HP 9000 Series 300 Computers
Using ARPA Services

Using ARPA Services

HP 3000 Series 300

(A cickaro

Manual Part Number: 50952-90001 Printed in U.S.A., January 1989

Notice

Hewlett-Packard makes no warranty of any kind with regard to this
material, including, but not limited to, the implied warranties of mer-
chantability and fitness for a particular purpose. Hewlett-Packard shall
not be liable for errors contained herein or for incidental or consequen-
tial damages in connection with the furnishing, performance, or use of
this material.

Hewlett-Packard assumes no responsibility for the use or reliability of its
software on equipment that is not furnished by Hewlett-Packard.

© Copyright 1987, 1988, 1989 Hewlett-Packard Company.

This document contains proprietary information, which is protected by
copyright. All rights are reserved. No part of this document may be
photocopied, reproduced or translated to another language without the
prior written consent of Hewlett-Packard Company. The information con-
tained in this document is subject to change without notice.

Restricted Rights Legend

Use, duplication or disclosure by the Government is subject to restric-
tions as set forth in paragraph (b)(3)(B) of the Rights in Technical Data
and Software clause in DAR 7-104.9(a).

© Copyright 1980, 1984, AT&T, Inc.

© Copyright 1979, 1980, 1983, The Regents of the University of Califor-
nia.

© Copyright, 1979, 1987, Sun Microsystems, Inc.

This software and documentation is based in part on the Fourth Berkeley
Software Distribution under license from the Regents of the University of
California.

DEC and VAX are registered trademarks of Digital Equipment Corp.
MS-DOS® is a trademark of Microsoft Corp.

UNIX® is a U.S. registered trademark of AT&T in the U.S.A. and in
other countries.

NEFS is a trademark of Sun Microsystems, Inc.

Hewlett-Packard Co.
3404 E. Harmony Rd.
Fort Collins, CO 80525 U.S.A.

Printing History

December 1986 ... Edition 1.
December 1987 ... Edition 2.
January 1989 . . . Edition 3.

Table of Contents

Chapter 1: Documentation Overview

MBI OVERHOW s s s vui o s 9w o8 B 8554 £ 5 5708 5 8 A 5 § w5 3 1-1
Who Should Read This Manual 1-1
WhatlsmTmsManual .z ccsesssiiismeidmiimmea 1-2
Conventions in ThisMamal. .4 ¢ s w5 549 65 wap 50w o5 ww s 1-5

Reference Maibalimde’ v oo om v i i 65 60 5 5 ol & & w6 5 5 50 3 1-6

Chapter2: Services Overview

WIOAIION Wi v iR P e s AR AR R R e & e 2-1

GetingStarted i vw i dn iasmes 0L 28 855 bum ¥ BRSO eFs 2-2

The ARPA/Berkeley Services 2-3

Services Listedby Function 2-4
Sending MailtoaRemote Host 2-4
Listing Information about a Remote Host 2-4
Logging into a Remote Host 2-5
Transferring Files to or froma Remote Host 2-6
Executing Commands on a Remote Host 2-6

Obtaining General Information 2-7

Interprocess ComminiCation. . . s o« o6 4 5 6. b s bim s 5 n 4 4 5om s 2-8

Chapter3: Sending Mail

INGOAUOLION. o o v v s e & 8 Bt & 3 s 5 0 o i e B S E 3-1

UsingSendmail 32
Bxeautmg Senduiail <o v cocm o8 @m0 5 40 5 obid h@s s BE E S 3-2

MailingtoFiles i umss v ssmoevmes ams ows s 0% w4 3-2

vi

Sendmatl Operalions OVEIVIEW . . . cow s o« w0 o mtn 5 aow s @i 5 »
Collecting Messageso v i i v it
ROGHIP e MESSATES & ¢ ovis s 50w ¢ 5 616 5 4195 5 048 9% 5.4
More Mail System Information

Chapter 4: Listing Hosts with Ruptime

LIPS © wown 5 wunme 5 mow ¥ 8 0 ¢ 8 0§ 8 A0 & B B eTa A

Displaying Ruptime StatusLinescvo o mvoemssanss
Sorted by Host Name in Alphabetical Order
Sorted by Host Name in Reverse Alphabetical Order
Sorted by DecreasingUptime
Sorted by Increasing Uptime
Sorted by Decreasing Numberof Users
Sorted by Increasing Numberof Users
Sorted by Decreasing Load Average
Sorted by Increasing Load Average

Chapter 5: Listing Users with Rwho
USIERWH0 cicszamesmishmsiiieisnvismesaassa

Listing Active and Likely Active Users of Network Hosts
Listing All Users of Network Hosts

Chapter 6: Logging into a Host with Telnet

LIS TOINBE o i x5 mims w0 i w8 0 0 % s 20 0 s & O W A e
LINVORBTEINE! = ik ismisnt-55misassn @it ®ass
2. Change the Telnet Escape Character If Necessary
3.ConnecttoaRemoteHOSE ... e o 4 sn v 5 o © mior e
4. 1LogintotheRemote HOoSt . .o - ¢ v s cnwbs s npaasn s

Giving Telnet Commands When Telnet Is in Its Input State

Checking the Behavior of Carriage Returns from a Remote Host
Changing the Carriage Return Mode Setting

Disconnecting from a Remote Host and/or Exiting Telnet
Disconnecting from a Remote Host and Remaining in Telnet
Exiting from Telnet When Telnet Is in Its Input State
Exiting from Telnet When Telnet Is in Its Command State

Obtaining Belp: ... so v om0 5w« o mre o 6 0w @ e @ e

Listing the Telnet Comtnands . v o5 3w s saw s w6 3 wows 3
Getting Information about a Specific Telnet Command

Temporarily Returning to HP-UX on Your Local Host

Executing a Single HP-UX Command on Your Local Host

Working for an Extended Time on Your Local Host
ObamnETEInEtSS . s s isave mee s W@ s i we s
Changing Where User Input IsEchoed
Changing UserInputMode
Connecting to a Remote Host When You Invoke Telnet

Chapter 7: Logging into a Host with Rlogin
Determining If You Need to Change the Rlogin Escape Character

Caution: What Not to Change the Rlogin Escape Character To
Determining What Size Characters to Send with Rlogin

When You Can Send Eight-Bit Characters

When You Must Send Seven-Bit Characters
CSHIgRIOBD :on o omas ae s vwg s e § WEsaEs s s@ees

AOMBHO BB covos 5 mum o womis o s s we e i b e
MERUBLLOBIA. . 2 oo bk e 2 5lols B o e o e a3

If You Get Unexpected Results after Logging into a Remote Host

Logging Out of the Remote Host and Exiting Rlogin
Temporarily Returning to HP-UX on Your Local Host

Executing a Single HP-UX Command on Your Local Host

Working for an Extended Time on Your Local Host
Passing the Rlogin Escape Character to a Remote Program
Logging into a Remote Host as Someone Else

Giving Other Remote Users Rlogin Access to Your Local Account

Protecting Your.rhostsFile
Using Rlogin’s "Shorthand"Syntax

vii

Chapter 8: Transferring Files with Ftp

USBEPID o s woom aiws ¢ B% £ 59 @ 50 ¢ ek § w0 & R ¥ 8
LIVORERID . v sowvemmnmms wneve & muwss 3 07w & siem 3 e & =

2. Choose Whether to Display Responses from a Remote Host

SICONNECtIOAREMOIEHOSE o v ns v s s a0 o & 595 & 5
4. Logintothe Remote Host
Disconnecting from a Remote Host and ExitingFtp
Exiting Ftp to Return to HP-UX on Your Local Host

Disconnecting from a Remote Host and Remaining in Ftp

OviingRelp .cessvwinessnsinsssipisesmisseea
Listingthe FIpConmands . ..o s 005 w55 5w s o s 5
Getting Information about a Specific Ftp Command

Temporarily Returning to HP-UX on Your Local Host
Executing a Single HP-UX Command on Your Local Host
Working for an Extended Time on Your Local Host

How Ftp Treats "Wild Card" Characters, or Metacharacters
Turning Globbing OnorOff v iwmas wios s ae s

Performing Directory Operationswith Ftp
Changing the Local Working Directory
Changing the Remote Working Directory
Listing the Contents of the Remote Working Directory
Listing the Contents of a Remote Directory
Listing the Contents of Multiple Remote Directories
Displaying the Name of the Remote Working Directory
Creating a Remote Directory
Deleting a Remote Directory
Changing the Name of a Remote Directory

Jransteming FUleSWithFthD . . cx vicesvnmsaswe s s s nid s
1. Set the Local and Remote Working Directories
2. Set the File Transfer Type
3. Choose Options to Monitor File Transfer Progress
4. Turn on Interactive Mode for Selective File Transfers ;
S. Perform One or More File Transfers

Performing Other File OperationswithFtp

viii

Displaying the Contents of a Remote File 8-62

Creati A REHMOETHE < oo v s s s s wwe s od @ 8-64
Appending Text to the End of a Remote File 8-65
DeletngaReninie ile s asnsssssisvsasiesnmss oy 8-68
Deleting Multiple Remote Fileso o0 v 6060w 8-69
Changing the Name of aRemote File 8-72
DNEAMBE RN MIEIN o o mens e Swmis MGG § WS 3 ERE B B0 8-74
Setting Up Automatic Remote LoginforFtp 8-75
Protecting Your .netrcFile 8-76
Logging into a Remote Host with a Login Not in Your .netrc File 8-77
THEPHUIC P ACEONEE : v vmins i 955 5 %54 5 5 & 5 5 8-81
Logging into the Public (Anonymous) Ftp Account 8-82
Specifying Ftp Settings and Connecting to a Remote Host When You
InvokeFtp 8-83
Chapter 9: Transferring Files with Rcp
File Copy COmCepts . . . v v i et e et e e e e e e e e e 9-1
USIOR IO wovonvsimis woemns seil: 3 a0 ¢ 8 Wik & 8 @0 © @ @ & & s o 9-3
Creating a SHOME]/.rhosts File on a Remote Host 9-3
Performing Copy OperationswithRep 9-6
From a Local Producer to a Remote Consumer 9-8
From One or More Remote Producers to a Local Consumer . 9-12
From One or More Remote Producers to a Remote Consumer ~ 9-16
From Local and Remote Producers to a Local Consumer . . . 9-20
From Local and Remote Producers to a Remote Consumer . . 9-24
Rcp’s Effect on File Attributes 9-28
Using "Wild Card" Characters, or Metacharacters with Rep . . 9-29
Copying Remote Files and Directories as Someone Else on the
REBMEHIOEE. o & csonc « 5 cone o smammn o @ & 05 & ¥ Bue B R EON FDTE b 9-30
Giving Other Remote Users Rcp Access to Your Local Account . . 9-31

Protecting Your.rhostsFile 9-32

ix

Chapter 10: Executing Commands with Remsh

Setting Up Permission to Use Remsh on a Remote Host
Creating a SHOME/.rhosts File on a Remote Host

Executing Commands on a Remote Host as Yourself

Executing Commands on a Remote Host as Someone Else

Giving Other Remote Users Remsh Access to Your Local Account
Protecting Your.rhostsFile

Executing More Than One Remote Command with Remsh

Using Shell MetacharacterswithRemsh
Stdin, Stdout, and Stderr forRemsh

Using Remsh with Remote Commands That Do Not Take Input

Using Remish’s "Shorthand" SyitiX’ .« .s e s 95 vs 95 55 9o s 5%

Chapter 11: Interprocess Communication

OVEIVIEWOLIEC. oo isvmsswmesmm s v e ale 55 e s 9%
How YounCanlUseIPC: o <z cod o wark 5 20w 0 2 iw & = mla) 5 e
TheClient-SeivetModel . . oo s 5008 3.0 5 6 008 € 2008 5 58
IPCEnyROBRESS: o ciussovssians @ s aks %

Ky TermBindConeeplS .z isamsivnincis e ns owsss

IPC Using Internet StreamSocketsc...c0 0.
Preparing Address Variables
Writing the Server Process
Writing the CHent Process : .- :s v i35 mas e s s ak
Sendinpand ReeewingDathl sz isavwvinssmnsve s an
ClosingaSocket @i imnennnen.
Example Using Stream Sockets¢c.0000 00

BSD IPC Using UNIX Domain Stream Sockets
Préparing Address Vanables o v v names wos 36 s s @
Wrthing e Server FrOtesS! & woaws wim wowne s s » i & o o
Writing the Client Process
Sending dand ReceivingDatd <. wm o i v s n ol v s o o o wis
Closp a80Cket o vu s abmsn sinmis s & wm o & o065 & 529
Examples Using UNIX Domain Stream Sockets

Advanced Topics for Stream Sockets

Socket Optionsttt 11-71

Synchronous I/O Multiplexing with Select 11-78
Sending and Receiving Data Asynchronously 11-80
Nonblocking I/O 11-83
USng Shitdowt o v svewn 9wn s w008 5 55% 6 5 5090 2.9 & & 11-84
Using Read and Write to Make Stream Sockets Transparent 11-86
Sending and Receiving Outof Band Data 11-86
IPC Using Internet Datagram Sockets 11-92
Preparing Address Variables .« o swssomosmmean s 11-94
Writing the Server and Client Processes 11-99
Binding Socket Addresses to Datagram Sockets 11-100
Sending and Receiving Messages 11-102
ClosingaSocket, 11-107
Example Using Datagram Sockets 11-108
Advanced Topics for Internet Datagram Sockets 11-117
Specifying a Default Socket Address 11-117
Synchronous I/O Multiplexing with Select 11-119
Sending and Receiving Data Asynchronously 11-119
NORHIGCKIIBE HO) s 5 wam s som s @b € o & & 908 § & @ 5 11-120
Using Broadcast Addresses 11-121
Programming Hints . < o v svw v vnw s wwis 2 w5 womsw w w3 11-122
Troubleshooting 11-122
POt ACGAENEE :xvisccnissmes vanimesiimess e 11-123
Using Diagnostic Ultilities as Troubleshooting Tools 11-124
Adding a Server Process to the Internet Daemon 11-125
Summary Tables for System and Library Calls 11-130
Appendix A: Portability Issues
Porting Issues for IPC Functions and Library Calls A-2
Porting Issues for Other Functions and Library Calls Typically Used by
BE: v o 5 oom: 5 5 0% 3 e & SEE% E @B S R A-5
Glossary

Index

xi

Documentation Overview

Note

Before you read this manual, read the Networking Over-
view: NS-ARPA and NFS Services booklet for an intro-
duction to important terms and concepts. The booklet
positions HP 9000 Series 300 networking products rela-
tive to each other and lists and describes the com-
ponents of each product. The booklet also contains
specific network connectivity diagrams and a detailed
documentation map.

Manual Overview

Who Should Read This Manual
This manual is written primarily for people who have:
e some experience with the HP-UX environment; and

® access to and familiarity with the HP-UX Reference manuals.

Documentation Overview 1-—1

What Is in This Manual

The list below briefly describes the contents of each chapter in this
manual.

Chapter 1: Introduction

The remainder of this chapter describes what you need to get started and
provides a list of reference manuals.

Chapter 2: Services Overview

To aid you in finding the service that best suits your needs, this chapter
lists and briefly describes the ARPA/Berkeley Services according to their
function. The "Services Overview" chapter also briefly describes the Inter-
process Communication package and how to obtain general information
about your system once the NS-ARPA Services/300 product has been
installed.

Chapter 3: Sending Mail

This chapter briefly describes the internetwork mail routing facility
provided with the ARPA/Berkeley Services. Since this facility is automati-
cally installed when the product is installed, but is not executable, your
node manager may choose whether to make this facility executable on
your local host. Plan to read this chapter only if your node manager has
made this facility executable on your local host.

Chapter 4: Listing Hosts with Ruptime

This chapter explains how to list the names and condition of network
hosts. The chapter also explains how to sort the list based on various
items in the list.

1—2 Documentation Overview

Chapter 5: Listing Users with Rwho

This chapter explains how to list information about users logged into net-
work hosts.

Chapter 6: Logging Into a Host with Telnet

This chapter explains how to use felnet to log into a remote host.

Chapter 7: Logging Into a Host with Rlogin

This chapter explains how to use rlogin to log into a remote host. It also
describes how to give other network users rlogin access to your local ac-
count.

Chapter 8: Transferring Files with Ftp

This chapter explains how to use fip to transfer files between your local
host and a remote host and to perform remote file management opera-
tions.

Chapter 9: Transferring Files with Rcp

This chapter explains how to use rcp to transfer files and directories
among network hosts. The chapter also describes how to give other net-
work users rcp access to your local account.

Chapter 10: Executing Commands with Remsh

This chapter explains how to use remsh to execute a command on a
remote host. The chapter also describes how to give other network users
remsh access to your local account.

Documentation Overview 1-—3

Chapter 11: Interprocess Communication

This chapter is for programmers who intend to use Interprocess Com-
munication (IPC) based on 4.2 BSD programming development tools.
The chapter describes how to use datagram and stream sockets. An over-
view of IPC and example programs are also included.

Appendix A: Portability Issues

This appendix explains portability issues and differences between HP’s
implementation of 4.2 BSD Interprocess Communication (sockets) and
the Berkeley sockets.

Glossary

The glossary lists and defines terms used in this manual.

Index

The index provides a quick page-reference for subjects contained within
this manual.

1—4 Documentation Overview

Conventions in This Manual

Notation Description
boldface Boldfacing is used for emphasis.
computer_font Words in syntax statements that are not in

italics must be entered exactly as shown.
Punctuation characters other than brackets,
braces and ellipses must also be entered
exactly as shown.

italics Words in syntax statements that are in italics
denote a parameter that you must supply.

Return This font is used to indicate a key on the
computer’s keyboard.

CTRL-D This convention is used to indicate a combina-
tion of keys to press simultaneously for a
desired function.

An ellipsis in a syntax statement indicates
that a previous element may be repeated. In
addition, vertical and horizontal ellipses are
used in examples to indicate that portions of
the example have been omitted.

<] This is a command argument that appears fre-
quently in the manual. We mention it here so
you will not confuse the letter "1" with the
number "1."

Documentation Overview 1—35

Reference Manual Guide

For more information on the following subjects, refer to the publications

listed in the right column.
For information on:

HP-UX Operating
System (HP 9000)

ARPA/Berkeley Manual
Reference Pages

C Programming
Language

Networking

NS Part of the NS-
ARPA Services/300
Product

NS-ARPA Services/300
Installation, Configura-
tion, Maintenance, and
Troubleshooting

1—6 Documentation Overview

Read:

Introducing UNIX System V
HP-UX Concepts and Tutorials
Beginner’s Guide series for HP-UX
HP-UX Reference manuals

ARPA/Berkeley Services Reference Pages

The C Programming Language, Brian W.
Kernighan, Dennis M. Ritchie; Prentice-Hall,
Inc.

C Programming Guide, Jack Purdum, Que
Corporation, Indianapolis

Computer Networks, Andrew S. Tanenbaum,;
Prentice-Hall, Inc.

Networking Overview: NS-ARPA and NFS
Services and X.25

Using Network Services

Installing and Maintaining NS-ARPA Services

Services Overview

Introduction

The ARPA Services part of the NS-ARPA Services/300 product enables
your HP 9000 Series 300 to transfer files, log into remote hosts, execute
commands remotely, and send mail to and receive mail from remote
hosts that are either on your network or accessible by your network.

The ARPA Services part of the NS-ARPA Services/300 product is a sub-
set of networking services originally developed by the University of
California at Berkeley (UCB) for the Advanced Research Projects Agen-
¢y (ARPA) and UCB. The services originally developed for ARPA are
called "ARPA Services." The services originally developed for UCB are
called "Berkeley Services."

UCB developed the services based on the Berkeley Software Distribution
of UNIX/, version 4.2 (4.2 BSD).

4.2 BSD programming development tools for interprocess communication
are also provided with the ARPA Services part of the NS-ARPA Ser-
vices/300 product.

This chapter briefly explains the ARPA/Berkeley Services. To guide you
to the service you need for a desired task, the services are listed by
functionality. For tutorial information about individual services, read this
manual. For specific details about individual services, read the reference
page for the service.

(1) UNIX is a U.S. registered trademark of AT&T in the U.S.A. and other countries.

Services Overview 2-—1

This chapter also lists and describes:

e the sources from which you can obtain additional information about
your local host or network; and

e the 4.2 BSD-based ARPA Services/300 Interprocess Communication
package.

Getting Started

Before you begin, make sure that:

¢ your node manager has installed the NS-ARPA Services/300 product on
your local host and has brought up the network;

¢ you have asked your node manager for all the login names you may be
associated with;

® you have asked your node manager what other hosts or nodes your
Series 300 can communicate with.

Note

The computer you are working on is referred to as your
local host, and all other computers (hosts) on the net-
work are remote in relation to your local host.

2—2 Getting Started

The ARPA/Berkeley Services

HP’s implementation of the ARPA/Berkeley Services is actually a com-
bination of services originating from the Advanced Research Projects
Agency (ARPA) and from the University of California at Berkeley
(UCB).

The services originating from the ARPA environment are used to com-
municate in HP-UX, UNIX and non-UNIX environments.

Services originating from UCB are used for HP-UX or UNIX operations
only.

The services from each environment are shown in the figure below.

ARPA/Berkeley Services

ARPA Services Berkeley Services
File Transfer Protocol (fip) Remote copy (rcp)
Telnet (telnet) Remote login (rlogin)
Simple Mail Transfer Protocol Remote execution (rexec)

(SMTP)
Remote shell (remsh)
Remote uptime (ruptime)
Remote who (rwho)

Internetwork Mail Routing
(sendmail)

Interprocess Communication
(“IPC” or “Berkeley sockets™)

Services Overview

2-3

Services Listed by Function

The number in parentheses next to the service name, e.g., rlogin(1), cor-
responds to the section in the ARPA/Berkeley Services Reference Pages
that documents the service.

Sending Mail to a Remote Host

sendmail(IM) originates from UCB and, when installed, works with
your network’s mailers to perform internetwork mail
routing among HP-UX, UNIX and non-UNIX hosts
on the network. When used in the command line,
sendmail does not provide a friendly user interface.
Sendmail supports mail aliasing and forwarding and
uses ARPA’s standard Simple Mail Transfer
Protocol (SMTP).

Listing Information about a Remote Host

ruptime(1) is a Berkeley Service. It is used to list information
about HP-UX or UNIX hosts on the network that
are running the rwho daemon, rwhod. The informa-
tion that ruptime displays includes host names,
whether the hosts are up or down, the number of ac-
tive users on the remote host and three numeric
fields containing the 1-, 5- and 15-minute load
averages for the number of processes in the remote
host’s run queue.

2—4 Services Listed by Function

rwho(1) is a Berkeley Service. It is used to list information
about HP-UX or UNIX hosts on the network that
are running the rwho daemon, rwhod. The informa-
tion that rwho displays includes the user names of
those who are actively logged into remote or local
hosts on the network, the remote or local hosts’
names, the users’ terminal lines, the users’ login
times, and the amount of time each user has been
idle.

Logging into a Remote Host

Rlogin and telnet allow you to log into a remote host on the network if
you have an account on the remote host.

telnet(1) originates from the ARPA environment and is used
to log into a remote, HP-UX, UNIX or non-UNIX
host. You must use felnet if the remote host is a non-
UNIX host (i.e., VAX/VMS) and you must supply a
login name and password to log into the remote
host.

rlogin(1) originates from UCB and is used to log in from a
local HP-UX or UNIX host to a remote HP-UX or
UNIX host without being prompted for a login
name and password.

Services Overview 2-—35

Transferring Files to or from a Remote Host

ftr(1) originates from the ARPA environment and
allows you to transfer files among HP-UX, UNIX
and non-UNIX hosts on the network. For example,
if you want to transfer a UNIX file to a remote host
using an MS-DOS format, you would use ftp. Ftp is
the file transfer program which uses the ARPA
standard File Transfer Protocol (FTP).

rep(1) originates from UCB and allows you to transfer files
between only HP-UX or UNIX hosts on the network.

Executing Commands on a Remote Host

remsh(1) originates from UCB and allows you to
execute commands on a remote HP-UX or UNIX
host on the network. Remsh is the same command as
rsh from the Berkeley Software Distribution of
UNIX, version 4.2 (4.2 BSD). No login names or
passwords are used although your account permis-
sions are verified on the remote host before you can
remotely execute a command.

rexec(3X) originates from UCB and is a library routine used to
execute commands on a remote HP-UX or UNIX
host on the network. A customized program must be
written to use rexec. The advantage of using rexec is
that it can be used in programs and passwords can
be specified.

2—6 Services Listed by Function

Obtaining General Information

This section describes the sources from which you can obtain additional
information.

hosts(4) The /Jetc/hosts file contains host names and internet
addresses of remote hosts. You may not be limited
to communicating only with those hosts listed in
Jetc/hosts. Check with your node manager to verify
which hosts are available for communication with
your local host.

hosts.equiv(4) The /etc/hosts.equiv file lists remote hosts on the net-
work that are "equivalent” to your local host.

intro(3N) The intro HP-UX reference page lists and briefly
describes the Internet network library functions.

netrc(4) The netrc(4) reference page describes the .netrc file
used by rexec and fip to determine login names and
passwords to remote hosts.

networks(4) The /etc/networks file lists the official network name,
number and aliases for networks that your local host
recognizes.

Services Overview 2-—-7

SHOME|.rhosts The $HOME].rhosts file may be created by each user
on the local host to specify remote user names that
are equivalent to the local user. The local host then
permits equivalent remote users to access the local
user’s account without requiring a password.
SHOME|.rhosts is described on the hosts.equiv(4)
reference page.

protocols(4) The /etc/protocols file contains the official protocol
names, protocol numbers and protocol aliases recog-
nized by your local host.

services(4) The /Jetc/services file contains the official service
names, port numbers, protocol names used by the
service and service name aliases that correspond to
the service.

Interprocess Communication

The NS-ARPA Services/300 product provides programmers with an Inter-
process Communication (IPC) package that allows processes to communi-
cate with other local and remote processes through system calls. HP’s IPC
implementation is based on the IPC in 4.2 BSD.

Two transport protocols are available:

e Transmission Control Protocol (TCP), which is the transport protocol
for stream sockets, and

e User Datagram Protocol (UDP), which is the transport protocol for
datagram sockets.

For details on IPC, refer to the "Interprocess Communication” chapter in
this manual.

2—8 Interprocess Communication

Sending Mail

Introduction

Sendmail(IM), the internetwork mailing facility supplied with the
ARPA/Berkeley Services, acts as a central post office that determines the
internetwork routing needed for mail delivery to local or remote users. It
routes messages to local users, files and programs. Sendmail also enables
your local host to send mail to and receive mail from other hosts on a
local area network or through a gateway. In addition, message aliasing
and forwarding can also be specified.

Because sendmail is typically used in environments where internetwork
communications are frequent or heavy, your node manager may have in-
stalled sendmail on your system. Ask your node manager if sendmail has
been installed on your system before you continue reading this section.

Note

For details about sendmail and message aliasing and for-
warding, refer to the Installing and Maintaining NS-
ARPA Services manual.

SendingMail 3-1

Using Sendmail

Executing Sendmail
You can execute sendmail in two ways:

e Whenever a standard mailer is accessed, sendmail is automatically
invoked. Standard HP-UX mailing programs are mail and mailx.

® You can use the sendmail command with arguments on the command
line. Because this method does not provide a friendly user interface, it is
typically used only in programs.

Mailing to Files

If you want to send a message to a local file, you must specify the
filename as an absolute path (i.e., you must begin the filename with a
slash "/").

If the file does not exist, you must own and have search (execute) permis-
sion in the directory in which the file is to be created.

If the file already exists, is not executable and is writable by all users, the
message will be appended to the file.

Note

Sendmail does not write to executable files.

3—2 Using Sendmail

Sendmail Operations Overview

Sendmail performs its task in two phases: it collects messages and then
routes them. While collecting and routing messages, message-address
interpretation is controlled by a production system that manages both net-
work-style addressing (e.g., user@host) and UUCP-style addressing (e.g.,
host!user). This production system is defined by the contents of the
sendmail configuration file.

Collecting Messages

If sendmail is invoked via a standard mail program or by using the
sendmail command on the command line, it collects the message from
stdin and the argument list.

Routing the Messages

Once sendmail collects the message, it routes the information. To route
the message, sendmail:

e rewrites the mail addresses of the recipients to conform to the standards
of the target network;

e if necessary, adds lines to the message header so that the information is
available for a recipient to use in a reply; and

® passes the mail to one of several specialized delivery agents for delivery.

Sendmail is also executed by the program that receives mail from the net-
work. When incoming mail arrives, a receiving program passes the mail to
sendmail for routing in the same way that a mailer invokes sendmail.

SendingMail 3-3

The figure below outlines the flow of messages through sendmail.

R User
local - P — E—
Host | mailx Sobomai
Configuration '.
Ele iR Sendmail
SMTP
Delivery UUCP Local
Program Mailer
e [
Local Area Telephone Local
Network Lines Mail Boxes
SMTP Server UucP Rﬁlmotte
(o B ok
Configuration| | R
Fle [Yoman
S
SMTP i
Delivery UUCP Local
Program Mailer
Local Area Telephone Local
Network Lines Mail Boxes
l o

Flow of Mail Through Sendmail

3—4 Sendmail Operations Overview

Direct Access

_ Standard Mailers

Sendmail
Routing Mail

Delivery Programs

Communications
Media

Receiving Programs

Sendmail Receiving
and Continuing to
Route Mail

Delivery Programs

Communications
Media

Routing to Remote Hosts

If a recipient’s host is on the LAN, sendmail uses the SMTP delivery
module to send the message to the remote host on the network.

If the recipient has a UUCP address, sendmail calls the uux program to
deliver the message on the remote system.

Routing to Local Destinations

If the recipient is a local user, sendmail calls the local mailer to deposit
the message in the recipient’s mailbox. The HP-UX local mailer is rmail.

If the recipient is a local file, sendmail writes the message to the file. This
is the only case in which sendmail directly delivers a message to a destina-
tion.

Routing Error Messages

During mail transfer processes, sendmail creates a transcript of each mail
transaction to send to the originator if the message is permanently un-
deliverable. This transcript contains any error messages that occur during
the attempted mail delivery.

If an error status indicates that the delivery failed but might be successful
if re-tried, sendmail stores the message on a queue for later delivery.
Sendmail attempts to send the message again when it next processes the
queue.

SendingMail 3-—5

More Mail System Information

If sendmail is installed, the commands listed below or the corresponding
HP-UX reference pages provide additional information about the
sendmail program or your mail system.

mailq is described on the sendmail(IM) reference page and
prints a list of mail messages that are in the mail
queue.

mailstats(1) prints the mail traffic statistics.

praliases(1) displays any aliases that your system recognizes.

uupath(1) expands UUCP-style and network-style addresses.

3—6 Sendmail Operations Overview

Listing Hosts with Ruptime

Ruptime is a Berkeley Service that lists information about HP-UX or

UNIX hosts on the network. The status information that ruptime displays
includes:

® network host names,
e whether each network host is up or down,
® the number of active users on each network host, and

e the average number of jobs in each network host’s run queue over the
last one, five, and fifteen minutes.

This information is useful in determining:
® which network hosts you can perform work on,
e which network hosts are most heavily or least heavily loaded, and

® how responsive each network host is likely to be over the network.

Listing Hosts with Ruptime 4-—1

Using Ruptime

For each network host, ruptime displays a status line with the following
format:

amount of time

host has been average number of
host name up or down jobs In run queue

over last ...
Y e S g Wi

host state days+ hours : minutes, nusers, load nnn, nnn, h.nn

+ + — Y~ ——
3] 10 15
; number of users :
whuepthoe;r Jlg\zrt] is logged in minutes

Ruptime Status Line

Note

Ruptime does not count users who have not used the sys-
tem for an hour or more. You can have ruptime count
these idle users by invoking the command with the -a

option as shown in the "Displaying Ruptime Status
Lines" section.

4—2 Using Ruptime

Ruptime can display status lines (with or without idle users) sorted by:
¢ host name in alphabetical order,

e host name in reverse alphabetical order,

® decreasing uptime,

® increasing uptime,

e decreasing number of users,

e increasing number of users,

® decreasing load average, and

e increasing load average.

The following sections tell how to display ruptime status lines sorted in
the ways described above.

Listing Hosts with Ruptime 4—3

Displaying Ruptime Status Lines

Sorted by Host Name in Alphabetical Order

Excluding Idle Users

At your HP-UX prompt, enter:
ruptime

Result:

Ruptime displays a list similar to the following:

hpabca down 14+08:34
hpabcb down 1:13
hpabcc up 1+17:40, 4 users, Jload 0.18, 0.13, 0.09
hpabcd up 14+06:49, 3 users, Jload 0.10, 0.38, 0.49

Including Idle Users

At your HP-UX prompt, enter:
ruptime -a

Result:

Ruptime displays a list similar to the following:

hpabca down 14+08:34
hpabcb down 1:13
hpabcc up 1+17:40, 6 users, Tload 0.18, 0.13, 0.09
hpabcd up 14+06:49, 3 users, load 0.10, 0.38, 0.49

4—4 Displaying Ruptime Status Lines

Sorted by Host Name in Reverse Alphabetical Order

Excluding Idle Users

At your HP-UX prompt, enter:

ruptime -r

Result:

Ruptime displays a list similar to the following:

hpabed
hpabcc
hpabchb

hpabca

up 14+06:49, 3 users, load 0.10, 0.38, 0.49
up 1+17:40, 4 users, load 0.18, 0.13, 0.09
down 1213

down 14+08:34

Including Idle Users

At your HP-UX prompt, enter:

ruptime -a -r

Result:

Ruptime displays a list similar to the following:

hpabed
hpabcc
hpabch

hpabca

up 14+06:49, 3 users, Jload 0.10, 0.38, 0.49
up 1+17:40, 6 users, load 0.18, 0.13, 0.09
down 1513

down 14+08:34

Listing Hosts with Ruptime 4-—5

Sorted by Decreasing Uptime

Excluding Idle Users

At your HP-UX prompt, enter:
ruptime -t

Result:

Ruptime displays a list similar to the following:

hpabcd up 14+06:49, 3 users, load 0.10, 0.38, 0.49
hpabce up 1+17:40, 4 users, load 0.18, 0.13, 0.09
hpabcb down 1:13
hpabca down 14+08:34

Including Idle Users

At your HP-UX prompt, enter:
ruptime -a -t

Result:

Ruptime displays a list similar to the following:

hpabcd up 14+06:49, 3 users, load 0.10, 0.38, 0.49
hpabcc up 1+17:40, 6 users, load 0.18, 0.13, 0.09
hpabch down 1:13
hpabca down 14+08:34

4—6 Displaying Ruptime Status Lines

Sorted by Increasing Uptime

Excluding Idle Users

At your HP-UX prompt, enter:

ruptime -r -t

Result:

Ruptime displays a list similar to the following:

hpabca down 14408:34
hpabch down 1:13
hpabce up 1+17:40,
hpabcd up 14+06:49,

Including Idle Users

4 users, Jload 0.18, 0.13, 0.09

3 users, load 0.10, 0.38, 0.49

At your HP-UX prompt, enter:

ruptime -a -r -t

Result:

Ruptime displays a list similar to the following:

hpabca down 14+08:34
hpabch down 1213
hpabcc up 1+17:40,
hpabcd up 14+06:49,

6 users, load 0.18, 0.13, 0.08

3 users, load 0.10, 0.38, 0.49

Listing Hosts with Ruptime 4-—7

Sorted by Decreasing Number of Users

Excluding Idie Users

At your HP-UX prompt, enter:
ruptime -u

Result:

Ruptime displays a list similar to the following:

hpabcc up 1+17:40, 4 users, load 0.18, 0.13, 0.09
hpabcd up 14+06:49, 3 users, load 0.10, 0.38, 0.49
hpabcb down 1:13
hpabca down 14+08:34

Including Idle Users

At your HP-UX prompt, enter:
ruptime -a -u

Result:

Ruptime displays a list similar to the following:

hpabce up 1+17:40, 6 users, load 0.18, 0.13, 0.09
hpabcd up 14+06:49, 3 users, load 0.10, 0.38, 0.49
hpabcb down e
hpabca down 14+08:34

4—8 Displaying Ruptime Status Lines

Sorted by Increasing Number of Users

Excluding Idle Users
At your HP-UX prompt, enter:

ruptime -r -u
Result:

Ruptime displays a list similar to the following:

hpabca down 14+08:34
hpabcb down 1:13
hpabcd up 14+06:49, 3 users, load 0.10, 0.38, 0.49
hpabcc up 1+17:40, 4 users, load 0.18, 0.13, 0.08

Including Idle Users

At your HP-UX prompt, enter:

ruptime -a -r -u
Result:

Ruptime displays a list similar to the following:

hpabca down 14+08:34
hpabcb down 1:13
hpabcd up 14+06:49, 3 users, load 0.10, 0.38, 0.49
hpabce up 1+17:40, 6 users, load 0.18, 0.13, 0.09

Listing Hosts with Ruptime 4-9

Sorted by Decreasing Load Average

Excluding Idle Users

At your HP-UX prompt, enter:
ruptime -1

Result:

Ruptime displays a list similar to the following:

hpabcc up 1+17:40, 4 users, load 0.18, 0.13, 0.09
hpabcd up 14+06:49, 3 users, load 0.10, 0.38, 0.49
hpabcb down 1:13
hpabca down 14+08:34

Including Idle Users

At your HP-UX prompt, enter:
ruptime -a -1

Result:

Ruptime displays a list similar to the following:

hpabcce up 1+17:40, 6 users, load 0.18, 0.13, 0.09
hpabcd up 14+06:49, 3 users, load 0.10, 0.38, 0.49
hpabcb down 1:13
hpabca down 14+08:34

4—10 Displaying Ruptime Status Lines

Sorted by Increasing Load Average

Excluding Idle Users

At your HP-UX prompt, enter:
ruptime -r -1

Result:

Ruptime displays a list similar to the following:

hpabca down 14+08:34
hpabcb down 1:13
hpabcd up 14+06:49, 3 users, load 0.10, 0.38, 0.49
hpabcc up 1+17:40, 4 users, load 0.18, 0.13, 0.09

Including Idle Users

At your HP-UX prompt, enter:

ruptime —-a -r -1
Result:

Ruptime displays a list similar to the following:

hpabca down 14+08:34
hpabcb down 1:13
hpabed up 14+06:49, 3 users, Jload 0.10, 0.38, 0.49
hpabcc up 1+17:40, 6 users, load 0.18, 0.13, 0.09

Listing Hosts with Ruptime 4—11

4—12 Displaying Ruptime Status Lines

S
Listing Users with Rwho

Rwho is a Berkeley Service that lists information about HP-UX or UNIX
hosts on the network. The information that rwho displays includes:

e the login name of each user who is logged into a host on the network,
e the name of the host each user is logged into,

® cach user’s terminal line,

e the date and time each user logged in, and

¢ the amount of time (if any) each user has been idle (has not used the
system for one minute or more).

This information is useful in determining:
¢ who is logged into the hosts on the network and

® who is likely to be at their terminal or workstation.

Listing Users with Rwho 5-—1

Using Rwho

For each user logged into a network host, rwho displays an information
line with the following format:

! user's time user logged in,
ljl%%EnS terminal in 24-hour clock
name line notation

v v A

user hastiine date hours.minutes hours:minutes

b i

amount of time

date
name of user has been

host user user idle
is logged logged 5
into n

Rwho Status Line

Rwho reports information in the following way:

If Then rwho
a user has not used the system for ~ reports the amount of idle time for
one to fifty-nine minutes, that user.
a user has not used the system for omits the user from its list, unless
one hour or more, you invoke rwho with the —a option.
a host has not broadcast an rwho assumes that the host is down and

status report to the network lately, does not list any users on that host.

Note

Rwho’s list of users can become excessively long when
the number of users on network hosts becomes large.

5—2 Using Rwho

With rwho, you can list either:

e users on network hosts who are active or who have been idle for less
than one hour or

e all users logged into network hosts, regardless of the amount of time any
of them have been idle.

Listing Active and Likely Active Users of Network Hosts

At your HP-UX prompt, enter:
rwho

Result:

Rwho displays a list similar to the following:
acb hpabcd:ttyp3 Jun 2 08:32 :19
bjt hpabcf:tty3p3 Jun 2 09:35 <+ Active User
chas hpabcd:tty3p3 Jun 2 07:47 :27
cjc hpabcd:ttylp2 Jun 2 07:55 ~—— Active User

dae hpabcf:ttyp2 Jun 2 08:28 :57

Listing Users with Rwho 5-3

Listing All Users of Network Hosts

At your HP-UX prompt, enter:

rwho -a

Result:

Rwho displays a list similar to the following:

08:

ach
bjt
chas
cjc
dae
gen
kgJ

sch

5—4 Using Rwho

hpabcd:ttyp3
hpabcf:tty3p3
hpabcd:tty3p3
hpabcd:ttylp2
hpabcf:ttyp2
hpabcd:ttyp4
hpabcd:ttyp0

hpabce:tty3pl

Jun
Jun
Jun
Jun
Jun
Jun
Jun

Jun

2

2

09:
07:
07:
08:
08:
08:

12:

32
35
47
55
28
45
09

12

:19
127
157
5:59
10

3:24

Active User

Active User

6
Logging into a Host with Telnet

Telnet is an ARPA Service that you use to log into a remote HP-UX,
UNIX, or non-UNIX host. Telnet is the virtual terminal program that
uses the ARPA standard TELNET protocol.

Using Telnet

To use telnet you:

e invoke telnet,

e change the telnet escape character if necessary,
e connect to a remote host, and then

e log into that host.

After that, you can use telnet to do work on the remote host as if your ter-
minal or workstation were physically connected to that host.

Logging into a Host with Telnet 6—1

1. Invoke Telnet
At your HP-UX prompt, enter:

telnet
Result:
Telnet displays its prompt:

telnet>

Telnet’s Two States

Telnet has two states: input state and command state. The telnet>

prompt means that telnet is in its command state. Telnet’s command state
allows you to execute individual telnet commands to get help, get status in-
formation, change characteristics of your felnet session or exit from telnet.

