

Chapter

Exror Handling

11

Introduction

Most programs are subject to errors happening at run time, even if all the typographical/syntactical
errors have been shaken out in the process of entering the program into the computer in the first
place. There are three courses of action to take with respect to errors:

1. Try to prevent the error from happening in the first place
2. Once an error occurs, try to recover from it and continue execution

3. Do nothing — let the program roll over and die if an error happens

The last alternative, which may seem frivolous at first glance, is certainly the easiest to implement,
and the nature of HP desktop computers is such that this is often a feasible choice. Upon en-
countering a run-time error, the computer will pause program execution, and display a message
giving the error number and the line in which the error happened, and the programmer can then
examine the program in light of this information and fix things up. The key word here is “pro-
grammer”’. If the person running the program is also the person who wrote the program, this
approach works fine. If the person running the program did not write it, or worse yet, does not
know how to program, some attempt should be made to prevent errors from happening in the first
place, or to recover from errors and continue running.

997

298 Error Handling

Anticipating Operator Errors

When a programmer writes a program, he or she knows exactly what the program is expected to
do, and what kinds of inputs make sense for the problem. Given this viewpoint, there is a strong
tendency for the programmer not to take into account the possibility that other people using the
program might not understand the boundary conditions. A programmer has no choice but to
assume that every time a user has the opportunity to feed an input to a program, a mistake can be
made and an error can be caused. If the programmer’s outlook is noble, he or she will try to save
the user from needless anguish and frustration. If the programmer’s outlook is self-centered, he or
she will try to keep from getting involved in future support problems. In either case, an effort must
be made to make the program foolproof.

Boundary Conditions

A classic example of anticipating an operator error is the “division by zero” situation. An INPUT
statement is used to get the value for a variable, and the variable is used as a divisor later in the
program. If the operator should happen to enter a zero, accidentally or intentionally, the program
crashes with an error 31. It is far better to be watching for an out-of-range input and respond
gracefully. One method is shown in the following example.

100 INPUT "Miles traweled and total hours"sMilesyHaurs
110 IF Hours=0 THEN

120 BEEP

130 PRINT "Improper value ewtered far hours."
140 PRINT "Try adain!"

150 GOTO 100

160 END IF
170 Mph=Miles/Haurs

Consider another simple example of giving a user the choice of six colors for a certain bar graph. It
might be preferable to have the user pick a number corresponding to the color he wished to choose
instead of having to type in up to six characters. In this case, the program wouldn’t have to check
for each number, but rather it could use the logical comparators to check for an entire range:

4030 O0QUTPUT KBDiIClear%s I Clear the screen
4040 DATA GREEN,BLUE sREDsYELLQW PURPLE sPINK
4050 ALLOCATE Colors$s(1:B62LG1]

40B0 READ Colors$(%)

4070 FOR I=1 TD G

4080 PRINT USING "DDsXsK" 31 Colors$(1)
4090 NEXT 1

4100 AsK: INPUT "Pick the number of a color"sl
4110 IF I»=1 AND I<=6 THEN Valid_Colaor

4140 BEEP

4150 DISP "Inwvalid answer -- "3

4160 WAIT 1

4170 GOTO Ask

The above example needs a little extra safeguarding. |, the variable being input, should be declared
to be an integer, since the only valid inputs are 1, 2, 3, 4, 5, and 6. An answer like “'pick the 3.14th
color listed” does not make sense.

Error Handling 299

Real number boundaries are tested for in a manner similar to that of integers:

7010 INPUT "Enter the wavefprm’s fresuency (in KHz)" . Freaquency
F0OZ0 IF Frequency<=0 THEN 7010

7030 INPUT "Enter the amplitude {(0O-10 volts)":Amprlitude

7040 IF Amplitude<(Q OR AmPlitude>10 THEN 7030

7030 INPUT "Enter the phase andgle (in dedrees)" tAndle

7060 IF Angle<0 DR Andle>1B80 THEN 7050

7070 Andle=AndglexPI/180

REAL Numbers and Comparisons

A word of caution is in order about the use of the = comparator in conjunction with REAL {full
precision) numbers. Numbers on this computer are stored in a binary form, which means that the
information stored is not guaranteed to be an exact representation of a decimal number — but it
will be real close! What this means is that a program should not use the = comparator in an IF
statement where the comparison is being performed on REAL numbers. The comparison will yield
a 'false’ or '0" value if the two are different by even one bit, even though the two numbers might
really be equal for all practical purposes.

There are two ways around this problem. The first is to try to state the comparison in terms of the
< = or > = comparators. However if it's absolutely necessary to do an equality comparison with a
pair of REAL numbers, then the second method must be used. This involves picking an error
tolerance for how close to being equal the two numbers can be to satisfy the test.

Real number line
X1 X2
— 10—

So if the difference between two REAL numbers X1 and X2 is less than or equal to a tolerance TO,
we'll say that X1 and X2 are “‘equal” to each other for all practical purposes. The value of TO will
depend upon the application, and must be chosen with care.

For an example, assume that we've picked a tolerance of 1072 for comparing two REAL numbers
for equality. The proper way to compare the two numbers would be:

950 IF ABS{(H®1-KZ)<{=1E-12Z THEN Numbers_equal
960 | Otherwise they’re not eaual

Another technique for comparing REAL values is to use the DROUND function. This is especially
suited to applications where the data is known to have a certain number of significant digits. For
more details on binary representations of decimal numbers, refer to Chapter 4.

300 Error Handling

Exror Trapping

Despite the programmer’s best efforts at screening the user’s inputs in order to avoid errors,
sometimes an error will still happen. [t is still possible to recover from run time errors, provided the
programmer predicts the places where errors are most likely to happen.

ON/OFF ERROR

The ON ERROR command sets up a branching condition which will be taken any time a recover-
able error is encountered at run time. The branching action taken may be either GOTO, GOSUB,
CALL, or RECOVER. GOTO and GOSUB are purely local in scope — that is, they are active only
within the context in which the ON ERROR is declared. CALL and RECOVER are global in scope
— after the ON ERROR is set up, the CALL or RECOVER will be executed any time an error
occurs, regardless of subprogram environment.

When an ON ERROR statement is executed, the language systern will make sure that the specified
line or subprogram exists in memory before the program will proceed. If ON ERROR GOTO/
GOSUB/RECOVER are specified, then the line identifier must exist in the current context. If an ON
ERROR CALL is given, then the specified subprogram must currently be in memory. In either case,
if the system can't find the given line, an error 49 is issued.

If either ON ERROR GOSUB or ON ERROR CALL are used and an error occurs, the specified
branch will take place, and when the RETURN or SUBEXIT is executed, then program execution
will resume at the line which caused the error, and an atternpt will be made to execute the line
again.

ON ERROR has a prierity of 16, which means that it will always take priority over any other ON
<event> since the highest user-specifiable priority is 15.

The OFF ERROR statement will cancel the effects of the ON ERROR statement, and no branching
will take place if an error is encountered.

The DISABLE statement has no effect on ON ERROR branching.
ERRN/ERRL/ERRM$

ERRN is a function which retums the error number which caused the branch to be taken. ERRNis a
global function, meaning it can be used from the main program or from any subprogram, and it will
always return the number of the most recent error.

ERRMS is a string function which returns the text of the error which caused the branch to be taken.

ERRL is a function which is used to find the line in which the error was encountered. ERRL is a
boolean function. The program feeds it a line identifier, and either a 1 or a 0 is returned, depending
upon whether or not the specified identifier indicates the line which caused the error. ERRL is a
local function, which means it can only be used in the same environment as the line which caused
the error. This implies that ERRL cannot be used in conjunction with ON ERROR CALL, and that it
can be used with ON ERROR GOTO and ON ERROR GOSUB. ERRL can be used with ON
ERROR RECOVER only if the error did not occur in a subprogram which was called by the
environment which set up the ON ERROR RECOVER.

Error Handling 301

The ERRL function will accept either a line numnber or a line label.
1140 DISP ERRL(710)
910 IF ERRL(ComPute) THEN Fix_compPute

ON ERROR GOSUB

The ON ERROR GOSURB staternent should only be used when you can guarantee that the problem
causing the error can be fixed and the line can be re-executed safely. Remember that if the action
taken in the error service routine is not sufficient to correct the problem, the program will dive into
an infinite loop. Every time an error occurs, a GOSUB will cause a branch to the error service
routine which will RETURN execution to the line causing the error.

When an error triggers a branch as a result of an ON ERROR GOSUB statement being active,
system priornity is set at the highest possible level (16) until the RETURN statement is executed, at
which point the system priority is restored to the value it was when the error happened.

100 Radical=B*B-4*Ax*C
110 Imadinary=0

120 ON ERROR GOSUB Esr
130 Partial=SQR(Radical)}
140 OFF ERROR

350 Esr: IF ERRN=30 THEN

360 Imaginary=1

370 Radical=ABS{(Radical)

380 ELSE

390 BEEF

400 DISP "Unexpected Error {("SERRN3F")"
410 PAUSE

420 END IF

430 RETURN

ON ERROR GOTO

The ON ERROR GOTO statement is generatly more useful than ON ERROR GOSUB, especially if
you are trying to service more than one error condition. The only advantage that ON ERROR
GOSUB has over ON ERROR GOTO is that system priority is maintained at the highest possible
leve] until the error subroutine is finished.

By using the ON ERROR GOTO statement, the same error service routine can be used to service all
the error conditions in a given context. By testing both the ERRN (what went wrong) and the ERRL
{(where it went wrong) functions, proper recovery procedures can be taken.

302

Error Handling

10
20
30
40
50
60
70
80

RESTORE

PRINT

PRINT

PRINT "Coefficients of =suadratic esuation A"
DaTa 0,0,0

READ A:B+C

Maxreal=1,79769313486231E+308

Dverflow=0

g0 Coefficients: !

100
110
120
130
140
150
160
170
180
190
zZ00
210
zz0
230
zd0
2350
260
270
280
220
300
3to
320
330
340
350
360
370
380
390
400
410
420
430
440
450
460
a70
480
490
S00
310
320
330
340
350
360
SBO
390
BOO
BZ0
630
B40
BBO
B70
B8O
690
700
710
720
730
740
730

INPUT "&7":A
IF A=0 THEN
DISP "Must be quadratic”
WAIT 1.5
GOTO Coefficients
END IF
PRINT "A="3A
INPUT "B7?".B
PRINT "B="3B
INPUT "C?".C
PRINMT "C="3iC
ComPute_rtpOts: !
ON ERROR CGODTO Esr
Imaginary=0
Parti=-B/(2.,%8)
Part2=SQR(B*B-4*A%C)/(2.,%*A)
IF NOT Imaginary THEN
Rootl=Parti+Part2
RootZ=Parti-Part2
END IF
0FF ERROR
Print_roots: !
IF Imaginary=0 THEN

PRINT "Root 1 ="3Rootl
PRINT "Root 2 ="iRootZ

ELSE
PRINT "Root 1 ="§Partli" +"iPartZi" 1"
PRINT "Root 2 ="j3Partli" -"iPartZi" i"

END IF

IF Overflow THEN PRINT "ODVERFLOW™

STOP

Esr: !

IF ERRN=30 THEN I SOR OF NEGATIVE NUMBER
Part2=50R{ABS(B*B-4*A*C))/ (2+A)
Imaginary=1
Eranch=1
GCOTD 270

ELSE
IF ERRN=2Z2 THEN | REAL OVERFLOW

Querflow=1l

SELECT 1

CASE ERRL(Z40)
Part1=SCGN{B)*#5CGN(A)*Maxreal
Branch=2

CASE ERRL({Z50)
PartZ=Maxreal
Branch=3

CASE ERRL(Z70)
Rootl=Maxreal*SCN{(Partl)
Branch=4

CASE ERRL(Z2BO)
RootZ2=Maxreal *SCGN{(Partl>
Branch=35
PRINT "UNEXPECTED QVERFLOW"
Branch=B

CASE ELSE
DISP "UNEXPECTED ERROR"JERRN
Branch=B

END SELECT

END IF
ENO IF

ON Branch GOTO 270:250,260,280,2390,10
END

EYI'OI' Handﬂng qnq

ON ERROR CALL

ON ERROR CALL is global, meaning once it is activated, the specified subprogram will be
called immediately whenever an error is encountered regardless of the current context. System
priority is set to level 16 inside the subprogram, and remains that way until the SUBREXIT is
executed, at which time the system priority will be restored to the value it was when the error
happened.

The ON ERROR CALL statement should only be used when you can guarantee that the
problem causing the error can be fixed and the line can be re-executed safely. Remember that if
the action taken in the error service routine is not sufficient to correct the problem, the program
will dive into an infinite loop. Every time an error occurs, a CALL will cause a branch to the
error service routine which will return execution to the line causing the error when a SUBEXIT
statement is executed.

Bear in mind that an ON...CALL statement cannot pass parameters to the specified subpro-
gram, so the only way to communicate between the environment in which the error is declared
and the error service routine is through a COM block.

The ERRL function will not work in a different environment than the one in which the ON
ERROR statement is declared, so when usingan ON ERROR CALL, you should set things up in
such a manner that the line number either doesn’t matter, or can be guaranteed to always be
the same one when the error occurs. This can be accomplished by declaring the ON ERROR
immediately before the line in question, and immediately using OFF ERROR after it

5010 ON ERROR CALL Fix_daisc

5020 ASSIGN @File TD "Data_fale"
5030 0FF ERROR

3040 !

3050 !

5060 !

7020 SUB Fix_disc

7030 SELECT ERRN

7040 CASE B0

7050 DISP "Door oPen -- shut it and press CONT"
7060 PAUSE

7080 CASE B3

7090 DISP "Write Protected -- fix and rress CONT"
7100 PAUSE

7120 CASE B85

7130 DISP "Disc mot inmitialized -- fix and press CONT"
7140 PAUSE

7160 CASE 56

7170 DISP "Creatind Data_file”

7180 CREATE BDAT "Data_file" 20

7190 CASE ELSE

7200 CISP “Unexpected srror "JERRN

7210 PAUSE

F220 SUBEND

304 Error Handling

ON ERROR RECOVER

The ON ERROR RECOVER statement sets up an immediate branch to the specified line
whenever an error occurs. The line specified must be in the context of the ON... RECOVER
statement. ON ERROR RECOVER is global in scope — it is active not only in the environment
in which it is defined, but also in any subprograms called by the segment in which it is defined.

If an error is encountered while an ON ERROR RECOVER statement is active, the system will
restore the context of the program segment which actually set up the branch, including its
systemn priority, and will resume execution at the given line.

3250 0ON ERROR RECOVER Giwe_up

3260 CALL Model_universe

3270 DISP "Successfully completed”
3280 STAPR

3290 Give_up: DISP "Failwre "JERRN
3300 END

Chapter

Program Debugging

12

Introduction

The problem of debugging a program is distinct from the issues raised in Chapter 11, Error
Handling. Chapter 11 is based on the premise that the programmer is satisfied that the program
works as it should, and that it then should be made as foolproof as possible. This could be
construed as putting the cart before the horse — before you can make a program foolproof, you
must get it to run correctly in the first place. One of the key characteristics of a “bug’” is that it
doesn’t necessarily have to cause an error condition to occur — it only has to cause your program
to give a wrong answer. This chapter deals with the methods available on this computer to diagnose
problems in logic and semantics.

Naturally, the ideal way to debug a program is to write it correctly the first time through, and all
programmers should strive constantly to achieve this state of nirvana. Hopefully, the techniques
that have been been discussed in this manual will help you get a little closer to this goal. The
practice of writing self documenting code and designing programs in a top down fashion should
help immensely.

Aside from recommended methods of writing software, the computer itself has several features
which aid in the process of debugging.

305

306 Program Debugging

Using Live Keyboard

One of the pleasing characteristics of this computer is that its keyboard is “live” even during
program execution. That is, you can issue commands to the computer while it is running a program
the same way that you issue commands to it while it is idle. For instance, you can add two numbers
together, examine the catalogue of the disc currently installed in the drive, list the running program
to a printer, scroll the CRT alpha buffer up and down, enter and exit either the graphics or alpha
displays, or output a command to a function generator over HP-IB. Practically the only thing you
can’t do from live keyboard while a program is running is write or modify program lines, or attempt
to alter the control structures of the program. (A complete list of illegal keyboard operations is given
a little later on.)

By way of illustration, key in the following program, press , and then execute the commands
shown underneath the listing.

10 FOrR I=1 TO 1.E+5
20 NEXT 1
30 END

CAT

2+2

SUR(B"Z+17.2"2)

PRINT "THE QUICK BROWN FOX"
TIMEDATE

Now, this program will take a fair amount of time to complete (about 18 seconds), so to find out
how far the program has gone, merely type | and press (_EXECUTE) or (RETURN). The current value
of [will be displayed at the bottom ofthe screen. Now if you don’t want to wait for the program to
go through all one hundred thousand iterations, you can merely change the value of [by executing
the command

I1=99999

Thus, we have seen that live keyboard can be used to examine and/or change the contents of the
program’s variables.

One aspect of live keyboard to be aware of is that the computer will only recognize variables that
exist in the current program environment. For instance, suppose that we change our example
program to call a subprogram inside the loop.

10 FOR I=1 TO 1.,E+53

15 CALL Dummy
20 NEKT 1
30 END

40 SUB Dummy

S0 FOR J=1 TO 10
B0 NEXKT J

70 SUBEND

While this program is running and you test the variable [from the keyboard, chances are that you
will only get a message saying that | doesn’t exist in the current context — most of the time will be
spent in the subprogram. On the other hand, if you test the value of J, it is highly likely that you will
get an answer.

Drogram Mg I

Similarly, operations like ASSIGN and ALLOCATE, which are declarative types of statements,
must use variables that are already known to the current environment when they are executed from
the keyboard. For example, in the following program, it is perfectly legal to perform the operation
ASSIGN EBDuvum TO * from the keyboard, although it is not legal to perform
ASSIGN EBFile TO "DATA" from the keyboard.

1 ASS5IGN @Dum TO 724
10 FOR I=1 TO 1.E+5
Z0 NEXT 1

30 END

Live keyboard operations are allowed to use variables already known by the running program. Live
keyboard operations are not allowed to create variables.

Although the GOTO and GOSUB commands are illegal from the keyboard, it is perfectly legal to
call subprograms from the keyboard. The only restriction on using SUB and function subprograms
from the keyboard is that the parameters that are passed must either be constants or must be
variables that exist in the current context.

Here is an example:

10 FOR I=1 TO 1.E+95

20 NEXT 1

30 END

31 !

40 SUB Gather{INTEGER X)

50 OPTION BASE 1

GO DIM A(3Z)

70 CREATE BDAT "File"&VAL$(X) +1
8o ASSIGN BDuvm TD 724

90 ASSIGN BFile TO "File"&VALS(X)

100 OQUTPUT BDumi"N10OQS"
i10 ENTER EDumiA(*%)

120 DUTPUT BFileialx)

130 PRINT A(*),

140 SUBEND

141 !

150 DEF FNPoly(X)

160 RETURN X"3+3%{ " Z+3%X+X
170 ENEND

By executing CALL Gather{1) from the keyboard, the main program will be suspended while the
subprogram is called, at which time a 1 record file will be opened, 32 readings will be taken from
the voltmeter and stored in the file, and the readings will be printed on the screen. Then main
program execution will resume where it left off.

Similarly, by typing FNPoly(1), the value of the polynomial will be computed for X=1 and the
answer (8) will be displayed at the bottom of the screen.

Here is a list of commands which may not be executed from the keyboard while a program is
running, although they may be executed from the keyboard if the computer is idle:

RUN SCRATCH GET
CONT SCRATCHA LOAD
EDIT SCRATCHC LOAD BIN
DEL SCRATCHBIN SYSBOOT

308 Program Debugging

Ctepping

One of the most powerful debugging tools available is the capability of single stepping a program,
one line at a time. This process allows the programmer to examine the values of his variables and
the sequence in which the program is running at each statement. This is done with the key.

There are three ways to use the (_STEP) key:

1.

If the program is stopped (i.e., a prerun has to be performed), pressing the key will
cause the system to perform a prerun on the program, but no program lines will actually be
executed. The first line that will be executed will appear in the system message line at the
bottom of the screen. Pressing the key again will cause that line to be executed, and
the next line after that to be executed will appear in the message line. If the key is
pressed causing the next line to appear in the display, and a live keyboard operation {such as
examining the value of a variable) is performed, the contents of the message line will change.
Pressing the key again will still cause the line to be executed, even though it is no
longer visible in the implied display line. After the statement has completed, the next line will
again appear.

If the program is in an INPUT or LINPUT statement, pressing the key is sufficient to
terminate the operation. Any data entered from the keyboard will be entered into the correct
variables, just as though (CONTINUE) or (ENTER) had been pressed, but program execution will
be PAUSEd, and the statement immediately following the INPUT or LINPUT will appear in
the system message line.

If the program is in a PAUSEd state, pressing the key will cause the next line to be
executed. The program counter will not be reset, nor will a prerun be performed. Again, the
next line to be executed will appear in the system message line after the last one has been
completed. A paused state is indicated by a dash in the run light in the lower right hand
corner of the screen.

Type in the following example and execute it by pressing the key repeatedly.

10 DIM A(L1:3)

20 I This is an examrle

30 8=0

do FOR I=1 TD S

20 INPUT "Enter a number"sA(I)
BO S5=5+A(I1)

70 NERT 1

B0 PRINT 8§

90 PRINT A(%)3

100 END

Notice that the {_STEP) key caused every statement to appear in the system message line, one at a
time, even those statements that are not really executed, like DIM and comments.

Program Debugging 309

Tracing

The process of single stepping, wonderful though it is, can be quite slow, especially if the pro-
grammer has little or no idea which part of his program is causing the bug. An alternative way of
examining vanable changes and program flow is available in the form of the TRACE ALL state-
ment.

TRACE ALL

When the TRACE ALL command is executed, it causes the system to issue a message prior to
executing every line (this shows the order in which the statements were executed), and if the
statement caused any variables to change value, a message telling the varables involved and their
new values is also issued. The messages are issued to the system message line, and the most useful
way to use the TRACE ALL feature is to turn Print All On {use the key), unless of course
you're a very fast reader. (The printall mode will cause all information from the DISP line, the

keyboard input line, and the systern message line to be logged on the PRINTALL IS device.)

Turn Print All ON and key in the following example to see how TRACE ALL works:

10 TRACE ALL
20 FOrR I=1 TD 10

30 PRINT 13

40 IF I MDD 2 THEN

50 PRINT " is add,"
G0 ELSE

70 PRINT " is ewven."
BO END IF

a0 NEXT 1

100 END

There are two optional parameters that can be used with TRACE ALL. Both parameters are line
identifiers (line numbers or Line labels). The first parameter tells the system when to start tracing,
and the second one (if it's specified) tells the system when to stop tracing. The following example
illustrates the use of one optional line specifier:

1 TRACE ALL 40
10 DIM A(1:10)

20 FOR I=1 TO 100
30 NEXT 1

40 FOR J=1 TO 10
20 ACdr=d

G0 NEMT J

70 END

It is usually more useful to use the TRACE ALL command from the keyboard rather than from the
program because a program modification is not necessary if you want to trace a different part of the
program. All that's necessary is to type in a new TRACE ALL command from the keyboard to
override the old one. In the above example, to trace the loop from 20 to 30 instead of the one from
a0 to 60, simply delete line 1 and type in TRACE ALL 20,40 from the keyboard.

310 Program Debugging

1o DIM AC1:10)

20 FOR I=1 TO 100
30 NEXT I

40 FOR Jd=1 T0 19O
=0 ACd) =4

GO NEXT J

70 END

The program will begin tracing at line 20, and keep on tracing until it's ready to execute line 40, at
which time it will terminate the trace messages and will continue executing the program normally.

If the TRACE ALL statement uses a line label instead of a line number, be aware of what happens if
you have more than one occurence of a given line label in your program. For instance, it is perfectly
legal to have the same line label in two or more different program environments — line labels are
local to subprograms and branching operations addressing a given line label are treated separately
in different subprograms. However, when a TRACE ALL using a line label is executed, the first line
label in memory is the one that gets used, regardless of the environment the progam was in when
the TRACE ALL statement was executed. Thus in the following program, even though the TRACE
ALL Printout statement is executed inside the subprogram, tracing does not commence until the
subprogram has been exited and the Printout statement in the main program has been executed.

10 DIM ACl1:10)
20 FDR I=1 TO 10

30 CALL Dummy{A(*) 1)
40 GOSUB Printout

S0 NEXT I

GO STDP

70 Printout: !

80 FOrR J=1 TO 10

90 PRINT AC) 3" "3
100 NEXT J

1053 PRINT
110 RETURN
120 END

130 SUB Dummy (X {%) +2)
140 TRACE ALL Printout
150 FOR I=1 TO 10

160 HII)=2%100+1
170 NEXKT I

180 GDSUB Printout

190 SUBEXIT

200 Printout: !

210 PRINT "Dummy routine executed"ilZ
220 RETURN

230 SUBEND

If two line identifiers are used, their location with respect to each other does not matter. Tracing will
start when the line specified first is encountered, and it will stop when (or if) the second line is
encountered.

Program Debugging 311

PRINTALL IS

The PRINTALL IS command is useful for switching the tracing messages between the CRT and a
hardcopy printer. For instance, turning PRINTALL ON during pre-run will allow you to see which
array variable has not been dimensioned. (Again, to get any record at all of the trace messages,
Print All must be On.) To cause the trace messages to be logged on the CRT, execute PRINTALL
[S CRT. (The CRT is the default PRINTALL IS device that the system assumes when it wakes up.)
To cause the messages to be logged on a printer, merely change the device selector to the
approprate value (PRINTALL IS 701).

TRACE PAUSE

The TRACE PAUSE command can be used to set a “break point”’ in the program. The program
will execute at a reduced speed until the specified line is reached, at which time the program will
pause, and the specified line will be shown in the implied display line, indicating that the program
will execute it when execution is resumed. Execution may be resumed with the key, the
key (which will only cause one line to be executed), or by executing CONT from the
keyboard (the specified line identifier must be located in the current environment).

By executing the command TRACE PAUSE Printout from the keyboard, the following program will
pause every time it reaches line 70.

1o DIM A(1:10)
20 FOR I=1 TO 10

40 GOSUB Printout
S0 NEXT 1
B0 STOP

70 Printouts: |

BO FOrR J=1 TO 10
90 PRINT A(J)Y 3" "3
100 NEXT J

110 PRINT
120 RETURN
130 END

Try the following ways of continuing execution:

press [STEP
press

execute CONT 110

As with TRACE ALL, a new TRACE PAUSE statement overrides a previous one. The same rules
are applied when a line label is used in a TRACE PAUSE statement as are applied to the TRACE
ALL statement — the first line in memory having that label is used.

TRACE OFF

TRACE OFF cancels the effects of any active TRACE ALL or TRACE PAUSE statements. The
status of Print All and the PRINTALL 15 device will be unchanged.

TRACE OFF may be executed either from the program, or from the keyboard.

312 Program Debugging

The CLR 1/O Key

The (CLR 110) key ((BREAK) on HP 46020A keyboards) suspends any active I/O operation and pauses
the program in such a way that the suspended statement will restart once { CONTINUE) or (STEP) is
pressed. This is useful for operations which appear to “hang” the machine, such as printing to a
printer which isn’t turned on.

Most devices will not respond to ENTER requests unless they have first been instructed to respond.

If improper values are sent to a device, it may refuse to respond. Therefore, (CtR 0] can help in
debugging these situations.

