
Programming With the
HP X Widgets

Version 11

HP 9000 Series 300/800 Computers

HP Part Number 98794-90000

FJ/OW HEWLETT
~a PACKARD

Hewlett-Packard Company
1 000 NE Circle Boulevard, Corvallis, Oregon 97330-9988

NOTICE

The lnfOITTllllion contained In this document Is subject to change wKhout nolice.

HEWLEIT-PACKAR:l MAKES NO WARRANTY OF ANY KIND 'NITH REGARD TO THIS MANUAL, INQ.UDING, BUT NOT UMITED TO,
THE IMPUED WARRANTlES OF MEFO-IANTABIUTY AND ATNESS FOR A PARTICULAR PURPOSE. Hewlett-Packard shail nol be liable
for errors contained herein or direct, indirect, special, incidental or consequential damages in connection wKh the furnishing, performance,
or use cl this material.

Copyright © Hewlett-Packard Company 1988, 1989

This document contains proprietary lnfOITTllllion which is protected by copyright. AU rights are reserved. No part cl this document may be
photocopied, reproduced or translaled to another language wHhout the prior written consent cl Hewlelt·Packard Company, except as prcwided
below. The Information contained In this document is subject to change wHhout nolice.

Restricted Rights Legend

Use, duplication or disclosure by the Gcwemment is subject to restrictions as set forth In paragraph (b)(3)(8) cl the Rights In Technical Dala and
Software clause In OAR 7-104.9(8).

Use cl this manual and flexible disc(s) or tape cartridge(s) supplied for this pack is restricted to this product only. AddHional copies cl the
programs can be made for security and back-up purposes only. Resale cl the programs in their present form or wHh alterallons, is expressly
prohibited.

Copyright 1987, 1988, Massachusetts lnstHute cl Technology, Cambridge, Massachusetts.

Parts cl this software and documentalion are based In part on software and documental ion developed and distributed by Massachusetts I nstHute

cl Technology. Permission to use, copy, modify, and distribute only those parts for arry purpose and wHhout fee Is hereby granted, prcwided thai
the ai:x:IYe copyright nolices appear in all copies and thai those copyright nolices and this permission nolice appear In supporting documentalion,
and thai the names cl Hewlett-Packard and M.I.T. no1 be used in advertising or publicey pertaining to distribution cl the software wnhout specWic,
written prior permission.

UNIX Is a trademark cl AT&T.

The X 'Nindow System is a trademark cl M.I.T.

Printing History
New editions of this manual will incorporate all material updated since the previous
edition. Update packages may be issued between editions and contain replacement and
additional pages to be merged into the manual by the user. Each updated page will be
indicated by a revision date at the bottom of the page. A vertical bar in the margin
indicates the changes on each page. Note that pages which are rearranged due to changes
on a previous page are not considered revised.

The manual printing date and part number indicate its current edition. The printing
date changes when a new edition is printed. (Minor corrections and updates which are
incorporated at reprint do not cause the date to change.) The manual part number
changes when extensive technical changes are incorporated.

July 1988 ... Release 1.

December 1988 ... Release 2.

May 1989 ... Update. This Update replaces the "Programming With the Xt Intrinsics"
section.

June 1989 ... Release 3. This edition incorporates the May 1989 Update.

Printing History iii

Contents

1
1.1
1.2
1.3
1.4

2
2.1
2.2
2.3
2.4
2.5
2.6
2.7

3
3.1
3.2
3.3
3.4
3.4.1
3.4.2
3.4.3
3.5
3.6
3.7
3.8
3.8.1
3.8.2
3.8.3
3.9
3.9.1
3.9.2
3.9.3
3.10
3.10.1
3.10.2
3.11

Introduction ... 1-1
Widget Classes .. 1-2
Terminology .. 1-2
Compiling Sample Programs .. 1-5
Available Documentation ... 1-6

Widgets .. 2-1
Display Widgets .. 2-4
Editing Widgets .. 2-4
User Selection Widgets ... 2-6
Layout Widgets ... 2-7
Menu Widgets .. 2-13
Miscellaneous Widgets .. 2-14
Utility Functions 2-15

Using Widgets in Programs ... 3-1
Including Header Files .. 3-4
Initializing the Toolkit ... 3-5
Setting Up Argument Lists for Widgets .. 3-6
Adding Callback Procedures .. 3-7

Writing a Callback Procedure .. 3-8
Adding Callbacks ... 3-9
Setting Widgets' Callback Resources .. 3-10

Creating the Widget ... 3-10
Making the Widget Visible ... 3-11
Linking in Libraries ... 3-12
Creating Defaults Files .. 3-12

Application Defaults Files .. 3-13
User Defaults Files .. 3-14
Defaults File Example ... 3-14

Using Color ... 3-14
Capabilities and Attributes ... 3-15
Using the Capabilities ... 3-16
Example Resource Values .. 3-17

Advanced Programming Techniques ... 3-18
Setting Argument Values .. 3-18
Manipulating Created Widgets .. 3-20

An Advanced Sample Program .. 3-21

Contents 1

Description .. 3-21
Widget Hierarchy ... 3-22
Setting Arguments ... 3-24
Writing the Callback Procedures ... 3-24
Source Code .. 3-25

3.11.1
3.11.2
3.11.3
3.11.4
3.11.5
3.12
3.12.1
3.12.2
3.12.3

Another Advanced Sample Program ... 3-31
Windows Used in xfonts .. 3-33
Widget Hierarchy ... 3-35
Source Code .. 3-37

4 Menus .. 4-1
4.1 Menu System Description ... 4-1
4.1.1 Menu Hierarchy ... 4-1
4.1.2 Menu Manager Views ... 4-2
4.1.3 Data Specification .. 4-4
4.2 Menu Components .. 4-5
4.2.1 Menu Manager ... 4-5
4.2.2 Menu Pane Widget .. 4-8
4.2.3 MenuButton Widget .. 4-8
4.2.4 MenuSep Widget .. 4-9
4.3 Creating a Menu .. 4-9
4.4 Using Menus ... 4-10
4.4.1 Callbacks ... 4-11
4.4.2 Keyboard Interface .. 4-11
4.5 Mixing Menu Accelerators and Traversal ... 4-11
4.6 A Sample Program ... 4-13

5 Form Widgets ... 5-1
5.1 Using the Form Widget ... 5-1
5.2 Summary ... 5-4

6 Keyboard Interface .. 6-1
6.1 Keyboard Input Processing ... 6-1
6.2 Keyboard Traversal .. 6-2
6.2.1 Visual Attributes .. 6-2
6.2.2 Application Control ... 6-2
6.3 Internal Implementation Requirements for Traversal 6-6
6.3.1 Primitive Widget Requirements ... 6-6
6.3.2 Manager Widget Requirements ... 6-6

2 Contents

7 Writing New Widgets ... 7-1
7.1 Widget Description .. 7-1
7.2 Constructing a V/idget ... 7-2
7.2.1 The Private Header File .. 7-2
7.2.2 The Public Header File ... 7-6
7.2.3 The Source Code File .. 7-6
7.2.4 Source Code .. 7-13
7.2.5 Putting the New Widget Together ... 7-31
7.3 Widget Classing .. 7-33
7.3.1 Implementing Widget Classing .. 7-34
7.3.2 XWfasks ... 7-35
7.3.3 Using Resources ... 7-38
7.4 Summary ... 7-40

Contents 3

This page left blank intentionally.

Introduction 1
The HP X Widget system provides the base upon which you, the programmer, can build a
wide variety of application environments. It is based on the X Toolkit Intrinsics, a set of
functions and procedures that provide quick and easy access to the lower levels of the X
Window system.

You can see from figure 1-1 that the HP X Widget system is layered on top of the X
Toolkit Intrinsics, which in turn are layered on top of the X Window System, thus
extending the basic abstractions provided by X. The HP X Widget system supports
independent development of new or extended widgets.

Application

I
X Widgets

I
X Toolkit

I
X Window System

OS and Networking

Hardware Platform

Figure 1-1. User Interface Development Model

The HP X Widget system consists of a number of different widgets, each of which can be
used independently or in combination to aid in creating complex applications.
Applications can be written faster and with less lines of code using the HP X Widgets;
however, they will require more memory than similar applications written without using
the HP X Widgets.

This manual will explain the individual widgets and show you how to create and use these
widgets in your applications.

Introduction 1 -1

1 .1 Widget Classes
Every widget is dynamically allocated and contains state information. Every widget belongs
to one class, and each class has a structure that is statically allocated and initialized and
contains operations for that class. Figure 1-2 shows the basic widget classes.

Manager Class

Constraint Class

Composite Class Primitive Class

Core Class

Figure 1-2. Widget Class Hierarchy

The basic class is the core class. It contains resources that are inherited by all other
classes. 1\vo classes are layered on top of the core class, the composite class and the
primitive class. The primitive class has no other classes above it, but the composite class
has two, the constraint class and the manager class. Each higher class can inherit some or
all of the resources belonging to the lower class. For example, this means that a manager
class widget can inherit some or all of the resources belonging to the constraint class, the
composite class, and the core class. You can find exactly what resources a given widget has
by examining its man page in the Reference Information section of this manual.

1.2 Terminology
This section defines selected words and terms used in this manual.

• Accelerator. A keyboard key or keys used to cause some action to occur. For example,
the I Shift II Menu I keys might be used to post a menu instead of a mouse button action.

• Callback. A procedure that is called if and when certain specified conditions are met.
This is accomplished by specifying the procedure in a callback list. Individual widgets
can define callback lists as required.

• Child Widget. A child widget is a subwidget of a composite widget. The composite
widget is referred to as the parent of the child widget. The parent controls where the
child is placed and when it is mapped. If the parent is destroyed, the child is

1 - 2 Introduction

automatically destroyed.

• Class. The general group that a widget belongs to.

• Composite Widget Class. This class provides the resources and functionality that
allows subclass widgets to manage the layout and children.

• Composite Manager Widget. A composite manager widget is a manager widget with
special knowledge about the handling of one or more particular widgets. For example,
a TitleBar and ScrollBar can be registered with a Panel widget, and the Panel widget
will position the TitleBar and ScrollBar widgets correctly. Normally, a Manager widget
has no knowledge about its children.

• Constraint. Resources that certain manager widgets can impose on their children are
called Constraint resources. For example, if a VPanedWindow widget wants its
children to be a certain size, it can specify the size by using the resources XtNrnin and
XtNrnax. The man pages will specify those manager widgets that have Constraint
resources.

• Core. Core is the basic class from which all widgets are built. It acts as a superclass
for other widget classes and provides resources that are required by all widgets.

• Double Click. A method of selection in which a mouse button is pressed and released
twice in rapid succession.

• Drag. A method of menu selection in which a button is pressed and held, the mouse is
moved so that the pointer is "dragged" to the desired point, and the button is then
released to select the action to be taken.

• Grab. A procedure by which a window will act upon a key or button event that occurs
for it or any of its descendants. This precludes the necessity of setting up translations
for all windows.

• Instantiate. To represent an abstraction by a concrete instance. To instantiate a
widget means that a widget class creates an instance of that class.

• Manager Widget Class. A class that provides the resources and functionality to
implement certain features, such as keyboard interface and traversal mechanism. It is
built from core, composite, and constraint classes.

• Meta Class. A meta class is a set of structures and functionality that a widget uses to
export that functionality to subclass widgets. Each instance of a widget subclass will
have the features common to that widget class and will export these features to child
widgets of that class. Included in this class are Core, Composite, Constraint, Primitive,
Button, Manager, MenuMgr, and MenuPane. A meta class widget is never
instantiated.

• Popup. A type of widget that appears as the result of some user action (usually clicking
a mouse button), and then disappears when the action is completed.

Introduction 1 • 3

• Post. The action required to make a popup or pulldown menu appear. This action is
normally a double click on one of the mouse buttons.

• Subclass. A class of widgets that inherits resources from a higher class.

• Translations. Action procedures that are invoked for an event or sequence of events.
See Programming With the Xt Intrinsics for more information.

• Primitive Widget Class. The primitive class provides the resources and functionality
for the low-level widgets that are managed by the manager class. Primitive class
widgets cannot have normal child widgets, but they can have popup child widgets.

• Widget. A widget is a graphic device capable of receiving input from the keyboard and
the mouse and communicating with an application or another widget by means of a
callback. Every widget is a member of only one class and always has a window
associated with it.

• Widget Instance. The creation of a widget so that it is seen on the display. Note that
some widgets (meta class, for example) cannot be instantiated.

• Widget Tree. A widget tree is a hierarchy of widgets within a specific program. For
example, if a program included Panel, Form, RowCol, and three instances of
PushButton widgets, its widget tree would be as shown in figure 1-3.

Figure 1-3. A Widget Tree

The shell widget returned by Xtlnitialize or XtCreateApplicationShell
is the root of the widget tree. Widgets with no children of any kind are leaves of the
tree.

1- 4 Introduction

1.3 Compiling Sample Programs
There are a number of sample programs discussed throughout this manual. The source
code for most of these programs can be found in the directory jusrjcontrib/Xw.
There is also a Makefile in this directory that you can use to compile and link the
programs. Follow this procedure to compile and link a program.

1. Copy the program source code file and the Makefile found in /usr/contrib/Xw
to your work directory. Do not attempt to compile the program in the
jusrjcontrib/Xw directory.

2. Compile the program by executing the following command:

Make <programname>

3. If there is a defaults file commented into the beginning of the source code, move
that defaults file to the directory jusrjlib/Xll/app- defaults before you
run the program.

Introduction 1 -5

1.4 Available Documentation
Use the following table to determine the document or documents you need to accomplish
specific tasks.

TABLE 1-1. Documentation Map

Task Document Title Document Part No.

Configure the X Window System Configuring X on the Series 300 98594-90025

Learn how to start the X Using the X Window System 98594-90040
Window System

Customize the X Window Using the X Window System 98594-90040
Environment

Incorporate widgets into Programming With the HP X 98794-90000
applications Widgets and the Xt Intrinsics

Write new widgets Programming With the HP X 98794-90000
Widgets and the Xt Intrinsics

Learn about Fortran bindings Programming With the Xrlib 5090-0004
User Interface Toolbox

Learn about National Language Programming With the Xrlib 5090-0004
1/0 System User Interface Toolbox

Write graphics programs Programming With Xlib 98794-90010

Other sources of information are listed below:

• A "readme" file named xllwindows found in the directory
/etcjnewconfig/Update_info. This file contains last-minute information about
the X Window system.

• Xlib Programming Manual For Version 11 Release of the X Window System, by Adrian
Nye, published by O'Reilly and Associates, Newton, MA (1-800-338-NUTS).

• Xlib Reference Manual For Version 11 Release of the X Window System, by Adrian Nye,
published by O'Reilly and Associates, Newton, MA (1-800-338-NUTS).

1- 6 Introduction

• X Window System User's Guide, by Tim O'Reilly, Valerie Quercia, and Linda Lamb,
published by O'Reilly and Associates, Newton, MA (1-800-338-NUTS).

• Introduction to the X Window System, by Oliver Jones, published by Prentice-Hall,
Englewood Cliffs, NJ 07632.

Introduction 1 - 7

This page left blank intentionally.

Widgets 2
The HP X Widgets library contains a variety of widgets, each designed for a different task.
A widget is a single part of a group of components that comprise a predefined set.
Widgets are used individually or in combination to make the creation of complex
applications easier and faster. Some widgets display information, others are merely
containers for other widgets. Some widgets are restricted to displaying information and do
not react to keyboard or mouse input. Others change their display in response to input
and can invoke functions when instructed to do so. You can customize some aspects of a
widget, such as fonts, foreground and background colors, border widths and colors, and
SIZeS.

A widget instance is composed of a data structure that contains values and procedures for
that particular widget instance. There is also a class structure that contains values and
procedures applicable to all widgets of that class.

Widgets are grouped into several classes, depending on the function of the widget.
Logically, a widget class is the procedures and data associated with all widgets belonging to
that class. These procedures and data can be inherited by subclasses. Physically, a widget
class is a pointer to a structure. The contents of this structure are constant for all widgets
of the widget class. A widget instance is allocated and initialized by XtCreateWidget
or XtCreateManagedWidget. Refer to chapter 3, "Using Widgets in Programs," for
specific examples of creating widgets.

There are also some functions to aid you in using the widgets. This chapter provides an
overview of what is available. The man pages at the back of this manual contain details for
each of the widgets. Figure 2-1 shows how widgets might be combined in an application.

Widgets 2-1

=I combined widgets I· ID

l STATIC TEXT IJIDGET I l SCROLLED IJI NDOIJ IJI DGET I
l TOGGLES IN ROIJ COL HGR I

1111 Exit I ID Quit I
ID Leave liD Terminate I
ID Bye I 1111 Cancel I

PUSH BUTTONS IN ROIJ COL HGR I
IActi vateiiEnergizel

jPrintl jExecutel

lean xl lfr11iml

This is sooe text for the sc
This is the second line of t
This is the third line of te
And this is the fourth line.
Now is the tioe for all good
their countr~. Four score a
forefathers brought forth a
Iibert~ and dedicated to the
are created equa 1.
SOPie selected ~xioos.
Although the ooon is one fou
it is further awa~.
In ~ construction project,
,~ part, there w i ll be no mor
Now, here is SOffle ibberish t
too bad for ~!
I ball 111iben ibare cribeibat ·
thibe tibill'le.

..

iNibebribaskiba hibas wibon -
l~ibear. Thibat's nibot tib ..!_

~- .,,
STATIC RASTER IJIDGET

Figure 2-1. Widget Application Screen

Several types of widgets are shown in figure 2-1. The large box that contains the rest of
the widgets is a BulletinBoard widget. In the upper left-hand corner is a simple StaticText
widget. Below that is another StaticText widget, and below that is a set of Toggle widgets
that are managed by a RowCol widget. Note that two of the Toggles, "Exit" and "Cancel"
are "selected" as indicated by the black square. Below the Toggles is another StaticText
widget, and below that a set of PushButton widgets that are also managed by a RowCol
widget. The "Stop" PushButton is highlighted to show that it is selected. At the upper
right is another StaticText widget, and below that is a ScrolledWindow widget with some
text in it. Note the ScrollBars at the right and bottom of the ScrolledWindow widget.

2-2 Widgets

Finally, there is yet another StaticText widget, and below that a StaticRaster widget. This
example does not show all of the available widgets. It does show how you can combine
several types of widgets within the same window.

The sections in this chapter divide the widgets into six categories as shown in table 2-1
below.

TABLE 2-1. Categories of Widgets

Class Name Widget Class
Display Widgets
StaticRaster XwstaticRasterWidgetClass
StaticText XwstaticTextWidgetClass
Editing Widgets
ImageEdit XwirnageEditWidgetClass
TextEdit XwtextEditWidgetClass
Selection Widgets
PushButton XwpushButtonWidgetClass
Toggle XwtoggleWidgetClass
Layout Widgets
BulletinBoard XwbulletinWidgetClass
Form XwforrnWidgetClass
List XwlistWidgetClass
Panel XwpanelWidgetClass
RowCol XwrowColWidgetClass
ScrolledWindow XwscrolledWindowWidgetClass
VPanedWindow XwvPanedWidgetClass
Menu Widgets
Cascade XwcascadeWidgetClass
MenuButton XwrnenuButtonWidgetClass
MenuSep XwrnenuSepWidgetClass
PopupMgr XwpopupMgrWidgetClass
Pull down XwpulldownWidgetClass
Miscellaneous Widgets
Arrow XwarrowWidgetClass
Frame XwfrarneWidgetClass
Sash XwsashWidgetClass
ScrollBar XwscrollBarWidgetClass
TitleBar XwtitleBarWidgetClass
Valuator XwvaluatorWidgetClass

Widgets 2-3

2.1 Display Widgets
Display widgets normally do not provide any interaction. They only display data on the
screen.

StaticRaster (XwstaticRasterWidgetClass)
This widget will display a picture (raster image). You can indicate selection of the widget
by moving the mouse cursor over the widget and clicking mouse button 1. The default
window size will fit the dimensions of the raster image. If you specify a larger one, the
image is centered. For a smaller window, the image is clipped along the right and bottom
sides, as required .

• Figure 2-2. StaticRaster Widget

StaticText (XwstaticTextWidgetClass)
Use this widget to display short messages to users. The widget will create a window for the
text. If you supply your own window dimensions, you can cause the text to be centered in a
larger window, or wrapped in a smaller one.

STATIC TEXT UIDGET

Figure 2-3. StaticText Widget

2.2 Editing Widgets
The widgets in this category allow the user to modify the data being displayed.

2-4 Widgets

lmageEdit (XwimageEditWidgetClass)
The ImageEdit widget allows an image to be displayed in an enlarged version so that it can
be edited on a pixel-by-pixel basis. To edit the image, move the mouse pointer to the
desired point and press mouse button 1. The pixel under the pointer will change to the
foreground color. If the button is held down while the pointer is moved, all pixels that are
touched will change to the foreground color. Repeating this procedure will cause the
pixels to revert to their original color.

TextEdit (XwtextEditWidgetClass)
The TextEdit widget provides a single or multi-line text editor that has a user and
programmer interface that you can customize. It can be used for single-line string entry,
forms entry with verification procedures, multi-page document viewing, and full-screen
editing.

H=l Tel<t Edit I, lOr
)here is no place

H=l Tel<t Edit I, lOr
J ike Nebraska!

i······ol Tel<t -Edit I, IDI
~ 1 ike llm·IIUIB

i=l Tel<t Edit I, 101
~ 1 ike Oregon !A ~

Figure 2-4. TextEdit Widgets

Figure 2-4 shows four TextEdit widgets with a single line. The line is too long to show all
the text at once, but you can move the pointer (by using the arrow keys) to display the
remainder of the text. The second widget shows the result of moving the pointer to the
right. The pointer represents the "insert character" point. The third widget shows the
word "Nebraska" highlighted. This was accomplished by moving the pointer to any
character in the word and "double-clicking'' mouse button 1. You can highlight any part of
the text by positioning the pointer at the first character to be highlighted, pressing and
holding mouse button 1, and "dragging'' the mouse to move the pointer to the last
character you want to highlight. The highlighted text can be deleted by pressing I CTRL I
~. You can "paste" the deleted text anywhere in the text by moving the pointer to the
desired location and pressing ICTAL! [i]. You can type in new text for the text that was
deleted. This is shown in the fourth widget of figure 2-4. The program used to generate
these widgets can be found in jusr/libjcontrib/Xw/Text_Edit. c. See section

Widgets 2-5

1.3 in chapter 1 for instructions to compile this program.

2.3 User Selection Widgets
Use these widgets to allow users to specify choices. Each of these widgets corresponds to
a single choice. By combining several of these widgets with a manager widget (discussed
later in this section), you can build forms and menus to provide a variety of input choices.

PushButton(XwpushButtonWidgetClass)
This widget consists of a text label surrounded by a button border. Normally, you select
the button by moving the mouse cursor to the button and pressing mouse button 1. When
the mouse button is pressed, the widget colors will invert. When the mouse button is
released, the button colors will revert to the original color scheme. PushButtons are used
to invoke actions, such as run, cancel, etc.

fEnergize)

Figure 2-5. PushButton

Toggle (XwtoggleWidgetClass)
This widget consists of a rectangle with a small box and a label contained inside the
rectangle. Normally, you select the Toggle by placing the mouse cursor inside the
rectangle and pressing mouse button 1. The interior of the box (not the rectangle) will
then be filled with the selection color. The selection color is the foreground color by
default, but this can be changed using a default file. Toggles are normally used for binary
(on-off) state applications.

2-6 Widgets

lll1 Terminate)

Figure 2-6. Toggle

2.4 Layout Widgets
These widgets make it easier to combine several widgets into one combination widget.
They can be used as a "backdrop" on which other widgets can be placed. The layout
widget is the parent widget. The widgets being combined are called child widgets.

BulletinBoard (XwbulletinWidgetClass)
This is a general layout widget that will accept any number of children. The BulletinBoard
widget will automatically make the BulletinBoard the appropriate size to hold the child
widgets. You, the programmer, must specify the x andy coordinates of each child widget.
You can also control the BulletinBoard size.

Form (XwformWidgetClass)
The Form widget is a constraint-based manager that provides a layout language used to
establish spatial relationships between its children. It manipulates these relationships
when any of the following occur:

• The Form is realized.

• New children are added to the Form.

• The children are resized, unmanaged, remanaged, or destroyed.

Print

Figure 2-7. Form Widget

For example, you can specify one widget to be always next to another regardless of the size
of the form window. Chapter 5, "Forms," provides a detailed description of this layout
widget.

Widgets 2-7

List (XwlistWidgetClass)
The List widget allows a set of widgets to be presented in a row-column fashion. There
can be any number of columns, and by default each column will be wide enough to display
the widest item in the column. The entire list window can be scrolled either horizontally or
vertically, but the columns cannot be scrolled individually. The List widget also provides
the capability to select one or more elements of the list, and the application can then
perform some action as a result. Also, the List widget provides automatic scrolling of its
window when there are too many children to display. The major differences between the
List widget and the RowCol widget are listed below.

• The List widget allows you to make multiple selections from the displayed list. This is
accomplished by setting the resource XtNselectionMethod to XwMULTIPLE. When
in this mode, if you position the cursor on an item within the list and then press the
mouse button that is bound to "Define Select" (mouse button 1 is the default), that
item is selected and is highlighted. As you drag the mouse with the button held down,
the original choice remains highlighted, and any other items that the cursor touches arc
also selected and highlighted. The RowCol does not have this feature.

• The List widget will automatically display its items within a ScrolledWindow when the
list becomes too large for the given window. The RowCol widget does not do this
automatically, although you could place the RowCol as a child of a ScrolledWindow
and accomplish the same thing. The point is, the List widget performs this function
automatically.

• The List widget, unless otherwise specified, will display all elements in a column with
the same length and width. The RowCol widget will display its elements in varying
sizes.

• The List widget normally will only have primitive widgets as its children. The List
widget overrides any primitive semantics (behavior functions), such as highlighting on
select, and uses its own. Thus, if you use a set of PushButtons within a list, the
PushButton highlight-on-select feature will not work.

Figure 2-8 shows a List widget with multiple selection invoked. The items highlighted are
those that were selected. Note the vertical and horizontal ScrollBars, indicating that more
items are contained in the list.

2-8 Widgets

Figure 2-8. List Widget

Panel (XwpanelWidgetClass)
The Panel widget is used for windows with titles and menus. It may have three children,
each of which is always laid out in areas known as title, menu, and workspace. Panel
always lays the children out so that the child in the title area is placed at the top of the
window, the child in the menu area is placed next, and the child in the workspace area is
placed at the bottom. Figure 2-9 shows a Panel widget with the three areas. The title area
consists of a "quit" pushbutton and four other pushbuttons used to add or remove child
widgets from either the menu area or the workspace area. The menu area consists of an
optional number of pushbuttons, the exact number determined by how many are created
from the buttons in the title area. The workspace area is similar, but in this case it is a
RowCol widget specifying only one column.

Title Area { louit)IMenu Area +)lwork Space Area +)IMenu Area -Jiwork Space Area-)

Menu Area ~ IMenu Area o)IMenu Area 1)1Menu Area 2)1Menu Area 3)1Menu Area 4)
lwork Space Area o)

lwork Space Area 1)

Workspace Area lwork Space Area 2)

lwork Space Area 3)

lwork Space Area 4)

Figure 2-9. Panel Widget

When the Panel is resized, the menu area is resized but the title and work space areas are
not. Figure 2-10 shows the Panel widget of figure 2-9 after resizing. Note how the widgets
in the title and work space areas have been clipped, while the widgets in the menu area
have been reorganized to accommodate the smaller size window.

Widgets 2-9

louit)IMenu Area +)lwork Space Area +)IMenu Area -)

IMenu Area o)IMenu Area 1)1Menu Area 2)lMenu Area 3)
IMenu Area 4)

[(Work Space Area 01
lwork Space Area 1)

lwork Space Area 2)

Figure 2-10. Panel Widget After Resizing

RowCol (XwrowColWidgetClass)
This widget controls the layout of its children in a grid of rows and columns. There are
three types of row-column layouts that you can use.

• Requested columns. You specify the number of columns (the default is one) to be
used in laying out the data. The children that make up the data are laid out in rows.
All the columns are as wide as the widest element in the column, and all elements are
left justified. Row height is determined by the largest element in the row, and all
elements are centered in the row.

• Maximum columns. The RowCol widget calculates the maximum number of columns
that can fit within the manager and lays the data out accordingly. You specify the
manager size by setting values for the inherited resources XtNHeight and
XtNWidth.

• Maximum unaligned. In this mode, no column alignment is used. Each item is placed
to the right of the previous item until a row is full. The width of each row is simply the
width of the RowCol widget itself. When a row is full, the next item is placed at the left
edge of the manager in the next row down.

You can select any or all of the children in accordance with the children's selection
processes. Alternatively, you can specify that only one widget can be selected at any time
(selection policy one_ of_ many) . In that case, if you select a second widget, the
manager will unselect the child that was selected earlier.

2 -10 Widgets

IActi vate)IEnergize)

IP r int) IExe cute)

lcall x) &1i•JQI
Figure 2-11. Row Column Manager

ScrolledWindow (XwscrolledWindowWidgetClass)
This widget manages one and only one child widget. If the manager is sized so that the
entire child is not visible, it will display vertical and horizontal scroll bars to allow the
entire child to be displayed. Figure 2-12 shows a ScrolledWindow with some text in it.
Note that the horizontal scroll bar is positioned to the left, indicating that horizontal
scrolling is possible.

This is some text for the
This is the second line of
This is the third line of
And this is the fourth li
Now is the time for all
their countr~. Four score
orefathers brought forth
libert~ and dedicated to

created equal.
selected axioms.

lthough the moon is one
it is further awa~.
In an~ construction project

part, there will be no
Now, here is some ibberish
too bad for ~ou!
!ball miben ibare cribeibati
thibe tibime.
Nibebribaskiba hibas wibon

bear ibat's nibot ti

Figure 2-12. ScrolledWindow

Figure 2-13 shows the same window after scrolling to the right. Compare the positions of
the horizontal scroll bar and the text with those of figure 2-12.

Widgets 2 - 11

Figure 2-13. ScrolledWindow

VPanedWindow (XwvPanedWidgetClass)
This widget arranges its children vertically. Each child is placed in its own pane. A Sash
(usually a small square box) appears at the bottom of each pane except the lowest pane.
This allows the pane to be resized vertically. Figure 2-14 shows an example of a
VPanedWindow widget with a number of children. Figure 2-15 shows the same widget
after a pane has been resized.

2 -12 Widgets

[§ vert i ca I _paned I "Jg
!Set Hax 50011Set Hax 10011Set Hin 100IISet Hin sol

ISet Hax soiiSet Hax ol ISet Hin 20IIset Hin ol
~

ISet Sash GOOI!Set Sash 2ooi1Set Sash 1ooi1Set Sash ol

ISet Sash -1011Set Sash -10011Set Sash -20011Set Sash -6001
J"'1_

I set borderFr- -111Set borderFr- 0 II Set padding -111Set padding 0 I
lset borderFr..., 211Set borderFr- 1011Set padding 411Set padding sl

..n-

1111 Frame On IIIII Refigure Mode IIIII Allow Resize I
IAdd Buttonl IDelete Buttonl IOuit!

Figure 2-14. VPanedWindow Widget

=I vert i ca I _paned 1·10
II Set Hax 500 l!Set Hax 100 II Set Hin 100 II Set Hin 50 I
JSet Sash 600 II set Sash 200 I JSet Sash 100 I JSet Sash 0 I
JSet Sash -10 II set Sash -100 JISet Sash -200 JISet Sash -600 I

J"'1_

JSet borderFr""e -111Set borderFr""" oiiSet padding -111Set padding ol

lset borderFra"" 2llset borderFr.,., 1oiiSet padding 411Set padding sl

..n-

1111 Frame On IIIII Refigure Mode IIIII Allow Resize I
I Add Button 1 I Delete Button I IQuitl

Figure 2-15. VPanedWindow Widget After Pane Resizing

2.5 Menu Widgets
Menu widgets combine to form menus that are then attached to another widget. Refer to
chapter 4, "Menus," or the individual widget man pages for more information.

Widgets 2 -13

Cascade(XwcascadeWidgetClass)
The Cascade widget is a composite widget that may be used by an application to create a
set of cascading menus. This widget always displays its managed children in a single
column, and it always attempts to size itself to the smallest size possible, as determined by
its children.

MenuButton (XwmenuButtonWidgetClass)
The MenuButton is commonly used with MenuMgr and MenuPane widgets to build a
menu system. It consists of a single label, a mark, and a cascade indicator. It can be used
by itself as a button widget.

MenuSep(XwmenuSepWidgetClass)
The MenuSep widget is a Primitive widget used to separate items or groups of items in a
menu. Several different types of lines (solid, dashed, double, etc.) are available.

PopupMgr(XwpopupMgrWidgetClass)
The PopupMgr widget is a Composite widget used by an application to manage a
collection of menu panes that form a Popup menu.

Pulldown (XwpulldownWidgetClass)
The Pulldown menu manager widget is a Composite widget used by an application to
manage a collection of MenuPanes that form a Pulldown menu.

2.6 Miscellaneous Widgets
These widgets are helpful in designing special windows for your application. They form a
class hierarchy, and each class in the hierarchy is available, as are some special routines.

Arrow (XwarrowWidgetClass)
The arrow widget draws an arrow inside a box. This arrow is used in combination with the
Valuator widget to create a ScrollBar widget. See figure 2-16.

Frame (XwframeWidgetClass)
The Frame widget is a Manager that is used to enclose a single child within a border drawn
by the Frame widget. It is most often used to enclose other Managers when it is desired to
have the same border appearance for the Manager and Primitive widgets it manages.

2-14 Widgets

Scroll Bar {XwscrollBarWidgetClass)
The ScrollBar widget combines the Valuator and Arrow widgets to draw either a
horizontal or vertical ScrollBar. The ScrollBar widget is shown in figure 2-16.

Figure 2-16. Scrollbar Widget

Title Bar {XwtitleBarWidgetClass)
The TitleBar widget will display StaticText and other widgets. By setting priorities
appropriately, you can control how this widget responds to being resized by the user.

Valuator (XwvaluatorWidgetClass)
The Valuator widget combines a slider within a box. This combination is used to denote
the viewable portion of a widget whose contents are too large to fit in the available
window.

2. 7 Utility Functions

This section describes utility functions that are currently available.

Create Tile (XwCreateTile (screen, background, foreground, tile))
This utility is used to create background tiling in primitive widgets. Nine tile patterns are
available, as shown in figure 2-17. The program that produced this figure can be found in
fusrfcontrib/Xw/tiletest.c. Instructions for compiling this program can be found in section
1.3 of chapter 1.

Widgets 2 -15

back round_tile
XwBACkGROUND

Xw7S_FOREGROUND

-
Figure 2-17. Available Background Tiles

The next chapter will show you how to use many of these widgets in an application.

2 -16 Widgets

Using Widgets in Programs 3
This chapter explains how to write applications that use the HP X Widgets. If you are
interested in writing your own widgets, read chapter 7 "Writing Widgets" in this manual.

Application programs use the HP X Widgets by calling functions of the Xt Intrinsics.
Relevant functions are explained. For more details on the Xt routines, refer to
Programming With the Xt Intrinsics in this binder.

Writing widget programs involves nine steps:

TABLE 3-1. Steps in Writing Widget Programs

Step Description Related Functions

1 Include required header files 1/include <Xll/StringDefs.h>
1/include <Xll/Intrinsic.h>
1/include <Xw/Xw.h>
#include <Xw /widget. h>

2 Initialize Xt Intrinsics Xtinitialize(...)
3 Add additional top-level windows XtCreateApplicationShell(...)

or XtCreatePopupShell(...)

Do steps 4 through 6 for each widget.
4 Set up argument lists for widget XtSetArg(...)
5 Add callback routines
6 Create widget XtCreateManagedWidget(...)

7 Realize widgets and loop XtReal izeWidget (parent)
XtMainLoop ()

8 Link relevant libraries cc +Nd2000 +Ns2000 - oapplication
application . c -lXw -lXt -lXll

9 Create defaults files jusr/lib/Xlljapp- defaul tsjclass
$HOME/.Xdefaults

\

Sections 3.1 through 3.8 of this chapter describe each of the steps except step 3. That step
is covered in section 3.12. The sample code segments of each section build a simple widget
program (called demol) that implements a PushButton widget. The program, its defaults

Using Widgets in Programs 3-1

file, and a picture of its output are listed below.

Program Listing demo1.c

1**---
ir

file: demol. c

project: X Widgets example programs

*** description: This program creates a PushButton widget.

*ic-k

*** Copyright (c) 1988, Hewlett-Packard Company.
''''* All rights are reserved.
*~ftc

***---*1

I* include files *I
#include <XlliStringDefs.h>
#include <Xlliintrinsic.h>
#include <XwiXw.h>
#include <XwiPButton.h>

1*---
*'' SelectCB - callback for button
*I
void SelectCB (w, client_data, call_data)

Widget w; I* widget id *I
caddr t client_data; I''
caddr t call_data; I*

data from application
data from widget class

I* print message and terminate program *I
pxintf ("PushButton selected. \n");
exit (0);

1*---
** main - main logic for demol program
,, I
void main (argc,argv)

unsigned int argc;
char io<cargv;

Widget
Widget
Arg
register int

toplevel;
button;
args[lO];
n;

I'' initialize toolkit *I

I* Shell widget
I* PushButton widget
I* arg list
I* arg count

*I
*I
*I
*I

toplevel = Xtinitialize ("main", DEmol, NULL, NULL, &argc, argv);

3-2 Using Widgets in Programs

I* set up arglist *I
n = 0;

XtSetArg (args [n], XtNlabel, "Push Here"); n++;
XtSetArg (args[n], XtNwidth, 250); n++;
XtSetArg (args[n], XtNheight, 150); n++;

I* create button *I
button= XtCreateManagedWidget ("button", XwpushButtonWidgetClass,

toplevel, args, n);
I* add callback *I

XtAddCallback (button, XtNselect, SelectCB, NULL);
I* realize widgets *I

XtRealizeWidget (toplevel);
I* process events ''I

XtMainLoop ();

Defaults File DEmo1 Listing

1f
1f
1f

DEmel app-defaults file for demol.c
Place this file in lusrllibiXlllapp-defaultsiDEmol

general appearance
*topShadowTile:
*bottomShadowTile:
*topShadowColor:
*bottomShadowColor:
*foreground:
*background:
*allowShellResize:
*allowResize:
*invertOnSelect:
*borderWidth:
1f

and behavior defaults
foreground
foreground
light blue
navy blue
midnight blue
sky blue
true
true
false
0

specific defaults for this program
''font: hp8. 8xl6b

=I demo!

Push Here

I

I~ lD

Figure 3-1. Sample Program Screen Display

Using Widgets in Programs 3 -3

Section 3.9 describes use of color in screen design and section 3.10 introduces some
advanced programming techniques. Sections 3.11 and 3.12 present more involved sample
programs.

NOTE

This chapter assumes you have a working knowledge of the C
programming language. You should be particularly familiar with
pointers and structures. If you are not, be sure to study a book on
programming with C. Books on the topic are widely available in
computer bookstores. Also, the programs in this chapter were run
on a system using the hpwm window manager. If you are using
another window manager, the results you see may be different from
the figures shown in this chapter.

The following sections describe the process for writing widget programs summarized in
table 3-1. Following these steps will help you start writing programs that use the HP X
Widgets.

3.1 Including Header Files
Special variables and types of variables used by X widget programs are defined in header
files. Include the appropriate files at the beginning of your program. The man page for
each widget specifies what headers are needed.

Usually this section in your program will look like this:

#include <Xll/StringDefs.h>
#include <Xll/Intrinsic.h>
#include <Xw/Xw.h>
1/include <Xw/widget. h>

For each widget you are using in your program, replace widget with the name of the widget.
The man page for each widget shows the exact spelling of all header files you need. The
include files for all widgets are found in the directory jusrjinclude/Xw. For the
PushButton widget in the sample program demol, the header file name is PButton. h.
Put a ffinclude statement in your program for each type of widget you use. You need to
include a header file only once, even if you use a given widget twice in your program.
Don't forget to include any other header files (such as <s tdio. h>) that your program
needs.

3 - 4 Using Widgets in Programs

The file StringDefs. h contains definitions for resources used by the Xt Intrinsics.
Intrinsic. h defines the rest of the Xt structures and variables. Variables common to
all HP X Widgets are defined in Xw. h.

The callback procedure SelectCB is explained in section 3.4.

3.2 Initializing the Toolkit
You must initialize the before making any other calls to Xt Intrinsics functions. The
function Xt Initialize establishes the connection to the display server, parses the
command line that invoked the application, and creates a "shell widget" to serve as the
parent of your application widgets.

By passing the command line that invoked your application to Xtlnitialize, the
function can parse the line to allow users to specify certain resources (such as fonts and
colors) for your application at run time. The options and their formats are described in
chapter 3 "Running Your X Clients" of Using the X Window System. Xtlni tialize
scans the command line and removes those options. The rest of your application sees only
the remaining options.

The call to Xtlnitialize used by the sample program demol is:

top level = Xtinitialize ("main", DEmel, NULL, NULL, &argc, argv);

This line names the application shell "main," the application class "DEmol," passes no
additional options, and passes the command line that invoked the application. The first
two parameters are used later in setting up defaults files. They are explained in section 3.8
"Creating Defaults Files" later in this chapter.

The syntax of the Xtlni tialize function appears below. Note that it returns a value of
type Widget; therefore, the variable top level in demol must be defined as type Widget.

Widget Xtinitialize(shell_name, application_class, optiollS, JlUm_optiollS, argc, argv)
String shell_name;
String application_class;
XrmOptionDescRec optiollS [J ;
Cardinal /lUm _optioru;
Cardinal *argc;
String argv[J;

shell name Specifies the name of the application shell widget instance, which usually
is something generic like "main." This name is used by the Xt Intrinsics

Using Widgets in Programs 3-5

to search for resources that belong specifically to this shell widget.

application class Specifies the class name of this application, which usually is the generic
- name for all instances of this application. By convention, the class name

is formed by reversing the case of the application's first two letters. For
example, the sample program "demo1" would have a class name of
"DEmol."

options

num _options

argc

argv

Specifies how to parse the command line for any application-specific
resources. The options argument is passed as a parameter to
XrmParseCornmand. For further information, see Programming With
Xlib.

Specifies the number of entries in options list.

Specifies a pointer to the number of command line parameters.

Specifies the command line parameters.

3.3 Setting Up Argument Lists for Widgets
The steps in sections 3.3 through 3.6 must be performed for each widget you wish to
create.

Widgets accept argument lists (pairs of resource names and values) that control their
appearance and functionality. The resources for a given widget are shown in the man page
for the widget. The list of resources acceptable for a widget comprises not only resources
unique to the widget, but also those resources inherited from widgets higher in the widget
class hierarchy. Refer to chapter 7, "Writing New Widgets," for a discussion of widget
class hierarchies.

The simplest way to set an element of an argument list is by using the XtSetArg macro.
Other methods are described later in section 3.10 "Advanced Programming Techniques."

The program segment below declares an array args of up to 10 arguments. The size of
the array is not important just so long as the number of elements allocated is greater than
the number of elements used. The first two arguments specify that the widget will have a
width of 250 pixels and a height of 150 pixels. The third argument specifies the string to
display in the push button.

Arg args[lO];
XtSetArg(args[O], XtNwidth, 250);
XtSetArg(args[l], XtNheight, 150);
XtSetArg(args [2], XtNlabel, "Push Here");

3 -6 Using Widgets in Programs

An alternate method for XtSetArg uses a counter, n, rather than a hard-coded index.
This method, shown below, makes it easier to add and delete argument assignments. It is
the method used in the sample program demol.

Arg args[lOJ;
Cardinal n=O;
XtSetArg(args[n], XtNwidth, 250); n++;
XtSetArg(args[n], XtNheight, 150); n++;
XtSetArg(args[n], XtNlabel, "Push Here"; n++;

The variable n contains the number of resources set. It can be passed to the widget create
function (explained in section 3.5) as the argument list count.

CAUTION

Do not increment the counter from inside the call to XtSetArg.
As currently implemented, XtSetArg is a macro that dereferences
the first argument twice.

The syntax for using XtSetArg is as follows.

XtSetArg (arg, name, value)

arg

name

value

Arg arg;
String name;
XtArgVal value;

Specifies the name-value pair to set.

Specifies the name of the resource.

Specifies the value of the resource if it will fit in an XtArgVal, otherwise
the address.

3.4 Adding Callback Procedures
Callback routines are one of the key features of the Xt Intrinsics. They allow you, the
application programmer, to write procedures that will be executed when certain events
occur within a widget. These events include mouse button presses, keyboard selections,
and cursor movements (refer to "Event Handling'' in Programming With the Xt Intrinsics
for information on processing other events). Callback procedures are the main mechanism
your application uses to actually get things done.

Using Widgets in Programs 3 -7

You need to complete three steps to add callbacks:

1. Write the callback procedures.

2. Create an appropriate callback list.

3. Set the widget's callback argument.

Each of these steps is described in the following sections.

3.4.1 Writing a Callback Procedure

Callback procedures return no values, but have three arguments:

• The widget for which the callback is registered.

• Data passed to the callback procedure by the application.

• Data passed to the callback procedure by the widget.

In the sample program demol, the callback procedure prints a message to the standard
output device (usually the terminal window from which the application was invoked) and
ends the program using the HP-UX system exit call.

void selectCB(w, client_data, call_data)
Widget w; /* widget id */
caddr_t client_data; /* data from application */
caddr t call_data; /* data from widget class */

/* print message and terminate program */
fprint("PushButton selected.\n")
exit(O);

The variable type caddr _ t is defined by the Xt lntrinsics as a pointer to an area of
memory. The call_data argument is used only by a few widgets. The man page for
each widget specifies whether it passes any data to its callbacks. Refer to the
XWVALUATOR man page for an example of how this is used.

The general syntax of a callback procedure is described below:

typedef void (*XtCallbackProc)();

void CallbackProc (w, client_ data, call_ data)
Widget w;
c addr _ t client_ data;
c addr _ t call_ data;

3 -8 Using Widgets in Programs

w

client data

Specifies the widget for which this callback is invoked.

Specifies the data that the widget should pass back to the client when the
widget invokes the client's callback. This is a way for the client
registering the callback to also define client-specific data to be passed to
the client: a pointer to additional information about the widget, a reason
for invoking the callback, and so on. It is perfectly normal to have
client_ data be NULL if all necessary information is in the widget.

call data Specifies any callback-specific data the widget wants to pass to the client.
It is widget -specific and is usually set to NULL. It will be defined in the
widget's man page if it is used.

3.4.2 Adding Callbacks

A callback contains information about the callback routine associated with a particular
user action.

The sample program demol creates a callback by calling the procedure
XtAddCallback.

XtAddCallback (button, XtNselect, SelectCB, NULL);

The general syntax of XtAddCallback is described below:

void XtAddCallback(w, callback_name, callback, client_data)
Widget w;
String cal/back_name;
XtCallbackProc callback;
caddr_t client_data;

w Specifies the widget to add the callback to.

callback name Specifies the callback list within the widget to append to.

callback Specifies the callback procedure to add.

client data Specifies the client data to be passed to the callback when it is invoked by
The client data parameter is often NULL).

To add more callbacks, just make another call to XtAddCallback. In this way you can
cause a user event to trigger many callback routines.

Using Widgets in Programs 3-9

3.4.3 Setting Widgets' Callback Resources
Many widgets define one or more callback resources. Set the value of the resource to the
name of the callback list.

The callback resources for any particular widget are listed in the man page for that widget.
The PushButton widget (man page XWPUSHBUTTON) used in the sample program demol
supports three different kinds of callbacks. Each callback could be set up by specifying the
callback list as the value of the appropriate resource .

• Callback(s) invoked when the PushButton widget is destroyed (argument
XtNdestroyCallbac~.

• Callback(s) invoked when the PushButton widget is selected (argument X tN s e 1 e c t).
This is the callback you use in demo 1.

• Callback(s) invoked when the PushButton widget is released (argument
XtNrelease).

The translation table for this widget has been set such that a select action occurs whenever
the pointer is within the widget and the user presses mouse button 1. A select action then
causes the widget to invoke each of the callback routines on the callback list pointed to by
its XtNselect argument. These routines are invoked in the order in which they appear
in the callback list. In the case of the sample program demol, only the routine Selec tCB
is executed.

3.5 Creating the Widget
Now that you have established an argument list for the widget, you can create the widget
instance. The call to XtCreateManagedWidget below comes from the sample
program demo 1.

button= XtCreateManagedWidget("button", XwpushButtonWidgetClass, toplevel,
args, n);

This call names the newly created widget "button" and defines it to be a PushButton
widget (from the class XwpushButtonWidgetClass). The class "PushButton" or the
name "button" can be used in defaults files (discussed in section 3.8) to refer to this
widget. Its parent is "toplevel," the toplevel shell widget returned by Xtini tialize.
The argument list and number of arguments complete the call. This call will create the
widget and notify its parent so that the parent can control its specific layout.

Widgets form a hierarchical structure called a widget tree. The widget returned by
Xtinitialize is the invisible parent for the toplevel application widget, in this case
button. Usually there are several levels of widgets. Widgets at the higher levels are

3-10 Using Widgets in Programs

layout widgets (also called manager widgets) that control and coordinate the primitive
widgets located at the leaves of the widget tree. The more advanced sample program later
in this chapter illustrates multiple levels of widgets.

The syntax for XtCreateManagedWidget is described below.

Widget XtCreateManagedWidget (name, widget_c/ass, parent, args, num _ args)

name

String name;
WidgetClass widget class;
Widget parent;
ArgList args;
Cardinal num _ args;

Specifies the resource name for the created widget. This name is used
for retrieving resources and should not be the same as any other widget
that is a child of the same parent if unique values are necessary.

widget _class

parent

Specifies the widget class pointer for the created widget.

Specifies the parent widget.

args Specifies the argument list to override the resource defaults.

num_args Specifies the number of arguments in args. The number of arguments in
an argument list can be automatically computed by using the XtNumber
macro if the list is statically defined.

3.6 Making the Widget Visible

All widgets are now created and linked together into a widget tree.

XtRealizeWidget displays on the screen the widget that is passed to it and the children
of that widget.

The final step in the program is to call the Xt Intrinsics routine that causes the application
to enter a loop, awaiting action by the user.

Sample code for this section is:

XtRealizeWidget(toplevel);
XtMainLoop();

The above two statements from the sample program demo l display the push button
widget and cause the program to enter a loop, waiting for user input. The main role of
your application is the setting of widget arguments and the writing of callback procedures.
Your application passes control to the Xt Intrinsics and the HP X Widgets once the
XtMainLoop function is called.

Using Widgets in Programs 3-11

The syntax for XtRealizeWidget is shown below.

void XtRealizeWidget(w)
Widget w;

w Specifies the widget.

3. 7 Linking in Libraries
When linking the program, be sure to include three libraries:

• libXw. a which contains the HP X Widgets.

• libXt. a which contains the Xt Intrinsics.

• libXll. a which contains the underlying Xlib library.

See section 1.3 of chapter 1 for information on compiling this and the other programs in
this chapter.

NOTE

The Makefile found in the directory jusr/contrib/Xw contains
some "N" parameters for Series 300 users. These parameters
expand the compiler's internal tables to accommodate the large
number of declarations made by the various components of the X
Window System. If you are writing particularly large programs, you
may need to expand the table sizes further.

3.8 Creating Defaults Files
Up to now, all widget resources have been set by the application using widget argument
lists. An additional method for specifying resources is through a set of ASCII files that
you, the application programmer, can set up for your user. You may also want your user to
set up these files to customize the application to individual requirements or preferences.
When writing a program, consider the following factors in deciding whether to specify an
argument in a defaults file or in the program itself.

3-12 Using Widgets in Programs

• Using a defaults file provides additional flexibility. Any user can override settings to
reflect personal preferences, and a systems administrator can modify the application
defaults file for system-wide customization.

• Specifying settings in the program gives the programmer greater control. They cannot
be overridden.

• Using defaults files can speed application development. To change a resource value in
a defaults file, simply edit the file (using any ASCII editor) and rerun the program. No
recompilation or relinking is necessary.

• Using defaults files can simplify your program. Resources in defaults files are
specified as strings. When resources are set in your program, they may have to be in
some internal format that takes several calls to compute. Section 3.11, "An Advanced
Sample Program," shows how colors are specified inside a program.

• Specifying options in your program may provide more efficient operation for the
computer. The process of reading defaults files and interpreting their contents adds
processing overhead.

1\vo files can be used for customization:

• A file located centrally in the directory jusr/lib/Xll/ app- defaults supplies
defaults for an entire class of applications executing anywhere on the computer system.

• A file (called .Xdefaults) in each user's home directory can supply default values to
all applications started by the user.

All files are of the same format. Chapter 4 "User-Level Customization" and chapter 5
"System-Level Customization" in the manual Using the X Window System contain a
detailed discussion of defaults files. There you will learn about the format of the files,
specifying a different location for them, and additional user defaults files.

3.8.1 Application Defaults Files

These files are designed to be created by the applications developer or systems
administrator. They are located in the directory /usr/lib/Xll/app-defaults on
the machine where the application resides. Application programs specify the file that
contains the application defaults when they call Xtlni tialize. The application _class
argument to that function specifies the name of the application defaults file. Several
applications can point to the same file.

The call below (taken from the sample program demol) will cause the Xt Intrinsics to
look for the file /usr/lib/Xll/app-defaults/DEmol for default information.

toplevel = Xt!nitialize("main", "DEmol", NULL, NULL, &argc, argv);

Using Widgets in Programs 3-13

The sample defaults file below sets the foreground color to white and background color to
black.

*background:
*foreground:

3.8.2 User Defaults Files

black
white

Each user can create a . Xdefaul ts file in his or her home directory to specify resource
defaults for applications run by that user. User defaults override application and system
defaults and allow different users running the same program to specify personal display
preferences, such as color and font selection.

The sample file below changes the background color to blue.

*background: blue

3.8.3 Defaults File Example
The example below illustrates the interaction of the defaults files with each other and with
arguments specified in programs.

Suppose a computer contains the program dernol as well as the application and user
defaults files described above.

To determine the color of the background, the Xt lntrinsics will do the following:

1. It will first look for the system defaults and initialize the background color to
white. (These defaults are compiled into the widgets.)

2. Then it will look for the application defaults file
jusr/lib/Xlljapp-defaults/DErnol and set the color to black.

3. Next the Xt Intrinsics will look for the user defaults file . Xdefaul ts and set the
background color to blue.

4. If the program explicitly sets the background argument (XtNbackground), it will
override the defaults.

3.9 Using Color
The X Widgets have been designed to support both color and monochrome systems in a
consistent and attractive manner. This is accomplished by incorporating into each widget a
variety of visual attributes. Through proper use of these attributes, the widgets will present
a dramatic three-dimensional appearance, giving you the distinct impression that you are

3-14 Using Widgets in Programs

directly manipulating the components. This section will describe these color attributes and
show you how to use them.

3.9.1 Capabilities and Attributes

The X Widget's visual capabilities are based on specialized border and background
drawing. The border drawing consists of a band around the widget two pixels wide that
contains two regions:

• The top and left shadow.

• The bottom and right shadow.

The background drawing within the widget is referred to as background. Figure 3-2
illustrates the drawing areas.

/
/

Top and Left Shadow

Background

I/ Bottom and Right Shadow

Figure 3-2. Widget Drawing Areas

Each area is drawn using a pixmap built from a combination of two colors and a bitmap
tile. Refer to the XwCreateTile (3X) man page and figure 2-14 for a description of the
set of tiles available. The top and left shadow pixmap is created using these widget
resources:

• XtNtopShadowColor

• XtNforeground

• XtNtopShadowTile

The background pixmap is created using these widget resources:

• XtNbackground

• XtNforeground

Using Widgets in Programs 3-15

• XtNbackgroundTile

The bottom and right shadow pixmap is created using these widget resources:

• XtNbottomShadowColor

• XtNforeground

• XtNbottomShadowTile

The primary color (top shadow color, bottom shadow color, or background) is used as the
foreground parameter for all of these pixmaps when the widget makes the call to
XwCreateTile to create the pixmap. The background parameter to the
XwCreateTile call is always the foreground color resource. This may seem
counterintuitive, but it is necessary for proper resource defaulting.

All the widgets support the visual attributes for setting the background as described. In
general, only primitive widgets support the border drawing. To use the border drawing for
manager widgets, a special manager widget, XwFrame, is available. This widget will
maintain the geometry of a single child and perform the border and background drawing.

3.9.2 Using the Capabilities

When planning the three-dimensional look of your program's windows, consider the
following guidelines:

• Any selectable area should appear to be raised.

• Non-selectable areas should appear to be flat. This can be accomplished by turning the
shadowing off with the XtN shadowOn resource.

• Any enclosing manager widget should appear to be lower to enhance the raised look of
its selectable children. The XwFrame widget supports the lowering of managers by
automatically reversing the shadowing attributes.

To give the impression that the widget is raised above its parent, set the key resources as
follows:

• Set XtNtopShadowColor to a light color.

• Set XtNbackground to a medium color.

• Set the XtNbottomShadowColor to a dark color.

• Set XtNtopShadowTile and XtNbottomShadowTile to XwFOREGROUND.

Reversing the top shadow and bottom shadow colors will give the appearance that the
widget is set into its parent. Several of the primitive widgets (buttons, toggles, and arrows,
for example) automatically reverse their shadowing when selected to achieve the effect of
being pressed. They return to their original shadowing when released.

3 -16 Using Widgets in Programs

Use coordinated colors such as light blue for the top shadow color, sky blue for the
background color, and navy blue for the bottom shadow color to enhance the three­
dimensional appearance. Using dissimilar colors will cause the effect to be lost.

