
.. • I'll.-
,

This Manual Update is for Reorder Number: 98592-90000
Title: Starbase Programming with Xll
Printing Date: 12/88

The purpose of this manual update is to provide new information for your manual to
bring it up to date. This is important because it ensures that your manual accurately
documents the current version of the product.

This update consists of this cover sheet, a printing history page and all replacement pages.
Replacement pages are identified by a revision date at the bottom of the page. A vertical
line (change bar) in the margin indicates new or changed text material. The change bar is
not used for typographical OF editorial changes that do not affect the technical accuracy.
New pages to be added do not contain change bars.

To update your manual follow the instructions below, replace existing pages with the
Update pages and insert new pages as indicated. Destroy all replaced pages.

For all pages in this update , discard the corresponding pages in the manual, replacing
them with the new pages.

HP Part Number
98592-90818
Printed in U.S.A.

., I . ~....... '

. ~r
-- • I

-~~--·~I
I)I • • J
•• 1- l

I

-.- . ~.. ~ jl
-...

... . -
• • I I

~ -~·J
.fl I -r .. ~·
.J --IJ:!' \ · .

• Ill

I "'" fu

_J ~.(~~

- .
" J- ...

.... ~
I .,. t ~

~· II 98592-90818

i&r.
·v .. -~: ~ 1

• I {'1_.1 .•
·.,. • I 1

• ··r
I I J .-1
ljlll" • •

('\
t '

Starbase Programming with Xll
HP 9000 Series 300/800 Computers

HP Part Number 98592-90000

F//0"1 HEWLETT
~~PACKARD

Hewlett-Packard Company
3404 East Harmony Road, Fort Collins, Colorado 80525

Notices
The information contained in this document is subject to change without notice.

Hewlett-Packard makes no warranty of any kind with regard to this manual,
including, but not limited to, the implied warranties of merchantability and
fitness for a particular purpose. Hewlett-Packard shall not be liable for errors
contained herein or direct, indirect, special, incidental or consequential damages
in connection with the furnishing, performance, or use of this material.

Warranty. A copy of the specific warranty terms applicable to your Hewlett
Packard product and replacement parts can be obtained from your local Sales
and Service Office.

Copyright © 1988, 1989 Hewlett-Packard Company

This document. contains information which is protected by copyright. All rights
are reserved. Reproduction, adaptation, or translation without prior written
permission is prohibited, except as allowed under the copyright laws.

Restricted Rights Legend. Use, duplication or disclosure by the U.S. Govern
ment Department of Defense is subject to restrictions as set forth in para
graph (b) (3) (ii) of the Rights in Technical Data and Software clause in
FAR 52.227-7013.

Use of this manual and flexible disc(s) or tape cartridge(s) supplied for this pack
is restricted to this product only. Additional copies of the programs can be made
for security and back-up purposes only. Resale of the programs in their present
form or with alterations, is expressly prohibited.

Copyright © AT&T, Inc. 1980, 1984

Copyright © The Regents of the University of California 1979, 1980, 1983

This software and documentation is based in part on the Fourth Berkeley Software
Distribution under license from the Regents of the University of California.

~~.

u

Printing History
New editions of this manual will incorporate all material updated since the
previous edition. Update packages may be issued between editions and contain
replacement and additional pages to be merged into the manual by the user.
Each updated page will be indicated by a revision date at the bottom of the
page. A vertical bar in the margin indicates the changes on each page. Note that
pages which are rearranged due to changes on a previous page are not considered
revised.

The manual printing date and part number indicate its current edition. The
printing date changes when a new edition is printed. (Minor corrections and
updates which are incorporated at reprint do not cause the date to change.) The
manual part number changes when extensive technical changes are incorporated.
December 1988 ... Edition 1. This manual is valid for HP-UX release 6.5 on all
HP 9000 Series 300 Models, and HP-UX release 3.1 on all HP 9000 Series 800
Models.

February 1989 ... Update to incorporate new information and correct technical
errors.

98592-90000, rev: 2/89 iii

Preface
With the HP 9000 Series 300 6.5 HP-UX release and the HP 9000 Series 800 ~
HP-UX 3.1 release, Starbase graphics has been integrated with the Xll window i '
environment. This environment supports a Starbase program running inside of an
Xll window with full Starbase functionality and performance comparable to raw
mode (non-window) performance. This manual is intended to help you develop
Starbase programs that run in an Xll window. Information is also provided to
enable you to move graphics applications from other window environments (for
example, XlO) to the Xll environment.

This manual provides the following:

• A description of the window systems supported on Hewlett-Packard's HP
UX workstations and the graphics libraries that are supported in each
window system.

• A description of the following topics, with the focus being on Starbase
graphics in an Xll window:

o Window system architecture :~
o Graphics output
o Raster text operation
o Input operation
o Graphics hardcopy operation

• Application development guidelines to assist you in developing Starbase
programs that run in' an Xll window.

Note that programming examples in this manual are used primarily to demon
strate new programmatic capabilities. However, where the programmatic in
terface has not changed but the functionality has changed, the manual focuses
on describing the functionality changes. For example, the Starbase double-buffer
procedures and parameters have not changed; however, the functionality provided
by these procedures in an Xll window differs slightly from the functionality pro
vided in raw mode. Therefore, this manual describes the functionality differences
between raw mode operation and operation in an Xll window.

Audiences

While this manual is aimed primarily at users who already know Starbase and
Xll, some introductory material is provided so that programmers who are new

iv

(I
\._./

Contents

1. Graphics Libraries and Window Systems
Graphics Libraries 1-2

Building on Starbase 1-3
Graphics Libraries Notes 1-3

Window Systems 1-5
Graphics Libraries Supported Within Windows . 1-6

2. Graphics and Window System Architecture
Raw Mode Starbase Architecture . 2-2

' Notes on Raw Mode Starbase Architecture 2-2 v HP Windows/9000 Architecture 2-3
X Window System Architecture 2-4

Client/Server Relationship . 2-4
The Xlib Library 2-5
Starbase Operation in an X Window 2-6
Parallel Processing with Starbase-on-X 2-7

XU and Graphics Architecture . 2-8
Operating Environments 2-8

3. Using Starbase with the Xll Windows System
Introduction 3-1

Setting Up Your "XOscreens" File 3-2
The Operating Modes . 3-2
So Which Mode Should I Use? 3-4

Linking the XU Libraries 3-5

u Running A Window-Dumb Program With Xll 3-6
Creating the XU Graphics Window 3-6
Opening the X11 Window 3-7
An Example Program . 3-8

Contents-1

The "Focus Window" and What It Means
Color Maps and the Focus Window

Window-Dumb X11 Graphical Input
Handling Input Devices

Window-Smart Program Development
Selecting Between Window-Smart or Window-Dumb

Programs
Sequence for a Window-Smart Program
Additional Guidelines for Window-Smart Program

Development
A Hybrid Approach: A Window-Smart Program That

Defaults to Raw Mode Operation

4. Graphics Output Operation
Introduction

Chapter Organization
Raw Mode and HP Windows/9000
Overview of Starbase Output

Xlib Graphics versus Starbase Graphics
Example Interactions Between Starbase and X11

Sharing Display Resources with X11
Display-Control Data .
Drawing-Control Data
Display-Control Policy
Selection of the Display-Control Focus Window
Effects on Double-Buffering Operation

XU Server Operating Modes
Determining the Server Operating Mode

Supported Visual Classes
Selecting the Server Operating Mode .
Guidelines for Visuals

Example: Specifying "Combined Mode" and Creating
Windows

Guidelines for Portability
Transparency Index .