Here are the operations that can be suspended with _

PRINT SEND ASSIGN

LIST PRINTALL outputs PURGE

CAT ENTER CREATE

OUTPUT INPUT Some graphics commands

DUMP GRAPHICS HP-IB commands
DUMP ALPHA External plotter commands

Efficient Use Chapter

of the Computer’s Resources 13

Introduction

Every model of computer has certain characteristics which can result in better performance, pro-
vided the programmer knows what those characteristics are and how he can take advantage of
them. This chapter consists of a potpourri of such items.

Data Storage

Data Storage in Read/Write Memory

There are four data types on this computer: REAL, INTEGER, strings, and /O path names. The
R/W memory occupied by data is made up of two parts: the memory it actually takes to hold the
intended information, and the memory that the system uses to keep track of the information’s
location and form (this is called overhead). Strings, INTEGERs, and REALSs can be declared either
as simple variables or as arrays. Arrays take different amounts of overhead than simple variables,
but each element of an array uses the same amount of memory that a corresponding simple
variable uses to actually store information.

The overhead required for any given symbol is kept in three tables: the symbol table, the token
table and the dimension table. The symbol table contains pointers to the value area, where the
actual information is kept, and to the other two tables. The token table contains the names of the
various symbols, The dimension table contains length information for strings and arrays, and is not
used for numeric scalers. The tables are not constructed in single units as symbols are added and
deleted. Rather, as new space is required, the system will first ook to see if there are any unused
entries in the tables — if new space is allocated, usually enough for severa) entries is allocated. For
instance, the symbol table is built in increments of five entries.

Symbol Table Overhead: 10 bytes per symbol

Token Table Overhead: number of characters in the name + 1 (if the above number is
odd, it is rounded up to an even number). Note that the name for
/O path names, strings, and functions includes the @, $, and FN,
respectively.

Dimension Table Overhead: For arrays: 3 bytes (total size)
1 byte (number of dimensions)
4 bytes for each dimension (for the lower bound,
and the size of each dimension)

For strings: 2 bytes (maximum length)

For string arrays — all of the normal array overhead, plus two
bytes for the maximum allowed length of an element

313

314 Efficient Use of the Computer’s Resources

Note that line labels, COM labels, and subprograms are considered as symbols, and occupy space
in both the symbol and token tables. Line numbers used in statements, like GOTO 20, also occupy
space in the symbol table.

Every subprogram (or context) has its own set of tables. In addition, there is a global set of COM
tables, where all information concerning COM blocks is kept. Symbols that belong to a COM block
will oceur in both the COM tables and in any local tables in which that COM block is declared. Since
each context may define the names by which it refers to COM block variables, there will be no entry
in the COM token table for each variable, but an entry in the COM token table will occur for COM
labels,

ALLOCATEd vanables require four bytes of overhead in addition to the overhead already discus-
sed for the symbol, token, and dimension tables.

The following table summarizes the storage requirements for various data types. This table does not
show the extra requirements just mentioned for ALLOCATEd and COM variables.

Type Overhead Information Storage
Simple INTEGER 10 bytes + name overhead 2 bytes
Simple REAL 10 bytes + name overhead 8 bytes
Simple string 12 bytes + name overhead 1 byte per char. up to declared length (padded
to even number of chars.) + 2 bytes (length
information)
IO path name 10 bytes + name overhead 100 bytes
INTEGER array 14 bytes + name overhead 2 bytes per element
+ 4 bytes per dimension
REAL array 14 bytes + name overhead 8 bytes per element
+ 4 bytes per dimension
String array 16 bytes + name overhead 1 byte per char. up to declared length (padded
+ 4 bytes per dimension to even number of chars,) + 2 bytes (length
information) per element

Data Storage on Mass Memory Devices

The amount of storage that data takes on mass storage media is similar to the amount of R/'W
memory that data takes internally, except that no overhead is required (on BDAT files). Arrays and
single values are interchangeable on mass storage — no distinguishing information is kept on the
media.

INTEGERs (and INTEGER arrays) 2 bytes {per element)

REALSs (and REAL arrays) 8 bytes (per element)

Strings (and string arrays) 4 bytes + 1 byte per char
up to current length, pad-
ded to even number of
chars. (per element)

Efficient Use of the Computer's Resources 315

For ASCII files, all information is converted to string {or ASCII) form, and a two-byte length field is
tacked onto the front of every field.

INTEGERs (and INTEGER arrays) 2 bytes + 1 byte per digit (per element)
REALs (and REAL arrays) 2 bytes + 1 byte per digit (per element)
Strings (and string arrays) 2 bytes + 1 byte per char (per element)

Comments and Multicharacter Identifiers

Self-documenting features such as in-line comments and multicharacter variables and line labels
are useful because of the benefits to be reaped in terms of developing, testing, debugging, and
maintaining programs. They do take extra memory, but this shouldn’t be a problem if you keep the
following points in mind.

Comments take 1 byte of R'W memory for every character in the comment. If memory space
becomes a problem, many people resort to keeping two copies of their programs around — one
fully commented to use as reference material, and the other uncommented to use as the “produc-
tion version”, which is the one that is actually used.

Multicharacter identifiers are only spelled out in their entirety once — not every time they are used.
The program actually stores pointers whenever a reference to the identifier is used, so using short
identifiers won’t result in any appreciable savings in memory used.

Variable and Array Initialization

Care should be taken to initialize any variables before using them in an expression (on the right
hand side of an =, as a left-hand subscript in a function or subprogram parameter list, as an
argument to a built-in function, or in a PRINT/OUTPUT/DISP list). The system will set variables to
zero, strings to null, and /O path names to undefined at program prerun, but depending upon
defaults like this is considered bad programming practice and could lead to subtle errors. For
instance, the first time a certain line is executed, the vanables used may be assumed to be zero
because of the prerun operations. Once this assumption has been made, the danger is that the
programmer will branch back to the same section of code and forget that the zeroing process has

not been performed — an error may result that didn’t occur previously.

316 Efficient Use of the Computer's Resources

Mass Memory Performance

Program Files

There are two ways to store programs — they can be saved either as ASCII source strings using the
SAVE command, or they can be stored in an intermediate form that the BASIC language system
understands using the STORE command.

If the time it takes to load the program is important, always use the STORE command to store the
program instead of the SAVE command. The LOAD command, which reads in files created by the
STORE command, will execute about fifty times faster than the GET command. This is because the
LOAD command does not require that the information on the file be processed in any way. Since
the program is already in the form the system needs it in, all that is necessary is to funnet the
program directly into memory as fast as the disc can spin {assuming an interleave of one).

SAVE files, on the other hand, require that the system parse and check the lines as they are read,
just the same as if a user had typed them in from the keyboard. Consequently, the speed at which
the program gets loaded into memory with the GET command will be drastically slower than the
LOAD command. Using the Models 226 and 236 internal drives as an example of the relative
speeds, a typical 8K byte program will take about 30 seconds to GET, but only about one second to
LOAD.

One advantage of the GET/SAVE commands is that it is possible to deal with programs as string
data.

Data Files

As with program files, there are two types of data files: ASCIl and BDAT. ASCII files require that all
data be in string form, while BDAT files are interpreted as internal data representations.

When reading or writing data to an ASCII file, the number formatter is required to convert the data
in between its internal representation and its ASCII form. When reading or writing data to a BDAT
file the data may stream directly back and forth with no conversion required. Using the Models 226
and 236 internal drives as an example, an 8K element REAL array (64K bytes) may take around

200 seconds to write in an ASCII file, while the same array will only take about 5 seconds to write to
a BDAT file.

The primary benefit of the ASCII data file is the ransportation of data between different models of
Hewlett-Packard computers and terminals and between discs used with different language systems.

Efficient Use of the Computer’s Resources

Benchmarking Techniques

This section discusses the techniques used to determine how fast various operations execute.
Ideally, you should separate the measurement time from elapsed time:

10
20
30
40

TiI=TIMEDRTE

Z=TIMEDATE

PRINT T1-TZ3"seconds used to read clochk"
END

In actuality, the clock only has a resolution of 10 ms, so you won't usually be able to time this

operation.

Next, most operations are performed inside a loop in order to be able to time operations that are
faster than the resclution of the clock (clock resolution is 10 ms.). This also tends to “smooth out”
varying system overhead characteristics.

10
20
30
a0
20
GO
70

INTEGER I

Ti=TIMEDATE

FOR I=1 TO 1000Q0Q

NEXT I

TZ=TIMEDARTE

PRINT TZ-T1i"secands aof loar obverhead"
END

A certain amount of time used in computational operations will involve moving information around.
The time will be different depending upon the type of the information being moved (string, REAL,
or INTEGER), and for strings, the length.

10
20
30
40
50
GO
70
80
ao
100

REABL AB,C

INTEGER I

B=PI

T1=TIMEDATE

FOR I=1 70O 10000

A=B

NEXT 1

T2=TIMEDATE

PRINT TZ-Tli"seconds of loar owverhead"
END

317

318 Efficient Use of the Computer’s Resources

The next step is to actually time the operation of interest. It should be noted that for arithmetic
operations, the time spent performing the operation will vary depending upon the two operands
(number of digits and relative magnitudes).

10 REAL AB:C

20 INTEGER I

30 B=PI*1.,E+S3

40 C=EXP(SQR(2)"13.81)

50 PRINT "B="3iB+"C="3C

B0 T1=TIMEDATE

70 FOR I=1 TO 10000

g0 A=B

90 NEXRT 1

100 TZ=TIMEDATE

110 FOR I=1 TO 10000

120G A=B+C

130 NEXT I

140 T3=TIMEDATE

150 O0Op_.time=DROUND(T3-TZ2-T2+T1,3)
160 PRINT Op_time#10Q05"us, Per operation"
170 END

The above program will show anywhere from 148 to 150 microseconds per operation for addition.

Here is a list of a few other operations:

Addition 150 ps
Subtraction 165 ws
Multiplication 301 ps
Division 460 ps

Exponentiation 7590 ps

These times vary for different processor boards. Use these times and others throughout this chapter
to compare the speeds of different operations.

Efficient Use of the Computer's Resources

. . ' R
AL l A\ v £ WJoLS

We have seen in the first section of this chapter that INTEGER varables don’t take as much
memory as REAL vanables (2 bytes instead of 8). Now we shall discover that some operations with
INTEGERs are much faster than the same operations with REALs.

Minimum and Maximum Values
The INTEGER wvariable type may store any whole number from —32 768 to +32 767 inclusive.

Mathematical Operations

There are two sets of math routines provided for the MOD, DIV, +, —, and * operations: REAL
and INTEGER. Depending upon the types of the operands used, the execution times for these
operations will vary widely. The tradeoffs are:

INTEGER math is the faster of the two, since it doesn't require as much “‘work’”. This is because:

1. There are only two bytes of data to process instead of eight

2. Operations do not have to deal with a combination of mantissa and exponent.
3. The results don’t have to be normalized.

4, INTEGER math can be done directly in the hardware.

REAL math, though slower, is generally more widely used because it allows numbers with fractional
parts to be analyzed. REAL numbers carry about 16 decimal digits of precision and have an
exponent range of - 308 to + 308.

Note

All times specified are without the floating point card. If you have this
card, your times will be faster for REAL math,

For instance, suppose you want to compute your monthly pay. Assume that you're making $5.17
an hour, that you work twenty four days per month and that you work 14 hours per day. The
calculation that you would use is 5. 17#24# 14 or $1737.12. In this problem, you definitely want
your computer to use REAL precision math (or you'll lose 17 cents per hour!) even though you're
only using 6 of the 16 digits available.

The computer will pick whatever math routines it needs to solve the current problem. However, the
programmer can exercise control over which math routines get executed if the following rules are
understood.

e INTEGER math is used if both arguments of a MOD, DIV, *, +, or —operation are of type
INTEGER. If the results of the operation cannot be stored in an INTEGER, then an error is
generated (INTEGER overflow).

e REAL math is used if either or both arguments of a MOD, DIV, *, + or — operation is of type
REAL. If one of the arguments is of type INTEGER, then that argument is first converted to
REAL.

e REAL math is always used for exponentiation and division (slash).

319

320 Efficient Use of the Computer's Resources

The following table gives some approximate time comparisons' between INTEGER and REAL
operations for +, —, and *. The times are approximations because REAL math routines do
different things depending upon the values of the operands. All times shown here were found on
operations with numbers having no fractional parts. The multiplication times were found for oper-
ands in the range of —200 to +200.

REAL | INTEGER

MOD 160 us 91 ps
DIV 352 us 88 us
Addition 142 us 68 s

Subtraction 174 ps 68 us
Multiplication | 152 ps 77 us

Multiplication, like most math operations, will execute faster on INTEGER values. However, bear in
mind that it's much easier to get an INTEGER overflow on multiplications than on additions and
subtractions. For instance, 200% 200 will give an INTEGER overflow. If you are performing multi-
plication on INTEGERSs, you should carefully examine your program to ensure that the range of
your answers doesn’t force you to use REALs, even if the requirement for fractional precision
doesn’t.

Loops

In general, any FOR/NEXT loop using an index which has been declared to be an INTEGER wiill
execute about 2.4 times faster than a loop whose loop counter is a REAL. Type in the two
programs below and run them to see the difference.

10 REAL 1

20 TO=TIMEDATE

30 FOR I=1 TO 100GCO

40 NEXKT 1

50 PRINT TIMEDATE-TOi"secands"
GO END

Time is about 1.67 seconds.

10 INTEGER I

20 TO=TIMEDATE

30 FOrR I=1 TD 10000

40 NEXT 1

20 PRINT TIMEDATE-TO#"secands"
=] END

Time is about .69 seconds.

1 These times are for a Series 200 computer with an MC68000 processor running at 8 MHz. They will be significantly decreased on machines
with higher clock rates or floating-point math hardware (HP98635 math card or MC68881 co-processor).

Efficient Use of the Computer's Resources

Bear in mind that the 2.4 speed improvement is only on the time devoted to actually incrementing
and testing the loop variable (in these examples, 1). So, any loop that iterates for 10 000 times will
run about a second faster if the index is an INTEGER instead of a REAL. Now, saving a second on a
loop that executes 10 000 times may not sound like much by itself, and it's not. But what if that
loop is nested inside another one that executes 10 000 times? Now your time savings is 10 000
seconds, or two hours and forty-five minutes! Just for declaring the loop counters to be INTEGER.

Naturally, making a loop index into an INTEGER will only work if the loop is not stepping in
fractions, and if the minimum and maximum values of the loop index do not exceed the range of
—32 768 thru + 32 767.

Array Indexing

Accessing individual array elements is faster if the variables or expressions giving the indices into the
array are INTEGER instead of REAL. This is because the system has to convert floating point
numbers into an INTEGER in order to find the offset from the beginning of the array. If the index is
already in INTEGER form, the conversion isn't necessary. The following example illustrates this
point.

10 REAL I

20 DIM A(1:1000)

30 ®=17.,3568

40 TO=TIMEDATE

30 FOR I=1 TO 1000

GO ACT)I=X

70 NEXT 1

BO PRINT TIMEDATE-TOi"seconds”
a0 END

10 INTEGER 1

20 DIM A(1:1000)
30 X=17.5G8B

40 TO=TIMEDATE

50 FOr I=1 TO 1000

GO ALTY=X

70 NEXT 1 -

g0 PRINT TIMEDATE-TO"seconds"
90 END

You will find a difference of .14 seconds between the two programs’ execution times, due to a
combination of the loop counter being INTEGER and the INTEGER indexing of the array. Again, if
you're operating on a much larger array, or if you're working on a multi-dimensional array this
number can become noticeable.

321

322 Efficient Use of the Computer's Resources

~AL Numbers

Minimum and Maximum Values

The minimum REAL number that can be stored on this computer is approximately
+2.225 073 858 507 202 x 10%*

The maximum REAL number that can be stored on this computer is approximately
+1.797 693 134 862 315 x 10

A REAL number can also have the value zero.

Type Conversions

Earlier, it was mentioned that any time a MOD, DIV, #, +, or —operation is perforred on two
numbers of different type (one INTEGER, and one REAL), a type conversion has to take place to
convert the INTEGER to a REAL. This section will address other situations where type conversions
have to take place.

Any time an INTEGER is used in an exponentiation or division operation, it must first be converted
to a REAL.

All of the following functions require a REAL argument {with the exception of VAL and RND), and
all of them return a REAL value (with the exception of RANDOMIZE). If an INTEGER is passed in,

or if the result is to be stored in an INTEGER, then the appropriate type conversion must be made:
EXP, LGT, LOG, RANDOMIZE, SQR, DROUND, RND, ACS, COS, ASN, SIN, ATN, TAN, VAL,

All of the comparison operators (=, <>, <, >, <=, >=) will return INTEGER values (0 or 1)
but will accept either INTEGERs or REALs as arguments. The logical operators AND, EXOR, OR,
and NOT will convert any arquments to the INTEGER values O or 1 before the operation is
performed, and an INTEGER 0 or 1 will be returned.

The binary bit functions (BINAND, SHIFT, ROTATE, BINIOR, BINCMP, BIT, BINEOR) require
INTEGER inputs and provide INTEGER outputs. Type conversions will be performed if REALS are
supplied as inputs, or if the results are to be stored in a REAL variable.

SGN retumns an INTEGER (-1, 0, 1) regardless of the type of the argument passed to it. ABS and
INT return the type of the argument that's passed to them.

If two INTEGERSs are used to perforrn a MOD, DIV, #, +, or —operation, but the result is to be
stored in a REAL variable instead of an INTEGER, then the result must be converted from
INTEGER to REAL.

Here is how long each type conversion takes:

INTEGER to REAL: 42 microseconds
REAL to INTEGER: 34 microseconds

Efficient Use of the Computer's Resources 323

[onet

All constants that are within the range of —32 767 to 32 767 that aren't entered with a decimal
point or an “E’" {for scientific notation) are stored in the machine as INTEGERs. Integer constants
should always be used with INTEGER variables, but if they are used with REAL variables they will
have to be converted to REAL first. This operation will slow down the execution of the program, as
shown in the previous section. Any numbers entered with decimal points (1.0, 3., .7, etc.), with an
E {1E—-304, .2E48, OEOQ, etc.), or outside the valid INTEGER range (40000, — 75986, etc.} will be
stored as REAL constants.

Polynomial Evaluations

The polynomial can waste much of computer time because programmers tend to pick the most
obvious, and also the most time-consuming, method of evaluating them. Polynomials are usually
written mathematically as:

y=a.x" + a,_ X" 1+ ..+ ax + ag
or

n

y= 2 ax'

hence the temptation is strong to evaluate a polynomial on a computer as:

2000 DEF FNPoly (X ;Coefficient (%), ,INTEGER N)
2010 INTEGER I

2020 Y=0
2030 FOR I=0 TO N
2040 ¥Y=¥Y+Coefficient(I)*(X"1)

2050 NEXT 1
2060 RETURN Y
2070 FNEND

In the above program, there are N+ 1 additions, N+ 1 multiplies, N + 1 exponentiations, and N + 1
INTEGER to REAL conversions (I is converted to a REAL when the exponentiation operation is
performed). Now suppose the polynomial is written in the equivalent form:

y=ay + x(a; + x{ap + ... + x(a,) ...))

Then the corresponding program would be:

2000 DEF FNPoly (X+Coefficient(*}) yINTEGER N)
2010 INTEGER I

2020 ¥Y=Caefficient (N}

2030 FOR I=N-1 TO O STEP -1

2040 Y=Caoefficient (I)+X*Y

2030 NEXT I

2060 RETURN Y

2070 FNEND

Now there are only N additions and N multiplies, and NO exponentiations or INTEGER to REAL
conversions! The following chart shows the time savings as a function of the order of the polyno-
mial. For example, if the polynomial is of order 10, it is 70 milliseconds faster to use the nested
multiply method to evaluate the polynomial than to use exponentiation. If you’re plotting a
thousand points on a graph, nested multiplication will save you more than a minute!

324 Efficient Use of the Computer's Resources

DIFFERENCE BETWEEN NESTED MULTIPLICARTION

4(AND EXPONENTIATION ON POLYNOMIAL
EVALUATION
.3
9
A
Z .2r
o
U
L
iy
A
@ 5I 1 1I5 L 2i5 1 3I5 1 4IS]

ORDER OF POLYNOMIAL

Logical Comparisons for Equality on REAL Numbers
Don’t do it

If you are performing mathematical operations on REAL numbers, and then comparing them for
equality, the chances are that they will never come up equal. For exampile, in the previous section
on polynomial evaluation, you can pass the same value for X and the same coefficient array to each
of the two functions, and although the results will look equal when you print them out, they won't
show equality if you compare them. (Try it and see.} A shorter example is to type out this
expression from the keyboard and press (_EXECUTE):

N T I A A I I N P T O N

The 0 at the bottom of the screen means that the machine doesn’t consider the two numbers to be
equal. This is characteristic of the way that binary math works.

Any REAL numbers should be rounded first before being tested for equality. This is one of the
purposes of the DROUND function.

DROUND {1+ 1+,41+,1+.1+1+,1+12)=DROUNDC.7+12)

After rounding both numbers to 12 digits, the computer will now accept them as being equal. See
Chapter 4 for more discussion on the comparison of REAL numbers.

Efficient Use of the Computer's Resources

Saving Time
Multiply vs. Add

It is always faster to add a number to itself than it is to multiply it by 2. For instance, to perform 2#PI
a thousand times takes .22 seconds, while to perform PI+ Pl a thousand times takes .13 seconds.

However, if you want to multiply by 3, that is faster than adding the number three times. 3#PI
executed a thousand times takes about the same as 2#PI (.22 seconds), but adding PI+PI+Pl a
thousand times takes about .28 seconds.

Exponentiation vs. Multiply and SQR

Exponentiation is very slow when compared to other mathematical operations. The results are
worth the wait when the exponent has a fractional part; raising a REAL number to a REAL power is
a complex operation. However, time can be saved if you are alert to some special cases. The most
common examples are squaring a number or finding a square root. Using SQR (%) takes only
about one-fourth the time required by the expression ¥ *.5. Even more dramatic savings can be
gained when raising numbers to an integer power. Using ¥ # X yields a 22-to-1 time savings over the
expression ¥ * 2. When using powers greater than 2 or 3, the expressions needed to achieve the
repeated multiplication can be somewhat cumbersome, and may not even fit on a program line.
However, repeated multiplication is so much faster than exponentiation that time savings can be
realized (for powers up to 14) even if a FOR... NEXT loop has to be added to repeat the multiplica-
tion.

Array Fetches vs. Simple Variables

It takes more time to access an array element than it does a simple variable. This is because the
address of the array element has to be computed from the starting address of the array and the
offset within the array based on the specified indices. A simple vanable’s address does not require
this computation.

Thus, if you access a given array element often enough, especially within a loop, it will often be
faster to store the array element into a simple variable and then operate on the simple variable.

Time to fetch a simple variable and store it: 136 ps
Time to fetch an array variable and store it: 260 us
Difference:; 124 us

This means that it is faster to fetch three simple variables than it is to fetch two array elements.

Concatenation vs. Substring Placement

The concatenation operator (&) allows you to combine two or more strings to construct another
string. This operation is discussed in Chapter 5. However, there is a special case that can be
accomplished faster without the concatenation operator, This is the case where the new string is
built by appending to the end of an existing string. For example, A$=A%$8B3.

325

326 Efficient Use of the Computer’s Resources

Concatenation works by constructing a temporary workspace in which all the components are
assembled. Then the result is moved to its destination. In the example above, A$ is moved to a
temporary workspace, B$ is appended to it, and the result is moved back to A$. Thus, the original
contents of A$, which weren't changed, have been moved twice unnecessarly. A faster way to
accomplish the same thing is:

ASCLENCAS)+11=B%

Another benefit of this approach is that the temporary workspace is not created. If memory is tight
and A$ is very large, concatenation could create a memory overflow.

The following chart shows the time savings that result from using substring placement instead of

concatenation.
DIFFERENCE BETWEEN CONCATENTRTION
AND SUBSTRING PLACEMENT
15
14
13
12 +

(MILLISECONDS PER OPERATION)

ny w n an [ep] ~ o] w =
T r T ¥ * T T

N vl b It It It 1 " 1 L L 1 L M L L 1 " I i 1 1 L L 2
1%]5] le@@ 24809 3200 1020 4888

(# OF CHRRACTERS IN FINAL STRING)

Efficient Use of the Computer's Resources 327

HP 98635 Floating-Point Math Card

This card contains a special chip which performs floating-point math computations in hardware
rather than in software. It provides significant speed improvements over the “‘math library’’ (soft-
ware) computation method.

The BASIC system uses this card automatically, whenever installed. However, you can disable and
enable its use with CONTROL statements just like you can the MC68881 co-processor. See the
following section for details.

MC68881 Floating-Point Math Co-Processor

Series 300 computers may optionally be equipped with MC68881 floating-point math co-
processors. Not only does the 68881 provide increased speed of floating-point math calculations,
but it also increases the accuracy of these calculations. The 68881 has 80-bit (binary) precision as
opposed to the 64-bit (binary) precision of the BASIC math library and HP 98635 Floating-Point
Math Card. In a series of standard math tests, the RMS (root mean square) error in the 10 worst
cases for the 68881 ranged from 0 to 0.37 bit error. For the software math library and Floating-
Point Math card, the RMS error in the worst 10 cases ranged from 0.33 to 4.2 bits of error.

While the BASIC math library and the HP 98635 Floating-Point Math card produce identical
results, these values may not agree with those obtained from using the MC68881. This may only be
noticeable when strict equality with the math library or Floating-Point Math card is required (which
is not recommended, by the way). For strict compliance, disable the 68881,

Enabling and Disabling Floating-Point Math Hardware

You can determine whether the MC68881 floating-point math co-processor or HP 98635 Floating-
Point Math Card is currently enabled with the following statement:

STATUS 32:23Ficat~on

If the variable called Float_on is assigned a value of 1, then the floating-point hardware is currently
enabled (this is the default condition). If it is assigned a value of 0, then it is disabled.

If floating-point math hardware is enabled but you want to disable it, execute this statement:

CONTROL 32,230

If you want to re-enabile this feature, you can do so with this statement:

CONTROL 3Z2.2i1

WS R

MC68020 Internal Cache Memory

The MC68020 processors available on Series 300 computers have on-chip high-speed cache
memory. This memory serves as storage for machine instruction sequences, typically allowing the
processor to decrease the amount of off-chip memory accesses and thus speed program execution.

Enabling and Disabling Cache Memory
You can determine whether or not cache memory is currently enabled with this statement:

STATUS 3Z,:3iCache_on

If the vanable called Cache_on is assigned a value of 1, then cache is currently enabled (this is the
default condition). If it is assigned a value of 0, then cache is disabled.

If the cache feature is enabled, but you want to disable it, you can do so with this statement:

CONTRDOL 3Z2.330

If you want to re-enable this feature, execute this statement:
CONTROL 32:3it

Efficient Use of the Computer's Resources 329

Saving Memory

The ALLOCATE and DEALLOCATE statements can be used to make efficient use of memory
space in certain applications. They are useful in programs that contain a number of large
variables that are not all needed simultaneously. For example: during data collection, a large
string array is needed; during data processing a large numeric look-up table is needed; and
during output formatting, a string array is needed again. Because a mass storage device is used
to hold the data between processes, the same memory area can be used for all these arrays.

To use ALLOCATE effectively, it is necessary to understand how the system reclaims areas that
have been DEALLOCATED. Space for allocated variables is built using a stack discipline. The
DEALLOCATE statement marks a space as unused. Unused space can be reclaimed only if it is

the last space on the stack. There are two operations that use space in this stack. One is
ALLOCATE, and the other is ON <tevent>.