The three-dimensional appearance is more difficult to achieve on monochrome systems.
The built-in defaults for all the widgets have been set up for monochrome systems and
provide the desired effect. The top shadow is drawn with a 50 percent pixmap, the
background is solid white, and the bottom shadow is solid black. This appearance can be
further enhanced by setting the background of a manager containing a set of raised
children to a pixmap of 25 percent black and 75 percent white.

3.9.3 Example Resource Values
The following are resource settings found to be useful for both color and monochrome
systems.

*Toggle.shadowOn: False
*StaticText.shadowOn: False
*RowCol.hSpace: 6
*RowCol.vSpace: 6

The following are resource settings found to be useful for color systems.

*borderWidth:
*topShadowTile:
*bottomShadowTile:
*invertOnSelect:
*invertOnEnter:

0
foreground
foreground
False
False

The following sets of resources contain some reasonably coordinated colors for color
systems. The color names are selected from the color name data base,
jusr/lib/Xll/rgb. txt.

ft Blue colors
ft
*topShadowColor:
*bottomShadowColor:
*foreground:
*background:

ft Green colors
ft
*topShadowColor:
*bottomShadowColor:
*foreground:
*background:

light blue
navy blue
white
sky blue

pale green
dark slate gray
dark green
forest green

Using Widgets in Programs 3-17

1f Red colors
1f
*topShadowColor:
*bottomShadowColor:
*foreground:
*background:

1f Gray colors
1f
*topShadowColor:
*bottomShadowColor:
*foreground:
*background:

wheat
indian red
brown
salmon

wheat
dark slate gray
dim gray
light gray

3.1 0 Advanced Programming Techniques
The sample program demol described in earlier sections of this chapter illustrated the
writing of a very simple widget program. The Xt Intrinsics provide additional mechanisms
for programmers. For more details on any of the Xt Intrinsics functions mentioned in this
section, refer to Programming With the Xt Intrinsics.

3.1 0.1 Setting Argument Values

Section 3.3 described the use of X tS e tAr g for setting the values of widget arguments.
This section describes three additional methods. The code segments show how the earlier
sample program could have been rewritten to use the new methods.

Assigning Argument Values
Each element of the type Arg structure can be assigned individually.

Arg args[lO];
args[O].name = XtNwidth;
args[O].value = (XtArgVal) 250;
args[l].name = XtNheight;
args[l) .value = (XtArgVal) 150;
args[2).name = XtNlabel;
args [2). value = (XtArgVal) "Push Here";

Be sure to keep name-value pairs synchronized. Note that all argument values have been
cast to type X tAr g V a 1.

3 -18 Using Widgets in Programs

Static Initializing
Initializing argument lists at compile time makes it easy to add and delete argument
settings in your program. It avoids the need to hard-code the maximum number of
arguments when declaring your argument list. These settings are frozen at compile time,
however. While the example below shows only a single argument list being created, you
can create any number of lists (be sure to declare each list as type Arg). You can use each
list with a different widget, or you can combine them using the
XtMergeArgLists (...) function described in Programming With the Xt Intrinsics.

static Arg args[) = {

} ;

{XtNwidth, (XtArgVal) 250},
{XtNheight, (XtArgVal) 150},
{XtNlabel, (XtArgVal) "Push Here"}.

Note that the values of each argument have been cast to variable type XtArgVal. When
the create widget function is invoked, passing it XtNurnber (args) will compute the
number of elements in the argument list.

button= XtCreateManagedWidget("button", XwpushButtonWidgetClass,
toplevel, args, XtNumber(args));

NOTE

Use the macro XtNurnber only if you are declaring the argument
list of indefinite size as shown above (args []). XtNurnber will
return the number of elements that have actually been allocated in
program memory.

Combining Static Initialization with Run-Time Assignments
The final method for creating argument lists initializes a list at compile time (described in
"Static Initializing'' above) and then modifies the values of the settings using regular
assignment statements. The XtNumber macro can be used to count the number of
arguments, since the argument list is declared with no definite number of arguments. The
values can be changed through assignments at run time, but the size of the argument list
(the number of arguments that can be specified) is frozen at compile time and cannot be
extended.

The example below initializes an argument list of three elements. The last is initialized to
NULL so it can be given a value later. The value for argument XtNheight is changed in
the program from its initialized value of 150 to a run-time value of 250.

Using Widgets in Programs 3-19

static Arg args[] = {
{XtNwidth, (XtArgVal) 500},
{XtNheight, (XtArgVal) 150},
{XtNlabel, (XtArgVal) NULL},

} ;
args[1].value = (XtArgVal) 250;
args[2].value = (XtArgVal) "Push Here";

I* item 0 *I
I* item 1 *I
I* item 2 *I

3.1 0.2 Manipulating Created Widgets
Widget programs to this point have set up argument lists and callbacks for widgets prior to
the widgets' creation. You can also modify widgets after they have been created. Such
modification usually occurs in callback routines and is illustrated in the sample program
demo2 discussed later in this chapter.

Retrieving and Modifying Arguments
XtGetValues will return the current value of specified arguments for a created widget.
XtSetValues will change the value of specified arguments.

Adding Callbacks and Translations
XtAddCallbacks will add a callback routine to a widget's callback list after the widget
has been created.

Each widget has a translation table that ties user actions (for example, button presses and
keyboard presses) to widget actions. Your application can modify the translation table for
any widget. This process is described in chapter 12 "Translation Management" of
Programming Wzth the Xt Intrinsics.

Separating Widget Creation and Management
By using XtCreateManagedWidget, the sample program automatically added the
newly created widget to its parent's set of managed children. To optimize programs that
add a number of widgets to a single parent, you may want to create the widgets using
XtCreateWidget calls and then add the entire list of children to its parent with a single
XtManageChildren call. In this way, the parent widget performs its geometry
processing of its children only once. This will increase the performance of applications
that have a large number of child widgets under a single parent.

Usually, the function XtRealizeWidget will display a widget and all of its children.
Using the function XtSetMappedWhenManaged allows you to turn off automatic
mapping (displaying) of particular widgets. Your application can then use XtMapWidget
to display the widget.

The function XtDestroyWidget will destroy a created widget and its children. The
destroyed widget is automatically removed from its parent's list of children.

3 -20 Using Widgets in Programs

3.11 An Advanced Sample Program
This section illustrates use of several important concepts in using widgets:

• Using layout widgets (manager widgets) in conjunction with selection and display
widgets (primitive widgets) to create a widget hierarchy (widget tree).

• Modifying widgets after they have been created.

• Calling Xlib routines in an Xt Intrinsics program.

• Specifying shadow colors to create a three-dimensional effect.

The source code and the application defaults file for the sample program are listed in
section 3.11.5 "Source Code" later in this section. They are also located on your system in
jusrjcontrib/Xw/examples as demo2.c and DEmo2. Instructions for compiling this
program can be found in section 1.3 of chapter 1.

If you are on a monochrome system, you may want to change the colors to shades of gray
in both demo2. c and DEmo2.

3.11.1 Description

The application demo2 is a simple game, the "Color Game." The program displays an
application window as shown in figure 3-3. The two sets of toggles control the color of the
static text displayed at the top of the window. You can set the foreground color by moving
the mouse pointer to one of the toggles in the left column and clicking mouse button 1.
The right column of toggles controls the background color. To terminate the program,
move the pointer over the "quit" push button and press mouse button 1.

Using Widgets in Programs 3-21

demo2

The Color Game

2llong time ago in a
gala~l) far far amal)

foreground

I+ red

IO green I
IO blue I

background

IO red I
IO green!

IO blue I

Figure 3-3. Color Game

3.11.2 Widget Hierarchy

The first step in widget application design is designing the screen layout (as is shown in
figure 3-3). The second step is drawing an appropriate widget tree. The tree for the
sample program is shown in figure 3-4.

3-22 Using Widgets in Programs

Static Text Static Text

Toggle Red Toggle Red

Toggle Green Toggle Green

Toggle Blue Toggle Blue

Figure 3-4. Sample Program Widget Tree

Widgets in Xt Intrinsics applications form a hierarchy, with the Shell widget (returned
from a call to Xtlnitialize) at the top. A Panel widget is the highest level widget
defined by the application derno2. As specified in Panel widget's man page, it has three
areas: a title area, a menu area, and a workspace area (which can be made up of any other
widget or combinations of widgets). The Color Game program specifies a TitleBar widget
for the title area and a Form widget for the workspace area. The menu area is not used in
this case.

The TitleBar has one child widget, a PushButton with the label "quit" that is right justified
in the TitleBar. The string for the TitleBar widget ("Color Game") is contained in a
StaticText widget that is internal to the TitleBar, so the application does not have to create
that StaticText widget.

A Form widget serves as the parent widget for the workspace area so that exact x-y
coordinates do not have to be specified. The Form widget is an extremely powerful layout
widget that allows you to control the position of its children by setting special constraint
arguments. The Form widget makes sure that these relationships hold true even if you

Using Widgets in Programs 3-23

resize the window using standard window manager commands. Form widget options are
explained in chapter 5. The children of the form specify these arguments as each child is
created.

The StaticText widget child of the Form widget contains the string whose foreground and
background colors are controlled by the toggles.

All color selection information is contained in a RowCol widget that divides the space into
two equal columns, one for the foreground settings and one for the background settings.
Another RowCol widget controls the layout for each of the color columns. This new
RowCol widget has just one column with four rows: one row for the static text widget
containing the title "foreground" or "background" and the remaining three rows for each
of the color options. Separate RowCol widgets are necessary for the foreground and
background to ensure that you can select both a single foreground color and a single
background color.

3.11.3 Setting Arguments

As you read the next two sections, you should refer to the source code for the program
"demo2.c" listed in section 3.11.5

The Color Game uses both the application defaults file DErno2 and argument lists to
specify widget options. Note that although colors are specified as strings ("red," for
example) in defaults files, you must provide a pixel value when setting a color inside your
program. The subroutine ColorNarneToPixel performs this task. The routine
Color::l'arneToPixel uses Xlib functions to obtain an index into the color map. This
index will correspond to the color name specified as a string. The color name must be in
the color data base jusr/lib/Xll/rgb. txt for the display server.

Arguments for each widget consist not only of arguments for the widget itself, but also of
arguments specifying its spatial relationship to its siblings. The arguments controlling the
layout are documented on the man page for the parent manager widget, but specified as
part of the argument list for the child widget.

3.11.4 Writing the Callback Procedures

The Color Game contains three callback procedures: Qui tCB to exit the program,
F-JregroundCB to change the foreground color, and BackgroundCB to change the
background color.

The procedure Qui tCB terminates the program using the standard HP-UX system call
exit(O).

Of the other two callback procedures, one handles changes to the foreground color, the
other controls the background color. Each is passed a pixel value as an argument when it
is invoked and uses XtSetArg and XtSetValues to set either the background or

3 -24 Using Widgets in Programs

foreground color resource of the static text widget.

A callback function has to be created for each of the six toggles. That record specifies
which callback procedure to call (ForegroundCB or BackgroundCB) and which color
to set (red, green, or blue). The callback procedure name is initialized at compile time.
Calculation of the color pixels must wait until run time.

3.11.5 Source Code

The Program

1**---

file:

project:

demo2.c

X Widgets example programs

description: This program displays a text image and two sets of
buttons. The buttons control the background and
foreground colors of the displayed text.

*** Copyright (c) 1988, Hewlett-Packard Company.
*** All rights are reserved.

***---*1

#include <stdio.h>
#include <XlliXlib.h>
#include <Xlliintrinsic.h>
#include <XlliStringDefs.h>
#include <XwiXw.h>
#include <XwiForm.h>
#include <XwiFrame.h>
#include <XwiPButton.h>
#include <XwiPanel.h>
#include <XwiRCManager.h>
#include <XwiSText.h>
#include <XwiSWindow.h>
#include <Xw/TitleBar.h>
#include <XwiToggle.h>

#define MAX ARGS 20
1tdefine TITLE_STRING "The Color Game"

I* functions defined in this file *I
void main (); I* main logic for demo2 program *I

Widget CreateButtonBox ();
Pixel ColorNameToPixel ();

I* create box with buttons for colors <<I
I* convert color name to pixel *I

Using Widgets in Programs 3 -25

void ForegroundCB (); I* callback for setting fg color
void BackgroundCB (); I* callback for setting bg color
void QuitCB (); I* callback for quit button

I* global variables *I
Widget text; I* display widget which changes color
Pixel red, blue, green; I* pixel values for fg and bg

1*---
** main - main logic for demo2 program
*I
void main (argc,argv)

unsigned int argc;
char **argv;

Widget toplevel; I* Shell widget *I
Widget panel; I* Panel widget *I
Widget titlebar; I* TitleBar widget *I
Widget button; I* PushButton widget *I
Widget form; I* Form widget *I
Widget rowcol; I* RowCol widget *I
Widget frame; I* Frame widget ''I

Arg args[MAX_ARGS]; I* arg list *I
register int n; I* arg count *I

I* initialize toolkit and pixel values *I

I*

toplevel = Xtinitialize ("main", "DEmo2", NULL, 0, &argc, argv);

red= ColorNameToPixel ("red", XtDisplay (toplevel));
green = ColorNameToPixel ("green", XtDisplay (toplevel));
blue = ColorNameToPixel ("blue", XtDisplay (toplevel));

create panel and titlebar pane
I* create main window Panel
n = 0;

*I
*I

panel= XtCreateManagedWidget ("panel", XwpanelWidgetClass,
toplevel, args, n);

I* create Ti tleBar in Panel ''I
n = 0;
XtSetArg (args[n], XtNwidgetType, XwTITLE); n++;
XtSetArg (args[n], XtNstring, TITLE_STRING); n++;
XtSetArg (args[n], XtNwrap, False); n++;

*I
*I
*I

*I
*I

titlebar XtCreateManagedWidget ("titlebar", XwtitlebarWidgetClass,
panel, args, n);

3 -26 Using Widgets in Programs

I* create quit PushButton in TitleBar *I
n = 0;

XtSetArg (args [n], XtNlabel, "quit"); n++;
XtSetArg (args[n], XtNregion, XwALIGN RIGHT); n++;
button = XtCreateManagedWidget ("quit-:7, XwpushButtonWidgetClass,

titlebar, args, n);
XtAddCallback (button, XtNselect, QuitCB, NULL);

I* create workspace pane *I
I* create Form as workspace area of Panel *I
n = 0;
XtSetArg (args[n], XtNwidgetType, XwWORK_SPACE); n++;
form= XtCreateManagedWidget ("form", XwformWidgetClass,

panel, args, n);

I* create StaticText in Form to display color text *I
n = 0;
I* constraint resources for parent *I
XtSetArg (args[n], XtNxRefWidget, form); n++;
XtSetArg (args[n], XtNxResizable, True); n++;
XtSetArg (args[n], XtNxAttachRight, True); n++;
XtSetArg (args[n], XtNyRefWidget, form); n++;
XtSetArg (args[n], XtNyResizable, True); n++;
text= XtCreateManagedWidget ("text", XwstatictextWidgetClass,

form, args, n);

I* create RowCol in Form to hold button boxes *I
n = 0;
XtSetArg (args[n], XtNcolumns, 2); n++;
XtSetArg (args[n], XtNforceSize, True); n++;
XtSetArg (args[n], XtNlayout, XwMAXIMIZE); n++;
I* constraint resources for parent *I
XtSetArg (args[n], XtNxResizable, True); n++;
XtSetArg (args[n], XtNxAttachRight, True); n++;
XtSetArg (args[n], XtNyRefWidget, text); n++;
XtSetArg (args[n], XtNyAddHeight, True); n++;
XtSetArg (args[n], XtNyResizable, True); n++;
rowcol = XtCreateManagedWidget ("rowcol", XwrowColWidgetClass,

form, args, n);

I* create foreground and background button boxes *I
frame CreateButtonBox (rowcol, "foreground", ForegroundCB);
frame = CreateButtonBox (rowcol, "background", BackgroundCB);

I* realize widget hierarchy *I
XtRealizeWidget (toplevel);

I* get and dispatch events *I
XtMainLoop ();

Using Widgets in Programs 3-27

1*---
** CreateButtonBox - create box with buttons for colors
*I
Widget CreateButtonBox (parent, title, callback)

Widget parent; I* parent widget *I
char *title; I* title string *I
XtCallbackProc callback; I* callback for buttons *I

Widget
Widget
Widget
Widget
11idget

Arg
register int

rowcol;
frame;
label;
separator;
button;

I* RowCol widget
I* Frame widget
I* StaticText widget
I* MenuSep widget
I* Toggle widget

args[MAX_ARGS]; I* arg list
n; I* arg count

I* create frame, box, and title label *I
I* create Frame for 3d border around button box *I
n = 0;
XtSetArg (args[n], XtNmode, XwONE_OF_MANYl; n++;
XtSetArg (args[n], XtNforceSize, True); n++;

*I
*I
*I
*I
*I

*I
*I

frame= XtCreateManagedWidget ("frame", XwframeWidgetClass,
parent, args, n);

I'' create RowCol in Frame *I
n = 0;
XtSetArg (args[n), XtNmode, XwONE_OF_MANY); n++;
XtSetArg (args[n), XtNforceSize, True); n++;
rowcol = XtCreateManagedWidget ("rowcol", XwrowColWidgetClass,

frame, args, n);

I* create StaticText in RowCol to display button box title *I
n = 0;
XtSetArg (args[n), XtNstring, title); n++;
XtSetArg (args[n), XtNborderWidth, 0); n++;
label= XtCreateManagedWidget ("label", XwstatictextWidgetClass,

rowcol, args, n);

/* create buttons for colors *I
11' create Toggle in RowCol for red *I
n = 0;
XtSetArg (args [n], XtNlabel, "red"); n++;
XtSetArg (args[n), XtNselectColor, red); n++;
button= XtCreateManagedWidget ("button", XwtoggleWidgetClass,

rowcol, args, n);
XtAddCallback (button, XtNselect, callback, red);

I''' create Toggle in RowCol for green ''I
n = 0;
XtSetArg (args [n), XtNlabel, "green"); n++;
XtSetArg (args[n], XtNselectColor, green); n++;
button= XtCreateManagedWidget ("button", XwtoggleWidgetClass,

rowcol, args, n);
XtAddCallback (button, XtNselect, callback, green);

3-28 Using Widgets in Programs

I* create Toggle in RowCol for blue *I
n = 0;
XtSetArg (args [n], XtNlabel, "blue"); n++;
XtSetArg (args[n], XtNselectColor, blue); n++;
button= XtCreateManagedWidget ("button", XwtoggleWidgetClass,

rowcol, args, n);
XtAddCallback (button, XtNselect, callback, blue);

I* return top widget in button box subtree *I
return (frame);

1*---
** ColorNameToPixel - convert color name to pixel
*I
Pixel ColorNameToPixel (name, display)

char *name; I* color name
Display *display; I* server connection

*I
*I

Colormap
XColor

colormap;
color;

I* colormap structure *I
I* color structure *I

I'' get default color map *I
colormap = XDefaultColormap (display, DefaultScreen (display));

I'' get rgb values from name *I
XParseColor (display, colormap, name, &color);

I* get pixel from rgb values *I
XAllocColor (display, colormap, &color);
return (color.pixel);

/*---
'"' ForegroundCB - callback for setting fg color
,, I
void ForegroundCB (w, client_ data, call_data)

Widget w; I* widget id
caddr t client_data; I* pixel value

,, I
*I

caddr_t call_data; I* data from widget class

Arg args[MAX_ARGS]; I* arg
register int n; I* arg

1;, set foreground color of displayed text *I
n = 0;

list *I
count *I

*I

XtSetArg (args[n], XtNforeground, (Pixel) client_data); n++;
XtSetValues (text, args, n);

Using Widgets in Programs 3-29

1*---
** BackgroundCB - callback for setting bg color
''I
void Ba:kgroundCB (w, client_data, call_ data)

Widget w; I* widget id *I
caddr t client_data; I* pixel value *I
caddr t call_data; I* data from widget class

Arg args[MAX_ARGS]; I* arg
register int n; I* arg

I* set background color of displayed text *I
n = 0;

list *I
count *I

*I

XtSetArg (args[n], XtNbackground, (Pixel) client_data); n++;
XtSetValues (text, args, n);

1*---
*'' QuitCB - callback for quit button
;, I
void QuitCB (w, client_ data, call_ data)

Widget w·
caddr t client_data;
caddr t call_data;

I* terminate the program *I
exit (0};

3-30 Using Widgets in Programs

I* widget id *I
I* data from application
I* data from widget class

;, I
;, I

The Defaults File

XFonts app-defaults file for xfonts program
1fo
general appearance and behavior defaults
*topShadowTile: foreground
''bot tomShadowT i le: foreground
''topShadowColor: light blue
'''bot tomShadowColor: navy blue
''foreground: white
*background: sky blue
*allowShellResize: true
*allowResize:
*invertOnSelect:
*borderWidth:
1fo

true
false
0

specific defaults for this program
*font: hp8.8x16b
*ScrollBar*granularity: 400
*StaticText*shadowOn: false
*frame.topShadowColor:
*frame.bottomShadowColor:
*panel.borderColor:
*panel.borderWidth:
*sWindow*vsbWidth:
''sWindow*hsbHeight:
''sWindow. width:
''sWindow. height:
*rowCol. width:
*rowCol.height:

navy blue
light blue
sky blue
4
20
20
580
400
580
400

3.12 Another Advanced Sample Program
The program presented in this section, xfonts, displays each available font (fonts are
found in the directory /usr/lib/Xll/fonts) as a pushbutton. The source code and
the application defaults file for this sample program are listed later in this section. They
are located on your system in /usrjcontrib/Xw/examples/xfonts. c and
/usr/contrib/Xwjexamples/XFonts. Instructions for compiling this program can
be found in section 1.3 of chapter 1.

You can change the background and foreground colors and other visual attributes by
changing the parameters in the app-defaults file XFonts.

Using Widgets in Programs 3-31

NOTE

When running with the HP Window Manager (hpwm), you must set
the resource interactivePlacement to True in order to be able
to place the xfonts windows where you want them to appear on
the screen. You can do this by including the following line in your
.Xdefaults file:

Hpwm*interactivePlacement: True

If you do not have this resource set to True, all windows will
automatically be placed on the screen with their upper left corner at
the 0,0 (upper left) point in the root window.

When you run the program, you will see the window shown in figure 3-5.

xfonts lu~
I quull help I X Fon~ Sampler

I 12x21apl II 12x21bas II 12x28apl 1112x28bas 1112x28ibm II 6xl0 I ..

I I 6x12 II 6x13 II 8x13 8x13bold II 9x15 II 9x16apl I
I 9x16bas II 9x21apl II 9x21bas 9x21ibm II aH II apl-s25 I I calc.12x1611 calc.6x8 II chp·s25 chs-s50 II cr.12x20 II cr.l2x20b I
I cursor II cyr-s25 II cyr-s30 cyr-s38 fcor-20 II fg-13 I
I fg-16 II fg-18 II fg-20 fg-22 fg-25 II fg-30 I
I fg-40 II fg1-25 II fgb-13 I fgb-25 fgb1-25 11 fgbl-30 I

fgi-20 II fgil-25 II fgs-22 II fixed fqxb-25 11 fr-25 I
fr-33 II fr1-25 II fr2-25 II fr3-25 frb-32 II fri-33 I

fril-25 II ger-s35 II grk-s25 II grk-s30 hbr-s25 II hbr-s40 I
hp8. 10x20 II hp8.10x20bll hp8. 12xl511 hp8. 6x13 hp8.6xl3bll hp8.6x8 I

I hp8.6x8b 11 hp8.7xl0 11 hp8.8x16 llhp8.8x16bllhp8.8x16ill ipa-s25 I
I isol.13 II isol.13b II isol.15 II isol.l6 II isol.16b II isol. 20 I

Figure 3-5. Program xfonts Main Window

You move the cursor to the PushButton representing the font you want to see displayed
and press mouse button 1. Text in the selected font is displayed in a separate popup
window. This window can be removed by pressing the "close" PushButton, or left on the

3-32 Using Widgets in Programs

screen to be compared with other text windows that you might select. You can continue
this procedure for as long as you desire. Each time the mouse button is pressed, the
selected font will be displayed in a separate popup window. When you want to exit the
program, move the cursor to the "quit" pushbutton and press the left mouse button.

3.12.1 Windows Used in xfonts

There are three independent windows displayed in this program (see figure 3-5, figure 3-6,
and figure 3-7):

Main Window
The main window that displays the PushButtons (see figure 3-5). This is a combination of a
Frame widget, a Panel widget, a TitleBar widget, a ScrolledWindow and a RowCol widget,
and a number of PushButton widgets. The Frame widget is used for refining the visual
appearance of the window. The Panel widget was chosen because it has TitleBar capability
and is a convenient envelope for many applications. Although Panel can have three areas
(see chapter 2 and figure 2-8), only two of the areas are needed here, the title and
workspace areas. In this case the title area consists of a TitleBar widget that is the parent
of two PushButtons, one for help and one to quit the program. The workspace area
consists of a ScrolledWindow with a RowCol widget inside it. PushButtons for each font
are then placed within the RowCol widget. Layout type for the RowCol widget is
XwMAXIMUM _COLUMNS, meaning that the maximum number of columns that can fit
within this RowCol widget is calculated and the children (the font PushButtons) are laid
out accordingly. A List widget could have been used instead of the combination of
ScrolledWindow and RowCol widgets. In that case, StaticText widgets would have to be
used instead of PushButton widgets. PushButton widgets will work within a List but the
highlighting that normally occurs when a PushButton is selected is disabled when it is
contained within a List widget.

Help window
The "help" window is a popup window that consists of another Frame and Panel widget
combination (see figure 3-6).

Using Widgets in Programs 3-33

=I xfonts Ju D

~ lclosel help

I~ These are bu~~ons for ~he fon~s In ~he XII fon~ direc~ory. j.
The bu~~on label Is ~he name of ~he fon~. llhen you selec~

I I~ a bu~~on, a small window will display a sample of ~he fon~.

I~ Press ~he 'close' bu~~on ~o close a fon~ window~
Press ~he 'qui~' bu~~on ~o exi~ ~his applica~ion.

II cal

cursor II cyr-s25 cyr-s30 cyr-s38 fcor-20 II fg-13 I
fg-16 II fg-18 fg-20 fg-22 fg-25 II fg-30 I
fg-~0 II fgl-25 fgb-13 fgb-25 fgbl-25 11 fgbl-30 I

fgi-20 II fgil-25 fgs-22 fixed fqxb-25 11 fr-25 I
fr-33 II frl-25 fr2-25 fr3-25 frb-32 II fri-33 I

fril-25 II ger-s35 I grk-s25 grk-s30 hbr-s25 II hbr-s40 I
hp8.10x2011 hp8.10x20bll hp8.12xl5 hp8.6xl3 lhp8.6xl3bll hp8.6x8 I
hp8.6x8b 11 hp8.7xl0 11 hp8.8xl6 lhp8.8xl6bllhp8.8xl6ill ipa-s25 I
hol.l3 II isol.l3b II isol.15 II isol.l6 lllsol.l6b II isol. 20 I y

Figure 3-6. Program xfonts Help Window

The title area is much the same as the title area for the main window, and the workspace
area is simply a StaticText widget that displays the help information. Other combinations
of widgets could have been used to accomplish this task, but the Frame-Panel combination
was chosen to maintain consistency within the application. The shell for this window is an
OverrideShell widget, meaning that this shell is not under the control of the window
manager. Also, as long as the help window is visible, you cannot select a font for display
because of the "grab" specified in the popup function ..

Font Display Window
The window that displays the selected font is also a popup window that is another Frame­
Panel widget combination in the same fashion as the "help" window (see figure 3-7).

3-34 Using Widgets in Programs

=I xfonts . 0
lquullhelpl X Fon~ Sampler

proof-..t011 proof-,.1111 proof-..t211proof-:~l4llproof-..t611 proof-siB .&

proof-:;2011 proof-:;22 proof-:;2411 proof-,.411 proof-,.611 proof-:;6

proof-:;7 II proof-:~8 proof-:;8 II proof-,.S II rl4 II ro~·sl6

1>an..t2 II :~an5bl2 5am>il2 l>erifl0 II 5erifl2 II :~erifbl0

:>erifb12 II :>erifil0 :>erifil2 :;ub subsub II sup

I 5Up5up II :;wd-s30 sym-s25 sym·s53 variable II vbee-36

I vcd-25 II vg-13 vg-20 vg-25 vg-31 II vg-40

I vgb-25 II vgb-31 vgbc-25 vgh-25 vgi-20 II vgi-25

vgi-31 II vgl-40 vgvb-31 vmic-25 vr-20 II vr-25

I
vr-27 II vr-30 vr-31 vr-40 vrb-25 II vrb-30

vrb-31 II vrb-35 vrb-37 II vri-25 vri-30 II vri-31 I
vri-40 II vsg-114 vsgn-57 II vshd-40 II v~bold II v'tsingle I

vxm:;-37 II vxms-43 xif-s25 II xnek I y

~ xfonts T· 0
lclosel vrb-31

This IS font vrb-31.
The quick brown fox JUmps over the lazy dog.

Figure 3-7. Program xfonts Text Display Window

You can have as many text display windows as you want. You can remove them all by
simply exiting the program as explained above, or you can remove each window
individually by moving the pointer to the "close" button on the window and pressing mouse
button 1.

3.12.2 Widget Hierarchy

This program features three "top level" windows. The first one contains all the
pushbuttons. It is created using Xtini tialize that you used in the previous example
programs. Since Xtinitialize can only create one "top level" widget, the other two
windows cannot be created by using Xtini tialize. Since we want both the help
window and the text display window to pop up, their shells are created using
XtCreatePopupShell. The widget tree for xfonts is shown in figure 3-8.

Using Widgets in Programs 3-35

Figure 3-8. Sample Program xfonts Widget Tree

3-36 Using Widgets in Programs

3.12.3 Source Code

The source code for xfonts and the default file XFonts are listed in the following
sections.

The Program

1**---
**ic

file: xfonts.c

project: X Widgets example programs

description: This program creates a button for every font in
lusrllibiXlllfonts. When a button is selected,
a text sample is displayed using the font.

'"'* Copyright (c) 1988, Hewlett-Packard Company.
**'' All rights are reserved.

***---*1
#include <stdio.h>
#include <ndir.h>
#include <string.h>
#include <XlliXlib.h>
#include <Xlliintrinsic.h>
#include <XlliintrinsicP.h>
#include <XlliShell.h>
#include <XlliStringDefs.h>
ffinclude <XwiXw. h>
#include <XwiFrame.h>
#include <XwiPButton.h>
#include <XwiPanel.h>
#include <XwiRCManager.h>
#include <XwiSText.h>
#include <XwiSWindow.h>
#include <XwiTitleBar.h>

#define MAX_ARGS 20
/{define FONT_ DIR _NAME "lusr llibiXlll fonts"
#define TITLE STRING "X Font Sampler"

I* XwName() returns the name of a widget *I
I* this macro should be defined by the Xt Intrinsics, but isn't *I
#define XwName(widget) XrmQuarkToString ((widget) -> core.xrm_name)

I* functions defined in this file *I

void main () ;

Using Widgets in Programs 3-37

Widget CreateApplication ();
Widget CreateFontSample ();
Widget CreateHelp ();

void SelectFontCB ();
void CloseCB ();
void HelpCB ();
void Qui tCB () ;

1*---
** main
*I
void main (argc,argv)

unsigned int
char

Widget
Widget

argc;
**argv;

toplevel;
frame;

I* initialize toolkit *I
toplevel = Xtinitialize ("main", "XFonts", NULL, 0, &argc, argv);

I* create and realize main application window *I
frame= CreateApplication (toplevel);
XtRealizeWidget (toplevel);

I* get and dispatch events *I
XtMainLoop () ;

1*---
** CreateApplication - create xfonts main window
*I
Widget CreateApplication (parent)

Widget parent;

Widget
Widget
Widget
Widget
Widget
Widget

Arg
register int

DIR
struct direct
char
int

frame;
panel;
pane;
rowcol;
text;
button;

args [MAX_ARGS];
n;

*dirp;
*item;
name[l5];
len;

3-38 Using Widgets in Programs

I* create panel and titlebar pane *I
n = 0;
frame= XtCreateManagedWidget ("frame", XwframeWidgetClass,

parent, args, n);

n = 0;
panel= XtCreateManagedWidget ("panel", XwpanelWidgetClass,

frame, args, n);

n = 0;
XtSetArg (args[n], XtNwidgetType, XwTITLE); n++;
XtSetArg (args[n], XtNstring, TITLE STRING); n++;
pane = XtCreateManagedWidget ("ti tl;;bar", Xwti tlebarWidgetClass,

panel, args, n);

n = 0;
XtSetArg (args[n], XtNlabel, "quit"); n++;
XtSetArg (args[n], XtNregion, XwALIGN_LEFT); n++;
button = XtCreateManagedWidget ("pushButton", XwpushButtonWidgetClass,

pane, args, n);
XtAddCallback (button, XtNselect, QuitCB, NULL);

n = 0;
XtSetArg (args [n], XtNlabel, "help"); n++;
XtSetArg (args[n], XtNregion, XwALIGN_LEFT); n++;
button= XtCreateManagedWidget ("pushButton", XwpushButtonWidgetClass,

pane, args, n);
XtAddCallback (button, XtNselect, HelpCB, NULL);

I* create workspace pane *I
n = 0;
XtSetArg (args[n], XtNwidgetType, XwWORK_SPACE); n++;
pane= XtCreateManagedWidget ("sWindow", XwswindowWidgetClass,

panel, args, n);

n = 0;
XtSetArg (args[n], XtNlayoutType, XwMAXIMUM_COLUMNS); n++;
XtSetArg (args[n], XtNforceSize, TRUE); n++;
rowcol = XtCreateManagedWidget ("rowCol", XwrowColWidgetClass,

pane, args, n);

I* create a pushbutton widget for each font *I
I* open the font directory *I

dirp = opendir (FONT_DIR_NAME);
I* read one entry each time through the loop ''I

for (item= readdir (dirp); item !=NULL; item
{

len (strlen (item-> d_name));
1;, discard entries that don't end in ". xxx" *I

readdir (dirp))

if ((len < 5) II (item -> d_name[len-4] != '. ')) continue;

Using Widgets in Programs 3-39

I'' copy the name (except extension) from the entry *I
strncpy (name, item-> d_name, len-4);
name[len-4] = '\0';
n = 0;
XtSetArg (args[n], XtNstring, name); n++;
button = XtCreateManagedWidget (name, XwpushButtonWidgetClass,

rowcol, args, n);
XtAddCallback (button, XtNselect, SelectFontCB, NULL);

return (panel);

1*---
'"' CreateFontSample - create font display window
*I
Widget CreateFontSample (parent)

Widget parent;

Widget
Widget
Widget
Widget
Widget
Widget

Arg
register int

char
XFontStruct
static char

shell;
frame;
panel;
pane;
text;
button;

args[MAX_ARGS];
n;

*name;
*font = NULL;
message[BUFSIZ];

I* get font name from parent button *I
name= XwName (parent);

I'' create panel and titlebar pane *I
n = 0;
shell= XtCreatePopupShell ("font sample", topLevelShellWidgetClass,

parent, args, n);

n = 0;
frame= XtCreateManagedWidget ("frame", XwframeWidgetClass,

shell, args, n);

n = 0;
panel = XtCreateManagedWidget ("panel", XwpanelWidgetClass,

frame, args, n);

n = 0;
XtSetArg (args[n], XtNwidgetType, XwTITLE); n++;
XtSetArg (args[n], XtNstring, name); n++;
pane= XtCreateManagedWidget ("titleBar", XwtitlebarWidgetClass,

panel, args, n);

3-40 Using Widgets in Programs

n = 0;
XtSetArg (args[n), XtNlabel, "close"); n++;
button= XtCreateManagedWidget ("close", XwpushButtonWidgetClass,

pane, args, n);

I'' load font and generate message to display *I
font= XLoadQueryFont (XtDisplay (shell) , name);
if (!font) sprintf (message, "Unable to load font: %s\0", name);
else sprintf (message, "\

This is font %s.\n\
The quick brown fox jumps over the lazy dog. \0", name);

XtAddCallback (button, XtNselect, CloseCB, font);

I'' create workspace pane and widget panes *I
n = 0;
XtSetArg (args[n), XtNwidgetType, XwW<>RK_SPACE); n++;
XtSetArg (args[n), XtNstring, message); n++;
if (font) XtSetArg (args[n), XtNfont, font); n++;
text= XtCreateManagedWidget ("staticText", XwstatictextWidgetClass,

panel, args, n);

return (shell);

1*---
** CreateHelp - create help window
''I
Widget CreateHelp (parent)

Widget parent;

Widget
Widget
Widget
Widget
Widget
Widget

Arg
register int

char
XFontStruct
static char

shell;
frame;
panel;
pane;
text;
button;

args[MAX_ARGS);
n;

*name;
''font = NULL;
message[BUFSIZ);

I'' create panel and titlebar pane ,.,1
n = 0;
shell= XtCreatePopupShell ("help", overrideShellWidgetClass,

parent, args, n);

n = 0;
frame= XtCreateManagedWidget ("frame", XwframeWidgetClass,

shell, args, n);

Using Widgets in Programs 3-41

n = 0;
panel= XtCreateManagedWidget ("panel", XwpanelWidgetClass,

frame, args, n);

n = 0;
XtSetArg (args[n), XtNwidgetType, XwTITLE); n++;
XtSetArg (args [n) , XtNstring, "help"); n++;
pane= XtCreateManagedWidget ("titleBar", XwtitlebarWidgetClass,

panel, args, n);

n = 0;
XtSetArg (args [n). XtNlabel, "close"); n++;
button= XtCreateManagedWidget ("close", XwpushButtonWidgetClass,

pane, args, n);
XtAddCallback (button, XtNselect, CloseCB, NULL);

/''' generate message to display ''I
sprintf (message, "\

These are buttons for the fonts in the Xll font directory.
The b4tton label is the name of the font. When you select
a button, a small window will display a sample of the font.
Press the 'close' button to close a font window. \n\
Press the 'quit' button to exit this application.\0");

/'' create workspace pane and widget panes */
n = 0;

\n\
\n\

\n\n\

XtSetArg (args[n), XtNwidgetType, XwWORK_SPACE); n++;
XtSetArg (args[n), XtNstring, message); n++;
text= XtCreateManagedWidget ("staticText", XwstatictextWidgetClass,

panel, args, n);

return (shell);

1*---
'"' SelectFontCB - create popup window with font sample
'l'rj

void SelectFontCB
Widget
caddr t
caddr t

Widget

(w, client_data, call data)
w;
client_data;
call_data;

shell;

/''' create and popup font sample window */
shell= CreateFontSample (w);
XtPopup (shell, XtGrabNone);

3-42 Using Widgets in Programs

1*---
** CloseCB - callback for Close button
*I
void CloseCB (w, client_data, call_data)

Widget w;
caddr t client_data;
caddr t call_data;

Window
Widget
XFontStruct

window;
titlebar, panel, frame, shell;
*font;

I* free font and destroy widgets *I
if (client_data)
{

font = (XFontStruct *) client data;
XFreeFont (XtDisplay (w), font);

I* traverse widget hierarchy to find shell *I
titlebar = XtParent (w);
panel XtParent (titlebar);
frame XtParent (panel);
shell XtParent (frame);

I* pop down and destroy the shell widget *I
XtPopdown (shell);
XtDestroyWidget (shell);

1*---
in'< HelpCB - callback for help button
;, I
void HelpCB (w, client_data, call_data)

Widget w;
caddr_t client_data;
caddr_t call_data;

Widget
Arg
register int

shell;
args[MAX_ARGS];
n;

root, child; Window
int root_x, root_y, win_x, win_y, mask;

I* get the location of the mouse *I
XQueryPointer (XtDisplay (w), XtWindow (w), &root, &child,

&root_x, &root_y, &win_x, &win_y, &mask);

1;, create and realize the help window *I
shell= CreateHelp (w);
XtRealizeWidget (shell);

I'' popup the help window over the help button *I
XtMoveWidget (shell, root_x- 30, root_y- 20);
XtPopup (shell, XtGrabExclusive);

Using Widgets in Programs 3-43

I* unset the help button since it lost the release event *I
n = 0;
XtSetArg (args[n], XtNset, FALSE); n++;
XtSetValues (w, args, n);

1*---
'"' QuitCB - callback for quit button

void Q·..1itCB (w,
Widget
caddr t
caddr t

client_data, call_data)
w;
client_data;
call_ data;

I* terminate the application *I
exit (0);

3-44 Using Widgets in Programs

The Defaults File

#--
XFonts app-defaults file for xfonts program
1t
general appearance and behavior defaults
*topShadowTile: foreground
;,bottomShadowTile: foreground
1<topShadowColor: light blue
*bottomShadowColor: navy blue
*foreground:
*background:
*allowShellResize:
t<allowResize:
*invertOnSelect:
*borderWidth:
1t

white
sky blue
true
true
false
0

specific defaults for this program
;,font: hp8. 8xl6b
*ScrollBar*granularity: 400
*StaticText*shadowOn: false
*frame.topShadowColor:
*frame.bottomShadowColor:
;,panel. borderColor:
*panel.borderWidth:
*sWindow*vsbWidth:
''sWindow*hsbHeight:
*sWindow.width:
*sWindow.height:
t<rowCol. width:

navy blue
light blue
sky blue
4
20
20
580
400
580

''rowCol. height: 400
#--*!

Using Widgets in Programs 3-45

This page left blank intentionally.

Menus 4
The HP Widgets menus are versatile and easy to use. The menu system provides resource
entries that allow you to tailor menus to fit any application. This chapter will explain
menus and how you can use them.

4.1 Menu System Description
The menu system is composed of several widgets that are arranged as children of shell
widgets. This section describes the menu hierarchy and menu views. A later section will
describe the widgets that make up the menu system: MenuMgr, MenuPane, MenuSep,
and MenuButton.

4.1.1 Menu Hierarchy

A menu consists of a hierarchy of widgets, as shown in figure 4-1.

Figure 4-1. Menu Hierarchy

A menu consists of MenuButton and MenuSep widgets that are placed into MenuPane
widgets and managed by the MenuMgr. A MenuButton widget is a single menu item, while
a MenuSep widget is used to separate unrelated buttons or groups of buttons within the
MenuPane. A MenuPane widget displays one level of the menu including all of the
MenuButtons in that level. A menu with several levels is built by placing the MenuPane

Menus 4-1

widgets into the MenuMgr. The MenuMgr, MenuPane, MenuSep, and MenuButton
widgets are discussed in later sections of this chapter.

4.1.2 Menu Manager Views

The MenuMgr is capable of displaying the menu in one of two views, popup or pulldown.
The major difference between these two views is the manner in which they are posted.
The toplevel of the pull down is always visible, while the popup appears as the result of
some user input, normally by clicking one of the mouse buttons. Both views can have
cascading submenus beneath the toplevel. Each of these views is described below.

Popup
The popup menu usually appears due to a post action generated by the application
user. The popup menu is displayed as a vertical list of menu items and may optionally
have a title on the top of the list. The menu items that contain a cascade indicator (an
arrow by default) can be used to display a cascading submenu. The menu can cascade
down as many levels as desired.

Figure 4-2 and figure 4-3 show how a popup menu is cascaded. In figure 4-2, the
bottom MenuButton, labeled "More," has an arrow indicating the presence of a
submenu. Moving the pointer into this MenuButton and then over the arrow causes
the submenu to appear, as shown in figure 4-3. Note that there is a submenu available
from the bottom MenuButton here also.

Top Level

Actionl

Hore Choices --7

Hore --7

Figure 4-2. Popup Top Level Menu

GoodB~e

Still Hore --7

More Greetings ~

Figure 4-3. Popup Top Level and Cascading Menus

Pull down
The toplevel of the Pulldown menu is always available. An example of the toplevel of a

4-2 Menus

Pulldown menu is shown in figure 4-4.

Houses Cars Planes Animals

Figure 4-4. Top Level of a Pulldown Menu

Performing a post action on one of these items allows you to see the next menu level.
For example, if you move the mouse pointer to "Houses" and press mouse button 1
(the default post action), the next menu level under "Houses" will appear, as shown in
figure 4-5.

111111!11 Cars Planes Animals I
..... Rentals -7

Townhouse

Cape

Figure 4-5. Next Level of a Pulldown Menu

The second level menus may have one or more cascade indicators that can be used to
display additional cascading submenus. In figure 4-5 for example, the MenuButton
labeled "Rentals" has an arrow in the cascade field, indicating the presence of a
submenu. Moving the mouse pointer to this arrow causes the submenu to be displayed,
as shown in figure 4-6.

One Bedroom

Two Bedroom

Cape

Figure 4-6. Second Level of a Pulldown Menu

Note the underscores under the first letters of each item in the toplevel of the Pulldown
menu. These are called mnemonics, and they are used to post toplevel MenuPanes and to
select MenuButtons by using the keyboard. The toplevel mnemonics are always active and

Menus 4-3

are selected by using a combination of an accelerator keystroke (for example, I Extend Char I)
and the mnemonic keystroke. Mnemonics in menus at lower levels are active only when
that MenuPane is showing, and when active they can be accessed by simply pressing the
mnemonic key.

4.1.3 Data Specification
The data specification for the menu hierarchy is independent of the menu view. The data is
specified in a single tree that resembles a cascading menu. This tree is interpreted
differently for the two views. The cascading tree is shown in figure 4-7.

Title 1

Item A

Item B Title2

Item C Item G

ItemD Title4 ItemH

Item E Item N Item I

Item F -----?- TitleS Item 0 Item J ~ Title3

ltemQ Item P Item K Item L

Item R Item M

ItemS

Figure 4-7. Cascading Menu Tree

A Pulldown menu using this data tree can be displayed in one of two ways. The resource
XtNallowCascades determines what is done on the lower levels of the tree. For
Pulldown menus, this resource entry defaults to TRUE, thus allowing cascading submenus.
The resulting menu layout is shown in figure 4-8.

Title 1 Title2 Title4 TitleS
Item A Item G Item N ItcmQ
Item C ItemH Item 0 Item R
ItemE Item I Item P ItemS

ltemJ H Item L I
ItemK I ItemM J

Figure 4-8. Pulldown Menu Layout

The title entries are essential for the Pulldown menu style. If a title is not specified, the
MenuMgr uses the name of the widget for the title. Note that the entries in the first
MenuPane that have a submenu attached (such as Item B) no longer appear in that
MenuPane.

4-4 Menus

The cascading lower levels of the Pulldown menus can be disabled by setting a resource
entry in the MenuMgr. The menu layout shown in figure 4-9 is the result. Note that Item
J is now title 3, and has been folded into the toplevel.

Title 1 Title2 Title 3 Title4
Item A Item G Item L ItemN

Item C ltemH ItemM Item 0

Item E Item I Item P

Item K

Figure 4-9. Menu Layout

CAUTION

Do not attempt to attach a MenuPane to one of its own children.
Doing so will cause an unbreakable loop and may cause your
program to crash.

4.2 Menu Components

TitleS

ltemQ

Item R

ItemS

The menu system is composed of several widgets that are arranged as children of shell
widgets (see figure 4-1). This section describes the individual components of the menu
system.

4.2.1 Menu Manager

The MenuMgr widget is a composite manager meta class. (Refer to chapter 6,
"Composite Widgets," in Programming With the Xt Intrinsics .) A meta class widget is never
instantiated, but serves as a mechanism for providing a set of resources that are common
to many other types of MenuMgr widgets. The MenuMgr is the controller of the menu
system and handles the presentation of the two menu views, popup and pull down. It
manipulates the MenuPane, MenuSep, and MenuButton widgets to present the view.

A MenuMgr can be associated with a single widget or a widget and all of its children. This
widget is referred to as the associated widget. A menu associated with a widget and all of
its children is very useful when that widget is a manager (such as a panel), especially if the
number of children in the widget varies during the course of the application. The
MenuMgr sets up the necessary translations on the associated widget. If the menu is also
associated with the widget's children, then button or key "grabs" are set up to capture all

Menus 4-5

of the events of interest.

The MenuMgr sets up the input translation and the "grabs" necessary for the menu system
to be transparently added to the associated widget. You simply specify the "post" and
"select" button actions in the MenuMgr. Through the use of these resources, you can
easily customize the menu system to operate according to a "drag'' model, a "double click"
model, or whatever model is desired.

The MenuMgr exports a resource by which the application may specify a keyboard event
that can be used to unpost the menus without selecting an item. The MenuMgr also
exports a resource that may be used to specify a keyboard event that will select the
currently highlighted menu item. Both of these resources are useful when keyboard
traversal is active in a menu hierarchy.

PopupMgr
The PopupMgr supports a post keyboard accelerator as an alternative way to post the
menu. A menu posted with the keyboard accelerator functions the same as one posted
with the post button action, except that the pointer may not be initially positioned in the
menu.

The PopupMgr supports a sticky menu mode. In this mode the menu system remembers
the set of cascading MenuPanes that were posted when you last selected a menu item. The
next time you request that the menu be posted, that entire set of MenuPanes is displayed.
The pointer is moved to the exact MenuButton that was last selected if the menu was
posted with the post button action. If the sticky menu mode is not enabled, then only the
toplevel MenuPane is displayed each time the menu is posted.

The PopupMgr handles the positioning of the MenuPanes when they are posted. When
you post the toplevel MenuPane using the post button action, the pane is positioned so that
the pointer is located in the first item of the MenuPane, unless the sticky menu mode is
enabled. The cascading submenus are positioned next to the MenuButton that brought up
the submenu. When you post the top level MenuPane using the post keyboard accelerator,
the pane is positioned in the center of its associated widget. If the MenuPane will not fit
on the display, it is repositioned so that the entire MenuPane is visible.

A menu item is selected in the menu by either executing the button select action (as
defined in the PopupMgr), by pressing the key defined as the "keyboard select" key, or by
entering a keyboard accelerator (as defined by a particular MenuButton widget in the
menu). Regardless of how the menu item is selected, the visible MenuPanes are removed
from the display before the selected item is called.

The PopupMgr allows its MenuPanes to have a title on the top, bottom, or both top and
bottom. The display of the titles is determined by the MenuPanes' resource settings and is
not modified by the PopupMgr.

4-6 Menus

The PopupMgr provides a global function (XwPos tPopup ()) that may be used by an
application to force a toplevel MenuPane to be posted. The application must specify a
position (relative to a specific widget) to which the MenuPane will be posted, and the
identification of the specific widget.

Pulldown Manager
The Pull down menu manager creates a Pull down widget across the top of the associated
widget. If the associated widget is not a composite widget, then the Pulldown widget
cannot be created and no menu is attached. If this situation occurs, a warning will be
displayed in the application window. The Pulldown menu manager notifies the associated
widget of the Pulldown widget's presence so that the associated widget may treat the
Pulldown widget specially. For example, if the associated widget is a Panel widget, the
Panel may insure that the Pull down widget is always positioned at the top of the Panel and
always spans the width of the Panel. The Pulldown widget contains titlebuttons created by
the Pulldown menu manager for each first-level MenuPane in the menu system. The
first-level MenuPanes are those that may be accessed directly from the Pulldown widget;
each titlebutton corresponds to a first level MenuPane. Cascading submenus are not
first-level MenuPanes. Each titlebutton is defined by the title attributes in the associated
MenuPane widget. If a title attribute is changed in a MenuPane, then the corresponding
change also occurs in the titlebutton.

The Pulldown menu manager allows you to determine whether or not cascading submenus
are allowed. If cascading submenus are disabled, then any cascading MenuPanes are
folded into first-level MenuPanes and are accessed from titlebuttons. Cascading submenus
are enabled as a default.

The menu is posted by executing the post button action in one of the titlebuttons or by
executing the post mnemonic defined for one of the first-level MenuPanes. The
MenuPane is positioned just below the corresponding titlebutton. If the MenuPane will
not fit on the display, then it is repositioned so that the entire MenuPane is visible.

A menu item is selected by executing the select button action, by typing a keyboard
accelerator (as defined in a particular MenuButton widget in the menu), by typing a
mnemonic (as defined in a displayed MenuButton widget), or by using the keyboard select
action.

The Pulldown menu manager disables all titles within the MenuPanes that make up the
menu. The title information is extracted and used to build the titlebuttons in the Pulldown
widget. If the MenuPane is a cascading submenu, its title is also disabled.

Menus 4-7

4.2.2 Menu Pane Widget

The MenuPane widget is a composite manager meta class. (Refer to chapter 6,
"Composite Widgets," in the Programming With the Xt Intrinsics manual.) Remember that
a meta class widget is never instantiated, but serves as a mechanism for providing a set of
resources that are common to many other types of widgets. Thus, the MenuPane widget
provides resources that are common to many other types of MenuPane widgets.

The common resources include such pieces of information as the title that is displayed in
the MenuPane, the font and color of the title, the type of title to use (string or image), the
name of the MenuButton to which the MenuPane is attached, and a mnemonic which may
be used by certain MenuMgr widgets for posting the MenuPane.

Cascade
The Cascade widget is a subclass of the MenuPane meta class and is classified as a
Composite Manager widget. It is a specialized manager because it can only manage
widgets that are a subclass of the MenuButton widget. This type of widget is normally
used when constructing Popup or Pulldown menus.

As MenuButton or MenuSep widgets are added to a Cascade widget, they are positioned
according to the insertion algorithm supplied by the Manager meta class. When the
MenuButton is created, its argument list is searched for the argument name
XtNchildPosi tion. The value associated with XtNchildPosi tion indicates where
this MenuButton is to be placed with respect to the other MenuButtons contained within
the MenuPane.

The Cascade widget supplies a single additional resource that allows the location of the
MenuPane title to be specified. A title may be displayed at the top, bottom, or top and
bottom of a cascade widget.

A Cascade widget always assumes its ideal size, as determined by its children and its title.
As its children grow or shrink, the MenuPane adapts as needed.

4.2.3 MenuButton Widget

The MenuButton widget provides a wide range of resources so that each item in a menu
can be defined with unique attributes (such as color, font, string or image, sensitive state,
and so on). The MenuButton is a subclass of the XwButtonClass widget.

The MenuButton widget consists of three areas:

• The mark area.

• The label area.

• The cascade indicator area.

4-8 Menus

These areas are shown in figure 4-10.

Mark Area Label Area Cascade Area

Figure 4-10. Menu Button Areas

The mark area can be used to checkmark a menu item. The label area contains the
desired menu item string or image. The cascade indicator area is primarily used by the
MenuMgr for indicating that a cascading submenu is present. By default, the mark is a
checkmark, the label is the name of the widget, and the cascade indicator is an arrow. The
label can be set to any text string or image, and the label area attempts to grow or shrink
to accommodate the new size. The size is typically set by the MenuPane widget to insure
consistency throughout a single MenuPane. You may modify the image used for the mark
and cascade indicators, but the height and width of these areas will not change.

A select callback is provided on the MenuButtons. The select translation is typically
determined in the MenuMgr and the selected MenuButton callback routines are called.
The MenuButton provides keyboard accelerators and mnemonics. The MenuMgr
determines whether or not the keyboard accelerator and mnemonic are made available. If
the mnemonic specified is found in the label string, it is underlined, unless disallowed by
the MenuMgr.

4.2.4 MenuSep Widget

The MenuSep widget is a Primitive widget that is used to separate MenuButtons or groups
of MenuButtons within a MenuPane. Several different line styles are available, and the
selection is made by means of the resource XtNseparatorType. The default is a single
line, but double lines and dashed lines may be selected. Common resources from Core
and Primitive meta classes can be set for this widget also. Refer to the MenuSep man page
for more information.

4.3 Creating a Menu
The steps required to create the menu hierarchy shown in figure 4-1 are given below.
Following each step is a code segment that shows how a popup cascading menu could be
created. These steps provide the greatest degree of control over the menu, although it
may be somewhat cumbersome to build.

1. Create the widget (such as a Panel) that the menu is to be associated with.

Menus 4-9

panel=XtCreateManagedWidget("panel",XwpanelWidgetClass,parent,NULL,D);

2. Create a popup shell as a child of the associated widget.

lmlgrshell=XtCreatePopupShell("lmlgrshell",shellWidgetClass,panel,NULL,O);

3. Create the MenuMgr as a child of the shell.

mmgr=XtCreateManagedWidget("mmgr",XwpopupmgrWidgetClass,mmgrshell,NULL,D);

4. Create a popup shell as a child of the MenuMgr.

paneshell=XtCreateManagedWidget("paneshell",shellWidgetClass,mmgr,NULL,D);

5. Create a MenuPane as a child of the shell.

pane=XtCreateManagedWidget("pane",XwcascadeWidgetClass,paneshell,NULL,D);

6. Create a MenuButton as a child of the MenuPane.

buttonl=XtCreateManagedWidget("buttonl",XwmenubuttonWidgetClass,pane,NULL,D);

7. Continue creating MenuButton widgets as children of the MenuPane until all desired
MenuButton widgets are added.

button2=XtCreateManagedWidget("button2",XwmenubuttonWidgetClass,pane,NULL,D);
button3=XtCreateManagedWidget("button3" ,XwmenubuttonWidgetClass, pane, NULL, 0);

8. Continue creating the shell-MenuPane pairs with the desired MenuButton widgets
until the menu is complete.

paneshell2=XtCreateManagedWidget("paneshell2",shellWidgetClass,mmgr,NULL,O);
pane2=XtCreateManagedWidget("pane2", XwcascadeWidgetClass, paneshell2, NULL, 0);
button4=XtCreateManagedWidget("button4",XwmenubuttonWidgetClass,pane2,NULL,O);

4.4 Using Menus
Once the menu system has been built, it is relatively easy to use. Communication with the
menu system is achieved through the callback functions or by the application modifying
menu attributes. These subjects are covered below, followed by a description of keyboard
traversal.

4-10 Menus

4.4.1 Callbacks

The menu system provides applications with the means for attaching callback functions to
the MenuButton or MenuPane select actions. These functions are called after the menu
system has been removed from the screen. Typically the MenuPane select is used only to
remove the menu system. The MenuButton select callbacks are most often used by an
application to perform some action.

