
'(, ,.
1
, i
..

;

File No. 8360-24
Order No. GC24-3433-6

Systems Reference Library

IBM System/360
Disk and Tape Operating Systems
COBOL Language Specifications

COBOL DOS, Program Number 360N-CB-452
COBOL TOS Program Number 360M-CB-402

COBOL (COm;mon Business Oriented Language) is a
programming-language, similar to English, that is
used for commercial data processing. It was
developed by the Conference of Data Systems
Languages (CODASYL).

This publication provides the programmer with
rules for writing programs in COBOL for IBM
System/360 Disk and Tape Operating Systems. Users
unacquainted with COBOL should read the programmed
instruction textbook COBOL Program Fundamentals,
Form R29-0205, with its reference handbook, Form
R29-0206.

(f

DOS
TOS

Seventh Edition (October 1972)

This is a reprint of GC24-3433-5 incorporating changes issued
in Technical Newsletters GN28-0245, dated February 25, 1969,
GN28-0256, dated February 16, 1970, GN28-0407 1 dated
August 15, 1970, and GN28-0471, dated December 15, 1971.
This edition does not make obsolete the previous edition and
the associated Technical Newsletters.

Specifications contained herein are subject to change from time to
time. Any such change will be reported in subsequent revisions or
Technical Newsletters.

Requests for copies of IBM publications should be made to your IBM
representative or to the IBM branch office serving your locality.

Address comments concerning this publication to IBM Corporation,
Programming Publications, 1271 Avenue of the Americas, New York,
New York 10020.

© Copyright International Business Machines Corporation 1965, 1968

•

Summary of Amendments No. 1

Date of Publication: December 15, 1971

Form of Publication: TNL GN28-0471 to GC24-3433-5

Miscellaneous Changes

Maintenance: Documentation Only

Minor corrections and clarifications to text and index .

Specific technical changes to the text made as of this publishing date are indicated by a vertical bar
to the left of the text. These bars will be deleted at any subsequent republication of the page
affected.

-~\

•

. -~

\~;

"

PREFACE

Thxs publication describes the COBOL language as implemented for the
IBM System/360 Disk and Tape Operating systems. Its purpose is to serve
as a reference manual for writing COBOL D programs.

The reader should have some knowledge of the COBOL language before
using this manual. Useful COBOL information can be found in the follow
ing publications:

COBOL Program Fundamentals: Text, Form R29-0205

COBOL Program Fundamentals: Reference Handbook, Form R29-0206

Writing Programs in COBOL: Text, Form R29-0210

Writing Programs in COBOL: Reference Handbook, Form R29-0211

COBOL Programming Techniques: Text, Form R29-0215

Detailed information and examples helpful to the COBOL D programmer,
including information about compiling, linkage editing, and executing
COBOL D programs, can be found in the IBM system/360 Disk and Tape
Operating Systems: COBOL Progrannner's Guide, Form C24-5025, which is a
requisite to this publication.

The following features are IBM extensions to COBOL for IBM System/360
Disk and Tape Operating Systems, and are marked adjacent to the appli
cable features in this publication by the symbol r--1 •

IEXTI

1. The ORGANIZATION clause L---J

2. Internal and external floating-point items and floating-point
literals

3. The overflow-name test-condition

4. The RECORD-KEY clause

5. The Linkage Section of the Data Division

6. Options 1 and 2 of the USE sentence

7. The REWRITE statement

8. The TRANSFORM statement

9. The Debugging Language

10. Sterling Currency feature

ACKNOWLEDGMENT

The following extract from Government Printing Off ice Form Number
1965-0795689 is presented for the information and guidance of the user:

•Any organization interested in reproducing the COBOL report and spe
cificcations in whole or in part, using ideas taken from this report as
the basis for an instruction manual -or for any other purpose is free to
do so. However, all such organizations are requested to reproduce this
section as part of the introduction to the document. Those using a
short passage, as in a book review, are requested to mention 'COBOL' in
acknowledgment of the source, but need not quote this entire section.

•coBOL is an industry language and is not the property of any company
or group of companies, or of any organization or group of organizations.

•No warranty, expressed or implied, is made by any contributor or by
the COBOL committee as to the accuracy and functioning of the program
ming system and language. Moreover, no responsibility is assumed by any
contributor or by the committee, in connection therewith.

"Procedures have been established for the maintenance of COBOL.
Inquiries concerning the procedures for proposing changes should be
directed to the Executive committee of the Conference on Data systems
Languages.

•The authors and copyright holders of the copyrighted material used
herein

FLOW-MATIC (Trademark of Sperry Rand Corporation),
Programming for the Univac (r) I and II, Data
Automation Systems copyrighted 1958, 1959, by
Sperry Rand Corporation; IBM Commercial Translator,
Form No. F28-8013, copyrighted 1959 by IBM; FACT,
DSI 27A5260-2760, copyrighted 1960 by Minneapolis
Honeywell

have specifically authorized the use of this material in whole or in
part, in the COBOL specifications. such authorization extends to the
reproduction and use of COBOL specifications in programming manuals or
similar publications.•

~\

...

I~

•

SECTION 1: BASIC FACTS • 9
Machine Requirements • • • • • • • 9
Character Set • • • • • • • • • 10
Punctuation • • 11
Word Formation • • • • • • • • • • • 11
Types of Names • • • • 12

Data-Names • • • • • • • • • 12
External-Names • • • • • • • • 12
Procedure-Names • • • • • • 12
Paragraph-Names • 12

other Names 13
Qualification of Names • • 13
COBOL Program Sheet • • • • • • • 14

Sequence Number: (Columns 1-6) • 14
Continuation Indicator: (Column 7) • • 14
Source Progrcm Statements: (Columns
8-72) • • • • • • • • • • • • 14
Program Identification Code:
(Columns 73-80) 14
Margin Restrictions • • • • • 14
Continuation of Non-Numeric Literals • 15

Format Notation • • • • • • • • • • • • 15

SECTION 2: COBOL PROCESSING
CAPABILITIES • •
Input/Output Processing

Data Organization
Standard Sequential Data
Organization • • • • • • • •
Indexed Data Organization
Direct Data Organization

Access Methods • • • • • • • •
Keys • • • • • • • • • • • ~ • •

•• 17
•• 17
•• 17

• 17
17
18

•• 18
•• 18

Accessing a Direct File Randomly •
Accessing an Indexed File Randomly •
Accessing an Indexed or Direct File

19
• 19

Sequentially • • • • • • • • • • • 19
creation of an Indexed File 20
Creation of a Direct File • • • • • • 20

SECTION 3: Identification Division • 22

SECTION 4: ENVIRONMENT DIVISION 23
General Description 23
Configuration section 23
Input-output section • • . 24

File-Control Paragraph 25
SELECT Sentence 25
ASSIGN Clause 25
ACCESS Clause 26
ORGA.NIZATION Clause 26
RESERVE Clause 26
SYMBOLIC KEY Clause 27
ACTUAL KEY Clause . 27
RECORD KEY Clause 28

I-0-Control Paragraph . . 28
SAME Clause 28
RERUN Clause 29
APPLY Clause • . 30

SECTION 5: DATA DIVISION
General Description
Organization Of The Data Division

File Section • • • • •
Working-Storage section • • • •
Linkage section • • • • •

concepts of Data Description •
Levels of Data Items •
Data-Names • • • • • •
Literals • • • • • • • • • • • •

Non-Numeric Literals • • • • •
Numeric Literals ••
Floating-Point Literals

Figurative Constants •
condition-Names
Types of Data Items • • • •

Group.Items
Elementary Items • •
Alphabetic Item
Alphanumeric Item • • • •
Report Item ••.••
Fixed-Point Items
Floating Point Items

Alignment of Data Fields • • • • •
File Section • • • • • •

Record Formats • • •
File Section Entries

Clauses • • • • • •
BLOCK CONTAINS Clause
RECORD CONTAINS Clause • • • •
LABEL RECORDS Clause •
DATA RECORDS Clause
RECORDING MODE Clause

Record Description Entry • • • • •
Group Item • • • • • • • •
Elementary Items

Alphabetic Item
Alphanumeric Item • • • •
Report Item
External Decimal Item
Internal Decimal Item • • • •
Binary Item • • • •
External Floating-Point Item •
Internal Floating-Point Item •

CONTEN'l'S

• 32
• 32
• 32
• 32
• 33

• • • 33
• 33
• 33
• 34
• 35
• 35
• 35
• 36
• 36
• 37
• 38

38
• 39
• 39
• 39
• 39

• • • 39
• 40
• 41
• ~2
• 43
.. 43
• 44
• 44
• 46

• • • 46
• 47
• 47
• 48
• 49
• 49
• 50
• 49
• 50

• • • 50
• 51
.. 51
• 51
.. 52

USAGE Clause • • • • • • • • • • 52
PICTURE Clause • • 53
BLANK Clause • • • 58
VALUE Clause • • 58
REDEFINES Clause • 59
OCCURS Clause
Subscripting A Qualified
JUSTIFIED RIGHT Clause

• • • • • .. 60
Data-Name • 62

WOrking-Storage Section
Linkage Section • • • •

SECTION 6: PROCEDURE DIVISION
Purpose • • • •
Syntax • • • • • • • • • • • •

• 63
• 63
• 64

• 66
••• 66

• 66

Sections • • • • • • 66
Paragraphs • 66
Sentences 67
Expressions • • • • • 67
Statements • • • 67

Types of statements • 67
Conditionals • • • 68

IF Statement • • 68
Compiler-Directing Declaratives • 77

USE statement • • • • • • • 78
Continued Processing of File • • • 80

COBOL Verbs • • • • • • • • • 80
Input/Output Statements • • 81

OPEN Statement • 81
READ Statement • • • 82
WRITE Statement • • • • • 84
REWRITE Statement • • • • • • • 86
CLOSE Statement 86
DISPLAY Statement • 87
ACCEPT Statement • • • • • • • • • • 88

Data Manipulation Statements • • • 90
MOVE Statement • • • • • • • • 90
EXAMINE Statement 91
TRANSFORM Statement • • • • • 9tJ

Arithmetic Statements 96
ADD Statement 98
SUBTRACT Statement • 98
MULTIPLY Statement • • • • • 99
DIVIDE Statement • • • • • 99
COMPUTE Statement •• 100
Arithmetic Expressions • • • • .100

Procedure Branching Statements •• 101
STOP Statement • • • .101
'GO TO Statement • • • • .102
ALTER Statement •• 102
PERFORM Statement •••••• 103

Compiler-Directing Statements •• 109
ENTER Statement •• 109
EXIT Statement • .111
NOTE Statement • • • • • • .111

SECTION 7: SOURCE PROGRAM LIBRARY
FACILITY •••••• • ••• • • • • •• 112

Copy Clause • • • •
INCLUDE Statement

SECTION 8: STERLING CURRENCY FEATURE

.112

.113

AND INTERNATIONAL .CONSIDERATIONS • .114
Sterling Currency Feature .114

Sterling Non-Report •• o •••••• 115
Sterling Sign Representation • .116

Sterling Report •••• o • • • .116
Procedure Division considerations •• 117

International Considerations •••••• 118

SECTION 9: COBOL DEBUGGING LANGUAGE • ~119
TRACE • • • • • • • • • .• • • • • • • 119
EXHIBIT • • • • • • • • • .119
ON (Count-Conditional Statement) ••• 120

Compile-Time Debugging Packet .121

APPENDIX A: DISK AND TAPE OPERATING
SYSTEMS COBOL WORD LIST •••••••• 122

APPENDIX B: INTRARECORD SLACK BYTES
AND RECORD ALIGNMENT IN BLOCK FILES •• 124
Intrarecord Slack Bytes .124

coding for a Usage Clause •••••• 125
coding of an OCCURS Clause 127

Record Alignment Within Block Files •• 127
Block Files Example Coding •••••• 128
Block File Example Coding Showing
the Filler for Alignment (Repeated
Here for Clarity) ••••••••
some Rules to Remember • • •

Linkage section
In File Section

APPENDIX C: INTERMEDIATE RESULTS IN
ARITHMETIC OPERATIONS • .. • • •

Intert{lediate Results • • • • •
Compiler Treatment of Intermediate
Results • • • • • • • • •

