
(~·
!

Programming With the
Xt Intrinsics

Version 11

HP 9000 Series 300/800 Computers

HP Part Number 98794-90000

FJ/o- HEWLETT
~~PACKARD

Hewlett-Packard Company
1000 NE Circle Boulevard, Corvallis, Oregon 97330-9988

NOTICE
The Information contained In this document Is subject to change wfthout notice.

HEWLETT-PACKAFD MAKES NO WARRANTY OF AfoN KIND WITH REGARD TO THIS MANUAL, INCLUDING, BUT NOT UMITED TO,
THE IMPUED WARRANTIES OF MER:HANTABIUTY AND ATNESS FOR A PARTICULAR PURPOSE. Hawlett-Packard shall not be liable
for errors contained herein or direct, Indirect, special, Incidental or consequential damages In connection wfth the furnishing, performance,
or use d this material.

Copyright © Hewlett-Packard Company 1988. 1989

This document contains proprfet81}' Information which Is protected by copyright. An rights are reserved. No part d this document may be
photocopied, reproduced or translated to another language wfthout the prior wrltten consent d Hawlett-Packard Company, except as pro.tlded
bek>N. The Information contained In this document Is subject to change wfthout notice.

Restricted Rights Legend

Use, dupllcalion or disclosure by the Go.temment Is subject to restrictions as set forth In paragraph (b)(3)(B) d the Rights In Technical Dsta and
Software clause In DAR 7-104.9(8).

Use d this manual and flexible dlsc(s) or tape cartrldge(s) supplied for this peck Is restricted to this product only. Addftlonal copies d the
programs can be made for security and back-up purposes only. Resale d the programs In their present form or wfth afteratlons, Is expressly
prohibited.

Copyrighl1987, 1988, Massachusetts lnstftute d Technology, Cambridge, Massachusetts.

'Parts d this software and documentation are besed In part on software and documentation developed and distributed by Massachusetts lnstftute
d Technology. Permission to use, copy, modify, and distribute only those parts for any purpose and wfthout fee Is hereby granted, pro.tlded thai
the aboYe copyright notices appear In all copies andthalthose copyright notices and this permission notice appear In supporting documentation,
andthalthe names d Hawlett-Packard and M.I.T. not be used In adverilslng or publlcfty perialnlng to distribution d the software wfthout specfflc,
wrltten prior permission.

UNIX Is a trademark d AT&T.

The X Window System Is a trademark d M.I.T.

u

u

u

Printing History
New editions of this manual will incorporate all material updated since the previous
edition. Update packages may be issued between editions and contain replacement and
additional pages to be merged into the manual by the user. Each updated page will be
indicated by a revision date at the bottom of the page. A vertical bar in the margin
indicates the changes on each page. Note that pages which are rearranged due to changes
on a previous page are not considered revised.

The manual printing date and part number indicate its current edition. The printing
date changes when a new edition is printed. (Minor corrections and updates which are
incorporated at reprint do not cause the date to change.) The manual part number
changes when extensive technical changes are incorporated.

July 1988 ... Release 1.

December 1988 ... Release 2.

May 1989 ... Update. This Update replaces the "Programming With the Xt Intrinsics"
section.

June 1989 ... Release 3. This edition incorporates the May 1989 Update.

Printing History iii

This page left blank intentionally.

n

u

u

Contents

1
1.1
1.2

X Toolkit Overview .. 1-1
Introduction .. 1-1
Terminology .. 1-3

2 Widgets .. 2-1
2.1 Core Widget Definition ... 2-2
2.1.1 CoreClassPart ... 2-2
2.1.2 CorePart .. 2-3
2.1.3 CorePart Default Values ... 2-4
2.2 Composite Widget Definition .. 2-5
2.2.1 CompositeClassPart ... 2-5
2.2.2 CompositePart .. 2-5
2.2.3 CompositePart Default Values ... 2-6
2.3 Constraint Widget Definition ... 2-6
2.3.1 ConstraintClassPart ... 2-6
2.3.2 ConstraintPart .. 2-7

3
3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10

4
4.1
4.2
4.3
4.4
4.5
4.5.1
4.5.2
4.5.3

Widget Classes .. .
Widget Naming Conventions
Widget Subclassing in Public ".h" Files
Widget Subclassing in Private ".h" Files .. .
Widget Subclassing in ".c" Files .. .
Initialization of a Class
Obtaining the Class and Superclass of a Widget .. .
Verifying the Subclass of a Widget
Superclass Chaining .. .
Inheriting Superclass Operations .. .
Calling Superclass Operations

Instantiating Widgets
Initializing the X Toolkit
Loading the Resource Database
Parsing the Command Line
Obtaining Window Information from a Widget .. .
Creating Widgets

Creating and Merging Argument Lists .. .
Creating a Widget Instance
Creating an Application Shell Instance .. .

3-1
3-2
3-3
3-4
3-6
3-9

3-10
3-11
3-12
3-13
3-15

4-1
4-1
4-3
4-3
4-5
4-6
4-7
4-9

4-10

Contents 1

4.5.4
4.5.5
4.5.6
4.6
4.6.1
4.6.2
4.7
4.7.1
4.7.2
4.7.3
4.8

Initialization of a Widget Instance ... 4-11
Initialization of a Constraint Widget Instance ... 4-12
Initialization of Nonwidget Data ... 4-12

Realizing Widgets .. 4-13
Creation of a Window for a Widget Instance ... 4-14
Create Window Convenience Routine .. 4-16

Destroying Widgets .. 4-17
Adding and Removing Destroy Callbacks .. 4-19
Deallocation of Dynamic Data ... 4-19
Deallocation of Dynamic Constraint Data ... 4-20

Exiting an Application ... 4-20

5 Callbacks ... 5-1
5.1 Callback Procedure and Callback List Definitions .. 5-1
5.2 Identifying Callback Lists .. 5-2
5.3 Adding Callback Procedures .. 5-2
5.4 Removing Callback Procedures ... 5-3
5.5 Executing Callback Procedures .. 5-4
5.6 Checking the Status of a Callback List .. 5-5

6
6.1
6.2
6.2.1
6.3
6.4
6.4.1
6.4.2
6.5
6.6

Composite Widgets .. 6-1
Verifying the Class of a Composite Widget .. 6-2
Addition of Children to a Composite Widget .. 6-3

Insertion Order of Children .. 6-3
Deletion of Children .. 6-4
Adding and Removing Children from the Managed Set 6-4

Managing Children .. 6-4
Unmanaging Children ... 6-6

Controlling When Widgets Get Mapped .. 6-7
Constrained Composite Widgets ... 6-8

7 Pop-up Widgets .. 7-1
7.1 Pop-ups and the Widget/Window Hierarchy ... 7-1
7.2 Creating a Pop-up Shell .. 7-2
7.3 Creating Pop-up Children ... 7-3
7.4 Mapping a Pop-up Widget .. 7-4
7.5 Unmapping a Pop-up Widget ... 7-7

2 Contents

(~
. I

~~·
')

u

u

8 Shell Widgets .. 8-1
8.1 Shell Widget Definitions ... 8-1
8.1.1 ShellClassPart Definitions .. 8-2
8.1.2 ShellPart Definition ... 8-4
8.1.3 ShellPart Default Values ... 8-6

9
9.1
9.2
9.3
9.4
9.5
9.6
9.7

10
10.1
10.1.1
10.1.2
10.2
10.2.1
10.2.2
10.2.3
10.2.4
10.3
10.3.1
10.4
10.5
10.6
10.7
10.8
10.9
10.9.1
10.9.2
10.10
10.10.1
10.10.2
10.10.3
10.10.4
10.10.5
10.10.6
10.11

Utility Functions
Memory Management
Sharing Graphics Contexts .. .
M'Exp E. R' ergtng osure vents mto a egton
Translating Strings to Widget Instances
Translating Widget Coordinates
Translating a Window to a Widget
Handling Errors

9-1
9-1
9-3
9-4
9-4
9-5
9-6
9-6

Event Handling .. 10-1
Adding and Deleting Additional Event Sources .. 10-1

Adding and Removing Input Sources .. 10-2
Adding and Removing Timeouts ... 10-3

Filtering X Events .. 10-4
Pointer Motion Compression ... 10-4
Enter /Leave Compression ... 10-4
Exposure Compression ... 10-4
Setting and Checking the Sensitivity State of a Widget 10-5

Adding and Removing X Event Handlers .. 10-6
Adding and Removing Event Handlers without Selecting Events 10-7

Constraining Events to a Cascade of Widgets .. 10-9
Focusing Events on a Child .. 10-10
Querying Event Sources .. 10-12
Dispatching Events .. 10-13
Processing Input ... 10-13
Widget Exposure and Visibility ... 10-14

Redisplay of a Widget .. 10-14
Widget Visibility ... 10-15

Geometry Management x Sizing and Positioning Widgets 10-16
Making General Geometry Manager Requests ... 10-17
Making Resize Requests ... 10-19
Management of Child Geometry ... 10-19
Moving and Resizing Widgets .. 10-21
Querying Preferred Geometry ... 10-22
Management of Size Changes .. 10-24

Selections ... 10-24

Contents 3

11
11.1
11.2
11.3
11.4
11.5
11.6
11.7
11.7.1
11.7.2
11.7.3
11.7.4
11.8
11.8.1
11.8.2

12
12.1
12.1.1
12.1.2
12.2
12.3

A

B
B.1
B.2
B.3
B.4
B.S

c

Resource Management .. 11-1
Resource Lists .. 11-1
Determining the Byte Offset ... 11-4
Determining the Number of Elements ... 11-4
Superclass to Subclass Chaining of Resource Lists ... 11-4
Obtaining Subresources .. 11-5
Obtaining Application Resources .. 11-6
Resource Conversions 11-7

Predefined Resource Converters ... 11-7
Writing a New Resource Converter ... 11-7
Registering a New Resource Converter .. 11-9
Invoking Resource Converters ... 11-11

Reading and Writing Widget State .. 11-12
Obtaining Widget State ... 11-12
Setting Widget State .. 11-14

Translation Management x Handling User Input 12-1
Action Tables 12-1

Registering Action Tables .. . 12-2
Translating Action Names to Procedures .. . 12-3

Translation Tables 12-3
Merging Translation Tables 12-4

Resource File Format A-1

Translation Table File Syntax B-1
Notation .. . B-1
Syntax .. . B-1
Modifier Names .. . B-3
Event Types .. . B-4
Useful Examples B-6

Conversion Notes .. . C-1

4 Contents

,f)

u

u

X Toolkit Overview 1
The X Toolkit provides the base functionality necessary to build a wide variety of
application environments. It is fully extensible and supportive of the independent
development of new or extended components. This is accomplished by defining interfaces
that mask implementation details from both applications and common component
implementors. By following a small set of conventions, a programmer can extend the X
Toolkit in new ways and have these extensions function smoothly with the existing facilities.

The X Toolkit is a library package layered on top of the X Window System. This layer
extends the basic abstractions provided by X and, thus, provides the next layer of
functionality by supplying mechanisms for intercomponent and intracomponent
interactions. In the X Toolkit, a widget is a combination of an X window (or subwindow)
and its associated semantics.

To the extent possible, the X Toolkit is policy free. The application environment, not the X
Toolkit, defines, implements, and enforces:

• Policy

• Consistency

• Style

Each individual widget implementation defines its own policy. The X Toolkit design allows
for the development of radically differing widget implementations.

1.1 Introduction
The X Toolkit provides tools that simplify the design of application user interfaces in the X
Window System programming environment. It assists application programmers by
providing a commonly used set of underlying user-interface functions to manage:

• Toolkit initialization

• Widgets

• Memory

• Window, file, and timer events

X Toolkit Overview 1-1

• Widget geometry

• Input focus

• Selections

• Resources and resource conversion

• Translation of events

• Graphics contexts

• Pixmaps

• Errors and warnings

At present, the X Toolkit consists of:

• A set of Intrinsic mechanisms for building widgets

• An architectural model for constructing and composing widgets

• A consistent interface (widget set) for programming

The Intrinsics mechanisms are intended for the widget programmer. The architectural
model lets the widget programmer design new widgets by using the lntrinsics or by
combining other widgets. The application interface layers built on top of the X Toolkit
include a coordinated set of widgets and composition policies. Some of these widgets and
policies are application domain specific, while others are common across a number of
application domains.

The X Toolkit provides an architectural model that is flexible enough to accommodate a
number of different application interface layers. In addition, the supplied set of X Toolkit
functions are:

• Functionally complete and policy free

• Stylistically and functionally consistent with the X Window System primitives

• Portable across languages, computer architectures, and operating systems

Applications that use the X Toolkit must include the following header files:

• <Xll/Xlib.h>

• < Xll/Intrinsic. h >

• <Xll/StringDefs. h>

and possibly also:

• <Xll/Xatoms. h >

1-2 X Toolkit Overview

n

n

n

u

• <Xll/Shell.h>

Widget implementations should include

• <Xll/IntrinsicP.h> instead of <Xll/Intrinsic.h>.

The applications should also include the additional headers for each widget class that they
are to use (for example, <XU/Label. h > or <XU/Scroll. h >). The Intrinsics
object library file is named libXt. a and, on a UNIX-based system, is normally
referenced as -IXt.

1.2 Terminology
The following terms are used throughout this manual.

Application programmer
A programmer who uses the X Toolkit to produce an application user interface.

Class
The general group that a specific object belongs to.

Client
A routine that uses a widget in an application or for composing another widget.

Instance
A specific widget object as opposed to a general widget class.

Method
The functions or procedures that a widget itself implements.

Name
The name that is specific to an instance of a widget for a given client.

Object
A software data abstraction consisting of private data and private and public routines
that operate on the private data. Users of the abstraction can interact with the
object only through calls to the object's public routines. In the X Toolkit, some of
the object's public routines are called directly by the application, while others are
called indirectly when the application calls the common Routines. In general, if a
function is common to all widgets, an application uses a single Intrinsic routine to
invoke the function for all types of widgets. If a function is unique to a single widget
type, the widget exports the function as another "Xt" routine.

Resource
A named piece of data in a widget that can be set by a client, by an application, or by
user defaults.

X Toolkit Overview 1 -3

User
A person interacting with a workstation.

Widget
An object providing a user-interface abstraction (for example, a Scrollbar widget).

Widget class
The general group that a specific widget belongs to, which is otherwise know as the
type of the widget.

Widget programmer
A programmer who adds new widgets to the X Toolkit.

1- 4 X Toolkit Overview

,f)
I

(\
.)

u

u

Widgets 2
The fundamental data type of the X Toolkit is the widget, which is dynamically allocated
and contains state information. Every widget belongs to exactly one "widget class" that is
statically allocated and initialized and that contains the operations allowable on widgets of
that class.

Logically, a widget is a rectangle with associated input/output semantics. Some widgets
display information (for example, text or graphics), while others are merely containers for
other widgets (for example, a menu box). Some widgets are output-only and do not react
to pointer or keyboard input, while others change their display in response to input and
can invoke functions that an application has attached to them.

Much of the input/output of a widget is customizable by users. Such customization
includes fonts, colors, sizes, border widths, and so on.

A widget instance is composed of two parts:

• A data structure that contains instance-specific values.

• A class structure that contains information that is applicable to all widgets of that
class.

Logically, a widget class is the procedures and data that is associated with all widgets
belonging to that class. These procedures and data can be inherited by subclasses.

Physically, a widget class is a pointer to a structure. The contents of this structure are
constant for all widgets of the widget class, even though the values can vary from widget
class to widget class. (Here, "constant" means the class structure is initialized at compile
time and never changed, except for a one-shot class initialization and in-place compilation
of resource lists, which takes place when the first widget of the class or subclass is created.)
A widget instance is allocated and initialized by XtCreateWidget. For further
information, see "Creating Widgets".

The organization of the declarations and code for a new widget class between a public ".h"
file, a private ".h" file, and the implementation ".c" file is described in "Widget Classes".
The predefined widget classes adhere to these conventions.

Widgets 2-1

2.1 Core Widget Definition

The Core widget contains the definitions of fields common to all widgets. All widgets are
subclasses of Core.

2.1.1 CoreCiassPart

The common fields for all widget classes are defined in the CoreClassPart structure:

typedef struct {
WidgetClass superclass; See ''Widget Classes''
String class_name; See ''Widget Classes''
Cardinal widget_size; See ''Creating Widgets''
XtProc class_initialize; See ''Widget Classes''
XtWidgetClassProc class_part_initialize;See ''Widget Classes''
Boolean class_inited; Private to ''XtCreateWidget''
XtinitProc initialize; See ''Creating Widgets''
XtArgsProc initialize_hook; See ''Creating Widgets''
XtRealizeProc realize; See ''Creating Widgets''
XtActionList actions; See ''Translation Management''
Cardinal num_actions; See ''Translation Management''
XtResourceList resources; See ''Resource Management''
Cardinal num_resources; See ''Resource Management''
XrmClass xrm class; Private to ''Resource Management''
Boolean comp;;-ess_motion; See ''Mouse Motion Compression''
Boolean compress_exposure; See ''Exposure Compression' •
Boolean compress_enterleave; See ''Enter/Leave Compression''
Boolean visible_interest; See ''Widget Exposure and Visibility''
XtWidgetProc destroy; See ''Destroying Widgets''
XtWidgetProc resize; See ''Geometry Management''
XtExposeProc expose; See ''Widget Exposure and Visibility''
XtSetValuesFunc set_values; See ''Reading and Writing Widget State''
XtArgsFunc set_values_hook; See ''Reading and Writing Widget State''
XtAlmostProc se.t_values_almost;See ''Reading and Writing Widget State''
XtArgsProc get_values_hook; See ''Reading and Writing Widget State''
XtWidgetProc accept_focus; See ''Focus Management' •
XtVersionType version; See ''Widget Classes''
_XtOffsetList callback_private;Private to ''Callbacks''
String tm_table; See ''Translation Management''
XtGeometryHandler query geometry; See ''Geometry Manag.ement' •

} CoreClassPar.t; -

All widget classes have the core class fields as their first component. The prototypical type
WidgetClass is defined with only this set of fields. Various routines can cast widget
class pointers, as needed, to specific widget class types.

typedef struct {
CoreClassPart core class;

} WidgetClassRec, *WidgetClass;

2-2 Widgets

(~
)

(~
I

n

(__)

u

u

The predefined class record and pointer for WidgetClassRec are:

extern WidgetClassRec widgetClassRec;

extern WidgetClass widgetClass;

The opaque types Widget and WidgetClass and the opaque variable
widgetClass are defmed for generic actions on widgets.

2.1.2 CorePart

The common fields for all widget instances are defined in the CorePart structure:

typedef struct {
Widget self;
WidgetClass widget class; See ''Widget Classes''
Widget parent; - See • 'Widget Classes''
String name; See ''Resource Management''
XrmName xrm_name; Private to ''Resource Management''
Screen *screen; See ''Obtaining Window Information''
Colormap colormap; See ' 'Obtaining Window Information' '
Window window; See ''Obtaining Window Information''
Position x; See ''Geometry Management''
Position y; See ''Geometry Management''
Dimension width; See ''Geometry Management''
Dimension height; See ''Geometry Management''
Cardinal depth; See ''Window Attributes''
Dimension border_width; See ''Geometry Management''
Pixel border _pixel; See ' 'Obtaining Window Information' '
Pixmap border_pixmap; See ''Obtaining Window Information''
Pixel background_pixel; See ''Obtaining Window Information''
Pixmap background_pixmap; See ''Obtaining Window Information''
_XtEventTable event_table; Private to ''Event Management''
struct _TMRec tm; Private to ''Translation Management''
caddr_t constraints; See ''Constrained Composite Widgets''
Boolean visible; See ''Widget Visibility and Exposure''
Boolean sensitive; See ''Setting and Checking Sensitivity''
Boolean ancestor_sensitive; See ''Setting and Checking Sensitivity''
Boolean managed; See ''Composite Widgets''
Boolean mapped_when_managed; See ''Composite Widgets''
Boolean being_destroyed; See ''Destroying Widgets''
XtCallbackList destroy_callbacks;See ''Destroying Widgets''
WidgetList popup_list; See''Pop-up Widgets''
Cardinal num_popups; See ''Pop-up Widgets''

CorePart;

All widget instances have the core fields as their first component. The prototypical type
Widget is defined with only this set of fields. Various routines can cast widget pointers, as
needed, to specific widget types.

Widgets 2-3

typedef struct {
CorePart core;

} WidgetRec, *Widget;

2.1.3 CorePart Default Values

The default values for the core fields, which are filled in by the Core resource list and the
Core initialize procedure, are:

Field

self
widget_ class

parent

name

screen

colormap
window
X

y
width
height
depth
border width
border yixel
border _pixmap
background _pixel
background_pixmap
visible
sensitive
ancestor sensitive
managed
map_ when_ managed
being_ destroyed
destroy_ callbacks

2-4 Widgets

Default Value

address of the widget structure (may not be changed)
widget class argument to XtCreateWidget (may not
be changed)
parent argument to XtCreateWidget (may not be
changed)
name argument to XtCreateWidget (may not be
changed)
parent's screen, but top-level widget from display specifier
(may not be changed)
the default color map for the screen
NULL
0
0
0
0
parent's depth, but top-level widget gets root window depth
1
BlackPixel of screen
NULL
WhitePixel of screen
NULL
TRUE
TRUE
bitwise AND of parent's sensitive & ancestor sensitive
AAUE -
TRUE
parent's being_ destroyed
NULL (',

/

u

(. u

u

2.2 Composite Widget Definition
Composite widgets are a subclass of the Core widget and are more fully described in
"Composite Widgets".

2.2.1 CompositeCiassPart
In addition to the Core widget class fields, Composite widgets have the following class
fields:

typedef struct {
XtGeometryHandler geometry manager;See ''Geometry Management''
XtWidgetProc change_managed; See ''Composite Widgets''
XtWidgetProc insert_child; See ''Composite Widgets''
XtWidgetProc delete_child; See ''Composite Widgets''
XtWidgetProc move focus to next;See ''Focus Management''
XtWidgetProc move=focus=to~rev;See ''Focus Management''

} CompositeClassPart;

Composite widget classes have the composite fields immediately following the core fields:

typedef struct {
CoreClassPart core_class;
CompositeClassPart composite_class;

} CompositeClassRec, *CompositeWidgetClass;

The predefined class record and pointer for Compos i teClas sRec are:

extern CompositeClassRec compositeClassRec;

extern WidgetClass compositeWidgetClass;

The opaque types CompositeWidget and CompositeWidgetClass and the
opaque variable compositeWidgetClass are defined for generic operations on
widgets that are a subclass of CompositeWidget.

2.2.2 CompositePart
In addition to the CorePart fields, Composite widgets have the following fields defined
in the CompositePart structure:

Widgets 2-5

typedef struct {
WidgetList children;
Cardinal num_children;
Cardinal num_slots;
Cardinal num_mapped_children;
XtOrderProc insert_position;

} CompositePart;

See ''Widget Classes''
See ''Widget Classes''
See ''Composite Widgets''
See ''Composite Widgets''
See ''Creating Widgets''

Composite widgets have the composite fields immediately following the core fields:

typedef struct {
CorePart core;
CompositePart composite;

} CompositeRec, *CompositeWidget;

2.2.3 CompositePart Default Values

The default values for the composite fields, which are filled in by the Composite resource
list and the Composite initialize procedure, are:

Field

children
num children
num slots
num =mapped_ children
insert _position

Default Value

NULL
0
0
0
internal function InsertAtEnd

2.3 Constraint Widget Definition
Constraint widgets are a subclass of the Composite widget and are more fully described in
"Constrained Composite Widgets".

2.3.1 ConstraintCiassPart

In addition to the Composite class fields, Constraint widgets have the following class fields:

2-6 Widgets

n

n

/ \
_)

u

typedef struct {
XtResourceList resources;
Cardinal num_resources;
Cardinal constraint size;
XtinitProc initiali;e;
XtWidgetProc destroy;
XtSetValuesFunc set_values;

} ConstraintClassPart;

See ''Constrained Composite Widgets••
See ''Constrained Composite Widgets••
See ''Constrained Composite Widgets''
See ''Constrained Composite Widgets''
See ''Constrained Composite Widgets''
See ''Constrained Composite Widgets''

Constraint widget classes have the constraint fields immediately following the composite
fields:

typedef struct {
CoreClassPart core class;
CompositeClassPart-composite class;
ConstraintClassPart constrai~t class;

} ConstraintClassRec, *ConstraintWidgetClass;

The predefined class record and pointer for ConstraintClassRec are:

extern ConstraintClassRec constraintClassRec;

extern WidgetClass constraintWidgetClass;

The opaque types Constraint'Widget and ConstraintWidgetClass and the
opaque variable constraintWidgetClass are defined for generic operations on
widgets that are a subclass of ConstraintWidgetClass.

2.3.2 ConstraintPart
In addition to the Compos i tePart fields, Constraint widgets have the following fields
defined in the ConstraintPart structure:

typedef struct { int empty; } ConstraintPart;

Constraint widgets have the constraint fields immediately following the composite fields:

typedef struct {
CorePart core;
CompositePart composite;
ConstraintPart constraint;

ConstraintRec, *ConstraintWidget;

Widgets 2-7

This page left blank intentionally.

n

(:
\)

n

u

u

I \

0

Widget Classes

The widget_ class field of a widget points to its widget class structure. This structure
contains information that is constant across all widgets of that class.

3

This class-oriented structure means that widget classes do not usually implement directly
callable procedures. Rather, they implement procedures that are available through their
widget class structure. These class procedures are invoked by generic procedures that
envelop common actions around the procedures implemented by the widget class. Such
procedures are applicable to all widgets of that class and also to widgets that are subclasses
of that class.

All widget classes are a subclass of the Core class and can be subclassed further.
Subclassing reduces the amount of code and declarations you write to make a new widget
class that is similar to an existing class. For example, you do not have to describe every
resource your widget uses in an XtResourceList. Instead, you just describe the
resources your widget has that its superclass does not. Subclasses usually inherit many of
their superclass's procedures (for example, the expose procedure or geometry handler).

Subclassing can be taken too far. If you create a subclass that inherits none of the
procedures of its superclass, you then should consider whether or not you have chosen the
most appropriate superclass.

In order to make good use of subclassing, widget declarations and naming conventions are
highly stylized. A widget consists of three files:

• A public ".h" file that is used by client widgets or applications

• A private ".h" file used by widgets that are subclasses of the widget

• A ".c" file that implements the widget class

3.1 Widget Naming Conventions
The X Toolkit Intrinsics are merely a vehicle by which programmers can create new
widgets and organize a collection of widgets into an application. So that an application
need not deal with as many styles of capitalization and spelling as the number of widget
classes it uses, the following guidelines should be followed when writing new widgets:

Widget Classes 3 -1

• Use the X naming conventions that are applicable. For example, a record
component name is all lower-case and uses underscore U for compound words (for
example, background_pixmap). Type and procedure names start with upper-case
and use capitalization for compound words (for example, XtArgList or
XtSetValues).

• A resource name string is spelled identically to the field name, except that
compound names use capitalization rather than underscore. To let the compiler
catch spelling errors, each resource name should have a macro definition prefixed
with XtN. For example, the background_pixmap field has the corresponding
resource name identifier XtNbackgroundPixmap, which is defined as the string
"backgroundPixmap". Many predefined names are listed in the
<Xll/StringDefs. h> header file. Before you invent a new name, you should
make sure that your proposed name is not already defined or that there already is
not name that you can use.

• A resource class string starts with a capital letter, and uses capitalization for
compound names (for example,"BorderWidth"). Each resource class string should
have a macro definition prefixed with XtC (for example, XtCBorderWidth).

• A resource representation string is spelled identically to the type name (for example,
"TranslationTable"). Each representation string should have a macro definition
prefixed with XtR (for example, XtRTranslationTable).

• New widget classes start with a capital and use capitalization for compound words.
Given a new class name "AbcXyz'' you should derive several names:

• Partial widget instance structure name AbcXyzPart

• Complete widget instance structure names AbcXyzRec and_ AbcXyzRec

• Widget instance pointer type name AbcXyzWidget

• Partial class structure name AbcXyzClassPart

• Complete class structure names AbcXyzClassRec and_ AbcXyzClassRec

• Class structure variable abcXyzClassRec

• Class pointer variable abcXyzWidgetClass

• Action procedures available to translation specifications should follow the same
naming conventions as procedures. That is, they start with a capital letter and
compound names use capitalization. For example, "Highlight" and "NotifyClient".

3-2 Widget Classes

3.2 Widget Subclassing in Public ".h" Files
The public ".h" file for a widget class is imported by clients and contains:

• A reference to the public ".h" files for the superclass.

