
Using the X Window System
HP 9000 Series 300/800 Computers

HP Part Number 98594-90040

rli~ HEWLETT
a!~ PACKARD

Hewlett-Packard Company
1000 N.E. Circle Blvd., Corvallis, OR 97330

I

Notice
The information contained in this document is subject to change without
notice.

HEWLETT-PACKARD MAKES NO WARRANTY OF ANY KIND WITH
REGARD TO THIS MANUAL, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE. Hewlett-Packard shall not be liable for
errors contained herein or direct, indirect, special, incidental or consequential
damages in connection with the furnishing, performance, or use of this
material.

warranty
A copy of the specific warranty terms applicable to your Hewlett-Packard
product and replacement parts can be obtained from your local Sales and
Service Office.

The X Window System is a registered trademark of Massachusetts Institute of
Technology.

UNIX is a registered trademark of AT&T in the USA and other countries.

© 1988 Hewlett-Packard

/

fold --

MANUAL COMMENT CARD

HP Part Number 98594-90040 E1288

Your comments and suggestions help us determine how well we meet your needs.

Using the X Window System

The man';lal is well organized.

It is easy to find information in the manual.

The manual explains features well.

The manual contains enough examples.

The examples are appropriate for my needs.

The manual covers enough topics.

Overall, the manual meets my expectations.

You have used this product:

Less than 1 week Less than 1 year

Less than 1 month 1 to 2 years

Agree

0
0
0
0
0
0
0

Disagree

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

More than 2 years

I

Please write additional comments, particularly if you disagree with a statement
above. Use additional pages if you wish. The more specific your comments, the
more useful they are to us.

Comments: __ ___

Please Tape Here

Please print or type your name and address.
Name: __ __

Company: __ __

Add~ss: __ ___

City, State, Zip: __ _

Telephone: __ _

Additional Comments: ____________________________________ _

Using the X Window System
HP Part Number 98594-90040
E1288

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 38 CORVALLIS, OR

POSTAGE WILL BE PAID BY ADDRESSEE

HEWLETT-PACKARD COMPANY
CWO PRODUCT MARKETING
1000 NE CIRCLE BLVD
CORVALLIS OR 97330-9988

11.1 •• 1 ••• 1 •• 11 ••• 11.11 ••• 1.1 •• 1.1 •• 1 •• 1.1 •• 1 •• 1 •• 11

NO POSTAGE
NECESSARY

IF MAILED
IN THE

UNITED STATES

/

)

Printing History
The manual printing date and part number indicate its current edition. The
printing date will change when a new edition is printed. Minor changes may be
made at reprint without changing the printing date. The manual part number
will change when extensive changes are made.

Manual updates may be issued between editions to correct errors or document
product changes. To ensure that you receive these updates or new editions, you
should subscribe to the appropriate product support service. See your HP sales
representative for details.

December 1988 ... Edition 2

iii

o

o

()

Contents

1. How to Improve Your X Life
How This Manual Is Organized . 1-1
Conventions 1-3
Running HP-UX: Some Tips . . 1-4

What Is HP-UX and the X Window System? 1-4
Why Background Processing Is Important . . 1-5
Case Sensitivity and Other Typographical Tips 1-5
Working with HP-UX Manuals 1-6
Logging In to HP-UX 1-6
For More Information 1-6

Where to Go Next . . 1-8

2. Understanding Window Systems
What Is the X Window System? 2-1

XlI Is Based on the Server-Client Interaction Model 2-2
Multi-Tasking Makes XlI a Powerful Tool. 2-3
X Allows Both Local and Remote Access 2-3
The X Window System Allows Multi-Vendor Networking 2-4

The Parts of a Typical X Window System 2-4
The Computer Hardware System 2-5

The SPU Does the Computing 2-5
The Hard Disk Stores Data . 2-5
The Keyboard Enters Text 2-5
The Mouse Points and Selects 2-6
The Screen Displays Output . 2-6
The LAN Connects to the Network 2-6
Other Pointing Devices 2- 7

The X Server Controls Communication 2- 7
The Window Manager Controls Your Windows 2-7

Contents-1

The System and Root Menus 2-7
Icons 2-8
Window Frame Decoration 2-9

Application Programs Run in Your X Environment 2-10
Window-Smart Programs Are Called Clients 2-10
Terminal-Based Programs Must Be Fooled. . . 2-10

The Distributed Computing Environment 2-12
Workstations Provide Local and Remote Processing . 2-13
Application Servers Handle Process-Intensive Applications 2-14
File Servers Supply Data Storage 2-14
Print Servers Control the Printers 2-15
Graphics Station for Specialized Graphics Applications 2-16
Multi-Vendor Communications 2-16

Where to Go Next 2-17

3. U sing the X Window System
Starting the X Window System 3-1

Command-Line Options for xUstart 3-2
Client Options 3-2
Server options 3-2
Examples 3-3

Starting X on a Multi-Seat System 3-3
Starting Seat 0 3-3
Starting Seat 1 3-3

What to Expect When X Starts 3-4
The Server Starts the Root Window 3-4
A Terminal Window Appears on the Root Window 3-5

What to Do If XU Doesn't Start . 3-7
Working With Windows 3-8

Which Mouse Button Does What. . . . 3-8
The Anatomy of an hpwm Window Frame 3-9
Displaying and Selecting from the System Menu 3-10
Moving a Window around the Screen 3-12
Changing the Size of a Window 3-13
Raising a Window to the Top of the Window Stack 3-15
Iconifying a Window 3-17
Turning an Icon Back into a Window 3-19
More Work with Icons 3-19

Contents-2

Displaying and Selecting from an Icon's Menu 3-19
Moving Icons around the Screen 3-20

Displaying and Selecting from the Root Menu 3-20
Exiting From the X Window System 3-22

Stopping Application Programs 3-23
Following the Program's Normal Exit Procedure 3-23

Stopping the Window System 3-23
What Next 3-23

4. Running from the Command Line
Meeting the X11 Clients. . . .

What the X11 Clients Do . .
4-2
4-2

Specifying the General Syntax for Command-Line Starts 4-4
Specifying the Syntax. 4-4
Choosing Background Processing 4-5

Starting Programs 4-5
Starting Local Clients. . . 4-5
Starting Local Non-Clients 4-6
Starting Remote Clients . 4-7

Gaining Remote Access 4-7
Starting the Client . . 4-8
Selecting the Display . 4-8
Examples of Starting Remote Clients 4-9

Example 1: Logging In to a Remote Host the Wrong
Way. 4-9

Example 2: Logging In before Running the Client in
Background. 4-9

Example 3: Using a Remote Shell to Start a Client 4-9
Starting Remote Non-Clients 4-10

Starting the Non-Client 4-10
Example 1: Logging In to a Remote Host before

Running the Non-Client 4-10
Example 2: Starting a Window That Starts a Remote

Non-Client 4-11
Example 3: Starting a Remote Non-Client Window 4-11

Stopping Programs . . 4-12
Stopping Clients . . 4-12
Stopping Non-Clients 4-12

Contents-3

Killing Programs That Won't Stop 4-12
Other Ways to Stop a Program 4-13
Killing the Program's Process 4-13

Terminal Emulation Clients 4-14
Emulating an HP Terminal with the 'hpterm' Client 4-14

Syntax 4-14
Using 'hpterm' Terminal Window Softkeys . 4-15
Coloring 'hpterm' Scrollbars 4-15

Emulating a DEC or Tektronix Terminal 4-15
Syntax 4-16
Using 'xterm' Scroll Features 4-16
Using 'xterm' Menus 4-16

Special Terminal Emulator Options 4-16
Making a Login Window 4-16
Cutting and Pasting with the Mouse 4-17
Scrollbars 4-19
Window Titles and Icon Names 4-20

Telling Times with 'xclock' 4-20
Syntax 4-20
Some 'xclock' Options. . 4-21

Marking the Half Hours 4-21
Selecting the Clock Format 4-21
Updating the Time 4-21

Examples 4-21
Viewing System Load with 'xload' 4-22

Syntax and Options 4-22
Some 'xload' Options 4-22

Updating the Load 4-22
Scaling the Histogram Graph 4-23

Example 4-23
Working with Common Client Options 4-23

Color Options 4-24
A vaHable Client Color Options . . 4-24
Using Hexadecimal Color Values on the Command Line 4-25
Examples 4-25

Specifying Size and Location on the Command Line 4-26
The Syntax of the '-geometry' Option 4-26
Placing Clients on the Root Window 4-27

Contents-4

Example 4-27
Specifying the Display on the Command Line 4-28

The Syntax for the '-display' Option . 4-28
Example 4-28

Specifying the Font in the Command Line 4-29
Selecting a Font 4-29
Working with Fonts. 4-30
Example 4-31

Where to Go Next . . . 4-31

5. Customizing Your Local X Environment
Before You Begin Customizing 5-2

How to Begin Customizing 5-2
Making Backup Copies of Your Work 5-2
Making Incremental Changes 5-2
Choosing a Text Editor . . . 5-2

Where to Begin Customizing. . 5-3
Customizing the Colors of Clients 5-4

Copying 'sys.Xdefaults' to '.Xdefaults' 5-4
Changing Client Colors 5-4

Determining Which Elements to Color 5-5
Syntax 5-6
Examples 5-7

What Colors Are Available 5-8
Where to Find the Available Color Names 5-9
Coloring the HP Window Manager Automatically 5-9

Determining Where to Color Your Environment 5-10
Coloring a Single Instance of a Client . . . 5-10
Coloring Windows that Start Automatically 5-10
Coloring Windows that Start from Menus . 5-11
Coloring 'hpterm' Softkeys and Scrollbars . 5-11

Changing the Clients that Start When You Start X 5-12
Copying 'sys.x11start' to '.x11start' . 5-12
Viewing X11 Start Error Messages . 5-13
Starting a Different Window Manager 5-13
Starting Programs Automatically. 5-14

Syntax and Examples 5-14
Starting Clients 5-14

Contents-S

Starting Non-Clients 5-15
Discovering Your Options 5-16

Modifying HP Window Manager Menus 5-18
Copying 'system.hpwmrc' to '.hpwmrc' 5-19
Syntax 5-19
Adding Selections 5-20
Deleting Selections 5-20

Examples . . . 5-21
Viewing the Results of Your Modification 5-21

Starting Xl1 at Login. 5-22
Modifying Login Files. 5-22

Finding Out Which Shell You Use 5-22
Edi ting the File 5-23
Viewing the Result of Your Edit . 5-24

Using the 'reconfig' Program. . . . 5-24
Creating Custom Bitmaps with 'bitmap' 5-24

Syntax and Options 5-24
Using 'bitmap' 5-25
Examples 5-29

Creating an Icon Image 5-29
Creating Root Window Tiles . 5-30
Creating Custom Cursors and Masks 5-31

Customizing the Root Window with 'xsetroot' 5-34
Syntax and Options 5-34
Examples 5-35

Changing the Root Window Tile Pattern 5-35
Changing the Root Window Cursor 5-35

Working with Fonts. 5-36
Choosing Where to Specify a Font 5-36

Making All Instances of a Client Have the Same Font 5-36
Specifying the Font of a Window that Starts

Automatically. 5-37
Specifying the Font of a Window that Starts from a Menu 5-37
Choosing a Font to Specify 5-37
Displaying a Font with 'xfd' 5-38

Syntax and Options 5-39
Using 'xfd' 5-40
Example 5-41

Contents-6

U sing Remote Hosts
Gaining Access to Remote Hosts . . .

Setting Up a Login on a Remote Host
Setting Up an 'XO.hosts ' File
Preparing a '.rhosts' File

Adding and Deleting Hosts with 'xhost'
Syntax and Options
Example

Starting Programs on a Remote Host
Starting a Remote Program when you start Xll
Starting a Remote Program from a Menu
Example

Where To Go Next

6. Managing Windows

5-43
5-43
5-43
5-43
5-44
5-45
5-45
5-46
5-46
5-46
5-47
5-48
5-48

Clients That Help You Manage Windows 6-2
Resetting Environment Variables with 'resize' 6-2

When to Use 'resize' 6-2
Syntax and Options 6-2
Example 6-3

Repainting the Screen with 'refresh' 6-3
When to Use 'xrefresh' 6-3
Syntax and Options 6-4
Example 6-4

Getting Window Information with 'xwininfo' . 6-4
Syntax and Options 6-4
Example 6-6

Managing Windows with 'uwm' 6-6
When to Use 'uwm' . 6-6
Syntax and Options 6- 7
Exam pIe 6- 7

Managing Windows with the HP Window Manager 6- 7
When to Use 'hpwm' 6-7
Syntax and Options 6-8
Example 6-8

Managing the General Appearance of Window Frames 6-8
Coloring Window Frames 6-10

Coloring Individual Frame Elements 6-10

Contents-7

Coloring Frame Elements Automatically. 6-10
Example 6-11

Changing the Tile of Window Frames . . . 6-11
Specifying a Different Font for the Window Manager 6-14
The Syntax for Declaring Resources 6-15

The Syntax for the General Appearance of Elements 6-16
The Syntax for Window Frame Elements of Particular

Objects 6-16
Working with Icons . . . 6-17

Studying Icon Anatomy 6-17
The Label . . . 6-18
The Image. . . . 6-18

Manipulating Icons . 6-19
Operating on Icons 6-20
Starting Clients as Icons 6-20

Controlling Icon Placement 6-21
Changing Screen Placement 6-21
The Syntax for Icon Placement Resources 6-22

Controlling Icon Appearance and Behavior 6-22
Selecting Icon Decoration 6-23
Sizing Icons 6-23
Using Custom Pixmaps 6-24
The Syntax for Resources that Control Icon Appearance 6-25

Coloring Icons by Client Class 6-26
Coloring Icon Elements Individually 6-26
Coloring Icon Elements Automatically 6-27
Changing the Tile of Icon Images. . . 6-27
The Syntax for Icon Coloring Resources 6-28

Managing Window Manager Menus. . . . 6-28
Default Menus 6-29
Modifying Menu Selections and Their Functions 6-30

Menu Syntax 6-30
Modifying Selections 6-30
Modifying Functions 6-31
Changing the Menu Associated with the System Menu

Button . . . 6-34
Making New Menus. 6-35

Using the Mouse 6-37

Contents-8

Default Button Bindings 6-37
Modifying Button Bindings and Their Functions 6-38

Button Binding Syntax 6-38
Modifying Button Bindings 6-39
Making a New Button Binding Set 6-39
Modifying Button Click Timing 6-40

Using the Keyboard 6-40
Default Keyboard Bindings 6-41
Modifying Button Bindings and Their Functions 6-41

Keyboard Binding Syntax 6-42
Modifying Keyboard Bindings . . . 6-42
Making a New Keyboard Binding Set 6-43

Using Windows without Frames 6-43
Adding or Removing Elements . . . 6-44
The Syntax for the 'clientDecoration' and

'transientDecoration' Resources . . 6-44
Controlling Window Size and Placement 6-46

Refining Control with Window Manager Resources 6-46
The Syntax for Size and Position Refinement Resources 6-49

Controlling Resources with Focus Policies 6-50
Valid Focus Policies. 6-50
The Syntax of Focus Policy Resources. 6-51

Matting Clients 6-52
Coloring Individual Matte Elements 6-52
Coloring Matte Elements Automatically 6-53
Changing the Tile of Mattes . . 6-53
The Syntax for Matte Resources 6-54

What's Next. 6-55

1. Customizing Special X Environments
Using Custom Screen Configurations 7-2

The Default Screen Configuration File 7-2
Creating a Custom 'X*screens' File 7-2

Choosing a Screen Mode 7-3
Syntax for 'X*screens' File Lines . . 7-4
Determining the Number of Screen Devices 7-5
Mouse Tracking with Multiple Screen Devices 7-5
Making a Device Driver File 7-5

Contents-9

Examples 7-6
Defining Your Display. 7-7

Specifying a Display 7 -7
Setting DISPLAY with 'x11start ' 7-8

The Difference Between 'local' and 'hostname' 7-8
Finding the DISPLAY Variable 7-8
Resetting the DISPLAY Variable 7-9

Making 'X* .hosts' Files for Special Configurations 7-9
Creating an 'X* .hosts' File 7-9

Using Special Input Devices 7-10
The Default 'XOdevices' File 7-10

How the Server Chooses the Default Keyboard and
Pointer. 7-11

Creating a Custom 'X*devices' File. 7-12
Syntax 7-12

The Syntax for Device Type and Relative Position 7-12
The Syntax for Device File Name. 7-13
The Syntax for Reconfiguring the Path to Device

Files. 7-13
Selecting Values for 'X*devices' Files 7-15
Configuring an Output-Only X Window System 7-16
Examples 7-16

Going Mouseless with the 'X*pointerkeys' File . . 7-18
Configuring 'X*devices ' for Mouseless Operation 7-18
The Default Values for the 'X*pointerkeys' File 7-19
Creating a Custom 'X*pointerkeys' File 7-19

Syntax 7-19
Assigning Mouse Functions to Keyboard Keys 7-20
Examples 7-23
Specifying Pointer Keys . 7-23
Examples 7-25

Customizing Keyboard Input 7-27
Modifying Modifier Key Bindings with 'xmodmap' 7-27

Syntax and Options 7-27
Specifying Key Remapping Expressions 7 -28
Examples 7-29

Printing a Key Map with 'xprkbd' 7-30
Syntax and Options 7-31

Contents-10

Creating a Custom Color Database with 'rgb' 7-31
Changing Your Preferences with 'xset' 7-33

Syntax and Options 7-33
Examples 7-36

Compiling Bitmap Distribution Fonts into Server Natural
Format. 7-37

Syntax and Options 7-37
Example 7-38

Using 'xrdb' to Configure the X Server 7-38
How Applications Get their Attributes 7-39

Where to Find Attributes 7-39
Class Struggle and Individual Identity 7-40
The Order of Precedence Among Attributes 7-41
Naming a Client . 7-41

Syntax and Options 7-42
Examples 7-44

Using National Language Input/Output 7-45
Configuring 'hpterm' Windows for NL I/O . 7-45
Specifying an NL I/O Font 7-45

Where to Go Next 7-46

8. Printing and Screen Dumps
Making and Displaying Screen Dumps 8-1

Making a Screen Dump with 'xwd' . 8-1
Syntax and Options 8-2
Example 1: Selecting a Window with the Pointer 8-2
Example 2: Selecting a Window with a Name 8-3

Displaying a Stored Screen Dump with 'xwud' 8-3
Syntax and Options 8-3
Example 8-4

Printing Screen Dumps 8-4
Printing Screen Dumps with 'xpr' 8-4

Syntax and Options 8-5
Example 8-6

Moving and Resizing the Image on the Paper 8-7
Sizing Options . . . 8- 7
Location Options . . 8-8
Orientation Options 8-8

Contents-11

Printing Multiple Images on One Page 8-8
Printing Color Images. 8-8

Printing Color Images on a PaintJet 8-8
Printing Color Images on a LaserJet 8-9

Where To Go Next 8-9

9. Using Starbase on XU
Using the X*screens File 9-1

Monitor Type 9-2
Operating Modes . . . 9-3

Image and Overlay Planes 9-3
Server Operating Modes . 9-3
Example 1: Image Mode 9-4
Example 2: Overlay Mode 9-5
Example 3: Stacked Mode 9-5
Example 4: Combined Mode 9-5

Double Buffering 9-5
Example 1: Image Mode 9-6
Example 2: Stacked Mode 9-6
Example 3: Combined Mode 9-6

Screen Depth 9-6
Example 1: Image Mode 9-6
Example 2: Combined Mode 9-6

Starting the XlI Server 9-7
Window-Smart and Window-Naive Programs 9-7

Is My Application Window-Smart or Window-Naive? 9-7
Running Window-Smart Programs 9-8
Running Window-naive Programs 9-8
Creating a Window with 'xwcreate' 9-9

When to Use 'xwcreate' 9-9
Syntax and Options 9-9

Destroying a Window with 'xwdestroy' 9-10
When to Use 'xwdestroy' 9-10
Syntax and Options 9-10

Destroying a Window with 'gwindstop' 9-11
When to Use 'gwindstop' . 9-11
Syntax and Options 9-11

Running Starbase in Raw Mode 9-12

Contents-12

U sing Transparent Windows 9-12
Creating a Transparent Window with 'xseethru' 9-12

When to Use 'xseethru' 9-12
Syntax and Options 9-12
Example 9-13

Creating a Transparent Window with 'xsetroot' 9-13
When to Use 'xsetroot' 9-13
Syntax and Options 9-13
Example 9-13

Creating a Transparent Background Color 9-13
Conversion Utilities. 9-14

Converting Starbase Format to 'xwd' Format using
'sb2xwd' 9-14

When to Use 'sb2xwd' 9-14
Syntax and Options 9-14
Example 9-14

Converting 'xwd' Format to StarBase Format using
'xwd2sb' 9-14

When to Use 'xwd2sb' 9-15
Syntax and Options 9-15
Example 9-15

Glossary

Reference Information

Index

Contents-13

o

o

o

1
How to Improve Your X Life

Welcome to graphical user interfaces ("windows") and to the X Window
System version 11 (X11 or X) in particular. In this chapter you'll find out
how this manual is organized and some of the conventions it uses. You'll also
find some tips to make learning about X11 easier and to improve your X life
thereafter.

How This Manual Is Organized
This manual is organized so that the less technical information comes first.

If you're new to computers, new to HP- UX, or have had some window
experience - but never this much control of your screen environment - you'll
want to read this chapter and chapters 2 and 3. You'll also find the glossary
and the index helpful.

Chapter 1

Chapter 2

Chapter 3

Introduces this manual and gives some tips on HP-UX and
networking.

Explains the window environment and sets the stage for
chapter 3.

Provides a beginner-level introduction to using the X Window
System.

If you're a system administrator or programmer - someone familiar with
computers and how they operate - you'll probably be more interested in the
more technical information in the second half of this manual.

Chapter 4 Explains how to run programs from the command line .

How to Improve Your X Life 1·1

Chapter 5

Chapter 6

Chapter 7

Chapter 8

Chapter 9

Reference

Discusses customizing the X environment to suit your personal
needs or the needs of the users who use your system.

Offers a detailed explanation of the HP Window Manager.

Provides information about customizing special X
environments.

Discusses printing and screen dumping.

Discusses the use of Starbase graphics.

Contains "man" pages-the definitive description-for current X
clients.

But please, System Administrator, don't just skim the man pages, tweak the
sys . Xdef aul ts and system. hpwmrc files, and then bury this manual on a
bookshelf. Your users, the people who depend upon you for support, could use
this manual to make life a little easier for themselves-and for you. Make it
available to them and encourage them to read it. As they become self-sufficient
within their window environment, your support tasks become easier.

Ultimately, whether you're a new user or an experienced user, the purpose of
this manual is to improve your X life.

1-2 How to Improve Your X Life

Conventions
As you read this manual, notice the following typographical conventions:

Table 1-1. Typographical Conventions.

If you see ... It means ...

computer text This text is displayed by the computer. For example,
login:

is a login prompt displayed by the computer.

italic text A book title, emphasized text, or text that you supply. For
example,

hpterm -fg color

means that you type "hpterm -fg" followed by a color of your
choice.

0 You press the corresponding key on the keyboard. For example,
ICTALI ILeft Shift I IResetl

means you hold down the ICTRLI key, the lLeft Shlftl key, and the

IResetl all at the same time.

[] An optional parameter that can be left off if you don't need that
functionality. For example,

xload [-rv] t

means that you must type "xload" but don't have to type "-rv".

{ } A list containing mutually exclusive optional parameters. For
example,

xset r {~~t}
means that option r can be set to either on or oft, but not both.

bold text The definition of this term follow~. Additionally, the term is defined
in the glossary.

How to Improve Your X Life 1-3

Also, you can use the X Window System with either a two- or a three-button
mouse by observing the following conventions:

Table 1-2. Mouse Buttons and Their Locations.

ICyou see . . . On a 3-button mouse press .. . On a 2-button mouse press ...

Select button The left button. The left button.

Alternate The middle button. Both buttons simultaneously.
button

Menu button The right button. The right button.

Running HP-UX: Some Tips
If you are new to HP-UX and to the X Window System, take heart: You're
not alone. A wide variety of users, many just like yourself, are currently
learning HP-UX and XII. The next several paragraphs provide you with some
information and some tools to facilitate the initial stages of learning.

What Is HP-UX and the X Window System?

HP-UX is Hewlett-Packard's implementation of the UNIX operating system.
The operating system is the software that controls the operation of the
computer system. HP-UX is a multi-user, multi-tasking environment. A
multi-user environment means more than one user can be operating the system
at the same time. A multi-tasking environment means that each of those users
can run more than one program at a time.

The X Window System is a window environment. It turns your screen into a
"root window" or "desktop" on which you can display smaller windows, each
one the equivalent of a full-sized display terminal. Within the Xll environment
you can run multiple tasks, viewing their progress in separate windows.

1-4 How to Improve Your X Life

Why Background Processing Is Important

Your programs can run as either foreground or background processes. In any
Xll terminal widow, you can only run one program at a time as a foreground
process, but you can run as many programs as you like as background
processes. To run a program as a background process, add an ampersand (&)
to the end of the command line that starts the program. The ampersand tells
the system that the program should be run in the background. This leaves the
foreground free for you to issue more commands.

Take, for example, the following command:

xclock &:

This command starts a clock. The &: tells the system to display the clock,
but as a background process, so you can use the foreground to enter more
commands. Without the &:, the clock would still display, but in the foreground.
The window from which you issued the command would ignore everything
else, including your keyboard commands, as long as the clock remained
the foreground process. This could prove inconvenient, even to inveterate
clock -watchers.

If you forget an &:, you will need to stop that program to regain control of the
foreground-a task not always easy to accomplish (see either "Exiting from the
X Window System" in chapter 3 or "Stopping Programs" in chapter 4).

One last note on foreground and background: Don't confuse foreground and
background processing with the fact that you can color the foreground and
background of your windows. The foreground and background that you process
are not the same foreground and background that you color. Foreground
and background processes are activities of the computer; the foreground and
background that you color are graphical elements that display on the screen.

Case Sensitivity and Other Typographical Tips

HP-UX distinguishes between uppercase and lowercase letters. A file named
.xdefaults is not the same file as .Xdefaults. Use uppercase letters where
indicated and only where indicated.

How to Improve Your X Life 1-5

Also, the number "1" (one) looks an awful lot like a lowercase "I" (el) to our
human eyes. The system, however, can readily distinguish the difference and
often seems to do so with a vengeance.

Don't confuse the "0" (zero) with the upper case "0" (oh) for the same reason.

White space (extra spaces or tabs) at the end of a command line in a text
file sometimes alters the meaning of the command. Files such as . rhosts are
especially vulnerable. After modifying a file, check for unwanted white space.

And finally, watch your spelling.

Working with HP-UX Manuals

HP-UX manuals typically have a section devoted to reference information. This
section contains "man" (manual) pages that provide specific information about
a command, function, or program. The man page is the most definitive source
of information. You will find man pages in the reference section at the back of
this manual.

Logging In to HP-UX

Most HP-UX systems require you to log into a system before you gain access to
the resources available on that system. The administrator of the system must
provide you with a login account. When you have a login, you will be able to
log into that system by providing your login name and your personal password.
When you are logged in, you may use the resources available such as the X
Window System.

Note that on some systems the system administrator may have configured your
login process so that you automatically start your X environment.

For More Information

Several beginner's guides come with your computer system.

1-6 How to Improve Your X Life

Table 1-3.

To learn about . .. Look through this guide ... HP Part Number

Using the HP-UX operating A Beginner's Guide to HP- UX 98594-90000
system concepts and commands.

U sing shells to increase A Beginner's Guide to Using 98594-90020
performance. Shells

Editing commands for the vi A Beginner's Guide to Text 98594-90010
editor. Editing

Customizing your own X A Beginner's Guide to the X 98594-90001
Window System environment. Window System

If you are new to the system, taking the time to study these guides will help
clarify questions you may have.

There is also a great deal of information available about the HP-UX operating
system in the HP- UX Reference volumes that accompany the operating system.

Additionally, information about programming in the X Window System
environment is available in the following manuals:

Table 1-4.

To learn about . .. Look through this manual ... HP Part Number

Writing and using widgets in Programming with the HP X 98794-90000
application programs. Widgets and the Xt Intrinsics

Fortran Bindings and Native Programming with the Xrlib User 5959-6160
Language I/O systems. Interface Toolbox

Writing graphics programs for X. Programming with Xlib 98794-90010

Finally, depending on your needs, the following books about the X Window
System might prove useful:

• Introduction to the X Window System by Oliver Jones. Prentice Hall,
Englewood Cliffs, NJ:1989 .

• Xlib Programming Manual for Version 11 by Adrian Nye. O'Reilly and
Associates, Newton, MA:1988.

How to Improve Your X Life 1-7

• Xlib Reference Manualfor Version 11 edited by Adrian Nye. O'Reilly
and Associates, Newton, MA:1988 .

• X Window System User's Guide by Tim O'Reilly, Valerie Quercia, and
Linda Lamb. O'Reilly and Associates, Newton, MA:1988.

Where to Go Next
Now that you've finished these preliminaries, you have a choice. If you feel
comfortable with (or aren't interested in) an explanation of graphical user
interfaces, skip chapter 2 and read chapter 3 on how to use the X Window
System.

If you've had some experience with graphical user interfaces and the X Window
System in particular, you might want to skip all the way to chapters 4 and 5 to
find out how to run XlI clients and customize your XlI environment to your
individual needs.

1-8 How to Improve Your X Life

Understanding Window Systems

This chapter is written for new users. If you're not familiar with HP-UX or
window environments, this chapter's for you. It describes the following key
elements:

• Basic window concepts.

• A typical X Window System environment.

• An example of a distributed computing environment.

This chapter demonstrates the power and the flexibility of the X Window
System.

What Is the X Window System?

2

The X Window System is a graphical user interface, a way of communicating
with your computer using visual images (graphics). You can better understand
the importance of the X Window System and why its possibilities are so
exciting if you compare it to the "traditional" user interface, the command-line
prompt.

In contrast to the austerity of the command-line prompt, the X Window
System offers a visually rich connection to your computer. This connection,
the user interface, is characterized by easily recognizable graphical features:
windows, selection menus, and icons.

XU surrounds your interaction with the computer system in a visual
metaphor more intuitively meaningful-especially to novice users-than
the command-line prompt with its often esoteric commands and obscure
parameters. XU provides you with a friendly, easy-to-use work environment.

Understanding Window Systems 2-1

X11 Is Based on the Server-Client Interaction Model

The X Window System is based on a server-client interaction model.

The server is really what you "start" when you "start XI1." The server
controls all access to input devices (typically a mouse and keyboard) and
all access to output devices (typically a display screen). You can visualize
its position in the scheme of things by thinking of it as standing between the
programs you run on your system and your system's input and display devices.

Display LAN Cllenu Terminal-based
App II cat! ons

Terminal-based
Progrorn

Terminal-based
Progrorn

Figure 2-1. The Server Controls Display Access.

A client is any program written especially to run with the server. Another way
of looking at it is to view the client as "window smart." Clients know about
windows and how to make use of them. All other programs are non-clients,
programs that don't know how to make use of windows.

2-2 Understanding Window Systems

Multi-Tasking Makes X11 a Powerful Tool

Part of the X Window System's power comes from the computer system's
multi-tasking ability. Multi-tasking is the ability to execute several programs
simultaneously. Each program is a separate task (process). The X Window
System brings multi-tasking out of the realm of the power user and into
the hands of the novice user in search of increased efficiency. In your Xll
environment, you run each program in a separate window as a separate process .
Windows may overlap on the screen, but their processes don't interfere with
each other.

For example, you could have the system recalculate a large spreadsheet in one
window while you shift your attention between editing a monthly report in a
second window and answering your electronic mail in a third. Each program
normally has a main window for visual interaction, and each window has its
own input and output.

You focus your attention on a particular window by moving the mouse pointer
into that window and pressing the select button. The window thus pointed to
becomes the active window. While you focus on one window, other windows
continue running unattended or wait for your input.

Multi-tasking is possible in part because of the way the computer system
divides all processes into foreground processes and background processes.
Background processes are the ones that run unattended or wait until they
get your input. You can have as many background processes running in a
window as you like. A foreground process is the process that has the window's
attention at the moment. You can have only one foreground process running in
each window.

The ampersand (&) at the end of a command line controls foreground and
background processing.

X Allows Both Local and Remote Access

Any computing environment allows you local access, the ability to run
a program on the computer in front of which you're sitting. Networked
computing environments also allow you remote access to programs, the ability
to run a program on a computer other than the one at which you're sitting.

Understanding Window Systems 2-3

U sing the X Window System, you can run programs both locally and remotely
at the same time. You also have greater control over where the output displays.
If you wish, you can run a program locally and display the output on the
screen of a remote system; or the opposite, run a program remotely and display
the output in a window on your screen; or run a program remotely and have it
display on yet another remote screen.

The X Window System Allows Multi-Vendor Networking

A final feature of Xll worth mentioning is the X Window System's acceptance
as an industry standard for UNIX operating system network protocol.
Since all X Window System hardware and software vendors communicate
using the X protocol, any program from any vendor can be run remotely
and viewed on your local system. Thus, computer networks composed of
hardware and software from multiple vendors, instead of being a "nightmare
of incompatibility," become powerful resources for specialized applications,
allowing the user to select the best hardware and software for the application
without cumpromising performance for compatibility.

The Parts of a Typical X Window System
Your personal window environment can be relatively simple or rather elaborate.
The details depend on your personal computing needs, the programs you use,
and how you customize three X Window System configuration files. However,
all X Window System environments have the following features in common:

• Computer hardware (a system) on which to run the software.

• An X server program to control communication between the display and
client programs.

• A window manager to control the display's window environment.

• Application programs to provide useful services.

2·4 Understanding Window Systems

The Computer Hardware System

The hardware system consists of several components:

• System Processing Unit (SPU).

• Hard disk.

• Keyboard.

• Mouse.

• Display screen.

• Connection to a Local Area Network (LAN).

The SPU Does the Computing

The System Processing Unit or SPU is the "brains" of the computer. The SPU
contains the logic circuitry, which is driven by the software and performs all the
processing that takes place. The SPU of your system runs the X server that
provides your window environment, takes care of foreground and background
processing, and controls local and remote accessing of your system's resources.
Using X, you can run programs that are stored on your own hard disk (local
processing) or that are stored on someone else's hard disk using their SPU
(remote processing).

The Hard Disk Stores Data

The hard disk stores programs and data files. No processing takes place on the
hard disk, only storage. Some HP 9000 Series 300 configurations are called
diskless clusters because groups of users share the same hard disk.

The Keyboard Enters Text

The keyboard is an input device, a device used to put information into the
computer. This information could be the text of a letter or the next command
that the computer should execute, depending on whether you type the text into
a file or on the command line.

Although the keyboard is frequently used in conjunction with a mouse, it does
not need to be. You can configure your XU environment so that you can use
the keyboard for both text entry (its usual purpose) and for pointing and

Understanding Window Systems 2·5

selecting (the mouse's usual purpose). For example, this mouseless operation
would be beneficial in any situation where desk space was at a premium.

The Mouse Points and Selects

The keyboard enters characters; the mouse points and selects. Sliding the
mouse on your desktop moves the pointer, the current screen location of
the mouse, on the screen. Using the mouse, you can point to an object on
the screen, for instance a window, and select an action to perform, such
as resizing. Selection is made by pressing the mouse's select button. As
mentioned, however, mouse movements and button presses can be associated
with keyboard key presses for mouseless operation.

The Screen Displays Output

The principal output device for the X Window System environment is the
display. A typical display consists of one physical screen per mouse and
keyboard. However, depending on the specialized nature of the application, a
display may include as many as four physical screens, all using the same mouse
and keyboard.

The screen is the physical CRT (Cathode Ray Tube) that displays what
you type on the keyboard. The screen also shows you the position of the
pointer and windows, and provides you with visible indications of the status of
executing programs.

Conceptually, the screen becomes the root window when you start the X
Window System. The root window contains all the windows, menus, and icons
that compose the visual elements of your Xll environment.

Technically, the screen is known as a bit mapped device because the graphical
elements (windows and icons) that it displays are stored by the computer as
a bitmap, a pattern of bi ts (dots) that can be readily displayed as graphical
images.

The LAN Connects to the Network

The LAN is composed of hardware and software. The hardware part connects
your computer system physically (using a cable) to a network which includes
other computer systems at your site and could encompass other networks

2-6 Understanding Window Systems

at different locations. The LAN enables you to take advantage of remote
processing capabilities of X.

Other Pointing Devices

Although the mouse is the most common pointing device, the X Window
System display server (the program that "runs" X on your system) supports
other HP-HIL (Hewlett-Packard Human Interface Link) pointing devices, for
example a digitizer tablet or track ball. References in this manual to mouse
actions apply also to corresponding actions with other HP-HIL pointing
devices.

The X Server Controls Communication

The server is the program that controls the screen, keyboard, and mouse, and
processes all communication requests. The X server is really what runs when
you "run XIl." The server updates the windows on the screen as a client
generates new information or as you enter information through an input device.
All client programs communicate through the server.

Because the server controls communication with the display screen, it is
sometimes called the display server. Either name is correct.

The Window Manager Controls Your Windows

The window manager is your main means of dynamically controlling the
size, shape, state (icon or normal), and location of the windows on your
screen. Several different window managers exist; the window manager for
the Hewlett-Packard implementation of the X Window System is called
(appropriately enough) the HP Window Manager (hpwm). The HP Window
Manager includes:

• menus

• icons

• window frames

The System and Root Menus

One way that you can control the operation of your window environment is by
choosing an action from a menu. A menu is a small window that contains a list

Understanding Window Systems 2-7

of selections-exactly like a restaurant menu. The HP Window Manager has
two menus:

System menu

Root window
menu

One for each window on your screen. A system menu
controls the particular window to which it is attached.

The menu for the root window. The root menu controls
actions that are generic and refer to no particular window.

The following figure shows a window with the system menu displayed and the
"move" selection highlighted.

Figure 2-2. The System Menu with "Move"
Selected.

You can configure your window manager to make life easier for yourself. For
example, you can add a selection to the root menu that enables you to log
onto a remote host and run an application automatically. You can also create
submenus of related activities. One popular submenu is a list of remote hosts
to log onto. Chapter 6 of this manual discusses configuring the HP Window
Manager.

Icons

Because your display will often contain several windows, you may find it
convenient to set aside a window you're not currently using without stopping
the processing in that window. You do this by changing the window into an

2-8 Understanding Window Systems

icon, a small, easily identifiable graphic symbol that represents the window but
takes little space on the screen.

The contents of an iconified window aren't visible. But you can quickly convert
the icon to its original window representation whenever you wish to use the
window again. Any processing that was occurring in the window as it was
iconified continues as long as it doesn't require additional input from you. You
won't be able to see output or enter input until you change the icon back into a
window.

The figure below shows several icons, each representing a different type of
client.

Figure 2-3. Icons Replace Windows Giving You More Room.

Window Frame Decoration

The HP Window Manager, unlike UWl (the other window manager included
with the X Window System) provides a functional frame around each window

Understanding Window Systems 2-9

in the root window. The frame, sometimes called window decoration, consists
of graphical control devices that enable you to display the window's system
menu, maximize or iconify the window, or move and resize the window.

Application Programs Run in Your X Environment

An application program is a computer program that performs some useful
function like word processing or data base management. The applications you
run while you use X may be stored on the hard disk attached to your system
or on the hard disk of a remote system. The Xll server communicates with
application programs just as easily over the LAN as locally.

You can sort all application programs into two categories:

• Those that know about windows and incorporate windowing behavior
into their own behavior (client programs) .

• Those that don't know about windows and think that they must always
be running on a separate terminal (non-client programs).

Window-Smart Programs Are Called Clients

A client is a program written especially for the X Window System. Clients are
referred to as window-based programs. The window manager that controls the
windows on your screen is a client. The windows themselves are clients. Clients
are "smart" enough to create their own windows if they need to display output.
Note, however, that not all clients create windows. Some clients (like xvininfo
and xmodmap) are content to use an existing terminal emulation window in
which to display their output.

Terminal-Based Programs Must Be Fooled

Non-client programs know nothing about windows. They are designed to
run alone on display screens or "terminals" and are, therefore, referred to
as terminal-based programs. Terminal-based programs must have windows
created for them so that they can run in a window environment. They are thus
"fooled" into operating in the window environment.

You can operate terminal-based programs in the X Window System by using
a client program called a terminal emulator to provide a window. You start
the non-client program in that window. The terminal emulator "fools" the

2-10 Understanding Window Systems

non-client into thinking that it is running on a "real" terminal instead of a
window imitating a terminal. This has led some people to describe non-client
programs as "window dumb."

The X Window System provides two terminal-emulator clients: hpterm and
xterm. When either is run, it creates a window to emulate a display terminal.
A terminal-based program runs happily in this window, acting exactly as if
running on a terminal.

The following diagram shows the components of a system running X .

.... , ,
,'" ... ,

\.."t,)

D

Figure 2-4. Typical Components of an X Window System.

Understanding Window Systems 2-11

The Distributed Computing Environment
A Distributed Computing Environment (DCE) is a group of computer systems
joined together into a network. Resources resident on one system are available
to all systems. As mentioned earlier, a system that uses XU is usually
connected to a LAN. The LAN provides the link to programs that are resident
on physically separate (remote) systems.

XU really doesn't care where a program is-it simply communicates to the
program via the LAN connection. This structure permits you to operate S300
and S800 systems at a strictly local level with all client programs residing
locally, or at a networked level with some programs running at the local level
while others run on remote systems.

In addition, another system on the LAN can run programs that reside on your
S300 or S800 and direct the visual output to any screen on the network.

A distributed computing environment, in other words, enables the best possible
allocation of processing resources within the existing hardware environment .

The figure below shows a distributed computing environment that provides a
number of resources to users who are connected to the LAN and running X.

2-12 Understanding Window Systems

Display
I

HP 330
Workstation

HP 350
Workstat I on HP

HP 848
Graphics
Station

HP 850
App 11 cat Ion

Server

HP 850
File

Server

HP 835
Print
Server

Figure 2-5. A Typical Distributed Computing Environment.

As the figure indicates, if you use a system running Xll and connected to
a LAN, you have a multitude of resources available. The following sections
provide a practical example of how the above environment and the resources
contained therein could be used.

Workstations Provide Local and Remote Processing

Two workstations are pictured in the figure, an HP 9000 Series 330 and an an
HP 9000 Series 350.

Both workstations can use clients that reside either locally, on their own hard
disks, or remotely, on the hard disk of another system, for example the Series
850 application server. The workstations illustrate the capability of a single
system to operate either locally or remotely.

Understanding Window Systems 2-13

Application Servers Handle Process-Intensive Applications

One of the HP 850s shown in the figure is an application server. An
application server is a computer that provides the processing power and
memory necessary to run large, processor-intensive applications.

A typical user of such an application would be Hank who works for a large
oil company. Hank is currently involved in the search for new oil resources in
Alaska. Many variables are considered in the attempt to locate potential oil
fields. Hank uses a simulation program that mathematically manipulates all of
these variables to produce data that indicates the potential for a certain area.
These computations require a tremendous amount of memory, disk space, and
processor time.

With a distributed computing environment, Hank can sit at his desk and use
his personal workstation to log into the HP 850 application server and enter
the necessary data. The actual simulation program and the necessary data
files reside on the HP 850. Hank runs the simulation using the processing
power of the application server. He has the output directed to a window on his
workstation while he is busy performing tasks locally in other windows until
the necessary simulation information is available.

Hank is only one of many employees to take advantage of the processing power
of the application server. Other employees in the same department or even in a
different building can also log in and use the system.

File Servers Supply Data Storage

The other HP 850 shown in the figure is a file server. A file server is a
computer that controls the storage and retrieval of data from hard disks. A file
server means less storage space is required on an individual's local computer. It
also provides a relatively inexpensive and quick backup facility.

Let's say Alex is a writer who is responsible for the content of several chapters
of a large manual. She works at her desk using an HP 330 as a writer's station
and at any given time is working on one of several different projects that total
10 to 15 megabytes of storage on a hard disk. Using the HP 850 file server,
she could store her files on a master disk drive and check out the chapters she
needs to work on. This leaves a backup of the files on the file server. The file

2-14 Understanding Window Systems

server can thus be used to maintain current backups by transferring updated
files to it on a regular basis.

At any given time, Alex will only have a few chapters stored on her own disk
drive; those chapters she is currently working on. If she finds that she needs a
copy of another chapter that is not currently residing on her disk, she requires
only moments to transfer a copy from the main disk.

Another use for a file server is to serve as a hub for diskless workstations.
You can have a cluster of several diskless workstations connected to a single
hub with a large disk. Each workstation, or node, needs a certain amount
of individual space on the disk, but all nodes can share the system and
application software, eliminating the need for local system storage and thus
saving a considerable amount in overall storage requirements.

Print Servers Control the Printers

The HP 835 shown in the figure has several printers attached to it and acts as
a print server, a computer that controls spooling and other printing operations.
Page formatters and page composition programs reside on the print server and
are invoked with the proper commands. When you need a document printed
using a particular type of printer, you send it to the print server with the
appropriate instructions, and the task is accomplished. This permits a large
number of individuals from anywhere in the distributed computing environment
to efficiently share printer resources.

If Alex needed a copy of a chapter quickly printed for an immediate review,
all she would need to do is to instruct the 835 to print the chapter using the
fast dot-matrix printer. If she needed a letter-quality copy of a document
containing elaborate graphics, she would route the letter to the laser printer.
For those manuals that need to be typeset, the print server can also drive a
typesetter. Alex would again simply direct the appropriate command to the
print server to cause the document to be run through the typesetter.

Understanding Window Systems 2·15

Graphics Station for Specialized Graphics Applications

Certain applications are designed to take advantage of graphics accelerators
in order to speed up the presentation of graphics on the screen. Generally,
engineers working with CAD (Computer-Aided Design) applications are the
major users of graphics accelerators. Hewlett-Packard supports graphics
acceleration with a graphics library called Starbase. The HP 840 shown in the
figure has two high-performance graphics subsystems attached to it. Each
subsystem is powerful enough to run the X Window System in the display's
overlay planes while running a Starbase application in the display's image
planes.

Anne is an engineer who is working on a project involving the design of a new,
high-speed sailboat hull. The CAD program she uses is very expensive and
requires graphics acceleration to accomplish sophisticated shading. When Anne
wants to work with the program, she can move to the graphics station where
she can use multiple windows provided by X with the CAD program running in
one of the windows.

The graphics station permits a larger number of people to share the expensive
hard ware and software resources required by a CAD / CAM station. Tasks
that engineers may have that do not require graphics acceleration can be
accomplished at their desks on a more typical workstation.

Multi-Vendor Communications

Another advantage of DCE is its ability to allow computers manufactured
by different vendors, running different operating systems, to communicate
with each other over the LAN. If you are using a computer made by
Hewlett-Packard, you can communicate over the LAN directly with a computer
made by Sun, DEC, IBM, or a variety of other manufacturers supporting X, as
long as each is running the X Window System and connected to a LAN using
the Ethernet protocol standard.

The diagram below shows a multi-vendor environment of computers running
different operating systems. Communication over the LAN is a simple task as
long as they are all running XII.

2-16 Understanding Window Systems

HP 9131313 HP 9131313
58513 APOLLO 53513 5UN

LAN I I I
I

I
I I

DEC HP 9131313 IBM
53513

Figure 2-6. Multi-Vendor Communication Is A Benefit of X11 DCE.

Where to Go Next
You should continue to chapter 3 to learn how to use your X Window System.
Chapter 4 contains information about running client programs from the
command line, while the chapters following contain information on customizing
your window system environment.

Understanding Window Systems 2-17

o

()

o

3
Using the X Window System

This chapter covers the basics of window operation. It shows you how to use
X once it's been installed on your system. You'll learn how to perform the
following tasks:

• Start the X Window System.

• Create, move, resize, and "shuffle" windows.

• Iconify a window and normalize an icon.

• Display menus and make selections.

• Stop programs and correctly exit your X environment.

Starting the X Window System
Before you start the X Window System, you must be logged in to your
computer system. Log in using your normal procedure.

The X Window System can't run on a system that's
already running HP Windows/9000. If you are running HP
Windows/9000, you must exit from that window system before
you start X. (HP Windows/9000 can be installed on your
system; it just can't be running when you start X.)

Your system may be configured to start Xll as part of the login procedure. If
so, skip the rest of this section and the next and start reading at "What to
Expect When X Starts."

Using the X Window System 3·1

If your system is not configured to start XU at login, log into the system in
the usual way and type the following command at the command prompt:

xllstart IReturnl
You should start the X Window System just once. With XU running, you
should not execute the xllstart command again. Starting XU and then
starting it again while it is still running may cause undesirable results.

Note, however, that you can restart the window manager and refresh the screen
at any time.

Command-Line Options for x11start

In most cases, you will find it convenient to establish environment options in
configuration files in your home directory. However, if you don't start XU
automatically at login, you can include environment options on the command
line after the xllstart command. The syntax for this is:

[
/server [- options]]

xllstart [-clientoptions] --
:display [- options]

Client Options

Client options pass from the xllstart command line to all clients in the
. xllstart file that have a $CQ parameter. The options replace the parameter.
This method is most often used to specify a display other than the usual one
on which to display the client. You can, however, use the command-line option
to specify a non-default parameter, such as a different background color, for
clients.

Server options

Server options are preceded with a double hyphen (--). If the option
following the double hyphen begins with a slash U), it starts a server other
than the default server. If the option begins with a colon followed by a
digit (:#), it specifies the display number (0 is the default display number).
Additional options specified after the server or display refer to the specified
server or display. See the Xserver page in the reference section for more
information on server options.

3-2 Using the X Window System

Examples

The examples below illustrate starting the X Window System in different ways.

xllstart
xllstart -bg Blue
x11start /X2

The usual way to start X.
Gives clients followed by $0 a blue background.
Starts server X2 rather than the default server.

Starting X on a Multi-Seat System

A multi-seat system (a system with more than one display, keyboard, and
mouse) requires modification of two Xll configuration files, to allow for more
than one display seat. These files, X*screens and X*devices (where * is the
number of the display), are located in /usr/lib/Xll. Each seat must have its
own X*screens and X*devices files. If you have a multi-seat system but have
not configured it, see your system installation or configuration manual for more
information. Also see "Defining Your Display" in chapter 7.

Starting Seat 0

To start Xll on seat 0 (display 0) of a multi-seat system, log in as usual and
type:

xllstart IReturnl
Seat 0 uses the /usr/lib/Xll/XOscreens and /usr/lib/Xll/XOdevices files
to configure its output and input devices. These files are supplied with the
system, but you must still match them to your hardware configuration.

Starting Seat 1

To start Xll on seat 1 (display l) of a multi-seat system, log in as usual and
type:

x11start -- : 1 IReturnl
Here the -- signifies starting the default server while the: 1 specifies
sending the output to seat 1. Seat 1 uses the /usr/lib/X11/Xlscreens and
/usr/lib/Xll/Xldevices files to configure its output and input devices. If
your system has a multi-seat configuration, you must create these configuration
files using the XOscreens and XOdevices files as models.

Using the X Window System 3·3

What to Expect When X Starts

No matter how you start the X Window System, from the command line or
automatically from a login file, when X starts, it always executes the same
sequence of steps.

• It looks in your home directory for a .Xdefaults configuration file to
read. If it doesn't find one, it reads /usr/lib/Xll/sys .Xdefaults
instead.

• If necessary, it adds the path to Xll programs (lusr/bin/Xll) to your
PATH statement.

• It looks in your home directory for a .xllstart configuration file
to read. If it doesn't fine one, it reads usr/lib/Xll/sys .xllstart
instead.

• It starts xini t, which starts the server and any clients specified in the
.xllstart configuration file.

You won't notice any effect from issuing the command until the X display
server starts.

The Server Starts the Root Window

When xllstart starts the server (the program that controls the operation of
your keyboard, mouse, and display), your screen will turn gray. This means
that the screen has now become the root window, the backdrop or "desktop"
on which the windows and icons of your environment appear. Although you
can completely cover the root window with clients, you can never cover a
client with the root window. The root window is always the backdrop of your
window environment; nothing gets behind it.

3-4 Using the X Window System

x

Figure 3-1. The Screen Becomes the Root Window.

In the center of the root window is an x. This is the pointer and marks the
current screen location of the mouse.

A Terminal Window Appears on the Root Window

A short time later a terminal window appears at the top of your display (if
you're using the default. xl1start file). This window is under the control of
a window manager. If you use the mlIll window manager, the window appears
as an unframed rectangle. If you use the HP Window Manager, hpvm, you will
notice that your window has a three-dimensional frame. This frame contains
window manager controls.

Using the X Window System 3-5

I

Figure 3-2. The Default X Environment: 'hpwm' and One
Window.

The window that xllstart creates is an Xll client called hpterm and is called
an hpterm window to distinguish it from other types of window clients. The
window contains a command-line prompt and behaves exactly like the screen
of a standard HP terminal. You can think of this window as "a terminal in a
window."

Move the mouse. The pointer moves on the screen. When the pointer is in the
root window, it has an x shape. However, when you move the pointer to a
terminal window, the pointer changes to an arrowhead (when on the window
frame) or an I (when in the interior of the window).

With the HP Window Manager, when you press and release the select button
while the pointer is in a terminal window, the window becomes the active
window. When a window is active, its frame changes color. You'll discover that
you can't type in a terminal window unless the window is active.

The active window is the terminal window where what you type on the
keyboard appears. Your input always goes to the active window.

If there is no active window, what you type is lost.

3-6 Using the X Window System

The program running in the active window decides what to do with your typed
input. Frequently the program will use a text cursor to show where your typed
input will be displayed.

What to Do If X11 Doesn't Start

Table 3-1. Possible X Window System Start Problems.

If this happens ... You should do this ...

The message command not found appears. Check your spelling and reenter the start
command.

The root window displays for a moment, Press the IReturnl key to bring back your
but then goes blank. original command-line prompt and see

below.

The root window displays, but no pointer Press ICTRL! ILeft ShiftllResetl all at the
appears. same time. This brings your original

command-line prompt back. See below.

The root window and pointer display, but Press and hold the menu button. If
no terminal window appears. a menu appears, open a window.

Otherwise, press ICTRLllShiftllResetl and try
restarting X, then see below.

The terminal window displays, but Move the pointer into the window and
what you type doesn't appear after the click (press and release) the select button,
window's command prompt. then type.

If you encounter problems starting XlI for the first time, check the following
areas:

• Check the XlI start log in your home directory for clues by typing more
.xllstartlog IReturnl.

• Check your system's PATH statement by typing anv IReturnl. The PATH

should begin with /usr/bin/Xll:.

• Check that the DISPLAY environment variable (type anv IReturn!) is set
either to local: 0.0 or host:O.O where host is the hostname of your
system.

Using the X Window System 3-7

• Check the .xllstart file in your home directory for errors. Compare it
with the /usr/lib/Xll/sys .xllstart file.

If none of the above seems to help , or you're not sure how to proceed, see your
system administrator.

Working With Windows
In the typical X environment, you have two tools to control window operations:

• The mouse.

• The window manager.

For most window operations, you'll use a combination of the window manager
and mouse. (If you lack the space on your desktop, or feel more comfortable
with a keyboard, you can configure your keyboard to take the place of the
mouse.)

Which Mouse Button Does What

The X Window System works with either a two-button mouse or a
three-button mouse. If you have a two-button mouse, you can emulate a
three-button mouse. The following table explains which button is which.

Table 3-2. Which Mouse Button Is Which.

To press this .. . On a 3-button mouse press .. . On a 2-button mouse press . . .

Select Button the left button the left button

Alternate the middle button both buttons
Button

Menu Button the right button the right button

Besides using the mouse to point with, you use the mouse buttons to select an
operation to be performed on the object pointed to. Buttons have the following
actions associated with them:

3-8 Using the X Window System

Press

Click

Double-click

Drag

To hold down a button.

To press and release a button without moving the pointer.

To click a button twice in rapid succession.

To press and hold down a button while moving the pointer.

The Anatomy of an hpwm Window Frame

The HP Window Manager surrounds each window on the root window
with a functional frame. Positioning the pointer on a part of the frame and
performing a mouse button action will execute the function of that part of the
frame.

mize

Cursor

Promp

---I

Figure 3-3. The HP Window Manager Surrounds a Window with a Frame.

The parts of the hpwm window manager, their functions, and the required
mouse operations are listed in the following table.

Using the X Window System 3-9

Table 3-3. Window Frame Parts and What They Do.

Frame Part Function Mouse Action

Title bar. Move a window. Press and drag the select button.

System menu Display a system menu. Press and drag the select button.
button.

Minimize Iconify a window. Press the select button.
button.

Maximize Expand window to maximum Press the select button.
button. Size.

Corner pieces. Stretch or shrink a window Press and drag the select button.
diagonally (in two directions).

Frame sides. Stretch or shrink a window Press and drag the select button.
horizontally.

Frame top and Stretch or shrink a window Press and drag the select button .
bottom. vertically.

Displaying and Selecting from the System Menu

Every window has a system menu. T he system menu button of a window is
in the upper left corner of the window frame next to the title bar. You can
display the system menu at any time by pressing the select button with the
mouse pointer on the system menu button.

3·10 Using the X Window System

Figure 3-4. Every Window Has a System Menu.

To display a window's system menu and make a selection, do the following:

1. Position the pointer on the system menu button.

2. Press and hold down the select button.

3. Drag the pointer down the menu to the selection you want to choose.

4. When the selection highlights, release the select button.

5. (Move and Size only.) Move the pointer to the desired location or until
the desired size is achieved, then click the select button to end the
operation.

If you change your mind and don't want to make a selection, move the pointer
off the menu area before you release the select button.

You can also display the system menu by pressing ILeft ShlftllEscl. To make a

choice using this method, use the ~ and ~ keys to highlight a selection, then

press IReturnl. If you don't want to make a selection, press ILeft ShlftllEscl again.

The table below describes the system menu selections.

Using the X Window System 3·11

Table 3-4. The System Menu Selections.

To do tills ... Select ...

Restore a window from an icon or after maximizing. Restore

Change the location of a window. Move

Change the width and height of a window. Size

Shrink a window to its icon (graphic representation). Minimize

Enlarge a window to cover the entire root window. Maximize

Send a window to the back or bottom of the window stack, the Lower
position closest to the root window.

Immediately stop the window and make it disappear. Close

The rest of this chapter explains how you can use the mouse and the window
manager to control the windows in your environment.

Moving a Window around the Screen

You can move any window (except the root window) by doing the following:

1. Position the mouse pointer in the title bar.

2. Grab the title bar by pressing and holding down the select button.

3. Drag the pointer. An outline of the window shows you the window's
new location.

4. Position the outline and release the select button to relocate the
window.

3·12 Using the X Window System

+

.zmp

Figure 3-5. An Outline Shows the Window's Location.

You will notice that, along with the window outline, a small location box
displays at the center of the screen. The numbers in this box are the column
and row position of the upper left corner of the actual window (the area inside
the window frame). The measurement is in pixels. Pixels (short for picture
elements) are tiny dots, arranged in rows and columns on the screen, that make
up the images that display.

As mentioned in the previous section, you can also move a window by choosing
the "Move" selection from the system menu.

Changing the Size of a Window

To change the size of a window, grab the window's frame with the pointer,
drag the frame to the desired size, and then release the frame.

Where you grab the frame determines how the window gets resized. If you grab
the side of the frame, the window stretches or shrinks horizontally. If you grab
the top or bottom of the frame, the window stretches or shrinks vertically. If
you grab the frame by one of the corner pieces, you can expand or contract the
size of the window in two directions at once.

Using the X Window System 3-13

Table 3-5. Where to Grab a Window Frame.

If you want to stretch
or shrink the window ... Position the pointer on the . . .

vertically from the ...

top top of the frame, above the title bar

bottom bottom of the frame

horizontally from the . . .

right right side of the frame

left left side of the frame

diagonally from the ...

bottom left corner frame's lower left corner

top left frame's upper left corner

top right frame's upper right corner

bottom left frame's lower right corner

The pointer changes shape when you're positioned correctly for the grab.

Follow these steps to grab and resize the window:

1. Position the mouse pointer on a part of the window frame.

2. Press and hold the select button.

3. Drag the mouse pointer. An elastic outline represents the new window
SIze.

4. Release the select button when the elastic outline is the correct size.

3-14 Using the X Window System

I

; 111•

Figure 3-6. An Elastic Outline Shows the Window Size.

Although you change a window's size and shape during a resize operation, you
do not change its position. The section of the frame opposite where you grab
always remains in the same location.

As mentioned earlier, you can also resize a window by choosing the "Size"
selection from the window's system menu. If you choose the "Size" selection,
you must cross the window frame's border with the pointer before the elastic
outline appears.

RaiSing a Window to the Top of the Window Stack

As you open more and more windows during a work session, your screen will
become cluttered as some windows become obscured under other windows. The
windows appear "stacked" on top of one another.

Using the X Window System 3-15

Figure 3-7. Windows Become Obscured by Other Windows.

To raise a window to the top of the stack (front of the screen), position the
pointer on any visible piece of the obscured window's frame and click the select
button. This also makes the window the active window.

3-16 Using the X Window System

Figure 3-8. A Window Is Unobscured by Raising It.

An alternative in some situations is to lower the window on top of the stack by
choosing the "Lower" selection from that window's system menu.

Iconifying a Window

Sometimes raising a window isn't enough to solve the problem of a cluttered
root window. You can save space and bring order to your workspace by
reducing inactive windows to icons-small, easily-recognizable graphic images
that represent full-sized windows. Later, as you need them, you can change the
icons back into full-sized windows.

1'··:::l ·· lfj~fi"·~fti'~fr·: · · ·i .. ;:Ji::: .. i

Figure 3-9. Pressing the Minimize Button Iconifies a Window.

Using the X Window System 3-17

Changing a window into an icon is known as iconifying or minimizing the
window. To iconify a window:

1. Move the pointer to the minimize button located in the upper right
corner of the window frame between the title bar and the Maximize
button.

2. Press and release the select button.

Immediately after you release the select button, the window is iconified.
Successive icons are placed from left to right in a row along the bottom of the
root window using a grid pattern. This placement is by default and can be
changed if your needs require it.

Figure 3-10. Default Icon Placement Is along the Screen's Bottom.

You can also change a window into an icon by choosing the "Minimize"
selection of the system menu as discussed earlier under the system menu.

3-18 Using the X Window System

Turning an Icon Back into a Window

When you have room on the root window, or simply want to check the progress
of an application running in an iconified window, you can turn the icon back
into a window. Changing an icon into a window is called normalizing or
restoring.

1. Move the pointer to the icon.

2. Double-click the select button (press and release it twice in rapid
succession).

After you double-click on the icon, the window will reappear located at its
previous (pre-iconified) position.

More Work with Icons

Although you can't enter information into an icon, any program running in a
window as it is iconified continues uninterrupted until it either completes or
pauses to await input from you.

Icons allow you a way to start an application in a window and then collapse
the window into a tiny symbol over in the corner of your screen. There the
program quietly does its work without cluttering up your workspace.

Displaying and Selecting from an Icon's Menu

Although an icon doesn't have a frame like a window, it does have a system
menu that gives you the standard control options with the exception of "Size"
and "Minimize," which appear on the menu but don't function with iconified
windows.

To display an icon's system menu and make a selection:

1. Move the mouse pointer over the icon.

2. Press and hold down IShlftl, and press IEscl to display the menu.

3. Use the ~ and [!] arrow keys to highlight t he proper selection.

4. Press IReturnl to make your selection.

Using the X Window System 3·1 9

To make no selection, press and hold down IShlftl, and press IEsel. The menu will
disappear.

Moving Icons around the Screen

Although icons appear by default in a row along the bottom of the screen, you
can move them anywhere on the root window.

To move an icon:

1. Move the mouse pointer onto the icon.

2. Press and hold the select button.

3. Drag the pointer to a new location. An outline of the icon shows the
current location.

4. Release the select button.

Displaying and Selecting from the Root Menu

The root window has its own menu called (not surprisingly) the root menu.
You can display the root menu any time the mouse pointer is on the root
window. When the pointer is in the root window, remember, it. has an x
shape.

To display and select from the root menu:

1. Position the pointer anywhere in the root window.

2. Press and hold the menu button to display the menu.

3. Drag the pointer down the menu until you have highlighted the desired
selection.

4. Release the menu button.

To make no selection, move the pointer off the menu before you release the
menu button.

3-20 Using the X Window System

Figure 3-11. The Root Menu Provides Screen-Wide Func­
tions.

The default selections of the root menu provide you with screen-wide functions
not appropriate for an individual window's system menu.

Using the X Window System 3-21

Table 3-6. What the Root Menu Default Selections Do.

To do this ... Choose this selection ...

Make a new 80x24 hpterm terminal window near New Window
center screen.

Display an analog clock in the upper right corner of the Start Clock
root window.

Display a histogram measuring system load (displays Start Load
next to the clock).

Bring the most concealed window to the front of the Shuffle Up
window stack .

Lower the least concealed window to the bottom of the Shuffle Down
window stack.

Blank out then redisplay the screen (useful if video Refresh
images become corrupt).

Restart window manager to see recent configuration Restart
changes.

Exiting From the X Window System
Exiting from the X Window System means stopping the Xll display server.
Leaving X places you back at the command prompt you had immediately after
you logged into your system.

Before stopping the X Window System, you must first stop any application
programs you may have running. This ensures that you do not unknowingly
leave any orphaned processes executing. It also ensures that all open files are
properly closed to prevent loss of data.

Caution

"
Stop all application programs before stopping the window
system. If you don't do this, any open files may not be updated
properly. This could result in the loss of valuable data.

3-22 Using the X Window System

Stopping Application Programs

You can stop a program and remove its window in two ways.

Following the Program's Normal Exit Procedure

The best way to exit a program is to use the program's usual "exit" procedure.
This should always be your preferred method for stopping the program. Many
programs have commands or keystrokes that stop them.

If the program is a client and created its own window, the window is removed
when the client stops. If the program is a non-client in a terminal window, the
window remains, and you can stop it when you stop the display server.

Stopping the Window System

After stopping all application programs, stop the window system by holding
down the ICTALI and left IShlftl keys, and then pressing the IResetl key. This stops
the display server, and with it the window system.

What Next
Now that you've experienced the X Window System and learned how to control
your terminal window, you're ready to use X as your working environment.

Chapter 4 contains information about the viewable clients supplied with
the X Window System and how to run them from the command-line of a
window. Chapter 5 describes how you can incorporate these clients into your
environment.

Successive chapters supply increasingly more detailed information about the
HP Window Manager and other "non-viewable" clients.