APPENDIX D: COBOL PROGRAMS •

INDEX

.129

.130

.130

.130

.131

.131

.133

.134

.139

Figure 1. Permissible Data
Organization Clauses and Statements • • 21
Figure 2. subdivisions of a Weekly
Time-Card Record. • • • • • • • • • • • 34
Figure 3. Example of Data Levels • 34
Figure 4. Condition-name Example 38
Figure s. Representation of Numeric
Items • • • • • • • • • • • 41
Figure 6. Relationship Between
Labels and Device Assignment • • • • • • 47
Figure 7. Editing Applications of the
PICTURE Clause • • • • • •
Figure 8. An Example of Subscripting
for a Defined Array

58

62

69
Figure 9. Evaluation of IF or ON
Conditional Statement • • • • • • •
Figure 10. Evaluation of Conditional
Statement other than IF or ON
Figure 11. Conditional Statements

•• 70

with Nested IF Statements • • • • • • • 70
Figure 12. Logical Flow of
Conditional Statement with Nested IF
Statements • • • • • • • • • • • • • •
Figure 13. Permissible Comparisons
Figure 14. Truth Table • • • • • • •
Figure 15. Formation of Symbol Pairs
Figure 16. Error-Processing Summary
Figure 17. Restrictions for

• 72
74

• 76
• 11
• 80

Input/Output Statements • • • • • • • • 89
Figure 18. Examples of Data Movement • 91

FIGURES

Figure 19. Permissible Moves • 92
Figare 20. Examples of Data
Examination • • • • • • • • • • 94
Figure 21. Examples of Data
Transformation • 96
Figure 22. Relationship Between
Calculated Value and Value stored • 97
Figure 23. Logical Flow of Option 4
PERFORM Statement Varying One ••••• 106
Figure 24. Logical Flow of Option 4
PERFORM Statement Varying Two .107
Figure 25. Logical Flow of Option 4
PERFORM Statement Varying Three .108
Figure 26. Restrictions for
·Procedure-Branching Statements .10 9
Figure 27. Format of Sterling Report
PICTURE Clause ••••••••••••• 118
Figure 28. St~rling currency Editing
Applications ••••••••••• 118
Figure 29. Use of Implied Filler as
Slack Bytes ••••••••••• 125
Figure 30. Use of Slack Bytes as a
Filler When a Group Field is Defined • .126
Figure 31. Invalidly Aligned and
Appropriately Aligned File A Buffer • .129
Figure 32. Calculating Intermediate
Results •••••••••••••••• 132
Figure 33. Example of a Calling Program 134
Figure 34. Example of a subprogram • ·136

I~

•

SECTION 1: BASIC FACTS

This section defines the minumum machine requirements for COBOL, the
COBOL character set, and describes the formation of COBOL words. It
also includes special topics such as punctuation, name qualification,
and rules for writing COBOL source programs on a program sheet.

Disk Operating System COBOL requires at least 24K bytes of main
storage if the disk compiler is allocated 14K bytes of storage.

Tape Operating system COBOL operates in a 16K byte environment if the
compiler is allocated 10K bytes of storage.

A summary of the functions of all devices supported, including inter
mediate <work) storage, follows:

r-------------T--1
IUnits Used I Functions I
!by COBOL ~-------------T-------------T--------------.-------------~
I Processor I Input I Work I Output I List I
~-------------+-------------+-------------+--------------+-------------~
111..03 I I I I x I
I 1404* I I I I x I
f 1442 I x I I x I I
11443 I I I l x I
12so1 I x I f I I
12s20 I x I I x I I
12s40 I x I I x I I
12311** I D I D I D I D I
I 2314** I D I D I D I D I
12400-series**I X I X ; X I X I
~--·-----------J. _____________ J. _____________ .L_. _____ - -------..!.-------------~

I Notes: I
I I
I D - Indicates Disk Operating System COBOL only. I
I * - For continuous forms only. I
I** - For work files three logical files are required and they must be I
I the same device type. I
L--J

Compile and execute is provided in all systems if sufficient interme
diate storage is available •

Intermediate (work) storage devices may not be mixed.- Where 2400
series magnetic tape units are used, a minimum of three (3) units are
required.

Expanded instruction sets may be required depending on the specific
requirements of the language program utilized as follows:

For COBOL:

SYSTEM REQUIRES: Standard instruction set, decimal arithmetic set.
(Floating-point option is required if floating-point
literals are used.)

Section 1: Basic Facts 9

OBJECT PROGRAM
REQUIRES:

Standard instruction set, decimal arithmetic option.
<Floating-point option is required if non-integer
exponents or floating-point number$ are used.)

The device type dependency of problem programs is established at compile
time. Problem programs compiled by COBOL support the following units:

1403
1404*
1442
1443
1445
2501
2520
2540
2400 series (7 or 9 track>
2311**
2314**
2321**

*For continuous forms only.

**For Disk Operating System only.

The complete COBOL character set consists of the following 51
characters:

Digits O through 9
Letters A through z
Special characters:

10

Blank or space
+ Plus sign

Minus sign or hyphen
* Check protection symbol, asterisk
/ Slash
= Equal sign
> Inequality s~gn <greater than)
< Inequality sign <less than)
$ Dollar sign

Comma
Period or decimal point
Quotation mark <also called a prime or apostrophe; is a 5-8 card
punch. Note: DOS does not use double quotation marks, which is a
7-8 punch.>

(Left parenthesis
) Right parenthesis

Semicolon

Of the previous set, the following characters are used for words:

0 through 9
A through z
- (hyphen)

The following characters are used for punctuation:

Quotation mark
(Left parenthesis
) Right parenthesis

•

Comma
Period
semicolon

The following characters are used in arithmetic expressions:

+ Addition
Subtraction

• Multiplication
/ Division
** Exponentiation

The following characters are used in relation tests:

> Greater than
< Less than
= Equal to

All of the preceding characters are contained in the COBOL character
set. In addition, the programmer can use, as characters in non-numeric
literals, ,any characters (except the quotation mark) included in the IBM
Extended Binary-Coded-Decimal Interchange Code; however, such characters
may be unacceptable to COBOL for other computers.

PUNCTUATION

The following general rules of punctuation apply in writing COBOL
source programs:

1. When any punctuation mark is indicated in a format in this publica
tion, it is required.

2. A period, semicolon or comma, when used, must not be preceded by a
space, but must be followed by a space.

3. A left parenthesis must not be followed inunediately by a space; a
right parenthesis must not be preceded immediately by a space.

4. At least one space must appear between two successive words and/or
parenthetical expressions and/or literals. Two or more successive
spaces are treated as a single space, except in non-numeric
literals.

5. When an arithmetic operator or an equal sign is used, it must be
preceded by a space and followed by another space.

6. When the period or conuna, or arithmetic operator characters are
used in the PICTURE clause as editing characters, they are governed
by rules for report items only.

1. A comma may be used as a separator between successive operands of a
statement. A comma or semicolon may be used to separate a series
of clauses. A comma or a semicolon or the word ~ may be used to
separate a series of statements.

WORD FORMATION

A word is composed of a combination of not more than 30 characters,
chosen from the following set of 37 characters:

Section 1: Basic Facts 11

0 through 9 (digits)
A through z (letters)
- (hyphen)

A word must not begin or end with a hyphen. A word is ended by a
space, or by proper punctuation. Embedded hyphens are permitted. All
words in COBOL are either reserved words, which have preassigned mean
ings in COBOL, or programmer-supplied ~· Each type of name is dis
cussed in the section of this publication in which it is first
mentioned.

TYPES OF NAMES

Several types of names are used in writing a COBOL program. Each
type must conform to specific requirements.

DATA-NAMES

A data-name must contain at least one alphabetic character, and must
be formed according to the rules for word formation. It is used to
identify a data item in the Data Division.

EXTERNAL-NAMES

An external-name consists of quotation marks enclosing no more than
eight alphabetic and numeric characters, the first of which must be an
alphabetic character. For example:

1 ABCDEFGH 1

I Z123 1

1 L64M38 1

PROCEDURE-NAMES

Procedure-names follow the rules for word formation. They may be
composed solely of numeric characters, in which case they are equivalent
only if they are composed of the same number of digits and have the same
numeric value. For example, 00123 and 123, when used as procedure
names, are not equivalent.

PARAGRAPH-NAMES

Paragraph-names are procedure-names and therefore follow the rules
for formation of procedure-names.

12

other.Names

The following name types take the same format used in the formation
of data-names:

• FILE..;. NAMES

• CONDITION-NAMES

• RECORD-NAMES

• OVERFLOW-NAMES

QUAI.IFICATION OF NAMES

Every name used in a COBOL source program must·be unique within the
source program, either because no other name has the identical spelling,
or because the name exists within a hierarchy of names (so that the name
can be made unique by mentioning one or more of the higher levels of the
hierarchy}. The higher levels are called qualifiers when used in this
way, and the process is called qualification.

The following rules apply to the qualification of names:

1. The word OF or IN must precede each qualifying name, and the names
must appear in ascending order of hierarchy.

2. A qualifier must be of a higher level and within the same hierarchy
as the name it is qualifying.

3. The same name must not appear at two levels in a hierarchy in such
a manner that it would appear to qualify itself.

4. The highest level qualifier must be unique. Each qualifying name
must be unique at its own level within the hierarchy of the inunedi
ately higher qualifier.

5. Qualification when not needed is permitted.

6. Qualifiers must not be subscripted, although the entire qualified
name may be subscripted.

7. The total number of characters X in a qualified data-name cannot
exceed 300 where:

X = T + 4N

T is the number of characters in all the data-names in the string,
and N is the number of data-names.

For example: PARTNAME IN MONTHLY-INVENTORY IN FACTORY-B IN
STATE-C.

There are four data-names, so N=4. There is a total of 41 charac
ters in the four data-names, so T=41. Hence:

x = 41 + 16 = 57.

8. Regardless of qualification, procedure names and data names must
not be the same. The description of the OCCURS clause contains
additional information regarding qualified names and subscriptiD<J.

Section 1: Basic Facts 13

COBOL PROGRAM SHEET

The purpose of the program sheet is to provide a standard way of
writing COBOL source programs.

This program sheet, despite its necessary restrictions, is of a rela
tively free form. The programmer should note, however, that the rules
for using it are precise and must be followed exactly. These rules take
precedence over any other rules, with respect to spacing.

SEQUENCE NUMBER: (COLUMNS 1-6)

The sequence number must consist only of digits; letters and special
characters should not be used. The sequence number has no effect on the
source program and neeq not be written. If the programme~ supplies
sequence numbers in each program card, the compiler will check the
source program cards and will indicate any errors in their sequence. If
these columns are blank, no sequence error will be indicated.

CONTINUATION INDICATOR: (COLUMN 7)

A hyphen may be placed in this column for the continuation of non
numeric literals~

see Continuation of Non-Numeric Literals.

SOURCE PROGRAM STATEMENTS: (COLUMNS 8-72)

These columns are used for writing the COBOL source program. Concep
tually. a blank is assumed to be appended after column 72 on every line
of a program sheet except where a non-numeric literal spans more than
one line. Bence, if the last character of a word is in column 72, a
blank is assumed to be appended to it, thus terminating the word.

PROGRAM IDENTIFICATION CODE: (COLUMNS 73-80)

These columns can be used to identify the program. Any character
from the COBOL character set may be used, including the blank. The pro
gram identification code has no effect on the object program or the
compiler.

MARGIN RESTRICTIONS

There are two margins on the COBOL program sheet: Margin A (columns
8-11)~ and Margin B (columns 12-72).

A division-name must begin in Margin A, and be followed by a space,
the word DIVISION, and a period. This entry must appear on a line by
itself.

14

A section-name must begin in Margin A1 and be followed by a space,
the word SECTION, and then a period. This entry must.appear on a line
by itself, except in declarations and the INCLUDE verb.

A paragraph-name must also begin in Margin A, and must be followed
immediately by a period and a space. Statements within a paragraph may
start on the same line as the paragraph-name. succeeding lines of the ·
paragraph must begin in Margin B.

When a statement spans more than one line, and column 72 of the line
to-be-continued is used, the continuation line may begin at the Margin B
column (no space is required).

The FD level indicator in the Data Division, must begin at Margin A.
Names and clauses within these entries must not begin before column 12.
The level numbers (01-~9, 77, 88) of data description entries may begin
in Margin A; however, the names and/or clauses of this entry (data-names
and/or clauses) must not begin before column 12.