• The names and classes of the new resources that this widget adds to its superclass.

• The class record pointer you use to create widget instances.

• The C type you use to declare widget instances of this class.

For example, the following is the public ".h" file for a possible implementation of the
StaticText widget:

/***
*
* StaticText Widget
*
***/

extern WidgetClass XwstatictextWidgetClass;

typedef struct _XwStaticTextClassRec*XwStaticTextWidgetClass;
typedef struct _XwStaticTextRec *XwStaticTextWidget;

To accommodate operating systems with file name length restrictions, the name of
the public ".h" file is the first ten characters of the widget class. For example, the
public ".h" file for the Constraint widget is "Constraint.h.".

3.3 Widget Subclassing in Private ".h" Files
The private ".h" file for a widget is imported by widget classes that are subclasses of
the widget and contains:

• A reference to the public ".h" file for the class.

• A reference to the private ".h" file for the super class.

• The new fields that the widget instance adds to its superclass's widget structure.

• The complete widget instance structure for this widget.

• The new fields that this widget class adds to its superclass's Constraint
structure, if the widget is a subclass of Constraint.

Widget Classes 3 -3

• The complete Constraint structure, if the widget is a subclass of
Constraint.

• The new fields that this widget class adds to its superclass's widget class structure.

• The complete widget class structure for this widget.

• The name of a "constant" of the generic widget class structure.

• For each new procedure in the widget class structure, an "lnheritOperation"
procedure for subclasses that wish to merely inherit a superclass operation.

For example, the following is the private ".h" file for the StaticText widget:

/**
*
* No new fields need to be defined
* for the StaticText widget class record

*
**/

typedef struct {int foo;} XwStaticTextClassPart;

/**
* * Full class record declaration for StaticText class

*
**/

typedef struct _XwStaticTextClassRec {
CoreClassPart core_class;
XwPrimitiveClassPart primitive_class;
XwStaticTextClassPart statictext_class;

} XwStaticTextClassRec;

/**
*
* New fields needed for instance record
*
**/

typedef struct _XwStaticTextPart {
I*
* "Public" members (Can be set by resource manager).
*I

char *input_string;
XwAlignment alignment;
int gravity;
Boolean wrap;
Boolean strip;
int line_space;

XFontStruct *font;
Dimension internal_height;

Dimension internal_width;

3 • 4 Widget Classes

I* String sent to this widget. *I
I* Alignment within the box *I
I* Controls use of extra space in window *I
I* Controls wrapping on spaces *I
I* Controls stripping of blanks *I
I* Ratio of font height use as dead space

between lines. Can be less than zero
but not less than -1.0 *I

I* Font to write in. *I
I* Space from text to top and

bottom highlights *I
I* Space from left and right side

highlights *I

n
' J

u

u

u

I*
* "Private" members -- values computed by
* XwStaticTextWidgetClass methods.
*I

I* GC for text *I GC normal GC;
XRectangl; TextRect; I* The bounding box of the text,

or clip rectangle of the window;
whichever is smaller. *I

char *output_string;
} XwStaticTextPart;

I* input_string after formatting *I

/**
*
* Full instance record declaration
*
**/

typedef struct _XwStaticTextRec {
Core Part
XwPrimitivePart
XwStaticTextPart

} XwStaticTextRec;

core;
primitive;
static_text;

To accommoda~e operating systems with file name length restrictions, the name of the
private ".h" file is the first nine characters of the widget class followed by a capital "P".
For example, the private ".h" file for the Constraint widget is "ConstrainP.h.".

3.4 Widget Subclassing in ".c" Files
The ".c" file for a widget contains the structure initializer for the class record variable.
This initializer can be broken up into several parts:

• Class information (for example, superclass, class _name, widget_ size, class_ initialize,
class inited).

• Data Constants (for example, resources and num resources, actions and
num-actions, visible _interest, compress_ motion, compress_ exposure, version).

• Widget Operations (for example, initialize, realize, destroy, resize, expose,
set_ values, accept_focus, and any operations specific to the widget).

The superclass field points to the superclass WidgetClass record. For direct
subclasses of the generic core widget, superclass should be initialized to the address of the
widgetClassRec structure. The superclass is used for class chaining operations and for
inheriting or enveloping a superclass's operations. (See "Superclass Chaining," "Inheriting
Superclass Operations," and "Calling Superclass Operations.")

The class name field contains the text name for this class (used by the resource manager).
For example, the StaticText widget has the string "StaticText".

Widget Classes 3 • 5

The widget size field is the size of the corresponding Widget structure (not the size of the
Class structure).

The version field indicates the toolkit version number and is used for runtime consistency
checking of the X Toolkit and widgets in an application. Widget writers must set it to the
symbolic value XtVersion in the widget class initialization.

All other fields are described in their respective sections.

The following is a somewhat compressed version of the ".c' file for the StaticTextwidget.
(The "resources" table is described in the section "Resource Management").

/*************************************<->*************************************
*
* * Description: resource list for class: StaticText
*
* * Provides default resource settings for instances of this class. * To get full set of default settings, examine resouce list of super * classes of this class.
*
*************************************<->***********************************/

3 • 6 Widget Classes

('i
-.._)

static XtResource resources[] {
{ XtNhSpace,

XtCHSpace,
XtRint,
sizeof(int),

},

XtOffset(XwStaticTextWidget, static_text.internal_width),
XtRString,
"2"

{ XtNvSpace,
XtCVSpace,
XtRint,
sizeof(int),

},

XtOffset(XwStaticTextWidget, static_text.internal_height),
XtRString,
"2"

{ XtNalignment,

},

XtCAlignment,
XtRAlignment,
sizeof(XwAlignment),
XtOffset(XwStaticTextWidget,static_text.alignment),
XtRString,
"Left"

{ XtNgravity,
XtCGravity,
XtRGravity,
sizeof(int),
XtOffset(XwStaticTextWidget,static text.gravity),
XtRString, -
"CenterGravity"

},

!*************************************<->*************************************
*
* * Description: global class record for instances of class: StaticText
*
*
* Defines default field settings for this class record.
*
*************************************<->***********************************/

XwStaticTextClassRec XwstatictextClassRec = {
{ I* core_class fields *I
I* superclass */
I* class_name *I
I* widget_size *I
I* class_initialize *I
I* class_part_initialize *I
I* class_inited */
I* initialize */
I* initialize_hook */

(WidgetClass) &XwprimitiveClassRec,
"StaticText",
sizeof(XwStaticTextRec),
Class!nitialize,
NULL,
FALSE,
(XtinitProc) Initialize,
NULL,

Widget Classes 3 -7

} ;

I* realize *I
I* actions *I
I* num_actions *I
I* resources *I
I* num_resources *I
I* xrm_class *I
I* compress_motion *I
I* compress_exposure *I
I* compress_enterleave *I
I* visible_interest *I
I* destroy *I
I* resize *I
I* expose *I
I* set_values *I
I* set_values_hook *I
I* set_values_almost *I
I* get_values_hook *I
I* accept_focus *I
I* version *I
I* callback private *I
I* tm_table *I
I* query_geometry *I
}.
{

NULL,
NULL,
NULL,
NULL,
NULL,

I* Class record pointer *I

(XtRealizeProc) Realize,
actionsList,
XtNumber(actionsList),
resources,
XtNumber(resources),
NULLQUARK,
TRUE,
TRUE,
TRUE,
FALSE,
(XtWidgetProc) Destroy,
(XtWidgetProc) Resize,
(XtExposeProc) Redisplay,
(XtSetValuesFunc) SetValues,
NULL,
(XtAlmostProc) XtinheritSetValuesAlmost,
NULL,
NULL,
XtVersion,
NULL,
defaultTranslations,
NULL,

WidgetClass XwstatictextWidgetClass = (WidgetClass) &XwstatictextClassRec;

3.5 Initialization of a Class
Many class records can be initialized completely at compile time. But in some cases, a
class may want to register type converters or perform other sorts of "one-shot"
initialization.

Because the C language does not have initialization procedures that are invoked
automatically when a program starts up, a widget class can declare a class initialize
procedure that will be automatically called exactly once by the X Toolkit. A class
initialization procedure is of type XtProc:

typedef void (*XtProc)();

void Proc()

3 - 8 Widget Classes

()
/

/ \

_)

/ ' _)

(\

_)

A widget class indicates that it has no class initialization procedure by specifying NULL in
the class initialize field.

In addition to doing class initialization& that get done exactly once, some classes need to
perform additional initialization for fields in its part of the class record. These get done
not just for the particular class but for subclasses as well. This is done in the class's class
part initialization procedure. The class part initialization procedure is of type
XtClassProc:

typedef void (*XtClassProc)();

void ClassProc (widgetaass)
WidgetClass widgetClass;

During class initialization, the class part initialization procedure for the class and all its
superclasses are called in a superclass to subclass order on the class record. These
procedures have the responsibility of doing any dynamic initialization& necessary to their
class's part of the record. The most common is the resolution of any inherited methods
defined in the class. For example, if a widget class C has superclasses Core, Composite, A,
and B, the class record for C first is passed to Core's class _part_ initialize record. This
resolves any inherited core methods and compiles the textual representations of the
resource list and action table that are defined in the class record. Next, the Composite's
class _part_ initialize is called to initialize the composite part of C's class record. Finally,
the class _part_initialize procedures for A, B, and C (in order) are called. For further
information, see "Inheriting Superclass Operations". Classes that do not define any new
class fields or that need no extra processing for them can specify NULL in the
class _part_initialize field.

All widget classes (whether they have a class initialization procedure or not) should start
off with their class inited field FALSE.

The first time a widget of that class is created, XtCreateWidget ensures that the
widget class and all superclasses are initialized, in superclass to subclass order, by checking
each class inited field and, if it is FALSE, calling the class initialize and the
class_par(initialize procedures for the class and all its superclasses. The class_inited field
is then set to TRUE. After the one-time initialization, a class structure is constant.

Widget Classes 3 -9

/*************************************<->*************************************
*
* Classlnitialize

*
*
*
*
*
*
*

Description:

Set fields in primitive class part of our class record so that
the traversal code can invoke our select/release procedures (note
that for this class toggle is a empty proc).

*************************************<->***********************************/
static void Classinitialize()
{

}

XwstatictextClassRec.primitive_class.select_proc = (XtWidgetProc) Select;
XwstatictextClassRec.primitive_class.release_proc = (XtWidgetProc) Release;
XwstatictextClassRec.primitive_class.toggle_proc = (XtWidgetProc) Toggle;

3.6 Obtaining the Class and Superclass of a Widget
To obtain the class of a widget, use XtClass.

WidgetClass XtClass(w)
Widget w;

w Specifies the widget.

XtClass returns a pointer to the widget's class structure.

To obtain the superclass of a widget, use XtSuperclass.

WidgetClass XtSuperclass(W)
Widget w;

w Specifies the widget.

XtSuperclass returns a pointer to the widget's superclass class structure.

3. 7 Verifying the Subclass of a Widget
To check the subclass that a widget belongs to, use XtlsSubclass.

Boolean XtisSubclass(w, widget class)
Widget w; -
WidgetClass widget _class;

3 -10 Widget Classes

n

n

(\ u

u

w

widget _class

Specifies the widget under question.

Specifies the widget class to test against.

XtisSubclass returns TRUE if the class ofthe specified widget w is equal to or is a
subclass of widget_ class. The specified widget w may be arbitrarily far down the subclass
chain; it need not be an immediate subclass of widget class. Composite widgets that wish
to restrict the class of the items they contain can use XtisSubclass to find out if a
widget belongs to the desired class of objects.

To check the subclass that a widget belongs to and to generate a debugging error message,
use XtCheckSubclass.

void XtCheckSubclass (W, widget _class, message)
Widget w;
WidgetClass widget class;
String message; -

w

widget _class

message

Specifies the widget under question.

Specifies the widget class to test against.

Specifies an error message.

XtCheckSubclass determines if the class ofthe specified w is equal to or is a subclass
of widget class. Again, w may be any number of subclasses down the chain and need not
be an imJiiediate subclass of widget_ class. Ifw is not a subclass, XtCheckSubclass
constructs an error message from the supplied message, the widget's actual class, and the
expected class. Then, it calls XtError. XtCheckSubclass should be used at the
entry-point of exported routines to ensure that the client has passed in a valid widget class
for the exported operation.

XtCheckSubclass is only executed when including and linking against the debugging
version of the Intrinsics. Otherwise, it is defmed as the empty string and so generates no
code.

3.8 Superclass Chaining
Some fields defined in the widget class structure are self-contained and are independent of
the values for these fields defined in superclasses. Among these are:

• class name

• widget_size

• realize

Widget Classes 3 -11

• visible interest

• resize

• expose

• accept_focus

• compress_ motion

• compress_ exposure

• compress_ enterleave

• set values almost - -
• tm table

• version

Some fields defined in the widget class structure make sense only after their superclass has
been operated on. In this case, the invocation of a single operation actually first accesses
the Core class, then the subclass, and so on down the class chain to the widget class of the
widget. These superclass-to-subclass fields are:

• class initialize

• class _part_ initialize

• initialize hook

• set values hook - -
• get_values_hook

• initialize

• set values

• resources

For subclasses of Constraint, the constraint resources field is chained from the
Constraint class down to the subclass.

Some fields defined in the widget class structure make sense only after their subclass has
been operated on. In this case, the invocation of a single operation actually first accesses
the widget class, then its superclass, and so on up the class chain to the Core class. The
subclass-to-superclass fields are:

• destroy

• actions

3 -12 Widget Classes

()
\ '

()

u

u

3.9 Inheriting Superclass Operations
A widget class is free to use any of its superclass's self-contained operations rather than
implementing its own code. The most frequently inherited operations are:

• expose

• realize

• insert child

• delete child

• geometry_ manager

To inherit an operation "xyz!', you simply specify the procedure Xtlnheri tXyz in your
class record.

Every class that declares a new procedure in its widget class part must provide for
inheriting the procedure in its class _part_ initialize procedure. (The special chained
operations initialize, set values, and destroy declared in the Core record do not have
inherit procedures. Widget classes that do nothing beyond what their superclass does for
these procedures just specify NULL for the procedure in their class records.)

Inheriting works by comparing the value of the field with a known, special value and by
copying in the superclass's value for that field if a match occurs. This special value is
usually the intrinsic routine _Xtlnherit cast to the appropriate type.

For example, the Composite class's private include file contains these definitions:

#define XtinheritGeometryManager ((XtGeometryHandler) _Xtinherit)
#define XtinheritChangeManaged ((XtWidgetProc) _Xtinherit)
#define XtinheritinsertChild ((XtArgsProc) _Xtinherit)
#define XtinheritDeleteChild ((XtWidgetProc) Xtinherit)
#define XtinheritMoveFocusToNext ((XtWidgetPr~c) _Xtinherit)
#define XtinheritMoveFocusToPrev ((XtWidgetProc) _Xt!nherit)

The Composite's class_part_initialize procedure begins:

static void CompositeClassPartinitialize(widgetClass)
WidgetClass widgetClass;

register CompositeWidgetClass we = (CompositeWidgetClass) widgetClass;
CompositeWidgetClass super = (CompositeWidgetClass) wc->core.class.superclass

if (wc->composite_class.geometry_manager == XtinheritGeometryManager) {
wc->composite_class.geometry_manager = super->composite_class.geometry_manager;

Widget Classes 3 -13

if (wc->composite class.change managed -. XtinheritChangeManaged) {
wc->composite=class.change=managed = super->composite_class.change_managed;

}

The inherit procedures defined for Core are:

• XtinheritRealize

• XtinheritResize

• XtinheritExpose

• XtinheritSetValuesAlmost

• XtinheritAcceptFocus

The inherit procedures defined for Composite are:

• XtinheritGeometryManager

• XtinheritChangeManaged

• XtinheritinsertChild

• XtinheritDeleteChild

• XtinheritMoveFocusToNext

• XtinheritMoveFocusToPrev

3.10 Calling Superclass Operations
A widget class sometimes explicitly wants to call a superclass operation that normally is not
chained. For example, a widget's expose procedure might call its superclass's expose and
then perform a little more work of its own. Composite classes with fixed children can
implement insert child by first calling their superclass's insert child procedure and then
calling XtManageChild to add the child to the managed list.

Note that the class procedure should call its own superclass procedure, not the widget's
superclass procedure. That is, it should use its own class pointers only, not the widget's
class pointers. This technique is referred to as "enveloping'' the superclass's operation.

The following is abbreviated code for a possible implementation of a Shell's insert child
procedure: -

3 -14 Widget Classes

n

n

u

u

\

\.._)

static void InsertChild(w)
Widget w;

{

}

(*(((CompositeWidgetClass)XtSuperclass(shellWidgetClass))
->composite_class.insert_child)) (w);

XtManageChild(w); /*Add to managed set now*/

Widget Classes 3 -15

This page left blank intentionally.

'!)

u

u

Instantiating Widgets 4
Widgets are either "primitive" or "composite". Either kind of widget can have "pop-up"
children widgets, but only composite widgets can have "normal" children widgets. A
composite widget may in unusual circumstances have zero normal children but usually has
at least one. Widgets with no children of any kind are leaves of a widget tree. Widgets with
one or more children are intermediate nodes of a tree. The shell widget returned by
Xtinitialize or XtCreateApplicationShell is the root of a widget tree.

The "normal" children of the widget tree exactly duplicates the associated window tree.
Each pop-up child has a window which is a child of the root window so that the pop-up
window is not clipped. Again, the normal children of a pop-up exactly duplicates the
window tree associated with the pop-up window.

A widget tree is manipulated by several X Toolkit functions. For example,
XtRealizeWidget traverses the tree downward to recursively realize normal children
widgets. XtDestroyWidget traverses the tree downward to destroy all children. The
functions that fetch and modify resources traverse the tree upward to determine the
inheritance of resources from a widget's ancestors. XtMakeGeometryRequest
traverses the tree one level upward to get the geometry manager responsible for a normal
widget child's geometry.

To facilitate up-traversal of the widget tree, each widget has a pointer to its parent widget.
Shell widgets returned by Xtinitialize and XtCreateApplicationShell have
a parent pointer of NULL.

To facilitate down-traversal of the widget tree, each composite widget has a pointer to an
array of children widgets. This array includes all normal children created, not just the
subset of children that are managed by the composite widget's geometry manager.

In addition, every widget has a pointer to an array of pop-up children widgets.

4.1 Initializing the X Toolkit
Before any of the X Toolkit functions can be called by the application, it must initialize the
toolkit.

To initialize the X Toolkit, the application must call the Xtinitialize function.

Instantiating Widgets 4 -1

Widget Xtini tialize (shell_name, application_ class, options, num _options, argc, mgv>
String shell name;
String appl~n class;
XrmOptionDescRec options [1 ;
Cardinal num options;
Cardinal *argC;
String mgv[1;

shell name

application _class

options

num _options

argc

argv

Specifies the name of the application shell widget instance, which
usually is something generic like "main''.

Specifies the class name of this application, which usually is the
generic name for all instances of this application. By convention,
the class name is formed by reversing the case of the application's
first two letters. For example, an application named "xterm''
would have a class name of "XTerm".

Specifies how to parse the command line for any application
specific resources. The options argument is passed as a parameter
to XrmParseConunand. For further information, seeX/ib- C
Language X Interface.

Specifies the number of entries in options list.

Specifies a pointer to the number of command line parameters.

Specifies the command line parameters.

Xtlnitialize builds the resource database, parses the command line, opens the
display, and initializes the X Toolkit. It returns a TopLevelShell widget to use as the
parent of the application's root widget.

Xtlni tialize modifies argc and argv to contain just the parameters that were not a
display, geometry, or resource specification. If the modified argc is not zero (0), most
applications simply print out the modified argv along with a message about the allowable
options.

An application can have multiple top-level widgets. The widget returned by
Xtlni tialize has the WM COMMAND property set for session managers. See
"Shell Widgets" for more infor"ination.

Xtlni tial ize saves the application name and class_ name for qualifying all widget
resource specifiers. On UNIX-based systems, the application name is the final component
of argv[O]. (This can be modified from the command line by specifying the -name option.)
The application name and class_ name are used as the left-most components in all widget
resource names for this application.

4 • 2 Instantiating Widgets

n
' /

u
4.2 Loading the Resource Database
Xtlnitialize loads the application's resource database from three sources in the
following order:

• Application-specific class resource file

• Server resource file

• User's environment resource file

The application-specific resource file name is constructed from the class name of the
application and points to a site-specific resource file that usually is installed by the site
manager when the application is installed. On UNIX-based systems, the application
resource file is
/usr/lib/Xll/app-defaultsjc/ass, where class is the application class name.

The server resource file is the contents of the X server's RESOURCE MANAGER
property, as returned by XOpenDisplay. If no such property exists for the display, the
. Xdefaul ts file in the user's home directory, if it exists, is loaded in place of the server

property.

The user's environment resource file name is constructed by using the value of the user's

U
/ \ XENVIRONMENT variable for the full path of the file. If this environment variable does

not exist, Xtlni tialize looks in the user's home directory for the . Xdefaul ts
host file, where host is the name of the user's host machine. If the resulting resource file

u

exists, Xtlnitialize loads its contents into the resource database.

4.3 Parsing the Command Line
Xtlni tialize first parses the command line looking for the following options:

-display Specifies the display name for XOpenDisplay.

-synchronize

-name

Calls XSynchronize to put Xlib into synchronous mode.

Sets the resource name prefix in place of argv(O].

Xtlnitialize bas a table of standard command line options for adding resources to
the resource database, and it takes as a parameter additional application-specific resource
abbreviations. The format of this table is:

Instantiating Widgets 4 -3

typedef anum {
XrmoptionNoArg,
XrmoptionisArg,
XrmoptionStickyArg,
XrmoptionSepArg,
XrmoptionSkipArg,
XrmoptionSkipLine

I* Value is specified in OptionDescRec.value *I
I* Value is the option string itself *I
I* Value is characters immediately following option *I
/* Value is next argument in argv */
I* Ignore this option and the next argument in argv *I
I* Ignore this option and the rest of argv *I

} XrmOptionKind;

typedef struct {
char *option; I* Option name in argv *I
char *specifier; I* Resource name (sans application name) */
XrmOptionKind argKind; I* Which style of option it is *I
caddr_t value; I* Value to provide if XrmoptionNoArg *I

} XrmOptionDescRec, *XrmOptionDescList;

The standard table contains the following entries:

Option string Resource name Argument Kind Resource value

-background background SepArg next argument
-bd borderColor SepArg next argument
-bg background SepArg next argument
-borderwidth border Width SepArg next argument
-bordercolor borderColor SepArg next argument
-bw border Width SepArg next argument
-display display SepArg next argument
-fg foreground SepArg next argument
-fn font SepArg next argument
-font font SepArg next argument
-foreground foreground SepArg next argument
-geometry geometry SepArg next argument
-iconic iconic NoArg on
-name name SepArg next argument
-reverse reverse Video NoArg on [not implemented]
-rv reverse Video NoArg on [not implemented]
+rv reverse Video NoArg off [not implemented]
-synchronize synchronize NoArg on
-title title SepArg next argument
-xrm next argument ResArg next argument

4- 4 Instantiating Widgets

n

()
/

n
' /

(·. u

u

u

NOTE

1. Any unique abbreviation for an option name in the standard
table or in the application table is accepted.

2. For backwards compatibility with older command line syntax,
an X Toolkit installation (compile time) option allows the
following arguments on the command line:

= geometryisArg
display IsArg

this argument
this argument

The colon(:) can appear anywhere within the argument, and
the argument will be accepted as the display string, if the
-display argument is not specified on the command line.

The -xrm option provides a method of setting any resource in an application. The next
argument should be a quoted string identical in format to a line in the user resources file.
For example, to give a red background to all command buttons in an application named
xmh, you can start it up as:

xmh -xrm 'xmh*Command.background: red'

When it fully parses the command line, Xtinitialize merges the application option
table with the standard option table and then calls the Xlib XrmParseCommand
function. An entry in the application table with the same name as an entry in the standard
table over-rides the standard table entry. If an option name is a prefix of another option
name, both names are kept in the merged table. Although option tables need not be
sorted by option name, XrmParseCommand is somewhat more efficient if they are.

4.4 Obtaining Window Information from a Widget

The Core widget definition contains the screen and window IDs. The window field may be
NULL for a while (see "Creating Widgets" and "Realizing Widgets").

The display pointer, the parent widget, screen pointer, and window of a widget are
returned by the following macros:

Instantiating Widgets 4 - 5

Display *XtDisplay(w)
Widget w;

Widget XtParent(w)
Widget w;

Screen *XtScreen(W)
Widget w;

Window XtWindow(W)
Widget w;

These macros take a widget and return the specified value.

Several window attributes are locally cached in the widget. Thus, they can be set by the
resource manager and XtSetValues, as well as used by routines that derive structures
from these values (for example, depth for deriving pixmaps, background _pixel for deriving
GCs, and so on) or in the XtCreate'Window call.

The x, y, width, height, and border width window attributes are available to geometry
managers. These fields are maintahted synchronously inside the X Toolkit. When an
XConfigure'Window is issued on the widget's window (on request of its parent), these
values are updated immediately rather than sometime later when the server gets around to
generating a ConfigureNotify event. (In fact, most widgets do not have
SubstructureNotify turned on.) This ensures that all geometry calculations are
based on the internally consistent toolkit world, rather than on either of the following:

• An inconsistent world updated by asynchronous ConfigureNotify events

• A consistent but slow world in which geometry managers ask the server for window
sizes whenever they need to layout their managed children. See "Geometry
Management" for further information.

4 • 6 Instantiating Widgets

n

n

n

u

u

4.5 Creating Widgets
The creation of widget instances is a three-phase process:

1. The widgets are allocated and initialized with resources and are optionally added to
the managed subset of their parent.

2. All composite widgets are notified of their managed children in a bottom-up
traversal of the widget tree.

3. The widgets create X windows that, then, get mapped.

To start the first phase, the application calls XtCreateWidget for all its widgets and
adds some (usually, most or all) of its widgets to their respective parent's managed set by
calling XtManageChild. In order to avoid an O(n"2) creation process where each
composite widget lays itself out each time a widget is created and managed, parent widgets
are not notified of changes in their managed set during this phase.

After all widgets have been created, the application calls XtRealizeWidget on the
top-level widget to start the second and third phases. XtRealizeWidget first
recursively traverses the widget tree in a post-order (bottom-up) traversal and then notifies
each composite widget with one or more managed children by means of its
change_ managed procedure.

Notifying a parent about its managed set involves geometry layout and possibly geometry
negotiation. A parent deals with constraints on its size imposed from above (as when a
user specifies the application window size), and suggestions made from below (as when a
primitive child computes its preferred size). The clash between the two can cause
geometry changes to ripple in both directions through the widget tree. The parent may
force some of its children to change size and position and may issue geometry requests to
its own parent in order to better accommodate all its children. You do not really know
where anything should go on the screen until this process settles down.

Consequently, in the first and second phases, no X windows are actually created because it
is highly likely that they would just get moved around after creation. This avoids
unnecessary requests to the X server.

Finally, XtRealizeWidget starts the third phase by making a pre-order (top-down)
traversal of the widget tree, and allocates an X window to each widget by means of its
realize procedure, and finally maps the widgets that are managed.

Instantiating Widgets 4 • 7

4.5.1 Creating and Merging Argument Lists
Many Intrinsics routines need to be passed pairs of resource names and values. These are
passed as an ArgList, which contains:

typedef long XtArgVal;

typedef struct {
String name;
XtArgVal value;

} Arg, *ArgList;

If the size of the resource is less than or equal to the size of an XtArgVal the resource
value is stored directly in value. Otherwise, a pointer to it is stored into value.

To set values in an ArgList, use XtSetArg.

XtSetArg(mg, name, value)
Arg mg;
String name;
XtArgVal value;

arg Specifies the name-value pair to set.

name

value

Specifies the name of the resource.

Specifies the value of the resource if it will fit in an X tAr g V a 1, otherwise the
address.

An ArgList usually is specified in a highly stylized manner in order to minimize the
probability of making a mistake, for example:

Arg args [20];
int n;

n = 0;
XtSetArg(args[n], XtNheight, lOO);n++;
XtSetArg(args[n], XtNwidth, ZOO);n++;
XtSetValues(widget, args, n);

NOTE

You should not use auto-increment or auto-decrement within the
ftrst argument to XtSetArg. As it is currently implemented,
XtSetArg is a macro that dereference& the first argument twice.

4 - 8 Instantiating Widgets

n

()
' I

u

('.
_)

(_)

To merge two ArgList structures, use XtMergeArgLists.