4.4.2 Keyboard Interface

The menu system provides a keyboard interface to the menus through the use of keyboard
accelerators to post a MenuPane, keyboard accelerators to select a MenuButton, and
traversal key definitions. The general keyboard interface scheme is discussed in chapter 6,
"Keyboard Interface."

By enabling traversal, the menu system can be driven from the keyboard. The menu
highlighting scheme changes so that the menu item that has the focus (that is, the menu
item that is active) is highlighted. The focus and highlighting are moved to another menu
item by means of the traversal key definitions. The pointer movements through the menu
do not change the focus or the highlight. Note that enabling traversal and then using the
pointer to operate the menu can be confusing, since the highlighting does not track the
pointer although the pointer select action is still defined. If the menu traversal is enabled,
you should plan on operating the menu with the keyboard only.

NOTE

For the current release, keyboard traversal is not supported by the
Pulldown menu manager widget.

4.5 Mixing Menu Accelerators and Traversal

Due to limitations imposed by the Xt Intrinsics, menu accelerators and mnemonics will not
function if the application has enabled keyboard traversal within the application. You can
overcome this problem with the addition of a single event handler that is attached to each
primitive widget in which the menu accelerators or mnemonics would be expected to
function.

When you enter a menu accelerator or mnemonic from an application that has keyboard
traversal disabled, the request is directed to the appropriate MenuMgr widget which then
processes the request. When you enter a menu accelerator or mnemonic from an

Menus 4-11

application that has keyboard traversal enabled, the Xt Intrinsics redirect this to the
Primitive widget that currently has the traversal focus. The MenuMgr does not receive the
request and therefore the request is not processed. By attaching the special event handler
to the Primitive widgets, you can "forward" accelerators and mnemonics to the MenuMgr
for processing.

The event handler is defined as follows:

void ForwardAccelerators (w, menuMgr, event)
Widget w; I* Widget with the traversal focus *I
Widget menuMgr; I* MenuMgr to which request is forwarded
XKeyEvent *event; I* Potential accelerator or mnemonic *I

args[1]; Arg
Boolean associateChildren = False;

XtSetArg(args[O], XtNassociateChildren, &associateChildren);
XtGetValues(menuMgr, args, 1);

I*
* If the reporting widget is the widget to which the menu is
* attached, OR if the menu system is configured to accept
* input from children of the widget to which the menu is
* associated, then forward the event to the MenuMgr.
*I

if ((XtParent(XtParent(menuMgr)) == w) I I associateChildren)
{

*I

(*(((XwMenuMgrWidgetClass)(XtClass(menuMgr)))->
menu_mgr_class.widgetEventHandler)) (w, menuMgr, event);

The following code segment shows the correct usage of the event handler:

I*
* This code segment assumes that you have created a RowCol widget
* with a PopupMgr menu attached to it. We are also assuming that
* keyboard traversal is enabled within the application.

* We will now create several children of the RowCol widget and
* attach the event handler to each of them so that accelerators
* and mnemonics will work properly.
*
*The "menuMgr" parameter to the XtAddEventHandler() calls is
* the widget id of the MenuMgr widget to which the accelerators
* or mnemonics are to be forwarded.
*I

XtSetArg(args[O], XtNtraversalType, XwHIGHLIGHT_TRAVERSAL);
btn1 = XtCreateManagedWidget("btn1", XwpushButtonWidgetClass,

rcparent, args, 1);

4-12 Menus

XtAddEventHandler(btnl, KeyPressMask, False, ForwardAccelerators,
menuMgr);

btn2 = XtCreateManagedWidget("btn2", XwpushButtonWidgetClass,
rcparent, args, 1);

XtAddEventHandler(btn2, KeyPressMask, False, ForwardAccelerators,
menuMgr);

4.6 A Sample Program
The program listing on the following pages is that of a very basic use of the MenuMgr,
MenuPane, and MenuButton widgets. The source for this program can be found in
jusrjcontrib/Xwjexamplesjmenudemo. c. See section 1.3 of chapter 1 for
instructions on compiling this program.

#include <Xll/Xlib.h>
#include <Xll/IntrinsicP.h>
#include <Xll/Intrinsic.h>
#include <Xll/Xatom.h>
#include <Xll/StringDefs.h>
#include <Xll/Shell.h>
#include <Xw/Xw.h>
#include <Xw/XwP.h>
#include <Xw/MenuBtn.h>
#include <Xw/Cascade.h>
#include <Xw/PopupMgr.h>
#include <Xw/BBoard.h>

Widget toplevel, bboard;
Widget mmgrshell, mmgr;
Widget paneshellA, paneshellB, paneshellC;
Widget menupaneA, menupaneB, menupaneC;
Widget buttonal;
Widget buttonbl, buttonb2, buttonb3;
Widget buttoncl, buttonc2, buttonc3;

/****** Widget & Children ArgLists ******/

static Arg toplevelArgs [] = {
{XtNallowShellResize, (XtArgVal) True}

} ;

static Arg bboardArgs [] = {
{XtNwidth, (XtArgVal) 200},
{XtNheight, (XtArgVal) 300}

} ;

Menus 4-13

/****** Menu Manager ArgLists *''****/

static Arg menumgrArgs [) = {
{XtNassociateChildren, (XtArgVal) True},
{XtNstickyMenus, (XtArgVal) True},
{XtNmenuPost, (XtArgVal) "<BtnlDown>"},
{XtNmenuSelect, (XtArgVal) "<Btn3Down>"},

} ;

/****** Menu Pane ArgLists ******/

static Arg MenuPaneAArgs [) = {
{XtNattachTo, (XtArgVal) "mmgr"}

} ;

static Arg menupaneBArgs [) = {
{XtNattachTo, (XtArgVal) "more"}

} ;

static Arg menupaneCArgs [) = {
{XtNattachTo, (XtArgVal) "stillmore"}

} ;

/****** Menu Buttons (pane A) ArgLists '"'****I

static Arg buttonalArgs [) = {
{XtNlabel, (XtArgVal) "More"},

} ;

/****** Menu Buttons (pane B) ArgLists ******/

static Arg buttonblArgs [) = {
{XtNlabel, (XtArgVal) "Hello"}.

} ;

static Arg buttonbZArgs [) = {
{XtNlabel, (XtArgVal) "GoodBye"},

} ;

static Arg buttonb3Args [) = {
{XtNlabel, (XtArgVal) "Still More"}.

} ;

/***''** Menu Buttons (pane C) ArgLists ******/

static Arg buttonclArgs [) = {
{XtNlabel, (XtArgVal) "Boy"},

} ;

4-14 Menus

static Arg buttonc2Args [] = {

{XtNlabel, (XtArgVal) "Girl"}.
} ;

static Arg buttonc3Args [] = {

{XtNlabel, (XtArgVal) "??"}.
} ;

/*******************************/

void Hello()
{

printf ("Hello! ! \n");

/*******************************/

void Goodbye()
{

printf ("Goodbye! !\n");

I******************************* I

void Boy()
{

printf ("Boy! !\n");

I******************************* I

void Girl()
{

printf ("Girl! ! \n");

/*******************************/

void Question()
{

printf ("??\n");

/*******************************/

void
main(argc, argv)

int argc;
char **argv;

Widget children[20];

/*******************************/
I'' Create the toplevel widget */
/*******************************/

Menus 4-15

toplevel = Xtinitialize (argv[O], "menusarnple", NULL, 0, &argc, argv);
XtSetValues (toplevel, toplevelArgs, XtNumber(toplevelArgs));

/***/
I* A bulletin board will be our primary widget *I
I*** I
bboard = XtCreateManagedWidget("bboard", XwbulletinWidgetClass, toplevel,

bboardArgs, XtNumber(bboardArgs));

I************************* I
I* Create a MenuMgr *I
I************************* I

mmgrshell = XtCreatePopupShell("mgrshell", shellWidgetClass,
bboard, NULL, 0);

mmgr = XtCreateManagedWidget("mmgr", XwpopupmgrWidgetClass,
mmgrshell, menumgrArgs, XtNumber(menumgrArgs));

/**/
I* C=eate 3 MenuPanes, which will be used to build the menu hierarchy *I
/**/

paneshellA = XtCreatePopupShell("paneshellA", shellWidgetClass, mmgr,
NULL, 0);

menupaneA = XtCreateManagedWidget("menupaneA", XwcascadeWidgetClass,
paneshellA, menupaneAArgs,
XtNumber(menupaneAArgs));

paneshellB = XtCreatePopupShell("paneshellB", shellWidgetClass, mmgr,
NULL, 0);

menupaneB = XtCreateManagedWidget("menupaneB", XwcascadeWidgetClass,
paneshellB, menupaneBArgs,
XtNumber(menupaneBArgs));

paneshellC = XtCreatePopupShell("paneshellC", shellWidgetClass, mmgr,
NULL, 0);

menupaneC = XtCreateManagedWidget("menupaneC", XwcascadeWidgetClass,
paneshellC, menupaneCArgs,
XtNumber(menupaneCArgs));

/***/
I* Create the MenuButtons for MenuPane A *I
/***/

buttonal = XtCreateManagedWidget ("more", XwmenubuttonWidgetClass,
menupaneA, buttonalArgs, XtNumber (buttonalArgs));

/***/
I* Create the MenuButtons for MenuPane B ''I
/***/

4-16 Menus

children[O] buttonbl = XtCreateWidget ("hello",
XwmenubuttonWidgetClass, menupaneB, buttonblArgs,
XtNumber (buttonblArgs));

children[l] buttonb2 = XtCreateWidget ("goodbye",
XwmenubuttonWidgetClass, menupaneB, buttonb2Args,
XtNumber (buttonb2Args));

children[2] buttonb3 = XtCreateWidget ("stillmore",
XwmenubuttonWidgetClass, menupaneB, buttonb3Args,
XtNumber (buttonb3Args));

XtManageChildren (children, 3);

I*** I
I* Create the MenuButtons for MenuPane C *I
/***/

children[O] buttoncl = XtCreateWidget ("boy", XwmenubuttonWidgetClass,
menupaneC, buttonclArgs, XtNumber (buttonclArgs));

children[!] buttonc2 = XtCreateWidget ("girl", XwmenubuttonWidgetClass,
menupaneC, buttonc2Args, XtNumber (buttonc2Args));

children[2] buttonc3 = XtCreateWidget ("question",
XwmenubuttonWidgetClass, menupaneC, buttonc3Args,
XtNumber (buttonc3Args));

XtManageChildren (children, 3);

/*******************************/
I* Attach all action callbacks *I
I******************************* I

XtAddCallback (buttonbl, XtNselect,
XtAddCallback (buttonb2, XtNselect,
XtAddCallback (buttoncl, XtNselect,
XtAddCallback (buttonc2, XtNselect,
XtAddCallback (buttonc3, XtNselect,

Hello, NULL);
Goodbye, NULL) ;
Boy, NULL);
Girl, NULL);
Question, NULL);

/**/
I* Realize the widget tree, and start processing events *I
/**/

XtRealizeWidget (toplevel);
XtMainLoop();

Menus 4-17

This page left blank intentionally.

Form Widgets 5
The Form widget is a special kind of manager (or layout) widget. It allows an application
to specify a desired set of relationships between the children being laid out. The Form
widget remembers the relationships specified and uses these relationships, or constraints,
to manage its children whenever any of the following conditions occur:

• When the Form widget is resized.

• When new children are added.

• When existing children are resized, unmanaged, remanaged or destroyed.

For example, the Form widget allows the application to state that widget B should have the
same y coordinate as widget A, and that widget B should be attached to the left side of the
Form widget. Further, widget C should be attached to the left, bottom, and right side of
the Form widget. It should be resizable so that when the Form widget changes size it will
also be resized to maintain the specified relationships.

5.1 Using the Form Widget

Use the Form widget when you have a collection of widgets that will be dynamically
changing but you want to retain a certain spatial relationship (that might otherwise be lost)
among the children. If you are creating a box with some buttons that is basically static
after it is created, it would be simpler to use another layout widget (such as the row
column manager widget) rather than the Form widget.

The Form widget accomplishes its functionality by exporting a constraint language. In the
language of the Xt Intrinsics, the Form widget is a Constraint widget. Each widget created
as a child of the Form widget has appended to it a block of information called a constraint
record. It is in this constraint record that the Form widget stores the relationships or
constraints that determine how a child will be laid out. When a child is created, these
constraints are specified by arguments to XtCreateWidget. Table 5-1 is a table of
constraints supported by the Form widget and will assist in the discussion of how these
constraints might be used. For a complete explanation of the fields in the table, refer to
the Form widget man page at the end of this document.

Form Widgets 5 -1

TABLE 5-1. Constraint Resource Set - Children of FORM(3X)
Name Class 'IYPe Default
XtNxRefName XtCXRefName String NULL
XtNxRefWidget XtCXRefWidget Widget the parent form
XtNxOffset XtCXOffset int 0
XtNxAddWidth XtCXAddWidth Boolean False
XtNxVaryOffset XtCXVaryOffset Boolean False
XtNxResizable XtCXResizable Boolean False
XtNxAttachRight XtCXAttachRight Boolean False
XtNxAttachOffset XtCXAttachOffset int 0
XtNyRefName XtCYRefName String NULL
XtNyRefWidget XtCYRefWidget Widget the parent form
XtNyOffset XtCYOffset int 0
XtNyAddHeight XtCYAddHeight Boolean False
XtNyVaryOffset XtCYVaryOffset Boolean False
XtNyResizable XtCYResizable Boolean False
XtNyAttachBottom XtCYAttachBottom Boolean False
XtNyAttachOffset XtCYAttachOffset int 0

It is often useful to be able to specify that a child will span the entire width or height (or
both) of its parent, regardless of the sizes the parent is forced to take. For example, you
normally would want a TitleBar positioned at the top of the window and have it span the
width of its parent. The following code segment shows how this could be accomplished.

Widget toplevel, forml, tbarl;

I* Create the Form *I

forml = XtCreateManagedWidget ("forml", XwformWidgetClass,
toplevel, (ArgList) args, 0);

I* Create the TitleBar; say that both its x and its y coordinates
* are to match that of its parent, the Form; give the TitleBar the
* string "Radio Buttons" to display; anchor the TitleBar to the
* right side of the Form; and say it is resizeable in both
* the x and y directions--this allows it to conform to the
* constraints that it be attached to both the left and the right
* sides of the Form.
*I

XtSetArg (args[O], XtNxRefWidget, (caddr_t) forml);
XtSetArg (args[l], XtNyRefWidget, (caddr_t) forml);
XtSetArg (args[2], XtNstring, "Radio Buttons");
XtSetArg (args[3], XtNxAttachRight, TRUE);
XtSetArg (args[4], XtNxResizable, TRUE);
XtSetArg (args[5], XtNyResizable, TRUE);
tbarl= XtCreateManagedWidget ("titlel", XwtitlebarWidgetClass,

forml, (ArgList) args, 6);

5 • 2 Form Widgets

The next example creates a set of relationships between three widgets. The widgets are
aligned into a single row with the leftmost widget attached to the left edge of the form, the
rightmost widget attached to the right edge of the form and the middle widget centered in
the form between the other two. See figure 5-1.

Figure 5-1. Form Widget

/* Create the Form*/
form1 = XtCreateManagedWidget ("form1", XwformWidgetClass,

toplevel, (ArgList) args, 0);

/* Create the leftmost PushButton; both its x and y coordinates
* reference its parent, the Form; add 10 pixels of offset from
* both the top and the edge of the Form.
*I
XtSetArg (args[O], XtNxRefWidget, (caddr_t) form1);
XtSetArg (args[1], XtNyRefWidget, (caddr_t) form1);
XtSetArg (args[2], XtNxOffset, 10);
XtSetArg (args[3], XtNyOffset, 10);
pb1= XtCreateManagedWidget ("pb1", XwpushButtonWidgetC1ass,

forml, (ArgList) args, 4);

Form Widgets 5 -3

/* Create the middle PushButton; both its x and y coordinates * reference the first PushButton, pbl. If no other adjustment * were made to its x,y values, this widget would occupy the same * space as the first PushButton. The XtNxAddWidth says to * add the width of the reference widget (here its pbl) to the * x coordinate; say that this widget can be resized in the
* x direction if necessary (for this example, it is resized when
*the Form is made smaller); allow the x offset between this
* widget, pb2, and its x coordinate reference widget, pbl, to
* vary. When the Form is made larger, the space between pbl * and pb2 will grow; when the Form is made smaller the space * will shrink. NOTE that in this example whether the PushButtons
* can actually be made to touch each other depends on their
* highlight thickness settings.
*I
XtSetArg (args[O], XtNxRefWidget, (caddr_t) pbl);
XtSetArg (args[l], XtNyRefWidget, (caddr t) pbl);
XtSetArg (args[2], XtNxAddWidth, TRUE);
XtSetArg (args[3], XtNxResizable, TRUE);
XtSetArg (args[4], XtNxVaryOffset, TRUE);
pb2= XtCreateManagedWidget ("pb2", XwpushButtonWidgetClass,

forml, (ArgList) args, 5);

/* Create the rightmost PushButton; both its x and y coordinates * reference the middle PushButton, pb2. We again add the width * of the referenced widget to its x coordinate to prevent overlapping; * attach the widget to the right edge of the Form; allow the offset * between this widget and its x coordinate reference widget to
*vary.
*I
XtSetArg (args[O], XtNxRefWidget, (caddr_t) pb2);
XtSetArg (args[l), XtNyRefWidget, (caddr_t) pb2);
XtSetArg (args[2], XtNxAddWidth, TRUE);
XtSetArg (args[3], XtNxAttachRight, TRUE);
XtSetArg (args[4], XtNxVaryOffset, TRUE);
pb3= XtCreateManagedWidget ("pb3", XwpushButtonWidgetClass,

forml, (ArgList) args, 5);

5.2 Summary
Most of the Form widget's constraints are illustrated in the previous examples. It is a
powerful but complicated widget and may sometimes require experimentation to learn
how the various constraints interact. The man page for the Form widget at the end of this
manual provides additional general information, as well as an explanation for each of the
constraints.

5 - 4 Form Widgets

Keyboard Interface 6
The HP X Widgets keyboard interface mechanism provides a method of keyboard input
and interaction to augment the mouse. This capability is necessary for a variety of
application classes, including mouseless systems and systems that include a mouse but have
a number of text edit or page edit input components.

The keyboard interface involves two distinct processing areas:

• Keyboard input processing to an individual widget.

• Keyboard traversal between widgets.

6.1 Keyboard Input Processing
The keyboard input processing is handled through proper definitions of the widget's
default translations that handle keyboard input. For example, the normal processing of the
PushButton is defined by the following translations:

• When mouse button 1 is pressed, a select procedure is invoked.

• When mouse button 1 is released, a release procedure is invoked.

These translations define the processing functions contained within the widget to be called
when the particular events occur. You can set these translations to understand keyboard
input as well as the mouse button input. For the PushButton widget, this can be defined as
follows (on HP keyboards):

• When button 1 or the I Select I key is pressed, a select procedure is invoked.

• When button 1 or the I Select I key is released, a release procedure is invoked.

The translation manager and a proper set of translations can handle the keyboard input
processing needed for a keyboard interface.

Keyboard Interface 6 - 1

6.2 Keyboard Traversal
Keyboard traversal is more difficult to accomplish since it requires interaction between
widgets, not just interaction within a single widget. The traversal mechanism provided
solves the majority of the traversal problems encountered by applications. The following
list is the set of general capabilities of the traversal handling mechanism.

• Intra-widget hierarchy and inter-widget hierarchy traversal.

• Traversal routing within complex widget hierarchies.

• Continuation of traversal when interrupted by mouse selection.

• Active and inactive widgets within a traversal set.

NOTE

Keyboard traversal is not implemented for Pulldown menus.

6.2.1 Visual Attributes

When keyboard traversal is on, the widget that is activated displays its border according to
its highlight style and highlight thickness. As the keyboard traversal keys are pressed, the
highlight moves from widget to widget. If the pointer is moved out of the top level widget
of the active widget hierarchy, the border highlight on the active widget is removed. When
the pointer moves back into the toplevel widget, the highlight is restored to the same
widget.

6.2.2 Application Control

There is a set of simple control mechanisms that allow an application to control and
modify how traversal works. These mechanisms fall into three main areas.

• Keyboard traversal activation and deactivation.

• Keyboard traversal key definitions through translation definition.

• Keyboard traversal handling between multiple root window-based widget hierarchies.
This is accomplished through an application-supplied callback used in conjunction with
a keyboard traversal invocation function supplied by the HP X Widgets. Refer to the
XwMoveFocus man page for more information.

6- 2 Keyboard Interface

Traversal Activation
Widgets indicate the desire for keyboard traversal through an argument type. There is an
argument type for subclasses of Primitive widgets (such as PushButton) and subclasses of
manager widgets (such as row column manager).

To activate keyboard traversal for an entire widget hierarchy, the application can set the
manager resource XtNtraversalOn to TRUE and the primitive resource
XtCTraversalTypeto highlight_traversal.

If the application creates a manager widget with XtNtraversalOn value set to FALSE,
the immediate child widgets of the manager widget will not perform traversal. However, if
one of these children is also a manager widget and its XtNtraversalOn value is TRUE,
its children will have traversal active.

When the keyboard traversal mechanism makes a widget active, the widget is given the
keyboard focus. When this occurs, all keyboard input directed at the application will go to
the active widget regardless of the location of the pointer. The exception to this processing
state is if the pointer is moved out of the top level widget in the hierarchy. When this
occurs, the focus is taken from the active widget.

The keyboard traversal mechanism is implemented to keep the active field visible
whenever possible. This places an additional constraint on composite widgets (such as the
row column manager) to calculate their children's visibility when keyboard traversal is to
occur. The manager widgets support two ways to handle keyboard traversal visibility:

• Traverse only to currently visible children.

• If a child becomes invisible, move the traversal focus to a visible widget.

Traversal Key Definitions
The keyboard input that drives the traversal between widgets is defined through the
translation manager. Each widget supports eight directions: up, down, left, right, next,
previous, next top, and home.

The translations necessary to support keyboard traversal are defined in the primitive and
manager meta classes. These definitions augment the translation table for a widget if it
has specified that it wants keyboard traversal.

On HP keyboards, the keys shown in the table on the next page generally control the
directions indicated. Refer to the primitive and manager widget man pages for detailed
information.

Keyboard Interface 6 -3

Direction Key Meaning

Up [!] Traverse to the widget most nearly above this widget. If no widget is
above it, find the widget that is below this widget and closest to the
bottom of the widget hierarchy. In other words, wrap the search to the
bottom of the window and search up from there.

Down [!] Traverse to the widget that is most nearly below the widget. If no widget
is below it, find the widget that is above this widget and closest to the top
of the widget hierarchy. In other words, wrap the search to the top of
the window and search down from there.

Left ~ Traverse to the widget that is most nearly to the left of this widget. If no
widget is to the left of this widget, find the widget that is to the right of
this widget and closest to the right edge of the window. In other words,
wrap the search to the right and search to the left from there.

Right [E] Traverse to the widget that is most nearly to the right of this widget. If
no widget is to the right of this widget, find the widget that is to the left
of this widget and closest to the left edge of the window. In other words,
wrap the search to the left and search to the right from there.

Next I Next I Traverse to the widget that appears next (regardless of the physical
position) in the list of children maintained by the parent of the widget
that has the focus. If there are no more children in the parent's list,
traverse to the next child in the grandparent's list of children. When the
end of the children is reached, wrap to the beginning of the list of
children.

Prev IPrevl Traverse to the widget that appears prior to the widget that has the focus
(regardless of the physical position) in the list of children maintained by
the parent of the widget that has the focus. If there are no previous
children in the parent's list, traverse to the previous child in the
grandparent's list of children. When the beginning of the widget
hierarchy is reached, wrap to the end of the list of children.

Home I Home I Traverse to the widget that is closest to the parent's origin (0,0) point. If
this widget already has the focus, move to the widget that is closest to the
grandparent's origin (0,0) point.

Next Top I Enter I Find the topmost widget in this hierarchy that is a subclass of manager,
and have it issue any XtNnextTopCallbacks that have been
registered. Note that the I Enter! key is located on the numeric keypad to
the right of the main keyboard. 1

6- 4 Keyboard Interface

When a keyboard traversal key is pressed, it is translated by the translation manager, which
then calls one of the widget's traversal routines. The widget then makes a request to its
parent widget to perform the traversal. The parent does this by calculating the next widget
to be traversed to and then issuing a focus activation call to the widget to get it activated.

The order of traversal between widgets is controlled by the parent (manager) of the
widgets. The specific widget managers perform the location calculations based on their
widget ordering algorithms and the direction of traversal supplied by the child widget. The
managers also ensure the visibility of the widget to be traversed.

Traversal Search
Keyboard traversal uses a search path based on the height and width of the active widget
(including the border highlight). Figure 6-1 shows how this works.

-a------------- --
Widget A I Widget B I

---------- --------

Figure 6-1. Widget Search Path

The search path for Widget A is shown by the horizontal and vertical dashed lines. If an
up or down direction is specified, no traversal will occur since there is no widget within the
search path in either direction. Traversal to the right or left will ultimately find Widget B
since it lies within the search path. Traversal from Widget A to Widget C (or the reverse)
is not possible since neither widget lies within the other's search path. Traversal from
Widget B to Widget C (or the reverse) is possible. Note that only a portion of a widget
needs to be in the search path for traversal to occur.

Traversal Between Root Level Widget Sets
Traversal between distinct widget hierarchies cannot be handled automatically by the
traversal mechanism because it relies on the ability to ascend and descend the widget
hierarchies. A mechanism is provided to traverse between widget hierarchies with minimal
application intervention. All subclasses of manager widgets implement a callback and all
subclasses of primitive widgets define an input translation to drive the callback for a
NextTop traversal key.

Keyboard Interface 6 -5

To use this capability, the application defines a callback function and adds it to the toplevel
widget of each widget hierarchy in the traversal set. When the key for nextTop is
pressed, an internal function is invoked that ascends the widget hierarchy until the toplevel
widget is found. It then invokes any application-supplied callback functions that are
attached to that widget.

At this point the application's callback function needs to determine which widget hierarchy
to activate. When it has done this, the hierarchy can be activated by calling the following
function.

XwMoveFocus (w)
Widget w;

The widget specified as a parameter should be the top level shell widget of the widget
hierarchy to be activated.

6.3 Internal Implementation Requirements for Traversal
There are several requirements placed on both Primitive and Composite widgets that are
necessary to implement keyboard traversal properly. New widgets will need to meet these
requirements to correctly implement keyboard traversal for these widgets.

6.3.1 Primitive Widget Requirements

The requirements placed on Primitive widgets are to incorporate the Primitive class and
instance structure into their class hierarchy definition. The initialize and set values
procedures provided by the Primitive class will augment the widget's translation table to
support keyboard traversal.

6.3.2 Manager Widget Requirements

The requirements placed on Composite widgets are:

• Incorporate the Manager class and instance structures into the class hierarchy
definition.

• Inherit the generalized keyboard traversal handling procedure from the manager class
record.

The next chapter deals with a more advanced topic, writing new widgets. If you do not
plan to write your own widgets, you need not read this chapter.

6- 6 Keyboard Interface

Writing New Widgets 7
The previous chapters of this manual were concerned with using the set of widgets
contained in the HP X Widgets library. The HP X Widgets library contains a base set of
widgets, and it was intended that these widgets, alone and in combination, would solve a
majority of an application writer's needs. However, there may be occasions when new
widgets are needed. This chapter will describe how to create a new widget.

7.1 Widget Description

This chapter will describe the construction of a new Primitive widget - a multistate button.
The number of states can be set by the application writer, thus allowing different
instantiations of the same class to have a different number of states. The button will
display a different label to indicate each state. When selected, the button will inform the
application which state has been selected and will then change state and display the
appropriate label. This new widget will be of class XwmultiButtonWidgetClass.

One of the advantages of building new widgets on top of an existing widget library such as
the HP X Widgets library is that many of super and meta classes are available upon which
to base the new widget. For our purposes, the new widget will be a subclass of
XwbuttonWidgetClass, and it will therefore inherit resources and procedures from
that class. These resources are:

• Core. Includes basic resources (such as x, y, width, and height) needed by all widgets.

• Primitive. Includes resources to aceomplish highlighting around the button, as well as
resources and procedures to handle keyboard focus manipulation. It also defines the
set of callbacks available to all Primitive widgets.

• Button. Includes additional resources and procedures that aid in the display and
management of all types of buttons.

Thus, many of the resources common to all widgets are provided by these classes.

Writing New Widgets 7-1

7.2 Constructing a Widget
The process of constructing a widget consists of the creation of three separate files:

• A private header file that contains definitions for the widget class and instance
structures. This file will be used by other widgets that wish to become subclasses of the
new widget. Its purpose is to hide the widget structure from the application writer.
This forces the programmer to use set values rather than the actual fields. For this
widget, the private header file will be named MButtonP. h, and it will reside in the
directory jusr/include/Xw.

• A public header file that contains the external definitions needed for an application
writer to make use of the widget. It will typically contain the name of the widget class
(in this case it will be Xwrnul tiButtonWidgetClass), as well as the definition of
any new resources needed to define the widget. For this widget, the public header file
will be named MBu t ton. h, and it will also reside in the directory
/usr/includejXw.

• A source code file that contains C source code for the widget.

The following sections will describe each of these files in detail.

7.2.1 The Private Header File

TheXt Intrinsics manual describes a widget as having both a class record and an instance
record. There is always exactly one class record for every widget class and it is from this
class record that the data and procedures needed to create instances of this widget are
found.

The class record for a widget class is a collection of structures (or class parts) contributed
by each of the super classes of the widget, as well as a class part for the widget being
constructed. Since it is not necessary to create any new procedures for the new widget, the
class part for the multi-state button will be empty. The inclusion of the "int" field in the
code segment below is solely to placate fussy C compilers.

typedef struct {int nada;} XwMultiButtonClassPart;

The entire class record for the new widget will then be:

typedef struct _XwMultiButtonClassRec {
CoreClassPart core_class;
XwPrimitiveClassPart primitive_class;
XwButtonClassPart button_class;
XwMultiButtonClassPart multi_button_class;

} XwMultiButtonClassRec;

7-2 Writing New Widgets

Once the class record for the new widget has been built, the instance record template can
be built. Each time an instance of the new widget is created, this template will be used in
conjunction with the procedures and data in the class record to fill out the fields in the
instance record. Like the class record, the instance record is also composed of structures
contributed by the super classes of the widget and any special instance parts required for
this widget. The new multi-state button widget will need four additional fields:

• A pointer to an array of strings. Each of the strings will be used to label the button
depending on the state of the button.

• A count of the labels provided by the application.

• A state field to allow the button to keep track of the following data:

• The label to be displayed.

• The state information to be returned to the application when the button is selected.

• A flag telling the button to invert its foreground or background. This is most useful on
black-and-white systems where the change in the shadow highlights may not be
noticeable. It defaults to true (meaning invert on selection) since all HP X Widgets
resource defaults are targeted to a black and white system.

Given this, the XwMul tiButtonPart for each instance record of the new widget will
be:

typedef struct _XwMultiButtonPart{
String * labels;
int num_labels;
int state;
Boolean invert_on_select;

} XwMultiButtonPart;

Note that String is defined to be a "char*" in Intrinsic. h. When this is added to
the instance record parts of the superclasses of XwMul tiButton, the full instance record
becomes:

typedef struct _XwMultiButtonRec{
CorePart core;
XwPrimitivePart primitive;
XwButtonPart button;
XwMultiButtonPart

} XwMultiButtonRec;
multi_button;

The above code segments represent the entire contents of the private header file. Below is
a complete description of the contents of an instance record for the multi-state button. It
is interesting to note what each superclass contributes to the widget, and this information
should facilitate future discussions of how size values are calculated. A later section of this
chapter will detail the class record for the multi-state button widget.

Writing New Widgets 7-3

A pointer to a multi-state button widget actually points to the following:

I* CORE PART *I
{

Widget
WidgetClass
Widget
String
XrmName
Screen
Colormap
Window
Position
Dimension
Cardinal
Dimension
Pixel

self; I* pointer to widget itself
widget_class; I* pointer to Widget's ClassRec
parent; I* parent widget *I

name; I* widget resource name
xrm_name; I* widget resource name quarkified
screen; I window's screen

colormap; I* colormap
window; I* window ID

x, y; I* window position
width, height; I* window dimensions
depth; /* number of planes in window
border_width; I* window border width *I

*I
''I

*I
''I

*I
*I

*I
*I
*I

*I

border_pixel; I* window border pixel */
border_pixmap; I* window border pixmap or NULL *I
background_pixel; I* window background pixel *I

background_pixmap; I* window background pixmap or NULL *I

Pixmap
Pixel
Pixmap
struct
struct
caddr t

_XtEventRec *event_table; I* private to event dispatcher *I
TMRec tm; /* translation management ''I

Boolean
Boolean
Boolean
Boolean
Boolean
Boolean
XtCallbackList
WidgetList
Cardinal

constraints; /* constraint record *I
visible; I* is window mapped and not occluded?*/
sensitive; I* is widget sensitive to user events*/

ancestor_sensitive; I* are all ancestors sensitive? *I
managed; I* is widget geometry managed? */
mapped_when_managed;l* map window if it's managed? *I

being_destroyed; /* marked for destroy *I
destroy_callbacks; /* who to call when widget destroyed *I
popup_list; /* list of popups *I
num_popups; I* how many popups *I

7-4 Writing New Widgets

I* XWPRIMITIVE PART *I
{

Pixel
int
int
Boolean
int
int
Pixel
int
Boolean
Pixel
int
Pixel
int
Boolean
GC
GC
GC

foreground;
background_tile;
traversal_type;
!_have_ traversal;
highlight_thickness;
highlight_style;
highlight_color;
highlight_ tile;
shadow_on;
top_shadow_color;
top_shadow_tile;
bottom_ shadow_ color;
bottom_ shadow_ tile;
recompute_size;
highlight_GC;
top_shadow_GC;
bottom_shadow_GC;

Boolean display_sensitive;
Boolean highlighted;
Boolean display_highlighted;
XtCallbackList select;
XtCallbackList release;
XtCallbackList toggle;

I* XWBUTTON PART *I
{

}

XFontStruct ;, font;
char * label;
int label_location;
Dimension internal_height;
Dimension
int
GC
GC
Position
Position
Dimension
Dimension
unsigned int
Boolean
Boolean

internal_width;
sensitive_tile;

normal_GC;
inverse_GC;
label_x;
label_y;
label_width;
label_height;
label_len;
set;
display_set;

I* XWMULTIBUTTON PART *I
{

}
}

String * labels;
int num_labels;
int
Boolean

state;
invert_on_select;

Writing New Widgets 7-5

7 .2.2 The Public Header File

The public header file is included in applications that wish to create instances of the
multi-state button widget. It provides definitions for all new resources used by the widget,
as well as a pointer to the class record of the widget. This pointer is used as the
widget_c1ass parameter in the Xt Intrinsics functions XtCreateWidget and
XtCreateManagedWidget. Thus, the public header file for the multi-state button
widget will contain the following:

#define XtNlabels
#define XtCLabels
#define XtNinvertOnSelect
#define XtCinvertOnSelect
#define XtNnumLabels
#define XtCNumLabels

"labels"
"Labels"
"invertOnSelect"
"InvertOnSelect"
11 numLabels"
"NumLabels"

extern WidgetClass XwmultiButtonWidgetClass;

typedef struct _XwMultiButtonClassRec * XwMultiButtonWidgetClass;
typedef struct _XwMultiButtonRec * XwMultiButtonWidget;

For a full explanation of why the above resources (such as XtN1abe1s) are defined,
refer to chapter 11, "Resource Management," in the Xt Intrinsics manual.

7 .2.3 The Source Code File

The source code for the widget is found in a C source file, the ".c' file. The following
sections discuss each of the procedures or declarations needed to produce the multi-state
button widget. The C source code is listed at the end of this section and can be found in
the directory jusrjcontrib/Xwjexamp1esjMu1tiButton.

The Header Files
The following header files must be included:

1. <X11/Intrins ic. h>. This file provides access to definitions of toolkit structures
and macros available to both the widget writer and the application writer.

2. <X11/IntrinsicP. h>. This file provides access to the private structures of the
Xt Intrinsics meta classes (core, composite, and constraint), as well as macros and
external references for functions intended for the widget writer.

3. <..'\:11/S tringDef s . h>. This file provides access to all of the string definitions
used for base resource (name, class, and representation) used by the Xt Intrinsics.

4. <X11/Misc. h>. This file provides access to macros such as Max, Min,
AssignMax,and AssignMin.

5. <Xw /Xw. h>. This file provides access to all of the public resource definitions for
meta classes (such as primitive and manager) as well as definitions to be used in

7-6 Writing New Widgets

argument lists to set these resources.

6. <Xw /XwP. h>. This file provides access to the private structure of HP X Widgets
meta classes (such as primitive and manager), as well as external definitions of
procedures and macros for widget writers.

7. <Xw/MButtonP. h>. The private header for the multi-state button widget.

8. <Xw/MButton. h>. The public header for the multi-state button widget.

Translations and Action Lists
Translations are used by a widget to bind events occurring in that widget to predefined
actions. The application or the user can redefine which events get bound, but the list of
actions to handle these events are hard-coded into the widget.

The translations are encoded as a string where a particular character sequence maps into
an X event. For example, in the language of the Xt Intrinsics, the term "< Btn1Down >"
corresponds to the X event generated when the mouse button 1 is depressed. In addition
to the string specifying the event, there is also a string specifying the action to be taken
when that event occurs. For instance:

static char defaultTranslations[] =

"<BtnlDown>:
<BtnlUp>:

xyz()\n\
abc()";

There are two events in the above code segment, button 1 down and button 1 up, bound to
two actions that are identified by the strings "xyz" and "abc" respectively. An action list
corresponding to these translations contains the identifying strings ("xyz" and "abc") and
matches them to procedures within the widget:

static XtActionsRec actionList[]=
{

{ "xyz", (XtActionProc) Select},
{ "al::c", (XtActionProc) Unselect},

} ;

The indirection between the translations and the actions is necessitated by the fact that
most systems do not support dynamic linking or loading. Thus, a user can specify new
translations for a widget in his . Xdefaul ts file, and this allows the Xt Intrinsics to
match the specified events with procedures in the widget through the use of the identifying
strings. For more detail on these issues, refer to chapter 12, "Translation Management" in
the Programming With the Xt Intrinsics manual.

Writing New Widgets 7 -7

The translations and actions for the multi-state button widget are as follows:

static char defaultTranslations[) =

"<BtnlDown>:
<BtnlUp>:
<EnterWindow>:
<LeaveWindow>:
<KeyUp>Select:
<KeyDown>Select:

select()\n\
rotate()\n\
enter()\n\
leave()\n\
rotate()\n\
select()";

static XtActionsRec actionsList[) =
{

} ;

{"select", (XtActionProc) Select},
{"rotate", (XtActionProc) Rotate},
{"enter", (XtActionProc) XwPrimi ti veEnter},
{"leave", (XtActionProc) =XwPrimitiveLeave},

When a <BtnlDown> event occurs, the Select procedure is invoked. It visually
indicates that the button has been selected and calls any callbacks that have been
registered for the XtNselect callback. It passes the current state to the callback
procedure as call_ data, and it marks the button as being set. The same sequence of
actions are initiated when this widget has the keyboard focus and the I Select I key is pressed.

When a <BtnlUp> occurs, the Rotate procedure is invoked. It will increment the
internal state flag and display the next label in the label sequence on the button face. It
marks the button as being not set and calls any callbacks that have been registered for the
XtNrelease callback. It passes the new state to the callback procedure as call_data.
The same sequence of actions is initiated when this widget has the keyboard focus and the
I Select I key is released.

When an <EnterWindow> occurs, an HP X Widgets library routine is called. If the
button is to be highlighted when the cursor enters it, this routine will draw a highlight
around the edge of the button window. This capability is handled by the primitive meta
class and requires no effort on the part of the multi-state button beyond including the
translations and actions in its code.

When a <LeaveWindow> occurs, an HP X Widgets library routine is called. If the
button was highlighted when the cursor entered it, it will be unhighlighted.

Notice that multiple events can be bound to the same action in the translations. Also, it is
possible to have an event invoke multiple actions. The code segment below shows this
functionality.

<BtnlDown>: select() notify()

7- 8 Writing New Widgets

Resources for the Multi-State Button
The public header file defines name and class strings to identify three resources for the
multi-state button widget that can be set by applications. There are many other such
resources provided by the widgets superclasses. A default setting must be provided for
these resources to handle the case where an application does not specify their setting. The
resource list for the multi-state button widget will be:

static XtResource resources[] =

},

}.
{

XtNlabels, XtCLabels, XtRLabels, sizeof (caddr_t),
XtOffset (XwMultiButtonWidget, multi_button.labels),
XtRPointer, (caddr_t) NULL

XtNnumLabels, XtCNumLabels, XtRint, sizeof (int),
XtOffset (XwMultiButtonWidget, multi_button.num_labels),
XtRString, "0"

XtNinvertOnSelect, XtCinvertOnSelect, XtRBoolean, sizeof (Boolean),
XtOffset (XwMultiButtonWidget, multi_button.invert_on_select),
XtRString, "True"

}.
} ;

For more information on the resource list and its structure, refer to chapter 11, "Resource
Management," in theXt Intrinsics manual. Note that a special resource converter to
enable a user to specify a list of button labels will have to be written and registered. This
procedure, called CvtLabelsToPointer, is included in the source code listing at the
end of this chapter.

The Class Record
A class record structure for the multi-state button widget is defined in the private header
file. Remember that there is only one class record for each widget class, but there may be
many instances of a widget class. This class record is statically initialized and is part of the
code file. The following code segment defines the class record for the multi-state button

widget.

XwMultiButtonClassRec XwmultButtonClassRec

I* core_class fields *I
I* superclass
I* class_name
/* widget_size
I* class initialize
I* class_part_init
I* class inited
I* initialize

*I (WidgetClass) &XwbuttonClassRec,
*I "MultiButton",
*I sizeof(XwMultiButtonRec),

*I Classinitialize,
*I NULL,
*I FALSE,
*I Initialize,

Writing New Widgets 7- 9

I* initialize_hook *I NULL,
/* realize */ _XwRealize,
I* actions *I actionsList,
I* num_ actions *I XtNumber(actionsList),
I* resources *I resources,
I* num resources *I XtNumber(resources),
I* xrm:::class *I NULLQUARK,
I* compress_motion *I TRUE,
I* compress_exposure *I TRUE,
I* compress_enterlv *I TRUE,
I* visible_interest *I FALSE,
I* destroy *I NULL,
I* resize *I Resize,
I* expose *I Redisplay,
I* set values *I SetValues,
I* set_values_hook *I NULL,
I* set_values_almost *I XtinheritSetValuesAlmost,
I* get_values_hook *I NULL,
I* accept_focus *I NULL,
I* version *I XtVersion,
I* callback_private */ NULL,
I* tm table *I defaultTranslations,
I* query_geometry *I NULL,

},
I* XwPrimitive Class Part *I

{

I*

*I

} ;

I* border_highlight proc *I
I* border_unhighlight proc *I
I* selection proc *I
I* release proc *I
I* toggle proc *I
I* keyboard focus translations *I

NULL,
NULL,
NULL,
NULL,

NULL,
NULL,

NOTE that XwButton and XwMultiButton have no fields
of interest and thus are ignored.

WidgetClass XwmultiButtonWidgetClass = (WidgetClass)&XwmultiButtonClassRec;

Note that many of the fields are NULL, meaning that the multi-state button widget does
not use them. Refer to chapter 2, "Widgets," in theXt Intrinsics manual for pointers to the
sections that describe the above fields.

The Class Initialization Procedure
The first time an instance of a widget class (or an instance of a subclass widget) is created,
the class initialize procedure for that widget is called. It allows the widget class to set up
any fields or compute any values it will need to make instances of itself. It also provides
the means for widgets to register any special resource converter routines. For the multi­
state button widget, a special resource converter will be needed to handle lists of button
labels defined in resource files such as the . Xdefaul ts file. This procedure,
CvtLabelsToPointer, is included in the source code listing at the end of this chapter.

7-10 Writing New Widgets

The Initialize Procedure
The invocation of the initialize procedure is usually the first indication a widget class has
that an instance of itself is being created. When this procedure is invoked, the widget class
can validate resources, compute size, and set any other needed fields. For the multi-state
button widget, the initialize procedure will do the following:

• If the number of labels (multi_button. num_labels) is equal to or less than 0, it
will be set to 1.

• If the pointer to the array of labels is NULL, the button's name (found in
core. name) will be used as the single label. If the name is NULL, there will still be a
pointer to a NULL label. If the name is not NULL, space will be allocated for the
array of label pointers as well as the labels. The labels will then be copied into this
space. Thus, all data is kept in the widget's data space instead of allowing some of it to
reside in the application's data space. This is standard widget programming practice.

• If the height and width have the default values of zero, an ideal height and width will be
calculated. The height will be based on the settings of the internal height
(button. internal_height), the highlight thickness
(primitive. highlight_thickness), and the font height (button. font).
The width will be based on the settings of internal width, the highlight thickness, and
the width of the longest label for the button.

• The button label will be set to display the first string in the sequence of labels provided
by the application. The button state will be set to zero to reflect the label sequence.

The Redisplay Procedure
The redisplay procedure is probably the most difficult routine to write for this widget.
Like other X Widget buttons, the multi-state button can display a shadow border to give it
a three-dimensional illusion. For this reason, we distinguish between having to redraw
only the button face and the entire button, shadows and all. Thus, the redisplay routine
actually consists of two procedures:

• RedisplayButtonFace. The select and rotate procedures call
RedrawButtonFace with a flag set so that only the button face will be redrawn .

• Redisplay. Redisplay simply calls RedrawButtonFace with the flag set to
redraw the entire button face.

The rest of this section details the actions of the RedrawButtonFace procedure.

To correctly design and implement this routine you must remember a key feature of the Xt
Intrinsics: a widget does not control its height and width. Thus, the multi-state button
widget can compute an optimum height and width, but the actual height and width it
receives is totally dependent on its parent. This leads to two possible cases:

Writing New Widgets 7 -11

• The button is too small to correctly display the entire button label.

• The button is much larger than necessary to display the label.

In the first case we will need to clip the label (potentially in both its height and width) to
prevent it from overwriting the button shadow and destroying the three-dimensional
illusion. Thus, the first thing the RedrawButtonFace procedure does is to see if it will
need to clip either the height or the width of the label. The button is then displayed, and if
the label needs to be clipped it is done at this point. Note that the clipping could have
been accomplished by setting clipping rectangles in the graphic context (GC) that
performed the label drawing, but this would have introduced a potentially unlimited
number of new GCs to the server. The Xt Intrinsics always attempt to minimize the
number of GCs by caching them and allowing widgets to share them. Setting clipping
rectangles would have necessitated unique GCs for each button.

Finally, the button shadow is drawn (if primitive. shadow_ on is true) and the button
is highlighted or unhighlighted as needed.

The SetValues Procedure
The SetValues procedure is invoked whenever an application executes an
XtSetValues to the multi-state button widget or one of its subclasses. XtSetValues
works by invoking the SetValues procedures of each of the multi-state button widget's
superclasses (starting at core). Each of these SetValues procedures handles the
resources created and managed by that class. Thus, the multi-state button widget's
SetValues procedure handles the following:

• Any changes that may have been made to resources it created.

• If there have been changes, indicate to the intrinsics code whether or not the widget
should be redisplayed.

A general discussion of the Set V a 1 ue s procedure can be found in chapter 11,
"Resource Management," in the Programming With the Xt Intrinsics manual.
The multi-state button widget's SetValues procedure first checks to see if the number
of labels has been changed. If so, the multi_ button. state flag will be reset to 0 and
a check made to insure that the new number of labels is at least equal to 1. If the pointer
to the array of button labels has changed, then the old set of labels will be deleted, and
space will be allocated for the new labels, which will then be stored. The same subroutine
(HandleLabelAllocation) used in the initialize procedure is used to accomplish this.
Test to see if any fields have changed that would cause the button to seek a new size.
Specifically these fields are:

• The button font.

• The button label. Note that if the multi_ button. label fields have changed, the
HandleLabelAllocation procedure will already have updated this field, ensuring

7-12 Writing New Widgets

that the need for a resize is flagged.

• The highlight thickness.

However, even if one or more of these fields has changed, all of the following must be true
before the widget will seek a new size:

• The recompute size flag in primitive must be set to TRUE.

• The height in the new copy of the widget must be the same as that in the current copy
of the widget in order to seek a new height.

• The width in the new copy of the widget must be the same as that in the current copy of
the widget in order to seek a new width.

Finally, TRUE is returned as the value of the SetValues procedure if any value that
indicates that the button should be redisplayed has changed. Otherwise, FALSE is
returned.

The Destroy Procedure
Whenever a widget class creates fields that allocate and manage blocks of memory, it must
provide a destroy procedure to release that memory when the widget is destroyed. In the
case of the multi-state button widget, an array of pointers and some number of strings are
allocated. All of these must be released when the widget is destroyed.

The Resize
Whenever a widget is resized by its parent or by an application, its resize procedure will be
invoked. It is the responsibility of this procedure to adjust the visible contents of the
widget to reflect the new size. For the multi-state button widget, the new height and width
are used to center the button label within the the new dimensions of the button.

7 .2.4 Source Code

All of the source code necessary to implement the XwMultiButtonWidgetClass is
listed on the following pages. These files can also be found in the directory
jusrjcontrib/Xwjexarnples/Mul tiButton. There is also a "README" file in
this directory that contains up-to-date information. Be sure to read this file before
proceeding.

Writing New Widgets 7 -13

/*************************************<+>*************************************

**
**
**
**
**

File:

Project:

MButtonP.h

X Widgets

** Description: Private include file for widgets which are
** subclasses of multibutton or which need to
** access directly the instance and class fields
** of the multibutton widget.
**
**
** Copyright (c) 1988 by Hewlett-Packard Company
** All Rights Reserved.
**

******""'***********************''c******<+>************************************* I

/**
*
'' No new fields need to be defined
* for the MultiButton widget class record
*
**/

typedef struct {int nada;} XwMultiButtonClassPart;

/**
*
* Full class record declaration for MultiButton class
*
**/

typedef struct _XwMultiButtonClassRec {
CoreClassPart core_class;
XwPrimitiveClassPart primitive class;
XwButtonClassPart button_cl~ss;
XwMultiButtonClassPart multi_button_class;

XwMultiButtonClassRec;

extern XwMultiButtonClassRec XwmultiButtonClassRec;

/** ,,
* New fields needed for instance record
*
**/

typedef struct _XwMultiButtonPart{
String *labels;
in~ num_labels;
in:. state;
Boolean invert on select;

XwMultiButtonPart;

7-14 Writing New Widgets

/**
*
* Full instance record declaration
*
**/

typedef struct _XwMultiButtonRec
CorePart core;
XwPrimitivePart primitive;
XwButtonPart button;
XwMultiButtonPart multi_button;

XwMultiButtonRec;

/*************************************<+>*************************************

**

File: MButton.h

Project: X Widgets

**
**
**
**
**
**

Description: Public include file for applications using the
multibutton widget.

**
**
** Copyright (c) 1988 by Hewlett-Packard Company
** All Rights Reserved.
**
**
*************************************<+>*************************************/

/***
*
* MultiButton Widget
*
***/

/* Resources for MultiButton */

#define XtNlabels
#define XtCLabels

"labels"
"Labels"

1,1define XtRLabels "Labels"
1,1define XtNinvertOnSelect "invertOnSelect"
1,1define XtCinvertOnSelect "InvertOnSelect"
1tdefine XtNnumLabels "numLabels"
1,1define XtCNumLabels "NumLabels"

extern WidgetClass XwmultiButtonWidgetClass;

typedef struct
typedef struct

XwMultiButtonClassRec *XwMultiButtonWidgetClass;
XwMultiButtonRec *XwMultiButtonWidget;

Writing New Widgets 7 -15

/******************i'****************'~'*<+>*************************************

**
**
**
**
**

File:

Project:

MButton.c

X Widgets

** Description: Contains code for primitive widget class: MultiButton
**
**
** Copyright (c) 1988 by Hewlett-Packard Company
** All Rights Reserved.

**

*************************************<+>*************************************/

I*
* Include files & Static Routine Definitions
*I

#include <stdio.h>
#include <Xll/Intrinsic.h>
#include <Xll/IntrinsicP.h>
#include <Xll/StringDefs.h>
#include <Xll/Misc.h>
#include <Xw/Xw.h>
#include <Xw/XwP.h>
#include <Xw/MButtonP.h>
#include <Xw/MButton.h>

static void Redisplay();
static void RedrawButtonFace();
static Boolean SetValues();
static void Classinitialize();
static void Initialize();
static void Select();
static void Rotate();
static void Resize();
static Boolean RecomputeSize();
static void Destroy();
static int HandleLabelAllocation();

/*************************************<->*************************************
*
*
*
*
*
*

Description: default translation table for class: MultiButton

Matches events with string descriptors for internal routines.
*
*************************************<->***********************************/

7 -16 Writing New Widgets

static char defaultTranslations[] =
"<BtnlDown>: select() \n\

<BtnlUp>: rotate() \n\
<EnterWindow>: enter() \n\
<LeaveWindow>: leave() \n\
<KeyUp>Select: rotate() \n\
<KeyDown>Select: select()";

/*************************************<->*************************************
*
*
*
*
*
*
*
* ,,

Description: action list for class: MultiButton

Matches string descriptors with internal routines.
Note that Primitive will register additional event handlers
for traversal.

*************************************<->***********************************/

static XtActionsRec actionsList[] =
{

} ;

{"select", (XtActionProc) Select},
{"rotate", (XtActionProc) Rotate},
{"enter", (XtActionProc) _XwPrimitiveEnter},
{"leave", (XtActionProc) _XwPrimitiveLeave},

/* The resource list for MultiButton */

static XtResource resources[] =

} ;

},

},
{

},

XtNlabels, XtCLabels, XtRLabels, sizeof (caddr_t),
XtOffset (XwMultiButtonWidget, multi_button.labels),
XtRString, (caddr_t) NULL

XtNnumLabels, XtCNumLabels, XtRint, sizeof (int),
XtOffset (XwMultiButtonWidget, multi_button.num_labels),
XtRString, "0"

XtNinvertOnSelect, XtCinvertOnSelect, XtRBoolean, sizeof (Boolean),
XtOffset (XwMultiButtonWidget, multi_button.invert_on_select),
XtRString, "True"

Writing New Widgets 7 -17

/*************************************<->*************************************
*
*
* Description: global class record for instances of class: MultiButton
*
*
* Defines default field settings for this class record.
*
*************************************<->***********************************/

XwMultiButtonClassRec XwmultiButtonClassRec = {
{

I* core class fields *I
I* superclass *I

*I
*I

(WidgetClass) &XwbuttonClassRec,
"MultiButton",
sizeof(XwMultiButtonRec),

} ;

I'' class_name
I* widget_size
I* class initialize
I* class_part_init
I* class_inited
I* initialize
I* initialize hook
I* realize
I'' actions

num_actions

*I
*I
*I
*I

*I
*I
*I
*I

Classinitialize,
NULL,

FALSE,
Initialize,

NULL,
_XwRealize,
actionsList,
XtNumber(actionsList), I*

I*
I*
I*

resources *I resources,
num_resources
xrm_class *I

,., I XtNumber (resources),
NULLQUARK,

I'' compress_motion
compress_exposure
compress_enterlv
visible_ interest
destroy
resize
expose
set_values
set_values_hook

I*
I*
I*
I*
I*
I*
I*
I*
I* set_ values_ almost
I* get_values_hook *I
I* accept_focus
I*
I*

version *I
callback_private *I

I'' tm_table *I
1;, query _geometry

''I TRUE,
*I TRUE,
*I TRUE,
*I FALSE,
*I Destroy,
*I
*I
*I

*I
*I

*I

Resize,
Redisplay,
SetValues,

NULL,
XtinheritSetValuesAlmost,

NULL,
NULL,
XtVersion,

NULL,
defaultTranslations,

NULL,

WidgetClass XwmultiButtonWidgetClass (WidgetClass)&XwmultiButtonClassRec;

7-18 Writing New Widgets

/*************************************<->***************************'~r***ir****ir
*
* Select (w, event)

*
Description: *

*
*
*
*
*
*
*
*

Invert or change highlight (depending on setting of shadow_on
flag.

*
*

Issue any select callbacks and give them the current
state value.

Inputs:

w
event

widget instance that was selected.
event record

*
*************************************<->***********************************/

static void Select (w,event)
Widget w;
XEvent *event;

XwMultiButtonWidget mb

mb->button.set =TRUE;

(XwMultiButtonWidget) w;

RedrawButtonFace (w, event, FALSE);
XFlush (XtDisplay(w));
XtCallCallbacks (w, XtNselect, (caddr_t) mb->multi_button.state);

/*************************************<->*************************************
*
* Rotate (w, event)

*
*
*
*
*
*
*
*
*
*
*

Description:

Mark button as not set, rotate label (if there are any to
rotate) Generate unselect callbacks and give them the new
state.

Inputs:

w
event

widget instance that was selected.
event record

*
*************************************<->***********************************/

static void Rotate(w,event)
Widget w;
XEvent *event;

Writing New Widgets 7-19

XwMultiButtonWidget mb = (XwMultiButtonWidget) w;
int newState = (mb->multi_button.state+l) % mb->multi_button.num labels;

mb->button.set =FALSE;
mb->button.label= mb->multi_button.labels[newState];
mb->multi_button.state = newState;
_XwSetTextWidthAndHeight(mb);
Resize (w);

RedrawButtonFace (w, event, FALSE);
XFlush(XtDisplay(w));
XtCallCallbacks (w, XtNrelease, (caddr_t) newState);

/*************************************<->*************************************
*
* Initialize
*
*
* ,,
,,
* ,,
*
,.,

Description:

If the core height and width fields are set to 0, treat that as a flag
and compute the optimum size for this button. Then using whatever
the core fields are set to, compute the text placement fields.
t1ake sure that the label location field is properly set for the
Resize call.