CONTINUAT-ION OF NON-NUMERIC LITERALS

When a non-numeric literal occupies more than one line of a coding
sheet, the following rules apply:

1. ·A hyphen is placed in column 7 of the continuation line.

2. A quotation mark is placed in Margin B preceding the continuation
of the literal.

3. All spaces at the end of the continued line and any spaces follow
ing the quotation mark in the continuation line and preceding the
final quotation mark of the literal are considered part of the
literal.

FORMAT NOTATION

Throughout this publication, basic formats are prescribed for various
elements of COBOL. These generalized descriptions are intended to guide
the programmer in writing his own statements. They are presented in a
uniform system of notation, explained in the following paragraphs. This
notation is useful in describing COBOL, although it is not part of
COBOL.

1. All words printed entirely in capital letters are reserved words.
These are words' which have preassigned meanings in the COBOL lan
guage and are not to be used for any other purpose. In all for
mats, words written in capital letters selected for use must be
duplicated.

2. All underlined reserved words are required unless the portion of
the format containing them is itself optional. These are key
words. If any such word is missing or is incorrectly spelled, it
is considered an error in the prog~am. Reserved words ~ under
lined may be included or omitted at the option of the programmer.
These words are used only for the sake of readability, and are
called optional words.

3. All punctuation and special characters <except those symbols cited
in the following paragraphs) represent the actual occµrrence of

section 1: Basic Facts 15

those characters. Punctuation is essential where it is shown.
Additional punctuation can be inserted, according to the rules for
punctuation specified in this publication.

Note: The words 'DIVISION' and 'SECTION' will never be attached to
otqer words by hyphens.

4. Lower-case words in formats represent information that must be sup
plied by the programmer. All lower-case words that appear in a
format are defined in the accompanying text

5. In order to facilitate references to them in text, some lower-case
words are followed by a hyphen and a digit, or letter. This modi
fication does not change the syntactical definition of the word.

6. Certain hyphenated words in the formats consist of capitalized por
tions followed by lower-case portions. These designate clauses or
statements that are described in other formats, in appropriate sec
t!ons of the text.

1. Square brackets ([]) are used to indicate that the enclosed item
may be used or omitted, depending on the requirements of the par
ticular program. When two or more items are stacked within brac
kets 1 one or none of them may occur .•

8. Braces ({ }) enclosing vertic~lly stacked items indicate that one
of the enclosed items is obligatory.

9. The ellipsis (•••) indicates that the ~mmediatel¥ preceding unit
may occur once, or any number of times in succession. A unit means
either a single lower-ca~e word, or a group of lower-case words and
one or more reserved woras enclosed in brackets or braces. If a
term is enclosed in brackets or braces, the entire unit of which it
is a part must be repeated when repetition is specified.

10. Comments, restrictions, and clarifications on the use and meaning
of every format are contained in the appropriate portions of the
text.

16

!~

SECTION 2: COBOL PROCESSING CAPABILITIES

INPUT/OUTPUT PROCESSING

IBM System/360 Disk and Tape Operating Systems COBOL support various
data organizations, record formats, and access methods. The facilities
available to the COBOL user are specified in this section.

In this publication, the term Iocs (Input/Output control system> can
be considered equivalent to the term "Data Management Routines• used in
other IBM System/360 Disk and Tape Operating Systems publications.

DATA ORGANIZATION

IBM System/360 Disk and Tape Operating Systems COBOL provide three
types of data organization: standard sequential, indexed, and direct.

The number and type of control fields used to locate logical records
in a file differ, depending on which of these three types of data
organization is used. Consequently, each type of data organization is
incompatible with the other two. For example, a file created as a stan
dard sequential file cannot then be read as an indexed file. The
organization of an input file must be the same as the organization of
the file at creation time.

Standard Sequential Data Organization

When standard sequential data organization is used, the logical rec
ords in a file are positioned sequentially in the order in which they
are created, and are read sequentially in the order in which they were
created Cor in sequentially reversed order if the REVERSED option of the
OPEN statement 1s written for tape files). This type of data organiza
tion must be used for tape or unit-record files, and may be used for
files assigned to direct-access devices.

Standard sequential data organization is assumed when the ORGANIZA
TION clause is not written in the Environment Division.

Indexed Data organization

When indexed data organization is used, the position of each logical
record in a file is determined by inde~es maintained by the system and
created with the file. The indexes are based on symbolic keys provided
by the user. Indexed files must be assigned to direct-access devices.

Indexed data organization is specified by writing the clause ORGANI
ZATION IS INDEXED in the Environment Division.

section 2: COBOL Processing capabilities 17

Direct Data organization

When direct data organization is used, the positioning of the logical
records in a file is determined by keys supplied by the user. ACTUAI,
keys are used to specify the track. SYMBOLIC keys are used in conjunc
tion with actual keys to identify a record on a track.

on each track, records are positioned in the order in which they are
written. Direct files must be assigned to direct-access devices.

Direct data organization is specified by writing the clause ORGANIZA
TION IS DIRECT in the Environment Division.

ACCESS METHODS

There are two access methods provided by System/360 COBOL:

SEQUENTIAL ACCESS: This is the method of reading and writing records of
a file in a serial manner1 the order of references is implicitly deter
mined by the position of a record in the file, except when indexed data
organization is specified.

RANDOM ACCESS: This is the method of reading and writing records of a
file in a non-sequential manner1 the control of successive references to
the files is determined by specifically defined keys supplied by the
user.

When accessing indexed or direct files randomly, the user must pro
vide information to identify the specific record desired. For both
organizations, direct and indexed sequential, the user must provide a
key to identify the desired record. These keys are defined as follows:

~OLIC KEY: The SYMBOLIC KEY is a unique storage resident value that
distinguishes a record from all other records in the file (for example,
a stock-number in an inventory file or an employee's name or man-number
in a payroll file)&

RECORD KEYs The RECORD KEY is a unique value within the record that
distinguishes it from all other records in the file.

ACTUAL KEY: The ACTUAL KEY is the location on the disk at which the
record is located. Thus it is the actual track address.

These values are used by IOCS to determine where the record is
loc~ted or where it should be placed. For a randomly accessed file, the
values of the data-names for the symbolic and actual keys are never
automatically modified by Iocs. The user has complete responsibility
for ensuring that the correct values are in the data-names before read
ing, writing, or rewritinq.

Depending. on the type of random file organization, identification of
a record is accomplished throuqh the use of the SYMBOLIC.1 RECORD, or
ACTUAL keys as follows:

18

~
J

ACCESSING A DIRECT FILE RANDot,1LY

When accessing a di~ect file, the AC±UAL and SYMBOLIC'KEYS are
required.

roes uses the value of the ACTUAL KEY as the actual track address.
After locating the track, for a read or rewrite operation, IOCS searches
the track for a record that is preceded by a "key area" equal to the
SYMBOLIC KEY. When q match is found, the data portion of the record is
read or, if a rewrite operation, replaced by the new recor1. If, for a
read, the desired record cannot be found on the specified track, roes
searches the entire cylinder for the record. When APPLY RESTRICTED
SEARCH option is used. the search is limited to the specified track.

For a write operation, after locating the actual track, roes searches
for the last record on the track, and writes the new record Cwith con
trol fields including a ket field equal to the SYMBOLIC KEY provided•.

For a direct organization file, before a read, write, or rewrite, the
track address must be moved into the data-name specified by the ACTUAL
KEY clause, and the symbolic key must be moved into the data-name speci
fied by the SYMBOLIC KEY clause.

ACCESSING AN INDEXED FILE RANDOMLY

When accessing an indexed file randomly, the RECORD and SYMBOLIC KEYS
are required.

For blocked files, a "key area" precedes the block that roes uses to
determine which record keys are in the block. For unblocked files, a
"key area" precedes each record that roes uses to identify the RECORD
KEY within the record.

When reading or writing records, the track containing the record
desired is determined by using the SYMBOLIC KEY and searching the file's
ind~x table. When the track has been determined for unblocked records,
the record is identified by comparing the SYMBOLIC KEY to the key area
preceding the record. When the track has been determined for blocked
records, the record is identified by comparing the SYMBOLIC KEY to the
key area preceding the block, and then to the RECORD KEY of the record
itself.

Before reading or rewriting an indexed file, the symbolic key for the
desired record must be moved into the data-name specified by the
SYMBOLIC KEY clause.

ACCESSING AN INDEXED OR DIRECT FILE SEQUENTIALLY

When creating an indexed file sequentially, a RECORD KEY is required,
and the SYMBOLIC KEY is optional.

When creating a direct file sequentially, the ACTUAL and SYMBOLIC
KEYS are required.

Processing indexed or direct files sequentially is similar to
processing a standard sequential file. Thus, IOCS determines where a
record is to be found based solely upon the logical sequence in which
records were placed in the file previously. For direct files, this log-

section 2: COBOL Processing Capabilities 19

ical sequence corresponds exactly to the physical sequence of the rec
ords: for indexed files, this logical sequence corresponds to the
sequence of keys, which must be in collating sequence. If the user
accesses an indexed file sequentially, and specifies binary zeros in the
SYMBOLIC KEY, retrieval begins with the first record of the file.

It should be noted that the preceding discussion applies specifically
to files accessed or created by a COBOL program. It is possible in
lower level languages to create other types of files. In general, such
files may not be used by COBOL programs.

CREATION OF AN INDEXED FILE

Indexed files may be created by:

1. Describing fil.es with the following clauses:

• ORGANIZATION IS INDEXED
• {ACCESS IS SEQUENTIAL]
• ASSIGN TO DIRECT ACCESS
• {SYMBOLIC KEY IS]
• RECORD KEY IS

2. Opening the file-name as OUTPUT, writing the records in ascending
key sequence, and closing the file.

CREATION OF A DIRECT FILE

A direct file may be created sequentially by:

1. Describing files with the following clauses:

• ORGANIZATION IS DIRECT
• {ACCESS IS SEQUENTIAL]
• ASSIGN TO DIRECT ACCESS
• SYMBOLIC KEY IS
• ACTUAL KEY IS

2. Opening a file as an output file. When the file is opened, the
capacity records (RO) are initialized for each XTENT specified for
the output file.

3. Writing each record sequentially, specifying its SYMBOLIC KEY

An end-of-file record is automatically placed on the last track of
the file at CLOSE.

Figure 1 summarizes the clause and statement specifications allowed
for each of the three data organizations. Also, each file-name must be
specified in a SELECT sentence in the Environment Division and must be
defined by an FD entry in the File Section of the Data Division.