Using the X Window System 3·23

o

o

4
Running from the Command Line

You can divide the programs you run in your X environment into two groups:

clients Programs written specifically to take advantage of the
windowing capability of the X Window System. Clients are the
tools you use to work in your X environment.

non-clients Programs written for terminals, not window systems. You
can run a non-client in the X Window System by creating a
terminal emulation window in which to run the non-client.

This manual uses clients to mean "window-smart" applications, non-clients to
mean "terminal-based" applications, and "programs" to refer to both clients
and non-clients.

You will probably start the programs that you use frequently either
automatically, as part of your X environment, or by choosing them from a
menu. However, you can start any client from a command-line prompt.

This chapter discusses the following topics:

• Xll clients and what they do.

• Command-line syntax.

• Starting programs from the command line.

• Stopping programs.

• The hpterm terminal emulation client.

• The xterm terminal emulation client.

• The xclock client.

• The xload client.

• Working with common client options.

Running from the Command Line 4·1

• Troubleshooting command-line programs.

Meeting the X 11 Clients
This chapter discusses four clients. Other clients are discussed in the following
chapters as the functions they control are discussed. But to give you an idea of
the tools that are available in the X environment , this section gives you a brief
overview of Xll clients and client options.

What the X11 Clients Do

The following tables group the Xll clients (somewhat artificially) into
functional categories and give you a brief idea of what the clients do:

Table 4-1. X11 Clients That Initialize and Configure.

To do tIlls . . . Use this client . . .

Initialize the X Window System and start the server . xinit

Provide a display with the X communication protocol. xserver

Start xinit, X, and X clients. x11start

Alter the modifier-key mappings of a keyboard. xmodmap

Adjust display preference options. xset

Initialize a new colormap for an X environment. xinitcolormap

Create a color database for X. rgb

Add a new remote host to your system. xhost

Load a window manager's resource configuration into the xrdb
server.

Compile a BDF-formatted font into an X server format. xfc

4·2 Running from the Command Line

Table 4-2. X11 Clients That Control Window Management.

To do this ... Use this client ...

Resize the contents of a window. resize

Repaint the display screen. xrefresh

Find out information about windows. xwininfo

Provide window manager services to your environment. uwm

Provide window manager services to your environment. hpwm

Table 4-3. X11 Clients That Control Graphics Functions.

To do tIus ... Use this client ...

Open a window into a graphics workstation overlay plane. xseethru

Make a screen dump (bitmap). xwd

Translate an xwd bitmap to Starbase format. xwd2sb

Translate a Starbase bitmap to xwd format. sb2xwd

Print a screen dump on a PCL-format printer. xpr

Stop multiple Star base X windows. gwindstop

Create a new X window for Starbase. xwcreate

Destroy a Starbase X window. xwdestroy

Display a previously made screen dump. xwud

Running from the Command Line 4-3

Table 4-4. X11 Clients That Provide Viewable Services.

To do this .. . Use this client . . .

Make a window that emulates an HP terminal. hpterm

Make a window that emulates a DEC or Tektronix terminal. xterm

Display a clock telling the system time. xclock

Display a histogram telling the system load. xload

Make a bitmap for a cursor, icon, or root window tile. bitmap

Display the characters of a particular X font. xfd

Set the color and appearance of the root window. xsetroot

If your interest is in running applications in the X environment, you probably
won't ever use some of the clients listed above. If your primary interest is
in programming, graphics, or the more technical aspects of environmental
control, chapters 6 through 8 and the man pages are your definitive source of
information.

Specifying the General Syntax for Command-Line Starts

Starting clients from the command line of a terminal window gives you a way
to dynamically alter the elements that compose your X environment . To start
a client from a command line, you must have XlI running, and you must use
the correct command-line syntax.

Specifying the Syntax

The general syntax for all clients that you start from a command line is the
same:

client [- options] [&] IReturnl
Options enable you to control the appearance and behavior of a client that
you start from a command line. Each client has its own options, but some
clients , such as the viewable clients discussed later in this chapter, use the same
options. The reference section contains the complete list of all client options.

4-4 Running from the Command Line

You specify an option after the client name. The option begins with a hyphen
(-) and includes the option itself and an argument. For example, the following
is a typical command line to start an hpterm window with a black background
and white foreground:

hpterm -bg Black -fg White & IReturnl

Choosing Background Processing

An important element of the command-line syntax is the ampersand (&) which
ends the command line. As mentioned earlier, the & is what tells the system
to start the client as a background process, a process that doesn't require the
total attention of the computer. Background processing enables you to have
more than one client running at the same time and frees your keyboard for
further use.

Although the & is an optional element, and you can choose to run a client as a
foreground process if you desire, you will probably find that in most cases, you
will use background processing.

Starting Programs
You can start a client either locally or remotely. A local client is a program
that is running on your "local" system, the same system that is running your
X server. A remote client is a program that you view from your local display,
but the program actually resides and is running on a system other than yours,
a "remote" system.

Starting Local Clients

You can start a local client from the command line any time after you've
started Xll and have a window displayed which has a command prompt. To
start the client, type the name of that client, followed by any options, then
press IReturnl.
It isn't necessary to specify options to run the client; just typing
the client name and pressing IReturnl will start the client using a list
of option default values. System-wide defaults are contained in the

Running from the Command Line 4-5

/usr/lib/Xll/sys .Xdefaults file. Options that override these system-wide
defaults are contained in the .Xdefaults file in your home directory.
Command-line options, as you might suspect, override both of these default
files.

For example, the following gives you the default clock client: an analog clock
updated every 60 seconds:

xclock t IReturnl

You can, however, override these defaults and start a clock client with a digital
readout in the lower left corner of the screen.

xclock -digital -geometry 160x25+1-1 t IReturnl

Starting Local Non-Clients

A non-client normally relies on a terminal instead of a window for displaying
its output. To start a non-client program in an XU window environment, you
must first create a terminal emulation window, and then run the non-client in
that window.

The following example simply creates an hpterm window. Using the command
prompt in the window, you can operate most HP-UX system commands (the
exception being a command like update which affects the entire system, not
just the X environment).

hpterm t IReturnl

The window opens with its command prompt in the same directory as its
parent window, the window from which it was started.

At any command-line prompt in any X window, you can start a non-client
program simply by typing the start command for that program (usually
the program's name) followed by a IReturnl. For example, you could type the
following at the command-line prompt:

banner windows are great IReturn l

The command prints a banner on the window.

4-6 Running from the Command Line

)

Starting Remote Clients

A remote client is an Xll program running on a computer that is not the same
computer that the X server is running and displaying on. In other words, the
hallmark of a remote client is that the client runs on one computer while the
output displays on another.

You can start a remote client from the command line any time after you've
started the X Window System and have a window with a command prompt.
You can start a client on any remote host to which your system has access. A
remote host is the computer system that runs the remote client.

Gaining Remote Access

To gain access to a remote host, you must meet all of the following criteria:

• Be on a network with other systems. (This manual uses the NS-ARPA
Services commands in all examples.)

• Have the internet address and hostname of the remote host in your
system's letelhosts file.

• Have a valid login on the remote host.

• Have the remote host listed in the I ete/XO. hosts file.

• Have the remote host listed a . rhosts file in your home directory on
your local system. (You may also want to have your local system listed
in a . rhost file on the remote host.)

The first three criteria provide basic network capability to your system. You
must have them to use the network whether or not you use the X Window
System. The last two criteria provide your local X server with the ability to
use the network. The .rhosts file lists the systems that have permission to use
your username and account to access a system without formally logging in.
The XO.hosts file contains a list of all Xll hosts known to your X server. The
"0" signifies that the file is used by display 0 (similarly, display 1 would use an
X1.hosts file).

Running from the Command Line 4-7

Note A . rhost file allows someone to access your login account
without giving a password. Depending on your situation, this
may pose a threat to the security of your system or the network
your system is on. Check with your system administrator and
carefully analyze your seurity needs.

Starting the Client

You have two choices when it comes to running clients on a remote host:

• You can log into the remote host and run a client .

• You can start a client remotely without formally logging in.

In either case, you need to select the display on which you want the output to
appear.

Selecting the Display

Just as you need to select a remote host on which to run a client, so too you
need to select a display on which the client's output appears. Typically this
will be the display attached to your system, but it doesn't have to be.

For example, you could be sitting at your system reviewing lab reports kept on
a (remote) lab system when you get the idea to show the reports to Turner
at another division. You call to make sure Turner is in, then open a window
on Turner's system, display the lab report that interested you, and discuss its
significance with Turner without the delay or trouble of making a physical copy
of the report and mailing it.

To help you in selecting a display, viewable clients have a -display option
that allows you to specify on the command line which system is to receive the
output. The syntax for the option is as follows:

-display host: display. screen

The host specifies the host name of the system where you want the remote
client's output to appear (usually your own system). The display is the number
of the display where the output is to appear (usually 0 on an HP S300 and 0-3
on an S800). The screen is the number of the physical screen were the output
is to appear (usually 0).

4·8 Running from the Command Line

)

Examples of Starting Remote Clients

The following examples illustrate several ways of doing the same thing:
starting an xload client on remote host hpcvfaa and displaying it on the
console of your local system hpcvfbb.

Example 1: Logging In to a Remote Host the Wrong Way. At the
command-line prompt of an existing terminal window, you could type the
following:

rlogin hpcvfaa !Return!

xload -display hpcvfbb:O.O !Return!

Using this command is a mistake in most cases. Note the &: is missing from
the end of the command line. This command would not return a command
prompt to the window until you stopped the xload client. Your window would
effectively be "frozen."

Example 2: Logging In before Running the Client in Background. At the
command-line prompt of an existing window, you could type the following:

rlogin hpcvfa !Return!
xload -display hpcvfb:O.O &: !Return!

Similar to example 1, these two command lines log you in and then start the
xload client, this time as a background process. This leaves your original
window free for use. The display is again to your system's console.

Example 3: Using a Remote Shell to Start a Client. At the command-line
prompt of an existing window, you could type the following:

remsh hpcvfa -n /usr/bin/Xll/xload -display hpcvfb:O.O &: !Return!

Respectively, this command starts a remote shell, on remote host hpcvfa,
redirects remsh input (necessary in this case), starts the client xload, and
directs output to system hpcvfb, display 0, screen 0, as a background process.

Note that you wisely used the full path to the xload client when starting it.
This is a good idea especially in situations where the remote machine might
have two versions of the same client (for example, an X10 and an XU version
of xload).

Running from the Command Line 4-9

The benefit of using a remote shell instead of a remote login is that, with a
remote login, the local system starts two processes (the remote login and the
client), while with a remote shell, the local system starts only one.

Starting Remote Non-Clients

Starting a remote non-client is similar to starting a remote client except that,
before you start the non-client, you must first start a terminal emulation
window in which to run the non-client.

Starting the Non-Client

You can always log into the remote host and start a non-client. Using an
existing window essentially makes that window a "terminal" of the remote
host. Output from the non-client appears in the window. When you exit the
non-client and the remote host, the window "returns" to the local system.

Starting a non-client using a remote shell such as remsh, however, is sometimes
inappropriate. To use a remote shell, you must first create a terminal
emulation window in which to run the non-client. If the non-client executes
too quickly, you may not see the results, since, once the non-client finishes
executing, the emulation window to the remote host closes.

Table 4-5. Choosing a Method of Displaying Remote Processes.

If you want the window to .. . Do this . . .

Remain after you have finished the initial Use an existing window to log in to
remote process. the host before executing the remote

command.

Disappear after you're finished with the Execute the command as an option of
remote process. creating a new window.

Example 1: Logging In to a Remote Host before Running the Non-Client. At
the command-line prompt of an existing window, you could type the following:

rlogin hpcvfa IReturnl

11 IReturnl

If you are familiar with networks, you probably recognize this command. It
simply logs you in to a remote host, hpcvfa, and then uses the HP-UX 11

4-10 Running from the Command Line

command to list the files in your home directory on that host. Remember,
operating system commands, because they are part of HP- UX and not the X
Window System, are non-clients.

Example 2: Starting a Window That Starts a Remote Non-Client

At the command-line prompt of an existing window, you could type the
following and press IReturnl:

hpterm -display hpcvfb:O.O -e remsh hpcvfa -n 11 &

This example starts another hpterm terminal emulation window client. As
the first option of that client (-display), the ouput is directed to your local
display (hpcvfb). As the second option (-e), the hpterm client executes a
remote shell on hpcvfa that connects the window to a remote host (hpcvfa)
and lists the files in your home directory there.

Although, at first glance, this command line appears to do the same thing as
example 1, there is an important difference. When the 11 command of example
2 finishes executing, the window created for it to run in will disappear whether
or not you've had time to view all the files. Therefore, this is a poor command
syntax to use in this situation.

Example 3: Starting a Remote Non-Client Window. At the command-line
prompt of an existing window, you could type the following and press IReturnl:

hpterm -display hpcvfb:O.O -e remsh hpcvfa -n vi report &

This example is the same as example 2 except that the non-client started is
differend. You start vi and open the report file. In this case, the window
stays displayed until you exit vi. You could edit report and exit, closing the
window. Or you could save report and read in another file. As long as you
didn't exit vi, your "remote editing window" would stay displayed.

Running from the Command Line 4-11

Stopping Programs
How you stop a program you've started from a command line depends on
whether the program is a client or non-client.

Stopping Clients

Clients like xload and xclock have no data to save. You stop them by
choosing the "Close" selection from the system menu.

Other clients, like hpterm, xterm, and bitmap, may contain data you want to
save. Save the data before you stop the client. In the case of terminal windows,
a non-client running in the window may actually contain the data. Stop the
non-client in the approved manner before you stop the window. When you
have a command-line prompt in a terminal window, you can stop the window.
In the case of bitmap, use the "Write Output" selection on the sidebar menu to
save the bitmap before you stop the client.

After you have saved any data and exited any non-clients (in the case of
terminal windows), stop the client by choosing the "Close" selection from the
client's system menu. Note that if you started a non-client as an option of
creating a window, when you stop the non-client, the window will stop.

Stopping Non-Clients

Stop all non-clients in the manner approved in the instructions for that
non-client. Generally, a non-client program stops automatically when it finishes
executing or has a "stop" provision.

Killing Programs That Won't Stop

If for some reason (and you will no doubt discover some) you cannot shut down
a program in the normal manner, you should "kill" the program before you
exit the window system. Killing the program means using the HP- UX kill
command to stop the program's execution environment or "process."

4-12 Running from the Command Line

Other Ways to Stop a Program

Before you use the kill command to stop a program's process, try the
following key sequences:

• Press ICTRLI and, while holding it down, press 8.
• Press ICTRLI and, while holding it down, press ~.

• Press §].

Killing the Program's Process

If none of these key sequences stop the program, use the following steps to
kill the program's process:

1. Save any data that needs saving.

2. Find the PID (process ID) for the program by typing the following:

ps -fu username IReturnl
where username is your login name. The ps -fu command lists all
the processes running under your login name. You should be able
to identify the program you want to kill by looking for it under the
"COMMAND" column (the rightmost column in the list). The PID for
the program will be located in the second column from the left.

3. To kill the program, type:

kill -2 pid IReturnl The equivalent of ICTRLI ~.
where pid is the PID number.

4. If this doesn't work (type another ps -fu command), type:

kill -3 pid IReturnl A stronger version of kill.

5. If this still doesn't work, type:

kill -9 pid IReturnl The strongest version of kill.

You can kill several programs at once by including several PIDs separated by
spaces in the command. Just be careful that you have the correct PIDs.

Running from the Command Line 4-13

Terminal Emulation Clients
The X Window System comes with the following two terminal emulation
clients:

hpterm Emulates a TermO terminal.

xterm Emulates DEC VTI02 and Tektronix 4014 terminals.

Emulating an HP Terminal with the 'hpterm' Client

The hpterm terminal emulation window is the default terminal used by your
X Window System and provides you with basic access to your system. The
window's command-line prompt functions exactly like the command-line
prompt of an HP TermO terminal. TermO defines an HP level 0 terminal; it is
a reference standard defining basic terminal features. For more information
about TermO terminals, see TermO Reference in the HP-UX documentation set.

The hpterm window client includes the following features:

• Escape sequences that control terminal operation.

• Eight definable softkeys.

• Full Roman8 character set (ASCII and Roman Extension).

• Two character fonts (base and alternate) .

• Screen editing functions.

If your needs require one or more of these features, see chapter 7, "Customizing
Special X Environments" where they are discussed in detail.

Syntax

The syntax of the hpterm window client is as follows:

hpt erm [- options] [&]

You'll find a list of common viewable-client options in "Working with Common
Client Options" later in this chapter. For a complete list of hpterm options, see
the hpterm pages in the Reference section.

4-14 Running from the Command Line

Using 'hpterm' Terminal Window Softkeys

The hpterm client soft keys work exactly like an HP TermO terminal's softkeys.
To display hpterm softkeys, position the pointer in an hpterm window and
press the IMenul key. Clicking on a soft key selects that function or setting.

Pressing the IMenul key again turns off the softkey display.

Additionally, you can color the following elements of hpterm softkeys:

• Background.

• Foreground.

• Top shadow.

• Bottom shadow.

• Top shadow tile.

• Bottom shadow tile.

You can automate the coloring process by having the makeColors resource
automatically select element colors based on a color you specify for the soft key
background.

Coloring hpterm softkeys is similar to coloring other clients and to coloring the
HP Window Manager. You'll find more information about coloring in chapters
5 and 6.

Coloring 'hpterm' Scrollbars

The hpterm client also has an option for displaying scrollbars. Scrollbars
enable you to scroll the contents of a window, for example, a textfile you are
editing. You can specify the color and the width for hpterm scrollbars. This is
also covered in chapter 5.

Emulating a DEC or Tektronix Terminal

The xterm client is a terminal emulation window. xterm windows emulate
DEC VTI02 and Tektronix 4014 terminals. Although xterm windows are not
the default terminal window for the X Window System, you can use them as
your needs require.

Running from the Command Line 4·15

Syntax

The syntax of the xterm window client is as follows:

xterm [-options] [&]

You'll find a list of common viewable client options in "Working with Common
Client Options" later in this chapter. For a complete list of xterm options, see
the xterm pages in the reference section.

Using 'xterm' Scroll Features

The xterm client has a "jump scroll" option (- j). The option enables xterm,
when its scrolling gets behind, to scroll (jump) several lines at a time from the
top of the window.

Another option (-s), enables xterm to scroll asynchronously. This enables
xterm to scroll faster when the window screen is no longer up to date due to a
high network load.

To use either option, include the option on the command line after the name of
the client.

Using 'xterm' Menus

The xterm client has three menus. The standard xterm menu pops up when
the "control" key and the select button are pressed while the pointer is inside
the xterm window. The "Modes" menu pops up when the "control" key and
the alternate button are pressed while the pointer is in the window. The
"Tektronix" menu pops up when the "control" key and the alternate button
are pressed in a Tektronix window.

Special Terminal Emulator Options

Both hpterm and xterm, because they are terminal emulators, have some
special options that other clients don't have.

Making a Login Window

Both hpterm and xterm have an option that allows you to specify that the
window runs a login shell before displaying the command-line prompt. Using

4-16 Running from the Command Line

the -Is option, you can have the window display a login prompt, and ask for a
login name and password, before the window displays the command prompt.

Cutting and Pasting with the Mouse

Both hpterm and xterm allow you to use the mouse for cut and paste
operations. You can cut text from one location in a window to another, or
from one window to another.

Currently, hpterm and xterm use the button definitions in the following table
for cut and paste operations:

Table 4-6. Mouse Button Definitions for Cut and Paste Operations.

I£you see ... On 8 3-button mouse press . .. On 8 2-button mouse press ...

Button 1 The left button. The left button.

Button 2 The middle button. Both buttons simultaneously.

Button 3 The right button . The right button.

To cut and paste using hpterm, use the following procedures:

Cutting text

Pasting text

To cut text, follow these steps:

1. Press and hold the IShlftl key.

2. Position the pointer at the start of the text you want
to cut and press and hold button 2. This marks the
beginning of the text region.

3. Drag the pointer to the end of the text you want to
cut and release the button. This copies the text into a
global cut buffer, a buffer that holds text that has been
edited out.

To paste text from the global cut buffer into a window, follow
these steps:

1. Press and hold the IShlftl key.

2. Position the pointer in the window where you want
to paste the text. The text will appear like it is being

Running from the Command Line 4-17

typed at the cursor's location, so you may need to
position the cursor as well.

3. Click button 3 to "type" the text.

Copying a line To copy a line of text from one place and paste it in at the
cursor location, follow these steps:

1. Press and hold the IShlftl key.

2. Position the pointer at the start of the text you want to
copy.

3. Click the select button to copy text from the pointer to
the end of the line.

4. Click button 3 to "type" the text.

To cut and paste using xterm use the following procedures:

Cutting text To cut text, follow these steps:

Pasting text

1. Position the pointer at the start of the text you want to
cut.

2. You can cut a text region in the following three ways:

• To cut a region character by character, click and
hold button 1.

• To cut a region word by word, double-click and
hold button 1.

• To cut a region line by line, triple-click and hold
button 1.

This marks the beginning of the text region.

3. Drag the pointer to the end of the text you want to cut
and release the button. This copies the text into the
global cut buffer.

To paste text from the global cut buffer into a window, follow
these steps:

1. Position the pointer in the window where you want
to paste the text. The text will appear like it is being

4-18 Running from the Command Line

typed at the cursor's location, so you may need to
position the cursor as well.

2. Click button 2 to "type" the text.

Extending text You can extend or contract either half of the current selection
by following these steps:

Scrollbars

• To extend or contract the first half of the selected text,
follow these steps:

1. Position the pointer in the first half of the text
that you have selected with the select button.

2. Press and hold button 3.

3. To expand or contract the first half of the
selection, drag the pointer away from or toward
the center point of the selection.

4. When the selection includes the correct text,
release button 3 .

• To extend or contract the second half of the selected
text, follow these steps:

1. Position the pointer in the second half of the
text that you have selected with the select
button.

2. Press and hold button 3.

3. To expand or contract the second half of the
selection, drag the pointer away from or toward
the center point of the selection.

4. When the selection includes the correct text,
release button 3.

You can start either an hpterm or xterm window with scrollbars. To do this ,
include the -sb option on the command line when you start the window. For
example, to start an hpterm window with a scrollbar, type the following line
after the command prompt:

Running from the Command Line 4-19

hpterm -sb & IReturnl

Window Titles and Icon Names

By default the title of a terminal emulation window is Terminal Emulator.
Equally original are the default names that appear on labels of hpterm and
xterm icons. These are, respectively "hpterm" and "xterm." Two options
enable you to give your terminal windows and icons more original names if you
so desire.

Use the -title option to give a title to a terminal emulation window. Titles
with two or more word must be enclosed in quotes ("title1 title2").

Use the -n option to give a name to the icon of a terminal emulation window.
Icon names of two or more word must be enclosed in quotes ("name1 name2").
Note also that lengthy names may be truncated on the right to the width of
the label.

The following example illustrates the use of these two options:

hpterm -n System -title "System Window" & IReturnl
This example creates an hpterm window, giving it the title "System Window."
When the window is iconified, the icon label reads "System."

Telling Times with 'xclock'
The X Window System includes a clock client called xclock. You can choose
either an analog clock (a clock with hands and a face) or a digital clock (a
clock with a text readout showing the day, date, time, and year).

Syntax

The syntax for xclock is as follows:

xclock [-options] [&]

4-20 Running from the Command Line

You'll find a list of options that xclock shares with other viewable clients in
"Working with Common Client Options" later in this chapter. For a complete
list of xclock options, see the xclock pages in the reference section.

Although ampersand (&:), strictly speaking, is an option, you will rarely, if ever,
find it practical to use xclock with out it. When run from the command line
as a foreground process (without the &:), xclock takes control of the window
and does not return the command-line prompt, thus making it impossible for
you to use the window until you either close the clock or kill its process.

Some 'xc lock' Options

The xclock client comes with some options that are unique.

Marking the Half Hours

The -chime option causes the speaker on your system to sound once on the
half hour and twice on the hour.

Selecting the Clock Format

As mentioned, xclock has two formats, analog and digital. The analog
format is the default. Specifying the -analog format (or no format) draws
a conventional 12-hour clock face with strokes marking the hours and ticks
marking the minutes. Specifying the -digital format draws a digital readout
containing the day, date, time, and year.

Updating the Time

The -update seconds option enables you select the time interval between
updates to the clock display. The default is an update every 60 seconds.

Examples

The following examples illustrate both clock formats:

xclock -digital -update 10 &: IReturnl

xclock -analog -chime -update 5 &: IReturnl

Running from the Command Line 4-21

The first example creates a digital clock that updates every 10 seconds. The
second example creates an analog clock that chimes every 30 minutes and
updates every 5 seconds.

Viewing System Load with 'xload'
The X Window System includes a client called xload that displays a histogram
of the current system load.

Syntax and Options

The syntax for xload is as follows:

xload [-options] [&]

You'll find a list of options that xload shares with other viewable clients in
"Working with Common Client Options" later in this chapter. For a complete
list of xload options, see the xload pages in the reference section.

Like xclock, the &: that completes an xload command line is, strictly speaking,
an option. But you will rarely find it practical to use xload without it. When
run from the command line as a foreground process (without the &:), xload
does not return the command-line prompt, thus making it impossible for you to
use the window until you either close or kill the xload client.

Some 'xload' Options

The xload client comes with some options that are unique.

Updating the Load

The -update seconds option enables you to select the time interval between
updates to the load histogram display. The default is an update every 5
seconds.

4·22 Running from the Command Line

Scaling the Histogram Graph

The -scale division option enables you to adjust the scale of the histogram
by drawing extra division lines on the graph. By default xload measures the
average load on the system using a scale of 0 (no load) to 1 (a single division).
Using the -scale option, however, you can select a division other than 1
against which to measure the load.

Note that if you use the default setting and the system load goes beyond that,
extra divisions will be drawn automatically to keep the load in scale.

Example

The following example illustrates an xload client started from the command
line:

xload -update 15 -scale 2 & IReturnl

This example creates a load histogram that updates every 15 seconds and uses
a scale of 2 units.

Working with Common Client Options
The viewable clients have the following options in common:

• Color.

• Display.

• Size and location.

• Fonts.

• Other options.

Running from the Command Line 4-23

Color Options

All viewable clients have elements that you can color. If your system uses a
monochrome monitor, it is still possible to use the tiling capability of the HP
Window Manager to achieve a pleasing 3-D gray-scale color scheme.

The viewable Xll clients, as you might expect, have options for specifying the
color of their elements.

Available Client Color Options

The following table lists the colorable elements of XII clients.

Table 4-7. Color Options for Viewable X 11 Clients.

Option Descriptions XlI Clients

To change this ... Use this option ... hpterm xterm xclock xload

Foreground color. -fg color V V V V
Background color. -bg color V V V V
Cursor color. -cr color V V
Pointer color. -ms color V V
Clock hands color. -hd color V
Hand edge color. -hl color V

You can specify an element color on the command line in the following two
ways:

• By listing the color name after the option .

• By listing the hexadecimal color value after the option.

The file /usr/lib/Xll/rgb. txt lists all colors that have "names." Specifying
a name after a color option causes the element referred to by the option to
display in that color.

For example, the following command line creates an hpterm window with a
black background and a white foreground:

4·24 Running from the Command Line

)

hpterm -bg Black -fg White & IReturnl

Using Hexadecimal Color Values on the Command Line

While using color names is an easy way to select colors, you are limited by the
number of available names. Fortunately, the use of hexadecimal color values
offers a solution. You can specify any color, whether it has a name or not,
by using a hexadecimal color value. This value corresponds to a particular
combination of the primary colors: red, green, and blue.

If you use the C shell (csh) a color value consists of a hash mark (#) followed
by 1, 2,3, or 4 hexadecimal digits. If you use the Bourne shell (sh) or Korn
shell (ksh), you must place a backslash (\) before the #, so a color value
consists of \# followed by 1, 2, 3, or 4 hexadecimal digits. You must have the
same number of digits for each of the primary colors. Thus, valid color values
consist of 3, 6, 9, or 12 hexadecimal digits.

For example, #3a3 and #300a00300 are both valid color values for the same
color, a shade of green. #000, #000000, #000000000, and #000000000000 all
specify the color black. And #fff, #ffffff, #fffffffff, and #ffffffffffff all specify
white. The number of digits you use in color values depends on your need for
subtle shades of color and the capability of your display hardware.

Examples

As an example of specifying color on a command line, suppose you wanted an
analog clock with a plum background, white foreground, and black hands with
white edges. You could specify the clock in either of the two following ways:

xclock -bg violet -fg vhite -hd black -hI vhite & IReturnl

or

xclock -bg #c5489b -fg #fff -hd #000 -hI #fff & IReturnl

For the purposes of this example, plum, white, and black were chosen because
they are colors with valid color names in /usr/lib/Xll/rgb.txt. However,
at any time you can specify a unique color (one with no name equivalent),
for example a slightly darker plum for the background, by creating your own
hexadecimal value as follows:

xclock -bg #ba408b -fg vhite -hd black -hI vhite & IReturnl

Running from the Command Line 4-25

Specifying Size and Location on the Command Line

Each client you add to your environment is located at a certain position on the
root window. The default position is the upper left corner, but you can place a
client anywhere on the root window using the -geometry option.

The Syntax of the '-geometry' Option

The -geometry option has the following syntax:

-geometry Width X Height [±column± row]

Width

Height

column

row

The width of the window in characters (for terminal windows)
or pixels (for other clients). Note that the width of the
terminal window that displays varies depending on the font
size.

The height of the window in lines (for terminal windows) or
pixels (for other clients). The height of a terminal window is
also dependent on the size of the font chosen.

The column location of the window given in pixels. Plus (+)
values refer to the left side of the window. Minus (-) values
refer to the right side of the window.

The row location of the window given in pixels. Plus (+)
values refer to the top of the window. Minus (-) values refer
to the bottom of the window.

You have the following choices for defining client size and location:

• Include both the size and location in the command. The window
appears as specified.

• Include only the size in the command. The window appears in the
specified size at the default location.

• Include only the location in the command. The window appears at the
specified location in its default size.

• Include neither size nor location in the command. The window appears
in the default size at the default location.

4-26 Running from the Command Line

Placing Clients on the Root Window

The following table lists some typical locations for a 1280x 1024 high-resolution
display.

Note

Table 4-8. Example Locations for an 80 x 24 X11 Terminal Window.

To position a window here ... Use this location .. .

The upper left corner of the root window. +1+1

The lower left corner of the root window. +1-1

The upper right corner of the root window. -1+1

The lower right corner of the root window. -1-1

The left side at mid-window. +1+512

The right side at mid-window. -1+512

The top of the root window and right of center. +635+1

Centered at left . +1+330

Centered at right. -1+330

Centered in the root window. +320+330

The resolution of screens vary. Some locations may work for
you but be off the screen for someone else! Therefore, you may
need to experiment, altering the geometry specifications to fit
the resolution of the screen.

Example

The following examples illustrate a typical command-line use of the geometry
option:

xclock -geometry 90x90- 1-30 & IReturnl

xload -geometry 120x90+1-1 & IReturnl

Running from the Command Line 4-27

The first example starts an xclock client. The geometry option gives the clock
a 90-pixel by 90-pixel size and locates it 1 pixel to the left and 30 pixels up
from the lower right corner of the screen.

The second example starts an xload client. The geometry option gives the
client a 120-pixel by 90-pixel size and locates it in the lower left corner of the
screen.

Specifying the Display on the Command Line

As described above in "Starting Remote Clients," you can start an X client
program on one computer and have the output of the program display on
another. The default display is obtained from the DISPLAY environment
variable of the system on which the client starts, but the DISPLAY variable
can be reset dynamically for a client by including a -display option on the
command line when you start the client.

The Syntax for the '-display' Option

The -display option has the following syntax:

-display [host: display.screen]

host

display

screen

Example

Specifies the host name of a valid system on the network.
Depending on the situation, this could be your system's
host name, or the hostname of a remote system.

Specifies the number of the display on the system on which you
want the output to appear. On HP 9000 S300's, this number
will usually be o. On HP 9000 S800's, this number could be 0,
1, 2, or 3 depending on the configuration.

The number of the physical CRT screen where the output
is to appear. This number is 0 for default one-headed
configurations.

An example of using the display option on the command line is the following:

4·28 Running from the Command Line

)

hpterm -display hpcvfaa:O .O & IReturnl

This command, when issued at a command-line prompt, starts an hpterm
window on the local system and displays output (the window) on screen 0,
display 0 of the hpcvfaa system. The window has the default size, location,
and color.

Specifying the Font in the Command Line

In addition to the options discussed above, the viewable clients also have an
option that enables you to specify the font for text. The -fn option enables
you to select a font for the host name that displays on the xload client as well
as the text for terminal emulation windows.

Selecting a Font

The following table lists X Window System fonts. For best results, type the
font name exactly as it appears below.

Running from the Command Line 4-29

Table 4-9. X11 Fonts*.

Fonts
6xl0 6x12 6x13 8x13 8x13bold 9x15 9x16apl
9x16bas 9x21apl 9x21bas 9x21ibm 12x21apl 12x21bas 12x28apl

12x28bas 12x28ibm a14 apl-s25 calc .12x16 calc.6x8 chp-s25
chs-s50 cr.12x20 cr.12x20b cursor cyr-s25 cyr-s30 cyr-s38
fcor-20 fg-13 fg-16 fg-18 fg-20 fg-22 fg-25
fg-30 fg-40 fgl-25 fgb-13 fgb-25 fgbl-25 fgbl-30
fgi-20 fgil-25 fgs-22 fixed fqxb-25 fr-25 fr-33
frl-25 fr2-25 fr3-25 frb-32 fri-33 fril-25 ger-s35
grk-s25 grk-s30 hbr-s25 hbr-s40 hp8.10x20 hp8.10x20b hp8.12x15
hp8 .6x13 hp8.6x13b p8.6x8 hp8.6x8b hp8.7xlO hp8 .8x16 hp8 .8x16b

hp8.8x16i ipa-s25 iso1.13 isolo13b iso1.15 isolo16 isolo16b
isolo20 isolo20b isolo8 k14 kana.l0x18 kana.l0x20 kana.12x24
kana.8x16 kana.8x18 kana14 krivo lat-s30 line.8x16 math.18x30
math .6x8 math.8x16 met25 micro oldera pica.18x30 plunk

r14 rot-s16 sans12 sansb12 sansi12 seriflO serifl2
serifbl0 serifb12 serifil0 serifi12 sub subsub sup
supsup swd-s30 sym-s25 sym-s53 variable vbee-36 vctl-25
vg-13 vg-20 vg-25 vg-31 vg-40 vgb-25 vgb-31
vgbc-25 vgh-25 vgi-20 vgi-25 vgi-31 vgl-40 vgvb-31

vmic-25 vr-20 vr-25 vr-27 vr-30 vr-31 vr-40
vrb-25 vrb-30 vrb-31 vrb-35 vrb-37 vri-25 vri-30
vri-31 vri-40 vsg-114 vsgn-57 vshd-40 vtbold vtsingle
vxms-37 vxms-43 xif-s25
*Font names are shown without extensions.

Working with Fonts

Fonts are kept in the /usr/Hb/Xll/fonts directory. Although it is always a
good idea to give a complete path to the font you want to use, if you don't, the
server looks in the /usr/lib/Xll/fonts directory by default. If it doesn't find
the specified font there, it tries (in most cases) to substitute the fixed font.

When specifying a font, you only need to specify the font name, not the
extension.

4·30 Running from the Command Line

The two terminal emulators also have a -fb option. You can use this option to
specify a bold text. The text specified must be the same height and width as
the font specified with -fn, the "normal" font.

Example

The following examples illustrate the command-line use of the font option:

hpterm -fn isol.20 & IReturnl

hpterm -fn ispl.20 & IReturnl

The first line creates an hpterm window with a large, easy-to-read font
(iso1.20). The second line represents a misspelling of the first line. The result
is the creation of a window, but the font used for the command-line prompt is
the default font, not iso1.20.

Where to Go Next
If your X Window System environment meets your present needs, you can
stop here. If, however, you would like to customize your environment a little,
perhaps coordinate the colors of your clients, or select different clients to
display when you start X, or arrange them more efficiently on your root
window, you should continue to chapter 5.

Chapter 6 explains, in more detail than the average mortal need be concerned
about, how to work with the HP Window Manager and its resources to
fine-tune your control over your X environment. Chapters 7,8, and 9 present
cases where customization is needed because of special hardware considerations
or the extensive use of graphics.

Running from the Command Line 4·31

o

)

5
Customizing Your Local X Environment

As you become familiar with the X Window System, you will probably want to
modify your X environment to better suit your situation. Chapter 5 discusses
customizing your window environment. Using the information in this chapter,
you can change the appearance and behavior of the X Window System to suit
your needs without affecting the needs of other users. These changes include the
following:

• Customizing the colors of clients.

• Changing the clients that start when you start X.

• Modifying HP Window Manager menus.

• Starting X at login.

• Creating custom bitmaps.

• Customizing the root window.

• Working with fonts.

• Using Remote Hosts.

Customizing Your Local X Environment 5-1

Before You Begin Customizing
To customize your window environment, you must modify or create three
configuration files. These files contain information that the X server uses to
configure your window environment. Incorrectly modifying these files could
bring your X Window System to a screeching halt. So if you are new to this
type of thing, read the following two sections. They list some simple safety
precautions (often overlooked by people who "know what they're doing") that
keep you from getting into trouble if you make a mistake. They also give you a
little background on the configuration files with which you'll be working.

How to Begin Customizing

Swimming pools you should jump into with both feet; customizing your
environment you should approach step by step. Although the following safety
tips may take a little more time to implement, they are the steps that people
regretfully "wish they had taken" after something has gone wrong.

Making Backup Copies of Your Work:

Don't modify any original files. Make a copy of the original file and then
modify the copy. That way, if all else fails (and it sometimes does), you can
go back and get another copy of the original and start again. As you get
deeper into rearranging your environment, test your modifications and, if they
work properly, save that version of your modifications, make a copy of it, and
continue the rest of your modifications on the copy.

Making Incremental Changes

Make incremental changes when you edit the configuration files. That way, if
something goes wrong, you can easily isolate where the mistake is. It's much
easier to pinpoint a mistake in syntax or spelling if you've only modified one
line of one file, rather than multiple lines in several files.

Choosing a Text Editor

The three configuration files are ASCII text files. You can use vi or emacs or
any other editor that produces ASCII text files to do your editing. You edit

5-2 Customizing Your Local X Environment

)

the text of the configuration files just like you would edit the text of a letter,
replacing what you don't want with something more appropriate.

One trick that you might consider is to comment out a line that you don't
want rather than deleting it from the file. To comment out a line, place a hash
mark or pound sign (.) in the left margin of the line (use a ! to comment out
a line in . Xdef aul ts or sys. Xdef aul ts). This allows you to use the line as a
model for future editing and provides you with the opportunity to restore it
(by un commenting it) at some future time.

Where to Begin Customizing

Three configuration files come with the X Window System:

• sys.Xdefaults

• sys.xllstart

• system.hpwmrc

You'll find these files in the /usr/lib/X11 directory. The files supply
system-wide default configuration for users who start X but don't have
individual configuration files in their home directories.

The following three configuration files should be in your home directory if you
want to customize your X environment. Typically, you copy them from their
system-wide versions in /usr/lib/X11:

.Xdefaults

.xl1start

.hpwmrc

Specifies default appearance and behavior characteristics for
clients.

Specifies the clients that start when the X Window System
starts.

Specifies the menus, menu selections, and button and keyboard
bindings that control the HP Window Manager.

Note that the /usr/lib/X11/app-defaults/ directory may also contain
configuration files for client applications.

Customizing Your Local X Environment 5-3

Customizing the Colors of Clients
You control the color of the clients (including the HP Window Manager) that
display in your X environment by modifying the .Xdefaults file. Valid color
names are stored in /usr/lib/X11/rgb. txt.

Copying 'sys.Xdefaults' to '.Xdefaults'

When you issue the x11start command to start the X Window System, the
command looks in your home directory for a .Xdefaults file. If it finds the
file, it uses the information in the file to color your X environment. If it doesn 't
find the file, the x11start command uses /usr/lib/Xll/sys.Xdefaults.

To begin customizing the colors of your X environment, copy the
sys. Xdefaul ts file to your home directory as . Xdefaul ts. The following copy
command assumes that you are in your home directory when you issue it:

cp /usr/lib/Xll/sys.Xdefaults .Xdefaults I Returnl

This gives you a read-only copy of .Xdefaults. You must make the
.Xdefaults file writable so that you can modify it. To do this, type the
following command:

chmod u+v .Xdefaults IReturnl

This will enable you to color the clients in your environment without affecting
the environments of other users on the system.

If, during the editing process, the file becomes corrupted and inoperable, you
can always make a fresh copy from /usr/lib/Xll/sys .Xdefaults and begin
the editing process again.

Changing Client Colors

Changing the color of a particular client element is a simple process. You
specify a value for the resource that controls the element you want to color.
Use the following steps:

1. Start your text editor and open the .Xdefaults file.

2. Scroll down or search for the client*resource you want to color.

5-4 Customizing Your Local X Environment

3. Delete the ! and the space from the left margin to activate the line.

4. Replace the "<color>" at the end of the line with the color you desire.

5. Save the file and exit the text editor.

To view the effect of a change to .Xdefaults, simply start a client of the type
whose color you modified.

Determining Which Elements to Color

The following tables list the colorable elements of your X environment by
client.

Table 5-1. Terminal Window Elements.

To color this element . . . Look for this resource . ..

hpterm window text ! HPterm*foreground:

hpterm window background ! HPterm*background:

hpterm window text cursor ! HPterm*cursorColor:

hpterm window mouse pointer ! HPterm*pointerColor:

xterm window text ! Xterm*foreground:

xterm window background ! Xterm*background:

xterm window text cursor ! Xterm*cursorColor:

xterm window mouse pointer ! Xterm*pointerColor:

Table 5-2. Load Histogram Elements.

To color this element ... Look for this resource . . .

system load histogram foreground ! Xload*foreground:

system load histogram background ! Xload*background:

Customizing Your Local X Environment 5-5

Table 5-3. Clock Elements.

To color this element .. . Look for this resource ...

analog clock tick marks ! XClock*foreground:

digital clock text ! XClock*foreground:

clock background ! XClock*background:

clock hands ! XClock*hands:

edges of clock hands ! XClock*highlight:

Table 5-4. Window Frame Elements.

To color this element . .. Look for this resource ...

window frame background ! Hpwm*background:

window frame text ! Hpwm*foreground:

top and left window frame bevel ! Hpwm*topShadowColor:

bottom and right window frame bevel ! Hpwm*bottomShadowColor:

active window frame background ! Hpwm*activeBackground:

active window frame text ! Hpwm*activeForeground:

top and left active window beveling ! Hpwm*activeTopShadowColor:

bottom and right active window beveling ! Hpwm*activeBottomShadowColor:

Syntax

At some point, you may want to change the color of an element that is not
in your .Xdefaults file. You can add that element to the file by typing it in
. Xdefaul ts on a line by itself using the following syntax:

client*resource: {cohZorndam~ Z}
I exa ec~ma

For client, you can use any valid viewable X client. For resource, you can
use any valid color resource for that client. The surrounding lines in the file

5-6 Customizing Your Local X Environment

)

provide you with examples to model your line after. You can find a complete
list of the resources for each client in the reference section.

The color you specify can be either a colorname from the
/usr/Ub/Xll/rgb. txt file or a hexadecimal value. While colornames are
easier to remember, hexadecimal values enable you to specify a greater variety
of colors.

A hexadecimal value is composed of three segments, one segment for each of
the primary colors red, green, and blue. A hexadecimal value consists of a hash
mark (.), signaling the start of a hexadecimal number, followed by 1,2, 3, or 4
hexadecimal digits for each primary color. Thus a valid color value can be 3, 6,
9, or 12 hexadecimal digits.

Examples

The following examples illustrate some typical lines in your .Xdefaults that
color client elements.

XClock*foreground:
XClock*background:
XClock*hands:
XClock*highlight:

Black
White
SkyBlue
Black

The above lines color the elements of xclock clients. The first line makes the
tick marks of analog clocks (and the readout of digital clocks) black. The next
line gives them white backgrounds (faces). The next two lines color the hands
of analog clocks skyblue with black borders.

When coloring client elements, you should usually color adjacent elements
in contrasting colors. The obvious mistake is coloring clock hands the same
color as the background. Sure, the hands display in the color you select, but
it's frightfully hard to tell the time. The same holds true for foregrounds and
backgrounds that lack sufficient contrast.

Customizing Your Local X Environment 5-7

What Colors Are Available

You can color your X11 environment by specifying any of the color names
listed in the following table. Type the color name exactly as it appears below.

Table 5-5. X Window System Color Name Table.

Available Colors

Aquamarine Black Blue BlueViolet

Brown CadetBlue Coral Cornflower Blue

Cyan DarkGreen DarkOliveGreen DarkOrchid

DarkSlateBlue DarkSlateGray DarkSlateGrey DarkThrquoise

DimGray DimGrey Firebrick ForestGreen

Gold Goldenrod Gray Green

Green Yellow Grey IndianRed Khaki

LightBlue LightGray LightGrey LightSteelBlue

LimeGreen Magenta Maroon MediumAquamarine

MediumBlue MediumForestGreen MediumGoldenrod MediumOrchid

MediumSeaGreen MediumSlateBlue MediumThrquoise Medium VioletRed

MidnightBlue Navy NavyBlue Orange

OrangeRed Orchid PaleGreen Pink

Plum Red Salmon SeaGreen

Sienna Sky Blue Slate Blue SpringGreen

SteelBlue Tan Thistle Transparent

Turquoise Violet VioletRed Wheat

White Yellow YellowGreen

5-8 Customizing Your Local X Environment

Where to Find the Available Color Names

All of the color names available in the X Window System are listed in the
/usr/lib/Xl1/rgb. txt file. You can find the names of colors by typing the
following command to view the file:

more /usr/lib/Xll/rgb . txt IReturnl
The file is several "pages" long, so you may find it more convenient to make a
printed copy of the file using the following command:

pr -160 -h IIXl1 Color Table ll /usr/lib/Xl1/rgb. txt I Ip IReturnl

Coloring the HP Window Manager Automatically

The HP Window Manager contains three resources that you can use to
automatically color the elements of the window frame to achieve a pleasing 3-D
effect. These resources have the following syntax:

Hpwm*makeColors : {:~~dOW}
one

Hpwm*makeActiveColors: {:~~dOW}
one

Hpwm*background: {cohlor d . I}
exa eczma

The makeColors resource uses the color specified with Hpwm*background
to generate colors for the frame elements of inactive windows. The
makeActiveColors resource uses the Hpwm*background color to generate colors
for the frame elements of the active window.

Customizing Your Local X Environment 5-9

The following table lists the values for the two resources:

Table 5-6. The Values for Automatically Coloring Frame Elements.

To color these elements ... Use this value ...

Top and bottom shadow, and foreground (tile elements for top and all
bottom shadows are set to foreground).

Just top and bottom shadow. shadow

No elements automatically colored. You must specify individual none
colors or accept the default color for an element.

Determining Where to Color Your Environment

The usual place to specify colors is in the .Xdefaults file in your home
directory. However, you can change the color of a particular instance of an
element (such as the foreground color of a single window) by specifying that
color on the command line that starts the client. If you start the client when
you start XU, the command line would be in the .xllstart file. If you start
the client from a menu, the command line would be in the .hpwmrc file.

For example, if you wanted an hpterm window to have a DarkSlateGrey
background and White foreground, you could specify these colors on the
command line you used to start the window.

Coloring a Single Instance of a Client

The following command, issued at the command line prompt, overrides
any background and foreground colors specified in the . Xdef aul ts file and
creates a single hpterm window with a DarkSlateGray background and White
foreground.

hpterm -bg DarkSIateGrey -fg White t IReturnl

This syntax should be familiar to you if you read chapter 4.

Coloring Windows that Start Automatically

The following line in your. xllstart file overrides any background and
foreground colors specified in the . Xdef aul ts file and creates an hpterm

5·10 Customizing Your Local X Environment

window with a DarkSlateGrey background and White foreground each time
you start XU.

hpterm -bg DarkSlateGrey -fg White t

Note that the syntax of the above example is exactly like the syntax used when
you start a client from the command line.

Coloring Windows that Start from Menus

The following line in your . hpwmrc file overrides any background and
foreground colors specified in the .Xdefaults file and, when you choose the
Dark Window selection from the menu, creates an hpterm window with a
DarkSlateGrey background and White foreground.

"Dark Window" f.exec "hpterm -bg DarkSlateGrey -fg White til

This syntax is similar to the command-line syntax with which you are already
familiar. You'll learn more about it in "Modifying HP Window Manager
Menus" later in this chapter.

Coloring 'hpterm' Softlceys and Scrollbars

To color hpterm softkeys or scrollbars, you may need to add one or more lines
from the following table to your .Xdefaults file:

Table 5-7. You Can Color These 'hpterm' Softkey and Scrollbar Elements.

To color this element ... Add this line ...

softkey text HPterm*softkey*foreground:

saftkey background HPterm*softkey*background:

top and left saftkey bevel HPterm*softkey*topShadowColor:

bottom and right softkey bevel HPterm*softkey*bottomShadowColor:

top and left softkey bevel tile HPterm*softkey*topShadowTile:

bottom and right softkey bevel tile HPterm*softkey*bottomShadowTile:

scroll bar background HPterm*scroIIBar*foreground:

scroll bar background HPterm*scrollBar*background:

Customizing Your Local X Environment 5·11

The lines you add to the . Xdefaults file all have the following syntax:

HPterm*[Softkey]*resource: {color . }
scrollBar #hexadeclmal

The color you select can be either a color name (Magenta) from the rgb. txt
file or a hexadecimal value (#ffeOOOffe).

For tile, you can select a number of tile "patterns." For a complete list see
"Changing the Tile of Window Frames" in Chapter 6.

Changing the Clients that Start When You Start X
By modifying the .xllstart file in your home directory, you can control which
clients display as part of your environment when you start X.

Copying 'sys.x11start' to '.x11start'

The clients that start by default when you start X are specified by command
lines in the sys. xllstart file. To change the clients that start in your
personal X environment from the default (hpwm and an hpterm window), copy
sys. xllstart from the /usr/lib/Xll directory to your home directory. The
following command assumes you are in your home directory:

cp /usr/lib/Xll/sys.xllstart .xllstart IReturnl

This gives you a read-only copy of . xllstart. You must make the . xllstart
file writable so that you can modify it. To do this type, the following
command:

chmod u+w .xllstart IReturnl

This will enable you to change the clients that start in your environment
without affecting the environments of other users on the system.

If, during the editing process, the. xllstart file becomes
corrupted and inoperable, you can always make a fresh copy from
/usr/lib/Xll/sys. xllstart and begin the editing process again.

5-12 Customizing Your Local X Environment

Viewing X11 Start Error Messages

The xllstart command records any messages that occur as XU starts.
Viewing these messages is an important tool for finding errors in your
configuration files. The start command puts messages in the .xllstartlog file
in your home directory.

If you start XU and your environment displays as expected, no error messages
will be generated and .xllstartlog will be empty.

However, at some point you may start Xll and your environment does not
display as expected. For example, maybe one of your terminal windows doesn't
display. To view any error messages that occurred, type the following at the
command-line prompt in your home directory:

more .xllstartlog IReturnl

Any error messages in the file will be listed on the screen and, although
decidedly cryptic in nature, they at least provide a starting place for locating
the cause of the error.

Starting a Different Window Manager

The HP Window Manager is the default window manager of your X Window
System. However, another window manager, uwm, is included with the X
Window System.

The uwm manager features frameless windows and comes with a single menu.
For more information about uwm see chapter 6, "Managing Windows with
'uwm'." If you like the HP Window Manager, but would rather forgo the
window frame, see chapter 6, "Using Windows without Frames."

To use the uwm window manager instead of the HP Window Manager, follow
these steps:

1. Start your text editor and open the .xllstart file.

2. Scroll down or search for the line that reads as follows:

hpwm $G t , Start the HP Window Manager

3. Comment out this line by typing a # and a space in the left margin.
Optionally, you can delete the entire line (not recommended).

Customizing Your Local X Environment 5-13

4. On a new line at the same location (before the line that begins with
sleep 5 ...), type the following command:

uwm $C t 'Start uwm window manager

5. Save the file and exit the editor.

To put the uwm window manager into effect, exit the X Window System by
pressing ICTRLllLeh ShlhllResetl. Then restart the window system again.

Starting Programs Automatically

If you'd like to start more than hpwm and a single hpterm window when you
start Xll, you need to add a few more lines to your .xllstart file. One line
for each client or non-client you want to start.

Syntax and Examples

The syntax for starting a program automatically matches the syntax for
running the program from the command-line prompt:

client [- options] [&]

Starting Clients

Follow these steps to add other clients to your Xll environment:

1. Start your text editor and open . xllstart.

2. Scroll down or search for the line that reads as follows:

hpterm -C -geometry 80x24+1+1 $G t

3. On the lines below this, insert command lines for each client you want
to start, one client per line.

4. When you're done, check your syntax and spelling. If all is correct, save
the file and exit the editor.

For example, the following two lines start a clock and an hpterm window as
part of the initial X environment:

xclock -digital -update 10 -geometry 160x30-1+1 t
hpterm -geometry 80x24-1-1 t

5-14 Customizing Your Local X Environment

The first line adds a 160x30 pixel digital clock to the upper right corner of
the screen. The clock is updated every 10 seconds. The second line starts an
80 column by 24 line hpterm emulation window in the lower right corner of the
screen. Both clock window and hpterm window are the default colors specified
in .Xdefaults or /usr/lib/Xl1/sys .Xdefaults.

Note that both lines end with an ampersand (t), telling the system to start
these clients as background processes. Note also that the geometry dimensions
of clients like the clock are in pixels; however, the dimensions of terminal
windows are in columns (characters across) and lines (characters down).

Starting Non-Clients

Starting non-clients (commands or programs) automatically is similar to
starting clients. Follow these steps to add non-clients to your XlI environment:

1. Start your text editor and open . xl1start.

2. Scroll down or search for the line that reads as follows:

hpterm -C -geometry 80x24+1+1 $~ t

3. On the lines below this, insert command lines for each non-client you
want to start, one non-client per line. Remember that a non-client,
because it does not create its own window, is started by the -e option
(e for "execute") from an hpterm or xterm window.

4. When you're done, check your syntax and spelling. If all is correct, save
the file and exit the editor.

For example, the following two lines start mailx, an electronic mail program,
and login to a remote host, hpcvfaa:

hpterm -e mailx t
hpterm -e rlogin hpcvfaa t

Both windows that contain the two non-clients are the default size and colors.
Notice also that, in this example, they are both at the default location, so
first one appears and then the other appears right over it - usually not the
best practice. A better way is to include a geometry option for one or both
windows. Another alternative is to use a -iconic option for one window:

hpterm
hpterm

-iconic -e mailx t
-e rlogin hpcvfaa t

Customizing Your Local X Environment 5-15

This modified example starts the mailx window as an icon. Only when you
want to read mail do you need to change the icon into a window.

Discovering Your Options

The following tables repeat the client option information from chapter 4 so you
can avoid excessive page churning caused by flipping back and forth.

Table 5-8. Color Options for Viewable X11 Clients.

Option Descriptions XU Clients

To change this .. . Use this option ... hpterm xterm xclock xload

Foreground color. -fg color V V V V
Background color. -bg color V V V V
Cursor color. -cr color V V
Pointer color. -ms color V V V V
Clock hands color. -hd color V
Hand edge color. -hI color V

5·16 Customizing Your Local X Environment

)

Table 5-9. Other Options for Viewable X11 Clients.

Option Descriptions Xll Clients

To change this ... Use this option ... hpterm xterm xclock xload

Client location. -geometry wxh±col±row V V V V
Font Displayed. -fn font V V V V
Update interval. -update number V V
Clock chime. -chime V
Analog clock. -analog V
Start a program. -e command V V
Name of icon . -n name V V
Title of window. -ti tIe title V V
Window name. -name name V V
Start client as icon. -iconic V V
Where client displays. -display host:display.screen V V V V

You can control the size and location of each viewable client you add to your
. xllstart file using the -geometry option. If you don't specify a -geometry
option, the client appears in the default size and at the default location.

The syntax of the -geometry option is as follows:

-geometry widthx height [± column± row]

The size, width x height, is in characters by lines for terminal windows, and
in pixels for clocks and load histograms. The location, ±column±row, is in
pixels and depends on the resolution of your screen. Plus values (+) start at
the upper left corner of the screen and proceed down and to the right. Minus
values (-) start at the lower right corner of the screen and proceed up and to
the left.

The following table lists some typical locations for a 1280x 1024 high-resolution
display.

Customizing Your Local X Environment 5-17

Table 5-10. Sample Locations for an 80x24 X11 Terminal Window.

To position a window here . . . Use this location ...

The upper left corner of the root window. +1+1

The lower left corner of the root window. +1-1

The upper right corner of the root window. -1+1

The lower right corner of the root window. -1-1

The left side at mid-window. +1+512

The right side at mid-window. -1+512

The top of the root window and right of center. +635+1

Centered at left . +1+330

Centered at right . - 1+330

Centered in the root window. +320+330

The options listed here are some of the more commonly used ones. For a
complete list of options for each client, see that client's pages in the reference
section.

Modifying HP Window Manager Menus
The HP Window Manager menus are controlled by an ASCII text file in the
/usr/lib/Xll directory called system.hpwmrc, unless you have a file in your
home directory called .hpwmrc. You can add or delete menu selections by
copying system.hpwmrc to your home directory as .hpwmrc and modifying it to
suit your needs.

5-18 Customizing Your Local X Environment

Copying 'system.hpwmrc' to '.hpwmrc'

The following command line copies the system.hpvmrc file to your home
directory as . hpvmrc. The command assumes that you are in your home
directory when you issue it.

cp /usr/lib/Xll/system.hpvmrc .hpvmrc IRetwnl
This gives you a read-only copy of .hpvmrc. You must make the .hpvmrc file
writable so that you can modify it. To do this, type the following command:

chmod u+w .hpvmrc IReturnl
Having a . hpvmrc file in your home directory enables you to change the
appearance and behavior of your window manager without affecting the
environments of other users on the system.

Syntax

All HP Window Manager menus have the following syntax:

Menu MenuName
{

}

selectionl
selection2
selection3
selection *

function
function
function
function

[" arguments"]
[" arguments"]
[" arguments"]
[" arguments"]

Each line identifies a selection name followed by the function to be done if that
selection is chosen and any arguments to the function. Separate selections,
functions, and arguments with either a space or a tab. The order of the
selections is the order of their appearance when you display the menu.

Customizing Your Local X Environment 5·19

Adding Selections

The HP Window Manager comes with two menus, a system menu for each
window and a root menu for screen operations. You can modify either menu.
However, for consistent operation between systems, it is usually better to
modify the root menu.

To add menu selections to a menu, use the following steps:

1. Start your text editor and open the file .hpwmrc.

2. Scroll down or search for the line that reads as follows (for the root
menu):

IIRoot Menu ll f.title

This is the title of the root menu. Below it, in order of appearance, are
the menu selections.

3. On a line below this, depending on the selection order you want, insert
the line you want to add.

4. Check your modification and, if it is correct, save the file and exit the
editor.

Deleting Selections

Follow these steps if you want to delete a selection from a menu:

1. Start your text editor and open the file . hpwmrc.

2. Scroll down or search for the line you want to delete.

3. Delete the line (you can also comment out the line using a.).

4. Save the file and exit the text editor.

5-20 Customizing Your Local X Environment

Examples

The following example modifies the default root menu:

Menu DefaultRootMenu
{

}

"Root Menu"
"Create Window"
"Read/Send Mail"
"Goto hpcvfaa"
"Refresh Root"
"Shuffle Up"
"Shuffle Down"
"Refresh"
no-label
"Restart"

f.title
f.exec "hpterm t"
f.exec "hpterm -geometry 80x24+320+330 -e mailx t"
f.exec "hpterm -e rlogin hpcvfaa t"
f.refresh
f.circle_up
f.circle_down
f.refresh
f. separator
f . restart

The modifications to this root menu remove the clock and load histogram, and
add selections for electronic mail and a remote login to hpcvfaa.

Note that arguments to the f. exec function are enclosed in quotes (" ").
This is a must because of the number of arguments that follow the function.
Similarly, enclose in quotes any selection name that is two or more one words.

Viewing the Results of Your Modification

To view the results of your modification, display the root menu and drag the
pointer down the menu until you highlight the "Restart" selection. Then
release the button.

When the HP Window Manager is completely restarted, you can display the
root menu, and your changes will be apparent.

Customizing Your Local X Environment 5-21

Starting X 11 at Login
You can configure your system to start the X Window System at login in two
ways:

• Use the HP-UX reconfig program to add a new account to the system,
specifying "Xll Windows" at login .

• Edit your existing .login or .profile login file to include the
xllstart command.

If your login isn't already configured to start Xll automatically, you can edit
your login file to do so. If you are adding a new login to your system, you can
use the reconfig program to tell the system you want Xll at login.

The rest of this section explains how, if you currently have a login on the
system, you can edit your .login or .profile file so that when you log in,
your X environment starts automatically.

Modifying Login Files

Which login file you edit depends on which shell command interpreter you use.
If you use the C shell, edit .login. If you use the Bourne or Korn shell, edit
.profile.

Finding Out Which Shell You Use

If you are not familiar with which shell you use, type:

env IReturnl

This command lists your environment variables. Look for the one named
SHELL.

If you see ... Edit ...

SHELL=/bin/csh .login

SHELL=/bin/sh .profile

SHELL=/bin/ksh .profile

5-22 Customizing Your Local X Environment

Editing the File

Once you have determined the proper login file to edit, use vi or some other
editor that produces ASCII text files to make the following modification to the
bottom of the file.

If you use the C shell, follow these steps to modify your . login file:

1. Copy your original .login to . login . old(just in case).

2. Start your text editor and open . login.

3. Page or scroll down to the bottom of the file.

4. Insert the following lines at the bottom of the file:

if (lI'who am i I grep console'li != 1111] then
exec /usr/bin/xllstart

endif

5. Save your edited file and exit the text editor.

If you use either the Bourne or the Korn shell, follow these steps to modify
your .profile file:

1. Copy your original .profile to .profile.old (just in case).

2. Start your text editor and open .profile.

3. Page or scroll down to the bottom of the file.

4. Insert the following lines at the bottom of the file:

if [lI'who am i I grep console'li != 1111]

then
exec /usr/bin/xllstart

5. Save your edited file and exit the text editor.

These lines verify that you are logging in from the console, and not from
a remote location, before starting XU on your system. This avoids the
possibility of undesirable effects caused by inadvertently starting X on your
system from a remote login.

Customizing Your Local X Environment 5-23

Viewing the Result of Your Edit

To view the result of your edit, exit the X Window System by pressing ICTRLI
ILeft ShlftIIRe ... 1 simultaneously. Remember to use the left IShlftl key.

When the command-line prompt returns to the screen, you can either log out
and then log back in, or type source .login (if you use the C shell), source
.profile (if you use the Bourne shell), or .. profile (if you use the Korn
shell) to restart Xll.

After a few seconds, your system should start the X Window System. From
then on, whenever you login, Xll will start automatically.

USing the 'reconfig' Program

You can also start the X Window System automatically for a new user by
adding the user with the reconfig program.

Before you run reconfig, you must be superuser. As one of the options of
"Add a new user", you can select either the X Window System or HP Windows
9000 to start at login. Select the X Window System.

Creating Custom Bitmaps with 'bitmap'
Using the bitmap client, you can create your own custom bitmaps and use
them to tile your root window, for custom root-window cursor shapes, or for
custom menu selections.

Syntax and Options

The syntax for bitmap is as follows:

5·24 Customizing Your Local X Environment

)

-help
-display host:display.screen
-geometry wxh±col±row
-nodashed

bitmap -fn font filename Width x Height

-help

-display

-geometry

-nodashed

-fn

-fg

-bg

-hI

-ms

filename

-fg color
-bg color
-hI color
-ms color

Prints a summary of the command usage.

Specifies the screen where bitmap is to appear.

Sets the size of the bitmap window to the specified
widthxheight and locates the window at the specified column
and row.

Specifies the bitmap grid should not be made of dashed lines.

Specifies the font to use in the bitmap command panel labels.

Specifies the foreground color.

Specifies the background color.

Specifies the color of the highlight used to mark the center of a
circle, the hot spot, and move areas.

Specifies the color of the pointer.

Specifies the name of the bitmap file to open or create.

WidthxHeight The size of the bitmap itself. Width and height are measured
in pixels with one pixel equal to one cell on the bitmap grid.

Using 'bitmap'

The bitmap client displays a variable-size grid, a command panel (on the
right), and two "preview" bitmaps. You operate bitmap by using mouse
buttons to "draw" pixels in the grid, one pixel per cell, and by making
selections from the command panel. The preview bitmaps enable you to see
how your art work looks in regular and reverse video.

Customizing Your Local X Environment 5-25

caear AI
setAl

IilV8rt AI

I Clliar Ar8i
I set Ani. I
I IilV8rt Ar8i I

I copy Ar8i I
I MOVe Ar8i I
lovertax Ar8i I

una I
I ~ I
I Faiid CIf'dii I

I F100d FI I

I set HOtspot I
lcaear HOtspot I

I Write outPUt I
I OUt I

Figure 5-1. The 'bitmap' Client Creates Custom Bitmaps.

Currently, bitmap uses the button definitions in the following table:

Table 5-11. Mouse Button Definitions for 'bitmap'.

Uyou see ... On a 3-button mouse press . . . On a 2-button mouse press ...

Button 1 The left button. The left button.

Button 2 The middle button. Both buttons simultaneously.

Button 3 The right button. The right button.

5·26 Customizing Yow Local X Environment

The following table shows how to use the grid portion of the bitmap window:

Table 5-12. How to Use the 'bitmap' Grid.

H you want to ... Do this ...

Draw a pixel. Change a cell from background to Click button 1 on that cell.
foreground color.

Invert a pixel color. Change a background colored Click button 2 on that cell.
cell to foreground or a foreground colored cell to
background.

Clear a pixel. Change a cell to the background color. Click button 3 on that cell.

The following table shows how to use the command panel portion of the
bi tmap window:

Customizing Your Local X Environment 5-27

Table 5-13. How to Use the 'bitmap' Command Panel.

IT you want to . .. Click the select button on ...

Set (clear) all cells of the grid to the background color. Clear All

Set all cells of the grid to the foreground color. Set All

Set all background colored cells to foreground and all Invert All
foreground colored cells to background.

Set (clear) an area of the grid to the background color. Clear Area.

Set an area of the grid to the foreground color. Set Area.

Set any background colored cells in an area of the grid Invert Area
to foreground and any foreground colored cells in that
area to background.