Connecting to and logging into a remote host puts telnet into its input
state. Everything you type, with the exception of the telnet escape charac-
ter, goes to the remote host. When telnet is in its input state, you can do
work on the remote host as if it were your local host.

When felnet is in its input state, entering the felnet escape character puts
telnet back into its command state. After you execute a telnet command,
telnet returns to its input state.

6 —2 Using Telnet

2. Change the Telnet Escape Character If Necessary

When you connect to a remote host, telnet presets its escape character to
CTRL-] (sometimes shown as ™]). You need to set the telnet escape
character to something else if:

e the character CTRL-] performs a particular function for a program
within which you are running telnet,

e that character CTRL-] performs a particular function for a program you
plan to run from within telnet, or

® you want to be able to return to an intermediate remote host when you

nest a series of telnet commands over a chain of remote hosts. This last
case is illustrated below:

host B

Ll

telnet to B

>
A ==

telnet to C

CTRL-] returns you to
telnet on host A,
rather than to
telnet on host B

Nested Telnet Commands

Logging into a Host with Telnet 6—3

If you want to return to felnet on host B, you must change the escape
character for telnet on host B when you invoke telnet to connect to host C:

A invoke telnet, change telnet

escape character on host B

to CTRL-X and connect to
host C ——»

A

CTRL-] returns you
1o telnet on host A

CTRL=-X returns you
to telnet on host B

|

Nested Telnet Commands with Different Escape Characters

You can change the telnet escape character with telnet’s escape command.

Caution: What Not to Change the Telnet Escape Character To

Do not change the telnet escape character to:

® a character with a particular function in a program you may run from
within telnet or

® a character that may conflict with your terminal configuration. HP-UX

associates certain characters with specific functions. These characters
are listed in the following table.

6—4 Using Telnet

Function

Predefined Character in HP-UX

You can change these characters, so they may be different in your
terminal configuration:

End of File
Interrupt

Quit

Erase

Kill

End of Line

Shell Layers Switch

CTRL-D (EOT)

CTRL-C (DEL or Rubout)
CTRL-\ (FS)

CTRL-H (#)

CTRL-U (@)

CTRL-@ (NUL)

CTRL-Z

L You can not change these characters in your terminal configuration:

New Line/Line Feed

Stop or XOFF (Transmit Off)
Start or XON (Transmit On)
Enquire

Acknowledge

CTRL-J (LF)

CTRL-S (DC3)
CTRL-Q (DC1)
CTRL-E (ENQ)
CTRL-F (ACK)

To find out what characters are used in your terminal configuration, at

your HP-UX prompt, enter:
stty -a

Logging into a Host with Telnet 6—35

Changing the Telnet Escape Character

At the telnet > prompt, enter:
escape new_telnet_escape_character

where new_telnet_escape_character is the character you want to
change the telnet escape character to.

Note

If new_telnet_escape_character is a control character, you
must enter it as ~ character where ™ represents CTRL.
(For example, you would enter CTRL-X as ™ X.)

Example Entry:
escape *[
Result:

Telnet changes its escape character to the character you specify and
displays:

Escape character is ‘new telnet_escape_character’.

If you are not connected to a remote host, telnet then redisplays its
telnet> prompt.

If you are connected to a remote host, felnet returns you to the remote
host.

6—6 Using Telnet

Note

When connected to a remote host, press Return to
redisplay the remote host’s prompt.

3. Connect to a Remote Host

At the telnet > prompt, enter:
open remote_host

where remote_host is the name or alias of a host listed in /etc/hosts.

Note

The file /etc/hosts contains entries for hosts with which
you can communicate using ARPA/Berkeley Services.
For each host, the file has a line containing the host’s:

internet_address official_name alias ...

The ellipsis (...) means that a host may have multiple
aliases. The /Jetc/hosts file may contain comments and
other information as well.

To connect to a host not listed in /etc/hosts, you can give
the host’s internet address where remote_host appears
above. The internet address must be in dot notation (for
example, 192.6.21.9).

Example Entry:

open hpabsa

Logging into a Host with Telnet 6—7

Result:

Telnet connects you to the remote host and prompts for a remote login
name, displaying:

Trying...

Connected to remote host.

Escape character is "*]’.

remote host identification message

remote host login prompt

4. Log into the Remote Host

Note

You must be able to supply telnet with a valid login name
and password (if required) on the remote host.

Log into the remote host by supplying a valid remote login name and
password, if required. The login name and password you supply may be
yours or someone else’s.

Result:

If the login name and password you supplied are valid on the remote
host, the remote host logs you in and displays its login message and its
prompt.

6 —8 Using Telnet

Giving Telnet Commands When Telnet Is in
Its Input State

To give a command to telnet from its input state, you need to enter the tel-
net escape character. This character tells telnet that what follows is a telnet
command, not information you are sending to the remote host.

The preset telnet escape character is CTRL-] (sometimes shown as ™]).
(You may have changed this to something else, as explained earlier in
this chapter.)

When you enter the telnet escape character, telnet responds with its
telnet> prompt. The telnet> prompt lets you know that telnet is ready
to accept a command. (7elnet is in its command state.)

You can execute only one telnet command at a time; telnet returns to its
input state after each command completes.

The remaining sections of this chapter discuss what felnet commands are
available in addition to escape and open.

Logging into a Host with Telnet 6-—9

Checking the Behavior of Carriage Returns
from a Remote Host

When some remote hosts send a carriage return to your local host, your
local host may need to change the carriage return into a carriage return-
line feed combination. Telnet’s crmod command allows you to enable or
disable this behavior.

The following behavior indicates that telnet’s carriage return mode setting
is wrong for the type of remote host you are communicating with:

e If pressing Return produces double-spaced lines (indicating an extra
line feed), you need to disable carriage return mode.

e If pressing Return moves the cursor to the beginning of the same line so
that the same line keeps getting overwritten (indicating no line feed),
you need to enable carriage return mode.

Changing the Carriage Return Mode Setting

1. If you are not already at the telnet > prompt, enter the telnet escape
character.

Result:
Telnet displays its prompt:
telnet>
2. At the telnet > prompt, enter:

crmod

6—10 Checking the Behavior of Carriage Returns from a Remote Host

Result:

If carriage return mode was on, telnet turns it off and displays:
Wont map carriage return on output.

If carriage return mode was off, telnet turns it on and displays:
Will map carriage return on output.

If you are connected to a remote host, felnet returns you to the remote
host.

Note
To redisplay the remote host’s prompt, press Return.

If you are not connected to a remote host, telnet redisplays its telnet>
prompt.

Disconnecting from a Remote Host and/or
Exiting Telnet

You can disconnect from a remote host but remain in telnet if you con-
nected to the remote host with telnet’s open command. This is useful if
you want to connect to other remote hosts during the same telnet session.

If you want to exit from felnet and return to HP-UX on your local host,
there are two ways to do so, depending on which state (input or com-
mand) telnet is in. Exiting from telnet disconnects from a remote host if a
connection exists.

Logging into a Host with Telnet 6—11

Disconnecting from a Remote Host and Remaining in Telnet

Note

This is possible only if you connected to the remote host
with telnet’s open command.

1. If you are not at the telnet > prompt, enter the telnet escape character.
Result:
Telnet displays its prompt:
telnet>
2. At the telnet > prompt, enter:
close
Result:

If you connected to the remote host with telnet’s open command, telnet
disconnects from the remote host and returns the telnet> prompt,
displaying:

Connection closed.
telnet>

If you connected to the remote host when you invoked telnet (as
explained later in this chapter), telnet disconnects from the remote host
and returns you to HP-UX on your local host. (You exit from telnet.)
Telnet displays:

Connection closed.

6—12 Disconnecting from a Remote Host and/or Exiting Telnet

local_HP-UX_prompt

If no connection exists to a remote host, the close command has no
effect. Telnet just redisplays its prompt:

telnet>

Exiting from Telnet When Telnet Is in Its Input State

Log out of the remote host as you normally would (such as with
CTRL-D).

Result:

Telnet disconnects from the remote host and returns you to HP-UX on
your local host, displaying:

Connection closed by foreign host.

local_HP-UX_prompt

Exiting from Telnet When Telnet Is in Its Command State

At the telnet > prompt, enter:
quit
Result:

Telnet disconnects from the remote host and returns you to HP-UX on
your local host, displaying:

Connection closed.

local_HP-UX_prompt

Logging into a Host with Telnet 6—13

Obtaining Help

You can obtain summary information about telnet commands with telnet’s
? command. You can either list the te/net commands or get information
about a specific telnet command.

Listing the Telnet Commands

1. If you are not at the telnet > prompt, enter the telnet escape character.
Result:
Telnet displays its prompt:
telnet>

2. At the telnet > prompt, enter:

?

6—14 Obtaining Help

Result:
Telnet lists its commands, displaying:

Commands may be abbreviated. Commands are:

open connect to a site
close close current connection
quit exit telnet
escape set escape character
status print status information
options toggle viewing of options processing
crmod toggle mapping of received carriage returns
debug toggle debugging
! shell escape
? print help information
telnet>
Note

If you were connected to a remote host and want to
redisplay its prompt, press Return twice.

Logging into a Host with Telnet 6—15

Getting Information about a Specific Telnet Command

1. If you are not already at the telnet > prompt, enter the felnet escape
character.

Result:

Telnet displays its prompt:
telnet>

2. At the telnet > prompt, enter:

? telnet_command

Example Entry:
? open

Result:

Telnet displays:
brief description_of command

telnet>

Note

If you were connected to a remote host and want to
redisplay its prompt, press Return twice.

6—16 Obtaining Help

Temporarily Returning to HP-UX on Your
Local Host

From within felnet, you can temporarily invoke a local HP-UX shell. This
is a new shell, descended from the one started when you logged into your
local host. This allows you to work on your local host and then return to
telnet.

You can either:

e execute a single HP-UX command on your local host and automatically
return to telnet or

e work on your local host for as long as you need to before you return to
telnet.

Executing a Single HP-UX Command on Your Local Host

1. If you are not already at the telnet > prompt, enter the telnet escape
character.

Result:
Telnet displays its prompt:
telnet>
2. At the telnet > prompt, enter:
! HP-UX command

where HP-UX_command is an HP-UX command line.

Logging into a Host with Telnet 6—17

Example Entries:
! pwd
! hostname
Result:

A local HP-UX shell executes the command and returns you to the
remote host, displaying:

[Returning to remote]

Note
To redisplay the remote host’s prompt, press Return.

Working for an Extended Time on Your Local Host

1. If you are not already at the telnet > prompt, enter the telnet escape
character.

Result:
Telnet displays its prompt:
telnet>

2. At the telnet > prompt, enter:

6—18 Temporarily Returning to HP-UX on Your Local Host

Result:

Telnet gives you a local HP-UX shell to work in, displaying:
local HP-UX prompt

. Enter HP-UX commands.

Result:

The local shell executes each command you enter and then redisplays
the local HP-UX prompt.

. Exit the local HP-UX shell as you normally would (such as with
CTRL-D).

Result:
The local shell returns you to the remote host, displaying:

[Returning to remote]

Note

To redisplay the remote host’s prompt, press Return.

Logging into a Host with Telnet 6—19

Obtaining Telnet Status

You can display:

e whether or not a connection to a remote host exists and the name of the
host to which a connection exists (if any),

e the current status of echo and mode (if a connection exists), and
e the current felnet escape character.

1. If you are not already at the telnet > prompt, enter the telnet escape
character.

Result:
Telnet displays its prompt:
telnet>
2. At the telnet > prompt, enter:
status

Result:

Telnet displays its status information. If you are connected to a remote
host, telnet returns you to the remote host.

Note
To redisplay the remote host’s prompt, press Return.

If you are not connected to a remote host, telnet redisplays its telnet>
prompt.

6—20 Obtaining Telnet Status

Changing Where User Input Is Echoed

You can choose whether user input is echoed locally or remotely. In local
echo, user input is echoed to the terminal by the local telnet before being
transmitted to the remote host. In remote echo, the remote host echoes
user input. By default, telnet starts a connection in local echo, and re-
quests that the TELNET server do remote echo. If the server refuses the
request, you will see an error message. You can check the status of echo
with the telnet status command.

Local echo produces less network traffic than remote echo, because the
server need not transmit user input back to the local system, and will
transmit only the output of the remote application. When communication
between the local and remote systems is slow, local echo will appear to
provide better system response. However, note that remote applications
that expect to handle echoing of user input themselves, such as csh(1),
ksh(1), and vi(1), will not work correctly with local echo.
1. If you are not at the telnet > prompt, enter the telnet escape character.
Result:
Telnet displays its prompt:
telnet>
2. At the telnet > prompt, enter:
echo Tocal
or
echo remote

Result:

Telnet now echoes input locally or remotely, depending on which you
specified.

Logging into a Host with Telnet 6—21

Changing User Input Mode

You can set telnet’s user input mode to character or line. In character
mode, felnet sends each character to the remote host as it is typed. In line
mode, telnet gathers user input into lines and transmits each line to the
remote host when the user types a carriage return, linefeed, or EOF. By
default, telnet uses character mode. Note that setting line mode also sets
local echo. You can check the status of mode with telnet’s status command.

In line mode, telnet transmits fewer packets over the network than it does
in character mode, as it sends a packet only when the user terminates a
line rather than sending each character in its own packet. This is par-
ticularly useful if you are connecting over some X.25 networks that
charge users on a per-packet basis. However, note that remote applica-
tions that expect to interpret user input character by character, such as
more(1), csh(1), ksh(1), and vi(1), will not work correctly in line mode.

1. If you are not already at the felnet > prompt, enter the telnet escape
character.

Result:

Telnet displays its prompt:
telnet>

2. At the telnet > prompt, enter:

mode character

or
mode 1ine

Result:

Telnet sets user input mode to character or line, depending on which you
specified.

6—22 Changing User Input Mode

Connecting to a Remote Host When You
Invoke Telnet

The telnet command you give from your local HP-UX prompt can take
the following form:

telnet remote host

Specifying a remote host’s name or alias (as listed in your local host’s
letc/hosts file) on the telnet command line causes telnet to connect to that
remote host without your having to use telnet’s open command.

If you connect to a remote host in this way, telnet’s close command exits
from telnet, instead of disconnecting from the remote host and remaining
in telnet. Therefore, you can not connect to other remote hosts during the
same telnet session. (You must reinvoke telnet to connect to another host.)

Logging into a Host with Telnet 6—23

6—24 Connecting to a Remote Host When You Invoke Telnet

7
Logging into a Host with Rlogin

Rlogin is a Berkeley Service that you use to log into a remote HP-UX or
UNIX host from your local host.

Before you use rlogin, you should:

e determine if you need to change the rlogin escape character and
e determine what size characters to send using rlogin.

You should determine these things ahead of time because:

e they can affect whether rlogin operates properly and communicates
properly with a remote host, and

e you can change the settings associated with these only when you invoke
rlogin.

Determining If You Need to Change the
Rlogin Escape Character

The rlogin escape character, when combined with other particular charac-
ters, allows you to exit rlogin and allows you to temporarily return to
HP-UX on your local host.

Logging into a Host with Rlogin 7 -1

Rlogin presets its escape character to a tilde (7). You need to set the
rlogin escape character to something else if:

e that character performs a function for a program you are running now on
your local host, and

® you plan to run rlogin from within that local program.

Otherwise when you enter the character, the program you are currently
running will respond to it, instead of rlogin.

Caution: What Not to Change the Rlogin Escape Character To

If you must change the rlogin escape character, do not change it to a
character that may conflict with your terminal configuration. HP-UX
associates certain characters with specific functions. These characters are
listed below:

Function Predefined Character in HP-UX

You can change these characters, so they may be different in your
terminal configuration:

End of File CTRL-D (EOT)

Interrupt CTRL-C (DEL or Rubout)
Quit CTRL-\ (FS)

Erase CTRL-H (#)

Kill CTRL-U (@)

End of Line CTRL-@ (NUL)

Shell Layers Switch CTRL-Z

7—2 Determining If You Need to Change the Rlogin Escape Character

Function Predefined Character in HP-UX

| You can not change these characters in your terminal configuration: |

New Line/Line Feed CTRL-J (LF)

Stop or XOFF (Transmit Off) CTRL-S (DC3)
Start or XON (Transmit On) CTRL-Q (DC1)
Enquire CTRL-E (ENQ)
Acknowledge CTRL-F (ACK)

To find out what characters are used in your terminal configuration, at
your HP-UX prompt, enter:

stty -a

Also, do not change the rlogin escape character to a period (.) or an ex-
clamation mark (!), because you combine these characters with the rlogin
escape character either to exit rlogin or to return temporarily to HP-UX
on your local host.

Note that it is inconvenient to change the rlogin escape character to one
that you may frequently enter at the beginning of lines for a program run-
ning on a remote host. (This is because you would need to enter the
character twice to allow the program to respond to the character, instead
of rlogin.)

You change the rlogin escape character by invoking rlogin with the —e op-
tion, as described after the next section of this chapter.

Logging into a Host with Rlogin 7-3

Determining What Size Characters to Send
with Rlogin

Before you run rlogin, you must determine what size characters to send
with rlogin. You must decide this ahead of time because:

e the character size can affect whether you can communicate properly with
a remote host you login into with rlogin, and

® you can change the character size only when you invoke rlogin.

Rlogin sends eight-bit characters to a remote host unless you tell rlogin to
send seven-bit characters instead.

In general, send seven-bit characters with rlogin if sending eight-bit

characters with rlogin (the preset behavior) causes problems communicat-
ing with a remote host.

When You Can Send Eight-Bit Characters

For communication between your local host and a remote host to work
properly with eight-bit characters, all of the following must be configured
for eight-bit characters:

e the remote host’s tty driver,
e the local host’s tty driver, and

® your local terminal hardware.

7—4 Determining What Size Characters to Send with Rlogin

The following instructions tell how to check if these are configured for
eight-bit characters.

1. Check whether the remote host is configured for, and can support,
eight-bit characters. If the remote host runs HP-UX, you can do this by
performing the same steps on the remote host as shown below for
checking this on your local host.

2. Check whether your local host is configured for eight-bit characters as
follows:

a. At your local HP-UX prompt, enter:
stty -a
Result:
The command displays all of your local host’s tty driver settings.
b. Check the output for the setting:
cs8
This means that the character size is set to eight bits.

c. If the character size is not set to eight bits, at your local HP-UX
prompt, enter:

stty cs8
Result:
This sets the character size for your local host’s tty driver to eight bits.

3. Check whether your local terminal hardware is configured for eight-bit
characters in its configuration menu or in its switch settings.

Logging into a Host with Rlogin 7-5

When You Must Send Seven-Bit Characters
You must tell rlogin to send seven-bit, instead of eight-bit, characters if:

® you can not configure your local terminal hardware to send eight-bit
characters or seven-bit characters with high bit 0 (null parity),

® you can not configure a remote host to receive eight-bit characters (if it
is not already configured to do so), or

e you might send eight-bit characters that a remote host interprets

differently than your local host would. This can cause unpredictable
results.

To send seven-bit characters with rlogin, you invoke rlogin with the -7 op-
tion, as explained in the next section of this chapter.

Using Rlogin

If you have an account on a remote host, then with rlogin, you can either:
®]og into the remote host automatically (without supplying your remote

login name and password) if the remote host is configured to allow this
or

e log into the remote host manually by supplying your remote login name
and password.

The following sections explain each of these options for logging into a
remote host with rlogin.

7—6 Using Rlogin

Automatic Login

Rlogin allows you to log into a remote host without supplying your
remote login name and password if the remote host is configured in
either of two ways:

Either:

® you must have an account on the remote host with the same login name
as your local login name, and

e the name of your local host must be in the remote host’s /etc/hosts.equiv
file,

or:
e you must have an account on the remote host, and

e the name of your local host and your local login name must be in a
.rhosts file in your home directory on the remote host.

The next section explains how to create a remote $HOME].rhosts file for
yourself, if you need to do so. Otherwise, skip the next section.

Logging into a Host with Rlogin 7-7

Creating a SHOME/.rhosts File on a Remote Host

If you have an account on a remote host, you can set up the account so
that you can log into the remote host without having to supply your
remote login name and password. To do this, you create a file named
.rhosts in your remote home directory. You can find out what your
remote home directory is by entering:

echo $HOME

on the remote host. You must place the name of your local host and your
local login name in the .rhosts file you create.

Caution

A SHOME].rhosts file creates a significant security risk.
Be sure to follow the directions below for "Protecting
Your .rhosts File."

The entry you place in your .rhosts file must have the following format:

your local host’s name your local login name
You can separate your_local_host’s_name and your local_login_name with
any number of tabs or spaces. Put any comments after
your_local_login_name.

Example SHOME/.rhosts File Entry

If your local host’s name were hpabsa and your local login name were
richard, on the remote host you would create a SHOME].rhosts file with
the following entry:

hpabsa richard

7—8 Using Rlogin

Protecting Your $HOME]/.rhosts File

It is important to protect your remote .rhosts file and home directory to
prevent unauthorized users from gaining rlogin access to your remote ac-
count and host. Only you should be able to create a .rhosts file in your
remote home directory and write entries to the file. To do so:

1. Insure that your remote .rhosts file is owned by you, the user.

2. Use the HP-UX or UNIX chmod command to protect your remote
.rhosts file with 0400 (-r--------) permission.

3. Use the HP-UX or UNIX chmod command to protect your remote
home directory so that no one else can read it or write to it. For
example, you should protect your remote home directory with at least
0711 (-rwx--x--x) permission.

Logging into a Host with Rlogin 7—9

Logging into the Remote Host Automatically

At your HP-UX prompt, enter:
rlogin remote_host [-e character] [-7]

where:

® remote_host is the name or alias of a host listed in /etc/hosts.

Note

The file /etc/hosts contains entries for hosts with which
you can communicate using ARPA/Berkeley Services.
For each host, the file has a line containing the host’s

internet_address official_name alias ...
The ellipsis (...) means that a host may have multiple

aliases. The /etc/hosts file may contain comments and
other information as well.

e the brackets ([]) mean that the enclosed option is optional. Omitting
the —e option sets the rlogin escape character to a tilde (™), and
omitting the -7 option sets the character size to eight bits.

® character is the character you want to change the rlogin escape
character to. If you want to enter a control character for the rlogin
escape character, hold down CTRL while pressing another character
key. (Control characters are not displayed.)

e -7 is an option that sets the character size to seven bits, with the
eighth bit set to zero.

7—10 Using Rlogin

Example Entries:
rlogin hpabsb
rlogin hpabsb -7
rlogin hpabsb -e=
rlogin hpabsb —e= -7
Result:
The remote host logs you in, displaying:
remote_host’s_login_message

remote_host_prompt

Note

Rlogin does not send Break to the remote host. There-
fore, you cannot Break out of a program on the remote

host when you are logged into the remote host with
rlogin.

If you are now logged into the remote host, skip to the section called "If
You Get Unexpected Results after Logging Into a Remote Host."

Logging into a Host with Rlogin 7—11

Manual Login

You must log into a remote host manually by supplying your remote login
name and password if the remote host is not configured to allow
automatic login.

Logging into the Remote Host Manually
1. At your HP-UX prompt, enter:

rlogin remote_host [-e character] [-7] -1 remote_login_name

where:

® remote_host is the name or alias of a host listed in /etc/hosts.

Note

The file /etc/hosts contains entries for hosts with which
you can communicate using ARPA/Berkeley Services.
For each host, the file has a line containing the host’s

internet_address official_name alias ...
The ellipsis (...) means that a host may have multiple

aliases. The /etc/hosts file may contain comments and
other information as well.

e the brackets ([]) mean that the enclosed option is optional. Omitting
the —e option sets the rlogin escape character to a tilde (™), and
omitting the -7 option sets the character size to eight bits.

® character is the character you want to change the rlogin escape
character to. If you want to enter a control character for the rlogin
escape character, hold down CTRL while pressing another character
key. (Control characters are not displayed.)

7—12 Using Rlogin

e -7 is an option that sets the character size to seven bits, with the
eighth bit set to zero.

® remote_login_name is your login name on the remote host.
Example Entries:
rlogin hpabsb -1 peter
rlogin hpabsb -7 -1 peter
rlogin hpabsb —-e= -1 peter
rlogin hpabsb —e=-7 -1 peter
Result:
The remote host prompts you for your remote password, displaying:
Password:
2. Enter your remote password.
Result:
The remote host logs you in, displaying:
remote_host’s_login_message

remote_host_prompt

Logging into a Host with Rlogin 7—13

Note

Rlogin does not send Break to the remote host. There-
fore, you cannot Break out of a program on the remote
host when you are logged into the remote host with
rlogin.

If You Get Unexpected Results after
Logging into a Remote Host

The values set in the remote host’s /etc/profile file (for sh users) or
Jetc/csh.login file (for csh users) may not match those you are accustomed
to on your local host. For example, the terminal type or erase character
on the remote host may be different from what you have set up on your
local host. Therefore, you may get unexpected results while working on
the remote host.

To set values on the remote host to match the values you are accustomed
to on the local host, create or edit your own SHOME]/.profile file (if you
use sh) or SHOME].login file (if you use csh) on the remote host. An easy
way to do this is to copy your local SHOME].profile file or SHOME].login
file to your home directory on the remote host.

The values in your own remote .profile file or .login file take precedence

over the values in the remote host’s default /etc/profile or fetc/csh.login
file.

7—14 If You Get Unexpected Results after Logging into a Remote Host

Logging Out of the Remote Host and Exiting
Rlogin

There are two ways to log out of the remote host and exit rlogin:

® Log out of the remote host as you normally would (such as with
CTRL-D).

Result:

Rlogin logs you out of the remote host, disconnects from the remote host
and returns you to HP-UX on your local host, displaying:

Connection closed.
local_HP-UX prompt

® At the beginning of a new line, enter:
rlogin_escape_character.

(That is, the rlogin escape character followed by a period.)

Note

Rlogin does not display its escape character until you
enter the period, or second character. Rlogin recognizes
its escape character only at the beginning of a new line.

Example Entry:

Logging into a Host with Rlogin 7—15

Result:

Rlogin logs you out of the remote host, disconnects from the remote host
and returns you to HP-UX on your local host, displaying:

Closed connection.

local_HP-UX _prompt

Temporarily Returning to HP-UX on Your
Local Host

From within rlogin, you can temporarily invoke a local HP-UX shell. This
is a new shell, descended from the one started when you logged into your
local host. This allows you to work on your local host and then return to
rlogin.

You can either:

® execute a single HP-UX command on your local host and automatically
return to rlogin or

® work on your local host for as long as you need to before you return to
rlogin.

Executing a Single HP-UX Command on Your Local Host

At the beginning of a new line, enter:

rlogin_escape_character! HP-UX _command

7—16 Temporarily Returning to HP-UX on Your Local Host

Note

Rlogin does not display its escape character until you
enter the exclamation mark, or second character. Rlogin
recognizes its escape character only at the beginning of a
new line.

Example Entries:
~! pwd
~! hostname

Result:

A local HP-UX shell executes the command and returns you to the
remote host, displaying:

[Returning to remote]

Note
To redisplay the remote host’s prompt, press Return.

Logging into a Host with Rlogin 7-17

Working for an Extended Time on Your Local Host

1. At the beginning of a new line, enter:

rlogin_escape_character!

Note

Rlogin does not display its escape character until you
enter the exclamation mark, or second character. Rlogin
recognizes its escape character only at the beginning of a
new line.

Example Entry:
~1
Result:
Rlogin gives you a local HP-UX shell to work in, displaying:
local_ HP-UX_prompt
2. Enter HP-UX commands.
Result:

The local shell executes each command you enter and then redisplays
the local HP-UX prompt.

7—18 Temporarily Returning to HP-UX on Your Local Host

3. Exit the local HP-UX shell as you normally would (such as with
CTRL-D).

Result:
The local shell returns you to the remote host, displaying:

[Returning to remote]

Note

To redisplay the remote host’s prompt, press Return.

Passing the Rlogin Escape Character to a
Remote Program

If you are running a program on the remote host, and you want to send
the program the same character as the rlogin escape character, you can al-
ways do this as long as you do not need to enter the character at the
beginning of a new line.

However, if you need to enter the character at the beginning of a new
line, you must enter the character twice because rlogin reads the first one
as its own escape character. If this is frequently necessary, you may want
to change the rlogin escape character.

For example, suppose that you have logged into a remote host with rlogin,
and you run the vi editor on the remote host from within rlogin. The cur-
rent rlogin escape character would be a tilde (™) if you did not change it.
Normally, if you wanted to capitalize a character at the beginning of a
new line with vi, you would position the cursor at that character and enter:

Logging into a Host with Rlogin 7—19

However, when you are running vi from within rlogin, your local rlogin in-
terprets the tilde (™) first, causing it not to have any effect in the remote
vi. To accomplish the capitalization at the beginning of a new line, you
must enter:

——

instead, so that rlogin understands that you want to pass a tilde (™) to the
remote host.

Another example of when you would need to enter the rlogin escape
character more than once at the beginning of a new line is if you nested a
series of rlogin commands over a chain of remote hosts. This case is il-
lustrated below:

host A

host B

rloginto C ——>

~. exits the rlogin running on
host A, rather than on host B

|

7—20 Passing the Rlogin Escape Character to a Remote Program

If you want to exit to host B, you must enter:

The first tilde (™) is interpreted by rlogin on host A, while the second
one is passed to the program run from within rlogin on host B. That
program happens to be rlogin, which responds to its exit escape sequence.

host A

A

A

~. exits the rlogin running on host A
|

~~. exits the rlogin running on host B

|

As a final example, if you wanted to invoke an interactive shell on host B
instead of host A, you would enter:

(instead of ~!) at the beginning of a new line.

Logging into a Host with Rlogin 7—21

Logging into a Remote Host as Someone
Else

You can use rlogin to log into a remote host as someone else if you know
that user’s login name on the remote host, and either of the following two
requirements are met:

Either that user must have your local host name and local login name in a
.rhosts file in his or her home directory on the remote host,

or you must know that user’s password on the remote host.

Note

If the remote user’s account has no password, you can
use rlogin to log into the remote host as that user without
meeting either of the requirements above.

1. At your HP-UX prompt, enter:
rlogin remote_host [-e character] [-7] -1 remote login_name

where:
® remote_host is the name or alias of a host listed in /etc/hosts,
e the brackets ([]) mean that the enclosed option is optional,

® character is the character you may want to change the rlogin escape
character to,

e -7 is an option that sets the character size to seven bits, with the
eighth bit set to zero, and

® remote_login_name is the login name of the remote user who you want
to log into the remote host as.

7—22 Logging into a Remote Host as Someone Else

Example Entries:
rlogin hpabsb -1 alan
rlogin hpabsb -7 -1 alan
rlogin hpabsb -e=-1 alan
rlogin hpabsb -e=-7 -1 alan
Result:

If the remote user has your local host name and local login name in his
or her SHOME]/.rhosts file on the remote host, then the remote host logs
you in and displays:

remote_host’s_login_message
remote_host_prompt

Otherwise, the remote host prompts you for the remote user’s password,
displaying:

Password:
2. If the Password: prompt is displayed, enter the remote user’s password.
Result:
The remote host logs you in and displays:
remote_host’s_login _message

remote_host_prompt

Logging into a Host with Rlogin 7 —

2

3

Giving Other Remote Users Rlogin Access
to Your Local Account

You can give remote users rlogin access to your local account by creating
a .rhosts file. You place remote users’ host names and login names in this
file so that rlogin lets them log into your local host as you.

Caution

A SHOME|.rhosts file creates a significant security risk.
Be sure to follow the instructions below on "Protecting
Your .rhosts File."

Your .rhosts file must be in your home directory on your local host. You
can find out what your local home directory is by entering:

echo $HOME

on your local host.

Each entry you place in your .rhosts file must have the following format:
remote_host_ name remote_login_name

Follow these rules when creating a .rhosts file:

e Each entry must contain a valid remote host name and remote login
name.

® Separate the host name and login name with any number of tabs or
blanks.

e Put any comments after the login name in any entry.

7—24 Giving Other Remote Users Rlogin Access to Your Local Account

Example .rhosts File Entry

If you wanted to give user cdm on remote host hpabsc rlogin access to
your local account, you would create a SHOME].rhosts file on your local
host with the following entry:

hpabsc cdm

Protecting Your .rhosts File

It is important to protect your .rhosts file and your local home directory to
prevent unauthorized users from gaining rlogin access to your local ac-
count. Only you should be able to create a .rhosts file in your home direc-
tory and write entries to it. To do this:

1. Insure that your .rhosts file is owned by you, the user.

2. Use the HP-UX chmod command to protect your .rhosts file with 0400
(-r----m---) permission.

3. Use the HP-UX chmod command to protect your local home directory
so that no one else can read it or write to it. For example, you should
protect your local home directory with at least 0711 (-rwx--x--x)
permission.

4. Insure that your account has a password. Otherwise, remote users can
log into your local host (with your login name) as you.

Logging into a Host with Rlogin 7-—25

Using Rlogin’s "Shorthand" Syntax

If your local host is configured properly, you can enter an rlogin command
line without the rlogin command. That is, an rlogin command line can
start with the name of a remote host, omitting the rlogin command.

You can use this shorthand syntax only if two conditions hold true. You
can omit the command rlogin from the rlogin command line if:

® you add the path /usr/hosts to your command search path in your .login,
.cshre, or .profile file. Which file contains your $PATH variable depends
on which shell you use.

e the super-user or node manager has linked /usr/bin/remsh to
Jusr/hosts/host, where host is the name or alias of a remote host (listed in
Jetc/hosts) on which you want to execute a command.

Note

Remsh knows whether you mean to invoke rlogin or
remsh by parsing what you give on the command line.

To find out which hosts you can use rlogin’s shorthand syntax for, list the
contents of the directory /usr/hosts.

7—26 Using Rlogin’s "Shorthand” Syntax

Transferring Files with Ftp

Ftp is an ARPA Service that allows you to transfer files among HP-UX,
UNIX, and non-UNIX network hosts that support ARPA Services. Ftp is
the file transfer program that uses the ARPA standard File Transfer
Protocol (FTP).

Ftp has a one-line command syntax. This service not only allows you to
perform file transfers, but also file management operations such as chang-
ing, listing, creating, and deleting remote directories.

Using Ftp
To use ftp, you:
e invoke fip,

e choose whether or not to display responses from any remote host you
connect to,

® connect to a remote host, and then
® |og into that host.

After that, you can use fip to perform file management operations and
file transfers.

Transferring Files with Ftp 8—1

1. Invoke Ftp
At your HP-UX prompt, enter:
ftp

Result:
Fip displays its prompt:
ftp>

2. Choose Whether to Display Responses from a Remote Host

Fitp can display all responses from any remote host you connect to. These
responses tell you whether ftp commands completed successfully. This
feature is called verbose mode.

You can also choose not to have fip display all responses from the remote
host so that in most cases, on completing a command, ftp just returns its
ftp> prompt. Even if verbose mode is off, when you change one of fip’s
settings, ftp displays the resulting state of the setting.

If ftp’s input comes from your keyboard (HP-UX terminal), fip initially
has verbose mode on. (This is the usual setting.) Otherwise, ftp has ver-
bose mode off (for example, if ftp’s input is coming from a file).

Note

This chapter shows both verbose and non-verbose fip
responses.

8—2 Using Ftp

Turning Verbose Mode On or Off
At the ftp > prompt, enter:
verbose

Result:

If verbose mode was on, ftp turns it off and displays:

Verbose mode off.
ftp>

If verbose mode was off, fip turns it on and displays:

Verbose mode on.

ftp>

Transferring Files with Ftp 8-3

3. Connect to a Remote Host

At the ftp > prompt, enter:
open remote_host

where remote_host is the name or alias of a host listed in /etc/hosts.

Note

The file /etc/hosts contains entries for hosts with which
you can communicate using ARPA/Berkeley Services.
For each host, the file has a line containing the host’s:

internet_address official_ name alias ...

The ellipsis (...) means that a host may have multiple
aliases. The /etc/hosts file may contain comments and
other information as well.

To connect to a host not listed in /etc/hosts, you can give
the host’s internet address where remote_host appears
above. The internet address must be in dot notation (for
example, 192.6.21.9).

Example Entry:

open hpabsa
Result:

Fip connects you to the remote host and prompts for a remote login
name.

8—4 Using Ftp

e If verbose mode is off, fip displays:
Name (remote host:remote login name):
e If verbose mode is on, ftp displays:

Connected to remote host.
remote _host FTP server...ready.

Name (remote host:remote login_name):

4. Log into the Remote Host

Note

For security reasons, you can only log into accounts that
have passwords associated with them. You must be able
to supply ftp with a valid login name and password on
the remote host.

1. To log in with the same remote login name as your local login name,
press Return at the Name (...): prompt.

To log in with a different remote login name, enter the remote login
name at the Name (...): prompt .

Result:

Ftp prompts for the remote password associated with the login name you
gave, displaying;:

Password (remote host:remote login_name):

Transferring Files with Ftp 8 -5

2. Enter the password associated with the remote login name you gave.

Result:

Fip logs you into the remote host if the password is valid.
e If verbose mode is off, ftp displays:
ftp>
e If verbose mode is on, fip displays:
Password required for remote login name.
User remote Togin _name logged in.

ftp>

Problems? Ftp may also prompt you for an account name, if the
remote host you are logging into requires one.

The remote host may be configured to refuse ftp connec-
tions to specific users for security reasons.

8 —6 Using Ftp

Disconnecting from a Remote Host and
Exiting Ftp
You have two options for disconnecting from a remote host:

® You can exit ftp. This disconnects from a remote host if a connection
exists and returns you to HP-UX.

® You can disconnect from a remote host and remain in ftp. This is useful

if you want to connect to other remote hosts during the same fip session.

Exiting Ftp to Return to HP-UX on Your Local Host
At the ftp > prompt, enter:

quit

or

bye
Result:

If a connection exists to a remote host, ftp disconnects from the remote
host and returns you to HP-UX on your local host.

e If verbose mode is off, your local host redisplays its HP-UX prompt.
e If verbose mode is on, ftp displays:

Goodbye.

and your local host redisplays its HP-UX prompt.

If a connection does not exist to a remote host, fip returns you to HP-UX
on your local host, and your local host redisplays its HP-UX prompt.

Transferring Files with Ftp 8—-7

Disconnecting from a Remote Host and Remaining in Ftp
At the ftp > prompt, enter:

close

Result:

Fitp disconnects from the remote host.

e If verbose mode is off, ftp displays:
ftp>

e If verbose mode is on, fip displays:

Goodbye.

ftp>

8 —8 Disconnecting from a Remote Host and Exiting Ftp

Obtaining Help
You can obtain summary information about ftp commands with fip’s help

command. You can either list the ftp commands or get information about
a specific ftp command.

Listing the Ftp Commands
At the ftp > prompt, enter:

help
or
?
Result:
Fip lists its commands, displaying:
Commands may be abbreviated. Commands are:
command_11st

ftp>

Getting Information about a Specific Fip Command

At the ftp > prompt, enter:
help ftp_command
or

? ftp_command

Transferring Files with Ftp 8—-9

Result:
Fip displays:
command brief _description of command

ftp>

Temporarily Returning to HP-UX on Your
Local Host

From within fip, you can temporarily invoke a local HP-UX shell. This is
a new shell, descended from the one started when you logged into the

local host. This allows you to work on the local host and then return to fip.

You can either:

® execute a single HP-UX command on your local host and automatically
return to ftp or

e work on your local host for as long as you need to before you return to
ftp.

Executing a Single HP-UX Command on Your Local Host
At the ftp > prompt, enter:

! HP-UX_command
where command is an HP-UX command line.
Example Entries:

! pwd

! hostname

8 —10 Temporarily Returning to HP-UX on Your Local Host

Result:
A local HP-UX shell executes the command and returns you to ftp and

the ftp> prompt.

Working for an Extended Time on Your Local Host
1. At the ftp > prompt, enter:
!
Result:
Ftp gives you a local HP-UX shell to work in, displaying:
local_HP-UX_prompt
2. Enter HP-UX commands.
Result:

The local shell executes each command you enter and then redisplays
the local HP-UX prompt.

3. Exit the local HP-UX shell as you normally would (such as with
CTRL-D).

Result:

The local shell returns you to ftp and the ftp> prompt.

Transferring Files with Ftp 8—11

How Ftp Treats "Wild Card" Characters, or
Metacharacters

You can use csh(1) metacharacters in the directory and file names you
specify in ftp commands. These metacharacters, or wild card characters,
represent a set of characters or character strings and are a "shorthand" way
of specifying a set of directory or file names. The following table is a quick
reference to the meaning of the csh(1) metacharacters supported by fip:

Csh Metacharacters Supported by Ftp

Character Matches
* any string, including a null string
? any single character
[] any of the enclosed characters

your home directory
~login_name login_name’s home directory

f.} any of the enclosed character
strings separated by commas

The expansion of metacharacters into the directory and file names they
match is called globbing. Globbing is on when you first invoke ftp. You
must turn it off if you need to specify a directory or file name containing
one of the characters listed above. That way, ftp interprets the character
literally, instead of trying to match it to a set of characters. You can turn
globbing on or off while in fip at the ftp> prompt.

Turning Globbing On or Off
At the ftp > prompt, enter:

glob

8—12 How Ftp Treats "Wild Card" Characters, or Metacharacters

Result:

If globbing was on, fip turns it off and displays:
Globbing off.

ftp>

If globbing was off, ftp turns it on and displays:
Globbing on.

ftp>

For some of its commands ftp always expands metacharacters, even if
globbing is off. If you want a local or remote host to interpret a
metacharacter literally when given one of these commands, precede the
character with a backslash (\). For example, with some ftp commands,
you would need to enter a directory named my?s as my\?s.

The following table summarizes globbing behavior for applicable fip com-
mands. These commands are discussed in more detail later in this chapter.

Globbing Behavior for Ftp Commands

Ftp Command Metacharacters Are

dir always expanded

Is always expanded

mdelete expanded if globbing is on
mdir expanded if globbing is on
mget expanded if globbing is on
mls expanded if globbing is on
mput expanded if globbing is on

Transferring Files with Ftp 8 —13

In single-file fip commands:

e fip expands metacharacters in a remote file specification only if it begins
with the tilde (™) metacharacter. Ftp then performs the operation on
only the first file that matches the expanded specification.