20

IL

'7:j
I-'·
~
c::

DISK AND TAPE DEVICE RECORDING BLOCK RESERVE LABEL READ
OPER. SYSTEMS ACCESS OPEN ORGANIZATIOhl ALTERNATE WRITE APPLY KEY CLOSE ASSIGN
ORGANIZATION

TYPE MODE CONTAINS
AREA

RECORDS
REWRITE

11
ro

[SEQUENTIAL) INPUT F [~o] OMITTED
READ (INTO)

CLOSE
UNIT-DTFCD READER - AT END - - RECORD

"ti
[~]

WRITE
UNIT-DTFCD PUNCH [SEQUENTIAL OUTPUT - F OMITTED [FROM) - - CLOSE

(ADVANCING] RECORD

([)
11
l3
I-'·

[~o]
WRITE

UNIT-DTFPR PRINTER (SEQUENTIAL OUTPUT - F - OMITTED (FROM] - - CLOSE
[ADVANCING] RECORD

en
en
I-'·
tr
([)

t:I
OJ
rt

ti) OJ
CD

rNPUT ([~]
[NO-REWIND

[~]
J STANDARD} READ AT END !NO REWIND)

DTFMT TAPE [SEQUENTIAL] {REVERSED JI [n (except for U)] (OMITTED • WRITE I FROM I [WRITE·ONLYJ2 - [LOCK] UTILITY
OUTPUT d - name (ADVANCING] IUNITJ

(NO-REWIND!,

·INPUT ·

[~] [~o]
READ AT END CLOSE UTILITY

DTFSD DISK [SEQUENTIAL] {OUTPUT} - n (not with U)] {STANDARD} WRITE [FROMJ 2 (WRITE ONLYJ2
[UNIT) DIRECT-

1-0 d name REWRITE ACCESS
0 0
rt 11
I-'· ~
0 OJ
::t ·::s

{INPUT } READ AT END [SYMBOLIC! DTFIS DISK (SEQUENTIAL] OUTPUT INDEXED F. [n) {NO) STANDARD REWRITEl[INVALID KEY} - DIRECT-
RECORD CLOSE

1-0 ' WRITE2 ACCESS

I-'·
tv N

OJ
DTFDA DISK [SEQUENTIAL]

INPUT
DIRECT g} - (NOJ {STANDARD} READ AT END ACTUAL CLOSE DIRECT-

OUTPUT d -name WRITE - SYMBOLIC ACCESS
rt
I-'·

() 0
0 ::s
to

{INPUT}
READ INVALID KEY

[CORE-INDEX]
SYMBOLIC DTF1S DISK RANDOM INDEXED F [nJ fNOJ STANDARD WRITE [INVALID KEYi CLOSE DIRECT-

1-0
REWRITE (INVALID KEY] RECORD ACCESS

0 ()
t"I

OJ
"ti c::

{INPUT 1 g} {STANDARD}
READ INVALID KEY [RESTRICTED SYMBOLIC DTFDA DISK RANDOM 1-0 f DIRECT fNO] d - name WRITE [INVALID KEY) SEARCH] ACTUAL CLOSE DIRECT-
REWRITE (INVALID KEY] ACCESS

t; en
0 ([)
0 en 1 - For 1-0 Option of OPEN clause
(0
en !lJ

2 - For OUTPUT Option

CJ) !:1
I-'· °' ::t
~ ti)

rt
() !lJ
!lJ rt

t"O ([)
!lJ s
tr m
I-'• :;
...... rt
I-'· en
rt
I-'·
m
en

tv
fool'

SECTION 3: IDENTIFICATION DIVISION

The Identification Division is used to identify a program and to pro
vide other pertinent information concerning the program. The format of
the Identification Division is:

IDENTIFICATION DIVISION.
PROGRAM-ID. 'program-name•.
[AUTHOR. sentence •••]
[INSTALLATION. sentence •••]
[DATE-WRITTEN. sentence •••]
[DATE-COMPILED. sentence •••]
[SECURITY. sentence •••]
[REMARKS. sentence •••]

An example of the use of this format is:

.---------------~---~---------------------------~---------------------,
I COBOL PROGRAM SHEET I
r--~
ISEQUENCE A B I
~---T---T~T--~
11 I 61718 12 I
r---+---+-+------~---~
I I I I I
100110011 !IDENTIFICATION DIVISION. I
100110021 IPROGRAM-ID. 'CALLPRGM ~ I
100110031 !REMARKS. EXAMPLE OF A CALLING PROGRAM. I
I I I I I
l---L---L-L--··---J

Refer to Appendix D, Figure 33, for the relationship between the
example above and the sample program given therein.

Program-name consists of single quotation marks enclosing no more
than eight alphabetic and numeric characters, the first of which must be
alphabetic. Program-name identifies the object program to the control
program.

IDENTIFICATION and the other COBOL words in the Identification Divi
sion must begin in Margin A. If sentences are written, they must be
contained within Margin B. They may consist of any characters in the
EBCDIC set.

22

SECTION 4: ENVIRONMENT DIVISION

GENERAL DESCRIPTION

The fUnction of the Environment Division is to centralize the aspects
of the total data processing problem that are dependent upon the physi
cal characteristics of a specific computer. It provides a linka.ge
between the logical concept of files and their records, and the physical
aspects of the devices on which files are stored.

The Environment Division must begin in Margin A with the heading
ENVIRONMENT DIVISION followed by a period.

The Environment Division is divided into two sections -- the Config
uration Section and the Input-output section.

The configuration Section, which dea,ls with the overall specifica
tions of computers, is divided into two paragraphs. They are: the
source-computer paragraph. which defines the computer on which the COBOL
compiler is to be run, and the Object-Computer paragraph, which defines
the computer on which the program produced by the COBOL compiler is to
be run.

The Input-output Section deals with the definition of the external
media (input/output devices) and with information needed to create the
most efficient transmission and handling of data between the media and
the object program. This section is divided into two paragraphs:

1. the external media,

2. the I-O-Control paragraph, which defines special input/output
techniques.

CONFIGURATION SECTION

The fonnat of the configuration section is:

CONFIGURATION SECTION.

[SOURCE-COMPUTER. I.BM-360 [model-number].)

[OBJECT-COMPUTER. IBM-360 [model-number].]

section 4: Environment Division 23

An example of the use of this format is:

r--1
J COBOL PROGRAM SHEET . I
r---~---------------------·-i
f SEQUENCE A B I
~---T---T-T-----------------~--i
11 I 61718 12 1
r---+---+-+---~------------i
I I I l I
1001)0041 JENVIRONMENT DIVISION. I
J001J005l ICONFIGURATION SECTION. J
I 001) 0061 I SOURCE-COMPUTER. IBM-360 030. I
I 00110071 I OBJECT-COMPUTER. IBM- 3b0 030. I
I I I I I
L---i---i-L----------------------------------~-------------------------J

Refer to Appen~ix D, Figure 33, for the relationship oetween the
example above, and the sample program given therein.

The format of the Input-Output section is:

!~E~!=Q~!~~!_£~£!!0N~
FILE-CONTROL.
-----[SELECT file-name ASSIGN clause

[RESERVE clause1 •• ;-----
c:AccEss-clausej
[ORGANIZATION clause]
cs¥MaoL!c-KEY clauseJ
c:AcTUAL-KEY-clausel
CREcoRD-KEY clausel
cfg~£~~~BE~ c1ause1.

I-0-CONTROL.
-----CSAMF-clause.l •••

[RERUN clause.] •••
[~~~~!clause.] •••

An example of the use of this format is:

r--1 I COBOL PROGRAM SHEET I
r---~-------------~------------i]SEQUENCE A B J

~---T---y-T--~-------------------i
11 I 61718 12 I
~---+---+-+--~
I I I 1 1
10011004) !ENVIRONMENT DIVISION. I
I 1 I I I
I t I I I
I I I I · J
JOOlf 0081 !INPUT-OUTPUT SECTION. I
I 00110091 I FILE-CON'I'ROL. J
100110101 I SELECT FILEA ASSIGN TO 'SYS004 1 UTILITY 2400 UNITS. I
I 001l011 I J SELECT FILEB ASSIGN TO 'SYSOOS'· UNIT-RECORD 2540R J
I I I I RESERVE NO ALTERNATE AREA. I
I I I J I
L---i---L-i---~----------J

24

!~

~\

Refer to Appendix D, Figure 33, for the relationship between the
example above, and the sample program given therein.

The individual optional clauses that compose the File-Control and
I-0-Control paragraphs may appear in any order within their respective
sentences or paragraphs but must begin in Margin B. They are described
in the following text. The Input-Output Section may be omitted if there
are no files used in the program.

I-0-CONTROL may be omitted if none of the clauses in the paragraph
are written. A period must follow the last clause in each SELECT sen
tence written in the File-Control paragraph, and must follow each clause
written in the I-0-Control paragraph.

FILE-CO~OL PARAGRAPH

SELECT Sentence

The SELECT sentence must begin with the words SELECT file-name and
must be given for each file named in the File-control paragraph.

The name of each file must be unique within a program and must have a
File Description (FD) in the Data Division of the source program. Con
versely, every file named in an FD entry must be named in a SELECT
sentence.

ASSIGN Clause

The ASSIGN clause is used to assign a file to a particular device.

The format of the ASSIGN clause is:

{
DIRECT-ACCESS}

ASSIGN TO 'external-name' UTILITY
UNIT-RECORD

device-number UNIT[S]

External-name specifies the name by which the file is known to the
control Program. External-name for files in the assign clause must be
of the format • SYsnnn·• where nnn is a 3-digit number between 000 and
222.

DIRECT ACCESS, UNIT-RECORD, and UTILITY specify device classes. Each
file must be assigned to a device class. Files assigned to_DTILITY or
~NlT-~RP_!lave sequential access only, and data contained on these
files is organized in the standard sequential fashion. Files assigned
to DIRECT ACCESS may have standard sequential, indexed, or direct
organization. When organization is indexed or direct, access may be
either sequential or random.

Device-number is used to specify a particular device type within a
device class and is required.

The allowable device-numbers are:

UNIT-RECORD
1442R, 1442P, 1403, 1404 (continuous forms only>, 1443, 1445, 2501,
2520R, 2520P, 2S•OR, 2S•OP

Section 4: Environment Division 25

r--1

•R• indicates reader.
•p• indicates punch.

UTILITY
240·0, 2311, 2314, 2321

DIRECT ACCESS
2311, 2314, 2321

ACCESS Clause

The ACCESS clause indicates the manner in which the records of a file
are read or written.

The format of the ACCESS clause is:

tACCE~ IS {::TIAL}]
If this clause is not written. ACCESS IS SEQUENTIAL is assumed. If

ACCESS IS RANDOM is written, the file must be assigned to a direct
access device and must be indexed or direct.

IEXTI ORGANIZATION Clause
L---J

The ORGANIZATION clause indicates the organization of the data asso
ciated with a particular file.

The format of the ORGANIZATION clause is:

[ORGANIZATION IS {INDEXED}] L DIRECT

This clause may be written only for files assigned to direct-access
devices in a SELECT sentence. It must be written for files whose ACCESS
IS RANDOM.

If the ORGANIZATION clause is omitted, a standard sequential file is
assumed.

INDEXED specifies indexed data organization.

DIRECT specifies direct data organization.

RESERVE Clause

The RESERVE clause specifies the number of buffers reserved for a
standard sequential file in addition to the standard minimum of one
required for a file.

The format of the RESERVE clause is:

[RESERVE { !Q} ALTERNATE AREA(S]J

26

~\

!,.,..-,,,

I I

~

u

If this clause is omitted, one additional buffer is assumed. If NO
is written, no additional buffer will be reserved.

Not~: The integer 1 cannot be specified for files which have either
direct or indexed organization, i.e., the integer 1 can be specified
only when the ORGANIZATION clause has been omitted (thereby specifying a
standard sequential file).

SYMBOLIC KEY Clause

The symbolic key identifies a record by specifying the contents of
the data field used:

1. When reading or rewriting, to locate the matching key;

2. When writing, to create the key associated with the record.

The format Of the SYMBOLIC KEY clause is:

C£!~~0LIC KEY is data-name.]

Data-name must be defined in the Working-Storage section; it must never
be defined in any file or in the Linkage Section. It may be any fixed
length item less than 256 bytes in length, with the exception of
floating-point or report items. section 5 contains a discussion of the
formation of data-names.

This clause is allowed only when the ORGANIZATION clause is speci
fied., and is required if ACCESS IS RANDOM is specified. The SYMBOLIC
KEY clause is also required for a sequential file having an ORGANIZATION
IS DIRECT clause. The symbolic identity of the record will be placed
into data-name whenever a READ statement is executed for the file. Any
changes the programmer may make to data-name will not affect the order
in which records are read from the file.

If the file is specified as ACCESS IS RANDOM, the symbolic identity
of the record to be read or written must be placed in data-name before
the READ or WRITE statement for that record is executed. The symbolic
identity will be used by roes to determine the physical location from
which the record is to be read or onto which it is to be written.

The actual key specifies the track address at which the record is to
be placed, or at which the search for the record is to start.

The format of the ACTUAL KEY clause is:

[ACTUAL KEY IS data-name]

Data-name must be defined as an 8-byte data item in the working
Storage Section; it must never be defined in any file description or in
the Linkage Section.

This clause is required for a file whose organization is direct and
must ~ot be specified for a file under any other circumstances.

The functions of this clause are similar to those of the SYMBOLIC KEY
clause, except that this clause specifies a data item that will contain
the track address on which a record is to be found or placed.

Section 4: Environment Division 27

r---1

The actual key in Operating System/360 specifies a relative track
address. In the Disk Operating System it specifies the actual track or
hardware address. The actual key field contains the track address as
specified for the system in the publication !~~__§y§_tem/360 Disk 0Eerat
ing System: Data Managemen~£2.!!f.eEts, Form C24-3427.