HP 98720 Display
HP 98730 Display
HP 98550 Display

3-11
3-11
3-14
3-14
3-17

3-17
3-18

3-20

3-20

4-1
4-1
4-2
4-3
4-4
4-4
4-5
4-5
4-6
4-7
4-8
4-8
4-9
4-11
4-11
4-15
4-15

4-15
4-17
4-17
4-17
4-18
4-18

Contents-2 98592-90000, rev: 2/89

(I

"._)

I

\._)

Supported Starbase Drivers
Notes on the Xll Server Modes

Use of Starbase Graphics Accelerators
Opens Done with Accelerator Drivers

HP 98556A Driver ..
HP 98731 Device Driver

Z Buffer
Xll Color Map Control . .

Hardware and Software Color Maps .
X11 versus Starbase Color Map Modes

Notes on Color Map Modes
Starbase Use of Color Maps

Starbase Interactions with the Xll Color Maps
INIT Present
INIT Absent
Multiple Processes Opening a Single Window
Non-interacting Color Maps
X11 and Starbase Color Map Cooperation

Xll Double-Buffering Operation . . .
Xll Support of Double Buffer Mode
Starbase Support of Double Buffering
Display-Control Policy and Double Buffering .
Applications That Do Not Use Double Buffering
Summary

Backing Store Operation
Backing Store Cases
Creating an X11 Window Which Supports Backing Store

Using xwcreate(1)
Using XCreateWindow

Enabling Backing Store after Window Creation
Enabling Starbase Backing Store .
Intermixed Starbase and Xlib Calls
Backing Store Control
Depth of Backing Store
Backing Store Operation With Graphics Accelerators
Multiple Starbase Opens
Summary
Window Re-Sizing . . .

4-19
4-20
4-21
4-21
4-21
4-22
4-23
4-24
4-24
4-24
4-25
4-25
4-26
4-27
4-29
4-30
4-30
4-31
4-32
4-32
4-33
4-34
4-34
4-35
4-36
4-36
4-37
4-37
4-37
4-38
4-38
4-39
4-39
4-39
4-40
4-40
4-41
4-41

Contents-3

Summary of Steps 4-41
Window Resizing Operation 4-42

Starbase Window Size 4-42
/\1 Effects of Re-sizing the Window 4-42 I I

Affect on Xlib 4-43
X11 Cursor and Starbase Echo Operation 4-44

Starbase Raster and Vector Echoes 4-44
Hardware Support for Cursors and Echoes 4-45
Picking up the Cursor or Echo 4-45
Raw Mode Starbase Echoes 4-46
X11 Cursors and Starbase Echoes 4-47

Xll Cursor 4-49
HP 98730 4-49

Overlay Mode 4-49
Image Mode 4-49
Stacked Screen Mode 4-49
Combined Mode 4-49

HP 98731 4-49
Overlay Mode 4-49 ,t)
Image Mode . 4-49
Stacked Screen Mode 4-49
Combined Mode 4-50

Starbase Tracking in an X11 Window 4-50
HP 98732A Hardware Cursor 4-51
HP 98556A Starbase Echo Operation 4-51

Xll and Starbase Synchronization 4-52

5. Raster Text Operation
Introduction . 5-1
Font Formats and Character Sets . 5-1

8-Bit Fonts versus 16-Bit Fonts . 5-2
HP-15 5-2
Summary of Changes 5-3

Raster Text Capabilities . 5-4
() Font Libraries 5-4

I

Character Sets (Fonts) 5-4
Font File Formats 5-5

Main Points From the Previous Table 5-6

Contents-4

I
l .
~/

Fonts Used by the FA/FM Library

6. Input Operation
Introduction .
Overview of Input Operation

Input Device Sharing . .
Input Through A Window
Input Focus
Input Focus Policy . . .
Window Managers and Pointer Buttons

Starbase Input in a Raw Environment
Starbase Input in HP Windows/9000 .
Input in an X10 Environment

Main Points of the Previous Diagram
Xll Revision A.OO

Main Points of the Previous Diagram
X11 Input Operation

Input Data Paths
Main Points of the Previous Diagram

Selecting the Right Input Driver or Library
Input Device/Window Combinations . . .

Main Points for the Previous Diagram
Opening a Starbase Device/Window Combination

Implicit Specification
Explicit Specification

Starbase Input from the Xll Pointer Device
The HP Two-Button Mouse
Details of Starbase Input from the X Server's Pointer

Device
Locator and Choice Ordinals
Receiving Input When the Pointer Device is Outside of

the Window
Starbase Sampling of the Xll Pointer
Starbase Tracking of the Xll Pointer
Starbase Requests and Events with the Xll Pointer

Starbase Input from Non-Pointer Devices
Keyboard Input
Starbase Sampling, Requests, Tracking and Events

98592-90000, rev: 2/89

5-7

6-1
6-2
6-2
6-3
6-3
6-4
6-4
6-6
6-8
6-10
6-10
6-12
6-12
6-14
6-14
6-15
6-17
6-19
6-19
6-20
6-21
6-22
6-25
6-25

6-25
6-26

6-26
6-27
6-28
6-28
6-29
6-29
6-30

Contents-5

Details of Starbase Sampling of Non-Pointer Devices
Tracking Non-Pointer Devices

Starbase Input Examples
Example 1: Application that uses a Tablet and a Button

Box
Example 2: Application That Works in an HP

Windows/9000 Environment
Example 3: Application Using the SOXll Driver
Example Code Segment

Additional Guidelines for Device/Window Combinations

7. Graphics Hardcopy Operation
Graphics Printers versus Vector Plotters

Starbase and X11 Hardcopy Documentation
Procedures and Commands

Notes on the Previous Diagram
Method Selection

8. Program Development Guidelines
Starbase in Xll Windows . . .
Source and Object Code Compatibility

Source Code Changes
Unlinked Object Code Compatibility
Pre-3.1/6.5 Linked Object Code Compatibility

Linking Your Program
Starbase Link Sequence
Raw Mode Starbase Operation
Starbase Operation in HP Windows/9000
Xlib Operation
Starbase Operation

Using Both Libraries
Starbase Retained Rasters (Backing Store)
Starbase Drivers to Link Into Your Application

Application Development Guidelines
Moving HP Windows/9000 to Xll

Window Types
Input

Moving from X10 to Xll

Contents-6

6-30
6-31
6-32

6-32

6-33
6-33
6-34
6-35

7-2
7-2
7-3
7-4
7-5

8-1
8-2
8-2
8-2
8-2
8-3
8-3
8-4
8-4
8-4
8-4
8-4
8-5
8-5
8-6
8-8
8-8
8-8
8-8

:fJ

Moving from Xll Revision A.OO to Xll

Glossary

A. Documentation Bibliography
Introduction

AGP /DGL Documentation
Fast Alpha/Font Manager Documentation
HP-GKS Documentation
HP-UX Documentation
HP Windows/9000 Documentation .
Starbase Display List Documentation
Starbase Documentation
XlO Documentation
X11 Documentation

Index

8-9

A-1
A-1
A-1
A-1
A-1
A-2
A-2
A-2
A-2
A-2

Contents-7

u

Window-Smart Program Development
The previous sections described how to take a window-dumb program and direct
it to run in an Xll window. An alternative to a window-dumb program is a
"window-smart" program. A window-smart program makes Xlib window calls.
It can create windows, open windows for graphics output, destroy windows, use
the Xlib library for output and input, etc.

