A are said to have a Class 1 set of
transformations. :

A point taken from the CL tape is converted through the class
transformation equations to become the corresponding value in
machine coordinates. This conversion implicitly interprets the
tool axis orientation in terms of rotory motions. Thus the part
coordinates and direction cosines (x, y, 2, i, Jj, k) are
converted to the machine coordinates (X, ¥, Z, A, B, C).

In addition to the segmentation sequences mentioned for 3-axis
mills in Section 2.4.3.1, multiaxis processing can also include
a segmentation due to the so-called "linearity" effect.
Actually, the effect is produced because of the non-linear motion
of the tool tip during a combined simultaneous motion of the
linear and rotary axes. (See Section 3.4.7.3 for a detailed
description of the linearity problem.)

The feedrate ccmmand can be any one of the three contouring
types. (See option 10 and Section 4.1.1 for a complete
description.)

The rotary motions of a multiaxis machine are always of an
incremental type and do not position to any given absolute value.
The postprocessor gives the part programmer the capability of
programming the table as if it were an absolute reference systen,
but the actual rotary output is always an incremental move.

Rotary motions can be of several possible types, among which are

rotary tables, rotary heads, swiveling heads, tilting tables,
rotating columns, and so on. ,

2-32

G[C[N] I” POSTPROCESSOR ...forthe computer programmer

2.4.4.1 MULTIAXIS MILLING MACHINE CHARACTERISTICS (cont'd)

There are some other special purpose sequences for a multiaxis
mill, e.g., overcenter cutting, pallet changing, and these are
all located in the GEMAXS overlay.

Special purpose tool changers which require a return to a home

position or other special operation, are handled by special
subroutines or most generally by a MACFUN. (See Section 5.6.1.)

2.4.4.2 MULTIAXIS MILLING MACHINE PROGRAM FLOW

The program flow for a multiaxis mill is essentially the same as
for a NON-MULTIAXIS mill; the chief exceptions are that the
multiaxis flow must convert the part coordinates to machine
coordinates, and the rotary motions must be considered in the
determination of incremental departures and feedrate command.

The description of program flow both for 1linear and circular
interpolation is given in Section 2.4.2.2 for a lathe. The flow
for a multiaxis machine follows that description except for some
additional steps which are given here.

When subroutine GEOM is called, it in turn calls GEOM5 which
calls subroutine CLASS, which employs the desired set of
transforms for the machine tool class. This is specified in
option 116. The part coordinates are transformed to machine
coordinates and truncated and rounded to the machine tool step
size. Rotary axes truncation and rounding is done by subroutine
SROREC.

For example, the CL data are stored in the present point part
coordinate vector as,

DPRESP (1) = 2.43682107 (x)
DPRESP (2)= =-13.24680110 (y)
DPRESP (3) = 0.01234567 (z)
DPRESP (4) = 0.00000000 (i)
DPRESP (5) = 0.00000000 (3)
DPRESP (6) = 1.00000000 (k)

2-33

(;H:[NI "I POSTPROCESSOR ...for the computer programmer

2.4.4.2 MULTIAXIS MILL PROGRAM FILOW (cont'd)

Transformed, truncated, and rounded they are stored in the
present machine point vector as,

DPRESM(1)= 22.6688 , (X)
DPRESM (2) = 1.2468 (Y)
DPRESM(3) = =5.0471 (2)
DPRESM(4)= 15.6740 (A)
DPRESM (5) = 0.1234 (B)

Subroutine DEPART calls subroutine ROTMOV in order to compute the
rotary departures. An important point to note is that the rotary
moves are always kept in terms of their output units rather than
in radians. This minimizes the processing time in that no
conversion to and from output units is ever required.

Another function performed by subroutine ROTMOV, is that it
always makes the absolute position of rotary moves positive and
less than 360 degrees. For example absolute location of -400
degrees 1is made to be 320 degrees. Subroutine ROTMOV puts the
rotary departures into DBFSEG(6) and (7). A convention of the
postprocessor 1is that the head register is related to DBFSEG(6),
while the table to DBFSEG(7) . This is merely a convention and
not a set rule.

After checking the linear departures versus the allowable maximum
linear departure, similar tests are made with the rotary
departures versus the rotary maximum departure. Subroutine
SEGMNT is called if any maximum departure is exceeded.

When a segment is acceptable, several flags are tested to
determine whether or not linearity testing should be performed.
If so, subroutine LINRTY is called upon to produce the requisite
number of segments to remove any "linearity" error. (See Section
3.4.7.3 for a detailed discussion of this subject.)

An important feature to be noted here is that when a departure
exceeds the maximum departure and linearity testing is desired,
subroutine SEGMNT is not immediately called upon to segment the
path 1length to the necessary segments, but, rather, subroutine
LINRTY is used since the expectation is that the path length will
be sufficiently segmented in order to correct the "linearity"
error.

2-34

"t

GH;[N] ”l POSTPROCESSOR ...forthe computer programmer

2.4.4.2 MULTIAXIS MILL PROGRAM FLOW (cont'd)

A multiaxis move has motions both in the rotary and linear axes,
but the posprocessor treats the move as if it were simply a
linear motion; therefore a multiaxis motion command block is
still identified by a CODE of zero.

An apparent contradiction can occur in command block identity.
Rotary moves by themselves, when generated by a ROTATE statement,
have their command blocks identified by CODE = -2. However, it
is possible that in a multiaxis motion that AX, AY and AZ are
zero, and only AA or AB are non-zero. Yet the command block CODE
is still zero. This actually leads to no problem, and it is
important that the command block generation source be known. The
CODE uniquely identifies the source.

At this point in the program flow for linear multiaxis moves,
DBFSEG(3), (4), (5), (6), and (7) are set to their respective
AX,AY,AZ,AA, AB values, and CODE =0. Subroutine OUTPUT is then
called to complete the setup and eventual output of DBFSEG is as
described in Section 2.4.2.2.

Circular interpolation for multiaxis machines require an
analogous determination of the equivalent of rotary axes "arc
center offsets". These are normally the registers
D (corresponding to the rotary A register) and E(corresponding to
the rotary B register). These are not actually arc center
offsets and are referred to as supplementary constants.

After subroutine GOCIRC has determined the axes interception
points and stored them in the array BUFFER, subroutine PROCQD
proceeds to process and output the points. For two- or three-
axis machines, each interception point is merely the (x,y,z)
coordinate value; but for multiaxis processing the tool axis
vector direction cosines must be known. Therefore, subroutine
PROCOD must determine the (i, j,k) values at each interception
point before processing and outputting the point. (See Section
3.4.7.1 for the complete description of this technique.)

In addition to generating the tool axis direction cosines,
subroutine PROCQD also outputs an information block. (See
Section 5.5). This information block carries the angle of arc
and circle radius which are information necessary in the
determination of the feedrate command for a circular
interpolation move.

GHIN]'" POSTPROCESSOR ...for the computer programmer

2.4.4.2 MULTIAXIS MILL PROGRAM FLOW (cont'd)

Multiaxis circular interpolation moves are processed and made
output with the same CODE value as for non-multiaxis moves.
Hence, at this point in the program flow, DBFSEG(3), (4), (5),
(6), and (7) are set to their respective AX, AY, AZ, AA, AB
values; DBFSEG(8), (9), (10) to their arc center offset values,
and DBFSEG(16) and (17) for the rotary supplementary constants D
and E. The value of CODE is #10, +11, or +12. Subroutine OUTPUT
is then called to complete the setup and eventual output of
DBF'SEG.

When subroutine OUTPUT calls SELG to obtain the dimensional
preparatory function G code, subroutine SELG first obtains the
proper G code compatible with the linear (or circular) moves as
described earlier. Then subroutine SELG calls subroutine SELGRO
which accepts the already determined G code if it is compatible
with the rotary moves; but if not, subroutine SELGRO obtains a G
code compatible with both the linear (or circular) and rotary
moves.

Output of a linear interpolation multiaxis move is essentially
the same as for a nomrmultiaxis move, the main exception being
that the effect of the rotary motions must be considered in the
calculation of the feedrate command. In subroutine CONTUR, where
this calculation is done, the postprocessor uses the part
coordinate path length rather than attempting to find the machine
coordinate space curve.

A circular interpolation multiaxis move computes a feedrate
command from a different formula than does a non-multiaxis move,
but otherwise all program flow is identical. (See Section
u.1.1~)

Processing of a multiaxis move requires no other special
sequences in any of the permissible GEOUT's. In rather routine
steps, the rotary motions are converted to an absolute location
in degrees for printing in the Absolute Printout. The influence
of the rotary motions is considered in other determinations such
as the cut time, block read time, feedrate optimization, and so
on, but these sequences, in effect, deal with all departures in
a standard routine manner. There is no special branching for
multiaxis processing.

At this point in the program, the command block is fully prepared

for output and is subsequently printed and punched per Section
3‘5- .

2-36

[:H:[NI I” POSTPROCESSOR ...for the computer programmer

2.4.5 MULTIHEAD MACHINES

The general overlay structure for a multihead configuration is
illustrated below for a mill, but such a structure also applies
to a positioning machine, lathe, multiaxis mill, or any other
available machine type.

Section 0

GEMON

GEBASE

GETERP GEMULT

GEMILL

GEOUT3

A spindle type is also implied in the above structure.

The key overlay for all multihead machines is GEMULT which is the
main sequence for all multihead processing. Inherently, all
multihead processing is a two-pass system; the first pass
processes the CL tape for both heads individually, and the second
pass merges the data for combined motion and output. In the
overlay diagram, the second-pass GEMULT overlay replaces the
first-pass overlays GEBASE, GETERP, and GEMILL.

Because of the 1large number of registers normally found on
multiaxis machines, it is mandatory to use GEOUT3 as the output
element. However, any one or combination of the three printouts
can be obtained through option 17.

[;H:[NI |" POSTPROCESSOR ...for the computer programmer

2.4.5.1 MULTIHEAD MACHINE CHARACTERISTICS

Generally speaking, most multihead machines are incremental
contouring systems, but it is quite possible to have multihead
absolute positioning systems as well. The chief characteristic
of all multihead machines is that the NC machine must have more
than one cutting head which can act simultaneously and
independently of the other head(s). Machines with multiple heads
which act 1in tandem, or are slave heads, or are mirror image
operators, are not considered to be multihead machines. To be
considered multihead, each head on the machine must be separately
programmable so that single head operation or combined multihead
simultaneous operation is obtainable.

There are other distinguishing features that a multihead machine
may have, and these most commonly pertain to the heads. For
example, depending upon the type of control system furnished,
each head may or may not have its own feedrate register. This is
a very important feature because a different type of merging
process 1is used for each condition when simultaneous head
operation is in effect.

An example will clarify the two methods. 1In diagram 2.4.5.1A is
illustrated a simultaneous cut path for two heads.

Head 1

v

Head 2

Diagram 2.4.5.1A

l;[[;[N] I” POSTPROCESSOR ...for the computer programmer

2.4.5.1 MULTIHEAD MACHINE CHARACTERISTICS (cont'd)

If the NC machine has only one feedrate register, the paths are
segmented for equal times and may appear as shown in Diagram
2.4.5.1B, for when both heads share a common feedrate register,
the merging process segments each head's cutter path so that
identical times are produced for each head. (See Section 3.4.8
for a detailed description of the multihead merging technique.)

Head 1 (Feedrate = 20 IPM)

Sy

oy
A /

/
D IE

A~

Head 2 (Feedrate = 10 IPM)

Diagram 2.4.5.1B

Path AB is segmented at S, so that the segments AS.-DE are output
as a merged block, as are“also the segments S18,-EF, S3B-FS3, BSy
-S3 G, and SyC-GSg. Head 1 will park at point C and wait until
Head 2 completes the segment SgH.

The location of the generated segment paints S;, S;, and so on,
are a function of the feedrates programmed for Head 1 and Head 2.
If the feedrates are the same for both heads, then the points of
segmentation are always laterally coincident with the other
head's path end. This is illustrated in Diagram 2.4.5.1C.

G[t[”] I“ POSTPROCESSOR ...for the computer programmer

2.4.5.1 MULTIHEAD MACHINE CHARACTERISTICS (cont'd)

' C
S
S, S, B 4 |
|
| | | | | | H
D | o |
e\ | o
I l Sg
| | |
F S3 G

Diagram 2.4.5.1C

(See Section 3.4.8.2.1.1 for a complete description of the
single-register technique.)

When each head has its own feedrate register, a different
technique 1is used; now there is no need to segment the paths in
order to obtain equal times. Instead, the cutter path for one
head is made output separately as long as the other head has a
path remnant to complete; thus, whichever head has the 1longest
cut time, the other head will output the shorter (in time) paths
until it becomes the head with the 1longer cut time. This
technique will become comprehensible by considering the example
as illustrated in Diagram 2.4.5.1D.

Head 1 (Feedrate = 10 IPM)

I
2 \> : <o
NS—

Head 2 (Feedrate = 10 IPM)

6-40

GH:[N] I" POSTPROCESSOR ...for the computer programmer

2.4.5.1 MULTIHEAD MACHINE CHARACTERISTICS (cont'd)

Initially, both heads must have their first paths combined: but
thereafter, except for a rare circumstance, each head command
block is output separately in an uncombined form.

Thus, initially the combined paths AB--DE are made output and the
times T, and T, are computed. Since T, >T, , when path DE is
completed Heaa 2 reads in path EF and computes T3.

Since Tl>(T2+T) » when path EF is completed, Head 2 reads in path
FG and computes T4

Since (T, +T,+T,)>T,, when path AB is completed, Head 1 reads in
4 2 "3 1
path BC and cOmputes T5.

Since (T,+T 5)> (T +T3+T). when path FG is completed, Head 2 reads
in path &H and computes T6’ and so on.

Note that except for the initial start-up, there has been ‘no
merging of command blocks; the only time when blocks must be
merged is when the summated times for each head are equal, i.e.,

n n
Sn) - [

i=1 j=1
Head 1 Head 2

for when this condition occurs, both heads are at the same
relative point as when initially starting.

Some NC machines may have circular interpolation in addition to
the regular 1linear interpolation. Thus, it is possible to have
mixed or the same interpolation modes on each head, e.g., 1linear
on Head 1 and circular on Head 2, and so on. It must be
understood, however, that these mixing capabilities are not
always possible on every NC machine control combination:
therefore, the fact that a multihead NC machine has both
interpolation modes available does not necessarily mean that any
combination can ke applied to the heads.

Multihead machines often require a sharing of some item which is
common to all heads. For example, the spindle speed on a
multihead lathe or the feedrate register on single register
controller. During the course of a part program, conditions may
occur which, in effect, produce different values of the same item
for each head. On a two headed lathe during a SFM mode, one head
can easily generate a spindle speed which is completely

[;[(:[N] "I POSTPROCESSOR ...for the computer programmer

2.4.5.1 MULTIHEAD MACHINE CHARACTERISTICS (cont'd)

different from the other head. The question arises: which is
the wvalid spindle speed? The answer is that both speeds are
valid, but one speed is more important than the other; and only
the part programmer knows which head has the highest priority.
The postprocessor language available permits the part programmer
to designate which head is the priority head, and the
postprocessor accordingly selects from multiple-choice items.

Many conditions can arise during a multihead cutting sequence
wherein one head stops cutting because it had completed its
operation before the other head or for some other reason must
stop cutting. When such a circumstance occurs, the non-operating
head 1is usually parked, i.e., withdrawn from the workpiece and
left to dwell until simultaneous or single-head operation can be
continued. Parking frequently occurs when the NC machine has
axis common to both heads.

After a head is parked and is to be brought back into operation,
the postprocessor requires that the other head be first parked,
and then both heads be brought into operation simultaneously.
Synchronous motion is thereby achieved.

When a multihead machine has an axis common to all heads, it is
necessary to ensure that motions along the common axis are
identical for all heads. This requires a segmentation sequence
which generates segments based upon equal value lengths of the
common axis. (See Section 3.4.8.2.1.3 for a detailed description
of this method.)

Diagram 2.4.5.1E illustrates the problem that exists when both
heads share a common axis, the X axis in this example. For Head
1 and Head 2 to cut simultaneously along the X axis, the
incremental motion in X must Dbe identical for each head;
futhermore, the X-axis component feedrate for each head must also
either be equal or within some allowable tolerance.

The conditions for merging paths under these requirements can
normally be met when the head paths are bilaterally symmetrical
in the common axis, or axially symmetrical in all axes, or when
both paths are identical. Thus, in Diagram 2.4.5.1E, paths ABC
and EFG could most 1likely be merged with ease, but greater
difficulty would be realized witn merging paths CD and GH.

Multihead processing through the first pass is completely
standard except that special multihead considerations are
sometimes used as for multiturrets or rapid traverse M-code
output. Otherwise all first pass processing is normal. Motion

2-42

G[(:[NI "I POSTPROCESSOR ... forthe computer programmer

2.4.5.1 MULTIHEAD MACHINE CHARACTERISTICS (cont'd)

data, for example, are processed exactly as for single-head
operation except that at output time, instead of printing and
punching the data, the data is dumped on a scratch device for
later processing by the second pass.

Since there are no radically special sequences for first pass
processing, all information regarding positioning machines,
lathes, mills, and multiaxis machines, can be obtained from the
earlier sections, Section 2.4.1 through 2.4.4.2.

X Axis

Head 2

Head 1 ﬁ@

” @
0 @

2-43

G[C[NI "I POSTPROCESSOR ... for the computer programmer

2.4.5.2 MULTIHEAD MACHINE PROGRAM FLOW

Postprocessor processing for a multihead machine is essentially
no different than for a single-head machine except that a merging
of the operations of both heads is done before outputting the
command blocks. Regardless of the machine type being processed,
CL data is dispatched through the first pass in the normal manner
using all of the regular subroutine sequences. However, when
subroutine OUTPUT is called to punch and print the command block,
the postprocessor instead dumps the block onto an interim scratch
tape. (The term "scratch tape" is used although in practice the
scratch device may be a disc or a drum.) For head 1 the block is
dumped onto TAPES2, and for head 2 it is dumped onto TAPES3.

The entire CL tape is thus processed until the FINI record is
encountered, at which time TAPES2 and TAPES3 are rewound, and the
second pass overlay GEMULT is pulled into core. Program control
is then transferred to GEMULT.

After basic reinitialization is completed, subroutine GEMULT
begins through subroutine CREAD to read data from scratch tape
TAPES2, and with subroutine GMOUT, outputs each command block
until a command block with a CODE = +17 is found. This block
contains the OP/n information, where n is the operation number.
(See the Part Programmer's Manual for information on the OP/n
statement.)

Oonce the CODE = #17 block is found, the postprocessor then begins
to read data from scratch tape TAPES3, and outputs each command
block until once again a command block with a CODE = +17 is
found. The n value of the OP block from TAPES2 and TAPES3 are
comgared for equality, and if found equal, flags are set so that
subsequent blocks read from TAPES2 and TAPES3 are merged.
Merging of blocks continue until another command block with a
CODE = +17 is encountered, at which time merging halts until two
identical OP values are again found.

2-44

G[[:[N] "I POSTPROCESSOR ...for the computer programmer

2.4.5.2 MULTIAXIS MACHINE PROGRAM FLOW (cont'd)

An example will clarify the operational technique of output.

TAPES2 TAPES3
PARTNO PARTNO
FROM FROM
Motion A OP/2

op/1 Motion D
Motion B OP/3
Motion C Motion E2
OP/ 3 Motion F2
Motion E1 Motion G
Motion F1 OoPr/5

OP/4 Motion I
Motion H OP/6

OP/6 Motion J2
Motion J1 OP/8

ops7 END

END

In the above example a simplified case is illustrated wherein
TAPES2 and TAPES3 carry the first-pass dump command blocks in
symbolic form. In actual fact each record is a DBFSEG command
block of the form:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 30

NGXYZABIJKFSTMCODE?%

';[l:[”l "I POSTPROCESSOR ...for the computer programmer

2.4.5.2 MULTIHEAD MACHINE PROGRAM FLOW (cont'd)

For the above example, GEMULT would process the tapes as
follows: :

A. Beginning with TAPES2, output the PARTNO, FROM point,
and Motion A; when OP/1 is detected, transfer processing
to TAPES3.

B. From TAPES3, output the PARTNO and the FROM point; when
OP/2 is detected, compare the opcodes of TAPES2 and
TAPES3, i.e., 1 versus 2.

C. Since the opcodes are unequal, and since the TAPES2
opcode is less than the TAPES3 opcode, transfer
processing to TAPES2.

D. Output Motion B and Motion C; when OP/3 is detected,
compare the opcodes of TAPES2 and TAPES3, i.e., 3
versus 2.

F. Since the opcodes are unequal, and since TAPES3 opcode
is less than the TAPES2 opcode, transfer processing
to TAPES3.

G. Output Motion D; compare OP/3 versus TAPES2 opcode.

H. The opcodes are equal, therefore, combine all following
blocks on each tape. Combine Motion E1 and Motion E2,
and output. Combine Motion F1 and Motion F2, and output.

I. When OP/4 of TAPES2 is detected, compare versus opcode
of TAPES3, i.e., U4 versus 3.

J. Since the opcodes are unequal, and since the TAPES3
opcode is less than TAPES2 opcode, processing is
transferred to TAPES3.

K. Output Motion G; compare OP/S.

L. Output Motion H; compare OP/6.

M. Output Motion I; compare OP/6.

N. Combine Motion J1 and Motion J2.

O. Process TAPES2 END

P. Process TAPES3 END.

2-46

[;[[:[NI I" POSTPROCESSOR ...for the computer programmer

2.4.5.2 MULTIHEAD MACHINE PROGRAM FLOW (cont!d)

When outputting a DBFSEG block, whether or not it is a mergeable
block, the data of DBFSEG is stored into the array GMHBUF, which
is dimensioned at 60 and is completely analogous to the order of
DBFSEG.

Since DBFSEG is dimensioned at 20, GMHBUF is doubled to allow for
a merger of two DBFSEG blocks. A DBFSEG row for Head 1 is stored
into GMHBUF (1) through (20), while Head 2 stores in GMHBUF (21)
through (40).

When a command block from TAPES2 or TAPES3 is not merged, it is
made output through GEOUT3 as if it were a single-head operation.
But when two blocks are merged, a variety of special sequences
are first gone through which may generate additional command
blocks or otherwise cause modifications to the original command
blocks.

For example, the combined blocks could be a merger of two linear
interpolation moves, or a combination of linear-circular, or even
of two circular interpolation moves. Segmentation of the blocks
can result as a function of the equal time merger needs of linear
moves (subroutine GMLINE) and circular moves (subroutine GMCIRL) .

Then, also, segmentation may result if the NC machine has only
one feedrate register; or may result if the multiheads share a
common axis (subroutine FXMULT). Additional blocks can also be
generated by automatic parking sequences (subroutine FXPARK) or
safety retracts. (The details of these sequences are discussed
in Section 3.4.8.)

When a command block is sent to subroutine GMOUT for output, the
command block first has the finishing touches made to it, e.g.,
the proper G code is selected, and the feed command determined,
and other minor functions are performed. But at this point in
the program, the command block is fully prepared for output, and
is subsequently printed and punched through GEOUT3 as described
in Section 3.5.6.

(;[[:[N] I" POSTPROCESSOR ...forthe computer programmer

3.0 DETAILED DESCRIPTIONS

This section covers in detail the five major elements of the
postprocessor. Each section is complete in itself and
constitutes a full reference for that particular element.

The elements are discussed in the order in which they are used by
the postprocessor, from input to output. Although most details
are given, special sequences are deferred to Section 4.0 for
their particular analysis.

Section 2.0 should be read prior to this section if an overall
understanding of the postprocessor is sought.

[;H:[NI III POSTPROCESSOR ...for the computer programmer

3.1 CONTROL ELEMENT

When the APT System completes its processing of the input part
program, it transfers program control to the control element of
the postrrocessor through APT Section IV DISPAT. The control
element of the GECENT III postprocessor is the monitor overlay
GEMON. The control element monitors the overall program flow of
the postprocessor, directing the flow through the proper overlays
and subroutines necessary for the given NC machine. The first
function performed by GEMON is to initialize the COMMON areas and
key parameters of the postprocessor. Initialization is done in
a separate overlay GEINIT which is overlayed after it has
completed its purpose; it is never called again.

After initialization, GEMON directs the construction of the
overlay structure, putting together the requisite modules of the
postprocessor as needed for the given NC machine. This
structuring is accomplished by one of two methods which are
dependant upon the computer used.

The details of initialization and structuring are given below in
the following subsections.

GEMON remains in core along with APT Section 0 and Section IV and
is never overlayed. When GEMON completes its primary functions
of initialization and structuring, it transfers control until a
FINI statement 1is encountered and processed. If nmultihead
processing 1is in use, GEMON next gives control to GEMULT which
retains control until a FINI statement. In either event GEMON
terminates postprocessor operation by returning program control
to APT Section IV DISPAT. ‘

3.1-1

G[C[Nl I" POSTPROCESSOR ... for the computer programmer

3.1.1 POSTPROCESSOR INITIALIZATION (GEINIT)

The COMMON parameters and arrays are all set to zero since this
value is considered +to be the initial condition for all flags,
counters, and other parameters in COMMON.

Next, the postprocessor defines key parameters which are
extensively wused throughout the program. The integer values of
0 through 7 are defined as INTZ, INT1, INT2, etc. Similarly,
floating point numbers are defined as FLZ, FL1, FL2, and so on up
to FL5, and including FL10, FL100, FL360, and FLM1 for -1. These
numbers are defined and located in COMMON in order to minimize
the core size of a compiled subroutine which would otherwise
define these numbers as a local variable and also to eliminate
computer dependencies as much as possible. For example, on some
computers an integer zero has a different bit configuration than
does a floating point zero and so a separate representation for
both is essential.

Very frequently it becomes necessary for the postprocessor to
test for a null condition. The parameter DMBITS and DPBITS are
used to designate a null condition since zero is very commonly a
non-null value. The parameter DMBITS is defined as -40404040.0
and DPBITS = -DMBITS for the positive counterpart. Thus, when a
flag or some parameter is tested and found to be DMBITS, the
postprocessor knows that no condition has been established, and
that a null condition exists. Basic reference tables, 1like
TABLEG and TABLEM, are initially set to a null condition, i.e.,
set to DMBITS.

The subroutine STDMAC is called to establish the standard
settings of all the option values in the OPTAB table, as well as
for the REGSTR, REGFOR, and SRTAB tables.

GEINIT reads the CL tape in order to find the MACHIN statement so
that the designated Machine Subroutine can have its NC machine
data loaded into the proper tables. Once the MACHIN statement is
found (Record Type 2000, Subtype 1015), it checks to see if the
GECENT III postprocessor is called, and if so, to next check for
the called Machine Subroutine. See Section 3.1.1.1 for the
technique of obtaining the proper postprocessor and Machine
Subroutine.

GH:[NI I" POSTPROCESSOR ... for the computer programmer

_f,,/ -

3.1.1 POSTPROCESSOR INITIALIZATION (GEINIT) (cont'd)

The called for machine number is saved in the current machine
flag CURMAC which is then wused +to <call the related Machine
Subroutine. For example, the statement

MACHIN/GECENT, 40

sets up a call to subroutine MACH40. Once the Machine Subroutine
sets up the NC machine characteristrics in the various tables,
it's function is complete and it is overlayed as are all the
subroutines in GEINIT. However, the MACFUN portion, if one
exists, is not overlayed. (See Section 5.6.1.)

The final initializing function of GEINIT is done by subroutine
ASSIGN which inspects the established values of the
characteristics tables, and sets key flags accordingly. For
example, the departure limit table RNGDEP is set up for either a
metric or an inch system as designated by option 138.

3.1.1.1 SELECTING THE POSTPROCESSOR AND MACHINE SUBROUTINE

The postprocessor verifies it's own selection and obtains the
proper Machine Subroutine by referring the APOSTP* table which
exists in APT System COMMON and is set up in APT Section 0. I1f
two MACHIN statements are given in a part program as:

MACHIN/BRACK, 10
MACHIN/GECENT, 10

then the processing sequence indicated is that the BRACK
postprocessor is the first to be used to process the CL tape.
Upon completion, the CL tape 1is rewound and the GECENT III
postprocessor is next used with Machine Subroutine MACH10. The
means by which the postprocessor is able to select the proper
Fostprocessor is by use of the IPOSTP table.

* On the IBM System 360, this table is called APOSTP but is
equivalent to IPOSTP in the GECENT III postprocessor.

3.1-3

(;H:[N] l" POSTPROCESSOR ...for the computer programmer

3.1.1.1 SELECTING THE POSTPROCESSOR AND MACHINE SUBROUTINE (cont'd) ‘_i

Basically, the IPOSTP table contains the BCD names of the
postprocessor coupled with the given machine number. Thus in the
above example the IPOSTP table would have in sequence:

BRACK (BCD)

10 (Floating Point)
GECENT (BCD)

10 (Floating Point)

An index counter, which is maintained by APT Section 0, points to
the IPOSTP table location of the postprocessor to be selected.
In the above example, the pointer at the beginning of the part
program run, points to the location of the BRACK BCD reference;
when processing is complete and the CL tape rewound, the pointer
points to the location of the GECENT III BCD reference.

The method by which the pointer information is passed to the
postprocessor varies by computer as does the stored data in the

IPOSTP table. The most common method used by most computers* is

to have the pointer stored as the first item in IPOSTP; the

second item in the table gives the number of postprocessors yet “ﬁ
to be processed, including the current one. Following these

first two items are the pairs of postprocessor and machine number

for each MACHIN statement. For the above example, the IPOSTP

table initially appears as:

IPOSTP(1) = 3

i
N

IPOSTP (2)

IPOSTP (3)

BRACK
IPOSTP (4) = 10

IPOSTP (5)

GECENT

IPOSTP(6) = 10
The IPOSTP table is dimensioned at 20, hence, under this method
it is possible to multiple postprocess a given part program for
as many as nine different postprocessors or Machine Subroutines.

* IBM 7090/94, GE635, UNIVAC 1107/8, CDC 3600/3800, 6400

[;H:[N] "I POSTPROCESSOR ...for the computer programmer

3.1.1.1 SELECTING THE POSTPROCESSOR AND MACHINE SUBROUTINE (cont'd)

Another method used by some computers** has the pointer stored in
the parameter NUMPTR which is in APT System COMMON. Otherwise,
the IPOSTP table is set up similarly.

When the postprocessor encounters a MACHIN statement on the CL
tape, it first compares the CL tape BCD name versus IPOSTP (IP)
where 1IP is the pointer. If the comparison is not equal, the
MACHIN statement is disregarded; if it is equal, +the MACHIN
machine number is compared versus IPOSTP (IP + 1), and so on. In
this way the postprocessor can always recognize and accept a
current MACHIN statement and process it accordingly.

3.1.1.1.1 PTONLY/2 RUN

A PTONLY/2 run is used when a CL tape is already available, and
it is therefore necessary only to postprocess the tape. Thus, if
a CL tape had been saved from a part program computer run which
used the statement MACHIN/GECENT, 4, the saved CL tape can later
be processed by the special APT input:

PTONLY/ 2
MACHIN/GECENT, 4
FINI

However, frequently the occasion arises when one desires to run
the saved CL tape but with a different NC machine, and
consequently, different MACHIN statement than that which exists
on the CL tape. The postprocessor permits this because it
obtains the current machine reference not from the CL tape but
from the IPOSTP table. On a PTONLY/2 run the postprocessor does
no checking of the postprocessor name or machine number versus
the CL tape since it is meaningless to do so.

Therefore, if a CL tape were developed for multiple
postprocessing or multiple machine processing, the postprocessor
on a PTONLY/2 run will recognize none of the multiple MACHIN
statements for reprocessing the CL tape. But, it will recognize
all of the MACHIN statements for changes to the option table.

** IBM System 360, RCA Spectra 70

[;[[:[NI "I POSTPROCESSOR ...forthe computer programmer

3.2 INPUT ELEMENT

The input to the GECENT III postprocessor is always the CL tape.
The sole intent of the input sequence is to obtain the record
data from the CL tape, and store all of it into the floating
point array, CLDATA, and part of it into the integer or BCD
array, ICLDAT. To expedite processing, certain key parameters
which serve as counters and flags must also be determined from
the input record. Basic among these is the flag NWPR which gives
the number of words per record, i.e., the total number of items
(either floating, integer, or BCD) in each logical record. The
other flags and counters are discussed below.

The means by which a record is read from the CL tape varies by
computer and the APT System used. Therefore, in the description
which follows, the overall general scheme of input which is
common to all computers is discussed first; then in the following
sections, the information for each major computer system is
given.

3.2.1 GENERAL INPUT FLOW

The CL tape is always read by calling subroutine INPUT, and this
subroutine is called from only two overlays: GEINIT and GEBASE.
Therefore, the subroutine INPUT resides in GEMON in order to be
available to both of these overlays. Subroutine INPUT is a
computer-oriented subroutine and, hence, differs for each
computer. These differences are detailed below in the sections
which follow.

The two input arrays are CLDATA (dimensioned at 246) and ICLDAT.
The dimension of ICLDAT varies by computer, but it is always
either dimensioned as a separate array of 20 or is equivalenced
to CLDATA. The CLDATA array is used for obtaining floating point
data while the ICLDAT array is used for accessing integer or BCD
data.

Before subroutine INPUT is called, the CLDATA and ICLDAT arrays
are always cleared to zero and the indicator flag INDPTS is set
to 5. This indicator is used only when the CL record is a motion
record, but it is always preset prior to reading a record.

The format of the CL tape may also vary by computer and APT
System, and so each factor must be considered separately.
Fundamental to them all are certain standard items, such as the
identification and basic structure of each record type. (See
Section 3.3.) Futhermore, the CL tape is always a buffered tape.

3.2-1

l;[c[N] I" POSTPROCESSOR ... for the computer programmer

3.2.1 GENERAL INPUT FLOW (cont'd)

The data on the CL tape is in the form of physical records which
are comprised of logical records whose maximum size is 245 words.
Each 1logical record derives from an APT part program statement,
hence, it can be a motion or non-motion type record. Non-motion
records never contain more than twenty items, but motion records
can easily reach the maximum size.

The calling sequence of the subroutine which actually reads a
tape 1is wusually slightly different for each computer, but they
all carry at least the following items in their calling sequence:

CLTAPE - Identifies the CL tape in the computer's APT System.
IRETN - The return variable flag, which in the GECENT III
postprocessor has the meanings:
IRETNKO0, normal end-of-record read;
IRETN=0, end-of-file is read;
IRETN>0, an error made in reading.
NWPR - the number of words in the record.
CLDATA - the array into which the CL tape record is read.

The calling sequence may also require additional information on
blocking factors and directions on how to proceed with reading of
a record.

The output from the tape reading subroutine consists of the array
CLDATA being filled and the word count NWPR and the condition
flag IRETN being set.

Upon return from subroutine INPUT to the calling subroutine, the
condition flag IRETN is tested to see if a "good read" occurred.
A test for only a negative value of IRETN is made since an EOF is
considered an error because an EOF should never occur in a normal
sequence. A FINI record always concludes tape read operation.

There are only fourteen types of records carried on the CL tape,
each identified as a Type 1000, Type 2000, and so on to Type
14000. Although the postprocessor reads each record, it only
processes certain types and disregards the others. The
recognized types are discussed in detail in Section 3.3 and
Section 3.4. The types may be broadly classified as those for a
motion record and those for a non-motion record. The motion
record 1is processed in the Motion Element while the others are
processed in the Auxiliary Element.

3.2-2

[;H:[N] III POSTPROCESSOR ...for the computer programmer

3.2.1 GENERAL INPUT FLOW (cont!'d)

The general format of a CL tape record is as indicated below.

Location ITEM TIYPE
1 Record Number Integer
2 Record Type Integer
3 Record Subtype Integer
4 Data Integer,Floating Point, BCD
2u§ Da;a Floating Point

Regardless of the computer used, the first item of a record read
from the CL tape 1is always the CL tape record number. In
subroutine GEBASE after IRETN indicates that the record was read
correctly, the parameter SEQCTR is set equal to ICLDAT (1) to pick
up and save the record number for possible use as a sequence
number.

The format is not the same for all record types and is given here
in this form only for purposes of clarification. The point to be
noted is that a CL tape record can be a mixture of integer
numbers, floating point numbers and BCD values. For proper
processing the postprocessor must refer to each element of the
record with the proper FORTRAN statement; this is why there are
two input arrays, CLDATA and ICLDAT. When a floating point
number is to be accessed, the CLDATA array is used, as in

DPRESP (1) =CLDATA (6) .
Or, for integer accessing,
ITYPE=ICLDAT (2) .

When conversion from an integer to floating point (or vice versa)
is desired, reference is made as in the example below.

SEQCTR=ICLDAT (1) .

3.2-3

(;H:[N] "l POSTPROCESSOR ...for the computer programmer

3.2.1 GENERAL INPUT FLOW (cont'd)

The important feature to note 1is that the arrays CLDATA and
ICLDAT both contain the same information. Thus, it 1is possible
but completely erroneous to program:

DPRESP (1) =CLDATA (2)

for now an integer number is stored in a floating point
parameter. Hence, it is vital to know the record format so that
the proper input array is referenced.

The two input arrays exist in the postprocessor in two different
methods, each a function of the computer in use. One method 1is
used for hexadecimal type computers and another method for non-
hexadecimal computers.

3.2.1.1 HEXADECIMAL TAPE RECORDS

The COMMON storage has the double-precision array CLDATA
dimensioned at 246, and the single-precision array ICLDAT
dimensioned at 20. The CL tape record is all in double-precision
and, therefore, is stored into CLDATA. From there the first
twenty items are obtained and stored in single-precision form
into ICLDAT. (See Section 3.2.2).

3.2.1.2 NON-HEXADECIMAL TAPE RECORDS

The COMMON storage has only the array CLDATA which is dimensioned
at 246, and ICLDAT is simply equivalenced to it. No form of
conversion or restorage is necessary.

B[C[NI "I POSTPROCESSOR ...forthe computer programmer

3.2.2 INPUT SEQUENCES FOR IBM SYSTEM 360 AND RCA SPECTRA 70
COMPUTERS

The call to read a tape is through subroutine TAPERD which is in
APT Section 0. The calling sequence as used by the GECENT III
postprocessor is:

CALL TAPERD (CLTAPE, IRETN, NWPR, 4, ICLDAT (1),
1, ICLDAT(2), 1, ICLDAT(3),1, CLDATA (4), 0)

The first three items in the calling sequence have already been
described; the fourth item states the number of arrays into which
the CL tape record is to be read, i.e., into four arrays.
Actually, what 1is desired is to read the first word into
ICLDAT (1), the second word into ICLDAT(2), the third word into
ICLDAT(3) , and the remainder into CLDATA beginning at CLDATA (4).
The couplet (ARRAY,n) specifies that n words are to be read into
ARRAY; that 1is, the given sequence (ICLDAT(1),1), and soO on.
When n=0, as for (CLDATA(4), 0), the TAPERD subroutine reads into
the given array until an end-of-record condition is reached.

Since the first three words are single-precision integers, they
are stored in ICLDAT(1), (2), and (3), and the remaining double
words are stored starting in CLDATA (4). These double words are
then passed to subroutine STORGE where the integers in the array
CLDATA are transferred to the single-precision integer array
ICLDAT. This conversion and transference 1is done by taking
advantage of the structure of the double and single-precision
words.

Floating point double words look like:

1 32 33 64
[XXXXXXXX | XXXXXXXX |

where the X's represent hexadecimal digits. A single-precision
integer 4 looks like:

1 32 33 64
[XXXXXXXX | XXXXXXX4 |

Subroutine STORGE checks the left half of the word, and if zero,
knows it is an integer, and therefore, stores only the right half
into ICLDAT.

The flags IRETN and NWPR are set according to the conventions
described earlier.

3.2-5

G[l:[N] "I POSTPROCESSOR ...for the computer programmer

3.2.3 INPUT SEQUENCE FOR UNIVAC COMPUTERS

The call to read a tape is through subroutine TAPERD which is in
APT Section 0. The calling sequence as used by the GECENT III
postprocessor is: v

CALL TAPERD (CLTAPE, IRETN, NWPR, 1, CLDATA,0)

The first three items have already been described; the fourth
item states the number of arrays into which the CL tape record is
to be read, i.e., into one array, and that being the next item,
CLDATA. The final item, zero, directs the TAPERD subroutine to
read the record into CLDATA until an end-of-record condition is
reached.

The flags IRETN and NWPR are set according to the conventions
described earlier.

3.2.4 INPUT SEQUENCE FOR GE 600 SERIES COMPUTERS

The call to read a tape is through subroutine GETNXR which is in
APT Section 0. The calling sequence as used by the GECENT III
postprocessor is:

CALL GETNXR (CLTAPE, IRETN, NREC, NWPR, 1, CLDATA, 0)

The parameters CLTAPE, IRETN, and NWPR have already been
described. The parameter NREC is the tape record number, and is
unused by the GECENT III postprocessor. The next two items
designate that one array, CLDATA, is to receive the input record.
The final item, 0, directs the GETNXR subroutine to read the
record into CLDATA until an end-of-record condition is reached.

The IRETN flag is set differently from regular usage, and so it
is reconverted to conform to standard GECENT III postprocessing.
Upon return from subroutine GETNXR, IRETN is 0 for a "good read"
and 1is 5 for an end-of-file. IRETN is positive for an error in
reading. Therefore, the flag is reset as follows:

IRETN is made -1, if it originally is zero;

IRETN is made 0, if it originally is +5;

IRETN is untouched if it is any positive wvalue since this is
already detectable as an error in subroutine GEBASE.

3.2-6

GHJNII” POSTPROCESSOR

3.2.5 INPUT SEQUENCE FOR CDC COMPUTERS

...forthe computer programmer

The call to read a tape is through subroutine TAPERD which is in
APT Section 0. The calling sequence as used by the GECENT III
postprocessor.

CALL TAPERD (CLTAPE, IRETN, NWPR, 1, CLDATA,0,0,0,0,0)

The first +three items have already been described; the fourth
item states the number of arrays into which the CL tape record is
to be read, i.e., into one array, and that being the next iten,
CLDATA. The =zeroes following, in effect, directs the TAPERD
subroutine to read the record intc CLDATA until an end-of-record-
condition is reached.

The flags IRETN and NWPR are set according to the conventions
described earlier.

G[[:[N] I" POSTPROCESSOR ...forthe computer programmer

3.3 AUXILIARY ELEMENT

As was discussed in Section 3.2 the Auxiliary Element of the
postprocessor is concerned with the disposition of all acceptable
record types. By acceptable record types it is meant those CL
tape records which are passed on from APT Sections I, II, or III,
by the CL tape to APT Section IV and are, therefore, data of
possible use to the postprocessor. The acceptable records are
Types 1000, 2000, 3000, 5000, 6000, 9000, and 14000. All of
these record types are processed in the Auxiliary Element except
Type 5000 which is for motion records and is processed in the
Motion Element. The other remaining record types are all handled
in only two subroutines: Type 2000 records are processed in
subroutine AUXLRY and the other types in subroutine GEBASE. Each
of these record -types is discussed in the following sections
which give their purpose, format structure, and use by the GECENT
III postprocessor.

GEB[N] "I POSTPROCESSOR ... for the computer programmer

3.3.1 RECORD TYPE 1000 - BCD PART PROGRAM STATEMENT

The original part program statement in BCD form is given in this
record. It serves no useful function except that it can provide
a means for identifying the statement currently being processed
if such information is desirable. The format structure is:

(1) Record Number

(2) Record Type = 1000

(3) BCD identifier used only in APT Section II.

(4) First BCD word of statement.

(5) Second BCD word of statement.
and so on for (NWPR-3) words.
This record type is disregarded in the GECENT III postprocessor
unless an error occurs. In this case the error dump sequence
backspaces the CL tape one record to obtain the Type 1000 record
and prints it to identify the source statement which induced the

error.

3.3.2 RECORD TYPE 2000 - POSTPROCESSOR STATEMENTS

Part program statements, such as SPINDL, FEDRAT, COOLNT, are
passed on the CL tape as Type 2000 records. With the exception
of motion records this record type is the most common record
processed.

The format structure is fixed only in the first three items of
the record, but beyond this point the format structure can be of
varying record 1length and word kind, i.e., either integer,
floating point, or BCD words. Since it is virtually impossible
to give all the possible format structures, a generalized
description is given which illustrates the manner in which APT
Section I passes on this type of record.

Each postprocessor statement consists of a major word and either
several, one, or no minor words (or modifiers). Modifiers to the
right of the slash are called minor words. Statements which have
no minor words, do not require a slash (/) and are called basic
statements. Those statements which have minor words must have a
slash (/) immediately following the major word; such statements
are called "common". 1In the proposed APT IV language structure
certain of these statements are categorized as generic or
replacement, but for this discussion, all statements without a
slash (/) are defined as common.

';[[:[NI ”l POSTPROCESSOR ...forthe computer programmer

3.3.2 RECORD TYPE 2000 - POSTPROCESSOR STATEMENTS (cont'd)

There are two kinds of basic words: (1) those which stand alone
as one major word, as END, RAPID; and (2) those which have BCD
information strung out after the major word, as PARTNO, PPRINT.
Basic words of the first kind have numeric subtype codes always
less +than 1000. The record subtype identifies the particular
basic word being processed. The basic words (and their
respective subtype numeric code) which are recognized by the
GECENT III postprocessor are the following:

Basic Word Numeric Code
END 1
STOP 2
OPSTOP 3
RAPID 5
SWITCH 6
RETRCT 7
DRESS 8
PICKUP 9
UNLOAD 10
GOHOME 14
RESET 15
BREAK 17
PPRINT ' 1044
PARTNO 1045
INSERT 1046

(;[[:[N] I" POSTPROCESSOR ... for the computer programmer

3.3.2 RECORD TYPE 2000 - POSTPROCESSOR STATEMENTS (cont'd)

The CL tape format structure of basic words of the first kind is
always the same.

(1) Record Number

(2) Record Type = 2000

(3) Record Subtype (N<1000)
and, NWPR =3.

Basic words of the second kind also have identical CL tape format
structures.

(1) Record Number

(2) Record Type = 2000

(3) Record Subtype (N>1000)

(4) First BCD Word

(5) Second BCD Word

(6) Third BCD Word
and so on for (NWPR-3) words.
The common words usually have a variable format structure which
can be described only generally. 1In the APT III System, minor
word modifiers are given numeric code equivalents which are fixed
point integers. Any numbers which appear to the right of the (/)
are passed on to the CL tape as floating point numbers. Hence,
in general, a common word postprocessor statement will have a
mixture of integer and floating point numbers in its CL tape
record. Thus, a statement such as

SPINDL/10,RPM, RANGE, 2,CLW

appears on the CL tape as:

3.3-4

G[[:[Nl "I POSTPROCESSOR ... for the computer programmer

3.3.2 RECORD TYPE 2000 - POSTPROCESSOR STATEMENTS (cont'd)

(1) Record Number

(2) Record Type = 2000

(3) Record Subtype = 1031

(4) 10 (floating point)

(5) 78 (integer code for RPM)

(6) 145 (integer code for RANGE)

(7) 2 (floating point)

(8) 60 (integer code for CLW)
and NWPR = 8.

Because of vocabulary variable formats and couplet usage the same
statement can be written as

SPINDL/10,CLW,RANGE, 2
in which case the CL tape record appears as:
(1) Record Number
(2) Record Type = 2000
(3) Record Subtype = 1031

(4) 10

(5) 60
(6) 145
(7) 2

and NWPR = 7.

Hence, it is readily apparent that common word CL tape records
follow no set format structure.

(;H:[Nl "I POSTPROCESSOR ...for the computer programmer

3.3.2 RECORD TYPE 2000 - POSTPROCESSOR STATEMENTS (cont'd)

There 1is only one postprocessor common word statement which has
a BCD word in its CL tape record and that 1is the MACHIN
statement. The modifier following the slash (/) calls for the
postprocessor; this modifier is always in BCD form.
MACHIN/GECENT, 1,0PTAB, 4,40

This is a special case statement since it is the only
postprocessor statement recognized and dealt with in APT Section
I where the postprocessor table is set up. The CL tape record
for the above statement appears as:

(1) Record Number

(2) Record Type = 2000

(3) Record Subtype = 1015

(4) GECENT (BCD Word)

(5) 1 (floating point)

(6) 170 (integer code for OPTAB)

(7) 4 (floating point)

(8) 40 (floating point)

and NWPR = 8.

3.3-6

[;H:[Nl ”I POSTPROCESSOR ...for the computer programmer

3.3.2.1 MAJOR WORD LIST

Common words have numeric subtype codes always greater than 1000.
The common words (and their respective subtype numeric code)
which are recognized by the GECENT III postprocessor are the
following:

Common Word Numeric Code
ATIR 1011
AUXFUN 1022
CLAMP 1060
CLRSRF 1057
COMBIN 1071
COOLNT 1030
COUPLE 1049
cuTCcOM 1007
CYCLE* 1054
DELAY 1010
DRAFT 1059
FEDRAT 1009
FLAME 1067
LEADER 1013
LINTOL 1068
LOAD* 1075
MACHIN 1015
MCHTOL 1016

* 1In the parlance of the proposed APT-1IV vocabulary these words
are generic. A

BT I poserocesson

... for the computer programmer

3.3.2.1 MAJOR WORD LIST_ (cont'd)

3.3-8

Common Word

MODE

oP
OPSKIP
ORIGIN
OVRCNT
PITCH
PIVOTZ
POSITN
PPUNCH
PREFUN
PRFSEQ
REWIND
ROTATE*
SAFETY
SELECT*
SEQNO
SET*
SPINDL
THREAD

TMARK

Numeric Code

1003
1073
1012
1027
1085
1050
1017
1072
1082
1048
1069
1006
1066
1028

1074

1019

1087
1031
1036

1005

[;H:[Nl ”I POSTPROCESSOR ...forthe computer programmer

3.3.2.1 MAJOR WORD LIST (cont'd)

Common_ Word Numeric Code
TOOLNO 1025
TRANS 1037
TURRET 1033
WELD 1076
XOFSET 1084

Other common words which are not in the above list are not
recognized in the GECENT I1I1 postprocessor therefore,
disregarded; no warning comment or error is issued.

The minor word list that the GECENT III postprocessor recognizes
in common word statements is given in Section 3.3.2.2.

For a CL tape Record Type 2000, subroutine GEBASE calls
subroutine AUXLRY, where a test is then made on the Record
Subtype, which causes the postprocessor to branch to the proper
subroutine. In all cases subroutine AUXLRY calls the subroutine
which has the same name as the major word, e.g., the statement
SPINDL/10, CILW 1is processed subroutine SPINDL; the statement
SELECT/READER is processed in subroutine SELECT.

The reader is directed to the GECENT III Part Programmer's Manual
for a complete description and usage of the above postprocessor
statements.

(;[t[NI "l POSTPROCESSOR ... for the computer programmer

3.3.2.2 MINOR WORD LIST

The following minor words (and their respective APT-III numeric
code) are recognized in postprocessor common word statements by
the GECENT III postprocessor.

Minor Word Numeric Code
ABSPo s J22
ANGLE 252
ALl I/
BAR 207
BEAM 297
BORE 82
BOTH 83
CCLW 59
CLW 60
COARSE 195
DECR 62
DFLETN 296
DEEP 153
DOWN 113
DRAG 299
DRILL 163
DWELL 197
ECOoDE I3
FACE 81
FEED 270
FINE 193
FLOOD 89
FRONT 148
HEARD 238
HED 238
HIGH 62
IN 48

3.3-10

GH:[N] "I POSTPROCESSOR ... forthe computer programmer

3.3.2.2 MINOR WORD LIST (cont'd)

Minor Word Numer ic Code
INCR 66
INDEXR 242
INHIBT 279
INSPEC 173
IPM 73
IPR 74
LARGE 7
LEFT | 8
LINCIR 95
LINEAR 76
LOCK 114
LOW 63
MAGZIN 178
MANUAL 158
MASTER 181
MAXIPM 96
MAXRPM 79
MEDIUM 61
MILL 151
MINUS 10
MIST 90
PR /1 M PR 74
NEUTRL 166
nxr nem 26

3.3-11

GHINI'" POSTPROCESSOR

... for the computer programmer

«3.2.2 MINOR WORD LIST (cont'd)

3 . 3—12

Minor Word
NEXT
NOBACK
NOW
OFF
OFSETL
ON
OPER
OPTAB
ORIENT
ouT
OVRIDE
OXYGEN
PART
PALLET
PLUS
PREHET
RADIUS
RAIL
RANGE
REV
READER
REAR
RIGHT
ROCK

ROTREF

Numeric Code

162
194
161
72
275
71
231
170
246
49
192
169
260
239
19

171

23

93
145
97
241
149
24
248

68

GHINII" POSTPROCESSOR ...for the computer programmer

3.3.2.2 MINOR WORD LIST (cont'd)

Minor Word Numeric Code
RPM 78
SADDLE 150
SCHEDL 250
SFM 115
SHIFT 249
SHORT 174
SIDE 94
SLAVE 180
SMALL 26
STEP 92
TABLE 177
TAP 168
TAPKUL 91
THRU 152
TILT 247
TLPOT 167
TOOL 87
700L 29c
TORCH 172
TRAV 154
TUL 240
TURET 179
TURN 80

3.3-13

GHIN]|" POSTPROCESSOR

...for the computer programmer

3.3.2.2 MINOR WORD LIST (cont'd)

Minor Word
up

XAXIS
XCOORD
XYPLAN
VAXS
YCOORD
YZPLAN
BAXIS
ZCOORD

ZXPLAN

3.3-14

Numeric Code

112
116
33
8
117
37
26
118

41

[;H:[NI I" POSTPROCESSOR ...forthe computer programmer

3.3.3 RECORD TYPE 3000 - SURFACE DATA

This record type contains data descriptive of the circular drive
surface which the cutter path is to follow. This data is
essential in the GECENT III postprocessor when circular
interpolation is available on the controlfEE® (option 9 =1). When
only linear 1nterpolat10n is available, this record type is
disregarded.

The format structure of this record type is given only for a
circular drive surface since no other drive surface plays a
special role in the GECENT III postprocessor. In most cases the
APT System does not pass on drive surface data except for circles
and cylinders.

(1 Record Number

(2) Record Type = 3000

(3) Surface Use Indicator (2 for a DS)

(4) Tool Position (1=TO, 2=PAST, 4=Tangent)

(5) Drive Surface Type=4 for a circle
(6) Number of words in canonical form
(7 Name of surface in BCD
(8) Surface name subscript
(9) X value for circle center
(10) Y value for circle center
(11) Z value for circle center
(12) X component of axis vector
(13) Y component of axis vector
(14) Z component of axis vector
(15) Radius of circle

The APT Section 10 Manual should be consulted for more details on
this record type.

3.3-15

G[t[NI "l POSTPROCESSOR ... for the computer programmer

3.3.3 RECORD TYPE 3000 - SURFACE DATA (cont'd)

only items 5, 9, 10, 11, 12, and 13 are used by the GECENT III
postprocessor. If ICILDAT(5)#4, the drive surface record is
disregarded and the flag CIRFLG is set to zero indicating the
path is not for circular interpolation. Otherwise, CIRFLG is set
to +1 and the circle center is saved in the array CIRDAT. The
motion record immediately following this Type 3000 record is
processed using circular interpolation (See Section 3.4.4.).

3.3.4 RECORD TYPE 5000 - MOTION RECORDS

See Section 3.4 for the processing of this record type.

3.3.5 RECORD TYPE 6000 - ARELEM FLAGS

The data in this type record provides information regarding the
cutter and cutting tolerances. Actually, the record provides
other information which could be of use to a postprocessor, but
currently the GECENT III postprocessor only makes use of the
items mentioned below.

The complete format structure of this type record is as follows:
(1) Record Number
(2) Record Type = 6000
(3) ' Record Subtype
(4) ---NWPR) Other related data
The items contained in the fourth 1location and beyond are
dependent upon the record subtype. The subtypes marked with an

asterisk are the only items recognized by the GECENT III
postprocessor.

Subtype = 1

Record item 4 is 0 for CUT and 1 for DNTCUT.

Subtype = 2

Record item 4 is 0 for 2DCALC; 1 for
3DCALC; and 2 for NDTEST.

Subtype = 4%

Record item 4 is the INTOL.

3.3-16

ﬁﬂlNll” POSTPROCESSOR ... forthe computer programmer

3.3.5 RECORD TYPE 6000 - ARELEM FLAGS (cont'd)

Subtype = 5%

Record item 4 is the OUTTOL.

Subtype = 6%

Record items 4 through 10 contain data defining the cutter, as
follows:

(4) Diameter of cutter, D*

(5) Radius of cutter, r*

(6) Offset of corner radius center, E

(7) Height of corner radius center, F

(8) Cutter point angle, o

(9) Cutter side angle, B

(10) Length of cutter, h

This record type is processed in subroutine GEBASE where the
inner tolerance INTOL is saved in TOLIN, the outer tolerance
OUTTOL in TOLOUT, and the cutter radius CUTRAD is determined by
D/2. The resultant CUTRAD is compared with r to determine
whether or not a ball tool is in use, since D/2=r for a ball
tool. Accordingly, parameter CUTTER=0 for a non-ball cutter, and
=1 for a ball cutter. This information is pertinent to the

postprocessor since circular interpolation in all planes is
possible only with a ball cutter.