ArgList XtMergeArgLists(mgsl, num_mgsl, mgs2, num_mgs2>
ArgList mgsl;
Cardinal num _ mgsl;
ArgList mgs2;
Cardinal num _ mgs2;

argsl

num_argsl

args2

Specifies the first ArgList to include.

Specifies number of arguments in the first ArgLis t.

Specifies the second ArgList to include.

num_args2 Spec~ies the number of arguments in the second ArgList.

XtMergeArgLists allocates storage large enough to hold the combined ArgList
structures and copies them into it. It does not check for duplicate entries. When it is no
longer needed, the returned storage should be freed by the client with XtFree.

4.5.2 Creating a Widget Instance

To create an instance of a widget, use XtCreateWidget.

Widget XtCreateWidget(name, widget_class, parent, mgs, num_mgs>
String name;
WidgetClass widget class;
Widget parent; -
ArgList mgs;
Cardinal num _ mgs;

name

widget_ class

parent

args

num_args

Specifies the resource name for the created widget. This name is used
for retrieving resources and, for that reason, should not be the same as
any other widget that is a child of same parent.

Specifies the widget class pointer for the created widget.

Specifies the parent widget.

Specifies the argument list to override the resource defaults.

Specifies the number of arguments in args. The number of arguments in
an argument list can be automatically computed by using the
XtNumber macro. For further information, see "Determining the
Number of Elements".

XtCreateWidget performs much of the "boiler-plate" operations of widget creation.
That is, it performs the following:

Instantiating Widgets 4 - 9

• Checks to see if class initialize has been called for this class and for all superclasses
and, if not, calls those necessary in a superclass to subclass order.

• Checks that the parent is a subclass of compositeWidgetClass.

• Allocates memory for the widget instance.

• Ifthe parent is a subclass of constraintWidgetClass, it allocates memory for
the parent's constraints and stores the address of this memory into the constraints
field.

• Initializes the core nonresource data fields (for example, parent and visible).

• Initializes the resource fields (for example, background _pixel) by using the resource
lists specified for this class and all superdasses.

• Ifthe parent is a subclass of constraintWidgetClass, it initializes the
resource fields of the constraints record by using the constraint resource list
specified for the parent's class and all superclasses up to
constraintWidgetClass.

• Calls the initialize procedures for the widget, starting at the Core initialize procedure
on down to the widget's initialize procedure.

• If the parent is a subclass of constraintWidgetClass, it calls the constraint
initialize procedures, starting at constraintWidgetClass on down to the
parent's constraint initialize procedure.

• Puts the widget into its parent's children list by calling its parent's insert child
procedure. For further information, see "Addition of Children to a Cotiiposite
Widget".

4.5.3 Creating an Application Shell Instance
To create an instance of an application shell widget, use
XtCreateApplicationShell.

Widget XtCreateApplicationShell(name, widget class, args, num args>
String name; - -
WidgetClass widget_class;
ArgList args;
Cardinal num _ args;

name Specifies the resource name for the created application shell widget.

4 -10 Instantiating Widgets

~~

u

u

widget_ class Specifies the widget class pointer for the created application shell
widget. This will usually be topLevelShellWidgetClass or a
subclass thereof.

args

num_args

Specifies the argument list to override the resource defaults.

Specifies the number of arguments in args.

XtCreateApplicationShell creates another top-level widget that is the root of
another widget tree. The initial top-level widget is returned from Xtlni tialize. An
application uses this procedure if it needs to have several independent windows.

4.5.4 Initialization of a Widget Instance

The initialize procedure for a widget class is of type Xtlni tProc:

typedef void (*XtinitProc)();

void InitProc(request, new)
Widget request, new;

request Specifies the widget with resource values as requested by the argument list, the
resource database, and the widget defaults.

new Specifies a widget with the new values, both resource and non-resource, that
are actually allowed.

The three main jobs of an initialization procedure are to:

• Allocate space for and copy any resources that are referenced by address. For
example, if a widget has a field that is a string (char *) it cannot depend upon the
characters at that address remaining constant but must dynamically allocate space
for the string and copy it to the new space. (Note that you should not allocate space
for or copy callback lists.)

• Compute values for unspecified resource fields. For example, if width and height
are zero (0), the widget should compute a nice width and height based on other
resources. This is the only time that a widget may ever directly assign its own width
and height.

• Compute values for uninitialized non-resource fields that are derived from resource
fields. For example, GCs that the widget uses are derived from resources like
background, foreground, and font.

An initialization procedure can also check certain fields for internal consistency. For
example, it makes no sense to specify a color map for a depth that does not support that
color map.

Instantiating Widgets 4 -11

Initialization procedures are called in "superclass-to-subclass order". Most of the
initialization code for a specific widget class deals with fields defined in that class and not
with fields defined in its superclasses.

If a subclass does not need an initialization procedure because it does not need to perform
any of the above operations, you can specify NULL for the initialize field in the class
record.

Sometimes a subclass may want to overwrite values filled in by its superclass. In particular,
size calculations of a superclass are often incorrect for a subclass and, in this case, the
subclass must modify or recalculate fields declared and computed by its superclass.

As an example, a subclass can visually surround its superclass display. In this case, the
width and height calculated by the superclass initialize procedure are too small and need to
be incremented by the size of the surround. The subclass needs to know if its superclass's
size was calculated by the superclass or was specified explicitly. All widgets must place
themselves into whatever size is explicitly given, but they should compute a reasonable size
if no size is requested. How does a subclass know the difference between a specified size
and a size computed by a superclass?

The request and new parameters provide the necessary information. The "request" widget
is the widget as originally requested. The "new'' widget starts with the values in the
request, but it has been updated by all superclass initialization procedures called so far. A
subclass initialize procedure can compare these two to resolve any potential conflicts.

In the above example, the subclass with the visual surround can see if the width and height
in the request widget are zero. If so, it adds its surround size to the width and height fields
in the new widget. If not, it must make do with the size originally specified.

The "new'' widget will become the actual widget instance record. Therefore, if the
initialization procedure needs to call any routines that operate on a widget, it should
specify "new'' as the widget instance.

4.5.5 Initialization of a Constraint Widget Instance

The constraint initialize procedure is of type X t I ni tProc. The values passed to the
parent constraint initialization procedure are the same as those passed to the child's class
widget initialization procedure.

The constraint initialization procedure should compute any constraint fields derived from
constraint resources. It can make further changes to the widget in order to make the
widget conform to the specified constraints, changing, for example, the widget's size or
position.

If a constraint class does not need a constraint initialization procedure, it should specify
NULL for the initialize field ofthe ConstraintClassPart in the class record.

4 -12 Instantiating Widgets

n

u

u

u

4.5.6 Initialization of Nonwidget Data

The initialize_ hook procedure is of type XtArgsProc:

typedef void (*XtArgsProc)();

void A~Proc(w, args, num_args>
Widget w;
ArgList args;
Cardinal *num _ args;

w Specifies the widget.

args Specifies the argument list to override the resource defaults.

num _ args Specifies the number of arguments in args.

If this procedure is not NULL, it is called immediately after the corresponding initialize
procedure, or in its place if the initialize procedure is NULL.

The initialize_ hook procedure allows a widget instance to initialize non-widget data using
information from the arglist. For example, the Text widget has subparts that are not
widgets, yet these subparts have resources that can be specified by means of the resource
file or an argument list. See also "XtGetSubresources".

4.6 Realizing Widgets
To realize a widget instance, use XtRealizeWidget.

void XtRealizeWidget(w)
Widget w;

w Specifies the widget.

XtRealizeWidget performs the following:

• If the widget is already realized, XtRealizeWidget simply returns.

• Otherwise, it makes a post -order traversal of the widget tree rooted at the specified
widget and calls the change managed procedure of each composite widget that has
one or more managed child-;en.

• It then constructs an XSetWindowAttributes structure filled in with
information derived from the Core widget fields and calls the realize procedure for
the widget, which adds any widget-specific attributes and creates the X window.

Instantiating Widgets 4 -13

• If the widget is a primitive widget, nothing else need be done, and
XtRealizeWidget returns. Otherwise, it recursively descends to each ofthe
widget's managed children and calls the realize procedures.

• Finally, XtRealizeWidget maps all of the managed children windows that have
mapped when managed TRUE. (If a widget is managed, but
mapped-when-managed is FALSE, the widget is allocated visual space but is not
displayed. So~e people seem to like this to indicate certain states.)

If num children equals num mapped children, XtRealizeWidget calls
XMapSubwindows to map -all the chlldren at once. Otherwise, it maps each child
individually. If the widget is a top-level shell widget (that is, it has no parent),
XtRealizeWidget maps the widget window.

XtCreateWidget, XtRealizeWidget, XtManageChildren,
XtUnmanageChildren, and XtDestroyWidget maintain the following invariants:

• If w is realized, then all managed children of w are realized.

• If w is realized, then all managed children of w that are also mapped when managed
are mapped. - -

All Intrinsic routines and all widget routines should work with either realized or unrealized
widgets.

To check whether or not a widget has been realized, use XtisRealized.

Boolean XtisRealized(W)
Widget w;

w Specifies the widget.

XtisRealized returns TRUE if the widget has been realized. That is, it returns TRUE
if the widget has a nonzero X window ID.

Some widget procedures (for example, set_ values) might wish to operate differently after
the widget has been realized.

4.6.1 Creation of a Window for a Widget Instance

The realize procedure for a widget class is oftype XtRealizeProc:

typedef void (*XtRealizeProc)();

void RealizeProc(w, value mask, attributes)
Widget w; -
XtValueMask *Value mask;
XSetWindowAttributes *attributes;

4 -14 Instantiating Widgets

n

n

u

u

u

w Specifies the widget.

value mask

attributes

Specifies which fields in the attributes structure to use.

Specifies the window attributes to use in the XCreateWindow call.

The realize procedure must make the window a reality.

The generic XtRealizeWidget function fills in a mask and a corresponding
XSetWindowAttributes structure. It sets the following fields based on information in
the widget Core structure:

• background _pixmap (or background _pixel if background _pixmap is NULL) is filled
in from the corresponding field.

• border _pixmap (or border _pixel if border _pixmap is NULL) is filled in from the
corresponding field.

• event_ mask is filled in based on the event handlers registered, the event translations
specified, whether expose is non-NULL, and whether visible_ interest is TRUE.

• bit_gravity is set to NorthWestGravi ty if the expose field is NULL.

• do_ not _propagate_ mask is set to propagate all pointer and keyboard events up the
window tree. A composite widget can implement functionality caused by an event
anywhere inside it (including on top of children widgets) as long as children do not
specify a translation for the event.

All other fields in attributes (and the corresponding bits in value_ mask) can be set by the
realize procedure.

A widget class can inherit its realize procedure from its superclass during class
initialization. The realize procedure defined for Core simply calls XtCreateWindow
with the passed value_ mask and attributes, and with windowClass and visual set to
CopyFromParent. Both CompositeWidgetClass and
ConstraintWidgetClass inherit this realize procedure, and most new widget
subclasses can do the same. See "Inheriting Superclass Operations" for further
information.

The most common noninherited realize procedures set bit_gravity in the mask and
attributes to the appropriate value and then create the window. For example, Label sets
bit gravity to WestGravity, CenterGravity, or EastGravity. Consequently,
shrinking a Label just moves the bits appropriately, and no Expose event is needed for
repainting.

If a composite widget wants to have its children realized in a particular order (typically to
control the stacking order) it should call XtRealizeWidget on its children itself in the
appropriate order from within its own realize procedure.

Instantiating Widgets 4 -15

4.6.2 Create Window Convenience Routine
Rather than call the Xlib XCreateWindow function explicitly, a realize procedure
should call the X Toolkit analog XtCreateWindow. This routine simplifies the creation
of windows for widgets.

void XtCreateWindow(w, window class, visual, value mask, attributes)

w

Widget w; - -
unsigned int window class;
Visual *visual; -
XtValueMask value mask;
XSetWindowAttributes *attributes;

Specifies the widget used to set x, y, and so on

window class Specifies the Xlib window class (for example, InputOutput,
InputOnly, or CopyFromParent).

visual

value mask

attributes

Specifies the visual type (usually CopyFromParent).

Specifies which fields in attributes to use.

Specifies the window attributes to use in the XCreateWindow call.

XtCreateWindow calls XCreateWindow with values from the widget structure and
the passed parameters. Then, it assigns the created window into the widget's window field.

XtCreateWindow evaluates the following fields of the Core widget structure:

• depth

• screen

• parent-> core.window

• X

• y

• width

• height

• border width

4 -16 Instantiating Widgets

n

n

4. 7 Destroying Widgets
Destroying widgets is simple. The X Toolkit provides support to:

U • Destroy all the children of the widget being destroyed.

u

u

• Remove (and unmap) the widget from its parent.

• Call procedures that have been registered to trigger when the widget is destroyed.

• Minimize the number of things a widget has to deallocate when destroyed.

• Minimize the number of XDestroyWindow calls.

To destroy a widget instance, use XtDestroyWidget.

void XtDestroyWidget(w)
Widget w;

w Specifies the widget.

XtDestroyWidget provides the only method of destroying a widget, including widgets
that wish to destroy themselves. It can be called at any time, including from an application
callback routine of the widget being destroyed. This requires a two-phase destroy process
in order to avoid dangling references to destroyed widgets.

In phase one, XtDestroyWidget performs the following actions:

• If the being_ destroyed field ofthe widget is TRUE, XtDestroyWidget returns
immediately.

• Removes the widget from its parent's managed set which, in turn, causes the widget
to be unmapped.

• Sets the being_ destroyed field to TRUE and the visible bit to FALSE for the widget
and all descendants.

• Adds the widget to a list of widgets (the destroy list) that should be destroyed when
it is safe to do so.

Entries on the destroy list satisfy the invariant:

• If wl occurs before w2 on the destroy list, then there is no ancestor/child
relationship between the two, or wl is a descendant of w2. (The terms "child" and
"descendant" here refer to both normal and pop-up children.)

Instantiating Widgets 4 -17

Phase two occurs when all procedures that should execute as a result of the current event
have been called (including all procedures registered with the Event and Translation
Managers). That is, phase two occurs when XtNextEvent is called.

NOTE

1. XtDestroyWidget may get rid of all widgets, and then the
next call to XtNextEvent won't ever get any events. So we
expect to move phase two to happen at the end of
XtDispatchEvent, allowing customized event loops to test
a flag before looping back to XtNextEvent.

2. The phase two destroy should happen only at the end of the
outermost call to XtDispatchEvent, because there may
be nested calls to an event dispatch loop in
applications/widgets that maintain some state in the program
counter.

In phase two, XtDestroyWidget performs the following actions on each entry in the
destroy list:

• Calls the destroy callbacks registered on the widget (and all descendants) in post
order. That is, it calls children callbacks before parent callbacks.

• Calls the widget's parent's delete_ child procedure. (See "Deletion of Children".)

• If the widget's parent is a subclass of constraintWidgetClass, it calls the
constraint destroy procedure for the parent, then the parent's superclass, until finally
it calls the constraint destroy procedure for constraintWidgetClass.

• Calls the destroy class procedures for the widget (and all descendants) in post-order.
For each such widget, it calls the destroy procedure declared in the widget class, then
the destroy procedure declared in its superclass, until finally it calls the destroy
procedure declared in the Core class record.

• Calls XDes troyWindow if the widget is realized (that is, has an X window). The
server recursively destroys all descendant windows.

Finally, XtDestroyWidget recursively descends the tree and deallocates all widgets
and constraint records.

4 -18 Instantiating Widgets

n

n
' '

()
' J

/ \

Since XTDestroyWidget automatically destroys all children when a parent is
destroyed, there is no need for applications to explicitly destroy the children. If an
applicatio~ destroys a widget that has any popup children and then destroys its children, a
segmentation fault occurs.

U 4. 7.1 Adding and Removing Destroy Callbacks

/ \
I :
_)

The destroy callback uses the mechanism described in "Callbacks". The destroy callback
list is identified by the resource name XtNdestroyCallback. To add a destroy callback
procedure ClientDestroy with client data client_ data to Widget w, call XtAddCallback.
To remove the callback, call XtRernoveCallback. Both calls take the following
parameter list:

(W, XtNdestroyCallback, ClientDestroy, client_ data)

4. 7.2 Deallocation of Dynamic Data

The destroy procedure is of type XtWidgetProc:

typedef void (*XtWidgetProc)();

void WidgetProc(w)
Widget w;

w Specifies the widget.

The destroy procedures are called in subclass-to-superclass order. Therefore, a widget's
destroy procedure should only deallocate storage that is specific to the subclass and should
not bother with the storage allocated by any of its superclasses. If a widget does not need
to deallocate any storage, the destroy procedure entry in its widget class record can be
NULL.

Deallocating storage includes but is not limited to:

• Calling XtFree on dynamic storage allocated with XtMalloc, XtCalloc, and
soon.

• Calling XtRernoveAllCallbacks on callback lists.

• Calling XtDestroyPixrnap on pixmaps allocated with XtGetPixrnap.

• Calling XFreePixrnap on pixmaps created with direct X calls.

U • Calling XtDestroyGC on GCs allocated with XtGetGC.

• Calling XFreeGC on GCs allocated with direct X calls.

Instantiating Widgets 4 -19

• Calling XtRemoveEventHandler on event handlers added with
XtAddEventHandler.

• Calling XtRemoveTimeOut on timers created with XtAddTimeOut.

4. 7.3 Deallocation of Dynamic Constraint Data
The constraint destroy procedure is of type XtWidge tProc. They are called for a
widget whose parent is a subclass of constraintWidgetClass. The constraint
destroy procedures are called in subclass-to-superclass order, starting at the widget's
parent and ending at constraintWidgetClass. Therefore, a parent's constraint
destroy procedure should only deallocate storage that is specific to the constraint subclass
and not the storage allocated by any of its superclasses.

If a parent does not need to deallocate any constraint storage, the constraint destroy
procedure entry in its class record can be NULL.

4.8 Exiting an Application
All X Toolkit applications that wish to terminate should just do so by calling
XCloseDisplay and exiting using the standard method for their operating system
(typically, by calling exit for UNIX-based systems). The quickest way to make the
windows disappear while exiting is to call XtUnmapWidget on each top-level shell
widgets. The X Toolkit has no resources beyond those in the program image, and the X
server will free its resources when its connection to the application is broken.

4 -20 Instantiating Widgets

,f)
J

(\

0

u

u

Callbacks 5
Applications and other widgets (clients) often want to register a procedure with a widget
that gets called under certain conditions. For example, when a widget is destroyed, every
procedure on the widget's destroy_ callbacks list is called to notify clients of the widget's
impending doom.

Every widget has a destroy_ callbacks list. Widgets can define additional callback lists as
they see fit. For example, the Command widget has a callback list to notify clients when
the button has been activated.

5.1 Callback Procedure and Callback List Definitions
Callback procedures for use in callback lists are of type XtCallbackProc:

typedef void (*XtCallbackProc)();

void CallbackProc (w, client dala, call_ dala)
Widget w; -
caddr t client dala;
c addr = t call_ dala;

w

client data

call data

Specifies widget for which the callback is registered.

Specifies the data that the widget should pass back to the client when the
widget executes the client's callback procedure. This is a way for the
client registering the callback to also register client -specific data: a
pointer to additional information about the widget, a reason for invoking
the callback, and so on. It is perfectly normal to have client_ data be
NULL if all necessary information is in the widget.

Specifies any callback-specific data the widget wants to pass to the client.
For example, when Scrollbar executes its thumbChanged callback list, it
passes the new position of the thumb. The call_ data argument merely is a
convenience to avoid having simple cases where the client could otherwise
need to call XtGetValues or a widget-specific function to retrieve data
from the widget. Complex state information in call_ data generally should

Callbacks 5 -1

be avoided. The client can use the more general data retrieval methods, if
necessary.

Whenever a client wants to pass a callback list as an argument in an XtCreateWidget,
XtSetValues, or XtGetValues call, it should specify the address of a NULL
terminated array of type XtCallbackList:

typedef struct {
XtCallbackProc callback;
caddr_t closure;

} XtCallbackRec, *XtCallbackList;

For example, the callback list for procedures A and B with client data clientDataA and
clientDataB, respectively, is:

static XtCallbackRec oW/backs[] = {

} ;

{A, (caddr_t) clientDataA},
{B, (caddr_t) clientDataB},
{(XtCallbackProc) NULL, (caddr_t) NULL}

Though callback lists are passed by address in argument lists, the Intrinsics know about
callback lists. Your widget initialize and set values procedures should not allocate memory
for the callback list. The Intrinsics do this for you, using a different structure for their
internal representation.

5.2 Identifying Callback Lists
Whenever a widget contains a callback list for use by clients, it also exports in its public
".h" file the resource name of the callback list. Applications and client widgets never
access callback list fields directly. Instead, they always identify the desired callback list
using the exported resource name. All callback manipulation routines described below
check that the requested callback list is indeed implemented by the widget.

In order for the Intrinsics to find and correctly handle callback lists, they should always be
declared with a resource type of XtRCallback.

5.3 Adding Callback Procedures
To add a callback procedure to a callback list, use XtAddCallback.

5 • 2 Callbacks

n

(j

u

u

u

void XtAddCallback (w, callback name, callback, client data)
Widget w; - -
String callback name;
XtCallbackProc callback;
caddr_t client_data;

w Specifies the widget to add the callback to.

callback name

callback

Specifies the callback list within the widget to append to.

Specifies the callback procedure to add.

client data Specifies the client data to be passed to the callback when it is invoked
by XtCallCallbacks. (The client data parameter is often NULL).

To add a list of callback procedures to a callback list, use XtAddCallbacks.

void XtAddCallbacks (W, callback name, callbacks)

w

Widget w; -
String callback name;
XtCallbackList callbacks;

Specifies the widget to add the callbacks to.

callback name

callbacks

Specifies the callback list within the widget to append to.

Specifies the null-terminated list of callback procedures and
corresponding client data to add.

5.4 Removing Callback Procedures

To remove a callback procedure from a callback list, use XtRemoveCallback.

void XtRemoveCallback(w, callback name, callback, client_data)
Widget w; -

w

String callback name;
XtCallbackProc callback;
caddr _ t client_ data;

Specifies the widget to delete the callback from.

callback name Specifies the callback list within the widget to remove the callback
from.

callback Specifies the callback procedure to delete.

Callbacks 5 • 3

client data Specifies the client data to match on the registered callback procedure.
(The XtRemoveCall back routine removes a callback only if both
the procedure and the client data match).

To remove a list of callback procedures from a callback list, use XtRemoveCallbacks.
void XtRemoveCallbacks (W, callback name, callbacks)

w

Widget w; -
String callback name;
XtCallbackList callbacks;

Specifies the widget to delete the callbacks from.

callback name Specifies the callback list within the widget to remove the callbacks
from.

callbacks Specifies the list of callbacks to delete.

To remove all callback procedures from a callback list (and, thus, free all storage
associated with the callback list), use XtRemoveAUCallbacks.
void XtRemoveAllCallbacks(w, callback_name)

Widget w;
String callback_name;

w

callback name

Specifies the widget to remove the callback from.

Specifies the callback list within the widget to remove.

5.5 Executing Callback Procedures
To execute the procedures in a callback list, use XtCallCallbacks.
void XtCallCallbacks(w, callback name, call_daJa)

Widget w; -
String callback name;
c addr _ t call_ dciia;

w

callback name

5 • 4 Callbacks

Specifies the widget containing the callback list that is to be executed.
Specifies the callback list within the widget to execute. n

/ '

_)

(\
\._)

! \ u

call data Specifies a callback-list specific data value to pass to each of the
callback procedure in the list. The call data is NULL if no data is
needed (for example, the commandActivated callback list in Command
needs only to notify its clients that the button has been activated). The
call_ data is the actual data if only one (32-bit) long word is needed. The
call_ data is the address of the data if more than one word is needed.

5.6 Checking the Status of a Callback List
To find out the status of a callback list, use XtHasCallbacks.

typedef enum {XtCallbackNoList, XtCallbackHasNone, XtCallbackHasSome} XtCallbackStatus;

XtCallbackStatus XtHasCallbacks (W, callback name)
Widget w; -
String callback_name;

w Specifies the widget to check.

callback name Specifies the callback list within the widget to check.

XtHasCallbacks first checks if the widget has a callback list identified by
callback name. If not, it returns XtCallbackNoList. Otherwise, it returns
XtCallbackHasNone if the callback list is empty, and XtCallbackHasSome if the
callback list has at least one callback registered.

Callbacks 5 - 5

This page left blank intentionally.

I~
•.)

I

/ ' u

u

(·.

0

Composite Widgets 6
Composite widgets can have children. Consequently, they are responsible for much more
than primitive widgets. Their responsibilities (either implemented directly by the widget
class or indirectly by Intrinsic procedures) include:

• Overall management of children from creation to destruction.

• Destruction of descendants when the composite widget is destroyed.

• Physical arrangement (geometry management) of a displayable subset of children
(that is, the "managed" children).

• Mapping and unmapping of a subset of the managed children.

• Focus management for the displayable children.

Overall management is handled by the generic procedures XtCreateWidget and
XtDestroyWidget. XtCreateWidget adds children to their parent by calling the
parent's insert child procedure. XtDestroyWidget removes children from their parent
by calling the parent's delete child procedure and ensures all children of a destroyed
composite widget also get destroyed.

Only a subset of the total number of children are actually managed by the geometry
manager and, hence, possibly visible. For example, a multi-buffer composite editor widget
might allocate one child widget per file buffer, but it might only display a small number of
the existing buffers. Windows that are in this displayable subset are called "managed"
windows and enter into geometry manager calculations. The other children are
"unmanaged" windows and, by definition, are not mapped.

Children are added to and removed from the managed set by using XtManageChild,
XtManageChildren, XtUnmanageChild,and XtUnmanageChildren,which
notify the parent to recalculate the physical layout of its children by calling the parent's
change_ managed procedure. A convenience routine, XtCrea teManagedWidget, calls
XtCreateWidget and XtManageChild on the result. It has the same parameters as
XtCreateWidget.

Most managed children are mapped, but some widgets can be in a state where they take up
physical space but do not show anything. Managed widgets will not be mapped
automatically if their map when managed field is FALSE. This field default is TRUE and
is changed by using XtSetMappedWhenManaged.

Composite Widgets 6 -1

Each composite widget class has a geometry manager, which is responsible for figuring out
where the managed children should appear within the composite widget's window.
Geometry management techniques fall into four classes:

• Fixed boxes have a fixed number of children that are created by the parent. All of
these children are managed, and none ever make geometry manager requests.

• Homogeneous boxes treat all children equally and apply the same geometry
constraints to each child. Many clients insert and delete widgets freely.

• Heterogeneous boxes have a specific location where each child is placed. This
location is usually not specified in pixels, because the window may be resized but is
expressed rather in terms of the relationship between a child and the parent or
between the child and other specific children. Heterogeneous boxes are usually
subclasses of Constraint.

• Shell boxes have only one child, which is exactly the size of the shell. The geometry
manager must communicate with the window manager if it exists, and the box must
also accept ConfigureNotify events when the window size is changed by the
window manager.

Each composite widget, especially those that are heterogeneous, can defme ways for one
child to change focus to another child by means of the move focus to next and
move _focus_ to __prev procedures. For example, typing carriage return in one child widget
may move to the "next" child widget, while typing a number in one child widget may move
focus to any of a number of children widgets.

6.1 Verifying the Class of a Composite Widget
To test if a widget is a subclass of Composite, use XtisCompos i te.

void XtisComposite(W)
Widget w;

w Specifies the widget under question.

XtisComposite(w) is just an abbreviation for XtisSubclass (w,
compositeWidgetClass).

6-2 Composite Widgets

n

n

u

u

u

6.2 Addition of Children to a Composite Widget
To add the child to the parent's children array, XtCreateWidget calls the parent's class
routine insert_ child. The insert_ child procedure for a composite widget is of type
XtWidgetProc. An insert_ child procedure takes the widget to insert and the argument
list used to create the widget.

Most composite widgets just inherit their superclass's operation. Composite's insert child
routine merely calls the insert _position procedure and inserts the child at the specified
position.

Some composite widgets define their own insert child routine so that they can order their
children in some convenient way, so that they ciDi create companion "controller" widgets
for a new widget, or so they can limit the number or type of their children widgets.

If there is not enough room to insert a new child in the children array (num children =
num_slots), the insert_ child procedure must first realloc the array and update num_slots.
The insert child procedure then places the child wherever it wants and increments the
num child-;en field.

6.2.1 Insertion Order of Children

Instances of composite widgets may care about the order in which their children are kept.
For example, an application may want a set of command buttons in some logical order
grouped by function, while it may want buttons that represent file names to be kept in
alphabetical order.