® ftp always expands metacharacters in a local file specification. Ftp then

performs the operation on only the first file that matches the expanded
specification.

Performing Directory Operations with Ftp

From within ftp, you can:

® change local and remote working directories,

e list the contents of remote directories,

e display the name of the remote working directory,
e create a remote directory,

e delete a remote directory, and

e change the name of a remote directory.

The following sections tell how to perform these directory operations.

8 —14 Performing Directory Operations with Ftp

Changing the Local Working Directory

To Your Local Home Directory
At the ftp > prompt, enter:
lcd

Result:

Fitp changes the local working directory to your local home directory and
displays:

Local directory now your local home directory path

ftp>

To Another Local Directory

At the ftp > prompt, enter:
lcd local_directory path
where local_directory_path is the full or relative path to a local directory.

Example Entries:

lcd /users/richard/projects

lcd projects

Transferring Files with Ftp 8—15

Result:

Fitp changes the local working directory to the path you specify and
displays:

Local directory now full Tocal working directory path

ftp>

Changing the Remote Working Directory
At the ftp > prompt, enter:

cd remote_directory_path

where remote_directory_path is the full or relative path to a remote
directory.

Example Entries:

cd /users/lab/richard/xfers
cd xfers
Result:

Ftp changes the remote working directory to the path you specify.
e If verbose mode is off, fip displays:

ftp>
e If verbose mode is on, ftp displays:

CWD command okay.

ftp>

8—16 Performing Directory Operations with Ftp

Listing the Contents of the Remote Working Directory

With fip, you can get an extended or abbreviated listing of the contents of
the remote working directory. You can send the listing to the display (ac-
tually, stdout) or to a local file.

To Stdout (Usually the Display)

Note

Metacharacters are always expanded for fip’s dir and Is
commands.

For an extended listing, at the ftp > prompt, enter:
dir

For an abbreviated listing, at the ftp > prompt, enter:
1s

Result:

Fip lists the contents of the remote working directory to the display (if
stdout is not redirected).

Transferring Files with Ftp 8 —17

e If verbose mode is off, fip displays:
directory contents listing
ftp>
e If verbose mode is on, ftp displays:
PORT command okay.
Opening data connection for /bin/ls -1...
directory contents listing
Transfer complete.

number bytes received in number seconds...

ftp>

To a Local File

Note

Metacharacters are always expanded for fip’s dir and [s
commands.

For an extended listing, at the ftp > prompt, enter:
dir . local file path

For an abbreviated listing, at the ftp > prompt, enter:
Is . local file path

where the period (.) represents the remote working directory, and
local_file_path is the full or relative path to a local file.

8 —18 Performing Directory Operations with Ftp

Example Entries:

dir . /users/richard/projects/dirconts

1s . dirconts

Result:

Fip lists the contents of the remote working directory to the local file you
specify.
e If verbose mode is off, fip displays:

ftp>
e [f verbose mode is on, ftp displays:
PORT command okay.
Opening data connection for /bin/1s -1...
Transfer complete.

number bytes received in number seconds...

ftp>

Transferring Files with Ftp 8—19

Listing the Contents of a Remote Directory

With fip, you can get an extended or abbreviated listing of the contents of
a remote working directory. You can send the listing to the display (ac-
tually, stdout) or to a local file.

To Stdout (Usually the Display)

Note

Metacharacters are always expanded for fip’s dir and Is
commands.

For an extended listing, at the ftp > prompt, enter:
dir remote_directory path

For an abbreviated listing, at the ftp > prompt, enter:
1s remote_directory path

where remote_directory path is the full or relative path to a remote
directory.

Example Entries:

dir /users/lab/richard/doc
1s doc
Result:

Ftp lists the contents of the remote directory you specify to the display
(actually, stdout).

8—20 Performing Directory Operations with Ftp

e If verbose mode is off, fip displays:
directory contents listing
ftp>

e If verbose mode is on, fip displays:

PORT command okay.

Opening data connection for /bin/ls -1...
directory contents listing

Transfer complete.

number bytes received in number seconds...

ftp>

To a Local File

Note

Metacharacters are always expanded for fip’s dir and Is
commands.

Transferring Files with Ftp 8 —21

For an extended listing, at the ftp > prompt, enter:
dir remote_directory path local file path

For an abbreviated listing, at the ftp > prompt, enter:
1s remote_directory_path local file path

where remote_directory path is the full or relative path to a remote
directory, and local_file_path is the full or relative path to a local file.

Example Entries:

dir /users/lab/richard/doc /users/richard/projects/dirconts
1s doc dirconts

Result:

Fip lists the contents of the remote directory you specify to the local file
you specify.
e If verbose mode is off, ftp displays:

ftp>
e If verbose mode is on, ftp displays:

PORT command okay.

Opening data connection for /bin/1s -1...
Transfer complete.

number bytes received in number seconds...

ftp>

8 —22 Performing Directory Operations with Ftp

Listing the Contents of Multiple Remote Directories

With ftp, you can get an extended or abbreviated listing of the contents of
multiple remote directories. You can send the listing to the display (ac-
tually, stdout) or to a local file.

To Stdout (Usually the Display)

Note

Metacharacters are expanded for ftp’s mdir and mls com-
mands if globbing is on.

For extended listings, at the ftp > prompt, enter:
mdir remote_directory path ... -

For abbreviated listings, at the ftp > prompt, enter:
mls remote_directory path ... -

where remote_directory_path is the full or relative path to a remote
directory, and — represents stdout. The ellipsis (...) means that you can
specify multiple remote_directory_paths.

Example Entries:

mdir /users/lab/richard /users/lab/richard/doc -

mls doc code code/source -

Transferring Files with Ftp 8§ —23

Result:

If interactive mode is on, fip prompts you to verify that stdout (the
display) is really where you want the contents of the directories listed.
Fitp displays:

local-file-?
e If this is not what you want to do, enter:

N

and ftp cancels the directory listings and redisplays its ftp> prompt.

e If this is what you want to do, enter:
Y

and continue with the description below. Interactive mode is
explained in detail in a later section of this chapter.

Ftp displays (lists to stdout) the contents of the remote directories you
specify.

8 —24 Performing Directory Operations with Ftp

e If verbose mode is off, fip displays:

directory contents_listing

directory contents_listing

. (repeated for each directory listed)

ftp>
e If verbose mode is on, ftp displays:

PORT command okay.

Opening data connection for /bin/ls...
directory contents listing

Transfer complete.

number bytes received in number seconds...
PORT command okay.

Opening data connection for /bin/ls...
directory contents listing

Transfer complete.

number bytes received in number seconds...

. (repeated for each directory listed)

ftp>

Transferring Files with Ftp 8 —25

To a Local File

With ftp, you can send an extended or abbreviated listing of the contents
of multiple remote directories to a local file.

Note

Metacharacters are expanded for ftp’s mdir and mls com-
mands if globbing is on.

For extended listings, at the ftp > prompt, enter:
mdir remote_directory_path.. local_file_path

For abbreviated listings, at the ftp > prompt, enter:
mls remote_directory path ... local_file_path

where remote_directory_path is the full or relative path to a remote
directory, and local_file_path is the full or relative path to a local file.
The ellipsis (...) means that you can specify multiple
remote_directory_paths.

Example Entries:

mdir /users/lab/richard /users/lab/richard/doc dirlists
mls doc code code/source dirlists
Result:

If interactive mode is on, ftp prompts you to verify that the local file you
specified is really where you want the contents of the directories listed.
Fip displays:

local-file local file path ?

8 —26 Performing Directory Operations with Ftp

e If local_file path is not correct, enter:
N

and ftp cancels the directory listings and redisplays its ftp> prompt.
e If local_file_path is correct, enter:
Y

and continue with the description below. Interactive mode is
explained in detail in a later section of this chapter.

Fip lists the contents of the remote directories you specify to the local
file you specify.

Transferring Files with Ftp 8 —27

e If verbose mode is off, ftp displays:
ftp>
e If verbose mode is on, fip displays:

PORT command okay.

Opening data connection for /bin/ls...
Transfer complete.

number bytes received in number seconds..
PORT command okay.

Opening data connection for /bin/ls...
Transfer complete.

number bytes received in number seconds...

. (repeated for each directory listed)

ftp>

Displaying the Name of the Remote Working Directory
At the ftp > prompt, enter:

pwd

8 —28 Performing Directory Operations with Ftp

Result:
Fip displays:

"full _remote working directory path" is the current working
directory.

ftp>

Creating a Remote Directory
At the ftp > prompt, enter:

mkdir remote_directory path

where remote_directory_path is a full or relative path to a remote
directory.

Example Entries:
mkdir /users/lab/richard/temp

mkdir temp

Result:

Fip creates the remote directory you specify.
e If verbose mode is off, fip displays:

ftp>
e If verbose mode is on, ftp displays:

MKDIR command okay.

ftp>

Transferring Files with Ftp 8 —29

Deleting a Remote Directory

Note

To delete a remote directory, the directory must be
empty.

At the ftp > prompt, enter:
rmdir remote_directory_path
or
delete remote_directory_path

where remote_directory path is a full or relative path to a remote
directory.

Example Entries:

rmdir /users/lab/richard/temp

delete temp

Result:

Fip deletes the remote directory you specify.

8 —30 Performing Directory Operations with Ftp

e If verbose mode is off, fip displays:
ftp>

e If verbose mode is on, ftp displays:
RMDIR command okay.
ftp>
or
DELE command okay.

ftp>

Changing the Name of a Remote Directory

Note

You can only rename a remote directory. You can not
change the path to (move) a remote directory.

At the ftp > prompt, enter:
rename old_remote_directory_path new_remote_directory_path

where old_remote_directory path is a full or relative path to an existing
remote directory, and new_remote_directory_path is the same as
old_remote_directory path, except for the directory name.

Transferring Files with Ftp 8 —31

Note

If you do not specify new_remote_directory_path, ftp
prompts you for it by displaying:

(to-name)

Example Entries:

rename /users/lab/rich/doc /users/lab/rich/comment

rename doc comment

Result:

Ftp changes the name of the existing directory to the new name you
specify.
e If verbose mode is off, fip displays:

ftp>
e If verbose mode is on, ftp displays:

File exists, ready for destination name.
RNTO command okay.

ftp>

8 —32 Performing Directory Operations with Ftp

Transferring Files with Ftp

Fip lets you set up the file transfer environment before you actually trans-
fer any files. This includes:

e setting the local and remote working directories,

e setting the file transfer type,

e turning on (or off) options to monitor file transfer progress, and
e turning on (or off) prompting to confirm each file transfer.

Once you have set up the file transfer environment, you can transfer files
between your local host and a remote host.

1. Set the Local and Remote Working Directories

Use fip’s led and cd commands to set the local and remote working direc-
tories before you begin the file transfer. These commands are discussed
earlier in this chapter.

2. Set the File Transfer Type

The file transfer type you choose depends on the other operating system
involved in the file transfer, not on the type of file you are transferring,

When you transfer files to or from a host with the HP-UX or UNIX
operating system, you can use either the ascii or binary file transfer type.
However, the file transfer is faster if you set the type to binary.

When you transfer files to or from a host with a non-HP-UX or non-
UNIX operating system, you must use the ascii file transfer type. This in-
sures that the files are transferred in a format appropriate for the other
(different) operating system.

Transferring Files with Ftp 8 —33

The only time you may want to use the faster binary file transfer type for
transferring files to or from a non-HP-UX or non-UNIX host is to ar-
chive them (for storage only, not access). The files would not be in a
meaningful format if accessed on the destination host after the transfer.
You would need to transfer the files back to a host with the same type of
operating system from which they originated to access them in a meaning-
ful form.

When you first invoke fip, the file transfer type is preset to ascii.

Displaying the Current File Transfer Type
At the ftp > prompt, enter:

type
Result:

If the current file transfer type is ascii, ftp displays:

Using ascii mode to transfer files.
ftp>

If the current file transfer type is binary, ftp displays:
Using binary mode to transfer files.

ftp>

Changing the File Transfer Type to Binary
At the ftp > prompt, enter:
binary

or

type binary

8 —34 Transferring Files with Ftp

Result:

e If verbose mode is off, fip displays:
ftp>

e If verbose mode is on, ftp displays:

Type set to I.

ftp>

Changing the File Transfer Type to Ascii
At the ftp > prompt, enter:
ascii
or
type ascii
Result:
e If verbose mode is off, ftp displays:
ftp>
e If verbose mode is on, fip displays:
Type set to A.

ftp>

Transferring Files with Ftp 8—35

3. Choose Options to Monitor File Transfer Progress

Within fip, there are two ways to monitor the progress of a file transfer.
® You can have ftp display a hash (#) sign for each 1024 bytes transferred.
® You can have ftp sound a bell after each file transfer completes.

Both of these options are off when you first invoke fip.

Turning Hash Sign Displaying On or Off

At the ftp > prompt, enter:
hash

Result:

If hash sign displaying was off, ftp turns it on and displays:
Hash mark printing on (1024 bytes/hash mark).
ftp>

If hash sign displaying was on, ftp turns it off and displays:
Hash mark printing off.
ftp>

Turning Bell Sounding On or Off
At the ftp > prompt, enter:
bell

8 —36 Transferring Files with Ftp

Result:

If bell sounding was off, ftp turns it on and displays:

Bell mode on.
ftp>

If bell sounding was on, ftp turns it off and displays:
Bell mode off.

ftp>

4. Turn on Interactive Mode for Selective File Transfers

When you perform an operation involving multiple files, ftp can list the
files one by one, asking for each whether you want to perform the opera-
tion or not. This allows you to perform the operation on only the files you
select. Ftp calls this feature interactive mode.

Use interactive mode when you want to select from among multiple files
to transfer during a single file transfer operation.

You can also use interactive mode when deleting multiple remote files
and listing the contents of multiple remote directories to a local destina-
tion. However, in the latter case, ftp prompts you to confirm the local des-
tination, not each remote directory listing.

Interactive mode is on when you first invoke ftp.

Turning Interactive Mode On or Off
At the ftp > prompt, enter:

prompt

Transferring Files with Ftp 8 —37

Result:

If interactive mode was on, ftp turns it off and displays:

Interactive mode off.
ftp>

If interactive mode was off, fip turns it on and displays:

Interactive mode on.

ftp>

8 —38 Transferring Files with Ftp

5. Perform One or More File Transfers

Note

When you transfer files with fip, you are really copying
those files from one place to another. Transfers do not
move or delete the original files.

Ftp File Transfer Options

With Fip, You Can Transfer

To

a remote file

multiple remote files

a local file

multiple local files

a local file with the same directory
path and name

a local file with a different direc-
tory path and/or name

multiple local files with the same
directory paths and names

a remote file with the same direc-
tory path and name

the end of a remote file with the
same directory path and name

a remote file with a different direc-
tory path and/or name

the end of a remote file with a dif-
ferent directory path and/or name

multiple remote files with the same
directory paths and names

The following sections explain all of these ftp options for transferring files.

Transferring Files with Ftp 8 -39

Caution

In an fip file transfer, insure that the source file and des-
tination file are not the same file on the same host.

Otherwise, fip destroys the contents of the file.

From a Remote File
To a Local File with the Same Directory Path and Name

This special case of an fip file transfer requires a special syntax. The syn-
tax you use causes ftp to behave in the following way:

® Fip copies a file from the remote working directory to a file with the
same name in the local working directory. The remote and local working

directory paths may be different.

® Fitp copies a file from any other remote directory to a local file with the
same directory path and name you identify the remote file with.

At the ftp > prompt, enter:
get remote_file path
or
recv remote_file_path

where remote_file_path is either:

e the name of the source file if the file is in the remote working
directory or

e the full or relative path to the source file if the file is in another
remote directory.

8 —40 Transferring Files with Ftp

Note

Any remote directory path you specify as part of a
remote_file path must also exist on the local host.
Otherwise, ftp will not transfer the file.

Example Entries:

get programl
recv /usr/bin/game

Result:

If the file is in the remote working directory, ftp copies the file to a file
with the same name in the local working directory.

Otherwise, fip copies the remote file to a local file with the same
directory path and name you identified the remote file with.

If the destination file already exists, ftp replaces its contents with the
source file’s contents.

e If verbose mode is off, fip displays:
ftp>
e If verbose mode is on, fip displays:
PORT command okay.
Opening data connection for remote file name...
Transfer complete.

number bytes received in number seconds...

ftp>

Transferring Files with Ftp 8 —41

From a Remote File
To a Local File with a Different Directory Path and/or Name

At the ftp > prompt, enter:
get remote_file_path local_file path
or
recv remote_file_path local_file_path

where remote_file path is a full or relative path to the source file in a
remote directory and local_file_path is a full or relative path to the
destination file in a local directory.

Note

Local_file_path must include the destination file’s name.

Example Entries:
get programl firstprog
recv programl code/source/programl
get /users/lab/richard/graphics/designl designl

recv graphics/designl graphics/work/firstdsgn

8 —42 Transferring Files with Ftp

Result:

Fip copies the file from the remote directory to the file in the local
directory. If the destination file already exists, ftp replaces its contents
with the source file’s contents.

e If verbose mode is off, ftp displays:
ftp>
e If verbose mode is on, fip displays:
PORT command okay.
Opening data connection for remote file name...
Transfer complete.

number bytes received in number seconds...

ftp>

Transferring Files with Ftp 8 —43

From Multiple Remote Files
To Multiple Local Files with the Same Directory Paths and Names

Ftp behaves in the following way when you transfer multiple files from a
remote host to a local host:

® Fip copies files from the remote working directory to files with the same
names in the local working directory. The remote and local working
directories may be different.

® Fip copies files from any other remote directory to local files with the
same directory paths and names you identify the remote files with.

Note

Metacharacters are expanded for fip’s mget command if
globbing is on.

If Interactive Mode Is On
1. At the ftp> prompt, enter:
mget remote_file path ...

where remote_file_path is either:
¢ the name of a file if the file is in the remote working directory or

e the full or relative path to a file if the file is in another remote
directory.

The ellipsis (...) means that you can specify multiple remote_file_paths.

Note

Any remote directory path you specify as part of a
remote_file path must also exist on the local host.
Otherwise, ftp will not transfer the file(s).

8 —44 Transferring Files with Ftp

Example Entries:

mget /bin/c*

mget programl program2 program3
Result:

Ftp asks if you want to transfer the first remote file that matches what
you specified. This gives you the option of not transferring the remote
file.

Fip displays:
mget first _remote file path?

. To not transfer the remote file, enter:

N

To transfer the remote file, enter:

Y

Result:

If you enter N, ftp does not transfer the remote file and asks if you want
to transfer the next remote file that matches what you specified,
displaying:

mget next_remote file path?

If you enter Y, and:

e the file is in the remote working directory, ftp copies the file to a file
with the same name in the local working directory.

e the file is in another remote directory, ftp copies the remote file to a
local file with the same directory path and name.

Transferring Files with Ftp 8 —45

Then ftp asks if you want to transfer the next remote file that matches
what you specified.

e If verbose mode is off, fip displays:
mget next remote file path?
e If verbose mode is on, ftp displays:
PORT command okay.
Opening data connection for remote file path...
Transfer complete.
number bytes received in number seconds...

mget next remote file path?

3. Repeat the previous step until ftp redisplays its ftp> prompt instead of
the mget ...? prompt.

This means that there are no more files that match what you originally
entered.

8 —46 Transferring Files with Ftp

If Interactive Mode Is Off

At the ftp > prompt, enter:
mget remote_file_path ...

where remote_file_path is either:

e the name of a source file if the file is in the remote working directory
or

e the full or relative path to a source file if the file is in another remote
directory.

The ellipsis (...) means that you can specify multiple remote_file_paths.

Note

Any remote directory path you specify as part of a
remote_file path must also exist on the local host.
Otherwise, ftp will not transfer the file(s).

Example Entries:

mget /bin/c*

mget programl program2 program3
Result:

Ftp copies any files in the remote working directory to files with the
same names in the local working directory.

Ftp copies any other remote files to local files with the same directory
paths and names you identified the local files with.

Transferring Files with Ftp 8 —47

e If verbose mode is off, ftp displays:
ftp>
e If verbose mode is on, ftp displays:

PORT command okay.

Opening data connection for remote file path...

Transfer complete.
number bytes received in number seconds...

PORT command okay.

Opening data connection for remote file path...

Transfer complete.

number bytes received in number seconds...

. (repeated for each file transferred)

ftp>

8 —48 Transferring Files with Ftp

From a Local File
To a Remote File with the Same Directory Path and Name

This special case of an ftp file transfer requires a special syntax. The syn-
tax you use causes ftp to behave in the following way:

e Ftp copies a file from the local working directory to a file with the same
name in the remote working directory. The local and remote working

directory paths may be different.

® Fip copies a file from any other local directory to a remote file with the
same directory path and name you identify the local file with.

At the ftp > prompt, enter:
put local file path
or
send local_file_path

where local_file_path is either:
e the name of the source file if the file is in the local working directory
or
e the full or relative path to the source file if the file is in another local
directory.

Note

Any local directory path you specify as part of a
local file path must also exist on the remote host.
Otherwise, ftp will not transfer the file.

Transferring Files with Ftp 8 —49

Example Entries:

put program2

send /tmp/printout
Result:

If the file is in the local working directory, fip copies the file to a file with
the same name in the remote working directory.

Otherwise, ftp copies the local file to a remote file with the same
directory path and name you identified the local file with.

If the destination file already exists, fip replaces its contents with the
source file’s contents.

e If verbose mode is off, fip displays:
ftp>
e If verbose mode is on, fip displays:

PORT command okay.

Opening data connection for remote file name...
Transfer complete.

number bytes received in number seconds...

ftp>

8 —50 Transferring Files with Ftp

From a Local File
To the End of a Remote File with the Same Directory Path and

Name
This special case of an fip file transfer requires a special syntax. The syn-
tax you use causes ftp to behave in the following way:

e Fitp copies a file from the local working directory to the end of a file with
the same name in the remote working directory. The local and remote

working directory paths may be different.
® Fitp copies a file from any other local directory to the end of a remote file
with the same name and directory path you identify the local file with.
At the ftp > prompt, enter:
append local_file_path

where local_file_path is either:
e the name of the source file if the file is in the local working directory

or
e the full or relative path to the source file if the file is in another local

directory.

Note

Any local directory path you specify as part of a
local _file path must also exist on the remote host.
Otherwise, ftp will not transfer the file.

Example Entries:

append form

append /tmp/testdata

Transferring Files with Ftp 8 —51

Result:

If the file is in the local working directory, fip copies the file to the end
of a file with the same name in the remote working directory.

Otherwise, ftp copies the local file to the end of a remote file with the
same directory path and name you identified the local file with.

If the destination file does not exist, fip creates it.
e If verbose mode is off, fip displays:

ftp>
e If verbose mode is on, fip displays:

PORT command okay.

Opening data connection for remote file name...
Transfer complete.

number bytes received in number seconds...

ftp>

8 —52 Transferring Files with Ftp

From a Local File
To a Remote File with a Different Directory Path and/or Name

At the ftp > prompt, enter:

put local_file_path remote_file_path
or

send local file_path remote_file path

where local_file_path is a full or relative path to the source file in a local
directory and remote_file_path is a full or relative path to the destination
file in a remote directory.

Note

Remote file path must include the destination file’s
name.

Example Entries:
put report results
send doc/internal/issues issues
put status /users/lab/richard/mail/update

send email/urgent/schedule project/schedule

Transferring Files with Ftp 8 —53

Result:

Fip copies the file from the local directory to the file in the remote
directory. If the destination file already exists, ftp replaces its contents
with the source file’s contents.

e If verbose mode is off, fip displays:
ftp>
e If verbose mode is on, ftp displays:
PORT command okay.
Opening data connection for remote file name...
Transfer complete.

number bytes received in number seconds...

ftp>

8 —54 Transferring Files with Ftp

From a Local File

To the End of a Remote File with a Different Directory Path and/or
Name

At the ftp > prompt, enter:
append local_file_path remote_file_path
where local file path is a full or relative path to the source file in a local

directory and remote_file_path is a full or relative path to the destination
file in a remote directory.

Note

Remote_file path must include the destination file’s
name.

Example Entries:

append /users/richard/doc/section2 comment/chapterl

append aliases .login

append email/bugreport /users/lab/richard/project/defects

Transferring Files with Ftp 8 —55

Result:

Ftp appends the file from the local directory to the end of the file in the
remote directory. If the destination file does not exist, ftp creates it.

e If verbose mode is off, ftp displays:
ftp>
e If verbose mode is on, fip displays:

PORT command okay.

Opening data connection for remote file name...
Transfer complete.

number bytes received in number seconds...

ftp>

8 —56 Transferring Files with Ftp

From Multiple Local Files
To Multiple Remote Files with the Same Directory Paths and
Names

Ftp behaves in the following way when you transfer multiple files from a
local host to a remote host:

e Fitp copies files from the local working directory to files with the same
names in the remote working directory. The local and remote working
directory paths may be different.

® Fip copies files from any other local directory to remote files with the
same directory paths and names you identify the local files with.

Note

Metacharacters are expanded for ftp’s mput command if
globbing is on.

If Interactive Mode Is On
1. At the ftp > prompt, enter:
mput local_file_path ...

where local_file_path is either:
e the name of a file if the file is in the local working directory or

e the full or relative path to a file if the file is in another local directory.

The ellipsis (...) means that you can specify multiple local_file_paths.

Note

Any local directory path you specify as part of a
local file path must also exist on the remote host.
Otherwise, ftp will not transfer the file(s).

Transferring Files with Ftp 8 —57

Example Entries:

mput /etc/*

mput memol memo2 memo3
Result:

Fip asks if you want to transfer the first local file that matches what you
specified. This gives you the option of not transferring the local file.

Fip displays:
mput first local file path?

2. To not transfer the local file, enter:

N

To transfer the local file, enter:
Y
Result:

If you enter N, fip does not transfer the local file and asks if you want to
transfer the next local file that matches what you specified, displaying:

mput next local file path?

8 —58 Transferring Files with Ftp

If you enter Y, and:

e the file is in the local working directory, fip copies the file to a file with
the same name in the remote working directory.

e the file is in another local directory, fip copies the local file to a
remote file with the same directory path and name.

Then ftp asks if you want to transfer the next local file that matches what
you specified.

e If verbose mode is off, ftp displays:
mput next Tocal file path?
e If verbose mode is on, fip displays:
PORT command okay.
Opening data connection for Tocal file path...
Transfer complete.
number bytes received in number seconds...

mput next local file path?

3. Repeat the previous step until ftp redisplays its ftp> prompt instead of
the mput...? prompt.

This means that there are no more files that match what you originally
entered.

Transferring Files with Ftp 8 —59

If Interactive Mode Is Off
At the ftp > prompt, enter:
mput local file path ...

where local_file path is either:
e the name of a source file if the file is in the local working directory or

e the full or relative path to a source file if the file is in another local
directory.

The ellipsis (...) means that you can specify multiple local_file_paths.

Note

Any local directory path you specify as part of a
local_file_path must also exist on the remote host.
Otherwise, ftp will not transfer the file(s).

Example Entries:

mput /etc/*

mput memol memo2 memo3
Result:

Fip copies any files in the local working directory to files with the same
names in the remote working directory.

Ftp copies any other local files to remote files with the same directory
paths and names you identified the local files with.

8 —60 Transferring Files with Ftp

e If verbose mode is off, fip displays:
ftp>
e If verbose mode is on, fip displays:

PORT command okay.

Opening data connection for remote file path..
Transfer complete.

number bytes received in number seconds...

PORT command okay.

Opening data connection for remote file path...
Transfer complete.

number bytes received in number seconds...

. (repeated for each file transferred)

ftp>

Transferring Files with Ftp 8 —61

Performing Other File Operations with Ftp

From within ftp, you can:

e display the contents of a remote file,

e create a remote file,

e append text to the end of a remote file,
e delete one or more remote files, and

e change the name of a remote file.

The following sections tell how to perform these operations.

Displaying the Contents of a Remote File

To display the contents of a remote file, you transfer the remote file to
stdout (usually your display, or HP-UX terminal).

At the ftp > prompt, enter:
get remote file path —
or
recv remote_file_path —

where remote_file_path is a full or relative path to a remote file, and -
represents stdout (usually the display).

Example Entries:
get /users/lab/richard/comment/readme -

recv comment/readme -

8—62 Performing Other File Operations with Ftp

Result:

Fip sends the contents of the remote file you specify to the display
(actually, stdout).

e If verbose mode is off, fip displays:
contents of file
ftp>

e If verbose mode is on, fip displays:

PORT command okay.

Opening data connection for remote file..
contents of file

Transfer complete.

number bytes received in number seconds...

ftp>

Transferring Files with Ftp 8 —63

Creating a Remote File

To create a remote file, you transfer from stdin (usually your keyboard
input, or HP-UX terminal) to the remote file.

1. At the ftp> prompt, enter:
put — remote_file_path
or
send — remote_file_path

where — represents stdin (usually keyboard input), and remote_file_path
is a full or relative path to a remote file.

Example Entries:

put - /users/lab/richard/comment/note
send - comment/note
Result:

Fip creates the file you specify and waits for you to enter what you want
to put into the file.

e If verbose mode is off, fip displays nothing.
e [f verbose mode is on, fip displays:

PORT command okay.

Opening data connection for remote file...

8 —64 Performing Other File Operations with Ftp

2. At the keyboard, enter what you want to put into the file.
Example Entry:
This is a test.

I am entering words into the file I am creating.

This is the last line.

Result:
Ftp displays what you enter as you enter it.
3. When you finish entering the contents of the file, press Return.
Result:
The cursor moves to a new line.
4. Press CTRL-D.
Result:

This signals the end of the file, and ftp adds what you entered to the file.
e If verbose mode is off, ftp displays:

ftp>
e If verbose mode is on, fip displays:

Transfer complete.

number bytes received in number seconds...

ftp>

Appending Text to the End of a Remote File

To append text to the end of a remote file, you append from stdin (usual-
ly your keyboard input, or HP-UX terminal) to the end of the remote file.

Transferring Files with Ftp 8 —65

1. At the ftp > prompt, enter:
append — remote_file path

where — represents stdin (usually keyboard input) and remote_file_path is
a full or relative path to a remote file.

Example Entries:

append - /users/lab/richard/comment/note

append - comment/note

Result:

Ftp waits for you to enter what you want to append to the end of the file.
e If verbose mode is off, ftp displays nothing.

e [f verbose mode is on, fip displays:

PORT command okay.
Opening data connection for remote file...
2. At the keyboard, enter what you want to append to the end of the file.

Example Entry:

These are words that I want appended to the end of a file.
This is the Tast line.

Result:

Ftp displays what you enter as you enter it.

3. When you finish entering what you want to append to the file, press
Return.

Result:

The cursor moves to a new line.

8 —66 Performing Other File Operations with Ftp

4. Press CTRL-D.

Result:

This signals the end of the file, and ftp appends what you entered to the
end of the file.

e If verbose mode is off, fip displays:
ftp>
e If verbose mode is on, ftp displays:
Transfer complete.
number bytes received in number seconds...

ftp>

Transferring Files with Ftp 8 — 67

Deleting a Remote File
At the ftp > prompt, enter:
delete remote_file path
where remote_file_path is a full or relative path to a remote file.
Result:

Fitp deletes the remote file you specify.

e If verbose mode is off, ftp displays:
ftp>

¢ If verbose mode is on, fip displays:

DELE command okay.

ftp>

8 — 68 Performing Other File Operations with Ftp

Deleting Multiple Remote Files

Note

Metacharacters are expanded for ftp’s mdelete command
if globbing is on.

If Interactive Mode Is On
1. At the ftp > prompt, enter:

mdelete remote_file_path ...

where remote_file_path is a full or relative path to a remote file. The
ellipsis (...) means that you can specify multiple remote_file_paths.

Example Entries:

mdelete /users/lab/richard/doc/spec?
mdelete doc/specl doc/spec2 doc/spec3
Result:

Ftp asks if you want to delete the first remote file that matches what you
specified. This gives you the option of keeping the remote file.

Ftp displays:
mdelete first remote file path?

2. To keep the remote file, enter:
N

To delete the remote file, enter:

Y

Result: Transferring Files with Ftp 8 —69

If you enter N, ftp keeps the remote file and asks if you want to delete the
next remote file that matches what you specified, displaying:

mdelete next _remote file path?

If you enter Y, ftp deletes the remote file and asks if you want to delete
the next remote file that matches what you specified.

e If verbose mode is off, ftp displays:
mdelete next_remote file path?

e If verbose mode is on, ftp displays:
DELE command okay.

mdelete next_remote file path?

3. Repeat the previous step until ftp redisplays its ftp > prompt instead of
the mdelete ...? prompt.

This means that there are no more files that match what you originally
entered.

8 —70 Performing Other File Operations with Ftp

If Interactive Mode Is Off
At the ftp > prompt, enter:
mdelete remote_file_path ...

where remote_file_path is a full or relative path to a remote file. The
ellipsis (...) means that you can specify multiple remote_file_paths.

Example Entries:

mdelete /users/lab/richard/doc/spec?
mdelete doc/specl doc/spec2 doc/spec3
Result:

Fip deletes all of the files that match what you specified.
e If verbose mode is off, fip displays:

ftp>
e If verbose mode is on, ftp displays:

DELE command okay.

DELE command okay.

. (repeated for each file deleted)

ftp>

Transferring Files with Ftp 8 -71

Changing the Name of a Remote File

Note

You can use ftp’s rename command to change the path
to (move) a remote file. You can not use fip’s rename
command to change the path to (move) a remote direc-

tory.

At the ftp > prompt, enter:
rename old_remote_file_path new_remote_file_path

where old_remote_{file_path is a full or relative path to an existing remote
file, and new_remote_file_path is a full or relative path to a new file.

Note
If you do not specify new_remote_file_path, ftp prompts
you for it by displaying:
(to-name)

Example Entries:

rename /users/lab/richard/doc/note /users/lab/richard/memo

rename memo memo.tmp

8 —72 Performing Other File Operations with Ftp

Result:

Ftp changes the name and/or the path to the remote file.
e If verbose mode is off, fip displays:

ftp>
e If verbose mode is on, ftp displays:

File exists, ready for destination name.

RNTO command okay.

Transferring Files with Ftp 8—73

Obtaining Ftp Status

You can display the status of all of fip’s feature settings. These include:

e whether or not a connection to a remote host exists and the name of the
host to which a connection exists (if any),

e the file transfer type,

e whether or not fip is set to sound a bell after each file transfer completes,
e whether or not interactive mode is on for multiple-file operations,

e whether or not globbing is on,

¢ whether or not ftp is set to display a hash mark for each 1024 bytes
transferred during a file transfer, and

e other status information for settings that you cannot change or that need
not be used in HP’s implementation of fip.

At the ftp > prompt, enter:

status
Result:

Fip displays the status of all of its feature settings.

8 —74 Obtaining Ftp Status

Setting Up Automatic Remote Login for Ftp

You can create a file named .netrc that lets ftp log you into a remote host
automatically. You place remote login names and passwords in this file so
that fip need not prompt you for these. This feature can be useful for
programs that need to perform fip operations unattended.

Caution

Having a .netrc file is a serious security risk. Passwords in
this file are unencrypted. Be sure to follow the directions
below for "Protecting Your .netrc File."

Your .netrc file must be in your home directory on your local host. You
can find out what your home directory is by entering:

echo $HOME
Each entry you place in your .netrc file must have the following format:
machine remote_host name login remote_login_name password remote_password
Follow these rules when creating a .netrc file:

e Each entry must contain a valid remote host name, remote login name
and remote password. Valid remote host names are listed in the
Jetc/hosts file on your local host.

® Separate each word in an entry with tabs, commas or blanks.

® Follow each remote host name with only one remote login name and
one remote password.

Transferring Files with Ftp 8—75

Example SHOME/.netrc File Entry:

If you wanted to set up automatic login to the remote host hpabsa, and
your remote login name and password on that host were carolyn and
driveway, respectively, you would create a SHOME].netrc file with the
following entry:

machine hpabsa Togin carolyn password driveway

Protecting Your .netrc File

It is important to protect your .netrc file and your home directory to
prevent unauthorized users from gaining access to the remote hosts and
accounts in your .netrc file. To do so:

1. Insure that your .netrc file is owned by you, the user.

2. Use the HP-UX chmod command to protect your .netrc file with 0400
(-r--------) permission.

3. Use the HP-UX chmod command to protect your home directory so that
no one else can read it or write to it. For example, you should protect
your home directory with at least 0711 (-rwx--x--x) permission.

4. Insure that your local account has a password.
To automatically log into a remote host once your .netrc file is set up, just

invoke ftp and open a connection to the remote host. Ftp then automati-
cally logs you into that host.

8 —76 Setting Up Automatic Remote Login for Ftp

Logging into a Remote Host with a Login Not in Your .netrc File

If you need to log into a remote host as someone else, you can override
the automatic login (.netrc file) you set up for ftp. To do so, you:

e invoke ftp with the —n option to disable automatic login,

® choose whether you want fip to display responses from the remote host
(choose whether you want verbose mode on or off),

e connect to the remote host, and then

e Jog into the remote host with ftp’s user command.

1. Invoke Ftp with the -n Option
At your HP-UX prompt, enter:

ftp -n
Result:
Ftp displays its prompt:
ftp>
Note
z}utomatic login remains disabled for your entire fip ses-
sion.

2. Choose Whether You Want Verbose Mode On or Off

If you want fip to display responses from the remote host, insure that ver-
bose mode is on. Otherwise turn it off.

Use ftp’s status command to check the verbose mode setting, and use ftp’s

verbose command to change the setting if you want to. These two ftp com-
mands are explained in earlier sections of this chapter.

Transferring Files with Ftp 8 —77

3. Connect to the Remote Host

Connect to the remote host as you normally would with fip’s open com-
mand. This command is explained earlier in this chapter.

4. Log into the Remote Host with Fip’s User Command

There are two ways to log into a remote host with ftp’s user command.
The faster way allows you to enter all of the login information on one
line, but displays the remote password as you enter it. The other way
causes ftp to prompt you for the remote password and does not display
the remote password as you enter it.

Logging into a Remote Host with a Single Command Line

Caution

This method displays the remote password as you enter
it.

At the ftp > prompt, enter:
user remote_login_name remote_password [account]

where remote_login_name and remote_password must be valid on the
remote host. Some remote hosts require you to enter a valid account
name.

Example Entry:

user richard soccer

8 —78 Setting Up Automatic Remote Login for Ftp

Result:

Fitp checks the remote login name, password, and account (if applicable)
for validity and logs you into the remote host if they are valid.

e If verbose mode is off, ftp displays:
ftp>
e If verbose mode is on, ftp displays:
Password required for remote Togin name.
User remote login name logged in.
ftp>
Logging into a Remote Host without Displaying the Remote Password
1. At the ftp > prompt, enter:
user remote_login_name
where remote_login_name must be valid on the remote host.
Example Entry:

user richard

Transferring Files with Ftp 8 —-79

Result:

Ftp prompts you for the remote password associated with the remote
login name you entered.

e If verbose mode is off, ftp displays:
Password:
e If verbose mode is on, ftp displays:

Password required for remote _login _name.

Password:

2. Enter the remote password associated with the remote login name you
gave. (The password is not displayed as you enter it.)

Result:

Fitp checks the remote password for validity and logs you into the remote
host if your password is valid. Some remote hosts may require you to
enter a valid account name before you are logged in.

e If verbose mode is off, fip displays:
ftp>
e If verbose mode is on, ftp displays:

User remote Togin name logged in.

ftp>

8 —80 Setting Up Automatic Remote Login for Ftp

The Public Ftp Account

Some remote hosts may have a public (guest or anonymous) fip account.

When you log into this account, it becomes your effective root directory,

and you cannot access anything above it. A public ftp account has the fol-
lowing directory structure:

(effective root)
A

|
|

bin eifc pub

User’s View of Public Ftp Directory Structure

Directory Description

bin This directory contains copies of the Is(1), sh(1) and csh(1)
programs to support fip’s dir, Is, and pwd commands.

etc This directory contains copies of the files passwd(1) and
group(1). These files must be present for fip’s dir, Is, and
pwd commands to work properly.

pub Users can place files in this directory for public access. For
example, this directory might contain announcements, re-
quests for comment, or host tables.

Transferring Files with Ftp 8 —81

Logging into the Public (Anonymous) Ftp Account

1. Invoke fip, insure that verbose mode is set to what you want, and
connect to a remote host as you normally would.

2. When ftp prompts for a remote login name with the Name (...): prompt,
enter:

ftp
Result:

Ftp prompts for the remote password associated with the fip remote
login name, displaying:

Password (remote host:ftp):
3. Enter the name of your local host.

Example Entry:
hpabsa

Result:

If a public (guest or anonymous) ftp account exists on the remote host,
ftp logs you into that account and makes the fip directory your working
and effective root directory.

e If verbose mode is off, fip displays:
ftp>

e If verbose mode is on, ftp displays:
Guest login ok, send ident as password.
Guest Togin ok, access restrictions apply.

ftp>

8 —82 The Public Ftp Account

Specifying Ftp Settings and Connecting to a
Remote Host When You Invoke Ftp

You can change some of fip’s settings when you first invoke fip, if you
know ahead of time how you want ftp set up. You can also connect to a
remote host when you invoke fip.

The ftp command you give from your local HP-UX prompt can take the
following form:

ftp [-g] [-i] [-n] [-V] [remote_host]

Anything in brackets is optional. The following table explains the effect of
each option above.

Option Effect
—£ This option turns off globbing (metacharacter expansion).
—i This option turns off interactive mode for multiple-file

operations. This is useful if, for example, you know ahead
of time that you want to use ftp to perform bulk, instead of
selective, file deletions or file transfers.

-n This option disables automatic login (as set up by a
$HOME/.netrc file). Use of this option is explained in an
earlier section of this chapter.

-V This option turns on verbose output (the display of respon-
ses from any remote host you connect to). If you invoke fip
from your keyboard (HP-UX terminal), ftp turns on ver-
bose output without this option. This option is only useful if
ftp is invoked indirectly. For example, if a program invokes
ftp with this option, and fp’s output is going to a file, the
output file will contain a "log" of fip’s results.

Specifying a remote host’s name or alias (as listed in your local host’s

/etc/hosts file) on the ftp command line causes ftp to connect to that
remote host without your having to use fip’s open command.

