A Guide to the IBM
System/370 Model 158

Systems

GC20-1754-2
_File No. S$370-01

A Guide to the IBM
System/370 Model 158

This guide presents hardware, programming systems, and
other pertinent information about the IBM System/370

“Model 158 that describes its significant new features and

advantages. Knowledge of the IBM System/370 Model
155 is assumed. Features common to Models 155 and
158 are indicated but not discussed in detail. The contents

of the guide are intended to acquaint the reader with the

Model 158 and to be of benefit in planning for its instal-
lation.

Associated with this guide are four optional supplements
that describe operating systems for the Model 158 that
support a virtual storage environment. Each supplement
has its own form number and must be ordered individually,
if required. Optional supplements are the following:

® DOS|/Virtual Storage Features Supplement
(GC20-1756)

® OS/Virtual Storage 1 Features Supplement
(GC20-1752) :

® (OS/Virtual Storage 2 Features Supplement
(GC201753)

® Virtual Machine Fuacility /370 Features Supplement
(GC20-1757)

BV

Third Edition (August 1975)

This is 2 major revision obsoleting GC20-1754-1. Text has been added to include information
about the Model 3 system (3158-3 Processor Unit), 3056 Remote System Console, Remote
Support Facility (RSF), and 3340 direct access storage facility. The 3330 section, virtual machine
concepts section and all summary tables have also been updated. Miscellaneous changes have been
made throughout the text. Changes to the text and illustrations are indicated by a vertical line in
the left margin.

This guide is intended for planning purposes only. It will be updated from time to time; however,
the reader should remember that the authoritative sources of system information are the system
library publications for the Model 158, its associated components and its programming support.
These publications will first reflect any changes.

Requests for copies of IBM publications should be made to your IBM representative or to the IBM
branch office serving your locality.v

A form has been provided at the back of this publication for readers’ comments. If this form has
been removed, address comments to: IBM Corporation, Technical Publications/Systems, Dept. 824,

1133 Westchester Avenue, White Plains, New York 10604. Comments become the property of IBM.

© Copyright International Business Machines Corporation 1972,1974,1975

PREFACE

It is assumed that the reader of this publication is familiar with
System/370 Model 155 hardware features, ,channels, I/0O devices, and
programming support as described in A Guide to the IBM System/370 Model
155 (6C20-1729), and/or system library publications concerning Model 155
hardware and programming systems support. This guide discusses in
detail only the hardware features of the Model 158 that are different
from those of the Model 155 and the programming support provided for new
features of the Model 158.

There are two versions of the Model 158; the Model 1 and the Model 3.
The hardware differences between Model 1 of the Model 158 and the Model
155 are discussed in Sections 01 to 50. The differences between Models
3 and 1 of the Model 158 are discussed in Section 65. '

The Model 158 is not compared with a Model 155 II, which is a
purchased Model 155 with the optional Dynamic Address Translation
Facility installed. However, functional descriptions of Model 158
features that are also part of the Dynamic Address Translation Facility
of the Model 155 II apply to the Model 155 II as well, unless otherwise
noted. This publication applies to systems with 60-cycle power.

The total Model 158 guide consists of this base publication (Sections
01 to 70), which covers virtual storage and virtual machine concepts and
Model 158 hardware and I/0 devices, and from one to four optional
supplements (Sections 80 to 110). The optional supplements describe the
facilities of the IBM programming systems that support a virtual storage
environment using the dynamic address translation hardware of the Model
158. Each optional supplement has its own unigue form number and each
supplement desired must be ordered separately and inserted in this base
publication, which is distributed without the automatic inclusion of any
optional supplements.

The following optional supplements can be inserted in this base
publication:

®* .DOS/Virtual Storage Features Supplement (GC20-1756) - assumes
knowledge of DOS Version 4

® 0S/Virtual storage 1 Features Supplement (GC20-1752) - assumes
knowledge of 0S MFT

* OS/Virtual Storage 2 Release 1 Features Supplement (GC20-1753) -
assumes knowledge of 0S MVT

e Virtual Machine Facility/370 Features Supplement (GC20-1757) - does
not assume knowledge of CP-67/CMS

All optional supplements also assume knowledge of virtual storage,
dynamic address translation, and other new Model 158 features as
described in this base publication or appropriate system library
manuals. However, no optional supplement requires knowledge of the
contents of any other optional supplement. ‘ '

This base publication, as well as each optional supplement, begins
with page 1 and includes its own table of contents and index. The base
publication or supplement title is printed at the bottom of each page as
a means of identification.

A Guide to the IBM System/370 Model 158

The optional programming systems supplements contain System/370

model-independent information,
to be included in the gquides fo

168, as shown below.

unless otherwise noted, and are designed
T System/370 Models 135, 145, 158, and

Base
Publications

A Guide to the IBM
System/370 Model 135
(GC20-1738-4 or
later editions)

A Guide to the IBM
System/370 Model 145
(GC20-1734-2 or
later editions)

A Guide to the IBM
System/370 Model 158
(GC20-1754)

A Guide to the IBM

System/370 Model 168 |

(GC20-1755)

Supplements
0S/Vs2
DOS/VS 0os/vs1 ‘Release 1. | vM/370
Features Features - Features Features
Supplement Supplement Supplement Supplement
(GC20-1756) (GC20-1752) | (6C20-1753) | - (6C20-1757)
X X X
X X X X
X X X X
X X X

A Guide to the IBM System/370 Model 158

CONTENTS

Page of GC20-1754-2

- Revised February 20, 1976

By TNL GN20-3580

Base Publication Sections (Sections 01 to 70)

Section 01:

Section 10:

Section 20

20:05 Architecture Design
20:10 The Central Processing Unit . . .

20:15 Storage Y4 o4 e . W

20:20 ChannelsS. . v ¢ v o o o o o
20:25 System Consoles

20:30 Remote Support Facility

20:35 standard and Optional System Featu

Section 30:

System Highlights of Models 1 and 3

Physical Design and System Technology for Models
land 3 0 0 0 0t e e e e e e e e e

Architecture Design and System Components of the
Model 1

- e« e e

Extended Control Mode . .
New Instructions.
Improved Instruction Execution Speed. . .
Clock Comparator and CPU Timer.
Reliability, Availability, and Serviceabil

L~ I Y

e o -« o o

Processor (Main) Storage. .
High-Speed Buffer Storage .
Reloadable Control Storage.
Storage Control Unit. . . .

S 0 & & s pes & 0 s & s @
o :

e & 8 8 o s 8 & &
.
s 8 & & 8 & s o s

.

s o & s s &

Standard Display Console. . . .
The 3056 Remote System Console.

.
s 8 8 & & & ¢ 2

a8 & s ¥ s

.
e 8 5 & 85 & & o o

e s s s 2 2 s s e
& o o 8 o o s s s 0
o & & 6 & & 8 s o

Function and Components
The Service Processor
RETAIN/370 System

Remote Support Capabilities .

Standard Features
Optional Features

o s K s s s
&

Virtual Storage and Dynamic Address Translation .

30: 05 Virtual Storage Concepts, Advantages, and Terminology

The Need for Larger AdGXeSS SPAcCe « « « o o o o o «

e & 5 8 5 5 3 & s s 2 s s s @

-

Virtual storage and Dynamic 2ddress Translation Concepts.
that

General Advantages Offered by IEM Operating Systems
Support a Virtual Storage Enviromment
Virtual Storage and Dynamic Address Translation

TErminology « « o o o o ¢ o o o « o o o .«

30:10 Dynamic Address Translation Hardware for Models 1 and
Of the Model 158. . & & i 4 4 4 4 4 4 o o o o o o « «

Virtual storage Organization. . . ¢« o+ o o o o o .
Operation of Dynamic Address Translation Hardware
Features to Suppert Demand Paging . . « « o « . .
Channel Indirect Data RAAAressing. . « « « o o « .

30:15 sSystem Performance in a Virtual Storage Environment .

A Guide to

System Resources Required to Support a Virtual Stora
Environment . . o o ¢ 4 ¢ 4 4 4 4 4 4 e e e e e oo
New Factors that Affect System Performance.
Relationship Between Virtual Storage Size and System
Performance . . . v v v i i 4 i i i 4 e e e e e
Increasing System Performance in a Virtual Storage
Environment . . ¢ & ¢ & ¢ 4 4 4 e a4 a4 e o o o a

the IBM System/370 Model 158

3

ge

Page of GC20-1754-2
Revised February 20, 1976
By TNL GN20-3580

Section 40: Virtual Machines. . . . ¢ ¢ ¢ ¢ ¢ o 2 & « o o o o =
40:05 Definition and General Operation. . . . ¢ ¢« ¢ o & & « o &
40:10 General Rdvantages cof a Virtual Machine Environment . . .

Section 50: I/C Devices for Models 1 and 3. . & ¢ & & ¢« v o « . .
50:05 I1I/0 Device Support. « o
50:10 3333 Disk Storage and Control Model 11 and 3330 DlSk

Storage Model 11. ¢ ¢ ¢ 4 4« e e o e o o o o
Attachment via Integrated Storage Controls. . . .

50:15 The 3340 Direct Access Storage Facility

3340 Disk Storage Drives and the 3348 Data Module
Attachment via 3830 Storage Control Model 2 . . .
Attachment via Integrated Storage Controls. . . .
Intermixing 3340 and 3330-Series Strings on an
Attachment. . . ¢ ¢ ¢ ¢ ¢« ¢ ¢ @ ¢ ¢ ¢ 4 4 o o .
SUMMAYY « « « o o o o o o« « = o o o o o o o o =

" s s 8 8 8
s & 8o s 8 8
"8 0 s 8 8

Performance Facilities.
Other Differences
Multiprocessing « . « « « <« < «
Programming Systems Support . .

Section 65: Differences Between the Mcdel 3 and the Model 1

s 5 o s &
s & o 8 @
s 8 a2 8 o

e e o
e o e
« @ e e

Section 70: Comparison Tables . . « ¢ ¢ ¢ « ¢« o o ¢ & o & « o o
70: 05 Comparison Table of Hardware Features for System/360
Models 50 and 65 and System/370 Models 145, 155, 155 II,
and 158 (Models 1 and 3). . . .
70:10 DOS and DOS/VS Support of the Model 158 (Models 1 and 3).
70:15 0OS and 0S/VS Support of the Model 158 (Models 1 and 3). .

Index (Sections 01 t0 70). ¢ & 4 o o o o o o s o o a o a o o o = =

obtional Sections (See each supplement fcor detailed contents and
index)

Section 80: DOS/Virtual Storage Features. ¢ o ¢ o o « .« &
Section 90: OS/Virtual Storage 1 Features . . . « « o o « o « « =
Section 100: O0S/vVirtual Storage 2 Release 1 Features. . . . « . «

Section 110: Virtual Machine Facility/370 Features. . . « « « .« .

FIGURES (Sections 01 to 70)

10.1 System/370 Model 158 (design model) . . & « o o & o - .
10.2 SLT substrate . . « ¢ « ¢ ¢ o ¢ o 4 o o o« o o o o o o o
20.10.1 BC mode and EC mode PSW formats cle o o o
20.10.2 Model 158 model-independent fixed storage locations for
BC and EC modes “ e e e e e
20.10.3 Model 158 (Model 1) model- dependent flxed storage
1oCationsS « o o o o o o o o o 2 o o o+ 2 e o e & o @ o o
20.10. 4 Model 158 machine check code. . . . « . . . e o & o o
20.15.1 High~speed buffer organization in the Model 1 « e e e .
20.25.1 Model 158 dAisplay cOnNSOle . .« ¢ ¢ ¢ ¢ o o o o o 2 o o @
20.30.1 Components of the Remote Support Facility . . <«
30.05.1 Names and location of instructions and data in a virtual
storage environment + o « s 4 s e 2 e o e s o
30.05.2 Relationship of virtual storage, direct access storage,

and real StOYAge. .« v & o « o « « o « o a o s o a s o @

[T '}

-

‘92
100

103
103

103

104

108
108
123
126

128
129

134
134
136

139
139

140

141
154
160

167

173
175
177

179

16
25
29
34
46

47

A Guide to the IBM System/370 Model 158

Page of GC20-1754-2
Revised February 20, 1976

By TNL GN20-3580
30.05.3 Conceptual illustration of real storage utilization in
a mixed batch and online virtual storage environment. . . 56
30.05.4 Layout of virtual storage, external page storage, and
real storage. - . e o « o « 59

30.10.1 Virtual storage address flelds for a 64K segment. « -« « « 64
30.10.2 Segment takle and page tables used for dynamic address
translation « .« it b i i i e e e el e e e e e. 66

30.10.3 Dynamic address translation procedare 67
30.10.4 TLB purging when control register 1 is changed. 70
30.10.5 Example of IDAL's required for a CCW list when page size

B Q. 15
30.15.1 Possible system performance when a virtual storage

operating system is used with a Model 158 with the
same I/0 configuration and real storage size as the
replaced Model 155. . ¢ & & & ¢ 4 4 4 4 e e 4 o u o @ . 80

30.15.2 General effect on page faults of increasing the ratio of

virtual storage used to real storage present in the

system. .« . « . . e e ¢ 4 o e e e o e« o o o e e o & 84
30.15.3 General effect on system performance of the paging

factor only L i i it e i e e e e e e .. B85
30.15.4 General effect of the paging factor on system performance

; for various active-to-passive page ratios 85

30.15.5 General system performance curve for a virtual storage

environment o o o e o = . e o o « o 87
40.05.1 Conceptual 1llustrat10n of the real and v1rtual machine

environment that is supported by vMs370 94
40.05.2 Conceptual illustration of the implementation of v1rtual

storage in a virtual machine environment. . . e e s o o 96
40.05.3 Segment table and page tables built when a v1rtua1

storage operating system executes in a virtual machine. . 97
50.10.1 Permissible 3330-series string configurations for the

Model 158 integrated storage controls feature 106
50.10.2 Sample 3330-series string configuration with string

switching- . . .« . 107
50.15.1 A five-drive 3340 strlng w1th 33u0 Model A2 B2 and

Bl units . . . @ e e e o e e o o s e o o e o o « 2 o « 109
50.15.2 The 3348 Data Module. .- . . e e o o o e. s« s o« & . 109
50.15.3 Location of physical and loglcal tracks and read/write

heads on a data surface in a 3348 Data Module 113

50.15.4 Cylinder and read/write head layout for a 3348 Model 35
Data Module e e e e e e e s . . 115

50.15.5 Cylinder and read/wrlte head layocut for a 33u8 Model 70

Data Module e e e e e e e e e e o e o o = « « 116
50.15.6 Cylindexr and read/wrlte head 1ayout for a 3348 Model 70F

Data Module e o o o o o e o o « o 118
50.15.7 A Model 158 conflguratlon w1th 33u0 disk storage

attached via 3830 Storage Control Model 2 123
50.15.8 String switching for 3340 facilities attached to a 3830

Model 2 e e s e e e e o - 125
50.15.9 Permissable 3340 strlng conflguratlons for the Model 158

Integrated Storage Controls feature e o o 127
50.15.10 String switching for 3340 facilities attached to one 129

ISsC . .« .« « e e o e s e @ « o « = = =
65.1 High-speed buffer organlzatlon in the Model 3 e « o« o« - o 135

A Guide to the IEM System/370 Model 158

Page of GC20-1754-2
Revised February 20, 1976
By TNL GN20-3580

TABLES (Sections 01 to 70)

20.15.1
20.25.1

30.10.1
30.10.2
50.10.1

50.10.2
50.15.1

50.15.2
50.15.3
50.15.4

Model 158 Model 1 cycle and access timesS.
Functional capabilities of the standard display conscle
and the 3056 Remote System Console. . . « o« o o . .
Number and size of segments and pages for a 16-m11110n—
byte virtual storage. SN
Virtual and real storage addresses used by and <:upplled
to programs in the Model 158. . . . - “ e e e e e .
Capacity and t1m1ng characteristics for 1330—ser1es
drives. . . . e e o e e o o o a
3336 Model 1 and 11 DlSk Pack characterlstlcs « o o . s
Physical and capacity characteristics of 3348 Data
Modules and the 2316 Disk Pack. . . . © o e o s o @

Timing characteristics of the 3340 dlrect access storage

facility and the 2314 Fac111ty. « o e . -

Summary of the hardware features of 33#0 and 231u dlSk
storage facilities. . . « o o . .
Summary of the features of 3830 Storage Control Models

1 and 2 and Integrated Storage Controls

23
33
63
71

104
104

120
121
131

132

A Guide to the IBM System/370 Model 158

SECTION 0l1: SYSTEM HIGHLIGHTS OF MODELS 1 AND 3

The System/370 Model 158 is an advanced function growth system for
System/370 Models 145 and 155 and System/360 Models 50, 65, and 67. The
Model 158 provides major new functions that are not basic to System/360
architecture. The Model 158 has new features, and. new programmi ng
systems support that are designed to facilitate application development
and maintenance. In addition, a Model 158 and its new programming
support can ease entry into, and expansion of, online data processing
operations.

The Model 158 makes new functions available to Model 50, 65, 145, and
155 users without requiring a major conversion effort, since the Model
158 and its programming support are upward compatible with these models
and their programming support. DOS Version 4, Os MFT, and OS MVT can be
used on a Model 158. However, the Model 158 has standard features that
are designed to support a virtual storage environment, and new versions
of 0S5 and DOS operating systems are provided that use these features.

Compatible growth from a System/360 operating system to a Model 158
virtual storage environment can be achieved using the System/370
operating systems: DOS/Virtual Storage (DOS/VS), Os/Virtual Storage 1
(0s/vsl), and OS/Virtual Storage 2 (0S/VS2), which are based on DOS
Version 4, OS MFT, and OS MVT, respectively. These operating systems
run only on System/370 models with extended System/370 functions; that
is, on those with extended control mode of system operation and dynamic
address translation facilities. They cannot operate on System/360
models. 1In addition to implementing virtual storage, the System/370
operating systems offer many other new capabilities and performance-
oriented enhancements that are not provided by DOS Version 4 or 0OS MFT
and MVT.

A virtual machine environment is supported by Virtual Machine
Facilitys370 (VM/370), the successor to CP-67/7CMS for System/370. While

CP-67/CMS is available only to Model 67 ‘System/360 users, VM/370

operates on System/370 Models 135, 145, 155 II, 158, 165 II, and 168.
Model 67 users who have CP-67/CMS installed can use VM/370 on a Model
158 with some conversion effort. The optional Virtual Machine Assist
(VMA) feature can be installed on a Model 158 to improve the performance
of certain operating systems that execute in a virtual machine under
VM/370 control.

Transition with little or no reprogramming is provided for users who
are emulating a DOS Version 3 or 4 environment under 0SS, a
1401/1440/1460/1410/7010 system under DOS or OS, or a 7070/7074 system
under 0S, as well as for users of 1400-series and 7070/7074 systems,
since the integrated emulators for these systems are also supported by
the System/370 operating systems.

Two models of the Model 158 are provided. The Model 3 is an advanced
version of the Model 1. The Model 3 has operational enhancements and
CPU hardware features that give it improved availability and faster
internal performance than the Model 1. The higher performance features
of the Model 3 consist of hardware implementation differences in the
Model 158 CPU (made possible by engineering design modifications and
technology advances) and a larger high-speed buffer.

The performance features of the Model 3 do not require any programming
support. Thus, programs that execute correctly on the Model 1 will
execute correctly on the Model 3 without any programming changes,

A Guide to the IBM System/370 Model 158 1

assuming they have no timing dependencies and do not access model-
dependent logout areas that differ for the two models.

Highlights of the Model 158, Models 1 and 3, when compared with a \)
Model 155, are as follows (features are the same for Models 1 and 3 ~
except where stated otherwise):

~® A basic control (BC) mode and an extended control (EC) mode of
system operation are standard. Only BC mode is provided in the
Model 155. EC mode of operation provides additional system control

and supports new functions that are not provided in System/360 or a
Model 155.

¢ Internal performance of a Model 158 operating in BC mode is faster
than that of a Model 155. The instruction execution rate of the
Model 158 Model 1 is generally in the range of 20 to 50 percent
faster than that of the Model 155 when identical system
configurations, identical programs, and the same operating system
are used. The increased internal performance of the Model 1 results :
from several improvements, among which are faster execution of
several instructions and faster cycle times of processor storage in
the Model 158. '

The internal performance of Model 3 of the Model 158 is generally in
the range of 5 to 11 percent faster than that of the Model 1 when
identical system configurations, identical programs, and the same
operating system are used. The increase in Model 3 internal
performance is primarily due to the larger high-speed buffer it
contains, implementation of a more effective buffer assignment
algorithm, faster execution of certain frequently used instructions,
and a faster read cycle time.

* Dynamic address translation (DAT) is a standard facility that can be
made operative only when the Model 158 is in EC mode. It provides .
hardware translation of addresses during program execution. One S
virtual storage of up to 16 million bytes or multiple virtual
Storages of up to 16 million bytes each can be supported using DAT
hardware. (The amount of virtual storage that can be efficiently
supported by a Model 158 depends on the hardware configuration and
job stream characteristics.) Channel indirect data addressing is
also standard and is provided to handle 1/0 operations when dynamic
address translation is used. Channel indirect data addressing
enables the channels to access an I/0 buffer that is contained in
noncontiguous processor storage areas.

¢ Program event recording (PER) is standard and can be made operative
when the Model 158 is in EC mode. It is designed to be used as a
problem determination aid. This feature includes hardware that
monitors the following during program execation: successful
branches, the alteration of general registers, and instruction
fetching from and alterations of specified areas of processor
storage.

® A CPU timer and clock comparator are standard. The CPU timer -
provides an interval timing capability similar to that of the
interval timer at location 80 but it is updated every microsecond,
as is the time of day clock. The clock comparator can be used to
cause an interruption when the time of day clock passes a specified
value. These items provide higher resolution timing facilities than
the interval timer and enable more efficient timing services
routines to be written.

* New instructions that support dynamic address translation, the new

timing hardware, and system control facilities are added to the i)
System/370 instructions available for the Model 155. ‘ : ~—

2 A Guide to the IBM System/370 Model 158

* Extended precision floating-point, 1401/40/60,1410/7010
Compatibility, 7070/7074 Compatibility, and 0S/DOS Compatibility are
no-charge optional features. Extended precision floating-point and
7070/7074 Compatibility can be installed in the same Model 158.
(They are mutually exclusive in a Model 155.)

* Processor storage is implemented using monolithic technology instead
of discrete ferrite cores. Processor storage sizes of 512K, 1024K,
1536K, 2048K, 3072K, and 4096K are available. Monolithic storage for
the Model 158 is faster and more compact than core storage for the
Model 155. The cycle time of processor storage varies from 690 to
1035 nanoseconds for a Model 1 and from 690 to 920 nanoseconds for a
Model 3, depending on the operation performed, which is
significantly faster than the 2070-nanocsecond cycle time of
processor storage for the Model 155. A four-megabyte Model 158 is a
little more than half the size of a two-megabyte Model 155.

¢ The optional Power Warning featu>e, when installed on a Model 158
with uninterrupted power supplies, provides a warning machine check
interruption when the utility-supplied power is approximately 18
percent below the rated voltage. Program support of this
interruption, which is provided by 0S MVT Releases 21.6, 21.7, and
21.8, 0s/VSl as of Release 3, and 0S/VS2 as of Release 1.6, is
designed to permit an orderly system shutdown after a power line
disturbance occurs, when necessary, so that operations can be
restarted once the power supply is stabilized.

* The high-speed buffer organization and assignment algorithms
implemented in Models 1 and 3 of the Model 158 are different from
those implemented in the Model 155. They are designed to enable the
Model 158 CPU to fetch data from the buffer, instead of from
Erocessor storage, somewhat more frequently than does the Model 155
CPU. 1In addition, a 16K high-speed buffer is standard in the Model
3. The Model 155 and Model 1 of the Model 158 each have an 8K high—-
speed buffer.

¢ Reloadable monolithic control storage, instead of read-only storage,
is used for microprogram residence. Use of reloadable control
storage offers the advantage of improved microcode serviceability.

* A display console with keyboard and light pen are standard. The
display console functionally replaces a console typewriter-keyboard
and almost all the lights and switches on the system control panel
on the front of the Model 155 CPU. The display console is to be
used by maintenance personnel as well as console operators. The
display console offers faster operator-to-system communication via
the light pen and faster message display than a typewriter-keyboard -
console when operating in display mode. When display mode is used,
hard copy can be obtained, as an option, via the 85-cps 3213
Printer. The display console can also operate in printer-keyboard
mode, which enables it to accept 1052, 3210, and 3215 printer-
keyboard commands. The 3213 printer is required for printer-
keyboard mode.

* The 3056 Remote System Console can be attached to a Model 158 via a -
cable up to 200 feet in length to provide a remote free-standing
display console in addition to the standard display console on the
Model 158 CPU. The optional 3056 Remote System Console provides a
remote operator with almost all the functional capabilities as are
rrovided by the standard display console.

* The maximum aggregate data rate of five block multiplexer channels

ocperating concurrently in a Model 158 is 6.75 megabytes pexr second,
compared with 5.4 megabytes per second in a Model 155.

A Guide to the IBM System/370 Model 158 3

Page of GC20-1754-2
Revised February 20, 1976
By TNL GN20-3580

e The byte and block multiplexer channels of a Model 3 can have more
shared and nonshared subchannels than can the channels in a Model 1
or the Model 155. In addition, a shared subchannel in the Model 3
can be shared by a maximum of 32 instead of 16 devices.

e 3330-series disk storage (all models) and/or 3340 direct access
storage facilities can be attached to a Model 158 block multiplexer
channel via the optional Integrated Storage Controls (ISC) feature
as well as via 3830 Storage Control (Models 1 and 2). The ISC
feature provides dual direct access storage control functions
equivalent to two 3830 Storage Control Model 2 units, except for
four-channel switching. Up to four strings of from two to eight
drives each can be attached to each of the two logical storage
controls in the IsSC feature, for a total of eight 3330-series and/or
3340 strings (64 drives) attached via the ISC feature. Optionally,
the staging adapter feature can be installed on the ISC to permit
attachment of the 3850 Mass Storage System via ISC in addition to.
via 3830 Storage Control Model 3.

e The 3340 direct access storage facility can be attached to the Model
158 via 3830 Storage Control Model 2 and the Integrated Storage
Controls feature. The 3340 facility is intermediate capacity direct
access storage that, because of its unique design and advanced
technology, offers advantages over 2314 disk storage in addition to
those provided by 3330-series disk storage. Automatic error
correction features and multiple requesting are standard on the
3340. Rotational position sensing is optiomnal.

The storage medium for 3340 disk storage is the removakle
interchangeable 3348 Data Module which is a sealed cartridge that is
never opened by the operator. In addition to the disks on which
data is written, the 3348 Data Module contains a spindle, access
arms, and read/write heads. The 3340 Disk Storage Drive contains
the mechanical and electrical components required to operate the
3348 Data Module.

The 3340 facility has an 885 KB/sec data transfer rate, average seek
time of 25 ms, and full rotation time of 20.2 ms. A 3348 Data
Module has a maximum capacity of approximately 35 million bytes or
70 million bytes, depending on the model. One model of the 33u8
offers fixed heads for zero seek tire to approximately 502,000 bytes
maximum and movable heads for an average seek time of 25 ms to the
remaining bytes in the data module. B2 string of from two tc eight
3340 drives can be configured. From one to four 3340 strings can be
attached to the 3830 Model 2 and to each of the logical controls in
ISC. Any model of the 3348 can be mounted on a 3340 drive.
Therefore, 3340 string capacity can vary from 70 million to 560
million bytes in 35 and/or 70 million byte increments.

The sealed cartridge design of the 3340 facility offers the
advantages of multiple capacities per 3340 drive, increased data
reliability, and simplified data module loading and unloading
procedures. » :

e 3344 Direct Access Storage can be attached to a Model 158 via 3830
Storage Control Model 2 and Integrated Storage Controls. It offers
significantly increased maximum online capacity per drive for 3340
users without the necessity of program conversion. The 3344 is
fixed media disk storage. Data is recorded on nonremovakle disks.
The 3344 is designed to eliminate operator handling, eliminate
exposure to external contamination (like the 3348 Data Module), and
rrovide high reliability.

The 3344 has the same data transfer rate, average seek time, and
full rotation time as the 3340. However, the maximum capacity of a

A Guide to the IBM System/370 Model 158

N

Page of GC20-1754-2
Revised February 20, 1976
By TNL GN20-3580

3344 drive is 280 megabytes, or the equivalent of four 70-million-
byte 3348 data modules. The 3344 is a two-drive unit that attaches
to the 3340 Model A2. A 3340/3344 string can contain any mixture of
3344 and 3340 units (as long as the first is a 3340 model A2) for a
raximum of eight drives with a maximum capacity of over 1.8 billion
bytes.

Automa tic error correction, rotational position sensing, and
multiple requesting are standard in the 3344. Fixed head models
that contain fixed heads for zero access time to a portion of the
data and movable heads for access to the balance of the data are
also available.

e 3350 Direct Access Storage can be attached to a Model 158 via 3830
Storage Control Model 2 and Integrated Storage Controls. The 3350
is very large capacity, high-speed, fixed media direct access
storage. Data is stored on nonremovable disks. The 3350 is
designed to eliminate operator handling, eliminate exposure to
external contamination, and rrovide high reliability.

The 3350 has a data transfer rate of 1198 KB/sec, average seek time
of 25 ms, and full rotation time of 16.8 ms. 2 3350 drive operating
in native mode has a maximum capacity of 317.5 megabytes. 2 3350
string can contain from two to eight drives in two drive increments
for a maximum string capacity of over 2.5 billion bytes of online
disk storage.

The Standard Selective Format feature enables the format of each
3350 to be set by programming during volume initialization. & 3350
drive can operate in 3350 native mode, 3330 Model 1 compatibility
mode, or 3330 Model 11 compatibility mode. When operating in 3330
Model 1 compatibility mode, a 3350 drive is the equivalent of two
3330 Model 1 drives in capacity. When operating in 3330 Model 11
compatibility mode, a 3350 drive is the eguivalent of one 3330 Model
11 drive in capacity. This feature enables 3330-series user to
obtain the price performance and functional advantages of the 3350
without program conversion.

Automatic error correction, rotational position sensing, and
multiple regquesting features are standard. The 3350 is also
available in fixed head models. These models provide fixed heads
for zero access time to a portion of the data and movable heads for
access to the balance of the data.

‘¢ A remote support facility (RSF) utilizing the standard service
processor unit, not provided for the Model 155, is standard for the
Model 158. RSF enables a customer engineer specialist at a remote
location (System Support Center) to execute diagnostics and assist
in locating hardware failures in a Model 158. This may eliminate
the necessity of a trip to the installation by the customer engineer
specialist. RSF is designed to improve system availability by
reducing the amount of time required to locate hardware failures.

The Model 158 is designed primarily to support a virtual storage
environment which allows programmers to write and execute programs that
are larger than the processor storage available to them. When virtual
storage is supported, restraints normally imposed by the amount of
processor storage actually available in a system are eased. The removal
of certain restraints can enable applications to be installed more
easily, and can be valuable in the installation and operation of online
applications. While some of the new hardware features of the Model 158
and some of the new facilities supported by System/370 operating systems
are designed to improve performance, a virtual storage environment is
designed primarily to help improve the productivity of data processing
perscnnel and enhance the operational flexibility of the installation.

A Guide to the IBM System/370 Model 158 5

than 512K as a result of the implementation of monolithic, instead of
magnetic core, processor storage. Processor storage is contained within
the CPU frames of the Model 158. A 512K Model 158 is a half frame
larger than a Model 155 with 512K because of the additional hardware
features of the Model 158. The two models are the same height. The
size of a Model 158 is the same regardless of the amount of processor
storage installed. A four-megabyte Model 158 is a little more than half
the size of a Model 155 with two megabytes of processor storage.

Monolithic technology is used to implement all logic and all storage
(processor, local, control, and buffer) in the Model 158. Use of
monolithic technology for processor storage, as well as for logic,
represents a significant technological .advance in storage
implementation. The monolithic storage implemented in the Model 158
provides several advantages over the wired, discrete ferrlte core
storage implemented in the Model 155.

Monolithic storage is similar in design to monolithic logic
circuitry, the latter representing a technological advance over the
solid logic technology (SLT) introduced with the announcement of
System/360... Since the technology associated with monolithic storage is
like that used to produce monolithic loglc, monollthlc storage can be
batch-fabricated.

Solid Logic Technology (SLT)

Monolithic technology is a breakaway from the hybrid circuit design
concept of SLT and can best be explained by comparison with SLT. As
shown in Figure 10.2, SLT circuits were implemented on half-inch ceramic
squares called substrates. Metallic lands on the substrate formed
interconnections onto which the components were soldered. These
components consisted of transistors and diodes, which were integrated on
silicon chips about the size of'a pinhead, and thin film resistors. An
SLT chip usually contained one type of component, and several chips and
resistors were needed to form a circuit. In general, an SLT substrate
contained a single circuit. ,

SLT chip with

" one component Ceramic substrate

with interconnections

Figure 10.2. SLT substrate

Monolithic System Technology (MST)

Monolithic system technology also makes use of a half-inch-square
ceramic substrate with metal interconnections onto which chips are
placed. However, in monolithic logic circuitry, large numbers of
elementary components, such as transistors and resistors, are integrated
on a single chip. Unlike an SLT chip, an MST logic chip usually
contains several interconnected logic circuits instead of only one
component. MST logic modules, each consisting of one substrate, are

A Guide to the IBM System/370 Model 158 7

mounted on circuit cards, which are in turn mounted on circuit boards
(as in SLT logic).

MST logic offers the following advantages over SLT:

¢ MST logic circuitry is intrinsically more reliable because many
circuit connections are made on the chip, significantly reducing the
number of external connections,

¢ Faster circuit speeds can be obtained because the path between
circuits is considerably shorter.

¢ Space requirements for logic circuitry are reduced by the
significantly higher density of components per chip.

Monolithic Storage

Monolithic storage design incorporates the same concepts described
for monolithic logic. However, storage cells that are used to contain
storage bits instead of logic circuits are implemented on a metal oxide
semiconductor chip. In the Model 158, a monolithic storage array chip
is approximately 1/8 x 3/16 of an inch in size and contains a large
number of interconnected circuits. These circuits form storage .bits and
support circuitry (decoding, addressing, and sensing) on the chip.

Since power is required to maintain a one or zero state in a
monolithic storage bit, data is lost when power is turned off, and
monolithic storage is, therefore, said to be volatile. This is not true
of core storage, which retains a magnetized state when power is removed.

The following are the advantages of monolithic over core s;orage:

* Faster storage speeds can be obtained, first, because of the shorter
paths between storage circuitry and, second, because of the
nondestructive read-out capability of monolithic storage. Since
core storage read-out is destructive, a regeneration cycle is
required after a read and is also used before a write. This type of
regeneration cycle is not required for monolithic storage.

¢ Storage serviceability is enhanced because storage is implemented in
accessible, easily replaceable storage cards. Diagnostic routines
need only identify the failing storage card, which can be replaced
in a matter of minutes.

¢ Space requirements for system storage are reduced. Dense bit
packaging per chip is achieved by the use of monolithic technology
and by the fact that the regularity of a storage pattern lends
itself to such packaging.

-8 A Guide to the IBM System/370 Model 158

SECTION 20: ARCHITECTURE DESIGN AND SYSTEM COMPONENTS OF THE MODEL 1

20:05 ARCHITECTURE DESIGN

Extended System/370 architecture embodies two different modes of
system operation, basic control (BC) mode and extended control (EC)
mode, as determined by bit 12 of the current PSW. When a Model 158
operates in BC mode, the contents, layout, and function of permanently
assigned processor storage locations 0 to 127 are identical to these
locations in System/360 Models 22 and up (except 44 and 67) with the
exception of the use of PSW bit 12. BC mode is essentially the
System/360-compatible mode of System/370 operation.

When EC mode is operative in the Model 158, the format of the PSW is
altered and the number of permanently assigned locations extends beyond
processor storage address 127. Changes to the PSW consist of the
removal of certain fields to create space for additional mode and mask
bits that are required for new functions, such as dynamic address
translation and program event recording. The removed fields are
assigned to locations above 127 and to a control register.

EC mode is effective when PSW bit 12 is a one. BC mode is effective
when this bit is a zero. BC mode is established during initial program
reset. Therefore, a control program must turn on bit 12 of the PSW in
order to cause EC mode to become operative. As a result, control and
processing programs written for System/360 (Models 22 and up except ui
and 67) will run without modification in BC mode on a System/370 Model
158 (either a Model 1 or a Model 3) that has a comparable hardware
configuration, with the following exceptions:

1. Time-dependent programs. (They may or may not execute correctly.)

2. Programs that use machine-dependent data such as that which is
logged in the machine-dependent logout area. (0S SER and DOS
MCRR error-logging routines for System/360 models will not
.execute correctly.)

3. Programs that use the ASCII mode bit in the PSW (bit 12). ASCII
mode is not implemented, and this bit is used in System/370 to
specify BC or EC mode of operation.

4. Programs that depend on the nonusable lower processor storage
area being smaller than 1184 bytes. This area can be reduced to
512 bytes by moving the CPU extended logout area.

5. Programs deliberately written to cause certain program checks.

6. Programs that depend on devices or facilities not implemented in
the Model 158.

7. Programs that use model-dependent operations of the System/370
Model 158 that are not necessarily compatible with the same
operations on System/360 models.

8. Programs that depend on the validity of storage data after system
power has been turned off and then on.

Only BC mode is'implemented in the Model 155. Hence, control and

processing programs that currently operate on a Model 155 will run
without modification in BC mode on a Model 158 (either a Model 1 or a

A Guide to the IBM System/370 Model 158 9

Model 3) that has a comparable hardware configuration, witl :he
following exceptions:

1. Time-dependent programs. (They may or may not execute
correctly.)

2. Programs that use machine-dependent data such as that which is
logged in the machine-dependent logout area.

3. Programs deliberately written to cause certain program checks.

4. Programs that depend on the validity of storage data after system
power has been turned off and then on.

The following operating systems generated for System/360 models can
operate on a Model 158 (Models 1 and 3) in BC mode, if necessary: (1)
DOS Version 3 operating systems generated for a Model 50 and (2) Os pcCp,
MFT, and MVT operating systems generated for Models 50, 65, and 67.

They are subject to the eight compatibility restraints in the first list
and, therefore, should be run with the Model 158 set to hard stop on
machine checks (see Section 60:30 in A Guide to. the IBM System/370 Model

155, 6C20-1729, for a discussion of why this is necessary).

DOS Version 3 and 4 supervisors generated for a Model 155 can be used
on a Model 158 Model 1 in BC mode if the Model 158 is set to hard stop
on machine check errors. DOS Versions 3 and 4 support 3215 mode only
for the display console. Processing programs used with these DOS
versions are subject to the four compatibility restraints in the second
list.

OS MFT and MVT support of the Model 158 (Model 1) operating in BC
mode is provided as of OS Release 21.6. DIDOCS with 3270 support
(provided as of Release 21.7) must be included in the generated control
program in order to support display mode of operation for the display
console. An OS MFT or MVT control program generated for the Model 155
using OS Release 21.7 or later also can be used on a Model 158 to
support BC mode operations (the Model 158 should be specified as an
alternate CPU via the SECMODS macro at system generation). DIDOCS with
3270 support should be included in the Model 155 control program when it
is generated in order to support display mode for the display console
when the control program is used on a Model 158. Only printer-keyboard
mode is supported by the OS starter systems provided for the system
generation procedure. '

Support of Model 158 Model 1 systems operating in EC mode is provided
by DOs/Vs, 0S/VsSl, 0S/VS2 Releases 1 and up, and VM/370, each of which
is designated as system control programming (SCP). All of these
programming systems support virtual storage using dynamic address
translation, which operates only when the system is in EC mode. OS/VS2
Release 2 supports multiple virtual storages and Model 158 tightly
coupled and loosely coupled multiprocessing configurations. VM/370
supports a virtual machine environment.

User-written processing programs that operate on a Model 155 under
DOS (Version 3 or 4), OS MFT, or OS MVT control and that are not time-
dependent can be used with DOS/VS, 0S/VS1l, or 0S/VS2 Release 1,
respectively, with little or no modification, as discussed in the
optional programming systems supplements (Sections 80 to 100). Hence,
compatible growth from a System/360 or a BC mode nonvirtual storage
environment to an EC mode virtual storage environment is provided.

10 i A Guide to the IBM System/370 Model 158

| The following are standard features of the Model 158 (Model 1) that
are functionally identical to the same features of the Model 155:

¢ Instruction set that includes System/360 instructions and the
following System/370 instructions:

COMPARE LOGICAL CHARACTERS SHIFT AND ROUND DECIMAL
UNDER MASK START 1/0 FAST RELEASE

COMPARE LOGICAL LONG (executed as a START 1/0)

INSERT CHARACTERS UNDER MASK STORE CHANNEL ID

LOAD CONTROL, STORE CONTROL STORE CHARACTERS UNDER MASK

MONITOR CALL STORE CLOCK, SET CLOCK

MOVE LONG STORE CPU ID

e Monitoring feature

Store and fetch protection

Multiple control registers (more registers are implemented in the

Model 158 than in the Model 155)+%

Interval timer (3.3 millisecond resolution)

Time of day clock

Byte-oriented operands

Extended external interruption masking

Expanded machine check interruption class (more data is logged by

the Model 158) '

®* RAS features (instruction retry, ECC on processor storage, limited
channel logout, and command retry)

¢ 8K of high-speed buffer storage (different assignment algorithm in
the Model 158)

¢ Byte multiplexer channel 0

® Block multiplexer channels 1 and 2 (including selector channel mode)

The following are optional features of the Model 158 (Model 1) that
are functionally identical to the same features on the Model 155:

Extended precision floating point (no-charge)
1401/40/60,1410/7010 Compatibility (no-charge)
707077074 Compatibility (no-charge)

0S/DOS Compatibility (no-charge)

Block multiplexer channels 3, 4, and 5

Second byte multiplexer channel (replaces channel 4)
Channel-to-Channel Adapter

Direct Control

o © ® 0o 0o 0 0 o0

| The following are standard features of the Model 158 (Model 1) that
are not available for the Model 155:

Implementation of EC mode of system operation#
Dynamic address translation#*

Reference and change recording#*

Channel indirect data addressing*

CPU timer and clock comparator*

Program event recording#*

Program interruption for SET SYSTEM MASK instruction#*
Store status function#*

Faster execution of certain classes of instructions
Monolithic processor storage (instead of core storage)
Reloadable monolithic control storage

Display console with keyboard and light pen

Service processor unit natively attached to the Model 158 CPU

*Part of the Dynamic Address Translation Facility of a Model 155 II.

The functional descriptions of these items in this publication apply to
their implementation in both the Model 158 and the Model 155 II, unless
otherwise indicated.

A Guide to the IBM System/370 Model 158 11

¢ New instructions#*

CLEAR I/0 SET CLOCK COMPARATOR

COMPARE AND SWAP SET CPU TIMER

COMPARE DOUBLE AND SWAP SET PSW KEY FROM ADDRESS ,
INSERT PSW KEY STORE CLOCK COMPARATOR S
LOAD REAL ADDRESS STORE CPU TIMER

PURGE TLB v STORE THEN AND SYSTEM MASK

RESET REFERENCE BIT STORE THEN OR SYSTEM MASK

The following are optional features of the Model 158 (Model 1) that
are not available for the Model 155:

¢ 3056 Remote System Console (attached via a cable up to 200 feet in
length)

¢ 3213 Printer for hard copy (attached via a cable up to 100 feet in
length .

¢ Integrated Storage Controls for attachment of 3330-series and/or

3340 disk storage, or the 3850 Mass Storage System

Staging adapter for Integrated Storage Controls

Two-Channel Switch for Integrated Storage Controls

Power Warning

Virtual Machine Assist (no-charge)

Multiprocessing (3058 Multisystem Unit) -

*Part of the Dynamic Address Translation Facility of a Model 155 II.

The functional descriptions of these items in this publication apply to
their implementation in both the Model 158 and the Model 155 II, unless
otherwise indicated.

All the new features of the Model 158 Model 1 except Integrated
Storage Controls, multiprocessing, and those related to implementing
virtual storage (such as dynamic address translation and reference and
change recording) or virtual machines (VMA feature) are discussed in the
remainder of this section.

20:10 THE CENTRAL PROCESSING. UNIT

Like the Model 155, the Model 158 has a CPU cycle time of 115
nanoseconds and an internal data path that is four bytes wide. The
implementation of local storage, instruction prefetching, expanded
external interruption masking, and parity checking are the same in the
two models. Control registers in addition to the five implemented in
the Model 155 are implemented in the Model 158 in order to support new
EC-mode-only functions. Additional control registers are implemented in
the Model 155 II as well.

EXTENDED CONTROL MODE

Extended control mode, unlike basic control mode, is exclusively a
System/370 mode and is not implemented in System/360. Note that IBM-
supplied operating systems do not support System/370 models operating in
EC mode without dynamic address translation operative also. Facilities
that depend on which mode is in effect are discussed below. Any item -
not covered operates identically in BC and EC modes. (The entire
discussion of EC/BC mode differences applies to the Model 155 II also,
except for Figure 20.10.3.)

Change in PSW Format

When a System/370 operates in EC mode, the format of the PSW differs
from the BC mode format. Both PSW formats are shown in Figure 20.10.1.
In EC mode, the PSW does not contain individual channel mask bits, an
instruction length code, or the interruption code for a supervisor call, ;
external, or program interruption. The channel masks are contained in S’

12 A Guide to the IBM System/370 Model 158

control register 2, and the other fields are allocated permanently
assigned locations in the fixed lower processor storage area above
address 127.

Removal of the fields indicated provides room in the EC mode PSW for
control of new features that are unique to EC mode (such as PER and DAT)
and for the addition of summary mask bits (such as channel and I/O
masks). Use of a single mask bit to control the operation of an entire
facility (such as program event recording) or an entire interruption
class (such as I/0 and external) simplifies the coding required to
enable and disable the system for these interruptionms.

BC MODE PSW FORMAT EC MODE PSW FORMAT

Bit Content Bit Content

0 Channel 0 mask 0 0

1 -Channel 1 mask 1 PER mask

Channel 2 mask 2

?; Channel 3 mask System 3 g SVStkem

4 Channel 4 mask mask 4 0 mas

5 Channel 5 mask 5 Translation mode (DAT feature mask)

6 1/0 mask 6 1/0 summary mask

7 External mask 7 External summary mask

8 Protect key 8 Protect key

9 9

10 10

11 11

12 EC/BC mode (0 is BC) 12 EC/BC mode {1 is EC)

13 | Machine check mask 13 Machine check mask

14 Wait/running state 14 Wait/running state

15 Problem/supervisor state 15 Problem/supervisor state

16 Interruption code 16 0

17 17 0

18 18 | Condition code

19 19

20 20 Program mask

21 21

22 22 l

23 23

24 24 | ¢
~ :: ﬁLI ~ J.' ~
~ e ~ 7 ~

30 30 l

3t Y 31

32 nstruction length code 32 0

3 | Y 33

34 | Condition code 34,

35 35

36 | Program mask 36

37 37

38 38

39 l 3 | ¥

40 | Instruction address 40 Instruction address.

4 M

42 42
A L & ~ L ~
~ ~ 1 ~ ~N -~ 1 -

61 61

62 62

63 63 | vy

Figure 20.10.1. BC mode and EC mode PSW formats

Change in Permanently Assigned Processor Storage Locations

When a System/370 operates in EC mode, the number of permangntly
assigned locations in lower processor storage is increésed to include
fields for storing instruction length codes, interruption codes (for

A Guide to the IBM System/370 Model 158 13

supervisor call, external, and program interruptions), program event
recording data, the I/0 device address for an I/0 interruption, and an
exception address for the DAT feature. The model-independent BC mode
and EC mode fixed storage areas for System/370 models are shown in
Figure 20.10.2, :

The balance of the fixed area for the Model 158 (Model 1), that which
has model-dependent fields, is shown in Figure 20.10.3. This model-
dependent area is not affected by whether EC or BC mode is specified
except for locations 185 to 187, which contain the I/O address after an
I/0 interruption and an IPL only when EC mode is in effect. The machine
check interruption procedure and the format of the data logged on a
machine check are the same in EC and BC modes, except for differences in
the PSW format and the permanently assigned locations previously
discussed.

Channel Masking Changes

When a System/370 operates in EC mode, interruptions from each
channel are controlled by the summary I/O mask bit in the current PSW
(bit 6) and an individual channel mask bit in control register 2. 1In
the Model 158, bits 0 to 5 in control register 2 are assigned to control
channels 0 to 5, respectively. Both the summary mask bit and the
appropriate individual channel mask bit must be on for an interruption
from a given channel to occur. In BC mode, interruptions from channels
0 to 5 are controlled only by channel mask bits in the current PSW (bits
0 to 5). :

Changes to Certain System/370 Instruction Definitions

All Model 158 instructions are valid in BC and EC modes. However,
because of differences between the PSW format and the permanently
assigned storage locations in EC and BC modes, the definition of certain
instructions is affected. Instructions provided for both System/360 and
System/370 whose definition is altered for EC mode are:

BRANCH AND LINK (RR, RX) SET STORAGE KEY
INSERT STORAGE KEY SET SYSTEM MASK
LOAD PSW SUPERVISOR CALL

SET PROGRAM MASK

Revised definitions of these instructions to include BC/EC mode
differences are contained in System/370 Principles of Operation (Ga22-
7000-2 or later editions). Programs that operate in BC mode and that
use LOAD PSW and/or SET SYSTEM MASK (SSM) instructions must be modified
to operate correctly in EC mode. The eight-byte PSW to be loaded by
LPSW instructions and the eight-bit system mask to be set by ssM
instructions must be changed to EC mode format. (Programs that use SSM
instructions and that are to be executed in an 0S/VS1 or 0S/VS2
environment need not be modified because the interruption for SsM
instructions and an SSM simulation routine, as described next, are
supported.)

Programs that use the other instructions listed do not have to be
changed to operate correctly in EC mode, unless they use other
facilities that are mode dependent. Programs that operate in BC mode
and that use the STORE THEN OR SYSTEM MASK and STORE THEN AND SYSTEM
MASK instructions (not provided for System/360) must also be modified to
operate correctly in EC mode.

14 A Guide to the IBM System/370 Model 158

BC MODE FIXED AREA 0-159

Decimal 0
locations IPL PSW
IPL CCW 1
16 IPL CCW 2
2 External old PSW
32 Supervisor call old PSW
40 Program old PSW
48 Machine check old PSW
% 1/0 old PSW
64 Channel status word — CSW
72 Channel address word — CAW 76 Unused
80 Interval timer 84 Unused
’ 88 External new PSW
% Supervisor call new PSW
104 Program new PSW
12 Machine check new PSW
120 1/0 new PSW
128 0 132 0
136 0 140 0
::: 0 148 0 |Monitor 0
] 156 0 Monitor code
EC MODE FIXED AREA 0—159
0 IPL PSW
8 B IPL CCW 1
16 IPL CCW 2
2 External old PSW
32 Supervisor call old PSW
f 40 Program old PSW
48 Machine check old PSW
% 1/ old PSW
64 Channel status word — CSW
72 Channel address word — CAW | 76 Unused
80 Interval timer 84 Unused
88 External new PSW
96 Supervisor call new PSW
104 Program new PSW
12 Machine check new PSW
120 1/0 new PSW
128 0 132 0 Externalint.code
136 0 ILC SVCint.code |140 O ILC |Program int. code|
144 Translation excp. addr. |148 0 (IZ/'Igsr;itor PER code| 0
152 0 PER address 156 O Monitor code

Figure 20.10.2.

o Model independent among
System/360 and System/370
models in BC mode except
for PSW bit 12

e Processed by the control program

o Mode! independent among
System/370 models in
EC mode

o PSW format is different
from that of BC mode
PSW

e Processed by the control
program

Model 158 model-independent fixed storage locations

for BC and EC modes

A Guide to the IBM System/370 Model 158

15

160 Reserved 1/0 COMMUNICATIONS AREA ‘
160—191 N’
_1 68 Channel ID 172 Reserved
176 Limited channel logout 180 Reserved *Stored for EC mode
184 ' - operations only
0 1/0 address 188 Reserved
192;, Unused ‘ L
216 Contents of CPU timer FIXED LOGOUT AREA
224 216-511
Contents of clock comparator
232 Machine check code ® Layout varies by System/370
240 model
: Reserved Al | g hi
. de 248 — = ® Always logged on a machine
gggf;s‘go e - 0 | Failing storage address | 252 E::;et' elete ECC codes check interruption
= Reserved A= ® Processed by RMS)
2724, Model 158 model-dependent |ong;Jt’data ~
329 Microcode EC level . .
328 0 I CPU serial number Igzztures ’ﬁgli\;'s I Spare I&E no.
336;5 16 shared UCW cbntrol unit addresses =~
35%:: Floating-point register save area £
384 - :
~ . General reglster save area ~
448:: Control register save area o~
512 CPU EXTENDED LOGOUT AREA
CPU extended logout area — 672 bytes * ® Mode! dependent
) ® Stored on all exigent machine W
(Pointer in control_register 15 . checks and first and eighth t
set to 512 at IPL) instruction retry if specified
and logged by RMS
® Processed by Processor
Logout Analysis program
Figure 20.10.3. Model 158 (Model 1) model-dependent fixed storage
locations
Program Interruption for Set System Mask Instruction
When a System/370 is operating in EC mode, execution of the SET
SYSTEM MASK instruction is under the control of the SSM mask bit in
control register 0. When the SSM mask bit is a one, an attempt to
execute an SSM instruction causes a program interruption without
execution of the SSM instruction. When the SSM mask bit is a zero, SSM
instructions are executed as usual. -
This interruption is implemented to enable existing programs that
were written for System/360 models or for System/370 BC mode of
operation to execute correctly in EC mode without modification of the
system mask field addressed by existing SSM instructions. When an
interruption for an SSM instruction occurs, the contents of the BC mode
format system mask indicated by the SSM instruction can be inspected,
and the appropriate EC mode mask bits can then be set by an SsM
simulation routine.
‘\ ,/’"

16 A Guide to the IBM System/370 Model 158

o

Expansion of Storage Protect Key Size

The size of the storage protect key associated with each 2K storage
block is expanded from five to seven bits in the Model 158. The two
additional bits (reference and change) are included for use with dynamic
address translation and are discussed in Section 30:10. The SET STORAGE
KEY instruction sets a seven-bit key regardless of the mode, BC or EC,
in effect. The INSERT STORAGE KEY loads a five-bit or a seven-bit key
into the register indicated, depending on whether BC or EC mode,
respectively, is in effect.