3.3-17

l;[(:[N] "I POSTPROCESSOR ...for the computer programmer

3.3.6 RECORD TYPE 9000 - ARELEM PARAMETERS

The only function served by this record type is to designate the
existence of multiaxis processing. Although the format structure
can vary, the only format recognized by the GECENT IIT
postprocessor 1is:

(1) Record Number

(2) Record Type = 9000

i

(3) Record Subtype 2
and NWPR =3.
All records for which the subtype is not 2 are disregarded.
The multiaxis flag AXMULT is set to 1 to indicate the existence
of a multiaxis condition, and the parameters NCOM and NAXES are
set as:

NAXES = 5

NCOM = 6

(See Section 3.4.1 on how these parameters are used.)

3.3.7 RECORD TYPE 14000 - FINI

This record identifies the FINI statement and initiates the
termination sequence in the postprocessor. The format structure
is:

(1) Record Number

(2) Record Type = 14000
and NWPR = 2.

The postprocessor outputs a command block of CODE = 18 for a FINI
statement.

3.3-18

[;H:[NI "I POSTPROCESSOR ... for the computer programmer

3.4 MOTION ELEMENT

In the GECENT III postprocessor, a motion may be an absolute
positioning move, a linear interpolation incremental move, a
circular interpolation incremental move, a multiaxis move, or a
rotary move. Each of these moves follows a separate processing
path through the postprocessor, during which it becomes engaged
in a wvariety of tests, path modifications, and optimizing
sequences before it is finally made output. Processing of these
motions is generally quite complex, but the major effects they
undergo are detailed in the sections following. Special
sequences which normally require greater coverage are briefly
touched upon but explained in detail in a later section.

3.4.1 OBTAINING MOTION DATA FROM THE CL TAPE

A typical overlay structure is diagrammed below for a lathe which
has an incremental contouring system.

Section 0

GEMON

GEBASE

GETERP

GELATH

GEOUT1

The key motion overlay in the structure is GETERP which contains
all of the incremental linear and circular interpolation
sequences. GETERP is not needed for a positioning machine since
any special positioning move adjustments are done in the GEPOS
overlay. A multiaxis milling machine has the added overlay
GEMAXS in core to supplement GETERP.

Processing within the Motion Element follows after the Input
Element (Section 3.2) completes its reading of the CL tape.
Subroutine GEBASE branches to subroutine MOTION when the CL tape
record is a type 5000, and it is here that the program routing of
the motion occurs.

(:[C[N] “l POSTPROCESSOR ...for the computer programmer

3.4.1 OBTAINING MOTION DATA FROM THE CL TAPE (cont'd)

A CL tape motion record has the following format structure for a
non-multiaxis move:

(1) Record Number

(2) Record Type = 5000

(3) Record Subtype (=3,4,5 or 6)

(4) Subscript of point, vector, or surface

(INDPTS) (5) BCD name or surface

(6) Xy
(7 v, ¢ NCOM = 3
(8) Z-lJ
(9 %))
(10) Y, | NCoM = 3
(11) 22

(NWPR) zn

3.4-2

[;[[:[NI ”I POSTPROCESSOR ... for the computer programmer

3.4.1 OBTAINING MOTION DATA FROM THE CL TAPE (cont'd)

A multiaxis record appears as:
(1) Record Number
(2) Record Type = 5000
(3) Record Subtype (=3,4,5 or 6)
(4) Subscript

(INDPTS) ~ (5) BCD name

6) x;
My
@ % NCOM = 6
(9 i,
(10) 3,
(1) k|
(12) x,]
(13) y,
(1 2 NCOM = 6
(15) i,
(16) 3,
an k|

(NWPR) k.

The record subtypes are discussed in Section 3.4.2.

The data x, y, z are the algebraic part coordinates derived from
the part program and the data i, j, k are the backward directed
direction cosines of the tool. All three values x, Yy 2Z are
always given, even for two dimensional programs, in which case
one of the values (usually z) is zero or some constant.

[;H:[N] "l POSTPROCESSOR ...for the computer programmer

3.4.1 OBTAINING MOTION DATA FROM THE CL TAPE (cont'd)

The postprocessor uses two key indices for obtaining and saving
motion data, namely, NCOM and INDPTS.

NCOM designates the "normal" number of values to be found in a CL
tape record for a non-multiaxis and multiaxis move; NCOM is 3 for
non-multiaxis, and is 6 for a multiaxis record; see the CL tape
record formats above. NCOM is initialized to 3, but is reset to
6 when the MULTAX record (Record Type 9000 - See Section 3.3.6)
is encountered.

INDPTS is an indicator pointing to the CL tape record location
which is one 1less than the value to be selected next. Before
subroutine INPUT is called, it is always preset to 5. The manner
in which it is used will become clear in the following
descriptions.

The postprocessor saves the CL part coordinate data in the
present point vector DPRESP, which is dimensioned at six and
ordered as:
DPRESP(1) = x
DPRESP(2) =y} linear locations
DPRESP(3) = z
DPRESP (4) = i)
DPRESP (5) = j

tool direction cosines

DPRESP(6) = k

P
If a TRANS statement had been given, the TRANS values of x, y,
and 2z (stored in the vector TRANSL) are added to the
corresponding value of DPRESP. TRANSL is zero if no TRANS is
given. Thus, at every instant of processing time, the
postprocessor knows exactly where the tool control point is.

l;ﬂ:[Nl ”I POSTPROCESSOR ... for the computer programmer

3.4.1 OBTAINING MOTION DATA FROM THE CL TAPE {(cont'd)

For example, assume we have a two point record stored in
€EDATACL

CLDATA
(1) Recqrd Number
(2) Record Type = 5000
(3) Record Subtype = 5

(4) Subscript

(5) BCD Name (INDPTS=5)
(6) x,
(7) yl ! First point
(8) Zl,
3
(9) x2
(10) Y, 4 Second point
(11) 22
NCOM = 3 NWPR = 11

The postprocessor selects the first point by
<L
DPRESP (I) = @LDATA(INDPTS+I) + TRANSL (I)

for I = 1 to NCOM. After the point is processed and made output,
INDPTS is increased by NCOM, and the new point is similarly
selected and processed until INDPTS becomes greater than NWPR.
It can be seen that regardless of the size of the record, or
whether or not it is a multiaxis record, the sequence is a
generalized process for all motion records.

Motion data as stored in DPRESP represents the cutter path in
terms of the part coordinate system; but to actually machine the
part, the data must be converted to the machine coordinate
system.

G[C[N] "l POSTPROCESSOR ... for the computer programmer

3.4.1 OBTAINING MOTION DATA FROM THE CL TAPE (cont'd)

For non-multiaxis machines (with either absolute or incremental
systems) conversion from part to machine coordinates is nothing
more than a rounding of part coordinate data at the decimal
location corresponding to the step size of the machine tool*.
The step size or minimum programmable incremental is given in
option 14 and stored in parameter STEP in subroutine ASSIGN.

For example, assume that STEP = 0.0001. This means that data
beyond the fourth decimal location cannot be recognized by the
numerical control system, therefore all data must be truncated at
this point, and in order to avoid an accumulative error or a loss
of path accuracy, the data is also rounded. As mathematically
demonstrated in Section 7.2, this method of rounding guarantees
that the maximum accumulated error on any axis can never become
larger than one half the minimum step size of the NC machine. 1In
fact, if the +tool is programmed to the beginning point of the
part program, the accumulated error is zero.

Some examples will illustrate the rounding method; assume
STEP = 0.0001.

CL Tape Value Rounded Value
22.24686231 22.2469
22.24685231 22.2469
22.2468u4231 22.2468

0.00005 0.0001
0.000005 0.0000

*The step size of a machine tool is the minimum distance that an
axis moves for one servo pulse. Translation and rotation axes
may have the same or different minimum step sizes.

[;H:[N] ”I POSTPROCESSOR ... for the computer programmer

3.4.1 OBTAINING MOTION DATA FROM THE CL TAPE (cont'd)

Subroutine SRAREC performs the rounding for linear data,
and subroutine SROREC rounds for rotary data. The relation

used is:
X = ([x| + 0.5001) * (ix[* STEP)
STEP M X

The part coordinate values are retained in DPRESP, and the
rounded values are stored in the vector DPRESM which
represents the present point in machine coordinates. DPRESM
is dimensioned at 6 and ordered as:

N

DPRESM (1) = X

il

DPRESM (2) Y linear locations

DPRESM (3) = Z
J
DPRESM(4) = A)
DPRESM(5) = B rotary locations

DPRESM(6) = C

P

A convention of this manual uses the lower case letters x, y, z,
i, js, k to represent the part coordinate data, and the capital
letters X, Y, Z, A, B, C to represent the corresponding machine
coordinate data. The rotary values A, B, and C derive from a
multiaxis move and represent the rotary motions necessary to
maintain the vector orientation of the tool as given by the
direction cosines.

Converting from part to machine coordinates for multiaxis moves
is considerably more involved than simply rounding the part data,
for now it becomes necessary to consider the orientation of the
tool relative to the part surface. This may involve a swivel of
the tool, or a tilt of the table, or any number of possible
rotary motions. Therefore, it 1is evident that a unique
relationship exists between the part and machine coordinate
systems, and this relationship wusually varies for different
multiaxis machine tool configurations. This relationship is
mathematically expressible in terms of a set of transform
equations which permit conversion between part and machine
coordinate systems. The set of transforms is identified by the
class associated with a particular multiaxis machine tool
configuration, as class 1, class 2, and so on. (See Section 4.2.)

3.4-7

l;[(:[NI I" POSTPROCESSOR ...for the computer programmer

3.4.1 OBTAINING MOTION DATA FROM THE CL TAPE (cont'd)

When the postprocessor converts the data in DPRESP to DPRESM it
utilizes the related set of transforms for the machine tool
class, and then rounds the converted data to the step size of the
NC machine. Subroutine GEOM is the subroutine responsible for
converting DPRESP into DPRESM.

3.4-8

GH:[NI "I POSTPROCESSOR ... forthe computer programmer

3.4.2 MOTION RECORD SUBTYPES

The technique described above for selecting motion data and
saving them in DPRESP and DPRESM is used by the processing
sequences for each of the motion subtypes. Any additional
activities are detailed for that subtype.

Motion record subtypes range from subtype 1 to 6%, but only
subtypes 3 through 6 are considered in the GECENT IIT
postprocessor. Subtype 1 (for an INDIRP) and subtype 2 (for an
INDIRV) are disregarded by the postprocessor.

3.4.2.1 SUBTYPE 3 FROM POINT

Subroutine MOTION branches to subroutine FROM to process this
subtype. The FROM point 1is stored into DPRESP, sent through
subroutine GEOM where it is transformed, rounded, and saved in
DPRESM, then set wup 1in the command block DBFSEG and sent to
subroutine OUTPUT for printing. The block CODE is made + 3 for
the FROM point.

There 1is never more than one point (x,y,2z) or (X,Y,z.,i,j,k) in
each FROM point record.

In the GECENT III postprocessor, multiaxis FROM points must be
given 1in part coordinate form. This convention is in keeping
with APT practices and maintains a consistency in that all data
from the CL tape is always in the part coordinate system.

Some NC machines may utilize a fixed FROM point or home position
from which all machining operations begin. In such cases, it 1is
desirable to ensure that the given FROM point is in keeping with
the fixed FROM point. The postprocessor provides a branch to the
MACFUN (see Section 5.6.1) wherein a comparison test is made of
the given versus the required FROM point, and when different,
prints a warning comment, Y“THE FROM POINT IS NOT THE HOME
POSITION"., This is not a fatal error, for indeed, many a case
arises where it is desirable to begin machining from a point
which is not the home position. ’

*Special subtypes 7 and 8 for linearity testing are not currently
recognized in the GECENT III postprocessor.

3.4-9

GH:[NI "l POSTPROCESSOR ...for the computer programmer

3.4.2.2 SUBTYPE 4 GODLTA POINT

In APT III for some computers, GODLTA points are not always
passed on to the CL tape as an incremental record because the APT
system algebraically adds the increments to the current path
points, and the resultant record is passed on as a Subtype 5 for
a GOTO record. ‘

For example: GODLTA/2,-4,6

Present path point is: 22,10,8. APT converts the record to
appear as:

GOTO/24,6,14

However, for a PTONLY/1 run, the GODLTA record is not converted
to the GOTO type record.

In the GECENT III postprocessor a GODLTA record is processed by
adding the S&DATAS¥to the postprocessor previous point data
(DPREVP) and by changing the record subtype index to 5 to make
it appear as a GOTO record and be processed accordingly.

There is never more than one point (xyz) in each GODLTA record.

3.4.2.3 SUBTYPE 5 GOTO POINT

This motion record is by far the most common record passed on to
the CL tape. It represents the algebraic location (xyz) or
(xyzijk) of each cut vector that approximates the programmed
cutter path; hence, for non-linear curves a CL tape motion record
can consist of hundreds of points.

Cl
Each point is read one at a time from the buffer &LDATA,
processed, and made output. This is the sequence used when

linear interpolation is the processing mode, but a different
course is followed for circular interpolation. (See Section
3.4.4.)

3.4.2.4 SUBTYPE 6 CONTINUATION RECORD

A part programmed non-linear path can very easily produce several
hundred cut vectors, but each CL tape record is limited to a
maximum of 80 (xXyz) points or 40 (xyzijk) multiaxis points.
Therefore, APT issues several records to represent the path;
these records are the Subtype 6 continuation records. They are
processed exactly as a Subtype 5 GOTO record for 1linear
interpolation but are used slightly differently for circular
interpolation. This process is described in Section 3.4.4.

3.4-10

GH:[NI ”I POSTPROCESSOR ...for the computer programmer

3.4.3 PROCESSING A MOTION RECORD

After the postprocessor obtains a point from the CL tape and
stores it into DPRESP and DPRESM, it then processes the motion to
make it acceptable to the NC control system. A number of tests
and modifications are detailed in the description below.

After the motion has been made output, the postprocessor retains
the present point but redefines it as the previous point, because
the next point read from the CL tape will become the new present
point. Accordingly, after a motion is processed and made output,
the elements of DPRESP and DPRESM are stored in the previous
point vectors DPREVP and DPREVM, respectively.

Diagram 3.4.3A illustrates how these vectors are used for
processing motions.

FROM

Diagram 3.4.3A

Initially, beginning with the FROM point, DPRESP contains point
A and DPREVP is null. After the FROM point 1is made output,
DPREVP becomes point A. After point B is output, DPREVP is B and
DPRESP 1is C; and so on. Note that the same method is used for
both the 1linear and circular interpolation sequences. The
vectors DPREVM and DPRESM are reset at the same time that DPREVP
and DPRESP are set.

3.4-11

[;[c[NI "l POSTPROCESSOR ...for the computer programmer

3.4.3.1 PROCESSING A LINEAR INTERPOLATION MOTION

To produce a motion which utilizes the linear interpolation
capability of the NC control system, the postprocessor need deal
only with the data contained in the DPREVM and DPRESM vectors.

Positioning machines, and all machine tools which utilize an
absolute system, output the values contained in DPRESM. For
example, in Diagram 3.4.3.1A,

B(5.6)

A(2.4) C(8.6)

P ¥ axis

Diagram 3.4.3.1A

the X axis values of the path ABC are output as X2.4, X5.6, and
X8.6. (The decimal point is not punched in the output tape but
is used here for illustration.)

Contouring machines generally utilize an incremental system which
requires that all motions be in the form of increments. In the
above example, the X axis values for the path ABC are then X3.2
and X3.0. These incremental moves are referred to as departures.
Thus, the departure from point A to point B is +3.2; the
departure from point C to B is -3.0. A departure is defined to
be the algebraic difference between the coordinate values of two
adjacent points 1in a rectangular Cartesian coordinate reference
frame.

3.4-12

GHIN]I” POSTPROCESSOR

3.4.3.1 PROCESSING A LINEAR INTERPOLATION MOTION {(cont'd)

.. .for the computer programmer

The postprocessor computes the departures in the machine
coordinate system only, i.e., with DPREVM and DPRESM. Thus, for
a multiaxis machine, the typical departures may result as
follows:

Departure = Present Point - Previous Point
AX = 11.5730 22.68411 11. 1111

Ay = 3.3699 3.2466 -0.1233

Az = 0.0000 -1.0000 -1.0000

AA = 25.0000 50.0000 25.0000

AB =-25.0000 =25.0 0

AC = 0.0000 0 0

When a CL tape motion record is processed for a line, subroutine
MOTION branches to subroutine GOLINE which is the main subroutine
for linear moves. After calling subroutine GEOM to convert from
part to machine coordinates, it <calls subroutine DEPART to
compute the departures of the linear move.

Each computed departure is compared with the parameter HSTEP
(which contains half the STEP size); and if the departure is less
than HSTEP, it 1is set to zero. The reason for this is to make
the axis move appear as a zero move, i.e., as no move at all,
since the amount of motion specified by the departure is not
physically possible on the NC machine. Because of the non-exact
representation of floating point numbers, it is quite possible
that the result of a subtraction can appear to be smaller than
the STEP size but yet be a legitimate value. For example, the
difference between the points 0.0005 and 0.0004 may appear as
0.00009999 rather than 0.00010000. The value is less than the
STEP size of 0.0001 but is certainly a valid value. This is the
reason why the above test uses HSTEP rather than STEP. This
phenomena also illustrates the necessity for rounding up the
departures; this rounding occurs later in the program.

When all departures are zero, there is, in effect, no move, and
the postprocessor must disregard further processing and return to
obtain a new point. This is accomplished by setting the return
flag RETURN to -1 which then causes the postprocessor to reroute
the program flow back to subroutine MOTION where the next point
is selected.

3.4-13

‘;[l:[NI "l POSTPROCESSOR ... for the computer programmer

3.4.3.1 PROCESSING A LINEAR INTERPOLATION MOTION (cont'd)

Before exiting from subroutine DEPART the departures are stored
in their proper

DBFSEG(3) = AX
DBFSEG(4) = AY
DBFSEG(5) = AZ

The return flag RETURN is set to +1 to indicate that a motion has
been accepted.

Unless segmentation (see Section 3.4.3.1) is required, the motion
block is essentially ready for output. The command block CODE is
set to zero to indicate a linear move, and unless SFM or
threading are in mode, subroutine OUTPUT is called to produce
ultimately the printed and punched output as described in Section
3.5.

3.4.3.2 SEGMENTATION OF A LINEAR MOVE

Because of the decimal format of each machine axis register,
there is a limitation to the number size that a register can
accept. If the format for a register is 24.0, that 1is, two
digits to the left and four digits to the right of the decimal,
then obviously the largest number that the register can accept is
99.9999. This limitation in the case of the motion registers is
called the maximum departure; hence, each component value of a
motion must be less than or equal to the maximum departure.

When departures result which exceed the maximum departure, the
path must be segmented into sufficiently small segments. For
example, if the maximum departure is 9.999 inches, a move in X of
40 inches must be segmented into five segments of 8 inches each.
The postprocessor always obtains the largest segment possible.

Subroutine MOTION tests each of the computed departures versus
the maximum departure, DEPMAX, which is specified in option 4.
1f any of the departures exceed DEPMAX, then subroutine SEGMNT is
called to produce and output the proper size segments. One
restriction should be noted here, namely, the multiaxis
processing which calls for linearity testing must bypass the
segmentation sequence in deference to the requirements of the
linearity sequence. As explained in Section 3.4.7.3, linearity
error to be measured accurately must consider the unsegmented
total path.

3.4-14

GHINIIH POSTPROCESSOR

... forthe computer programmer

3.4.3.2 SEGMENTATION OF A LINEAR MOVE (cont'd)

When the maximum departure is exceeded, subroutine SEGMNT
segments the given path into sufficiently small motions and then
outputs them. Path segmentation is fairly straightforward:
linear ratioing is used to obtain the points of segmentation, and
there is no limit to the number of segments produced. Basically,
the postprocessor determines the number of required segments from
the relation:

Largest Departure
Number of Segments = < Maximum Departure + 1 >

Next, the segment size is determined from:

Departure
Segment Size = Number of Segments

Actually, the segment size for each axis is determined so as to
make 1linear interpolation to the segmented point unnecessary.
Thus, the point of segmentation is found simply by adding the
axis segment size to the current point value. Example: Assume
a maximum departure of 9.9999 and move of 50 inches as shown in
the diagram 3.4.3.2A

The number of segments is:

Y
_ 40 -
‘ NSEG—<§':9—99—9->+1—5
The segment sizes are:
4
N | S, = §9 = I
© I 30
l S=§.9.—6
g X y 5 = °°
0 40

DIAGRAM 3.4.3.2A

3.4-15

‘;[C[N‘ “I POSTPROCESSOR ...for the computer programmer

3.4.3.2 SEGMENTATION OF A LINEAR MOVE (cont'd)

Assuming the path starts from (0,0), the segments then ére:
Segment 1: (8, 6)
Segment 2: (16, 12)
Segment 3: (24, 18)
Segment 4: (32, 24)
Segment 5: (40, 30)

Each segment is individually produced and made output by calling
subroutine OUTPUT.

The above example vividly illustrates the basic techniques wused
in segmentation, but unfortunately, actual cases are rarely that
simple. Whenever the original path is segmented unevenly, there
is the danger of losing accuracy in the last decimal digit. For
example, by the above scheme a path of 10 inches, if segmented
for a maximum departure of 3.9999 inches, produces three segments
of 3.3333 inches such that their summation is 9.9999 inches, a
loss of 0.0001 inches. The postprocessor must therefore provide
a means of adding a pulse to the segment at the appropriate time,
for it will not do to simply add in the necessary pulses on the
last segment to make the result end up at the proper point. If
this were done, the postprocessor would be deviating the tool
from its directed path.

This is illustrated in exaggerated form in diagram 3.4.3.2B the

heavy line represents the actual path; the small paths are the
segments.

i

Diagram 3.4.3.2.B
3.4-16

G[EENI ”I POSTPROCESSOR ...forthe computer programmer

3.4.3.2 SEGMENTATION OF A LINEAR MOVE (cont'd)

Hence, it is essential for the postprocessor to maintain optimum
accuracy for each generated segment so that the produced
segmented path adheres as closely as possible to the designated
path. The method used by the GECENT III postprocessor is to
recompute the segment length each time it is to be generated.
The new segment is determined by taking the difference between
the true present point and the machine previous point. In the
description which follows, only the X axis is used, but the same
technique applies to all axes.

First of all, the true, unrounded, untruncated segment length S
is computed as:

s = AX
% ——

NSEG

where Ax is the x-axis departure, and NSEG is the number of
segments required. The output segment length is now determined
by the following steps:

1. Add S, to the previous machine point Xq to obtain the
present machine point Xq.

S X0 + Sx

2. Subtract the previous machine point x5 from the
present machine point x; to get the increment §_ .

(0] (Gx z Sx)

3. Round to the step size to obtain 6

+ 0. 5 * STEP
STEP

4. The increment 6' is the required output value.
§,' is now add®d to the previous point X, to become

tﬁe new Xo'

= '
xO xo + Sx

5. The four steps are repeated for NSEG times.

3.4-17

[;[t[”] “l POSTPROCESSOR

3.4.3.2 SEGMENTATION OF A LINEAR MOVE (cont'd)

...for the computer programmer

An example will make the above description completely clear.
Assume a DEPMAX of 3.9999, STEP = 0.0001, and a AX move of
10 inches. The previous point was 8. S = 3.3333333. The

columns below when read across show theresults of steps 1

through 4.
(1) (2) (3) (4)
%0 1 5x 6; New x,
8.0000 11.3333333 3.3333333 3.3333 11.3333
11.3333 14.6666666 3.3333666 3.3334 14.6667
14.6667 17.9999999 3.3332999 3.3333 18.0000

From the above example it can be seen at value 14.6667 how the
needed pulse is automatically added at the appropriate time to
maintain the optimum path accuracy. Also note that the final
result (18.0000) is the exact final point, but x is not. 1In the
postprocessor the vector DPREVM is used analogously as x , and
the vector DPRESM as xj. When the path is completed, DPRESM is
reset to DPREVM so that both points are identical, for wupon
return to subroutine GOLINE, the normal exiting sequence is
always to reset the vectors as:

DPREVM = DPRESM
Section 3.4.3.2.1 gives a mathematical demonstration illustrating
that the segmentation technique wused by the GECENT I1T

postprocessor does not cause any significant error in the
segmented path.

3.4-18

.

G[C[NI I” POSTPROCESSOR ... for the computer programmer

3.4.3.2.1 SEGMENTATION PROOF

Let A be the exact segment length and [x] be the rounded value of
X such that

=[x]+¢e,
where ¢ is the error difference.
Then, by the above described method where DPRESM contains the

exact location of the path, and DPREVM contains the actual
location, we have for a few segments along the x-axis:

DPRESM DPREVM
X X
X+ A ~ x + [(x+p)-x] = x + [p]
X + 2A x + [A)+[20 - [A]]
x + 3A X +[A]J+[2a -[A]]+
(380 = [2a -[AJ]I-(41]

Defining 6= DPRESM - DPREVM, after three segments we have
6= 30 - [A] - [(22-[A1] - (3-i2-[0]1]1-1[A1]
If [A] = A, then
§= 34 -A -A -A = 0, illustrating no error would occur.
However, A= [A] + €

In general,

n
§ = nA -) a;
i=1
where a;, = [A .
=Y 2 1. 5
_ s _ .
and aj+l [(3+1)A El a,]

3.4-19

(;H:[NI I" POSTPROCESSOR ...for the computer programmer

3.4.3.2.1 SEGMENTATION PROOF (cont'd)

Hence, we may define €., where |€i| <half step size, by:

i
a; = [A]

1]

(A) + €

a, = [2a - (A+ el)]= (A-ei) + €,
ay = (30 - (A-el+sz) - (A+sl)] = (A—ez) + 53'
a = [nA - ()] = (A-en_l) + €
and
n
S a; = nA + En
i=1

as the telescoping series collapses.

Therefore, n

nA - E -a,

i=1*t
indicating that any error produced by the segmentation process
is less than the step size.

8] = = €

n

3.4-20

[;[[:[Nl "I POSTPROCESSOR ...forthe computer programmer

3.4.4 PROCESSING A CIRCULAR INTERPOLATION MOTION

To produce a motion for circular interpolation the postprocessor
must at first obtain the first and last points of the circle.
There is no difficulty in obtaining the first point, but the last
Foint is more difficult to obtain because circle data can easily
consist of several continuation (subtype 6) records; and hence,
the last point can be several CL records beyond the first point
record. The postprocessor obtains the first and last points in
the following manner.

Preceding every circle data (Type 5000, subtype 5) record is a
Surface Data record (Type 3000-see Section 3.3.3) which indicates
that the current cutter path is that of a circle. When
processing this record type, the postprocessor sets the flag
CIRFLG = 1 to indicate circular interpolation is called for.
Therefore, after the motion record (Type 5000, subtype 5) is read
and stored in eDATAS subroutine MOTION on the subtype 5 branch
tests CIRFLG, and if non-zero, calls subroutine GOCIRC to begin
the circular interpolation sequence.

The first thing that subroutine GOCIRC must decide is whether or
not circular interpolation is possible with the current record.
The subroutine makes a series of tests, and if any test indicates
the impossibility of circular interpolation, the postprocessor
immediately redirects the program flow to the 1linear
interpolation sequence.

The postprocessor makes the following tests:

1. Is circular interpolation the specified mode? It is, if the
LINCIR modifier was given, or if option 28 = 1.

2. Has more than one point of the circle been given? If so, the
postprocessor has sufficient data to proceed.

3. Does the circle lie in a plane? Subroutine CHKAX is called to
make this test. The non-planar axis values must be constant
for every point in the record.

L. Is the circle radius greater than the maximum departure? If
so, circular interpolation cannot be used.

3.4-21

';HI[N] l“ POSTPROCESSOR ... for the computer programmer

3.4.4 PROCESSING A CIRCULAR INTERPOLATION MOTION (cont'd)

The circle radius used for this test is not the part circle
radius r, but actually the distance from the part circle
center to the cutter control point, R.

Y
A
a cutter

y

Diagram 3.4.4A

For large circles, R is not significantly larger than r, but
when the circle is very small, the effect on the feedrate
becomes a significant factor since the feedrate command is a
function of R. See the Part Programmer Manual for a means of
optimizing the feedrate by controlling the value of R.

5. The circle path must not be for a thread. Since the I, J, and
K registers are necessary for both threading and circular
interpolation, each event is mutually exclusive.

If each of the above tests is passed, the first point of the
circle is saved in DCRPT1, which is dimensioned at three and
ordered as X, y, z. The first point of the circle does not come
from the CL data, since it is actually the previous point DPREVP;
for as with all paths, the APT System does not repeat the
starting point of a new path because that point is the same as
the last point of the previous path.

3.4-22

';H:[NI I" POSTPROCESSOR ...for the computer programmer

3.4.4 PROCESSING A CIRCULAR INTERPOLATION MOTION (cont'd)

The last point of the CL record is saved in DCRPT2 as the
potential last point of the circle. At this point in the program
it is not known for a certainty that the last point of the CL re-
cord is truly the last point of the circle, for it is possible
that the circle data may be continued on one or more subsequent
subtype 6 continuation records. Thus, the postprocessor must
read in the next record and check to see if it is a continuation
record. If it is, the last point of the CL record is saved in
DCRPT2, and the next record is read in, and so on, until the
read-in record is not a continuation record.

The postprocessor searches for the last point by using the flag
CIRSEQ. In subroutine GEBASE after a record is read, the flag
CIRSEQ is checked; and if non-zero, program flow is routed
immediately to subroutine GOCIRC. Hence, all the preliminary
processing is disregarded so that the last point of the circle
can be quickly found.

Subroutine GOCIRC checks to see if the CL record is a
continuation record. If it is, a test is made to ensure that the
circle still lies in a plane; however, at this point in the
program it 1is +too 1late to use linear interpolation should the
circle not lie in a plane, therefore, only a warning comment is
issued, and the circular interpolation sequence continues.

When a non-continuation record is found, the postprocessor knows
that the last point saved in DCRPT2 is truly the last point of
the circle. After the circle has been processed and made output,
program flow 1is directed back to subroutine GEBASE (by setting
the RETURN flag to +1) to the point where the eiDATA%array is
initially interrogated. There is no need to read the CL tape for
a new record since the non-continuation record already exists in
the eLDATASGrray.

Once the first and last points of the circle have been found, the
postprocessor can proceed to output the <c¢ircle path in the
circular interpolation mode. To do this, the circle must first
be segmented (if necessary) into its respective quadrant
segments. The Mark Century numerical control does not process a
circle path for more than ninety degrees, hence, a circle angle
greater than ninety degrees must be reduced to two or more
smaller angles, each of which must be no greater than ninety
degrees. When a circle 1is greater than ninety degrees, it
obviously lies in more than one quadrant if the circle center is
at the reference frame origin. The postprocessor in segmenting
the circle, segments it at the axis where the circle changes
quadrants. Thus, in the diagram the circle AE is segmented at
points B, C and D to produce the four segments AB, BC, CD, and
DE.

3.4-23

‘;H:[NI "I POSTPROCESSOR ...for the computer programmer

3.4.4 PROCESSING A CIRCULAR INTERPOLATION MOTION (cont'd)

Diagram 3.4.4B

The segmentation sequence as described above is effected through
the three subroutines CIRINT, QUADET, and QUADNT. Subroutine
GOCIRC calls subroutine CIRINT which sets up a call to subroutine
QUADET as a function of the circle plane. The parameter flag
IPLANE is 0 for the XY plane, 1 for the ZX plane, and 2 for the
YZ plane; this flag directs the postprocessor to the proper
calling sequence of subroutine QUADET. The indices given in the
calling sequence relate to the vectors CIRPT1 and CIRPT2, and
specify the elements of the array which pertain to the circle
plane. For example, if the circle lies in the XY plane, the
indices 1,2,3 are given; these specify the values of the array
as:

DCRPT1 (1) for the X value,
DCRPT1(2) for the Y value, and

DCRPT1(3) for the non-planar value.

3.4-24

G[I}[Nl ”I POSTPROCESSOR ... forthe computer programmer

3.4.4 PROCESSING A CIRCULAR INTERPOLATION MOTION (cont'd)

For the ZX plane, the indices are 1, 3, 2, and specify:

DCRPT1(1) for the X value,

DCRPT1 (3) for the Z value, and

DCRPT1(2) for the non-planar value.
With this information subroutine QUADET can determine the
quadrant change points. The circle is translated to the origin

by subtracting the circle center from the circle first and last
points, i.e.,

Oxl"xl-x

C
Oy1 = ¥1 - ¥¢
Ox2 = X5 = X¢
Oy2 =¥y T Xg

In the diagrams below, it is clear that the circle passes through
the second, first, and fourth quadrants after the translation to
the origin occurs.

A

(x,y)
[]
(x_ry.)
(X,,v,) ‘ -

o <

Diagram 3.4.4C

IT 1
‘//—

(xl,yl)

W
'

(xc,yc) 0

I1I (x2,y2) v

3.4-25

l;[(:[N] I" POSTPROCESSOR ...for the computer programmer

3.4.4 PROCESSING A CIRCULAR INTERPOLATION MOTION (cont'd)

The postprocessor determines the passed-through quadrants by
subroutine QUADNT. This subroutine is called twice; first, with
the beginning point of the circle, and then with the last point
of the circle. For the first point of the circle, subroutine
QUADNT sets the input parameter QA to the quadrant number in
which the point falls, and, similarly, it sets the input
parameter QB for the 1last point. In the example above, these
values are found as:

QA = 2, OB =4

Subroutine QUADNT finds these values in a most direct manner.
The calling sequence to QUADNT gives, for example:

CALL QUADNT (1, PX1, PY1, QA),

where 1 identifies the point (PX1,PY1) as the first point of the
circle (with its center at the origin), and QA is the return
output. The subroutine tests PX1 and PY1 for their sign
condition. In the example above, PX1 is negative and PY1 is
positive; from these conditions it is obvious that the point must
lie in the second quadrant, therefore, QA = 2.

For the last point the call is:
CALL QUADNT (2,PX2,PY2,0B)
where 2 identifies the point (PX2, PY2) as the last point of the

circle. Since PX2 is positive and PY2 is negative, the point can
lie only in the fourth quadrant, and, accordingly, QB = 4.

An indeterminate condition arises when one or both of the points
lie exactly on an axis as in the examples below.

- 1
/ PY
X X 4 , X
\\f 0 0 |«PX>

First Point on Axis Last Point on Axis Both Points on Axes
(Diagram A) (Diagram B) (Diagram C)

3.4-26 Diagram 3.4.4D

[;H:[N] "I POSTPROCESSOR ...for the computer programmer

3.4.4 PROCESSING A CIRCULAR INTERPOLATION MOTION (cont'd)

In diagram A, for example, does the first point lie in Quadrant
I or II? Analytically, it could be either quadrant, but the
postprocessor requires a unique decision. Hence, the following
conventions are used:

1. When the first point lies exactly on an axis, the point is
defined to 1lie 1in the quadrant through which the circle
initially passes. In Diagram A, the first point then 1lies in
Quadrant II.

2. When the last point lies exactly on an axis, the point is
defined to 1lie in the quadrant through which the circle last
passes. In Diagram B, the last point then 1lies in Quadrant
IIT.

As indicated earlier, the postprocessor uses the signed values of
PX and PY to find the proper quadrant value, but since under
these conditions PX or PY is zero, the subroutine must now use
the <circle direction to determine the proper quadrant. 1In
Diagram A, for the first point, PX is zero, and PY is positive,
and the circle direction is CCLW. Hence, QA = 2. If the circle
direction was CLW, QA = 1.

In Diagram C we have the condition where both the first and last
points 1lie on the axes. Subroutine QUADNT processes the input
conditions and yields the following results:

First Point: PX >0, PY = 0, CCLW; QA = 1.

Last Point: PX =0, PY> 0, CCLW; OB = 1.
Hence, the path is defined to lie in one quadrant only.

The circle direction was determined earlier in the program when
subroutine GOCIRC called subroutine DETDIR. This subroutine
finds the circle direction by taking the first two points of a
circle record and translating the circle center to the origin;
the two vectors (from the origin to the circumference) are then
crossed.

3.4-27

';H:[NI "l POSTPROCESSOR ...for the computer programmer

3.4.4 PROCESSING A CIRCULAR INTERPOLATION MOTION (cont'd)

- <

v (x3:75)
)

(%1:¥y

\'2
1 o X

Diagram 3.4.4.E

For the two vec@ors Vl (xl,yl,zl) and V2 (x2,y2,22), the
cross product gives

i 3 k
*'—' = - e - -
Vit Yy X) ¥ % (X1¥,7Xp¥) K + (¥12,72)¥2) 1+
X, ¥y Zy (xlzz—xzzl)j
Since one axis must always be constant, it is necessary to
consider only two axes, viz., essentially, (wjv2-wpvy) = D. For
a constant 2z, w=x, v = y; for y constant, w= 2z, v = x; for x
constant, w =y, v = z. If D< 0, direction is CIWw; D > 0,
direction is CCILW. If D = 0, the vectors are parallel and an

error is assumed.
The subroutine sets the circle direction flag CIRDIR as:
CLW; CIRDIR = 0

CCLW: . CIRDIR = 1

At this point in the program the postprocessor has all the
requisite information to produce the circle segments, viz., the

circle direction and the beginning and ending quadrants
Subroutine QUADET now sets up the array DBUFER with the gquadrant
intersection points and the last point of the circle. DBUFER is

dimensioned at (6,5) and ordered as x, y, z, i, j, k.

3.4-28

(;H;[NI I" POSTPROCESSOR ... for the computer programmer

3.4.4 PROCESSING A CIRCULAR INTERPOILATION MOTION (cont'd)

=

(X1,y7) B

Diagram 3.4 .4F

Thus, in our original example, the points A, B, and (x2 'Y) are
stored in that order into DBUFER.

When the circle path lies in only one quadrant, the last point
(xz,yz) is stored into DBUFER.

There is no need to store the first point of the circle since it
already exists in the DPRESP and DPRESM vectors. It will become
clear shortly why only the last point of the circle is stored.

Subroutine QUADET determines the values of the points A and B by
setting up the table XP (dimensioned at (2,4)) as follows:

1 2 3 4 1 2 3 4

1 0| -r 0 r (x) 110 |-r 0 r

XP:

2 |-r 0 r 0 (y) 2 |«x C |-r 0

CLW CCLW

The XP table is initially set to zero and dependent upon the
circle direction, the table is set at certain locations with the
circle radius CIRRAD or its negative. The subroutine sequence
automatically determines the values of (¥, ¥) and (%, W) by
selecting the values from the table and adding the corresponding
circle center value to retranslate the point from the origin.

3.4-29

l;H.:[NI "I POSTPROCESSOR ... for the computer programmer

3.4.4 PROCESSING A CIRCULAR INTERPOLATION MOTION (cont'd)

Row 1 of the table gives the x value of the quadrant intersection
point, while row 2 gives the corresponding y value. Thus, the
table for CLW is stored as (reading columnwise):

(Or_Y) (—XIO) (OIY) (XIO)

Y Y Y Y

e

Diagram 3.4.4G

The subroutine automatically selects the proper column by
computing the index JJIMU4 as:

JIJM4 = (IA + II) modules 4 + 1,

where IA 1is the starting quadrant number and II is the counter
per quadrant, II = 1, 2, 3, or 4. Note that IA is the quadrant
starting from the intersection point and not from the first
point. Thus in the example above, the starting quadrant is
measured from point A and not (x,y); therefore, IA is 1.

Another parameter used in the sequence is IDQ which gives the
number of quadrant intersection points; in this example IDQ = 2
counting points A and B.

Referring to Diagram 3.4.4F of our example‘above, it will be seen
how the points A and B are found in the following sequence.

For this example, IA = 1 and II initially is 1. Therefore,

JdMd = (1 + 1) modulus (4) + 1 = 3.
Hence, the +third c¢olumn of the CLW XP table is the quadrant
intersection point A, i.e., xp =0, ya = rapiowever, to obtain
the true absolute values, we must the corresponding

circle center value, since the circle data was originally
translated to the origin; thus: X, = 0+ xc, yA =r +~yc.

3.4-30

[;[[:[N] I" POSTPROCESSOR ... for the computer programmer

3.4.4 PROCESSING A CIRCULAR INTERPOLATION MOTION (cont'd)

This point is stored into DBUFER, and the subroutine looks for
the next point. II now is 2, hence,

JIM4 = (1 + 2) modulus (4) + 1 = 4,

and from the fourth column, we get xgp= r ¢4 X o YB = 0 + vy
This point is also stored into DBUFER, and Csince II = IDQ, €he
sequence ends by finally storlng the circle last point (29, y2)
into DBUFER. The counter KTR is set to give the number of points
stored into DBUFER; in the example above, KTR = 3.

The function of subroutine QUADET is now completed, and program
flow returns to subroutine GOCIRC. At this point in the program
the circle segments have been determined, and now all that has to
be done 1is to output the segments. This is normally a simple
process, but there are conditions which can arise to make the
process more complex. In general, and for nearly all cases, the
points can be made direct output from the array DBUFER. The
complicating conditions which rarely arise are described in the
special Section 3.4.4.1.

Before outputting the points in DBUFER, subroutine GOCIRC first
computes the command block code CRCODE as:

CRCODE = 10, if the circle is in the XY plane.
CRCODE = 11, if the circle is in the ZX plane.
CRCODE = 12, if the circle is in the YZ plane.

CRCODE 1is a positive value if the circle direction is CLW and
negative if CCILW.

If the circle plane had changed from the previous plane, the
postprocessor outputs the new plane selection G code. For
example, if the present circle were in the YZ plane when
previously all circles were in the XY plane, then the plane
selection G code (TABLEG(20)) would be made output. Subroutine
PLNSEL performs this function.

When these preliminary preparations are completed, program flow
goes to subroutine PROCQD to process and output the quadrant

segments. In our example the array DBUFER contains the three
points:
x , v)
A A
x, v)
B B

x , Y)i KIR = 3
2 2

3.4-31

G[c[N] "I POSTPROCESSOR ...for the computer programmer

3.4.4 PROCESSING A CIRCULAR INTERPOLATION MOTION (cont'd)

The sequence in subroutine PROCQD selects the p01nt (xpa, Yp) and
stores it into DPRESP; next, subroutine GEOM is called which
rounds and truncates the values, and stores it into DPRESM.
Subroutine DEPART is called to compute the departures. It is
evident that the processing thus far is simply that for a linear
move as described in detail in Section 3.4.3.1. A special test
is made on the departures (see Section 3.4.4.1), and if the test
is passed, the command block is readied for output.

If an SFM mode exists, the postprocessor reroutes program flow to
the SFM sequence (see Section 4.5) which ultimately outputs the
segment. The flag SFMCIR is set to 1 to specify to the SFM
sequence that a circle segment is being processed.

Before the command block DBFSEG can be made output, additional
items must be added when the block is for a circular
interpolation move. These items are the arc center offsets and
are stored in DBFSEG(8), (9)., (10).

The arc center offsets are the axial distances from the circle

center to the beginning point of the circle. 1In the diagram the
arc center offsets are the distances I and J. In general, I=]x

xll, J = |y, - yl|, K = |zc - zll.

Y
‘(X1sYq)

- dJd

|
1
!

(xF,yc
|
[
|
[

Diagram 3.4.4H

Subroutine OFFARC is the subroutine which computes the arc center
offsets and stores them into DBFSEG. The offset values are
rounded and truncated by subroutine SRAREC before being stored
into DBFSEG.

3.4-32

G[[:[NI "I POSTPROCESSOR ... forthe computer programmer

3.4.4 PROCESSING A CIRCULAR INTERPOLATION MOTION (cont'd)

The command block is now ready for output. CODE is set to
CRCODE, and subroutine OUTPUT is called to print and punch the
blocks. DPREVP is set to DPRESP, DPREVM is set to DPRESM, and
the process is repeated with DPRESP selecting the next point from
DBUFER. The sequence repeats for KTR times.

When subroutine PROCQD completes its function, it returns to
subroutine GOCIRC which sets the return flag RETURN to + 1, and
returns to subroutine MOTION which returns to subroutine GEBASE.
In GEBASE the return flag is tested, and since it is +1, program
flow is directed to the internal sequence which begins
interrogation of the @LDATAS rray. There is no need to read in
a new record at this time because the next record already exists
in the ebDATA®Srray; this is the record which was the non-
continuation (subtype 6) record which signaled an end to the
circle data in subroutine GOCIRC.

3.4.4.1 SPECIAL CASE CONDITIONS

There are two special conditions which can result during a
circular interpolation sequence that requires special testing
and, if necessary, special treatment to alleviate the potential
error. Both type errors can occur only on the beginning or end
points of the circle. A description of each <condition and the
solution produced is detailed below.

The first kind of error that can occur is when a circle begins or
ends just short of an axis, as illustrated in the diagrams below:

Y

A f

Diagram 3.4.4.1A

3.4-33

G[c[NI "l POSTPROCESSOR ...for the computer programmer

3.4.4.1 SPECIAL CASE CONDITIONS (cont'd)

These short distances can result as a function of the programmed
tolerance, i.e., the tool, instead of 1landing exactly on the
axis, goes beyond or falls short of the axis by a distance which
is acceptable since it is within the programmed tolerance. If
the distance should be very small, it can, in effect, produce a
departure of zero as demonstrated by the example below where a
blown-up view of the circle segment is illustrated.

o <

(0,3
Pl v 3)
(-0.002,2.99999) Py ~
. N -
0 X
Diagram 3.4.4.1B
The beginning point P of the circle is x = -0.002, y = 2.99999,
and the quadrant intersection point P; is x = 0, y = 3. After

subroutine SRAREC rounds and truncates to the step size, the
values become:

Py = (-0.002, 3); P, = (0, 3).
The departures then are:
AX = 0.002, AY = 0.

A zero departure is unacceptable to the NC control system when
the move is in the circular interpolation mode. If such an input
is made to the control, an apparent machine stop occurs;
actually, the halt is a dwell which can be of short duration or
as long as several hours!

A =zero departure never occurs while in circular interpolation,
for at each quadrant intersection point there is always a non-
zero X and Y departure. A zero departure can occur only as
described above, i.e., at the beginning or end point of the
circle, hence, that is the reason the test for a zero departure
is made only on these points.

3.4-34

';H:[NI "I POSTPROCESSOR ...forthe computer programmer

3.4.4.1 SPECIAL CASE CONDITIONS (Cont!'d)

The solution to this problem is simple. After subroutine DEPART
computes the departures, a test is made to see if either
departure is zero. When either departure is zero, the
postprocessor 1is directed to use linear interpolation for that
segment only. The internal flag QDMODE is set to zero, thereby,
specifying linear interpolation. CODE is set to zero, and
subroutine OFFARC 1is bypassed; this, in effect, causes the
segment to be output as a 1linear rather than as a circular
interpolation move.

The other error condition which can occur in a circular
interpolation mode is one resulting from APT Section II linear
data for a circle. Diagram 3.4.4.1C illustrates how linear cut
vectors can approximate a circle path. The only requirement is
that each cut vector be within the tolerance band. Depending on
the part geametry and the tolerances specified, several possible
cut vector sequences can occur as illustrated in the diagram by
cut sequence A and B. The fact that the end point of the
approximating linear cut vectors can be anywhere within the
tolerance band can cause an erroneous effect with the last point
of the circle.

Tolerance
Band

Diagram 3.4.4.1C

3.4-35

BH:[N] “I POSTPROCESSOR ...for the computer programmer

3.4.4.1 SPECIAL CASE CONDITIONS (cont'd)

Diagram 3.4.4.1D

It is evident that the circle is of CLW direction. But when the
circle is broken into its quadrant segments, it becomes clear
that a problem can occur with the fourth quadrant segment. For
example, if point B should be the circle end point, there is an
apparent change of circle direction when moving from point Q to
B, (see Diagram 3.4.4.1D.. The departures and arc center of fsets
for the fourth quadrant move will be inconsistent with the
established circle direction and will, therefore, cause the
control system to lose synchronization.

As with the first problem, the solution to this problem is simply
to make the move in the linear interpolation mode. This is done
in the same manner as described above.

This error condition is detected by comparing the non-zero axis
component value at the gquadrant intersection point versus the
same axis component value at the end point. In the example of
Diagram 3.4.4.1D at point Q, x is the non-zero value while y is
zero. Therefore, Qy is compared with By; and if By is not 1less
than Qx' the error is known to exist, for it is easily seen that
B infets that the circle direction is CCLW and not CLW.

3.4-36

[;[[:[NI ”l POSTPROCESSOR ...for the computer programmer

3.4.4.1 SPECIAL CASE CONDITIONS (cont'd)

The above mentioned test is done only after the circle has been
translated to the origin; consequently, for all circles,
regardless of direction, quadrant, or plane, the absolute non-
zero axis component value must be larger than the corresponding
axis absolute value at the circle end point; otherwise the error
exists.

3.4.5 PROCESSING A ROTARY MOTION

As with a linear move, it is possible to have an absolute rotary
move or an incremental rotary move. Positioning machines with a
rotary table* will generally utilize an absolute system for the
table which means that the value loaded into the table register
is the actual location for the table to be moved. Contouring
machines with a rotary device (table, head, column, and so on)
utilize an incremental system which means that the value loaded
into the rotary device register is the amount of motion to be
made. An example of each move is illustrated below.

* The reference here is to a table which is dimensionally
programmed, executable through an A, B, or C register.
Indexers and devices which obtain their motion through
miscellaneous function of other codes do not pertain.

Table Register ILoad: 30 (assume CLW)

Initial Setting at 90° Absolute System Incremental System

90

N N AN

270 270 270

Diagram 3.4.5A

3.4-37

GH:[NI "I POSTPROCESSOR ...for the computer programmer

3.4.5 PROCESSING A ROTARY MOTION (cont'd)

Subroutine ROTABL handles the rotary sequences for all such
rotary systems regardless of the type of rotary device (table,
head, and so on). From subroutine ROTABL the two major rotary
processing subroutines are called, viz., subroutine ROTABA for an
absolute system, or subroutine ROTABI for an incremental system.
Each of these sequences is discussed in the next two following
sections.

Fundamental to both of these subroutines, however, is the
technique of obtaining both the incremental amount of move and
the resultant absolute location after the move. The basic
postprocessor statements (assumed a table)

ROTATE/TABLE, INCR,O or ROTATE/TABLE, ATANGL, B

can be used for either an absolute or an incremental system. For
either statement, the incremental amount ROTRAD and the absolute
location ROTPOS are found. The absolute location must always be
known in order to permit the use of the ATANGL or ROTREF
modifiers. (See Section 3.4.7.2 for the use of option 29 which
precludes the determination of ROTPOS.) The previous absolute
location PRVPOS is also set before exiting from the subroutine.

The first item done 1in subroutines ROTABA and ROTABI is to
establish the absolute location. The flag INCABS, which was set
in subroutine ROTABL, specifies the nature of the given ROTATE
statement, i.e., as to whether it gave an incremental move (0) or
an absolute location (ATANGL, B). If INC is 0, an incremental
move was given therefore, ROTRAD = @DATA(5) and ROTPOS = PRVPOS
+ ROTRAD. If INCABS 1is +1, an absolute move was given,
therefore, ROTPOS = e:DATA({6) and ROTRAD = ROTPOS - PRVPOS.

These determinations are, in effect, that which occur in the
subroutines, but the precise manner is slightly different. For
example, the table rotation direction can cause ROTRAD to be
subtracted instead of added to PRVPOS in order to get ROTPOS.
Also, consideration must be given as to how +the table is
absolutely scaled, that is, CLW or CCILW and also as to what
direction of rotary move will cause an increase in the reading on
the rotary scale. See the following diagrams.

3.4-38

G[[:[N] "I POSTPROCESSOR ...for the computer programmer

3.4.5 PROCESSING A ROTARY MOTION (cont!'d)

90

W W/
N AN

270 90

Scaled CCLW and off of Scaled CLW and on
the table Diagram 3.4.5B the table

The postprocessor keeps the absolute location ROTPOS (or PRVPOS)
always less than 360 degrees, i.e.,

ROTPOS = ROTPOS modulus 360.

And when ROTPOS becomes 360, the postprocessor resets it to zero.
For consistency the postprocessor also keeps ROTPOS a positive
value, and always treats negative angles as their positive
complement, e.g., -40° is made 320°.

Although the rotation value (@ or B) given in the ROTATE
statement is in degrees, the output value may be in another form.
Option 118 specifies the form of output.

For example, the output rotation value may be in terms of 100
parts per revolution; therefore, 90 degrees would be output as
25; 180 degrees as 50, and so on. Subroutine CONROT takes care
of the conversion and anticonversion. The calling sequence for
CONROT is:

CALL CONROT (VALUE, N),

where VALUE 1is the item of conversion, and N is plus or minus
one. If N =+ 1, VALUE is in degrees and is to be converted to
output units; if N = - 1, VALUE is in output units and is to be
converted to degrees.

The output value of rotation R is always rounded and truncated as

a function of the rotation step size which is given by option
119.

3.4-39

';H;[N] "l POSTPROCESSOR ...for the computer programmer

3.4.5 PROCESSING A ROTARY MOTION (cont'd)

The rounding and truncation is determined in subroutine SROREC by
the relation:

L] \
R = R + 0.5001%z* OPTION (119)
OPTION (119) R
For example: OPTION(119) = 0.001, R = 10.246890. Then after

subroutine SROREC, R = 10.247.

As with linear motions, there is a maximum allowable rotary move
which requires that rotations greater than the rotary maximum
must be segmented into sufficiently small rotations. The
parameter ROTMAX carries the maximum and is obtained from option
111. oOption 111 is given in degrees, but in subroutine ASSIGN
the parameter ROTMAX is converted to output units.

The segmentation sequence for rotary moves must ensure that there
is no 1loss of accuracy due to truncation or rounding. For
example, a rotation of 90 degrees can be segmented in three 30
degree moves; in output units assume 360° = (revolution). These
30 degree values are equal to 0.08333 when rounded and truncated
to a step size of 0.0001. Thus, we have

30 = 0.08333
30 = 0.08333
30 = 0.08333
90° 0.24999 # 90°.

Therefore, it is apparent that segmentation must be done with the
values in output units, and that a recovery sequence is required
which adds in the potentially lost pulse at the proper time.

The postprocessor utilizes such a technique; and for the above
example would produce values such that:

30 = 0.08333
30 = 0.08334
30 = 0.08333
90° = 0.25000 = 90°

The technique is described in detail in Section 3.4.5.3.

3.4-40

G[c[NI I” POSTPROCESSOR ... forthe computer programmer

3.4.5.1 ROTARY ABSOLUTE SYSTEM PROCESSING

The main processing subroutine for all rotary absolute systems is
subroutine ROTABA which is in GEPOS. This subroutine processes
rotary moves which are incremental or absolute, i.e., which
evolve from the statements:

ROTATE/TABLE, INCR, 0or ROTATE/TARLE, ATANGL, B .

The output of the motion for an absolute system is always the
value of the table location itself. For example, the statement:

ROTATE/TABLE, ATANGL, 23, CLW

causes the output of the value 23 for the rotary table register.
If another statement follows. the above, such as

ROTATE/TABLE, INCR, 10, CLW ,
the output value is 33, the new absolute location.

Absolute system NC machines often have a rotary table which moves
to its programmed point in the shortest direction. For example,
if the table is sitting at 90 and is directed to go to 180, the
table moves CCLW to 180 since this is the shortest route.

90
CCLW

180 0

270
Diagram 3.4.5.1A

The postprocessor permits the part programmer to specify the
direction of rotation, and should he choose the direction which
is the longest route, the postprocessor effects this by producing
two moves in the direction specified. In the example above,
suppose the statement given was:

ROTATE/TABLE, ATANGL, 180, CLW
The postprocessor produces the two moves: (1) rotate to absolute

angle 271 °; (2) rotate to 180°. This in effect causes a CLW
rotation to the 180° position.

3.4-41

GH:[NI l" POSTPROCESSOR ...for the computer programmer

3.4.5.1 ROTARY ABSOLUTE SYSTEM PROCESSING (cont'd)

Note that option 117 plays an important part in this sequence
since it is essential to know the direction of the scale.

A rotary table on a positioning machine can have its own feedrate
register which is separate and distinct from the linear feedrate
register. Option 139 indicates the existence and location of
such a rotary feedrate register. For example, option 139 = 16
specifies that the sixteenth cell of DBFSEG 1is the rotary
feedrate register location, and this is where the rotary feedrate
is stored.

If there is a rotary feedrate, option 141 tells what type of
feedrate it is; and the appropriate subroutine is called to
convert the current feedrate to the proper form required for the
rotary feedrate output.

The rotary position value is stored in DBFSEG(6) if the rotary
device is a head, or in DBFSEG(7) if the rotary device is a
table. Subroutine SET12 is called to obtain the current
positioning mode G code, if any.

The command block CODE for an absolute system rotary move is +2,
and this CODE is set prior to calling subroutine OUTPUT which
ultimately prints and punches the block.

The table may also have its own rapid requirements such as an M
code which establishes the rapid and feed condition. If so, and
a RAPID is given, the postprocessor outputs the M code which puts
the table in the rapid mode (TABLEM(42)). Then, before exiting
f rom subroutine ROTABA, it outputs the M code which puts the
table back into its feed mode (TABLEM (43)). The RAPFLG is set to
zero since rapid for a table is considered to be one-shot only.