This section provides guidelines to help you select between window-smart and
window-dumb program development. Subsequently, guidelines are given for
window-smart development. Again, this section does not cover the more complex
interactions between Xll and Starbase. These interactions are discussed in
subsequent chapters.

Selecting Between Window-Smart or Window-Dumb Programs
A fundamental decision you'll need to make is whether your application program
should be Xll window-smart or Xll window-dumb. Both approaches have
benefits and limitations. As discussed previously, the primary advantage of
a window-dumb program is that it can be run in raw mode or in an Xll
window. However, a window-dumb program cannot take advantage of the
powerful capabilities provided by Xll windows.

The primary advantage of developing a window-smart graphics application
program is that you have programmatic control of not only the graphics but
the window system as well. You can create windows, move windows, use Xlib
input and output primitives, etc. You can also mix Starbase calls and Xlib calls
in the same program to make optimum use of the available hardware and software
resources. A window-smart program, however, cannot be run in raw mode.
Because Xlib calls are not supported in raw mode, a window-smart program
can only run within a window.

98592-90000, rev: 2/89 Using Starbase with the X11 Windows System 3-17

It is expected that many application developers will chose to develop window
smart programs for the following reasons:

• Window-smart applications have access to the powerful capabilities /~
provided by Xll. Because Xll is an industry standard, using Xlib will
increase program portability to different platforms.

• As workstation graphics and CPU performance increases, multiple
applications, each executing within its own window, will become the norm.
Application developers will focus less on raw mode operation (where they
consume the entire display) and more on operation within a window.

Sequence for a Window-Smart Program

This section gives a brief overview of the sequence a window-smart program might
follow. To create and open an Xll window inside your program, the following
steps are typically executed:

1. Do an XOpenDisplay. This establishes the client/server connection.

2. Use the XHPGetServerMode procedure to determine the server operating n
mode. The server operating modes are discussed in Chapter 4.

3. Do an XCreateWindow. This creates a window and returns the window
ID.

4. Do an XMapWindow to map the window on the display.

5. Call XFlush to flush Xll's command buffer, validating the window ID.

6. Use the make_X11_gopen_string procedure, which takes the window ID
and generates a string that can be passed as the (path) parameter to the
Starbase gopen procedure.

7. Do a Starbase open of this window with the gopen procedure.

8. Use the procedure inquire_display_mode to determine if the Xll server
is operating in double-buffer mode. If so, the program can make Starbase
double-buffer calls.

3-18 Using Starbase with the X11 Windows System 98592-90000, rev:, 2/89

('
\._./

The program segment prog2. c below shows this sequence:

#include </usr/include/starbase.c.h>
#include </usr/include/stdio.h>
#include </usr/include/X11/Xlib.h>

main()
{

}

int fildes;

if ((Xdisplay = XOpenDisplay(NULL)) == NULL) {

}

fprintf(stderr, "%s: can't open %s\n", argv[O], XDisplayName(NULL));
exit(-1);

window= XCreateWindow(Xdisplay, ...);
XFlush(Xdisplay);
XMapWindow(...);
XNextEvent(...);
device= make_X11_gopen_string(Xdisplay, window);
fildes = gopen(device, OUTDEV, "hp98550", !NIT);
inquire_display_mode(...);

gclose(fildes);

This program is linked as follows:

cc -o prog2 prog2.o -ldd98550 -lXwindow -lsb1 -lsb2 -1X11hp -1X11

To execute this program, type:

prog2 I Return I

Note that no parameters need to be passed into the program since the window is
created within the program.

98592-90000; rev: 2/89 Using Starbasewith the X11 Windows System 3-19

Additional Guidelines for Window-Smart Program Development

This section provides additional guidelines for window-smart Starbase program -
('I

development. ;

• Refer to the following chapters which provide details on the interaction
of Xlib and Starbase:

o The chapter on Graphics Output (Chapter 4).

o The chapter on Raster Text (Chapter 5).

o The chapter on Graphics Input (Chapter 6).

• Window-smart applications that currently run in HP Windows/9000
windows should convert their HP Windows/9000 calls to equivalent Xlib
calls. Refer to the document HP Windows/9000 to X Window System
Conversion Guide for conversion guidelines.

• A window created within a program by XCreateWindow will cease to exist
when the creating program terminates. This is in contrast to a window
created by xwcreate, which continues to exist after a program which n
uses the window terminates. You should ensure that the program which ·.. ·
creates the window continues to run if you want the window to continue
to exist.

A Hybrid Approach:
A Window-Smart Program That Defaults to Raw Mode Operation

You can develop a program that operates as a window-smart program if an XU
server is available and defaults to raw mode operation if an XU server is not
available. This means that your program should first attempt to determine
whether an XU server is available. If the server is available, your program
would operate in window-smart mode. If the server is not available, the program
operates in raw mode.

For example, a program can attempt to make connection to the X server with
the XOpenDisplay procedure. If this succeeds, the program can operate as a
window-smart program. If this connection fails, the program can operate to the
raw display in raw mode.

3-20 Using Starbase with the X11 Windows System 98592-90000, rev: 2/89

()
I

u

u

X11 Server Operating Modes

Displays that have only image planes (no overlay planes) support only one server
operating mode while displays that have overlay planes support from two to
four server modes. The server operating mode affects the Starbase graphics
capabilities that are supported within an Xll window.

The four Xll server operating modes are:

• Overlay Mode: The Xll server operates only in the overlay planes.

• Image Mode: The Xll server operates only in the image planes. Displays
without overlay planes always operate in image mode.

• Stacked Screen Mode: The Xll server operates in the overlay planes and
the image planes as 2 separate screens. This configuration is similar to
a combination of overlay mode and image mode. In fact, it is the same
as having two separate screens, one with only image planes and the other
with only overlay planes. You can switch between the two screens by
moving the X window cursor off the left or right edge of the screen.

When there are more than two screens (for example, two physically
separate screens, each operating in stacked screen mode, for a total of
four screens), moving off the left edge moves up the list of screens while
moving off the right edge moves down the list. When one end of the list
is passed, the screen at the other end is displayed.

• Combined Mode: The Xll server operates in both the overlay planes and
image planes simultaneously. When an image plane window is created,
a mask of that window is created in the overlay planes and is filled with
the transparency color. Thus, the image plane windows and the overlay
plane windows appear to be in the same set of planes. Image plane and
overlay plane windows can obscure each other.

Selection of the operating mode is controlled by the Xnscreens file at Xll server
startup. Refer to Programming With Xlib, Version 11 for a description of this
file. The following table summarizes the key features of the four server modes.