* Inputs:
* ,.,

*
*

request

new

request widget, old data.

new widget, new data; cumulative effect
of initialize procedures.

*************************************<->***********************************/
static void Initialize (request, new)
Widget request, new;

XwMultiButtonWidget mb
int maxWidth = 0;

(XwMultiButtonWidget) new;

/**
Needed width:

2 '' highlight thickness +
2 '' internal width (padding between label and button) +
Max(pixel width of labels)

Needed height:
2 * highlight thickness +
2 * internal height (padding) +
label height

**/

7-20 Writing New Widgets

maxWidth = HandleLabelAllocation(mb);

if (request->core.width == 0) mb->core.width
2 * (mb->button.internal_width +

maxWidth +
/* white space */

mb->primitive.highlight_thickness);

if (request->core.height == 0) mb->core.height = mb->button.label height +
2 * (mb->button.internal_height + mb->primitive.highlight_thi~kness);

Resize(new);

/*************************************<->*************************************
*
* CvtLabelsToPointer

*
Description: *

*
*
*
*

Convert a string containing button labels into an array of pointers
to a sequence of labels. Labels appear in the input string
surrounded by double quotes.

*
* NOTE that this routine will not handle more than 20 labels
* or more than 400 characters.

*
;,

*************************************<->***********************************/

#define MAXLABELS 20
#define MAXCHARS 400

static char storage[MAXCHARSJ;
static char* labels[MAXLABELSJ;
static char * labelsPtr = labels;

static void CvtLabelsToPointer(args, num_args, fromVal, toVal)
XrmValuePtr args;
int * num_args;
XrmValuePtr fromVal;
XrmValuePtr toVal;

char* instr = (char*) (fromVal->addr);
char * str_pos = storage;
int i·

!* Fail Safe: in case we get garbage return NULL */

(*toVal).size = sizeof (caddr_t);
(*toVal).addr = (caddr_t) &labelsPtr;
for (i=O; i<MAXLABELS; i++) labels[i]=NULL;

i=O;

Writing New Widgets 7 -21

/* We'll only look for MAXLABELS ''I
while (i < MAXLABELS)

{
I* Find beginning of label or end of input */
while(*instr != '\0' && *instr != "") instr++;

if (*instr == '\0') return;

instr++;
labels[i] = str_pos;

/* Move string into storage space*/
while (*instr != "" && *instr != '\0')

*str_pos++ = *instr++;

if (*instr == '\0')
XtError("Improper definition for MultiButton labels resource.");

/*Append null to end of string, step beyond '"' marking end
* of this label, increment "i" our label counter.
*I
*str_pos++ = '\0';
instr++;
i++;

/*************************************<->*************************************
*
* Classinitialize
*
*
,,
*
* ,,

Description:

Set fields in primitive class part of our class record so that
the traversal code can invoke our button select/unselect procedures.
Register specialized resource converter for this widget class.

*************************************<->***********************************/

static void Classinitialize()
{

XwmultiButtonClassRec.primitive_class.select_proc = (XtWidgetProc) Select;
XwmultiButtonClassRec.primitive_class.release_proc = (XtWidgetProc) Rotate;
XtAddConverter(XtRString, XtRLabels, CvtLabelsToPointer, NULL, 0);

7 -22 Writing New Widgets

/*************************************<->*************************************
*
*
*
*
*
*
*
*
* ,,
*
*
*

Redisplay (w, event)

Description:

Cause the widget, identified by w, to be redisplayed.

Inputs:

w = widget to be redisplayed;
event = event structure identifying need for redisplay on this

widget.
*
*************************************<->***********************************/

static void Redisplay (w, event)
Widget w;
XEvent *event;

RedrawButtonFace (w, event, TRUE);

static void RedrawButtonFace (w, event, all)
XwMultiButtonWidget w;
XEvent *event;
Boolean all;

register XwMultiButtonWidget mb = (XwMultiButtonWidget) w;
int available_height, available_width;
Boolean clipHeight, clipWidth;

!* COMPUTE SPACE AVAILABLE FOR DRAWING LABEL */

available_width Max(O,mb->core.width - 2*(mb->button.internal_width +
mb->primitive.highlight_thickness));

available_height Max(O, mb->core.height - 2*(mb->button.internal_height +
mb->primitive.highlight_thickness));

/'' SEE IF WE NEED TO CLIP THIS LABEL ON TOP AND/OR BOTTOM ''I

if (mb->button.label_width > available_width)
clipWidth True;

else
clipWidth False;

Writing New Widgets 7-23

if (mb->button.label_height > available_height)
clipHeight True;

else
clipHeight False;

I* COMPUTE & DRAW MULTIBUTTON *I

I* COMPUTE x LOCATION FOR STRING & DRAW STRING *I
I* Draw only if all or the multibutton is set to invert the text *I
I* when it is selected and unselected. *I

if (mb->button.label len> 0 &&
(all I I mb -> multi_button.invert_on_select))

XFillRectangle (XtDisplay(w), XtWindow(w),
((mb->button.set && mb->multi_button.invert on select)

? mb->button.normal_GC
: mb->button.inverse_GC),

w -> primitive.highlight_thickness + 1,
w -> primitive.highlight_thickness + 1,
w->core.width-2 * w->primitive.highlight_thickness-2,
w->core.height-2 * w->primitive.highlight_thickness-2);

XDrawString(XtDisplay(w), XtWindow(w),

if (clipWidth)
{

((mb->button.set && mb->multi_button.invert on select)
? mb->button.inverse_GC
: mb->button.normal_GC),

((mb->core.width + 1 - mb->button.label_width) I 2),
mb->button.label_y, mb->button.label,
mb->button.label_len);

XClearArea (XtDisplay(w), XtWindow(w), 0,0,
(mb->primitive.highlight_thickness +

mb->button.internal_width), mb->core.height, FALSE);

XClearArea (XtDisplay(w), XtWindow(w),
(mb->core.width - mb->primitive.highlight_thickness -

mb->button.internal_width),O,
(mb->primitive.highlight_thickness +

mb->button.internal_width), mb->core.height, FALSE);

7-24 Writing New Widgets

if (clipHeight)
{

XClearArea (XtDisplay(w), XtWindow(w), 0,0, mb->core.width,
(mb->primitive.highlight thickness +

mb->button.internal_height), FALSE);
XClearArea (XtDisplay(w), XtWindow(w), 0,

(mb->core.height - mb->primitive.highlight_thickness -
mb->button.internal_height), mb->core.width,

(mb->primitive.highlight_thickness +
mb->button.internal_height), FALSE);

I* NOW DRAW SHADOW */

if (w -> primitive.shadow_on)
_XwDrawShadow (XtDisplay (w), XtWindow (w),

((mb->button.set) ?
w -> primitive.bottom_shadow_GC
w -> primitive.top_shadow_GC),

((mb->button.set) ?
w -> primitive.top_shadow_GC :
w -> primitive.bottom_shadow_GC),

w -> primitive.highlight_thickness - 2,
w -> primitive.highlight_thickness - 2,
w->core.width - 2 * w->primitive.highlight_thickness + 4,
w->core.height- 2 * w->primitive.highlight_thickness + 4);

/''
* Draw traversal/enter highlight if actual exposure or
1• if we had to clip text area
ir/

if (all I I clipWidth I I clipHeight)

if (mb->primitive.highlighted)
_XwHighlightBorder(w);

else if (mb->primitive.display_highlighted)
_XwUnhighlightBorder(w);

Writing New Widgets 7 · 25

/*************************************<->*************************************
*
*

*

*
*

,.,

*

,.,

*

SetValues(current, request, new)

DESCRIPTION:

This is the set values procedure for the multi_button class. It is
called last (the set values routines for its superclasses are called
first).

Inputs:

current = original widget;
request = copy of widget as requested by application;
new = copy of request which reflects changes made to it by

set values procedures of its superclasses;

*************************************<->***********************************/

static Boolean SetValues(current, request, new)
Widget current, request, new;

XwMultiButtonWidget curmb
XwMultiButtonWidget newmb
Boolean flag = FALSE;
int maxWidth = -1;

= (XwMultiButtonWidget)
= (XwMultiButtonWidget)
I* our return value *I

XFontStruct ''fs = newmb->button. font;
int i;

I* Validate fields unique to MultiButton *I

current;
new;

if (curmb->multi_button.num_labels != newmb->multi_button.num_labels)
{

I* Reset state to 0 *I
newmb->multi_button.state = 0;

/'' Don't allow new value to be illegal *I
if (newmb->multi_button.num_labels < 1)

newmb->multi_button.num_labels 1;

if (curmb->multi button.labels != newmb->multi button.labels) { - -

}

Destroy(curmb); I* free up pointers and strings *I
maxWidth = HandleLabelAllocation(newmb);
flag = TRUE;

7-26 Writing New Widgets

/**
* Calculate the window size: The assumption here is that if
* the width and height are the same in the new and current instance
* record that those fields were not changed with set values. Therefore
* its okay to recompute the necessary width and height. However, if
* the new and current do have different width/heights then leave them
* alone because that's what the user wants. Also, use the
* RecomputeSize procedure (defined below) to test if we should
* recompute the size.
***/

if ((curmb->core.width == newmb->core.width) &&
(RecomputeSize(current, new)))

if (maxWidth < 0)
for (i=O; i<newmb->multi_button.num_labels; i++)

maxWidth = Max(maxWidth,

newmb->core.width

flag = TRUE;

XTextWidth(fs, newmb->multi_button.labels[i]));

maxWidth + 2*(newmb->button.internal_width +
newmb->primitive.highlight_thickness);

if ((curmb->core.height == newmb->core.height) &&
(RecomputeSize(current, new)))

newmb->core.height =
newmb->button.label_height + 2*(newmb->button.internal_height +

newmb->primitive.highlight_thickness);
flag = TRUE;

return(flag);

/*************************************<->*************************************

*
'' Resize(w)

*
'' Description:
~'f -----------

* Recompute location of button text (center text in the button
* face).

* Inputs:
,.,
* w = widget to be resized.

*
*
*************************************<->***********************************/

Writing New Widgets 7-27

static void Resize(w)
Widget w;

XwMultiButtonWidget mb = (XwMultiButtonWidget) w;

mb->button.label_x (mb->core.width + 1 - mb->button.label_width) I 2;

mb->button.label_y
(mb->core.height - mb->button.label_height) I 2

+ mb->button.font->max_bounds.ascent;

/*************************************<->*************************************
* Boolean
* RecomputeSize(current, new)
*
*
*
* ,,
,,
,,
*
*
*
*

Description:

Used during SetValues.

If the font has changed OR the label has changed OR
the internal spacing has changed OR the highlight
thickness has changed AND the recompute flag is TRUE
(in the new widget) return TRUE, else return FALSE.

;, Inputs:

* ,,

* ,,
*

current current version of widget
new = new version of widget

Outputs:

* TRUE if resize is needed and okay, FALSE otherwise.
;,

*************************************<->***********************************/
static Boolean RecomputeSize(current, new)

XwButtonWidget current, new;

if (((new->button.font != current->button.font) I I
(new->button.label != current->button.label) I I
(new->primitive.highlight thickness !=

current->primitive.highlight_thickness) I I
(new->button.internal_height != current->button.internal_height) I I
(new->button.internal_width != current->button.internal_width)) &&
(new->primitive.recompute_size == TRUE))

return(TRUE);
else

return(FALSE);

7-28 Writing New Widgets

/*************************************<->*************************************
*
'' Destroy (mb) ,,
*
*
*
* ,,
*
*
*

Description:

Free up the memory allocated especially for the
multibutton part of the widget instance record.

Inputs:

* mb = multibutton widget.

*
*************************************<->***********************************/

static void Destroy(mb)
XwMultiButtonWidget mb;

int i;

I* Free each of the labels *I
for (i=O; i < mb->multi_button.num_labels; i++)

XtFree(mb->multi_button.labels[i));

I* Free the array of pointers to the labels *I
XtFree((char *)mb·->multi_button .labels);

Writing New Widgets 7-29

/*************************************<->*************************************
~" int
'' HandleLabelAllocation(mb)

*

,.,

* ,.,

*

*
*

Description:

If no labels have been provided, use the button name as
the single label. Allocate an array of pointers to strings
to hold pointer to button labels; then allocate space for
each button label and copy label to this space. Compute
the widest (in pixels) label and return this to figure to
the caller (it will be used to compute the optimum width
for the button). Set the multibutton state to 0 and put
a pointer to the corresponding label into button.label.

Inputs:

'' mb = multibutton whose labels are to be allocated.

,., Outputs: ,,
,., returns width (in pixels) of widest label.

*************************************<->***********************************/
static int HandleLabelAllocation(mb)

XwMultiButtonWidget mb·

String* labels;
int i;
int maxWidth = 0;
XFontStruct *fs = mb->button.font;

/'' If user has not given us any labels then try to use
'' widget's name as a label (of course this too could be NULL but
'' it still shouldn't hurt us).
,, I

if (mb->multi_button.labels ==NULL)
mb->multi_button.labels &(mb->core.name);

/•'• There is ALWAYS one label, even if that label is NULL (i.e., the
'' application provides no names and the button's name is NULL).
)'cj

if (mb->multi_button.num_labels < 1)
mb->multi_button.num_labels 1;

/''' Allocate array of label pointers */
labels = (String *) XtMalloc(sizeof(char *)* mb->multi_button.num_labels);

7-30 Writing New Widgets

I* Allocate space for each label and copy pointer to new string
* into array allocated above. Also compute, in pixels, width of
* widest label.
*I

for (i=O; i< mb->multi_button.num_labels; i++)

labels[i)= (char *)strcpy(
XtMalloc((unsigned)mb->multi button.labels[i) + 1),
mb->multi_button.labels[i));

maxWidth Max(maxWidth, XTextWidth(fs,labels[i), XwStrlen(labels[i))));

I* Now put correct label, set state and compute label location. *I
mb->multi_button.labels =labels;
mb->button.label = labels[O);
mb->multi_button.state = 0;
_XwSetTextWidthAndHeight(mb);

I* Return width (in pixels) of widest label *I
return(maxWidth);

7 .2.5 Putting the New Widget Together

Now that you have a new widget, you need a test program to exercise its features. Listed
below is a simple program that will place a static text label and multi-state button into a
bulletin board widget. Turning on the multi-state button will change the color used to
draw the static text. The source code for this program can be found in the file
mul tiTest. c in the directory jusrjcontrib/Xwjexamples/MultiButton.

/**
This is a simple program that creates a bulletin board manager
which contains a static text label and a multibutton.

***/

#include <stdio.h>
#include <XlliXlib.h>
#include <Xlliintrinsic.h>
#include <XlliStringDefs.h>
#include <XwiXw.h>
#include <XwiSText.h>
#include <XwiBBoard.h>
#include <XwiMButton.h>
#include <XlliXresource.h>

Widget bbox, colorbox, mbutton;
Widget toplevel, outer_box, pbutton;
Arg myArgs [10);
Pixel color;

Writing New Widgets 7-31

Pixel CvtStringToPixel(src_string)
char * src_string;

XColor aColor, bColor;

XAllocNamedColor(XtDisplay(toplevel),
DefaultColormapOfScreen(XtScreen(toplevel)),
src_string, &aColor, &bColor);

ret·.1rn(aColor .pixel);

jt< Set up callbacks for buttons i</

void ToggleColor(w, closure, call_data)
Widget
caddr_t
caddr_t

int state

w;
closure;
call_data;

(int) call_data;

switch(state)
{

case 0 : color CvtStringToPixel("red");
break;

case 1: color = CvtStringToPixel("black");
break;

case 2: color = CvtStringToPixel("green");
break;

default: color = CvtStringToPixel("orange");
}

XtSetArg(myArgs[O), XtNforeground, (XtArgVal) color);
XtSetValues(colorbox, (ArgList)myArgs, 1);

static XtCallbackRec colorCallback[)

ToggleColor, (caddr_t) NULL },
NULL, (caddr_t) NULL },

} ;

void ma~n(argc, argv)
uns~gned int argc;
char 'fr*argv;

static char * labels[) =
{ "RED", "PAINT IT BLACK, YOU DEVIL", "GREEN", "ORANGE" } ;

7-32 Writing New Widgets

toplevel = Xtinitialize(
argv[O], "XTest1", NULL, 0, &argc, argv);

XtSetArg(myArgs[O] ,XtNlayout, XwiGNORE);
XtSetArg(myArgs[1],XtNwidth, 500);
XtSetArg(myArgs[2],XtNheight, 300);
outer_box = XtCreateManagedWidget

("bb1", XwbulletinWidgetClass, toplevel,
(ArgList)myArgs, 3);

XtSetArg(myArgs[O],XtNwidth, 300);
XtSetArg(myArgs[1],XtNalignment, XwALIGN CENTER);
XtSetArg(myArgs[2],XtNstring, -

(XtArgVal) "One Of Many Button Box");
colorbox = XtCreateManagedWidget

("text",XwstatictextWidgetClass, outer_box,
(ArgList)myArgs, 3);

XtSetArg(myArgs[O],XtNx, 10);
XtSetArg(myArgs(1],XtNy, 100);
XtSetArg(myArgs[2],XtNnumLabels, 4);
XtSetArg(myArgs[3],XtNselect, (XtArgVal) colorCallback);
XtSetArg(myArgs(4],XtNlabels, labels);
mbutton = XtCreateManagedWidget

("MultiButton!", XwmultiButtonWidgetClass, outer_box,
(ArgList)myArgs, 5);

XtRealizeWidget(toplevel);
XtMainLoop () ;

You can compile this program on an HP 9000 Series 300 machine by using following
command:

cc test.c -o test -Wc,-Nd2000 -Wc,-Ns2000 -lXw -lXt -lX11

7.3 Widget Classing

Widget classes with similar functions and parallel programmatic interface can be
associated into groups known as tasks, and each class within a task is called a view. Each
task group has a unique pointer associated with it. If widgets are created by referencing a
task pointer instead of a widget class pointer, the precise determination of which view to be
instantiated can be controlled through resource settings. This feature is called Widget

Classing. You could use widget classing to allow the application user to choose which type
of button widget should be used by the application.

Writing New Widgets 7 -33

To use widget classing, application programs must include the file <Xw /WClas sing. h>.
This file provides the ability to associate widget classes into task groups and select views
through resource settings. The following sections will show you how to modify
<XwWClass ing. h> to add and delete task groups and views within task groups.

7 .3.1 Implementing Widget Classing

Widget classing is implemented by replacing XtCreateWidget and
XtCreateManagedWidget with routines that understand the difference between a
widget class pointer and a task pointer. The following code is found at the end of
<Xw/WClassing.h>.

I*
* This allows us to trap the XtCreateWidget call in the application
* code and preprocess the class pointer. In this way we can get
* complete resource specification. We also can pass task pointers
* in and magically turn them into widget class pointer.
*I

extern Widget XwCreateWidget();

#define XtCreateWidget(name,class,parent,args,num)\
XwCreateWidget(name,class,parent,args,num)

11<
* This is the trap for XtCreateManagedWidget.
*I

extern Widget XwCreateManagedWidget();

#define XtCreateManagedWidget(name,class,parent,args,num)\
XwCreateManagedWidget(name,class,parent,args,num)

Since XtCreateManagedWidget consists of calls to XtCreateWidget and
XtManageWidget, it follows that XwCreateManagedWidget consists of calls to
XwCreateWidget and XtManageWidget. The following discussion will therefore
only need to deal with XwCreateWidget.

XwCreateWidget examines the class argument to see if it is the same value as any of the
task pointers contained in XwT asks (discussed below). If the class parameter is equal to
one of the task pointers, XwCreateWidget will resolve the task pointer to a specific
view and call XtCreateWidget using the widget class associated with the chosen view.
If the class parameter is not equal to any task pointer contained in the XwT asks
structure, XwCreateWidget assumes that the argument is a valid widget class and calls
XtCreateWidget directly.

7-34 Writing New Widgets

7 .3.2 XwTasks

Tables 7-1 and 7-2 show the structure of XwTasks. The "View'' column of table 7-1 is
simply a pointer to the view structure that is shown in table 7-2.

TABLE 7-1. Task Table

Task Task Class View Number Of Views

XwButtonTask ButtonTask 2
X wlmageEditTask ImageEditTask 1
XwLayoutTask LayoutTask 4

TABLE 7-2. View Table

View Name Widget Class Pointer

XwPushButton X wPushButton WidgetClass
Xvlfoggle X v/foggle Widget Class

Each of the fields in the tables are defined below.

• Task. Task pointers are simply pointers to unique areas in memory. By pointing
somewhere besides valid widget class structures, task pointers are guaranteed to never
equal widget class pointers. Currently, uniqueness of reference is guaranteed by
declaring an unused integer for each task group and then making the task pointer point
to this unused integer. For the task "ButtonTask," the code is:

static int XwButtonTsp;
static int ''XwButtonTask = &XwButtonTsp;

• Task Class. The resource class for this task.

• View. A pointer to the views for this task group.

• Number ofViews. The number of views in this task group.

• View Name. The resource name for view.

• Widget Class Pointer. The widget class pointer for the view.

Because the addresses of widget class structures are not known at compile-time, the view
tables cannot be initialized then. Run-time initialization is accomplished as a three-part
process. First, the view table is declared. For ButtonTask, the declaration is:

Writing New Widgets 7-35

static XwViewTableEntry XwButtonViews[2];

For each view table there is an initialization function definition. The initialization function
defined for ButtonTask is:

static XwWCViewLoadProc XwLoadButtonViews()
{

XwLoadViewTable(XwButtonViews,O,
"XwPushBut ton", XwpushBut tonWidgetClass) ;

XwLoadViewTable(XwButtonViews,l,
"XwToggle",XwtoggleWidgetClass);

At this point XwtoggleWidgetClass is considered a reference and is resolved by the
linker. At runtime, after linker resolution, the widget class pointers are loaded into the
structures. The programmer must insure that the needed include files have been included.
For the above example, both <Xw/PButton.h> and <Xw/Toggle. h> must be
included before the definition of XwLoadButtonViews ().

All initialization functions are simply repeated calls to XwLoadViewTable.
XwLoadViewTable is a very simple function and is defined as follows:

void XwLoadViewTable(table,index,name,class)
XwViewTableEntry table[];
int index;
char *name;
WidgetClass class;
{

table [index] . name = name;
table[index] .wClass = class;

The last step in table initialization is to initialize a list of procedures. All procedures in this
list are executed during the first call to XwCreateWidget. For the distributed widget
classing code, the initialization table is:

XwWCViewLoadProc XwWCViewLoadProcs[] =
(XwWCViewLoadProc) XwLoadButtonViews,
(XwWCViewLoadProc) XwLoadimageEditViews,
(XwWCViewLoadProc) XwLoadLayoutViews,
(XwWCViewLoadProc) XwLoadMenuViews,
(XwWCViewLoadProc) XwLoadScrollViews,
(XwWCViewLoadProc) XwLoadTextEditViews,
(XwWCViewLoadProc) XwLoadTitleViews,

} ;

To modify the task groups, modifications must be made to the structures declared in
<Xw/WClass ing. h>. Deletion of views is the simplest modification. Perform the
following steps to delete a view:

1. Reduce the size of the view table.

7-36 Writing New Widgets

2. Remove the call to XwLoadViewTable that loads the undesired view.

3. Realign the view indices.

For example, to remove the XwpushButtonWidgetClass view from the
XwButtonTask group, you would change

static XwViewTableEntry XwButtonViews[2];

to

static XwViewTableEntry XwButtonViews[l];

The definition of XwLoadButtonViews () would be changed from

static XwWCViewLoadProc XwLoadButtonViews()
{
XwLoadViewTable(XwButtonViews,O,

"XwPushButton",XwpushButtonWidgetClass);
XwLoadViewTable(XwButtonViews,l,

"XwToggle" ,XwtoggleWidgetClass);

to

static XwWCViewLoadProc XwLoadButtonViews()
{

XwLoadViewTable(XwButtonViews,O,
"XwToggle",XwtoggleWidgetClass);

Deleting task groups is a more complicated process. Perform the following steps to delete
a task group:

1. Remove the declaration of the view table.

2. Remove the view load function from the initialization function list.

3. Remove the task table entry for the task.

4. Remove the definition of the view table initialization function.

5. Remove the declaration and initialization of the task pointer.

Perform the following steps to add a task group:

1. Declare a task pointer.

2. Initialize the task pointer to point to some known address that is not a widget class
structure.

3. Make sure that all public include files for all views are included.

Writing New Widgets 7-37

4. Declare a view table of an appropriate size.

5. Define a view table initialization function.

6. Add the view table initialization function to the initialization function list
(XwWCViewLoadProcs).

The following sample code will add a task group called "Jetsons." This task group consists
of George, Jane, Elroy, Judy, and Astra widget classes.

I'' Steps one and two *I
static int JetsonsTSP;
static int *JetsonsTask ~ &JetsonTSP;

I'' Step three *I
#include <Hana-BarberaiGeorge.h>
#include <Hana-BarberaiJane.h>
#include <Hana-BarberaiElroy.h>
#include <Hana-BarberaiJudy.h>
#include <Hana-BarberaiAstro.h>

I'' Step four *I
static XwViewTableEntry Jetsons[5];

I* Step five *I
static XwWCViewLoadProc LoadJetsons()

XwLoadViewTable(Jetsons,O,
"Gecrge",GeorgeWidgetClass);

XwLoadViewTable(Jetsons,O,
"Jane",JaneWidgetClass);

XwLoadViewTable(Jetsons,O,
"Elroy", ElroyWidgetClass);

XwLoadViewTable(Jetsons,O,
"Judy", JudyWidgetClass);

XwLoadViewTable(Jetsons,O,
"Astra" ,AstroWidgetClass);

7 .3.3 Using Resources
When XwCreate'Widget recognizes the class parameter to be a task pointer, it
assembles a class list and a name list in preparation for resource data base query. If the
query is successful, the view table for the task is searched for a matching string and the
widget class associated with that string is instantiated. If the query is unsuccessful, the
widget class of the first view in the view table is instantiated by default. The class list is of
the form:

<Class list of Parents>.<task class>.View

Where:

7-38 Writing New Widgets

• "Class list of Parents" is the list of classes of all parents of this widget in the widget
hierarchy.

• "task_class" is the second field of the TaskTableEntry associated with the task
pointer used in the call to XwCreateWidget.

The name list is of the form:

<Name list of Parents>.<name>.view

Where:

• "Name list of Parents" is the list of names of all parents of this widget in the widget
hierarchy.

• "name" is the name parameter sent in to XwCreateWidget.

Consider the following program:

#include <stdio.h>
#include <Xll/Intrinsic.h>
#include <Xll/StringDefs.h>
#include <Xw/Xw.h>
#include <Xw/WClassing.h>

void main(argc,argv)
unsigned intargc;
char *argv[];
{
Widget toplevel, button;

top level = Xtinitialize(argv[0], "Xtest", NULL, 0, &argc, argv);

XtCreateManagedWidget("button",XwButtonTask,
toplevel,NULL,NULL);

XtRealizeWidget(toplevel);

XtMainLoop();

Because XwpushButtonWidgetClass is the widget class of the first view in the view
table, the default widget to be instantiated will be XwpushButtonWidgetClass. The
default is used when no resource has been set or when an invalid resource has been set.

All of the following resource definitions will cause an XwtoggleWidgetClass widget
to be instantiated:

*ButtonTask.View: XwToggle
*ButtonTask.view: XwToggle
*button.view: XwToggle
''button.View: XwToggle

Writing New Widgets 7-39

All of the following resource definitions will cause an XwpushButtonWidge tClas s
widget to be instantiated:

*ButtonTask.View:
*ButtonTask.View:

NonsensicalString
XwPushButton

*ButtonTask.view: XwPushButton
*button.view: XwPushButton
*button. View: XwPushButton

7.4 Summary
This chapter detailed the process of writing a new widget, including the use of widget
classing. You can use the methods shown here to create other new widgets that you may
need.

7-40 Writing New Widgets

Reference Information
This section contains reference information about HP Widgets included with the X
Window System. The entries are arranged alphabetically, with each entry beginning on its
own "page 1."

MAN Pages

Constraint(3X)
Core(3X)
XwArrow(3X)
XwBulletin(3X)
XwButton(3X)
X wCascade(3X)
X wCreateTile(3X)
XwForm(3X)
XwFrame(3X)
XwlmageEdit(3X)
XwList(3X)
X wManager(3X)
X wMenuButton(3X)
XwMenuMgr(3X)
XwMenuPane(3X)
X wMenuSep(3X)
X wMoveFocus(3X)
XwPanel(3X)

XwPopupMgr(3X)
X wPrimitive(3X)
X wPulldown(3X)
X wPushButton(3X)
X wRegisterConverters(3X)
XwRowCol(3X)
XwSash(3X)
X wScrol!Bar(3X)
X wScrolledWindow(3X)
X wStaticRaster(3X)
X wStaticText(3X)
XWfextEdit(3X)
X wTitleBar(3X)
X wToggle(3X)
XwValuator(3X)
X wVPanedWindow(3X)
XwWorkSpacc(3X)

Reference Information 1

This page left blank intentionally.

CONSTRAINT(3X) CONSTRAINT(3X)

NAME
Constraint- A description of the interface to constraint resources.

ClASSES
A sub-class of Core and Composite.

DESCRIPTION
When a constrained composite widget defines constraint resources, all of that widget's children
effectively "inherit" all of those resources as their own. These constraint resources are set and
read just the same as any other resources defined for the child. This resource "inheritance"
extends exactly one generation down, or in other words only the first generation children of a
constrained composite widget inherit that (the constrained composite) widget's constraint
resources.

For example, Panel has three children, a child of class XwstatictextWidgetClass, a child of class
XwrowColWidgetClass, and a child of class XwForm WidgetClass. All of these children inherit all
of the constraint resources defined by XwpanelWidgetClass. None of the children of the rowCol
child inherit any of the Panel constraint resources. None of the children of the Form inherit any
of the Panel constraint resources, but all of the children of the Form do inherit all of the
constraint resources defined by the XwformWidgetClass.

Because constraint resources are defined by the "parent" widgets and not the children, the child
widgets never directly use the constraint resource data. Constraint resource data is instead used
by the parents to attach child specific data to children.

SEE ALSO
CORE(3X), XWPANEL(3X)
Programming With Xt Intrinsics,
Programming With Xlib.

Hewlett-Packard Company - 1- Jan 7, 1989

CORE(3X) CORE(3X)

NAME
CoreClass - the Xt Intrinsics core widget meta class

SYNOPSIS
#include <Xll/StringDefs.h>
#include <Xll/Intrinsic.h>

ClASSES
All widgets are built from the Core class.

DESCRIPTION
The Core class is an Xt Intrinsics meta class. It is never instantiated as a widget. Its sole purpose
is as a supporting superclass for other widget classes. It provides resources required by all
widgets: x y location, width, height, window border width, and so on.

NEW RESOURCES
Core defines a set of resource types used by the programmer to specify the data for widgets which
are subclasses of Core.

Core Resource Set -- CORE(JX)
Name Class Type Default
XtNancestorSensitive XtCSenstitive Boolean TRUE
XtNbackground XtCBackground Pixel White
XtNbackgroundPixmap XtCPixmap Pixmap Unspecified
XtNborderColor XtCBorderColor Pixel Black
XtNborderPixmap XtCPixmap Pixmap Unspecified
XtNborderWidth XtCBorderWidth Dimension 1
XtNdepth XtCDepth int 0
XtNdestroyCallback XtCCallback Pointer NULL
XtNheight XtCHeight Dimension 0
XtNmappedWhenManaged XtCMappedWhenManaged Boolean TRUE
XtNsensitive XtCSensitive Boolean TRUE
XtNtranslations XtCTranslations XtTranslations NULL
XtNwidth XtCWidth Dimension 0
XtNx XtCPosition Position 0
XtNy XtCPosition Position 0

XtNancestorSensitive
This argument specifies whether the immediate parent of the widget will receive input
events. Use the function XtSetSensitive if you are changing the argument to preserve data
integrity (see XtNsensitive below).

XtNbackground
This argument specifies the background color for the widget.

XtNbackgroundPixmap
The application can specify a pixmap to be used for tiling the background. The first tile is
place at the upper left hand corner of the widget's window.

XtNborderColor
This argument specifies the color of the border.

XtNborderPixmap
The application can specify a pixmap to be used for tiling the border. The first tile is place
at the upper left hand corner of the border.

XtNborderWidth
This argument sets the width (in pixels) of the border that surrounds the widget's window
on all four sides. A width of zero means no border will show. This argument is an

Hewlett-Packard Company - 1- Jan 7, 1989

CORE(3X) CORE(3X)

unsigned integer, so using a negative number to specify the width is not recommended.

XtNdepth
Determines how many bits should be used for each pixel in the widget's window.
Programs should not change or set this, it will be set by the Xt Intrinsics when the widget
is created.

XtNdestroyCallback
This is a pointer to a callback list containing routines to be called when the widget is
destroyed.

XtNheight
This argument contains the height of the widget's window in pixels, not including the
border area. Programs should not change this argument directly, but use geometry
manager requests instead in order to ensure proper relationships with other widgets are
maintained.

XtNmappedVVhe~anaged

If set to TRUE, the widget will be mapped (made visible) as soon as it is both realized
and managed. If set to FALSE, the client is responsible for mapping and unmapping the
widget. If the value is changed from TRUE to FALSE after the widget has been realized
and managed, the widget is unmapped.

XtN sensitive
This argument determines whether a widget will receive input events. If a widget is
sensitive, the Xt Intrinsic's Event Manager will dispatch to the widget all keyboard, mouse
button, motion, window enter/leave, and focus events. Insensitive widgets do not receive
these events. Use the function XtSetSensitive if you are changing the sensitivity argument.
That way you ensure that if a parent widget has XtNsensitive set to FALSE, the ancestor­
sensitive flag of all its children will be appropriately set.

XtNtranslations
This is a pointer to a translations list.

XtNwidth
This argument contains the width of the widget's window in pixels, not including the
border area. Programs may request a width at creation or using XtSetValues, but such
requests may not succeed due to layout requirements of the parent widget.

XtNx This argument contains the x-coordinate of the widget's upper left hand corner (excluding
the border) in relation to its parent widget. Programs may request an x-coordinate at
creation or using XtSetValues, but such requests may not succeed due to layout
requirements of the parent widget.

XtNy This argument contains they-coordinate of the widget's upper left hand corner (excluding
the border) in relation to its parent widget. Programs may request a y-coordinate at
creation or using XtSetValues, but such requests may not succeed due to layout
requirements of the parent widget.

INHERITED RESOURCES
The Core class is the root class. It inherits no resources.

TRANSlATIONS
None

ACTIONS
None

ORIGIN
MIT.

SEE ALSO
Programming With The HP X Widgets,
Programming With Xt Intrinsics,
Programming With Xlib.

Hewlett-Packard Company -2- Jan 7, 1989

XWARROW(3X) XWARROW(3X)

NAME
XwarrowWidgetClass - the X Widget's arrow drawing widget

SYNOPSIS
#include <Xll/StringDefs.h>
#include <Xll/Intrinsic.h>
#include <Xw/Xw.h>
#include <Xw/Arrow.h>

ClASSES
The Arrow widget is built from the Core and Primitive classes.
The widget class to use when creating an arrow is XwarrowWidgetCiass. The class name for this
widget is Arrow.

DESCRIPTION
The Arrow widget supports drawing of an arrow within the bounds of its window. It uses the
primitive widget's border highlighting and shadow drawing routines.
The arrow can be drawn in the directions of up, down, left and right. The Arrow widget also
supports two types of callbacks: Button selections, and Button releases.

NEW RESOURCES
The Arrow widget defines a set of resources used by the programmer to specify the data for the
arrow. The programmer can also set the values for the Core and Primitive widget classes to set
attributes for this widget. To reference a resource in a .Xdefaults file, strip off the XtN from the
resource string. The following table contains the set of resources defined by the Arrow widget.

Arrow Resource Set
Name 1 Class 1 'I)pe 1 Delimit
XtNarrowDirection I XtCArrowDirection I int I arrow up

XtNarrowDirection
This resource is the means by which the arrow direction is set. It can be defined in either
of two ways: Tilfough the .Xdefaults file by the strings "arrow up," "arrow down,"
"arrow _left," and "arrow_ right." Within an arg list for use in XtSetValues() by the
defines XwARROW UP, XwARROW DOWN, XwARROW LEFT and
XwARROW RIGHT. - -

INHERITED RESOURCES
The following resources are inherited from the named superclasses:

Hewlett-Packard Company - 1 - Jan 7, 1989

XWARROW(3X) X\VARROW (3X)

Core Resource Set -- CORE(JX)
Name Class Type Default
XtNancestorSensitive XtCSenstitive Boolean TRUE
XtNbackground XtCBackground Pixel White
XtNbackgroundPixmap XtCPixmap Pixmap Unspecified
XtNborderColor XtCBorderColor Pixel Black
XtNborderPixmap XtCPixmap Pixmap Unspecified
XtNborderWidth XtCBorderWidth Dimension 1
XtNdepth XtCDepth int 0
XtNdestroyCallback XtCCallback Pointer NULL
XtNheight XtCHeight Dimension 0
XtNmappedWhenManaged XtCMappedWhenManaged Boolean TRUE
XtNsensitive XtCSensitive Boolean TRUE
XtNtranslations XtCTranslations XtTranslations NULL
XtNwidth XtCWidth Dimension 0
XtNx XtCPosition Position 0
XtNy XtCPosition Position 0

Primitive Resource Set -- XWPRIMITIVE(JX)
Name Class Type Default
XtNbackgroundTile XtCBackgroundTile int background
XtNbottomShadowColor XtCForeground Pixel Black
XtNbottomShadowTile XtCBottomShadowTile int foreground
XtNforeground XtCForeground Pixel Black
XtNhighlightColor XtCForeground Pixel Black
XtNhighlightStyle XtCHighlightStyle int pattern border
XtNhighlightThickness XtCHighlightThickness int 0
XtNhighlightTile XtCHighligh !Tile int 50 foreground
XtNrecomputeSize XtCRecomputeSize Boolean TRUE
XtNrelease XtCCallback Pointer NULL
XtNselect XtCCallback Pointer NULL
XtNshadowOn XtCShadowOn Boolean TRUE
XtNtopShadowColor XtCBackground Pixel White
XtNtopShadowTile XtCTopShadowTile int 50 foreground
XtNtraversalType XtCTraversalType int highlight off

KEYBOARD TRAVERSAL
If the XtNtraversalType resource is set to highlight traversal (XwHIGHLIGHT TRAVERSAL in
an argument list) at create time or during a call to XtSetValues, the XwPrimitive superclass will
automatically augment the primitive widget's translations to support keyboard traversal. Refer to
the XwPrimitive man page for a complete description of these translations. Refer to the
TRANSlATIONS section in this man page for a description of the translations local to this
widget.

TRANSlATIONS
Input to the Arrow widget is driven by the mouse buttons. The Primitive class resources of
XtNselect and XtNrelease define the callback lists used by the Arrow widget. Thus, to receive
input from an arrow, the application adds callbacks to the arrow using these two resource types.
The default translation set for the Arrow widget is as follows.

Hewlett-Packard Company -2- Jan 7, 1989

XWARROW(3X) XWARROW(3X)

<BtnlDown>:
<BtnlUp>:
<EnterWindow>:
<Leave Window>:
< KeyDown >Select:
<KeyUp>Select:

select()
release()
enter()
leave()
select()
unselect()

HP "Select" key
HP "Select" key

ACTIONS

ORIGIN

enter: lfthe XtNtraversaiType resource has been set to XwHIGHLIGHT ENTER then the
arrow's border will be highlighted. Otherwise no action is taken. -

leave: If the XtNtraversaiType resource has been set to XwHIGHLIGHT ENTER then the
arrow's border will be unhighlighted. Otherwise no action is taken:-

release:
Release redraws the arrow in its normal mode and calls its primitive XtNrelease
callbacks.

select: Selections occurring on an arrow cause the arrow to be displayed as selected and its
primitive XtNselect callbacks are called.

Hewlett-Packard Company.
SEE ALSO

CORE(3X), XWPRIMITIVE(3X), XWCREATETILE(3X),
Programming With The HP X Widgets,
Programming With Xt Intrinsics,
Programming With Xlib.

Hewlett-Packard Company -3- Jan 7, 1989

X\VBULLETIN(3X)
XWBULLETIN (3X)

NAME
XwbulletinWidgetClass- the X Widgets bulletin board manager widget.

SYNOPSIS
#include <Xll/StringDefs.h>
#include < Xll/Intrinsic.h >
#include <XwfXw.h>
#include <XwfBBoard.h>

ClASSES
The bulletin board manager widget is built from the Core, Composite, Constraint and Manager
classes. Note that the Constraint fields are not used in this widget and so are not listed in the
resource tables below. Also, since the Composite class contains no resources that the user can set,
there is no table for Composite class resources.

The widget class to use when creating a bulletin board is XwbulletinWidgetCiass. The class name
is BulletinBoard.

DESCRIPTION
The bulletin board manager widget is a composite widget that enforces no ordering on its
children. It is up to the application to specify the x and y coordinates of the children inserted into
this widget, otherwise they will all appear at (0,0).
This manager widget supports 3 different layout policies: minimize (the default), maximize and
ignore. When the layout policy is set to minimize, the manager will create a box that is just large
enough to contain all of its children, regardless of any provided width and height values. The
ignore setting forces the manager to honor its given width and height, it will not grow or shrink in
response to the addition, deletion or altering of its children. When set to the maximize setting, the
BulletinBoard widget will ask for additional space when it needs it, but will not give up extra
space.

The bulletin board manager also implements the X Widgets keyboard interface.
No callbacks are defined for this manager.

NEW RESOURCES
The bulletin board manager widget class does not define any additional resources; all necessary
resources are present in its superclasses. The programmer should refer to the man pages for the
bulletin board's superclasses to determine the resources that can be set and the defaults settings
for these resources.

INHERITED RESOURCES
The following resources are inherited from the named superclasses:

Hewlett-Packard Company - 1- Jan 7, 1989

XWBULLETIN(3X) XWBULLETIN (3X)

Core Resource Set -- CORE(3X)
Name Class Type Default
XtNancestorSensitive XtCSenstitive Boolean TRUE
XtNbackground XtCBackground Pixel White
XtNbackgroundPixmap XtCPixmap Pixmap Unspecified
XtNborderColor XtCBorderColor Pixel Black
XtNborderPixmap XtCPixmap Pixmap Unspecified
XtNborderWidth XtCBorderWidth Dimension 1
XtNdepth XtCDepth int 0
XtNdestroyCallback XtCCallback Pointer NULL
XtNheight XtCHeight Dimension 0
XtNmappedWhenManaged XtCMappedWhenManaged Boolean TRUE
XtNsensitive XtCSensitive Boolean TRUE
XtNtranslations XtCTranslations XtTranslations NULL
XtNwidth XtCWidth Dimension 0
XtNx XtCPosition Position 0
XtNy XtCPosition Position 0

Manager Resource Set -- XWMANAGER(3X)
Name Class 1YJ>e Default
XtNbackgroundTile XtCBackgroundTile int background
XtNforeground XtCForeground Pixel Black
XtNiayout XtCLayout int minimize
XtNnextTop XtCCallback Pointer NULL
XtNtraversa!On XtCTraversa!On Boolean TRUE

KEYBOARD TRAVERSAL

ORIGIN

If the XtNtraversa!On resource is set to TRUE at create time or during a call to XtSetVaiucs, the
XwManager superclass will automatically augment the bulletin board manager widget's
translations to support keyboard traversal. Refer to the XwManager man page for a complete
description of these translations.

Hewlett-Packard Company.
SEE ALSO

CORE(3X), XWMANAGER(3X),
Programming With The HP X Widgets,
Programming With Xt Intrinsics,
Programming With Xlib.

Hewlett-Packard Company -2- Jan 7, 1989

XWBUTION(3X) XWBUTION(3X)

NAME
XwbuttonWidgetClass- X Widget Button MetaClass

SYNOPSIS
#include <XlljStringDefs.h>
#include <Xlljlntrinsic.h>
#include <XwfXw.h>

ClASSES
The Button widget is built from the Core and Primitive classes.

DESCRIPTION
The Button class is an X Widget meta class. It is never instantiated as a widget. It provides a set
of resources that are needed by a variety of other X Widgets (for example: XwtoggleWidgetC!ass
and XwpushButtonWidgetC!ass).

NEW RESOURCES
The XwButtonClass defines a set of resource types used by the programmer to specify the data for
widgets that are subclasses of XwButtonClass. To specify any of these resources within the
.Xdefaults file, drop the XtN prefix from the resource name. For example, XtNfont becomes font.

Button Resource Set
Name Class JYpe Default
XtNborderWidth XtCBorderWidth int 0
XtNfont XtCFont XFontStruct * Fixed
XtNhSpace XtCHSpace int 2
XtNlabel XtCLabel caddr t NULL
XtNlabelLocation XtCLabelLocation int right
XtNsensitiveTile XtCSensitiveTile int 75 foreground
XtNset XtCSet Boolean FALSE
XtNvSpace XtCVSpace int 2

XtNborderWidth
This redefines the core class default border width from 1 pixel to 0 pixels.

XtNfont
The application may define the font to be used when displaying the button string. Any
valid Xll font may be used.

XtNhSpace
The application may determine the number of pixels of space left between the left side of
the button and the leftmost part of the button label, and between the rightmost part of the
button label and the right side of the button.

XtNiabel
The application may define the button label by providing a pointer to a null terminated
character string. If no label is provided the class name of the widget will be used.

XtNiabelLocation
For those buttons that have a separate graphic, this field specifies whether the label
should appear to the left or to the right of that graphic. The acceptable values are the
defines XwRIGHT (the default) and XwLEFT.

XtNsensitiveTile
The application can determine the mix of foreground and background that will be used to
draw text to show insensitivity. The #defines for setting the values through an arg list and
the strings to be used in the .Xdefault file are described in XwCreateTile(3X). The
default is Xw75 FOREGROUND which is a 75/25 mix of foreground and background
colors. -

Hewlett-Packard Company - 1 - Jan 7, 1989

XWBUTION (3X) XWBUTTON(3X)

ORIGIN

XtNset If set to true the button will display itself in its selected state. This is useful for showing
some conditions as active when a set of buttons appear.

XtNvSpace
The application may determine the number of pixels of space left between the top of the
button and the top of the button label, and between the bottom of the label and the
bottom of the button.

Hewlett-Packard Company.

SEE ALSO
XWPRIMITIVE(3X),
Programming With The HP X Widgets,
Programming With Xt Intrinsics,
Programming With Xlib.

Hewlett-Packard Company -2- Jan 7, 1989

XWCASCADE(3X) XWCASCADE (3X)

NAME

XwcascadeWidgetClass- the X Widgets popup and pulldown menupane widget.

SYNOPSIS
#include <Xll/Intrinsic.h>
#include < Xll/StringDefs.h >
#include <XwfXw.h>
#include <Xw/Cascade.h>

ClASSES

The Cascade menupane widget is built from the Core, Composite, Constraint, Manager and
MenuPane classes. Note that the Constraint fields are not used in this widget and are not listed in
the resource tables below. Also, since the Composite class contains no resources that can be set
by the user, there is no table for Composite class resources.

The widget class to use when creating a cascading menupane is XwcascadeWidgetClass. The class
name is Cascade.

DESCRIPTION
The Cascade menupane widget is a composite widget which may be used by an application when
creating a set of menus.

The Cascade menupane widget always displays its managed children in a single column, and
always attempts to size itself to the smallest possible size, as described by the children it contains;
as the children grow or shrink in size, the menupane will attempt to adapt its size accordingly.

The Cascade menupane widget allows a title to be displayed at the top of the menupane, the
bottom of the menupane, or at both places. Additionally, the title may be either a text string or an
image. The title is always centered horizontally within the menupane.

NEW RESOURCES
The MenuPane defines a set of resource types used by the programmer to specify the data for the
menupane. The programmer can also set the values for the Core, Composite Manager and
MenuPane widget classes to set attributes for this widget. To specify any of these resources within
the .Xdefaults file, simply drop the XtN prefix from the resource name. The following table
contains the set of resources defined by Cascade.

Cascade Resource Set
Name 1 Class 1 Type J Default
XtNtitlePosition I XtCTitlePosition I int 1 top

XtN titlePosition
This resource is used to control where the title is displayed within the cascading
menupane. To programmatically set this resource, use either the XwTOP, XwBOTTOM
or XwBOTH define. To set this resource using the .Xdefaults file, use one of the strings
"top" or "bottom" or "both".

NOTE: The Cascade class provides a specialized insert child procedure. This procedure allows an
application to provide a special argument list type XtNchildPosiiton with an integer value. This
value specifies the position within the child list where the new widget will be inserted.

INHERITED RESOURCES
The following resources are inherited from the named superclasses:

Hewlett-Packard Company - 1- Jan 7, 1989

XWCASCADE(3X) XWCASCADE(3X)

Core Resource Set -- CORE(3X)
Name Class 1)pe Default
XtNancestorSensitive XtCSenstitive Boolean TRUE
XtNbackground XtCBackground Pixel White
XtNbackgroundPixmap XtCPixmap Pixmap Unspecified
XtNborderColor XtCBorderColor Pixel Black
XtNborderPixmap XtCPixmap Pixmap Unspecified
XtNborderWidth XtCBorderWidth Dimension 1
XtNdepth XtCDepth int 0
XtNdestroyCallback XtCCallback Pointer NULL
XtNheight XtCHeight Dimension 0
XtNmappedWhenManaged XtCMappedWhenManaged Boolean TRUE
XtNsensitive XtCSensitive Boolean TRUE
XtNtranslations XtCTranslations XtTranslations NULL
XtNwidth XtCWidth Dimension 0
XtNx XtCPosition Position 0
XtNy XtCPosition Position 0

Manager Resource Set -- XWMANAGER(3X)
Name Class Type Default
XtNbackgroundTile XtCBackgroundTile int background
XtNbottomShadowColor XtCForeground Pixel Black
XtNbottomShadowTile XtCBottomShadowTile int foreground
XtNforeground XtCForeground Pixel Black
XtNhighlightThickness XtCHighlightThickness int 0
XtNshadowOn XtCShadowOn Boolean TRUE
XtNtopShadowColor XtCBackground Pixel White
XtNtopShadowTile XtCTopShadowTile int 50 foreground
XtNtraversalOn XtCTraversal On Boolean FALSE

MenuPane Resource Set -- XWMENUPANE(3X)
Name Class Type Default
XtNattachTo XtCAttachTo String NULL
XtNfont XtCFont XFontStruct • '

1fixed"
XtNmgrTitleOverride XtCTitleOverride Boolean FALSE
XtNmnemonic XtCMnemonic String NULL
XtNselect XtCCallback Pointer NULL
XtNtitlelmage XtCTitlelmage Xlmage * NULL
XtNtitleShowing XtCTitleShowing Boolean FALSE
XtNtitleString XtCTitleString String widget name
XtNtitleType XtCTitleType int XwSTRlNG

TRANSlATIONS
The input to the Cascade menupane widget is driven by the mouse buttons. The default
translations set by this widget are as follows:

<Btn1Down>: select()
<LeaveWindow>: leave()

The following translations are added to the cascade menu pane widget when traversal is enabled
within a menu hierarchy:

Hewlett-Packard Company -2- Jan 7, 1989

XWCASCADE (3X)
XWCASCADE (3X)

<visible>:
<unmap>:

visible()
unmap()

ACTIONS
leave: This routine overrides the leave action routine provided by the XwManager meta class.
select: Informs the menu manager, if present, that a select occurred, and then invokes the select

callbacks, unless instructed not to by the menu manager. If no menu manager is present,
then the select callbacks will be invoked.

unmap:
This action overrides the unmap action provided by the XwManager meta class.

visible: This action overrides the visible action routine provided by the XwManager meta class.
KEYBOARD TRAVERSAL

ORIGIN

If the XtNtraversalOn resource is set to TRUE at create time or during a call to XtSetValues, the
XwManager superclass will automatically augment the manager widget's translations to support
keyboard traversal. Refer to the XwManager man page for a complete description of these
translations.

Hewlett-Packard Company.
SEE ALSO

CORE(3X), CONSTRA1NT(3X), XWMANAGER(3X), XWMENUPANE(3X),
Programming With The HP X Widgets,
Programming With Xt lnt1i1tsics,
Programming With Xlib.

Hewlett-Packard Company -3- Jan 7, 1989

XWCREATETILE(3X) XWCREATETILE (3X)

NAME
XwCreateTile - create a tile suitable for area filling or patterned text.

SYNOPSIS
#include <Xll/lntrinsic.h>
#include <XwfXw.h>

Pixmap XwCreateTile (screen, foreground, background, tile'IyPe)
Screen * screen;
Pixel foreground;
Pixel background;
int tile'IyPe;

ARGUMENTS
screen This parameter contains the screen for which the tile is to be created.
foreground

This is the foreground color to use for creating the tile.
background

This is the background color to use for creating the tile.
tileType

This is an integer value representing a particular pattern to use when creating the tile.
DESCRIPTION

XwCreateTile is a function (not a widget) that creates and returns a pixmap of screen depth, using
the foreground and background colors specified. The tileType parameter is used to select the
particular tile to create. Duplicate requests for the same tile, screen, foreground and background
are cached to reduce overhead.

There are nine available tile types. They are defined by a set of #define statements in the file
Xw.h and are described in the following table.

Define Description
XwBACKGROUND A tile of solid background
XwFOREGROUND A tile of solid foreground
Xw25 FOREGROUND A tile of 25% foreground, 75% background
Xw50 FOREGROUND A tile of 50% foreground, 50% background
Xw75 FOREGROUND A tile of 75% foreground, 25% background
XwHORIZONTAL TILE A tile of horizontal lines of the two colors
XwSLANT RIGHT A tile of slanting lines of the two colors
XwSLANT LEFT A tile of slanting lines of the two colors
XwVERTICAL TILE A tile of vertical lines of the two colors

To use a tile created by this function, the returned tile should be placed into the tile field of a
graphics context, and the fill_ style should be set to FillTiled.

Hewlett-Packard Company - 1 - Jan 7, 1989

XWCREATETILE(3X) XWCREATETILE (3X)

RESOURCES
XwCreateTile gives the application or widget writer an easy mechanism to specify the tile type to
use. The tile type can be specified within the .Xdefaults file or an argument list. A resource
converter is present to convert .Xdefault strings into the matching defined value for each of the
tiles. The strings to be contained within the .Xdefaults file are as follows.

Xdefault String Define
background XwBACKGROUND
foreground XwFOREGROUND
25 foreground Xw25 FOREGROUND
50 foreground Xw50 FOREGROUND
75 foreground Xw75 FOREGROUND
horizontal tile XwHORIZONTAL TILE
slant right XwSLANT RIGHf
slant left XwSLANT LEFT
vertical tile XwVERTICAL TILE

For widget writers who wish to incorporate settable tiles within their resource set, the
representation member of the resource definition should be set to the define XtRTileType.

RETURN VALUES
XwCreateTile returns a pixmap if successful. If an invalid tile type or screen is specified, 0 is
returned.

ORIGIN
Hewlett-Packard Company.

SEE ALSO
Programming With The HP X Widgets,
Programming With Xt lntrinsics,
Programming With Xlib.

Hewlett-Packard Company -2- Jan 7, 1989

XW~'UKM(3X) XWFORM(3X)

NAME
XwformWidgetClass- the X Widget's general widget layout manager

SYNOPSIS
#include <Xll/StringDefs.h>
#include <Xll/Intrinsic.h>
#include <XwfXw.h>
#include <Xw/Form.h>

ClASSES
A Form widget is built from Core, Composite, Constraint and XwManager classes
The widget class to use when creating a form is XwformWidgetCiass.
The class name of Form is Fornt.

DESCRIPTION
The Form widget is a constraint based manager that provides a layout language used to establish
spatial relationships between its children. It then manipulates these relationships when the Form
is resized, new children are added to the Form, or its children are resized, unmanaged, remanaged
or destroyed.

The following list highlights the types of layout control provided by the form widget.
Automatic Form Resizing

The form calculates new sizes or positions for its children whenever they change size or
position. The new form size thus generated is passed as a geometry request to the parent
of the form. The parent can accept the request or modify it and return it as a geometry
almost. When a geometry almost is returned by the parent, the form respecifies the
constraints to match the parent's reply size.

Column Constraints
Sets of widgets can be displayed in a single column or in multiple columns. The form may
increase or decrease the spacing between widgets or resize the widgets, but it will not
allow the widgets to overlap.

Managing, Unmanaging and Destroying Children
When a widget within a form is unmanaged or destroyed, it is removed from the
constraint processing and the constraints are reprocessed to reposition and/or resize the
form and its contents. Any widgets that referenced it are rereferenced to the widget that
it had been referencing. For the unmanaged case, if the widget is remanaged, the widgets
that were previously referencing it are rereferenced to it, thus preserving the original
layout.

Optimal Child Sizes and Positions
The Form widget also calculates the sizes and positions of its children to both match the
constraints defined and to match either the initial size of the widget or the size given when
the widget was modified through XtSetValues. These values are further constrained to
match a given form size only when the form's size is being explicitly changed through its
resize procedure, or its parent returns a geometry almost when the form makes a
geometry request.

Row Constraints
Sets of widgets can be set up as a row so that resizing a form may increase or decrease the
spacing between the widgets. The form may also make the widgets smaller if desired, but
it will not allow the widgets to overlap.

Spanning Constraints
A widget can be created with a set of constraints such that it spans the width or height of a
form. This is often used for the layout of scrollbars and titlebars. Constraints that cause
a widget to span both the width and height of a form can also be specified.

NEW RESOURCES
The Form does not add any new resources. All of the functionality for the form is tied to its

Hewlett-Packard Company - 1 - Jan 9, 1989

XWFORM(3X) XWFORM(3X)

constraint resources.

CONSTRAINT RESOURCES

The following resources are attached to every widget inserted into Form. To specify an of these
resources within a .Xdefaults file, drop the XtN from the resource name. Refer to
CONSTRAINT(3X) for a general discussion of constraint resources.