3.4-42

G[[:[N] ”I POSTPROCESSOR ...for the computer programmer

3.4.5.2 ROTARY INCREMENTAL SYSTEM PROCESSING

The main processing subroutine for all rotary incremental systems
is subroutine ROTABI which is in GEMILL. This subroutine
processes rotary moves which are incremental or absolute, i.e.,
which evolve from the statements:

ROTATE/TABLE, INCR, 0 or ROTATE/TABLE » ATANGL, B.

The output of the motion for an incremental system is always the
departure from the previous to the new table location. For
example, if the table is positioned at location 10, the
statement:

ROTATE/TABLE, ATANGL, 23, CIW

causes the output of the value 13 for the rotary table register.
If another statement follows the above, such as:

ROTATE/TABLE, INCR, 10, CLW

the output wvalue is 10, the incremental distance from the
previous to the new table location which is now 33.

The incremental amount of move ROTRAD is determined in subroutine
ROTABI. If the modifier was INCR, then ROTRAD = a; if the
modifier was ATANGL, then ROTRAD = 8 - PRVPOS. The sense of
rotary direction ROTDIR is important to the value of ROTRAD and
ROTPOS. The direction flag ROTDIR has the following meanings:

ROTDIR - 1, CLW

ROTDIR = + 1, CCLW

If the rotation is an incremental move (INCR) and no rotary
direction is specified, the postprocessor assumes CLW. If the
rotation is an absolute move (ATANGL) and no rotary direction is
specified, the postprocessor uses the minimum direction.

After the amount of move ROTRAD has been determined, it is tested
versus the maximum rotary departure ROTMAX, and if greater, the
rotary amount is segmented into sufficiently small rotations; see
Section 3.4.5.3.

Subroutine ROTOUT is called to output the command block. It is
in this subroutine that the incremental move is corrected per
Section 3.4.5.3 and stored into DBFSEG(N), where N = 6 if +the
rotation 1is for a head, or N = 7 if the rotation is for a table.

3.4-43

‘;H:[NI I" POSTPROCESSOR ...for the computer programmer

3.4.5.2 ROTARY INCREMENTAL SYSTEM PROCESSING (cont'd.)

The command block CODE is set to - 2 for an incremental rotary
move. Subroutine OUTPUT, before printing and punching, obtains
the required preparatory function G code (stored in DBFSEG(2)),
and the current feedrate (stored in DBFSEG(11)). See Section
3.4.6 for the description of G code selection.

The postprocessor retains the rotary absolute position if option
29 so specifies, hence:

DPRE¥M(N) = DPRESM (N)
in order to keep the previous machine point vector accurate.

3.4.5.3 SEGMENTATION OF A ROTARY MOVE

Rotary moves utilize an accurate rounding technique similar to
that used by linear moves. In addition to rounding each rotary
departure to the step size, the difference between the true move
and the rounded move is saved and accumulated on each move. When
the absolute value of the difference is equal to or greater than
one half the step size, the difference is rounded up to the step
size (maintaining the sign of the difference) and added to the
rotary move. Then the rotary difference is reset to the
difference between the true and the rounded differences.

The following example will clarify the problem.

Six rotary moves of 30° or .08333333 decimal parts of a
revolution are to be output.

Let R be the true rotary departure;

-

R” be the rounded rotary departure;

D be the true difference between the
true rotary departure and the rounded
rotary departure;

be the rounded value of D.

Step size = .0001 inches.

3.4-44

G[[:[N] I” POSTPROCESSOR ... for the computer programmer

3.4.5.3 SEGMENTATION OF A ROTARY MOVE (cont'd.)

(1) Rl = .08333333

Rounding Rl gives

Rl = .0833
The difference between R, and R’ is

1 1

Dl = .00003333

Rounding D,y gives
D; = 0.0

The departure of .0833 is output.

(2) R, = .08333333
R, = .0833/
The difference between R, and R; plus thé previous D
gives 2 2 1

D2 = .00006666

Rounding D, gives

2

D2 = .0001

D2 is added to R2

Now D, becomes - .00003334 which is the difference
betweén the old D; and Dj.

making the rotary move .0834.

(3) R, = .08333333
R; = .0833
D, =-.00000001
D; = 0.0

A rotary departure of .0833 is output.

3.4-45

BH:[NI l“ POSTPROCESSOR ...for the computer programmer

3.4.5.3 SEGMENTATION OF A ROTARY MOVE (cont'd.)

(4) Ry = .08333333
Ry = .0833
Dy = .00003332
Dy = 0.0

.0833 is output.

(5) Rg = .08333333
Rg = .0833
Dg = .00006665
Dg = .0001
The rotary move becomes
D5 + Rg = .0834
Dy is reset to - .00003335
(6) Rg = .08333333

R¢ = .0833
Dg =-.00000002
D¢ = 0.0
.0833 is output.
The examplé shows that the absolute rotary position will always

be within half the step size. Greater accuracy than this is not
possible.

3.4-46

G[[:[NI I” POSTPROCESSOR ...forthe computer programmer

3.4.6 SELECTING THE PREPARATORY FUNCTION G CODE

An NC contouring machine which has an incremental system moves
the tool according to the axis departures given in each command
block. Thus, the move given by

AX = =2, AY = 3

moves the tool to a point reached by moving the X axis 2 inches
in the negative direction and the Y axis 3 inches in the positive
direction. Each motion block must have a preparatory function G
code which not only tells the control system what type of mode
exists (linear or circular), but also the dimensional magnitude
of the move. In most cases, the numerical control system does
not require that the G code be given in each block after the mode
is once established. The postprocessor, however, sets up each
command block with the current G code, and depending upon Option
38, may suppress redundancies.

Subroutine SELG selects the necessary G code for linear
interpolation moves, whereas subroutine SELGCR selects the G code
for circular interpolation and subroutine SELGRO selects the G
code for rotary moves; subroutines SELGCR and SELGRO are each
called from subroutine SELG.

In addition to selecting the necessary G code, each subroutine
also determines the proper dimension multiplier GDIMUL which is
used to determine the feed command for that block value; see
Section 4.1.1. The range of magnitudes covered by the G codes
available on the Mark Century numerical control can extend from
0.00001 to 9999.9999 inches. Most control systems do not have
such a wide range.

Since a particular value G code can mean a different magnitude
from one numerical control system to another, the postprocessor
assigns a table location to a specific range of magnitude. For
example, depending on the NC machine, a G12 <can. be either the
range from 0.000%1 to 0.0999 or the range from 100 to 999.999.
There is no confusion, however, if we refer to a TABLEG location
to identify a particular range since any value can be stored
there.

3.4-47

(;H:[NI "I POSTPROCESSOR ...for the computer programmer

3.4.6 SELECTING THE PREPARATORY FUNCTION G CODE (cont'd)

Subroutines SELG and SELGCR make use of the departure limit array

RN4OEPREPCIM which is set up in subroutine ASSIGN or GEINIT. The array
is set up for either an English or metric system as designated by
option 138.

DEPLIM
Inch Metric*
0.1 (1) 1
1 (2) 10
10 (3) 100
100 (4) 1000
1000 (5) Option (4)

The above table is used by both the 1linear and circular
interpolation sequences in selecting the proper G code since the
table defines the range magnitude assignable to each of the
available G codes. In all cases the smallest magnitude G code
that encompasses all the comparison values is used, i.e., the
magnitude must be less than or equal to the largest dimension of
the compared values.

For example, assume a GO01 and G10 exist as defined below. Then
a linear move of A = 8 inches causes the selection GO1 for the
range of moves 0.1 to 9.9999 inches, whereas a A = 80 inches
causes the selection of G10 for the range 10.0 to 99.9999 inches;
however, the G10 is compatible with both the A = 8 and A = 80.
Thus, if

AX = 8 and AY = 80,

then, the G10 must be used since the magnitude covers both AX and
AY. But this is not true for the GO01 since AY = 80 is beyond the
range of the GO1.

* The array for the metric system can be different than shown
since the values are a function of the available G codes and
the type of control selected by option 165. The 1listing of
subroutine ASSIGN should be referenced for this information.

3.4-48

B[[:[NI ”I POSTPROCESSOR ...forthe computer programmer

3. -.6. SELECTING THE PREPARATORY FUNCTION G CODE (cont'd.)

An important feature to note here is that if a G01 as defined was
the only G code dimension available, all moves greater - than
9.9999 inches would have to be segmented. Thus, the maximum
departure (option 4) and the maximum magnitude must be identical.

Since a larger magnitude G code can be compatible with smaller
dimensions, the question may be raised; why not always use the
largest dimension G code and do away with the other dimensions?
The reason 1is because higher feedrates are possible using the
lower dimension G codes. This is made evident in Section 4.1.1.1
wherein a discussion of the feed command illustrates the affect
of the G code.

The converse attempt to obtain higher feedrates by using small
dimension G codes is precluded because of the loss of significant
digits in the motion value by the numerical control system, e.qg.,
a move of 23.2468 with a GO1 results in the loss of the leading
digit. Hence, instead of obtaining the given move, the actual
move is 3.2468.

Related to each G code is a so-called "dimensional multiplier®
which is a dimensional constant wused in determining the feed
command; see Section 4.1.1.1. This constant, as used in the feed
command formula, is multiplied by 10. But the postprocessor, in
order to economize on time and space, interprets the resultant
product as if it were the actual value of the dimension
multiplier.

For example, for a magnitude range of 0.1 to 9.9999 inches, the
dimension multiplier is 1; dimension multiplier value is always
multiplied by 10, the postprocessor interprets the term as the
value 10 instead of 1. The parameter GDIMUL carries this value.

Although the postprocessor scans the tables in search of an
available G code, it uses only those G codes which are actually
available. An unavailable G code is indicated by DMBITS being
stored at the related TABLEG location.

In the examples given in the following sections, the inch
system is wused exclusively, but the metric system is similae.
The only difference between the two systems is the table of
RNGDEP values, otherwise, all processing methods are identical
except that a modification to the dimension multiplier is
sometimes necessary.

3.4-49

“[(:[Nl "I POSTPROCESSOR ...for the computer programmer

3.4.6.1 SELECTING THE G CODE FOR A LINEAR MOVE

The selection of the linear G code resides completely in
subroutine SELG where the departures stored in DBFSEG(3), (4) and
(5) are compared versus the RNGDEP values, and a decision is made
as to the proper G code to select; after selection, the G code is
stored in DBFSEG(2) .

The linear interpolation range of magnitudes and their table
locations are as follows:

Linear Interpolation

Range TABLEG
0.01 - 0.09999 inches (13)
0.1 - 0.9999 (12)
1 - 9.9999 (2)
10 - 99.9999 (11)
100 - 999.9999 (14)
1000 - 9999.9999 (15)

Related to the above table is the departure limit table (see
above) which indicates the selection of the G code for a given
move.

If the Departure is, use TABLEG DIMULT
< RNGDEP (1) (13) 0.1
< RNGDEP (2) (12) 1
< RNGDEP (3) (2) 10
< RNGDEP (4) (1) 100
< RNGDEP (5) (14) 1000
> RNGDEP (5) (15) 10000

3.4-50

B[[:[NI l” POSTPROCESSOR ...forthe computer programmer

3.4.6.1 SELECTING THE G CODE FOR A LINEAR MOVE (cont'd.)

The examples below illustrate the use of the tables. Refer to
the RNGDEP table given in Section 3.4.6. The examples also
assume that all the dimensional G codes are available, but this
is not normally true in actual practice.

Example 1: AX = 0.2, AY = 2, AZ = 20. AZ is the largest
departure, and since

RNGDEP (3) < A Z < RNGDEP (4),

the postprocessor uses the G code stored at TABLEG(11) and a
GDIMUL = 100.

Example 2: AX = -0.001, AY = 0, AZ = 0.
| Ax| is the largest departure, and since
| AX| < RNGDEP (1),

the postprocessor uses the G code stored at TABLEG(13) and a
GDIMUL = 0.1. '

Once the postprocessor G code has been determined, it is stored
into DBFSEG(2), and the command block is essentially ready for
output. If the metric system is in use, some final modifications
may have to be made to GDIMUL; these modifications can also be a
function of the control type (option 165) as well as of the
metric system. The modification is simply to increase the size
of GDIMUL to the value required for the metric control system.

The 1linear interpolation sequence for selecting the preparatory
function G code also calls a special feedrate optimizing sequence
(option 170) which can produce additional command blocks: see
Section 4.1.5.1 for the description of this sequence.

And, finally, if the linear move is a multiaxis move (involving
both linear and rotary motions), subroutine SELG calls subroutine
SELGRO to select the proper G code for the rotary motion. The
selected code for the rotary motion can override the selected
code for the linear motion if the linear G code magnitude is not
sufficiently large for the largest rotary motion. For example,
assume that the following conditions exist:

AX = 0.2, AY = 0.1, AZ = 0.09, AA = 40°

3.4-51

l;[(:[Nl I" POSTPROCESSOR ... for the computer programmer

3.4.6.1 SELECTING THE G CODE FOR A LINEAR MOVE (cont'd)

Subroutine SELG, in considering the linear departures, selects a
G code whose dimensional magnitude is from 0.1 to 0.9999, say, a
G0O1. However, this magnitude is not large enough for AA, since
the corresponding rotary magnitude of GO1 extends only to
35.9999°. Therefore, subroutine SELGRO selects the next 1larger
dimensional code, say G10, which, in fact, extends to 359.9999¢
This G code also embraces the linear moves, and though the
execution time is now longer, both the linear and rotary moves
can be simultaneously processed. See Section 3.4.6.3 for the
table of magnitude ranges for rotary moves.

3.4.6.2 SELECTING THE G CODE FOR A CIRCULAR MOVE

Subroutine SELGCR, which is called from subroutine SELG, selects
the circular interpolation G code. The criterion for selection
is the radius of the circle; i.e., the magnitude of the radius
CIRRAD is compared with the RNGDEP values, and a selection is
made by selecting that G code whose dimensional magnitude is less
than or equal to the circle radius. Actually, there is a double
comparison, for once the correct magnitude 1is found, the
subroutine next finds the related G code as a function of the
circle direction.

The circular interpolation range of magnitudes by circle
directions and their table locations are as follows:

Circular Interpolation

Range TABLEG (CLW) TABLEG (CCLW)
0.001-0.09999 inches (23) (33)
0.1 -0.9999 (22) ‘ (32)
1 -9.9999 (3) (4)
10 -99.9999 (21) (31)
100 -999.9999 (44) (45)
1000 -9999.9999 (49) (50)

3.4-52

GHIN]I" POSTPROCESSOR

...for the computer programmer

3.4.6.2 SELECTING THE G CODE FOR A CIRCULAR MOVE (cont'd.)

Related to

3.4.6) which dictates the selection of the G

the above table is the RNGDEP table (see Section

code: for a given

radius. The tables given below are for the CLW circles only, but
a set for CCIW circles is analogous.

If The Radius is,

<

<

<

2

The examples
the RNGDEP table given in. Section

RNGDEP (1)
RNGDEP (2)
RNGDEP (3)
RMGDEP (4)
RNGDEP (5)

RNGDEP (5)

use TABLEG:(CLW)

(23)
(22)

(3)

(21)

(44)

(49)

3.4.6.

GDIMUL
0.1
1
10
100
1000
10,000

below illustrate the use of the tables. Refer to
The examples: also

assume that all the dimensional G codes are' available,. but this

is not normally the case.

Example 1:

Since the circle direction is CILW,

the postprocessor uses the G code
GDIMUL of 0.

Example 2:

Since the circle direction is CCLW, and

the postprocessor

CIRRAD =

1.

CIRRAD =

RNGDEP (3) < CIRRAD < DEPLIM(4),

GDIMUL of 100.

uses

0.08 and CIRDIR is 0.

CIRRAD < RNGDEP{(1),

40 and CIRDIR is 1.

and

stored at TABLEG(23) and a

G code stored at TABLEG(31) and a

3.4-53

(;H:[NI "I POSTPROCESSOR ...for the computer programmer

3.4.6.2 SELECTING THE G CODE FOR A CIRCULAR MOVE (cont'd)

once the proper G code has been determined, it is stored into
DBFSEG(2) , and the command block is essentially ready for output.
The program flow returns to subroutine SELG where a final check
is made to see if the «circular interpolation move is also a
multiaxis move (involving both linear and rotary motions). If
so, subroutine SELG calls subroutine SELGRO to select the proper
G code for the rotary motion. The selected code for the rotary
motion can override the selected code for the circular motion if
the circular G code magnitude is not sufficiently large for the
largest rotary motion. For example, assume that the following
conditions exist:

CIRRAD = 8.67 and A = 40 .

Subroutine SELGCR selects a G code whose dimensional magnitude is
from 1 to 9.9999, say, a GO01. However, this magnitude is not
large enough for AA, since the corresponding rotary magnitude of
G01 extends only to 35.9999° . This G code also embraces the
circular radius, and though the execution time is now longer,
both the circular and rotary moves can be simultaneously
processed. See Section 3.4.6.3 for the table of magnitude ranges
for rotary moves.

3.4-54

[;H.:[N] I" POSTPROCESSOR ...forthe computer programmer

3.4.6.3 SELECTING THE G CODE FOR A ROTARY MOVE

The selection of the rotary G code resides completely in
subroutine SELGRO which is called from subroutine SELG and from
subroutine OUTPUT. A comparison of the rotary departures stored
in DBFSEG(6, 7, 18) 1is made relative to the maximum rotary
departure (option 111).

The rotation G code dimensions are somewhat analogous to those
for a 1linear move, and, in fact, use the same TABLEG values and
concomitant GDIMUL as do the linear moves. The major difference
is that the wvalues are 1in rotary measure rather than linear
measure.

The rotary move range of magnitudes and their table locations can
be as follows:

Rotary Motion Example

Range TABLEG
0-0.3599 degrees (13)
0.36-3.5999 (12)
3.6-35.9999 (2)
36-359.9999 (11)

In actual testing during postprocessing, the above values are
converted to output units since all rotary values are processed
in their output form. Note that there is no dimension related to
TABLEG(14) as for linear moves. Nor are rotary G codes selected
on the basis of the RNGDEP table but rather on the basis of the
rotary maximum departure (option 111). This is why the above
table is not a fixed set of magnitudes and also why TABLEG(14) is
not used. The above table is correct only if the rotary maximum
departure is 359.9999. '

The general case for the selection of G codes for rotary motions
is given here 1in degrees, but it should be remembered that, in
practice, the values are in output units, either degrees, or
decimal parts of a revolution.

3.4-55

[;H:[NI "I POSTPROCESSOR ...forthe computer programmer

3.4.6.3 SELECTING THE G CODE FOR A ROTARY MOVE (cont'd.)

If the Rotary Departure is, use TABLEG GDIMUL
Maximum Rotation/1000 (13) 0.1
Maximum Rotation/100 (12) 1
Maximum Rotation/ 10 (2) 10
Maximum Rotation/1 (11) 100

The examples below illustrate the use of the tables, and assume
that all the dimensional G codes are available though this is not
normally the case. Degrees are assumed to be the output units.

Example 1: AA = 40° AB 1°, AC = 0.1°,
Rotary maximum departure: option 111 is 360 .
A A is the largest departure and since

option 111 < A A < option 111
10 1

the postprocessor uses the G code stored at TABLEG(11) and a
GDIMUL = 100.

Example 2: AA = 0.0001,AB = 0.1, and option 111 = 36 °,

| B| is the largest departure, and since

option 111 < p B| < option 111 ,
1000 100

the postprocessor uses the G code stored at TABLEG(12) and a
GDIMUL = 1.

Once the proper G code has been determined, it is stored into
DBFSEG(2) , and the command block is essentially ready for output.
However, if the machine motion is a multiaxis move (involving
both linear and rotary motions), the selected code for the rotary
move may override the previously selected linear G code if the
magnitude of the linear G code is not sufficiently large for the
rotary motion. For example, assume that the following conditions
exist:

X =0.2, AY =0.1, Az =0.09, M =40°

3. 4_56

GHINI'" POSTPROCESSOR ...forthe computer programmer

3.4.6.3 SELECTING THE G CODE FOR A ROTARY MOVE (cont'd.)

Subroutine SELG, in considering the linear departures, selects a
G code whose dimensional magnitude is from 0.1 to 0.9999, say, a
G11. However, this magnitude is not large enough for AaA, since
the corresponding rotary magnitude of G11 extends only to 3.5999¢
Therefore, subroutine SELGRO selects the second larger
dimensional code, G10, which extends to 359.9999°. This G code
also embraces the linear moves, and though the execution time is
now longer, both the linear and rotary moves can be
simultaneously processed.

3.4.7 PROCESSING A MULTIAXIS MOTION

Sections 3.4.1 through 3.4.3 detail how a motion record is
oktained from the CL tape and stored into the part coordinate
present point vector DPRESP; The following description proceeds
from that point.

Because of the rotary motions of a multiaxis machine, there is no
one-to-one 1linear correspondence between the part and machine
coordinate points as there exists with a linear three-axis
machine. But there is a mathematical relationship between the
part and machine points, such that the location of a point on the
part plus the tool axis orientation at that point can be
expressed 1in terms of the machine's linear and rotary motions.
This relationship is the so-called Geometry Package, and the
conversion is accomplished through transformation (or class)
equations.

Hence, when a part coordinate point (x, y, 2, i, Jj, k) is
oktained from the <CL tape, it must be converted to its machine
coordinate form (X, ¥, Z, A, B,C); the converted and rounded
valued are stored in the present machine point vector, PRESMP.

The program sequence 1is as follows:
1. Store new part coordinate point in DPRESP.

2. Subroutine GEOM is called which for multiaxis processing in
turn calls subroutine GEOMS5.

3. Subroutine GEOM5 calls subroutine CLASS which then branches to

the multiaxis geometry package, i.e., to subroutine CLASSn,
where n ranges from 1 to 9.

3.4-57

(;H:[N] l" POSTPROCESSOR ... for the computer programmer

3.4.7 PROCESSING A MULTIAXIS MOTION (cont'd.)

k. Subroutine CLASSn takes the values of DPRESP, and using the
equations of transformation, computes the corresponding
machine coordinate point.

5. The rounded and truncated point is stored in DPRESM.

From this point on, the postprocessor program flow is basically
the same as for three-axis processing except for some special
sequences, such as feedrate number determination and 1linearity
testing; these special sequences are discussed in the later
sections of this manual.

The flag MAFORK must always be preset before calling the class
subroutines. When MAFORK = 1, the inverse transforms are
computed, that is, the machine coordinate point is converted to
the corresponding part coordinate point. In this case the data
in the DPRESM vector is used as input, and the resulting point is
stored in the DPRESP vector.

When MAFORK = 2, the direct transforms are computed, that is, the
part coordinate point is converted to the corresponding machine
coordinate point. 1In this case the data in the DPRESP vector is
used as input, and the resulting point is stored in the DPRESM
vector.

DPRESP (1) = x MAFORK = 2 DPRESM(1) = X
DPRESP(2) = y >~ DPRESM(2) = Y
DPRESP(3) = z MAFORK = 1 DPRESM(3) = %
DPRESP(4) = i = DPRESM(4) = A
DPRESP (5) = j DPRESM(5) = B
DPRESP(6) = k DPRESM(6) = C

The MAFORK in some class subroutines is used also for other
meanings, as, for example, in subroutine CLASS1 when MAFORK = 0,
the subroutine selects the loaded tool gripper constants for use
in the transform relations.

A special test is made in subroutine FROM5 to ensure that the CL
point's direction cosines are valid; that is,

\iz + j2 + k2= 1+ ¢,

or else a warning comment to this effect is issued.

3.4-58

[;H;[NI ”I POSTPROCESSOR ...forthe computer programmer

3.4.7 PROCESSING A MULTIAXIS MOTION (cont'd.)

After the part coordinate data are transformed into the machine
coordinate data, subroutine DEPART is called to compute the
linear departures AX, AY, and AZ.

Subroutine DEPART calls subroutine ROTMOV in order to compute the
rotary departures. An important point to note is that the rotary
moves are always Kkept in terms of their output units. This
minimizes the processing time in that no conversion to and from
output units is ever required.

Another function performed by subroutine ROTMOV, is to make the
rotary moves positive and less than 360 degrees. For example, a
value of -400 degrees is made to be 320 degrees. Subroutine
ROTMOV puts the rotary departures into DBFSEG(6), (7), and (18).
A convention of the postprocessor is that the head register is
related to DBFSEG(6), while the table to DBFSEG(7). This is
merely a convention and not a set rule.

After checking the linear departures versus the allowable maximum
linear departure, similar tests are made with the rotary
departures versus the rotary maximum departure. Subroutine
SEGMNT is called if any maximum departure is exceeded.

When a segment 1is acceptable, several flags are tested to
determine whether or not linearity testing should be performed.
If so, subroutine LINTRY is called upon to produce the requisite
number of segments to remove any "linearity" error. See Section
3.4.7.3 for a detailed discussion of this subject.

An important feature to be noted here is that when a departure
exceeds the maximum departure and linearity testing is desired,
subroutine SEGMNT is not immediately called upon to segment the
path length to the necessary segments, but, rather, subroutine
LINRTY is used since the expectation is that the path length will
be sufficiently segmented in order to correct the "linearity"
error.

A multiaxis move has motions both in the rotary and linear axes,
but the postprocessor treats the move as if it were simply a
linear motion. Therefore, a multiaxis motion command block is
still identified by a CODE of zero.

3.4-59

(;H:[NI "I POSTPROCESSOR ...for the computer programmer

3.4.7 PROCESSING A MULTIAXIS MOTION (cont'd.)

An apparent contradiction can occur in command block identity.
Rotary moves by themselves, when generated by a ROTATE statement,
have their command blocks identified by CODE = -2. However, it
is possible that in a multiaxis motion that A X, AY, and A Z are
zero, and only AA or A B are nonzero. Yet the command block CODE
is still =zero. This actually leads to no problem, and it is
important that the command block generation source be known; the
CODE uniquely identifies the source.

At this point in the program flow for linear multiaxis moves,
DBFSEG (3), (4), (5), (6), and (7) are set to their respective
AX, AY, AZ, AA, AB values, and CODE = 0. Subroutine OUTPUT is
then called to complete the setup and eventual output of DBFSEG
as described in Section 2.4.2.2.

If a third rotary axis exists on the NC machine, the departure

AC is stored into DRFSEG(18). The third rotary axis is treated
exactly the same as the other rotary axes.

Processing of a multiaxis move requires no other special
sequences in any of the permissible GEOUT's. In rather routine
steps, the rotary motions are converted to an absolute location
in degrees for printing in the Absolute Printout. The influence
of the rotary motions is considered in other determinations such
as the cut time, block read time, feedrate optimization, and so
on; but these sequences, in effect, deal with all departures in
a standard manner. There is no special branching for multiaxis
processing.

3.4.7.1 MULTIAXIS CIRCULAR INTERPOLATION

Circular interpolation for multiaxis moves will involve at least
one of the rotary motions as well as at least two linear motions.
This requires a determination of the rotary equivalent of M“arc
center offsets", These are not actually arc center offsets and
are referred to as supplementary constants.

After subroutine GOCIRC has determined the axes interception
points and stored them in the array DBFSEG, subroutine PROCQD
processes and outputs the points. For two or three axes machines
each interception point is merely the (x,y,z) coordonate value;
but for multiaxis processing, the tool axis vector direction
cosines must also be known. Therefore, subroutine PROCQD must
determine the (i, j, k) values at each interception point before
processing and outputting the point.

3.4-60

GHINII" POSTPROCESSOR

3.4.7.1 MULTIAXIS CIRCULAR INTERPOLATION (cont'd.)

...forthe computer programmer

In order to find the tool axis vector direction cosines, the
postprocessor first translates the circle center to the origin.
The two radii Vj and Vp (see Diagram 3.4.7.1A) include the angle
swept through in the first quadrant from point 1 to point 2.

Vi .V = lVll |V2| cos 9,

v \Y
or § = cos—t (_1 . "2,
R2

Y
(x y z 1 j‘k)l
(x y z 1 j k)S

Vi

g 2 P
(xyz)4 ¢’j (xyz)2

(x y 2)3

Diagram 3.4.7.1A

Each quadrant sector is treated separately to find the tool axis
direction cosines since no circle move can be greater than ninety
degrees; see Section 3.,4.4. Angle o is the total angle swept
through and 1is foun& by summating the individual angles from
each quadrant. The following terms are computed:

4
o= sin_ @-v). vy= ¥_ 0./¢, B = sin %.
sin © i=1 1 sin

3.4-61

(;[[:[NI I" POSTPROCESSOR ... for the computer programmer

3.4.7.1 MULTIAXIS CIRCULAR INTERPOLATION (cont'd.)

The direction cosines I, J, K are found from:

I = 0. + B.
ll 15

J = . + B.
J1 Js

K = o + B
kl k5

The computed direction cosines are then normalized.

In addition to generating the tool axis direction cosines,
subroutine PROCQD also outputs an information block. (See Section
5.5.) This information is necessary for the determination of the
feedrate command for a circular interpolation move.

Multiaxis circular interpolation moves are processed and made
output with the same CODE value as for non-multiaxis moves.
Hence, at this point in the program flow, DBFSEG(8), (9), (10) to
their arc center offset values, and DBFSEG(16) and (17) for the
rotary supplementary constants D and E. The value of CODE is
+10, 11, +12. Subroutine OUTPUT is then called to complete the
setup and eventual output of DBFSEG.

When subroutine OUTPUT calls SELG to obtain the dimensional
preparatory function G code, subroutine SELG first obtains the
proper G code compatiable with the linear (or circular) moves as
described earlier. Then, subroutine SELG calls subroutine SELGRO
which accepts the already determined G code if it is compatible
with the rotary moves, but if not, subroutine SELGRO obtains a G
code compatible with both the linear (or circular) and rotary
moves.

3.4.7.2 ROTARY MOTION WITH ROTREF

The ROTREF modifier to a ROTATE statement calls for a rotation of
the reference frame, but which frame and how the frame is to be
rotated has not been clearly defined. The result has been that
several interpretations, some even contradictory, have evolved.

The GECENT I1T postprocessor considers only two major

interpretations, each of which is opposite to the other. The
interpretation used is selected by option 198.

3.4-62

(;[[:[NI "I POSTPROCESSOR ...forthe computer programmer

3.4.7.2 ROTARY MOTION WITH ROTREF (cont?d.)

In the GECENT III postprocessor ROTREF is one-shot only, and, in
meaning, always calls for a rotation of the part reference frame
such that after the rotation, the part programmer is permitted to
continue operating in his original part reference system. This
is the effect, but the problem arises in the interpretation
placed upon the modifier ROTREF at the time of application.

The two interpretations used in the GECENT III postprocessor are
illustrated below. A cube is to be machined such that each face
has an identical cut sequence. '

Diagram 3.4.7.2A

After programming face A, the programmer would like to turn the
part and program face B with the same geometry, i.e., use
identical part program statements as before. However, if the
programmer says

ROTATE/TABLE, INCR, 90, CLW

the resulting rotation of the part and table appear as:

3.4-63

Diagram 3.4.7.2B

GH:[NI "l POSTPROCESSOR ...for the computer programmer

3.4.7.2 ROTARY MOTION WITH ROTREF (cont'd.)

This results because the part coordinate system (arrows) are
fixed in the part, and, therefore, must move with the rotation.

At this point the tool tip has different direction cosines than
did the sequence for face A.

In order to rotate the part coordinate system and the part
geometry back to its prior position, the programmer can use the
modifier ROTREF which here means:

Rotate the part coordinate reference frame back
to the prior position.

Hence, if instead of the above ROTATE/statement, the programmer
had given

ROTATE/TABLE, INCR, 90, CLW, ROTREF

the result would look like:

Diagram 3.4.7.2C

In effect no rotation of the part geometry occurred, and the same
set of statements used on face A can now be used on face B.

The above explanation is one of two interpretations used by the

GECENT III postprocessor which results when option 198 is zero.
The direct opposite meaning results when option 198 is non-zero.

3.4-64

[;H.:[NI I” POSTPROCESSOR ... forthe computer programmer

3.4.7.2 ROTARY MOTION WITH ROTREF (cont'd.)

This opposite meaning is useful for the case when the part
programmer desires to think of the part system as fixed in space
immediately above the table, so that it does not move with the
part under a rotation.

In such a case, it is convenient for him to interpret ROTREF as
meaning "rotate the part system with the part". In such
instances, it might be necessary to program ROTREF on almost
every rotation statement. Thus, beginning with Diagram 3.4.7.7A
and option 198 = 1, Diagram 3.4.7.2B results when the ROTATE
statement is given as:

ROTATE/TABLE, INCR, 90, CLW, ROTREF.
Diagram 3.4.7.2C results from

ROTATE/TABLE, INCR, 90, CLW, ROTREF
Subroutine ROTABI contains the programming sequence which
produces the rotation of the part reference frame for both
settings of option 198. In the following example we assume

option 198 = 0, but the same method and ideas apply when option
198 = 1 and after allowing for the branching difference.

Let the tool be at the following position:

DPRESP(1) = x;, DPRESM(1) = X
DPRESP(2) = vy, DPRESM(2) = Y
DPRESP(3) = 1z, DPRESM(3) = %
DPRESP (4) = i, DPRESM(4) = B
DPRESP(5) = Jj« DPRESM(5) = B
DPRESP (6) = kq , DPRESM (6) =

Also at this point in the program the vector DPREVP =
DPRESP and DPREVM = DPRESM.

The following statement is given

ROTATE/TABLE, INCR, 40, CLW, ROTREF.

3.4-65

‘;H:[NI "I POSTPROCESSOR ...for the computer programmer

3.4.7.2 ROTARY MOTION WITH ROTREF (cont'd.)

The initial effect upon the position vectors is

DPRESP (1) = x), ' DPRESM(1) = X;
DPRESP(2) = yi» DPRESM(2) = Y;
DPRESP (3) = 2z, DPRESM(3) = Z;
DPRESP(4) = i, DPRESM(4) = By + 40 = A
DPRESP (5) = 7 DPRESM(5) = B

DPRESP (6) = kp ,

Since the AXMULT and ROTREF flags = 1, subroutine ROTABI branches
to the geometry transforms for the proper class. The flag MAFORK
is set to 1 which «calls for the inverse transforms, i.e., to
convert the machine point to the corresponding part point.
Hence,

DPRESP (1) = x,, DPRESM(1) = X
DPRESP(2) = Yy, , DPRESM(2) = ¥;
DPRESP (3) = z, DPRESM(3) = 2,
DPRESP(4) = iy, DPRESM(4) = A,
DPRESP (5) = J« DPRESM(5) = B

DPRESP (6) = ky,

However, we do not want the part coordinate system to rotate as
a function of the rotary move. It was essential to obtain the
influence of the rotation upon the tool axis setting (direction
cosines), but the xyz location was not to change. This is
accomplished by resetting the part point to the previous xyz
point taken from DPREVP

3.4-66

GH:[NI "l POSTPROCESSOR ...for the computer programmer

3.4.7.2 ROTARY MOTION WITH ROTREF (cont'd.)

Therefore,
DPRESP (1) =X, DPRESM(1) = X
DPRESP(2) =vy;., DPRESM(2) = Y;
DPRESP (3) = z,, DPRESM(3) = 2
DPRESP (4) = ip, DPRESM(4) = B
DPRESP (3) = T, DPRESM(5) = B

DPRESP (6) = ky,

Since there is a change 1in the part coordinate data, the
postprocessor calls subroutine GOLINE so that the new point is
updated in both the DPRESP and DPRESM vectors. The requisite
move is thereby produced.

The flag ROTREF is set in subroutine ROTABL. The flag AXMULT is
set when a MULTAX part program statement is given.

Another option which affects the use of a ROTREF modifier is
option 29 which tells the postprocessor whether or not to
remember the absolute location of the table. For example,
assuming that we start from 0, the statements

ROTATE/TABLE, INCR, 10, CLW

ROTATE/TABLE, INCR, 20, CLW

ROTATE/TABLE, INCR, 10, CLW
places the table at the 40 degree position. If option 29 is set
to 1, the postprocessor remembers the position such that if
another statement is given as

ROTATE/TABLE, ATANGL, 0, CLW
the postprocessor outputs a move of 320 degrees to position the
table at 0. It is evident, therefore, that to be able to use the
ATANGL or ROTREF modifiers, the postprocessor must remember the

table location since the correct increment of rotation derives
from the difference between the previous and present points.

3.4-67

G[t[NI “l POSTPROCESSOR ...for the computer programmer

3.4.7.2 ROTARY MOTION WITH ROTREF (cont'd)

A part program which wishes to wuse the ROTATE/TABLE statement
merely to index the table to a new position so that a repeated
cut sequence can be made, would have option 29 set to =zero so
that the table location is not remembered and, therefore, would
not affect a later multiaxis move. For example, 1in Diagram
3.4.7.2A suppose we wished to drill a hole at the same spot in
each of the four faces of the cube. In this case, the ROTATE
statement merely indexes the table ninety degrees. When the
drilling operation is completed, the part program can make a
multiaxis move which is unaffected (and properly so) by the
previous rotations.

It must be remembered that if option 29 is =zero, use of the
ATANGL and ROTREF modifiers is precluded. If option 29 is 0 and
a ROTREF or ATANGL modifier is nevertheless given, the
postprocessor prints a warning comment to this effect, and
continues as if option 29 were equal to 1.

3.4.7.3 LINEARITY ERROR AND CORRECTION

The so-called linearity error is a direct result of the non-
linear motion of the tool tip when there is a simultaneous motion
of the linear and rotary axes. There is no linearity error when
there are only three linear axes since an error is produced only
by a change 1in the tool axis orientation relative to the part
surface. Another type error called the transition error also can
result; but this type error is completely resolvable only in APT
Section II. See the IITRI report, The Transition Problem,
December 27, 1965.

3.4.7.3.1 DESCRIPTION OF PROBLEM

The APT system generates linear cut vectors fitted within given
tolerances along the given cutter path, Diagram 3.4.7.3A.

Part Surface Tolerance Band

/ Cutter Path

Diagram 3.4.7.3A

3.4-68

I;H:[NI I” POSTPROCESSOR ... for the computer programmer

3.4.7.3.1 DESCRIPTION OF PROBLEM (cont 'd)

In order to follow faithfully the required cutter path, the
machine tool must follow the generated linear cut vectors within
the allowable tolerance. But motions produced by a multiaxis
machine with rotary axes result in non-linear motions of the
cutter which can place the cutter outside the tolerance limits.

In the Diagram 3.4.7.3B, the tool is to move from point A to
point B, and the tool axis is reoriented to a new angle 0. The
actual cutting path does not follow the designated 1linear move
from A to B because the tool orientation motions cause the tool
end to deviate. However, the deviation may be acceptable if
tolerance has not been exceeded.

Tool Path Deviation

Diagram 3.4.7.3B

1. To determine when nonlinear motions cause the tool to
exceed tolerance limits; and

2. To correct the tool's motion so that it stays within
tolerance.

The approach taken by the GECENT III postprocessor to resolve the
linearity problem is based upon a solution which keeps the actual
machine tool path within some given tolerance of a linear
interpolation of the tool path. This linearity tolerance is
specified in the part program and may be changed as warranted by
the cutter path.

3.4-69

';H:[NI "l POSTPROCESSOR ...for the computer programmer

3.4.7.3.2 Method of Solution

The specification of a "good" tolerance will dictate the accuracy
of the cutter to adhere to the required path. The tolerance in
discussion refers to the tolerance limits for determining when
the cutter has deviated from the required path.

The given cutter tolerance (INTOL, OUTOL, TOLER), Diagram
3.4.7.3C, cannot be used as a linearity tolerance because it is
not sufficient to restrict the tool to the required path; in most
cases a finer tolerance 1is needed. This finer tolerance is
called the linearity tolerance and derives from the following
conditions.

Diagram 3.4.7.3C

A cylinder of radius r (Diagram 3.4.7.3C) is constructed about
each cut vector; and any time the cutter path goes outside of the

cylinder, a linearity error is assumed. Steps are then taken to
correct for the error.

LINTOL/xr

"Cut Vector

Diagram 3.4.7.3D

3.4-70

[;[[:[Nl "I POSTPROCESSOR ...forthe computer programmer

3.4.7.3.2 METHOD OF SOLUTION (cont'd.)

This consists of inserting a new point on the cut vector, ie.,
breaking the cut vector into two smaller segments. The most
logical place to make the break is at the point where the
linearity test was made, but this may not be the best place. If
the error occurs very close to a cut vector end and the break
made there, then more problems may arise. A/D limitations on the
very short segments or linearity errors may occur on the large
segment if the angle change in the tool axis is large. A better
place to make the break is at the middle of the cut vector
although the same problems may still arise. There 1is an
advantage, however, in making the cut at the middle; viz., the
cut segments are of optimum length thereby minimizing the above
mentioned problems.

A study by IITRI* indicated two areas where linearity problem
€rrors may occur. One error is due to the failure of +the tool
axis to orient itself correctly at its final (or inserted)
position. For example, in Diagram 3.4.7.3E, when the tool moves
from A to B the solid lines indicate the actual tool setting
whereas the correct tool setting is the dotted figure. This tool
axis variation results from a geometric error derived from the
transform relations of the machine tool. The method to prevent
this error relies upon a tolerance cone in which the tool axis is
allowed to vary. If the tool axis falls outside the cone, a
midpoint on the cutter path is inserted.

Diagram 3.4.7.3E

* Five-Axis Linearization Study, February 1964.

3.4-71

‘;[[:[NI I" POSTPROCESSOR ...for the computer programmer

3.4.7.3.2 METHOD OF SOLUTION (cont'd.)

The second linearity error is path deviation as illustrated in
Diagram 3.4.7.3F. Two types are shown: a symmetrical path
(curve A) and a nonsymmetrical path (curve B). The symmetrical
case can be corrected by inserting a point on the middle of the
segment, but the non-symmetrical linearity deviation makes it
difficult to apply the midpoint correction with any great degree
of accuracy. In such cases the part programmer must tighten the

tolerance to ensure linearity correction.

T e s o — —— —

Diagram 3.4.7.3F

3.4-72

[;H:[N] I" POSTPROCESSOR ...forthe computer programmer

3 4.7.3.2 METHOD OF SOLUTION (cont!d)

In curve A, Diagram 3.4.7.3G, the non-symmetry results from the
variation of the tool axis at points 1 and 2. In B the tool axis
is at a mirror angle at points 1 and 2, and gives a symmetrical
linearity deviation. These effects may not be the same (or have
the same magnitude) on all types of machine tools.

—— —
T S et vy v —— w— — — ————

Diagram 3.4.7.3G

The part programmer can call for and control linearity testing by
use of the following rostprocessor statements.

ON

LINTOL/x, ¥y and/or LINTOL/OFF
0]

3.4-73

‘;H:[NI I" POSTPROCESSOR ...for the computer programmer

3.4.7.3.2 METHOD OF SOLUTION (cont'd)

r is the radius of the linearity tolerance sphere (or cylinder);
y is the half-angle of the tool orientation cone. The part
programmer must give the LINTOL statement prior to any motions
which are to be linearity tested. Once given, the linearity
testing sequence is modal, however, the part programmer may
change the values of r and Y at any point in the program. The
postprocessor will not perform linearity testing unless and until
a LINTOL statement established a value for r and Y . The part
programmer need not specify y if he does not wish tool axis
orientation testing (cone testing), but r must always be given.
Tool axis orientation testing is important only for flat end
mills whereby a gouge can result if the tool axis is not oriented
properly. The part programmer can cancel both cone and sphere
linearity testing at any point in the part program by giving
LINTOL/O. Similarly, cone testing alone can be cancelled by
LINTOL/x,O.

There are certain paths over which the postprocessor will
automatically disregard 1linearity testing. Since linearity
testing is important only when cutting, the postprocessor
therefore excludes all noncutting paths such as rapid traverse
paths, retracts and advances of the tool during a tool changing
sequence, and table rotations without a ROTREF.

In addition to these non-cutting paths there is also one type of
cutting path over which the part programmer may not wish to have
linearity testing, namely, cut paths which are produced as one-
point CL tape. Single point records are most likely to give a
. straight line path with no rotary motions involved.

180°

3.4-74
Diagram 3.4.7.3H

l;[l:[NI I” POSTPROCESSOR ...forthe computer programmer

3.4.7.3.2 METHOD OF SOLUTION (cont'd)

The following example is a case wherein a rotary motion is
produced from a one-point CL record. If linearity testing were
to be performed for this motion, an improper cut would result.

In Diagram 3.4.7.3H, the tool is to cut from point A to point B;
the part programmer can produce this by giving a GOTO/X,Y,Z,i,j,k
statement which causes the table to rotate 180 degrees. If the

postprocessor were to do linearity testing on this one-point CL
record, it would produce a large series of small corrective moves
which causes the tool to cut straight through the part from point
A to point B. This is because each midpoint along the path AB
would appear to be far out of the tolerance sphere, hence, the
postprocessor would insert a “correction" path bringing the tool
back into tolerance but producing an improper cut.

The postprocessor can be made to disregard a one-point CL record
for linearity testing by the statement LINTOL/OFF. Once given,
this statement is modal until LINTOL/ON or LINTOL/r is given.
Unless the LINTOL/OFF statement is given, the postprocessor
continues to accept all one-point CL records for linearity
testing.

Linearity testing is not done over circular paths when circular
interpolation is used over the path.

A ROTATE/HED or ROTATE/TABLE statement with a ROTREF modifier is
also tested for linearity when specified.

In order to detect linearity errors it is essential that the part
coordinate data points correspond exactly with the machine
coordinate points. For example, in Diagram 3.4.7.3I

1 2
/ A
/ \
/ \
/ \
/
Py P, P3

Diagram 3.4.7.3I

3.4-75

G[t[NI "I POSTPROCESSOR ... for the computer programmer

3.4.7.3.2 METHOD OF SOLUTION (cont!'d)

M; corresponds to Py, but M, corresponds to P3; , an invalid
situation. Such an event could occur, for example, on a
ROTATE/TABLE statement without a ROTREF modifier: that is, the
part coordinate points have not changed but the machine
coordinate points have. Since the postprocessor can detect
linearity errors only when there is a one-to-one correspondence
between the part and machine coordinates, it 1is essential that
the part programmer keep the two coordinate systems compatible as
long as linearity testing is to be used. Thus, caution must be
used when programming ROTATE/TABLE, o and ROTATE/HED, o with no
ROTREF modifier.

The value of r in the PPTOL/r, y statement will normally be a
function of the part and the particular machine tool axes
configuration, and therefore, will vary considerably from part
program to part program. Experience will undoubtedly provide the
best value. However, a rule-of-thumb working value may be (INTOL
+ OUTTOL) /2.

The postprocessor does not perform linearity testing under the
following conditions:

(n No LINTOL given part program or a LINTOL/O was given.
Parameter RADLIN is zero; branch to RETURN when RADLIN =
O.

(2) The path is a rapid traverse.

Parameter FRAPID is non-zero; branch to RETURN when FRAPID
Z 0.

FRAPID is always zero for non-rapid paths.

(3) The path occurs during a tool change.
Parameter TOLCON is non-zero; branch to RETURN when TOLCON
O.

(4) The path is a cone-point CL record.

Parameter RADLIN is set to zero which indicates LINTOL/OFF
had been given; branch to RETURN if parameter NWPR < 11.

(5) The statement ROTATE/HED or ROTATE/TABLE is given without
a ROTREF modifier.

3.4-76

[;H:[NI I” POSTPROCESSOR ...forthe computer programmer

3.4.7.3.2 METHOD OF SOLUTION (cont'd)

(6) Circular interpolation is used over a circular path.
The processing subroutine for circular interpolation paths
(subroutine PRODQD) does not call subroutine LINRTY.

(7) Overcenter cutting occurs.
This refers to those NC machines which exceed a slide
limit when cutting over center and the postprocessor makes

an adjustment to allow for possible continuation.

3.4.7.3.3 PROCESSING METHOD OF SUBROUTINE LINRTY

In Diagram 3.4.7.3J let the path P)P) be the cutter path in part
coordinates. Then M M is the corresponding resultant path in
machine coordinates; M and M result when P and P, are
processed through the transform equations. The midpoint M of
path M, M,is found by linear interpolation; similarly midpdint
P, is found on path P P,. P prepresents the true, ideal midpoint
g% the cutter path if thére was no linearity error due to the
rotary motion of the slides.

Diagram 3.4.7.3J

3.4-77

(;[(:[NI "l POSTPROCESSOR ... for the computer programmer

3.4.7.3.3 PROCESSING METHOD OF SUBROUTINE LINRTY (cont'd)

Midpoint MA is converted to part coordinate midpoint Pya by

processing it through the inverse transform equations. As
illustrated, PMA falls outside the tolerance sphere of radius r,

and is therefore detected as being a linearity error. Point MA

and P, are saved as potential output points which represent a

A
segment to correct the detected linearity error.Midpoints My
and PB are next determined, and the transformed PMB is now found

to fall within the tolerance sphere, therefore, no linearity
error occurs here. Hence, it is sufficient to output the new.
point P The corrected path now appears as in Diagram 3.4.7.3K.

A®

Diagram 3.4.7.3K

P, is made P; and My is made M;j; testing then continues with the
new paths PjPp and M| M.

In subroutine LINRTY points P; and P, are represented by the part
coordinate system vectors DPREVP and DPRESP, respectively, while
Mp} and My are the machine coordinate system vectors DPREVM and
DPRESM. The part coordinate vectors have the order:

Xy Yo Z4 i, Jo Kk
where x,y,zZ are the CL data values plus any given TRANS values;
i, j.,k are the backward directed tool axis direction cosines. The
machine coordinate vectors have the order:

X, ¥, 2, A, B, C

3.4-78

[;H:[N] I" POSTPROCESSOR ...forthe computer programmer

3.4.7.3.3 PROCESSING METHOD OF SUBROUTINE LINTRY (cont'd)

where X,Y,Z are the transformed part coordinates for the slides,
while A and B and C are the machine tool rotary motions in
degrees. A or B or C may be zero for four-axis machines. When
going from part to machine coordinates, the vector DPRESM is
always the converted point related to DPRESP. Conversely, when
going from machine to part coordinates, the vector DPRESP is
always the converted point related to DPRESM. Hence, when point

is to be converted to point Pyp, the original vectors DPRESP
and DPRESM are first saved, and then DPRESM is made equal to the
midpoint vector M, (=HALFMP) to produce the part midpoint vector
PMA (= DPRESP) .

Whenever a 1linearity error is detected, the flag LINFLG is set
non zero to indicate this condition. Whenever a linearity error
is found on the given path, the postprocessor will output
segments (as needed) until the whole path P P, 1is processed.
Under such conditions the flag LINSIG is set non zero to indicate
that linearity correction segments have been made output.
Therefore, the subroutine return flag RETURN is set to non zero
so that when regular processing continues after subroutine
LINRTY, there will be no redundant output of the path P;P,
(converted to M My) . When subroutine LINRTY detects no error,
RETURN is set to zero, and the cutter path is processed 1in the
normal manner.

Note that option 29 must be set non zero if linearity testing is
to be used. The table position must be known for the correct
determination of the points of segmentation.

3.4.8 PROCESSING IN A MULTIHEAD ENVIRONMENT

All multihead processing inherently requires a two-pass system:
the first pass processes the CL tape for both heads, and the
second pass merges the data for combined motion and output.

3.4.8.1 FIRST-PASS CONSIDERATIONS

Multihead processing must be considered at the very beginning of
the program when GEINIT is in core, for it is at this time that
the multihead environment is established.

One of the first complexities to be resolved is how to establish
the register (REGSTR) and format (REGFOR) conditions for each
head when there is only one table available for each condition.
This is resolved in the Machine Subroutine where the tables
REGSTR and REGFOR ‘are first set up for head 2, and then written
onto TAPES1 where they are saved until GEMULT is in core.

3.4-79

G[C[NI “l POSTPROCESSOR ...for the computer programmer

3.4.8.1 FIRST-PASS CONSIDERATIONS (cont'd)

After TAPES1 is written, the REGSTR and REGFOR tables are then
set up for head 1. Since these tables are in GECOM COMMON, they
are available during all phases of the program.

In GEMULT during the first call to subroutine GMOUT, the
subroutine GMSTOR is eventually called; and upon initial entry
into this subroutine, the saved data on TAPES1 are reselected and:
stored into the tables GMWORD and GMFORM which are analogous to
the tables REGSTR and REGFOR, respectively. GMWORD and GMFORM
are in GECOT3 COMMON which makes them available for GEOUT3
processing.

Also, in the initial entry sequence of subroutine GMSTOR, TAPES1
and TAPESY4 are rewound and opened for writing. TAPES1 and TAPESY
are used by GEPRO3 for saving " the data for the Absolute and
Operation Printouts, respectively. Later entries to subroutine
GMSTOR are simply rerouted to GEOUT.

The postprocessor statement COMBIN/n designates multihead
operation; and when the CL tape record (subtype 1071) for this
statement is encountered, subroutine COMBIN is called wherein the
flag MULTHD is set to n. This flag establishes the mul tihead
environment for the postprocessor.

The currently operating head is selected by the statement
SELECT/HEAD, n, and the CL tape record is processed in subroutine
SELHED where the head flag IHEAD is set to n.

The postprocessor statement OP/n specifies the combining or
processing sequence of operation for both heads. Subroutine
OPCODE processes the CL data information for this statement
(subtype 1073) and sets up the special CODE = 17 command block.
The operation number n is saved in flag NOP, but the other data
of the CL record are stored in a fixed manner into DBFSEG.

3.4-80

GH:[N] I" POSTPROCESSOR ... forthe computer programmer

3.4.8.1 FIRST-PASS CONSIDERATIONS (cont'd)

DBFSEG(2) = n (from OP/n)

DBFSEG(7) = 0 if SFM; = 1 if RPM

DBFSEG(8) = head number (IHEAD)

DBFSEG(9) =t (See Part Programmer's Manual)
DBFSEG(10) = t (See Part Programmer's Manual)

0 if there are restrictions to
consider while merging, otherwise
= 2 (NONE modifier)

DBFSEG (11)

DBFSEG(15) = 17 (CODE) to designate an OP

block

This special DBFSEG block is in many respects similar to the
Information Block (CODE = -9) (See Section 5.5), and in fact,
serves the same purpose but in a more unique manner and
exclusively for multihead operation.

The setup DBFSEG block is made output where it is stored on
TAPES2 or TAPES3 depending on IHEAD.

A DBFSEG record of CODE = 17 also results from the statement
PRFSEQ/ON and PRFSEQ/OFF. 1In this case DBFSEG is set up as:

DBFSEG (2) = NOP (opcode)

DBFSEG (8) = IHEAD if the PRFSEQ modifier
is ON; otherwise, = 2 if OFF
and IHEAD = 1, or = 1 if OFF
and IHEAD = 2.

DBFSEG(11) = 3

DBFSEG (15) = 17 (CODE)

The setup DBFSEG block is made output where it 1is stored on
TAPES2 or TAPES3 depending on IHEAD.

3.4-81

GH:[N] l" POSTPROCESSOR ...for the computer programmer

3.4.8.1 FIRST-CLASS CONSIDERATIONS (cont'd)

There are special multihead sequences in the subroutines for
processing RAPID moves and TURRET statements, but these are of a
nature whereby a particular head M code or T code is involved.
In other words the output from these subroutines are no different
than for single-head operation, but merely reflect the
requirements of the particular head then in mode. Sections 5.2
and 6.0 (Subroutines Descriptions) and program listings should be
consulted for further information on these items.

When a command block DBFSEG is ready for output, subroutine
OUTPUT 1is <called to ultimately print and punch the block. But
for a CODE = 17, subroutine OUTPUT only adds the plus-minus value
of SEQCTR to DBFSEG(1), and bypasses the other sequences since
they are not yet needed. Instead, the command block is dumped
onto TAPES2 for head 1 (IHEAD=1), or onto TAPES3 for head 2
(IHEAD=2).

When the FINI record (type 14000) is encountered on the CL tape,
subroutine GEBASE outputs two FINI command blocks (CODE = 18),
one for each head, i.e, for TAPES2 and TAPES3. An end-of-file is
then written on TAPES2, TAPES3, and TAPES4 which are then all
rewound.

When program control is returned to the monitor GEMON, it pulls

in the overlay GEMULT which processes the dumped data for the
second pass.

3.4-82

G[c[N] ”I POSTPROCESSOR ... for the computer programmer

3.4.8.2 SECOND-PASS CONSIDERATIONS

Before processing can begin in GEMULT, the postprocessor must
initialize key parameters and flags, clear arrays, and open
TAPES2 and TAPES3 for reading; this is done in subroutine GMINIT.

Subroutine CREAD 1is then called to read a record from TAPES2 if
IHEAD = 1, or from TAPES3 if IHEAD = 2&2. The result of the read
is that the array AS2 (for TAPES2) or AS3 (for TAPES3) are stored
with the dumped row of DBFSEG. The arrays AS2* and AS3* are
dimensioned and ordered the same as DBFSEG, hence, when AS2 or
AS3 are filled from tape with the dumped DBFSEG, the
postprocessor thereafter treats them in the same manner as if it
were considering a DBFSEG row.

Beginning with head 1, the postprocessor reads TAPES2 and checks
the command block code, i.e., the fifteenth element of the Yow,
to see if an OP/n block was read; a code of 17 indicates such a
block. If no such block is detected, the postprocessor knows
there is no merging necessary, and it outputs the command block
as it is. Subroutine GMOUT is called to output the block. See
Section 3.4.8.2.1 for details on outputting a single or combined
multihead command blocks.