Transferring Files with Ftp 8—83

8 —84 Specifying Ftp Settings and Connecting to a Remote Host When You Invoke
Ftp

Transferring Files with Rcp

Rcp is a Berkeley Service that allows you to copy files between only
HP-UX or UNIX hosts on the network.

Rcp can copy the contents of an entire directory. This includes all files
and the contents of all subdirectories within that directory. From your
local host, you can also copy files between two remote hosts.

Rep allows file transfers to and from other hosts only if the configuration
files that this service uses are set up properly. These files are mentioned
later in this chapter.

File Copy Concepts
With rcp you can copy files and directories
From To
your local host a remote host
a remote host your local host
a remote host another remote host

These scenarios can be represented by the initiator/producer/consumer
model.

Transferring Files with Rep 9-—1

In any rcp operation, there may be up to three hosts involved: an initiator,
a producer and a consumer.

® The initiator is your local host, the host on which you make the rcp
request. It receives requests from you and starts file copies.

e The producer is the host that the source file or directory is on. It
accesses the source file or directory and produces the data to be copied.

¢ The consumer is the host that the destination file or directory resides on
or will reside on. It receives the incoming data and writes it to the
destination file or directory.

In the diagram below, the arrows represent data being copied from a
source file to a destination file. If host A is the initiator in each case, the
location of the producer and consumer depends on the location of the
source and destination files.

rcp AtoB rcp Bto A rcp CtoB rcp BtoC
::S:Er £:Jl:;r initiator init@tor
producer consumer
n consumer E producer
consumer producer

Initiator/Producer/Consumer Model

9—2 File Copy Concepts

Using Rcp

Rcp allows you to copy files to or from a remote host if the remote host is
configured in either of two ways.

Either:

® you must have an account on the remote host with the same login name
as your local login name, and

® the name of your local host must be in the remote host’s /etc/hosts.equiv
file,

or:
® you must have an account on the remote host, and

® the name of your local host and your local login name must be in a
.rhosts file in your home directory on the remote host.

The next section explains how to create a remote $HOME/.rhosts file for
yourself, if you need to do so. Otherwise, skip the next section.

Creating a SHOME/.rhosts File on a Remote Host

If you have an account on a remote host, you can give yourself rcp access
to your remote account by creating a file named .rhosts in your remote
home directory. You can find out what your remote home directory is by
entering:

echo $HOME

on the remote host. You must place the name of your local host and your
local login name in the .rhosts file you create.

Transferring Files with Rep 9-3

Note

A $HOME].rhosts file creates a significant security risk.
Be sure to follow the directions below for "Protecting
Your .rhosts File."

The entry you place in the remote .rhosts file must have the following
format:

your local_host’s_name your local _login_name

You can separate your_local_host’s_name and your_local_login_name with
any number of tabs or spaces. Put any comments after
your_local login_name.

Example $SHOME]/.rhosts File Entry

If your local host’s name were hpabsa and your local login name were
richard, on the remote host you would create a SHOME].rhosts file with
the following entry:

hpabsa richard

9—4 Using Rcp

Protecting Your $SHOME/.rhosts File

It is important to protect your remote .rhosts file and home directory to
prevent unauthorized users from gaining rcp access to your remote ac-
count and host. Only you should be able to create a .rhosts file in your
remote home directory and write entries to the file. To do so:

1. Insure that your remote .rhosts file is owned by you, the user.

2. Use the HP-UX or UNIX chmod command to protect your remote
.rhosts file with 0400 (-r--------) permission.

3. Use the HP-UX or UNIX chmod command to protect your remote
home directory so that no one else can read it or write to it. For
example, you should protect your remote home directory with at least
0711 (-rwx--x--x) permission.

Transferring Files with Rep 9-35

Performing Copy Operations with Rcp

Note

When you copy remote files and directories, the working

directory for rcp on the remote host is your remote
SHOME directory.

With rep, you can copy from:

e a single local or remote file,

¢ multiple local and/or remote files,

e asingle local or remote directory,

¢ multiple local and/or remote directories,

¢ any combination of local and/or remote files and directories.

What rcp can copy to depends on what rcp is copying from.

Note

Rep can copy from only ordinary files and directories,
not special files and directories (such as /dev files).
However, rcp can copy to special files (such as /dev files).

9—6 Performing Copy Operations with Rcp

Note

In rep file transfers you must explicitly specify the des-
tination file or directory.

Any output generated by commands in a .login, .profile,
or .cshre file on the remote host can cause rcp errors.

Caution

Do not specify the same source and destination files.
This can corrupt the file’s contents.

When rcp completes a copy operation, your local host redisplays its
prompt.

The following sections explain all of r¢cp’s copy options.

Transferring Files with Rep 9-7

From a Local Producer to a Remote Consumer

Source Allowed Destinations

Result of Copy

A Local File A New Remote File

An Existing Remote
File

An Existing Remote
Directory

Local Files An Existing Remote
Directory

Rep creates the destination file and
copies the source file’s contents into
the destination file.

Rep overwrites the destination file’s
contents with the source file’s contents.

Rep copies the source file into the des-
tination directory.

Rcp copies the source files into the des-
tination directory.

If the destination is a link to a file, the file to which the destination is
linked is overwritten, and all links to the file remain the same.

At your HP-UX prompt, enter:

rcp local_path ... remote_host:remote_path

where:

® [ocal_path is the path relative to your local working directory or the

full path from the local root directory,

e the ellipsis (...) means that you can specify multiple local_paths,

9—8 Performing Copy Operations with Rcp

® remote_host is the name or alias of a host listed in /etc/hosts, and

Note

The file /etc/hosts contains entries for hosts with which
you can communicate using ARPA/Berkeley Services.
For each host, the file has a line containing the host’s:

internet_address official_name alias ...
The ellipsis (...) means that a host may have multiple

aliases. The /etc/hosts file may contain comments and
other information as well.

® remote_path is the path relative to your remote home directory or the
full path from the remote root directory.

Example Entry:

rcp /users/alan/program mail/defects hpabsb:project

Transferring Files with Rep 9-9

Source Allowed Destinations Result of Copy

A Local Directory A New Remote Direc- Rcp creates the destination directory
tory and copies the contents of the source
directory into the destination directory.

An Existing Remote Rcp copies the source directory itself

Directory along with its contents into the destina-
tion directory. Rcp overwrites any exist-
ing files.

Local Directories An Existing Remote Rcp copies the source directories

Directory themselves along with their contents

into the destination directory.

Any Combination of An Existing Remote Rep copies the source files and the

Local Files and Directory source directories themselves along
Directories with their contents into the destination
directory.

At your HP-UX prompt, enter:

rcp -r local _path ... remote_host:remote_path
where:

® —r (recursive option) causes rcp to copy the contents of any source
directories,

® ocal_path is the path relative to your local working directory or the
full path from the local root directory,

e the ellipsis (...) means that you can specify multiple local_paths,

9—10 Performing Copy Operations with Rcp

® remote_host is the name or alias of a host listed in /etc/hosts, and

Note

The file /etc/hosts contains entries for hosts with which
you can communicate using ARPA/Berkeley Services.
For each host, the file has a line containing the host’s:

internet_address official_name alias ...
The ellipsis (...) means that a host may have multiple

aliases. The [etc/hosts file may contain comments and
other information as well.

® remote_path is the path relative to your remote home directory or the
full path from the remote root directory.

Example Entry:

rcp -r mail /users/alan/memos hpabsb:correspondence

Transferring Files with Recp 9-—11

From One or More Remote Producers to a Local Consumer

Source Allowed Destinations Result of Copy

A Remote File A New Local File Rep creates the destination file and
copies the source file’s contents into
the destination file.

An Existing Local File Rcp overwrites the destination file’s
contents with the source file’s contents.

An Existing Local Rcp copies the source file into the des-
Directory tination directory.

Remote Files An Existing Local Rcp copies the source files into the des-
Directory tination directory.

If the destination is a link to a file, the file to which the destination is
linked is overwritten, and all links to the file remain the same.

At your HP-UX prompt, enter:
rcp remote_hostiremote path ... local path

where:

® remote_host is the name or alias of a host listed in /etc/hosts,

Note

The file /etc/hosts contains entries for hosts with which
you can communicate using ARPA/Berkeley Services.
For each host, the file has a line containing the host’s:

internet_address official_name alias ...
The ellipsis (...) means that a host may have multiple

aliases. The /etc/hosts file may contain comments and
other information as well.

9—12 Performing Copy Operations with Rcp

® remote_path is the path relative to your remote home directory or the
full path from the remote root directory,

e the ellipsis (...) means that you can specify multiple remote_paths, and

® Jocal_path is the path relative to your local working directory or the
full path from the local root directory.

Example Entry:
rcp hpabsb:/users/alan/graphics/logo hpabsb:form templates

Transferring Files with Rep 9—13

Source

Allowed Destinations

Result of Copy

A Remote Directory

Remote Directories

Any Combination of
Remote Files and
Directories

A New Local Direc-
tory

An Existing Local
Directory

An Existing Local
Directory

An Existing Local
Directory

At your HP-UX prompt, enter:

rcp -r

where:

remote_host:remote_path ...

Rep creates the destination directory
and copies the contents of the source
directory into the destination directory.

Rcp copies the source directory itself
along with its contents into the destina-
tion directory. Rcp overwrites any exist-
ing files.

Rep copies the source directories
themselves along with their contents
into the destination directory.

Rep copies the source files and the
source directories themselves along
with their contents into the destination
directory.

local_path

® —r (recursive option) causes rcp to copy the contents of any source

directories,

9—14 Performing Copy Operations with Rcp

® remote_host is the name or alias of a host listed in /etc/hosts,

Note

The file /etc/hosts contains entries for hosts with which
you can communicate using ARPA/Berkeley Services.
For each host, the file has a line containing the host’s:

internet_address official_name alias ...
The ellipsis (...) means that a host may have multiple

aliases. The /etc/hosts file may contain comments and
other information as well.

® remote_path is the path relative to your remote home directory or the
full path from the remote root directory,

e the ellipsis (...) means that you can specify multiple local_paths, and

® Jocal_path is the path relative to your local working directory or the
full path from the local root directory.

Example Entry:

rcp -r hpabsb:/users/alan/document hpabsb:paper textfiles

Transferring Files with Recp 9—15

From One or More Remote Producers to a Remote Consumer

Rep allows you to copy files between two remote hosts if the remote con-
sumer host is configured in either of two ways:

Either:

e you must have an account on the remote consumer host with the same
login name you have on the remote producer host, and

e the name of the remote producer host must be in the remote consumer
host’s /etc/hosts.equiv file,

or:
e you must have an account on the remote consumer host, and

¢ the name of the remote producer host and your login name on the
remote producer host must be in a.rhosts file in your home directory on
the remote consumer host.

Source Allowed Destinations Result of Copy

A Remote File A New Remote File Rcp creates the destination file and
copies the source file’s contents into
the destination file.

An Existing Remote Rcp overwrites the destination file’s
File contents with the source file’s contents.
An Existing Remote Rcp copies the source file into the des-
Directory tination directory.

Remote Files An Existing Remote Rep copies the source files into the des-
Directory tination directory.

9—16 Performing Copy Operations with Rcp

At your HP-UX prompt, enter:
rcp remote_host:iremote path ... remote_host:remote_path

where:

® remote_host is the name or alias of a host listed in /etc/hosts,

Note

The file /etc/hosts contains entries for hosts with which
you can communicate using ARPA/Berkeley Services.
For each host, the file has a line containing the host’s:

internet_address official_name alias ...
The ellipsis (...) means that a host may have multiple

aliases. The /etc/hosts file may contain comments and
other information as well.

® remote_path is the path relative to your remote home directory or the
full path from the remote root directory, and

e the ellipsis (...) means that you can specify multiple remote_paths.
Example Entry:
rcp hpabsb:graphics/logo hpabsb:form hpabsc:templates

Transferring Files with Rep 9—-17

Source

Allowed Destinations

Result of Copy

A Remote Directory

Remote Directories

Any Combination of
Remote Files and
Directories

A New Remote Direc-
tory

An Existing Remote
Directory

An Existing Remote
Directory

An Existing Remote
Directory

At your HP-UX prompt, enter:

rcp -r remote_host:remote_path ...

where:

Rcp creates the destination directory
and copies the contents of the source
directory into the destination directory.

Rcp copies the source directory itself
along with its contents into the destina-
tion directory. Rep overwrites any exist-
ing files.

Rcp copies the source directories
themselves along with their contents
into the destination directory.

Rcp copies the source files and the
source directories themselves along
with their contents into the destination
directory.

remote_host:remote_path

® -r (recursive option) causes rcp to copy the contents of any source

directories,

9—18 Performing Copy Operations with Rep

® remote_host is the name or alias of a host listed in /etc/hosts,

Note

The file /etc/hosts contains entries for hosts with which
you can communicate using ARPA/Berkeley Services.
For each host, the file has a line containing the host’s:

internet_address official_name alias ...
The ellipsis (...) means that a host may have multiple

aliases. The /etc/hosts file may contain comments and
other information as well.

® remote_path is the path relative to your remote home directory or the
full path from the remote root directory, and

e the ellipsis (...) means that you can specify multiple remote_paths.
Example Entry:
rcp -r hpabsb:document hpabsb:paper hpabsc:textfiles

Transferring Files with Recp 9-—19

From Local and Remote Producers to a Local Consumer

Source Allowed Destinations Result of Copy
Local and Remote An Existing Local Rep copies the source files into the
Files Directory destination directory.

At your HP-UX prompt, enter:
rcp local_path ... remote_host:remote_path ... local_path

where:

® [ocal_path is the path relative to your local working directory or the
full path from the local root directory,

e the ellipses (...) mean that you can specify multiple local_paths or
remote_paths,

® remote_host is the name or alias of a host listed in /etc/hosts, and

Note

The file /etc/hosts contains entries for hosts with which
you can communicate using ARPA/Berkeley Services.
For each host, the file has a line containing the host’s:

internet_address official name alias ...
The ellipsis (...) means that a host may have multiple

aliases. The /etc/hosts file may contain comments and
other information as well.

9—20 Performing Copy Operations with Rcp

® remote_path is the path relative to your remote home directory or the
full path from the remote root directory.

Example Entry:

rcp modulel hpabsb:module2 /code/integration

Transferring Files with Rep 9—21

Source Allowed Destinations

Result of Copy

Local and Remote An Existing Local
Directories Directory

Any Combination of An Existing Local
Local and Remote Directory
Files and Directories

At your HP-UX prompt, enter:

Rcp copies the source directories
themselves along with their contents
into the destination directory.

Rcp copies the source files and the
source directories themselves along
with their contents into the destination
directory.

rcp -r local_path... remote_host:remote_path... local_path

where:

e -r (recursive option) causes rcp to copy the contents of any source

directories,

® Jocal_path is the path relative to your local working directory or the

full path from the local root directory,

e the ellipsis (...) means that you can specify multiple local paths,

® remote_host is the name or alias of a host listed in /etc/hosts, and

Note

The file /etc/hosts contains entries for hosts with which
you can communicate using ARPA/Berkeley Services.
For each host, the file has a line containing the host’s:

internet_address official_ name alias ...

The ellipsis (...) means that a host may have multiple
aliases. The /etc/hosts file may contain comments and

other information as well.

9—22 Performing Copy Operations with Rcp

® remote_path is the path relative to your remote home directory or the
full path from the remote root directory.

Example Entry:

rcp -r /users/alan/drawings hpabsc:charts /1ib/graphics

Transferring Files with Rep 9-—23

From Local and Remote Producers to a Remote Consumer

Source Allowed Destinations Result of Copy
Local and Remote An Existing Remote Rep copies the source files into the des-
Files Directory tination directory.

At your HP-UX prompt, enter:

rcp local_path... remote_host:remote_path... remote_host:remote_path

where:

® Jocal_path is the path relative to your local working directory or the
full path from the local root directory,

e the ellipses (...) mean that you can specify multiple local paths or
remote_paths,

® remote_host is the name or alias of a host listed in /etc/hosts, and

Note

The file /etc/hosts contains entries for hosts with which
you can communicate using ARPA/Berkeley Services.
For each host, the file has a line containing the host’s:

internet_address official_name alias ...
The ellipsis (...) means that a host may have multiple

aliases. The /etc/hosts file may contain comments and
other information as well.

9—24 Performing Copy Operations with Rep

® remote_path is the path relative to your remote home directory or the
full path from the remote root directory.

Example Entry:
rcp logfilel hpabsb:Togfile2 hpabsc:/tests/results

Transferring Files with Rep 9-—25

Source Allowed Destinations

Result of Copy

Local and Remote An Existing Remote
Directories Directory

Any Combination of An Existing Remote
Local and Remote Directory
Files and Directories

At your HP-UX prompt, enter:

Rep copies the source directories
themselves along with their contents
into the destination directory.

Rep copies the source files and the
source directories themselves along
with their contents into the destination
directory.

rcp -r local_path... remote_host:remote_path... remote_host:remote_path

where:

e -r (recursive option) causes rcp to copy the contents of any source

directories,

® [ocal_path is the path relative to your local working directory or the

full path from the local root directory,

e the ellipses (...) mean that you can specify multiple local paths,

® remote_host is the name or alias of a host listed in /etc/hosts, and

Note

The file /etc/hosts contains entries for hosts with which
you can communicate using ARPA/Berkeley Services.
For each host, the file has a line containing the host’s:

internet_address official name alias ...

The ellipsis (...) means that a host may have multiple
aliases. The /etc/hosts file may contain comments and

other information as well.

9—26 Performing Copy Operations with Rep

® remote_path is the path relative to your remote home directory or the
full path from the remote root directory.

Example Entry:

rcp -r /users/alan/reports hpabsb:article hpabsc:newsitems

Transferring Files with Rep 9—-27

Rcp’s Effect on File Attributes

Rcp sets the last access time of any source files and/or directories to the
time that the copy occurs.

If the destination file or directory | exists, does not exist,
then the mode is | unchanged same as source file
owner is | unchanged same as user’s
group is | unchanged same as user’s
last access time is | unchanged | set to the time
| when copy
| occurred
last modification time is | set to the | set to the time
time when when copy
copy occurred | occurred

9—28 Performing Copy Operations with Rcp

Using "Wild Card" Characters, or Metacharacters with Rcp

In an rcp command, a local file or directory path can contain any
metacharacters that are allowed by the shell you are using. Metacharac-
ters, or wild card characters, stand for a set of characters or character
strings and are a "shorthand" way of specifying a set of directory or file
names. Your local shell expands the metacharacters into the directory
and file names they match before rcp performs the copy operation.

In an rcp command, for any metacharacters in a remote file or directory
path to be expanded on the remote host, not on the local host, you must
enclose each remote source path in single (') or double ("") quotes. You
can also escape individual metacharacters by preceding them with a back-

slash (\\) so that the remote host expands them.
Example Entries:
rcp -r hpabsb:"*.c" /users/alan/cprograms

rcp -r hpabsb:*.c /users/alan/cprograms

Remember that if the source specification includes any directories (not
files only), you must use the rcp -r syntax.

Transferring Files with Rep 9-—29

Copying Remote Files and Directories as
Someone Else on the Remote Host

With rcp you can assume the identity of another user on a remote host if:
e you know that user’s login name on the remote host and

e that user has your local host name and local login name in a .rhosts file in
his or her home directory on the remote host.

When you copy remote files and directories under these conditions, the
working directory for rcp on the remote host is the user’s remote home
directory.

To assume the identity of another user on a remote host, you use the fol-
lowing syntax for a remote file or directory:

remote_host.remote_login_name:remote_path
where:
® remote_host is the name or alias of a host listed in /etc/hosts,
® remote_login_name is the login name of the remote user, and

® remote_path is the path relative to the remote user’s home directory or
the full path from the remote root directory.

Example File Syntax:

hpabsb.alan:cprograms/modulel.c

9—30 Copying Remote Files and Directories as Someone Else on the Remote Host

Giving Other Remote Users Rcp Access to
Your Local Account

You can give remote users rcp access to your local account by creating a
.rhosts file. You place remote users’ host names and login names in this
file so that rcp lets them assume your identity when copying files to or
from your local host.

Caution

A SHOME)|.rhosts file creates a significant security risk.
Be sure to follow the instructions below for "Protecting
Your .rhosts File."

Your .rhosts file must be in your home directory on your local host.

Each entry you place in your local .rhosts file must have the following for-
mat:

remote_host_name remote_login_name
Follow these rules when creating a .rhosts file:

e Each entry must contain a valid remote host name and remote login
name.

e Separate the host name and login name with any number of tabs or
blanks.

e Put any comments after the login name in any entry.

Transferring Files with Rep 9-31

Example $HOME/.rhosts File Entry

If you wanted to give user cdm on remote host hpabsb rcp access to your
local account, you would create a local SHOME]/.rhosts file with the
following entry:

hpabsb cdm

Protecting Your .rhosts File

It is important to protect your local .rhosts file and your local home direc-
tory to prevent unauthorized users from gaining rcp access to your ac-
count and local host. Only you should be able to create a .rhosts file in
your home directory and write entries to it. To do this:

1. Insure that your .rhosts file is owned by you, the user.

2. Use the HP-UX chmod command to protect your local .rhosts file with
0400 (-r--------) permission.

3. Use the HP-UX chmod command to protect your local home directory
so that no one else can read it or write to it. For example, you should
protect your local home directory with at least 0711 (-rwx--x--x)
permission.

9—32 Giving Other Remote Users Rcp Access to Your Local Account

10

Executing Commands with
Remsh

Remsh is a Berkeley Service that allows you to execute commands on a
remote HP-UX or UNIX host on the network. Remsh is the same com-
mand as rsh in 4.2 BSD and later versions.

This chapter will cover:

e Setting Up Permission to Use Remsh on a Remote Host

e Executing Commands on a Remote Host as Yourself

e Executing Commands on a Remote Host as Someone Else

e Giving Other Remote Users Remsh Access to Your Local Account
e Executing More Than One Remote Command with Remsh

e Using Shell Metacharacters with Remsh

e Using Remsh with Remote Commands That Do Not Take Input

e Using Remsh’s "Shorthand" Syntax

Executing Commands with Remsh 10-—1

Setting Up Permission to Use Remsh on a
Remote Host

Caution

Do not use remsh to run an interactive command, such
as vi or more. With some interactive commands, remsh
hangs. To run interactive commands, log into the remote
host with rlogin.

Remsh allows you to execute a command on a remote host if the remote
host is configured in either of two ways.

Either:

¢ you must have an account on the remote host with the same login name
as your local login name, and

e the name of your local host must be in the remote host’s /etc/hosts.equiv
file,

or:
e you must have an account on the remote host, and

e the name of your local host and your local login name must be in a
.rhosts file in your home directory on the remote host.

The next section explains how to create a remote SHOME]/.rhosts file for
yourself, if you need to do so. Otherwise, skip the next section.

For more information about remote hosts, see the hosts.equiv (4)
reference pages.

10—-2 Setting Up Permission to Use Remsh on a Remote Host

Creating a $HOME/.rhosts File on a Remote Host

If you have an account on a remote host, you can give yourself remsh
access to your remote account by creating a file named .rhosts in your
remote home directory. You can find out what your remote home direc-
tory is by entering:

echo $HOME

on the remote host. You must place the name of your local host and your
local login name in the .rhosts file you create.

Caution

A SHOME].rhosts file creates a significant security risk.
Be sure to follow the directions below for "Protecting
Your .rhosts File."

The entry you place in your .rhosts file must have the following format:
your_local_host’s_name your local_login_name

You can separate your local_host’s name and your local login name with
any number of tabs or spaces. Put any comments after
your_local_login_name.

Example $HOME]/.rhosts File Entry

If your local host’s name were hpabsa and your local login name were
richard, on the remote host you would create a SHOME].rhosts file with
the following entry:

hpabsa richard

Executing Commands with Remsh 10-3

Protecting Your $SHOME/.rhosts File

It is important to protect your remote .rhosts file and home directory to
prevent unauthorized users from gaining remsh access to your remote
account and host. Only you should be able to create a .rhosts file in your
remote home directory and write entries to the file. To do so:

1. Insure that your remote .rhosts file is owned by you, the user.

2. Use the HP-UX or UNIX chmod command to protect your remote
.rhosts file with 0400 (-r--------) permission.

3. Use the HP-UX or UNIX chmod command to protect your remote
home directory so that no one else can read it or write to it. For
example, you should protect your remote home directory with at least
0711 (-rwx--x--x) permission.

10—4 Setting Up Permission to Use Remsh on a Remote Host

Executing Commands on a Remote Host as
Yourself

Note

When you execute a command on a remote host, the
working directory for remsh on the remote host is your
remote $HOME directory.

Remsh passes interrupt, terminate, quit and hangup sig-
nals to the remote command you execute.

At your HP-UX prompt, enter:
remsh remote_host command

where remote_host is the name or alias of a host listed in /etc/hosts and
command is a non-interactive HP-UX or UNIX command to execute on
the remote host.

Note

The file /etc/hosts contains entries for hosts with which
you can communicate using ARPA/Berkeley Services.
For each host, the file has a line containing the host’s:

internet_address official_name alias ...
The ellipsis (...) means that a host may have multiple

aliases. The /etc/hosts file may contain comments and
other information as well.

Executing Commands with Remsh 10-35

Example Entry:
remsh hpabsb cp form form.bkp
Result:

Remsh searches for the command you specify in the following remote
directories in the order shown:

1. /bin

2. Jusr/bin

3. Jusr/contrib/bin
4. Jusr/local/bin

On finding the command, remsh executes the command on the remote
host and then your local host redisplays its prompt.

Note that if you do not give any command on the remsh command line,
remsh interprets any options in the command line as rlogin options and
runs rlogin.

10—6 Executing Commands on a Remote Host as Yourself

Executing Commands on a Remote Host as
Someone Else

With remsh you can execute a command as another user on a remote host
if that user has your local host name and local login name in a .rhosts file
in his or her home directory on the remote host.

Note

When you execute a command under these conditions,
the working directory for remsh on the remote host is
the remote user’s home directory.

If the remote user’s account has no password, you can use remsh to ex-
ecute remote commands as that user without having your local host name
and local login name in the user’s SHOME]/.rhosts file.

At your HP-UX prompt, enter:
remsh remote_host -1 remote_login name command
where:

® remote_host is the name or alias of a host listed in /etc/hosts,

® remote_login_name is the login name of the remote user who you want
to execute the command as, and

e command is a command to execute on the remote host.

Executing Commands with Remsh 10-7

Giving Other Remote Users Remsh Access
to Your Local Account

You can give remote users remsh access to your local account by creating
a .rhosts file in your local home directory. You place remote users’ host
names and login names in this file so that remsh lets them execute com-
mands as you on your local host. (For more information, see the
hosts.equiv (4) reference pages.)

Caution

A SHOME].rhosts file creates a significant security risk.
Be sure to follow the instructions below on "Protecting
Your .rhosts File."

Your .rhosts file must be in your home directory on your local host.

Each entry you place in your .rhosts file must have the following format:
remote_host_name remote_login_name

Follow these rules when creating a .rhosts file:

e Each entry must contain a valid remote host name and remote login
name.

® Separate the host name and login name with any number of tabs or
blanks.

e Put any comments after the login name in any entry.

10—-8 Giving Other Remote Users Remsh Access to Your Local Account

Example $HOME]/.rhosts File Entry

If you wanted to give user cdm on remote host hpabsc remsh access to
your local account, you would create a §HOME].rhosts file on your local
host with the following entry:

hpabsc cdm

Protecting Your .rhosts File

It is important to protect your .rhosts file and your local home directory to
prevent unauthorized users from gaining remsh access to your local ac-
count. Only you should be able to create a .rhosts file in your home direc-
tory and write entries to it. To do this:

1. Insure that your .rhosts file is owned by you, the user.

2. Use the HP-UX chmod command to protect your .rhosts file with 0400
(-r--------) permission.

3. Use the HP-UX chmod command to protect your local home directory
so that no one else can read it or write to it. For example, you should
protect your local home directory with at least 0711 (-rwx--x--x)
permission.

4. Insure that your account has a password. Otherwise, anyone can execute
commands as you (with your login name) on your local host.

Executing Commands with Remsh 10-9

Executing More Than One Remote
Command with Remsh

When you use remsh to execute more than one remote command, be
aware of the following: a new remote shell executes the command(s) on
each remsh command line. Therefore, when a remote command ter-
minates, its process attributes (such as its environment and current work-
ing directory) disappear along with the shell that executed the command.
For example, a remote cd command executed with remsh isolates the
change of working directory to that instance of the command. A sub-
sequent remote pwd command executed with remsh does not reflect the
previous change in the working directory.

To execute more than one remote command without losing process at-
tributes from one command to the next, you must:

® put the commands on a single remsh command line,
® separate the commands with semicolons (;), and

nn

e enclose the string of commands in quotes (" ") so that the remote host
executes every command. Otherwise, your local host executes any
command(s) after the first one on the command line.

You can also have the remote host execute the string of commands by
preceding each semicolon separator with a back slash (\).

10—10 Executing More Than One Remote Command with Remsh

At your HP-UX prompt, enter:

remsh remote_host "command;..command"
or

remsh remote_host command \;...command

where remote_host is the name or alias of a host listed in /efc/hosts, and
command is a non-interactive HP-UX or UNIX command to execute on
the remote host. The ellipsis (...) means that you can specify more than
one command;; or command \;.

Example Entries:
remsh hpabsb "pwd; cd reports; pwd"
remsh hpabsb pwd \; cd reports \; pwd
Result:

Remsh executes the commands in sequence on the remote host, and your
local host redisplays its prompt. Each remote command inherits the
preceding one’s process attributes. For example, the last pwd command
in the example entries above would show reports as the remote working
directory.

Executing Commands with Remsh 10-—-11

Using Shell Metacharacters with Remsh

Commands can contain metacharacters to be interpreted on either the
local host or the remote host. The metacharacters you may use are those
allowed by the shell you are using.

To Have Metacharacters

Interpreted Do This
On Your Local Host Specify them as you normally
would for local commands.
On a Remote Host Enclose them in double quotes
(II II).

Stdin, Stdout, and Stderr for Remsh

Remsh’s stdin becomes the remote command’s stdin, and the remote
command’s stdout and stderr become remsh’s stdout and stderr, as il-
lustrated below.

aldin aldin
terminal remote
or = remsh -
command
workstation sfdout stdout
“otderr ___J | atderr
On Your Local Host On a Remote Host

10—12 Using Shell Metacharacters with Remsh

This means that you can use metacharacters to:

e redirect a remote command’s input (stdin), output (stdout) and
diagnostic output (stderr),

e pipe the output of a remote command into another remote or local
command, and

e pipe the output of another remote or local command into a remote
command.

For example, the command

remsh hpabsb cat remotefile > Tocalfile

appends the remote file remotefile to the local file localfile. In contrast,
the command

remsh hpabsb cat remotefilel ">" remotefile2
appends the remote file remotefilel to the other remote file remotefile2.
The command

remsh hpabsb cat /tmp/broadcastmsg | wall

displays the message in the remote file broadcastmsg on all of the local
host’s terminals. In contrast, the command

remsh hpabsb cat /tmp/broadcastmsg " |" wall

displays the message in the remote file broadcastmsg on all of the remote
host’s terminals.

Enclosing the metacharacters in double quotes causes the remote host to
interpret them, instead of the local host.

Executing Commands with Remsh 10—13

Using Remsh with Remote Commands That
Do Not Take Input

Remsh cannot determine if a remote command requires input. Therefore,
remsh operates on the assumption that all remote commands require
input. This behavior can cause problems if you use remsh to execute a
remote command that does not require input. The remsh command at-
tempts to read input (stdin) on the local host, even though the remote
command requires none. The following examples illustrate this behavior.

Example 1:

Suppose you enter a local command while remsh is running a remote com-
mand that requires no input. Normally, the command would go into your
type-ahead buffer and would be executed as soon as the remsh command
finished. Instead, remsh reads the local command as input and the local
command never executes (your local shell never gets the command).

Example 2:

This example involves shell scripts. Suppose you had a file named text
with the following lines in it:

first line
second line
third Tine

and suppose that you wrote the following shell script named zest:

#1/bin/sh
remsh hpabsb sleep 3
grep "second"

10—14 Using Remsh with Remote Commands That Do Not Take Input

If you executed:

test < text

you would expect the shell script to find and display the line

second line

but instead the script displays nothing. This is because any command in
the shell script (including remsh) inherits stdin, which is the input file fext.
Therefore remsh reads the file fext as input and the following grep com-
mand never sees the file.

Example 3 (for ksh and csh only):
Suppose you put the following command in the background:

remsh hpabsb echo hello &

Instead of seeing

hello

you see the following message after you enter the next carriage return:

[1] + stopped (tty input) remsh hpabsb echo hello

The remsh in the background tries to read its stdin (your terminal input).
Since the shell does not allow background processes to read your ter-
minal, the shell stops the background process, and notifies you.

In all 3 examples, to prevent such mishaps, remsh provides an option, —n,
that redirects remsh’s input from /dev/null. Whenever you use remsh to
run a remote command that requires no input, it is good practice to in-
voke remsh with the —n option.

Executing Commands with Remsh 10-—15

At your HP-UX prompt, enter:
remsh remote_host -n command

where remote_host is the name or alias of a host listed in /efc/hosts and
command is a command requiring no input to execute on the remote
host.

Example Entries:

remsh hpabsb -n who

remsh hpabsb -n sleep 3

remsh hpabsb -n echo hello &
Result:

Remsh executes the command on the remote host, taking the command’s
input from /dev/null.

10—16 Using Remsh with Remote Commands That Do Not Take Input

Using Remsh’s "Shorthand" Syntax

Your local host can be configured so that you can enter a remsh com-
mand line without the remsh command. That is, a remsh command line
can start with the name of a remote host, omitting the remsh command.

In order to do this:

® you must add the path /usr/hosts to your command search path in your
dogin, .cshrc, or .profile file. Which file contains your §PATH variable
depends on which shell you use.

e the super-user or node manager must link /usr/bin/remsh to
Jusr/hosts/host, where host is the name or alias of a remote host (listed in
Jetc/hosts) on which you want to execute a command.

To find out which hosts you can use remsh’s shorthand syntax for, list the
contents of the directory /usr/hosts.

Executing Commands with Remsh 10—17

10—18 Using Remsh’s "Shorthand" Syntax

11

Interprocess Communication

This chapter describes HP’s implementation of the 4.2 BSD Interprocess
Communication (IPC) facilities. The chapter includes the following sec-
tions:

® an IPC overview using the Client-Server model;

® a description of important terms and concepts;

e the details of IPC using stream sockets;

® advanced IPC concepts for stream sockets;

® the details of IPC using datagram sockets;

® advanced IPC concepts for datagram sockets;

® a list of programming hints;

® how to add a server process to inetd; and

e tables of the available system and library calls.

Interprocess Communication 11-—1

Note

IPC is a program development tool. Before you attempt
to use IPC, you may need to familiarize yourself with the
C programming language and the HP-UX operating sys-
tem. You could implement an IPC application using
Fortran or Pascal, but all library calls and include files
are implemented in C.

Overview of IPC

The IPC facility allows you to create distributed applications that pass
data between programs (on the same computer or on separate computers
on the network) without requiring an understanding of the many layers of
networking protocols. This is accomplished by using a set of system calls.
These system calls, when used in the correct sequence, allow you to
create communication endpoints called sockets and transfer data between
them.

This chapter describes the steps involved in establishing and using IPC
connections. It also describes the protocols you must use and how the
IPC system calls interact. The details of each system call are described in
the section 2 entries of the ARPA/Berkeley Services Reference Pages.

11—-2 Overview of IPC

To understand the general model for IPC, you need to understand what is
meant by a socket, a socket descriptor, and binding. Read the following
definitions before you read about the Client-Server model.

socket Sockets are communication endpoints. A pair of con-
nected sockets provides an interface similar to that
of HP-UX pipes. A socket is identified by a socket
descriptor.

socket descriptor A socket descriptor is an HP-UX file descriptor that
references a socket instead of an ordinary file. There-
fore, it can be used for reading, writing, or most
standard file system calls after an IPC connection is
established. All IPC functions use socket descriptors
as arguments.

binding Before a socket can be accessed across the network,
it must be bound to an address. Binding makes the
socket accessible to other sockets on the network by
establishing its address. Binding is explained in more
detail throughout this chapter.

How You Can Use IPC

The best example of how IPC can be used is the ARPA/Berkeley Services
themselves. The services use IPC to communicate between remote hosts.
Using the IPC facility, you can write your own distributed application
programs to do a variety of tasks.

For example, you can write distributed application programs to:
® access a remote database;
e access multiple computers at one time; or

e spread subtasks across several hosts.

Interprocess Communication 11-3

The Client-Server Model

Typical IPC applications consist of two separate application level proces-
ses; one process (the client) requests a connection and the other process
(the server) accepts it.

The server process creates a socket, binds an address to it, and sets up a
mechanism (called a listen queue) for receiving connection requests. The
client process creates a socket and requests a connection to the server
process. Once the server process accepts a client process’s request and a
connection is established, full-duplex (two-way) communication can occur
between the two sockets.

This set of conventions must be implemented by both processes. Depend-
ing on the needs of your application, your implementation of the model
can be symmetric or asymmetric. In a symmetrical application of the
model, either process can be a server or a client. In an asymmetrical ap-
plication of the model, there is a clearly defined server process and client
process. An example of an asymmetrical application is the fip service.

11 —4 Overview of IPC

Creating a Connection: the Client-Server Model

The following figures illustrate conceptual views of the client-server
model at three different stages of establishing a connection. The steps
that have been accomplished at each stage are listed below each figure.

Client Server
empty listen queue

¢ Client hos created a socket. ®» Server has created o socket.

& Server hos bound an address to its
socket,

®* Server hos sel up the listen queue.

Client-Server in a Pre-Connection State

Client Server
listen queue

bound &

bound
socket |* "E listening
A socket B
® Client hos made o connection ® Server has received the request in the
request. listen queue.

Client-Server at Time of Connection Request

Interprocess Communication 11-35

Client Server

listen queue

bound
ID socket
B
bound bound
socket CONNECTION socket
A c

e Server has cccepted connection
request.

e Server hos estoblished o connection
to client with a new server socket
thot hos all the charocteristics of

the original socket.

® Original server socket continues to
listen for more connection requests.

Client-Server When Connection Is Established

A detailed description of the Client-Server model is discussed in the "IPC
Using Stream Sockets" section of this chapter.

IPC Library Routines

The library routines and system calls that you need to implement an IPC
application are described throughout this chapter. In addition, a complete
list of all these routines and system calls is provided in the "Summary
Tables for Library and System Calls" section of this chapter.

The library routines are in the common "¢" library named libc.a. There-
fore, there is no need to specify any library name on the cc command line
to use these library calls — libc.a is used automatically.

11 —6 Overview of IPC

Key Terms and Concepts

The following list is meant to give you a basic understanding of the terms
used to describe IPC. Many of the terms have more detailed explanations
within this chapter in the places where the terms are used.

Communication Terms

packet A message or data unit that is transmitted between
communicating processes.

message The data sent in one UDP packet.

channel Communication path created by establishing a con-
nection between sockets.

peer The remote process with which a process communi-
cates.

Addressing Terms

addressing A means of labeling a socket so that it is distinguish-
able from other sockets on a host.

communication A set of properties that describes the characteristics

domain of processes communicating through sockets. The

AF_INET (internet address family) domain is sup-
ported. The AF_UNIX (UNIX address family)
domain is also supported, for local communication
only.

address family The address format used to interpret addresses
specified in socket operations. The internet address
family (AF_INET) and Berkeley UNIX address fami-
ly (AF_UNIX) are supported.

internet address A four-byte address that identifies a node on the net-
work.

Interprocess Communication 11-7

port An address within a host that is used to differentiate
between multiple sockets with the same internet ad-
dress. You can use port address values 1024 through
65535. (Port addresses 1 through 1023 are reserved
for the super-user.)

socket address For AF_INET, the socket address consists of the in-
ternet address, port address and address family of a
socket. The internet and port address combination al-
lows the network to locate a socket. For AF_UNIX,
the socket address is the directory path name of the
vnode bound to the socket.

binding Associating a socket address with a socket. Once a
socket address is bound, other sockets can connect
to the socket and send data to or receive data from
it.

association An IPC connection is defined by an association. An
AF_INET association contains the (protocol, local
address, local port, remote address, remote port)-
tuple. An AF_UNIX association contains the
(protocol, local address, peer address)-tuple. Associa-
tions must be unique; duplicate associations on the
same host cannot exist. The tuple is created when
the local and remote socket addresses are bound
and connected. This means the association is created
in two steps and there is a chance that two associa-
tions could be alike. The host prevents this by check-
ing for uniqueness of the tuple at connection time
and reporting an error if the tuple is not unique.

11—8 Key Terms and Concepts

Protocols

There are two Internet transport layer protocols that can be used with
IPC. They are TCP, which implements stream sockets, and UDP, which
implements datagram sockets.

TCP Provides the underlying communication support for
stream sockets. TCP is used to implement reliable,
sequenced, flow-controlled two-way communication
based on byte streams similar to pipes. Refer to the
TCP(7P) entry in the ARPA/Berkeley Services
Reference Pages for more information on TCP.

UDP Provides the underlying communication support for
datagram sockets. UDP is an unreliable protocol. A
process receiving messages on a datagram socket
could find messages are duplicated, out-of-sequence,
or missing. Messages retain their record boundaries
and are sent as individually addressed packets. There
is no concept of a connection between the com-
municating sockets. Refer to the UDP(7P) entry in
the ARPA/Berkeley Services Reference Pages for more
information on UDP.

In addition, the UNIX domain protocol may be used with AF_UNIX
sockets for interprocess communication on the same node. Refer to the
unix(7p) entry in the LAN reference pages for more information on the
UNIX domain protocol.

Using Socket Descriptors as File Descriptors

A socket descriptor is a special kind of HP-UX file descriptor; it can be
used as though it were a file descriptor, but it references a socket instead
of a file. System calls that use file descriptors (e.g. read, write, select) can
be used with socket descriptors.