98592-90000, rev: 2/89 Graphics Output Operation 4-9

Table 4-3. Features of the Four X11 Server Modes

Stacked Screen
Feature Overlay Mode Image Mode Mode Combined Mode

Planes Where Overlay planes Image planes Two screens, One screen
Xll Server one in overlay combining
Operates planes, one in image and

image planes overlay planes.

Location of Overlay planes Image planes Overlay planes Overlay planes
Root Window for overlay

plane screen,
image planes
for image plane
screen.

Planes Overlay plane Image plane Image and Any window
Accessible by windows can windows can overlay plane can be opened
Star base be opened by be opened by windows can by Starbase,

Starbase, image Starbase, raw be opened raw mode
planes can be mode Starbase by Starbase, Starbase is not
opened in raw not supported raw mode supported in r'· .)
mode. in overlay Starbase is not any planes.

planes. supported in
any planes.

Double Buffer No, in overlay Yes, for image Yes, for image Yes, for image
Support plane windows; plane windows plane windows plane windows

yes, in image only only
planes in raw
mode.

Planes All overlay All image Overlay-all All planes
Supported by planes planes supported supported
Backing Store supported supported for for Xlib and for Xlib, 8

for Xlib and Xlib, 8 planes Star base. planes or less
Star base. maximum for Image-all supported for

Star base supported Star base.
for Xlib, 8
planes max for
Star base.

4-10 Graphics Output Operation 98592-90000, rev: 2/89

(\
\ !

'-._)

i ·.
\.._)

Assume that ldevlocrt specifies four-plane operation in the overlay planes. The
above XOscreens file specifies 4/4 double buffering in the image planes. If you
were to then use XCreateWindow to create a window with a depth of four, it
is ambiguous whether this window should be placed in the overlay planes or the
image planes. Therefore, this XOscreens file is not allowed if I dev I ocrt specifies
a four-plane system; if ldevlocrt specifies a three-plane system, this will work.

As Table 4-5 shows, there is a particular visual class (for example, DirectColor)
associated with each window depth. Thus, if you are using the 98730A display
in Combined Mode and you create a 24-plane window, its visual class is always
DirectColor.

Guidelines for Portability

For portability across different Xll window operating environments on HP
workstations, it is recommended that application programs do the following:

1. Use XHPGetServerMode to determine which server mode is active.

2. Use XGetVisualinfo to obtain a list of visual structures that match the
desired visual attributes. Alternatively, XMatchVisualinfo can be used
to obtain the visual information that matches the desired depth and class.

3. Once a visual is found that matches the needs of your application, you can
use XCreateWindow to create a window of the desired depth and visual
class. If this visual class is not the default visual class, you will have to
create a color map for the window.

Transparency Index
This section describes the transparency index used in the overlay planes.

HP 98720 Display

The HP 98720 display supports up to eight colors in the overlay planes. In the
overlay planes, only black, white, and the six primary and secondary colors are
supported. The overlay planes also support a transparency color. When the
transparency color is written into the overlay planes, the observed color is that
of the image planes. Like any color, the transparency color must be written into
the color map, and takes up one of the eight colors. Refer to the gescape section

98592-90000, rev: 2/89 Graphics Output Operation 4-17

of the Starbase Device Drivers Library Manual for information on how to set the
transparency color.

HP 98730 Display

There are either three or four overlay planes in the HP 98730 display. The device
file used decides the number of planes available. If only three overlay planes are
used, the fourth plane can be used for cursors by Starbase applications running
in the image planes. When using a Combined Mode server, even though these
planes can display 16 colors simultaneously (8, when using three overlay planes),
only 15 (or 7) are available because one color is reserved for the transparency
color. This color is always index 15 (or 7). When the transparency color index is
written into the overlay planes, the observed color is that of the image planes. The
transparency color is set when the X11 server is started and cannot be changed
until the server is shut down.

HP 98550 Display

The HP 98550 display has two overlay planes. Only three colors are available
because index 0 is a transparent color.

4-18 Graphics Output Operation 98592-90000, rev: 2/89

n
' I

!~
' /

I ' u

u

Use of Starbase Graphics Accelerators

The XU server does not use the graphics accelerators for its window and
rendering operations. Therefore, Xlib performance is comparable with or
without the HP 98556A, HP 98721A or HP 98732A graphics accelerators installed.
Starbase performance in an XU window, however, benefits greatly from usage of
the HP 98556A or HP 98732A graphics accelerators. The HP 98721A accelerator
is not supported by Starbase within an XU window; it can, however, be used to
accelerate raw mode graphics in the image planes with the X11 server in overlay
mode. You can create the appearance of accelerated graphics in an XU window
on the HP 98721A by appropriately positioning the overlay plane window borders
over a HP 98721A-generated image in the image planes.

Opens Done with Accelerator Drivers

This section describes the number of Starbase opens that can be done in an Xll
window using the HP 98732A and HP 98556A accelerator drivers. You can mix
and match open commands using accelerated drivers and open commands using
non-accelerated drivers, subject to limits on the number of accelerated windows
as discussed below.

HP 98556A Driver

The number of windows that can be opened with the 98556A accelerator driver
is:

1. A maximum of 31 opens can be active simultaneously using the HP 98556A
accelerated driver. This limits accelerated graphics to a maximum of 31
windows. If some of the windows contain multiple open commands using
the HP 98556A driver, the limit is correspondingly lower.

2. When 31 open commands of the HP 98556A are currently active and
another open of the HP 98556A is done, a Star base error is generated
and the open command will fail. When one of the previous HP 98556A
opens is closed, the first open command can be tried again.

3. In addition to the 31 open commands that can be done with the
accelerated driver, any number of other windows may be opened with
the unaccelerated HP 98550 Star base device driver.

98592-90000, rev: 2/89 Graphics Output Operation 4-21

HP 98731 Device Driver

The number of windows that can be opened with the hp98731 driver (which
drives the HP 98732A accelerator) are:

1. The HP 98732A driver supports up to 31 accelerated windows operating
simultaneously. Furthermore, it permits an accelerated window to be
obscured by, at most, 31 other rectangles (for example, corners of
windows).

2. When an image plane window is rendered to by the accelerator and
is obscured by more than 31 rectangles, rendering is halted until that
window has moved up enough in the window stack to be obscured by
fewer than 31 rectangles. It is possible for a program to detect when this
occurs by passing a procedure address to the Starbase gescape procedure
with opcode CLIP _OVERFLOW. This procedure is then called whenever the
clip list overflows. Refer to the HP 98730 chapter in the Starbase Device
Drivers Library Manual for information on this gescape opcode.

3. When a window is about to become obscured by more than 31 windows

0,
)

and the accelerator hardware is currently rendering to that window, r0
the window system is locked until the accelerator is finished with the ;
current set of primitives. The calling process will become blocked and
the CLIP _OVERFLOW procedure will be called by Starbase.

Note that accelerated overlay windows are not supported with the HP 98731
driver.

4-22 Graphics Output Operation 98592-90000, rev: 2/89

(;
--..._..!