When a CODE of 17 is found, the postprocessor stops reading
TAPES2 and begins reading TAPES3. Each read-in command block
code is tested to see if it is an OP/n block (CODE = 17); and if
not, the postprocessor again knows no merging is necessary and it
outputs the block as it is.

When a CODE of 17 is detected, the postprocessor immediately
makes a comparison of the TAPES2 opcode with the opcode from
TAPES3. :

The opcodes are first saved as:
IS23 = AS2 (2) head 1 opcode,
Is33 = AS3 (2) head 2 opcode.

(See Section 3.4.8.1 for method of storing DBFSEG for a OP/n
statement.)

g povr MTE
‘(:i, 3,4-%4

3.4-83

[;H:[NI "l POSTPROCESSOR ...for the computer programmer

3.4.8.1 SECOND-CLASS CONSIDERATIONS (cont'd)

if the opcodes are equal, then a merge of the blocks is indicated
(See Section 3.4.8.2.2). If the opcodes are unequal, no merging
is to take place, and the postprocessor reads the scratch tape of
the head which has the lowest value opcode.

The above sequence is repeated wherein blocks are made output as
long as the opcodes are equal, and the sequence continues until
two opcodes are found which are equal.

When the opcodes are unequal (no merging) and a CODE = 17 block
is found, the postprocessor makes an additional check to see if
the block is a multihead information block for a SAFETY
(DBFSEG (11) = 1) or for an SFM (DBFSEG(11) = W4). See Section
3.4.8.1 for a discussion of these items.

When the block is for a SAFETY, the retract values of X,Y, and Z
are saved in SAFHD1 or SAFHD2 as the case may be.

Similarly, for an SFM block, the SFM value is saved in SFMHD1 or
SFMHD2 as the case may be.

These retained values are used at some later point in the
program.

*The arrays AS2 and AS3 are actually doubly dimensioned arrays of

(30, 2), but for convenience and simplicity all references to AS2
and AS3 are made as if they were singly dimensioned arrays.

3.4-84

GHINI'” POSTPROCESSOR

...for the computer programmer

3.4.8.2.1 MERGING OF BIOCKS

When the opcodes are equal, merging of blocks from TAPES2 and
TAPES3 commences and continues until the opcodes once again
become unequal, at which time the processing sequence described
at the beginning of Section 3.4.8.2 begins again.

The merging of command blocks is a highly complex affair which is
dependent upon a variety of factors, all of which directly affect
the methods of merging. Among the key factors that must be
considered are:

(1) One feedrate register or two feedrate registers;

(2) Same interpolation modes or mixed interpolation
modes on each head;

(3) Shared or common axes for both heads;

() The influences of the PRFHED, SAFETY, SFM, TURRET,
and other postprocessor statements;

(5) Automatic parking and returning.

Since this subject 1is so complex, the best that can be
accomplished here 1is to describe the theory involved and make a
brief survey of some of the programming methods used. For more
details the reader must refer to the multihead listings and
individual subroutine write-ups in Section 5.2.

3.4.8.2.1.1 SINGLE FEEDRATE REGISTER MERGING

The theory of operation is first discussed with some examples to
illustrate the methods used. Following the theory of operation
is a brief description of how the method is programmed in
subroutine GEMULT.

3.4-85

(;H:[N] I" POSTPROCESSOR .. .for the computer programmer

3.4.8.2.1.1.1 THEORY OF OPERATION

The fundamental operating requirement of single feedrate register
merging is that the two heads must have identical cut times, but
they do not necessarily have to have the same feedrates. This
means that the part programmer has complete freedom to specify
different feedrates for each head. Equal records are produced as
output by segmenting the head with the longer cut time into two
records; the cut time of the first record is equal to that of the
other head. Details of the segmentation procedure are discussed
below.

Though this method of combining cut sequences gives more freedom
to the part programmer, the number of records of paper tape
output increases. An option is provided in the program which
reduces the number of records of output by giving the computer
program more freedom to vary the feedrates, and thus to reduce
the required number of segmentations.

Note that the procedures described usually produce unequal block
times between the two heads. This can be remedied by changing
the feedrate of one head so that the block times become equal.
This approach is not wholly acceptable, because the part
programmer usually wants block records to have equal cut or dwell
times and, at the same time, keep the desired feedrates.

The postprocessor attempts to meet the above two requirements
within well-defined limits. The concept used 1in merging two
heads for simultaneous cutting is illustrated by the following
examples.

Example 1: (See Diagram 3.4.8.2.1A)

Assume that there are two heads, A and B, each having two cutter
motions, and we Wwish to combine the motion statements of these
two heads. The intent is to produce simultaneous cutting without
allowing dwells to occur on either head and to retain the
specified feedrates, if possible.

3.4-86

[:H:[N] I" POSTPROCESSOR ...forthe computer programmer

3.4.8.2.1.1.1 THEORY OF OPERATION (cont '4d)

The following symbols are used in the description:

L 1 and L 5 cutter motions for head A (where L is
a a the vector length of a move)

Fél and Féz feedrates for head A motions

Tél and 152 cutting times for head A motions
Ibl and I'b2 cutter motions for head B

Ebl and E‘b2 feedrates for head B motions

Ibl and T b2 cutting times for head B motions

The first step is to calculate Téland jbl'
Now assume Tél > Ibl'
The ratio Tbl/Tél< 1 is computed.

The vector length L,; is then segmented into two records,
which are computed as follows:

Iyi1 = (Toy 7 Ty) *Ly;

Lyi2 =L g1- L g1z

The ratio (T,1/T31) is the basic factor in segmenting a circle.
The example implies linear motion. However, with ratio (Tb /'I‘a)
known, a circle can be segmented and, thus, the requif%men s
spelled out in the example can be met.

RE
The corresponding times for Lall and La12 g Tall and TalZ‘
But note: T
(bl) * 7, 1

L at T *
Tall —all al

Fa1 Fa1 Ta1
Ta11 = Tp1

The two requirements, namely, production of equal cut times and
maintenance of desired feedrates, have been met.Lall and Lbl
are now set up, and a block of output is generated.

3.4-87

ﬁHINIIH POSTPROCESSOR

... for the computer programmer

3.4.8.2.1.1.1 THEORY OF OPERATION (cont'd)

Diagram 3.4.8.2.1A

HEAD B

The next record for head B is read, and the following

motions are compared:

Lyip with L,

Assume T < T

al2 b2
i i C)
The new ratio 1s Talz/'I'b2
1 = () %k
and Lb2 is segmented 1b21 TalZ/TbZ Lbz

Lo2® Lo “hoo1

3.4-88

[;H;[Nl "I POSTPROCESSOR ...forthe computer programmer

3.4.8.2.2.2.2 THEORY OF OPERATION (cont'd)

Again, the requirements have been met, and the second record of
output (Ly;, and Ly,7) is generated.

Next a record is read in from head A, and the following
comparison is made:

Lyp with L,

The above procedure continues, until all moves in the specified
combined cut have generated output blocks.

Obviously, in this example, one head will finish its cutter
motions before the other head finishes. Thus, the following rule
has been established: '

RULE 1: When two heads are designated for combined cutting,
the last motion statement of each head should move the cutter
away from the cutting surface.

The head that finishes first sits in a dwell condition until the
computer program finishes the generation of the output blocks to
complete the combined motion cuts of the second head.

Within the segmentation, the part which is to be used as the
output block does not have tape reader limitation. This is true
because the other head has not been segmented, and consequently,
has a cut time greater than or equal to the tape reader
limitation. This is illustrated in Example 2.

Example 2:
(Refer to Example 1 and Diagram 3.4.8.2.13)

T,; has been segmented so that Ty1 = Tyi1+ Ty1ps however, T 14
Tpy Since T,] already meets the tape reader limitation,
Ta11 also meets this requirement.

Now, note that Tal2 = Tal - Tbl= AT.

T,., is the difference in time between T;; and T,; . Its value
a%’tzects the solution of the problem as follows:

In GECENT III the constant TMAX is the maximum time which
restricts feedrate. It is the maximum value of tape reading time
in seconds (option 13) and servo setting time in seconds (option
69). .

3.4-89

‘;[t[Nl l" POSTPROCESSOR ...for the computer programmer

3.4.8.2.1.1.1 THEORY OF OPERATION (cont'd)

If T > TMAX, processing may continue, with no further testing

requi%%%.

If T a < TMAX, rule 2 is enforced:

12

Rule 2: When a record for either head is considered for
segmentation into two parts but the time of the second segment
(Ty12) is less than TMAX, segmentation will not occur. The
program then reduces the feedrate of the other head such that

Ta1 = Thi1-
For example, assume T ;> TF,5 -
T,1 1is then adjusted so that T,; = TG, -

T, is adjusted by reducing the feedrate K. The new feedrate
vaﬁue is calculated as follows:

T
=) *
Fi1 (new) bl Fpi (actual)
Tal
*
Thus, T, = bl =Tp1 x Tar - Moy P Tar =T
bl 4 p Tp1 * Fp1 To1
T bl
al
In example 1, two objectives were set: (1) The cut or dwell

times for both heads in a given output record should always be
.equal. (2) Feedrates should be kept at the rates specified by
the part programmer, whenever possible.

The computer program will never alter the first provision, and it
changes the feedrate only under rule 2. However, the part
programmer has the additional option of allowing the computer
program to reduce the feedrate value within a given tolerance
band, in addition to providing for feedrate reduction under rule
2. .

Suppose the part programmer designates different feedrates for
each head but is willing to allow a reduction in either feedrate
of up to 10 percent tolerance band; see option 151. (Note: 10
percent is used here for sample purposes only; the tolerance band
could be any value from 0 to 100 percent).

3.4-90

GHIN]I" POSTPROCESSOR ...forthe computer programmer

3.4.8.2.1.1.1 THEORY OF OPERATION (cont!'d)

When the segmented record is tested against TMAX under rule 2, a
second test is also provided. The second test compares the delta
time against the time of the head that will not be segmented. If

the ratio éJ—C-is less than 10 percent (or any specified tolerance
band), segmentation is not performed; the feedrate value of one
head is reduced so that the cutter times are equal for the given
output record. This test reduces the number of output records in
the combined mode without violating the feedrates by more than
the tolerance band.

One final feature of this system should be noted. Programmed
dwells are allowed in a combined cut and basically follow the
same procedures already discussed.

Three restrictions governing the merging of two heads into
combined cuts have been placed into the program, namely, RPM, SFM
and IPM limitations. The part programmer may specify a desired
RPM or SFM; however, if either value exceeds the designated
tolerance band specified in the combined cut statement, the
simultaneous cutting will not be allowed. A similar application
results for an IPM limitation between heads. If these
restrictions are not met at any given time while in a combined
cut, one head will be withdrawn while the other head continues
cutting. When the first head has finished its cutting sequence,
the second head will return to the part and finish its cutting
sequence.

3.4.8.2.1.1.2 PROGRAMMED PROCEDURE

In subroutine GEMULT after the opcodes have been ascertained as
equal, the postprocessor seeks records from TAPES2 and TAPES3
which it can successfully merge together. Mergeable records are
linear (CODE = 0), dwells (CODE = 4), and circular interpolation
(CODE = + 10, 11, 12) records. All other valid type records
except CODE = 17 are made output without merging. The CODE = 17
records are recognized for SAFETY, SFM, and PRFSEQ statements,
and the condition flags are set accordingly. VALUES o fp
RESPECTIVELY
The indices ICODE and JCODE representsthe head 1 and head 2'f CODE

+ 1P}vaiﬂ£,-inspeahéveiy. These indices are used to determine

the condition of the two blocks to be merged and the condition
flag ICIRLN is set accordingly as:

3.4-91

G[C[N] "l POSTPROCESSOR ...for the computer programmer

3.4.8.2.1.1.2 PROGRAMMED PROCEDURE (cont'd)

ICRLIN condition: Headl - Head2
-1 Linear - Circular
0 Linear - Linear
+1 Circular - Linear
+2 Circular - Circular

Dwells and turret corrective moves are treated as lines; a dwell
is treated as a linear move with zero feedrate.

For a Line - Line condition, subroutine GMLINE is called to
combine the two command blocks; and for a Line - Circle, Circle
- Line, or Circle - Circle condition, subroutine GMCIRL is called
to combine the two command blocks. The subroutine does this in
three possible ways in accordance with Section 3.4.8.2.1.1.1: ‘

(1 Combine head 1 and head 2 with no changes;

(2) Use head 1 as it is, but segment head 2 into two parts
such that the cut times of both heads are equal;

(3) Use head 2 as it is, but segment head 1 into two parts
such that the cut times of both heads are equal.

The segmentation based upon equal cut times was discussed in the
theory of operation in Section 3.4.8.2.1.1.1 above. The
subroutine SPLIT is called to perform the actual dividing of the
path using a ratioed 1linear proportion for straight line
segmentation, and a vector ratioed sequence for circles; see the
write-up on subroutine CIRSEG for the mathematical description of
circle segmentation.

The technique for merging can best be explained by considering
the example in Diagram 3.4.8.2.1B. The following assumptions are
made:

(1) a preparatory function exists for each head;

(2) the feedrates on L
10 ipm: a

and Qa are, respectively, 20 ipm and

1 1

(3) the feedrate for head 2 is set to 10 ipm.

3.4-92

';[[:[NI "I POSTPROCESSOR ...for the computer programmer

3.4.8.2.1.1.2 PROGRAMMED PROCEDURE (cont'd)

HEAD 1

(0,0)

Diagram 3.4.8.2.1B

Since the first +two paths to be merged are linear, subroutine
GMLINE is called. The cutting times for I, and I are

al 1
calculated as:

T,7= 10 = 0.5 min.; T, = % = 1.2 min.

o

Since T,; is greater than T,;, subroutine SPLIT is called to
segment I, into segments Iy7; and Lyjp:

LX) = 2.; ¥ 12 = 5 in.

12 - 5 =17 in.

L p14X)

3.4-93

(;[(:[N] "I POSTPROCESSOR ... for the computer programmer

3.4.8.2.1.1.2 PROGRAMMED PROCEDURE (cont'd)

L1 and Ljj] are merged together for a block of output. The
circle record C,; 1is read in, and C;7 is compared with Lyj,.
Subroutine GMCIRL is called with ICRLIN = 1. The arc length for
Cy1 is:

So= 2 * 5 =10 in.
The times for the two segments are:

Tp12 = _7 = 0.7 min.

-

Tegx= 10 = 1 min.
<At 1

AT = 1.0 - 0.7 = 0.3 min
The ratio for segmenting is:
RADIO = 0.7

Since AT is positive, subroutine CIRSEG is called to segment the
circle Cal. See Diagram 3.4.8.2.1C for the definition of terms.

Diagram 3.4.8.2.1C

304_94

[;H:[NI Il rostrrocessor

...for the computer programmer

3.4.8.2.1 1.2 PROGRAMMED PROCEDURE (cont'd)

We need to find the vectors AP, PB, and PO.
length for our example is:

|AB| = a8 - 100z = s.
|aT| = 4.
|OT| = AO* cos %
|WT | = |oT| tan (8-RADIO 8)
[WT| = 1.1422
|AW| = 5.1422

AW (X) = [AW| AB(X) = 5.1422

|AB|

AW (Y) = 0.0

OW (X) =

OW (Y) = 0.0 + 2.698 = 2.698

The length of OW is:

"'

oP = RADIUS * OW
oW
OP (X) = 5 % 0.9327 = 1.636
2.85
OP (Y) = 5 % 2.698 = 4.732
2.85
N = AO + OP

Qo.93z7z + 2.6982 = 2.85

The chord

= 5% cos 1 rad = 2.7015

= 2.7015 tan (0.4)

AW(X) - AO(X) = 5.1422 - 4.2095 = 0.9327

3.4-95

';H:[NI "I POSTPROCESSOR ...forthe computer programmer

3.4.8.2.1.1.2 PROGRAMMED PROCEDURE (cont'd)

The departures for Sl are:
AP (X) = 04,2095 + 1.636 = 5.8455;
AP (Y) = 2.698 + 4,732 = 7.430;

PB = AB - AP

The departures for 82 are:
PO (X) = 8 - 5.8455 = 2.1545;
PB(Y) = 0 - 7.430 = -7.430.

The offsets for 82 are:
PO (X) = -1.636;
PO (Y) = -4.732.

The departures and the offsets for S are now merged into a
block with Liqo-

The remaining segment S; is merged with 2+ The cutting
times for Lbz and 82 are computed to be:

T = 8.544 = (0.854
b2 10
T52 = __3_ = 0.3

10

The time for the segment S, is less than the time for Lb2 so
the line Ij,, must be segmented.

IbZl (xX) = 0.3 ¥ 8 = 2.81;

|
(]
.
w
3
w

1}
-
.
[}
(8,

Ip21 (V)

These departures are merged in a block with departures PB and
offsets PO which have been computed for the circle segment 32.

Since head 1 has finished, the remaining line segment, Ib22' is
output in a block by itself.

3.4-96

[;H:[N] "I POSTPROCESSOR ...for the computer programmer

3.4.8.2.1.3 COMMON AXIS SEGMENTATION

In addition to the segmentation required for obtaining equal
times or equal path lengths, a multihead combined path may also
require a segmentation if each head shares a common axis, thereby
requiring that the incremental motion along the common axis be
identical for both heads. Gantry type machines with multiheads
very commonly have this feature.

The segmentation resulting as a function of a common axis is
possible with a single or with double feedrate registers. The
main requirement in segmenting so as to obtain an equal increment
along the common axis is that the component feedrate along the
common axis be either equal or be within an acceptable limit of
each other. .

3.4.8.2.1.3.1 THEORY OF OPERATION

Diagram 3.4.8.2.1.3A illustrates a typical gantry-type multihead
machine which 1is to cut simultaneously path aAB with Head 1 and
path dD with Head 2.

Gantry

Head 1 Head 2

TOP VIEW

Diagram 3.4.8.2.1.3A

3.4-107

':H:[Nl I" POSTPROCESSOR ...for the computer programmer

3.4.8.2.1.3.1 THEORY OF OPERATION (cont'd)

The requirement that AX for both Head 1 and Head 2 be identical
is a necessary but not sufficient condition, because the
component feedrate of both heads along AX must be approximately
equal within some specified tolerance (option 157). In this
example, the component feedrates along AX are equal since DbA =
cf; therefore, the path dD is segmented at point £, and
consequently, Head 1 moves distance aA simultaneously with the
Head 2 move from point 4 to f£.

The simultaneous move along paths AB and fD may not be possible,
however, if

@) ~ E(£p) > €

where

I%(AB) is the X axis feedrate along path AB,

Ek(fD) is the X axis feedrate along path £fD,

and, € is option 157.

When circumstances arise which prohibit simultaneous cutting, the
postprocessor completes the paths by separate sequences for each
head. In the above example, Head 2 would be parked when path aA-
df is completed, Head 1 would complete path AB, park, the gantry
would return to point £, and Head 2 then would complete path £D.

It should be noted that when a head is parked, the other head is
temporarily withdrawn also. This is done to prevent marring or
scoring the workpiece.

Similarly, when both heads are to begin a simultaneous cut
sequence (as when starting paths aA-df), both heads are first
withdrawn and then simultaneously returned to the workpiece.
This is done to ensure perfect synchronization of both heads.

A head is parked by moving it to the AX, AY, A Z distance given
in the SAFETY statement. The X, Y, and Z values at that point
are saved to allow a return to that point when cutting is to be
resumed. Once parked, only the common axis value changes for the
heads.

Only linear interpolation can be used in combined head moves,
although circular interpolation can be used on single, unmerged
head operations.

The common axis is designated by option 155. The postprocessor

permits only one common axis and assumes that option 155
specifies which axis it is.

3.4-108

[;[ﬁ[N]- I” POSTPROCESSOR ...for the computer programmer

3.4.8.2.1.3.1 THEORY OF OPERATION (cont'd)

The general scheme of operation for combining command blocks for
a common axis are as follows:

(1) Obtain a path for both Head 1 and Head 2.

(2) Combine that portion of the paths which share the same
common axis range and whose component feedrates are within
the allowable limit.

(3) Upon completion of the two paths, obtain two new paths.

(4) When the end of either path is encountered or when merging
cannot otherwise be continued, complete the path using
single head operation.

Some examples of common axis cut sequences are given below. With
each example is given a brief description of the method of
processing that particular example. The examples assume that the
X axis is the common axis for both heads.

Head

=
[\

Diagram 3.4.8.2.1.3B

Paths are same length. Compare the X component feedrate on each
head to see if they are within the option value tolerance. If
they are, output the paths. If not, park Head 2 and cut A, then
park 1 and cut B. Continue to next paths. Print a comment each
time a head is parked.

3.4-109

GHIN]I" POSTPROCESSOR

... for the computer programmer

3.4.8.2.1.3.1 THEORY OF OPERATION (cont'd)

Head

et
[\

Diagram 3.4.8.2.1.3C

Compute the X component feedrates. If they are within the option
tolerance, output the paths. If not, park 2,
1, cut B. Print a comment each time a head is parked.

Head

Diagram 3.4.8.2.1.3D

Path A will be segmented as follows:

Aland Blwill be merged, if possible;

Then park

A2 will be cut separately (Head 2 parked).

3.4-110

';H;[N] ”l POSTPROCESSOR ...for the computer programmér

3.4.8.2.1.3.1 THEORY OF OPERATION (cont'd)

Head

Diagram 3.4.8.2.1.3FE

Park Head 1, cut Bl' cut Ay and B,, cut A, and B3, cut A3and B4,
park Head 1, cut Bg, cut Bg, park Head 2, cut A,, cut Ag, cut A6

and B7, cut A7 and B8' park head 1, cut B9.

Head

-
N

B

: .

Diagram 3.4.8.2.1.3F

Cutting each circle can be a separate operation. If so, circular
interpolation may be used.

3.4-111

(;[(:[NI "I POSTPROCESSOR ...for the computer programmer

3.4.8.2.1.3.1 THEORY OF OPERATION (cont'd)

The sequences could also be cut simultaneously; if so, linear
interpolation is required. Care should be taken to insure that
the X values on each circle are identical; otherwise, many small
cut sequences may result which may be tape reader-limited.

Head
1 2
20 B10
Ay Bl
.._. —— e — — ———— — — —— ———— ——— ———— ——
B

‘ O

A B

Diagram 3.4.8.2.1.3G

This sequence would be cut as follows:
cut BO' cut Al and Bl' A2 and B2, A3 and B3, A4 and B4 s €etc.

Care must be taken to insure that the X value of each segment is
cut simultaneously.

3.4-112

GHINI'” POSTPROCESSOR

3.4 8.2.1.3.1 THEORY OF OPERATION (cont'd)

...forthe computer programmer

Head

Diagram 3.4.8.2.1.3H

Cut A; and B;, cut Ay, cut By, cut A3 and B3z, cut Ay, cut Ag, cut
A¢ and B4, cut B, cut Ay, cut Ag and Bgr cut Ag and By, cut Ajpg

cut Bg, cut Alland Bg, cut Alzrcut Ajjsrcut Al4and Byjgrcut Bllycut

Al5r cut AlGand B12 .

(Park alternate head when a single move of a head is being)
made.

3.4-113

[;[[:[N] "I POSTPROCESSOR ...for the computer programmer

3.4.8.2.1.3.2 PROGRAMMED PROCEDURE

‘In subroutine GEMULT before the call to the subroutine which
carries out the merging of linear blocks (subroutine GMLINE), the
postprocessor tests for the existence of a common axis option 155
and calls subroutine FXMULT if one exists. No such call precedes
subroutine GMCIRL since the common axis segmentation sequence
requires linear interpolation.

The generalized sequence of subroutine FXMULT is highly involved
because of the many combinations of cut paths and affecting
conditions; hence, the best means of explaining the methods of
common axis segmentation is to illustrate the techniques by using
simple examples. Once these special examples are followed, the
overall general scheme will become clear.

We will use the simultaneous cut paths as illustrated in Diagram
3.4.8.2.1.3.2A.

if
Stop
20
(AX1=10) (AX2=15) Second
Record
10 b — — — — — — 10 -
'y A 7
(AX1=10) (AX2=10) First
Record
HEAD 1 HEAD 2
. X .

0 0

Diagram 3.4.8.2.1.3.2A

In this example we will consider only the X axis which is the
common axis to both heads. We further assume that only one
feedrate register exists.

3.4-114

G[[:[N] ”I POSTPROCESSOR ...for the computer programmer

3.4.8.2.1.3.2 PROGRAMMED PROCEDURE (cont'd)

Upon entry into subroutine FXMULT, the postprocessor computes the
» final absolute coordinate points of both heads. It must be
recalled that during the second pass the information concerning
the location of the tool (DPRESM and DPRESP vectors) is not
available; all that is available are the incremental moves as
dumped on the scratch tapes in the first pass.

However, in subrouting GMOUT the incremental moves are
accumulated to obtain the current absolute XYZ values for each
head; these values are stored in the vectors ABS2 and ABS3 for
Head 1 and Head 2, respectively.

Therefore, upon entry into subroutine FXMULT, the vectors have
the values (using X axis only):

ABS2 ABS3
0 0

This represents the beginning point of both heads; see Diagram
3.4.8.2.1.3.2A.

The subroutine requires the final point of the path; therefore,
it computes the head vectors:

HIVEC (1)

"

ABS2(1) + AS2(3,1).
and

H2VEC (1)

ABS3(1) + AS3(3,1).

It will be remembered that AS2 is the command block (similar to
DBFSEG) for the currently read Head 1 record read from TAPESZ,
while AS3 is for Head 2 from TAPES3. The XYZ values in AS2 and
AS3 are increments.

(Note: For convenience and simplicity all vectors and other
arrays will henceforth be treated as a single parameter. It must
be remembered though that while the reference is to the X axis
only, any axis could as well apply.)

In our example then,

H1VEC 0+ 10

10,

H2VEC

i}

0 + 10

]

10.

3.4-115

GHINI'" POSTPROCESSOR ...for the computer programmer

3.4.8.2.1.3.2 PROGRAMMED PROCEDURE (cont'd)

The subroutine requires the knowledge of the beginning and end
path values; these are the values H1X1 and H1X2 for Head 1, and
H2X1 and H2X2 for Head 2.

H1X1

0, H1X2 = 10,

H2XA1

0, H2X2

]

10.

The direction of both heads must now be determined; these are the
flags H1DIR and H2DIR.
0 - 10

H1DIR H1X1-H1X2

-10,

i

H2DIR

H2X1-H2X2 0 - 10 = -10.

The subroutine has detected that there is truly a motion in X for
both heads, so now it must determine whether or not both heads
are moving in the same direction. This is done by the following
ratio test:

H1DIR = -10 = +,.
H2DIR -10

The postprocessor now knows that both heads are moving in the
same direction, and a further test indicates the motion is in the
positive direction, therefore, flag DIR = 1 for this condition.

The next question to be resolved is: do both paths have the same
origin, i.e., both begin at the same point? This is resolved by
the test:

DIR(H1X1 - H2X1) = 1(0-0) = 0

The test indicates that the origins are the same. Now, which
path is longer?

DIR (H1X2-H2X2) = 1(10-10) = 0.
The test indicates that the path lengths are equal; hence,
no segmentation is necessary and the two head paths can be output

together if the X-axis component feedrates of each head are
within the acceptable tolerance difference.

3.4-116

[;H;[Nl III POSTPROCESSOR ... for the computer programmer

3.4.8.2.1.3.2 PROGRAMMED PROCEDURE (cont'd)

This test 1is done 1in subroutine FXTOL where the component
feedrate is determined by:
A—)
F, = X. F ’
X_.__.__.
S

yhere Fy is the component feedrate, AX is the X-axis increment,
F is the head feedrate, and S = \Ax2 + Ay2 + Az2 |

If the two component feedrates are not within the acceptable
tolerance difference, the return flag IND is set non-zero, and
the postprocessor outputs each head move separately.

In this example it is clear that the component feedrates would be
the same since AX is the same for both heads. However, this is
true only if one feedrate register exists; with two feedrate
registers the component feedrates can very easily be
significantly different even though the AX's are equal.

The two paths are made output as a combined move; but before
actually outputting the block, subroutine FXPARK is called to
make sure that the tools are in the workpiece. It will be
recalled that the heads are both retracted and then brought
together into the workpiece when a new combined sequence begins.

Subroutine GMOUT outputs the combined command block as described
in Section 3.4.8.2.2.

Referring to Diagram 3.4.8.2.1.3.2A, it is seen that we have
combined and output the motion from X = 0 to 10. The flags
RFLAG2 and RFLAG3 are set to zero and subroutine FXMULT returns
to subroutine GEMULT where a new command block from TAPES2 and
TAPES3 is read. The zero settings of RFLAG2 and RFLAG3 indicate
that both tapes should be read.

3.4-117

G[[:[NI "l POSTPROCESSOR ...for the computer programmer

3.4.8.2.1.3.2 PROGRAMMED PROCEDURE (cont'd)

After obtaining the next command blocks, subroutine FXMULT again
determines the parameters as described above. Continuing with
our example, the same sequence and results are summarized.

ABS2 ABS3
10 10
H1VEC H1X1 H1X2
20 10 20
H2VEC H2X1 H2X2
25 10 25
H‘IDIR H2DIR
-15
H2DIR -15
Origin test: 1(10-10) = 0 - same origin.

Test to see which path is longer:
DIR (H1X2-H2X2) = 1(20 - 25) = -5.

It 1is found that Head 2 has the longer path, hence, the Head 2
path will be segmented at H1X2, i.e., at X = 20. Subroutine SEG
is called to perform this function; the calling sequence to
subroutine SEG specifies the point of segmentation. (See Section
6.0 for complete description of subroutine.)

After segmentation the two paths are combined and made output if
subroutine FXTOL so designates. Flag H2FLAG is temporarily set
to 1 indicating that the Head 1 path is completed but Head 2 is
not. Under these conditions, H2X1 is reset as

H2X1 = ABS3 = 20

since at output, ABS3 has had AX added to it to obtain the
current absolute point.

The flag RFLAG2 is set to 0 and RFLAG3 to 1 indicating that since
the Head 1 path is completed, TAPES2 must be read for a new
command block whereas TAPES3 must be bypassed since the Head 2
path still has a portion to be made output.

3.4-118

GH:[NI I" POSTPROCESSOR ...forthe computer programmer

3.4.8.2.1.3.2 PROGRAMMED PROCEDURE (cont'd)

Thus, upon return to subroutine GEMULT, only TAPES2 is read.
Since Head 1 calls for a STOP, it is parked, and the remainder of
the Head 2 path is made output, then parked. The two heads are
resynchronized with new data from TAPES2 and TAPES3 which begins
a new sequence.

The individual subroutine write-ups for the common axis
segmentation sequence must be consulted for greater details; see
Section 5.2.

3.4.8.2.2 MULTIHEAD OUTPUT

The calling sequence to subroutine GMOUT has an integer flag
which is set according to the condition that exists in DBFSEG.
For example, if an unmerged block for head 1 is to be output,
then the integer flag is 1.

The possible settings are:

(IH) 1 = head 1 only
2 = head 2 only
3 = both heads are merged, but

head 1 is the primary head

4 = both heads are merged, but
head 2 is the primary head

The first function performed by subroutine GMOUT is to determine
the absolute motion values of the point; these values are used by
subroutine FXMULT and GEOUT3 in printing the Absolute and
Operator Printouts. This function is done by subroutine GMABS
which takes the incremental values of AS2 or AS3 and
algebraically summates and stores them in the array ABS2 or ABS3
as the case may be. ABS2 and ABS3 are ordered as X, Y, Z2, A, B
for the absolute coordinate machine point.

The command block 1is now readied for output; this requires

computing a feedrate command and obtaining the requisite G, M, S,
and T codes.

3.4-119

[;H;[NI "I POSTPROCESSOR ... for the computer programmer

3.4.8.2.2 MULTIHEAD OUTPUT (cont'd)

A motion command block at this time has the feedrate in IPM,
hence, a conversion to the feed command is required. This
conversion is done by subroutine GMOTIN, and the value is stored
into the eleventh cell of AS2(or AS3). This subroutine is almost
identical with subroutine CONTUR except that multihead
preparatory function G codes are involved in the determination of
the feedrate command.

If the resultant feedrate command is greater than the feedrate
command maximum (FCOMAX), the postprocessor calls subroutine
GFDLIM to optimize the feedrate command by using a ratio
multiplier on the feedrate command and computing an I, J, K (as
appropriate) value; see Section 4.1.5 for a complete description
of this method.

The arrays AS2 or AS3 are now essentially complete, but they must
be restored into GMHBUF which is the prime array used for all
multihead output. Subroutine GEMISC obtains from AS2 or AS3 the
spindle command and speed, any pending M code or T code, and
stores them into GMHBUF. The storing sequence is a function of
the head as follows:

GMHBUF AS2
Head 1 (12) = spindle command (12)
(13) = tool code (T) (13)

(14) = miscellaneous code (M) (14)

(20) = spindle speed in RPM (20)
Head 2 (32) = spindle command ' (12)
(33) = tool code (T) (13)
(34) = miscellaneous code (M) (14)
(40) = spindle speed in RPM (20)

When both heads share a common register, the convention used in
the postprocessor is that the head 2 value for that register is
stored into the corresponding head 1 location of GMHBUF.

3.4-120

[;[[:[N] "I POSTPROCESSOR ...for the computer programmer

3.4.8.2.2 MULTIHEAD OUTPUT (cont'd)

Subroutine GMOUT completes the restoring of GMHBUF by adding in
the remaining cells of AS2 or AS3. The order of storage is as
illustrated below.

GMHBUF AS2 GMHBUF AS3
@) (1) N (217) (1)
(2) (2) 6 (22) (2)
(3) (3) X (23) 3)
(4) (4) Y (24) (4)
(5) (3) Z (25) (5)
(6) 6) A (26) (6)
(7) (7) B (27) (7)
- (8) (8) I (28) (8)
(9) (9) J (29) 9)
(10) (10) K (30) (10)
(11) (11) F (31) (11)
(12) (12) s (32) (12)
(13) (13) T (33) (13)
(14) (14) ™ (34) (14)
(15) (15) CODE (35) (15)
(16) (16) (36) (16)
(17) (17) (37) (17)
(18) (18) cC (38) (18)
(19) * (19) * F-IPM (39) * (19) *
(20) (20) S-RPM (40) (20)

*This value of feedrate is stored in GMHBUF before
subroutine GMOTIN is called to convert the feedrate
into its command form.

When GMHBUF is all set up, it is made output through subroutine
GMSTOR which directs the program flow to GEOUT3 for printing and
punching.

3.4-121

G[c[NI |" POSTPROCESSOR ...for the computer programmer

3.4.8.2.2 MULTIHEAD OUTPUT (cont'd)

If the command block being processed is a circular interpolation
move (CODE = ¢ 10, 11, 12,), subroutine GMOUT calls subroutine
PREPHD which selects the proper preparatory function G code that
permits circular interpolation on that particular head. The G
code is made output in a block by itself.

The above described output sequence pertains to single-head
output, i.e., head 1 or head 2 only, and also to combined
multihead output. When only head 1 is to be output, GMHBUF(1)
through (40) are used; when only head 2 1is to be output,
GMHBUF (21) through (#0) are used. When multihead combined moves
are output, GMHBUF (1) through (40) are used.

When a combined multihead block is processed for output,
subroutine GMOUT, in addition to the above described chores, must
also do some special testing and modifying.

The input head flag (IH) is 3 or 4 for a combined block. Thus,
an early branch in subroutine GMOUT directs the program flow to
the test which determines the nature of the combined move, that
is, the flag ICRLIN is tested for the following interpolation
conditions:

ICRLIN Condition
-1 head 1 is linear, head 2 is circular
0 both heads are linear
+1 head 1 is circular, head 2 is linear
+2 both heads are circular

Common to all these conditional combined moves is the
determination of the feedrate command. For the combined
condition which contains a linear and a circular interpolation
move, a set of '"arc center offsets" may also have to be
determined for the linear head.

3.4-122

[;[[:[NI I“ POSTPROCESSOR ...for the computer programmer

3.4.8.2.2.1 LINEAR-LINEAR

The first item considered for the combined linear-linear
multihead move is the proper determination of feedrate.
Subroutine GMOTIN is called to determine the feedrate command of
head 1 and head 2; the parameters FRN1 and FRN2 contain the
feedrate commands. If one of the head moves is a delay, i.e., a
xero move, the feedrate command for that head is set to zero.

Next, the selection of the proper preparatory function G code is
made. If a preparatory function register for each head is
available (option 152 # 0), each head G code is used, and
GMHBUF (2) and (@2) select from AS2(2) and AS3(2) to obtain the
proper head G code accordingly.

If only one G register is available, a dimensional G code which
is compatible with the size of motions for both heads is selected
and stored in GMHBUF (2) .

A similar determination is made for the F register, that is, the
use of one F register common to both heads or the availability of
an F register for each head; option 139 is non-zero for multiple
F registers. GMHBUF (11) and (31) are set to AS2(11) and AS3(11)
when multiple F registers are available. Otherwise, GMHBUF (11)
above is stored with the feedrate command after it has been
decided which head feedrate to use. The input head flag IH
specifies this, for when IH = 3, then head 1 is the primary head,
and so GMHBUF (11) = AS2(11), and CODE = +17 and is so stored into
GMHBUF (15) . But when IH = 4, then head 2 is the primary head,
and GMHBUF (11) = AS3(11), and CODE = -17 and is so stored into
GMHBUF (15) .

The remainder of the GMHBUF block is next set up with the other
cells of AS2 and AS3 and is made output through subroutine
GMSTOR.

3.4-123

GH:[NI l" POSTPROCESSOR ...for the computer programmer

3.4.8.2.2.2 LINEAR-CIRCULAR OR CIRCUIAR-LINEAR

As with the 1linear-linear condition described above, a similar
determination must be made concerning the use of single or double
preparatory function and feedrate command registers.

If a preparatory function register exists for each head, the
value is set up in GMHBUF(2) and (32) from AS2(2) and AS3(2), and
no further consideration is needed since each head can function
separately according to its interpolation mode.

However, if only one preparatory function register 1is wused for
both heads, the 1linear head "arc center offset" must be
determined in the following fashion.

The length S of the circular move and the radius R of the circle
are determined so that the circle angle € can be found. The "arc
center offsets" for the linear head are next computed using 9 and
the deltas of the linear head.

1) s = JAxé + AYé + Azé (delta motions)
2) R = \IZ + J2+ K2
C C C
3) B1 = §S/2R
4) B2 = \1- B12
1 Bl
5) ® = a tan (‘h—Blz)

6) Iy = OXp/ 6

7)

[}
[

AYL/ 8 Linear head "arc center offsets"

8
) K A ZL/G

Note the following setting of CODE for these mixed interpolation
modes:

GMHBUF (15) CODE +17 for circular-linear;

GMHBUF (15) CODE

-17 for linear-circular.

The block is made output after the remainder of GMHBUF is setup.

3.4-124

[;H:[N] ”I POSTPROCESSOR ...for the computer programmer

3.4.8.2.2.3 CIRCULAR-CIRCULAR

There must be two preparatory function registers for this
condition to exist. The setup of GMHBUF is direct and with no
further modifications needed. GMHBUF (2) is set from AS2(2) and
GMHBUF (32) from AS3(2).

The feedrate commands are likewise setup, and CODE = +17 if IH =
3, otherwise, CODE = -17 for IH = 4.

The block is made output after the remainder of GMHBUF is setup.

3.4-125

GHINII" POSTPROCESSOR ...forthe computer programmer

3.5 OUTPUT ELEMENT

The GECENT III postprocessor can produce punched output in either
tape image (PUNCHA) or Hollerith BCD (PUNCHB). Either type 1is
selected by the designation of option 20:*

OPTION 20 = (0, use PUNCHB

OPTION 20 = 1, use PUNCHA
*See Section 5.6.2 for option 20 = -1 for magnetic tape
output.

Four forms of printed output are available by option selection.
See the GECENT III Part Programmers Manual for a complete
description of the printed output.

The four major overlays of GEOUT are: GEOUT 1, which produces
the Summary Print; GBEOUT 2, which produces the Combined Print;
GEOUT 3, the Multiple Print, which produces any one or
combination of the Incremental, Absolute, or Operator Manuscript
Printouts for multihead machines; and GEOUT 4, which is similar
to GEOUT 3, except used for non multihead machines. However, the
GEOUT overlays are mutually exclusive and only one overlay can be
used for any given run.

The incremental data produced on any of the printouts are an
exact copy of the data which are punched into the control tape.
The tape, of course, does not include such things as
postprocessor comments, blanks, FROM point, and so on. The same
printed incremental 1line image 1is also punched into the tape.
This control tape is accomplished in the following manner.

3.5.1 CONVERSION TO TAPE IMAGE

The print sequences convert the elements of DBFSEG to BCD,
(unless, of course, they are already in BCD form), and sets these
elements in the array BCDIMG.

The elements of DBFSEG are converted to BCD through subroutine
CONBCD; the conversion format of each cell is specified in the
related REGFOR table. For example, DBFSEG (2) contains the
floating point value -3.2468. REGFOR (2) = -24.0 specifying a
signed number with two places to the left and four places to the
right of the decimal. The converted value produced in BCD
becomes -03.2468. This wvalue is printed under the X column on
the Incremental Printout.

[;[C[NI "I POSTPROCESSOR ...for the computer programmer

3.5.1 CONVERSION TO TAPE IMAGE (cont'd)

To punch this data the BCD letter address of the related register
is first obtained from the REGSTR table and is inserted in BCDIMG
ahead of the BCD value. In this example the letter address 1is
selected from REGSTR (2) to produce the punched value X-032468.

The punch routines do not punch blanks or periaods. Trailing
zeroes are not punched unless required, as for a positioning
machine. (see option 1 and 51). Leading =zeroes can be

suppressed under certain conditions for certain numerical control
systems, the Mark Century 100M control and others. See Section
4.9 for leading zero suppression information.

3.5.2 PRINTOUT VARIABLE FORMAT

A variable format is used with all four forms of printout; that
is, each print format is structured according to the needs of
each machine tool. The Machine Subroutine has the tables REGSTR
and REGFOR which describe the input requirements for that
particular machine. These tables are also used to set wup the
print format for the particular machine. The REGSTR table tells
the postprocessor which registers are available, and the REGFOR
table specifies the decimal structure of each register. Hence
the postprocessor has all the necessary information to 1lay out
the print format.

To print any given BCD value the postprocessor must know which
print columns it is to use; for example, the X values may have to
be printed in columns 11 through 19, Y columns 20 through 28, and
so on. These print column values are determined in overlay
GEINIT in subroutine CALCPn where n = 1 for GEOUT 1, 2 for GEOUT
2, 3 for GEOUT 3, and 4 for GEOUT 4. The print column values are
determined for each available register (as given by REGSTR and
REGFOR tables) and stored in a print vector.

There are four vectors determined in CALCPn, namely, the vectors
NIP (initial print position), NFP (final print position), NPR
(number of places to right of decimal), and NPT (total number of
digits in each register). Each element of the vector has a one-
to-one correspondence with the register tables. For example:

[;H;[N] I” POSTPROCESSOR ...for the computer programmer

3.5.2 PRINTOUT VARIABLE FORMAT (cont!d)

(SUBSCRIPT) NIP NF' P NPR NPT REGSTR REGFOR

(1) 3 5 0 3 N 30.
(2) 8 9 0 2 G 20.
(3) 12 19 -104 -6 X -24.
(4) 22 29 -104 -6 Y -24,

Zero 1is stored if the standard register assignment does not
exist. For example, if the machine tool has no T code, REGSTR
(13) = DBLNKS, REGFOR = 0, and thus NIP (13) = NFP (13) = NPR
(13) = NPT (13) = 0.

The postprocessor determines the optimum spacing between columns
before calculating the initial and final print positions. Hence,
when GEOUT 1 1is wused to produce the Summary Print, the
postprocessor first determines the number of columns it must set
aside for the incremental data, and then checks to see how much
room is left for the absolute data. The print vectors NIP and
NFP are altered to produce the optimum spacing format. For
example NIP (I) and NFP (I) for 1=2,3,4,---14 may be increased by
3 to provide three columns of space between each printed value.

The print vectors also give additional information which is used
to make format decisions in printing and punching. A negative
value of the vector NPT tells the postprocessor that the
algebraic sign of the register value must be made output. This
is important since the XYZ registers may carry signs, whereas the
G register does not. Also, if a value n of the NPR vector is
over 100, i.e., (n + 100), this signals the postprocessor that
the trailing zeroes are to be dropped for this particular
element's output value. Positioning machines, which wutilize an
absolute coordinate system, must output the trailing zeroes,
therefore, the elements of the print vectors for the registers
XYZ would each be a value less than 100. A negative value of an
element in the print vector NPR specifies that the related
register value must also have a decimal point in its printed
value.

The print vectors are stored in COMMON and are therefore
available to all output subroutines. The output initialization
subroutine GEPRE calls the proper subroutine CALCPn. Subroutine
GEPRE and associated subroutines are overlayed when all the basic
initialization is completed.

3.5-3

‘;[c[NI "l POSTPROCESSOR ...for the computer programmer

3.5.2 PRINTOUT VARIABLE FORMAT (cont'd)

The CALCPn subroutine in addition to calculating the print vector
elements for the Incremental Printout (and subsequent punching),
also analogously determine the print positions and other
information for the Absolute and Operator Printouts. In general,
the subroutines will expand the print width of the motion
register values or incremental systems so as to encompass the
probable programmed algebraic dimensions. For example, REGFOR(3)
= -24.0 specifies a six digit incremental move for X. The
Absolute format for X is made to have an eight digit spread to
ensure that any programmed point will be properly printed.

The following sample illustrates the method.

REGFOR(3) = -24.0
INCREMENTAL ABSOLUTE

X X
FROM 892.3456 0892.3456
95.6789 0988.0245
10.0010 0998.0255
90.1111 1088.1366

(6 digit spread) (8 digit spread)

A similar expansion is also made if the units system of the
machine tool is metric. Note also that the FROM point format is
also expanded.

The register title printed at the top of each page is set up in
accordance with the values of the print vectors. The title
structure is determined in CALCPn and then saved in the vector
BCDREG which is in COMMON. When the title for each new page is
required, subroutine TITLEn is called. This subroutine prints
the postprocessor identification title, the machine tool
identification and page number, the PARTNO, and then the register
title as stored in BCDREG. A possible title printout for the
Summary Printout GEOUT1 is given below.

GH:[N] ”I POSTPROCESSOR ...forthe computer programmer

3.5.2 PRINTOUT VARIABLE FORMAT (cont'd)

%GENERAL ELECTRIC GECENT III POSTPROCESSOR*
MACHINE 14 BRACK LATHE NC40
TEST CASE 2468A1001
N 6 X 2 I K F S T M ABSX ABSZ FIPM SRPM
The sequence through subroutine CALCP1 is described in detail in
Section 3.5.4.1, and should be read as a continuation of the

above description.

3.5.3 GENERAL OUTPUT FLOW

The logical flow in the output section is basically the same for
all the GEOUT's. GEOUT1 is the simplest output sequence whereas
GEOUT3 is the most complex. It must also be remembered that
GEOUT3 and GEOUT4 require multiple passes to produce the several
printouts, hence, will dbviously have a more complex and longer
flow path. Each of the separate GEOUT's are discussed below in
detail.

The structure of each GEOUT is functionally the same, i.e., the
key subroutines of each GEOUT perform analagous functions.
Therefore, the description which follows pertains to GEOUTn where
n=1,2,3, or 4.

For a complete description of the variable printout method, see
Section 3.5.4.1 wherein subroutine CALCP1 is analyzed in detail.
This description defines the basic techniques wused by all the
GEOUT's in the setting up and use of the column vectors.

‘;H:[N] "I POSTPROCESSOR ... for the computer programmer

3.5.3.1 INITIALIZATION

Initialization occurs in subroutine GEPRE in overlay GEINIT which
performs all the "one-shot" chores required for output functions:

(1) Subroutine DECODE interprets options 59 and 60 and sets
up the shuffle vector ISHVEC which directs the post-
processor in its reassignment of registers for output.
This reassignment is done by subroutine SHUFFL which is
called in subroutine GEPROn. The shuffle vector ISHVEC
(dimensioned at six) has a fixed order, viz.,

Standard value

ISHVEC(1) = X 3
ISHVEC(2) = Y 4
ISHVEC(3) = % 5
ISHVEC(4) = I 8
ISHVEC(5) = J 9
ISHVEC(6) = K 10

If the machine tool is a standard milling machine, the
above order of ISHVEC is unchanged and 1is not wused by
subroutine SHUFFL. 1In this case, flag ISHUFL = 0.

However, a standard lathe operates in Quadrant IV and uses
the axes +Z2-X and related registers +K+I. Therefore,
ISHVEC is set as follows (determined by options 59 and 60:

ISHVEC(1) = 5
ISHVEC(2) = -3
ISHVEC(3) = 0
ISHVEC(4) = 10
ISHVEC(5) = 8
ISHVEC(6) = O

[;H:[NI I” POSTPROCESSOR ...forthe computer programmer

3.5.3.1 INITIALIZATION (cont'd)

(2)

(3)

(%)

(5)

Subroutine SHUFFL uses this vector to "shuffle" the normal
command block data into the output format required for the
particular machine tool. The command block DBFSEG for a
lathe originally is set up as:

1 2 3 4 5 6 7 8 9 10 11 - -

N G X Y I J - F - -
After shuffling, DBFSEG is reordered as:

1 2 3 4 5 6 7 8 9 10 11 - -

N G -Y X J - I F - -

For example, the value of ISHVEC(1) being a 5 indicates
that the normal value stored for X (at DBFSEG(3)) should
be relocated at DBFSEG(5). This value is made output with
the letter address Z thereby fulfilling the requirement of
the abscissa lathe output.

A zero value in ISHVEC means to disregard the referenced
register. The flag ISHUFL is set to 1 when shuffling is
required.

Output parameters and flags are set to their zero or null
starting values. Storage arrays are cleared; BCD arrays
are set to DBLNKS; conditional storage arrays are set to
DMBITS.

Subroutine CAICPn is called to set up the print column
vectors and to determine the register title BCDREG.

The first PARTNO is converted to its readable form and
punched out. The readable PARTNO is produced either for
Tape Image (PUNCHA) or BCD Hollerith (PUNCHB).

For Tape Image (option 20 = 1) subroutine PARNEM is wused
for even parity check readers, and subroutine PARNOM is
used for odd parity check readers.

For BCD Hollerith (option 20 = 0) subroutine IDPART is
used.

The first PARTNO is saved in vector DPRTNO (dimensioned at
11) for later printing as a title on each page.

3.5-7

';H;[NI "l POSTPROCESSOR ... for the computer programmer

3.5.3.2 OUTPUT PROCESSING

Normal output processing for a command block relies principally
on subroutine GEPROn which is the main processing unit of GEOUT.
In addition to processing each command block, subroutine GEPROn
also performs several other functions.

(1

(2)

(3)

The unit increasing sequence number (option 143=1) is
generated in subroutine GEPROn. When called for, the
generated number is stored in DBFSEG(1) and the CL tape
record number is then printed at the far right side of the
page under the title heading, CLREC.

The unit increasing sequence number is limited to the
maximum size number permitted by the N register format.
For example, if REGFOR(1) = 30.0, the largest number that
N can become is 999. The maximum number is determined in
subroutine ASSIGN in GEINIT and stored in the parameter
SEQLIM. A number N greater than SEQLIM is made.

N = N modulus SEQLIM

Incremental motions are accumulated to produce the
absolute coordinate values. The absolute values are
remodified by subtracting the respective ORIGIN
value (stored in the array ORGIN) to produce the Operator's
Print when requested. This, in effect, is simply done by
subtracting the ORGIN(I) value from the relative FROM(I)
value, where I = 1,2,3,4,5.

The accumulated incremental moves for the absolute or
operator values are stored in the array DABVAL(I) for I =
3 to 7. DABVAL (11) is for the feedrate in IPM, and
DABVAL(12) is for the spindle speed in RPM.

After printing the BCDIMG for the command block,
subroutine PPUNCH is called to count the command block
characters, and then punch the command block. The block
is punched according to the setting of option 20, that is,
either for PUNCHA or PUNCHB.

GHINII” POSTPROCESSOR ...for the computer programmer

3.5.3.2 OUTPUT PROCESSING (cont'd)

() A final chore of subroutine GEPROn is to print the total
cut and dwell times, and the total tape footage generated
by the part program.

There are several other special sequences performed in
GEPROn which are described in detail in the sections
pertaining. Some of these items are: processing of a
dwell block (Section 4.10); turret corrective moves (Part
Programmer Manual Section 4.8.13) processing of
information blocks (Section 5.5); OPSKIP processing
(Section 4.11); and determination of cut and dwell times
(Section 4.12).

The prime purpose of subroutine GEPROn is to set up the command
block for printing and punching. As described in Section 2.3.2,
each non-BCD block has its floating point values converted to BCD
through subroutine CONBCD. Subroutine SETLIM is then used to
prepare the array BCDIMG which is printed by subroutine GEPRNn.
Next, again using subroutine SETLIN, each letter address from the
REGSTR table is inserted before each register value existing in
BCDIMG. The BCDIMG is then punched by subroutine PPUNCH.

Each command block is processed differently according to its CODE
value. However, there are common processing routes for some
different CODE settings. For example, when the command block is
a motion of dwell block, subroutine SHUFFL is called to rearrange
and modify the XYZ IJK registers per option 59 and 60. Dwell
blocks are remodified, as needed, to produce the proper dwell
code. (See Section 4.10). If the command block 1is for an
incremental motion, subroutine CONTUR is called to compute the
feedrate command. If the command block is for an absolute motion
(as for a positioning machine), the subroutine POSIT is called to
suppress redundant coordinate points; this subroutine in turn
calls subroutine POSFED to produce the positicning feedrate
command.

According to the related option setting, (options 38 and 107) a
command block which has a redundant G or F command has its
redundancy suppressed. Redundant S commands are always
suppressed except for a spindle neutral or when immediately
following a STOP, OPSTOP or SPINDL/OFF.

GH:[N] "I POSTPROCESSOR ...for the computer programmer

3.5.3.2 OUTPUT PROCESSING (cont'd)

Other than the above items, special processing of each command
block is done according to its CODE value. The description below
briefly details the output processing for each type of command
block. At this point in the program, DBFSEG 1is completely set
up, and the CODE value is also set in ICODE as

ICODE = |CODE| + 1.
CODE=0

The command block is for a linear, incremental move. Processing
is described above. The converted block is printed and punched.

CODE=+1

The command block is a non-motion block. The block may require
an F command to produce a momentary dwell; see option 98. or
possibly, the block may require a dwell produced by a GO4; see
option 148. The converted block is printed and punched.

CODE=+2

The command block is for a rotary motion. The rotary value is
converted to output units; but other than this, processing is as
described above for a motion block. The converted block is
printed and punched.

CODE=+3

The command block is for a FROM part. The block is shuffled per
subroutine SHUFFL, and the accumulation of the Absolute and/or
Operator Data is begun. The title FROM is printed as are the
values of the FROM point. The FROM point is not punched.

CODE=-3

The command block is for a turret corrective move as generated by
the NOW modifier. This block is processed exactly as if it were
for a CODE=0 except that the corrective incremental moves are not
summated nor printed on the Absolute Printout, though they are
for the Operator Printout. (See Part Programmer Manual Section
4.8.13 for the explanation regarding corrective moves.)
Otherwise, the converted block is printed and punched.

3.5-10

GHIN]I” POSTPROCESSOR ...forthe computer programmer

3.5.3.2 OUTPUT PROCESSING (cont'd)

CODE=+4

The command block is for a dwell block and is processed as
described above. The block is printed and punched.

CODE=-4

The command block 1is for a preparatory G code by itself, not a
dwell. The block is tested at DBFSEG(11) for the existence of an
F command in the event that the block may be for a CUTCOM. The
F command is left untouched if one exists, otherwise, the
processing considers the possibility of adding in an F command
per option 98. G codes in CODE = -4 blocks are never suppressed
regardless of redundancy. The block is printed and punched.

CODE=+5

The command block 1is for an END. This code signals the
postprocessor to perform special actions before output, but at
output the block is treated as if it were for a CODE=#1 except
that no testing is made for redundant G,F, or S commands. The
block is printed and punched.

CODE=-5

The block is for a RESET statement. This statement calls for a
resetting and reinitialization of the postprocessor program, and
as such, is not an item for output. The block is neither printed
nor punched.

CODE=+6

The command block is for an INSERT statement and is already set
up in BCD form. The block is immediately printed and punched.

CODE=-6

The block is for a BREAK statement. This CODE signals the
postprocessor to produce the "breaking" of the output tape; and,
if the machine +tool recognizes an OPSTOP command (TABLEG(2) #
DMBITS) , the BREAK statement also issues an OPSTOP block. Hence,
processing can follow two possible routes: (1) if TABLEG(2) #
DMBITS, the block is processed as for a CODE = -1 and is printed
and punched; (2) if TABLEG(2) = DMBITS, the block is disregarded
and is neither printed nor punched. See Part Programmer's Manual
for further information on the BREAK statement.

3.5-11

[;[[:[NI "I POSTPROCESSOR ...for the computer programmer

3.5.3.2 OUTPUT PROCESSING (cont'd)

CODE=+7

The command block is for a PPRINT statement and is already in BCD
form. The block is immediately printed but is not punched.

CODE=-7

The command block is for a PARTNO statement and is already in BCD
form. The first programmed PARTNO is converted and made output
in readable format; it is also saved in coded (non-readable) form
in the vector PART (dimensioned at 11 and in COMMON) from where
it is printed as a title on each page. The command block is
printed and punched.