IEXTI RECORD KEY Clause
L---l

The RECORD KEY clause, used with indexed organization files, speci
fies the item within the data record that contains the key for the
record.

The format of the RECORD KEY clause is:

[RECORD KEY IS data-name]

Data-name must be defined in the FILE SECTION of the DATA DIVISION.

Data-name must be defined to exclude the first byte of the record in
the following types of files:

1. Files whose records are unblocked

2. Files from which records are to be deleted

3. Files any one of whose keys might start with a delete code charac
ter (HIGH-VALUE)

This restriction exists for reasons of compatability with the IBM
System/360 Operating System.

With these exceptions, the item specified by £at~-n~m~ may appear
anywhere within the record.

Data-name may be any fixed-length item less than 256 bytes in length,
with the exception of floating-point or report items.

When more than one record description is associated with a file, each
description must contain a field for the record key. This field must be
in the same relative position from the beginning of each record. It may
be identified by different names in different record descriptions.

TRACK-AREA Clause

The TRACK-AREA clause may be 11sed when adding records to an indexed
sequential file in the random access mode. It allows reading and writ
ing of more than one physical record per I/O operation, thus increasing
efficiency.

The format of this clause is:

[TRACK-AREA IS integer CHARACTERS.]

The size of the area may be defined to hold from one to all the
blocks on a track including their key fields. 'Integer• must be at
least 24 + N(50 +RECORD KEY length+ block size>, where N is any number
from 2 to the maximum number of blocks on a track. 'Integer' must not
exceed 32,767 bytes (see the Data Management conceEts publication cited
above>. Key length is the length of the record key.

Although 'integer• must not exceed 32,767, for optimum use of core
storage 'integer• should not exceed the size of one track. For example,
on the 2311 one track equals 31 625 bytes. To define 'integer• greater

28

than the length of one track would be a was·te of storage. For ad1i tion
al information, see the discussion of the ADD function for an indexed
sequential file in the publication !~~L§yst~fill2.§..~LQ!_sk~nd I~~.QQ~r~!::.
inq systems: COBOL Pro9_E~ffim~r~2_§~!.Q~, Form C24-5025.

I-0-CONTROL PARAGRAPH

The SAME clause is used to specify that two or more files are to use
the same main storage area for processing.

The format of the SAME clause is:

[§~~AREA FOR file-name-1 file-name-2 (file-name-3 ••• J.]

Only one of the files named in this clause may be open at any time.

More than one SAME clause may appear in a COBOL program. but no file
name may appear in more than one SAME clause.

section 4: Environment Division 28.1

RERUN Clause

The RERUN clause specifies that checkpoint records are to be written
on the unit specified by •external-name•.

The format of the RERUN clause is:

RERUN 9.N I external-name' [{DIRECT-ACCESS} device-number [UNIT[SJ]J
UTILITY

EVERY integer RECORDS OF file-name

A checkpoint record is a recording of the status of the computer at a
given point in the execution of the object program. It contains the
information necessary to restart the program from that point.

Not~: The external-name used in the RERUN clause should not be the same
as an external-name used in the ASSIGN clause of the FILE-CONTROL para
graph in the Environment Division. The purpose of the restriction on
this duplication is to prevent checkpoint records from being inter
spersed among the file records.

The user can specify whether the checkpoint file is to be recorded on
a direct~access or a tape device. A direct-access device is specified
by the DIRECT-ACCESS clavse with or without a direct-access device num
ber (e.g., 2311) or by the UTILITY clause with a di·rect-access device
nwnber. A tape device is specified by the UTILITY clause with or
without a tape device number <e.g., 2400). If neither DIRECT-ACCESS nor
UTILITY is specified, UTILITY 2400 is assumed. If an IBM 2314 direct
access device is available, it should be used in preference to an IBM
2311 direct-access device since the IBM 2314 offers the advantage of
longer track records.

A maximum of 20 external devices (only one of which can be a direct
access unit) may be used to store checkpoint records. Files may also
share a unit used to store checkpoint records. Thus, the following
example is correct:

RERUN ON 'SYS030' EVERY 200 RECORDS OF INPUT-MASTER
RERUN ON 1 SYS030 1 EVERY 200 RECORDS OF OUTPUT-MASTER
RERUN ON 'SYS031' DIRECT-ACCESS 2311 EVERY 400 RECORDS OF

TRANSACTION-FILE
RERUN ON 1 SYS032' EVERY 50 RECORDS OF ERROR-TAPE

Checkpoint records are written inunediately preceding the execution of
integer READ, WRITE, or REWRITE statements directed to file-name.
Integer may never exceed 8388607.

If a COBOL program is written in modules and the object program is
restarted from a checkpoint taken in one of the modules, files in those
modules containing RERUN clauses will be repositioned by means of the
restart procedures. Therefore, it would be advantageous to design the
program in such a way that all modules containing files which are open
and which would require repositioning when restarting contain RERUN
clauses.

After restart procedures have been executed, any interrupt handling
facilities set up by the user may be lost.

Section 4: Environment Division 29

There are four options of the APPLY clause, each with its own
function.

The formats of the APPLY clause are:

QE!;.,!.Q.!L!

[~~~~!overflow-name TO ~QE~~Q~~~~Q~-Q~ file-name.]

This option is used to specify Q.Y~ff!Q.~=Q~m~, which may be used in
tests for form-overflow of a printer to which the file named by fi!~=
~ is assigned. The condition is true when channel 12 is sensed by an
on line printer.

overflow-names, which are condition names, follow the rules for data
name formation. Data-name formation is discussed in Section 1. Data
names are discussed in Section 5; overflow tests are discussed in Sec
tion 6.

An overflow-name may be written in conjunction with a WRITE statement
with an ADVANCING option in order to control spacing of printed records.
Thus, the following statement.could be written (with a programmer
supplied overflow-name>:

IF overflow-name WRITE X AFTER
ADVANCING 0 LINES ELSE WRITE X
AFTER ADVANCING 2 LINES

Only one overflow-name may be applied to a file and only one buffer
reserved <see discussion of the RESERVE clause>.

OQtion 2

[AP~~!_l!B!!~-O!:!~LQ~ file-name •••]

This option of the APPLY clause is used to make optimal use of buff er
and device space allocated for a file with blocked V type records <per
mitted only on standard sequential files>. Records must be built in a
work area, and written with a WRITE ••• FROM clause.

The only I-0 reference to the record may be in a WRITE ••• FROM state
ment. The APPLY WRITE-ONLY clause permits records to be added to a
buffer even though the maximum size record cannot fit. Normally, a
buffer is truncated when the maximum size record no longer fits. Use of
this option will cause a buffer to be truncated only when the next rec
ord does not fit in the unused remainder of the buffer.

Subfields of these records may never be referenced.

QE!;.!.Q.Q_}.

[~~~~!_R~~!E!£!~Q_§§~R£~ OF integer TRACKS ON file-name •••]

Integer can only be 1.

This clause is used to control the extent of the searcb made for a
specified record. This option may refer only to files specified as
ACCESS IS RANDOM and ORGANIZATION IS DIRECT. In normal operation,
execution of a .READ statement for a file starts the search at the track
specified by the actual key, and continues until the record is found or
until the entire cylinder is searched. When RESTRICTED SEARCH is writ
ten, the search is limited to the specified track. If the desired rec-

30

ord cannot be found in the case of a READ or REWRITE, the INVALID KEY
option of the READ or REWRITE statement will be executed.

The INVALID KEY option will also be executed when the specified track
is outside the limits of the last cylinder containing the file. It is
the programmer's responsibility to determine which condition produced
the invalid key condition.

Option 4

[APPLY CORE-INDEX TO data-name ON file-name-1 [file-name-2 ••• l.l

This option of the APPLY clause is used to reserve an area of main
storage to hold the cylinder index when performing random retrieval on
an indexed sequential file. The area defined by data-name must be at
least (3 + N) * (6 +key length), where 'N' is the nurrher of entries to
be read into main storage at one time, and key length is the length of
the record key. Data-name must be a level 01 or 77 entry of fixed
length in the Working-Storage Section. Note that data-name must not
contain an OCCURS ••• DEPENDING ON clause. The PICTURE specification of
data-name should be alphanumeric.

If multiple file-names are specified for the same data-name, only one
of these files can be open at any given time. At no time may a given
file have more than one data-name associated with it. When using the
REDEFINES clause, care should be taken that two data-names, referencing
the same storage area, are not associated with two fields which are both
open at the same time.

Data-name should not be referenced by Procedure Division statements.

All or part of the cylinder index can reside in main storage. If the
core storage area assigned to the cylinder index is large enough for all
the index entries to be read into main storage at one time, no presort
ing of the record keys is necessary. If, however, the area assigned to
the cylinder index is not large enough, the keys of the records to be
processed should be presorted in order to fully utilize the resident
cylinder index area. The publication IBM Sy§~~~Ll£Q_Qi§~-~gg_!~E£
~2ti!!,g~tems: COBOL Progr~~~~~§ Guid~, Form C24-5025, contains
additional information on this option in the discussion of random re
trieval of an indexed seque~tial file, Section VIII.

Use of this option will cause the core index byte of the DTF to be
set to Index Skip.

Note: This option will be suppressed during program execution if irre
coverable input/output errors are encountered while the indexes are
being read into core.

Section 4: Environment Division 31

SECTION 5: .DATA DIVISION

GENERAL DESCRIPTION

The Data Division of a COBOL source program describes the information
to be processed by the object program. This information falls into the
following categories:

1. Data contained in files, entering or leaving the internal storage
of the computer.

2. Data developed internally and placed in intermediate or working
storage, and constant data defined by the user.

3. Linkage data descriptions for communication between main program
and subprograms.

The Data Division must begin in Margin A with the header DATA DIVI
SION followed by a period. Each of the sections of the Data Division
begins with a fixed section~name, and is followed by the word SECTION
and a period, as follows:

DATA DIVISION.
FILE SECTION.

File Description entries
Record Description entries

WORKING-STORAGE SECTION.
Record Description entries

LINKAGE SECTION.
Record Description entries

The sections must appear in this order. If any section is not
required, both it and its section-name may be omitted.

ORGANIZATION OF THE DATA DIVISION

The Data Division is subdivided into sections, according to types of
data. Each section consists of entries, rather than sentences and para
graphs. An entry consists of a level indicator, a data-name or file
name, and a series of clauses, separated by commas or semicolons, which
define the data. The clauses <except the REDEFINES clause) may be writ
ten in any sequence. Each entry must terminate with a period and a
space.

FILE SECTION

The File Section describes the content and organization of files.
Each File Description entry is followed by related Record Description
entries.

The Record Description entries used in conjunction with a File
Description entry describe the individual items contained in a data rec
ord of a file.

32

WORKING-STORAGE SECTION

The Working-Storage Section consists solely of Record Description
entries. These entries describe the areas of storage where intermediate
results are stored at object program execution time, and constants along
with their values.

LINKAGE SECTION

The Linkage Section is a required part of any COBOL subprogram'that
contains an ENTRY statement with the USING option, and serves as a data
linking mechanism between the main program and the subprogram. It con
sists only of Record Description entries that provide dummy names for
linkage to data in the main program. This is the only Data Division
section whose entries do not cause object program data storage areas to
be allocated.

When passing COMPUTATIONAL, COMPUTATIONAL-1, or COMPUTATIONAL-2
fields, ref er to Appendix B for a discussion on alignment requirements.

CONCEPTS OF DATA DESCRIPTION

The following material defines the basic terms and concepts used in
describing data. Rules which govern the writing of data descriptions
appear later in this section.

LEVELS OF DATA ITEMS

Level indicators are used to show how data items are related to each
other. The most inclusive grouping of data is the file. The level
indicator for a file is FD.

For purposes of processing, the contents of a file are divided into
logical records, with level number 01 specifying a logical record. Sub
ordinate data items that constitute a logical record are grouped in a
hierarchy and identified with level numbers 02 to 49. A level number
less than 10 may be written as a single digit preceded by a blank.

Level number 77 identifies a Record Description entry in the Linkage
Section or the Working-storage Section. The level number 77 cannot
appear in the File Section. Those constants which are likely to be
changed should be defined in the Working-Storage Section as 77-level
entries and referenced in the Procedure Division by the data-name
assigned to them. Then, when the values of these constants change, it
is a simple matter to change the single constant entry to the current
value and recompile.