Program Event Recording

Program event recording (PER), a standard feature of the Model 158,
is designed to assist in program debugging by enabling a program to be
alerted to any combination of the following events via a program
interruption:

¢ Successful execution of any type of branch instruction

®* Alteration of the contents of the general registers designated by
the user

¢ Fetching of an instruction from a processor storage area defined by
the user

e Alteration of the contents of a processor storage area defined by
the user

The PER feature can operate only when EC mode is in effect and the
PER mask, bit 1 of the current PSW, is on. Control register 9 (bits 0
to 3) is used to specify which of the four PER event types are to be
monitored. A PER program interruption is taken after the occurrence of
an event only if both the PER mask bit and the applicable event mask bit
in control register 9 are on. Control register 9 (bits 16 to 31) also
specifies which of the 16 general registers are to be monitored if
monitoring of this event is specified. Control registers 10 and 11
indicate the beginning address and the ending address, respectively, of
the contiguous processor storage area that is to be monitored for
instruction fetching and/or alteration.

When an event that is being monitored is detected, PER hardware
causes a program interruption, if the PER mask bit is on, and
identification of the type of event is stored in the fixed processor
storage area (location 150). The address of the instruction associated
with the event is also stored (locations 153 to 155). Program event
interruptions are lost if they occur when the PER mask bit or the
particular event mask bit is off.

If dynamic address translation mode is also specified when PER is
active, virtual storage addresses instead of real storage addresses
(discussed in Section 30) are placed in the control registers to monitor
references to a contiguous virtual storage area.

Note that significant CPU performance degradation occurs when
successful branches, storage alterations, or general register
alterations are being monitored.

Both the PER facility and the monitoring feature are provided for
debugging purposes. The two features differ from one another in (1) the
number of events that can be defined, (2) whether the events are defined
by the hardware or the programmer, and (3) whether the hardware or the
programmer checks for the events and causes the interruptions. When PER
is used, once the events to be monitored have been designated by the
user, CPU hardware checks for the occurrence of the events and causes

A Guide to the IBM System/370 Model 158 17

the interruption. When the monitoring feature is used, the user defines
the events to be monitored (up to 16 classes with up to 16 million
monitor codes each instead of only four events), determines when the
events occur, and causes program interruptions by issuing MONITOR CALL
instructions.

NEW INSTRUCTIONS

STORE THEN AND SYSTEM MASK and STORE THEN OR SYSTEM MASK are two new
privileged instructions that affect the system mask (bits 0 to 7 in the
current PSW). The STORE THEN AND SYSTEM MASK instruction provides, via
a single instruction, the capability of storing the current system mask
for later restoration, while selectively zeroing certain system mask
bits. The STORE THEN OR SYSTEM MASK provides system mask storing and
selective setting of system mask bits to ones. These two instructions
simplify the coding required to alter the system mask, particularly when
the existing settings must be saved.

COMPARE AND SWAP and COMPARE DOUBLE AND SWAP instructions provide the
capability of controlling access to a shared real storage area in a
multiprogramming or multiprocessing environment. Although the TEST AND
SET instruction can also be used for this purpose, these compare
instructions enable a program to leave a message when the shared area is
in use. This message can be inspected, via a compare and swap
instruction, by other programs that share the real storage area. The
virtual telecommunication access method (VTaM),, 0S/VS2 Releases 2 and
up, and VSAM Release 2 use these two instructions.

The INSERT PSW KEY privileged instruction enables a program to place
in general register 2 the four-bit storage protection key from the
current PSW. The SET PSW KEY FROM ADDRESS privileged instruction
enables a program to place a protect key contained in general register 2
Oor processor storage in the current PSW. When a control program is
requested to access a given processor storage location by a problem
program, these two instructions can be used by the control program
during its processing of the request to determine whether or not the
problem program is authorized to access the specified processor storage
location.

The CLEAR I/0 privileged instruction can be used together with the
HALT DEVICE instruction to terminate all I/O activity on a given
channel. CLEAR I/O, INSERT PSW KEY, and SET PSW KEY FROM ADDRESS are
used by 0S/VS2 Releases 2 and up.

The new instructions discussed above are provided in the Model 155 II
also. Other new instructions provided for the Model 158 are related to
specific features (such as dynamic address translation, the CPU timer,
and the clock comparator) and are discussed with these features.

IMPROVED INSTRUCTION EXECUTION SPEED

Additional hardware is provided in the Model 158 to improve the
execution speed of certain classes of operations, when compared with the
Model 155. These classes include the following:

e All binary, floating-point, and decimal multiply operations
¢ All eight general register shift operations

® Certain move character operations

¢ Convert to binary and convert to decimal operations

The Model 158 also has improved instruction prefetching via the use
of a 64-word buffer in addition to three one-word buffers.

18 v A Guide to the IBM Systems/370 Model 158

CLOCK COMPARATOR AND CPU TIMER

These timing facilities are standard on the Model 158. (They are
also provided in a Model 155 II.) The clock comparator provides a means
of causing an external interruption when the time of day clock has
passed a time specified by a program. This feature can be used to
initiate an action, terminate an operation, or inspect an activity, for
example, at specific clock times during system operation.

The clock comparator has the same format as the time of day clock and
is set to zero during initial program reset. The SET CLOCK COMPARATOR
privileged instruction is provided to place a value that represents a
time of day in the clock comparator. When clock comparator
interruptions are specified via the external interruption summary mask
bit in the current PSW and the clock comparator subclass mask bit in
control register 0, an external interruption occurs when the time of day
clock value is greater than the clock comparator value. Bits 0 to 51 of
the time of day clock and the clock comparator are compared. If clock
comparator interruptions are masked when this condition occurs, the
interruption remains pending only as long as the time of day clock value
remains higher than the value in the clock comparator. The STORE CLOCK
COMPARATOR privileged instruction can be used to obtain the current
value of the clock comparator.

The use of a clock comparator to cause an interruption when a
specified time is passed, instead of using the interval timer at
location 80, offers two advantages. First, the time of day clock
increments when the system is in the stopped state while the interval
timer does not. Hence, if a system stop occurs during processing and
the system is restarted, the clock comparator can still cause an
interruption at the time requested. The interruption caused by the
interval timer in such a situation is late. Second, implementing the
time of day clock and the clock comparator in the same doubleword format
eliminates having to convert doubleword time of day clock units to
single-word interval timer units.

The CPU timer provides a means of causing an external interruption
when an interval of time specified by a program has elapsed. The CPU
timer is implemented as a binary counter with a format identical to that
of the time of day clock; however, bit 0 of the CPU timer is considered
to be a sign. The CPU timer has a maximum time period half as large as
that of the time of day clock and the same resolution of one
microsecond. When both the CPU timer and the time of day clock are
running, the stepping rates of the two are synchronized so that they are
stepped at exactly the same rate.

The CPU timer is set to zero at initial program reset, and the SET
CPU TIMER privileged instruction is provided to place an interval of
time in the CPU timer. The STORE CPU TIMER privileged instruction can
be used to obtain the current CPU timer value. The CPU timer decrements
every microsecond. If the external interruption summary mask bit in the
current PSW and the CPU timer subclass mask bit in control register 0
are on, an external interruption occurs whenever the CPU timer value is
negative (not just when the timer goes from positive to negative),
indicating that the time interval has elapsed. The CPU timer decrements
when the CPU is executing instructions (including instruction retry
operations) and while the CPU is in the wait state. It is not
decremented when the system is in the stopped state.

While providing essentially the same function as the interval timer
at location 80, the CPU timer provides advantages over the interval
timer as follows: Task processing intervals of less than 3.3
milliseconds are accurately measured because of the one-microsecond
resolution of the CPU timer. A pending CPU timer interruption is reset
when a SET CPU TIMER instruction is issued to set a positive value in

A Guide to the IBM System/370 Model 158 19

the CPU timer, eliminating the need to take an interruption in order to
reset the CPU timer, as is required for the interval timer.

In addition, the amount of timing facilities processing required
during a task switch can be reduced. This can result from the fact that
the format of the time of day clock and the CPU timer are the same.
Conversion of doubleword time of day clock values to single-word
interval timer values is eliminated, and timer queues can be structured
so that little of the processing currently required during a task
switch, when the interval timer is used, is necessary.

RELIABILITY, AVAILABILITY, AND SERVICEABILITY FEATURES

All the hardware RAS features that are implemented in the Model 155
are also implemented in the Model 158:

* Automatic retry of most failing CPU operations by hardware.

® ECC checking on processor storage to correct all single-bit and
detect all double-bit errors. -

¢ Automatic deletion of malfunctioning buffer halfblock locations,
index locations, and the entire buffer when necessary.

* I/0 operation retry facilities, including the storing of channel
retry data during an I/0 interruption that results from an error,
and channel/control unit command retry procedures to correct certain
failing 1I/0 operations.

¢ Expanded machine check interruption to facilitate error recording
and recovery procedures. The area reserved for Model 158 CPU
extended logouts is 992 bytes, the same as for the Model 155.
Currently, both models log 672 bytes.

All of the above operate in exactly the same manner in the Model 158
as they do in the Model 155 except for the following:

® Machine checks that result from a Single-bit processor storage error
correction are controlled by an ECC mode bit in addition to the
recovery mask bit and PSW bit 13. The ECC mode bit is turned off
during a system reset and is not turned on by recovery routines for
the Model 158. The normal mode of operation for the Model 158 is to
run disabled for single-bit processor storage error correction
interruptions. ' The ECC mode bit is provided to permit the customer
engineer to enable these interruptions during maintenance operations.

* The time of day clock damage interruption, maskable by the external
mask bit and PSW bit 13, is expanded to include clock comparator and
CPU timer errors. Its name is changed to "Timing Facilities
Damage". When a STORE CLOCK COMPARATOR or a STORE CPU TIMER
instruction is issued and the addressed timing facility has an error
or when the CPU timer or the clock comparator develops an error, a
timing facilities damage interruption occurs when the timing
facilities damage mask bit is one. (This applies to the Model 155 IT
also.)

* Whenever a machine check interruption occurs in a Model 158, the
current value of the CPU timer is stored in locations 216 to 223,
and the current value of the clock comparator is stored in locations
224 to 231. Bits 46 and 47 of the machine check code, shown in
Figure 20.10.4, are used to indicate that these values were stored
correctly. (This applies to the Model 155 II also.)

20 A Guide to the IBM Systems/370 Model 158

¢ Uncorrectable errors in the storage protect array will be indicated
by a one in bit 18 of the machine check code.

i
e Additional fields are defined within the model-dependent fixed
logout area (in locations 272 to 351), as shown in Figure 20.10.3.

* A warning machine check interruption is implemented in Model 158
systems with the optional Power Warning feature installed. This
field-installable feature can be used in Model 158 systems that have
O.E.M. uninterruptable power supplies (UPS). A UPS is designed to
protect a system from power line disturbances by providing auxiliary
power for a specified interval of time during a power reduction or
cutage.

A system can be fully or partially protected. Full protection

~ involves supplying a UPS for all system components. This support
provides continuous system operation for a specified interval of
time during a power line disturbance. Partial protection involves
supplying a UPS only for a critical subset of system components,
namely, the CPU, processor storage, and one channel and its attached
control units. The Power Warning feature can be used with partially
and fully protected Model 158 systems.

A UPS for a Model 158 must generate a power warning signal when an
under voltage condition of 18% (+ 2%) is detected. A Model 158 CPU
with the Power Warning feature recognizes this signal. If bit 13 in
the current PSW and the warning submask (bit 7 in control register
14) are both on, a warning repressible machine check interruption
occurs. Bit 8 in the stored machine check interruption code will be
on to indicate a warning condition. The machine check handler (MCH)
routine is given CPU control to process the interruption. If either
mask bit is off, the warning interruption remains pending.

The Power Warning feature is designed to enable a Model 158 system
to terminate operations in an orderly manner when a power line
disturbance or power shutdown occurs. When a warning interruption
occurs, a determination can be made as to whether or not the power
line disturbance is transient. Operation of a fully protected
system need not be terminated for a transient disturbance of a short
enough duration. If system termination is required, a complete
processor storage dump can be taken first. This enables processor
storage to be restored when a system restart is performed at a later
time.

Model 158 recovery management routines (machine check and channel
check handlers) are included in OS MFT and 0S MVT as of Release 21.6.
They provide recovery facilities comparable to those provided for the
Model 155 and support new Model 158 machine check facilities, except for
MFT, which does not support the Power Warning feature. These Model 158
recovery routines are also included in 0S/VSl1 and 0S/VS2 and are
modified to operate correctly when the Model 158 is operating in EC and
dynamic address translation modes. Model 158 recovery management
routines are also provided in DOS/VS. A discussion of how these
recovery routines differ from those provided for BC mode operations is
contained in each optional programming systems supplement.

In addition to the RAS features implemented in the CPU, the Model 158
system contains a service processor unit as a standard feature. Part of
its function is to replace the optional 2955 Remote Analysis Unit that
is available for the Model 155 to provide a remote analysis capability.
The service processor is utilized by the Remote Support Facility, which
significantly extends the remote problem analysis capability for the
Model 158. This capability is discussed in Section 20:30.

A Guide to the IBM System/370 Model 158 21

(44

8ST TOPOW 0LE/wo3asAs WEI oYy o3 opIno Y

Fixed Logout Area Locations 232-239

0-8 14-15 16-18
Machine Check Machine Storage 20-31, 46, 47 48-63
Types Check Error Validity Bits CPU Extended Log Length
Tense
el
a af=2|w a)
olalalg]o 212z wl & w
21215 |F|oluw 2|[e 23 u 3 68| x 3 2 Ze:s°7'2fl’)‘° logout
=] o 3 [a] bl 5 or ytes
o
BIT 0 1 2 3 4 5 6 7 89-1314 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 313245 46 47 48 63
Storage
Subclass Bit Interruption Type Bit Error Bit Valid Fixed Area Data
0 SD — System Damage 16 Storage 20-23 Machine Check Old PSW (48-55)
| . 1 PD — Instruction Processing Error 20 AMWP
nterna Damage Uncorrected 21 Masks and Protect Key
2 SR — System Recovery 17 Storage 22 Program Mask and Condition Code
3 TD— Timer Damage Error 23 Instruction Address
External 4 CD~— Timing Facilities Damage Corrected 24 Failing Storage Address (248, 249)
5 ED— External Damage 18 Key in Storage 25 Region Code (252-255)
6 Unused Error 26 Unused
Alert 7 DG— Degradation Uncorrected 27 Floating Point Registers (352-383)
8 W— Warning 28 General Registers (384-447)
29 Control Registers (448-511)
30 CPU Extended Logout
31 Storage {Validity of processor storage
being processed by instructions
when interruption occured)
46 CPU Timer Value
47 Clock Comparator Value

Figure 20.10.4.

Model 158 machine check code

20:15 STORAGE

PROCESSOR (MAIN) STORAGE

Like the Model 155, the Model 158 has a two-level storage system in
which large high-speed processor storage backs up small, higher-speed

monolithic buffer storage. Processor storage is available for the Model
158 as follows:

Model Capacity

I 512K
J 1024K
JI 1536K
K 2048K
KJ 3072K
L 4096K

The path to processor storage in the Model 158 is 16 bytes wide. The
cycle time of processor storage is based on the operation being
performed. The CPU can fetch eight bytes from processor storage in 805
nanoseconds and begin using four of the bytes read, as follows:
Successive reads of processor storage furnish 16 bytes (4 words) every
1035 nanoseconds, which includes data fetch and buffer update time. The
first eight bytes are delivered to the buffer in 805 nanoseconds, and
the second eight bytes arrive 115 nanoseconds later. '

During the 805 nanoseconds required to make eight bytes from
processor storage available in the buffer, the first four of these bytes
are also made available to a CPU data register. If they are required,
the CPU can fetch the next four bytes in 115 nanoseconds. The CPU can
fetch the third word of the 16 bytes fetched in another 230 nanoseconds
and the fourth word in another 115 nanoseconds for a total of 16 bytes
in 1265 nanoseconds.

The CPU can store eight bytes of data in processor storage every 690
nanoseconds if the data is written on a doubleword processor storage
boundary. Any other type of write--a write of 1 to 7 bytes, 9 to 16
bytes, or 8 bytes that are not placed on a doubleword boundary--is a
partial write and requires 920 nanoseconds. & partial write involves
reading before writing except when 16 bytes are written. Model 158
cycle and access times are summarized in Table 20.15.1.

Table 20.15.1. Model 158 Model 1 cycle and access times

Time in
Cycle or Access Time Nanoseconds
CPU cycle time 115
Processor storage read cycle time (successive reads of 16 bytes) 1035
CPU fetch of 8 bytes from processor storage to buffer 805
CPU fetch from processor storage to a data register
4 bytes 805
8 bytes 920
12 bytes 1150
16 bytes 1265
Processor storage cycle time for a doubleword write 690
(8 bytes on a doubleword boundary)
Processor storage cycle time for a partial write 920
(1-7 bytes, 9-16 bytes, 8 bytes not on a doubleword boundary)
CPU fetch from buffer
4 bytes 230
8 bytes 345

A Guide to the IBM System/370 Model 158 23

HIGH-SPEED BUFFER STORAGE

As in the Model 155. an 8K high-speed buffer is standard in the Model
158 (Model 1). Buffer storage provides high-speed data access for CPU
fetches. In a Model 158, as in a Model 155, the CPU can obtain four
bytes from the buffer in 230 nanoseconds (two CPU cycles) or eight bytes
in 345 nanoseconds (three CPU cycles). If the buffer does not contain
the data required, the data must be obtained from processor storage.

Use of the high-speed buffer in Models 158 and 155 is the same. When
a data fetch request is made by the CPU, a determination is made of
whether the requested data is in the high-speed buffer by interrogation
of the index array of the buffer"s contents. If the data requested is
present in the buffer and is valid, it is sent directly to the CPU
without a processor storage reference. If the requested data is not
currently in the buffer, a processor storage fetch is made and the data
obtained is sent to the CPU. The data is also assigned a buffer
location and stored in the buffer. When data is stored by the CPU, both
the buffer and processor storage are updated if the contents of the
processor storage location being altered are currently being maintained
in the buffer.

The channels never access the buffer directly. They read into and
write from processor storage using a direct path between the CPU and
processor storage that bypasses the buffer. When a channel stores data
in processor storage, the index array is inspected. If the data from
the affected processor storage address is being maintained in the
buffer, appropriate bits are set in the index array to indicate that
this buffer data is no longer valid.

The algorithm implemented in Model 1 of the Model 158 to maintain the
contents of the high-speed buffer differs from the algorithm implemented
in the Model 155 and is designed to enable the Model 158 CPU to fetch
data from the buffer a slightly higher percentage of the time than is
achieved by the Model 155 CPU.

The 8K buffer in the Model 158 is divided into two 4K compartments
each of which can contain 256 halfblocks (one row) of data, as shown in
Figure 20.15.1. Processor storage is divided in 4K-byte rows of 256
halfblocks as well. The number of rows in processor storage is a
function of processor storage size.

The index array for the Model 158 buffer, also shown in Figure
20.15.1, has 256 halfblock address locations. Each location contains
two index entries, one for the corresponding halfblock in the upper
compartment of the buffer and one for the corresponding halfblock in the
lower compartment. An index entry contains a processor storage row
address (bits 8 to 19 of the processor storage address of the halfblock
in the buffer), two valid bits, and one parity bit. The valid bits, one
for the corresponding halfblock in each compartment, indicate the
presence of absence of valid data in the corresponding halfblock buffer
location. A valid bit is turned on when data is placed in the buffer.

One OK bit and one least recently used (LRU) bit are associated with
each of the 256 halfback locations in the index array. The OK bit
indicates the corresponding halfblocks of the buffer and index array are
functioning correctly. The LRU bit is sometimes used to determine which
compartment is assigned to a halfblock when it is loaded into the
buffer. During system resent or IPL, all valid bits are set off, all OK
bits are set on, and all processor storage addresses in the index
entries are set to zero.

24 » A Guide to the IBM System/370 Model 158

8K BUFFER STORAGE PROCESSOR STORAGE

¢ 2 0 _1 S 265
< C
Halfblock { Halfblock , Halfblock) Row 0 | Halfblock l Halfblockl Halfblock | 4K
2 2 -
Row 1 4K
Upper 4K -
compartment
* 266 halfbiocks
2
HalfbloclealbeockT LlHalfblock
{ <
Lower 4K
. compartment
256 halfblocks i
4 WV
INDEX ARRAY
0 Upper Lower oK LRU
entry entry bit bit
>)
<O
¢ 4K
)) :
-t &
. Row n | Halfblock I Halfblockl Halfblock | 4K
256 Buffer index entry 2 2
—_— <
halfblock d P ~
. ~ rocessor storage row .
address address I Halfblock = 16 bytes
locations One valid bit Row = 256 halfblocks, 4K
Upper Lower OK | LRU
255 entry entry bit bit

Figure 20.15.1. High-speed buffer organization in the Model 1

Buffer space is reserved and loaded on a halfblock basis as follows.
When a halfblock is to be loaded, the index array entry for the
halfblock address of the data is inspected to determine which buffer
compartment to assign. If only one valid bit is on, the halfblock is
assigned the compartment whose valid bit is off. If both valid bits are
on or both are off, the LRU bit setting determines the compartment
assigned. If the LRU bit is on, the upper compartment is assigned. The
lower compartment is assigned if the LRU bit is off.

The LRU bit setting is changed when the data being referenced is
found in the buffer or a buffer assignment is made. When the referenced
data is found in the buffer, the LRU bit for the associated index entry
halfblock location is set to point to the compartment that does not
contain the data. Similarly, when a halfblock is assigned to a
compartment, the LRU bit for the associated index entry location is set
to point to the compartment not assigned.

RELOADABLE CONTROL STORAGE

CPU functions and channel operations are microprogram-controlled in
the Model 158, just as they are in the Model 155. However, monolithic
reloadable control storage (RCS) is implemented in the Model 158 for
microprogram residence. The Model 155 uses read-only control storage.

A Guide to the IBM System/370 Model 158 ‘ 25

As implemented in the Model 158, use of reloadable control storage
instead of read-only storage results in improved serviceability.
Serviceability is enhanced because of the speed and ease of microcode-
only engineering change installation. The new microcode need only be
loaded into control storage to install such an engineering change. 1In
addition, more extensive diagnostics can be provided without the
necessity of adding control storage just for diagnostic residence.
Control storage can be used to contain diagnostic routines during
maintenance procedures, because diagnostics can overlay normal system
microcode. Microcode-only features, such as the compatibility features,
can be made available on the Model 158 on a no-charge basis.

The Model 158 contains two units of reloadable monolithic control
storage, each of which has a capacity of 4096 72-bit control words.
Reloadable control storage is Separate from processor storage and is
parity checked for validity.

Control storage is loaded directly from a small disk device called

. the console file, which is a basic component of the Model 158. This
console file is located behind the front covers of the operator display
console and is also called the inboard file. It reads removable,
prerecorded disk cartridges. The console file is similar to the read-
only disk device that is used in a Model 155 to load microdiagnostic
tests. However, the console file in the Model 158 is faster and a
little larger than the file in the Model 155. In addition, the Model
158 console file uses a disk cartridge that has a considerably larger
capacity than the disk cartridge used with the Model 155 console file.

Reading from the console file begins when the initial microprogram
load (IMPL) procedure is initiated. An IMPL is initiated automatically
when system power is turned on and can be initiated by the operator from
the console panel on the CPU when power is already on. There are no I/0
instructions or commands that a user program can execute to read from or
write on a console file disk cartridge. When power is already on, IMPL
is initiated by pressing the IMPL key.

After loading is completed, considerable error checking occurs to
ensure that the microcode was read and loaded into control storage
correctly. A hash total is accumulated that is checked against the hash
total read from the disk cartridge. This ensures that control storage
has been correctly loaded. The system reset microcode (just loaded) is
executed, and the CPU is placed in the stopped state, ready for an IPL
of the operating system.

Prewritten disk cartridges containing all the microcode required to
support the standard and the user-specified optional features of a Model
158 are shipped to each installation. One standard and one backup
cartridge that contain all the microcode required for the system (except
that for the optional Virtual Machine Assist feature) are provided, in
addition to other disks that contain system diagnostics (and the Virtual
Machine Assist feature microcode). The disk cartridge that contains the
system microcode is called the IMPL disk or the S-disk and must be
mounted on the inboard file in order for the Model 158 to operate.

There is no defined procedure for temporarily loading engineering
change patches to existing microcode that has been loaded into RCS.
When an engineering change is required, new disk cartridges containing
the altered microcode will be distributed. An IMPL disk is portable
among Model 158 systems with the same hardware configuration and at the
same engineering change level.

Note that when system power is turned off, the data in both processor

and control storage is lost, so an IMPL must be performed when power is
turned on again. The IMPL is performed automatically during a power on.

26 A Guide to the IBM Systems/370 Model 158

t‘\..w'/

N J

Page of GC20-1754-2
Revised February 20, 1976
By TNL GN20-3580

STORAGE CONTROL UNIT

The storage control unit (SCU) provides the interface between
processor storage and other hardware components of the system (CPU,
channels, etc.). The SCU contains the following:

* High-speed buffer storage and associated index array

¢ Hardware for translating virtual storage addresses into real storage
addresses ,

* The storage protect key array for processor storage

* Storage data register (a 16-byte register that is used to transfer
data to and from system components)

. ECC'logic
e PER logic

e The time of day clock and CPU timer

20:20 CHANNELS

The channel configurations available for the Model 158 are identical
to those available for the Model 155. That is, one byte multiplexer
channel and two block multiplexer channels are standard. Three
additional channels can be installed--all block multiplexer or one byte
multiplexer and two block multiplexer channels. When installed, the
second byte multiplexer channel replaces block multiplexer channel 4,

Block multiplexer channels can also operate in selector channel mode,
and shared subchannels are available to permit operation of selector
channel Jevices when in the normal block multiplexer mode. All channels
are integrated, rather than standalone, and a maximum of one Channel-to-
Channel %dapter can be installed on the Model 158.

Channel operation, channel addressing and priorities, chamnel data
rates, and RAS features are the same for Models 158 and 155. However,
the maximum I/0 device configuration that can operate without overrun in
a Model 158 configuration provides a maximum block multiplexer channel
aggregate data rate of 6.75 million bytes per second (MB/sec), instead
of 5.4 MB/sec. This rate is achieved when two 2305 Model 2 modules and
three 3420 Model 8 tape units operate concurrently on five block
rultiplexer channels and can be supported by a Model 158 operating in BC
mode or in EC and dynamic address translation modes.

The only significant difference between the channels of a Model 158
and a Model 155 is a change in UCW (subchannel) availability. The
number of UCW's available for a Model 158 is not a function of the
amount of processor storage installed, as it is for the Model 155. ‘The
total number of UCW's present in a Model 158 is the same for any
processor storage size.

The number of shared and nonshared subchannels available for the byte
multiplexer channel(s) depends on whether the subchannel sharing
capability is inhibited or permitted. At installation time, the
customer engineer independently wires byte multiplexer channel 0 and, if
present, byte multiplexer channel 4 to permit or inhibit the use of
shared subchannels. Byte multiplexer channel 0 will always have 256
nonshared subchannels (for device addresses 00 to FF) and no shared
subchannels if subchannel sharing is inhibited for channel 0. The same
applies to byte multplexer channel 4. If subchannel sharing is allowed

A Guide to the IBM System/370 Model 158 27

Page of GC20-1754-2
Revised February 20, 1976

By TNL GN20-3580
for channel 0, it will have 120 nonshared subchannels and 8 shared ; =
subchannels. The same is true for byte multiplexer channel &. AN

Each shared subchannel of a byte multiplexer channel has 16
contiguous device addresses (X0 to XF) associated with it where X varies
from 8 to F. Devices with a 1 in the high-order bit position of their
device address are assigned shared subchannels of a byte multiplexer
channel. This permits a control unit to have up to sixteen I/0 devices
that share the same subchannel.

When subchannel sharing is permitted, the eight shared subchannels
use the same UCW's as the first eight nonshared subchannels. Therefore,
the following device addresses for a byte mult iplexer channel are
mutually exclusive when subchannel sharing is allowed:

80-8F and 00
90-9F and 01
AO0-AF and 02
BO-BF and 03
CO-CF and 04
DO-DF and 05
EO-EF and 06
FO-FF and 07

The block multiplexer channels present in a Model 158 share 512
UCW*s. As in a Model 155, these 512 UCW locations are located in bump
storage within processor storage in the Model 158 and are divided into
480 nonshared UCW's and 16 shared UCW's. UCW (subchannel) assionment
for block multiplexer channels is the same in Models 158 and 155. That
is, shared subchannels have preassigned addresses, which are established
by the customer engineer, while nonshared subchannels are assigned
dynamically during system operation. A shared subchannel is associated , \
with 16 device addresses in the range of X0 to XF. })

The 16 shared subchannels available can be allocated among the
installed block multiplexer channels in any desired way. The devices
attached to shared subchannels of block multiplexer channels operate in
selector made (no disconnection during command chained operations).

20:25 SYSTEM CONSCLES

STANDARD DISPIAY CCNSOLE

Unlike the Model 155, the Model 158 has a display console with a
keybcard and a light pen as the standard system console device. The
3210 Printer-Keykoard (Models 1 and 2), and the 3215 Printer-Keyboard
Model 1 cannot be installed on a Model 158 as the primary console
device. The display console on the Model 158 is used for
operator/system communication, diagnostic functions, and displaying data
that for a Model 155 is displayed via lights on the system control panel
on the front of the CPU. As shown in Figure 20.25.1, the front panel of
a Model 158 CPU has a small conscle panel in the lower right-hand corner
and does not contain the lights that are present on the Model 155 CPU
system console panel. '

The Model 158 operator comnsole consists of a display tube mounted on
a reading board, a keykoard positioned in front of the display tube, a
light pen located at the right-hand side of the display tube (attached
via a wire), and a small panel that contains pushbuttons, switches, and
indicators.

Up to 25 lines of 80 characters per line can be displayed on the : 4
display tube simultaneously. The keyboard is provided to allow manual o
data entry. The light pen provides a means of communicating with the L /
system via the console without using buttons or switches and without —

28 A Guide to the IBM System/370 Model 158

Page of GC20-1754-2
Revised February 20, 1976
By TNL GN20-3580

Other operator and maintenance functions are performed using the display
console, light pen, and keyboard.

The display console is microprogram controlled. I/0 operations for
the display console are controlled by the service processor unit, which
is discussed in Section 20:30. Microcode for the display console is
contained in a portion of the reloadable control storage that is
provided in the service processor. Display console microcode is loaded
into the service processor from the S-disk on the inboard file during a
power-on sequence or an IMPL.

The display console can be used in display mode or in printer-
keyboard mode. The system microcode disk cartridge contains both
display mode and printer-keyboard mode wicrocode for the display
console. An IMPL is required to change from either mode to the other.
Optionally, a 3213 Printer (85-cps maximum print speed) can be installed
to provide hard copy when display mode is used. The IBRM-supplied
operating systems that support the Model 158 require the installation of
the 3213 Printer when the display console is operated in printer-
keyboard mode.

In order to operate the Model 158 console in display mode in an 0OS or
0S/VS, environment, Device Independent Display Operator Console Support
(DIDCCS) for the 3270 must be included in the control program. This
support is provided for 0S MFT and MVT as of Release 21.7 and in OS/VS
operating systems. Hard-copy backup support is provided by OS and 0S/VS
for all displayed messages and for all operator responses entered using
the keyboard when the 3213 printer is present.

The printer-keyboard mode allows an operating system that supports a
1052, 3210 Model 1, or 3215 Model 1 as the primary console to orerate on
the Model 158. since DOS and DOS/VS do not support display mode for the
Model 158 display console, printer-keyboard mode must be used when a DOS
control program operates on a Model 158. The display unit accepts 1052,
3210, and 3215 commands when printer-keyboard mode microcode is 1oaded.
Output messages are displayed on the display screen and printed on the
hard-copy device. Operator responses are entered using the keyboard and
are also displayed on the screen and written on the hard-copy device.
Certain keys are not operative when printer-keyboard mode is in effect
for the display console.

If the display console is to be used in both display and printer-
keyboard modes, three kyte multiplexer channel device addresses are
required. When display mode is used, the preferred device address for
the display is 010 or 014, and address 011 or 015 should be assigned to
the 3213 Printer if it is present in the configuration. The display
should be assigned address 009 or 01F for use with printer-keyboard
mode. A control unit position on the byte multiplexer channel is not
required by the display unit, the keyboard, or the hard-copy printer.

A second console file, called the outboard file, is located behind
the inboard file and under the display console.. The disk cartridge for
the cutboard file is called the SEREP disk or N-disk. It contains the
SEREP program, blank tracks, and, optionally, the Virtual Machine Assist
feature microcode (discussed in Section 40:05). Extended machine check
logout data is automatically written on the blank tracks of this disk
during a machine check interruption. The logout data is written to the
outboard file by hardware (the service processor) without programming
support.

Up to eight logouts can be recorded on one N-disk. The logouts are
recorded on a rotating basis so that the disk always contains the last
eight logouts. This logout data is still recorded in the log data set
(SYS1.LOGREC in O0S, SYSREC in DOS) by recovery management support
routines. The logout to the outboard file provides backup in the event

30 A Guide to the IBM System/370 Model 158

Page of GC20-1754-2
Revised February 20, 1976
By TNL GN20-3580

that programmed logout is not possible because of the nature of the
error and can be accessed by a local or remote customer engineer using
the display console without prograrming assistance.

When display mode is in effect, the operator communicates operator
control functions to the display console via the light pen or the
keyboard. The functions that the operator can perform are divided into
four groups. The functions in each group are represented by a frame of
text that is displayed on the screen of the display console. The text
in a frame contains the names of functions the operator can perform.
Each function name has a lozenge (m) displayed to the left of it. 1In
addition, each function name. has a letter/mmber combination associated
with it, which is also displayed. The operator selects the function to
be performed by pressing the light pen against the lozenge associated
with the function name or by entering the appropriate letter/number
combination via the keyboard. : :

The four operator control displays provided are the configuration
frame, manual frame, program frame, and alters/display frame. Other
frames are provided for customer engineer use (see Section 20:30). The
configuration frame is displayed automatically after an IMPL is
performed and can be selected when the manual frame is being displayed.

The configuration frame displays the configuration of the system.
Included in this display are the optional CPU features installed, size
of processor storage, channel configuration, console device addresses, .
disabled adapters (such as the ISC and channel-to-channel adapters),
disabled timer features, a list of the shared UCW addresses, and the
conscle mode in effect.

The configuration frame also provides the operator with the
capakility of disabling the interval timer, disabling the 3213 printer,
disabling the power warning feature, disabling the optional 3056 Remote
System Console, selecting printer-keyboard mode for the display console,
and loading VMA feature microcode. The system is automatically placed
in display mode after an IMPL. If printer-keyboard mode is to ke used,
it must be selected after IMPL using the configuration frame. (Loading
VMA feature microcode is discussed in Section 40.)

The manual or service frame can be selected for display from the
configuration frame after the operator has made any required
configuration changes. The manual frame can also be selected and
displayed by pressing the mode select key on the keyboard. The manual
frame displays the current state of the system and also contains PSW
restart, restart, system reset, load, store status, system reset/clear,
and load/clear functions. The store status function is not provided in
a Model 155. (The store status function can be performed on a Model
155 II using the 3210 Model 1 or 3215 Printer-Keyboard.)

By initiating the store status function, the operator can cause the
following to be placed in processor storage in the Model 158:

CPU timer value - locations 216-223

Clock comparator value - locations 224-231

Current PSW contents - locations 256-263

Address of LEX list (associated with DOS Emulator) - locations 266—271
Ccntents of the floating-point registers - locations 352-383

Contents of the general régisters - locations 384-447

Contents of the control registers - locations 448-511

A Guide to the IBM System/370 Model 158 31

Page of GC20-1754-2
Revised February 20, 1976
By TNL GN20-3580

The operator should perform the store status function to preserve , !
system status after an error causes a system halt and before resetting ' \\~,/
the system to load a standalone storage dump program. Ctherwise, the
contents of these fields and registers at the time the halt occurred are
lost during the reset that is performed to IPL the dump program. 'The
IBM supplied standalone dump program is modified to obtain system status
information from the locations indicated.

The manual frame can be used to select the other frames (program,
service, alter/display, and configuration). Processor control modes
(run or instruction step) can also be set using the manual frame, as can
check control mode (process or hard stop). Certain system indicators
(system, manual, wait, test) are displayed as well on the manual frame.

The program frame is normally displayed whenever the system is
operating in run mode under program control. The proogram frame is
displayed automatically after a successful IPL and can be manually
selected from the manual and service frames. In both printer-keyboard
mode and display mode without DIDOCS support, up to 24 lines of 80
characters each are used to display operating system messages to the
operator. The twenty-fifth line is always used to display certain
system indicators (wait state, etc.) and the PSW. When display mode
with DIDOCS support is used, the first 24 lines of the program frame are
divided into five functional areas:

* Message Area (lines 1-19) - Used to display messages from the
operating system and problem programs, certain operator commands,
and status displays.

* PFK (Program Function Key) Display Line (line 20) - Contains a
display of the PFK numbers that were specified at system generation.
These numbers are used when operating system commands are to be 5
entered via the light pen. | J

¢ Instruction Line (line 21) - Used to display system messages that
pertain to console control.

* Entry Area (lines 22 and 23) - Used by the operator to enter
operating system commands and to reply to messages from the
operating system and problem programs.

* Warning Line (line 24) - Used to display warning messages that alert
the operator to certain conditions and that normally require
operator action.

The alter/display frame can be selected by the operator using the
manual or service frame and when the CPU is in the stopped (wanual)
state and the clocks are running. The facilities that can be altered
and displayed are listed with a lozenge and a letter code. The operator
selects the desired function with the light pen or the keyboard.
Hexadecimal digits are displayed also, and data can be entered using the
light pen or the keyboard. The contents of the following can be altered
and/or displayed: real storage, virtual storage, storage protect keys,
real channel UCWs, logical channel UCWs, active UCWs, CPU local storage,
I/0 UCW local storage, I/0 buffer local storage, control registers,
general registers, floating-point registers, and the PSWH.

A security key is provided cn the right-hand side of the display
tube. When this key is in the horizontal position, the operator can
select any frame as previously described. When the security key is in
the vertical position or not inserted, the mode select and interrupt
keys are disabled and the operator cannot change from the program frame.

32 A Guide to the IBM System/370 Model 158

Page of GC20-1754-2
Added February 20, 1976
By TNL GN20-3580

THE 3056 REMOTE SYSTEM CONSOLE

Optionally, the 3056 Remote System Console (RSC) can be attached to a
Model 158 via a cable up to 200 feet in length to provide remote
operational capability. The 3056 cannot be attached to a Model 155 or
155 II. The field-installable 3056 RSC is a standalone unit that
contains a display tube and keyboard identical to those of the standard
display console. The 3056 RSC does not have a light pen and the 3213
Printer cannot be installed to provide hard copy backup for the 3056.

The operator has almost all the same operational capabilities when
using a 3056 RSC as when using the standard display console. Table
20.25.1 compares the functions offéred by these two system consoles.

The 3056 RSC is not attached to a channel in the Model 158 and does
not have its own I/0 address. It operates in parallel with and is an
extension of the standard system console. That is, the 3056 RSC is
redundant to the standard display console in that the same display is
shown on both units and operator responses to messages can be made from
either keyboard. Therefore, the 3056 does not require programming
suppor t.

A Guide to the IBM System/370 Model 158 32.1

Page of GC20-1754-2
Added February 20, 1976
By TNL GN20-3580

32.2

THIS PAGE INTENTIONALLY BLANK

A Guide to the IBM System/370 Model 158

'\‘_/"1

Table 20.25.1. Functional capabilities of the standard display console
and the 3056 Remote System Console

Standard 3056
Function Display Console Remote System Console
Display tube Yes Yes
Keyboard Yes Yes
Light pen , Yes No
Hardcopy available Yes via 3213 . No
Printer (optional)
Copy display to Yes Yes
printer
Security key Yes Yes
Power on/off Yes No
Interrupt key Yes Yes
IMPL key Yes No
IsCl IMPL check Yes No
indicator
ISC2 IMPL check Yes No
indicator
Load (IPL) key Yes Yes
CPU status indicators Yes Yes
Dual intensity Yes Yes
System reset function Yes Yes
Check reset function Yes Yes
PSW restart function Yes Yes
Start key Yes Yes
Stop key Yes Yes
Console check ' Yes No
indicator
Processor check Yes Yes
Alter/display real Yes Yes
storage
CE frames Yes Yes
Set time of day clock Yes No
Audible alarm Yes Yes
Program function keys Yes, activated Yes, activated
by light pen or by the keyboard

the keyboard

Operation of the 3056 console is controlled by the setting of the
disable keys on the standard display and 3056 consoles. When the
standard display console key is unlocked, the 3056 console is
inoperative. When the standard display console key is locked and the
3056 console key is unlocked, the remote operator has unrestricted
access to all frames via the 3056 console and the standard display
console keyboard is inoperative. If both the standard display console
and the 3056 console keys are locked, both opertors can access only the
program frame and cannot perform an IPL or alter programs and data.

20:30 REMOTE SUPPORT FACILITY

FUNCTION AND COMPONENTS

The Remote Support Facility provides a remote problem analysis
capability for Model 158 hardware that is a significant extension of the
remote analysis functions available for the Model 155 using the optional
2955 Remote Analysis Unit as an interface to the RETAIN/370 system in
Raleigh, North Carolina. RSF provides the means for a customer engineer
specialist located in a system support center to perform diagnostic

A Guide to the IBM System/370 Model 158 33

operations on a Model 158 processor in an installation. This enables

the specialist to assist the onsite customer engineer in analyzing CPU
problems, if established security procedures are correctly performed,

without having to go to the installation. The objective of RSF is to

reduce the amount of time required to locate hardware failures so that
system down time is reduced.

Standard hardware is included in the Model 158 to support RSF. The
primary components of RSF are shown in Figure 20.30.1. RSF consists of
a service processor unit that is natively attached to the Model 158 CPU,
a communication line between the modem built into the service processor
and the RETAIN/370 system in Raleigh, and a communication line between
the RETAIN/370 system and a display device in a system support center
that is being operated by a customer engineer specialist. The remote
display device is a 3270 display unit. Voice communication between the
local customer engineer and the remote customer engineer specialist is
accomplished using an additional telephone line between the installation
and the system support center.

Model 158 CPU

Service processor/display console

Communications
line

RETAIN/370

leigh
System Raleig

Communications
line

3270 System Support Center

CE specialist

Figure 20.30.1. Components of the Remote Support Facility

34 A Guide to the IBM Systems/370 Model 158

THE SERVICE PROCESSOR

The service processor is a microprogram-controlled unit that is
functionally independent of the Model 158 CPU but that receives its
power from the CPU. Unlike the 2955, which requires a large portion of
the Model 155 CPU to be operational for its own operation, the service
processor can operate when the Model 158 CPU has a hard failure that
prevents its operation.

The service processor contains the following major components in
addition to an arithmetic/logic unit:

* Reloadable control storage to contain the microprograms that are
controlling the operation of the service processor. Microprograms
for the service processor are basically divided into those that
support normal operating functions and those that support
maintenance functions. They are contained on disk cartridges that
are read by the inboard and outboard files. Basic microcode for the
service processor is contained on the S-disk, which also contains
the microcode for the Model 158 CPU. During an IMPL operation,
which loads system microcode into reloadable control storage in the
Model 158 CPU, basic microcode is also loaded into the reloadable
control storage in the service processor.

Diagnostic routines for the Model 158 that execute under control of
the service processor are provided on several disk cartridges that
are shipped to each installation with the S- and N-disks. When
diagnostics are to be executed, the customer engineer removes the N-
disk from the outboard file and mounts the appropriate disk
cartridge in its place.

Reloadable control storage in the service processor is not large
enough to contain all the service processor microcode at the same
time. Therefore, during normal operation of the Model 158 CPU and
when diagnostics are being performed, microprograms are loaded into
the service processor as required.

e Data registers that are used to transfer data between the service
processor and the Model 158 CPU

¢ Controls for I/O operations to the inboard and outboard files. Aall
access to these two files is controlled by the service processor.

e Controls for all I/0 operations to the display console. The service
processor controls the display of data on the console screen and
accepts input from the keyboard of the display console and its light
pen. Data from CPU programs and service processor programs that is
to be displayed on the screen is formatted by a resident service
processor routine and placed in a specific area of control storage
in the service processor. Hardware in the display console
continuously regenerates an image for the display screen from the
data in this special control storage area.

* Controls for all I/0 operations to the 3213 printer that can be used
for hardcopy backup of the display console or when the display
console is used in printer-keyboard mode.

® A built-in modem that is used to connect the service processor to
the RETAIN/370 system via a communication line.

The service processor performs its functions in response to requests
from the Model 158 CPU and from a local or remote operator using the
light pen or display console keyboard and a display frame. In addition
to the manual, alter/display, configuration, and program frames that are
used by the primary console operator, the service, CE, teleprocessing

A Guide to the IBM Systems/370 Model 158 35

link, diagnostic, and index frames are provided for customer engineer
use.

The service frame provides the customer engineer with the functions
of the manual frame, additional customer engineer functions (that were
provided via the rollers in the Model 155), and the means of calling
other frames for diagnostic purposes. The CE frames enable the customer
engineer to display the status (all registers, latches, control stats,
etc.) of the Model 158 CPU while the diagnostic frame is used to execute
specific diagnostic programs. The teleprocessing link frame is used to
establish a connection between the service processor and the RETAIN/370
system and the index frame lists all the available display frames.

RETAIN/370 SYSTEM

The RETAIN/370 system provides communication control functions that
enable a specialist in a system support center to communicate with a
Model 158 CPU in an installation for remote analysis purposes. The ‘
Remote Support Facility program executes in the RETAIN/370 system to
provide this function.

The RSF program makes a 3270 display device in a system support)
center appear to the specialist as a display console attached to a Model
158 CPU. All the functions a local customer engineer can perform using
the light pen or keyboard of a Model 158 display console can be
performed by the remote specialist using a 3270 that is controlled by
the RSF program.

The RSF program accepts requests from the 3270 display, translates
them to a format acceptable to the remote mode of the service processor,
and transmits the resulting commands to the service processor. The
service processor executes the commands and returns the results to the
RSF program which retranslates them and sends them to the 3270 display.
The RSF program also enables the remote specialist to invoke the Model N
158 Logout Analysis program for execution in the RETAIN/370 system and
to receive the results on his display.

REMOTE SUPPORT CAPABILITIES

RSF provides two functional modes of operation for the local customer
engineer: remote console and remote program. The remote console mode
is designed to be used when the local customer engineer requires the aid
of a remote specialist while the remote program mode enables the local
customer engineer to run test programs on the Model 158.

Remote Console Mode

When the local customer engineer determines that the help of a specialist
is required to locate and fix a hardware failure, he establishes a comnection
with a specialist in a system support center via the remote support facility.

To accomplish this connection the local customer engineer first calls
the system support center to obtain the number of a dial-up line between
RETAIN/370 and the center. A specialist in the system support center
also calls Raleigh to obtain an available line number. The local -
customer engineer activates the teleprocessing link between the service
processor and RETAIN/370, specifying the assigned line and the remote
specialist connects to RETAIN/370 also using the assigned line.

In order to activate the teleprocessing link, the local customer

engineer first selects the teleprocessing link frame. The local i :
customer engineer then inserts a CE key in the slot in the operator N

36 A Guide to the IBM System/370 Model 158

control panel on the Model 158 CPU. This enables the modem in the
service processor and lights up the remote pushbutton above the key
slot. The CE key can be removed without deactivating the link. The
modem can be deactivated at any time by pressing the remote pushbutton.
The local customer engineer then selects the remote console resident
code using the teleprocessing link frame.

The teleprocessing 1link is initiated by sending two lines of customer
information to the remote specialist for security verfication. 1If the
information is valid, the remote specialist returns a ready message and
the link is established. The local customer engineer then selects the
submode of operation to be used within the remote console mode. There
are two possible submodes: remote control and remote monitor.

Remote control mode. When this mode of operation is in effect, the
remote specialist has complete control over operation of the Model 158
using his display device. The remote specialist can perform any console
function, either customer engineer or operator, that an operator or
customer engineer located at the Model 158 installation normally could
perform using the Model 158 display console.

The Model 158 display console cannot be used to control the operation
of the Model 158 in this RSF mode (the keyboard and light pen are
deactivated) but all functions executed by the remote specialist are
displayed on the local console. The local operator or customer engineer
can terminate the teleprocessing link at any time by pressing the remote
pushbutton on the operator control panel. Note that this mode of
operation does not require the execution of any programs in the Model
158 CPU or even that the Model 158 CPU be functional.

Communication between the local customer engineer and the remote
specialist can be accomplished using the first twelve lines of the
teleprocessing link frame. The local customer can signal the remote
specialist by selecting any data on the display screen using the light
pen. This causes a message to be displayed on the display device of the
remote specialist. The remote specialist then controls the exchange
(returns to the teleprocessing link frame to allow the local customer
engineer to enter his message).

The remote control mode will be used when the local customer engineer
cannot locate the cause of a solid failure. The remote specialist can
display any required system status, execute any diagnostic functions
available, and access any logout records on the N-disk using his display
device. The specialist can request transmission of a logout record to
RETAIN/370 for processing by the Logout Analysis Program or display the
logout on his display device. The Model 158 will normally be dedicated
to the remote specialist when this mode is in effect.

Remote monitor mode. When this mode is operative, the displays shown
on the Model 158 display console are also shown on the display device of
the remote specialist. This mode enables the remote specialist to
monitor Model 158 displays but does not give him any control over the
operation of the Model 158. The local customer engineer (or the
operator) controls Model 158 operations. This mode could be used
concurrently with normal system operation. However, since display data
is transmitted to the remote site, executing programs will experience a
degradation in performance.

Remote Program Mode

When the local customer engineer decides to run test programs on the
Model 158, he establishes a direct connection to the RETAIN/370 system

A Guide to the IBM System/370 Model 158 37

by activating the modem in the service processor as described for remote
console mode. He then selects the remote program resident code. The
connection between the Model 158 system and the RETAIN/370 system is

similiar to a direct channel connection and is not initiated from the
teleprocessing link frame.