Copy one area of the grid to another. Copy Area

Move an area of the grid to another position. Move Area

Place one area of the grid over another. Overlay Area

Draw a line between two points. Line

Draw a circle with a given center and radius. Circle

Draw a filled (foreground colored) circle with a given Filled Circle
center and radius.

Fill an enclosed (bounded) area. The area must be Flood Fill
completely enclosed.

Set a "hot spot" to mark the location of the cursor on a Set HotSpot
cursor bitmap.

Erase a "hot spot" from a cursor bitmap. Clear HotSpot

Save the bitmap to the file specified on the bitmap Write Output
command line.

Exit the bitmap client. Quit

5-28 Customizing Your Local X Environment

)

Examples

The following examples illustrate some of the possibilities when creating
custom bitmaps with bitmap.

Creating an Icon Image

You can create a 50 by 50 pixel icon image that you can use for a particular
client such as hpterm windows. The following bitmap is one example:

-'

-i.i.I­
:.:

-i.i.I­.... -
;

: :.-

-' -.- -.-

:11::

CIIiaI" AI
setAl

IilV8rt AI

I Set Area I
I mnort Area I

I COPy Area I
I MOVe Area I
I overtay Area I

Lilii I
~ I

I FI8d C@ii I

, I F100d FI I

I set HOtspot I
ICiear HOtspot I

I Write output I
I QUIt I

Figure 5-2. A Custom Icon Bitmap.

If you name this bitmap "peacock.bits" and keep it in the - /bits directory,
where - stands for the path to your home directory, you can use the bitmap as

Customizing Your Local X Environment 5-29

an image for hpterm icons by inserting a line similar to the following in your
.Xdefaults file:

Hpwm*HPterm*iconlmage: - /bits/peacock.bits

Whenever you iconify an hpterm window, your peacock will display.

Creating Root Window Tiles

You can create tiles of any size with which to pattern your root window. One
such pattern is the following:

, ---- - - - ---- - ---- - - - -IO;-:;o~~:j:" - --

I aBar~ I
I lliit~ I
I InVert ~ I

I aBar Nii I
I lliit Anii I
I mtert Anii I

I Copy Nii I
I Move Anii I
I 0Verial! Anii I

I lEi I
I GIrcIe I
I ~ GIrcIe I

I flood FI I

I lliit HOtspot I
ICIiiilJO HOtspot I

I Write OUtput I
I QUi I

D

Figure 5-3. A Custom Bitmap for That Spacious Look.

5-30 Customizing Your Local X Environment

)

This pattern, called for lack of a better name "space.bits," is a random pattern
of foreground-colored pixels. Using the xsetroot client described shortly, you
can use this bitmap for a truly cosmic effect.

Creating Custom Cursors and Masks

Creating a custom cursor (pointer) requires you to make a cursor bitmap and
a cursor mask bitmap. The mask provides a background for the cursor and
prevents the pixels over which the cursor moves from showing through the
cursor bitmap.

For example, because the example above gave you some space to play with, you
might want to create the following cursor, named "shuttle.bits" to help you to
get from window to window.

Customizing Your Local X Environment 5-31

C18ar AI I
set AI I

hViirt AI I

I CIB8J' Ai'8a
I setAi'8a
I hViirt Ai'8a

+-I+-I~ I COPy Ai'8a
I MOVe Ai'8a
I overtay Ai'8a

C,",:19

I FkiOd FI I

I set HOtspot I
ICI8ar HOtspot I

I Write outPUt I
I QUIt I

Figure 5-4. A Custom Cursor for Navigating Large
Spaces.

Note the hotspot at the tip of the shuttle' nose. A hotspot is the single pixel
that has been designated as the "point" of the pointer.

The following mask, "mask.bits" is made by inverting the original cursor and
adding a few extra lines for shading:

5-32 Customizing Your Local X Environment

)

CIiIiI' AI I:
set AI I

m;art AI I

I-I-H-++++++++++-H-H-H-I--I-I-H-H-++++-H I CIiIiI' Ai'8a L
I-I-H-++++++++++-H-H-H-I--I-I-H-H-++++-HI setAi'8a I

I-I-H-++++++++++-H-H-H-I--I-I-H-++++++-H

I m;art Ai'8a I

I COPY Ai'8a I;
I MOVe Ai'8a 1
I ovartIly Ai'8a 1

Liii 1
Cfdii 1

I FWiid Cfdii 1

I FlOOd FI 1

I set HOtsPOt I.
ICIiIiI' HOtspotl ·

I-I-H-++++++++++-H-H-H-I--I-I-H-++++++-H I Write OUtiIUt I:
I Qili I'

Figure 5-5. A Custom Mask for Navigating Large Spaces.

You employ your custom cursor and mask bitmaps using the xsetroot client
descri bed next.

Customizing Your Local X Environment 5-33

Customizing the Root Window with 'xsetroot'
The xsetroot client enables you to customize the appearance of the root
window. You can add color and pattern to the root window, or modify the
shape of the cursor when it's in the root window.

Syntax and Options

The xsetroot client has the following syntax:

-help
-def
-cursor path/cursor path/mask
-bitmap path/bitmap
-mod x y

xsetroot -gray

-help

-def

-cursor

-bitmap

-mod

-gray

-fg

-bg

-rv

-fg color
-bg color
-rv
-solid color
-display host:display.screen

Prints a summary of the command usage.

Resets unspecified root window attributes to their default
values.

Specifies the cursor bitmap and mask bitmap to use for the
root window cursor.

Specifies a bitmap file with which to tile the root window.

Specifies a modular grid of dimensions x by y in the foreground
color, making the root window into a plaid pattern.

Specifies gray (or grey) for the color of the root window.

Specifies color as the foreground color.

Specifies color as the background color.

Swaps foreground and background colors.

5-34 Customizing Your Local X Environment

)

-solid

-display

Examples

Specifies the root window should be colored a solid color.

Specifies the host, display number and screen number of the
root window to change.

The following examples employ the bitmaps created in the last section.

Changing the Root Window Tile Pattern

To change the tile pattern of the root window to a bitmap such as the
"space.bits" bitmap, use the following line:

xsetroot -bitmap -/bits/space.bits

This line assumes that you keep your bitmaps in a subdirectory of your home
directory called bitmaps. The actual xsetroot command can be issued either
from the command line once you've started X or from a line in your . x11start
file (in which case the changes are made as XU starts).

Changing the Root Window Cursor

To change the shape of the root window cursor to a bitmap such as the
"shuttle. bits" bitmap created above, use the following line:

xsetroot -cursor -/bits/shuttle.bits -/bits/mask.bits

Again, you can issue this line either at the command-line prompt once you've
started X or include it as part of your .x11start file. Remember, the -
signifies the path to your home directory.

Customizing Your Local X Environment 5-35

Working with Fonts
The X Window System includes a variety of fonts. A font is a type style, that
is, a style in which text characters are printed. For example, the text of most
newspapers is printed in the Times Roman font while the headlines are usually
printed in Helvetica.

You will find a complete list of valid font names in the /usr/lib/Xll/fonts
directory. Use the following HP -UX command to list the names:

Is -x /usr/lib/Xll/fonts IReturnl

Although font names have extensions, usually a . snf (server natural format) or
.scf (server compressed format), you don't have to type the extension when
you specify a font.

ChOOSing Where to Specify a Font

Usually, you specify fonts in the .Xdefaults file in your home directory.
However, you can specify the font of an individual client (such as the text of
a single window) in the command line that starts the client. If you start the
client when you start Xll, the command line will be in the . xllstart file. If
you start the client from a menu, the command line will be in the . hpwmrc file.

Making All Instances of a Client Have the Same Font

By inserting a command line in the . Xdef aul ts file in your home directory,
you can make every instance of a particular client have the font that you
specify.

The syntax for the line is as follows:

client*font: fontname

The following line in your . Xdef aul ts file changes the font of every hpterm
window to hp8.8x16.

HPterm*font: hp8.8x16

Note that your . Xdef aul ts file may already contain a line specifying the font
for a client, so you only need to change the name of the font.

5-36 Customizing Your Local X Environment

)

Specifying the Font of a Window that Starts Automatically

The following line, which uses the standard command-line syntax, in your
. xl1start file overrides any font specification in the. Xdefaul ts file and
creates this particular hpterm window with an hp8.8 X 16 font.

hpterm -fn hp8. 8x 16 &

Specifying the Font of a Window that Starts from a Menu

The following line, which uses the standard menu selection syntax, in your
. hpwmrc file overrides any font specified in the. Xdefaul ts file and, when you
choose the New Window selection from the menu, creates an hpterm window
with a font of hp8.8x 16.

IINew Window ll f.exec IIhpterm -fn hp8.8x16 &11

Choosing a Font to Specify

The following table lists X Window System fonts. For best results, type the
font name exactly as it appears below.

Customizing Your Local X Environment 5-37

Table 5-14. X11 Fonts*.

Fonts
6x10 6x12 6x13 8x13 8x13bold 9x15 9x16apl

9x16bas 9x21apl 9x21bas 9x21ibm 12x21apl 12x21bas 12x28apl

12x28bas 12x28ibm a14 apl-s25 calc .12x16 calc.6x8 chp-s25

chs-s50 cr.12x20 cr.12x20b cursor cyr-s25 cyr-s30 cyr-s38
fcor-20 fg-13 fg-16 fg-18 fg-20 fg-22 fg-25
fg-30 fg-40 fgl-25 fgb-13 fgb-25 fgbl-25 fgbl-30
fgi-20 fgil-25 fgs-22 fixed fqxb-25 fr-25 fr-33
frl-25 fr2-25 fr3-25 frb-32 fri-33 fril-25 ger-s35

grk-s25 grk-s30 hbr-s25 hbr-s40 hp8 .10x20 hp8.10x20b hp8.12x15

hp8.6x13 hp8.6x13b p8.6x8 hp8 .6x8b hp8.7x10 hp8 .8x16 hp8 .8x16b

hp8.8x16i ipa-s25 isol.13 isol.13b isol.15 isol.16 isol.16b
iso1.20 iso1.20b iso 1. 8 k14 kana.10x18 kana.lOx20 kana. 12x24

kana.8x16 kana.8x18 kana14 krivo lat-s30 line .8x16 math. 18x30

math.6x8 math.8x16 met25 micro oldera pica. 18x30 plunk

r14 rot-s16 sans12 sansb12 sansi12 seriflO serif12

serifblO serifb12 serifi10 serifi12 sub subsub sup

supsup swd-s30 sym-s25 sym-s53 variable vbee-36 vctl-25
vg-13 vg-20 vg-25 vg-31 vg-40 vgb-25 vgb-31

vgbc-25 vgh-25 vgi-20 vgi-25 vgi-31 vgl-40 vgvb-31

vmic-25 vr-20 vr-25 vr-27 vr-30 vr-31 vr-40
vrb-25 vrb-30 vrb-31 vrb-35 vrb-37 vri-25 vri-30
vri-31 vri-40 vsg-114 vsgn-57 vshd-40 vtbold vtsingle

vxms-37 vxms-43 xif-s25
*Font names are shown without extensions.

Displaying a Font with 'xfd'

You can display the complete character set of any valid X Window System font
using the xfd client.

5·38 Customizing Your Local X Environment

)

Syntax and Options

The syntax for xfd is as follows:

xfd

-rv

-fg

-bg

-bf

-tl

-in

-icon

-verbose

-gray

-start

-rv
-fg color
-bg color
-bf font
-tl title
-in icon

[fontname] -icon path/bitmap
-verbose
-gray
-start charnumber
-geometry parameters
-display host:display.screen

Switches the foreground and background colors (reverse video).

Specifies the foreground color for xfd.

Specifies the background color for xfd.

Specifies font as the font to use for displaying messages at the
bottom of the xfd window.

Specifies title as the title that should appear in the title bar of
the xfd window frame.

Specifies icon as the name to use for the icon label when an
xfd client is iconified.

Specifies the path and filename of the bitmap to use as the icon
for the xfd client.

Displays additional information about a character including:
left bearing, right bearing, ascent, descent, and width.

Specifies a gray background.

Specifies that character number charnumber should be the first
character displayed (the character in the upper left corner).

Customizing Your Local X Environment 5-39

-geometry

-display

font

Using 'xfd'

Specifies the size (widthxheight) and location (±column±row)
of an xfd window.

Specifies the host, display number, and screen number on
which to display xfd.

Specifies the font to display. If an invalid font, or no font is
used, the fixed font is displayed by default.

The xfd client creates a 16 by 16 grid by default, but you can change the size
using the -geometry option. Each cell of the grid, starting at the upper left
corner, contains a character of the font named on the command line.

Currently, xfd uses the button definitions in the following table:

Table 5-15. Mouse Button Definitions for 'x'd'.

Hyou see . .. On a 3-button mouse press ... On a 2-button mouse press ...

Button 1 The left button. The left button.

Button 2 The middle button. Both buttons simultaneously.

Button 3 The right button. The right button.

5·40 Customizing Your Local X Environment

)

Use the following actions to operate the xfd client:

Table 5-16. Using the 'xfd' Client

If you want to ... Do this ...

Page forward to see characters from the Position the pointer on the xfd window
specified font that are not currently and click button 3.
displayed.

Page backward to see the previously Position the pointer in the xfd window
displayed characters. and click button 1.

Display the character set starting with a Use the -start charnumber option on
particular character. the command line when you start xfd.

Show the decimal and hexadecimal value Position the pointer in the grid for that
of a character. character and click button 2.

Show additional information about a Use the -verbose option on the
character set including left bearing, right command line when you start xfd.
bearing, ascent, descent, and width.

Example

The following command line starts an xfd window displaying the met25
(met25.scf) font in verbose mode. The name of the font appears as a reminder
in the title bar.

xfd -verbose -tl met25 -geometry 300x300-1-1 met25 t IRetwnl
The window has a 300 by 300 pixel size and appears in the lower right corner
of the screen.

Customizing Your Local X Environment 5-41

The result of issuing this command line is as follows:

character' = 36 (Ox24>:
left bearing = 0, right bearing = 19
ascent = 21, descent = 9
width = 19

Figure 5-6. The First Page of 'met25.scf'.

The small size of the geometry, combined with the large size of the font,
prohibits the entire character set from displaying on the first "page" of the
grid. You can view the remaining characters of the font by positioning the
pointer anywhere in the window and clicking button 3.

You can display information about a character by positioning the pointer on
that character and clicking button 2. The figure above shows information for
the $ character (charnumber = 36) at the bottom of the window.

5·42 Customizing Your Local X Environment

)

Using Remote Hosts
Part of the potential of the X Window System is that it enables you to be in
two places at once-sort of. You can be logged into your local system working
locally and, at the same time be logged into one or more remote hosts.

Gaining Access to Remote Hosts

To gain access to a remote host, you must have the following:

• The address and hostname of the remote host listed in your system's
/ etc/hosts file.

• A valid login (username and password) and home directory on the
remote host.

• The hostname of the remote host listed in a / etc/XO. hosts file on your
system.

• Your system listed in a .rhosts file in your home directory on the
remote host.

• The hostname of the remote host listed in a . rhosts file in your home
directory on your local system.

Setting Up a Login on a Remote Host

To set up a login on a remote host, you need to check that the remote host has
a valid internet address and host name in your system's / etc/hosts file, the file
that tells the system the address of the other systems on the network.

Also, you need to talk to the system administrator for the remote system. You
will need a username, password (if necessary), and a home directory on that
system. That way, when you log into the remote host, the remote host will
know who you are and where you belong in the directory structure.

Setting Up an 'XO.hosts' File

The remote host must have permission to connect to your display server
and display a client program. It gets this permission by being listed in the
/ etc/XO. hosts file on your system. The XO . hosts file is an ASCII file that
contains the hostnames of all remote hosts that have permission to use your

Customizing Your Local X Environment 5-43

server to display clients on your display screen. Each host name occupies a
separate line as follows:

hostl
host2
host3

You can create the file for yourself using any ASCII text editor, or you can use
the xhost client described below to dynamically add or delete hosts. Changes
made with xhosts are in effect only for the length of your X session.

Note that the "0" of XO. hosts signifies a particular display (combination of
screen, keyboard, and mouse) on your system. This is typically the console.
If you have another display configuration, you may need another host file.
For example, if you are the second display on a system, your host file would
probably be Xl.hosts. A "display" can be either physical (for example, display
o could correspond to seat 0) or "logical" (for example, if you switch between
several configurations, your display could have several logical display numbers,
one for each different configuration). For more information, see chapter 7.

Preparing a • .rhosts' File

A . rhosts file, placed in your home directory, enables any remote host listed in
the file to connect to your system using your login account without having to
go through the drudgery of formally logging in and giving a password.

Although this may be a convenience to you, it may be an undue opportunity to
someone else.

Note Depending on your situation, a . rhosts file could undermine
the security of your system and other systems on the network.
Check with your system administrator and analyze the security
needs of your situation to develop an appropriate plan.

The .rhosts file is an ASCII file containing one remote host per line as in the
following syntax:

hostl
host2
host*

5-44 Customizing Your Local X Environment

)

)

To create a . rhosts file, you should be in your home directory. Use the
following steps:

1. Start your editor and open a file called .rhosts.

2. Type the name of the remote host that you want to add.

3. Press IReturnl to move to the next line.

4. Repeat steps 2 and 3 for each remote host you want to add.

5. Check your spelling, save the file, and exit your editor.

The . rhosts file assumes that your remote username is the same as your local
user name.

Adding and Deleting Hosts with 'xhost'

The xhost client provides you with a convenient way to dynamically control
access to your local system. Using xhost, you can add or delete a remote
host's permission to access your local XlI display server.

Note that xhost only adds or deletes a remote host to or from an internal list
created at the start of an X session. It does not change the I ste/XO . hosts
file. To permanently add or subtract access permission you must edit the
I ste/XO. hosts file using an ASCII text editor such as vi.

Syntax and Options

The syntax for xhost is as follows:

xhost

host

+host

[

[+]host I
-host

~no option)

Adds host to the list of remote hosts with permission to access
your local X server.

Adds host to the list of remote hosts with permission to access
your local X server.

Customizing Your Local X Environment 5-45

-host

+

no option

Deletes host from the list of remote hosts with permission to
access your local X server.

Turns off access control, allowing any remote host to access
your local X server.

Restricts access to your local X server to remote hosts
currently listed in your local / atc/XO. hosts file.

Prints the list of remote hosts that currently have access to
your X server.

You can run xhost from the command line at any time you need to change
access to your server or to see the current list of remote hosts with access to
the server. Remember, changes you make using xhost are temporary. They
last only as long as your current X session.

Example

The following example allows the remote host hpcvfgg to access your local
display. As soon as you quit the window system, the access permission is
revoked.

xhost +hpcvfgg IReturnl

Starting Programs on a Remote Host

The "Starting Programs" section of chapter 4 covered starting remote clients
and non-clients from the command line. You can, however, start remote
programs without typing a lengthy command after the command-line prompt.

Starting a Remote Program when you start X11

One way to start a remote program, either a client or non-client, is to start
the program when you first start XU. This enables you to have the remote
program as a part of your initial environment.

To start a remote client when you start XU, you need to edit the .xllstart
file in your home directory to include one line for each remote client you want
to start. The lines are similar to the following:

ramsh host -n client -display host:display.screen [&]

5-46 Customizing Your Local X Environment

Here host is the name of the remote host. The client can be any X client. And
the -display option specifies the system, display number, and screen number
where the client is to display, typically your local system.

To start a remote non-client when you start XU, edit your .xllstart file
to include one line for each remote non-client. The line begins by starting a
remote shell (remsh), then a terminal emulation window in whiich to run the
non-client, and finally the non-client:

remsh host -n hpterm -display host:display.screen -e non-client [&]

The -e option ("e" for execute), when used with an hpterm or xterm client,
executes a command, in this case the non-client.

Note that an alternate syntax is to start an hpterm window and use the -e
option to execute a remote login (rlogin) that makes the window a terminal of
the remote host.

For example, the following lines start a remote login (non-client) and a remote
load histogram (client) on the host hpcvf aa and display the results on the
console of the local system, hpcvfbb:

remsh hpcvfaa -n /usr/bin/Xll/xload -display hpcvfbb:O.O t
hpterm -title IIhpcvfaa loginll -e rlogin hpcvfaa t

Starting a Remote Program from a Menu

Starting a remote program from a menu requires editing the .hpwmrc to
include the proper line to start the program. The process is similar to starting
the program from. xllstart.

Use a line similar to the following to start a remote client:

selection f . exec II remsh host -n client -display h:d.s til

To start a remote non-client, use the above syntax, adding a -e option as the
last option before the t. Alternately, create an hpterm window and use -e
rlogin host to start a remote login.

The explanation of this syntax is the same as the syntax used in .xllstart
with the exception of selection, the selection that appears on the menu, and
f . exec, the HP Window Manager function that starts a process, in this case
an hpterm window.

Customizing Your Local X Environment 5-47

Example

The following example starts a login on remote host hpcvfaa. The login
process is initiated by choosing the "hpcvfaa Login" selection from the root
menu.

I Root Menu Description
Menu DefaultRootMenu
{

"Root Menull

IINew Window II
IIhpcvfaa Loginll
IIShuffle Upll
IIShuffle Downll

IIRefreshll

no-label
IIRestart ll

}

Where To Go Next

f.title
f.exec IIhpterm &;11

f . exec IIhpterm -e rlogin hpcvfaa &;11

f.circle_up
f.circle_down
f.refresh
f.separator
f.restart

This chapter has discussed customizing the operation of your window system
environment to suit your personal needs. There is additional customization
that you can perform beyond what was presented here. Some of it is a little
more difficult to comprehend and it would be a good idea to consult with your
system administrator before attempting to implement some of the changes.

If you are satisfied with the current look and performance of your window
system environment, you may want to stop here, use the system for a few days
or weeks, and then perhaps "fine tune" it based on your experience.

On the other hand, if you are interested in more extensive customizations to
the HP Window Manager, in special environment configurations, in printing, or
in graphics, you should read chapters 6, 7, 8, and 9 respectively.

If your interest is in programming, turn to one of the programming manuals.

5-48 Customizing Yo~ Local X Environment

6
Managing Windows

Managing windows is the job of the window manager. This chapter begins by
briefly mentioning the clients related to window management. But most of
the chapter discusses the nitty-gritty details of how to use the HP Window
Manager, its resources, and functions to manage your window environment.

It is not necessary to read this chapter to use the window manager or X, but
if your management needs go beyond adding and deleting menu selections,
browsing this chapter should prove interesting. After discussing the clients, the
chapter reviews some familiar aspects of window control, but becomes more
technical once these basics have been covered.

The chapter organizes window manager resources and functions into the
following task-oriented topics:

• Managing the general appearance of window frames.

• Working with icons.

• Managing window manager menus.

• Using the mouse.

• Using the keyboard.

• Controlling window size and placement.

• Controlling resources with focus policies.

• Matting clients.

Managing Windows 6-1

Clients That Help You Manage Windows
Of the clients listed in the reference section of this manual, five are directly
related to window management:

• resize

• xrefresh

• xwininfo

.uwm

• hpwm

Resetting Environment Variables with 'resize'

The resize client resets three environment variables: TERM, LINES, and
COLUMNS. This enables a shell to reflect the current size of its window.

Don't confuse resize, the client, with f .resize the window manager function.
The f .resize function changes the size of a window, but does not reset any
environment variables. The resize client, on the other hand, does not change
the size of a window, but it does reset the environment variables. Resetting the
environment variables enables non-client programs to adjust their output to the
window's new size.

When to Use 'resize'

Use resize whenever you resize a window and want a non-client program
running in that window to reflect the window's new size. The resize client is
typically used as an argument to the HP- UX eval command.

Syntax and Options

The syntax for resize is as follows:

-u

-c

resize {=~}

Resets the environment variables for sh and ksh shells.

Resets the environment variables for csh shells.

6-2 Managing Windows

)

)

Example

To see what the current COLUMN and LINES settings are, type the following
command:

resize IReturnl

After you have resized a window either by dragging the window frame or by
choosing the "Size" selection from the system menu, you can reset the LINES,
and COLUMN environment variables to reflect the new window size by issuing
the following command:

eval 'resize' IReturnl

If you find yourself typing the above command too often, you can make things
a little easier on yourself. If you use csh, try using an alias. The following line
in your. aliasbin file enables you to run resize by typing xr.

alias xr 'set noglob; eval 'resize"

If you use sh or ksh create an xr function like the following:

xr() {eval 'resize';}

Repainting the Screen with 'refresh'

The xrefresh client "repaints" the screen or a specified portion of the screen.
It does this by mapping, then immediately unmapping, a window over the area
to be repainted. This obscuring-unobscuring causes the area to be redrawn.
Repainting a screen removes the "graphics litter" that occasionally disfigures a
screen.

The xrefresh client performs a similar task to the f . refresh window
manager function. However, the xrefresh client, because of its options, is
more versatile.

When to Use 'xrefresh'

You can use xrefresh from the command line of any terminal window and,
using the -display option, you can repaint any display.

Managing Windows 6-3

Syntax and Options

The syntax for xrefresh is as follows:

xrefresh

-white

-black

-solid

-root

-none

-geometry

-display

Example

{

-white }
-black
-solid color
-root
-none

-geometry width x height±column±row
-display host:display.screen

Uses a white window to map the screen.

Uses a black window to map the screen.

Uses a color colored window to map the screen.

Uses the root window to map the screen.

Uses a transparent window to map the screen (default).

Repaints a width x height region located at ±column±row on
the screen (dimensions are in pixels).

Specifies the screen to refresh.

The following example illustrates using xrefresh from the command line to
repaint the upper left quarter of the screen.

xrefresh -white -geometry 800x400+1+1

Getting Window Information with 'xwininfo'

The xwininfo client is a utility program that displays useful information about
windows.

Syntax and Options

The syntax for xwininfo is as follows:

6-4 Managing Windows,

-help

{ =!!:: name}
-root

-int
-tree

xwininfo -stats
-bits

-help

-id

-name

-root

-int

-tree

-stats

-bits

-events

-sIze

-wm

-all

-display

-events
-size
-WIn

-all
-display host:display.screen

Prints a summary of the command usage.

Specifies the target window by window id.

Specifies the target window by name.

Specifies the root window as the target .

Displays window id (as decimal), location, size, depth, and
other information.

Displays ids and names of the root, parent, and child windows.

Displays window id (as hexadecimal) , location, size, depth, and
other information.

Displays information about bit and storage attributes.

Displays event masks of the target window.

Displays sizing information about the target window.

Displays the window manager hints for the target window.

Displays all available information about a window.

Specifies the host, display, and screen to target.

Managing Windows 6-5

Example

This example illustrates the result of issuing the following command:

xwininfo -stats IReturnl

Once you issue the command, select a window as the target of your inquiry by
moving the pointer into that window and clicking the select button.

xwininfo ==> Window id: Ox10007f (has no name)
==> Upper left X: 651
==> Upper left Y: 350
==> Width: 626
==> Height: 653
==> Depth: 8
==> Border width: 0
==> Window class: InputOutput
==> Window Map State: IsViewab1e

Managing Windows with 'uwm'

The uwm client provides an alternative to managing windows with the HP
Window Manager. Windows managed with uwm have variable width borders
but do not have the functional window frame or 3-D appearance of hpwm­
managed windows.

The uwm window manager uses a single generic menu displayed on the root
window to control the size, location, iconification, and other basic operations of
the objects on the root window. Like hpwm, uwm allows the moving and resizing
of windows without recourse to a menu.

The uwm client starts from /usr/lib/Xll/sys .xllstart or $HOME/ .xllstart
as part of the start procedure after you issue the xllstart command. It
receives its initial configuration information from the file $HOME/ . uwmrc, if that
file is available, or from /usr/lib/Xll/uwm/system. uwmrc if it isn't. If no
configuration file can be found, built-in default values are used.

When to Use 'uwm'

You can use uwm as an alternative to hpwm. Typically, you edit the . xllstart
file in your home directory so that uwm is the first client started when you start
XI1.

6·6 Managing Windows

Syntax and Options

The syntax for uvm is as follows:

uvm [-f filename]
-display host:display.screen

-f N ames a file other than . uwmrc from which to read initial
configuration information.

-display Specifies the screen to use.

Example

You can call uvm from. x11start in your home directory by making the
following two modifications:

hpvm $«) &

uvm $(0 &

Delete this line, or comment it out
Insert this line

) Managing Windows with the HP Window Manager

The Hewlett-Packard Window Manager (hpvm) is an Xll client that manages
the appearance and behavior of objects on the root window. You control hpvm
and its management operations using a mouse, a keyboard, and a functional
window frame similar to Microsoft's Presentation Manager. Additionally, hpvm
has a root menu to assist you in the general control of the root window.

The hpvm client receives configuration information from three files:
/usr/lib/Xll/sys.Xdefaults, /usr/lib/Xll/system.hpwmrc,and
/usr/lib/X11/app-defaults/Hpvm. You can copy the first two of these files to
your home directory, as . Xdefaul ts and .hpwmrc respectively, and edit them
to create a window manager that exactly fits your needs.

How to create your own personal window manager is the subject of the rest of
this chapter.

) When to Use 'hpwm'

The HP Window Manager is the default window manager for your X Window
System. It is started from $HOME/ . x11start when you start XI1. If that file
doesn't exist, hpvm is started from /usr/lib/X11/sys .x11start.

Managing Windows 6-7

Syntax and Options

The syntax for hpwm is as follows:

hpwm [-diSPlay host:d~sPlay.screen]
-xrm resotlrcestrmg

-display Specifies the screen to use.

-xrm Specifies using the named resource on starting.

Example

The following line in . xl1start in your home directory starts hpwm.

hpwm $~ .t

The $~ passes the window manager options specified on the xllstart
command line.

Managing the General Appearance of Window Frames
In chapter 5, you read about /usr/lib/Xl1/sys.Xdefaults and .Xdefaults.

The sys. Xdefaul ts file is the system file that controls the X environment of
users who don't have a .Xdefaults file in their home directory .. Xdefaults
overrides the system-wide effects of sys. Xdefaults, enabling you to customize
your own environment while not interfering with the environments of others.

By editing .Xdefaults, you can control the general appearance of the window
frames in your environment. If you are a system administrator, you can
control the system-wide general appearance of window frames by editing
/usr/lib/Xll/sys.Xdefaults.

Three aspects of the general appearance of window frames are under your
control.

Color The color of foreground, background; and top, bottom, and
side shadows.

6-8 Managing Windows

)

Tile

Font

The mixture of foreground and background color that
composes the pattern of the frame surface.

The style (including size) of the text characters in the title bar,
menus, and icon labels.

To control color, tile pattern, or fonts, you specify a value for the appropriate
window manager resource. A resource controls an element of appearance or
behavior. Resources are always named for the elements they affect.

Minimize

Cursor

Promp

Figure 6-1. An HP Window Manager Frame Showing Frame Elements.

For example, suppose you want to color the background of your window frame
(an element of appearance) Firebrick red. You would edit .Xdefaults making
Hpwm*background: (the resource controlling the background color of the
frame) the color Firebrick (a color value). The line in .Xdefaults would read
as follows:

Hpwm*background: Firebrick

Managing Windows 6-9

Coloring Window Frames

You can use any of the standard XlI colors listed in /usr/lib/Xl1/rgb. txt
to color frame elements. Additionally, you can create your own colors using
hexadecimal values. Frame elements and resources exist for inactive windows
(any window not having the current keyboard focus) and for the active
window (the window having the current keyboard focus). This enables you to
distinguish the active window by giving it special "active window" colors.

Coloring Individual Frame Elements

The following table lists the individual elements of inactive and active window
frames, and the resources that control their color.

Table 6-1. Coloring Window Frames with HP Window Manager Resources.

To color this ... Use this resource . . . The default value is ...

Background of inactive background white
frames.

Left and upper bevel of topShadowColor white
inactive frames.

Right and lower bevel of bottomShadowColor black
inactive frames.

Foreground (title bar text) toreground black
of inactive frames.

Backgrmmd of the active activeBackground background
frame.

Left and upper bevel of the activeTopShadowColor topShadowColor
active frame .

Right and lower bevel of activeBottomShadowColor bottomShadowColor
the active frame.

Foreground (title bar text) activeForeground foreground
of the active frame .

Coloring Frame Elements Automatically

Additionally, two resources exist that enable you to circumvent specifying the
individual colors of each and every frame element.

6-10 Managing Windows

)

makeColors Uses the background color of the inactive window to
generate colors for the other inactive window frame
elements, giving the frame a 3-D look.

makeActiveColors Uses the background color of the active window to
generate colors for the other active window frame
elements, giving the frame a 3-D look.

Exactly which elements you color with makeColors and makeActiveColors
depends on which of three values you give the resources. The resource values
and their effect on frame elements is as follows:

Table 6-2. The Values to Use for Automatically Coloring Frame Elements.

To color these elements . .. Use this value ...

All bevel elements and the foreground (tile elements for top and all
bottom shadows are set to foreground).

All bevel elements. shadow

No elements automatically colored. none

Example

For example, the following lines in the .Xdefaults file in your home directory
give the window manager frame a maroon foreground and a gray background.
The makeColors line uses the background color to generate colors for the top
and bottom shadow elements so that a pleasing 3-D effect is achieved.

Hpwm*foreground: Maroon
Hpwm*background : Gray
Hpwm*makeColors: shadow

Changing the Tile of Window Frames

A tile is a rectangle that provides a surface pattern or a visual texture. The
concept is analogous to the use of ceramic tiles to provide a floor or countertop
with a pattern or texture.

Managing Windows 6-11

Generally, the fewer the number of colors your display can produce, the more
important tiling will be to you. This is because tiling provides you with a way
to "mix" foreground and background colors into a third color "pattern."

For example, if you had a monochrome display (two colors-black and white),
you could tile the window frames of your X environment in shades of gray to
achieve a pleasing 3-D look.

The HP Window Manager has resources that enable you to tile the frame
background and bevels for both inactive and active windows.

Table 6-3. Tiling Window Frames with Window Manager Resources.

To tile this ... Use this resource ... The default value is . . .

Background of inactive backgroundTile 25_ foreground
frames.

Right and lower bevels of bottomShadowTile foreground
inactive frames.

Left and upper bevels of topShadowTile 50_ foreground
inactive frames.

Background of the active activeBackgroundTile foreground
frame.

Right and lower bevels of activeBottomShadowTile bottomShadowTile
the active frame.

Left and upper bevels of activeTopShadowTile topShadowTile
the active frame .

6-12 Managing Windows-

The following table lists the acceptable values for tile resources:

Table 6-4. The Values to Use for Tiling Window Frames.

To tile an element this color ... Use this value ...

The foreground color. foreground

The background color. background

A mix of 25% foreground to 75% background. 25_ foreground

A mix of 50% foreground to 50% background. 50_ foreground

A mix of 75% foreground to 25% background. 75_ foreground

In horizontal lines alternating between the foreground and horizontaL tile
background color.

In vertical lines alternating between the foreground and background verticaL tile
color.

In diagonal lines slanting to the right alternating between the slanL right

) foreground and background color.

In diagonal lines slanting to the left alternating between the slant_ left
foreground and background color.

)

Managing Windows 6-13

The following figure illustrates the valid tile values:

I background

horizontaI_ti Ie

-

Figure 6-2. Valid Tile Values.

Specifying a Different Font for the Window Manager

The default font for the text of the HP Window Manager is the fixed font.
However, you can use the font resource to specify a different font if you desire.
The font resource can use any valid Xll font as its value. Valid fonts are
contained in the /usr/lib/Xll/fonts directory.

The following table lists the valid Xll fonts.

6-14 Managing Windows

)

Table 6-5. Valid X11 Fonts*.

Fonts

6x10 6x12 6x13 8x13 8x13bold 9x15 9x16apl
9x16bas 9x21apl 9x21bas 9x2libm 12x21apl 12x21bas 12x28apl
12x28bas 12x28ibm a14 apl-s25 calc.12x16 calc.6x8 chp-s25
chs-s50 cr.12x20 cr.12x20b cursor cyr-s25 cyr-s30 cyr-s38
fcor-20 fg-13 fg-16 fg-18 fg-20 fg-22 fg-25
fg-30 fg-40 fg1-25 fgb-13 fgb-25 fgb1-25 fgb1-30
fgi-20 fgi1-25 fgs-22 fixed fqxb-25 fr-25 fr-33
frl-25 fr2-25 fr3-25 frb-32 fri-33 fri1-25 ger-s35
grk-s25 grk-s30 hbr-s25 hbr-s40 hp8.10x20 hp8.10x20b hp8.12x15
hp8.6x13 hp8 .6x13b p8.6x8 hp8.6x8b hp8 .7x10 hp8.8x16 hp8.8x16b
hp8.8xl6i ipa-s25 iso1.13 iso1.13b iso1.15 iso1.16 iso1.16b
iso1.20 iso1.20b iso1.8 k14 kana.10xl8 kana.10x20 kana. 12x24
kana.8x16 kana.8xl8 kana14 krivo lat-s30 line.8x16 math.18x30
math.6x8 math.8x16 met25 mIcro oldera pica. 18x30 plunk
r14 rot-sl6 sans12 sansb12 sansi12 seriflO serifl2
serifblO serifb12 serifi10 serifi12 sub subsub sup
supsup swd-s30 sym-s25 sym-s53 variable vbee-36 vctl-25
vg-13 vg-20 vg-25 vg-31 vg-40 vgb-25 vgb-31
vgbc-25 vgh-25 vgi-20 vgi-25 vgi-31 vgl-40 vgvb-31
vmic-25 vr-20 vr-25 vr-27 vr-30 vr-31 vr-40
vrb-25 vrb-30 vrb-31 vrb-35 vrb-37 vri-25 vri-30
vri-31 vri-40 vsg-114 vsgn-57 vshd-40 vtbold vtsingle
vxms-37 vxms-43 xif-s25
*Font names are shown without extensions.

The Syntax for Declaring Resources

The above general appearance resources for the HP Window Manager and their
values are specified in sys.Xdefaults (system-wide) or .Xdefaults (your
personal environment). The syntax you use differs depending on whether
you want the resource to control the general appearance of an element or the
general appearance of that element for a particular object.

Managing Windows 6-15

For example, the syntax you use to specify a frame background of Wheat is
different from the syntax you use to specify that only menus have a background
of Wheat.

The Syntax for the General Appearance of Elements

Use the following syntax in sys . Idefaults or .Idefaults to specify the
general appearance of frame elements:

Hpwm* resource: value

For example, if you want the foreground and background of inactive
window frames to be the opposite of the foreground and background of the
active window frame, and you choose the colors SteelBlue for background
and Violet Red for foreground, you would have the following lines in your
. Idef aul t s file.

Hpwm*makeColors:
Hpwm*baekground:
Hpwm*foreground:
Hpwm*aetiveBaekground:
Hpwm*aetiveForeground:

none
SteelBlue
VioletRed
VioletRed
SteelBlue

The Syntax for Window Frame Elements of Particular Objects

You can specify the general appearance of window frame elements for three
particular objects.

• Menus (includes both system and root menus).

• Icons (includes the frame elements of all icons).

• Clients (includes the frame elements of all clients).

This gives you the ability to select a different color or font for a particular
object, perhaps menus, while the other objects (icons and fonts) remain the
same. To do this, use the following syntax:

{
menu }

Hpwm* ie~n *resource: value
ell.ent

6·16 Managing Windows

)

)

For example, if you want the general appearance of the clients in your
environment to be as above, SteeIBlue and VioletRed, but want your menus to
be different, you could add the following lines to .Xdefaults.

Hpwm*makeColors:
Hpwm*background:
Hpwm*foreground:
Hpwm*activeBackground:
Hpwm*activeForeground:

Hpwm*menu*background:
Hpwm*menu*foreground:

Working with Icons

none
SteelBlue
VioletRed
VioletRed
SteelBlue

SkyBlue
White

Icons provide a handy way to straighten up a cluttered workspace. They also
provide you with a great tool for efficient multi-processing. For example, you
could open several windows, start processes in each, and then iconify them all
letting the processes run their individual courses while you sit back and read
your electronic mail and work in an editing window.

Studying Icon Anatomy

Icons consist of two parts. Like the other objects that appear on the root
window, you can configure the appearance of all icons in sys .Xdefaults, for
system-wide icons, or .Xdefaults, for your own personal icons .

• A text label.

• A graphic image.

Managing Windows 6·17

I-li ndow
---Manager

Frame

---.image

---Lc!lbel

Figure 6-3. An Icon Has Two Parts.

The Label

An icon label is the text beneath an icon image. A label is usually supplied
by the client (via the WM_ICON_NAME window property), but some clients, for
example hpterm and xclock, provide a command-line option enabling you to
write in your own label.

Icon labels are truncated on the right to the width of the icon image, so if you
use small images, don't get too windy with your labels.

The Image

An icon image (a bitmap) is the actual graphic illustration of the icon. An
image can come from anyone of the following three sources:

client A client can use the WM_HINTS window property to specify
either an icon window or a bitmap for the window manager to
use as the icon image.

6-18 Managing Windows

)

)

user

default

You, the user, can specify an icon image using the
Hpwm*iconlmage or Hpwm*default*iconlmage resources.

The window manager will use its own built-in default icon
image if an image is not specified elsewhere.

The window manager uses the following order of precedence in choosing an icon
image:

1. A specific user-supplied icon image resource.

2. A client-supplied icon window.

3. A client-specified icon image.

4. A default icon image.

Manipulating Icons

You manipulate icons similar to the way you manipulate windows, by
positioning the pointer on the icon and clicking, double-clicking, or dragging
a mouse button (depending on what you want to happen). You can also
use icons in situations where you want to start several processes when you
start XlI , but don't want to clutter your screen with windows you won't
immediately use; simply start the processes as icons.

Managing Windows 6-19

Operating on Icons

The following table lists the operations you can perform on icons:

Table 6-6. You Can Manipulate Icons in These Ways.

Position the pointer
To do this .. . on the icon and ... What this does is .. .

Turn an icon into a Double-click the Restores the window to its former size
window. select button. and location.

Move an icon Drag the select Moves a wire frame with the pointer
around on the root button. showing where the icon will be moved.
window.

Move an icon to the Click the select Moves a partially concealed icon to the
top of the window button. front of the root window.
stack.

Select an icon and Click the select Gives an icon keyboard focus and
display its system button, then press displays the icon's system menu. The
menu . ILeft Sh1ftIIEsc:I· system menu for an icon is exactly

like the system menu of its associated
window. No window is active while the
icon has the keyboard focus .

Starting Clients as Icons

You can start clients as icons when you start Xl!. This gives you the benefit
of having the client only a double-click away, while not cluttering your display
with windows you're not using.

Some clients have iconify options, like hpterm's -iconic option. As you start
the client from a command line in your .xllstart or .hpwmrc file, adding
the iconify option to the line enables you to start the client but to display it
initially as an icon. Later, when you're ready to use the client, you double-click
on the icon and you're ready to go.

6-20 Managing Windows

Controlling Icon Placement

By default, the window manager places icons in the lower left corner of the
root window. Successive icons are placed in a row proceeding toward the right.
Icons are prevented from overlapping. An icon will be placed in the position it
last occupied if no icon is already there. If that place is taken, the icon will be
placed at the next free location.

The following three resources enable you to control the placement of icons:

Table 6-7. Controlling Icon Placement with Window Manager Resources.

To specify this . .. Use this resource .. . The default value is .. .

A placement scheme for iconPlacement left bottom
Icons.

The distance between iconPlacementMargin the default space between
screen edge and icons. Icons

Automatic icon placement iconAutoPlace True
by the window manager.

Changing Screen Placement

You can place icons or you can have the window manager do it for you. The
window manager will place icons automatically, based on the placement scheme
you specify with the iconPlacement resource, if you give iconAutoPlace a
value of "True." If you would rather determine icon placement without help
from the window manager, give iconAutoPlace a value of "False."

Managing Windows 6-21

The following table lists the icon placement schemes available to you:

Table 6-8. Schemes for Automatic Placement of Icons.

If you want this icon placement ... Choose this scheme ...

From left to right across the top of the screen. left top

From right to left across the top of the screen. right top

From left to right across the bottom of the screen. left bottom

From right to left across the bottom of the screen. right bottom

From bottom to top along the left of the screen. bottom left

From bottom to top along the right of the screen. bottom right

From top to bottom along the left of the screen. top left

From top to bottom along the right of the screen. top right

The Syntax for Icon Placement Resources

The resources that place icons share a common syntax:

Hpwm*resource value

For example, if you want automatic placement of icons starting at the top of
the screen and proceeding down the right side, you would have the following
lines in your .Xdefaults file:

Hpwm*iconPlacement: top right
Hpwm*iconAutoPlace: True

Specifies the placement scheme.
Specifies automatic placement.

Controlling Icon Appearance and Behavior

The HP Window Manager offers you a number of resources to control the
specific appearance and behavior of icons. Among these are resources that
enable you to select icon decoration, control icon size, and create new icon
pixmaps.

6-22 Managing Windows

)

Selecting Icon Decoration

Using the iconDecoration resource, you can select exactly what parts of an
icon you want to display:

Table 6-9. The Values That Control the Appearance of Icons.

IT you want an icon that looks like this ... Use this value ...

Just the label. label

Just the image. image

Both label and image. label image

The label of an active icon isn't label activelabel
truncated.

Sizing Icons

Each icon image has a maximum and minimum size. The HP Window
Manager has both default sizes as well as maximum and minimum allowable
sizes.

Table 6-10. The Maximum and Minimum Sizes for Icon Images.

Maximum Size Mininmm Size

Default 64 x 64 pixels 32 x 32 pixels

Allowable 128x128 pixels 16 x 16 pixels

If you plan to do a lot of work with icons, remember to keep your images
within the maximum and minimum limits. How the window manager treats
an icon depends on the size of the image in relation to the maximum and
minimum sizes.

Managing Windows 6-23

Table 6-11. Icon Size Affects Icon Treatment.

H an icon image is ... The window manager will ...

Smaller than the minimum size. Act as if you specified no image.

Within maximum and minimum limits. Center the image within the maximum
area.

Larger than the maximum size. Clip the right side and bottom of the
image to fit the maximum size.

You can use the following two resources to control icon image size:

Table 6-12. Controlling Icon Image Size with Window Manager Resources.

To specify this ... Use this resource . . .

Maximum size of an icon image. iconImageMaximum

Minimum size of an icon image. iconImageMinimum

If you figure icon size based on how much screen "real estate" you can afford
to devote to icon space, bear in mind that the overall width of an icon is the
image width plus border padding and the image height is the image height plus
border padding.

Using Custom Pixmaps

When you iconify a client, either the client supplies its own icon image, the
window manager supplies a default image, or you supply an image of your own.

Some icon images you will obtain as "ready-made" bitmaps. At other times,
you may want to use the hi tmap client, discussed in chapter 5 to create one of
your own. In either case, to use your bitmap, you only need to tell the window
manager where the bitmap is located.

To tell the window manager to use a particular bitmap for an icon image, you
use the iconlmage resource. The value that follows this resource is the path to
the bitmap file you want to use. Note that, if specified, this resource overrides
any client-specified image.

6·24 Managing Windows

)

)

You also have the ability, using the bitmapDirectory resource, to direct
the window manager to search a specified directory for bitmaps. The
bi tmapDirectory resource causes the window manager to search the specified
directory whenever a bitmap is named with no complete path. The default
value for bitmapDirectory is /usr/include/Xll/bitmaps.

The Syntax for Resources that Control Icon Appearance

The resources that control icons appearance have the following syntax:

Hpwm*resource: value

For example, you could use bitmapDirectory to search a bitmap subdirectory
in your home directory for custom bitmaps by inserting the following line in
your .Xdefaults file:

Hpwm*bitmapDirectory: /users/yourusername/bitmap

Additionally, the iconlmage resource has two other syntaxes. Which of the
three you use depends on which of the following statements is true:

Table 6-13. The 'icon Image' Resource Has Three Syntaxes.

If this is true . .. Use this syntax ...

You want to use the image Hpwm*iconlmage: path/bitmap
for all clients for which you
don't otherwise specify an
image. All these clients
will have the same image.

You want to use the image Hpwm* clientclass. iconlmage : path/bitmap
only for a specific class of
clients.

You want to use the image Hpwm*defaults*iconlmage: path/bitmap
as the default image
whenever the client class
isn't known.

For example, if you want to use your own happyface bitmap for hpterm
windows and see a complete label whenever any icon is active, you would have
the following lines in your . Xdef aul ts file:

Managing Windows 6-25

Hpwm*Hpterm*iconlmage: /users/yourusername/Bitmaps/face.bits
Hpwm*iconDecoration: label activelabel

Coloring Icons by Client Class

As it does for window frames, the HP Window Manager supplies a number of
resources that enable you to specify the colors of icon elements.

Coloring Icon Elements Individually

The following table lists icon image elements and the resources that control
their color.

Table 6-14. Coloring Icons by Client Class with Window Manager Resources.

To color this .. . Use this resource . . .

Icon image background . iconlmageBackground

Left and upper bevel of icon image. iconlmageTopShadowColor

Right and lower bevel of icon image. iconlmageBottomShadowColor

Icon image foreground. iconlmageForeground

To color these elements individually, you must include another icon resource,
iconColors, in your .Xdefaults file. If the value of iconColors is "True," the
above colors are used to color the icon image. If the value for iconColors is
"False," the default colors are used to color the icon image. The default value
for iconColors is "False."

If you do not choose to color an element of an icon image, the window manager
will use default values. It gets these values from either of the two following
lines:

Hpwm* resource: color Colors every instance of an element.

Hpwm* icon* resource: color Colors only this element of icons.

You can find these lines in the .Xdefaults and sys.Xdefaults files.

6·26 Managing Windows

)

)

When making changes, don't confuse an element (foreground,
background, topShadowColor) with a resource (iconlmageForeground,
iconlmageBackground, iconlmageTopShadowColor).

Coloring Icon Elements Automatically

Another resource enables you to color icon elements automatically, thus
avoiding the need of specifying the colors individually.

The makelconColors resource uses the iconlmageBackground color to
generate colors for the other icon image elements, giving the icon a 3-D look.

Exactly which elements you color with makelconColors depends on which of
three values you give the resource. The resource values and their effect on an
icon image elements are as follows:

Table 6-15. The Values to Use for Automatically Coloring Frame Elements.

To color these elements ... Use this value . ..

All bevel elements and the foreground (tile elements for top and all
bottom shadows are set to foreground).

All bevel elements. shadow

No elements automatically colored. none

Changing the Tile of Icon Images

The HP Window Manager also has resources that enable you to tile the bevels
of icon images.

Table 6-16. Tiling Icon Images with Window Manager Resources.

To tile this ... Use this resource . . .

Right and lower bevels of an icon image. iconlmageBottomShadowTile

Left and upper bevels of an icon image. iconlmageTopShadowTile

Managing Windows 6-27

Default values for these resources are the bottom and top shadow tiles,
respectively as specified in . Xdefaul ts or sys. Xdefaul ts by either an
Hpwm*iconlmageTile or an Hpwm*icon*tile entry.

The Syntax for Icon Coloring Resources

The resources that color icons can have any of three different syntaxes.

The first syntax is the most specific. You can use it to specify not only a
specific resource and color, but a specific client class to which to apply the
resource. The colors you specify with this resource take precedence over any
other specification for this resource.

Hpwm* clientclass* resource: color

The second syntax enables you to specify a resource and value generally across
any and all clients. An example of proper use would be to ensure that all your
icon backgrounds were the same color, a good thing for consistency.

Hpwm*resource color

The third syntax is a default syntax. Using it you can specify that any client
that is of unknown class will have the color you select.

Hpwm*defaul t*resource color

Managing Window Manager Menus
Menus offer an easy way to get the system to do something for you. Most
new users, while the ideas of "entering commands" and "arguments" to the
"operating system" is totally foreign to them, can readily appreciate the
concept of choosing a selection from a menu.

6-28 Managing Windows

)

)

Default Menus

The HP Window Manager comes with two default menus:

• The System Menu.

• The Root Menu.

The default system menu is specified in /usr/lib/Xll/system.hpwmrc and in
your home directory in . hpwmrc by the following lines:

Menu DefaultSystemMenu Function type and name for system menu.
{

}

Restore
Move
Size
Minimize
Maximize
Lower
Close

f.normalize
f.move
f.resize
f.minimize
f.maximize
f.lower
f.kill

Normalizes icon or maximized window.
Moves window around screen.
Changes window size.
Changes window into icon.
Enlarges window to cover screen.
Lowers window to bottom of stack.
Closes window by killing its process.

The default root menu is specified in the same files by the following lines:

Menu DefaultRootMenu

{

"Root Menu" f.title
"New Window" f.exec "hpterm til
"Start Clock II f.exec "xclock til
"Start Load" f.exec "xload til
"Shuffle Up II f.circle_up
"Shuffle Down" f.circle_down

"Refresh" f.refresh
no-label f . separator

"Restart" f.restart
}

Function type and name for
root menu.

Gives root menu's title.
Starts hpterm client.
Starts xclock client.
Starts xload client.
Lifts window to top of stack.
Lowers window to bottom of
stack.
Repaints root window.
Draws line across menu.
Restarts window manager.

By default, the system menu displays when you do the following operations:

• Click the select button on a window frame's system menu button.

Managing Windows 6-29

• Click the menu button anywhere on a window frame .

• Press ISh1ftilEsci with the pointer in a window.

By default, the root menu displays when you click the menu button on the root
window.

You can modify either menu to suit the specific needs of your application;
however, for the sake of the consistency of window operation, it's usually better
to modify the root menu and keep the system menu the same.

Modifying Menu Selections and Their Functions

All window manager menus, regardless of the mechanism that calls them to the
screen, have the same syntax.

Menu Syntax

Menu MenuName
{

}

[

Selectionl function [arguments] 1
selection2 function [arguments]
selection3 function [arguments]
selection * function [arguments]

Each line identifies a selection name followed by the function to be done if that
selection is chosen. The order of the selections is the order of their appearance
when you display the menu. A selection name may be either a character string
or a bitmap.

Modifying Selections

Any character string containing a space must be enclosed in double quotes
(""); single-word strings don't have to be enclosed, but it's probably a good
idea for the sake of consistency. An alternate method of dealing with two-word
selection names is to use an underbar (_) in place of the space.

You can create a bitmap with the bitmap client and use it as a selection name.
The syntax for doing this is as follows:

6·30 Managing Windows

)

)

~/ path! bitmapfile function [argument]

Note The at-sign (@) in the above line. The at-sign tells the window manager
that what follows is the path to a bitmap file.

Modifying Functions

Each function operates in one or more of the following contexts:

root

window

icon

Operates the function when the root window is selected.

Operates the function when a client window is selected. Some
functions operate only when the window is in its normalized
state (f.maximize), or its maximized or iconified state
(f.normalize) .

Operates the function when an icon is selected.

Additionally each function is operated by one or more of the following devices:

• Button.

• Key.

• Menu.

Any selection that uses an invalid context, an invalid function, or a function
that doesn't apply to the current context is grayed out. This is the case with
the "Restore" selection of a terminal window's system menu or the "Minimize"
selection of an icon's system menu.

valid I The following table lists the valid functions for the HP Window Manager.

Managing Windows 6-31

Table 6-17. Valid Window Manager Functions.

Functions Contexts Devices

Name Description Root Icon Window Button Key Menu

f.beep Causes a beep to ..; ..; ..; ..; ..; ..;
sound.

f.circle.. down Puts window on ..; ..; ..; ..; ..; ..;
bottom of stack.

f.circle.. up Puts window on top of ..; ..; ..; ..; ..; ..;
stack.

f.exec Uses /bin/sh to ..; ..; ..; ..; ..; ..;
execute a command.

f.focus_ color Sets colormap focus ..; ..; ..; ..; ..; ..;
when colormap focus
policy is explicit.

Uocus_ key Sets keyboard input ..; ..; ..; ..; ..; ..;
focus when keyboard
focus policy is explicit .

f.kill Terminates a client's ..; ..; ..;
connection to server.

6-32 Managing Windows

Table 6-17a. Valid Window Manager Functions (continued).

Functions Contexts Devices

Name Description Root Icon Window Button Key Menu

f.lower Lowers a window to V V V V V
bottom of stack.

f.maximize Enlarges a window to V V V V V
its maximum size .

f.menu Associates a menu V V V V V V
with a selection or
binding.

f.minimize Changes a window V V V V
into an icon .

f.move Enables the interactive V V V V V
moving of a window.

f.next_ cmap Installs the next V V V V V V
colormap in the
window with the
colormap focus.

f.next_ key Sets keyboard focus V V V V V V
policy to the next
window jicon in the
stack.

f.nop Does no function . V V V V V V
f.normalize Displays a window in V V V V V

normal size.

f.prev_ cmap Installs the previous V V V V V V
color map in the
window with the
colormap focus .

)

Managing Windows 6-33

Table 6-17b. Valid Window Manager Functions (continued).

Functions Contexts Devices

Name Description Root Icon Window Button Key Menu

f.prev_ key Sets the keyboard ..; ..; ..; ..; ..; ..;
input focus to the next
window /icon in the
stack.

f.post_ smenu Posts the system ..; ..; ..; ..; ..;
menu.

f.quit_ hpwm Terminates HP ..; ..;
Window Manager, but
not x.

f.raise Lifts a window to the ..; ..; ..; ..; ..;
top of the window
stack.

f.raise_ lower Raises a partially ..; ..; ..; ..; ..;
concealed window;
lowers an unconcealed
window.

f.refresh Redraws all windows. ..; ..; ..; ..; ..; ..;
f.refresh_ win Redraws a client ..; ..; ..; ..;

window.

f.resize Enables you to ..; ..; ..; ..;
interactively resize a
window.

f.restart Restarts the HP ..; ..; ..;
Window Manager.

f.separator Draws a line between ..; ..; ..; ..;
menu selections.

f. title Inserts a title in a ..; ..; ..; ..;
menu selection.

Changing the Menu Associated with the System Menu Button

The f. title function enables you to change the title of the menu that displays
when you press the select button on the system menu button. The systemMenu

6-34 Managing Windows

)

resource enables you to change the menu that displays when you press the
select button on the system menu button.

This gives you the ability to display a menu of your choice from the system
menu button without having to extensively remodel the system menu to do it.
All you need do is make a new menu, then use the systemMenu resource to
associate this new menu with the system menu button.

The systemMenu resource has three syntaxes. Which one you use depends on
your situation.

The first syntax specifies the menu for all classes of clients:

Hpwm*systemMenu: MenuName

For example, if you want to associate a special CADCAMMenu menu with the
system menu button, you would add the following line to your. Xdefaul ts file:

Hpwm*systemMenu: CADCAMMenu

The second syntax specifies the menu for a specific class of clients:

Hpwm*clientclass. systemMenu: MenuName

For example, you may want to associate a particular Edi torMenu of your own
creation with hpterm windows:

Hpwm*HPterm.systemMenu: EditorMenu

The third syntax is for specifying a menu for any client whose class is
unknown:

Hpwm*def aul ts*systemMenu: M enuN ame

Making New Menus

You have the option of modifying the system and root menus, but you also
have another option: You can create a completely new menu, calling it to
the screen either by a button press, by a key press, or by selecting it from an
existing menu.

To create a completely new menu, use the above menu syntax as a model to do
the following:

Managing Windows 6-35

1. Fill in a menu name.

2. Make up selection names.

3. Give each selection a function to perform from the "Table of Menu
Functions."

For example, the following menu is named "Graphics Projects." The menu
selections are all bitmaps symbolizing different graphics projects. The bitmaps
are kept in this user's home directory /users/dub/bits. When the user,
Dub, selects a symbol, the graphics program starts and opens the appropriate
graphics file.

Menu "Graphics Projects"
{

O/users/dub/bits/fusel.bits
O/users/dub/bits/lwing.bits
O/users/dub/bits/rwing.bits
O/users/dub/bits/nose.bits

}

f.exec
f.exec
f.exec
f.exec

"cad /spacestar/fusel.e12
"cad /spacestar/lwing.s05
"cad /spacestar/rwing.s04
"cad /spacestar/nose.e17

To display a new menu with a button or key, press follow these steps:

1. Choose the button or key that you want to use.

2. Choose the action on the button or key that will cause the menu to
display.

3. Use the f . menu function with the menu name as an argument to bind
the menu to the button or key.

For more information on button and keyboard bindings, including examples,
see the next two sections, "Using the Mouse" and "Using the Keyboard."

6·36 Managing Windows-

)

)

)

Using the Mouse
The mouse offers a quick way to make things happen in your window
environment without having to undergo the time-consuming process of typing
commands on the keyboard (and retyping misspelled commands). The window
manager recognizes the following button operations:

Press Holding down a mouse button.

Click

Double-dick

Drag

Pressing and releasing a mouse button.

Pressing and releasing a mouse button twice in rapid
succession.

Pressing a mouse button and moving the pointer (and mouse
device).

You associate a button operation with a window management function
using a button binding. A button binding is a command line you put in the
system.hpwmrc or .hpwmrc file that associates a button operation with a
window manager function.

Default Button Bindings

The HP Window Manager comes with the following default button bindings.

Table 6-18. HP Window Manager Default Button Bindings.

To do this ... Use this action ...

Display system menu without using the Press the menu button with the pointer
system menu button. anywhere on a window frame) .

Display the root menu. Press the menu button with the pointer
anywhere on the root window.

Managing Windows 6-37

These bindings are specified by the following lines in system.hpwmrc and
.hpwmrc.

Buttons DefaultButtonBindings
{

}

<Btn3Down> root f.menu DefaultRootMenu
<Btn3Down> frame f.post_smenu

Modifying Button Bindings and Their Functions

You can modify the button bindings section of your .hpwmrc file to suit your
individual needs.

Button Binding Syntax

The syntax for button bindings is as follows:

Buttons ButtonBindingSetN ame
{

}

button
button
button

context I context function
context I context function
context I context function

argument
argument
argument

Each line identifies a certain button and operation, followed by the context in
which the button operation is valid, followed by the function to be done. The
following button binding contexts are recognized by the window manager:

root Operates the function when the button is activated in the root
window.

window

frame

icon

title

Operates the function when the button is activated in a client
window.

Operates the function when the button is activated on a
window frame.

Operates the function when the button is activated on an icon.

Operates the function when the button is activated on a title
bar.

6-38 Managing Windows

)

)

Modifying Button Bindings

To modify the default button bindings, you need to edit either system.hpvmrc
(to make system-wide changes) or .hpvmrc (to make changes to your local
environment). The easiest way to modify button bindings is to change the
default bindings or to insert extra lines in the "DefaultButtonBindings"
section.

For example, Dub, the user who created his own "Graphics Project" menu
in the previous section, may want to display the menu when he presses the
IExtend chari-menu button sequence with the pointer in the root window. He
would only need to insert one line in his . hpvmrc file to make this happen.
The "DefaultButtonBindings" section of his .hpvmrc file would look like the
following.

Buttons DefauItButtonBindings
{

}

<Btn3Dovn>
<Btn3Dovn>
Meta<Btn3Dovn>

root f.menu DefauItRootMenu
frame f.post_smenu
root f.menu IIGraphics Project ll

Making a New Button Binding Set

Perhaps inserting a new button binding into the "DefaultButtonBindings"
set is not enough. Perhaps you need to make a complete new set of button
bindings. To do this, use the "DefaultButtonBindings" section of your . hpvmrc
as a model. After you have created the new button binding set, you need to
use the buttonBindings resource to tell the window manager about it. You
do this by adding a line to your . Xdef aul ts file. The syntax of the line is as
follows:

Hpvm*buttonBindings: NewButtonBindingSet

This line directs the window manager to use "NewButtonBindingSet" as the
source of its button binding information. The button bindings are assumed to
exist in the file named by the Hpvm*configFile: resource, the default being
.hpvmrc.

For example, suppose Dub, our graphics user, wants to specify a
completely new button binding set instead of inserting a line in the existing

Managing Windows 6-39

"DefaultButtonBindings" set. He needs to create a new button binding set,
such as the following, modeled after the default set:

Buttons GraphicsButtonBindings
{

<Btn2Down> root f.menu "Graphics Project"
}

In his .Xdefaults file, Dub would then insert the following line:

Hpwm*buttonBindings: "Graphics Project"

To display his graphics menu, Dub needs only to press the alternate button
when the pointer is on the root window.

Modifying Button Click Timing

The HP Window Manager has another resource for controlling button
behavior. This resource, doubleClickTime, sets the maximum time (in
milliseconds) that can elapse between button clicks before a double-click
becomes just "two clicks in a row." In other words, if two clicks occur in less
than the maximum time, they are assumed to be a double-click; if two clicks
occur in a time greater than the maximum time, they are assumed to be two
single clicks.

Using the Keyboard

Similar to mouse button bindings, you can bind (associate) window manager
functions to "special" keys on the keyboard using keyboard bindings. The
window manager recognizes the following special keys:

• Shift.

• Escape.

• Meta (Extend Char).

• Tab.

6-40 Managing Windows

)

Default Keyboard Bindings

The HP Window Manager comes with the following default keyboard bindings.

Table 6-19. HP Window Manager Default Keyboard Bindings.

To do this ... Press these keys ...

Display system menu without using the ILeft ShlftllEscl (with pointer anywhere in
system menu button. the active window).

Set keyboard focus to the next window in IExtend ch.,IIT.bl (with pointer anywhere
the stack. in the active window and explicit

keyboard focus).

Keyboard bindings are specified by the following lines in system.hpwmrc and
.hpwmrc.

Keys DefaultKeyBindings
{

Shift<Key>Escape icon I window
Meta<Key>Tab window

}

f.post_smenu DefaultSystemMenu
f.next_key

The first line specifies the function type (Keys) and the name of the keyboard
binding set (Defaul tKeyBindings). The following two lines specify the actual
key bindings. The first line binds the ISh1ftilEsci key press sequence to the
function that displays the system menu. The second line binds the rIE-x-te-nd-ch-.,'1
and ITabl key press sequence to the function that selects the next window in the
stack for keyboard focus.

Modifying Button Bindings and Their Functions

You can modify the keyboard bindings section of your .hpwmrc file if your
situation requires it.

Managing Windows 6-41

Keyboard Binding Syntax

The syntax for keyboard bindings is as follows:

Keys KeyBindingSetName
{

}

key context I context function argument
key context I context function argument
key context I context function argument

Each line identifies a unique key press sequence, followed by the context
in which that sequence is valid, followed by the function to be done. The
following keyboard binding contexts are recognized by the window manager:

root Operates the function when the button is activated in the root
window.

window

frame

icon

title

Operates the function when the button is activated in a client
window.

Operates the function when the button is activated on a
window frame.

Operates the function when the button is activated on an icon.

Operates the function when the button is activated on a title
bar.

Modifying Keyboard Bindings

To modify the default keyboard bindings, you need to edit either
system.hpvmrc (to make system-wide changes) or .hpvmrc (to make changes
to your local environment). The easiest way is to change the default bindings
or to insert extra lines in the "DefaultKeyBindings" section.