Level number 88 is used to define a condition-name for a related con
ditional variable.

Levels allowing specification of subdivisions of a record are neces
sary to refer to data. Once a subdivision is specified, it may be sub
divided further to permit more detailed data reference. This may be
illustrated by the following weekly time-card record, which is divided
into four major items: name, employee-number, date, and hours, with
more specific information appearing for name and date.

Section 5: Data Division 33

r--1
I TIME-CARD I
t----------------------------T-----------T-----------------------1-----~
I NAME I EMPLOYEE- I DATE IHOURSI
t-------T----------T-------~-~ NUMBER t~------T-------T-------~ I
I LAST- I FIRST- I MIDDLE- I I MONTH I DAY I YEAR I I
I NAME I INITIAL I INITIAL I I I I I I L ______ ..._ _________ i _________ i ___________ i _______ i _______ i _______ i _____ J

Figure 2. Subdivisions of a Weekly Time-card Record

Subdivisions of a record that are not themselves further subdivided
are called elementary items. Data items that contain subdivisions are
known as group items. When a Procedure Division statement refers to a
group item, the reference applies to the area ~eserved for the entire
group. Less inclusive groups are assigned higher level numbers. Level
numbers of items within groups need not be consecutive. A group
includes all groups and elementary items described under it until a
level number less than or equal to the level number of the group is
encountered. Separate entries are written in the source program for
each level. To illustrate level numbers and group items, the weekly
time-card record in the example may be described by Data Division
entries having the following level numbers and data-names described in
Figure 2.

Only the level numbers and data-name of each entry have been given in
Figure 3; data defining clauses were omitted.

Throughout the Data Division, level-01 items are adjusted to a
doubleword boundary; level 77 binary or internal floating-point items
are adjusted-to-the next available halfword, fullword, or doubleword
boundary, as appropriate. For .blocked files, refer to the discussion on
Intrarecord Slack bytes in Appendix B • . ---,
I 01 TIME-CARD I
I 04 NAME I
I 06 LAST-NAME I
I 06 FIRST-INITIAL I
l 06 MIDDLE-INITIAL I
I 04 EMPLOYEE-NUMBER I
I 04 DATE I
I 06 MONTH I
I 06 DAY I
I 06 YEAR I
I 04 HOURS I
L--J
Figure 3. Example of Data Levels

DATA-NAMES

A data-name is a name assigned by the programmer to identify a data
item used in a program. A data-name refers to a kind of data, not to a
particular value; the item it refers to usually assumes a number of
values during the course of a program.

A data-name must contain at least one alphabetic character. A data
name or the key word FILLER must be the first word following the level
number in each Record Description entry, as shown in the following gen
eral format:

l data-name l
level-number FILLER \

34

/'-..\
I J

The data-name is the defining name of the entry, and is the means by
which the references to the area (containing the value of a data item)
are made. The key word FILLER may be used in place of a data-name if
the item is not to be referred to directly or used as a qualifier. For
example, if some of the characters in a record are not used in the
processing steps of a program, then the data description of these char
acters need not include a data-name. In this case, FILLER is written in
lieu of a data-name after the level number.

If the same data-name is assigned to more than one item in a program,
it must be qualified in all references to it in the Procedure Division,
Data Division, or Environment Division, except in the REDEFINES clause
where the position of the clause will eliminate the possibility of

I ambiguity.

A data-name is qualified by writing either IN or OF after it, fol
lowed by the name of one or more groups, or the record or file in which
it is contained. A highest level qualifier must, however, be unique.

Any combination of qualifiers that will ensure uniqueness may be
used. More qualifiers may be used than are absolutely needed. In
Figure 31 if YEAR OF DATE is needed to make YEAR unique, YEAR OF DATE IN
TIME-CARD is also permitted.

A data-name cannot be subscripted when it is used as a qualifier.
However, the entire qualified data-name may be subscripted.

LITERALS

A literal is a constant that is not identified by a data-name in a
program, but is completely defined by its own identity. A literal is
either non-numeric (alphabetic or alphanumeric), numeric, or
floating-point.

Non-Numeric Literals

A non-numeric literal must be bounded by quotation marks and may con
sist of any combination of characters in the IBM EBCDIC set, except quo
tation marks. All spaces enclosed by the quotation marks are included
as part of the literal. A non-numeric literal may not exceed 120 char
acters in length.

The following are examples of non-numeric literals:

'EXAMINE CLOCK NUMBER'
1 12565'
'PAGE 144 MISSING'

Numeric .Literals

A numeric literal must contain at least one .and not more than 18
digits. A numeric literal may consist of· the characters 0 through 9,
the plus sign or the minus sign, and the decimal point. It may contain
only one sign character and only one decimal point. The sign, if pres
ent, must appear as the leftmost character in the numeric literal. If a
numeric literal is unsigned, it is assumed to be positive.

Section 5: Data Division 35

--"I

A decimal point may appear anywhere within the numeric literal,
except as the rightmost character. If a numeric literal does not con
tain a decimal point, it is'considered to be a whole number.

The following are examples of numeric literals:

1506798
+12572.6
-256.75
.16

EXTI Floating-Point Literals
---"

A floating-point literal must have the form:

[:]mantissa E [:]exponent

The plus or minus signs preceding the mantissa and exponent are the
only optional characters within the format. The mantissa consists of
one to 16 digits with a required decimal point.

Inunediately to the right of the mantissa, the exponent is represented
by the symbol E, followed by a plus or minus sign (if ,a sign is given>,
and one or two digits. The magnitude of the number represented by a
floating-point literal must not exceed .72•(10••76). A zero exponent
must be written as O or oo.

The value of the literal is the product of the mantissa and ten
raised to the power given by the exponent. A floating-point literal
must appear as a continuous string of characters with no intervening
spaces.

The following are examples of floating-point literals:

12.3E2
-.34566E+17
+2. 56E-6

FIGURATIVE CONSTANTS

A figurative constant is a special type of literal1 it represents a
value to which a standard data-name has been assigned. Figurative con
stants must not be bounded by quotation marks.

ZERO may be used in many places in a program as a numeric literal.
It may not, however, be used in an arithmetic statement. The use of
ZERO as a non-numeric literal is permitted. All other figurative con
stants are considered non-numeric. The singular and plural forms of
figurative constants are equivalent and may be used interchangeably.

36

The following are the figurative constants and their meanings:

ZERO
ZEROS
ZEROES

Represents one or more zeros.

~\
I \

SPACE
SPACES

HIGH-VALUE
HIGH-VALUES

LOW-VALUE
LOW-VALUES

ALL 'character'

QUOTE
QUOTES

Represents one or more blanks or spaces.

Represents one or more appearances of
the highest value in the computer's
collating sequence. (Hexadecimal 'FF'l

Represents one or more appearances of
the lowest value in the computer's
collating sequence. (Hexadecimal 'OO'l

Represents one or more occurrences of
the single character bounded by
quotation marks. Character may not be
a quotation mark.

Represents the character •. Note
that the use of the word QUOTE
to represent the character '
at object time is not equivalent to
the use of the symbol ' to bound
a non-numeric literal.

When a figurative constant is used in such a way that the exact num
ber of characters required cannot be determined, only one character is
generated. For example, the statement DISPLAY ZEROES would produce one
zero character since, in this case, the length of the sequence of zeros
to be displayed cannot be determined.

The following are examples of the use of figurative constants in the
Data Division:

02 FILLER PICTURE A(10) VALUE SPACES.
02 HEADING PICTURE X(20) VALUE ALL'*'•

CONDITION-NAMES

The general form of a condition-name entry is:

88 condition-name VALUE IS literal.

Each level 88 entry must be preceded by either an elementary item or
another level 88 entry (in the case of several consecutive condition
names pertaining to an elementary item).

~ery condition-name pertains to an elementary item in such a way
that the condition-name may be qualified by the name of the elementary
item and the elementary item's qualifiers. A condition-name is used in
the Procedure Division in place of a simple relational condition.

A condition-name may pertain to an elementary item (a conditional
variable) requiring subscripts. In this case the condition-name, when
written in the Procedure Division, must be subscripted according to the
same requirements of the associated elementary item. Subscripting is
discussed later in this text.

The literal in a condition-name entry must be consistent with the
data type of the conditional variable.

Section 5: Data Division 37

Figure 4 is an example of Data Division entries and a Procedure Divi
sion statement that might be written using level 88 and the condition
name-test. (Details on the condition-name-test appear in Section 6 un
der the subsection Test conditions.)

Data Division Portion:

r-------------------------------------~-------------------------------1
101 TIME-CARD. I
102 NAME, PICTURE XC20). I
102 PAY-CODE, PICTURE 9. I
I 88 MONTHLY, VALUE IS 1. I
I 88 HOURLY, VALUE IS 2. I
I 8 8 SUBCONTRACTOR, VALUE 3. I
102 SALARY, PICTURE 9999. I
102 RATE-PER-HOUR, REDEFINES SALARY PICTURE 9V999, I
I DISPLAY. I
I 02 PER-DIEM, REDEFINES SALARY PICTURE 99V99, I
I DISPLAY. I
l-------------------------------------~-------------------------------J

Procedure Division Portion:

r--1
I IF HOURLY COMPUTE GROSS = 40 * RATE-PER-HOUR, I
IELSE IF MONTHLY COMPUTE GROSS= SALARY/ 4.334, I
IELSE IF SUBCONTRACTOR COMPUTE GROSS = 5 * PER-DIEM, I
f ELSE PERFORM ERROR-PROCESS. I
l--J
Figure 4. condition-name Example

TYPES OF DATA ITEMS

Several types of data items can be described in a COBOL source pro
gram. These data items are described in the following text. The format
of the Record Description entry used to describe each of these items
appears under the discussion of Record Description entries.

Group Items

A group item is defined as a field having further subdivisions, so
that it contains one or more elementary items. In addition, a group
item may contain other groups. An item is a group item if, and only if,
its level number is less than the level number of the immediately suc
ceeding item, unless the succeeding level is 88. If an item is not a
group item, then it is an elementary item, or, in the case of level 88,
it is a condition-name.

The maximum length for any elementary or group item in a tape system
is 4092 bytes. For a disk file, maximwn length depends upon the par
ticular disk model; 3625, 4096, and 2000 bytes for the IBM 2311, 2314,
and 2321 direct-access devices respectively. An exception to these
stated lengths is the use of a fixed-length working-Storage group item,
which may be as long as 32,767 bytes.· If an IBM 2314 direct-access
device is available, it should be used since it offers the advantage of
longer track records.

38

Group items never have a picture associated with them.

Elementary Items

An elementary item is a data item containing no subordinate items.
For example, an 03 level data item followed immediately by another 03
item is an elementary item. Elementary items always have the picture
clause specified.

A1phabetic Item

An alphabetic item may contain any combination of the characters A
through z, and space. Each alphabetic character is stored in a separate
byte.

Alphanumeric Item

An alphanumeric item consists of any combination of characters in the
IBM EBCDIC set. Each alphanumeric character is stored in a separate
byte.

Report Item

A report item is an alphanumeric item containing only digits and/or
special editing characters. It must not exceed 127 characters in
length. A report item can be used only as a receiving field for numeric
data. Each report character is stored in a separate byte ($ee PICTURE
and BLANK WHEN ZERO clauses), except P and v which occupy no storage,
and CR and DB which occupy two bytes each.

Fixed~Point Items

Fixed-point items may be defined as external decimal, internal deci
mal, or binary. External decimal corresponds to the form in which
information is represented initially for card input, or finally for
printed or punched output. such items may be converted (by moving) to
the internal machine formats described as internal decimal or binary.
Except when an item is a single digit in length, these formats require
less storage than the external decimal format and can be used to save
space on input/output units. The binary mode of representation is par
ticularly efficient for data-names used as subscripts. Computational
results are the same, regardless of the particular format selected.

External Decimal Item: Decimal numbers in the system/360 zoned format
are external decimal items. Each digit of a number is represented by a
single byte, with the four low-order bits of each 8-bit byte containing
the value of a digit. The four high-order bits of each byte are zone
bits1 the zone bits of the low-order byte represent the sign of the
item. The maximum length of an external decimal item is 18 digits. For
items whose PICTURE does not contain an s the sign position is occupied

Section 5: Data Division 39

by a bit configuration interpreted as positive but which does not repre
sent an overpunch.