When remote program mode has been established, OLTs can be executed
concurrently with normal system operations using OLTEP or in a
standalone environment using OLTSEP. 1In addition, SYS1.LOGREC data can
be sent to RETAIN/370 and the Model 158 Logout Analysis Program can be
invoked to process the data. In both cases, the remote specialist can
receive the results from the RETAIN/370 system at a later time.
20:35 STANDARD AND OPTIONAIL SYSTEM FEATURES
STANDARD FEATURES
Standard features for the System/370 Model 158 (Models 1 and 3) are: !

e BC and

EC mode of operation

¢ Instruction set that includes binary, decimal, and floating-point .
arithmetic, and certain new System/370 instructions. Standard
System/370 instructions for the Model 158 are:

*CLEAR

170

COMPARE AND SWAP

COMPARE DOUBLE AND SWAP

COMPARE LOGICAL CHARACTERS UNDER MASK

COMPARE LOGICAL LONG

INSERT CHARACTERS UNDER MASK

*INSERT PSW KEY

*LOAD CONTROL

*LOAD REAL ADDRESS ;
MONITOR CALL R—
MOVE LONG

*PURGE
*RESET

TLB
REFERENCE BIT

*SET CLOCK

*SET CLOCK COMPARATOR
*SET CPU TIMER

*SET PSW KEY FROM ADDRESS

SHIFT
*START
*STORE

STORE

STORE
*STORE
*STORE
*STORE
*STORE
*STORE
*STORE

38

Dynamic Address Translation
Reference and Change Recording
Channel Indirect Data Addressing
Instruction retry ' -
Interval timer (3.3 millisecond resolution)

Time of day clock ‘

Clock comparator and CPU timer

Monitoring feature

Program Event Recording

Program interruption for SSM instruction ; ;
Expanded machine check interruption class —’

AND ROUND DECIMAL

I/70 FAST RELEASE (executed as a START I/0 on the Model 158)
CHANNEL ID

CHARACTERS UNDER MASK
CLOCK

CLOCK COMPARATOR
CONTROL

CPU ID

CPU TIMER

THEN AND SYSTEM MASK
THEN OR SYSTEM MASK

A Guide to the IBM System/370 Model 158

e A

e

SN

ECC on processor storage

Byte-oriented operands

Store and fetch protection

High-speed buffer storage - 8K bytes for the Model 1, 16K bytes
for the Model 3

Byte multiplexer channel 0

Block multiplexer channels 1 and 2 (includes selector channel mode)
Channel retry data in limited channel logout area

Reloadable control storage

Store status function

Display console with keyboard and light pen

Service processor unit

*

frivileged instruction

OPTIONAL FEATURES

of

Optional features for the System/370 Model 158 (Models 1 and 3), all
which can be field installed, are:

Extended Precision Floating Point (no-charge)
1401/40/60,1410/7010 Compatibility (no-charge)

0S/DOS Compatibility (no-charge)

707077074 Compatibility (no-charge and mutually exclusive with the
Virtual Machine Assist feature)

Direct Control (includes External Interrupt feature)

Block multiplexer channels 3, 4, and 5 (includes selector

channel mode)

Second Byte Multiplexer Channel*--replaces channel 4

3213 Printer for hard copy for the display console (optional for
display mode, required for printer-keyboard mode)

3056 Remote System Console

Channel-to-Channel Adapter

Integrated Storage Controls

Two Channel-Switch for Integrated Storage Controls

Staging Adapter for Integrated Storage Controls

Power Warning

Virtual Machine Assist (no-charge and mutually exclusive with the
7070/7074 Compatibility feature)

Multiprocessing (3058 Multisystem Unit)

*

Channel 3 is a prerequisite.

A Guide to the IBM System/370 Model 158 39

SECTION 30: VIRTUAL STORAGE AND DYNAMIC ADDRESS TRANSLATION

The first subsection, 30:05, discusses the needs that virtual storage
and dynamic address translation in Systemv/370 are designed to address.
No previous understanding of these facilities is assumed. In this
discussion, an address space is defined as a consecutive set of
addresses that can be used in programs to reference data and
instructions. System operation in IBM~supported virtual storage
environments is explained conceptually, without use of all the
terminology new to such an environment.

The general advantages of IBM-supplied virtual storage operating
systems are presented also. Included in this subsection are those that
apply to DOS/Vs, 0S/vsl, and 0S/VsS2. Additional advantages of virtual
storage that are specific to a particular IBM-supplied operating system
are discussed in the optional supplement for that operating system.

The last portion of subsection 30:05 defines the terminology
associated with virtual storage and dynamic address translation
hardware. The terminology included is that common to the four IBM-
supplied programming systems that support a virtual storage environment
for System/370. Terms unique to a particular programming system are
defined in the optional supplement that describes that programming
system.

Subsection 30:10 describes in detail the implementation and operation
.of dynamic address translation and channel indirect data addressing
‘hardware in the Model 158 (Models 1 and 3). Other hardware items
associated with dynamic address translation, such as reference and
change recording, are discussed as well.

The last subsection, 30:15, discusses the new factors that affect
system performance in a virtual storage environment. The information
presented is related to efficient installation and utilization of an

IBM-supplied virtual storage operating system.

The three optional programming systems supplements (Sections 80 to
100) for the virtual storage operating systems (DOS/VS, 0S/vsl, and
0S/VS2 Release 1) assume knowledge of the entire contents of Section 30.
The optional supplement for VM/370 (Section 110) assumes knowledge of
subsections 30:05 and 30:10 only, since performance in a virtual machine
environment is discussed in the VM/370 supplement. This entire section
applies to the Model 155 II, as well as to the Model 158, except where
differences are noted.

30:05 VIRTUAL STORAGE CONCEPTS, ADVANTAGES, AND TERMINOLOGY

‘THE NEED FOR LARGER ADDRESS SPACE

The past and present rapid growth in the number and types of data
processing applications being installed has led to an increasing demand
for more freedom to design applications without being concerned about,
or functionally constrained by, the physical characteristics of a
particular computer system--system architecture, I/0 device types, and
processor storage size. As program design and implementation become
easier, they can enable more rapid installation of applications, so that
the benefits of data processing can be achieved sooner.

The design of System/360 and OS MFT and MVT allowed programmers to be
less concerned than before about specific CPU architecture and 1/0

40 A Guide to the IBM System/370 Model 158

device types when designing and implementing applications by (1)
providing a compatible set of CPU models ranging in size from small to
large scale, (2) providing a variety of high-level languages with
greatly expanded capabilities, including a new language (PL/I), (3)
providing comprehensive data management functions, including support of
170 device independence where data organization and the physical
characteristics of devices permitted, and (4) supporting dynamic
allocation of system resources (channels, I70 devices, direct access
space, and processor storage). System/360 users who installed DOS
Version 3 also experienced more system configuration independence than
was previously available, although to a lesser degree than OS MFT and
MVT users.

While System/360 and its primary operating systems represented major
steps toward giving programmers a larger measure of system configuration
independence, constraints that resulted from the necessity to design
applications to fit within the amount of processor storage available
still existed. In addition, although System/360 models provided more
and less-costly processor storage than was previously available,
increasingly larger amounts of processor storage began to be required as
the use of high-level languages increased, the usage and level of
multiprogramming increased, the functions supported by operating system
control programs expanded, and applications that require relatively
larger amounts of processor storage (such as teleprocessing and data
base) were designed and installed more frequently.

The requirement for more processor storage is still growing. The new
applications being developed and installed tend to have larger and
larger storage design points in order to provide the functions desired.
More processor storage is also required for I/0 buffer areas to achieve
maximum capacity and performance for sequential operations using new
System/370 direct access devices with significantly larger track
capacities. Larger blocking of tape records, which requires larger 1/0
buffers, also results in increased tape reel capacity and decreased tape
processing time. As a result, System/370 models provide significantly
more processor storage than their predecessor systemn/360 models and
offer it for a lower cost.

The availability of more processor storage, however, has not relieved
all the constraints associated with processor storage. Applications
still must be tailored to the amount of processor storage actually
available in a given system, even though storage design points
(partition and region sizes) can be larger than they were previously.

consider the following situations that can occur in installations:

i. BAn application is designed to operate in a 50K processor storage
area that is adequate to handle current processing needs and that
provides room for some expansion. Some time after the
‘application is installed, however, maintenance changes and the
addition of new functions cause one of the programs in the
application to require 51K and another to require 52K.
Installation of the next processor storage increment cannot be
justified on the basis of these two programs, SO time must be
spent restructuring and retesting the programs to fit within 50K.

2. An existing application has programs with a planned overlay
structure. The volume of transactions processed by these
programs has doubled, and better performance is now required.
Additional processor storage is installed. However, the overlay
programs cannot automatically use the additional storage.
Therefore, reworking of the overlay programs is required to take
them out of planned overlay structure and, thereby, achieve the
better performance desired.

A Guide to the IBM System/370 Model 158 41

3.

A low-volume, terminal-oriented, simple inquiry program that will
operate for three hours a day is to be installed. If the program
is written without any type of overlay structure, it will require
60K of processor storage to handle all the various types of
inquiries. However, because of a low inquiry rate, only 8K to
12K of the total program will be active at any given time. In
order to justify its operational cost, considerable additional
program development time is spent designing the inquiry program
to operate with a dynamic overlay structure so that only 12K of
processor storage is required for its execution.

A multiprogramming installation has a daily workload consisting
primarily of long-running jobs. There are also certain jobs that
require a relatively small amount of time to execute. The times
at which these jobs must be executed is unpredictable; however,
when they are to be run, they have a high completion priority.
While it is desirable to be able to initiate these high-priority
jobs as soon as the request to execute them is received, this
cannot be done because long-running jobs are usually in
operation. Hence, a certain time of day is established for
initiating high-priority jobs, and the turnaround time for these
jobs is considerably longer than is desired.

A series of new applications are to be instailed that require
additional computing speed and twice the amount of processor
storage available on the existing system. The new application
programs have been designed and are being tested on the currently
installed system until the new one is delivered. However,
because many of the new application programs have storage design
points that are much larger than those of existing applications,
testing has to be limited to those times when the required amount
of processor storage can be made available. Although another
smaller-scale model is also installed that has time available for
program testing, it cannot be used because it does not have the
amount of processor storage required by the new application
programs. In addition, although the smaller-scale model now
provides backup for the currently installed larger-scale model,
the smaller-scale model cannot be used to back up the new system
because of processor storage size limitations.

A large terminal-oriented application is to be operative during
one entire shift. During times of peak activity, four times more
processor storage is required than during low-activity periods.
Peak activity is experienced about 20 percent of the time and low
activity about 40 percent. The rest of the time, activity ranges
from low to peak. Allocation of the peak activity processor
storage requirement for the entire shift cannot be justified, and
a significantly smaller storage design point is chosen. As a
result, a dynamic program structure must be used, certain desired
functions are not included in the program, and response times
during peak and near-peak activity periods are increased above
that originally planned.

In this installation, most of the batched jobs are processed
during the second shift. However, there is also a need to
operate the large terminal-oriented application for a few hours
during second shift. This cannot be done because the system does
not have the amount of processor storage required for concurrent
operation of the batched jobs and the terminal program (which
must have its storage design point amount allocated even though
that amount of processor storage would not be required during
second-shift operations). The large amount of additional
processor storage required to operate the terminal program for
only a portion of the second shift cannot be justified.

A Guide to the IBM System/370 Model 158

R]

7. An application program with a very large storage design point is
executed only once a day as a batched job. A significant benefit
would result from putting the program online to a few terminals
during the morning hours. However, the program continues to be
run as a batched job because it is very large and would be made
larger by putting it online. The large amount of additional
processor storage required to operate the program concurrently
with the existing morning workload cannot be justified.

8. A terminal-based application has been installed on a full
production basis for several months. During this period, the
benefits accrued from the online application have encouraged the
gradual addition of several more terminals, and peak activity is
considerably higher than it was initially. Because growth has
been gradual, much additional programming time (significantly
more than is required to maintain batch-oriented applications)
has to be spent periodically restructuring the terminal-based
application program to handle the increasing volume of activity.

9. An online application is currently active during an entire shift
and operates concurrently with batched jobs. It would be
advantageous to install a second terminal-oriented application
that would operate concurrently with the existing workload during
the entire shift. However, the amount of processor storage that
would have to be dedicated to each online application for the
entire shift in order to handle its peak activity is very large,
and times of peak activity for the two applications do not
completely overlap. Because so much processor storage would be
unused during a large portion of the shift if both online
applications were always active, installation of the second
online application is difficult to justify.

In the situations described, processor storage is a constraining
factor in one way or another, and the constraints highlighted can apply
in some degree to all systems regardless of their scale (small,
intermediate, large) or processor storage size. The fact that larger,
less-expensive processor storage is now available on System/370 models
does not remove these constraints for two major reasons.

First, once a storage design point has been chosen for an
application, whether the design point is relatively large or small, the
application is dependent on that processor storage size for its
operation. The application cannot execute in less than its design point
storage amount, nor can it take advantage of additional available
processor storage without being modified (unless it has been
specifically structured to use additional storage as, for example, are
most IBM-supplied language translators).

Second, although processor storage has become less costly, it still
is a resource that should be used efficiently because of its importance
in the total system operation. Thus, when storage design points are
chosen, tradeoffs among processor storage cost, application function,
and system performance are often made. Making applications fit within
the storage design points selected becomes the responsibility of
application designers and programmers. This situation is made more
difficult by the fact that for many applications an optimum storage
design point cannot be determined until the application is written and
tested using expected transaction volumes.

The significance of processor storage restraints should be evaluated
in light of the following trends evidenced by new types of applications:
(1) the total amount of storage required to support their new facilities
continues to grow larger, (2) the storage they actually require for
operation during their execution is tending to become more variable, and
(3) it is becoming as desirable to install many of these new

A Guide to the IBM System/370 Model 158 43

applications on smaller-scale systems with relatively small maximum
processor storage sizes and low volume requirements as it is to install
them on larger-scale systems. Reduction of the constraining factors
currently imposed by processor storage is, therefore, a necessary step
in making new applications easier and less costly to install and
available to a wider range of data processing installations.

Given the existing processor storage restraints on application design
and development and the storage requirements that are becoming
increasingly more characteristic of many of the new types of
applications, it becomes advantageous to allow programmers to design and
code applications for a larger address space than they currently have.
That is, programmers should be able to use as much address space as an
application requires so that special program structures and techniques
are not required to fit the application into a given storage size.
Programmers can then concentrate more on the application and less on the
techniques of programming. In addition, the size of the address space
provided should not be determined by processor storage size, as it is in v
DOS Versions 3 and 4, 0OS MFT, and OS MVT, so that the address space can
be larger than the processor storage available.

A larger address space should be provided, therefore, by a means »
other than making processor storage as large as the address space
desired. This requirement can be satisfied by providing programmers
with an address space (called virtual storage) that is supported using
online direct access storage and dynamic address translation hardware.
This approach also offers the advantage of supporting a larger address
space for a lower cost than if larger processor storage is used, since
direct -access storage continues to be significantly less expensive per
bit than processor storage. 1In addition, dynamic address translation
hardware offers functional capabilities that large processor storage
alone cannot provide.

VIRTUAL STORAGE AND DYNAMIC ADDRESS TRANSLATION CONCEPTS

Virtual storage is an address space the maximum size of which is
determined by the addressing scheme of the computing system that
supports it rather than by the actual number of physical processor
Storage locations present in the computing system. In Systen/370, for
example, which uses a 24-bit binary address, a virtual storage as large
as 16,777,216 bytes can be supported. When virtual storage is
implemented, the storage that can be directly accessed by the CPU,
normally called processor or main storage, is referred to as real

storage.

The concept of virtual storage is made possible by distinguishing
between the names of data and instructions and their physical location.
In a virtual storage environment, there is a distinction between address
space and real storage space. Address space (virtual storage) is a set
of identifiers or names (virtual storage addresses) that can be used in
a program to refer to data and instructions. Real storage space is a
set of physical storage locations in the computer system in which
instructions and data can be placed for processing by the CPU. The
number of addresses in the two spaces need not be the same, although
both spaces begin with address zero and have consecutive addresses. The
programmer refers to data and instructions by name (virtual storage .
address) without knowing their physical (real storage) location.

When virtual storage is not implemented, there is, in effect, no
differentiation between address space and real storage space. The
address space that can be used in programs is identical in size to the
real storage space available and the address in an instruction
represents both the name and the location of the information it)
references.

44 A Guide to the IBM System/370 Model 158

—

In a virtual storage environment, however, the address space
available to programmers is that provided by the virtual storage size
implemented by a given system--not the address space provided by the
real storage available in the given system configuration. In DOS/VS,
0s/Vsl, and 0S/VS2, virtual storage rather than real storage is divided
into consecutively addressed partitions or dynamically allocated regions
for allocation to problem programs. The fact that storage addresses in
executable programs are virtual rather than real does not affect the way
in which the programmer handles addressing. In System/370, for example,
an Assembler Language programmer assigns and loads base registers and
manipulates virtual storage addresses in a program just as if they were
real storage addresses.

Virtual storage is so named because it represents an "image of
storage®™ rather than physical processor storage. Since virtual storage
does not actually exist as a physical entity, the instructions and data
to which its virtual storage addresses refer, which are the contents of
virtual storage, must be contained in some physical location.

In a virtual storage operating system environment, the contents of
virtual storage are divided into a portion that is always present in
real storage, namely, all or part of the control program, and another
portion that is not always present in real storage. The instructions
and data that are not always present in real storage must be placed in
locations from which they can be brought into real storage for
processing by the CPU during system operation. This requirement is met
by using direct access storage to contain this portion of the contents
of virtual storage (see Figure 30.05.1). The amount of direct access
storage required to support a given amount of virtual storage varies by
operating system, depending on how direct access storage is organized
and allocated.

In addition, a mechanism is required for associating the virtual
storage addresses of instructions and data contained in direct access
storage with their actual locations in real storage when the
instructions and data are being processed by the CPU. This requirement
is met by using dynamic address translation (DAT) hardware in the CPU to
associate virtual storage addresses with appropriate real storage
addresses.

With this design, a system can support an address space that is
larger than the actual size of the real storage present in the system.
This is accomplished by bringing instructions and data from direct
access storage into real storage only when they are actually required by
an executing program, and by returning altered instructions and data to
direct access storage when the real storage they occupy is needed and
they are no longer being used. At any given time, real storage contains
only a portion of the total contents of virtual storage.

Such a design is made practical by the fact that the logical flow of
processing within the majority of programs is such that the entire
program need not be resident in real storage at all times during
execution of the program. For example, initialization and termination
routines are executed only once during the operation of a program. Any
exception-handling procedure, such as an error routine, is required only
if the exception condition occurs. A program that handles a variety of
transaction types (whether batch or online oriented) need have resident
at any given time only the transaction routine required to process the
current transaction type. It is this property of programs that has
enabled planned overlay and other dynamic program structures to be used
successfully in nonvirtual storage environments when the amount of
processor storage available was not large enough. As indicated
previously, this variable storage requirement characteristic of programs
tends to be even more pronounced in new types of applications and in
online environments in which processing is event driven.

A Guide to the IBM System/370 Model 158 45

Virtual Storage Direct Access Storage

Location of data
and instructions

Address space allocated'
to the control program

I

I

I

!

I

I

I

I

I

I

| that is always present
L

Fr— ——————— —l - \.——'/

Address space I Contents of a portion

available to p —— mapped —3md of virtual storage
Consecutive programmers | (instructions and data)
addresses I
Oto 16,777,215 ¢
maximum in I
System/370 l

i

in real storage

Names of instructions
and data

Contains ;
virtual storage) S
addresses

Executable program

Figufe 30.05.1. Names and location of instructions and data in a
virtual storage environment

For the purpose of resource management in a virtual storage
environment, virtual storage and its contents, the direct access storage
that is used to contain a portion of the contents of virtual storage,
and real storage are divided into contiguous fixed-length sections of
equal size. Once a program has been fetched from a program library and
initiated, instructions and data within the program are transferred
between real storage and direct access storage a section at a time,
during program execution. A section of an executing program is brought
into a real storage section only when it is required, that is, only when
a virtual storage address in the section is referenced by the executing "
program. A program section that is present in real storage is written
in a direct access storage section only when the real storage assigned
to it is required by another program section and only if it has been
changed.

A virtual storage operating system control program monitors the
activity of the sections of all executing programs and attempts to keep
the most active sections in real storage, leaving the least active
sections in direct access storage. Figure 30.05.2 illustrates the
relationship of virtual storage, direct access storage, and real storage

46 A Guide to the IBM System/370 Model 158

(

without regard to a specific virtual storage operating system
implementation.

The division of a program and its data into sections and the transfer
of these sections between direct access storage and real storage during
program execution is handled entirely by the virtual storage operating
system without any effort by the programmer. When a planned overlay or
dynamic overlay program structure is used, the programmer is responsible
for dividing the program and its data into phases, determining which
phases can be present at the same time in the amount of real storage
available (partition or region), and indicating when phases are to be
loaded into real storage during processing.

Virtual Storage Direct Access Storage
__/ N
N
N
N
Tables or an . N
algorithm used Contents of a portion
Address space . of virtual storage ’ AN Real Storage
. to map virtual A .
allocated to storage sections (instructions and -
executing programs to direct data for executing
irec acc':ess programs)
storage sections Tabl
ables map Active sections
Vlftl..lal storage of executing
sections to feal programs
K__——J storage sections
Control program Control program

Figure 30.05.2. Relationship of virtual storage, direct access
storage, and real storage

While a virtual storage up to 16 million bytes in size can be
addressed by any Systems/370 model with DAT hardware, the virtual storage
size that can be effectively implemented by a given system is affected
by (1) the amount of real storage present, (2) the amount of direct
access storage space made available to contain the contents of virtual
storage, (3) the speed of the direct access storage devices containing
virtual storage contents and contention for these devices or the
channels to which they are attached, (4) the speed of the CPU, and (5)
the characteristics of the programs operating concurrently. Hence, the
amount of real storage required to effectively implement a specific
amount of virtual storage can vary by system, depending on the
characteristics of the applications in the workload and the performance
desired, as is discussed in Section 30:15.

Once a program section has been loaded into real storage, its virtual
storage addresses can be translated when they are referenced. Dynamic
address translation hardware is the mechanism that translates the
virtual storage addresses contained in instructions into real storage
addresses during instruction execution. Address translation is
accomplished in System/370 using a hardware-implemented table lookup
procedure that accesses tables contained in real storage. These tables,
which are maintained by control program routines, (1) define the amount
of virtual storage supported and allocated, (2) indicate whether or not
any given program section is currently present in real storage, and (3)

A Guide to the IBM Systems/370 Model 158 47

contqin the addresses of real storage sections allocated to the program
sections that are currently present in real storage.

‘During the execution of each instruction, address translation is
performed on any virtual Storage address in the instruction that refers
to data or to an instruction. Translation occurs after the 24-bit
effective virtual storage address has been computed by adding base,
displacement, and index values, if any, together, as usual. The result
of the address translation is a 24-bit real storage address designating
the location containing the data or instruction referenced by the
virtual storage address in the instruction. The virtual storage
addresses in channel programs (CCW lists) are not translated by channel
hardware during channel program execution and, therefore, programmed
translation is required before initiation of a channel operation.

In reality, DAT hardware provides dynamic relocation of the sections
of a program during its execution. This capability is not provided by
DOS Version 4, OS MFT, and OS MVT. DOS Version & supports program
relocation only at link-edit time. MFT and MVT support program
relocation at program load time as well as at link~edit time. Once a
program has been loaded into an area of real storage, these operating
systems cannot relocate the program to another area of real storage
during its execution. Thus, an entire program or a portion of a program
cannot be written on direct access storage during execution and later
reloaded into different real storage locations to continue execution.
Once loaded, therefore, a program is bound during its execution to its
initially allocated real storage addresses. In a virtual storage
environment, a program is bound only to the virtual storage addresses it
was assigned during loading.

The dynamic relocation provided by DAT hardware eliminates, for most
programs, the need for allocating and dedicating a contiguous area of
real storage to an entire program for the duration of its execution, a
requirement for all programs in DOS Version 4, and OS MFT and MVT. (As
discussed later in this subsection, some programs cannot operate
correctly in the manner being described, that is, with sections
transferred only as required between direct access storage and real
storage.) 1In a virtual storage environment, real storage is no longer
divided into contiguously addressed partitions or dynamically allocated
regions that can contain one executing job step (program) at a time.

Further, when real storage is allocated to a section of an executing
program, the real storage is not dedicated to that program section for
the duration of program execution. Concurrently executing programs can
dynamically share the same real storage sections. That is, in general,
the real storage available for allocation to executing programs can be
allocated to any program section as needed. When a section of an
executing program must be loaded, any available section of real storage
can be assigned (subject to certain restrictions imposed by operating-
system-dependent real storage organizations). When the program section
is no longer required, it can be written in direct access storage, if it
has been altered, and the real storage assigned to it can be made
available for allocation to another section of the same program or to a
section of another program.

The assignment of real storage sections is handled entirely by the
operating system, which also keeps account of which sections of
concurrently operating programs are the most active. The operating
system does not attempt to allocate a given amount of real storage to
each executing program. It merely allocates real storage to those
sections it determines are the most active, without taking into account
the particular program to which the active section belongs.

DAT hardware, therefore, provides more than translation from address
space (virtual storage) to real storage space. It provides the

48 A Guide to the IBM Systems/s/u Model 158

N

capability of implementing dynamic real storage management that requires
no effort on the part of the programmer and significantly less CPU time
than programmed address translation during program execution. (The
large amount of CPU time required to translate addresses during program
execution using programmed means has precluded implementation by IBM of
an operating system that supports programmed dynamic address
translation.) Much of the real storage utilization preplanning required
for MFT, MVT, and DOS Version 4 environments in order to use real
storage effectively can be eliminated in a virtual storage environment.
Dynamic real storage management capability is another advantage the
technique of using direct access storage and DAT hardware to support a
larger address space has over using larger real storage to provide a
larger address space.

Another capability made available by the implementation of large
address space using direct access storage and dynamic address
translation is that of supporting more than one virtual storage with one
system. Multiple virtual storages are supported by OS/VS2 Release 2 and
also can be used to support multiple virtual machines. The concepts and
general advantages of virtual machines are discussed in Section 40. The
features and operation of VM/370 are presented in Virtual Machine
Facility/370 Features Supplement.

The use of virtual storage and DAT hardware to enable programs to
operate in less real storage than the total storage requirement of the
programs can also offer better performance potential than the technique
of using a planned overlay program structure. When a planned overlay
program executes in MFT or MVT, considerable time can be spent executlng
the overlay supervisor in order to perform programmed address
translation (relocation) when a program phase is loaded. In additionm,
more efficient real storage utilization may be achieved in a virtual
storage environment, since the control program reacts to changing
processing needs and only portions of the program that are actually
required are loaded (all phases of an overlay program may not be the
same size and all code within a phase may not be used when the phase is
loaded). Once a planned overlay program has been structured to handle
the currently required set of program phases efficiently, it cannot
automatically adapt to a change in the set of program phases required or
to a change in the activity of the required set of phases.

In a virtual storage environment, the performance of the system can
be directly affected by the amount of time spent transferring program
sections between direct access storage and real storage. Satisfactory
system performance is achieved when each of the concurrently executing
programs has enough real storage dynamically allocated to it to keep the
need for transferring program sections into and out of real storage at
an acceptable level.

As previously mentioned, most programs can be structured so that
processing activity is localized in one area of the program or another
during time intervals rather than equally spread over the entire
program. In other words, at any given time period during execution of
the program, only a subset of the entire program need be referenced.

This is sometimes called the "locality of reference" characteristic of
programs. Therefore, a program achieves satisfactory performance when

its most active sections in any given time interval remain in real

storage and there is a limited amount of program section transfer activity.

Most programs require a certain minimum amount of real storage in
which to execute in order to achieve satisfactory performance. If such
programs operate with less than their minimum requirement dynamically
allocated, program section transfer activity increases and performance
degradation can occur. The minimum real storage requirement of a
program is related to the amount of real storage required by the most
active sections of the program. Because of the locality of reference

A Guide to the IBM System/370 Model 158 49

characteristic of most programs, the minimum real storage requirement of
a program for satisfactory operation frequently can be less than its
total storage requirement. This can enable an operating system to
efficiently support a virtual storage that is larger than the real
storage actually present in the computing system.

A virtual storage environment, therefore, enables most programs to be
independent of real storage size to a large degree. A program can
execute in varying amounts of dynamically available real storage without
being modified. The amount of real storage dynamically available to a
program during its execution primarily affects its performance, to the
extent that program section transfer activity is affected, rather than
its capability of being executed. For example, a given 200K language
translator might be able to operate with an average of 100K of real
storage dynamically available to it during its operation; however, the
time required to compile a program under these conditions might be
unacceptable. Alternatively, the performance desired might be achieved
if an average of 130K is dynamically available to the language
translator while it operates. Without a virtual storage operating
system, the 200K language translator might not be used at all because of
its design point size.

In addition to the requirement for larger address space, there is
still a requirement for larger real storage sizes in order to meet the
functional and performance needs of the larger, more complex,
multiprogramming environments. The availability of large lower-cost
real storage for the Model 158 and the real storage independence that a
virtual storage environment offers provide new flexibility in tradeoffs
among real storage cost, function, and individual program or total
system performance.

GENERAL ADVANTAGES OFFERED BY IBM OPERATING SYSTEMS THAT SUPPORT A
VIRTUAL STORAGE ENVIRONMENT

Each of the IBM operating systems that supports a virtual storage
environment for System/370 models using dynamic address translation
offers the capability of using address space that is larger than that
provided by available real storage, and each supports dynamic real
storage management that is transparent to the user. Aas a result, these
operating systems offer certain general potential advantages that do not
depend on their unique features. The implementation of virtual storage
also provides benefits that are specific to each of these operating
systems because of their design and the particular functions they
support. The following discusses the potential advantages of virtual
storage and dynamic address translation that are common to DOs/Vs,
0S/Vsl, and 0S/VS2 environments.

The general advantages of virtual storage operating systems are the
potential they offer for:

¢ Increased application development
¢ Expanded operational flexibility
* System performance improvement

A virtual storage operating system can facilitate more rapid
development of new applications because, by removing most existing real
Storage restraints on application design, it can help improve the
productivity of programmers. Specifically, a virtual storage operating
system has characteristics that can be used to reduce the effort, time,
and cost associated with application design, coding, testing, and
maintenance. This makes the installation of new applications more
readily justifiable and encourages the addition of new functions to

50 A Guide to the IBM System/370 Model 158

=

existing applications. The potential advantage of improved operational
flexibility is made possible by the greater independence of applications
from real storage size. Enhanced system performance can result from
improved real storage utilization. While these latter two benefits have
their own individual value, they also, either indirectly or directly,
ease the installation of new applications.

Potential for Increased New Application Development

The following capabilities are characteristic of a virtual storage
operating system environment:

¢ Greater flexibility in the design of applications is possible.

Larger programs can be written without the necessity of using
planned overlay techniques or other dynamic program structures
designed to fit programs into the amount of real storage available.
The need for intermediate (or working) data sets is reduced or
eliminated because tables, relatively small data groups, etc., that
are placed on direct access storage because of real storage
limitations can become part of the program and will be brought into
real storage automatically as required. Program planning, coding,
and testing time can be reduced by elimination of the use of these
programming techniques and other real storage management facilities,
which also require additional programming knowledge and skill. Also
avoided is the restructuring of application programs after they have
been written because they are larger than the real storage available
for their execution. Hence, applications can become operational
more quickly.

Open-ended, straightforward application design is possible, and more
comprehensive programs can be written. An application can be
segmented into a series of programs according to its logical flow
instead of according to the functions that can be performed in the
specific amount of real storage available to each step in the
application. Programming and processing duplication inherent in the
approach of using two or more job steps to perform one logical
process is thereby avoided.

Additional programming facilities can become available that ‘
otherwise could not be used because of real storage limitations.
Specifically, full-function high-level language translators, which
offer more capabilities than their subset versions (such as
additional debugging facilities and performance options) but which
also have larger storage design points, can be used because they can
operate in a virtual storage environment using less real storage
than their design point requirement.

¢ Preproduction testing of larger-than-average application programs
can be increased if enough virtual storage can be made available to
enable them to run during normal testing periods. Turnaround time
during testing can be reduced.

In a nonvirtual storage environment, such programs are usually
grouped together and executed only at certain times when their
larger design point storage requirements can be made available.

e Fine tuning of application programs to achieve performance
improvements, when necessary, can be delayed until after the
application is in production. This capability enables an
application to become operative sooner.

¢ Startup costs for new applications may be reduced.

A Guide to the IBM System/370 Model 158 51

52

A new application can be developed and tested on the existing
system, assuming the required I/O devices are present in the
configuration, before the additional real storage the application
requires for performance on a production basis is actually
installed. When the application is ready for production, the
additional real storage required can be added to the system. In
some cases it may be possible to operate the application on a
production basis on the existing system without adding real storage
initially, because during the startup period, transaction volume is
very low. As the volume grows, real storage can be added to achieve
better performance.

Growth of existing applications and the maintenance of operational
programs is simplified.

Because of the removal of most real storage restraints, new
functions can be more easily and more rapidly added to most existing
applications. Program expansion because of added functions or
maintenance changes does not require the use of overlay techniques,
miltiple job steps, etc., when the size of the extended program
exceeds the original storage design point size.

In general, alteration and debugging of nonoverlay proérams are also
easier than alteration and debugging of programs with planned
overlay or dynamic structures.

Application programs whose real storage requirements, based on
transaction volume and complexity, vary widely during their
execution may be justified, designed, and installed more easily.

Design, coding, and testing time can be reduced because dynamic
storage management is automatically provided by the operating
system. Time and effort need not be spent structuring such programs
to use available real storage dynamically to support the functions
and/or response times required.

Design and installation of one-time, low-usage, or low-volume
programs of very large storage size are more easily justified.
Existing applications in these categories that currently operate in
a batch environment can also more easily be altered to operate
online, a growth step that might not be justifiable in a nonvirtual
storage environment.

Applications can be installed on a trial basis for the purpose of
observing and evaluating their functions and their operation.

Most IBM-supplied application program products can be temporarily
installed on an existing system, assuming the required I/0 devices
are present. The additional hardware resources that may be required
to operate the application on a production basis can be added later,
when the application is permanently installed.

The benefits of the functions provided by many IBM-supplied
application program products with larger storage design points can
be realized using smaller amounts of available real storage.

Currently, it may be difficult to justify the real storage required
to install a relatively large storage design point application on a
system to handle a low volume of transactions, even though the
functions provided by the application are very desirable. 1In a
virtual storage environment, such an application can execute using
that amount of dynamically available real storage required to
satisfy the desired performance requirements for the low volume of
activity.

A Guide to the IBM System/370 Model 158

Potential for Additional Operational Flexibility

A The reduction of real storage restraints makes most applications more
AN_— independent of the real storage size of a system configuration -and
b permits most applications to be processed on systems with varying
amounts of available real storage without program modification. Dynamic
real storage management reduces the amount of job stream and operations
preplanning that is normally done to use real storage as efficiently as

; possible in a multiprogramming environment. The following benefits can
result:

* A system can back up another system even. though it has less real
storage than the system it backs up.

A smaller-scale system with the appropriate I/0 configuration can
provide backup for a larger-scale system if necessary. (Performance
experienced on the backup system may vary from that normally

- achieved, depending on the two system configurations involved.)

* A single design and one operating procedure can be used for an
application that is to operate on multiple systems with varying
r ~ amounts of real storage, as long as the virtual storage required is
supported by all the systems.

When data processing is decentralized among multiple installations
with systems that have different amounts of real storage, one

} location can design, implement, and maintain an application that can
be used by other installations. Duplication of this type of effort
can be minimized or eliminated.

* Most applications can be tested on systems with less real storage
, than the one on which they will run in a production environment, as
b ‘ long as the required amount of virtual storage is supported.

i ® Growth to a larger real storage configuration can be easier.

Real storage can be added to an existing system to improve system
performance (by the reduction of program section transfer activity)
without the necessity of modifying existing application programs so
that they take advantage of additional real storage. Additional
real storage (up to a maximum of their design point size) is
automatically used by programs that operate in a virtual storage
environment.

¢ Operators need not perform certain procedures that are solely
related to efficiently managing real storage.

The operator is concerned primarily with the division of virtual
storage and therefore need not change partition sizes at various
times (in DOS/VS or 0s/VSl, for example) for the purpose of making
storage available for larger-than-average jobs. (An installation
can define virtual storage partitions that are larger than those
. currently defined in the DOS Version 4 or OS MFT environment, and
the partitions can be made big enough to contain the largest
existing or currently planned storage design point programs.)
Similarly, in an 0S/VS2 environment, the operator no longer need
. start long-running jobs at certain points in time to ensure that
available real storage is fragmented as little as possible.

®* Priority jobs whose need to be processed cannot be predicted can be
scheduled when required.

A nonvirtual storage environment does not provide the capability of

K J effectively handling the scheduling of high-priority jobs on a
random basis. Hence, this type of job is not permitted to exist in

A Guide to the IBM System/370 Model 158 53

an installation, or such jobs must be scheduled to operate only at
certain times. In a virtual storage environment, a high-priority
virtual partition (in DOS/VS and 0S/VS1) can be defined and reserved
for the purpose of processing only high-priority jobs. Except for
that required for certain tables, real storage is not required for
this partition until a job is actually scheduled. In 0S/VS2, an
initiator with a special class can be started that will handle only
high-priority jobs. This can be done in MVT as well, but because of
the possibility of real storage fragmentation, there is no assurance
that the high-priority job can be started.

Potential for Performance Improvement

The improved real storage utilization made possible by the use of
dynamic address translation hardware can have a positive effect on the
performance of a system that handles a job mix whose use of real storage
varies considerably while it is being processed. The extent of the
performance improvement depends on the types of applications involved
and the current utilization of system resources. Therefore, the amount
of performance gain, if any, that may be achieved is highly variable by
installation. Environments with the greatest potential for improved
performance are as follows:

* Batch-oriented multiprogramming enviromments with application
programs of widely varying real storage requirements.

Real storage may not be most efficiently used in such an environment
because (1) real storage can become fragmented when regions are
dynamically allocated and freed or (2) it is difficult to divide
real storage into a set of areas that is optimum for all programs
when real storage is partitioned. (Consider the inefficient use of
real storage in a 54K partition allocated for assemble, link-edit,
and test jobs in which a 54K language translator, a 10K linkage
editor, and problem programs no larger than 40K execute.) In
addition, real storage is not efficiently used when the real storage
requirement of a given program, based on transaction mix or volume,
varies widely, and the amount of real storage that is allocated is
designed to handle the peak requirement. (This is typically true of
graphics applications, for example.) Further, real storage assigned
to a program is not productively used during the time the program is
waiting for a human response, such as for the operator to locate
and/or mount a volume or to make a decision and enter a message on
the console, or during the time required to quiesce the system in
order to change partition definitions, start a high-priority job, or
start a long-running teleprocessing job in high real storage.

In a virtual storage environment, in which all concurrently
executing job steps share real storage dynamically and use real
storage only when it is actually required for program execution,
real storage is more efficiently used. Hence, if real storage
currently is the restraint, a given real storage size might be
capable of supporting a higher level of multiprogramming than can be
achieved without the use of dynamic storage management (assuming
other required resources, such as CPU time, I/O devices, and
channels, are available). For example, installation of a large
Storage design point, terminal-based application to handle only a
few terminals might be possible. Alternatively, a higher level of
multiprogramming might be supported by the addition of a smaller
real storage increment than would otherwise be required.

System performance may also be improved if more efficient use of
available real storage enables additional heavily used functions to
be made resident instead of transient or allows the incorporation of
performance-oriented options in the control program. This

54 A Guide to the IBM System/370 Model 158

s

R

[3

improvement can apply to environments with batch and online
Operations, as well as to batch-only multiprogramming environments.

* Multiprogramming environments with a mixture of batch-oriented and
terminal-based applications.

While the real storage required for the communication control
portion of a teleprocessing application remains constant, terminal-
based processing programs are typically subject to wide variations
in the amount of real storage they require during their execution
because the transaction mix being handled concurrently varies, the
activity of each terminal online varies, or the number of terminals
operating concurrently changes. In order to provide the functions
desired, ensure the capability of handling peak activity periods and
maximum transaction type mixes, and guarantee a given response
during times of peak activity, a certain amount of real storage is
required. This peak requirement is generally significantly more
than is needed during periods of medium and low activity.

Allocation of the maximum storage requirement results in inefficient
use of real storage, since unused real storage dedicated to any
terminal program cannot be used by other concurrently operating
batched or terminal-oriented jobs in a nonvirtual storage
environment. In addition, it is usually difficult, and sometimes
impossible, to effectively preplan real storage usage for an online
application. -

Dynamic real storage management in a virtual storage environment
automatically provides a more efficient method of allocating real
storage in such an environment. Real storage is not divided into
that which can be used only by the terminal-based program(s) and
that which can be used only by batched jobs. During times of peak
terminal activity, the active sections of terminal-oriented
processing programs with a higher priority are automatically
allocated real storage, making less real storage available to the
lower-priority batched jobs in execution at that time. During
periods when terminal activity is relatively low, real storage not
used by any terminal program is available for assignment to the
active sections of executing batched jobs. Such an environment is
represented conceptually in Figure 30.05.3.

In existing mixed batch and online-oriented installations, dynamic
real storage management allows programming techniques that can
improve the performance of the online application. This improvement
can be in the form of better response for existing terminals or the
ability to support more terminals. A given online application may
also be able to support a higher level of multiprogramming, as a
result of better real storage utilization, without any additional
programming effort (more TSO regions, for example). A virtual
storage environment also can make the concurrent operation of
multiple terminal-based applications more practical, because real
storage equal to the design point storage amount of each online
application need not be dedicated to the applications during the
entire time they are active.

Figure 30.05.3 shows sample allocations of real storage to two
batched jobs and two terminal-oriented jobs in a multiprogramming
environment during low, medium, and peak activity points in time. Job
priority from high to low is TP2, TP1, BJ2, BJ1. For simplicity,
virtual and real storage are shown to be totally allocated at all times.
No particular virtual storage operating system is assumed, since the
concepts illustrated apply to 0S/VS1l and OS/VS2 environments with BTAM
and/or TCAM online applications, and to DOS/VS environments with BTAM
(but not QTAM) online applications. Real storage is shown to be
contiguously allocated to each job in high-to-low priority sequence.
This is done only to illustrate the relative amount of real storage the

A Guide to the IBM System/370 Model 158 55

control program has dynamically allocated to each program during the
instant shown. In reality, the total amount of real storage allocated
to an executing program at any given time is usually not contiguous in a
virtual storage environment. In addition, during times of low terminal
program activity, it may be possible to support a higher level of
batched job multiprogramming, which is not shown in the figure.

Virtual Storage

Control Batched Batched Terminal program 1 Terminal program 2
program jobs jobs (Total storage requirement (Total storage requirement
(BJ1) (BJ2) without overlays) without overlays)
Lowest Next to lowest Next to highest Highest
execution execution execution execution
priority priority priority priority
Real Storage
Low activity Control
for TP1and | ogram BJ1 BJ2 TP1 |TP2
TP2
Real Storage
Peak activity | control | BY | BY
TP1 TP2
for TP2 and program 4 6
low for TP1

Real Storage

Peak activity

for TP1 and Control
medium activity | Program TP1 TP2
for TP2

AN
BJ7 846

Conceptual illustration of real storage utilization in

Figure 30.05.3.
‘ a mixed batch and online virtual storage environment

56 A Guide to the IBM System/370 Model 158

-

o

Summar)'4

As the preceding discussion indicates, a virtual storage environment
is designed primarily to provide new functional capabilities for the
installation as a whole, although performance gains are possible for
installations with particular environmental characteristics. The
general functional aims of IBM-supplied virtual storage operating
systems are (1) to use new hardware features and additional control
program processing to support certain facilities that are not possible
in a nonvirtual storage environment because of real storage restraints,
and (2) to handle other functions that must be performed by installation
personnel (programmers, operators, and system designers) when virtual
storage and dynamic address translation are not used.

It is also important to note that while a virtual storage operating
system permits an installation to be independent of real storage
restraints to a large degree and enables real storage to be utilized
more efficiently, the performance of the system and the specific
advantages that can be achieved are still largely dependent on the
amount of real storage present in the system and on the computing speed
of the CPU, among other things. Hence, virtual storage and dynamic
address translation are not a substitute for real storage. Rather they
provide an installation with greater flexibility in the tradeoff between
real storage size and function or performance.

The degree to which a particular installation experiences the
potential benefits of a virtual storage/dynamic address translation
environment is highly system-configuration dependent and application
dependent (number, type, complexity of applications installed or to be
installed). 1In addition, consideration must be given to the system
resources that are specifically required to support a virtual storage
environment (discussed in Section 30:15). Some of the potential
advantages, such as those associated with application maintenance and
operational flexibility and those that result from better management of
real storage, can be experienced as soon as a virtual storage operating
system is installed. Others may be achieved in the future, when new
applications are installed and the less restrictive program design
techniques available in a virtual storage environment are more fully
utilized. In any case, installation of a virtual storage operating
system can make System/370 easier to use and can be a major step toward
more rapid installation of applications. Such an operating system can
be of greatest benefit to installations desiring to move to or to extend
online operations and attain the advantages such an environment offers.

VIRTUAL STORAGE AND DYNAMIC ADDRESS TRANSLATION TERMINOLOGY

For the purpose of presenting the concepts of virtual storage and
dynamic address translation in the previous discussion, virtual storage,
programs and data, direct access storage, and real storage were
described as being divided into areas called sections. In reality, a
unique term is used to describe each one of the various sections,
namely, virtual storage page, page, slot, and page frame. In addition,
virtual storage has two levels of subdivision in System/370. The
following defines the new terminology actually used by the virtual
storage operating systems.

Virtual storage in System/370 is divided into contiguous segments,
which contain virtual storage pages. A virtual storage segment, as
implemented in Systems/370, is a fixed-length, consecutive set of
addresses for .either 64K or 1024K bytes which begins on a 64K or 1024K
boundary, respectively, in virtual storage. A virtual storage is
divided into segments all of one size or the other. 1In general, in
0S/Vsl and 0S/VS2 environments, a segment is the unit of virtual storage
allocation. Each segment of virtual storage is divided into contiguous,
fixed-length, consecutive sets of addresses called virtual storage

A Guide to the IBM System/370 Model 158 57

pages. Each segment in the virtual storage contains the same number of

virtual storage pages, each of which is the same size. A virtual

storage page, as implemented in System/370, can be either 2K or UK bytes

and is located on a 2K or 4K virtual storage boundary, respectively, L
within a segment. ~

The contents of virtual storage--instructions and data--are divided
(by the operating system) into fixed-length contiguous areas called
pages, corresponding in size to the virtual storage page size chosen,
either 2K or UK bytes. The addresses associated with a virtual storage
page refer to the contents of a page.

The direct access storage used to contain the portion of the total
contents of virtual storage that is not always present in real storage
is called external page storage. Direct access space within external
page storage is divided into physical records called slots, which are of
page size, either 2K or 4K bytes. A slot, therefore, can contain one
page at a time. A virtual storage page that is allocated and that
actually has contents usually has a slot in external page storage
associated with it to contain these contents (depending on the nature of
the contents and how external page storage is managed by the operating
system). -

Instructions and data are transferred between external page storage
and real storage as needed on a page basis. This transfer process is
called paging, and a direct access device that contains external page
storage is called a paging device. A slot in external page storage is
associated with a particular virtual storage page by means of an
algorithm or via tables that are maintained by the control program.

Real storage is also divided into fixed-length, consecutively
addressed areas called page frames, which are always the same size as
the page being used, either 2K or UK bytes. Page frames are located on
2K or 4K real storage boundaries. A page frame is a block of real .
Storage that can contain one page. Hence, a page of data and/or ~
instructions occupies a slot when it is in external page storage and a
page frame when it is in real storage. Whether or not a page is present
in real storage, a program addresses the contents of the page using
virtual storage addresses.

The act of transferring a page from external page storage into real
storage is called a page-in. This action may also be described as the
loading of a page. The reverse act, transferral of a page contained in
real storage to a slot in external page storage, is called a page-out.
Figure 30.05.4 illustrates the relationship of virtual storage, external
page storage, and real storage that was conceptually shown in Figure
30.05.2. (Note that the terms swap-in, swap-out, and working set have a
specific meaning in an 0S/VS2 TSO environment and are defined in
OS/Virtual Storage 2 Release 1 Features Supplement. The definition of a
working set in a virtual machine environment is given in Virtual Machine
Facility/370 Features Supplement.)

As previously indicated, DAT hardware uses tables to perform address
translation. These tables are the segment table and page tables. One "
Segment table and a set of page tables are required to perform address
translation for one virtual storage. The segment table defines the
virtual storage size, indicates allocated virtual storage, and points to
the real storage location of the page tables. The page tables indicate
which pages are currently in real storage and contain the real storage
addresses of these pages. As pages are paged in and out, the control
program makes changes to the page tables as required.

Basic to the implementation of virtual storage using direct access
storage and DAT hardware is the method of determining when pages are to)
be brought into real storage and, therefore, when real storage is S

58 A Guide to the IBM System/370 Model 158

. 4

allocated to pages. The method supported by IBM-supplied virtual
storage operating systems, that of bringing a page into real storage
only when it is needed by an executing program, is called a demand
paging technique. Since programs execute on a priority basis in DOS/Vs,
0S/vsl, and 0S/VS2 environments, as they do in 0S (MFT and MVT) and in
DOS (Versions 3 and 4) environments, real storage is, in effect, still
allocated on a priority basis.

A request for a page-in is generated by the occurrence of a page
exception or a page translation exception, a condition that is also
called a page fault. An interruption occurs during the execution of an
instruction when DAT hardware attempts to translate a virtual storage
address into a real storage address and the appropriate page table
indicates that the page is not currently present in real storage. A
page fault condition causes an interruption in order to alert the
control program to the fact that a page frame must be allocated.

Usually, a page-in is required also to bring in the referenced
instruction or data.

External
Page Storage

Virtual Storage /’\

Segment N w \
(pages 0 to 15 or 31) Tables or an
algorithm \\
map pages
and slots \ \
\ Real Storage
i Slots
Virtual [l | I
& & 6 (containing ¥ T.ables map
storage Paged area virtual storage
g pages of
pages T X pages and
within instructions page frames
d data) Page frames
segments an a .
(containing active iR
T pages of executing T
rograms)
Page-out prog
k”_\
_J Page-in — ’ \l I]
~ ~ Contents of
pageable
virtual storage
Control
Segment 1 Nonpaged area ¥ program Rf
(pages 0 to 15 or 31)
Segment 0
(pages 0 to 15 or 31) ‘

Address space for
programmers use

Figure 30.05.4. Layout of virtual storage, external page storage, and

real storage

While page-ins are usually initiated as a result of a page fault, the

0S/VS and DOS/VS Assemblers support a macro that can be used to cause

A Guide to the IBM System/370 Model 158 59

one or more pages to be brought into real storage before they are

referenced. Such requests are sometimes referred to as page-ahead

requests. A page-ahead is required if, for reasons of proper system

operation, a routine must operate without causing any page faults.

However, unlimited use of this facility can defeat the objective of L
demand paging. -

When a page fault occurs and the control program determines that a
page frame is not currently available for allocation, a choice must be
nmade as to which allocated page frame will be taken away from the page
to which it is currently assigned. The rule governing this choice is
called the page replacement algorithm. If the page replacement
algorithm is designed to choose from among only those page frames
currently allocated to the program that caused the page fault, it is
said to operate locally. If a page frame can be chosen from among all
those available for allocation to all executing programs, the algorithm
is said to operate globally.

DOs/VSs, 0S/VSl, and 0OS/VS2 implement a global page replacement
algorithm. VM/370 supports a global page replacement algorithm and
supports a local page replacement algorithm as an option. The
algorithms used attempt to keep the most active pages of executing
programs present in real storage. Hardware is included in System/370 -
models with dynamic address translation that indicates whether or not a
page has been referenced or changed. Hence, when a page frame is
required, a page determined by the algorithm to be relatively inactive
is chosen for replacement.

Before loading a new page into the page frame chosen, the existing
contents of the page frame must be saved if they were modified during
processing. If modification occurred, a page-out operation is required;
otherwise, an exact copy of the page already exists in external page
storage. Code that is not modjfied during its execution, therefore, has
an additional advantage in a virtual storage environment in that it need
never be paged out once it has been written in external page storage. A
program requiring a page-in is placed in the wait state until the page
it requires has been loaded, during which time CPU control is given to
another ready task, if one is available.

For various reasons, it is necessary to prevent a page-out of certain
pages that are in real storage. Better operation of the system is one
reason that applies to all (in DOS/VS) or a portion (in 0S/VS1l and
0S/VsS2) of the control program, some routines that operate with the CPU
in a disabled state (masked for I/0 and external interruptions), most
system tables, and most system control blocks.

Integrity of system operation is another reason. Pages associated’
with certain types of operations must not be paged out while the:
operation is in progress, so that the operation can proceed correctly.
For example, pages that contain I/0 buffer areas must remain in real
storage while the buffers are being referenced during an I/0 operation,
after which a page-out can take place, if necessary.

Another reason is the existence of time dependency. A page should
not be written out if the program to which the page belongs must
complete a logical operation that requires the page in less time than it
takes to perform a page-in. Programs that handle I/0 device testing
operations, such as online tests (OLT's), can have such a time
dependency.

A page that is identified as one that cannot be paged out (or that is
nonpageable) is called a fixed page. IBM-supplied 0S/VS operating
systems support both long-term fixing and short-term fixing, which are
called permanent fixing and temporary fixing, respectively, in DOS/VS.
In VM/7370, a nonpageable page is called a locked page. Pages that

60 A Guide to the IBM System/370 Model 158

should never be paged out when they are present in real storage are
marked long-term fixed. The resident portion of an operating system
control program is never paged and, therefore, its pages are marked
long-term fixed. Pages that must be fixed for only a portion of the
time they are present in real Storage are marked short-term fixed. For
example, a page containing an I/0 buffer is marked short-term fixed
before the initiation of the 1,0 operation that references the buffer.
After the I/O operation completes, the page is unfixed and it becomes
eligible for a page-out. Pages should be marked fixed only when
necessary, since page fixing reduces the amount of real storage that can
be shared by concurrently executing paged programs (that which is
available to be allocated to the nonfixed pages) and can, therefore,
affect system performance.