Keeping other allocated variables from blocking deallocated space is relatively simple. If you
have only one allocated variable at any given time, this is not a problem. If you have allocated
vaniables in existence simultaneously, ALLOCATE them in the opposite order of the DEALLO-
CATE statements. Think of this in the same way you would think about nesting FOR... NEXT
loops.

Preventing blockage by ON conditions is more complicated. ON conditions, with one excep-
tion, create control blocks that are permanent entries on the stack. As soon as you declare an
ON (or OFF) condition, all the previous entries on the stack are “locked in”’ for the duration of
the context and cannot be reclaimed. Therefore, all the contrel blocks should be created before
any variables are allocated. Once a control block is created, it will be used by all subsequent ON
and OFF statements that refer to the same resource. A good technique is to include an OFF
statement for each desired event before allocating any variables.

The exception mentioned above is an ON condition declared for an [/O path name. This
includes ON END, ON EOT, and ON EOR. For these, subsequent ON and OFF statements
behave as previously described. However, if the 1/O path is closed, any control blocks associ-
ated with the path are marked as unused. This has two implications, One, the reclaiming of the
stack will not be blocked after the I/O path is closed. Two, you cannot force the system to leave
these control blocks at the beginning of the stack. Here is an example:

ASSICN BFile to "FRED"
ON END Bfile GOTO Labell
ALLOCATE Array(235.4)

M T
o= O
O 00

B00 ASSIGN BFile 7O "SUSAN"
510 ON END BFile GOTD LabelZ
GZ0 DEALLOCATE Arrar(#*)

At first, the array and control block are allocated in the proper order. The ASSIGN statement in
line 600 closes the original path and opens a new path with the same name. When the ON END
control block for the new path is created, it is placed after the array on the stack. Therefore, no
memory space can be recovered by deallocating the array.

330 Efficient Use of the Computer’s Resources

Notes

Chapter
14

Using SRM

This chapter describes the use' of your HP Series 200/300 BASIC workstation with a Shared
Resource Management (SRM) system. The chapter is divided into four major sections:

¢ The System Concepts section is an overview to help you understand how the SRM system
works.

® The Using Your BASIC Workstation on SRM section demonstrates, through the use of an
example directory structure, some of the common operations involving shared resources.

¢ The Modifying Existing Programs section discusses ways to change existing BASIC programs
to make them work with SRM.

¢ The Summary of SRM Status Registers section defines register contents.

The BASIC Language Reference has an SRM section that describes the use of BASIC commands
and statements on SRM, including the special file and directory specification used with SRM.

System Concepts

This section presents a detailed look at some of the concepts of the SRM system, including
descriptions of the following topics:

¢ support of the BASIC language on SRM;

¢ SRM directory structure and capabilities;

® storing of remote directories and files;

® shared access to directories and files {including file locking and password protection);

® management of shared peripherals.

Shared Resource Support of the BASIC Language

With HP Series 200/300 workstations, you can use most BASIC statements that access local mass
storage devices to access shared mass storage devices on SRM as well. Any changes to BASIC mass
storage statements made by the SRM BIN file are described in the “SRM” section of the BASIC
Language Reference.

SRM adds three new commands to the BASIC mass storage statements used by HP Series 200/300
computers — CREATE DIR, LOCK, and UNLOCK — and adds the PROTECT option for use with
the CAT statement. In addition, the PROTECT statement’s use on SRM is distinct from its use with
local files.

1 Installation of BASIC or an SRM system is described in the documentation provided with the SRM controller system.

331

332 Using SRM

SRM'’s Hierarchical Directory Structure

A directory is a file that is used to organize and control access to other files. The SEKM operating
system uses a hierarchical directory structure to organize and control access to files on a shared
mass storage device.

As the word “‘hierarchy’ suggests, directories are arranged in a series of “graded levels.” Director-
ies may contain either files or other directories. A file or directory within a directory is said to be
“subordinate” to the containing directory. A directory is “superior” to the files and directories it

contains.
(root)
PROJECTS
Pro ject one Project two Gerneral
[| —
KATHY assignments JOHN AL assignments eD REPORTS (—Test"da‘ta
schedule schedule ' ‘

£l Hs - A 1

= budget budget, ‘ o
f2 = May

f—i

— f1 dir‘ﬁl dir 1 d]r‘ﬁE

In the illustration above, the directory named KATHY is subordinate to the directory named
Project_one, because Project_one contains the information describing KATHY. The directory
named PROJECTS is at level 1, the “root” level You cannot create a directory at a higher level
than the root level,

Each directory keeps information, in 24-byte fixed format records, about each file or directory
immediately subordinate to it.

Uses of the Hierarchy: An Example

Suppose you're managing several projects, each of which needs to access a shared disc. To
organize the files for each project separately, you can create a directory for each project (as shown
in the illustration). Within each project directory, you can have a subordinate directory for each
person working on the project as well as files to be shared among all users. Each person may then
construct a directory/file system for organizing their own files.

Because files at different locations in the directory structure can have the same file name, you can
use generic file names to identify similar project functions in the different projects. At the same time,
the division into separate directories isolates the projects, and thus their individual functions, from
one another. For example, Project_one’s budget file is distinct from Project_two’s budget file.

Directories also limit the number of files users must deal with at any one time. For example, people
working on Project_one (see illustration) need never see the files in Project_tweo and may, in fact,
confine most of their activity to within their own directories.

Using SRM 333

To maintain security, SEM provides the capability to protect access to directories and files. For
example, you may wish to allow only members of a project team to read that project’s files. Or, you
may wish to prevent other users from altering the contents of a personal file.

In the first situation, you would protect the project directory’s READ capability. By protecting a
directory, you automatically restrict access to alt directories and files subordinate to that directory. In
the second situation, you would protect the file’s WRITE capability. The section on “‘Shared Access
to Remote Directories and Files” discusses protection in more detail.

Capabilities of Directories
Directories are a type of file and, as such, can be:

e created with the CREATE DIR statement. When a directory is created, its location in the
hierarchical structure is fixed.

e cataloged with the CAT statement, renamed with the RENAME statement, and protected with
the PROTECT statement.

e “filled” with subordinate files and directories using the COPY, CREATE BDAT, CREATE
ASCII, CREATE DIR, SAVE, STORE, RENAME, RE-SAVE, and RE-STORE statements. Each
subordinate file or directory is described in a 24-byte record in its superor directory.

® opened and closed with the MASS STORAGE IS (MSI) statement. When a user’'s MSI state-
ment specifies a directory, any previously opened directory of that user is closed and the new
one is opened.

¢ “‘emptied” by removing all subordinate files and directories with the PURGE statement.
¢ purged with the PURGE statement. You must close and empty a directory before purging it.

Referring to Directories and Files in the Hierarchy

To access either a directory or a file, you must specify its location in the hierarchical directory
structure, This location is specified by a list of directories, called a directory path, that you must
follow to reach the desired file or directory. Directory names in the list are delimited by a slash (/).

For example, in the directory structure illustrated previously, the remote file specifier:

"/PROJECTS/Prodect_ane/ OHN/fL"
defines the “‘path” to the file, fI, through its superior directories.

The path to a file begins either at the root level or at the current working directory. The working
directory is the directory specified by the most recent MASS STORAGE IS statement.

The “SRM” section in the BASIC Language Reference discusses the rules for specifying remote
files and directories.

334 Using SRM

How the & "' “ 1 Stores Remote Dirz:ctories and Files

To most efficiently use the shared disc space, the SRM system stores files non-contiguously and
adds to space allocations for files as needed.

-7

Non-Contiguous Storage of Remote Files

To avoid wasting disc space, the SRM system may fragment a file to fill unused disc sectors. This
process is transparent and cannot be externally controlled. By “filling the gaps” automatically, the
system eliminates the need to pack the shared disc’s files.

Space Allocation for Remote Directories and Files
SRM files and directories grow dynamically as data is entered into them.

Rather than restricting a file's space to that allocated when the file is created (for example, with a
CREATE statement), the SRM systemn determines disc space requirements when data is sent to the
file {for example, by an OUTPUT statement). If additional data placed into a file would cause the
file to overflow its current space allocation, the systern automatically allocates more space for the
file.

Similarly, directories grow only as entries are added. As a file or directory is created, another
24-byte record is added to the containing directory.

Files are extended as long as there is sufficient unused disc space on the same volume. Excess data
from a file will not be placed on any other disc (volume) on the SRM system.

Shared Access to Remote Directories And Files

Because the sharing of files is a consequence of shared mass storage, the SRM system provides
features for controlling access to shared information.

Controlled Access: Password Protection

The SRM system offers three kinds of access capability for files and directories: READ, WRITE, and
MANAGER. Capabilities are either public (available to all workstations on the SRM) or protected
(available only to users who know the appropriate password).

Capabilities are protected with the PROTECT statement, which associates password(s) with one or
more access capabilities. One password can be used to protect one or more capabilities. Each file or
directory can have several password/capability pairs assigned to it.

Once assigned, the password protecting an access capability must be included with the file or
directory specifier to execute statements requiring that access. If you don’t specify the correct
password when it is required, the system will report an error and deny access to the file or directory.

READ access capability for a file allows you to execute statements that read the file. READ access
capability for a directory allows you to execute statements that read the file names in the directory,
and to “‘pass through’ the directory when the directory’s name is included in a directory path.

For example, in the remote file specifier

“/PROJECTS/ProJect_one<READPass»/JOHN/F1"

including the assigried password {READrass> allows passage through the directory Project_one to
allow access to its subordinate directories and files.

Using SP

WRITE access capability for 1t - 2 ' L

access capability for a directory a_ows v | B o it . "1 or delete frori the
directory’s contents.

With the 4 lAariEf. accessc ' ' D Coo.d o D |
password-protected T . . r

pURGE or RENAIV . e fl T oL i ‘ 1]
READ and WRIT! 1ccess ¢ = ' SR ‘ Toneoradl sty
specifier.

The “SREM" section in the 27 : P WX

capabilities needed tc T . B S o
TECT keyword, also in that sectio . T it o of i .

Exclusive Acces

Although sharing files saves dlSC ev ~ allo e o oyt oduces
the danger of users trying to acc le t - 0, el necese " ble results.
For instance, if one user tries to read part « 2 - . 7 .. ther “is wr . v toit, the file's

contents may be inaccurate for the read.

To avoid problems, the SRM system adcs © . keywords, o K. whi you
can use to secure files during crifical oper.. < .. oo AC s to 2 ille, w uch
means that the file can only be acc »s¢ ror .+ . e w o tt T was e .dted.
You may wish to LOCK a file, for ¢ e, -2 ceu A 7 awinformation to the
file.

To permit shared access to the e o1 -~ - e ’ “be e fi 12 same
workstation, or the file must be clos . 0 " " at hewe been open. Jy a user

via ASSIGN may be locked explicitly by tha

[Locking and unlocking is usuz ly do from a WML o more ‘or tion, 2r to the
descriptions of the AS! 5 .0 Fad: A€ nt +“Sk sec onofthe B T
Language Reference.

How the SRM . 1

The SRM system not only provides s red acce 1o 2rs anc le ~vs, but also manages their
use so that workstations never need to wait for ~ "»ut 0 be generated.

To use shared peripherals, you place files 01 ot u. wwé& e |director « 2 they are held

until the printer or plotter is frze. Thesy @ -~ ¢ e orde “in whic1 les arrive from the
workstations, and outputs them in the same « .1 7 rethot ‘s called | ooling,” and the
directory where the files are kept is called the “‘spooler ¢ recto. ' n oler " ec:ories are created

for the SRM controller’s use when the shared peripherals are installed on the o v system.

After a file is placed in a spooler directory, ' worksteiion & free to do other vocessi | Please
note, however, that the SRM system manages ¢ ooling only; youcanr i g ... mation
from a plotter, such as status codes or locations ¢ the ¢ ers of paper, back tc e workstation.

336 Using SRM

Using Your BASIC Workstation on SRM

This section describes, through examples, some of the more common procedures you'll use when
operating your BASIC workstation on the SKRM, including:

® booting from the SRM;

® accessing the shared mass storage device;
® creating directories and files;

e listing a directory’s contents;

® copying files;

® using shared printers and plotters;

e protecting files and directories;

® purging files and directories;

® accessing files created on non-Series 200/300 SRM workstations;
@ Jocking and unlocking files;

@ returning to local mass storage.

This section illustrates both operations executed from the keyboard, and those executed within
programs.

Note About Key References

Throughout this section, symbols for the keys used 1o execute state-
ments and commands are shown with each statement or command.

The (EXECUTE) symbol denotes the execution key on either the HP
58203A or HP 98203B keyboards (the keycap on the HP 98203A

keyboard is labeled). The symbol denotes the execution
key on the HP 46020A keyboard.

You may also use the (ENTER) key on these keyboards to execute
statements and commands.

Booting From the SRM

[f your workstation has Boot ROM version 3.0 or later, you will be able to boot the BASIC language
system into your workstation from the SRM. Once your workstation has been installed on the SRM
system, the workstation powerup scheme your system manager has implemented on your SRM

determines the exact procedure you use. This section discusses some general aspects of booting
SRM workstations.

Note
Only HP Series 200/300 computers with Boot ROM version 3.0 or later
can boot automatically from SRM. Refer to the BASIC User's Guide for
more information on how to determine which boot ROM your compu-
ter has. Boot ROM 3.0L does not support automatic booting from
SRM.

Using SRM 337

If your workstation’s boot ROM does not support booting from SRM, you must boot the BASIC
system from a local mass storage device and load the SRM and DCOMM BIN files to allow the
workstation to communicate with the SRM system. You may load these BIN files either from local
mass storage or, if your boot ROM supports automatic booting, from the SRM (even though the
SRM BIN file is not present in the workstation).

For example, assume the SRM and DCOMM BIN files are in the directory named SYSTEMS at the
root level of the SRM directory structure, and your workstation booted the BASIC system from the
SRM. To load the BIN files from the SKEM, you would type:

LOAD BIN "/SYSTEMS/SRM" (" EXECUTE) or ((Return)
then type:
LOAD BIN “/SYSTENMS/DCOMM" EXECUTE) or (Return

If you load the SRM and DCOMM BIN files from the SRM, you must load SRM before
DCOMM.

Selecting an Operating System

In general, when you power your workstation ON or perform a SYSBOOT while the workstation is
powered (which returns control to the boot ROM to restart the system selection and configuration
process), you can either select the BASIC system explicitly or an operating system is loaded
automatically.

If your workstation is not set up to automatically boot the BASIC system, you must explicitly select a
system for the boot ROM to load into your workstation. Because explicit selection overrides any
other method of system selection, you may choose this method over automatic selection when you
wish to use an operating system other than the BASIC system.

To explicitly select an operating system for the boot ROM to load at powerup, follow these steps:

1. If your workstation’s power is OFF, turn the power ON. To boot while the power is ON, use
the SYSBOOT command (described in the BASIC Language Reference).

Note

If your workstation is providing power to an SRM multiplexer, you
should avoid turning the power off to reboot.

2. Press any key within the first few seconds after the boot ROM's initial activity begins (the
workstation’s display begins to list the various parts of the computer for example, Kevboard)
as each is recognized by the boot ROM). In response to the key press, the boot ROM then
lists all systems currently available for loading into the workstation and waits for you to select
a systemn.

3. To the left of each system name is a two-character identifier, such as 1. To select a system,
type the identifier and wait for the boot ROM to load the specified system.

338 Using S

i

Besides automatic szlection o 0 we an automatic configura-
tion {“‘autostart’”’) file, wh ¢ Co 2 pe yu el ~ system immediate-
ly after it is loaded. F¢ vxemn > o atawr’ aost T " cause the system to load
certain BIN filesandgo ~ . > ~ . & yoL 00 your system.

If an autostart file exists for your workstztio ,. ' ir° © figuration 1appens automatically, without
any exira effort from you Forir’'o ution. .) tostar 1 s, refer to the BASIC User’s
Guide and the ', tering, | nu,] g. I ' 2t of the HSASIC Programming

Techniques manuai.

Your workstation a~ce.. .. ’ wo o7 lconaoer, which is ronnected to the
workstation throug .+« . = AR LEI T ~mote (.) mass storage
device is identified » 1 1€ e U spec i, 0 ° me e msus’ (simi ar to the local
msus), which givesin®™ % = .~ .. T t. o . susincludes the following
required and optio
e the device type | I S o
Insiead o " 7 levo © acifier,you _ :the “gener-
i formol Ter s 1w " or 7. ¢’ enericremote
msusinthe ..1 -tone . ; gui . e rence.
® (Opticnal) their ar ¢ =2 cc ofr 11 © jor ¢ 1 terface. The default is the
selectcode of the e acet -~ uvtc h x ac ~~ . your workstation. (If you do
notboot fromthe St e~ 7 ltistheluastselei code< ™ ose available among the SRM
interfaces in your work. 1)
® (Optional) the controller’s node address;
® (Optional) the volume na - Sotlume IoTes
The full syntax of the remot~ - 1sis ¢ &« bt nningo .U .7 section of the BASIC

Language KHeference.

In general, the first step in accessing a m . . _ge <evice is to make that device the MASS
STORAGE IS dev . yping:

Msr v:remoTer (0 Jeor(7

establishes the shared mass storage device . . o r waorkstatic v's m _s storage and causes the root
to be the working directory. The wo <ing dir¢ .. ithe dir ~ .y = ciied in the most recent MSI
statement. (Refer 101 e seciionon ‘. “em- 7 liert t i< apter for more information
about directories.)

The form of the MSI staiernent show 1 above as um« > -3t you want remote mass storage estab-
lished according to the default value ryo wtatior * “terface select code, the controller’s
node address, and the ! systern volume.

USIPZ A

To find out the default values for these items, and to verify that your workstation’s mass storage is
the SKM mass storage device, you can use the CAT statement to list the contents of the working
directory. Your mass storage is the remote device if, when you type:

cat (_EXECUTE) or (Return)

the directory header includes the remote msus (for example, :REMOTE 21, 0). Refer to the CAT

keyword entry in the “SRM”’ section of the BASIC [.anguage Reference for an example of a remote
directory catalog listing. If, as in this example, you do not specify the optional items in your remote
msus, the default values are assumed and listed.

To specify the remote mass storage when the SRM controller's node address is 4 and the select
code of your workstation’s interface is 15, you would type:

MS1 ":REMOTE 15,4" (EXECUTE) or (Return)

reating Directories and Files

For the following examples, assume you are working with the directory structure shown in the
illustration below.

(root)
PROJECTS

‘ B
Pro ject one Projsct two. General

i :

[

]
| | L |
|KF!THY I— assignments JOHM AL assignments ED ITQEPORTS Test_data

: |: schedule schedule |

£l f - Apri]
[budget : —~ budget Rpri
£2

 — -

— f1 |oir_l dir 1| dir 2

— May

Creating Directories
To create a directory named CHARLIE in the directory, Project_one, you could type:

MS1 ":REMOTE" { EXECUTE) or (Return)
CREATE OIR "/PROJECTS/Frodect_one/CHARLIE" (EXECUTE) or (Return)

The leading slash indicates that the directory path begins at the root of the SRM directory structure.

You could accomplish the same thing by typing:

CREATE DIR "PRNJECTS/Prodect_onz/CHARLIE:REMDTE" [EXECUTE) or (Return)

340 Using SRM

Using the leading slash to begin the directory path at the root works only if you have previcusly
established the remote mass storage as your workstation’s mass storage {with some form of the
MST ":REMOTE" statement).

This statement would place your newly-created directory into the directory structure as shown
below.

(root)
PROJECTS

|
| l |

Froject _one Project two General

(

KARTHY JOHN

Creating Files and Other Directories Under a Directory

To create files subordinate to a new directory, you may either establish the new directory as the
working directory or specify the directory path to that directory. Assuming your current working
directory is the root, you could type:

MSI "PROJECTS/Prodect_one/CHARLIE" [EXECUTE) or (Return)

to move into the directory, CHARLIE.

You could verify the new working directory with a catalog listing by typing:

CAT (EXECUTE] or (Return

On a computer whose screen supports an 80-character line width, the resulting listing would look
something like this:

PROJECTS/Prouect_one /CHARLIE:REMOTE 21, ©

LABEL : Discl
FORMAT: SDF
AVATLABLE SPACE: 54098
8YS FILE NUMBER FECORD MODIFIED PUB OPEN
FILE NAME LEY TYPE TYPE RECORDS LENCTH DATE TIME ACC STAT

To create an ASCII file within CHARLIE, which is named ASCII_1 and is initially to contain 100
records, you would type:

CREATE ASCII "ASCII_i":100 [EXECUTE) or (Retum)

Udng OOV A4

To create a BDAT file within CHARLIE, which is named BDAT_I and is initially to contain 25
records, you would type:

CREATE BOAT "BDAT_1" 25 [EXECUTE) or (Return)

(When no record size is specified in the CREATE BDAT statement, the default 256-byte record size
is assumed.)

To create another directory within CHAELIE called MEMOS, you would type:
CREATE DIR "MEMOS" (EXECUTE) or (Return)

The additions would make the directory structure look like this:

{root)
PROJECTS

|
| |

Project cne Project_two General

|
[{ |

KATHY JGHN CHARLIE

The simplest form of the CAT statement:
caT ([EXECUTE) or (Return)

lists the contents of the current working directory because no directory is specifically identified. If no
directory name is shown in the directory header, the current working directory is the root.

If you wanted to list the contents of CHARLIE, but your current working directory was not
CHARLIE, you could:

® Designate CHARLIE as the working directory with the MSI statement, then use the CAT
statement’s *‘'short form.”” For example:

MSI "PROJECTS/Prodect_onz/CHARLIE:REMOTE" (EXECUTE) or (Retum)
CAT EXECUTE) or (Return

¢ [n the CAT statement, specify the entire path to CHARLIE, starting at the root, by beginning
the path name with a slash (/). For example:

CAT "/PROJECTS/Prodect_one/CHARLIE" [EXECUTE) or (Return)

342 Using SRM

This form assumes that you have already designated remote mass storage with some form of
the MSI ":REMOTE" statement. If you have not, use the form:

CAT "PROJECTS/Prodect_one/CHARLIE:REMDTE" EXECUTE | or | Return

The leading slash is not necessary, because including :REMOTE specifies the root as the begin-
ning of the path.

e If you were in MEMOS (the directory immediately subordinate to CHARLIE), you could use
the “.." notation (explained with directory path syntax in the “SRM" section of the BASIC
Language Reference. For example:

CAT ".," EXECUTE | or | Return

For more details on specifying remote files and directories in BASIC statements, refer to the “SRM”
section of the BASIC Language Reference.

Copying Files

With SRM, you can copy files between local and remote mass storage devices by any of the
methods illustrated in the following examples. Again using the directory structure established for the
other examples in this section, assume that the current working directory is CHARLIE.

Using the COPY Statement

The most direct method of copying a file from local to remote mass storage is to use the COPY
statement. For example, to copy a PROG file named Test_prog that is on a local disc drive into the
directory CHARLIE on the SRM system disc, you could type:

COPY "Test_pros:INTERNALY TO "Test_rros" (EXECUTE) or [Return)

By including the :INTERNAL msus, you can access the local mass storage without changing the
current working directory {which is a remote directory). Refer to the “Data Storage and Retrieval”
chapter of the BASIC Programming Techniques manual for information on alternatives to the
: INTERNAL msus for specifying local mass storage.

(root}
PROJECTS
|
| | |
FProject one Project tuwo General
| [
[| | | L _
KATHY JOHN CHRRLIE AL assignments ED
FA__—
MEMOS LF] dir 1

— ASCIT !
- BDAT 1

r
B

Using SRM 343

Other Uses of COPY

The COPY statement can be used to copy files not only from local to remote mass storage but also
from remote to local mass storage and from one remote mass storage device to another. You
cannot copy directories, although you can copy files from one directory to another. Similarly, you
cannot copy an entire remote mass storage volume in a single COPY statement. {You must copy a
remote volume file by file.)

Suppose you want to copy the file BDAT_I from the directory CHARLIE into the directory AL (see
previous illustration).

Assuming the working directory is CHARLIE, you could type:
COPY "BDAT_1" TO "/PROJECTS/ProJect_two/AL/BDAT_1" EXECUTE) or Return)

The effect of the copy on the directory structure is illustrated below:

{root)
PROJECTS
Project one Sroject twe General
KATHY JOHN CHARLIE AL L assignments ED
P
MEMOS =51 dir 1

L?

ASCII 1

BDAT 1

Test_prog

Using LOAD and STORE

You may also copy files by loading the program into your workstation from local mass storage and
then storing it in remote mass storage. For example, to copy a PROG file named Test_prog that is
on a disc in your workstation’s built-in disc drive into the directory CHARLIE on the SRM system
disc (as demonstrated earlier using COPY), you could type:

LOAD "Test_prod: INTERNAL® (EXECUTE) or (Return)

Once the file is in your workstation’s memory, you may then store the file in the remote directory by
using a statement such as:

STORE "Test_pros" [EXECUTE) or (Return)

Copying ltem-by-ltem Using ENTER and OUTPUT

You may also copy a file from local to remote mass storage an item at a time, as illustrated in the
programs that follow. These programs use the ENTER and OUTPUT statements to copy data
item-by-itemn from a local BDAT file to remote mass storage.

344 Using SRM

The first program creates and fills a BDAT file named BDAT_FILE.

10 CREATE BDAT “BDAT_FILE:INTERNAL":10
20 ASSIGN BLocal TO "BDAT_FILE:INTERNAL"
30 !

40 FOR Item=1 TO 50

50 DUTPUT BlLocals*String data item”

B0 NEXT Ttem

70 !

g0 ASSIGN BELocal 70 *

g0 END

The second program copies the contents of BDAT_FILE item-by-item into a file (also called
BDAT_FILE) in the SRM directory named General {shown in the previous illustration).

100 DIM String_item$%(20)

110 CREATE BDAT "PROJECTS/Generzl/BDAT.F.Lo . .0
120 ASSIGN BLocal TO "BDAT_FILE:INTERNAL'

130 ASSIGN @Remote TO "PROJECTS/General/EC:7_FILE:REMOTE™
140 !

150 FOR Item=1 TO S0

160 ENTER @ LocaliStrindg_itemé

170 QUTPUT BRemotesStrins_item$
180 NEXT Item

190 !

200 ASSIGN EBLocal TD #

Z10 ASSIGN BRemote TO *

220 END

Using a Shared Printer or Plotter

Use of special SRM directories called “spooler directories” allows you to access a shared printer or
plotter. Setting up a spooler directory is explained in the “Interfaces and Peripherals’ chapter of the
SREM Operating System Manual The examples in this section assume that the spooler directories
LP {for “Line Printer’’) and PL {for “PLotter”’) have been created at the root of the SRM directory
structure.

Spooling Using PRINTER IS and PLOTTER IS
You can use the PRINTER IS and PLOTTER IS statements to send data to your shared printer or
plotter. The following command sequence illustrates this spooling method:

CREATE BDAT "/LP/Print_file" 1
PRINTER IS "/LP/Print_file"
LIST

KREF

PRINTER IS5 CRT

PRINTER [S and PLOTTER IS work only with BDAT files. Because the SRM 1.0 operating
systern’s spooling works only with ASCII files, you cannot use PRINTER [S and PLOTTER IS for
spooling with that version of SKM.