Constraint Resource Set- Children ofFORM(3X)
Name Class Type Default
XtNxAddWidth XtCXAddWidth Boolean FALSE
XtNxAttachOffset XtCXAttachOffset int 0
XtNxAttachRight XtCXAttachRight Boolean FALSE
XtNxOffset XtCXOffset int 0
XtNxRefName XtCXRefName String NULL
XtNxRefWidget XtCXRefWidget Widget the parent form
XtNxResizable XtCXResizable Boolean FALSE
XtNxVaryOffset XtCXVaryOffset Boolean FALSE
XtNyAddHeight XtCYAddHeight Boolean FALSE
XtNyAttachBottom XtCYAttachBottom Boolean False
XtNyAttachOffset XtCYAttachOffset int 0
XtNyOffset XtCYOffset int 0
XtNyRetName XtCYRetName String NULL
XtNyRefWidget XtCYRefWidget Widget the parent form
XtNyResizable XtCYResizable Boolean FALSE
XtNyVaryOffset XtCYVaryOffset Boolean FALSE

XtNxAddWidth XtNyAddHeight
This resource indicates whether or not to add the width or height of the reference widget
to a widget's location when determining the widget's position.

XtNxAttachOITset XtNyAttachOITset
When a widget is attached to the right or bottom edge of the form (through the above
resources), the separation between the widget and the form is defaulted to 0 pixels. This
resource allows that separation to be set to some other value. Also, for widgets that are
not attached to the right or bottom edge of the form, this constraint specifies the
minimum spacing between the widget and the form.

XtNxAttachRight XtNyAttachBottom
Widgets are normally referenced from "form left" to "form right" or from "form top" to
"form bottom." The attach resources allow this reference to occur on the opposite edge of
the form. These resources, when used in conjunction with the varyOffset resources, allow
a widget to float along the right or bottom edge of the form. This is done by setting both
the Attach and VaryOffset resources to TRUE. A widget can also span the width and
height of the form by setting the Attach resource to TRUE and the VaryOffset resource to
FALSE.

XtNx-Qffset XtNyOITset
The location of a widget is determined by the widget it references. As the default, a
widget's position on the form exactly matches its reference widget's location. There are
two additional pieces of data used to determine the location. This resource defines an
integer value representing the number of pixels to add to the reference widget's location
when calculating the widget's location.

XtNxRefName XtNyRefName
When a widget is added as a child of the form its position is determined by the widget it
references. The reference widget must be created before the widget which references it is
created. These resources allow the name of the reference widget to be given. The form
converts this name to a widget to use for the referencing. Any widget that is a direct child

Hewlett-Packard Company - 2- Jan 9, 1989

XWFORM(3X) XWFORM(3X)

of the form or the form widget itself can be used as a reference widget.
XtNxRefWidget XtNyRefWidget

The application can specify the reference widget as either a string representing the name
of the widget (as described above) or as the Widget ID value returned from
XtCreateWidget. This resource is the means by which a widget ID is specified.

XtNxResizable XtNyResizable
This resource specifies whether the form can resize (shrink) a widget. When a form's size
becomes smaller the form will resize its children only after all of the inter-widget spacing
of widget's with their VaryOffset resource set to TRUE. The form keeps track of a
widgets initial size or size generated through XtSetValues so that when the form then
becomes larger the widget will grow to it original size and no larger.

XtNxVaryOtTset XtNyVaryOtTset
When a form is resized, it processes the constraints contained within its children. This
resource allows the spacing between a widget and the widget it references to vary (either
increase or decrease) when a form's size changes. For widgets that directly reference the
form widget this resource is ignored. The spacing between a widget and its reference
widget can decrease to 0 pixels if the XtNAddWidth resource is FALSE or to 1 pixel if
XtNAddWidth is TRUE.

INHERITED RESOURCES
The following resources are inherited from the indicated superclasses:

Core Resource Set -- CORE(3X)
Name Class Type Default
XtNancestorSensitive XtCSenstitive Boolean TRUE
XtNbackground XtCBackground Pixel White
XtNbackgroundPixmap XtCPixmap Pixmap Unspecified
XtNborderColor XtCBorderColor Pixel Black
XtNborderPixmap XtCPixmap Pixmap Unspecified
XtNborderWidth XtCBorderWidth Dimension 1
XtNdepth XtCDepth int 0
XtNdestroyCallback XtCCallback Pointer NULL
XtNheight XtCHeight Dimension 0
XtNmappedWhenManaged XtCMappedWhenManaged Boolean TRUE
XtNsensitive XtCSensitive Boolean TRUE
XtNtranslations XtCTranslations XtTranslations NULL
XtNwidth XtCWidth Dimension 0
XtNx XtCPosition Position 0
XtNy XtCPosition Position 0

Manager Resource Set
Name Class Type Default
XtNbackgroundTile XtCI3ackgroundTile int background
XtNforeground XtCForeground Pixel Black
XtNlayout XtCLayout int minimize
XtNnextTop XtCCallback Pointer NULL
XtNtraversalOn XtCTraversal On Boolean FALSE

KEYBOARD TRAVERSAL
If the XtNtraversalOn resource is set to TRUE at either create time or during a call to
XtSetValues, the XwManager superclass will automatically augment the manager widget's

Hewlett-Packard Company -3- Jan 9, 1989

XWFORM(3X) XWFORM(3X)

translations to support keyboard traversal. Refer to the XwManager man page for a complete
description of these translations.

EXAMPLES
The following examples list the desired layout of widgets within a form and the constraints needed
to achieve the layout.

TitleBar
Use the following constraints to get a titlebar widget to span the top of a form the
following constraints can be used. For a widget named title the .Xdefaults file will
contain.

*title.xRefName:
*title.xOffset:
*title.xResizable:
*title.xAttachRight:
*title.xAttachOffset:
*title.yRefName:

Dynamic Scrolled Window

"form widget name"
5
TRUE
TRUE
5
"form widget name"

attach to the left edge of the form
offset 5 pixels from the left edge
title is horizontally resizable
attach to the right edge of the form
offset 5 pixels from right edge
attach to the top edge of the form

The above constraints work generally for any widget type that is to span the form and that
need to be resized as the form increases or decreases in size. For example, if the child
widget is a scrolled window named sWin that dynamically resizes as the form resizes in
both the horizontal and vertical directions the constraints are as follows.

*sWin.xRefName:
*sWin.xOffset:
*sWin.xResizable:
*sWin.xAttachRight:
*sWin.xAttachOffset:

*sWin.yRefName:
*sWin.yOffset:
*sWin.yResizable:
*sWin.yAttachBottom:
*sWin.yAttachOffset:

"form widget name"
5
TRUE
TRUE
5

"form widget name"
5
TRUE
TRUE
5

attach to the left edge of the form
offset 5 pixels from the left edge
scroliWin is horizontally resizable
attach to the right edge of the form
offset 5 pixels from right edge

attach to the top edge of the form
offset 5 pixels from the top edge
scroliWin is vertically resizable
attach to the bottom edge of the form
offset 5 pixels from bottom edge

Right or Bottom Attached Widgets
For a widget named widget to float along the right or bottom edge of the form as it is
resized the constraint set is the same as for the titlebar example with the following
changes.

*widget.xRefName:
*widget.yVaryOffset:

Columns of Widgets

"any widget name"
TRUE

the widget to the left of this one
adjust the spacing with the reference
widget

A set of widgets within a form can be arranged in columns by using of the constraint
language. The following set of constraints sets up two columns of widgets. The naming of
the widgets for this example is wl,J where I is the column and J is the row.

Hewlett-Packard Company -4- Jan 9, 1989

XWFORM(3X) XWFORM(3X)

*wO,O.xRetName: "form widget name"
*wO,O.xOffset: 5
*wO,O.xResizable: TRUE
*wO,O.yRetName: "form widget name"
*wO,O.yOffset: 5
*wO,O.yResizable: TRUE

*wO,l.xRetName: widgetO,O
*wO,l.xResizable: TRUE
*wO,l.yRetName: widgetO,O
*wO,l.yOffset: 5
*wO,l.yAddHeight: TRUE
*wO,l.yResizable: TRUE

*wl,O.xRetName: widgetO,O
*wl,O.xOffset: 20
*wl,O.yAddWidth: TRUE
*wl,O.xResizable: TRUE
*wl,O.yRetName: widgetO,O
*wl,O.yOffset: 5
*wl,O.yAddHeight: TRUE
*wl,O.yResizable: TRUE

*wl,l.xRetName: widgetl,O
*wl,l.xResizable: TRUE
*wl,l.yRetName: widgetl,O
*wl,l.yOffset: 5
*wl,l.yAddHeight: TRUE
*wl,l.yResizable: TRUE

ORIGIN
Hewlett-Packard Company.

SEE ALSO
CORE(3X), COMPOSITE(3X), CONSTRAINT(3X), XWMANAGERCLASS(3X),
Programming With The HP X Widgets,
Programming With Xt Intrinsics,
Programming With Xlib.

Hewlett-Packard Company -5- Jan 9, 1989

XWFRAME(3X) XWFRAME(3X)

NAME

XwframeWidgetCiass- the X Widget's frame widget

SYNOPSIS

#include <Xll/StringDefs.h>
#include <Xll/Intrinsic.h>
#include <XwfXw.h>
#include <Xw/Frame.h>

ClASSES
The Frame widget is built from the Core, Composite, and Manager classes.

The widget class to use when creating a frame is XwframeWidgetCiass.

The class name for frame is Frame.

DESCRIPTION
The Frame widget is a very simple manager used to enclose a single child in a border drawn by the
Frame widget. It uses the XwManager class resources for border drawing and performs geometry
management such that its size will always match its child size plus the highlightThickness defined
for it.

Frame is most often used to enclose other managers when the application developer desires the
manager to have the same border appearance as the primitive widgets. Frame can also be used to
enclose primitive widgets that do not support the same type of border drawing. TI1is will give
visual consistency when developing applications using diverse widget sets.

NEW RESOURCES
The Frame widget does not define any resources.

INHERITED RESOURCES
The following resources are inherited from the named superclasses:

Core Resource Set -- CORE(3X)
Name Class Type Default
XtNancestorSensitive XtCSenstitive Boolean TRUE
XtNbackground XtCBackground Pixel White
XtNbackgroundPixmap XtCPixmap Pixmap Unspecified
XtNborderColor XtCBorderColor Pixel Black
XtNborderPixmap XtCPixmap Pixmap Unspecified
XtNborderWidth XtCBorderWidth Dimension 1
XtNdepth XtCDepth int 0
XtNdestroyCallback XtCCallback Pointer NULL
XtNheight XtCHeight Dimension 0
XtNmappedWhenManaged XtCMappedWhenManaged Boolean TRUE
XtNsensitive XtCSensitive Boolean TRUE
XtNtranslations XtCTranslations XtTranslations NULL
XtNwidth XtCWidth Dimension 0
XtNx XtCPosition Position 0
XtNy XtCPosition Position 0

Hewlett-Packard Company - 1 - Jan 7, 1989

XWFRAME (3X) XWFRAME(3X)

Manager Resource Set
Name Class '!Ype Default
XtNbackgroundTile XtCBackgroundTile int background
XtNbottomShadowColor XtCForeground Pixel Black
XtNbottomShadowTile XtCBottomShadowTile int foreground
XtNforeground XtCForeground Pixel Black
XtNhighlightThickness XtCHighlightThickness int 0
XtNlayout XtCLayout int minimize
XtNnextTop XtCCallback Pointer NULL
XtNshadowOn XtCShadowOn Boolean TRUE
XtNtopShadowColor XtCBackground Pixel White
XtNtopShadowTile XtCTopShadowTile int 50 foreground
XtNtraversalOn XtCTraversalOn Boolean FALSE

KEYBOARD TRAVERSAL
If the XtNtraversalOn resource is set to TRUE at either create time or during a call to
XtSetValues, the XwManager superclass will automatically augment the manager widget's
translations to support keyboard traversal. Refer to the XwManager man page for a complete
description of these translations.

ORIGIN
Hewlett-Packard Company.

SEE ALSO
CORE(3X), XWMANAGER(3X)
Programming With The HP X Widgets,
Programming With Xt Inninsics,
Programming With Xlib.

Hewlett-Packard Company -2- Jan 7, 1989

XWIMAGEEDIT(3X) XWIMAGEEDIT(3X)

NAME

XwimageEditWidgetClass - the X Widget's image editor widget

SYNOPSIS
#include <Xll/StringDefs.h>
#include < Xll/Intrinsic.h >
#include <XwfXw.h>
#include <Xw/ImageEdit.h>

ClASSES
ImageEdit is built from the Core and Primitive classes.

The widget class to use when creating an image editor is XwimageEditWidgetCiass.

The class name is ImageEdit.

DESCRIPTION
The ImageEdit widget allows an image to be displayed in an enlarged format so that it may be
edited on a pixel-by-pixel basis. The specified image is displayed in a grid structure so that a user
may see and modify the composition.

To change the image, the user moves the mouse to the desired point and presses the mouse
button. The pixel under the cursor will change to the foreground color. If the cursor is moved
while the button is pressed, all pixels that are touched will change to the foreground color.

NEW RESOURCES
The ImageEdit defines a set of resource types that can be used by the programmer to control the
appearance and behavior of the widget. The programmer can also set the values for the Core and
Primitive widget classes to set attributes for this widget. To reference a resource in a .Xdefaults
file, strip off the XtN from the resource string name. The following table contains the set of
resources defined by ImageEdit.

ImageEdit Resource Set
Name Class 'I)pe Default

XtNbackground XtCBackground Pixel Black
XtNdrawColor XtCBackground Pixel Black
XtNeraseColor XtCBackground Pixel White
XtNeraseOn XtCEraseOn Boolean TRUE
XtNgridThickness XtCGridThickness int 1
XtNimage XtCimage Xlmage • NULL
XtNpixelScale XtCPixelScale int 6

XtNbackground
ImageEdit redefines the core class background resource to default it to the color black.
This is then used as the background color for the widget's window which will be reflected
in the grid color.

XtNdrawColor
This resource define the color to be used for drawing in the widget.

XtN eraseColor
This resource defines the color used for erasing in the widget. Erase is enabled by the
eraseOn resource. When selections occur on the widget, the widget determines the color
of the pixel selected. If the selected pixel is not the same as the draw color, the draw color
will be used to draw until the button release occurs. If the selected pixel is the draw color,
the erase color will be used for drawing until the button release occurs.

XtNeraseOn
This resource is a boolean variable that indicates whether erasing is enabled or not. If set
to TRUE, drawing will occur as described above. If set to FALSE, only the draw color
will be used for drawing.

Hewlett-Packard Company - 1- Jan 7, 1989

XWIMAGEEDIT(3X) XWIMAGEEDIT(3X)

XtNgridThickness
This resource defines the separation between the magnified pixels.

XtNimage
This is a pointer to the image that is displayed in the grid. It points to an Xlmage structure.

XtN pixel Scale
This resource defines the magnification factor to use when displaying the expanded image.

INHERITED RESOURCES
The following resources are inherited from the named superclasses:

Core Resource Set •• CORE(3X)
Name Class Type Default
XtNancestorSensitive XtCSenstitive Boolean TRUE
XtNbackground XtCBackground Pixel White
XtNbackgroundPixmap XtCPixmap Pixmap Unspecified
XtNborderColor XtCBorderColor Pixel Black
XtNborderPixmap XtCPixmap Pixmap Unspecified
XtNborderWidth XtCBorderWidth Dimension 1
XtNdepth XtCDepth int 0
XtNdestroyCallback XtCCallback Pointer NULL
XtNheight XtCHeight Dimension 0
XtNmappedWhenManaged XtCMappedWhenManaged Boolean TRUE
XtNsensitive XtCSensitive Boolean TRUE
XtNtranslations XtCTranslations XtTranslations NULL
XtNwidth XtCWidth Dimension 0
XtNx XtCPosition Position 0
XtNy XtCPosition Position 0

Primitive Resource Set -· XWPRIMITIVE(3X)
Name Class Type Default
XtNbackgroundTile XtCBackgroundTile int background
XtNbottomShadowColor XtCForeground Pixel Black
XtNbottomShadowTile X tCBottomShadowTile int foreground
XtNforeground XtCForeground Pixel Black
XtNhighlightColor XtCForeground Pixel Black
XtNhighlightStyle XtCHighlightStyle int pattern border
XtNhighlightThickness XtCHighlightThickness int 0
XtNhighlightTile XtCHighlightTile int 50 foreground
XtNrecomputeSize XtCRecomputeSize Boolean TRUE
XtNrelease XtCCallback Pointer NULL
XtNselect XtCCallback Pointer NULL
XtNshadowOn XtCShadowOn Boolean TRUE
XtNtopShadowColor XtCBackground Pixel White
XtNtopShadowTile XtCTopShadowTile int 50 foreground XtNtraversalType XtCTraversalType int highlight off

KEYBOARD TRAVERSAL
If the XtNtraversalType resource is set to highlight traversal (XwHIGHLIGHT TRAVERSAL in an argument list) at either create time or during a call to XtSetValues, the XwPnmitive superclass will automatically augment the primitive widget's translations to support keyboard traversal. Refer

Hewlett-Packard Company -2- Jan 7, 1989

XWIMAGEEDIT(3X) XWI!'vlAGEEDIT(3X)

to the XwPrimitive man page for a complete description of these translations. Refer to the
TRANSLATIONS section in this man page for a description of the translations local to this
widget.

TRANSlATIONS
The following translations are defined for the ImageEdit widget.

< BtnDown >: select()
<BtnUp>: release()
Button!< PtrMoved >: moved()
<EnterWindow>: enter()
<LeaveWindow>: leave()

ACTIONS

ORIGIN

enter: If the XtNtraversaiType resource has been set to XwHIGHLIGHT ENTER then the
image edit's border will be highlighted. Otherwise no action is taken. -

leave: If the XtNtraversaiType resource has been set to XwHIGHLIGHT ENTER then the
image edit's border will be unhighlighted. Otherwise no action is taken. -

moved: Moved causes drawing or erasing to occur from the last cursor position to the current
cursor position.

release: Release concludes a drawing sequence and invokes primitive class XtNrelease callbacks.

select: Selections occurring on an image edit cause drawing or erasing on the selected pixel,
activate the moved action for continuous drawing and invoke the primitive class XtNselect callback
functions.

Hewlett-Packard Company.

SEE ALSO
CORE(3X), XWPRIMillVE(3X),
Programming With The HP X Widgets,
Programming With Xt Intrinsics,
Programming With Xlib.

Hewlett-Packard Company -3- Jan 7, 1989

XWLIST(3X) XWLIST(3X)

NAME
XwlistWidgetC!ass - the X Widget's list manager widget

SYNOPSIS
#include <Xll/StringDefs.h>
#include <Xll/Intrinsic.h>
#include <XwfXw.h>
#include <XwfSWindow.h>
#include <Xw fList.h>

ClASSES
List is built from the Core, Composite, Constraint, Manager and ScrolledWindow classes.
The widget class to use when creating a list manager is XwlistWidgetCiass. The class name is List.

DESCRIPTION
The List widget allows a two-dimensional set of widgets to be presented to the user in a
rows/columns fashion. The layout will typically consist of n columns, not all of which need to be
visible on the screen at one time. Each column will have some number of objects, such as labels
or icons, arranged vertically. Separate columns may have unequal numbers of members--column
A may have 10 elements, while column B has 17 elements. All members of each column are not
required to be visible on the screen. The entire list window can be scrolled either vertically or
horizontally, but the individual columns cannot be individually scrolled. If an application needs to
have columnar scrolling, it may instantiate multiple List widgets, each having only one column.
By default, each column is wide enough to display the longest item in the data. A resource is
available to allow each column to be a fixed width, with the excess characters being clipped. When
the List widget is shrunk by a Resize call, columns that are beyond the right edge of the new size
will be clipped. List elements are also adjusted to force a common height, with each element being
set to the height of the tallest member of the column. This automatic sizing can be turned off
through a resource by forcing each element to an arbitrary height. If a constant height is selected,
any element that will not fit in the specified space will be clipped.
The List widget provides management and layout functions for its elements, as well as a means for
the user to choose elements, and allows an application to be notified when those elements are
selected. However, it is the responsibility of the application to create the actual widgets that are to
be inserted into the list. The widgets may be of any type, but only Primitive class widgets will
highlight correctly.

To construct a list, the application must create each element as a child of the List widget. The row
and column position of the element can be specified by means of a constraint resource. If the row
and column are not given, the List widget will fill in the position of the element and store it in the
constraint record so that it may be examined later. Position assignments are made from left to
right, filling all columns on a row before moving down to create a new row.
TI1e List widget supports two methods of choosing an item from its displayed list: single and
multiple. A resource controls which mode is currently active.
In single choice mode, the user may move the cursor onto any element in the list and click the
mouse button defined as "Element Select." By default, this is the left button. When the but!on is
pressed, the list item is highlighted. If the user drags the mouse with the button held down, the
highlighted selection will track the pointer. If the pointer moves off the currently highlighted item,
it will become unselected, returning to its original state, and the item that the pointer has moved
onto becomes highlighted. When the user releases the button, the currently selected item
becomes the "choice," and the List widget invokes the select callback associated with the chosen
item. TI1e application must take over the widget's select callback in order to be notified that the
item has been selected.

Multiple item selection is designed to allow the user to select several elements from the
displayed list. When the user presses the mouse button bound to "Element Select," the item
currently under the pointer is highlighted to indicate that it is included in the selection set. As the
user drags the mouse with the button down, the original choice remains highlighted, and any new
items that the pointer touches also becomes highlighted. At any time, the user can "back up" the

Hewlett-Packard Company - 1 - Jan 7, 1989

XWLIST(3X)
XWLIST(3X)

selection by !ea~ng an item on the same side as it was entered. When the user finally releases the
button, all h1ghhghted elements are marked as chosen and the selection callback is invoked for
each item. '

Selections can be either "sticky" or "instant. • The selection mode is set through a resource. If set to
sticky, the sele~tion will remain highlighted after the user releases the mouse button, and will not
be cleared until the next button press. In instant mode, the highlight will disappear when the
button is released.

The selection mechanism can be affected by a "bias• that is controlled through a widget resource.
The allowable bias types are row, column, and none (default). In this mode only list items that
are actually touched with the pointer are included in the selection. In Row Bias mode. entire
rows of items may be selected by moving the pointer vertically within a column. For example,
consider the following case:

1
7
13

2
8
14

3
9
15

4
10
16

5
11
17

6
12
18

If the user pressed the mouse button when the pointer was over item 3 and then moved to item 9,
items 4 thru 8 would also be highlighted. In Column Bias mode, entire columns can be selected
by movement between rows. Using the above diagram, and assuming column bias, if the user
clicked on item 2 and moved to item 3, elements 8 and 14 would also be selected.

Additional selections can be made without disturbing the original by following the above
procedures, by depressing the button bound to the "Append Select" function (which is defined as
SHIFT + Left button in the default case). Extended selection can be disabled through a resource.

The List widget also allows an element to be selected by a double click. This feature can be
enabled or disabled, and the interval between clicks can be configured through the
XtNenableDoubleClick and XtNclicklnterval resources.

The visual effect of highlighting can be accomplished in two ways: simple border highlighting, and
inverse video. This may be configured through a List widget resource. Both styles are necessary­
-the inverse style of highlighting is by far the most common and natural interface, but could
possibly conflict with an application or window manager that uses inverse to indicate the Xll
"selection." The default highlighting style is inverse.

A user can select items that are not currently visible by simply extending the selection out of the
visible window in the desired direction. The list will automatically scroll under the selection as
needed, until there are no more list elements available in the given direction. For example, in
single-selection mode, if the user were to begin the selection on a visible element, and then drag
the cursor down the column past the last visible item, the window would scroll up to display
further choices.

It is important to note that the List overrides any other selection method which may be defined by
its elements. For example, if toggle buttons are inserted into the list, they will highlight when they
are selected, but they will not "toggle."

When a list element is destroyed, the list will be re-ordered according to the value of the
XtNdestroyMode resource. When it is XwSHRINK COLUMN (the default), all list elements
below the affected widget and in the same column Will be moved up one row, and their row
constraint resources will be updated to reflect the new positioning. When this resource is set to
XwSHRINK ALL, the elements will be moved in a row-wise fashion to fill the spot left by the
affected element. The widget to the right of the affected one will be moved to the left, and so on
to the last column. The first element of the next row will be moved into the last spot on the
current column. This process will continue for all remaining rows in the list. If the value of this
resource is XwNO SHRINK, the list will not change its ordering and a "hole "will appear in the
place of the affected element.

NEW RESOURCES
The List widget defines a unique set of resource types which can be used by the programmer to
control the appearance and behavior of the list. The programmer can also set the values for the

Hewlett-Packard Company -2- Jan 7, 1989

XWLIST(3X) XWLIST(3X)

Core, Composite, Constraint, Manager and ScrolledWindow widget classes to set attributes for
this widget. To reference a resource in a .Xdefaults file, drop the XtN from the resource name.
The following table contains the set of resources defined by List.

List Resource Set
Name Class Type Default
XtNclearList XtCCiearList Boolean FALSE
XtNclicklnterval XtCCiicklnterval int 350
XtNcolumnWidth XtCColumn Width int 0
XtNdestroyMode XtCDestroyMode int XwSHRINK COLUMI\
Xt.\TdoubleCiick XtCCallback Pointer NULL
Xt.\TelementHeight XtCEiementHeight int 0
Xt.\TelementHighlight XtCEiementHighlight int XwiNVERT
Xt.\TenableDoubleClick XtCEnableDoubleCiick Boolean FALSE
Xt.\TnoExtSelection XtCNoExtSelection Boolean FALSE
XtNnumColumns XtCNumColumns int 1
XtNnumSelectedElements XtCNumSelectedEiements int 0
XtNselectedElements XtCSelectedElements WidgetList* NULL
XtNselectionBias XtCSelectionBias int XwNO BIAS
XtNselectionMethod XtCSelectionMethod int XwSINGLE
XtNselectionStyle XtCSelectionStyle int X wiN STANT
XtNsmartCiient XtCSmartCiient Boolean FALSE
XtNunmanageList XtCUnmanageList Boolean FALSE

XtNclearList
If a list is created without enough elements to form a perfect rectangle, or individual
elements are deleted, "dummy" widgets will be created to maintain the proper visual
ordering of the list. At a later time, if an application wishes to delete all elements of the
list, it should set this resource to TRUE. This causes the List manager to call
XtDestroyWidget for every widget in the list, including the invisible placeholder items.

XtNclicklnterval
This specifies the number of milliseconds that two button presses must occur in to be
considered a doubleclick. The default is 350.

XtNcolumnWidth
The width of each column. If the value is 0, the width defaults to the width of the largest
element.

XtNdestroyMode
Controls the visual appearance of the list when an element is deleted. One of
XwSHRINK _COLUMN, XwSHRINK_ ALL or XwNO _SHRINK.

XtN doubleClick
If doubleclick is enabled, the application should add a callback routine to this resource.
When a double click occurs, the callback list will be invoked with the call data parameter
set to a pointer to the widget (element) that was selected. -

XtNelementHeight
The height of each element. Zero implies that each element is resized to the height of the
tallest element.

XtNelementHighlight
This controls the highlight mode on selection- either border highlighting (XwBORDER)
or inversion (XwiNVERT).

XtNenableDoubleClick
When this resource is TRUE, the doubleclick feature is enabled. When it is set to false,
only single click selections will occur.

Hewlett-Packard Company -3- Jan 7, 1989

XWLIST(3X)
XWLIST(3X)

XtNnoExtSelection
Extended selection can be disabled by setting this resource to TRUE.

XtNnumColumns
The number of columns in the list.

XtNnumSelectedEiements
The number of widgets currently selected (in the list pointed to by XtNselectedElements).

XtNSelectedElements
This is a list of the widgets currently marked as selected. An application program can
issue a call to XtGetValues on this resource at any time to query the selected elements.

XtN selectionBias
Bias mode - either XwNO _BIAS, XwROW _BIAS or XwCOL _BIAS.

XtN selectionMethod
Controls the selection mode- either one element at a time (XwSINGLE) or multiple
(XwMULTIPLE).

XtN selectionStyle
Controls the type of selection- either XwiNSTANT or XwSTICKY.

XtN smartCiient
The overhead associated with the managemant of the list and dummy elements can be
reduced substantially for an application that only needs a simple list. When
XtNsmartClient is TRUE, the list makes the following assumptions:
1) The elements are inserted to the list in the proper order. The list will assign the proper
locations if none are specified, but if locations are given they are assumed to be correct. If
they are not, certain operations may perform incorrectly, such as row and column bias in
multiple selection mode.
2) When an item is deleted, no special action is taken. The list simply shrinks by one
space, and the row and column resources attached to each element are not renumbered.

XtNunmanageList
To unmanage all elements of the list, set this resource to TRUE. To manage the entire set
of items set it to FALSE.

CONSTRAINT RESOURCES
The following resources are attached to every widget inserted into List. Refer to
CONSTRAINT(3X) for a general discussion of constraint resources.

Constraint Resource Set-- Children ofXWLIST(3X)
Name Class Type Default
XtNcolumnPosition XtCColumnPosition int -1
XtNrowPosition XtCRowPosition int -1
XtNselected XtCSelected Boolean FALSE

XtNrowPosition,XtNcolumnPosition
This is the row,column location of the element in the list. If these values are greater than
or equal to zero, the widget is inserted into the list at that position. If the values are left at
-1, the List widget will create a list with XtNnumColumns number of columns, assigning
row and column positions as needed.

XtNselected
If this resource is set to TRUE, the element will highlight as if it were selected by the
user, but the XtNselect callback will not be invoked.

INCORPORATED RESOURCES
No incorporated resources are currently exported by the List widget.

INHERITED RESOURCES
The following resources are inherited from the named superclasses:

Hewlett-Packard Company -4- Jan 7, 1989

XWLIST(3X) XWLIST(3X)

ScrolledWindow Resource Set - XWSCROLLEDWINDOW(3X)
Name Class Type Default
XtNforceHorizontalSB XtCForceHorizontalSB Boolean FALSE
XtNforceVerticalSB XtCForce VerticalSB Boolean FALSE
XtNhsbHeight XtCHsbHeight int 20
XtNhsbWidth XtCHsbWidth int 285
XtNhsbX XtCHsbX int -1
XtNhsbY XtCHsbY int -1
XtNhScrollEvent XtCCallBack Pointer NULL
XtNinitialX XtCinitialX int 0
XtNinitialY XtCinitialY int 0
XtNvsbHeight XtCVsbHeight int 285
XtNvsbWidth XtCVsbWidth int 20
XtNvsbX XtCVsbX int -1
XtNvsbY XtCVsbY int -1
XtNvScrollEvent XtCCallBack Pointer NULL

Core Resource Set -- CORE(3X)
Name Class Type Default
XtNancestorSensitive XtCSenstitive Boolean TRUE
XtNbackground XtCBackground Pixel White
XtNbackgroundPixmap XtCPixmap Pixmap Unspecified
XtNborderColor XtCBorderColor Pixel Black
XtNborderPixmap XtCPixmap Pixmap Unspecified
XtNborderWidth XtCBorderWidth Dimension 1
XtNdepth XtCDepth int 0
XtNdestroyCallback XtCCallback Pointer NULL
XtNheight XtCHeight Dimension 0
XtNmappedWhen~anaged XtC~appedWhen~anaged Boolean TRUE
XtNsensitive XtCSensitive Boolean TRUE
XtNtranslations XtCTranslations XtTranslations NULL
XtNwidth XtCWidth Dimension 0
XtNx XtCPosition Position 0
XtNy XtCPosition Position 0

Hewlett-Packard Company -5- Jan 7, 1989

XWLIST(3X) XWLIST(3X)

Manager Resource Set
Name Class Type Default
XtNbackgroundTile XtCBackgroundTile int background
XtNbottomShadowColor XtCForeground Pixel Black
XtNbottomShadowTile XtCBottomShadowTile int foreground
XtNforeground XtCForeground Pixel Black
XtNhighlightThickness XtCHighlightThickness int 0
XtNiayout XtCLayout int minimize
XtNnextTop XtCCallback Pointer NULL
XtNshadowOn XtCShadowOn Boolean TRUE
XtNtopShadowColor XtCBackground Pixel White
XtNtopShadowTile XtCTopShadowTile int 50 foreground
XtNtraversaiOn XtCTraversaiOn Boolean FALSE

KEYBOARD TRAVERSAL
If the XtNtraversaiType resource is set to highlight traversal (XwHIGHLIGHT TRAVERSAL in
an argument list) at either create time or during a call to XtSetValues, the XwPnmitive superclass
will automatically augment the primitive widget's translations to support keyboard traversaL Refer
to the XwPrimitive man page for a complete description of these translations. Refer to the
TRANSLATIONS section in this man page for a description of the translations local to the list
widget.

TRANSlATIONS
The translations used for List are as follows:

<EnterWindow>:
<Leave Window>:

enter()
leave()

ACTIONS
enter: Enter window events occurring on the list window are handled by this action.

leave: Leave window events occurring on the list window are handled by this action.

ORIGIN
Hewlett-Packard Company.

SEE ALSO
CORE(3X), COMPOSITE(3X), CONSTRAINT(3X), XWMANAGERCLASS(3X),
XWSCROLLEDWINDOW(3X),
Programming With The HP X Widgets,
Programming With Xt Intrinsics,
Programming With Xlib.

Hewlett-Packard Company -6- Jan 7, 1989

XWMANAGER(3X) XWMANAGER(3X)

NAME
XwmanagerWidgetClass- X Widget Manager Meta Class

SYNOPSIS
#include <Xll/StringDefs.h>
#include < Xll/Intrinsic.h >
#include <XwfXw.h>

CLASSES
The Manager class is built from the Core, Composite and Constraint classes.

DESCRIPTION
The manager class is an X Widget meta class. It is never instantiated as a widget. Its sole purpose
is as a supporting superclass for other widget classes. It provides methods (procedures) which
handle keyboard traversal and border highlighting for other manager widgets.

NEW RESOURCES
The manager class defines a set of resources used by the programmer to specify data for widgets
that are subclasses of Manager. The string to be used when setting any of these resources in an
application defaults file (.Xdefaults for example) can be obtained by stripping the preface "XtN"
off the resource name. For instance, XtNtraversalOn becomes traversal On.

Manager Resource Set
Name Class Type Default
XtNbackgroundTile XtCBackgroundTile int background
XtNbottomShadowColor XtCForeground Pixel Black
XtNbottomShadowTile XtCBottomShadowTile int foreground
XtNforeground XtCForeground Pixel Black
XtNhighlightThickness XtCHighlightThickness int 0
XtNlayout XtCLayout int minimize
XtNnextTop XtCCallback Pointer NULL
XtNshadowOn XtCShadowOn Boolean TRUE
XtNtopShadowColor XtCBackground Pixel White
XtNtopShadowTile XtCTopShadowTile int 50 foreground
XtNtraversalOn XtCTraversalOn Boolean FALSE

XtNbackgroundTile
This resource defines the tile to be used for the background of the widget. It defines a
particular tile to be combined with the foreground and background pixel colors. The
#defines for setting the tile value through an arg list and the strings to be used in the
.Xdefaults files are described in XwCreateTile(3X).

XtNbottomShadowColor
This resource defines the color that is combined with the bottom shadow tile and
foreground color to create a pixmap used to draw the bottom and right sides of the
border.

XtNbottomShadoWfile
This resource defines the tile used in creating the pixmap used for drawing the bottom
and right border shadow for the widget. The #defines for setting the tile value through
an arg list and the strings to be used in the .Xdefaults files are described in
XwCreateTile(3X).

XtNforeground
This resource defines the foreground color for the widget. Widgets built upon this class
can use the foreground for their drawing.

XtNhighlightThickness
This resource specifies an amount of border spacing around the border of the widget. It

Hewlett-Packard Company - 1 - Jan 7, 1989

XWMANAGER(3X) XWl'viANAGER(3X)

is typically used by managers to have padding space around their children and to draw
special borders. This highlight thickness is and an integer value representing the width, in
pixels, of the border area. This value must be greater than or equal to 0.

XtNlayout
This flag controls how the manager widget's geometry deals with too little or too much
space. The valid settings for this field are XwMINIMIZE, XwMAXIMIZE and
XwiGNORE. When setting this field in a resource file such as the .Xdefaults file, use
"minimize", "maximize" or "ignore". Typically, the XwMINIMIZE means to request the
minimum amount of space necessary to display all children. The XwMAXIMIZE means
that if additional space is given to the widget (i.e., at create time or set values time) then
use the additional space as padding between children widgets. The XwiGNORE settings
means, maintain the size set at create time or at set value time and never change size in
response to a child widget's request (i.e., added/deleted/modified a child widget). Look
at the description of the individual manager widgets to see if this feature is supported.

XtNnextTop
This callback procedure is used by the applications programmer to move the focus from
one toplevel widget to another toplevel widget.

XtNshadowOn
Manager, like Primitive, implements a drawing routine to draw a two pixel wide
shadowing border around the widget inside of the highlight used for traversal. This
resource indicates whether to take into account the additional space needed for drmving
the shadow border. If set to TRUE the highlight thickness value of the widget will be
automatically incremented by two.

The shadowed border is drawn with two pixmaps created using the following four
resources. The border is split into two areas: the top-left shadow and the bottom-right
shadow.

XtNtopShadowColor
This resource defines the color that is combined with the top shadow tile and foreground
color to create a pixmap used to draw the top and left sides of the border.

XtN topShadoWfile
This resource defines the tile used in creating the pixmap used for drawing the top and
left border shadow for the widget. The #defines for setting the tile value through an arg
list and the strings to be used in the .Xdefaults files are described in XwCreateTile(3X).

XtNtraversalOn
The application can define whether keyboard traversal is active or not. The default for
this resource is typically FALSE.

KEYBOARD TRAVERSAL
If the traversal On resource is TRUE (either when the widget is created or during a call to
XtSetValues) the manager widget's translation table is augmented with the following translations:

<EnterWindow>: enter()
<LeaveWindow>: leave()
<Visible>: visible()
<Focusln>: focusln()
<FocusOut>: focusOut()

ACTIONS
enter: If the widget is a top level manager and traversal is on, then begin or resume traversal.

leave: If the widget is a top level manager and traversal is on, then suspend traversal.

focusln:
If the widget is a top level manager and traversal is on, then initiate traversal within this
widget hierarchy.

focusOut:
If traversal is on for this widget, then remove the keyboard focus from the Primitive

Hewlett-Packard Company - 2- Jan 7, 1989

XWMANAGER(3X) XWMANAGER(3X)

widget to which it had previously been set.
visible: If traversal is on for a widget of this class and the widget that is focused becomes hidden

(e.g. another window obscures its visibility), then the focus moves to another visible
widget.

ORIGIN
Hewlett-Packard Company.

SEE ALSO
CORE(3X),
Programming With The H[> X Widgets,
Programming With Xt Intrinsics,
Programming With Xlib.

Hewlett-Packard Company -3- Jan 7, 1989

XWMENUBUTION (3X) XWMENUBUTION (3X)

NAME

XwmenuButtonWidgetClass- the X Widgets MenuButton widget.
SYNOPSIS

#include < Xll/StringDefs.h >
#include < Xll/Intrinsic.h >
#include <XwfXw.h>
#include <Xw/MenuBtn.h>

ClASSES

The MenuButton widget is built from the Core, Primitive, and Button classes.

The widget class to use when creating a MenuButton is XwMenuButtonWidgetCiass. The class
name is MenuButton.

DESCRIPTION

The MenuButton widget is commonly used with MenuPane and MenuMgr widgets to build a
menu system. The MenuButton consists of a single label, a mark and a cascade indicator. The
MenuButton is broken into three areas. Starting from the left border of the MenuButton the
areas are: the mark area, the label area and the cascade area. By default, the mark area contains
a checkmark image, the label area contains the name of the MenuButton widget and the cascade
area contains an arrow image. The label can be set to any string or image and the label area
attempts to grow or shrink to accommodate it. The mark and cascade can be set to an image,
although the width of the these areas remains fixed.

The default semantic for this button is that button 1 down causes the select callbacks to be
invoked. When a MenuButton is used in a MenuMgr, this may be overridden by the MenuMgr.
The select callbacks may also be invoked by a keyboard accelerator or mnemonic, although it is up
to the MenuMgr to determine whether the accelerator or mnemonic is active.

The MenuButton is often used with a MenuPane and MenuMgr widget, although it is not
necessary to do so. The MenuButton could simply be used as another button widget.

NEW RESOURCES
The MenuButton widget defines a set of resource types used by the programmer to specify the
data for the MenuButton. The programmer can also set the values for the Core, Primitive and
Button widget classes to set attributes for this widget. The following table contains the set of
resources defined by Menu Button. To specify any of these resources within the .Xdefaults file,
simply drop the XtN prefix from the resource name.

MenuButton Resource Set
Name Class Type Default
XtNcascadelmage XtCCascadelmage Xlmage * NULL
XtNcascadeOn XtCCascadeOn Widget NULL
XtNcascadeSelect XtCCallback Pointer NULL
XtNcascade U nselect XtCCallback Pointer NULL
XtNinvertOnEnter XtClnvertOnEnter Boolean TRUE
XtNkbdAccelerator XtCKbdAccelerator String NULL
XtNiabellmage XtCLabellmage Xlmage * NULL
XtNlabeiType XtCLabelType int XwSTRING
XtNmarklmage XtCMarklmage XImage • NULL
XtNmenuMgrid XtCMenuMgrid Widget NULL
XtNmgrOverrideMnemonic XtCMgrOverrideMnemonic Boolean FALSE
XtNmnemonic XtCMnemonic String NULL
XtNsetMark XtCSetMark Boolean FALSE

XtNcascadelmage
This resource points to an XImage structure that describes the cascade image data. TI1e
cascade area is a fixed size (16x16). If this resource is set to NULL, then the default

Hewlett-Packard Company - 1 - Jan 7, 1989

XWMENUBUTfON (3X) XWMENUBUTfON (3X)

cascade image (an arrow) is used. The cascade indicator is not displayed if the
XtNcascadeOn resource is set to NULL. If the image is defined with XYBitmap data,
then the image is nicely inverted when the MenuButton is highlighted.

XtNcascadeOn
This resource determines if the cascade indicator is displayed. It is typically set only by
the MenuMgr and contains the widget ID of the MenuPane which cascades as a submenu
from this MenuButton. This resource is set to NULL to disable the display of the cascade
indicator.

XtN cascadeSelect
This resource provides the means for registering callback routines which are invoked if a
cascade indicator is displayed and the pointer moves into the cascade area. In some
cases, the MenuMgr suppresses the calling of these callback routines. The MenuButton
does not pass any data in the call_ data field of the callback.

XtNcascadeUnselect
This resource provides the means for registering callback routines that are invoked if a
cascade indicator is displayed and the pointer moves out of the cascade area. These
callbacks are only invoked if the XtNcascadeSelect callbacks have been previously
invoked. The MenuButton passes data in the call data field of the callback. It is a
pointer to the XwunselectParams data structure shown below:

typedef struct
{

Position
Position
Boolean

} XwunselectParams;

rootX;
rootY;
remainHighlighted;

TI1e rootX and rootY parameters have the position of the pointer relative to the root window when
the event occurred that caused the XtNcascadeUnselect call backs to be called. The
remainHighlighted parameter is used by cascading submenus. It is set by the MenuMgr's call back
routine to indicate that the pointer traversed from a cascade into the submenu. If the boolean is set
TRUE, then the MenuButton does not unhighlight on exit. It also sets up an event handler on its
parent MenuPane so that it is notified if the pointer enters another MenuButton, in which case the
MenuButton should then unhighlight.

XtNinvertOnEnter
This boolean resource determines whether the menu button will invert when the cursor is
moved into it.

XtNkbdAccelerator
This resource is a string that describes a set of modifiers and the key to be used to select
this MenuButton widget. The format for this string is identical to that used by the
translations manager, with the exception that only a single event may be specified and
only KeyPress events are allowed. If the MenuButton does not have a MenuMgr
associated with it, then this resource is ignored. The MenuMgr determines when, and if,
this accelerator is available.

XtNlabellmage
If XtNlabelType indicates that a label image should be displayed, then this resource
contains the image used. This is a pointer to an Xlmage structure which describes the
label image data. If the image is defined with XYBitmap data, then the image is nicely
inverted when the MenuButton is highlighted.

XtNiabel'JYpe
Two styles of labels are supported by the MenuButton widget: text string labels and
image labels. The text string label is defined by the Button resource XtNlabel and the
image label is defined by the XtNlabellmage resource. To programmatically set this
resource, use either the XwSTRING define or the XwiMAGE define. To set this
resource using the .Xdefaults files, use one of the strings "string" or "image".

Hewlett-Packard Company -2- Jan 7, 1989

XWMENUBUTION (3X)
XWMENUBUTION (3X)

XtNmarklmage
This resource points to an Xlmage structure which describes the mark image data. The
mark area is a fixed size (16x16). If this resource is set to NULL, then the default mark
image is used. The mark is not displayed if the XtNsetMark resource is set to FALSE. If
the image is defined with XYBitmap data, then the image is nicely inverted when the
MenuButton is highlighted.

XtNmenuMgrld
This resource is used only by MenuMgr widgets to indicate to the MenuButton widget its
MenuMgr. If this is set to NULL, then the MenuButton checks if it has a MenuMgr at
the appropriate level in its parentage. This resource should not be set by users.

XtNmgrOverrideMnemonic
This boolean resource determines if the mnemonic character is underlined in the label
string. If it is set to TRUE, then the mnemonic character is not underlined. This
resource is typically set only by MenuMgr widgets.

XtNmnemonic
Certain MenuMgr widgets allow the MenuButtons to have a mnemonic. Mnemonics
provide the user with another means for selecting a menu button. This resource is a
NULL terminated string, containing a single character. The MenuMgr determines if this
mnemonic is available. If the XtNmgrOverrideMnemonic resource is false and the
mnemonic is found in the label string, then that character is underlined when the
MenuButton is displayed. Refer to XwPuliDown(3X) man page for further discussion of
traversal.

XtNsetMark
This boolean resource determines whether the mark is displayed.

INHERITED RESOURCES
The following resources are inherited from the named superclasses:

Core Resource Set - CORE(3X)
Name Class Type Default
XtNancestorSensitive XtCSenstitive Boolean TRUE
XtNbackground XtCBackground Pixel White
XtNbackgroundPixmap XtCPixmap Pixmap Unspecified
XtNborderColor XtCBorderColor Pixel Black
XtNborderPixmap XtCPixmap Pixmap Unspecified
XtNborderWidth XtCBorderWidth Dimension 1
XtNdepth XtCDepth int 0
XtNdestroyCallback XtCCallback Pointer NULL
XtNheight XtCHeight Dimension 0
XtNmappedWhenManaged XtCMappedWhenManaged Boolean TRUE
XtNsensitive XtCSensitive Boolean TRUE
XtNtranslations XtCTranslations XtTranslations NULL
XtNwidth XtCWidth Dimension 0
XtNx XtCPosition Position 0
XtNy XtCPosition Position 0

Hewlett-Packard Company -3- Jan 7, 1989

XWMENUBUTTON (3X) XWMENUBUTTON (3X)

Primitive Resource Set -- XWPRIMffiVE(3X)
Name Class Type Default
XtNbackgroundTile XtCBackgroundTile int background
XtNbottomShadowColor XtCForeground Pixel Black
XtNbottomShadowTile XtCBottomShadowTile int foreground
XtNforeground XtCForeground Pixel Black
XtNhighlightColor XtCForeground Pixel Black
XtNhighlightStyle XtCHighlightStyle int pattern border
XtNhighlightThickness XtCHighlightThickness int 0
XtNhighlightTile XtCHighlightTile int 50 foreground
XtNrecomputeSize XtCRecomputeSize Boolean TRUE
XtNrelease XtCCallback Pointer NULL
XtNselect XtCCallback Pointer NULL
XtNshadowOn XtCShadowOn Boolean TRUE
XtNtopShadowColor XtCBackground Pixel White
XtNtopShadowTile XtCTopShadowTile int 50 foreground
XtNtraversaiType XtCTraversaiType int highlight off

Button Resource Set-- XWBUITON(3X)
Name Class Type Default
XtNfont XtCFont XFontStruct • Fixed
XtNhSpace XtCHSpace int 2
XtNlabel XtCLabel caddr t widget name
XtNlabeiLocation XtCLabeiLoca tion int X wRIGHT
XtNsensitiveTile XtCSensitiveTile int 75 foreground
XtNvSpace XtCVSpace int 2

TRANSlATIONS
The default translations set by the MenuButton widget are as follows:

<BtnlDown>: select()
<EnterWindow> enter()
<LeaveWindow>: leave()
<Key>Select: select()
<Key> Left: traverseLeft()
<Key> Up: traverse Up()
<Key> Right: traverse Right()
<Key> Down: traverseDown()
<Key> Prior: traversePrev()
<Key> Next: traverseNext()
<Key>KP Enter: traverseNextTop()
<Key>Home: traverseHome()

The following translations are added to the menu button widget when traversal is enabled within a
menu hierarchy:

<Visible>:
<Unmap>:

ACTIONS

visibility()
unmap()

enter: If a MenuMgr is present, then it is informed of the enter event. The MenuMgr indicates
whether this enter event should be processed or ignored. If there is no MenuMgr
present, or if the MenuMgr indicates the event is to be processed, then the Menu Button is
highlighted. A processed enter action also calls the moved action to determine if the

Hewlett-Packard Company -4- Jan 7, 1989

XWMENUBU'ITON (3X) XWMENUBU'ITON (3X)

pointer is in the cascade indicator area.

leave: If a MenuMgr is present, then it is informed of the leave event. The MenuMgr indicates
whether this leave event should be processed or ignored. If there is no MenuMgr
present, or if the MenuMgr indicates that the leave event is to be processed, then the
MenuButton is unhighlighted. If the XtNcascadeSelect callbacks have been called, the
XtNcascadeUnselect callbacks are called.

moved: Note: This action routine is provided only for backward compatibility and its use is
discouraged. If the MenuButton is not under the control of a MenuMgr widget, this
action routine will determine if the pointer is in the cascade area and will invoke either
the XtNcascadeSelect or XtNcascadeUnselect callbacks, as necessary. If the MenuButton
is under the control of a MenuMgr widget, this action routine will not perform any action.

select: If the MenuButton is not under the control of a MenuMgr widget, this action routine will
invoke each of the XtNselect callbacks associated with the MenuButton. If the
MenuButton is under the control of a MenuMgr widget, this action routine will not
perform any action.

traverseDown:
Infom1 the MenuMgr controlling this widget that it should transfer the keyboard focus to
the menu button positioned below the current traversal item; wrap to the top, if necessa1y.

traverseHome:
Inform the MenuMgr controlling this widget that it should transfer the keyboard focus to
the first MenuPane in the menu hierarchy.

traverseLeft:
Inform the MenuMgr controlling this widget that it should transfer the keyboard focus to
the MenuPane cascading from this MenuButton, if one is present.

traverseN ext:
Inform the MenuMgr controlling this widget that it should transfer the keyboard focus to
the next menu tree, if one is present.

traverseNextTop:
Inform the MenuMgr controlling this widget that it should transfer the keyboard focus to
the next top level MenuPane.

traversePrev:
Inform the MenuMgr controlling this widget that it should transfer the keyboard focus to
the previous menu tree, if one is present.

traverseRight:
Inform the MenuMgr controlling this widget that it should transfer the keyboard focus to
the MenuPane from which the current one has cascaded.

traverse Up:
Inform the MenuMgr controlling this widget that it should transfer the keyboard focus to
the menu button positioned above the current traversal item; wrap to the bottom, if
necessary.

visibility:

unmap:

This action routine overrides the visibility action routine provided by the XwPrimitive
meta class.

This action overrides the unmap action routine provided by the XwPrimitive meta class.

KEYBOARD TRAVERSAL

ORIGIN

If the XtNtraversalType resource is set to highlight_traversal (XwHIGHLIGHT_ TRAVERSAL in
an argument list) at either create time or during a call to XtSetValues, the XwPrimitive superclass
will automatically augment the primitive widget's translations to support keyboard traversal. See
the XwPrimitive man page for a complete description of these translations.

Hewlett-Packard Company.

Hewlett-Packard Company -5- Jan 7, 1989

XWMENUBUTION(3X)

SEE ALSO
CORE(3), XWPRIMillVE(3X), XWBU1TON(3X),
Programming With The HP X Widgets,
Programming With Xt Intrinsics,
Programming With Xlib.

Hewlett-Packard Company - 6-

XWMENUBUTION (3X)

Jan 7, 1989

XWMENUMGR(3X) XWMENUMGR(3X)

NAME

XwmenuMgrWidgetClass - the X Widgets menu manager widget metaclass.
SYNOPSIS

#include <Xll/Intrinsic.h>
#include <Xll/StringDefs.h>
#include <Xw fXw.h>

ClASSES

The menu manager class is built the Core, Composite, Constraint and Manager classes.
DESCRIPTION

The MenuMgr class is an X Widget meta class. It is never instantiated as a widget. Its sole
purpose is as a supporting superclass for other menu manager widget classes.

NEW RESOURCES
The menu manager defines a set of resource types which may be used by the programmer to
specify the data for widgets which are a subclass of MenuMgr. To specify any of these resources
within the .Xdefaults file, simply drop the XtN prefix from the resource name. The following
table contains the set of resources defined by MenuMgr.

MenuMgr Resource Set
Name Class Type Default
XtNassociateChildren XtCAssociateChildren Boolean TRUE
XtNkbdSelect XtCKbdSelect String "<Key>Select"
XtNmenuPost XtCMenuPost String "<Btn1Down>"
XtNmenuSelect XtCMenuSelect String "<BtnlUp>"
XtNmenuUnpost XtCMenuUnpost String NULL

XtN associateChildren
This resource indicates whether the menu hierarchy controlled by the menu manager is
accessible only from within the associated widget, or from within the widget and any of the
widget's children.

XtNkbdSelect
This string resource describes the key event and any required modifiers needed to select
the currently highlighted menu button. This provides the user with the means for selecting
a menu item from the keyboard, without being required to use the mouse. The string is
specified using the syntax supported by the Xt Intrinsic's translation manager, with three
exceptions. First, only a single event may be specified. Secondly, the event must be a key
event. Thirdly, all modifiers specified are interpreted as being exclusive; this means that
only the specified modifiers can be present when the button event occurs.

XtNmenuPost
This string resource describes the button event and any required modifiers needed to post
one of the top level menupanes controlled by the menu manager. The string is specified
using the syntax supported by the Xt Intrinsic's translation manager, with three
exceptions. First, only a single event may be specified. Secondly, the event must be a
ButtonPress or ButtonRelease event. Thirdly, all modifiers specified are interpreted as
being exclusive; this means that only the specified modifiers can be present when the
button event occurs.

XtNmenuSelect
This string resource describes the button event and any required modifiers needed to
select a menu button within any of the menupanes controlled by the menu manager. The
string is specified using the syntax supported by the Xt Intrinsic's translation manager,
with three exceptions. First, only a single event may be specified. Secondly, the event
must be a ButtonPress or Button Release event. Thirdly, all modifiers specified are
interpreted as being exclusive; this means that only the specified modifiers can be present

Hewlett-Packard Company - 1 - Jan 7, 1989

XWMENUMGR(3X) XWMENUMGR(3X)

ORIGIN

when the button event occurs.

XtNmenuUnpost
This string resource describes the key event and any required modifiers needed to unpost
the currently viewable set of menu panes controlled by the menu manager. This provides
the user with the means for unposting a menu hierarchy from the keyboard, without
selecting a menu button. The string is specified using the syntax supported by the Xt
Intrinsic's translation manager, with three exceptions. First, only a single event may be
specified. Secondly, the event must be a key event. Thirdly, all modifiers specified are
interpreted as being exclusive; this means that only the specified modifiers can be present
when the button event occurs.

Hewlett-Packard Company.

SEE ALSO
CORE(3X), XWMANAGER(3X),
Programming With The HP X Widgets,
Programming With Xt Intrinsics,
Programming With Xlib.

Hewlett-Packard Company -2- Jan 7, 1989

XWMENUPANE(3X) XWMENUPANE (3X)

NAME

XwmenuPaneWidgetClass- the X Widgets menupane widget metaclass.
S\'NOPSIS

#include <Xll/Intrinsic.h>
#include <Xll/StringDefs.h>
#include <XwjXw.h>

ClASSES

The MenuPane widget class is built from the Core, Composite, Constraint and Manager classes.
DESCRIPTION

The menupane class is an X Widget meta class. It is never instantiated as a widget. Its sole
purpose is as a supporting superclass for other menupane widget classes. It provides a collection
of resources which will be needed by most menupane subclasses.

NEW RESOURCES
The MenuPane defines a set of resource types used by the programmer to specify the data for
widgets which are subclasses of MenuPane. To specify any of these resources within the
.Xdefaults file, simply drop the XtN prefix from the resource name.

MenuPane Resource Set
Name Class Type Default
XtNattachTo XtCAttachTo String NULL
XtNfont XtCFont XFontStruct * fixed
XtNmgrTitleOverride XtCTitleOverride Boolean FALSE
XtNmnemonic XtCMnemonic String NULL
XtNselect XtCCallback Pointer NULL
XtNtitleimage XtCTitleimage XImage * NULL
XtNtitleShowing XtCTitleShowing Boolean TRUE
XtNtitleString XtCTitleString String widget name
XtNtitleType XtCTitleType int XwSTRING

XtNattachTo

XtNfont

When used in conjunction with a menu manager, this resource provides the means by
which the menupane may be attached as a cascade to a menubutton. The string which is
specified represents the name of the menubutton to which the menupane is to be
attached; this provides the means by which the menu manager is able to construct the
menu tree. To specify that this menupane should be treated as the top level menupane
within the menu tree, this string should contain the name of the menu manager widget,
instead of a menu button widget. Specifying a NULL string indicates that the menupane
will not be presently attached to anything. If the menupane does not have a menu
manager associated with it, then this resource is unused.