For example, suppose Dub, the user who created his own "Graphics Project"
menu, kept pressing the ILeft Sh1ftilEICI sequence and accidentally displaying the
system menu. He might decide that he is better off to disable that particular
keyboard binding. To do so, he would need to delete (or comment out) the
proper line in his .hpvmrc file. The "Default Key Bindings" section of his
.hpvmrc file would then look like the following.

6-42 Managing Windows

)

Keys DefaultKeyBindings
{

• Shift<Key>Escape
Meta<Key>Tab

iconlwindow f.post_smenu DefaultSystemMenu
window f.next_key

}

Dub has chosen simply to comment out the line by placing a hash mark (.) in
the left margin of the line.

Making a New Keyboard Binding Set

With keyboard bindings, as with button bindings, you have the
option of creating a whole new binding set. To do so, you can use the
"Default Key Bindings" section of your .hpwmrc as a model. After you have
created the new keyboard binding set, use the keyBindings resource to explain
your modification to the window manager. You do this by adding a line to
your. Xdefaults file. The syntax of the line is as follows:

Hpwm*keyBindings: NewKeyboardBindingSet

This line directs the window manager to get its keyboard binding information
from the "NewKeyboardBindingSet" section of the .hpwmrc file. You can have
the window manager look in any file if you specify the path and file name with
the Hpwm*configFile: resource in your .Xdefaults.

Using Windows without Frames

In some cases, you might feel your "screen real estate" is too expensive, and
you may not want to take up "valuable space" with window frames. For
example, do you really need functional buttons and a resizable frame around a
clock that just sits in the corner of your screen? You could switch to the uwm
window manager, but the HP Window Manager has two resources for just
such situations. The clientDecoration resource enables you to choose just
how much or how little "decoration" you want to put around each client. The
transientDecoration resource enables you to choose just how much or how
little decoration you want to put around each transient window. A transient
window is a relatively short-lived window, for example, a dialog box. You can
still use any decoration you remove by binding its functions either to buttons
or to key presses as explained in the above sections.

Managing Windows 6-43

Adding or Removing Elements

You specify the clientDecoration and transientDecoration resources as a
list of the frame elements. If the first element in the list is preceded by a plus
(+) sign, the window manager starts with no frame and assumes that the list
contains those elements you want added. If the list begins with a minus (-)
sign, the window manager starts with a complete frame and assumes that the
list contains elements you want removed from the frame.

The list of valid window frame elements is as follows:

Table 6-20. Valid HP Window Manager Window Frame Elements.

Frame Element Description

All Includes all window frame elements.

Maximize Maximize button only.

Minimize Minimize button only.

None Includes no window frame elements.

Resize Resize border (outermost portion of frame).

System System menu.

Title Title bar only.

The Syntax for the 'clientDecoration' and 'transientDecoration' Resources

The clientDecoration resource has three syntaxes. Which you use depends
on your situation.

The first syntax is for specifying the addition or removal of elements from all
classes of clients:

{
±All }
±None

±Maximize
Hpwm*clientDecoration: ±Minimize

6-44 Managing Windows

±Resize
±System
±Title

For example, you could remove the maximize button from all windows by
adding the following line in your .Xdefaults file:

Hpwm*clientDecoration: -Maximize

The second syntax is for specifying the addition or removal of elements from
specific classes of clients:

{
±All }
±None

±Maximize
Hpwm*clientclass. clientDecoration: ±Minimize

±Resize
±System
±Title

For example, you may want to remove just the resize border and maximize
button from all clocks you display on your screen:

Hpwm*XClock.clientDecoration: -Resize -Maximize

The third syntax is for specifying the addition or removal of elements from any
client with an unknown class:

{
±All }
±None

±Maximize
Hpwm*defaults*clientDecoration: ±Minimize

±Resize
±System
±Title

The transientDecoration resource has the following syntax:

{
±All }
±None

±Maximize
Hpwm*transientDecoration: ±Minimize

±Resize
±System
±Title

For example, you could remove the tile bar from all transient windows by
adding the following line in your . Xdefaul ts file:

Managing Windows 6-45

Hpwm*transientDecoration: -Title

Controlling Window Size and Placement
The HP Window Manager has several resources that allow you to refine your
control of the size and placement of windows.

Refining Control with Window Manager Resources

The following table lists window manager resources enabling you to refine your
control over the size and placement of windows.

6-46 Managing Windows

)

Table 6-21. Refining Your Control with Window Manager Resources.

To control this ... Use this resource ... The default is ...

Initial placement of new interactivePlacement False
windows on the screen.

The ability to enlarge limitResize False
a window beyond
the size specified in
maximumClientSize .

The maximum size of a client maximumMaximumSize 2xscreen
window as set by either user or
client.

The sensitivity of dragging moveThreshold 4 pixels
operations.

Exact positioning of window positionIsFrame True
and window frame .

Clipping of new windows by positionOnScreen True
screen edges.

The width of the resize border resizeBorderWidth 10 pixels
of the window frame.

Displaying the resize cursors resizeCursors True
when the pointer is in the
resize border.

The maximum size of a maximumClientSize screen SIze
maximized client.

The interactivePlacement resource has the following values:

True

False

The pointer changes shape (to an upper left corner bracket)
before a new window displays, so you can choose a position for
the window.

The pointer doesn't change shape. A new window displays
according to the placement values specified in the X
configuration files.

The limitResize resource has the following values:

Managing Windows 6-47

True

False

A window cannot be resized to greater than the maximum
size specified by the maximumClientSize resource or the
WM_NORMAL _HINTS window property.

A window can be resized to any size.

The value of the maximumMaximumSize resource is the widthxheight of the
screen being used. The dimensions are given in pixels. For example, for an
SRX display, maximumMaximumSize would have a value of 1280x 1024.

The value of the moveThreshold resource is the number of pixels that the
pointer must be moved with a button pressed before a move operation is
initiated. You can use this resource to prevent window or icon movement when
you unintentionally move the pointer during a click or double-click.

The positionIsFrame resource has the following values:

True

False

The position information (from WM_NORMAL_HINTS and
configuration files) refers to the position of the window frame.

The position information refers to the position of the window
itself.

The positionOnScreen resource has the following values:

True

False

If possible, a window is placed so that it is not clipped. If not
possible, a window is placed so that at least the upper left
corner of the window is on the screen.

A window is placed at the requested position even if it is
totally off the screen.

The value of the resizeBorderWidth resource is the width of the resize border,
the outermost portion of the window frame. The width is measured in pixels.

The resizeCursors resource has the following values:

True

False

The appropriate resize cursor displays when the pointer enters
a resize border area of the window frame.

The resize cursors are not displayed.

The value of the maximumClientSize resource is the widthxheight (in pixels)
of the maximum size of a maximized client. If this resource isn't specified, the

6-48 Managing Windows

maximum size is taken from the WM-NORMAL_HINTS window property, or the
default size (the size of the screen) is used.

The Syntax for Size and Position Refinement Resources

The resources that refine your control over the size and placement of windows
have the following syntax:

Hpwm*resource: value

For example, you could choose to place each new window on the screen
interactively by adding the following line in your .Xdefaults file:

Hpwm*interactivePlacement: True

In addition to this syntax, the maximumClientSize resource has two more
syntaxes.

Use this syntax is for specifying the maximum client size for specific classes of
clients:

Hpwm* clientclass. maximumClientSize : width x height

For example, you might decide that xload clients should be maximized to no
more than an eighth of the size of your l024x768 display.

Hpwm*XLoad.maximumClientSize: 128x96

Use this syntax is for specifying the maximum client size for any client with an
unknown class.

Hpwm*defaul ts*maximumClientSize: width x height

Managing Windows 6-49

Controlling Resources with Focus Policies
The HP Window Manager has three separate focus policies that you can use to
control the arbitration of resources among clients. The focus policies determine
what happens when a window becomes the active window. The active window
is the window that has the focus of the keyboard, the colormap, and any
extended input devices. When a window is active, the following are true:

• What you type appears in that window.

• The color of the window frame changes to indicate the active focus.

• Input from extended input devices goes to that window.

Each focus policy is controlled by a specific focus policy resource. The focus
policy resources are as follows:

Table 6-22. ContrOlling Focus Policies with Window Manager Resources.

To control this . .. Use this resource ... The default value is .. .

Which client window has colormapFocusPolicy keyboard
the colormap focus.

Which client window has keyboardFocusPolicy explicit
the keyboard and mouse
focus.

Valid Focus Policies

The following focus policies are valid for the colormapFocusPolicy resource:

keyboard The window manager tracks keyboard input and installs a
client's colormap when the client window gets the keyboard
input focus .

pointer

explicit

The window manager tracks the pointer and installs a client's
colormap when the pointer moves into the client window or the
window frame around the client.

The window manager tracks a specific focus-selection operation
and installs a client's color map when the focus-selection
operation is done in the client window.

6-50 Managing Windows

)

The following focus policies are valid for the keyboardFocusPolicy resource:

pointer The window manager tracks the pointer and sets the keyboard
focus to a client window when the pointer moves into that
window or the window frame around the client.

explicit The window manager tracks a specific focus-selection operation
and sets the keyboard focus to a client window when the
focus-selection operation is done in that client window.

When the keyboard focus policy is explicit, you can use the passSelectButton
resource to specify the consequence of the focus-selection operation. If
you give passSelectButton a value of "True" (the default value), the
focus-selection operation is passed to the client or used by the window manager
to perform some action. If you give passSelectButton a value of "False," the
focus-selection operation will be used only to select the focus and will not be
passed.

The Syntax of Focus Policy Resources

All four focus policy resources have the following syntax:

Hpvm* focusPolicyResource: policy

For example, you could change the keyboard focus policy so that moving the
pointer into a window moved the focus there by adding the following line in
your . Xdefaults file:

Hpvm*keyboardFocusPolicy : pointer

Managing Windows 6-51

Matting Clients
If you have a color system, you might find it useful to decorate windows based
on client class. For example, you may wish to color code your hpterm windows
so you can easily tell them apart from your xterm windows.

You can accomplish this differentiation by using a matte and the window
manager's matte resources to further frame your client windows. A matte is a
3-D border just inside the window between client area and window frame.

To enable a matte, define a positive matte width for windows of a specific class.
Careful selection of matte elements will give a pleasing 3-D effect.

To define a matte width, use the matteWidth resource. The matteWidth
resource defines the width of the matte or border between the client and the
window frame. The width is given in pixels. For example, to specify a matte of
10 pixels around hpterm windows, you would include the following line in your
.Xdefaults file:

Hpwm*HPterm.mattewidth: 10

Coloring Individual Matte Elements

The following table lists matte elements and the resources that control their
color.

Table 6-23. Coloring Window Frames with Window Manager Resources.

To color this ... Use this resource ... The default value is . . .

Matte background. matteBackground client background

Left and upper bevel of matteTopShadowColor client top shadow color
matte.

Right and lower bevel of matteBottomShadowColor client bottom shadow color
matte .

Matte foreground. matteForeground client foreground

6·52 Managing Windows

Coloring Matte Elements Automatically

Additionally, the window manager has a resource that enables you to color
matte elements automatically (without specifying the color of each element).

The makeMatteColors resource uses the background color of the matte
background to generate colors for the other matte elements, giving the frame a
3-D look.

Exactly which elements you color with makeMatteColors depends on which of
the following three values you give the resource:

Table 6-24. The Values to Use for Automatically Coloring Matte Elements.

To color these elements . . . Use this value ...

All bevel elements and the foreground (tile elements for top and all
bottom shadows are set to foreground) .

All bevel elements. shadov

No elements automatically colored. none

Changing the Tile of Mattes

As with frame colors, the fewer the number of colors your display can produce,
the more interest you will probably have in tiling mattes. Again, tiling provides
you with a way to "mix" foreground and background colors into a third color.
If you have a 2-color (monochrome) display, you could tile a window matte in
shades of gray to achieve a pleasing 3-D look.

The HP Window Manager has the following resources to enable you to tile
mattes.

Table 6-25. Tiling Mattes with Window Manager Resources.

To tile this .. . Use this resource ... The default value is . ..

Matte right and lower matteBottomShadovTile client bottom shadow color
bevels.

Matte left and upper matteTopShadovTile client top shadow color
bevels.

Managing Windows 6-53

The following table lists the acceptable values for tile resources:

Table 6-26. The Values to Use for Tiling Window Frames.

To tile an element this color mix ... Use this value ...

The foreground color. foreground

The background color. background

A mix of 25% foreground to 75% background. 25_ foreground

A mix of 50% foreground to 50% background. 50_ foreground

A mix of 75% foreground to 25% background. 75_ foreground

In horizontal lines alternating between the foreground and horizontaL tile
background color.

In vertical lines alternating between the foreground and verticaL tile
background color.

In diagonal lines slanting to the right alternating between the slant_ right
foreground and background color.

In diagonal lines slanting to the left alternating between the slant_ left
foreground and background color.

The Syntax for Matte Resources

Matte resources can have any of the following three syntaxes, depending on the
situation:

Use the first syntax to create a matte for all clients regardless of class:

Hpvm*resource: value

For example, you could create a lO-pixel-wide yellow matte for every client
window by adding the following lines in your . Xdef aul ts file:

Hpvm*matteWidth:
Hpvm*matteBackground:
Hpvm*makeMatteColors:

10
Yellow
all

Use the second syntax to specify the matte for specific classes of clients:

6·54 Managing Windows

Hpvm* clientclass. matteResource: value

For example, as mentioned earlier, you could place a different matte around
hpterm and xterm windows by including the following lines in your. Xdefaul ts
file:

Hpvm*HPterm.matteWidth:
Hpvm*HPterm.matteBackground:
Hpvm*HPterm.makeMatteColors:
Hpwm*Xterm.matteWidth:
Hpvm*Xterm.matteBackground:
Hpvm*Xterm.makeMatteColors:

10
SkyBIue
all
10
Tan
all

The third syntax specifies the matte for any client with an unknown class.

Hpvm*def aul ts*matteWidth: width

What's Next
The next two chapters cover special custom-environment situations. Chapter 7
concerns special hardware-related configurations. Chapter 8 concerns the use of
Starbase graphics and the printing of screen dumps.

Managing Windows 6-55

o

(:J

7
Customizing Special X Environments

Some applications, perhaps yours is one of them, require customization beyond
changing colors, choosing clients for your environment, and modifying window
manager resources. This chapter describes the following "special" X Window
System customizations:

• Using custom screen configurations.

• Using special input devices.

• Going mouseless.

• Customizing keyboard input.

• Creating a custom color database.

• Changing display preferences.

• Compiling bdf fonts into snf format.

• Using 'xrdb' to configure the server.

• Using national languages.

This chapter discusses the following X clients:

xmodmap Modifies keyboard bindings to modifier keys.

xset

rgb

xfc

xrdb

Sets user preferences for display behavior.

Creates a custom color database.

Compiles bdf format fonts into snf format fonts.

Initializes the X server with resource specifications.

More information about these clients is in the reference section.

Customizing Special X Environments 7·1

Using Custom Screen Configurations
The default screen configuration for Xll assumes the following about your
system:

• You use display 0 (typically the console).

• You have only one physical display screen.

• Your screen uses only one set of pixel planes (the image planes).

• Your screen is at the address node specified by /dev/crt.

However, the configuration you actually have may differ from the default
configuration. For example, you may be display 1. Or you may be display 0,
but have "two heads" (screens). Or you may be screen 0 on display 0, but have
two sets of planes, image and overlay. There are many possible combinations of
non-default screen configurations.

If you use some configuration other than the default, you must create a custom
screen configuration file for yourself.

The Default Screen Configuration File

The default screen configuration file is located in usr/lib/Xl1 and is called
XOscreens (x zero screens). The "0" is an arbitrary number chosen to signify
the default display.

XOscreens is an ASCII file. It contains the path and name of the default
screen, bitmap device /dev/crt.

Creating a Custom 'X·screens' File

To tell the server about a custom screen configuration, you need either to
modify XOscreens or to create an X*screens file. The * should be replaced by
a display number signifying the new configuration.

Each X*screens file represents a custom screen configuration and can contain a
maximum of four lines (excluding comments and blank lines).

As an alternative to specifying multiple X*screens files, you can make one
X*screens file for your display. This file will contain the device information
for all the configurations. But only one configuration will be in use at a time;

7 -2 Customizing Special X Environments

)

the other configurations will be commented out. To switch configurations,
instead of choosing a different X*screens, you edit your single configuration
file, un commenting only the configuration to which you want to switch.

Choosing a Screen Mode

Although each X*screens file contains lines listing a screen device, the exact
syntax of the lines depends on the screen mode you choose. Depending on your
system's hardware, you may choose from four screen modes:

image mode The default screen mode using multiple image planes for a
single screen. The number of planes determines the variety of
colors available to the screen.

overlay mode An alternate screen mode using overlay planes for a single
screen. Overlay planes provide an alternate (auxiliary) set of
planes to the standard image planes. Typically, overlay planes
are used in conjunction with image planes in either stacked
mode or combined mode.

stacked mode A combination of image and overlay planes in which a single
display has two "logical" screens, one the image planes, the
other the overlay planes. Typically, the image planes are used
for graphics while the overlay planes are used for text.

combined A combination of image and overlay planes in which a single
mode display has a single screen that is a combination of the image

and overlay planes. Combined mode is available only on the
TurboSRX 3-D Display Controller (HP part number 98730A).

Customizing SpeCial X Environments 7-3

Table 7-1. Graphics Boards, Display Controllers, and Available Screen Modes.

With this
display hardware ... You can use these modes ...

Image Overlay Stacked Combined

HP 98542A V
HP 98543A V
HP 98544B V
HP 98545A V
HP 98547A V
HP 98548A V
HP 98549A V
HP 98550A V V V
HP 98720A V V V
HP 98730A V V V V

Syntax for 'X· screens' File Lines

The syntax for each line of an X*screens file is as follows:

I dey I device {
[
depth {8 } 1 }
dOUbleb~ifer

depth 16 doublebuffer [# comment]

. . { numberin } mon1tors1ze be
num nom

/ dev / device Specifies the name of the device file that the X server should
read for this display.

depth Specifies the number of image and overlay planes available to
the server (one pixel per plane).

doublebuffer Specifies double buffer. Double buffering divides video memory
into halves and displays one half while drawing the other.

7 -4 Customizing SpeCial X Environments

)

depth 16
double buffer

monitorsize

Double buffering is used specifically with graphics programs
that double buffer their screen output. This avoids "flashing"
during screen redraw.

Specifies the division of the image planes into two 8-bit,
doublebuffered halves.

Specifies the size of the monitor in inches or millimeters.

Determining the Number of Screen Devices

Each line of the text lists a separate screen device (except in combined mode).
A screen device can be either a physical device, the CRT screen, or the image
planes or overlay planes of a physical device.

For example, if you have a system that includes two physical display screens,
you should create an X*screens file that contains two lines, one for each
physical screen. If you have one physical display screen that is divided into
image and overlay planes, you should create an X*screens file that also
contains two lines. However, the lines will be different.

Mouse Tracking with Multiple Screen Devices

The mouse pointer tracks from left to right. For multiple-plane configuration
files, the order of entry determines the tracking order of the mouse pointer.
The first line in the file is the device on which the pointer appears when you
start x.
Other lines correspond to the screens to which the pointer moves when the
mouse is moved to the right or left and the pointer moves off the side of the
current screen.

Thus the order of the lines is important because it tells the server to which
screen to move the pointer.

Making a Device Driver File

When you specify a device in a screen configuration file, include the path,
usually / dev. The device you specify must correspond to a device file in that
path. If you don't have the appropriate device file, you must make that device
using the HP-UX mknod command. See the "Creating Device Files" section of
HP- UX System Administration Manual for information on mknod.

Customizing Special X Environments 7·5

Examples

The following example shows how you might customize several X*screens files.

Suppose you have a high-resolution (1280x 1024) TurboSRX screen connected
to your S300. The image plane of this screen is accessed by the device file
/dev/crt. The overlay plane is accessed by the device file /dev/ocrt. You
would like to switch between three different screen configurations:

• One screen with Xll running in the image planes (image mode).

• Two screens with Starbase running in the image planes and Xll
running in the overlay planes (stacked mode).

• One screen with Starbase running in the image plane and Xll running
in the overlay plane (combined mode). The image planes have a depth
of 24; the overlay planes have a depth of 8.

To accomplish this, you need to have the following three screen configuration
files:

XOscreens

Xlscreens

X2screens

Containing the line:

/dev/crt

Containing the lines:

/dev/crt
/dev/ocrt

Containing the line:

/dev/crt /dev/ocrt depth 24 depth 8

Note that the first file is the default screen configuration provided with
Xll. The other two files must be created for the particular situation. The
Xlscreens file contains two lines, one for each set of planes. Think of the lines
as "stacked" for stacked mode. The X2screens file contains one line specifying
both planes. Think of the lines as "combined" for combined mode.

7·6 Customizing Special X Environments

J

An alternate means of achieving the same end is to modify the XOscreens file
(or create a custom file) to contain the following lines:

'" Default Configuration III
/dev/crt

'" Stacked Screens Mode III
I /dev/crt
I /dev/ocrt

III Combined Screens Mode III
I /dev/crt /dev/ocrt depth 24 depth 8

Using this method, the name of the file never changes from XOscreens.
Instead, you edit the file, commenting out lines you don't want and
uncommenting lines you do want, to switch screen devices.

Either method will work.

Defining Your Display

The DISPLAY environment variable establishes the host, display number, and
screen number to which a system sends bitmapped output. For example, on
Series 300 and Series 800 systems, the console is typically display 0, screen 0 by
default and output is usually sent there.

However, most Xll clients have a -display option that enables you to specify
a different host, display number, and screen number on which the client should
display its output . (By default, clients display on the system on which they are
started.)

Specifying a Display

As mentioned, you can specify a display for your local system or for individual
clients.

The display for your local system, the DISPLAY environment variable, is part
of your system environment and is used by all clients started and displayed
locally.

Customizing Special X Environments 7-7

Setting DISPLAY with 'x11start'. When you start Xll, the xllstartcommand
sets the DISPLAY variable to the host name of your system, display number 0,
screen 0 with the following line:

: $ {DISPLAY:='hostname':O.O}; export DISPLAY

You can modify this line to set the DISPLAY variable to a different hostname
or to the local "socket" facility by substituting 'local' for 'hostname' in the
command line. You can also change either the display number or the screen
number by substituting a different number in the above line.

The Difference Between 'local' and 'hostname'

Whether you choose hostname or local for the your DISPLAY variable is a
matter of performance and depends on your situation. Using the host name
of your local system is the more traditional way of specifying the DISPLAY
variable. However, using the local socket facility enables you to achieve faster
communication between clients and server when both are on the same system.

Finding the DISPLAY Variable

You can view the current setting of your system's DISPLAY environment
variable, by typing the following command line:

env IReturnl
This causes a list similar to the following to display. The list contains the
current environment settings for your system. Look for the DISPLAY setting.

DISPLAY=local:O.O
HOME=/users/alex
LOGNAME=alex
MAIL=/usr/mail/alex
PATH=/usr/bin/Xll:.:./bin: .. /bin:/bin:/usr/local/bin:/usr/bin:/etc:
SHELL=/bin/csh
TERM=98720
TZ=PST8PDT
WINDOWID=7340052

In this example, the DISPLAY variable is set to "local:O.O."

7·8 Customizing Special X Environments

)

)

Resetting the DISPLAY Variable

To reset the DISPLAY variable, do one of the following:

• If you use csh, type the following:

setenv DISPLAY host:display:screen IReturnl

• If you use sh or ksh, type the following:

DISPLAY=host:display.screen IReturnl

Remember whether you use a host name or local for the DISPLAY variable is
a matter of personal preference. Generally, if you do most of your processing
locally, you'll find local more efficient.

For example, before you started X11 using your custom X1screens
configuration file, you would issue the following command line for a csh:

setenv DISPLAY local:1.0 IRetwnl

Making 'X· .hosts' Files for Special Configurations

The default screen configuration file XOscreens uses the default X11 remote
host file XO.hosts. The XO.hosts file, you will recall, contains a list of all X11
hosts permitted to access your local server.

Each custom X*screens file requires that you make a special X*. hosts file.
The number represented by the * is what causes the correct screen and host
files to be used together.

Creating an 'X*.hosts' File

An X* .hosts file is an ASCII text file containing the hostnames of each remote
host permitted to access your local server. The syntax is as follows:

host
host
host

Customizing Special X Environments 7-9

For example, if you were on a network and regularly ran clients on hpcvfaa,
hpcvfcc, and hpcvfdd, you would want the following lines in your X* . hosts file:

hpcvfaa
hpcvfcc
hpcvfdd

Note that aliases work as well as hostnames, provided that they are valid, that
is, commonly known across the network.

Using Special Input Devices
The X Window System has an input device file that the X server reads to
find out what input devices it should open and attach to the display. The
default input device configuration file is XOdevices. You can find it in the
/usr/lib/XU directory.

The Default 'XOdevices' File

The default file shipped with the X Window System contains lines of text, but
does not specify any input configuration. Rather, it assumes the default input
configuration of one keyboard and one pointer.

If this is your configuration, you may not want to change the contents of the
file for three reasons:

• Clients can request and receive the services of an input device regardless
of whether the device is specified in a device configuration file. Thus,
you need not change the XOdevices file, or create a custom file, even
though you have a custom input configuration .

• Non-clients (terminal-based programs) such as Starbase cannot receive
the services of an input device if the device is specified in the device
configuration file. Any device in the device configuration file is opened
for use by the X server. Thus, changing the XOdevices file, or creating
a custom file, in order to inform the server about a certain input device
may interfere with a non-client's ability to access the device.

7·10 Customizing Special X Environments

• Even if you have other screen configurations, you can rely on the
default input device configuration without having to create an
X*devices file to match every X*screens file. For example, if you had
a custom X8screens file, you would not necessarily need an X8devices
file.

A custom X*devices file is required only when you want to tell the X server
about a custom input device configuration.

How the Server Chooses the Default Keyboard and Pointer

Input devices attach to HP computers through an interface known as the
Hewlett-Packard Human Interface Link (HP-HIL). Up to seven input devices
can be attached to each HP-HIL. However, if the X*devices file does not
exist, or does not specify otherwise, the X server recognizes only two devices,
a pointer and a keyboard (clients, however, may still recognize other input
devices).

The X server uses the following order when choosing a pointer:

1. If the X*devices file specifies an input device as the pointer, the X
server uses that device as the pointer.

2. If X*devices makes no specification, or there is no X*devices file, the
X server takes the last mouse on the HP-HIL (the mouse farthest from
the computer) as the pointer.

3. If the X server can open no mouse, it takes the last pointer device
(knob box, graphics tablet, trackball, or touchscreen) on the HP-HIL as
the pointer.

4. If the X server can open no pointer device, it takes the last keyboard on
the HP-HIL as the pointer as well as the keyboard.

5. If no pointer can be opened, the server will not run.

The X server uses a similar order when determining the keyboard:

1. If the X*devices file specifies an input device as the keyboard, the X
server uses that device as the keyboard.

2. If X*devices makes no specification, or there is no X*devices file, the
X server takes the last keyboard on the HP-HIL (the keyboard farthest
from the computer) as the keyboard.

Customizing Special X Environments 7-11

3. If the X server can open no keyboard, it takes the last key device
(buttonbox, barcode reader) on the HP-HIL as the keyboard.

4. If no keyboard can be opened, the server will not run.

Creating a Custom 'X*devices' File

At some point, you may want to instruct the server to open a particular device
as the keyboard or pointer or have the server open another input device as an
extension of the keyboard or pointer. Additional devices with keys are treated
as extensions to the keyboard; additional devices that point are treated as
extensions to the pointer.

To tell the server about a non-default input device configuration, you must
add a device specification line to the appropriate X*devices. For example,
you would use XOdevices if you used XOscreens and X2devices if you used
X2screens.

X*devices files are ASCII text files. You can use any ASCII text editor to
modify them. Similar to X*screens files, you add a device line to the file for
each input device you want the server to know about.

Syntax

The device specification lines that you add to the X*devices file can have
either of two syntaxes.

The Syntax for Device Type and Relative Position. The following syntax uses
device type and relative position on the HP-HIL to specify input devices:

relativeposition devicetype use [# comments]

relativeposition

devicetype

use

Specifies the position of a device on the HP-HIL relative to
other input devices of the same kind.

Specifies the type of input device.

Specifies whether the device is the keyboard, the pointer, or
has some other use.

7 ·12 Customizing Special X Environments

Separate the parts of your entry with tabs or spaces. The position of an input
device on the HP-HIL is relative to other devices of that type. Thus, first
means the device connected closest to the computer on the HP-HIL of any
device of that type.

This syntax is most useful for systems running a single X server with no other
programs directly opening input devices. Here, if you add a new input device
to the HP-HIL, you don't have to edit the hdevices file unless the device is
of the same type as one already named in the file and you add the new device
ahead of that existing device.

This syntax may become ambiguous, however, when more than one X server is
running on the same system or when non-client programs directly access input
devices. This is because first actually means first device of that type available
to the server. Thus, a device may be physically first on the HP-HIL, but not
first for the server if the device is unavailable because it is currently being used
by some other program.

The Syntax for Device File Name. The following syntax uses the device file
name to specify input devices:

/path/ devicefile 'Use [# comments]

/path/ devicefile Specifies the path and device file to use as the input device.

Specifies whether the device is the keyboard, the pointer, or
has some other use.

use

This syntax is unambiguous when several X servers are running on the same
computer or when non-client programs directly access the input device.

The Syntax for Reconfiguring the Path to Device Files. The default path to the
device files is /dev, but you can specify another path if you choose. Also, if you
have more than one HP-HIL, you can specify which HP-HIL the server should
use. This is useful on S800 systems with more than one HP-HIL.

The syntax for this is as follows:

path hiLpath [# comments]

Customizing Special X Environments 7·13

path Specifies the path to the device files.

The path specified is handled differently depending on whether your system is
an S300 or an S800. S300s only have a single HP-HIL, so no matter what path
you specify, the server always checks only that path HP-HIL for input devices
to open. For example, if you specify /tmp/foo hil_path in your X*devices
file, the server would attempt to open devices /tmp/fool through /tmp/foo1
on the HP-HIL.

However, S800s can have up to four HP-HILs numbered 0 through 3. For the
S800s, the HIL number you specify is the only place the server checks for input
devices to open. Thus if you specify /dev/hil_2 hil_path, the server would
try to open input devices 1 through 7 on HP-HIL 2 and, if that failed, would
not open any input devices at all. If you specified a path that did not end with
a digit in the range 0-3, the server would search four HP-HILs for devices to
open using that path as the root of the device file names. For example, if you
specified /tmp/foo hil_path, the server would attempt to open decive files
/tmp/fooO.1 through /tmp/fooO .1, /tmp/foo1.1 through /tmp/foo1.1, and
so on through /tmp/foo3. 7

7-14 Customizing Special X Environments

Selecting Values for 'X*devices' Files

X*devices files use the following special names for positions, devices, and uses:

Table 7-2. Special Names for 'X*devices' Files.

Positions Device Name Device Type HP Part Nwnber Uses

first keyboard keyboard 46021A* keyboard

second mouse pointer 46060A* pointer

third tablet pointer 46087A* other

fourth buttonbox keyboard 46086A*

fifth barcode keyboard 92916A*

sixth one_ knob pointer 46083A*

seventh nine_ knob pointer 46085A*

quadrature pointer 46094A*

touchscreen pointer 35723A*

trackball pointer 80409A*

null

* or equivalent

Note that the nine-knob box appears to the X server as three separate input
devices. Each row of knobs is a separate device with the first device being the
bottom row.

Note also that the HP barcode reader has two modes: keyboard and ASCII.
The modes are set via switches on the reader. If you set the barcode reader
to ASCII mode, it appears to the server as a barcode reader and the device
name is therefore barcode. However, if you set the barcode reader to emulate
a keyboard, the barcode reader appears as a keyboard and the device name
should therefore be keyboard. What distinguishes a barcode reader set to
keyboard mode from a real keyboard is the relative position or the device
filename, depending on which syntax you use.

Customizing Special X Environments 7·15

Similar to the barcode reader, the track ball appears to the server, not as a
trackball, but as a mouse. Therefore, to specify a trackball, use the mouse
device name. Again, what specifies the trackball instead of the real mouse is
the relative position or the device filename, depending on which syntax you
use.

Configuring an Output-Only X Window System

You can create a system on which the X server runs, but which does not have
any input devices. In this case, clients could be run from a remote terminal, or
from a remote host, and their output directed to the X server.

To create an XU system with no input, include the following lines in the
XOdevices file:

first null
first null

Examples

keyboard
pointer

Suppose your input devices include a graphics tablet, a keyboard, and another
graphics tablet and you want to use the tablet closest to the computer as the
pointer. You would have the following lines in your X*devices file:

first tablet
second tablet
first keyboard

pointer
other
keyboard

The pointer.
An extension of the pointer.
The keyboard.

In this example, input from the second graphics tablet would appear as an
extension of the input from the pointer device, the first tablet.

Now suppose you add another keyboard and a barcode reader (set to ASCII
mode) to the above configuration, and you want the keyboard farthest from
the computer to be the keyboard device with the barcode reader serving as an
extension to it. You would have the following lines in your X*devices file:

first tablet pointer The pointer.
second tablet other An extension of the pointer.
first keyboard other A n extension of the keyboard.
second keyboard keyboard The keyboard.
first barcode other A n extension of the keyboard.

7-16 Customizing Special X Environments

)

The example now includes input from the first keyboard and from the barcode
reader as extensions of the input from the second keyboard. To the X server,
the input is indistinguishable.

Note that the barcode reader is in ASCII mode in this example. If the barcode
reader were in keyboard mode, the last line of the example should read as
follows:

third keyboard other

In keyboard mode, the barcode reader is merely the third keyboard on the
HP-HIL.

Now suppose you add a nine-knob box to the configuration, but only use the
first two rows of knobs. You would have the following lines in the input device
configuration file (assuming the barcode reader is set to ASCII mode):

first tablet pointer The pointer.
second tablet other An extension of the pointer.
first keyboard other An extension of the keyboard.
second keyboard keyboard The keyboard.
first barcode other An extension of the keyboard.
first nine_knob other Bottom row, pointer extension.
second nine_knob other Middle row, pointer extension.

Note that specifying an other input device in an X*devices file has certain
consequences. Each input device you specify as other in X*devices is opened
exclusively by the X server. This means that the device is available for clients,
but is not available for direct access by non-client programs. Since it isn't
necessary to list other devices in X*devices for clients to access them, it may
be better for you to omit other devices from your hdevices file. Include
them only if no Starbase or other non-client programs access them directly.

Customizing Special X Environments 7-17

Going Mouseless with the 'X*pointerkeys' File
Your work situation may lack sufficient desk space to adequately use a mouse
pointer. You may, therefore, want to "go mouseless" by naming the keyboard
(or some other input device) as the pointer.

To go mouseless, you need to have the proper configuration specified in the
X*devices file and to have a special configuration file named hpointerkeys.
The default hpointerkeys file is named XOpointerkeys. You can find it in
the /usr/lib/Xll directory. In light of your experience with XOsceens and
XOdevices, you will probably recognize this as no mere coincidence.

The X*pointerkeys file enables you to specify the following:

• The keys that move the pointer.

• The keys that act as mouse buttons.

• The increments for movement of the pointer.

• The key sequence that resets XlI.

• The pixel threshold that must be exceeded before the server switches
pixel planes in stacked screen mode.

Configuring 'X*devices' for Mouseless Operation

If you have only a keyboard and no mouse on the HP-HIL, and you want the
keyboard to serve as both keyboard and pointer, you don't have to change the
default configuration of XOdevices. The default input device configuration
automatically assigns the pointer to the keyboard if a pointer can't be opened
by the server.

If you have two input devices, you may need to explicitly specify which device
should be the keyboard and which the pointer.

7 ·18 Customizing Special X Environments

J

The Default Values for the 'X·pointerkeys' File

By default, when you configure your keyboard as the pointer, the X server
chooses certain of the number pad keys and assigns them mouse operations.
Some number pad keys are assigned to pointer movement; other number pad
keys are assigned to button operations.

If you don't need to change the pointer keys from their default specifications,
you don't need to do anything else to use your keyboard as both keyboard
and pointer. However, if you need to change the default pointer keys, you
must edit the XOpointerkeys file or create a new X*pointerkeys file. The
X*pointerkeys file is the file that specifies which keys are used to move the
pointer when you use the keyboard as the pointer.

The default key assignments are listed in the tables in the following section on
customizing the X*pointerkeys file.

Creating a Custom 'X·pointerkeys' File

You need to modify the existing XOpointerkeys file only if the following
statements are true:

• You want to use the keyboard for a mouse.

• You want to change the pointerkeys from their default configuration.

• You use the XOscreens file to configure your display.

You need to create a custom X*pointerkeys file only if the following
statements are true:

• You want to use the keyboard for a mouse.

• You want to change the pointerkeys from their default configuration.

• You use a configuration file other than the XOscreens file to configure
your display.

Syntax

You assign a keyboard key a mouse function (pointer movement or button
operation) by inserting a line in the X*pointerkeys file. One line for each
action. Lines in the X*pointerkeys file have the following syntax:

Customizing Special X Environments 7·19

function keyname [# comment]

Assigning Mouse Functions to Keyboard Keys

You can assign any mouse function, either a pointer movement or a button
operation, to any keyboard key. However, you should first make sure that the
key you are thus changing the meaning of doesn't already serve some absolutely
vital function.

You can assign keyboard keys to pointer directions by specifying options in a
X*pointerkeys file. The following table lists the pointer movement options,
the X*pointerkeys functions that control them, and their default values:

Table 7-3. Pointer Movement Functions.

The default
To do this ... Use this function ... key is ...

Move the pointer to the left. pointer_left_key keypad_ 1

Move the pointer to the right. pointer_right_key keypad_ 3

Move the pointer up. pointer_up_key keypad_ 5

Move the pointer down. pointer_down_key keypad_ 2

Add a modifier key to the pointer_key_modi no default
pointer direction keys.

Add a second modifier key to pointer_key_mod2 no default
the pointer direction keys.

Add a third modifier key to pointer_key_mod3 no default
the pointer direction keys.

Note that the pointer direction keys are the keypad number keys on the right
side of the keyboard, not the keyboard number keys above the text character
keys.

7 -20 Customizing Special X Environments

)

)

You can assign keyboard keys to pointer distances by specifying options in a
XOpointerkeys file. The following table lists the options that determine the
distance of pointer movements, the X*pointerkeys functions that control
them, and their default value:

Table 7 -4. Pointer Distance Functions.

To do this ... Use this fWlction . . . The default value is . . .

Move the pointer a number of pointer_move 10 pixels
pixels.

Move the pointer using a pointer_mod1_amt 40 pixels
modifier key.

Move the pointer using a pointer_mod2_amt 1 pixel
modifier key.

Move the pointer using a pointer_mod3_amt 5 pixels
modifier key.

Add a modifier to the distance pointer_amt_mod1 no default
keys.

Add a modifier to the distance pointer_amt_mod2 no default
keys.

Add a modifier to the distance pointer_amt_mod3 no default
keys.

Customizing Special X Environments 7-21

You can assign keyboard keys to mouse button operations by specifying options
in a X*pointerkeys file. The following table lists the button operations, the
X*pointerkeys functions that control them, and their default values:

Table 7 -5. Button Operation Functions.

The default
To do this ... Use this function ... key is ...

Perform button 1 operations. pointer_buttoni_key keypad_ *
Perform button 2 operations. pointer_button2_key keypad_ /

Perform button 3 operations. pointer_button3_key keypad_ +
Perform button 4 operations. pointer_button4_key keypad_-

Perform button 5 operations. pointer_button5_key keypad_ 7

You can change the key sequence that exits the X Window System. Also, if
you use both image and overlay planes, you can change the distance you must
move the pointer before you switch planes. The following table lists these
options, the X*pointerkeys functions that control them, and their default
values:

Table 7 -6. Reset and Threshold Functions.

The default
To do this ... Use this function ... key is ...

Exit the X Window System reset break

Add a modifier to the exit key. reset_modi control

Add a modifier to the exit key. reset_mod2 left- shift

Add a modifier to the exit key. reset_mod3 no default

Set the threshold for changing screen_change_amt 30 pixels
between image and overlay
planes in stacked mode.

7 -22 Customizing Special X Environments

)

)

The screen_change_amt enables you to avoid switching from one set of pixel
planes to another if you accidentally run the pointer off the edge of the screen.
The screen_change_amt option establishes a "distance threshold" that the
pointer must exceed before the server switches pixel planes. As the above table
shows, the default width of the threshold is 30 pixels, but acceptable values
range from 0 to 255.

Examples

For example, a common change that you can easily make is to change the
keyboard's 6, ~, ~, and ~ keys to be the pointer direction keys. Press the

6 key and the pointer moves up. This makes perfect sense. Or at least it does
until you try to move the text cursor in your hpterm window. If you reassign
the arrow keys to the pointer, they will no longer work for the cursor.

Fortunately, the X Window System enables you to pick up to three keys from
among the two IShlftl keys, the two IExtend ch.rl keys, and the ICTRLI key and use
them each as a modifier key. A modifier key is a key that, when you hold it
down and press another key, changes the meaning of that other key.

Modifier keys in the X*pointerkeys file have three functions:

• They specify that a certain operation can't take place until they are
pressed.

• They enable you to adjust the distance covered by the pointer during a
movement operation.

• They enable you to change the key sequence that exits you from Xl1.

For example, you can overcome the problem in the last example by assigning
the ILeft Shlftl key as a modifier to the pointer direction keys. Now, to move the

cursor to the right, you press ~ as usual. To move the pointer to the right,

you press ILeft Shift I ~.
Specifying Pointer Keys

The following table lists the valid keynames to use when assigning keyboard
keys to mouse functions:

Customizing Special X Environments 7·23

Table 7-7. Valid Pointer Keynames.

Typewriter Keys:

1 A K U left- shift return

2 B L V left- extend ,

3 C M W -

4 D N X - / -

5 E 0 Y backspace right_ shift

6 F P Z [space_ bar

7 G Q
,] right_ extend

8 H R tab \
9 I S caps_lock ,

0 J T control
,

Function Keys:

fl f3 f5 f7 blank_ f9 blank- fl1

f2 f4 f6 f8 blank_ flO blank_ fl2

Keypad Keys:

keypad_ 1 keypad_ 4 keypad_ 7 keypad_ 0 keypad_ + keypad_ comma

keypad_ 2 keypad_ 5 keypad_ 8 keypad_ * keypad_- keypad_tab

keypad_ 3 keypad_ 6 keypad_ 9 keypad_ / keypad_ enter keypad_ period

Special Keys:

enter stop clear_ line delete_ line home_ cursor cursor_ up

escape menu clear_ display insert_ char prey next

break system insert_ line delete_ char select cursor_ left

cursor_ down cursor_ right

7 ·24 Customizing Special X Environments

)

)

Examples

If you only have one keyboard and no mouse, and you can live with the default
pointer key assignations, you don't have to do anything else to configure your
system for mouseless operation. To move the pointer to the left 10 pixels, you
would press the ~ key on the keypad. To press mouse button 1, the select

button, you would press the ~ key on the keypad.

However, suppose you wanted to move only one pixel to the left. Although
the default value of pointer _mod2_amt is one pixel, no key is assigned to the
modifier for that amount. Thus, you would need to edit the XOpointerkeys file
(or create an X*pointerkeys) to include a line assigning one of the modifier
keys to pointer _amt_mod2. The following line in XOpointerkeys assigns the
ILeh Shift I key to pointer _amt_mod2:

"'pointerfunction
pointer_amt_mod2

key
left_shift

Or suppose you wanted to set up your XOpointerkeys file so that you could
move 1, 10, 25, and 100 pixels. The following lines show one way to specify
this:

"'pointer function
pointer_amt_modl
pointer_amt_mod2
pointer_amt_mod3
pointer_move
pointer_modLamt
pointer_mod2_amt
pointer_mod3_amt

key
left_extend
left_shift
control
Lpixels
10_pixels
25_pixels
100_pixels

With these lines in effect, one press of the ~ key on the keypad moves the

pointer 1 pixel to the left. Pressing the left IExtend chIII'I and ~ moves the pointer
10 pixels to the left. Pressing ILeh Shih I ~ moves the pointer 25 pixels to the left.

And pressing ICTALI ~ moves the pointer 100 pixels to the left.

Customizing Special X Environments 7-25

Or, take the case previously mentioned where you want to use the arrow keys
for both text cursor and mouse pointer. You could insert the following lines in
your XOpointerkeys file:

"'pointer function
pointer_key_modi
pointer_left_key
pointer_right_key
pointer_up_key
pointer_down_key

key
left_shift
cursor_left
cursor_right
cursor_up
cursor_down

The above lines enable you to use the arrow keys for cursor movement, while
using the shifted arrow keys for pointer movement. Note that it is the left
IShlftl key only (not the right IShlft!) that modifies the press of an arrow key from
cursor to pointer movement.

Now take this scenario a step further. Suppose you want to use the arrow
keys to operate the pointer, and you also need the arrow keys to control the
cursor in an hpterm window, but, as luck would have it, another program you
frequently operate uses the shift-arrow key sequence to control its cursor.

The easiest way to solve this dilemma is to call in another modifier. The
following lines illustrate this. Compare them to the previous example.

"'pointer function
pointer_key_modi
pointer_key_mod2
pointer_left_key
pointer_right_key
pointer_up_key
pointer_down_key

In this example,

key
left_shift
left_extend
cursor_left
cursor_right
cursor_up
cursor_down

• Pressing the ~ key moves the hpterm text cursor up.

• Pressing IShlftl ~ moves the cursor up in the program you frequently
operate.

• Pressing I Shift I I Extend chari ~ moves the pointer up.

U sing a similar technique, you can also reassign the ICTRLllLeft ShlftllResetl

sequence that exits XII. You can specify the press of a single key to exit XlI,

7 -26 Customizing Special X Environments

)

or a combination of two, three, or four key presses. Just make sure that the
key sequence you select isn't something you're going to type by accident.

Customizing Keyboard Input
Besides remapping the mouse's pointer and buttons to your keyboard, you can
remap any key on the keyboard to any other key.

Modifying Modifier Key Bindings with 'xmodmap'

To change the meaning of a particular key for a particular XlI session, or to
initialize the X server with a completely different set of key mappings, use the
xmodmap client.

Syntax and Options

The syntax for xmodmap is as follows:

-help

xmodmap

-display

-help

-grammar

-verbose

-quiet

-grammar
- e expresswn

{
{

-ve::bose } }
-qul.et

-n
ffilename]

-p
-display host:display

Specifies the host, display number, and screen to use.

Displays a brief description of xmodmap options.

Displays a brief description of the syntax for modification
expressions.

Prints log information as xmodmap executes.

Turns off verbose logging. This is the default.

Customizing Special X Environments 7-27

-n

-e

-p

Lists changes to key mappings without actually making those
changes.

Specifies a remapping expression to be executed.

filename

Prints a list of current key mappings to the standard output.

Specifies that the standard input should be used for input file.

Specifies a particular key mapping file to be used.

Specifying Key Remapping Expressions

Whether you remap a single key "on the fly" with a command-line entry or
install an entire new keyboard map file, you must use valid expressions in your
specification, one expression for each remapping.

A valid expression is anyone of the following:

Table 7 -8. Valid 'xmodmap' Expressions.

To do this ... Use this expression ...

Assign a key symbol to a keycode. key code keycode = keysym

Replace a key symbol expression with another. keysym keysym = keysym

Clear all keys associated with a modifier key. clear modifier

Add a key symbol to a modifier. add modifier = keysym

Remove a key symbol from a modifier. remove modifier = keysym

key code Refers to the numerical value which uniquely identifies each
key on a keyboard. Values may be in decimal, octal, or
hexadecimal.

keysym

modifier

Refers to the character symbol associated with a keycode.

Specifies one of the eight modifier names.

The keycodes and key symbols differ from keyboard to keyboard. For a list
of the valid key codes for your keyboard, use the xprkbd command explained
below.

7 -28 Customizing Special X Environments

)

J

The following are the modifier names available for use in keyboard
customization:

Table 7 -9. Valid Modifier Names.

Modifier Names

Shift Control Mod2 Mod4

Lock ModI Mod3 Mod5

On Hewlett-Packard keyboards, the mod1 modifier is set to the IExtend chari keys
(Meta_ Land Meta_ R). However, any of the modifiers can be associated with
any valid key symbol. Additionally, although you can't associate more than one
key symbol with a modifier, you can associate more than one modifier with a
key symbol.

For example, you can press @] to print a lower case "d", IShlftl @] to print a

capital "D", IExtend chari @] to print something else, and IShlftllExtend chari ~ to
print still something else.

The xmodmap client gives you the power to change the meaning of any key at
any time or to install a whole new key map for your keyboard. Like remapping
the mouse, a little forethought goes a long way.

Examples

Suppose you had the unfortunate habit of hitting the leapsl key at the most

inopportune moments. You could remove the leapsllock key from the lock

modifier, swap it for the @] key, then map the ~ key to the lock modifier. The
way to do this is by creating a little swapper file that contains the following
lines:

!This file svaps the [Caps] key vith the [F1] key.

remove Lock = Caps_Lock
keysym Caps_Lock = F1
keysym F1 = Caps_Lock
add Lock = Caps_Lock

Customizing Special X Environments 7-29

Note the use of the! in the file to start a comment line. To put your
"swapper" file into effect, enter the following on the command line:

xmodmap svapper IReturnl

If you use such a swapper file, you should probably have an unswapper file.
The following file enables you to swap back to the original keyboard mapping
without having to exit X11:

!This file unsvaps the [Fl] key vith the [Caps key.

remove Lock = Caps_Lock
keycode Ox 54 = Fl
key code Ox37 = Caps_Lock
add Lock = Caps_Lock

Note the use of the hexadecimal values to reinitialize the keycodes to the
proper key symbols. You put your "unswapper" file into effect by entering the
following command line:

xmodmap unsvapper IReturnl

On a larger scale, you can change your current keyboard to a Dvorak keyboard
by creating a file with the appropriate keyboard mappings. Typically, you
would keep this as a special file in your home directory, giving it some name
like" .keymap." The easiest way to install your Dvorak keyboard map is by
including a line in your. xllstart file like the following:

xmodmap . keymap

Printing a Key Map with 'xprkbd'

The xprkbd client prints a list of the key mappings for the current keyboard.

The file contains up to four 3-part columns. The first column contains
unmodified key values, the second column contains shifted key values, the third
column contains meta (IExtend chari) key values, and the fourth column contains
shifted meta key values.

Additionally, each column is in three parts: hexadecimal keycode value,
hexadecimal key symbol value, and key symbol name.

7 ·30 Customizing Special X Environments

)

Syntax and Options

The syntax for xprkbd is as follows:

kbd [
-display host.'diSPlay]

xpr h 1 - e p

-display

-help

Specifies the host, display number, and screen to use.

Displays a brief description of xprkbd options.

Creating a Custom Color Database with 'rgb'
Depending on your needs, you may want to make your own custom color
database modeled after the rgb. txt file. The rgb. txt file is the source file
the rgb client uses to compile the two files the server uses for color database
information. Thus, if you listed the files in /usr/lib/Xl1 that began with
rgb*, you'd find not only rgb.txt, but the two files rgb.dir and rgb.pag.

The file rgb. txt is the default color data base for the X Window System. The
file is an ASCII text file and, in case you haven't looked at it, it contains four
columns: red value, green value, blue value, and color name. The following
lines are from rgb . txt. Note that the red, green, and blue values are given as
the decimal equivalents of their hexadecimal values.

Customizing Special X Environments 7 -31

Table 7-10. Some Lines from 'rgb.txt'.

Red Green Blue Color Name

47 47 100 MidnightBlue

35 35 117 navy blue

35 35 117 NavyBlue

35 35 117 navy

35 35 117 Navy

114 159 255 sky blue

114 159 255 Sky Blue

As the above lines illustrate, several lines are sometimes necessary to account
for alternate spellings of the same color.

To make a custom color database, start your ASCII text editor and open a new
file for your database. Another option is to make a copy of rgb. txt, giving it a
new name, and add, edit, or delete those values.

Use the following steps to add entries to the database:

1. Specify a decimal value for the red aspect of the color.

2. Press the spacebar or ITabl.
3. Specify a decimal value for the green aspect of the color.

4. Press the spacebar or ITabl.
5. Specify a decimal value for the blue aspect of the color.

6. Press the spacebar or ITabl.
7. Specify a color name for the color.

8. Press IReturnl.
9. Repeat steps 2-8 for the other colors in your custom color database.

10. Save your new database file and exit the editor.

7 ·32 Customizing Special X Environments

)

To get the other two files, the ones used by the server, use the rgb client. The
rgb client has the following syntax:

rgb outfile <infile

where injile is the name of your custom database, the text file you created.
The rgb client will create outjile. dir and outjile. pag. Note that, if you choose
to modify the existing rgb. txt (at least make a backup copy if you do), you
must run it through the rgb client before any changes take effect.

To put your new color database into effect, you must add it to your xllstart
command line. For example, if your new database is composed of the files
2bri te. txt, 2bri te. dir, and 2bri te. pag, type the following command line to
start your X environment:

xllstart -- -co 2brite IReturnl

The server by default looks in the /usr/lib/Xll directory for information and
this example assumes that that is where your 2bri te* files are.

Changing Your Preferences with 'xset'
The xset client allows you to change your preferences for display options.
These preferences last for the length of the X Window System session.

Syntax and Options

The syntax for xset is as follows:

Customizing Special X Environments 7-33

xset

bon/off

b v[p[d]]

{ :b{ ~~f
volume [, pitch, [, durationJ J } }

{ :HJ~ 100J } }

-fp path[, path ...]
fp- path[, path ...]
+fp path[, path .. .]
fp+ path[, path ...]

f {default }
p path[, path ...]

m {acceleration threshold}
default

p pixel color
m {default}

p number

{~r{ ~~f} }

s

q

length period
blank
noblank
expose
noexpose
default
on
off

-display host:display.screen

Turns the bell on or off.

Specifies the bell volume, pitch, and duration. Volume is a
percentage between 0 and 100 and can be specified without
specifying pitch and duration. Pitch is a number of hertz and
is specified together with a volume. Duration is a number of

7 -34 Customizing Special X Environments

Compiling Bitmap Distribution Fonts into Server Natural
Format
The X Window System fonts that you select and that the server then uses to
display text can be in either of two font formats: server compressed format
(scf) or server natural format (snf). Both formats function the same. However,
the compressed format takes up less storage space on disk but must be
uncompressed by the server for use.

Which format a font is in is signified by the extension that appears after the
font name listed in /usr/lib/X11/fonts. A .scf signifies a compressed
format; a .snf signifies a natural (uncompressed) format.

You can compress a snf font file using the HP-UX compress command. You
can uncompress a scf font file using the HP-UX uncompress command.

The X Window System includes a font compiler, xfc, which enables you to
convert a font in bitmap distribution format (BDF 2.1) into server natural
format.

Syntax and Options

The syntax for xfc is as follows:

'fc [t=fter
] filename >font.snf

-p

-1

-m

filename

Specifies that font characters should be padded on the right
with zeros to the boundary of word number where number is 1,
2,4, or 8.

Specifies the output of xfc to be least significant byte first.

Specifies the output of xfc to be most significant byte first.

Specifies the name of the bitmap distribution format font to
convert to server natural format.

Note that xfc by default sends output to standard output (typically the
screen). To capture the output as a . snf file, therefore, you Plust redirect the
output as shown in the above syntax.

Customizing Special X Environments 7·37

Example

The following example takes the font file timrom12b. bdf, a bitmap distribution
file, converts it to an snf file, then compresses it into an scf file:

xfc timrom12b.bdf > timroman12b.snf IRetwnl
compress timrom12b.snf I Return I
mv timrom12b.snf.Z timrom12b.scf IRetwnl

Note that the compress command does not willingly create a . scf file, so you
have to mv or cp the compressed timrom12b. snf. Z file to timrom12b. scf.

Using 'xrdb' to Configure the X Server
If you have no .Xdefaults file in your home directory, the xllstart command
uses the xrdb client to load /usr/lib/Xllsys.Xdefaults into the server's
RESOURCE_ MANAGER property. The RESOURCE_ MANAGER property
contains the list of resources available to the server including the specifications
for client colors, keyboard focus policy, and other, similar configurable
resources.

You can use xrdb to load a custom resource configuration file into the server's
RESOURCE_ MANAGER property. One example of the potential that this
has is that it enables you to load a resource file that contains conditional
statements. You can define one set of resources for use in one particular
situation while another set of resources is defined for a different situation.

The benefit of reading the file into the server, instead of having it on disk, is
that the server doesn't have to keep reading the file each time you start a new
client. Additionally, if you start remote clients and display them on your local
screen, the clients will use your local colors. Without a . Xdefaul ts file on the
remote host, the clients would appear on your display in their remote colors.

7 -38 Customizing Special X Environments

Compiling Bitmap Distribution Fonts into Server Natural
Format
The X Window System fonts that you select and that the server then uses to
display text can be in either of two font formats: server compressed format
(scf) or server natural format (snf). Both formats function the same. However,
the compressed format takes up less storage space on disk but must be
uncompressed by the server for use.

Which format a font is in is signified by the extension that appears after the
font name listed in /usr/lib/Xll/fonts. A . sd signifies a compressed
format; a .snf signifies a natural (uncompressed) format.

You can compress a snf font file using the HP-UX compress command. You
can uncompress a scf font file using the HP-UX uncompress command.

The X Window System includes a font compiler, xfc, which enables you to
convert a font in bitmap distribution format (BDF 2.1) into server natural
format.

Syntax and Options

The syntax for xfc is as follows:

xfc [t=fter
] filename >/ont.snf

-p

-1

-m

filename

Specifies that font characters should be padded on the right
with zeros to the boundary of word number where number is 1,
2,4, or 8.

Specifies the output of xfc to be least significant byte first.

Specifies the output of xfc to be most significant byte first.

Specifies the name of the bitmap distribution format font to
convert to server natural format.

Note that xfc by default sends output to standard output (typically the
screen). To capture the output as a . snf file, therefore, you must redirect the
output as shown in the above syntax.

Customizing Special x Environments 7-37

Example

The following example takes the font file timrom12b. bdf, a bitmap distribution
file, converts it to an snf file, then compresses it into an scf file:

xfc timrom12b.bdf > timroman12b.snf IRetwnl
compress timrom12b.snf IRetwnl
mv timrom12b.snf.Z timrom12b.scf IRetwnl

Note that the compress command does not willingly create a . scf file, so you
have to mv or cp the compressed timrom12b.snf.Z file to timrom12b.scf.

Using 'xrdb' to Configure the X Server
If you have no .Xdefaults file in your home directory, the xllstart command
uses the xrdb client to load /usr/lib/Xllsys. Xdefaults into the server's
RESOURCE_ MANAGER property. The RESOURCE_ MANAGER property
contains the list of resources available to the server including the specifications
for client colors, keyboard focus policy, and other, similar configurable
resources.

You can use xrdb to load a custom resource configuration file into the server's
RESOURCE_ MANAGER property. One example of the potential that this
has is that it enables you to load a resource file that contains conditional
statements. You can define one set of resources for use in one particular
situation while another set of resources is defined for a different situation.

The benefit of reading the file into the server, instead of having it on disk, is
that the server doesn't have to keep reading the file each time you start a new
client. Additionally, if you start remote clients and display them on your local
screen, the clients will use your local colors. Without a .Xdefaults file on the
remote host, the clients would appear on your display in their remote colors.

7 ·38 Customizing Special X Environments

)

How Applications Get their Attributes

The X Window System uses multiple configuration files. An application can
get its color and other attributes from several different files. Therefore, how an
application gets its attributes (for example, its foreground color) might, on
occasion, seem a little mysterious.

Where to Find Attributes

You can find application attributes specified in any of the following places:

• A command line may contain attribute options. These options are good
for only that one instance of the application. A command-line option is
the equivalent of a client. resource statement in a .Xdefaults file.

• The XENVIRONHENT environment variable, if present, may contain the
name of a file that specifies application attributes.

• A .Xdefaults-host file in your home directory may contain application
attributes to be used for a specific remote host. A .Xdefaults-host file
is only read if no XENVIRONHENT variable exists.

• The RESOURCE_ MANAGER property of the server may contain
attributes from a file loaded into the server with xrdb.

• A .Xdefaults file in your home directory, or a sys .Xdefaults file in
/usr/lib/Xll may contain application attributes to be used on your
local system. The .Xdefaults file is read only if no file has been loaded
into the RESOURCE_ MANAGER property. The sys.Xdefaults file is
only read if no . Xdefaul ts file exists in your home directory.

• The /usr/lib/Xll/app-defaults directory may contain
application-specific configuration files that specify attributes for a
particular application. An app-defaults file is the equivalent of a
Class*resource statement in an .Xdefaults file.

• An application may have internal defaults that specify attributes when
no resource configuration files exist.

The following figure presents the hierarchy of resource configuration files:

Customizing Special X Environments 7 -39

Figure 7·1. The Heirarchy of Resource Configuration Files.

Command-Line Option

JJ.

$XENVIRONMENT

JJ.

if existent, else ~

RESOURCE- MANAGER property if existent, else ~

JJ.

/usr/lib/X11/app-defaults

JJ.

Internal Application Defaults

.Xdefaults-host

.Xdefaults

if existent, else JJ.

/usr/lib/X11/sys.Xdefaults

Note that the figure is additive from top to bottom, but exclusive from left
to right. In other words, if a resource isn't specified on the command line, it
is added from the $XENVIRONMENT variable, if set, and if set, no resource
specifications come from .Xdefaults-host. Likewise, the resource specification
could come from the RESOURCE_ MANAGER property, and if so, no resource
specifications come from . Xdef aul ts.

Class Struggle and Individual Identity

Additionally, the visible outcome of any attribute specification is influenced
by whether that specification is for an individual resource or for a class of
resources.

An individual resource begins with a lowercase letter. For example,
foreground refers to the foreground resource. A class resource, however,
begins with an uppercase letter. For example, Foreground refers to the the
entire class of foreground resources.

Thus, if no other specifications overruled, the line *foreground: blue in
your .Xdefaults file would make all foregrounds blue. However, the line
*Foreground: blue would make all resources that belonged to the Foreground

7 ·40 Customizing Special X Environments

)

)

class blue. This would include such resources as foreground; cursor Color;
pointerColor; bottomShadowColor for softkeys, hpwm, icons, and mattes; clock
hands; and highlight.

The Order of Precedence Among Attributes

In general, follow this rule of thumb to determine the effect of a resource
specification:

A more detailed specification takes precedence over a less detailed specification.

For example, suppose you included the following lines in your .Xdefaults file:

*Foreground:
HPterm*Foreground:
HPterm*foreground:
HPterm*cursorColor:

red
DarkSlateGray
coral
green

The first line makes all resources of the class Foreground red. The second line
overrules the first line, but only in the case of clients of class HPterm (of which
there is only one - the hpterm client itself). Line two makes the Foreground
class resources of all hpterm clients DarkSlateGray. Lines three and four give
hpterm clients coral foregrounds and green cursors respectively, while the other
resources of class Foreground (pointerColor, cursorColor, soft key foreground
and bottomShadowColor, and scrollbar foreground and bottomShadowColor)
remain DarkSlateGray.

Naming a Client

Additionally, you can give a client of some class a name. This allows you to
allocate resources to that client by class, by client, and by name.

For example, HPterm is a client class. The hpterm window is a client of that
class. But, using the following syntax, you can also give an hpterm client of the
HPterm class a name:

client. name: name

Customizing Special X Environments 7-41

Thus, you could add three lines to the lines above and have the following
specfications in your .Xdefaults file:

*Foreground:
HPterm*Foreground:
HPterm*foreground:
HPterm*cursorColor:
hpterm.name:
BWterm*Foreground:
BWterm*Background:

red
DarkSlateGray
coral
green
BWterm 'Monochrome hpterm window
black
white

This illustrates the ability to create a named window, in this case a black and
white hpterm window, that overrides the specifications for class and client
resources.

Syntax and Options

The syntax: for xrdb is as follows:

-help

{
-cpp path/filename}
-nocpp

-symbols
-query

xrdb { =!~;:e }
-remove
-edit path/filename

-help

-display

-backup string
-Dname[= value]
-Uname
- Ipath/directory

-display host:display

Displays a list of options for xrdb.

Specifies the host and display of the server to be loaded with
the configuration information.

7 -42 Customizing Special X Environments

)

-query

-load

-merge

-remove

-edit

-backup

-cpp

-nocpp

-symbols

-Dname

-Uname

Displays the current contents of the server's RESOURCE_
MANAGER property.

Specifies that xrdb should load the file named on the command
line into the RESOURCE_ MANAGER property, overwriting
the current resources listed there.

Specifies that xrdb should load the file named on the command
line into the RESOURCE_ MANAGER property, merging the
new resources with the current resources instead of overwriting
them.

Removes the current configuration file from the RESOURCE_
MANAGER property.

Places the contents of the RESOURCE_ MANAGER property
into the named file, overwriting resources specified there.

Specifies a suffix to be appended to the filename used in the
-edi t option to create a backup file.

Specifies the path and filename of the C preprocessor to
use when loading a configuration file containing lifdef
or 'include statements. xrdb works with CPP and other
preprocessors as long as they accept the -D, -U, and -I options.

Specifies that xrdb should not use a preprocessor before
loading the configuration file (the file contains no statements
that need preprocessiong).

Displays the symbols currently defined for the preprocessor.

Defines a symbol for use with conditional statements in the
configuration file used by the RESOURCE_ MANAGER
property.

Removes a defined symbol from the RESOURCE_ MANAGER
property.

-Ipath/directory Specifies the search path and directory of linclude files used
in the RESOURCE_ MANAGER.

Customizing Special X Environments 7-43

Examples

The xrdb client enables you to swap resource configuration files in and out of
the X server's RESOURCE_ MANAGER property. For example, suppose you
need to keep switching between your .Xdefaults configuration and a special
/proj ects/proto . defaul ts configuration that contains different color resource
specifications. To change to proto. defaults, type the following:

xrdb -nocpp -load /projects/proto.defaults IRetwnl

To see that the resources have actually been swapped, type the following:

xrdb -query IRetwnl

Any new clients started now will have the colors specified in proto. defaults.
To change your existing environment to the proto. defaul ts colors, restart the
window manager.

As another example, suppose you are the system administrator of an
S300 diskless cluster and that the cluster includes several different types
of monitors. One option that xrdb gives you is the ability to create a
/usr/lib/Xll/syscus .Xdefaults file containing resource modules headed
by ifdef statements. One ifdef statement for each of the different monitor
types. In each user's . xllstart script, you replace the existing line calling
xrdb with the following:

xrdb /usr/lib/X11/syscus.Xdefaults

The C language preprocessor reads the class of the monitor (StaticGray,
PseudoColor, etc.) passed to it by xrdb and, based on that information, select
the correct ifdef module.