Using SRM

Note

The DUMP DEVICE IS and PRINTALL IS staternents do not support
files, so cannot be used for printer spooling,

Writing Files to the Spooler Directories
You may also access the printer associated with LP by placing the data to be printed in an ASCI or

BDAT file in that spooler directory. For example, to list a program currently in memory, you could
SAVE the program in LP as the file P1_LISTING by typing either:

SAVE "LP/Pi_LISTING:REMGTE® (EXECUTE) or (Return)

or

SAVE "/LP/Pi_LISTING" [EXECUTE) or (Return)

The SAVE statement creates an ASCII file. Although this is the same syntax used to save programs
on a shared disc, the SRM system knows that LPis a spooler directory and prints the file as soon as
possible,

Note
When used for spooling, SAVE places a file in the spooler directory. The
file is printed, then purged. You may wish to save or create the file first,
then use the COPY staterent to place the file into the spooler directory.

Sending Program Qutput to a Shared Printer

To spocl program output to a shared printer, create an ASCIl or BDAT file, assign an /O path
name to the file {which opens the file), and OUTPUT the data to that file. With BDAT files, you
should ASSIGN with FORMAT ON. When the file’s contents are to be printed, close the file. The
following example program segment outputs the data stored in the string array called Data$ to an
ASCII file named PERFORMANCE.

7660 CREATE ASCII "/LP/PERFORMANCE" ,100

770 ASSIGN ®Sepo0l TC "/LP/PERFCRMANCE"

780 QUTPUT @Srooli"Performance Summary"

790 OUTPUT @SecooliData$ix)

BOOD ASSIGN @SPoo0l TC * I Initiate Printing.

The system waits unti! the file is non-empty and closed before sending its contents to the ocutput
device. If your file is not printed or plotted within a reasonable amount of time, you may not have
closed it. You can verify that your file is ready to be printed or plotted by cataloging the spooler
directory:

CAT "/LP" (_EXECUTE) or (Return)

The open status (0PEN STAT) of the file currently being printed or plotted is listed as locked (LoCk).
Files currently being written to the spooler directory (either printer or plotter) are listed as GPEN. Files
that do not have a status word in the catalog are ready for printing or plotting.

345

346 Using SRM

The SRM 2.0 and newer operating systems allow BDAT files to be sent to the printing device as a
byte strearn. (With SRM 1.0, only ASCII files can be used.)

Note
With the SRM 2.0 and newer operating systems, a BDAT file sent to the
spooler is printed exactly as the byie stream sent. Unless you set up the
BDAT file correctly,improper printer output or operation could result.
Therefore, you should ASSIGN BDAT files with FORMAT ON before
ouiputting data.

The spooler prints each string and numeric item on a separate line by inserting a carriage return and
line feed after each item. To put several strings on one line, concatenate them into one string before
using OUTPUT to send them to the spooler file. You may insert ASCII control characters in the data
by using the CHRS$ string function.

Appearance of Output
Printed output for each file includes a one-page header, which identifies the directory path to the
file, the file’'s name, and the date and time of the printing.

To cause the printer to skip the paper perforation after printing a page (60 lines), prefix your file
name with “FF”’. For example:

SAVE "/LP/FF_MYTEXT" [EXECUTE) or (Return)

Preparing Plotters

If your plotter does not feed its paper automatically, a message appears on the SKM controller
screen indicating that the plotter needs to be set up. After you have put paper on the plotter, you
may begin the plotting by using the server’'s SPOOL CONTINUE command (described in the SRM
Operating System Manual). Plotters with automatic paper feed require no operator intervention.

Aborting Printing/Plotting in Progress

To abort an in-progress printing or plotting, use the SPOOL ABORT command from the SRM
server. The system stops sending data to the output device and closes, then purges the file. For
details on bringing the spoocler UP and DOWN, see the description of the SPOOLER command in
the “Language Reference’’ section of the SKM Operating Systermn Manual.

With SRM 2.0 and newer operating systems, if a printer is taken off-line while a file is being printed,
the printer stops and resumes when the printer is put back on-line. No data is lost during such an

interruption. The SRM 1.0 operating systern also resurnes printing, but from the beginning of the
file.

Protecting Files and Directories

When you create directories and files, their access capabilities are “‘public”’ (available to any user on
the SRM). You may subsequently protect a directory or file against certain types of access by other
SRM workstations, provided:

® you have MANAGER access capability on the file or directory (MANAGER access to the file is
public or you know the password protecting the capability);

Using SRM 347

® you have READ access capability on the directory immediately superior to the file or directory
you wish to protect;

® you protect the file or directory either while “in” its supetior directory or by specifying the valid
directory path to its superior directory.

For example, using the directory structure established for other examples in this section (see
illustration) and assuming no passwords have been assigned to the files, you could:

{root)
PROJECTS
Pro ject _one Project two General
KATHY JOHN CHRRLIE AL L assignments ED
MEMOS —f 1 dir |1

| —BOAT 1

- ASCII 1

- BDAT 1

— Test_prog

1. Assign the password passme to protect the MANAGER and WRITE access capabilities on the
directory CHARLIE with the sequence:

MSI "/PROJECTS/Prodect_one” (EXECUTE) or {Return)
PROTECT "CHARLIE"i("passme":MANAGERWRITE) (EXECUTE) or (Return)

which executes the PROTECT statement after moving to the directory Project_one (im-
mediately superior to CHARLIE). As a result of this PROTECT statement, the READ access
capability on CHARLIE is still public, but any operations that require MANAGER or WRITE
capabilities must include the password.

2. Remove all public access capabiliies from the file ASCIL.I by assigning the password
no_pub, using:

PROTECT “CHARLIE/ASCII_L":{"no_pub":MANAGER WRITE,READ) (_ EXECUTE) or (Return)

or

MSI "CHARLIE" (EXECUTE | or (Return)
PROTECT “ASCIT_1"+("no_pub®:MANAGER (WRITE READ) (EXECUTE) or (Return)

348 Using SRM

These statements assume you are in the directory, Project_one, as if you had executed the
statements in the previous step.

The second sequence of statements makes CHARLIE the new working directory, whereas in
the first, you merely “pass through” CHARLIE to reach ASCIL_1. With the READ access
capability on CHARLIE still public, you do not need a password.

3. Protect the file, BDAT_1, so that data can be read from it but not written into it without using
the password, write, If the current working directory were CHARLIE, you would type:

PROTECT "BDAT_1":{"write":MANAGER WRITE) (EXECUTE) or (Return)

4. Protect the MANAGER access capability of the directory MEMOS with the password,
mgr_pass (so that everyone can read from and write to the directory, but a password is
required to purge the directory or its contents) by typing:

PROTECT "MEMOS" :{"msr_rass":MANAGER) (EXECUTE) or (Return)

ff you protected the files and directory in CHARLIE as in the steps above, a catalog listing of
CHARLIE would look something like this:

PROJECTS/Prodect_one/CHARLIE:REMOTE 21, O

LABEL : Discl
FORMAT ; SDF
AVAILABLE SPACE: 34096

§YS FILE NUMBER RECORD MODIFIED PLB OPEN
FILE NAME LEWV TYPE TYPE RECDRODS LENGTH DATE TIME ACC STAT
RSCII_1 i R5CII 0 236 2-Dec-84 13:20
BDAT_1 { 98XG6 BDAT] 756 2-Dec-84 13:20 R
MEMOS 1 DIR 0 24 2-Dec-84 13:20 RH

The letters in the column labeled PuB ACC indicate access capabilities that are public {not protected
with a password). For example, only the MANAGER (#) access capability on the directory MEMOS
has been protected, leaving the READ (rR) and WRITE (W) capabilities available to any SRM
workstation user.

Specifying Passwords

When a password is required, you must include the correct password as part of the file or directory
specifier in any command or statement that requires the protected access on the file or directory.
The password must be enclosed betweert ** < 7 and ** » 7 and must immediately follow the name of
the file or directory it protects.

For example, to get the file ASCIL_ 1, you might type:

GET "/PROJECTS/Prodect_one/CHARLIE/ASCII_t<no_rut:" (EXECUTE) or (Return)

If the password were not included in the specifier, the system would respond with an error message
and refuse to get the file.

Using SRM 349

Purging Remote Files and Directories

The PURGE statement works the same for removing remote files as for removing files from local
mass storage. You may also remove directories using PURGE. PURGE works only with closed files
and directories. Directories must also be empty (not contain any files or directories). Refer to the
discussion on ‘‘Returning to Local Mass Storage’ later in this section for details on closing files and
directories.

When specifying the remote file to be purged, you must include all passwords protecting access
capabilities required for the PURGE. For example, to purge the file BDAT_1 from the directory
CHARLIE (see previous examples), you could type:

PURGE *,{passme>/BDAT_1<write>" [EXECUTE) or (Return)

In this example, CHARLIE is the current working directory, as denoted in the directory path by
“.”. (Refer to the syntax for directory path in the “SRM” section of the BASIC Language Refer-
ence.)

To purge a file, you must have the MANAGER access capability on that file and READ and WRITE
access capabilities on the file’s superior directory. Because passme protects the WRITE capability
on CHARLIFE and write protects the MANAGER capability on BDAT_1, both passwords must be
included in the file specifier in the PURGE statement.

Although you do not normally need to specify the working directory in a directory path, you must
include the password for the PURGE operation. The READ capability on CHARLIE is not pass-
word-protected.

To purge CHARLIE, you would first need to purge the remaining files and directory in CHARLIE.
Because the MSI staternent “opens’ a directory (making it the current working directory), you must
also “close” CHARLIE.

For example, if no files or directories remained in CHARLIE, you could purge CHARLIE by typing:

MST ":REMDTE" ({ EXECUTE) or (Return)
PURGE "PROJECTS/Provect_one/CHARLIE<Passue? (EXECUTE) or (Return)

The first statement closes CHARLIE and establishes the root directory as the current working
directory. Note that, because passme protects the MANAGER access capability on CHARLIE, you
must include that password in the PURGE statement.

Accessing Files Created on
Non-Series 200/300 SRM Workstations

Regardless of the kind of the computer or language system, files containing ASCII data can be
shared among all workstations on the SRM.

This example shows how you can access a remote ASCII file named Prog_x, which was created
with the SAVE ASCII statement on an HP 9845 with the SAVE ASCII statement.

In this example, Prog_x is in an HP 9845 workstation user’s directory called COMMON.
COMMON is located in the directory WORK 45, which is at the root of the SRM directory
structure. The password mypass protects the READ capability on WORK_45. All access capabilities
on COMMON are public.

a0l Using i

To access Prog x, you would type:

GET "WORK_4S<mrpass>/COMMON/Prog_x:REMOTE" (EXECUTE) or (Return)

or

GET "/WORK_4S<{mvpassy/COMMON/Prod_x" (EXECUTE) or (Return)

The system would then load Prog_x into your workstation. Keep in mind that, with GET, any lines
containing BASIC syntax that is invalid will be stored as commented program lines (!).

Locking and Unlocking Remote Files

You can “lock’ a shared file with the LOCK staterment, giving you sole access to that file. The same
file can be locked several times in succession. Unlocking a file requires that you cancel all locks on
that file. If you use the UNLOCK statement, you must cancel each LOCK with a corresponding
UNLOCK. Using ASSIGN to re-open a locked file unlocks the file and you must execute another
LOCK statement to lock the file again. Closing the file via ASSIGN @... TO * cancels all locks on the
file.

In this example, a critical operation must be performed on the file named File_a, and you do not
want other users accessing the file during that operation. The program might be as follows:

1000 ASSIGN EFile TO “File_a:REMOTE™

1010 LOCK EBFile CONDITIONAL FResult_code

1020 IF Result_code THEN GOTQ 1010 ! Try adain
1030 I Begin critical Pprocess

2000 ! End critical pPracess
Z010 UNLOCK EBFile

The numeric vaniable called Result_code is used to determine the result of the LOCK operation. [f
the LOCK operation is successful, the variable contains 0. If the LOCK is not successful, the
vanable contains the numeric error code generated by attempting to lock the file.

Returning to Local Mass Storage

When you have finished accessing shared resources, you should close all of your files and director-
ies to ‘‘release” the system resources.

Remote files are closed by ASSIGN ... TO* (see the"SRM” section of the BASIC Language
Reference for details on ASSIGN). The SCRATCH A command closes directories and files. All
remote files except those opened with the PRINTER IS statement are also closed by pressing

(RESET).
To close your current working directory, MSI to a local msus (for example, ST " : INTERNAL").
If you booted from local mass storage, you may also execute the SCRATCH A command to

completely release your access to the system. If you booted from the SRM, executing SCRATCH A
resets the current working directory to the root.

Using SKM

Modifying Existir - Pr: - -ams
to Access Sh- ed *so s

This section summarizes ways you can modify existing programs that access local resources to allow
those programs to access shared resources.

When modifying programs to access SRM-controlled mass storage device(s), you should be aware
that:

® [ocal and remote mass storage file specifiers may differ and string variable names that contain
file specifiers may need corresponding modification.

® References to mass storage unit specifiers (msus) throughout the program may have to be
altered.

e Allowances may have to be made for directory path specification.

o [ocal protect codes may differ from passwords on remote files. The syntax for protecting
remote files is different from that used for local files.

File Specifiers

Composition of File Names

All file names for local mass storage are one to 10 characters long, while remote file names contain
one to 16 characters. Remote file names can contain the period character (.) while local files
cannot. If file name compatibility between resources is required, use 10 or fewer characters and do
not use periods within remote file names.

File and Mass Storage Device Specification in String Variables

Modifying programs for use with shared resources generally requires changing the value, and often
the length, of the string vaniables used to specify files and mass storage devices. The statements that
assign the actual values to the string variables may have to be modified individually.

Some programs use one string variable for the entire file specifier. For instance:

100 DIM File_specifiers[32]

110 LINPUT “Enter file specifier"s File_specifier$

120 ON ERRCR GOTO 110 ! Try again if improrer srecifier,
130 RSSIGN BPath 7O File-srecifiers

140 OFF ERROR

If one variable is used for all file specifiers {as in the preceding example}, only the length of the
variable needs to be changed to allow for the additional characters allowed in remote file specifiers.

The maximum number of characters that can be entered into a string variable from the keyboard in
one operation is a good size for a file specifier variable. The Series 200 Models 216, 220, 226 and
236, as well as Series 300 computers with medium-resolution displays, allow up to 160 characters.
The Series 200 Model 237 and Series 300 computers with high-resolution displays allow 256
characters. Thus, the length of F1le_srecifiers in the preceding example’s DIM statement would
be changed from 32 to 160 or 256, accordingly.

Note that the system mass storage (the current MASS STORAGE 1S device) will be accessed if no
msus is explicitly specified.

351

352 Using SKRM

Mass Storage Unit Specification

Some programs use separate variables for the file name and mass storage unit specifier. For
example:

ASSIGN @Path TO Filename®BMsuc®

If so, both variables may have to be dimensioned to greater lengths. Allowing 34 characters for the
file name vanable accommeodates a 16-character file name, a 16-character password, and the “<”’
and “>"" password delimiters (for example, “ASCDEFGHIJ123456<1234567890123456>"").
The remote msus may occupy up to 54 characters.

Other programs may use MASS STORAGE IS statements throughout the program instead of
including the msus in each file specifier. For instance:

MASS STORAGE 18 Left_drives
ASSICGN GFile TO File_name$

Unless variable(s) are used to specify the msus and each variable is assigned a value in only one
place, you may have to modify each MASS STORAGE IS staternent to specify the desired remote
mass storage device.

Allowing for Directory Paths
Suppose the following program needs to be modified to include a remote file’s directory path.

100 DIM Filename$[14]1:Msus$l(20]

v

4

300 Filename$="SLIDES"
310 Msuyse=";HPIBAS, 700"

?

1000 ASSIGN BFile TO Filename$&Msuss
1010 DUTPUT BFilesDatalx)
1020 ASSIGN BFile TO #

4

2000 ASSIGN BFile 7O Filename$&Msus$
2010 OUTPUT @FileiDatal(#)
2020 ASSICN BFile TO #

Using SRM 353

L’l {Lis example, ll{ {S proLaLly eas{es{ {O aJJ ano{Ler ang vanlaL‘e [or [Le)opgonaH (J{I’QCJ(OI‘EJ paJ[L

name. For example:

100 DIM Dir_rpath$liBCI Filenamne%[B0] Msus$(BO]

+

SO0 Dir_path$="FRED/DATA_FILES/"
S10 Filename$="SLIDES"
520 Msuss=":REMOTE Z1i.,1"

+

1000 ASSIGN BFile TD Oir_path$&Filenames&Msus$
1010 DUTPUT BFileiData(*)
1020 ASSIGN BFile TO *

[f the bir-raths vanable is null, the statement looks exactly like it did before the modification. 1f the
Msus$ varable is null, the current mass storage device is accessed. The only difference is in the
allowable length of the string variables.

Passwords and Protect Codes

The PROTECT statement format for remote files is different form the format for local files. Depend-
ing on the type of mass storage is being used, you can use either of the following to decide which
syntax will be used:

1. Try the non-SRM syntax with an ON ERROR statement enabled. If an error occurs, see if it
indicates that the mass storage device is an SKM. An Error 1 occurs when the following
statement is executed on a remote file.

PROTECT file specifier protect code

2. If the program uses a string to store the mass storage unit specifier, check for a non-zero
value of POS(Msuss ,"REMOTE"). This alternative is easier to implement than alternative 1 but
will not work if the program accesses the default device when Msus$ is empty.

If the program looks for a password error (Error 62) at ASSIGN time, the program may have to be
modified because the system may not detect the password error untl an ENTER @Path or
OUTPUT @Path is attempted.

354

Using SKM

Status Register 0

Status Register 1

Status Register 2

Status Register 3

Status Register 4
Status Register 5

Status Register 6

Status Register 7

Status Register 8

Status Register 11
StatusI” " 112

Su

~y of SRM Status Registers

Card ldentification

52 if the Remote Control switch (R) is set to O (closed); 180 if switch is set
to 1 (open).

Interface Interrupts

1 =interrupts enabled; 0 =interrupts disabled.

Interface Busy

1 =busy; 0 =not busy.

Interface Firmware [D

Always 3 (the firmware ID of the HP 98629A interface).
Not Implemented

Data Availability

(} = receiver buffer empty;,

1 =receiver data available but no control blocks buffered:
2 = receiver control blocks available but ne data buffered;
3 =both control blocks and data available.

Node Address of the interface

Node address of the HP 986209A interface installed in this computer
which is set to the specified select code. The range of node addresses is 0
through 63.

CRC Errors

Total number of cyclic redundancy check (CRC) errors detected by the
interface since powerup or (RESET).

Buffer Overflows

Total number of imes the receive buffer has overflowed since powerup

or (RESET).

Amount of available space (number of bytes) in the transmit-data buffer.

Number of transmission retries performed since powerup or (RESET).

Chapter

1

Porting to 3.0

[f you have programs which were written on 1.0, 2.0, or 2.1 versions of Series 200 BASIC systems,
you can use these same programs with little or no changes. The major task you have to perform is
to configure the BASIC 3.0 system with the necessary BIN files.

This chapter describes the differences between BASIC 2.0/2.1 extensions and BASIC 3.0. The
following areas require consideration when porting programs from BASIC 2.0/2.1 to BASIC 3.0.
They are listed in the order in which they’re discussed in this chapter.

® Configuring BASIC

® Statement changes

e CSUBs

e PHYREC

® Knob

® Graphics
- Default plotter
- Implicit GCLEAR
- Input device viewport
- Graphics Tablet DIGITIZE
- The VIEWPORT Statement
- The PIVOT Statement

¢ Display functions

® Prerun on LOADSUB

® Special case of [/O transfers

Note

If you are porting a program from a “pre-3.0" version of the BASIC
system to the 4.0 system, then you may also need to read the following
“Porting to Series 300" chapter.

35¢

356 Porting to 3.0

Configuring BASIC

This section contains procedures that help you ensure you have loaded all the required language
extensions and drivers. it also tells you where to find related information in your BASIC manual set.

Helpful Documentation

The BASIC manuals can help you determine which BIN files you need. The BASIC User’s Guide
contains a brief description of each BIN file. It also lists the functions and statements supported by
each Language Extensions BIN file.

The Language History section of the BASIC Language Reference manual contains an alphabetical
list of all keywords showirig which BIN file, if any, is needed for each keyword. The Keyword
Dictionary in the BASIC Language Reference manual also indicates which BIN file is required for
each keyword. Keep in mind that some keywords are partially supported by just core BASIC and
that additional capabilities may require a BIN file. The Keyword Dictionary uses shading in the
syntax diagram to show which aspects of a statement require an additional BIN file. For example,
CAT is supported by core BASIC, but the MS BIN file is needed to support SELECT and other
advanced features.

Missing Language Extensions BIN Files

Follow this procedure to make sure that you have all the language extensions BIN files that a
program needs. The procedure ensures that each program unit is not prerun and then preruns all
program units. Prerun reports the first missing BIN file that it finds. Editing a program unit ensures
that it is not in the prerun state. Stepping a stopped program preruns it.

Load the program and the BIN files PDEV and ERR. Enter the first line of the program to ensure
that the main program is not in a prerun state. Find every SUB statement (using the FIND
command enabled by the PDEV BIN file) and enter it. Find every DEF FN statement and enter it.
Now no program unit is in a prerun state. Stepping preruns every subprogram. If prerun finds a
statement or option that requires a missing BIN file, error 1 is given along with the name (if the ERR
BIN file is loaded) of the missing BIN file. After loading the missing BIN file, step again to prerun the
program. If a BIN file is missing, error 1 and its name are given. Repeat this process until stepping
gives no errors. At that point, all language extensions BIN files needed by the program are present.
If the program loads subprograms or other programs, repeat this process for each of them.

This process does not work for a secured program. The best approach in this case is to ask the
author or vendor for a list of the BIN files required. If this is not possible, load the ERR BIN file and
run the program. Whenever a statement is executed that requires a missing BIN file, an error 1 and
the name of the BIN file are giver.. After loading the BIN file, the program can be continued.
However, it may be difficult to force the execution of all paths in the program. This can be a serious
problem if a real-time control program is surprised by a missing BIN file at a critical moment.

Remember, if you have enough memory, you can load all the BIN files. However, only load
KNB2_0 if you want KNOBX to function as it does in BASIC 2.0/2.1 and KNOBY to always

return a zero. Refer to the Knob section later in this chapter for more information.

Porting to 3.0 357

Missing Driver BIN Files

To ensure that all required driver BIN files are loaded, load the appropriate BIN file for each
interface card and [/O port used (including the built-in HP-IB and RS-232 senal interface, if
present). Also load the appropnate disc driver BIN file for each disc drive used.

If an operation is attempted to a device but the card driver BIN file is missing, the message “ERROR
163 /O interface not present” is usually provided. Examples of this are: CAT": 700" or
PRINTER IS 701 with the HPIB BIN file missing.

If the card BIN file is present but the disc driver BIN file is missing, an attempt to access the disc
causes error 1. If the ERR BIN file is loaded, the message “ERROR 1 Configuration error” is
provided.

If both the card driver and disc driver BIN fils are missing, error 163 is usually given but error 1 can
also occur,

Statement Changes

There are several statements added with BASIC 3.0. These are listed below,

KNOBY PRINTER IS file
LIST BIN READ LABEL
MAXREAL RES

MINREAL SCRATCH BIN
MODULO SECURE

PDIR SET LOCATOR
PLOTTER IS file STORE SYSTEM
PRINT LABEL SYSBOOT

Two statements were deleted, STORE BIN and RE-STORE BIN.

CSUBs

If you used Pascal-compiled subprograms (CSUBs) in your BASIC 2.0/2.1 programs, you need to
purchase a Pascal 3.0 system upgrade and a CSUB Ultility upgrade to use those CSUBs with
BASIC 3.0. You must recompile the Pascal routine on Pascal 3.0 and re-execute the CSUB utility
to make the routine look like a BASIC subprogram. If you are using a CSUB supplied by a vendor,
you must have the supplier update the CSUB for you.

358 Porting to 3.0

PHYREC

The PHYREC routine that allowed you to read from and wrte to physical records on a disc is
changed from a binary program to a CSUB with BASIC 3.0. The PHYREC CSUB is located on the
BASIC Utilities Disc 1.

You must append the PHYREC CSUB to your program and change PHYREAD/PHYWRITE
statements, 1f the PHYREC binary is appended to a program, a warning message is displayed and
the binary is ignored by BASIC 3.0.

Use the following steps to locate all the lines for an application that uses PHYREC and change them
to call and append the PHYREC CSUB.

1.
2.

Boot a BASIC 2.0/2.1 system.
Delete the PHYREC binary.
LOAD "Prodram”
SAVE “rrogram2" - This saves the program without the binary.
SCRATCH A - This deletes the program and binary from memory.
GET "programz” - Calls to PHYREC are commented. Write down the line numbers,

RE-STORE "prodram"
PURGE "Pprodram2”

Attach the PHYREC CSUB.
LOADSUB ALL FRCM "PRYREC"

This file is located on BASIC Utilities Disc 1. Do not try to run your application until you
have completed all steps.

Uncomment and change all the calls to PHYREC. These are the lines you noted in step 2
above.

PHYRESD Sector,sInt_array(*) > Phyread(SectorInt_array(*))
PHYWRITE SectorsInt_arrav{*) > Phywrite{Sector:Int_arrav(*))

If sectoris declared to be an INTEGER, you need to put it into parentheses so that PHYREC
will interpret it as a REAL.

Phyvreagd((Sector)+Int_arrav(*))

The syntax for a conditional call must be changed from:

IF condition THEN PHYREAD Sectorsint_array(¥)

to:
IF condition THEN
Phyread{(Sectcr:Int_arrav (%))
END IF
or to;

IF cendition THEN CALL Phvread(Sectar:Int_array(#*))
RE-STORE "rrogram" after you have completed the changes.
Boot BASIC 3.0 and run your application.

Porting to 3.0 359

Knob

In BASIC 3.0, unshifted knob movement causes hornizontal cursor movement, and shifted knob
movement results in vertical movement. This allows for greater compatibility between the knob and
the HP-HIL mouse. (In BASIC 2.0/2.1, horizontal and vertical modes are toggled and interlocked.)

The KNOBX Function

The BASIC 2.0/2.1 definition of KNOBX, which we will refer to as all-pulse mode, is as
follows; When an ON KNOB statement is executed to trap knob movement, knob pulses are
accumulated and accessed via the KNOBX statement. Since the KNOBX function returns informa-
tion on X-axis movement, a method of tracking Y-axis movement is not directly available with
BASIC 2.0/2.1. The common method used to track Y-axis movement, is to interrogate keyboard
status register 10 for information on the state of the CTRL and SHIFT keys at the time of the last
knob interrupt. Using this information, SHIFTed and/or CTRLed knob movement could be inter-
preted differently; in fact, an example program showing this was included in the 2.0/2.1 manual set.
Following is another sample 2.0/2.1 program with this type of knob interpretation:

+
4

+

34q ON KNDB .1 GDSUB Knobsuc
40 Loop: GOTO Loor

50 5TOP

GO !