CODE=+8

The block is for a TMARK statement. No sequence number N is
issued in a TMARK block, since the TMARK is stored in DBFSEG (1)
for output. The title TMARK is printed at the left side of the
page for each TMARK; the BCD value of TMARK (option 65) is
punched.

CODE=-8

The block is for a LEADER statement. The requested amount of
leader length is given in DBFSEG (3) so the postprocessor produces
a length of at 1least this amount. The generated length will
usually be slightly larger than requested since the postprocessor
issues leader codes on a full card of 72 columns. For example,
the statement LEADER/48 was given. The number N of full cards
produced is

N= < 48*%0.14 + 1 > = 7 cards.
The actual leader length L produced is
L =7.2 % 7- 1= 49.4 inches.
The actual leader length is printed in the statement, "49.4

INCHES OF LEADER HERE"; the same amount is punched using the BCD
value at option 64 for the leader code.

3.5-12

[;H:[N] "l POSTPROCESSOR ...forthe computer programmer

3.5.3.2 OUTPUT PROCESSING (cont'd)"

CODE=+9

The block is for a postprocessor warning or error comment block,
and as such, is already in BCD form. The comment is printed but
is not punched.. If the Multiple Printouts (GEOUT3) is used, the
comment is printed only on the Incremental Print. .

CODE=-9

The block 1is for a postprocessor information block; see Section
5.5. The information in the block is used for output purposes,
but the block is neither printed nor punched.

CODE=#10,+11+12

The command block is for a circular interpolation move and is
processed as a motion block as described above. The block is
printed and punched.

CODE=+13

The command block is for a thread. The block is processed
exactly as for a motion block except that subroutine CONTUR is
not called since a feed command need not be generated. The block
is printed and punched.

CODE=+14

The command block is for a multihead turret corrective move. +14
indicates a turret correction is made on head 1 while there is a
combined, normal motion on head 2; -14 is the inverse effect for
the heads. The head with the turret corrective move is processed
as if for a CODE = -3, while the other head is processed as for
a regular motion. The turret corrective moves are printed and
punched but are not summated nor printed on the Absolute Print.
The regular motion is both printed and punched.

CODE=+15

The command block is for a motion which retains its feed in IPM
as the feedrate command. It is processed as a regular motion
block except that subroutine CONTUR is bypassed since there is no
need for generating a feedrate command. The block is both
printed and punched.

3 . 5-13

(;H.‘I[NI "I POSTPROCESSOR ...for the computer programmer

3.5.3.2 OUTPUT PROCESSING (cont'd)

CODE=+16

The command block is for a positioning move. It is processed
essentially the same as for an incremental move except that
subroutine POSIT is called instead of subroutine CONTUR, and
there is no accumulation of increments to produce an Absolute
Print. The block is printed and punched.

CODE=+17

The command block is for a multihead combined motion. This type
block is processed only in GEOUT3; an error is assumed in the
other GEOUT's. The block is processed as a normal motion block
except that frequent tests are made on the head flag HEADGB to
decide the proper disposition of DBFSEG data relative to each
head. For example, when the test is made for possible
suppression of redundant G codes, the postprocessor must know
from which head the G code it is processing has come before it
can legitimately effect a suppression. Since DBFSEG (1 to 20) is
set up the same for each head, the test on the HEADGB flag is the
only means of knowing which head is being processed.

Subroutine CONTUR 1is also bypassed for a CODE of +17 since the
maltihead feedrate has already been predetermined. The command
block is both printed and punched.

CODE=18

The block is for a FINI statement, and signals the postprocessor
to conclude its processing. The punch buffers are emptied, the
total cut and dwell times and tape footage is printed, and a
general wrap-up of the program occurs. The block is neither
printed nor punched.

3.5-14

[;H.:[NI ”l POSTPROCESSOR ...forthe computer programmer

3.5.4 GEOUT1 (SUMMARY PRINTOUT)

The GEOUT1 printout is the fastest and simplest output segment in
the GECENT III postprocessor. It is designed to handle the vast
majority of non-multiaxis, non-multihead machine tools, and is
especially adaptable to positioning machines, lathes, and two-or
three-axis milling machines.

Its print format provides the reader with an easy-to-read summary
of the control data in its tape coded form and an interpretation
of the data in absolute terms. On the left side of a printed
page appear the punched tape image data of each command block.
The sequence number (if any) identifies each command block. The
column headings identify each of the registers utilized by the
particular machine. The feedrate column gives the command value
of the feedrate. Similarly, the spindle speed column gives the
command value.

On the right side of the page are given the absolute values of
the same point. (Actually, the data can be either Absolute Data
or Operator Data; but for convenience, reference is made only to
the Absolute Data.) Feedrates are given in IPM and spindle
speeds in RPM. If the machine has a rotary table, the absolute
data reflects the absolute table location in degrees.

Actually, two types of print are developed in GEOUT1: one for an
incremental system and one for an absolute system.

When the machine tool is of an incremental system, the data
printed on the left side of the page are the incremental values
X, Y, OX z as the case may be. On the right side of the page
are the summated absolute values of these increments.

When the machine tool is of an absolute system, the x, y, z data
are already given in their absolute form; hence, there is no need
for a double representation of these values.

The accumulated cut and dwell times are given at the bottom of
each page, and on the final page the total tape footage is also
given.

See Diagram 3.5.4.1 for a sample printout of GEOUT1.

3.5-15

l;[(:[NI "I POSTPROCESSOR ... for the computer programmer

3.5.4 GEOUT1 (SUMMARY PRINTOUT) (cont'd)

GEOUT1 is selected when option 164 is 1, the standard value.
Since GEOUT1 summarizes all the register data on one page, it is
impossible to apply GEOUT1 for all machine tools, i.e., to
completely represent all the register data for machine tools
which have a large number of registers with large formats. For
example, a three-axis mill with circular interpolation,
programmable spindle, and tool changer would have the registers
N G X Y Z I J K F S T M. Representing all of these
registers plus the Absolute Values X, ¥, Z, F, and S all on one
line across a page would be either impossible or an extremely
tight squeeze. The postprocessor, therefore, makes some
decisions when developing the print layout. First of all, the
postprocessor will attempt to produce all of the registers on one
line. If this is not possible, the postprocessor drops the
absolute value column of spindle speed in RPM. If there still is
not enough room, it drops the feedrate column in IPM. If this
also fails, the postprocessor rejects the option of using GEOUT1,
and uses GEOUT2 after first printing a warning comment to the
user.

These decisions are normally made in subroutine CALCP1 where the
column indices are determined from the REGFOR table.

3.5-16

LT-G" €

(

P38G2 BaTE- 10/06/69 CUTTER LOCATION LISTINGISECTION 1?1), tIME OF DAY= 23MR, 3IMIN,
sas COMMANDS sesscsstanedoostaanpnadansrsnentonovonnslosasasnsnsnsonssnsss CARD NO tNY SEANS CLREg NO
EXAMRLE OF akout 1 RRINTQUT 1 4
MACHIN/GECENTY, 24,0080, 0OPTAR, 132.0009, 2.n060, 1s4.000M0,% 2) 4
1.60n00
LEADER/ 24,0008 2 4 5
FRO™ / 4 5 &
. Ly L2
i UO oi OI
FEDRAY/ a;@eoa: 1PM 5 4 10
SPINDL/ 2t8.0000 6 7 13
YODLNO/ 12,0068, g.060C 7) 14
DS 1s/ 8) 16
X Y z
2,00080n0 4,0000080 0.
CYCLE/ FACE., 2,0000, 3. 6000, 6,8000 . 18 19 18
DS ts/ 14 11 an
R Y z
, 4 8.0000000 &,0000080 0,
ceciles OFF 12 12 23
DS 1%/ 13 13 24
X R R 4
- 4,0000000 4.0n00080 0.
CYCLE/ DEER, 2,0000, 3,0000, 8,00060, 1PM 14 14 26
CYCLE, DRILL, 7,0000, 1,0000, 18,8060 14.¢ 15 28
CYCLE, TaP, 2,0000, 4,0000, 64,0060 15 16 36
CYCLE/ BORF, 40000, s.onon, 0.02600, 1PR 14 Y/ 32
DS s/ 17 18 34
- R, LY 2
. 8.0200000 8.0000080 0
CYCLE/ MILL. 3.0000, 6.0000, n.0160 18 19 3é
cYcLE/ ner 19 2n 34
TRANS,/ 2.6000, 2:0000, . 20 24 49
De 1§/) 21 22 .2
. x L] Y . z
. 9.0008000 ?.0n00080 0.
CYCLE/ TERRU, 64,0000, 7.0008, 8. 0080, 1PM 22 23 44
CYCLE/ OFF . 23 24 44
De ts/ 24 25 48
X Y z
B,0606000 8,0000080 0,
toO0LNO/ 200800, 6,0000 2% 26 58
cYcle’/ OFF 2y 27 5%
DS &/ 28 2% 54
X , Y z
6,0000070 100000080 0
CYCLE/ DEEer, 5,0000 29 29 54
REWIND/ 1,0000 3n 30 58
LEADER/ 240000 31 31 60
FIN? 32 32 6%

sownos END NF SFCTIAON 11! wesond

8T-G°¢

P38s?

DATE~ f0/06769

G.E,

PARTNO BXAMPLF OF GFRUT 1 PRINTOUY

APY 11 10/n4/67

MACHIN/REFENT, 24, 0RTAR,132,27164,1

CLPRNY
LEADER/24
FROM/0,0,0

FEDRAT/2,1pPM

SRINDL /220

TOOLNO/12,5

GO Y0/2,4,0

CYCLE/FAGE,2,3,6
60 TD/R.8,0
EYCLE/DEF
80 T0,4,4,0

CYCLE/DFEP,?2

) PM
C?CLE/DQI'L»7
4
[]

R,1?
W10
CYCLE/TAR, 2,
CYCLE/BNRE, 4
60 TN,R,8,0
CYrLE/MILL,5,6,050%
EYCLF /0RF
TRANS/?,2,0

60 10/9,9,0]
CYOLEZTHRU,6,7.8,1PM
CyrLE/NEF

60 T0/R,.8,0
TONLNDZ2,6

CYPLE/NEF

#0 10/4,10,0
EYCLE/NEEP,5
REWIND /%

LEADFR/24

FIME

n,02,1PR

TIME AF BAYe ?3HR,

JIMIN,

EXAMPLE OF ZEMUT 1 BRINTOUTY

YATHINF

N G ¥ X

EXAMPLF OF GFOUT 1 PRINTOUT
27°'8 INCHES 0OF LFADER HFRF

FROM +000n.d000 «00%0,0N00
LOWEST RANGF THAT SPINNLF SPEFD FALLS

014 80

016 +02.0000 +"4,0n00"
OPTION FEEDRATE MNDE ASSIMED

018 87

0230 +08,0000 +N8, 000N

034 8n «04. 08000 e"a,0nQn

036 a3

nas 81

830 84

0%2 a%

n34 +08.0000 «"80nM0N

av%6 86

n42 an +11.0000 «t1,0n0n

04d4 87

048 80 +10.0000 +10,000"

8%0

054 «BR.0000 +12,009"

056 83

058

sRKRgMas MUSYT gE GIVEN

6T-G° ¢

27.8

INCHES OF LFADER HFRF
N8 END SYAYEMENY LAS QFEN GIVFN BFFMRE THE FIN] STATEMENT
TAPF FOATAGE 8

woo3ENFRAL ELeCT?Ie

24,
7

+0700,0000
IM 1S ASSUMED

«0?,1010

«07.,0000Q
+07.0000
+02.000D
«04,0000
«05.0070

+01.00R0

-0t.0pno

AFTER AN aFNNs QR aRESFT&

TOCTPRACESCOR SECENTe3 ave

w3

n3

n3

12

07

M

30

+N3. 0N

+n3.0n
+n1,00N
+n4. 0N
NEML
«h6° 0N

+02.00

=n&,0n

FelPM

+0N02,

+0006,
+0N086,
+0086,
+0N0R,
+0N10,
+0004,
+0N04,
«0N04,
NLLER
+0Nn02,
«00N08.,
+0008,
+0N0OR,
+00088,
«gnes,
«Qnaa;

SeRPM

«0200N
s020N

+0200
v0200
¥0200
20200
s02an
s020nN
s0200
y020n
0200
s0200
+0200
403900
v0200
s030n
+0200
#0200

GH:[N] "I POSTPROCESSOR ... forthe computer programmer

3.5.4.1 DETAILED DESCRIPTION OF CALCP1

As described in Section 3.5.3.1, subroutine CALCP1 is called from
subroutine GEPRE when GEOUT is in core. The column vectors NIP,
NFP, NPR, and NPT are set up for both the Incremental and
Absolute printouts.

One of the first items that subroutine CAICP1 determines is
whether to produce absolute coordinate data or operator data;
option 172 dictates which to use. If option 172 is zero, the
title heading

ABS-X ABS-Y ABS-7Z ABS-A
is printed; if the option is +1, the title heading

OPR-X OPR-Y OPR-Z OPR-A
is printed. 1If any of the register addresses is unavailable,
i.e., REGSTR(Y) = DBLNKS, that register is deleted from the

title. For example, if the NC machine has only the X and 2
registers, references to Y and A do not appear.

REGFOR (4) = REGFOR(6) = 0
REGSTR(4) = REGSTR (6) = DBLNKS
The title appears as:
N G X Z -===M ABS-X ABS-Z F-IPM S-RPM

Optimum and equal spacing is provided between the register
columns.

A final change to the title is made if the NC machine wutilized
the metric system. If option 138 is +1 (indicating the metric
system), the absolute title reference, F-MPM, for feedrate in
millimeters per minute is used instead of F-IPM.

The derived absolute title is temporarily stored in BCD form in
the vector ABWORD. Later on in the subroutine it is used to form
the permanent complete title that appears on each page.

Section 3.5.2 describes the manner in which the column vectors
NIP, NFP, NPR, and NPT are each determined and set up in
accordance with the given values in the REGFOR table. These
vectors are next extended to include the column format data for
the Absolute Printout.

3.5-21

G[l:[NI "I POSTPROCESSOR ...for the computer programmer

3.5.4.1 DETAILED DESCRIPTION OF CALCP1 (cont'd)

The feedrate in IPM column index is at vector location 25; thus
NPR(25) is set to =103 indicating that the printed value of
feedrate in IPM must show three places to the right of the
decimal point, must drop trailing zeroes, and the decimal point
must be printed. The feedrate in IPM is printed with this large
decimal format so as to embrace very small programmed values.
The other column vectors NPT, NIP, and NFP are also set up for the
feedrate in IPM. NPT and NFP are expanded by one if the metric
system is indicated.

A similar setup for the spindle speed in RPM is also performed on
the column vectors at vector location (26).

Knowing the number of print columns which are to be used and
knowing the number of registers to be printed, the postprocessor
determines and adds the space increment to each element of NIP
and NFP to obtain optimum spacing between each printed column.

At this point subroutine CALCP1 has determined all the
information necessary to print and punch the output. The final
task is to set up the print title as a permanent BCD image. This
is done by using subroutine SETLIN and the vectors NIP and NFP.
The subroutine SETLIN places a right justified BCD word into a
given array; it stores the right-most BCD characters of the given
work into the given array beginning at the given initial position
through the given final position. For example, the

CALL SETLIN (REGSTR(2), 4,4, BCDREG)
stores the BCD character at REGSTR(2) , which is
1 1 1 1 1 G,

into location (4) of the array BCDREG. Actually, the 1location
value 4 derives from the calculation of

NIP(2) + NFP(2) = 3 + 5 =4
3 2

The average is taken in order to place the register title
centrally over the print column.

By this technique the print title for both the Incremental and
Absolute Printouts is set up and permanently stored into the
array BCDREG. A call to subroutine TITLE1 prints the contents of
BCDREG to produce the title.

3.5-22

GHHNI'” POSTPROCESSOR ...for the computer programmer

3.5.4.1 DETAILED DESCRIPTION OF CALCP1 (cont'd)

Section 3.5.3 details the overall general flow that occurs in
GEOUT; therefore, 1little more need be added to that description
since the program flow of GEOUT1 is substantially the same. The
only minor difference is in printing the title (using subroutine
TITLE1) and printing each BCD converted command block BCDIMG
(using subroutine GEPRN1).

3.5.5 GEOUT2 (COMBINED PRINTOUT)

GEOUT2 1is selected when option 164 is set equal to 2, or when
GEOUT1, though called, cannot be used (see Section 3.5.4). The
chief advantage of GEOUT2 is that it presents the Incremental,
Absolute, and Operator data on consecutive lines all in one
combined printout on each page. This makes it especially
attractive for checkout and debugging purposes since the output
data can be easily checked in its various output forms. Next to
GEOUT, it is the fastest processing output sequence and is
especially adaptable to multiaxis processing though it may be
used for any machine tool type except multihead machines. It is
not recommended for positioning machines because the Absolute and
Operator Data Printouts are redundant with the regular printout
and are a waste of computer time.

The print format of GEOUT2 provides in sequential order a
representation of printed output as it exists for the
Incremental, Absolute, and Operator Printouts in that order. The
printed Incremental data is an exact copy (without letter
addresses) of the punched output; decimal points and blanks are
not punched.

Across the top of the page is printed the machine registers title
which is derived from the NC machine's related REGFOR and REGSTR
tables. Each 1line printed is preceded at its left most side by
a title identifying the printout type for that line, as INC for
the Incremental Print, ABS for Absolute, and OPR for Operator's
Printout. These three type lines are printed only for motion
records; for non-motion records only +the INC line is printed
except when the non-motion block contains a spindle speed, in
which case the ABS line is also printed.

The INC 1line 1is the true reflection of what appears on the
control system tape.

The ABS line represents the summated motion values and gives the
feedrate in IPM and spindle speed in RPM. Rotary values are
given in degrees.

3.5-23

c[c[NI "l POSTPROCESSOR ...for the computer programmer

3.5.5 GEOUT2 (COMBINED PRINTOUT) (cont'd)

The OPR line represents the motion data in terms of machine
orientation, i.e., the summated motion values are modified by the
given ORIGIN values.

If a sequence number (usually N) exists, GEOUT2 automatically
makes it a unit increasing number irrespective of the setting of
option 143. This wvalue appears in the INC and OPR lines.
However, the ABS line carries the CL tape record number as its
sequence number, thereby making it easy to correlate each output
line with its source CL tape record.
A sample printout could be as follows.

N G X Y Z F S T M
INC 040 01 2.4 -0.1 1.12 075 28 02 08
ABS 234 13.6 0 -22.6 20 80
OPR 040 01 3.6 -10 -32.6 075 28 02 08

INC ou1 o4 0.4

INC o042 01
INC oas ou 0.8 26
ABS 246 60

The accumulated cut and dwell times are given at the bottom' of
each page, and on the final page the total tape footage is also
given.

See Diagram 3.5.5 for a sample printout of GEOUT2.

Processing of GEOUT2 begins in subroutine CALCP2 in GEINIT where
the column vectors NIP, NFP, NPR, and NPT are determined and set
up per the description of Section 3.5.2. In addition to these
column vectors, the vectors NIPA and NPTA for the Absolute data
are also determined and set up. These vectors are used for the
Operator data also.

3.5-24

GHIN]I" POSTPROCESSOR

3.5.5 GEOUT2 (COMBINED PRINTOUT) (cont'd)

...forthe computer programmer

The methods and techniques used in subroutine CALCP2 are the same
as delineated in Section 3.5.4.1 for subroutine CALCP1 except
that the additional vectors NIPA (initial print position for
Absolute Printout) and NPTA (total number of digits per register)
are developed by modifying the NIP and NPT vector elements for
registers XYZABIJKF and S so as to expand the printout of these
registers. As explained earlier, it is essential to make these
formats broader because the absolute algebraic references will

normally be numerically larger than permitted by the incremental
data format.

Section 3.5.3 details the overall general flow that occurs in
GEOUT; therefore, 1little more need be added to that description
since the program flow of GEOUT2 is substantially the same. The
only minor differences are the following:

(1) The title is printed by subroutine TITLEZ2.

(2) . Each BCD converted command block BCDIMG is printed by
subroutine GEPRN2.

(3) The array ABSVAL carries the Absolute data. while the
array OPRVAL carries the operator data.

(4) The BCDIMG for the Absolute and Operator Printout is
set up using the column vectors NIPA and NPTA.

(5) To print the title INC, ABS, or OPR, the related BCD

equivalent is stored into the parameter IDLINE which then
is printed by subroutine GEPRN2.

(6) The setting up and printing of each command block BCDIMG

for the INC, ABS, and OPR 1lines is done in three
independant looping areas of GEPROZ.

3.5-25

P3AR? DATE~- {0/06/69

6,E, APT 111 10/01/67

PARTNOD EXAMPLE OF GEQUT 2 PRINTOUT
MACRIN/GECENT,2%,0PTAR,132,1,164,?

ELPRNT

CYTTER/D
DRIGIN/L, L,
FRAM/1,1,1
FENRAT/60, 1PM

60 TN/4,5,6

SYAR

80 TN/4,7,8

R0 TA/6,7,42

80 TO/A.T,B

80 TA/A,0,0

&0 vosngo,e

RAPID

60 7T0/20,20,20

a0 TO40,0,0

sSYoR

e1xCIRMLE/Y,3,

LY=L INFZ(POINT/0,2),RIGHY,TANTN, £y
L2aLINF(POINY/1,1),LEFY,TANTD C§
INPIRP/6POINY/0,2,0)
t0/L !

TLRGY,RQRGY/LL
8OFWD/CS
ROFWN/1L2,0N,L1

a0 1t0/0,0,0
LEARER/24

END

FIND

TIMF AF PAYe 23HR,

IGMING

3.5-26

Lg-s°¢

P3Iaa?

ses COMMANDNS stanunstartcadstaostadananunsnsantcondeionnasannsnsnssensne CARND NO

DAYE~ €0/06/69

EXAMRLE OF g&OUY 2 RRINTOUT

MACHIN/BECENY, 23,0080, OPTAB, 132,0000,
2:0000
CUYTER/ 0,
BRIGIN/ 1,0000, 1,080n, 1.0000
FROM /
X Y
1,0006000 1,00000080
EEDRAY/ 60.6000, 1PH
DS s/
X Y
4,00000N00 5.0000000
svop
pe 1§/
. X ., Y
; 6.,0000000 T.pnonpdo
DS 1%/
X , Y
6.0000000 T.ongoebo
DS ts/
» x . v
6.000d000 T.onr0n080
DS ts/
» 1] x 1] y
6.00068000 0.
DS 18/
. x . Y
_ 0. 0,
RAPID
Ds ts/
, X LY
20,000600D 20.0000080
DS ts/
X A
0, 0.
STop R
DS 1S/ Li
. X LY
0 2.0000080
DS 1§/ L
X Y
5,00006000 2,0000080
et 8} = CIRCLE/ 5,8npn 3.n0n0 0.
DS s/ ci{

1.7000,

CUTTER LoCATIAN LISTINGISFCTIAN 111

P/
1,0n0n000

s Z .
6,0n00000

1
8.0n0n0680

pd
12,0n00000
B/
8.0n00000
L1
0
.2
0,
,
?p.0n00000
L2
0.
R
0,
¢
0.
{.nano

164.0000,%

TIME gF DAvs 27%Mn,

INT SEANN

1
?

4
3
L]

13
14

15
16

17

18
23

24

25
25

ISMIN,

CLRFE NN

~n

B2 B

14

18
18

20

22

24

26

28
36

33

34
37

39

491
42

X
5,0317478
5.09392%7
5,1%5973R4
5,2169473
5,277%149
5.3366073
5,394%5945
5,4%10517
5;50515no
5,5585073
5,609089%0
5;6!730ﬂ9
5,70298n3
5.,745925¢
5,7859703
%5,822985¢
5,8%947998
5,887292%
5,9143445
5,9378514
5,9%77218
5,9738727
5,98625%6
5,9748142
5;9995196
6.00033%4
5,9972845
5,99036%8
5,9798010
5,9650408
5,946138
5,92476%9
5,8992073
5.870167¢
5,8377429
5.,80287%¢
5.76329Rp
5;7215609
56770240
5,6298641
5,58026%9
5.5284117
5,474%107
5,4187698
5,34140%2
5,3026392
5,2426999
5,18181%4
5,1202349
5,05818%4

Y
2,0000039%
2.0039186
2.0114955
2,0233045
2,0387005
2,0878239
2,080A005
2,1069420
2,1367483
2.1698977
2.2062678
2,2457155
2,2RBN878
2,3332206
2.3R09387
2.4310572
2,4M33818
2,5%770%4
2.593R296
2,6%15247
2.7105789
2,77073%¢
2,8317988
2,893%084
2,9558289
5,017923%
3.0R01486
3,1420829
3.,2034283
3,2640040
3,323553%
3.3818486
3,4%86549
3,4937796
3,5469800
3.5980896
3,6468202
3,6930729
3,7%68382
3;7773473
3,8150423
3,8495770
3,8808176
3,9086429
3,9329450
3,9%36297
3.,9706187
3,90838403
3,9932491
3,99388087

e @ tm Wm S T wm Sm Sm Pm Vm e E e e e W IE e R tm e R OB e PE ‘B Y TE e W ‘3 e T TS W TE e ' “e s e s tm e

O O0ODOODODO0OO0ODOODOODOODDODDODDOOODDO DOODODOO0OIODODOO0DOO OO

[= R~ R NoR=)
© *m em vm W e

3.5-28

62-G°¢

DS 1§/

DS 1s/

LEADER/
END
FINT

L

24,0000

4,9959¢0%2
4,933847%9
4,871639a
4,810¢3%5
4,74936%4
4,6%95650
4,6309704
4,5738048
4,51829%%
4,4646519
4,4136844
4,384110¢

X
2.2t37%pr3

X
0,

4,0004946
3,9982970
3.99223¢7
3,9823191
3,968%977
3,9511209
3,92995%5
3,9051837
3.8769041
3,84522313
3,8102653
3.7717798

Y
2,0n00080

Y

segnna END OF SECTIAN 111 wnsons

DODODO0ODOODODOLDDODOCOO

> S Tm tem T e te Tw % Sw fm Sw

o

24

27

28
29

In

44

46

49
56

53

5SvGENEaAL ELECTRIC PORTPROCFSROR BECENT«3 wse
L]

MACRINF PAGF %
EXAMPLE QF REOUT 2 PRINTOUY
N 6 b4 ¥ 7 A t J K F
EXAMPLE OF GFQONT 2 PRINTAPT

INE net 17

+0001, +0001, #0001;
ABE +000%, +0801 #0001,
L1 082 «0000; +0000° #0000,

N® SRINDLE SYATEMENT HQS AgEN GIVEN RRIAR TO THE FIRST MOTION REQUEST

rNE 083 01 <03, s04, +05,
ABY 014 +0004, +000%, #0006, 000,
PR nes N1 +0003; w0004, #0008, +00°
INE 084 04
ABS nLé +»0004, +0009, #0006, 4000,
ARR ne4 04 +0003; +0004, '1LEN +00)
INE 0es 01 «02, +02, +02,
ABg N1 +0006, +0007, #0008, «001,
SRR nes 01 +000%, +00048, +»0007; 00,
LT 0es 01) . 404, ‘
(114 020 .BGOQ! ‘000’: #0012, +000,
LLT nes 0L +000%, <0004, #0011, 00
tNE 087 01 . b4, o
ABS n22 +0006; «0807, 20008, +800,
8RR rey 01 +0005; +0006, #0007, +00,
INE ces N1 . =07, N .
AB% n24 +0006, +0000, 20000, +800,
1]] nes 0t 0005, -000%, 20001, 00
INE 009 01 «06,]
'Y:1] 026 +0000, +0000, #0000, NTLM
8PR nes 61 =2001%, 0001, 0001, «00,
NG 010 10 +20} w20, +20,
ABE 030 +0020, +0020, #0028, «n00,
arR 010 10 +00%9, +0019, #0019, «00)
INE 011 10 =20, =20, s30, ,
ABS n32 +0000, +0000, 20000, 800,
apg 011 10 -0001, <0n0t, «00DL, «00,
INE 012 04 .
ABS 034 «0000, +0000, r0000, +A00,
(1) ny2 04 0001 000t 20001, «00

3.5-30

INE
ABSB
aPR

INeg
ABS
aPR

INE
ABS
8RR

INE
ABS
8PR

INe
ABS
app

INE
ABS
8RR

INE
ABS
8RR

'NE
ABS
L]

1°0€-9°¢

*asGFNERAL
MarRINF 23,
EXAMPLE OF BENUT 2 PRINTOQUY
N G ¥ ¥
03 01 +02,
037 +0000; 0002,
ns 01 <0001, +0001
014 01 405, .
n3o +0005, +0002,
nt4 0L +0004, +0001
ns LR +01, s01,
042 +«D006, +0003,
nts 03 +«0005, 0002,
016 83 =01, *01,
042 +0005, +0804,
n1é 03 +0004, +«0803,
017 83 00,6359 =00,2282
n42 +0004,34414 +008%,7718
017 83 +0003;3441 +0007.7718
018 81 =02,1504 01,7748
N44 +0002,2137 0002,
LPY.) 01 +0001,2137 snept,
019 01 =02,2137 =92,
048 +0900, +0080,
neo 01 -0001, =000,
24,00 INCHES OF LEADFR WERF
REQUESTYED MISCELLANEOUS FUNETIGN CODE IS NOYT AVAILABLE AN THIS MACHINE
020 04
0s0 +0000, +0000,
020 ne ~0001, =000,
CUT TIME 2.04 MIN; PWELL TIME 0, HIN,

TAPE FOOYAGE

ELECTRIC PDSTPROACFSSOR BECENTGd sse

»0000,
zoQphy,

«000,
0N,

+000,
«00,

+000,
+00,

0800;
+00,

oﬂOU:
00,

«n0n;
«00,

+000,

«00,

+000,
af0;

0N,
01,
0¢,

oo,

0t.
0t,

0n,
01,
01,

850, 1PM

'L{M 1PM

[;H.:[NI ”I POSTPROCESSOR ...forthe computer programmer

3.5.6 GEOUT3 (MULTIPLE PRINTOUT-MULTIHEAD)

GEOUT3 is called when option 164 is set to 3. It is wused only
for multihead machines since it is the only print sequence
capable of handling the many registers common to this type of NC
machine. GEOUT3 produces in accordance with the setting of
option 17 all or any one of the Incremental, Absolute, or
Operator Printouts. Each output is complete, i.e., all of the
Incremental is printed, then all of the Absolute, and then the
Operator. Processing time is greatest when all three outputs are
requested.

Across the top of the page is printed the machine register's
title which is derived from the NC machine's related REGFOR and
REGSTR tables. Each page is identified with the identifying
title of INCREMENTAL, ABSOLUTE, or OPERATOR.

The Incremental data is the true reflection of what appears on
the output tape (without letter addresses but with decimal point
for clarity).

The Absolute data represents the summated motion values, and
gives the feedrate in IPM and spindle speed in RPM. Rotary
values are given in degrees.

The Operator data represents the motion data in terms of machine
orientation, i.e., the summated motion values are modified by the
given ORIGIN values.

With multihead machines the register title printed at the top of
each page consists of at least two 1lines of title, each 1line
giving the registers for each head. The Head 1 title is always
given first followed by the Head 2 title, and so on.

Preceding each line of output on all three printout types is the
title HEAD1 or HEAD2 to identify the processing head. A sample
case might be: ~

F S T . M

N G X Z
H U W E
HEAD 1 023 01 2.4 3.6 280 21 01 08
HEAD 2 10 12.6 0.2 500 21

The accumulated cut and dwell times are given at the bottom of
each page, and on the final page the total tape footage is also
given.

3.5-31

G[c[NI I" POSTPROCESSOR ...for the computer programmer

3.5.6 GEOUT3 (MULTIPLE PRINTOUT - MULTIHEAD) (cont'd)

See Diagram 3.5.6 for a sample printout of GEOUT3 with and
without multihead processing.

Ooption 17 is used to select any one or combination of the three
print types. The standard setting of 111 produces all three
printouts. See Part Programmer's Manual option 17 for a full
description of its use.

The processing sequence of GEOUT3 is considerably more complex
than the other GEOUT's, however, the program flow is analagous.
Basic initialization begins in GEOUT when subroutine GEPRE calls
subroutine CAILCP3 where the column vectors are set up per the
description of Section 3.5.2. In addition to these column
vectors, the vectors NIPA and NPTA for the Absolute data are also
determined and set up. These vectors are used for the Operator
data also.

The methods and techniques used in subroutine CALCP3 are the same
as delineated in Section 3.5.4.1 for subroutine CALCP1 except
that the additional vectors NIPA (initial print position for
Absolute Printout) and NPTA (total number of digits per register)
are developed by modifying the NIP and NPT vector elements for
registers XYZABIJKF and S so as to expand the printout format of
these registers. As explained earlier, it is essential to make
these formats broader because the absolute algebraic references
will normally be numeric ally larger than permitted by the
incremental data format.

With multihead processing designated, the column vectors
mentioned above are used for head 1, and an analogous set of
vectors are used for head 2. These are the column vectors NIP2,
NFP2, NPR2, NPT2, NIPA2, and NPTA2.

All of these vectors are determined by subroutine CALCP3 through
a double call from subroutine GEPRE. The calling sequence of
subroutine CALCP3 includes the input tables REGSTR and REGFOR for
head 1, and GMWORD and GMFORM for head 2. See Section 2.4.5 on
multihead processing for information on how these tables are
derived. The output items in the calling sequence of subroutine
CALCP3 are the column vectors which are set up in accordance with
the input tables.

Note also that the array BCDRG2 is constructed for the head 2
page title. See Section 2.4.5.

3.5-32

[;[[:[NI "I POSTPROCESSOR ...for the computer programmer

3.5.6 GEOUT3 (MULTIPLE PRINTOUT - MULTIHEAD) (cont!d)

Section 3.5.3 details the overall general flow that occurs in
GEOUT as related to the processing and treatment of each command
block, and this description holds well for GEOUT3.

The major problem when processing a multihead sequence is knowing
for which head the command block should be made output, and this
is especially true for a merged block, i.e., a combined motion of
the heads.

As explained in Section 2.4.5 for multihead processing, head 1
data are stored on TAPES2 and head 2 data are stored on TAPES3.
Link GEMULT then overlays all of the postprocessor except for
overlay GEMON. GEMULT now becomes the main processing element in
core where the command data of each head is read from its
respective tape and either merged or made separate output. 1In
either event, the command data is stored not in DBFSEG, but in
GMHBUF, which is dimensioned at 40, the first 20 cells for head
1 and the next 20 for head 2. GEMULT passes on to GEOUT3 the
setup command block buffer GMHBUF for output. The buffer can be
for three possible conditions:

(1) For head 1 only - GMHBUF(21) to (40) is DMBITS;
(2) For head 2 only - GMHBUF(1) to (20) is DMBITS;
(3) Merged for heads 1 and 2 - GMHBUF (1) to (40) is not DMBITS.

Since GEOUT3 is written in terms of DBFSEG, the data in GMHBUF is
first restored into DBFSEG before calling subroutine GEPRO3.
Thus, subroutine GEOUT first scans GMHBUF to determine which of
the above three conditions exists, then it sets the flags HEAD,
HEAD1, HEAD2, and NOW accordingly, stores that portion of GMHBUF
into DBFSEG, and calls subroutine GEPRO3 to output the block. A
non-zero setting of flags HEAD1 and HEADZ2 indicates current
selection of that head; a non-zero setting of flag NOW directs
GEOUT to conclude the command block with an EOB. Whichever head
has been selected for output, the COMMON flag HEAD is set to the
value 1 or 2 to designate which head is currently operative. The
flags are set according to these conditions:

3.5-33

‘;H;[NI "I POSTPROCESSOR ... for the computer programmer

3.5.6 GEOUT3 (MULTIPLE PRINTOUT - MULTIHEAD (cont'd)

(1 Head 1 data only - HEAD1 = 1, HEAD2 = 0, NOW = 1; DBFSEG
is set up with GMHBUF(1) through (20).

(2) Head 2 data only - HEAD1 = 0, HEAD2 = 1, NOW = 1; DBFSEG
is set up with GMHBUF(21) through (40).

(3) If GMHBUF is for a merged block, then HEAD1 = 1 and HEAD
2 = 1. DBFSEG is first set up with GMHBUF(1) through

(30), NOW = 0, and DBFSEG is made output. Afterwards,
DBFSEG is again set up with GMHBUF (21) through (40), and
NOW = 1, and DBFSEG is made output.

When each head's data is made output, subroutine GEOUT sets up
the proper REGFOR and REGSTR tables for that head. The buffer
GMWORD for head 2 corresponds to REGSTR for head 1, andg,
likewise, GMFORM corresponds to REGFOR.

Multihead output processing of the command block DBFSEG follows
the normal flow through GEOUT3 as described above in Section
3.5.6 for non-multihead machines except that at certain key
junctions a test is made on the HEADGB flag to branch accordingly
for the sequence for that head. This wusually is done, for
example, in setting up the Absolute data vectors DABVAL for head
1, or ABSVL2 for head 2; and similarly, for the Operator data
vectors OPRVAL and OPRVIZ.

The HEADGB flag is also tested when suppressing redundancies,
i.e., redundant G, F, and S codes are suppressed by head only.

3.5-34

SE-G° €

A3u6S

35

DATE~ 10/13/760 3.5, APT 111 10/01747 TIM: 9% DAY= 174K,

PARTND EXAMPLE OF LEOUT & aRINTSUT
MAGHIN/GECENT 51 ,0%T42, 1064, 3
T3 CHANGE O»TI0ONLEG
CLPRNT
COMRIN/?
SELECT/HED, L
nr/1
FROM/0,0,0
TOLER/0,000%
LEADER/24
FEDRAT/LN, 14
TMARK/1
TURRET/2,3,2)2)FRO. T $% N M=y 2uE WILL BE AVAILABLE FO® TURRET
INSERT NO2CGQO6HIM2-7
CONLNTZON
SPINDL/100,¢ P
G0 10/3,4,0
GO T0/20:4,
SPIMDL/170,"PM,CeLW, AN ,&,2
G0 T0/17,6,"
TURKET/4,5,,8,FRUNT $% TURRET CHANGE
FEOVAT/40
GO T0/10.,410,"
SPIMDL/ZQFF
SELECT/HED,? v
opP/2
FROM/0,0,9
SPINDL /KO RPM)RANGE , 1
TURFRET /2,4, 4,48

GO Tn/10,8,! $+ GEARS SHIFT up

GO T0/12,10,n +% GEARS SHIFT DO
RAPID

G0 TO/12,12.n

&APID

RO T0/18,14,10 +5 GEARS STAY [N RAPID

G0 T0/2p,20,n
GO Y0/22,24,n

n0 T0/74,24,n

GO T0/9,9,n

GO T0/10,11,"
FEDRAT/0,24 1Pk % IPR NOT MANDATORY
G0 T0/z10,20,1
SPINDLZOFF

50 T0/5,%.0

P /3

REWINDNZ]

FIN]

qM]M.

))

A3REZ DATE= 10/13/69 CUTTe R LusaTt?d L ISTINGOSECTINN 1T)y TiME OF maY= 17.90, IMIN,
son COMMANDS Dost8s00sattiasrliaatacadsopidpioteidledadeadoduissssiosnssy CAR v MU INT SED D riL KFC NN
EXAMPLE OF GEOUY 3 PRINTQUT 1 P
MACHIN/GECENT, 51,3000, OCPTAH, 144,6000, 31,0000 '2 4
COMRIN/ 2.0000 ¢ b
SELECT/ HEL o 1,C000 5 8
np/ 11,0000 [10
FROM 7/ 11 7 12
X % 7
0y vy Ny
oUTTAL Y/ 00,6005, 0,000%, BoRe Y 5 8 14
INTOLZ g, : 0, : N, po] 8 15
LEADER/ 24,0000 6 9 17
FEDRAT/ 10,0000, 1PM 7 10 19
TMARK/ 1,0000 8 11 21
TURRET/ 22,0000 3,0000: 2400010 2,0007s FROMT 9 12 23
NOOOGO6HIM28% 10 13 25
CooLNT/ oN . 12 14 27
SPINNL/ 100,0000 RPM 13 15 29
DS 1S/ 14 16 31
X Y z
340000020 44000000 0.
DS 1S/ 17 17 33
X Y b4
29.0000020 440000001 0
SPINDL/Z 170,0000, RPM, CCLW, rANGE, 2,0700 23 18 35
DS I1s7/ 24 19 37
X Y 7
170000000 ragannnnn [
TURRET/ 4,0000, 5,00035, B.DiiN0, 4,000, FRONT 25 20 39
FEDRAT/ 40,0000 26 21 41
DS 1S/ 22 43
X Y 4
12,000000¢C 1r,00000010 N, i
SPINDL/ OFF : 23 45
SELECT/ HEDS 2,0000 24 47
oP/ 2.0000 25 49
FROM / 26 51
X Y y4
IR}) 0
SPINDL/ 60,0000, RPM, RANGE, 1,0000 27 53
TURRETY/ 2,0000, 4,0000, 3, 0000, 5,000 28 .55
DS IS/ $0 29 57
X Y z
17,00020C0 0000009 0,
DS 1S/ 31 3o 59
X Y l
12,.000C023° 10000000 D

3.5-36

LE-G°¢€

RAPLD

DS

ps

ps

DS

FEDRAT, .

18/

IS/

1S/

1S/

1S/

1S/

DS 18/

SPINDL/
DS 1S/

oP/

REWIND/
FINT

0,20000

3,8000
1,0000

X
12.00000300

X
14,0009030

X
20,0000030

X
22,0000030

X
24,000C090

X
9430020929

X
10.00000092
1PR

X
10,00006032

X
5.,000203¢C

A
AR H UL

Y
1&:. (;nnqunn
¥
20 oi0napnn
Y
24400000600

Y
240000007

Y
g .UGD"'Oﬂ'\

Y
12.0000800

¥
2, u0nannn

Y
= 0000nH0N

spdnan F I OF SECTION []] seasse

Ne

N

1IN

0

$4
35

R,

41

43

610

66
68

69
77

83
84

KL

37

38

39

40
41

Y]
45
46

65
67

69

71

73

75

77

79
81

87
89
91

#ewnbEnFRAL ELrTTRIC PNSTPROCESTVR GEME T8 #as
#oe INCREMENTAL #oe

MAC-TRE 51, SAVYPLE MULTIWEAD MAUH]WE
EXAMPLE OF GEQUT 3 Pult-T0uT

N G X V4 1 K F 5 7 M
N G U W ~ J S S T M
EXAMPLE OF GFOUT 3 PRINTOUT ,
HEAD 1
FROM +00000, +C0000,
24,00 INCHES OF LEADER HERE
TMARK
HEAD 1
623 04 23
NOOOGO6HIM2AE
HEAD 1
029 04 08
LOWEST RANGE THAY SPINDLE SPEFD FALLS IN IS asSUED
HFEAD 1
n2e9 04 a9 e3
HEAD 1
031 04 +000.05 41
HEAD 1
n31 01 +003, +0C4, nn2o,
HEAD 1
n33 10 017, 059,
RANGE REQUESTED IS NOT AVAILARLE, USE HI.HEST
WARNING -~ SPINDLE DIRECTION HWAS CHANGED
HEAD 1
035 24 14 ce
HEAD 1
n37 01 -003, «C02, w024,
HEAD 1
039 J4 45
HFEAD 1
£39 21 006, -006, n017,
HEAD 1
043 g1 =007, +004, 05,

3.5-38

6€-G°¢

HEAD

HEAD

FROM

HEAD

HEAD

HEAD

HEAD

HEAD

-HEAD

N

045

053

055

ns7

ns7

n59

063

HEAD

HEAD

HEAD

HEAD

HEAD

HEAD

HFEAD

HEAD

067

069

671

073

075

n77

081

083

N

N3

G
G

N4

04

04

04

1C

1

01

01

c1

01

0l

10

01

01

EXAMPLE OF Ge0UT 3 Py Tuinl

X
U

+00000,

+«000,05
«010,

+002,

+506,
+«002,
+002,
+002,
=015,

+001,

sawbELERAL &Lr STRIC POSTPROCESZUR

MAC.: ' F

L
W

+00000,

0005,

+002,

+002,

+002,

+006,

+004,

«015,

+0062,

+009,

(

59

i
W

s JHNCREMENTAL w#s

SavPLE MULTIHEAD MACHINVE

K
J

004,

4
E

1312,

n14g,

n380,

240,

“061.

nned,

n2un,

1189,

2179,

”013,

SECE T3 #aw

s

0>

Ve

45

05

B aHERERAL ELnTTRIG PNSTPROCESSIR GECE! [=3 #e
s ITNCREMENTAL ##s
MAC, Tt 81, Sa4PLE MULTIHEAD M2UH]VE
EXAMPLE OF GEOUT 3 PInTOHT

N G X z 1 K F S
N i u W - J (4 S
HEAD 2
085 12 -¢05, =14, S0,
HFEAD 2
nee 24

NO END STATEMENT HAS BEEN GIVEN EEFORE Trr FINT STATLYENT

CUT TIME 6.10 MIN, DRELL TIMe 0,02M15,
TAPE FOOTAGE 5

3.5-40

iv-6°¢€

#eaLGENERAL ELeSTRIC PNSTPRNOCESSUR GECEHT-3 #ae

wne AHSOLUTE ##s
MAC. TiE 51, SavPLE AULTIHEAD MACUH[NE
EXAMPLE OF SEOUT 3 PrywTiuld

N e X Z ! K b
N G Y W i J E
EXAMPLE OF GFOUT 3 PRINTOUT %
HEAD 1
FROM +00000, +09000,
24 INCHES OF LEADFR HFRE
TMARK
HEAD
023 04 «00000, +00C00,
NOODGOAHIMZ2A®
HEAD 1
- 029 04 +00000, *00000,
HEAD 1
029 04 +00000, +00000,
HEAD 1
031 p4 +00900,05
HEAD 1
031 01 +00003, +00004, paroye,
HEAD 1
033 10 +00020, +000C4, crnnga,
HEAD 1
035 04 +000D20, +COgn4,
HEAD 1 ,
n37 01 +000L7, +0N006, ganoLr,
HEAD 1
039 04 00017, +00006,
HEAD 1
039 01 00017, +00006, ornoyn,
HEAD 1
nag 91 +00040, +i0C10, nnnner,
HEAD 1
045 J4 eDQOL0, +00010,

100,0

150,0

28

o8

03

41

0e

45

05

HEAD
FROM
HAEAD

HEAD

HEAD
HEAD
HEAD
HEAD
HEAD
HEAD
HEAD

HEAD

053

055

057

057

059

n63

067

069

071

073

n7%

077

081

ngl

Ny

N

~e

N4

a4

04

10

a1

a1

01

01

01

21

01

21

04

EXAMPLE OF
X
U

+000060,

+00900,

+0CO000,

«+009000,05

+00010,

+00012,

+00012,

«00018,

«N0020,

«00022,

+00024,

+00009,

+00010,

+n0210,

+00010,

)

ehe=TRIC PASTPROACES~IR AECE' T3 #us
wne ABSOLUTE wsev

BeniENERAY

MAC INE 51
SEQUT 3 PruTOUT

Z
w
*QQCUO.

+00000,

+00C00,

+(G0008,

+00010,

+70012,

+50C014,

+N9220,

+00024,

+00024,

«00009,

+00011,

+00020,

+00020,

1

B

unpng,

SavPLE MULTIHEAY MLCH]NE

K
J

nenpoa,

k S . T M

E S T M

0¢0,0 04

24

45

L uranen,

0nnpan,

01152,

unegb?,

09n4n,

orno4n,

onnnan,

pornen,

00n04u,

nnang2,

05

30 5—42

€y-G°¢

N G
N 6

HEAD 2
085% 1¢

HEAD 2
089 04

CUT TIME

TAPE FOOTAGE

#esGENERAL ELxoTRIC POSTPRACESSOR GECEVNTAJ #se
sue ARSOLUTE ses
MACH TIKE 51, SetPLE MULTIHEAD MACHINE

EXAMPLE OF SEOUT 3 PriINTOUT

X
U

+00005,

+00005,

6.10 MIN,
5

Z I K 2 ' S
W - J 3 5
+00006, pNG012,
«00006,
DWELL TIMe 0,02M[N,

-~

30

)

#otbLENERAL ELECTRIC POSTPROCESSNR GECENT=3 #ed

MAC-INE 51,
EXAMPLE OF GEOUT 3 Pn1nTou)

N G X Z
N G U W H
EXAMPLE OF GEQUT 3 PRINTOUT
HEAD 1
FROM +00000, +00000,
24 INCHES OF LEADER HERFE
TMARK
HEAD 1
023 04
NOOOGO6HIM285
HEAD 1
029 04
HEAD 1
nz2e D4
HEAD 1
031 04 +00000,05
HEAD 1
031 01 +00003, +«00004,
HEAD 1
033 10 +00020, +0G0004,
HEAD 1
035 04
HEAD 1
037 01 +00017, +00006,
HEAD 1
039 04
HEAD 1
039 c1 «0C011, -po0000,
HEAD 1
043 01 +00004, +30C04,
HEAD i
nas 04

“sn NPERATOR ##a
Sa'PLE MULTIHEAD MACH]NE

K 4
J 13
]

onno2a,

crnns9,

unno2e,

orrn12,

0rnose,

T M
S T M
23
o8
09 03
41
114 04
45
05

3.5-44

Sy-6°¢€

HEAD
FROM
HEAD
HEAD
HEAD
HEAD
HEAD
HEAD
HEAD
HEAD
HEAD
HEAD
HEAD
HEAD

HEAD

HEAD

2 Z

053

055

057

057

059

063

067

069

071

073

075

077

081

083

DD

04

04

04

10

01

01

01

ot

01

01

10

01

B

né

EXAMPLE OF GEOUY

X
U

‘00000-

«00000,05

+00010,

«00012,

+00012,

+00018,

+0QN20,

«0Q0n22,

+00024,

+00009,

«000%0,

«00010,

MACH TIWE
2 PRIRTONT

4
3

&00000|

+00008,
+000190,
+C0012,
+00014,
+00020,
+00024,
+00024,
«00009,
«00011,

+00020,

(

51,

!

=

nneon,

«
J

nono4,

X X2

F
E

0nn312,

onotet,

0nn3en,

001240,

onnpes,

onnose9,

097200,

¢nules,

gonri79,

000013,

sesLENERAL ELECTRIC POSTRPROCESSOR GECENT=3 wee
sue QPERATOK
SavPLE MULTIHEAD MACH[LE

S T
[Y
05

24

04

45

05

wueGENEKAL ELESTRIC POSTPRACESSNR GECE~T-3 #w#

wes OPERATNOFR wes
MACrH IKE %1, Sa“PLE MULTIHEAD MACH]MNE
EXAMPLE OF GEOUT 3 PrINTGUT

N G X z 1 K F
N G 1 W “ J t
HEAD 2
p8s 10 +00005, «00006, neonose,
HEAD 2
089 04
CUT TIME 6.10 MIN, DWELL TIMF 0,02M]N,
TAPE FOOTAGE 5

30

3.5-46

[;[[:[NI ”I POSTPROCESSOR ...forthe computer programmer

3.5.7 GEOUT4 (MULTIPLE PRINTOUT - NON-MULTIHEAD)

GEOUTY4 is called when option 164 is set to 4. The multiple
printout of GEOUT4 was formerly the standard printout of the
GECENT II postprocessor. Like GEOUT3, it yields the separate
production of all or any one of the Incremental, Absolute, or
Operator's Printout - as selected by the setting of option 17.
GEOUT4 may be used with all types of NC machines except multihead
machines which must use GEOUT3.

Processing for GEOUT4 (non-multihead machines) deviates only
slightly from the general description found in Section 3.5.3.
These differences are as follows:

(1N The register title is printed by subroutine TITLE3.

(2) Each BCD converted command block BCDIMG is printed by
subroutine GEPRN3.

(3) The array DABVAL carries the Absolute data while the array
ORPVAL carries the Operator data.

(4) The BCDIMG for the Absolute and Operator Printout is set
up using the column vectors NIPA and NPTA.

(5) The setting up and printing of each command block BCDIMG
for each of three printout types is done in three
independent looping areas.

(6) After each command block of Incremental Printout is
processed and made output, the Absolute and Operator data,
if called by option 17, are processed for output and
written on a tape by using subroutine GMWRIT. The
Absolute output is written on TAPES1, while the Operator
output is written on TAPES4.

(7) Subroutine PAGE prints the page number.

(8) Subroutine TIMES prints the total cut and dwell times and
tape footage at the end of each printout.

3.5-47

“H:[NI "l POSTPROCESSOR ...for the computer programmer

3.5.

GEOUTY4 (MULTIPLE PRINTOUT - NON-MULTIHEAD) (cont'd)

(9)

On a FINI subroutine ABSOPR is called to output the
Absolute and Operator Printout. This is accomplished by
rewinding TAPES1 and TAPES4, and then opening them for
reading. TAPES1 is first processed for the Absolute
Printout by reading a block of data using subroutine
GMREAD, and printing it out by calling subroutine GEPRN3.
Subroutine TITLE3 is called for each new page. TAPES4 is
similarly processed for the Operator Printout.

See Diagram 3.5.7 for sample printout of GEOUTH.

3. 5—48

67-G°¢

TIME "F RBAve 923HR,

P3IR8? NATEs 10/06/69 BeFL ARPT 111 197017467
1 PARTND BXAMFLF AF GEQUT 4 PRINTALT
2 MARHIN/REFENT,27,PPTAR, V64,4
1 3 T CHAMGE DPTIANS
3 CLPRMY
4 T ER/N . NORS
5 LEADFR/24
4 FENRAT /10, 1P™
7 TMARK /1
8 TURRET/2,3,2,2,FRONT §% NO M<CODT WILL HF AVAILARLE FOR TURRFT
9 INSERT NOPACOAWIM?AST
1N FRAM/0,0,0
11 ranLNT /oM
12 SPINPL/$00,RPM
13 fp TH/%,4,0
14 PPRINTY EXAMPLE OF A SEGMENYATION DUE Tn &
15 PPRINT PATH WNICHW IS GREATER THAN THE mpAxIMUM NERARTURF
16 50 16,20,4,0
17 PRFEUN/BR
18 AR/AN
19 CONLMT/OFF
an operop
21 SPINDL/%70,R M, CELW,RANGF,?
2?7 &0 10/17,6,08
23 TUPRFT/4,5,8,8,FRONY §% TUPRFY CHANGF
24 EENRAT /4N
25 gTAp
28 PPRINT EYAMPLE OF RAPID TRAVFRSE SHMIFTINGA
27 RAPID
a8 n0 T0/10,8,0 $% GFARS SWIFT yr
29 60 t0/12,10,0 §% REARS SHIFT NOWN
3n RAPIP
31 60 TO/12,12,0
32 RAPIN
33 f0 Th/18,14,0 $% REARS STay IN RARLD
34 SPINPL,/BNONES SPINDLE SPFEM T0ON L ARGE
35 80 10/20,20,0
34 R0 TN/22,24,0
37 50 TO/24,24,N
38 AUYFUNZgQ
39 AUXEUNZ3
40 60 T0/9,9,0
41 PPRINT BXAMPLF AF THRFADING
42 PITCH /10
a3 COUPLE/NN §% FOUPLE ENCODFR
44 SPYNNL/85,RANGF, 1
45 NELAY/ZLD
46 THRFAN/TUAN
47 &0 T0/740,1t,0
4R NELAY/?,REV
49 CAUPLFE/NEF

42MIN,

(

PPRINTY

EYAMPLE OF AN SFM SEQUENCF
FEMRAT/0,2,1PR %8 IPR NAT MANNAYQRY
SPYNDL 7$00,SFM,RADTUS,YCO0PD ,MAXRPM 90, MAXTPM, 15
80 ThsY0,20,0
SPYNNL/0aFF
n0 TO/8,4,N
RE-IMD/L
Fivl

3.5-50

T6-G6° ¢

P3ag> DATE= 10/04a/49

X X) (‘QMMANT’; ST R R EEIEE AR X RS P EE ETR RIE R R L IR SR R g A R XX XX

EXAMRLE QF sENUY
MACHIN/GFCFENT,
auTYOL/ a.nnNs,

INvoL/ 0, '
LEADER/ 24,0000
FEDRAY/ 10,0000,

TMARK / 1,6000
YURREY/ 2,0000,

NEQOGOAHLIM2RS

FROM /

COOLNT/ oN
SPTNDL/ 1000900,
DS 1§/

(

4 PRINTQUT

EXAMPLE OF A SEGMENTATIOM DUF YO A
PATH WHICH 1S SRFATER TMAN THE MAX'MIM DFPARTURE

DS 1§/

PREFUN/ 88,0000

AR/ oN
COOLNY/ OFF
NPSTOP

SPINNL/ 170870300,

DS s/

TURREY/ 4.4000,
FEDRAY/ 48.0000
STOP

X Y
26.,0000000 4,0000000
RPM, CCLWs, RANBE, 2.0hpn
X

Y
17,0000000 . 6,0000000
5.000", A.0000. 8.0000,

FXAMPLE OF RAP!D TRAVERS® SHT'ETING

RAPID
DS 18/

DS ts/

RAPID
DS 1S/

RAPID
DS s/

. x . Y
10,00000°0 8,0000000
X

y
12,0M000"0 t0,0n00000

X

Y
12,00000°0 12.0000000

X Y
18,0000070 14,pn0n0f0

CUTYER (OFATIAN LISTING/SFOTIAN

22,0000, OFTAR, 144.,0000, 4,700
g,0n0%, n.nans
0, . n,
1PM
3,000, ".3000. Z;Oﬂoﬂ, FRANT
X Y Z
0, 0, 0,
RPM
X Y . Z
3.cno00nd 4,0n00000 0,
A
0.
R -
0,
FRANT
. b4
0.
Z
0,
, <L
0,
. z
0.

