HP-UX
System Administrator Manual

Volume 1

HP 9000 Series 300 Computers

HP Part Number 98594-90060

(ﬁﬁ HEWLETT

PACKARD

Hewlett-Packard Company
3404 East Harmony Road, Fort Collins, Colorado 80525

Please print or type your name and address.
Name:

Company:

Address:

City, State, Zip:

Telephone:

Additional Comments:

HP-UX System Administrator Manual
HP Part Number 98594-90060
E1288

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO. 37 LOVELAND, COLORADO

POSTAGE WILL BE PAID BY ADDRESSEE

Hewlett-Packard Company

Attn: Learning Products Center
3404 East Harmony Road

Fort Collins, Colorado 80525-9988

NO POSTAGE
NECESSARY
IF MAILED
IN THE
UNITED STATES

o

fold ——

YVl all I'ir wvailvuiauwi:

Your comments and suggestions help us determine how well we meet your needs.
Returning this card with your name and address enters you into a quarterly
drawing for an HP calculator”.

HP-UX
System Administrator Manual

Agree Disagree

The manual is well organized. O O O O O

It is easy to find information in the manual. O O O O O
The manual explains features well. O O O O O
The manual contains enough examples.: O O O O O
The examples are appropriate for my needs. O O O O O
The manual covers enough topics. O O O O O
Overall, the manual meets my expectations. O O O O O
You have used this product:

__Less than 1 week ___Less than 1 year ___More than 2 years

__Less than 1 month __1to2years

Please write additional comments, particularly if you disagree with a statement
above. Use additional pages if you wish. The more specific your comments, the
more useful they are to us.

Comments:

*Offer expires 1/1/1991. (Manual: 98594-90060 E1288)

Please Tape Here

Legal Notices
The information contained in this document is subject to change without notice.

Hewlett-Packard makes no warranty of any kind with regard to this manual,
including, but not limited to, thé implied warranties of merchantability and
fitness for a particular purpose. Hewlett-Packard shall not be liable for errors
contained herein or direct, indirect, special, incidental or consequential damages
in connection with the furnishing, performance, or use of this material.

Warranty. A copy of the specific warranty terms applicable to your Hewlett-
Packard product and replacement parts can be obtained from your local Sales
and Service Office.

Copyright © Hewlett-Packard Company, 1988

This document contains information which is protected by copyright. All rights
are reserved. Reproduction, adaptation, or translation without prior written
permission is prohibited, except as allowed under the copyright laws.

Restricted Rights Legend. Use, duplication or disclosure by the U.S. Govern-
ment Department of Defense is subject to restrictions as set forth in para-
graph (b)(3)(ii) of the Rights in Technical Data and Software clause in
FAR 52.227-7013.

Copyright © AT&T, Inc. 1980, 1984
Copyright © The Regents of the University of California 1979, 1980, 1983

This software and documentation is based in part on the Fourth Berkeley Software
Distribution under license from the Regents of the University of California.

Printing History

New editions of this manual will incorporate all material updated since the
previous edition. Update packages may be issued between editions and contain
replacement and additional pages to be merged into the manual by the user.
Each updated page will be indicated by a revision date at the bottom of the
page. Note that pages which are rearranged due to changes on a previous page
are not considered revised.

The manual printing date and part number indicate its current edition. The
printing date changes when a new edition is printed. (Minor corrections and
updates which are incorporated at reprint do not cause the date to change.) The
manual part number changes when extensive technical changes are incorporated.

December 1988 ... Edition 1. Documents the 6.5 release of HP-UX.

This edition of the HP-UX System Administrator Manual replaces part number
97597-90060 (First Edition; April 1988).

o

-~

C

Contents

1. Getting Started

Welcome . Coe e

What’s in this Manua1’7 Ce .

Conventions Used in this Manual

Using Other HP-UX Manuals e

The Administrator’s Responsibilities
Installing and Testing the Hardware
Evaluating Users’ Needs Coe
Installing the HP-UX Operating System R
Configuring the HP-UX kernel . Ce e
Allowing Users Access to the System
Adding and Moving Peripheral Devices
Monitoring File System Use and Growth
Updating the HP-UX System
Back Up, Recovery, and Restoring the System
Detecting/Correcting File System Errors

Assisting Other Users

Providing a “Back-up” Administrator .
User Survey

2. System Management Concepts

The HP-UX Hierarchy

Processes
Process Creatlon (Parent and Child Processes) .
Process Termination
Process Groups
Terminal Affiliation .
Open Files in a Process .

IDs C e e

1-1
1-2
1-3
1-5
1-6
1-6
1-6
1-6
1-7
1-7
1-7
1-7
1-7
1-8
1-8
1-9
1-9
1-10

2-2
2-6
2-6
2-8
2-8
2-9
2-9
2-10

Contents-1

The Superuser . .
File System Implementatlon .
Disk Layout
Data Storage e
Updating the HFS Flle System Coe
Corruption of the File System .
Detection and Correction of Corruptlon .
File Format and Compatibility . .
File Protection
File Sharing and Lockmg
The File System Buffer Cache
Magnetic Tape Co
Magnetic Tape Deﬁnltlons e
Preventive Maintenance . Coe e
Tape Streaming
Optical Technology . . .
Rewritable Optical .
Why Use Rewritable Opt1cal‘7 .
Hewlett-Packard’s Rewritable Optical Products .
HP Series 6300 Model 650/A - Optical Disk Drive
Optical Disk Drive Guidelines
HP Series 6300 Model 20GB/A - Optlcal Autochanger
Optical Autochanger Guidelines R
Memory Management
Overview
Logical Address Space Management
Physical Memory Utilization .
Swap Space Management
Shared Code
Demand Load oo
Device I/0
Device Classes . . .
Drivers ..
Cluster Concepts .
Why Use a Cluster? e
What is an HP-UX Cluster? R .
Model of Cluster System Admlnlstratlon Coe
Comtext

Contents-2

2-12
2-13
2-14
2-20
2-23
2-25
2-25
2-31
2-32
2-38
2-40
2-42
2-42
2-47
2-47
2-51
2-51
2-52
2-53
2-53
2-54
2-54
2-55
2-58
2-58
2-59
2-62
2-63
2-65
2-67
2-68
2-68
2-68
2-69
2-69
2-71
2-74
2-77

Context Dependent Files (CDFs) 9278

CDF Examples C e e e oo oo 2-85
Cnode-Specific Device Flles . X ¢)
Cluster Server Processes 929
Process IDs e e e .. 294
Swapping in a Cluster 2-95
Tips on Customizing your Cluster e e e L2996
Changes to Commands and Files 9297
Subsystem Administration 2105
3. System Startup and Shutdown

System Startup Functions - |
Booting the System (Standalone or Root Server) -)
Booting a Cluster -)
Overview of Internal Functlons of System Startup - 84
The Boot ROM 38
HP-UX Takes Control 315
HP-UX Starts the Init Process 3-16
Init Brings the System to Run-Level 2 5 ¢
Init Spawns gettys to Cause a Login Prompt 3-23
A User LogsIn - % |
System Administration Mode e e e 3-26
Booting Problems 327

Shutting Down the System . . . e e o 328
Shutting Down for System Malntenance e) 1<
Halting or Rebooting the System 329
Shutting Down a Cluster 330

Power Fail or Disk Crash Recovery 3-32

4. Customizing the HP-UX System

Changing the HP-UX Environment Files 4-3
/ete/inittab L. 0.0 L. 43
Jete/re . ..o oL L. ... 44
/etc/passwd L L. T
Jetc/group 44
Jetc/motd 44
/usr/news e 4-5
/ete/profile or /etc/csh 1og1n e 4-5

Contents-3

fete/wtmp oL ... 45

Jete/btmp L. 46
Jetc/utmp L. ... 46
/etc/securetty 48
$HOME/ .profile, $HOME/ cshrc $HOME/ logln or
$HOME/ .environ . . . R
$HOME/exrc 48
Jusr/lib/terminfo 438
Jetc/checklist 48
/etc/ecatman 49
/etc/issue B S 4
/ete/csh.login, /etc/rc and /etc/proﬁle R 2 4
Jusr/lib/tztab 0L 411
Jetc/ttytype L. 411
Adding Peripheral Dev1ces O o 1)
Overview of the Task 4-12
Miscellaneous Devices 418
Terminals and Modems 4-19
Pseudo Terminals 436
Hard Disks . . . 4-39
Rewritable Optical Dlsk Dr1ves and Optlcal Autochangers 4-46
‘Flexible Disk Drive 458
Cartridge Tape Drive 461
Nine-Track Magnetic Tape 463
Plotters and Digitizers 466
HP-HIL Devices 4868
GPIO Devices 4-68
Setting Up Data Communlcatlon on your System 4-69
Setting the Terminal Characteristics 471
Selecting a Value for the TERM Variable 4-71
Setting TERM with the tset Command 473
Adding to /etc/checklist 474
Configuring your HP-UX Cluster 478
Prerequisites and Assumptions 478
HP-UX Cluster Information Sheet 4.78
Creating the Clustered Environment 4-83
Adding a Diskless Cluster Node 4992
Before Addinga Cnode 492

Contents-4

C

Procedure . . .
After Adding a Cnode .
Removing and Renaming a Cluster Node
Removing a Diskless Cluster Node
Renaming a Diskless Cluster Node
Creating a New File System . . .
Prerequisites
Creating the File System
After Creating the File System .
Enabling Long File Names
Main Differences Between Long and Short Flle Names
Long File Names or Short File Names? e
Enabling Long File Names on an Existing File System
Long File Names and Your System .
Creating System Run-Levels . .
Guidelines for Creating New System Run Levels
Example /etc/inittab File . .
Creating and Using a Recovery System
Creating a Recovery System . . .
Using the mkrs Script . . Ce e
Booting and Using the Recovery System
Shutting Down the Recovery System
Recovering the System Manually . .
Mounting and Unmounting File Systems
To Mount a File System . . .
To Unmount a File System .
Mounting/Unmounting File Systems Usmg / e‘cc / checkhst
Mounting the /usr File System Ce e
Removing Optional Products and Filesets .
The reconfig Command
Using reconfig .
Additional Notes on reconﬁg Ce
Setting Up Printers and the LP Spooler .
What Is in This Section . . .
LP Spooler Terminology and Overv1ew
Installing Printers and the LP Spooler .
Configuring the LP Spooler for Remote Operatlon
General-Purpose LP Spooler Commands

4-92

4-98

4-102
4-102
4-106
4-107
4-107
4-108
4-109
4-113
4-113
4-114
4-115
4-118
4-125
4-126
4-127
4-129
4-130
4-132
4-133
4-135
4-135
4-140
4-141
4-144
4-145
4-146
4-148
4-149
4-150
4-153
4-154
4-155
4-156
4-157
4-168
4-172

Contents-5

System Administrator LP Spooler Commands 4-174

Remote Spooling Commands 4-175
LP Spooling Directories . . . O i (]
LP Spooler Administrator Dutles P S i
How Models Work . . . oo .. 4181
Setting Up a Printer (the Manual Method) Coeo oL 4182
The LP Spooler in an HP-UX Cluster 4-184
LP Spooler Errors 4-184
Installing Optional Software and Updatmg Your HP UX
Kernel e e o oo ... 4186

Update Process Overv1ew . 4-187
Overview of Updating if You Wlll Use an HP UX Cluster 4-188
General Discussion of the Update Process 4-189
Preparing to Modify Your System 4-191
Updating or Installing Optional Software from Cartrldge

Tape 4-196
Updating or Instalhng Optlonal Software from Flex1ble

Disk 4212

5. Periodic System Administrator Tasks
Adding/Removing Users . . . s

Adding a New User (Using Reconﬁg) O o
Adding a New User (the Manual Method) 512
Creating the /etc/passwd Entry 514
Setting the New User’s Password 516
Removing a User (Using Reconfig) 517

Removing a User from the System (the Manual Method) 5-20

Suspending a User from the System 5-20
Backing Up and Restoring the File System 5291
Background Information b-21

Backing Up your File System Usmg the Backup Scrlpts . B-27
Backing Up the File System Using the Fbackup Command 5-32
Backing Up the File System Using the Optical Disk

Autochanger 536
Backing Up Selected Files onto Cartrldge Tape e 5-41
Backing Up Selected Files onto Flexible Disk or Magnetlc

Tape 5-42

Backing Up Selected Flle Onto Rewr1table Optlcal Dlsks 5-43

Contents-6

C

N
/
S

Restoring the System . R
Performing Backups Automatlcally .

Changing a Password . . .

Changing the System’s Run- Level .
Entering Run-Level s (The System Admlmstratlon Mode)
Changing Run-levels e
Run-Level Review

Creating Groups/Changing Group Membershlp

Communicating with System Users . .