If the title type resource indicates that a title string should be displayed, then this resource
will describe the font used to draw the title string.

XtNmgrTitleOverride
This resource is not intended to be used by applications; it should only be used by a menu
manager widget, for overriding the application, and forcing off the menupane title. This is
useful for those menu managers whose style dictates that certain menu pane should not
have a title displayed.

XtNmnemonic
Certain menu managers allow some of their menupanes to have a mnemonic.
Mnemonics may be used to post a menupane using the keyboard, instead of using the
pointer device. This resource is a NULL terminated string, containing a single character.
Typically, the character is the same as one present in the menupane title.

Hewlett-Packard Company - 1- Jan 7, 1989

XWMENUPANE(3X) XWMENUPANE (3X)

ORIGIN

XtNselect
This resource provides the means for registering callback routines which will be invoked
when the menupane receives a select action.

XtN titlelmage
If the title type resource indicates that a title image should be displayed, then this
resource will contain a pointer to an Xlmage structure; this structure describes the title
image data.

XtN titleShowing
This resource may be used by the application to control the displaying of a title within the
menupane. This may be overridden, however, by a menu manager using the
XtNmgrTitleOverride resource.

XtNtitleString
If the title type resource indicates that a title string should be displayed, then this resource
will contain the title string which is to be used. In the case where the application does not
specify a title string, the name of the menupane widget will be used. The title is displayed
using the foreground color.

XtNtitle'IyPe
Two styles of titles are supported by the MenuPane widget. They include text string titles
and image titles. To programmatically set this resource, use either the XwSfRING
define or the XwiMAGE define. To set this resource using the .Xdefaults file, use one of
the strings "string'' or "image".

Hewlett-Packard Company.
SEE ALSO

CORE(3X), CONSfRAINT(3X), XWMANAGER(3X),
Programming With The HP X Widgets,
Programming With Xt Intrinsics,
Programming With Xlib.

Hewlett-Packard Company -2- Jan 7, 1989

XWMENUSEP(3X) XWMENUSEP(3X)

NAME

XwmenuSepWidgetClass - the X Widget's menu item separator widget.
SYNOPSIS

#include <Xll/StringDefs.h>
#include < Xll/Intrinsic.h >
#include <XwfXw.h>
#include <XwJMenuSep.h>

ClASSES

MenuSep is built from the Core, Primitive, Button, and MenuButton classes.

The widget class to use when creating a menu separator widget is XwmenuSepWidgetCiass.

The class name for this widget is MenuSep.

DESCRIPTION

The MenuSep widget is a primitive widget to be used as an item separator placed between items
in a menu. Several different line drawing styles are provided.

NEW RESOURCES
The MenuSep widget defines a one additional resource type. The programmer can also set the
values for the Core and Primitive resources to set attributes for this widget. The Button and
MenuButton resources are unused for this widget.

MenuSep Resource Set
Name I Class I '!YPe I Default
XtNseparatorType I XtCseparatorType 1 int I XwSINGLE LINE

XtN separatotrype
This resource defines the type of line drawing to be done in the menu separator widget.
Five different line drawing styles are provided. They are single, double, single dashed,
double dashed and no line. The separator type can be set through an argument list by
using one of the defines: XwSINGLE LINE, XwDOUBLE LINE,
XwSINGLE DASHED LINE, XwDOUBLE DASHED LINE, and XwNO LINE. The
separator type can be set through the .Xdefaults file by uSing one of the folloWing strings:
single _line, double _line single_ dashed _line, double_ dashed _line and no _line.

Menu separator widgets will draw single pixel wide shadow border as opposed to the normal
double pixel wide border.

The line drawing done within the menu separator will be automatically centered within the height
of the widget.

The separator lype of no line is provided as an escape to the application programmer who needs
a different style of drawing or who just wants the shadowing border for the separator. To create
an alternate style, a pixmap the height of the widget can be created. After the separator widget
has been created, this pixmap can be used as the background pixmap by building an argument list
using the XtNbackgroundPixmap argument type as defined by Core and setting the widgets
background through XtSetValues. Whenever the widget is redrawn its background will be
displayed which contains the desired separator drawing. Note that the pixmap can only be set
after the widget is created. If set when created, it will be overridden by the normal background
pixmap created by the Primitive class.

INHERITED RESOURCES
The following resources are inherited from the named superclasses:

Hewlett-Packard Company - 1- Jan 7, 1989

XWMENUSEP(3X) XWMENUSEP(3X)

Core Resource Set -- CORE(3X)
Name Class 'JYpe Default
XtNancestorSensitive XtCSenstitive Boolean TRUE
XtNbackground XtCBackground Pixel White
XtNbackgroundPixmap XtCPixmap Pixmap Unspecified
XtNborderColor XtCBorderColor Pixel Black
XtNborderPixmap XtCPixmap Pixmap Unspecified
XtNborderWidth XtCBorderWidth Dimension 1
XtNdepth XtCDepth int 0
XtNdestroyCallback XtCCallback Pointer NULL
XtNheight XtCHeight Dimension 0
XtNmappedWhenManaged XtCMappedWhenManaged Boolean TRUE
XtNsensitive XtCSensitive Boolean TRUE
XtNtranslations XtCTranslations XtTranslations NULL
XtNwidth XtCWidth Dimension 0
XtNx XtCPosition Position 0
XtNy XtCPosition Position 0

Primitive Resource Set -- XWPRIMITIVE(3X)
Name Class
XtNbackgroundTile XtCBackgroundTile
XtNbottomShadowColor XtCForeground
XtNbottomShadowTile XtCBottomShadowTile
XtNforeground XtCForeground
XtNhighlightColor XtCForeground
XtNhighlightStyle XtCHighlightStyle
XtNhighlightThickness XtCHighlightThickness
XtNhighlightTile XtCHighlightTile
XtNrecomputeSize XtCRecomputeSize
XtNrelease XtCCallback
XtNselect XtCCallback
XtNshadowOn XtCShadowOn
XtNtopShadowColor XtCBackground
XtNtopShadowTile XtCTopShadowTile
XtNtraversalType XtCTraversalType

TRANSLATIONS
The menu separator widget defines no translations.

ACTIONS
The menu separator widget defines no actions.

ORIGIN
Hewlett-Packard Company.

SEE ALSO
CORE(3X), XWPRIMITIVE(3X),
Programming With The HP X Widgets,
Programming With Xt Intrinsics,
Programming With Xlib.

Hewlett-Packard Company -2-

'JYpe Default
int background
Pixel Black
int foreground
Pixel Black
Pixel Black
int pattern border
int 0
int 50 foreground
Boolean TRUE
Pointer NULL
Pointer NULL
Boolean TRUE
Pixel White
int 50 foreground
int highlight off

Jan 7, 1989

XWMOVEFOCUS(3X) XWMOVEFOCUS(3X)

NAME
XwMoveFocus- move the keyboard focus (and the pointer) to a new toplevel widget.

SYNOPSIS
#include <Xll/lntrinsic.h>
#include <XwfXw.h>

void XwMoveFocus (w)
Widget w;

ARGUMENTS
w This is the ID of the widget to which the application wishes to move the focus. It must be

the toplevel widget in a widget hierarchy and it must be a subclass of the shell widget
class.

DESCRIPTION

ORIGIN

XwMoveFocus is a very specialized function which can be used to move the keyboard and pointer
focus to another toplevel widget hierarchy. It is useful when an application using keyboard
traversal has multiple toplevel widget hierarchies and wishes to be able to move between these
hierarchies without using the pointer device. Specifically, this function will warp the pointer to
(1,1) in the specified widget and will also make a call to XSetlnputFocus (this is necessary for use
with window managers using an explicit listener mode).

Hewlett-Packard Company.

SEE ALSO
Programming With The HP X Widgets,
Programming With Xt Intrinsics,
Programming With Xlib.

Hewlett-Packard Company - 1 - Jan 7, 1989

XWPANEL(3X) XWPANEL(3X)

NAME
XwPanelWidgetClass -An X Widget for creating panels.

SYNOPSIS
#include < Xll/StringDefs.h >
#include <Xll/Intrinsic.h>
#include <XwfXw.h>
#include <Xw/Panel.h>

ClASSES
Panel is built from the Core, Composite, Constraint and Manager classes.
The widget class to use when creating a Panel widget is XwpanelWidgetClass.
The class name of Panel is Panel.

DESCRIPTION
Panel provides a simple creation mechanism for the creation of application windows and
associated menus. The panel widget is also appropriate for application sub-windows.
Panel will manage its children in three areas, and may have no more than one child in each area.
The areas are called title, menu, and work space. Children are associated with these areas by
means of the XtNwidgetType resource (see below). Panel ignores all other children.
Panel lays out its children such that the child in the title area is placed at the top, the child in the
menu area is placed next, and the child in the work space area is placed at the bottom. Display of
the title child can be optionally inhibited if the panel is under the control of a window manager
that provides titlebars.
When Panel has its width changed by its parent, the child in the menu area, if displayed, is allowed
to pick its own height, the child in the title area remains the same height and the child in the work
space area is diminished or enlarged to fill the remaining available space. When Panel has its
height reduced by its parent, space is taken from the work space area until that area is completely
hidden. Further reductions in the height of Panel are shared between the title and menu areas.
When Panel has its height increased by its parent, if either the title or the menu are less than their
optimum height they are given the space until they reach their optimum height for the given width.
If both the title and the menu are at their optimum height, all space is given to the work space.
The initial width of Panel is the widest of all its children (padding is taken into account). The
initial height of Panel is the sum of the heights of all its children and their padding.
When an application is running in a Panel with a titling window manager, there is a possibility of
double titling. Unfortunately, the application writer cannot know at the time of development
whether or not the user will have a titling window manager. Panel has two resources that together
allow runtime decisions about titling. The first, XtNtopLevel, indicates whether the Panel is a
candidate for double titling. The application must always set this variable appropriately. The
second resource, XtNdisplayTitle, indicates whether or not the Panel should display a title.

Hewlett-Packard Company - 1 - Jan 7, 1989

XWPANEL(3X) XWPMEL(3X)

NEW RESOURCES

To specify any of these resources within a resource defaults file, simply drop the XtN prefix from
the resource name. Panel defines the following new resources:

Panel Resource Set
Name Class Type Default
XtNdisplayTitle XtCDisplayTitle Boolean TRUE
XtNhSpace XtCHSpace int 0
XtNtitleToMenuPad XtCTitleToMenuPad int 0
XtNtopLevel XtCTopLevel Boolean TRUE
XtNvSpace XtCVSpace int 0
XtNworkSpaceToSiblingPad XtCWorkSpaceToSiblingPad int 0

XtNdisplaYfitle
Ignored if XtNtopLevel is FALSE.

XtNhSpace
Padding between the sides of the Panel and the sides of the displayed children.

XtNtitleToMenuPad
If both a title and a menu child are being displayed, the padding between them in pixels.

XtNtopLevel
Indicates whether not the panel is a candidate for management by a window manager.
This should always be set by the application. Otherwise, if XtNdisplayTitle is TRUE, the
TitleBar child will be displayed. If XtNdisplayTitle is FALSE, the TitleBar child will not
be displayed.

This resource should be set by the user in the resource defaults file. If the user rUI:s the
application without a window manager or with a non-titling window manager, this
resource should be set to TRUE. If the user runs with a titling window manager this
resource should be set to FALSE.

XtNvSpace
Padding between the top of the Panel and the top child in pixels, and between the bottom
of the Panel and the bottom child in pixels.

XtNworkSpaceToSiblingPad
The padding between the work space child and the sibling above it. If there is no title nor
menu being displayed this resource is ignored.

CONSTRAINT RESOURCES
The following resources will be attached to every widget inserted into Panel. Refer to
CONSTRAINT(3X) for a general discussion of constraint resources.

Constraint Resource Set -- Children of PANEL(JX)
Name Class Type Default
XtNcausesResize XtCCausesResize Boolean TRUE
XtNwidgetType XtCWidgetType XwWidgetType XwUNKNOWN

XtNcausesResize
Controls whether changes in the child geometry can cause the Panel to make a geomel!y
request of its parent. If TRUE for only one child, Panel will request changes whenever
that child requests changes. If TRUE for multiple children, Panel will request changes
whenever any of that set of children grow, and when all of that set of children have
shrunk.

The behavior of this resource can be nullified by setting XwNLayout to XwiGNORE.

Hewlett-Packard Company -2- Jan 7, 1989

XWPANEL(3X) XWPANEL(3X)

XtNwidgetType
Indicates to Panel which of the three areas (title, menu or workspace) the child should
occupy. The possible values are, XwWORK SPACE (specified in a resource defaults file
as "work space"), XwTITLE (specified in a resource defaults file as "title"),
XwPULLDOWN (specified in a resource defaults file as "pulldown"), and
XwUNKNOWN (specified in a resource defaults file as "unknown"). XwUNKNOWN is
the default.

INHERITED RESOURCES
The following resources are inherited from the named superclasses:

Core Resource Set-- CORE(3X)
Name Class Type Default
XtNancestorSensitive XtCSenstitive Boolean TRUE
XtNbackground XtCBackground Pixel White
XtNbackgroundPixmap XtCPixmap Pixmap Unspecified
XtNborderColor XtCBorderColor Pixel Black
XtNborderPixmap XtCPixmap Pixmap Unspecified
XtNborderWidth XtCBorderWidth Dimension 1
XtNdepth XtCDepth int 0
XtNdestroyCallback XtCCallback Pointer NULL
XtNheight XtCHeight Dimension 0
XtNmappedWhenManaged XtCMappedWhenManaged Boolean TRUE
XtNsensitive XtCSensitive Boolean TRUE
XtNtranslations XtCTranslations XtTranslations NULL
XtNwidth XtCWidth Dimension 0
XtNx XtCPosition Position 0
XtNy XtCPosition Position 0

Manager Resource Set
Name Class Type Default
XtNbackgroundTile XtCBackgroundTile int background
XtNforeground XtCForeground Pixel Black
XtNlayout XtClayout int minimize
XtNtraversal On XtCTraversal On Boolean FALSE

TRANSlATIONS
The default translation set defining is as follows:

<EnterWindow>: enter()
<LeaveWindow>: leave()
<Focusin>: focusin()

ACTIONS

ORIGIN

enter: If keyboard traversal is active (argument type XtNtraversalOn with argument value
TRUE), initiate keyboard traversal.

focusin: If keyboard traversal is active (argument type XtNtraversalOn with argument value
TRUE), accept the keyboard focus and visually indicate it by highlighting the widget.

leave: If keyboard traversal is active (argument type XtNtraversa!On with argument value TRUE),
terminate keyboard traversal.

Hewlett-Packard Company.

Hewlett-Packard Company - 3- Jan 7, 1989

XWPANEL(3X)

SEE ALSO
CORE(3X), CONSI'RAINT(3X), XWMANAGER(3X),
Programming With The HP X Widgets,
Programming With Xt Intrinsics,
Programming With Xlib.

Hewlett-Packard Company -4-

XWPANEL(3X)

Jan 7, 1989

XWPOPUPMGR(3X) XWPOPUPMGR(3X)

NAME
XwpopupMgrWidgetClass - the X Widgets PopupMgr widget.

SYNOPSIS
#include <Xllflntrinsic.h>
#include <Xll/StringDefs.h>
#include <XwfXw.h>
#include <Xw/PopupMgr.h>

ClASSES
The PopupMgr widget is built from the Core, Composite, Constraint, Manager and MenuMgr
classes. Note that the Constraint fields are not used in this widget and so are not listed in the
resource tables below. Also, since the Composite class contains no user settable resources, there
is no table for Composite class resources.
The widget class to use when creating an instance of the PopupMgr is XwpopupMgrWidgetClass.
The class name is PopupMgr.

DESCRIPTION
The PopupMgr widget is a Composite widget which is used by an application to manage a
collection of menupanes. Even though the PopupMgr is a Composite widget, it should never have
any normal widget children. Instead, all of its children are popup shell children; the child of each
of the popup shell widgets is a MenuPane. In addition, the parent of the PopupMgr must be a
popup shell widget, whose parent is the widget to which the menu tree is being associated.
The PopupMgr manages a collection of MenuPane widgets, which have been organized into a
hierarchical tree structure; the root of the tree is the top level menupane. When the user requests
that the menu be posted, by generating a post event within the widget (or possibly one of the
widget's children), the top level menupane is posted.
Once the PopupMgr has posted the top level MenuPane, it will remain posted until the user
generates a select action; at that point, the MenuPanes will be removed from the display, and the
selected menu button will perform any required actions. If the select occurs outside of a menu
button, or if the user issues the menu unpost event, then the MenuPanes are simply unposted.
The PopupMgr supports a mode by which the menu hierarchy may be associated only with the
specified widget, or it maybe associated with the widget and all of its children (both present and
future children). If the menu is associated with the widget and its children, then a menu post
event that occurs in either the widget or one of its children will cause the menu to be posted.
The PopupMgr also supports a commonly used menu feature known as "sticky'' menus. When
operating in sticky menu mode, the PopupMgr will remember the last menu button selected by the
user. The next time the user requests that the menu system be posted, all of the MenuPanes, up
to the one containing the previously selected menu button, will be posted.
The PopupMgr provides a keyboard interface to the menus, through the use of keyboard
accelerators, for posting the menu and for selecting a MenuButton from within one of the
MenuPanes. This manager does not support keyboard mnemonics. When traversal is enabled,
the standard keyboard traversal keys are also operational. Using the mouse while traversal is
enabled may produce confusing results for the user. Operating in this fashion is therefore
discouraged.

Hewlett-Packard Company - 1 - Jan 7, 1989

XWPOPUPMGR(3X) XWPOPUPMGR(3X)

The PopupMgr provides the application writer with a global function that may be used to
programmatically post a top level menupane at a particular position relative to a specified widget.
The calling sequence and parameters are shown below:

XwPostPopup (menuMgr, relativeTo, x, y) XwPopupMgrWidget menuMgr;
Widget relativeTo;
Position x,y;

XwPostPopup() posts the top level menupane associated with the specified menu manager at the
requested (x,y) position, relative to the specified widget. If the relativeTo parameter is set to
NULL, then the position is assumed to be relative to the root window.

NEW RESOURCES
The PopupMgr defines a set of resource types used by the programmer to specify the data for the
menu manager. The programmer can also set the values for the Core, Composite and Manager
widget classes to set attributes for this widget. To specify any of these resources within the
.Xdefaults file, simply drop the XtN prefix from the resource name. The following table contains
the set of resources defined by PopupMgr.

PopupMgr Resource Set
Name Class Type Default
XtNpostAccelerator XtCPostAccelerator String NULL
XtNstickyMenus XtCStickyMenus Boolean FALSE

XtN postAccelerator
This resource indicates the keyboard event that can be used to post the top level
menupane. The string is specified using the syntax supported by the translation manager,
with three exceptions. First, only a single event may be specified. Second, the event must
be a KeyPress or KeyRelease event. Third, all modifiers specified are interpreted as
being exclusive; this means that only the specified modifiers can be present when the key
event occurs.

XtN stickyMenus
This resource controls whether the menu manager operates in sticky menu mode.

INHERITED RESOURCES
The following resources are inherited from the named superclasses:

Core Resource Set -- CORE(3X)
Name Class Type Default

XtNancestorSensitive XtCSenstitive Boolean TRUE
XtNbackground XtCBackground Pixel White
XtNbackgroundPixmap XtCPixmap Pixmap Unspecified
XtNborderColor XtCBorderColor Pixel Black
XtNborderPixmap XtCPixmap Pixmap Unspecified
XtNborderWidth XtCBorderWidth Dimension 1
XtNdepth XtCDepth int 0
XtNdestroyCallback XtCCallback Pointer NULL
XtNheight XtCHeight Dimension 0
XtNmappedWhenManaged XtCMappedWhenManaged Boolean TRUE
XtNsensitive XtCSensitive Boolean TRUE
XtNtranslations XtCTranslations XtTranslations NULL
XtNwidth XtCWidth Dimension 0
XtNx XtCPosition Position 0
XtNy XtCPosition Position 0

Hewlett-Packard Company - 2- Jan 7, 1989

XWPOPUPMGR(3X) XWPOPUPMGR(3X)

Manager Resource Set -- XWMANAGER(3X)
Name Class 1)pe Default
XtNbackgroundTile XtCBackgroundTile int background
XtNbottomShadowColor XtCForeground Pixel Black
XtNbottomShadowTile XtCBottomShadowTile int foreground
XtNforeground XtCForeground Pixel Black
XtNhighlightThickness XtCHighlightThickness int 0
XtNshadowOn XtCShadowOn Boolean TRUE
XtNtopShadowColor XtCBackground Pixel White
XtNtopShadowTile XtCTopShadowTile int 50 foreground
XtNtraversalOn XtCTraversalOn Boolean FALSE

Menu Manager Resource Set -- XWMENUMGR(3X)
Name Class
XtNassociateChildren XtCAssociateChildren
XtNkbdSelect XtCKbdSelect
XtNmenuPost XtCMenuPost
XtNmenuSelect XtCMenuSelect
XtNmenuUnpost XtCMenuUnpost

ORIGIN
Hewlett-Packard Company.

SEE ALSO
CORE(3X), XWMANAGER(3X), XwMENUMGR(3X),
Programming With The HP X Widgets,
Programming With Xt Intrinsics,
Programming With Xlib.

Hewlett-Packard Company -3-

1)pe Default
Boolean TRUE
String "<Key> Select"
String "<BtnlDown>"
String "<BtnlUp>"
String NULL

Jan 7, 1989

X:WPRIMITIVE(3X) XWPRIMITIVE (3X)

NAME
XwprimitiveWidgetClass - the X Widget's primitive widget meta class

SYNOPSIS
#include <Xll/StringDefs.h>
#include <Xll/Intrinsic.h>
#include <XwfXw.h>

CL.o\SSES
The Primitive widget class is built from the Core class.

DESCRIPTION
The Primitive class is an X Widget metaclass. It is never instantiated as a widget. Its sole purpose
is as a supporting superclass for other widget classes. It handles border drawing and highlighting,
traversal activation and deactivation and various callback lists needed by primitive widgets.

NEW RESOURCES
Primitive defines a set of resource types used by the programmer to specify the data for widgets
which are subclasses of Primitive

Primitive Resource Set -- XWPRIMITIVE(3X)
Name Class 'l)'pe Default
XtNbackgroundTile XtCBackgroundTile int background
XtNbottomShadowColor XtCForeground Pixel Black
XtNbottomShadowTile XtCBottomShadowTile int foreground
XtNforeground XtCForeground Pixel Black
XtNhighlightColor XtCForeground Pixel Black
XtNhighlightStyle XtCHighlightStyle int pattern border
XtNhighlightThickness X=ightThickness int 0
XtNhighlightTile Xt lightTile int 50 foreground
XtNrecomputeSize XtCRecomputeSize Boolean TRUE
XtNrelease XtCCallback Pointer NULL
XtNselect XtCCallback Pointer NULL
XtNshadowOn XtCShadowOn Boolean TRUE
XtNtopShadowColor XtCBackground Pixel White
XtNtopShadowTile XtCTopShadowTile int 50 foreground
XtNtraversalType XtCTraversalType int highlight off

XtNbackgroundTile
This resource defines the tile to be used for the background of the widget. It defines a
particular tile to be combined with the foreground and background pixel colors. The
#defines for setting the tile value through an arg list and the strings to be used in the
.Xdefaults files are described in XwCreateTile(3X).

XtNbottomShadowColor
This resource defines the color that is combined with the bottom shadow tile and
foreground color to create a pixmap used to draw the bottom and right sides of the
border.

XtNbottomShadon'file
This resource defines the tile used in creating the pixmap used for drawing the bottom
and right border shadow for the widget. The #defines for setting the tile value through
an arg list and the strings to be used in the .Xdefaults files are described in
XwCreateTile(3X).

XtNforeground
This resource defines the foreground color for the widget. Widgets built upon this class
can use the foreground for their drawing.

Hewlett-Packard Company -1- Jan 7, 1989

XWPRIMITIVE(3X) XWPRIMITIVE (3X)

XtNhighlightColor
This resource defines the color to be used in the highlighting drawn by Primitive around
the exterior of the widget.

XtNhighlightStyle
Two styles of border highlighting are supported by Primitive. They include drawing the
highlighting with a pattern and widget specific border drawing. To set the highlight style
through an arg list, use the #define XwPATTERN _BORDER. To set the highlight style
through the .Xdefaults file, use the string "pattern_ border".
For Widget Writers: The highlighting style of XwWIDGET _DEFINED is used
exclusively by widgets with special highlighting requirements that need to override the
normal highlighting types. To use, the widget inserts a highlight and unhighlight
procedure into its primitive class and forces the highlightStyle field in the primitive
instance to the define XwWIDGET DEFINED. The primitive class will then make the
appropriate calls to the highlight and dehighlight functions.

XtNhighlightThickness
The width of the highlight can be set using this resource. It is specified as an integer
value representing the width, in pixels, of the highlight to be drawn. This value must be
greater than or equal to 0. Note that highlighting takes place within the window created
for a widget and is separate from the window border.

XtNhighlightTile
When the highlight style is XwPATTERN BORDER, one of several tiles can be used for
the drawing. The #defines for setting the-values through an arg list and the strings to be
used in the .Xdefaults files are described in XwCreateTile(3X).

XtNrecomputeSize
This boolean resource indicates to a primitive widget whether it should recalculate its size
when an application makes a XtSetValues call to it. If set to TRUE, the widget will
perform its normal size calculations will may cause its geometry to change. If set to
FALSE, the widget will not recalculate its size.

XtNrelease
This resource provides the means for registering callback routines that will be invoked
when the widget built upon the Primitive class receives an event bound to the unselect
action.

XtNselect
This resource provides the means for registering callback routines that will be invoked
when the widget built upon the Primitive class receives an event bound to the select
action.

XtNshadowOn
Primitive implements a drawing routine to draw a two pixel wide shadowing border
around the widget inside of the highlight used for traversal. TI1is resource indicates
whether to take into account the additional space needed for drawing the shadow border.
If set to TRUE the highlight thickness value of the widget will be automatically
incremented by two.

The shadowed border is drawn with two pixmaps created using the following four
resources. The border is split into two areas: the top-left shadow and the bottom-right shadow.

XtNtopShadowColor
This resource defines the color that is combined with the top shadow tile and foreground
color to create a pixmap used to draw the top and left sides of the border.

XtN topShadoWI'ile
This resource defines the tile used in creating the pixmap used for drawing the top and
left border shadow for the widget. The #defines for setting the tile value through an arg
list and the strings to be used in the .Xdefaults files are described in XwCreateTile(3X).

Hewlett-Packard Company - 2- Jan 7, 1989

XWPRIMITIVE (3X) XWPRIMITIVE (3X)

XtNtraversari'ype
Three modes of border highlighting activation are supported by Primitive. They are, no
highlighting, highlight on the cursor entering the widget's window and highlight for
keyboard traversal. The last mode is used by the keyboard traversal mechanism to
indicate the widget that is to receive all input occurring within the widget hierarchy. To
set the traversal type through an arg list, one of three defines can be used. They are
XwHIGHLIGHf OFF, XwHIGHLIGHf ENfER and
XwHIGHLIGHf=TRAVERSAL. The stnngs that can be used to set this resource
through the .Xdefaults file are "highlight off'', "highlight enter", and
"highlight_traversal". - -

KEYBOARD TRAVERSAL
If the traversalType resource is set to highlight traversal (either when the widget is created or
during a call to XtSetValues) the Primitive widget's translation table is augmented with the
following translations:

ACTIONS
focus In:

<Focusln>:
<FocusOut>:
<Visible>:
<Unmap>:
<Key> Up:
<Key> Down:
<Key> Left:
<Key> Right:
<Key> Next:
<Key> Prior:
<Key> Home:
<Key> KP _Enter:

focusln()
focus Out()
visibility()
unmap()
traverse Up()
traverse Down()
traverse Left()
traverseRight()
traverseNext()
traversePrev()
traverseHome()
traverseNextTop()

HP Up arrow key.
HP Down arrow key.
HP Left arrow key.
HP Right arrow key.
HP "Next" key.
HP "Prev" key.
HP Home arrow key.
HP "Enter" key.

If traversal is on for a widget of this class then accept the keyboard focus and visually
indicate it by highlighting the widget.

focusOut:
If traversal is on for a widget of this class then indicate that the widget no longer has the
focus by unhighlighting the widget.

traverseDown:
Inform the parent of a widget of this class that it should transfer keyboard focus to the
first widget below this one.

traverseHome:
Inform the parent of a widget of this class that it should transfer keyboard focus to the
child which is closest to the upper left hand corner of the parent. If that child already has
the keyboard focus, then ask the grandparent of the widget to give the keyboard focus to
whichever of its children which is closest to the upper left hand corner.

traverseLeft:
Inform the parent of a widget of this class that it should transfer keyboard focus to the
first widget to the left of this one.

traverseN ext:
Inform the parent of a widget of this class that it should transfer keyboard focus to the
next child in the parent's list of children.

traverseN extTop:
Find the topmost parent in a widget of this class hierarch which is a subclass of
XwManager and tell it to issues any XtNnextTop callbacks that have been registered with
it. The purpose of this callback is to allow applications to move the keyboard focus
between top level widget hierarchies of the same application.

Hewlett-Packard Company -3- Jan 7, 1989

XWPRIMITIVE(3X) XWPRIMITIVE (3X)

ORIGIN

traversePrev:
Inform the parent of a widget of this class that it should transfer keyboard focus to the
previous child in the parent's list of children.

traverseRight:
Inform the parent of a widget of this class that it should transfer keyboard focus to the
first widget to the right of this one.

traverse Up:

unmap:

Inform the parent of a widget of this class that it should transfer keyboard focus to the
first widget above this one.

If traversal is on for a widget of this class and the widget that is focused becomes
unmapped, then the focus moves to another mapped widget.

visibility:
If traversal is on for a widget of this class and the widget that is focused becomes hidden
(e.g. another window obscures its visibility), then the focus moves to another visible
widget.

Hewlett-Packard Company.
SEE ALSO

CORE(3X), XWCREATEfiLE(3X),
Programming With The HP X Widgets,
Programming With Xt Intrinsics,
Programming With Xlib.

Hewlett-Packard Company -4- Jan 7, 1989

XWPULLDOWN (3X) XWPULLDOWN(3X)

NAME
XwpulldownWidgetCiass- the X Widgets pulldown menu manager widget.

SYNOPSIS
#include <Xll/Intrinsic.h>
#include <Xll/StringDefs.h>
#include <XwfXw.h>
#include <Xw/Pulldown.h>

CLASSES
The Pulldown menu manager widget is built from the Core, Composite, Constraint, Manager and
MenuMgr classes. Note that the Constraint fields are not used in this widget and so are not listed
in the resource tables below. Also, since the Composite class contains no user settable resources,
there is no table for Composite class resources.

The widget class to use when creating an instance of the pulldown menu manager is
XwpulldownWidgetClass. The class name is Pulldown.

DESCRIPTION
The Pulldown menu manager widget is a composite widget which is used by an application to
manage a collection of MenuPanes. Even though the Pulldown menu manager is a Composite
widget, it should never have any normal widget children. Instead, all of its children are popup
shell children; the child of each of the popup shell widgets is a MenuPane. In addition, the parent
of the Pulldown menu manager must be a popup shell widget, whose parent is the widget to which
the menu tree is being associated.

The Pulldown menu manager manages a collection of MenuPane widgets, which have been
organized into a hierarchical tree structure; the root of the tree is referred to as the top level
menupane. The Pulldown menu manager creates a Pulldown widget as a child of the widget to
which the menu tree is associated; as the menu tree is constructed, titlebuttons will be added to
the Pulldown widget, thus providing the user with a means for posting a particular portion of the
menu tree. As MenuPanes are added to the menu tree, if cascading submenus are allowed, then
only those MenuPanes which cascade from the top level MenuPane will be folded up as a first
level MenuPane with a new titlebutton within the PuiiDown widget. If cascading submenus are
not allowed, then all cascading MenuPanes will be folded up into a first level MenuPane with a
new titlebutton.

When the user requests that the menu be posted, by generating a post event within one of the
titlebuttons, the MenuPane associated with the indicated titlebutton is posted. As soon as a select
event or an unpost event is generated, the MenuPanes are unposted.

Once the Pulldown menu manager has posted a first level MenuPane it will remain posted until
either the user generates a select action, the user generates an unpost action, or the user moves
the cursor into a different titlebutton. If the select action occurs, then the MenuPanes will be
removed from the display, and the appropriate menubutton will perform any required actions. If
the select action occurs outside of a MenuButton, or if the unpost action is generated, then the
MenuPanes are simply unposted. If the cursor was moved into a different titlebutton, then the
menupanes associated with the previous titlebutton will be unposted, and the first level MenuPane
for the new titlebutton will be posted.

The Pull down menu manager supports a mode by which the menu hierarchy may be associated
only with the specified widget, or it may be associated with the widget and all of its children (both
present and future children). If the menu is associated with the widget and its children, then a
keyboard accelerator which occurs in either the widget or one of its children, will cause the
appropriate action to occur.

The Pulldown menu manager provides a keyboard interface to the menus, through the use of
mnemonics and keyboard accelerators. A mnemonic may be used to post any of the first level
menupanes; a posting mnemonic is issued by typing the appropriate mnemonic character in the
presence of the modifiers specified by the postAccelerator resource. Keyboard accelerators are
supported for selecting a MenuButton from within any of the MenuPanes; accelerators are always
active, even if the corresponding MenuButton is not currently displayed. Keyboard mnemonics

Hewlett-Packard Company -1- Jan 7, 1989

XWPULLDOWN(3X) XWPULLDOWN(3X)

may also be used for selecting a MenuButton; however, a MenuButton's mnemonic is only act:ve if
the MenuPane in which it resides in is currently displayed. The Pulldown menu manager only
allows the first level Pulldown MenuPanes to have keyboard mnemonics for posting.
The Pulldown menu bar that is made visible to the user is actually a Frame widget that contains a
RowCol widget. The RowCol widget handles the layout of the Pulldown menu buttons. If the
user wishes to specify any of the attributes associated with the Frame, RowCol, or any of the
Pull down menu buttons from a defaults file, then the following naming conventions for these
widgets should be used:

Frame :Pulldown manager name + " frame"
RowCol :Pulldown manager name + " bar" -
Pulldown menu button :MenuPane name + "__pdbtn"

NEW RESOURCES
The Pull down menu manager defines a set of resource types that may be used by the programmer
to specify the data for the Pulldown menu manager. The programmer can also set the values for
the Core, Composite and Manager widget classes to set attributes for this widget. To specify any
of these resources within the .Xdefaults file, simply drop the XtN prefix from the resource name.
The following table contains the set of resources defined by Pulldown.

Pulldown Resource Set
Name Class Type Default
XtNallowCascades XtCAIIowCascades Boolean TRUE
XtNpostAccelerator XtCPostAccelerator String "Meta"
XtNpulldownBarld XtCPulldownBarld Widget NULL

XtN allowCascades
This resource is used to control whether any of the top level pulldown menupanes may
have other menupanes cascading from them. This resource must be set to the desired
value when the menu manager widget is first created; it cannot be modified after the
widget has been created.

XtN postAccelerator
This resource is used to specify the keyboard modifiers which must be present when one
of the post mnemonics is issued by the user. This resource must be set to the desired
value when the menu manager widget is first created; it cannot be modified after the
widget has been created.

XtNpulldownBarld
This resource is a read-only resource, and provides the application with the means for
obtaining the widget ld for the frame widget which encloses the pulldownmenubar
widget. Applications should not use this to modify the attributes of the pull down
menu bar. This resource is made available to allow applications to obtain the pulldowr.
menubar ld, which is needed when attempting to add a pulldown menu to a widget wl:ich
is not menu smart.

INHERITED RESOURCES
The following resources are inherited from the named superclasses:

Hewlett-Packard Company -2- Jan 7, 1989

XWPULLDOWN(3X) XWPULLDOWN (3X)

Core Resource Set -- CORE(3X)
Name Class Type Default
XtNancestorSensitive XtCSenstitive Boolean TRUE
XtNbackground XtCBackground Pixel White
XtNbackgroundPixmap XtCPixmap Pixmap Unspecified
XtNborderColor XtCBorderColor Pixel Black
XtNborderPixmap XtCPixmap Pixmap Unspecified
XtNborderWidth XtCBorderWidth Dimension 1
XtNdepth XtCDepth int 0
XtNdestroyCallback XtCCallback Pointer NULL
XtNheight XtCHeight Dimension 0
XtNmappedWhenManaged XtCMappedWhenManaged Boolean TRUE
XtNsensitive XtCSensitive Boolean TRUE
XtNtranslations XtCTranslations XtTranslations NULL
XtNwidth XtCWidth Dimension 0
XtNx XtCPosition Position 0
XtNy XtCPosition Position 0

Manager Resource Set -- XWMANAGER(3X)
Name Class Type Default
XtNbackgroundTile XtCBackgroundTile int background
XtNbottomShadowColor XtCForeground Pixel Black
XtNbottomShadowTile XtCBottomShadowTile int foreground
XtNforeground XtCForeground Pixel Black
XtNhighlightThickness XtCHighlightThickness int 0
XtNshadowOn XtCShadowOn Boolean TRUE
XtNtopShadowColor XtCBackground Pixel White
XtNtopShadowTile XtCTopShadowTile int 50 foreground
XtNtraversaiOn XtCTraversal On Boolean FALSE

Menu Manager Resource Set -- XWMENUMGR(JX)
Name Class Type Default
XtNassociateChildren XtCAssociateChildren Boolean TRUE
XtNkbdSelect XtCKbdSelect String "<Key>Select"
XtNmenuPost XtCMenuPost String "<BtnlDown>"
XtNmenuSelect XtCMenuSelect String "<BtnlUp>"
XtNmenuUnpost XtCMenuUnpost String NULL

PULLDOWN BUTION RESOURCES
The pulldown menu manager is responsible for managing the set of menupanes specified by the
application, and for creating pulldown buttons within the pulldown menu bar, as needed. When
creating the pull down buttons, certain resources are inherited from the menu pane from which the
pulldown button is derived, while other resources are inherited from the menu manager. When
an application modifies one of these resources within the menu pane or the menu manager, the
attribute will also be passed on to the associated pulldown button. The following tables outline
those resources which are inherited from the menupane and those which are inherited from the
menu manager:

Hewlett-Packard Company -3- Jan 7, 1989

~VPULLIX)VVN(3X) XVVPULLDOWN(3X)

Inherited MenuPane Resource Set
Name Class Type Default
XtNbackground XtCBackground Pixel White
XtNbackgroundTile XtCBackgroundTile int background
XtNbottomShadowColor XtCForeground Pixel Black
XtNbottomShadowTile XtCBottomShadowTile int foreground
XtNfont XtCFont XFontStruct * "fixed"
XtNforeground XtCForeground Pixel Black
XtNtopShadowColor XtCBackground Pixel White
XtNtopShadowTile XtCTopShadowTile int 50 foreground

Inherited Menu Manager Resource Set
Name I Class I Type 1 Default
XtNshadowOn .I XtCShadowOn 1 Boolean 1 TRUE

BUGS
The pulldown menu manager currently does not support keyboard traversal.

ORIGIN
Hewlett-Packard Company.

SEE ALSO
CORE(3X), XWMANAGER(3X), XWMENUMGR(3X),
Programming With The HP X Widgets,
Programming With Xt Intrinsics,
Programming With Xlib.

Hewlett-Packard Company -4- Jan 7, 1989

XWPUSHBUTION (3X) XWPUSHBUTION (3X)

NAME
XwpushButtonWidgetCiass- the X Widgets PushButton widget.

SYNOPSIS
#include <Xll/StringDefs.h>
#include < Xll/Intrinsic.h >
#include <XwfXw.h>
#include <Xw /PushButton.h>

ClASSES
The PushButton widget is built from the Core, Primitive and Button classes.

The widget class to use when creating a PushButton is XwpushButtonWidgetCiass. The class
name is PushButton.

DESCRIPTION
The PushButton widget consists of a text label surrounded by a button border.

By default, button 1 down will invert the interior of the button: the background will be filled with
the foreground color and the text will be written in the background color. Button 1 down also sets
the button state to TRUE and issues any XtNselect callbacks that have been registered. Button 1
up will repaint the button in the normal state, set the button state to FALSE and issue any
XtNrelease callbacks that have been registered. It is also possible (by setting the
XtNinvertOnSelect resource to FALSE) to make the Button 1 down and up sequence invert only
the top and bottom shadows (instead of inverting the entire button). This mode is very useful on
color systems, and can give the button a three-dimensional appearance.

As mentioned above, the XtNselect and XtNrelease callbacks can be attached to this widget. This
widget can also be set to respond to Enter and Leave window events by highlighting and
unhighlighting the button. This widget is also capable of handling keyboard traversal. See the
translations below for the default traversal keycodes.

A final feature is that by setting the XtNtoggle resource to TRUE the PushButton can be made to
act like a toggle button.

NEW RESOURCES
The PushButton widget class defines a set of resource types that can be used by the programmer
to specify data for widgets of this class. Recall that the string to be used when setting any of these
resources in an application defaults file (like .Xdefaults) can be obtained by stripping the preface
"XtN" off of the resource name. For instance, XtNfont becomes font.

PushButton Resource Set -- CORE(3X)
Name Class Type Default
XtNinvertOnSelect XtCinvertOnSelect Boolean TRUE
XtNtoggle XtCToggle Boolean FALSE

XtNinvertOnSelect
Forces the button to invert the foreground/background on selection if set to TRUE,
otherwise switch only the top and bottom shadow colors.

XtNtoggle
If set to TRUE makes the PushButton act like a toggle button.

INHERITED RESOURCES
The following resources are inherited from the named superclasses. The defaults used for the
PushButton when being created are as follows:

Hewlett-Packard Company - 1 - Jan 7,. 1989

XWPUSHBUTION (3X) XWPUSHBUTTON (3X)

Core Resource Set -- CORE(3X)
Name Class Type Default
XtNancestorSensitive XtCSenstitive Boolean TRUE
XtNbackground XtCBackground Pixel White
XtNbackgroundPixmap XtCPixmap Pixmap Unspecified
XtNborderColor XtCBorderColor Pixel Black
XtNborderPixmap XtCPixmap Pixmap Unspecified
XtNborderWidth XtCBorderWidth Dimension 1
XtNdepth XtCDepth int 0
XtNdestroyCallback XtCCallback Pointer NULL
XtNheight XtCHeight Dimension 0
XtNmappedWhenManaged XtCMappedWhenManaged Boolean TRUE
XtNsensitive XtCSensitive Boolean TRUE
XtNtranslations XtCTranslations XtTranslations NULL
XtNwidth XtCWidth Dimension 0
XtNx XtCPosition Position 0
XtNy XtCPosition Position 0

Primitive Resource Set -- XWPRIMITIVE(3X)
Name Class Type Default
XtNbackgroundTile XtCBackgroundTile int background
XtNbottomShadowColor X tCForeground Pixel Black
XtNbottomShadowTile XtCBottomShadowTile int foreground
XtNforeground XtCForeground Pixel Black
XtNhighlightColor XtCForeground Pixel Black
XtNhighlightStyle XtCHighlightStyle int pattern border
XtNhighlightThickness XtCHighlightThickness int 0
XtNhighlightTile XtCHighlightTile int 50 foreground
XtNrecomputeSize XtCRecomputeSize Boolean TRUE
XtNrelease XtCCallback Pointer NULL
XtNselect XtCCallback Pointer NULL
XtNshadowOn XtCShadowOn Boolean TRUE
XtNtopShadowColor XtCBackground Pixel White
XtNtopShadowTile XtCTopShadowTile int 50 foreground
XtNtraversalType XtCTraversalType int highlight off

Button Resource Set-- XWBU1TON(3X)
Name Class Type Default
XtNfont XtCFont XFontStruct • Fixed
XtNhSpace XtCHSpace int 2
XtNlabel XtCLabel caddr t NULL
XtNlabelLocation XtCLabelLocation int right
XtNsensitiveTile XtCSensitiveTile int 75 foreground
XtNset XtCSet Boolean FALSE
XtNvSpace XtCVSpace int 2

KEYBOARD TRAVERSAL
If the XtNtraversaiType resource is set to highlight traversal (XwHIGHTLIGHT TRAVERSAL
in an argument list) at either create time or during a call to XtSetValues, the XwPrimitive
superclass will automatically augment the primitive widget's translations to support keyboard

Hewlett-Packard Company - 2- Jan 7, 1989

XWPUSHBUTION (3X) XWPUSHBUTTON (3X)

traversal. See the XwPrimitive man page for a complete description of these translations. See the
TRANSlATIONS section in this man page for a description of the translations local to the
PushButton widget.

TRANSlATIONS
The input to the PushButton is driven by the mouse buttons. The default translation set defining
this button is as follows:

<BtnlDown>:
<BtnlUp>:
< EnterWindow >:
<Leave Window>:
< KeyDown >Select:
< KeyUp >Select:

select()
unselect()
enter()
leave()
select()
unselect()

HP "Select" key
HP "Select" key

ACTIONS

ORIGIN

enter: If the XtNtraversalType resource has been set to XwHIGHLIGHT ENTER then the
button will be highlighted. Otherwise no action is taken. -

leave: If the XtNtraversalType resources has been set to XwHIGHLIGHT EI\'TER then the
button will be unhighlighted. Otherwise no action is taken. Note that this widget contains
some actions which are not bound to any events by the default translations. TI1e purpose
of these additional actions are to allow advanced users to alter the button semantics to
their liking.

select: Select sets the state of the button to TRUE. It also redraws the PushButton to reflect the
current setting. It then issues any XtNselect callbacks which have been registered. No
additional data beyond the widget id and the specified closure is sent with these callbacks.

toggle: Toggle the set state of the button (make it TRUE if it was FALSE, FALSE if it was
TRUE). Redraw the PushButton to reflect the current button setting (if set, invert the
button, otherwise draw normally). If the current state of the button is set (TRUE) issue
the XtNselect callbacks, if not set (FALSE) issue the XtNrelease callbacks. No additional
data beyond the widget id and the specified closure is sent with these callbacks.

unselect:
Release sets the state of the button to FALSE. It also redraws the PushButton to reflect
the current setting. It then issues any XtNrelease callbacks which have been registered.
No additional data beyond the widget id and the specified closure is sent with these
callbacks.

Hewlett-Packard Company.

SEE ALSO
CORE(3X), XWPRIMITIVE(3X), XWBUTTON(3X),
Prof?J'amming With The HP X Widgets,
Prof?J'amming With Xt Intrinsics,
Prof?J'amming With Xlib.

Hewlett-Packard Company -3- Jan 7, 1989

XWREGISTERCONVERTERS(3X) XWREGISTERCONVERTERS (3X)

NAME
XwRegisterConverters - register all of the resource converters used by the X Widgets.

SYNOPSIS
#include <Xll/Atoms.h>
#include <Xll/Intrinsic.h>
#include <XwfXw.h>

void XwRegisterConverters ()

DESCRIPTION
XwRegisterConverters is used by widget writers to register all of the resource type converters used
by the X Widgets. The call to this routine is made within a widget's Classlnitialize procedure that
has added a resource converter to the source file containing this function. XwRegisterConverters
ensures that resource converters it is registering are only registered once.

ORIGIN
Hewlett-Packard Company.

SEE ALSO
Programming With The HP X Widgets,
Programming With Xt lntlinsics,
Programming With Xlib.

Hewlett-Packard Company - 1- Jan 7, 1989

XWROWCOL(3X) XWROWCOL(3X)

NAME
XwrowColWidgetClass - the X Widgets row /column manager widget.

SYNOPSIS
#include <Xll/StringDefs.h>
#include <Xll/Intrinsic.h>
#include <XwfXw.h>
#include <Xw/RCManager.h>

CLASSES
The row column manager widget is built from the Core, Constraint and Manager classes. Since
the Composite class contains no resources that the user can set, there is no table for Composite
class resources.

The widget class to use when creating a row column manager is XwrowColWidgetClass. The class
name is RowCol.

DESCRIPTION
The row column \Vidget is a composite widget that supports three types of row column layouts for
its children: requested columns, maximum columns, and maximum unaligned. With requested
columns, the application specifies the number of columns (the default is one) to be used in laying
out the data. The children are laid out in rows. Columns are as wide as the widest element in the
column and all elements are left justified. Row height is determined by the largest element in the
row and all elements are centered in the row. The second layout type, maximum columns,
automatically calculates the maximum number of columns that can fit within the manager and lays
the children out accordingly. The last layout type, maximum unaligned, does not force any
columnar alignment. A child being positioned is placed immediately to the right of the previous
child until a row is full, then a new row is started at the left edge of the manager immediately
below the previous row.

In addition to the row column ordering, this manager widget supports three different layout
policies: minimize (the default), maximize and ignore. These policies are specified by the
XtNlayout resource that is inherited from the Manager resource set. When the layout policy is set
to minimize, the manager will create a box that is just large enough to contain all of its children,
regardless of any provided width and height values. When the given width and height values
would create a box larger than needed, the maximize setting will use this additional space as
padding between elements. When using the maximize setting, if one or both of the height width
and values are too small, the manager will grow to accommodate all of the children. When using
the ignore policy, the row column manager will not grow or shrink in response to the addition,
deletion or altering of its children.

The row column widget also implements two selection policies. The default is "n _of_ many'', and
the alternative is "one of many." The "n of many'' policy does not require any action on the part
of the manager widget It-allows any or all ofits children to be selected and performs no action in
response to their selection. The "one_ of_ many'' policy only applies to child widgets that are
subclasses of the XwPrimitive class. When "one of many'' is the active policy, a callback of type
XtNselect is added to each child widget. Then, when a child is selected, the manager is informed.
The manager keeps track of the previously active child and directly invokes a release procedure in
that child so that it becomes unselected. The "one of many'' mode will not activate a child if
none are active and will not disallow the selection of an active child causing it to become deactive.
Thus, if a strict "one_ of_many'' mode is desired, the application will have to enforce it.

NEW' RESOURCES
The row column manager defines a set of resource types used by the programmer to specify data
for the manager widget. The programmer can also set the values for the Core, Composite and
XwManager widget classes to set attributes for this widget. The following table contains the
settable resources defined by the row column manager. The string to be used when setting any of
these resources in an application defaults file (such as .Xdefaults) can be obtained by stripping the
preface "XtN" off of the resource name. For instance, XtNvSpace becomes vSpace.

Hewlett-Packard Company - 1 - Jan 7, 1989

XWROWCOL(3X) XWROWCOL(JX)

Row Column Resource Set
Name Class Type Default
XtNcolumns XtCColumns int 1
XtNforceSize XtCForceSize Boolean FALSE
XtNhSpace XtCHSpace int 4
XtNlayoutType XtCLayoutType int requested columns
XtNmode XtCMode int n of many
XtNsingleRow XtCSingleRow Boolean FALSE
XtNvSpace XtCVSpace int 4

XtNcolumns
The application can specify the number of columns to be used when laying out the widgets
children.

XtNforceSize
The application has the option of forcing the widths of each widget in a column and the
heights of each widget in a row to be the same. This can be used, for example to enforce
an orderly layout for a group of buttons. For the layout type of maximum unaligned, only
the heights of the widgets in a row are forced to the same size.

XtNhSpace
The application may determine the number of pixels of space left between each element
within a given row. This defines a minimum spacing.

XtNiayoutType
The application can specify the type of layout the row column manager is to perform.
Allowable argument list settings are XwREQUESTED COLUMNS,
XwMAXIMUM COLUMNS and XwMAXIMUM UNALIGNED. To set this value in
.Xdefaults or another resource file use the strings requested-columns, maximum_ columns
and maximum_ unaligned.

XtNmode
The application can specify whether the selection policy is n of many or one of many.
Allowable argument list settings are XwONE OF MANY andXwN OF MANY. To set
this value in .Xdefaults or another resource file use the strings one Of many and
n_of_many. - -

NOTE: The RowCol class provides a specialized "insert child" procedure. This procedure allows
an application to provide a special argument list type XtNchildPosition with an integer value. TI1is
value specifies the position within the child list the new widget will be inserted.
XtNsingleRow

For layout types of maximum columns and maximum unaligned, the application has the
option of having the row column manager to try to lay itself out in a single row whenever
one of its children makes a geometry request.

XtNvSpace
The application may determine the number of pixels of space left between each column.
This defines a minimum spacing.

INHERITED RESOURCES
The following resources are inherited from the named superclasses:

Hewlett-Packard Company -2- Jan 7, 1989

XWROWCOL(3X) XWROWCOL(3X)

Core Resource Set -- CORE(3X)
Name Class Type Default
XtNancestorSensitive XtCSenstitive Boolean TRUE
XtNbackground XtCBackground Pixel White
XtNbackgroundPixmap XtCPixmap Pixmap Unspecified
XtNborderColor XtCBorderColor Pixel Black
XtNborderPixmap XtCPixmap Pixmap Unspecified
XtNborderWidth XtCBorderWidth Dimension 1
XtNdepth XtCDepth int 0
XtNdestroyCallback XtCCallback Pointer NULL
XtNheight XtCHeight Dimension 0
XtNmappedWhenManaged XtCMappedWhenManaged Boolean TRUE
XtNsensitive XtCSensitive Boolean TRUE
XtNtranslations XtCTranslations XtTranslations NULL
XtNwidth XtCWidth Dimension 0
XtNx XtCPosition Position 0
XtNy XtCPosition Position 0

Manager Resource Set -- XWMANAGER(3X)
Name Class Type Default
XtNbackgroundTile XtCBackgroundTile int background
XtNforeground XtCForeground Pixel Black
XtNhighlightThickness XtCHighlightThickness int 0
XtNlayout XtCLayout int minimize
XtNnextTop XtCCallback Pointer NULL
XtNtraversalOn XtCTraversal On Boolean FALSE

KEYBOARD TRAVERSAL

ORIGIN

If the XtNtraversalOn resource is set to TRUE at either create time or during a call to
XtSetValues, the XwManager superclass will automatically augment the manager widget's
translations to support keyboard traversal. Refer to the XwManager man page for a complete
description of these translations.

Hewlett-Packard Company.

SEE ALSO
CORE(3X), XWMANAGER(3X), XWPRIMITIVE(3X),
Programming With The HP X Widgets,
Programming With Xt Intrinsics,
Programming With Xlib.

Hewlett-Packard Company -3- Jan 7, 1989

XWSASH(3X) XWSASH(3X)

NA!VIE
XwsashWidgetCiass- an X Widgets utility widget

SYNOPSIS
#include <Xll/StringDefs.h>
#include <Xllflntrinsic.h>
#include <XwfXw.h>
#include <Xw/Sash.h>

ClASSES
The sash widget is built from the Core and Primitive classes.
The widget class to use when creating a sash is XwsashWidgetCiass. The class name is Sash.

DESCRIPTION
The sash widget is a utility widget used by the vertical paned manager XwVPaned to control the
sizes of the individual panes. In its realized form it appears as a square box of its background
color. When the pointer is moved into the sash the cursor is changed to the crosshair cursor.
Callbacks can be attached to the widget to report selection (XtNselect) and unselection
(XtNrelease). This widget can be set to respond to Enter and Leave window events by
highlighting and unhighlighting the sash. This widget is also capable of handling keyboard
traversal. (While you can traverse to the Sash in the current widget library, Sash does not handle
keyboard input.) See the translations below for the default traversal keycodes.

NEW RESOURCES
The sash widget class defines one additional resource which is detailed in the table below. The
programmer should refer to the man pages for the sash's superclasses to determine available
resources and their defaults.

Sash Resource Set
Name l Class 1 TYPe L Default
XtNcallback 1 XtCCallback 1 caddr t 1 NULL

XtNcallback
TI1is is used by the paned window widget to be informed of button presses and mouse
movement associated with the sash.

INHERITED RESOURCES
The following resources are inherited from the named superclasses: The defaults used for the
sash when being created are as follows:

Hewlett-Packard Company - 1 - Jan 7, 1989

XWSASH(3X)
XWSASH(3X)

Core Resource Set - CORE(3X)
Name Class Type Default
XtNancestorSensitive XtCSenstitive Boolean TRUE XtNbackground XtCBackground Pixel White XtNbackgroundPixmap XtCPixmap Pixmap Unspecified XtNborderColor XtCBorderColor Pixel Black
XtNborderPixmap XtCPixmap Pixmap Unspecified XtNborderWidth XtCBorderWidth Dimension 1
XtNdepth XtCDepth int 0
XtNdestroyCallback XtCCallback Pointer NULL
XtNheight XtCHeight Dimension 0
XtNmappedWhenManaged XtCMappedWhenManaged Boolean TRUE
XtNsensitive XtCSensitive Boolean TRUE
XtNtranslations XtCTranslations XtTranslations NULL
XtNwidth XtCWidth Dimension 0
XtNx XtCPosition Position 0
XtNy XtCPosition Position 0

Primitive Resource Set -- XWPRIMITIVE(3X)
Name Class Type Default
XtNforeground XtCForeground Pixel Black
XtNhighlightStyle XtCHighlightStyle int pattern border
XtNhighlightThickness XtCHighlightThickness int 0
XtNrelease XtCCallback Pointer NULL
XtNselect XtCCallback Pointer NULL
XtNtraversalType XtCTraversalType int highlight off

KEYBOARD TRAVERSAL
If the XtNtraversalType resource is set to highlight_ traversal (XwHIGHTLIGHT _TRAVERSAL in an argument list) at either create time or during a call to XtSetValues, the Primitive superclass will automatically augment the primitive widget's translations to support keyboard traversal. See the XwPrimitive man page for a complete description of these translations. Refer to the TRANSlATIONS section in this man page for a description of the translations local to the sash widget.

TRANSlATIONS
The input to the sash is driven by the mouse buttons. The default translation set defining this button is listed below. Note that for the specific key symbols used in traversal, the HP Key Cap which corresponds to this key symbol appears to the right of the definition.