70 Knobsve: !

80 STATUS KBD:10iState I was SHIFT or CTRL key pPressed?

a0 Shift=BIT(State Q) I bit © set = SHIFT Key Pressed

100 Ctrl=BIT(State,l) I bit | set = CTRL Key pPressed

110 SELECT Shift

120 CASE 0O I if shift not pressed: ¥ directian

130 IF Ctrl THEN I if ctrl Pressed:; dive finer resolution
140 K=H+KNOBX/10

150 ELSE

160 H=H+KNOBX

170 ENDIF

180 case 1 I if shift Ppressed, Y direction

190 IF Ctrl THEN ' if ctrl Pressed, dive finer resolutian
200 ¥=¥+KNDBX/10

210 ELSE
220 Y=Y+KNDBX

230 ENDIF

240 END SELECT

4

With the introduction of the new HP-HIL keyboards {no built-in knob but optional mouse), the
intent was to allow the mouse to emulate knob behavior in situations where a knob is no longer
present. The all-pulse mode of interpretation, however, is unacceptable when using a mouse
because the mouse is not a unidirectional device, yet movement information in only one direction is
available. It is virtually impossible to move the mouse in one direction only. To be able to disting-
uish movement in each direction, the keyword KNOBY has been added to BASIC 3.0. KNOBY
returns the net number of Y-direction knob pulses counted since the last time the KNOBY counter
was zeroed.

360 Porting to 3.0

Keyboards with Built-in Knob

To convert your programs which run on hardware with a built-in knob from 2.0/2.1 to 3.0, simply
replace KNOBX with KNOBX + KNOBY in situations where total knob rmovement is being re-
corded. The major difference in 3.0 operation is that knob pulses in the X-direction are accessed via
KNOBX and knob pulses in the Y-direction are accessed via KNOBY. One way to modify the
above program for 3.0 is:

4
+

30 ON KNOB .1 GOSUB Knobsuc
a0 Loor: GOTO Loor

20 STOP

O !

70 Krnobsve: !

80 STATUS KBD:103S5tate ! was SHIF. . CTRL Key pressed?
an Shift=BIT(State:0) bobit 0 se. = SHIFT Key Pres d
100 Ctrl=BIT(State,1) ' bhit | set = CTRL key pressec
110 SELECT Shift

120 CASE O I if shift roi X o I
130 IF Ctrl THEN I if ctrl Presseds Jive finer resol
140 H=X+KNOBX/10

130 ELSE

LB K=H+KNOBX

170 ENDIF

180 CASE 1 I if shift essed» Y dir -~ on

190 IF Ctrl THEN I if ctrl P essedy dive fi er resolusion
200 Y=¥+KNDBY /10

210 ELSE

220 Y=Y+KNOBY

230 ENDIF

240 END SELECT

However, this does not work with the HP-HIL mouse. A method that works with the HP-HIL
mouse as well as with the built-in knob is:

[
+

+

30 ON KNDB +1 GDSUB Knotsuec
40 Loor: GOTO Loor

30 STOP

60O !

150 Knobsve: !
160 K=Y +KNDBX

170 Y=Y+KNOBY

+
+

+

Porting to 3.0 361

HP-HIL Keybc s with Mouse

If your ON KNOB routine reads keyboard status register 10 for shift-knob or control-knob actions
you will need to make some other changes to convert 2.0/2.1 programs to 3.0. On HP-HIL input
devices (i.e., the mouse), keyboard status register 10 has a different interpretation: bit O (SHIFT
key pressed) is set if last data processed at the last knob interrupt was Y-axis information (data
accessed via KNOBY) and cleared if last data processed was X-axis data; bit 1 {CTRL key pressed)
is never set. If unidirectional HP-HIL devices were to become available, a toggle switch would exist
on the device to switch between X-axis and Y-axis directions and the shift bit on keyboard status
register 10 would be set when in the Y-direction mode.

The previous program segment shows recommended servicing of the mouse.

Programming for Both Versions and Keyboards

In the most complicated case, you may wish to write code that runs on both BASIC 2.0/2.1 and
BASIC 3.0 with either a built-in knob or HP-HIL mouse. Write knob service routines for the BASIC
2.0/2.1 program and the BASIC 3.0 program and LOADSUB the approprate routine based on the
current version of BASIC. The following program segments show one method of handling this
situation:

30 COSUB Whichversion
40 IF VYersion=3 THEN

20 LOADSUB ALL FROM "KNOBSWC3_0O"
GO ELSE
70 LOADSUB ALL FROM "KNOBSWCZ_O"

B0 END IF

+

{10 Whichuers:ion: ! runnind BASIC Z2.0/2.1 or 3.0 7

120 ON ERROR GOTO BZ2_0

130 STATUS Z:2iA | KBO redister 2 does not exist for 2.0/2,1y error
140 Yersion=3 I if line 130 didn’t ecror outy must be 3,0

150 COTD Yersionfound

1G0O B2_0: !

170 Yersion=2

180 Yersionfound:

190 OFF ERKOR

200 RETURN

362 Porting to 3.0

KNB2_0

Because these modifications to the KNOB faciliies may prevent your 2.0/2.1 programs from
running on BASIC 3.0 without making a few changes, we have developed a way to retumn to the
all-pulse mode of KNOR operation in which all knob pulses are accessed via KNOBX. This mode is
not recommended for the HP-HIL mouse. To switch to this mode, execute
CONTROL KBD,11;1.

Note
If you select all-pulse mode, KNOBY always retums a zero.

Executing CONTROL KBD,11:0 returns you to the 3.0 mode of operation in which Y-direction
pulses are accessed via KNOBY. To determine the mode, execute STATUS KBD,11;M. [f M=0,
KNOBX is in horizontal-pulse mode; if M=1, KNOBX is in all-pulse mode.

In some cases, it may be desirable to make this mode change implicitly. This can be accomplished
by loading the BIN file KNB2_0 from the Language Extensions disc. A LIST BIN describes the new
BIN file as 2.0 &NDBX Definition. The only effect of KNB2_0 being loaded is that it executes
CONTROL KBD,11;1 for you automatically. When KNB2_0 is loaded, executing SCRATCH A
also automatically executes CONTROL KBD,11;1. Note that if this binary is included in a stored
system (e.g. created with the STORE SYSTEM staternent), the effects are the same as loading it
afterwards.

Note

All-pulse mode (KNB2_0 loaded) is not recommended for the HP-HIL
mouse.

Porting to 3.0 363

Graphies

Several graphics statements function differently with BASIC 3.0 than they did in BASIC 2.0/2.1.
This section explains the differences.

Default Plotter

The initialization of graphics system variables and devices has changed slightly in BASIC 3.0. When
GINIT is executed, several operations are performed automatically such as setting line type and
character size. In addition to these operations, BASIC 2.0/2.1 also implicitly does a
PLOTTERS 3,"INTERNAL” to select the CRT as the default plotting device. In BASIC 3.0, the
default plotting device is not selected until a statement is executed that affects it {e.g.,, DRAW,
LABEL, GLOAD). At this time, the appropriate PLOTTER IS staternent is executed along with
GCLEAR, VIEWPORT and WINDOW statements. Refer to GINIT in the BASIC 3.0 Language
Reference manual for more information.

Implicit GCLEAR

In BASIC 2.0/2.1, any graphics statement following GINIT except PLOTTER IS, GINIT, and
DUMP DEVICE causes the implicit execution of GCLEAR, VIEWPORT, and WINDOW. With
BASIC 3.0, if a statement that requires a plotter is executed after GINIT, a
PLOTTER IS CRT,“INTERNAL” is executed followed by GCLEAR, VIEWPORT, and WINDOW.
Refer to GINIT in the BASIC 3.0 Language Keference manual for more information.

Input Device Viewport

The GRAPHICS INPUT IS statement sets the hard clip limits of the input device to the largest space
possible that has the same aspect ratio as the output device. Since this was not so in earlier versions,
there were two potential problems. The first problem is that it is possible to move to positions on the
input device that do not exist on the output device. The extent of this problem may be reduced with
BASIC 3.0, but the problem is not eliminated. The second problem is that the aspect ratios of the
input and output devices may differ causing pictures on the devices to appear different. BASIC 3.0
solves this problem by automatically setting the hard clip limits of the input device to the largest
possible space that has the same aspect ratio as the output device.

Graphics Tablet DIGITIZE

A stylus press on the HP 9111A Graphics Tablet prior to execution of a DIGITIZE statement does
not satisty the DIGITIZE with BASIC 3.0 as it does with BASIC 2.0/2.1. An output of the sting
“SG"” to the graphics tablet after the GRAPHICS INPUT IS statemnent causes BASIC 3.0 to work
like BASIC 2.0/2.1.

364 Porting to 3.0

The VIEWPORT Statement

VIEWPORT was changed in BASIC 3.0 to make it compatible with the Series 500 and the industry
standard. In BASIC 3.0, VIEWPORT rescales immediately. In BASIC 2.0/2.1, VIEWPORT does
not rescale; only WINDOW and SHOW statements rescale.

An example helps demonstrate the difference. The following program behaves the same way in
BASIC 2.0/2.1 and 3.0 because it does not have a VIEWPORT staterment. It draws a large frame
with a large quadrangle in it as shown in the following figure titled “BASIC 2.0/2.1 and 3.0 without

VIEWPCORT”.
10 CINIT
20 CRAPHICS CON
30 FRAME
40 CLIP OFF
50 MOVE 0,30
RO DRAW 100,100
70 DRAW RATIOD*100,30
80 DRAW 100,40
90 DRAW 050
100 END
—’"— \\'\
f/"
- \\.
."/ \l‘-\
7 N,
e N,
/_/’
T \
T Y
// kS
T R
F-..
T~
. /
T /
. /
— /
“\\\x , J
e
T
e 4
. Vs
-\K‘-. Hj
T rd
\"‘*-'._ y I
\- K‘r'

BASIC 2.0/2.1 and 3.0 without VIEWPORT

Porting to 3.0 365

If a VIEWPORT statement is placed in the program, BASIC 2.0/2.1 and BASIC 3.0 give different
results. The program becomes:

1o
20
30
40
50
GO
70
g0
90
100
110

GINIT

GRAPHICS ON

VIEWPORT 80+100,20,80
FRAME

CLIP
MOVE
DRAW
DRAKW
DRAK
DRAW
END

OFF

0,50

100,100
RATIO*100,50
10040

0430

With BASIC 2.0/2.1, the result is a small frame with a large quadrangle around it (see figure titled
“BASIC 2.0/2.1 with VIEWPORT""). The frame is what one would expect from the VIEWPORT; it
is tall and thin. The quadrangle is the same as the one drawn by the program without the VIEW-

PORT because the VIEWPORT has not caused the DRAW’s to be rescaled.

BASIC 2.0/2.1 with VIEWPORT

366 Porting to 3.0

With BASIC 3.0, the result is a small frame with a small quadrangle inside the frame (see figure
titted “BASIC 3.0 with VIEWPORT"). The frame is the same frame as given by BASIC 2.0/2.1.
The quadrangle fits inside the frame because the VIEWPORT in BASIC 3.0 causes all subsequent
DRAW’s to be rescaled.

BASIC 3.0 with VIEWPORT

The VIEWPORT change usually does not affect programs because most programs used a sequence
such as:

VIEWPORT 2010042080
WINGOW Xmins¥maxs¥YminasYmax

The result of these two statements in order is the same in BASIC 2.0/2.1 and BASIC 3.0.

Some BASIC 2.0/2.1 programs used the following order:

VIEWPORT Z20:100,20,80
WINDOW Xmins¥maxs¥mins¥max
VIEWPORT O:100%#RATIOD.0+100

The second VIEWPORT was used to change the soft clip limits. In BASIC 2.0/2.1, the second
VIEWPORT did not rescale so that the scale defined by the WINDOW and the first VIEWPORT
remains effective. When the above sequence is run in BASIC 3.0, the second VIEWPORT rescales
all subsequent plotting.

The best solution to this problem is to change the sequence to:

UIEWPORT 20,100,20,80
WINDOW HXminsAmax ¥min ¥Ymax
CLIP OFF

Porting to 3.0

M

In BASIC 3.0, the local origin of RPLOT and LABEL is affected by the PIVOT statement. The best
way to see the differences between BASIC 2.0/2.1 and BASIC 3.0 is by studying the following
examples.

RPLOT with PIVOT
The following program illustrates the effects of PIVOT on RPLOT statements. Qutputs of the
program with BASIC 2.0/2,1 and 3.0 are shown after the program.

10 DEG

Z0 GINIT

30 GRAPHICS ON

40 YIEWRORT 0,G4:31,100
30 Pivot{Q)

50O YIEWPORT G6+130,31 100
70 Pivot(30)

BO UIEWPORT 0:84:0:49

90 Pivot{(G0O)

100 VIEWPORT BG130:0,48
110 Piveot (90)

120 END

130 SUB Pivot(P)

140 WINCOW 013130100
130 FRAME

180 MOVE 30,80

170 LABEL "PIYOT",P

180 MOYVE 40,20

190 PIYOT P

200 Tri
210 MOVE B0 20
220 Tri

230 PIYDT O

240 SUBEND

230 SUB Tri

260 RPLOT 20,0,-1
270 RPLOT 20,20
280 RPLOT 0,0

290 SUBEND

367

368 Porting to 3.0

PINVOT A PIWOT S
/- e /\ N !f\\\

/ / :i/) L”}
FINOT B FIVGT 94
P -

. .
\ / \ 7 \l \\J
v v

BASIC 2.0/2.1 RPLOT with PIVOT

PIYVOT % FIWVOT C1%
A
\,
!
N
///f »"'// \/
e / ’ _‘_./"'_.-
FIWVQT =1%| FIvoOT 306
‘i'-\\‘\\ ~
\ h
v |
'\\
/ :

BASIC 3.0 RPLOT with PIVOT

LABEL with PIVOT
The following program illustrates the effects of PIVOT on LABEL statements. Qutputs of the

program with BASIC 2.0/2.1 and 3.0 are shown after the program.

10

20

3G

40

S0

GG

70

80

a0

10G
116G
120
130
140
130
i6Q
170
180
19G
200
210
220
230
240
250
260
270
280
290
300
310
320
330

DEG
GINIT

GRAPHICS ON
VIEWPORT 0:84+31,100

FRAME
Pivot(

VIEWPDRT GG,130:531,100

FRAME
Pivot(

YIEWPORT 0 +6440,49

FRAME
Pivot(

YIEWPORT 66130049

FRAME
Pivot(
END

SUB Pivaot(P)
WINDOW 0,131:0+100
MOVE 40,80

LABEL "PIVOT",P
MOVE GO,50

pIvoT
IDRAM
LABEL
LABEL
LABEL
IDRAMW
PIVOT
IDRAW
LABEL
LABEL
LABEL
SUBEND

Q3

am

B0

90)

P
0,40
FILlII
n
||L3|l
040
4]
0,40
||La||
g
FILB"

Porting to 3.0 369

370 Porting to 3.0

PIVOT @ PIVOT 20
L1 [
L2 LZ
L3 L3
L4 Ld
LS LS
LE LE
PIVOT ED PIVOT @
Ll L)
L2 Lz
L3 L3
L4 L4
LS LS
LE LS
BASIC 2.0/2.1 LABEL with PIVOT
PIVOT 5 PIVOT 2
L1 L1
L L
L3 L3
La L4
9 -
L& LG
PIYOT 5@ PIVOT 9@
Lt L4 L1
Le LS L2
L4 - Z
e LE L3
LB

BASIC 3.0 LABEL with PIVOT

Porting to 3.0 371

| ‘ Jl
18814 EumAHANS

The effect of turning Display Functions mode on is to display special control characters on the
screen. In BASIC 2.0/2.1, Display Functions has no effect on control characters 128 through 156.
With BASIC 3.0, the appropriate character is displayed on the screen when control characters 128
through 159 are displayed and Display Functions is enabled. For example, on a Model 236 running
BASIC 2.0/2.1,

PRINT CHR$(129)&“HI THERE"”&CHR$(128)
results in:

HlI THERE
With BASIC 3.0, the result is:

"= HI THERE "eCr

“E

The "~ symbols are machine dependent; the actual characters displayed may vary with other
models.

372 Porting to 3.0

Prerun On LOADSUB

To speed the execution of the LOADSUB statement, BASIC 3.0 does not prerun each subprogram
loaded by the execution of the LOADSUB statement if the subprogram has been stored in a
“prerun state”. This differs from BASIC 2.0/2.1 in that BASIC 2.0/2.1 does prerun on the entire
program every time LOADSUB is executed. The only effect seen by this change is improved
performance when loading subprograms with the LOADSUB statement. For more information on
prerun, refer to the “Entering, Running, and Storing Programs™ chapter of this manual.

Special Case of /O Transfers

A special case of decreased VO performance has occurred with BASIC 3.0 due to a missed
interleave caused by the increased overhead for handling multiple processors. Qutbound transfers
without DMA to the 913xA/B/V/XV Winchester disc drives perform at 11.75 Kbytes/second in
BASIC 3.0. In BASIC 2.0/2.1, those transfers perform at a rate of 50 Kbytes/second. This degrada-
tion occurs only if all the following conditions are met:

® 8 MHz processor board (no cache)
o Not using DMA
¢ Using outbound TRANSFER {not OUTPUT) to 913xA/B/A/XV drive

This performance degradation affects users who are logging test data onto their discs. Adding DMA
can increase the outbound transfer rate to 50 Kbytes/second. (Inbound transfers without DMA from
those drives perform at 11.75 Kbytes/second in both BASIC 2.(/2.1 and BASIC 3.0.)

Chapter

16

Porting to Series 300

Introduction
This chapter mainly focuses on one objective:

¢ Making BASIC programs which have been written for Series 200 computers run on Series 300
computers. {This process is known as “porting”’ programs.)

Note

If you are porting from a “'pre-3.0” version of BASIC to the 4.0 version,
then you should also read the preceding “‘Porting to 3.0” chapter.

This chapter also discusses the following topics, which may not in all cases be directly related to
porting existing Series 200 software:
e Configuring the built-in 98644-like RS-232C serial interface in Series 300 computers.

¢ Using the 98203 keyboard compatibility” mode with HP-HIL. keyboards (such as the 46020
keyboard).

® Using the 98546 Display Compatibility [nterface in your Series 300 computer (this interface
provides the alpha and graphics capabilities of the Model 217 computer).

Methods of Porting

" Here are several methods of porting Series 200 software to Series 300 machines:

e Just load the program into a Series 300 computer — with no modifications — and run it.
e Write and run a program that properly configures the Series 300 computer for the program.

® Make your Series 300 computer emulate a Series 200 Model 217 computer (by installing a HP
98546 Display Compatibility Interface), and then run your unmedified Series 200 program on
it.

e Madify your Series 200 BASIC source program, and then run it on a Series 300 computer with
the BASIC 4.0 system.

Each method has a slightly different set of requirements for its use, as described subsequently.

373

374 Porting to Series 300

Chapter Organization
This chapter is organized according to the above strategies. It consists of the following sections:
® Description of Series 300 computer hardware, focusing on the enhancements to and differ-
ences from Series 200 computers
¢ Descriptions of porting methods, including when and how to use each®:

e Just loading and running programs

e Using configuration programs

e Using the ‘‘Display Compatibility Interface”
¢ Modifying the program’s source code

Description of Series 300 Hardware

Acquiring a general understanding of the enhancements or changes to Series 200 computers
provided by Series 300 computers will help you to choose a porting method.

Areas of Change
Series 300 computers have changes in the following areas:

® Many choices of processor, display, and human interface boards:
® Six displays (including a separate, high-speed display controller)
® Two processors: MC68010, and MC68020 {with MC68881 math co-processor)
e Battery-backed, real-time clock
® RS-232C serial interface (similar to the 98644 serial interface)

e HP-HIL keyboard (which is similar to Models’ 217 and 237 keyboards, but different
from other Series 200 models’ keyboards)

e No [D PROM (not all Series 200 Models had this feature)

Areas that Did Not Change
It will probably be comforting to know that if a feature is not listed above (and discussed in this
chapter), then it is the same for both Series 300 and Series 200 computers,

It may also be comforting to note that Series 300 computers can use most Series 200 accessories
and peripheral devices. See the HP 9000 Series 300 Configuration Reference Manual for a
complete list,

1 Note that you may need 1o use more Lhan one method in porting a program For instance, you may need to write a configuralion program and
use the Display Compatibility Interface in order to port a program.

Daing 8 Satioe 200 378

Displays

Series 300 display technology is the most visible area of change from Series 200 computers.

All Series 300 computers utilize bit-mapped alpha display technology, which combines alpha and
graphics like the display of the Series 200 Model 237. (All other Series 200 models have separate
alpha and graphics.)

The main difference between “non-bit-mapped” and “bit-mapped’” alpha displays lies in whether
or not alpha and graphics are separate.

e With non-bit-mapped alpha displays, alpha is separate from graphics. Alpha is produced by
character-generating hardware, while graphics are produced by bit-mapping hardware.

{You can use the (ALPHA) and (GRAPHICS) keys to turn on alpha and graphics independently.
When alpha is already on, pressing the key turns off graphics. Similarly, pressing the
GRAPHICS) key while graphics is on turns off alpha.)

e With bit-mapped alpha displays, alpha and graphics are not separate. Both alpha and graphics
are produced by a combination of software and bit-mapping hardware.

(With BASIC 4.0, there is a way to configure the Series 300 color displays as separate alpha
and graphics planes. This technique is described in the subsequent “Using a Configuration
Program” section.)

An effect of bit-mapped alpha is that both alpha and graphics are dominant. In other words,
displaying a character on the screen overwrites all pixels within the character cell; the previous
contents of those pixels, which may have been graphics, are lost. Also, any scrolling/clearing of the
alpha screen will scroll/clear the graphics information on the screen, since they share the same
display plane. Conversely, graphics operations overwrite alpha-related pixels.

With Series 300 computers, you may choose from one of six displays: monochrome and color,
each available in both medium- and high-resolution versions'. {(Most Series 200 computers have
only one display available for each model.)

¢ Medium-resolution graphics displays have 512 horizontal by 400° vertical pixels (many of the
Series 200 graphics displays had 512 x 390-pixel graphics displays).

Alpha capabilities of these medium-resolution displays are 80 columns of characters by 26
lines on-screen, plus 51 lines off-screen (as opposed to the 80 x 25-character alpha displays,
with 39 lines off-screen, of many Series 200 computers). The characters on Series 300
medium-resolution displays are in a 12 x 15-pixel cell. These displays have no blinking mode
(except for the alpha cursor), and no half-bright mode.

e High-resolution displays have 1 024 horizontal by 768? vertical pixels.

Alpha capabilities of high-resclution displays are 48 lines of 128 characters, with no lines
off-screen, like the Model 237. The characters are in an 8 x 16-pixel cell. These Series 300
high-resolution displays also have no half-bright mode and no blinking mode (except for the
alpha cursor on all Series 300 displays except the 98700 display controller).

1 There are two medium-resolution monochreme displays and two high-resolution color displays.

2 Series 300 medium-tesolution displays actually have 1 024 horizontal pixels. However, BASIC graphics (but not alpha) handles contiguous
patrs of horizomial (non-square) pixels as one unit in order lo make square dots on the screen,

3 Series 300 medium-resolution displays actually have 512 vertical pixels, however, only 400 are displayed.
4 Series 300 high-resolution displays actually have 3 024 verfical pixels. however, anly 768 are displayed.

376 Porting to Series 300

Processor Boards

Two processor boards are available with Series 300 computers:

® Medium-performance boards, which feature an MC68010 processor (10 MHz clock rate).

e Higher-performance boards, which feature an MC68020 processor {16 MHz clock rate) and
an MC68881 floating-point math co-processor.

{Series 200 computers have either an MC68000 or MC68010 processor with an 8 or 12.5 MHz
clock, depending on model numbers and product options.)

The 68010 is a 16-bit virtual memory microprocessor with a 32-bit internal architecture, while the
MC68020 is a 32-bit microprocessor with an internal 256-byte instruction cache (which is normailly
operative but can be disabled by executing CONTROL 32,330).

The MC68020 also has a flexible co-processor interface that allows close coupling between the
main processor and co-processors such as the MC68881 floating-point math co-processor. The
MC68881, which provides full IEEE floating-point math support, can execute concurrently with the
MC68020 and usually overlaps its processing with the 68020's processing to achieve higher
performance. The MC68881 provides increased performance for floating-point operations, particu-
larly for the evaluation of transcendental functions; refer to the “Efficient Use of the Computer’s
Resources’ chapter for further details. (The MC68881 co-processor is normally operative, but you
can disable it by executing CONTROL 32:230.)

Battery-Backed Real-Time Clock

Series 300 computers have a built-in, battery-backed, real-time clock as well as a built-in volatile
clock. Both have a lower limit of March 1, 1900. However, the upper limit of the volatile clock is
August 4, 2079, while the upper limit of the non-volatile clock is February 29, 2000.

(Only Series 200 Models 226 and 236 could have optionally installed battery-backed, real-time
clocks. This hardware was included with the HP 98270 Powerfail Option, whose main purpose was
to provide power during brown-out or black-out situations.

Built-In Interfaces

All Series 300 computers have a built-in HP-IB interface, which is the same as the built-in HP-IB
interface of all Series 200 computers.

Sernes 300 computers also feature the following built-in interfaces, which differ slightly from some of
their Series 200 counterparts:

e R5-232C senal interface (like the HP 98644 low-cost serial interface).
¢ HP-HIL keyboard interface (like the one in Models 217 and 237)

Serial Interface

All Series 300 computers have a built-in, 98644-like, serial interface. As with Series 200 Models
216 and 217 built-in senral interfaces, this interface is permanently set to select code 9. However,
this interface differs slightly from versions of the Series 200 built-in serial interface (which are like
the optional HP 98626 serial interface).

Porting to Series 300 377

Since the goal of the 98644 is to provide a low-cost serial interface, there are no hardware switches
that allow you to specify values for the following parameters:

e Select code (hard-wired to 9)

@ Interrupt level (hard-wired to 5)

¢ Default baud rate (the BASIC system sets default to 9600 baud)

¢ Default line control parameters (the BASIC system sets defaults to 8 bits/character, 1 stop bit,
parity disabled).

[f your program expects any other values for the baud rate and line control parameters, you will
have to change them programatically (select code and interrupt level cannot be set programmatical-
ly). See ““Using a Configuration Program’ in this chapter for further information.

HP-HIL Keyboard Interface
Like the Series 200 Models 217 and 237 computers, Series 300 computers use the HP 46020A
HP-HIL (Hewlett-Packard Human Interface Link) keyboard.

Note
If you are porting existing Series 200 software to Series 300 and have
already modified it to run on a Model 217 or 237 computer’s HIL
keyboard, then you have already made the adjustments necessary for
this keyboard. If not, then continue reading this section,

The major human-interface differences between 98203 keyboards and HP-HIL keyboards are in
the number and layout of “user’” and "‘system’ function keys.

378 Porting to Series 300

casilalalaiaialalalalalslsialc]s

B Slalalaialalalaia]als]nlnl syl

D EagOa a8 a0E]) BEE]
= I & O

O Ogar 1t | [E] ;‘DDDD}
IO B ED FIF

| Soc

i

HP 98203A Keyboard

= = =
= am &
CoEE=C]

0/0/0/0)

HP 98203B Keyboard

3] kg k1 ke paLt serT CRT QRS ANTC STGP
Act

L33 x7 ks kg NS © NS & BELC AL STEF 17

@ u 5 % -~ [' + 30K RSt

2 3 4 5 & 7 a. = seacE est

cN-R:-N-R- NN N NoR-N N IR~
" 3

HP 46020A (“HIL”) Keyboard

Porting to Series 300 379

Note that the HIL keyboard has only eight physical “‘user’” function keys {1) through (3),
rather than through (ks)), and lacks some of the physical “‘system” keys (such as
and (_RUN)). However, HIL keyboards actually have more functionality than 98203 keyboards,
because BASIC provides several “‘system’ and “‘user’ definitions for HIL function keys
through (/8). For complete definitions of each key on every keyboard, see the “Keyboards”
chapter of the BASIC User’s Guide.