Controlling Disk Use

Initializing Media .

What Needs to be Inltlahzed‘?
Prerequisites .

Using mediainit Ce
Initializing Media to LIF Format .

Setting the System Clock
Setting the Time Zone
Setting the Time and Date
Possible Problems When Changlng the System Clock .

Transferring Files . . e
cpio
tcio . .
tar
dd

LIF Utilities . . .
UucCPp .
Local Area Network
Virtual Terminal . .
Moving Directories .

Kernel Customization

Introduction .

Using the config Command C
Files Required for the config Process
Running config . .

Configuring Device Drivers and I/ O Cards .
Sample Configuration Description Files
Determining the Required Device Drivers

5-43
5-47
9-50
5-51
5-51
9-52
5-53
5-54
5-56
5-58
9-61
9-61
5-62
5-62
9-64
9-66
5-66
9-67
5-68
9-70
5-70
5-71
9-72
5-73
5-73
9-76
9-77
5-77
5-77

6-1
6-3
6-3
6-3
6-8
6-8
6-11

Contents-7

Configuring Swap Space .

Overview of Creating More Swap Space on an Addltlonal

Disk
Step 1: Initialize the Media
Step 2: Determine the Amount of Swap Space Needed
Step 3: Create the File System on the New Disk
Step 4: Add the Appropriate Entries into Dfile . . .
Step 5: Edit the /etc/checklist file
Step 6: Execute the Config Command

Step 7: Enable the New Swap Space if You Sklpped Step

5 .
Possible Swap Setups . .. Co
Configuring Operating System Parameters .o

HP-UX Operating System Parameters
System V IPC Code

Configuring Device Drivers and I/ O Cards Usmg reconﬁg .

Creating the Minimum Operating System

Creating a Fully Loaded Operating System

Creating a Custom Operating System . .
Creating a New Kernel in an HP-UX Cluster
Local and Remote Swapping in an HP-UX Cluster

7. System Accounting

What Is in This Chapter? . .

Installation and Daily Usage .
How to Install System Accounting
Summary of Daily Operation

Overview of System Accounting
Definitions
Introduction to Commands
System Data Flow .
Login and Directory Structure .

Disk Space Usage Accounting
Reporting Disk Space Usage . -
Creating Total Accounting Records . .

Connect Session Accounting
Writing Records to wtmp — acctwtmp .
Displaying Connect Session Records - fwtmp

Contents-8

6-13

6-15
6-16
6-16
6-22
6-22
6-23
6-24

6-24
6-24
6-29
6-30
6-31
6-33
6-33
6-38
6-41
6-52
6-56

7-3
7-3
7-5
7-7
7-7
7-9
7-13
7-15
7-17
7-17
7-21
7-23
7-23
7-24

)

-
“

S

S

Fixing wtmp Errors ~ wtmpfix
Creating Total Accounting Records . .
Process Accounting . .
Turning Process Accountlng On
Turning Process Accounting Off
Checkmg the Size of pacct e e
Command Summary Report — acctems
Creating Total Accounting Records .
Charging Fees to Users — chargefee . . .
Summarizing and Reporting Accounting Informatlon
Displaying Total Accounting Records — prtacct .
Merging Total Accounting Files — acctmerg .
Creating Daily Accounting Information — runacct . . .
Displaying runacct Reports — prdaily e
Creating Monthly Accounting Reports — monacct .
Updating the Holidays File .
Fixing Corrupted Files
Fixing wtmp Errors .
Fixing tacct Errors . . .
Sample Accounting Shell Scrlpts
grpdusg
acct_bill
System Accounting Files e e
Files in the /usr/adm Dlrectory e e
Files in the /usr/adm/acct/nite Dlrectory S
Files in the /usr/adm/acct/sum Directory . . .
Files in the /usr/adm/acct/fiscal Directory

8. Trusted Systems

Components of System Security Co
Physical Security
Procedural Security
System Securityo
Security Policy e

Converting to a Trusted System

Trusted Computing Base (TCB) Ce e
Introduction tothe TCB

7-26
7-26
7-30
7-30
7-32
7-32
7-35
7-44
7-48
7-50
7-51
7-51
7-54
7-58
7-64
7-67
7-68
7-69
7-69
7-70
7-71
7-71
7-73
7-77
7-77
7-78
7-79
7-79

Contents-9

Partsof the TCB 89

Access Control Lists (ACLs) 810
Auditing . . . S B |
Auditing Concepts P - 55 5
Auditing Tasks Coe oo 820
Starting or Halting the Audltmg System e e e o821
Selectively Auditing Users 823
Auditing Selectively by Events 824
Display the Auditing Information 826
Audit Overflow Prevention and Handling 828
Auditing in Subsystems and Applications 830
The Password File 832
Security Procedure Awareness 833
Additional Changes to Your System to Improve Securlty 8-33
System Administration Security Practices 834
Performing General Administration Tasks in a Trusted
System 837
A. Using the fsck Command
Introduction . . . - O |
fsck Errors That May Occur -
Initialization Phase Errors o
Phase 1 Errors: Check Blocks and Slzes -)
Phase 1b: Rescan for More Dups A-13
Phase 2: Check Path Names A-13
Phase 3: Check Connectivity Y O ¢
Phase 4: Check Reference Counts A-20
Phase 5: Check Cylinder Groups A-2923
Phase 6: Salvage Cylinder Groups A-25
Cleanup A%
B. Troubleshooting
System Run-Time Errors B2
Kernel Exrors B2
File System Errors B4
Error Messages s e e B
Booting Diagnostic Errors e B-5
Error Messages During Login B-6

Contents-10

Unable to Access a Peripheral Device Bs

Dealing with an Unresponsive Terminal B9
N Backup Recovery Errors B-10
b Update Errors B-13
Errors During Update e o S
To check your tapes: e B8
HP-UX Cluster Troubleshooting B17
Unsolved Problems B-17
Flowchart Format . . . e - B-18
Diskless Boot Troubleshootmg e e B8
Possible Boot Daemon Error Messages B-43
Possible Panic, Retry, and Other System Messages on
Diskless Cnodes B-46
System Messages Cont.) B52
LAN Cable Break Detection Behav1or .o B-52
Unable to Login or Rlogin to a Diskless Cnode B-55
C. Partitions and Filesets
u How Partitions and Filesets Work (-1
Dependent Filesets R 05
Mandatory vs. Non-mandatory Partltlons B o)
Which Filesets DoI Want? (3
Filesets and Their Functions (C4
Filesets, Dependencies, and Sizes (9
Recoverlng Lost Files . . . co C-15
Recovering Files Required For Update e e o C-16
How to List Files 17
List of AXE System Files (18
Partition SYS_.CORE (18
Partition TEXT C2A4
Partition SYS_TOOLS (9%
Partition STARBASE (=28
Partition X11IWINDOWS (29
SN Partition WINDOW C-33
U Partition PROG_LANGS C34
Partition MISC_UTILS (34
Partition NLS (45
List of PE System Files (48

Contents-11

Partition SYS_.CORE

Partition TEXT . . .
Partition SYS_TOOLS

Partition STARBASE . .

Partition X11WINDOWS
Partition WINDOW .
Partition PROG_LANGS
Partition MISC_UTILS .
Partition NLS

D. Operating System Parameters
acctresume
acctsuspend
argdevnblk e
dos_mem_byte
dskless_cbufs
dskless_fsbufs
dskless_mbufs
dskless_node . .

dst

filesizelimit

fpa

maxdsiz
maxssiz . .
maxswapchunks

maxtsiz . .

maxupre

maxusers .

mesg
minswapchunk

msgmap . .
msgmax . .
msgmnb . .
msgmni .
msgseg
mMsgssz
msgtql
nbuf

Contents-12

C-48
C-49
C-79
C-84
C-89
C-95
C-98
C-102
C-104

D-2

D-4

D-6

D-7

D-8

D-10
D-12
D-14
D-15
D-16
D-17
D-18
D-19
D-20
D-22
D-23
D-25
D-27
D-28
D-29
D-31
D-32
D-33
D-34
D-36
D-38
D-39

.

ncallout
ndilbuffers . .
netmeminit
netmemmax .
netmemthresh
nfile

nflocks

ngesp . .
ninode

nproc .

npty

ntext
num_cnodes . .
num_Jan_cards .
parity_option
scroll_lines .
selftest_period .
sema, .
semaem . . .
semmap . . .
semmni
semmns . .
semmnu
semume . . .

semvmx . .

server_node .
serving_array_size

shmall

shmbrk

shmem

shmmax . .

shmmaxaddr . .

shmmin
shmmni

shmseg
timeslice

timezone .
unlockable_mem

D-41
D-43
D-44
D-45
D-46
D-48
D-49
D-50
D-52
D-53
D-55
D-56
D-57
D-59
D-60
D-62
D-63
D-64
D-66
D-68
D-70
D-71
D-72
D-74
D-76
D-77
D-79
D-81
D-82
D-83
D-84
D-85
D-86
D-87
D-88
D-89
D-91
D-92

Contents-13

using_array_size

Swap Space Parameter In

Index

Contents-14

teraction

D-94
D-96

O

(5

Getting Started

Welcome

This manual is written for you, the Series 300 HP-UX system administrator.
Although some familiarity with computers is assumed, this manual will serve
people with varying levels of expertise. The HP-UX operating system is composed
primarily of AT&T Bell Laboratories’ System V.2 UNIX.!

However, Hewlett-Packard has incorporated its own extensions as well as features
from the University of California at Berkeley Unix 4.1 and 4.2 BSD (Berkeley
Systems Distribution) systems and from AT&T’s System V UNIX.

Who is the system administrator? The system administrator is the person
responsible for installing the HP-UX operating system software, updating the
software, tuning the system for optimum performance, maintaining the system,
and repairing the system if something goes wrong. Additionally, the system
administrator should become the local expert to whom other HP-UX users go for
help.

1 UNIX is a registered trademark of AT&T in the USA and other countries.

Getting Started 1-1

What’s in this Manual?

This manual is a guide to help you fulfill your duties as system administrator.
The following is an overview of the chapters in this manual:

m Chapter 1: Getting Started

This chapter provides an overview of the System Administrator Manual,
explains the conventions the manual uses, mentions other manuals that
will aid you in administrative tasks, points out differences between single-
user and multi-user systems, and discusses the system administrator’s
responsibilities.

m Chapter 2: System Management Concepts

This chapter discusses the HP-UX directory structure, processes, IDs,
the super-user, file system implementation, magnetic tape, memory
management, HP-UX cluster concepts, and device input and output.

m Chapter 8: System Startup and Shutdown

This chapter discusses system startup functions, performing a controlled
shutdown of the system, and recovering from a power failure or a disk
crash.

m Chapter 4: Customizing the HP-UX Operating System

' Arranged alphabetically by task, this chapter contains instructions for
accomplishing tasks to customize the system.

m Chapter 5: Periodic System Administrator Tasks

There are a variety of tasks that the System Administrator must perform
on a regular basis to maintain the integrity and functionality of the
system. This chapter defines these tasks.

1-2 Getting Started

m Chapter 6: Kernel Customization

Various attributes of the kernel (operating system) may be customized to
enhance the performance of your system. The configuration changes that
are explained in this chapter will help you in this task.

m Chapter 7: System Accounting

As system administrator you may want to periodically evaluate how well
your Series 300 HP-UX system is operating, as well as how many resources
those logging onto your system are using. This chapter discusses the
various accounting features available on HP-UX, how to install them,
and how to produce various useful reports.

m Chapter 8: Trusted Systems

This chapter describes concepts and tasks associated with security, as
defined by the government, at the C2 level.

Conventions Used in this Manual
The following font style conventions are used throughout this manual:

m Computer font indicates a literal either typed by the user or displayed by
the system. You must press the key after typing the command.
A typical example is:

fsck /dev/dsk/0s0

Computer font also indicates files, HP-UX commands, system calls,
subroutines, etc. Examples include /etc/profile, date, and getpid.

» Boldface is used when a word is first defined (as flebnee).

Getting Started 1-3

m Italics is used when terms are referenced to the HP-UX Reference. Italics
is also used to indicate the titles of manuals, as well as for symbolic items
either typed by the user or displayed by the system as discussed below.

Note that when a command and/or file name is part of a literal, it is
shown in computer font and not italics. However, if the command or file
name is symbolic (but not literal), it is shown in italics as the following
example illustrates:

fsck device_file_name
Here you would type in your own device_file_name.
Italics is also used for general emphasis (do not touch).

When the use of softkeys (or function keys) is discussed, the softkey will
be shown in heavy bold type with a box. For example, a softkey labeled

“PREVIOUS” will be printed as .

Environment variables such as PATH or MAIL are represented in
uppercase characters.