The insert _position procedure for a composite widget instance is of type XtOrderProc:

typedef Cardinal (*XtOrderProc)();

Cardinal OrderProc(w)
Widget w;

w Specifies the widget.

Composite widgets that allow clients to order their children (usually homogeneous boxes)
can call their widget instance's insert _position function from the class's insert_ child
procedure to determine where a new child should go in its children array. Thus, a client of
a composite class can apply different sorting criteria to widget instances of the class passing
in a different insert_position procedure when it creates each composite widget instance.

Composite Widgets 6-3

The return value of the insert _position procedure indicates how many children should go
before the widget. Returning zero (0) means before all other children, while returning
num _children means after all other children. The default insert _position function returns
num children. This can be overridden by a specific composite widget's resource list or by
the argument list provided when the composite widget is created.

6.3 Deletion of Children
XtDestroyW'idget eventually causes a call to the parent's class routine delete_child in
order to remove the child from the parent's children array.

A deletion procedure is of type XtW'idgetProc, and it takes the widget being deleted.

Most widgets just inherit delete_ children from their superclass. Composite widgets that
create companion widgets define their own delete children routine to remove these
companion widgets. -

6.4 Adding and Removing Children from the Managed Set
The X Toolkit provides a set of generic routines to permit the addition of widgets to or the

n

removal of widgets from a composite widget's managed set. These generic routines n
eventually call the widget's class procedure, change_ managed, which is of type ..
XtW'idgetPrpc.

6.4.1 Managing Children

To add a list of widgets to the geometry-managed (and, hence, displayable) subset of their
parent widget, the application must first create the widgets by using XtCreateW'idget
and then call XtManageChildren.

typedef Widget *WidgetList;

void XtManageChildren(childnm, num children)
WidgetList children; -
Cardinal num _children;

children

num children

Specifies a list of children to add.

Specifies the number of children to add.

XtManageChildren performs the following:

• Issues an error if the children do not all have the same parent.

6-4 Composite Widgets

n

u

u

(' u

• Returns immediately if the common parent is being destroyed.

• Otherwise, for each unique child on the list:

• The child is ignored if it is already managed or being destroyed.

• Otherwise, the child is marked as managed, and the parent's
num mapped children field is incremented if the child has
map= when_ managed TRUE.

• If the parent is realized and after all children have been marked,
XtManageChildren makes some of the newly managed children visible:

• Calls the change_ managed routine of the widgets' parent.

• Calls XtRealizeWidget on each previously unmanaged child that is
unrealized.

• Maps each previously unmanaged child that has map_ when_ managed TRUE.

Managing children is independent of the ordering of children and independent of creating
and deleting children. The layout routine of the parent should only bother with children
whose managed field is TRUE and should ignore all other children. (Note that some
composite widgets, especially fixed boxes, call XtManageChi ld from their insert_ child
procedure.)

If the parent widget is realized, its change managed procedure is called to notify the that
that its set of managed children has changed. The parent can reposition and resize any of
its children. It moves each child as needed by calling the XtMoveWidget procedure.
XtMoveWidget first updates the x andy fields and then calls XMoveWindow if the
widget is realized

If the composite widget wishes to change the size or border width of any of its children, it
calls the XtResizeWidget procedure. XtResizeWidget first updates the Core
fields and then calls XConfigureWindow if the widget is realized.

To add a single child to the managed children of its parent widget, the application must
first create the widget by using XtCreateWidget and then call XtManageChild.

void XtManageChild(child)
Widget child;

child Specifies the child to add.

Composite Widgets 6 • 5

XtManageChild constructs a WidgetList oflength one (1) and calls
XtManageChildren.

To create and manage a widget in a single procedure, use XtCreateManagedWidget.

Widget XtCreateManagedWidget(name, widget_class, parent, QI'&S, num_QI'&S)
String name;
WidgetClass widget class;
Widget parent; -
ArgList Q~'&S;

Cardinal num _ Q1'&S;

name Specifies the text name for the created widget.

widget_ class

parent

Specifies the widget class pointer for the created widget.

Specifies the parent widget.

args

num_args

Specifies the argument list to override the resource defaults.

Specifies the number of arguments in args.

XtCreateManagedWidget is a convenience routine that calls XtCreateWidget
followed by XtManageChild.

6.4.2 Unmanaging Children

To remove a list of children from the managed list of their parent, use
XtUnmanageChildren.

void XtUnmanageChildren (children, num children)
WidgetList children; -
Cardinal num _children;

children Specifies the children to remove.

num children Specifies the number of children to remove.

XtUnmanageChildren performs the following:

• Issues an error if the children do not all have the same parent.

• Returns immediately if the common parent is being destroyed.

• Otherwise, for each unique child on the list:

• The child is ignored if it is already unmanaged or being destroyed.

• Otherwise, XtUnmanagedChildren marks the child as unmanaged.

6- 6 Composite Widgets

n

u

u

u

• If the child is realized, XtUnmanageChildren makes it non-visible by
unmapping it.

• Decrements the parent's num _mapped_ children field if the widget has
map_ when_ managed TRUE.

• Calls the change_ managed routine of the widgets' parent after all children have been
marked if the parent is realized.

XtUnmanageChildren does not destroy the children widgets. Removing widgets from
a parent's managed set is often a temporary banishment, and, some time later, you may
add the children again. To destroy widgets entirely, see "Destroying Widgets".

To remove a single child from its parent's managed set, use XtUnmanageChild.

void XtUnmanageChild(chUd)
Widget child;

child Specifies the child to remove.

XtUnmanageChild constructs a widget list of length one and calls
XtUnmanageChildren.

These generic routines are low-level routines used by "generic" composite widget building
routines. In addition, composite widgets can provide widget-specific, high-level
convenience routines to allow applications to create and manage children more easily.

6.5 Controlling When Widgets Get Mapped
A widget is normally mapped if it is managed. However, this behavior can be overridden
by setting the XtNmappedWhenManaged resource for the widget when it is created or by
setting the map_ when_ managed field to False.

To change the map_ when_ managed field, use XtSetMappedWhenManaged.

void XtSetMappedWhenManaged(w, map when managed)
Widget w; - -
Boolean map_ when_ managed;

w Specifies the widget.

map_ when_ managed Specifies the new value (either True or False).

If the widget is realized and managed and if the new value of map_ when_ managed is True,
XtSetMappedWhenManaged maps the window. If the widget is realized and managed
and if the new value of map_ when _managed is False, it unmaps the window.

Composite Widgets 6 -7

When a widget's mapped when managed field is False, the client is responsible for
mapping and unmapping the widget.

XtSetMappedWhenManaged is a convenience function that is equivalent to (but slightly
faster than) calling XtSetValues and setting the new value for the
mappedWhe~anagedresource. ~
To map a widget explicitly, use XtMapWidget.

XtMapWidget(W)
Widget w;

w Specifies the widget.

To unmap a widget explicitly, use XtUnmapWidget.

XtUnmapWidget(W)
Widget w;

w Specifies the widget.

6.6 Constrained Composite Widgets
Constraint widgets are a subclass of Composite widgets. The name comes from the fact
that they manage the geometry of their children based upon constraints associated with
each child. Constraints can be as simple as information such as the maximum width and
height the parent will allow the child to occupy, or they can be more complicated
information such as how other children should change if this child is moved or resized.

Constraint widgets have all the responsibilities of normal composite widgets, and, in
addition, must process and act upon the constraint information associated with each of
their children.

In order to make it easy for widgets and the Intrinsics to keep track of the constraints a
parent associated with each child, every widget has a constraints field. This field is the
address of a parent-specific structure containing constraint information about the child. If
a child's parent is not a subclass of constraintWidgetClass, then the child's
constraints field is NULL.

Subclasses of a constrained widget can add additional constraint fields to their superclass.

n
' I

T~ allohw this, widget writers should define the constraint records in their private ".h" file ,r-\
usmg t e same conventions as used for widget records. For example, a widget that wished ')
to maintain a maximum width and height for each child might define its constraint record
like this:

6-8 Composite Widgets

(\ v

u

typedef struct {
Dimension max width, max_height;

} MaxConstraintPart;

typedef struct {
MaxConstraintPart max;

} MaxConstraintRecord, *MaxConstraint;

A subclass of this widget that also wished to maintain a minimum size would define its
constraint record thus:

typedef struct {
Dimension min width, min_height;

} MinConstraintPart;

typedef struct {
MaxConstraintPart max;
MinConstraintPart min;

} MaxMinConstraintRecord, *MaxMinConstraint;

Constraints are allocated, initialized, deallocated, and otherwise maintained insofar as
possible by the Intrinsics. The constraint class record part has several entries that facilitate
this. All entries in ConstraintClassPart are information and procedures that are
defined and implemented by the parent, but they are called whenever actions are
performed upon the parent's children.

XtCreateWidget uses the constraint size field to allocate a constraint record when a
child is created. The constraint_size field gives the number of bytes occupied by a
constraint record.

XtCreateWidget uses the constraint resources to fill in resource fields in the constraint
record associated with a child. It then calls the constraint initialize procedure so that a the
parent can compute constraint fields that are derived from constraint resources and can
possible move or resize the child to conform to the given constraints.

XtGetValues and XtSetValues use the constraint resources to get the values or set
the values of constraints associated with a child. XtSetValues then calls the constraint
set values procedures so that a parent can recompute derived constraint fields and move
or resize the child as appropriate.

XtDestroyWidget calls the constraint destroy procedure to deallocate any dynamic
storage associated with a constraint record. The constraint record itself must not be
deallocated by the constraint destroy procedure; XtDestroyWidget does this
automatically.

Composite Widgets 6 • 9

This page left blank intentionally.

n
/

n

n

U Pop-up Widgets 7

u

u

There are three kinds of pop-ups:

• Modeless pop-ups

• Modal pop-ups

• Spring-loaded pop-ups

A modeless dialog box, an example of a modeless pop-up, is normally visible to the window
manager and looks much like just another application from the user point of view. (The
application itself is a special form of a modeless pop-up.)

A modal dialog box, an example of a modal pop-up, is not normally visible to the window
manager, and, except for events that occur in the dialog box, it disables user-event
processing by the application.

A menu, an example of a spring-loaded pop-up, is not visible to the window manager and,
except for events that occur in the menu, disables user-event processing by all applications.

Modal pop-ups and spring-loaded pop-ups are really almost the same thing and should be
coded as such. In fact, the same widget (for example, a ButtonBox or Menu) can be used
both as a modal pop-up or as a spring-loaded pop-up within the same application. The
main difference is that spring-loaded pop-ups are brought up with the pointer and, because
of the grab that the pointer button causes, they can require different processing by the
Intrinsics. Further, button up takes down a spring-loaded pop-up no matter where the
button up occurs.

Any kind of pop-up can, in turn, pop up other widgets. Modal and spring-loaded pop-ups
can constrain user events to just the most recent such pop-up or to any of the
modal/spring-loaded pop-ups currently mapped.

7.1 Pop-ups and the Widget/Window Hierarchy
The one thing all pop-ups have in common is that they break the widget/window hierarchy.
Pop-ups windows are not geometry constrained by their parent widget. Instead, they are
window children of "root". This means pop-ups are created and attached to their widget
parent differently than from normal widget children.

Pop-up Widgets 7 -1

Because the X Toolkit does not support multiple inheritance, and because you can pop up
a widget that belongs to any arbitrary widget (for example, Command, MenuBar, Text, and
so on), the Co reP art record includes the list of the widget's pop-up children. This
means that a primitive widget can be a parent, but this is very different from being a
composite widget parent. Think of it more like being a godfather. The pop-up list exists
mainly to provide the proper place in the widget hierarchy for the pop-up to get resources n
and to provide a place for XtDestroyWidget to look for all extant children. A parent
of a pop-up widget does not actively manage its pop-up children. In fact, it usually never
notices them or operates upon them.

A composite widget can have both normal and pop-up children. A pop-up can be popped
up from just about anywhere, not just by its parent. The term "child" always refers to a
normal, geometry-managed child on the children list. The term "pop-up child" always
refers to a child on the pop-ups list.

When traversal is enabled and a pop-up shell with either exclusive or non-exclusive
keyboard grab is displayed, the currently traversed to widget will not have its traversal
highlight removed.

7.2 Creating a Pop-up Shell
In order to pop up some arbitrary widget, it must be the only child of a pop-up widget
"shell". This shell is responsible for communication with the X window manager on n
geometry requests and is responsible for proper handling of the bookkeeping associated
with actual pop up and pop down. Pop-up shells never allow more than one child.

This shell is always referred to as the "pop-up shell". The single (normal) child is always
referred to as the "pop-up child". Both taken together are referred to as the "pop-up".

To create a pop-up shell, use XtCreatePopupShell.

Widget XtCreatePopupShell(name, widget class, parent, ar&S, num ar&S)
String name; - -

name

WidgetClass widget class;
Widget parent; -
ArgList ar&S;
Cardinal num _ ar&S;

Specifies the text name for the created shell widget.

widget _class

parent

Specifies the widget class pointer for the created shell widget.

Specifies the parent widget.

args Specifies the argument list to override the resource defaults.

7-2 Pop-up Widgets

u

u

num_args Specifies the number of arguments in args.

XtCreatePopupShell ensures that the specified class is a subclass of Shell and that
rather than using insert_ child to attach the widget to the parent's children list just attaches
the shell to the parent's pop-ups list directly.

To use a spring-loaded pop-up, the pop-up shell must be created at application start-up so
that the translation manager can find the shell by name. Otherwise, the pop-up shell can
be created "on-the-fly'' when the pop-up is actually needed. This delayed creation of the
shell is particularly useful when you pop up an unspecified number of pop-ups. You can
look to see if an appropriate unused shell (that is, not currently popped up) exists and
create a new shell if needed.

7.3 Creating Pop-up Children
Once a pop-up shell is created, the single child of the pop-up shell can be created. The
two styles for this are:

• Static

• Dynamic

At application start up, an application can create the child of the pop-up shell. This is
appropriate for pop-up children that are composed of a fixed set of widgets, and the
application can change the state of the subparts of the pop-up child as the application state
changes. For example, if an application creates a static menu, it can call
XtSetSensitive (or, in general, XtSetValues) on any ofthe buttons that make up
the menu. Creating the pop-up child early means that pop-up time is minimized, especially
if the application calls XtRealizeWidget on the pop-up shell at startup time. When
the menu is needed, all the widgets that make up the menu already exist and need only be
mapped. The menu should pop up as quickly as the X server can respond.

Alternatively, an application can postpone the creation of the child until it is needed. This
minimizes application startup time and allows the pop-up child to reconfigure itself each
time it is popped up. In this case, the pop-up child creation routine should "poll" the
application to find out if it should change the sensitivity of any of its subparts.

Pop-up child creation does not map the pop-up, even if you create the child and call
XtRealizeWidget on the pop-up shell. All pop-up shells automatically perform an
XtManageChild on their child within their insert_ child procedure. There is no need for
the creator of a pop-up child to call XtManageChild.

Pop-up Widgets 7-3

All shells have pop-up and pop-down callbacks. These provide the opportunity either to
make last-minute changes to a pop-up child before it is popped up or to change it after it is
popped down. Programmers should be aware that excessive use of pop-up callbacks can

· make popping up occur more slowly.

7.4 Mapping a Pop-up Widget
Pop-ups can be popped up through several mechanisms:

• A call to XtPopup.

• One of the supplied callback procedures (for example, XtCallbackNone,
XtCallbackNonexclusive,or XtCallbackExclusive).

• The standard translation action MenuPopup.

Some of these routines take an argument of type XtGrabKind, which is defined as:

typedef enum {XtGrabNone, XtGrabNonexclusive, XtGrabExclusive} XtGrabKind;

To map a pop-up from within an application, use XtPopup.

void XtPopup(popup shell, grab kind)
Widget popup -shell; -
XtGrabKind grab_kind;

popup _shell

grab_kind

Specifies the widget shell to pop up.

Specifies the way in which user events should be constrained.

XtPopup performs the following actions:

• Calls XtCheckSubclass to ensure popup_shell is a subclass of Shell.

• Generates an error if the shell's popped_ up field is already TRUE.

• Calls the callback procedures on the shell's popup_ callback list.

• Sets the shell popped_ up field to TRUE, the shell spring_loaded field to FALSE,
and the shell grab_ kind field from grab_ kind.

• If the shell's create _popup_ child field is non-NULL, XtPopup calls it with
popup_shell as the parameter.

• Ifgrab_kindiseither XtGrabNonexclusive or XtGrabExclusive,
XtPopup calls:

7-4 Pop-up Widgets

n

n

(.\ u

u

u

XtAddGrab(popup_shell, (grab_kind == XtGrabExclusive), FALSE)

• Calls XtRealizeWidge t (popup_ shell)

• Calls XMapWindow(popup_shell)

To map a pop-up from a callback list, you can use the XtCallbackNone,
XtCallbackNonexclusive, or XtCallbackExclusive convenience routines.

void XtCallbackNone (W, client data, call_ data)
Widget w; -

w

XtClosure client data;
caddr_t call_data;

Specifies the widget executing the callback.

Specifies the pop-up shell to pop up. client data

call data Specifies the callback data. This parameter is not used by this procedure.

void XtCallbackNonexclusive(w, client_data, call_data)
Widget w;

w

XtClosure client data;
c addr-t call_ data;

Specifies the widget executing the callback.

Specifies the pop-up shell to pop up. client data

call data Specifies the callback data. This parameter is not used by this procedure.

void XtCallbackExclusive(w, client_data, call_data)
Widget w;

w

XtClosure client data;
caddr _ t call_ data;

Specifies the widget executing the callback.

Specifies the pop-up shell to pop up. client data

call data Specifies the callback data. This parameter is not used by this proc~dure.

Pop-up Widgets 7-5

Each of these routines calls XtPopup with the shell specified by the client data
parameter and grab kind set as the name specifies. XtCallbackNone specifies
XtGrabNone, and so on. Each then sets the widget that executed the callback list to be
insensitive.

The use of these routines in callbacks is not required. In particular, callbacks that create n
pop-up shells dynamically or that must do more than desensitizing the button will have ·..)
custom code.

To pop up a menu when a pointer button is pressed or when the pointer is moved into
some window, use MenuPopup. From a translation writer's point of view, the definition
for this translation action is:

void MenuPopup(shell nGUHe)
String shell_n'Ome;

shell name Specifies the name of the widget shell to pop up.

MenuPopup is known to the translation manager, which must perform special actions for
spring-loaded pop-ups. Calls to MenuPopup in a translation specification are mapped
into calls to a non-exported action procedure and the translation manager fills in
parameters based upon the event specified on the left-hand side of a translation.

If MenuPopup is invoked upon ButtonPress (possibly with modifiers), the n
translation manager pops up the shell with grab kind XtExclus i ve and spring loaded .. ·
TRUE. If MenuPopup is invoked upon Ent;rWindow (possibly with modifiers), the
translation manager pops up the shell with grab kind XtNonexclusive and
spring loaded FALSE. Otherwise, the translati~n manager generates an error. When the
widgetis popped up, the following actions are performed:

• Calls XtCheckSubclass to ensure popup_shell is a subclass of Shell.

• Generates an error if the shell's popped_ up field is already TRUE.

• Calls the callback procedures on the shell's popup_ callback list.

• Sets the shell popped up field to TRUE and the shell grab kind and spring loaded
fields appropriately. - - -

• If the shell's create _popup_ child field is non-NULL, it is called with popup_ shell as
the parameter.

• MenuPopup then calls:

XtAddGrab(popup_shell, (grab_kind == XtGrabExclusive), spring_loaded)

7-6 Pop-up Widgets

n

• Calls XtRealizeWidget(popup shell)

• Calls XMapWindow(popup_shell)

Note that these actions are the same as those for XtPopup.

(.. MenuPopup tries to find the shell by looking up the widget tree starting at the parent of
V the widget in which it is invoked. If it finds a shell with the specified name in the pop-up

children of that parent, it pops up the shell with the appropriate parameters. Otherwise, it
moves up the parent chain as needed. If MenuPopup gets to the application widget and
cannot find a matching shell, it generates an error.

u

7.5 Unmapping a Pop-up Widget
Pop-ups can be popped down through several mechanism:

• A call to XtPopdown.

• The supplied callback procedure XtCallbackPopdown.

• The standard translation action MenuPopdown.

To unmap a pop-up from within an application, use XtPopdown.

void XtPopdown(popup_sheU)
Widget popup _shell;

popup _shell Specifies the widget shell to pop down.

XtPopdown performs the following:

• Calls XtCheckSubclass to ensure popup_shell is a subclass of Shell.

• Checks that popup_ shell is currently popped_ up. If not, it generates an error.

• Unmaps popup_ shell's window.

• lfpopup_shell's grab_kind is either XtGrabNonexclusive or
XtGrabExclusive,calls XtRemoveGrab.

• Sets popup_shell's popped_up field to FALSE.

• Calls the callback procedures on the shell's popdown _callback list.

U Pop-ups that have been popped up with one of the callback routines (that is,
XtCallbackNone, XtCallbackNonexclusive, XtCallbackExclusive)can
be popped down by the callback routine XtCallbackPopdown.

Pop-up Widgets 7 -7

void XtCallbackPopdown(w, client data, call data>
Widget w; - -
XtClosure client data;
caddr_t call_daia;

w Specifies the widget executing the callback.

client data Specifies the pop-up shell to pop down and the widget used to originally
pop it up.

call data Specifies the callback data. This parameter is not used by this procedure.
XtCallbackPopdown casts the client data parameter to an XtPopdowniD pointer:

typedef struct {
Widget shell_widget;
Widget enable_widget;

} XtPopdowniDRec, *XtPopdowniD;

XtCallbackPopdown calls XtPopdown with the specified shell_ widget. It then calls
XtSetSensitive to resensitize the enable_widget.

To pop down a spring-loaded menu when a pointer button is released or when the pointer
is moved into some window, use MenuPopdown. From a translation writer's point of
view, the definition for this translation action is:

void MenuPopdown()

MenuPopdown calls XtPopdown with the widget for which the translation is specified.

7-8 Pop-up Widgets

(r-.... .)

I~
)

u

u

u

Shell Widgets 8
Shell widgets hold an application's top-level widgets to allow them to communicate with
the window manager. Shells have been designed to be as nearly invisible as possible. That
is, while clients have to create them, they should never have to worry about their sizes.

If a shell widget is resized from the outside, typically by a window manager, the shell
widget will resize its child widget automatically. Similarly, if the shell's child widget wants
to change size, it can make a geometry request to the shell, and the shell will negotiate the
size change with the outer environment. Clients should never attempt to change the size of
their shells directly.

There are three classes of public shells:

OverrideShell This class is used for shell windows that completely bypass the window
manager. Pop-up menu shells will typically be of this class or a
subclass.

TransientShell This class is used for shell windows that can be manipulated by the
window manager but are not allowed to be separately iconified. They
get iconified by the window manager if the main application shell is
iconified. Dialog boxes that make no sense without their associated
application will typically be in a shell of this class or a subclass.

TopLevelShell This class is used for normal top level windows. Any additional top
level widgets an application needs will typically be in a shell of this
class or a subclass.

8.1 Shell Widget Definitions
Widgets negotiate their size and position with their parent widget, the widget that directly
contains them. Widgets at the top level of the hierarchy do not have parent widgets;
instead they must deal with the outside world. To provide for this, top level widgets are
encapsulated in special widgets called "Shells".

Shell Widgets 8 -1

Shell widgets are subclasses of the Composite widget. They encapsulate other widgets and
can allow a widget to "jump out" of the geometry clipping imposed by the parent/child
window relationship. If desired, they provide a layer of communication with the window
manager.

There are six different types of shell:

She 11 This is the base class for shell widgets and provides fields needed for
all types of shells. Shell is a direct subclass of Composite.

OverrideShell This class is used for shell windows that completely bypass the window
manager. It is a subclass of Shell.

WMShell

VendorShell

Contains fields needed by the common window manager protocol. It
is a subclass of She 11.

Contains fields used by vendor-specific window managers. It is a
subclass of WMShell.

TransientShell This class is used for shell windows that can be manipulated by the
window manager but are not allowed to be iconified. It is a subclass
of VendorShell.

TopLevelShell This class is used for normal top level windows. It is a subclass of
VendorShell.

n
' /

The classes Shell, WMShell, and VendorShell are internal and should not be n
instantiated. Only OverrrideShell, TransientShell, and TopLevelShell.
are for public use.

If a shell is to match its child size automatically, the child widget must be created before
the shell is realized.

8.1.1 SheiiCiassPart Definitions

No shell widget classes have any additional fields:

typedef struct { int empty; } ShellClassPart, OverrideShellClassPart,
WMShellClassPart, VendorShellClassPart, TransientShellClassPart,
TopLevelShellClassPart;

Shell widget classes have the (empty) shell fields immediately following the composite
fields:

8-2 Shell Widgets

n
J

u

typedef struct _ShellClassRec {
CoreClassPart core_class;
CompositeClassPart composite class;
ShellClassPart shell_class; -

ShellClassRec;

typedef struct _OverrideShellClassRec
CoreClassPart core_class;
CompositeClassPart composite class;
ShellClassPart shell_class; -
OverrideShellClassPart override_shell_class;

OverrideShellClassRec;

typedef struct _WMShellClassRec {
CoreClassPart core_class;
CompositeClassPart composite class;
ShellClassPart shell_class; -
WMShellClassPart wm_shell_class;

} WMShellClassRec;

typedef struct _VendorShellClassRec {
CoreClassPart core_class;
CompositeClassPart composite_class;
ShellClassPart shell_class;
WMShellClassPart wm shell class;
VendorShellClassPart vend~r_shell_class;

VendorShellClassRec;

typedef struct _TransientShellClassRec {
CoreClassPart core_class;
CompositeClassPart composite_class;
ShellClassPart shell_class;
WMShellClassPart wm_shell_class;
VendorShellClassPart vendor_shell_class;
TransientShellClassPart transient_shell_class;

TransientShellClassRec;

typedef struct _TopLevelShellClassRec {
CoreClassPart core_class;
CompositeClassPart composite_class;
ShellClassPart shell_class;
WMShellClassPart wm_shell_class;
VendorShellClassPart vendor_shell_class;
TopLevelShellClassPart top_level_shell_class;

TopLevelShellClassRec;

The predefined class records and pointers for shells are:

Shell Widgets 8 -3

extern ShellClassRec shellClassRec;
extern OverrideShellClassRec overrideShellClassRec;
extern WMShellClassRec wmShellClassRec;
extern VendorShellClassRec vendorShellClassRec;
extern TransientShellClassRec transientShellClassRec;
extern TopLevelShellClassRec topLevelShellClassRec;

extern WidgetClass shellWidgetClass;
extern WidgetClass overrideShellWidgetClass;
extern WidgetClass wmShellWidgetClass;
extern WidgetClass vendorShellWidgetClass;
extern WidgetClass transientShellWidgetClass;
extern WidgetClass topLevelShellWidgetClass;

The following opaque types and the opaque variables are defined for generic operations on
widgets that are a subclass of ShellWidgetClass.