Interprocess Communication 11-9

IPC Using Internet Stream Sockets

This section describes the steps involved in creating an Internet stream
socket IPC connection using the AF_INET address family. If you want to
use datagram sockets, skip to the section called "IPC Using Datagram
Sockets."

As discussed in the "Protocols" section, Internet TCP stream sockets
provide bidirectional, reliable, sequenced and unduplicated flow of data
without record boundaries.

The following table lists the steps involved in creating and terminating an
IPC connection using stream sockets. Each step is described in more
detail in the sections that follow the table.

Building an IPC Connection Using Stream Sockets

Client Process Server Process

Activity System call used Activity System call used
create a socket socket() | create a socket socket()

bind a socket address bind() bind a socket bind()

(optional) address

listen for incoming /isten()
connection requests

request a connection connect()

accept connection accept()

send data write() or send()

receive data read() or recv()

send data write() or send()
receive data read() or recv()
disconnect socket shutdown() or close() | disconnect socket shutdown() or close()
(optional) (optional)

11 —-10 IPC Using Internet Stream Sockets

The following sections explain each of the activities mentioned in the pre-
vious table. The description of each activity specifies a system call and in-
cludes:

e what happens when the system call is used;

e when to make the call;

e what the parameters do;

® how the call interacts with other IPC system calls; and

e where to find details on the system call.

The stream socket program examples are at the end of these descriptive

sections. You can refer to the example code as you work through the
descriptions.

Preparing Address Variables

Before you begin to create a connection, establish the correct variables
and collect the information that you need to request a connection.

Your server process needs to:

e declare socket address variables;

® assign a wildcard address; and

e get the port address of the service that you want to provide.
Your client process needs to:

e declare socket address variables;

e get the remote host’s internet address; and

e get the port address for the service that you want to use.

Interprocess Communication 11-—11

These activities are described next. Refer to the program example at the
end of the "IPC Using Stream Sockets" section to see how these activities
work together.

Declaring Socket Address Variables

You need to declare a variable of type struct sockaddr_in to use for sock-
et addresses.

For example, the following declarations are used in the example client
program:

struct sockaddr_in myaddr; /* for local socket address */

struct sockaddr_in peeraddr; /* for peer socket address */

Sockaddr _in is a special case of sockaddr and is used with the AF_INET
addressing domain. Both types are shown in this chapter, but sockaddr_in
makes it easier to manipulate the internet and port addresses. Some of
the IPC system calls are declared using a pointer to sockaddr, but it can
also be a pointer to sockaddr_in.

The sockaddr_in address structure consists of the following fields:

short sin_family Specifies the address family and should al-
ways be set to AF_INET.

u_short sin_port Specifies the port address. Assign this field
when you bind the port address for the socket
or when you get a port address for a specific
service.

struct inaddr sin_addr Specifies the internet address. Assign this
field when you get the internet address for
the remote host.

The server process only needs an address for its own socket. Your client
process may not need an address for its local socket.

11—12 IPC Using Internet Stream Sockets

Refer to the inet(7F) entry in the ARPA/Berkeley Services Reference Pages
for more information on sockaddr_in.
Getting the Remote Host’s Internet Address

Gethostbyname obtains the internet address of the host and the length of
that address (as the size of struct in_addr) from /etc/hosts.

Gethostbyname and its parameters are described in the following table.
INCLUDE FILES: #include <netdb.h>
SYSTEM CALL: struct hostent *gethostbyname(name)

char *name;

Parameter Description of Contents INPUT Value

name pointer to a valid host name host name
(null-terminated string)

FUNCTION RESULT: pointer to struct hostent containing internet
address
NULL pointer (0) if failure occurs

EXAMPLE SYSTEM
CALL:

#include <netdb.h>
struct hostent *hp; /* pointer to host info for remote host */

peeraddr.sin_family = AF_INET;
hp = gethostbyname (argv[1]);
peeraddr_in.sin_addr.s_addr = ((struct in_addr *)(hp->h_addr))->s_addr;

The argv[1] parameter is the host name specified in the client program
command line.

Refer to the gethostent(3N) entry in the ARPA/Berkeley Services Reference
Pages for more information on gethostbyname.

Interprocess Communication 11-—13

Getting the Port Address for the Desired Service

When a server process is preparing to offer a service, it must get the port
address for the service from /etc/services so it can bind that address to its
"listen" socket. If the service is not already in /etc/services, you must add it.

When a client process needs to use a service that is offered by some serv-
er process, it must request a connection to that server process’s "listening"
socket. The client process must know the port address for that socket.

Getservbyname obtains the port address of the specified service from
Jetc/services.

Getservbyname and its parameters are described in the following table.

INCLUDE FILES: #include <netdb.h>
SYSTEM CALL: struct servent *getservbyname(name, proto)
char *name, *proto;
Parameter Description of Contents INPUT Value
name pointer to a valid service name service name
proto pointer to the protocol to be "tep” or 0 if TCP is the only
used protocol for the service

FUNCTION RESULT: pointer to struct servent containing port ad-

dress
NULL pointer (0) if failure occurs

EXAMPLE SYSTEM #include <netdb.h>

CAILl: struct servent *sp; /* pointer to service info */

sp = getservbyname ("example™, "tcp");
peeraddr.sin_port = sp->s_port;

11—14 IPC Using Internet Stream Sockets

When to Get Server’s Socket Address

Which Processes When
SErver process before binding the listen socket
client process before client executes a connection
request

Refer to the getservent(3N) entry in the ARPA/Berkeley Services Reference
Pages for more information on getservbyname.

Using a Wildcard Local Address

Wildcard addressing simplifies local address binding. When an address is
assigned the value of INADDR_ANY, the host interprets the address as
any valid address. This is useful for your server process when you are set-
ting up the listen socket. It means that the server process does not have
to look up its own internet address.

For example, to bind a specific port address to a socket, but leave the
local internet address unspecified, the following source code could be
used:

#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>

struct sockaddr_in sin;

s = socket(AF_INET, SOCK_STREAM, 0);
sin.sin_family = AF_INET;
sin.sin_addr.s_addr = INADDR_ANY;
sin.sin_port = MYPORT;

bind (s, &sin, sizeof(sin));

Interprocess Communication 11—15

Writing the Server Process

This section discusses the calls your server process must make to connect
with and serve a client process.

Creating a Socket
The server process must call socket to create a communication endpoint.

Socket and its parameters are described in the following table.

INCLUDE FILES: #include <sys/types.h>
#include <sys/socket.h>
SYSTEM CALL: s = socket(af, type, protocol)
int af, type, protocol;
Parameter Description of Contents INPUT Value
af address family AF_INET
type socket type SOCK_STREAM
protocol underlying protocol to be used 0 (default) or value returned by

getprotobyname

FUNCTION RESULT: socket number (HP-UX file descriptor)
-1 if failure occurs

EXAMPLE SYSTEM s = socket (AF_INET, SOCK_STREAM, 0);
CALL:

The socket number returned is the socket descriptor for the newly
created socket. This number is an HP-UX file descriptor and can be used
for reading, writing or any standard file system calls after an IPC connec-
tion is established. A socket descriptor is treated like a file descriptor for
an open file.

11—16 IPC Using Internet Stream Sockets

When to Create Sockets

Which Processes When

SeTver process before any other IPC system calls

Refer to the socket(2) entry in the ARPA/Berkeley Services Reference
Pages for more information on socket.

Binding a Socket Address to the Server Process’s Socket

After your server process has created a socket, it must call bind to bind a
socket address. Until an address is bound to the server socket, other
processes have no way to reference it.

The server process must bind a specific port address to this socket, which
is used for listening. Otherwise, a client process would not know what
port to connect to for the desired service.

Set up the address structure with a local address (as described in the
"Preparing Address Variables" section) before you make a bind call. Use
a wildcard address so your server process does not have to look up its
own internet address.

Interprocess Communication 11-—17

Bind and its parameters are described in the following table.

INCLUDE FILES: #include <sys/types.h>

#include <netinet/in.h>
#include <sys/socket.h>

SYSTEM CALL: bind (s, addr, addrlen)

int s;
struct sockaddr *addr;

int addrlen;
Parameter Description of Contents INPUT Value
s socket descriptor of local socket descriptor of
socket socket to be bound
addr socket address pointer to address to be bound to s
addrlen length of socket address size of struct sockaddr_in

FUNCTION RESULT: 0 if bind is successful
-1 if failure occurs

EXAMPLE SYSTEM struct sockaddr_in myaddr;

CALL:
bind (1s, myaddr, sizeof(struct sockaddr_in));
When to Bind Socket Addresses
Which Processes When
SErver process after socket is created and before

any other IPC system calls

Refer to the bind(2) entry in the ARPA/Berkeley Services Reference Pages
for more information on bind.

11—18 IPC Using Internet Stream Sockets

Setting the Server Up to Wait for Connection Requests

Once your server process has an address bound to it, it must call listen to
set up a queue that accepts incoming connection requests. The server
process then monitors the queue for requests (using select(2) or accept,
which is described in "Accepting a Connection"). The server process can-
not respond to a connection request until it has executed listen.

Listen and its parameters are described in the following table.

INCLUDE FILES: none
SYSTEM CALL: listen(s, backlog)
int s, backlog;
Parameter Description of Contents INPUT Value
S socket descriptor of local server socket’s descriptor
socket
backlog maximum number of connec- size of queue (between 1 and 20)
tion requests in the queue at
any time

FUNCTION RESULT: (0 if listen is successful
-1 if failure occurs

EXAMPLE SYSTEM listen (1s, 5);
CALL:

Backlog is the number of unaccepted incoming connections allowed at a
given time. Further incoming connection requests are rejected.

When to Set Server Up to Listen
Which Processes When

SErver process after socket is created and bound
and before the server can respond
to connection requests

Interprocess Communication 11-—19

Refer to the listen(2) entry in the ARPA/Berkeley Services Reference Pages
for more information on listen.
Accepting a Connection

The server process can accept any connection requests that enter its
queue after it executes listen. Accept creates a new socket for the connec-
tion and returns the socket descriptor for the new socket. The new socket:

e is created with the same properties as the old socket;
¢ has the same bound port address as the old socket; and
e is connected to the client process’ socket.

Accept blocks until there is a connection request from a client process in
the queue.

Accept and its parameters are described in the following table.

INCLUDE FILES: #include <sys/types.h>

#include <netinet/in.h>
#include <sys/socket.h>

SYSTEM CALL: s = accept(s,addr,addrlen)

int s;
struct sockaddr *addr;
int *addrlen;

11—20 IPC Using Internet Stream Sockets

Parameter

Description of Contents

INPUT Value

OUTPUT Value

S

addr

addrlen

socket descriptor of
local socket

socket address

length of address

socket descriptor of
server socket

pointer to address
structure where
address will be put

pointer to the size of
struct sockaddr_in

unchanged

pointer to socket
address of client
socket that server’s
new socket is
connecled to

pointer to the actual
length of address

returned in addr

FUNCTION RESULT: socket descriptor of new socket if accept is
successful

—1 if failure occurs

EXAMPLE SYSTEM
CALL:

struct sockaddr_in peeraddr;

addrlen = sizeof(sockaddr_in);
s = accept (1s, peeraddr, &addrlen);

There is no way for the server process to indicate which requests it can ac-
cept. It must accept all requests or none. Your server process can keep
track of which process a connection request is from by examining the ad-
dress returned by accept. Once you have this address, you can use
gethostbyaddr to get the host name. You can close down the connection if
you do not want the server process to communicate with that particular
client host or port.

When to Accept a Connection

Which Processes When

Server process after executing the listen call

Refer to the accept(2) entry in the ARPA/Berkeley Services Reference
Pages for more information on accept.

Interprocess Communication 11-—21

Writing the Client Process

This section discusses the calls your client process must make to connect
with and be served by a server process.

Creating a Socket
The client process must call socket to create a communication endpoint.

Socket and its parameters are described in the following table.

INCLUDE FILES: #include <sys/types.h>
#include <sys/socket.h>
SYSTEM CALL: s = socket(af, type, protocol)
int af, type, protocol;
Parameter Description of Contents INPUT Value
af address family AF _INET
type socket type SOCK_STREAM
protocol underlying protocol to be 0 (default) or value returned by
used getprotobyname

FUNCTION RESULT: socket number (HP-UX file descriptor)
-1 if failure occurs

EXAMPLE SYSTEM s = socket (AF_INET, SOCK_STREAM, 0);
CALL:

The socket number returned is the socket descriptor for the newly
created socket. This number is an HP-UX file descriptor and can be used
for reading, writing or any standard file system calls after an IPC connec-
tion is established. A socket descriptor is treated like a file descriptor for
an open file.

11—-22 IPC Using Internet Stream Sockets

When to Create Sockets

Which Processes When

client process before requesting a connection

Refer to the socket(2) entry in the ARPA/Berkeley Services Reference
Pages for more information on socket.

Requesting a Connection

Once the server process is listening for connection requests, the client
process can request a connection with the connect call.

Connect and its parameters are described in the following table.

INCLUDE FILES: #include <sys/types.h>

#include <netinet/in.h>
#include <sys/socket.h>

SYSTEM CALL: connect(s, addr, addrlen)
int s;
struct sockaddr *addr;
int addrlen;

Parameter Description of Contents INPUT Value
s socket descriptor of local socket descriptor of socket request-
socket ing a connection

addr pointer to the socket address pointer to the socket address of the
socket to which client wants to con-
nect

addrlen length of addr size of address structure pointed to
by addr

FUNCTION RESULT: 0 if connect is successful
-1 if failure occurs

Interprocess Communication 11-—23

EXAMPLE SYSTEM struct sockaddr_in peeraddr;
CALL:

connect (s, peeraddr, sizeof(struct sockaddr_in));

Connect initiates a connection and blocks if the connection is not ready,
unless you are using nonblocking I/O. (For information on nonblocking
I/O, see the "Advanced Topics for Stream Sockets: Nonblocking I/O" sec-
tion of this chapter.) When the connection is ready, the client process
completes its connect call and the server process can complete its accept
call.

Note

The client process does not get feedback that the server
process has completed the accept call. As soon as the
connect call returns, the client process can send data.

Note

Local internet and port addresses are bound when con-
nect is executed if you have not already bound them
yourself. These address values are chosen by the local

host.
When to Request a Connection
Which Processes When
client process after socket is created and after

server socket has a listening socket

Refer to the connect(2) entry in the ARPA/Berkeley Services Reference
Pages for more information on connect.

11 —24 IPC Using Internet Stream Sockets

Sending and Receiving Data

After the connect and accept calls are successfully executed, the connec-
tion is established and data can be sent and received between the two
socket endpoints. Because the stream socket descriptors correspond to
HP-UX file descriptors, you can use the read and write calls (in addition
to recv and send) to pass data through a socket-terminated channel.

If you are considering the use of the read and write system calls instead of
the send and recv calls described below, you should consider the following:

Advantage: If you use read and write instead of send and recv,
you can use a socket for stdin or stdout.

Disadvantage: If you use read and write instead of send and recv,
you cannot use the options specified with the send or
recv flags parameter.

See the table called "Other System Calls," listed at the end of the chapter
for more information on which of these system calls are best for your ap-
plication.

Interprocess Communication 11-25

Sending Data

Send and its parameters are described in the following table.

INCLUDE FILES: #include <sys/types.h>
#include <sys/socket.h>
SYSTEM CALL: count = send(s,msg, len,flags)
int s;
char *msg;

int len, flags;

Parameter Description of Contents INPUT Value
s socket descriptor of local socket descriptor of socket sending
socket data
msg pointer to data buffer pointer to data to be sent
len size of data buffer size of msg
flags settings for optional flags 0 or MSG_OOB

FUNCTION RESULT: number of bytes actually sent
-1 if failure occurs

EXAMPLE SYSTEM count = send (s, buf, 10, 0);
CALL:

Send blocks until the specified number of bytes have been queued to be
sent, unless you are using nonblocking I/O. (For information on nonblock-
ing I/O, see the "Advanced Topics for Stream Sockets: Nonblocking I/O"
section of this chapter.)

When to Send Data
Which Processes When

server or client after connection is established
process

11—-26 IPC Using Internet Stream Sockets

Refer to the send(2) entry in the ARPA/Berkeley Services Reference Pages
for more information on send.

Receiving Data

Recv and its parameters are described in the following table.

INCLUDE FILES: #include <sys/types.h>
#include <sys/socket.h>
SYSTEM CALL.: count = recv(s,buf, len,flags)
int s;
char *buf;

int len, flags;

Parameter Description of Contents INPUT Value
s socket descriptor of local socket descriptor of socket receiv-
socket ing data
buf pointer to data buffer pointer to buffer that is to receive
data
len maximum number of bytes size of data buffer

that should be received

flags settings for optional flags 0, MSG_OOB or MSG_PEEK

FUNCTION RESULT: number of bytes actually received
-1 if failure occurs

EXAMPLE SYSTEM count = recv(s, buf, 10, 0);
CALL:

Recv blocks until there is at least 1 byte of data to be received, unless you
are using nonblocking I/O. (For information on nonblocking I/O, see the
"Advanced Topics for Stream Sockets: Nonblocking I/O" section of this
chapter.) The host does not wait for len bytes to be available; if less than
len bytes are available, that number of bytes are received.

Interprocess Communication 11-—-27

No more than len bytes of data are received. If there are more than len
bytes of data on the socket, the remaining bytes are received on the next
recv.

Flag Options

The flags options are:

e () for no options;

e MSG_OOB for out of band data; or

e MSG_PEEK for a nondestructive read.

Use the MSG_OOB option if you want to receive out of band data. Refer
to the "Advanced Topics for Stream Sockets, Sending and Receiving Out
of Band Data" section of this chapter for more information.

Use the MSG_PEEK option to preview incoming data. If this option is
set on a recv, any data returned remains in the socket buffer as though it
had not been read yet. The next recy returns the same data.

When to Receive Data

Which Processes When

server or client process after connection is established

Refer to the recv(2) entry in the ARPA/Berkeley Services Reference Pages
for more information on recv.

11 —-28 IPC Using Internet Stream Sockets

Closing a Socket

In most applications, you do not have to worry about cleaning up your
sockets. When you exit your program and your process terminates, the
sockets are closed for you.

If you need to close a socket while your program is still running, use the
close system call. For example, you may have a daemon process that uses
fork to create the server process. The daemon process creates the IPC
connection and then passes the socket descriptor to the server. You then
have more than one process with the same socket descriptor. The
daemon process should do a close of the socket descriptor to avoid keep-
ing the socket open once the server is through with it. Because the server
performs the work, the daemon does not use the socket after the fork.

Close decrements the file descriptor count and the calling process can no
longer use that file descriptor.

When the last close is executed on a socket descriptor, any unsent data
are sent before the socket is closed. Any unreceived data are lost. This
delay in closing the socket can be controlled by the socket option
SO_LINGER. See the "Socket Options" section for information on the
SO_LINGER and SO_DONTLINGER options.

For syntax and details on close, refer to the close(2) entry in the HP-UX
Reference manual.

Additional options for closing sockets are discussed in the "Advanced
Topics for Stream Sockets: Using Shutdown" section of this chapter.

Interprocess Communication 11-29

Example Using Stream Sockets

These program examples demonstrate how to set up and use stream sock-
ets. The client program is intended to run in conjunction with the server

program. The client program requests a service called example from the
server program.

The server process receives requests from the remote client process, hand-

les the request and returns the results to the client process. Note that the
server:

e uses the wildcard address for the listen socket;

e uses the ntohs address conversion call to show how to port to a host that
requires it; and

e uses the SO_LINGER option for a graceful disconnect. The

SO_LINGER options is discussed in the "Socket Options" section, which
follows the example.

The client process creates a connection, sends requests to the server
process and receives the results from the server process. Note that the
client:

® uses shutdown, which is discussed in the "Advanced Topics for Stream
Sockets" section of this chapter, to indicate that it is done sending
requests;

® uses getsockname to see what socket address was assigned to the local
socket by the host; and

e uses the ntohs address conversion call to show how to port to a host that
requires it.

11 -30 IPC Using Internet Stream Sockets

Before you run the example programs:

e make the following entry in the two host’s /etc/services files:
example 22375/tcp

e compile the programs with the -1bsdipc option.

The source code for these two programs follows. It is also located in the
directory /usr/netdemo/socket.

Interprocess Communication 11-—31

S
L

S ERY - TEP

This is an example program that demonstrates the use of
stream sockets as an IPC mechanism. This contains the server,
and is intended to operate in conjunction with the client
program found in client.tcp. Together, these two programs
demonstrate many of the features of sockets, as well as good
conventions for using these features.

This program provides a service called "example”. In order for
it to function, an entry for it needs to exist in the
J/etc/services file. The port address for this service can be
any port number that is likely to be unused, such as 22375.

The host on which the client will be running

must also have the same entry (same port number) in its
J/etc/services file.

* % % % % F % O ¥ % O F X X * ¥

*
-~

#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <signal.h>
#include <stdio.h>
#include <netdb.h>

int s; /* connected socket descriptor */

int 1s; /* listen socket descriptor */

struct hostent *hp; /* pointer to host info for remote host */
struct servent *sp; /* pointer to service information */

long timevar; /* contains time returned by time() */
char *ctime(); /* declare time formatting routine */

long linger = 1; /* allow a lingering, graceful close */

/* used when setting SO_LINGER */

struct sockaddr_in myaddr_in; /* for local socket address */
struct sockaddr_in peeraddr_in; /* for peer socket address */

11-32 IPC Using Internet Stream Sockets

/*

i MAIN
*
* This routine starts the server. It forks, leaving the child
® to do all the work, so it does not have to be run in the
5 background. It sets up the listen socket, and for each incoming
* connection, it forks a child process to process the data. It
. will loop forever, until killed by a signal.
*/
main(argc, argv)
int argc;

char *argv([];

int addrlen;
/* clear out address structures */
memset ((char *)&myaddr_in, 0, sizeof(struct sockaddr_in));
memset ((char *)&peeraddr_in, 0, sizeof(struct sockaddr_in));
/* Set up address structure for the listen socket. */
myaddr_in.sin_family = AF_INET;
/* The server should listen on the wildcard address,
* rather than its own internet address. This is
* generally good practice for servers, because on
* systems which are connected to more than one
* network at once will be able to have one server
* listening on all networks at once. Even when the
* host is connected to only one network, this is good
* practice, because it makes the server program more
* portable.
®7
myaddr_in.sin_addr.s_addr = INADDR_ANY;
/* Find the information for the "example" server
* in order to get the needed port number.
*
Y
sp = getservbyname ("example”, “tcp”);
if (sp == NULL) {
fprintf(stderr, "%s: example not found in /etc/services\n",
argv([0]);
exit(l);

myaddr_in.sin_port = sp->s_port;

/* Create the listen socket. */
1s = socket (AF_INET, SOCK_STREAM, 0);
if (1s = -1) {
perror(argv[0]);
fprintf(stderr, "%s: unable to create socket\n", argv[0]);
exit(l);

Interprocess Communication 11-—33

/* Bind the listen address to the socket. */

if (bind(1s, &myaddr_in, sizeof(struct sockaddr_in)) == -1} {
perror(argv([0]);
fprintf(stderr, "%s: unable to bind address\n", argv[0]);
exit(l);

/* Initiate the listen on the socket so remote users
* can connect. The listen backlog is set to 5. 20

* js the currently supported maximum,

*f
if (listen(ls, 5) == -1) {
perror(argv[0]);
fprintf(stderr, "#s: unable to listen on socket\n", argv[0]);
exit(1);

/* Now, all the initialization of the server is
* complete, and any user errors will have already

* been detected. Now we can fork the daemon and

* return to the user. We need to do a setpgrp

* so that the daemon will no longer be associated

* with the user's control terminal. This is done

* before the fork, so that the child will not be

* a process group leader. Otherwise, if the child

* were to open a terminal, it would become associated
* with that terminal as its control terminal. It is
* always best for the parent to do the setpgrp.

*
/

setpgrp();

switch (fork()) {

case -1: /* Unable to fork, for some reason. */
perror(argv(0]);
fprintf(stderr, "#s: unable to fork daemon\n", argv[0]);
exit(l);

case 0: /* The child process (daemon) comes here. */
/* Close stdin and stderr so that they will not

be kept open. Stdout is assumed to have been

redirected to some logging file, or /dev/null.

From now on, the daemon will not report any

error messages. This daemon will loop forever,

waiting for connections and forking a child

server to handle each one.

fclose(stdin);
fclose(stderr);

11 —34 IPC Using Internet Stream Sockets

/* Set SIGCLD to SIG_IGN, in order to prevent
* the accumulation of zombies as each child
* terminates. This means the daemon does not
* have to make wait calls to clean them up.
&
/
signal(SIGCLD, SIG_IGN);
for(s) {
/* Note that addrlen is passed as a pointer
* so that the accept call can return the
* size of the returned address.
*
/
addrlen = sizeof(struct sockaddr_in);
/* This call will block until a new
* connection arrives. Then, it will
return the address of the connecting
* peer, and a new socket descriptor, s,
* for that connection.
*/
s = accept(ls, &peeraddr_in, &addrlen);
if (s ==-1) exit(l);
switch (fork()) {
case -1: /* Can't fork, just continue. */
exit(1l);
case 0: /* Child process comes here. */
server();
exit(0);
default: /* Daemon process comes here. */
/* The daemon needs to remember

*

* to close the new accept socket
* after forking the child. This
* prevents the daemon from running
* out of file descriptors. It
* also means that when the server
* closes the socket, that it will
* allow the socket to be destroyed
* gsince it will be the last close.
=f
close(s);
}
}
default: /* Parent process comes here. */
exit(0);

}

Interprocess Communication 11-—35

S~
*

* SERVER

*

i This is the actual server routine that the daemon forks to

* handle each individual connection. Its purpose is to receive

B the request packets from the remote client, process them,

& and return the results to the client. It will also write some

= logging information to stdout.

*

=

server()

{
int reqgcnt = 0; /* keeps count of number of requests */
char buf[10]; /* This example uses 10 byte messages. */
char *inet_ntoa();
char *hostname; /* points to the remote host's name string */

int len, lenl;

/* Close the listen socket inherited from the daemon. */
close(1s);

/* Look up the host information for the remote host

* that we have connected with. Its internet address

* was returned by the accept call, in the main

* daemon loop above.

=]

hp = gethostbyaddr ((char *) &peeraddr_in.sin_addr,

sizeof (struct in_addr),
peeraddr_in.sin_family);

if (hp == NULL) {
/* The information is unavailable for the remote
* host. Just format its internet address to be
* printed out in the logging information. The
* address will be shown in "internet dot format”.
*f
hostname = inet_ntoa(peeraddr_in.sin_addr):
} else {
hostname = hp->h_name; /* point to host's name */
}
/* Log a startup message. */

time (&timevar);

11 -36 IPC Using Internet Stream Sockets

/* The port number must be converted first to host byte
* order before printing. On most hosts, this is not
necessary, but the ntohs() call is included here so
that this program could easily be ported to a host

that does require it.

*

*

*f
printf("Startup from %s port %u at ¥s™,

hostname, ntohs(peeraddr_in.sin_port), ctime(&timevar));

/* Set the socket for a lingering, graceful close.
* Since linger was set to 1 above, this will cause
* a final close of this socket to wait until all of the
* data sent on it has been received by the remote host.
*
/
if (setsockopt(s, SOL_SOCKET, SO_LINGER, (char *)&linger,
sizeof(long)) == -1) {
errout: printf("Connection with %s aborted on error\n", hostname);
exit(1);

/* Go into a loop, receiving requests from the remote
* client. After the client has sent the last request,
* it will do a shutdown for sending, which will cause
* an end-of-file condition to appear on this end of the
* connection. After all of the client's requests have
* been received, the next recv call will return zero
* bytes, signalling an end-of-file condition. This is
* how the server will know that no more requests will
* follow, and the loop will be exited.
')
while (len = recv(s, buf, 10, 0)) {
if (len == -1) goto errout; /* error from recv */

/* The reason this while loop exists is that there
is a remote possibility of the above recv returning
less than 10 bytes. This is because a recv returns
as soon as there is some data, and will not wait for
all of the requested data to arrive. Since 10 bytes
is relatively small compared to the allowed TCP
packet sizes, a partial receive is unlikely. If
this example had used 2048 bytes regquests instead,
a partial receive would be far more likely.
This loop will keep receiving until all 10 bytes
have been received, thus guaranteeing that the
next recv at the top of the loop will start at
the beginning of the next reguest.

* o% % * % F ¥ * F* * * ¥

*
~

Interprocess Communication 11-37

while (len < 10) {
lenl = recv(s, &buf[len], 10-len, 0);
if (lenl == -1) goto errout;
len += lenl;

}
/* Increment the request count. */
reqent++;
/* This sleep simulates the processing of the
* request that a real server might do.
*
/
sleep(l);
/* Send a response back to the client. */
if (send(s, buf, 10, 0) != 10) goto errout;

S
*

The loop has terminated, because there are no

more requests to be serviced. As mentioned above,

this close will block until all of the sent replies

have been received by the remote host. The reason

for lingering on the close is so that the server will
have a better idea of when the remote has picked up

all of the data. This will allow the start and finish
times printed in the log file to reflect more accurately
the length of time this connection was used.

* % * ¥ ¥ % X *

*
-~

close(s);

/* Log a finishing message. */
time (&timevar);
* The port number must be converted first to host byte
* order before printing. On most hosts, this is not
* necessary, but the ntohs() call is included here so
* that this program could easily be ported to a host
* that does require it.
7
printf("Completed %s port %u, %d requests, at %s\n",
hostname, ntohs(peeraddr_in.sin_port), reqcnt, ctime(&timevar));

11 —38 IPC Using Internet Stream Sockets

~
*

Gyl BN T 5 GG P

This is an example program that demonstrates the use of stream
sockets as an IPC mechanism. This contains the client, and is
intended to operate in conjunction with the server program found
in serv.tcp. Together, these two programs demonstrate many of the
features of sockets, as well as good conventions for using these
features.

This program requests a service called "example". In order for it
to function, an entry for it needs to exist in the /etc/services
file. The port address for this service can be any port number
that is likely to be unused, such as 22375. The host

on which the server will be running must also have the same entry
(same port number) in its /etc/services file.

* % % * % F F % * * F* * * * * ¥

*
~—

#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <stdio.h>
#include <netdb.h>

int s; /* connected socket descriptor */

struct hostent *hp; /* pointer to host info for remote host */
struct servent *sp; /* pointer to service information */

long timevar; /* contains time returned by time() */
char *ctime(); /* declare time formatting routine */

struct sockaddr_in myaddr_in; /* for local socket address */
struct sockaddr_in peeraddr_in; /* for peer socket address */

xf

% MAIN

*

* This routine is the client which requests service from the remote
* "example server”. It creates a connection, sends a number of

* requests, shuts down the connection in one direction to signal the
. server about the end of data, and then receives all of the responses.
i Status will be written to stdout.

*

* The name of the system to which the requests will be sent is given
% as a parameter to the command.

5

Interprocess Communication 11-—39

main(argc, argv)

int argc;
char *argv[];
{

int addrlen, i, j;

/* This example uses 10 byte messages. */
char buf[10];

if (argc !=2) {
fprintf(stderr, "Usage: %s <remote host>\n", argv[0]);
exit(1);

/* clear out address structures */
memset ((char *)&myaddr_in, 0, sizeof(struct sockaddr_in));
memset ((char *)&peeraddr in, 0, sizeof(struct sockaddr_in));

/* Set up the peer address to which we will connect. */
peeraddr_in.sin_family = AF_INET;
/* Get the host information for the hostname that the
* user passed in.
il 4
hp = gethostbyname (argv[1]);
/* argv[l] is the host name. */
if (hp == NULL) {
fprintf(stderr, "%s: %s not found in /etc/hosts\n",
argv([0], argv[1]);
exit(1);

peeraddr_in.sin_addr.s_addr = ((struct in_addr *)(hp->h_addr))->s_addr;
/* Find the information for the "example" server
* in order to get the needed port number.
*
¥
sp = getservbyname ("example”, "tcp");
if (sp == NULL) {
fprintf(stderr, "%s: example not found in /etc/services\n",
argv[0]);
exit(1);

peeraddr_in.sin_port = sp->s_port;

/* Create the socket. */
s = socket (AF_INET, SOCK_STREAM, 0);
if (s = -1) {
perror(argv[0]);
fprintf(stderr, "%s: unable to create socket\n", argv[0]);
exit(1l);

11—40 IPC Using Internet Stream Sockets

/* Try to connect to the remote server at the address
* which was just built into peeraddr.
%
if (connect(s, &peeraddr_in, sizeof(struct sockaddr_in)) == -1) {
perror(argv[0]);
fprintf(stderr, "#s: unable to connect to remote\n", argv[0]):

exit(1);
}
/* Since the connect call assigns a random address
* to the local end of this connection, let's use
* getsockname to see what it assigned. Note that
* addrlen needs to be passed in as a pointer,
* because getsockname returns the actual length
* of the address.
*/
addrlen = sizeof(struct sockaddr_in);
if (getsockname(s, &myaddr_in, &addrlen) == -1) {
perror(argv[0]);
fprintf(stderr, "%s: unable to read socket address\n", argv([0]);
exit(l);
}

/* Print out a startup message for the user. */
time(&timevar);
/* The port number must be converted first to host byte
* order before printing. On most hosts, this is not
necessary, but the ntohs() call is included here so
* that this program could easily be ported to a host
* that does require it.
*
/
printf("Connected to %s on port %u at #s",
argv[1], ntohs(myaddr_in.sin_port), ctime(&timevar));

*

/* This sleep simulates any preliminary processing
* that a real client might do here.
71

sleep(5);

Interprocess Communication 11—41

/* Send out all the requests to the remote server.

In this case, five are sent, but any random number
could be used. Note that the first four bytes of
buf are set up to contain the request number. This
number will be returned in the reply from the server.

*

*
xf
for (i=1; i<=5; i++) {
*(int *)buf = i;
if (send(s, buf, 10, 0) != 10) {
fprintf(stderr, "%s: Connection aborted on error ",

argv[0]);
fprintf(stderr, "on send number %d\n", i);
exit(1l);
}
/* Now, shutdown the connection for further sends.
* This will cause the server to receive an end-of-file
* condition after it has received all the requests that
* have just been sent, indicating that we will not be
* sending any further requests.
*
/
if (shutdown(s, 1) == -1) {
perror(argv[0]);
fprintf(stderr, "%s: unable to shutdown socket\n", argv([0]);
exit(1);
}
/* Now, start receiving all of the replys from the server.
* This loop will terminate when the recv returns zero,
* which is an end-of-file condition. This will happen
* after the server has sent all of its replies, and closed
* its end of the connection.
*
/
while (i = recv(s, buf, 10, 0)) {
if (i ==-1) {
errout: perror(argv[0]);
fprintf(stderr, "%s: error reading result\n", argv[0]);
exit(1);
}

11 —42 IPC Using Internet Stream Sockets

/* The reason this while Toop exists is that there

is a remote possibility of the above recv returning
less than 10 bytes. This is because a recv returns
as soon as there is some data, and will not wait for
all of the requested data to arrive. Since 10 bytes
is relatively small compared to the allowed TCP
packet sizes, a partial receive is unlikely. If
this example had used 2048 bytes requests instead,

a partial receive would be far more likely.

This loop will keep receiving until all 10 bytes
have been received, thus guaranteeing that the

next recv at the top of the loop will start at

the beginning of the next reply.

while (i < 10) {
j = recv(s, &buf[i], 10-i, 0);
if (j == -1) goto errout;
i4=J;

/* Print out message indicating the identity of
* this reply.
*f

printf("Received result number %d\n", *(int *)buf);

/* Print message indicating completion of task. */
time(&timevar);
printf("A11 done at %s", ctime(&timevar));

Interprocess Communication 11—43

BSD IPC Using UNIX Domain Stream
Sockets

This section describes the steps involved in creating a UNIX Domain
stream socket BSD IPC connection between two processes executing on
the same node. Datagram sockets are not currently supported for UNIX
Domain.

UNIX Domain (AF_UNIX) stream sockets provide bidirectional, reli-
able, unduplicated flow of data without record boundaries. They offer sig-

nificant performance increases when compared with the use of local Inter-

net (AF_INET) sockets, due primarly to lower code execution overhead.

The following table lists the steps involved in creating and terminating a
UNIX Domain BSD IPC connection using stream sockets. Each step is
described in more detail in the sections that follow the table.

11—44 BSD IPC Using UNIX Domain Stream Sockets

Building a UNIX Domain BSD IPC Connection Using Stream Sockets

Client Process
Activity

System call used

Server Process
Activity

System call used

create a socket

request a connection

send data

receive data

disconnect socket
(optional)

socket()

connect()

write() or send()

read() or recv()

shutdown() or close()

create a sockel

bind a socket
address

listen for incoming
connection requests

accepl conne ction

receive data

send data

disconnect socket
(optional)

socket()

bind()

listen()

accept()

read() or recv()

write() or send()

shutdown() or close()

The following sections explain each of the activities mentioned in the pre-
vious table. The description of each activity specifies a system call and in-

cludes:

¢ what happens when the system call is used;

¢ when to make the call;

e what the parameters do;

® how the call interacts with other BSD IPC system calls; and

e where to find details on the system call.

The UNIX Domain stream socket program examples are at the end of
these descriptive sections. You can refer to the example code as you work
through the descriptions.

Interprocess Communication 11—45

Preparing Address Variables

Before you begin to create a connection, establish the correct variables
and collect the information that you need to request a connection.

Your server process needs to:

e declare socket address variables;

e get the pathname (character string) for the service you want to provide.
Your client process needs to:

® declare socket address variables;

® get the pathname (character string) for the service you want to use.

These activities are described next. Refer to the program example at the
end of this chapter to see how these activities work together.

11 —-46 BSD IPC Using UNIX Domain Stream Sockets

Declaring Socket Address Variables

You need to declare a variable of type struct sockaddr_un to use for
socket addresses.

For example, the following declarations are used in the example client
program:

struct sockaddr_un myaddr; /* for local socket address */
struct sockaddr_un peeraddr; /* for peer socket address */

Sockaddr un is a special case of sockaddr and is used with the AF_UNIX
address domain.The sockaddr_un address structure consists of the follow-
ing fields:

short sun_family Specifies the address family and should al-
ways be set to AF_UNIX

u_char sun_path[108] Specifies the pathname of the vnode to which
the socket is bound or will be bound (e.g.
/tmp/mysocket).

The server process only needs an address for its own socket. Your client
process will not need an address for its own socket.

Writing the Server Process

This section discusses the calls your server process must make to connect
with and serve a client process.

Creating a Socket

The server process must call socket to create a communication endpoint.

Socket and its parameters are described in the following table.

Interprocess Communication 11—47

INCLUDE FILES: #include <sys/types.h>

#include <sys/socket.h>

SYSTEM CALL: s = socket(af, type, protocol)

int af, type, protocol;

Parameter Description of Contents INPUT Value

af address family AF_UNIX

type socket type SOCK_STREAM

protocol underlying protocol to be used 0 (default)

FUNCTION RESULT: socket number (HP-UX file
descriptor)
-1 if failure occurs

EXAMPLE SYSTEM CALL.: s = socket (AF_UNIX, SOCK_STREAM, 0);

The socket number returned is the socket descriptor for the newly
created socket. This number is an HP-UX file descriptor and can be used
for reading, writing or any standard file system calls after a BSD IPC con-
nection is established. A socket descriptor is treated like a file descriptor
for an open file.

When to Create Sockets

Which Processes When

SErver process before any other BSD IPC system
calls

Refer to the socket(2) entry in the LAN Reference Pages for more informa-
tion on socket.

11 —48 BSD IPC Using UNIX Domain Stream Sockets

Binding a Socket Address to the Server Process’s Socket

After your server process has created a socket, it must call bind to bind a
socket address. Until an address is bound to the server socket, other
processes have no way to reference it.

The server process must bind a specific pathname to this socket, which is
used for listening. Otherwise, a client process would not know what path-
name to connect to for the desired service.

Set up the address structure with a local address (as described in the
"Preparing Address Variables" section) before you make a bind call. Bind
and its parameters are described in the following table.

INCLUDE FILES: #include <sys/types.h>

#include <sys/un.h>
#include <sys/socket.h>

SYSTEM CALL: bind (s, addr, addrlen)
int s;
struct sockaddr_un *addr;
int addrlen;

Description of

Parameter Contents INPUT Value
s socket descriptor of local socket descriptor of
socket socket to be bound
addr socket address pointer to address to be bound to s
addrlen length of socket address size of struct sockaddr_un
FUNCTION RESULT: 0 if bind is successful

-1 if failure occurs

EXAMPLE SYSTEM CALL: struct sockaddr_un myaddr;

bind (1s, myaddr, sizeof(struct
sockaddr_un));

Interprocess Communication 11—49

When to Bind Socket Addresses
Which Processes When

Server process after socket is created and before
any other BSD IPC system calls

Refer to the bind(2) entry in the LAN Reference Pages for more informa-
tion on bind.

11 —-50 BSD IPC Using UNIX Domain Stream Sockets

Setting the Server Up to Wait for Connection Requests

Once your server process has an address bound to it, it must call listen to
set up a queue that accepts incoming connection requests. The server
process then monitors the queue for requests (using select(2) or accept,
which is described in "Accepting a Connection"). The server process can-
not respond to a connection request until it has executed listen.

Listen and its parameters are described in the following table.

INCLUDE FILES: none
SYSTEM CALL: listen(s, backlog)
int s, backlog;
Parameter Description of Contents INPUT Value
] socket descriptor of local server socket’s descriptor
socket
backlog maximum number of size of queue (between 1 and 20)

connection requests in the
queue at any time

FUNCTION RESULT: 0 if listen is successful
-1 if failure occurs

EXAMPLE SYSTEM listen (1s, 5);
CALL:

Backlog is the number of unaccepted incoming connections allowed at a
given time. Further incoming connection requests are rejected.

Interprocess Communication 11—51

When to Set Server Up to Listen

Which Processes When

Server process after socket is created and bound
and before the server can respond
to connection requests

Refer to the listen(2) entry in the LAN Reference Pages for more informa-
tion on listen.

Accepting a Connection

The server process can accept any connection requests that enter its
queue after it executes listen. Accept creates a new socket for the connec-
tion and returns the socket descriptor for the new socket. The new socket:

e is created with the same properties as the old socket;
® has the same bound pathname as the old socket; and

e is connected to the client process’ socket.