Quotation marks are used for chapter and section titles. Quotation marks
are also used to emphasize unusual terms that may be typical for general
computer usage, but are not standard English.

Unless otherwise stated, all references such as “refer to the login(1) entry
for more details” refer to entries in the HP-UX Reference manual. The
parenthetic number refers to the section in the HP-UX Reference. Some
of these entries will be under an associated heading. For example, the
chgrp(1) entry is under the chown(1) heading. If you cannot find an entry

where you expect it to be, use the HP-UX Reference manual’s permuted
index.

1-4 Getting Started

o

Using Other HP-UX Manuals

Besides this manual, the HP-UX manuals listed below will aid you in your system
administrator tasks:

m The installation guide for your specific Series 300 computer contains
instructions for installing the computer hardware, interface cards, and
peripherals. The guide supplies all the hardware-specific information
needed to set up the HP-UX system.

m The HP-UX Installation Manual provides step-by-step instructions for
installing the HP-UX operating system software and explains what to do
after the system has been successfully installed.

m There are several beginner guides to help you get started with HP-UX,
the vi editor, and shells.

m The HP-UX Reference contains the syntactic and semantic details of
all commands and application programs, system calls, subroutines,
special files, file formats, miscellaneous facilities, and system maintenance
procedures available on the Series 300 HP-UX operating system. Use this

manual when looking for complete specifications of a command or a, special
file.

m The multi-volume set of HP-UX Concepts and Tutorials contains informa-
tion on a broad range of HP-UX topics and tools. You may be particularly
interested in the sections on UUCP and on the different shells. Refer to
the Documentation Roadmap or the HP-UX Concepts and Tutorials for
a list of topics.

m Manuals provided with optional products or applications, such as Local
Area Network (LAN) or XWindows, provide information specific to the
product.

m Peripheral Installation Guide describes how to set switches and connect
peripherals to your Series 300 computer.

Getting Started 1-5

The Administrator’s Responsibilities

This section contains a brief discussion of the system administrator’s responsibil-
ities and tells you where to find related information.

Installing and Testing the Hardware

As system administrator, you should make sure that your computer is installed
and operating properly by using the instructions and tests in the installation guide

supplied with your computer. The computer hardware must function properly
before HP-UX is installed.

Evaluating Users’ Needs

You must analyze the intended uses of the system. Knowledge of the number
of users, the characteristics of each user, the system resources and peripherals
required by each user, and the data/programs that must be shared by various
user groups, will help you set up HP-UX for optimum performance. This also
applies to single-user systems.

To aid you in this analysis, a sample user-survey form is provided at the end of
this chapter. You may want to change this survey to fit your particular needs.
Most users think in terms of “I need to do this job” not “I need FORTRAN,
Graphics, a plotter, and 500 000 bytes of data storage.” The survey should help

you identify the needs of the system users and translate those needs into data
relevant to system configuration.

Installing the HP-UX Operating System

The HP-UX operating system is supplied either on a 1/4 -inch cartridge tape or
on 3 1/2 inch flexible disks. The operating system is installed on a hard disk drive.
As system administrator, you are responsible for installing HP-UX. Instructions
for accomplishing this task are provided in the HP-UX Installation Manual.

1-6 Getting Started

|
Y,
. ¥

c

Configuring the HP-UX kernel

How the operating system uses computer resources depends on certain values and
configurations that you control. Configuring the system influences its efficiency
and response time. Once familiar with the system, you can use the instructions
in Chapter 6 of this manual to alter the system configuration.

Allowing Users Access to the System

Once HP-UX is installed, you are responsible for allowing access by other users.
This involves providing each user with a user name, a password, and a portion of
the file system for his use. Instructions for adding users and assigning passwords
are contained in Chapter 5 of this manual.

Adding and Moving Peripheral Devices

Another responsibility is to add peripherals (for example, printers, terminals,
mass storage devices) to the HP-UX system as they are required. Directions for
installing the peripherals are in Chapter 4 of this manual.

Monitoring File System Use and Growth

As HP-UX is used, files are added to the file system. If unused files are not
removed, the amount of space required to store files eventually exceeds available
space. One of your responsibilities is to monitor the size of the file system and
identify unused files. Unused files should be archived (if needed in the future)
and then removed from the file system. Also, you should watch for files that
continually increase in size. Ask the file’s owner to see if the file is needed, and
to see if its size can be reduced. Instructions for monitoring the use and growth
of the file system are supplied in Chapter 5 of this manual.

Updating the HP-UX System

You will receive software updates by purchasing HP support services that provide
periodic updates. These updates change existing capabilities and add new
capabilities, ensuring that your system contains the latest version of the software.

As system administrator, you are responsible for installing each software update.
You should update the manuals to include the documentation changes provided

Getting Started 1-7

with each update and keep a log showing when the update was installed. Notify all
system users of the changes caused by the update. Because each update depends
on changes made by the previous update, you must install each update when it
arrives. Instructions for installing updates are in Chapter 4 of this manual.

Back Up, Recovery, and Restoring the System

The HP-UX operating system, programming languages, and applications software
represent a large investment of time and money. Files can be unintentionally
removed and each access to the system provides an opportunity for error. A
critical error can cause additional errors in the file system and, if the system
becomes corrupt enough, file system errors increase rapidly.

Loss of the system can also occur through unwelcome circumstances (such as
spilled coffee, smoke contamination, dust, or fire) that damage a mass storage
device, its media, and/or the data it contains.

As system administrator, you should make a file system backup and a recovery
system. A backup is a copy of the HP-UX operating system, file system, and

programming languages. A recovery system is a bootable subset of HP-UX and
is created with the mkrs command.

If your system is destroyed, you can recover by using a combination of your
recovery system and your latest backup. If a user accidentally removes a needed
file, the file (or a previous version of it) can be recovered by copying it back into
the file system from the backup. Note that a system backup is the only way to
recover a deleted or destroyed file.

Instructions for backing up the system are given in Chapter 5 of this manual.
Instructions for creating a recovery system are given in Chapter 4.

Detecting/Correcting File System Errors

Every day the system is used, numerous files are created, modified, and removed;
each action requires an update to the file system. With each update to the file
system it is possible that one or more of the updates could fail (for example,

because of abnormal system shutdown). When an update fails, the file system
can become corrupt.

HP-UX provides the fsck command—a program that checks the integrity of
a file system and (optionally) repairs that system. Each time you boot your

1-8 Getting Started

HP-UX system, HP-UX automatically checks to see if your system was improperly
shutdown. If HP-UX detects an improper shutdown, it will automatically check
(and, if necessary, repair) the file system. Additionally, you should check the file
system whenever you observe unexpected system behavior. Continuing to use a
corrupt file system can further corrupt the files and can potentially crash your
system. Instructions for verifying and repairing the file system are located in
Appendix A of this manual and the fsck(1M) entry in the HP-UX Reference.

Assisting Other Users

Since you carry the title “System Administrator”, users may come to you for
help with the system. You should plan to allocate a portion of your time for
consulting and problem solving.

If you have purchased certain support services, you have access to direct technical
support from Hewlett-Packard. As the system administrator, you are the only
person authorized to use this service. If other system users have difficulty with
the system, they should direct their questions to you. If you cannot solve the
problem, then call your support person at Hewlett-Packard.

Providing a “Back-up” Administrator

At least one other person should be trained as the system administrator to handle
your responsibilities if you are gone.

To ease your job as system administrator and the job of the “back-up” system
administrator, you should automate as many of your tasks as possible.

Getting Started 1-9

User Survey

Location where you will use the system:

User Category (please check all that apply):

— Engineers and Run existing application programs;
Managers enter date, create models.

. Technical Data Run existing application programs;
Entry Operator enter data or automatically read data

from instrumentation.

- Secretary - Word Run existing application programs;
Processing Operator enter data/text.

.. General Programmer Develop application programs.

_ System Programmer Develop programs for improving N ,)
Support Personnel computer system performance or

for use by other programmers.

1-10 Getting Started

What computer hardware or peripherals will you need to access?

- Inkjet printer — Plotter
- Impact printer — Removable mass storage devices
. Graphics terminal .. Other

- Laser printer

Are there other users with whom you want to share programs or data?

If so, list them.

Will you generate or use large amounts of data?

If so, how much must be "on-line" (accessible at all times)?

Which programs are interactive, which will you run in a background mode?

Can any programs be run overnight?

Getting Started 1-11

Contents

2. System Management Concepts
The HP-UX Hierarchy
Processes

Process Creatlon (Parent and Chlld Processes) o

Using fork . .

Using exec .

Using vfork
Process Termination

Process Groups

Terminal Affiliation . . .
Open Files in a Process .
IDs . Coe
The Superuser
File System Implementatlon C
Disk Layout
The Boot Area . . .
The Cylinder Group
Data Storage
Allocation of Disk Space
Allocation Policies . . . o
Updating the HF'S File System .
Corruption of the File System
Improper System Shutdown and Startup
Hardware Failure . .

Detection and Correction of Corruptlon

Superblock Consistency .
File System Size .
Free-Block Checking
Inode Checking

2-2
2-6
2-6
2-6
2-7
2-7
2-8
2-8
2-9
2-9
2-10
2-12
2-13
2-14
2-15
2-16
2-20
2-21
2-22
2-23
2-25
2-25
2-25
2-25
2-26
2-26
2-27
2-27

Contents-1

Inodes) 1 ¢

Format and Type C e e L. 2-98
Link Count 298
Duplicate Blocks 9298
Bad Blocks 299
Inode Size 9229
Indirect Blocks 230
Data Blocks B s 0]
Uncorrectable File System Corruptlon 5 |
File Format and Compatibility 231
File Protection 232
Protecting Directories . . . s Lo 2234
Setting Effective User and Group IDs . 5215
The Sticky Bit C e e o oo 238
File Sharing and Locking 238
Advisory Locks 238
Enforcement Mode 239
Locking Activities 240
The File System Buffer Cache P (4]
Magnetic Tape . . . Coe s 2242
Magnetic Tape Deﬁnl‘mons e s 2242
Coding 242
bpi . . . A K
Cyclic Redundancy Check C e e e oo 2-43
Endof Tape 243
File Marks . . e e P . ¥
Foil Mark 244
Load Point . . . e s 244
Magnetic Tape (Magtape) R
Operations L 2 1
Records . e e 1)
Tape Density 245
Tracks . . . B, T
Write/Read Errors C e oo 2446
Write Ring 246
Preventive Maintenance 247
Tape Streaming 247
Immediate Response 248

Contents-2

Pre-5.0 Drivers . e
9.0 and later Drivers
Backward Compatibility . .
Optical Technology
Rewritable Optical
Why Use Rewritable Optical?
Hewlett-Packard’s Rewritable Optlcal Products
HP Series 6300 Model 650/A - Optical Disk Drive
Optical Disk Drive Guidelines
HP Series 6300 Model 20GB/A - Optlcal Autochanger
Optical Autochanger Guidelines . R
Memory Management
Overview Ce
Logical Address Space Management Coe
Physical Memory Utilization .
Swap Space Management e
Shared Code
Shared Code and the Stlcky Bit
Shared Code: Benefits vs. Cost . .
Shared Code in an HP-UX Cluster
Demand Load
Device I/O
Device Classes . .
Drivers Coe
Cluster Concepts . .
Why Use a Cluster?
What is an HP-UX Cluster‘? .
Requirements
Setups
Model of Cluster System Admlmstratlon
Single-Point System Administration
Much like a Standalone System .
Some Files Must Have Multiple Vers1ons
Tasks Restricted to Specific Cnodes .
List of System Administration Tasks
Context
Getting the Context
Context Dependent Files (CDFS) .

2-48
2-49
2-50
2-51
2-51
2-52
2-53
2-53
2-54
2-54
2-55
2-58
2-58
2-59
2-62
2-63
2-65
2-66
2-66
2-66
2-67
2-68
2-68
. 2-68
2-69
2-69
2-71
2-72
2-72
2-74
2-74
2-74
2-74
2-74
2-75
2-77
2-78
2-78

Contents-3

Using CDFs . .

Some Reasons for Havrng CDFS
CDF Implementation . .
Creating CDF's .

Removing a CDF
Finding CDF's

Tips and Cautions

Context Attributes and CDFS
Autocreation .

CDF Examples . Coe .
Example: Listing CDFs Coe
Example: Displaying files within a CDF
Example: Creating a CDF . .

Example: Changing directories wrthln a CDF

Example: Removing files from a CDF' . .

Example: Problems from using the “default” context

Example: Removing a subfile in a CDF containing
multiple context attributes

Cnode-Specific Device Files

Cluster Server Processes

Limited CSP
General CSP
User CSP
Process IDs .
Swapping in a Cluster . .
Remote swapping .
Local swapping . .