As previously indicated, the supervisor in a DOS/VS environment, and
a portion of the control program in 0S/VS1l and 0OS/VS2 environments, are
resident in real storage. That is, their pages are marked fixed, and
they are not placed in external page storage (because they are not
paged) even though they are allocated space in virtual storage. 1In
OS/VSl and 0S/VS2, certain other portions of the control program are
pageable and are made resident in virtual storage, which means they are
contained in external page storage during system operation. During
system initialization, these pageable control program routines are
allocated virtual storage and loaded into real storage from system
libraries by the program fetch routine. These routines will be written
in external page storage as a result of normal paging activity in os/vsi
environments and as a result of specific page-out requests in 0S/VS2
environments. Control program routines that are resident in virtual -
storage are brought into real storage from external page storage,
instead of from a system library, when they are required during system
operation.

Just as control program routines can be fixed or pageable, problem
programs operate in one of two modes in 0S/VS1 and 0S/VS2 environments:
paged mode or nonpaged mode. The latter is also sometimes called
virtual equals real (V=R) mode. When a problem program operates in
paged mode, which is called virtual mode in a DOS/VS environment, it is
resident in virtual storage and pageable. A pageable program operates
in a contiguous area of virtual storage (partition or region) and is
assigned any available real storage on a demand paged basis. Hence,
virtual storage addresses must be translated into real storage
addresses. The real storage dynamically allocated to programs operating
in paged mode need not be contiguous, and such programs normally can
operate with less real storage than their design point (virtual storage)
amount dynamically allocated to them. This is the mode of operation
described in Section 30:05. :

Paged (virtual) mode is the normal mode of operation of programs in a
virtual storage environment. However, certain programs cannot operate
correctly in this mode, and must run in nonpaged (V=R) mode, which is
called real mode in a DOS/VS environment. 1In general, a program must
operate in nonpaged (real) mode if it:

®* Contains a channel program that is modified while the channel
program is active (Section 30:10 discusses the reason)

®* Is highly time dependent (involves certain testing operations on I/0
devices, for example)

® Must have all 6f its pages in real storage when it is executing (for
performance reasons, for example)

Other characteristics that require a program to be executed in
nonpaged mode and that are operating system dependent are listed in the

A Guide to the IBM System/370 Model 158 61

programming systems supplements, which also discuss steps that can be
taken to avoid running a program in nonpaged mode.

In 0S/VS1l and 0S/VS2, a program that operates in nonpaged mode is
dynamically allocated a contiguous virtual storage area and a contiguous
real storage area of the same size with addresses identical to those of
the allocated virtual storage area. (That is, virtual and real storage
addresses of the allocated area are equal.) Since programs operating in
V=R mode are not paged, they do not occupy external page storage. The
entire program, except for dynamically requested modules, is loaded into
real storage when it is initiated and all its pages are fixed. The
amount of real storage allocated to a program that runs in nonpaged mode
must be a multiple of the page size being used.

In a DOS/VS environment, one or more contiguously addressed real
storage partitions must be defined if any programs are to operate in
real mode. As in an 0S/VSl1l or 0S/VS2 environment, real mode programs
are not paged and do not occupy external page storage. The entire
program, except for any dynamically requested phases, is loaded when the
program is initiated. It must operate in a real partition that is equal
to or larger than its design point size.

30:10 DYNAMIC ADDRESS TRANSLATION HARDWARE FOR MODELS 1 AND 3 OF THE
MODEL 158

Dynamic Address Translation (DAT) is a standard facility of the Model
158. It is made operative by turning on the translation mode bit in the
current PSW. The system must also be operating in EC mode. When DAT is
operative, storage addresses in programs referring to instructions and
data are translated into real storage addresses after instructions are
fetched during program execution. (The address in the instruction
counter is translated also.) When DAT is not operative, storage
addresses in programs are used as real storage addresses. The storage
addresses in CCW lists are not translated by channel hardware during
channel program operation. The channel indirect data addressing
feature, also standard on the Model 158, and programmed channel program
translation are discussed later in this subsection under "Channel
Indirect Data Addressing®.

The following instructions are associated with dynamic address
translation: LOAD REAL ADDRESS, RESET REFERENCE BIT, and PURGE TLB.
These instructions are valid in BC mode as well as in EC mode. They
operate identically regardless of which mode is in effect. All are
privileged instructions.

VIRTUAL STORAGE ORGANIZATION

The Model 158 (as well as other System/370 models with DAT hardware)
supports a virtual storage segment size of either 64K or 1024K bytes, as
determined by bits 11 and 12 of control register 0. With either segment
size, the page size can be 2K or 4K, as determined by bits 8 and 9 of
control register 0. A segment size of 1024K bytes is not supported by
DOs/Vs, 0OS/Vsl, 0OS/VS2, or VM/370. Table 30.10.1 summarizes the virtual
storage organization provided in System/370.

As already described, the addresses supplied in programs directly
address a location in the virtual storage that is supported by the
virtual storage operating system. In this sense, program-supplied
addresses can be viewed as virtual storage addresses that specify a byte
within a particular virtual storage page and segment. The logic of the
translation process is described in this subsection in these terms. The
architectural definition of dynamic address translation found in
Systems/370 Principles of Operation (GA22-7000-2 and later editionms)
assumes that the addresses in programs consist of three fields, two of

62 A Guide to the IBM System/370 Model 158

which are used to index tables during the translation process. Under
these conditions, the addresses supplied by a program are considered to
be logical addresses instead of virtual storage addresses.

For the purpose of translation, a virtual storage address is divided
into three fields: (1) a segment field, which identifies a segment
within the virtual storage, (2) a page field, which identifies a page
within the segment addressed, and (3) a byte displacement field, which
identifies a byte within the page addressed. The number of bits in each
field varies depending on the segment and page sizes used. Virtual
storage address fields for a segment size of 64K and a specific example
of how the fields are used to address a location in virtual storage are
shown in Figure 30.10.1.

Table 30.10.1. Number and size of segments and pages for a 16-million-
byte virtual storage

, Number of
CR 0 Bits Segment Size | Segments in the Page Size Number of Pages
11,12 8,9 (bytes) Virtual Storage (bytes) in a Segment
10 01 1,048,576 16 2048 512
- 10 10 1,048,576 16 4096 256
00 01 65,536 256 2048 32
00 10 65,536 256 4096 16

OPERATION OF DYNAMIC ADDRESS TRANSLATION HARDWARE

Address Translation Tables

One segment table is required to describe one virtual storage. If
more than one virtual storage is supported by a single computing system,
there is a segment table for each virtual storage implemented. A
segment table contains one four-byte entry for each segment in the
virtual storage the table describes, up to a maximum of 256 entries for
the maximum size virtual storage of 16 million bytes (using 64K
segments). The real storage address of the segment table (or of the
currently active segment table if multiple virtual storages are
implemented) is contained in control register 1. The current length of
the segment table is also indicated in control register 1, The length
value is used by the hardware during translation to ensure that the
segment entry being referenced falls within the segment table.

The segment table entries point to the real storage locations of the
page tables. There is one page table for each segment in the virtual
storage defined (or, in 0S/VS2, currently allocated), up to a maximum of
256 page tables for a 16-million-byte virtual storage with 64K segments.
A segment table entry contains an indication of the length of the page
table, the high-order 21 bits of the real storage address of the page
table, and an indication of whether the entry itself is valid and can be
used for translation purposes (invalid bit). If the invalid bit is on
in a segment table entry, a segment translation exception occurs during
the translation process.

A Guide to the IBM Systems/370 Model 158 63

FORMATS

Effective 24-bit virtual storage address

— R N ~
8 16 21 31
64K segment Segment Page Byte displacement Supported by
2K page address address from beginning of page DOS/VS
bits bits and OS/VS1
N ~— I\ o e ~ —
0 to 255 0to 31 0 to 2047
Effective 24-bit virtual storage address
r - \
8 16 20 31
Segment Page Byte displacement Supported by
64K
4K p:zgément address address from beginning of page 0S/VS2 and
bits bits VM/370
[\ I\ ~ J\ -~ J
0 to 255 0to 15 0 to 4095
EXAMPLE OF ADDRESSING A 4K PAGE
Virtual storage of
16, 777, 216 bytes
(16, 384K)
l Page 15
Segment 255
P
16.320 |90 l
ﬁ: Segments 2 to 254 ;F
Hex address 0 1 F 0 0 4
128K
Page 15 8 16 20 31
Y
Segment 1 00000001| 1111 | 000000000100
I Segment = Page Byte
64K Page 0 1 15 4
l Page 15
Segment O
Virtual
storage Page 0 I
address 0
64K segments, 4K pages
Figure 30.10.1. Virtual storage address fields for a 64K segment
64 A Guide to the IBM System/370 Model 158

—

T '—'WAH"“ -

A page table has one entry for each page in the particular segment
the page table describes. For a 64K segment, there are 32 or 16 entries
in a page table depending on whether a 2K or a 4K page is used,
respectively. A page table entry is two bytes in size. It contains the
12 (for a 4K page) or 13 (for a 2K page) high-order bits of the real
storage address of the page frame that is currently allocated to the
virtual storage page that the page table entry describes. Each page
table entry also contains an invalid bit to indicate whether the entry
can be used for translation. The invalid bit is on when a virtual
storage page does not have real storage currently allocated to it. A
page translation exception occurs during the translation procedure if
this invalid bit is on.

Segment and page table formats and entries used for address
translation are shown in Figure 30.10.2. In effect, the segment and
page tables define the relationship between virtual and real storage at
any given time. The segment table reflects the current size of virtual
storage and the location of required page tables. The segment table
also indicates, by means of its invalid bits, which segments of virtual
Storage are currently allocated and have a page table available. The
page tables indicate, via their invalid bits, which virtual storage
pages currently have a page frame allocated and the location (real
storage address) of these page frames.

In DOS/VS and 0S/VS1l environments, segment and page tables are
established at system initialization. Page tables are modified during
system operation by control program routines to reflect the current
allocation of real storage to virtual storage so that address
translation can take place. In an 0S/VS2 environment, in which virtual
Storage as well as real is dynamically allocated and deallocated, the
segment table constructed during IPL is modified as required during
system operation to reflect the allocation of virtual storage, and page
tables are created and destroyed as necessary.

Address Translation Process

A translation request is either explicit or implicit. Explicit
translation is invoked via execution of the LOAD REAL ADDRESS
instruction. Implicit translation is invoked to translate all
instruction addresses and data addresses contained in other
instructions. Implicit address translation takes place during
instruction execution.

The logical flow and the details of the translation process are given
in Figure 30.10.3. The procedure consists of a two-level, direct
address table lookup operation. Any type of translation exception
causes a program interruption and termination of the hardware
translation process. The CPU cannot be disabled for translation
exception interruptions. Segment and page translation exceptions that
occur during an explicit translation request (LOAD REAL ADDRESS
instruction) are indicated via the condition code setting instead of via
an interruption.

Translation Lookaside Buffer and Segment Table Entry Save Area
In the Model 158, two features are implemented to reduce the amount -

of time required to perform address translation: a translation
lookaside buffer (TLB) and a segment table entry save area.

A Guide to the IBM System/370 Model 158 65

256 entries
for

16 million
bytes

Figure 30.10.2.

66

Control register 1

Segment
table addr.

0 8 26 31

10
Segment O entry
1 Segment 1 entry
L . J
4 bytes
255 Segment 255 entry

Segment Table
“for one virtual
storage — 1024
bytes maximum
for 64K
segment size

Segment Table Entry

Page
L | O |Table (U N
address
0 4 8 29 31
Bits

0-3 Page table length

8—28 Page table origin
address
31 Invalid bit

64
bytes

A Guide to the IBM System/370 Model 158

31

31

Page Tables
for 2K pages
Segment O Page Table

Page Tables
for 4K pages
Segment 0 Page Table

Page O entry 0 Page 0 entry
— J | —
2 bytes or &= 2 bytes ¥
~ ‘ ~
15 Page 15 entry
. Page 31 entry
.
°
.
.
o
.
Segment 255 Page Table Segment 255 Page Table
Page O entry 0 Page 0 entry
or % a
[15 Page 15 entry
Page 31 entry
256 Page Tables
maximum
2K Page Table Entry 4K Page Table Entry
Page olu Page 1]oofu
address address
0 1314 15 0 1213 15
Bits Bits
0-12 High-order 13 0—-11 High-order 12
bits of real bits of real
storage address storage address
of page of page
13 Invalid bit 12 Invalid bit
15 User bit for 15 User bit for
programming programming
systems use systems use

Segment table and page tables used for dynamic address
translation

32
bytes

=

-

1.

5.

!
@ Lengthi P;ggdrggsle Page Address
]

Effective 24-Bit Virtual Storage Address

64K 2K
[Segment I Page l Displacement]
8 . 15 16 20 21 31
Control Register 1
Segment Table
Lengthl ™™ ddress l 1
0 8 [26 31
XX e X000000
/ / 0—OXXXXXXXX0 0—0XXXXX0
8 25
8 I 29 8 30
Add
8 28
Segment Table \ \ Page Table

] X=X000 °

\J/"—' Page Table /—

Page Table /—
8 20 21
. 31
@ Page Frame

Number

J Displacement]

Bits 8, 9, 11, and 12 in control register 0 are checked for
validity. A translation specification interruption occurs if an
invalid setting is present. Segment address bits from the
virtual storage address are checked using length bits in control
register 1. If the segment entry address is outside the segment
table, a segment translation exception is indicated.

Six low-order zeros are appended to the segment table address in
control register 1. Two low-order zeros are appended to the
segment bits from the virtual storage address. The two values
are added to obtain a segment table entry. If the invalid bit is
on in this entry, a segment translation exception is indicated.

Page address bits from the virtual storage address are checked
using page table length bits contained in the segment table
entry. A page translation exception is indicated if the entry
addressed is outside the page table.

Three low-order zeros are appended to the page table address
contained in the segment entry. One low-order zero is appended
to the page address from the virtual storage address. The two
values are added to obtain a page table entry. If the invalid
bit is on in this entry, a page translation exception is
indicated.

The 24-bit real storage address is formed using the 12 or 13
high-order bits from the page table entry and the 12 or 11 low-
order bits from the virtual storage address.

Figure 30.10.3. Dynamic address translation procedure

A Guide to the IBM Systems/370 Model 158 67

The translation lookaside buffer is used to retain up to 128
translated addresses. Addresses associated with up to three different
virtual storages can be contained in the TLB at any time. Every time a
virtual storage address is translated during instruction execution, the
virtual storage address, the resulting real storage address, and
identification of the virtual storage to which the virtual storage
address belongs are placed in one of the TIB locations.

The TLB is divided into 64 locations, each of which can contain two
translations. Determination of which half of a TLB location to assign
is based on whether the page number associated with the virtual storage
address to be translated is odd or even. A certain set of six bits in
the virtual storage address is used to directly address one of the 64
TLB locations. When an entry is placed in a TLB location, a valid
indication is established for the entry.

After the effective virtual storage address has been computed and
before performing translation using the tables, the TLB is interrogated
to determine whether or not it contains the required translated address.
Interrogation of the TLB is overlapped with reference to the index array
of the buffer. (The low-order real address bits in the byte
displacement field of the virtual storage address to be translated are
used to access the appropriate halfblock entry in the index array for
the buffer.) Therefore, no translation cycles are required when the
translated address is obtained from the TLB.

If the TLB does not contain the required translation or if the entry
is invalid, the segment table entry save area is inspected. The segment
table entry save area is used to hold the contents of the segment table
entry last used in translation. This area is inspected before the
translation process begins. When virtual storage addresses in the same
segment are referenced in succession, the segment table entry contents
are taken from the save area, eliminating a buffer or real storage
reference to obtain the segment entry contents and the first add
operation in the translation process. If the segment table entry save
area does not contain the required segment table entry contents, the
complete table-lookup translation procedure, as previously described, is
performed. v : '

In the Model 158, the number of CPU (115 nanosecond) cycles required
for address translation when the translation is not obtained from the
TLB varies from a minimum of 6 to a maximum of 20, depending on the
locations of the segment table and the page table entries. In the Model
155 II, from 6 to 37 CPU cycles are required for the translation process
when the translation is not contained in the TLB.

During an initial program reset or a program reset, all 128 entries
in the TLB are invalidated, as is the segment table entry save area
value. The PURGE TLB instruction is provided to enable a program to
turn off the valid indication for all 128 entries in the TLB and to
clear the segment table entry save area value. In general, this’
instruction must be issued when an entry in a page table is invalidated,
since the real storage address being. invalidated could be contained in
the TLB. (The TLB will be purged by the virtual storage operating
systems as required.) The TLB is also automatically purged any time the
page or segment size value in control register 0 is changed, as a result
of a machine check, when a store status is performed using the display
console, and when the ENTER key on the keyboard is pressed to perform an
alter operation. : '

A change in the segment table origin address in control register 1
can also affect the validity of current TLB entries. In order to reduce
the number of full TLB purges required by such a change, up to three
unique segment table origin addresses are maintained in local storage.
Each of these addresses could point to a segment table that defined a

68 A Guide to the IBM System/370 Model 158

S e

Page of GC20-1754-2
Revised February 20, 1976
By TNL GN20-3580

different virtual storage. Each segment table origin address saved in
local storage has a unique code value (1, 2, or 3) associated with it.
One of these codes is identified as the currently active code to
indicate which segment table and, hence, which virtual storage is
currently active. Whenever a segment table address is placed in control
register 1, the segment table address is also placed in local storage
and the code it is assigned becomes the new active code number.

A segment table address code is stored with each TLB entry to
identify the segment table with which the TIB entry is associated. When
the TLB is interrogated to see if it contains the required translation,
the code numker of the TLB entry is compared with the active code
number. If the codes are equal, this indicates the TLB location
contains a translation from the virtual storage associated with the
active code number. 1If the codes are not equal, the TLR location
contains a translation for a different virtual storage and, therefore,
the TLB entry does not contain the required translation even though it
may contain a virtual storage address equal to the one that is to be
translated.

Whenever control register 1 is loaded, the just-loaded segment table
address is compared with each of the three saved segment table addresses
in local storage to determine whether a change is being made. if a
change is indicated, some TLE purging may be required. 2n equal
comparison indicates that the virtual storage associated with the
segment table address now in control register 1 is currently one of the
three virtual storages whose translations are being maintained in the
TLB. The code number of the segment table address now in control
register 1 is designated to be the active code. No TLB purging is
required. '

If no equal comparison between a saved segment table address and the
segment table address in control register 1 is found, this indicates
translations for the segment table now indicated by control register 1
are not currently being maintained in the TIB. The new segment table
address is placed in local storage and the code number assigned becomes
the new active code. A first-in first-out algorithm is used to
determine which code to assign. If the new address displaces another
segment table address, the TLB entries associated with the displaced
segment table must ke purged. This is done by invalidating each entry
in the TLB that has the same code number as the segment table address
that was displaced. A zero code number in a TLB entry indicates an
invalid entry. The code number of the displaced segment takle address
is now assigned to the newly stored segment table address. The other
TLB entries need not ke invalidated. See Figure 30.10.4.

Implementation of this segment table address saving facility in the
Model 158 enables a control program that supports multiple virtual
storages (such as VM/370) to alter control register 1 to change the
virtual storage for which address translation is effective withcut
automatically causing purging of the entire TLB. The segment table
address saving facility will alsc avoid TLB purging in an 0OS/VS2
environment when control register 1 is changed. 0S/VS2 Release 1
supports two segment tables to provide fetch protection for all regions
(discussed in OS/Virtual Storage 2 Release 1 Features Supplement).

Addresses Translated

All storage addresses that are explicitly designated by a prcgram and
that are used by the CPU to refer to instructions or data in processor
storage are virtual storage addresses and are subject to address
translation. Thus, when DAT is operative, the starting and ending
storage addresses used with the program event recording feature are
virtual, as are the storage addresses stored in PSW's during
interruptions. Address translation is not applied to addresses that

A Guide to the IBM Systems/370 Model 158 69

explicitly designate protect key storage locations or to quantities that
are formed as storage addresses from the values designated in the base
and displacement fields of an instruction but are not used to address
processor storage (shift instructions, for example). 1In addition,

address translation is not applied to the storage addresses in CCW lists
used for I/0 operations.

Some of the storage addresses supplied to a program by the CPU are
virtual and some are real. Table 30.10.2 lists, for the Model 158,
those storage addresses designated by a program, either explicitly or
implicitly, that are virtual (and, therefore, are subject to
translation) and those addresses that are real or not used to reference
processor storage and, thus, are not translated. The table also
indicates which storage addresses supplied to a program are virtual and
which are real.

Translation Lookaside Buffer

Segment table
origin address Controi Active Virtual storage Real_storage
Code save area register 1 code Code address address
1 STO2 STO2 EI 1 3 VSA1 RSA1
2 STO1 2 2 VSA2 RSA2
’ next location -
3 STO3 to be assigned 3] o VSA3 RSA3
4 1 VSA4 RSA4
5 1 VSAS RSAS
6 2 VSA6 RSAB
7 3 VSA7 - RSA7
8 1 VSAS8 RSA8
¢ L A AL

T T 7

Effect of Changing Control Register 1

Translation Lookaside Buffer
Segment table

origin address Control Active Virtual storage Real storage
Code save area: register 1 code Code address address
1 STO2 \ STOS |__;I 1 0 VSA1 RSA1
2 STO1 . 2 2 VSA2 RSA2
next location

STOS to be assigned 3 0 VSA3 RSA3

4 1 VSA4 RSA4

5 1 VSAS RSAS

61 2 VSA6 RSA6

710 VSA7 RSA7

8 1 VSA8 RSA8

L1 L L

—
._e
-—I
]

Figure 30.10.4. TLB purging when control register 1 is changed

70 A Guide to the IBM Systems/370 Model 158

Table 30.10.2. Virtual and real storage addresses used by and
supplied to programs in the Model 158

Virtual storage Addresses Explicitly Designated by the Program (translated)

Instruction address in the PSW

Branch addresses in instructions

Addresses of operands in instructions

Operand address in LOAD REAL ADDRESS instruction

PER starting address in control register 10 and PER ending address
in control register 11

Real Storage Addresses Explicitly Designated by the Program (not translated)

* Operand addresses in SET STORAGE KEY, INSERT STORAGE KEY,
and RESET REFERENCE BIT instructions

Machine check extended log pointer in control register 15
Segment-table-origin address in control register 1
Page-table-origin address in a segment table entry

Page frame address in a page table entry

CCW address in the channel address word (CAW)

Address in a CCW specifying a data area or the location
of another CCW ‘

¢ Data address in channel indirect data address lists

Addresses Not Used‘gg Address Storage (not translated)

¢ Operand addresses specifying the amount of shift in fixed-point,
logical, or decimal shift instructions

®* Operand address in LOAD ADDRESS and MONITOR CALL instructions

®* I/0 addresses in I/0 instructions and in the Input/Output
Communication Area (IOCA)

Real Storage Addresses Used Implicitly (not translated)

¢ Addresses of PSW's used during an interruption and in executing the
programmed or manually initiated restart function

* Address used by the CPU to update the timer at location 80

e Address of the CAW, the CSW, and the I/0 address within the IOCA used
during an I/O interruption or during execution of an I/O instruction,
including execution of STORE CHANNEL ID

* Addresses used for the store status function

Virtual Storage Addresses Provided to the Program

¢ Address stored in the instruction address field of the old PSW during
an interruption

e Address stored by a BRANCH AND LINK instruction

¢ Address stored in register 1 by TRANSLATE AND TEST and
EDIT AND MARK instructions

¢ Address stored in location 144 on a program interruption
for a page translation or segment translation exception

¢ Address stored in location 152 on a PER interruption

Real Storage Addresses Provided to the Program

¢ The translated address generated by the LOAD REAL ADDRESS instruction
* Address of the segment table entry or page table entry provided by
the LOAD REAL ADDRESS instruction

¢ Failing storage address in location 248
¢ CCW address in the CSW

A Guide to the IBM Systems/370 Model 158 71

Expanded Alter/Display for Display Console

The alters/display function of the display console is expanded in the
Model 158 to accept virtual storage addresses in alters/display requests.
When the operator indicates that a virtual storage address has been
entered, the address is translated into a real storage address under
microprogram control, without reference to the TLB, using the existing
contents of control registers 0 and 1 to define the segment and page
sizes and the location of the segment table. Translation mode need not
be specified. Any alter operation causes the TLB to be purged..

The virtual storage address entered and the translated real storage
address are displayed for both alter and display operations. If a
translation exception occurs, an error indication is displayed instead
of the real storage address. An exception occurs when a page frame is
not currently allocated to the virtual storage page referenced. '

The ADDRESS COMPARE function still uses real storage addresses only.
The SET IC function assumes the storage address entered to be virtual or
real depending on the setting of the translation mode bit in the current
PSW. (The STORE and DISPLAY pushbuttons on a Model 155 II console
assume real addresses only.)

FEATURES TO SUPPORT DEMAND PAGING

Reference and Change Recording Facility for Real Storage Blocks

A hardware recording facility is standard in the Model 158. - This
facility provides continuous recording of the activity of all 2K real
storage blocks via reference and change bits. The settings of these
recording bits can be used by control program routines to support a
demand paging environment. This hardware facility is always active; it
does not depend on EC or translation mode being operative.

The seven-bit key associated with each 2K real storage block in the
Model 158 has four storage-protect bits, one fetch-protect bit, one
reference bit, and one change bit. During system operation, the
activity of each 2K real storage block is monitored by hardware. :
Whenever a fetch is made either by a CPU or a channel to a real storage
address, the reference bit in the key associated with the 2K storage
block that contains that real storage address is turned on by the
hardware. A store into any real storage address causes the hardware to
turn on both the change bit and the reference bit for the affected 2K
block. , .

Altersdisplay operations initiated from the display console or
keyboard also cause appropriate changing of the reference and change
bits. The RESET REFERENCE BIT instruction is provided to allow the
reference bit of any 2K real storage block to be reset by programming
without altering the contents of the other six bits in the protect key.

A CPU fetch that is satisfied with data contained in the buffer
causes reference recording in the Model 158. There are situations in
which instruction or operand prefetching may cause the reference bit for
a page frame to be turned on even though the contents of the page are
never used.

The hardware reference and change recording facility is used by the
page replacement algorithm of a virtual storage operating system. When
a page is loaded into a page frame, the reference and change bits for
that page frame are set to zero. (When a 4K page size is used, the
reference and change bits for both of the 2K storage blocks involved are
reset.) Thereafter, the reference bit is used to determine the activity
of a page. The change bit is inspected to determine whether a page must

72 A Guide to the IBM System/370 Model 158

\\ ;

pe paged out when its page frame is reassigned. The SET STORAGE KEY
instruction must be used to reset the change bit.

Instruction Nullification

When a page fault occurs in a demand paging environment, execution of
the instruction that caused the page fault stops and the control program
gains control to initiate a page-in operation. When the contents of the
missing page have been loaded (and the appropriate page table entry has
been updated), the instruction that caused the page fault is reissued.
For the instruction to operate correctly the second time, execution of"
the instruction must have been stopped so that reexecution gives the
same results as would have occurred if the instruction had been executed
only once. Therefore, the contents of real storage, the general and
floating-point registers, and the PSW must not be altered.

The execution of an instruction is said to be nullified when it is
stopped in such a way that no operation is performed, no fields were
changed, and the PSW indicates the address of the instruction that was
stopped. Interruptible instructions, such as MOVE LONG, are divided
into execution units. One or more execution units may have completed
before a page fault is detected. In this case, only the current
execution unit is nullified.

Various methods are used, depending on the type of instruction, to
determine the need for nullification. In some cases, instruction
execution is attempted where hardware detection of page faults permits
nullification. In other cases, pretesting is required to determine
whether the virtual storage pages to be referenced have page frames
allocated. Nullification testing is required only for instructions
whose translated addresses reference real storage. :Testing is
accomplished in the Model 158 by additional microcode routines that are
executed before normal 1nstruct10n execution microcode.

Instructions that do not need pretesting, for example, are those
whose operation is such that when the operands they reference are on
integral storage boundaries that are a multiple of the implied operand
length, only one page can be involved. For example, a store fullword
(STCRE) instruction that addresses a four-byte data field aligned on a
fullword boundary cannot cross a page boundary during execution. The
aligned data will always be totally contained in one page. This
instruction is allowed to execute without pretesting as soon as it has
been determined that the addressed data field is on an integral
boundary. : , :

Similarly, if a store fullword instruction addresses a four-byte
field that is not on a fullword boundary, a pretest is required to
determine whether all four bytes are contained in real storage. The
pretest microcode for this instruction issues a fetch to the highest
addressed byte in the four-byte data field (virtual storage address in
the instruction plus 3). The absence of a page translation exception
during translation of the virtual storage address indicates that (1) if
the data field spans two pages, at least the second of the two pages is
present in real storage or (2) the data field is totally contained in
one page, which is present in real storage. Hence, the instruction is
allowed to proceed without nullification. If the data field actually
does span two pages and the first page is not present in real storage,
this fact will be indicated by a page fault during translation of the
address of the high-order byte of the field. Instruction nullification
will occur and the page fault will cause a page-in of the first page to
be initiated by the control program as usual.

If the pretest fetch operatlon does cause a translation exception,

the store fullword instruction is nullified and the control program
gains CPU control to load the missing page. Once again, the page-in

A Guide to the IBM System/370 Model 158 73

caused by the pretest may have brought in the second of two pages
spanned by the data field or the only page containing the data field.
After the page-in, the instruction is reexecuted.

CHANNEL INDIRECT DATA ADDRESSING

Since address translation is not performed by the channels for
programs that operate in paged (virtual) mode, address translation must
be performed on CCW lists by programming before the initiation of START
170 instructions. Such address translation need not be performed on the
CCW lists of programs that operate in nonpaged (real) mode.

In addition, a contiguously addressed I/0 area in virtual storage can
Span a set of noncontiguous page frames. Hence, a method of handling a
noncontiguously addressed I/0 area in real storage during the operation
of a CCW list is required. The standard channel indirect data
addressing feature is used to provide this capability. As is shown . in
Figure 30.10.5, the use of channel indirect data addressing allows the
channel program logic used in the CCW list with virtual storage
addresses to be maintained in the new CCW list that contains real
storage addresses.

When channel indirect data addressing is present, bit 37 of a CCW is
designated as the indirect data address (IDA) flag. The IDA flag
applies to read, read backward, write, control, and sense commands and
is valid in both BC and EC modes. When the IDA flag in a CCW is zero,
bits 8 to 31 of the CCW specify the real storage address of the
beginning of the I/0 area as usual. When the I/0 area referenced by a
CCW is completely contained in one page, an indirect data address list
(IDAL) is not required and the IDA flag is set to zero. When the IDA
flag is one, CCW bits 8 to 31 specify the real storage address of an
IDAL instead of an I/O area. When the I/O area referenced by a ccw
spans two or more pages, an IDAL is required and the IDA flag is set to
one. : :

An IDAL consists of two or more contiguous indirect data address
words (IDAW's) of four bytes each. There is one IDAW in an IDAL for
each 2K storage block spanned by the I/0 area. An IDAW, which must be
aligned on a fullword boundary, contains a real storage I/0 area address
in bits 8 to 31. Bits 0 to 7 must be zero. The first IDAW in the list
points to the beginning of the I/O area to be used by the CCW and is
obtained by translating the virtual storage address contained in the
original CCW. Any valid real storage address can be specified in the
first IDAW of a list. All IDAW's after the first must address the
beginning (or end for a read backward operation) of a 2048-byte block
located on a 2048-byte boundary, or a program check occurs. That is,
bits 21-31 of the address in the IDAW must be zeros (or ones for a read
backward).

Figure 30.10.5 shows an example of the IDAL's required for a command-
chained CCW list when 2K pages are used. The IBM-supplied virtual
storage operating systems construct a new CCW list with translated
addresses that is used to control the I1,/0 operation. The new CCW list
points to any required IDAL's.

74 ‘ A Guide to the IBM System/370 Model 158

CCW List Provided by the Program

cewt 1/0 area 1 3625
address
1/0 area
ccw2 address 0 3625
0o 8 7 31 33 48 63

Virtual storage
address

CCW List and IDAL's Constructed for the 1/O Operation
CCW1 1/0 area in real

storage — 3625 bytes

IDAL1 : 576

/ bytes

Real storage

0 Page frame X
IDAWI address 1/0 area 9

Real storage 2048
New translated CCW list IDAW2| 0 address 1/0 area ! bytes

used for Start 1/0 0 Real storage Page frame Y
IDAW3 address |/O area

IDA

CAW at location 72 flag 0 8 31 1001
CCW1 bytes
IDAL1
Page frame Z
address ccwi address 1 ! 3625 age fram
IDAL2
0 1
CCw2 address 3625
CCW2 1/O area in real

37 48 63
o 8 7 31 33 ' storage — 3626 bytes

Real storage

address IDAL2 1800 bytes
IDAW 0 Real storage /v
address 1/0 area Page frame A
oawz| o Real storage
address 1/0 area
0 8 3 1825 bytes

Page frame B

Figure 30.10.5. Example of IDAL's required for a CCW list when page
size is 2K

When a START I/0 instruction is executed, the channel fetches the
first CCW in the 1list, pointed to by the channel address word (CAW), and
inspects bit 37. If it is zero, the operation is started in the 1/0
area specified by the real storage address in the CCW. If bit 37 is a
one, the first IDAW is fetched from the real storage address in the CCW.
The I/O operation is begun using the real storage address in the first
IDAW and, assuming that the I/O operation is not a read backward,
ascending real storage addresses in the I/0 area are used by the channel
until a 2048-byte boundary is reached.

The channel detects a 2K boundary by monitoring I/0 area address bits
21-31. When these bits change from all ones to all zeros, the first
byte of the next 2K real storage block is indicated. At this point, the
channel accesses the second IDAW in the list to obtain the next real
storage I/0 area address to be used, and the data transfer operation
continues. (In the Model 158, IDAW's are not prefetched.) The channel

A Guide to the IBM System/370 Model 158 75

continues using the IDAL until the operation indicated by the CCw
completes (CCW count reaches zero, IRG on tape reached, etc.). The next
CCW is accessed if command or data chaining is indicated. Bit 37 is
inspected and the I/0 operation continues as described until the ccw
list is exhausted.

When a program operates in paged mode, the CCW list for an 1/0
operation must be inspected, the new CCW list with translated address
must be built, and the appropriate IDAL's must be constructed before
issuing a START I/0 instruction. At the completion of an I/0 operation,
some retranslation is also required. 1In general, the following steps
must be taken for each CCW in a given list:

1. Determine whether the I/O area referred to in the CCW spans pages
or is contained in only one. If a single page is involved,
translate the virtual storage address to real and store it in the
CCW. Ensure that a page frame is allocated to the page
containing the buffer and that the page frame is marked fixed.

2, 1If two or more pages are involved, set up the required number of
IDAW's, place a pointer to the IDAL in the CCW, and turn on CCW
bit 37.

3. While setting up IDAW's, determine whether all pages in the I/0
area have real storage allocated. If not, ensure that page
.frames are allocated and fixed.

At the completion of an I/0 operation, the real storage address in
the channel status word must be translated into a virtual storage
address, and pages that were short-term fixed prior to initiation of the
I/0 operation must be unfixed. Channel program translation and page
fixing are performed by the I/O control portion of the control program
in IBM-supplied virtual storage operating system support. A program
that contains a CCW list that is dynamically modified during its
execution cannot operate correctly in paged mode since the modification
is made to the CCW list with virtual storage addresses rather than to
the translated CCW list that is actually controlling the I/0 operation
on the channel. :

30:15 SYSTEM PERFORMANCE IN A VIRTUAL STORAGE ENVIRONMENT

A virtual storage environment is designed to provide new data
processing capabilities. As is true of any other capability offered by
an operating system, support of a new function requires control program
use of a certain amount of the hardware resources of the system. 1In
this respect, virtual storage is no different from multiprogramming and
the many other new capabilities that have continuously been added to DOS
and OS since their initial release.

The characteristic that makes virtual storage different from most
other features is that virtual storage is not primarily designed to
improve system performance, as are many other control program
facilities. Virtual storage is first a functional tool and, in certain
cases, can also be a performance tool. The objectives of DOS and OS
virtual storage operating systems are to (1) provide new functiomns, (2)
maintain upward compatibility with DOS and OS nonvirtual storage
environments, and (3) provide performance equal to or better than that
achieved with a nonvirtual storage operating system using the same
system configuration. Attainment of the last objective will not be
possible for all existing System/370 configurations.

In addition, some of the new functions a virtual storage environment

provides cannot be achieved in a nonvirtual storage environment or are
not practical, and in these cases, performance is not the primary

76 A Guide to the IBM System/370 Model 158

consideration when using the facility virtual storage offers. BAs the
cost of hardware resources continues to decline on a unit cost basis
(cost per processor storage bit, cost per direct access bit, etc.), it
becomes increasingly more economical to use system resources to perform
functions that otherwise are handled by installation personnel.

The other new characteristic of virtual storage is that it enables a
given system configuration to provide a wider range of performance, as
well as function, as a result of the new factors that affect operation
of a system with virtual storage support. Thus, a slightly different
approach must be taken in planning for and in evaluating system
performance in a virtual storage environment.

Many of the same factors that affect system performance in a DOS/VS,
0S/VSl, or 0S/VS2 environment are the same as those that apply to DOS
Version 4, OS MFT, or OS MVT, respectively. First, the system
configuration must include the hardware resources (CPU speed, channels,
170 devices, real storage) required for the control program and job mix.
This subsection identifies the system resources specifically required to
support a virtual storage environment. Second, the system should be
designed to balance resource usage to achieve optimum throughput, and to
use applicable performance and control program design options the
particular operating system offers, taking into account the
characteristics of the installation job stream.

The performance of a system in a virtual storage environment is also
affected by certain new factors that do not apply to systems without
virtual storage support. This subsection identifies these new factors,
explains how they generally affect system performance, and indicates
steps that can be taken to increase and maximize system pexformance when
a virtual storage operating system is used.

This discussion applies to DOS/VS, 0S/Vsl, and OS/VS2, and is
restricted to performance factors that are common to the virtual storage
environments they support. The virtual storage operating systems also
offer new performance-oriented enhancements that are not related to the
implementation of virtual storage. These unique performance features
are discussed in the optional programming systems supplements.

The performance information in this subsection is designed to present
concepts and considerations for a virtual storage environment. Figures
and graphs are used for illustrative purposes. They do not represent
any particular installation or measured results. Their purpose is to
illustrate the interrelated factors of multiprogramming performance in a
virtual storage environment. The performance information presented is
conceptual. It is based on the experience and judgment of IBM
individuals with performance knowledge and on performance measurements
made during development of 0S/VS1 and 0S/VS2. Therefore, it may not
apply to all installations.

SYSTEM RESOURCES REQUIRED TO SUPPORT A VIRTUAL STORAGE ENVIRONMENT

In order to support a demand-paged virtual storage environment using
System/370, in which programs are operating in paged mode, additional
system resources are used by the IBM-supplied virtual storage operating
systems, as follows:

e Dynamic address translation hardware requires CPU time to perform
virtual-storage-to-real-storage address translation. The amount of
time required is determined by the Systemv370 model and the number
of times the full table-lookup translation procedure must be
performed. The Model 158, for example, has a translation lookaside
buffer that is designed to reduce use of the full table-lookup
translation procedure. The CPU time required is also affected by

A Guide to the IBM Systems/370 Model 158 77

program structure (which is discussed later). A small amount of
additional CPU time is also required to pretest certain instructions
that reference storage, as discussed under "Instruction
Nullification" in Section 30:10. Studies have shown that a
relatively small percentage of the total CPU time specifically
required to support a virtual storage environment is devoted to
address translation by DAT hardware.

CPU time is required to translate the virtual storage addresses in
channel programs (CCW lists) into real storage addresses and to
build indirect data address lists (when necessary) and short-term
fix pages that will be referenced during I/0 initiation, execution,
and interruption handling. Channel program translation and page
fixing are performed before the initiation of each I/0 operation
with a channel program that contains virtual storage addresses.
Channel status word retranslation and page unfixing are performed at
the completion of these I/0 operations. The amount of CPU time this
function requires per data set is affected by the number of 1I/0
requests (EXCP macros) issued, the number of CCW's in the channel
programs started, the number of pages that must be fixed, and
whether indirect data address lists have to be constructed. Studies
have shown that a large portion of the total CPU time specifically
required to support a virtual Storage environment is used to perform
channel program translation and page fixing.

CPU time is required to process page faults and for the execution of
other control program code that is specifically required to support
a virtual storage environment. CPU time is required for such things
as servicing additional program interruptions, managing and
allocating real and external page storage, maintaining tables used
by DAT hardware, and testing for paged or nonpaged mode of program
operation.

I/0 time is required for paging operations. The amount of paging
I/0 time required is related to the number of page faults that occur
and the speed of the paging I/0 device(s) used. In 0OS/VS2
environments, the total I/0 time required for paging includes some
I/0 time that is also required in OS MVT environments to load
transient control program routines.

Direct access storage is required for external page storage. The
amount required depends on the amount of virtual storage that is to
be supported and the way in which the particular operating system
organizes and manages external page storage. (See the optional
programming systems supplements for external page requirements by
device type.)

The amount of real storage required by the resident (fixed) control
program is increased by the amount of real storage needed for
additional routines and code that are included specifically to
support a demand paged virtual storage environment.

The effect this additional use of hardware resources has on the
performance of a given system configuration depends on the resource
requirements of the job stream and the current utilization of system

resources. To the degree that the additional required CPU and I/0 time
can be overlapped with existing CPU and I/0 time that currently is not
overlapped, system throughput is not affected. System throughput will
be affected by the increase in CPU and I/0 time that cannot be
overlapped.

When a virtual storage operating system is used with an existing

system configuration, for example, and the same job stream is processed,
performance is affected by the use of any new performance enhancements
these operating systems provide as well as by an increase in resource

78

A Guide to the IBM System/370 Model 158

o

\««._..//‘

utilization that is required to support a virtual storage environment.
When a Model 158 replaces a Model 155, performance is also affected by
the fact that the Model 158 has faster internal performance than the
Model 155.

Figure 30.15.1 conceptually illustrates possible system performance
when a virtual storage operating system is installed on a Model 158 with
the same amount of real storage and the same I/0 device configuration as
the replaced Model 155. A sample throughput for a Model 155 is shown in
panel 1. (It is not meant to represent any specific Model 155
throughput.) Panels 2 and 3 illustrate the conditions under which
existing performance can be maintained, and the last two illustrate the
conditions under which existing performance can be improved. Existing
throughput is maintained if both of the following occur:

1. A portion of the additional CPU and I/0 time required to support
a virtual storage environment is overlapped with CPU and I/0 time
that previously was not overlapped, as shown by points A in panel 2.

2. The amount of additional CPU and I/0 time that cannot be
overlapped (shown by points B in panel 2) is offset by reductions
in previously used CPU and I/O time that occur as a result of the
faster internal performance of the Model 158 and use of new
performance features of the virtual storage operating system, as
shown in panel 2. The unoverlapped CPU and I/0 time may also be
offset by a combination of the faster internal performance of the
Model 158 and the achievement of better overlap as a result of
operating the system at a higher level of multiprogramming to
process the same work (as shown in panel 3).

Existing system throughput can improve if (1) unoverlapped CPU and
170 time required to support a virtual storage environment is exceeded
by reductions in previously used CPU and I/0 time and/or if previously
used CPU and I/O time are better overlapped (as shown in panel 4) or (2)
a higher level of multiprogramming is used to perform more work and
provide better CPU and I/O overlap in the same elapsed time (as shown in
panel 5).

NEW FACTORS THAT AFFECT SYSTEM PERFORMANCE

In addition to the factors that affect performance in a nonvirtual
storage environment, the performance of a system in a virtual storage
environment is affected by the relationship of the following factors:
the speed and number of paging devices, the speed of the CPU, the size
of real storage, the structure of the programs in the job stream, and
the way in which real storage is organized and allocated by the virtual
storage operating system. The interrelationship of each of these
factors and their individual effect on performance, except for the last
factor listed, are as follows (page replacement algorithms are not
discussed) :

Speed and Number of Paging Devices. A certain amount of I/0 time is
required to read in (or write out) a page using a given direct access
device type. This time is a function of device type characteristics--
seek time, rotation time, and data transfer rate. Assuming one page-in
performed at a time, no page-outs, and no contention for the paging
device or its channel, a maximum paging rate, in terms of the number of
page faults that can be serviced per time interval, could be calculated
for a given device type. This rate could be improved by certain
programming techniques, such as use of rotational position sensing when
it is present and initiation of multiple page-in and page-out requests
with a single channel program. (Various techniques are implemented in
0s/vVSl and 0S/VS2.) The maximum paging capability of a given system can

A Guide to the IBM System/370 Model 158 79

be increased by various means, such as us

ing a faster paging device or,

in 0S/VsSl and 0Os/vs2 environments, using more than one raging device.

Panel 1

Sample existing CPU and I/0 utili-
zation and overlap for a Model 155.

EXISTING SYSTEM THROUGHPUT
MAINTAINED ,

Panel 2

Some of the additional CPU and I/O
time required is overlapped with pre-
viously unoverlapped I/0 and CPU time
(points A). Additional CPU and I/0
time that cannot be overlapped
(points B) is offset by a reduction
in the amount of CPU and I/0 time re-
quired to process the same job
stream. Results are achieved in the
same elapsed time.

Panel 3

Additional CPU and I/O time required
(dotted lines) is overlapped and off-
set by operating the system at a
higher level of multiprogramming to
achieve greater overlap. Results are
achieved in the same elapsed time.

EXISTING SYSTEM THROUGHPUT IMPROVED
Panel 4

Unoverlapped CPU and I/0 time required
is exceeded by reductions in previ-
ously used CPU and I/0 time. Better
overlap of previously used CPU and I/0
time is also achieved. Same results
are achieved in less elapsed time.

Panel 5

A higher level of multiprogramming

is used to perform more work and
achieve better overlap of CPU and 1/0
time. More results are achieved in
the same elapsed time.

CcPU L (a) | I

L 1 (b)
1/0)
L J
Elapsed time
cru| @ Reduced cPU Time | ®
ul== -]
/0 I L Reduced 1/0 _ |
@ ®
Reduced CPU Time]
CPU|-~- . --
| L
L1 {b) |
1/0 = -l--
— —~— J
Better Overlap
Reduced CPU Time
CPU|—- I“ -
10 l_ L Reduced 1/0 Time 1
- {--
w Better Overlap ‘ P
NS T
Elapsed Time Reduced
ol Increased CPU Time |
CPU I vl_‘"
_ Increased 1/0 Time]
vo| |--} : -
— — v

Better Overlap

Figure 30.15.1. Possible system performance when a virtual storage
operating system is used with a Model 158 with the
same I/0 configuration and real storage size as the

replaced Model 155

The paging characteristic of a virtual storage environment is the
feature that permits an operating system to support virtual storage that
is larger than real storage. The paging activity of a system begins to
adversely affect system performance, however, once the CPU is in the

80 A Guide to the IBM System/370 Model 158

\ /

position of frequently having to wait for paging I/0 operations to
complete. When requests for paging operations are permitted to occur
faster than the paging rate the system can sustain, so that the system
can do little or no processing except that related to paging, the system
is in a paging-I/O-bound situation and is said to be thrashing. When a
thrashing condition exists, little or no productive work can be
accomplished unless paging activity is reduced.

In order to prevent thrashing, the System/370 virtual storage
operating systems monitor the activity of the system to determine when
paging activity becomes excessive. At this point, task deactivation is
performed. This involves placing a task (0s/VS2) or partition (0s/vsi
and DOS/VS) in deactivated status. When the page frames associated with
a deactivated partition or task become available, they can be allocated
to other tasks to reduce paging activity. Later, when paging activity
becomes sufficiently low, the deactivated partition or task is
reactivated.

CPU Speed. An improperly balanced relationship between CPU speed and
paging device speed can also cause the system to become I/0O-bound as a
result of paging. A Model 158 can execute a certain number of
instructions during the time required to service a page-in request using
a given direct access device type. A Model 158 can execute many more
instructions during a page-in from a 2314, for example, than can a Model
145. As long as there is useful work for the CPU to perform while
paging operations occur, the system is not kept waiting for paging I/0..
However, if the concurrently operating programs are constantly executing
instructions faster than the pages they require can be brought into real
storage, an excessively high paging rate could develop if task
deactivation were not invoked. 1In general, therefore, the larger-scale
System/370 models require faster paging devices to handle a particular
page fault rate than do the smaller-scale models.

Real Storage Size. The amount of real storage present in a system
affects the number of page faults that occur when a given job stream is
processed. If the amount of real storage present in the system is equal
to the total amount of virtual storage being used by the concurrently
executing tasks, no page faults occur for programs that have been
fetched and initiated. When the amount of real storage present is less
than the amount of virtual storage being used, page faults occur. The
total number of page faults that occur for a given job stream is
affected by the ratio of virtual storage used to real storage available.

Assuming the amount of virtual storage used in a given system remains
the same, the virtual-to-real storage ratio can vary. This occurs while
a given system experiences variations in the amount of real storage
actually available for paging as the amount of fixed real storage
changes during job stream processing. The real storage available for
paging at any point in time is the difference between the amount of real
storage in the system and the total amount of long- and short-term fixed
real storage. For IBM-supplied virtual storage operating systems, the
total amount of fixed real storage at any given time is the sum of the:

e Resident (fixed) control program size, which does not vary after IPL
¢ Amount of long-term fixed real storage required for control blocks,
which can change as the level of multiprogramming changes (0S/VSl

and 0OS/VS2 only) '

e Amount of short-term fixed real storage required for outstanding I/O
operations that have virtual channel programs, which fluctuates with
the I/0 activity of the system

e Amount of long-term fixed real storage required by the job steps
executing in nonpaged (real) mode, if any

A Guide to the IBM System/370 Model 158 81

¢ Amount of long-term fixed real storage required by programs that
operate in paged mode but that have a portion of their partition or
region always fixed (TCAM in 0S/VS1 and 0s/Vs2, BTAM in DOS/Vs, for
example)

As the virtual-to-real storage ratio of a job stream increases, so
usually does the page fault rate. In general, the page fault rate
increases slowly for a while. At some point, the increase in page
faults begins rising rapidly as the virtual-to-real storage ratio
continues to increase. Figure 30.15.2, shown later, illustrates the
general relationship between the number of page faults and the virtual-
to-real storage ratio.

The amount of real storage available to process a given job stream
also varies when a given job stream is processed on systems with various
amounts of real storage, such as when a smaller-scale system is used to
back up a larger-scale system.

The degree to which reducing the real storage available for paging
affects the page fault rate depends on the paging activity pattern of
the programs in a job stream. Therefore, the virtual-to-real storage
ratio at the point at which a given number of page faults occur will
usually vary by job stream. The point can also be different for systems
with similar paging activity patterns and the same amount of real
storage installed but with different amounts of long-term fixed real
storage.

As the virtual-to-real storage ratio increases because of a reduction
in the real storage available (or an increase in the amount of virtual
storage used) and the page fault rate increases, more demand is placed
on the paging devices. If too small an amount of real storage is
present in a system, this situation can cause the page fault rate to
exceed the permissible rate and task deactivation will occur. 1In
general, therefore, in order to obtain a certain level of performance, a
configuration that supports a given job stream and virtual storage size
may require more real storage when a relatively slower paging device is
used than when a faster paging device is used. ~

Program Structure. The total amount of virtual storage a program
uses is not nearly so significant a factor in system performance as the
way in which virtual storage is used. That is, the pattern and
frequency of reference to pages in a program has more effect on the
number of page faults that occur than the total size of the program.

For example, assume a case in which a program has a 100K virtual storage
design point. If the program can be structured to execute as a series
of logical phases of four or five pages each and the pages of each
logical phase reference only each other, no more than four or five page
frames (8K to 10K or 16K to 20K of real storage, depending on page size)
need be dynamically available to the program at one time and paging
activity occurs only as the program progresses from one logical phase to
the next. However, assume the program is structured so that during its
execution each page of instructions constantly references a large number
of different pages of instructions and data for very short durations on
a highly random basis. an excessively high paging rate could occur if
only four or five page frames were dynamically available to such a
program at any time.

As indicated previously, most types of programs have a natural
locality of reference characteristic, so that they can be structured to
operate as a series of logical phases. 1In the simplest case, for
example, a program can logically consist of an initialization phase, a
main phase, one or more exception handling phases, and a termination
phase. The total amount of virtual storage referenced in each logical
phase usually varies but, generally, the amount is less than the total
size of the program. In addition, the pages that are part of

82 A Guide to the IBM sSystem/370 Model 158

N

(referenced in) a given logical phase can usually be described as active
or passive.