INIT Absent

The following diagram shows the three phases of interest:

Shored Memory

I Color Mop 11

I Color Mop 21

Hardware Color Mop

I Color Mop 11

Phase 1:

X11 Only

I Coloi Mop 21

Hardware Color Mop

Phase 1:

X11 Window1
opened by Starbose

Shored Memory

I Color Mop 11

I Color Mop 21

Hardware Color Mop

I Color Mop 11

Phase 1:

X11 Window1
closed by Starbase

Figure 4-2. Color Map Control with INIT Absent

In Phase 1, assume shared memory already contains two color maps for two
windows, and that the window cursor is in Window 1, so that Color Map 1 is
automatically downloaded into the hardware color map.

In Phase 2, after the Starbase open of Window 1 is done with INIT absent,
Star base will receive the ID of Window 1 's color map (Color Map 1) and begin
using it. The Starbase default values will not be loaded into Color Map 1
because INIT is false. However, subsequent Starbase color map calls will affect
the contents of Color Map 1. When Color Map 1 is installed in the hardware

98592-90000, rev: 2/89 Graphics Output Operation 4-29

color map, Starbase color map calls affect the hardware color map. Starbase will
also respect read-only attributes of cells in the software color map and will not
change them.

In Phase 3, after the window is closed, color map operation is again under control
of the Xlib library.

Multiple Processes Opening a Single Window

Assume two processes (Process 1 and Process 2) open a single window, and that
Process 1 opens the window with INIT followed by Process 2 opening the window
without INIT. Consider the following sequence:

1. Process 1 opens with INIT: A new color map (New Color Map) is created.

2. Process 2 opens without INIT: Process 2 inherits the window's current
color map (New Color Map) as its color map.

3. Process 1 closes the window: At this point, Process 1's New Color Map
is disassociated from the window. While the color map will continue to
exist in shared memory and can be accessed by Process 2, the window .fJ
manager will have no knowledge of its existence and thus will no longer
be able to download the color map into the hardware color map.

4. Process 2 can detect color map changes as described previously, namely
using the ColormapNotify event by passing ColormapChangeMask to
XSelectinput. Process 2 can inherit the current color map using
READ_COLOR_MAP. This will permit Process 2 to access a color map that
the window manager can download into the hardware color map.

Non-interacting Color Maps

The Xlib and Starbase color map calls only interact when Starbase opens an
Xll window. For example, when the Xll server is operating in the HP 98732A
overlay planes and your program does a raw mode open of the image planes,
there is no color map interaction because the overlay planes and image planes
each have their own separate color maps. If the X11 server and Star base are used
on the HP98547A display (where both Xlib and Starbase output go to the image
planes), both Xlib and Star base affect the single hardware color map.

4-30 Graphics Output Operation 98592-90000, rev: 2/89

running a single-buffered Starbase program becomes the display-control focus
window, the lower buffer is immediately displayed and the window appears correct
(and the display stops toggling between the upper and lower buffers).

Summary

The steps to use double buffering are:

1. If you have control of the X11 server double-buffer mode, you know it
meets the double-buffer needs of your program. However, if your appli
cation program is intended to operate with each of the four Xll server
modes on the various displays, you should use inquire_display_mode to
determine the X11 server double-buffer mode when the window is opened
and then respond accordingly with Starbase double-buffer calls.

2. When moving a raw mode Starbase program to X11, you need to
be aware of the double-buffer mode it requests. You can use in
quire_display _mode to determine the Xll server double-buffer mode
and then make the appropriate Starbase double-buffer calls.

3. Backing store for obscured windows is supported in double-buffer mode.
Refer to the next section for a description of how backing store operates
in double-buffer mode.

98592-90000, rev: 2/89 Graphics Output Operation 4-35

Backing Store Operation
This section describes backing store support provided by X11. Two terms which ·~
essentially mean the same thing are:

• backing store (Xlib terminology)
• retained raster (HP Windows/9000 terminology)

In our discussions, the term backing store is used. Backing store is memory
used to retain graphics data rendered to obscured portions of a window. Rather
than "lose" the graphics information, it is stored in memory. When the obscured
portion of the window is exposed, the retained graphics data is transferred from
memory to the display frame buffer. A window that has backing store associated
with it is referred to as retained.

Backing store memory can be either virtual memory or display offscreen memory.
The X11 server first attempts to allocate backing store memory for a window in
offscreen memory. However, depending on the size of offscreen memory (which
varies from display to display) and other usages of offscreen memory (for example,
storage of fonts), there may not be enough offscreen memory to support backing
store. In this case, the Xll server uses virtual memory. •tJ
The advantage of offscreen backing store memory is that rendering is faster.
Because the functionality is the same for virtual and off-screen backing store,
programs should not need to know where the backing store memory is located;
therefore, no mechanism is available to programmatically determine the location
of backing store memory.

Use of backing store is optional. When it is not used, graphics operations intended
for obscured portions of the window are lost. You can use the X11 window
exposure event XExposeEvent to re-generate your image. Window exposure
events are described in the manual Programming With Xlib, Version 11.

Backing Store Cases

There are two cases involving obscured windows and backing store that should
be considered:

• Saving the contents beneath a window: This capability is not automati
cally supported by the X11 server. In order to save the contents of the

4-36 Graphics Output Operation 98592-90000, rev: 2/89

(\

\ i
"-"'

windows beneath a new window, the windows being obscured must be
retained windows.

• Saving and rendering to an obscured portion of a window: This is the
main focus of this section and is discussed in detail below.

Creating an X11 Window Which Supports Backing Store

When an Xll window is created, you can request the window to support backing
store. XU windows which support backing store can be created using either the
xwcreate (1) command or the XCreateWindow procedure, as follows:

Using xwcreate(1)

The -r parameter of xwcreate is used to specify that a window supports backing
store. The following example creates a 300x300-pixel window which supports
backing store:

xwcreate -r -geometry300x300+10+10 -depth 8 GraphWin

0~ Using XCreateWindow

u

When an XU window is created with the XCreateWindow procedure, it can
be created as a retained window using the backing_store parameter of the
attributes structure. backing_store can have these three values:

NotUseful

WhenMapped

Always

No backing store.

Backing store provided only when the window is mapped to the
screen.

Backing store provided as long as the window exists.

98592-90000, rev: 2/89 Graphics Output Operation 4-37

Enabling Backing Store after Window Creation

The backing_store parameter in the XSetWindowAttributes structure can
be changed after the window is created using the XChangeWindowAttributes
procedure, which will enable backing store in a window which was created without
it.

Enabling Starbase Backing Store

When a window which supports backing store is then opened for Starbase
output, the Starbase graphics will not be retained unless you also link the
Starbase byte driver (/usr/lib/libddbyte. a) and/or the Starbase bit driver
(/usr/lib/libddbi t. a) as appropriate for the depth of the window's visual. For
obscured portions of a window, these Starbase drivers draw to virtual memory
instead of the display. When the previously obscured portion of the window
becomes unobscured, the information is fetched from memory and written to the
display by the Xll server.

The bit driver is used for monochrome displays (for example, the HP 98548
display) while the byte driver is used for color displays. The bit driver provides
backing store for monochrome displays if it is linked into your program and the
window is retained. Likewise, the byte driver provides backing store for color
displays if it is linked into your program and the window is retained.