Tips on Customizing your Cluster .
Using NFS in an HP-UX Cluster .
Syncing the System .

Using reconfig in an HP- UX Cluster
CSPs . . . -

Changes to Commands and Frles .

System Administration Commands and the Root Server
System Administration Commands that Change

New System Administration Commands . . .

New Files: /etc/clusterconf

System CDF's

Contents-4

2-79
2-79
2-80
2-81
2-82
2-82
2-82
2-84
2-84
2-85
2-85
2-86
2-86
2-87
2-88
2-89

2-89
2-90
2-92
2-92
2-93
2-94
2-94
2-95
2-95
2-95
2-96
2-96
2-96
2-96
2-96
2-97
2-97
2-97
2-98
2-99
2-101

Subsystem Administration .
System Accounting . . .

Mail
LP Spooling . .
uucCP

Cron

2-105
2-105
2-105
2-105
2-105
2-105

Contents-5

2

System Management Concepts

This chapter discusses several essential concepts needed to manage an HP-UX
system. These concepts include:

m the HP-UX directory structure

m processes

m [Ds

m the superuser

m file system implementation

m magnetic tape

B memory management

m device input and output

m HP-UX clusters

It is not necessary to understand all of these concepts in depth; however, you
should at least be familiar with the terms.

System Management Concepts 2-1

The HP-UX Hierarchy

The file system of HP-UX is organized in a tree structure. The base of the tree is
the root of the file system, and the file name / is associated with the root. Under
the root are several directories created when you installed your system: bin, dev,
etc, 1ib, system, tmp, users, disc, lost&found, and usr.

This section describes the basic purpose of the major directories in your HP-
UX hierarchy. This discussion includes not only the eight standard directories
mentioned above but also many directories below the standard directories in the
file system tree structure. You will find this useful as you add files and modify
your system in the future. A brief description of the major directories follows.

D
COEEDECOCETOEDEDEDCD

Dﬁﬂle info

COETOED
LSS To5e
Obbb

Figure 2-1. HP-UX Tree Structure for Major Directories

2-2 System Management Concepts

Directory

Description

/bin
/dev
/disc
/et

/etc/newconfig

/ete/newconfig/Update_info

/ete/conf
/ete/filesets

/lib

/system

/tmp

/users

Contains frequently used commands.

contains special device files used to communicate

to peripherals. For more information, refer to
mknod(1M).

empty directory left by Install. This is a common
place to mount other file systems.

all system administrative commands and configuration
files reside here.

new versions of customizable configuration files and
shell scripts are stored here following an update. You
should keep these files intact here for future reference.

information on your release of HP-UX and optional
software products.

kernel configuration files.

contains a list of all filesets loaded onto your system.
Do not remove anything from this directory.

frequently used object code libraries and related
utilities are placed in this directory.

contains revision lists and customize scripts from
updates, installs, and the reconfig program. Do not
remove anything from this directory.

a place to put temporary files (those normally with
short lifetimes that may safely be removed after a few
days).

user home directories go below this directory.

System Management Concepts 2-3

Directory

Description

/usr

/usr/adm
/usr/bin

/usr/contrib

/usr/contrib/bin
/usr/contrib/lib

/usr/contrib/man

/usr/include
/usr/include/local
/usr/include/sys
/usr/lib

/usr/local
/usr/local/bin
/usr/local/lib

/usr/local/man

less frequently used commands and other
miscellaneous files are stored under this directory.

system administrative data files reside here.

less frequently used commands and those not required
to boot, restore, recover, and/or repair the system go
here.

contains any contributed files and commands (from
user groups).

any contributed commands are placed here.
any contributed object libraries are placed here.

the on-line documentation for any contributed files, is
placed in this directory.

high-level C language header files (shared definitions).
localized (site-specific) C language header files.
low-level (kernel-related) C language header files.

less frequently used object code libraries, related
utilities, Ip commands, and miscellaneous data files go
here.

localized (site-specific) files should be placed here.
localized (site-specific) commands should go here.

localized (site-specific) object code libraries are placed
here.

put any on-line manual pages for localized
(site-specific) systems in this directory.

2-4 System Management Concepts

Directory

Description

/lost+found

/usr/mail

/usr/man
/usr/man/catl ... cat9

/usr/man/catl.Z ... cat9.Z
/usr/man/manl ... man9

/usr/man/manl.Z ...
man9.Z

/usr/spool
/usr/spool/cron
/usr/spool/lp
/usr/spool /uucp

/usr/spool /uucppublic

/usr/tmp

where fsck puts orphaned files and directories. This
directory is automatically created by newfs when you
create a file system.

where your mail box resides.

all on-line documentation shipped with your system
can be found here.

man(1) pages already processed to speed access go
here.

compressed version of the cat directories.

the unformatted version of man(1) pages.

compressed version of the unformatted man pages.

spooled (queued) files for various programs.
spooled jobs for cron and at.
control and working files for the Ip spooler go here.

queued work files, lock files, log files, status files, and
other files for uucp.

used for free access of files to other systems via uucp
or LAN.

an alternative place (to /tmp) in which to place
temporary files; this directory is usually used when
there are many files and/or the temporary files may be
very large.

System Management Concepts 2-5

Processes

A process is an environment in which a program executes. It includes the
program’s code and data, the status of open files, the value of all variables, and
the current working directory. Each process is associated with a unique integer
value (called the process ID) which is used to identify the process.

Process Creation (Parent and Child Processes)

A process consists of a single executing program at any given time. However, a
process can create another process to:

m concurrently execute another program
m execute another program and wait for its completion

A new process is created when a program executes either the fork or the vfork
system call. The terms parent process and child process refer to the original
process and the process which it created, respectively.

The following sections explain the use of fork, exec, and vfork system calls

you initiate from your program. They are also documented in section 2 of the
HP-UX Reference.

Using fork

When a child is created with a fork system call, nearly all code and data is copied
from the parent to the child. Only shared code and shared memory segments are
not copied (the child process uses the same shared code as the parent process
instead of creating a separate copy for itself). Thus, the child process is nearly
identical to the parent process (with the exception of its process ID); it has exact
copies of the parent’s code, data and current variable values.

When the fork system call is executed, the system must have enough free swap
space to duplicate the parent process or the call to fork fails. Once the child
process is created, both processes begin execution from the completion of the call
to fork (at the program statement immediately following the call to fork).

The fork system call returns the actual process ID of the child (a non-zero
value) to the parent process, while the identical call in the child’s copy of the
code always returns zero. Since the process IDs returned by the fork system

2-6 System Management Concepts

calls are distinguishable, each process can determine whether it is the parent
process or the child process.

For example, suppose that a process consists of a program that tests the life of
car batteries. The program has read 1000 data values from a voltmeter and is
ready to print and plot the data. The program could have been written to do
one task completely (such as printing the data) and then perform the other task.
However, the programmer has included a fork system call in his program at a
location after the data has been read.

When the program completes the statement containing the fork system call, two
nearly identical processes exist. Each process examines the value returned by its
fork system call to determine whether it is the child process or the parent process.
Following the fork statement is a conditional branch statement that states: “If
the process is the child process, it should print the data. If the process is the
parent process, it should plot the data.” Because of the inclusion of the fork
statements and the conditional branch statement, both printing and plotting are
done simultaneously. And because each process has its own copy of the test data,
each can modify the data without affecting the other process.

Using exec

One modification which often follows the fork system call is to exec to another
program. exec is a system call which overlays separate code and data on top of
already existing process code and data. In this manner a parent process is able to
create a new process using fork, and subsequently execute an entirely different
program via exec.

As an example, let’s suppose we are writing a text editor. We would like to let the
user of our editor pause and list directories on the system-—say before choosing
a file to edit. One way of doing this would be to fork a different process, and
then immediately exec the program 1s. Let’s look next at the vfork system call
for a more efficient way of doing this.

Using vfork

Copying a parent process’s code and data to a child process can be time
consuming when a large program or a large amount of data is involved. The
vfork system call provides an alternate way to create a new process in situations
where generating a separate copy of the parent process’s code and data is not
necessary. vfork differs from fork in that the child process borrows the parent

Quetam Manannmans Namana. an N =

process’s memory and thread of control until the child executes either an exec or
exit system call, or it terminates abnormally. The parent process is suspended
while the child uses its resources.

In situations where the child process is simply going to call exec, the parent’s
code and data is not required by the child. If fork is used to create the child
process, time is wasted copying the unneeded code and data. Depending on the
size of the parent’s code and data space, using vfork instead of fork can result
in a significant performance improvement.

Like fork, vfork returns the actual process ID of the child process to the parent
process and returns a zero to the child.

Process Termination
A process terminates when:
m The program that is executing in the process successfully completes.

m The process intentionally terminates itself by calling the exit or _exit
system call.

m The process receives, from any process, a signal for which the default
action is taken (if the default action is fatal).

When a process “dies” (terminates), all open files associated with the process are
closed. System resources associated with the process are de-allocated.

Process Groups

A process group is a set of related processes, such as a parent process, its child
processes and its children’s child processes.

A process group is established when a process calls the setpgrp system call.
The calling process becomes the process group leader; it and all of its future
descendants (such as its child processes and grandchild processes) are members
of only that process group. Process group membership is inherited by a child
process. Descendants already in existence are not placed in the new process
group. Each active member of the process group is identified by the process
ID of the process group leader. The init process is the parent process of all
processes. It initially sets up process groups as it executes commands from the
command field of /etc/inittab.

2-8 System Management Concepts

A signal sent to a process may also be sent to all other members of its process
group. Typically, process groups are used to ensure that when an affiliated process
group leader terminates, all members of its process group also terminate.

Terminal Affiliation

Process groups and process group leaders have significance in that a process group
leader can become “affiliated” with a terminal. All standard input, standard
output, and standard error generated by process group members is, by default,
directed to the affiliated terminal (unless redirected). Affiliation is caused by
an unaffiliated process group leader opening an unaffiliated terminal. Only a
process group leader can become affiliated. At the time of affiliation, the process
group leader cannot be affiliated with any other terminal and the terminal cannot
be affiliated with any other process group. The terminal sends signals to the
members of its affiliated process group in response to the interrupt character

([DEL]), QUIT (as set by the stty command, by default (1J), the

key, or a modem hangup signal.

A child process inherits terminal affiliation when it is created. Thus, if an
unaffiliated process group leader creates a child process, the child process is
unaffiliated, even if the parent process becomes affiliated later.

Open Files in a Process

For a process to access files, it must first open them. HP-UX limits the number of
files that one process can have open to 60. A process inherits all open files from the
parent. Three files that are usually open are: standard input (‘stdin”), standard
output (stdout), and standard error (stderr). When a process terminates, the
system closes any files that this process has open.

System Management Concepts 2-9

IDs

As previously mentioned, each process is assigned a process ID (a unique integer
value) which identifies that process. The process also has associated with it a
real user ID, a real group ID, an effective user ID, and an effective group ID.

A real user ID is an integer value which identifies the owner of the process.
Similarly, a real group ID is an integer value which identifies the group to which
the user belongs. The real group ID is a unique integer identifier that is shared
by all members of a group. It is used to enable members of the same group to
share files without allowing access to these files by non-group members. The real
user ID and real group ID are specified by the file /etc/passwd and are assigned
to the user at login. You can read the /etc/passwd file either from the shell
(using cat, grep, or an editor) or from your program (using the getpwent call).
Refer to the entries for cat(1), grep(1), getpwent(3) and your editor in the HP-UX
Reference for more information.

Effective user and group IDs allow the process executing a program to appear to
be the program’s owner for the duration of its execution. The effective user 1D
and group ID are separate entities and can be set individually. The effective IDs
are usually identical to the user’s corresponding real IDs. However, a program
can be protected such that when executed, the process’s effective IDs are set
equal to the real IDs of the program’s owner. The new effective ID values remain
in effect until:

m The process terminates.

m The effective IDs are reset by an “overlaying” process (a process is
“overlaid” via the exec system call).

m The effective IDs are reset by a call to the setuid system call or the
setgid system call. These calls are both described in the setuid(2) entry
in the HP-UX Reference.

The primary use of effective IDs is to allow a user to access/modify a data file
and/or execute a program in a limited manner. When the effective user ID is
zero, the user is allowed to execute system calls as the superuser (described in
the following section).

2-10 System Management Concepts

For example, suppose that the dean of a university keeps all of his student’s
records in a file on the system. He wishes to enable a professor to modify a
student’s record only for that professor’s class (an English professor shouldn’t
be allowed to modify a student’s grade in physics). The dean first enables the
file containing the student’s records such that only he may read or write to it.
He then writes a program which receives the modifications requested by a user,
checks to see that the user is allowed to make such changes, and then modifies the
record if allowed. Finally, the dean protects the program such that the effective
IDs of the user are set equal to the dean’s real IDs when the program is executed.
Then when the program accesses the student record file, the system allows the
program to read from or write to the file because it believes that the dean is
accessing the file (the effective user and group IDs are that of the dean).