For the purpose of the discussion in this subsection, an active page
is defined as one with a high probability of being referenced multiple
times during execution of the logical phase, while a passive page has a
low probability of being referenced more than once during execution of
the phase. A logical phase experiences the least amount of paging
activity as it executes when its active pages remain in real storage
during its execution and its passive pages are paged in when required.
A program uses real storage most efficiently when the active
instructions and data in each logical phase are contained within the
fewest number of pages possible.

The locality of reference characteristic does not apply to certain
types of programs. For example, it does not apply to any program that
is designed to optimize its performance at execution time by using the
total amount of storage it has been allocated. This characteristic is
usually true of sort/merge programs that initialize themselves to use
all the storage made available to them in their partition or region
during the sorting passes. The reference pattern for such a sort/merge
is random and encompasses all the storage (and, therefore, all the
pages) the program is assigned.

RELATIONSHIP BETWEEN VIRTUAL STORAGE SIZE AND SYSTEM PERFORMANCE

Assuming other required system resources are available, a given
configuration can support a given virtual storage size and provide
satisfactory performance when paging activity is kept at an acceptable
level. Minimal paging activity occurs when enough real storage is
present in the system to contain most or all of those pages of
concurrently executing programs that are active at any given time.
Paging activity is then required primarily for passive pages. Active
pages are paged in (and later paged out as required) as the set of
active pages for each program changes from one logical phase to another.
The paging device(s) present must be capable of handling the demand for
pages that results from the range of paging activity of the system.

As the amount of virtual storage used in a given system increases,
the nmumber of active and passive pages that the system must handle
increases also. The ratio of active to passive pages will vary for a
given increase in virtual storage, depending on how the additional
virtual storage is used. As long as enough real storage is present to
" contain all or most of the increased number of active pages, the
increase in paging activity required to support the additional virtual
storage will be needed primarily for passive pages and should be
relatively small. As soon as the use of more virtual storage causes the
number of concurrently active pages to constantly exceed the capacity of
real storage, the paging activity increase required to support the
additional virtual storage becomes relatively large. As more and more
active pages must be handled, paging activity could exceed the maximum
paging capability of the system if task deactivation did not occur.

Figure 30.15.2 illustrates the increase in page faults that generally
occurs as more virtual storage is used in a given system configuration.
The curve begins at the point at which the amount of virtual storage
used is equal to the amount of real storage present (virtual-to-real-
storage ratio is 1). Paging activity begins as soon as the amount of
virtual storage used exceeds the real storage present. As the virtual-
to-real-storage ratio increases, so does paging activity. The system
moves from passive paging activity (primarily paging of passive pages)
into active paging (paging active pages in and out more of the time) and
approaches the maximum paging capability of the system. As indicated
previously, Figure 30.15.2 also illustrates the increase in page faults

A Guide to the IBM System/370 Model 158 83

tha@ generally occurs as less real storage is made available to support
a given virtual storage size. The increase in page faults also causes
the virtual-to-real-storage ratio to increase.

Maximum
paging
capability\sl
/
/
Task /

deactivation

|
Number of :
page faults |
per second I
I Active

|————— Passive paging ———————» paging

1 /' Virtual-to-real storage ratio
\
(+>)

Figure 30.15.2. General effect on page faults of increasing the
ratio of virtual storage used to real storage
present in the system

<

Figure 30.15.3 illustrates how the paging factor only generally
affects system performance. Figure 30.15.5, shown later, illustrates
system performance taking into account all factors. The curve shows the
performance of the system when passive and active paging are occurring,
relative to the virtual-to-real storage ratio. .The use of virtual
storage can be increased with little or no adverse effect on performance
as long as paging remains in the passive area. This is true because in
the passive paging area there is a relatively small amount of paging and
a high probability that all or most paging processing (CPU and I/0 time)
can be overlapped with other processing. As paging activity increases,
there is a higher probability that CPU processing will be held up
waiting for a paging.operation to complete. As the CPU enters the wait
state more frequently to wait for paging I/0 and less paging I/0 -is ,
overlapped, the paging factor causes performance to degrade more rapidly.

The actual virtual-to-real storage ratio at the time active paging
begins in Figures 30.15.2 and 30.15.3 is a variable and depends on the
way in which virtual storage is used, that is, active-to-passive page
ratio of concurrently executing tasks.

Figure 30.15.4 illustrates the way in which the paging factor only
can affect system performance in a given configuration, based on the
active-to-passive page ratio. If the ratio of active to passive pages
for executing tasks is relatively high most of the time, as shown in
curve 1, the virtual-to-real storage ratio at the point at which active
paging begins will be relatively low. Performance drops very rapidly in
this case as more virtual storage is used. This happens because the)
increased paging processing (I/0 and CPU time) cannot be overlapped with
other processing. This situation may apply to an installation initially
when a switch from a nonvirtual storage to a virtual storage environment

84 A Guide to the IBM System/370 Model 158

\ s
p—

is made and more virtual storage is used, since existing programs were
structured for optimum performance in a given partition or region size
rather than for optimum performance in a virtual storage environment.

Paging Overhead

Virtual-to-real storage ratio

] . . Active |
(€———————— Passive pagin > : |
! paging paging |
L
[|
i !
System | |
performance ’ : | Task
I L~ deactivation
| AN
| AN
| \
I \
|
I
|
|
Vv /
R=1

()

Figure 30.15.3. General effect on system performance of the paging
factor only ,

Paging Overhead

Curve 3
(active-to-passive
page ratio low-
overlapped paging)

Curve 2

System
performance

Curve 1
(active-to-passive
page ratio high-
nonoverlapped
paging)

|
/'I Virtual-to-real storage ratio
)Y
(#>)

Figure 30.15.4. General effect of the paging factor on system]
performance for various active-to-passive page ratios

o<
It
-

A Guide to the IBM System/370 Model 158 85

If the active-to-passive pPage ratio for the system is low, as shown
in curve 3, the virtual-to-real storage ratio can be relatively high
when active paging begins. The performance curve stays flatter longer
as virtual storage is increased when the active-to-passive page ratio is
low. This situation can apply to an installation in which all executing
programs are structured to minimize real storage requirements and page
faults. An installation that continues executing all or most existing
programs as they are presently designed and that structures new
applications for most efficient operation (low active-to-passive ratio)
may be more common. Such installations may experience a virtual-to-real
storage ratio somewhere between the low and the high extremes possible
for a given job stream, as shown in curve 2. '

The amount of virtual storage used in a system can be increased in
several ways. First, the size of existing application programs can be
increased by the addition of new functions. Second, the level of
multiprogramming or multitasking can be increased, assuming other
required resources such as CPU time and I/O devices are available.
Third, the size of existing application programs can be expanded by (1)
restructuring programs with a planned overlay or a dynamic structure to
take them out of these structures and (2) combining two or more job
steps within a job into one logical job step. The active-to-passive
ratio of the additional pages the system must handle will usually be
higher when the level of multiprogramming is increased than when
existing jobs are restructured. '

The way in which an installation should view the amount of virtual
storage used and system performance for a given configuration, taking
all performance factors into account, is illustrated in Figure 30.15.5.
The increased use of virtual storage is beneficial to system performance
up to a point. Thereafter, additional virtual storage can be used to
handle additional functions at a variable cost in system performance.

In reality, the virtual-to-real storage ratio and the page fault rate
vary during system processing as the amount of virtual storage used (out
of the total amount supported) and the amount of real storage available
for paging vary. Best overall system performance is achieved when
paging activity falls most of the time in the area identified on the
curve as the operating range. More significant performance reduction
begins when active paging is experienced.

Occasional active paging on an exception basis should be acceptable.
More frequent active paging can be performed to achieve a desired
function that does not justify changing the system configuration.
However, when paging activity in a system is constantly at the point at
which task deéactivation occurs, system configuration changes should be
made to improve system performance. Such changes might be the addition
of more real storage, the addition of more (in 0OS/VS1l and 0os/Vs2
environments) or faster paging devices, or installation of a faster CPU,
A history of the paging activity of the system can be maintained by
- recording the paging statistics provided by the virtual storage
operating systems. O0S/VSl and 0OS/VS2 provide page-in and page-out
statistics, while DOS/VS provides a page fault trace capability.

86 A Guide to the IBM System/370 Model 158

Performance-All Factors

t———— Passive paging ————» Active N

paging

Configuration
changes
necessary

Y

I\

[} \\

]
Task / : .
deactivation \

point

System ~«——————— Operating range ————»

performance

Virtual-to-real storage ratio

()

Figure 30.15.5. General system performance curve for a virtual storage
environment

o<
i

INCREASING SYSTEM PERFORMANCE IN A VIRTUAL STORAGE ENVIRONMENT

The IBM-supplied virtual storage operating systems are designed to
provide an acceptable level of performance when existing problem
programs are run without modification. However, given the additional
resource requirements of virtual storage support and the new factors
that affect system performance in a virtual storage environment, once a
virtual storage operating system is installed (either on an existing
configuration or a larger configuration) certain steps can be taken to
improve performance or to achieve optimum performance. The benefit to
be achieved by taking any one of the steps outlined must be evaluated on
an installation basis, taking the specific configuration and operating
environment into account. Some steps, for example, are more practical
for large configurations than for small configurations. The following
can be done:

e Use larger 1/0 buffers. This step is practical primarily for
sequential data sets and can be used most effectively when previous
real storage limitations have prevented the use of larger buffer
sizes in general and, in particular, optimum buffer sizes for disk
data sets. In addition to reducing the total 1/0 time required to
process a data set, as would occur in a nonvirtual storage
environment, increasing buffer size reduces the number of I/0
requests required to process the data set, and thereby reduces the
CPU time required for channel program translation and page fixing.
This technique should be used taking into account the amount of real
storage present in the system. If the buffer size of several data
sets that are being processed concurrently is increased considerably
or made large initially, the amount of real storage that must be
short-term fixed increases considerably also and potentially
increases the number of active pages. This may adversely affect
system performance in systems with a relatively limited amount of
real storage available for paging.

A Guide to the IBM System/370 Model 158 87

88

¢ Increase the page fault handling capability of the system when

paging activity constantly causes task deactivation. This can be
accomplished by: (1) using a direct access device for paging that
is faster than the currently used paging device, (2) allocating more
direct access devices for paging to enable more overlap of paging
activity (0sS/Vsl and 0S/VS2 environments only), or (3) reducing or
eliminating contention for the existing paging device(s).
Contention for the paging device can be relieved by using dedicated
paging devices, reducing the amount of other I/O activity on the
channel to which the paging device is attached, or dedicating a
channel to paging. Alternatively, the same paging device
configuration can be maintained while page fault occurrence is
decreased by the addition of real storage.

Use code that does not modify itself. Use of this type of code can
reduce the amount of page-out activity required. Such code can be
produced using the Assembler Language (0S and DOS environments) and
0S PL/I language translators.

Execute programs in nonpaged (real) mode only when actually
required. Use of nonpaged mode should be limited because the amount
of real storage available for paging operations during the operation
of a nonpaged program is reduced by the size of the program and can
affect system performance. If a nonpageable program is to be
present in a system for an extended period of time or at all times,
it should be considered part of the fixed real storage requirement
so that the amount of real storage actually available for paging can
be more accurately determined.

Structure new application programs to operate efficiently in a
paging environment. This is done by structuring programs to achieve
a reasonable balance between page faults and real storage
requirements. The extent to which this is done can vary widely by
installation. The benefits that can be obtained should be evaluated
in light of the additional programmer effort required. In this
respect, deciding on the degree to which programs should be
structured for efficient operation in a paging environment is
similar to deciding how a high-level language should be used. The
emphasis can be on most efficient program execution, which can
require more programmer effort, or on most efficient use of
programmer time, which can result in less efficient programs.
Alternatively, there can be a tradeoff between programmer time and
efficient programs (only the most frequently or heavily used
programs are optimized, for example).

Many of the general program structure techniques discussed do not
require a large amount of additional effort or knowledge on the part
of programmers--only that they adopt a particular programming style.
All of the suggested techniques can be used by Assembler Language
programmers. Some can be used with certain high-level languages and
not with others. More of the suggested techniques can be used in
PL/I programs than in other high-level language programs.

Two major steps can be taken to structure programs to use real
storage most efficiently and to incur the smallest possible number
of page faults. The first is to adopt a certain programming style,
one aspect of which is similar to the style that has been encouraged
with System/360 and System/370, namely, that of modular programming.
The second is to take page boundaries into account and to package
program code and data into page groups. The objective of improving
programming style is to construct a program that consists of a
series of logical processing phases each of which contains a
relatively small number of active pages. The objective of packaging
code within pages is to group active code together to avoid crossing
page boundaries in such a way that more real storage than is really

A Guide to the IBM System/370 Model 158

necessary is required to contain the active pages of a logical
phase.

In or@er to cause references to active instructions and data to be
localized, the following general rules should be applied to
programs :

1. A program should consist of a series of sequentially executed
logical phases or--in System/370 programming terminology--a
series of subroutines or subprograms. The mainline of the
program should contain the most frequently used subroutines
in the sequence of most probable use, so that processing
proceeds sequentially, with calls being made to the
infrequently used subroutines, such as exception and error
routines. This structure contrasts with one in which the
mainline consists of a series of calls to subroutines.
Frequently used subroutines should be located near each
other. Infrequently used subroutines that tend to be used at
the same time whenever they are executed should be located
near each other also.

2. The data most frequently used by a subroutine should be
defined together so that it is placed within the same page,
or group of pages, instead of being scattered among several
pages. If possible, the data should be placed next to the
subroutine, so that part or all of the data is contained
within a page that contains active subroutine instructions
{unless the routine is to be written so that it is not
modified during its execution). This eliminates references
to more pages than are actually required to contain the data
and tends to keep the pages with frequently referenced data
in real storage.

3. Data that is to be used by several subroutines of a program
(either in series or in parallel by concurrently executing
subtasks) should be defined together in an area that can be
referenced by each subroutine.

4. A data field should be initialized as close as possible to
the time it will be used, to avoid a page-out and a page-in
between initialization and first use of the data field.

5. Structures of data, such as arrays, should be defined in
virtual storage in the sequence in which they will be
referenced, or referenced by the program in the sequence in
which a high-level language stores them (by row or by column
for arrays, for example).

™~

6. Subroutines should be packaged within pages-when possible.
For example, avoid starting a 1500-byte subroutine in the
middle of a 2K page so that it crosses a page boundary and
requires two page frames instead of one when it is active.
Subroutines that are smaller than page size should be
packaged together to require the fewest number of pages, with
frequently used subroutines placed in the same page when
possible. This applies to large groups of data as well. The
linkage editor supplied with 0S/VS1l and OS/VS2 has new
control statements that can be used to cause CSECTs and
COMMON areas to be aligned on page boundaries, and to
indicate the order in which CSECTs are placed in the load
module. This linkage editor facility can be used with
certain high-level language programs that contain multiple
CSECTs (such as. PL/I and ANS COBOL) as well as with Assembler
Language programs.

A Guide to the IBM System/370 Model 158 89

90

¢ Use the PL/I Optimizing Compiler available for DOS and OS instead of
OS PL/I F or DOS PL/I D. The code produced by these language
translators has characteristics that make it more suited to a
virtual storage environment than the code produced by the Type I
PL/I language translators. First, generated code is grouped into
functionally related segments, by PROCEDURE and DO group, for
example, which can help reduce paging. When PL/I allocates buffers
and I/0 control blocks, they are packed together and can potentially
require fewer pages than if no attempt was made to define them
together. Reentrant code can be produced by the 0OS PL/I Optimizing
Compiler, and its library routines are reentrant. This reduces
page-out requirements. User-written reentrant 0S PL/I routines that
are required by concurrently executing problem programs can be made
resident in virtual storage and shared to reduce real storage and
paging requirements for active pages of these routines.

¢ Use the shared library feature of the 0S PL/I Optimizing Compiler

and the COBOL Library Management Facility of the OS ANS COBOL
language translators to make library modules resident in virtual
storage so they can be shared by concurrently executing problem
programs. Pages containing active library modules will tend to
remain in real storage and thereby reduce paging and real storage
requirements for these modules.

¢ Restructure existing application programs to incur as few page

faults as possible, to use the least possible amount of real
storage, and to take advantage of the program structure facilities
that a virtual storage environment offers. This can be accomplished
by (1) using the techniques described above, (2) taking planned
overlay and dynamic structure programs out of these structures, and
(3) combining into one logical job step two or more steps of a job
that would have been one job step if the required real storage were
available. The last of these techniques can eliminate redundant I/O
time that is currently used for such things as reading the same
Sequential input data into two or more job steps and writing
intermediate results from one job step in one or more sequential
data sets for input to the next job step.

¢ Increase the level of multiprogramming in the system. This can be

accomplished by (1) performing more peripheral I/0 operations
concurrently (more readers and writers in 0S/VS, use of POWER in
DOS/Vs), (2) operating more regions or partitions concurrently, or
(3) increasing the use of multitasking (structuring a DOS/VS QTAM or
an OS/VS TCAM message processing program to use multitasking to
enable several different types of transactions to be processed
concurrently, for example).

System throughput can be improved in a virtual storage environemnt
if a higher level of multiprogramming causes more CPU and I/O time
to be overlapped, which results in more effective utilization of
system resources. The larger the number of tasks in the system
under these conditions, the less chance there is for the CPU to
enter the wait state because no task is ready to execute. Better
utilization of real storage in a virtual storage environment can
enable more tasks to be present in the system.

In order to achieve performance gains by increasing the level of
multiprogramming, the potential for more overlap of CPU and I/0 time
must exist in a system, and/or the potential must exist for
reduction of I/0 time via increased overlapping of channel activity
and reductions in unoverlapped seek time (that can result from new
system performance enhancements). The required hardware resources,
such as CPU time, real storage, I/0 devices, and direct access
storage, must be available as well. The most critical resource in
this situation is available CPU time. As the percentage of CPU

A Guide to the IBM System/370 Model 158

utilization gets higher, there is less potential for increasing
throughput via increasing the level of mul tiprogramming.

The information presented in this subsection has been designed to
enable the reader to more fully understand the way a system operates in
a virtual storage environment and the factors that influence system
performance. Understanding the environment and knowing the actions that
can be taken to increase system performance will enable each
installation to quantify the amount of effort that is to be devoted to
optimizing the performance of a virtual storage operating system.

" A Guide to the IBM System/370 Model 158 91

SECTION 40: VIRTUAL MACHINES

This section discusses the basic concepts, general operation, and
advantages of virtual machines, as defined and implemented in Virtual
Machine Facility/370. WNo previous knowledge of virtual machines is
assumed. The virtual machine concept is a logical extension of the
virtual storage concept. Therefore, comprehension of dynamic address
translation hardware and virtual storage concepts, terminology, and
advantages, as discussed in Sections 30:05 and 30:10, is assumed.

VM/370 consists of the Control Program (CP) component, the
Conversational Monitor System (CMS) component, and the Remote Spooling
Communications Subsystem (RSCS) component. CP supports the concurrent
operation of multiple virtual machines. CMs, operating in a virtual
machine under CP control, provides conversational time sharing
facilities to a single user. RSCs, operating in a virtual machine under
CP control, provides for the transmission of data between remote users
and virtual machines via binary synchronous communication lines.

VM/370 is the successor to CP-67/CMS. Virtual machine support was
first provided by IBM in CP/67. 1In the CMS time sharing environment in
which CP-67/CMS was primarily used, the major advantage of the virtual
machine facility was that it enabled each CMS user to appear to have a
complete System/360 (Model 22 to 75) at his disposal and to be isolated
from all other CMS users. Each CMS user had access only to his own
virtual machine and, therefore, could not inadvertantly interfere with
the operation of other CMs virtual machines. VM/370 also provides these
facilities and can be used in nondedicated time sharing environments to
provide other advantages as well.

The information presented in this section is prerequisite reading for
the optional Virtual Machine Facility/370 Features Supplement, which can
be inserted as Section 110 of this guide. The VM/370 supplement
discusses the features and operation of CP and CMS, as well as
performance considerations for a virtual machine environment and the
types of installations that can benefit most from the use of VM/370.

40:05 DEFINITION AND GENERAL OPERATION

A virtual machine is a functional simulation of a complete computer
system, including a virtual CPU, virtual storage, virtual channels,
virtual I/0 devices, and a virtual operator's console, that appears to
the user to be a real machine. In a VM/370 environment, a virtual
machine is the functional equivalent of a System/370 (Models 135 to 168)
and its associated I/0 devices.

The control program (CP) component of VM/370, executing in a real
machine (System/370 Models 135 through 168 with dynamic address
translation hardware), supports concurrent operation of multiple virtual
machines using multiprogramming techniques that enable real machine
resources to be shared by multiple virtual machines. Each virtual
machine is dedicated to a single user and isolated from other virtual
machines. None of the components of one virtual machine can be accessed
by a program that is executing in another virtual machine except via the
controlled sharing facilities that are provided by CP.

The operation of a virtual machine and scheduling of the work it
performs are handled by an operating system rather than by CP. That is,
each virtual machine has an operating system executing in it that Co-
allocates machine resources and schedules the execution of problem

92 A Guide to the IBM System/370 Model 158

N’

Page of GC20-1754-2
Revised February 20, 1976
By TNL GN20-3580

programs just as if the operating system were executing in a real
machine. 1In order to initiate operations in a virtual machine, the user
muast log on the virtual machine and IPL an operating system in it. The
logon procedure establishes a connection with CP and the existence of a
specific virtual machine for this user. a logon is performed using a
console or terminal device of the type that CP supports as a virtual
operator's console.

The virtual operator's conscle is the means by which the user
controls the operation of his virtual machine and communicates with the
operating system executing in it. cp prcvides a set of commands that
(1) simulate the system control panel of the virtual machine, (2)
provide for alteration of a virtual machine configuration, (3) request
varicus services from CP for a virtual machine, and (4) control
operation of the real machine. When a CP command is entered via the
virtual operator's console, CP receives control and performs the
required functions.

Communication between the user and the operating system is
accomplished using the operating system cormand lanquage and the virtual
operator's console. CP performs any simulation required to make the
real I/0 device the operator is using as a virtual operator's- console
appear to be the primary console device type that is defined for the
operating system. i

In a VM/370 environment, a virtual operator's console is frequently
called a remote terminal because, in most cases, a terminal device type
is actually used as the virtual operator's console device. However, the
real I/0 device that is used as the virtual operator's console may be a
System/370 console device as well as a local or a remote terminal.

VM/370 supports execution of any one of the following System/360 and
System/370 programming systems in a virtual machine:

* CMS component of VM/370

¢ RSCS component of VM/370

* LOS Version 3, DOS Version 4, or DOS/VS

¢ APL 360-DOS

e OS PCP, MFT, or MVT

® 0OS ASP Version 3

* OS/VSl

¢ 0S/VS2 Release 1

* OS/VS2 Releases 2 and up in uniprocessor mode only

e PS4Y

e VM/370

Any number and combination of the above operating systems can execute
concurrently in a VM/370 environment, subject to the availability of the
required real machine resources, including miltiple copies of the same
operating system (CS/VS1l executing in more than one virtual machine, for
example). With a few exceptions, all the facilities that are supported
by these operating systems when they execute in a real machine can be
used when the operating system executes in a virtual machine in a VM/370

environment. Figure 40.05.1 conceptually illustrates the real and
virtual machine environment that is supported by vM/370.

A Guide to the IBM System/370 Model 158 93

Each virtual machine that is to be supported by CP must be user. ; L
defined and stored in the VM/370 directory. The size of virtual o
storage, the virtual I/O devices to be used, the options to be used, and
a virtual console are usually specified. Virtual machine configurations
can be different from each other and, within certain limitations,
different from that of the real machine in terms of these
specifications.

Simulated Virtual Machine Environment

Virtual 1/0 units Virtual 1/0 units Virtual 1/0 units Virtual /0 units

0P9p 45

Operating Operating Operating Operating
system : system system A system . :

Virtual Virtual Virtual Virtual
operator's operator’s _ operator's operator's
console console consule console

User 1 User 2 User 3 User N
Virtual machine 1 Virtual machine 2 Virtual machine 3 Virtual machine N
, o
Real Machine : e
User 1 User 2 User 3 . User N
Virtual operator’s Virtual operator’s. Virtual operator’s con Virtual operator's
console console Real machine console console
operator
Card
punch(es)
.
.

Printer(s) ¢ cP

Card

Reader (s)

Direct Direct Direct
access access access

Other 1/0 storage storage storage Other 1/0

device device

types types

Figure 40.05.1. cConceptual illustration of the real and virtual machine i i
environment that is supported by VM/370 N’

94 A Guide to the IBM System/370 Model 158

Virtual CPU Simulation

CP is resident in real storage during operation of the real machine.
It controls the operation of the real machine, schedules the execution
of virtual machines, and simulates virtual machine hardware components
using the hardware components of the real machine. In order to be able
to perform its functions and isolate virtual machines from each other,

the real machine, as does the control program of an operating system.
Hence, CP always executes with the real machine in supervisor state and

Virtual machines always operate with the real machine in problem
state. Therefore, any time any program that is executing in a virtual
machine issues a privileged instruction, an interruption occurs in the
real machine. CP receives real CpU control and takes the required
action. This may involve simulating execution of the privileged
instruction for the virtual machine or returning real CPU control to the
control program in the virtual machine for which the interruption
occurred so that the interruption can be processed by that control
program. In this manner, CP maintains control of the real machine. 1In
addition, CP simulates the existence of both a supervisor state and a
problem state in the virtual machine while, in reality, the virtual
machine operates only in problem state.

CP gives control of the real CPU to operating virtuwal machines on a
time-shared basis to simulate the existence of multiple CPU"s. A
virtual machine can execute any System/370 instruction except READ
DIRECT and WRITE DIRECT, which are part of the Direct Control feature,
the multiprocessing instructions, and SET CLOCK, which is treated as a
NOP because CP controls the setting of the time of day clock. In
addition, the DIAGNOSE instruction is reserved for communication between
executing operating systems and CP.

The System/370 instructions and CPU features that are used by the
control and problem programs executing in a virtual machine must be
present in the CPU of the real machine in which CP executes. CP does
not simulate the existence of System/370 instructions and CPU hardware
features that are not present in the real machine. A virtual CPU can
appear to be executing either with BC mode or EC and DAT modes
specified, depending on the mode required by the operating system
executing in it. However, EC and DAT modes are always specified in the
real CPU when a virtual CPU is executing since address translation is
required to support the existence of virtual storage for the virtual
machine.

Virtual Storage Simulation

Each virtual machine can have up to 16,777,216 bytes of virtual
storage, which is the maximum virtual storage size for System/370. The
existence of virtual storage for a virtual machine is simulated by cp
using DAT hardware and external page storage, as is done in a virtual
storage environment (discussed in Section 30).

Operating system programs that are executing in a virtual machine
(both control and problem programs) are paged in and out of real storage
in the real machine on a demand paged basis as they execute. Real
Sstorage allocation, external page storage allocation, and paging
operations are handled entirely by CP and are transparent to the control
and problem programs that are executing in the virtual machines. 1In
this manner, CP provides one virtual storage for each virtual machine,
and real storage in the real machine is shared by concurrently operating
virtual machines. The implementation of virtual storage in a virtual
machine environment is conceptually illustrated in Figure 40.05.2.

A Guide to the IBM System/370 Model 158 95

Virtual machine 1
virtual storage

Control
program

Problem
programs

).
A3 Y
)}
LAY

External
Page Storage

' " Virtual machine 2
/——\ _ virtual storage
Real Storage ~

Control
program

CP

Contents of
Pages of Demand virtua! storage P E:gg:::\s
virtual storage Paging] for virtual T 9

for operating machines 1 to N
virtual machines

w
L
).

g 144
5

W

Virtual machine N
virtual storage

Controt
program

Problem
programs

b))
w
)
<«

Figure 40.05.2. Conceptual illustration of the implementation of
virtual storage in a virtual machine environment

The virtual storage defined for a virtual machine always appears to
be real storage to the operating system that is executing in the virtual
machine. In effect, an operating system that does not support virtual
storage, such as DOS Version 4 or 0OS MFT, has virtual storage support
provided by CP when such an operating system executes in a virtual
machine and, therefore, offers the functional advantages of a virtual
storage operating system.

When executing in a virtual machine, an operating system that does
support virtual storage uses the virtual storage defined for the virtual
machine as real storage in order to simulate the existence of the
virtual storage it is designed to support. As shown in Figure 40.05.3,
the virtual storage operating system builds a segment table and page

96 A Guide to the IBM System/370 Model 158

tables to translate addresses in the virtual storage it supports to
addresses in the virtual storage defined for the virtual machine, which
the operating system assumes is real storage. CP always builds and
maintains a segment table and page tables for each virtual machine.
These tables are used to translate addresses in the virtual storage of
the virtual machine to addresses in real storage in the real machine.

When a virtual storage operating system is executing in a virtual
machine, CP constructs and maintains a third set of tables using the
contents of the other two sets of tables. The third set of tables, a
shadow segment table and shadow page tables, are the tables that are
actually used for address translation when the virtual machine operates.
The shadow tables are used to translate addresses in the virtual storage
the operating system supports to addresses in real storage in the real
machine.

Virtual storage
Real machine Virtual machine

real storage virtual storage

cpP

Segment Segment

table table
Assumed to be

real storage by the virtual
the virtual storage

Pageable [storage operating — operating system
real Page system Page
storage tables tables

Supported by

b)

b)1
Y
ALY
)
W«

Built by Built by
CP for each the virtual

)

virtual machine storage operating
system

Built by
cP

Segment
table

Page
tables

Tables used for
address translation

Figure 40.05.3. Segment tables and page tables built when a virtual
storage operating system executes in a virtual machine

Virtual I/0 Component Simulation

The virtual channels, control units, and I/0 devices defined in each
virtual machine configuration are simulated by CP using real channels,
control units, and I/0 devices that are of the same type. While each
virtual I/0 device defined must have a real I/0 device counterpart in
the real machine configuration, there does not necessarily have to be a
one-~to-one correspondence. In addition, the I/0 device addresses :
assigned to virtual I/0 devices need not be the same as the addresses of
their real I/0 device counterparts. CP also allows a virtual direct

A Guide to the IBM System/370 Model 158 97

access device to be simulated by only a portion of a real direct access
device volume. Such a virtual direct access device is called a
minidisk. Support of a minidisk facility enables one real direct access
device to simulate the existence of several virtual direct access
devices of the same type and thus provides more efficient use of
available direct access storage..

Virtual I/0 devices are always simulated on a real I/O device of the
same device type unless the spooling facility of CP is used. (CP also
allows 2311 disk storage to be simulated using 2314/2319 disk storage
and the minidisk facility.) The local spooling capability of cp
provides data transcription between unit record devices and direct
access storage devices and is functionally similar to DOS POWER, OS
readers and writers, OS HASP, and 0S/VS JES. 1In effect, the CP spooling
facility enables virtual unit record devices (card readers, card
punches, and printers) to be simulated using direct access storage. CP
also provides console spooling and a remote spooling facility.

The virtual I/0 devices in a virtual machine configuration are
logically controlled by the operating system that is executing in the
virtual machine rather than by CP. That is, all the data management
routines of the operating system (physical record processing, logical
record processing, and error recovery routines) execute as usual.
Therefore, a virtual machine I/0 configuration can include any I/0
device types that are supported by the operating systems that will
execute in the virtual machine, as long as real I/0 device counterparts
exist in the real machine I/0 configuration as required.

CP controls only the scheduling and actual initiation of virtual
machine I/0 operations in the real machine. When a START I/O
instruction is issued by an operating system control program that is
executing in a virtual machine, a privileged operation interruption
occurs and CP receives real CPU control. CP translates the virtual I/O
device address to its counterpart real 1I/0 device address and, for
minidisks, converts virtual cylinder addresses to corresponding real
cylinder addresses, as required. CP also performs the necessary channel
program translation and page locking operations and queues the I/0
request if it cannot be started..

After the I/O operation is started, CP returns the condition code to
the operating system control program that initiated the I1/0 request so
that appropriate action can be taken. When the I/O operation completes
and causes an I/0O interruption, CP receives CPU control, gathers I/0
status information, and attempts to restart the available real I/O
components. CP presents the status data to the operating system control
program via a simulated I/0O interruption for the virtual machine in
which the operating system is executing.

CP completely controls operation of the real I/0 devices that are
required for its own execution, such as paging and spooling devices.
This includes determining the need for I/0 operationms, scheduling and
initiating I/0 requests, handling I/0 interruption processing, and
performing error recovery procedures.

Virtual Machine Assist Feature

The optional, no-charge Virtual Machine Assist (VMA) feature can be
field installed on a Model 158. This feature is designed to improve -
total system performance in a VM/370 environment and can also improve
the performance achieved by certain operating systems that operate under
CP control in a virtual machine. The VMA feature performs the same
functions as some of the most frequently used virtual machine simulation
routines of CP. When the VMA feature is used, virtual machine
performance improvement results when CP processing is eliminated that

98 A Guide to the IBM System/370 Model 158

otherwise would cause an operating system to experience throughput
degradation when it executes in a virtual machine instead of a real
machine. Total system performance improvement is achieved if a higher
level of multiprogramming can be maintained as a result of the
elimination of certain CP processing. '

The VMA feature is controlled by mask bits in control register 6.
When the VMA feature is enabled, certain types of real machine
interruptions that occur when a virtual machine has real CPU control
cause the VMA hardware feature to gain control to simulate the required
virtual machine function. The VMA feature is entered when one of the
following occurs:

e A privileged instruction program interruption occurs that is caused
when a virtual machine issues an INSERT PSW KEY, INSERT STORAGE KEY,
LOAD PSW, LOAD REAL ADDRESS, RESET REFERENCE BIT, SET PSW KEY FROM
ADDRESS, SET STORAGE KEY, SET SYSTEM MASK, STORE CONTROL, STORE THEN
AND SYSTEM MASK, or STORE THEN OR SYSTEM MASK instruction. The VMA
feature simulates execution of the privileged instruction, and
operation of the virtual machine continues with execution of the
instruction after the privileged instruction.

¢ An SVC instruction except SVC 76 is issued by a virtual machine.
PSW switching for the virtual machine is simulated by the VMA
feature.

¢ A page translation program interruption occurs in a virtual machine
in which a virtual storage operating system is executing. The VMA
feature updates the appropriate shadow page table if possible.

The VMA hardware feature performs the same functions as the
counterpart simulation routines in CP, with a few exceptions. The VMA
feature does not handle certain special situations for a few of the
privileged instructions supported. The unsupported special situations
are those that occur infrequently and that would require the inclusion
of a considerable amount of additional hardware. When these special
situations occur, the appropriate simulation routine of CP is entered to
perform the required functions.

The amount of throughput improvement that occurs for an operating
system when the VMA feature is used depends on the extent to which the
operating system utilizes the functions the VMA feature supports. If
the increase in run time an operating system experiences when it
executes in a virtual machine is caused to a large extent by the CP
processing that is required to simulate VMA supported functions, a
relatively significant performance gain can be expected. The VMA
feature can be of the most benefit, for example, to operating systems
that support virtual storage (DOS/VS, 0S/VSl, and OS/VS2).

The VMA feature is supported by VM/370 as of Release 2. Additional
details regarding the operation of the VMA feature and the support
provided by VM/370 are discussed in Virtual Machine Facility/370
Features Supplement, GC20-1757-1, and later editions.

The VMA feature for the Model 158 is mutually exclusive with the
7070/7074 Compatibility feature. VMA microcode is contained on the N-
disk. The microcode for the 7070/7074 Compatibility feature is
contained on the S-disk. During IMPL, 7070/7074 Compatibility feature
microcode is loaded into reloadable control storage from the S-disk as
usual. If the VMA feature is to be used, the operater must cause the
VMA microcode to be loaded from the N-disk. This is accomplished using
the configuration frame of the display console. VMA microcode overlays
the 7070/7074 Compatibility feature microcode in reloadable control
storage when loaded. The choice of using one or the other of these two
features can be made only at IMPL time.

A Guide to the IBM Systems/370 Model 158 99

40:10 GENERAL ADVANTAGES OF A VIRTUAL MACHINE ENVIRONMENT

The advantages of VM/370 complement those of virtual storage
operating systems. Like a virtual storage environment, a virtual
machine environment is designed primarily to support new functions
rather than increase system performance. Essentially, CP is a
simulator. Traditionally, simulators have been used to provide a
desired function at the expense of performance. The new functions
provided by virtual machines (1) can increase the rate of new
application development and (2) expand operational capabilities over
those provided by virtual storage. The CMS component of VM/370
supplements these two major advantage areas of a virtual machine
environment by supporting time sharing facilities such as online program
development, conversational program execution and problem solving, and
interactive text processing. :

The following indicates the way in which the virtual machine
environment that is supported by the cP component of VM/370 aids the
installation of new applications and identifies the new operational
features such an environment supports. The functions and specific
advantages of CMS are discussed in the VM/370 supplement.

Increasing New Application Development

Since virtual machine support includes support of a virtual storage
environment for each virtual machine, all the capabilities virtual
storage provides that aid new application development are present in a
virtual machine environment as well. ' (These capabilities are discussed
at the end of Section 30:05.) By enabling multiple operating systems to
execute concurrently in one real machine, the virtual machine
environment supported by CP also provides the following new
capabilities:

¢ Testing of new programs can be more extensive and completed sooner
by the elimination of dedicated testing periods. While a virtual
storage environment can eliminate most program testing restrictions
that result from real storage size limitations, the isolation that
is provided by executing a program in a virtual machine eliminates
the need to test programs that can cause total system termination in
a dedicated environment. For example, system-oriented routines
written by system programmers and teleprocessing programs, which
usually are tested only during scheduled dedicated testing periods,
can be tested while production work is in progress. This can
eliminate the need to establish testing periods during second or
third shift and, by reducing individual test turnaround time,
enables more of this type of testing to be accomplished in a given
time period.

¢ Testing of new programs can be completed sooner through the use of
console debugging, when necessary. Using the CP commands that
simulate system control panel functions, the programmer can use any
console debugging facility that is available on a real machine, such
as setting address stops, examining and altering general registers,
displaying and altering virtual storage, etc., without interfering
with production work. CP also provides other debugging services,
such as an extensive set of traces, that can be invoked by CP
commands. Console debugging, which can enable difficult-to-locate
program errors to be detected more quickly than with desk debugging,
is usually not permitted in a nonvirtual machine environment, except
as a last resort, or is scheduled for nonproduction periods.
Program testing turnaround time can be significantly reduced through
the use of console debugging.

100 A Guide to the IBM Systems/370 Model 158

¢ Transition from one release of an operating system to another
release or from one operating system to another can be accomplished
more quickly because of the capability of executing multiple
operating systems concurrently. A new release of an operating
system can be generated and tested in one virtual machine while
production work continues in another virtual machine using the
existing release. Existing application programs and system-oriented
programs that must be modified or newly written (to use a new
facility or new language translator, for example) can be tested
during production processing as well. The multiple virtual machine
facility also enables an installation to execute programs that are
dependent on a back release (because the release is user modified,
for example) concurrently with each new release of that operating
system or with an entirely new operating system (such as a back
-release of a DOS version operating concurrently with 0S).

¢ CMS can be used to perform online program development concurrently
with the processing of production work using eithexr OS or DOS.
Significant gains in programmer output can be realized through
writing, compiling, and testing programs using an online terminal in
a conversational manner. This enables new applications to become
operational sooner. When CMS is used, each programmer has his own
.virtual machine with CMS executing in it. Therefore, the occurrence
of a programming or operational error in one virtual machine can
cause termination of that virtual machine only. Other programmers
and production work are not affected.

Expanded Operational Capabilities

In addition to the new operational facilities a virtual storage
environment provides (discussed in Section 30:05), a multiple virtual
machine environment offers the following capabilities:

¢ Operating system maintenance can be performed concurrently with
production work. PTF's can be applied and tested using one virtual
machine without the possibility of causing the abnormal termination
of another virtual machine that is processing production work.

® Operator training can be done using a virtual machine, which
eliminates the need to dedicate the entire real machine to this
function. Multiple operators can be trained while production work
is in process without the possibility of terminating real system
operations through an operator error.

¢ A system can be backed up by another system that not only has less
real storage but that also has real 1I/0 devices with different
addresses, fewer direct access devices, and fewer channels, as long
as sufficient I/0 devices of the required type are available.

®* New channel and direct access device configurations can be simulated
using a virtual machine for the purpose of evaluating the load on
the new I/0 configuration before it is installed on the real
machine. Similarly, ASP configurations consisting of two or more
machines can be simulated in a virtual machine environment using
only one real machine. This enables an installation without ASP
installed to determine the activity of such a configuration and gain
experience in its operation before the second system is installed or
before making the decision to install ASP. The ASP user can also
experiment with different ASP configurations.

As the above indicates, a virtual machine environment, as supported
by VM/7370, offers several unique capabilities that can be of benefit to
small, intermediate, and large System/370 users. In most cases, VM/370
can be used to best advantage as complementary programming system

A Guide to the IBM System/370 Model 158 101

support in installations in which a version of DOS or 0S is used as the
primary programming system. VM/370 can be used in the same system as
the DOS, DOS/VS, 0S, or 0OS/VS operating system or in a separate support
System. A discussion of the types of installation environments in which
VM/370 will be most frequently used is contained in Virtual Machine
Facility/370 Features Supplement.

102 A Guide to the IBM System/370 Model 158

SECTION 50: I/0 DEVICES FOR MODELS 1AaND 3

50:05 1/0 DEVICE SUPPORT

All I/0 devices, console devices, and telecommunications terminals
that can be attached to the Model 155 can be attached to Models 1 and 3
of the Model 158 with the following exceptions: The 3210 Model 1 and
the 3215 Model 1 Printer-Keyboards cannot be installed on a Model 158 as
the primary operator console device. The 3210 Model 2 printer-keyboard
cannot be installed as a remote console. 1In addition, the Integrated
Storage Controls feature and several other I/0 devices attach to the
Model 158 but not to the Model 155 (see the table in Section 70:05).

Note that all I/0 devices supported by Os MFT, OS MVT, and DOS
Version 4 are not supported by 0s/vsl, 0S/VsS2 Release 1, and DOssvs,
respectively. (See the programming systems supplements for I/0 device
support.) ‘

The I/0 devices discussed in this section attach to a Model 158
(Models 1 and 3) but not to be a Model 155.

50:10 3333 DISK STORAGE AND CONTROL MODEL 11 AND 3330 DISK STORAGE
MODEL 11

A 3330-series string that is attached to a Model 158 can contain 3333
Model 11 Disk Storage and Control and 3330 Model 11 Disk Storage
modules, which do not attach to the Model 155. The drives in these
modules offer twice the capacity of the drives in Model 1 and 2 modules.
Model 11 of the 3333 consists of two independent drives, device~oriented
control functions, and power for itself and the drives that can be
attached to it, as does Model 1 of the 3333. Model 11 of the 3330
consists of two independent drives without the device-oriented control
functions that are part of a 3333, as does a 3330 Model 1.

In a Model 158 configuration, the 3333 Model 11 attaches to 3830
Storage Control Model 2 and Integrated Storage Controls (ISC). It must
be the first module in each 3330-series string that is attached to these
control units. The 3330 Model 11 attaches only to 3333 modules, Models
1 and 11. Up to three 3330 modules, in any combination of Models 1, 2,
and 11, can be attached to a 3333 Model 1 or 11 module.

With one exception, Model 11 3330-series drives are functionally like
Model 1 and 2 drives. The drives in 3330 and 3333 Model 11 modules have
a standard write format release feature that is not provided for 3330
Model 1 and 2 and 3333 Model 1 drives. This feature enables a Model 11
drive to disconnect from a 3333/3330 Model 11, 3830 Model 2, or the ISC
while the drive is erasing to the end of the track after a record has
been written with a formatting write command. This facility frees the
control unit and channel for the initiation of another I/0 operation.

The removable 3333 Model 11 disk pack is used with 3333 and 3330
Model 11 drives. Like a 3336 Model 1, a 3336 Model 11 has 19. recording
surfaces. However, the Model 11 disk pack has 808 data cylinders,
instead of 404, for a maximum capacity of 200 million bytes. The Model
11 disk pack also has seven alternate cylinders, like a Model 1. Hence,
. the maximum capacity of a 3330-series string of all Model 11 drives is
1600 million bytes.

Model 11 3336 Disk Packs are interchangeable across all 3330 Model 11
and 3333 Model 11 drives but cannot be used with Model 1 and 2 3330-
series drives. The 3336 Model 11 Disk Pack has a physical interlock so
that it cannot be mounted on a 3330 Model 1 or 2 drive or a 3333 Model 1

A Guide to the IBM System/370 Model 158 103

drive. The 3336 Model 1 Disk Pack has a physical interlock so that it
cannot be mounted on a Model 11 drive. The 3336 Model 1 Disk Pack can
be converted to a Model 11.

Table 50.10.1 compares Model 1, 2, and 11 drive characteristics. \\“%f
Table 50.10.2 compares 3336 Model 1 and 11 Disk Pack characteristics.

Table 50.10.1. Capacity and timing characteristics of 3330-series drives

3330-series 3330-series
Characteristic Model 1 or 2 drive Model 11 drive
Capacity in thousands of bytes
(full-track records 100,018 200,036
Seek time (ms) :
Maximum 55 55
Average 30 30 *
Average cylinder-to-cylinder 10 10
Time channel busy searching :
when SET SECTOR is used (ms) ‘ ,
Minimum 120 ~120 ®
Maximum .380 380
Rotation time (ms) 16.7 16.7
Rotation speed (rpm) 3600 3600
Data transfer rate (KB/sec) 806 806

Table 50.10.2. 3336 Model 1 and 11 Disk Pack characteristics

3336 3336
Characteristic Model 1 Model 11 :
, —~—
Number of disks per pack 12 12
Number of recording disks 10 10
Number of recording surfaces 19 , 19
Disk thickness in inches .075 .075
Disk diameter in inches , 14 14
Disk pack weight in pounds 20 20
Disk pack maximum capacity in
millions of bytes : 100 200
Full track capacity in bytes 13,030 13,030
Cylinders per pack 404 plus 7 808 plus 7
alternates alternates
Tracks per cylinder 19 .19
Tracks per pack 7,676 15,352
ATTACHMENT VIA INTEGRATED STORAGE CONTROLS
Optionally, one Integrated Storage Controls feature can be installed
on a Model 158 to attach 3330-series and/or 3340 disk storage to one or
two block multiplexer channels. Attachment of 3330-series and 3340 disk
storage via 3830 Storage Control is possible as well. The following :
discusses attachment to the ISC of 3330-series strings only.
The Integrated Storage Controls feature includes dual direct access
storage controls, each of which operates independently of the other and
is functionally like 3830 Storage Control Model 2 except for the :
following: ; J
S’

104 A Guide to the IBM System/370 Model 158

* The Integrated Storage Controls feature is contained in the main
frame of the Model 158 and is powered by the Model 158 CpuU.

¢ The Two Channel Switch, Additional feature (that provides four-
J channel switching) cannot be attached to the logical storage
controls in the ISC feature.

Both logical storage controls in the ISC feature can be attached to
the same channel or to two different channels in the Model 158. Fach
logical storage control can have attached a maximum of four 3330-series
strings of up to eight drives each. The 32 Drive Expansion and Control
Store Extension optional features (field installable) must be installed
in the ISC in order to attach more than two strings to each logical
control. Therefore, up to 64 drives (eight strings) can be attached to
the Model 158 via the ISC. The first module in each 3330-series string
must be a 3333 Disk Storage and Control Model 1 or 11 unit.

The 3330-series drives attached to ISC operate just as if they were
attached via 3830 Storage Control Model 2. That is, when multiple
requesting is used, each logical storage control within the ISC can
handle up to 32 channel programs concurrently, one on each of its
drives, and only one of the 32 drives can be transferring data at a
time. When a malfunction occurs, diagnostics can be run on one logical
storage control and its drives while normal operations take place on the
other logical storage control in the ISC.

The ISC feature provides lower-cost attachment of 3330-series disk
storage than 3830 Storage Control Model 2 when two storage control units
are required, and physical space is saved since the ISC is in the Model
158 CPU. See Table 50.15.3 for a summary of the capabilities of the
3830 Models 1 and 2 and ISC.

The Two Channel Switch optional feature is also available for the
ISC. When installed, this feature provides a two-channel switching
capability for both of the logical storage controls. The Two Channel
Switch permits each logical storage control to be attached to two
channels in the same Model 158 or to one channel in the Model 158 and
one channel in another System/370. Two switches are provided that can
be set to dedicate a logical storage control unit to one channel or the
other, or to enable the storage control to be accessed by both channels.
Figure 50.10.1 summarizes the 3330 -series string confiqurations that are
possible for a Model 158 ISscC. Intermixing 3330-series and 3340 strings
on an attachment is discussed in Section 50:15. ’

The 3333 String Switch optional feature can be installed on a 3333
Model 1 or 11 that is attached to the 3830 Model 2 or ISC. This field-
installable feature enables the 3333 and all its attached 3330s (a 3330-
series string) to be connected to two control unit tyre attachments
instead of only one. The attachments can be any combination of two of
the following:

¢ 3830 Storage Control Model 2

¢ Integrated Storage Controls for Models 158 and 168 (or the two
logical controls in one ISC)

¢ Integrated Storage Control for the Model 145

® 3345 Storage and Control Frame Models 3, 4, and 5 for the Model 145
® 333073340 sSeries IFA for the Model 135 ‘

The two attachments to which a 3333 with the 3333 String Switch

feature is connected can be attached to the same or different channels
in the same CPU, or to channels in two different CPU's. In addition,

A Guide to the IBM System/370 Model 158) 105

Page of GC20-1754-2
Revised February 20, 1976
By TNL GN20-3580

channel-switching features can be installed on one or both of these
attachments.

Channel Channel
Integrated ® Two-Channel Switch
Storage i . e 32 Drive Expansion
Conitrols Logical Logical ® Control Store Extension
control 1 control 2 .
3333 3333 3333 3333 3333 3333 3333 3333 Model 1 or 11
! N
3330 3330 3330 3330 3330 3330 3330 3330
| l | | l | | l
3330 3330 3330 3330 3330 3330 3330 3330 combination
of Models 1,
[L T T T T 71 1T |*™
3330 3330 3330 3330 3330 3330 3330 3330

® One to four strings of from two to eight drives each connected
to each logical control. Each logical control connected to one
or two chanrnels in the same or different CPU’s,

® 3333 String Switch can be added to any or all 3333's to connect
a 3333 to a second attachment in the same ISC, the same CPU, or
another CPU except Models 115 and 125.

Figure 50.10.1. Permissible 3330-series string configurations for the
Model 158 integrated storage controls feature

The 3333 String Switch is functionally similar in its operation to
the Two-Channel Switch. A switch can be set to allow the 3330-series
string to be accessed via both attachments, one at a time. In effect,
the setting provides two control unit paths to the string. String
switching is accomplished dynamically under program control.
Alternatively, the switch can be set to dedicate the string to one
attachment or the other so that the string can be accessed only via that
attachment.

Figure 50.10.2 illustrates 3333 string switching for four 3330-series
strings that are attached to the same ISC. In the configuration shown,
all strings can be accessed via two channels and two control units.
Channel switching, string switching, and 32 Drive Expansion features can
be used to enhance the availability of 3330-series disk storage and to
extend backup capabilities when two System/370 systems (the same or
different models) are present in an installation.

Optionally, the staging adapter feature can be installed on the ISC
to permit attachment of the 3850 Mass Storage System to the ISC. The
ISC provides the same functions for the 3850 as 3830 Storage Control
Model 3. The staging adapter permits the addressing capability of each
of the four ISC paths to be expanded to a maximum of 64 unique
addresses. When the staging adapter is installed, the control store
extension feature must also be installed and 3340 disk storage cannot be
attached to the IscC.

106 A Guide to the IBM System/370 Model 158

Channel Channel
ISC with .
" Logical Logical
Two-Channel
Switch control 1 control 2
Each 3333 has
the 3333 String 3333 3333 3333 3333
Switch installed
3330 3330 3330 3330
3330 3330 3330 3330
3330 3330 ‘3330 3330

Figure 50.10.2.

A Guide to the IBM System/370 Model 158

Modet 1 or 11

)

.J

Any combination of
Models 1, 2, and 11

Sample 3330-series string configuration with string
switching

107

50:15 THE 3340 DIRECT ACCESS. STORAGE FACILITY

3340 DISK STORAGE DRIVES AND THE 3348 DATA MODULE

The 3340 direct access storage facility is an intermediate capacity,
modular, high performance direct access storage subsystem that consists
of 3340 Disk Storage and Control Model A2 and 3340 Disk Storage Models
Bl and B2. A 3340 string can consist of from one to four units and is
connected to a Model 158 block multiplexer channel via 3830 Storage
Control Model 2 or integrated storage controls in the Model 158 CPU.