Backing store memory may be either in virtual memory or display offscreen
memory. The bit and byte drivers are required only for virtual memory backing
store; the Starbase display drivers do the rendering for offscreen backing store.
However, because it is typically not possible to guarantee that display offscreen
memory will be used for backing store, the bit and/or byte drivers should always
be linked into your application when Starbase backing store support is required.

Note The bit driver is only supported on the HP 9000 Series 300
computers, not on the HP 9000 Series 800 computer. This is
because there are no monochrome displays supported on the
Series 800 computers.

4-38 Graphics Output Operation 98592-90000, rev: 2/89

n
/

I I
_)

Hardware Support for Cursors and Echoes

Certain displays provide hardware support for cursors and echoes. For example,
the HP 98720 display reserves one of its four overlay planes as a cursor plane.
Likewise, the HP 98730 display provides a cursor plane when only three of the
four overlay planes are being used by the Xll server. In addition, the HP 98730
provides a hardware cursor. Refer to the Starbase Device Drivers Library Manual
for a description of the cursor support provided by each display.

The hp98731 driver only supports echoes in the cursor plane. When an Xll
server is using all four overlay planes, no echoes are supported by the hp98731
driver. Also, the hp98731 driver will not pick up echoes created by the hp98730
driver if the echo is in the image planes.

One exception to this is the Combined Mode server. When a Combined Mode
server is using all four overlay planes, both the hp98730 and hp98731 drivers
place vector echoes in the overlay planes. The echoes use the Whi tePixel value
for the echo color so they should always appear white. If an overlay-plane color
map changes the color of Whi tePixel, the cursors will also change color. Neither
the hp98730 nor the hp98731 driver place raster cursors in the overlay planes of
a four-overlay-plane Combined Mode server.

Picking up the Cursor or Echo

Whenever Xlib or Starbase rendering occurs in a window which contains an Xll
cursor or a Starbase echo, the cursor or echo is momentarily "picked up". This
means that the echo or cursor is removed from the screen and the graphics data
that was previously there is restored. This allows rendering to occur with the
correct data in the frame buffer. Once the rendering is done, the cursor or echo
is moved back on the screen after a copy of the area "under" the cursor is saved
(this saving only occurs for raster echoes).

Starbase vector echoes in the cursor planes do not need to be picked up and
restored when rendering is performed in the image planes. This is because the
cursor planes reside in physically separate planes "on top" of the image planes.

98592-90000, rev: 2/89 Graphics Output Operation 4-45

Raw Mode Starbase Echoes

Because the image planes can be opened in raw mode by Starbase when the Xll
server is operating in overlay mode, it is possible to have a raw-mode Starbase
echo operating in the image planes at the same time Starbase echoes are operating
in overlay plane windows. Because opening of the overlay planes is not supported
when the Xll server is operating in Image Mode, it is not possible to have overlay
plane Starbase echoes while X is running. If a separate cursor plane is available,
a raw-more Star base open may place echoes there even if Xll is using the overlay
planes.

4-46 Graphics Output Operation 98592-90000, rev: 2/89

~~
)

{ ·.

\._)

u

X11 Cursors and Starbase Echoes

The following table shows default positions where the Starbase echo and X11
cursor reside for each of the XU server operating modes. The Starbase gescape
R_OVERLAY_ECHO can be used to change the default echo placement from the
image planes to the overlay planes. "Shares" means that the echo or cursor is
rendered into the same planes used by Starbase or Xlib for rendering.

300
Medium
and
High
Res
Displays

98548A,
98549A

98550

Table 4-9. Default Starbase Echo and X11 Cursor Placement
in the Four X11 Server Modes

Overlay Mode Image Mode Stacked Screen Mode Combined Mode

Echo and cursor
share the image
planes

Echo and cursor
share the image
planes

Echo placed Echo and cursor Echo and
in whatever share image cursor share
planes (image planes. overlay planes
or overlay) are if overlay plane
opened. Cursor Xll window
always in overlay opened. Echo
planes. and cursor share

image planes
if image-plane
window opened.

98592-90000, rev: 2/89 Graphics Output Operation 4-47

HP98721

Table 4-9. Default Starbase Echo and X11 Cursor Placement
in the Four X11 Server Modes

Continued

Overlay Mode Image Mode Stacked Screen Mode Combined Mode

Echo shares 3 Raster echo in Echo shares 3
overlay planes image planes if overlay planes
if overlay plane image plane Xll if overlay plane
Xll window window opened. Xll window
opened. Raster Vector echo in opened. Raster
echo in image cursor plane if echo in image
planes if image image plane Xll planes if image
planes opened. window opened. plane Xll
Vector echo in Cursor shares window opened.
cursor plane if image planes. Vector cursor in
image planes cursor plane if
opened in raw image plane Xll
mode. Cursor window opened.
shares 3 overlay Cursor shares
planes. image planes

for image plane
window, shares
overlay plane for
overlay plane
window.

4-48 Graphics Output Operation 98592-90000; rev: 2/89

(~
)

,f)
' /

X11 Cursor

Always uses the hardware cursor.
(

_) HP 98730

('

'0

Overlay Mode. Echo shares three or four overlay planes if overlay-plane Xll
window is opened. Raster echo in image planes if image planes opened. Vector
echo in cursor plane if image planes opened, and Xll using three overlay planes.
Vector echo in image planes if image planes opened and Xll is using four overlay
planes.

Image Mode. Raster echo in image planes if image-plane Xll window opened.
Vector echo in cursor plane if image-plane Xll window opened.

Stacked Screen Mode. Echo shares three or four overlay planes if image-plane
Xll window is opened. Raster echo in image planes if image-plane Xll window
opened. Vector echo in cursor plane if image planes opened, and Xll using three
overlay planes. Vector echo in image planes if image planes opened and Xll is
using four overlay planes.

Combined Mode. Echo shares three or four overlay planes if overlay-plane Xll
window opened. Raster echo in image planes if image-plane Xll window opened.
Vector echo in cursor plane if image-plane Xll window opened, and Xll is using
three overlay planes. Vector echo in overlay planes if image-plane Xll window
opened and Xll is using four overlay planes.

HP 98731

The hp98731 driver cannot open an Xll overlay-plane window.

Overlay Mode. Echo in cursor plane if image planes opened and Xll using
three overlay planes. Echo not supported if image planes opened and Xll using
four overlay planes.

Image Mode. Echo in cursor plane if image-plane Xll window opened.

Stacked Screen Mode. Echo in cursor plane if image planes opened and Xll
using three overlay planes. Echo not supported if image planes opened and Xll
using four overlay planes.

98592-90000, rev: 2/89 Graphics Output Operation 4-49

Combined Mode. Echo in cursor plane if image-plane Xll window opened, and
Xll is using three overlay planes. Vector echo in overlay planes if image-plane
Xll window opened and Xll is using four overlay planes. Raster echo is not
supported if image-plane Xll window is opened and Xll is using four overlay
planes.