Each process also has a group access list associated with it. A group access
list is a list of up to 20 groups to which the process belongs. A process is
permitted to access the files of any group in this list as though that group was
the process’s effective group ID. The access list is assigned at login based on the
group memberships specified in the file /etc/logingroup.

Security If you have converted to a trusted system you also have an audit
ID associated with each user. This audit ID is not changed, even
when executing programs that use a different effective user ID.
Refer to Chapter 8 for more information.

Svstem Manaaement Concente 9-11

The Superuser

The term superuser describes the system users whose effective user ID equals
0. Users with effective user IDs equal to 0 are provided with special capabilities
by HP-UX (hence the name “superuser”). Many commands and system calls
can be accessed only by a superuser. Other commands and system calls provide
additional features that can be accessed only by a superuser. A superuser is
granted the ability to:

m execute any command in the system, as long as any execute permission
bit is set in the command file’s mode

m override any protections placed on user files
m modify any system configuration files

m add (and remove) users to the system

m perform other system functions

Some superuser commands and some system calls (those used heavily by the
system administrator) require the user’s name to be root and real user ID to be
zero. You should maintain a superuser on the system whose user name is root
and whose real user ID is zero. (This user is often referred to as “the root user”.)
Log in as this user when acting as system administrator, and use it only when
necessary. To prevent other users from accessing superuser capabilities, assign a
password to root. Only you and the “back-up” system administrator(s) should
know this password.

Commands that can damage the system are restricted to the superuser. You
may have users that need to use some of these commands to perform their work.
While it is dangerous to allow users full use of superuser commands, the privileged
group feature of HP-UX allows you to assign a subset of privileged commands
to groups of users. All user processes whose effective group ID matches the ID
of the privileged group, or whose group access list contains the privileged group,
have access to those commands.

For example, someone using the rtprio command can demand prime CPU time.
Or, someone who has unrestricted use of the chown or chgrp commands can
defeat the accounting processes. Refer to the setprivgrp(1M) entry in the HP-UX
Reference for a list of privileges which can be assigned to privileged groups.

2-12 System Management Concepts

File System Implementation

Series 300 uses a file system called the High Performance File System (HFS). the
UNIX tutorial supplied with your HP-UX system discusses the structure of the
file system at the user level and introduces some basic concepts and terms. This
section expands on those concepts and introduces new concepts which are unique
to HFS. This information is useful when verifying, maintaining, and repairing
the HF'S file system(s). For details on how to create your file system, refer to the
section, “Creating a New File System”, in Chapter 4 of this manual.

The files of the HF'S file system are stored on a formatted mass storage medium,
usually a disk. A file is specified by the user with a path name. The method in
which files are stored in HFS is explained in this chapter.

System Management Concepts 2-13

Disk Layout

Each hard disk drive used for the file system begins with an 8 Kbyte volume
header area. The rest of the disk holds the file system and swap area. Each file
system begins with the primary copy of the superblock and consists of one or
more cylinder groups (see Figure 2-2). If you have a hard disk that supports
“hard” partitions, such as the HP 9133H, then you can address each partition

separately (the volume field in the minor address indicates the partition)

8K bytes

8K bytes

Size of Cylinder Groups

can

Vary Between

File Systems-—

See

Section on

Cylinder Groups

2-14

0 or more blocks—
See Section on
Swap Area

Figure 2-2. File System Layout on Disk

LIF
Volume
Header

Unused

Boot Area

Volume Directory

Information

Primary
Superblock

Bootstrap
Program

Cylinder Group
1

Data
Blocks

Cylinder Group
2

Superblock

Cylinder Group
n

Cylinder
Group
Information

Swap
Area

Inode
Table

System Management Concepts

Data
Blocks

256 bytes

256 bytes

256 bytes

7.25 Kbytes

0 or more blocks—
See Section on
Dota Storage

8K bytes

For Size—
See Section on
Cylinder Groups

Varies—
See Section on
Inodes

0 or more blocks—
See Section on
Data Storage

The Boot Area

The boot area is reserved on the mass storage medium (usually a disk) during
the installation process. Information in the boot area is used only if the disk is
used for booting (boot disk), but the space is reserved on all disks. The boot area
resides on the first 8 Kbytes of the disk, and contains a volume header, volume
directory information, and a small secondary loader used when the system is
loaded. This area is reserved exclusively for use by the boot ROM.

If you created your file system using the newfs command the boot area will
always be on your disk. If you created your file system using mkfs the boot area
will not be there. In this case, if you will use the file system to boot your system,
you must explicitly put the boot area on your disk using the following command
(replace 0s0 for you disk’s actual device file name):

dd if=/etc/boot of=/dev/dsk/0s0 count=1 bs=8k

Each boot disk must have a volume header in the boot area to identify the
volume format. On the Series 300 the format is Hewlett-Packard’s LIF (Logical
Interchange Format). The volume header is checked by the boot ROM in its
examination of bootable mass storage media when the computer is powered up.

The volume directory information contains 3 names: SYSHPUX, SYSDEBUG,
and SYSBCKUP. SYSHPUX corresponds to the file / hp-ux, which is your kernel.
SYSDEBUG corresponds to the file /SYSDEBUG. This file is used only when writing
device drivers; its use is described in the device driver writing manual, Series
300 HP-UX Drwer Development Guide. SYSBCKUP corresponds to /SYSBCKUP,
which is used as a backup kernel. All three are assumed by HP-UX to be object
files.

The last 7 1/4 Kbytes on the boot area contain the secondary loader. The
boot ROM loads and passes control to the secondary loader which in turn loads
and passes control to the file /hp-ux (or the backup kernel if you are using
SYSBCKUP). /hp-ux (or the backup kernel) then completes the task of bringing
up HP-UX.

If you are on a diskless cnode in an HP-UX cluster this process is slightly different.
The boot ROM loads and communicates across LAN with the root server’s
/etc/rbootd program. It is the rbootd program that coordinates between the
diskless cnode, secondary loader, and eventually the chosen kernel.

System Management Concepts 2-15

The Cylinder Group

Each cylinder group contains a copy of the superblock, a cylinder group
information structure, an inode table, and data blocks. The superblock is located
in each cylinder group so that any single track, cylinder, or platter can be lost
without losing all copies of the superblock. If a superblock is lost, the file
system can be repaired by using fsck with an alternate superblock. If major
reconstruction is necessary use fsdb (with caution). Any extra space before or
after the superblock, cylinder group information, and inode table is filled with
data blocks.

There is a primary superblock at the beginning of the file system, and a copy of
the superblock in each cylinder group. The superblock contains static information
known at file system creation: block size, fragment size, and disk characteristics.
The primary superblock also keeps track of file system update information in its
summary information area.

Eight Kbytes are reserved for each copy of the superblock. The layout of the
superblock data structure is defined in /usr/include/sys/fs.h.

The cylinder group information contains the dynamic parameters of the cylinder
group:

m number of inodes and data blocks

m pointers to the last used block, fragment, and inode

m number of available fragments

m used inode map

m free block map

A bit map in the cylinder group information keeps track of available data blocks
and fragments. Data blocks can be divided into 1 Kbyte, 2 Kbyte, or 4 Kbyte
fragments. Data block and fragment allocation are described in the section “Data
Storage” later in this chapter.

The cylinder group information data structure’s size is between 1 fragment and
1 block (a block can be either 4 Kbytes or 8 Kbytes). The size depends on the
number of data blocks per cylinder group. The layout of the cylinder group
information is defined in /usr/include/sys/fs.h.

2-16 System Management Concepts

The inode table contains per-file information (see Figure 2-3). A static number
of inodes is allocated for each cylinder group when the file system is created. HFS
uses a default such that there are more inodes per cylinder group than will be

needed for average usage. Refer to /usr/ include/sys/inode.h for more details
on the inode structure.

1st level 2nd level File's Contents Here
mode & file type indirection indirection

e O 3

owner/group info

file size in bytes

time stamps

1
direct 2 o

blocks

12

single indirect | I | l I I
double indirect

triple indirect e 1
2
1K or
2K
1 1 %
2 e 2
1K or 1K or
2Kx* 2K+

AR

*1K pointers if F.S. Block Size = 4 Kbytes;

2K pointers if F.S. Block Size = 8 Kbytes 1K -or
2K+

Figure 2-3. Regular File Mapping Scheme and the Inode Structure

System Management Concepts 2-17

A file system uses blocks of either 4 Kbytes or 8 Kbytes: for the rest of the
discussion on inode pointers the size of blocks will be referred to as fs_bsize. You

can replace the variable with 4K or 8K, depending upon what block size your file
system uses.

The first 12 pointers in an inode point directly to the first 12 blocks or fragments
containing the file’s data. If the file is larger than 12 blocks (greater than 12
X fs_bsize), indirect reference is made to the file’s data. A group of indirect
pointers is contained in one data block. Each pointer is 4 bytes long, so there
can be either 1024 pointers (4096/4) or 2048 pointers (8192/4) in each block of
indirect pointers.

The 13th block address points to a block containing 1024 or 2048 additional
pointers to data blocks (from now on the number of indirect pointers in a block
will be called num_ip). Thus, the 13th (single indirect) block address handles
files up to 4 243 456 bytes in a 4 Kbyte block file system or 16 875 520 bytes in
an 8 Kbyte block file system (fs_bsize x (12 + num_ip)) . If the file is larger
than this, the 14th inode block address points to num_1p indirect blocks, each of
which contains pointers to an additional num_p actual data blocks.

If the file cannot be contained in this space, the 15th inode block address points
to num_ip double-indirect blocks. With the 15th (triple-indirect) block address,
the size of a file is limited to fs_bsize x (12 + num_ip + num_ip? + num_ip3).
Your disk drive probably doesn’t have this much space and files cannot cross disk
drive boundaries.

Inode pointers hold the address of a fragment. The address can be interpreted as
referencing a whole block or as referencing one or more fragments, depending on
the number of bytes stored at the address. Whether a block or a fragment is used
depends on the following information in the inode: the file size, file system block
size, and the pointer’s index number. A partial block (one or more fragments)
will be allocated only at the end of a file, so if there are three pointers to data,
pointers 1 and 2 will point to full blocks, but pointer 3 may point to a partial
block.

2-18 System Management Concepts

Figure 2-4 shows an example of a 20 Kbyte file stored in 8 Kbyte blocks with
1 Kbyte fragments. The number of blocks needed is 20 + 8 (file size + block
size): 2 full blocks with a remainder of 4 fragments. Therefore, the first and

second pointers point to full blocks, but the third pointer points to the remaining
4 fragments.

Inode
L]
[d
[]
File
Size 20 K
L]
[]
L
e 8 15 24 31 40 43 4648
1 8 —
2 24
43
Direct 3
Blocks 4 0
®
*
°
12 0
.
L[]
°
L]

Figure 2-4. Inode Addressing Example

All indirect blocks are referenced only as full blocks; no pieces of the file are
addressed at the fragment level beyond the 12 direct pointers.

If the file described by the inode is not a regular file, then some fields of the inode

are interpreted differently (see Figure 2-3 for the regular file mapping scheme).
The differences are:

m FIFO and pipes

The space reserved for indirect block pointers contains information about
the current state of a FIFO or pipe.

System Management Concepts 2-19

m Character or block device files

The first direct block address is actually the major and minor number of
the device. The rest of the direct block addresses are 0.

m Directory

The pointers point to regular file system data blocks, but the blocks
contain specifically formatted data. A description of the data is in the
file /usr/include/sys/dir.h.

The inode table’s size can vary between file systems. To determine the amount of
space used by the inode table you need the following information: number of bytes
per cylinder group, average number of data bytes per inode refer to “Creating a
New File System” in Chapter 4 for information on how this is determined), inode
size (always 128), and block size. For example, in a file system with 8 Kbyte
blocks, 2 Mbyte cylinder groups, and 2048 data bytes per inode, there are 1000
inodes per cylinder group (2 Mbytes < 2048 bytes). The 1000 inodes x 128 bytes
per inode gives 128 000 bytes for the entire inode table. 128 000 + 8192 (block
size) gives 15.625 blocks needed for the table. Since a partial block will not be
allocated for the inode table, the system rounds up to 16 blocks and “inode fills”
the 16th block: an additional 24 inodes were added to fill the last block so no
space is wasted.

Data Storage

In each cylinder group, the areas before and after the superblock, cylinder group
information, and inode table contain the blocks used to store data for regular files,
directories, pipes, symbolic links and FIFOs (see Figure 2-2). Indirect blocks
filled with pointers to data blocks also reside in this part of the cylinder group.