A 3340 string for the Model 158 can consist of from two to eight
drives. A 3340 Disk Storage and Control Model A2 must be the first unit
in a 3340 string. The 3340 Model A2 consists of two drives, drive-
oriented control functions, and power for itself and the 3340 drives
attached to it. 1In a Model 158 configuration, the 3340 Model A2
attaches to 3830 Storage Control Model 2 and a logical control in the
ISC. Up to three units, any combination of 3340 Disk Storage Models Bl
and B2, can be attached to a 3340 Model A2. The 3340 Model B2 consists
of two drives and does not contain the power and device-oriented control
functions that are part of the 3340 Model A2. The 3340 Model Bl
contains one drive and no control functions. Functionally, all 3340
drives are alike regardless of whether they are part of a Model A2, B2,
or Bl unit. v

Figure 50.15.1 shows a 3340 string of five drives that includes one
3340 Model A2, one 3340 Model B2, and one 3340 Model Bl. An operator
control panel is located on the top of each 3340 drive. This panel
contains the three-digit hexadecimal address of the drive, the switches
required to operate the drive, and status indicator lights. The address
of a 3340 drive is wired on a logic board in the 3340 unit.

The removable 3348 Data Module is used for data storage. Unlike the
removable 2316 and 3336 disk packs that are the storage medium for 2314
and 3330-series disk storage, respectively, the 3348 Data Module is a
sealed cartridge that contains a spindle, access mechanism, and
read/write heads in addition to disks on which data is written and read.
The cover of the data module, which is shock-absorbing and non-
flammable, is never removed from the cartridge. The 3340 disk storage
drive contains only the mechanical and electrical components that are
required to house, load, air-filter, and drive the 3348 Data Module.

The 3348 Data Module is shown in Figure 50.15.2. The access
mechanism in a 3348 Data Module is an L-shaped carriage which moves back
and forth on a cylindrical shaft mounted within the data module. When
the data module is not loaded, the access mechanism is latched in the
home position so that it cannot move. In this position, the access
mechanism is located such that the read/write heads rest on nondata
areas on the disk surfaces.

Three models of the 3348 pata Module, all of which are the same
physical size, are available. The 3348 Model 35 has a maximum capacity
(assuming full track records) of approximately 35 million bytes that are
accessed by movable read/write heads. The 3348 Model 70 has a maximum
capacity of approximately 70 million bytes that are accessed by movable
reads/write heads. The 3348 Model 70F also has a maximum capacity of 70
million bytes of which approximately 502,000 bytes maximum (60 logical
tracks) are accessed by fixed read/write heads and the balance by
movable read/write heads.

108 A Guide to the IBM System/370 Model 158

A purchased 3348 Model 35 can be upgraded to a Model 70 at the plant
of manufacture. The upgrading of a 3348 Model 35 or 70 to a Model 70F
and the alteration of a Model 70 to a Model 35 are not available as data
module conversions.

The 3348 Model 70F can operate only on a 3340 drive (Model A2, B2, or
Bl) that has the optional field-installable Fixed Head feature
installed. When installed on a 3340 A2 or B2 unit, the Fixed Head
feature is installed on both drives. The presence or absence of this
feature in a 3340 drive can be determined by programming at any time by
issuing a SENSE command and inspecting the Fixed Head feature bit in the
sense bytes read. The Fixed Head feature and the the Two-Channel Switch
Additional feature (for four-channel switching) are mutually exclusive
for the same 3340 string. '

A Model 70F Data Module can be mounted on a 3340 drive that does not
have the Fixed Head feature installed and made ready without any
notification of the error by the hardware. However, the first I/O
operation issued to the 3340 drive causes an intervention-required unit
check condition and the drive is taken out of ready status. When this
situation occurs either in a DOS/VS or 0S/VsS environment, a message is
given to the operator and the affected job must be canceled in order to
recover. To avoid such situations it is recommended that 3340 units
with and without the Fixed Head feature not be mixed within a string.
If one 3340 unit has the feature, all should have the feature.

Models 35 and 70 of the 3348 Data Module can be used with any 3340
drive (Model A2, B2, or Bl) whether or not it has the Fixed Head feature
installed. No indication is given if a Model 35 or 70 is placed in a
3340 drive with the Fixed Head feature. In sach cases, the fixed head
capability of the drive is not utilized.

The 3340 direct access storage facility is unlike other System/370
direct access storage in that the capacity of an individual 3340 drive .
is determined by the model of 3348 Data Module mounted on the drive S
rather than by the model of the drive itself. The capacity of the 3348
Data Module that is mounted on a 3340 drive can be determined by
programming at any time by issuing a SENSE command and inspecting the
data module size bits in the sense bytes read.

The capability of having two capacity options per drive means the
capacity of a 3340 string can be increased by using larger capacity data
modules on existing drives as well as by adding drives to the string. A
3340 string can vary in capacity from 70 million bytes (two Model 35
Data Modules) to a maximum capacity of 560 million bytes (eight Model 70
or 70F Data Modules) in 35- and/or 70-million-byte increments (assuming
full track records). .

Reliability and the Sealed Cartridge. Design

The sealed cartridge design of the 3348 Data Module, the advanced
design used for the read/write heads in the data module, and
improvements in the physical design of the 3340 drive make the 3340
direct access storage facility more reliable than previously announced
direct access storage devices for Systemv/370, as explained below. No
preventive maintenance is scheduled for a 3340 facility because of its
reliability features.

Reljability is improved by the removal of head-to-disk alignment
problems. Each read/write head within a 3348 Data Module is dedicated
to certain tracks on one data surface. Therefore, each head reads only
the data it wrote previously, regardless of the 3340 drive that is used.
Since common head alignment across all 3340 drives is not required, the ;
critical alignment tolerances that are normally necessary to achieve S~

110 A Guide to the IBM System/370 Model 158

data interchangeability among drives are not needed for 3348 Data
Modules. It is the less critical alignment tolerances for the
read/write heads in a 3348 Data Module that minimize the chance of
errors caused by incorrect alignment of a head to its dedicated tracks.

There is also less chance of damaging read/write heads. If a data
module is dropped, the only read/write heads that can be affected are
those in that data module. If a disk pack is damaged, it can cause
damage to the read/write heads in more than one drive if it is moved
from drive to drive in an attempt to find a drive that can read the
pack. The outside covers of a 3348 Data Module are made of a highly
durable material that is designed to enable a data module to withstand
more severe blows without damage than can a disk pack.

Reliability is improved because the exposure of the disk surfaces in
a 3348 Data Module to outside contamination is greatly reduced when
compared to the contamination exposure of a disk pack. A 3348 Data
Module is opened only when it is mounted on a 3340 drive and only when
the drive cover is closed. Contamination on disk surfaces can be a
major cause of head and disk damage.

In addition, the possibility of head crashes is minimized by the
improved flying characteristics of the readswrite heads in a data
module. The low mass of the read/write heads and the low loading force
used enable the heads to fly over the rotating disks at a very low
height. This near contact (or proximity) recording capability of the
read/write heads in the 3348 permits smaller bits to be written, which
increases the recording density that can be achieved.

The recording density in bits per inch of a track in a 3348 Data
Module is approximately 2.5 times greater than the recording density of
a track in a 2316 pack (10 percent greater than 3330-series Model 11
density and more than two times greater than 3330-series Model 1 and 2
density). The advanced head design used for the 3348 Data Module
enables greater denS1ty to be achieved together with improved
reliability.

Reliability of the 3340 direct access storage facility is also
improved because many critical mechanical parts have been eliminated,
such as a complex head load/unload mechanism. In other cases,
electronic functions have replaced mechanical functions. While the 3340
drive contains more electronics than the 2314, higher density logic
cards are used in the 3340, which results in significantly fewer logic
cards. (A 3340 drive also contains approximately one-third the number
of logic cards as a 3330-series drive.)

The sealed cartridge design implemented in the 3348 Data Module
provides several advantages in addition to improved reliability, such as
simplified data module loading and unloading. Operations that are
required for disk pack loading and unloading (tightening the pack on the
spindle, cover removal, cover replacement, untightening the pack for
removal) are not required for a 3348 Data Module. In addition, the
possibility of hub wear or hub damage as a result of loading and
unloading operations is eliminated for a 3348 Data Module.

After the top cover of the 3340 drive to be used is raised, the
operator places the data module in the exposed drive shroud recess.
After closing the cover, the operator initiates automatic loading of the
module by putting the start/stop switch on the operator panel of the
drive in the start position. This causes the cover of the drive to be
locked, which is indicated by a light on the operator panel, and the
data module to be loaded.

The following occurs during data module loading. The shroud
containing the seated data module moves to the back of the 3340 drive

A Guide to the IBM System/370 Model 158 111

where the voice coil motor is located. While the data module is in
motion, the data module door in the rear of the 3348 is rolled down.
Electrical, mechanical, and filtered air connections between the 3348
Data Module and the 3340 drive are then made through the open data
module door. The access mechanism is then unlatched and the disks are
brought up to rotational speed. The access mechanism is moved to
physical track 0. This entire loading process requires approximately 20
seconds. When the loading process is completed, the ready light on the
operator panel is turned on to indicate the 3348 Data Module is ready
for processing.

To unload a data module, the operator places the start/stop switch in
the stop position. The unloading procedure consists of a reversal of
the operations performed during loading. The access mechanism moves to
the home position in the data module where it is latched, disk rotation
is stopped, the data module is disconnected from the drive, the data
module door is closed, and the data module moves to the front of the
drive. The cover-locked indicator light is turned off as soon as the
unloading procedure is completed. Unloading requires approximately 20
seconds. The cover of the 3340 drive can be raised as soon as the ~
cover-locked indicator light is turned off and the 3348 Data Module can
then be removed. '

The possibility of contaminating the disk surfaces of a data module
during loading and unloading operations is minimized because the data
surfaces are exposed to the air within the closed 3340 drive through the
open data module door for only slightly more than one second. Further,
as soon as a seal between the 3340 drive and the 3348 Data Module has
been made, the filtered air system displaces the air within the data
module several times to remove any contaminants that may have entered
via the open data module door.

The sealed cartridge also offers two other anique features. First, a
read only function (not available for the 2314) is provided on a data
module basis rather than a drive basis (as implemented for 3330-series
disk storage). The read only function is enabled for a 3348 Data Module
by turning an inset in the handle of the 3348 (see Figure 50.15.2) to
the read only position before placing the data module in the 3340 drive.
This inset causes the read only switch that is part of each 3340 drive
and the read only indicator on the operator panel to be turned on when
the 3348 is loaded in a 3340 drive. '

When the read only function is enabled for a 3348 Data Module and an
attempt is made to write on the data module, an interruption occurs and
IBM-supplied programming support terminates the program that issued the
write. The advantage of this approach is that once the read only inset
in a 3348 pata Module is set to inhibit writing, the data module can be
used with any 3340 drive at any time and the operator need not remember
to turn on a read only switch on the drive.

Second, external label handling is improved. An external label can
be placed on a 3348 Data Module after it is removed from the 3340 drive.
Placing an external label on the top surface of a disk pack instead of
on the cover, to avoid mislabeling a disk pack by placing the wrong
cover on it, can be done only when the disk pack is mounted on a drive.
In addition, since the outside cover is never removed from a data
module, the volume identification label on the cover is legible through
the front window of the cover of the 3340 drive even when the data
module 'is loaded and being accessed.

Layout of Tracks, Cylinders, and Read/Write Heads in 3348 Data Modules

The layout of physical and logical tracks on a data surface of any
model 3348 Data Module and the relative position of the read/write heads

112 A Guide to the IBM System/370 Model 158

\ /‘/

for a data surface are shown in Figure 50.15.3. A data surface contains
700 physical tracks with a small space between the first 350 physical
tracks and the second 350 physical tracks. There is also unused space
after the second group of 350 physical tracks. Two logical tracks, one
even numbered and one odd numbered, are written on each physical track.
A logical track has a maximum capacity of 8,368 data bytes (for full
track records). :

Disk
rotation

0Odd index
point

Even index
point

350 physical
; tracks R2

350 physical R2
tracks

~ Access mechanism
with two heads
per data surface
has 350 possible Even-numbered logical track on
access positions one half of the physical track,
odd-numbered logical track on
other half of the physical track

Figure 50.15.3. Location of physical and logical tracks and read/write
heads on a data surface in a 3348 Data Module

There are two read/write heads associated with each data surface.
They are positioned a little more than 350 physical tracks apart, as
shown in Figure 50.15.3. While starting and stopping the data module,
the read/write heads are positioned over the unused portions of the data
surface. :

The access mechanism can be placed at any one of 350 access positions
on the data surface. - Therefore, an outermost head on the access
mechanism can access physical tracks 0 to 349 on its associated data
surface while an innermost head can access physical tracks 350 to 699.
At any of the 350 possible access mechanism positions, two physical
tracks (4 logical tracks) can be accessed on a data surface. However,
only one read/write head in a data module can be active at a time.

A Guide to the IBM System/370 Model 158 113

The bottommost surface in all 3348 Data Modules is used as the servo
surface. This surface contains information for the servo system that is
used to control seek operations, positioning of the heads over tracks,
data clocking (the synchronization of data with rotational speed during
writing operations), index generation, and signal generation required by
the RPS feature. Functionally, the 3340 servo system is like that used
in 3330-series drives. However, design improvements, such as
elimination of the electromechanical tachometer, have been made.

The required servo information is prerecorded on the servo surface of
each 3348 Data Module at the plant of manufacture and is read by a servo
read head at the bottom of the access mechanism. The servo information
on this surface cannot be read or written using 3340 commands. The
servo surface on a 3348 Model 70F Data Module also contains the 60
logical tracks that are read by the fixed heads.

The access mechanism in a 3348 is driven by a voice-coil motor. This
motor and the servo system provide fast, precise access mechanism
positioning, which minimizes head settling time.

Figure 50.15.4 shows the layout of cylinders and read/write heads for
the 3348 Model 35 Data Module. A Model 35 contains two recording disks.
Three of the data surfaces on the two recording disks are used for data
recording in a Model 35 Data Module. The three data surfaces are
accessed by six read/write heads (0 to 5). The six physical tracks that
can be accessed at any given position of the access mechanism constitute
a logical cylinder and contain twelve logical tracks. Head 0 accesses
logical tracks 0 and 1, head 1 accesses logical tracks 2 and 3, etc.

A four-byte field (CCHH) is used to address the logical tracks in a
3348 Data Module. The two-byte cC (cylinder address) field specifies
the logical cylinder address, which can be 0 to 348 for the primary and
alternate logical tracks of a Model 35 Data Module. The two-byte HH
field, which normally specifies the actual head address (for 2314 and
3330-series drives, for example), specifies the number of the logical
track within the logical cylinder, a value from 0 to 11, instead of a
head address of 0 to 5. The drive selects the appropriate head using
the logical track number.

In Figure 50.15.4, the access mechanism is shown positioned at
logical cylinder 0 where physical tracks 0 and 350 on each of the three
data surfaces can be accessed. There are 350 logical cylinders in the
Model 35 Data Module. The first 348 are used for data, logical cylinder
348 is the alternate cylinder, and logical cylinder 349 is the CE ‘
cylinder. The CE cylinder is designed to be used only by the CE for
testing the read/write capability of a 3340 drive. It contains a
prewritten area for read testing and an area in which write tests can be
performed. '

Figure 50.15.5 shows the layout of cylinders and read/write heads for
the 3348 Model 70. A Model 70 contains four recording disks. Six data
surfaces on the four recording disks, each of which is accessible by two
read/write heads, are used for data recording in the Model 70. As for
the Model 35, the six physical tracks that can be accessed by the lower
six read/write heads (0 to 5) at a given position of the access
mechanism constitute a logical cylinder of twelve logical tracks. 1In a
Model 70, however, the logical cylinders addressed by read/write heads 0
to 5 are all even numbered (0, 2, 4, ..., 698). The six physical tracks
that can be accessed by the upper six read/write heads (6 to 11) at a
given position of the access mechanism also constitute a logical
cylinder of twelve logical tracks. The logical cylinders addressed by
read/write heads 6 to 11 are all odd numbered (1, 3, 5, «.., 699).

Thus, on a Model 70 two logical cylinders (24 logical tracks) can be -
accessed at each of the 350 possible access mechanism positions.

114 A Guide to the IBM System/370 Model 158

p——

Model 35 Data Module
Maximum capacity 34.9 million bytes

Access mechanism

5 4 with six read/write
heads, six physical

3 2 .
tracks per logical

1 0 cylinder

Servo /Servo arm
surface '_._ﬁ’
Physical —9 699 ... 350349...10 g
track
t T Logical cylinder 0
(fogical tracks 0 to 11)
Logical cylinder 1
(logical tracks 12 to 23)
t T Logical cylinder 349
(logical tracks 4188 to 4199)

Number of recording disks
Number of data surfaces
Number of read/write heads
Number of physical tracks
per physical cylinder
Number of physical tracks per
logical cylinder
Number of logical tracks per 12
logical cylinder
Number of logical cylinders per 350
data module .
Number of logical tracks per 4200 (4176 data)
data module (12 alternate)
(12 CE)
Number of access mechanism 350
positions
Number of logical cylinders 1
accessed per access
mechanism position

[AR WN

Figure 50.15.4. Cylinder and read/write head layout for a 3348 Model 35
Data Module

A Guide to the IBM System/370 Model 158 115

Model 70 Data Module
Maximum capacity 69.8 million bytes

Logical cylinder 699
(logical tracks 8388 to 8399)
Logical cylinder 3
(logical tracks 36 to 47)
Logical cylinder 1
(logical tracks 12 to 23}

699 ... 350349... 10 1

1 10 Six physical tracks
accessed by read/write
heads 6 to 11 constitute
an odd-numbered logical

7 6 cylinder (1,3,5, . . ., 699).

©
[+2]

5 4 Six physical tracks
accessed by read/write
heads 0 to 5 constitute
an even-numbered logical
cylinder (0,2,4, .. ., 698)

Physical —§» 699 ... 350349 ...10 -
track - Servo arm

t . T Logical cylinder O
(logical tracks O to 11)
Logical cylinder 2
(logical tracks 24 to 35)
Logical cylinder 698
(logical tracks 8376 to 8387)

Number of recording disks 4
Number of data surfaces 6
Number of reads/write heads 12
Number of physical tracks 12
per physical cylinder
Number of physical tracks per 6
logical cylinder
Number of logical tracks per 12
logical cylinder
Number of logical cylinders per : 700
data module
Number of logical tracks per 8400 (8352 data)
data module (24 alternate)
: (24 CE)
Number of access mechanism positions 350
Number of logical cylinders accessed 2

per access mechanism position

Figure 50.15.5. Cylinder and read/write head layout for a 3348 Model 70
Data Module

116 A Guide to the IBM System/370 Model 158

There are 700 logical cylinders in the Model 70 Data Module. The
first 696 (0-695) are used for data. Logical cylinders 696 and 697 are
used as alternate logical cylinders while logical cylinders 698 and 699
are CE cylinders. The method of addressing a logical track in a Model
70 Data Module is the same as described for a Model 35. The CC value
can vary from 0 to 697 for data and alternate logical cylinders while
the HH value can vary from 0 to 11.

Figure 50.15.6 shows the layout of cylinders and read/write heads for
the 3348 Model 70F. This model is identical to the Model 70 except for
the following. Seven surfaces, six data surfaces and the servo surface,
on the four recording disks are used for data recording. Logical
cylinders 1 to 5 are recorded on the servo surface. They are written on
30 physical tracks that are accessed by 30 fixed read/write elements,
which are mounted on a plate under the servo surface, as shown in Figure
50.15.6. The first six physical tracks contain logical cylinder 1, the
second six physical tracks contain logical cylinder 2, etc. Logical
cylinders 0 and 6 to 699 are recorded on the six data surfaces just as
in a Model 70 Data Module. ,

Addressing a logical track in a Model 70F Data Module using a CCHH
field is the same as described for the Model 70. When a command is
received that addresses a logical track in logical cylinders 1 to 5 of a
Model 70F, the 3340 drive automatically selects the fixed read/write
element associated with the specified logical track instead of the
movable head. Therefore, a Model 70F and a Model 70 data module can be
accessed using the same 3340 channel programs. This means no special
programming support is required to use a Model 70F instead of a Model 70.

The physical tracks that contain logical cylinders 1 to 5 in a Model
70 are not used in a Model 70F and cannot be accessed by the user or a
customer engineer because of the way in which head selection is ~
performed. Hence, the data capacity of Models 70F and 70 is the same.
Seek time for logical cylinders 1 to 5 in a Model 70F is zero. Seek
times for logical cylinders 0 and 6 to 695 in a Model 70F are the sam
as Model 70 seek times.

A data set or file can be contained both in logical cylinders 1 to 5
of a Model 70F Data Module and logical cylinders that are accessed by
movable heads. A 3340 drive, however, can perform only one operation at
a time. Therefore, a seek, search, or data transfer operation involving
a fixed head in a Model 70F Data Module cannot be performed at the same
time a movable head is involved in a seek, search, or data transfer
operation.

The best performance gains can be achieved when Model 70F Data
Modules are used by assigning the fixed head logical tracks to small
active system data sets/files (such as the page data set, system
catalog, TCAM message queue), small active user data sets/files, large
active data sets/files that can be segmented (0S/VS1l page data set,
partitioned data sets, ISAM index levels, for example), and data
sets/files with major activity concentrated at the beginning of the data
set/file (such as the 0S/VS job queue).

The assignment of such data sets/files to the fixed head logical
tracks in a Model 70F Data Module is a user responsibility. DOS/VS
EXTENT and OS/VS DD statements for these files and data sets must
specifically request by actual address locations within the fixed head
logical cylinders. Note also that the device type code in the device
table that is generated in the control program during a system
generation (DOS/VS PUB table, 0S/VS UCB table) does not differentiate
between 3340 drives with and without the Fixed Head feature. Therefore,
if generic device type assignment by device type (3340) is used in a
configuration that contains 3340 drives with and without the Fixed Head
feature, either type drive can be selected by the operating system.

A Guide to the IBM Systemn/370 Model 158 117

Model 70F Data Module
Maximum capacity 69.8 million bytes

699 ... 30 ... 10 1
11 10 Six physical tracks accessed
by read/write heads 6 to
9 8 11 constitute an odd-numb-
L T ered logical cylinder
7 6 (7,9,11,...,699).
5 4 Six physical tracks accessed
L by read/write heads 0 to 5
3 2 constitute an even-numbered
logical cylinder (0,6,
1 0 : 8,...,698)
Servo Logical cylinders 1 to 5
surface contained on 30 physical
tracks

30 fixed Servo arm
read/write
elements
Number of recording disks 4
Number of data surfaces 6 plus servo surface
Number of read/write heads 12 movable
30 fixed
Number of physical tracks 12
per physical cylinder
Number of physical tracks per 6
logical cylinder
Number of logical tracks per 12
logical cylinder
Number of logical cylinders per 700
data module
Number of logical tracks per 8400 (8352 data - 60 fixed head
data module and 8292 movable head)
(24 alternate)
(24 CE)
Number of movable head access 350
mechanism positions
Number of logical cylinders 2 except for first 3 positions

accessed per access
mechanism position

Figure 50.15.6. Cylinder and read/write head layout for a 3348
Model 70F Data Module

118 A Guide to the IBM System/370 Model 158

The assignment of a 3340 drive with the Fixed Head feature can be
assured in an OS/VS environment by specifying a user-defined device
class name for such 3340 drives at system generation and using this name
(instead of UNIT=3340) in the appropriate DD statements. DOS/VS users
utilizing the generic I/0 device assignment capability can specify an
address list of the 3340 drives with the Fixed Head feature in the ASSGN
statements for files that are to be located on a Model 70F Data Module.

Alternate tracks that are accessed by fixed heads are not provided
for logical cylinders 1 to 5 in a Model 70F Data Module. Logical
cylinders 696 and 697, which provide alternate tracks for the logical
tracks accessed by the movable heads, also provide alternate tracks for
the logical tracks in logical cylinders 1 to 5. This approach is taken
because the probability a fixed head track in logical cylinders 1 to 5
will develop a defect is lower than that for movable head tracks and the
possibility of a defect occurring in a movable head track is. very low
(for the reasons discussed later).

The low probability of defects occurring in fixed head logical
cylinders 1 to 5 of a Model 70F Data Module results in part from the
fact that these cylinders are recorded on the servo surface, which is a
specially manufactured surface because of its primary function. 1In
addition, the fixed head tracks are recorded on the outer edge of the
servo surface, which results in a lower bit density for these tracks.
The width of a fixed head physical track is six times greater than that
of a movable head track on a data surface.

If an uncorrectable error does occur on a fixed head logical track in
a Model 70F Data Module, the logical track should be flagged and an
alternate track should be assigned. This can be done using the
IEHATLAS, IEHDASDR, or IBCDASDI utility of 0S/VS. IEHDASDR or IBCDASDI
should then be used to test the flagged fixed head track to determine
whether the track is really defective. If the track is found not to be
defective, the flag is removed and the assigned alternate track is
released. If the track is defective, the data module can be returned to
the plant of manufacture for repair if the loss of performance resulting
from using an alternate movable head track instead of the fixed head
track is not acceptable.

Note that the defective track testing capability of 0S/VS IEHDASDR
and IBCDASDI is not provided by any DOS/VS utility. DOS/VS users can
obtain IBCDASDI, the standalone utility, by ordering the 0S/VS1l system.

The physical and capacity characteristics of 3348 Data Modules and
the 2316 disk pack are given in Table 50.15.1. Table 50.15.2 gives the
timing characteristics of the 3340 direct access storage facility and
the 2314 facility.

Track Formatting and Data Module Initialization

Self-formatting records consisting of count, key, and data or count
and data areas are written on the logical tracks of a 3348 Data Module
just as on the tracks of a 2316 pack. However, each home address,
count, and key area written on a 3348 track has a six-byte detection
code field appended to it for data validity checking by the 3830 Model 2
or integrated storage control. The detection code used can detect all
single-error bursts of eleven bits span or less.

A Guide to the IBM System/370 Model 158 119

Table 50.15.1. Physical and capacity characteristics of 3348 Data

Modules and the 2316 Disk Pack

Characteristic 3348 3348 3348 2316
- Model 35 Model 70 Model 70F
Number of data 2 4) 11
disks per data
module/pack
Disk diameter 14 14 14 14
in inches
Number of 3 data 6 data 6 data ‘20 data
surfaces used 1 servo 1 servo 1 servo
per data module/pack and data
Number of read/write 2 2 2 plus 1
heads per recording 30 reads
surface write
elements
for the
servo
surface
Number of cylinders 348 plus 696 plus 696 plus 200 plus
per data module/pack 1 alter- 2 alter- 2 alter- 3 alter-
nate and nates and nates and nates
1 CE 2 CE 2 CE
Number of logical 12 12 12 20
tracks per cylinderxr '
Number of data 4,176 8,352 8,352 4,000
tracks recorded per
data module/pack
Full track capacity 8,368 8,368 8,368 7,294
in bytes
Cylinder capacity 100,416 100,416 100,416 145,880
in bytes
Maximum capacity 34,947,768 69,889,536 69,889,536 29,176,000
in bytes per data (502,080 in ~
module/pack logical
cylinders
1 to 5,
69,387,456 in
logical
. cylinders 0
~and 6 to 695)
Data module/pack 17 19.5 20 15

weight in pounds

120

A Guide to the IBM System/370 Model 158

Table 50.15.2. Timing characteristics of the 3340 direct access
storage facility and the 2314 facility

Characteristic Models 35 Model 70F 2314
and 70 Cylinders Cylinders
1-5 0, 6-699
Seek time (ms) ‘
Maximum 50 ’ 0 50 130
: (350 cyl-Model 35) (700 cylinders)
(700 cyl-Model 70)
Average 25 0 25 60
(350 cyl-Model 35) (700 cylinders)

(700 cyl-Model 70)

Cylinder to

cylinder
Model 35 10 25
Models 70, 70F Even to next
: odd - 0 0 0
Even to next
even - 10 0 10
0dd to next
even or '
odd - 10 0 10
Rotation time 20.2 20.2 20.2 .25
(ms)
Rotation speed 2964 2964 2964 2400
(rpm)
Data transfer 885 885 885 312
rate (KB/sec)
Sectors per track 64 64 64 -
Sector time 316 - 316 316 --
(microseconds)
Load time (secs) 20 20 20 60
(time to ready '
status after
mounting)
Unload time (secs) 20 | 20 20 15

A six-byte correction code field is appended to each data area
written on a 3348 track. The correction code used has the same
detection capability as the detection code and the capability of
correcting single-error bursts of three bits span or less. The actual
error correction procedure must be performed by programming (error
recovery routines) using corrective bits that are supplied by the
control unit as discussed later.

The home address and count areas written on a logical track in a 3348
contain two new fields in addition to the same fields as are written in
home address and count areas on 2316 tracks. The home address and each
count area on a 3348 logical track contain a two-byte skip defect field
and a two-byte physical address field in front of the flag byte. The
automatic surface defect skipping capability of the 3340 allows valid
data to be written before and after a surface defect on a logical track.

A Guide to the IBM System/370 Model 158 121

The skip defect bytes are used to indicate the location of the center of
the surface defect relative to the index point of the logical track.
Bits in the flag byte field indicate whether the surface defect is
located in the next count, key, or data area.

Surface defect skipping is implemented by including in each logical
track of a 3348 Data Module a reserved area called a surface defect gap
in which no data is written. If a logical track has no surface defects,
the surface defect gap is located at the end of the logical track. If
there is a surface defect, the surface defect gap is placed over the
defective portion of the logical track at the time of manufacture. One
or more surface defects that together occupy an area of up to 16 bytes
in length per logical track can be handled by the defect skipping
technique while the stated full logical track capacity of 8,368 bytes is
maintained.

The error detection and correction code capabilities of the 3340
facility permit successful recovery from an error within the data
portion of a physical record even when it contains a surface defect gap.

Partial initialization of all 3348 Data Modules is performed at the
plant of manufacture. A home address record and track descriptor (R0)
record are written on each logical track in the data module. If a
single skippable defect is found during the analysis of the surface of a
logical track, the appropriate SD bytes and flag byte are written in the
home address to indicate this fact. If no surface defect is found, the
SD bytes are written as zeros.

The SD bytes and flag byte are supplied in the count area field in
virtual storage only for a WRITE HOME ADDRESS command. When RO is
written during data module initialization and thereafter whenever a
formatting write is performed, the SD and flag bytes for the count area
to be written on disk are supplied by the control unit, which reads them
from the record immediately preceding the record to be written.

When a record is written with a formatting write command on the
portion of a logical track that contains an identified surface defect,
the defect gap area is maintained in the defective portion of the
logical track and data is written before and after the defect gap as
appropriate. Whenever a nonformatting write or a read is issued for
this record, the surface defect gap is automatically skipped over by the
hardware without programming assistance or any error notification, just
as if no surface defect existed.

The DOS/VS Initialize Disk or 0S/VS IBCDASDI, IEHDASDR, or IEHATLAS
utilities can be used to assign an alternate track if a physical track
becomes defective during its use in an installation. If data cannot be
read from a 3348 Data Module and recovery of this data is critical, the
data module can be returned to the plant of manufacture where recovery
will be attempted.

The two physical address bytes in home address and count areas on a
3348 logical track contain the physical cylinder and track address of
the logical track on which they are written. When a seek command is
issued, the control unit converts the logical cylinder and track address
specified by the seek command to a physical cylinder and track address
that is actually used by the drive in the seek operation. This physical
address is saved in the control unit for later use in seek verification.

The physical address bytes are automatically written and read by the
control unit and are not processed by programming. That is, when a home
address or count area is written, the physical address bytes are
automatically supplied by the control unit and are not contained in the
home address or count area field in virtual storage that is indicated by
the write command. Similarly, when a home address or count area is

122 A Guide to the IBM System/370 Model 158

Page of GC20-1754-2
Revised February 20, 1976
By TNL GN20-3580

read, the control unit reads the physical address bytes but they are not
placed in the home address or count field area in virtual storage.

The physical address bytes are used by the control unit for seek
verification during normal operations and by the 3340 microdiagnostic
routines. When a home address or count area is processed during a read,
search, or clock operation, the physical address bytes read are compared
with the most recent seek address (physical cylinder and track address)
that was saved in the control unit when the last seek command was
issued. If the two physical addresses are not equal, the commard is
terminated and a unit check condition results. Seek check is indicated
in the sense bytes.

ATTACHMENT VIA 3830 STORAGE CONTROL MODEL 2

The 3830 Storage Control Model 2 unit contains the control functions
required to operate one or two 3340 strings of from two to eight drives
each. If the 32 Drive Expansion and Control Store Fxtension optional
features are installed on a 3830 Model 2, up to four 3340 strings of
from two to eight drives each can be attached to it. These two features
are field-installable.

Cabling between the 3830 Mcdel 2 and the 3340 Model A2 can be a
maximum of 150 feet in length. The 3830 Model 2 attaches to an
integrated block multiplexer chanmnel in the Model 158 via cabling up to
150 feet in length. Figure 50.15.7 shows a Model 158 configuration with
3340 strings attached via 3830 Storage Control Model 2. Intermixing
3340 and 3330-series strings on an attachment is discussed later in this
subsection.

Model 158 CPU 3340 string
with integrated :
block multiplexer 295" 3340 A2 3340 3340 3340
channel-connected A 'Device-oriented B1or B2 B1or B2 B1or B2
to 3830 Storage Cables | control functions| 1 or 2 drives 1 or 2 drives 1 or 2 drives
Control Model 2 ?} 2) and 2 drives
Cables 3830
Storage
Control Cables .
Model 2 3340 string
3340 A2 3340 3340 3340
Device-oriented B1 or B2 B1 or B2 B1or B2
control functions 1 or 2 drives 1 or 2 drives 1 or 2 drives
and 2 drives
Figqure 50.15.7. A Model 158 configuration with 3340 disk storage

attached via 3830 Storage Control Model 2

Standard features of the 3830 Model 2 when used with 3340 disk
storage are record overflow, multiple requesting, and rotational
position sensing. The command retry facility of the 3830 Model 2 that
is implemented for 3330-series drives is not implemented for 3340 ‘
drives. Wwhen multiple requesting is used, the 3830 Model 2 can control
concurxent operation of mp to 32 channel programs (when 32 Drive
Expansion is installed), one on each of its drives. Only one of the two .
to 32 drives attached to a 3830 Model 2 can be transferring data at a time.

Rotational position sensing is an optional field-installable feature
for 3340 units. It must be installed on each unit (both drives in an A2
or B2 3340 unit) that is to use the standard rotational position sensing
capakility of the 3830 Model 2. For performance reasons (see Section
60:10 in A Guide to the IEM System/370 Model 155, GC20-1729), it is

recommended that the RPS feature be installed on all of the 3340 units
in a given string or on none of the units in the string. The presence

A Guide to the IBM System/370 Model 158 123

Page of GC20-1754-2
Revised February 20, 1976
By TNL GN20-3580

or absence of the RPS feature in a 3340 drive can be determined by
programming at any time by issuing a SENSE command and inspecting the
RPS feature bit in the sense bytes read. .

If a SET SECTOR command is issued to a 3340 drive that does not have
the RPS feature installed;, no operation is performed, track orientation
is lost, and channel end and device end status are presented. If a READ
SECTOR command is issued to a 3340 drive without RPS installed, a sector
value of zero is returned together with channel end and device end
status. Thus, channel programs containing sector commands can operate
~on 3340 drives that do not have RPS installed.

The 3830 Model 2 supports all the 2314 commands (except the file scan
commands) in addition to new commands not available for the 2314, such
as RPS and diagnostic commands. The command set for the 3340 is the
same as that for 3330-series disk storage.

The Two-Channel Switch feature, identical in function to the same
feature for the 2314 facility, can be installed on a 3830 Model 2 to
allow it to be attached to two channels. The Two-Channel Switch
Additional feature can be added to this configuration to permit the 3830
Model 2 to be attached to four channels. A maximum of two of the four
channels can be present in the same system. The channels to which a
3830 Model 2 with one or both of these features is connected each must
have one control unit position and, if block multiplexing is to be used,
eight nonshared subchannels available. An enables/disable switch on the
3830 Model 2 can be set to dedicate the 3830 to any subset of the two to
four channels.

The optional String Switch feature can be installed on 3340 Model A2
drives. This field-installable feature enables the 3340 Model A2 and
its attached Model B2 and Bl units to be connected to two control wmit
type attachments instead of only one. The attachments can be any two of
the following:

* 3830 Storage Ccntrol Model 2
e Integrated Storage Control for the Model 145
® 3345 Storage and Control Frame Models 3, 4, and 5 for the Model 145

* Integrated Storage Controls for Models 158 and 168 (or the two
logical controls in one ISC)

e 3330/3340 Series IFA for the Model 135
e Direct Disk Attachment (DDA) of a Model 115 or 125 Model 2

Except for the DDA, the two attachments to which a 3340 Model A2 with
the String Switch feature is attached can be connected to the same or
different channels in the same CPU, or the channels in two different
CPUs. 1In addition, except for the DDA channel switching features can be
installed on one or both of these attachments. For a Model 115 Model 2
or Model 125 Mcdel 2, the String Switch enables two 3340 strings to be
attached to any System/370 model except a Model 115 Model 0 or Model 125
Model 0 and a Model 115 Model 2 or Model 125 Model 2.

The String Switch feature for 3340 disk storage is functionally
similar in its operation to the Two-Channel Switch. A switch on the
3340 Model A2 can be set to allow the 3340 string to be accessed via
both attachments, one at a time. 1In effect, this setting provides two
control unit paths to the string. Switching is accomplished dynamically
under program control. BAlternatively, the switch can Lte set to dedicate
the string to one attachment or the other so that the string can be
accessed only via that attachment.

124 A Guide to the IBM System/370 Model 158

i‘\/’/

Page of GC20-1754-2
Revised February 20, 1976
By TNL GN20-3580

Figure 50.15.8 illustrates string switching for two 3340 strings
attached to a 3830 Model 2 unit. In the configuration shown, bcth
strings can be accessed via two channels and two control units. Channel
switching, string switching, and 32 Drive Expansion features can be used
to enhance the availability of 3340 direct access storage facilities and
to extend backup capakilities when two System/370 systems (the same or
different models) are present in an installation.

R Channel in same
Ch |
annel in Model 158 Model 158 or another CPU

e 3830 Model 2
Attach , ® ISC — Model 158 or 168
ttachment ® ISC — Model 145
3830 Model 2 Attachment 2 | 0 2345 Model 3, 4 or
5 for Model 145
® 3330/3340 Series IFA — Model 135
3340 A2 3340 A2
with with
String String
Switch . Switch
3340 3340
[[
3340 3340
] 1
3340 334Q
Figure 50.15.8. String switching for 3340 facilities attached to a

3830 Model 2

The 3830 Model 2 control unit is microprogram-controlled. Read/write
monolithic storage contained in the control unit is used for
microprogram residence. The 3830 Model 2 also contains a device that
reads interchangeable disk cartridges. This device is used for
microprogram backup storage and for storage of nonresident diagnostics
for the 3340 string. During a 3830 Model 2 power-on sequence, the
functional microprogram is loaded from the device into control storage
within the 3830 Model 2 control unit. Therefore, microcode engineering
changes can be installed merely by replacing the current disk cartridge
with another that contains the new microprogram.

The 3830 Model 2 incorporates error detection, correction, and
logging features that are designed to improve its availability and
serviceability. For the 3340, the 3830 Model 2 provides the following
facilities that are not implemented in System/ 360 direct access devices:

e I/0 error routine correction of recoverable data errors on read
operations with data supplied by the control unit in sense bytes.
when the 3830 Model 2 detects a correctable data error during the
reading of the data portion of a physical record, it generates the
information necessary to correct the erroneous bytes. The sense
bytes presented by the 3830 Model 2 contain a pattern of corrective
bits and a displacement value to indicate which of the bytes

A Guide to the IBM System/370 Model 158 125

Page of GC20-1754-2
Revised February 20, 1976

By TNL GN20-3580
transferred to processor storage contain the errors. The disk error L™
recovery program need only EXCLUSIVE OR (logical operation) the \ :
corrective bit pattern with the error bytes in the input area in e’

processor storage to correct the errors.

®* Statistical usage recording by the 3830 Model 2. Statistical usage
counters for each drive in a 3340 string are continuously maintained
by the 3830 Model 2. These counters indicate the number of bytes
read/searched, number of seeks issued, and number of command and
data overruns for each device. When a counter reaches its threshold
or a data module is removed from a drive, the 3830 Model 2 indicates
the condition via a unit check when the next I/0 operation is
initiated to the drive or a data module is made ready on the drive.
Counter data can be obtained and counters can be reset by issuing a
READ AND RESET BUFFERED LOG command.

¢ Inline diagnostic testing of a malfunctioning drive. (Inline
diagnostics are provided only for 2314 facilities.) A 3830 Model 2
control unit can execute diagnostic tests on a malfunctioning drive
while normal operations take place on the remaining drives in the
string. Diagnostic tests can be loaded into a transient area of the
control storage of the 3830 Model 2 and executed on the
rmalfunctioning drive. This can be done in an online environment
using OLTEP or the CE panel on the 3830 Model 2. OLTSEP can be used
in a standalone environment. Inline testing allows CE diagnosis and
repair of most 3340 drive failures without the necessity of taking
the entire 3340 string out of the system configuration.

A 3340 drive can be placed in CE mode (offline to the system) by
means of a switch that is located inside the rear door of the drive so
that maintenance functions can be performed. To take the 3340 drive out
of CE mode and return it to online status, the attention pushbutton must
be pressed. This also causes the access mechanism to move to physical ; >
track 0.) RN

ATTACHMENT VIA INTEGRATED STORAGE CONTROLS

Optionally, one Integrated Storage Controls feature can be installed
on a Model 158 to attach 3340 and/or 3340-series disk storage to one or
two block multiplexer channels. BAttachment of 3340 and 3330-series disk
storage via 3830 Storage Control is possible as well. The following
discusses attachment of 3340-series strings only.

The Integrated Storage Controls feature includes dual direct access
storage controls, each of which operates independently of the other and
is functionally like 3830 Storage Control Model 2 except for the
following:

* The Integrated Storage Controls feature is contained in the main
frame of the Model 158 and is powered by the Model 158 cpu.

®* The Two-Channel Switch, Additional feature (that provides four-
channel switching) cannot be attached to the logical storage
controls in the ISC feature.

Both logical storage controls in the ISC feature can be attached to
the same channel, two different channels in the Model 158, or a channel
in the Model 158 and a channel in another System/370. Each logical
storage control can have attached a maximum of four 3340 strings of up
to eight drives each. The 32 Drive Expansion and Control Store
Extension optional features (field installable) must be installed in the
ISC in order to attach more than two strings to each logical control.
Therefore, up to 64 drives (eight strings) can be attached to the Model
158 via the ISC. 'The first unit in each 3340 string must be a 3340 i \
Model A2. ‘ N

126 A Guide to the IBM System/ 370 Model 158

Page of GC20-1754-2
Revised February 20, 1976
By TNL GN20-3580

The 3340 drives attached to the ISC operate just as if they were
attached via 3830 Storage Control Model 2. That is, when multiple
requesting is used, each logical storage control within the ISC can
handle up to 32 channel programs concurrently, one on each of its
drives, and only one of the 32 drives can be transferring data at a
time. When a malfunction occurs, diagnostics can be run on one logical
storage control and its drives while normal operations take place on the
other logical storage control in the ISC. Intermixing 3340 and 3330-
series strings on the ISC is discussed below. Figure 50.15.9 summarizes
the 3340 string configurations that are possible for a Model 158 ISC.

The ISC feature provides lower-cost attachment of 3340 disk storage
than 3830 Storage Control Model 2 when two storage control units are

required, and physical space is saved since the ISC is in the Model 158 CPU.

The Two-Channel Switch optional feature is also available for the
ISC. When installed, this feature provides a two-channel switching
capability for both of the logical storage controls. The Two-Channel
Switch permits each logical storage control to be attached to two
channels in the same Model 158 or to one channel in the Model 158 and
one channel in another System/370. Two switches are provided that can
be set to dedicate a logical storage control to one channel or the
other, or to enakle the storage control to be accessed by both channels.

Channel Channel
Integrated .| ® Two-Channel Switch
Storage . . . e 32 Drive Expansion
Controls Logical Logical e Control Store Extension
control 1 control 2
3340 3340 | 3340 3340 3340 3340 3340 3340
A2 A2 A2 A2 A2 A2 A2 A2
T T T 1 .
3340 3340 3340 3340 3340 3340 3340 3340
I] | | I I I
v) combination
3340 3340 3340 3340 3340 3340 3340 3340 of Models
C T T [T T T T |
3340 3340 3340 3340 3340 3340 3340 3340
J
® One to four strings of from two to eight drives each connected
to each logical control. Each logical control connected to one
or two channels in the same or different CPU's,
® String Switch can be added to any or all 3340 Model A2 units
to connect a 3340 A2 to a second attachment in the same ISC,
the same CPU, or another CPU except Model O of Models 115 and 125.
Figure 50.15.9. Permissible 3340 string configurations for the Model

158 Integrated Storage Controls feature

A Guide to the IBM System/370 Model 158 127

The String Switch optional feature can be installed on a 3340 Model
A2 that is attached to the ISC. This field-installable feature enables ! ;
the 3340 Model A2 and all its attached 3340s (a 3340 string) to be ' ‘y_f;
connected to two control unit type attachments instead of only one. The)
attachments can be any combination of two of the following:

e 3830 storage Control Model 2

* Integrated Storage Controls for Models 158 and 168 (or the two
logical controls in one ISC)

e Integrated Storage Control for the Model 145

e 3345 Storage and Control Frame Models 3, 4, and 5 for the Model 145
e 3330/3340 Series IFA for the Model 135

The two attachments to which a 3340 Model A2 with the String Switch
feature is connected can be attached to the same or different channels
in the same CPU, or to channels in two different CPU's. 1In addition,
channel-switching features can be installed on one or both of these
attachments.

The String Switch is functionally similar in its operation to the
Two-Channel Switch. A switch can be set to allow the 3340 string to be
accessed via both attachments, one at a time. In effect, the setting
privides two control unit paths to the string. String switching is
accomplished dynamically under program control. Alternatively, the
switch can be set to dedicate the string to one attachment or the other
so that the string can be accessed only via that attachment.

Figure 50.15.10 illustrates string switching for four 3340 strings
that are attached to the same ISC. In the configuration shown, all . "
strings can be accessed via two channels and two control units. Channel o
switching, string switching, and 32 Drive Expansion features can be used
to enhance the availability of 3340 disk storage and to extend backup
capabilities when two System/370 systems (the same or different models)
are present in an installation. ‘

INTERMIXING 3340 AND 3330-SERIES STRINGS ON AN ATTACHMENT

Optionally, the 3333/3340 Intermix feature can be installed on 3830
Storage Control Model 2 and integrated storage controls in the Model 158
CPU. When present, this field-installable feature permits both 3340 and
3330-series strings to be attached to a 3830 Model 2 or ISC. Each
string must contain all 3340 drives or all 3330-series drives as usual.

The intermix feature requires installation of the Control Store
Extension feature on the 3830 Model 2 or ISC and can coexist with other
optional features for these units and their strings (channel switching,
32 Drive Expansion, string switching, and fixed head features).

128 A Guide to.the IBM System/370 Model 158

Channel Channel

ISC with . :
Logicat Logical
Two-Channel control 1 control 2
Switch
Each 3340 A2
has the 3340 3340 3340 3340
String Switch A2 A2 A2 A2
installed l l [l
\
3340 3340 3340 3340
Any combination of
3340 3340 3340 3340 Models B1 and B2
3340 3340 3340 3340 J

Figure 50.15.10. String switching for 3340 facilities attached to one
IscC

SUMMARY

The hardware features of the 3340 and 2314 direct access storage
facilities are summarized in Table 50.15.3. Table 50.15.4 compares the
capabilities of the 3830 Model 1, 3830 Model 2, and Model 158 integrated
storage controls for both 3340 -and 3330-series disk storage.

When compared with the 2314 facility, the 3340 facility offers the
following major advantages:

¢ Faster access to data

Data transfer rate almost three times that of the 2314

Seek times approximately 40% of those of the 2314 for
movable head accesses

Zero seek time provided by the fixed heads in a 3348
Model 70F Data Module

Rotational delay interval approximately 20% shorter
than for the 2314

e Larger capacity per drive
17% for the Model 35 Data Module
175% for Model 70 and 70F Data Modules

e Two capacity options per drive for expanded growth
flexibility

e Multiple requesting and rotational position sensing capabilities
for use with block multiplexer channels

A Guide to the IBM System/370 Model 158 129

®* Operational improvements

Cover tightening/untightening and removable/replacement
operations are eliminated, which speeds up data module loading
and unloading

Load time to ready status for a mounted data module is three
times faster

Write protection is provided on a data module basis

External labeling procedures are more flexible and leave less
chance of erroneous data module labeling

¢ Significantly increased reliability
Sealed cartridge design eliminates head-to-disk alignment
problems, minimizes the possibility of disk surface
contamination, and eliminates hub wear and damage
Advanced head design makes head crashes a remote possibility
and permits increased recording density without any loss
of reliability

s Improved error handling capabilities
Error correction data is provided by the hardware for use
by programmed error recovery procedures
Surface defect skipping reduces the need to use the error
correction capability

¢ Improved availability and serviceability
No preventive maintenance is scheduled, because of the reliability
features of the 3340 and 3348
Faster error isolation and correction is possible because the
3340 contains fewer circuit cards :
Expanded microdiagnostics can test more than 95% of the
circuits in a 3340

130 A Guide to the IBM System/370 Model 158

Table 50.15.3. Summary of the hardware features of 3340 and 2314 disk
storage facilities

Feature

3340 attached to
3830 Model 2 or
Isc

2314 (A-Series)

Number of drives
per string or
facility

Number of strings or
facilities per
control unit

Data medium used

Read only feature
on drive or data
medium

Removable address
plugs on drive

Attachment of a
string or facility
to two control units
in the same or a
different CPU

Two-Channel Switch
Attachment of the

control unit to
four channels

Record Overflow
File Scan

Multiple track
operations

Multiple requesting

Rotational Position
Sensing

Error correction
data presented
by control unit

Surface defect
skipping

Two to eight in one
drive increments

One to four

(maximum of eight strings
for 1s0)

Removable interchangeable
data module (sealed
cartridge)

Yes on data module

No

Yes via optional
string switch feature.
Only one data transfer
operation permitted
per string.

Optional

Yes using the optional
Two-Channel Switch

and Two-Channel Switch
Additional features
(3830 Model 2 only)
Standard

Not available

Standard

Standard

Optional (on 3340
drives)

Yes

Yes

A Guide to the IBM System/370 Model 158

One to eight in one-
drive increments.

(A ninth can be
included as a spare
only.)

One maximum

Removable
interchangeable disk
pack

No

Yes

Yes via 2844

Auxiliary Storage
control. Two con-
current data

transfer operations
per facility permitted.
Optional

Yes using the optional
Two-Channel Switch

and 2844 Auxiliary
Storage Control
Standard

Standard

Standard

Not available

Not available

No

No

131

Table 50.15.3 (continued)

Feature

3340 attached to
3830 Model 2 or

2314 (A-Series)

IsC

Writable storage
in control unit
loaded from a disk
cartridge

Statistics logging

by the control unit

in its storage

Inline diagnostics

executed under OLTEP
or via the CE panel

Yes

Yes

Yes

No

No

Yes

Table 50.15.4. Summary of the features of 3830 Storage Control Models 1
and 2 and Integrated Storage Controls

Characteristic

3830 Model 1

3830 Model 2

IsC

Type of unit

Power source

Attaches to

Devices attaching
to it

Number of drives
in a string

Standard number of
strings attachable

32 Drive Expansion
feature for

attachment of two
additional strings

132

Standalone

Contains own
for itself and
all the drives
that can be
attached to it

Block multi-
plexer channel

3330 Models 1
and 2

1 to 8

One maximum-

Not available

Standalone

Contains own
for itself
only

Block malti~
plexer channel

3333 Models 1

and 11 (optionally
with 3330 Model

1, 2, and 11

units attached)
3340 Model A2
(optionally with
3340 Model Bl and
B2 units attached)

2 to 8 for a
3330-series or
3340 string

Two maximum

Optional for a
maximum of
four strings

Contained in
Model 158 CPU

Power control
shared with
Model 158 CPU

Block multi-
plexer channel

Same as 3830
Model 2

Same as 3830
Model 2

TwOo maximum
per logical
control

Optional for a
maximum of four
strings per
logical control

A Guide to the IBM System/370 Model 158

P

Table 15.15.4 (continued)

Characteristic 3830 Model 1 3830 Model 2 IscC

3333/3340 Intermix Not available Optional Optional
feature for

attachment of

3330-series and

3340 strings

Two-Channel Switch Optional Optional Optional
Two-Channel Switch Optional Optional Not available

Additional (for
four channel
switching)

String switching
capability

Multiple
requesting

Rotational
position sensing

Multiple track
operations

Record overflow

Command retry

Not available

Standard

Standard

Standard

Standard

Standard

Yes for 3330-
series strings

via optional

3333 string Switch
feature.

Yes for 3340
strings via
optional String
Switch Feature.

Standard

Standard on
control unit
(standard on 3330-
series drives,
optional on 3340
drives)

Standard

Standard

Standard for
3330-series

strings. Not
available for
3340 strings.