As an elaboration of this, you could include a special module in
syscus .Xdefaults for novice users (giving them a simplified environment) by
placing the following line in their . xllstart file:

xrdb -DUSER=beginner /usr/lib/X11/syscus.Xdefaults

This line would select the correct monitor module for the novice 's monitor,
while tempering the usual resources for that monitor type with resources from
the beginner module.

7·44 Customizing Special X Environments

Using National Language Input/Output
Though most character sets are composed of 8-bit characters, some languages
(Japanese, Chinese, and Korean) have larger character sets that require 16-bit
characters. The X Window System supports the use of 16-bit character input
with the National Language Input/Output (NL I/O) subsystem.

To use NL I/O you must have the following:

• The NL I/O subsystem properly installed on your system.

• The appropriate language keyboard or an ASCII keyboard.

• The appropriate NL I/O fonts installed in the /usr/lib/Xl1/fonts
directory.

Configuring 'hpterm' Windows for NL I/O

You can configure an hpterm window to display NL I/O. The process uses the
config keys and terminal config soft keys available with hpterm windows
to configure the window for NL I/O. Follow the steps outlined in the Native
Language I/O System Administrator's Guide (RP 92559-90002) and the Native
Language I/O Access User's Guide (RP 92559-90001).

This configures the hpterm client. You must also select the appropriate NL I/O
font.

Specifying an NL I/O Font

NL I/O fonts are part of the NL I/O product. You install them in the
/usr/lib/Xl1/fonts directory when you install your NL I/O subsystem.

You specify an NL I/O font exactly like you specify any other font. For
example, if you want to create an hpterm window that uses the Japanese font
jpn.8x18, use the following command line:

hpterm -fn jpn . 8x18 & IReturnl

Customizing Special X Environments 7-45

Where to Go Next
The next chapter discusses X Window System printing and screen dumping
utilities. The chapter after that, chapter 9, discusses the X Window System as
an environment for Starbase applications.

7 -46 Customizing Special X Environments

)

8
Printing and Screen Dumps

The X Window System includes clients that enable you to do screen dumps. A
screen dump is an operation that captures an image from your screen and saves
it in a bitmap file. You can then redisplay, edit, or send the file to the printer
for hardcopy reproduction.

Read this chapter if you need to "take a picture" of something on the screen
for future use or if you want to print what is on your screen.

This chapter discusses the following topics:

• Making a screen dump.

• Displaying a screen dump.

• Printing a screen dump.

Making and Displaying Screen Dumps
Xll windows can be dumped into files by using the xvd client. The files can be
redisplayed on the screen by using the xvud client.

Making a Screen Dump with 'xwd'

The xvd client allows you to take a "picture" of a window that is displayed on
the screen and store it in a file. The filed picture can then be printed, edited,
or redisplayed. You select the window to be dumped either by clicking the
mouse on it or by specifying the window name or id on the command line.

The resulting file is called an xvd-format bitmap file or an xvd screen dump.
All of the figures used in this manual, with the exception of the system
diagrams in chapter 2, are xvd screen dumps.

Printing and Screen Dumps 8-1

Syntax and Options

The syntax for xwd is as follows:

xwd

-help

-id

-name

-root

-nobdrs

-out

-xy

-display

-help

{ =!::: name}
-root

-nobdrs
-out filename
-xy
-display display

Provides a brief description of usage and syntax.

Specifies the window to be dumped by its id rather than using
the mouse to select it.

Specifies the window to be dumped by its name rather than
using the mouse to select it.

Specifes that the window to be dumped is the root window.

Dumps the window without borders.

Specifies that the screen dump is to be stored in the file
filename.

Selects 'XV' format of storage instead of the default 'Z' format.

Specifies the screen that contains the window to be dumped.

Example 1: Selecting a Window with the Pointer

This example stores a window in a file named savewindow, using the pointer to
determine which window you want.

1. Display the an hpterm or xterm window.

2. Type:

xwd -out savewindow IRetwnl
The pointer changes shape, signifying you can select a window to dump.

8-2 Printing and Screen Dumps

)

)

3. Move the pointer into the window you want to dump. Press and release
the select button. The cursor changes back to its normal shape and the
window is stored in the file savevindov.

Example 2: Selecting a Window with a Name

If you know the name of the window you want to dump, you don't need to use
the pointer at all. This example dumps the window named "calendar" to a file
named calendar. dump.

xvd -name calendar -out calendar.dump JRetwnJ

Displaying a Stored Screen Dump with 'xwud'

The xvd client allows you to display an xvd-format bitmap file on your
monitor. You could have created the file earlier with xvd or translated it from
another format into xvd format.

Note The image to be restored has to match the depth of the system
on which it is to be restored. For example, an image created
and stored using a depth of four cannot be restored on a
system with a different depth.

Syntax and Options

The syntax for xvud is as follows:

xvud

-help

-in

-inverse

-display

[

-help 1 - in filename
-inverse
-display host:display.screen

Displays a brief description of the options.

Specifies the file containing the screen dump.

Reverses black and white from the original monochrome dump.

Specifies the screen on which to display the dump.

Printing and Screen Dumps 8-3

Example

This example displays the bitmap file myfile.

xwud -in myfile IReturnl

Printing Screen Dumps
Before you can print the screen dump, you need to ensure that your printer is
connected and talking to your computer.

If you are the system administrator, refer to the HP- UX System Administrator
Manual for information about these tasks. If you're not the system
administrator, ask the person who is to perform these tasks:

• Connect the printer to your computer.

• Create a device file for the printer on your computer.

• Run the print spooler.

Printing Screen Dumps with 'xpr'

xpr prints a screen dump that has been produced by xwd.

8-4 Printing and Screen Dumps

)

Syntax and Options

xpr

-scale

-density

-height

-width

-left

-top

-header

-trailer

-landscape

-scale scale
-density dpi
-height inches
-width width
-left inches
-top inches
-header caption
-trailer caption

{
-landSC~pe}
-portra~t

-rv
-compact

{
-output filename}
-append filename

-noff
-split n
-device dev
-cutoff level
-noposition

filename

Specifies a multiplier for pixel expansion. The default is the
largest that will allow the entire image to fit on the page.

Specifies the dots per inch for the printer.

Specifies the maximum height in inches of the window on the
page.

Specifies the maximum width in inches of the window on the
page.

Specifies the left margin in inches. The default is centered.

Specifies the top margin in inches. The default is centered.

Specifies a caption to print above the window.

Specifies a caption to print below the window.

Prints the window in landscape mode. The default prints the
long side of the window on the long side of the paper.

Printing and Screen Dumps 8-5

-portrait

-rv

-compact

-output

-append

-noff

-split

-device

-cutoff

-noposition

filename

Example

Prints the window in portrait mode. The default prints the
long side of the window on the long side of the paper.

Reverses black and white from the original screen.

Provides efficient printer directions for a window with lots of
white space (Postscript printers only).

Specifies a file to store the output in.

Adds the window to the end of an existing file.

Specifies that the window should appear on the same page as
the previous window. Used with -append.

Prints the window on n pages. Not applicable to HP printers.

Specifies the printer to use.

Specifies intensity for converting color to monochrome for
printing on a LaserJet printer.

Bypasses header positioning, trailer positioning, and image
positioning commands for the LaserJet and PaintJet printers.

Specifies the bitmap file to print.

Suppose you want to print a bitmap file named myfile that you previously
created with xwd. You want to print the file on a LaserJet printer in portrait
mode with black and white the reverse of the original bitmap file.

You must first determine the device type for your system. The example uses
Ij, but your system could have a different device type assigned. Follow these
steps to find the device type for your system:

1. Type the following:

Ipstat -t IReturnl

8-6 Printing and Screen Dumps

)

)

2. In response, you should see something like this:

system default destination: lj
device for lj: /dev/lj2000
device for lj2: /dev/lj2
lj accepting requests since Jan 05 11:37
lj2 accepting requests since Jan 05 12:11
printer lj is now idle. enabled since Jan 05 11:37
printer lj2 is now idle. enabled since Jan 05 12:11

3. From the above example of lpstat -t. you can see that there are two
printer device types for this system, lj and lj 2. Use the device type
for your system in place of lj in the example below.

xpr -device lj -portrait -rv myfile I lp -oraw IReturnl

Reversing colors is often used when preparing illustrations for documents. The
original illustration can be done in white with a black background, which is
easy to see on computer displays, but reversed to give a black drawing on a
white background, which is common in printed material.

Moving and Resizing the Image on the Paper

You may not always want to have the image print exactly in the same size or
location as the default choices place it.

Sizing Options

The three sizing options for xpr are:

-scale

-height

-width

Each bit of the bitmap is translated into a grid of the size you
specify. For example, if you specify a scale of 5, each bit in the
bitmap is translated into a 5 by 5 grid. This is an easy way to
increase the size without refiguring the height and width.

The maximum height in inches of the image on the page.

The maximum width in inches of the image on the page.

The actual printed size could be smaller than ((-height)) and ((-width)) if other
options, such as the orientation ones, conflict with them.

Printing and Screen Dumps 8-7

Location Options

The two location options for xpr are:

-left The left margin in inches.

-top The top margin in inches.

If ((-left)) is not specified, the image is centered left-to-right. If ((-top)) is not
specified, the image is centered top-to-bottom.

Orientation Options

The two orientation options to xpr are:

-landscape The image is printed so that the top of the image is on the
long side of the paper.

-portrait The image is printed so that the top of the image is on the
short side of the paper.

If neither option is specified, xpr will position the image so that the long side
of the image is on the long side of the paper. However, you can force it to print
either in landscape mode or portrait mode by using the appropriate option.

Unless told otherwise by the sizing options, xpr makes the image as big as can
fit in the orientation specified.

Printing Multiple Images on One Page

xpr normally prints each image on a separate page. The -noff option is used to
print more than one image on a page.

Printing Color Images

Printing Color Images on a PaintJet

Use the device name pjet to direct output to a PaintJet.

8-8 Printing and Screen Dumps

J

If you have a PaintJet on your system, there may be a different
device type. Use the Ipstat -t command to determine
the device types in use for your system. Ask your System
Administrator for assistance if you are still unsure of your
system's device type.

For example, the following command prints a bitmap file named myfile on a
PaintJet.

xpr -device pjet myfile IRetwnl

Printing Color Images on a LaserJet

Color images printed on a LaserJet will be in black and white instead of color.
Often you need do nothing but specify Ij as the device. If your original color
image contained many colors of the same intensity, the LaserJet version may
be all light or all dark. If that happens, use the ((-cutoff)) option to change
the mapping of color intensities. Anything above the cutoff value is white and
anything below is black. Note that the default cutoff value is 50 percent.

Where To Go Next
Only one chapter left! Chapter 9 covers using the powerful Starbase graphics
library from XII.

Printing and Screen Dumps 8-9

)

)

)

9
Using Starbase on X11

Starbase is a powerful graphics library from Hewlett-Packard. It provides
two-dimensional and three-dimensional graphics, a variety of input and output
capabilities, and high performance features, such as hidden surface removal,
shading, and light sourcing.

This chapter describes how Xll interacts with Starbase. It does not describe
Star base itself. For detailed information about Starbase features, refer to
Starbase Programming with X 11 in the Starbase documentation.

This chapter covers the following topics:

• Using the X*screens file to control display options.

• Starting the Xll server.

• Opening and destroying windows for Star base applications.

• Creating transparent windows.

• Conversion utilities.

Using the X·screens File
This section reviews some concepts that you need to understand before starting
the Starbase server:

• X*screens file.

• Monitor Type.

• Operating modes.

• Double buffering.

Using Starbase on X11 9-1

The X*screens file is a system file that contains the screen configurations you
want to use. Before you run a Starbase application, you should ensure that the
configuration is correct for Starbase. The X*screens file is described in chapter
7.

The following sections describe options you should be aware of when running
Starbase on XU. It also explains how to specify those options in the
X*screens file. If the X*screens file you are using doesn't have the correct
entries to do what you want, edit it to include the correct information.

Generally, once you have modified the X*screens file, you won't have to
change it again unless you add a new monitor.

Monitor Type

Starbase can run on a wide variety of graphics monitors. More sophisticated
monitors provide a wider choice of options. The following table shows which
options are available for different monitors.

9-2 Using Starbase on X11

Table 9-1. Display Hardware and Available Options

With this display hardware . .. You can use these options . . .

HP Part Number Maxinrum Planes (colors) Modes Double Depth
buffer

HP 98542A 1 Image (monochrome) Image

HP 98543A 4 Image (monochrome) Image V
HP 98544B 1 Image (monochrome) Image

HP 98545A 4 Image (monochrome) Image

HP 98547A 6 Image (64) Image V
HP 98548A 1 Image (monochrome) Image

HP 98549A 6 Image (64) Image V
HP 98550A 2 Overlay (4) Image V

8 Image (256) Overlay

HP 98720A 3 Overlay (8) Image V V
8-24 Image (256 from Overlay
16 million) Stacked V V

HP 98730A 4 Overlay Image V V
8-24 Image (256 from Overlay
16 million) Stacked V V

Combined V V

Operating Modes

Image and Overlay Planes

Monitors can have two kinds of display planes, image and overlay. The image
plane allows the monitor hardware to help the graphics commands run faster
and more efficiently.

Server Operating Modes

The operating mode results from the way you specify the image and overlay
screens in the X*screens file.

Using Starbase on X11 9-3

The four different modes are:

Overlay mode The Xll server operates only in the overlay planes. Starbase
can display in its "raw" mode, writing directly to the image
planes, rather than to a window. A "transparent" overlay
window can look through to the Starbase display in the image
planes. The Starbase double buffering feature does not apply
in this mode.

Image mode This is the only mode available on those displays that do not
have overlay planes. Even if overlay planes are available, you
may want to use image mode to have a greater number of
colors available.

Stacked screen In this mode, the image planes are treated as one screen and
mode the overlay planes as another, separate screen, providing twice

as much screen space. The pointer is moved to the edge of the
display to switch between the overlay and image planes.

Combined This mode (available only on the HP 98730A) treats the
mode overlay and image planes as a single device that provides

multiple window types to client programs.

Monochrome monitors and low-level color monitors run in the image mode.

Documentation for the Starbase application program will tell you which mode
or which plane the application expects.

The following examples show how X*screens entries vary for each mode.

Example 1: Image Mode

This example shows an image mode entry in the X*screens file. The same
entry is used regardless of the type of monitor. The number of colors available
to you depends on the monitor. The entry may also have the options discussed
in the next few sections.

/dev/crt

9·4 Using Starbase on X11

Example 2: Overlay Mode

This example shows an overlay mode entry in the X*screens file for monitors
that support overlay mode. The number of colors you are able to use depends
on your display adaptor.

/dev/ocrt

Example 3: Stacked Mode

This example shows the entries for stacked mode for monitors that are able to
support stacked mode. Stacked mode is indicated by having each entry on a
separate line. Image plane entries can have the options discussed in the next
few sections. Note that the order of the entries determines the order of the
screens. Screen 0 is the first entry, screen 1 is the second entry, and so on.

/dev/ocrt
/dev/crt

Example 4: Combined Mode

This example shows how a combined mode entry is made in the X*screens file
for monitors that support combined mode. Combined mode is indicated by
having the entries for the overlay and image planes on the same line, overlay
planes first. Image plane entries can have the options discussed in the next few
sections.

/dev/ocrt /dev/crt

Double Buffering

This feature does not apply to monochrome monitors or when the XU server is
running in the overlay planes.

Double buffering means that Starbase uses half of the color planes of your
monitor to display to the screen, and uses the other half to compute and draw
the next screen display. This provides smooth motion for animation, and it is
also faster. However, double buffering reduces the number of colors available
for displaying on the screen at one time. Some applications require double
buffering. If you run a double-buffered application in single buffered mode, the
display will flash or flicker rapidly.

Using Starbase on X11 9-5

Example 1: Image Mode

/dev/crt doublebuffer

Example 2: Stacked Mode

/dev/ocrt
/dev/crt doublebuffer

Example 3: Combined Mode

/dev/ocrt /dev/crt doublebuffer

Screen Depth

You can specify a screen depth for image planes in the X*screens file.
Valid depths for regular (single buffer) mode are 8 and 24. Valid depths for
doublebuffer mode are 8, 16, and 24. The depth of overlay planes is determined
by the /dev entry in X*screens. The depth for the HP 98550A is 2 overlay
planes: the depth for the HP 98720A has 3 overlay planes; and the depth for
the HP 98730 can be either 3 or 4 overlay planes.

More planes means more colors can be displayed simultaneously. For
computer-generated graphics to look as realistic as photographs, thousands of
colors must be shown at the same time. 8 planes means that 28 (256) colors
can be shown, while 24 planes means that 224 (16 million) colors can be shown.
Note that depth is specified only when you have more than one depth available.
This feature is feature is available only on the HP 98720A and HP 98730A
Display Controller.

Example 1: Image Mode

The following example shows an X*screens file entry for an HP 98720A
monitor running in image mode. Windows can have 8 planes (256 colors)
displayed simultaneously.

/dev/crt depth 8

Example 2: Combined Mode

The following example provides two double buffered depths in the image planes:
depth 8 (16 planes/2) and depth 12 (24 planes/2). That is, some windows in

9-6 Using Starbase on X11

the image planes could have a depth of 8 planes, while others could have a
depth of 12 planes. This is possible only in combined mode.

/dev/ocrt /dev/crt depth 16 depth 24 doublebuffer

Starting the X 11 Server
Once you have ensured that the options you need are in the X*screens file,
type

xllstart -- :n IReturnl

where n is replaced by the number of the X*screens file you want to have in
effect. For example, if you have all your display options in the XOscreens file,
type xllstart -- :0 to start the server.

Window-Smart and Window-Naive Programs
Window-smart applications are able to create and destroy the windows in
which they operate.

Window-naive (sometimes called window-dumb) applications aren't able to
create and destroy windows on their own. They need help from the XlI
system.

Although this chapter discusses window-smart and window-naive applications
in relation to Star base, the same procedures are used to start non-Starbase
programs.

Is My Application Window-Smart or Window-Naive?

If you are using an existing application, the documentation that comes with the
application will tell you how to start it. You don't have to worry whether it is
window-smart or window-naive, just follow the directions.

Using Starbase on X11 9-7

If you are writing a new application using Starbase, use the xwcreate and
xwdestroy commands. Rather than typing the commands each time you want
to test the new program, put the commands in a file, then execute the file to
start the application. In this case, the application is window-naive but the file
is window-smart.

Running Window-Smart Programs

From an hpterm window, type the name of the Starbase program you want to
run.

For example, the following command will start a hypothetical Starbase
application named planetarium that displays a moving display of the night
sky. Assume that the program is in the /users/funstuff/ directory on your
computer.

/users/funstuff/planetarium IReturnl

Running Window-naive Programs

Window-naive programs cannot open and close the window they need to run
in, so you must do it for them with clients (a terminal emulator, for example).
Programs that use the Starbase graphics library are window-naive.

Most window-naive programs are able to run in the X Window System
environment using the soxll device driver. The soxll driver is described in
the Starbase Device Drivers manual. But window-naive clients still need help
to create and destroy the windows they display their output in.

To enable such window-naive graphics programs to run within X, you need
four special helper clients to create and destroy the windows used by the naive
graphics programs. The clients are:

• gwind

• xwcreate

• xwdestroy

• gwindstop

gwind runs in the background and services requests from the other three
helper clients. When requested by xwcreate, gwind creates a window in which

9-8 Using Starbase on X11

an application can display its output; when requested by xwdestroy, gwind
destroys the window. You don't need to start the gwind progmm, xwcreate and
xwdestroy start it for you.

The next sections cover:

• Creating a window

• Destroying a window

An example showing all of these steps follows the discussion.

Creating a Window with 'xwcreate'

xwcreate requests gwind to create a window for a window-naive graphics
program to use for its output. The graphics program must exist on the same
computer that is running xwcreate. If gwind is not already running when
xwcreate is executed, xwcreate will start gwind. Once xwcreate has created
a window, you can use the window to run your graphics program. When you
finish that application, you can use the same window to run another graphics

) program if you wish.

When to Use 'xwcreate'

Use xwcreate from the command line.

Syntax and Options

-display host:display.screen
-parent parent
-geometry width x height± col± row
-r
-bg color
-bw pixels

xwcreate

-bd color
-depth depth
-wmdr directory
-title name)

-display Specifies the screen the window will appear on

-parent Names a window to be the parent of the window being created.

Using Starbase on X11 9-9

-geometry

-r

-bg

-bw

-bd

-depth

-wmdir

-title

Specifies desired size and location of window.

Specifies backing store. Default is no backing store.

Specifies the background color. The default is black.

Specifies the border width in pixels. The default is 3 pixels
wide.

Specifies the border color. The default is white.

Specifies the depth of the window. The default is the same
depth as its parent.

Specifies the name of the directory containing the pty file for
the window.

Specifies the name the window will be called.

The depth option is where you tell the window manager what set of planes you
want the window to be in. If you specify nothing, the window will be created
in the overlay planes. If you specify a depth, the window will be placed in the
image plane with the depth (number of color planes) you specify.

The following example creates a window named "foo:"

xwcreate -title foo IReturnl

Destroying a Window with 'xwdestroy'

xwdestroy destroys the window created by xwcreate. If that window is the
only graphics window present at that time, gwind will also be terminated.

When to Use 'xwdestroy'

Use xwdestroy from the command line.

Syntax and Options

xwdestroy [-wmdir path/directory] windowl window2 ...

-wmdir Specifies the directory containing the pty file for the window.

9-10 Using Starbase on X11

)

)

window Specifies the window or windows to be destroyed.

The following example will destroy a window named "foo:"

xwdestroy foo

Destroying a Window with 'gwindstop'

gwindstop destroys all windows created by gwind in the specified directory. If,
however, you use xwdestroy to remove the last window opened for graphics
use, xwdestroy will remove the other windows as well. You do not need to use
gwindstop.

Caution , You must use xwdestroy or gwindstop to get rid of a window
after you have finished running your graphics application. Do
not use kill to remove the gwind process associated with
the window. If you should accidentally do so, you must type
the command rm $WMDIR/wm. Failure to do this will result in
xwcreate not running the next time you call it.

When to Use 'gwindstop'

Use gwindstop from the command line.

Syntax and Options

gwindstop [directory] [directory] ...

directory The directory containing the pty files for the windows to be
destroyed.

Using Starbase on X11 9-11

Running Starbase in Raw Mode
If your monitor doesn't support overlay planes, you can run Starbase in "raw"
mode, which means that Starbase writes to the entire screen rather than to a
window. You then use a transparent window to see through to the Starbase
output.

For information about Starbase raw mode, refer to the Starbase
documentation.

Using Transparent Windows
Transparent windows allow you to look through an overlay window into the
image planes.

Creating a Transparent Window with 'xseethru'

xseethru is a transparent overlay-plane window used to see through the
overlay planes to the image planes. It is used in stacked or overlay mode.

When to Use 'xseethru'

Use xseethru from the command line.

Syntax and Options

h [
-geometry width x height± col± row]

xseet ru . h dO I -dlsplay ost: lSP ay.screen

-geometry

-display

The geometry used to create the window. Refer to chapter 4
for more information about geometry.

The screen the window will appear on. Refer to chapter 4 for
more information about display.

9·12 Using Starbase on X11

)

Example

This example opens a transparent window 100-pixels by 100-pixels in size and
located 50 pixels from the left and 25 pixels from the top of the screen.

xseethru -geometry 100xl00+50+25 IRetwnl

Creating a Transparent Window with 'xsetroot'

xsetroot allows you make the root window transparent when you are running
X in the overlay planes.

When to Use 'xsetroot'

Use xsetroot from the command line.

Syntax and Options

xsetroot [-solid color]

-solid Sets the window color to color.

Example

This example turns the root window into a transparent window.

xsetroot -solid transparent IReturnl

Creating a Transparent Background Color

Any window may have transparent as its background color.

Chapter 4 explains how to set colors in a window. This example opens an
hpterm window with a transparent background color.

hpterm -bg transparent IReturnl

Using Starbase on X11 9-13

Conversion Utilities
This section shows you how to use the utilities sb2xvd and xvd2sb.

Converting Starbase Format to 'xwd' Format using 'sb2xwd'

sb2xvd converts Starbase format window files into xvd format pixmaps. The
pixmaps can then be printed by using xpr or displayed on the screen by using
xvud. both of which are described in chapter 8.

When to Use 'sb2xwd'

Use sb2xvd from the command line.

Syntax and Options

sb2xvd < filename > filename

<filename

>filename

Example

The Starbase window file to be converted.

The xvd pixmap file name.

This example translates the Starbase window file named mystar into an xvd
pixmap file named myxvd. then prints it on an HP LaserJet printer.

sb2xvd < mystar > myxvd
xpr -dev Ij myxvd I Ip -orav

Converting 'xwd' Format to StarBase Format using 'xwd2sb'

xvd2sb is the opposite of sb2xvd. It converts xvd format pixmaps into
Starbase format window files. An example of this would be creating graphics in
Starbase, converting to xvd, editing the graphic, and then converting back to
Starbase.

The file_to_bitmap Starbase command can then be used to load the
converted file into a Star base window file.

9·14 Using Starbase on X11

)

)

When to Use 'xwd2sb'

Use xwd2sb from the command line.

Syntax and Options

xwd2sb < filename > filename

<filename

>filename

The xwd bitmap file to be converted.

The Starbase window file filename.

Example

This example dumps an xwd window named sample into a bitmap file called
myxwd. translates it into a Starbase window file, and stores it in a file called
mystar.

xwd sample -name myxwd
xwd2sb < myxwd > mystar

The file mystar is now in a format to be used directly by the Starbase
commands.

Using Starbase on X11 9-15

o

o

)

A
Reference Information

This section contains reference information about clients included with the X
Window System and about the X protocol and server itself. The entries are
arranged alphabetically, each starting on its own "page I."

bdf(4)
bitmap(l)
gwindstop(1)
hpterm(l)
hpwm(l)
resize(l)
rgb(l)
sb2xwd(1)
uwm(l)
X(l)
xllstart(l)
xclock(l)
xfc(l)
xfd(l)
xhost(l)
xinit(l)
xinitcolormap(l)

MAN Pages

xload(l)
xmodmap(l)
xpr(l)
xprkbd(l) on xmodmap(l) MAN page
xrdb(l)
xrefresh (1)
xseethru(1)
Xserver(l)
xset(l)
xsetroot(l)
xterm(l)
xwcreate(1)
xwd(l)
xwd2sb(1)
xwdestroy(l)
xwininfo(1)
xwud(l)

Reference Information A·1

o

BDF(4) BDF(4)
Series 300 and 800 OnJ,y

NAME
bdf - Bitmap Distribution Fonnat 2.1

DESCRIPTION
A "df" file is a file confonning to Bitmap Distribution Fonnat 2.1. It is used for specifying fonts
for the XU Windowing System. In bdf fonnat, the font is transportable between systems and is
converted to a server natural fonnatvia the use ofxf'((see xfc(1) for more details).

FILE FORMAT
srARTFONT 2.1

This must be the first line of the file.

COMMENT
This must be the second line in the file and can be 1 or more lines. These lines are
ignored by the font compiler.

FONT family name-face name
This must be the third line in the file. Examples of a family name are "oldenglish",
"6x10.bits", "gennanic". Examples of face name are "old" and "italic".

SIZE point size x resolution y resolution
This must be the fourth line in the file. point size is usually based on 72 points per inch.
If a font has a point size of 8, it will be 1/9th of an inch high; point size of 16 will be 1/4
of an inch high. The x resolution and y resolution is the pixels per inch on the display
for which the font was created. -

FONTBOUNDINGBOX width height x displacement y displacement
This must be the fifth line in the file. width and height are the maximum width and
height in pixels of the font. x displacement and y displacement indicate (again in pixels)
the lower left comer of the font with respect to the origin.

srARTPROPER11ESp
This is an optional keyword. If included,p indicates the number of special properties
following it. See "SPECIAL PROPERTIES" for a complete destription of the special
properties available.

ENDPROPER11ES
If there is a srARTPROPER11ES, there must be an ENDPROPER11ES.

CHARSc
This keyword must be the next statement after FONTBOUNDINGBOX (or
ENDPROPER11ES if special properties are declared). c indicates the number of
characters the font will contain. CHARS is followed by c srARTCHAR, ENDCHAR
pairs. See "CHARACfER DEFINmON" for details on the infonnation supplied by the
srARTCHAR and ENDCHAR pair.

END FONT
This must be the last line in the file. It indicates the end of the infonnation the font
compiler is to process.

CHARACI'ER DEFINITION
srARTCHAR name

This is the first keyword for each character to be described for the font. name is the
destriptive name of the glyph, i.e. oj", "x", "1", etc.

ENCODING integer
This must be the first keyword to follow srARTCHAR It indicates the Adobe Standard
Encoding value for name. integer must be a positive integer. If it is a -1, it is assumed
that the character is not a member of the Adobe Standard Encoding. In this case, the -1
can be followed by an optional integer specifying the glyph index.

SWIDTH scalable_width _x scalable_width y
This is the stalable width of the character in x and y. To calculate the the width in device
pixels from the stalable width, multiply SWIDTH by P times r divided by 72000 where p is
the size of the character in points and r is the device resolution in pixels per inch.

Hewlett-Packard Company -1- Jan 20,1989

BDF(4)
Series 300 and 800 Only

DWIDTII width _x width Y
width _x and width yare a vector in device units indicating the position of the next
character's origin relative to this character.

BBX BBw BBh BBox BBoy

BDF(4)

BBw and BBh are the width and height of this character. BBox and BBoy are the x and y
displacement from the origin to the lower left corner of the character.

BITMAP
This keyword appears on the line by itself and is followed by BBh lines of hex-coded
bitmap, padded on the right with zeros to the nearest multiple of 8.

ENDCHAR
For each STARTCHAR, there must be an ENDCHAR

SPECIAL PROPERTIES

ORIGIN

The special properties information is saved in the special properties list of the font for access by
any application wishing more information about the font The currently supported special
properties are:

FONT_ASCENT integer
Determines the top boundary of the font.

FONT DESCENT integer
- Determines the bottom boundary of the font.

DEFAULT CHARinteger
This is the default character to use for all undefined characters.

POINT SIZE integer
- Same as point _size specified in SIZE.

FAMILY NAME string
Same as family _name specified in FONT.

RESOLUTION integer
The resolution in pixels per inch of the display for which the font was created.

X HEIGlIT integer
- This specifies the height of the lower case 'x' in quarter-dot units (four quarter-dot units

equals one pixel).

WEIGlIT integer
Specifies the thickness of the strokes used in designing the font. The range is -7 to 7
(thin - thick).

Character Bitmap Distribution Format 2.1, Adobe Systems, Inc.

SEE ALSO
X(I), Xserver(I), xfc(l)

Hewlett-Packard Company -2- Jan 20,1989

)

BITMAP (1) BITMAP (1)
Series 300 and 800 Only

NAME
bitmap - bitmap editor for X

SYNOPSIS
bitmap [options] filename [WIDTIIxHEIGHf]

DESCRIPTION
bitmap lets you interactively create bitmaps, or edit previously created bitmaps. A bitmap is
simply a rectangular array of 0 and 1 bits. The X Window System uses bitmaps in defining
clipping regions, cursor shapes, icon shapes, and tile and stipple patterns.

When you run bitmap, you are given a magnified version of the bitmap, in which each bit is shown
as a large square, as if it were a piece of graph paper. The pointer can be used to set, clear, or
invert individual squares, and to invoke commands to set, clear or invert larger rectangular areas
of the bitmap. Other commands may be used to move or copy rectangular areas from one part of
the bitmap to another, and to define a 'hot spot' (a special single point on the bitmap, which is
useful when the bitmap is used as an X cursor).

The output of the bitmap program is a small C code fragment. By #include'ing such a program
fragment in your program, you can easily declare the size and contents of cursors, icons, and other
bitmaps that your program creates to deal with the X Window System.

OPTIONS
This program accepts the following options:

-help This option (or any other unsupported option) will cause a brief description of the
allowable options and parameters to be printed.

-display display
This option specifies the server to be used. See X(J) for details.

-geometry geometry
This option specifies the placement and size of the bitmap window on the screen. See
X(J) for details.

-no dashed
This option indicates that the grid lines in the work area should not be drawn using
dashed lines. Although dashed lines are prettier than solid lines, on some servers they
are significantly slower.

-bwnumber
This option specifies the border width in pixels of the main window .

• tnfont This option specifies the font to be used in the buttons .

• rg color
This option specifies the color to be used for the foreground.

-bgcolor
This option specifies the color to be used for the background .

• h1 color
This option specifies the color to be used for highlighting.

-bd color
This option specifies the color to be used for the window border.

-illS color
This option specifies the color to be used for the pointer (mouse).

When bitmap starts, it first tries to read the specified file (see FILE FORMAT). If the file already
exists, it creates a window containing a grid of the appropriate dimensions.

If the file does not exist, bitmap will create a window for a bitmap of the size specified by
WIDTHxHEIGHT (e.g. 7x9, 13x21). The bitmap will start out empty. If WIDTHxHEIGHT is not
specified either on the command line or in the "Dimensions· X Default, 16x16 will be assumed.

Hewlett-Packard Company ·1· Jan 20,1989

BITMAP (1) BITMAP (1)
Series 300 and 800 OnJ;y

The window that bitmap creates has four parts. The largest section is the checkerboard grid,
which is a magnified version of the bitmap you are editing. At the upper right is a set of
commands that you can invoke with any pointer button. Below the commands is an "actual size"
picture of the bitmap you are editing; below that is an inverted version of the same bitmap. Each
time you alter the image in the grid, the change will be reflected in the actual-size versions of the
bitmap.

If you use a window manager to make the bitmap window larger or smaller, the grid squares will
automatically get larger or smaller as well.

COMMANDS
(Note for users of color displays: In all of the following, ''white'' means the background color, and
"black" means the foreground color.)

When the cursor is in the checkerboard region, each pointer button has a different effect upon the
single square that the cursor is over:

Button 1 (usually the left button) sets the indicated square.

Button 2 (usually the middle button) inverts the indicated square.

Button 3 (usually the right button) clear the indicated square.

The various commands are invoked by pressing any pointer button in the corresponding command
box:

Clear All
clears all squares in the bitmap. This is irreversible, so invoke it with care.

Set All sets all squares in the bitmap. This is irreversible, so invoke it with care.

Invert All
inverts all squares in the bitmap.

ClearArea
clears a rectangular area of the bitmap. After you click over this command, the cursor
turns into an 'upper-left corner'. Press any pointer button over the upper-left corner of
the area you want to clear, hold the button down while moving the pointer to the lower­
right corner of the area you want to clear, and then let the button up.

While you are holding down the button, the selected area will be covered with X's, and
the cursor will change to a 'lower-right corner'. If you now wish to abort the command
without clearing an area, either press another pointer button, move the cursor outside
the grid, or move the cursor to the left of or above the upper-left corner.

Set Area sets a rectangular area of the bitmap. It works the same way as the aear Area command.

Invert Area
inverts a rectangular area of the bitmap. It works the same way as the Clear Area
command.

Copy Area
copies a rectangular area from one part of the grid to another. First, you select the

Hewlett-Packard Company -2- Jan 20,1989

BITMAP (1) BITMAP(l)
Series 300 and 800 OnJ;y

rectangle to be copied, in the manner described above under Qear Area above. Then,
the cursor will change to an "upper-left comer". When you press a pointer button, a
destination rectangle will overlay the grid; moving the pointer while holding down the
button will move this destination rectangle. The copywill occur when you let up the
button. To cancel the copy, move the pointer outside the grid and then let up the button.

Move Area
works identically to Copy Area, except that it clears the source rectangle after copying to
the destination.

Overlay Area
works identically to Copy Area, except that it does a binary OR of the source rectangle
with the destination.

Line will draw a line between two points.

Circle will draw a circle given the center and a radius

Filled Circle
will draw a filled circle given the center and radius of the circle.

Flood Fill
will fill a bounded area. Note: if the area is not completely bounded, you will get a 'leak'
and the entire grid will be filled.

Set HotSpot
designates a point on the bitmap as the "hot spot". If a program is using your bitmap as a
cursor, the hot spot indicates which point on the bitmap is the "actual" location of the
cursor. For instance, if your cursor is an arrow, the hot spot should be the tip of the
arrow; if your cursor is a cross, the hot spot should be where the perpendicular lines
intersect.

Qear HotSpot
removes any hot spot that was defined on this bitmap.

'*ite Output
writes the current bitmap value to the file specified in the original command line. If the
file already exists, the original file is first renamed to I"dename- (in the manner of
emacs(J) and other text editors).

If either the renaming or the writing cause an error (e.g. "Permission denied'), a dialog
window will appear, asking if you want to write the file /tmp/filename instead. If you say
yes, all future "Write Output" commands will write to /tmp/filename as well. See below
for the format of the output file.

Quit exits the bitmap program. If you have edited the bitmap and have not invoked Write
Output, or you have edited it since the last time you invoked Write Output, a dialog
window will appear, asking if you want to save changes before quitting. "Yes" does a
"Write Output" before exiting; "No" just exits, losing the edits; "Cancel" means you
decided not to quit after all.

FILE FORMAT
Bitmap reads and writes files in the following format, which is suitable for #incIude'ing in a C

Hewlett-Packard Company -3- Jan 20, 1989

BITMAP (1)
Series 300 and 800 Only

program:
#define name width 9
#define name-height 13
#define name -x hot 4
#define name J=hot 6
static char name bits[] = {

Ox10,OxOO,0x38,OxOO, Ox7c, OxOO, Ox10, OxOO,Ox10, OxOO,Ox10, 0x00,
Oxff, OX01, OxlO, OXOO, Ox10, OXOO, Ox10, OXOO, Ox7c, 0x00, Ox38, 0x00,
Ox10,OxOO};

BITMAP (1)

The variables ending with _x_hot and y _hot are optional; they will be present only if a hot spot
has been defined for this bitmap. The other variables must be present.

The name portion of the five variables will be derived from the name of the file that you specified
on the original command line by

(1) deleting the directory path (all characters up to and including the last 'I', if one is present)
(2) deleting the extension (the first '.', if one is present, and all characters beyond it)

For example, invoking bitmap with filename lusrlincludelbitmapslcross.bitmap will produce a file
with variable names cross _width, cross _height, and cross _bits (and cross _x _hot and cross y _hot if a
hot spot is defined).

It's easy to define a bitmap or cursor in an X program by simply #include'ing a bitmap file and
referring to its variables. For instance, to use a cursor defined in the files this. cursor and
this _mask. cursor, one simply writes

#include "this.cursor"
#include "this mask.cursor"
Pixmap source- = XCreateBitmapFromData (display, drawable, this bits, this width, this height);
Pixmap mask = XCreateBitmapFromData (display, drawable, this mask bits~ -

this mask width, this mask height); - -
Cursor cursor = XCreatePoonapCursor (display, source, mask, foreground, background,

this_x_hot, thisy_hot);

where foreground and background are XColor values.

An X program can also read a bitmap file at runtime by using the function XReadBitmapFile.

The bits are in XYBitmap format, with bitmap_unit = bitmap yad = 8, and byte_order =
bitmap _ bit_order = LSBFirst (least significant bit and byte are leftmost).

For backward compatibility with X10, bitmap can also read in a file where the "its" array is
declared as "static short foo bits[]" and consists of an array of 16-bit hex constants. This is
interpreted as a XYBitmap With bitmap_unit = bitmap yad = 16, byte_order = bitmap _ bit_order
= LSBFirst. If you modify the bitmap after reading in such a file, bitmap will always write the file
back out in standard XU format.

X DEFAULTS
The bitmap program uses the routine XGetDefault(3X) to read defaults, so its resource names are
all capitalized.

Background
The window's background color. Bits which are 0 in the bitmap are displayed in this
color. This option is useful only on color displays. The default value is ''white''.

BorderColor
The border color. This option is useful only on color displays. The default value is
"black".

Hewlett-Packard Company -4- Jan 20, 1989

)

)

BI1MAP(l) BI1MAP(l)
Series 300 and 800 Onl,y

BorderWidth
The border width. The default value is 2.

BodyFont
The text font. The default value is ''variable''.

Foreground
The foreground color. Bits which are 1 in the bitmap are displayed in this color. This
option is useful only on color displays. The default value is "black".

Highlight
The highlight color. bitmap uses this color to show the hot spot and to indicate
rectangular areas that will be affected by the Move Area, Copy Area, Set Area, and Invert
Area commands. If a highlight color is not given, then bitmap will highlight by inverting.
This option is useful only on color displays.

Mouse The pointer (mouse) cursor's color. This option is useful only on color displays. The
default value is "black".

Geometry
The size and location of the bitmap window.

Dimensions
The WIDTHxHEIGHT to use when creating a new bitmap.

ENVIRONMENT
DISPlAY - the default host and display number.
XENVIRONMENT - the name of the defaults file to use.

DIAGNOSTICS
The following messages may be printed to the standard error output. Any of these conditions
aborts bitmap before it can create its window.

"bitmap: could not connect to X selVer on host:display"

Either the display given on the command line or the DISPlAY environment variable has an
invalid host name or display number, or the host is down, or the host is unreachable, or the host is
not running an X selVer, or the host is refusing connections.

"bitmap: no file name specified"

You invoked bitmap with no command line arguments. You must give a file name as the first
argument.

"bitmap: could not open file fi1elU1J1le for reading - message"

The specified file exists but cannot be read, for the reason given in <message> (e.g., permission
denied).

"bitmap: invalid dimensions string"
"bitmap: dimensions must be positive"

The second command line argument was not a valid dimension specification.

"bitmap: Bitmap file invalid"

The input file is not in the correct format; the program gave up when trying to read the specified
data.

Hewlett-Packard Company -5- Jan 20,1989

BITMAP (1) BITMAP (1)

NOTES

Series 300 and 800 Only

The following messages may be printed after bitmap creates its window:

"bitmap: Unrecognized variable name in file filename"

bitmap encountered a variable ending in something other than _x_hot, Y _hot, _width, or _height
while parsing the input file. It will ignore this variable and continue parsing the file.

"bitmap: XError: message"
"bitmap: XIOError"

A protocol error occurred. Something is wrong with either the X server or the X library which the
program was compiled with. Possibly they are incompatible. If the server is not on the local host,
maybe the connection broke.

The old command line arguments aren't consistent with other X programs.

If you move the pointer too fast while holding a pointer button down, some squares may be
'missed'. This is caused by limitations in how frequently the X server can sample the pointer
location.

There is no way to write to a file other than the one specified on the command line.

There is no way to change the size of the bitmap once the program has started.

There is no "undo" command.

If you read in an X10-format bitmap, the "Quit" and "Write Output" commands won't write out a
new, XU-format, file unless you've changed at least one square on the bitmap. You can work
around this by simply inverting a square and then inverting it back again.

This program would make a wonderful X toolkit application.

COPYRIGHf

ORIGIN

Copyright 1988, Massachusetts Institute of Technology.
See X(l) for a full statement of rights and permissions.

MIT Distribution

SEE ALSO
X(1), Xlib - C Language X lnteiface, particularly the section "Manipulating Bitmaps".

Hewlett-Packard Company -6 - Jan 20,1989

GWlNDSTOP(l) GWlNDSTOP(l)
Series 300 and 800 Onl,y

NAME
gwindstop - terminate the window helper facility

SYNOPSIS
gwindstop [directory] [directory] _

DESCRIPTION
gwindstop

destroys windows and their associated pty files from named directories. The windows
must have been created earlier by xwcreate(1).

directory
is the name of the directory where the pty files for the windows reside. If directory name
is not- supplied, /dev/screen is taken to be the desired directory. Otherwise, if the
directory argument implies an absolute path name, then it will be taken to be the desired
directory. Otherwise, the directory name will be taken to be relative to the value of the
environment variable $WMDIR If $WMDIR is not defined in the environment, the
directory name will be taken to be relative to /dev/screen. Note: if $WMDIR is defined in
the environment, it must represent an absolute pathname.

DIAGNOSTICS

ORIGIN

If the windows in the indicated directory are successfully destroyed, then the program remains
silent. If one or more directories could not be found, an error message ("Invalid directory") will
be printed on the standard output.

Hewlett-Packard Company

SEE ALSO
xwcreate(1), xwdestroy(1).

Hewlett-Packard Company -1- Jan 20, 1989

HPTERM(l) HPTERM(l)
Series 300 and 800 Only

NAME
hpterm - X window system Hewlett-Packard terminal emulator

SYNOPSIS
hpterm [-toolkitoption] [-option]

DESCRIPTION
The hptenn program is a terminal emulator for the X Window system. It provides a TermO
compatible terminal for programs that can't use the window system directly.

OPTIONS
The hptenn terminal emulator accepts all of the standard X Toolkit command line options along
with additional options all of which are listed below (if the option begins with a '+' instead of a '-',
the option is restored to its default value):

-bnumber
This option specifies the size of the inner border (the distance between the outer edge of
the character and the window border) in pixels. Associated resource: "·borderWidth."

-background color

-bd color

-bg color

This option specifies the color to use for the background of the window. Associated
resource: "·background."

This option specifies the color to use for the border of the window. Associated resource:
"·borde~olor."

This option specifies the color to use for the background of the window. Associated
resource: "·background."

-borderwidth number
This option specifies the width in pixels of the border surrounding the window.
Associated resource: "~opLeveISheILborderWidth."

-bw number
This option specifies the width in pixels of the border surrounding the window.
Associated resource: "~opLeveISheU.borderWidth."

-cr color This option specifies the color to use for the text cursor. Associated resource:
"·curso~olor."

-display display
This option specifies the X server to contact; see X(1). Associated resource: none.

~ command [arguments ...]
This option specifies the command (and its command line arguments) to be run in the
hptenn window. The default is to start the user's shell. This must be the last option on
the command line. Associated resource: none.

-fb font This option specifies a font to be used when displaying bold (alternate) text. This font
must be the same height and width as the normal (primary) font. If only one of the
normal (primary) or bold (alternate) fonts is specified, it will be used for both fonts.
Refer to the FONTS section. Associated resource: "·boldFont."

-fg color This option specifies the color to use for displaying text. Associated resource:
"·roreground. "

-rnfont This option specifies a font to be used when displaying normal (primary) text. If only
one of the normal (primary) or bold (alternate) fonts is specified, it will be used for both
fonts. Refer to the FONTS section. Associated resource: "·ront."

-rontfont
This option specifies a font to be used when displaying normal (primary) text. If only
one of the normal (primary) or bold (alternate) fonts is specified, it will be used for both
fonts. Associated resource: "·ront."

Hewlett-Packard Company -1- Jan 20,1989

HPTERM(l) HPTERM(l)
Series 300 and 800 Only

-foreground color
This option specifies the color to use for displaying text. Associated resource:
"·foreground."

-geometry geometry
This option specifies the preferred size and position of the hptenn window; see X(I).
Associated resource: ".termO.geometry."

-help This option will display a help message. Associated resource: none.

-i This option indicates that hptenn should supply the window manager with a bitrnapped
icon. Associated resource: "bitmapIcon."

+i This option indicates that the window manager should generate its own icon for hptenn.
Associated resource: "bitmapIcon."

-iconic This option indicates that hptenn should be placed on the display in icon form.
Associated resource: "·termO.iconic."

+iconic This option indicates that hptenn should not be placed on the display in icon form.
Associated resource: "·termO.iconic."

-I This option indicates that hptenn should send all terminal output to a log file as well as
to the screen. Associated resource: "·Iogging."

+ I This option indicates that hptenn should not do logging. Associated resource:
"·Iogging."

-If file This option specifies the name of the file to which the output log described above is
written. If file begins with a pipe symbol (I), the rest of the string is assumed to be a
command to be used as the endpoint of a pipe. The default filename is
"HptermLogllXXX" (where XXXXX is the process id of hptenn) and is created in the
directory from which hptenn was started (or the user's horne directory in the case of a
login window). Associated resource: ".logFile."

-Is This option indicates that the shell that is started in the hptenn window should be a login
shell (Le. the first character of argv[O] will be a dash, indicating to the shell that it should
read the user's .login or .profile). Associated resource: "·loginShell."

+ Is This option indicates that the shell that is started should not be a login shell (i.e. it will
be a normal "subshell"). Associated resource: "·loginShell."

-mb This option indicates that the pointer cursor should be put into blanking mode. In this
mode, the cursor will tum on when the pointer is moved, and will be blanked either after
a selectable number of seconds or after keyboard input has occurred. The delay is set
via the "pointerBlankDelay" resource. Associated resource: "·pointerBlank."

+mb This option indicates that the pointer cursor should remain on. Associated resource:
"·pointerBlank. "

-mcmode
This option determines how hpterm will generate the foreground color, shadow colors,
and shadow tiles of the scrollbar and softkeywidgets. Valid modes are "all", "shadow",
and "none." Associated resource: "~akeColors."

-ms color
This option specifies the color to be used for the pointer cursor. Associated resource:
"·pointerColor."

-name name
This option specifies the application name under which resources are to be obtained,
rather than the default executable file name ("hpterm"). Associated resource: ".name."

-reverse This option indicates that reverse video should be simulated by swapping the foreground
and background colors. Associated resource: "·reverseVideo."

-rv This option indicates that reverse video should be simulated by swapping the foreground
and background colors. Associated resource: "·reverseVideo."

Hewlett-Packard Company -2- Jan 20, 1989

HPTERM(l) HPTERM(l)
Serle. 300 and 800 Only

+rv This option indicates that reverse video should not be simulated. Associated resource:
"*reverseVideo."

-sb This option indicates that a scrollbar should be displayed. Associated resource:
"*scrollBar. "

+sb This option indicates that a scrollbar should not be displayed. Associated resource:
"*scrollBar. "

-sbbg color
This option specifies the color to use for the background of the scrollbar window.
Associated resource: "*scrollBar.background."

-sbfg color
This option specifies the color to use for the foreground of the scrollbar window. This
value will be ignored if the makeColors resource is set to "aU." Associated resource:
"*scrollBar.loreground."

-skbg color
This option specifies the color to use for the background of the softkey window.
Associated resource: "*softkey.background."

-skfg color
This option specifies the color to use for displaying softkey text. This value will be
ignored if the makeColors resource is set to "aU." Associated resource:
"*softkey.roreground. "

-skfn[ont
This option specifies a font to be used when displaying softkey text. Associated resource:
"*softkey.ront."

-sl number[suffixl
This option indicates the number of off screen lines to be saved in the terminal buffer. If
no suffix is included or the suffix is "I" the total length of the terminal buffer will be
number plus the length of the terminal window. If the suffix is "s" the total length of the
terminal buffer will be (number plus one) times the length of the terminal window.
Associated resource: "*saveLines."

-ti name This option specifies a name for hpterm to use when identifying itself to application
programs. Associated resource: "*termld."

-title name

-tnname

This option specifies a window title for hpterm. This string may be used by the window
manager when displaying the application. Associated resource: ".TopLeveIShell.titie."

This option specifies a name for hpterm to set the "$TERM" environment variable to.
Associated resource: "*tennName."

-vb This option indicates that a visual bell is preferred over an audible one. Instead of
ringing the terminal bell whenever a Control-G is received, the window will be flashed .
Associated resource: "*visuaIBeU."

+vb This option indicates that a visual bell should not be used. Associated resource:
u*visuaIBeU."

-xnn resourcestring
This option specifies a resource string to be used. This is especially useful for setting
resources that do not have separate command line options. Associated resource: none.

-C This option indicates that the window should receive console output. Associated
resource: none.

-L This option indicates that hptenn was started by init(lm). In this mode, hptenn does not
try to allocate a new pseudoterminal as init(lm) has already done so. In addition, the
system program getty (1m) is run instead of the user's shell. This option requires a pty
name as a separate last argument. This option should never be used by users when

Hewlett-Packard Company -3- Jan 20,1989

)

HPTERM(l) HPTERM(l)

Series 300 and 800 Onl,y

starting terminal windows. Associated resource: none.

-Seen This option specifies the last two letters of the name of a pseudoterminal to use in slave
mode, and the file descriptor of the pseudoterminal's master. This aHows hpterm to be
used as an input and output channel for an existing program and is sometimes used in
specialized applications such as pam(!). Associated resource: none.

The foHowing command line arguments are provided for compatibility with older versions. They
may not be supported in future releases as the X Toolkit provides standard options that
accomplish the same task.

=geometty
This option specifies the preferred size and position of the hpterm window; seeX(l). It
is equivalent to "-geometry geometry." Associated resource: "·termO.geometry."

#geometty
This option specifies the preferred position of the icon window. It is shorthand for
specifying the ".iconGeometry" resource. Associated resource: ".iconGeometry."

·T string This option specifies the title for hpterm's window. It is equivalent to "-litle string."
Associated resource: ".TopLeveIShelLtitle."

.nstring This option specifies the icon name for hpterm's windows. It is shorthand for specifying
the ".iconName" resource. Associated resource: "·iconName."

·r This option indicates that reverse video should be simulated by swapping the foreground
and background colors. It is equivalent to ".reversevideo" or "·rv." Associated resource:
"·reverseVideo."

+r This option indicates that reverse video should no be simulated. It is equivalent to
"+rv." Associated resource: ".reverseVideo."

-wnumber

RESOURCES

This option specifies the width in pixels of the border surrounding the window. It is
equivalent to "-borderwidth number" or "-bw number." Associated resource:
"~opLeveISHelLborderWidth."

The hpterm window consists of an X Toolkit sheH widget which contains a termO widget. The
termO widget contains a scroHbar widget and a softkey widget. Resources specific to the sheH
widget are:

hpterm Resource Set
Name Class Type Derault
borderColor BorderColor Pixel black
borderWidth BorderWidth int 2
geometry Geometry string
icon Geometry Icon Geometry string
name Name string hpterm
title Title string Terminal emulator

borderColor
This resource defines the border color of the hpterm window.

borderWidth
This resource specifies the width of the hpterm window border. This value may be
modified by the window manager.

Hewlett-Packard Company -4 - Jan 20,1989

HPrERM(l) HPrERM(l)
Series 300 and 800 Only

geometry
This resource specifies the preferred size and position of the hpterm window.

iconGeometry
This resource specifies the preferred size and position of hpterm when iconified. It is not
necessarily obeyed by all window managers.

name This resource specifies the name of the instance of the program. It is used when
extracting resources from the resource database.

title This resource specifies the window title for hpterm. This string may be used by the
window manager when displaying this application.

termO Resource Set
Name Class Type Default

background Background Pixel white
bitmapIcon BitmapIcon Boolean FALSE
boldFont Font string see FONTS below
copyLine CopyLine string shift right
cursorColor Foreground Pixel black
cut Cut string shift left
f1ashBorder F1ashBorder Boolean FALSE
font Font string see FONTS below
foreground Foreground Pixel black
iconic Iconic Boolean FALSE
internalBorder BorderWidth int 2
logFile LogFile string HptermLogXXXXX
logging Logging Boolean FALSE
loginShell LoginShell Boolean FALSE
makeColors MakeColors string none
paste Paste string shift middle
pointerBlank PointerBlank Boolean FALSE
pointerBlankDelay PointerBlankDelay int 3
pointerColor Foreground Pixel black
reverseVideo ReverseVideo Boolean FALSE
saveLines SaveLines string Is
scrollBar ScrollBar Boolean FALSE
softkeySelect SoftkeySelect string left
termId TermId string X-hpterm
termName TermName string hp2622
visual Bell VisualBeIl Boolean FALSE

background
This resource defines the background color of the text window.

bitmaplcon
This resource defines whether or not hpterm will supply the window manager with a
bitmapped icon. The supplied bitmap may be ignored by the window manager.

boldFont
This resource defines the font used for bold (alternate) text. See "FONTS" below for
defaults.

Hewlett-Packard Company -5- Jan 20,1989

)

HPrERM(l) HPfERM(l)
Series 300 and 800 Only

c:opyLine
This resource defines the pointer button/modifier rombination to be used to activate the
CopyLine function. See "POINTER USAGE" below.

rut This resource defines the pointer button/modifier rombination to be used to activate the
Cut function. See "POINTER USAGE" below.

rursorColor
This resource defines the text cursor color. The pointer cursor color is defined by the
pointerColor resource.

OashBorder
This resource defines whether or not hpterm window border will change color when the
pointer cursor enters or leaves the window.

font This resource defines the font used for normal (primary) text. See "FONTS" below for
defaults.

foreground
This resource defines the foreground (text) rolor of the text window.

ic:onic: This resource defines whether or not hpterm will start up in ironic form.

internalBorder
This resource defines the number of pixels between the characters and the window
border.

logFile This resource defines the name of the file to which a terminal session is logged. The
default is "HptermIAlgXXXXX" (where XXXXX is the process id of hpterm).

logging This resource defines whether or not a terminal session will be logged.

loginSheU
This resource defines whether or not the shell to be run in the window will be started as a
login shell (Le., the first character of argv[O] will be a dash, indicating to the shell that it
should read the user's .login or .profile).

makeColors
This resource defines how the bottomShadowColor, roreground, and topShadowColor
resources of the scrollbar and softkey widgets will be generated. If the value of this
resource is "all" then hpterm will use the value of the roreground resource of the softkey
and scrollbar widgets to generate values for the bottomShadowColor, roreground, and
topShadowColor resources such that there is a 3-D look. In this case the topShadoWTile
and bottomShadoWTile are always set to "foreground." If the makeColors resource value
is "shadow" the bottomShadowColor and topShadowColor will be generated but
roreground will not be generated. If the makeColors resource value is set to "none" then
no colors will be generated.

paste This resource defines the pointer button/modifier combination to be used to activate the
Paste function. See "POINTER USAGE" below.

pointerBlank
This resource defines whether or not hpterm will put the pointer cursor into blanking
mode. In blanking mode, the pointer cursor will tum on when the pointer is moved, and
will be blanked either after a selectable number of seconds or after keyboard input has
occurred. The delay is set via the pointerBlankDelay resource.

pointerBlankDelay
This resource defines the number of seconds to wait before blanking the pointer cursor
after the pointer has been moved. When set to "0", the pointer will be blanked only upon
keyboard input.

pointerColor
This resource defines the pointer cursor color. The text cursor color is defined by the
rursorColor resource.

Hewlett-Packard Company -6- Jan 20,1989

HPfERM(l) HPTERM(l)
Series 300 and 800 Only

reverseVideo
This resource defines whether or not reverse video will be simulated by swapping the
foreground and background colors.

saveLines
This resource defines the number of lines in the terminal buffer beyond the length of the
window. The resource value consists of a "number" followed by an optional "suffix." If
no sUffix is included or the sUffix is "I" the total length of the terminal buffer will be
number plus the length of the terminal window. If the suffix is "s" the total length of the
terminal buffer will be (number plus one) times the length of the terminal window.
Hptenn will try to maintain the same bulfer to window ratio when the window is resized
larger.

scrollBar
This resource defines whether or not the scrollbar will be displayed.

softkeySeled
This resource defines the pointer button/modifier combination to be used for selecting
sofikeys. See "POINTER USAGE" below.

termId This resource defines the name for hptenn to use when identifying itself to application
programs.

termName
This resource defines the string for set the "$TERM" environment variable.

visuameU
This resource defines whether or not a visible bell (Le. flashing) should be used instead of
an audible bell when Control-G is received.

The following resources are specified as part of the "softkey" widget (name "softkey", class
"Softkey"). For example, the softkey font resource would be specified one of:

HPterm ·softkey*font:
HPterm·SoftkeY*font:
·Softkey*Font:

hpB.8x16
hpB.8x16
hpB.8x16

Additional resources and information can be found in the XwPrimitive(3X) and CORE(3X) man
pages along with additional information about the various shadow options.

Softkey Resource Set
Name Class 1)pe Derault

background Background Pixel white
bottomShadowColor Foreground Pixel black (see below)
bottomShadowTile BottomShadov/I'i1e string foreground (see below)
font Font string (see below)
foreground Foreground Pixel black (see below)
topShadowColor Background Pixel white (see below)
topShadovJI'i1e TopShadowTile string 50 foreground (see below)

background
This resource defines the background color of the softkey window.

bottomShadowColor
This resource defines the color that is combined with the bottom shadow tile and

Hewlett-Packard Company -7- Jan 20,1989

HPTERM(l) HPTERM(l)
Series 300 and 800 Onl,y

foreground color to create a pixmap used to draw the bottom and right sides of the
softkey borders. This may be overridden by the termO makeColor resource described
above.

bottomShadoWfile
This resource defines the tile used in creating the pixmap used for drawing the bottom
and right shadows for the softkey borders. Valid tile names are described in
XwCreateTile(3X). This may be overridden by the termO makeColor resource described
above.

font This resource defines the font used for softkey text. The softkey font will default to the
normal (primary) font of the text window.

foreground
This resource defines the foreground (text) color of the softkeywindow. This may be
overridden by the termO makeColor resource described above.

topShadowColor
This resource defines the color that is combined with the top shadow tile and foreground
color to create a pixmap used to draw the top and left sides of the softkey borders. This
may be overridden by the termO makeColor resource described above.

topShadoWfile
This resource defines the tile used in creating the pixmap used for drawing the top and
left shadows for the softkey borders. Valid tile names are described in XwCreateTile(3X).
This may be overridden by the termO makeColor resource described above.

The following resources are specified as part of the "Xwscrollbar" widget (name "scrollBar", class
"Scroll Bar"). Some example scrollbar resources are:

HPterm*scrollBar*initiaIDelay: 10
HPterm*ScrollBar*RepeatRate: 10
*ScrollBar*Granularity: 1
hpterm*scrollBar*width: 20

Additional resources and information can be found in the XwPrimitive(3X), XwScroUBar(3X),
XwValuator(3X), and Core(3X) man pages along with additional information about the various
shadow options.

Scrollbar Resource Set (name "serollBar", class "Scrolmar")
Name Class Type Default
background Background Pixel white
bottomShadowColor Foreground Pixel black (see below)
bottom Shadow Tile BottomShadowTile string foreground (see below)
foreground Foreground Pixel black (see below)
granularity Granularity int 2
initial Delay InitialDelay int 500
repeatRate RepeatRate int 100
topShadowColor Background Pixel white (see below)
topShadowTile TopShadowTile string 50 foreground (see below)
width Width int 10

background
This resource defines the background color of the scroll bar window.

Hewlett-Packard Company -8 - Jan 20, 1989

HPIERM(l) HPTERM(l)
Series 300 and 800 Only

bottomShadowColor
This resource defines the color that is combined with the bottom shadow tile and
foreground color to create a pixmap used to draw the bottom and right sides of the
scrollbar borders. This may be overridden by the termO makeColor resource described
above.

bottomShadoWI'ile
This resource defines the tile used in creating the pixmap used for drawing the bottom
and right shadows for the scrollbar borders. Valid tile names are described in
XwCreateTile(3X). This may be overridden by the termO makeColor resource described
above.

foreground
This resource defines the foreground color of the scrollbar window. This may be
overridden by the termO makeColor resource described above.

granularity
This resource defines the number of lines to advance the slider when the button is being
held down on an arrow. The value is defined in milliseconds.

initialDelay
This resource defines the delay to wait between the time the button is held down on an
arrow before the slider starts its repetitive movement. The value is defined in
milliseconds.

repeatRate
This resource defines the continuous repeat rate to use to move the slider while the
button is being held down on an arrow. The value is also defined in milliseconds.

topShadowColor
This resource defines the color that is combined with the top shadow tile and foreground
color to create a pixmap used to draw the top and left sides of the scrollbar borders. This
may be overridden by the termO makeColor resource described above.

topShadoWfile
This resource defines the tile used in creating the pixmap used for drawing the top and
left shadows for the scrollbar borders. Valid tile names are described in
XwCreateTile(3X). This may be overridden by the termO makeColor resource described
above.

width This resource defines the width of the scrollbar in pixels.

POINTER USAGE
Hptenn allows you to cut and paste text within its own or other windows. Ail cutting and pasting is
done to/from the first global cut buffer.

The default button assignments may be changed via various resource strings. The default button
functions are all activated when the "shift" key is pressed. The cut and paste functions and their
default button assignments are:

Enter The left hand button "cuts" the text from the pointer (at button release) through the end
of line (including the new line), saving it in the cut buffer, and immediately "pastes" the
line, inserting it as keyboard input. This provides a history mechanism.

Cut The center button is used to "cut" text into the cut buffer. Move the pointer to the
beginning of the text to cut, press the button, move the cursor to the end of the region,
and release the button. The "cut" text will not include the character currently under the
pointer.

Paste The right hand button "pastes" the text from the cut buffer, inserting it as keyboard input.

The enter, cut, and paste key functions can be configured to any button and modifier combination
desired via various resources. Each assignment consists of an optional combination of modifiers
("none" or any combination of "shift", "meta", "lock", "control", "mod!", ... , "modS" separated
by blanks), followed bya "I" and the name of the button ("left", "middle", "right", "button!", ... ,
"buttonS"). For example, if it is desired for the cut function to be associated with the middle

Hewlett-Packard Company -9- Jan 20,1989

)

HPTERM(l) HPTERM(l)

FONTS

Series 300 and 800 OnlY

button with shift and control pressed, one could use the following resource line:

'cut shift control I middle

For a full list of resource names, see "RESOURCES" above.

Hptenn will try to select default fonts which match your display and your keyboard language. If
the normal (primary) and bold (alternate) fonts are specified, they will be used. If only one is
specified (via either command line or resources), it will be used for both the normal (primary)
and bold (alternate) fonts. If neither normal (primary) or bold (alternate) fonts are specified,
hptenn trys to find them based on the "SLANG" environment variable. It looks in
"/usr/lib/nls/$LANG/XllfOnl" directory for fonts linked to fonts in the normal XU font
directory "/usr/lib/Xll/fonts." These fonts are "base. /ow" and "alt.low" for displays whose width
is less than or equal to 640 pixels or whose height is less than or equal to 400 pixels, "base.med"
and "aJt.med" for displays whose width is greater than 640 and less than or equal to 1024 pixels or
whose height is greater than 400 and less than or equal to 800 pixels, and "base. high" and
"alt.high" for displays whose width is greater than 1024 pixels and whose height is greater than 800
pixels. If "SLANG" is not defined, it will use the language corresponding to the language of your
keyboard. If these font files can not be found, hptenn will then try to find them in the
"/usr/lib/nls/n-computer/Xllfonl" directory. If these fonts can not be found, the fonts "fixed"
and "bold" in the font path specified in xset -fp will be used. (Note: Font files reside on the
machine on which the server is running.)

Control-N will switch to the bold (alternate) font and control-O will switch back to the normal
(primary) font. Hptenn will switch back to the normal (primary) font automatically at the
beginning of each line. -

Hptenn will try to use the appropriate keymap to match the type of keyboard being used. It
currently supports 21 different language versions of the HP keyboard.