Cagh wnp

0N YT

-3

i8
19
en
22
23
24

28
27
28

29
30

31

32
3z

34
35

TIME OF DAY= 2342,

SEINN

DD B NPT A Ay s

-

11
12
13

14

13
16

17
18
19
2n
21
22

29

3n
31

3?
33

24
23
25

27
29
34

33
38
37
39
41
43

4%
49
51

53
5%

5y

59
61

6%

(

42M1IN,

CLSFC NN

SPINNL/8000,0800

pe 1s/
. X Y
0,0Rr000" -
oS 15/ 0no ?0,0n000800
22 : Y
0 15/ 2.00000%0 24 gnpnplo
X Y
AUXFUN/ 99" 0000 24,0000070 24,0000000
AUXFUN/ 3 000
pDs s/
Q° X Y
0000000 3.7
EXAMPLE OF THREADING unoonne
PITCWM/ 19,0000
courPLE/ own
SPINDL/ 8%.0000, RANGE)
g n npn
DELAY/ 1020900' ' Faom0
THREAD, TYURW™
bs 1s/
» x v
, ~10n.p0000"0 117
DELAY/ 2.0000, REV 1.0n00000
COUPLE/ 0FF
FXAMPLE OF AN SEM SEQUFNFE
FEDRAT/ 0.2000, 1PR
SPINDL/ 100;0000; SFM, RAMIU'S, YCO0RD, MAXRRM,
13,0000 ' '
DS 1§/
‘o X ¥
SPINDL/ OFF 0+0000070 70+0n0n0N0
LS 1s/
5 rx Y
REWIND/ ¢ 000 5506800000 6,0r0N000
FIN

seavau END

2
0.
2
nl
z
.
¢
n)
ol
0.

$0.,0n0N, MAXIPM,%

AE SECYIAN [1] wsneees

37
38

41

43

45
47

52

5%
55
56
%7
SR
59
6P

61
6?
65
66
67

68

69
77

8%
84

34
35

346

37

SR

i3
4n

41
42
43
44
45
45
47

4R
43
Sh
51
52

53

54
55

56
57

67
69

71

73

75
77
79

81
83

87
89
94
93

95
97
99
1014
10%

105

111
113

3.5-52

€6-6°¢

Rt ENFRAL ELERT® %E DRRTAIRFPACCIOR QErEY Ted &
C=

LXx Erp ‘YA. #yu
MACMINE 22
EYAMPLE OF "ENUT 4 PRINTOUT
N d X 7 1 « F [Y ¥ W
EXAMPLE OF GEQUT 4 pRInTAOYT
24,00 INCHES NF LEADFR MFRF
TMARK
n1s 04 +0,3 21
MBNOGOSHIMPRS
FROM +0C0 +900,
n23 n4 ng
LAWEST RANGF TWAT SPINDLE SPEKD KALLS 1M 1S ASSUMFD
n2s3 na 10 ng
02s% 04 +0,05
n2s 04 43
n2% 04 o +0,1 a1
n2% 01 =4, +3, 020.
EXAMPLE OF A SEGMENTATION DUE 1O &
PATH HH!CN 1S GREATER YHAM THE MAYIMUM DEPARTURE
031 01 +8, 011,76
631 01 +8, s
033 88
039 n4 ne
039 ne by
WARNING 2= SPINPLE MIRECTION HA® CHANGEPR
041 04 +0,3 {7 n4
nas 01 <2, -3, 027,74
has 04 +0.3 45
n4s 01 a8 =6, 010,
nes 04 no
EXAMPLE OF RAPIn TRAVFRSE SHIFTINA
055 04 +8,05
055 04 a2
ns5% 04 +0,2 40
055 04 =2, <7, eng,
05?7 04 +0,05%
057 n4 , 43
057 04 0,1 41
ns? 01 =2, 2, 070,74
net 04 +«0,05
net B4) 4?2
net 04 +0,? 40
het 04 =2, 5nQ,
nes 81 =2, +6, 213,33
neY 04 11 ne
neo 04 +«0,0%
Ne® 04 43
neo 04 +0,1 41
neo 01 <6, +2, 031,62
071 N1 Z4 4?2, 044,72

N
[(RA
07s
n7?
n79o
n7e

EXAMPLE
nags
n89
093
095
ne7

6

nt
04
na
01
01
oF
04
04
33
04
04

+7.5
7.5
THREANING

=2,

s0aGFNERAL ELECTRIN 2OCTORPCESRR BECENTLE cax

MACHTNF 22,
EXAMPLE QF "E"uY 4 PRINTOUT

7 i
2,

«7.5%
<7,8
«0,?

+1,

+1, 2.
+0,1412

+0.2

EYAMPLE OF AN SFM SEQUENGE
SkM MODF 1S ESTAB{ISWFD .
LOWEST SPEED IN RANGE IS OUTPUY

105 01
107 04
109 01
109 01
1t 04
CUY TIME

7,
.7,

8.93

TAPE FODTVAGE

nn

.

0
NN

MIN, "WwELL TIME
8

[}

B.57MIN,

was [NCPEMENTAL swe

12 g T M W

"1”0-

99

A3
018,86 :

50

a5

51
one, 27

h5
007,26

30

3.5-54

§G-G°¢

sasGENFRAL ELECTRIC POSTPROCFSSOR BECENTed awa
ave ARASALITE sew
MACHENF 22,
EXAMPLE OF "ENUY 4 PRINTYOUT

N G X b4 1 K F g Y o W

EXKMRLE OF GEOUT 4 PRINTOUT (]
24 INCMES OF [EADER HFRE

TMARK)

0158 04 #0003 +000,3 2%

NEgDOBOSNIM28S

FROA oona 4000,
823 04 oooa: 4000, ha
8as 04 «000, {000, 100.0 h3

82% 04 «000,75 +000,05

82% 64 000, +000, 43
023 04 000, 4000,1 4
pa2s 01 804! +00%, 00010}

EXAMPLE OF A sernsanrzuu DUE T0 &
PATA WHICH 1S GREATER THAN YHE MAYIMUM BEPARTURE

B3t 01 Z604; 40119 00010,

03¢ 61 =004, 020,

833 as =6o¢. 4020,

039 84 -004° +020, LL)
039 04 804, v020, 81
N4t 64 «000:3 «000,3 170.0 LR
nes 01 _ooa, 017, gnd1o,

043 04 +000,% +000,3 45
b4 8y :000; 7,

049 04 =608. +017, ho
EMAMPLE OF RAP]n TRAVERSE SHIFTINA

055 04 +000,65 4000,08

n5% 04 Z00H, 0017‘ 42

05% 04 goog;z .oog)2 40

n5% 01 =00 4010, 00345,6

057 04 +000.35 4000.05

057 64 =008, 4010, a3

0s5? g4 0009 i toog;i , 41

aS? 1 =010, 4012, a6030,

D6t 04 4000,05 ;oog;os

b6t 04 -010' 012, 42

D6t 04 40005 +008,2 40

b6t 01 012, 012, goire,

863 01 014! 018, 00447,57

ba? 64 =014, 018, 110, 0 na

569 04 «000,0% «000,0%

P69 04 =083, ¢018, 43

069 04 D00, «000)1 it

ne9 01 o020, «d20, 00020,

07L Ny 624 4022, 00020,

P73 81 2024, 824, 00020,

«ascENERAL ELECTRIC ®peTAROACESSON sECEnY 3 nae
asa ARSALUTF ses
MACHINF 22,
EXARMPLE OF AENUT 4 PRINTOUY

N 6 X z 1 K F s kM # W
875 04 Zf24; +024; 9
077 04 024, +024, 53
179 01 Z016.8 +016.,5 pooao,
tye 0t -6009. +009,
EXAMRLE OF YHREADING

08 04 *00012 4000,2 50

089 a4 ooot. +004, ngs.

993 33 S0st, $010, g0z, 801,

gey 4 «000,.7412 $000,8412

B9Y 64 +000.2 +000,.2 51
EXAMPLE OF AN SFM SEQUENCE

fes o0y =620, $010, 000R5;4 n27.4

{0 04 -ozo, +010, 85

{09 61 =013, .007 S goPBS 4

{8 01 =Onc, 009,

f1t 6a =608, zoos: 30

CUY TIME 8.93 MIN| NWELL TIME 0 .5THIN]

TARE FOOTAGE [

3.5-56

LS-G° €

»aaGENERAL ELECTYRIC ageranmCFssen RECENT=3 wwa
ad¥s OOPERAYOR wnes

MACHINF 22,
EXAMPLE OF RENUT 4 PRINTOUY

N 6 z 1 K F] T " "
EXAMRLE OF GEOUT X4 PRINTOUT s
24 INCHWFS OF [EADMR WERE
TMARK
015 04 +000:3 40003 23
NABOBOEOHIM28S
FROM 000" 4000,
023 04 ag
bRy 04 . io 83
D2% 04 «000.5%5 «000,09
bas 04 43
828 64 #0007 4000,1 ‘ ¥
p2% 61 604, 4003, 0002¢,;

ENAMPLE OF A SEGMENTATION DUE 70 &
RATH WHICH 1S GREATER YHAN YHFE MAYIMUM DEPARTURE

03¢ 8% ,aol. +011.5 00011778

B3t 61 004, 40280,

B33 83 1004, 020,

n3* 04 L)
n3e 04 51
f4t 04 ¢000,3 +000,3 17 he
nes 81 z008, 4017, 0oD27, 7%

048 64 00013 «000,3 45

B45 01 000 4014, 00010,

Heo ne 80

ERAMPLE OF RAPtn TRAVERSE SHIFTING
65% A4 +000.0% +000,0%

853 04 12
855 04 +000.2 +008,2 40
05% 61 Zdo2, «004, 003dbe,

857 04 +000.0% «000,05

a5y 04 13
057 04 «000.{ 4000, , 4
037 01 =004, 4006, 00070,7¢

06t 04 «000.06%5 +000,0%

85t 04 . 42
06t 04 «000.2 $000,2 40
06t 81 006, 4008, gosba,

n6s 01 -008' 4012, 00233,33

062 04) . {1 LT
069 04 «000.05 «000,05

069 04) a3
069 04 «000,1 +000,1 a
069 0% 5014, 014, 00031,62

nve 01 ~010 +016, 0Np44e,72

bY3 01 08, 018, oinho,

*aeGENERAL ELECTRIC Dgswnncesson SBECENT3 #ee
aets OPERATOR oew
MACHINF 22
EXAMPLE OF SEOUT 4 PRINTOUTY
N 6 X 7 1 K F g T M W
875 04 99
77 04 h3
hyd 61 =010.% +010,5 00018,88
D79 01 Z00%, $003,
EXAMRLE QF THREADING
has 04 «000 .2 +000,2 $0
089 D4 001 +001, A5
b93 33 2409, 4004, 002, 00t,
89S 84 «008.7412 +n0D,34€2
09Y 04 40002 +n0t,? $1
EXAMPLE OF AN SFM SFQUENCE
05 01 =014, 2004, 00086, 27
{07 04 _ Bs
€09 01 =607, 4004,8 000b772%
{809 01 +000. 2008,
{11 04 10
CUY TIME 8,93 MIN, PWELL TIME A STMIN,
TAPE FOOYAGE 8

3.5-58

I;[l:[N] I" POSTPROCESSOR ... for the computer programmer

4.0 SPECIAL SEQUENCES

In the sections which follow are given some further details on
special items which are treated as separate entities within the
postprocessor. Normally, at least one of these items will be
used on any NC machine.

4.1 FEEDRATE

The Mark Century control considers feedrates from two aspects,
one for contouring machines and the other for positioning
machines.

For contouring machines the feedrate command is a computed code
derived by one of three methods, each of which are fully
explained below. . The relations of multiaxis or circular
interpolation to the feedrate command are also detailed.

For positioning machines the feedrate command is obtained from
one of several feed types. These types vary considerably from
one another, but each type is detailed according to its structure
and use.

The feedrate of a machine tool is the travel velocity of the tool
along the path of movement and is usually measured at the tool
tip. Feedrate is normally measured in IPM, but occasionally it
is measured in IPR. Whenever IPR is the mode, the feedrate is
directly related to the spindle speed, and the relation between
IPM and IPR is:

= ’ %*
Fipm = Fipr * S
where Fipr is the feedrate in IPR, S is the spindle speed in RPM,
and FIPM is the feedrate in IPM.

The postprocessor works internally with feedrate in IPM only,
i.e., all feedrates in IPR are converted to IPM. The
postprocessor keeps feedrates in IPM primarily for SFM operation
and for acceleration-deceleration (A/D) testing. Prior to
output, the feedrates are converted +to their feedrate command
form, but only after the feedrates have been tested for a variety
of conditions. For example, all feedrates are tested versus the
minimum and maximum allowable feedrates in IPM (options 48 and
25), and feedrate command maximum and minimums (options 24 and
49). If the feedrate is a rapid traverse feedrate, other actions
are taken as explained in Section 4.1.5.4.

4-1

GH:[N] "l POSTPROCESSOR ... for the computer programmer

4.1 FEEDRATE (cont!'d)

The postprocessor can also leave the feedrate in IPM, i.e., not
convert it to the command form, whenever it is needed, as for an
auxiliary saddle. When the feedrate is kept in IPM form, all the
below described tests do not apply. The only testing performed
is to insure that the given feedrate lies within the minimum and
maximum feedrate range.

4.1.1 CONTOURING FEEDRATE COMMANDS

The postprocessor can output the feedrate in one of three
different command forms, viz., as a function of a calculated
feedrate number, as an EIA 3 digit number, or as 1/T (inverse
time) . The specification of the desired form is given in option
10. Contouring feedrate commands are all determined in
subroutine CONTUR. :

The resultant feedrate command 1is always compared with the
minimum and maximum feedrate command values; and when it
transgresses a bound, it is set to that bound. The new feedrate
in IPM is then redetermined. For example, assume the feedrate
command (Fo,) as a function of Fipm becomes greater than the
feedrate command maximum (FCOMAX) :

F, = f(Fipy >FCOMAX.

Then, Fc = FCOMAX, and
-1
Frpy = £ (FQ)

BH:[N] I" POSTPROCESSOR ...for the computer programmer

4.1.1.1 FEEDRATE NUMBER COMMAND

This type of conforming feedrate command is selected by setting
option 10 equal to zero. For machines having up to three linear
axes, the feedrate along straight line paths is converted to a
feedrate command by the relation:

_ *
F = D *Froy
c S

where D 1is a constant called the dimension multiplier and is a
function of the preparatory function G code, F PMis the feedrate
in IPM, and S is the path length as determinedlby

S = \|AX2+AY2 +AZ2

where AX, AY, AZ are the linear machine coordinate departures
along their respective axes.

The dimension multiplier, D, obtains its constant value in
subroutine SELG where the preparatory function G code is selected
for the linear departures; see Section 3.4.6.1. The value of D
for a given departures is dependant also upon the units system,
i.e., inch or metric.

Consider the example of a 1linear move as shown in Diagram
4.1.1.1A. The tool has a feedrate of 40 IPM.

Y
A AX = 4
AY = 3
| AZ = 2
2% b
5O | 3
I
: 7 — X
I// 2
l v
4
Z
. Diagram 4.1.1.1A
s=\16 + 9 + 4 = 5.39inches

4-3

(;H;[NI I" POSTPROCESSOR ... for the computer programmer

4.1.1.1 FEEDRATE NUMBER COMMAND (cont'd)

The G code would be G01 and the dimension multiplier (GDIMUL) is
10. Therefore,

F, =__10*40
5.39

74.8

Since this is well within the feed command range (1<F <500), the
computed value of F, is accepted and made output.

It should be noted that in general the feedrate command range for
this type is usually

1L F, <£500;

however, this is not always true, so the specifications of each
machine must be carefully checked for this item.

Dimensionally, it can be seen that this type feedrate cquand is
a frequency since its units are the reciprocal of time, T

| s/T 1.
F = IPM = | l T
c
For circular interpolatlon moves, the formula is
’
F= D% Frpy
R

where R is the circle radius and is always less than the maximum
departure. The dimension multiplier, D , is a function of the
radius length and is assigned its constant value in subroutine
SELGCR; see Section 3.4.6.2. :

A point to be noted here is that the length R is not usually the
circle radius of the part, but rather is the distance from the
part circle center to the +tool control point. In Diagram
4.1.1.1B the true radius of the part is P; but since the
postprocessor . computes the radius from the given CL data, and
since the CL tape passes on the cut data from the tool control
point, the postprocessor actually uses

R=P +1r,

where r is the radius of the tool.

GH;[NI "I POSTPROCESSOR ... for the computer programmer

4.1.1.1 FEEDRATE NUMBER COMMAND (cont'd)

A

Diagram 4.1.1.1B

This causes a 1lower feedrate to be used than need be, but for
large circles (P>>r)this feedrate variation is negligible. See

the Part Programmers Manual for the use of the SELECT/RADIUS
statement for cases when r2P.

The radius R used in the feedrate command formula is computed
from the arc center offsets, as:

R= \I2 + J2 + &2

A rotary table feedrate for an incremental system requires a
preparatory function G code which specifies the dimension of the
increment; see Section 3.4.6.3. As with a linear move, the
rotary move feedrate is determined from the relation

= *
FC D FIPM

GHINI'" POSTPROCESSOR ...for the computer programmer

4.1.1.1 FEEDRATE NUMBER COMMAND (cont 'd)

where D is the dimension multiplier selected in subroutine
SELGRO, and S 1is the effective tool path
length in inches. The length S is a function
of the table radius R since S= R, where 4 is
the incremental rotary move in radians. The

S part radius R will usually vary with the part
program; hence, R must be given with the part
program. Option 112 specifies the probable
part radius which is wused in the feedrate
command formula. During the course of the
part program, the radius becomes larger or
smaller; the radius can be changed by the
MACHIN statement as:

MACHIN/GECENT, n, OPTAB, 112, r.

unless the option is changed, the radius is assumed to be the
standard value of 6 inches.

Because of the variable nature of the part radius R, the table
feedrate minimum, maximum, and rapid traverse must also be
determined by the postprocessor for each part program. These
rotarv sveeds are given in RPM and are converted to IPM as FIpMm
= 2R * RPM, where R is the radius. Options 133, 114 and 115
specify the minimum, — maximum and rapid traverse speeds
respectively.

A multiaxis linear motion obtains its feedrate command from the
same relation as for non-multiaxis motions, namely,
*
F = D FIPM
c S

However, S in this case 1is not the length of the space curve
which results from the combined 1linear and rotary motions in
machine coordinates, but rather is the part path length. For
example, assume the part coordinates:

X = 0, Y= 1, z) = 2, il= 0, jl= 0, k1= 1;
X, = 3, Y, = 5, z, = 2, 12= 0, j2- 1, k2= 0.
The resultant machine coordinates are then, say:

X.=0, ¥"=0, 2,= 9, A,= 0, B,= 90;

1 1 1
X2= 6, Y2= 8, ZZ= 12, A2= 10, B2= 180.

BH:[NI l" POSTPROCESSOR ... for the computer programmer

4.1.1.1 FEEDRATE NUMBER COMMAND (cont'd)

The determination of the space curve for a multiaxis move is a
highly complex relation, so a close approximation is used
instead. The path 1length is determined from the part
coordinates, which, in the example, gives:

s =\32 + 42 + 02 = 5,

The machine coordinate departures AX, AY, AZ, AA, or AB are not
used at all in the determination of the feedrate command.

A multiaxis circular interpolation move uses a relation similar
to but slightly different from the non-multiaxis relationship,
for in the multiaxis case, Fipy in the feed command formula is
not actually the path velocity, hence, it must be corrected as:

. = 2 - 2

; FIpM qFP N
where Fp is the desired path velocity, and Fy is the velocity in
the axial direction perpendicular to the plane of the circular

arc. Thus, q—~———————
* 2 _ 2
o= D (FP Fy) .

c R

this can be reduced to known terms in the following expression:

D*F
F = P

q Az? + R?
Xy
92

Xy

where AZ is the departure along the 7 axis, Ry, is the radius of
arc in the XY plane, and 0xy is the angle of &%e in radians. The
relationship shown is for the case when the circle lies in the XY
plane, but similar relationships exist for the YZ and ZX planes.

Subroutine PROCQD determines © and stores it . into the parameter
ARCANG. The radius is determined from the arc center offsets as

R =\l12 + gz + g2 .

4-7

G[‘:[Nl I" POSTPROCESSOR ... for the computer programmer

4.1.1.2 INVERSE TIME FEEDRATE COMMAND

This type of contouring feedrate command is selected by setting
option 10 to a negative value.

The format for inverse time is essentially the same as for the
dimension multiplier type except that in all cases, regardless of
the departure lengths, the dimension multiplier, D, is always 1.

Thus, from the linear relation given in Section 4.1.1.1,

- *
Fe P " Fiem

it can be seen that when D = 1,

Fo = Frpm = Frpm

S T*FI
where T is time in minutes.

|

o

|
Hi

PM

The command maximum and minimum range for this type of feedrate
command varies as a function of the preparatory function G code;
the feedrate register format also changes with the G code,
thereby necessitating a change in the column print vectors. The
feedrate format can also be one of four possible kinds; the kind
is specified by option 10. All of these variables are summarized
in the following chart.

GH:[NI I" POSTPROCESSOR ...for the computer programmer

4.1.1.2 INVERSE TIME FEEDRATE COMMAND (cont'd)

G Code REGFOR(11) . COMIN Feoomax
option [G11 31 1.0 999.9
10 = -1 Go1 32 0.1 99.99
G10 33 0.01 9.999
611 30 1.0 999.0
option } Go1 31 0.1 ©99.9
10 = -2 G10 32 0.01 9.99
" 612 40 1.0 9999.0
11 41 .1 999.9
option | 601 42 .01 99.99
10 = -3 Uag1o 43 .001 9.999
[612 42 1.0 9999.99
c11 43 .1 999.999
10 = -4 | co1 4y .01 99.9999
G10 45 .001 9.99999
G23 46 .0001 .999999
| 626 47 .00001 .0999999

Since the feedrate command maximum for this feed command type 1is
larger than with the dimension multiplier feedrate command type,
it is possible to obtain higher feedrates and shorter execution
times with the 1/T type.

The postprocessor must check the G code of each command block in
order to redetermine and reset the command maximum and minimum
values, Frq and FcoMIN + respectively; this is all done in
subroutine FVARGO which is called from subroutine CONTUR.

';H;[NI "I POSTPROCESSOR ...for the computer programmer

4.1.1.2 INVERSE TIME FEEDRATE COMMAND (cont'd)

Subroutine FVARGO also redetermines and resets the column print
vectors NPR, NPT, NPTA, and NFP as a function of the changed
feedrate register format; see Section 3.5.4.1. These column
print vectors are used also for producing the punched output.
The vectors must change when the decimal format of the register
changes because the number of places to the right of the decimal
point must be exactly specified or else an error results.

For example, suppose the format is left to be 30 as for a G111
when option 10 = -2. Suppose now we get a feedrate command of
8.76 for a G10. The postprocessor outputs the feedrate command
according to the decimal format, so the postprocessor would
output the erroneous value F876 instead of F00876, a considerably
different value.

Subroutine FVARGO sets the dimension multiplier parameter GDIMUL
to 1 so that wupon returning to subroutine CONTUR, the same
program flow is followed as for the dimension multiplier type.

4.1.1.3 EIA MAGIC 3 FEEDRATE COMMAND

This type of contouring feedrate command is selected by setting
option 10 to +1.

This rarely used format simply converts the feedrate in IPM to
the EIA "Magic 3" format. For example, the feedrate 40 IPM when
converted to the feedrate command becomes 540; see Section 7.1 of
the Appendix for an explanation of the "Magic 3" conversion
method.

Note that because of the resultant integer value of the "Magic 3%
number that the feedrate register format must be 30, i.e.,
REGFOR(11) = 30.

Also with this type of feedrate format, the postprocessor cannot
use the sequence which ratioes the axes feedrate through the IJK
registers whenever the feedrate cammand exceeds the feedrate
command maximum; therefore, option 26 must be set to 1.

l;[l:[NI I" POSTPROCESSOR ...for the computer programmer

4.1.2 POSITIONING FEEDRATE COMMANDS

The feedrate command for a positioning machine can evolve from
one of a variety of different methods. A different method is
used by nearly every NC machine mode. Since the number of
probable methods is unlimited, the positioning feedrate commands
are defined as types; the type is designated by option 78.

Subroutine POSIT calls subroutine POSFED which branches to the
subroutine for the designated feedrate type; the type subroutine
is usually named according to its type, thus, a type 2 feedrate
command is handled in subroutine FTYPE 2. If there is no
separate subroutine for the type, the type is generated
exclusively in subroutine POSFED.

The only test made on positioning feedrates is to ensure that the
feedrate in IPM (or IPR) and the feedrate commands are within the
range extremums.

Nearly all positioning feedrate types have a set of discrete
values in one or more ranges. These discrete values, when
available, are stored in the FRTAB section of table SRTAB; see
Section 5.6.

Option 174, 62, 63, 144, and 78 must be set in accordance with
the requirements of the specified feedrate type.

In all the examples given below, the feedrate command is always
given as the value which would appear on the printed output; the
punched value would not have a decimal point but might have
leading zeroes.

Row numbering always begins at zero and increases monotonically
by one. Thus, if FRTAB has forty speeds, they are said to be
stored at rows 0 through 39.

(;H:[N] l" POSTPROCESSOR ... for the computer programmer

4.1.2.1 FEED TYPE 0

This type is selected by a zero or negative setting for option
78.

The command is generated by multiplying the feedrate in IPM times
some constant which is given in option 78. The command is
rounded to the closest integer.

Fecom = Fipm * K¢
where K = |Option 78].
1f option 78 is zero, K = 2.
For example: option 78 = -3.
Therefore, K = 3.
Feedrate Eggm_
7.123 21
18.2694 55
1.74 5.0
94.926 285.0

This feedrate command type 1is programmed within subroutine
POSFED.

l;H:[NI I" POSTPROCESSOR ...for the computer programmer

4.1.2.2 FEED TYPE 1

This type is selected by setting option 78 to +1.. The feedrate
in IPM is also the feedrate command; there is no conversion
necessary.

For example: Option 78 = 1, FORMAT(11) = 21.

Feedrate Eggﬂ
0.1 00.1
2.63 02.6

35.17 35.2
40.0 40.0

This feedrate command type is programmed with subroutine
POSFED.

4.1.2.3 FEED TYPE 2

This type is selected by setting option 78 to + 2.

The feedrate command is obtained with the feedrate value in IPR;
the current spindle range value specifies which feedrate range to
use in the table of discrete IPR values. The feedrate command is
the resultant row number of the table position containing the
required feedrate in IPR.

The table of discrete IPR values is scanned whenever a feedrate
is given to ensure that the programmed feedrate is actually

available on the NC machine. Thus, whenever a feedrate is
programmed in IPM, it is first converted to IPR by
_ F
FIPR = SIPM .

where S is the current spindle speed. The resulting feedrate in
IPR is sought in FRTAB, and the closest value to the given IPR
value is used; the feedrate in IPM is then recomputed. This is
illustrated in the example below.

B[B[NI |" POSTPROCESSOR ' ... for the computer programmer

4.1.2.3 FEED TYPE 2 (cont'd)

This feedrate command type 1is programmed in subroutine FTYPE2
which is called from subroutines POSFED and FEDRAT. In the
calling sequence of subroutine FTYPE2, the K flag indicates which
operation is to be performed. When called from subroutine FEDRAT
(K = 0), subroutine FTYPE2 is called upon to obtain the exact IPR
value, as explained above; when called from subroutine POSFED (K
= 1), subroutine FTYPEZ2 obtains the feedrate cammand. These
operations are exemplified by the following case.

Assume there are 15 IPR feedrates in three ranges; there are also
three spindle ranges.

FRTAB
Row EEQM Range 1 Row 'COM Range 2 Row T COM Range 3
0 1 0.01 5 16 0.04 10 21 0.10
1 12 0.02 6 17 0.06 11 22 0.14
2 13 0.03 7 18 0.08 12 23 0.18
3 14 0.04 8 19 0.10 13 24 0.22
4 15 0.05 9 20 0.12 14 25 0.26

For these conditions the pertinent options are: option 78 = 2;
option 62 = 3; option 63 = 5; option 144 = 11. Example: Spindle
speed = 100 RPM, spindle range = 2, programmed feedrate is 7 IPM. .

Subroutine FTYPE2 is called from subroutine FEDRAT to ensure that
7 IPM is available.

F = 77100 = 0.07 IPR
IPR

Scanning the FRTAB table we can see that in range 2 the closest
and next lowest value is 0.06 IPR, therefore,

FIPR = 0.06, and

Fipm = 0.06 * 100 = 6IPM,

which becomes the programmed feedrate.

BH:[N] I" POSTPROCESSOR ...for the computer programmer

4.1.2.3 FEED TYPE 2 (cont'd)

To convert to the feedrate command, subroutine FTYPE2 is called
from subroutine POSFED. Scanning range 2 of FRTAB (since spindle
range 1is 2), the feedrate IPR value is found at row 6.
Therefore,

Feom Row Number + Option 144

6 + 11 = 17.
It is important to note that the row numbering begins at zero.

4.1.2.4 FEED TYPE 3

This type is selected by setting option 78 = +3.

The feedrate command is obtained by converting the feedrate in
IPM directly to the EIA "Magic 3" code equivalent; see Section
7.1 for an explanation of this technique.

For example: F = 40; F 540.

IPM coM

This feedrate command type is programmed within subroutine POSFED
wherein subroutine EIACOM is called to convert the feedrate to
the command form.

4.1.2.5 FEED TYPE 4§

This type is selected by setting option 78 to +4.

This type feedrate utilizes two or less feedrate ranges. Only
the range one feedrate values in IPR are stored in FRTAB. If
there are two feedrate ranges, the range +two feedrates are
assumed to be five times the range one values.

GHIN]I" POSTPROCESSOR ...for the computer programmer

4.1.2.5 FEED TYPE 4 (cont'd)

Assume the following conditions:

Range 1 Range 2
Row FCOM Feed IPR FCOM Feed IPR
0 FO0 . 001 FO .005
1 F1 .002 1 .010
2 F2 .003 F2 .015
3 F3 .004 F3 .020
i} F4 .006 Fu .030
5 F5 .009 F5 .0o45

Note that in practice only Range 1 would be stored in FRTAB.
Before scanning the table for comparison selection, the feedrate
in IPM is first converted to IPR, i.e.,

IPR = FIPM/Splndle Speed.

For these conditions option 78 = 4, option 62 = 1, option
63 = 6, option 144 = 0.

F

Example 1: FiPM = 0.2, Spindle Speed = 100, Feed Range = 1.
Fipr = 0.27100 =‘0.002.
Therefore,
Focom = Row Number + Option 144
=1 +40 = 1.
Example 2; FIPM = 4, Spindle Speed = 200, Feed Range = 2.

Frpgr = 4/200 = 0.02

The values of Range 1 times 5 are scanned comparing

FIPR . Therefore,

F
coM

=3 +0 = 3.

Row Number + Option 144

This feedrate command type is programmed in subroutine FTYPEU4.

‘;H:[NI "I POSTPROCESSOR ...for the computer programmer

4.1.2.6 FEEDRATE TYPE 5

This type is selected by setting option 78 to 5.

The characteristic feature of this type feedrate command is that
the XY axes have their own separate set of feedrate values and so
does the Z axis. The feed command for XY is programmed in the XY
motion block, and the feed command for Z is programmed in the 2
motion block.

There 1is one feedrate table with N ranges for Z motions and
another feedrate table with M ranges for X-Y motion.

The total number of feedrate ranges "N + M" is stored in option
62, and the number Z feedrate ranges "N" is stored option 201.
The number of feedrates per range is stored in option 63. The 2
feedrate command minimum 1s stored in option 49, and the X-Y
feedrate command minimum is stored in option 202. The increment
between ranges 1is stored in option 144. The Z feedrate ranges
are stored first in FRTAB, then followed by the X-Y ranges.
Assume the following conditions:

Z Feedrates X~-Y Feedrates

Range 1 Range 2 Range 3 ~ Range 1 Range 2

Fcom 1pm Fcom 1pM Foom 1pm Fcom 1pm Fcom 1pm
F11 4.2 F21 10.2 F31 21.3 F21 6.3 F31 28.6
F12 6.8 F22 11.4 F32 25.6 F22 10.9 F32 35.9
F13 7.9 F23 12.6 F33 28.9 F23 15.6 F33 50.1
F1u4 8.5 F24 13.8 F34 31.7 F24 18.9 F34 57.8
F15 9.1 F25 15.1 F35 38.9 F25 22.5 F35 65.2

The pertinent options are set as follows:

option 78 = 5, option 49 11,

1
[}

option 62 5, option 63 5,

option 201 3, option 202 = 21,

option: 144 = 6.

4-17

BECENT 1l eosterocessor

4.1.2.6 FEEDRATE TYPE 5 (cont'd)

...for the computer programmer

Note that in this case option 144 refers not to the incremental
adder to the row number, but rather to the difference in Fpgym
between ranges, i.e., between 15 and 21, 25 and 31. The

subroutine counts rows beginning at 11 for Z and 21 for XY.

FRTAB would be set up as follows:

FRTAB (276) = 4.2 FRTAB(289) = 31.7
FRTAB (277) = 6.8 FRTAB (290) = 38.9
FRTAB(278) = 7.9 FRTAB(291) = 6.3
FRTAB (279) = 8.5 FRTAB(292) = 10.9
FRTAB (280) = 9.1 FRTAB(293) = 15.5
FRTAB(281) = 10.2 FRTAB(294) = 18.9
FRTAB (282) = 11.4 FRTAB (295) = 22.5
FRTAB (283) = 12.6 FRTAB(296) = 28.6
FRTAB(284) = 13.8 FRTAB(297) = 35.9
FRTAB(285) = 15.1 FRTAB(298) = 50.1
FRTAB(286) = 21.3 FRTAB(299) = 57.8
FRTAB (287) = 25.6 FRTAB (300) = 65.2
FRTAB (288) = 28.9
Example: Fipy = 40, Feed Range = 2.

For the XY move,

Fcom = Row Number + Option 144-1
=27 + 6 -1 = 32.
When the exact value cannot be found, the next lowest is taken,
hence, Fipy = 35.9.

For the Z move,
F Row Number + Option 144 - 1
20 + 6 - 1 = 25, and

15.1

COM

Fipm

When Range 3 is programmed for Z, Range 2 is used for XY.
feedrate command type is programmed in subroutine FTYPES.

This

B[t[”] I“ POSTPROCESSOR ... for the computer programmer

4.1.2.7 FEED TYPE 6

This type is selected by setting option 78 to + 6.

The available feedrates are a set of discrete values in IPM and
are assembled in two ranges, a low and a high feedrate range.
The low feedrate range is used only for milling and is normally
selected by programming a CYCLE/MILL statement followed by a
FEDRAT/RANGE, 1 statement. Otherwise, regardless of the range
selected range 2 (or the high range) is always modal and is
cancelled only by the CYCLE/OFF or another CYCLE statement wused
for both milling and drilling operations. The feed command is
formed from the relation

Feom = K * Frpyr
where K = 12 for Range 1, and K = 2 for Range 2.

Since there are only discrete IPM feeds available, the
postprocessor first ensures that a programmed feedrate is truly
available, and, if not, it selects the next Jlowest available
feedrate. Subroutine FEDRAT calls subroutine FTYPE6 with K = 0
in the calling sequence which directs subroutine FTYPE6 to obtain
the proper feedrate. Subroutine POSFED calls subroutine FTYPE6
with K = 1 to obtain the feedrate command. These operations are
illustrated in the example below.

Assume the following conditions:

Low Feedrate-Range 1 High Feedrate-Range 2
Foom IPM Foom IPM
F6 .5 F4 2.0
F12 1.0 Fé6 3.0
F18 1.5 F8 4.0
F24 2.0 F10 5.0
F30 2.5 F12 6.0
F36 3.0 F14 7.0
F42 3.5 F16 8.0
Fus8 4.0 F18 9.0
F54 4.5 F20 10.0
F60 5.0 F24 12.0

The pertinent options are set as follows:

option 78 = 6, option 62 = 2, option 63 10.

4-19

GH:[NI "I POSTPROCESSOR ...for the computer programmer

4.1.2.7 FEED TYPE 6 (cont'd)

M = 3.6, Feed Range 1,

CYCLE/MILL programmed (ICTYP = 6).

e 1:
Exampl FIP

The FRTAB is scanned for an exact comparison, and not being
found, the next lowest value 3.5 is selected; therefore, FIPM =

3.5 and Foom = 12 * 3.5 = 42,
Example 2: Fipm = 7.9, Feed Range 2.
After scanning, Fipm = 7, and
Foom = 2 * 7 = 14

4.1.2.8 FEED TYPE 7

This type is selected by setting option 78 to +7.

The feedrate command for this type is a one for one output of the
value given in the feedrate statement. The machine tool has a
number of manually set feedrate combinations which are selected
by a code number; neither IPM or IPR. The code number is given
in the feedrate statement and the postprocessor outputs this code
as the feedrate command.

Example: Feedrate potentiometer No. 1 set manually to desired
feedrate. Part program statement is FEDRAT/1. Post-

processor w;ll output fCOM =1

This feedrate command type is programmed within subroutine POSFED.

4.1.2.9 FEED TYPE 8

This type is selected by setting option 78 to + 8.

The feedrate command for this type is generated in a manner
similar to Feed Type 2; see Section #4.1.2.3 for full details.
The feedrates consist of a discrete set of IPR values in three
ranges; the feedrate range is selected as a function of the
current spindle range. The selected IPR value is converted to an
EIA "Magic 3" code to become the feedrate command; see Section
6.1 for a description of this conversion method.

';H:[NI "I POSTPROCESSOR ...for the computer programmer

4.1.2.9 FEED TYPE 8 (cont'd)

Using the feed tables in the example of Feed Type 2, the
following example illustrates Feed Type 8.

Example: FIPM = 7, Spindle Speed = 100 RPM, spindle range =2.

F1pRr

Scanning FRTAB in range 2 we obtain 0.06 IPR; therefore,
FIPR= 0.06, FIPM= 6, and FCOM= 260.

77100 = 0.07.

This feedrate command type is programmed within subroutine
FTYPE2.

4.1.2.10 FEED TYPE 9

This type is selected by setting option 78 to +9.

The generation and use of the feedrate command for this type is
identical to Feed Type 2 in every respect except that the values
stored in FRTAB are in IPM rather than IPR; see Section 4.1.2.3
for full details on Feed Type 2.

The feedrates consist of a discrete set of IPM values in three
ranges; the feedrate range is selected as a function of the
current spindle range. The feed command is derived from the row
number of the table position containing the required feedrate.
Assume the following conditions:

FRTAB

F F F
Row _COM Range 1 Row COM Range 2 Row COM Range 3

0 1" 1 5 16 14 10 21 50
1 12 3 6 17 18 11 22 60
2 13 6 7 18 26 12 23 70
3 14 9 8 19 30 13 24 80
4 15 1 9 20 40 14 25 90

The pertinent options are option 78 = 9; option 62 = 3, option 63
= 5, option 144 = 11.

[;[c[N]- "I POSTPROCESSOR ...for the computer programmer

4.1 2.10 FEED TYPE 9 (cont'd)

Example: FIPM = 45, spindle range = 2.
Closest value in range 2 to programmed value is 40, therefore,
F = 40, and .

F = Row Number + option 144

COM = 9% 11 = 20.

It is important to note that the row numbering begins at zero.
This feedrate command type 1is programmed within subroutine
FTYPE2.

4.1.3 POSITIONING MACHINE ROTARY FEEDRATE COMMANDS

Positioning machines which have a rotary axis may have a separate
feedrate register exclusively for the rotary axis. In such cases
the rotary feedrate command can be of a format entirely different
from the feedrate command format for the linear axes. Therefore,
the rotary feedrate commands are defined as a set of types as
were the feedrate commands for the positioning linear axes.

The rotary feedrate command may or may not have its own feedrate
register, or it may use the linear axes feedrate register. 1If
there is a separate rotary feedrate register, then option 139
must be set accordingly.

Option 141 specifies the rotary feedrate command type. Each of
the rotary feedrate command types are defined below.

4.1.3.1 ROTARY FEED TYPE 1

This rotary feed type is selected by setting option 141 to +1.
It requires the use of a separte register for the rotary feedrate
command, e.g., an E register. Since this is an extra register
(not one of the permanent assignments), the register is assigned
to DBFSEG(16); therefore, REGFOR(16) and REGSTR(16) must be set
accordingly, and option 139 is set to 16. For example:

REGSTR (16)
REGFOR (16)

E
10.0

non

option 139 = 16, option 141 = 1.

Subroutine ROTYP1 processes the rotary feedrate type 1 operation.

4-22

[;H:[N] I” POSTPROCESSOR ...forthe computer programmer

4.1.3.1 ROTARY FEED TYPE 1 (cont'd)

This type has a table of discrete rotary feeds which must be used
as the feedrate for the rotary table. In other words if a
feedrate 1is programmed which is a value not exactly found in the
table, the postprocessor selects the next lowest exact feedrate.
Corresponding to the row of the table is the rotary feedrate
command value.

Subroutine ROTYP1 has the parameter K in it's calling sequence;
when K = 0, the subroutine selects the closest IPM value from the
table of wvalues to the given feedrate value; when K = 1, the
subroutine obtains the feed command corresponding to the given
feedrate value. These functions are illustrated in the example
below.

The table of IPM feedrates are generated from the relations:

RFE
1) %PM = __ MAX , n=1,2,3,-~---- 9,

RK(9'II)

where RFyayxis the rotary maximum feedrate in RPM, RK is a
constant equal to 1.43, andiFRPM:is the feedrate in RPM.

2) FipMy = 21 F R,,, where R, is the table (or part)

*
radius, and FIPM‘iS thg&?%tary feedrate In IPM.

Option 112 is the table (or part) radius RI, and option 114 is
the rotary maximum feedrate RFMAX‘

With the specified conditions of options 112 and 114, subroutine
ROTYP1 generates the IPM table wupon initial entry into the
subroutine.

Assume the following conditions:
F

Row COM Feedrate in IPM Feedrate in RPM
0 EO 0.754 .020
1 E1 1.0801 .0287
2 E2 1.5419 .0409
3 E3 2.2009 .059
4 E4 3.1479 .084
5 ES 4.5051 . 115
6 E6 6.4476 . 171
7 E7 9.1986 . 244
8 E8 13.1570 .349
9 E9 18.8496 1.0

l;[[:[NI "I POSTPROCESSOR ...for the computer programmer

4.1.3.1 ROTARY FEED TYPE 1 (cont'd)

Example: The programmed rotary feedrate is 7 IPM.

When it is time for the feedrate to be stored for use, subroutine
ROTABA calls subroutine ROTYPE which, because of option 141,
calls for subroutine ROTYP1 with K = 0. The subroutine scans the
IPM table, and finding no feedrate exactly equal to 7, selects
the next lowest value of 6.4u476.

At output time, subroutine ROTYP1 is called form subroutine POSIT
with K = 1 to obtain the rotary feedrate command, which for the
IPM value of 6.4476, is in row 6 (row numbering begins at zero);
therefore, the rotary feedrate command is 6.

4.1.4 RAPID TRAVERSE

Although a rapid traverse is nothing more than a high feedrate,
the postprocessor gives special treatment to such moves. A rapid
traverse is normally used for repositioning a tool for a tool
change or when moving to a new cut point; and since it is a non-
cutting motion, the path is traversed usually at the maximum
feedrate so as to minimize the machining time. But in all cases
except for some positioning machines which have a separate rapid
traverse register, a rapid traverse motion is only a regular
motion. In order to differentiate between a rapid traverse and
a regular feed motion, the postprocessor identifies a rapid
traverse command block with a negative feedrate. Thus, at output
time the rapid traverse blocks can be easily singled-out for
special optimizing treatment (See Section 4.1.5.4.)

When a RAPID is called for, the postprocessor uses the maximum
feedrate value (option 42) on the next motion block if RAPID is
one-shot, which it normally is. However, if option 109 is set
for a modal condition, then the rapid feedrate value is wused on
all motion blocks until the rapid traverse mode is cancelled.

Some NC machines, usually lathes, require an M code to enter into
and out of a rapid traverse gear setting. The postprocessor
automatically outputs these M codes and any requisite dwells that
are required; see options 16, 37, 39, 42, 43, 44, 45, 46, 81, and
109.

A brief description of a typical part program example will
clarify the postprocessor's method of handling rapid traverses.

(1) RAPID
(2) GoTO/X, Y, Z
(3) GOTO/%, Y, 2Z

GHIN]'" POSTPROCESSOR ...for the computer programmer

4.1.4 RAPID TRAVERSE (cont'd)

On statement 1 subroutine RAPID* is called; this subroutine
simply sets the rapid flag RAPFLG to 1 indicating that a rapid
condition has been called for.

On statement 2 subroutine MOTION calls subroutine TSTFILG to
interrogate RAPFLG; since RAPFLG is non-zero, subroutine RAPIDO*
is called wherein RAPFLG is set to zero, and the rapid-on flag
FLRPON is set non-zero. Subroutine RAPIDO proceeds to output any
required gear shifting M codes; sets the rapid feed flag FRAPID
to the negative maximum feedrate value (option 42); and returns
to subroutine TSTFLG. The motion block can now be output.

When outputting the motion block, subroutine OUTPUT tests the
FRAPID flag, and finding it negative, stores the value of FRAPID
into DBFSEG(11) to become the feedrate for that block. The
negative sign is retained in order to identify the move as being
a rapid traverse.

On statement 3, subroutine TSTFLG checks RAPFLG, and finding it
zero, then checks flag FLRPON, and finding it non-zero, calls
subroutine RAPIDX* to remove the rapid traverse condition. This
subroutine sets flag FRAPID and FLRPON to zero; outputs any
required gear shifting M codes, and returns to subroutine TSTFLG.
The motion block is now made output, but subroutine OUTPUT, now
that FRAPID is zero, uses the current feedrate FEDIPM to store in
DBFSEG(11), thereby achieving a return to the feedrate mode.

On statement 3, had there been another RAPID statement, RAPFLG
would be 1, therefore causing a call to subroutine RAPIDO. But
subroutine RAPIDO, upon testing FLRPON, finds it already non-
zero; therefore, the postprocessor knows that a rapid mode
already exists; hence, there is no need to reestablish it. This
avoids the redundant output of gear shifting M codes.

Subroutine RAPIDO makes some preliminary checks before it decides
to enter into a rapid mode. The minimum path length (option 37)
is checked to see if it is larger than the given motion. If it
is, there 1is no point in shifting gears or otherwise entering
into the high feedrate range since the move 1is too short to
warrant the time required. 1In this case, the postprocessor uses
the highest feedrate of the cwrent feed range (option 39).

* This subroutine is actually a multiple entry subroutine with
one of the entries so titled.

(:[C[NI I" POSTPROCESSOR ...for the computer programmer

4.1.4 RAPID TRAVERSE (cont'd)

Subroutine RAPIDO then checks for a tape reader limitation using
the resulting rapid feedrate. If the block is tape reader
limited, flag FRAPID is set to the positive highest value of
feedrate which does not cause a tape reader 1limitation. Hence,
in subroutine OUTPUT, since FRAPID is positive, it's value is
used for the feedrate, but the value is made negative to identify
the command block as being one of a rapid traverse.

4.1.5 FEEDRATE OPTIMIZATION

There are many conditions which during the course of a part
program can cause a lowering or limiting value to the programmed
feedrate. But there are also several special techniques which it
may be possible to apply in order to obtain the programmed
feedrate, or barring this possibility, at least to obtain the
highest possible feedrate. Each of these several techniques are
discussed in detail in the following sections.

4.1.5.1 G CODE SEGMENTATION

Consider the following case where a motion has the increments
AX=30 and AY = 40 inches, and the programmed feedrate is 300
IPM. The feedrate command (assume option 10 = 0) for this motion
is: (See Section 4.1.1.1)

F = p* F1pM = 100 * 300 = 30000 = 600.

coM = =0
\ 900 + 1600

This value 1is greater than the feedrate command maximum of 500;
therefore, FcoM would be made equal to 500. But this is highly
restricting, for now the feedrate has been reduced to 250 IPM;

F
Frpy = __COM * s = _500 * 50 = 250 IPM.
D 100

This reduction is undesirable and can be eliminated.

If we take the original path of 50 inches and segment it to path
sizes such that the increments are less than 10 inches, then it
becomes possible to use a smaller dimension G code with the
possibility of obtaining an acceptable feedrate command.

4-26

G[[:[NI I" POSTPROCESSOR ...for the computer programmer

4.1.5.1 G CODE_SEGMENTATION (cont'd)

Accordingly then, we get five segments such that

AX =30 =6, and AY = _40 = 8
"5 5

Each of the segment paths now has an

F = 10 * 300 = _3000 = 300,

CoM
\36 + 64 10

which is considerably below the feedrate command maximum of 500;
therefore, the programmed feedrate of 300 IPM can now be used.

This G code segmentation procedure exists in subroutine TSTFCM
which is called from subroutine SELG when the linear preparatory
function G code is being selected. (See Section 3.4.6.1)

Option 170 must be set to 1 to call for this sequence. Note that
this G code segmentation cannot be used for multiaxis moves, nor
for circular interpolation or rotary moves; and obviously, it
cannot be used if only one G code is available. Also, the
feedrate command must be of the dimension multiplier type, i.e.,
option 10 = 0. :

In attempting to segment the path, the subroutine begins with the
initially selected dimension G code, and works its way down to
each successively small and available dimension G code.
Subroutine COMPFC computes the feedrate command.

4.1.5.2 VARIABLE MAXIMUM FEEDRATE ON EACH AXIS

The most common condition for NC machines is to have the same
feedrate maximum on all axis. Such a condition requires no
special concern since all axes respond identically when under the

same limitations. However, some NC machines, usually those of
the very large variety, have different feedrate 1limitations on
one or more of +their axes. This restriction can affect the

programmed feedrate, that is, cause a reduction of the programmed
value if the resulting component axis feedrate is greater than
the allowable axis feedrate maximum.

[;H:[N] "I POSTPROCESSOR ...for the computer programmer

4.1.5.2 VARIABLE MAXIMUM FEEDRATE ON EACH AXIS (cont'd)

The postprocessor must interrogate each motion block and its
feedrate, and compute each component axis feedrate to compare
versus the allowable limits. These limits are specified in FRTAB
and ordered according to axes and feedrate ranges. The example
below best illustrates the usage and operation of this sequence.

A

Diagram 4.1.5.2A

For a part programmed feedrate ﬁ,the postprocessor determines the
axis component feedrate;

F = Axf
X

\JAX2‘+ Ay? + Az?
similary for Fy and FZ.

Each axis component feedrate is then compared versus its
allowable maximum and minimum feedrate, and where a bound is
exceeded, the feedrate is set to that bound. The axis feedrate
which has the most limiting condition is used to then redetermine
the allowable programmed feedrate.

(;H;[NI I" POSTPROCESSOR ...for the computer programmer

4.1.5.2 VARIABLE MAXIMUM FEEDRATE ON EACH AXIS (cont'd)

The axes maximum and minimum feedrates are stored in the feedrate
table FRTAB as:

FRTAB(289) = X axis min
FRTAB(290) = X axis max
FRTAB (291) = Y axis min
Range 1
FRTAB(292) = Y axis max
FRTAB(293) = Z axis min
FRTAB(294) = Z axis max
FRTAB(295) = X axis min
FRTAB (296) = X axis max
FRTAB(297) = Y axis min
Range 2
FRTAB (298) = Y axis max
FRTAB(299) = 2 axis min
FRTAB (300) = 2 axis max

In the example above, only two ranges are used, but as many
ranges can be used as room in FRTAB permits.

The tabled values must also be ordered according to the axes
setting of option 59. In the example above, option 59 was
assumed to be ordered as XYZ, but if +the machine were for a
lathe, the order could be ZX, (Y is implied but disregarded). 1In
this case then, the storage would be:

FRTAB (295) = Z axis min (Assume 1 Range)
FRTAB(296) = Z axis max

FRTAB (297) = X axis min

FRTAB(298) = X axis max

FRTAB (299) = (Y axis min)

FRTAB (300) = (Y axis max) (can be set to zero)

BICEAT Il ~osrerocessor

...for the computer programmer

4.1.5.2 VARIABLE MAXIMUM FEEDRATE ON EACH AXIS (cont'd)

The postprocessor
following example.

Assume the machine
following feedrate

FRTAB (289)

FRTAB (290)

FRTAB (291)
Range 1

FRTAB (292)

FRTAB (293)

FRTAB (294)

utilizes

is a lathe

table:
0.03
Z
3.4
0.01
X
1.0

the above feedrate table in the

(ordered as +Z-X) and has the

FRTAB (295) = 0.13]
FRTAB(296) = 13.5J ’
FRTAB(297) = 0.35
Range 2 F X
FRTAB(298) = 36.0
FRTAB(299) = 0 |
FRTAB(300) = 0. | !

The programmed feedrate is 100 IPM and feedrate range 2 is
used. The departures are AX = 2, AZ = 3.

Then,

4-30

>

— e

e e e — — — — —

AX

Diagram 4.1.5.2B

[;H;[N] I” POSTPROCESSOR ...for the computer programmer

4.1.5.2 VARIABLE MAXIMUM FEEDRATE ON EACH AXIS (cont'd)
0

F = 2%100 = 200 = 55.5 IPM,
x 3.61
4+9
F, = 3#100 = 300 = 83.3 IPM.
159 3.61

F_ >36, therefore, Ek is made 36 IPM. Similarly, since Fz>13.5,
is made 13.5 IPM.

z
+
F must be recomputed to determine which condition is the more
limiting.
->
Using Ex' F =36 * 3.61 = 65 IPM, indicating that the
2

programmed feedrate could be as much as 65 IPM without exceeding
the X axis maximum feedrate. Computing for the Z axis;

3.61
* 2
13.5 3

using F_, ol = 16.2 IPM, indicating that the
programmed feedrate on the 2z axis is the more limiting.
Therefore, F must be reduced to 16.2 IPM. The component
feedrates are now within acceptable limits..

F, = 2_ % 16.2 = 9.0 IPM
3.61

F, = _3_ * 16.2 = 13.5 IPM.
3.61

A final test is made on F to make sure ¥ is less than or equal to
the absolute value of option 25. If f>| OPTAB (25) |, F is set
equal to OPTAB(25).

This sequence resides in subroutine FEDLIM which is called from
subroutine SELG. Although machines which have different feedrate
maximums on each axis must utilize the feedrate optimizing
sequence of subroutine FEDLIM, this does not pertain to varying
rapid traverse maximums. See Section 4.1.5.4 for this function.

To call for the use of subroutine FEDLIM, option 25 must be set

negative. If multiple feedrate ranges exist, option 18 must be
set accordingly.

4-31

ﬂHINIl" POSTPROCESSOR

...for the computer programmer

4.1.5.2.1

VARIABLE MAXTIMUM FEEDRATE ON MULTIAXIS MACHINES

Subroutine

stored

ordered

third rotary axis if there is one.

(in RPM)
specified by option 59,
in DBFSEG;

for the

FEDLIM is also used for multiaxis machines which have
different feedrate maximums on each axis.
the maximum and minimum feedrates
in SRTAB.
followed by the
head first,

For multiaxis machines

rotary motions
The linear feedrates are ordered as
rotary feedrates as

are

table second, followed by the

In the following example only two feedrate ranges are used, but
as many ranges can be used as room in SRTAB permits. .

Range 1 Range 2
SRTAB(281) = X axis minimum SRTAB(291) = X axis minimum
SRTAB(282) = X axis maximum SRTAB(292) = X axis maximum
SRTAB(283) = Y axis minimum SRTAB(293) = Y axis minimum
SRTAB (284) = Y axis maximum SRTAB(294) = Y axis maximum
SRTAB(285) = Z axis minimum SRTAB(295) = Z axis minimum
SRTAB(286) = Z axis maximum SRTAB (296) = Z axis maximum
SRTAB (287) = head axis minimum SRTAB(297) = head axis min.
SRTAB(288) = head axis maximum SRTAB (298) = head axis max.
SRTAB (289) = table axis minimum SRTAB (299) = table axis min.
SRTAB(290) = table axis maximum SRTAB(300) = table axis max.
Option 25, the maximum feedrate in IPM, must be set negative to

indicate that each axis has its own maximum and minimum feedrate
per range. Option 112, the radius in inches of the part, and
option 128, the head tool swing radius in inches, must also be
Setc !

The APT program computes the XYZ coordinates and the direction
cosines of the tool vector offset from the part surface by the
radius of the cutter. For multiaxis machines the postprocessor
uses transformation (class) equations to relate part geometry to
machine geometry and slide motion. The motions of the rotary
axes are derived from the direction cosine data.

Since the APT program calculates only linear cut vector, the part
program tool tip path length is determined from the relationship

L (part program path) =QAX2 + AY? + AZ?

where AX, AY, and AZ are the increments between CL data points.
The feedrate number is determined using this path length L and

any of the conventional methods given by option 10.