Starbase Tracking in an X11 Window

Starbase echo tracking is permitted from any Starbase input device (including an
Xll window) to any Starbase output device (again, including an Xll window).
Listed below are several examples of Starbase tracking:

1. Same Window Used for Input and Output: This case is activated by
doing a Starbase gopen of the Xll window as both an input device and
an output device (with the gopen (kind) parameter set to OUTINDEV). In
this case, the Star base echo tracks the position of the Xll cursor. Because
the Xll cursor and Starbase echo both point to the same spot, the Xll
cursor is removed while asynchronous tracking is enabled in the same
window that contains the Xll cursor. When tracking is disabled, the
Xll cursor returns. If the pointer device is used in an attempt to move
the Star base echo outside of the window, the echo is "pegged" against the
inside border of the window and the Xll cursor re-appears outside of the
window.

2. Different Input and Output Windows: It is possible to open one Xll
window as the input window and open another as the output window,
then enable tracking between them. When the Xll cursor is moved in the
input window, the Starbase echo tracks its position in the output window.
Tracking is proportionally correct when the windows are different sizes.

3. Non-Window Related Input Device: In this case, input is obtained from
an input device not associated with a window (for example, a tablet). The
Xll cursor is not affected (that is, it keeps tracking the window pointer
device) and the Starbase echo tracks the tablet. The Xll cursor and the
Star base echo can be active in the same window.

4-50 Graphics Output Operation 98592-90000, rev: 2/89

I~
I

HP 98732A Hardware Cursor

The HP 98732A color map supports a single, independent hardware raster or
vector cursor. The hardware cursor is a 64x64x2 bit raster pattern that is
conceptually in front of the overlay planes. It is defined with a 64x64 bit/pixel
color pattern and a 64x64 bit/pixel transparency pattern. When the Xll server
is started, it uses the hardware cursor for the window cursor.

As with the overlay planes, one of the colors is a transparency color used to see
through to the overlay and image planes. This means that a raster cursor can
have no more then two significant colors (one additional color is used for the
transparency pattern). The two colors used by the cursor are based on 24-bit
RGB values and are independent of the other color maps.

When the Xll server is using the hardware cursor and a program defines a
Starbase echo in an image window, the echo is placed by default in the cursor
plane. When a cursor plane is not available, the HP 98730 driver renders the
cursor in the image planes. The echo colors will be chosen from the color map
associated with that window.

10 HP 98556A Starbase Echo Operation

Only one Starbase echo is supported in a window by the HP 98556 driver. When a
window is opened multiple times by the HP 98556 driver, only one of these opens
should specify a Starbase echo, because the HP 98556 driver can "pick up" only
one Starbase echo and one Xll cursor. When a window is opened twice by the
HP 98556 driver and each open specifies a Star base echo, the first invocation of
the driver will not be able to pick up the echo generated by the second invocation
of the driver.

98592-90000, rev: 2/89 Graphics Output Operation 4-51

X11 and Starbase Synchronization
Both Xlib graphics and Starbase graphics are buffered to improve their perfor
mance. These buffering schemes are implemented in separate processes and are
completely independent. When your application is rendering both Xlib and Star
base graphics to the same window and when the order in which the graphics
primitives are rendered is important, you should synchronize your program.

XSync is used to flush and wait for all Xlib graphics primitives to be rendered to
the window by the X11 server. The procedure make_picture_current is used
to flush the Starbase output buffer. The outline of a program mixing Xlib and
Starbase graphics calls, and providing synchronization follows:

X initialization
Starbase initialization

X graphics primitives
Xsync (...)

Starbase graphics primitives
make_picture_current()

X graphics primitives

X graphics primitives
X sync (...)

Starbase graphics primitives

Starbase graphics primitives
make_picture_current()

4-52 Graphics Output Operation 98592-90000, rev: 2/89

(\
, I

I . u

server's pointer and keyboard. HP Windows/9000 also permits programs to share
the window manager's locator and keyboard.

With Xll, programs can share the pointer device and keyboard, and the other
HIL devices. Input operation has been expanded to include both Xlib and
Starbase sharing of the same input devices.

Note Even in an Xll window, the user can still do an exclusive open
of an HIL device. However, this is not recommended because
it impacts the ability of other programs to share the same
workstation resources.

Input Through A Window

A device/window combination means that a program receives input from a
combination of a certain device and window. Thus, a program desiring input
must specify both an HIL device and a window. The manner in which programs
specify the device and window depends on the input library used. Programs using

1 \ Xll Xlib specify the desired input device and window with the XSelectinput
\._) procedure. Starbase programs specify the desired input device and window with

the gopen procedure. The path parameter of the gop en procedure specifies both
the device and window. The file designator returned by the gopen procedure is
used to receive input from the designated device/window combination.

Input Focus

The capability to direct the input to one window at a time is supported by
Xll. The window that receives the input from a particular device is said to
be "focused" (Xll terminology) or "selected" (HP Windows/9000 terminology).
Because of the emphasis placed on Xll, the term "focused" is used in this manual.
When a window comes into focus, the input stream from the requested device(s)
is directed to that window. When a window goes out of focus, the input stream
from the requested device(s) no longer goes to that window.

98592-90000, rev: 2/89 Input Operation 6-3

Input Focus Policy

The policy which controls how the input focus changes from one window to ~\
another is referred to as the focus policy. Different window systems implement '· }
different focus policies. For example, HP Windows/9000 implements an explicit
window selection policy for keyboard input. The selected window receives all
keyboard input regardless of the position of the HP Windows/9000 locator.

The X Window System implements a default focus policy which can be changed
by a window manager. The default Xll focus policy is a cursor tracking
policy; the window which contains the Xll cursor receives the keyboard
input. Some window managers implement an explicit focus policy similar to
HP Windows/9000; the user explicitly selects a window to receive keyboard
input. By default, hpwm implements provides an explicit focus policy, but can
be configured to use a cursor-tracking policy instead. The uwm window manager
does not implement a focus policy, and thus the default policy-cursor tracking
is in effect. Refer to the documentation for your window manager to understand
what type of focus policy, if any, it implements.

Window Managers and Pointer Buttons

One problem that people may see when running Starbase programs that receive
input from the Xll pointer device, is that the window manager being run may
actually prevent Starbase from seeing the button presses. For example, hpwm
implements its explicit-focus policy by grabbing all button presses that occur
while the X cursor is over a window. Therefore, if a user moves the pointer over
a Starbase window and presses the left button, the Starbase program will not see
the button press, because hpwm has "grabbed" the button press. Typically, the
default configuration of window managers is to grab all button presses. However,
most window managers allow users to reconfigure the window manager's button
bindings in order to allow programs to receive input from the Xll pointer device.
Refer to the documentation for your window manager to understand how to do
this.

6-4 Input Operation 98592-90000, rev: 2/89

0·
')

/

u
The (device-type) must be one of the following name~:

• MOUSE
• TABLET
• KEYBOARD
• BUTTONBOX
• ONE_KNOB
• NINE_KNOB
• TRACKBALL
• QUADRATURE

Xll supports more device types than shown above but these are the only valid
device types for use with Starbase.