Figure 5 contains illustrations of this data type.

Internal Decimal Item: An internal decimal item consists of numeric
characters 0 through 9 plus a sign, and represents a value not exceeding
18 digits in length. It appears in storage as packed decimal. One byte
contains two digits with the low-order byte containing the low-order
digit followed by the sign of the item. For items whose PICTURE does
not contain an s, the sign position is occupied by a bit configuration
interpreted as positive but which does not represent an overpunch.

Figure 5 contains illustrations of this data type.

Binary Item: A binary item may be considered decimally as consisting of
numeric characters 0 through 9 plus a sign. It occupies two bytes (a
halfword), four bytes (a fullword), or eight bytes <two words), corre
sponding to specified decimal lengths of 1 to 4 digits, 5 to 9 digits,
and 10 to 18 digits, respectively. The leftmost bit of the reserved
area is the operational sign.

If the item is used as a resultant data-name in an arithmetic state
ment, and no ON SIZE ERROR option is specified, the area may be set to a
number greater than that specified in the PICTURE clause.

If the item is used as an operand, it is assumed that the area con
tains a number less than or equal to that specified in the PICTURE
clause.

Figure 5 contains an illustration of this data type.

r---,
I EXT I Floating Point Items
L---J

r--1
IEXTI
L-.--J

.---,
IEXTI
L---J

External and internal floating-point formats define data items whose
potential range of value is too great for fixed-point representation.
The magnitude of the number represented by a floating-point item must
not exceed .72 * (10 ** 76).

Extern~! Floating-Point Item: An external floating-point item consists
of a combination of the characters +, -, blank, decimal point, E and
digits O through 9, appearing in a specific format which represents a
number in the form of a decimal number followed by an exponent. The
exponent specifies a power of ten that is used as a multiplier. Exter
nal floating-point items <also called scientific decimal items) are
scanned at object time for conversion to the equivalent internal
floating-point value, when used as numeric operands. (See fp-form of
PICTURE clause.) Each character of the PICTURE, except v, represents a
single byte of storage reserved for the item. ~he PICTURE and the
printout display of an external floating-point item include the letter E
which denotes the exponent.

Figure 5 contains an illustration of this data type •

Internal Floating-Point Item: An internal floating-point item may be
considered equivalent to an external floating-point item in capability
and purpose. Internal floating point numbers occupy four or eight
bytes, depending on the length of the fractions.

In the short-precision format, the fraction appears in the rightmost
three bytes1 in the long-precision format, the fraction appears in the
rightmost seven bytes. The sign of the fraction is the leftmost bit in
either format, and the exponent appears in bit positions 1 through 7.

40

(~
I

•

Figure 5 contains illustrations of this data type.

,-----------T---------T-------------------T----------------------------1
I Item I Value I Usage I Internal Representation I
~-----------+---------+-------------------+----------------------------i
IExternal- I -1234 IDISPLAY I f Z11Z21Z31F41 I
I Decimal I I PICTURE 9999 I L---'---'--~ I
I I I I byte I
I I I ~----------------------------i
I I I DISPLAY I IZ11Z2IZ31-41 I
I I I PICTURE S9999 I '--:-'--.L--~ I
I I I I byte I
~----------f---------f---------------~--+----------------------------i
I Internal- I +1234 I COMPUTATIONAL-3 I I 01I23 f 4F I I
I Decimal I I PICTURE 9999 · I '---'--~ I
I I I I byte I
I I I •----------------------------i
I I fCOMPUTATIONAL-3 I 10112314+1 I
I I I PICTURE S9999 I '--.L--+:;:,! I
I I I I byte I
~--~------f---------f-------------------+------------------------~---i
IBinary I +1234 ICOMPUTATIONAL I 100001010011101100101 I
I I I PICTURE S9999 I '-----'----~-=-=6----:J I
I I I I s byte I
~----------f---------f---------------~--+-----------------~---------i
IExternal 1+12.34E+21DISPLAY ·I 1+11121. l3141Elbl0121 I
I Floating-I I PICTURE 990 99E-99 I L-..L...L...L..l-..L-.L.L-..L.~J I
I Point I I I byte I
~-----------f---------f-------------------+----------------------------i
I Internal I I COMPUTATIONAL-1 11 s I Characteristic I Fraction I I
I Floating-I I l'-.l--------------.l--------J I
I Point I I I O 1 7 8 31 I
I I I ~----------------------------i
I I ICOMPUTATIONAL-2 11 SI Characteristic IFractionl I
I I I l'-..L---------------'--------J I
I I I I o 1 1 s 63 I
~----------i---------..1-------------------..L----------------------------i
IThe codes used within the Internal Representation column are:
I
I
I
I
I
I
I
I
I

z = zone

Hexadecimal F = non-printing plus sign

s = the sign position of a numeric field: a 1 1• in position s
means the number is negative; whereas a •o• means the number
is positive.

I b = blank
L--J
Figure 5. Representation of Numeric Items

ALIGNMENT OF DATA FIELDS

The compiler assigns storage so that the starting byte of a binary or
internal floating-point item is on the next available half-word, full
word1 or doubleword boundary, as appropriate. In this way, an internal
floating-point or binary item is properly aligned at the storage loca
tion required by the computer.

If a data hierarchy contains binary or floating-point items inter
mixed with other elementary items, •slack bytes" may be present which
have been inserted to assure the necessary byte alignment (implicit
synchronization).

Section 5: Data Division 41

Slack bytes exist in a record not only in main storage but on files.
The compiler inserts slack bytes on output and expects them on input.

A further discussion of slack bytes is contained in Appendix B.

FILE SECTION

The file section of the Data Division describes the logical charac
teristics of the files. and the organization of areas used for receiving
input or output data.

A file comprises one or more blocks on input/output devices. A block
may be described by the programmer as comprising one logical record.
several logical records may also occupy a block~ this is a physical
record.

A buff er is the area into which a block is read or from which a block
is written.

The descriptions of the kinds of logical records that may be con
tained in a block are specified in the File section by one or more level
01 Record Description entries1 and by the entries subordinate to them.
A block may contain one or more logical records, each of which may con
form to any of the descriptions specified for the records in the file.

The term volume indicates a unit or reel on which a file is recorded
such as a reel of magnetic tape or a disk pack. In this context1 volume
and the COBOL reserved words UNIT and REEL are identical in meaning.

In COBOL there are two classes of files:

1. A file for which there is only one 01-level record description sub
ordinate to the FD entry, called a single-record file.

2. A file for which there is more than one 01-level record description
subordinate to the FD entry, called a multiple-record file.

There are also two classes of records that may be contained in a
file -- fixed-length records and variable-length records. Variable
length records contain an OCCURS clause with a DEPENDING ON option~
fixed-length records do not.

A SINGLE-RECORD file may contain either:

1. fixed-length records, or

2. variable-length records.

A MULTIPLE-RECORD file may contain records with three different
characteristics:

1. EQUAL - Each record described is fixed in length and all the
lengths are equal.

2. DIFFERING - Each record described is fixed in length but at least
two record descriptions have different lengths.

3. VARIABLE - One or more of the records described is variable in
length.

42

~\

~\
I

Record Formats

The Disk Operating System's data management defines three record for
mats to be used; a file use~ within the Disk Operating system has rec
ords that are either fixed (F), variable (V) or unspecified (U).

1. A file with format F records is one in which the size of all the
logical records in the file is fixed, and in which logical records
are not preceded by a control word.

2. A file with format V records is one in which the sizes of the log
ical records are not necessarily the same. Each logical record is
preceded by a control word indicating the size of the particular
logical record. This control word must not be described in any
Record Description entry and cannot be referred to by the user.

3. A file with format U records is one in which the sizes of the log
ical records are not necessarily the same. Unlike format v rec
ords, there is no control word preceding the logical records indi
cating the size of the record. Files with format U records are
considered by the COBOL compiler to contain one logical record per
block. The READ statement makes one block available for process
ing; if there is more than one logical record per block, the user
must do his own deblocking.

The choice of record format, which is specified in COBOL via the
RECORDING MODE clause, is dependent on the record descriptions. Files
for which there is only one record description with an unchanging size
(that is, no entry in the record description has an Option 2 OCCURS
clause) or for which all record descriptions indicate the same unchang
ing size may have format F or format V records.

The sizes of the logical records of a file
more than one data record description for the
each data record described may differ; or (2)
is described with an Option 2 OCCURS clause.
size of the same logical record may vary from
or WRITE statement of the record to the next.
ords of format v or format u.

may vary if (1) there is
file so that the size of
an element within the file
In the latter case, the
the execution of one READ

These files may have rec-

Note: In DOS only one OCCURS ••• DEPENDING ON clause is allowed per
record.

FILE SECTION ENTRIES

The following is the format of a File Description entry, which must
appear once in the File section for each file. There may be a number of
Record Description entries associated with it.

The clauses associated with each File Description entry may appear in
any order. FD must appear in Margin A. All associated clauses must
begin in Margin B.

FD file-name

{
CHARACTERS}

[BLOCK CONTAINS integer RECORDS]

[RECORDING MODE IS model

[RECORD CONTAINS [integer-1 TO] integer-2 CHARACTERS]

Section 5: Data Division 43

{
STANDARD }

{
RECORD IS } OMITTED

LABEL RECORDS ARE data-name

{
RECORD IS }

DATA RECORDS ARE record-name ••••

An example of the use of this format is:

r--1 I COBOL PROGRAM SHEET I
1---'!""--I
ISEQUENCE A B I
i-----T---T-~--1
11 I 61718 12 I
~---+---+-+--~

I
0011012
0011013
0011014
0011015

I
0011016

I
I

0011018
I

0011019
I

DATA DIVISION.
FILE SECTION.
FD FILEA, DATA RECORD IS RECORD-1, LABEL RECORDS

01

FD

01

ARE STANDARD, BLOCK CONTAINS 5 RECORDS, RECORDING
MODE IS F.

FILEB DATA RECORD IS RECORD-2, LABEL RECORDS
ARE OMITTED.

._ __ i ____i __ J

Refer to Appendix D, Figure 33 1 for the relationship between the
example above, and the sample program given therein.

Notes:

1. The FD entry must describe each data file to be processed by the
object program.

2. File-name is the highest level qualifier for its Record Description
entries.

Clauses

The following are the formats and descriptions of each of the clauses
that make up file descriptions.

BLOCK CONTAINS Clause

The BLOCK CONTAINS clause specifies the number of logical records of
maximum length or the maximum number of characters (bytes) in a physical
record. The format for this clause is:

BLOCK CONTAINS integer{RECORDS }
CHARACTERS

In the File section of the Data Division, the statement BLOCK CON
TAINS 5 will set up a 5-character I/O area. If this statement is

44

intended to describe a blocking factor of S, it shoUld be written BLOCK
CONTAINS 5 RECORDS.

The BLOCK CONTAINS clause must not be written if the UNIT-RECORD
clause is specified in the Environment Division, or if U type records
are used.

If CHARACTERS is written, in£~9.~~ must include the number of bytes
occupied by slack bytes contained in the physical records.

If this clause is omitted, it is assumed that records are not
blocked.

To determine the number of characters to be specified in the BLOCK
CONTAINS clause, the following must be taken into consideration:

output Files with Format F Records: Multiply the logical record length
by the number of records to be contained in the block. For example, if
the programmer desires to block five card images <logical length of 80>,
BLOCK CONTAINS 400 or BLOCK CONTAINS 400 CHARACTERS should be specified.
The compiler utilizes the following formula to calculate the number of
fixed-length output blocks per 231.4 track:

7294 :(~~~=~::~:_:_~=~-~-=~~)= No. of Blocks
512

If the remainder of the divide operation is greater than the BLOCKSIZE,
1 is added to the number of blocks per track.

OU£E!!t Fil!E§._with Format y_gecord§_: The minimum value of !.!!'!::~9.~E must
equal the size of the largest logical record defined for the file and
must include the 4-byte count field that precedes each format V record,
but not the 4-byte count field that precedes the block. <The latter
count field is automatically generated at execution time. > Therefore,
if two types of records are to be written, one 400 characters long and
the other 200 characters long, the minimum integer that can be specified
in the CHARACTERS Of the BLOCK CONTAINS clause is 404 (BLOCK CONTAINS
404 or BLOCK CONTAINS 404 CHARACTERS).