Types

Shell Widget
OverrideShellWidget
WMShellWidget
VendorShellWidget
TransientShellWidget
TopLevelShellWidget
ShellWidgetClass
OverrideShellWidgetClass
WMShellWidgetClass
VendorShellWidgetClass
TransientShellWidgetClass
TopLevelShellWidgetClass

8.1.2 SheiiPart Definition

Variables

shellWidgetClass
overrideShellWidgetClass
wmShellWidgetClass
vendorShellWidgetClass
transientShellWidgetClass
topLevelShellWidgetClass

The various shells have the following additional fields defined in their widget records:

8 -4 Shell Widgets

n

I \ u

l)

u

typedef struct {
String geometry;
XtCreatePopupChildProc create_popup_child_proc;
XtGrabKind grab_kind;
Boolean spring_loaded;
Boolean popped_up;
Boolean allow shell resize;
Boolean client_specified;
Boolean save_under;
Boolean override redirect;
XtCallbackList ~pup callback;
XtCallbackList popdo~ callback;

ShellPart; -

typedef struct { int empty; } OverrideShellPart;

typedef struct {
String title;
int wm_timeout;
Boolean wait_for_wm;
Boolean transient;
XSizeHints size_hints;
XWMHints wm_hints;

WMShellPart;

typedef struct {
int vendor_specific;

} VendorShellPart;

typedef struct int empty; } TransientShellPart;

typedef struct
String icon_name;
Boolean iconic;

TopLevelShellPart;

The full definitions of the various shell widgets have shell fields following composite fields:

typedef struct {
CorePart core;
CompositePart composite;
ShellPart shell;

ShellRec, *ShellWidget;

typedef struct {
CorePart core;
CompositePart composite;
ShellPart shell;
OverrideShellPart override;

OverrideShellRec, *OverrideShellWidget;

Shell Widgets 8 - 5

typedef struct {
CorePart core;
CompositePart composite;
ShellPart shell;
WMShellPart WID;

} WMShellRec, *WMShellWidget;

typedef struct {
CorePart core;
CompositePart composite;
ShellPart shell;
WMShellPart WID;
VendorShellPart vendor;

} VendorShellRec, *VendorShellWidget;

typedef struct {
CorePart core;
CompositePart composite;
ShellPart shell;
WMShellPart wm;
VendorShellPart vendor;
TransientShellPart transient;

} TransientShellRec, *TransientShellWidget;

typedef struct {
CorePart core;
CompositePart composite;
ShellPart shell;
WMShellPart wm;
VendorShellPart vendor;
TopLevelShellPart topLevel;

} TopLevelShellRec, *TopLevelShellWidget;

8.1.3 Shell Part Default Values

The default values for all shell fields (filled in by the Shell resource lists and the Shell
initialize procedures) are:

8 - 6 Shell Widgets

n

n

lfJ

u

u

u

Field

geometry
create _popup_ child _proc
grab kind
sprmg loaded
popped up
allow shell resize
client-specified
save iinder
over~ide redirect
popup Cinback
popdoWn _callback

title
wm timeout
wait for wm
transient

Default Value

NULL
NULL
(internal)
(internal)
(internal)
FALSE
(internal)
FALSE
TRUE for OverrideShells, FALSE otherwise
NULL
NULL

Icon name, if specified, otherwise the application's name
5 seconds
TRUE
TRUE for TransientShells, FALSE otherwise

The geometry resource can be used to specify size and position. This is usually done only
from a command line or a defaults file. The create _popup_ child _proc is called by the
XtPopup procedure and usually is NULL. The allow shell resize field controls whether
or not the widget contained by the shell is allowed to try to resize itself. If it is FALSE, any
geometry requests will always return XtGeometryNo. Setting save under instructs the
server to attempt to save the contents of windows obscured by the shcll when it is mapped
and to restore it automatically later. It is useful for pop-up menus. Setting
overrideRedirect determines whether or not the shell window will be visible to the window
manager. If TRUE, the window will be immediately mapped without the manager's
intervention. The popup and popdown callbacks are called during XtPopup and
XtPopdown. The title is a string to be displayed by the window manager. The
wm timeout resource limits the amount of time a shell will wait for confirmation of a
geometry request to the window manager. If none comes back within that time, the shell
decides the window manager is broken and sets wait for wm to be FALSE (Later events
may reset this value). The wait_for _ wm resource sets the initial state for this flag. When
the flag is FALSE, the shell does not wait for a response. Rather, it relies upon
asynchronous notification. All other resources are for fields in the window manager hints
and the window manager size hints. For further information, see Xlib - C Language X
Interface.

Transient and TopLevel shells all have the following extra resources:

Shell Widgets 8 -7

Resource Default Value

min Width none
minHeight none
maxWidth none
maxHeight none
widthlnc none
heightlnc none
minAspectX none
minAspectY none
maxAspectX none
maxAspectY none
input FALSE
initialS tate Normal
iconPixmap none
icon Window none
iconX none
iconY none
IconMask none
windowGroup none

TopLevel shells have the the following additional resources:

Field

icon name
iconic

Default Value

Shell widget's name
FALSE

The icon_ name is the string to display in the shell's icon, and iconic is an alternative way to
set the initialState resource to indicate that a shell should be initially displayed as an icon.

8-8 Shell Widgets

I~

(~

n

u

u

Utility Functions 9
The X Toolkit provides a number of utility functions for:

• Memory management

• Sharing graphics contexts

• Exposure regions

• Error handling

9.1 Memory Management
The X Toolkit memory management routines provide uniform checking for null pointers,
and error reporting on memory allocation errors. These routines are completely
compatible with the standard C language runtime routines malloc, calloc,
realloc, and free with the added functionality:

• XtMalloc, XtNew, XtCalloc, and XtRealloc give an error if there is not
enough memory.

• XtFree simply returns if passed a NULL pointer.

• XtRealloc simply allocates new storage if passed a NULL pointer.

See the C library documentation on malloc, calloc, realloc, and free for
more information.

To allocate storage, use XtMalloc.

char *XtMalloc(sae);
Cardinal sae;

size Specifies the number of bytes desired.

XtMalloc returns a pointer to a block of storage of at least the specified size bytes. If
there is insufficient memory to allocate the new block, XtMalloc calls X tError.

Utility Functions 9 -1

To allocate storage for a new instance of a data type, use X tN ew.

type *XtNew(type);
type;

type Specifies a previously declared data type

X tN ew returns a pointer to the allocated storage. If there is insufficient memory to
allocate the new block, XtNew calls XtError. XtNew is an abbreviation for:

((type *) XtMalloc((unsigned) sizeof(type))

To allocate and initialize an array, use XtCalloc.

char *XtCalloc (num, size);
Cardinal num;
Cardinal size;

num Specifies the number of array elements to allocate.

size Specifies the size of an array element in bytes.

XtCalloc allocates space for the specified number of array elements of the specified size
bytes and initializes the space to zero. If there is insufficient memory to allocate the new
block, XtCalloc calls X tError.

To change the size of an allocated block of storage, use XtRealloc.

char *XtRealloc (ptr, num) ;
char *ptr;
Cardinal num;

ptr Specifies a pointer to old storage.

num Specifies number of bytes desired in new storage.

XtRealloc changes the size of a block of storage (possibly moving it). Then, it copies
the old contents (or as much as will fit) into the new block and frees the old block. If there
is insufficient memory to allocate the new block, XtRealloc calls X tError. If the
specified ptr argument is NULL, XtRealloc allocates the new storage without copying
the "old" contents. That is, it simply calls XtMalloc.

To free an allocated block of storage, use XtFree.

9 • 2 Utility Functions

tfj

('
\._)

u

u

void XtFree Cptr> ;
char *ptr;

ptr Specifies a pointer to the block of storage that is to be freed.

XtFree returns storage and allows it to be reused. If the specified ptr argument is
NULL, XtFree returns immediately.

9.2 Sharing Graphics Contexts
The X Toolkit provides a mechanism whereby cooperating clients can share Graphics
Contexts, thereby, reducing both the number of Graphics Contexts created and the total
number of server calls in any given application. The mechanism implemented is a simple
caching scheme and all Graphics Contexts obtained by means of this mechanism must be
treated as read-only. If a changeable Graphics Context is needed, the XCreateGC Xlib
function should be used instead.

To obtain shared GCs, use XtGetGC.

GC XtGetGC(w, value mask, values)

w

Widget w; -
XtGCMask value mask;
XGCValues *Values;

Specifies the widget.

value mask Specifies which fields of the values are specified. (See XCrea teGC .)

values Specifies the actual values for this GC. (See XCreateGC.)

XtGetGC returns a Graphics Context. The parameters to this function are the same as
those for XCreateGC, except that a widget is passed instead of a Display.

XtGetGC shares only GCs in which all values in the GC returned by XCreateGC are
the same. In particular, it does not use the value mask provided to determine which fields
of the GC a widget considers relevant. The value mask is used only to tell the server
which fields should be filled in with widget data and which it should fill in with default
values.

To deallocate a graphics context when it is no longer needed, use XtDestroyGC.

void XtDestroyGC(gc)
GC gc;

gc Specifies the gc to be deallocated.

Utility Functions 9 - 3

References to sharable GCs are counted and a free request is generated to the server
when the last user of a GC destroys it.

9.3 Merging Exposure Events into a Region
The X Toolkit provides the XtAddExposureToRegion utility function that merges
Expose and GraphicsExpose events into a region that clients can process at once,
rather than processing individual rectangles. (For further information about regions, see
Xlib - C Language X Interface.)

To merge Expose and GraphicsExpose events into a region, use
XtAddExposureToRegion.

void XtAddExposureToRegion(event, region)
XEvent *event;
Region region;

event

region

Specifies a pointer to the Expose or GraphicsExpose event.

Specifies the region object (as defined in Xll/Xutil. h).

XtAddExposureToRegion computes the union of the rectangle defined by the
exposure event and the specified region. Then, it stores the results back in region. If the
event argument is not an Expose or GraphicsExpose event,
XtAddExposureToRegion returns without an error and without modifying region.

This function is used by the exposure compression mechanism (see "Exposure
Compression").

9.4 Translating Strings to Widget Instances
To translate a widget name to widget instance, use XtNarneToWidget.

Widget XtNameToWidget <reference, names) ;
Widget reference;
String names;

reference Specifies the widget to start searching from.

names Specifies the fully qualified name of the desired widget.

9 • 4 Utility Functions

n

n

n

(\

\._)

u

u

The names argument contains the name of a widget with respect to the reference widget
parameter. The names argument can contain more than one widget name for widgets that
are not direct children of the reference widget. A dot(".") separates each component
name.

XtNameToWidget looks for a widget whose name is the first component in the names
parameter and who is a child (pop-up or normal) of the reference widget. It then uses that
widget as the new reference and repeats the search after deleting the first component from
the specified names argument. XtNameToWidget returns NULL if it cannot find the
specified widget.

If more than one child of the reference widget matches the name, XtNameToWidget
may return any of the children. The X Toolkit does not require that all children of a
widget have unique names. If the names argument contains more than one component
and if more than one child matches the first component, XtNameToWidget may return
NULL if the single branch that it follows does not contained the named widget. That is,
XtNameToWidget does not back up and follow other matching branches of the widget
tree.

9.5 Translating Widget Coordinates

To translate an x-y coordinate pair from widget coordinates to root coordinates, use
XtTranslateCoords.

void XtTranslateCoords (W, x, y, rootx return, rooty return)
Widget w; - -
Position x, y;
Position *rootx_!eturn, *rooty_!eturn;

w

X

y

rootx return
rooty _!etum

Specifies the widget.

Specify the widget-relative coordinates.

Returns the root-relative x andy coordinates.

While XtTranslateCoords is similar to XTranslateCoordinates, it does not
generate a server request because all the required information already is in the widget's
data structures.

The Xlib function XtTranslateCoordinates should be used when running a
reparenting window manager, since XtTranslateCoordinates may return incorrect
position information in that case.

Utility Functions 9-5

9.6 Translating a Window to a Widget
To translate a window and display pointer into a widget instance, use
XtWindowToWidget.

Widget XtWindowToWidget(d~pkzy, window)
Display *d~play;
Window window;

display

window

Specifies the display on which the window is defined.

Specify the window for which you want the widget.

9.7 Handling Errors
The X Toolkit allows a client to register a procedure to be called whenever a fatal or non
fatal error occurs. This facility is intended for error reporting and logging but not for error
correction or recovery.

Error and warning handlers are of type XtErrorHandler:

typedef void (*XtErrorHandler)();

void ETTOrHandler(message>
String message;

To register a procedure to be called on fatal error conditions, use
XtSetErrorHandler.

void XtSetErrorHandler(handler)
XtErrorHandler handler;

handler Specifies the new fatal error procedure. Fatal error handlers should not
return.

The default error handler provided by the X Toolkit is _X tError. On UNIX-based
systems, it prints the message to standard error and terminates the application.

To call the installed fatal error procedure, use X tError.

void XtError(message)
String message;

9-6 Utility Functions

n

n
/

u

u

message Specifies the error message to report.

To register a procedure to be called on non-fatal error conditions, use
XtSetWarningHandler.

void XtSetWarningHandler(handkT)
XtErrorHandler handler;

handler Specifies the new non-fatal error procedure. Warning handlers usually return.

The default warning handler provided by the X Toolkit is _XtWarning. On UNIX
based systems, it prints the message to standard error and returns to the caller.

To call the installed non-fatal error procedure, use XtWarning.

void XtWarning(message)
String message;

message Specifies the non-fatal error message to report.

Utility Functions 9 -7

This page left blank intentionally.

ltj

n

~n

u

u

Event Handling 10
While X allows the reading and processing of events anywhere in an application, widgets in
the X Toolkit neither directly read events nor grab the server or pointer. Widgets merely
register procedures that are to be called when an event or class of events occurs in that
widget.

A typical application consists of startup code followed by an event loop (see
XtMainLoop, which reads events and dispatches them by calling the procedures that
widgets have registered.

The event manager is a collection of routines to:

• Add or remove event sources other that X server events (in particular, timer
interrupts and file input).

• Query the status of event sources.

• Add or remove procedures to be called when an event occurs for a particular widget.

• Enable and disable the dispatching of user-initiated events (keyboard and pointer
events) for a particular widget.

• Constrain the dispatching of events to a cascade of "pop-up" widgets.

• Focus keyboard events within a composite widget to a particular child.

• Call the appropriate set of procedures currently registered when an event is read.

Most widgets do not need to call any of the event manager routines explicitly. The normal
interface to X events is through the higher-level Translation Manager, which maps
sequences of X events (with modifiers) into procedure calls. Applications rarely use any of
the event manager routines besides XtMainLoop.

10.1 Adding and Deleting Additional Event Sources

While most applications are driven only by X events, some need to incorporate other
sources of input into the X Toolkit event handling philosophy. The event manager
provides routines to integrate notification of timer events and file data pending into this
mechanism.

Event Handling 10 -1

The next two functions provide input gathering from files. The application registers the
files with the X Toolkit read routine. When input is pending on one of the files, the
registered callback procedures are invoked.

1 0.1.1 Adding and Removing Input Sources
To register a new file for input, use XtAdd!nput.

Xtinputid XtAddinput(sou~ee, condition, proc, client_data>
int SOUm?;

caddr_t condition;
XtinputCallbackProc proc;
caddr_t client_~a;

source

condition

proc

client data

Specifies the source file descriptor on a UNIX-based system or other
operating system dependent device specification.

Specifies the mask that indicates either a read, write, or exception
condition or some operating system dependent condition.

Specifies the procedure that is called when input is available.

Specifies the parameter to be passed to proc when input is available.

The XtAddinput function registers with the X Toolkit read routine a new source of
events, which is usually file input but can also be file output. (The word "file" should be
loosely interpreted to mean any sink or source of data.) XtAddinput also specifies the
conditions under which the source can generate events. When input is pending on this
source, the callback procedure is called.

Callback procedures that are called when there are file events are of type
XtinputCallbackProc:

typedef void (*XtinputCallbackProc)();

void InputCallbackProc (client data, sourr:e, id>
caddr t client data;
int sourr:e; -
Xtinputid id;

client data

source

id

Specifies the client data that was registered for this procedure in
XtAddinput.

Specifies the source file descriptor generating the event.

Specifies the ID returned from the corresponding XtAddinput call.

To discontinue a source of input, use XtRemoveinput.

10 • 2 Event Handling

It)
' /

()

()
I

u

/ \
_)

u

void XtRemoveinput(id)
Xtinputid *id;

id Specifies the ID returned from the corresponding XtAddlnput call.

The XtRemovelnput function causes the X Toolkit read routine to stop watching for
input from the input source.

1 0.1.2 Adding and Removing Timeouts

The timeout facility notifies the application or the widget through a callback procedure
that a specified time interval has elapsed. Timeout values are uniquely identified by an
interval ID.

To create a timeout value, use XtAddTimeOut.

Xtintervalid XtAddTimeOut(inteTVal, proc, client data)
unsigned long interval; -
XtTimerCallbackProc proc;
c addr _ t client_ data;

interval Specifies the time interval in milliseconds.

proc

client data

Specifies the procedure to be called when time expires.

Specifies the parameter to be passed to proc when it is called.

The XtAddTimeOut function creates a timeout and returns an identifier for it. The
timeout value is set to interval. The callback procedure will be called when the time
interval elapses, after which the timeout is removed.

Callback procedures that are called when timeouts expire are of type
XtTimerCallbackProc:

typedef void (*XtTimerCallbackProc)();

void TimeiCallbackProc (client data, id)
c addr t client data;
Xtint;rvalid-*id;

client data Specifies the client data that was registered for this procedure in
XtAddTimeOut.

id Specifies the ID returned from the corresponding XtAddTimeOut call.

To clear a timeout value, use XtRemoveTimeOut.

Eventllandling 10-3

void XtRemoveTimeOut(dnur)
Xtintervalid timer;

timer Specifies the unique identifier for the timeout request to be destroyed.
XtRemoveTimeOut removes the timeout. Note that timeouts are automatically removed
once they trigger.

10.2 Filtering X Events
The event manager provides two filters that can be applied to X user events. These filters
screen out events that are redundant or that are temporarily unwanted.

1 0.2.1 Pointer Motion Compression
Widgets can have a hard time keeping up with pointer motion events. Further, they usually
do not actually care about every motion event. To throw out redundant motion events, the
widget class field compress motion should be TRUE. When a request for an event would
return a motion event, the fntrinsics check if there are any other motion events
immediately following the current one, and, if so, skip all but the last of them.

1 0.2.2 Enter /Leave Compression
To throw out pairs of enter and leave events that have no intervening events, the widget
class field compress enter/leave should be TRUE. These enter and leave events will never
be delivered to the client.

1 0.2.3 Exposure Compression
Many widgets will prefer to process a series of exposure events as a single expose region
rather than as individual rectangles. Widgets with complex displays might use the expose
region as a clip list in a graphics context, while widgets with simple displays might ignore
the region entirely and redisplay their whole window or might get the bounding box from
the region and redisplay only that rectangle.

In either case, these widgets do not care about getting partial expose events. If the
compress_ exposure field in the widget class structure is TRUE, the Event Manager calls
the widget's expose procedure only once for each series of exposure events. In this case,
all Expose events are accumulated into a region. When the Expose event with count
zero is received, the Event Manager replaces the rectangle in the event with the bounding
box for the region and calls the widget's expose procedure passing the (modified) exposure
event and the region.

10-4 Event Handling

I')
I

n
/

u

u

u

If compress_ exposure is FALSE, the Event Manager will call the widget's expose
procedure for every exposure event, passing the event and a region argument of NULL.

1 0.2.4 Setting and Checking the Sensitivity State of a Widget

To set the sensitivity state of a widget, use XtSetSensitive.

void XtSetSensitive(w, sensitive>
Widget w;
Boolean sensitive;

w Specifies the widget.

sensitive Specifies whether or not the widget should receive keyboard and pointer
events.

Many widgets, especially those with callback lists that get executed in response to some
user-initiated action (for example, clicking down or up), have a mode in which they take on
a different appearance (for example, greyed out or stippled) and do not respond to user
events.

This dormant state means the widget is "insensitive". If a widget is insensitive, the Event
Manager does not dispatch any events to the widget with an event type of KeyPress,
KeyRelease, ButtonPress, ButtonRelease, MotionNotify,
EnterNotify, LeaveNotify, Focusln,or FocusOut.

A widget can be insensitive because its sensitive field is FALSE or because one of its
parents is insensitive, and, thus, the widget's ancestor sensitive field also is FALSE. A
widget may but does not need to distinguish these two cases visually.

XtSetSensitive first calls XtSetValues on the current widget with an argument
list specifying that the sensitive field should change to the new value. It then recursively
propagates the new value down the managed children tree by calling X tSe tVal ues on
each child to set the ancestor sensitive to the new value if the new values for sensitive and
the child's ancestor sensitive are not the same. XtSetSensitive thus maintains the
invariant:

• If parent has either sensitive or ancestor sensitive FALSE, then all children have
ancestor sensitive FALSE. -

XtSetSensitive calls XtSetValues to change sensitive and ancestor_sensitive.
Therefore, when one of these changes, the widget's set_ values procedure should take
whatever display actions are needed, such as greying out or stippling the widget.

To check the current sensitivity state of a widget, use XtlsSensitive.

Event Handling 10- 5

Boolean XtisSensitive(W)
Widget w;

w Specifies the widget that is to be checked.

To indicate whether or not user input events are being dispatched, XtisSensitive
returns TRUE or FALSE. If both core.sensitive and core.ancestor sensitive are TRUE,
XtlsSensitive returns TRUE. Otherwise, it returns FALSE.-

1 0.3 Adding and Removing X Event Handlers
Event handlers are procedures that are called when specified events occurs in a widget.
Most widgets will not need to use event handlers explicitly. Instead, they use the Intrinsic's
translation manager. Event handlers are of the type XtEventHandler:

typedef void (*XtEventHandler)();

void Eventlland/er(w, client data, event)

w

Widget w; -
c addr t client data;
XEvent *event;

Specifies the widget that this event handler was registered with.

client data Specifies the client specific information registered with the event handler.
This is usually NULL if the event handler is registered by the widget
itself.

event Specifies the triggering event.

To register an event handler procedure with the dispatch mechanism, use
XtAddEventHandler.

void XtAddEventHandler(w, event_mask, nonmaskable, proc, dient_data)
Widget w;

w

XtEventMask event mask;
Boolean nonmasktible;
XtEventHandler proc;
caddr_t c/ient_data;

event mask

Specifies the widget for which this event handler is being registered.

Specifies the event mask for which to call this procedure.

10-6 Event Handling

()
' '

(j

n

u

(..

0

u

nonmaskab/e Specifies whether this procedure should be called on the nonmaskable
events. These are event of type GraphicsExpose, NoExpose,
SelectionClear, SelectionRequest, SelectionNotify,
ClientMessage,and MappingNotify.

proc Specifies the client event handler procedure.

client data Specifies additional data to be passed to the client's event handler.

The XtAddEventHandler function registers a procedure with the dispatch mechanism
that is to be called when an event that matches the mask occurs on the specified widget. If
the procedure is already registered, the specified mask is ORed into the existing mask. If
the widget is realized, XtAddEventHandler calls XSelectlnput, if necessary.

To remove a previously registered event handler, use XtRemoveEventHandler.

void XtRemoveEventHandler (w, event_ mask, nonmasl«lble, proc, client_ data)
Widget w;
XtEventMask event mask;
Boolean nonmaskOble;
XtEventHandler proc;
caddr_t dient_dkua;

w Specifies the widget for which this procedure is registered.

event mask Specifies the event mask for which to unregister this procedure.

nonmaskable Specifies the events for which to unregister this procedure.

proc

client data

Specifies the event handler procedure registered.

Specifies the client data registered.

XtRemoveEventHandler stops the specified procedure from receiving the specified
events. If the widget is realized, XtRemoveEventHandler calls XSelectlnput, if
necessary.

To stop a procedure from receiving any events (which will remove it from the widget's
event_ table entirely), call XtRemoveEventHandler with an event_ mask of
XtAllEvents and with nonmaskable TRUE .

. 1 0.3.1 Adding and Removing Event Handlers without Selecting
Events

On occasions, clients need to register an event handler procedure with the dispatch
mechanism without causing the server to select for that event. To do this, use
XtAddRawEventHandler.

Event Handling 10 • 7

void XtAddRawEventHandler(HI, event_mask, nonmaskable, proc, client_data)
Widget HI;

w

XtEventMask event mask;
Boolean nonmaskdble;
XtEventHandler proc;
caddr _ t client_ data;

Specifies the widget for which this event handler is being registered.

event mask Specifies the event mask for which to call this procedure.

nonmaskable Specifies whether this procedure should be called on the nonmaskable
events.

proc Specifies the client event handler procedure.

client data Specifies additional data to be passed to the client's event handler.

This function has the same behavior as XtAddEventHandler, except that it does not
affect the widget's mask and it never causes an XSelectlnput for its events. Note that
the widget might already have those mask bits set because of other non-raw, event
handlers registered on it.

To remove a previously registered raw event handler, use
XtRemoveRawEventHandler.

void XtRemoveRawEventHandler(HI, event mask, nonmaskable, proc, client_data)
Widget HI; -
XtEventMask event mask;
Boolean nonmaskdble;
XtEventHandler proc;
caddr _ t client_ data;

w Specifies the widget for which this procedure is registered.

event mask Specifies the event mask for which to unregister this procedure.

nonmaskable Specifies the events for which to unregister this procedure.

proc Specifies the event handler procedure registered.

client data Specifies the client data registered.

XtRemoveRawEventHandler stops the specified procedure from receiving the
specified events. Because the procedure is a raw event handler, this will not affect the
widget's mask and will never cause a call on XSelectlnput.

10-8 Event Handling

n

,f)
' J

u

u

1 0.4 Constraining Events to a Cascade of Widgets
Some widgets lock out any user input to the application except input to that widget. These
are called "modal" widgets.

When a modal menu or modal dialog box is popped up using XtPopup, user events (that
is, keyboard and pointer events) that occur outside the modal widget should be delivered
to the modal widget or ignored. In no case should user events be delivered to a widget
outside of the modal widget.

Menus can pop-up submenus and dialog boxes can pop-up further dialog dialog boxes to
create a pop-up "cascade". In this case, user events should be delivered to one of several
modal widgets in the cascade.

Display-related events should be delivered outside the modal cascade so that expose events
and the like keep the application's display up-to-date. Any event that occurs within the
cascade is delivered normally. Events that are delivered to the most recent spring-loaded
shell in the cascade if they occur outside the cascade are called "remap" events and consist
ofthe following events: KeyPress, KeyRelease, ButtonPress, and
ButtonRelease.

Events that are ignored if they occur outside the cascade are: MotionNotify,
EnterNotify, and LeaveNotify. All other events are delivered normally.

XtPopup uses the procedures XtAddGrab and XtRemoveGrab to constrain user
events to a modal cascade and subsequently to remove a grab when the modal widget goes
away. There is usually no need to call them explicitly.

To redirect user input to a modal widget, use XtAddGrab.

void XtAddGrab (w, exclusive, spring_loaded)
Widget w;
Boolean exclusive;
Boolean spring_loaded;

w

exclusive

spring_loaded

Specifies the widget to add to the modal cascade.

Specifies if user events should be dispatched exclusively to this widget
or also to previous widgets in the cascade.

Specifies if this widget was popped up because the user pressed a
pointer button.

Event Handling 10- 9

XtAddGrab appends the widget (and associated parameters) to the modal cascade.
XtAddGrab checks that exclusive is TRUE if spring_ loaded is TRUE. If not, it generates
an error.

When XtDispatchEvent tries to dispatch a user event when at least one modal widget
is in the widget cascade, it first determines if the event should be delivered. It starts at the ~~
most recent cascade entry and follows the cascade up to and including the most recent ·)
cascade entry added with the exclusive parameter TRUE.

This subset of the modal cascade is the active subset. User events that occur outside the
widgets in this subset are ignored or remapped. Modal menus with submenus generally
add a submenu widget to the cascade with exclusive FALSE. Modal dialog boxes that wish
to restrict user input to the most deeply nested dialog box add a subdialog widget to the
cascade with exclusive TRUE.

User events that occur within the active subset are delivered to the appropriate widget,
which is usually a child or further descendant of the modal widget.

Regardless of where on the screen they occur, remap events are always delivered to the
most recent widget in the active subset of the cascade that has spring_ loaded TRUE (if any
such widget exists).

To remove the redirection of user input to a modal widget, use XtRemoveGrab.

void XtRemoveGrab(w)
Widget w;

w Specifies the widget to remove from the modal cascade.

XtRemoveGrab removes widgets from the modal cascade starting at the most recent
widget up to and including the specified widget. It issues an error if w is not on the modal
cascade.

1 0.5 Focusing Events on a Child
To redirect keyboard input to a child of a composite widget without calling
XSetinputFocus,use XtSetKeyboardFocus.

XtSetKeyboardFocus (w, descendant)
Widget w, descendant;

w Specifies the widget for which the keyboard focus is to be set.

descendant Specifies the widget to which the keyboard event is to be sent or None.

10 ·10 Event Handling

()
I

u

u

If a future keyboard event (KeyPress or KeyRelease) occurs on the specified widget,
XtSetKeyboardFocus causes XtDispatchEvent to remap and send the event to
the specified descendant widget.

If widget A is an ancestor of widget W and if no modal cascade has been created, a
keyboard event is defined as occurring within W if one of the following focus conditions
are true:

• W has the X server input focus.

• The event occurs within A or a descendent of A, and W has the keyboard focus for
A.

• The event occurs within A, and no descendant of A has the keyboard focus for A,
and the pointer is within W.

If widget A is an ancestor of widget W, and if a modal cascade exists, a keyboard event is
defined as occurring within W if A is in the active subset of the modal cascade and if one
of the previous focus conditions are true.

When W acquires the X input focus or the keyboard focus for one of its ancestors, a
Focus In event is generated for descendant if FocusNotify events have been selected
by the descendant. Similarly, when W looses the X input focus or the keyboard focus for
one of its ancestors, a Focus Out event is generated for descendant if FocusNotify
events have been selected by the descendant.