Free space is allocated primarily in block sizes. Blocks can be either 4 Kbytes or
8 Kbytes. Block size is set at file system creation.

Having a large block size has both benefits and costs. In big files, a large block size
significantly reduces the number of disk accesses, thereby increasing file system
throughput. The problem is that most HP-UX files are small; using a large block
size for small files creates wasted space. To circumvent the wasted space problem,
a block can be divided into either 1 Kbyte, 2 Kbyte, or 4 Kbyte fragments.

2-20 System Management Concepts

C

Fragment size is bounded on the lower end by 1024 and on the upper end by the
block size, and must be an even multiple of 1024. Fragment size is specified at
file system creation.

Allocation of Disk Space

Free space availability is determined from a bit map associated with each cylinder
group. The bit map contains one bit for each fragment. To determine if a block is
available, consecutive fragments are examined. A piece of the bit map from a file
system using 1024 byte fragments and 8192 byte blocks is shown in Table 2-1.

Table 2-1. Example Free Block Bitmap in an 8192/1024 File System

bit map 00000000 00000011 11111100 11111111
Fragment numbers 0-7 8-15 16-23 24-31
Block numbers 0 1 2 3

The free fragments in this example are fragment numbers 14-21 and 24-31,
indicated by Is in the bit map. The allocated fragments are fragment numbers
0-13 and 22-23, indicated by 0s in the bit map. Fragments in adjacent blocks
cannot be used to create a full block; only 8 contiguous fragments starting on a
block boundary can be used to allocate a full block. In this example, fragments
24-31 can be coalesced to form a full block, but fragments 14-21 cannot be. Also,
if a partial block is allocated, the fragments must be consecutive and not cross
a block boundary. For example, if three fragments are needed, fragments 16-18
can be allocated, but fragments 14-16 cannot be.

In an already existing file, each time additional data needs to be written to the
file, the system checks to see if file size must increase. If file size must increase,
one of three conditions exists:

1. There is enough space in the existing block or fragment. In this case the
new data is written into the already allocated space.

2. The file contains only whole blocks, and there is not enough room in the
last block to hold the additional data. If more than a full block of data
needs to be written a new block is allocated and the first additional block
of data is written there. This process is repeated until less than a block
of new data needs to be written. When this happens, a block containing
enough contiguous fragments is located and the new data is written there.

System Management Concepts 2-21

3. The file contains fragments, but not enough fragments to hold the new
data. If the size of the existing data in fragments, plus the new data,
exceeds the size of a full block, a new block is allocated. Both the old
and the new data are written to the new block following the process in
condition 2 above. If the size of the old and new data is less than a

full block, a block with enough contiguous fragments (or a full block) is
located and allocated.

When a block or fragment has been located, the address is recorded in the inode
table and the free block bit map is updated.

A certain percentage of free space must always be available in the file system.
This minimum free space percentage is specified at file system creation using
the -m option of the newfs command or the minfree argument of the mkfs
command. The default is 10 percent. The percent of free space may be changed
at any time using the -m option of the tunefs command. The reserved free space
is inaccessible to the normal user; once this threshold has been met only the
superuser can continue to allocate blocks. When the percentage of free space
drops below the threshold, system throughput (to and from newly-created files)
usually drops because the file system can no longer localize the blocks for a file.
Accessing a file is quicker if the whole file is grouped together (localized).

Allocation Policies

Allocation is performed on both a global level to determine placement of new
directories and files, and on a local level to determine the actual placement of
data in blocks.

A decision is made at the global level to determine which cylinder group will
contain a given file or directory. An attempt is made to put all files from a single
directory in the same cylinder group. When a new directory is created, it is put
in the cylinder group that has the greatest number of free inodes and the smallest
number of directories.

Global policy specifies that once the file size reaches MAXBPG (MAXBPG
is defined in /usr/include/sys/fs.h), HFS will allocate blocks from another
cylinder group. This helps to enforce the grouping of all files within one directory
into a single cylinder group by causing the less common larger files to be spread
over several cylinder groups.

2-22 System Management Concepts

The global allocation routines call local allocation routines with requests for
specific data blocks. The global information, however, isn’t always aware of the
status of every data block. It is the local allocation routines, therefore, that make

the decision of which blocks to allocate. Block(s) are allocated in the following
order:

1. Allocate block requested.

2. Allocate a block on the same cylinder that is rotationally closest to the
requested block.

3. Allocate any block within the same cylinder group.

4. Use a quadratic hash to find a new cylinder group; allocate a block
somewhere in the new cylinder group.

5. Use brute force search to find an available block.

Updating the HFS File System

Every time a file is modified, the HP-UX operating system performs a series of file
system updates. These updates are designed to ensure a consistent file system.

When a program does an operation that changes the file system, such as a write,
the data to be written is copied into an in-core buffer, called the buffer cache.
The physical disk update is handled asynchronously from the buffer write. The
data, along with the inode information reflecting the change, is written to the
disk sometime later unless the file was opened in the synchronous mode (refer
to the description of 0_SYNCIO in the open(2) and fentl(2) entries in the HP-UX
Reference). The process is allowed to continue even though the data has not
yet been written to the disk. If the system is halted without writing the in-core
information to disk, the file system on the disk is left in an inconsistent state.

Updates occur to the superblock, inodes, data blocks, and cylinder group
information in the following ways:

Superblock The superblock of a mounted file system is written
to the disk whenever a umount command is issued, or
when a sync command is issued and the file system
has been modified. The root file system is mounted
during boot and cannot be unmounted.

System Management Concepts 2-23

Inodes

Data blocks (directories,
indirect blocks, files,
pipes, symbolic links, and
FIFOs)

Cylinder group
information

An inode contains information specific to the file it
describes. An inode is written to the file system upon
closure of the file associated with the inode, when
a sync or fsync command is issued, when the file
system is unmounted, or as soon as the file is written
if 0_SYNCIO is set for the file.

In-core blocks are written to the file system when-
ever they have been modified and released by the
operating system. More precisely, they are buffered
or queued for eventual writing. Physical 1/O is de-
ferred until the buffer is needed by HP-UX, a sync
command is issued, an fsync is issued for the file, or
0_SYNCIO is set for the file. If a file is opened with
the 0_SYNCIO flag set, the write system call does not
return until completed.

The cylinder group information is updated whenever
a sync is executed, or when the system needs a buffer
and the cylinder group is written.

Do not £sck mounted file systems, and always reboot the system after altering
the root device with fsck. A file system inconsistency can also occur if you
execute fsck (file system consistency check—described in Appendix A, Volume
2) on a mounted file system other than the root file system. If you perform a
file system check on a mounted file system, information could be in the buffer,
but not yet written to the file system. A subsequent flushing of the buffer cache
could overwrite the corrections which fsck has just made.

2-24 System Management Concepts

Corruption of the File System

Although the HFS file system on your Series 300 computer is very reliable, it
is possible to become corrupt. The most common ways for the file system to
become corrupt are improper shutdown procedures and hardware failures.

Improper System Shutdown and Startup

File systems may become corrupt when proper shutdown procedures are not
observed:

® not using the reboot or shutdown command to halt the CPU

m physically write-protecting a mounted file system

m taking a mounted file system off-line

File systems may become further corrupted if proper startup procedures are not
observed:

m not checking a file system for inconsistencies
® not repairing inconsistencies

Allowing a corrupted file system to be further modified can be disastrous.

Hardware Failure

While your Hewlett-Packard Series 300 computer system and disks are highly
reliable, it is good to remember that any piece of hardware can fail at any time.
This isn’t a prediction of gloom, but merely a word of caution to you, the system
administrator, to take small steps of precaution. By following the preventative
maintenance outlined in your installation guides and in this manual, you should
be able to avert any serious problems. Failures can be as subtle as a bad block
on a disk pack, or as blatant as a non-functional disk controller.

Detection and Correction of Corruption

You can check the root file system for structural integrity after performing a
system shutdown. You can check non-root file systems any time as long as they
are unmounted. The fsck command verifies the structural integrity by checking
data which is intrinsically redundant in a file system. The redundant data is
either read from the file system or computed from known values. A quiescent
state is important during the checking of a file system because of the multi-pass

System Management Concepts 2-25

nature of the fsck program. init run-level s (the system administrator run-level)
is the only safe state in which to check the root file system.

When an inconsistency is discovered, fsck reports the inconsistency. Refer to
Appendix A, Volume 2, “Using the fsck Command”, for an explanation of the

actions fsck takes in response to these inconsistencies, based on different run
options.

Superblock Consistency

The summary information associated with the superblock may become inconsis-
tent. The summary information is prone to error because every change to the file
system’s blocks or inodes modifies the summary information.

The superblock and its associated parts are most often corrupted when the
computer is halted and the last command involving output to the file system
is not a reboot or shutdown command.

The superblock can be checked for inconsistencies involving:
m File-system size—this rarely happens.
m Iree-block count—this is fairly common.
m [ree inode count—this is fairly common.

If £sck detects corruption in the static parameters of the primary (default)
superblock (rarely happens), fsck requests the system administrator to specify
the location of an alternate superblock. The alternate superblock addresses were
listed during file system creation. If the last time you created a file system
was during the installation, a list of addresses will be given in a file called
/etc/sbtab. An alternate superblock will always be found at block number

16. If this superblock is also corrupted, you must supply the address of another
superblock.

File System Size. The superblock is checked for inconsistencies involving file
system size, number of inodes, free block count, and the free inode count. The file
system size must be larger than the number of blocks used by the superblock and
the number of blocks used by the list of inodes. The file system size and layout
information are critical pieces of information to the fsck program. While there
is no way to actually check these sizes, fsck can check for them being within
reasonable bounds. All other checks of the file system depend on the correctness
of these sizes.

2-26 System Management Concepts

Fres-Block Checking. A check is made to see that all the blocks in the file
system were found.

fsck checks that all the blocks marked as free in the free-block map are not
claimed by any files. When all the blocks have been accounted for, a check is
made to see if the number of blocks in the free-block map plus the number of
blocks claimed by the inodes equals the total number of blocks in the file system.

If anything is wrong with the free-block maps, f£sck will rebuild them, excluding
all blocks in the list of allocated blocks.

The summary information contains a count of the total number of free blocks
within the file system. fsck compares this count to the number of blocks it
found free within the file system. If they don’t agree, fsck will replace the count
in the summary information by the actual free-block count.

Inode Checking. The summary information contains a count of the total
number of free inodes within the file system. fsck compares this count to the
number of inodes it found free within the file system. If they don’t agree, fsck
will replace the count in the summary information by the actual free inode count.

Inodes

An individual inode is not as likely to be corrupted as the summary information.
However, because of the great number of active inodes, a few inodes may become
corrupted.

The list of inodes is checked sequentially starting with inode 2 (inode 0 marks
unused inodes and inode 1 is reserved for future use) and going to the last inode
in the file system.

There are two major types of inodes: primary and continuation. Continuation
inodes contain only a mode (which is of type continuation), a link count, and
ACL entries. You will have continuation inodes only of the file has optional ACL
entries associated with it. fsck will check the continuation inode’s mode, link
count, and the reference from the primary inode. It will not check for consistency
in ACL information.

Each primary inode can be checked for the following inconsistencies:
m format and type
m link count
m duplicate blocks

System Management Concepts 2-27

m bad blocks

m inode size

m block count

m bad continuation inode number

Format and Type. Inodes may be one of the following types:
m regular file
m directory
m block device
m character device
m network device
m FIFO
m symbolic link
m continuation

Inodes may be found in one of three states:
m unallocated
m allocated
m neither unallocated nor allocated

This last state indicates an incorrectly formatted inode. An inode can get in this
state if bad data is written into the inode list through, for example, a hardware
failure. The only possible corrective action is for £sck to clear the defective inode.

The following sections describe information that fsck checks in primary inodes.

Link Count. Contained in each inode is a count of the total number of directory
entries linked to the inode. fsck verifies the link count stored in each inode by
traversing the total directory structure (starting from the root directory) and
calculating an actual link count for each inode.

If the stored link count is non-zero and the actual link count is zero, it means that
no directory entry appears for the inode. fsck can link the disconnected file to
the /lost+found directory. If the stored and actual link counts are non-zero and
unequal, a directory entry may have been added or removed without the inode
being updated. fsck can replace the stored link count by the actual link count.

Duplicate Blocks. Contained in each inode is a list, or for large files, pointers
to lists (indirect blocks), of all the blocks claimed by the inode. fsck compares
each block number claimed by an inode to a list of already allocated blocks. If
a block number is already claimed by another inode, the block number is added

2-28 System Management Concepts

to a list of duplicate blocks. Otherwise, the list of allocated blocks is updated to
include the block number. If there are any duplicate blocks, fsck will make a
partial second pass of the inode list to find the inode of the duplicated block.