ENVIRONMENT

ORIGIN

Hptenn sets the environment variable "$TERM" properly for the size window you have created. It
sets "SLINES" and "SCOLUMNS" to be the number of lines and columns of the terminal screen.
It also uses and sets the environment variable "SDISPLAY" to specify its server connection. The
resize(l) command may be used to reset "SLINES" and "$COLUMNS" after the window size has
been changed.

Hewlett-Packard Company

SEE ALSO
X(l), resize(l), xset(l), xterm(I), pty(4), Core(3X), XwScrollBar(3X), XwPrimitive(3X),
XwCreateTile(3X), XwValuator(3X), XwArrow(3X)

Hewlett-Packard Company -10 - Jan 20,1989

UPWM(l) HPWM(l)

Series 300 and 800 Onl,y

NAME
hpwm - the Hewlett Packard window manager for X

SYNOPSIS
hpwm [options]

DESCRIPTION
The Hewlett-Packard Window Manager (hpwm) is an Xll client that provides window
management functionality and some session management functionality. It provides functions that
facilitate control (by the user and the programmer) of elements of window state such as
placement, size, icon/normal display, input focus ownership etc. It also provides session
management functions such as stopping a client.

When hpwm is invoked, it retrieves configuration resource values from the following files.

/usr /lib /X11/app-defaults/Hpwrn
.xdefaults
hpwrn resource description file (.hpwmrc)

OPTIONS
-display display

This option specifies the display to use; see X(1).

-xnn resourcestring
This option specifies a resource string to use.

X DEFAULTS
Hpwrn is configured from its resource database. This database is built from the resource
specifications in the Xdefaults and /usr/lib/Xll/app-defaults/Hpwm resource files. Entries in
these files may refer to other resource files that specify specific types of resources (e.g., bitmaps
and menus). If the same resource is specified in more than one of the resource files the resource
specification in the Xdefaults file has precedence over the specification in the /usr/lib/Xll/app­
defaults/Hpwm file. Hpwrn has built-in default values for all the resources that it uses (refer to
the descriptions of specific resources).

Hpwm is the resource class name of hpwrn and hpwm is the resource name used by hpwrn to look
up resources. In the following discussion of resource specification "Hpwrn" and "hpwrn" can be
used interchangeably.

Hpwm uses the following types of resources:

General Appearance Resources:

These resources are used to specify appearance attributes of window manager user interface
components. They can be applied to the appearance of window manager menus, client window
frames and icons.

Specific Appearance And Behavior Resources:

These resources are used to specify hpwrn appearance and behavior (e.g., window management
policies). They are not set separately for different hpwm user interface components.

Client Class Specific Resources:

These hpwrn resources can be set for a particular class of client windows. They specify c1ass­
specific icon and client window frame appearance and behavior.

Resource identifiers can be either a resource name (e.g., "foreground") or a resource class (e.g.,
"Foreground"). If the value of a resource is a filename and if the filename is prefixed by"- /" then
it is relative to the path contained in the $HOME environment variable (generally the user's horne
directory).

General Appearance Resources
The syntax for specifying general appearance resources that apply to window manager icons, menus

Hewlett-Packard Company -1 - Jan 20,1989

)

HPWM(l) HPWM(l)
Series 300 and 800 Only

and client window frames is:

"Hpwm. < resource _id >"

For example, "Hpwrn*foreground" is used to specify the foreground color for hpwm menus, icons,
client window frames.

The syntax for specifying general appearance resources that apply to a particular hpwm component
is:

"Hpwm·[menu I icon I client]· < resource _id >"

If menu is specified the resource is applied only to hpwrn menus, if icon is specified the resource
is applied to icons, and if diem is specified the resource is applied to client window frames. For
example, "Hpwm*icon*foreground" is used to specify the foreground color for hpwm icons,
"Hpwm*menu*foreground" specifies the foreground color for hpwrn menus, and
"Hpwm*client*foreground" is used to specify the foreground color for hpwm client window
frames.

The followinggt?neral appearance resources can be specified:

activeBackground (class Background)
Specifies the background color of the hpwrn decoration when the window is active (has
the keyboard focus). This resource can have any legal color as a value. The default value
is the background general appearance resource value.

activeBackgroundI'ile (class ActiveBackgroundI'i1e)
This resource specifies the background tile of the hpwm decoration when the window is
active (has the keyboard focus). This resource can be any legal HP X Widget tile value
(SeeXwOeateTile(3X)) . The default value is "background".

activeBottomShadowColor (class Foreground)
This resource specifies the bottom shadow color of the hpwm decoration when the
window is active (has the keyboard focus). The default value is the bottomShadowColor
general appearance resource value.

activeBottomShadoWfile (class BottomShadoWfile)
This resource specifies the bottom shadow tile of the hpwrn decoration when the window
is active (has the keyboard focus). The default value is the bottomShadowTile general
appearance resource value.

activeForeground (class Foreground)
This resource specifies the foreground color of the hpwm decoration when the window is
active (has the keyboard focus). This resource can have any legal color as a value. The
default value is the foreground general appearance resource value.

activeTopShadowColor (class Background)
This resource specifies the top shadow color of the hpwm decoration when the window is
active (has the keyboard focus). The default value is the topShadowColor general
appearance resource value.

activeTopShadoWfile (class TopShadoWfile)
This resource specifies the top shadow tile of the hpwrn decoration when the window is
active (has the keyboard focus). The default value is the topShadowTile general
appearance resource value.

background (class Background)
This resource specifies the background color. Any legal X color may be specified. The
default is "White".

backgroundI'ile (class BackgroundI'i1e)
This resource specifies the background tile of the hpwrn decoration when the window is
inactive (does not have the keyboard focus). This resource can be any legal HP X Widget
tile value. The default value is "25 Joreground".

bottomShadowColor (class Foreground)
This resource specifies the top shadow color. This color is used for the lower and right

Hewlett-Packard Company - 2- Jan 20, 1989

HPWM(l) HPWM(l)
Series 300 and 800 On~

bevels of the window manager decoration. Any legal X color may be specified. The
default is "Black".

bottomShadoWI'i1e (class BottomShadoWI'i1e)
This resource specifies the bottom shadow tile. This tile is used for the lower and right
bevels of the window manager decoration. Any legal HP X Widget tile may be specified.
The default is "foreground".

lont (class Font)
This resource specifies the font used in menus, window titles, and icon labels. Any
available X font may be specified. The character encoding of the font should match the
character encoding of the strings that are used. The default is "fixed."

loreground (class Foreground)
This resource specifies the foreground color. Any legal X color may be specified. The
default is "Black".

makeActiveColors (class MakeColors)
If the value of this resource is "all" (or "truej then hpwm will use the value of the
activeBackground resource to make values for the activeBottomShadowColor,
activeForeground and activeTopShadowColor resources that provide a 3-D appearance.
In this case the activeTopShadoWI'ile and activeBottomShadoWTile are always set to
"foreground". If the makeColors resource value is "shadow" the top and bottom shadow
colors will be made but the foreground color will not be made. If the makeColors
resource value is "none" (or "falsej then no colors will be automatically made. The
default value for this resource is "shadow".

makeColors (class MakeColors)
If the value of this resource is "all" then hpwm will use the value of the background
resource to make values for the bottomShadowColor, loreground and topShadowColor
resources that provide a 3-D appearance. In this case the topShadoWTile and
bottomShadoWI'i1e are always set to "foreground". If the makeColors resource value is
"shadow" the top and bottom shadow colors will be made but the foreground color will
not be made. If the makeColors resource value is "none" then no colors will be
automatically made. The default value for this resource is "shadow".

topShadowColor (class Background)
This resource specifies the top shadow color. This color is used for the upper and left
bevels of the window manager decoration. Any legal X color may be specified. The
default is "White".

topShadoWTile (class TopShadoWI'i1e)
This resource specifies the top shadow tile. This tile is used for the upper and left bevels
of the window manager decoration. Any legal HP X Widget tile may be specified. The
default is "50 Joreground".

SpeClllC Appearance And Behavior Resources
The syntax for specifying specific appe(Uance and behavior resources is:

"Hpwm. < resource _id >"

For example, "Hpwm'keyboardFocusPolicy" is used to specify the window manager policy for
setting the keyboard focus to a particular client window.

The following specific appe(Uance and behavior resources can be specified:

bitmapDiredory (class BitmapDirectory)
This resource identifies a directory that is to be searched for bitmaps that are referenced
by hpwm resources. This directory is searched if a bitmap is specified without an
absolute path name. The default value for this resource is "jusrjincludejXlljbitmaps".

buttonBindings (class ButtonBindings)
This resource identifies the set of button bindings for window management functions.
The named set of button bindings is specified in the hpwm resource description file file .

Hewlett-Packard Company -3- Jan 20,1989

)

HPWM(l) HPWM(l)

Series 300 and 800 Only

The default value for this resource is "DefaultButtonBindings".

colonnapFocusPolicy (class ColonnapFocusPolicy)
This resource indicates the colormap focus policy that is to be used. If the resource
value is "explicit" then a colormap selection action is done on a client window to set the
colormap focus to that window. If the value is "pointer" then the client window that
contains the pointer will have the colormap focus. If the value is "keyboard" then the
client window that has the keyboard input focus will have the colormap focus. The
default value for this resource is "keyboard".

configFile (class ConfigFile)
The resource value is the pathname for an hpwm resoUlU description file. The default is
.hpwmrc in the user's home directory, if this file exists, otherwise
/usr /Iib/Xll/system.hpwmrc.

doubleClickTime (class DoubleClickTime)
This resource is used to set the maximum time (in ms) between the clicks (button
presses) that make up a double-click. The default value of this resource is "SOO" (ms).

iconAutoPlace (class IconAutoPlace)
This resource indicates whether icons are automatically placed on the screen by hpwm.
If the resource value is 'True" then hpwm does automatic icon placement. Users may
specify an initial icon position and can move icons, but hpwm will adjust the user­
specified position to fit the icon placement scheme (refer to the IconPlacement
resource). If the resource value is "False" then hpwm does not do automatic icon
placement, and the icon placement scheme is ignored. The default value of this resource
is 'True".

iconDecoration (class IconDecoration)
This resource specifies the general icon decoration. The resource value is "label" (only
the label part is displayed) or "image" (only the image part is displayed) or "label image"
(both the label and image parts are displayed). A value of "activelabel" can also be
specified as an enhancement to the "label" value to get a label (not truncated to the width
of the icon) when the icon is selected. The default icon decoration is that each icon has a
label part and an image part ("label imagej.

iconImageMaximum (class IconImageMaximum)
This resources specifies the maximum size of the icon image. The resource value is
<width>x<height> (e.g., "64x64j. The default value of this resource is "SOXSO".

iconImageMinimum (class IconImageMinimum)
This resources specifies the minimum size of the icon image. The resource value is
<width>x<height> (e.g., "32xSOj. The default value ofthis resource is "32x32".

iconPlacement (class IconPlacement)
This resource specifies the icon placement scheme to be used. The resource value has
the following syntax:

<primaryJayout> <secondary_layout>

The layout values are one of the following:

top
bottom
left
right

Lay the icons out top to bottom.
Lay the icons out bottom to top.
Lay the icons out left to right.
Lay the icons out right to left.

A horizontal (vertical) layout value should not be used for both the primary layout and
the secondary layout (e.g., don't use "top" for the primary layout and "bottom" for the
secondary layOut). The primary layout indicates whether~ when an icon placement is
done, the icon is placed in a row-or a column and the direction of placement. The
secondary layout indicates where to place new rows or columns. For example, "top
right" indicates that icons should be placed top to bottom on the screen and that columns
should be added from right to left on the screen. The default placement (compatible

Hewlett-Packard Company -4- Jan 20,1989

HPWM(l) HPWM(l)
Serie. 300 and 800 Only

with the PM placement policy) is 'eft bottom" (icons are placed left to right on the
screen, with the first row on the bottom of the screen, and new rows added from the
bottom of the screen to the top of the screen).

iconPlacementMargin (class IconPlacementMargin)
If nonnegative, this resource specifies the distance between the edge of the screen and
the icons that are placed along the edge of the screen. Otherwise, this distance is set
equal to the space between icons as they are placed on the screen (this space is based on
maximizing the number of icons in each row and column). The default value for this
resource is -1.

interactivePlacement (class InteractivePlacement)
This resource controls the initial placement of new windows on the screen. If it is 'True",
then the pointer shape changes before a new window is placed on the screen to indicate
to the user that a position should be selected for the upper-left hand comer of the
window. If "False" then windows will be placed according to the initial window
configuration attributes. The default value of this resource is "False."

keyBindings (class KeyBindings)
This resource identifies the set of key bindings for window management functions. The
named set of key bindings is specified in hpwm resource desaiption file file. The default
value for this resource is "DefaultKeyBindings".

keyboardFocusPolicy (class KeyboardFocusPolicy)
If set to "pointer" the keyboard focus policy is to have the keyboard focus set to the client
window that contains the pointer (the pointer could also be in the client window
decoration that hpwm adds). If set to "explicit" the policy is to have the keyboard focus
set to a client window when the user does a select (Button1 Down) on the client window
or any part of the associated hpwm decoration. The default value for this resource is
"explicit".

limitResize (class LimitResize)
If this resource is 'True" the user is not allowed to resize a window to greater than the
maximum size (set by the maximumClientSize resource or using the
WM NORMAL HINTS window property). The default value for this resource is
"False". -

maximumMaximumSize (class MaximumMaximumSize)
This resource is used to limit the maximum size of a client window as set by the user or
client. The resource value is <width>x<height> (e.g., "l024x1024") where the width
and height are in pixels. The default value of this resource is twice the screen width and
height.

moveThreshold (class moveThreshold)
This resource is used to control the sensitivity of "dragging" operations that are used in
moving windows and icons. The value of this resource is the number of pixels that the
locator will be moved with a button down before the move operation will be initiated.
This is used to prevent window/icon movement when a click or double-click is done and
there is unintentional pointer movement with the button down. The default value of this
resource is "4" (pixels).

pass Select Button (class PassSelectButton)
This resource indicates whether or not the keyboard input focus selection button press
(if keyboardFocusPolicy is "explicit") is passed on to the client window or used to do a
window management action associated with the window decorations. If the resource
value is "False" then the button press will not be used for any operation other than
selecting the window to be the keyboard input focus; if the value is 'True" the button
press will be passed to the client window or used to do a window management operation
if appropriate. The default value for this resource is 'True".

positionIsFrame (class PositionIsFrame)
This resource indicates how client window position information (from the
WM _NORMAL_HINTS property and from configuration requests) is to be interpreted.

Hewlett-Packard Company -5- Jan 20, 1989

)

HPWM(l) HPWM(l)
Series 300 and 800 On.,.

If the resource value is 'True" then the infonnation is interpreted as the position of the
hpwrn client window frame, if the value is "False" then it is interpreted as being the
position of the window. The default value of this resource is 'True".

positionOnScreen (class PositionOnScreen)
This resource is used to indicate that windows should initially be placed (if possible) so
that they are not clipped by the edge of the screen (if the resource value is 'True"). If a
window is larger then the size of the screen then at least the upper left corner of the
window will be on-screen. If the resource value is "False" then windows will be placed in
the requested position even if totally off-screen. The default value of this resource is
'True".

quitTimeout (class QuitTimeout)
This resource specifies the amount of time (in milliseconds) that hpwrn will wait for a
client to update the WM _COMMAND property after hpwrn has sent the
WM _SAVE_YOURSELF message. This protocol will only be used for those clients that
have a WM SAVE YOURSELF atom in the WM PROTOCOLS client window
property. The default value of this resource is "1000" (ms).

resizeBorderWidth (class ResizeBorderWidth)
This resource specifies the width (in pixels) of the border around client windows. There
will always be some visible border even if this value is set to O. The default is "10"
(pixels).

resizeCursors (class ResizeCursors)
This is used to indicate whether the resize cursors are always displayed when the pointer
is in the window size border. If 'True" the cursors are shown, otherwise the window
manager cursor is shown. The default value is 'True".

transientDec:oration (class TransientDec:oration)
This controls the amount of decoration that Hpwrn puts on transient windows. The
gadget specification is exactly the same as for the clientDec:oration resource (see client
class specific resources section below). Transient windows are identified by the
WM _ TRANSIENf _FOR property which is added by the client to indicate a relatively
temporary window. By default, Hpwm will decorate transient windows with a title bar
and no other gadgets. The default value for this resource is "title."

Client Class Specific Resources
The syntax for specifying dient dass specific resources for specific classes of clients is:

"Hpwm. <client_class >. < resource _id >"

For example, "Hpwm· HPtenn.systemMenu" is used to specify the system menu to be used with
hptenn clients.

The syntax for specifying client class specific resources for all classes of clients is:

"Hpwm. < resource _id >"

Specific client class specifications take precedence over the specifications for all client classes. For
example, "Hpwm'systemMenu" is used to specify the system menu to be used for all classes of
clients that don't have a specific system menu specified.

The syntax for specifying resource values for windows that have an unknown class (i .e. the window
does not have a WM _ClASS property associated with it) is:

"Hpwm·defaults· < resource _id >"

For example, "Hpwrn'defaults'iconImage" is used to specify the icon image to be used for
windows that have an unknown class. This is also how a default icon image can be specified for
windows that do not have an icon image available from any other source.

The follOwing dient dass specific resources can be specified:

Hewlett-Packard Company -6- Jan 20, 1989

HPWM(l) HPWM(l)

Serle. 300 and 800 Only

dientDecoration (class ClientDecoration)
This resource controls the amount of gadgetry in the client window frame. The resource
is specified as a list of gadgets to specify their inclusion in the frame. If a gadget is
preceded by a minus sign, then that gadget is excluded from the frame. The sign of the
first item in the list determines the initial amount of gadgetry. If the sign of the first item
is minus, then hpwm assumes all gadgets present and starts subtracting from that set. If
the sign of the first item is plus (or not specified), then hpwm starts with no gadgets and
builds up a list from the resource.

Name

all
maximize
minimize
none
resize
system
title

Description

Include all gadgets
Maximize box (includes title bar)
Minimize box (includes title bar)
No gadgets
Resize border
System menu box (includes title bar)
Title bar (only)

The default value for this resource is "all."

iconImage (class IconImage)
This resource can be used to specify an icon image for a particular class of clients (i.e.
"Hpwm' <client_class>.iconImage") or an icon image to be used for all classes of clients
that don't have a specifically specified icon image (i.e. "Hpwm·iconImage"). The
resource value is a pathname for a bitmap file. If specified this resource overrides any
client specified icon image.

The default value is to display the client supplied icon image if it is defined; if a client
icon image is not available then the icon image specified by "Hpwm'defaults'iconImage"
is used if it is specified; if an icon image is not supplied by the user or the client then a
built-in window manager icon image is used.

iconImageBackground (class Background)
This resource specifies the background color of the icon image that is displayed in the
image part of an icon. The default value of this resource is the icon background color
(i.e. specified by "Hpwm'background or Hpwm·icon·background).

iconImageBottomShadowColor (class Foreground)
This resource specifies the bottom shadow color of the icon image that is displayed in
the image part of an icon. The default value of this resource is the icon bottom shadow
color (i.e. specified by Hpwm'bottomShadowColor or
Hpwm • icon ·bottomShadowColor).

iconImageBottomShadoWfile (class BottomShadoWfile)
This resource specifies the bottom shadow tile of the icon image that is displayed in the
image part of an icon. The default value of this resource is the icon bottom shadow tile
(i.e. specified by Hpwm'bottomShadowTile or Hpwm • icon ·bottomShadowTile).

iconImageForeground (class Foreground)
This resource specifies the foreground color of the icon image that is displayed in the
image part of an icon. The default value of this resource is the icon foreground color
(i.e. specified by "Hpwm'foreground or Hpwm·icon·foreground).

iconImageTopShadowColor (class Background)
This resource specifies the top shadow color of the icon image that is displayed in the
image part of an icon. The default value of this resource is the icon top shadow color
(i.e. specified by Hpwm'topShadowColor or Hpwm·icon·topShadowColor).

iconImageTopShadoWfile (class TopShadoWfile)
This resource specifies the top shadow tile of the icon image that is displayed in the
image part of an icon. The default value of this resource is the icon top shadow tile (i.e.

Hewlett-Packard Company -7- Jan 20,1989

HPWM(l) HPWM(l)
Series 300 and 800 Only

specified by Hpwm*topShadowTile or Hpwm*icon*topShadovJfile).

makelconColors (class MakeColors)
If the value of this resource is "all" then hpwm will use the value of the
iconImageBackground resource to make values for the iconImageBottomShadowColor,
iconImageForeground and iconImageTopShadowColor resources that provide a 3-D
appearance. In this case the iconImageTopShadoWI'ile and
iconImageBottomShadoWI'ile are always set to "foreground". If the makeColors resource
value is "shadow" the top and bottom shadow colors will be made but the foreground
color will not be made. If the make Colors resource value is "none" then no colors will be
automatically made. The default value for this resource is "shadow".

makeMatteColors (class MakeColors)
If the value of this resource is "all" then hpwm will use the value of the matteBackground
resource to make values for the matteBottomShadowColor, matteForeground and
matteTopShadowColor resources that provide a 3-D appearance. In this case the
matteTopShadoWI'ile and matteBottomShadoWI'ile are always set to "foreground". If the
make Colors resource value is "shadow" the top and bottom shadow colors will be made
but the foreground color will not be made. If the makeColors resource value is "none"
then no colors will be automatically made. The default value for this resource is
"shadow".

matteBackground (class Background)
This resource specifies the background color of the matte, when matteWidth is positive.
The default value of this resource is the client background color (i.e. specified by
"Hpwm*background or Hpwm*client.background).

matteBottomShadowColor (class Foreground)
This resource specifies the bottom shadow color of the matte, when matteWidth is
positive. The default value of this resource is the client bottom shadow color (i.e.
specified by "Hpwm*bottomShadowColor or Hpwm*client.bottomShadowColor).

matteBottomShadoWI'ile (class BottomShadoWI'ile)
This resource specifies the bottom shadow tile of the matte, when matteWidth is
positive. The default value of this resource is the client bottom shadow tile (i.e. specified
by "Hpwm*bottomShadowTile or Hpwm*c1ient.bottomShadowTile).

matteForeground (class Foreground)
This resource specifies the foreground color of the matte, when matteWidth is positive.
The default value of this resource is the client foreground color (i.e. specified by
"Hpwm*foreground or Hpwm*c1ient.foreground).

matteTopShadowColor (class Background)
This resource specifies the top shadow color of the matte, when matteWidth is positive.
The default value of this resource is the client top shadow color (i.e. specified by
"Hpwm*topShadowColor or Hpwm*c1ienttopShadowColor).

matteTopShadoWI'ile (class TopShadoWI'ile)
This resource specifies the top shadow tile of the matte, when matteWidth is positive.
The default value of this resource is the client top shadow tile (i.e. specified by
"Hpwm *topShadoWfile or Hpwm *c1ienttopShadowTile).

matteWidth (class MatteWidth)
This resource specifies the width of the optional matte that can be specified to frame the
client area of the window. The matte sits just inside the other client window frame
decoration. This is useful to help old applications fit into a suite of new applications that
use the HP widget set. The matte is given a 3-D effect just like the HP widgets. The
default value is 0, which effectively disables the matte.

maximumClientSize (class MaximumClientSize)
This is a size specification that indicates the client size to be used when an application is
maximized. The resource value is specified as "<width >x< height>". If this resource is
not specified then the maximum size from the WM NORMAL HINTS property is used
if set. Otherwise the default value is the size where the client window with window

Hewlett-Packard Company -8- Jan 20, 1989

HPWM(l) HPWM(l)

Series 300 and 800 Only

management borders fills the screen.

systemMenu (class SystemMenu)
This resource indicates the name of the menu pane that is posted when the system menu
is popped up (usually by pressing button 1 on the system box gadget on the client
window frame). Menu panes are specified in the hpwm resource description file file.
System Menus can be customized on a client class basis by specifying resources of the
form Hpwm' <client class>.systemMenu (See Hpwm Resource Description File Syntax).
The default value of this resource is "DefaultSystemMenu".

RESOURCE DESCRIPTION FILE
The hpwm resource description file is a supplementary resource file that contains resource
descriptions that are referred to by entries in the defaults files (.xdefaults, app-defaultsj Hpwm).
It contains descriptions of resources that are to be used by hpwm, and that cannot be easily
encoded in the defaults files (a bitmap file is an analogous type of resource description file). A
particular hpwm resource description file can be selected using the coruJgFile resource.

The following types of resources can be described in the hpwm resource description file:

Buttons

Keys

Menu

Window manager functions can be bound (associated) with button press events.

Window manager functions can be bound (associated) with key press events.

These menu panes can be used for the system menu and other menus posted
with key and button bindings.

Hpwm Resource Description File Syntax
The hpwm resource description file is a standard text file that contains items of information
separated by blanks, tabs and new lines characters. Blank lines are ignored. Items or characters
can be quoted to avoid special interpretation (e.g., the comment character can be quoted to
prevent it from being interpreted as the comment character). A quoted item can be contained in
double quotes ("). Single characters can be quoted by preceding them by the back-slash character
(\). All text from an unquoted II to the end of the line is regarded as a comment and is not
interpreted as part of a resource description. Window manager functions can be accessed with
button and key bindings, and with window manager menus. Functions are indicated as part of the
specifications for botton and key binding sets, and menu panes. The function specification has the
following syntax:

function =
function name =
function = args =

function name [function args]
<windoW manager functIon>
{quoted I unquoted _item}

The following functions are supported. If a function is specified that isn't one of the supported
functions then it is interpreted by hpwm as f.nop.

f.beep This function beeps.

f.circle down This function lowers the highest mapped client window that partially or
completely obscures another client window to the bottom of the window stack
(where it obscures no other window).

f.exec or!

f.focus color

This function raises the lowest mapped client window that is partially or
completely obscured by another client window to the top of the window stack
(where it is obscured by no other window).

This function causesfunction-<If8S to be executed (using jbinjsh).

This function sets the colormap focus to a client window. If this function is done
in a root context then the default colormap (setup by the X Window System for
the screen where hpwm is running) will be installed and there will be no specific
client window colormap focus. This function is treated asf.nop if
colormapFocusPolicy is not "explicit".

Hewlett-Packard Company -9- Jan 20,1989

HPWM(l)

I.kill

I.lower

I.maximize

I.menu

I.minimize

I.move

I.nop

I.normalize

I.post_smenu

I.prev_key

I.raise

I.raise lower

I.refresh

I.refresh win

I.resize

I.restart

I.separator

I.title

HPWM(l)
Series 300 and 800 OnJ;y

This function sets the keyboard input focus to a client window or icon. This
function is treated as f.nop if keyboardFocusPolicy is not "explicit" or the function
is executed in a root context.

This function causes a client's X connection to be terminated (usually resulting
in termination of the client).

This function lowers a client window to the bottom of the window stack (where it
obscures no other window).

This function causes a client window to be displayed with its maximum size.

If this function appears in a menu pane entry, it associates the cascading (pull­
right) menu identified by function args with the menu pane entry. If this
function appears in a key or button binding, it posts the menu identified by
function _ args.

This function causes a client window to be minimized / iconized.

This function allows a client window to be interactively moved.

This function installs the next colormap in the list of colormaps for the window
with the colormap focus.

This function sets the keyboard input focus to the next window/icon in the set of
windows/icons managed by the window manager (the ordering of this set is
based on the stacking of windows on the screen).

This function does nothing.

This function causes a client window to be displayed with its normal size.

This function is used to post the system menu.

This function sets the keyboard input focus to the previous window/icon in the
set of windows/icons managed by the window manager (the ordering of this set
is based on the stacking of windows on the screen).

This function terminates hpwm (but Naf the X window system).

This function raises a client window to the top of the window stack (where it is
obscured by no other window).

This function raises an obscured client window to the top of the window stack
(where it is obscured by no other window) and lowers a client window that is on
top of the window stack to the bottom of the stack (where it obscures no other
window).

This function causes all windows to be redrawn.

This function causes a client window to be redrawn. It is the same as f.refresh if
it is used in a menu posted with a root context.

This function allows a client window to be interactively resized.

This function causes hpwm to be restarted (effectively terminated and re­
exec'ed).

This function causes a menu separator to be put in the menu pane entry (the
label is ignored).

This function inserts a title in the menu pane if it is the first entry in the menu
pane description. By default a menu pane has no title.

Each function may be constrained as to which resource types can specify the function (e.g., menu
pane), and also what context the function can be used in (e.g., the function is done to the selected
client window). Function contexts are:

root

window

No client window or icon has been selected as an object for the function.

A client window has been selected as an object for the function. This includes
the window's title bar and frame. Some functions are applied only when the

Hewlett-Packard Company -10 - Jan 20,1989

HPWM(l)

icon

frame

title

HPWM(l)
Series 300 and 800 Only

window is in its normalized state (e.g., f.maximize) or its maximized state (e.g.,
f.normalize).

An icon has been selected as an object for the function.

A client window frame has been selected as an object for the function. This
includes the window frame's title bar.

A client window title bar has been selected as an object for the function.

If a function is specified in a type of resource where it is not supported or is invoked in a context
that does not apply then the function is treated as f.1Wp. The following table indicates the
resource types and function contexts in which window manager functions apply.

Function Contexts Resources

f.beep root,icon,window button,key,menu
f.circle down root,icon,window button,key,menu
f.circle = up root,icon,window button,key,menu
f.exec root,icon,window button,key,menu
f.focus color root,icon,window button,key,menu
f.focus=key icon,window button,key,menu
f.kill icon,window menu
f.lower icon,window button,key,menu
f.maximize icon,window(normal) button,key,menu
f.menu root,icon,window button,key,menu
f.minimize window button,key,menu
f.move icon,window button,key,menu
f.next _ cmap root,icon,window button,key,menu
f.next_key root,icon,window button,key,menu
f.nop root,icon,window button,key,menu
f.normalize icon,window(maximized) button,key,menu
f.post_smenu root,icon,window button,key
f.prev_key root,icon,window button,key,menu
f.quit hpwm root menu
f.raise icon,window button,key,menu
f.raise lower icon,window button,key,menu
f.refreSh root,icon,window button,key,menu
f.refresh win window button,key,menu
f.resize window button,key,menu
f.restart root menu
f.separator root,icon,window menu
f.title root,icon,window menu

Button Bindings
A window manager function can be done with a pointer button press or release when the pointer
is over a client window, an icon or the root window. The context for indicating where the button
action applies is also the context for invoking the window manager function when the button press
is done.

The button binding syntax is:

Buttons bindings set name
{ - -

bunon amtext function
bunon context function

bunon context function

Hewlett-Packard Company -11- Jan 20,1989

UPWM(l) HPWM(l)
Series 300 and 800 Only

}

The button specification is done using the syntax supported by the X Toolkit's translation manager,
with three exceptions: only a single event may be specified, the event must be a ButtonPress or a
ButtonRelease, and all modifiers specified are interpreted as being exclusive (this means that only
the specified modifiers can be present when the button event occurs). For example, button 1
down with the [Shift] key pressed is specified by: Shift<BtnlDown> and button 1 up with the
(Extend char] key pressed is specified by Meta <BtnlUp>. Button release specifications are
interpreted by hpwm as a "click" (i.e. a button press followed by a button release with less than the
move threshold amount of motion in between).

The syntax for the context specification is:

context =
object =

object[" I "context]
root I icon I window I title I frame

The context specification indicates where the pointer must be for the button binding to be
effective. The frame context is for the client window frame and the title context is for the title area
of the client window frame. For example, a context of window indicates that the pointer must be
over a client window or window frame or window title for the button binding to be effective. For
button bindings the frame and title contexts are equivalent to the window context.

If a f.nop function is specified for a button binding the button binding will not be done.

Key Bindings
A window manager function can be done when a particular key is pressed. The context in which
the key binding applies is indicated in the key binding specification. The valid contexts are the
same as those that apply to button bindings.

The key binding syntax is:

Keys bindings set name
{ - -

key context function
key context function

key context function

The key specification is done using the syntax supported by the X Toolkit's translation manager,
with three exceptions: only a single event may be specified, the event must be a key event, and all
modifiers specified are interpreted as being exclusive (this means that only the specified modifiers
can be present when the key event occurs). For example, a shifted [C) key press is specified by
Shift<Key>c.

If a f.nop function is specified for a key binding the key binding will not be done. If a
f.post _smenu or f.menu function is bound to a key, hpwm will automatically use the same key for
removing the menu from the screen after it has been popped up.

The context specification syntax is the same as for button bindings. For key bindings the frame
and title contexts are equivalent to the window context.

Menu Panes
The context for window manager functions that are done from the system menu is icon or window
depending on where the system menu was popped up. For other menus the context depends on
the location of the pointer (for menus posted by button bindings) or the location of the keyboard
input focus (for menus posted by key bindings).

The menu pane specification syntax is:

Hewlett-Packard Company -12 - Jan 20,1989

HPWM(l)
Series 300 and 800 Only

Menu menu yane _name
{

}

label function
label function

label function

HPWM(l)

Each line in the Menu specification identifies the label for a menu item and the function to be
done if the menu item is selected. The label may be a string or a bitmap file. The label
specification has the following syntax:

label =
bitmap_file =
text =

text I bitmap file
"@"<fiIe name>
quoted_item I unquoted _item

The sting encoding for labels must be compatible with the menu font that is used. Labels are
greyed out for menu items that do the f.nop function or an invalid function or a function that
doesn't apply in the current context.

WINDOW MANAGER COMMANDS
The user interactively commands the window manager with the keyboard and pointer. This
interface can be configured by the user by changing entries in the resource files for hpwm (see
above).

Pointer Commands
The pointer (usually a mouse) is the device that controls a cursor that ranges over the entire
screen. Hpwm uses the pointer in the following ways:

Button 1 Click
Select an object/action. The default actions performed by doing a button 1 click on a window
manager object are:

Object

window frame
icon
window frame and window
icon
frame minimize gadget
frame maximize gadget

Button 1 Doubl~lick

Action

top window
top icon
explicit keyboard focus selection
explicit keyboard focus selection
minimize the window
maximize the window

The default action performed by doing a button 1 double-click on an icon is to normalize the
associated window.

Button 1 Drag
Select and perform a move/resize action or pop up a menu and select a menu item. The default
actions performed by doing a button 1 drag on a window manager object are:

Object Action

window frame title move the window

Hewlett-Packard Company -13 - Jan 20, 1989

)

HPWM(l)

Series 300 and 800 On~

window resize border
icon
frame system gadget

resize the window
move the icon
popup the system menu, select an item

HPWM(l)

The buttonBindings resource can be used to associate window management functions with button
presses (although default, unmodified Button 1 function bindings supercede unmodified Button 1
buttonBindings specifications). This is useful for users who do not want screen space taken up by
window decoration. This mechanism allows them to run without decoration, but still have a way of
manipulating windows. The default button bindings are:

Button Function Context Description

Buttonl f.menu root post the default root window menu
Buttonl Dick f.raise frame raise window to top of stack
Meta-Buttonl Drag f.move window move a window
Meta-Button3 Dick f.minimize window minimize a window

Keyboard Commands
Keyboard bindings for window management functions can be defined to allow window
management to be done without using a pointer. The resource key8indings is used to associate
key presses with window management functions. The default key bindings for window
manipulation are:

Key

Shift-Escape
Meta-Tab
Return
Up-Arrow
Down-Arrow

Function

f.post smenu
f.next-key
<buitt-in>
<built-in>
<built-in>

Description

pop up the system menu
go to next window in stack
accept menu selection
move to previous item in menu
move to next item in menu

Key bindings that are used to pop up the system menu are automatically used by hpwm as key
bindings for removing the menu when it is popped up.

The f.next key function is only valid when keyboardFocusPolicy is explicit. No such function is
provided when keyboardFocusPolicy is pointer.

Interactive Window Placement
The user has the option of interactively positioning and sizing new windows before they appear on
the display. When interactivePlacement resource is set to 'True", the pointer shape will change
before the new window is mapped. A window will appear in the center of the screen that provides
position and size feedback.

The user sets the initial position by moving the pointer to the desired location and clicking the
Select button. The user may set the initial size of the window by depressing the Select button to fix
the location of the upper left-hand comer of the window and then dragging the pointer to the
desired position of the lower right-hand comer of the window. The window size will be fixed once
the user releases the Select button. The moveThreshold resource will be used to distinguish
between an accidental movement of the pointer while clicking versus a deliberate size setting
action.

You can also do interactive placement strictly from the keyboard. The arrow keys move the
pointer in the expected direction. Arrow keys while the [CfRL) key is held down to moves the
pointer in large increments. The space bar stops moving the window and gets hpwm ready to
change its size. The [Return) key completes interactive placement at any time.

The feedback window provides position and size information as the pointer is moved. The size
feedback will be in multiples of width inc and height inc if those values are defined in the
WM _NORMAL_HINTS for the window. In addition~ a wire frame of the window is drawn to give

Hewlett-Packard Company -14 - Jan 20,1989

HPWM(l) HPWM(l)
Series 300 and 800 OnIJl

the user graphic feedback of the window size.

If the window position information is specified when the client is invoked, then interactive
placement will not take place. The window will be placed at the position specified. The window
will be of the default size unless the user also specifies this along with the position. If the user
only specifies the size of the window, hpwm will use that size as the default during interactive
placement.

Hpwm will not do interactive placement on windows that have the WM TRANSIENf FOR
property set. These are assumed to exist for short duration interactions -(dialog boxes) With which
interactive placement would interfere.

ENVIRONMENT
Hpwm uses the environment variable $HOME specifying the user's home directory.

FILES
/usr /Iib /Xll/system.hpwmrc
/usr/lib/Xll/app-defaults/Hpwm
SHOMEj.Xdefaults

COPYRIGIIT
Copyright 1988, Hewlett Packard Company

ORIGIN
Hewlett-Packard Company

SEE ALSO
X(I)

Hewlett-Packard Company -15 - Jan 20, 1989

RESIZE(!) RESIZE(!)
Series 300 and 800 Only

NAME
resize - reset shell parameters to reflect the current size of a window

SYNOPSIS
resize [-option ...]

DESCRIPTION
Resize prints on its standard output the commands for setting $TERM, SLINES, and $COLUMNS
for a shell to reflect the current size of its window. The $SHELL environment variable is used to
determine the shell for which to form the commands. The $TERM environment variable is used
to determine the escape sequences to be used to determine the window size. Both of these can be
overridden by command line options.

Resize is never executed directly, but should be run via eval(l) similar to tset(l) to cause the shell
to execute the commands. For example, the following functions will reset the environment of the
current shell for sh (1) and krh (1):

xsO { eval 'resize'; }
xrsO { eval 'resize -s S@'; }

An equivalent for csh(l) is:

alias xs 'set noglob; eval ' resize"
alias xrs 'set noglob; eval 'resize -s \!\ • ' ,

OPTIONS

FILES

NOTES

The resize program accepts the following options listed below:

oC This option indicates that resize should format its commands for csh (1).

-h This option indicates that resize should use Hewlett Packard terminal escape sequences
to obtain the terminal's new window size.

-s [row col]
This option indicates that resize should use Sun escape sequences to obtain the terminal's
new window size. In this mode of operation, a new row and column size may be
specified on the command line.

-u This option indicates that resize should format its commands for sh(l) or ksh(l).

-x This option indicates that resize should use VI102 escape sequences to obtain the
terminal's new window size.

SHOME/profile
SHOME/cshrc

sh(l) and krh(1) user's functions for resize.
csh(l) user's alias for resize.

"-s" must be the last option on the command line when specified.

There should be some global notion of display size; termcap and terminfo need to be rethought in
the context of window systems.

ORIGINS
MIT Distribution

SEE ALSO
sh(I), ksh(I), csh(I), eval(I), hpterm(1), tset(I), xterm(l)

Hewlett-Packard Company -1- Jan 20, 1989

RGB(l) RGB(l)
Series 300 and 800 Only

NAME
rgb - X Window System color database creator.

SYNOPSIS
rgb [filename 1

DESCRIPTION
rgb creates a data base used by the X window system server for its colors. Stdin is used as its input
and must be in the format of:

For example:

0-255 0-255 0-255 colorname

o 0 0 black

o 128 0 green

255 255 255 white

rgb stands for red-green-blue. Each element can have no intensity (0) to full intensity (255). How
the elements are combined determines the actual color. The name given to the color can be
descriptive or fanciful.

In other words, the sequence:

o 0 128

can be given the name 'blue' or 'unicorn blue'. There can also be two (or more) entries with the
same element numbers or names.

ARGUMENTS
filename If filename is given, rgb produces two files; filename.dir and filename.pag. Otherwise

the default filename is /usr/lib/Xll/rgb.
ORIGIN

MIT Distribution

SEE ALSO
X(I)

Hewlett-Packard Company -1 - Jan 20,1989

SB2XWD(1) SB2XWD(1)
Series 300 and 800 Only

NAME
sb2xwd - translate Starbase bitmap to xwd bitmap format

SYNOPSIS
sb2xwd

DESCRIPTION
This command translates a bitmap file created by one of the Starbase bitmap-ta-file procedures
into an XWD format file. The XWD format is defined by the xwd(1) and xwud(J) X window dump
utility programs. The Starbase bitmap file format is described in bitmapfile(4). Translation is
done from standard input to standard output.

Starbase bitmaps created in pixel-major format will be translated into ZPixmap format xwd
bitmaps. Plane-major full-depth Starbase bitmaps are translated into XYPixmap format xwd
bitmaps.

XWD bitmaps produced by sb2twd will be of the DirectColor visual class if the Starbase bitmap's
colormap mode is CMAP FULL. Other multiplane Starbase bitmaps having colormap modes of
CMAP NORMAL or CMAP MONOTONIC will result in PseudoColor XWD bitmaps. Single
plane Starbase bitmaps are converted to GreyScaJe XWD bitmaps.

OPTIONS
none

EXAMPLES
sb2xwd < sbfile > xwdfile

Translates the Starbase image in sbfile to XWD format and places the result in xwdfile.

sb2xwd < sbimage I xwud
Translates the image in sbimage, piping the results to xwud for display.

RESTRICllONS

ORIGIN

Sb2xwd accepts only full-depth Starbase bitmaps.

Starbase bitmaps must be 1-8, 12, or 24 planes deep. Bitmaps of depth 1-8 must have either
CMAP NORMAL or CMAP MONOTONIC colormap modes. Bitmaps of depths 12 or 24 must
have the CMAP _FULL cOlonnap mode.

A 12 plane bitmap must be stored in three banks and have a display enable mask of OxOF or OxFO.

Hewlett-Packard GTD

SEE ALSO
xwd(l), xwud(l), bitmapfile(4).

Starbase Graphics Techniques, HP-UX Concepts and Tutorials, chapters on "Color" and "Storing
and Printing Images".

Hewlett-Packard Company - 1 - Jan 20, 1989

UWM(l) UWM(l)
Series 300 and 800 OnJ;y

NAME
uwm - a window manager for X

SYNOPSIS
uwm [options]

DESCRIPTION
uwm is a window manager client application of the window server.

When uwm is invoked, it searches a predefined search path to locate any uwm startup files.

If startup files exist in any of the following locations, it adds the variables to the default variables.
In the case of contention, the variables in the last file found override previous specifications. Files
in the uwm search path are:

built-in uwm startup
/usr/lib/XII/uwm/system.uwmrr::
$HOMEj.uwmrr::
-f filename

To use only the settings defined in a single startup file, include the variables, resetbindings,
resetmenus, resetvariables at the top of that specific startup file.

OPTIONS
-ffilename Names an alternate file as a uwm startup file.

-display display Specifies the display to use; see XCI).

STARTIJP FILE VARIABLES
Variables are typically entered first, at the top of the startup file. By convention, resetbindings,
resetmenus, and resetvariables head the list.

autoselect/noautoselect
places menu cursor in first menu item. If unspecified, menu cursor is placed in
the menu header when the menu is displayed.

delta =pixels indicates the number of pixels the cursor is moved before the action is
interpreted by the window manager as a command. (Also refer to the delta
mouse action.)

freeze/no freeze locks all other client applications out of the server during certain window
manager tasks, such as move and resize.

grid/no grid displays a finely-ruled grid to help you position an icon or window during resize
or move operations.

hiconpad =n indicates the number of pixels to pad an icon horizontally. The default is five
pixels.

lunenupad =n indicates the amount of space in pixels, that each menu item is padded to the left
and right of the text.

iconfont = fontname

max.coiors=n

names the font that is displayed within icons. Font names for a given server can
be obtained using fonts in /usr/lib/Xll/fonts.

limits the number of colors the window manager can use in a given invocation. If
set to zero, or not specified, uwm assumes no limit to the number of colors it can
take from the color map. max.colors counts colors as they are included in the
file.

menufont = fontname
names the font that is displayed within menus. Font names for a given server can
be obtained using fonts in /usr/lib/Xll/fonts.

normali/nonormali
places icons created with f.newiconify within the root window, even if it is placed

Hewlett-Packard Company -1- Jan 20, 1989

UWM(I) UWM(I)
Series 300 and 800 On~

partially off the screen. With nononnali the icon is placed exactly where the
cursor leaves it

normalw /nonormalw
places window created with f.MWironity within the root window, even if it is
placed partially off the screen. With nononnalw the window is placed exactly
where the cursor leaves it

push=n moves a window n number of pixels or a relative amount of space, depending on
whether pushabsolute or pushrelative is specified. Use this variable in
conjunction with f.pushup, £pushdown, f.pushright, or f.pushleft.

pushabsolute/pushrelative
pushabsolute indicates that the number entered with push is equivalent to pixels.
When an f.push (left, right, up, or down) function is called, the window is moved
exactly that number of pixels.

pushrelative indicates that the number entered with the push variable represents
a relative number. When an f.push function is called, the window is invisibly
divided into the number of parts you entered with the push variable, and the
window is moved one part

resetbindings, resetmenus, and resetvariables
resets all previous function bindings, menus, and variables entries, specified in
any startup file in the uwm search path, including those in the default
environment. By convention, these variables are entered first in the startup file.

resizeCont = fontname
identifies the font of the indicator that displays in the comer of the window as
you resize windows. See /usr/lib/Xll/fonts for font names.

resizerelative/noresizerelative
indicates whether or not resize operations should be done relative to moving
edge or edges. By default, the dynamic rectangle uses the actual pointer location
to define the new size.

reverse/no reverse
defines the display as black characters on a white background for the window
manager windows and icons.

viconpad =n indicates the number of pixels to pad an icon vertically. Default is five pixels.

vrnenupad=n

volume=n

zap/nozap

indicates the amount of space in pixels that the menu is padded above and below
the text.

increases or decreases the base level volume set by the xset(1) command. Enter
an integer from 0 to 7, 7 being the loudest

causes ghost lines to follow the window or icon from its previous default location
to its new location during a move or resize operation.

BINDING SYNTAX

Function

junction = [control key(s)]: [context]:mouse events:" menu name ..

Function and mouse events are required input. Menu name is required with the [menu function
definition only.

f.beep

f.drcledown

f.drcleup

f.continue

emits a beep from the keyboard. Loudness is determined by the volume
variable.

causes the top window that is obscuring another window to drop to the bottom
of the stack of windows.

exposes the lowest window that is obscured by other windows.

releases the window server display action after you stop action with the C.pause
function. .

Hewlett-Packard Company -2- Jan 20, 1989

UWM(l) UWM(l)

Series 300 and 800 Only

trocus directs all keyboard input to the selected window. To reset the focus to all
windows, invoke f.focus from the root window.

f.iconily when implemented from a window, this function converts the window to its
respective icon. When implemented from an icon, f.iconify converts the icon to
its respective window.

f.lower lowers a window that is obstructing a window below it

f.menu invokes a menu. Enclose 'menu name' in quotes if it contains blank characters
or parentheses.

f.menu=[control key(s»):[COniat):mouse events:"menu name ..

f.move moves a window or icon to a new location, which becomes the default location.

f.moveopaque moves a window or icon to a new screen location. When using this function, the
entire window or icon is moved to the new screen location. The grid effect is not
used with this function.

f.newiconily allows you to create a window or icon and then position the window or icon in a
new default location on the screen.

f.pause temporarily stops all display action. To release the screen and immediately
update all windows, use the f.continue function.

f.pushdown moves a window down. The distance of the push is determined by the push
variables.

f.pusbleft moves a window to the left. The distance of the push is determined by the push
variables.

f.pushright moves a window to the right. The distance of the push is determined by the push
variables.

f.pushup moves a window up. The distance of the push is determined by the push
variables.

f.raise raises a window that is being obstructed by a window above it.

f.refresh results in exposure events being sent to the window server clients for all
unobscured or partially obscured windows. The windows will not refresh
correctly if the exposure events are not handled properly.

f.resize resizes an existing window. Note that some clients, notably editors, react
unpredictably if you resize the window while the client is running.

f.restart causes the window manager application to restart, retracing the uwm search path
and initializing the variables it finds.

Control Keys

Context

By default, the window manager uses meta as its control key. It can also use ctrl, shift, lock, or null
(no control key). Control keys must be entered in lower case, and can be abbreviated as: c, I, m, s
for ctrl, lock, meta, and shift, respectively.

You can bind one, two, or no control keys to a function. Use the bar (I) character to combine
control keys.

Note that client applications other than the window manager may use pointer button and control
key combinations. If the window manager has bound these combinations for its own use, the
client application will never see the pointer input rquested.

The context refers to the screen location of the cursor when a command is initiated. When you
include a context entry in a binding, the cursor must be in that context or the function will not be
activated. The window manager recognizes the following four contexts: icon, window, root, (null).
These contexts can be abbreviated as i, w, and r respectively.

The root context refers to the root, or background window, A (null) context is indicated when the
context field is left blank, and allows a function to be invoked from any screen location. Combine

Hewlett-Packard Company -3- Jan 20, 1989

UWM(l) UWM(l)
Series 300 and 800 Only

contexts using the bar (I) character.

Mouse Buttons
Any of the fonowing mouse buttons are accepted in lower case and can be abbreviated as I, m, or
r, respectively: left, middle, right.

With the specific button, you must identify the action of that button. Mouse actions can be:

down function occurs when the specified button is pressed down.

up

delta

function occurs when the specified button is released.

indicates that the mouse must be moved the number of pixels specified with the delta
variable before the specified function is invoked. The mouse can be moved in any
direction to satisfy the delta requirement.

MENU DEFINITION
After binding a set of function keys and a menu name to f.menu, you must define the menu to be
invoked, using the fonowing syntax:

menu = " menu name " {
"item name" : "action"

Enter the menu name exactly the way it is entered with the f.menu function or the window
manager win not recognize the link. If the menu name contains blank strings, tabs or parentheses,
it must be quoted here and in the f.menu function entry. You can enter as many menu items as
your screen is long. You cannot scroll within menus.

Any menu entry that contains quotes, special characters, parentheses, tabs, or strings of blanks
must be enclosed in double quotes. Follow the item name by a colon (:).

Menu Action
Window manager functions

Any function previously described. E.g., f.move or f.iconify.

Shell commands
Begin with an exclamation point (!) and set to run in background. You cannot include
a new line character within a shell command.

Text strings

Color Menus

Text strings are placed in the window server's cut buffer.

Strings starting with an up arrow C) will have a new line character appended to the
string after the up arrow C) has been stripped from it.

Strings starting with a bar character (I) will be copied as is after the bar character (I)
has been stripped.

Use the following syntax to add color to menus:

color!

color2

color3

menu = "menu name" (colorl:color2:color3:color4) {
"item name" : (color5 :colo76) :" action"

}

Foreground color of the header.

Background color of the header.

Foreground color of the highlighter, the horizontal band of color that moves with the
cursor within the menu.

Hewlett-Packard Company -4- Jan 20,1989

UWM(l)

color4

colorS

color6

Serle. 300 and 800 Only

Background color of the highlighter.

Foreground color for the individual menu item.

Background color for the individual menu item.

UWM(l)

Color Defaults
Colors default to the colors of the root window under any of the following conditions:

1) If you run out of color map entries, either before or during an invocation ofuwm.

2) If you specify a foreground or background color that does not exist in the RGB color database
of the server (see /usr/lib/Xll/rgb.txt for a sample) both the foreground and background colors
default to the root window colors.

3) If you omit a foreground or background color, both the foreground and background colors
default to the root window colors.

4) If the total number of colors specified in the startup file eJCCeeds the number specified in the
maxcolors variable.

5) If you specify no colors in the startup file.

Customizing Icons
The window manager allows keyboard input in text icons. This allows the user greater flexibility
towards customizing text icon names.

EXAMPLES
The following sample startup file shows the default window manager options:

/I Global variables
/I
resetbindings;resetvariables;resetmenus
autoselect
delta =25
freeze
grid
hiconpad=5
hmenupad=6
iconfont = fixed
menufont = fixed
resize font = 9x15
viconpad=5
vrnenupad=3
volume =7
/I
/I Mouse button/key maps
/I
/lFUNCTION KEYS CONTEXT BUITON
/1======= ======= ======

/I

f.menu =
f.menu =
f.move =
f.circleup =

meta
meta
meta
meta

/I Menu specifications
/I

wli
root

menu = "WINDOW OPS· {
(De)Iconify: f.iconify
Move: f.move
Resize: f.resize

Hewlett-Packard Company -5-

: left down
: middle down
: right down
: right down

MENU (if any)

:"WINDOW OPS·
:"EXTENDED WINDOW OPS"

Jan 20, 1989

UWM(l) UWM(l)

Lower:
Raise:
}

Series 300 and 800 Onl;y

f.1ower
f.raise

menu = "EXlENDED WINDOW OPS" {
Create Window: !"xterm &"
Iconify at New Position: f.Jowericonify
Focus Keyboard on Window: f.focus
Freeze All Windows: f.pause
Unfreeze All Windows: f.continue
Circulate Windows Up: f.circleup
Circulate Windows Down: f.circledown
}

RESTRICI10NS

FILES

The color specifications have no effect on a monochrome system.

/usr/lib/Xll/rgb.txt
/usr/lib/X11/uwm/system.uwmrc
$HOMEj.uwmrc

COPYRIGIIT

ORIGIN

COPYRIGHT 1985, 1986, 1987, 1988
DIGITAL EQUIPMENT CORPORATION

MAYNARD, MASSACHUSEITS
ALL RIGHTS RESERVED. lHE INFORMATION IN lHIS SOFIWARE IS SUBJECT TO
CHANGE WIlHOUT NOTICE AND SHOULD NOT BE CONSTRUED AS A
COMMITMENT BY DIGITAL EQUIPMENT CORPORATION. DIGITAL MAKES NO
REPRESENTATIONS ABOUT lHE SUmBILITY OF lHIS SOFIWARE FOR ANY
PURPOSE. IT IS SUPPLIED "AS IS" WIlHOUT EXPRESS OR IMPLIED WARRANTY. IF
lHE SOFIWARE IS MODIFIED IN A MANNER CREATING DERIVATIVE COPYRIGHT
RIGHTS, APPROPRIATE LEGENDS MAY BE PlACED ON lHE DERIVATIVE WORK IN
ADDmON TO THAT SET FORlH ABOVE. Permission to use, copy, modify, and distribute
this software and its documentation for any purpose and without fee is hereby granted, provided
that the above copyright notice appear in all copies and that both that copyright notice and this
permission notice appear in supporting documentation, and that the name of Digital Equipment
Corporation not be used in advertising or publicity pertaining to distribution of the software
without specific, written prior permission.

MIT Distribution

SEE ALSO
X(1), Xserver(1), xset(1)

Hewlett-Packard Company -6- Jan 20,1989

X(l) X(l)
Series 300 and 800 Only

NAME
x - a portable, network transparent window system

SYNOPSIS
X is a network transparent window system developed at MIT which runs under a wide variety
of operating systems. Hewlett-Packard supports the X Window System under the Series 300
HP-UX 6.2 or higher, and the Series 800 HP-UX 3.0 or higher.

TIlE OFFICIAL NAMES
The official names of the software described herein are:

X
X Window System

X Version U
X Window System, Version U

XU

Note that the phrases X.U, X-H, X Windows or any permutation thereof, are explicitly excluded
from this list and should not be used to describe the X Window System (window system should be
thought of as one word).

X Window System is a trademark of the Massachusetts Institute of Technology.

DESCRIPTION
X window system servers run on computers with bitmap displays. The server distributes user
input to, and accepts output requests from various client programs through a variety of different
interprocess communication channels. Although the most common case is for the client programs
to be running on the same machine as the server, clients can be run transparently from other
machines (including machines with different architectures and operating systems) as well.

X supports overlapping hierarchical subwindows and text and graphics operations, on both
monochrome and color displays. For a full explanation of functions, see the Programming With
Xlib manual, the Programming With the HP X Widgets manual, and the Programming With the Xt
lnmnsics manual.

The core X protocol provides mechanism, not policy. Windows are manipulated (including
moving, resizing and iconifying) not by the server itself, but by a separate program called a
"window manager" of your choosing. This program is simply another client and requires no
special privileges. If you don't like the one that is supplied (see uwm(l)) you can write your own.

The number of programs that use X is growing rapidly. Of particular interest are: two terminal
emulators (hptenn(l) andxtenn(l)), a window manager (uwm(1)), a bitmap editor (bitmap(l)), an
access control program (xhost(l)), user preference setting programs (xset(1), xsetroot(1), and
xmodmap(1)), a load monitor (x/oad(l)), clock (xclock(1)), a font displayer (xfd(l)), a protocol
translator for running X10 programs (xlOtoxlJ(l)), and various demos.

DISPLAY SPECIFICATION
When you first start the window system, the environment variable DISPLAY will be set (if it hasn't
already been set to something) to local:O.O, in order to take advantage of local interprocess
communication (IPe) mechanisms. By convention, servers on a particular machine are numbered
starting with zero. The following connection protocols are supported:

TCP/IP
DISPLAY should be set to "host:displayscreen" where host is the symbolic name of the
machine (e.g. expo), display is the number of the display (usually 0), and screen is the
number of the screen. The screen and preceding period are optional, with the default
value being zero (0). Full Internet domain names (e.g. expo.1cs.mit.edu) are allowed for
the host name.

IPC Mechanisms
DISPLAY should be set to "Iocal:displayscreen", where display is the display number
and screen is the screen number; screen and the preceding period are optional, with the
default value being zero (0).

Hewlett-Packard Company -1 - Jan 20,1989

X(l) X(l)
Series 300 and 800 OnJ.y

Most programs accept a command line argument of the form "-display display" that can be used
to override the DISPlAY environment variable.

GEOMETRY SPECIFICATION
One of the advantages of using window systems over hardwired terminals is that applications don't
have to be restricted to a particular size or location on the screen. Although the layout of windows
on a display is controlled by the window manager that the user is running, most applications
accept a command line argument that is treated as the preferred size and location for this
particular application's window.

This argument, usually specified as "-geometry WxH + X + Y," indicates that the window should
have a width ofW and height ofH (usually measured in pixels or characters, depending on the
application), and the upper left corner X pixels to the right and Y pixels below the upper left
corner of the screen (origin (0,0)). "WxH" can be omitted to obtain the default application size,
or" + X + Y" can be omitted to obtain the default application position (which is usually then left
up to the window manager or user to choose). The X and Y values may be negative to position
the window off the screen. In addition, if minus signs are used instead of plus signs (e.g. WxH-X­
Y), then (X,Y) represents the location of the lower right hand corner of the window relative to the
lower right hand corner of the screen.

By combining plus and minus signs, the window may be placed relative to any of the four corners
of the screen. For example:

555x333 + 11 + 22
This will request a window 555 pixels wide and 333 pixels tall, with the upper left corner
located at (11,22).

300x200-0+0
This will request a window measuring 300 by 200 pixels in the upper right hand corner of
the screen.

48x48-5-10
This will request a window measuring 48 by 48 pixels whose lower right hand corner is 5
pixels off the right edge of the screen and 10 pixels off the bottom edge.

COMMAND LINE ARGUMENTS
Most X programs attempt to use a common set of names for their command line arguments. The
X Toolkit automatically handles the following arguments:

-bg color, -background color
Either option specifies the color to use for the window background.

-bel color, -bordercolor color
Either option specifies the color to use for the window border.

-bw number, -borderwidth number
Either option specifies the width in pixels of the window border.

-display display
This option specifies the name of the X server to use.

-fg color, -foreground color
Either option specifies the color to use for text or graphics.

-fn font, -font font
Either option specifies the font to use for displaying text. The font is in the directory
specified by xset -fp.

1:eometry geometry

-iconic

-name

This option specifies the initial size and location of the window.

This option indicates that application should start out in an iconic state. Note that how
this state is represented is controlled by the window manager that the user is running.

This option specifies the name under which resources for the application should be

Hewlett-Packard Company -2- Jan 20,1989

X(l)

Serle. 300 and 800 OnJ;y

found. This option is useful in shell aliases to distinguish between invocations of an
application, without resorting to creating links to alter the executable file name.

X(l)

-rv, -reverse

+rv

Either option indicates that the program should simulate reverse video if possible, often
by swapping the foreground and background colors. Not all programs honor this or
implement it correctly. It is usually only used on monochrome displays.

This option indicates that the program should not simulate reverse video. This is used to
override any defaults since reverse video doesn't always work properly.

-synchronous
This option indicates that requests to the X server should be sent synchronously, instead
of asynchronously. Since Xlib normally buffers requests to the server, errors do not
necessarily get reported immediately after they occur. This option turns off the buffering
so that the application can be debugged. It should never be used with a working
program.

-title string
This option specifies the title to be used for this window. This information is used by
some window managers to provide some sort of header identifying the window.

-xnn resourcestring
This option specifies a resource name and value to override any defaults. It is also very
useful for setting resources that don't have explicit command line arguments.

RESOURCES
To make the tailoring of applications to personal preferences easier, X supports several
mechanisms for storing default values for program resources (e.g. background color, window title,
etc.) Resources are specified as strings of the form "name·subname·subsubname ... : value" (see
the Xlib manual section Using the Resource Manager for more details) that are loaded into a client
when it starts up. The Xlib routine XGetDefault(3X) and the resource utilities within the X
Toolkit obtain resources from the following sources:

RESOURCE MANAGER root window property
Any global resources that should be available to clients on all machines should be stored
in the RESOURCE_MANAGER property on the root window.

application-specific directory
Any application- or machine-specific resources can be stored in the class resource files
located in the /usr/lib/Xll/app-defaults directory.

$XENVIRONMENT
Any user- and maChine-specific resources may be specified by setting the
$XENVIRONMENT environment variable to the name of a resource file to be loaded
by all applications. If this variable is not defined, the X Toolkit looks for a file named
.xdefaults-hostname, where hostname is the name of the host where the application is
executing.

-xnn resourcestring
Applications that use the X Toolkit can have resources specified from the command line.
The resourcestring is a single resource name and value as shown above. Note that if the
string contains characters interpreted by the shell (e.g., asterisk), they must be quoted.
Any number of -xnn arguments may be given on the command line.

Program resources are organized into groups called "classes," so that collections of individual
"instance" resources can be set all at once. By convention, the instance name of a resource begins
with a lowercase letter and class name with an upper case letter. Multiple word resources are
concatenated with the first letter of the succeeding words capitalized. Applications written with
the X Toolkit will have at least the following resources:

background (class Background)
This resource specifies the color to use for the window background.

Hewlett-Packard Company -3- Jan 20, 1989

X(l) X(l)

Series 300 and 800 Only

borderWidth (class BorderWidth)
This resource specifies the width in pixels of the window border.

borderColor (class BorderColor)
This resource specifies the color to use for the window border.

Most X Toolkit applications also have the resource foreground (class Foreground), specifying the
color to use for text and graphics within the window.

By combining class and instance specifications, application preferences can be set quickly and
easily. Users of color displays will frequently want to set Background and Foreground classes to
particular defaults. Specific color instances such as text cursors can then be overridden without
having to define all of the related resources.

When a named resource is unavailable (for example, a color named chartreuse or a font named
teeneyweeney), normally no error message will be printed; whether or not useful results ensue is
dependent on the particular application. If you wish to see error messages (for example, if an
application is failing for an unknown reason), you may specify the value "on" for the resource
named "StringConversionWarnings." If you want such warnings for all applications, specify
"*StringConversionWarnings:on" to the resource manager. If you want warnings only for a single
application named "zowie", specify "zowie*StringConversionWarnings:on" to the resource
manager.

The available colors are found in the file /usr/lib/Xll/rr)J.txt. See rgb(1) for information on
creating a new color database.

DIAGNOSTICS
The default error handler uses the Resource Manager to build diagnostic messages when error
conditions arise. The default error database is stored in the file XErrorDB in the /usr/lib/XlI
directory. If this file is not installed, error messages will tend to be somewhat cryptic.

COPYRIGIIT

ORIGIN

The following copyright and permission notice outlines the rights and restrictions covering most
parts of the standard distribution of the X Window System from MIT. Other parts have additional
or different copyrights and permissions; see the individual source files.

Copyright 1984,1985,1986,1987,1988, Massachusetts Institute of Technology.

Permission to use, copy, modify, and distribute this software and its documentation for any
purpose and without fee is hereby granted, provided that the above copyright notice appear in all
copies and that both that copyright notice and this permission notice appear in supporting
documentation, and that the name of M.I.T. not be used in advertising or publicity pertaining to
distribution of the software without specific, written prior permission. M.I.T. makes no
representations about the suitability of this software for any purpose. It is provided "as is" without
express or implied warranty.

This software is not subject to any license of the American Telephone and Telegraph Company or
of the Regents of the University of California.

MIT Distribution

SEE ALSO
bitmap(1), gwindstop(1), hpterm(1), init(1M), rr)J(1), uwm(1), x10toxll(1), xllstart(l), xclock(l),
xfc(1), xfd(1), xhost(1), xinit(1), xinitcolormap(1), xload(1), xmodmap(1), xrefresh(l), xseethru(l),
Xserver(1), xset(l), xsetroot(l), xterm(1), xwcreate(1), xwd(1), xwdestroy(l), xwininfo(l), xwud(l),
Programming With Xlib, Programming With the HP X Widgets and Xt Intrinsics

Hewlett-Packard Company -4- Jan 20,1989

XllSTART(l) XllSTART(l)
Series 300 and 800 Only

NAME
xllstart - start the Xll window system

SYNOPSIS
x11start [options]

DESCRIPTION

FILES

ORIGIN

xllstart starts up the X window system by running the Xll window server and selected Xll clients.
By default, hpterm(l) and hpwm(l) are run by xllstart.

xllstart is a shell script that first checks the user's home directory for a Xdefaults file. If there is
no Xdefaults file there, then the file /usr/lib/Xll/sysXdefaults (if it exists) will be used as a
source file for xrdb(1), to create a RESOURCE MANAGER property. This is done by setting
the variable $doxrdb, which is executed in the .xl1start file, and thus under user control.

xllstart will modify the PATIi variable as needed to assure that /usr/bin/Xll is in the users
PATIi variable in front of /usr/bin.

xllstart then runs xinit using the shell script .xllstart from the user's home directory as the first
argument for xinit. If that script does not exist or is not executable, then the script
/usr/lib/Xll/sys.xllstart is used as the argument for xinit. In any case the arguments passed to
xllstart are passed on to xinit following the .xllstart argument

/usr/lib/Xll/sys.xllstart
SHOME/ .xllstart
/usr /lib /Xll/sys.Xdefaults
SHOME/.xdefaults

Hewlett-Packard Company

SEE ALSO
X(I), xinit(I), hpterm(I), hpwm(I), xrdb(l)

Hewlett-Packard Company -1- Jan 20,1989

)

XCLOCK(l) XCLOCK(l)
Series 300 and 800 Only

NAME
xclock - analog / digital clock for X

SYNOPSIS
xclock [-toolkitoptions] [-options]

DESCRIPTION
The)(Clock program displays the time in analog or digital form. The time is continuously updated
at a frequency which may be specified by the user. This program is nothing more than a wrapper
around the Athena Clock widget.