[;H:[N] I" POSTPROCESSOR ...for the computer programmer

4.1.5.2.1 VARTABLE MAXIMUM FEEDRATE ON MULTIAXIS MACHINES (cont'd)

When a given cut vector has been resolved by the transformation
equations into machine slide motions, it is necessary to
determine that no axis feedrate constraints have been violated.
The following example will illustrate the method:

Problem statement: To cut a spiral groove 1/4 inch wide
and 1/8" deep in the face of a cone.
(See Figure 4.1.5.2.13)

Given: (1) Cone with 4 inch base diameter, 8 inches in

height.

(2) Option 112 = 2.0 inches, option 128

; inches.

(3) Groove to have one inch lead along major axis
of cone (Y axis of machine).

(4) Tool axis to be normal to cone surface at all
times.

(5) Desired feedrate is 40 IPM in range 1.

(6) SRTAB is set thus:

3

Range 1 Range 2
SRTAB (281) = .05] SRTAB(291) = .17
SRTAB(282) = 4.0 = X SRTAB(292) = 8.0 X
SRTAB (283) = .1 v SRTAB (293) = .2
SRTAB (284) = 6.0 - SRTAB (294) = 12.04 ¥
SRTAB(285) = .17 SRTAB (295) = .27
SRTAB (286) = 6.0 _ SRTAB(296) = 12.04d 2
SRTAB (287) = .5 7 A SRTAB (297) = 1.0]
SRTAB (288) = 2.0 _| SRTAB(298) = 4.0dJ A
SRTAB (289) = .5] SRTAB (299) = 1.0]
SRTAB (290) = 3.0 | B SRTAB(300) = 6.0 B
-1
Cone 1/2 angle = tan 2
8
= 14.03°

Lead (Y axis) 1 in. or_1_ inch per degree of rotation

360

Tool advance (Z axis) (1" X sin 14.03°) cos 14.03° inv/
revolution
.234 inches/revolution

.234/360 inchess/degrees

4-33

l;[l:[N] I" POSTPROCESSOR ...for the computer programmer

4.1.5.2.1 VARIABLE MAXIMUM FEEDRATE ON MULTIAXIS MACHINES (cont'd)

It can be shown that for a given tolerance t, the maximum linear
cut vector (L) at radius R is given by

L = 4 \|RT.

Assuming equal inside and outside tolerances, T = .005 at

radius R, L = QV2*.005
= 4
The table will rotate 2 sin™! L degrees.
2 (R+t)
Table rotation B = 2 sin~1 .4
_1 2(2.005)
= 2 sin .0998
= 11.46°

The machine data is
AX = 0 (no motion of X axis)

AY =_1" % 11.46°
360

.0318" (one inch spiral lead)

AZ =_.234 * 11.46°
360

.00745 (in feed of Z axis)

]

An 0 (assuming previously set at 14.03°)
AB = 11.46° (rotation of table for each cut vector)

For a given feedrate ¥ the axis component feedrate is computed
for each axis by the formula:

->
where the factor F/L is the inverse of the cut time.

l;[(;[NI I" POSTPROCESSOR ...for the computer programmer

4.1.5.2.1 VARIABLE MAXIMUM FEEDRATE ON MULTIAXIS MACHINES (cont'd)

Each axis component feedrate is compared with its allowable
maximum and minimum values in SRTAB, and where a bound is
exceeded, the feedrate is set to that bound. The axis feedrate
which has the most limiting condition is used to redetermine the
allowable programmed feedrate.

F. = .0318%40 = 3.18 IPM
Y .4
F_ = .00745%40 = .745 IPM

z‘ 'l‘

The table move is converted to inches

AB = 2 * 3.14159 * 11.46°% 2 in = .4 inches
360°
Fp = .4 * 40= 40 IPM

ol

The maximum allowable feedrate in IPM for the table is

FB (allow) = 2 * 3,14159 * 2 * 3 = 37.7 IPM
Since Fp> Fp (allow), therefore, Fg is set to 37.7..
Recomputing E gives

F=37.7% .4 = 37.7
.q

All component axis feedrates will be correspondingly reduced
since the 40 IPM requested feedrate cannot be achieved due to
the limitation of the rotary table (B axis)

F._ = .318 * 37.7 = 3.0 IPM
¥ 5
F_ = .00745 * 37.7 = .702 IPM

z 4

ﬁ[[:[NI "I POSTPROCESSOR ...for the computer programmer

4.1.5.2.1 VARIABLE MAXIMUM FEEDRATE ON MULTIAXIS MACHINES (cont'Qd)

A
14.03°
|
8"
|
!]
: - T T T~~~
1/4" 1~ —— T~ NN
ST NN
SN
t N
\Ool \\
= aXiS 1" A\
\\ F- 1/8" ///
,\\\ ————— — ’// _.L__.
Diagram 4.1.5.2.1A

G[E[NI I” POSTPROCESSOR ...for the computer programmer

4.1.5.3 FEEDRATE MULTIPLIER CONSTANT

Whenever a feedrate command (dimension multiplier or inverse time
type) for a linear move exceeds the command maximum, and unless
the postprocessor can use some optimizing method which retains
the programmed feedrate, the feedrate command is set to the
command maximum which necessarily causes a reduction in the
feedrate; see the example in Section 4.1.5.1.

One of the optimizing methods that the postprocessor can use
requires the availability of the IJK registers which are normally
used for circular interpolation and threading. This method, in
effect, proportionately reduces the feedrate command by ratioing
the incremental moves by some arbitrary constant.

Whenever the calculated feedrate command exceeds the maximum, an
arbitrary constant can be chosen which, when divided into the
feedrate command, reduces it to its maximum value or below. The
XYZ axis departures are then multiplied by this same constant,
and the resultant products are programmed in their respective IJK
registers.

This method can be applied to both the dimension multiplier and
inverse time types; see Sections 4.1.1.1 and 4.1.1.2. The
relations are: .

*
F - D" Frpy

COM g * C

where C is the arbitrary multiplier constant.
AI = X * C,

AJ

]

Y * C,

AK = Z * C,

Example: Assume the inverse time feedrate command type,
therefore, D = 1. AXx = 0.01 and AY = 0.01 inches, and the
programmed feedrate is 30 IPM.

F, 30 = 2120,

coM 0.01414

which is greater than the feedrate command maximum of 999.9 This
value can be brought down to an acceptable quantity by adopting
an arbitrary constant which scales down EbOM'

[;H:[NI "l POSTPROCESSOR ... for the computer programmer

.1.5.3 FEEDRATE MULTIPLIER CONSTANT (cont'd)

Adopt a value of 5 for C. Therefore,

Foom = 2;20 = 424,

which is now well below the maximum.

Then, I =0.01 %*x5 = 0.05,
J=0.01 * 5 + 0.05.
The programmed block would then contain the values AX = 0.01,
AY = 0.01, I = 0.05, J = 0.05, and FCOM = 424,

This scaling method cannot be used with circular interpolation
because it would alter the length of the circle radius, but it
may be applied to rotary motions by an analagous method, i.e.,
the values D and E are determined by multiplying the rotary
motions by the multiplier constant; see Section 3.4.7.1.

D

AA * C,

E AB * C.

The major restriction on this scaling method is that the
resultant product of multiplying the departures by the multiplier
constant must not exceed the storage capacity of the I,J,K,D, or
E registers.

Note that the feedrate command will no longer be equal to 1/T
when this method is used.

G[[:[Nl ”I POSTPROCESSOR ...forthe computer programmer

4.1.5.4 RAPID TRAVERSE OPTIMIZATION

Since 'a rapid traverse 1is a non-cutting type move, it should
normally be made at the highest feedrate possible. The maximum
feedrate for an NC machine may be 100 IPM, but it is possible to
legitimately exceed this value by obtaining an optimim vector
feedrate.

Options 42, 43, and 44 provide the maximum rapid traverse
feedrate for each axis, and these values are used to optimize the
rapid traverse. In the following example we assume a two-axis
machine and want to rapid traverse over the path S

]

Diagram 4.1.5.4A

(Diagram U4.1.5.4A) whose length is 5 and whose component lengths
are 3 and 4. Assume also that the maximum rapid traverse
feedrate for each axis is 100 IPM. If we compute the feedrate
command for the rapid traverse path S, we get:

— *
Foom = D * Frpy
S
= * - -
Fooy = 10 : 100 200;

(See Section 4.1.1.1).

This is an acceptable feedrate command which maintains the
programmed feedrate of 100 IPM; but, as will be seen, we can get
a yet higher value.

(;H:[N] "I POSTPROCESSOR ...for the computer programmer

4.1.5.4 RAPID TRAVERSE OPTIMIZATION (cont'd)

Using the resultant speeds on each axis we can compute:

X rapid traverse = 3 * 100 = 60 IPM;
5

Y rapid traverse = 4 * 100 = 80 IPM.
5

We can get greater speeds if we select the optimum ratio value of
the component path length to maximum rapid traverse feedrate for

the component's axis, that is, we select the maximum of the three
values:

AX Ay Az
option 42! option 43! option 44°
In our example these ratios are 3 , 4 ; the maximum is
100 100
_4 .
100

The feedrate command relation for rapid traverse is now

Foom = B

where %4 is the maximum of the ratios. 1In our example,

F‘COM: 10 : 100 = 250.

This value is higher than the previously calculated F
Using this value, the resultant feedrate over S is then:
F

E = COM * 5 = 250%5 = 125 IPM.
IPM - 0

The resultant speeds on each axis are now:

X rapid traverse = * 125

75.

0l Uw

Y rapid traverse * 125

100.

Neither axis traverse exceeds the maximum, but each traverse
attains its optimum value.

4-40

[;H.:[NI "I POSTPROCESSOR ...for the computer programmer

4.1.5.4 RAPID TRAVERSE OPTIMIZATION (cont'd)

If the rapid traverse occurs in a low range, option 39 is used
for all axes, thereby replacing options 42, 43, and 44,

This rapid traverse optimization is dome in subroutine CONTUR.

Option 36 must be set to 0 to call for this optimizing sequence.
NC machines which have an inadequate hydraulic power supply to
move each axis at it's maximum feedrate cannot use this
optimizing feature.

[;H:[NI ”I POSTPROCESSOR ...for the computer programmer

4.2 MULTIAXIS TRANSFORM CLASSES

The APT system passes multiaxis information on to the
- postprocessor through the CL tape. Cutter location data for the
programmed part are in the form of algebraic points (x, y, 2z)
along the cutter path, and direction cosines (i, 3j, k) of the
tool axis. Before the postprocessor can properly process data
for control output, it must first transform the 1linear motions
into the nonlinear motions of the multiaxis machine. In general,
the nonlinearity is due to one or more rotary axes which alter
the position value of at least one of the 1linear axes. Hence,
the postprocessor's geometric function is two-fold: one, to
relocate the affected linear-axis point as a function of the
nonlinear motion; and, two, to transform the direction cosine
data into the angular results required for rotary motion.

According to the NAS 938 description of standard machines there
are approximately twenty existing types of machines which could
be classed as multiaxis machines. This includes machines which
have at 1least one translatory axis, one rotary axis, or both
translatory and rotary axes. A translatory axis is defined as a
secondary or tertiary axis operating parallel to one of the
primary axes. Machines which have ancillary translatory axes are
not normally considered part of the multiaxis problem.
Specifically, only those machines which have one or more rotary
motions about the primary axes are considered. .

The following notation is used for descriptive purposes in order
to differentiate between the various types of multiaxis machines:
I(p,T,R), where I is the total number of tape controlled axes, P
is the number of primary axes, T the number of translatory axes,
and R the number of rotary axes about primary axes. Thus, a five
axis machine 5(3,2,0) is easily discernible from 5(3,0,2) as
being a type machine not considered to be a multiaxis machine.
An extension of the notation gives other axis information;
thus,9(3,2-1,2-1) refers to a 9 axis machine with 3 primary axes,
2 secondary and 1 tertiary translatory axes, and 2 rotary and 1
secondary rotary axes. Multiple spindles are indicated by a
final number outside the parentheses, as 9(3,2-1,2-1)2 to
indicate two heads.

(;H:[Nl I" POSTPROCESSOR ...for the computer programmer

4,2 MULTIAXIS TRANSFORM CLASSES (cont'd)

In general the GECENT III postprocessor can easily handle
multiaxis machines of type 4(3,0,1) and 5(3,0,2) which, happily,
are the most common configurations. However, the postprocessor
can also handle machines which have translatory axes but not as
a multiaxis move.. If, for a 6-axis machine. 6(3,1,2), the
translatory axis is independant of the other five axes, i.e., is
essentially a positioning motion, then the postprocessor is
applicable. This implies that after the five axis slides bhave
been set for some given point X, Y, Z, A, B, that the translatory
axis is then moved. With this definition the multiaxis GECENT
postprocessor is capable of handling 13 of the 20 multiaxis
types. This includes types 5(3,0,2), 5(2,0,3) 4(3,0,1), 5(2,1,2)
5(3,1,1), 6(3,1,2), and 4(3,1,0). Each of the types discussed
here are one of these.

The most basic feature of a multiaxis postprocessor is its
transformation equations for converting the data from the part
program coordinate system to the machine coordinate system.
Since there are so many possible configurations, it is not
economically possible to generalize a sequence for all possible
combinations. The postprocessor uses one of several defined
configurations during any particular run. This method, in a
generalized sense, processes a multiaxis motion which is yet
particularized to a given machine geometry.

Briefly stated, the method involves a classification of the
geometric transform equations of existing multiaxis machines, to
program these equations and identify them by their class, and to
allow an option value to select the class for the given machine
tool. For example, if a multiaxis machine has a rotating and
tilting table and an orthogonal system, it would have a Class 3
geometric configuration. The Machine Subroutine merely assigns
the appropriate option values for the class, and the CL data is
transformed according to the relations given for Class 3. Option
116 specifies the geometry class.

Each class of equations is programmed in its own subroutine, and
usually involves no more than ten equations.. The number of
classes, however, will vary. As new machine configurations
occur, their classes are added to the postprocessor. Thus, there
is no limitation to the adaptability of the postprocessor, and as
new classes are added, the overall generality of the
postprocessor is enhanced.

G[B[N] "I POSTPROCESSOR ...forthe computer programmer

4.2 MULTIAXIS TRANSFORM CLASSES (cont'd)

Present multiaxis machine structures do not vary too much, and
the same can probably be said for future machines. It is
probable, therefore, that the number of classes will be no more
than twelve, which is the approximate number of logical
combinations of table and tool rotating and/or tilting machines.
There will be special cases which can increase the number. In
any event, a large number of classes can be handled quite
adequately in the postprocessor.

Each of the various classes of multiaxis machines defined in this
section are illustrated by a diagramatic sketch which gives the
basic relationships of the linear and rotary axes. The sketch is
not meant to typify any particular NC machine.

The direct and inverse transforms are given for each class. The
notation X Y Z ABC refer to the machine coordinates, whereas x y
z ijk refer to the part coordinates. ABC are the machine rotary
. motions, and 1ijk are the backward directed direction cosines of
the tool.

Options 100 through 105 are used as the input source for equation
constants which may be needed by the transforms. These constants
are identified and given in the Machine Subroutine.

';[l:[NI "I POSTPROCESSOR

4.2.1 CLASS 1 5(3,0,2)

... for the computer programmer

This class is for five axis machine with a rotary table about the
Z axis and a rotary head about the X axis.

Class 1

Diagram 4.2.1A

4-46

GH:[NI ”I POSTPROCESSOR ... for the computer programmer

4.2.1 CLASS 1 5(3,0,2) (cont'd)

Direct Transforms: Part to Machine Coordinates

X =x i _y i ~
Ql - k2 \1 - k2
Y = x i + v __ 3 + (R+Ti)ﬂ1+k2
\1 - k2 {1 - k2 |
Z =z + (R+T)k
L
A = tan—? k (Head)

Ql - k?

C = tan-! j (Table)
i

Inverse Transforms: Machine to Part Coordinates

]

X X sin C + (Y - (R+T;) cos A) cos C
Yy = (Y - (R+T}) cos A) sin C - X cos C

Z - (R+T;) sin A

N
"

i =cos A cos C
j = cos A sin C
k = sin A

Definition of Terms

Xy z The part coordinate plus its respective TRANS values
XY 2Z The machine coordinates

A Head rotation angle in the machine coordinate system
C Table rotation angle in the machine coordinate system
ijk The direction cosines of the tool axis

[;H:[N] I" POSTPROCESSOR ...for the computer programmer

4.2.1 CLASS 1 5(3,0,2) (cont'd)

Definition of Terms (cont'd)

T
L

R

4-48

Tool length in inches

Distance in inches between the rotary head axis and
spindle face

The value of R is a function of the head and gripper;
for example:

Small Gripper Large Gripper
Head 1 R=14 R = 9.5
Head 2 R =3 R = 8.5

-30

NI RV

120

90

Diagram 4.2.1B

[;H:[N] "l POSTPROCESSOR ... for the computer programmer

4.2.1 CLASS 1 5(3,0,2) (cont'd)

An indeterminate value for the table rotation occurs when the
tool is perpendicular to the table since it cannot be clearly
defined as to which way the rotation should go.

Thus, when k = 1, A is indeterminate. For this case, A is made
90 degrees and C is given the same value as at the previous
point. Then,

X =xs8inC - y cos C
Y=xcos C +ysinC
Z =2 + R + TL

A =T7/2

C = Previous C

Linearity testing is disregarded over this move.

4-49

GH:[NI I" POSTPROCESSOR ...for the computer programmer

4.2.2 CLASS 2 4(3,0,1)

This class is for a four axis machine with a rotary table about
the Y axis.

Class 2

Diagram 4.2.2A

G[[:[NI "I POSTPROCESSOR

...for the computer programmer

4.2.2 CIASS 2 4(3,0,1) (cont'd)

Direct Transforms: Part to Machine Coordinates

X =

Y

7z =

B

x k -
Yy
x i +

tan-1

z i

zk+ R+ TL)

Inverse Transforms: Machine to Part Coordinates

Xx=[2 - (R + TL)] sin B + X cos B
y=7Y

z=[2 - (R+T)]cosB- XsinB
i = sin B

j=0

k = cos B

Definition of Terms

Xyz

XYz

The part coordinates plus its TRANS value
The machine coordinates

Table rotation angle in the machine
coordinate system

The direction cosines of the tool axis
Tool length in inches
Distance in inches between the rotary head axis and

spindle face. The value of R has the standard value
of 3 (option 102).

ROCESSOR

GECANT Il osre
4.2.3 CLASS 3 5(2,0,3)

4-52

[;H:[N[”l POSTPROCESSOR ...for the computer programmer

4.2.3 CLASS 3 5(2,0,3) (cont'd)

Direct Transforms - Part to Machine Coordinates

X = x + iT

[o] L
Y. =y + iTy,
Zc =z + k?L
i' = (ix, + jY,)/H
J' = (jXE - 1Yb)/H
k' =k
6 =\anz+ xH?
X = H
Y = 0 (by definition)
zZ =12
o]
A = tan-1 (-3' sign k)
!
B = tan-1 i!
G sign k
C = tan—? (-XC)

¥YC

Inverse Transforms - Machine to Part Coordinates

- sinC sinB + cosC cosB sinA

i
j = cosC sinB + sinC cosB sinA
k = cosB cosA

x = -X sinC - ?Li

y = X cosC —'$Lj

zZ = Z—jhk

';H:[Nl "l POSTPROCESSOR ...for the computer programmer

4.2.3 CLASS 3 5(2,0,3) (cont'd)

Definition of Terms

Xyz The part coordinates
XYZ The machine coordinates
A Head rotation angle in the machine

Coordinate system

B Head rotation angle in the machine
Coordinate system

C Table rotation angle in the machine
coordinate system

ijk The direction cosines of the tool axis

T Tool length in inches

[;H:[NI ”I POSTPROCESSOR ...for the computer programmer

4.2.4 CLASS 4 4(3,0,1)

This 1is for a four-axis machine with a rotary table about the X
axis.

o

Class 4

Diagram 4.2.4A

l;[l:[”] "I POSTPROCESSOR ...for the computer programmer

4.2.4 CLASS 4 4(3,0,1) (cont'd)

Direct Transforms Part to Machine Coordinates

X =x

Y = vk - zj
Z = yj+ 2k
A =

tan—-t k 0 <A <27
3

Inverse Transforms Machine to Part Coordinates

Xx =X

y=Ysin A + Z cos A
z = -Ycos A+ Z sin A
j = cos A

k = sin A

i=0

4.2.5 CIASS 5 4(2,0,2)

This class is essentially a dummy class subroutine for a filament
winder. It satisfies the postprocessor necessity of providing a
class subroutine within the multiaxis sequence. 1In effect, all
that it does in to set DPRESM equal to DPRESP.

4-56

GH.:[N] III POSTPROCESSOR

4.2.6 CLASS 6 5(3,0,2)

...for the computer programmer

This class is for a five-axis machine with a rotating head about
the X axis and a pivoting column about the Y axis.

Diagram 4.2.6A illustrates a single-head NC machine while Diagram
4.2.6B illustrates a multi-head machine.

Y

X

S

[>
. Class 6
Z_ .
Diagram 4.2.6A

GHIN]'" POSTPROCESSOR

4.2.6 CLASS 6 5(3,0,2) (cont'd)

... for the computer programmer

+X
+Y +D
X
A
> +7
Z
Gantry
X MOTION IS GANTRY MOVEMENT
Axis Nomenclature 1Pl Head 3
Head 1 +X, +Y, +Z, +A c)
Head 2 +X, +V, +W, #D W
Head 3 +X, +V, +W, *D Cl\
Class ‘
ss 6 ‘ Head 2
Diagram 4.2.6B TOP VIEW

4-58

I;H:[N] ”I POSTPROCESSOR ...forthe computer programmer

4.2.6 CLASS 6 5(3,0,2) (cont'd)

Direct Transforms Part to Machine Coordinates

X =x+ (-Q-2)

Y=1y+ (-Q-2)

P S Lo

Z2=-0-1 (Q72)
K

A = tan—! -3

\|1-j2
B = tan"1 i
K

Inverse Transforms Machine to Part Coordinates

x = X + (2+Q)i

Yy =Y + (2+Q) j

z = Q + (Z+Q)k

i = cos A sin B
j = -sin A

k = cos A cos B

Definition of Terms

X,Ys2 The Part Coordinates plus the TRANS value

X,Y,%Z The Machine Coordinates

A Head Rotation Angle (Tilt)
B Column Rotation (Swivel)
Q Directed distance from pivot plane to part

origin on Z axis.

The pivot plane is the plane parallel to the XY plane and
contains the column rotary axis and the head rotary axis.

G[(:[N] I" POSTPROCESSOR ...for the computer programmer

4.2.7 CLASS 7 5(3,0,2)

This class is for a five axis machine with a rotating column
about the Y axis and rotating "venetian blinds" about the X axis.

Y

(7

\

Ny

Q

// I

Class 7

J/

/
/ &
<

o

(X\
A
%
“{

Diagram 4.2.7A

((;[[:[N] III POSTPROCESSOR ...forthe computer programmer

4.2.7 cLASS 7 5(3,0,2) (cont'd)

In actuality the angle plate shown in Diagram 4.2.7A has three
w"yvenetian blinds", and the machine has a triple spindle. The &

axes

venetian blinds are work holding fixtures mounted on the

angle plate.

I
|

+45°

A
J

!

450 £ |

~—_ VENETION PART |
BLIND \‘b/

/\ |

Direct

I
|
|
A Angle
I

Diagram 4.2.7B

Transforms Part to Machine Coordinates

X =

A =

B =

x + i[(s1-0) Ni%+ k3 1 - [j(y+s2) + k(z+s51)]
j2 + k2
-52 + k(y+52) - j(z+S1)

‘ljz + k2

- Q - [151-QL(Ij2+k2)] - [j(y+S2) + k(z+S1)]

\IjZ + k2
tan—1? [__1}
k

tan—1 i
32 + k2

Inverse Transforms: Machine to Part Coordinates

X =

X + (Z + Q) sin B

-S2 + [(Y.+ S2) cos A)] - [(S1-Q) + (Z + Q cos B) sin A]
-S1 + [(Y + S2) sin A] + [(S1 - Q) + (2 + Q cos B) cos A]
sin B

-sin B cos B

cos A cos B

(;[[:[NI "I POSTPROCESSOR ...for the computer programmer

4.2.7 CLASS 7 (5,0,2) (cont'd)

Defination of Terms

X,Y,z, Part Coordinates

X,Y¥,Z, Machine Coordinates

A Venetian Blinds Rotation Angle

B Column Rotation

Q Directed distance from pivot plane to part origin on
Z axis

S1 Directed distance from axis of venetian blind to part

origin on Z axis

S2 Directed distance from axis of venetion blind to part
origin on Y axis

A
/
= 9

1 | Y

Angle Plate

Venetion
Blind

Part

AN

N

{

| Pivot Plane

— —— — — i s it e s | s . et

Part Origin

F.gl..-+-' ' N

Diagram 2.4.7C

v

';H:[N] "I POSTPROCESSOR ...for the computer programmer

4.2.8 CLASS 8 5(3,0,2)

This class is for a five-axis machine with a rotating table about
the Z axis and a rotating head about the Y axis. .

Class 8

Diagram 4.2.8A

';H;[Nl "l POSTPROCESSOR ...for the computer programmer

4.2.8 CLASS 8 5(3,0,2) (cont'd)

Direct Transforms

A = tan—1 k

\li2 + 52

C = tan-1 [_i_
J

X=x* cos C+ y * sin C

Y = (z - ZMO) * Sin (Ram Angle) + IL * Cos A
-X * Sin C + y ¥ Cos C

Z =[z~-T * (1-sin A) }J/Cos (Ram Angle)

Inverse Transforms

]

i -~ (Cos A * Sin A)

j = Cos A * Cos C

k = sin A

x = -TIVAL * Sin C + X * Cos C

y = TIVAL * Cos C + X * Sin C

N
]

Z * Cos (Ram Angle) + ?L * (1-Sin A)

Notes: TIVAL = Y-[(Z2-ZMO) * Sin (Ram Angle) +
?L * Cos A]

ZMO = ((Option 125 + 50.3389) - TL)
/Cos (Ram angle)

4-64

G[[:[NI "I POSTPROCESSOR ...for the computer programmer

4.2.9 CLASS 9 5(3,0,2)

This class is for a five axis machine with a rotating table about
the Z axis and a rotating head about the X axis. Refer to
Diagram 4.2.8A.

The NC machine illustrated for Class 8 is the same as for Class
9 except that the head is positioned so that it pivots about the
Y axis.

Direct Transforms

A = tan—1 k

iz + 37

C = tan-! (i/3j)

X=x +CosC +y * Sin C

<
]

(z - ZMO) * sSin (Ram Angle) + jL * Cos A - x ¥ Sin C
+y ¥ Cos C

Z=0 z - ?L * (1-Sin A) }/Cos (Ram Angle)

Inverse Transforms

.
I}

- (Cos A * Sin C)
j = Cos A * Cos C
k = Sin A
Xx = -TIVAL *¥ Sin C + X ¥ Cos C
y = TIVAL * Cos C + X * Sin C
zZ = Z * Cos (Ram Angle) + ?L * (1-Sin A)
Notes: TIVAL = Y-[(Zz-ZMO)*Sin(Ram Angle) + T * Cos A)]

ZMO = [(Option 125 +50.3389) - T)]
/Cos (Ram Angle)

l;[c[N] "I POSTPROCESSOR ... for the computer programmer

4.2.8 CLASS 8 5(302) (cont'd)

Definition of Terms for Class 8 and Class 9
X,Y,Z The part coordinates plus the respective TRANS values
X,Y,Z, The machine coordinates
A Head rotation angle in the machine coordinate system.
C Table rotation angle in the machine coordinate system.
i,j.k The direction cosines of the tool axis.

T, Tool length in inches

4-66

[;H;[N-I- I” POSTPROCESSOR ...forthe computer programmer

4.3 ACCELERATION-DECELERATION TESTING (A/D)

The acceleration-deceleration sequence of the GECENT 11X
postprocessor reduces feedrates below the values specified by the
part programmer in circumstances where maintaining the programmed
rate would cause an excessive deviation of the tool center path
from the commanded path. The need for such feedrate reduction is
found in the vicinity of corners and small arcs, where the
programmed feedrate would demand large accelerations from the
machine servo drives and cause the path error to exceed the
required tolerance.

In the interest of fast machining, it is desirable to interfere
with the programmed feedrate as little as will suffice to hold
the tolerance. The function of the postprocessor is similar to
that of a racing driver in the Monaco Grand Prix. Although he
might 1like to go at full throttle continuously, he necessarily
must slow down at the corners to stay within the tolerances of
the roadway. To save time, he brakes hard just ahead of a corner
to get down to a safe cornering speed and then uses all the
resources of his machine to get his speed back up to the value
best suited for the next part of the path, whether it be wide
open for a straightway, or some lower value for a curved path.
His mental computer weighs knowledge of terrain and tire adhesion
to tell him what speed he should maintain under each condition.
The postprocessor does not do anything quite as spectacular as
the racing driver. But similar principles are employed to the
extent that the limiting speed for each condition is computed,
and locations for required slowdowns are established just far
enough ahead of critical points to permit the slowdown to be made
in the space available.

The basis for the calculation of feedrates is an analysis of the
performance of servo drives which expresses tool center maximum
path error as a function of servo characteristics, path geometry,
and feedrate. The relationship is then solved for feedrate in
terms of the given tolerance, path geometry, and appropriate
servo constants. Different kinds of paths have to be analyzed
separately, and the use of more than one feedrate along the path
must also be considered. Some of these details are described
later.

In the discussion which follows, consideration is first given to
the physical and theoretical implications of servo control
reaction and effect. A complete description of the servo system
of the Mark Century numerical control is given, and each dynamic
effect is highlighted as to its cause and the theoretical method
applied for resolution of the problem.

l;[c[NI "I POSTPROCESSOR ... for the computer programmer

4.3 ACCELERATION - DECLERATION TESTING (A/D) (cont'd)

Later sections discuss the postprocessor programmed sequence for
the theoretically derived relations and principles which
constitute the GECENT III solution to A/D dynamic problems.

4.3.1 SERVO ANALYSIS OF A/D PROBLEM

By assuming that the servos on all axes of a three-dimensional
_ contouring system have identical characteristics and are linear,
some surprisingly simple relationships are found. The assumption
of 1linearity can be justified by noting that when the
postprocessor reduces feedrates to maintain tolerable path
errors, a tendency of the servos toward saturation at 1large
errors is reduced. Furthermore, all Mark Century servos are
designed for a good steady-state linearity between position error
and velocity over the full range of contouring velocities in
order to obtain 1low path errors on slopes. The effects of
friction and backlash, neglected in the analysis, are expected to
be small for most machines. Note, however, that the servo
constants wused in the postprocessor are entered in a table of
values for each machine (OPTAB) and can be changed as necessary
if experience indicates. The philosophy regarding these
constants is to fix them initially on a theroetical linear basis,
yet retaining for the wuser the capability of modifying or
adjusting them as his own experience warrants, simply by
exchanging values of constants in the table.

The assumption that the servos on all the machine axes have
identical characteristics is attractive to the analyst because it
greatly simplifies his results. For machines with drives all of
a given type having similar horsepower rating, it is justifiable.
For greatly different power ratings on different axes, transient
responses may not be entirely similar, in which case,
conservative constants corresponding to the drive with highest
transient errors can be used. Even when horsepowers are
different, Mark Century servos are designed with identical
steady-state gains in order to obtain low path errors on slopes,
and this characteristic, combined with the "naked system" type of
servo used in most Mark Century controls, tends +to insure that
the different servos will have very similar response
characteristics.

As background for discussion of tool center path errors, the
essential ~characteristics of Mark Century servos will be
described. These remarks apply equally to drives with DC motors
controlled by thyratrons, silicon controlled rectifiers, or
amplidynes, and to hydraulic drives employing either cylinder or
hydraulic motors.

[;H;[NI I" POSTPROCESSOR ...forthe computer programmer

4.3.1 SERVO ANALYSIS OF A/D PROBLEM (cont'd)

In common with all servomechanisms, the Mark Century servo drives
utilize a position-feedback signal which algebraically combined
with the input position command signal to obtain a position error
signal which actuates the motor to move in the direction tending
to reduce the error signal toward zero. 1In addition to this so-
called position feedback 1loop, the Mark Century servos are
provided with an inner velocity 1loop employing a velocity
feedback signal from a DC tachometer generator or other
equivalent means. This signal is subtracted from an amplified
version of the position error signal, and the resultant signal
serves as a velocity command, or a velocity error signal which is
amplified +to actuate the motor. The use of the inner loop
insures that the motor wvelocity is, to a high degree of accuracy,
proportional to the position error signal, and in effect it
improves the performance of the physical motor so that it behaves
more nearly 1like an ideal motor whose velocity would be totally
unaffected by machine inertia and friction, and by variations in
characteristics, with temperature and aging. The Mark Century
servo with its inner velocity loop is shown in block diagram form
in Diagram 4. 3. 1A.

To the extent that stability considerations permit the gain
around the velocity loop to be made high and the velocity error
signal to be kept small, the velocity feedback signal is
maintained equal to the velocity command signal; and hence, it is
proportional to the position error signal. For linear motions,
the proportionality constant is designed typically in the range
of 0.5 to 3 inches per minute for .001 inch of position error.
At a velocity of 60 IPM, a Mark Century servo might have
.120" to .020" of position error or velocity lag. It should
be noted that this lag does not cause an equal error in

the workpiece. On the contrary, at constant velocity
Position
- Error
Position . * Velocity Velocity
Signal
Command Command Error Output
Signal Signal Signal P Position
Amplifier Amplifier
& Motor
, Tachometer
Velocity Generator
Feedback Signal
Position Feedback Signal

Mark Century Servo Drive

Diagram 4.3.1A

4-69

(;H:[NI I" POSTPROCESSOR ...forthe computer programmer

4.3.1 SERVO ANALYSIS OF A/D PROBLEM (cont'd)

on sloping paths, the error is theoretically zero. The tool
center trails along behind the commanded point, on a path which
is exactly on the commanded path, so long as the servo gains are
exactly equal. If, contrary to the design objective, the gain of
one servo only should change by 1%, for example, it is true that
a small error is introduced. The maximum path error in such a
case, on a 45° slope, theoretically becomes 1/2 of 1% of the
normal velocity 1lag of one servo operating at the feedrate
commanded along the slope. For a 1 IPM/.001" system running at
60 IPM on a 45° slope, the error associated with a 1% gain change
in one servo thus 1is 1/2% of .060", or .0003", and is
proportionally smaller at lower feedrates. Satisfactory
constancy of gain dependent only on stable quantities such as the
tachometer volts/rpm characteristic and resistor wvalues, and
essentially independent of unstable quantities such as friction
or transistor gain.

Although servos of this kind are sometimes characterized by the
term "low gain" to distinguish them from servos which operate at
full speed with much smaller position errors, it should be clear
that the 1low velocity gain characteristic is achieved
deliberately by the use of velocity feedback around the velocity
error amplifier for the sake of the benefits which such feedback
bestows and not because of any skimping on amplifiers. For
moving against static friction in response to a small command,
the entire gain of both amplifiers in Diagram 4.3.1A is
effective, and a quantitative analysis of a typical hydraulic
system shows that only .000010 inch position error is required to
develop full system torque.

From the standpoint of A/D routines, the most significant
characteristic of the velocity loop system is its ability to
follow 1large changes in commanded velocity without excessive
overshoot. 1In general terms, because the tool center lags behind
the moving commanded point, the tool has adequate space in which
to stop without significant overshoot.

Diagrams 4.3.1B and 4.3.1C will <clarify this. In Diagram
4.3.1B(a), the solid line plotted against time shows an assumed
command to a Y axis servo drive. The command is initially
stationary, and then suddenly starts to move upward at 60 IPM, or
1 inch per second. The dotted 1line shows the tool center
position, obtained by assuming that the servo has a gain of 1.2
IPM/.001" (20 in/sec per inch of error) and a transient response
as indicated in Diagram 4.3.1B(b), where the servo error (the
difference between input command and servo position) is plotted
against time with an expanded vertical scale.

4-70

[;[[:[NI "I POSTPROCESSOR ...for the computer programmer

4.3.1 SERVO ANALYSIS OF A/D PROBLEM (cont'd)

/
150 va
o & /
& R/ 1/ (a) Command & Tool
o| .100) 7 Center Position
o o) 4 .
o \o,> / vs. Time
) /
.050 x- —
Command 1™ f
0 e
‘/’
Tool 0 .05 ‘.10 .15 .20 .25 .30 .35 seconds
anter |
g .060 qr/' K \\
) i)'? I 3 I e — (b) Servo Error
& g7/ ¥ | vs. Time
~ .040 pe K T
s T~ B
o
of .020
o)
s
o 0
0 0 .05 .10 .15 .20 .25 .30 .35 seconds
Diagram 4.3.1B 0 to 60 IPM
1.000 L B D e
Ve (a) Command & Tool
/7
Command / Center Position
. /l vs. Time
/
@ /
900
g /
A /
850
/
/I
A\800 -
Tool 1,00 1.05 1.10 1.15 1.20 1.25 1.30 1.35 seconds
Center
.060
1 in/seq inifial glope (b) servo Error
8 vs. Time
o 040 \
3]
o
-4
o .020 K
s kTN i
1 o H
o 1.00 1.05 IM2O 1.25 1.30 1.35 seconds
o
9
e
)

Diagram 4.3.1C 60 to 0 IPM

G[E[NI I" POSTPROCESSOR ...for the computer programmer

4.3.1 SERVO ANALYSIS OF A/D PROBLEM (cont'd)

After steady conditions are reached, the tool center moves at the
same velocity as the command but trails by .050" in distance, or
.05 second in time. In Diagram 4.3.1C(a), the command is assumed
to stop suddenly after 1 inch of motion, and the tool center
stops with a small overshoot as shown. The corresponding plot of
error is shown in Diagram 4.3.1C(b). With Coulomb friction
neglected, this curve of error is theoretically identical to that
shown in Diagram 4.3.1B(b) except that it 1is inverted and
. displaced upward. It is inverted because the step change in
commanded velocity is negative in Diagram 4.3.1C(a) compared with
the positive change of Diagram 4.3.1B(a) and the plot is
displaced because of the initial .050" steady error. Step
changes in velocity of different magnitudes would produce similar
plots of error versus time, larger or smaller in magnitude in
proportion to the magnitude of the command velocity change, and
displaying an initial value proportional to the velocity existing
before the command change. Plotted as it is for the particular
case of 1 inch per second feedrate, Diagram 4.3.1B(b) can serve
as a generally useful response curve which, after appropriate
scaling and shifting, describes the servo error following any
step change of command velocity, when steady-state conditions are
assumed to exist before the change. The shape of Diagram
4.3.1B(b) depends on servo adjustments and normally shows an
overshoot in the range of 0 to 20% beyond the final value

Q.3.1;1 PATH ERRORS ON CORNERS FORMED BY TWO CONNECTING
STRAIGHT LINES

While contouring along a straight 1line 3-dimensional path at
constant velocity, the command to each axis servo moves at a
constant velocity which is the appropriate component of the space
vector velocity. A step change to a new feedrate, or a sudden
change 1in direction of the path, or both, will in general cause
a step change in the velocity of the command to each axis. Each
servo position could be plotted by first plotting the error from
Diagram 4.3.1B(b) using an appropriate scale factor and initial
value in each case, and subtracting this error curve from the
known command. Geometrically combining the servo position curves
would yield a plot of tool center path, and its deviation from
the commanded path could be measured. A simple 2-dimensional
example will make this more clear. Suppose the commanded path
consists of a 90° turn with the two lines forming the angle being
parallel with the machine axes as shown by the solid lines in
Diagram 4.3.1D. Suppose futher that the tangential feedrate is
a constant 60 IPM. The Y-axis servo is initially at rest, and
its command calls for a step change to 60 IPM, as already
sketched in _Diagram 4.3.1B (a). The X - axis servo is

G[[:[NI I" POSTPROCESSOR ...for the computer programmer

4.3.1.1 PATH ERRORS ON CORNERS FORMED BY TWO CONNECTING STRAIGHT
LINES (cont'd)

simultaneously commanded to stop from 60 IPM, the condition that
was plotted 1in Diagram #4.3.1C(a). If the servo positions are
transferred point by point to an X-Y plot, the dotted tool center
path of Diagram 4.3.1D is obtained. The small numbers show the
time in seconds after the command leaves the corner. At .050
seconds, the tool center path crosses the #5° bisector of the
angle at point B, and is distant from each line of the command
path at this moment by the amount K indicated on Diagrams
4.3.1B(b) and 4.3.1C(b). The undershoot path error measured
along the bisector is the distance BO = 1.414 . At about .125
seconds the path exhibits its maximum overshoot. The overshoot
error E, in Diagram 4.3.1D is clearly the overshoot of the X
servo 1indicated as K_ in Diagram 4.3.1C(b) or 4.3.1B(b). Ky and
KP are servo constant® stored in the postprocessor.

I .160
.200 \
\ .140
\
175 | &
\ .120
\
\
.100
150 *
\
— . .080
125 | @
I o
| .060
Tool Center ————1\ .100 r
\ / .040
/
\875 /
.020
.0
Command —ﬁ 0 .025
—]

.860 .880 .900 .920 .940 .960 .980 1.000

Diagram 4.3.1D

G[[:[NI "I POSTPROCESSOR ...for the computer programmer

4.3.1.1 PATH ERRORS ON CORNERS FORMED BY TWO CONNECTING STRAIGHT
LINES (cont'd)

Eu would be affected by changing'the feedrate at the corner. An

increase in the feedrate,for instance,would cause the tool center
path to be stretched in the wvertical direction, the angle
bisector would be crossed sooner, and point B would be further
from 0. On the other hand, the overshoot of the X servo, E_, is
independent of commands to the Y servo and would be unchahged,
even if a dwell were programmed at point 0.

A general analysis of the corner error for any angle of turn 0
and a general feedrate F inches per minute yields the following
results:

. F) .
E, = 2K - sin - . or F = 60 fu (1
60 2 1 2K sin 8
2
2] E
= Kp-— sin 9 or F = 60 (2)
E, P 60
60 1 KP sin 6

It can be shown that these results are applicable regardless of
the orientation of the path on the machine. That is, the servos
will cooperate to produce the tool center path of Diagram 4.3.1D
even if the commanded paths are not parallel to the machine axes.
Although the individual servos will receive quite different
commands for different orientations of the 90° corner, the path
errors turn out to be identical, and the feedrate calculation is,
therefore, made without regard to individual component veloctiy
changes.

Equations (1) and (2) apply to the special case of a fixed
feedrate F , for both approaching and 1leaving the corner. The
postprocessor actually is not restricted to this special case,
but uses a more elaborate equation for the departing feedrate F,.
It calculates the approaching feedrate F, from the allowable E_,
(which is unaffected by E;) and then calculates F. from F and
the allowableE,. In the case of well-damped servos with ﬁittle
or no overshoot, this procedure gives a fast approach to the
corner, a ~short slow segment after the corner which holds the
undershoot to the tolerance, and a prompt speed-up after the
corner, if space permits.

[;H:[N] I" POSTPROCESSOR ... for the computer programmer

4.3.1.2 LOCATION OF SLOWDOWN POINT

In Diagram U4.3.1E a slowdown point D where the feedrate is
changed from its initial value F, to a required lower approach
value F, 1s located far enough 3head of the corner 0 to give the
servos time to settle down between the disturbance at D and the
corner O . For this purpose, DO=T_F;, in which T is the servo
settling time. If F; were very small, however, DO might be
calculated so small that the tool center could overshoot O in the
process of slowing down at D from the higher feedrate F.. A
second tentative value of DO is therefore calculated from the
expression
DO, =K o KpFy »

and the 1larger of the two values selected for use as DO. The
product KpF;j gives the overshoot beyond D for a commanded stop at
D, and the factor kzo, in the range of 1.2 to 1.4 increases the
result to allow for extra overshoot for values of F] greater than
zZero. For all but very small wvalues of Fj, DO=T F,. T is
selected rather arbitrarily as the time for the "error curve of
Diagram 4.3.1B(b) to settle to within a few per cent of the final
value, and depending on the damping, is normally in the range of
4 to 8 times 1/K,, where K, is the velocity error coefficient, or
gain in inches per second per inch of error.

Slowdown and Speedup Points

Diagram 4.3.1E

4.3.1.3 LOCATION OF SPEEDUP POINT

In Diagram 4.3.1E if F, is less than the programmed rate, the
speedup point U is separated from O by the distance T F,, to
permit the servos to settle down-after the disturbance at the
corner, If the next corner is close, there may not be space for
speeding up.

4-75

BH;[NI I" POSTPROCESSOR ... for the computer programmer

4.3.1.4 FEEDRATE LIMITATION ON ARCS

Because the Mark Century control provides circular interpolation,
servo errors during operation on circular arcs must be
cons idered. Contouring around "a circle in a coordinate plane
causes the two axis servos to be given sinusoidal input commands.
The tool center path will be a circle which can be slightly
oversize 1if the closed loop response of the servos exceeds unity
at the frequency of operation ("Frequency" 1is measured in
revolutions or radians per second of servo sinusoidal operation),
~or can be slightly undersize if the closed-loop response is less
than unity. By equating the difference between the tool center
circular path radius and the commanded radius to the tolerance,
a limiting feedrate in IPM is determined from the expression,

F = 60 K, \|E *r (3)
In equation (3), K, is a constant ranging from 25 to a very large

~ value for well-damped servos adjusted for flat response; E is the
error tolerance in inches; and r is the radius of the «circle in

inches. This expression is derived in Section 4.3.2 and will
normally set a practical limit on feedrate only for very small
circles. To allow for transient peaks in error experienced when

changing feedrate on an arc, or proceeding between tangent arcs
or between a straight 1line and a tangent arc, appropriate
slowdown factors based on computer tests of various situations
are applied to equation (3).

4.3.1.5 NON-TANGENT ARCS

Non-tangent intersections between arcs and between straight lines
and arcs are handled like corners formed by straight lines. On
the basis that for all but the very shortest radius arcs, the
region of cornering error will be so small in relation to the
curvature of the arcs that they will be the practical equivalent
of straight lines.

[;H:[NI "I POSTPROCESSOR ...forthe computer programmer

4.3.2 DERIVATIONS OF FORMULAE

4.3.2.1 UNDERSHOOT ERROR ON CORNER WHEN F2 # F1

Referring to the illustration in Diagram 4.3.2A it can be shown
that the tool center path as a function of time is given by

X = (F, cos Gz)t—(FllKv) cos 61-(F2cos 6,-F, cos Gl)f(t) (4)

-F

Y = (F2 sin 62)t—(Fl/KV) sin el—(Fzsin 9 1 sin el)f(t) (5)

2

in which f(t) is the response curve of Diagram #4.3.1B(b) for a
step change from 0 to 1 inch per second. In equations (4)
through (9), feed rates are in inches per second.

Corner With F2 # Fl

Diagram 4.3.2A

Let PO bisect < MOQ.

To locate point B where the tool center path crosses PO, the axes

will be rotated to the position X', Y', with the ¥' axis lying
along OP. After this rotation, the tool center coordinates X' and
Y' will be given as functions of time. The value of time which

makes X'=0 will be found and substituted into the expression for
Y' to obtain the distance OB.

angle POY = el+(1/2)e where 6 =0, - 6. .

2 1

(;H:[N] "I POSTPROCESSOR ...for the computer programmer

4.3.2.1 UNDERSHOOT ERROR ON CORNER WHEN F2 # Fl (cont'd)
After rotating the axes through the angle POY,
" = - -(F -
X F, cos ©72)[(Fz/Fl)t 1/kV (Ez/Fl H £(t)] (6)
t = 3 -
Y F, sin (6/2)[(F2/Fl)t+1/kv (F,/F +1)£(t)] (7)
For X' = 0,(Fé/Fl)t-1/kv—(Fé/Fl—1)f(t)=O,
or f(t) = (Fy/Fj)t- 1/K . (8)

FZ/Fl-l

The right side of equation (8) is a linear function of t, and
becomes equal to 1/K; if t is set equal to 1/K;. Geometrically,
equation (8) states that the value of t for which X' is zero can
be found by the construction of Diagram 4.3.2B where a plot of
f (t) has superimposed on it a line drawn through the point Pl(l/kV
» 1/K,) with a slope

F2/F1

F2/Fl—1
This = line intersects the f(t) curve at a point Py.
The line shown as an example in Diagram 4.3.2B is drawn with a
slope of -1, corresponding to F,/F;=0.5. The circular scale
indicates the location of the line for other values of Fy/F;. If
the time corresponding to By is called tg and this value is
combined with equation (8) and substituted for t in equation (7),

Y' = OB.= By = 2F) sin 0/2 [1/K, - £(t5)] = 2K F; sin 6/2 (9)

[;H;[NI "I POSTPROCESSOR ... forthe computer programmer

4.3.2.1 UNDERSHOOT ERROR ON CORNER WHEN Fz,# Fl (con'd)

F,/F
SLOPE = 2/ L
F, /F.-1
2771 1 1
K K :
§ V/ F(t)
0 [}
g
-
1/KV
B)]
seconds
Graphical Interpretation of Equation 8
Diagram 4.3.2B
The quantity K2B = l/KV-f(tb) is indicated on Diagram 4.3.2B.

To obtain an approximate value of Kon analytically, we can

replace f(t) with a parabola of the form fp(t) = t-Ct?. This will
pass through the origin with unity slope and by letting C=KBKV2,
it will pass through the point P2(1/Kv,l/Kv—KB), which 1is a

known point on the £f(t) curve.

Solving the straight line and this parabola for the location of

Py leads to the following result for K,.:

2(F2/Fl)

1 + 2K K (F,/F -1) +\1 + 4KgK,, (F,/Fy-1)

When this is substituted into (9), the resulting equation may be
solved for Fé in terms of Fl’ Eb, and 0, and the servo constants

KB and KV:

B[C[Nl "' POSTPROCESSOR ...for the computer programmer

4.3.2.1 UNDERSHOOT ERROR ON CORNER WHEN F2 # Fl (cont'd)

— 2—
BziVBz 4n.C

- : 272
F2—60 ;
A,
where
_ F .0 %
AZ—KB(KVEB—Z_}_Sln§)
Q 60
F F . F . 0O 2-:|
B, =2 "1E - "1 sin— 4+ 2 "1 K_K_ sin= - K_K_“E
- —_— —_— 2 B"v "B
2 60B[:60 2 o ° V

F 2 2 2
c, =| "1 K.K_°E
2 [E’G] Bv B

4.3.2.2 FEEDRATE ON CIRCLE DUE TO STEADY STATE SERVO ERRORS

The open loop response of the naked system servo whose Bode
diagram is given in Diagram 4.3.2C is

c Ye WeW3W4 Vs
E = p(1+p/w3) (1+p/wy) (1+p/w5) = p(p+wy) (p+wy) (p+wg)
E C
R . g
Q
T
Ol
\ wC w3 w4 (1)5

log w

Diagram 4.3.2C Servo Bode Diagram

The closed loop response,

= _C/E = W3y Vs
1+C/E p* + (w3 +wWy +wg) pT 4+ (W3 Wy +W3 W+, W) p? + Wy Wy W DHW_ W3 Wy Wy

<
R

4-80

[;[[:[Nl "I POSTPROCESSOR ...for the computer programmer

4.3.2.2 FEEDRATE ON CIRCLE DUE TO STEADY STATE SERVO ERRORS (cont'd)

Letting p=jw, and collecting real and imaginary parts of the
denominator,

WeWaWyeVs _

4 - . 3
(w3w4+w3w5+w4w5)w + W WaW,We + 3 [(w3+w4+w5)w + w3w4w5w[

¢
R
1

3

w 4 .
1-w | 2 + 12 4 Ljju |z, wcw = % * 3
€L W3 Wg o Vg||V¥c 3¥4¥s5 | Ve

Taking the square root of the sum of the squares of the real and
imaginary parts of the denominator to obtain the magnitude. of

C/R,

i<
o]
1
<
N
V)
=
w
|-
i~
+
£
w
£l
5
+
g
W
|~
w
N
P
kS
N—w
| S|

€. 2 . y 81 1/2
R [1 + C2(w/wc) + C4(w/wc) + C8(w/wc)]
where
c,=1-2u (141 .1,
3 Yy 5
C, = Wé (iz + lz + lz) + 2wé (—L)
V3 Wy Vg W3Y4Vs

6 € 2_.2 2

2..2 2

W3Wy W3Wg WaVs
— b ,
CS_WC(Z:ZLZ)
W3WyWs

If the same analysis is made of a servo with another down break
at w,., the result corresponding to equation (1l1) is of 10th order
in w?wc, and the coefficients are very similar in form:

(;H:[NI "I POSTPROCESSOR ...forthe computer programmer

4.3.2.2 FEEDRATE ON CIRCLE DUE TO STEADY STATE SERVO ERRORS (cont'd)

c,=1-2w (* + L 41 41
W3 Wy W5 o VW
c, = wé (l2+ £2+ 1,1, 2wé (I 4 I LI L
2 2
W3 W4 W5 W6 W3W4W5 W3W4W6 W3W5W6 W4W5W
C6 = Wé (212 + l * l + l + 212 + 212)
2..2 2.,2 2_.2
W3Wy W3Wg W3We WyWs WaVe WsWe
Cg = wé (1+ 1 + 1+ 1)
2..2..2 2..2..2 2..2_.2 2..2. .2
W3WaWg W3WyWg W3WgWe WyWgWg
Clo= e 1)
2.,2_.2_.2
W3W4W5W6

Note that all coefficients except Cy are inherently positive and
that their terms will contribute to a decrease in |C/R| as the
frequency variable w/w, increases. 1In (12), C, will be positive
if w3 , Wy, and wg are sufficiently large. With a positive C,,
|C/R|will never exceed unity. If w3, wy, and wg are sufficientfy
small, C, can become negative and its term can cause IC/RI to
exceed unity for some values of w/w2. This is the algebraic
mechanism which gives rise to a peak in the closed loop response.
For the critical condition C, = 0, the closed loop response stays
at essentially unity as w/wc¢ increases, until the higher order

terms cause it to drop off. The condition for C2=0 is

£

“5 IOSZ
|

|

w'la
v a

or approximately, OCH= 172 radian or 28.6°

4-82

[;[[:[NI "I POSTPROCESSOR ...for the computer programmer

4.3.2.2 FEEDRATE ON CIRCLE DUE TO STEADY STATE SERVO ERRORS
(cont'd) ~

Let us calculate a typical set of constants from (12) for a
system with a resonant peak.

w

Let “c = 16, "c = 16, and “c = 16_

c
L) 40 Wy 64 We 128
Then 02 =-.550
Cy = .263
Cg = -0135
Cg = .000156
For w/w,=1/2, the terms in (11) have the values,
C, (172)%=-.138
c4(1/2)'*= .0164
c6(1/2)'3= .0002
Cg (172)°= .000006
Clearly, for w/w. = 1/2 or less, the 6th and 8th order terms are
neglibible. The %th order term is 12% of the 2nd order term, and

becomes rapidly of 1lesser importance as wW/wW decreases.
Therefore, we neglect it also and write approximateiy,

1S = 1

1/2
[1+Cc W 2] /
2 w

c

G[C[N] "I POSTPROCESSOR ... for the computer programmer

4.3.2.2 FEEDRATE ON CIRCLE DUE TO STEADY SERVO ERRORS (cont'd)

since c, (¥)® << 1,
w

C .
w 2
| £ I = 1 =1 - (172)C¢, ()
R 1+ (172)C, (W) © c
w
The term-(1/2) G (w) 2 repre%ents the excess of the closed loop
Wc

response oOver unity. If the radial oversize error of the
contoured circle in inches is called E,

E=-(1/2)C, W ,,,
r W,)

c (13)

where ¥ is the radius of the circle. If F is the feedrate in

in in./sec., the angular velocity on the circle is

F/r = w (14)
Substituting (14) into (13) and solving for F in terms of E and
r,

F = gél fc \ﬁ-r

2
F = Kc Er in/sec., where (15)
\|2
K =w_\|— =W 1
c cy\y -C . (o]
’ \“_’g“_“c_:*"k-% (16)
Y3 Wy Vg

Equations (15) and (16) are valid as long as

LA

C2 (w

(o]

in (11) is the dominant term, as it will be for servos with at least
a moderate overshoot. ‘

GH:[N] I” POSTPROCESSOR ...for the computer programmer

4.4 SURFACE FEET PER MINUTE (SFM)

Diagram 4.4A

Suppose the part shown in Diagram 4.4A is machined on a lathe
with the cutter starting at A and working to B. Suppose further
that there is a constant feedrate and that the spindle rotates at
a constant speed. Since the part radius decreases from A to B,
the tool cutting speed varies along the path AB, and the cutting
speed is high for the larger radii and low for the smaller radii.
This varying cutter speed does not create a smooth finish, and
the chip removal is not the optimum amount possible for the life
of the tool. These undesirable effects can be reduced if the
spindle speed is increased proportionately to the decreasing
radii, that is, maintain a constant cutting value of surface feet
per minute. The part programmer can plan his program so that the
spindle changes speed at certain points, and essentially, keeps
a constant cutting speed. However, this is an enormous task and
subject to many errors. But, the APT postprocessor statement,
SPINDL/f, SFM provides the part programmer with an easy method
for accomplishing this work. He merely calls for the SFM he
desires and the postprocessor does all the work necessary to
maintain the requested SFM.