For example, when a workstation is configured with a keyboard and two graphics
tablets, connected in that order, the valid (device-syntax) strings are:

• FIRST_KEYBOARD
• FIRST_TABLET
• SECOND_TABLET

Series 800 systems can have more than one HP-HIL loop and support multiple
seats. Up to four people can run independent Xll servers. By default, if the
display number of the server is 0-3, the server will use the same number of
HP-HIL loop. For example, if DISPLAY is set to unix: 2. 0, the server will
use the HP-HIL loop corresponding to the device files ldevlhil_2. 0 through
I dev lhil_2. 6. These are the same devices that are available to Star base
programs running in a window on that server. A system administrator can easily
change this default by creating a usrllibiX11IX*devices file. Refer to the
"System-level Customization" chapter of Using the X Window System, Version
11. Additional information for a particular release of HP-UX may be found in
the I etclnewconfigiUpdate_info directory.

98592-90000, rev: 2/89 Input Operation 6-23

The following table specifies the values of the gopen parameters to use when
opening various devices using the Starbase input drivers that are supported in
Xll windows.

Table 6-3. gopen Parameters for Starbase Input in an X11 Window

Input Devices Shared/ gopen Path (kind) (driver)
Library Accessed Exclusive Parameter Parameter Parameter

SOXll X server pointer shared (window-syntax) INDEV or SOXll
OUTINDEV

X server keyboard shared (window-syntax) INDEV or SOXll
OUTINDEV

lib- X server pointer shared (window-syntax) INDEV or hp98550,
window OUTINDEV hp300h, etc.

kbd, X server keyboard shared (pty-pathname) INDEV kbd, lkbd
lkbd Other Keyboards exclusive dev/console INDEV kbd, lkbd

HP-HIL Other Keyboards shared (device-syntax) INDEV hp-hil
Other HIL shared (device-syntax) INDEV hp-hil

Devices
Other Key boards exclusive (special-device- INDEV hp-hil
Other HIL file)

Devices exclusive (special-device- INDEV hp-hil
file)

6-24 Input Operation 98592-90000, rev: 2/89

(\
. /

:f)
/

Starbase Retained Rasters (Backing Store)

To support Starbase retained raster (backing store), the bit and/or byte
driver must be linked as shown below. Because backing store only applies
to window systems, linking the bit and/or byte driver is only necessary when
your application is intended for operation within a window and you intend to
use backing store. Again, both the libXwindow and libwindow drivers can be
included, as shown below:

cc -o prog prog.o -ldd98550 -lddbyte -lddbit -lwindow -lXwindow \
-lsb1 -lsb2 -1Xhp11 -1X11

The bit driver /usr /li b/li bddbi t . a (-lddbi t) is used to provide backing store
for monochrome displays. The byte driver /usr/lib/libddbyte. a (-lddbyte)
is used to provide backing store for color displays.

The bit and byte drivers are only used to provide backing store for Starbase. The
Xll server already includes the necessary routines to support backing store for
Xlib applications without linking in the bit and byte drivers.

L> Starbase Drivers to Link Into Your Application

Many application developers find it convenient to develop one executable with
all supported drivers linked into the application. The end user then typically
passes in the Starbase gopen parameters to cause the program to access the
desired display. The alternative to one large executable with all drivers linked
in is separate executables, one for each display. This leads to smaller individual
executables but a greater number of them.

98592-90000, rev: 2/89 Program Development Guidelines 8-5

Application Development Guidelines

This section provides application development guidelines to assist in developing
Starbase programs which run in an XU window. Additional guidelines
pertinent to a particular release of HP-UX may be found in the directory
I etc/newconfig/Update_info in a file whose name indicates the related release;
e.g., to. 6. 5 for HP-UX 6.5.

• To ensure maximum Starbase performance, Starbase should be operated
in buffered mode. This is not related to double buffering, but refers to
the ability of Starbase to buffer multiple operations before obtaining a
lock on the display.

• When Starbase is running in an XU window, it opens connections to
the XU server. Sometimes the XU server generates events that it
sends to all programs that have opened connections to it. These events
are sent regardless of whether the programs have any interest in those
events. If the server sends many of these events, the connecting socket
could overflow. In this case, the XU server will hang for about 10
seconds, and then close its connection with the program. In order to
avoid this happening to programs that run for long periods of time,
Starbase programs should occasionally call make_picture_current. This
procedure causes unwanted events to be cleaned out of the connection with
the XU server.

On the other hand, extraneous calls to make_picture_current should
be kept to a minimum since they flush the buffer and thus reduce
performance by reducing the effective buffer size.

• It is possible to have name conflicts in header files. For example, the
Starbase header file contains this line:

#define line_width c_line_width

Likewise, the header file X11/Xlib. h defines line_ width to be a member
of the XGCValues structure. If your program contains both header files

()
' I

and refers to the line_width member of the XGCValues structure, you will ,r),

get a fatal compile-time error. You may be able to work around this by
using a separately compiled procedure of your own to hide a conflicting
procedure. For example, you could create a my _line_ width procedure
which calls line_width and compile this separately.

8-6 Program Development Guidelines 98592-90000, rev: 2/89

• It is common for a raw mode Starbase program to do a Starbase open of
an HIL mouse to get locator input. This same program will not work in
an Xll window because the Xll server grabs the mouse for its pointer
device. Therefore, the Starbase program should get its locator input from
the pointer device mouse using the libXwindow library by changing the
gopen parameters.

• Use the utility /usr/lib/X11/xwininfo to get the window's ID for use in
a Starbase open of an existing window (for example, a terminal emulator
window). When executed with the -tree option, it permits you to obtain
the window ID of all existing windows on your display. The window ID
can then be used in formulating your Starbase gopen (path) string.

• Use backing store sparingly, as it degrades performance.

98592-90000, rev: 2/89 Program Development Guidelines 8-7

Moving HP Windows/9000 to X11

For a information on converting your window system from HP Windows/9000 to (-)
Xll, refer to HP Windows/9000 to X Window System Conversion Guide.

Window Types

HP Windows/9000 defines both a graphics window type and a terminal window
type. Only the graphics window type can be used for Starbase output. Xll,
however, defines one type of window which can be used for both graphics and
terminal output.

Input

The Starbase libXwindow library permits input to be received from the Xll
server's pointer. The pointer device is always opened for shared access. This
library provides Starbase input similar to the HP Windows/9000 libwindow
library.

Moving from X1 0 to X11

Starbase in an XlO window is only supported by the Xn driver, which converts
Starbase calls to XlO protocols. In moving a Starbase program to Xll, you have
two choices:

1. Re-link with the SOXll driver: This will support remote Starbase.

2. Use Starbase directly in an Xll window: You can link your Starbase
program with the 3.1/6.5 software release Starbase drivers so that the
program operates directly in an Xll window. This will greatly increase
performance, but remote operation will be lost.

8-8 Program Development Guidelines 98592-90000, rev: 2/89

I~
'I)

(
"'-';

Moving from X11 Revision A.OO to X11
Starbase in an Xll revision A.OO window is supported by both the Xn driver
and the SOXll driver. In moving the Starbase program to Xll, you have two
choices:

1. Continue using the SOXll driver: If your approach requires remote
Starbase you will want to continue with this approach. You must to use
the SOXll drivers if you only have access to the executable and cannot
link in other drivers.

2. Use Starbase directly in an Xll window: You can link your Starbase
program with the 3.1/6.5 software release Starbase drivers so that the
program operates directly in an Xll window. This will greatly increase
performance, but remote operation will be lost.

98592-90000, rev: 2/89 Program Development Guidelines 8-9