Widgets that want the input focus may call XSetlnputFocus explicitly. To allow
outside agents to cause a widget to get the input focus, every widget exports an
accept focus procedure. Widgets interested in knowing when they lose the input focus
must use the Xlib focus notification mechanism explicitly, typically by specifying
translations for Focus In and FocusOut events. Widgets that never want the input
focus should set their accept_ focus procedure to NULL.

Composite widgets have two additional functions:

• move focus to next

• move_focus_to_prev

These procedures (which may be NULL) move the focus to the next child widget that
wants it and to the previous child widget that wants it, respectively. The definition of next
and previous is left to each individual widget. In addition, composite widgets are free to
implement other procedures to move the focus between their children. Both
move_focus_to_next and move_focus_to_prev should be entered in the widget class action
table, so that they are available to translation specifications.

Event Handling 10 • 11

1 0.6 Querying Event Sources
The event manager provides several routines to examine and read events (including file
and timer events) that are in the queue.

The next three functions handle X Toolkit equivalents of the XPending, XPeekEvent,
and XNextEvent Xlib calls.

To determine if there are any events on the input queue, use XtPending.

Boolean XtPending()

The XtPending returns a nonzero value if there are events pending from the X server
or other input sources. If there are no events pending, it flushes the output buffer and
returns a zero value.

To return the value from the head of the input queue without removing input from the
queue, use XtPeekEvent.

Boolean XtPeekEvent (event return)
XEvent *event_ return;-

event return Returns the event information to the specified event structure.

If there is an event in the queue, XtPeekEvent fills in the event and returns a non-zero
value. If no X input is on the queue, XtPeekEvent flushes the output buffer and blocks
until input is available, possibly calling some timeout callbacks in the process. If the input
is an event, XtPeekEvent fills in the event and returns a non-zero value. Otherwise, the
input is for an alternate input source, and XtPeekEvent returns zero.

To return the value from the head ofthe input queue, use XtNextEvent.

void XtNextEvent(event return)
XEvent *event _Ietiirn;

event return Returns the event information to the specified event structure.

If no input is on the X input queue, XtNextEvent flushes the X output buffer and waits
for an event while looking at the other input sources and timeout values and calling any
callback procedures triggered by them.

10 -12 Event Handling

n

n

n

u

u

1 0. 7 Dispatching Events
The X Toolkit provides functions that dispatch events to widgets or other application code.
Every client interested in events on a widget uses XtAddEventHandler to register
which events it is interested in and a procedure (event handler) that is to be called when
the event happens in that window.

When an event is received, it is passed to a dispatching procedure. This procedure calls the
appropriate event handlers and passes them the widget, the event, and client-specific data
registered with each procedure. If there are no handlers for that event registered, the
event is ignored and the dispatcher simply returns.

The order in which the handlers are called is not defined.

To send events to registered functions and widgets, use XtDispatchEvent. Usually,
this procedure is not called by client applications (see XtMainLoop).

void XtDispatchEvent (event)
XEvent *event;

event Specifies a pointer to the event structure that is to be dispatched to the
appropriate event handler.

The XtDispatchEvent function sends those events to those event handler functions
that have been previously registered with the dispatch routine. The most common use of
XtDispatchEvent is to dispatch events acquired with the XtNextEvent or
XtPeekEvent procedure. However, it also can be used to dispatch user-constructed
events. XtDispatchEvent also is responsible for processing grabs and keyboard
focus.

1 0.8 Processing Input
To process input, an application can call XtMainLoop.

void XtMainLoop()

XtMainLoop first reads the next incoming file, timer, or X event by calling
XtNextEvent. Then, it dispatches this to the appropriate registered procedure by
calling XtDispatchEvent. This is the main loop of X Toolkit applications, and, as
such, it does not return. Applications are expected to exit in response to some user action.

Event Handling 10 -13

There is nothing special about XtMainLoop. It is simply an infinite loop that calls
XtNextEventthen XtDispatchEvent.

Applications can provide their own version of this loop, which tests some global
termination flag or tests that the number of top-level widgets is larger than 0 before
circling back to the call to XtNextEvent.

1 0.9 Widget Exposure and Visibility
Every primitive widget and some composite widgets display data on the screen by means of
raw X calls. Widgets cannot simply write to the screen and forget what they have done.
They must keep enough state to redisplay the window or parts of it if a portion is obscured
and then re-exposed.

1 0.9.1 Redisplay of a Widget

The expose procedure for a widget class is of type XtExposeProc:

typedef void (*XtExposeProc)();

void ExposeProc(w, event, region)
Widget w;
XEvent *event;
Region region;

w Specifies the widget instance requiring redisplay.

event Specifies the exposure event giving the rectangle requiring redisplay.

region Specifies the union of all rectangles in this exposure sequence.

Redisplay of a widget upon exposure is the responsibility of the expose procedure in the
widget's class record. If a widget has no display semantics, it can specify NULL for the
expose field. Many composite widgets serve only as containers for their children and have
no expose procedure.

NOTE

If the expose proc is NULL, XtRealizeWidget fills in a default
bit gravity of NorthWes tGravi ty before it calls the widget's
realize proc.

10 -14 Event Handling

u

u

u

If the widget's compress_ exposure field is FALSE (see "Exposure Compression"), region
will always be NULL. If the widget's compress exposure field is TRUE, event will contain
the bounding box for region. -

A small simple widget (for example, Label) can ignore the bounding box information in
the event and just redisplay the entire window. A more complicated widget (for example,
Text) can use the bounding box information to minimize the amount of calculation and
redisplay it does. A very complex widget will use the region as a clip list in a GC and
ignore the event information.

The expose procedure is responsible for exposure of all superclass data as well as its own,
This is because, in general, this operation cannot be cleanly broken up.

However, it often possible to anticipate the display needs of several levels of subclassing.
For example, rather than separate display procedures for the widgets Label, Command,
and Toggle, you could write a single display routine in Label that uses "display state" fields
like:

Boolean invert
Boolean highlight
Dimension highlight_width

Label would have invert and highlight always FALSE and highlight_ width zero(O).
Command would dynamically set highlight and highlight width, but it would leave invert
always FALSE. Finally, Toggle would dynamically set aif three.

In this case, the expose procedures for Command and Toggle inherit their superclass's
expose procedure. For further information, see "Inheriting Superclass Operations".

1 0.9.2 Widget Visibility

Some widgets may use substantial computing resources to display data. However, this
effort is wasted if the widget is not actually visible on the screen. That is, the widget can be
obscured by another application or iconified.

The visible field in the Core widget structure provides a hint to the widget that it need not
display data. This field is guaranteed TRUE (by the time an Expose event is processed)
if the widget is visible and is usually FALSE if the widget is not visible.

Widgets can use or ignore the visible hint as they wish. If they ignore it, they should have
visible interest in their widget class record set FALSE. In such cases, the visible field is
initialiZed TRUE and never changes. If visible interest is TRUE, the Event Manager asks
for VisibilityNotify events for the widget and updates the visible field accordingly.

Event Handling 10 -15

10.10 Geometry Management - Sizing and Positioning
Widgets

A widget does not directly control its size and location, which is the responsibility of the :~. .
parent of that widget. Although the position of children is usually left up to their parent, ·)
the widgets themselves often have the best idea of their optimal sizes and, possibly,
preferred locations.

To resolve physical layout conflicts between sibling widgets and between a widget and its
parent, the X Toolkit provides the Geometry Management mechanism. Almost all
composite widgets have a geometry manager (geometry_ manager field in the widget class
record) that is responsible for the size, position, and stacking order of the widget's
children. The only exception are fixed boxes, which create their children themselves and
can ensure that their children will never make a geometry request.

Widgets that wish to change their size, position, border width, or stacking depth must not
use X calls directly. Instead, they must ask their parent's geometry manager to make the
desired changes. When a child makes a request of the parent's geometry manager, the
geometry manager can do one of the following:

• Allow the request

• Disallow the request

• Suggest a compromise

Geometry requests are always made by the child itself. Clients that wish to change the
geometry of a widget should call XtSetValues on the appropriate geometry fields.
Parents that wish to change the geometry of a child can use XtMoveWidget or
XtResizeWidget at any time.

When the geometry manager is asked to change the geometry of a child, the geometry
manager may also rearrange and resize any or all of the other children that it controls.
The geometry manager can move children around freely using XtMoveWidget. When it
resizes a child (that is, changes width, height, or border_ width) other than the one making
the request, it should do so by calling XtResizeWidget.

0:.-ten, geometry managers find that they can satisfy a request only if they can reconfigure
a widget that they are not in control of (in particular, when the composite widget wants to
change its own size). In this case, the geometry manager makes a request to its parent's
geometry manager. Geometry requests can cascade this way to arbitrary depth.

10 ·16 Event Handling

!~

u

u

l)

Because such cascaded arbitration of widget geometry can involve extended negotiation,
windows are not actually allocated to widgets at application startup until all widgets are
satisfied with their geometry. See "Realizing Widgets" and "Creating Widgets" for more
details.

1 0.1 0.1 Making General Geometry Manager Requests
To make a general geometry manager request from a widget, use
XtMakeGeometryRequest.

XtGeometryResult XtMakeGeometryRequest(w, request, reply return)
Widget w; -
XtWidgetGeometry *request;
XtWidgetGeometry *reply_ return;

w

request

Specifies the widget ID of the widget that is making the request.

Specifies the desired widget geometry (size, position, border width, and
stacking order).

reply _!etum Returns the allowed widget size. If a widget is not interested in handling
XtGeome tryAlmos t, the reply parameter can be NULL.

The return codes from geometry managers are:

typedef enum _XtGeometryResult {
XtGeometryYes,
XtGeometryNo,
XtGeometryAlmost,
XtGeometryDone,

} XtGeometryResult;

The XtWidgetGeometry structure is quite similar but not identical to the
corresponding Xlib structure:

typedef unsigned long XtGeometryMask;

typedef struct {
XtGeometryMask request_mode;
Position x, y;
Dimension width, height;
Dimension border_width;
Widget sibling;
int stack_mode;

} XtWidgetGeometry;

The request_ mode definitions are from < Xll/X. h >:

Event Handling 10 -17

#define CWX
#define CWY
#define CWWidth
#define CWHeight
#define CWBorderWidth
#define CWSibling
#define CWStackMode

(1«0)
(1«1)
(1«2)
(1«3)
(1«4)
(1«5)
(1«6)

XtMakeGeometryReques t, in exactly the same manner as the Xlib routine
XConfigureWindow, uses the request mode to determine which fields in the
XtWidgetGeometry structure you wmt to specify.

The stack_ mode definitions are from < Xll/X. h >:

#define Above 0
#define Below 1
#define Topif 2
#define Bottomif 3
#define Opposite 4
#define XtSMDontChange 5

For definition and behavior of Above, Below, Toplf, Bottomlf, and Opposite,
seeXlib- C Language X Interface. XtSMDontChange indicates that the widget wants
its current stacking order preserved.

The XtMakeGeometryRequest function performs the following:

• If the parent is not a subclass of Composite, or the parent's geometry_ manager is
NULL, it issues an error.

• If the widget's being_ destroyed field is TRUE, it returns XtGeometryNo.

• If the widget x, y, width, height and border width fields are all equal to the requested
values, it returns XtGeometryYes. -

• If the widget is unmanaged or the widget's parent is not realized, it makes the
changes and returns XtGeometryYes. Otherwise,
XtMakeGeometryRequest calls the parent's geometry manager procedure with
the given parameters. -

• If the parent's geometry manager returns XtGeometryYes and if the widget is
realized, it reconfigures the widget's window, setting its size, location, and stacking
order as appropriate, by calling XConfigureWindow.

• If the geometry manager returns XtGeometryDone, it means that it has approved
the change and, furthermore, has already done it. it does no configuring and
changes the return value into XtGeometryYes. XtMakeGeometryRequest
never returns XtGeometryDone.

10 -18 Event Handling

I~

I~

~

u

u

• Finally, XtMakeGeometryRequest returns the resulting value from the parent's
geometry manager.

10.1 0.2 Making Resize Requests

To make a simple resize request from a widget, you can use XtMakeResizeRequest
as an alternative to XtMakeGeometryRequest.

XtGeometryResult XtMakeResizeRequest (W, width, height, width_ return, height_ retum)
Widget w;
Dimension width, height;
Dimension *width_ return, *height_ retum

w

width

height

width return

height _!etum

Specifies the widget.

Specifies the desired widget width.

Specifies the desired widget height.

Returns the allowed widget width.

Returns the allowed widget height.

XtMakeResizeRequest is a simple interface to XtMakeGeometryRequest. It
creates a XtWidgetGeometry structure and specifies that width and height should
change. The geometry manager is free to modify any of the other window attributes
(position or stacking order) in order to satisfy the resize request. If the return value is
XtGeometryAlmost, replyWidth and replyHeight contain a "compromise" width and
height. If these are acceptable the widget should immediately make an
XtMakeResizeRequest requesting the compromise width and height.

If the widget is not interested in XtGeometryAlmos t replies, it can pass NULL for
replyWidth and replyHeight.

1 0.1 0.3 Management of Child Geometry

The geometry manager procedure for a composite widget class is of type
XtGeometryHandler:

typedef XtGeometryResult (*XtGeometryHandler)();

XtGeometryResult GeometryHandler(w, request, geometry_ retum)
Widget w;
XtWidgetGeometry •request;
XtWidgetGeometry •geometry _ retum;

A class can inherit its superclass's geometry manager during class initialization.

Event Handling 10 • 19

A zero (0) bit in the request's mask field means that the child widget does not care about
the value of the corresponding field. Then, the geometry manager can change it as it
wishes. A one (1) bit means that the child wants that geometry element changed to the
value in the corresponding field.

If the geometry manager can satisfy all changes requested, it updates the widget's x, y,
width, height, and border width appropriately, and then returns XtGeometryYes. The
value of the preferred rehrrn argument is undefined. The widget's window is moved and
resized automatically by XtMakeGeometryRequest.

Homogeneous composite widgets often find it convenient to treat the widget making the
request the same as any other widget, possibly reconfiguring it as part of its layout process.
If it does this, it should return XtGeometryDone to inform
XtMakeGeometryRequest that it does not need to do the configure itself. Although
XtMakeGeometryRequest resizes the widget's window, it does not call the widget
class's resize procedure if the geometry manager returns XtGeometryYes. The
requesting widget must perform whatever resizing calculations are needed explicitly.

If the geometry manager chooses to disallow the request, the widget cannot change its
geometry. The value of the preferred _return parameter is undefined, and the geometry
manager returns XtGeometryNo.

Sometimes the geometry manager cannot satisfy the request exactly, but it may be able to
satisfy what it considers a similar request. That is, it could satisfy only a subset of the
requests (for example, size but not position) or a lesser request (for example, it cannot
make the child as big as the request but it can make the child bigger than its current size).
In such cases, the geometry manager fills in preferred _return with the actual changes it is
willing to make, including a appropriate mask, and returns XtGeometryAlmost. If a
bit in reply.request_ mode is zero (0), the geometry manager will not change the
corresponding value if the preferred return is used immediately in a new request. If a bit
is one (1), the geometry manager will change that element to the corresponding value in
preferred return. More bits may be set in preferred return than in the original request if
the geometry manager intends to change other fields-should the child accept the
compromise.

When XtGeometryAlmost is returned, the widget must decide if the compromise
suggested in preferred _return is acceptable. If so, the widget must not change its geometry
directly. Rather, it must make another call to XtMakeGeometryRequest.

If the next geometry request from this child uses the preferred return box filled in by an
XtGeometryAlmost return and if there have been no intervening geometry requests on
either its parent or any of its other children, the geometry manager must grant the request.
That is, if the child asks again right away with the returned geometry, it will get an answer
of XtGeometryYes.

10 -20 Event Handling

n

n

u

u

u

To return an XtGeometryYes, the geometry manager will frequently rearrange the
position of other managed children. To do this, it should call the procedure
XtMoveWidget described below. However, a few geometry managers sometimes may
change the size of other managed children. To do this, they should call the procedures
XtResizeWidget or XtConfigureWidget.

Geometry managers must not assume that the request and preferred return arguments
point to independent storage. The caller is permitted to use the same field for both, and
the geometry manager must allocate its own temporary storage, if necessary.

1 0.1 0.4 Moving and Resizing Widgets

To move a sibling widget of the child making the geometry request, use XtMoveWidget.

void XtMoveWidget(w, X, yl
Widget w;
Position x;
Position y;

w Specifies the widget.

X

y Specifies the new widget coordinates.

XtMoveWidget writes the new x andy values into the widget and, if the widget is
realized, issues an XMoveWindow call on the widget's window.

To resize a sibling widget of the child making the geometry request, use
XtResizeWidget.

void XtResizeWidget(w, width, height, border_width)
Widget w;
Dimension width;
Dimension height;
Dimension border_width;

w Specifies the widget.

width
height
border width Specify the new widget size.

XtResizeWidget returns immediately if the new width, height, and border_width are
the same as the old values. Otherwise, XtResizeWidget writes the new width, height,
and border width values into the widget and, if the widget is realized, issues an
2tConfig~reWindow call on the widget's window.

Event Handling 10-21

Hthe new width or height are different from the old values, XtResizeWidget calls the
widget's resize procedure to notify it of the size change.

A geometry manager must not call XtResizeWidget on the child that is making the
request.

To move and resize the sibling widget of the child making the geometry request, use
XtConfigureWidget.

void XtConfigureWidget (W, x, y, width, height, border_ width)
Widget w;
Position x;
Position y;
Dimension width;
Dimension height;
Dimension border_width;

w Specifies the widget.

X

y Specify the new widget position.

width
height
border width Specify the new widget size.

XtConfigureWidget writes the new x, y, width, height, and border_ width values into
the widget and, if the widget is realized, makes an XConfigureWindow call on the
widget's window.

Ifthe new width or height are different from the old values, XtConfigureWidget calls
the widget's resize procedure to notify it of the size change. Otherwise, it simply returns.

1 0.1 0.5 Querying Preferred Geometry
To query a widget's preferred geometry, use XtQueryGeometry.

XtGeometryResult XtQueryGeometry (W, intended, preferred return)
Widget w; -
XtWidgetGeometry *intended, *preferred_ return ;

w

intended

preferred _!eturn

Specifies the child widget.

Specifies any changes the parent plans to make to the child's
geometry (can be NULL).

Returns the child widget's preferred geometry.

10-22 Event Handling

n

u

The parent that wants to know a child's preferred geometry sets any changes that it intends
to make to the child's geometry in the corresponding fields of the intended structure, sets
the corresponding bits in intended.request _mode and calls X tQueryGeome try.

XtQueryGeometry clears all bits in the preferred return->request mode and checks
the query _geometry field of the specified widget's class record. If query _geometry is not
NULL, XtQueryGeometry calls the query_geometry proc passing as arguments the
specified widget, intended, and preferred return structures. If the intended argument is
NULL, it is replaced with a pointer to an-XtWidgetGeometry structure with
request_ mode= 0 before calling query _geometry.

The query_geometry procedure is of type XtGeometryHandler.

XtGeometryResult QuetyGeometry (w, request, preferred_ return)
Widget w;
XtWidgetGeometry *request;
XtWidgetGeometry *preferred_ return;

The query _geometry procedure is expected to examine the bits set in
intended-> request_ mode, evaluate the preferred geometry of the widget, and store the
result in preferred _return (setting the bits in preferred _return-> request_ mode
corresponding to those geometry field that it cares about). If the proposed geometry
change is acceptable without modification, the query geometry procedure should return
XtGeometryYes. If at least one field in preferred-return is different from the
corresponding field in intended or if a bit was set in preferred return that was not set in
intended, the query_geometry procedure should return XtGe-ometryAlmost. If the
preferred geometry is identical to the current geometry, the query geometry procedure
should return XtGeometryNo. -

After calling the query geometry proc or if the query geometry field is NULL,
XtQueryGeometry examines all the unset bits in p;eferred_return->request_ mode and
sets the corresponding fields in preferred return to the current values from the widget
instance. If CWS tackMode is not set, the stack mode field is set to
XtSMDontChange. XtQueryGeometry then returns the value returned by the
query_geometry procedure or XtGeometryYes if the query_geometry field is NULL.

Therefore, the caller can interpret a return of XtGeometryYes as not needing to
evaluate the contents of reply and, more importantly, not needing to modify it's layout
plans. A return of XtGeometryAlmost means either that both the parent and the child
expressed interest in at least one common field, and the child's preference does not match
the parent's intentions, or that the child expressed interest in a field that the parent might
need to consider. A return value of XtGeometryNo means that both the parent and the
child expressed interest in a field and that the child suggests that the field's current value is
it's preferred value.

Event Handling 10-23

In addition, whether or not the caller ignores the return value or the reply mask, it is
guaranteed that the reply structure contains complete geometry information for the child.

Parents are expected to call XtQueryGeometry in their layout routine and wherever
else they may care after change_ managed has been called. The changed_ managed
procedure may assume that the child's current geometry is it's preferred geometry. Thus,
the child is still responsible for storing values into its own geometry during it's initialize
proc.

1 0.1 0.6 Management of Size Changes
A child can be involuntarily resized by its parent at any time. Widgets usually want to
know when they have changed size so that they can re-layout their displayed data to match
the new size. When a parent resizes a child, it calls XtResizeWidget. This function
updates the geometry fields in the widget, configures the window if the widget is realized,
and calls the child's resize procedure to notify the child. The resize procedure is of type
XtWidgetProc:

void Resize(w)
Widget w;

w Specifies the widget.

If a class need not recalculate anything when a widget is resized, it can specify NULL for
the resize field in its class record. This is an unusual case and should only occur for
widgets with very trivial display semantics.

The resize procedure takes a widget as its only argument. The x, y, width, height and
border_ width fields of the widget contain the new values.

The resize procedure should recalculate the layout of internal data as needed. (For
example, a centered Label in a window that changes size should recalculate the starting
position of the text.) The widget must obey resize as a command and must not treat it as a
request. A widget must not issue an XtMakeGeometryRequest or
XtMakeResizeRequest call from its resize procedure.

1 0.11 Selections
Arbitrary widgets (possibly not all in the same application) communicate with each other
by means of the selection mechanism defined by the server a~d Xlib. For further
information, see Programming with Xlib.

10-24 Event Handling

u

u

u

Resource Management 11
Writers of widgets need to obtain a large set of resources at widget creation time. Some of
the resources come from the resource database, some from the argument list supplied in
the call to XtCreateWidget, and some from the internal defaults specified for the
widget. Resources are obtained first from the argument list, then from the resource
database for all resources not specified in the argument list, and lastly from the internal
default, if needed.

A resource is a field in the widget record with a corresponding resource entry in the
widget's resource list (or in a superclass's resource list). This means that the field is
settable by XtCreateWidget (by naming the field in the argument list), by an entry in
the default resource files (by using either the name or class), and by XtSetValues. In
addition, it is readable by XtGetValues.

Not all fields in a widget record are resources. Some are for "bookkeeping'' use by the
generic routines (like managed and being_ destroyed). Other can be for local bookkeeping,
while still others are derived from resources (many GCs and Pixmaps).

11.1 Resource Lists
A resource entry specifies a field in the widget, the textual name and class of the field that
argument lists and external resource files use to refer to the field, as well as a default value
that the field should get if no value is specified. The declaration for the XtResource
structure is:

typedef struct {
String resource name;
String resource=class;
String resource_type;
Cardinal resource_size;
Cardinal resource_offset;
String default_type;
caddr_t default_address;

} XtResource, *XtResourceList;

Resource Management 11·1

The resource name field contains the name used by clients to access the field in the
widget. By convention, it starts with a lower-case letter and is spelled almost identically to
the field name, except (underbar, character) is replaced by (capital character). For
example, the resource name for background _pixel is "backgroundPixel". Widget header
files typically contain a symbolic name for each resource name. All resource names,
classes, and types used by the Intrinsics are named in the file <Xll/StringDefs. h>.
The Intrinsic's symbolic resource names begin with XtN and are followed by the string
name (for example, XtNbackgroundPixel for "backgroundPixel").

A resource class offers two functions:

• It isolates you from different representations that widgets can use for a similar
resource.

• It lets you specify values for several actual resources with a single name. A resource
class should be chosen to span a group of closely-related fields.

For example, a widget can have several pixel resources: background, foreground, border,
block cursor, pointer cursor, and so on. Typically, the background defaults to "white" and
everything else to "black". The resource class for each of these resources in the resource
list should be chosen so that it takes the minimal number of entries in the resource
database to make background "offwhite" and everything else "darkblue".

In this case, the background pixel should have a resource class of Background and all
the other pixel entries a resource class of Foreground. Then, the resource file needs
just two lines to change all pixels to "offwhite" or "darkblue":

Background:
Foreground:

offwhite
darkblue

Similarly, a widget may have several resource fonts (such as normal and bold), but all fonts
should have the class Font. Thus, to change all fonts, simply requires a single line in the
default file:

Font: 6xl3

By convention, resource classes are always spelled starting with a capital letter. Their
symbolic names are preceded with XtC (for example, XtCBackground).

The resource type field is the physical representation type of the resource. By convention,
it starts with an upper-case letter and is spelled identically to the type name of the field.
The resource type is used when resources are fetched, to convert from the resource
database format (usually String) or the default resource format Gust about anything, but
often String) to the desired physical representation (see "Resource Conversions"). The
Intrinsics define the following resource types:

11 -2 Resource Management

n

n

u

u

u

XtRBoolean
XtRLongBoolean
XtRCallback
XtRColor
XtRCursor
XtRDefaultColor
XtRDisplay
XtREditMode
XtRFile
XtRFloat
XtRFont
XtRFontStruct
XtRFunction

XtRGeometry
XtRint
XtRJustify
XtROrientation
XtRPixel
XtRPixmap
XtRPointer
XtRString
XtRStringTable
XtRTranslationTable
XtRWidget
XtRWindow

The resource_ size field is the size of the physical representation in bytes and normally
should be specified as "sizeof(type)" so that the compiler fills in the value.

The resource_ offset is the offset in bytes of the field within the widget. The X tO f f set
macro should be used to retrieve this value.

The default_ type field is the representation type of the default resource value. If
default_ type is different from resource_type and the default_ type is needed, the resource
manager invokes a conversion procedure from default type to resource type. Whenever
possible, the default type should be identical to the resource type in order to minimize
widget creation time.

The default address field is the address of the default resource value. The default is used
only if a resource is not specified in the argument list or in the resource database.

The routines XtSetValues and XtGetValues also use the resource list to set and
get widget state. For further information, see "Obtaining Widget State" and "Setting
Widget State".

Here is an abbreviated version of the resource list in the Label widget:

I* Resources specific to Label */
static XtResource resources[) = {

{XtNforeground, XtCForeground, XtRPixel, sizeof(Pixel),
XtOffset(LabelWidget, label. foreground), XtRString, "Black"},

{XtNfont, XtCFont, XtRFontStruct, sizeof(XFontStruct *),
XtOffset(LabelWidget, label. font) ,XtRString, "Fixed"},

{XtNlabel, XtCLabel, XtRString, sizeof(String),
XtOffset(LabelWidget, label.label), XtRString, NULL},

Resource Management 11 -3

The complete resource name for a field of a widget instance is the concatenation of the
application name (from argv[O]) or the -name command-line option (see
Xtlnitialize), the instance names of all the widget's parents, the instance name of the
widget itself, and the resource name of the specified field of the widget. Likewise, the full
resource class of a field of a widget instance is the concatenation of the application class
(from Xtlni tialize), the widget class names of all the widget's parents (not the
superclasses), the widget class name of the widget itself, and the resource name of the
specified field of the widget.

11.2 Determining the Byte Offset
To determine the byte offset of a field within a structure, use XtOffset.

Cardinal XtOffset <pointer _type, field _name)
Type pointer type;
Field field_name;

pointer _type

field_name

Specifies a type that is declared as a pointer to the structure.

Specifies the name of the field for which to calculate the byte offset.

XtOffset is usually used to determine the offset of various resource fields from the
beginning of a widget.

11.3 Determining the Number of Elements
To determine the number of elements in a fixed-size array, use XtNumber.

Cardinal XtNumber(~ay)
ArrayVariable ~ay;

a"ay Specifies a fixed-size array.

XtNumber is used to pass the number of elements in argument lists, resources lists, and
other counted arrays.

11.4 Superclass to Subclass Chaining of Resource Lists
The procedure XtCreateWidget gets resources as a "superclass-to-subclass"
operation. That is, the resources specified in Core's resource list are fetched, then those in
the subclass, and so on down to the resources specified for this widget's class.

11 -4 Resource Management

~~
!,)

()
' '

u

In general, if a widget resource field is declared in a superclass, that field is included in the
superclass's resource list and need not be included in the subclass's resource list. For
example, the Core class contains a resource entry for background _pixel. Consequently, the
implementation of "Label" need not also have a resource entry for background _pixel.
However, a subclass, just by specifying a resource entry for that field in its own resource
list, can override the resource entry for any field declared in a superclass. This is most
often done to override the defaults provided in the superclass with new ones.