ACTIONS

<BtnlDown>:
< Btn2Down >:
< Btn3Down >:
<BtnlMotion>:
<Btn2Motion>:
<Btn3Motion>:
Any<BtnUp>:
<EnterWindow>:
<LeaveWindow>:

SashAction(Start, UpperPane)
SashAction(Start, ThisBorderOnly)
SashAction(Start, Lower Pane)
SashAction(Move, Upper)
SashAction(Move, ThisBorder)
SashAction(Move, Lower)
SashAction(Commit)
enter()
leave()

SashAction(Start, UpperPane):
Change the cursor from the crosshair to an upward pointing arrow. Determine the upper pane which will be adjusted (usually the pane to which the sash is attached).

Hewlett-Packard Company -2- Jan 7, 1989

XWSASH(3X) XWSASH(3X)

ORIGIN

SashAction(Start, ThisBorderOnly):
Change the cursor from the crosshair to a double headed arrow. The panes that will be
adjusted are the pane to which the sash is attached and the first pane below it that can be
adjusted. Unlike the UpperPane and Lower Pane mode, only 2 panes will be affected. If
one of the panes reaches its minimum or maximum, adjustment will stop, instead of
finding the next adjustable pane.

SashAction(Start, LowerPane):
Change the cursor from the crosshair to a downward pointing arrow. Determine the
lower pane which will be adjusted (usually the pane below the pane to which the sash is
attached).

SashAction(Move, Upper):
Draw a series of track lines to illustrate what the heights of the panes would be if the
Commit action were invoked. Determine which widget below the upper pane can be
adjusted and make the appropriate adjustments.

SashAction(Move, ThisBorder):
Draw a series of track lines to illustrate what the heights of the panes would be if the
Commit action were invoked. Adjust as needed (and as possible) the upper and lower
panes selected when the SashAction(Start, ThisBorderOnly) action was invoked.

SashAction(Move, Lower):
Draw a series of track lines to illustrate what the heights of the panes would be if the
Commit action were invoked. Determine which widget above the lower pane can be
adjusted and make the appropriate adjustments.

enter: If the XtNtraversalType resource has been set to XwHIGHLIGHT ENTER then the
button will be highlighted. Otherwise no action is taken. -

leave: If the XtNtraversalType resources has been set to XwHIGHLIGHT ENTER then the
button will be unhighlighted. Otherwise no action is taken. -

Hewlett-Packard Company.

SEE ALSO
CORE(3X), XWPRIMITIVE(3X), XWVPANED(3X),
Programming With The HP X Widgets,
Programming With Xt Intrinsics,
Programming With Xlib.

Hewlett-Packard Company -3- Jan 7, 1989

XWSCROLLBAR(3X)
XWSCROLLBAR(3X)

NAME

XwscroliBarWidgetClass - the X Widget's scrollbar widget
SYNOPSIS

#include <Xll/StringDefs.h>
#include <Xll/Intrinsic.h>
#include <XwfXw.h>
#include <XwfValuator.h>
#include <Xw/Arrow.h>
#include <Xw/ScroiiBar.h>

CLASSES

The ScroliBar is built from the Core, Composite, and Manager classes.
The widget class to use when creating a scrollbar is XwscroiiBarWidgetCiass. The class name for
scrollbar is ScroiiBar.

DESCRIPTION

The ScroliBar widget combines the Valuator and Arrow widgets to implement a horizontal or
vertical scrolling widget containing a valuator and an arrow on each end of the valuator.
As with the Valuator, input is supported through interactive slider movement and selections on the
slide area not occupied by the slider. Both types of input have a separate callback list for
communicating with the application. The arrows on each end of the valuator control additional
input to the valuator. When an arrow is selected, the slider within the valuator will be moved in
the direction of the arrow by an application supplied amount. If the button is held down, the
slider will continue to move at a constant rate.

The ScroliBar can be used by the application to attach to objects scrolled under application
control, or used by composite widgets to implement predefined scrolled objects.

NEW RESOURCES
The ScroiiBar defines a set of resource types used by the programmer to specify the data for the
scrollbar. The programmer can also set the values for the Core, Composite and Manager widget
classes to set attributes for this widget. To reference a resource in a .Xdefaults file, strip off the
XtN from the resource string. The following table contains the set of resources defined by
ScroiiBar.

Scroi!Bar Resource Set
Name Class Type Default
XtNgranularity XtCGranularity int 2
XtNinitiaiDelay XtCinitiaiDelay int 500
XtNrepeatRate XtCRepeatRate int 100

XtNgranularity
This resource defines the increment in the valuator's coordinate system to move the slider
while continuous scrolling.

XtNinitiaiDelay
The ScrollBar supports smooth time sequenced movement of the slider when a selection
occurs on the arrows. This resource defines the amount of delay to wait between the
initial selection and the slider starting its repetitive movement. The value is defined in
milliseconds.

XtNrepeatRate
This resource defines the continuous repeat rate to use to move the slider while the
button is being held down on an arrow. The value is also defined in milliseconds.

INCORPORATED RESOURCES
The ScroliBar creates itself by internally creating two Arrow widgets and a Valuator. As such, it
uses a large number of the resources defined by these widgets. Many of the attributes for these

Hewlett-Packard Company - 1 - Jan 7, 1989

XWSCROLLBAR(3X) XWSCROLLBAR(3X)

widgets can be set through the .Xdefaults file or by use of XtSetValues() when communicating
with the ScroliBar.

It should be noted, that only the resources within the following tables will have any effect on the
valuator or arrows. The other resource types defined by the Valuator and Arrow widgets are
either overridden or unused by ScroliBar.

The following tables list the resources incorporated by ScroliBar. For a complete description of
these resources, refer to the manual page listed in the table heading.

Primitive Resource Set - XWPRIMffiVE(3X)
Name Class Type Default
XtNhighlightColor XtCForeground Pixel Black
XtNhighlightStyle XtCHighlightStyle int pattern border
XtNhighlightTile XtCHighlightTile int 50 foreground
XtNtraversalType XtCTraversalType int highlight off

Valuator Resource Set -- XWVALUATOR(3X)
Name Class Type Default
XtNareaSelected XtCCallback Pointer NULL
XtNsliderExtent XtCSliderExtent int 10
XtNsliderMax XtCSliderMax int 100
XtNsliderMin XtCSliderMin int 0
XtNsliderMoved XtCCallback Pointer NULL
XtNslideOrientation XtCSlideOrientation int vertical
XtNsliderOrigin XtCSliderOrigin int 0
XtNslider Released XtCCallback Pointer NULL

INHERITED RESOURCES
The following resources are inherited from the named superclasses:

Core Resource Set -- CORE(3X)
Name Class Type Default
XtNancestorSensitive XtCSenstitive Boolean TRUE
XtNbackground XtCBackground Pixel White
XtNbackgroundPixmap XtCPixmap Pixmap Unspecified
XtNborderColor XtCBorderColor Pixel Black
XtNborderPixmap XtCPixmap Pixmap Unspecified
XtNborderWidth XtCBorderWidth Dimension 1
XtNdepth XtCDepth int 0
XtNdestroyCallback XtCCallback Pointer NULL
XtNheight XtCHeight Dimension 0
XtNmappedWhenManaged XtCMappedWhenManaged Boolean TRUE
XtNsensitive XtCSensitive Boolean TRUE
XtNtranslations XtCTranslations XtTranslations NULL
XtNwidth XtCWidth Dimension 0
XtNx XtCPosition Position 0
XtNy XtCPosition Position 0

Hewlett-Packard Company -2- Jan 7, 1989

XWSCROLLBAR(3X) XWSCROLLBAR(3X)

Manager Resource Set
Name Class Type Default
XtNbackgroundTile XtCBackgroundTile int background
XtNbottomShadowColor XtCForeground Pixel Black
XtNbottomShadowTile XtCBottomShadowTile int foreground
XtNforeground XtCForeground Pixel Black
XtNhighlightThickness XtCHighlightThickness int 0
XtNlayout XtCLayout int minimize
XtNnextTop XtCCallback Pointer NULL
XtNshadowOn XtCShadowOn Boolean TRUE
XtNtopShadowColor XtCBackground Pixel White
XtNtopShadowTile XtCTopShadowTile int 50 foreground
XtNtraversalOn XtCTraversalOn Boolean FALSE

KEYBOARD TRAVERSAL

ORIGIN

If the XtNtraversalOn resource is set to True at either create time or during a call to XtSetValues, the XwManager superclass will automatically augment the manager widget's translations to
support keyboard traversal. Refer to the XwManager man page for a complete description of
these translations.

Hewlett-Packard Company.

SEE ALSO
CORE(3X), XWMANAGER(3X), XWPRIMIDVE(3X), XWCREATETILE(3X),
XWVALUATOR(3X), XWARROW(3X),
Programming With The HP X Widgets,
Programming With Xt Intrinsics,
Programming With Xlib.

Hewlett-Packard Company -3- Jan 7, 1989

XWSCROLLEDWINDOW (3X) XWSCROLLEDWINDOW (3X)

NAME
XwscrolledWindowWidgetCiass- the X Widget's scrolled window widget

SYNOPSIS
#include <Xll/StringDefs.h>
#include < Xll/Intrinsic.h >
#include <XwfXw.h>
#include <XwfValuator.h>
#include <XwfArrow.h>
#include <Xw fScrollBar.h>
#include <Xw/SWindow.h>

ClASSES
The ScrolledWindow is built from the Core, Composite, and Manager classes.

The widget class to use when creating a scrolled window is XwscrolledWindowWidgetClass. The
class name is ScrolledWindow.

DESCRIPTION
The ScrolledWindow widget combines the ScroliBar and BulletinBoard widgets to implement a
visible window onto some other (usually larger) data display. The visible part of the window can
be scrolled through the larger display by the use of scroll bars.

To use the scrolled window, an application first creates a ScrolledWindow widget and then creates
a widget capable of displaying the desired data as a child of the ScrolledWindow. ScrolledWindow
will position the child widget within its BulletinBoard manager instance and create scroll bars for
the horizontal and vertical dimensions. When the user performs some action on the scroll bars,
the child widget will be repositioned accordingly within the bulletin board.

NEW RESOURCES
The ScrolledWindow widget defines a unique set of resource types that can be used by the
programmer to control the appearance and behavior of the scrolled window. The programmer
can also set the values for the Core, Composite and Manager widget classes to set attributes for
this widget. To reference a resource in a .Xdefaults file, strip off the XtN from the resource string.
The following table contains the set of resources defined by ScrolledWindow.

ScrolledWindow Resource Set
Name Class Type Default
XtNborderPad XtCBorderPad int 4
XtNforceHorizontalSB XtCForceHorizontalSB Boolean FALSE
XtNforceVerticalSB XtCForceVerticalSB Boolean FALSE
XtNhsbHeight XtCHsbHeight int 20
XtNhsbY XtCHsbY int 0
XtNhScroliEvent XtCCallback Pointer NULL
XtNhsliderExtent XtCHsliderExtent int 0
XtNhsliderMax XtCHsliderMax int 0
XtNhsliderMin XtCHsliderMin int 0
XtNhsliderOrigin XtCHsliderOrigin int 0
XtNinitialX XtCinitialX int 0
XtNinitiaiY XtCinitialY int 0
XtNvScroliEvent XtCCallback Pointer NULL
XtNvsliderExtent XtCVsliderExtent int 0
XtNvsliderMax XtCVsliderMax int 0
XtNvsliderMin XtCVsliderMin int 0
XtNvsliderOrigin XtCVsliderOrigin int 0
XtNvsbWidth XtCVsbWidth int 20
XtNvsbX XtCVsbX int 0

Hewlett-Packard Company - 1 - Jan 7, 1989

XWSCROLLEDWINDOW(3X) XWSCROLLEDWINDOW (3X)

XtNborderPad
This is an integer that defines the number of pixels between the scrollbars and the
viewable area of the scrolled window. The default padding is four pixels.

XtNforceHorizontalSB
When the child widget is created and positioned within the scrolled window, its width and
height are examined. If the entire child widget will fit within the width of the scrolled
window, the horizontal scrollbar will not be created, since there is no need to scroll in that
direction. Setting this resource to TRUE disables this checking and will force a horizontal
scrollbar to be attached to the window regardless of the dimension of the child widget.

XtNforceVerticalSB
This resource controls the existence of the vertical scrollbar. As described above, if this is
set to TRUE a vertical scrollbar will always be created.

XtNhsbHeight
This is the height in pixels of the horizontal scroll bar.

XtNhsbY
This is a read-only resource that returns the position of the horizontal scrollbar. If this
value is less than the current height of the scrolled window, the scrollbar will be visible to
the user.

XtNhScrollEvent
An application program may track the position of the child within the scrolled window by
linking into these callbacks. Whenever the user moves the valuator in either scroll bar,
ScrolledWindow moves the child accordingly and then calls the appropriate callback. The
call_ data parameter is set to the new valuator origin for the scrollbar.

XtNhSliderExtent, XtNhSliderMax, XtNhSliderMin, XtNhSliderOrigin
These values correspond to the min, max, extent, and origin resources for the horizontal
scrollbar. They are designed to be set only on initialization. Any subsequent resize or
other geometry activity will force the scrolled window to recompute these values. Writing
new values into these resources after initialization could cause toolkit warnings to occur.
The exception is the XtNhSliderOrigin resource. This resource can be set at any time to
cause the child to be horizontally scrolled as though the user had moved the valuator to
that position.

XtNinitialX and XtNinitialY
The child widget is initially positioned at (0,0) within the bulletin board. This positioning
can be changed by specif'ying a new X and Y location. If a non-zero value is given, that
becomes the initial location, and the valuators inside the scrollbars are adjusted to give a
visual indication of the new offset. This value should be negative to assure proper
operation of the scrolled window. These resources are only used at initialization time; they
cannot be set through a call to XtSetValues.

XtNvScrollEvent
An application program may track the position of the child within the scrolled window by
linking into these callbacks. Whenever the user moves the valuator in either scroll bar,
ScrolledWindow moves the child accordingly and then calls the appropriate callback. The
call_data parameter is set to the new valuator origin for the scrollbar.

XtNvSliderMin, XtNvSliderMax, XtNvSlideExtent, XtNvSliderOrigin
These values correspond to the min, max, extent, and origin resources for the vertical
scrollbar. They are designed to be set only on initialization. Any subsequent resize or
other geometry activity will force the scrolled window to recompute these values. Writing
new values into these resources after initialization could cause toolkit warnings to occur.
The exception is the XtNvSliderOrigin resource. This resource can be set at any time to
cause the child to be vertically scrolled as though the user had moved the valuator to that
position.

XtNvsbWidth
This is the width in pixels of the vertical scroll bar.

Hewlett-Packard Company -2- Jan 7, 1989

XWSCROLLEDWINDOW (3X) XWSCROLLEDWINDOW (3X)

XtNvsbX
This is a read-only resource that returns the position of the vertical scrollbar. If this value
is less than the current width of the scrolled window, the scroll bar will be visible to the
user.

INCORPORATED RESOURCES
The ScrolledWindow widget is built from two ScroiiBar widgets and a BulletinBoard widget. As
such, it uses a large number of the resources defined by these widgets. Many of the attributes for
these widgets can be set through the .Xdefaults file or by use of XtSetValues() when
communicating with the ScrolledWindow widget.

Only the resources within the following tables will have any effect on the scroll bars. The other
resource types defined by the ScroiiBar widget are either overridden or unused by
ScrolledWindow.

The following tables list the resources incorporated by ScrolledWindow. For a complete
description of these resources, refer to the manual page listed in the table heading.

ScrollBar Resource Set -- XWSCROLLBAR(3X)
Name Class Type Default
XtNforeground XtCForeground Pixel Black
XtNgranularity XtCGranularity int 10
XtNhighlightColor XtCForeground Pixel Black
XtNhighlightStyle XtCHighlightStyle int pattern border
XtNhighlightTile XtCHighlightTile int 50 foreground
XtNinitiaiDelay XtCinitiaiDelay int 500
XtNrepeatRate XtCRepeatRate int 100
XtNtraversaiType XtCTraversaiType int highlight off

INHERITED RESOURCES
The following resources are inherited from the named superclasses:

Core Resource Set -- CORE(3X)
Name Class Type Default
XtNancestorSensitive XtCSenstitive Boolean TRUE
XtNbackground XtCBackground Pixel White
XtNbackgroundPixmap XtCPixmap Pixmap Unspecified
XtNborderColor XtCBorderColor Pixel Black
XtNborderPixmap XtCPixmap Pixmap Unspecified
XtNborderWidth XtCBorderWidth Dimension 1
XtNdepth XtCDepth int 0
XtNdestroyCallback XtCCallback Pointer NULL
XtNheight XtCHeight Dimension 0
XtNmappedWhenManaged XtCMappedWhenManaged Boolean TRUE
XtNsensitive XtCSensitive Boolean TRUE
XtNtranslations XtCTranslations XtTranslations NULL
XtNwidth XtCWidth Dimension 0
XtNx XtCPosition Position 0
XtNy XtCPosition Position 0

Hewlett-Packard Company -3- Jan 7, 1989

XWSCROLLEDWINDOW (3X) XWSCROLLEDWINDOW (3X)

Manager Resource Set
Name Class '!ype Default
XtNbackgroundTile XtCBackgroundTile int background
XtNbottomShadowColor XtCForeground Pixel Black
XtNbottomShadowTile XtCBottomShadowTile int foreground
XtNforeground XtCForeground Pixel Black
XtNhighlightThickness XtCHighlightThickness int 0
XtNlayout XtCLayout int minimize
XtNnextTop XtCCallback Pointer NULL
XtNshadowOn XtCShadowOn Boolean TRUE
XtNtopShadowColor XtCBackground Pixel White
XtNtopShadowTile XtCTopShadowTile int 50 foreground
XtNtraversalOn XtCTraversalOn Boolean FALSE

KEYBOARD TRAVERSAL

ORIGIN

If the XtNtraversalType resource is set to highlight traversal (XwHIGHLIGHT TRAVERSAL in
an argument list) at either create time or during a call to XtSetValues, the XwPnmitivc superclass
will automatically augment the primitive widget's translations to support keyboard traversal. Refer
to the XwPrimitive man page for a complete description of these translations.

Hewlett-Packard Company.

SEE ALSO
CORE(3X), XWMANAGER(3X) XWPRIMillVE(3X),
XWSCROLLBAR(3X),XWBULLETINBOARD(3X),XWVALUATOR(3X), XWARROW(3X),
Programming With The HP X Widgets,
Programming With Xt Intrinsics,
Programming With Xlib. XtNsliderMin
XtNsliderMax XtCSliderMax
XtNsliderExtent XtCSliderExtent
XtNsliderOrigin XtCSliderOrigin

Hewlett-Packard Company -4-

XtCSliderMin int 0
int 100
int 10
int 0

Jan 7, 1989

XWS'D\TICRASTER(3X) XWS'D\TICRASTER(3X)

NAME
XwstaticRasterWidgetClass -The HP X Widget's static image widget

SYNOPSIS
#include <Xll/StringDefs.h>
#include <Xll/Intrinsic.h>
#include <XwfXw.h>
#include <XwfSRaster.h>

ClASSES
The static raster widget is built from the Core and Primitive classes.
The widget class to use when creating a static raster is XwstaticRasterWidgetCiass. The class
name is StaticRaster.

DESCRIPTION
The static raster widget provides an uneditable raster image. As a default, the image is placed in a
window that is exactly the size of the raster (plus the border width). The image can be dynamically
resized. If the window is enlarged from its original size, the image will be redrawn in the center of
the new window. If the window shrinks below the size of the raster, the image is clipped on the
right and bottom sides as needed to fit within the new boundries.
The raster image is provided to the widget in the form of an Xlmage data structure. New data can
be displayed by specifying a new Xlmage structure, or by changing the pointer to the bitmap data
within that structure.

Callbacks can be attached to the widget to report selection (XtNselect) and unselection
(XtNrelease). This widget can be set to respond to Enter and Leave window events by
highlighting and unhighlighting the border.

NEW RESOURCES
StaticRaster defines several new resources. (To reference a resource in a .Xdefaults file, strip off
the XtN from the resource string.)

StaticRaster Resource Set
Resource Class Type Default
XtNinvertOnSelect XtCinvertOnSelect Boolean TRUE
XtNset XtCSet Boolean FALSE
XtNshowSelected XtCIShowSelected Boolean TRUE
XtNsRimage XtCSRimage Xlmage • NULL

XtNinvertOnSelect
If this resource is TRUE, the raster image will invert its foreground and background
colors when selected, and return to normal when unselected.

XtNset This is a Boolean resource which indicates whether the raster is currently selected
(TRUE) or not (FALSE).

XtN showSelected
If TRUE, this will cause the image to appear to be indented when selected, and raised
when unselected.

XtNsRimage
This is a pointer to an Xlmage data structure.

INHERITED RESOURCES
The following resources are inherited from the named superclasses:

Hewlett-Packard Company - 1 - Jan 7, 1989

XWS'L\TICRASTER(3X) XWSTATICRASTER(3X)

Core Resource Set -- CORE(3X)
Name Class Type Default
XtNancestorSensitive XtCSenstitive Boolean TRUE
XtNbackground XtCBackground Pixel White
XtNbackgroundPixmap XtCPixmap Pixmap Unspecified
XtNborderColor XtCBorderColor Pixel Black
XtNborderPixmap XtCPixmap Pixmap Unspecified
XtNborderWidth XtCBorderWidth Dimension 1
XtNdepth XtCDepth int 0
XtNdestroyCallback XtCCallback Pointer NULL
XtNheight XtCHeight Dimension 0
XtNmappedWhenManaged XtCMappedWhenManaged Boolean TRUE
XtNsensitive XtCSensitive Boolean TRUE
XtNtranslations XtCTranslations XtTranslations NULL
XtNwidth XtCWidth Dimension 0
XtNx XtCPosition Position 0
XtNy XtCPosition Position 0

Primitive Resource Set -- XWPRIMITIVE(3X)
Name Class Type Default
XtNbackgroundTile XtCBackgroundTile int background
XtNbottomShadowColor XtCForeground Pixel Black
XtNbottomShadowTile XtCBottomShadowTile int foreground
XtNforeground XtCForeground Pixel Black
XtNhighlightColor XtCForeground Pixel Black
XtNhighlightStyle XtCHighlightStyle int pattern border
XtNhighlightThickness XtCHighlightThickness int 0
XtNhighlightTile XtCHighlightTile int 50 foreground
XtNrecomputeSize XtCRecomputeSize Boolean TRUE
XtNrelease XtCCallback Pointer NULL
XtNselect XtCCallback Pointer NULL
XtNshadowOn XtCShadowOn Boolean TRUE
XtNtopShadowColor XtCBackground Pixel White
XtNtopShadowTile XtCTopShadowTile int 50 foreground
XtNtraversaiType XtCTraversalType int highlight off

KEYBOARD TRAVERSAL
If the XtNtraversaiType resource is set to highlight_ traversal (XwHIGHLIGHT _TRAVERSAL in
an argument list) at either create lime or during a call to XtSetValues, the XwPrimitive superclass
will automatically augment the primitive widget's translations to support keyboard traversal. Refer
to the XwPrimitive man page for a complete description of these translations. See the
TRANSLATIONS section in this man page for a description of the translations local to the static
raster widget.

TRANSlATIONS
The static raster is affected by the mouse buttons and cursor motion. The default translation set is
as follows:

Hewlett-Packard Company -2- Jan 7, 1989

XWSTATICRASTER(3X) XWSTATICRASTER(3X)

<BtnlDown>:
<BtnlUp>:
<KeyDown>:
<KeyUp>:
< EnterWindow>:
<Leave Window>:

select(),
release(),
select(),
release(),
enter(),
leave(),

ACTIONS

NOTES

enter: Causes the border to be highlighted if enabled.

leave: Causes the border to be highlighted if enabled.

release:
Allows an application to be notified of the event via the callback structure.

select: Allows an application to be notified of the event via the callback structure.

Error checking on the Xlmage structure is minimal, so weird rasters can result from incorrect or
incomplete data.

ORIGIN
Hewlett-Packard Company.

SEE ALSO
CORE(3X), XWPRIMITIVE(3X),
Programming With The HP X Widgets,
Programming With Xt Intrinsics,
Programming With Xlib.

Hewlett-Packard Company -3- Jan 7, 1989

XWS'IATIC1EXT(3X) XWS'L\TIC1EXT(3X)

NAME

XwstaticTextWidgetClass -An X Widget for displaying StaticText.

SYNOPSIS
#include <Xll/StringDefs.h>
#include <Xll/Intrinsic.h>
#include <XwfXw.h>
#include <Xw/Sfext.h>

CLASSES

The StaticText widget is built from the Core and Primitive classes.

The widget class to use when creating a StaticText widget is XwstaticTextWidgetCiass.

The class name for StaticText is StaticText.

DESCRIPTION

StaticText provides an uneditable block of text. Optionally, StaticText will provide simple heuristics
to fit the text into arbitrarily sized windows. Imbedded new-line characters in the string are always
honored. Stripping of leading and trailing spaces is optional. Alignment of text is provided by the
XtNalignment resource. If the window is larger than necessary for the given text, the text can be
positioned at various points within the window by using the XtNgravity resource. The alignment
specified by XtNalignment is kept regardless of the setting of XtNgravity. For example, if
XtNalignment is specified as "left" in a defaults file and XtNgravity is specified as
"SouthEastGravity," the text will be positioned in the southeast comer of the box and will be
aligned on the left edge of the text.

If the StaticText widget is directed to become larger than is needed for the text, the text will be
centered in the window. The text will retain the specified alignment.

If the StaticText widget is directed to become narrower than is necessary for the text, the text may
be wrapped (depending on XtNWrap) or clipped to the right and/or left (depending on the
XtNalignment).

If the StaticText widget is directed to become shorter than is necessary for the text, the text will be
clipped on the bottom.

When the text is wrapped, StaticText will try to break lines on spaces. The space on which the line
is broken is temporarily converted to a newline.

NEW RESOURCES
To specify any of these resources within a resource defaults file, simply drop the XtN prefix from
the resource name. StaticText defines the following new resources:

StaticTeA1 Resource Set
Name Class Type Default
XtNalignment XtCAiignment XwAlignment XwALIGN LEFT
XtNfont XtCFont XFontStruct • Fixed
XtNgravity XtCGravity int CenterGravity
XtNhSpace XtCHSpace int 2
XtNiineSpace XtCLineSpace int 0
XtNrecomputeHeight XtCrecomputeHeight Boolean FALSE
XtNrecomputeWidth XtCrecomputeWidth Boolean FALSE
XtNstring XtCString char • NULL
XtNstrip XtCStrip Boolean TRUE
XtNvSpace XtCVSpace int 2
XtNwrap XtCWrap Boolean TRUE

XtNalignment
This specifies the alignment to be applied when drawing the text. The alignment resource
is interpreted without regard to case.

Hewlett-Packard Company - 1 - Jan 7, 1989

XWSTATICTEXT(3X) XWSTATICTEXT(3X)

XtNfont

Alignment never causes leading or trailing spaces to be stripped.
Alignment may have the following values and effects:

XwALIGN LEFT will cause the left sides of the lines to be vertically aligned.
Specified in resource default file as "Left".

XwALIGN CENTER will cause the centers of the lines to be vertically
aligned. Si}ecified in resource default file as "Center".

XwALIGN RIGHT will cause the right sides of the lines to be vertically
aligned. Specified in resource default file as "Right".

This resource controls which font the text will be drawn in.
XtNgravity

This resource controls the use of extra space within the widget. No matter how the texi is
aligned, the gravity resource determines where the text will be placed within the window
when there is more space than is needed to display the text.

XtNhSpace

CenterGravity will cause the string to be centered in the extra space.
Specified in the resource defaults file as "CenterGravity''. TI1is is the default
setting.

NorthGravity will cause the string to always to be at the top of the window
centered in any extra width. Specified in the resource defaults file as
"North Gravity".

SouthGravity will cause the string to always to be at the bottom of the window
centered in any extra width. Specified in the resource defaults file as
"South Gravity".

EastGravity will cause the string to always be at the right of the window
centered in any extra height. Specified in the resource defaults file as
"EastGravity''.

WestGravity will cause the string to always be at the left of the window
centered in any extra height. Specified in the resource defaults file as
"WestGravity".

NorthWestGravitywill cause the string to always be in the upper left corner of
the window. Specified in the resource defaults file as "NorthWestGravity".

NorthEastGravity will cause the string to always be in the upper right corner
of the window. Specified in the resource defaults file as "NorthEastGravity''.

SouthWestGravity will cause the string to always be in the lower left corner of
the window. Specified in the resource defaults file as "SouthWestGravity''.

SouthEastGravitywill cause the string to always be in the lower right corner
of the window. Specified in the resource defaults file as "SouthEast Gravity".

This specifies the number of pixels to maintain between the text and the highlight area to
the right and left of the text.

XtNlineSpace
This resource controls the amount of space between lines. It is specified as a percentage
of the font height. This space is added between each line of text. XtNlineSpace may be
negative to a maximum of -100 (which causes all lines to overwrite each other).

Hewlett-Packard Company - 2- Jan 7, 1989

XWSTATICI'EXT(3X) XWSTATICTEXT(3X)

XtNrecomputeHeight
If set to TRUE, this resource tells the widget to compute the optimum height for the data
that is to be displayed within the widget. The widget then makes a request to its parent
widget to grow to this height. This resource is ignored if XtNrecomputeSize is TRUE.

XtNrecomputeWidth
If set to TRUE, this resource tells the widget to compute the optimum width for the data
that is to be displayed within the widget. The widget then makes a request to its parent
widget to grow to this width. This resource is ignored if XtNrecomputeSize is TRUE.

XtNstring
This resource is the string which will be drawn. The string must be null terminated. If
the string is given in a resource defaults file, newlines may be specified by "\n" within the
string.

XtNstrip
This resource controls the stripping of leading an trailing spaces during the layout of the
text string. If XtNstrip is FALSE, spaces are not stripped. If XtNstrip is TRUE and
XtNalignment is XwALIGN LEFT, leading spaces are stripped from each line. If
XtNstrip is TRUE and XtNaiignment is XwALIGN CENTER, both leading and trailing
spaces are stripped from each line. If XtNstrip is TRUE and XtNalignment is
XwALIGN _RIGHT, trailing spaces are stripped from each line.

XtNvSpace
This specifies the number of pixels to maintain between the text and the highlight area to
the top and bottom of the text.

XtNwrap
This resource controls the wrapping of lines within the widget. If XtNwrap is TRUE, lines
which are too long are broken on spaces. The spaces are converted to new-lines to break
the line. Imbedded new-lines are honored. If there is too much text for the specified
window size, it will be clipped at the bottom.

If XtNwrap is FALSE, lines which are too long will be clipped according to the alignment.
An XtNalignment value of XwALIGN LEFT will cause lines which are too long to be
clipped to the right. An XtNalignment value of XwALIGN _RIGHT will cause lines which
are too long to be clipped to the left. An XtNalignment value of XwALIGN _CENTER
will cause lines to be clipped equally on both the right and the left.

Hewlett-Packard Company - 3- Jan 7, 1989

XWSTATICfEXT(3X) XWSTATICTEXT(3X)

INHERITED RESOURCES
The following resources are inherited from the indicated superclasses:

Core Resource Set -- CORE(3X)
Name Class 'JYpe Default
XtNancestorSensitive XtCSenstitive Boolean TRUE
XtNbackground XtCBackground Pixel White
XtNbackgroundPixmap XtCPixmap Pixmap Unspecified
XtNborderColor XtCBorderColor Pixel Black
XtNborderPixmap XtCPixmap Pixmap Unspecified
XtNborderWidth XtCBorderWidth Dimension 1
XtNdepth XtCDepth int 0
XtNdestroyCallback XtCCallback Pointer NULL
XtNheight XtCHeight Dimension 0
XtNmappedWhenManaged XtCMappedWhenManaged Boolean TRUE
XtNsensitive XtCSensitive Boolean TRUE
XtNtranslations XtCTranslations XtTranslations NULL
XtNwidth XtCWidth Dimension 0
XtNx XtCPosition Position 0
XtNy XtCPosition Position 0

Primitive Resource Set -- XWPRIMITIVE(3X)
Name Class 'JYpe Default
XtNbackgroundTile XtCBackgroundTile int background
XtNbottomShadowColor XtCForeground Pixel Black
XtNbottomShadowTile XtCBottomShadowTile int foreground
XtNforeground XtCForeground Pixel Black
XtNhighlightColor XtCForeground Pixel Black
XtNhighlightStyle XtCHighlightStyle int pattern border
XtNhighlightThickness XtCHighlightThickness int 0
XtNhighlightTile XtCHighlightTile int 50 foreground
XtNrecomputeSize XtCRecomputeSize Boolean TRUE
XtNrelease XtCCallback Pointer NULL
XtNselect XtCCallback Pointer NULL
XtNshadowOn XtCShadowOn Boolean TRUE
XtNtopShadowColor XtCBackground Pixel White
XtNtopShadowTile XtCTopShadowTile int 50 foreground
XtNtraversalType XtCTraversaiType int highlight off

TRANSLATIONS
The input to the toggle is driven by the mouse buttons. The default translation set defining this
button is listed below. Note that for the specific key symbols used in traversal, the HP Key Cap
which corresponds to this key symbol appears to the right of the definition.

ACTIONS

Hewlett-Packard Company

<EnterWindow>:
<Leave Window>:
<Key Down> Select:
< KeyUp >Select:

enter()
leave()
select()
release()

-4-

HP "Select" key
HP "Select" key

Jan 7, 1989

XWSTATICfEXT(3X) XWSTATICfEXT(3X)

NOTES

ORIGIN

enter If the XtNtraversalType resource has been set to XwHIGHLIGIIT OFF then the
StaticText will be highlighted. Otherwise no action is taken. -

leave If the XtNtraversalType resources has been set to XwHIGHLIGIIT OFF then the
StaticText will be unhighlighted. Otherwise no action is taken. -

release Invokes the release callbacks.
select Invokes the select callbacks.

The forced new line is the '\n' character constant as defined by the C compiler. Fonts which do
not use that character constant for the newline will not be handled correctly by StaticText.
StaticText will assume that the space is the ' ' character constant as defined by the C compiler.
Fonts which do not use that character constant for spaces will not be handled correctly by
StaticText.

Non-8-bit character representations have undefined effects on the operation of StaticText.

Hewlett-Packard Company.
SEE ALSO

XWPRIMillVE(3X),
Programming With The HP X Widgets,
Programming With Xt Intrinsics,
Programming With Xlib.

Hewlett-Packard Company -5- Jan 7, 1989

XWTEXTEDIT(3X) XWTEXTEDIT(3X)

NAME
XwtextEditWidgetCiass -An X Widget for viewing and editing text.

SYNOPSIS
#include <Xll/StringDefs.h>
#include <Xll/Intrinsic.h>
#include <XwfXw.h>
#include <Xw/fextEdit.h>

ClASSES
TextEdit is built from the Core and Primitive classes.

The widget class record to use when creating a text edit widget is XwtextEditWidgetCiass.

The class name for TextEdit is TextEdit.

OVERVIEW
TextEdit provides a single and multi-line text editor which has both a customizable user interface
and a programmatic interface. It can be used for single-line string entry, forms entry with
verification procedures, multiple-page document viewing. and full-window editing. It provides an
application with a consistent editing paradigm for entry of textual data.

The display of the textual data on the screen can be adjusted to the application writer's need based
on four class resources, XtNwrap, XtNwrapBreak, XtNscroll, and XtNgrow. XtNwrapP controls
automatic line breaking for lines that extend off the end of the screen. XtNscroll controls
horizontal and vertical shifting of the text when the insertion cursor moves off the screen.
XtNgrow controls attempts by the widget to resize its window to make more room for text that
extends beyond the current screen size. These resources are explained in detail below.

TextEdit provides separate callback lists to verify insertion cursor movement, modification of the
text, and leaving the TextEdit widget. Each of these callbacks provides the verification function
with the widget instance, the event that caused the callback, and a data structure specific to the
verification type. From this information the function can verify if the application considers this to
be a legitimate state change and signal the widget whether to continue with the action. The
verification function can also manipulate the widget through the class methods defined by the
TextEdit class. The verification callback lists are explained in detail below.

The user interface can be tailored by providing a new set of translations. The default translations
provide commands for movement, deletion, killing and selection with key bindings similar to an
EMACS style editor.

TextEdit allows the user to select regions of text. By using TextEdit's selection mechanism,
application writers can easily fit instances of TextEdit into Xll's current selection mechanism.

The TextEdit class controls the data structures for drawing the text on the screen and defines the
functions that manipulate that data. The storage of the text is provided by a separate component
called the Source. The Source provides the storage of the textual data and a set of functions for
querying and changing that data. The application writer can provide a new source for the TextEdit
widget. The details are provided below.

NEW RESOURCES
TextEdit defines the following new resources:

NOTE: Resource values can be set in resource defaults files (such as the .Xdefaults) by stripping
the "Xw'' from the value and replacing any remaining upper case characters with lower case. For
example, to set the value XwSoftWrap for the resource XtNwrap, use "softwrap."

Hewlett-Packard Company - 1 - Jan 7, 1989

XWTEXTEDIT(3X) XWTEXTEDIT(3X)

TextEdit Resource Set
Name Class 'l)'pe Default
XtNbottomMargin XtCMargin Dimension 2
XtNdisplayPosition XtCfextPosition XtTextPosition 0
XtNexecute XtCallback XtCallbackProc NULL
XtNextendKey XtCExtendKey int XwMeta
XtNgrow XtCGrow XwGrow XwGrowOff
XtNinsertPosition XtCfextPosition XtTextPosition 0
XtNleaveVerification XtCallbackProc XtRCallback NULL
XtNleftMargin XtCMargin Dimension 5 (See Note Below)
XtNmodifyVerification XtCallbackProc XtRCallback NULL
XtNmotionVerification XtCallbackProc XtRCallback NULL
XtNrightMargin XtCMargin Dimension 5 (See Note Below)
XtNscroll XtCScroll XwScroll XwAutoScrollVertical
XtNselection XtCSelection XwTextSelection• NULL
XtNsourceType XtCSourceType XwSourceType "stringsrc"
XtNtextSource XtCfextSource Pointer NULL
XtNtopMargin XtCMargin Dimension 2
XtNwrap XtCWrap XwWrap XwSoftWrap
XtNwrapBreak XtCWrapBreak XwWrapBreak XwWrapWhiteSpace

XtNbottomMargin
The number of pixels used for the bottom margin. Default is two or the highlight
thickness, whichever is greater.

XtNdisplayPosition
The position in the text source that will be displayed at the top of the screen. 1l1e default
is 0, or the start of the text source.

XtNexecute
This callback list is similar to a selection function on a button. When the user invokes an
event that calls the "execute" function (see the translation table below), this callback list
will be executed. In the default translation table, this is bound to the "enter" key.

XtNextendKey
This resource redefines the meta modifier key (NOTE: See your system administrator for
the identity of the meta modifier key on your keyboard). The actions that use the meta
modifier key (see the section entitled "DEFAULT KEY BINDINGS FOR TEXTEDIT"
in this man page) can be redefined so that the "ESC" key becomes the meta modifier key.
This is done by setting XtNextendKey to XwEsc. This is useful when the application
intends to use the extended character set. The only other setting for this resource is
XwMeta, the default setting.

XtNgrow
This resource controls if the widget will try to resize its window when it needs more height
or width to display the text. When set to XwGrowOff it will not resize itself. When set to
XwGrowHorizontal it will attempt to change its width when lines are too long for the
current screen width. When set to XwGrowVertical it will attempt to resize its height
when the number of text lines is greater than can be displayed with the current screen
height. When set to XwGrowBoth, the widget will attempt resizes in both dimensions.
Growth attempts have higher priority than either wrapping or scrolling. If enabled, the
widget will always try to grow to display text before trying to wrap or scroll. The default is
XwGrowOff. The success of a resize request is determined by the widget's parent.

XtNinsertPosition
The position in the text source of the insert cursor. The default is 0.

XtNleaveVerification
This verification callback list is called before the widget loses input focus. The default is

Hewlett-Packard Company -2- Jan 7, 1989

XWTEXTEDIT(3X) XWTEXTEDIT(3X)

NULL. See the verification section below.

XtNleftMargin
The number of pixels used for the left margin.

NOTE: If TextEdit is embedded in a manager with keyboard traversal enabled, it will
silently enforce the constraint that left and right margins must be at least 3 pixels wider
than the highlight border width.

XtNmodifyVerification
This verification callback list is called before text is deleted from or inserted to the text
source. The default is NULL. See the verification section below.

XtNmotionVerification
This verification callback list is called before the insertion cursor is moved to a new
position. The default is NULL. See the verification section below.

XtNrightMargin
The number of pixels used for the right margin.

XtNscroll
This resource controls the horizontal and vertical scrolling of lines longer than the screen
width. When set to XwAutoScroiiOff the widget will not scroll. When set to
XwAutoScroiiVertical, the widget will scroll lines vertically. When set to
XwAutoScroiiHorizontal, the widget will scroll a single-line display horizontally.
Horizontal scrolling is not currently supported for multi-line displays. Both horizontal
and vertical scrolling can be set with XwAutoScroiiBoth (again, subject to the single-line
horizontal restriction). The default is XwAutoScroiiVertical. XtNscroll has lower priority
than XtNwrap, meaning if wrapping is enabled, the widget will attempt to wrap to the next
line before it will attempt to scroll horizontally.

XtNselection
This resource specifies a pointer to a structure that contains the beginning and ending
position of the initial selection, as well as the selection type. The possible values for this
resource are XwselectPosition, XwselectWord, XwselectLine, XwselectParagraph,
XwselectAII, and XwselectNull. XwselectNull is the default value for this resource.

XtNsource'JYpe
This resource describes the text source type. Valid argument list settings are XwstringSrc,
XwdiskSrc, and XwprogramDefinedSrc. to set this resource in a resource defaults file
(such as .Xdefaults) use the strings "stringsrc", "disksrc", and "programdefinedsrc".

XtNtextSource
This resource specifies the new source. When XtNsourceType is of type
XwprogramDefinedSrc, TextEdit uses the value in this resource to define the text source.
The default value is NULL.

XtNtopMargin
The number of pixels used for the top margin.

XtNwrap
This resource specifies how the widget displays lines longer than the screen width. When
set to XwWrapOff, the lines may extend off screen to the right. When set to XwSoftWrap,
the lines will be wrapped at the right margin with the actual position determined by the
resource XtNwrapBreak.

XtNwrapBreak
This resource specifies how the wrap position is determined. When set to XwWrapAny,
the wrap will happen at the character position closest to the right margin. When set to
XwWrapWhiteSpace, the wrap will happen at the last whitespace before the right margin.
If the line does not have whitespace, it will be wrapped as XwWrapAny.

SUBCOMPONENT RESOURCES
TextEdit defines three groups of subcomponent resources: StringSrc, DiskSrc, and Display.
These groups are described below.

Hewlett-Packard Company -3- Jan 7, 1989

XWTEXTEDIT(3X) XWTEXTEDIT(3X)

StringSrc
StringSrc defines the following new resources. They can be specified in a resource file by
the name "stringsrc" under the name of the TextEdit widget, or through the class
"StringSrc."

StringSrc Resource Set
Name Class Type Default
XtNeditType XtCEditType XwEditType XwtextEdit
XtNmaximumSize XtCLength int NULL
XtNstring XtCString char • NULL

XtNeditType.
This resource controls the edit state of the source. It can be XwtextRead, a read
only source, XwtextAppend, a source that can only be appended to, and
XwtextEdit, a fully editable source.

XtNmaximumSize.
The maximum number of characters that can be entered into the internal buffer. If
this value is not set then the internal buffer will increase its size as needed limited
only by the space limitations of the process.

XtNstring.
The initial string to be viewed and/or edited. The default is the empty string. An
XtGetValues call on this resource will return a copy of the internal buffer. 1l1e
application program is responsible for freeing the space allocated by the copy. An
XtSetValues call will copy the given string into the internal buffer.

DiskSrc

Display

DiskSrc defines the following new resources. They can be specified in a resource file by
the name "disksrc" under the name of the TextEdit widget, or through the class
"DiskSrc."

DiskSrc Resource Set
Name Class Type Default
XtNeditType XtCEditType XwEditType XwtextRead
XtNfile XtCFile char • NULL

XtNeditType.
This resource controls the edit state of the source. It can be XwtextRead, a read
only source, and XwtextAppend, a source tha can only be appended to.

XtNfile.
The absolute pathname of a disk file to be viewed and/or appended to. When
opening for an append, if no file is given a temporary file will be created.

Display defines the following new resources. They can be specified in a resource file by
the name "display'' under the name of the TextEdit widget, or through the class
"Display."

Display resource Set
Name Class Type Default
XtNfont XtCFont XFontStruct • Fixed
XtNforeground XtCForeground XtRPixel Black

XtNfont.

Hewlett-Packard Company -4- Jan 7, 1989

XWTEXTEDIT(3X) XWTEXTEDIT(3X)

The font used to display the text. The default is fixed. There are currently several
display bugs associated with proportional fonts.

XtNforeground.
The color for drawing the text. The default is black.

INHERITED RESOURCES
The following resources are inherited from the indicated superclasses:

Core Resource Set -- CORE(3X)
Name Class Type Default
XtNancestorSensitive XtCSenstitive Boolean TRUE
XtNbackground XtCBackground Pixel White
XtNbackgroundPixmap XtCPixmap Pixmap Unspecified
XtNborderColor XtCBorderColor Pixel Black
XtNborderPixmap XtCPixmap Pixmap Unspecified
XtNborderWidth XtCBorderWidth Dimension 1
XtNdepth XtCDepth int 0
XtNdestroyCallback XtCCallback Pointer NULL
XtNheight XtCHeight Dimension 0
XtNmappedWhenManaged XtCMappedWhenManaged Boolean TRUE
XtNsensitive XtCSensitive Boolean TRUE
XtNtranslations XtCTranslations XtTranslations NULL
XtNwidth XtCWidth Dimension 0
XtNx XtCPosition Position 0
XtNy XtCPosition Position 0

Primitive Resource Set -- XWPRIMITIVE(3X)
Name Class Type Default
XtNbackgroundTile XtCBackgroundTile int background
XtNbottomShadowColor XtCForeground Pixel Black
XtNbottomShadowTile XtCBottomShadowTile int foreground
XtNforeground XtCForeground Pixel Black
XtNhighlightColor XtCForeground Pixel Black
XtNhighlightStyle XtCHighlightStyle int pattern border
XtNhighlightThickness XtCHighlightThickness int 0
XtNhighlightTile XtCHighlightTile int 50 foreground
XtNrecomputeSize XtCRecomputeSize Boolean TRUE
XtNrelease XtCCallback Pointer NULL
XtNselect XtCCallback Pointer NULL
XtNshadowOn XtCShadowOn Boolean TRUE
XtNtopShadowColor XtCBackground Pixel White
XtNtopShadowTile XtCTopShadowTile int 50 foreground
XtNtraversaiType XtCTraversaiType int highlight off

KEYBOARD TRAVERSAL
If the XtNtraversa!Type resource is set to highlight traversal (XwHIGHLIGHT TRAVERSAL in
an argument list) at either create time or during a call to XtSetValues, the XwPnmitive superclass
will automatically augment the primitive widget's translations to support keyboard traversal. Refer
to the XwPrimitive man page for a complete description of these translations. Refer to the
TRANSLATIONS section in this man page for a description of the translations local to the

Hewlett-Packard Company -5- Jan 7, 1989

XWTEXTEDIT(3X) XWTEXTEDIT(3X)

scrolled window widget.

TRANSlATIONS
Since TextEdit has full editing functionality, it supports an elaborate set of translations. The
following table lists TextEdit's default translations, which are a subset of key bindings from an
EMACS editor. (An EMACS editor refers to a set of editors based on the original design of R.M.
Stallman at MIT for an extensible, customizable, self-documenting display editor.) TextEdit
supports the concept of delete and kill. Both delete and kill remove a unit of text from the text
source, but text that has been removed with a kill can be restored by an unkill action. Kills are
stored in the X Cutbuffer 1, so that a kill in one instance of a TextEdit widget can be inserted into
another instance of a TextEdit widget. TextEdit does not support a history of kills in a kill ring,
nor the appending of kills made in sequence. TextEdit highlights the current selection by
reversing the foreground and background color. Text that has been copied from TextEdit into the
current selection storage can be inserted into the buffer with a stuff action.

Each of these functions can be rebound to a different key in the default translation file set in
.Xdefaults. The string to identify the function is identical to the function name used below. For
example, to bind Control-I to move the insertion point forward one word is:

Ctrl <Key> 1: forward-word

See Programming With the HP X Widgets and the Xt Intrinsics for more information on the
Xdefaults file and translations.

TextEdit works with keyboard traversal and defines the required actions.

DEFAULT KEY BINDINGS FOR TEXTEDIT

Movement
CtrlF forward-character
Right Arrow forward-character
Ctr!B backward-character
Left Arrow backward-character
MetaF forward-word
MetaB backward-word
Meta] forward-paragraph
Ctrl [backward-paragraph
CtrlA beginning-of-line
Ctrl E end-of-line
CtrlN next-line
Down Arrow next-line
CtrlP previous-line
UpArrow previous-line
CtrlV next-page
Next next-page
Meta V previous-page
Prev previous-page
Home beginning-of-file
Shift Home end-of-file
Ctrl Z scroll-one-line-up
MetaZ scroll-one-line-down

Hewlett-Packard Company -6- Jan 7, 1989

XWfEXTEDIT(3X) XWfEXTEDIT(3X)

Delete, Kill, and Stull'
Ctr!D delete-next-character
Ctrl H delete-previous-character
Meta D: delete-next-word
MetaH delete-previous-word
Shift Meta D kill-word
Shift Meta H backward-kill-word
Ctrl W kill-selection
Ctrl K kill-to-end-of-line
MetaK kill-to-end-of-paragraph
Ctrl Y unkill
MetaY stuff

Miscellaneous
Ctr!O newline-and-backup
CtrlM newline
<BtnlDown> select-start
Buttonl <PtrMoved > extend-adjust
<BtnlUp> extend-end
<Btn2Down> stuff
<Btn3Down> extend-start
Button3 < PtrMoved > extend-adjust
<Btn3Up> extend-end
Ctrl L redraw-display
<Key> insert-char

KEYBOARD TRAVERSAL

The following table summarizes the keystrokes which (when keyboard traversal is active) will
move the focus. The keys used elsewhere in the X Widgets library for keyboard traversal are used
for other purposes in the text edit widget. Therefore, it was necessary to define other keystrokes
to serve these functions. To minimize the incompatibility the decision was made to use the same
keys with the addition of the Ctl modifier to implement keyboard traversal in this widget.

Keyboard Traversal
Ctr!Down traverse-down
CtrlHome traverse-home
Ctrl Left traverse-left
Ctrl Next traverse-next
Ctrl Prev traverse-prev
Ctrl Right traverse-right
Ctrl Up traverse-up

traverse-down:
Inform the parent of this widget that it should transfer keyboard focus to the first widget
below this one.

traverse-home:
Inform the parent of this widget that it should transfer keyboard focus to the child which
is closest to the uppper left hand comer of the parent. If that child already has the
keyboard focus, then ask the grandparent of this widget to give the keyboard focus to
whichever of its children which is closest to the upper left hand corner.

traverse-left:
Inform the parent of this widget that it should transfer keyboard focus to the first widget
to the left of this one.

Hewlett-Packard Company -7- Jan 7, 1989

XWTEXTEDIT(3X) XWTEXTEDIT(3X)

traverse-next:
Inform the parent of this widget that it should transfer keyboard focus to the next child in
the parent's list of children.

traverse-prev:
Inform the parent of this widget that it should transfer keyboard focus to the previous
child in the parent's list of children.

traverse-right:
Inform the parent of this widget that it should transfer keyboard focus to the first widget
to the right of this one.

traverse-up:
Inform the parent of this widget that it should transfer keyboard focus to the first widget
above this one.

DISPlAYING TEXT, WORD WRAP AND ACTIONS
Text is considered to be hierarchically composed of white space, words, lines and paragraphs.
These component concepts are currently hard-coded, but we intend that future versions will
support a more general version of the text composition hierarchy. White space is defined as any
non-empty sequence of the ASCII characters space, tab, linefeed or carriage return (decimal
values of 32, 9, 10, 13, respectively); a word is any non-empty sequence of characters bounded on
both sides by whitespace. A source line is any (possibly empty) sequence of characters bounded
by newline characters; a display line is any (possibly empty) sequence of characters appearing on a
single screen display line. A source paragraph is any sequence of characters bounded by sets of
two or more adjacent newline characters. a display paragraph is any (possibly empty) sequence of
characters bounded by newline characters (NOTE: this is identical to the definition of a source
line). In all cases, the beginning or end of the edit text is an acceptable bounding element in the
previous definitions.

When making display decisions, TextEdit first determines whether all the text will fit in the current
display. If it does not, and growing is enabled, the widget will make resize request of its parent. If
the request is denied or only partially satisfied, no future growth requests will be made unless
there is an intervening resize operation externally imposed. If any source line is still too long to fit
in the display after growing is attempted, wrapping is checked. If wrap is off (XwWrapOff), one
display line is drawn for each source line. If a source line is too long for the display, it is truncated
at the right margin after the last full character which fits. If wrapping is enabled (XwSoftWrap), a
new display line will be started with the first word which doesn't fit on the current line. If the
wrap break option is XwWrapAny, as many characters from that word as will fit before the right
margin are written to the current display line, then the next character starts at the left margin of
the next display line. If the wrap break option is XwWrapWhiteSpace, the line break is instead
made after the first whitespace character which follows the last full word which does fit on the
current display line. If, however, under white space break, the first full word which does not fit is
also the first word on the line, the wrap break is made as if XwWrapAny were selected.

VERIFICATION CALLBACKS
Three types of verification callbacks are supported by TextEdit There is one for motion
operations, to verify a new insert position; there is one for modifying operations, to verify
insertion, deletion or replacement of text; there is one for widget exit, to verify state consistency on
loss of focus by the widget. Each verification callback procedure is of type XtCallbackProc, which
defines the three arguments it will be invoked with. These are the id of the widget making the
callback, the client data which was specified by the client application when the callback was
registered (see XtAddCallback), and a pointer (type XwTextVerifyPtr) to the verification call_ data
structure. The C data types used here are:

typedef enum {motion Verify, modVerify, leave Verify} XwVerifyopType ;

typedef struct {
XEvent *xevent ;
XwVerifyopType operation ;

Hewlett-Packard Company -8- Jan 7, 1989

XWTEXTEDIT(3X) XWTEXTEDIT(3X)

boolean doit ;
XtTextPosition currlnsert, newlnsert ;
XtTextPosition startPos, endPos ;
XtTextBlock *text ;
} XwTextVerifyCD, *XwTextVerifyPtr ;

Before the chain of verification callbacks is activated for any given operation, a structure of type
XtTextVerifyCD is initialized. The initial values are:

xevent: for a leave operation, the current event pointer

operation:

do it:

currlnsert:

new Insert:

startPos:

endPos:

text:

element of opType signifying the type of verification operation

TRUE

current position of the insert point

for a motion operation, the position the user is attempting to move the
insert point to, otherwise, the same value as currlnsert

for a modify operation, the beginning position in the current source of the
text about to be deleted or replaced, or where new text will be inserted. If
not a modify operation, the same value as currlnsert.

for a modify operation, the ending position in the current source of the
text about to be deleted or replaced. If no text is being removed, it will
have the same value as startPos. If not a modify operation, the same value
as currlnsert.

for a modify operation with new text to be inserted, a pointer to a structure
of type XtTextBlock, which references the text to be inserted. Otherwise,
NULL.

It is possible for the client to register more than one callback procedure for any of these callback types.
The order in which the callbacks will be invoked is described in the toolkit documentation. Since there can
be more than one callback, each verification procedure should first check the "doit" field. If it is false,
someone else has already rejected the operation, so there is no need for further evaluation. On return
from invoking the chain of callbacks, the TextEdit widget will look at the "doit" member of the
XtTextVerifyCD structure. If it is still true, TextEdit will proceed with operation, otherwise it will not. Any
user feedback for the rejected operation is the responsibility of the verification procedure. Verification
callbacks are permitted to modify some of the data in the XtTextVerifyCD structure. The TextEdit widget
will only look at certain fields on return, though, according to the operation type. For a motion operation, only the newlnsert position will be looked at. For a modify operation, only startPos, endPos and text will
be examined for changes. For leave operation, no fields will be examined. There is no mechanism for
preventing a verification callback from making other changes to the editing state through the documented
interface, but such behind-the-back actions are discouraged.

APPLICATION WRITER'S INTERFACE
The state ofTextEdit can be changed in through the normal functional interface to widgets
(XtSetValues and XtGetValues) or by exported external functions.

TextEdit's resources can be queried and set through XtSetValues and XtGetValues. The widget
will maintain its display consistent with the new values. In particular, this is the method for
changing the display options.

The internal buffer should be manipulated through the external functions that follow.

Hewlett-Packard Company - 9- Jan 7, 1989

XWfEXTEDIT(3X) XWfEXTEDIT(3X)

This set of external functions is designed to allow the widget programmer to access the internal
buffer that TextEdit manages. For example, if the widget is being used to enter a string, the
program can get a copy of the string (i.e. the internal buffer) with the function XwTextCopyBuffer
or XwTextReadSubString. All of the following functions that change the contents of the buffer, its
selection, or insertion position, will update the display after they are called. If the programmer
needs to make a sequence of these calls, the widget's screen updating function should be turned
off with a call to XwTextUpdate(Ofl) to prevent screen flash. After the sequence of calls the
programmer must remember to call XwTextUpdate(On) to update the window and resume
normal updating. Note that it is not necessary to turn off the update function for functions that
only get values from the widget. Neither is it necessary to use these calls if the programmer only
makes one call that changes the widget.

ButTer Functions
void XwTextClearBuffer(w)

XwTextEditWidget w;
Clear the internal buffer. After this call all characters in the buffer have been removed.

void *XwTextCopyBuffer(w)
XwTextEditWidget w;

This function uses XtMalloc to create space to make a copy of the internal buffer and
returns the pointer to that copy. The application writer is responsible for freeing the
space.