OPTIONS
)(Clock accepts all of the standard X Toolkit command line options along with the additional
options listed below:

-help This option indicates that a brief summary of the allowed options should be printed on
the standard error.

-analog This option indicates that a conventional 12 hour clock face with ticks marks and hands
should be used. This is the default.

-digital This option indicates that a 24 hour digital clock should be used.

-chime This option indicates that the clock should chime once on the half hour and twice on the
hour.

-hd color
This option specifies the color of the hands on an analog clock. The default is "black".

-hi c%r This option specifies the color of the edges of the hands on an analog clock, and is only
useful on color displays. The default is "black".

-update seconds
This option specifies the frequency in seconds at which)(Clock should update its display.
If the clock is obscured and then exposed, it will be updated immediately. A value of less
than 30 seconds will enable a second hand on an analog clock. The default is 60 seconds.

-padding number
This option specifies the width in pixels of the padding between the window border and
clock text or picture. The default is 10 on a digital clock and 8 on an analog clock.

The following standard X Toolkit command line arguments are commonly used with)(Clock:

-bgcolor

-bd color

This option specifies the color to use for the background of the window. The default is
"white."

This option specifies the color to use for the border of the window. The default is
"black."

-bwnumber
This option specifies the width in pixels of the border surrounding the window.

-fg c%r This option specifies the color to use for displaying text on a digital clock and for the tic
marks on an analog clock. The default is "black".

-tnfont This option specifies the font to be used for digital clock text. The default is "6x10."

-rv This option indicates that reverse video should be simulated by swapping the foreground
and background colors.

-geometry geometry
This option specifies the preferred size and position of the clock window.

-display display
This option specifies the X server to contact.

-xrm resourcestring
This option specifies a resource string to be used. This is especially useful for setting

Hewlett-Packard Company -1 - Jan 20, 1989

XCLOCK(l) XCLOCK(l)
Series 300 and 800 OnJ.y

resources that do not have separate command line options. See X(J) for toolkit details.

X DEFAULTS
This program uses the Gock widget in the X Toolkit It understands all of the core resource
names and classes as well as:

width (class Width)
Specifies the width of the clock.

height (class Height)
Specifies the height of the clock.

update (class Interval)
Specifies the frequency in seconds at which the time should be redisplayed.

foreground (class Foreground)
Specifies the color for the tic marks. Using the class specifies the color for all things that
normally would appear in the foreground color. The default is "black" since the core
default for background is ''white.''

hands (class Foreground)
Specifies the color of the insides of the clock's hands.

highlight (class Foreground)
Specifies the color used to highlight the clock's hands.

analog (class Boolean)
Specifies whether or not an analog clock should be used instead of a digital one. The
default is True.

chime (class Boolean)
Specifies whether or not a bell should be sounded on the hour and half hour.

padding (class Margin)
Specifies the amount of internal padding in pixels to be used. The default is 8.

font (class Font)
Specifies the font to be used for the digital clock. Note that variable width fonts
currently will not always display correctly.

reverseVideo (class ReverseVideo)
Specifies that the foreground and background colors should be reversed.

ENVIRONMENT
DISPlAY

NOTES

to get the default host and display number.

XENVIRONMENT
to get the name of a resource file that overrides the global resources stored in the
RESOURCE_MANAGER property.

xclock believes the system clock.

Border color has to be explicitly specified when reverse video is used.

When the update is an even divisor of 60 seconds, the second hand should always be on a multiple
of the update time.

COPYRIGIIT
Copyright 1988, Massachusetts Institute of Technology.
See X(1) for a full statement of rights and permissions.

ORIGIN
MIT Distribution

SEE ALSO
X(I), time(3C), Athena Oock widget

Hewlett-Packard Company - 2- Jan 20, 1989

J

XFC(l) XFC(l)
Series 300 and 800 Only

NAME
xfc - font file compiler

SYNOPSIS
xfc [options]

DESCRIPTION
The xfc program is a bitmap distribution format to server natural format file compiler. It expects
the bitmap distribution format to be in Bitmap Distribution Format 2.1. The output will be sent to
standard out. If no filename is specified, xfc expects input from standard in.

OPTIONS

ORIGIN

xfc accepts the following command line options described below.

filename
The given filename is a character file in Bitmap Distribution Format 2.1. See bdf(4) for
more information on the format of the file.

-pnumber
Specifies that the glyphs will be padded to word boundaries. number can be 1,2,4 or 8.

-I Specifies that the output of the font file will be with the least significant byte first.

-Ill Specifies that the output of the font file will be with the most significant byte first.

MIT Distribution

SEE ALSO
X(I), Xserver(I), bdf(4)

Hewlett-Packard Company - 1 - Jan 20, 1989

XFD(l) XFD(l)
Series 300 and 800 Only

NAME
xfd - font displayer for X

SYNOPSIS
xfd [-options ...] [fontname]

OPTIONS
-bwnumber

Allows you to specify the width of the window border in pixels.

-n The foreground and background colors will be switched. The default colors are black on
white.

-fw Overrides a previous choice of reverse video. The foreground and background colors
will not be switched.

-fg color On color displays, determines the foreground color (the color of the text) .

-bg color
On color displays, determines the background color.

-bd color
On color displays, determines the color of the border.

-bffontname
Specifies the font to be used for the messages at the bottom of the window.

-tl title Specifies that the title of the displayed window should be title.

-in iconname
Specifies that the name of the icon should be iconname.

-icon filename
Specifies that the bitmap in file filename should be used for the icon.

-verbose Specifies that verbose mode should be used.

-gray Specifies that a gray background should be used.

-start chamum
Specifies that character number chamum should be the first character displayed.

-geometry geometry
Specifies an initial window geometry; see X(J) .

~isplay display
Specifies the display to use; see X(l).

DESCRIPTION
xfd creates a window in which the characters in the named font are displayed. The characters are
shown in increasing order from left to right, top to bottom. The first character displayed at the
top left will be character number 0 unless the -start option has been supplied in which case the
character with the number given in the -start option will be used.

The characters are displayed in a grid of boxes, each large enough to hold any character of the
font. If the -gray option has been supplied, the characters will be displayed using
XDrawImageString using the foreground and background colors on a gray background. This
permits determining exactly how XDrawImageString will draw any given character. If -gray has
not been supplied, the characters will simply be drawn using the foreground color on the
background color.

All the characters in the font may not fit in the window at once. To see additional characters, click
the right mouse button on the window. This will cause the next window full of characters to be
displayed. Clicking the left mouse button on the window will cause the previous window full of
characters to be displayed. xfd will beep if an attempt is made to go back past the Oth character.

Note that if the font is a 8 bit font, the characters 256-511 (Oxl00-0xlf1), 512-767 (0x200-0x2f1), ...
will display exactly the same as the characters 0-255 (OxOO-OxfI). xfd by default creates a window of
size sufficient to display the first 256 characters using a 16 by 16 grid. In this case, there is no need
to scroll forward or backward window fulls in order to see the entire contents of a 8 bit font. Of

Hewlett-Packard Company - 1 - Jan 20, 1989

)

XFD(l) XFD(l)
Series 300 and 800 Only

course, this window may very well not fit on the screen ...

Clicking the middle button on a character will cause that character's number to be displayed in
both decimal and hexadecimal at the bottom of the window. If verbose mode is selected,
additional information about that particular character will be displayed as well. The displayed
information includes the width of the character, its left bearing, right bearing, ascent, and its
descent. Ifverbose mode is selected, typing '<' or '>' into the window will display the minimum
or maximum values respectively taken on by each of these fields over the entire font.

The font name is interpreted by the X server. To obtain a list of all the fonts available, examine
the directory /usr/lib/Xll/fonts.

If no font name is given on the command line,xfd displays the font "fixed".

The window stays around until the xfd process is killed or one of 'q', '0', ' ',or ctrl-c is typed into
the xfd window.

As previously mentioned, by default xfd attempts to create a 16 by 16 grid. This is superseded by
the user's specifications. The user's specification are always used unless it is smaller than one grid.
In that case, xfd will display one character at a time. If the user does not specify a size, then xfd
will check to see if the message(s) it may print will fit in the space provided by the default grid. If
not, it will calculate an optimum size based on its message font.

X DEFAULTS
The xfd program uses the routine XGetDefault(3X) to read defaults, so its resource names are all
capitalized.

BorderWidth
Sets the border width of the window.

BorderColor
Sets the border color of the window.

ReverseVideo
If "on", reverse the definition of foreground and background color.

Foreground
Sets the foreground color.

Background
Sets the background color.

BodyFont
Sets the font to be used in the body of the window. (I.e., for messages, etc.) This is not
the font that xfd displays, just the font it uses to display information about the font being
displayed.

IconName
Sets the name of the icon.

IconBitmap
Sets the file we should look in to get the bitmap for the icon.

Title Sets the title to be used.

ENVIRONMENT
DISPlAY

NOTES

to get the default host and display to use.

XENVIRONMENT
to get the name of a resource file that overrides the global resources stored in the
RESOURCE_MANGER property.

It should display the name of the font somewhere.

It should be rewritten to use the X toolkit.

It should skip over pages full of non-existent characters.

Hewlett-Packard Company - 2- Jan 20, 1989

XFD(l)
Series 300 and 800 Only

COPYRIGHf
Copyright 1988, Massachusetts Institute of Technology.
See X(1) for a full statement of rights and permissions.

ORIGIN
MIT Distribution

SEE ALSO
X(I)

Hewlett-Packard Company - 3-

XFD(l)

Jan 20, 1989

)

XHOST(l) XHOST(l)
Series 300 and 800 Only

NAME
xhost - server access control program for X

SYNOPSIS
xhost II +-JhostnameJ

DESCRIPTION
The xhost program is used to add and delete hosts to the list of machines that are allowed to make
connections to the X server. This provides a rudimentary form of privacy control and securi ty. It
is only sufficient for a workstation (single user) environment, although it does limit the worst
abuses. Environments which require more sophisticated measures should use the hooks in the
protocol for passing authentication data to the server.

The server initially allows network connections only from programs running on the same machine
or from machines listed in the file /ete/X·.hosts (where· is the display number of the server).
The xhost program is usually run either from a startup file or interactively to give access to other
users.

Hostnames that are followed by two colons (::) are used in checking DECnet connections; all
other hostnames are used for TCP /IP connections.

OPTIONS

FILES

Xhost accepts the following command line options described below. For security, the options that
effect access control may only be run from the same machine as the server.

[+]hostname
The given hostname (the plus sign is optional) is added to the list of machines that are
allowed to connect to the X server.

-hostname
The given hostname is removed from the list of machines that are allowed to connect to
the server. Existing connections are not broken, but new connection attempts will be
denied. Note that the current machine is allowed to be removed; however, further
connections (including attempts to add it back) will not be permitted. Resetting the
server (thereby breaking all connections) is the only way to allow local connections again.

+ Access is granted to everyone, even if they aren't on the list of allowed hosts (i.e. access
control is turned oli).

Access is restricted to only those machines on the list of allowed hosts (i.e. access control
is turned on).

nothing If no command line arguments are given, the list of hosts that are allowed to connect is
printed on the standard output along with a message indicating whether or not access
control is currently enabled. This is the only option that may be used from machines
other than the one on which the server is running.

/etc/X· .hosts

ENVIRONMENT
DISPlAY

to get the default host and display to use.

NOTES
You can't specify a display on the command line because -display is a valid command line
argument (indicating that you want to remove the machine named "display" from the access list) .

COPYRIGIIT
Copyright 1988, Massachusetts Institute of Technology.
See X(1) for a full statement of rights and permissions.

ORIGIN
MIT Distribution

SEE ALSO
X(I), Xserver(l)

Hewlett-Packard Company -1 - Jan 20,1989

XINIT(l) XINIT(l)
Series 300 and 800 Only

NAME
xinit - X Window System initializer

SYNOPSIS
xinit [[client] options] [- [server] [display] options]

DESCRIPTION
The xinit program is used to start the X Window System server and a first client program (usually
a terminal emulator) on systems that cannot start X directly from /etc/init or in environments that
use multiple window systems. When this first client exits, xinit will kill the X server and then
terminate.

Unless otherwise specified on the command line,xinit assumes that there are programs called "X"
and "hpterm" in the current search path. It starts the server on display 0, sets $DISPlA Y to
local:O.O, and then runs an hpterm using the following command line:

xterm -geometry + 1 + 1 -n login

An alternate client and/or server may be specified on the command line. The desired client
program and its arguments should be given as the first command line arguments to xinit. To
specify a particular server command line, append a double dash (-) to the xinit command line
(after any client and arguments) followed by a space and the desired server command.

Both the client program name and the server program name must begin with a slash (/) or a
period (.). Otherwise, they are treated as arguments to be appended to their respective startup
lines. This makes it possible to add arguments (for example, foreground and background colors)
without having to retype the whole command line.

If an explicit server name is not given and the first argument following the double dash (--) is a
:digit, xinit will use that number as the display number instead of zero. All remaining arguments
are appended to the server command line.

EXAMPLES
xinit -geometry =80x65 + 10+ 10 -fn 8x13 -j -fg white -bg navy

xinit -e widgets - Xsun -I -c

xinit rsh fasthost cpupig -displayworkstation:l -:1 -a 2 -t 5

COPYRIGHT
Copyright 1988, Massachusetts Institute of Technology.
See X(J) for a full statement of rights and permissions.

ORIGIN
MIT Distribution

SEE ALSO
X(I), Xserver(I), xterm(l)

Hewlett-Packard Company -1- Jan 20,1989

X1N1TCOWRMAP(l) X1N1TCOWRMAP(l)
Series 300 and 800 Only

NAME
xinitcolormap - initialize the X colormap

SYNOPSIS
xinitcolonnap [options]

DESCRIPTION
This program is used to initialize the X colormap. Specific X colormap entries (pixel values) are
made to correspond to specified colors. An initialized colormap is required by applications that
assume a predefined colormap (e.g., many applications that use Starbase graphics).

xinitcolormap reads a colormap file to determine the allocation of colors in the X colormap. The
name of the colormap file is determined by using (in the following order) the command line
option [-f colormapfile] , the. Colormap X default value or / usr /lib / Xll /xcolormap. If a colormap
file is not found, then the following default colormap specification is assumed.

black (colormap entry 0)
white
red
yellow
green
cyan
blue
magenta (colormap entry 7)

xinitcolormap uses the XStoreColor and XAllocColor libXll.a calls to initialize the X colormap.
The xinitcolormap program should be the first X client program run when the X Window System is
started in order to assure that X colormap entries have the color associations specified in the
colormap file. This could be done by runningxinitcolormap as the first X client program in the
.xllstan file. Once xinitcolomJap has been run, an X client program can use the initialized colors.

A colormap file is made up of lines of the form:

color

color is a one or two word color name (refer to the names in the file /usr/lib/Xll/rgb.txt) , or
optionally an initial sharp character followed by a numeric ROB specification (as used by the
libXa call XParseColor). The line number of a color specification in the colormap file determines
the index of the color in the X colormap. Colors in the colormap file, for colormap entry 0 up to
the last colormap entry to be initialized, must be specified. There should be no extra (blank or
comment) lines in the colormap file . If a color is specified more than once in the colormap file
then the X colormap will not be properly initialized (unless the first instance of the color is
allocated in X colormap entry 0 or 1 (and is other than BlackPixel or WhitePixel) in which case
the color can be specified twice).

OPTIONS
-r colormapfile

Specifies the file containing the colormap.

~isplay display
Specifies the server to connect to; See X(1) for details.

< count If count is specified then only the first count colors from the colormap file will be used in
initializing the X colormap.

-p If the -p option is specified then the colormap file will be checked for proper syntax, but
the X colormap will not be initialized.

-k[iIl] If the -k[ill] option is specified, then the colormap entries allocated by a previous fun of
xinitcolormap will be deallocated and the colormap will not be re-initialized. All other
options will be ignored except ~isplay display .

Hewlett-Packard Company - 1 - lan 20,1989

XINITCOWRMAP(l) XINITCOWRMAP(l)

NOTES

FILES

Series 300 and 800 Onl;y

xinitcolonnap will only initialize the default colormap of the root window.

xinitcolonnap assumes the first two colors specified are black and white.

xinitcolonnap should not be run in the background. The X colormap is fully initialized only when
xinitcolonnap returns.

Runningxinitcolonnap a second time after X is started will deallocate those colors allocated by a
previous run and attempt to allocate a new colormap using the new specifications. If other clients
have allocated color cells that conflict with the new specifications, xinitcolonnap will fail and the
colormap will remain un-allocated.

The file /etc/newconfig/xcolonnap is a sample colormap file that corresponds to the Starbase
default 256 entry colormap. The [-{; count) option can be used to select a subset of the colors in
this colormap file for initializing colormaps with up to 256 entries.

xinitcolonnap uses XSetCloseDownMode with RetainPermanent to prevent the deallocation of the
colormap. This means that xinitcolonnap no longer spawns a daemon, and the only way for the
user to be sure that xinitcolonnap succeeded is to view the messages (or lack ot) prod uced by
xinitcolonnap. If xllstart is used, the output should be redirected from xinitcolonnap to a log file.

/usr/lib /X11/xcolormap
/usr/lib/Xll/rgb.txt
/etc/newconfig/xcolormap
.xllstart

Hewlett-Packard Company -2- Jan 20,1989

)

XLOAD(l) XLOAD(l)
Series 300 and 800 Only

NAME
xload - load average display for X

SYNOPSIS
xload [-toolkitoption ...] [-scale integer] [-update seconds']

DESCRIPTION
The xload program displays a periodically updating histogram of the system load average. This
program is nothing more than a wrapper around the Athena Load widget.

OPTIONS
Xload accepts all of the standard X Toolkit command line options along with the additional
options listed below:

-scale integer
This option specifies the minimum number of tick marks in the histogram, where one
division represents one load average point. If the load goes above this number, xload
will create more divisions, but it will never use fewer than this number. The default is 1.

-update seconds
This option specifies the frequency in seconds at which xload updates its display. Expose
events will cause automatic updating. The minimum as well as default time is 5 seconds.

The following standard X Toolkit arguments are commonly used with xload.

-bd color
This option specifies the border color. The default color is "black".

-bg color
This option specifies the background color. The default color is ''white''.

-bw pixels
This option specifies the width in pixels of the border around the window. The default
value is 2.

-fg color This option specifies the graph color. The default color is "black".

-fnfontname
This option specifies the font to be used in displaying the name of the host whose load is
being monitored. The default is "6x10."

-rv This option indicates that reverse video should be simulated by swapping the foreground
and background colors.

-geometry geometry
This option specifies the preferred size and position of the window; see X(l).

-display display
This option specifies the X server to contact; see X(J).

-xrm resourcestring
This option specifies a resource string to be used. This is especially useful for setting
resources that do not have separate command line options.

X DEFAULTS
This program uses the Load widget in the X Toolkit. It understands all of the core resource
names and classes as well as:

width (class Width)
Specifies the width of the load average graph.

height (class Height)
Specifies the height of the load average graph.

update (class Interval)
Specifies the frequency in seconds at which the load should be redisplayed.

scale (class &ale)
Specifies the initial number of ticks on the graph. The default is 1.

Hewlett-Packard Company - 1 - Jan 20,1989

XLOAD(l) XLOAD(l)

Series 300 and 800 Only

rninScale (class Scale)
Specifies the minimum number of ticks that will be displayed. The default is 1.

foreground (class Foreground)
Specifies the color for the graph. Using the class specifies the color for all things that
normally would appear in the foreground color. The default is "black" since the core
default for background is ''white.''

label (class Label)
Specifies the label to use on the graph. The default is the hostname.

font (class Font)
Specifies the font to be used for the label. The default is "fixed."

reverseVideo (class ReverseVideo)
Specifies that the foreground and background should be reversed.

ENVIRONMENT
DISPLAY

to get the default host and display number.

XENVIRONMENT
to get the name of a resource file that overrides the global resources stored in the
RESOURCE_MANAGER property.

DIAGNOSTICS

NOTES

Unable to open display or create window. Unable to open /dev/kmem. Unable to query window
for dimensions. Various X errors.

This program requires the ability to open and read /dev/kmem. On most systems, this requires
the suid bit set with root ownership or the sgid bit set and membership in the same group as
/dev/kmem.

Reading /dev/kmem is inherently non-portable.

Border color has to be explicitly specified when reverse video is used.

COP\'RIGHT

ORJGIN

Copyright 1988, Massachusetts Institute of Technology.
See X(l) for a full statement of rights and permissions.

MIT Distribution

SEE ALSO
X(1), xrdb(1), mem(7), Athena Load widget

Hewlett-Packard Company -2- Jan 20, 1989

XMODMAP(l) XMODMAP(l)
Series 300 and 800 Onq

NAME
xmodmap, xprkbd - keyboard modifier utilities for X

SYNOPSIS
xmodmap [-options ...] [filename]

xprkbd [-display display]

DESCRIPTION
Xmodmap is a utility for displaying and altering the X keyboard modifier map and keysym table
on the specified display and host. It is intended to be run from a user's X startup script to setup
the keyboard according to personal tastes.

With no arguments, xmodmap displays the current map.

Xprkbd prints on the standard output a table of the keycodes, the keysym code, and the keynames
for the keyboard on the appropriate X server.

OPTIONS
Both programs accept the following option:

~isplay display
This option specifies the host and display to use; see X(1).

The xmodmap program also accepts:

-help This option indicates that a brief description of the command line arguments should be
printed on the standard error. This will be done whenever an unhandled argument is
given to xmodmap.

-grammar
This option indicates that a help message describing the expression grammar used in
files and with -e expressions should be printed on the standard error.

-verbose This option indicates thatxmodmap should print logging information as it parses its
input.

-quiet This option turns off the verbose logging. This is the default.

-n This option indicates thatxmodmap should not change the mappings, but should display
what it would do, like make(1) does when given this option.

-e expression
This option specifies an expression to be executed. Any number of expressions may be
specified from the command line.

-p This option indicates that the current modifier map should be printed on the standard
output.

A lone dash means that the standard input should be used as the input file.

The filename specifies a file containing xmodmap expressions to be executed. This file is usually
kept in the user's home directory with a name like ".keymap.km".

For compatibility with an older version, xmodmap also accepts the following obsolete single letter
options:

-[SLC1234S]
These options indicate that all current keys for the Shift, Lock, Control, or Mod modifier
sets should be removed from the modifier map. These are equivalent to clear
expressions.

-[sic] keysym
These options specify a keysym to be removed from the Shift, Lock, or Control modifier
sets. These are equivalent to remove expressions.

+ [slc1234S] keysym
These options specify a keysym to be added to the Shift, Lock, or Control modifier sets.
These are equivalent to add expressions.

Hewlett-Packard Company -1- Jan 20, 1989

XMODMAP(l) XMODMAP(l)
Series 300 and 800 Only

EXPRESSION GRAMMAR
The xmodmap program reads a list of expressions and converts them into appropriate calls to the
Xlib routines XChangeKeyboardMapping, XInsertModifiermapEntry and XDeleteModifimnapEntry .
Allowable expressions include:

keycodeKEYCODE = KEYSYMNAME ...
The list of keysyms is assigned to the indicated keycode (which may be specified in
decimal, hex or octal). Usually only one keysym is assigned to a given code.

keysym KEYSYMNAME = KEYSYMNAME ...
The KEYSYMNAME on the left hand side is looked up to find its current keycode and
the line is replaced with the appropriate keycode expression. Note that if you have the
same keysym bound to multiple keys, this might not work.

clear MODIFIERNAME
This removes all entries in the modifier map for the given modifier, where valid name
are: Shift, Lock, Control, ModI, Mod2, Mod3, Mod4 and ModS (case does not matter in
modifier names, although it does matter for all other names). For example, "clear Lock"
will remove all any keys that were bound to the shift lock modifier.

add MODIFIERNAME = KEYSYMNAME ...
This adds the given keysyms to the indicated modifier map. The keysym names are
evaluated after all input expressions are read to make it easy to write expressions to swap
keys (see the EXAMPLES section).

remove MODIFIERNAME = KEYSYMNAME ...
This removes the given keysyms from the indicated modifier map. Unlike add, the
keysym names are evaluated as the line is read in. This allows you to remove keys from
a modifier without having to worry about whether or not they have been reassigned.

Lines that begin with an exclamation mark (!) are taken as comments.

If you want to change the binding of a modifier key, you must also remove it from the appropriate
modifier map.

EXAMPLES
To make the backspace key generate a delete instead, use

% xmodmap -e "keysym BackSpace = Delete"

To swap the left control and caps lock keys you could use:

! Swap Caps Lock and Control L
! - -

remove Lock = Caps Lock
remove Control = cOntrol L
keysym Control L = Caps -Lock
keysym Caps LOck = Control L
add Lock = Caps Lock -
add Control = cOntrol L

As a more complicated example, the following is what the author uses:

!
! On the HP, the following keycodes have key caps as listed:
!

101 Backspace
55 Caps
14 etrl
15 Break/Reset
86 Stop
89 F5

Hewlett-Packard Company -2- Jan 20, 1989

)

XMODMAP(l) XMODMAP(l)

Series 300 and 800 On""

! I prefer using "keycode" over "keysyrn" so that I can rerun the file to
! fix up my keyboard.
!
! This sets the backspace key to generate Delete, flushes all caps lock
! bindings, assigned a control key to what used to be the caps lock key,
! makes the F1 generate ESC, and makes the Break/Reset key be a shift lock.

keycode 101 = Delete
keycode 55 = Control R
clear Lock -
add Control = Control R
keycode 89 = Escape -
keycode 15 = Caps Lock
add Lock = Caps_Lock

ENVIRONMENT
DISPLAY

NOTES

to get default host and display number.

Every time a keycode expression is evaluated, the server generates a MappingNotify event on every
client. This can cause some thrashing. All of the changes should be batched together and done at
once. Gients that receive keyboard input and ignore MappingNotify events will not notice any
changes made to keyboard mappings.

Xmodmap should generate "add" and "remove" expressions automatically whenever a keycode that
is already bound to a modifier is changed.

There should be a way to have the remove expression accept keycodes as well as keysyms for those
times when you really mess up your mappings.

COPYRIGIIT

ORIGIN

Copyright 1988, Massachusetts Institute of Technology.
Copyright 1987 Sun Microsystems, Inc.
See X(1) for a full statement of rights and permissions.

MIT Distribution

SEE ALSO
X(l)

Hewlett-Packard Company -3- Jan 20,1989

XPR(l) XPR(l)
Series 300 and 800 Only

NAME
xpr - print an X window dump

SYNOPSIS
xpr [-scale scale I [~ensity dpi I [-height inches I [-width inches I [-left inches I [-top
inches I [-header string I [-trailer string I [-landscape I [-portrait I [-rv I [<ompact I [
~utput filename I [-append filename I [-noll' I [-split n I [~evice dev I [<utofl' level I [
-noposition I filename

DESCRIPTION
Xpr takes as input a window dump file produced byxwd(J) and formats it for output on the HP
LaserJet (or other peL printers), HP PaintJet, LN03, lA100, PostScript printers, or IBM PP3812
page printer. If no filename argument is given, the standard input is used. By default, xpr prints
the largest possible representation of the window on the output page. Options allow the user to
add headers and trailers, specify margins, adjust the scale and orientation, and append multiple
window dumps to a single output file. Output is to standard output unless ~utput is specified.

Command Options

-scale scale
Affects the size of the window on the page. The HP, LN03 and PostScript printers are
able to translate each bit in a window pixel map into a grid of a specified size. For
example each bit might translate into a 3x3 grid. This would be specified by -scale 3. By
default a window is printed with the largest scale that will fit onto the page for the
specified orientation.

~ensitydpi

Indicates what dot-per-inch density should be used by the printer.

-height inches
Specifies the maximum height of the window on the page.

-width inches
Specifies the maximum width of the window.

-left inches
Specifies the left margin in inches. Fractions are allowed. By default the window is
centered in the page.

-top inches
Specifies the top margin for the picture in inches. Fractions are allowed.

-header string
Specifies a header string to be printed above the window.

-trailer string
Specifies a trailer string to be printed below the window.

-landscape
Forces the window to printed in landscape mode. By default a window is printed such
that its longest side follows the long side of the paper.

-portrait
Forces the window to be printed in portrait mode. By default a window is printed such
that its longest side follows the long side of the paper.

-rv Forces the window to be printed in reverse video.

<ompact
Uses simple run-length encoding for compact representation of windows with lots of
white pixels.

~utput filename
Specifies an output file name. If this option is not specified, standard output is used.

Hewlett-Packard Company -1- Jan 20,1989

XPR(l) XPR(l)
Series 300 and 800 Only

-append filename
Specifies a filename previously produced by xpr to which the window is to be appended.

-noff When specified in conjunction with -append, the window will appear on the same page as
the previous window.

-split n This option allows the user to split a window onto several pages. This might be necessary
for very large windows that would otherwise cause the printer to overload and print the
page in an obscure manner.

-devicedev
Specifies the device on which the file will be printed. Currently xpr understands the
following devs:

ljet HP LaserJet series and other monochrome PCL devices such as ThinkJet,

pjet
1003
lal00

QuietJet, RuggedWriter, HP2560 series, and HP2930 series printers
HP PaintJet (color mode)
DECLN03
DEClAloo

ps PostScript printers
pp IBM PP3812

The default device is /jet. -device Iw (LaserWriter) is equivalent to -device ps and is
provided only for backwards compatibility.

-cutoff level
Changes the intensity level where colors are mapped to either black or white for
monochrome output on a LaserJet printer. The level is expressed as percentage of full
brightness. Fractions are allowed.

-noposition
This option causes header, trailer, and image positioning command generation to be
bypassed for LaserJet and PaintJet printers.

LIMITATIONS
The current version of xpr can generally print out on the LN03 most X windows that are not larger
than two-thirds of the screen. For example, it will be able to print out a large Emacs window, but
it will usually fail when trying to print out the entire screen. The LN03 has memory limitations
that can cause it to print incorrectly very large or complex windows. The two most common errors
encountered are "band too complex" and "page memory exceeded." In the first case, a window
may have a particular six pixel row that contains too many changes (from black to white to black).
This will cause the printer to drop part of the line and possibly parts of the rest of the page. The
printer will flash the number'!' on its front panel when this problem occurs. A possible solution
to this problem is to increase the scale of the picture, or to split the picture onto two or more
pages. The second problem, "page memory exceeded," will occur if the picture contains too much
black, or if the picture contains complex half-tones such as the background color of a display.
When this problem occurs the printer will automatically split the picture into two or more pages.
It may flash the number '5' on its front panel. There is no easy solution to this problem. It will
probably be necessary to either cut and paste, or rework to application to produce a less complex
picture.

Xpr provides some support for the lA1oo. However, there are several limitations on its use: The
picture will always be printed in portrait mode, there is no scaling and the aspect ratio will be
slightly off.

Support for PostScript output currently cannot handle the -append, -noll" or -split options.

The -compact option is only supported for PostScript output. It compresses white space but not
black space, so it is not useful for reverse-video windows.

HPPRINTERS
If no -density is specified on the command line 300 dots per inch will be assumed for /jet and 90

Hewlett-Packard Company -2- Jan 20, 1989

XPR(l) XPR(l)
Series 300 and 800 Only

dots per inch for pjet. Allowable density values for a LaserJet printer are 300, 150, 100, and 75
dots per inch. Consult the operator's manual to determine densities supported by other printers.

If no -scale is specified the image will be expanded to fit the printable page area.

The default printable page area is 8x10.5 inches. Other paper sizes can be accomodated using the
-height and -width options.

Note that a 1024x768 image fits the default printable area when processed at 100 dpi with scale = 1,
the same image can also be printed using 300 dpi with scale =3 but will require considerably more
data be transfered to the printer.

Xpr may be tailored for use with monochrome PCL printers other than the LaserJet. To print on
a ThinkJet (HP2225A) xpr could be invoked as:

xpr -density 96 -width 6.667 filename

or for black-and-white output to a PaintJet

xpr -density 180 filename

The monochrome intensity of a pixel is computed as 0.3O'R + 0.59'0 + O.U'B. If a pixel's
computed intensity is less than the ~totr level it will print as white. This maps Iight-on-dark
display images to black-on-white hardcopy. The default cutoff intensity is 50% of full brightness.
Example: specifying ·adolF 87.5 moves the white/black intensity point to 87.5% of full brightness.

A LaserJet printer must be configured with sufficient memory to handle the image. For a full
page at 300 dots per inch approximately 2MB of printer memory is required.

Color images are produced on the PaintJet at 90 dots per inch. The PaintJet is limited to sixteen
colors from its 330 color palette on each horizontal print line. Xpr will issue a warning message if
more than sixteen colors are encountered on a line. Xpr will program the PaintJet for the first
sixteen colors encountered on each line and use the nearest matching programmed value for other
colors present on the line.

Specifying the -rv, reverse video, option for the PaintJet will cause black and white to be
interchanged on the output image. No other colors are changed.

Multiplane images must be recorded byxwd in ZPixmap format. Single plane (monochrome)
images may be in either XYPixmap or ZPixmap format.

Some peL printers do not recognize image positioning commands. Output for these printers will
not be centered on the page and header and trailer strings may not appear where expected.

The -split option is not supported for HP printers.

COPYRIGIIT

ORIGIN

Copyright 1988, Hewlett Packard Company.
Copyright 1988, Massachusetts Institute of Technology.
Copyright 1986, Marvin Solomon and the University of Wisconsin.
See X(J) for a full statement of rights and permissions.

MIT Distribution

SEE ALSO
xwd(I), xdpr(I), xwud(I), X(I)

Hewlett-Packard Company -3- Jan 20,1989

XRDB(l) XRDB(l)
Series 300 and 800 Only

NAME
xrdb - X server resource database utility

SYNOPSIS
xrdb [-option ...] [filename]

DESCRIPTION
Xrdb is used to get or set the contents of the RESOURCE MANAGER property on the root
window of screen O. You would normally run this program from your X startup file . The
resource manager (used by the X1ib routine XGetDefault(3X) and the X Toolkit) uses the
RESOURCE_MANAGER property to get user preferences about color, fonts, and so on for
applications. Having this information in the server (where it is available to all clients) instead of
on disk, solves the problem in previous versions of X that required you to maintain defaults files
on every machine that you might use. It also allows for dynamic changing of defaults without
editting files. For compatibility, if there is no RESOURCE MANAGER property defined (either
because xrdb was not run or if the property was removed), the resource manager will look for a
file called Xdefaults in your home directory. Thefilename (or the standard input if - or no input
file is given) is optionally passed through the C preprocessor with the following symbols defined,
based on the capabilities of the server being used:

HOSf=hostname
the hostname portion of the display to which you are connected.

WIDTH=num
the width of the screen in pixels.

HEIGHT=num
the height of the screen in pixels.

X RESOLU110N=num
the x resolution of the screen in pixels per meter.

Y RESOLU110N=num
the y resolution of the screen in pixels per meter.

PLANES=num
the number of bit planes for the default visual.

BITS PER RGB=num
the number of significant bits in an RGB color specification. This is the log base 2 of the
number of distinct shades of each primary that the hardware can generate. Note that it is
not related to the number of planes, which the log base 2 of the size of the colormap.

CLASS = visualcIass
one of StaticGray, GrayScale, StaticColor, PseudoColor, TrueColor, DirectColor.

COLOR only defined if the default visual's type is one of the color options. Lines that begin with
an exclamation mark (!) are ignored and may be used as comments.

OPTIONS
xrdb program accepts the following options:

-help This option (or any unsupported option) will cause a brief description of the allowable
options and parameters to be printed.

-display display
This option specifies the X server to be used; see X(J).

~pp filename
This option specifies the pathname of the C preprocessor program to be used. Although
xrdb was designed to use CPP, any program that acts as a filter and accepts the -D, -I,
and -U options may be used.

-nocpp This option indicates thatxrdb should not run the input file through a preprocessor
before loading it into the RESOURCE_MANAGER property.

-symbols
This option indicates that the symbols that are defined for the preprocessor should be

Hewlett-Packard Company -1- Jan 20,1989

XRDB(l) XRDB(l)

FILES

-query

-load

-merge

Series 300 and 800 Onl,y

printed onto the standard output It can be used in conjunction with -query, but not with
the options that change the RESOURCE_MANAGER property.

This option indicates that the current contents of the RESOURCE MANAGER
property should be printed onto the standard output. Note that since preprocessor
commands in the input resource file are part of the input file, not part of the property,
they won't appear in the output from this option. The -edit option can be used to merge
the contents of the property back into the input resource file without damaging
preprocessor commands.

This option indicates that the input should be loaded as the new value of the
RESOURCE MANAGER property, replacing whatever what there (Le. the old
contents are removed). This is the default action.

This option indicates that the input should be merged with, instead of replacing, the
current contents of the RESOURCE MANAGER property. Since xrdb can read the
standard input, this option can be used to the change the contents of the
RESOURCE_MANAGER property directly from a terminal or from a shell script.

-remove This option indicates that the RESOURCE MANAGER property should be removed
from its window. -

-edit filename
This option indicates that the contents of the RESOURCE MANAGER property
should be edited into the given file, replacing any values already listed there. This allows
you to put changes that you have made to your defaults back into your resource file,
preserving any comments or preprocessor lines.

-backup string
This option specifies a suffix to be appended to the filename used with -edit to generate
a backup file .

-Dname[=value)
This option is passed through to the preprocessor and is used to define symbols for use
with conditionals such as lIifdef.

-Uname This option is passed through to the preprocessor and is used to remove any definitions
of this symbol.

-Idirectory
This option is passed through to the preprocessor and is used to specify a directory to
search for files that are referenced with lIindude.

Generalizes -/Xdefaults files.

ENVIRONMENT
DISPLAY

to figure out which display to use.

NOTES
The default for no arguments should be to query, not to overwrite, so that it is consistent with
other programs.

COPYRIGIIT
Copyright 1988, Digital Equipment Corporation.

ORIGIN
MIT Distribution

SEE ALSO
X(I), XGetDefault(3X), X1ib Resource Manager documentation

Hewlett-Packard Company -2- Jan 20, 1989

XREFRESH(l) XREFRESH(l)
Series 300 and 800 Only

NAME
xrefresh - refresh all or part of an X screen

SYNOPSIS
xreCresh [-options]

DESCRIPTION
xrefresh is a simple X program that causes all or part of your screen to be repainted. xrefresh maps
a window on top of the desired area of the screen and then immediately unmaps it, causing refresh
events to be sent to all applications. By default, a window with no background is used, causing all
applications to repaint "smoothly." However, the various options can be used to indicate that a
solid background (of any color) or the root window background should be used instead.

OPTIONS
-white

-black

-solid color

Use a white background. The screen just appears to flash quickly, and then repaint.

Use a black background (in effect, turning off all of the electron guns to the tube).
This can be somewhat disorienting as everything goes black for a moment.

Use a solid background of the specified color.

-root Use the root window background.

-none This is the default. All of the windows simply repaint.

-geometry geometry
Specifies the portion of the screen to be repainted; see X(1).

-display display
This argument allows you to specify the server and screen to refresh; see X(1).

X DEFAULTS
The xrefresh program uses the routine XGetDefault(3X) to read defaults, so its resource names are
all capitalized.

Black Uses black for the window background. Default is False.

White Uses white for the window background. Default is False.

Solid Uses the given color for the window background.

None Maps an invisible window to the screen. Default is True.

Root Uses the root window background for the window background. Default is False.

Geometry
Determines the area to refresh.

ENVIRONMENT
DISPlAY - To get default host and display number.

NOTES
It should have just one default type for the background.

COPYRIGHT
Copyright 1988, Massachusetts Institute of Technology.
See X(1) for a full statement of rights and permissions.

ORIGIN
MIT Distribution

SEE ALSO
X(1)

Hewlett-Packard Company - 1 - Jan 20,1989

XSEETHRU(l) XSEETIIRU(l)
Series 300 and 800 Only

NAME
xseethru - X Window System, opens a transparent window into the HP98550A, HP98720A or
HP 98730A Graphics Display Systems overlay plane.

SYNOPSIS
xseethru [options]

DESCRIPTION
xseeth1U opens a transparent window into the HP 98550A, HP 98720A or HP 98730A Graphics
Display System overlay plane. It's used typically to view Starbase graphics in the image planes
while running X in the overlay planes.

OPTIONS
-geometry geometry

The transparent window is created with the specified size according to the geometry
specification. See X(1) for details.

-display display
Specified the sever to use; see XCI) for details.

ENVIRONMENT
DISPLAY

To get the default host and display number.

HARDWARE DEPENDENCIES
Only one display: 0, is supported on the HP 9000 Series 300.
xseeth1U is only useful on the HP 98550A, HP 98720A or HP 98730A
Graphics Display System.

ORIGIN
Hewlett-Packard Company

SEE ALSO
X(I)

Hewlett-Packard Company - 1- Jan 20, 1989

XSERVER(l) XSERVER(l)
Series 300 and 800 OnJ,y

NAME
x - X Window System server

SYNOPSIS
X :displaynumber [-option] ttyname

DESCRIPTION
X is the window system server. It is started from the xinit(J) program, which is called by xllstart.
The displaynumber argument is used by clients in their DISPlAY environment variables to
indicate which server to contact (large machines may have several displays attached). This
number can be any number, but there can't be more than 4 of them. If no number is specified 0 is
used. This number is also used in determining the names of various startup files. The ttyname
argument is passed in by init and isn't used.

The executable that is invoked when X is run is actually one of a collection of programs that
depend on the hardware that is installed on the machine. Any additional features are described in
the documentation for that server.

The Hewlett-Packard server has support for the following protocols:

TCPjIP
The server listens on port htons(6000+N), where N is the display number.

Local IPC Mechanism
The file name for the socket is /usr/spool/sockets/Xll/* where ••• is the display
number.

When the server starts up, it takes over the display. If you are running on a worksta tion whose
console is the display, you cannot log into the console while the server is running.

OPTIONS
The following options can be given on the command line to any X server, usually when it is started
by init(1M).

-a number
sets pointer acceleration (i.e. the ratio of how much is reported to how much the user
actually moved the pointer).

1: turns off key-click.

cvolume
sets key-click volume (allowable range: 0-100). Default is 50.

-fvolume
sets feep (bell) volume (allowable range: 0-100). Default is 50.

-logo turns on the X Window System logo display in the screen-saver. There is currently no
way to change this from a client. Default is -logo. This must be used in conjuction with
-v.

nologo turns off the X Window System logo display in the screen-saver. There is currently no
way to change this from a client.

-pminutes
sets screen-saver pattern ~Ie time in minutes. Default is 10 minutes.

·r turns off auto-repeat.

r turns on auto-repeat.

·sminutes
sets screen-saver timeout time in minutes. Default is 10 minutes.

-t numbers
sets pointer acceleration threshold in pixels (i.e. after how many pixels pointer
acceleration should take effect).

-to seconds
sets connection timeout in seconds. Default is 60 seconds.

Hewlett-Packard Company -1 - Jan 20,1989

XSERVER(l) XSERVER(l)
Series 300 and 800 Only

v sets video-on screen-saver preference.

-v sets video-off screen-saver preference

~ofilename
sets name of ROB color database

-help prints a usage message

-Ip fontPath
sets the search path for fonts

-fe eursorFont
sets default cursor font

-fnfont sets the default font

RUNNING FROM INIT
To run X from init, it is necessary to modify /ete/inittab and /ete/gettydefs. Detailed information
on these files may be obtained from the inittab(4) and gettydefs(4) man pages.

To run X from init on display 0, with a login xterm running on /dev/ttypf, in init state 3, the
following line must be added to /ete/inittab:

XO:3:respawn:env PAm = /bin:/usr/bin/Xll:/usr/bin xinit -L ttyqf - :0

To run X with a login hpterm, the following should be used instead:

XO:3:respawn:env PAm = /bin:/usr/bin/Xll:/usr/bin xinit hpterm = + 1 + 1 -n login -L ttyqf -
:0

In addition, the following line must be added to /ete/gettydefs (this should be a single line):

Xwindow# B9600 HUPCL PARENB CS7 # B9600 SANE PARENB CS7 ISTRIP IXANY
TAB3 #X login: #Xwindow

There should not be a getty running against the display for states in which X is run from xinit.

SECURItY
X uses an access control list for deciding whether or not to accept a connection from a given client.
This list initially consists of the machine on which the server is running, and any hosts listed in the
file /ete/X-.hosts (where - is the display number). This file should contain one line per host
name, with no white space.

The user can manipulate a dynamic form of this list in the server using the xhost(l) program from
the same machine as the server.

Unlike some window systems, X does not have any notion of window operation permissions or
place any restrictions on what a client can do; if a program can connect to a display, it has full run
of the screen.

SIGNALS
Xwill catch the SIOHUP signal sent by init(lM) after the initial process (usually the login
terminal window) started on the display terminates. This signal causes all connections to be
closed (thereby "disowning" the terminal), all resources to be freed, and all defaults restored.

DIAGNOSTICS

FILES

Too numerous to list them all. If run from init(lM), errors are logged in the file
/usr/adm/X-msg5,

/etc/inittab

/etc/gettydefs

/etc/X' .hosts

/usr/lib/Xll/fonts

/usr/lib/Xll/rgb.txt

/usr/lib/Xll/rgb.pag

Script for the init process

Speed and terminal settings used by getty

Initial access control list

Font directory

Color database

Color database

Hewlett-Packard Company - 2- Jan 20, 1989

)

XSERVER(l) XSERVER(l)

NOTES

/usr/lib/Xll/rgb.dir

/usr/spool/sockets/X11/·

/usr/adm/X·ms'iJi

/usr/lib/X11/X·devices

/usr/lib/X11/X·screens

/usr/lib/X11/X·pointerkeys

Series 300 and 800 Only

Color database

IPC mechanism socket

Error log file

Input devices used by the server

Screens used by the server

Keyboard pointer device file

The option syntax is inconsistent with itself and xset(1).

The acceleration option should take a numerator and a denominator like the protocol.

If X dies before its clients, new clients won't be able to connect until all existing connections have
their TCP TIME_WAIT timers expire.

The color database is missing a large number of colors. However, there doesn't seem to be a
better one available that can generate RGB values.

COPYRIGIIT

ORIGIN

Copyright 1988, Massachusetts Institute of Technology.
See X(1) for a full statement of rights and permissions.

MIT Distribution

SEE ALSO
bitmap(l), getty(lM), gettydefs(4), gwindstop(l), hpterm(l), init(lM), inittab(4), rgb(l), uwm(l),
xlOtoxll(l), xllstart(l), xclock(l), xfc(l), xfd(l), xhost(l), xinit(l), xinitcolormap(l), x1oad(l),
xmodmap(l), xrefresh(l), xseethru(l), Xserver(l), xset(l), xsetroot(l), xterm(l), xwcreate(l),
xwd(l), xwdestroy(l), xwininfo(l), xwud(l), Programming With Xlib, Programming With the HP X
Widgets and Xt Intrinsics

Hewlett-Packard Company - 3- Jan 20,1989

XSET(l) XSET(l)
Series 300 and 800 Only

NAME
xset - user preference utility for X

SYNOPSIS
xset [options]

DESCRIPTION
This program is used to set various user preference options of the display.

OPTIONS
-display display

This option specifies the server to use; see XCI).

b the b option controls bell volume, pitch and duration. This option accepts up to three
numerical parameters, a preceding dash(-), or a 'on/off' flag. If no parameters are given,
or the 'on' flag is used, the system defaults will be used. If the dash or 'off' are given, the
bell will be turned off. If only one numerical parameter is given, the bell volume will be
set to that value, as a percentage of its maximum. Likewise, the second numerical
parameter specifies the bell pitch in hertz, and the third numerical parameter specifies
the duration in milliseconds. Note that not all hardware can vary the bell characteristics.
The X server will set the characteristics of the bell as closely as it can to the user's
specifications.

c The c option controls key click. This option can take an optional value, a preceding
dash(-), or an 'on/off' flag. If no parameter or the 'on' flag is given, the system defaults
will be used. If the dash or 'off' flag is used, keyclick will be disabled. If a value from ° to
100 is given, it is used to indicate volume, as a percentage of the maximum. The X server
will set the volume to the nearest value that the hardware can support.

fp [path. ..]
The fp option sets the font path. It may be followed by a comma-separated list of
directories or the flag 'default'. The indicated path will be used to find fonts for clients.
No parameters or fp default will restore the default font path.

-fp or fp-path[,path ...]
The -fp and fp- options remove elements from the current font path. They must be
followed by a comma-separated list of directories, each ending with 'I'.

+ fp or fp + path [,path ...]
The +fp and fp+ options prepend and append elements to the current font path,
respectively. They must be followed by a comma-separated list of directories.

led The led option controls the keyboard LEOs. This controls the turning on or off of one
or all of the LEOs. It accepts an optional integer, a preceding dash(-) or an 'on/off' flag.
If no parameter or the 'on' flag is given, all LEOs are turned on. If a preceding dash or
the flag 'off' is given, all LEOs are turned off. If a value between 1 and 32 is given, that
LED will be turned on or off depending on the existence of a preceding dash. A
common LED which can be controlled is the "Caps Lock" LED. "xset led 3" would tum
led #3 on. "xset -led 3" would tum it off. The particular LED values may refer to
different LEOs on different hardware.

m [acceleration [threshold]]
The m option controls the mouse parameters. The parameters for the mouse are
'acceleration' and 'threshold'. The mouse, or whatever pointer the machine is connected
to, will go 'acceleration' times as fast when it travels more than 'threshold' pixels in a
short time. This way, the mouse can be used for precise alignment when it is moved
slowly, yet it can be set to travel across the screen in a flick of the wrist when desired.
One or both parameters for the m option can be omitted, but if only one is given, it will
be interpreted as the acceleration. If no parameters or the flag 'default' is used, the
system defaults will be set.

p pixel color
The p option controls pixel color values. The parameters are the color map entry
number in decimal, and a color specification. The root background colors may be

Hewlett-Packard Company - 1 - Jan 20,1989

J

XSET(l) XSET(l)
Series 300 and 800 OnJ.y

changed on some servers by altering the entries for BlackPixel and WhitePixel.
Although these are often 0 and 1, they need not be. Also, a server may choose to
allocate those colors privately, in which case an error will be generated. The map entry
must not be a read-only color, or an error will result.

pm The pm option controls pointer map entries. The parameters are pointer button codes
or the flag 'default'. The default is 1, 2, 3, ... up to the currently-defined number of
buttons on the pointer. If no parameters or the flag 'default' is used, the system defaults
will be set.

r The r option controls the autorepeat. If a preceding dash or the 'off' flag is used,
autorepeat will be disabled. If no parameters or the 'on' flag is used, autorepeat will be
enabled.

s The s option lets }Qu set the screen saver parameters. This option accepts up to two
numerical parameters, a 'blank/noblank' flag, an 'expose/noexpose' flag, an 'on/off' flag,
or the 'default' flag. If no parameters or the 'default' flag is used, the system will be set
to its default screen saver characteristics. The 'on/off' flags simply tum the screen saver
functions on or off. The 'blank' flag sets the preference to blank the video (if the
hardware can do so) rather than display a background pattern, while 'noblank' sets the
preference to display a pattern rather than blank the video. The 'expose' flag sets the
preference to allow window exposures (the server can freely discard window contents),
while 'noexpose' sets the preference to disable screen saver unless the server can
regenerate the screens without causing exposure events. The length and period
parameters for the screen saver function determines how long the server must be inactive
for screen saving to activate, and the period to change the background pattern to avoid
bum in. The arguments are specified in seconds. If only one numerical parameter is
given, it will be used for the length.

q The q option gives }Qu information on the current settings.

These settings will be reset to default values when }Qu log out.

HARDWARE DEPENDENCIES
Note that not all X implementations are guaranteed to honor all of these options.

series 800
There is no hardware support for changing bell pitch or duration.

COP\'RIGIIT

ORIGIN

Copyright 1988, Massachusetts Institute of Technology.
See X(l) for a full statement of rights and permissions.

MIT Distribution

SEE ALSO
X(l), Xserver(l), xmodmap(l), xsetroot(l)

Hewlett-Packard Company - 2- Jan 20, 1989

XSETROOT(l) XSETROOT(l)
Series 300 and 800 OnI3'

NAME
xsetroot - root window parameter setting utility for X

SYNOPSIS
xsetroot [options]

DESCRIPTION
The setroot program allows you to tailor the appearance of the background ("root") window on a
workstation display running X. Normally, you experiment with xsetroot until you find a
personalized look that you like, then put thexsetroot command that produces it into your X
startup file. If no options are specified, or if -det is specified, the window is reset to its default
state. the -det option can be specified along with other options and only the non-specified
characteristics will be reset to the default state.

Only one of the background color/tiling changing options (-solid, -gray, -grey, -bitmap, and -mod)
may be specified at a time.

OPTIONS
The various options are as follows:

.help Print a usage message and exit

.()ef Reset unspecified attributes to the default values. (Restores the background to the
familiar gray mesh and the cursor to the hollow x Shape.)

-cursor cursorjile maskfile
This lets you change the pointer cursor to whatever you want when the pointer cursor is
outside of any window. Cursor and mask files are bitmaps (little pictures), and can be
created with the bitmap(1) program. You probably want the mask file to be all black until
you get used to the way masks work.

-bitmap filename

-modxy

Use the bitmap specified in the file to set the window pattern. You can create your own
bitmap files using the bitmap(1) program. The entire background will be made up of
repeated "tiles" of the bitmap.

This is used to create a plaid-like grid pattern on your screen. x and yare integers
ranging from 1 to 16. Zero and negative numbers are taken as 1.

-gray Make the entire background gray. (Easier on the eyes.)

-grey Make the entire background grey .

• fg color
Use "color" as the foreground color when setting attributes. Options that use/are
affected by this parameter are -bitmap, -cursor, -mod, -gray and -grey.

-bgcolor
Use "color" as the background color when setting attributes. Options that use/are
affected by this parameter are -bitmap, -cursor, -mod, -gray and -grey.

·n This exchanges the foreground and background colors. Normally the foreground color is
black and the background color is white.

·solid color
Set the window color to "color".

·name string
Set the name of the root window to "string". There is no default value. Usually a name is
assigned to a window so that the window manager can use a text representation when the
window is iconified. This option is unused since you can't iconify the background .

.()jspJay display
Specifies the server to connect to; see X(1).

COPYRIGIIT
Copyright 1988, Massachusetts Institute of Technology.
See X(1) for a full statement of rights and permissions.

Hewlett-Packard Company - 1 - Jan 20, 1989

)

XSElROOT(l)

ORIGIN
MIT Distribution

SEE ALSO
X(l), xset(l)

Hewlett-Packard Company

XSElROOT(l)
Series 300 and 800 Only

- 2- Jan 20, 1989

XTERM(l) XTERM(l)
Series 300 and 800 Only

NAME
xterm - terminal emulator for X

SYNOPSIS
xtenn [-toolldtoption ... J [-option ... J

DESCRIPTION
Thextenn program is a terminal emulator for the X Window System. It provides DEC VT102 and
Tektronix 4014 compatible terminals for programs that can't use the window system directly. If the
underlying operating system supports terminal resizing capabilities (for example, the SIGWINCH
signal in systems derived from 4.3bsd), xtenn will use the facilities to notify programs running in
the window whenever it is resized.

The VT102 and Tektronix 4014 terminals each have their own window so that you can edit text in
one and look at graphics in the other at the same time. To maintain the correct aspect ratio
(height/width), Tektronix graphics will be restricted to the largest box with a 4014's aspect ratio
that will fit in the window. This box is located in the upper left area of the window.

Although both windows may be displayed at the same time, one of them is considered the "active"
window for receiving keyboard input and terminal output. This is the window that contains the
text cursor and whose border highlights whenever the pointer is in either window. The active
window can be choosen through escape sequences, the "Modes" menu in the Vf102 window, and
the "Tektronix" menu in the 4014 window.

OPTIONS
The xtenn terminal emulator accepts all of the standard X Toolkit command line options along
with the additional options listed below (if the option begins with a '+' instead of a '-', the option
is restored to its default value):

-132 Normally, the VT102 DECCOLM escape sequence that switches between 80 and 132
column mode is ignored. This option causes the DECCOLM escape sequence to be
recognized, and the xtenn window will resize appropriately.

-ah This option indicates that xtenn should always highlight the text cursor and borders. By
default, xtenn will display a hollow text cursor whenever the focus is lost or the pointer
leaves the window.

+ah This option indicates thatxtenn should do text cursor highlighting.

-bnumber
This option specifies the size of the inner border (the distance between the outer edge of
the characters and the window border) in pixels. The default is 2.

-cc characterclassrange:value [,._]
This sets classes indicated by the given ranges for using in selecting by words. See the
section specifying character classes.

-cr color This option specifies the color to use for text cursor. The default is to use the same
foreground color that is used for text.

-cu This option indicates thatxtenn should work around a bug in the cUr.I"es(3x) cursor
motion package that causes the more(l) program to display lines that are exactly the
width of the window and are followed by line beginning with a tab to be displayed
incorrectly (the leading tabs are not displayed).

+cu This option indicates that thatxtenn should not work around the cUr.I"es(3x) bug
mentioned above.

-eprogram [G18Uments ... J
This option specifies the program (and its command line arguments) to be run in the
xtenn window. It also sets the window title and icon name to be the base name of the
program being executed if neither -T nor -n are given on the command line. TItis must
be the last option on the command line.

-fb font This option specifies a font to be used when displaying bold text. This font must be the
same height and width as the normal font. If only one of the normal or bold fonts is
specified, it will be used as the normal font and the bold font will be produced by

Hewlett-Packard Company - 1 - Jan 20, 1989

)

J

XTERM(l) XTERM(l)
Series 300 and 800 OnJ,y

overstriking this font. The default bold font is ''vtbold.'' The directory containing the
font is determined by xset -fp.

-j This option indicates that xterm should do jump scrolling. Normally, text is scrolled one
line at a time; this option allows xterm to move multiple lines at a time so that it doesn't
fall as far behind. Its use is strongly recommended since it make xterm much faster when
scanning through large amounts of text. The VT100 escape sequences for enabling and
disabling smooth scroll as well as the "Modes" menu can be used to tum this feature on
or off.

+j This option indicates thatxterm should not do jump scrolling.

-I This option indicates that xterm should send all terminal output to a log file as well as to
the screen. This option can be enabled or disabled using the "xterm XlI" menu.

+ I This option indicates that xterm should not do logging.

-If filename
This option specifies the name of the file to which the output log described above is
written. If file begins with a pipe symbol (I), the rest of the string is assumed to be a
command to be used as the endpoint of a pipe. The default filename is
"XtennLog.XXXXX" (where XXXXX is the process id of xterm) and is created in the
directory from which xterm was started (or the user's horne directory in the case of a
login window.

-Is This option indicates that shell that is started in the xterm window be a login shell (i.e.
the first character of argv[O] will be a dash, indicating to the shell that it should read the
user's .login or .profile).

+Is

-mb

+mb

This option indicates that the shell that is started should not be a login shell (i.e. it will
be normal "subshell").

This option indicates thatxterm should ring a margin bell when the user types near the
right end of a line. This option can be turned on and off from the "Modes" menu.

This option indicates that margin bell should not be rung.

-ms color
This option specifies the color to be used for the pointer cursor. The default is to use
the foreground color.

-nbnumber
This option specifies the number of characters from the right end of a line at which the
margin bell, if enabled, will ring. The default is 10.

-rw This option indicates that reverse-wraparound should be allowed. This allows the cursor
to back up from the leftmost column of one line to the rightmost column of the previous
line. This is very useful for editing long shell command lines and is encouraged. This
option can be turned on and off from the "Modes" menu.

+rw This option indicates that reverse-wraparound should not be allowed.

-s This option indicates that xterm may scroll asynchronously, meaning that the screen does
not have to be kept completely up to date while scrolling. This allows xterm to run faster
when network latencies are very high and is typically useful when running across a very
large internet or many gateways.

+s This option indicates thatxterm should scroll synchronously.

-sb

+sb

This option indicates that some number of lines that are scrolled off the top of the
window should be saved and that a scrollbar should be displayed so that those lines can
be viewed. This option may be turned on and off from the "Modes" menu.

This option indicates that a scrollbar should not be displayed.

-sf This option indicates that Sun Function Key escape codes should be generated for
function keys.

Hewlett-Packard Company -2- Jan 20, 1989

XTERM(l) XTERM(l)
Series 300 and 800 OnJ;y

+sl This option indicates that the standard escape codes should be generated for function
keys.

-si This option indicates that output to a window should not automatically reposition the
screen to the bottom of the scrolling region. This option can be turned on and off from
the "Modes" menu.

+ si This option indicates that output to a window should cause it to scroll to the bottom.

-sk This option indicates that pressing a key while using the scrollbar to review previous
lines of text should cause the window to be repositioned automatically in the normal
postion at the bottom of the scroll region.

+ sk This option indicates that pressing a key while using the scrollbar should not cause the
window to be repositioned.

-slnumber
This option specifies the number of lines to save that have been scrolled off the top of
the screen. The default is 64.

-t This option indicates that xtenn should start in Tektronix mode, rather than in Vf102
mode. Switching between the two windows is done using the "Modes" menus.

+t This option indicates thatxtenn should start in VfI02 mode.

-vb This option indicates that a visual bell is prefered over an audible one. Instead of
ringing the terminal bell whenever a Control-G is received, the window will be flashed.

+vb This option indicates that a visual bell should not be used .

..c This option indicates that this window should be receive console output. This is not
supported on all systems.

-L This option indicates that xtenn was started by inil. In this mode, xtenn does not try to
allocate a new pseudoterminal as ina has already done so. In addition, the system
program getty is run instead of the user's shell. This option should never be used by
users when starting tenninal windows.

-Seen This option specifies the last two letters of the name of a pseudo terminal to use in slave
mode. This allowsxtenn to be used as an input and output channel for an existing
program and is sometimes used in specialized applications.

The following command line arguments are provided for compatibility with older versions. They
may not be supported in the next release as the X Toolkit provides standard options that
accomplish the same task.

%geom This option specifies the prefered size and position of the Tektronix window. It is
shorthand for specifying the ··tekGeometry· resource.

#geom This option specifies the prefered position of the icon window. It is shorthand for
specifying the ··iconGeometry· resource.

-T string This option specifies the title for xtenn's windows. It is equivalent to -title.

-nstring This option specifies the icon name for xtenn's windows. It is shorthand for specifying
the ··iconName· resource.

-r This option indicates that reverse video should be simulated by swapping the foreground
and background colors. It is equivalent to -reversevideo or -rv.

J/K number
This option specifies the width in pixels of the border surrounding the window. It is
equivalent to -bordelWidth or -hw.

The following standard X Toolkit command line arguments are commonly used with xtenll:

.bg c%r
This option specifies the color to use for the background of the window. The default is
''white.''

Hewlett-Packard Company -3- Jan 20,1989

)

)

XTERM(l)

-bel color

XTERM(l)
Series 300 and 800 Only

This option specifies the color to use for the border of the window. The default is
"black."

-bwnumber
This option specifies the width in pixels of the border surrounding the window.

-fg color This option specifies the color to use for displaying text. The default is "black".

-Infont This option specifies the font to be used for displaying normal text. The default is
''vtsingle.'' The directory containing the font is determined by xset -Cp.

-name name
This option specifies the application name under which resource are to be obtained,
rather than the default executable file name.

-rv This option indicates that reverse video should be simulated by swapping the foreground
and background colors .

.geometry geometry
This option specifies the prefered size and position of the Vfl02 window; see X(1);

-display display
This option specifies the X server to contact; see X(J).

-xmt resourcestring
This option specifies a resource string to be used. This is especially useful for setting
resources that do not have separate command line options.

-iconic This option indicates thatxtenn should ask the window manager to start it as an icon
rather than as the normal window.

X DEFAULTS
The program understands all of the core X Toolkit resource names and classes as well as:

name (class Name)
Specifies the name of this instance of the program. The default is "xterm."

iconGeometry (class IconGeometry)
Specifies the prefered size and position of the application when iconified. It is not
necessarily obeyed by all window managers.

title (class Title)
Specifies a string that may be used by the window manager when displaying this
application.

utmpInhibit (class UtmpInhibit)
Specifies whether or not xtenn should try to record the user's terminal in jetcjutmp.

sunFunctionKeys (class SunFunctionKeys)
Specifies whether or not Sun Function Key escape codes should be generated for
function keys instead of standard escape sequences.

The following resources are specified as part of the ''vt100'' widget (class "VT100"):

alwaysHigblight (class AlwaysHigblight)
Specifies whether or not xtenn should always display a highlighted text cursor. By
default, a hollow text cursor is displayed whenever the pointer moves out of the window
or the window loses the input focus.

font (class Font)
Specifies the name of the normal font. The default is ''vtsingle.''

boldFont (class Font)
Specifies the name of the bold font. The default is ''vtbold.''

c132 (class C132)
Specifies whether or not the VT102 DECCOLM escape sequence should be honored.
The default is "false."