Same as
3830 Model 2

Standard

Same as 3830
Model 2

Standard

Standard

Same as 3830
Model 2

Surface defect Not implemented Implemented Same as 3830
skipping for 3340 strings. Model 2
Not implemented
for 3330-series
strings.
Inline diagnostic Standard Standard Standard
tests
Error logging Standard Standard Standard
by control unit
A Guide to the IBM System/370 Model 158 133

SECTION 65: DIFFERENCES BETWEEN THE MODEL 3 AND THE MODEL 1

Model 3 of the Model 158 differs from the Model 1 in its faster
internal performance, enhanced operational flexibility, and improved
tightly coupled multiprocessing configurability. The latter two
capabilities improve the availability of Model 3 Model 158
configurations. The serviceability of the Model 3 is improved by
enhancements to the remote support facility.

A Model 1 system (3158-1 Processing Unit) can be field converted to a
Model 3 system (3158-3 Processing Unit). A program can determine which
model of the Model 158 it is executing in by issuing the STORE CPU ID
instruction and inspecting byte 0 of the stored doubleword. Both models
have the same standard features except for the amount of buffer storage
provided. The same optional features are available for and the same I/0
devices attach to both Model 158 models.

PERFORMANCE FACILITIES

The internal performance of the Model 3 Model 158 CPU is generally in
the range of 5 to 11 percent faster than that of the Model 1 CPU when
the same hardware configurations, programming systems, and programs are
used. The faster internal performance of the Model 3 is the result of
the following differences between the Model 3 and the Model 1:

* 16K instead of 8K of high-speed monolithic buffer storage is
standard in the Model 3. The 16K buffer organization and assignment
algorithm result in a higher buffer hit ratio than is achieved for
the Model 1. The new organization and algorithm are discussed
below. A denser technology is used to implement the high-speed
buffer in the Model 3 so that the 16K buffer in the Model 3 requires
less space than the 8K buffer in the Model 1.

¢ The instruction execution time of each of the following instructions
is faster in a Model 3 than in a Model 1: OR (RR and RX formats),
EXCLUSIVE OR (RR and RX formats), AND (RR and RX formats), MOVE
CHARACTER (MVC), EXECUTE (EX), STORE THEN OR SYSTEM MASK (sTosSM) ,
STORE THEN AND SYSTEM MASK (STNSM), LOAD REAL ADDRESS (LRA) , COMPARE
and SWAP (CS), and SET PSW KEY FROM ADDRESS (SPKA).

¢ The instruction fetch buffer in the Model 3 is 128 words in size
instead of 64 words as in the Model 1. This buffer can reduce the
number of accesses to buffer and/or real storage required during
instruction fetching.

* The read cycle time of processor storage for successive reads of 16
bytes is 920 nanoseconds in the Model 3, instead of 1035
nanoseconds, as in the Model 1. Other cycle and access times are
the same in the two models.

High-Speed Buffer

Buffer fetch times and the way in which the high-speed buffer is used
are the same in the Model 3 as in the Model 1 (as described in Section
20:15 under "High-Speed Buffer Storage"). In addition, as shown in
Figure 65.1, processor storage in the Model 3 (as in the Model 1) is
divided in 4K-byte rows, the number of which depends on the size of
processor storage. In the Model 3, however, a row is divided into 128
32-byte blocks instead of 256 16-byte halfblocks (as in the Model 1) for
assignment purposes.

134 A Guide to the IBM System/370 Model 158

\ ./”v

\ S

PROCESSOR STORAGE

Block O Block 127
—) A ~
v L O T
Row 0| Halfblock : Halfblock[) JHalfblock : Halfblock |4K
16K BUFFER STORAGE ot
Row 1 4K
Compartment) —_
T T
Halfblock :Halfblock Halfblock 1 Halfblock
1
1 Block 0 Block 1 4K
128 blocks
2 128 blocks ; 4K
A ~
,~ -F
3 128 blocks iu(
4 128 blocks g 4K
J)
< ¢
4K
) A
T Ly T
Row n|Halfblock ! Halfblockl lHaIbeock | Halfblock {4K
'l b 2 1
Halfblock = 16 bytes
Block = 32 bytes
Row = 128 blocks, 4K
INDEX ARRAY
Algorithm
bits
4] C1 entry [C2 entry l C3 entry I C4 entry 6 bits
Buffer index entry
128 j . A A
Block -~ Processor storage row address ? -~
address Four valid bits [
locations One OK bit
C1 entry l C2 entry l C3 entry C4 entry 6 bits

Figure 65.1.

\ 127

A Guide to the IBM System/370 Model 158

High-speed buffer organization in the Model 3

135

The 16K buffer in the Model 3 is divided into four 4K compartments,
just as the 8K buffer in the Model 1 is divided. in two UK compartments.
However, as shown in Figure 65.1, in the Model 3 buffer, a compartment
is divided into 128 32-byte blocks, as is processor storage, instead of
256 16-byte halfblocks like a compartment in the Model 1 buffer. This
is done because in the Model 3, buffer storage is assigned on a block
basis and loaded a halfblock at a time (just as is true for the Model
155 buffer assignment algorithm). Buffer storage is assigned and loaded
on a halfblock basis in the Model 1.

The index array for the Model 3 buffer is also shown in Figure 65.1.
It contains 128 block address locations. Each block address location
contains four buffer index entries, one to describe the contents of the
corresponding block in each of the four buffer compartments. Each
buffer index entry contains a processor storage row address, four valid
bits, and an OK bit. When a halfblock of data from processor storage is
placed in the buffer, its processor storage row address (bits 8 to 19 of
its processor storage address) are placed in the appropriate buffer
index entry within the corresponding block address location in the index
array and the valid bit is turned on.

Also associated with each of the 128 block address entries in the
Model 3 buffer index array are six algorithm bits. These bits are used
to determine which of the four buffer compartments a halfblock is
assigned when it is loaded into the buffer. (An LRU bit for each two
halfblock buffer index entries is used for assignment purposes in the
Model 1 buffer index array.) If all four of the buffer locations that
the halfblock can be assigned contain valid data, the buffer location
referenced longest ago (as indicated by the algorithm bits) is assigned.

OTHER DIFFERENCES

Other differences between the Model 3 and the Model 1 are the
following:

* Online diagnostic testing and repair of most mechanical functions of
the 3213 printer are provided for the Model 3. 1In a Model 1
configuration, the entire Model 158 system must be dedicated to the

- customer engineer during maintenance operations on the 3213.

¢ The data path between the CPU and the display console is wider in
the Model 3 than in the Model 1 to provide faster internal
performance for the display console.

¢ The amount of control storage provided in the service processor unit
is increased by 50 percent and microprograms that are designed to
optimize the internal performance of the display console, instead of
reduce control storage requirements, are used in the service
processor.

¢ A teleprocessing overrun situation that can occur in the Model 1 is
eliminated in the Model 3. This is accomplished by not recording
the second machine logout on the N-disk when two machine checks
occur in a short period of time.

* More shared and nonshared subchannels are available for byte and
block multiplexer channels and a shared subchannel can be shared by
up to 32, instead of a maximum of 16, devices as discussed below.

* The remote support facility in the Model 3 provides the capability
of transmitting logout data to the RETAIN/370 system concurrent with
normal system operation and provides improved local to remote
customer engineer communication.

136 A Guide to the IBM System/370 Model 158

|-

Byte and Block Multiplexer Subchannels

The way in which subchannel sharing for byte multiplexer channels is
established in a Model 3 provides more flexibility in determining the
number of shared and nonshared subchannels than does the technique used
in the Model 1. 1In addition, it enables up to 32 devices attached to
the same control unit to share a single subchannel.

The Model 3 contains a plugcard for byte multiplexer channel 0 and
another for byte multiplexer channel 4 if it is present. A plugcard has
one position for each of the eight control unit positions on its
associated byte multiplexer channel. Each control unit position on a
plugcard can be independently wired to permit or inhibit subchannel
sharing. A control unit position wired for sharing is also wired to
permit up to 16 or 32 devices to share the same subchannel.

When a control unit position on a byte multiplexer channel is wired
to allow subchannel sharing for up to 16 I/0 devices, a contiguous set
of 16 device addresses in the range of X0 to XF (where X can be 0 to F) .
is associated with the shared subchannel for the control unit position.
When subchannel sharing for up to 32 I/0 devices is specified for a
control unit position, the control unit address must be even-numbered
and the next higher odd-numbered control unit address cannot be used. A
block of 32 contiguous I/O device addresses in the range of X0 to XF and
(X+1)0 to (X+1)F (where X can be 0, 2, 4, 6, 8, A, C, or E) is
associated with the shared subchannel for the control unit position.

When subchannel sharing for up to 32 devices is specified for a
control unit position on a byte multiplexer channel, the following
device addresses are mutually exclusive for the channel:

00 to OF and 10
20 to 2F and 30
40 to 4F and 50
60 to 6F and 70
80 to 8F and 90
A0 to AF and BO
C0 to CF and DO
E0 to EF and F0

When subchannel sharing is specified for one or more control unit
positions on a byte multiplexer channel, the number of nonshared
subchannels available is 256 less 16 or 32 for each control unit
position wired for subchannel sharing. If no control unit position on a
byte multiplexer channel is wired for subchannel sharing, the channel
has 256 nonshared subchannels for device addresses 00 to FF and each
device is assigned a unique subchannel.

As in a Model 1, a pool of nonshared subchannels is available in a
Model 3 that is to be used by all installed block multiplexer channels.
Shared subchannels can be assigned. from this pool. In a Model 3, up to
40 shared subchannels can be assigned when the second byte multiplexer
channel is not installed. When the second byte multiplexer is
installed, up to 32 shared subchannels can be assigned. This permits
each block multiplexer channel to have up to eight shared subchannels
assigned. Each shared subchannel that is utilized reduces the total
number of nonshared subchannels available for the block multiplexer
channels by one.

Shared subchannels for block multiplexer channels in the Model 3 are
preassigned a set of addresses by the customer engineer as they are in
the Model 1. However, when making assignments for the Model 3, the
customer engineer also specifies whether each shared subchannel is to be
associated with 16 or 32 device addresses and whether it is to operate
in selector or block multiplexer mode. A shared subchannel can have 16

A Guide to the IBM System/370 Model 158 137

contiguous addresses in the range of X0 to XF associated with it or 32
contiguous addresses in the range of X0 to XF and (X+1)0 to (X+1)F.

The number of nonshared subchannels available for the block
multiplexer channels in the Model 3 is 736 minus the number of shared
subchannels assigned when the second byte multiplexer channel is not
installed and 480 minus the number of shared subchannels assigned when
the second byte mutliplexer is installed. If no shared subchannels are
assigned, 736 or 480 nonshared subchannels are available for the
installed block multiplexer channels. The assignment of nonshared
subchannels (UCW's) to block multiplexer channels is done dynamically
during system operation in the same way for a Model 3 as for a Model 1
(and a Model 155) except in the case when all nonshared subchannels have
been assigned and no more UCW's are available in the pool, as follows.

In addition to the 480 or 736 nonshared UCW's in the Model 3, there
is one floating UCW for each installed block maltiplexer channel. When
the first START I/0 instruction is issued to a device without a UCW
assigned, the floating UCW for the addressed channel is assigned to the
device for the duration of the I/0 operation if no nonshared UCW is
available. This enables the device to operate in block mualtiplexer mode
(instead of selector mode as occurs in a Model 1 in this situation). At
the completion of the I/0 operation, the floating UCW becomes available
for reassignment. If a START I/0 instruction is issued to another
device that has no UCW assigned while the floating UCW for the addressed
channel is in use, a channel busy condition code is returned and the I/O
operation must wait until the floating UCW for the channel or another
UCW from the pool becomes available.

Remote Subpbrt¢rqgi;ity

The remote program and remote console modes supported by RSF for the
Model 1 are also supported in the Model 3. 1In addition, a copylog only
mode is supported by RSF for the Model 3. The remote program mode and
the remote control submode of remote console mode provide the same
functions in both models. The remote monitor submode of the remote
console mode is not supported in the Model 3. The copylog only mode
provides a new capability that can be utilized for hardware failures
that do not prevent the system from continued operation.

In a Model 3, the teleprocessing link is established in the same way
it is accomplished for the Model 1 except that the link is automatically
initiated when the remote console or copylog only code is loaded in the
service processor. Once the copylog only code is selected, the local
customer engineer or operator can return to the program frame and
continue customer processing. The selection of the copylog only code
causes the RETAIN/370 system to request the transmittal of the logout
records contained on the N-disk. The establishment of a link to
RETAIN/370 and the transmittal of logout records are performed
concurrent with normal system operation.

After the logout records have been sent, the teleprocessing link is
disconnected and the transmitted logout records are processed by the
logout analysis program. The results are stored in the RETAIN/370
system for analysis by a remote customer engineer specialist.

When a hardware failure that the local customer engineer cannot
locate prevents a Model 3 system from operating, the local customer
engineer can establish the remote console mode of RSF and dedicate the
Model 158 system to the remote specialist, as for a Model 1 system.

In a Model 3, the local customer engineer is not limited to using

only the teleprocessing link frame for communication with a remote
customer engineer during RSF operation. Line 25 of any frame can be

138 A Guide to the IBM System/370 Model 158

utilized for communication. The local customer engineer initiates
communication by selecting any data on the currently displayed frame
using the light pen. This causes the keyboard to be unlocked so that
the message (up to 80 characters) can be entered. Once the enter key is
pressed, the remote customer engineer is notified of the message and the
local display keyboard is again locked. The remcte customer engineer
can then request transmission of the message.

MULTIPROCESSING

A tightly-coupled Model 158 multiprocessing configuration can include
Model 3 systems. A multiprocessing configuration can consist of two
Model 3 systems, two Model 1 systems, or one Model 3 and one Model 1
system. When a multiprocessing configuration consists of two Model 3
systems and each system has 1, 2, 3, or 4 megabytes of processor
storage, both systems need not have the identical amount of processor
storage installed. Such asymmetric processor storage configurations are
not permitted when a multiprocessing configuration consists of two Model
systems, a Model 3/Model 1 combination, or two Model 3 systems with 512K
or 1536K of processor storage.

The use of two Model 3 systems in a multiprocessing configuration
also provides an availability advantage over the use of two Model 1
systems or a Model 3/Model 1 combination. When two Model 3 systems are
used, the CPU, channels, and console of a system can be powered down
independently from its processor storage. This is called the alternate
CPU power down capability. It permits the operator to vary offline the
CPU, channels, and console of one system and power them down (for
certain maintenance purposes, for example) while leaving processor
storage of this system available for use by the CPU in the other system.
The powered down CPU, channels, and console can then be powered up again
and varied online. System operations can continue without a re-IPL. 1In
a multiprocessing configuration in which two Model 3 systems are not
used, the powering down of the CPU in a system requires the powering
down of its processor storage as well.

PROGRAMMING SYSTEMS SUPPORT

Both models are supported by the same IBM-supplied programming
systems, that is, DOS Versions 3 and 4 (hard stop mode only), DOS/VS, OS
MFT and MVT Releases 21.6, 21.7, and 21.8, 0S/VS1l, OS/VS2 Releases 1 and
up, and VM/370. The model-dependent fixed storage locations are the
same in the Model 3 as in the Model 1 (see Figure 20.10.3) except for a
few differences in the CPU extended logout area. The EREP program in OS
MFT and MVT Releases 21.7 and 21.8, in 0S/VSl Releases 1 and up, in
0S/VS2 Releases 1 and up, and in VM/370 Release 2 will be modified to
process the model-dependent logout area data for the Model 3 that
differs from that of the Model 1. Although the EREP programs in DOS
Versions 3 and 4, DOS/VS, and OS MFT and MVT Release 21.6 will not be
modified, they can still be used on a Model 158 Model 3.

A Guide to the IBM System/370 Model 158 139

Page of GC20-1754-2
Revised February 20, 1976
By TNL GN20-3580

SECTION 70: COMPARISON TABLES

These tables have keen included for quick reference. The first
compares hardware features of System/360 Models 50 and 65 and System/370
Models 145, 155, 155 II, and 158 (Models 1 and 3). The second compares
DOS Version # and DOS/VS support of the Model 158 (Models 1 and 3)
hardware, while the third compares 0S MFT and MVT, VSl, VS2 Release 1.7,
and VS2 Release 3 support of the Model 158,

140 A Guide to the IBM System/370 Model 158

pxepue3s

*abieyo-ou
ST aanjeaj
ay3 3deoxs TII GGT

paepueis

(L3 r1TqT3RdWOD

hiOL/70LOL
Y3ITM SATSNTOXD
A1Ten3anu j0u)

paepue3ls paepueis
(X431TTqT3IRdWOD
©hLOL/OLOL (uot3do

Y3TM BATSNID
-x3 A{ren3nun

jutod-butieors
uT papnTouT)

ToPOW Se aures Teuotido Teuot3do Teuot3ydo
pIepue3s piepuels pIepuels ~TeuoT3do
paepuels paepueis paepue3g paIepuejg
pxepue3s paepueig paIepueijg pIepue3s

pajusu
pIepueas paepueis -a1dwt 308 paepueis
pIepue3sg paepuels paepueis paIepue3g
(¢ pue T mawvozv II GST TSPOW SGT T3POW ShT TOpOW
8GT TOPONW 0LEsud3shg oLE/wa3s&s 0LEswe3sAS
0LE/wdISAS

8GT ANY “II GGT

‘SST ‘ShHT STAAOW OLE/WILSAS ANV G9 GNY 0G STA0OW 09¢/WALSAS §Od SAUNIVII TUVMAEUH 30

aTqeTTeae 30N

a1qeTTeA® 30N

plepuelg

piepue3g

piepueys

pojuauatdut 30N

0G T9POW se aweg

C9 T9DOW
09¢ /wo3sks

art

TANNVHO JHOLS
ISVIATIY LSYJ

O/I I¥¥LIS

TYWIDAA ANNOY

aN¥ LJIHS
MO0 LIS
ONOT TAOW

TIYO YOLINOW
TOYINOD avoT

ASVW

YHANN SYdLOV

-4¥HO LYISNI
IOIAIA LTVH

ONOT TVYOIOOT

afqefTeAR JON

sTqerTea® 30N

paepuels

paepueis

pIepuels

pajusue Tdut 30N

apou
od 03 atrqexedwo)

TIYANOD
MSVYIW HAANA
SYI LOVEVYHD
IYOIO0T
dYYdWOD e
suoTy
-ONIJISUT M3N °G

autod
-butjeot1z
uotstoaiad
pPapualxyg 4

oTIPWY3TIE
jutod
-but3eord -¢

oT3auMy3 TIR
Tewtdaq -z

(0T32uy3TIe
Kzeurq)
39S paepue3s °T
39S uoTIONIISUT °D

uotriyexado
wajysis

3O spouw DI °d

uot3zerado
wajsks

Jo spow DY °V

ndo °I

0S T9POW
09€/W33sAS

aIN3eI3J S3IeMpIPH

(£_GNY T STadow)

dTIVL NOSIYVIWOD

G0:0L

141

A Guide to the IBM System/370 Model 158

suoT3eaado
TewTosp 03 33I9A
-uod pue Lieurq
03 3IISAUOD e
suotjexado
I330eIRYD
BA0U UTRIIBD e
s3ITys
I193STbaI TIV o
suot3jexado
Ardratnuw [TV o
$IT GST 20 GST TSPOW
® uUo ueyy (g pue [
STOPOW) 8ST TISPOW
® uUo I33sejy aae
suotTjezado burt
-MOTTO3F 3yl :330N

(abxeyo-ou
pue) Teuotido
axe yoTUM
SSTYAAY Woud
AdM Msd LIS
pue ‘xay Msd
LYISNI “duMs
dNY IT1dN0oa
JAVAWOD *d¥Ms
ANY JUYdWOD

‘0/1 W¥ATO

z03 3daoxa

paepuels paepuels aTqeyteae 3JON piepuelis

(€ pue T ST3DOW) ‘II GGT 19POW GST T9POW Sh1 T9POW
8ST TSpPOoW 0LE/waYSAS 0LEsud3sks 0LE/u33sis

0LE/wa3sSkg

MSYW WILSAS

¥0 NAHL FHOLS

ASYW WILSXS

dNV NEHI F9OIS

JAWIL NdD THOLS

JOLYUVAWOD

MO0TO ANOLS

SSAYAAY WOdd

Ad¥ Msd L3S

WAWIL ndD 1dS

JOLYIYdWOD

MO0 IS

ITd FONT

-¥AJIIY TASTA

a1l Found

ssa¥aay

TVAY AvoT

XAy

MSd INISNI

dYMS

ANy 371dn0d

FUYAWOD

d¥Ms aN¥
FUYAWOD
aTqeTTeA® 30N sfqerTeae 30N o/I ¥VATD
daI ndo FYOIS
TOMINOD THOIS
AD0TO FHOIS

MSYRW

YIANN SHALOV

-4V¥HO OIS
G9 T9POW 0G T9POW
09¢ 7wa3sisg 09¢7wa3sis

2INn3edqd 3IeMpIeH

A Guide to the IBM System/370 Model 158

142

piepueig

pIepue3s

(UOT3INTOSaI Su
€€°€) paepuels

paepueis

piepueigs

SST
12POW Se awes

€ T9POW 2Yy3 ut
Ia3jnq paom-gz1
e pue T TSpoWw
Y3z uT I3Fynqg
paoM-49 e jo
asn eta paaoad
-wT ST butyoilaz
-2xd uotTzonijsurl

*T T3POW 8ST TOPOW
8Yyz ur ueyl

I93SeF I3INOIXI
SuUoOT3IONIJ3SUT

I3Y30 pue

‘sex103s ‘saaoum
suotjexado Teotrbot
utTe3I’d ‘g1 TIPOW
9yl 3o ¢ TSPOW ur

piepueis aTqeTTese 30N

pIepue3s paepue3s

(UOT3INTOSdI S UOTINTOSIX Sul
€E€°€) paepuels ¢g "g) paepuelg

paepuels aTqeTTeae 3JON
paepue3ls aTqerTeae 30N
MOT3 TOTT®

-xed a3&q-4y

GST sSpuooas

I9POW se swes -oueu GIT
~butyo3lazg

-21d puexado
ou ‘papodap
uoT3onNIISUT
payozazaad aup
(*INO00 30U Op
suotidnizajut
asTtoaadwmy)
*paptaoad

axe siaying
GGT pIom-suo 3¥vsxYL

19POW Se aues sax

(€ pue I STSDONW)
8ST TopPOW
oLgswd3sks

SST TSPONW
oLgswa3sis

II GST TSPOW
0LE/ua3shs

piepuels

paepuels

(uoT3InTosSax sw
€€°€) pIepueig

paepue3s

pIepue3s

MOT3 e3ep
TaTTeaed 234q-4
* spuodasouru
STE O3 §°Z0T
WOIF STqeTIeA

ON

SHT T9POW

0LE/ud3shs

aTqeTTeae 30N
aTqerTeAR 30N

(uoT3NTOSax
sw 9°9T) paepuels

aTqerTeAR 30N

aTqeTTeAR 30N

MOT3
121TReIRd 934q-8
’ spuodasouru 00z

~“SUOT3eTOTA UOT309301d

abeixoys 103 LAtuo

Inodo suoTidnizajut

asToaadwy -awr3 e
e UOTIONIISUT SUo
sazedaad A1treuxou

3TUN UOT3ONIISUT

S9 T9POW
09¢/wa3sis

zo3exedwod
201D

aTqeTTeAae 30N pue I3wtl ndd °rC
30010
aTqeIteae 30N Aep jo auwti I
(UOTINTOSaX Suw)
9°9T) piepuels INTY} TeaIajzul °H
butssaappe
e3}ep 309ITPUT
aTqeITeae 30N T2UuUeyd O
uoTjeTsueIl
ssaaIppe
afqerTea® 30N otureukqg °g
MOT3F
Tattexed o3&kq-4y
‘spuodasouru 006 DBWII ITI4D AdD °d
yo3az
UOT3IONIISUT
ON paxajzjng °a
0G T9POW 3Injead aIempieH
09€ /wd3sis

143

A Guide to the IBM System/370 Model 158

"pabboT st ejep
3IOW *"GGT
T2POW Se aweg

S9X

(SD¥)

abezo3s Toi1juUO0D
afqepeoIax ut
wexboadoaoTw

3utod but
-3e0T3 uoTstoaad
PopU23IX3 Y3TM
aATsnyoxa Ayye
-n3nu 30U ST
L3111 T3RdWOD
WLOoL/0LOL

pue sbaeyo-ou
a1e saanjeay
3daoxa GG
19pPOW se aureg

~arqexseu
A1tenpTarput
axe Auew pue
Joayo autyoew
Jo sadiy
u9AdS aIe
9I9YL °SIOIIAD
pa3oaxzooun
pue pa3ldaIIODd
I3933e sSINDO0

-pabbot
o1e SpPIaT3I Te
-UuoT3ITPPY “GST
T9POW se sues

SoX S9X

SST S0Y¥ ut
T9POW Se aues wexboxdoxo T

(3utod bHut
-3e0T3J UOTISTID

-aad pap

~-ud3IXe Y3jtm

IATSNTOXD

K1 1en3nun

“3urod AT1IqT

butjzeoyy -3edwo)
uoTsTOoaad 4L0L/0LOL "€

pPapus3Ixs YiTm AT1Iq9T

2ATSNTOXd %HHM lPGQEOO
-n3jnu 30U ST S0a/s0 °¢

£3TT T T3edWoD L3t1

1L0L/70L0L -TTqT3edwod

adaoxe gG1 0TOL/0THT

T9POW Sse awes “09,/0h/106T °T

pajuawa Tdut
paepue3s paepuels JON
TeuoT3do TeuoT3ido Teuot3ido
pIepue3s pIepuels aTgeyTeae 30N
paepue3g piepue3s pIepuels
(€ Pue T STOPOW) IT GST T9POW GST TSPONW
8ST TOPOW 0LE7wa3sis oLE/wo3sks

OLE /w3 s&g

“oTgeysen
A11enpTaTpuUT ST
yoes pue Y23Yyd
auTyoeu jo
sad&3 aaAT3 aae
9219yl °SI0IId
pa3daxxodoun
pue p2303I110d
193 3Je sSIANdO0

saX

An9 O3 MNZE 3JO
abexols T1OI3
-uco 3Tqepeoiax
ut wexboxdoxoTW

(pIiepueis)
S0a/so €

0T0L/0THT
‘09/04/T00T °Z

09hT
Z008T/7TONT °T

piepuels
Teuot3ydo
paepue3g
pIepue3g

“GhHT I9DOW
0LEswasis

0G T9POW Se aures

ON

S04 uT wexbo1doIdTW

IIh60L/h60L/7060L
/aN0L/7000L/60L "€

(080L pue GOL
Yy3oq I03) 080L T
hLOL/0LOL "1

pajuswaTdwT 30N
Teuotado
a{qerTeA® 30N
STqeTTea®e 30N

T G69 19POW
09¢ /wa3sis

ruotrzdnizajzut

STY3 STOIIUOD 3ITQ
)sew 3aup “sSIOIID

Tauueyd UTelaad

pue abexols utew

‘Ndd> Uo sSand20

ON

SOy
ut wexboxdoxdoTW

(s@an3eay
BATSNTOXd
(K11Tenanun
_hLoLsoLoL "¢
0TOL/0THT T

pajuswa Tdwt 30N

Teuotado

aTqeTTeae 30N

sTgeTTeA®R 230N

uot3dnizajut
}OaYDd SUTYIEW

axempxey
Kq Kx3ex
uoT3IONIISUT

o1boT TOI3UOD

Po3eOTPUT SSTM
-I3Yy30 ssatun
Teuotrido axe
TIT®) saanjeay
A3 TrTqTIRdUuo)d

uoT3IONIISUT
WSS 303
uotydnazalzuy
10I3U0D 3DIITA

butpaooax
juaaa ureiboxg

sxnjeay
buTIO3 TUOW

-0

el

°N

W

-1

M

~ 0G 1o9PoW
09¢/wa3shg

2In3e’dd 3IeMpIeH

A Guide to the IBM System/370 Model 158

1luy

Revised February 20, 1976

Page of GC20-1754-2
By TNL GN20-3580

Elepueas

(3b TeyS-OU)
Teuotado

Teuotido

‘uoT3embr 3y
-uod dJsy¥ ue ut
I0:s8001d utew

I0 j1oddns e aq
ued 86T TOPOW ¥ *¢
*Uo T3 e1n BT Juod

butssscoad Ty
patdnoo &rssooT
® UT 8GT TOPOW
243 s3xoddns ¢
95e3Tady ZSA/SO
Jo (¢ waisdsqus

GST
I9POW se aueg

aIqeTTeAR JON

aTgerTeae 30N

Teuotido st

ITUN STsk1euy
ajoway

G66Z - ON

sTqeITeae 30§

STqerTeAR 30N

3TgRT Teae 30N

(3bxeyo-ou)

Teuotado

aTgqeITeae joN

£13u3 gop) €sAr 7
uoTIeINS T3
-uod buTtssaooad
-T3Tu sbeixoys
paaxeys patdnoo *uo Tyeanbryuood "suorjembrIuco
AT3ubTy e ur (¢ dsvy ue ut butssaooxd
pue [<ISpoW Jo Ioss aooxd -T3Tnu patdnco
UOT 3PUTqUOD utew e xo L19soot
Kue) suxnsis 3z0ddns e UT papnIout
85T TOPOW 8q ued GGT °q ued G4t
OM]} PIUUOD 03 T9POW ¥ °Z T9POW ayg -Z
P3N ST 3TUn 3 TqeITeRAR *aTqeT Teae
UOTILD TUTHIO) 30U ST a3 30U ST a3y
wa3shs T3 T GST -e23 wajsds -9 wd3sks
8S0€ SUL T T9POW se suweg -T3ITO ¥ g LRI s
paaou
ST s93iq zL9
3O eaxe 3no paaow ST eare
-bo1 papusixe 3oboT pap
843 3T Z1§ -us3xe 3T ZIS
S61 SST 03 9[qIonpax 03 aTqIonpax
T3DPOW se awes ToapoW se sweg s934q #8711 $33&q hoL
(€ Pue T STSPOKW) IT SST ToPOW SST T9POW SHT TOPOW
8ST T3POW oLg/masis 0Le/uayshg 0LE/we3SAS
oLg/washs

sTqeTTeA® 30N

aTqeI Teae 304

aTqeTTese 0N

*193depy Tauueyd
-03~-TaUuRyYD ©
eTA pPa3zOd3UUOD 3Ie
suw3sds 931y3y 10
OMI °“G9 TSPOKW ®
?q ued uUOT3IRIN
-bT3U0D dSVY ue ur
z0ss3001d uTeWw
10 3x0ddns a8yl °*Z
*paxtnbax
ST TOI3uUod
IBITJ * (3a0W
I0 ¥ZIS) peaeys
ST abexo3zs
UTeW *s59 TopPOonW
OM3} JO UOT3IO3UUCO
~I33UT s3Twaad
ainjeaz teuoTxdo
wa3sSASTITMNW T

*s3nobot
Touueyd pue ndDd
butpniout sa3iq gze

S9 T19POW
09¢ /uR 3sis

sTqeTreae 30N

3Tun xossanoad
90TAIS3S M

3ISTSSY

STARTTRAR JON SUTYDPW TRNIITA -A

aTgeTTeAR 3JON

“0S T9POW ® °q
ued uorjeanbry
-uod2 Jdsv ue urt
xo0ssadoxd uTew
Io 3zoddms ayL °gz
*a1qeyTeae jou
ST sanjeay
wo3ysdsT3Tnw ¥ °[

s934q z6Z

butuiem zamog

5

suansis
10ss300adI3TINH L

(SI0X13
1auueyo pue
suTyseWw IOJF
eaxe 3nobot

Butpntour)
abexols z8MOT
UT 9ZTSs eaae
obeio3ls paxtgy °s

0S5 T9POW
09¢/wa3sis

3INjeaJ oIeMpieH

145

A Guide to the IBM System/370 Model 158

Shl
T9pPOW Se duwes

SST
19POW Se suwes
cosTe sSIdIITP

€ pue T ST9POW UT
JuswubTsse I1233Ing
"GGT pue II GSGT
STOPOW WOIJ 3UaIag
~3Tp AT3YybrTs ST
quawubTsse I133Ing
¢ TSPOA 243 ut
pIrepue3s ST Ia3Ing
M9T T T9PORW

3yl uTl pIepueas

ST I233Inq A8

“su 0Z6

--23Tam (sa34q
91-1) Teriied °su
069 --AIepunoq pIoM

Shi
TS9POW Se awes

GST
T9pOW se awesg

"8GT Pu® GGT
STS9POW WOIXJ
JUSI8IFIP
AT3ybt1s

sT juawubTs
-se 133Ing
"piepue3s

ST 1333Nnq N8

ShT
T9POW Se aweg

s934q 8
I0J Su Ghe
sa3&q
103 su Q€C

pIepueis
ST 1333Inq N8

*a1EMpPIRY
Kgq pa3osaiod
21e SI0IId 3ITQ
-2 Tbutrg -paom
-3Tqnop e uo
butsoayo 50F

ON

-s33kq
uoT3DONIZSUT

8 I03 yo"3iag
SpPUODISOURU ()G
-sa3&kq

eaep § 103
9103S SpPuUODIS

—aTgnop uo s83xkq sa93kq 9T JO -OUBU G*109

g8 JO 93Tam 33 Tam/peax *sa3iq ejep

“Su GEOT SGT 103 Spuodas t 103 yo3aj

--s93hq 97 peay T9POW Se aueg -OURU (L0 SPUODISOURU (4G

AbotTouyoaz AboTouyoaiy

DTY3I T TOUOW S210D0 93TIIdd S9I0D 93Taadd OIYITTOUONW

A8hOT

A9EST

A8h0C A8h0Z AhZOoT

A960h A9EST M9EGT A89L

ATLOE AhZO0T AHZOT ATTS

q8102Z q89L M89L An8E

M9EGT ATTS ACTIS M96¢

AnZoT Ah8E A BE A802

ATTS A96C A9G6Z A091T

(€ pue T STSPOW) II SST T9POW SGT To9POW ShT TSPOW

8G1 T2POW 0LE/udISAS oLE/wR3sAS oLg/warsis
0LE/wR3YSAS

0G TOPOW se 3ueg

ON

-paptaoad

ST sTauueyd

ay3z &g ueyz IdY3z0
S3ssao0e TeI)
~uanbas jo butaeaT
~I33UT KAem-om],
*(s934q g 103)
SPUODISOURU G/

S3I00 I23TII34

AnZOoT
A89L
ATTS
A96¢2

T G9 TepOoW
09¢€ rwa3sis

-paptaoxd
ST UOTIDDITOD
I0112 dIeM

-paey oN °*934Aq Aq
putyoayos A3taed

ON

so3kq f 103
SpUoODaSOIOTW 7

S9I00 33 TIIdJ

butyoayo K3t
-pTTea abeixois
I0ss@001d I

Ia3yng woxg
Uo323 ndd T

abeio3ys x93Inq
paads-ubTH °a

9194Ao abeioas
10SS9001d *D

oberols 10ss90
-oxd jJo ad&y -g

ACTS
Ah8E
A96¢
M8ZT s9z1s abexoas
Mp9 (uTeu) IOSSaD0IAd VW
IOYI0LS °IX
0G T19POW 8In3yead axempieq
09€/w93sAs

A Guide to the IBM System/370 Model 158

lue

pa1ITe3IsSul IZTS
abeio3s a0ssadoxd
KAue pue paTre3lSUT
€ Tauueys

Y3t § Tauueyd

se Teuotado

*sTauueyoqns paieys
Z¢ I0 9T 03
paaTm uotitsod
3TUN TOIJUOD Yoe?d
I03 ZE€ X0 91 SSIOT
paieysuou 967
‘payTeasut butaeys
T2UURYOqnS

Yyt “paaeys

ou pue paieysuou
967 ‘payre3lsur
putaeys Tauueys
-qns 3nOYITM

€ TSPOW 3Yy3z I0d
*azTs abeaoas
x0ssadoxd Aue

103 pa2aeys 3ybTa
pue paxeysuou

0ZT X0 paxeys ou
pue paieysuou 967
‘1 TI9POW 3¥Yy3z I0J

pIxepue3s

payoejje
°q jouued

s1qerTese 30N

SST
T9POW Sse aues

SST
19pOW Se aures

paepueas

payoejje
aq 3jouue)

sTqeTTes® 30N

patTTeas
-utT ¢ Tauueyd
pue 3aIouw

I0 ¥B9L YITM
sua3sks 103
(4 Tauueyd)
TeuoT3do

22Ts abeixoas

I0ssas0ad
uo paseq 96¢
20 ‘Z6T ‘8ZT

paepuels

payoezje
aq ajouued

aTqeTTeAR 30N

ON

~azts abeaxoas

zossaooad Aue

y3Tm palzjTwrad
ST 9GZ X0 ‘gZ1T
‘n9 ‘Z€ ‘91

pIepuels

payoe3ae
aq jouuUE)

atqerteae 30N

pIepuels pIiepuels pIepuels paepueis
paepueis pxepueis paepueias paepuejs
(€ pue T STSPOW) IT GST 19POW GGT T9POW GhT T9POW
8GT T2POoW oLE/ua3shs oLgsuR3sis oLEswasis
oLE7wa3sAs
/,b ' >

sax

Z6T
(08L7) TeUOTIdO

0S T3POW se aweg

(St
10 ‘G9 ‘0S5 TIPOW ®©
yitm abexolzs axod
19€Z saxeys wajsis
69 TapoW) teuotido

paepueis

ON

G9 1°DOW
09¢ /ua3sAs

ON

(uotado ue
ST 96Z) 8ZT-9T

pIepueig

*payoeale

aq ued sa3jliq
uwoITTIWw g o3 dn
Teuotado

(SL 30 ‘G9

‘0S TOPOW ® YaTm

abexols axod T9€Z
soxeys waisds (g
T2poW) Teuotido

arqeyTeae 30U ST
39930ad yo3ia3z
pue piepue3js sT
309930xd ax03sg

ON

zaxaTdryTom
934Aq puodas °g

sTauueyoqng °1
Tauueyo zaxatd
-T3Tnuw a3&g ¥

STANNVYHD “TIIX

abeaoas
8103 19¢Z °I

abexo3s 10s
-sodo0ad paxeys °H

uot3oa3zoxd
yo3ay
pue axo3s *o

spueaado
poljuaTIO-a3&g °J

0S T9POW
09¢/ua3sis

3aIN3esad I3IeMpIeH

147

A Guide to the IBM System/370 Model 158

Tauueyoqns
paaeys yoea
103 T ssof
paxeysuou
08 pue
pazeys zg¢
‘butaeys
T3uueys>
-qns YiTM (q
but xeys
Tauueyd
-qns ou Yitm
paIeysuou (ogf (e
:ipaTre3sut
TaxatdTyTnu a34&q
puUOD3dsS aY3 Y3TM
€ T9POW ay3x zo4
Tsuueyoqns
paxeys yoea
103 T SssaT
paileysuou
9¢L pue
pazeys oh
‘parTeasut
butaxeys
Tauueyos
-qns Yitm (q
°pat3yToads
but xeys
Tauueyo
-qns ou Y3Tm
pa1eysuou 9¢/ (e

tpaTTe3Isur 921s abexoas
xaxaTd T3 TnM, zossadoad
23&q puooas uo paseq
a9yl 3INOY3ITM paxeysuou (g4
€ T9POW aYy3 I04 X0 ‘zS€
‘paxeysuou’ 0gh “wzZ ‘091
pue paxeys 9T SST ‘96 satd
‘1 T9POW 9Y3 I0d 19POW Sse aweg paxeys 91
o3s/dW ST T 23s/dW ST 09sS/dW G°T
*3uasazd sT
TaxardraTnuw
934q puodas
3Uy3 3JT poTTE3s
-uT aq 3jouUuRd
f TauuUeyd
*Teuotido g-¢
SST SST “paepue3s
19POW Se auwes T9POW Se awes Z pue 1
(€ pue T STIpPOW) II GGT TOPOW GGT T9DOW
86T ToPOW oLE/weIsis oLEsud3shs

oLE rud3sis

paxeysuou ZIg

aan3eal aajng
pIom YITM
o9s/dd S8°1
aanjeaj xajyjing
PIoM 3NOYITM
oas/gx 0Z8

sTauueyd
I030913S

P2 TTe3ISUT TI1®
I0 Aue 103
apou TeuotT3dp

SHT TOPOW

oLE/waIsAg

arqerTeae 30N

59 TO9DPOW
09¢swo3sis

aTqetTT®AE 30N

sTauueyoqns
Jo zaqumu
umwTXeN °Z

a3ex ejep
Tauueyo

TenpTATpUT
wnutxXew T

Tauueyd
aaxatdraTom
¥oo1d "D

A Guide to the IBM System/370 Model 158

0S ToPOoW
09€/wa3sis

2In3ead oxempiel

1u8

Page of GC20-1754-2

Revised February 20, 1976

By TNL GN20-3580

waysks

sbexojg ssew

0S8€ 9yl I0
‘abexo3s YsTP 0Geg
IO/PUR ‘HHEE /ONEE
‘SaTI9S-0LEE

JO Juaum{oeaje

I03 Teuotdo

aTqeTteAr 0N

Teuot3do

SST
T9POW se awes

sTauueyd xaxard
~T3ITOl }OooTq 3ATI
103 D9SN GL°9

aTqer reae 30N oTqelTea® 30N

STqerTeAe 30N S TgeTTeAR 30N

Teuo Tado teuot3do

eale 3no

-boy Tauueyo

SST pPa3ITWTIT

TOPOW se aweg Ut sax

sTsuueyo aaxard
=T3IT 300 1q
313 103
09s/dH h°S

1311
TOPOW se ameg

*sTauueyo zaxatd
~T3T ¥o01q
palTeysut e

abexoys

ASTP 0GEE
Io/pue
‘hhEE/ONEE
’S91 198 -0EEE
30 3Jusayoelye
103 teuorado

saA AP

adh3-v nieeg

8 03 g WoIy
afpuey o3 I pue

‘OH ‘H ‘qdo ‘o
ST3POW sbexoys
Iosseo0oad

103 Teuotido

Teuor3do

eaze
30 o7 Tauueys
PO3TWET ut sax

uasead st
@m3jeay m3IIng
pIom 3j0u 10
IvY3aym uo burt
-puadap satxep

*3wsaad virI

3T Teuotr3ido

€ Tauueyo

‘p xepue3s

Z Tuueyd

*¢4I ou. 3T
Teuotido 4 o3 ¢

(134 SST IoJ paepueys pue pIepue3s

T9POW se awes TJPOW Se awWes Spowl IOJOITIS 1 Buuey)

(€ pue T STOpOW) IT SST T9POH SST 1°9POA ShT TOPOW

8ST TOPOW oLg/wa3skg oLE rua3sig 0LE Md3Sks
0LE /m2 3skg

R

aTqeITeaR 30N

aTqerTeAR 30N

098z uo Teuotiydo

anoboT O/1 ut sex

$098¢C
XTs pue (L8Z 3uo 103
03S/dH f§ JO SS3OXd uy

(@3ex
ejep 23s/dW €°T)
s098Z 9-0 Teuor3do

69 1spom
09€/ud3sks

it it

afqeytTeae 30N

aTqeTreae 3JON

Teuomado

ON

O9s/dNW
T Arajeurxoaddy

(@3ex
e3ep 29s/dY 008)
€-0 Teuotido

sTcIu0D aberols
pa3jexbajuy

13depy o114
pajexbajur

as3depe tauueyo
~-03-Tauueyd

10119
Tsuueyd Ia3je
PapTaoi1d ejep
&x38x Tauueyd

sTauueys 103
@321 ejep azeb
-3xbbe umuTx ey

sTauueyd
20309798

‘H

3

*a

0G5 TSpPoW
09¢g/wa3ysis

ainjeaJ saxempieH

w

149

A Guide to the IBM Systems/370 Model 158

*Teuotido
ST 3TOSU0d
Ketdstp
paepueils
03 uoT3Tppe
ut ayos
-uo) wa3isig
S3oway 950€ *h
(pa2pTaocad
ST uoT3dUNg
snjels 2I103g)
Teuot3do
a21e ‘s3Tun
Kepdstp se
yons ‘satosuod
pIeoq
~&oy-193uTag
L-250T Yatm
9TOsSuoD 0S1z ¢
*apou Aerdstp
3O peajsut
apouw pxeoqiay

TeUOTITIPPY "¢

(papTaoad
3JOou ST uoT3zdUNny
snjels aiols)

Teuotido axe
satun Ketd
-STp se yons
‘saTosuod
TeuoTITPPY
aTOosSuod
Teuotrltppe 10
?3euraxfe
Teuotado

ST pareoq
-Kay-133utag
L-ZS0T YaItm
3Tosuod 0512
Ketdstp
/I9a3Te ou

- GIZ¢ 10
0TZ€ Id3Y3T™
Y3th a@jowax
paeoghay
-xojutad 2
T9POW 0TZ€E
TeuoT3do
paatnbax st
(sdo gg) apou

(paptTaoad
ST uoT3dungy
snje3ls 23I03S)
Teuotido
*€ 9I® sjTun
Ketds1p se
gons s3aTOsSuod
TeUOTITPDY *1
opou KetdsT1p
/333Te 3no
-Y3tm (Z) 10
(T) I’y
U3TM aj0wax
4 pIeoqiay
-I33UTId IT0S
-uop Z TI9POW

-I93utad urt KLetdstp 0TZE TeuoT3ido -g
o3exado osye /1931e (sdo gg) apou
ued 3TOSUOd Y3TM paeoq Ketdstp/sasajTe
Aetdsta -apou -Koy x3 Y3 tm paeoq
KetdsTtp 103 -3utad aTos -Koy -193uTag
ISUTIAd £1ZE ®© -uod GIZE 9 TOSuo0d

eta AtyTeuotado I0 (sdo T T9POW G2 T
paptacad ag ST) apou (sdd ¢1)
ued Xdoopaen Kerds1p opou Ke1dsTp
"piepueas (paptaocad /393Te /I33Te YITM
sT uad 3ybT1T ST uoT3OoUNI Y3 Tm paeoq pxeoqlay
pue pieoqiay snijej}s -Kay-13 -193uTad
Y3tm atos 81038) GGT -3UTad 9T0S afosuod T

-uod Aeidstg T T9POW se aweg -uod 0IZf °T T9POW 012€ °T

(¢ pue T STapPONW) II GST TSPOW GGT TSPOW SHT TSPOW

86T TSPOW oLg7ua3sis oLg/ua3sis oLg/ua3sis

0LE yua3sks

S3TOSU0D
Kxepuooss pue
Kxewtad se pesn aq

ued sS3DTAIP IIYIO 4
Teuotido
@1® 9TOSUOD (06IZ
23j0ue1 B pue 3Tun

Kegdstd 06zz V °¢
Teuotado st
pieoqAay -133uTId

ZS0T puodes -z
(TeuoT3do) paeoqiay

-I23uTad ZSOT T

G9 T9DPOW

09¢/wa3sis

Teuotado sT
Taued ToOI3UO0D
I03exado
pututTezUOD
atun Aeydstg
06ZZ @30wWwdY "4
Tfeuorydo sT
LW~ZS0T IOo/PUE
Toued Toxa
-uod aojexado
Y3aTm 21OSuod
0STZ @30WaY °¢
Teuotido
‘s3Tun Ketd
-STp se yons
4 saTosuoo
TeuoT3IPPY - ¢
(spow Aeydstp
sa93Te oN) sdo
6T pxeoqlhay
-Jx923utad
LN ZTSO0T ° T

SIADTIAFA FATOSNOD

JOLVIAJO - "AX

0S ToPowW
09¢ swaysis

aInl3e’ad 3IeMpIeH

A Guide to the IBM System/370 Model 158

150

Page of GC20-1754-2

Revised February 20, 1976
By TNL GN20-3580

_a-:/-//

| \

(sTox3u0D abexoys
pesexbajut pue
¢ T9POW 0¢8E eta
uswyoe 33e) Sax

sbutns 4 o
T woxy sypuey
aed Yo TYM jo
Yoea sToxjuod

TeoTboT oMy
sapnioutT ‘sox

sax

S9X
(s Topou
TT®e) sax

05
T9POH se aueg

S38X

sak

S3X

(€ pue 1 STapOW)
8GST T9pPOW
0LE M133SAS

(¢4

T9DOW 0€8€E eTA
uawyoelye) sax

ON
Sax

sax
(sTopou
TITe) Sax

0S
_I9POW se auwes

sSax

SS9k

sax

S9X

(Atuo z pue 1
ST9POW) S3X

T2POW se aweg

(T0x3U0D "abexojs
pajeabajur pue

¢ T9POH 0€8E eTA
ON 3Jusulyoejzje) sax

sburms y o3

T woxj jo

IuBUgORIIE

OoN I03 sax
sax s X
sax sax
(S Tepou

1Te) sax

0S 0S

T9POW se auesg

II SST T9POW
oLEswaxs ks

SST ToPOR
oLE rwa3sis

R

sox Sag
sax) -5 9
sax S9X
Sax Sag
SHT TSPOW

oLE/uB3SAg

|

./

ON

uyelze IV

8 T9PoW 3dooxe sox

Sax

S9 TOPONW
09¢ /uP3sAs

AR T

ON

ON

(43tTyToR;
TH6TEZ/TanIEE
WUUn—HOﬁHu ‘unIp
Toez Idaoxs 1y

S3X

Atuo

T3uueys auo

03 payoelje aq
ued 4 {Ipow

‘8 pue 9 stapoy
adaoxa sax

S9x

ON

0S ToPOoW
09¢g/ua3sks

L3110
abeio3ys ssaooy
3IOIITA OhEE O

a1n3j eayg
STOIJU0D
sbexoys

Py eabajuy ¢
Z T9POW
ToaI3U0H

sbexols ogge ¢
T TePOoR
Tox3u0D

sberoas ggge °f

SOTI8S-0EEE 4

(TZEZ pue

‘TOEZ*E0EZ “nTce
‘ITEZ) saoTAap
$S300® 30917y 3

waj3sAsgung
adey or3au
bW TEne/0The -q

(8 ‘9 ’4 pue g
‘S ‘¢ stapow
waysisqng
adel ot3au
-bew oznescose

3

INUTIZ TTZE °g
yound pae)
SZSE pue 1apeoy
PIe) G06e °w

SAOIAIA O/T A
2INJedy oxempien

—

151

A Guide to the IBM System/370 Model 158

Page of GC20-1754-2

Revised February 20, 1976

By TNL GN20-3580

\w‘/

saX

Sh1 ToPOoW
se aures

X

E1=7 4

sax

SoX

ON

T9PON se asues

[(sToaju0D 3beI03S
pajeabajut pue

¢ TSPOW 0£8t ®©IA
Juswyoe) S

{ (STOI3U0D AbeIOYS
pojeibajutr pue

Z TOPOW 0€£8E ©TA
Juauloe 3je) Ssax

(¢ pue T ST3pPOW)
8ST ToPOW
0LE Mma3shs

£-1-) § ON
S3k S8X
ShT TOPOW ShT TOPOW
Se aueg se awesg
sax oN
S3x ON
_S9K oN
S3x ON
oN oN
(wnwutxeu)
¢ Tsuueyo
uo om3 pue
SST SST
T9POW sSe auwes uo oMy
(Z 19pPoW
0£8¢ eTA JUBW
-yoe3je) sax OoN
(Z 19pow
. OEBE eTA IWW
-yoejje) sax ON
IT SST T9POW GS1 ToPOW
oLesuasis oLg ruadysis