Read a Substring
int XwTextReadSubString(w, startpos, endpos, target, targetsize, targetused)

XwTextEditWidget w;
XwTextPosition startpos, endpos;
unsigned char *target;
int targetsize,

*targetused;
This function will move characters from the buffer into the caller's space. TI1e caller must
provide the space to copy into and its size in bytes. The routine will return the number of
positions moved. The value of targetused returns the number of bytes used in the target
string by the move.

Selection
void *XwTextCopySelection(w)

XwTextEditWidget w;
This function uses XtMalloc to create space to make a copy of the current selection and
returns the pointer to that copy. The application writer is responsible for freeing the
space.

void XwTextUnsetSelection(w)
XwTextEditWidget w;

This function will clear the current selection.

void XwTextSetSelection(w, left, right)
XwTextEditWidget w;
XwTextPosition left, right;

This function sets the current selection to be between the character positions left to right.

void XwTextGetSelectionPos(w, left, right)
XwTextEditWidget w;
XwTextPosition *left, *right;

This function returns the character positions of the current selection.

Hewlett-Packard Company -10- Jan 7, 1989

XWTEXTEDIT(3X) XWTEXTEDIT (3X)

void XwTextSetSelectionArray()
XwTextEditWidget w;
XwSelectType *sarray;

This function resets the selection types for multiple mouse button clicks.
The array must be terminated with XwselectNull. The possible types are
XwselectPosition, XwselectWord, XwselectLine, XwselectParagraph,
XwselectAII, and XwselectNull.

Insertion and Deletion
void XwTextinsert(w, string)

XwTextEditWidget w;
unsigned char *string;

This function inserts the string at the current insertion position and advances the insertion
position to the end of the string.

void XwTextReplace(w, startPos, endPos, text)
XwTextEditWidget w;
XwTextPosition startPos,

endPos;
unsigned char *text;

Remove text in the source from startPos to endPos and insert the string text starting at
startPos. If startPos and endPos are the same the action is an insertion. If text is the
empty string, the action is a deletion.

Drawing and Updating
void XwTextRedraw(w);

XwTextEditWidget w;
Refresh the widget screen.

void XwTextUpdate(w, status)
XwTextEditWidget w;
Boolean status;

This function turns the widget's screen updating function on and off. Wrapping these calls
around a sequence of calls that change the content of the internal buffer will prevent
screen flash.

End of Buffer
XwTextPosition XwTextGetLastPos (w, lastPos)

XwTextEditWidget w;
This function returns the last character position in the buffer.

Insertion Position
void XwTextSetlnsertPos(w, position)

XwTextEditWidget w;
XwTextPosition position;

XwTextPosition XwTextGetlnsertPos(w)
XwTextEditWidget w;

These functions set and return the insertion position.
Setting the Source

void XwTextSetSource(w, source, startpos)
XwTextEditWidget w;
XwTextSourcePtr source;
XwTextPosition startpos;

SOURCE DEFINITION
The source provides textual data space and functions for manipulating that data. The functions
are defined below. An application can define its own source by reimplementing these functions.

Hewlett-Packard Company - 11- Jan 7, 1989

XWfEXTEDIT(3X) XWfEXTEDIT(3X)

Read

Replace

XwTextPosition DiskReadText(src, pos, text, maxread)
XwTextsource *src;
XwTextPosition pos;
XwTextblock *text;
XwTextPosition maxread;

or
XwTextPosition SourceReadText(src, pos, text, maxread)

XwTextsource *src;
XwTextPosition pos;
XwTextblock *text;
XwTextPosition maxread;

This function returns a read-only text block in the src with maxread number of characters
starting from pos. The return value is the next character position following the block.

XwEditResult DiskReplaceText(src, startpos, endpos, textblk, delta)
XwTextsource *src;
XwTextPosition startpos,

endpos;
XwTextBlock *textblk;
XwTextPosition *delta;

or
XwEditResult StringReplaceText(src, startpos, endpos, textblk, delta)

XwTextsource *src;
XwTextPosition startpos,

endpos;
XwTextBlock *textblk;
XwTextPosition *delta;

This function removes existing text in src between startpos and endpos and inserts new
text from textblk at startpos. delta is change in the size of the text source. It returns
XweditDone for a successful operation, XweditPosError for positional errors when
source is in XttextAppend mode, and XweditError when the operation could not be
performed.

SetLastPosition

Scan

void DiskSetLastPos(src, lastpos)
XwTextSource *src;
XwTextPosition lastpos;

or
void StringSetLastPos(src, lastpos)

XwTextSource *src;
XwTextPosition lastpos;

This functions sets the last position in the source.

XwTextPosition DiskScan(src, pos, scantype, dir, count, include)
XwTextsource *src;
XwTextPosition pos;
XwScanType scantype;
XwScanDirection dir;
int count;
Boolean include;

or
XwTextPosition StringScan(src, pos, scantype, dir, count, include)

XwTextsource *src;
XwTextPosition pos;
XwScanType scantype;

Hewlett-Packard Company - 12- Jan 7, 1989

XWfEXTEDIT(3X) XWTEXTEDIT(3X)

XwScanDirection dir;
int count;
Boolean include;

SourceScan searches in dir direction (XwsdLeft XwsdRight) for XwScantype
(XwstPositions, XwstWhiteSpace, XwstEOL, XwstParagraph, XwstLast). The variable
"count" is the number of the given type it will scan over. The variable "include" indicates
whether to count the item currently being pointed to. It returns the starting position of the
item scanned for.

EditJYpe
XtEdittype DiskGetEditType(src)

XwTextsource *src;
or
XtEdittype StringGetEditType(src)

XwTextsource *src;
Returns the edit type of source.

NATIONAL lANGUAGE 1/0 SUPPORT
TextEdit supports 16-bit National Language I/0 (NLIO) if you have the NLIO subsystem package
installed. In order to see and edit 16-bit characters, an appropriate font must be loaded and 16-bit
text must be encoded in "HP-15." The language to be used is determined by the environment
variable lANG or the physical keyboard in use. If lANG is set to a valid language, that language
is used. If it is not set or is set to an invalid value, then TextEdit will determine the language of
the physical keyboard in use and use that language. You should set the resource XtNextendKey to
the value XwEsc when using 16-bit NLIO. Note that 16-bit NLIO is currently supported when
using StringSrc but not when using DiskSrc.

CURRENT LIMI'D\TIONS

ORIGIN

The current default source is not optimized for large amounts of data. Xll's current selection is
not yet supported.

Digital Equipment Corporation. Massachusetts Institute of Technology. Hewlett-Packard
Company.

SEE ALSO
CORE(3X), XWPR1MITIVE(3X),
Programming With The HP X Widgets,
Programming With Xt Intrinsics,
Programming With Xlib.

Hewlett-Packard Company -13- Feb 2,1989

XWTITLEBAR(3X) XWTITLEBAR(3X)

NAME
XwtitleBarWidgetClass -An X Widget for creating titlebars.

SYNOPSIS
#include <Xll/StringDefs.h>
#include <Xll/Intrinsic.h>
#include <XwfXw.h>
#include <Xw(fitleBar.h>

CLASSES
This class is built from the Core, Composite, Constraint and Manager classes.
The widget class to use when creating a TitleBar widget is XwtitleBarWidgetCiass.
The class name ofTitleBar is TitleBar.

DESCRIPTION
TitleBar provides a flexible mechanism for creating titlebars containing text and arbitrary widgets.
Inputs are an optional text string and any number of widgets to manage. The title string will be
displayed in a StaticText widget (refer to XWSTATICTEXT(3X)). Managed widgets may have
optionally specified layout information (see CONSTRAINT RESOURCES below).

When TitleBar is directed to become narrower than is necessary to display all of its interior
widgets, some widgets may be hidden. The XtNprecedence resource in each managed widget
controls this feature.

As TitleBar is directed to become narrower and narrower, widgets whose sum of XtNrPadding
and XtNlPadding is greater than zero will have their padding collapsed to one pixel. Widgets will
have their padding stripped in order of decreasing values of XtNprecedence.
If, after collapsing all of the widgets' padding, TitleBar is still too narrow to display all of its
children widgets, widgets will be hidden. Widgets will be hidden in order of decreasing values of
XtNprecedence. TitleBar will try to always display a widget of the highest priority (lowest value of
XtNprecedence, even if it must be clipped.

Users of Title Bar should note that when children widgets are hidden they are completely hidden.
Additionally, users who wish to make extensive use of the obscurability rules should read carefully
the section on XtNprececence in the CONSTRAINT RESOURCES section below.

Hewlett-Packard Company - 1- Jan 7, 1989

XWTITLEBAR(3X) XWTITLEBAR(3X)

NEW RESOURCES
To specify any of these resources within a resource defaults file, simply drop the XtN prefix from
the resource name. TitleBar defines the following new resources:

TitleBar Resource Set
Name Class Type Default

XtNenter XtCCallback Pointer NULL
XtNhSpace XtCHSpace int 2
XtN!eave XtCCallback Pointer NULL
XtNrelease XtCCallback Pointer NULL
XtNselect XtCCallback Pointer NULL
XtNtitleBackground XtCBackground Pixel white
XtNtitleBorderWidth XtCBorderWidth int 0
XtNtitleForeground XtCForeground Pixel black
XtNtitleHSpace XtCHSpace int 2
XtNtitleLPadding XtCTitleLPadding int 1
XtNtitlePosition XtCTitlePosition int 0
XtNtitlePrecedence XtCTitlePrecedence int 0
XtNtitleRegion XtCTitleRegion XwAiignment XwALIGN CENTER
XtNtitleRelease XtCCallback Pointer NULL
XtNtitleRPadding XtCTitleRPadding int 1
XtNtitleSelect XtCCallback Pointer NULL
XtNtitleVSpace XtCVSpace int 2
XtNvSpace XtCVSpace int 2

XtNenter, XtNleave, XtNselect, and XtNrelease
Callbacks provided for control ofTitleBar. The data parameter is unused.

XtNhSpace
1l1e amount of space to maintain between the right and left of the titlebar and the interior
widgets.

XtNtitleBorderWidth
The value to loaded into the XtNborderWidth resource of the optional StaticText \vidget.

XtNtitleBackground
The value to be loaded into the XtNbackground resource of the optional StaticText
widget's core part.

XtNtitleForeground
The value to be loaded into the XtNforeground resource of the optional StaticText
widget's core part.

XtNtitleHSpace
The value to be loaded into the XtNhSpace resource of the optional StaticText widget.

XtN titleLPadding
The value to be loaded into the XtN!Padding constraint resource of the optional
StaticText widget.

XtN titlePosition
The value to be loaded into the XtNposition constraint resource of the optional StaticText
widget.

XtN titlePrecedence
The value to be loaded into the constraint record of the optional StaticText widget.

XtNtitleRegion
The value to be loaded into the XtNregion constraint resource of the optional StaticText
widget.

Hewlett-Packard Company -2- Jan 7, 1989

XWTITLEBAR(3X) XWTITLEBAR(3X)

XtNtitleRelease
The value loaded into the XtNrelease resource of the optional StaticText widget.

XtNtitleRPadding
The value to be loaded into the XtNrPadding constraint resource of the optional
StaticText widget.

XtN titleSelect
The value loaded into the XtNselect resource of the optional StaticText widget.

XtNtitleVSpace
The value to be loaded into the XtNvSpace resource of the optional StaticText widget.

XtNvSpace
The amount of space to maintain between the top and bottom of the titlebar and the
interior widgets.

INCORPORATED RESOURCES
The TitleBar creates an internal StaticText widget to handle the title string. In order to provide
the user some control over the appearance of this internal widget, the following resources defined
by StaticText are incorporated into TitleBar's resource list.

It must be noted that only the resources within the following tables will have any effect on the
internal StaticText widget. The other resources defined for StaticText will be overridden by
TitleBar.

For a complete description of the following resources, refer to the manual page given in the table
heading.

Primitive Resource Set -- XWPRIMITIVE(3X)
Name Class 'JYpe Default
XtNhighlightColor XtCForeground Pixel Black
XtNhighlightStyle XtCHighlightStyle int XwPATTERN BORDER
XtNhighlightThickness XtCHighlightThickness int 0
XtNhighlightTile XtCHighlightTile int XwBACKGROUND
XtNtraversalType XtCTraversalType int HIGHLIGHT OFF

Static Text Resource Set - STATICTEXT(3X)
Name Class 'JYpe Default
XtNalignment XtCAlignment XwAlignment XwALIGN CENTER
XtNfont XtCFont XFontStruct * Fixed
XtNlineSpace XtCLineSpace int 0
XtNstring XtCString char* NULL
XtNwrap XwCWrap Boolean TRUE

CONSTRAINT RESOURCES
The following resources will be attached to every widget inserted into TitleBar. See
CONSTRAINT(3X) for a general discussion of constraint resources.

TitleBar uses the constraint resources as hints during the layout of its managed children. Under
certain conditions, any of these resources except XtNprecedence can (and will) be ignored by
TitleBar.

Hewlett-Packard Company -3- Jan 7, 1989

XWTITLEBAR(3X) XWTITLEBAR(3X)

Constraint Resource Set-- Children ofTITLEBAR(3X)
Name Class Type Default
XtNlPadding XtCLPadding int 2
XtNposition XtCPosition int 0
XtNprecedence XtCPrecedence int 1
XtNregion XtCRegion XwAlignment See below.
XtNrPadding XtCRPadding int 2

XtNlPadding
The number of pixels that TitleBar should try to maintain between the left of the widget
and the right padding of the sibling widget to the left. For example, widgetl is to the left
of widget2 within TitleBar. Widgetl has a XtNrPadding value of 5. Widget2 has a
XtNlPadding value of 5. The borders of widgetl and widget2 will be 10 pixels apart.

IfTitleBar is too narrow to honor all ofits children's padding requests without hiding
some children, some, possibly all, padding requests will be collapsed.

XtNposition
This resource gives the order of widgets within region. The left and the center region are
laid out with XtNposition values increasing from left to right. The right region is laid out
with XtNposition values increasing from right to left.

Position values are unique within a region. If two widgets are assigned the same position,
the widget which was assigned first gets the position. The second widget gets the nex1
available position. For example, widgetl and widget2 are the only widgets inserted in
TitleBar. Widgetl is inserted before widget2. Widgetl and widget2 are both assigned a
position of 4. Widgetl will be given the position of 4, and widget2 will be assigned a
position of 5.

XtN precedence
When TitleBar is too narrow to display all of its children, this resource is used to
determine which children should be hidden. Widgets with high values of XtNprecedence
are hidden first. Precedence values are relative to all other widgets within an instantiation
of TitleBar. This means that all widgets, regardless of their region, with high values of
XtNprecedence will be hidden before any widgets with the next lower values are hidden.

Values of XtNprecedence need not be unique. If values are unique, there is no question
about which widget is first to lose its padding, nor about which widget is first to be
hidden.

If values are not unique for all children ofTitleBar, there need be no question about
which widget is acted on first, but it is dependent on both insertion order and precedence.
The last widget inserted in TitleBar of a given precedence is the first to lose its requested
padding (of widgets with that priority). Widgets lose padding from last inserted to first
inserted, within a given level of precedence. When hiding widgets, widgets within a given
precedence level are hidden from last inserted to first inserted.

XtNregion
Associates a child with a region of the titlebar. The regions may be specified in the
resource default file as '1eft" for XwALIGN LEFT, "center" for XwALIGN CENTER,
and "right" for XwALIGN _RIGHT. - -

During layout widgets with XtNregion values of XwALIGN _LEFT are grouped to the left
end ofTitleBar. Widgets with XtNregion values of XwALIGN LEFT are grouped to the
right of TitleBar. Widgets with XtNregion values of XwALIGN CENTER will be
grouped between the left and right groups. Additionally, Title&r tries to center the
center group within the TitleBar.

Widgets for which XtNregion is unspecified or XwALIGN NONE when XtNstring is
non-null, will be assigned one of the two regions not equal to XtNtitleRegion in an
alternating fashion.

Hewlett-Packard Company -4- Jan 7, 1989

XWTI1LEBAR(3X) XWTITLEBAR(3X)

Widgets for which XtNregion is unspecified or XwALIGN NONE when XtNstring is
null, will be assigned a region. The first such widget will be assigned to the left region,
the next to the center region, the next to the right region, the next to the left region, and
so forth.

XtNrPadding
The number of pixels that TitleBar should try to maintain between the right of the widget
and the left padding of the sibling widget to the right. For example, widgetl is to the right
of widget2 within TitleBar. Widgetl has a XtNIPadding value of 5. Widget2 has a
XtNrPadding value of 5. The borders of widgetl and widget2 will be 10 pixels apart.
IfTitleBar is too narrow to honor all of its children's padding requests without hiding
some children, some, possibly all, padding requests will be collapsed.

INHERITED RESOURCES
The following resources are inherited from the indicated superclasses:

Core Resource Set -- CORE(3X)
Name Class Type Default
XtNancestorSensitive XtCSenstitive Boolean TRUE
XtNbackground XtCBackground Pixel White
XtNbackgroundPixmap XtCPixmap Pixmap Unspecified
XtNborderColor XtCBorderColor Pixel Black
XtNborderPixmap XtCPixmap Pixmap Unspecified
XtNborderWidth XtCBorderWidth Dimension 1
XtNdepth XtCDepth int 0
XtNdestroyCallback XtCCallback Pointer NULL
XtNheight XtCHeight Dimension 0
XtNmappedWhenManaged XtCMappedWhenManaged Boolean TRUE
XtNsensitive XtCSensitive Boolean TRUE
XtNtranslations XtCTranslations XtTranslations NULL
XtNwidth XtCWidth Dimension 0
XtNx XtCPosition Position 0
XtNy XtCPosition Position 0

Manager Resource Set
Name Class Type Default
XtNbackgroundTile XtCBackgroundTile int background
XtNforeground XtCForeground Pixel Black
XtNlayout XtClayout int minimize
XtNnextTop XtCCallback Pointer NULL
XtNtraversalOn XtCTraversalOn Boolean FALSE

TRANSlATIONS
The input to the toggle is driven by the mouse buttons. The default translation set defining this
button is listed below.

<EnterWindow>: enter()"
<LeaveWindow>: leave()"
<BtnlDown>: select()"
<BtnlUp>: release()"

ACTIONS
enter If keyboard traversal is active (argument type XtNtraversalOn with argument value

TRUE) and the parent of this widget is not a subclass of XwManager, initiate keyboard
traversal. After this, the callback list is invoked.

Hewlett-Packard Company -5- Jan 7, 1989

XWTITLEBAR(3X) XWTITLEBAR(3X)

ORIGIN

leave If keyboard traversal is active (argument type XtNtraversaiOn with argument value
TRUE) and the parent of this widget is not a subclass of XwManager, terminate keyboard
traversal. After this, the callback list is invoked.

release Invokes the release callback list.

select Invokes the select callback list.

Hewlett-Packard Company.

SEE ALSO
CORE(3X), CONSIRAINT(3X), XWMANAGER(3X), XWSIATICTEXT(3X),
XWCREATETILE(3X),
Programming With The HP X Widgets,
Programming With Xt Intrinsics,
Programming With Xlib.

Hewlett-Packard Company -6- Jan 7, 1989

XWTOGGLE(3X)
XWTOGGLE(3X)

NAME

XwtoggleWidgetClass- the X Widgets toggle button widget
SYNOPSIS

#include < Xll/StringDefs.h >
#include < Xll/Intrinsic.h >
#include <XwfXw.h>
#include <Xw/foggle.h>

ClASSES

The toggle widget is built from the Core, Primitive and Button classes.
The widget class to use when creating a toggle is XwtoggleWidgetCiass. The class name is Toggle.

DESCRIPTION

The toggle widget implements a button which consists of a graphic and a label. The label can be
positioned either to the right (the default) or the left of the graphic. The size of the graphic is
based on the height of the font used for the label. The space between the graphic and the label is
equal to 1/3 the font height. The default graphic is a square box and this may be changed to a
diamond shape. It is intended that application writers can put a group of square buttons into a
Row Column manager with its mode set to the default n of many to get the checkbox, or N of
Many, selection semantic and then put a group of diamond buttons into a Row Column manager
with its mode set to one_ of_ many to get the radiobutton, or One of Many, selection semantic.
The default semantic for this button is that button 1 down will toggle the state of the toggle. When
in a selected state, the interior of the graphic will be filled with the foreground color; when not
selected the interior of the graphic will be filled with the background color; when insensitive, the
label will be drawn with the patterned tile (the default is a 75/25 mix of the foreground and
background colors).

Callbacks can be attached to the widget to report selection (XtNselect) and unselection
(XtNrelease). This widget can be set to respond to Enter and Leave window events by
highlighting and unhighlighting the button. This widget is also capable of handling keyboard
traversal. See the translations below for the default traversal keycodes.

NEW RESOURCES
The toggle widget class defines a set of resource types that can be used by the programmer to
specify data for widgets of this class. Recall that the string to be used when setting any of these
resources in an application defaults file (like .Xdefaults) can be obtained by stripping the preface
"XtN" off of the resource name. For instance, XtNfont becomes font.

Toggle Resource Set
Name Class Type Default
XtNselectColor XtCForeground Pixel Black
XtNsquare XtCSquare Boolean True

XtN selectColor
Allows the application to specify what color should be used to fill in the center of the
square (or the diamond) when it is set.

XtNsquare
If True, forces the button to draw a square box, otherwise it will draw a diamond shape
box. One possible usage for this resource is to make the convention that row column
managers containing diamond shaped toggles have their XtNmode resource set to
one of many which will only allow one of the buttons to be set at any one time, while row
column-managers containing square buttons use the default mode setting of n _of_ many
which allows any or all of the buttons to be set.

INHERITED RESOURCES
The following resources are inherited from the named superclasses: The defaults used for the
toggle when being created are as follows:

Hewlett-Packard Company - 1 - Jan 7, 1989

XWTOGGLE(3X) XWTOGGLE(3X)

Core Resource Set - CORE(3X)
Name Class Type Default
XtNancestorSensitive XtCSenstitive Boolean TRUE
XtNbackground XtCBackground Pixel White
XtNbackgroundPixmap XtCPixmap Pixmap Unspecified
XtNborderColor XtCBorderColor Pixel Black
XtNborderPixmap XtCPixmap Pixmap Unspecified
XtNborderWidth XtCBorderWidth Dimension 1
XtNdepth XtCDepth int 0
XtNdestroyCallback XtCCallback Pointer NULL
XtNheight XtCHeight Dimension 0
XtNmappedWhenManaged XtCMappedWhenManaged Boolean TRUE
XtNsensitive XtCSensitive Boolean TRUE
XtNtranslations XtCTranslations XtTranslations NULL
XtNwidth XtCWidth Dimension 0
XtNx XtCPosition Position 0
XtNy XtCPosition Position 0

Primitive Resource Set -- XWPRIMITIVE(3X)
Name Class Type Default
XtNbackgroundTile XtCBackgroundTile int background
XtNbottomShadowColor XtCForeground Pixel Black
XtNbottomShadowTile XtCBottomShadowTile int foreground
XtNforeground XtCForeground Pixel Black
XtNhighlightColor XtCForeground Pixel Black
XtNhighlightStyle XtCHighlightStyle int pattern border
XtNhighlightThickness XtCHighlightThickness int 0
XtNhighlightTile XtCHighlightTile int 50 foreground
XtNrecomputeSize XtCRecomputeSize Boolean TRUE
XtNrelease XtCCallback Pointer NULL
XtNselect XtCCallback Pointer NULL
XtNshadowOn XtCShadowOn Boolean TRUE
XtNtopShadowColor XtCBackground Pixel White
XtNtopShadowTile XtCTopShadowTile int 50 foreground
XtNtraversalType XtCTraversalType int highlight off

Button Resource Set-- XWBUTION(3X)
Name Class Type Default
XtNfont XtCFont XFontStruct * Fixed
XtNhSpace XtCHSpace int 2
XtNlabel XtCLabel caddr t NULL
XtNlabelLocation XtCLabelLocation int right
XtNsensitiveTile XtCSensitiveTile int 75 foreground
XtNset XtCSet Boolean False
XtNvSpace XtCVSpace int 2

KEYBOARD TRAVERSAL

If the XtNtraversalType resource is set to highlight traversal (XwHIGHLIGHT TRAVERSAL in
an argument list) at either create time or during a call to XtSetValues, the XwPnmitive superclass
will automatically augment the primitive widget's translations to support keyboard traversal. Refer

Hewlett-Packard Company -2- Jan 7, 1989

XWTOGGLE(3X)
XWTOGGLE(3X)

to the XwPrimitive man page for a complete description of these translations. Refer to the
TRANSlATIONS section in this man page for a description of the translations local to the toggle widget.

TRANSlATIONS
The input to the toggle is driven by the mouse buttons. The default translation set defining this
button is listed below. Note that for the specific key symbols used in traversal, the HP Key Cap
which corresponds to this key symbol appears to the right of the definition.

<BtnlDown>:
<EnterWindow>:
<Leave Window>:
<Key>Select:

toggle()
enter()
leave()
toggle() HP "Select" key

ACTIONS

ORIGIN

Note that this widget contains some actions which are not bound to any events by the default
translations. The purpose of these additional actions are to allow advanced users to alter the
button semantics to their liking.

enter: lfthe XtNtraversalType resource has been set to XwHIGHLIGHT ENTER then the
button will be highlighted. Otherwise no action is taken. -

leave: If the XtNtraversaiType resources has been set to XwHIGHLIGHT _ENTER then the
button will be unhighlighted. Otherwise no action is taken.

toggle: Toggle the set state of the button (make it TRUE if it was FALSE, FALSE if it was
TRUE). Redraw only the toggle part (not the label) of the button. If the current state of
the button is set (TRUE) issue the XtNselect callbacks, if not set (FALSE) issue the
XtNrelease callbacks. No additional data beyond the widget id and the specified closure
is sent with these callbacks.

Hewlett-Packard Company.
SEE ALSO

CORE(3X), XWPRIMITIVE(3X), XWBUTTON(3X),
Programming With The HP X Widgets,
Programming With Xt lntrinsics,
Programming With Xlib.

Hewlett-Packard Company -3- Jan 7, 1989

XWVALUATOR(3X) XWVALUATOR(3X)

NAME
XwvaluatorWidgetClass - the X Widget's valuator widget

SYNOPSIS
#include <Xll/StringDefs.h>
#include < Xll/Intrinsic.h >
#include <XwfXw.h>
#include <XwfValuator.h>

CLASSES
The Valuator widget is built from the Core and Primitive classes.

The widget class to use when creating a valuator is XwvaluatorWidgetCiass. The class name for
Valuator is Valuator.

DESCRIPTION
The Valuator widget implements a horizontal or vertical scrolling widget as a rectangular bar
containing a sliding box (slider). The Valuator widget supports input through interactive slider
movement and selections on the slide area not occupied by the slider. Both types of input have a
separate callback list for communicating with the application. The Valuator widget can be used by
the application to attach to objects scrolled under application control, or used by composite
widgets to implement predefined scrolled objects.

NEW RESOURCES
The Valuator widget defines a set of resource types used by the programmer to specify the data
for the valuator. The programmer can also set the values for the Core and Primitive widget
classes to set attributes for this widget. To reference a resource in a .Xdefaults file, strip off the
XtN from the resource string. The following table contains the set of resources defined by
Valuator.

Valuator Resource Set
Name Class Type Default
XtNareaSelected XtCCallback Pointer NULL
XtNsliderExtent XtCSliderExtent int 10
XtNsliderMax XtCSliderMax int 100
XtNsliderMin XtCSliderMin int 0
XtNsliderMoved XtCCallback Pointer NULL
XtNslideOrientation XtCSlideOrientation int vertical
XtNsliderOrigin XtCSliderOrigin int 0
XtNsliderReleased XtCCallback Pointer NULL
XtNsliderShadowOn XtCsliderShadowOn Boolean TRUE
XtNsliderTile XtCSliderTile int foreground

XtNareaSelected, BXtNsliderMoved, XtNsliderReleased
The Valuator widget defines three types of callback lists that are invoked upon different
event conditions when interacting with a valuator. All types use the data parameter to
send the location of the slider to the callback functions.

The first callback type, sliderMoved, defines the callback list containing the callback
functions called when the slider is interactively moved.

The second callback type, slider Released, defines a callback list containing callback
functions called when the mouse button is released after moving the slider.

The third callback type, areaSelected, defines a callback list containing the callback
functions called when an area in a valuator not containing the slider is selected. The
slider is not moved to this position but if the application wants the slider moved, it can use
the position value contained in the parameter call data and perform a XtSetValues() to
its valuator. -

Hewlett-Packard Company - 1 - Jan 7, 1989

XWVALUATOR(3X) XWVALUATOR(3X)

For the callback types, the call_ data parameter of the callback function will be an integer
containing the slider or selection position.

XtN slider Extent
The size of the slider can be set by the application. The acceptable values are 0 <
sliderExtent < (sliderMax- sliderMin).

XtN slider Max, XtN slider Min
The Valuator widget lets the application define its own coordinate system for the valuator.
Any integer values with sliderMin less than sliderMax can be specified.

XtN slideOrientation
The Valuator widget supports both horizontal and vertical scrolling. This resource type is
the means by which this is set. It can be defined through the .Xdefaults file by the strings
"horizontal", and "vertical" or within an arg list for use in XtSetValues() by the defines
XwHORIZONTAL and XwVERTICAL.

XtN sliderOrigin
The location of the slider can be set by the application. The acceptable values are
between sliderMin and (sliderMax- sliderExtent).

XtN sliderShadowOn
The valuator will automatically draw shadows around both the valuator and slider. This
resource can be used to control drawing the shadow around the slider.

XtNslideifile
This resource is used to set the tile used to create the pixmap to use when drawing the
slider. The #defines for setting the values through an arg list and the strings to be used
in the .Xdefaults files are described in XwCreateTile(3X).

INHERITED RESOURCES

The following resources are inherited from the named superclasses:

Core Resource Set-- CORE(3X)
Name Class Type Default

XtNancestorSensitive XtCSenstitive Boolean TRUE

XtNbackground XtCBackground Pixel White

XtNbackgroundPixmap XtCPixmap Pixmap Unspecified

XtNborderColor XtCBorderColor Pixel Black

XtNborderPixmap XtCPixmap Pixmap Unspecified

XtNborderWidth XtCBorderWidth Dimension 1

XtNdepth XtCDepth int 0

XtNdestroyCallback XtCCallback Pointer NULL

XtNheight XtCHeight Dimension 0

XtNmappedWhenManaged XtCMappedWhenManaged Boolean TRUE

XtNsensitive XtCSensitive Boolean TRUE

XtNtranslations XtCTranslations XtTranslations NULL

XtNwidth XtCWidth Dimension 0

XtNx XtCPosition Position 0

XtNy XtCPosition Position 0

Hewlett-Packard Company -2- Jan 7, 1989

XWVALUATOR(3X) XWVALUATOR(3X)

Primitive Resource Set -- XWPRIMffiVE(3X)
Name Class Type Default
XtNbackgroundTile XtCBackgroundTile int background
XtNbottomShadowColor XtCForeground Pixel Black
XtNbottomShadowTile XtCBottomShadowTile int foreground
XtNforeground XtCForeground Pixel Black
XtNhighlightColor XtCForeground Pixel Black
XtNhighlightStyle XtCHighlightStyle int pattern border
XtNhighlightThickness XtCHighlightThickness int 0
XtNhighlightTile XtCHighlightTile int SO foreground
XtNrecomputeSize XtCRecomputeSize Boolean TRUE
XtNrelease XtCCallback Pointer NULL
XtNselect XtCCallback Pointer NULL
XtNshadowOn XtCShadowOn Boolean TRUE
XtNtopShadowColor XtCBackground Pixel White
XtNtopShadowTile XtCTopShadowTile int SO foreground
XtNtraversalType XtCTraversalType int highlight off

KEYBOARD TRAVERSAL
If the XtNtraversalType resource is set to highlight traversal (XwHIGHLIGHT TRAVERSAL in
an argument list) at either create time or during a call to XtSetValues, the XwPnmitive superclass
will automatically augment the primitive widget's translations to support keyboard traversal. See
the XwPrimitive man page for a complete description of these translations. See the
TRANSLATIONS section in this man page for a description of the translations local this widget.

TRANSlATIONS
The input to the Valuator widget is driven by the mouse buttons. The default translation is
defined as follows:

ACTIONS

<Btn1Down>:
<Btn1Up>:
Button1<PtrMoved>:
<EnterWindow>:
<Leave Window>:
Ctrl <Key> Left:
Ctrl <Key> Up:
Ctrl <Key> Right:
Ctrl <Key> Down:
Ctrl <Key> Left:
Ctrl <Key> Up:
Ctrl<Key>Right:
Ctrl <Key> Down:

select(),
release(),
moved(),
enter(),
leave(),
left(),
up(),
right(),
down(),
keyrelease(),
keyrelease(),
keyrelease(),
keyrelease(),

HP "Control Left Cursor" key
HP "Control Up Cursor" key
HP "Control Right Cursor" key
HP "Control Down Cursor" key
HP "Control Left Cursor" key
HP "Control Up Cursor" key
HP "Control Right Cursor" key
HP "Control Down Cursor" key

down: If the valuator's orientation is vertical, this action will cause its slider origin to be
incremented by 1 unit and redisplayed.

enter: If the XtNtraversalType resource has been set to XwHIGHLIGHT ENTER then the
arrow's border will be highlighted. Otherwise no action is taken. -

keyrelease:
This action will cause the cun·ent slider position to be reported through the
XtNSliderPosition callback.

leave: If the XtNtraversalType resource has been set to XwHIGHLIGHT ENTER then the
arrow's border will be unhighlighted. Otherwise no action is taken:-

left: If the valuator's orientation is horizontal, this action will cause its slider origin to be
decremented by 1 unit and redisplayed.

Hewlett-Packard Company -3- Jan 7, 1989

XWVALUATOR(3X) XWVALUATOR(3X)

ORIGIN

moved: Moved processes interactive movement of the slider following a selection upon the slider.

release:
Release handles the processing terminating conditions for selections on the valuator.

right: If the valuator's orientation is horizontal, this action will cause its slider origin to be
incremented by 1 unit and redisplayed.

select: Select processes the activation conditions within the valuator, both for selections within
the slider area and on the slider.

up: If the valuator's orientation is vertical, this action will cause its slider origin to be
decremented by 1 unit and redisplayed.

Hewlett-Packard Company.

SEE ALSO
CORE(3X), XWPRIMffiVE(3X), XWCREATETILE(3X),
Programming With The HP X Widgets,
Programming With Xt lntrinsics,
Programming With Xlib.

Hewlett-Packard Company -4- Jan 7, 1989

XWVPANED(3X) XWVPANED (3X)

NAME
XwvPanedWidgetClass - the X Widgets vertical paned manager widget.

SYNOPSIS
#include <Xll/StringDefs.h>
#include <Xlljlntrinsic.h>
#include <XwfXw.h>
#include <XwjVPW.h>

ClASSES
The vertical paned manager widget is built from the Core, Composite, Constraint and Manager
classes. Note that since the Composite class contains no user settable resources, there is no table
for Composite class resources.

The widget class to use when creating a vertical paned manager is XwvPanedWidgetClass. The
class name is VPanedWindow.

DESCRIPTION
The vertical paned manager is a composite widget which lays children out in a vertically tiled
format. Children appear in a top to bottom fashion, with the first child inserted appearing at the
top of the paned widget and the last child inserted appearing at the bottom of the paned widget.
The vertical paned manager will grow to match the width of its widest child and all other children
are forced to this width. The height of the vertical paned manager will be equal to the sum of the
heights of all its children and the (optional) padding surrounding them.
It is also possible for the end user to adjust the size of the panes. To facilitate this adjustment, a
control widget (XwsashWidgetClass) is created for most children. The control widget appears as
a square box positioned on the bottom of the pane which it controls. Using the mouse (see the
description on translations below) a user can adjust the size of a pane.
The vertical paned manager is a constraint widget, which means that it creates and manages a set
of constraints for each child. It is possible to specify a minimum and maximum size for each pane.
The vertical paned widget will not allow a pane to be adjusted below its minimum nor beyond its
maximum. Also, when the minimum size of a pane is equal to its maximum then no control
widget will be presented for that pane. Nor will a control widget be presented for the bottom­
most pane.

The vertical paned manager supports 2 presentation modes: framed and unframed. When
framed, each pane is offset from the edges of the vertical paned manager and from other panes by
a specified (and settable) number of pixels. In this mode the entire borderwidth of each child is
also visible. Note that the vertical paned manager enforces a particular (and settable) border
width on each pane. The second mode is unframed where the edge of a pane exactly corresponds
to the edge of the vertical paned manager so that only a border between panes is visible.
No callbacks are defined for this manager.

Hewlett-Packard Company - 1- Jan 7, 1989

XWVPANED (3X) XWVPANED(3X)

NEW RESOURCES
The vertical paned manager defines a set of resource types used by the programmer to specify
data for the manager widget. The programmer can also set the values for the Core and
XwManager widget classes to set attributes for this widget. The following table contains the
settable resources defined by the vertical paned manager. Recall that the string to be used when
setting any of these resources in an application defaults file (like .Xdefaults) can be obtained by
stripping the preface "XtN" off of the resource name. For instance, XtNmin becomes min.

Vertical Paned Resource Set
Name Class Type Default
XtNborderFrame XtCBorderWidth int 1
XtNframed XtCBoolean Boolean TRUE
XtNpadding XtCPadding int 3
XtNrefigureMode XtCBoolean Boolean TRUE
XtNsashlndent XtCSashlndent int -10

XtNborderFrame
The application can specify the thickness of the borderwidth of all panes in the paned
manager. The value must be greater than or equal to 0.

XtNframed
The application can specify whether the panes should be displayed with some padding
surrounding each pane (TRUE) or whether the panes should be set flush with the paned
manager (FALSE).

XtNpadding
The application can specify how many pixels of padding should surround each pane when
it is being displayed in framed mode. This value must be greater than or equal to 0.

XtNrefigureMode
This setting is useful if a large number of programmatic manipulations are taking place.
It will prevent the manager from recomputing and displaying new positions for the child
panes (FALSE). Once the changes have been executed this flag should be set to TRUE
to allow the vertical paned manager to show the correct positions of the current children.

XtN sashlndent
This controls where along the bottom of the pane the control widget (the pane's sash) will
be placed. A positive number will cause the sash to be offset from the left side of the
pane, a negative number will cause the sash to be offset from the right side of the pane. If
the offset specified is greater than the width of the vertical paned manager, minus the
width of the sash, the sash will be placed flush against the left hand side of the paned
manager.

Hewlett-Packard Company -2- Jan 7, 1989

XWVPANED (3X) XWVPANED(3X)

CONSTRAINT RESOURCES
The following resources are attached to every widget inserted into vertical paned manager. See
CONSTRAINF(3X) for a general discussion of constraint resources.

Constraint Resource Set-- Children ofVPANEDWINDOW(3X)
Name Class Type Default
XtNallowResize XtCBoolean Boolean FALSE
XtNmax XtCMax int 10000
XtNmin XtCMin int 1
XtNskipAdjust XtCBoolean Boolean FALSE

XtNallowResize
Allows an application to specify whether the vertical paned manager should allow a pane
to request to be resized. This flag only has an effect after the paned manager and its
children have been realized. If this flag is set to TRUE, the manager will try to honor
requests to alter the height of the pane. If false, it will always deny pane requests to resize.

XtNmax
Allows an application to specify the maximum size to which a pane may be resized. This
value must be greater than the specified minimum.

XtNmin
Allows an application to specify the minimum size to which a pane may be resized. This
value must be greater than 0.

XtN skipAdjust
Allows an application to specify that the vertical paned manager should not automatically
resize this pane (flag set to TRUE).

INHERITED RESOURCES
The following resources are inherited from the named superclasses:

Core Resource Set -- CORE(3X)
Name Class Type Default
XtNancestorSensitive XtCSenstitive Boolean TRUE
XtNbackground XtCBackground Pixel White
XtNbackgroundPixmap XtCPixmap Pixmap Unspecified
XtNborderColor XtCBorderColor Pixel Black
XtNborderPixmap XtCPixmap Pixmap Unspecified
XtNborderWidth XtCBorderWidth Dimension 1
XtNdepth XtCDepth int 0
XtNdestroyCallback XtCCallback Pointer NULL
XtNheight XtCHeight Dimension 0
XtNmappedWhenManaged XtCMappedWhenManaged Boolean TRUE
XtNsensitive XtCSensitive Boolean TRUE
XtNtranslations XtCTranslations XtTranslations NULL
XtNwidth XtCWidth Dimension 0
XtNx XtCPosition Position 0
XtNy XtCPosition Position 0

Hewlett-Packard Company -3- Jan 7, 1989

XWVPANED(3X)
XWVPANED(3X)

Manager Resource Set -- XWMANAGER(3X)
Name Class Type Default
XtNbackgroundTile XtCBackgroundTile int background
XtNforeground XtCForeground Pixel Black
XtNlayout XtCLayout int minimize
XtNnextTop XtCCallback Pointer NULL
XtNtraversalOn XtCTraversalOn Boolean FALSE

KEYBOARD TRAVERSAL
If the XtNtraversalOn resource is set to TRUE at either create time or during a call to
XtSetValues, the XwManager superclass will automatically augment the manager widget's translations to support keyboard traversal. Refer to the XwManager man page for a complete description of these translations.

SASH TRANSlATIONS
The translations which control the sashes created for each adjustable pane are replicated here for convenience.

<BtnlDown>:
<Btn2Down>:
<Btn3Down>:
< BtnlMotion >:
< Btn2Motion >:
< Btn3Motion >:
Any<BtnUp>:
<EnterWindow>:
<Leave Window>:

SashAction(Start, Upper Pane)
SashAction(Start, ThisBorderOnly)
SashAction(Start, LowerPane)
SashAction(Move, Upper)
SashAction(Move, ThisBorder)
SashAction(Move, Lower)
SashAction(Commit)
enter()
leave()

enter: Enter window events occurring on the scrolled window are handled by this action.
leave: Leave window events occurring on the scrolled window are handled by this action.
SashAction(Start, UpperPane):

Change the cursor from the crosshair to an upward pointing arrow. Determine the upper pane which will be adjusted (usually the pane to which the sash is attached).
SashAction(Start, ThisBorderOnly):

Change the cursor from the crosshair to a double headed arrow. The panes that will be adjusted are the pane to which the sash is attached and the first pane below it that can be adjusted. Unlike the UpperPane and Lower Pane mode, only 2 panes will be effected. If one of the panes reaches its minimum or maximum, adjustment will stop, instead of
finding the next adjustable pane.

SashAction(Start, LowerPane):
Change the cursor from the crosshair to a downward pointing arrow. Determine the lower pane which will be adjusted (usually the pane below the pane to which the sash is
attached).

SashAction(Move, Upper):
Draw a series of track lines to illustrate what the heights of the panes would be if the
Commit action were invoked. Determine which widget below the upper pane can be
adjusted and make the appropriate adjustments.

SashAction(Move, ThisBorder):
Draw a series of track lines to illustrate what the heights of the panes would be if the Commit action were invoked. Adjust as needed (and as possible) the upper and lower panes selected when the SashAction(Start, ThisBorderOnly) action was invoked.

SashAction(Move, Lower):
Draw a series of track lines to illustrate what the heights of the panes would be if the
Commit action were invoked. Determine which widget above the lower pane can be
adjusted and make the appropriate adjustments.

Hewlett-Packard Company -4- Jan 7, 1989

XWVPANED(3X)

ORIGIN
Hewlett-Packard Company.

SEE ALSO
CORE(3X), XWMANAGER(3X), XWPRIMillVE(3X), XWSASH(3X),
Programming With The HP X Widgets,
Programming With Xt Intrinsics,
Programming With Xlib.

Hewlett-Packard Company -5-

XWVPANED(3X)

Jan 7, 1989

XWWORKSPACE(3X) XWWORKSPACE(3X)

NAME
XwworkSpaceWidgetClass- the X Widget's emptywindowwidget.

SYNOPSIS
#include <Xll/StringDefs.h >
#include <Xll/Intrinsic.h>
#include <XwfXw.h>
#include <Xw jWorkSpace.h>

ClASSES
The WorkSpace widget is built from the Core and Primitive classes.

The widget class to use when creating a workspace is XwworkSpaceWidgetClass.

The class name for this widget is WorkSpace.

DESCRIPTION
The WorkSpace widget provides the application developer with an empty primitive widget. This
widget can be used by the application as a non-widget graphics area. Callback types are defined
for widget exposure and resize to allow the application to redraw or reposition its graphics.
Keyboard, button press and button release callbacks are also defined to provide the application an
easy means of getting normal input from the widget. Other types of input can be gathered from
the widget by adding event handlers.

WorkSpace supports the highlighting and shadowed border drawing defined by the Primitive
widget class. If the workspace widget has a highlight thickness, the application should take care not
to draw on this area. This can be done by creating the graphics context to be used for drawing in
the widget with a clipping rectangle set to the size of the widget's window inset by the highlight
thickness.

NEW RESOURCES
The WorkSpace widget defines a set of resource types used by the programmer to specify the data
for the workspace. The programmer can also set the values for the Core and Primitive widget
classes to set attributes for this widget.

WorkSpace Resource Set
Name Class Type Default
XtNexpose XtCCallback Pointer Null
XtNkeyDown XtCCallback Pointer Null
XtNresize XtCCallback Pointer Null

XtNexpose
This resource defines a callback list which is invoked when an exposure event occurs on
the widget. The call data parameter for the callback will contain a Region structure
containing the exposed region.

XtNkeyDown
This resource defines a callback list which is invoked when keyboard input occurs in the
widget. The call_ data parameter for the callback will contain the key pressed event.

XtNresize
This resource defines a callback list which is invoked when the widget is resized. The
widget parameter can be accessed to obtain the new size of the widget.

INHERITED RESOURCES
The following resources are inherited from the named superclasses:

Hewlett-Packard Company -1- Jan 7, 1989

XWWORKSPACE(3X) XWWORKSPACE (3X)

Core Resource Set -- CORE(3X)
Name Class 'J.Ype Default
XtNancestorSensitive XtCSenstitive Boolean TRUE
XtNbackground XtCBackground Pixel White
XtNbackgroundPixmap XtCPixmap Pixmap Unspecified
XtNborderColor XtCBorderColor Pixel Black
XtNborderPixmap XtCPixmap Pixmap Unspecified
XtNborderWidth XtCBorderWidth Dimension 1
XtNdepth XtCDepth int 0
XtNdestroyCallback XtCCallback Pointer NULL
XtNheight XtCHeight Dimension 0
XtNmappedWhenManaged XtCMappedWhenManaged Boolean TRUE
XtNsensitive XtCSensitive Boolean TRUE
XtNtranslations XtCTranslations XtTranslations NULL
XtNwidth XtCWidth Dimension 0
XtNx XtCPosition Position 0
XtNy XtCPosition Position 0

Primitive Resource Set -- XWPRIMITIVE(3X)
Name Class Type Default
XtNbackgroundTile XtCBackgroundTile int background
XtNbottomShadowColor XtCForeground Pixel Black
XtNbottomShadowTile XtCBottomShadowTile int foreground
XtNforeground XtCForeground Pixel Black
XtNhighlightColor XtCForeground Pixel Black
XtNhighlightStyle XtCHighlightStyle int pattern border
XtNhighlightThickness XtCHighlightThickness int 0
XtNhighlightTile XtCHighlightTile int 50 foreground
XtNrecomputeSize XtCRecomputeSize Boolean TRUE
XtNrelease XtCCallback Pointer NULL
XtNselect XtCCallback Pointer NULL
XtNshadowOn XtCShadowOn Boolean TRUE
XtNtopShadowColor XtCBackground Pixel White
XtNtopShadowTile XtCTopShadowTile int 50 foreground
XtNtraversalType XtCTraversalType int highlight off

KEYBOARD TRAVERSAL
If the XtNtraversaiType resource is set to highlight_ traversal (XwHIGHLIGHT _TRAVERSAL in
an argument list) at create time or during a call to XtSetValues, the XwPrimitive superclass will
automatically augment the primitive widget's translations to support keyboard traversal. Refer to
the XwPrimitive man page for a complete description of these translations. Refer to the
TRANSLATIONS section in this man page for a description of the translations local to this
widget.

TRANSlATIONS
The following translations are defined for the WorkSpace widget.

Hewlett-Packard Company

<KeyDown>:
<BtnDown>:
<BtnUp>:
<EnterWindow>:
<LeaveWindow>:

- 2-

keydown()
select()
release()
enter()
leave()

Jan 7, 1989

JrnWORKSPACE(3X) JrnWORKSPACE(3X)

ACTIONS

ORIGIN

enter: If the XtNtraversalType resource has been set to XwHIGHLIGIIT ENTER then the
workspace's border will be highlighted. Otherwise no action is taken.

keydown:
Keyboard input occurring on a workspace invokes the workspace's XtNkeyDown callback
list.

leave: If the XtNtraversalType resource has been set to XwHIGHLIGIIT ENTER then the
workspace's border will be unhighlighted. Otherwise no action is taken.

release:
Release invokes the workspace's primitive XtNrelease callback list.

select: Selections occurring on a workspace invokes the workspace's primitive XtNselect callback
list.

Hewlett-Packard Company.

SEE ALSO
CORE(3X), XWPRIMillVE(3X),
Programming With The HP X Widgets,
Programming With Xt Intrinsics,
Programming With Xlib.

Hewlett-Packard Company -3- Jan 7, 1989

This page left blank intentionally.

Index

All references to appendix A, "Reference Information," are indicated as page A-1.

A
Accelerator, 1-2
Accelerator, menu, 4-11
Action lists, 7-7
Adding callback procedures, 3-7
Adding callbacks, 3-9
Advanced program, 3-21
Advanced program, font selection, 3-31
Advanced program, source code, 3-25
Adva_nced programming techniques, 3-18
Application Control, 6-2
Application defaults files, 3-13
Argument lists for widgets, 3-6
Argument values, setting, 3-18
Arguments, setting, 3-24
Arrow, 2-14

B
Background tile, 2-15
BulletinBoard, 2-7

c
Callback, 1-2
Callback procedure, writing, 3-8
Callback procedures, adding, 3-7
Callback procedures, writing, 3-24
Callback resources, 3-10
Callbacks, 4-11
Callbacks, adding, 3-9
Cascade, 2-14
Cascade menu, 4-8
Categories of widgets, 2-3
Child widget, 1-2
Class, 1-3

Class initialization, 7-10
Class, meta, 1-3
Class record, 7-9
Classes, widget, 2-1
Classing, widget, 7-33
Color, 3-14
Common resources, 7-1
Composite manager widget, 1-3
Composite widget class, 1-3
Constraint, 1-3
Constraint resource set, 5-2
Constructing a widget, 7-2
Core, 1-3
CreateTile, 2-15
Creating a widget, 3-10

D
Defaults, files", 3-12
Defaults file, example, 3-14, 3-31
Defaults files, app-defaults, 3-13
Defaults files, application, 3-13
Defaults files, example, 3-45
Defaults files, user, 3-14
Defaults files, .Xdefaults, 3-13, 3-14
Destroy procedure, 7-13
Display widgets, 2-4
Documentation, 1-6
Double click, 1-3, 4-6
Drag, 1-3, 4-6

E
Editing widgets, 2-4
Efficient operation, 3-13
Event handler, 4-11

Index 1

F
Form, 2-7
Form widget, code example, 5-2
Form widget, constraints, 5-2
Form widget, example, 5-3
Form widget, using, 5-1
Frame, 2-14

G
Grab, 1-3, 4-6

H
Header file, private, 7-2, 7-3
Header file, public, 7-2, 7-6, 7-9
Header files, 7-6
Header files, including, 3-4
Hierarchy, 3-22, 3-35

ImageEdit, 2-5
Include files, 7-6
Initialization, class, 7-10
Initializing, 3-5
Instance, 1-4, 2-1
Instantiate, 1-3
Interface, Keyboard, 6-1

K
Keyboard

Input Processing, 6-1
Traversal, 6-2

Keyboard interface, 4-11, 6-1

L
Layout widgets, 2-7
Linking libraries, 3-12
List, 2-8

2 Index

M
manager widget, 1-3
Menu

Cascade, 4-8
Creation, 4-9
Data Specification, 4-4
Hierarchy, 4-1
Popup, 4-2
Pulldown, 4-2

Menu accelerator, 4-11
Menu components, 4-5
Menu manager, 4-5
Menu Manager Views, 4-2
Menu Pane Widget, 4-8
Menu, Popup, 2-14
Menu, Pulldown, 2-14
Menu, sample program, 4-13
Menu system description, 4-1
Menu widgets, 2-13
MenuButton, 2-14
MenuButton widget, 4-8
MenuMgr, 4-5
Menus, 4-1
Menus, using, 4-10
MenuSep, 2-14, 4-9
Meta class, 1-3
Miscellaneous widgets, 2-14
Mixing menu accelerators and traversal,

4-11
Mnemonic, 4-11

p

Panel, 2-9
Popup, 1-3
Popup menu, 4-2
PopupMgr, 2-14,4-6
Post, 1-4, 4-6
Primitive widget, 1-4
Private header file, 7-2, 7-3
Programming, advanced, 3-18
Public header file, 7-2, 7-6, 7-9

Pulldown, 2-14
Pulldown manager, 4-7
Pulldown Menu, 4-2
PushButton, 2-6

R
Redisplay procedure, 7-11
Resize procedure, 7-13
Resources, common, 7-1
Resources, multi-state button, 7-9
RowCol, 2-10

s
Sample program, advanced, 3-21
Sample program, font selection, 3-31
Sample program, menu, 4-13
Sample program, simple, 3-2
Scroll bar, 2-15
ScrolledWindow, 2-11
Setting argument values, 3-18
Setting arguments, 3-24
SetValues procedure, 7-12
Source code, 7-13
Source code, demo2, 3-25
Source code file, 7-6
Source code, xfonts.c, 3-37
StaticRaster, 2-4
StaticText, 2-4
Sticky, 4-6
Subclass, 1-4

T
TextEdit, 2-5
Tile, 2-15
Title bar, 2-15
Toggle, 2-6
Translation, 1-4
Translations, 7-7
Traversal Activation, 6-3
Traversal Key Definitions, 6-3

Traversal Requirements, 6-6
Tree, widget, 3-35

u
User selection widgets, 2-6
Using menus, 4-10
Using Widgets, 3-1
Utilities, 2-15

v
Valuator, 2-15
Visual Attributes, 6-2
VPanedWindow, 2-12

w
Widget, 1-1, 1-4,2-1
Widget, child, 1-2
Widget classes, 2-1
Widget, classing, 7-33
Widget classing, implementing, 7-34
Widget, composite class, 1-3
Widget, composite manager, 1-3
Widget, constructing, 7-2
Widget, creating, 3-10
Widget hierarchy, 3-22, 3-35
Widget instance, 1-4, 2-1
Widget, making visible, 3-11
Widget, manager, 1-3
Widget, MenuButton, 4-8
Widget, primitive, 1-4
Widget program, simple, 3-2
Widget tree, 1-4, 3-35
Widgets, argument lists for, 3-6
Widgets, categories of, 2-3
Widgets, display, 2-4
Widgets, editing, 2-4
Widgets, form, 5-1
Widgets, layout, 2-7
Widgets, menu, 2-13
Widgets, miscellaneous, 2-14

Index 3

Widgets, user selection, 2-6
Widgets, using, 3-1
Widgets, writing, 7-1
Writing widgets, 7-1

X
xfonts, 3-31
XtAddCallback, Defined, 3-9
XtCallbackProc, Defined, 3-8
XtCreateManagedWidget, 3-10
XtCreateWidget, Defined, 3-11
Xtlnitialize, 3-5

Defined, 3-5
XtNumber, 3-11
XtRealizeWidget, 3-11

Defined, 3-12
XtSetArg, 3-6, 3-7

4 Index

Please print or type your name and address.

Name: __ ___

Company: __ __

Address: __ _

City, State, Zip: --­

Telephone: ---

Additional Comments: ------------------------------------

Programming With the HP X Widgets and the Xt lntrinsics
HP Part Number 98794-90000
E0689

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 38 CORVALLIS, OR

POSTAGE WILL BE PAID BY ADDRESSEE

HEWLETT-PACKARD COMPANY
CWO PRODUCT MARKETING
1000 NE CIRCLE BLVD
CORVALLIS OR 97330-9988

11.1 •• 1 ••• 1 •• 11 ••• 11.11 ••• 1.1 •• 1.1 •• 1 •• 1.1 •• 1 .. 1 •• 11

NO POSTAGE
NECESSARY

IF MAILED
IN THE

UNITED STATES

fold -

MANUAL COMMENT CARD

HP Part Number 98794-90000 E0689

Your comments and suggestions help us determine how well we meet your needs.

Programming With the
HP X Widgets and the Xt lntrinsics

The manual is well organized.

It is easy to find information in the manual.

The manual explains features well.

The manual contains enough examples.

The examples are appropriate for my needs.

The manual covers enough topics.

Overall, the manual meets my expectations.

You have used this product:

Agree

0 0
0 0
0 0
0 0
0 0
0 0
0 0

Disagree

0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0

Less than 1 week Less than 1 year More than 2 years

Less than 1 month 1 to 2 years

Please write additional comments, particularly if you disagree with a statement
above. Use additional pages if you wish. The more specific your comments, the
more useful they are to us.

Comments: __ ___

Please Tape Here

HP Part Number
98794-90000
Microfiche No. 98794-99000
Printed in U.S.A. E0689

Ff/0'1 HEWLETT
a!~ PACKARD

Ill II II II I II
98794-90602
For Internal Use Only

	Title Page

	Printing History

	Contents

	1. Introduction

	2. Widgets

	3. Using Widgets in Programs

	4. Menus

	5. Form Widgets

	6. Keyboard Interface

	7. Writing New Widgets

	Reference Information

	Index

	Manual Comment Card

	Back Cover