This condition can occur by using a file system with blocks claimed by both the
free-block list and by other parts of the file system.

fsck will prompt the operator to clear both inodes. Often clearing only one inode
will solve the problem, but the data in the other inode is suspect.

Bad Blocks. Contained in each inode is a list or pointer to lists of all the blocks
claimed by the inode. fsck checks each block number claimed by an inode for a
value outside the range of the file system (lower than that of the first data block,
or greater than the last block in the file system). If the block number is outside
this range, the block number is a bad block number.

fsck will prompt the operator to clear the inode.

Inode Size. Each inode contains a sixty-four bit (eight-byte) size field. This size
indicates the number of characters in the file associated with the inode. Inode size
can be checked for inconsistencies (for example, directory sizes in a file system
using standard, 14-character, filename limits should be a multiple of thirty-two
characters, and the number of blocks actually used should match that indicated
by the inode size).

A directory inode within the HP-UX file system has the mode word set to
directory. The directory size in a file system using standard, 14-character,
filename limits must be a multiple of thirty-two because a directory entry contains
thirty-two bytes of information. fsck will warn of such directory misalignment.
This is only a warning because not enough information can be gathered to correct
the misalignment.

A rough check of the consistency of the size field of any inode can be performed
by computing from the size field the number of blocks that should be associated
with the inode and comparing it to the actual number of blocks claimed by the
inode. fsck calculates the number of blocks that should be claimed by an inode
by dividing the number of characters in the file by the number of characters
per block and rounding up. fsck then counts actual direct and indirect blocks
associated with the inode. If the actual number of blocks does not match the
computed number of blocks, fsck will warn of a possible file-size error. This is
only a warning because HP-UX does not fill in blocks in sparse data files.

System Management Concepts 2-29

Indirect Blocks. Indirect blocks are owned by an inode. Therefore, inconsis-

tencies in indirect blocks directly affect the inode that owns it. Inconsistencies
that can be checked are:

m blocks already claimed by another inode
m block numbers outside the range of the file system

Detection and correction of the inconsistencies associated with indirect blocks
follows the same scheme used for direct blocks, and is done iteratively. Direct
and indirect blocks were discussed in the section “The Cylinder Group”.

Data Blocks. The two types of data blocks are:

m Ordinary data blocks which contain the information stored in a file. fsck

does not attempt to check the validity of the contents of an ordinary data
block.

m Directory data blocks which contain directory entries.
Each directory data block can be checked for inconsistencies involving:
m directory inode numbers pointing to unallocated inodes

m directory inode numbers greater than the number of inodes in the file
system

m incorrect directory inode numbers for “.” and “.” (current and parent
directories, respectively)

m directories which are disconnected from the file system hierarchy

To remove files with illegal characters, find out their inode number, then remove
them by typing in the following sequence:

1s -i

find . -inum wnode_number -exec rm {}\;

If a directory entry inode number points to an unallocated inode, then fsck can
remove that directory entry.

If a directory entry inode number is pointing beyond the end of the inode list,
fsck can remove that directory entry. This condition occurs if bad data is written
into a directory data block.

The directory inode number entry for “.” should be the first entry in the directory

data block. Its value should be equal to the inode number for the directory data
block.

2-30 System Management Concepts

The directory inode number entry for “..” should be the second entry in the
directory data block. Its value should be equal to the inode number for the

parent of the directory entry (or the inode number of the directory data block if
the directory is the root directory).

If the directory inode numbers for “” and “.” are incorrect, fsck can replace
them by the correct values.

fsck checks the general connectivity of the file system. If directories are found
not to be linked into the file system, fsck will link the directory back into the
file system in the /lost+found directory.

Uncorrectable File System Corruption

fsck may not be able to proceed in certain instances, such as if all copies of the
superblock are lost. The fsdb (file system debugger) command is provided for
such situations. f£sdb should only be used by an HP-UX file system expert, since
it can easily destroy the entire file system. Refer to the fsdb(1M) entry in the
HP-UX Reference for details.

File Format and Compatibility

The format of the mass storage media on which Series 300 HP-UX files are
stored is High performance File System (HFS). This is not necessarily the format
for other operating systems patterned after the UNIX operating systems. For
example, the Series 200 HP-UX 2.x uses the Bell System III file system (BFS),
and the Series 500 HP-UX system uses Structured Directory Format (SDF). The
following list provides guidelines on how to transfer files between your systems:

m Transfer files between two UNIX machines
O cpio
O tar
O uucp
o LIF utilities: 1ifcp and 1ifinit (HP-UX to HP-UX only)
o mounted file system (same system, same version, only)
o LAN
o SRM

System Management Concepts 2-31

m Transfer files between Basic or Pascal and HP-UX on Hewlett-Packard
machines

o LIF utilities
o terminal emulator running on the workstation, uploading or

downloading files
o SRM

m Transfer files between the current version of HP-UX and either the
Integral Personal Computer or a 2.x version of HP-UX on the Series 200.
o BIF utilities

o terminal emulator running on the workstation, uploading or
downloading files

m Transfer files between a Series 300 HP-UX machine and a Series 500 7

HP-UX machine
o SDF utilities
o terminal emulator running on the workstation, uploading or
downloading files
o all the methods of transfer between two UNIX machines shown
above

File Protection

When each file in the file system is created, it is assigned a set of file protections
stored in the file permissions bits (often called the file’s mode). The file permission
bits determine which classes of users may read from the file, write to the file, or
execute the program stored in the file. Read, write, and execute permissions for a
file can be set for the file’s owner, all members of the file’s group (other than the
file’s owner), and all other system users. These three classes of users (user, group,
and other) are mutually exclusive—no member of one class of users is included
in any other class of users. When a file is created, it is associated with an owner
and a group ID. These values specify which user owns the file and which group
has special access capability.

The default permissions of a file are initially determined by umask, or by
parameters passed to creat, mknod, or mkdir, when the file is created. The
permissions may be changed with the chmod command. The permissions of the
file are represented as the binary form of four octal digits as shown in Figure 2-5.
The initial discussion deals with only the three least significant digits. When the
most significant digit is not specified, its value is assumed to be zero (0).

2-32 System Management Concepts

Ignore File File's All

for now Owner Group Others
binary
execute execute execute
write write write
read read read
J \\ J U J J
— — — —
octal D D D D
where:
D=octal digit

Figure 2-5. File Permission Bits

Each octal digit represents a three-bit binary value: one bit specifies read
permission, one bit specifies write permission, and one bit specifies execute
permission. If the bit value is one, then permission is granted for the associated
operation. Similarly, if the bit value is zero, permission is denied for the associated
operation.

For example, assume a file’s permission bits are set to 754 (octal). Octal 754 is
equivalent to 111 101 100 binary. Using Figure 2-6, you can see that this grants
the owner of the file read, write, and execute permission. A file permission of
754 grants read and execute permission to all users who are members of the file’s
group. This includes any user (except the file’s owner) whose effective group ID
is equal to the ID of the file’s group, or whose group access list includes the file’s
group ID. A file permission of 754 grants read permission to all other system
users. The 11 command represents this as rwxr-xr--.

Note that if there are optional Access Control List (ACL) entries on the file, a +
is printed following the permissions. Also, by default, chmod deletes any optional
ACL entries. You can use the -A option to preserve them. For more information
on ACLs, refer to A Beginner’s Guide to HP-UX.

System Management Concepts 2-33

File File's Al

Owner Group Others
binary 1 1 1 1 0 1 1 0 0
execute execute execute
write write write
read read read
. J N J U J
Y Y Y
octal 7 5 4

where:
D=octal digit

Figure 2-6. File Permission Bits of 0754
You can also use a symbolic mode to change permissions with chmod. To change
protections using the symbolic mode, type:
chmod who operation permission
where who, operation, and permission can be:
who u (user), g (group), or o (other)

operation + (add the following permission), - (remove the following
permission), or = (assign only the following permission—all other
permissions will be taken away)

permission r (read), w (write), x (execute), s (set owner or group ID), or t
(set sticky bit)

For example, to deny write permission to /users/bilbo/filel to the user group,
others, type:

chmod o-w /users/bilbo/filel

To make the same file executable for everyone, type:

chmod +x /users/bilbo/filel

Protecting Directories

Directories, like all files in the HP-UX file system, have permissions. The format
of a directory’s permission bits is identical to that of an ordinary file; however,

2-34 System Management Concepts

the read, write, and execute permissions have a slightly different meaning when
applied to a directory.

m Read permission provides the ability to list the contents of a directory.

m Write permission provides the ability to add a file to the directory, rename
a file within the directory, and remove a file from the directory. It does
not allow a user to directly write the contents of the directory itself. This
capability belongs to the HP-UX system only.

m Execute permission provides the ability to search a directory for a file. If
execute permission is not set for a directory, the files below that directory
in the file system hierarchy cannot be accessed even if you supply the
correct path name for the file.

Setting Effective User and Group IDs

The section “IDs” earlier in this chapter discussed effective user and group IDs.
Through the use of user and group IDs, a file can be protected such that, when
executed, the process’s effective IDs are set equal to the file owner’s IDs. This
capability is specified through the most significant digit of the four octal file
protection digits. (Refer to the previous sections for a discussion of the three
least significant digits in the file protection bits.) The most significant digit is
represented by a three-bit binary value. When its most significant bit is 1, the
effective user ID of the process executing the file is set equal to the user ID of
the file’s owner. This bit is called the set user ID bit (suid). Similarly, if the
middle bit of the most significant octal digit is 1, then the effective group ID of
the process executing the file is set equal to the group ID of the file’s group. This
bit is called the set group ID bit (sgid).

If the sgid bit is on for an ordinary file, and the file does not have group execute
permission, then the file is in enforcement locking mode. Refer to the section
“File Sharing and Locking” later in this chapter, or to the lockf(2) entry in the
HP-UX Reference.

If the suid bit is on for a directory, the directory is hidden. A hidden directory
is part of the CDF structure used if you are running an HP-UX cluster. For
more information on CDFs, refer to the section in this chapter called “Cluster
Concepts”.

System Management Concepts 2-35

For example, suppose that the file’s permission bits are 6754. The binary
equivalent of octal 6754 is 110 111 101 100. The meaning of these permissions is
illustrated in Figure 2-7 and explained in Table 2-2.

File File's All
Owner Group Others
binary 1 1 0 1 1 1 1 0 1 1 0 0
sticky
bit execute execute execute
set group ID write write write
set user ID read read read
. J \\ J \\ J \\ J
Y Y Y Y
octal 6 7 5 4
where:
D=octal digit

Figure 2-7. File Permission Bits of 6754

2-36 System Management Concepts

Table 2-2. Explanation of File Permission Bits of 6754

Octal Binary
Digit Form Permission Meaning
1 set user ID | Effective user ID of the process executing this
file is set equal to the real user ID of the file’s
owner.

6 1 set group ID | Effective group ID of the process executing this
file is set equal to the group ID of the file’s
group.

0 sticky bit | The stick bit is discussed in the section that
follows.
1 read File owner may read the file.
7 1 write File owner may write to the file.
1 execute File owner may execute the file.
1 read Members of the file’s group (other than the file’s
owner) may read the file.

5 0 write Members of the file’s group (other than the file’s
owner) cannot write to the file.

1 execute Members of the file’s group (other than the file’s
owner) may execute the file.
1 read Any other user may read the contents of the file.

4 0 write Other users cannot write to the file.

0 execute Other users cannot execute the program

contained in the file.

System Management Concepts 2-37

The Sticky Bit

Although the sticky bit can be set for all programs, setting the sticky bit affects
a program only if it vs shared (refer to the section on “Memory Management”

discussed later in this chapter). The following discussion assumes that all files
marked sticky are also shared.

The least significant bit of the upper octal digit is called the sticky bit. If the
sticky bit is set and the program is executed, the data structures and swap space
associated with the shared text is not released when the program terminates.
This reduces start-up time if the program is executed again. Once a program
is in the swap area (via the sticky bit), it can be removed onlyby changing the
file’s permissions such that the sticky bit is no longer set, then executing (and
terminating) the program again.

Only the superuser can set the sticky bit.

File Sharing and Locking

In a multi-user, multi-tasking environment such as HP-UX, it is often desirable to
control interaction with files. Many applications share disk files, and the status of
information contained in them could have serious implications to the user (such
as lost or inaccurate information).

For example, imagine we are responsible for maintaining on-line technical reports
for a myriad of projects, and we have many different people who must have
simultaneous access to these reports. The content of a given report at a given
time could significantly affect a company decision, and so we want a way to
control how records are accessed.