The following example illustrates the postprocessor's method of
generating the SFM condition. The example illustrates the method
for spindle types which depend upon a table of discrete spindle
speeds. See the paragraphs at the end of this section for the
SFM method used for variable type spindles.

(;H;[N] l" POSTPROCESSOR ...for the computer programmer

4.4 SURFACE FEET PER MINUTE (SFM) (cont'd)

Diagram 4.4B 1is the table of spindle speeds in RPM for the
machine tool.

Spindle
Speeds

15
20
30
40
50
60
70
80

Diagram 4.4B

Diagram 4.4C

[;[c[N] "I POSTPROCESSOR ...for the computer programmer

4.4 SURFACE FEET PER MINUTE (SFM) (cont'd)

Diagram 4.4C represents the part which the tool is to cut from A
to D with an SFM of 20.

The starting spindle speed is computed from the equation

S, = _12 sm ,
2T Ry

where SFM is the desired SFM, R} is the radius at the beginning
point, and S is the resultant spindle speed. For this example,
we have: P

S = 1.9 * 20 = 38 RPM.
P 1

This value is bracketed in the spindle speed table by the speeds
30 and 40. Using these values we next compute the optimum shift
point, i.e., the point at which the spindle speed changes so that
the SFM variation is a minimum. The value determined is the
radius at the optimum shift point and is given by the equation:

Ryp = _12 SFM(_ 1 + 1),
um Sl 82
where S; and Sy are the speeds which are selected from the
spindle speed table, and Rsp is the radius at the optimum shift
point. The present example gives

ne

Rgp = 0.95 * 20 % (1_+ 1) = 1.1

40 30

Hence, at the radius of 1.1 (point B), the spindle must change
from speed 40 to speed 30. Since the radius of the workpiece is
increasing, we must select decreasing values of spindle speeds
from the spindle table. Therefore, for the next determination of
the optimum shift point, §; = 30 and S, = 20, and

)

~

Rgp = 0.95 * 20 * (_1_ + _1 2.2.

20 15

[;H:[NI I" POSTPROCESSOR ...for the computer programmer

4.4 SURFACE FEET PER MINUTE (SFM) (cont'd)

But the radius 2.2 is beyond the end of the workpiece; therefore,
the determination of shift points ends, and the speed 20 is used
for the remaining path. A similar case occurs when there are no
new values to select from the table; the last selected value is
used for the remainder of the path. Note that if the feedrate
mode is IPR, the feedrate in IPM is computed by

—_ *
Fipm = Fipr * Sp,

where FiPR is the feedrate in IPR.

The postprocessor segments the path AD into the subsegments AB,
BC, and CD. Each segment will have the proper value of spindle
speed and feedrate necessary to produce the requested SFM for the
given path.

The SFM technique is essentially the same for variable spindle
types except that each succeeding shift point is determined by
the spindle speed which is a certain percentage of the preceding
spindle speed. The percentage used is specified in option 15.
The following steps in the example illustrate the method.

C

(1) Determine the initial spindle L

speed at A from the relation

Sp_ = 12 * SEM
I 27 R .

(2) Determine the limiting spindle
speed at B by
s = 12 * SFu A

(3) Determine the shift point spindle speed from S=OPTAB(15)*SP

- OPTAB(15) is standardly 0.1%.

(4) Determine the radius at the optimum shift point from the
relation '

12
Rsp1 = Trsem (2 4+ 1,

S; 5,

where Sl and 82 are the two determined speeds;

1
determined speed.

S, is the previous speed, and S, is the newly

G[c[N] "l POSTPROCESSOR ...for the computer programmer

4.4 SURFACE FEET PER MINUTE (SFM) (cont'd)

(5) The previous speed is wused over the segment determined
by the optimum shift point. Thus, initially SP is the speed
I
from A to R ’ whereas the speed S is used from R to
SPl SPl
Rop and so on. Each succeeding spindle speed is determined as
2

at step 3.

(6) The SFM sequence discontinues whenever S falls outside the
bound of SP , Or whenever the radius RSP exceeds the bound of

L M

R,. The postprocessor segments the path AB into the computed SFM
subsegments as described above.

When a SPINDL/n, SFM statement is given, subroutine SPINDL sets
the flag SFMFLG to 1 to indicate that an SFM mode has been
established. All subsequent motions except rapid traverses,
threads, or tool corrective moves are subjected to the SFM
influence. Subroutines GOLINE, PROCQD, and SEGMNT interrogate
the SFMFLG, and when finding it non-zero, branch to subroutine
SFMO which generates the spindle speeds and path segments to
obtain the requested SFM.

When the SFM mode is cancelled, the SFMFLG is set to zero and the
SFM sequence discontinues. A number of parameters is set for a
given SFM statement. Consider a full statement such as
SPINDL/40,SFM,CLW,RANGE, 2,RADIUS, YCOORD,MAXIPM, 10 ,MAXRPM, 100.

The following flags are accordingly set:

SFMFLG = 1, SFMDES = 490, SPNDIR = 1,
ISRNGE = 2, ISFMOD = 1 (for X axis),

2(for Y axis),

3(for Z axis),
SFMAXI = 10, SFMAXR = 100, SFMLOK = 1,
SFMRPM = 1, FLONSP = 1,

All of these parameters are used and referred to in subroutine
SFMO, the subroutine which produces the requested SFM effect.

Since Subroutine SFMO generates its own segments, it must first
save the current beginning and end points DPREVM and DPRESM;
these points are saved in the 1local arrays PREVM and PRESM,
respectively. Now the arrays DPREVM and DPRESM can be used in
their normal manner when the subroutine produces new segments.

4-89

[;H:[N] I" POSTPROCESSOR ...for the computer programmer

4.4 SURFACE FEET PER MINUTE (SFM) (cont'd)

One of the first duties performed by subroutine SFMO is to
determine the sense of inclination of the cutter path. This is
easily done by comparing the beginning and ending radii of the
path, which for the statement given above, means comparing the Y
coordinate values from DPREVM and DPRESM.

The flag ISENSE is then set as:
-1 = increasing radius

0

constant radius

+1

decreasing radius
The SFM sequence over a particular path ends whenever:
(1) +the path end point is reached;

(2) a spindle speed is generated which produces a radius
beyond that of the end point;

(3) a spindle speed is generated which exceeds the SFMAXR
limitation; ’

(4) the selection of spindle speeds ceases because the
range bound has been reached;

(5) the radius is essentially constant.

For all of these conditions, the flag SFMLIM is set to 1 which

directs the subroutine to conclude the SFM sequence over this
path.

It is sometimes very difficult to start an SFM sequence for a
given path if the coordinate points and available spindle speeds
are incompatible. In Diagram 4.4E is illustrated a case where
the starting speed cannot produce a radius which falls on the
path. The table of discrete speeds is also shown.

GH:[NI "I POSTPROCESSOR ...forthe computer programmer

4.4 SURFACE FEET PER MINUTE (SFM) (cont'd)

10
20

30
SPINDL/100,SFM 40

50
60

+X

Diagram 4.4E

The sense of inclination ISENSE is +1 which means we must select
from the table those values which become increasingly larger.
But when the starting speed is attempted to be found, as

S = 12 * SFMDES = 2 * 100 = 2.86,
2 7T™ R1 70

it can be seen that such a speed is not available in the table.
Hence, the SFM sequence cannot even be started for this path with
these given conditions. The postprocessor outputs the path P.P

with the current spindle speed. 12

4.5 SPINDLE TYPES

Spindles are typed, i.e., classified, according to the manner in
which their spindle speed commands are formed. This formation
usually results in a coded value which, according to the manner
of the NC machine, leads to the obtaining of the desired spindle
speed. .

It is important to note that the spindles are not typed according
to whether or not the spindle is AC or DC motor driven, or
whether the spindle requires gear shifting for range changes, or
whether the gears are shifted electrically or hydraulically. The
only consideration is the make-up of the spindle speed command.

[;[[:[NI I" POSTPROCESSOR ...for the computer programmer

4.5 SPINDLE TYPES (cont'd)

Spindle types can be classified into two groups: one group
consists of those types whose speeds are selected from a preset
list of discrete values; the other group consists of those types
which have a range of variable speeds. For proper spindle
operation of types of the first group, the postprocessor must
have available the list of preset discrete spindle speeds. These
speeds are given in ordered form in the spindle speed table,
SRTAB.

A maximum of 300 spindle speeds can be given in the SRTAB table;
the actual number is specified in options 7 and 8. If the speeds
are grouped into ranges, the speeds as given in SRTAB must be in
increasing range order, i.e., range 1 values must precede range
2 values, and so on. The spindle speeds are ordered this way
because the programmed intent is to select a speed from a range
which gives the highest motor speed; thus, if a requested speed
can be selected from one of two ranges, the lowest range is
chosen since its spindle speed will have a higher motor speed.
The terms "low, medium, and high range" refer to the motor speed.

If a speed is called for that is within the range of, but not
listed in the spindle table, SRTAB, the postprocessor selects the
next lowest, closest, or next highest speed, depending upon the
value of option 90. If the specified speed is outside the table,
the postprocessor outputs the appropriate maximum or minimum
listed speed.

SRTAB may have any number of ranges, but each range must have the
same number of speeds. Therefore, it is possible to have 30
ranges of 10 speeds in each range, or, 15 ranges of 20 speeds,
and so on. The total number of speeds cannot exceed 300%*.
Unless otherwise specified, all the spindle types described below
assume that SRTAB is given with preset discrete speeds, and that
the speeds are grouped in several ranges.

* These statements assume that there is no feedrate table FRTAB.
If there is, the total number of speeds permissible is
consequently reduced. See Section 5.6.6 for a description of
FRTAB.

GHIN]'" POSTPROCESSOR ...forthe computer programmer

4.5.1 TYPE 0: COMBINATION RANGE AND ROW

The speed command is fommed by using the range number as its
first digit, and the row number of that range as its second digit
plus some increment which is given by option #7. Note that the
row number in this example begins at 0 and ends at 9. Each range
is numbered separately.

Range 1 Range 2 Range 3
0 2 0 12 0 26
1 4 1 14 1 28
2 6 2 16 2 30
3 8 3 18 3 32
4 10 4 20 4 34
5 12 5 22 5 36
6 14 6 24 6 38
7 16 7 26 7 40
8 18 8 28 8 42
9 20 9 30 9 4y

Example: speed = 12; speed command =S15 or S20. Option 47 in
this case is 0.

If there are more than ten rows per range, the speed command has
three digits.

S622 means range 6, 22nd row. If there are more than ten ranges,
the speed command has four digits. S1204 means range 12, UG4th
row; S1011 means range 10, 11th row.

4.5.2 TYPE 1: EIA 3-DIGIT CODE NUMBER (VARIABLE SPINDLE)

The spindle may have any speed which falls within a maximum and
minimum value. No table of speeds is required, and no ranges are
used in the coding. The spindle speed 1is converted to the
standard 3-digit EIA command number.

Example: Speed = 137.2; speed command = S614. Speed = 0.0123;
speed command = S212. See Section 7.1 of the Appendix for the
EIA conversion method.

The only information necessary to the postprocessor for this type
spindle 1is the minimum and maximum values that the spindle can
assume. To be consistent with the other type spindles, the
minimum and maximum values are given in the SRTAB. The SRTAB,
then has only the two values, and SRTAB is considered as repre-
senting one range with two values in the range. Option 7,there-
fore, is set to 1, add option 8 to 2. The Standard Machine
assumes this type spindle, hence, these options are set
accordingly.

GH:[N] "I POSTPROCESSOR ... for the computer programmer

4.5.2 TYPE1: EIA 3-DIGIT CODE NUMBER (VARIABLE SPINDLE) (cont'd)

As a condition of this type spindle, the machine tool control
must either produce every possible coded speed within the
specified range, or search for the appropriate speed if not all
speeds are possible. :

4.5.3 TYPE 2: ASSOCIATED SPEED CODE

For a given spindle speed there is an associated code number.
These code numbers may come in ranges or be all in one range, but
there must be the same number of codes in each range. The code
number 1is assumed to be related to the row number plus an
incremental value, e.g., if the speed falls in row 12, the code
number is assumed to be 12 plus some increment. Hence, the
incremental variation from a code number to an adjoining code
number must be constant within each range. The increment is
given in option 47. A variation 1in the speed codes is
permissible between ranges provided the same variation exists
between all ranges. In the example below, the variation between
ranges 1is 3 since the last code in range 1 is 17 while the first
code in range 2 is 20. This incremental variation between ranges
is given in option 31.

Range 1 Range 2 Range 3
Code Speed Code Speed Code Speed
0 10 5 0 20 14 0 30 30
1 1M1 6 1 21 16 1 31 32
2 12 8 2 22 18 2 32 34
3 13 10 3 23 20 3 33 36
4 14 12 4 24 22 4 34 38
5 15 14 5 25 24 5 35 40
6 16 16 6 26 26 6 36 42
7 17 18 7 27 28 7 37 4y
Example: speed = 14; speed command = S15 or S20. The code

increment (option #7) for this example is 10; the range increment
(option 31) is 3. The speed command S20 is derived from the
relation of the row number modified by the range number, option
47, and option 31. 119

'
I

94

G[[:[N] "I POSTPROCESSOR ...for the computer programmer

4.5.3.1 TYPE 2: PROTECTIVE MULTIPLE SHIFTING

Some machine tools require a multiple shifting sequence when
going from one spindle range to another. For example, it may be
damaging to some machine tools to change spindle ranges if the
two speeds are high values in each range. 1In fact, there is a
shift point common to each range above which direct shifting from
one range to another 1is damaging. In the example below, the
shift point is at row 5.

Range 1 Range 2

1 2 1 [wo
+»2 2 4 2 60
ES 3 6 3 80

0 8 4 100
“Weog 10 5 | 120
oo 3 30 3 150 Shift Point
Iu-«c.‘ 7 30 7 | 160
o] o
£ 0
[Qg

If the spindle speed is 30 RPM in Range 1 and we wish to shift to
160 RPM in Range 2, the proper way to obtain this speed is to
output the sequence 10 RPM, 120 RPM, and lastly, 160 RPM. That
is, the speed is first brought down to the shift point in Range
1, the range is changed to Range 2 with the spindle speed coming
from the shift point of Range 2, and then the spindle is brought
up to the new speed. A similar path is followed in going from
160 to 30 RPM.

No multiple shifting is required as long as the ranges do not
change. Thus in Range 1 we can go directly from 2 RPM to 30 RPM.

Only two spindle speeds are made output when changing ranges from
above the shift point to a speed below the shift point. To go
from 160 RPM in Range 2 to 4 RPM in Range 1 requires only the
output of two values, namely, 60 RPM and 4 RPM. In this sequence
the shift from one range to the other is made at the same row;
this is always permissible as long as the o0ld and new spindle
speeds fall below the shift point.

Direct shifting is also permissible between ranges when both the
0ld and new spindle speeds occur below the shift point. For
example, we can go directly from 8 RPM in Range 1 to 100 RPM in
Range 2 since both values lie below the shift point.

For a Type 2 spindle, option 137 specifies the shift point row
number beginning with the lowest speed row and counting toward
the highest speed row.

l;[l:[NI I" POSTPROCESSOR ... for the computer programmer

4.5.4 TYPE 3: ASSOCIATED SPEED CODE WITH RANGE AND/OR
DIRECTION M CODES

The spindle command is given by both an S code and an auxilliary
function M code. The S code is related to the row number plus an
incremental value which is given in option 47. The incremental
variation between adjacent code numbers must be constant. The S
word selection 1is independent of range; i.e., the same for all
ranges.

The range is selected by auxiliary function M code in one of two
ways. In the first, a single M code is assigned to each range,
M; for range 1, M; for range 2, etc. Mj is assigned to TABLEM
locations 71 and 72 for range 1, M2 to locations 73 and 74, etc.
Spindle direction is obtained by MO3 and MO4 which are stored at
TABLEM locations 4 and 5. '

In the second case, auxiliary function M codes determine both
range number and spindle direction. Two M codes are assigned to
each range, one for CLW rotation and the other for CCLW. These
codes are stored in TABLEM beginning at 1location 71 and
continuing up to location 82 for a maximum of 6 ranges.

A spindle speed command including RPM, range and direction will
interrogate TABLEM in the 70 series for proper range number. It
will interrogate direction M code stored at TABLEM location 4 or
5 unless these latter locations are set +to DMBITS. Machines
using both range and direction combination M codes will not use
MO3 and MO4, and locations # and 5 should be set to DMBITS. A
range only M code should be stored in both CCW and CCLW locations
for the appropriate range.

Range 1 Range 2 Range 3
Ml M2 M3

Code Speed Code Speed Code Speed .
0 2 100 0 2 300 o [2 600
1 3 200 1 3 400 1 3 700
2 4 300 2 4 500 2 4 800
3 : 5 400 3 5 600 3 5 1000
4 6 500 4 6 700 4 6

G[[:[Nl I" POSTPROCESSOR ...for the computer programmer

4.5.4 TYPE 3: ASSOCIATED SPEED CODE WITH RANGE AND/OR DIRECTION
M CODES (con'd)

Example: Speed=400; speed command=S5 with M; or S3 with M, .
The incremental option 47 for this example is 2. Note that the
rows are numbered separately for each range, and that the rows
begin numbering with 0. In this case spindle direction will come
from TABLEM location 4 or 5.

Alternatively -

Range 1 Range 2 Range 3

CCW CCLW CCW CCLW CCW CCLW

Ml M2 M3 M4 M5 M6

Code Speed Code Speed Code Speed
0 2 100 0 2 300 0 2 600
1 3 200 1 3 400 1 3 700
2 4 300 2 4 500 2 4 800
3 5 400 3 5 600 3 5 900
4 6 500 4 6 700 4 6 1000

Example: speed = 400, clockwise; speed code S5 with M} from
range 1, or S3 with M3 from range 2. The postprocessor will
always select the speed from the lowest numbered range in which
it can be found, unless a specific range has been called.

[;H:[Nl I” POSTPROCESSOR ... for the computer programmer

4.5.5 TYPE 4: QUASI EIA 3-DIGIT CODE NUMBEK WITH RANGE
AND DIRECTION M CODE

The spindle speed command is given by both a miscellaneous
function M code which is chosen according to the range and
spindle direction, and by the EIA 3-digit coded number for the
spindle speed in the lowest range which occupies the same row as
the desired spindle speed. . See Section 7.1 of the Appendix for
the EIA conversion method.

Range 1 Range 2 } Range 3
M M "
Low Medium High
100 400 600
200 500 700
300 600 800
400 700 900
500 800 1000
600 900 1100

Example: speed = 600; speed command could be:

S660 with M;, or
S630 with M), or
S610 with M3.

It is apparent that the EIA code number is correct for those
speeds found only in the lowest range (range 1). They are
meaningless, and therefore arbitrary numbers, for the speeds in
all other ranges.

GH:[NI "I POSTPROCESSOR ...for the computer programmer

4.5.6 TYPE 5: DISCRETE EIA 3-DIGIT CODE NUMBER

The speed command is derived by selecting the spindle speed from
SRTAB, and converting it into the EIA 3-digit number. See
Section 7.1 of the Appendix for the EIA conversion method. With
this type spindle there are no multiple ranges but only discrete
speeds. Furthermore, the table may not include all possible EIA
coded speeds. If a speed given by the part programmer does not
appear exactly in the spindle table SRTAB, the postprocessor
selects the next lower value. This is extremely important for
those machines which have an AC motor drive and use the discrete
EIA values, since this type machine may produce an incorrect
spindle speed if the speed called for is not exactly available in
the machine's spindle table.

Speeds

193
197
200

Example: speed = 13; speed command = S512. The closest value,
12, is selected.

4.5.7 TYPE 6: DISCRETE EIA 3-DIGIT CODE_NUMBER - SELECTIVE
SEARCH

This type spindle is similar to Type 5, except that the machine
tool control system automatically searches its spindle table
until it finds the next lowest available EIA-coded speed. The
postprocessor considers this type spindle to be identical with
Type 5.

Although it is possible to have the postprocessor simply convert
the speed to the EIA 3-digit number, and then 1let the machine
tool control system find the proper value, it is actually simpler
to let the postprocessor find the exact value. In fact, if SFM
is used, it is essential that the exact variations of spindle
speeds be used.

GH:[N] "I POSTPROCESSOR ...for the computer programmer

4.5.8 TYPE 7: (PRESENTLY UNDEFINED)

4.5.9 TYPE 8: ASSOCIATED SPEED CODE INDEPENDENT OF RANGE

For a given spindle speed ‘there is an associated speed code
related to the row number of the range in which the speed falls.
The speed code number related to each row is the same regardless
of the range number. Thus, the code number for row 2 of range 1
is the same as for row 2 of range 2. The code number is assumed
to be derivable from the row number plus an incremental value,
e.g., if the speed falls in row 12, the code number is assumed to
be 12, plus some increment; the increment must be given in option
47,

Range 1 Range 2 Range 3
Code Speed Code Speed Code Speed
0 {1 10 011 40 011 70
112 20 112 50 1412 80
2 (3 30 213 60 213 90
3|4 40 34 70 3|4 100
4 15 50 415 80 4 |5 110
Example: speed = U0; speed command = S04 if in range 1; speed

command = S01 if in range 2. If the speed is 70 and range 3 is
in wuse, then 501 is the command code. The increment option 47
for this example 1is 1. Note that +the rows are numbered
separately for each range, and that the numbering begins with 0.
Shifting between ranges is not tape controlled.

4-100

G[S[NI "l POSTPROCESSOR ...forthe computer programmer

4.5.10 TYPE 9: ASSOCIATED SPEED CODE RELATED TO TOOL NUMBER

This is similar to Type 8 in that the speed code is independent
of the range, but this type spindle specifies the range by the
tool number in use.

Range 1 Range 2 ' Range 3
Tools 1 & 4 Tools 2 & 5 Tools 3 & 6
Code Speed Code Speed Code Speed

0 0 10 0 0 40 0 0 70
1 1 20 1 1 50 1 1 80
2 2 30 2 2 60 2 2 90
3 3 40 3 3 70 3 3 100
) 4 50 4 4 80 4 u 110

Example: speed = 50; speed command = S04 if tool 1 is in use,
or S01 if tool 5 is in use.

The number of tools on the machine 1is given in option 88.
Regardless of the number of tools, the range relation is assumed
to be:

Range 3 for tools 1, 4, 7, 10, 13

Range 2 for tools 2, 5, 8, 11, 14

Range 1 for tools 3, 6, 9, 12, 15

4-101

BHIN]'" POSTPROCESSOR

...for the computer programmer

4.5.11

TYPE

10: VARIABLE SPEED WITH RANGE AND DIRECTION

M CODE

The spindle speed
function M

command
code which is chosen according to the range and the

is

given by both

miscellaneous

spindle direction, and the spindle speed which is converted to a
3-digit EIA code.
conversion method.
only limited by a maximum and minimum value for each range.

See Section 7.1 of the Appendix for the EIA
The speeds in each range are variable and are

Range 1 Range 2 Range 3
CLW CCLW CLW CCLW CLW CCLW
M60 M61 M62 M63 M6l M65
1 1.2 1 3.1 1 6.6
2 13 2 31 2 69
Example: speed = 10; speed command could be 5510 with Mé60 for
range 1 and a CLW spindle direction, or S510 with M63 for range

2 and a CCLW spindle direction.
Each range

TABLEM.

The M codes
must be specified as having two rows which

are

specified in

are the range minimum and maximum values, hence option 8 must be
set to 2, and SRTAB must carry the range values.

4-102

N

G[[:[NI I” POSTPROCESSOR ...forthe computer programmer

4.5.11.1 TYPE 10 PROTECTIVE MULTIPLE SHIFTING

This technique is very similar to the method of the Type 2
spindle (See Section 4.5.3.1); but since the speed command is
determined differently for the Type 10 spindle, a slightly
different approach is used.

In the example below, the shift point is at 25% of maximum RPM in
the current range.

Range 1 Range 2
1 6.5 28
2 270 1200
Assuming option 137 = -0.25, the shift speed in Range 1 is 67 RPM

and the shift speed in Range 2 is 300 RPM.

No multiple shifting is required as long as the ranges do not
change. Thus, in Range 1 we go directly from 10 to 200 RPM, and
conversely. When changing ranges from a speed below the shift
point to a speed above the shift point, no multiple shifting is
required. Thus, in Range 1 at 10 RPM, a direct shift is made to
1000 RPM in Range 2.

When changing ranges from a speed above the shift point to any
speed in another range, multiple shifting must take place. The
speed at the shift point current range is output with a 6 second
dwell, then the new spindle speed is output. Thus, if in Range
2 at 700 RPM, it is desired to change to 20 RPM in Range 1, the
output will be as follows: output 300 RPM in Range 2 with a 6
second dwell, then output the new speed of 20 RPM in Range 1.

A negative value for option 137 specifies the percentage of the
maximum RPM in a range to use as a shift point. Note that a
negative value for option 137 must be used for a Type 10 spindle
when specifying the need for the multiple shifting sequence.

4-103

G[E[NI "l POSTPROCESSOR ... for the computer programmer

4.5.12 TYPE 11: TABLE LOOKUP

The spindle speed command is produced by issuing the code value
at a table position which corresponds to a similar position for
the spindle speed. Thus, the commands are produced irrespective
of any specified range or any other condition. The speed command
table is set up to correspond one-to-one with the spindle speed
values. The setup is made in table SRTAB, hence, the maximum
number of spindle is 150 and not 300. The table is regarded as
one range consisting of twice the number of available spindle
speeds, therefore, it is essential to not ever call for Range 2
in any SPINDLE statement.

Range 1

5
10
15
20 Spindle Speeds
25
30

o e e |\ — — s

14 Spindle Commands

NOUEFEWNN=S 100N EWN-
o]

Example: speed = 20; speed command is S14. Speed is 35; speed
command is S15. This example has one range of seven values even
though in fact there are fourteen values stored in SRTAB.
Therefore, option 7 is made one and option 8 is made seven. 1In
setting up SRTAB the spindle speeds must precede the spindle
commands .

4-104

A

A T

|

[;H:[Nl ”I POSTPROCESSOR ... for the computer programmer

4,5.13 TYPE 12 SPINDLE: COMMAND EQUAL TO SELECTED SPEED

This type spindle issues a spindle command equivalent to the
spindle speed. The postprocessor sets the spindle speed to the
next lowest integer whenever the spindle speed is not an exact
value in the range from 25 RPM to 199 RPM. For example: S =
28.4; the postprocessor issues S28. For s8s = 28.7, the
postprocessor issues S28.

Similarly, in the range from 200 RPM to 600 RPM, the
postprocessor sets the spindle speed to the next lowest increment
of 10. For example: S = 418; the postprocessor issues S410; for
S = 422, the postprocessor issues S420.

Whenever there is a change in spindle speed which crosses over
the 199 RPM speed, the postprocessor issues a dwell block of time
as given in ocption 54. For example, a dwell (if option 54 is
nonzero) is issued when going from a speed of 70 RPM to 200 RPM,
and also when going from 300 RPM to 180 RPM.

If option 54 is zero, the S code is output in a block by itself.

4.5.14 TYPE 13: EXPANDED QUASI-ETA 3-DIGIT CODE

This type is very similar to Type 4 except that it has been
expanded +to include more speeds and to be operative for two
heads. 1In brief, the Type 13 spindle has the same S code for the
row for all ranges. The code is the 3-digit EIA code for the
actual RPM value in Range 1.

Code Range 1 Range 2
510 10 88
512 12 100
520 20 200
552 52 300
577 717 450

Example: speed = 100 RPM in range 2. The S code is 512 which is
the EIA code for the second row of range 1. See Section 7.1 for
a description of the EIA conversion method.

4-105

(;[(:[Nl "I POSTPROCESSOR ...for the computer programmer

4.5.14 TYPE 13: EXPANDED QUASI-EIA 3-DIGIT CODE (cont'd)

The Type 13 spindle requires special attention when setting up
the Machine Subroutine, namely:

(1) Make option 7 be the number of ranges per head; for
example, two rangdges; therefore, option 7 = 2.

(2) Make option 8 be 2.0; put the Range 1 minimum in SRTAB (1),
the maximum in SRTAB(2); put the Range 2 minimum in
SRTAB(3), and the maximum in SRTAB(#4#), and so on. This
keeps all postprocessor testing consistent.

(3) Set up SRTAB as follows:

SRTAB(1) = Range 1 Min.
(2) = Range 1 Max.
(3) = Range 2 Min.] Head 1
4) = Range 2 Max.
(5) = Range 1 Min.
(6) = Range 1 Max.
(7) = Range 2 Min. Head 2
, (8) = Range 2 Max.
STRTPT (9) = Number of actual speeds in Range 1, Head 1
(10) = Multiplying Factor Range 1, Head 1
(11) = Multiplying Factor Range 2, Head 1
(12) = Multiplying Factor Range 1, Head 1
(13) = Multiplying Factor Range 2, Head 2
(14) = First Speed Range 1
(15) = Second Speed Range 1
(179) =
(180) = SRTAB row number where starting point STRTPT

is stored.

If an NC machine has more speeds than can be stored in SRTAB,
Type 13 (instead of Type 4) can be used since each range is some
multiple of the corresponding speed of Range 1, therefore, we
simply store the values of the first range in SRTAB. The
multiple factors are also stored as are other pertinent data.
Thus, if a wvalue of Range 2 is to be used, the postprocessor
refers to the related value of Range 1 multiplied by the
appropriate multiple factor. For example:

2 7% *3R

4-106

\ 4

[;H.:[Nl I” POSTPROCESSOR ...for the computer programmer

4.5.14 TYPE 13: EXPANDED QUASI-EIA 3-DIGIT CODE (cont'd)

where S is the Range 1 speed and is the Range 2 multiple.
The spin%le command for all ranges is “the 3-digit EIA "Magic
Three" code for the range 1 value. Example: say 198 is in Range
2. The corresponding speed in Range 1 is 94, (The Range 2
multiple here is 2.2 since 94 * 2.2 = 198.) The S command made
output for the Range 2 spindle speed of 198 is, therefore, S594.

4.5.15 TYPE 14: SPEED CHANGES BY MODE

The Type 14 spindle is a spindle type that is coded as a Type 2
spindle except that M codes provide a mode of speeds consisting
of several ranges. Each of the individual modes is programmed as
a separate Type 2 spindle. All modes have the same identical S
codes. The ranges are consecutively numbered beginning with the
low mode ranges. This subroutine tests the current mode and
determines 1if the new range falls within the same mode. If so,
no M code is output. If the mode has changed, the appropriate M
code for the new mode is output. The table below shows how the
modes, ranges, and coding are tied together.

Mode #1 Range 1 Range 2 Range 3
Code Speed | Code Speed | Code Speed
10 5 20 14 30 30
11 6 21 16 31 32
12 8 22 18 32 34
M26 13 10 23 20 33 36
14 12 24 22 34 38
15 14 25 24 35 40
16 16 26 26 36 42
17 18 27 28 37 44
Mode #2 Range 1 Range 2 Range 3
Code Speed | Code Speed | Code Speed
10 20 20 56 30 120
1 24 21 64 31 128
12 32 22 68 32 136
M27 13 40 23 80 33 144
14 48 24 88 34 152
15 56 25 96 35 160
16 64 26 104 36 168
17 68 27 112 37 176

4-107

[;[(:[NI I" POSTPROCESSOR ...for the computer programmer

4.5.15 TYPE 14: SPEED CHANGES BY MODE (cont'd)

For the above example, option 47 = 10 and option 31 = 3. When
Mode 1 is in effect, a spindle speed of 40 RPM in Range 3 uses a
command of S35. The same spindle speed and range value with
Mode 2 produces S30 since 40 RPM is below the minimum value of
Range 3.

4.5.16 TYPE 15: RATIO BETWEEN RANGES

The Type 15 spindle 1is designed to accomodate spindle speed
tables where there is a direct ratio between spindle speeds and
spindle commands. The minimum and maximum speeds for each range
are stored in SRTAB(1) through (6), while the ratio between
spindle commands and spindle speeds of Range 1, 2 and 3 are
stored in SRTAB(7, 8 and 9). No other speeds need be placed in
memory. When a speed is requested, it is first checked against
minimum and maximum speeds for that particular range. If it is
outside these limits, it is set at the appropriate 1limit. The
speed requested is then altered in accordance with option 90.
The speed command is then multiplied by the ratio factor to
obtain the speed. TABLEM 71 through 76 may also be used for
range and direction changes.

Code Range 1 Range 2 Range 3
S01 5

502 10

S03 15

sS04 20 30.

S05 25 37.5 100
506 30 45 120
s07 35 52.5 140
S08 40 60. 160

4-108

(;H;[Nl "I POSTPROCESSOR ...for the computer programmer

4.5.16 TYPE 15: RATIO BETWEEN RANGES (cont'd)

Example:

The ratio between spindle command and spindle speeds is for
each range as follows:

Range Ratio
1 . 5
2 7.5
3 20

Speed requested = 35 RPM.

Range 1 Spindle Command = 35/5 = 7
Spindle Speed = 7 x 5 = 35
Range 2 Spindle Command = 35/7.5 = 4.67

(a) If the closest or next higher speed is
desired as expressed by option 90 being
set at zero or one, then

Spindle Command = 5.
Spindle Speed = 5 x 7.5 = 37.5

(b) If the next lower speed is desired as
expressed by option 90 being set to a
-1, then
Spindle Command = 4
Spindle Speed = 4 x 7.5 = 30.

Range 3 In subroutine SPINDL the speed requested is
raised to the minimum of that range, i.e.,
100 RPM. Therefore,
Spindle Command

= 10
Spindle Speed = 5 x

0720 = 5
20 =

The Type 15 spindle require special attention in setting up the
Machine Subroutine as follows:

(1) Set option 7 the number of ranges.

(2) Set option 8 2.0 the number of testing limits for
each range, i.e., minimum and maximum.

4-109

GHINII" POSTPROCESSOR

... for the computer programmer

4.5.16 TYPE 15: RATIO BETWEEN RANGES (cont'd)

(3)

4-110

Set SRTAB as follows:

SRTAB (1)
SRTAB (2)
SRTAB (3)
SRTAB (4)
SRTAB (5)
SRTAB (6)
SRTAB (7)

SRTAB (8)

SRTAE (9)

L I T TS | O

Range
Range
Range
Range
Range
Range
Ratio
Range
Ratio
Range
Ratio
Range

Min. Speed

Max. Speed

Min. Speed

Max. Speed

Min. Speed

Max. Speed

between Spindle Command and Speed
1

between Spindle Command and Speed
2

between Spindle Command and Speed
3

WWwhNN = -

GHIN]I" POSTPROCESSOR ...for the computer programmer

4.5.17 TYPE 16: SPINDLE

This spindle type is like Type 3 except that the speed codes are
not unit increasing. For example:

SPEEDS
S-CODE RANGE 1 RANGE 2
00 50 250
02 - 100 500
05 150 750
15 200 1000
20 250 1250
30 300 1500

The spindle speed is determined by the S code and an associated
M code based on spindle range. The following options must be set:

OPTAB(7) = Number of Ranges
OPTAB (8) = Number of Speeds in each Range
OPTAB (19) = 16.0

The spindle table (SRTAB) would be set up as follows where N =
Number of speeds/range

SRTAB (1)
.] Speeds for Range 1

SRTAB (N)
SRTAB (N+1)
.] Speeds for Range 2
SRTAB (2N)
SRTAB (2N+1
. Speed Codes

SRTAB (3N)

4-111

l;H:[NI "I POSTPROCESSOR .. .for the computer programmer

4.5.18 TYPE 17: SPINDLE

Speeds are selected within each range by a three (3) digit S code
(s000 thru s999). The S code for any required spindle speed in
any range is obtained from the formula:

SN = D MIN X 1000
Smax ~ Smrn
where:
SN = S Code Number
SD = Desired Spindle Speed
SMIN = Minimum Speed in Range
SMAX = Maximum Speed in Range

Some things to consider when setting up the machine subroutine:

(1) Set the maximum and minimum values for each range in SRTAB
as follows:

SRTAB (1) = Mimimum value for range 1
SRTAB(2) = Maximum value for range 1
SRTAB(3) = Minimum value for range 2
SRTAB (4) = Maximum value for range 2
. . . etc.

(2) Set Option 7 = number of ranges (No need to set Option 8).
(3) Speed changes within a range are made without stopping the

spindle. If it is required that the spindle be stopped be-
fore changing ranges, set Option 216 = 1.

4-112

G[[:[NI '" POSTPROCESSOR ... for the computer programmer

4.5.19 TYPE 18: SPINDLE

Type 18 spindle is designed to accommodate spindle tables where
the speeds have an associated code number and is a variable
spindle type when in SFM, i.e., a percentage of change in speed
is cansidered rather then the next speed in the table. This
percent of change should be placed in option 15. If, for
example, option 15 is set to 10.0. the speed will be changed by
10%, regardless if that is the next speed in the table or not.

To store the various speeds of the table in memory, the highest
speed of range 1 should be stored in SRTAB(1), with the percent
of change for range 1 in SRTAB(2). The highest speed for range
2 in SRTAB(3) and percent change for range 2 in SRTAB(4), etc.
Options 7, 8, 19, 31, and 47 should also be set. The
postprocessor will then store the number of speeds per range as
given in option 8, starting with SRTAB(1) and changing by the
SRTAB(2) factor and continue for the number of ranges as given in
option 7.

Example:
RANGE 1 RANGE 2
CODE SPEED CODE SPEED
S300 340 S500 1500
S299 337 S499 1485
5298 333 S498 1410
S203 10 S403 45
Set:
SRTAB(1) = 340.0 Highest speed Range 1
SRTAB (2) = .01 % of change between speeds in Range 1
SRTAB(3) = 1500.0 Highest speed Range 2
SRTAB (4) = .01 % of change between speeds in Range 2
OPTAB (7) = 2.0 Number of ranges
OPTAB(8) = 98.0 Speeds per range
OPTAB(19) = 18.0 Spindle type
OPTAB(31) = 103.0 Increment between code between ranges
OPTAB (47) = 203.0 First code in Range 1

4-113

';H.:[NI I" POSTPROCESSOR ...for the computer programmer

4.5.20 TYPE 19: SPINDLE

Each time the spindle changes ranges, the postprocessor issues
three command blocks. The first block is for a stop M code, the
second block is a postprocessor comment which states,

"A SPINDLE SPEED CHANGE OCCURS AT THIS POINT,"

and the third block is a non-motion block which carries the new
spindle speed. For example.

(1) N123G04M00
(2) A SPINDLE SPEED CHANGE OCCURS AT THIS POINT
(3) N125G0u4545

This type spindle is the o0ld type 7 spindle in GECENT II.

4-114

GH;[N] ”I POSTPROCESSOR ...for the computer programmer

4.6 THREADING PROCEDURES

The processing of a thread in the GECENT III postprocessor is not
too dissimilar from a normal linear move. In fact, one of the
restrictions upon threading is that it be a 1linear path;
furthermore, the thread path cannot exist concurrently with a SFM
nor a RAPID mode.

A threading path 1is segmented when it exceeds the maximum
departure--see the comments below regarding the changing maximum
departure for extended lead threads.

Although the threading function is basically the same, it is
handled in a different manner by the different control systems.
The programming instructions for the Mark Centruy 100S is unique
from other series 100 controls, and there are programming
differences in the 7500 series which are different from each
other also. Consult the programming manuals for the particular
installation to determine what these restrictions may be. The
postprocessor attempts to treat threading in a general way with
as few restrictions as possible to the programming method used.

There are three postprocessor statements which control the use
and operation of a thread, viz., PITCH, COUPLE, and THREAD. The
Part Programming Manual should be consulted for the description
of their general applications. 1In the paragraphs which follow,
a brief description of the above postprocessor statements is
given as related to postprocessor operation. The use of the word
COUPLE is confined to very early versions of the Mark Century
line and is not used with controls whose encoder is permanently
coupled to the spindle.

The PITCH statement calls for the desired number of threads per
inch. The postprocessor converts this value to a lead which is
the reciprocal of threads per inch. Lead, measured in inches per
thread, is the number of inches a screw will advance when turned
through 360 degrees. If the given number of threads per inch is
less than 10, the postprocessor uses a five-digit 1lead for IJK
registers which accept 5 digits. For fine threads, more than 10
per inch, the lead consists of six digits, thus reducing the
round-off error (if any) by a factor of 10 or more in most cases.
This 1is possible 1in the control because the leading zero is
passed over and only the last five digits are used.

Machines which have a 6-digit IJK register can similarly accept
a 7 digit lead for a pitch greater than 10.

4-115

l;[[;[NI "I POSTPROCESSOR ...for the computer programmer

4.6 THREADING PROCEDURES (cont'd)

Lead is defined as the distance from any point on the thread of
a screw to the corresponding part on an adjacent thread measured
parallel to the screw's axis of rotation. Hence, when the number
of threads changes from 12 threads per inch to 6 threads per
inch, the lead is increasing, since the distance between adjacent
threads increases. The words INCR or DECR, as used in the PITCH
statement, refer to the increasing or decreasing pitch for
linearly variable leads only. It should be remembered that
thread 1lead is the inverse of pitch, therefore an increading
pitch will result in a decreasing lead, and vice versa.

The threading rate or rate of change of lead in inches per thread
is computed from the equation:’ :

F =

2 2
L. - L
T e —

I)
2S

where L. is the final lead, L; is the initial 1lead, S 1is the
screw fength, and Fp is the threading rate in inches per thread.

Before threading can begin, the encoder must be coupled. Unless
this coupling occurs automatically with the threading G code or
unless the encoder is permanently coupled to the spindle, the
part programmer must couple the encoder device by use of the
statement, COUPLE/ON. While the encoder is coupled, the spindle
cannot go above the RPM value of option 175, therefore, it is
important to wuncouple the encoder (for those systems which
require it) after a threading sequence is completed. The
postprocessor will always print a comment if the spindle speed is
ever greater than the option 175 value while the encoder is
coupled. If the part programmer should forget to couple the
encoder before calling for a thread, the postprocessor will print
a warning, but will also continue with the program. However, no
warning is given if the part programmer should forget to uncouple
the encoder, because the postprocessor is unable to determine
whether or not the part programmer wishes to keep the encoder
coupled. Since +the THREAD statement is one-shot, the encoder
should be kept in its coupled position if there are other THREAD
statements to be given.

If a dwell time is required while coupling or uncoupling, option
92 must be set to the required dwell time. Note that if the
spindle speed must be reduced to the 1lowest speed before
coupling, option 92 must be set negative. The postprocessor then
automatically reduces the speed of the spindle but brings it back
up to speed after coupling. '

4-116

[;H:[NI "I POSTPROCESSOR ...for the computer programmer

4.6 THREADING PROCEDURES (cont!d)

Facing threads are cuts in the workpiece face; in this case the
part programmer uses the abscissa axis as the threading axis of
rotation, otherwise, part programming is the same for facing
threads as it is for turning threads.

The programmer should refer to his particular NC machine
threading manual for the exact threading requirements.

For oonstant lead, no feedrate is issued in the thread block
since the threading feedrate 1is a function of the lead and
spindle speed. Sequences such as

RAPID
THREAD

are not permitted since one condition overrides the other.

Some additional considerations might be required for extended
lead threading or other special threading capabilities. These
functions are largely dependant upon the control model and NC
machine.

There are four major considerations that the postprocessor must
recognize:

(1) Lead Type: 1Is the pitch constant, increasing,
or decreasing?

(2) Lead Range: What is the maximum number of inches per
thread?

(3) Path Type: 1Is the path for a constant or tapered
thread?

(4) Path Range: What is the maximum departure for the
thread?

Each of these items are considered separately in the
postprocessor, and the resulting output is contingent upon which
items apply.

There are a variety of restrictions which exist for any given
threading condition. Among these restrictions are spindle speed
maximums which are a function of the number of spindle speed
ranges, type of lead, and size of lead. Path departure maximums
can also vary as a function of the lead type and size.

4-117

';H:[N] "I POSTPROCESSOR

... for the computer programmer

4.6 THREADING PROCEDURES (cont'd)

These variations and concomitant restrictions

are

SO numerous

that only by descriptive tables can they best be summarized.

In

Data is given for

the tables which follow, a summary of threading capability is
presented by control tarpe.

resolver feedback

gearing of 0.1 inch per revolution and 1 mm per revolution only.

TABLE 1 Mark Century Custom 100 Series Control

Resolver | Preparatory| Maximum Maximum System | Maximum

Gearing Function Head Departure Format | Spindle RPM

0.1 inch | 936,937, 9.9999 in 9.9999 in 14 60

rev. | g38 99.9999 in |23 .

g33,g34 99999 in 370(2 range)
g35 600 (3 range)
g33,g934 .099999 in 370 (2 range)
g35 600 (3 range)

1 mm g36,g937 99.999 mm 99.999 mm 23 60

rev. g38 999.999 mm | 33

g33,g34, 9.9999 mm 370 (2 range)
g35 : 600 (3 range)
g33,g934, «99999 mm 370 (2 range)
g35 600 (3 range)

4-118

GHIN]I” POSTPROCESSOR

...forthe computer programmer

4.6 THREADING PROCEDURES (cont!'d)

TABLE 2 Mark Century 100S Control

Resolver | Preparatory | Maximum Ma ximum System | Maximum
Gearing Function Lead Departure Format | Spindle RPM
0.1 inch [g38 1.99998 in| 9.9999 in 14 200
rev. | g33 0.99999 in 400
g39 .099999 in 2500
g28 1.99998 in| 19.9999 in |14 200
g23 99999 in 400
g29 099999 in 2500
1 mm g38 59.998 mm 999.99 mm 32 200
rev. g33 29.999 mm 400
g39 2.9999 mm 2500
TABLE 3 Mark Century 7582 Control
Resolver | Preparatory| Maximum Ma ximum System | Maximum
Gearing Function Lead Departure Format | Spindle RPM
0.1 inch | g36,937, 9.9999 in 9.9999 in 4y 100
rev. | g38 variable
g33,g34, 99999 in 1000%*
g35
1 mm g36,g937 99.999 mm 99999.999mm| 53 100
rev. g38
g36,937 9.9999 mm 1000%*
g38

* When spindle speed is in the range of 450 to 1000 rpm, the
maximum programmable lead must be less than .50000 in or
5.0000 mm.

4-119

[;H:[N] I" POSTPROCESSOR ...for the computer programmer

4.6 THREADING PROCEDURES (cont!d)

TABLE 4 Mark Century 7542, 7543-4, and 7544 Controls

Resolver | Preparatory | Maximum Ma ximum System | Maximum
Gearing Function Lead Departure Format | Spindle RPM
0.1 inch | g33 9.99999 in | 99.9999 in | 24 100
rev.
99999 in 1000
.09999 in 5000
1 mm g33 99.9999 mm | 999.999 mm | 33
rev.
g33 9.9999 mm 1000
g33 <9999 mm 5000

Referring to Table 2 for departures on the axis which is parallel
to the axis of symmetry and which are greater than 9.9999 inches,
the postprocessor outputs the amount by which the departure is in
excess of 10 inches. The G code (usually 28, 23, 29 instead of
38, 33, 39) communicates the distinction between the two
departure types.

For the extended lead cases (G38 or G28), the postprocessor
divides the programmed lead by 2 and outputs the result. The G
code communicates the distinction.

When a THREAD statement is given, the postprocessor sets the flag
THFLAG to T, and sets flag ITHTYP to 1 for TURN and to 2 for
FACE. The parameter THLEAD is set in subroutine PITCH, and
carries the lead value, i.e., PITCH. The flag THMODE is set in
subroutine PITCH, and has the values;

= +1, increasing lead

THMODE = (0, constant lead

"

-1, decreasing lead

4-120

';[[:[N] I" POSTPROCESSOR ...for the computer programmer

4.6 THREADING PROCEDURES (cont'd) -

When the thread motion record is encountered, subroutine GOLINE
(or subroutine SEGMNT) tests THFLAG and branches to subroutine
THREDO (double entry with THREAD) to generate and output the
required threading command block.

Subroutine THREDO is the basic processing subroutine for all
lathe threads; (the special subroutine THREDM processes threads
for milling machine.)

In order to set up the thread command block, the postprocessor
first computes the departures A X andA Y. The threading lead
register values are determined as:

TURN FACE
I = |THLEAD| *M J = |THLEAD| *M
J = lAY*I l I = | AX*J |

AX AY

where M is some multiple of 10 which scales the value of I and J
so that leading =zeros are shifted out, thereby, allowing a
proportionate increase in accuracy. &X and AY are stored in
DBFSEG(3) and (4), respectively, and I and J are stored in
DBFSEG (8) and (9) , respectively.

The tool tip velocity in IPM is determined as:

= 2
Fo s\]x + J2
where S is the threading spindle speed. It is important to note
that this feedrate in IPM is used only for printout purposes. As
such, it is stored in DABVAL(11) for printing out as an Absolute
value; see Section 3.5.3.2.

An F command is required only for a non-constant lead, i.e., for
an increasing or decreasing lead. For these cases the parameter
THRATE (which is set in subroutine PITCH), carries the required
threading rate, and this value is stored in DBFSEG(11) when the
THMODE is non-zero.

Depending on the conditions of extended or non-extended leads,
variable departures, and THMODE, the G code is selected from
TABLEG and is stored in DBFSEG(2) to complete the setup of the
threading command block.

Again, the programmer is referred to the programming instructions

furnished with his control system for a more complete definition
of threading procedures, restrictions, and limitations.

4-121

[:[[:[NI |" POSTPROCESSOR ...for the computer programmer

4.7 AUTOMATIC REINSTATEMENT OF PROGRAM CONDITIONS

Subject to the control of option 145 the postprocessor will
automatically reinstate the part program status of previously
cancelled functions which may occur on the statements STOP,
OPSTOP, and BREAK. Depending upon the setting of option 145, the
postprocessor can reinstate the functions in various manners.

When an OPSTOP is encountered, the machine control unit may
automatically turn off the spindle and coolant and enter into the
lowest feedrate range. The part programmer would therefore have
to reprogram all of these conditions after each OPSTOP. However,
by use of option 145, the postprocessor can be directed to
perform these reinstating chores.

The functions which are automatically reinstated are the tool or
turret T code, the spindle speed command, the spindle condition
(CLW, CCLW, OFF), the spindle range, the SFM mode and value, the
feed or rapid range, and the coolants condition.

Since each of the above items are reinstated, they must obviously
be saved for reinstatement whenever a condition is changed.
Thus, in subroutines SPINDL, COOLNT, RAPIDO, RAPIDX, TURRET,
TOOLNO, and FEDRAT, each time a related part program statement is
processed, the postprocessor stores away the condition in the
STATE vector which is dimensioned at 12 and is in basic COMMON.
The STATE vector has the present assignments:

]

STATE (1) T code

STATE(2) = Spindle Command

STATE(3) = Spindle Condition (CLW, CCLW, OFF)
STATE (4) = Spindle Range

STATE(5) = SFM Value or Mode

STATE(6) = M code for Feed or Rapid Range
STATE(7) = Second M code for Feed or Rapid Range
STATE (8) = Coolant Number 1

STATE (9) = Coolant Number 2

4-122

(;H.:[NI I" POSTPROCESSOR ... for the computer programmer

4.7 AUTOMATIC REINSTATEMENT OF PROGMAN CONDITIONS (cont'd)

For example, on the statement
SPINDL/20, SFM, RANGE, 2, CLW

subroutine SPINDL stores in STATE as follows:

STATE(3) = 3 (for M03)
STATE(Y4) = 2
STATE(5) = 20

The fact that a non-DMBITS value is in STATE(5) indicates the
existence of an SFM mode. Thus, on the statement

SPINDL/40, RPM

subroutine SPINDL stores in STATE as follows:

STATE(2) = 540 (assume 40 RPM = 540 spindle
command)
STATE(5) = DMBITS.

Hence, the STATE vector at any point in time can give the
condition status of the part program.

When an OPSTOP, STOP, or BREAK statement is given , the flag
STOPON is set to 1 indicating that a "stop condition" exists.
Thus, when a motion statement is encountered, subroutine MOTION
calls subroutine TSTFLG which tests flag STOPON, and finding it
non-zero, calls subroutine RESTAT which outputs the pending
conditions of the STATE vector per the specification of option
145.

The postprocessor must consider one special case; it must allow

for a new respecification of a condition after a STOP (or OPSTOP
or BREAK) and before the motion statement. For example:

STOP
SPINDL/40, RPM
COOLNT/MIST
FEDRAT/RANGE, 2

GOTO/X,Y,Z

4-123

I;H;[NI I" POSTPROCESSOR ... for the computer programmer

4.7 AUTOMATIC REINSTATEMENT OF PROGMAN CONDITIONS (cont'd)

Prior to the GOTO/X,Y,Z statement the postprocessor must output
these conditions as given, and yet must not reinstate them again
when subroutine RESTAT is called. The arqument may be raised:
instead of outputting the conditions when given, why not simply
store the conditions in STATE and output them automatically when
subroutine RESTAT is called? The reasons are: first, the
subroutines (SPINDL, COOLNT, FEDRAT, etc) would have to be
altered to not output data when a "stop condition" exists; and,
second, flushing the conditions out of the STATE vector will most
probably output them in a different order than programmed.

To circumvent +this problem the postprocessor, therefore, always
processes and outputs the data for every statement; but when
storing away the condition into the STATE vector, the subroutines
test the STOPON flag, and if non-zero, make the stored value in
the STATE vector negative. Hence, subroutine RESTAT, when
outputting the conditions of the STATE vector, first checks for
a negative value of the condition, and, if found to be negative,
the subroutine restores the positive value back into STATE, and
disregards outputting it.

Subroutine RESTAT also outputs any necessary dwells when
reinstating the feed or rapid mode.

4-124

[;H.:[N] I” POSTPROCESSOR ... for the computer programmer

4.8 VARIABLE FORMAT BY G CODE:

The Mark Century 100M control (and those similar to it) have
motion registers whose decimal format changes as a function of
the linear G code. For example, the format for the XYZ registers
may be 14.0, i.e., REGFOR(3) = 14 for X, REGFOR(4) = 14 for Y,
and REGFOR(5) = 14 for Z. However, when a G10 is wused, the
format changes to 23; the total number of digits is the same as
before, but now there are only three digits to the right of the
decimal point. Thus, there is a loss of data in the fourth
decimal place which, as will be shown, is recoverable but only at
the cost of changing the programmed cut path. This may be an
intolerable situation making it physically impossible on NC
machines with this feature to cut accurately with a G10 code.

The presence of this variable format feature is designated by
option 41 being set to zero.

Because of the resultant altered path the postprocessor uses the
G10 and maximum departure of 99.999 only for rapid traverse
moves. A move greater than 9.9999 inches 1is automatically
segmented so as to be able to use the G01, G11, or G12 codes and
maximum departure of 9.9999 inches.

Example: (1) FROM/0,0,0
(2) GOTO/40,40,40
(3) RAPID
(4) GOTO/100,100,100

Statement 2 is segmented into five 8 inch departures using GO01.
Statement 4 is output with departures of 60 inches using G10.

The technique of recovering the "lost" decimal data can be
illustrated by the following example. In effect, the technique
follows two basic steps:

(1) Process the incremental data in the normal manner except
for a G10 block. For these blocks truncate, but not
round, on the 0.001 factor. The XYZ data are issued
with this truncation.

(2) The truncation remnant lost in the 0.0001 position is
then subtracted from the present point. Hence, when
the next point increments are computed, the previously
"lost" amount is now included in the new increments.

4-125

G[[:[NI "I POSTPROCESSOR ...for the computer programmer

4.8 VARIABLE FORMAT BY G CODE (cont'd)

Example:
CL_point Rounded to 0.001
A. 2.6789231 2.6789
G10
B. 23.786802 23.7868
GO01
C. 30.236685 30.2367
True ABA = 21.1079, but we output a ABA = 21.107, and subtract

0.0009 from the present point 23.7868, making it 23.7859 instead
of 23.7868. Hence, instead of ACB = 6.4499, it is ACB = 6.4508.

This avoids the accumulative error and places the tool back on
the correct path. 1In this example, if we redetermine the lost
CL point from the produced increments we get: 2.6789 + 21.1070
+ 6.4508 = 30.2367, the exact point.

Although this technique arrives at the correct point, it's path
to get there has been changed from the programmed path. This is
demonstrated in Diagram 4.8A where a dgrossly exaggerated two
axes correction is made by the method explained above

Diagram 4.8A

Paths ABC are the true paths, but path ADC is the result of the
use of G10 and subsequent loss and regain of the fourth decimal
place data.

4-126

GH:[NI ”I POSTPROCESSOR ...for the computer programmer

4.8 VARIABLE FORMAT BY G CODE (cont'd)

The postprocessor achieves this corrective procedure by changing
the departure maximum BIGDEP and STEP size as a function of the
current G code. Thus, for a RAPID move greater than 9.9999
inches, BIGDEP remains as 99.999, but step is changed to 10 times
its previous value. Assume STEP is 0.0001; it is then changed to
0.001 to conform to the changed decimal requirements of the XYZ
format.

In subroutine SELG when option 41 = 0, STEP is changed to 0.001
and the present machine point vector DPRESM is modified to
reflect the loss of the fourth decimal place data. Before the
next CL tape record is read, DPREVM is set to DPRESM; therefore,
the new DPRESM (from the CL record) will create departures that
recover the lost data.

When a non-RAPID move greater than 9.9