Accept blocks until there is a connection request from a client process in
the queue.

Accept and its parameters are described in the following table.

INCLUDE FILES: #include <sys/types.h>

#include <sys/un.h>
#include <sys/socket.h>

SYSTEM CALL: s = accept(s,addr,addrlen)

int s;
struct sockaddr_un *addr;
int *addrlen;

11—52 BSD IPC Using UNIX Domain Stream Sockets

Parameter Description of Contents INPUT Value OUTPUT Value
s socket descriptor of socket descriptor of unchanged

local socket server socket
addr socket address pointer to address pointer to socket

addrlen length of address

FUNCTION RESULT:

EXAMPLE SYSTEM

CALL:

structure where
address will be put

address of client
socket that server’s

new socket is
connected to

pointer to the size of pointer to the actual
struct sockaddr_un length of address
returned in addr

socket descriptor of new socket if accept is
successful
-1 if failure occurs

struct sockaddr_un peeraddr;

addrlen = sizeof(sockaddr_un);
s = accept (s, peeraddr, Raddrlen);

There is no way for the server process to indicate which requests it can ac-
cept. It must accept all requests or none.

Which Processes

When to Accept a Connection

When

SEIVer process

after executing the listen call

Refer to the accept(2) entry in the LAN Reference Pages for more infor-

mation on accept.

Interprocess Communication 11—353

Writing the Client Process

This section discusses the calls your client process must make to connect
with and be served by a server process.

Creating a Socket
The client process must call socket to create a communication endpoint.

Socket and its parameters are described in the following table.

INCLUDE FILES: #include <sys/types.h>

#include <sys/socket.h>
SYSTEM CALL.: s = socket(af, type, protocol)

int af, type, protocol;

Parameter Description of Contents INPUT Value
af address family AF_UNIX
type socket type SOCK_STREAM
protocol underlying protocol to be 0 (default)
used

FUNCTION RESULT: socket number (HP-UX file descriptor)
-1 if failure occurs

EXAMPLE SYSTEM s = socket (AF_UNIX, SOCK_STREAM, 0);
CALL:

The socket number returned is the socket descriptor for the newly
created socket. This number is an HP-UX file descriptor and can be used
for reading, writing or any standard file system calls after a BSD IPC con-
nection is established. A socket descriptor is treated like a file descriptor
for an open file.

11—-54 BSD IPC Using UNIX Domain Stream Sockets

When to Create Sockets
Which Processes When

client process before requesting a connection

Refer to the socket(2) entry in the LAN Reference Pages for more informa-
tion on socket.

Requesting a Connection

Once the server process is listening for connection requests, the client
process can request a connection with the connect call.

Connect and its parameters are described in the following table.

INCLUDE FILES: #include <sys/types.h>

#include <sys/un.h>
#include <sys/socket.h>

SYSTEM CALL: connect(s, addr, addrlen)
int s;
struct sockaddr_un *addr;
int addrien;

Parameter Description of Contents INPUT Value
s socket descriptor of local socket descriptor of socket request-
socket ing a connection

addr pointer to the socket address pointer to the socket address of the
socket to which client wants to con-
nect

addrlen length of addr size of address structure pointed to
by addr

Interprocess Communication 11—35

FUNCTION RESULT: 0 if connect is successful
-1 if failure occurs

EXAMPLE SYSTEM struct sockaddr_un peeraddr;
CALL:

connect (s, peeraddr, sizeof(struct sockaddr_un));

Connect initiates a connection. When the connection is ready, the client
process completes its connect call and the server process can complete its
accept call.

Note

The client process does not get feedback that the server
process has completed the accept call. As soon as the
connect call returns, the client process can send data.

When to Request a Connection

Which Processes When

client process after socket is created and after
server socket has a listening socket

Refer to the connect(2) entry in the LAN Reference Pages for more infor-
mation on connect.

11—-56 BSD IPC Using UNIX Domain Stream Sockets

Sending and Receiving Data

After the connect and accept calls are successfully executed, the connec-
tion is established and data can be sent and received between the two
socket endpoints. Because the stream socket descriptors correspond to
HP-UX file descriptors, you can use the read and write calls (in addition
to recv and send) to pass data through a socket-terminated channel.

If you are considering the use of the read and write system calls instead of
the send and recv calls described below, you should consider the following:

Advantage: If you use read and write instead of send and recv,
you can use a socket for stdin or stdout.

Disadvantage: If you use read and write instead of send and recv,
you cannot use the options specified with the send or
recv flags parameter.

See the table called "Other System Calls," listed in the "Programming
Hints" chapter for more information on which of these system calls are
best for your application.

Interprocess Communication 11—357

Sending Data

Send and its parameters are described in the following table.

INCLUDE FILES: #include <sys/types.h>
#include <sys/socket.h>
SYSTEM CALL: count = send(s,msqg, len,flags)
int s;
char *msg;

int len, flags;

Parameter Description of Contents INPUT Value
s socket descriptor of local sock- socket descriptor of socket sending
ct data
msg pointer to data buffer pointer to data to be sent
len size of data buffer size of msg
flags settings for optional flags 0

FUNCTION RESULT: number of bytes actually sent
-1 if failure occurs

EXAMPLE SYSTEM count = send (s, buf, 10, 0);
CALL:

Send blocks until the specified number of bytes have been queued to be
sent, unless you are using nonblocking I/O. (For information on nonblock-
ing I/O, see the "Nonblocking I/O" section of the "Advanced Topics for
Stream Sockets" chapter.)

When to Send Data
Which Processes When

server or client process after connection is established

Refer to the send(2) entry in the LAN Reference Pages for more informa-
tion on send.

11 —-58 BSD IPC Using UNIX Domain Stream Sockets

Receiving Data

Recv and its parameters are described in the following table.

INCLUDE FILES: #include <sys/types.h>
#include <sys/socket.h>
SYSTEM CALL: count = recv(s,buf, len,flags)
int s;
char *buf;

int len, flags;

Parameter Description of Contents INPUT Value
s socket descriptor of local socket descriptor of socket
socket receiving data
buf pointer to data buffer pointer to buffer that is to receive
data
len maximum number of bytes size of data buffer

that should be received

flags settings for optional flags 0

FUNCTION RESULT: number of bytes actually received
-1 if failure occurs

EXAMPLE SYSTEM count = recv(s, buf, 10, 0);
CALL:

Recv blocks until there is at least 1 byte of data to be received, unless you
are using nonblocking I/O. (For information on nonblocking 1/O, see the
"Nonblocking I/O" section of the "Advanced Topics for Stream Sockets"
chapter.) The host does not wait for len bytes to be available; if less than
len bytes are available, that number of bytes are received.

No more than len bytes of data are received. If there are more than len
bytes of data on the socket, the remaining bytes are received on the next
recv.

Interprocess Communication 11—39

Flag Options

There are no flags options for UNIX Domain (AF_UNIX) sockets. The
only supported value for this field is 0.

When to Receive Data

Which Processes When

server or client process after connection is established

Refer to the recv(2) entry in the LAN Reference Pages for more informa-
tion on recv.

11-60 BSD IPC Using UNIX Domain Stream Sockets

Closing a Socket

In most applications, you do not have to worry about cleaning up your
sockets. When you exit your program and your process terminates, the
sockets are closed for you.

If you need to close a socket while your program is still running, use the
close system call. For example, you may have a daemon process that uses
fork to create the server process. The daemon process creates the BSD
IPC connection and then passes the socket descriptor to the server. You
then have more than one process with the same socket descriptor. The
daemon process should do a close of the socket descriptor to avoid keep-
ing the socket open once the server is through with it. Because the server
performs the work, the daemon does not use the socket after the fork.

Close decrements the file descriptor count and the calling process can no
longer use that file descriptor.

When the last close is executed on a socket descriptor, any unsent data
are sent before the socket is closed. Any unreceived data are lost.

Interprocess Communication 11—61

Examples Using UNIX Domain Stream Sockets

/*
¥ EXAMPLE PROGRAM
g CATCH - RECEIVE DATA FROM THE PITCHER
*
* Pitch and catch set up a simple UNIX Domain stream socket
% client-server connection. The client (pitch) then sends data to
* the server (catch), throughput is calculated, and the result is
= printed to the client's stdout.
*f

#include <stdio.h>
#include <time.h>
#include <signal.h>
#include <errno.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <sys/un.h>

#define SOCKNAME "p_n_c"
#define BUFSIZE 32*1024-1

char buffer [BUFSIZE];
struct bullet {
int bytes;
int throughput;
int magic;
} bullet = { 0, 0, 0 };

send_data(fd, buf, buflen)

char *buf;
{
int cc;
while (buflen > 0) {
cc = send(fd, buf, buflen, 0);
if (cc == -1) {
perror(“send");
exit(0);
}
buf += cc;
buflen -= cc;
}
}
recv_data(fd, buf, buflen)
char *buf;

11—-62 BSD IPC Using UNIX Domain Stream Sockets

int cc;

while (buflen > 0) {
cc = recv(fd, buf, buflen, 0)

if (cc == -1) {
perror(“recv"”);

exit(0);
}
buf += cc;
buflen -= cc;
}
}
main(argec, argv)
int argc;
char *argv[];
{
int bufsize, bytes, cc, i, total, pid, counter_pid;
float msec;
struct timeval tpl, tp2;
int s, ns, recvsize, secs, usec;
struct timezone tzp;
struct sockaddr_un sa;
signal(SIGPIPE, SIG_IGN);
signal(SIGCLD, SIG_IGN);
setbuf(stdout, 0);
setbuf (stderr, 0);
if (arge > 1) {
argv++;
counter_pid = atoi(*argv++);
} else
counter_pid = 0;
/*

* Set up the socket variables - address family, socket name.
* They'1l be used later to bind() the name to the server socket.

*]
sa.sun_family = AF_UNIX;
strncpy(sa.sun_path, SOCKNAME,
(sizeof (struct sockaddr_un) - sizeof(short)));
/*
* Create the server socket
=

Interprocess Communication 11—63

if ((s = socket(AF_UNIX, SOCK_STREAM, 0)) == -1) {
perror(“catch - socket failed”);
exit(0);

bufsize = BUFSIZE;
’(*
* Use setsockopt() to change the socket buffer size to improve throughput
* for large data transfers

&
if ((setsockopt(s, SOL_SOCKET, SO_RCVBUF, &bufsize, sizeof(bufsize)))
== -1) {
perror(“catch - setsockopt failed”);
exit(0);
}
/*
* Bind the server socket to its name
*/
if ((bind(s, &sa, sizeof(struct sockaddr_un))) == -1) {
perror(“catch - bind failed");
exit(0);
/*

* Call listen() to enable reception of connection requests

* (listen() will silently change the given backlog, 0, to be 1 instead)
*
/

if ((listen(s, 0)) == -1) {
perror(”catch - listen failed");
exit(0);
}
next_conn:

i = sizeof(struct sockaddr_un);
/*
* Call accept() to accept the connection request. This call will block
* until a connection request arrives.

*/
if ((ns = accept(s, &sa, &i)) == -1) {
if (errno == EINTR)
goto next_conn;
perror(“catch - accept failed");
exit(0);
}
if ((pid = fork()) != 0) {
close(ns);
goto next_conn;
close(s);
/*
* Receive the bullet to synchronize with the other side
*

recv_data(ns, &bullet, sizeof(struct bullet));

11—-64 BSD IPC Using UNIX Domain Stream Sockets

if (bullet.magic != 12345) {
printf("catch: bad magic %d\n", bullet.magic);
exit(0);

}

bytes = bullet.bytes;
recvsize = (bytes>BUFSIZE)?7BUFSIZE :bytes;
/*
* Send the bullet back to complete synchronization
*r
send data(ns, &bullet, sizeof(struct bullet));

cc = 0;
if (counter_pid)
kill(counter_pid, SIGUSR1);

if (gettimeofday(&tpl, &tzp) == -1) {
perror("catch time of day failed");
exit(0);
}
/*
* Receive data from the client
=
total = 0;
i = bytes;
while (i > 0) {
cc = recvsize < i 7?7 recvsize : i;
recv_data(ns, buffer, cc);
total += cc:
i -= cc;
}
/1’
* Calculate throughput
*
/
if (gettimeofday(&tp2, &tzp) == -1) {
perror(”catch time of day failed”);
exit(0);

if (counter_pid)

kill(counter_pid, SIGUSRZ);
Secs tp2.tv_sec - tpl.tv_sec;
usec = tp2.tv_usec - tpl.tv_usec;
if (usec < 0) {

secs--;

usec += 1000000;

non

}

msec = 1000*(float)secs;

msec += (float)usec/1000;
bullet.throughput = bytes/msec;

Interprocess Communication

11—65

* Send back the bullet with throughput info, then close the
* server socket

*
Y
if ((cc = send(ns, &bullet, sizeof(struct bullet), 0)) == -1) {
perror(“”catch - send end bullet failed”);
exit(0);
close(ns);
}

11—-66 BSD IPC Using UNIX Domain Stream Sockets

S~
*

) EXAMPLE CLIENT PROGRAM

*

x PITCH - SEND DATA TO THE CATCHER

*

* Pitch and catch set up a simple UNIX Domain stream socket

* client-server connection. The client (pitch) then sends data to
® the server (catch), throughput is calculated, and the result is
% printed to the client's stdout.

*f

#include <stdio.h>
#include <time.h>
#include <netdb.h>
#include <signal.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <sys/un.h>

#define SOCKNAME "p_n_c"

#define BUFSIZE 32*1024-1
char buffer[BUFSIZE];

struct bullet {

int bytes;

int throughput;

int magic;
} bullet = { 0, 0, 12345 };
send_data(fd, buf, buflen)

char *buf;
{
int ce;
while (buflen > 0) {
cc = send(fd, buf, buflen, 0);
if (cc == -1) {
perror(“send");
exit(0);
}
buf += cc;
buflen -= cc;
}
}
recv_data(fd, buf, buflen)
char *buf;

Interprocess Communication 11—67

int cc;

while (buflen > 0) {
cc = recv(fd, buf, buflen, 0);

if (oo == =1) {
perror("recv");
exit(0);
}
buf += cc;
buflen -= cc;
}
}
main(argc, argv)
int argc;
char *argv[];
{
int bufsize, bytes, cc, i, total, pid;
float msec;
struct timeval tpl, tp2;
int s, sendsize, secs, usec;
struct timezone tzp;
struct sockaddr_un sa;
signal(SIGPIPE, SIG_IGN);
setbuf(stdout, 0);
setbuf(stderr, 0);
if (argc < 2) {
printf("usage: pitch Kbytes [pid]\n");
exit(0);
argv++;
/t

* Set up the socket variables (address family; name of server socket)
* (they'11 be used later for the connect() call)
*
/
sa.sun_family = AF_UNIX;
strncpy(sa.sun_path, SOCKNAME,
(sizeof(struct sockaddr_un) - sizeof(short))):
bullet.bytes = bytes = 1024*atoi(*argv++);
if (argc > 2)
pid = atoi(*argv++);
else
pid = 0;
sendsize = (bytes < BUFSIZE) ? bytes : BUFSIZE;

11 —-68 BSD IPC Using UNIX Domain Stream Sockets

/*
* Create the client socket

k.3
/

if ((s = socket(AF_UNIX, SOCK_STREAM, 0)) == -1) {
perror("pitch - socket failed")
exit(0);

}

bufsize = BUFSIZE;

/*

* Change the default buffer size to improve throughput for
* large data transfers

*
/
if {(setsockoptﬂ?. SOL_SOCKET, SO_SNDBUF, &bufsize, sizeof(bufsize)))
s% 1)
perror("pitch - setsockopt failed");
exit(0);
}
‘{*
* Connect to the server
&
if ((connect(s, &sa, sizeof(struct sockaddr_un))) == -1) {
perror("pitch - connect failed");
exit(0);
}
/*
* send and receive the bullet to synchronize both sides
*
/
send_data(s, &bullet, sizeof(struct bullet));
recv_data(s, &bullet, sizeof(struct bullet))
cc = 0;
if (pid)
kill(pid,SIGUSRL);
if (gettimeofday(&tpl, &tzp) == -1) {
perror("pitch time of day failed");
exit(0);
}
i = bytes;
total = 0;
/*
* Send the data
&

while (i > 0) {
cc = sendsize < i 7 sendsize : i;

send_data(s, buffer, cc);

i -=cc;
total += cc;

Interprocess Communication 11—69

/*
* Receive the bullet to calculate throughput
4

recv_data(s, &bullet, sizeof(struct bullet))

if (gettimeofday(&tp2, &tzp) == -1) {
perror("pitch time of day failed");
exit(0);

if (pid)
kill(pid, SIGUSR2);
/*
* Close the socket
*/
close(s);
secs = tp2.tv_sec - tpl.tv_sec;
usec = tp2.tv_usec - tpl.tv_usec;
if (usec < 0) {
Secs--;
usec += 1000000;

msec = 1000*(float)secs;

msec += (float)usec/1000;

printf("PITCH: %d Kbytes/sec\n", (int)(bytes/msec));

printf("CATCH: %d Kbytes/sec\n", bullet.throughput)

printf("AVG: %d Kbytes/sec\n", ((int)(bytes/msec)+bullet.throughput)/2);

11—-70 BSD IPC Using UNIX Domain Stream Sockets

Advanced Topics for Stream Sockets

Socket Options

The operation of sockets is controlled by socket level options. The follow-
ing options are supported for Internet stream sockets:

e SO_ REUSEADDR

e SO KEEPALIVE

e SO DONTROUTE

e SO_SNDBUF

e SO RCVBUF

e SO LINGER

e SO_DONTLINGER

The following options are supported for UNIX Domain stream sockets:
e SO_SNDBUF

e SO_RCVBUF

In addition, the SO_DEBUG option is supported for compatibility only;
it has no functionality.

The next section discusses how to set socket options and get the current

value of a socket option. Following those discussions is a description of
each available option.

Interprocess Communication 11-71

Getting and Setting Socket Options

The socket options are defined in the <sys/socket.h > file. You can get
the current status of an option with the getsockopt call, and you can set
the value of an option with the setsockopt call.

Setsockopt and its parameters are described in the following table:

INCLUDE FILES: #include <sys/types.h>

#include <sys/socket.h>

SYSTEM CALL.: setsockopt(s, level, optname, optval, optlen)

int s, level, optname;

char *optval;

int optlen;
Parameter Description of Contents INPUT Value

s socket descriptor socket descriptor for which options
are to be set

level protocol level SOL SOCKET

optname name of option supported option name

optval pointer to option input value 0, or if optname = SO_LINGER, a
pointer to the linger interval value
of SO_LINGER, or if optname =
SO_SNDBUF or SO_RCVBUF, a
pointer to an integer containing the
new buffer size value.

optlen length of optval 0 or size of optval

FUNCTION RESULT: 0 if setsockopt is successful
-1 if failure occurs

EXAMPLE SYSTEM See the description of the
CALL: SO_REUSEADDR option for an example.

For options that do not take an input value, optval and optlen should both
be 0.

11—-72 Advanced Topics for Stream Sockets

Refer to the getsockopt(2) entry in the ARPA/Berkeley Services Reference
Pages for more information on setsockopt.

Getsockopt and its parameters are described in the following table:

INCLUDE FILES: #include <sys/types.h>

#include <sys/socket.h>

SYSTEM CALL: getsockopt(s, level, optname, optval, optlen)
int s, level, optname;
char *optval;
int *optlen;

Parameter Description of Contents INPUT Value OUTPUT Value
s socket descriptor socket descriptor for unchanged

which option values

are to be returned

level protocol level SOL_SOCKET unchanged
optname name of option supported option unchanged
name
optval pointer to current value pointer to buffer pointer to buffer that
of option where option’s cur- contains current op-
rent value is to be tion value
returned
optlen pointer to length of pointer to maximum pointer to actual size
optval number of bytes to be of optval returned

returned by optval

FUNCTION RESULT: 0 if the option is set

-1 with errno = ENOPROTOOPT
if specified option is not set

-1 with errno = some other value
if failure occurs

EXAMPLE SYSTEM getsockopt (s, SOL_SOCKET, SO REUSEADDR, 0, 0);
CALL:

For options that do not take an input value, optval and optlen should both
be 0.

InterprocessCommunication 11-—73

Refer to the getsockopt(2) entry in the ARPA/Berkeley Services Reference
Pages section for more information on getsockopt.

SO_REUSEADDR
Note that this option is not supported for UNIX Domain sockets.

SO_REUSEADDR enables you to restart a daemon which was killed or
terminated.

This option modifies the rules used by bind to validate local addresses,
but it does not violate the uniqueness requirements of an association.
SO_REUSEADDR modifies the bind rules only when a wildcard IP ad-
dress is used in combination with a particular protocol port. The host still
checks at connection time to be sure any other sockets with the same
local address and local port do not have the same remote address and
remote port. Connect fails if the uniqueness requirement is violated.

The following example shows the SO_REUSEADDR option’s use:

Suppose that a network daemon server is listening on a specific port: port
2000. If you executed netstat -an part of the output would resemble:

Active connections (including servers)
Proto Recv-Q Send-Q Local Address Foreign Address (state)
tcp 0 0 *.2000 R LISTEN

Network Daemon Server Listening at Port 2000

When the network daemon accepts a connection request, the accepted
socket will bind to port 2000 and to the Internet Protocol address where
the daemon is running (e.g. 192.6.250.100).

11—-74 Advanced Topics for Stream Sockets

If you then executed netstat -an, the output would resemble:

Active connections (including servers)

Proto Recv-Q Send-Q Local Address Foreign Address (state)
tcp 0 0 192.6.250.100.2000 192.6.250.101.4000 ESTABLISHED
tep 0 0 *.2000 n LISTEN

New Connection Established, Daemon Server Still Listening

Here the network daemon has established a connection to the client
(192.6.250.101.4000) with a new server socket. The original network
daemon server continues to listen for more connection requests.

If the listening network daemon process is killed, attempts to restart the
daemon fail if SO_REUSEADDR is not set. The restart fails because the
daemon attempts to bind to port 2000 and a wildcard Internet Protocol
address (e.g. *.2000). The wildcard Internet Protocol address matches the
Internet Protocol address of the established connection (192.6.250.100),
so the bind aborts to avoid duplicate socket naming.

When SO_REUSEADDR s set, bind ignores the wildcard match, so the
network daemon can be restarted.

SO_REUSEADDR cannot be cleared once you set it.
An example usage of this option is:

setsockopt (s, SOL_SOCKET, SO_REUSEADDR, (char *)0, 0);

bind (s, &sin, sizeof(sin));

SO_KEEPALIVE
Note that this option is not supported for UNIX Domain sockets.

This option enables the periodic transmission of messages on a connected
socket. This occurs at the transport level and does not require any work
in your application programs.

InterprocessCommunication 11—75

If the peer socket does not respond to these messages, the connection is
considered broken. The next time one of your processes attempts to use a
connection that is considered broken, the process is notified (with a SIG-
PIPE signal if you are trying to send, or an end-of-file condition if you are
trying to receive) that the connection is broken.

SO_KEEPALIVE cannot be cleared once you set it.

SO_DONTROUTE
Note that this option is not supported for UNIX Domain sockets.

SO_DONTROUTE indicates that outgoing messages should bypass the
standard routing facilities. Instead, messages are directed to the ap-
propriate network interface according to the network portion of the des-
tination address.

SO_SNDBUF

SO_SNDBUF changes the send socket buffer size. Increasing the send
socket buffer size allows a user to send more data before the user’s ap-
plication will block, waiting for more buffer space.

Note

Increasing buffer size to send larger portions of data
before the application blocks may increase throughput,
but the best method of tuning performance is to experi-
ment with various buffer sizes.

You can increase a stream socket’s buffer size at any time but decrease it
only prior to establishing a connection.

The maximum buffer size for stream sockets is 65535 bytes.

11—-76 Advanced Topics for Stream Sockets

Example:

int result;
int buffsize = 10,000;
result = setsockopt(s, SOL_SOCKET, SO_SNDBUF, &buffsize, sizeof(buffsize));

SO_RCVBUF
SO_RCVBUF changes the receive socket buffer size.

You can increase a stream socket’s buffer size at any time but decrease it
only prior to establishing a connection.

The maximum buffer size for stream sockets is 65535 bytes.

Example:
int result;

int buffsize = 10,000;
result = setsockopt(s, SOL_SOCKET, SO_RCVBUF, &buffsize, sizeof(buffsize));

Summary Information for Changing Socket Buffer Size

Socket
When Buffer Size When Buffer Size Maximum
(Protocol) Increase Allowed Decrease Allowed Buffer Size
stream at any time only prior to estab- 65535 bytes
(TCP) lishing a connection
SO _LINGER

Note that this option is not supported for UNIX Domain sockets.

SO _LINGER controls the actions taken when a close is executed on a
socket that has unsent data.

This option can be cleared by setting SO_DONTLINGER. The default is
SO_DONTLINGER.

The linger timeout interval is set with a parameter in the setsockopt call.
The only useful values are zero and nonzero:

Interprocess Communication 11-77

e If SO_LINGER is set with a nonzero timeout interval, the host blocks
the close call until it is able to transmit the remaining data or until the
protocol itself (TCP) expires. This is called a graceful disconnect.

¢ If SO_LINGER is set with a zero timeout interval, close is not blocked
even if queued data exist. This is called a hard close, because it closes
the socket immediately, whether data need to be sent or not. All unsent
data are immediately lost.

Example:
int result;

int linger = 1;
result = setsockopt(s, SOL_SOCKET, SO_LINGER, &linger, sizeof(linger));

SO_DONTLINGER
This option is the default. It can be overridden by setting SO_LINGER.

SO_DONTLINGER controls the actions taken when a close is executed
on a socket. If SO_DONTLINGER is set on a stream socket with unsent
data, the host allows the close call to return immediately, but it tells TCP
to wait. Queued data are sent if possible, until TCP times out. This is also
called a graceful disconnect.

Summary of Linger Options on Close

Socket Linger | Graceful Hard | Waits for Does Not
Option Interval Close Close Close Wait for Close
SO_DONTLINGER don’t care X X
SO_LINGER ZEero X X

SO LINGER nonzero X X

11—78 Advanced Topics for Stream Sockets

Synchronous I/O Multiplexing with Select

The select system call can be used with sockets to provide a synchronous
multiplexing mechanism. The system call has several parameters which
govern its behavior. If you specify a zero pointer for the timout
parameter, select will block until one or more of the specified socket
descriptors are ready. If timeout is a non-zero pointer, it specifies a maxi-
mum interval to wait for the selection to complete.

A select of a socket descriptor for reading is useful on:

® a connected socket, because it determines when data has arrived and is
ready to be read without blocking; use the FIONREAD parameter to
the ioctl system call to determine exactly how much data is available.

® a listening socket, because it determines when you can accept a
connection without blocking.

A select of a socket descriptor for writing is useful on:

® a connecting socket, because it determines when the connection is
complete.

® a connected socket, because it determines when more data can be sent
without blocking. This implies that at least one byte can be sent; there is
no way, however, to determine exactly how many bytes can be sent.

Selecting for exceptional conditions is currently meaningless for Berkeley
sockets. Select will always return true for sockets that are no longer
capable of being used (e.g. if a close or shutdown system call has been ex-
ecuted against them).

Select is used in the same way as in other applications. Refer to the
select(2) entry in the HP-UX Reference manual for information on how to
use select. For an asynchronous alternative to select, see the next section,
"Sending and Receiving Data Asynchronously."

Interprocess Communication 11-79

Example:

The following example illustrates the select system call. Since it is pos-
sible for a process to have more than 32 open file descriptors, the bit
masks used by select are interpreted as arrays of intergers. The following
useful macros can be used to manipulate bit masks of this form.

#define BPI 32 /* bits per int */

#define FD_ZERO(p) bzero((char *) (p), sizeof(*(p)))

#define FD_SET(n, p) ((p)-fdm_bits[(n)/BPI] |= (1 < ((n) % BPI)))
#define FD_CLR(n, p) ((p)-fdm_bits[(n)/BPI] &= ~(1 < ((n) % BPI)))
#define FD_ISSET(n, p) ((p)-fdm_bits[(n)/BPI] & (1 < ((n) % BPI)))

struct fd_mask {
u_long fdm_bits[NOFILE/BPI+1] /* NOFILE max # of fd's per process */
}:

do_select(s)

int s; /* socket to select on, initialized */

{
struct fd_set read mask, write_mask; /* bit masks */
int nfds; /* number to select on */
int nfd; /* number found */

fori(;:) { /* for example... */
FD_ZERO(&read mask); /* select will overwrite on return */
FD_ZERO(&write_mask);
FD_SET(s, &read_mask); /* we care only about the socket */
FD_SET(s, B&write_mask);
nfds = s; /* select descriptors 0 through s */
nfd = select(nfds, &read mask, &write mask, (int *) O,
(struct timeval *) 0); /* will block*/

if (nfd == -1) {

perror("select: unexpected condition");

exit(1);

if (FD_ISSET(s, &read mask))
do_read(s); /* something to read on socket s */
/* fall through as maybe more to do */
if (FD_ISSET(s, &write_mask))
do_write(s); /* space to write on socket s */

11—80 Advanced Topics for Stream Sockets

Sending and Receiving Data Asynchronously

Asynchronous sockets allow a user program to receive a SIGIO signal
when the socket’s state changes. This state change can occur, for example,
when new data arrives. Currently the user must issue a select systemcall
to determine if data are available. If other processing is required of the
user program, the need to call select can complicate an application by forc-
ing the user to implement some form of polling, whereby all sockets are
checked periodically. Asynchronous sockets would allow the user to
separate socket processing from other processing, eliminating polling al-
together. Select may still be required to determine exactly why the signal
is being delivered or to which socket the signal applies.

Generation of the SIGIO signal is protocol dependent. It mimics the
semantics of select in the sense that the signal is generated whenever
select would return true. It is generally accepted that connectionless
protocols deliver the signal whenever a new packet arrives. For connec-
tion oriented protocols, the signal is also delivered when connections are
established or broken, as well as when additional outgoing buffer space
becomes available. Be aware that these assertions are guidelines only; any
signal handler should be robust enough to handle signals in unexpected
situations.

The delivery of SIGIO signal is dependent upon two things. First, the
socket state must be set as asynchronous; this is done using the
FIOASYNC flag of the ioctl system call. Secondly, the process group
(pgrp) associated with the socket must be set; this is done using the
SIOCSPGREP flag of ioctl. The sign value of the pgrp can lead to various
signals being delivered. Specifically, if the pgrp is negative, this implies
that a signal should be delivered to the process whose PID is the absolute
value of the pgrp. If the pgrp is positive, a signal should be delivered to
the process group identified by the absolute value of the pgrp.

Any application that chooses to use asynchronous sockets must explicitly
activate the described mechanism. The SIGIO signal is a "safe" signal in
the sense that if a process is unprepared to handle it, the default action is
to ignore it. Thus, any existing applications are immune to spurious signal
delivery. Notification that out of band data has been received is also done
asynchronously; for more details, see the section in this chapter, "Sending
and Receiving Out of Band Data."

Interprocess Communication 11-—81

Example:

The following example sets up a listen SOCK_STREAM socket as
asynchronous. This is typical of an application that needs to be notified
when connection requests arrive.

int ls; /* listen SOCK_STREAM socket */
int flag = 1; /* for ioctl, to turn on async */
int iohndl1r(); /* the function which handles the SIGIO */

signal(SIGIO, iohndlr); /* set up the handler */

if(joct1(1s, FIOASYNC, &Flag) == -1) {
perror("can't set async on socket");
exit(l);

flag = -getpid(); /* process group negative == deliver to process */
if(joct1(1s, SIOCSPGRP, &flag) == -1) {
perror("can't get pgrp");
exit(l);

/* signal can come any time now */

The following example illustrates the use of process group notification.
Note that the real utility of this feature is to allow multiple processes to
receive the signal, which is not illustrated here. For example, the socket
type could be SOCK_DGRAM; a signal here can be interpreted as the ar-
rival of a service-request packet. Multiple identical servers could be set
up, and the first available one could receive and process the packet.

int flag = 1; /* joctl to turn on async */

int johndlr();
signal(SIGIO, iohndlr);

setpgrp(); /* set my processes’ process group */
if(ioct1{ s, FIOASYNC, &flag ===1) %
perror{ "can't set async on socket”);
exit(1l);
}
flag = getpid(); /* process group + == deliver to every
process in group */
if(ioct1{ s, SIOCSPGRP, &flag) == -1) {
perror("can't set pgrp");
exit(l);
}

/* signal can come any time now */

11 —-82 Advanced Topics for Stream Sockets

Nonblocking 1/O

Sockets are created in blocking mode I/O by default. You can specify that
a socket be put in nonblocking mode by using the ioctl system call with
the FIOSNBIO request.

An example usage of this call is:

#include <sys/ioctl.h>

ioct1(s, FIOSNBIO, &arg);

Arg is a pointer to int:

e When int equals 0, the socket is changed to blocking mode.

® When int equals 1, the socket is changed to nonblocking mode.

If a socket is in nonblocking mode, the following calls are affected:

accept If no connection requests are present, accept returns
immediately with the EWOULDBLOCK error.

connect If the connection cannot be completed immediately,
connect returns with the EINPROGRESS error.

recv If no data are available to be received, recv returns
the value —1 and the EWOULDBLOCK error. This

is also true for read.

send If there is no available buffer space for the data to
be transmitted, send returns the value -1 and the
EWOULDBLOCK error. This is also true for write.

Interprocess Communication 11—83

The O_NDELAY flag for fcntl(2) is also supported. If you use this flag
and there are no data available to be received on a recv, recvfrom, or read
call, the call returns immediately with the value of 0. This is the same as
returning an end-of-file condition. This is also true for send, sendto and
write if there is not enough buffer space to complete the send.

Note
The O _NDELAY flag has precedence over the
FIOSNBIO flag.
Using Shutdown

When your program is done reading or writing on a particular socket con-
nection, you can use shutdown to bring down a part of the connection.
(See the example programs for stream sockets.)

When one process uses shutdown on a socket descriptor, all other proces-
ses with the same socket descriptor are affected. Shutdown causes all or
part of a full-duplex connection on the specified socket to be disabled.
When shutdown is executed, the specified socket is marked unable to
send or receive, according to the value of how:

e If how = 0, the specified socket can no longer receive data. The
connection is not completely down until both sides have done a
shutdown or a close.

e If how = 1, shutdown starts a graceful disconnect by attempting to send
any unsent data before blocking further sending. Shutdown sends an
end-of-file condition to the peer, indicating that there are no more data
to be sent.

Once both shutdown(s, 0)andshutdown(s, 1)have been executed on
the same socket descriptor, the only valid operation on the socket at this
point is a close.

11 —84 Advanced Topics for Stream Sockets

e If how = 2, the specified socket can no longer send or receive data. The
only valid operation on the socket is a close. This has the same effect as
executing shutdown(s,0) and shutdown(s,1) on the same socket
descriptor.

If you use close on a socket, close pays attention to the SO_LINGER op-
tion, but shutdown(s, 2) does not. With close, the socket descriptor is deal-
located and the last process using the socket destroys it.

Shutdown and its parameters are described in the following table.

INCLUDE FILES: none
SYSTEM CALL: shutdown(s, how)
int s, how;
Parameter Description of Contents INPUT Value
s socket descriptor socket descriptor of socket to be
shut down
how number that indicates the type 0, 1 or 2
of shutdown

FUNCTION RESULT: 0 if shutdown is successful
—1 if failure occurs

EXAMPLE SYSTEM shutdown (s, 1);

CALL:
When to Shut Down a Socket
Which Processes When
server or client process (optionally) after the process has

sent all messages and wants to indi-
cate that it is done sending.

Refer to the shutdown(2) entry in the ARPA/Berkeley Services Reference
Pages section for more information on shutdown.

Interprocess Communication 11—85

Using Read and Write to Make Stream Sockets Transparent

An example application of read and write with stream sockets is to fork a
command with a socket descriptor as stdout. The peer process can read
input from the command. The command can be any command and does
not have to know that stdout is a socket. It might use printf, which results
in the use of write. Thus, the stream sockets are transparent.

Sending and Receiving Out of Band Data

Note that this option is not supported for UNIX Domain (AF_UNIX)
sockets.

If an abnormal condition occurs when a process is in the middle of send-
ing a long stream of data, it is useful to be able to alert the other process
with an urgent message. The TCP stream socket implementation includes
an out of band data facility. Out of band data uses a logically independent
transmission channel associated with a pair of connected stream sockets.
TCP supports the reliable delivery of only one out of band message at a
time. The message can be a maximum of one byte long.

Out of band data arrives at the destination node in sequence and in
stream, but is delivered independently of normal data; the out of band
data receiver is notified with the SIGURG signal. The receiving process
can read the out of band message and take the appropriate action based
on the message contents. A logical mark is placed in the normal data
stream to indicate the point at which the out of band data was sent, so
that data before the message can be handled differently (if necessary)
from data following the message.

byte stream =f——— dato ocob mark data -

Data Stream with Out of Band Marker

For a program to know when out of band data is available to be received,
you may arrange the program to catch the SIGURG signal as follows:

11—-86 Advanced Topics for Stream Sockets

struct sigvec vec;
int onurg();
int pid, s;

/*

* &

*/

vec.sv_handler = onurg;

vec.sv_mask = 0;

vec.sv_onstack = 0;

if (sigvector(SIGURG, &vec, (struct sigvec *) 0) < 0) {
perror(“sigvector(SIGURG)");

}

arrange for onurg() to be called when SIGURG is received:

Onurg() is a routine that handles out of band data in the client program.

In addition, the socket’s process group must be set, as shown below. The
kernel will not send the signal to the process (or process group) unless
this is done, even though the signal handler has been enabled.

/*

** arrange for the current process to receive SIGURG

** when the socket s has urgent data:

~

pid = -getpid();

if (ioct1(s, SIOCSPGRP, (char *) &pid) < 0) {
perror(”ioct 1(SIOCSPGRP)");

}

Refer to the socket(7) entry in the ARPA/Berkeley Services Reference
Pages for more details.

If the server process is sending data to the client process, and a problem
occurs, the server can send an out of band data byte by executing a send
with the MSG_OOB flag set. This sends the out of band data and a
SIGURG signal to the receiving process.

send(sd, &msg, 1, MSG_00B)

When a SIGURG signal is received, onurg is called. Onurg receives the
out of band data byte with the MSG_OOB flag set on a recv call.

InterprocessCommunication 11—87

It is possible that the out of band byte has not arrived when the SIGURG
signal arrives. recv never blocks on a receive of out of band data, so the
client may need to repeat the recv call until the out of band byte arrives.
Recv will return EINVAL if the out of band data is not available.

The out of band data byte is stored independently from the normal data
stream. You cannot read past the out of band pointer location in one recv
call. If you request more data than the amount queued on the socket
before the out of band pointer, then recv will return only the data up to
the out of band pointer. However, once you read past the out of band
pointer location with subsequent recy calls, the out of band byte can no
longer be read.

Usually the out of band data message indicates that all data currently in
the stream can be flushed. This involves moving the stream pointer with
successive recy calls, to the location of the out of band data pointer.

The ioctl request SIOCATMARK informs you, as you receive data from
the stream, when the stream pointer has reached the out of band pointer.
If ioctl returns a 0, the next recv provides data sent by the server prior to
transmission of the out of band data. Joctl returns a 1 when the stream
pointer reaches the out of band byte pointer. The next recv provides data
sent by the server after the out of band message.

The following code segment illustrates how the SIOCATMARK request
can be used in a SIGURG interrupt handler. The example also shows a
buffer being flushed.

/* s is the socket with urgent data */
onurg()

int atmark;
char mark;
char flush [100];

while (1) {
/i
** check whether we have read the stream
** up to the 00B mark yet

*

11—88 Advanced Topics for Stream Sockets

if (doctl1(s, SIOCATMARK, &atmark) < 0) {
/* if the ioctl failed */
perror("ioct 1(SIOCATMARK)");
return;

if (atmark) {
/* we have read the stream up to the 00B mark */
break;
}
/*
** read the stream data preceding the mark,
** only to throw it away
*/
if (read(s, flush, sizeof(flush)) <= 0) {
/* if the read failed */

return;
}
}
/t
** receive the 00B byte
*

recv(s, &mark, 1, MSG_00B);

printf("received %c 00B\n", mark);
return;

InterprocessCommunication 11—89

streom pointer o
oob pointer

dota stream =—-f—— data data ~f—

Before Flushing Stream

oob pointer
lstruom pointer

dota stream =—— data data -

After Flushing Stream

Note

This completes the discussion of stream sockets. If you
do not plan to use datagram sockets, skip to the
"Programming Hints" section.

11—-90 Advanced Topics for Stream Sockets

IPC Using Internet Datagram Sockets

As discussed in the "Protocols” section, Internet UDP datagram sockets
provide bidirectional flow of data with record boundaries preserved.
However, there is no guarantee that messages are reliably delivered. If a
message is delivered, there is no guarantee that it is in sequence and un-
duplicated, but the data in the message are guaranteed to be intact.
Datagram sockets are not supported for UNIX sockets.

Datagram sockets allow you to send and receive messages without estab-
lishing a connection. Each message includes a destination address. Proces-
ses involved in data transfer are not required to have a server-client
relationship; the processes can be symmetrical.

Unlike stream sockets, datagram sockets allow you to send to many des-
tinations from one socket, and receive from many sources with one sock-
et. There is no two-process model, although a two-process model is the
simplest case of a more general multiprocess model. The terms server
and client are used in this section only in the application sense. There is
no difference in the calls that must be made by the processes involved in
the data transfer.

For example, you might have a name server process that receives host
names from clients all over a network. That server process can send host
name and internet address combinations back to the clients. This can all
be done with one UDP socket.

The simplest two-process case is used in this chapter to describe IPC
using datagram sockets.

Interprocess Communication 11-—91

The following table lists the steps required to exchange data between

datagram sockets. Each step is described in more detail in the sections
that follow the table.