BASIC also provides a way to emulate the operation of a 98203 keyboard using an HIL keyboard.
Using this mode is a convenient way of porting Series 200 programs to Series 300 machines
without modifying the source program. For further details of the “98203 compatibility mode”, see
the subsequent *‘Using a Configuration Program’ section’.

Also note that the 98203 keyboards can produce some keycodes that cannot be produced with the

46020 keyboard. These keycodes are produced by pressing the (EXECUTE) and {_EDIT] keys. Thus if
the Series 200 program depends upon these keycodes, the source code must be modified. See the
subsequent ‘Modifying the Source Program’ section for further details.

ID PROM

Note that there is no built-in ID PROM available with Series 300 computers, as was the case with

many models of Series 200 computers. However, an equivalent feature is provided by an optional
HP-HIL device — the 46084A [D Module.

If the program reads the [D PROM'’s contents with a SYSTEM$({“SERIAL NUMBER') function call,
then the program will also read the [D Module’s contents correctly. See ““Software Security” in the
“Entering, Running, and Storing Programs” chapter for further information. However, if its con-
tents were read by a CSUB?, then you will need to use a version that does not read the ID PROM,

1 A keyboard overlay is provided with the system to label BASIC definitions ol several HIL keys. The subsequent “'98203 Keyboard Compati-
bility Mode” section describes Lhe use of this overiay in both normal and compatibility modes

2 CSUB stands for Compiled SUBroutine. which is a program writlen in Pascal and generaled using the CSUB Unility

380 Porting to Series 300

Just Loading and Running Programs

This is the most desirable method, since it requires the least amount of work — just load the program
into the Series 300 computer, and run it.

You can probably port most of your BASIC 3.0 or 3.01 programs this way.

There are three different actions you can take, depending on who developed your program:

o If HP developed the program, look in the “‘Operating Systems and Applications’” section of the
HP 9000 Series 300 Configuration Reference Manual. The manual shows which 3.0 or 3.01
applications will run on a Series 300 computer using the 4.0 system.

o [f another software vendor developed the program, check with that vendor to determine
whether it will run on a Series 300 computer. (You can also take one of the two actions listed
below.)

¢ If you developed the program, you can do cne of two things:

¢ Read through the following sections to see whether it requires another porting
method.

¢ Try running it.

Should Problems Arise

[f your program will not run on your Series 300 system, then you may want to make considerations
such as the following:

¢ Does it meet all of the criteria listed in the subsequent sections?

e [s there sufficient memory in the computer?

® Are all the necessary devices and corresponding device drivers installed?

e Have you fulfilled alf other requirements listed by the software developer?

If the program still doesn’t run, then you may want to call the organization responsible for support-
ing the program (the programmer, the software vendor, or HP).

Porting to Series 300 381

Using a Configuration Pro m

This method involves writing a program that configures the system for your program. Here are the
situations for which this porting method will work:

® The program depends on a ‘non-default” 98626 serial interface configuration as set by
hardware switches.

® The program depends on the 98203 keyboard layout (but does not depend on trapping the
(_ EXECUTE) or (_EDIT) keys).

¢ The program depends on separate alpha and graphics planes (and you have a Series 300 color
display which you can configure to have separate alpha and graphics).

HP 98644 Serial Interface Configuration

Here is an example situation for which you could use this method. Suppose your program depends
on reading the following ‘‘non-default’” parameters from the configuration switches on the 98626-
like, built-in serial interface in a Model 217:

¢ 4800 baud
® 7 bits per character (with 1 stop bit) and odd parity.

However, the default parameters for the built-in 98644-like interface in Series 300 computers are
as follows:

® 9600 baud
e 8 bits/character {with 1 stop bit), and parity disabled

One solution is to use a short program that selects the desired “‘non-default’’ baud rate (4800) and
line-control parameters (7 bits, odd parity). This example program changes the “default” para-
meters by writing to CONTROL registers 13 and 14. (Note that you can also execute these
CONTROL staternents directly from the keyboard.)

100 CONTROL 9,1334800 ! Baud rate.

110 CONTROL 9,143 IVAL$C'11001010°)) | No handshake (bits 7:B)
120 | Odd rarity (bits 5-3)
130 ! l stap bit ibit 2}
140 END ! 7 bits/char (bits 1,Q)

Enter and run this program on the 4.0 system, making sure that the SERIAL binary program is
installed beforehand. The serial card is properly configured by this program, which you may want
to verify by reading the corresponding STATUS registers. You can then run the application
program.

Another solution is to modify the source program to select these parameters (i.e., insert this
segment of code into the program). In such case, you could change the “‘current” parameters by
writing to CONTROL registers 3 (baud rate) and 4 (line control). However, if the interface is reset
with the SCRATCH A statement, then the values in these registers will be restored to the “‘default”
values currently in registers 13 and 14. See the BASIC Interfacing Techniques manual for details on
the serial interface registers.

382 Porting to Series 300

HP 98203 Keyboard Compatibility Mode

The BASIC system provides a mode of keyboard operation in which the HIL keyboards are
compatible with (i.e., emulate) 98203 keyboards. Before describing how the compatibility mode
works, it will be helpful to review each keyboard’s layout and normal operation.

Brief Comparison of Keyboard Layouts

Here are diagrams of each keyboard, shown here for the purpose of comparing their physical
differences. For a key-by-key description of each one, refer to the “Keyboards™ chapter of the
BASIC User’s Guide.

Here are the layouts of the 98203 keyboards:

Cursor Editing System
Sofikeys Control Keys Keys Controt Keys

kp (¥ 3 - DLl ST cie T clRe S0P
hy P " ; e 14 ot LITTY ¢
© L] S %, & ' + Bald
2 3 4 5 7 3 = swece
3 {
W T Y u T 7
” -
/
— n

Character Entry Keys

HP 98203A Keyboard

Cursor Editing System
Soltkeys Control Keys Keys Control Keys
+ ¥ E
| ICTS S | i | ¥ | Y e o e | e | |
oo I CEEEEs

o6eeeesoeooees l
@[0/0/0/0/00.000006
En[0/0/0/0 0000086 - 0000
&»0 000000806 o/ojo/e

(] 3 000

gt
Character Entry Keys Program Numenc Pad
Control Keys

HP 98203B Keyboard

Note the “system’” keys across the top of the keyboard (two rows across the top and one column
down the middle of the larger 98203B; one row across the top and cne column down the right side
of the smaller 98203A).

Porting to Series 300 383

Softkeys on the 98203 keyboards are labeled through (ks). There are corresponding

“softkey labels™” which can be displayed on the alpha screen. For instance, you can enable the
display of the default “typing-aid” labels by executing this statement:

LOAC BIN "KBO®

If this binary is already loaded and the “typing-aid” definiions are not currently displayed, execute
LOAD KEY (with no file specifier).

Here is the format of the 98203 softkey labels. (Note that they match the physical layout of the
softkeys.)

kO’s label kKi‘s label k2's label k3’s label kd’'s label
kS's|label kB's]label k7 c|label KB's|latel k27c|label
ko ki k2 k3 kg
(ke) kg (ke)

There are 2 rows of 5 labels each. Each label consists of up to 14 characters.

Contrast this layout to that of the HIL keyboards:

Program o
Contrel Sohkeys and Editing System
Keys Softkeys Centrol Keys Contrel Keys
P - y pm—t— —————fe—)
SR BEE (Co0d]

DDV JODOUBaE]) B e [0
I I O 0 L G R R G G s i < < [s Tm Y il
alslalalaialalalaraela Rl Al ialalaln
O FDNSARMOMOONE 5m5) A

=! [1 =) (CRRE 2RI i

h prm— — —— e R —— =
Characier Cursor Numenc
Entry Keys Control Keys Keypad

HP-HIL Keyboards (such as the 46020)

384 Porting to Series 300

Here are the default HIL “‘typing-aid” labels and corresponding keys. There is 1 row of 8 labels,
Each label consists of up to 16 characters (2 rows of 8 characters per label).

fi's f2's f3s fd's f5's fG's f7's fB's
label label label label label label latel label

/
[fsi (f¢) (Menu] [(System Efsl ;rsl ;1‘7] 18)

Even though the HIL keyboards have fewer physical function keys, they have more functionality
than 98203 keyboards. This additional functionality is due to the fact that BASIC provides 1 menu
of “system” keys (shown below) and 3 menus of “User” definitions for softkeys through
8).

Here is the HIL “‘system” menu of keys, which you can display by pressing the key (if labels
are not already displayed) and then the key:

Print Clr Tab| |Disrlay Any
Ster Continue; { RUN a1l * Set Tab| |{Fctns char Recall

/ / 4 NN > éj
(Mene) (System) (/5) (#6) {7 18

This menu of softkey definitions provides most of the 98203 system key functions.

As you can see, there are two main areas of differences between 98203 keyboards and HIL
keyboards:

® There are several ‘‘system’ keys on the 98203 keyboards, such as [STEP), [CONTINUE) ({_CONT)
on the smaller 98203A keyboard) and (_RECALL] {{_RCL } on the 98203A). These system
functions are not writtern on the key-cap labels of HIL keyboards, but the BASIC system
functions are available on the System menu.

e Softkeys on the 98203 keyboards are labeled through (ks). Thus, there are 20
softkeys available on the larger 98203 keyboards (by using (SHFT}), and 10 on the smaller
98203 keyboard. Softkeys on the HIL keyboard are labeled through (8). Thus,
there are 24 softkeys available on these keyboards (3 menus of 8 keys each). The number and
size of screen labels are also different.

Porting to Series 300 385

Enabling Keyboard Compatibility Mode
You can enter this mode by writing a non-zero value into keyboard control register 15:

CONTROL KBD,1341

The following correspondence between function keys and labels is established!:

KQ's ki's KZ2's k3's kd‘s k5's KG's k775 kB's k9's
label label label label label label label label label label

() () (Mew) (STJ@ :fBJ

There is 1 row of labels, and each label may have up to 14 characters (two rows of 7 characters
each).

If you want to fully emulate the 98203 keyboard and corresponding softkeys’ display behavior, you
will need to execute the following statements:

CONTROL CRT1230
LDAD KEY

The CONTROL statement sets up the “‘key labels display mode” to match the default behavior of a
display with the 98203 keyboard. The LOAD KEY statement loads the default “‘typing-aid™ softkey
definitions for the 98203 keyboards.

1 [f you are in edit mode when you enter this compatibllity mode, then adit mode 1s ¢canceled.

386

Porting to Series 300

Using Compatibility Mode
Here is a listing of the correspondence between HIL keys and 98203 keys while in this mode. For a
detailed description of each 98203 key's function, see the “Keyboards™ chapter of the BASIC

User’s Guide.

Note

Place the BASIC keyboard overlays on the HIL keyboard before read-
ing this section. Also note that you can use these overlays in normal
mode as well as in compatibility mode.

U% i miminia]|

DU e DD Do) [:"‘ ‘_“;:L
MM UUIO0dOU00 8BE D@ﬁ
| O O G 0 G G o 0
3wl NG AN A G R G il O el A D.D
=] B NS F &)

® To access a 98203 softkey definition, merely press the appropriate HIL softkey. For instance,
the HIL softkey emulates the 98203 softkey, and the HIL key emulates
the 98203 softkey. (These key definitions are printed on the bottom row of the
keyboard overlay.)

Similarly, 98203 softkeys k10 through k19 are accessed by pressing the HIL key with the
appropnate softkey.

— —

1

’jﬁﬁm[_l

o]F [_JE,'”’

RAUM
2 4

Jl

I

Porting to Series 300 387

® To access a 98203 system-key definition, press with the appropriate HIL softkey.

For instance, the HIL (Extendchar) (_f1) key emulates the 98203 key. (These key
definitions are printed on the top row of the keyboard overlay. Note that these definitions are

the same as in the normal-mode System softkey menu.}

F

G G G l"’
b1t Conlimue R €l " Tek v} any

Back
space

¢ The 98203 and system-key definitions are available by using the HIL
and keys (without pressing [Extend char]). Note that these key definitions are the same in
normal mode.

LECT
Break
o

e

388 Porting to Series 300

e The 98203 (CLR-END), { CLR LN), and (_CLR $CR) system-key definitions are available by using

the HIL (Clear line), (Shitt) (Clear line), and (_Clear display] keys. Note that these key definitions
are the same in normal mode.

. - t [Clear Ciear
line display

A . Ci La
Gl +Enzt

&

S|

E4
B

e The 98203 (_RECALL), (ALPHA), (GRAPHICS), and RES system-key definitions are available by
using the unlabeled HIL keys above the numeric keypad. The shifted keys also have corres-
ponding definitions (for exarnple, Shift Alpha is the DUMP ALPHA function). Note that these
key definitions are the same in normal mode.

_ ‘ o000

Dump Alpha Dump Graph
Recall Afpha Graphles

Al

Paorting to Series 300

o When shifted, the (*), (/) +), and (- JHIL keys on the top row of the numeric
keypad have the same definitions as the keys on the top row of the 98203 numeric keypad.

Theyare (CE) ((shit) (0, (C) (Cshit) C /), T (st)+)),and (1)

{(shitt) (-). Note that these key definitions are the same in normal mode.

A

LB e

o (Extend char) (Menu) is an on/off toggle for the key labels. ((Extend char) (_Shit) (Menu) produces no

visible change.)

l
y

Ba

389

390 Porting to Series 300

@ (Extend char) (System) exits compatibility mode, and returns you to the HIL “System’ key defini-
tions. Similarly, (Extend char) (_User } exits this mode, and retums you to the HIL “User 1" key
definitions. (Note that there is no corresponding keystroke to return to compatibility mode.)

E - J”"' -
@ b

Exiting Keyboard Compatibility Mode
In addition to using the (Extend char) (System} and (Extend char) [_User) keys to exit this mode, you can also
use keyboard register 15:

CONTROL KBD:15:0

If the system is currently in edit mode, then exiting keyboard compatibility mode will also cancel the
edit mode.

1f you were emulating the 98203 keyboard and corresponding softkeys’ display behavior (and want
to return to the “normmal’’ behavior), you will need to execute the following statements:

CONTROL CRT 1232
LOAD KEY

The CONTROL statement restores the “‘key labels display mode” to the default behavior of a
display with the HIL keyboard. The LOAD KEY statement restores the default “typing-aid”’ softkey
definitions for the HIL keyboard.

Porting to Series 300

Configuring Separate Alpha and Graphics Planes

With BASIC 4.0 on bit-mapped color {multi-plane) displays, you have the ability to specify which
planes are to be:

® write-enabled and used to display alpha
® write-enabled and used to display graphics

This feature allows you to simulate separate alpha and graphics of Series 200 displays. For instance,
you will be able to:

e Turn alpha and graphics on and off independently.
e Dump them separately.
e Scroll alpha without scrolling graphics.

An Example

Assuming that you have a four-plane display, you could enable plane 4 for alpha and planes 1
through 3 for graphics. The following program performs this as well as other operations, as de-
scribed in the program’s comments:

100 PLOTTER IS5 CRT,"INTERNAL"COLDR MWAPR ! Select Series 300 draphics,
{10 FOR I=8 70 15

120 SET PEN [INTENSITY 0140 I Set alepha pen colors (dreen),
130 NEXT 1

140 CONTROL CRT.5:0 ' 5t alrha ren to black {(tempr.)
130 OUTPUT KBD3ICHR$(Z5S)1&"K" 3 I' C ear alrha screen.

160 CONTROL CRT 1838 I co.ect plane 4 for alephas

170 CONTROL CRT,S:38 ! Set alpha ren,

180 INTEGER Gm{Q) I Declare arrar for GESCAPE.

190 Gm(0)=7 I Set bits 2+1)0s which select
200 GESCAPE CRT:7:Gm(*) I drarhics planes 3,241,

210 | PLOTTER IS5 CRT,"INTERNAL" I Return Lo nmon-color-map

220 END I mode (ortional).,

This program provides eight graphics pen colors (either the default or previously defined colors)
and a single alpha pen color (green).

For more information concerning graphics displays, see the the “Multi-Plane Bit-Mapped Displays™
section of the BASIC Graphics Techniques manual. For more information on alpha displays, see
the “Display Interfaces” chapter of the BASIC Interfacing Technigues manual,

391

392 Porting to Series 300

Using the Disp e * -
This method involves installing an HP 98546 Display Compatibi v Interface, which consists of
essentially the separate graphics and alpha boards of the Series 200 10¢ . 217 computer. You can
then direct the system to use the compatibility display, enabling you to run existing Series 200
programs, which depend on this display’s characteristics, on your Series 300 computer.

This card set remedies the following situations.

® The program depends on having separate alpha and graphics planes {(and you do not have a
color display which can emulate this feature, as described in the preceding ‘‘ onfiguring
Separate Alpha and Graphics Planes™ section).

® The program directly accesses alpha or graphics hardware (such as through a CSUB, rather
than through a BASIC graphics statement).

e The program depends on blinking alpha display highlights (characters wiii: codes 130, 134,
and 135).

® The program depends on the Model 217's speci” ¢ . = s 2solutior . %390 .. or
alpha display size (80 %25 characters), or upor spe. :a nt of c and
alpha pixels.
This method is required if any of the above statements 5 ue otmoc ;o oLog L
source code (or don’t want to). If you have the program’s sc* code, 2n yc¢ ' may wa « to

instead make the necessary modifications to it.

If your program requires separate alpha and graphicse«d - = o, ~ < or of
using an HP 98627 Color Qutput interface and an Tt ¢ o _ - cs,
leaving the alpha display on a separate monochrome monitor.

Porting to Series 300 393

The card set consists of these two hardware pieces:

biity Interface

® An alpha display card, ' h is like the existing 98204B display controller card except for a
relay and an additione. 3NC video connector on the rear panel.

e A graphics display card, which is identical to the Model 217’s graphics card.

394 Porting to Series 300

The Relay and BNC Video Connectors
The relay on the alpha card is used to switch between using the Series 300 bit-mapped display’s
signal and using the compatibility display’s signal.

SERIES 300 COMPUTER

RELAY
(CONTROLLED BY SOFTWARE) —.

COMPATIBILITY
VIDEQO CARD SET

|
ﬁHONITOR @ VIDED N i SERIES 300

[VIDEG BOARD
[~ // VIDED /
TO MONITOR EGNAL
/
((ﬁvmo out
*

{OR 'GREEN' CONNECTOR FOR COLOR VIDEQ BOARDS)

A Relay Governs Which Display Signal Is Used

Display Compatibility Interface Capabilities

Capabilities of this card are identical to those of the Model 217. The alpha display is an 80 x 25-
character screen with half-bright, blinking, underline, and inverse-video display enhancements. The
graphics display is 512 x 390 monochrome pixels.

Configurations Possible
Here are the video-interface/monitor configurations possible:

® Shared monitor: The Display Compatibility Interface and the Series 300 bit-mapped display
can share a medium-resolution monitor {monochrome or color).

e Separate monitors: The Display Compatibility Interface can use a medium-resolution moni-
tor, and the Series 300 High-Resolution Video Beoard can use a separate high-resolution
monitor (monochrome or color).

¢ Single monitor: The Display Compatibility Interface can use a medium-resolution monitor
(with no Series 300 bit-mapped display).

Porting to Series 300 395

Steps in Using this Card Set
Here are the steps you will take with this method:
1. Turn off the computer.

2. Configure and install the Display Compatibility Interface according to the instructions in its
Installation Note. Also connect the monitor(s) as described in that note.

3. Turn on the computer, and boot the BASIC systern.
4. Load the CRTA display driver binary, if not already installed.

LOAD BIN "CRTA
5. Select the Display Compatibility Interface as the display device.

CONTROL CRT 2131

Note
When using one monitor for twe different displays {(as in the “‘shared
monitor’’ configuration described earlier), a small amount of time is
required for the monitor to synchronize with the new display whenever
you switch from one display to the other. Do niot be disconcerted if the
screen sometimes flickers when this switch is made.

The preceding CONTROL statement also performs the following actions:
¢ Chooses® and sets up the Display Compatibility Interface’s alpha display as appropriate:
® Sets all CRT registers to the appropriate default values.
® Clears the Series 300 bit-mapped display screen.
® Displays a cursor.
® Displays key labels (if appropriate) in half-bright mode.
e Displays a status indicator, such as the run light (if appropriate).

® Chooses® and sets up the Display Compatibility Interface’s graphics display by effectively
initializing this display and executing GINIT and PLOTTER IS CRT:"INTERNAL",

1 See “How the Default Alpha Display Is Chosen™ in the “Display Interfaces” chapter of BASIC Inierfacing Techniques. ltems 1 and 2 are
exchanged and a new selection oi the “‘delault display device™ is made.

2 The “default graphics display”’ is chosen according to the order listed under PLOTTER 1S in the BASIC Laaguage Reference.

396 Porting to Series 300

Switching Back to the Series 300 Display
The CONTROL statement is also used to select the Series 300 display:

CONTROL CRT,2130

The preceding CONTROL statement performs the following actions:
® Chooses! and sets up the Series 300’s alpha display as appropriate:

o Sets all CRT registers to the appropriate default values.

® Clears the Display Compatibility Interface’s alpha display.

e Displays a cursor.

e Displays key labels (if appropriate).

® Displays a status indicator, such as the run light {if appropriate).

e Chooses? and sets up the Series 300 graphics display by effectively initializing the bit-mapped
display and executing GINIT and PLOTTER I5 CRT:"INTERNAL".

Automatic Display Selection at System Boot

When the BASIC system is booted with both the Display Compatibility Interface and the Series 300
bit-mapped display installed, it automatically selects one of them in the following manner:

e [f only the CRTA driver is installed, the system selects the Display Compatibility Interface.

¢ [f only the CRTB driver is installed (or if both CRTA and CRTB are present), the system selects
the Series 300 bit-mapped display.

If only the Display Compatibility Interface is installed, the system selects it as the display (CRTA
must be currently installed, of course). For a more detailed description of how the BASIC system
selects the “‘default display device,” see the “Display Interfaces’” chapter of BASIC Interfacing
Techniques.

Removing Display Drivers

You can use SCRATCH BIN to remove all but the currently required display driver. In other words,
if you are in compatibility display mode, then CRTB is removed. If you are in “native”” Seres 300
display mode (i.e., not in compatibility mode), then CRTA is removed.

1 See ‘“How the Delault Alpha Display 1s Chosen'” 1n ihe *‘Display Imerfaces’ chapler of BASIC Interfacing Technigues. A new selection of the
“defaull display device’ 1s made (llems 1 and 2 are not exchanged as in the switch to the Display Compatibility interface.)

2 The ““delault graphics display’' 1s chosen according to the order hsted under PLOTTER 1S in the BASIC Language Reference

Porting to Series 300 397

If Your Screen Is Blank

Your screen can go blank (and characters you type in from the keyboard are not “‘echoed’ on the
screen) under the following conditions:

¢ You have both a Display Compatibility Interface and a Series 300 bit-mapped display installed,
and they are sharing the same monitor.

® You are not in compatibility mode (i.e., alpha is on the bit-mapped display).
® You are running a BASIC program that contains the following statement:

PLOTTER IS 3:"INTERNAL"

The execution of this statement causes your screen to go blank. You have just lost your alpha and
graphics.

What Happened?

The PLOTTER IS 3, “INTERNAL” statement changed the current plotter device from 6 (bit-
mapped display} to 3 (compatibility display). The system is talking to the compatibility cards, and
the software-controlled relay that switches from the bit-mapped to the compatibility display has
been {implicitly) directed to switch to the compatibility display’s video signal. However, the remain-
der of the operations performed by the CONTROL CRT,21;1 statement have not been performed.
Therefore, you will not be able to see your alpha or graphics.

What To Do Next
Temporary solution: You can do one of two things:

e To return to the bit-mapped display, first press the key, and then execute a SCRATCH A
or CONTRCL CRT,21350 staternent.

® To select the Display Compatibility Interface, execute CONTROL CRT /2131,

Note that you will not see any characters echoed on the display until you have executed one of the
above statements,

Long-term solution: Change all references to select code 3" to “"CRT” (e.g.
FLOTTER IS CRT"INTERNAL").

Another Related Note

If you want to determine how well your program runs on a Series 300 bit-mapped display and this
program executes a PLOTTER S 3, “INTERNAL" statement, and you have Display Compatibility
Interface installed, then you will not be able to adequately test the functionality of your software on
a bit-mapped display unless you first remove the compatibility hardware {or change the PLOTTER
IS 3, “INTERNAL" statements to PLOTTER IS CRT,”INTERNAL"').

398 Porting to Series 300

Modifying the Source Program

This method involves changing or adding to the program’s source code to make the program
perform the desired operations on the 4.0 system.

Here are some, but not all, situations for which this method is required:

® The program depends on a CSUB with version 3.01 {or earlier).

e The program depends upon trapping HP 98203 { EXECUTE) or (_EDIT) key codes, which cannot
be generated by the HP-HIL (HP 46020) keyboard.

e None of the preceding porting methods worked. (In such case, you should read the subse-
quent “‘Additional Porting Considerations” section to see if your problem is described therein.)

If any of the above statements is true, then you must modify the program to run on the 4.0 system.
If you do not have access to the source code, then you cannot port it — you will have to obtain a
BASIC 4.0 version of the program, if it is available.

Incompatible CSUBs
An example of this situation is a program that depends upon using a “‘pre-4.0”" CSUB.

To remedy this situation, you will need to obtain a CSUB that is compatible with the BASIC 4.0
systemm. (This may require modifying the CSUB source program; it will definitely require re-
generating a new CSUB with the the CSUB 4. 0 Utility.)

HP 98203 Specific Key Codes

The 98203 keyboards can generate and key codes which cannot be generated by
a 46020 keyboard. If your program depends on trapping these key codes, then you will need to

modify it to use 46020 keys instead. For instance, you could trap the HIL key rather than the
98203 key. See the “Keyboard Interfaces” chapter of the BASIC Interfacing Technigues
manual for examples of trapping keystrokes with a BASIC program.

Additional Porting Considerations

This section describes the following topics, which may also require consideration in porting prog-
rams from “pre-4.0” BASIC programs to the BASIC 4.0 systemn.

o New SYSTEMS$(“SYSTEM ID") values for Seres 300 computers
¢ Alpha color changes on Series 300 color displays

¢ Alpha screen height and graphics screlling

e GLOAD/GSTORE compatibility

¢ PLOTTER IS statement

e Hidden color changes

e ON KNOB “interval” parameter for HIL knobs

New SYSTEMS$(“SYSTEM ID”’) Values
On Series 300 computers, SYSTEMS$(“SYSTEM ID”) will return two different values:

® 5300: 10 for computers with an MC68010 processor
® 5300:20 for computers with an MC68020 processor

Porting to Series 300 399

Alpha Color Changes

With multi-plane bit-mapped displays, printing one of the alpha color highlight characters,
CHR$(136) through CHR${143), will provide the same colors as on the Model 236C as long as the
color map contains default values. A user-defined color map which changes the values of any pen
in the range 0 to 7 will consequently change the effect of the corresponding color highlight
character. See “‘Display-Enhancement Characters” in the “Useful Tables™ appendix of the BASIC
Language Reference for more information.

Alpha Screen Height and Graphics Scrolling
With BASIC 3.0 and later versions, you can limit the height of the alpha portion of the screen. For
instance, to limit the alpha portion of the screen to the bottom 11 lines, execute this statement:

CONMTROL CRT 13411

The screen height parameter of 11 specifies the number of lines to be used for the alpha screen (4
lines of “output area,” and 7 lines used by the system). The value of this parameter may not be less
than 9. A corresponding STATUS statement will return the current screen height.