-5 8

EEY

(apow wmexb
~oad ToxjuUO
jIOMIPU pue
uorzeTnue) sax

SoK

S9X

S9X

S8k

ON

‘poxtnbax st
sanjeaj xajyng
pIom ayg

*VJdI Yyawm Ajuo
7 TBuueyd

U0 °*WJ4I 3INO

T uueyd

T3uueyd uQ -

(STOIjuUO0D
abexoys
pa23jexbajut
gue 7 TopoN
0£8€ eTA juam

-yoeje) sa4s

(STox3u0D
abexoys
pea3jexbajut
pue 7 T9POW
0£ 8¢ ©TA Juam
-yoezje) sax

“SHT T9P0W
oLE/weISAS

S9X

. (ATuo apou

. UOT3IOTNWI) SIK

ON

ON

OoN

ON

—yata Aquo 1
oN

ON

ON

59 T3POW
09¢€ ruR3sis

S9K

sox
(Afuo apou
uotjenue) Ssx
ON

ON

ON

ON

ON

oN

ON

.0G TOPOW
09¢/u33shs

. Teutuasg
U0 T3 T uUnumo)
eleq L9LE

wo3sis Azjux
eied OHLE

SI1971T0I3UO0D
SUO T3 POT UNUMIOD
SOLE PU® HOLE

waysks FoxIew
-13dns 099¢

wazsks axo3s
TTeaad 069¢€

wa 3shs
UO T3 BOT UNUMIOD:
JoueutT3 009¢

Itun
andano/3nduy
8339)4STA OHSE

T T9POW °T

¢ TePOW °1
Kat1IoR3 S0€2

abexo3s ss900Y
3I09IATA OGEE

abexols ss900W
3IOBITA hhEE

3In3eo3 oxeMpieq

-0

*d

°I

*H

A Guide to the IBM System/370 Model 158

152

Page of GC20-1754-2

Revised February 20, 1976

By TNL GN20-3580

sSa8x

sax

S9X

SX

STOI3 0D

9bexols psjeabajur

pue ¢ YapoW
0£8€ ©TA SoX

saX

S9X

(€ pue 1 S(opow)
8ST TOPOW
oLE /ma3sks

S9X

Sax
sSax

sax

€ TePH
0€8E ©TA sax

Sax
s9X

S99

IT GGT T9POW
oLE/wISAS

ON

ON

ON

Sax

oN

"SST T9POR

oLE rud3sis

BB

S3ax

s9X
s9X

S9X

€ T9POH
0€8¢ ©TA sax

S3x
S9x

sSax

“GhT 19POW
0LE/wA3ISAS

FaaaaS
—

ON

ON

ON

ON

Sax

Sax

S9 19DPOW
09€ ruD3sis

ON

ON

ON

ON

sax

05 ToPOW
09¢/uaysks

0SS 980013
IUAMI0Q 068 "X

x3pesy
I3 oexeyd
. TeoTado 988¢ °X

18peay yzEW
Teotado 18se *M

waysfsqns
butjutig oose A

wa3sds abexojs
SSeW 0S8¢ "N

wa3sLs uoTzeOTU
-nuiod 06LE "I

Teutwzag
SUO T3 BOT UnUMIO)

e3jeq 08Le °S
waysis
UO T3IedTUNIIO)
®leq oLLE ¥

°xIn3ead 31 empieq

153

A Guide to the IBM System/370 Model 158

i UOTSIaA
sod se aueg

i UOTSISA Se saues

944 ideoxa
sebenbuer 1TV

NWILJod deoxs
sabenbuer TIV

sabenbuer TIV

“suoT3T3red nexboad
watqoxd ¢

o3 dn °pajzoddns
st s93&q UOTTITW
91 03 dn 3abexols
Ten3ata auo

. *Kfuo

sopou JYd pue DI

*(d¥ds ‘wiI

‘IOAR “11JTD)

10800 IPsqns

SNY pue 770800

TInd SNY UT SUuoty
~-JNIISUT UT e IS0
ajerauab o3 uordo

“(dhT) @ I[qUWI SSY

Ut SOTUOWSUR

(dhT) g I9TqUWIsSSVY
ul soTuocuwau

ody 3Idaoxe
sabenbuet 11V

NWIyod 3dadxe
sabenbuer IV

sabenbuer 1TV

*sSuoT3

-t3xed wexboad
watqoxd ¢ o3 dn
*ATuo spow Dg

a1 ndd FHOLS
TOYLNOD FHUOLS
MD0TO TYOLS
ASYW MIANOD
SYTIOVIYHD FTHOLS
aI TINNVHO FJOLS
ISYITI
ISVd O/1I 1yVLs
TYWIDId
aNnod aN¥Y LJAIBS
¥D0TO LIS
ONOT FAOW
TIYD YOLINOW
TOHINOD AVOT
ASVW JAANN
SYTIOVYVHD JHIASNI
JOIAZd I'INH
ONO'T
TYOIOO0T TUYIWOD
ASWH

- JIAN SYITLDOVIVHO

IYOID0T TIYIWOD °®
SUOTIONIFSUT MBN °G

jutod-buT3eOT3
uoTsSTOaad pPIpudIXT

oT}IaMWY3ITIR
jutod -butIeotd °€
DT3PWYITIR TERWIddq ‘7

(oT3swy3 TR LI1eutrq)
39S paepue3ls °[

398 uOT3ONIASUI °g

uotrjexado
wa3sds JO SPOW °V

A Guide to the IBM System/370 Model 158

Revised February 20, 1976

Page of GC20-1754-2
By TNL GN20-3580

ndao I
SA/S0Q Hh UOTSISA SOd 2In3ead SIempIeH

(€ ANV T STIAOW) 8ST TIAOW IHLI J40 LI0ddNS SA/SOQ INY SO :0T:0L

154

Page of GC20-1754-2

Revised February 20, 1976
By TNL GN20-3580

pa@33oddns 30N

butrbbngap mexboxd -

03 sAIVAS
Lq pe3aoddng

f UOTsIap Se aueg

("sa/soa

&q pe3jzoddns
a1e jeyy sadiy
3DTA3P O/I I03
K{uo pawizozaad
ST JoT3Ie[SuURI}
wexboad tauueyd
930N) pa3jxoddung

pa3jaoddns 30N

fj UOTSI3A Sk duweg

f) UOTSIaA Se awes

pa3x0oddns 30N

IDTYWISSY
ddS 43 Aq
po3aoddus 3oN

SA/S0Q

p23xoddns 0N

pa3axoddns 30N

oTuowaUM

19 TqWa SSY

ue Xq 3daoxa
pa3izoddns 0N

pa3xoddns 30N

pa3xoddns 30N

santea Lep jo
swT3 I03 (uoTido
ue se) pa3jxoddng

STeAIa3UT 3WT3 I03F
pue (pasn 30U ST
jootro Aep JoO

aut3 3T) Lep jo
STy 203 pajzxoddng

pajxoddns 30N

paaxoddns N

h UOTSIap Soa

UOTIPNIJISUT
WSS 03 uotr3idnazajur

butrpaooaa
3uaAd weaboig

21In3eaj burIol TUOW

butssaappe
B3lep JPIATPUT Tauueyd

IBUTI NdO
pue zo3jexedwod X20TD

%0012 Aep jo ouwry

IJWT3F [eAIIIUT

SSIaAav -

WOUd XA MSd LIS

AdM MSd JMASNIY

diMS aN¥

AIdN0d TIVAWOD

d¥MS NV ZYYdHOD
O/1 ¥Y¥TIO °*°

ASVW WALSAS
4O NIHL FIOLS
ASVH WALSXS -
CNV NJHL FJ0LS’
YIWIL NdD FJOIS
HOIWIYdWO O
D01 FJOILS

JOLYIWYdARNOD
ADOTO 1aAS

LI8 JONTIIINI LISTI

€IL I99nd

SST¥Aa¥ IT¥YIH avol *q

*q

aInleag aixempieq

155

‘A-Guide to the IEBM System/370 Model 158

Page of GC20-1754-2

Revised February 20, 1976

By TNL GN20-3580

S9k

paizoddns 3xe
sepouw XO3O03[9S. pue
zaxaTd TaTIW }o0Td

) UOTSIASA S aueg

§ UOISIDA Se awes

f UOTSI8A Sse auwes

pejaoddns axe TV

. pajaxoddns JON

pa3xoddns 30N

-pa3aoddns JON
f# WOTSIDA SE aweg

pa3xoddns 30N

§ uoTsIaA S® ues

sA/s0d

X
paaxoddns st Afuo
apoul I0303T9S

paatoddus
sT auo Afuo

pa3jzoddns st Atuo
so930ad axo3ls
surexboad

abenbue T I2TqWI SSY
ut A3TYroe3
saempiey 3y3 Isn
ued siaumrexboxd

pajxoddns aie IV

pa3jxoddns 0N

pajxoddns PN

paaxoddns 30N
gSWd pue HVYMW
&q paizoddng
pa3xoddns 3ON

sIoj eTnWR
0TOL/0THT
pue 09h1/0u4T/TOhT

h UOTSI9A SOd

pawuxoyzad
Axyax yauueyd °O

sTauueyd
19X TdTITME }oOTd &

sTauueyd
zaxatdryInu 23&g °vw

STENRNVHD °“III

uot3oojzoxd
Yyo3aj pue aI103s °J

spuexado pajuatio-a3kg °g
saz1s aberols Teaw °¥
IOOLIS “II
patdnoo Atasoo7 °Z
patdnod ATaubri -t
BuTSS800adTITWW W
butuxem xamod °1

suoT3dnixajur }oo8Yyo
autyoew papuedxy %

Ky trTqriedwon
H§LOL/0LOL °€

K3 Tr1qT3 RdUWod
S0a/so °z

Lat11qT3Rdwod

0TOL/OTHT
‘09700 /10T °1T

saanjeai Arrrqriedwod °p

2anjead IaIempaeH

A Guide to the IBM System/370 Model 158

156

Page of GC20-1754-2

Revised February 20, 1976
By TNL GN20-3580

. *pa3zoddns axe z
pue 1 ST8poA A1uo
*pajaoddns 3o0u

aIe SaInjeaj MOTF
-I3A0 pIODAY pue
‘yoltms Hurns €eeg
‘TRUOCTITPPY UIITMS
Touueyd amy
‘UOITMS Touueyd
oml 3ayL °pay ioddns
axe uotsuedxy
8ATIQ ZE pue
‘butssaIppe IATIP
-U39IXTSs ‘buty
-3sanbaz eydramu
*sdd °sA/daMod

Aq pue ‘Hurbed
‘sS91T3 e3jep
‘30uD13321 waysLs
203 pai3aoddng

*paaiayddns j0u

31e saamjesj bur
—Jo3TMSs Iauueyo pue
MOTJISA0 PICOSY
"SA/¥3MO4 Aq pue
‘butbed *saiI e3jep
‘souapTsaa wd3sis
203 pajxoddng

p93xoddng
paijaxoddng
pa3xoddng

pa3xoddng

ON

pao3xoddns st
apoul parogqiay
~39utxd ATuo

pe— 4
sA/soa

*pajxoddns axe

¢ pue T STIpOW
Alug - pazaoddns

sT burssaippe
SATIP-U29IXTS
*pajxoddns

30U 3Ie MOTY

-I3A0Q PIOOIY pue
‘yo3tms buriys gege
 TeuUOTITDPY

YOo3TMS Tauueyd-oml
‘Yo3TAS TOuuRyD-OM]
uotsuedxgy IATIT ZE
*butysanbaa ardia
- "S4qy “¥IAMOd
Aq pue ’saTTy eJep
*3a0uapTSax Wwazsks
103 paaxoddng

¥amod &q

pue ‘s391T3J ejep
‘aouapIsaT wd3Isks
103 pajxoddng

pa3zoddns
pajxoddns 30u

-8 pue ‘9 ‘y STIPOW

uo A3Tsuap Id€-05Z9

pa3xoddns

pa3xoddns

oN
pa3zoddns st

apow pireoqiay
-zaquraxd LAtuo

h uoIsIaA soa

sToa3U0D abexols
pajexbajul 30 ‘Z TI3POW
toxjuo)y 96e103S 0ESE
‘T T9pOW TOIUOD
abexoas 0g8E BTA
payoe3zje burissnbax
a1dTarnu pur sSdy

U3Tm S3TIIS-0EEE

SOYITTTIORY 6T1E£Z/HTEL
wuaysksang

adey], oT3oUbEH QTHE/TINE
waysksqns adeg,
ot13auben 0ZhE/EOBE
IdWTId TYIZE

gound paed GISE
pue 13peay paed GOGE

‘a

hRe]

:

¥

SIOIAIG O/

pajxoddns
saTOoSuUodD Teuolilippe
pue ajeunralTy

uad
aybTT pue ‘preoqiay

‘3TOSUOO amﬁhwwa.

*d

4

SITOSNOD

3INn3esad I3IempieH

A

AL

157

A Guide to the IBM Systems/370 Model 158

Page of GC20-1754-2

Revised February 20, 1976

By TNL GN20-3580

WYIA £q apow SA/dON
UT G0LE/HOLE © O3
payoe3je

opoul TOX3IUOD U IT
el ep SNOUOCIYOUis

ut paixoddng

WY Id

£q spow uorzernuws
uT GOLE/HOLE © O3
payoe3je

Ipoul STOUO IYDULS
Kzeutrq utr pay xoddng

WYLA Aq apoat SA/dDON
UT GOLE/HOLE © O3
payoe3lle apour
TOIIUCY Jut

e3ep SNOUOIYOUAS
ut pa3zoddng

WYLd

Aq apow UOT3IETNUD
UT GOHhE/HOLE © C3
payoe3l3ze apou
snouoIyouks Lxeutrq
uy paizzoddng

WYLA Aq apou SA/dON
UT GOLE/WOLE ®© O3
payoeijze pajioddng

80TASD

weax3s InduT ue se
sSA/d4dM0d Aq pue 20TA®p
HOdS XS Pue *LSISAS
*1d1SXS e se pajzoddng

pa3aoddns 30N

s (3x0ddns S3TIIéS-QLEE SE

swes) -pajzoddns sT
apow X3TT1TqY 1edwod
T ToPon ogce ATuo

S9TXIS-QEEE I0F Se
paazoddns syTapow TTV
aaoqe 4 °A

se pajzoddns

stapowr IV

SA/SOd

pajxoddns

peixoddns

paixoddns

paaxoddns

pajxoddns

pa3jxoddns

pa33xoddns

pa3jxoddns

ION

PN

30N

I0N

WPN

ION

PN

30N

f UOTIS IoA

soda

wa3s&s
3@yrxewradns 099¢

wa3sks
310315 T1te3lay 069¢

waysks uotTjesTunumo)d
VURUTI 009¢

3Tun 3Indano
s3ndul 83IDYSTA OHhSE

Z ToPONW X3TTIOoRd S0€C

) abeaoyg
SS900Y 3PVIITA 0GEE

abeaoag
SS300Y 3I03ATA HhEE

K3T1T0Rd BbRIORS
SS300Y 3I09ITA OHEE

N

b §

-

r

‘I

*o

A Guide to the IBM System/370 Model 158

3IN3Ieay 3IeMpIeH

158

Page of GC20-1754-2

Revised February 20, 1976

By TNL GN20-3580

pa3xoddus uoz
p93 xoddng
pa3aoddng
po3aoddns 30N

pa3lxoddns 30N

WY1A

Aq spow sA/doN

Ul GO0LE/HOLE © O3
pPayoejzze pajaoddng

Teutwial gy ue se
SA/9aMod &3 pajzoddas

) WYIA pue

pue Wyrd ut 3jxoddns
0LLZ &q soLe/snoLE
10 TOLZ ® O3

" payoelje suorjexado
(DSg) UOTILDTUNNIOD
snouoayopuks Lreurq
103 p93aoddng

WYIA Aq apow SA/doN
UT GOLE/HOLE & O3
payoejje suorjeaado
(JI3S) foajuod
JUTT e3ep snouoays
-uks 103 pajzxoddng

WYLA &q apow sA/don

UT GOLE/hOLE ® O3

payowje paz zoddng

"WYLg £q apow uoTjeinws ut
SO0LE/NOLE ® O3 payoe3le 30TA9P
do3s/3xe3is e se pazzoddng

(WY I49)
paixzoddng

WYIA

&3 spow sA/dON
ut pajaoddng
apoul UOTjernud
utr pajaoddng

SA/s0d

pa3xoddns 0N
pajzxoddus 230N
po3jxoddns joN
poaxoddns 30N

poixoddas 30N

pa3jxoddns 30N

paaxoddns 30N

pa3xoddns 30N

pa23xoddns joN

(WYI9)
pa3aoddng

9poul uoT3eTnuR
ut paijxoddns

% UoTsIBA S0Q

I0SS900Id FuMWNO0A 068€ A

13peay Iajoeaeyd
Teot13do 988¢ °X

Topeay
yreW Teot3do 188¢ M

waysdsqns
butrautid 008¢ °A

waiysds
abexols ssew 0G8€ °nN

waysis
UOTILDTUNMUOD 06LE °L

(ZLLZ ®© se) Teutwas]
SUOT3RD TUNIMIO) e3ed (8LE °

gl

wo3sis
UOTIRDTUNUMO) e3ed OLLE °¥

TeurmIay

Teutwiag,
UuoTILDTUMMIO) ejed (9Lt O

w3sks Lxjud eleqd onLe °d

SISTTOIIUCD
SUOTIEOT UNUMIOD
GOLE PUe #0LE °O

aInjead aaIempIeH

159

A Guide to the IBM System/370 Model 158

Page of GC20-1754-2

Revised February 20, 1976

By TNL GN20-3580

LAN pue LJWN Se 2ueg

LAW pue LJ4d sSe 3aueg

ogdy 3deoxa
sabenbuey IT¥

NY3¥I¥0d 3d9oxa
sobenbuet TTV

sobenbuetT 1TV

* (9bexoys Teax pue

obed Teuzalxd) S8OANOSAI
waysks jo K3TTIqEITRAR
ay3 &g Afuo pa3TuIT ST
SI9SN JUIIINDOUOCD JO I3qunu
wrTxew I °seaxe ureixboxad
paieys pue ‘ejep paieys
‘swexboxd wazsks ‘swexboxd
Iasn 103 abexojzs TenjiIta
934q uOITITW 9T 3duo sey
1asn yoeg °pajzoddns axe
sabexozs Tenixra STd TITNH
KTuo sapow Lvg pue DI

£ oseafod
ZSA/SO

LAW pue
LdW SO se auweg

LAW
pue LJW se sweg

ody dooxe
sabenbuey TTV

NV¥L¥0d 3da0xs
sabenbuer TTV

sabenbuer TIV

*suotbax
puroxbazxoy OSL

aq ueo zy o3 du
YoTym jo suolbax
wexboaxd wayrqoxd €9
o3 da °pajxoddns
sT sa3dq uoTITTW
91 jJo abeiojs
Ten3xTa aug “Ajuo
sapouw L¥GQ pue DI

1°1 eseatad
ZSA/SO

(dys .

‘WOI ‘'DAW “TIOID)
TO€0D ITNnd SNV
Ul SUOT3IOdNXISUT
UTe3I3D I3jeI3UID
03 uor3do *H

pue J§ SIaTquassy
UT SO TUOWIUN

IAW pue
LId SO Se aueg

PIpPUIXI-H

NVYINOA ’H NWINOJL

*zortdwod 3INONOIYD

I/1d4 *zattdwo)

IAR Burzrwiydo 1,14 ‘H

pue LiW se aues pue J§ SI9TqQUWISSY

o4y 3dsoxa
sabenbuey TV

o9dy 3deoxa
sabenbue 1 TTIV

NWLdod 3daoxa
sabenbuetr 1TV

NVMIHOd 3deoxe
saben buetr TV

saben buer TV sabenbueyr IV

-wexboxd wayqoxd
aq ued GT YOTYM
3o suor3ytixzed z§
03 dn °pa3zoddns
ST sa3iq wWITTW
9T o3 dn abexo3s
Ten3 ItA duo *Auo
sapouwl I¥d pue DI

* Suotbax

10 suot3rzzed
watqoxd g1 o3 dn
-Kktuo apom Ddg

IAW pue L4W SO

(€ ANV T ST3IGOW) 8ST TAAOW IHL

dl Ndd JHOLS

TO4d INOD JYOLS -
AD0TIO FTYOLS
ASYW YIANN
SYILOVIVHD TJOLS
JI TINNVHD THOLS
ISWITIY

&LSYd O/1I INVYLS
IVWIDEA

aNNOY AN¥Y LJIHS
MO0 Ids

ONOT FAOW

TIVD YOLINOW
TOYINOD QYOI
ASVW WIANN

SYT JOVUVHD - JMIASNT
FOIAIA LTNH
ONOT

TYOIOOT TANVdWOD
ASYN
YAANN SYTIOVEVYHO

TWIOOT JUYIHOD *e

SUOTIONIISUT MON °G

qutrod

-but3eory

uo Tstoaxd
papuaxy °4

oT3IaMUMYITIR
3utod-buraeord g

ST3aUR TIR
Tewtoaq °z

(doTsuyy txe Lxeurq)
DS paepuels 1

39S UOTIVNIISUT °d

uot3yexado
wasks 3Jo BpPOW ¥

nas °1

3InjeaJ oIBMpItH

d0 LY¥0ddNS SA/SO GONV¥ SO GT%0L

A Guide to the IBM Systen/370 Model 158

160

Revised February 20, 1976

Page of GC20-1754-2
By TNL GN20-3580

OTuows uw
I9TquUassy ue pue

LAW Pue LJd se 3wes LAW pue LJW Se aweg 419 &q psijxoddng

IAN pue LiW se aues danjeajy BUTIOITUOW °9
butsseappve

pajxoddng e3ep 302ITPUT [auUURYD °*dJ

pa3xoddng pajzoddng pa3jxoddns 30N
urexboxd Toajuoo IsA
843l uy papnrout

ST uotido xamTyl
pPepuOIX3 usyMm
fuTNT3 TeaxajuT

pue butury de3s
qol xo3 pajxoddng

Xep zo Kep 3o swr3
awt3 3deoxa saT3IT[TORI I03F 3da0Xs SITITTIOR]

IawWTI NdO
butwity 103 pojzoddng HBumutTy 103 pazxoddng

pajxoddns 0N pue xojexedwod }201) I
Aep 3o aury

IAW pue LJN Se sWes JAW pue LJIW Se swes 103 pajroddns

IAW pue LJW Se aues 3ooro Aep jo awyl °d
wexboxd
Toxauco ISA Y3 ur
pPoOpnIOuUT sT uo1zdo
JFOUWT] PIapuaIxXd

161

ayy ‘ssatun (Xep
30 2wyl 3daoxa)
S@T3TTIoRy buruwry

Kep 30
aut3 03 3d9oxad
‘serarTIoRey buTwIly

pa3xoddns 30N pa3xodduns jo0N ITe 103 parzoddng 103 pa3zaoddns IBWTF [RAXIUI *D
SSTIAAY
© Wodd XIM MSd 1IS
AT MSd IYESNI
dUMS aNV
FTENOA T WIAWOD
dUMS ONY TMVIWOD

pa3 xoddng o/I ¥WVAIO °2

pajxxoddnsg pa3xoddnsg pa3xoddns 3joN
MSUW WHLSXS
YO NIHL JYOLS
MASYW WIALSKS
ANV NIHI JJ0LS
YAWIL ndD JFJO0LS
YOLYYYAWOD
AD0TO HIOLS
HOLYIYdHWOD
¥D0TD: LIS

i1d

: H IsTquassy
Kq pazaoddns 30N :
"9°1Z 9seaTdd SO IONIYIAITY LIASTY
3o se ‘g I9TqQUISSVY il 39390d
Aq pe3zzoddns SSTYAAY TVIE AVOT °q

19 [qUB SSY
waiysks ayx £q
pajaoddns azxe 1V

1SA/SO se auweg ISA/SO soO aweg

€ 9seaTay
ZSA/SO

L°1 osearad
ZSA/SO

TSA/SO IAW pu®e LdW SO 32In3eaj aIeMpiel

N
\\ /}
(
*\'//

i e J—

P > NN e - -

‘A Guide to the IBM System/370 Model 158

Page of GC20-1754-2

Revised February 20, 1976

By TNL GN20-3580

casva

paxeys uo senanb jyrom 3ndano
pue 3ndut a1eys 03 § ISLITAY
ZEA/S0 Y3Tm burjerado sweysds
U3A3S 03 OM} WOIF SITqeud
L3117qededs Toods sseooe-TI3TRM
SY3 PBTM zZsE *sia3zdepe
TaUuURYO -0 3-TIUURYD BTA
P9303uu0d sweisks gLgswaysis
aybrs o3 auo sazoddns

‘€ UOTSIBA dSV JO U0 TSUIIXD

o7qriedwoo piemdn ue ‘gsAr £ UOTSIaA dSY Aq ‘sax

pa3xoddns aze abeiols
Ie9x axeys Iey3 3ITUN

UO TIRDTUNUMOD W 3sAsT3num
890€ Y3 BTA PajoadUUOd
sTapouw Iossaooad T3Tnur omL

pa3xoddng

LAW pue LJW se aues
Iojeinue HL0L/0LOL

SA/SOQ pue 1y pue g SUOTSIdA
SOQ 103 IOojeTnUa SOd

LAN pu®e LJ4 se oauresg

pajxoddng

TSA/SO se aureg

€ osearod
ZSA/SO

paxxoddns 30N

paaxoddng

IAW pue LJd se aueg

03T 4L0L/70L0L

h puUe ¢ SuUOTsSIa\ SOa
I03J I03eTnWd SOd

LAW pue LJW se aweg

paaxoddng

TISA/SO se 3uweg

L°1 oseatraq
ZSa /SO

L W,

pa3xoddns 30N

vouuo&mb.m 0N

po3xoddng

LAW pue LN Se aueg

I0JBTNUWD HLOL/OLOL

SA/S0d pue
h PUR g SUOTSIaA s0d
I0J z0jRTNUB SO

IAW pue LJW se aueg

paazoddng

(Ssd) wayskg
310ddng otureuig
3ay3 Aq pajioddmg

TSA/SO

. dSVY &q JAW
I9pun pajzxoddng

pa3xzoddns 0N

9°1Z asearsy 3O se
IAW &q pa3jzoddnsg

HOW £q paixoddng

I0IeTNWd §.0L/0L0L

Pu® g SUOTSIdA SOQ
I03 z03RTTMS SOQ

SI103 PTOWS
0TO0L/0ThT pue
098 /00T /TONT

po3xoddns 0N

pa3xoddns 30N

LAW pue LIW SO

psTdnoo Arasoco -7

patdnoo X13ybry -1
ButssacoadraIny W
ButuzreM Ismog 1

suo T3dnixajut yoeyo

auTyoew papuedxy °%

£37T 1q T3 eduio)
nL0L/0LOL €

£3 71 g T3 edWon
soasso °g

L3111 ryeduo)
0TOL/0TINT
‘09/0h/TONT °1
sem3ea3y A3rTrqraedwo) °p

UoT}IONIISUT
WSS 103 uoTidnaixsyuyr -1

butpaooax jusas weiboxd *y

3In3esd saiempieq

A Guide to the IBM System/370 Model 158

162

Page of GC20-1754-2

Revised February 20, 1976

By TNL GN20-3580

pa3jxoddng

paixoddns
pa3jxoddng

p93aoddng

)4

LAW pue LJN se auweg

S9X

IAN pu® LiW se awes

pa3xoddns 21e om3 10 3UO

sebexols Tenzita
1Te 103 pa3xaoddns axe

uot309301d Yo 3I9F pue 91035

LAW pPu®e LJN se Jueg

MZTS 3deoxa pazzoddns axe TTV

§ osealou
ZSA/SO

pajxoddng

pa3xoddng

pa3xoddng

po3jxoddng

17 4

LAW pue LJ4W se aueg

S9X

IAW pue IJW se aues

pajxoddns
3xe OM3 IO BUQ

suotbax TTe
I03 pa3izzoddus
2Xe uorjzoazoxd
yo3a3j pue aIo3s

LAN pu® LJW se aweg

peoixoddns axe 1TV

L°1 osearay
ZSA/SO

S

pa3zxoddng

pajxzoddng

pajaoddng

pajxoddng

S3aX

LAW
pue LJWN se aueg

ILAW pue LW se awes

pa3xoddns
@1e omM3 I0 Buo

p@3xoddus
axe 309301d
yo3aj pue alols

LAW Pue LiN se aueg

po3xoddns axe TV

TSA/SO

po3aoddng

pa3jxoddng

pajxoddng

pa3jzoddng

Sak

*paptacad ST
sopow Y3oq- IoF
axoddns Adoo
pIeyd °apou
paeogiay-1e3uTad
ut pue SD0JId
A apou KAeidsTp
ut peaijxoddng

sek

u.muuoa.msm axe
sapoul I03IDITSS pue
zaxardr3ynu 3ooTd

pa3xoddas
aile oM} 10 JUQ

pajzoddns st
Kfuo pajzoad aixo3s

swexboxd abenbuet
IITqUDSSY

ut £3TTTORY
azempiey ay3l asn
ued siauaexboxd

pa3roddns axe TIV

LAN pu® LIW SO

wazsksqns adey
or3oube OTHE/TIHE °d

mayshksqns adey
oT33UbeN QZHE/ E0BE °O

I33UuTI4 TTZE 9

yound paed GzZseg
pue I3peay paed GOGE °V

SEOIAIQ /I "A
p23xoddns

S3TOSUOD TRUOTITppe
pue aj3eurny v g

uad 3ybry
pue ‘paeoghay
‘arosuodo Lerdsia °v

SITOSNOD °AI

pawxo yaad
Ka3ax yauueyd *H

sTauuRyd
9% TdI 3Tl o019 °g

sTauueyo
zoxadTatu a3fg v

STANNVHD °III

uo T3 o930xd
Yyo3ad pue 3Iols "I

spuexado pajuatio-:nig °g
s9z Ts abexo3zs [eay ¥

IOVYOLS "II

aIn3jead 3IempIeH

163

A Guide to the IBM System/370 Model 158

Page of GC20-1754-2

Revised February 20, 1976

By TNL GN20-3580

ISA/SO se

1SA/SO se

ISA/SO se

IsA/sSO se

aueg

Quweg

sueg

aureg

aaoqe J°A se pajzxoddng

TSA/SO se aues

TSA/SO se awesg

£ ©searad
ZSA/SO

. pa3yxoddns 30N

* pa3jxoddns

axe burjzssnbax
stdTatnu pue say
*aaoqe I°A se auwes

(a1qerTeAE

39& jou) sapou

K3 T TqT3edwos ogce
: pue aarjeu 103
S9TA3S-0EEE I0F

se awes 3xoddng

(3Tqerteae 334
J0U) SITASS-0EEE
103 se awes j3xoddng

(3 errTeae 384k
jou) saoqe
d*A se pazzoddng

*ps3xoddns

3xe syapou

TII¥¢ *pa3xoddns

9I® MOT JIAQ PIODIY
pue ‘yo3Tmg Surmsg
EEEE ‘TRUOTITPPY
Yo TAS Tauueyd-omlL
‘Yol TS Tauueyd-om]
‘uo Tsuedxq aATIQ ZE
‘putssoippe aATIp
-u39nxTs burysanbax
srdTITnu ‘sqy
*aaocqe "I°A Se aumeg

* payxoddns

aIe sainjeal
butyoxTMs Tauuey:
pue MOTJISA(Q PIODAY
*S390TASP NISXS pue
‘sS39s e3lep INOSXS
PUR NISAS ‘sadoTaap
butbed ‘s3as ezep
[?DuUIpTsax wazsks
03 pa3zxoddng

L°T 9asearay
TSA/SO

(30TA3D
andyno/andutr ue
Jou) Ajuo 3oT1A3pP

- LOOSAS pue NISXS
e se pajxoddng

*pa3xodduns

are butrysenbaz
atdramu pue sdy
*aaoqe J°A Sse aues

sapou

£31 1IqT3Reduco QEEE
pue 8ATIRU I0F
S3TIVS-0EEE X0F

se awes 3xoddng

SO TI3S- QEEE I03F
se awes 3xoddng

aaoqe
Jd A se pajxoddng

*pa3xzoddns

ai1e sTapouw

IT¢ °pajzoddns

axe Yol Ims butaas
EEEE PUR ‘MOTIIDA0
PIOOaY ‘TRUO IFITPPY
Yol IMS TduuUeyd-oML
‘Yo TMS TIUURYD-OML
‘uotrsuedxd 9ATIQ ZE
‘burssaippe aATIp
u933XIs ‘burjsanbax
aTdr3Tnw ‘s4y
*ssoqe "I°A Se sweg

*po3xoddns axe
saanjeay butyol s
T9uuUeyd> pue
MOTJISAO PIOOBY
°S3DTA3DP NISXS pue

“S39S ejep pue SIDTAIP
buttoods sAr ‘saotaA’dp

butbed ‘s3as ejzep
’20us3pTSsal wd3sis
103 pajaoddng

ISA/SO

paxoddus 30N

*paxoddns axe
purysanboax a1dTy MU
pue sSdd *s3a8sS

ejep LNOSAS/NISAS
pue ’s3as ejep
30uUap TS9X Wa3shks
103 po3zxoddng

paaxoddns 30N

pajroddns 0N

pa3xoddas 30N

*ga3xoddns axe g
pue T STapoW ATuo
*pa3aoddns 31e MOTJ
-I3AQ pX0O3Y pue
‘yoqTMs butias

€EEE ‘TRUOTITPPY
YOITMS [IUUBYD-OMT
‘Yol TMS TBUURYD-OMT
‘uotsuedxd SATII Z€
’ fuIssaIppe SATIP

uaa3xXrs ‘butisanbaia
ardratmu ‘sdy *saoqe

*3°A sSe pajxoddnsg

*pajzoddns

30U 31 SI8INILIT
butyozTms TaUURYD
pue MOTJIXIaA0
pIcoay °s3d9s e3ep
LNOSAS Ppue NISAS
pue ‘sa0TAsp
MISAS “s3dS

ejep ‘adusprsaa
waysks 103
pa3xoddng

LAW PU® LJAW SO

3Tun ndynd

sandul 8333MSTA OhSE

Z TPPOoW A3TTTORI GOEC

abexo3s
SS30D0VY IV2ATA 0GEE

°I

abexo3s

SS3ODY 30DIATA HhEE

K3 1T TOoed 9beIOlS
SS300W 3IO03ATJ OhEE

S3TIDS—0EEE

SOTITTIORY 6TET/HIET

3In3ead 9IeMpieH

*d

g

A Guide to the IBM System/370 Model 158

164

Page of GC20-1754-2

Revised February 20, 1976
By TNL GN20-3580

TSA/SO se auweg

ISA/S0 se aureg

TSA/SO se -auweg

WYIA Aq @pow SA/dON UT
SOLE/HOLE © O3 paydejze
apou TOIIUOD WUTI[ejep
snouoIyouis ut pajzxoddng

WVIA YBnoIys WVOL pue WHYLA
Aq spow SA/IDN UT GOLE/HOLE ®©
03 payoe3lle Ipow TOAJUOD YUTT
ej3ep snouoxyouds ur pal zoddng

ISA/SO se 3ues

£ 9selalay
ZSA/ SO

WYOL

pue Wy¥ig £q spou
UoTIe TAM3 UT GOLE
/80LE ® 03 payoejje
(9otaap doyssiaeas
e se) pajxoddng

{W¥OL “WN1d)
paaxoddng

WYOL Aq apou
SA/dON Ut pa3jxoddng
WiOL £q apout

dON uT paijzoddns
apow UOTIeTnWd

ur pa3lxxoddng

*WYlg &q spou
uoTIeTMUd Ul GOLE
/h0LE © O3 payode3zje
spoul snouoaysulks
Axeutq ut pejxoddns

pa3xoddns 30N

pa3zxoddns 30N

L° T @searad
ZSA/SO

i Pl

WYIA Ybnoayy

JWVJL pue WVYLA

&q apow SA/dON

UT GOLE/HOLE B O3
payoe3je pajaoddns
HYOL

pue WyLg Aq apouw
uotlernue Ul SOLE
/%0LE ® 031 payoelxe
{(@2TA9p do3ssaxexs
® se) pajzzoddng

(WYLA eTA WY
pue ‘WWOL ‘WVId)
po3zxoddng

WYLA

pue W¥DI Aq 9pouw
SA/dON Ut pa3zoddng
W¥DI &q apou

dON uT p3ajxoddng
apow uor3jeTnud

ut pajaxoddng

WA Aq

Spoll. SA/dON UT GOLf
/H0LE © O} payoelie
opoll TOI3UOD NUTIT
ej3ep sSnouociysuis

ut pajxoddng

"WYLE Aq apow
uoTjeNUS Ul GOLE
/h0LE B O3 payoelzje
apouw snouoxyduds
Axeurq ur pa3zxoddnsg

WYLA Ybnoayy

WNJOL pue WYLA

&q spou sA/dON

Ut GOLE/HOLE

® 03 payoejzje

apoil TOIJUCO MUTT
ejep snouoayouks

ut pajxoddng

WY I

£q spow uoTjernmo
Ut GOLE/NOLE

e 03 payoe3je apou
T0I3U0d snouoxyouls
Areurq ur pajzzoddang

WYIA

ybnoiyz WYdJI pue
WYILA Aq apow SA/JdON
UT GOLE/HOLE ®© 03
payoejye pajzoddng

TSA/SO

_/

peairxoddns joN

(AYOL ‘W¥Ld)
pajzxoddng

AVDL Aq spow
doN uT pajxoddng
@pow uOTIRT U
ut pa3aoddng

paxodduns 0N

pa3xoddns 30N

pajxoddns 30N

LAW pue LIN SO

TeuTwIay
UO T3 eOTUNURIC)
23ed £9LE °O

wansis
&ijux e3zeq onLe 4

SI3TTO0IUCD
SUO T3 RO TUNROD
GOLE PU® 4#0LE "O

wo3shs 3Isyremzadns 099¢ °N

waysis
91035 TTe3Iay 0G9¢ W

wa3shs
U0 T3 PO TUNUAIOD
3JuURUTd 009€ "1

2IN31e9dJ 3IeMpICH

165

A Guide to the IBM System/370 Model 158

Revised February 20, 1976

Page of GC20-1754-2
By TNL GN20-3580

po3xoddng pe3xoddng pa3jxoddng paaxoddns 30N JIO0SSID0IJ IUMMOOQ 06BE °X
“ B I9peady Iajdereyd
pao3xoddng ‘paazoddns 30N paixoddng) pajxoddns 30N Teotado 988¢ °X
.) Iapeay
pa3jxoddns j0N peo3xoddns jon pa3xoddns 0N pe3xoddns 30N qreW TeoT3do 188E M
waysks
po3xoddng pa3xoddns jon pa3zxoddng pe3xoddns 30N abexols ssew 068¢ °A
, wnsdsqns
peo3xoddng pa3xoddns 30N pe3xoddng pe3zoddns 30N buTyuTId 008E "N
WYIA &g spowl SA/dON
UT GOLE/NWOLE ®© O3 wasis
ISA/SO se aues pa3xoddns 30N payosejzze payaoddng pajxoddns 30N UOTIEDTUNMWOD 06LE "L
(WYLA eTA ‘
{WN¥DL WYIL pue ‘WVOL (YD (ZLLE se) Teutwiay
1SA/SO se auweg ‘WYLd) pe93xoddng ‘Wulg) pajzxoddng ‘wulg) paazoddns suoTieOTUNMWOD BIRQ 08LE °S

WYLA pue ‘WVYOL ‘WYLE

ut xoddns oLz &q

SOLE/NOLE X0 T0LZ

e 03 payoe3ijze SUOTI

-exwdo (J5g) uor3ed

~ TUNIIOD SNOUOIYIULS

& reutrq 103 pajxoddng

WYOL “WVIA Ybnom3 WYDL pue

pue Wyld ut 3zoddns WiIA £q spou SA/dON

0LLZ &q SOLE/hOLE ut GOLE/WOLE © O3
10 T0LZ © O3 paysel3ze payose3je suoTiexado
suofjexado uUOT3eDT (J1dSs) TOox3u0d
-Unuwoo snouoayodu ks JUT] e3P SNOUOIYD wajzsis
ISA/S0 se awmes Axeutq 103 pajaoddng ~ufks I03 pazxoddng pajroddns 30N uOT3EDTUNUMIC) e3ed OLLE °*d
€ oseatay L"T 9sestay ISA/SO IAW pu®e IIW SO 3injead S9ICMDIPH
ZsSa/S0 ZSA/SO .

A Guide to the IBM System/370 Model 158

166

Page of GC20-1754-2

Revised February 20, 1976

By TNL GN20-3580

INDEX (Sections 01 to 70)

Sl el et

address space, definition &40

alter/display mode for the display console 32,72
architecture design 9

ASCII/EBCDIC mode 9

basic control mode
compatibility with System/360 9
programming systems support 10,153
block multiplexer channels 27,28
buffer storage
Model 1 24
Model 3 134
buffer assignment algorithm
Model 1 24
Model 3 136
byte multiplexer channels
Model 1 27
Model 3 137

change bit 72
channel indirect data addressing 74
channel masking changes for EC mode 14
channel program translation 76
channel retry 20
Channel-to-Channel Adapter 27
channels 27
CLEAR I/0 instruction 18
clock comparator 19
command retry 20
COMPARE AND SWAP instruction 18
COMPARE DOUBLE AND SWAP instruction 18
comparison table, Models 50, 65, 145, 155, 155 II, and 158 141
comparison tables
DOS and DOS/VS support of the Model 158 154
0S and OS/VS support of the Model 158 160
compatibility
BC mode with System/360 9
features 39
Model 155 with Model 158 9
conscle file 26
console panel 29
conscles, system
display console 28
3056 Remote System Console 32.1
control registers 12
control storage (see reloadable control storage)
CPU '
access times 23
cycle time 12
extended logout area 20
CPU timer 19
cycle time
CPU 12
processor storage 23

DAT hardware (see dynamic address translation)
disk cartridge 26,29, 30, 35
display console

alter/display frame 32,72

A Guide to the IBM System/370 Model 158

167

Page of GC20-1754-2
Revised February 20, 1976
By TNL GN20-3580

configuration frame 31
display tube 28
keyboard 28
manual frame 31
microcode loading 29
modes of operation 29
program frame 31
programming support 30
security key 32
service frame 31
store status function 31
DOsS Version 4 10,139,154
DOS/Vs 10,139,153
dynamic address translation
addresses translated 62,69
functions 47
instruction nullification 73
segment table origin address 63,68
time to perform 68
translation lockaside buffer 68
translation process 65
translation tables 63

extended control mode

description 12

programming systems support 10,153
external interruption masking 12
external page storage 58

features of the Model 1
optional 39
standard 29 38

features of the Model 3 134

fixed processor storage locations
model-dependent 16
model-independent 15

IMPL 26
inboard file 26,29,35
index array for buffer storage
Model 1 24
Model 3 136
indirect data address list T4
indirect data address word 74
INSERT PSW KEY instruction 18
instruction nullification 73
instructions
¢ anges to for EC mode 1u4
classes with improved execution speed
Model 1 18
Model 3 134
list of standard 38
prefetching 12,18
Integrated Storage Controls feature
for 3330-series strings 104
for 3340 strings 126
summary of features 132
internal performance 2
interruptions
machine check 20
page translation exception 59,65
segment translation exception 63
SSM instruction 16
interval timer 19
I7/0 devices for the Model 158

168 A Guide to the IBM System/370 Model 158

\\’./

maximum confiquration 27
Model 1 103
Model 3 103

LOAD REAL ADDRESS instruction 65
local -storage 12
long-term fixing 60

machine check code 22

rachine check interruptions 20

main storage (see processor storage)

Model 155 IT 1,11,12,18,19,20,31,40,68,72,140
Model 158 Model 1 and 3 differences 134-139
monolithic technology for processor storage 8

nonpaged mode of program operation 61
N-disk 30,35

optional features, Models 1 and 3 39
O0S MFT and MVT 10,139,160

0s/Vsl and 0Os/VS2 10,139,160
outboard file 30,35

" page 57,62

page ahead 60
page fault 59
page frame 58
page-in 58
page-out 58
page replacement algorithm 60
page table 58,65
rage translation exception 59,65
paged mode of program operation 61
paging 58
paging device 58
performance in a virtual storage environment 76-91
factors affecting 79
increasing 87
relationship to virtuval storage size 83
permanent fixing 60
Power Warning feature 21
processor storage
access time 23
cycle time
Model 1 23
Model 3 134
sizes 23
technology 8
program event recording, description 17
programming systems support of the Model 158 -
DOS Version 4 10,139,154
DoOs/vVs 10,139, 15u
OS MFT and MVT 10,139,160
0s/vsl and 0OS/VS2 10,139,160
VM/370 1
PSW
BC mode format 12,13
EC mode format 12,13
PURGE TLB instruction 68

RAS features 20

real storage 44

recovery management routines 21
reference bit 72

reloadable control storage 25

A Guide to the IBM System/370 Model 158

Page of GC20-1754-2
Revised February 20, 1976
By TNL GN20-3580

169

Page of GC20-1754-2
Revised February 20, 1976
By TNL GN20-3580

Remote Support Facility, Model 1
components 34
modes of operation 36
objectives 33
RETAIN/370 36
service processor unit 35
Remote Support Facility, Model 3 138
RESET REFERENCE BIT instruction 72

segment 57,62
segment entry save area 68-69
segment takble 58,63
segment table origin address 63,68
segment translation exception 63
service processor 35
SET CLOCK COMPARATOR instruction 19
SET CPU TIMER instruction 19
SET PSW KEY FROM ADDRESS instruction 18
SET SYSTEM MASK instruction interruption 16
short-term fixing 60
slot 58
standard features, Models 1 and 3 38
storage
buffer 24
control 25
external page 58
local 12
processor (main) 23
protect key expansion 17
real u4y
virtual (see virtual storage)
storage control unit 27
storage protect key 17,72
STORE CLOCK COMPARATOR instruction 19,20
STORE CPU TIMER instruction 19,20
store status function 31
STORE THEN AND SYSTEM MASK instruction 18
STORE THEN OR SYSTEM MASK instruction 14
subchannels
Model 1 27
Model 3 137
system console 28
system highlights 1-5
system space requirements 6
system technology 7-8
S-disk 26,29,35

task deactivation 81

temporary fixing 60

thrashing condition 81
translation lookaside buffer 68
translation tables 63

UCW's (see subchannels)

virtual equals real mode 61
Virtual Machine Assist feature 98
Virtual Machine Facility/370 10,92
virtual machines

advantages 100

definition 91

general operation 93
virtual storage

advantages 50-57

definition 44

170 Guide to the IBM System/370 Model 158

Page of GC20-1754-2
Revised February 20, 1976
By TNL GN20-3580

organization 62
need for 40-44
performance factors 79
relationship between size and performance 83
resources required to support 77
virtual storage address fields 63
virtual storage page 58

2955 Remote Analysis Unit 33,35
3056 Remote System Console 32.2
3210 console Printer-Keyboard 28
3215 Console Printer-Keyboard 28

3330-series disk storage
attachment via Isc 104
Model 11 drives 103

3340 direct access storage facility
advantages summary 129
alternate tracks 114,117,119,122
attachment via integrated storage controls 126
attachment via the 3830 Model 2 123
capacity 108
channel switching features 124
defect skipping 121
description of 3340 drives 108
error detection and correction code 121
error logging and recovery 125
features table 131
fixed head feature 110,117
intermixing 3340 and 3330-series drives on an attachment 128
maltiple requesting 123
physical address bytes 122
programming support 156
read only feature 112
rotational position sensing 123
seek verification 123
servo system 114
string configurations 108
string switching 124
timing characteristics 121

3348 pData Module, for the 3340 direct access storage facility
advantages 110
capacity
Model 35 120
Model 70 120
Model 70F 120
cylinder and read/write head layout
Model 35 114,115
Model 70 114,116
Model 70F 117,118
general description 108
initialization 122
layout of physical and logical tracks 112
loading and unloading 111
track formatting 119

3830 storage Control Model 2

features for 3340 facilities 123
summary of features 132

A Guide to the IBM System/370 Model 158

171

172

THIS PAGE INTENTIONALLY BLANK

A Guide to the IBM System/370 Model 158

SECTION 80: DOS/VIRTUAL STORAGE FEATURES

If required, the DOS/Virtual Storage Features Supplement, GC20~1756,
is to be inserted here,

A Guide to the IBM System/370 Model 158 » 173

174

THIS PAGE INTENTIONALLY BLANK

A Guide to the IBM System/370 Mcdel 158

SECTION 90: OS/VIRTUAL STORAGE 1 FEATURES

If required, the 0S/Virtual Stor

age 1 Features Supplement, GC20-1752,
is to be inserted here.

A Guide to the IBM System/370 Model 158 175

THIS PAGE INTENTIONALLY BLANK

176 A Guide to the IBM System/370 Model 158

SECTION 100: OS/VIRTUAL STORAGE 2 RELEASE 1 FEATURES

If required, the 0S/Virtual Stora

ge 2 Release 1 Features Suprlement,

GC20-1753, is to be inserted here.

A Guide to the IBM System/370 Model 158 177

178

v BN AR B L e 1,

THIS PAGE INTENTIONALLY BLANK

A Guide to the IBM System/370 Model 158

SECTION. 110: VIRTUAL MACHINE FACILITY/370 FEATURES

If required, the Virtuyal Machine Faci

1ity/370 Features Supplement,

GC20-1757, is to be inserted here.

A Guide to the IBM System/370 Model 158

179

180

THIS PAGE INTENTIONALLY BLANK

A Guide to the IBM System/370 Model 158

hCS

esecesvesevevssonese

cssscee

secseccccnnse

READER'S COMMENT FORM

A Guide to the IBM System/370 Model 158 ' GC20-1754-2

Please comment on the usefulness and readability of this publication, suggest additions and
deletions, and list specific errors. and omissions (give page numbers). All comments and sugges-
tions become the property of M. If you wish a reply, be sure to include your name and address.

ccersescces

esesnces

secseveccescnsses

cecesecsssrrescsscocse

seee

s eecvcesscnssescecsnscseccsase

secssssecenenne

COMMENTS

fold fold

fold fold

¢ Thank you for your cooperation. No postage necessary if mailed in the U.S.A.
FOLD ON TWO LINES. STAPI.E AND MATT

GC20-1754-2

Your comments, please . . .

This manual is part of a library that serves as a reference source for systems analysts,
programmers and operators of IBM systems. Your answers to the questions on the back of this
form, together with your comments, will help us produce better publications for your use. Each
reply will be carefully reviewed by the persons responsible for writing and publishing this
material. All comments and suggestions become the property of IBM.

Foid Fold
First Class
Permit 40
Armonk
New York
I
R
Business Reply Mail I—
No\postage stamp necessary if mailed in the U.S.A. f—
I
Postage will be paid by: —
International Business Machines Corporation —
1133 Westchester Avenue i —
White Plains, New York 10604 S
Att: Technical Publications/Systems — Dept. 824
Fold Fold

TSIV

[
International Business Machines Corporation
Data Processing Division
1133 Westchester Avenue, White Plains, New York 10604
(U.S.A. only)

IBM World Trade Corporation ,
821 United Nations Plaza, New York, New York 10017
(International)

TYSL1L-020D 'V'S'N Ul paiulld 8GL I9PO < 121sAg NG| 2y1 01 apIND Y

(&

ecssoeescsans

READER'S COMMENT FORM

A Guide to the IBM System/370 Model 158 GC20-1754-2

Please comment on the usefulness and readability of this publication, suggest additions and
deletions, and list specific errors and omissions (give page numbers). All comments and sugges-
tions become the property of 1m. If you wish a reply, be sure to include your name and address.

LRI

ecessecssessscsss

COMMENTS

fold fold

fold fold

¢ Thank you for your cooperation. No postage necessary if mailed in the U.S.A.
FOLD ON TWO LINES, STAPLE AND MAIL.

GC20-1754-2

Your comments, please . . .

This manual is part of a library that serves as a reference source for systems analysts,
programmers and operators of IBM systems. Your answers to the questions on the back of this

form, together with your comments, will help us produce better publications for your use. Each

reply will be carefully reviewed by the persons responsible for writing and publishing this
material. All comments and suggestions become the property of IBM.

...

.....................

Business Reply Mail
No postage stamp necessary if mailed in the U.S.A.

Postage will be paid by:
International Business Machines Corporation

1133 Westchester Avenue
White Plains, New York 10604

Att: Technical Publications/Systems — Dept. 824

...

Fold

BV

International Business Machines Corporation

Data Processing Division

1133 Westchester Avenue, White Plains, New York 10604
(U.S.A. only)

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
(International)

Fold

.

R

Seeeees s 0000 s s an s et s

<

CV¥GL1-020D 'V'S'N ulpawulld 8Gl IPPOIN (ualsAS ING1 8Y3 01 8pInD Y

-

EM Technical Newsletter This Newsletter No. GN20-3580

Date February 20, 1976
; Base Publication No. GC20-1754-2
A File No. S370-01
Previous Newsletters None

A Guide to the IBM.
‘System/370 Model 158

© IBM Corp. 1972, 1974, 1975

This Technical Newsletter provides replacement pages for the subject publication.

Pages to be inserted and/or removed are:

Contents 105-106

36 123-128

27-32 139-140

32.1-32.2 (added) 145-146

69-70 149-172

93-94 v 173-180 (formerly 165-172, otherwise unchanged)
x : - Avertical rule in the left margin indicates a change. Absence of a vertical rule on a page bearing a

Lt ‘revised’ notice means only that existing copy has been moved or that a minor typographical error

has been corrected.
Summary of Amendments
0S/VS2 Release 36 - Support of Model 158 hardware and new I/O devices has been added to the
Summary Tables. Miscellaneous other corrections have been made as well.
Please file this cover letter at the'bacl;c of the manual to provid§ a record of chiiiges.{
. J
S’

1BM Corporatidh, Technical Publications/Systems, Dept. 824, 1133 Westchester Avenue, White Plains, N.Y. 10604

~ Printed in U.S.A.

(.

GC20-1754-2

TSIV

International Busi Machil Corporation

Data Processing Division

1133 Westchester Avenue, White Plains, New York 10604
(U.S.A. only)

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
(International)

T-¥SL1-020D "V'S'N Ul paiulld 8GL |9POIN 0LE/WalSAS [NE] 3Y3 01 apIng v