Hewlett-Packard Company -4- Jan 20, 1989

XTERM(l) XTERM(l)
Series 300 and 800 On~

charClass (class CharClass)
Specifies comma-separated lists of character class bindings of the form [low-Jhigh:value.
These are used in determining which sets of characters should be treated the same when
doing cut and paste. See the section on specifying character classes.

curses (class Curses)
Specifies whether or not the last column bug in cursor should be worked around. The
default is "false."

background (class Background)
Specifies the color to use for the background of the window. The default is "white."

foreground (class Foreground)
Specifies the color to use for displaying text in the window. Setting the class name
instead of the instance name is an easy way to have everything that would normally
appear in the "text" color change color. The default is "black."

cursorColor (class Foreground)
Specifies the color to use for the text cursor. The default is "black."

geometry (class Geometry)
Specifies the prefered size and position of the vrt02 window.

tekGeometry (class Geometry)
Specifies the prefered size and position of the Tektronix window.

internalBorder (class BorderWidth)
Specifies the number of pixels between the characters and the window border. The
default is 2.

jumpScroU (class JumpScroU)
Specifies whether or not jump scroll should be used. The default is "false".

logFiJe (class Logfile)
Specifies the name of the file to which a terminal session is logged. The default is
"XtennLog.XXXXX" (where XXXXX is the process id of xterm).

logging (class Logging)
Specifies whether or not a terminal session should be logged. The default is "false."

logInhibit (class LogInhibit)
Specifies whether or not terminal session logging should be inhibited. The default is
"false."

loginSheU (class LoginSheU)
Specifies whether or not the shell to be run in the window should be started as a login
shell. The default is "false."

marginBeU (class MarginBeU)
Specifies whether or not the bell should be run when the user types near the right
margin. The default is "false."

multiScroU (class MultiScroll)
Specifies whether or not asynchronous scrolling is allowed. The default is "false."

nMarginBell (class Column)
Specifies the number of characters from the right margin at which the margin bell should
be run, when enabled.

pointerColor (class Foreground)
Specifies the color of the pointer. The default is "black."

pointerShape (class Cursor)
Specifies the name of the shape of the pointer. The default is "xterm."

reverseVideo (class ReverseVideo)
Specifies whether or not reverse video should be simulated. The default is "false."

Hewlett-Packard Company -5- Jan 20,1989

XTERM(l) XTERM(l)
Series 300 aDd 800 OnJ;y

reverseWrap (class ReverseWrap)
Specifies whether or not reverse-wraparound should be enabled. The default is "false."

saveLines (class SaveLines)
Specifies the number of lines to save beyond the top of the screen when a scrollbar is
turned on. The default is 64.

scrollBar (class Sc:rollBar)
Specifies whether or not the scrollbar should be displayed. The default is "false."

scrollinput (class Sc:roUCond)
Specifies whether or not output to the terminal should automatically cause the scrollbar
to go to the bottom of the scrolling region. The default is "true."

scroUKey (class Sc:roUCond)
Specifies whether or not pressing a key should automatically cause the scrollbar to go to
the bottom of the scrolling region. The default is "false."

signalInhibit (class SignalInhibit)
Specifies whether or not the entries in the "xterm XU" menu for sending signals to
xterm should be disallowed. The default is "false."

tekInhibit (class TekInhibit)
Specifies whether or not Tektronix mode should be disallowed. The default is "false."

tekStartup (class TekStartup)
Specifies whether or notxtenn should start up in Tektronix mode. The default is "false."

titeInhibit (class TiteInhibit)
Specifies whether or notxtenn should remove remove ti or te termcap entries (used to
switch between alternate screens on startup of many screen-oriented programs) from the
TERMCAP string.

visualBeU (class VisualBeU)
Specifies whether or not a visible bell (Le. flashing) should be used instead of an audible
bell when Control-G is received. The default is "false."

The following resources are specified as part of the "tek4014" widget (class ''Tek4014''):

width (class Width)
Specifies the width of the Tektronix window in pixels.

height (class Height)
Specifies the height of the Tektronix window in pixels.

The following resources are specified as part of the "menu" widget

menuBorder (class MenuBorder)
Specifies the size in pixels of the border surrounding menus. The default is 2.

menuFont (class Font)
Specifies the name of the font to use for displaying menu items.

menuPad (class MenuPad)
Specifies the number of pixels between menu items and the menu border. The default is
3.

The following resources are useful when specified for the Athena Scrollbar widget:

thickness (class Thickness)
Specifies the width in pixels of the scrollbar.

background (class Background)
Specifies the color to use for the background of the scrollbar.

roreground (class Foreground)
Specifies the color to use for the foreground of the scrollbar. The "thumb" of the

Hewlett-Packard Company - 6- Jan 20, 1989

XTERM(l)

EMUlATIONS

XTERM(l)
Series 300 and 800 Only

scroll bar is a simple checkerboard pattern alternating pixels for foreground and
background color.

The vn02 emulation is fairly complete, but does not support the blinking character attribute nor
the double-wide and double-size character sets. Termcap(S) entries that work withxteml include
"xterm", "vtl02", ''vt100'' and "ansi", andxterm automatically searches the termcap file in this
order for these entries and then sets the ''TERM'' and the ''TERMCAP'' environment variables.

Many of the special xterm features (like logging) may be modified under program control through
a set of escape sequences different from the standard VTI02 escape sequences. (See the "Xtenn
Control Sequences" document.)

The Tektronix 4014 emulation is also fairly good. Four different font sizes and five different lines
types are supported. The Tektronix text and graphics commands are recorded internally by xtenn
and may be written to a file by sending the COPY escape sequence (or through the Tektronix
menu; see below). The name of the file will be "COI'Yyy-MM-dd.hh:mm:ss", where yy, MM, dd,
hh, mm and ss are the year, month, day, hour, minute and second when the COPY was performed
(the file is created in the directory xterm is started in, or the home directory for a login xterm).

POINTER USAGE
Once the vn02 window is created, xterm allows you to select text and copy it within the same or
other windows.

The selection functions are invoked when the pointer buttons are used with no modifiers, and
when they are used with the "shift" key.

Pointer button one (usually left) is used to save text into the cut buffer. Move the cursor to
beginning of the text, and then hold the button down while moving the cursor to the end of the
region and releasing the button. The selected text is highlighted and is saved in the global cut
buffer when the button is released. Double-clicking selects by words. Triple-clicking selects by
lines. Quadruple-clicking goes back to characters, etc. Multiple-click is determined by the time
from button up to button down, so you can change the selection unit in the middle of a selection.

Pointer button two (usually middle) 'types' (pastes) the text from the cut buffer, inserting it as
keyboard input.

Pointer button three (usually right) extends the current selection. (Without loss of generality, that
is you can swap "right" and "left" everywhere in the rest of this paragraph ...) If pressed while
closer to the right edge of the selection than the left, it extends/contracts the right edge of the
selection. If you contract the selection past the left edge of the selection, xterm assumes you really
meant the left edge, restores the original selection, then extends/contracts the left edge of the
selection. Extension starts in the selection unit mode that the last selection or extension was
performed in; you can multiple-click to cycle through them.

By cutting and pasting pieces of text without trailing new lines, you can take text from several
places in different windows and form a command to the shell, for example, or take output from a
program and insert it into your favorite editor. Since the cut buffer is globally shared among
different applications, you should regard it as a 'file' whose contents you know. The terminal
emulator and other text programs should be treating it as if it were a text file, i.e. the text is
delimited by new lines.

The scroll region displays the position and amount of text currently showing in the window
(highlighted) relative to the amount of text actually saved. As more text is saved (up to the
maximum), the size of the highlighted area decreases.

aicking button one with the pointer in the scroll region moves the adjacent line to the top of the
display window.

aicking button three moves the top line of the display window down to the pointer position.

aicking button two moves the display to a position in the saved text that corresponds to the
pointer's position in the scrollbar.

Unlike the VTI02 window, the Tektronix window does not allow the copying of text. It does allow
Tektronix GIN mode, and in this mode the cursor will change from an arrow to a cross. Pressing

Hewlett-Packard Company -7- Jan 20,1989

XTERM(l) XTERM(l)

MENUS

Series 300 and 800 Only

any key will send that key and the current coordinate of the cross cursor. Pressing button one,
two, or three will return the letters 'I', 'm', and 'r', respectively. If the 'shift' key is pressed when a
pointer buton is pressed, the corresponding upper case letter is sent. To distinguish a pointer
button from a key, the high bit of the character is set (but this is bit is normally stripped unless the
terminal mode is RAW; see tty(4) for details).

Xterm has three different menus, named xtenn, Modes, and Tektronix. Each menu pops up under
the correct combinations of key and button presses. Most menus are divided into two section,
separated by a horizontal line. The top portion contains various modes that can be altered. A
check mark appears next to a mode that is currently active. Selecting one of these modes toggles
its state. The bottom portion of the menu are command entries; selecting one of these performs
the indicated function.

The xtenn menu pops up when the "control" key and pointer button one are pressed in a window.
The modes section contains items that apply to both the Vf102 and Tektronix windows. Notable
entries in the command section of the menu are the Continue, Suspend, Interrupt, Hangup,
Terminate and Kill which sends the SIGCONT, SIGTSfP, SIGINT, SIGHUP, SIGTERM and
SIGKILL signals, respectively, to the process group of the process running under xterm (usually
the shell). The Continue function is especially useful if the user has accidentally typed CTRL-Z,
suspending the process.

The Modes menu sets various modes in the Vf102 emulation, and is popped up when the
"control" key and pointer button two are pressed in the VfI02 window. In the command section
of this menu, the soft reset entry will reset scroll regions. This can be convenient when some
program has left the scroll regions set incorrectly (often a problem when using VMS or TOPS-20).
The full reset entry will clear the screen, reset tabs to every eight columns, and reset the terminal
modes (such as wrap and smooth scroll) to there initial states just after xterm has finish processing
the command line options. The Tektronix menu sets various modes in the Tektronix emulation,
and is popped up when the "control" key and pointer button two are pressed in the Tektronix
window. The current font size is checked in the modes section of the menu. The PAGE entry in
the command section clears the Tektronix window.

CHARACTER ClASSES
Qidong the middle mouse button twice in rapid succession will cause all characters of the same
class (e.g. letters, white space, punctuation) to be selected. Since different people have different
preferences for what should be selected (for example, should filenames be selected as a whole or
only the separate sub names), the default mapping can be overridden through the use of the
clarClass (class CharClass) resource.

This resource is simply a list of range:va/ue pairs where the range is either a single number or
low-high in the range of 0 to 127, corresponding to the ASCII code for the character or characters
to be set. The value is arbitrary, although the default table uses the character number of the first
character occurring in the set.

The default table is:

Hewlett-Packard Company

static int charaass[l28] = {
/* NUL SOH SIX ETX EOT ENQ ACK BEL" I

32, 1, 1, 1, 1, 1, 1, 1,
/* BS lIT NL Vf NP CR SO SI" I

1, 32, 1, 1, 1, 1, 1, 1,
/* DLE DC1 DC2 DC3 DC4 NAK SYN Ern" I

1, 1, 1, 1, 1, 1, 1, 1,
/* CAN EM SUB ESC FS GS RS US" I

1, 1, 1, 1, 1, 1, 1, 1,
/* SP ! • /I S % & '"I

32, 33, 34, 35, 36, 37, 38, 39,
/* () " +, 1"1

40, 41, 42, 43, 44, 45, 46, 47,
/* 0 1 2 3 4 5 6 7"1

-8- Jan 20,1989

XTERM(l) XTERM(l)
Series 300 and 800 Only

~,~,~,~,~,~,~,~,
/* 8 9 : ; < > 1*1
~, ~, 58, 59, 60, 61, 62, 63,

1* @ ABC D E F G *1
M,~,~,~,~,~,~,~,

/* H I J K L M N 0 *1
~,~,~,~,~,~,~,~,

/* P Q R STU V W *1
~,~,~,~,~,~,~,~,

/* X Y Z [\] A *1
~, ~, ~, 91, 92, 93, 94, 48,

/* ' abc d e f g*1
%,~,~,~,~,~,~,~,

1* h i j kIm n 0 *1
~,~,~,~,~,~,~,~,

1* p q r stu v w*1
~,~,~,~,~,~,~,~,

/* x y z { I } - DEL *1
~, ~, ~, 123, 124, 125, 126, I};

For example, the string "33:~,37:~,46-47:~,M:~" indicates that the exclamation mark, percent
sign, period, slash, and ampersand characters should be treated the same way as characters and
numbers. This is very useful for cutting and pasting electronic mailing addresses and filenames.

OTIlER FEATURES
Xterm automatically highlights the window border and text cursor when the pointer enters the
window (selected) and un highlights them when the pointer leaves the window (unselected). If the
window is the focus window, then the window is highlighted no matter where the pointer is.

In VTl02 mode, there are escape sequences to activate and deactivate an alternate screen buffer,
which is the same size as the display area of the window. When activated, the current screen is
saved and replace with the alternate screen. Saving of lines scrolled off the top of the window is
disabled until the normal screen is restored. The termcap(5) entry for xterm allows the visual
editor vi(l) to switch to the alternate screen for editing, and restore the screen on exit

In either VTl02 or Tektronix mode, there are escape sequences to change the name of the
windows and to specify a new log file name.

ENVIRONMENT

NOTES

Xterm sets the environment variables "TERM" and "TERMCAP" properly for the size window
you have created. It also uses and sets the environment variable "DISPlAY" to specify which bit
map display terminal to use. The environment variable "WINDOWID" is set to the X window id
number of the xterm window.

Xterm will hang forever ilyou try to paste too much text at one time. It is both producer and
consumer for the pty and can deadlock.

Variable-width fonts are not handled reasonably.

This program still needs to be rewritten. It should be split into very modular sections, with the
various emulators being completely separate widgets that don't know about each other. Ideally,
you'd like to be able to pick and choose emulator widgets and stick them into a single control
widget.

The focus is considered lost if some other client (e.g., the window manager) grabs the pointer; it is
difficult to do better without an addition to the protocol.

There needs to be a dialog box to allow entry of log file name and the COPY file name.

Many of the options are not rescttable after xterm starts.

This manual page is too long. There should be a separate users manual defining all of the non­
standard escape sequences.

Hewlett-Packard Company -9- Jan 20, 1989

XTERM(l) XTERM(l)
Series 300 and 800 OnJ;y

All programs should be written to use X directly; then we could eliminate this program.

COPYRIGIIT
Copyright 1988, Massachusetts Institute of Technology.
See X(J) for a full statement of rights and permissions.

ORIGIN
MIT Distribution

SEE ALSO
resize(I), X(I), pty(4), tty(4)

Hewlett-Packard Company -10 - Jan 20,1989

XWCREATE(l) XWCREATE(l)
~rles 300 and 800 On~

NAME
xwcreate - create a new X window

SYNOPSIS
_create [-display display] [-parent parent] [-geometry geometry] [-r] [-bg color] [-bw pixels] [­
bd color] [-depth depth] [-wmdir directory] [-title] name

DESCRIPTION
This command creates a new X window and assigns it the name window name. This program will
also create a pty file of the same name as the window in the indicated directory. After the window
has been created, the pty file may be used to specify the window that an application should use
when utilizing a graphics library (e.g. Starbase or HP-GKS). A window created by xwcreate(l) can
be destroyed by xwdestroy(1). Note: The window is actually created and maintained by the
daemon program, gwind. The xwcreate(l) program requests the daemon to create the window. If
gwind is not running when xwcreate(1) is executed, xwcreate(1) will start gwind.

-display display
Specifies the server to connect to; See X(1) for details. A limitation in xwcreate requires
that the display name must be no more than 20 characters long.

-parent parent
Name of the window which is to be the parent of window name. If named, the parent
window must have been created by a previous invocation of xwcreate(l) and must not have
been destroyed by xwdestroy(l); otherwise an error message will be generated. If parent
window is not named, the RootWindow of the display and screen will be used as the
parent. If specified, parent window's name must be no more than 12 characters long.

-geometry geometry
This option specifies the preferred size and position of the window; See X(1) for details.

-r Requests the X server to create backing store for the window. By default, windows are not
created with backing store.

-bg color
This option specifies the background color. By default, background color of the window
will be black.

-bw pixels
This option specifies the width in pixels of the window border. By default, border of the
window will be 3 pixels wide.

-bd color
This option specifies the border color. By default, the window border will be white.

-depth depth
This option specifies the visual depth of the window. By default, the window will have the
same depth as its parent. If the specified depth is not supported by the display, an error
will be generated and the window will not be created.

-wmdir directory
is the name of the directory where the pty file for the window will be created. If this
option is not defined, then the directory name will be computed as follows: first, the
environment of the process will be searched for the variable SWMDIR If the variable
$WMDIR is defined in the environment, then it will be used as the desired directory. If
the the variable $WMDIR is not defined in the environment, then the pty file will be
created in the default directory "/dev/screen". If the option -wmdir is defined in the
command line, the directory name will be obtained as follows: If the directory argument
implies an absolute pathname, then it will be taken to be the desired directory. Otherwise,
the directory name will be taken to be relative to the value of the environment variable
SWMDIR If SWMDIR is not defined in the environment, the directory name will be
taken to be relative to /dev/screen. Note: if SWMDIR is defined in the environment, it
must represent an absolute path name. if -wmdir is defined in the command line, then the
implied directory must have already been created. Otherwise, an error ("Invalid

Hewlett-Packard Company -1- Jan 20, 1989

XWCREATE(l) XWCREATE(l)
Series 300 and 800 On\Y

directory") will be generated.

-title name
is the name to be used to reference the window. The window name must be no more than
12 characters long. -

X DEFAULTS
xwcreate(l) uses the X1ib routine XGetDefault(3X) to read its Xdefaults, so its resource names are
all capitalized.

Background
Specifies the window's background color.

BorderColor
Specifies the border color. This option is useful only on color displays.

BorderWidth
Specifies the border width.

Depth Specifies the visual depth of the created window.

Retained
If 'on', requests the X server to create backing store for the window.

Wmdir Specifies the default directory where the pty file will be created. See -wmdir above for
details.

Geometry
Specifies the default positioning and/or sizing for the created window. See X(1) for
details.

EXAMPLES
xwcreate FullView

Create a window named "FuIlView". Since no other argument is provided, the default
geometry, border color, etc. of FullView will be taken from the RootWindow of the
window's display and screen.

xwcreate HalfView -display remote host:1.2 -parent FullView
-geometry 400x200 + 5 + 10 -r -bw 10
Create a window named "HalfView" on the display "remote host:1.2". HalfView will be a
child of the window "FuIlView". The upper left hand corner-of HalfView will be located at
coordinate 5,10 of FullView and will be 400 pixels wide and 200 pixels high. The border
of HalfView will be 10 pixels wide and the border colors will be the same as FullView.

ENVIRONMENT
DISPlAY - the default host and display number.
WMDIR - the window manager directory.
/dev/screen - the default window manager directory.

DIAGNOSTICS

NOTES

ORIGIN

If the window is created successfully, xwcreate(l) will remain silent. Otherwise xwcreate(1) prints
one or more error messages to standard output. For example:

No such display.
Named window exists.
Named parent window does not exist.
Couldn't communicate with gwind.

If -wmdir is used or WMDIR environment variable is set to
other than the default, the directory used must exist on the same physical device as "/ dev".

If XKiIlClient is used (used by some window managers) on one

HP

of the windows created by xwcreate, all xwcreate windows (started with the same "-display"
argument) will also be destroyed.

Hewlett-Packard Company - 2 - Jan 20, 1989

XWCREATE(l) XWCREATE(l)
Serle. 300 and 800 On~

SEE ALSO
X(I), XOpenDisplay(3x), xwdestroy(I).

Hewlett-Packard Company - 3- Jan 20,1989

XWD(l) XWD(l)
Series 300 and 800 Only

NAME
xwd - dump an image of an X window

SYNOPSIS
xwd [options]

DESCRIPTION
xwd is an X Window System window dumping utility. xwd allows X users to store window images
in a specially formatted dump file. This file can then be read by various other X utilities for
redisplay, printing, editing, formatting, archiving, image processing etc.. The target window is
selected by clicking the mouse in the desired window. The keyboard bell is rung once at the
beginning of the dump and twice when the dump is completed.

OPTIONS
-help

-id id

Print out the 'Usage: ' command syntax summary.

This option allows the user to specify a target window id on
than using the mouse to select the target window.

the command line rather

-name name
This option allows the user to specify that the window named name is the target window
on the command line rather than using the mouse to select the target window.

-root This option specifies that X's root window is the target window.

-nobdrs This argument specifies that the window dump should not include the pixels that
compose the X window border. This is useful in situations where you may wish to
include the window contents in a document as an illustration.

-out filename
This argument allows the user to explicitly specify the output file on the command line.
The default is to output to standard out.

-xy This option applies to color displays only. It selects 'XY' format dumping instead of the
default 'Z' format.

-display display
Specifies the server to connect to; see X(1).

ENVIRONMENT
DISPLAY

To get default host and display number.

NOTES
Xwd cannot get the image of child windows with a different number of planes than the specified
window.

FILES
XWDFile.h

X Window Dump File format definition file.

COPYRIGIIT
Copyright 1988, Massachusetts Institute of Technology.
See X(J) for a full statement of rights and permissions.

ORIGIN
MIT Distribution

SEE ALSO
xwud(l), XCI)

Hewlett-Packard Company -1- Jan 20, 1989

XWD2SB(1) XWD2SB(1)
Series 300 and 800 OnJ;y

NAME
xwd2sb - translate xwd bitmap to Starbase bitmap format

SYNOPSIS
xwd2sb

DESCRIPTION
This command translates a bitmap file created by the xwd(1) X window dump utility program into
a Starbase bitmap file as described in bitmapfile(4). Translation is done from standard input to
standard output.

Bitmaps created by xwd in the XYPixmap format are translated into plane-major [ul/-depth
Starbase bitmaps. ZPixmap format bitmaps are translated into pixel-major Starbase bitmaps.

Xwd format bitmaps with visual class TlueColor or DirectColor are translated into Starbase
bitmaps with the colormap mode CMAP FULL. Other visual classes result in Starbase bitmaps
with the CMAP_NORMAL colormap mOde.

Window borders stored by xwd are stripped from the image during translation.

OPTIONS
none

EXAMPLES
xwd I xwd2sb I pcltrans I lp -oraw

Invokes xwd to dump the contents of a window in ZPixmap format, xwd2sb translates the
window image into Starbase format, pcltrans prepares the image for printing, and lp
spools the image for the printer.

xwd -xy I xwd2sb > sbimage
Invokes xwd to dump the contents of a window in XYPixmap format and xwd2sb to
translate the image into Starbase plane-major full-depth format. The Starbase bitmap
image is placed in the sbimage file. (Note that pcltrans is unable to process plane-major
full-depth images.)

xwd2sb <xwdfile >sbfile
Translates the image inxwdfile to Starbase format and places the result in sbfile.

RESTRICTIONS

ORIGIN

XWD bitmaps must be 1-8, 12, or 24 planes deep. Bitmaps of depth 1-8 may have a visual class of
GrayScale, StaticGray, PseudoColor, or StaticColor. Bitmaps of depths 12 or 24 must be of the
DirectColor or True Color visual class.

A 12 plane bitmap must have four bits each for red, green, and blue. A 24 plane bitmap must
have eight bits each for red, green, and blue.

Hewlett-Packard GTD

SEE ALSO
xwd(I), pcltrans(I), bitmapfile(4).

Starbase Graphics Techniques, HP-UX Concepts and Tutorials, chapters on ·Color" and ·Storing
and Printing Images".

Hewlett-Packard Company - 1 - Jan 20,1989

XWDESTROY(l) XWDESTROY(l)
Series 300 and 800 Only

NAME
xwdestroy - destroy one or more existing windows

SYNOPSIS
xwdestroy [-wmdir directory] windowl window2 _

DESCRIPTION
If a window named in the list was created usingxwcreate(1), then it is destroyed, along with its
children. Also the pty devices associated with these windows are removed. Window names may not
be more than 12 characters long.

-wmdir directory
is the name of the directory where the pty file for the window was created. If this option
is not defined, then the directory name will be computed as follows: first, the environment
of the process will be searched for the variable SWMDIR If the variable SWMDIR is
defined in the environment, then it will be used as the desired directory. If the variable
SWMDIR is not defined in the environment, then the pty file will be destroyed in the
default directory "/dev/screen". If the option -wmdir is defined in the command line, the
directory name will be obtained as follows: If the directory argument implies an absolute
pathname, then it will be taken to be the desired directory. Otherwise, the directory name
will be taken to be relative to the value of the environment variable SWMDIR If
SWMDIR is not defined in the environment, the directory name will be taken to be
relative to /dev /screen. Note: if SWMDIR is defined in the environment, it must
represent an absolute pathname. If -wmdir is defined in the command line, then the
implied directory must have already been created. Otherwise, an error ("Invalid
directory) will be generated.

ENVIRONMENT
WMDIR - the window manager directory.
/dev/screen - the default window manager directory.

DIAGNOSTICS
If the windows were destroyed successfully, the program remains silent. If one or more of the
windows could not be destroyed because of some error, appropriate message will be printed on
standard output. For example:

Invalid directoy
Named window does not exist.

ORIGIN
Hewlett-Packard Company

SEE ALSO
XOpenDisplay(3), xwcreate(l).

Hewlett-Packard Company - 1 - Jan 20,1989

XWININFO(l) XWININFO(l)
Series 300 and 800 OnJ,y

NAME
xwininfo - window information utility for X

SYNOPSIS
xwininfo [options]

DESCRIPTION
Xwininfo is a utility for displaying information about windows. Depending on which options
are chosen, various information is displayed. If no options are chosen, -stats is assumed.

The user has the option of selecting the target window with the mouse (by clicking any mouse
button in the desired window) or by specifying its window id on the command line with the -id
option. In addition, if it is easier, instead of specifying the window by its id number, the -name
option may be used to specify which window is desired by name. There is also a special -root
option to quickly obtain information on X's root window.

OPTIONS
-help

-id id

Print out the 'Usage:' command syntax summary.

This option allows the user to specify a target window id on the command line rather
than using the mouse to select the target window. This is very useful in debugging X
applications where the target window is not mapped to the screen or where the use of
the mouse might be impossible or interfere with the application.

-name name
This option allows the user to specify that the window named name is the target window
on the command line rather than using the mouse to select the target window.

-root This option specifies that X's root window is the target window. This is useful in
situations where the root window is completely obscured.

-int This option specifies that all X window ids should be displayed as integer values. The
default is to display them as hexadecimal values.

-tree This option causes the ids and names of the root, parent, and children windows of the
selected window to be displayed.

-stats This option causes various attributes of the selected window having to do with its
location and appearance to be displayed. Information displayed includes the location of
the window, its width and height, its depth, border width, class, and map state.

-bits This option causes various attributes of the selected window having to do with its raw bits
and how it is to be stored to be displayed. Information displayed includes the window's
window and bit gravities, the window's backing store hint and backingylanes value, its
backing pixel, and whether or not the window has save-under set.

-events This option causes the selected window's event masks to be displayed. Both the event
mask of events wanted by some client and the event mask of events not to propagate are
displayed.

-size This option causes the selected window's sizing hints to be displayed. Information
displayed includes both the normal size hints and the zoom size hints of the user
supplied location if any, the program supplied location if any, the user supplied size if
any, the program supplied size if any, the minimum size if any, the maximum size if any,
the resize increments if any, and the minimum and maximum aspect ratios if any.

-will This option causes the selected window's window manager hints to be displayed.
Information displayed may include whether or not the application accepts input, what the
window's icon window If and name is, where the window's icon should go, and what the
window's initial state should be.

-aU This option is a quick way to ask for all information possible.

-display display
Specifies the server to connect to; see X(J).

EXAMPLE

Hewlett-Packard Company -1- Jan 20, 1989

XWININFO(l)
Series 300 and 800 Only

The following is a sample summary taken with no options specified:

xwininfo = = > Please select the window you wish
= = > infonnation on by clicking the
= = > mouse in that window.

xwininfo = = > Window id: Ox8006b (fred)

= = > Upper left X: 0
= = > Upper left Y: 0
= = > Width: 1024
= = > Height: 864
= = > Depth: 1
= = > Border width: 0
= = > Window class: InputOutput
= = > Window Map State: IsUnviewable

ENVIRONMENT
DISPlAY

To get default host and display number.

COPYRIGIIT
Copyright 1988, Massachusetts Institute of Technology.
See X(1) for a full statement of rights and pennissions.

ORIGIN
MIT Distribution

SEE ALSO
X(1)

Hewlett-Packard Company - 2-

XWININFO(l)

Jan 20,1989

XWUD(l) XWUD(l)
Series 300 and 800 Onl;y

NAME
xwud - image displayer for X

SYNOPSIS
xwud [options]

DESCRIPTION
Xwud is an X Window System window image undumping utility. Xwud allows X users to display
window images that were saved in a specially formatted dump file. The window image will
appear at the coordinates of the original window from which the dump was taken. This is a
crude version of a more advanced utility that has never been written. Monochrome dump files are
displayed on a color monitor in the default foreground and background colors.

OPTIONS
-help Print out a short description of the allowable options.

-in filename
This option allows the user to explicitly specify the input file on the command line. The
default is to take input from standard in.

-inverse Applies to monochrome window dump files only. If selected, the window is undumped in
reverse video. This is mainly needed because the display is 'write white', whereas dump
files intended eventually to be written to a printer are generally 'write black'.

-display display
Specifies the server to connect to; seeX(l).

ENVIRONMENT
DISPlAY

To get default display.

FILES
XWDFile.h

X Window Dump File format definition file.

NOTES
Does not attempt to do color translation when the destination screen does not have a colormap
exactly matching that of the original window.

COPYRIGHf
Copyright 1988, Massachusetts Institute of Technology.
See X(1) for a full statement of rights and permissions.

ORIGIN
MIT Distribution

SEE ALSO
xwd(1), X(1)

Hewlett-Packard Company - 1 - Jan 20, 1989

)

)

Glossary

application program
A computer program that performs some useful function, such as word
processing or data base management.

application server
A computer used solely to provide processing power for application
programs.

active window
The terminal window where what you type appears. If there is no
active window, what you type is lost. Only one terminal window can be
active at a time.

ampersand (&)
Placed at the end of a command to specify that the client started
by the command should be started as a background process. The
command can be typed after the command-line prompt or included in a
file such as .xllstart or .hpwmrc.

background process

bitmap

A process that doesn't require the total attention of the computer for
operation. Background processing enables the operating system to
execute more than one program or command at a time. As a general
rule, all clients should be run as background processes.

Generally speaking, an array of data bits used for graphic images.
Strictly speaking, a pixmap of depth one (capable of 2-color images).

bitmap device
An output device that displays bitmaps. The CRT monitor of your
system is a bitmap device.

Glossary-1

buffer

button

An area used for storage.

A button on a mouse pointing device. Mouse buttons can be mapped to
the keyboard.

button binding

click

client

Association of a mouse button operation with a window manager
function. For example, pressing button 3 on a window frame displays
the system menu.

To press and release a mouse button. The term comes from the fact
that pressing and releasing the buttons of most mice makes a clicking
sound.

A program written specifically for the X Window System. Some clients
make their own windows. Other clients are utility programs.

combined mode
A combination of image and overlay planes in which a single display has
a single screen that is a combination of the image and overlay planes.

command-line prompt
A command-line prompt shows that the computer is ready to accept
your commands. Each terminal emulation window has a command-line
prompt that acts just like the command-line prompt you see on the
screen immediately after login. Usually the command-line prompt is
either a $ (for Bourne and Korn shells) or a Yo (for C shells), but it can
be modified. One popular modification is to print the current working
directory and the history stack number before the $ or '/.. You can find
the command-line prompt by pressing IReturnl several times. Every time

you press IReturn~ HP-UX prints the prompt.

cut buffer
A buffer (memory area) that holds text that has been deleted from a
file .

Glossary-2

)

)

depth
The number of planes in a set of planes. For example, a set of 12 image
planes would have a depth of 12.

diskless duster

display

The networking of several systems (SPUs) together to share a common
hard disk for storage of data and programs.

Strictly speaking, the combination of a keyboard, mouse, and one or
more screens that provide input and output services to a system. While
"display" is sometimes used to mean just the CRT screen, a display, as
defined here, can actually include more than one physical screen.

display server
In the X Window System, the display server is the software that
controls the communication between client programs and the display
(keyboard, mouse, and screen combination).

double buffering
A term describing the method used by Starbase wherein half of the
color planes on a monitor are used to display to the screen and the
other half are used to compute and draw the next screen display. This
provides smooth motion for animation and it is faster. However, it does
reduce the number of colors that are available for display on the screen
at one time.

double-dick

drag

To press and release a mouse button twice in rapid succession.

To press and hold down a mouse button while moving the mouse on the
desktop (and the pointer on the screen). Typically, dragging is used
with menu selecting, moving, and resizing operations.

file server
A computer whose primary task is to control the storage and retrieval
of data from hard disks. Any number of other computers can be linked
to the file server in order to use it to access data. This means that less
storage space is required on the individual computer.

Glossary-3

fonts
A font is a style of printed text characters. Times Roman is the font
used for most newspaper text; Helvetica is the font used for most
newspaper headlines.

foreground process
A process that has the terminal window's attention. When a program is
run in a window as a foreground process (as opposed to a background
process), the terminal window cannot be used for other operations until
the process is terminated.

graphical user interface
A form of communication between people and computers that uses
graphics-oriented software such as windows, menus, and icons, to ease
the burden of the interaction.

home diredory

hotspot

hpterm

icon

iconify

The directory in which you are placed after you log in. Typically, this
is /users/ use rna me, where username is your login name. The home
directory is where you keep all "your" files.

The area of a graphical image used as a pointer or cursor that is defined
as the "point" of the pointer or cursor.

A type of terminal window, sometimes called a "terminal emulator
program" that emulates HP2622 terminals, complete with softkeys. The
hpterm window is the default window for your X environment.

A small, graphic representation of an object on the root window
(typically a terminal window). Objects can be "iconified" (turned into
icons) to clear a cluttered workspace and "normalized" (returned to
their original appearance) as needed. Processes executing in an object
continue to execute when the object is iconified.

The act of turning a window into an icon.

Glossary-4

)

)

image mode
The default screen mode using multiple image planes for a single screen.
The number of image planes determines the variety of colors that are
available to the screen.

image planes
The primary display planes on a device that supports two sets of
planes. The other set of display planes is known as the overlay planes.
These two sets of planes are treated as two separate screens in stacked
mode and one screen in combined mode.

keyboard binding

label

Association of a special key press with a window manager function. For
example, pressing the special keys IShlftllEsc:l displays the system menu of
the active window.

The text part of an icon.

local access
The ability to run a program on the computer you are currently
operating. This is different from remote access, where you run a
program on a computer that is physically removed from the one you are
operating.

local client

mask

matte

menu

A local client is a program that is running on your local computer, the
same system that is running your X server.

A graphical image used in conjunction with another graphical element
to hide unwanted graphical effects.

A border located just inside the window between the client area and the
frame. It is used to create a three-dimensional effect for the frame and
window.

A list of selections from which to make a choice. In a graphical user
interface such as the X Window System, menus enable you to control
the operation of the system.

Glossary-5

minimize
To turn a window into an icon. The terms minimize and iconify are
interchangeable.

modifier key
A key that, when pressed and held along with another key, changes the
meaning of the other key. ICTRLI, IExtend chari, and IShlhl are examples of a
modifier key.

multi-tasking

node

The ability to execute several programs (tasks) simultaneously on the
same computer.

An address used by the system. For example, each device on the system
has its own node. The system looks there whenever it needs to access
the device. A node can also be an address on a network, the location of
a system.

non-client
A program that is written to run on a terminal and so must be
"fooled" by a terminal emulation window into running in the window
environment.

normalize
To change an icon back into its "normal" (original) appearance. The
opposite of iconify.

overlay planes
The secondary set of display planes on a device that supports two sets
of planes. The other set of display planes is known as the image planes.
These two sets of planes are treated as two separate screens.

parent window

pixel

A window that causes another window to appear.

Short for "picture element." The individual dots, or components, of a
screen. They are arranged in rows and columns and form the images
that are displayed on the screen.

Glossary-6

)

)

)

pixmap

pointer

press

An array of data bits used for graphics images. Each pixel (picture
element) in the map can be several bits deep, resulting in multi-color
graphics images.

Sometimes called the "mouse cursor," the pointer shows the location of
the mouse. The pointer's shape depends on its location. In the root
window, the pointer is an X. On a window frame, the pointer is an
arrowhead. Inside the frame, the pointer can be an arrowhead (as when
it is inside a clock or load histogram frame) or an I-beam (as when it is
inside a terminal window).

Strictly speaking, to hold down a mouse button or a key. Note that to
hold down a mouse button and move the mouse is called "dragging."

print server
A computer that controls spooling and other printer operations. This
permits a large number of individuals to efficiently share printer
resources.

remote access
The ability to run a program on a computer that is physically removed
from the one you are currently operating. This is different from
local access, where you run a program on the computer that you are
operating.

remote client
An X program that is running on a remote system, but the output of
the program can be viewed on your terminal.

remote host
A computer physically removed from your own that you can log in to.
See chapter 4 for prerequisites for establishing a remote host.

resource
That which controls an element of appearance or behavior. Resources
are usually named for the elements they control.

Glossary-7

restoring

. rhosts

The act of changing an minimized (iconified) or maximized window
back to its regular size. The terms restoring and normalizing usually
interchangeable .

A special file used in network environments that enables a remote host
to log into your local system without using a password. Obviously, this
has a considerable impact on the security of your system.

root menu
The menu associated with the root window. The root menu enables you
to control the behavior of your environment.

root window

screen

The root window is what the "screen" (the flat viewing surface of the
terminal) becomes when you start X. To a certain extent, you can think
of the root as the screen. The root window is the backdrop of your X
environment. Although you can hide the root window under terminal
windows or other graphic objects, you can never position anything
behind the root window. All windows and graphic objects appear
"stacked" on the root window.

The physical CRT (Cathode Ray Tube) that displays information from
the computer.

screen dump

server

An operation that captures an image from your screen, saves it in a
bitmap file, and enables you to send that file to a printer for hardcopy
reproduction.

A program that controls all access to input devices (typically a mouse
and a keyboard) and all access to output devices (typically a display
screen). It is an interface between application programs you run on
your system and the system input and output devices.

stacked mode
A combination of image and overlay planes in which a single display
has two "logical" screens, one the image planes, the other the overlay

Glossary-8

)

)

planes. Typically, the image planes are used to display graphics while
the overlay planes are used to display text.

system menu

TermO

The menu that displays when you press the system menu button on the
HP Window Manager window frame. Every window has a system menu
that enables you to control the size, shape, and position of the window.

An HP level 0 terminal. It is a reference standard that defines basic
terminal functions. For more information, see TermO Reference in the
HP-UX documentation set.

terminal-based program
A program (non-client) written to be run on a terminal (not
in a window). Terminal-based programs must be "fooled" by
terminal-emulation clients to run on the X Window System.

terminal emulator
A client program that provides a window within which you can run
non-client programs. The non-client program runs just as though it
were running from a real terminal rather than a window acting as a
terminal.

terminal type
The type of terminal attached to your computer. HP-UX uses the
terminal type to set the TERM environment variable so that it can
communicate with the terminal correctly. The terminal type is usually
set at login, but can be set afterward.

terminal window
A terminal window is a window that emulates a complete display
terminal. Terminal windows are typically used to "fool" non-client
programs into believing they are running in their favorite terminal­
not a difficult task in most cases. When not running programs or
executing operating system commands, terminal windows display
the command-line prompt. Two terminal windows are supplied with
Xll-hpterm, which emulates HP terminals, and xterm, which emulates
DEC and Tektronix terminals.

Glossary-9

text eursor

tile

The line-oriented cursor that appears in a terminal window after the
command prompt. The term is used to distinguish the cursor used by a
window from the cursor used by the mouse, the pointer.

A rectangular area used to cover a surface with a pattern or visual
texture. The HP Window Manager supports tiling, enabling users with
limited color availability to create new color tiles blended from existing
colors.

title bar
The title bar is the rectangular area between the top of the window and
the window frame. The title bar contains the title of the window object,
usually "Terminal Emulator" for hpterm windows, "xclock" for clocks,
and "xload" for load histograms.

transient window
A window of short duration such as a dialog box. The window is
only displayed for a short time, usually just long enough to get some
direction from the user.

window
A data structure that represents all or part of the CRT display screen.
It contains a two-dimensional array of 16-bit character data words, a
cursor, a set of current attributes, and several flags . Visually, a window
is represented as a rectangular subset of the display screen.

window-based program
A client or program written for use with the X Window System. The
"opposite" of a window-based program is a terminal-based program.

window deeoration
The frame and window control buttons that surround windows
managed by the HP Window Manager.

window manager
The window manager controls the size, placement, and operation of
windows on the root window. The window manager includes the
functional window frames that surround each window object as well as
a menu for the root window.

Glossary-10

)

XO.hosts

xdoek

xload

xterm

A file that tells the X Window System which remote hosts can access
the local server and hence the local display.

An XU client program that displays the time, either analog (hands and
dial) or digital (text read out).

An XU client program that displays the work load of the system as a
histogram.

An XII client program that displays a terminal window that emulates
DEC and Tektronix terminals.

Glossary-11

)

)

Index

Special characters
! 5-3
$@ 3-2
& 2-3, 4-5
@ 6-31
-analog option 4-21
-bg option 4-23
-chime option 4-21
-cr option 4-23
-cutoff option 8-9
-digital option 4-21
-display option 4-8,4-28,7-7
-fb option 4-30
-fg option 4-23
-fn option 4-29
-geometry option 4-25
-hd option 4-23
-hI option 4-23
-Is option 4-16
-ms option 4-23
-n option 4-20
.rhosts 4-7
-sb option 4-19
-scale option 4-22
-title option 4-20
-update option 4-21
.x11start

copying from sys.xllstart 5-12
.Xdefaults

copying from sys.Xdefaults 5-4

Index-1

A

accelerators, graphics 2-16
access

local 2-3
remote 2-3

accessing
remote hosts 5-43

active window 2-3, 3-6
activeBackground resource 6-10
activeBackgroundTile resource 6-12
activeBottomShadowColor resource 6-10
activeBottomShadowTile resource 6-12
acti veForeground resource 6-10
activeTopShadowColor resource 6-10
activeTopShadowTile resource 6-12
adding

elements 6-43
hosts with xhost 5-45
selections 5-19
users 5-24

ampersand 1-4, 2-3, 4-5
analog clock 4-20
appearance

customizing 5-1
icons 6-22

application
programs 2-10
servers 2-14

applications
CAD 2-16
graphics 2-16
process-intensive 2-14
stopping 3-22

ASCII text files
choosing an editor 5-2

at-sign (@) 6-31
attributes 7-38

class struggle 7-40
individual identity 7-40
order of precedence 7-41

available

Index-2

)

fonts 5-37
screen modes 7-3

B

background
color 4-23
processing 1-4

background process 2-3
background processing

choosing 4-5
using ampersand 2-3

background resource 6-10
backgroundTile resource 6-12
backup copies 5-2
beginner's guides 1-6
behavior

customizing 5-1
icons 6-22

bindings
default 6-40

bitmap
client 4-3, 5-24
command panel 5-27
distribution fonts 7-36
using 5-25
using grid 5-27

bitmapDirectory resource 6-24
bitmapped device 2-6
bold text option 4-30
bottom menu selection 3-11
bottomShadowColor resource 6-10
bottomShadowTile resource 6-12
Bourne shell 5-22
buffer, cut 4-17
buffering 9-5
button bindings 6-37

default 6-37
modifying 6-38

button locations
bitmap 5-26
cut and paste 4-17

Index-3

xfd 5-40
buttonBindings resource 6-39
buttons

c

click timing 6-40
locations 1-4
maximize 3-9
minimize 3-9
system menu 3-9

C shell 5-22
CAD applications 2-16
capital letters 1-5
capturing

windows 8-1
case sensitivity 1-5
cathode ray tube 2-6
changing

button bindings 6-38
button click timing 6-40
client colors 5-4
client location 5-17
clients 5-12
keyboard bindings 6-42
menu selections 6-30
menus 6-34
modifier key bindings 7-27
preferences 7-33
root window cursor 5-35
screen placement 6-21
tile patterns 5-35
window frame tile 6-11
window size 3-13
XOscreens 7-2

checking hosts with xhost 5-45
choosing screen mode 7-3
clicking 3-8
client 2-2
client colors

changing 5-4
client Decoration resource 6-43

Index-4

)

clients 4-1
changing 5-12
colorable elements 5-5
coloring 4-24
configuration 4-2
customizing the colors 5-3
defined 2-10
displaying 4-28
for window management 6-2
graphics functions 4-3
initialization 4-2
matting 6-51
options 4-23
placement on root window 4-26
positioning 5-17
root window 3-4
starting 3-2, 4-5, 5-14
starting remote 4-7
stopping 3-23, 4-12
viewable services 4-3
window management 4-2

client/server model 2-7
clock

analog 4-20
digital 4-20
marking half hours 4-21

clock elements, coloring 5-5
clock format selecting 4-21
clock hands color 4-23
close menu selection 3-11
cluster, diskless 2-15
color

reversal 8-7
color database, creating 7-31
color images

printing 8-8
colorable elements 4-24

determining 5-5
coloring

automatically started windows 5-10
clock elements 5-5

Index-5

frame elements 5-6, 5-10
frames elements 6-9
hpterm scrollbars 4-15, 5-11
hpterm softkeys 5-11
individual matte elements 6-52
load histogram elements 5-5
matte elements automatically 6-52
single instance 5-10
terminal window elements 5-5
windows started from menus 5-11

colormapFocusPolicy resource 6-50
colors

available 5-8
changing client colors 5-4
customizing 5-3
locating available color names 5-8
names 4-24
options 4-23
placement 5-10
rgb specifications 4-24
specifying 4-24
specifying names 4-24
using hexadecimal values 4-25, 5-6

COLUMNS environment variable 6-2
combined mode 7-3
command line

specifying the display 4-28
specifying the font 4-29

command line starts, general syntax 4-4
command panel, bitmap 5-27
command-line options 3-2
command-line prompt 2-1
common client options 4-23
compiling bitmap distribution fonts 7-36
configFile resource 6-39
configuration clients 4-2
configuration files 5-3

editing 5-2
configurations

custom 7-1
default 7-1

Index-6

)

special 7-9
configuring

window manager 2-8
X Server 7-38

contracting text
using xterm 4-19

controlling
icon placement 6-20
icons 6-22
resources 6-49
window size and placement 6-46

controls, window manager 3-5
conventions 1-3
conversion utilities 9-13
copying

system.hpwmrc 5-18
sys.xllstart to .x11start 5-12
sys.Xdefaults 5-4
using hpterm 4-18

corner pieces 3-9
creating

a transparent background color 9-13
a transparent window 9-13
a window with xwcreate 9-9
an icon image 5-29
button bindings 6-39
custom bitmaps 5-24
custom color database 7-31
custom cursors 5-31
custom masks 5-31
custom X*devices files 7-12
custom X*pointerkeys file 7-19
keyboard binding set 6-43
new menus 6-35
root window tiles 5-30
screen dumps 8-1
transparent windows 9-12

CRT 2-6
cursor

changing 5-35
custom 5-31

Index-7

cursor color 4-23
custom

bitmaps 5-24
cursors 5-31
masks 5-31
pixmaps 6-24
screen configurations 7-1

customizing
how to begin 5-2
keyboard input 7-27
making backup copies 5-2
the window system 5-1

cut buffer 4-17
cutting text

D

using h p term 4-17
using xterm 4-18

data storage, file servers 2-14
DCE, defined 2-12
DEC VT102 4-15
declaring resources 6-15
decoration 2-9
default

button bindings 6-37
screen configuration 7-1

default keyboard bindings 6-40
defining the display 7-7
deleting

hosts with xhost 5-45
selections 5-20

depth option 9-10
desktop 1-4
destroying

a window with gwindstop 9-11
a window with xwdestroy 9-10

determining colorable elements 5-5
device driver file 7-5
devices, input 7-10
digital clock 4-20
diskless

Index-8

clusters 2-15
diskless clusters 2-5
disks,hard 2-5
display 2-6

defining 7-7
finding variables 7-8
hardware 7-3
server 2-7
specifying on the command line 4-28
tiling monochrome 6-11

display hardware
options 9-2

display planes 9-3
display variable

resetting 7-8
displaying

fonts with xfd 5-38
icons 3-19
root menu 3-20
stored screen dumps 8-3

displaying remote processes, selection method 4-10
distributed computing environment

defined 2-12
double buffering

defined 9-5
double-clicking 3-8
doubleClickTime resource 6-40
dragging 3-8
dumb windows 9-7
Dvorak keyboard 7-30

E

editing
button bindings 6-38
button click timing 6-40
keyboard bindings 6-42
menu selections 6-30
menus 6-34
modifier key bindings 7-27
preferences 7-33
XOscreens 7-2

Index-9

editing files
.login 5-22
.profile 5-22
viewing results 5-23

editor, choosing a text editor 5-2
elements 6-26

adding or removing 6-43
emulating an HP terminal 4-14
env 5-22
environment

color placement 5-10
resetting variables 6-2

error messages 5-12
exclamation point 5-3
exiting

clients 3-23
programs 4-12
window system 3-22

extending text using xterm 4-19

F

file servers
defined 2-14

files
editing 5-22
viewing edited results 5-23

focus policies 6-49
font compiler, xfc 7-37
font resource 6-14
fonts

displaying 5-38
extensions 5-36
fixed 4-30
list of 5-37
list of available 4-29
specifying 5-36
working with 5-35

foreground color 4-23
foreground processing 1-4

using ampersand 2-3
foreground resource 6-10

Index-10

)

frame
bottom 3-9
general appearance 6-8
sides 3-9
top 3-9

frame elements 6-10
automatically coloring 5-10
coloring 5-6

functions 6-31
modifying 6-30

G
general syntax specification 4-4
graphical user interface 2-1

characteristics of 2-1
graphics accelerators 2-16
graphics functions clients 4-3
graphics monitors 9-2
graphics station, described 2-16
grid, bitmap 5-27
gwind client 9-8
gwindstop client 4-3, 9-8

H

half hours, marking 4-21
hand edge color 4-23
hard disk 2-5
hardware

display 7-3
system 2-4

hash mark 4-25, 5-3
comment out 5-3

hexadecimal color values 4-25, 5-7
histogram

coloring elements 5-5
scaling 4-22
viewing system load 4-22

hosts 5-42
adding, deleting, checking 5-45

HP TermO terminal 4-14
HP terminal emulation

Index-11

with hpterm 4-14
HP Window Manager 5-13

font specification 6-14
managing windows 6-7
valid functions 6-31

HP-HIL devices
using 2-7

hpterm
client 4-3
coloring scrollbars 4-15
coloring soft keys 4-14
described 2-10
window 3-6

HP-UX 1-4, 2-13
tips 1-4

hpwm
client 4-2, 6-7
menus 2-7
starting 3-5
window frame anatomy 3-9
window manager 2-7

icon names 4-20
iconAutoPlace resource 6-21
icon Colors resource 6-26
icon Decoration 6-22
iconifying a window 3-17
iconImage resource 6-18, 6-24
iconImageBackground resource 6-26
iconImageBottomShadowColor resource 6-26
iconImageBottomShadowTile resource 6-27
iconImageForeground resource 6-26
iconImageMaximum resource 6-24
iconImageMinimum resource 6-24
iconImageTopShadowColor resource 6-26
iconImageTopShadowTile resource 6-27
iconPlacement resource 6-21
iconPlacementMargin resource 6-21
icons 3-19,6-17

anatomy 6-17

Index-12

appearance and behavior 6-22
changing the tile 6-27
changing to windows 3-17
coloring by client class 6-26
coloring elements automatically 6-27
coloring elements individually 6-26
creating an image 5-29
default locations 3-18
defined 2-8
dimensions 6-24
displaying from menu 3-19
image 6-18
label 6-17
manipulating 6-19
moving 3-20
normalizing 3-18
placement 6-20
restoring 3-18
selecting from menu 3-19
sizing 6-23

image mode 7-3
image planes 9-3
images 6-18

moving 8-7
resizing 8-7

incremental changes 5-2
initialization clients 4-2
input device 2-5
input devices

monitored by X server 2-7
special 7-10

input/output, native language 7-44
interaction model, server-client 2-2
interactivePlacement resource 6-46
interface, graphical user 2-1
interfaces, graphical 1-1

J K
key bindings

modifying 7-27
key map

Index-13

printing 7-30
key remapping expressions 7-28
key Bindings resource 6-43
keyboard

Dvorak 7-30
input devices 2-5
input directed by mouse 3-6

keyboard binding set
making 6-43

keyboard bindings
default 6-40
modifying 6-42

keyboard input
customizing 7-27

keyboard keys
assigning mouse functions 7-20

keyboardFocusPolicy resource 6-50
kill 9-11
killing

processes 4-12
programs 4-12

Korn shell 5-22

L

labels
icons 6-17

LAN 2-6, 2-12
accessing other computers 2-12

limitResize resource 6-46
line, copying using hpterm 4-18
LINES environment variable 6-2
list

colors 5-8
fonts 5-37

load histogram elements, coloring 5-5
load updating 4-22
local

access 2-3
clients 4-5
processing 2-13
programs 2-12

Index-14

)

local area network 2-6
locating

clients 5-17
color names 5-8

location
default 4-25
of icons 3-18
specification 4-25

login
modifying files 5-22
setting up on a remote host 5-43
starting X 5-22
use of 1-6

login window 4-16
lowercase letters 1-5

M
makeActiveColors resource 5-9
make Colors resource 4-15, 5-9
makelconColors resource 6-27
makeMatteColors resource 6-53
making

a transparent background color 9-13
a transparent window 9-13
a window with xwcreate 9-9
backup copies 5-2
button bindings 6-39
custom color database 7-31
custom X*devices files 7-12
custom X*pointerkeys file 7-19
incremental changes 5-2
keyboard binding set 6-43
new menus 6-35
screen dumps 8-1

man pages, defined 1-6
managing

window frames 6-8
window manager menus 6-28
windows 6-1, 6-6

manipulating icons 6-19
manual conventions 1-3

Index-1S

marking half hours 4-21
masks, custom 5-31
matte elements

coloring automatically 6-52
coloring individual 6-52

matteBackground resource 6-52
matteBottomShadowColor resource 6-52
matteBottomShadowTile resource 6-53
matte Foreground resource 6-52
mattes

changing the tile 6-53
defined 6-51

matteTopShadowColor resource 6-52
matteTopShadowTile resource 6-53
matteWidth resource 6-52
matting clients 6-51
maximize button 3-9
maximize menu selection 3-11
maximumClientSize resource 6-46
maximumMaximumSize resource 6-46
menu button 3-9
menus

adding selections 5-19
changing 6-34
default 6-28
defined 2-7
deleting selections 5-20
managing 6-28
modifying 5-18
root 2-7
system 2-7
using 4-16

messages, error 5-12
minimize 3-17
minimize button 3-9
minimize menu selection 3-11
mknod command 7-5
mode, screen 7-3
modes

combined 9-3
image 9-3

Index-16

)

)

overlay 9-3
stacked screen 9-3

modifications
viewing results 5-21

modifying
button bindings 6-38
button click timing 6-40
colors 5-33
functions 6-30
HP Window Manager menus 5-18
keyboard bindings 6-42
login files 5-22
menu selections 6-30
menus 6-34
modifier key bindings 7-27
original files 5-2
patterns 5-33
preferences 7-33
shapes 5-33
XOpointerkeys 7-19
XOscreens 7-2

monitor type 9-2
monochrome display, tiling 6-11
mouse

alternatives to 2-7
button bindings 6-37
button locations 1-4
displaying root menu 3-20
moving icons 3-20
moving windows 3-12
pointing device 2-6
tracking 7-5
using 6-36

mouse button locations
bitmap 5-26
cut and paste 4-17
xfd 5-40

mouse functions, assigning to keyboard keys 7-20
mouse operations 3-8
mouse pointer

and active window 3-6

Index-17

mouse less operation 2-5, 7-17
configuring X*devices 7-18

move menu selection 3-11
moveThreshold resource 6-46
moving

icons 3-20, 6-19
images on paper 8-7
windows 3-12

multiple screen devices 7-5
multi-seat systems, starting 3-3
multi-tasking 2-3

HP-UX 2-13
multi-vendor

communications 2-16
networking 2-4

N

naive windows 9-7
native language input/output

configuring 7-45
using 7-44

networking, multi-vendor 2-4
new window 3-21
node 2-15
non-clients 2-2, 4-1

starting 4-6, 5-15
starting remote 4-10
stopping 4-12

normalizing 3-18

o
operating mode 9-3
operating modes 9-3
operating system, HP-UX 2-13
options

client 3-2
command-line 3-2
display 4-28
server 3-2
terminal emulation 4-16

overlay mode 7-3

Index-18

overlay planes 9-3

p

PaintJet
-cutoff option 8-9
printing color images 8-8

parent window 4-6
passSelectButton resource 6-51
password, use of 1-6
pasting text

using hpterm 4-17
using xterm 4-18

patterns 6-11
changing 5-35
tiles 5-30

PID 4-13
pixmaps 6-24
placement

clients on root window 4-26
controlling window placement 6-46
icons 6-20

planes
image, overlay 9-3

pointer 2-6
and keyboard input 3-6
color 4-23
direction keys 7-20
specifying keys 7-23

pointing device
mouse 2-6
using 2-7

positioning clients 5-17
positionlsFrame resource 6-46
positionOnScreen resource 6-46
pound sign 5-3
preferences, changing 7-33
pressing 3-8
print servers, defined 2-15
printing

color images 8-8
key map 7-30

Index-19

screen dumps 8-4
process ID 4-13
process IDs 4-12
processes

background 2-3
foreground 2-3
killing 4-12

processing 1-4
local 2-13
remote 2-13
using ampersand 2-3

process-intensive applications 2-14
programming the X Window System 1-7
programs

R

remote and local 2-12
running 4-5
running on other computers 2-12
setting colors 4-24
starting automatically 5-14
starting on a remote host 5-46
stopping 3-22, 4-11
terminal-based 2-10
window-based 2-10
window-smart 2-10

raising a window 3-15
raw mode

running Starbase 9-11
reconfig program 5-24
redrawing the screen 6-3
reference books 1-7
reference information, defined 1-6
refining control 6-46
refresh 3-21
remapping 7-27
remapping expressions 7-28
remote

access 2-3
processing 2-13
programs 2-12

Index-20

)

remote clients
display selection 4-8
gaining remote access 4-7
starting 4-7

remote hosts
accessing 5-43
defined 4-7
setting up a login 5-43
starting programs 5-46
using 5-42

remote non-clients, starting 4-10
removing

elements 6-43
graphics litter 6-3

repainting the screen 6-3
resize

client 4-2, 6-2
when to use 6-2

resize Border Width resource 6-46
resize Cursors resource 6-46
resizing

images on paper 8-7
windows 3-13

resource, defined 6-9
RESOURCE- MANAGER property 7-38
resources 6-26

controlling 6-49
restart 3-21
restore menu selection 3-11
restoring 3-18
reversing colors 8-7
rgb 7-31

client 4-2
.rhosts

preparation 5-44
root menu 2-7

displaying 3-20
selecting 3-20

root menu selections 3-21
root window 1-4, 2-6

clients 3-4

Index-21

creating tiles 5-30
cursor 5-35
location specification 4-25
placing clients 4-26
root menu 3-20
size specification 4-25
started by server 3-4
tile patterns 5-35
with terminal window 3-5

running
programs 4-6
Starbase in raw mode 9-11

running programs 4-5

S
sb2xwd client 4-3
sb2xwd utility 9-13
scaling histogram graph 4-22
screen 2-6

repainting 6-3
screen configurations, custom 7-1
screen depth 9-6
screen devices

defined 7-5
determining the number of 7-5
multiple 7-5

screen dumps
defined 8-1
displaying 8-1
displaying with xwud 8-3
making 8-1
printing 8-4
printing with xpr 8-4
using xwd 8-1

screen mode
choosing 7-3

screen modes
available 7-3

scroll features
-J 4-16
-s 4-16

Index-22

)

using 4-16
scrollbars 4-19

coloring 4-15, 5-11
seat 0, starting 3-3
seat 1, starting 3-3
selecting

clock format 4-21
fonts 4-29
icons 3-19
root menu 3-20
values for X*devices files 7-15

selections
adding 5-19
deleting 5-20

server 2-2, 2-7
compressed format 7-36
natural format 7-36
starts root window 3-4

server operating modes 9-3
server options

starting 3-2
server-client interaction model 2-2
setting colors 4-24
setting up

login 5-43
shells

Bourne 5-22
C 5-22
determining 5-22
Korn 5-22

shuffle down 3-21
shuffle up 3-21
single instance coloring 5-10
SIze

changing for windows 3-13
controlling window size 6-46
specification 4-25

size menu selection 3-11
sizing icons 6-23
smart windows 9-7
soft keys 4-14

Index-23

coloring 5-11
special configurations 7-9
special input devices 7-10
specifying

color names 4-24
fonts 5-36, 6-14
icon colors 6-26
key remapping expressions 7-28
pointer keys 7-23
size and location 4-25
the font in the command line 4-29

SPU 2-5
stacked mode 7-3
Starbase

running in raw mode 9-11
start clock 3-21
start load 3-21
start problems, X Window System 3-7
starting

client options 3-2
clients 4-5, 5-14
hpwm 3-5
local clients 4-5
multi-seat systems 3-3
non-clients 4-6, 5-15
programs automatically 5-14
programs on a remote host 5-46
remote clients 4-7
server options 3-2

starting X 3-1
at login 5-22
what to expect 3-4

stopping
clients 3-23, 4-12
non-clients 4-12
programs 4-11
window system 3-22

syntax
hpwm resource 6-2, 6-4, 6-7-8, 6-16, 6-22, 6-25, 6-28, 6-30, 6-35, 6-39, 6-43-45, 6-49,

6-51, 6-54
syntax for declaring resources 6-15

Index-24

)

)

syntax: specification 4-4
system load, viewing with xload 4-22
system menu 2-7

displaying 3-10
resize window 3-13
selecting from 3-10

system menu button 3-9
system menu selections 3-11
System Processing Unit 2-5
system.hpwmrcd, copying to .hpwmrc 5-18
systemMenu resource 6-34
sys.Xdefaults , copying to .Xdefaults 5-4

T

Tektronix 40144-15
TERM environment variable 6-2
TermO terminal 4-14
terminal emulation

DEC 4-15
Tektronix 4-15

terminal emulation clients
hpterm 4-13
xterm 4-13

terminal emulator options 4-16
terminal emulators,defined 2-10
terminal window elements, coloring 5-5
terminal window on root window 3-5
terminal window softkeys, using hpterm 4-14
terminal-based programs 4-1
text

bold option 4-30
contracting using xterm 4-19
cutting using hpterm 4-17
cutting using xterm 4-18
extending using xterm 4-19
pasting using hpterm 4-17
pasting using xterm 4-18

text cursor 3-6
text editor, choosing 5-2
3-D effect 5-9
tile, mattes 6-53

Index-2S

tile patterns, changing 5-35
tiles

defined 6-11
tiles, creation of 5-30
time

updating 4-21
using xclock 4-20

timing
modifying button click 6-40

tips
HP-UX 1-4
typographical 1-5

title bar 3-9
topShadowColor resource 6-10
topShadowTile resource 6-12
tracking with multiple screen devices 7-5
transient Decoration resource 6-43
transparent background color 9-13
transparent windows

creating 9-12
using 9-12

type styles 5-35
typographical tips 1-5

U

updating
load 4-22
time 4-21

uppercase letters 1-5
user ID, use of 1-6
users, adding 5-24
using

bitmap command panels 5-27
bitmap grids 5-27
bitmaps 5-25
custom screen configurations 7-1
native language input/output 7-44
remote hosts 5-42
resize 6-2
the mouse 6-36
the reconfig program 5-24

Index-26

J

the X Window System 3-1
transparent windows 9-12
xfd 5-40
X*screens 9-1

utilities
xwininfo 6-4

utilities, conversion 9-13
uwm client 4-2, 6-6
uwm window manager 5-13

V

viewable clients 4-23
viewable services clients 4-3
viewing

screen dumps 8-1
viewing results 5-21

edited files 5-23

w
window

active 2-3
login 4-16
raising 3-15

window appearance 6-8
window cursor, changing 5-35
window environment, customizing 5-1
window frame

coloring elements 5-6
decoration 2-9
parts 3-9

window frames 6-43
changing the tile 6-11
coloring 6-9
general appearance 6-8

window management clients 4-2, 6-2
window manager 3-8, 5-13

configuring 2-8
font specification 6-14
hpwm 2-7
managing windows 6-7
valid functions 6-31

Index-27

window manager controls 3-5
window manager menus 6-28

modifying 5-18
window system 1-4

controlling 2-7
exiting 3-22
starting 3-1
stopping 3-23

window titles 4-20
window-based programs 2-10
window-naive (dumb) program 9-7

running 9-8
windows 1-1

active 3-6
capturing 8-1
changing to icons 2-8, 3-17
hpterm 3-6
managing 6-6
moving 3-12
removing 3-22
resizing 3-13
setting colors 4-24
transparent 9-12
without frames 6-43

window-smart program 9-7
running 9-8

window-smart programs 2-10, 4-1
working with fonts 4-30, 5-35
working with icons 3-19
workstations, Series 300 2-13

x
X

screens:using 9-1
X environment

.Xdefaults 5-3
customizing 5-1

X server 2-7
configuring 7-38

X startup script 3-2
X window system

Index-28

)

)

starting 3-1
X Window System 1-4

common features 2-4
fonts 4-29
programming 1-7
reference books 1-7
start problems 3-7

XO.hosts 4-7
XU client 4-2
XU clients

colorable elements 4-24
function of 4-2

XII clients, starting remote 4-7
XU environment

clients 4-1
non-clients 4-1

XU, starting at login 5-22
xUstart client 4-2
x11start command

multi-seat systems 3-3
x11start program

starting 3-1
xclock client 4-3, 4-20
xclock options 4-21
X*devices files

selecting values 7-15
xfc client 4-2
xfc font compiler 7-37
xfd

client 4-3
using 5-40

xhost client 4-2
xhost program

options 5-45
xinit client 4-2
xinitcolormap client 4-2
xload

options 4-22
viewing system load 4-22

xload client 4-3
xmodmap client 4-2

Index-29

X*pointerkeys
default values 7-18

xpr client 4-3, 8-4
xrdb client 4-2, 7-38
xrefresh 6-3
xrefresh client 4-2
X*screens file 7-2
xseethru 9-12
xseethru client 4-3
xserver client 4-2
xset

client 4-2 , 7-33
options 7-33

xsetroot 9-13
xsetroot client 4-3, 5-33
xterm

described 2-10
xterm client 4-3, 4-15
xterm menus

using 4-16
xterm scroll features

-j 4-16
-8 4-16
using 4-16

xwcreate client 4-3, 9-8
xwd client 4-3, 8-1
xwd2sb client 4-3
xwd2sb utility 9-13
xwdestroy client 4-3, 9-8
xwininfo client 4-2, 6-4
xwud client 4-3 , 8-1 , 8-3

Index-30

HP Part Number
98594-90040
Microfiche No. 98594-99040
Printed in U.S.A. E1288

FliOW HEWLETT
~~ PACKARD I

98594-90640
For Internal Use Only

	Cover

	Contents

	1. How to Improve Your X Life

	2. Understanding Window Systems

	3. Using the X Window System

	4. Running from the Command Line

	5. Customizing Your Local X Environment

	6. Managing Windows

	7. Customizing Special X Environments

	8. Printing and Screen Dumps

	9. Using Starbase on X11

	A. Reference Information

	Glossary

	Index

	Back Cover