One potential problem could arise if one person (let’s call him George) adds to
or modifies information in a report while someone else (Sarah) is working on it.
Sarah is unaware of changes that George has just made in the report. And once
she is done, Sarah overwrites the information George added. The result is that
we have lost all of George’s information, and when Sarah added data she was
unaware of information which could have been pertinent.

Advisory Locks

A solution to this common problem of file sharing is called file locking. On your
Series 300, file locking is done with the lockf or fcntl system calls, and it

2-38 System Management Concepts

handles two modes of functionality. Advisory locks are placed on disk resources
to inform (warn) other processes desiring to access these same resources that
they are currently being accessed or potentially being modified. Advisory locks

are only valuable for cooperating processes which are both aware of and use file
locking.

In our example, the programs used to access the on-line technical reports could
use advisory locks. When George begins to work on the FubNibWitz project his
program could call lockf and set an advisory lock. A few minutes later when
Sarah tries to access records in the FubNibWitz report, she would get an error
message informing her that the report is busy. Her program could wait until
George is done and then access the report, by virtue of doing a call to lockf.

Enforcement Mode

Even if we use advisory locks in our example, Sarah would still be able to
overwrite the FubNibWitz report if she uses commands or utilities which don’t
check for advisory locks. She needs some way to insure that no records are
written until George is done with the report. HP-UX does this with enforcement
mode. When a process attempts to read or write to a locked record in a file
opened in enforcement mode, the process will sleep until the record is unlocked.
Enforcement mode can only be used on regular files.

Enforcement mode is enabled when the set-group-id bit (sgid) is set while not
having the group execute bit set. For example, if we opened a file which normally
has its file permission bits set to 644, a long listing of the file would look something
like:

-rw-r--r-- 1 George LubHood 512 May 7 16:11 FubNibWitz
Enforcement mode could be turned on by typing the following command:

chmod g+s FubNibWitz

This command would turn on the sgid bit resulting in file protection of 2644.
Enforcement mode could also be turned on from a program with the chmod system
call. After enforcement mode is enabled, a long listing would show:

-rw-r-Sr-- 1 George LubHood 512 May 7 16:11 FubNibWitz

By now using enforcement mode, George could prevent Sarah from overwriting
his changes, and Sarah would have the data which George has added.

System Management Concepts 2-39

Caution It is possible to cause a system deadlock in enforcement mode. By
calling the wait or pause system calls immediately after locking
a record, the locking process could hang one or more processes
which attempt to access the locked record.

When attempting to access a file which is locked under enforcement mode, your
shell sleeps until the file is released. This provides a means for one script to control
execution of another, separate, script. Be careful when doing this, because as just
noted a system deadlock is possible.

Locking Activities

All file locking is controlled with the lockf or fcntl system calls. There are
essentially four activities which lockf controls:

m Testing file accessibility by checking to see if another process is present
on a specific file record.

m Attempting to lock a file. If the record is already locked by another
process, lockf will put the requesting process into a sleep state until the
record is free again.

m Testing file accessibility, locking the record if it is free, and returning
immediately if it is not.

m Unlocking a record previously locked by the requesting process.

When the locking process either closes the locked file or terminates, all locks
placed by that process are removed. For more details on how specific locking
activities work on HP-UX, refer to the lockf(2) and fentl(2) sections of the
HP-UX Reference manual.

The File System Buffer Cache

Program code and the data which it uses must be transferred from disk into main
memory before it can be executed. The manner in which code is transferred
depends on the attributes of the code and the manner in which the code is
executed. The file system buffer cache is used for all file system I/O operations,
plus all other block I/O operations in the system (for example exec, mount, inode
reading, and some device drivers).

2-40 System Management Concepts

The file system buffer cache is a collection of one or more buffers which the system
uses as a temporary holding place for code/data being transferred between the
file system and user’s main memory. The number of buffers in the cache is
determined when you power up your system, and is based upon the amount of
available RAM (refer to the nbuf entry in Appendix D). As the code and data are
moved into the buffer cache, the system copies the information from the buffer
cache into user’s main memory. If a user requests information that is already in
the buffer cache, the information is copied from the cache to user’s main memory,
eliminating the I/O operation to bring it in from the file system disk.

The primary benefit of the buffer cache is faster transfers of data from the file
system to the user address space. Transferring information from the buffer cache
to the process’s executing space in main memory is much faster than transferring
information from the file system on the disk. Thus by increasing the size of
the buffer cache, more information can be held in memory and the apparent
system response time improves. However, memory used by the system cache is
unavailable for other uses, such as executing processes. When the file system
buffer cache exceeds a certain size, system performance begins to decrease since
less memory is available for other system functions.

A major factor in determining the size of the file system buffer cache is the amount
of memory in the system. By default, the system chooses a reasonable buffer cache
size based on the available memory in the system at powerup. You can alter
the default size by changing the nbuf system parameter (refer to “Configuring
Operating System Parameters” in Chapter 6).

System Management Concepts 2-41

Magnetic Tape

Since computers are sometimes used to process massive amounts of data, there
must be a way to store large files on-line. Applications such as atmospheric
studies which, minute by minute, record megabytes of information and then sort
it out, require cheap media on which to store data. Even with the advent of

larger capacity hard disk drives, they are still too small and far too expensive for
such purposes.

Perhaps the closest to an industry standard for mass media, 9-track (1/2 inch)
magnetic tape serves as a low cost, high capacity media to store information.
And beyond this, magnetic tape is also the most interchangeable media between
different hardware and operating systems.

In addition to 9-track tapes, Hewlett-Packard manufactures a series of 1 /4-inch
data cartridge tapes which are used for the installation and updates of HP-UX
on the Series 300. The cartridge tapes can also be used for inexpensive backups.
These data cartridges, model HP 88140, have most of the benefits of 9-track
magnetic tape but are cheaper and easier to handle. However, they don’t offer
the same level of data interchange between non-HP-UX machines as the 9-track
tapes.

Magnetic Tape Definitions

Here are some common terms and concepts used in the discussion of magnetic
tape. Consider them required reading if you use magnetic tape.

Coding

Tape is recorded in several ways. Older systems use Non Return to Zero
Immediate (NRZI) coding, and record with a tape density of either 200, 556,
or 800 bpi (bits per inch). Newer tapes use Phase Encoding (PE) and record at
1600 bpi, or they use Group Coded Recording (GCR) and record at 6250 bpi.
There may be other forms of coding as well, but these are the most common.
The HP 7971 supports a density of 1600 bpi, the HP 7974 and HP 7979 support
both 1600 bpi and (optionally) 800 bpi, and the HP 7978 and HP 7980 magnetic
tape drives support a density of 1600 and 6250 bpi.

The higher the density, the more information can be stored on a tape. On a 2400
foot tape, an HP 7974 at 800 bpi can only store 22 Mbytes of data, at 1600 bpi

2-42 System Management Concepts

the HP 7974 can store 43 Mbytes, while an HP 7978 storing at 6250 bpi can write
up to 140 Mbytes of data to a tape at a rate of up to 16 Mbytes per minute.

bpi

The most common measure of tape density, bpi is an abbreviation for bits per
inch.

Cyclic Redundancy Check

When writing a tape, a number of frames are written by the drive in a single
transaction. This collection of frames is called a record. Part of the record, but
invisible to the user, is a cyclic redundancy check (CRC). The CRC is recorded as
some additional frames on the tape. There is a very short blank section between
the true record and the CRC. Following the CRC is a nominal 1 /2 -inch gap of
unrecorded tape, known as the inter-record gap or IRG. The next record follows
the gap. If either the frame parity or the CRC is incorrect when the tape drive
reads the tape, an error is generated by the drive. Newer formats (1600 bpi and
above) generate a preamble and postamble to help synchronize the read logic.

End of Tape

There is both a logical end of tape (EOT) and a physical EOT (see Figure 2-8).
Logical EOT is two consecutive file marks. Physical EOT is a foil mark about
25 feet from the end of the reel. Pre-5.0 drivers (Series 200 only) handle physical
EOT differently than post 5.0 drivers. (Refer to the discussion on pre-5.0 drivers
later in this chapter.)

Note that the distance between the EOT detector and the read/write head may
vary among different model tape drives. So, one drive may return an EOT
indication associated with the 1000th record on the tape, while another drive
may return an EOT indication with the 999th or the 1001st record. For small
records this variation may be large; for large records this variation is probably
small.

System Management Concepts 2-43

Identify Double File
Burst Data Mark

/ r A v~

7000001
L @
Load Physical
Point EOT

Figure 2-8. Magnetic Tape Format

File Marks

A file mark is a special type of record that can be written to the tape. A file mark
is recognized by the drive and reported as a boolean condition during reading. It

is not possible to write a file mark as ordinary data; it requires a special command
to the drive.

Single file marks are used to separate logical files on tape. Two consecutive file
marks are used to signify the logical EOT. Data is undefined past the logical
EOT.

Foil Mark

A foil mark is a short piece of silver tape that is placed on one edge of the tape
on the non-recorded side. Both the load point and the physical end of tape are
marked by a foil mark. Both marks are placed by the tape manufacturer.

Load Point

The load point, or beginning of tape, is a foil mark placed about 10 feet from
the beginning of a tape. When you load a tape (put the tape in the drive, and
press “load”), the drive searches forward until the load point is found and placed
under the sensor. The first write is then treated specially: several inches of tape
are skipped and then, when using PE or GCR formats, a special burst of data
is written to the tape (which is invisible to the user). This is the identify burst.
Data is recorded after the identify burst in the usual way. The first read expects
the identify burst, and quietly skips over it. Some smart drives, such as the

HP 7978, can determine the tape density from the identify burst (1600 and up).

2-44 System Management Concepts

Magnetic Tape (Magtape)

Magnetic tape is a media similar to an everyday home cassette tape, used to store
digital information. All standard magtape is 1 /2 -inch wide, and comes in three
sizes: 600, 1200 and 2400 foot reels (for a rule of thumb, a 2400 foot reel is about
1 foot in diameter). The size of the reels, hubs, tape width and other mechanical
properties are all specified by ANSI standard.

Operations

Several operations that a tape drive can be expected to perform are to read and
write to the media, rewind to the load point, forward or back space one record,
and forward or back space to the next file mark. A variation on the theme of
rewind is to unload where the tape is rewound and taken off line. Some tape
drives actually rewind the tape out of the threading path; others simply set an
interlock that requires manual intervention to release the tape.

Records

A series of frames written to the media is known as a record. The physical record
size is variable. The maximum limits on record size range from 16 Kbytes to 60
Kbytes, depending upon the tape drive. Beyond these limit, the drive rejects the
request and there are no write/read retries. The maximum record sizes are:

HP 7971 1600 bpi—32 Kbytes

HP 7974 1600 bpi—16 Kbytes
800 bpi—16 Kbytes
HP 7978A 1600 bpi—16 Kbytes
6250 bpi—Kbytes
HP 7978B 1600 bpi—32 Kbytes
6250 bpi—60 Kbytes
HP 7980 1600 bpi—

6250 bpi—64 Kbytes

Tape Density

The measure of the amount of information which can be stored in a given area
of tape is known as tape density. Bits per inch (bpi), a common measure of
tape density, is the number of bits per track, recorded per inch on the tape. For

System Management Concepts 2-45

9-track tape, eight data bits and one parity bit are written across the width of the
tape simultaneously. Thus for 9-track tape, bpi is synonymous with characters
per inch (cpi). One of these characters is sometimes called a frame.

Tracks

When digital information is written to a tape, it is written in a series of tracks
(a lot like an 8-track car stereo). Most magtape today is written in a 9-track
format. Older systems often wrote only 6 tracks plus a parity bit, resulting in 7
tracks.

Write/Read Errors

Tape, in its usage for long-term archive and data interchange, is somewhat more
prone to error than disks. When your tape drive is reading from, or writing to, a
tape and it detects an error, the normal procedure is to backspace the tape over
the record and retry the tape operation. An error message is reported to the user
only after the driver gives up. Many more tape errors are caused by dirty tape
heads than by real recording errors, so you should periodically clean your tape
drive as outlined in its service manual.

Tape drives do a form of reading-while-writing, and if the data is not properly
recorded, an error will be detected. The normal procedure is to backspace and
retry writing the record once, and if that fails, to backspace, write a long gap
and try again on a section of tape farther down. A long gap is several inches of
erased tape. That’s why we said an IRG is “nominally” 1 /2 inch long.

Write Ring

On the back of the reel there is a removable soft plastic write ring. Every magtape
drive has a sensor mechanism to detect the presence of this ring. When a ring is
present the tape can be written to by the host, and cannot be written when absent
(it is write protected). Normally, once a tape is written, the ring is removed and
left out indefinitely except when being rewritten.

2-46 System Man