This capability allows you to separate alpha and graphics on a single-plane bit-mapped display
screen. You would also have to limit graphics to the upper portion of the screen {which is not used
for alpha).

GLOAD/GSTORE Compatibility

Raster images loaded by GLOAD should have been stored (GSTORE) from the same type of
display. Otherwise, if the image was stored on a machine with a different graphics resolution or
number of bits per pixel, then the resultant image will be scrambled.

If your program first creates a graphics image and then GSTOREs and GLOAD:s it, then the image
may be truncated (due to the difference in required array sizes). With BASIC 4.0, you can use the
GESCAPE statement to determine the required array size.

For example, the Model 236C requires an integer array size of 49 920 elements to store informa-
tion from the graphics planes in the frame buffer [(4 bits/pixel) x (512 x 390 pixels)/(16 bits/inte-
ger)], while a Series 300 medium-resolution color display requires 102 400 elements
(4% (1024 x400)/16]), The value of 1024 is used because Series 300 medium-resolution bit-
mapped displays have non-square-pixels.

See GLOAD and GSTORE in the BASIC Language Reference for details conceming this topic.
With BASIC 4.0, there are new utility CSUBs (Bstore and Bload) that allow you to store and load

specified portions of the graphics raster. You may altematively want to use these utilities in favor of
using GSTORE and GLOAD.

PLOTTER IS Changes
There are several values that you can use when specifying the graphics display; however, the
following examples show the best way:

PLOTTER 1S CRT,"INTERNAL"
PLOTTER IS 1,"INTERNAL"

CRT is a built-in function that always retuns 1. The value of 1 signifies the “‘default display’™” (to the
PLOTTER 15 statement).

400 Porting to Series 300

The following statement, with select code of 3, specifies a non-bit-mapped display, if there is one:
otherwise it is the same as PLOTTER IS 1,”INTERNAL"",

PLOTTER 15 3+“IMTERNAL"

The following statement always specifies a bit-mapped display. If one is not currently installed, then
an error results.

PLOTTER IS G"INTERNAL"

Refer to the BASIC Language Reference for further details on the PLOTTER IS statement.

Hidden Color Changes
On a Model 236C display, the following sequence of commands:

GRAPHICS OFF
SET PEN O INTENSITY 1,041
GRAPHICS ON

produces the following results,

e The GRAPHICS OFF statement will turn the graphics display off.

e SET PEN 0 is executed while the graphics screen is still blank and when the GRAPHICS ON
statement is executed, the previous display contents with medified color map entry O is
displayed.

On the Seres 300 and 98700 displays, the above command sequence produces the following
results:

e [f the alpha and graphics planes overlap (i.e. the default configuration), then GRAPHICS OFF
and GRAPHICS ON are no-op's, so the display will change immediately.
¢ [f the alpha and graphics planes are totally independent (such as in “Cenfiguring Separate
Alpha and Graphics Planes” in the “Using a Configuration Program’ section), then:
e GRAPHICS OFF turns the graphics planes off, leaving the alpha plane on.

o SET PEN n INTENSITY a,b,c will not be seen on the screen until the GRAPHICS ON
statement is executed, unfess n is equal to O or specifies an alpha pen.

e GRAPHICS ON turns on the graphics planes again.

Note

This occurs because alpha and graphics share the same color map on
Series 300 and 98700 displays, and PEN Q is the default alpha back-
ground color.

HIL Knob Interval Parameter

The ON KNOB “interval” parameter for the optional HIL knob (46083A) has been implemented in
BASIC 4.0 (it was not implemented with HIL knobs in BASIC 3.0 or 3.01). This parameter works
same way on an HIL knob as on the non-HIL knob (built into Series 200 98203 keyboards). See

the “Using the Knob’" section of the “Keyboard Interfaces” chapter of BASIC Interfacing Techni-
ques manual.

Error Mess: :s

14

15

16

17
18

Missing option or configuration error. If a statement requires an option which is not loaded, the
option number or opticn name is given along with error 1. These numbers are listed in the Useful
Tables section. Error 1 witheout an option number indicates other configuration errors.

Memory overflow. If you get this error while loading a file, the program is too large for the
computer's memory. If the program loads, but you get this error when you press RUN, then the
overflow was caused by the vanable declarations. Either way, you need to modify the program or
add more read/write memory.

Line not found in current context. Could be a GOTO or GOSUB that references a non-existent
{or deleted) line, or an EDIT command that refers to a non-existent line label.

Improper RETURN. Executing a RETURN statement without previously executing an appropriate
GOSUB or function call. Also, a RETURN statement in a user-defined function with no value
specified.

Improper context terminator. You forgot to put an END statement in the program. Also applies to
SUBEND and FNEND.

Improper FOR...NEXT matching. Executing a NEXT statement without previously executing the
matching FOR statement. Indicates improper nesting or overlapping of the loops.

Undefined function or subprogram. Atternpt to call a SUB or user-defined function that is not in
memory. Look out for program lines that assumed an optional CALL.

Improper parameter matching. A type mismatch between a pass parameter and a formal para-
meter of a subprogram.

Improper number of parameters. Passing either too few or too many parameters to a subprogram.
Applies only to non-optional parameters.

String type reguired. Attempting tc return a numeric from a user-defined string function.
Numeric type required. Attempting to return a string from a user-defined numeric function.

Attempt to redeclare variable. Including the same variable name twice in declarative statements
such as DIM or INTEGER.

Array dimensions not specified. Using the (#) symbol after a variable name when that variable
has never been declared as an array.

OPTION BASE not allowed here. The OPTION BASE staterment must appear before any dec-
larative statements such as DIM or INTEGER. Only one OPTION BASE statement is allowed in
one context.

Invalid bounds. Attempt to declare an array with more than 32 767 elements or with upper bound
less than lower bound.

Improper or inconsistent dimensions. Using the wrong number of subscripts when referencing an
array element.

Subscript out of range. A subscript in an array reference is outside the current bounds of the array.

String overflow or substring error. String overflow is an attempt to put too many characters into a
string (exceeding dimensioned length). This can happen in an assignment, an ENTER an INPUT,
or a READ. A substring error is an attempted violation of the rules for substrings. Watch out for
null strings where you weren’t expecting them.

401

402 Eror Messages

19

20

22
24

25

26
27
28
29

30
31
32

33
34

35

36

38

40

41

43

46
47

49

Improper value or out of range. A value is too large or too small. Applies to items found in a
variety of statements. Often occurs when the number builder overflows {or underflows) during an
/O operation.

INTEGER overflow. An assignment or result exceeds the range allowed for INTEGER variables.
Must be —32 768 thru 32 767.

REAL overflow. An assignment or result exceeds the range allowed for REAL vanables.

Trig argument too large for accurate evaluation. QOut-of-range argument for a function such as
TAN or LDIR.

Magnitude of ASN or ACS argument is greater than 1. Arguments to these functions must be in
therange — 1 thru + 1.

Zero to non-positive power. Exponentiation error.
Negative base to non-integer power. Exponentiation error,
LOG or LGT of a non-positive number.

lllegal floating point number. Does not occur as a result of any calculations, but is possible when a
FORMAT OFF /O operation fills a REAL varable with something other than a REAL number.

SQR of a negative number.
Divisiort (or MOD) by zero.

String does not represent a valid number. Attempt to use “‘non-numeric’ characters as an
argumment for VAL, data for a READ, or in response to an INPUT statement requesting a number.

Improper argument for NUM or RPT$. Null string not allowed.

Referericed line not an IMAGE statement. A USING clause contains a line identifier, and the line
referred to is not an IMAGE statement.

Improper image. See IMAGE or the appropriate keyword in the BASIC Language Reference.

Out of data in READ. A READ staternent is expecting more data than is available in the referenced
DATA statements. Check for deleted lines, proper OPTION BASE, proper use of RESTORE, or
typing errors.

TARB or TABXY not allowed here. The tab functions are not allowed in statements that contain a
USING ciause. TABXY is allowed only in a PRINT statement.

Improper REN, COPYLINES, or MOVELINES command. Line numbers must be whole numbers
from 1 to 32 766. This may also result from a COPYLINES or MOVELINES staternent whose
destination line numbers lie within the source range.

First line number greater than second line number. Parameters out of order in a statement like
SAVE, LIST, or DEL.

Matrix must be square. The MAT functions: IDN, INV, and DET require the array to have equal
numbers of rows and columns,

Result cannot be an operand. Attempt to use a matrix as both result and argument in a MAT TRN
or matrix multiplication.

Attemnpting a SAVE when there is no program in memory.

COM declarations are inconsistent or incorrect. Includes such things as mismatched dimensions,
unspecified dimensions, and blank COM occurring for the first time in a subprogram.

Branch destination not found. A statement such as ON ERROR or ON KEY refers to a line that
does not exist. Branch destinations must be in the sarme context as the ON.. statement.

51

52

53

54

55

56

58

59

60

62

64

65

66
67

68

72

73

76

77

78

79

Error Messages

File not currently assigned. Attempting an ON/OFF END statement with an unassigned /O path
name.

Improper mass storage unit specifier. The characters used for a msus do not form a valid specifier.
This could be a missing colon, too many parameters, illegal characters, etc.

Improper file name. File names are limited to 10 characters. Foreign characters are allowed, but
punctuation is not.

Duplicate file name. The specified file name already exists in directory. lt is illegal to have two files
with the same name on one volume.

Directory overflow. Although there may be room on the media for the file, there is no room in the
directory for ancther file name, Discs initialized by BASIC have room for over 100 entres in the
directory, but other systemns may make a directory of a different size.

File name is undefined. The specified file name does not exist in the directory. Check the contents
of the disc with a CAT command.

Improper file type. Many mass storage operations are limited to certain file types. For example,
LOAD is limited to PROG files and ASSIGN is limited to ASCII and BDAT files.

End of file or buffer found. For files: No data left when reading a file, or no space left when writing
a file. For buffers: No data left for an ENTER, or no buffer space left for an QUTPUT. Also,
WORD-mode TRANSFER terminated with odd number of bytes.

End of record found in random mode. Atternpt to ENTER a field that is Jarger than a defined
record.

Protect code violation. Failure to specify the protect code of a protected file, or attempting to
protect a file of the wrong type.

Mass storage media overflow. There is not enough contiguous free space for the specified file size.
The disc is full.

Incorrect data type. The array used in a graphics operation, such as GLOAD, is the wrong type
(INTEGER or REAL).

INITIALIZE failed. Too many bad tracks found. The disc is defective, damaged, or dirty.

lllegal mass storage parameter. A rmass storage statement contains a parameter that is out of
range, such as a negative record number or an out of range number of records.

Syntax error occurred during GET. One or more lines in the file could not be stored as wvalid
program lines. The offending lines are usually listed on the system printer, Also occurs if the first
line in the file does not start with a valid line number.

Disc controller not found or bad controller address. The msus contains an improper device
selector, or no external disc is connected.

Improper device type in mass storage unit specifier. The msus has the correct general form, but
the characters used for a device type are not recognized.

Incorrect unit number in mass storage unit specifier. The msus contains a unit number that does
not exist on the specified device.

Attempt to purge an open file. The specified file is assigned to an /O path name which has not
been closed.

Invalid mass storage volume label. Usually indicates that the media has not been initialized on a
compatible system. Could also be a bad disc.

File open on target device. Atternpt to copy an entire volume with a file open on the destination
disc.

403

404 Error Messages

80

81

82

83

84
85
87
88
89

90
93

100
101
102
103

105

106

107

117

118

120

121
122

126
127
128
131

Disc changed or not in drve. Either there is no disc in the drive or the drive door was opened
while a file was assigned.

Mass storage hardware failure. Also occurs when the disc is pinched and not turning. Try reinsert-
ing the disc.

Mass storage unit not present. Hardware problem or an attempt to access a left-hand drive on the
Model 226.

Write protected. Attempting to write to a write_protected disc. This includes many operations such
as PURGE, INITIALIZE, CREATE, SAVE, QUTPUT, etc.

Record not found. Usually indicates that the media has not been initialized.

Media not initialized. {Usually not produced by the interna! drive.)

Record address error. Usually indicates a problem with the media.

Read data error. The media is physically or magnetically damaged, and the data cannot be read.

Checkread error. An error was detected when reading the data just written. The media is probably
damaged,.

Mass storage system error. Usually a problem with the hardware or the media.

Incorrect volume code in MSUS. The MSUS contains a volume number that does not exist on the
specified device.

Numeric IMAGE for string item.
String IMAGE for numeric item,
Numeric field specifier is too large. Specifying more than 256 characters in a numeric field.

ltem has no corresponding IMAGE. The image specifier has no fields that are used for item
processing. Specifiers such as # X / are not used to process the data for the item list. Item-
processing specifiers include things like K D B A.

Numeric IMAGE field too small. Not enough characters are specified to represent the number.

IMAGE exponent field too small. Not enough exponent characters are specified to represent the
number.

IMAGE sign specifier missing. Not enough characters are specified to represent the number.
Number would fit except for the minus sign.

Too many nested structures, The nesting level is too deep for such structures as FOR, SELECT,
IF, LOOP, etc.

Too many structures in context. Refers to such structures as FOR/NEXT, [F/THEN/ELSE,
SELECT/CASE, WHILE, etc.

Not allowed while program running. The program must be stopped before you can execute this
command.

Line not in main program. The run line specified in a LOAD or GET is not in the main context.

Program is not continuable. The program is in the stopped state, not the paused state. CONT is
allowed only in the paused state.

Quote mark in unquoted string. Quote marks must be used in pairs.
Statements which affect the knaob mode are out of order.
Line too long during GET.

Unrecognized non-ASCII keycode. An output to the keyboard contained a CHR$(255) followed
by an illegal byte.

132

133
134
135
136
140

141
142
143

145

146
150
152
153

154
155
156
157
158

159

160
163

164

165
167

168

Error Messages

Keycode buffer overflow. Trying to send too many characters to the keyboard buffer with an
OQUTPUT 2 statement.

DELSUB of non-existent or busy subprogram,

Improper SCRATCH statement.

READIO/WRITEIO to nonexistent memory location,

REAL underflow. The input or result is closer to zero than 107® {approximately).

Too many symbols in the program. Symbols are variable names, /O path names, COM block
names, subprogram names, and line identifiers.

Variable cannot be allocated. [t is already allocated.
Varable not allocated. Attempt to DEALLOCATE a vanable that was not allocated.

Reference to missing OPTIONAL parameter. The subprogram is trying to use an optional para-
meter that didn't have any wvalue passed to it. Use NPAR to check the number of passed
parameters.

May not build COM at this time. Attempt to add or change COM when a program is running. Fer
example, a program does a LOADSUB and the COM in the new subprogram does not match
existing COM.

Duplicate line label in context. There cannot be two lines with the same line label in one context.
lllegal interface select code or device selector. Value out of range.
Parity error.

Insufficient data for ENTER. A statement terminator was received before the vanable list was
satisfied.

String greater than 32 767 bytes in ENTER.
Improper interface register number. Value out of range or negative.
lllegal expression type in list. For example, trying to ENTER into a constant.

No ENTER terminator found. The vanable list has been satisfied, but no statement terminator was
received in the next 256 characters. The # specifier allows the statement to terminate when the
last item is satisfied.

Improper image specifier or nesting images more than 8 deep. The characters used for an image
specifier are improper or in an improper order.

Numeric data not received. When entering characters for a numeric field, an item terminator was
encountered before any “‘numeric’”’ characters were received,

Attemnpt to enter more than 32 767 digits into one number.

Interface not present. The intended interface is not present, set to a different select code, or is
malfunctioning,

llegal BYTE/WQORD operation. Attempt to ASSIGN with the WORD attribute to a non-word
device.

Image specifier greater than dimensioned string length.

Interface status error. Exact meaning depends upon the interface type. With HP-IB, this can
happen when a non-controller operation by the computer is aborted by the bus.

Device timeout occurred and the ON TIMEOUT branch could not be taken.

405

406 Error Messages

170

171

172

173

174

177

178

301
303
304
306
308
310
313

314

315

316

317

318

319

324
325

326

327
328

[/O operation not allowed. The [/O statement has the proper form, but its operation is not defined
for the specified device. For example, using an HP-IB statement on a non-HP-IB interface or
directing a LIST to the keyboard.

lllegal YO addressing sequence. The secondary addressing in a device selector is improper or
primary address too large for specified device.

Peripheral error. PSTS line is false. If used, this means that the peripheral device is down. If PSTS
is not being used, this error can be suppressed by using control register 2 of the GPIO.

Active or system controller required. The HP-IB is not active centroller and needs to be for the
specified operation.

Nested /O prohibited. An VO statement contains a user-defined function. Both the original
staternent and the function are trying to access the same file or device.

Undefined /O path name. Attempting to use an /O path name that is not assigned to a device or
file.

Trailing punctuation in ENTER. The trailing comma or sernicolon that is sornetimes used at the
end of QUTPUT statements is not allowed at the end of ENTER statements.

Cannot do while connected.

Not allowed when trace active.

Too many characters without terminator.

Interface card failure. The datacornm card has failed sel-test.
lllegal character in data. Datacomm error.

Net connected. Datacomm error.

USART receive buffer overflow, Overrun error detected. Interface card is unable to keep up with
incoming data rate. Data has been lost.

Receive buffer overflow. Program is not accepting data fast enough to keep up with incoming data
rate. Data has been lost.

Missing data transmit clock. A transmit timeout . occurred because a missing data clock
prevented the card from transmitting. The card has .isconnected from the line.

CTS false too long. The interface card was unable o ransmit for a predetermined period of time
because Clear-To-Send was false on a half-duplex line. The card has disconnected from the line.

Lost carrier disconnect. Data Set Ready (DSR) or Data Carrier Detect {if full duplex) went inactive
for too long.

No activity disconnect. The card has disconnected from the line because no data was transmitted
or received for a predetermined length of time.

Connection not established. Data Set Ready or Data Carrier Detect (if full duplex) did not become
active within a predetermined length of time.

Card trace buffer overflow.

lllegal databits/parity combination. Attempting to program 8 bits-per-character and a parity of “1”
Or “O,,.

Redgister address out of range. A control or status register access was attempted to a non-existent
register.

Register value out of range. Attempting to place an illegal value in a control register.

USART Transmit underrun.

332

Lo
pre]
a

335

337

338

340

341

342

343

346

347

349

353
37G-399

403

427

Error Messages

User-defined LEXICAL ORDER IS table size exceeds array size,

Repeated value in pointer. A MAT REORDER vector has repeated subscripts. This error is not
always caught.

Non-existent dimension given. Attempt to specify a non-existent dimension in a MAT RECRDER
operation.

Improper subscript in pointer. A MAT REORDER vector specifies a non-existent subscript.

Pointer size is not equal t¢ the nurmber of records. A MAT REORDER vector has a different
number of elernents than the specified dimension of the array.

Pcinter is not a vector. Only single-dimension arrays (vectors) can be used as the pointer in a MAT
RECRDER or a MAT SORT staterment.

Substring key is out-of-range. The specified substring range of the sort key exceeds the dimen-
sicned length of the elements in the array.

Key subscript cut-of-range. Attempt to specify a subscript in a sort key outside the current bounds
of the array.

Mode table too long, User-defined LEXICAL ORDER IS mode table contains more than 63
entries.

Improper mode indicator. User-defined LEXICAL ORDER IS table contains an illegal combina-
tion of mode type and mode pointer.

Not a single-dimension integer array. User-defined LEXICAL ORDER IS mode table must be a
single-dimension array of type INTEGER.

Mode pointer is out of range. User-defined LEXICAL ORDER IS table has a mode pointer greater
than the existing mode table size.

1 for 2 list empty or too long. A user-defined LEXICAL ORDER IS table contains an entry
indicating an improper number of 1 for 2 secondaries.

CASE expression type mismatch. The SELECT statement and its CASE statements must refer to
the same general type, numeric or string.

INDENT parameter out-of-range. The parameters must be in the range: O thru eight characters
less than the screen width.

Structures improperly matched. There is not a corresponding number of structure beginnings and
endings. Usually means that you forgot a statement such as END [F, NEXT, END SELECT, etc.

CSUB has been modified. A contiguous block of compiled subroutines has been modified since it
was loaded. A single module that shows as multiple CSUB statements has been altered because
program lines were inserted or deleted.

Data link failure.

Errors in this range are reported if a run-time Pascal error occurs in a CSUB. To determine the
Pascal error number, subtract 400 from the BASIC error number. Inforrmation on the Pascal error
can be found in the Pascal User's Manual.

Bad system function argument. An invalid argument was given to a time, date, base conversion,
or SYSTEM$ function.

Copy failed; program modification incomplete. An error occurred during a COPYLINES or
MOVELINES resulting in an incomplete operation. Some lines may not have been copied or
moved.

Priority may not be lowered.

407

408 Eror Messages

450
451
453
454
455
456
457
458
439
460
462
465
471
481
482
483
484
485
488
511
600

601

602

603

604

605

606

607
609

612

Volume not found —SEM error.

Volume labels do not match—SRM error.

File in use—SRM error.

Directory formats do not match—SRM error.

Possibly corrupt file—SRM error.

Unsupported directory operation—SRM error.

Passwords not supported—SRM error,

Unsupported directory format—SEM error.

Specified file is not a directory—SEM error.

Directory not empty—SRM error,

Invalid password—SRM error.

[nvalid rename across volumes—SRM error.

TRANSFER not supported by the interface.

File locked oropen exclusively—SEM error.

Cannot move a directory with a RENAME operation—SRM error.
Systern down—SRM error.

Password not found—SEM error.

Invalid volume copy—SRM eror.

DMA hardware required. HP 9885 disc drive requiresal .ce -~ v ouoag
The result array in a MAT INV must be of type R

Attribute cannot be modified. The WORD/BYTE m.ode « U 2¢ . 1
path name.

Improper CONVERT lifetime. When the CONVERT attribute i~ 1« -
/O path name, the name of a string variable co taining the ~¢c ve o ~=p~ e 1 e
conversion string must exist as longas the VO pa 1 - ‘s~

Improper BUFFER lifetime. The variable designatec as a buifer I FTS
ment must exist as long as the [/O path name is v2 d.

Variable was not declared as a BUFFER. Attempt to assign a - e as a buffer - first
declaring the variable as a BUFFER.

Bad source or destination for a TRANSFER statement. Transfers are not allowed to the CET
keyboard, or tape backup on CS80 drives. Buffer to buffer or device to device transfers are not
allowed.

BDAT file type required. Only BDAT files can be used in a TRANSFER operation,

Improper TRANSFER parameters. Conllicting or invalic BAD 7' =1 -ram- ~ were specified,
such as RECORDS without and EOR clause, or DELLIM wi 1 an sund “ER.
Inconsistent attributes. Such as CONVERT or PARITY with FC" 2 ~OFF.

VAL or DVAL result too large. Atternpt to conve:r a binary, o de- ~ hexadeci Ting

into a value outside the range of the function.

BUFFER pointers in use. Atternpt to change one or more buffer pointers whilez = ANSE n
progress.

Error Messases 409

Improper plotter specifier. The characters used as a plotter specifier are not recognized. May be
misspelled or contain illegal characters.

{ZET graphics hardware missing. Hardware problem,

Upper bound not greater than lower bound. Applies to P2<=P1 or VIEWPORT upper bound
and CLIP limits.

VIEWPORT or CLIP beyond hard clip limits.

Device not initialized.

Request not supported by specified device. Trying to equate color CRT characteristics with an
external device; such as COLOR MAP on a plotter.

GESCAPE opcode not recognized. Only values 1 thru 5 can be used.
Undefined typing aid key.
Typing aid memory overflow.

Must delete entire context. Attempt to delete a SUB or DEF FN statement without deleting its
entire context. Easiest way to delete is with DELSUB,

No room to renumber. While EDIT mode was renumbering during an insert, all available line
numbers were used between insert location and end of program.

Null FIND or CHANGE string.

CHANGE would produce a line too kong for the system. Maximum line length is two lines on the
CRT.

SUB or DEF FN not allowed here. Attempt to insert a SUB or DEF FN statement into the middle
of a context. Subprograms must be appended at the end.

May not replace SUB or DEF FN. Similar to deleting a SUB or DEF FN.

Identifier not found in this context. The keyboard-specified variable does not already exist in the
program. Variables cannot be created from the keyboard; they must be created by running a
program.

Improper /O list.

Numeric constant not allowed.
Numeric identifier not allowed.
Numeric array element not allowed.
Numeric expression not allowed.
Quoted string not allowed.

String identifier not allowed.

String array element not allowed.
Substring not allowed.

String expression not allowed.

/O path name not aliowed.
Numeric array not allowed.

String amay not allowed.

Excess keys specified. A sort key was specified following a key which specified the entire record.

Identifier is too long: 15 characters maximum.

410 Error Messages

936

937
939

940
942

943

946

947
948

949

950
951
961

962
963
977

980

982
983

985
987

Unrecognized character. Attempt to store a program line containing an improper name or illegal
character.

Invalid OPTION BASE. Only O and 1 are allowed.

OPTIONAL appears twice. A parameter list may have only one OPTIONAL keyword. All para-
meters listed before it are required, all listed after it are optional.

Duplicate formal parameter name.

Invalid /O path name. The characters after the @ are not a valid name. Names must start with a
letter.

Invalid function name. The characters after the FN are not a valid name. Names must start with a
letter.

Dimensions are inconsistent with previous declaration. The references to an array contain a
different number of subscripts at different places in the program.

Invalid array bounds. Value out of range, or more than 32 767 elements specified.

Multiple assignment prohibited. You cannot assign the same value to multiple variables by stating
K=Y=2=0, A separate assignment must be made for each variable.

This symbol not allowed here. This is the general “‘syntax error’” message. The statemen’ you
typed contains elements that don't belong together, are in the wrong order, or are misspe. zd.

Must be a positive integer.
Incomplete statement. This keyword must be followed by other items to make a valid statement.

CASE expression type mismatch. The CASE line contains iten 1at are e same general
type, numeric or string.

Programmable only: cannot be executed from the keyboard.
Command only: cannot be stored as a program line.

Statement is too complex. Contains too many operators and functions. Break the expression
down so that it is performed by two or more progre . nes.

Too many symbols in this context. Symbols include variable names, /O path names, C = block
names, subprogram names, and line identifiers.

Too many subscripts: maximum of six dimensions allowed.

Wrong type or number of parameters. An improper parameter list for a machine-resident func-
ton.

Invalid quoted string.

[nvalid line number: must be a whole number 1 thru 32 766.

Error Messages 411

Se.. i T ! 2nCes

’

Holding the CTRL key and pressing a non-ASCII key generates a two-character sequence on
the CRT. The first character is an “‘inverse-video™ K. This table can be used to look up the key
that corresponds to the second character of the sequence.