11.5 Obtaining Subresources
A widget does not do anything to get its own resources. Instead, XtCreateWidget
does this automatically before calling the class initialize procedure.

Some widgets have subparts that are not widgets but for which the widget would like to
fetch resources. For example, the Text widget fetches resources for its source and sink.
Such widgets call XtGetSubresources to accomplish this.

void XtGetSubresources (w, base, name, class, resources, num _resources, args, num _ args)
Widget w;

w

base

name

class

caddr_t base;
St:i:ing name;
String class;
XtResourceList resources;
Cardinal num resources;
ArgList args; -
Cardinal num _ args;

Specifies the widget that wants resources for a subpart.

Specifies the base address of the subpart data structure where the
resources should be written.

Specifies the name of the subpart.

Specifies the class of the subpart.

resources Specifies the resource list for the subpart.

num resources

args

Specifies the number of resources in the resource list.

Specifies the argument list to override resources obtained from the
resource database.

num_args Specifies the number of arguments in the argument list. If the specified
args is NULL, num _ args must be zero (0). However, if num _ args is
zero (0), args is not referenced.

Resource Management 11- 5

XtGetSubresources constructs a name/class list from the application name/class, the
name/classes of all its ancestors, and the widget itself. Then, it appends to this list the
name/class pair passed in. The resources are fetched from the argument list, the resource
database, or the default values in the resource list. Then, they are copied into the subpart
record.

11.6 Obtaining Application Resources
To retrieve resources that are not specific to a widget but apply to the overall application,
me XtGetApplicationResources.

void XtGetApplicationResources(w, base, resources, num_resources, args, num_args>
Widget w;
caddr_t base;
XtResourceList resources;
Cardinal num resources;
ArgList args; -
Cardinal num _ args;

w Is currently ignored and can be specified as NULL.

base Specifies the base address of the subpart data structure where the
resources should be written.

resources Specifies the resource list for the subpart.

num resources

args

num_args

Specifies the number of resources in the resource list.

Specifies the argument list to override resources obtained from the
resource database.

Spe,.ifies the number of arguments in the argument list. If the
specified args is NULL, num _ args must be zero (0). However, if
num _ args is zero (0), args is not referenced.

XtGetApplicationResources first reconstructs the application name and class and
then retrieves the resources from the argument list, the resource database, or the resource
list default values. After adding base to each address, the resources are copied into the
address given in the resource list.

11 • 6 Resource Management

n

u

u

11.7 Resource Conversions
The X Toolkit provides a mechanism for registering representation converters that are
automatically invoked by the resource fetching routines. The X Toolkit additionally
provides and registers several commonly used converters.

This resource conversion mechanism serves several purposes:

• It permit user and application resource files to contain ASCII representations of
non-textual values.

• It allows textual or other representations of default resource values that are
dependent upon the display, screen, or color map, and thus must be computed at
run-time.

• It caches all conversion source and result data. Conversions that require much
computation or space (for example, string to translation table), or that require round
trips to the server (for example, string to font or color) are performed only once.

11.7 .1 Predefined Resource Converters
The X Toolkit defines all the representations used in the Core, Composite, Constraint, and
Shell widgets. Furthermore, it registers resource converters from string to all these
representations.

The X Toolkit registers converters for XtRString to the following representations:

XtRBoolean
XtRLongBoolean
XtRCursor
XtRDisplay
XtRFile

XtRFont
XtRFontStruct
Xtlnt
XtPixel

11.7 .2 Writing a New Resource Converter
Type converters use pointers to XrmValue structures (defined in Xll/Xresource. h)
for input and output values.

typedef struct {
unsigned int sue;
caddr_t addr;

} XrmValue, *XrmValuePtr;

Resource Management 11-7

A resource converter is a procedure of type XtConverter:

typedef void (*XtConverter)();

void Converter(~, num _ ~, from, to>
XrmValue *~;
Cardinal *num _ ~;
XrmValue *from;
XrmValue *to;

args Specifies a list of additional XrmValue arguments to the converter if
additional context is needed to perform the conversion. For example, the
string to font converter needs the widget's screen, or the string to pixel
converter needs the widget's screen and color map. This argument is often
NULL.

num _ args Specifies the number of additional XnnValue arguments. This argument is
often 0.

from Specifies the value to convert.

to Specifies the descriptor to use to return the converted value.

Type converters should perform the following actions:

• Check to see that the number of arguments passed is correct.

• Attempt the type conversion.

• If successful, return a pointer to the data in the to parameter. Otherwise, optionally
call XtWarning and return.

Most type converters just take the data described by the specified from argument and
return data by writing into the specified to argument. A few need other information,
which is available in the specified args.

A type converter can invoke another type converter. This allows differing sources which
may convert into a common intermediate result to make maximum use of the type
converter cache.

Note that the address written to to.addr cannot be a local variable of the converter because
this will disappear when the converter returns. It should be a pointer to a static variable,
as in the following example where screenColor is returned.

The following is an example of a converter that takes a string and converts it to a Pixel:

11-8 Resource Management

0
/

u

u

u

static void CvtStringToPixel(args, num_args, fromVal, toVal)
XrmValuePtr args;

{

} ;

Cardinal *num args;
XrmValuePtr f;omVal;
XrmValuePtr toVal;

static XColor screenColor;
XColor exactColor;
Screen *screen;
Colormap colormap;
Status status;
char message[lOOO];

if (*num_args != 2)
XtError("String to pixel conversion needs screen and colormap arguments");

screen= *((Screen**) args[O] .addr);
colormap = *((Colormap *) args[l].addr);

status = XAllocN.amedColor(DisplayOfScreen(screen), colormap,
(String) fromVal->addr, &screenColor, &exactColor);

if (status == 0) {
sprintf(message, "Cannot allocate colormap entry for %s",

(String) fromVal->addr);
XtWarning(message);
} else {

(*toVal).addr = &(screenColor.pixel);
(*toVal).size = sizeof(Pixel);

11.7 .3 Registering a New Resource Converter

To register a new converter, use the procedure XtAddConverter.

void XtAddConverter <from type, to _type, convener, conven _ args, num _ args)
String from type; -
String to type;
XtConverter converter;
XtConvertArgList convert args;
Cardinal num _ args; -

from_type

to_type

converter

convert_ args

num_args

Specifies the source type.

Specifies the destination type.

Specifies the type converter procedure.

Specifies how to compute the additional arguments to the converter.
Most type converters have none, so convert_ args is NULL.

Specifies the number of additional arguments to the converter. Most
type converters have none, so num _ args is 0.

Resource Management 11 - 9

For the few type converters that need additional arguments, the X Toolkit conversion
mechanism provides a method of specifying how these arguments should be computed.
The enumerated type XtAddressMode and the structure XtConvertArgRec specify
how each argument is derived. These are defined in the < Xll/Convert. h > header
file.

typedef enum {
I* address mode

XtAddress,
XtBaseOffset,
Xti~m~ediate,

XtResourceString,
XtResourceQuark

parameter representation *I
I* address *I
I* offset *I
I* constant *I
I* resource name string *I
I* resource name quark *I

} XtAddressMode;

typedef struct {
XtAddressMode address_mode;
caddr_t address_id;
Cardinal size;

} XtConvertArgRec, *XtConvertArgList;

The address mode field specifies how the address id field should be interpreted.
XtAddres; causes address id to be interpreted i"s the address of the data.
XtBaseOffset causes add~ess id to be interpreted as the offset from the widget base.
Xtlmrnediate causes address id to be interpreted as a 4-byte constant.
XtResourceString causes i"ddress id to be interpreted as the name of a resource that
is to be converted into an offset from ~dget base. XtResourceQuark is an internal
compiled form of an XtResourceString.

The size field specifies the length of the data in bytes.

Here is the code used to register the CvtStringToPixel routine shown above:

static XtConvertArgRec colorConvertArgs(] = {

} ;

{XtBaseOffset, (caddr_t) XtOffset(Widget, core.screen), sizeof(Screen *)},
{XtBaseOffset, (caddr_t) XtOffset(Widget, core.colormap),sizeof(Colormap)}

XtAddConverter(XtRString, XtRPixel, CvtStringToPixel,
colorConvertArgs, XtNumher(colorConvertArgs));

The conversion argument descriptors colorConvertArgs and screenConvertArg are
predefined for you. The screenConvertArg descriptor puts the widget's screen field into
args[O]. The colorConvertArgs descriptor puts the widget's screen field into args[O], and
the widget's colormap field into args[l].

11 -10 Resource Management

n

n

u

It might seem easier to just create a descriptor that puts the widget's base address into
args[O], and do your own indexing off that in the conversion routine. But you should not.
If you constrain the dependencies of your conversion procedure to the minimum possible,
you improve the chance that subsequent conversions will find what they need in the
conversion cache. Then, you decrease the size of the cache by having fewer but more
widely applicable entries.

11.7 .4 Invoking Resource Converters
All resource-fetching routines (for example, XtGetSubresources,
XtGetApplicationResources, and so on) call resource converters if the user
specifies a resource that is a different representation from the desired representation, or if
the widget's default resource value representation is different from the desired
representation.

To invoke resource conversions, use XtConvert or XtDirectConvert.

The definition for XtConvert is:

void XtConvert(w, from type, from, to_type, to_retum)
Widget w; -
String from _type;
XrmValuePtr from;
String to type;
XrmValuePtr to_ return;

w

from_type

from

to_type

Specifies the widget to use for additional arguments (if any are needed).

Specifies the name of the source type.

Specifies the value to be converted.

Specifies the name of the destination type.

to return Returns the converted value.

XtConvert looks up the type converter registered to convert from _type to to_ type and
computes any additional arguments needed. It then calls XtDirectConvert.

The definition for XtDirectConvert is:

void XtDirectConvert(converter, args, num_args, from, to_retum)
XtConverter converter;
XrmValuePtr args;
Cardinal num args;
XrmValuePtr from;
XrmValuePtr to _!etum;

Resource Management 11-11

converter

args

num_args

from

to return

Specifies the widget to use for additional arguments (if any are needed).

Specifies the additional arguments needed to perform the conversion (often
NULL).

Specifies the number of additional arguments (often 0).

Specifies the value to be converted.

Returns the converted value.

XtDirectConvert looks in the converter cache to see if this conversion procedure has
been called with the specified arguments. If so, it just returns a descriptor for information
stored in the cache. Otherwise, it calls the converter and enters the result in the cache.

11.8 Reading and Writing Widget State
Any resource field in a widget can be read or written by a client. On a write, the widget
decides what changes it will actually allow and updates all derived fields appropriately.

11.8.1 Obtaining Widget State

To retrieve the current value of a resource associated with a widget instance, use
XtGetValues.

void XtGetValues(w, ~. num ~>
Widget W; -
ArgList ~;
Cardinal num _ ~;

w Specifies the widget.

args Specifies a variable length argument list of name/address pairs that contain
the resource name and the address to store the resource value into. The
argument names in args are dependent on the widget.

num _ args Specifies the number of arguments in argument list.

XtGetValues starts with the resources specified for the core widget fields and proceeds
down the subclass chain to the widget.

The value field of a passed Arg should contain the address into which to store the
corresponding resource value.

11-12 Resource Management

u

(

u

u

If the widget's parent is a subclass of constraintWidgetClass, XtGetValues
then fetches the values for any constraint resources requested. It starts with the constraint
resources specified for constraintWidgetClass and proceeds down to the subclass
chain to the parent's constraint resources.

Finally, the get_ values_ hook procedures, if non-NULL, are called in superclass-to-subclass
order after all the resource values have been fetched by XtGetValues. This permits a
subclass to provide non-widget resource data by means of the Get Values mechanism.

Widget Subpart Resource Data
Widgets that have subparts can return the resource values by using XtGetValues and
supplying a get_ values_ hook procedure. The get_ values_ hook procedure is of type
XtArgsProc:

void get _values }look (w, args, num _ args)
Widget W;
ArgList args;
Cardinal *num _ args;

w Specifies the widget whose non-widget resource values are to be retrieved.

args Specifies the argument list that was passed to XtCreateWidget.

num_args Specifies the number of arguments in the argument list.

Obtaining Widget Subpart State
To retrieve the current value of a non-widget resource data associated with a widget
instance, use XtGetSubvalues. For a discussion of non-widget subclass resources
resources, see "Obtaining Subresources".

void XtGetSubvalues (base, resources, num _resources, args, num _ args)
caddr_t base;

base

XtResourceList resources;
Cardinal num _resources;
ArgList args;
Cardinal num _ args ;

Specifies the base address of the subpart data structure from which the
resources should be retrieved.

resources Specifies the non-widget resources list.

num resources Specifies the number of resources in the resource list.

Resource Management 11 -13

args Specifies a variable length argument list of name/address pairs that
contain the resource name and the address to store the resource value
into. The arguments and values passed in args are dependent on the
subpart. The storage for argument values that are pointed to by args
must be deallocated by the application when no longer needed.

num_args Specifies the number of arguments in argument list.

11.8.2 Setting Widget State
To modify the current value of a resource associated with a widget instance, use
XtSetValues.

void XtSetValues(W, lll'f!IS, num lll'f!IS)
Widget w; -
ArgList lll'f!IS;
Cardinal num _lll'f!IS;

w Specifies the widget.

args Specifies a variable length argument list of name/value pairs that contain the
resources to be modified and their new values. The resources and values
passed are dependent on the widget being modified.

num _ args Specifies the number of resources in the argument list.

XtSetValues starts with the resources specified for the core widget fields and proceeds
down the subclass chain to the widget. At each stage, it writes the new value (if specified
by one of the arguments) or the existing value (if no new value is specified) to a new
widget data record.

XtSetValues then calls the set values procedures for the widget in "superclass-to
subclass" order. If the widget has non-NULL set values hook fields, these are called with
the arguments immediately after the correspondhig set values procedure. This procedure
permits subclasses to set non-widget data using the Set Values mechanism.

Ifthe widget's parent is a subclass of constraintWidgetClass, XtSetValues also
updates the widget's constraints. It starts with the constraint resources specified for
constraintWidgetClass and proceeds down the subclass chain to the parent's class.
At each stage, it writes the new value or the existing value to a new constraint record. It
then calls the constraint set_ values procedures from constraintWidgetClass down
to the parent's class. The constraint set values procedures are called with widget
arguments (as for all set_ values procs, not just the constraint record arguments), so that
they can make adjustments to the desired values based on full information about the
widget.

11-14 Resource Management

u

u

XtSetValues determines if a geometry request is needed by comparing the current
widget to the new widget. If any geometry changes are required, it makes the request, and
the geometry manager returns XtGeornetryYes, XtGeornetryAlrnost, or
XtGeornetryNo. If XtGeornetryYes, XtSetValues calls the widget's resize
procedure. If XtGeornetryNo, XtSetValues resets the geometry fields to their
original values. If XtGeornetryAlrnost, XtSetValues calls the set values almost
procedure, which determines what should be done and writes new values for the geometry
fields into the new widget. XtSetValues then repeats this process, deciding once more
whether the geometry manager should be called.

Finally, if any of the set_ values procedures returned TRUE, XtSetValues causes the
widget's expose procedure to be invoked by calling XClearArea on the widget's
window.

Widget State
The set_ values procedure for a widget class is of type XtSetValuesFunc:

typedef Boolean (*XtSetValuesFunc)();

Boolean SetValuesFunc(current, request, new)
Widget current;
Widget request;
Widget new;

current Specifies the existing widget.

request Specifies a copy of the widget asked for by the XtSetValues call before any
class set_ values procedures have been called.

new Specifies a copy of the widget with the new values that are actually allowed.

The set_ values procedure should recompute any field derived from resources that are
changed (for example, many GCs depend upon foreground and background). If no
recomputation is necessary and if none of the resources specific to a subclass require the
window to be redisplayed when their values are changed, then you can specify NULL for
the set values field in the class record.

Like the initialize procedure, set values mostly deals only with the fields defined in the
subclass, but it has to resolve conflicts with its superclass, especially conflicts over width
and height. In this case, though, the "reference" widget is "request", not "new''.

"New'' starts with the values of "request" but has been modified by any superclass
set values procedures. A widget need not refer to "request" unless it must resolve
conflicts between "current" and "new''. Any changes that the widget wishes to make
should be made in "new''. XtSetValues will copy the "new'' values back into the
"current" widget instance record after all class set_ values procedures have been called.

Resource Management 11-15

Finally, the set values procedure must return a Boolean that indicates whether the widget
needs to be redisplayed. Note that a change in the geometry fields alone does not require
the set values procedure to return TRUE; the X server will eventually generate an
Expoie event, if necessary. After calling all the set_ values procedures, XtSetValues
will force a redisplay (by calling XClearArea) if any of the set_ values procedures
returned TRUE. Therefore, a set_ values procedure should not try to do its own
redisplaying.

It is permissible to call XtSetValues before a widget is realized. Therefore, the
set_ values proc must not assume that the widget is realized.

Widget State
The set_ values_ almost procedure for a widget class is of type XtAlmos tProc:

typedef void (*XtAlmostProc)();

void AlmostProc (w, new_ widget, request, reply)
Widget w;

w

Widget new widget;
XtWidgetGeometry *request;
XtWidgetGeometry *reply;

Specifies the widget on which the geometry change is requested.

new_widget The return value, with relevant geometry fields modified based on the
geometry requests.

request

reply

Specifies the original geometry request that was sent to the geometry
manager that returned XtGeometryAlmost.

Specifies the compromise geometry that was returned by the geometry
manager that returned XtGeometryAlmost.

Most classes inherit this operation from their superclass by copying the Core
set_ values_ almost procedure in their class_ initialize procedure. The Core's
set_ values_ almost procedure simply accepts the compromise suggested.

The set_ values_ almost procedure is called when a client tries to set a widget's geometry by
means of a call to XtSetValues, and the geometry manager cannot satisfy the request
but instead returns XtGeometryAlmost and a compromise geometry. The
set_ values_ almost procedure takes the original geometry and the compromise geometry
and determines whether the compromise is acceptable or a different compromise might
work. It returns its results in the new widget parameter, which will then be sent back to
the geometry manager for another trY:

11-16 Resource Management

n

n

(

u

u

u

Widget State
The constraint set_values procedure is of type XtSetValuesFunc. The values passed
to the parent's constraint set_ values procedure are the same as those passed to the child's
class set_ values procedure. A class can specify NULL for the set_ values field of the
ConstraintPart if it need not compute anything.

The constraint set_ values procedure should recompute any constraint fields derived from
constraint resource that are changed. Further, it should modify the widget fields as
appropriate. For example, if a constraint for the maximum height of a widget is changed
to a value smaller than the widget's current height, the constraint set_ values procedure
should reset the height field in the widget.

Setting Widget Subpart State
To set the current value of a non-widget resource associated with a widget instance, use
XtSetSubvalues. For a discussion of non-widget subclass resources, see "Obtaining
Subresources".

void XtSetSubvalues (base, resources, num _resources, args, num _ args)
caddr_t base;

base

XtResourceList resources;
Cardinal num resources ;
ArgList args;-
Cardinal num _ args;

Specifies the base address of the subpart data structure where the
resources should be written.

resources Specifies the current non-widget resources values.

Specifies the number of resources in the resource list. num resources

args

num_args

Specifies a variable length argument list of name/value pairs that
contain the resources to be modified and their new values. The
resources and values passed are dependent on the subpart of the widget
being modified.

Specifies the number of resources in argument list.

Widget Subpart Resource Data
Widgets that have a subpart can set the resource values by using XtSetValues and
supplying a set_ values_ hook procedure. The set_ values_ hook procedure for a widget class
is of type XtArgsFunc:

Resource Management 11 -17

typedef Boolean (*XtArgsFunc)();

Boolean ArgsFunc(w, args, num_args>
Widget w;

w

args

ArgList cugs;
Cardinal *num _ args;

Specifies the widget whose non-widget resource values are to be changed.

Specifies the argument list that was passed to XtCreateWidget.

num _ args Specifies the number of arguments in the argument list.

11-18 Resource Management

0 . J

u

u

/ \

_)

Translation Management -
Handling User Input 12
Except under unusual circumstances, widgets do not hardwire the mapping of user events
into widget behavior by using the Event Manager. Instead, they provide a user-overridable
default mapping of events into behavior.

The translation manager provides an interface to specify and manage the mapping of X
Event sequences into widget-supplied functionality. The simplest example would be to call
procedure Abc when key "y" is pressed.

The translation manager uses two kinds of tables to perform translations. The "action
table", which is in the widget class structure, specifies the mapping of externally available
procedure name strings to the corresponding procedure implemented by the widget class.
The "translation table", which is in the widget class structure, specifies the mapping of
event sequence to procedure names.

The translation table in the class structure can be over-ridden for a specific widget instance
by supplying a different translation table for the widget instance.

12.1 Action Tables
All widget class records contain an action table. In addition, an application can register its
own action tables with the translation manager, so that the translation tables it provides to
widget instances can access application functionality. The translation action _proc
procedure is of type XtActionProc:

typedef void (*XtActionProc)();

void ActionProc(w, event, params, num_params)
Widget w;

w

event

XEvent *event;
String *params;
Cardinal *num _params;

Specifies the widget that caused the action to be called.

Specifies the event that caused the action to be called. If the action is
called after a sequence of events, then the last event in the sequence is
used.

Translation Management - Handling User Input 12 -1

params Specifies a pointer to the list of strings that were specified in the
translation table as arguments to the action.

num yarams Specifies the number of arguments specified in the translation table.

typedef struct _XtActionsRec {
String action_name;
XtActionProc action_proc;

} XtActionsRec, *XtActionList;

The action name field is the name that you use in translation tables to access the
procedure.-The action_proc field is a pointer to a procedure that implements the
functionality.

For example, the Command widget has procedures to:

• Set the command button to indicate it is activated

• Unset the button back to its normal mode

• Highlight the button borders

• Unhighlight the button borders

• Notify any callbacks that the button has been activated

The action table for the Command widget class makes these functions available to
translation tables written for Command or any subclass. The string entry is the name used
in translation tables. The procedure entry (usually spelled identically to the string) is the
name of the C procedure that implements that function:

XtActionsRec actionTable[] = {

} ;

{"Set", Set},
{"Unset", Unset},
{"Highlight" ,Highlight},
{"Unhighlight",Unhighlight}
{"Notify", Notify},

12.1.1 Registering Action Tables

To make functionality available by declaring an action table and registering this with the
translation manager, use XtAddAc t ions .

void XtAddActions (actions, num actions)
XtActionList actions; -
Cardinal num _actions;

actions Specifies the action table to register.

12-2 Translation Management- Handling User Input

n

I I
(}

'-._../

u

num _ args Specifies the number of entries in actions.

The X Toolkit registers an action table for MenuPopup and MenuPopdown as part of
X Toolkit initialization.

12.1.2 Translating Action Names to Procedures

The translation manager uses a simple algorithm to convert the name of procedure
specified in a translation table into the actual procedure specified in an action table. It
performs a search for the name in the following tables:

• The widget's class action table for the name

• The widget's superclass action table, and on up the superclass chain

• The action tables registered with XtAddActions, from the most recently added
table to the oldest table.

As soon as it finds a name, it stops the search. If it cannot find a name, the translation
manager generates an error.

12.2 Translation Tables
All widget instance records contain a translation table, which is a resource with no default
value. A translation table specifies what action procedures are invoked for an event or a
sequence of events. It is a string containing a list of translations from an event (or event
sequence) into one or more procedure calls. The translations are separated from one
another by new-line characters (ASCII LF).

For example, the default behavior of Command is:

• Highlight on enter window

• Unhighlight on exit window

• Invert on button 1 down

• Call callbacks and reinvert on button 1 up

Command's default translation table is:

static String defaultTranslations =
"<EnterWindow>:Highlight()\n\
<LeaveWindow>:Unhighlight()\n\
<BtnlDown>: Set()\n\
<BtnlUp>: Notify() Unset()";

Translation Management- Handling User Input 12-3

For details on the syntax of translation tables, see Appendix B.

The tm table field of the CoreClas s record should be filled in at static initialization
time with the string containing the class's default translations. If a class wishes to just
inherit its superclass's translations, it can store the special value
Xt!nheri tTranslations into tm table. After the class initialization procedures have
been called, the Intrinsics compile this translation table into an efficient internal form.
Then, at widget creation time, this default translation table will be used for any widgets
that have not had their core translations field set by the resource manager or the initialize
procedures.

The resource conversion mechanism takes care of automatically compiling string
translation tables that are resources. If a client uses translation tables that are not
resources, it must compile them itself using XtParseTranslations.

The X Toolkit uses the compiled form of the translation table to register the necessary
events with the event manager. Widgets need do nothing other than specify the action and
translation tables for events to be processed by the translation manager.

12.3 Merging Translation Tables
Sometimes an application needs to destructively or non-destructively add its own
translations to a widget's translation. For example, a window manager provides functions
to move a window. It normally may moves the window when any pointer button is pressed
down in a title bar. It allows the user to specify other translations for the middle or right
button down in the title bar, but it ignores any user translations for button 1 down.

To accomplish this, the window manager first should create the title bar and then should
merge the two translation tables into the title bar's translations. One translation table
contains the translations that the window manager wants only if the user has not specified
a translation for a particular event (or event sequence). The other translation table
contains the translations that the window manager wants regardless of what the user has
specified.

Three X Toolkit functions support this merging:

12-4 Translation Management - Handling User Input

rl)

lr;

u

u

XtParseTranslationTable Compiles a translation table.

XtAugmentTranslations

XtOverrideTranslations

Merges (non-destructively) a
compiled translation table
into a widget's compiled
translation table.

Merges destructively a
compiled translation table
into a widget's compiled
translation table.

To compile a translation table, use XtParseTranslationTable.

XtTranslations XtParseTranslationTable(UWk)
String table;

table Specifies the translation table to compile.

XtParseTranslationTable compiles the translation table into the opaque internal
representation (of type XtTrans lations).

To merge new translations into an existing translation table, use
XtAugrnentTranslations.

void XtAugmentTranslations (W, translations)
Widget w;
XtTranslations translations;

w

translations

Specifies the widget to merge the new translations into.

Specifies the compiled translation table to merge in.

XtAugrnentTranslations non-destructively merges the new translations into the
existing widget translations. If the new translations contain an event or event sequence
that already exists in the widget's translations, the new translation is ignored.

To overwrite existing translations with new translations, use
XtOverrideTranslations.

void XtOverrideTranslations (w, translations)
Widget w;
XtTranslations translations;

Translation Management - Handling User Input 12-5

w

translations

Specifies the widget to merge the new translations into.

Specifies the compiled translation table to merge in.

XtOverrideTranslations destructively merges the new translations into the existing
widget translations. If the new translations contain an event or event sequence that already
exists in the widget's translations, the new translation is merged in and override the
widget's translation.

12 • 6 Translation Management - Handling User Input

u

u

(..

_)

Resource File Format A
A resource file contains text representing the default resource values for an application or
set of applications. The resource file is an ASCII text file that consists of a number of
lines with the following EBNF syntax:

Xdefault
line
comment
production
resourcename
string
name

= {line"\ \n"}.
= (comment I production).
= "!" string.
= resourcename ":" string.
= ["*"]name{("." I "*")name}.
= {<any character not including eol> }.
= {"A"-"Z" J"a"-11 z'' I "0"-"9"}.

If the last character on a line is a backslash (\), that line is assumed to continue on the next
line.

To include a new-line character in a string, use "\n".

Resource File Format A -1

This page left blank intentionally.

n

n
/

u

u

Translation Table File Syntax

A translation table file is an ASCII text file.

Notation
Syntax is specified in EBNF notation, where:

[a]

means either nothing or "a".

{a}

means 0 or more occurrences of "a"

All terminals are enclosed in "double" quotes. Informal descriptions are enclosed in
<angle> brackets.

Syntax
The syntax of the translation table file is:

B

Translation Table File Syntax B -1

translation Table
production
lhs
keyseq
keychar
event
modifier list
modifier-
count
modifier name
event_ type
detail
rhs
name
namechar
params
string
quoted string
unquoted _string

= [production { "\ \n" production }]
= lhs ":" rhs
= (event I keyseq) { ","(event I keyseq) }
= """ keychar {keychar} """
= [""" I "$"] < ascii character>
=[modifier list] "<"event type">" ["("count["+"] ") 11

] {detail}
= [!]modifier {modifier} j~~None"
= [N] modifier_ name
= (2 I 3 I 4 I ...)
= <see ModifierNames table below>
= <see Event Types table below>
= < event specific details>
= { name 11

(
11 [params] 11

)
11

}

= namechar { namechar }
= { "a"-"z" I "A"-"Z" I "0"-"9" I "$" I "_" }
= string {",11 string}.
= quoted string I unquoted string
= 111111

{ < ascii character> } "";-
= {<ascii character except space, tab, 11

,
11

, newline, 11
)

11 >}

Informally, the productions are an event specifier on the left (terminated with a colon) and
a list of action specifications on the right (terminated with a newline).