Setting Up for Data Transfer Using Datagram Sockets

Client Process Server Process
Activity System Call Used Activity System Call Used
create a socket sockelt() create a socket sockel()
bind a socket address bind() bind a socket address bind()
send message sendto()
receive message recvfrom()
send message sendto()
receive message recvfrom()

The following sections discuss each of the activities mentioned in the pre-
vious table. The description of each activity specifies a system call and

includes:

e what happens when the system call is used;

e when to make the system call;

e what the parameters do;

¢ how the call interacts with other IPC system calls; and

® where to find details on the system call.

The datagram socket program examples are at the end of these descrip-
tive sections. You can refer to them as you work through the descriptions.

11-92 IPC Using Internet Datagram Sockets

Preparing Address Variables

Before your client process can make a request of the server process, you
must establish the correct variables and collect the information that you
need about the server process and the service provided.

The server process needs to:

® declare socket addresss variables;

® assign a wildcard address; and

® get the port address of the service that you want to provide.
The client process needs to:

e declare socket address variables;

e get the remote server’s internet address; and

® get the port address for the service that you want to use.

These activities are described next. In addition, refer to the program ex-
ample at the end of the "IPC Using Datagram Sockets" section to see how
these activities work together.

Interprocess Communication 11-—93

Declaring Socket Address Variables

You need to declare a variable of type struct sockaddr_in to use for the
local socket address for both processes.

For example, the following declarations are used in the example client
program:

struct sockaddr_in myaddr; /* for local socket address */
struct sockaddr_in servaddr; /* for server socket address */

Sockaddr _in is a special case of sockaddr and is used with the AF_INET
addressing domain. Both types are shown in this chapter, but sockaddr in
makes it easier to manipulate the internet and port addresses. Some of
the IPC system calls are declared using a pointer to sockaddr, but it can
also be a pointer to sockaddr in.

The sockaddr_in address structure consists of the following fields:

short sin_family Specifies the address family and should al-
ways be set to AF_INET.

u_short sin_port Specifies the port address. Assign this field
when you bind the port address for the socket
or when you get a port address for a specific
service.

struct in_addr sin_addr Specifies the internet address. Assign this
field when you get the internet address for
the remote host.

The server process must bind the port address of the service to its own
socket and establish an address structure to store the clients’ addresses
when they are received with recvfrom.

The client process does not have to bind a port address for its local sock-
et; the host binds one automatically if one is not already bound.

Refer to the inet(7F) entry in the ARPA/Berkeley Services Reference Pages
for more information on sockaddr _in.

11-94 IPC Using Internet Datagram Sockets

Getting the Remote Host’s Network Address

The client process can use gethostbyname to obtain the internet address of
the host and the length of that address (as the size of struct inaddr) from
Jetc/hosts.

Gethostbyname and its parameters are described in the following table.
INCLUDE FILES: #include <netdb.h>
SYSTEM CALL: struct hostent *gethostbyname(name)

char *name;

Parameter Description of Contents INPUT Value

name pointer to a valid node name host name
(null-terminated string)

FUNCTION RESULT: pointer to struct hostent containing internet
address
NULL pointer (0) if failure occurs

EXAMPLE SYSTEM
CALL:

#include <netdb.h>
struct hostent *hp; /* point to host info for name server host */

servaddr.sin_family = AF_INET;

hp = gethostbyname (argv[l]);
servaddr.sin_addr.s_addr = ((struct in_addr *)(hp->h_addr))->s_addr;

The argv[1] parameter is the host name specified in the client program
command line.

Refer to the gethostent(3N) entry in the ARPA/Berkeley Services Reference
Pages for more information on gethostbyname.

Interprocess Communication 11—95

Getting the Port Address for the Desired Service

When a client process needs to use a service that is offered by some
server process, it must send a message to the server’s socket. The client
process must know the port address for that socket. If the service is not in
Jetc/services, you must add it.

Getservbyname obtains the port address of the specified service from
Jetc/services.

Getservbyname and its parameters are described in the following table.

INCLUDE FILES: #include <netdb.h>
SYSTEM CALL: struct servent *getservbyname(name, proto)
char *name, *proto;
Parameter Description of Contents INPUT Value
name pointer to a valid service name service name
proto pointer to the protocol to be "udp” or 0 if UDP is the only
used protocol for the service

FUNCTION RESULT: pointer to struct servent containing port ad-
dress
NULL pointer (0) if failure occurs

EXAMPLE SYSTEM #include <netdb.h>
CALL: struct servent *sp; /* pointer to service info */

sp = getservbyname ("example”, "udp"):
servaddr.sin_port = sp->s_port;

11-96 IPC Using Internet Datagram Sockets

When to Get Server’s Socket Address

Which Processes When
SErver process before binding
client process before client requests the service

from the host

Refer to the getservent(3N) entry in the ARPA/Berkeley Services Reference
Pages for more information on getservbyname.

Using a Wildcard Local Address

Wildcard addressing simplifies local address binding. When an address is
assigned the value of INADDR ANY, the host interprets the address as
any valid address.

This means that the server process can receive on a wildcard address and
does not have to look up its own internet address. For example, to bind a
specific port address to a socket, but leave the local internet address un-
specified, the following source code could be used:

#include <sys/types.h>

#include <sys/socket. h>
#include <netinet/in.h>

struct sockaddr_in sin;

s = socket(AF_INET, SOCK_DGRAM, 0);
sin.sin_family = AF_INET;
sin.sin_addr.s_addr = INADDR_ANY;
sin.sin_port = MYPORT;

bind (s, &sin, sizeof(sin)):

InterprocessCommunication 11-—97

Writing the Server and Client Processes

This section discusses the calls your server and client processes must
make.

Creating Sockets
Both processes must call socket to create communication endpoints.

Socket and its parameters are described in the following table.

INCLUDE FILES: #include <sys/types.h>
#include <sys/socket.h>
SYSTEM CALL: s = socket(af, type, protocol)
int s, af, type, protocol;
Parameter Description of Contents INPUT Value
af address family AF_INET
type socket type SOCK_DGRAM
protocol underlying protocol to be used 0 (default) or value returned by
getprotobyname

FUNCTION RESULT: socket number (HP-UX file descriptor)
-1 if failure occurs

EXAMPLE SYSTEM Is = socket (AF_INET, SOCK_DGRAM, 0);
CALL:

The socket number returned is the socket descriptor for the newly
created socket. This number is an HP-UX file descriptor and can be used
for reading, writing or any standard file system calls. A socket descriptor
is treated like a file descriptor for an open file.

11—-98 IPC Using Internet Datagram Sockets

Note

To use write(2) with a datagram socket, you must declare
a default address. See the "Advanced Topics for
Datagram Sockets: Specifying a Default Socket Address"
section for instructions.

When to Create Sockets

Which Processes When

server or client process before any other IPC system calls

Refer to the socket(2) entry in the ARPA/Berkeley Services Reference
Pages for more information on socket.

Binding Socket Addresses to Datagram Sockets

After each process has created a socket, it must call bind to bind a socket
address. Until an address is bound, other processes have no way to
reference it.

The server process must bind a specific port address to its socket. Other-
wise, a client process would not know what port to send requests to for
the desired service.

The client process can let the local host bind its local port address. The
client does not need to know its own port address, and if the server
process needs to send a reply to the client’s request, the server can find
out the client’s port address when it receives with recvfrom.

Set up the address structure with a local address (as described in the
"Preparing Address Variables" section) before you make a bind call. Use
the wildcard address so your processes do not have to look up their own
Internet addresses.

InterprocessCommunication 11—-99

Bind and its parameters are described in the following table.

INCLUDE FILES: #include <sys/types.h>

#include <netinet/in.h>
#include <sys/socket.h>

SYSTEM CALL: bind (s, addr, addrlen)

int s;
struct sockaddr *addr;
int addrlen;

Parameter Description of Contents INPUT Value
s socket descriptor of local socket descriptor of socket to be
socket bound
addr socket address pointer to address to be bound to s
addrlen length of socket address size of struct sockaddr_in address

FUNCTION RESULT: 0 if bind is successful
-1 if failure occurs

EXAMPLE SYSTEM struct sockaddr_in myaddr;

CALL:
bind (s, myaddr, sizeof(struct sockaddr_in));
When to Bind Socket Addresses
Which Processes When
client and server process after socket is created and before

any other IPC system calls

Refer to the bind(2) entry in the ARPA/Berkeley Services Reference Pages
for more information on bind.

11—-100 IPC Using Internet Datagram Sockets

Sending and Receiving Messages

The sendto and recvfrom system calls are usually used to transmit and
receive messages. They are described in the next sections.

Sending Messages
Use sendto to send messages.

If you have declared a default address (as described in the "Advanced
Topics for Datagram Sockets: Specifying a Default Socket Address" sec-
tion) you can use send or sendto to send messages. If you use sendto in
this special case, be sure you specify 0 as the address value, or an error
will occur.

Send is described in the "IPC Using Stream Sockets: Sending Data" sec-
tion of this chapter and in the send(2) entry in the ARPA/Berkeley Services
Reference Pages.

Interprocess Communication 11—101

Sendto and its parameters are described in the following table.

INCLUDE FILES: #include <sys/types.h>

#include <netinet/in.h>
#include <sys/socket.h>

SYSTEM CALL: count = sendto(s,msg, len,flags,to,tolen)
int s;
char *msg;

int len, flags;
struct sockaddr *to;

int tolen;
Parameter Description of Contents INPUT Value
s socket descriptor of local socket descriptor of socket sending
socket message
msg pointer to data buffer pointer to data to be sent
len size of data buffer size of msg
flags settings for optional flags 0 (no options are currently sup-
ported)
to address of recipient pointer to the socket address that
socket message should be sent to
tolen size of to length of address structure that to
points to

FUNCTION RESULT: Number of bytes actually sent
-1 in the event of an error

EXAMPLE SYSTEM CALL:

count = sendto(s,argv([2],strlen(argv([2]),0,servaddr,sizeof (struct sockaddr_in});

If the message is too long to send as a single packet (largest size is 2860
bytes for this implementation), an error occurs.

11—-102 IPC Using Internet Datagram Sockets

You should not count on receiving error messages when using datagram
sockets. The protocol is unreliable, meaning that messages may or may
not reach their destination. However, if a message reaches its destination,
the contents of the message are guaranteed to be intact.

If you need reliable message transfer, you must build it into your applica-
tion programs or resend a message if the expected response does not
occur.

When to Send Data
Which Processes When

client or server process after sockets are bound

Refer to the send(2) entry in the ARPA/Berkeley Services Reference Pages
for more information on sendto.

Receiving Messages

Use recvfrom to receive messages.

Recv can also be used if you do not need to know what socket sent the
message. However, if you want to send a response to the message, you
must know where it came from. Except for the extra information returned
by recvfrom, the two calls are identical.

Recv is described in the "IPC Using Stream Sockets: Receiving Data" sec-
tion of this chapter and in the recv(2) entry in the ARPA/Berkeley Services
Reference Pages.

Interprocess Communication 11—-103

Recvfrom and its parameters are described in the following table.

INCLUDE FILES:

SYSTEM CALL:

#include <sys/types.h>

#include <netinet/in.h>
#include <sys/socket.h>

char *buf;
int len, flags;

struct sockaddr *from;

int *fromlen;

count = recvfrom(s,buf,len,flags, from, fromlen)
int s;

Parameter Description of Contents INPUT Value OUTPUT Value
s socket descriptor of socket descriptor of unchanged
local socket socket receiving
message
buf pointer to data buffer pointer to buffer that pointer to received
is to receive data data
len maximum number of size of data buffer unchanged
bytes that should be
received
flags settings for optional flags 0 or MSG_PEEK unchanged
from address of socket that pointer to address pointer to socket ad-
senl message structure, not used dress of socket that
for input sent the message
fromlen pointer to the size of pointer to size of pointer to the actual
from from size of address
returned
FUNCTION RESULT: Number of bytes actually received
—1 if an error occurs
EXAMPLE SYSTEM CALL:
addrlen = sizeof(sockaddr_in);

count = recvfrom(s, buffer, BUFFERSIZE, 0, clientaddr, Raddrlen);

Recvfrom blocks until there is a message to be received.

11—-104 IPC Using Internet Datagram Sockets

No more than len bytes of data are returned. The entire message is read
in one recvfrom, recv or read operation. If the message is too long for the
allocated buffer, the excess data are discarded. Because only one message
can be returned in a recvfrom call, if a second message is in the queue, it
is not affected. Therefore, the best technique is to receive as much as pos-
sible on each call.

The host does not wait for len bytes to be available; if less than len bytes
are available, that number of bytes are returned.

Flag Options

The flags options are:

® () for no options or

e MSG_PEEK for a nondestructive read.

Use the MSG_PEEK option to preview an incoming message. If this op-
tion is set on a recvfrom, any message returned remains in the data buffer
as though it had not been read yet. The next recvfrom returns the same
message.

When to Receive Data

Which Processes When

client or server process after sockets are bound

Refer to the recv(2) entry in the ARPA/Berkeley Services Reference Pages
for more information on recvfrom.

Interprocess Communication 11 —105

Closing a Socket

In most applications, you do not have to worry about cleaning up your
sockets. When you exit your program and your process terminates, the
sockets are closed for you.

If you need to close a socket while your program is still running, use the
close HP-UX file system call.

You may have more than one process with the same socket descriptor if
the process with the socket descriptor executes a fork. Close decrements
the file descriptor count and the calling process can no longer use that
file descriptor.

When the last close is executed on a socket, any unsent messages are sent
and the socket is closed. Then the socket is destroyed and can no longer
be used.

For syntax and details on close, refer to the close(2) entry in the HP-UX
Reference manual.

11—-106 IPC Using Internet Datagram Sockets

Example Using Datagram Sockets

These program examples demonstrate how to set up and use datagram
sockets. The client program is intended to run in conjunction with the
Server program.

This example implements a simple name server. The server process
receives requests from the client process. It determines the Internet ad-
dress of the specified host and sends that address to the client process. If
the specified host’s Internet address is unknown, the server process
returns an address of all 1’s.

The client process requests the Internet address of a host and receives
the results from the server process.

Before you run the example programs:

e make the following entry in the two hosts’ /etc/services files:
example 22375/udp

e compile with the -1bsdipc option.

The source code for these two programs follows. It is also located in the
directory /usr/netdemo/socket.

Interprocess Communication 11—107

S
*

* SERV.UDP

*

% This is an example program that demonstrates the use of

<) datagram sockets as an IPC mechanism. This contains the server,
* and is intended to operate in conjunction with the client

program found in client.udp. Together, these two programs

= demonstrate many of the features of sockets, as well as good

% conventions for using these features.

&

L This program provides a service called "example”. It is an

= example of a simple name server. In order for

* it to function, an entry for it needs to exist in the

o J/etc/services file. The port address for this service can be

. any port number that is likely to be unused, such as 22375,

* for example. The host on which the client will be running

* must also have the same entry (same port number) in its

% /etc/services file.

*

*f
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <stdio.h>
#include <netdb.h>

int s; /* socket descriptor */
#define BUFFERSIZE 1024 /* maximum size of packets to be received */
int cc; /* contains the number of bytes read */
char buffer[BUFFERSIZE]; /* buffer for packets to be read into */
struct hostent *hp; /* pointer to host info for requested host */
struct servent *sp; /* pointer to service information */
struct sockaddr_in myaddr_in; /* for local socket address */

struct sockaddr_in clientaddr_in; /* for client’s socket address */
struct in_addr regaddr; /* for requested host's address */
#def ine ADDRNOTFOUND OxfFFfffff /* return address for unfound host */
/*

& MAIN

*

* This routine starts the server. It forks, leaving the child

% to do all the work, so it does not have to be run in the

i background. It sets up the socket, and for each incoming

* request, it returns an answer. Each request consists of a

= host name for which the requester desires to know the

x

internet address. The server will look up the name in its

11—-108 IPC Using Internet Datagram Sockets

* /etc/hosts file, and return the internet address to the

% client. An internet address value of all ones will be returned
x if the host name is not found.

*

wt
main(argc, argv)
int argc;
char *argv[];
{

int addrlen;

/* clear out address structures */
memset ((char *)&myaddr_in, 0, sizeof(struct sockaddr_in));
memset ((char *)&clientaddr_in, 0, sizeof(struct sockaddr_in));

/* Set up address structure for the socket. */
myaddr_in.sin_family = AF_INET;
/* The server should receive on the wildcard address,
* rather than its own internet address. This is
* generally good practice for servers, because on
* systems which are connected to more than one
* network at once will be able to have one server
* listening on all networks at once. Even when the
* host is connected to only one network, this is good
* practice, because it makes the server program more
* portable.
')
myaddr_in.sin_addr.s_addr = INADDR_ANY;
/* Find the information for the "example" server
* in order to get the needed port number.
*
/
sp = getservbyname (“example", "udp"):
if (sp == NULL) {
printf("%s: example not found in /etc/services\n",
argv[0]);
exit(1l);

myaddr_in.sin_port = sp->s_port;

/* Create the socket. */
s = socket [AF_INET, SOCK_DGRAM, 0);
if (s==-1){
perror{argv[0]);
printf("%s: unable to create socket\n", argv[0]);
exit(l);

Interprocess Communication 11-—109

/* Bind the server's address to the socket. */

if (bind(s, &myaddr_in, sizeof(struct sockaddr_in)) == -1) {

setpgrp(

switch |
case -1:

case 0:

perror(argv[0]):
printf("%s: unable to bind address\n", argv[0]);
exit(l);

~
*

Now, all the initialization of the server is
complete, and any user errors will have already
been detected. Now we can fork the daemon and
return to the user. We need to do a setpgrp

so that the daemon will no longer be associated
with the user's control terminal. This is done
before the fork, so that the child will not be

a process group leader. Otherwise, if the child
were to open a terminal, it would become associated
with that terminal as its control terminal. It is
always best for the parent to do the setpgrp.

% % % * F * % * *

*f
);

fork()) {

/* Unable to fork, for some reason. */
perror(argv[0]);
printf("%s: unable to fork daemon\n”, argv[0]);
exit(1);

/* The child process (daemon) comes here. */
/* Close stdin, stdout, and stderr so that they will
* not be kept open. From now on, the daemon will
* not report any error messages. This daemon
* will loop forever, waiting for requests and
* responding to them.
*1
close(stdin);
close(stdout);
close(stderr);
/* This will open the /etc/hosts file and keep
* it open. This will make accesses to it faster.
*
/
sethostent(1);
for(;:) {
/* Note that addrlen is passed as a pointer
* so that the recvfrom call can return the
* size of the returned address.
*
/
addrlen = sizeof(struct sockaddr_in);

11-110 IPC Using Internet Datagram Sockets

default:

exit(0);

/* This call will block until a new
request arrives. Then, it will
return the address of the client,

and a buffer containing its request.
BUFFERSIZE - 1 bytes are read so that
room is left at the end of the buffer
for a null character.

* % K % % %

*
/
cc = recvfrom(s, buffer, BUFFERSIZE - 1, O,
&clientaddr_in, &addrlen);
if (cc == -1) exit(l);
/* Make sure the message received is
* null terminated.
i A
buffer[cc]="\0";
/* Treat the message as a string containing
* a hostname. Search for the name in
* /etc/hosts.
*/
hp = gethostbyname (buffer);
if (hp == NULL) {
/* Name was not found. Return a
* special value signifying the
* error.
~k
reqaddr.s_addr = ADDRNOTFOUND;
} else {
/* Copy address of host into the
* return buffer.
xf
regaddr.s_addr =
((struct in_addr *)(hp->h_addr))->s_addr;

/* Send the response back to the
* requesting client. The address

* is sent in network byte order. Note that
* all errors are ignored. The client

* will retry if it does not receive

* the response.

|
sendto (s, ®addr, sizeof(struct in_addr),
0, &clientaddr_in, addrlen);

/* Parent process comes here. */

Interprocess Communication 11—111

S
*

CLIEE NT &' Dip

This is an example program that demonstrates the use of datagram
sockets as an IPC mechanism. This contains the client, and is
intended to operate in conjunction with the server program found
in serv.udp. Together, these two programs demonstrate many of
the features of sockets, as well as good conventions for using
these features.

This program requests a service called "example". In order for
it to function, an entry for it needs to exist in the
/etc/services file. The port address for this service can be
any port number that is likely to be unused, such as 22375, for
example. The host on which the server will be running must also
have the same entry (same port number) in its /etc/services file.

The "example" service is an example of a simple name server
application. The host that is to provide this service is
required to be in the /etc/hosts file. Also, the host providing
this service presumably knows the internet addresses of many
hosts which the local host does not. Therefore, this program
will request the internet address of a target host by name from
the serving host. The serving host will return the requested
internet address as a response, and will return an address of
all ones if it does not recognize the host name.

* % % % % * ¥ % F ¥ % F F ¥ F ¥ F X F F X * F ¥ *

»
-

#include <sys/types.h>
#include <sys/socket.h>
#include <sys/errno.h>
#include <netinet/in.h>
#include <stdio.h>
#include <signal.h>
#include <netdb.h>

extern int errno;

int s; /* socket descriptor */
struct hostent *hp; /* pointer to host info for nameserver host */
struct servent *sp; /* pointer to service information */

struct sockaddr_in myaddr_in; /* for local socket address */
struct sockaddr_in servaddr_in; /* for server socket address */
struct in_addr regaddr; /* for returned internet address */

11—-112 IPC Using Internet Datagram Sockets

#define ADDRNOTFOUND OxfFFffffff /* value returned for unknown host */

#def ine RETRIES 5 /* number of times to retry before giving up */
,*
- HANDLER
&
* This routine is the signal handler for the alarm signal.
* It simply re-installs itself as the handler and returns.
*f
handler()
%
signa1(SIGALRM, handler);
}
/*
* MAIN
*
* This routine is the client which requests service from the remote
ad "example server”. It will send a message to the remote nameserver
* requesting the internet address corresponding to a given hostname.
The server will look up the name, and return its internet address.
. The returned address will be written to stdout.
*
"5 The name of the system to which the requests will be sent is given
el as the first parameter to the command. The second parameter should
n be the the name of the target host for which the internet address
% is sought.
7
main(argc, argv)
int argc;

char *argv[];

int i;
int retry = RETRIES; /* holds the retry count */
char *inet_ntoa():

if (argc != 3) {
fprintf(stderr, "Usage: %s <nameserver> <target>\n", argv[0]);
exit(l);

/* clear out address structures */
memset ((char *)&myaddr_in, 0, sizeof(struct sockaddr_in));
memset ((char *)&servaddr_in, 0, sizeof(struct sockaddr_in));

Interprocess Communication 11—113

/* Set up the server address. */
servaddr_in.sin_family = AF_INET;
/* Get the host information for the server’'s hostname that the
* user passed in.
*f
hp = gethostbyname (argv[1]);
if (hp == NULL) {
fprintf(stderr, "#s: ¥%s not found in /etc/hosts\n",
argv[0], argv[1]);
exit(1);

servaddr_in.sin_addr.s_addr = ((struct in_addr *)(hp->h_addr))->s_addr;
/* Find the information for the “"example" server
* in order to get the needed port number.
*
/
sp = getservbyname (“"example", "udp");
if (sp == NULL) {
fprintf(stderr, "%s: example not found in /etc/services\n",
argv[0]);
exit(l);

servaddr_in.sin_port = sp->s_port;

/* Create the socket. */
s = socket (AF_INET, SOCK_DGRAM, 0);
if (s ==-1) {
perror(argv([0]);
fprintf(stderr, "%s: unable to create socket\n", argv[0]);
exit(l);

/* Bind socket to some local address so that the

* server can send the reply back. A port number
* of zero will be used so that the system will

* assign any available port number. An address

* of INADDR_ANY will be used so we do not have to
* Jook up the internet address of the local host.

myaddr_in.sin_family = AF_INET;

myaddr_in.sin_port = 0;

myaddr_in.sin_addr.s_addr = INADDR_ANY;

if (bind(s, &myaddr_in, sizeof(struct sockaddr_in)) == -1) {
perror(argv[0]);
fprintf(stderr, "¥%s: unable to bind socket\n", argv[0]);
exit(1l);

}
/* Set up alarm signal handler. */
signal(SIGALRM, handler);

11 —-114 IPC Using Internet Datagram Sockets

/* Send the request to the nameserver. */
again: if (sendto (s, argv[2], strlen(argv[2]), 0, &servaddr_in,
sizeof (struct sockaddr_in)) == -1) {
perror(argv[0]);
fprintf(stderr, "#s: unable to send request\n", argv[0]);
exit(1);

/* Set up a timeout so I don't hang in case the packet
* gets lost. After all, UDP does not guarantee
* delivery.
i
alarm(5);
/* Wait for the reply to come in. We assume that
* no messages will come from any other source,
* so that we do not need to do a recvfrom nor
* check the responder's address.
*
/
if (recv (s, ®addr, sizeof(struct in_addr), 0) == -1) {
if (errno == EINTR) {
/* Alarm went off and aborted the receive.
* Need to retry the request if we have
* not already exceeded the retry limit.
*
/
if (--retry) {
goto again;
} else {
printf(“Unable to get response from");
printf(" %s after ¥%d attempts.\n",
argv[1], RETRIES);
exit(1);

} else {
perror(argv[0]);
fprintf(stderr, "%s: unable to receive response\n",
argv[0]);
exit(l);
}

alarm(0);
/* Print out response. */
if (regaddr.s_addr == ADDRNOTFOUND) {
printf(“Host %s unknown by nameserver %s.\n", argv[2],
argv[1]);
exit(1l);
} else {
printf("Address for %s is %s.\n", argv[2],
inet_ntoa(reqaddr));

Interprocess Communication 11—115

Advanced Topics for Internet Datagram
Sockets

Specifying a Default Socket Address

It is possible (but not required) to specify a default address for a remote
datagram socket.

This allows you to send messages without specifying the remote address
each time. In fact, if you use sendfo, an error occurs if you enter any value
other than 0 for the socket address after the default address has been
recorded. You can use send or write instead of sendfo once you have
specified the default address.

Use recv for receiving messages. Although recvfrom can be used, it is not
necessary, because you already know that the message came from the
default remote socket. (Messages from sockets other than the default
socket are discarded without notice.) Read(2) can also be used, but does
not allow you to use the MSG_PEEK flag.

Specify the default address with the connect system call.

When a datagram socket descriptor is specified in a connect call, connect
associates the specified socket with a particular remote socket address.
Connect returns immediately because it only records the peer’s socket ad-
dress. After connect records the default address, any message sent from
that socket is automatically addressed to the peer process and only mes-
sages from that peer are delivered to the socket.

Connect can be called any number of times to change the associated des-
tination address.

11-116 Advanced Topics for Internet Datagram Sockets

Note

This call does not behave the same as a connect for
stream sockets. There is no connection, just a default
destination. The remote host that you specify as the
default may or may not use connect to specify your local
host as its default remote host. The default remote host
is not notified if your local socket is destroyed.

Connect and its parameters are described in the following table.

INCLUDE FILES: #include <sys/types.h>

#include <netinet/in.h>
#include <sys/socket.h>

SYSTEM CA.LL connect(s, addr, addrlen)
int s;
struct sockaddr *addr;
int addrlen;
Parameter Description of Contents INPUT Value
s socket descriptor of local sockel descriptor of socket request-
socket ing a default peer address
addr pointer to the socket address pointer to socket address of the

socket to be the peer

addrlen length of address length of address pointed to by addr

FUNCTION RESULT: 0 if connect is successful
-1 if failure occurs

When to Specify a Default Socket Address
Which Processes When

client or server process after sockets are bound

Interprocess Communication . 11 —117

Synchronous I/O Multiplexing with Select

The select system call can be used with sockets to provide a synchronous
multiplexing mechanism. The system call has several parameters which
govern its behavior. If you specify a zero pointer for the timout
parameter, select will block until one or more of the specified socket
descriptors are ready. If timeout is a non-zero pointer, it specifies a maxi-
mum interval to wait for the selection to complete.

Select is useful for datagram socket descriptors to determine when data
has arrived and is ready to be read without blocking; use the FION-
READ parameter to the ioctl system call to determine exactly how much
data is available.

Selecting for exceptional conditions is currently meaningless for Berkeley
sockets. Select will always return true for sockets that are no longer
capable of being used (e.g. if a close or shutdown system call has been ex-
ecuted against them).

Select is used the same way as in other applications. Refer to the select(2)
entry in the HP-UX Reference manual for information on how to use
select.

Sending and Receiving Data Asynchronously

Asynchronous sockets allow a user program to receive a SIGIO signal
when the state of the socket changes. This state change can occur, for ex-
ample, when new data arrives. A complete description of SIGIO can be
found in the "Advanced Topics for Stream Sockets" section of this manual.

11—-118 Advanced Topics for Internet Datagram Sockets

Nonblocking 1/O

Sockets are created in blocking mode I/O by default. You can specify that
a socket be put in nonblocking mode by using the ioctl system call with
the FIOSNBIO request.

An example usage of this call is:

#include <sys/ioctl.h>

ioct1(s, FIOSNBIO, R&arg);

Arg is a pointer to int:
e When int equals 0, the socket is changed to blocking mode.
e When int equals 1, the socket is changed to nonblocking mode.

If a socket is in nonblocking mode, the following calls are affected:

recvfrom If no messages are available to be received,
recvfrom returns the value -1 and the
EWOULDBLOCK error. This is also true for recv
and read.

sendto If there is no available message space for the mes-

sage to be transmitted, sendto returns the value -1
and the EWOULDBLOCK error.

Interprocess Communication 11-—119

The O_NDELAY flag for fcntl(2) is also supported. If you use this flag
and there is no message available to be received on a recv, recvfrom or
read call, the call returns immediately with the value of 0. This is the
same as returning an end-of-file condition. This is also true for send,
sendto, and write if there is not enough buffer space to complete the send.

Note

The O_NDELAY flag has precedence over the
FIOSNBIO flag.

Using Broadcast Addresses

In place of a unique internet address or the wildcard address, you can
also specify a broadcast address. The broadcast address is a local address
portion of the internet address equal to all 1’s. You must be the super-
user to use a broadcast address.

If you use broadcast addressing, be careful not to overload your network.

11—-120 Advanced Topics for Internet Datagram Sockets

Programming Hints

Note

Refer to the "Portability Issues" appendix for informa-
tion about the differences between 4.2 BSD and the HP-
UX implementation of IPC.

Troubleshooting

You can avoid many problems by using good programming and debug-
ging techniques. Your programs should check for a returned error after
each system call and print any that occur. For example, the following
program lines print an error message for read:

cc=read(sock,buffer,1000);
if (cc<0) {
perror (“"reading message")
exit(1)
}

Refer to the HP-UX Reference manual for information about perror(3C).
Refer to the ARPA/Berkeley Services Reference Pages for information
about errors returned by the IPC system calls such as read.

You can also compile your program with the debugging option (-g) and
use one of the debuggers (e.g. cdb or xdb) to help debug the programs.

Interprocess Communication 11-121

Port Addresses

The following port values are reserved for the super-user: 1 - 1023, 1260,
1536, 1542 and 4672. These ports are for:

Port Addresses Used By
1-1023 ARPA/Berkeley services
1260 NS daemon rlbdaemon
1536 NS daemon nftdaemon
1542 NS service Remote Process

Management (Series 500 only)
4672 NS daemon rfadaemon

It is possible that you could assign one of these ports and cause a service
to fail. For example, if the nftdaemon is not running, and you assign its
port, the nftdaemon will fail when you try to start it.

11—-122 Programming Hints

Using Diagnostic Utilities as Troubleshooting Tools

You can use the following diagnostic utilities to help debug your
programs. It is helpful if you have multiple access to the system so you
can obtain information about the program while it is running.

ping Use ping to verify the physical connection with the
destination node.

netstat Use the netstat displays of sockets and associations
to help you troubleshoot problems in your applica-
tion programs. Use netstat to determine if your
program has successfully created a connection. If
you are using stream sockets (TCP protocol), netstat
can provide the TCP state of the connection. To
check the status of a connection at any point in the
program, use the sleep (seconds) statement in your
program to pause the program. While the program is
paused, execute netstat -a from another terminal.

Network Tracing Network Tracing can be used to trace packets. For
the trace information to be useful, you must have a
working knowledge of network protocols.

Network Event Network Event Logging is an error logging
Logging mechanism. Use it in conjunction with other diagnos-
tic tools.

These utilities are described in detail in the Installing and Maintaining NS-
ARPA Services manual.

Interprocess Communication 11-—123

Adding a Server Process to the Internet
Daemon

This section contains example IPC programs that use the internet
daemon, called inetd. For more information on inetd, refer to the "Con-
figuration and Maintenance" chapter of the Installing and Maintaining NS-
ARPA Services manual and the inetd(1M) entry in the ARPA/Berkeley Ser-
vices Reference Pages.

You can invoke the example server programs from inetd if you have
super-user capabilities and you make the following configuration
modifications:

e Add the following lines to the /etc/inetd.conf file:

example stream tcp nowait root <path>/server.tcp server.tcp
example dgram udp wait root <path>/server.udp server.udp

where <path> is the path to the files on your host. (For detailed
information on this file, refer to the "Configuration and Maintenance"
chapter of the Installing and Maintaining NS-ARPA Services manual or to
the inetd.conf(4) entry in the ARPA/Berkeley Services Reference Pages.)

e Add the following lines to the /etc/services file:

example 22375/tcp
example 22375/udp

e If inetd is already running, execute the following command so that inetd
recognizes the changes:

/etc/inetd —¢

These example programs do the same thing as the previous example ser-
vers do, but they are designed to be called from inetd. They do not have

daemon loops or listen for incoming connection requests, because inetd

does that. The source code for the two example servers follows.

11-124 Adding a Server Process to the Internet Daemon

-~
*

* % % * ¥ % % F * % ¥ ¥ ¥ ¥

5'E R-VEESR « WG P

This is a variation of the example program called serv.tcp.

This one performs the same function, except that it is

designed to be called from /etc/inetd. Hence, this version

does not contain a daemon loop, and does not listen for incoming
connections on the socket. /etc/inetd does these functions. This
server simply assumes that the socket to receive the messages
from and send the responses to is file descriptor 0 when

the program is started. It also assumes that the client's
connection is already established to the socket. For the sake
of simplicity, the activity logging functions of serv.tcp

have also been removed.

MAIN

This is the actual server routine that the /etc/inetd forks to
handle each individual connection. Its purpose is to receive
the request packets from the remote client, process them,

and return the results to the client.

char buf[10]; /* This example uses 10 byte messages. */
int len, lenl;

T
*

Go into a loop, receiving reguests from the remote
client. After the client has sent the last request,
it will do a shutdown for sending, which will cause
an end-of-file condition to appear on this end of the
connection. After all of the client's requests have
been received, the next recv call will return zero
bytes, signalling an end-of-file condition. This is
how the server will know that no more requests will
follow, and the loop will be exited.

* % * * * * % *

*
/
while (len = recv(0, buf, 10, 0)) {
if (len == -1) {
exit (1); /* error from recv */
}

/* The reason this while loop exists is that there
* is a remote possibility of the above recv returning
* Jess than 10 bytes. This is because a recv returns
* as soon as there is some data, and will not wait for
* all of the requested data to arrive. Since 10 bytes
* is relatively small compared to the allowed TCP
* packet sizes, a partial receive is unlikely. If

Interprocess Communication 11—125

this example had used 2048 bytes requests instead,
a partial receive would be far more likely.

This loop will keep receiving until all 10 bytes
have been received, thus guaranteeing that the
next recv at the top of the loop will start at
the beginning of the next request.

* * * % % ¥

7

while (len < 10) {
lenl = recv(0, &buf[len], 10-len, 0);
if (lenl == -1) {

exit (1);
}
len += lenl;
}
/* This sleep simulates the processing of the
* request that a real server might do.
*
/
sleep(1);

/* Send a response back to the client. */
if (send(0, buf, 10, 0) != 10) {

exit (1);
}
}
/* The loop has terminated, because there are no
* more requests to be serviced.
*
exit (0);

11—-126 Adding a Server Process to the Internet Daemon

-~
*

R % F X F F X % F X %

*
T

SERVER 5 UDP

This is a variation of the example program called serv.udp.
This one performs the same function, except that it is
designed to be called from /etc/inetd. Hence, this version
does not contain a daemon loop, and does not wait for requests
to arrive on a socket. /etc/inetd does these functions. This
server simply assumes that the socket to receive the message
from and send the response to is file descriptor 0 when

the program is started. It also assumes that the client's
request is already ready to be received from the socket.

#include <sys/types.h>
#include <netinet/in.h>
#include <stdio.h>
#include <netdb.h>

#define BUFFERSIZE 1024 /* maximum size of packets to be received */
int cc; /* contains the number of bytes read */
char buffer [BUFFERSIZE]; /* buffer for packets to be read into */
struct hostent *hp; /* pointer to host info for requested host */
struct sockaddr_in clientaddr_in; /* for client's socket address */
struct in_addr reqaddr; /* for requested host's address */

#define ADDRNOTFOUND OxfFFFffff /* return address for unfound host */
/I‘

- MAIN

*

o This routine receives the request and returns an answer.

» Each request consists of a

el host name for which the requester desires to know the

* internet address. The server will look up the name in its

* /etc/hosts file, and return the internet address to the

5 client. An internet address value of all ones will be returned

x if the host name is not found.

*

i/
main()

{

int addrlen;

/* clear out address structure */
memset ((char *)&clientaddr_in, 0, sizeof(struct sockaddr_in));

Interprocess Communication

11-127

/* Note that addrlen is passed as a pointer
* so that the recvfrom call can return the
* size of the returned address.

*
/

addrlen = sizeof(struct sockaddr_in);

* This call will

* return the address of the client,

* and a buffer containing its request.

* BUFFERSIZE - 1 bytes are read so that

*

*

S~

room is left at the end of the buffer
for a null character.
)
cc = recvfrom(0, buffer, BUFFERSIZE - 1, 0, &clientaddr_in, Raddrlen);
if (cc == -1) exit(l);
/* Make sure the message received is
* null terminated.
*/
buffer[cc]="\0";
/* Treat the message as a string containing
* a hostname. Search for the name in
* Jetc/hosts.
) 4
hp = gethostbyname (buffer);
if (hp == NULL) {
/* Name was not found. Return a
* special value signifying the
* error.
®f
reqaddr.s_addr = ADDRNOTFOUND;
} else {
/* Copy address of host into the
* return buffer.
7
reqaddr.s_addr =
((struct in_addr *)(hp->h_addr))->s_addr;

/* Send the response back to the
requesting client. The address
is sent in network byte order. Note that
all errors are ignored. The client
will retry if it does not receive
* the response.
=f
sendto (0, ®addr, sizeof(struct in_addr), 0,
&clientaddr_in, addrlen):
exit(0);

11 —128 Adding a Server Process to the Internet Daemon

Summary Tables for System and Library
Calls

The following table contains a summary of the IPC system calls.

IPC System Calls
System Call Description

socket Creates a socket, or communication endpoint for the
calling process.

bind Assigns a socket address to the socket specified by
the calling process.

listen Sets up a queue for incoming connection requests.
(Stream sockets only.)

connect For stream sockets, requests and creates a connec-
tion between the remote socket (specified by ad-
dress) and the socket (specified by descriptor) of the
calling process.

For datagram sockets, permanently specifies the
remote peer socket.

accept Receives a connection between the socket of the call-
ing process and the socket specified in the associated
connect call. (Stream sockets only.)

send, sendto Sends data from the specified socket.

recv, recvfrom Receives data at the specified socket.
shutdown Disconnects the specified socket.

getsockname Gets the socket address of the specified socket.

Interprocess Communication 11-—-129

System Call Description

getsockopt, Gets, or sets, the options associated with a socket.

setsockopt

getpeername Gets the name of the peer socket connected to the
specified socket.

11—130 Summary Tables for System and Library Calls

The following table contains a summary of the other system calls that can
be used with IPC.

Other System Calls
System Call Description

read Can be used to read data at stream or datagram sockets just
like recv or recvfrom, without the benefit of the recv flags.
Read offers implementation independence; the descriptor
can be for a file, a socket or any other object.

write Can be used to write data from stream sockets (and
datagram sockets if you declare a default remote socket ad-
dress) just like send. Write offers implementation inde-
pendence; the descriptor can be for a file, a socket or any
other object.

close Deallocates socket descriptors. The last close can be used to
destroy a socket. Close does a graceful disconnect or a hard
close, depending on the LINGER option. Refer to the
"Closing a Socket" sections of this chapter.

select Can be used to improve efficiency for a process that acces-
ses multiple sockets or other I/O devices simultaneously.
Refer to the "I/O Multiplexing with Select” sections of this
chapter.

ioctl Can be used for finding the number of receivable bytes with
FIONREAD and for setting the nonblocking 1/O flag. Can
also be used for setting a socket to receive asynchronous sig-
nals with FIOASYNC.

fentl Can be used for duplicating a socket descriptor and for set-
ting the O_NDELAY flag.

Interprocess Communication 11—131

IPC attempts to isolate host-specific information from applications by
providing library calls that return the necessary information.

The following table contains a summary of the library calls used with IPC.
The library calls are in the common "c¢" library named /ibc.a. Therefore,
there is no need to specify any library name on the cc command line to
use these library calls — libc.a is used automatically.

Library Calls

Library Call Description

htonl convert values between host and
htons network byte order (for portability
ntohl to DEC VAX hosts)

ntohs

inet_addr internet address manipulation
inet_Inaof routines

inet_makeaddr

inet_netof

inet_network

setservent get or set service entry
endservent

getservbyname

getservbyport

getservent

setprotoent get or set protocol entry
endprotoent

getprotobyname

getprotobynumber

getprotoent

11 —-132 Summary Tables for System and Library Calls

Library Call

Description

setnetent
endnetent
getnetbyaddr
getnetbyname
getnetent

sethostent
endhostent
gethostbyaddr
gethostbyname
gethostent

get or set network entry

get or set host entry

Interprocess Communication 11-—133

11 —134 Summary Tables for System and Library Calls

A

Portability Issues

This appendix describes implementation differences between 4.2 BSD
IPC and HP-UX IPC. It contains porting issues for:

e IPC functions and library calls; and for
e other functions and library calls typically used by IPC programs.

Because HP-UX IPC is based on 4.2 BSD IPC (it is a subset of 4.2 BSD),
programs should port easily between HP-UX and 4.2 BSD systems. If you
need to have portable applications, keep the information in this appendix

in mind when you write your IPC programs.