Character | Value Key Character | Value Key
space ! P 20

. 33 0
- ! R 82
u 35 5 83
s 36 7 84 ELIE
i 37 u 85
& 38 v 86 1
: 39 W 87 sFT)1)
{ 40 {‘sAirT) -((748 X 88
) 41 Y 89 Roman Mode
* 42 (iNs W) z !
+ 43 (NS cAR) t 91
\ 44 Next \ 52 (v)
- 45 ((DEL CHR) 1 93 SET TAB
. 46 Ignored . 94
/ 47 (EIY - 95 saFT) (v)
0 48 . | !
1 49 (| a 97
z 50 b 98
3 51 © 99 kiz
4 52 d 100
5 53 e 101
B 54 £ 102 (ks)
7 55 ' 103
8 56 104 k7
9 57] . 105
' 58 —system2 106 Xig
; 59 (BHIFT) -system(_#7_)* K 107
‘ 60 CE i 1 108
= 61 | i 109
> 62 1 110
> &3 111 :
a 64 iFT). RECALL . 112 - z
A 65 113 ~system(_13_)?
B 66 T 114 -system{_11_J?
C 67 s 115 (SHIT) -user 1)
0 &8 E0T v 116 SHIFT) -user_12_)?
E 69 u 117 -user_f3)?
F 70 u 118 SHIFT) -used_f1_)?
G 71 (=) W 119 SHIFT) -user|_f5)
H 72 (swF)-C =) x 120 (SHIFT) -user_t6_)?
I 73 CLA 10) i ¥ 121 SHIFT) -user_f7_)*
J 74 Kamakana Mode | z 122 SHIFT) -user{_ 8)?
K 75 CLR SCR r 123
L 76] 124
M 77 g 125
N 78 DUMP GRAPHICS - 126 SHIFT) -(Menu)
0 79 E !

1 These characters cannot be generated by pressing the CTRL key and a non-ASCI key 1f one of Lhese characters follows CHR$(255) in an
outpul to the keyboard, an error is reported (Error 131 Bad nen-alphanumeric Kevecode.)

2 Sysiem and user refer to the softkey menu which is cucrently active

412 Error Messages

STD-LL-60182

US ASCII Character Codes

EQUIVALENT FQRMS

ASCIHl HP-1B
Char.| Dec Binary Oct | Hex
NUL 0 00000000 | 000 | 0O
SOH 1 00000001 | Q01 al GTL
STX 2 00000010 | 002 0z
ETX 3 00000011 | 003 | 03
EOQT 4 00000100 | 004 04 5DC
ENO 5 00000101 | 005 05 PPC
ACK 6 00000110 | 006 08
BEL 7 00000111 | 007 07
BS 8 00001000 | 010 | 08 GET
HT 9 00001001 | 011 09 TCT
LF 10 1 00001010 | 012 | 0A
vT it | 00001011 | 013 | 0B
FF 12 | 00001100 | 014 [0C
CR 13 | 00001101 | 015 | 0D
50 14 Q0001110 | 016 0E
Sl 15 00001111 | 017 OF
DLE 16 00010000 | 020 10
DCh 17 | 00010001 [021 i1 LLO
Dc2 18 | 00010010 | 022 12
DC3 19 | 00010011 | 023 13
OC4 20 00010100 | 024 4 oCL
NAK 1 21 | 00010101 | 025 15 PPU
SYNC) 22 00010110 | 026 16
ETB 23 00010111 | 027 17
CAN 24 | 00011000 | 030 18 SPE
EM 25 0001100t | 031 19 5PD
sUB 26 00011010 | 032 1A
ESC 27 | 00011011 | 033 iB
FS 28 | 00011100 | 034 1C
GS 29 | 00011101 | 035 | 1D
RS 30 00011110] 036 1E
us 31 | 00011111 | 037 1F

EQUIVALENT FORMS

ASCH HP-IB
Char.| Dee Binary Qet | Hex
space| 32 | 00100000 | 040 | 20 | LAO
! 33 | 00100001 | 041 | 21 LAT
" 34 | 00100010 | 042 | 22 | LAZ
35 | 00100011 | 043 | 23 | LA3
$ 36 | 00900100 | 044 24 LA4
% 37 | 00100107 | 045 | 25 | LAs
& 38 | 00100110 [046 | 26 | LAG
) 39 | 00100131 | 047 | 27 | LA7
{ 40 | 00101000 | 050 | 28 | LA8
) 41 | 00101001 | 051 29 LAS
* 42 [00101010 | 052 | 2A | LAfO
+ 43 | 00101011 | 053 | 2B | LA1Y
, 44 | 00101100 | 084 | 2C | LA32
- 45 | 00101101 [055 | 2D | LA13
46 | 00101110 | 056 | 2E | LA14
/ 47 | 00101113) 057 | 2F [LA1S
0 48 | 00110000 | 080 | 30 | LA1S
1 49 | 00710001 | 061 | 31 | LA17
2 50 | oo110010 | 062 | 32 | LAts
3 51 | 00110011 | 083 [33 | LA1S
4 52 [00110100 | 064 | 34 | LAZ0
5 53 | 00110101 | 065 | 35 | LA21
6 54 | 00110110 | 066 | 38 | LA22
7 55 | 00110111 | 067 | 37 | LA23
8 56 | 00111000 | 070 | 38 | LA24
9 57 | 00111001 | 071 | 39 | LA25
58 | 00111010 | 072 | 3A | LAZ26
; 59 [00111011 [073 | 3B | LA27
< 60 | 00111100 | 074 | 3C | LAz8
= 81 [00131101 | 075 | 3D | LA29
> 82 [00111110 [078 | 3E | LA30
? 63 | 00111111 M? 3F | UNL

Error Messages

aAscll EQUIVALENT FORMS HE-IB ASCII EQUIVALENT FORMS HP-1B
Char.| Dec Blnary Qct | Hex Char.| Dec Blnary Oct | Hex
@ 64 01000000 | 100 40 TAO * 96 01100000 | 140 60 sCo
A 65 01000001 | 101 41 TA1 2 97 01100001 141 61 sCi
B 66 01000010 | 102 42 TA2 o 98 01100010 | 142 62 sC2
C 87 01000011 | 103 43 TA3 [94 01100011 | 143 63 sC3
D 68 01000100 | 104 44 TA4 d 100 [01100100 | 144 64 5C4
E 69 01000101 105 45 TAS e 101 | 01100103 | 145 85 5C5
F 70 01000110 [108 46 TAS f 102 | 01100110 | 146 66 5C6
G 71 01000111 | 107 47 TA7 4 103 [01100911 147 67 sC7
H 72 01001000 | 110 48 TaAB h 104 | 01101000 | 150 68 5C8
| 73 01001001 111 49 TA9 i 106 | 01101004 | 151 69 5C9
J 74 01001010 | 142 44 TAY0 } 106 | 01101010 [152 BA 5C10
K 75 01001011 113 4B TA1A k 107 | 01101011 153 6B SCi1
L 78 01001100 | 114 4C TA12 | 106 | 011013900 | 154 6C SCi2
M 77 01001101 | 115 40 TA13 m 108 | 01101101 | 155 60 | SC13
N 7B 01001110 | 116 4E TA14 n 110 | 01101110 [156 6E SCi4
o] 79 01001111 17 4F TA1S [} 111] 01101119 157 6F SC15
P 80 01010000 | 120 50 TA16 p 112 | 01110000 | 160 70 SC16
Q a1 01010001 i21 51 TA17 q 113 | 01110001 161 71 SCi7
R 82 01010010 | 122 52 TA18 T 114 | 01150010 | 162 72 SC18
S 83 01010011 123 53 TA19 s 115 | 01110011 163 73 5C19
T 84 01010100 | 124 54 TA20 t 116 | 09110100 [164 74 5C20
U 85 | 01070101 | 125 55 TA21 U 117 | 01110101 | 165 75 sC21
v 86 01010110 | 126 56 TA22 v 118 | 01110110 [168 76 gcaz2
W 87 01010111 127 57 TA23 w 118§ 01110911 167 77 5C23
X 88 01011000 | 130 58 TA24 X 120 | 01111000 | 170 78 5C24
Y a9 01011001 131 59 TA25 y 121 | 01111001 | 171 79 8C25
z 90 01011010 | 132 S5A TA26 z 122 | 01141010 [172 A SC26
[i 01011011 133 5B TA27 { 123 | 01111011 173 7B sCa27
~ g2 01011100 | 134 5C TA238 | 124 | 01111100 | 174 7C sCz28
1 93 | 01011101 | 135 | 5D | TA29 } 125 | 01111101 | 175 | 7D [8C29%
~ 94 | 01011110 | 136 | SE | TA30 - 126 | 01111110 | 176 7E | SC30
— 95 | 01011311 | 137 5F UNT DEL 127 | ovti1311 | 177 7F 5C31

413

414 Error Messages

* bject Inc

4
L
ABS 84
Accessing Directories 242
Accessing Files., 218
Accessing Mass Storage 212
Accuracy (clock) ... L 261
Accuracy (math) 79
ACS 234
ALLOCATE....................... 76,122
Alpha displays, Series 300.............. 375
Alpha, Separate From Graphics 391
Angle Functions. 85
ANY CHAR Key 40,146
AP2O. 355
Appending Pregram Lines 30
Arrays:
Copying. 94
Declaring 76,87,122
Dimensioning 76,87,122
Indexing 319
Numeric. 75 87
Operations, 87
Operators 98
Reordering 101
Sorting. 102
Sting. 122
ASCI Character Codes 411
ASCII Character Set................... 142
ASCllFiles....................... 208340
ASN o 84
ASSIGN. 219
ATN o 84
Auto Line Numbering. 7
AUTOST .. . 35
Autostart. 35
Autostarton SRM 36

BASE 8493

Base Conversion. 140
BASIC2.0. 355
BDAT Files. 340

BDAT Files:
Reading........................... 221
Structure 205
Writing. 221

Benchmarking. 317

BIlNfiles.............................. 37

BINAND...................... e 84

Binaryfile..... 37

Binary Tree 2188

BINCMP. 24

BINEOR. 84

BINIOR. oo 84

BINs:

Deleting from Memory. 47
Loading. 37
Scratching 37,47

BIT ... a4

Bit-mapped displays 375

Blank Lines 280

Boolean Arrays 100

Bootingfrom SEM, 336

Boundary Conditions 298

Bubble Memory 216

Bugs.. 297,305

Cache memory (MCa8020})............. 376

CALL 171

Calling a Subprogram. 171

CASE 59

Case Conversion. 132

O 27242

Catalog Header, Suppressing 246

Catalogingthe Disc.................... 243

Cataloging, Skipping Files 247

CHANGE. 22

Character Set, Extended 145

Character Set, nghhghts 145

CHR$. . C e 129

Clearing the Computer 47

Clearing the CRT . 0 279

Clock:

Accuracy 261

Events....... 272

General........... 261

Setting........................ 263,267
Clocks {Series 300). 376
Closingan VQPath. 219
CLRVO 17,312
COM 32,122,173
COMand GET 32
COMBlocks 175
Command 6
Comments 11,13
Common Variable Storage. 175
Comparing REAL Numbers. 299
Comparison Operators. 81
Compatibility Display [nterface 392
Compatibility Mode, Keyboard 382
Concatenation, Strings................. 123
Conditional Branching 55
Conditional Execution 53
Configuratinga System 37
Configuring serial interface. 381
Constants. 323
Context Switching. 178
CONTINUE 49
CONTROL 280
Control Characters 253
Control Characters, Displaying S 142
COPY........................ 38,240,342
Copying Files (SRM). 342
Copying:

Arrays 94

Files..... 38,240

Program Segments. 21

Volumes 240
COPYLINES 21
COS . 34
CREATEASCIL. 242 340
CREATERDAT., 221,340
Creating Directories (SRM) 339
Cross References. 26
CRT:

Clearing. 279

Function 34,252
CSUBs 355,356,398
CSUM ... 118
DATA ... 94 196
Data Files:

Storage Requirements. 316

SHUCIUTE .« o oo ot e e et e e 205

DataInput e 196
Data Pointer, Moving 199
Data Retrieval 195
Data Storage 195,313,314
Data Structure 187
Data Type Conversion 76
Data Types. Numeric 75
DATE 84,263
DATES 262
Deactivating Events. 71
Debugging. 305
Declaring Arays 76
Declaring Variables 76
DEF 170
Default Dimensioning 92,121
Defined Records 221
Defining Typing-Aid Softkeys. 39
Degrees 85
DEL Command............... 10
DeletingLines 10
Deleting Subprograms. 23,183,184
DELSUB. 23,183
DET..... 84,113
Determminant of a Matrix 113
Device Selectors. 214,249 252
Device Type. 213
DIM.... ... 76,122
Dimension Table. 313
Dimensioning an Array. 87
Directories, Accessing. 242
Directories, Creating (SRM) 339
Directories, Reading 242
Directory Paths (SRM) 352
Directory, Hierarchical (SRM) 332
Directory, Root (SEM} 332
Disabling Events. e 71,73
Disc:
Cataloging. 243
Copying 240
Directory................. 203
Initialization. 210
Interleave, 202
Labels 211
Structure 200
Display Compatibility Interface 392
Displaying Control Characters. 142
Displays 279
DOT 84,108
Double Subscripted Substrings 125
DROUND e 83,84 85
DVAL 84,140
DVALS 140
Dyadic Operators 81

Edit...o 7
EDITKEY e 39
Edit Mode, Exiting. 14
Editing Subprograms 184
Editing Typing-Aid Softkeys. 39
Editor 7
EnablingEvents. 68
END ... 48
ENDIF. ... 56
ENDLOGOP............ 66
ENDWHILE 64
End-of-File. 236
End-Of-File Pointers 224
End-of-Record. 236
Ending Functions 185
EndingSubprograms.........,........ 185
ENTER . . 8234
Entering a Smgle ltem 290
Entering Program Lines &
EOF Pointers. 224
ERRL 300
ERRMS. 300
ERRN. ... 300
ErrorMessages 401
Error Numbers. 401
Error Trapping. 300
Errors 297 401
Errors, Operator 298
Escape Code Sequences 254
Event-Initiated Branching 45 68
Events. 68
Events, Disabling. 71
Events, Enabling 68
Excluswe File Access (SRM), 335
EXEC key. . P
EXECUTE key 6
Executing 2 Subprogram 171
EXITIF. ... 66
Exiting Edit Mode 14
EXP . 84
Expressions, Evaluating 79
Extended Character Set. 145
External Printers 253

Files:
Accessing 218
ASCIL ... 208
BDAT 205
Copying. ...l 38,242
Data.............................. 316
Names 28,204
Opening 218
Program 316
Protecting 38,238
Protecting (SRM) 346
Purging 38,241
Purging (SRM) 349
Renaming 38
Types. 204
FIND. . 21
EN. 170
FENEND.......... 185
FORNEXT............................ 61
Formatted Printing 255
FRACT. 84
Function or Subprogram 169
Functions:
Ending........., 185
Numeric. 84
String......................... 127131
User-Defined 167
| !
-—
GET ... 30
GOSUB 5
GOTO . PP
GRAPHICS OFF 280
Graphics, Separate From Alpha 351
Graphics, Series 300. 375
Halting Program Execution 48
Hardware... 358
Hierarchical directory (SRM) ..., 332
Hierarchy of Numeric Operators 79
Hierarchy of String Operators 123
Iighlight Characters 145
P'IL keyboard interface. 377
HP 98203 (Compatibility Mode). 382

FP 98203 keycodes 398

[/C Path:

Closing 219

Opening 218
IDPROM. 379
Identifiers 315
Identity Matrix 109
IDN. . 109
IFTHEN. 53
IFTHENELSE 57
W-Conditioned Malrices 114
IMAGE. 256
Irnage Specifiers, Numeric.............. 257
Image Specifiers, String 258
Images 256
[mplicit Dimensioning 92
INDENT 23
Indentinga Program 23
Initializinga Disc 210
Inputting Multiple Fields 293
INSERTLINEKey. 9
Inserting Lines 9
Inserting Subprograms 184
Instruction cache (MC68020} 376
INT .. 84
INTEGER............... 75
Integer Numbers 206
INTEGER Varables 319
Interface, Display Compatibility. 392
Interfaces, built-in (Series 300) 376
Interleave on Dises 202
Internal Numeric Formats. 77
Interval Timing 271
Introduction 1
INV. .. 110
Inverse Matrix 109
VAL . 34

I
4
A

KBD. 39,84,252
Keyboard Compatibility Mode. 382
Keyboard Input....................... 289
Keybecard interface (HIL) 377
Keyboard Qverlay. 386
Keyboards 8
Keyword. 5
Knob,Using. 70
KNOBX 71
KNOBY 71,356

Labels, Disc.......................... 211
LEN o 127
LengthofaSting............... .. 121,127
Lexical Order. 141
LEXICAL ORDERIS 132,141
Lexical Order, Predefined 147
Lexical Order, User-Defined 158
Lexical Tables 148
LEXAID . ..o 160
LGT 34
Linear Program Flow. 4748
LINPUT . ..o 293
LIST .. 11
LISTKEY.. 41
Listinga Program 11
Live Keyboard 16,306
LOAD ... 2834
LOADKEY 41
LoadingBINs. 37
Loading Subprograms. 23,182
Loading Typing-Aid Softkeys. . ., 41
LOADSUB 23,182
LOG.. 85
Logical Comparisons 324
LOOP 61,65
Loop Counter 62
Loops. 320
LWCS. .. 132

Main Program 5
Mass Memory Performance. 316
Mass Storage o o L 200
Mass Storage Access. 212
MASS STORAGEIS 216
Mass Storage Unit Specifier (MSUS). .. 27,216
Mass Storage, Non-Disc............. ... 216
MAT ... 95
MAT Functions 134
MATRECRDER 101
MATSORT 102
Math Hierarchy 79
Mathematical QOperations 319
Matrix;

Definitonof 107

Determinant 115

Identity, 111

-Conditicned 116

Inverse.o i 111

Muitiplication 107

Singular. 114

Summing Columns 120

SummingRows 120

Transposition 119
MAX 35
MAXREAL 85
MC68010. 376
MC68020..................... ... 328,376
MC68881. 327
Media Specifiers 213
Memory, Saving,, 329
Menues. 282
Merging Subprograms 184
MIN. ... 85
MINREAL., 35
Monadic Operators 81
MOVELINES 20
Moving a Data Pointer 199
Moving EOF Pointers 224
Moving Program Segments 20
MSUS. ... 27213
Multiple Fields Input 293

NamingFiles 28
Naming Subprograms. 167
Nesting Structures 56
Non-ASCl Keys 281 411
Non-ASCII Keystrokes 40
Non-Disc Mass Storage 216
NPAR. 174
Number Base Conversion 140
Numbers, Comparing. 299
Numeric Accuracy. 78
Numeric Computation 75
Numeric Data Types. 75
Numeric Formats, Internal 77
Numeric Functions 84
Numeric [mage Specifiers. 257
Numeric Precision. 78
Numeric to String Conversion. 129
OFF-event............................ 72
ONCYCLE 68,272
ONDELAY 68272
ONEND............. 68,236
ONEOR...... 68

ONINTR .. o8
ONKBD. 68
ONKEY 68,69
ONKNOB 68,69,400
ONSIGNAL 68
ONStaternent 59
ONTIME 68,273
ONTIMEQUT. 68
ON-event 68
OpeningaFile..................._.... 218
Openingan /O Path., 218
Operator Ervors. 298
Operator Hierarchy. 75
Operators. 81
Operators, Companson 81
Operators, Dyadic. 31
Operators, Monadic 31
OPTIONBASE 38
Optional Parameters. 173

QUTPUT 2257236
QUTPUTKRBD 280
Querthead. 313

Overlay, Keyboard 386
Parameters, 172
Parameters, Optional 173
Passwords (SEM) 334
PAUSE 49
PAUSE Key 17
Pausinga Program 17
PDEV 20
Performance 316
PHYREC 355,357
Pl 85
Plotter Spooler (SRM) 345
Plotters, Shared (SRM). 344
Polynomial Evaluations 323
Portingto4.0......... 398
Porting to Series 300 273
POS 127
Position of a Substring 127
Powerfail, 271
Precision. 78
Prerun 15
Primary Address 251
PRINT 255
PRINTUSING........................ 256
PRINTALLIS 252,311
PRINTERIS. 248

Printer Spooler (SRM) 345

Printer Switch Setting. 250
Printers, Shared (SRM) 344
Printers:
Control Characters. 253
Escape Codes. 254
External. 253
General. 249
Printing, Formatted. 255
Processor boards, Series 300. 376
PROGFiles 28
Program Counter 47
Program Execution 15,308
Program Execution. Selection 53
Program Files. 316
Program Flow:
Linear. 47 48
Repetition 47,59
Selection 4751
Sequence., 47 48
Program Line. 5
Programminga LOAD 35
Programming GET 31
Programs:
Recording........ 28
Replacing 29
Refrieving 27,30
Storing. 27
PROM,ID 379
Prompts 279
PROTECT 38,238
Protecting Files. 38,238
Protecting Files (SRM) 346
PROUND, 85,86
PRT. 85,252
PURGE 349
PurgingFiles. 38,241
Purging Files (SRM) 349

Radians. 85
RAM Volumes. 216
Random ENTER 234
Random Numbers. 86
Random QUTPUT 230
Range {clock). e 261
Range {math). 79
RANK. 85
RE-SAVE 29
RE-STORE. 29
RE-STOREBIN. 357
RE-STOREKEY 41
READ 94,196

Reading BDAT Files 221,233

Reading Directories. 242

REAL L. 75
REAL Number Comparisons. 299
Real Numbers 206,322
Real-TimeClock 261
Recalling Lines. 10
Record Lengths. 222
Recordinga Program 28
RECOVER. 178
Recursion. 186
REDIM 97
Redimensioning Arrays, Automatic 95
Redimensioning Arrays, Explicit, 97
Registers, Status (SEM) 354
Relational Operations 123
REM 12
REMOTE 214
REN Command. 10
RENAME 38
RenamingaFile. 38
Renumbering a Program 10
Recrdering Arrays 101,137
REPEAT UNTIL. 61,63
Repeatinga Sting. 131
Repetition. 61
Replacing Programs 29
RES ... 85
RESETKey 17
Resources. 313
RESTORE 199
Retrieving Programs 27,30
RETURN 50
Returning from a Subprogram. 51
REVS ..o 131
Reversinga String., 131
RND .. 85,86
Root Directory (SRM). 332
ROTATE 85
Rounding. 86
Rounding Numbers. 33
RPTY . 131
RSUM. ..o 118
RUN ... 15
RunLight.......... 17
Run-time 16
Runninga Program. 15
SAVE .. 28
SavingMemory. L, 329
Saving Time. 325
SC... 85
Scalar Expressions. 79

SCRATCH..............., 46
SCRATCHA 46

SCRATCHBIN............. 46
SCRATCHC. 46
SCRATCHEREY 46
Scratching BINs. 37
Screen Width. 279
Searchand Replace 21
Searching for Strings. 138
SECURE 43
Securing Program Lines. 43
SELECT. ... 58
SELECTCASE 59
Separate Alpha and Graphics 391
Sera ENTER 233
Serial interface configuration 381
Serial OUTPUT 225
Series 300 computers. ... 274
SETTIME 262,264
SETTIMEDATE 262,264
Settingthe Clock. 262,264
SGN . 85
Shared Plotters (SRM) 344
Shared Printers (SRM) 344
Shared Resource Manager (SKEM}. 331
SHIFT. .. 85
Simple Branching 50
SIN ... 85

Single Byte Access 235
Single-Subscripted Substrings 124

Singular Matrices. 112
SIZE ... 85,93
Softkeys ... 39,282
Softkeys, Defining Typing-Aid 42
Sottkeys, Typing-Aid Definitions 39,41
Solving Simultaneous Equations. 110
Sorting Arrays 102
SortingbyaVector., 136
Sorting by Substrings 135
SortingStrings. 133
Spooler (SEM) 345
SQR .. a5
SRM .. 331
SRM, Autostart 36
SRM:
Booting from 336
Creating Directories. 339
Directory Paths., 352
Directory, Root. 332
Exclusive File Access 335
Hierarchical directory. 332
Passwords. 334
Shared Plotters. 344
Shared Printers. 344

Statement. 5
Statements, New. 356
Status Registers (SRM)........... 354
STEPKey 308
Stepping. 308
STOP ... 43
STOPKeyY ... 17
Stoppinga Program 17
STORE...... 28
STOREKEY 41
STORESYSTEM 37,355
Storing:
ASystern. 37
Data. 196
Programs. 27
Strings. 122
String-to-Numeric Conversion. 128
Strings:
Arrays 122
Concatenating 123
Conversion to Numeric.............. 128
Default Dimensioning 121
Evaluation Hierarchy 123
Functions. 127,131
General 82121
Image Specifiers. 258
Length. ... 121,127
Relational Operations 123
Repeat. 131
Reverse. 131
Sorting. 133
Storing. 122
Trimming, 131
Null ..o 121
SUBEND e 185
Subprogram or Function 169
Subpregrams:
Calling.......................... .. 171
Deleting. 183
Editing. 184
Ending. 185
Executing 171
General 5
Inserting 184
Librades. 23,182
Loading. 182
Merging. 184
Naming........................... 167
RECOVER 179
Returningfrom...................... 51
Softkeys e 179
Speed 180

User-Defined 167
Varables. 179

Substrings:

Defined........................... 124

Double Subscripts 125

Positton........................ ... 127

Single Subseripts L 124

Soring....... 135
SUM 85,96
Summing Columns in Arrays. 118
Summing Rowsin Arrays. 118
Suppressing a Catalog Header 246
Switching Context. 178
SymbolTable 313
Syntax ..., 9
Syntax Checking. 9
System Configuration. 37
SYSTEMS$(“LEXICAL ORDERIS™). 147
SYSTEM$(“SYSTEM D) 398
SYSTEMS$("KBD LINE™) 295
SYSTEMSS$({“KEYBOARD LANGUAGE") 147
SYSTEMS$(“SERIAL NUMBER™). 44
Systems, Storing L 37
TAB . 255
TABXY. ... 255
TAN o 85
Time. o 262
TIME............................. 85262
TIMES 262
Time, Saving 329
TIMEDATE 262
Timing Interval 270
TokenTable 313
TRACEALL 309
TRACEOFF 311
TRACEPAUSE. 311
Tracing....... 309
Transporting Programs (to 3.0) 355
Transporting Programs (to Series 300). ... 373
Transposing Matrices 117
Trapping Errors. 300
TRIMS$... 131
Trimminga Sking. 131
Type Conversion. 322

Typing Aids, 39

Upgrading BASIC Programs
Upper and Lower Case
User-Defined Functions
User-Defined Lexical Order
User-Defined Subprograms

Variables, Declaring
Variables, Global
Variables, Memory Requirements
Volume Label

Writing Data
Writing to BDAT Files

Manual Comment Sheet Instruction

If you have any comments or questions regarding this manual, write them on the enclosed comment
sheets and place them in the mail. Include page numbers with your comments wherever possible.

[f there is a revision number, (found on the Printing History page), include it on the comment sheet.
Also include a return address so that we can respond as soon as possible.

The sheets are designed to be folded into thirds along the dotted lines and taped closed. Do not use
staples.

Thank you for your time and interest.

MANUAL COMMENT SHEET

BASIC 4.0 Programming Techniques

for HP 9000 Series 200/300 Computers
98613-90011 July 1985
Update No.

(See the Printing History in the front of the manual)

Name:

Company:

Address:

Phone No:

(b/' HEWLETT

PACKARD

I
Reorder Number

98613-90011 98613-90650

Printed in U.S.A. 7/8% Mfg. No. Only

	Cover

	Table of Contents

	Manual Organization

	Entering, Running and Storing Programs

	Program Structure and Flow

	Numeric Computation

	String Manipulation

	Subprograms

	Data Storage and Retrieval

	Using a Printer

	The Real-Time Clock

	Communicating with the Operator

	Error Handling

	Program Debugging

	Efficient Use of the Computer's Resources

	Using SRM

	Porting to 3.0

	Porting to Series 300

	Appendix

	Index

	Manual Comment Sheet