The information on the left specifies the X Event, complete with modifiers and detail
fields, while that on the right specifies what to do when that event is detected. An action is
the name of an exported function. The parameters are strings.

It is often convenient to include newlines in a translation table to make it more readable.
InC, the newline should be preceded by a backslash (\):

"<BtnlDown>:DoSomething()\n\
<Btn2Down>: DoSomethingElse()"

B • 2 Translation Table File Syntax

n

0
/

:~

(

_)

>, u

u

Modifier Names
The Modifier field is used to specify normal X keyboard and button modifier mask bits. If
the modifier list has no entries and is not "None", it means "don't care" on all modifiers.
If any modifiers are specified, and"!" is not specified, it means that the listed modifiers
must be in the correct state and "don't care" about any other modifiers. If"!" is specified
at the beginning of the modifier list, it means that the listed modifiers must be in the
correct state and no other modifiers can be asserted. If a modifier is preceded by a ..- " it
means that that modifier must not be asserted. If "None" is specified, it means no
modifiers can be asserted. Briefly:

No Modifiers: None <event> detail
Any Modifiers: <event> detail
Only these Modifiers: ! modl mod2 <event> detail
These modifiers and any others:modl mod2 <event> detail

Modifier Meaning

c Control Key
Ctrl Control Key
s Shift Key
Shift Shift Key
m Modifier 1
Meta Modifier 1
1 Lock Key
Lock Lock Key
1 Modifier 1
Mod1 Modifier 1
2 Modifier 2
Mod2 Modifier 2
3 Modifier 3
Mod3 Modifier 3
4 Modifier 4
Mod4 Modifier 4
5 Modifier 5
ModS Modifier 5
ANY Any combination

Translation Table File Syntax B -3

Event Types
The EventType field describes XEvent types. The following are the currently defined
EventType values:

1
t)

Type Meaning

Key KeyPress
Key Down KeyPress
KeyUp KeyRelease
BtnDown ButtonPress
BtnUp ButtonRelease
Motion MotionNotify
BtnMotion MotionNotify with any button down
BtnlMotion MotionNotify with button 1 down
Btn2Motion MotionNotify with button 2 down
Btn3Motion MotionNotify with button 3 down
Btn4Motion MotionNotify with button 4 down
Btn5Motion MotionNotify with button 5 down
Enter EnterNotify rt)
Leave LeaveNotify
Focusln Focus In
Focus Out FocusOut
Keymap KeymapNotify
Expose Expose
GrExp GraphicsExpose
NoExp NoExpose
Visible VisibilityNotify
Create CreateNotify
Destroy DestroyNotify
Unmap UnmapNotify
Map MapNotify
MapReq MapRequest
Reparent ReparentNotify
Configure ConfigureNotify

0

B- 4 Translation Table File Syntax

u

u

u

ConfReq
Grav
ResReq
Circ
CircReq
Prop
SelClr
SelReq
Select
Clrmap
Message
Mapping

Supported Abbreviations:

ConfigureRequest
GravityNotify
ResizeRequest
CirculateNotify
CirculateRequest
PropertyNotify
SelectionClear
SelectionRequest
SelectionNotify
ColorrnapNotify
ClientMessage
MappingNotify

Abbreviation Meaning

Ctrl
Meta
Shift
BtnlDown
BtnlUp
Btn2Down
Btn2Up
Btn3Down
Btn3Up
Btn4Down
Btn4Up
BtnSDown
BtnSUp

KeyPress with control modifier
KeyPress with meta modifier
KeyPress with shift modifier
ButtonPress with Btnl detail
ButtonRelease with Btnl detail
ButtonPress with Btn2 detail
ButtonRelease with Btn2 detail
ButtonPress with Btn3 detail
ButtonRelease with Btn3 detail
ButtonPress with Btn4 detail
ButtonRelease with Btn4 detail
ButtonPress with BtnS detail
ButtonRelease with BtnS detail

The Detail field is event specific and normally corresponds to the detail field of an X
Event, for example, <Key> A. If no detail field is specified, then ANY is assumed.

Translation Table File Syntax B- 5

Useful Examples

• Always put more specific events in the table before more general ones:

Shift <BtnlDown> : twas()\n\
<BtnlDown> : brillig()

• For double-click on Button 1 Up with Shift, use:

Shift<Btn1Up>(2) : and()

This is equivalent to

Shift<BtnlDown>,Shift<BtnlUp>,Shift<BtnlDown>,Shift<BtnlUp> and()

with appropriate timers set between events.

• For double-click on Button 1 Down with Shift, use:

Shift<Btn1Down>(2) : the()

This is equivalent to

Shift<BtnlDown>,Shift<BtnlUp>,Shift<BtnlDown> the()

with appropriate timers set between events.

• Mouse motion is always discarded when it occurs between events in a table where no
motion event is specified:

<BtnlDown> <BtnlUp> : slithy()

This is taken, even if the pointer jiggles a bit between the down and up events.
Similarly, any motion event specified in a translation matches any number of motion
events. If the motion event causes an action procedure to be invoked, the procedure
is invoked after each motion event.

B- 6 Translation Table File Syntax

n

u

u

• If an event sequence consists of a sequence of events that is also a non-initial
subsequence of another translation, it is not taken if it occurs in the context of the
longer sequence. This occurs mostly in sequences like:

<BtnlDown> <BtnlUp> : toves()\n\
<BtnlUp> : did()

The second translation is taken only if the button release is not preceded by a button
press or if there are intervening events between the press and the release. Be
particularly aware of this when using the repeat notation, above, with buttons and
keys because their expansion includes additional events, and when specifying motion
events because they are implicitly included between any two other events.

• For single click on Button 1 Up with Shift and Meta, use:

Shift Meta <BtnlDown>, Shift Meta<BtnlUp>: gyre()

• The "+" notation allows you to say "for any number of clicks greater than or equal
to count", such as:

Shift <Btn1Up>(2+) : and()

• To say Enter Notify with any modifiers, use:

<Enter> : gimble()

• To say Enter Notify with no modifiers, use:

None <Enter> : in()

• To say Enter Notify with Button 1 Down and Button 2 Up and don't care about the
other modifiers, use:

Buttonl -Button2 <Enter> : the()

• To say Enter Notify with Button1 Down and Button2 Down exclusively, use:

! Buttonl Button2 <Enter> : wabe()

It is never necessary to use - with !.

Translation Table File Syntax B -7

This page left blank intentionally.

(

'0 Conversion Notes c
1. In the alpha release X Toolkit, each widget class implemented an

Xt< Wzdget >Create (for example, XtLabelCreate) function, in which most of
the code was identical from widget to widget. In this X Toolkit, a single generic
XtCreateWidget performs most ofthe common work and then calls the
initialize procedure implemented for the particular widget class.

2. Each composite widget class also implemented the procedures Xt < Wzdget >Add and
an Xt< Wzdget >Delete (for example, XtButtonBoxAddButton and
XtButtonBoxDeleteButton). In the beta release X Toolkit, the composite
generic procedures XtManageChildren and XtUnmanageChildren
perform error-checking and screening out of certain children. Then, they call the
change _managed procedure implemented for the widget's composite class. If the
widget's parent has not yet been realized, the call on the change_ managed procedure
is delayed until realization time.

3. The new X Toolkit can be used to implement old-style calls by defining one-line
procedures or macros that invoke a generic routine. For example, you could define
the macro XtCreateLabel: as the:

#define XtCreateLabel(name, parent, args, num_args) \
((LabelWidget) XtCreateWidget(name, labelWidgetClass, parent, args, num _ args))

Conversion Notes C -1

r)

n

' ' u

u

u

Index

A
Above, 10-18
accept_focus procedure, 10-11
Action Table, 12-2
Action _proc procedure, Defined, 12-1
Application, programmer, 1-3
ArgList, 4-7,4-8

Defined, 4-7

B
Background, 11-2
Below, 10-18
Bottomlf, 10-18
ButtonPress, 7-6, 10-5, 10-9, B-4, B-5
ButtonRelease, 10-5, 10-9, B-4, B-5

c
calloc, 9-1
CenterGravity, 4-15
Chaining, 3-11, 4-10, 4-12, 11-4
change_ managed procedure, 6-4
CirculateNotify, B-4
CirculateRequest, B-4
Class, 1-3
Class Initialization, 3-8
Class_initialize procedure, Defined, 3-8
Client, 1-3
ClientMessage, 10-7, B-4
ColormapNotify, B-4
Composite, 8-2, 10-18
Composite widgets, 5-2
CompositeClassPart, Defined, 2-5
CompositeClassRec, 2-5
CompositePart, 2-5, 2-7

Defined, 2-5

CompositeWidget, 2-5
Defined, 2-6

CompositeWidgetClass, 2-5
compositeWidgetClass, 4-9
CompositeWidgetClass, 4-15

Defined, 2-5
compress_ enterleave, 10-4
compress_ expose field, 10-4
compress motion, 10-4
Configure Window, 10-16
ConfigureNotify, 4-6, 6-2, B-4
ConfigureRequest, B-4
Constraint, 3-3, 3-12, 6-2
ConstraintClassPart, 4-12, 6-9

Defined, 2-6
ConstraintClassRec, 2-7
ConstraintPart, 2-7, 11-16

Defined, 2-7
ConstraintWidget, 2-7

Defined, 2-7
ConstraintWidgetClass, 2-7
constraintWidgetClass, 4-9, 4-10
ConstraintWidgetClass, 4-15
constraintWidgetClass, 4-18, 4-20, 6-8,

11-12, 11-14
ConstraintWidgetClass, Defined, 2-7
CopyFromParent, 4-15,4-16
CoreClass, 12-4
CoreClassPart, 2-2

Defined, 2-2
CorePart, 2-3, 2-5, 7-1

Defined, 2-3
CreateNotify, B-4
CWStackMode, 10-24

Index 1

D
delete_ child procedure, 6-4
Destroy Callbacks, 4-2,4-19
DestroyNotify, B-4

E
EastGravity, 4-15
EnterNotify, 10-5, 10-9, B-4
EnterWindow, 7-6
Events, 10-12
exit, 4-20
Expose, 4-15, 9-4, 10-5, 10-16, 11-15, B-4
expose procedure, 10-14

F
Focusin, 10-5, 10-11, B-4
FocusNotify, 10-11
FocusOut, 10-5, 10-11, B-4
Foreground, 11-2
free, 9-1

G
Geometry Management, 10-16
geometry_ manager field, 10-16
Get_ values_ hook procedure, Defined,

11-13
Grabbing Input, 10-9
GraphicsExpose, 9-4, 10-7, B-4
GravityNotify, B-4

H
hook, 11-13, 11-14

Inheritance, 3-11, 4-10, 4-12, 4-15 11-4
Initialization, 3-8, 4-10, 4-12 '
initialize procedure, 4-12
Initialize procedure, Defined, 4-10

2 Index

Initialize_ hook procedure, Defined, 4-12
Input Grabbing, 10-9
InputOnly, 4-16
InputOutput, 4-16
insert_child procedure, 3-14, 6-2, 7-3
Instance, 1-3

K
KeymapNotify, B-4
KeyPress, 10-5, 10-9, 10-11, B-4, B-5
KeyRelease, 10-5, 10-9, 10-11, B-4

L
LeaveNotify, 10-5, 10-9, B-4
libXt.a, 1-3

M
malloc, 9-1
MapNotify, B-4
MappingNotify, 10-7, B-4
MapRequest, B-4
MenuPopdown, 7-7, 7-8, 12-3

Defined, 7-8
MenuPopup, 7-4, 7-6, 7-7, 12-3

Defined, 7-6
Method, 1-3
MotionNotify, 10-5, 10-9, B-4
move _focus_ to_ next procedure, 10-12
move_ focus_ to _prev procedure, 10-12

N
Name, 1-3
NoExpose, 10-7, B-4
None, 10-11
NorthWestGravity, 4-15, 10-15

I~

u

u

u

0
Object, 1-3
Opposite, 10-18
OverrideShell, 8-1, 8-2
OverrideShells, 8-6
OverrideShellWidget, 8-4
overrideShellWidgetClass, 8-4
OverrrideShell, 8-2

p
pop-up

child, 7-2
shell, 7-2

PropertyNotify, B-4

a
query_geometry procedure, 10-23
Query _geometry procedure, Defined,

10-23

R
realize procedure, 4-15
realloc, 9-1
ReparentNotify, B-4
Resize procedure, Defined, 10-24
ResizeRequest, B-4
Resource, 1-3
Resource Management, 11-1

s
SelectionClear, 10-7, B-4
SelectionNotify, 10-7, B-4
SelectionRequest, 10-7, B-4
set_ values procedure, 11-16
Set_ values procedure, Defined, 11-15
Set_ values_ almost procedure, Defined,

11-16
set_ values_ hook procedure, 11-17
Set_ values_ hook procedure, Defined,

11-17
Shell, 7-3, 7-4, 7-6, 7-7, 8-2
ShellWidget, 8-4
ShellWidgetClass, 8-4
SubstructureNotify, 4-6
Superclass Chaining, 3-11, 4-10, 4-12, 11-4

T
Toplf, 10-18
TopLevel, 8-7,8-8
TopLevelShell, 4-2,8-1,8-2
TopLevelShellWidget, 8-4
topLevelShellWidgetClass, 4-10, 8-4
Transient, 8-7
TransientShell, 8-1, 8-2
TransientShells, 8-6
TransientShellWidget, 8-4
TransientShellWidgetClass, 8-4
Translation Table, 12-3
Translation tables, A-1

u
UnmapNotify, B-4
User, 1-3
/usr/lib/Xll/app-defaults/, 4-3

v
VendorShell, 8-2
VendorShellWidget, 8-4
vendorShellWidgetClass, 8-4
Visibility, 10-16
VisibilityNotify, 10-16, B-4
Visible, 10-16

w
WestGravity, 4-15
Widget, 1-4, 2-3

class, 1-4
Defined, 2-3

Index 3

prograrnn1er, 1-4
WidgetClass, 2-2,2-3,3-5

Defined, 2-2
WidgetClassRec, 2-3
widgetClassRec, 3-5
WidgetList, 6-5
WMShell, 8-2
WMShellWidget, 8-4
wntShellWidgetClass, 8-4

X
Xll/Convert.h, 11-9
Xll/Intrinsic.h, 1-2, 1-3
X11/IntrinsicP.h, 1-3
X11/Label.h, 1-3
X11/Scroll.h, 1-3
X11/Shell.h, 1-2
X11/StringDefs.h, 1-2, 3-2, 11-1
X11/Xatonls.h, 1-2
X11/X.h, 10-18
X11/Xlib.h, 1-2
X11/Xresource.h, 11-7
X11/Xutil.h, 9-4
XClearArea, 11-15
XCloseDisplay, 4-20
XConfigureWindow, 4-6,6-5, 10-18, 10-19,

10-22, 10-23
XCreateGC, 9-3
XCreateWindow, 4-14, 4-15, 4-16
.Xdefaults, 4-3
.Xdefaults-host, 4-3
XDestroyWindow, 4-17,4-18
XENVIRONMENT, 4-3
XFreeGC, 4-19
XFreePixmap, 4-19
XMapSubwindows, 4-13
XMapWindow, 7-5, 7-7
Xlllh, 4-5
XMoveWindow, 6-5, 10-22
XNextEvent, 10-12
XOpenDisplay, 4-3
XPeekEvent, 10-12

4 Index

XPending, 10-12
Xrn10ptionDescRec, Defined, 4-3
XrmParseCon1n1and, 4-2,4-5
Xrn1Value, 11-7, 11-8
XSelectlnput, 10-7, 10-8, 10-9
XSetlnputFocus, 10-11
XSetWindowAttributes, 4-13,4-14
XSynchronize,4-3
XtActionList, 12-2
XtActionProc, 12-1

Defmed, 12-1
XtActionsRec, 12-2
XtAddActions, 12-2, 12-3

Defined, 12-2
XtAddCallback, 4-19, 5-2

Defmed, 5-2
XtAddCallbacks, 5-3

Defined, 5-3
XtAddConverter, 11-9

Defined, 11-9
XtAddEventHandler, 4-19, 10-7, 10-8,

10-13
Defined, 10-7

XtAddExposureToRegion, 9-4
Defined, 9-4

XtAddGrab, 10-9, 10-10
Defined, 10-10

XtAddlnput, 10-2, 10-3
Defined, 10-2

XtAddRawEventHandler, 10-8
Defined, 10-8

XtAddress, 11-10
XtAddressMode, 11-9
XtAddTin1eOut, 4-20, 10-3, 10-4

Defined, 10-3
XtAllEvents, 10-8
XtAln1ostProc, 11-16

Defined, 11-16
XtArgList, 3-1
XtArgsFunc, 11-17

Defined, 11-17
XtArgsProc,4-12, 11-13

Defined, 4-12

u

u

){tAig\Tal,4-7,4-8
){tAugmentTranslations, 12-4, 12-5

Defined, 12-5
){tBaseOffset, 11-10
){tButtonBoxAddButton, C-1
){tButtonBoxDeleteButton, C-1
){tC, 3-2, 11-2
){tCallbackExclusive, 7-4, 7-5, 7-7

Defined, 7-5
){tCallbackHasNone, 5-5
){tCallbackHasSome, 5-5
){tCallbackList, 5-1, 5-2
){tCallbackNoList, 5-5
){tCallbackNone, 7-4, 7-5, 7-7

Defined, 7-5
){tCallbackNonexclusive, 7-4,7-5,7-7

Defined, 7-5
){tCallbackPopdown, 7-7,7-8

Defined, 7-7
){tCallbackProc, 5-1

Defined, 5-1
){tCallCallbacks, 5-3, 5-4

Defined, 5-4
){tCalloc, 4-19, 9-1,9-2

Defined, 9-2
){tCheckSubclass, 3-11, 7-4, 7-6, 7-7

Defined, 3-11
){tClass, 3-10

Defined, 3-10
){tClassProc, 3-9

Defined, 3-9
){tConfigureWidget, 10-21, 10-22, 10-23

Defined, 10-22
){tConvert, 11-11

Defined, 11-11
){tConvertArgRec, 11-9
){tConverter, 11-8

Defined, 11-8
){tCreateApplicationShell, 3-2, 4-1, 4-10

Defined, 4-10
){tCreateLabel, C-1
){tCreateManagedWidget, 6-1,6-6

Defined, 6-6

){tCreatePopupShell, 7-2, 7-3
Defined, 7-2

){tCreateWidget, 2-1, 2-4, 3-9, 4-6, 4-9,
4-14, 5-2, 6-1, 6-2, 6-4, 6-5, 6-6, 6-9,
10-2, 11-1, 11-4, 11-5, 11-13, 11-18,
C-1

Defined, 4-9
){tCreate Window, 4-6, 4-15, 4-16

Defined, 4-15
){tDestroyGC, 4-19,9-3

Defined, 9-3
){tDestroyPixmap, 4-19
){tDestroyWidget, 4-1, 4-14, 4-17, 4-18,

6-1, 6-4, 6-9, 7-1
Defined, 4-17

){tDirectConvert, 11-11, 11-12
Defined, 11-11

){tDispatchEvent, 4-18, 10-10, 10-11,
10-13, 10-14

Defined, 10-13
){tDisplay, Defined, 4-5
){tError, 3-11, 9-1, 9-2, 9-6

Defined, 9-6
){tErrorHandler, 9-6

Defined, 9-6
){tEventHandler, 10-6

Defined, 10-6
){tExclusive, 7-6
){tExposeProc, 10-14

Defined, 10-14
){tFree, 4-8, 4-19, 9-1, 9-2, 9-3

Defined, 9-2
){tGeometryAlmost, 10-17, 10-19, 10-20,

10-21, 10-24, 11-14, 11-16
){tGeometryDone, 10-19, 10-20
){tGeometryHandler, 10-20, 10-23

Defined, 10-20
){tGeometryMask, 10-18
){tGeometryNo, 8-7, 10-19, 10-20, 10-24,

11-14
){tGeometryResult, 10-17
){tGeometryYes, 10-19, 10-20, 10-21,

10-24, 11-14

Index 5

XtGetApplicationResources, 11-6, 11-11
Defined, 11-6

XtGetGC, 4-19,9-3
Defined, 9-3

XtGetPixmap, 4-19
XtGetSubresources, 11-5, 11-11

Defined, 11-5
XtGetSubvalues, 11-13

Defined, 11-13
XtGetValues, 5-1, 5-2, 6-9, 11-1, 11-3,

11-12, 11-13
Defined, 11-12

XtGrabExclusive, 7-4, 7-7
XtGrabKind, 7-4
XtGrabNone, 7-5
XtGrabNonexclusive, 7-4, 7-7
XtHasCallbacks, 5-5

Defined, 5-5
Xtlmmediate, 11-10
Xtlnherit, 3-13

XtlnheritAcceptFocus, 3-14
XtlnheritChangeManaged, 3-14
XtlnheritDeleteChild, 3-14
XtlnheritExpose, 3-14
XtlnheritGeometryManager, 3-14
XtinheritlnsertChild, 3-14
XtlnheritMoveFocusToNext, 3-14
XtlnheritMoveFocusToPrev, 3-14
XtlnheritRealize, 3-14
XtlnheritResize, 3-14
XtlnheritSet ValuesAlmost, 3-14
XtlnheritTranslations, 12-4
Xtlnheritxyz, 3-13
Xtlnitialize, 3-2, 4-1, 4-2, 4-3, 4-5, 4-10,

11-4
Defined, 4-1

XtlnitProc, 4-10, 4-12
Defined, 4-10

XtlnputCallbackProc, 10-2
Defined, 10-2

Xtlnt, 11-7
XtlsComposite, 6-2

Defined, 6-2

6 Index

XtlsRealized, 4-14
Defined, 4-14

XtlsSensitive, 10-6
Defined, 10-6

XtlsSubclass, 3-10, 3-11, 6-2
Defined, 3-10

XtLabelCreate, C-1
XtMainLoop, 10-1, 10-13, 10-14

Defined, 10-14
XtMakeGeometryRequest, 4-1, 10-17,

10-18,10-19, 10-20, 10-21, 10-25
Defined, 10-17

XtMakeResizeRequest, 10-19, 10-25
Defined, 10-19

XtMalloc, 4-19,9-1,9-2
Defined, 9-1

XtManageChild, 3-14,4-6,6-1,6-5,6-6,
7-3

Defined, 6-5
XtManageChildren, 4-14,6-1,6-4,6-5, C-1

Defined, 6-4
XtMapWidget, 6-8

Defined, 6-8
XtMergeArgLists, 4-8

Defined, 4-8
XtMoveWidget, 6-5, 10-16, 10-17, 10-21,

10-22
Defined, 10-21

XtN, 3-2, 11-1
XtNameToWidget, 9-4,9-5

Defined, 9-4
XtNew, 9-1, 9-2

Defined, 9-1
XtNextEvent, 4-17,4-18, 10-13, 10-14

Defined, 10-13
XtNonexclusive, 7-6
XtNumber, 4-9, 11-4

Defined, 11-4
XtOffset; 11-3, 11-4

Defined, 11-4
XtOrderProc, 6-3

Defined, 6-3
XtOverrideTranslations, 12-4, 12-5, 12-6

n

n

u

u

u

Defined, 12-5
}(tlParent,Defined,4-5
}(tParseTranslations, 12-4
}(tParseTranslationTable, 12-4, 12-5

Defined, 12-5
}(tPeekEvent, 10-12, 10-13

Defined, 10-12
}(tPending, 10-12

Defined, 10-12
}(tlPixel, 11-7
}(tPopdown, 7-7,7-8,8-7

Defined, 7-7
}(tPopdowniD, 7-8
}(tPopup, 7-4,7-5,7-7,8-7, 10-9

Defined, 7-4
}(tProc, 3-8

Defined, 3-8
}(tQueryGeometry, 10-23, 10-24

Defined, 10-23
}(tR, 3-2
}(TranslateCoordinates, 9-5
}(tRBoolean, 11-2, 11-7
}(tRCallback, 5-2, 11-2
}(tRColor, 11-2
}(tRCursor, 11-2, 11-7
}(tRDefaultColor, 11-2
}(tRDisplay, 11-2, 11-7
}(tRealizeProc, 4-14

Defined, 4-14
}(tRealizeWidget, 4-1,4-7,4-13,4-14,4-15,

6-5, 7-3, 7-5, 7-6, 10-15
Defined, 4-13

}(tRealloc, 9-1, 9-2
Defined, 9-2

}(tREditMode, 11-2
}(tRemoveAllCallbacks, 4-19,5-4

Defined, 5-4
}(tRemoveCallback, 4-19,5-3

Defined, 5-3
}(tRemoveCallbacks, 5-4

Defined, 5-4
}(tRemoveEventHandler, 4-19, 10-7, 10-8

Defined, 10-7

}(tRemoveGrab, 7-7, 10-9, 10-10, 10-11
Defined, 10-10

}(tRemovelnput, 10-3
Defined, 10-3

}(tRemoveRawEventHandler, 10-8, 10-9
Defined, 10-8

}(tRemoveTimeOut, 4-20, 10-4
Defined, 10-4

}(tResizeWidget, 6-5, 10-16, 10-17, 10-21,
10-22, 10-24

Defined, 10-22
}(tResource, 11-1
}(tResourceList, 3-1, 11-1
}(tResourceQuark,11-10
}(tResourceString, 11-10
}(tRFile, 11-2, 11-7
}(tRFloat, 11-2
}(tRFont, 11-2, 11-7
}(tRFontStruct, 11-2, 11-7
}(tRFunction, 11-2
}(tRGeometry, 11-2
}(tRint, 11-2
}(tRJustify, 11-2
}(tRLongBoolean, 11-2, 11-7
}(tROrientation, 11-2
}(tRPixel, 11-2
}(tRPixmap, 11-2
}(tRPointer, 11-2
}(tRString, 11-2, 11-7
}(tRStringTable, 11-2
}(tR TranslationTable, 11-2
}(tRWidget, 11-2
}(tRWindow, 11-2
}(tScreen, Defined, 4-6
}(tSetArg, 4-7, 4-8

Defined, 4-7
}(tSetErrorHandler, 9-6

Defined, 9-6
}(tSetKeyboardFocus, 10-11

Defined, 10-11
}(tSetMappedWhenManaged, 6-1,6-7,6-8

Defined, 6-7
}(tSetSensitive, 7-3, 7-8, 10-5, 10-6

Index 7

Defined, 10-5
XtSetSubresources, 11-17
XtSetSubvalues, 11-17

Defined, 11-17
XtSetValues, 3-1, 4-6, 5-2, 6-8, 6-9, 7-3,

10-5, 10-6, 10-16, 11-1, 11-3, 11-14,
11-15, 11-16, 11-17

Defined, 11-14
XtSetValuesFunc, 11-15, 11-16

Defined, 11-15
XtSetValuesProc, 11-16
XtSetWarningHandler, 9-7

Defined, 9-7
XtSMDontChange, 10-18,10-24
XtSuperclass, 3-10

Defined, 3-10
XtTimerCallbackProc, 10-3

Defined, 10-3
XtTranslateCoordinates, 9-5
XtTranslateCoords, 9-5

Defined, 9-5
XtTranslations, 12-5
XtUnmanageChild, 6-1,6-7

Defined, 6-7
XtUnmanageChildren, 4-14,6-1,6-6,6-7,

C-1
Defined, 6-6

XtUnmanagedChildren, 6-6
XtUnmapWidget, 4-20, 6-8

Defined, 6-8
XtVersion, 3-6
XtWarning, 9-7, 11-8

Defined, 9-7
XtWidgetGeometry, 10-18, 10-19, 10-23
XtWidgetProc, 4-19,4-20,6-2,6-4, 10-24

Defined, 4-19
XtWindow, Defined, 4-6
XtWindoWToWidget, 9-5

Defined, 9-5

8 Index

n

()
/

	Title Page
	Printing History
	Contents
	1. X Toolkit Overview
	2. Widgets
	3. Widget Classes
	4. Instantiating Widgets
	5. Callbacks
	6. Composite Widgets
	7. Pop-up Widgets
	8. Shell Widgets
	9. Utility Functions
	10. Event Handling
	11. Resource Management
	12. Translation Management - Handling User Input
	A. Resource File Format
	B. Translation Table File Syntax
	C. Conversion Notes
	Index