PortabilityIssues A—1

Porting Issues for IPC Functions and
Library Calls

The following is a list of differences in IPC functions and library calls to
be aware of if you want to port your IPC applications between HP-UX
and 4.2 BSD systems.

Shutdown

When shutdown has been used on a datagram socket on an HP-UX sys-
tem, the local port number bound to that socket remains unavailable for
use until that socket has been destroyed by close.

Some other systems free that port number for use immediately after the
shutdown. In general, sockets should be destroyed by close (or by ter-
minating the process) when they are no longer needed. This allows you to
avoid unnecessary delay in deallocating local port numbers.

Address Conversion Functions for DEC VAX Hosts

The functions htonl, htons, ntonl and ntons are not required on HP-UX
systems. They are included for porting to a DEC VAX host. You can use
these functions in your HP-UX programs for portability; they are defined
as null macros on HP-UX systems, and are found in <netinet/in.h>.

FIONREAD Return Values

For HP-UX systems, the FIONREAD ioctl request on a datagram socket
returns a number that may be larger than the number of bytes actually
readable. Previously, HP-UX systems returned the maximum number of
bytes that a subsequent recv would be able to return.

A—2 Porting Issues for IPC Functions and Library Calls

Listen’s Backlog Parameter

HP-UX treats the listen(2) backlog valueas the actual size of the queue
for pending connections. Some implementations set their queue size to
3/2 * B+ 1, where B is the backlog value.

Pending Connections

There is no guarantee as to which pending connection on a listening
socket will be returned by accept. HP-UX systems return the newest pend-
ing connection. Applications should be written such that they do not
depend upon connections being returned by accept on a first-come, first-
served basis.

Errno Values

HP-UX IPC system calls have some ermmo values that are different from
other implementations. These are listed in the following table.

Errno Values that Differ for IPC System Calls

System HP-UX Other

Call Error Implementation Implementations

connect | socket is a listening socket EINVAL ETIMEDOUT

socket invalid socket type EPROTONOSUPPORT EPROTOTYPE
and EPROTOTYPE

socket invalid protocol EPROTONOSUPPORT EPROTOTYPE

Portabilitylssues A-3

Losing a TCP Connection

On a stream socket connection, if the connection has been lost due to
some error, HP-UX systems return the same errno value for each subse-
quent recv. Some other implementations only return the error on the first
recv after the connection is lost, and then return the end-of-file condition
on subsequent recv calls.

Unsupported IPC Features

The following is a list of 4.2 BSD IPC features which are not supported
on HP-UX systems.

The HP-UX implementation does not support:

e AF_UNIX or other addressing domains (only AF_INET is supported);
e the use of readv(2) and writev(2) on sockets;

e the sendmsg(2) and recvmsg(2) system calls; or

e the SOCK_RAW socket type.

A—4 Porting Issues for IPC Functions and Library Calls

Porting Issues for Other Functions and
Library Calls Typically Used by IPC

The following is a list of differences in functions and library calls to be
aware of when you port your IPC applications between HP-UX and 4.2
BSD systems.

loctl and Fentl Calls

4.2 BSD terminal ioctl calls are incompatible with the HP-UX implemen-
tation. These calls are typically used in virtual terminal applications. The
HP-UX implementation uses UNIX System V compatible calls.

Pty Location

Look for the pty masters in /dev/ptym/ptyp? and for the pty slaves in
/dev/pty/ttyp?. An alternative location to check is /dev.

Dup2

You must use the =1BSD compile option to use the 4.1 or 4.2 BSD ver-
sion of the dup2(2) system call on an HP-UX system.

Size Limit for Send

For Series 300 HP-UX systems, the maximum size message that can be
sent on a datagram socket or on a nonblocking stream socket is 9216
bytes. For Series 800 HP-UX systems, the maximum size message is 2048
bytes. For 4.2 BSD systems, the maximum size message is 2048 bytes.

PortabilityIssues A—35

Utmp

The 4.2 BSD /etc/utmp file format is incompatible with the HP-UX im-
plementation. The HP-UX implementation uses UNIX System V com-
patible calls. Refer to the utmp(5) entry in the HP-UX Reference manual
for details.

Library Equivalencies

Certain commonly used library calls in 4.2 BSD are not present in HP-
UX systems, but they do have HP-UX equivalents. To make code porting
easier, use the following equivalent library calls. You can do this by put-
ting them in an include file, or by adding the define statements (listed in
the following table) to your code.

Definition of Library Equivalents

4.2 BSD Library HP-UX Library
#define index(a,b) strchr(a,b)
#define rindex(a,b) strrchr(a,b)
#define bemp(a,b,c) mememp(a,b,c)
#define beopy(a,b,c) memcpy(b,a,c)
#define bzero(a,b) memset(a,0,b)
#define getwd(a) getewd(a, MAXPATHLEN)
Note

Include <string.h > before using strchr and strrchr. In-
clude <sys/param.h > before using getcwd.

A—6 Porting Issues for Other Functions and Library Calls Typically Used by IPC

Signal Calls

Normal HP-UX signal calls are different from 4.2 BSD signals. See the sig-
vector(2) entry in the HP-UX Reference manual for information on signal
implementation. Note the following signal mapping.

Definitions of Signal Equivalents
4.2 BSD Signal is mapped to HP-UX Signal
SIGCHLD SIGCLD

Sprintf Return Value

For 4.2 BSD, sprintf returns a pointer to a string. For HP-UX systems,
sprintf returns a count of the number of characters in the buffer.

PortabilityIssues A—7

A—8 Porting Issues for Other Functions and Library Calls Typically Used by IPC

Glossary

Account name:

Address family:

Address:

Advanced Re-
search Projects

Agency:
Alias:

ARPA:

ARPA/Berkeley
Services:

ARPANET:

A synonym for user name or login name.

The address format used to interpret addresses
specified in socket operations. The internet address
family (AF_INET) is supported.

An Interprocess Communication term that refers to
the means of labeling a socket so that it is distin-
guishable from other sockets, and routes to that sock-
et are able to be determined.

A U.S. government research agency that was in-
strumental in developing and using the original
ARPA Services on the ARPANET.

A term used to refer to alternate names for net-
works, hosts and protocols. This is also an internet-
work mailing term that refers an alternate name for
a recipient or list of recipients (a mailing list).

See "Advanced Research Projects Agency."

The set of services originally developed for use on
the ARPANET (i.e., telnet(1)) or distributed with
the Berkeley Software Distribution of UNIX, ver-
sion 4.2 (i.e., rlogin(1)).

The Advanced Research Projects Agency Network.

Glossary 1

Association:

Asynchronous
Sockets:

Berkeley
Software
Distribution:

Binding:

BSD:
Channel:

Client:

Client host:

Communication

domain:

Connection:

Daemon:

2 Glossary

An Interprocess Communication connection (e.g., a
socket) is defined by an association. An association
contains the (protocol, local address, local port,
remote address, remote port)-tuple. Associations
must be unique; duplicate associations on the same
system may not exist.

Sockets set up via ioctl with the FIOASYNC option
to be notified with a SIGIO signal whenever a
change on a socket occurs. It is primarily used for
sending and receiving data without blocking.

A version of UNIX software released by the Univer-
sity of California at Berkeley.

Establishing the address of a socket which allows
other sockets to connect to it or to send data to it.

See "Berkeley Software Distribution."

A communication path created by establishing a con-
nection between sockets.

A process that is requesting some service from
another process.

The host on which a client process is running.

A set of properties that describes the characteristics
of processes communicating through sockets. Only
the Internet domain is supported.

A communications path to send and receive data. A
connection is uniquely identified by the pair of sock-
ets at either end of the connection. See also, "As-
sociation."

A software process that runs continuously and
provides services on request.

DARPA:

Datagram
sockets:

Defense
Advanced Re-
search Projects
Agency:

Domain:

Equivalent
account:

Equivalent host:

Equivalent user:

File Transfer
Protocol:

Forwarding:

4.2 BSD:

See "Defense Advanced Research Projects Agency."

A socket that maintains record boundaries and treats
data as individual messages rather than a stream of
bytes. Messages may be sent to and received from
many other datagram sockets. Datagram sockets do
not support the concept of a connection. Messages
could be lost or duplicated and may not arrive in the
same sequence sent. Datagram sockets use the User
Datagram Protocol.

The military arm of the Advanced Research Projects
Agency. DARPA is instrumental in defining stand-
ards for ARPA services.

A set of allowable names or values. See also, "Com-
munication domain.”

An account (or user name) specified in the
SHOME].rhosts file that allows the specified remote
users to access the local user’s account without re-
quiring a password.

A remote host that is considered by your local host
as an "equivalent computer." Users from equivalent
hosts can bypass password validation if they have the
same account name on both hosts.

See "Equivalent account.”

The file transfer protocol that is traditionally used in
ARPA networks. The ftp command uses the FTP
protocol.

The process of forwarding a mail message to another
destination (i.e., another user name, host name or
network).

See "Berkeley Software Distribution.”

Glossary 3

Frame:
FTP:

Gateway:

Host:

International
Standards
Organization:

Internet:

Internet address:

Internetwork:

Interprocess
Communication:

IPC:
ISO:

Link-level
address:

4 Glossary

See "Packet."
See "File Transfer Protocol."

A node that connects two or more networks together
and routes packets between those networks.

A node that has primary functions other than switch-
ing data for the network.

Called "ISO," this organization created a network
model that identifies the seven commonly-used
protocol levels for networking.

All ARPA networks that are registered with the Net-
work Information Center.

A four-byte quantity that is distinct from a link-level
address and is the network address of a computer
node. This address identifies both which network is
on the Internet and which host is on the network.

A term used to mean "among different physical net-
works."

A facility that allows a process to communicate with
another process on the same host or on a remote
host. IPC provides system calls that access sockets.
This facility is distinct from Bell System V IPC. See
also, "Sockets."

See "Interprocess Communication."
See "International Standards Organization."

A six-byte quantity that is distinct from the internet
address and is the unique address of the LAN inter-
face card on each LAN.

Message:

Node:

Node manager:

Official host
name:
Packet:

Peer:

Port:

Protocol:

Remote host:

Reserved port:

Server:

Service:

In IPC, the data sent in one UDP packet. When
using sendmail a message is the information unit
transferred by mail.

A computer system that is attached to or is part of a
computer network.

The person who is responsible for managing the net-
working services on a specific node or host.

The first host name in each entry in the /etc/hosts
file. The official host name cannot be an alias.

A data unit that is transmitted between processes.
Also called a "frame."

An Interprocess Communication socket at the other
end of a connection.

An address within a host that is used to differentiate
between multiple sockets with the same internet ad-
dress.

A set of conventions for transferring information be-
tween computers on a network (e.g., UDP or TCP).

A computer that is accessible through the network
or via a gateway.

A port number between 1 and 1023 that is only for
super-user use.

A process or host that performs operations that local
or remote client hosts request.

A facility that uses Interprocess Communication to
perform remote functions for a user (e.g., rlogin(1)
or telnet(1)).

Glossary 5

Simple Mail
Transfer Protocol:

SMTP:
Socket:

Socket address:

Socket descriptor:

Stream socket:

TCP:

Telnet:

Transmission
Control Protocol:

6 Glossary

A standard protocol for transporting mail reliably
and efficiently through LANs or the ARPANET.
Sendmail uses the SMTP protocol.

See "Simple Mail Transfer Protocol."

Addressable entities that are at either end of an In-
terprocess Communication connection. A socket is
identified by a socket descriptor. A program can
write data to and read data from a socket, just as it
writes and reads data to and from files.

The internet address, port address and address fami-
ly of a socket. The port and internet address com-
bination allows the network to locate a socket.

An HP-UX file descriptor accessed for reading, writ-
ing or any standard file system calls after an Inter-
process Communication connection is established.
All Interprocess Communication system calls use
socket descriptors as arguments.

A socket that, when connected to another stream
socket, passes data as a byte stream (with no record
boundaries). Data is guaranteed to arrive in the se-
quence sent. Stream sockets use the TCP protocol.

See "Transmission Control Protocol."

A virtual terminal protocol traditionally used on
ARPA networks that allows a user to log into a
remote host. The telnet command uses the Telnet
protocol.

A protocol that provides the underlying communica-
tion support for AF_INET stream sockets. TCP is
used to implement reliable, sequenced, flow-control-
led two-way communication based on a stream of
bytes similar to pipes.

UDP: See "User Datagram Protocol."

User Datagram A protocol that provides the underlying communica-

Protocol: tion support for datagram sockets. UDP is an unreli-
able protocol. A process receiving messages on a
datagram socket could find that messages are dupli-
cated, out-of-sequence or missing. Messages retain
their record boundaries and are sent as individually
addressed packets. There is no concept of a connec-
tion between the communicating sockets.

Virtual Terminal A protocol that provides terminal access to interac-

Protocol: tive services on remote hosts (e.g., telnet(1)).

UNIX Domain A character string continuing the UNIX pathname
Address: to a UNIX Domain socket.

UNIX Domain A protocol providing fast communication between
Protocol: processes executing on the same node and using the

AF UNIX socket address family.

Glossary 7

8 Glossary

Index
ST e s s e T R e e e e i e S e

|
.rhosts file, Glossary 3, 2-8,
7-7, 7-22 to 7-23, 9-3, 9-16,

! command 9-30, 10-2, 10-7
ftp, 8-10 creation of local, 7-24, 9-31,
telnet, 6-17 10-8
#, 8-36 creation of remote, 7-8, 9-3,
$HOME directory, 7-8 10-3
SHOME].cshre, 9-7, 10-17 protection of, 7-9
SHOME|.login, 7-14, 7-26, 9-7, protection of local, 7-25, 9-32,
10-17 10-9
SHOME]|.netrc, 8-75, 8-77 protection of remote, 9-5, 104
creation of local, 8-75 [dev/null, 10-15
protection of local, 8-76 Jetc/csh.login, T-14
SHOME|.profile, 7-14, 7-26, 9-7, fetc/hosts, Glossary 5, 2-7, 6-7
10-17 letc/hosts.equiv, 27, 7-7, 9-3,
$HOME].rhosts, Glossary 3, 2-8, 9-16, 10-2
7-7, 7-22 to 7-23, 9-3, 9-16, 9-30, /etc/networks, 2-7
10-2, 107 [etc/profile, T-14

creation of local, 7-24, 9-31, 10-8 [etc/protocols, 2—-8
creation of remote, 7-8, 9-3, 10-3 Jetc/services, 2-8

protection of, 7-9 Jusr/bin/remsh, 7-26
protection of local, 7-25, 9-32, 10-9 /usr/hosts, 7-26, 10-17
protection of remote, 9-5, 104 ? command

.cshre file, 9-7, 10-17 ftp, 8-9

dogin file, 7-14, 7-26, 9-7, 10-17 telnet, 614

.netrc file, 2-7, 8-75, 8-77 =, 7-2,7-10, 7-12

creation of local, 8-75
protection of local, 8-76
profile file, 7-14, 7-26, 9-7, 10-17

Index 1

A

accept, A-3, 11-10, 11-19,
11-25, 1145, 11-51, 11-57,
11-83, 11-129

account, 8-78

account name, Glossary 1

account prompt, ftp, 8-6

address, Glossary 1

address conversion call, 11-30

address family, Glossary 1

addressing domain, 11-12, 11-47

Advanced Research Projects
Agency, Glossary 1, 2-1, 2-3

Advanced Research Projects Agency
Network, Glossary 1

Advanced Topics for Datagram
Sockets, 11-116

AF_INET, Glossary 1, 11-10, 11-94

alias, Glossary 1

anonymous ftp account, 8-81

anonymous ftp account, login to,
8-82

append command, ftp, 8-51, 8-55,
8-66

ARPA, Glossary 1, 2-1, 2-3

ARPA Services, 2-1, 2-3

ARPA/Berkeley Services, Glossary 1

ARPANET, Glossary 1

ascii command, ftp, 8-35

ascii file transfer type in fip, 8-33

association, Glossary 2

asynchronous sockets, Glossary 2,
11-81, 11-118

2 Index

bemp, A6

bcopy, A—6

bell command, ftp, 8-36

bell sound for fip file transfer
completion, 8-36, 8-74

Berkeley Services, 2-1, 2-3

Berkeley Software Distribution,
Glossary 1 to Glossary 2, 2-1

binary command, fip, 8-34

binary file transfer type in fip,
8-33 to 8-34

bind, 11-10, 11-45, 11-74,
11-92, 11-99, 11-129

binding, Glossary 2, 11-3

blocking mode, 11-119

break, 7-11, 7-14

broadcast address, 11-120

BSD, Glossary 1 to Glossary 2,
2-1

bye command, ftp, 8-7

bzero, A—6

C

C programming language, 1-6

carriage return behavior in
telnet, 6-10

¢d command, fip, 8-16

channel, Glossary 2

characters, terminal
configuration, 6-5, 7-2

client, Glossary 2

client host, Glossary 2

client-server model, 11-4

close, A-2, 11-10, 11-29,
11-45, 11-61, 11-78, 11-85,
11-106, 11-131
close command, telnet, 6-12, 6-24
combination copies

rep local and remote to local, 9-22
rcp local and remote to remote, 9-26

rcp local to remote, 9-10
rcp remote to local, 9-14
rcp remote to remote, 9-18
command search path, 7-26
command state, telnet 6-2, 6-13
command, remsh execution of
remote, 10-5
communication domain, Glossary 2
concepts, 1-1
configuration, 1-6
connect, A-3, 11-23, 11-55, 11-74,
11-116, 11-129
connection, Glossary 2
connectivity, 1-1
consumer, 9-2
control character
entry as rlogin escape character,
7-10, 7-12

entry as felnet escape character, 6-6

conventions, 1-5

crmod command, telnet, 6-10
csh.login file, 7-14

CTRL-], 6-3, 6-9

D

daemon, Glossary 2

DARPA, Glossary 3

datagram socket, Glossary 3

datagram sockets, 2-8, 11-9, 11-92,
11-107, 11-116, 11-129

Defense Advanced Research
Projects Agency, Glossary 3
delete command, ftp, 8-30, 8-68
dir command, ftp, 8-17, 8-20
directories, fip listing of
multiple remote, 8-23
directory
changing ftp local working, 8-15
changing ftp remote working,
8-16
ftp creation of remote, 8-29
ftp deletion of remote, 8-30
ftp listing of remote, 8-20
listing ftp remote working, 8-17
directory copies
rep local and remote to local,
9-22
rcp local and remote to remote,
9-26
rep local to remote, 9-10
rcp remote to local, 9-14
rcp remote to remote, 9-18
directory name
ftp change of remote, 8-31
ftp display of remote working,
8-28
documentation map, 1-1
domain, Glossary 2 to
Glossary 3
dup2, A-5

E

endhostent, 11-133

endnetent, 11-133
endprotoent, 11-132
endservent, 11-132

equivalent account, Glossary 3

Index 3

equivalent host, Glossary 3, 2-7
equivalent user, Glossary 3, 2-8
errno, A-3
escape character
rlogin, 7-1 to 7-2, 7-10, 7-12,
7-15 to 7-16, 7-18 to 7-19
telnet, 6-2 to 64, 6-6, 6-9, 6-20
escape command, telnet, 64

F

fentl, 11-84, 11-120, 11-131
file
use of ftp to append local to remote,
8-51, 8-55
use of ftp to append text to remote,

use of ftp to change name of
remote, 8-72
use of fip to create remote, 8—64
use of fip to delete remote, 8-68
use of fip to display remote, 8-62
use of fip to move remote, 8-72
use of fip to delete
multiple remote, 8-69
file attributes
rep’s effect on, 9-28
file copies
rep local and remote to local, 9-20
rep local and remote to remote, 9-24
rep local to remote, 9-8
rcp remote to local, 9-12
rcp remote to remote, 9-16
file operations in ftp, remote, 8—62
file transfer
ftp local to remote multiple,
8-57
ftp local to remote single,

4 Index

8-49, 8-53
ftp remote to local multiple,
8-44
ftp remote to local single,
840, 8-42
ftp selective, 8-37
file transfer environment in ftp,
8-33
file transfer options in ftp, 8-39
File Transfer Protocol,
Glossary 3
file transfer type in ftp, 8-33
file transfer type
changing to ftp ascii, 8-35
changing to ftp binary, 8-34
displaying current ftp, 8-34
FIOASYNC, 11-81, 11-131
FIONREAD, A-2, 11-79,
11-118, 11-131
FIOSNBIO, 11-83, 11-120
font conventions, 1-5
forwarding, Glossary 3
frame, Glossary 5

ftp, Glossary 3, 2-6, 8-1

! command, 8-10

-g option, 8-83

-i option, 8-83

-n option, 8-77, 8-83

-v option, 8-83

7 command, 8-9

account prompt, 8-6

anonymous account, 8-81

anonymous account, login to,
8-82

append command, 8-51, 8-55,
8-66

ascii command, 8-35

ascii file transfer type, 8-33

automatic remote login, 8-75

automatic remote login, disabling,
8-77, 8-83

bell command, 8-36

bell sound for file transfer
completion, 8-36, 8-74

binary command, 8-34

binary file transfer type, 8-33 to 8-34

bye command, 8-7

cd command, 8-16

command descriptions, 8-9

command list, 8-9

connection to remote host, 84,
8-74, 8-83

delete command, 8-30, 8-68

dir command, 8-17, 8-20

directories, listing multiple remote,
8-23

directory
changing local working, 8-15
changing name of remote, 8-31
changing remote working, 8-16
creating remote, 8-29
deleting remote, 8-30
displaying name of remote

working, 8-28

listing remote, 8-20
listing remote working, 8-17

directory operations, 8-14

disconnection from remote host, 8-7
to 8-8

display of remote responses, 8-2

execution, 8-2

exit from, 8-7

file
appending local to remote,

8-51, 8-55

appending text to remote, 8-65
changing name of remote, 8-72
creating remote, 8-64

deleting multiple remote, 8-69
deleting remote, 8-68
displaying remote, 8-62
moving remote, 8-72

file transfer
local to remote multiple, 8-57
local to remote single, 849,

8-53
remote to local multiple, 844
remote to local single,
840, 8-42

selective, 8-37

file transfer environment, 8-33

file transfer options, 8-39

file transfer progress,
monitoring, 8-36

file transfer type, 8-33, 8-74

file transfer type
changing to ascii, 8-35
changing to binary, 8-34
displaying current, 8-34

get command, 8-40, 842, 8-62

glob command, 8-12

globbing, 8-12, 8-74, 8-83

globbing behavior of commands
in, 8-13 to 8-14

guest account, 8-81

guest account, login to, 8-82

hash command, 8-36

hash sign file transfer progress
indicator, 8-36

hash sign for file transfer
progress, 8-74

help command, 8§-9

interactive mode, 8-24, 8-20,
8-37, 8-44, 8-47, 8-57, 8-60),
8-69, 8-71, 8-74, 8-83

led command, 8-15

local work within, 8-10

Index 3

G

Is command, 8-17, 8-20

mdelete command, 8-69, 8-71

mdir command, 8-23, 8-26

metacharacter expansion in,
8-13 to 8-14

metacharacter use within, 8§-12

mget command, 844, 847

mkdir command, 8-29

mls command, 8-23, 8-26

mput command, 8-57, 8-60

open command, 84

prompt command, 8-37

public account, 8-81

public account, login to, 8-82

public directory structure, 8-81

put command, 849, 8-53, 8-64

pwd command, 8-28

quit command, 8-7

recy command, 840, 842, 8-62

rename command, 8-31, 8-72

rmdir command, 8-30

security, 8-5 to 8-6

send command, 849, 8-53, 8-64

status command, 8-74

status display, 8-74

type command, 8-34

user command, 8-78 to 8-79

verbose command, 8-3

verbose mode, 8-2, 8-83

wild card character use within, 8-12

gethostbyname, 11-95, 11-133
gethostent, 11-13, 11-95
getnetbyaddr, 11-133
getnetbyent, 11-133
getnetbyname, 11-133
getpeerbyname, 11-131
getprotobyent, 11-132
getprotobyname, 11-16, 11-98,
11-132
getprotobynumber, 11-132
getservbyent, 11-132
getservbyname, 11-15, 11-96,
11-132
getservbyport, 11-132
getservent, 11-97
getsockbyname, 11-129
getsockname, 11-30
getsockopt, 11-72, 11-131
getwd, A—6
glob command, ftp, 8-12
globbing, 8-12, 8-74, 8-83
globbing behavior of commands
in ftp, 8-13 to 8-14
guest ftp account, 8-81
guest ftp account, login to, 8-82

H

hash command, ftp, 8-36
hash sign for fip file transfer

progress, 8-36, 8-74
help command, ftp, 8-9
help, telnet, 6-14

gateway, Glossary 4

get command, ftp, 840, 842, 8-62
getewd, A6

gethostbyaddr, 11-21, 11-133
gethostbyent, 11-133

home directory, 7-8

host, Glossary 4, 2-2
host alias, 67

host internet address, 67
host load, 4-1

6 Index

host name, 2-7, 4-1, 5-1, 6-7

host name, official, Glossary 5

host status, 4-1

host, remote, Glossary 5

hosts file, Glossary S, 2-7, 6-7

hosts.equiv file, 2-7, 7-7, 9-3, 9-16,
10-2

HP-UX operating system, 1-6

htonl, A-2, 11-132

htons, A-2, 11-132

idle user, 4-2, 5-1

index, A-6

inet, 11-95

inet_addr, 11-132

inet_Inaof, 11-132

inet_makeaddr, 11-132

inet_netof, 11-132

inet_network, 11-132

inetd, 11-124

initiator, 9-2

input state, 6-2, 6-9, 6-13

installation, 1-6

interactive mode, 8-24, 8-26,
8-37, 8-44, 847, 8-57, 8-60,
8-69, 8-71, 8-74, 8-83

interface card, LAN, Glossary 4

International Standards
Organization, Glossary 4

Internet, Glossary 4

internet address, Glossary 4,
2-7, 11-7

internet daemon, 11-124

Internet domain, Glossary 2

internetwork, Glossary 4

Internetwork communication
socket address, Glossary 6
Interprocess communication,

Glossary 4, 2-8, 11-1

accepting a connection, 11-20,
11-52

adding server process to the
Internet daemon, 11-124

address, Glossary 1

address conversion, A-2

address conversion call, 11-3(0

address family, 11-7, 11-12,
11-94

addressing domain, 11-12,
11-47

advanced topics for stream
sockets, 11-71

AF INET, 11-12

AF _UNIX, 11-9

association, Glossary 2, 11-8

binding, Glossary 2, 11-3, 11-8

binding a socket address to
server process’s, 11-17, 11-49

binding socket addresses to
datagram sockets, 11-99

BSD IPC, A-1, A-5to A-7

BSD IPC connections, 11-44

channel, Glossary 2, 11-7

client, Glossary 2, 11-4

client-server model, 114

closing a socket, 11-29, 11-61,
11-106

communication domain,
Glossary 2, 11-7

compile option, A-5

connection, Glossary 2

creating a socket, 11-16, 11-22,
1147, 11-54

creating sockets, 11-98

Index 7

datagram sockets, Glossary 3, 11-9,
11-91

declaring socket address
variables, 11-11, 1146, 11-94

errno values, A-3

example using stream sockets,
11-30

examples using datagram
sockets, 11-107

FIONREAD, A-2

FIOSBNIO, 11-83

flag Options, 11-28, 11-60, 11-105

frame, Glossary 5

getting and setting socket options,
11-72

getting the port address for the
desired server, 11-96

getting the remote host’s Internet
address, 11-13

getting the remote host’s network
address, 11-95

graceful close, 11-32

graceful disconnect, 11-78

hard close, 11-78

I/O multiplexing with select, 11-118

INADDR_ANY, 11-97

incoming connection requests,
11-129

internet address, 11-7, 11-11, 11-91

ioctl, A-2, A-5, 11-88

IPC connections, 11-2, 11-10

IPC system calls, 11-129

IPC using datagram sockets, 11-91

library calls, A-1to A-2,
A-6, 11-132

library equivalencies, A-6

library routines, 11-6

LINGER options, 11-29

listen’s backlog parameter, A-3

8 Index

message, 0-5, 11-7

MSG_OOB, 11-27, 11-87

MSG_PEEK, 11-27, 11-105,
11-116

nonblocking I/O, 11-24, 11-119

nondestructive read, 11-28

other system calls, 11-131

out of band data, 11-28, 11-86

packet, Glossary 5, 11-7

pathname, 1146

peer, Glossary 5, 11-7

pending connections, A-3

port, 11-8

port address, 11-11, 11-93

portability issues, A-1

preparing address variables,
11-11, 11-46, 11-93

preview an incoming message,
11-105

preview incoming data, 11-28

programming hints, 11-121

protocols, 11-9

pty location, A-5

receiving data, 11-27, 11-59

receiving messages, 11-103

requesting a connection,
11-23, 11-55

reserved port addresses, 11-122

send size limit, A-5

sending and receiving data,
11-25, 11-57

sending and receiving messages,
11-101

sending and receiving out of
band data, 11-86

sending data, 11-26, 11-58

sending messages, 11-101

server, 11-4

setting the server up to wait for
connection, 11-19, 11-51

signal calls, A-7

SIOCATMARK, 11-88

SO_DEBUG, 11-71

SO_DONTLINGER, 11-71, 11-78

SO_DONTROUTE, 11-71, 11-76

SO_KEEPALIVE, 11-71, 11-75

SO_LINGER, 11-77, 11-85

SO_RCVBUF, 11-71, 11-77

SO _REUSEADDR, 11-71, 11-74

SO_SNDBUF, 11-71, 11-76

sockaddr, 11-12, 1147, 11-94

sockaddr in, 11-12, 1147, 11-94

socket, Glossary 6

socket address, 11-8, 11-11, 11-46

socket descriptor, Glossary 6, 11-3,
11-9, 11-16, 1148

sockets, 11-1

specifying a default socket
address, 11-116

sprintf return value, A-7

stream sockets, Glossary 6, 11-9

summary tables for system and
Library calls, 11-129

synchronous I/O Multiplexing
with select, 11-79

TCP, 11-9

troubleshooting, 11-121

UDP, 11-9

unsupported IPC features, A4

using a wildcard local
address, 11-15, 11-97

using broadcast addresses,

11-121

using diagnostic utilities as
troubleshooting, 11-123

using read/write to make stream

sockets trans, 11-86

using shutdown, 11-84
wildcard address, 11-11
wildcard addressing, 11-15,
11-97
writing the client process,
11-22, 11-54
writing the server and client
processes, 11-98
writing the server process,
11-16, 1147
interprocessing communication
addressing domain, 11-94
ioctl, 11-81, 11-83, 11-119,
11-131
IPC, Glossary 4, 2-8, 11-1
IPC connections, 11-2, 11-10,
11-16, 1144, 11-48
ISO, Glossary 4

L

led command, ftp, 8-15

library calls, A-1to A-2, A-6

library functions, 2-7

LINGER, 11-29

link-level address, Glossary 4

listen, A-3, 11-10, 11-19,
1145, 11-51, 11-129

local, 2-2

login name, 2-7, 5-1

login, remote, 6-1

losing a TCP connection, A4

Is command, fip, 8-17, 8-20

Index 9

mail, 1-2
mail destination
local file, 3-2
local user, 3-5
remote user, 3-5
mail errors, 3-5
mail message aliasing, 3—1
mail message forwarding, 3-1
mail program, 3-2
mail transaction transcript, 3-5
mailg, 3-6
mailstats, 3-6
mailx, 3-2
mdelete command, ftp, 8-69, 8-71
mdir command, ftp, 8-23, 8-26
memcmp, A—6
memcpy, A-6
memset, A—6
message, Glossary 5
metacharacter expansion in fip, 8-13
to 8-14
metacharacters, 8-12, 9-29,
10-12 to 10-13
mget command, ftp, 844, 847
mkdir command, ftp, 8-29
mls command, fip, 8-23, 8-26
mput command, ftp, 8-57, 8-60
MSG_OOB, 11-27
MSG_PEEK, 11-27, 11-59

N

netstat, 11-123
network alias, 2-7
network event logging, 11-123

10 Index

Network Information Center,
Glossary 4

network name, 2-7

network number, 2-7

Network Services, 1-6

network tracing, 11-123

networking, 1-6

networks file, 2-7

nftdaemon, 11-122

node, Glossary 5

node manager, Glossary 5

nonblocking I/O, 11-24, 11-83,
11-119

NS, 1-6

ntohl, 11-132

ntohs, 11-30, 11-132

ntonl, A-2

ntons, A-2

O

O_NDELAY, 11-84, 11-120,
11-131
open command
fip, 8-4
telnet, 67, 6-11to 6-12
out of band data, 11-86

P

packet, Glossary 5, 11-7

password, 2-7

pathname, 1149

peer, Glossary 5, 11-7

permission for local login from
remote, 7-24

perror, 11-121

ping, 11-123

port, Glossary 5, 11-8

port address, 11-11, 11-14, 11-17,

11-93, 11-99
port number, 2-8
port, reserved, Glossary 5
praliases, 3-6
producer, 9-2
profile file, 7-14
prompt command, ftp, 8-37
protocol, Glossary 5
protocol alias, 2-8
protocol name, 2-8
protocol number, 2-8
protocols file, 2-8
p ty: A-5
public ftp account, 8-81
public ftp account, login to, 8-82

public ftp directory structure, 8-81
put command, ftp, 849, 8-53, 8-64

pwd command, fip, 8-28

Q

quit command

ftps 8_7
telnet, 6-13

R

rep, 2-6, 9-1
-r option, 9-10, 9-14, 9-18,
9-22, 9-26, 9-29
combination copies

local and remote to local, 9-22

local and remote to remote,
9-26

local to remote, 9-10

remote to local, 9-14

remote to remote, 9-18
copy as someone else, 9-30
directory copies
local and remote to local, 9-22
local and remote to remote,
9-26
local to remote, 9-10
remote to local, 9-14
remote to remote, 9-18
directory, remote working, 9-6,
9-30
errors, 9-7
file attributes, effect on, 9-28
file copies
local and remote to local, 9-20
local and remote to remote,
9-24
local to remote, 9-8
remote to local, 9-12
remote to remote, 9-16
link to file, treatment of, 9-8,
9-12
metacharacters, use of, 9-29
permission for local copy from
remote, 9-31
result of copy with, 9-7
sources, allowed copy, 9-6
special files, treatment of, 9-6
wild card characters, use of,
9-29

read, 11-9, 11-25, 11-57,

11-83, 11-105, 11-116, 11-120,
11-131

readv, A4
recv, A-2, A4, 11-83, 11-105,

11-117, 11-119, 11-129, 11-131

recv command, ftp, 840, 8-42,
8-62

Index 11

recvfrom, 11-7, 11-10, 11-25, 11-45,
11-84, 11-92, 11-99, 11-104,
11-116, 11-119, 11-129, 11-131

recvmsg, A—4

references, 1-6

remote, 2-2

remote host, Glossary 5

remote login, 6-1

remsh, 2—6, 7-26, 10-1
-n option, 10-15
command s

return key behavior in felnet,
6-10

rexec, 2—6

rfadaemon, 11-122

rindex, A—6

rlbdaemon, 11-122

rlogin, 2-5, 7-1, 10-2, 10-6
-7 option, 7-10, 7-12, 7-22
-e option, 7-10, 7-12, 7-22
-1 option, 7-12, 7-22
automatic login, 7-7, 7-10

execution as someone else, 10-7

execution of multiple remote , 10-10

execution of remote, 10-5
execution problems, 10-2, 10-14

process attributes of remote, 10-10

search paths, 10-6
use of interactive, 10-2
without input, 10-14 to 10-15
directory, remote working,
10-5, 10-7
hangup signal, treatment of,
10-5
interrupt signal, treatment of, 10-5
metacharacters, use of, 10-12 to
10-13
permission for local command
execution, 10-8
quit signal, treatment of, 10-5
shorthand syntax, 10-17
signals, treatment of, 10-5
stdin, 10-14
stdin, stdout, and stderr, 10-12
to 10-13
terminate signal, treatment of, 10-5

rename command, ftp, 8-31,

8-72

reserved port, Glossary 5

12 Index

character size, 7-4, 7-10, 7-12
to 7-13
conditions requiring seven-bit
characters, 7-6
escape character, 7-1 to 7-2,
7-10, 7-12, 7-15 to 7-16,
7-18 to 7-19
exit from (logout), 7-15
local work within, 7-16
login as someone else, 7-22
manual login, 7-12
requirements for sending
eight-bit characters, 74
shorthand syntax, 7-26
rmail, 3-5
rmdir command, ftp, 8-30
rsh, 10-1
ruptime, 24, 4-1
-a option, 4-2, 44 to 4-11
-1 option, 4-10 to 4-11
-r option, 4-5, 4-7, 4-9, 4-11
-t option, 4-6 to 4-7
-u option, 4-8 to 4-9
mwho, 2-5, 5-1
-a option, 5-2, 54

S

search path, command, 7-26, 10-17

select, 11-19, 11-51, 11-79 to 11-81,
11-118, 11-131

send, 11-10, 11-25, 11-45, 11-57,
11-83, 11-101, 11-116, 11-120,
11-129

send command, ftp, 849, 8-53, 8-64

sendmail, Glossary 6, 2-4, 3-1
configuration file, 3-3
executing, 3-2
message, Glossary 5
message collection, 3-3
message routing, 3-3
production system, 3-3

sendmsg, A—4

sendto, 11-84, 11-92, 11-102, 11-
116, 11-119, 11-129

server, Glossary 5

service, Glossary 5

service name, 2-8

services file, 2-8

sethostent, 11-133

setnetent, 11-133

setprotoent, 11-132

setservent, 11-132

setsockopt, 11-73, 11-75,
11-130

shell escape
ftp, 8-10
rlogin, 7-16
telnet, 6-17

shutdown, A-2, 11-30, 11-85, 11-129

SIGCHLD, A-7

SIGCLD, A-7

SIGIO signal, 11-81, 11-118

signal, A-7, 11-86

sigvector, A=T

Simple Mail Transfer Protocol,
Glossary 6, 24
SIOCSPGRP, 11-81
SMTP, Glossary 6, 24
SMTP delivery module, 3-5
SO DONTLINGER, 11—78
SO KEEPALIVE, 11—75
SO_LINGER, 11-71, 11-77
SO RCVBUF 11—77
SO REUSEADDR, 11-75
SO SNDBUF, 11- 76
SOCK DGRAM 11-82
SOCK _ STREAM 11-82
socket, Glossary 6, 11-10, 11-45
socket address, Glossary 6,
11-93
socket descriptor, Glossary 6,
11-3
sockets, 11-3
special file, 9-6
sprintf, A=7
status
ftp, 8-74
telnet, 6-20
status command
fip, 8-74
telnet, 6-20
status display in fip, 8-74
strchr, A-6
stream sockets, Glossary 6, 2—8
11-27, 11-59, 11-71, 11-129
strrchr, A—6

Index 13

T

TCP, Glossary 6, 2-8, 11-9
telnet, Glossary 6, 2-5, 6-1

! command, 6-17
7 command, 6-14
close command, 6-12, 6-24

command descriptions, 6-14 to 6-15

command execution, 6-9

command list, 6-14 to 6-15

command state, 6-13

connection to remote host, 6-7,
6-20, 6-24

crmod command, 6-10

disconnection from remote host,
6-11 to 6-12

escape character, 6-2 to 64, 6-6,
6-9, 6-20

escape command, 64

execution, 6-2

exit from, 6-11, 6-13

help, 6-14

input state, 6-9, 613

local work within, 6-17

open command, 6-7, 6-11 to 6-12

quit command, 6-13

state, 6-2

status, 6-20

status command, 6-20

TELNET protocol, Glossary 6
terminal configuration

characters, 6-5, 7-2

terminal line, 5-1

terms, 1-1

tilde, 7-2, 7-10, 7-12
Transmission Control Protocol,

Glossary 6, 2-8

troubleshooting, 1-6
type command, fip, 8-34

14 Index

U

UCB, 2-1, 2-3

UDP, Glossary 3, Glossary 8,
11-9

University of California at
Berkeley, 2-1, 2-3

UNIX Domain
address, Glossary 8
protocol, Glossary 8

user command, ftp , 8-78 to
8-79

User Datagram Protocol,
Glossary 3, Glossary 8

user status, 4-1

utmp, A—6

uupath, 3—6

uux, 3-5

\'

verbose command, ftp, 8-3

verbose mode, 8-2, 8-83

virtual terminal, 6-1

virtual terminal protocol,
Glossary 8

w

wild card characters, 8-12, 9-29
wildcard address, 11-11, 11-15,
11-30, 11-93, 11-99, 11-120
write, 11-9, 11-25, 11-57,
11-83, 11-99, 11-116, 11-120,
11-131
writev, A—4

Reader Comment Card

HP 9000 Series 300

Using ARPA Services

50952-90001, E0189

We welcome your evaluation of this manual. Your comments and sugges-

tions will help us improve our publications. Please tear this card out and
mail it in. Use and attach additional pages if necessary.

Please circle the following Yes or No:

e Is this manual well organized? Yes No
e Is the information technically accurate? Yes No
e Are instructions complete? Yes No
e Are concepts and wording easy to understand? Yes No
e Are examples and pictures helpful? Yes No
¢ Are there enough examples and pictures? Yes No
Comments: -

Name:

Title:

Company:

Address:

City & State:

Zip:

HEWLETT
(ﬁﬂ PACKARD Printed in USA

Tape

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO. 37 LOVELAND,CO

NO POSTAGE
NECESSARY
IF MAILED
IN THE
UNITED STATES

POSTAGE WILL BE PAID BY ADDRESSEE

Hewlett-Packard Company
Colorado Networks Division
3404 East Harmony Road
Fort Collins, CO 80525

ATTN: User Information Development Department

Fold Here

Please do not staple

Tape

	Cover

	Table of Contents

	1.
Documentation Overview
	2.
Services Overview
	3.
Sending Mail
	4.
Listing Hosts with Ruptime
	5.
Listing Users with Rwho
	6.
Logging into a Host with Telnet
	7.
Logging into a Host with Rlogin
	8.
Transferring Files with Ftp
	9.
Transferring Files with Rcp
	10. Executing Commands with Remsh

	11. Interprocess Communication

	A. Portability Issues

	Glossary

	Index

	Reader Comment Card