Note: If a file contains records with COMPUTATIONAL, COMPUTATIONAL-1,
or COMPUTATIONAL-2 entries, it is the programmer's responsibility to add
any necessary inter-record slack bytes. These slack bytes are part of
the record description and must be inclµded in the value of integer.

It should be noted that Option 2 of the APPLY clause <APPLY WRITE
ONLY > is used to make optimal use of buffer space allocated for a file
with format v records. In the above example, if a record 200 characters
long was placed in the block specified, there would not be enough space
allocated for another record even if the next record was also 200 char
acters long, because the 4-byte count field preceding each format v rec
ord could not be accommodated. Therefore, given the above facts, the
programmer should specify BLOCK CONTAINS 408 and use the APPLY WRITE
ONLY option. If th~ APPLY WRITE-ONLY option is not specified for a
file, the buffer is truncated and the block is written out whenever the
space remaining in the buffer is not sufficient for the maximum size
record (400 characters in the above example) defined for.the file.

The programmer can specify how many maximum size format V records are
to fit into a block by means of the RECORDS option of the BLOCK CON'l'AINS
clause.. The compiler uses the value of !.!!'!::~9.~E to compute the length of
the block by multiplying the length of the longest record by integer,
adding enough space to accommodate a 4-byte count field for the block
and a 4-byte count .field for ~ach record. Therefore, if two .types of
records are to be written, one 400 characters long and the other 200

section 5: Data Division 45

characters long, and if the programmer specifies BLOCK CONTAINS 3 REC
ORDS, the compiler reserves a block of 1216 characters. Depending on
the actual size of the records written, more than integer records may be
contained in the block. Given the above facts, it is possible for a
block to contain five 200-character records t5*204+4<1216).

RECORD CONTAINS Clause

The RECORD CONTAINS clause is used to specify the maximum size of
logical records. The format for this clause is:

RECQRD CONTAINS [integer-1 '.!'.Q] integer-2 CHARACTERS

Igtege~-1 and integer-2 are used to specify minimum and maximum rec
ord sizes, respectively. If the file contains only fixed-length rec
ords, integer-1 (if specified) and integer-2 must be equal. If the file
contains variable-length records, integer-1 is ignored and inteqer-2 is
assumed to be the maximum size that any record in the file will have.
Record lengths are determined by the compiler regardless of whether or
not the clause is specified.

The RECORD CONTAINS clause is not necessary for a file having equal
length records.

When the BLOCK CONTAINS clause is not written, the compiler assumes
that integer-2 specifies the number of characters contained in the
block.

When the RECORD CONTAINS clause differs from the sum of the elemen
tary data items as calculated by the compiler, a message is given stat
ing that the discrepancy will be resolved by the use of the compiler
generated total.

LABEL RECORDS Clause

This clause specifies the presence of standard or non-standard labels
on a :,J:ile, or the absence of labels. The format of this clause is:

{
RECORD IS }
RECORDS ARE

s §±fil!Q~Q l
) OMITTED f
l data-name

The COBOL equivalents for the options of the LABEL statement are:

No labels
Non-standard labels
Standard labels
Standard and user labels

OMITTED
OMITTED
STANDARD
data-name

The OMITTED option must be specified for files assigned to unit rec
ord devices. It may be specified for files assigned to magnetic tape
units. Use of the OMITTED option does not result in automatic bypassing
of non-standard labels on input. It is the user's responsibility to
either process or bypass non-standard labels on input, and create them
on output.

The OMITTED option must be specified for unlabeled tape input files.
For these files, an ·end-of-file condition occurs upon reaching the end-

46

of-volume for each volwne of the file. The user must determine and ind
icate in his AT END routine whether or not additional volumes must be
processed.

The STANDARD option must be specified for files with indexed organi
zation. It may be specified for any files except as noted in the pre
ceding text.

The data-name option may be specified for files with standard sequen
tial organization, with the exception of unit-record files, or for files
with direct organization. The use of this option indicates that, in
addition to standard labels, user labels are to be processed <see
Options 1 and 2 of the Procedure Division USE section>. Data-name, in
this option, is a 01 or 77 level data-name in the Linkage Section of the
Data Division which describes the label. This data-name is then avail
able for reference by a declarative procedure written by the user for
label processing. Label processing declarative procedures are discussed
in Section 6. Data-name may not be subscripted.

Section 5: Data Division 46.1

I~
I

I~ I \

~J

A user label is 80 characters in 1ength. A user header label is
characterized by the appearance of UHL in character positions 1 through
3; a user trailer label has UTL in character positions 1 through 3. For
both types. the fourth character position in a user label shows the
relative position (1 through 8) of the label within a group of labels.
The remaining 76 characters are formatted according to user choice. See
the publication IBM System/360 Disk and Tape Operating systems: COBOL
Programmers Guide, Form C24-5025, for the formats of standard labels on
tape and disk.

Figure 6 is a chart showing available options and their valid use.
An •x• in the figure indicates that the option is permitted.

r----~-------~y--1
I I Device I
I ~------r----,.--i I I Unit I I Direct~Access Storage Device I
I IRecordlTapel Organization is: I
I I I ~--------------T--------------T---------~----i I LABEL RECORDS I I I standard I Indexed I I
I ARE Option I I I sequential I Sequential I Direct I
1---------~--+------+----+--------------+--------------+--------------i
I OMITTED I x I x I I I I
1-------------+------+----+--------------+--------------+--------------~
I STANDARD I I x I x I x I x I
~------------~+------+----+--------------+--------------+--------------i
I Data-name I I x I x I I x I
L-------------..L------..l----i--------------.1....,;-------------..L--------------J
Figure 6. Relationship Between Labels and Device Assignment

DATA RECORDS Clause

This clause specifies the names of the logical records in a file.

Its format is:

{
RECO.RD IS }

DATA RECORDS ARE record-name •••

Record-.name is a data-name described with a 01 level number fallowing
the FD entry in the File Section.

RECORDING MODE Clause

The RECORDING MODE clause specifies the format of the logical records
comprising the file. The format for this is:

[RECORDING MODE IS model

Mode may be specified as either o, F, or v, each indicating a record
format.

The F mode (fixed-length format) may be specified when all the logi
cal records in a file are the same length. This implies that no OCCURS
DEPENDING ON clauses are associated with any entries in the data record
descriptions. If more than one data record description is given follow
ing the FD entry, all record lengths calculated from the data record
descriptions must be equal.

section 5: Data Division 47

All UNIT-RECORD files must be F mode (fixed format).

The v mode (variable-length format) may be specified for any combina
tion of record descriptions. A logical record of this format has a con
trol field preceding it containing the length of the logical record.

The u mode (unspecified format) may be used with any combination of
record descriptions. It may be compared to V mode records which are not
blocked and do not contain the preceding count control field.

The RECORDING MODE clause must be specified for files with F or U
type records. If this clause is omitted, V type records are assumed.

RECORD DESCRIPTION ENTRY

A Record Description entry specifies the characteristics of each item
in a data record. Every item must be described in a separate entry in
the same order in which the item appears in the record. Each Record
Description entry consists of a level number, a data-name, and a series
of independent clauses followed by a period.

The general format of a Record Description entry is:

{
data-name}

level-number FILLER [REDEFINES-clause]

[PICTURE-clause] [BLANK-clause]

[OCCURS-clause] [VALUE-clause]

[JUSTIFIED RIGHT]

[USAGE-clause].

An example of the use of this format is:

r------------------------------~------~------------------~------------1
I COBOL PROGRAM SHEET I
~----~---i
ISEQUENCE A B I
1---,----T-T-------~--~-~------------~----~-----~~-----~-------------~
11 I 6f718 12 I
1---+---+-+--------------~--------------------------------. ------------~

I
0011012

I
I
I

0011015
0011016
0011011

I
I
I

0011019
I

DATA DIVISION.

01

01

•

•
RECORD-1.
02 SUB-FIELDA PICTURE IS X(68).
02 SUB-FIELDB PICTURE IS X(12).
•

•
RECORD-2 PICTURE IS X(80).

L---L---L-..1..--
Ref er to Appendix D, Figure 33, '!'Qr the relationship between the

example above, and the sample program given therein.

48

~\
r !

When this format is applied to the.various specific items of data, it
is limited by the nature of the data being described. The allowable
format for the description of each data type appears below. Clauses
which are not shown in a format are specifically forbidden in that for
mat. Clauses that are mandatory in the description of certain data
items are written without brackets.

The function of each clause is discussed after the following descrip
tions of data items.

GROUP ITEM

A group item must have items that are subordinate to it. An item is
subordinate to another by having a level number that is numerically
higher than the immediately pr.eceding item.

Format:

{
data-name}

level-number FILLER [REDEFINES-clause]

[OCCURS-clause] [USAGE-clause]

Example:

01 GROUP-NAME.
02 FIELD-B PICTURE X.
02 FIELD-C PICTURE 9.

ELEMENTARY ITEMS

An elementary item is one having no items subordinate to it.

Alphabetic Item

Format:

level-number {
data-name}
FILLER [REDEFINES-clause] [OCCURS-clause]

PICTURE IS alpha-form [USAGE IS.DISPLAY]

[VALUE IS alphabetic-literal] [JUSTIFIED RIGHT].

Example:

02 EMPLOYEE-NAME PICTURE A(20).

section 5: Data Division 49

Alphanumeric Item

{
data-name}

level-number FILLER [REDEFINES-clause] (OCCURS-clause]

PICTURE IS an-form [USAGE IS DISPlAY]

[VALUE IS non-numeric-literal] [JUSTIFIED RIGHT].

Examples:

02 MISC-1 PICTURE X(53).

02 MISC-2 PICTURE XXXXXXXX.

Report Item

Format:

level-number {
data-name}
FILLER [REDEFINES-clause] [OCCURS-clause]

PICTURE IS {
numeric-form BLANK WHEN ZERO }
report-form (BLANK WHEN ZERO]

[USAGE IS DISPLAY].

Example:

02 TOTAL PICTURE $999 1 999.99-.
02 RLT ';PicTURE 999 BLANK ZERO.

External Decimal Item

Format:

· {data-name}
level-number FILLER [REDEFINES-clause] (OCCURS-clause]

[USAGE IS DISPLAY] PICTURE IS numeric-form

[VALUE IS numeric-literal].

Example:

50

02 HOURS-WORKED PICTURE 99V9 1 DISPLAY.

02 HOURS-SCHEDULED PICTURE 99V9.

,II

r--1

Internal Decimal Item

Format:

{
data-name}

level-number FILLER [REDEFINES-clause] [OCCURS-clause]

PICTURE IS numeric-form USAGE IS COMPUTATIONAL-3

[VALUE IS numeric-literal].

Example:

02 YEAR-TO-DATE PICTURE S99999999V99 COMPUTATIONAL-3.

Binary Item

Format:

{
data-name}

level~number FILLER [REDEFINES-clause] toccUR.S-clausel

PICTURE IS numeric-form USAGE IS COMPUTATIONAL

[VALUE IS numeric-literal].

Example:

03 SUBSCRIPT PicTtJRE S999 COMPUTATIONAL.

IEXTI External Floatinq~Point Item
L---J

Format:

{
data-name}

level-number FILLER [REDEFINES-clause] [OCCURS-clause]

PICTURE IS fp-form [USAGE IS DISPLAY].

02 GAMMA PICTURE +.9(8)E+99.

section 5: Data Division 51

.--,.
IEXTI Internal Floating-Point Item
L--J

Format:

{
data-name}

level-number FILLER (REDEFINES-clause] [OCCURS-clause]

[{
COMPUTATIONAL-1}]

USAGE IS COMPUTATIQNAL-2

(VALUE IS floating-point-literal] •

Example:

02 DEVIATION COMPUTATIONAL-1.

Fol·lowing is a discussion of the clauses used to describe data i terns.

USAGE Clause

The USAGE clause describes the form in which data is represented.

The USAGE clause may be written at any level. At a group level, it
applies to each elementary item in the group. The usage of an elemen
tary item must not contradict the usage explicitly stated for a group to
which the item belongs. If USAGE is not specified, the usage of an item
is assumed to be DISPLAY. The format of the USAGE clause is:

[

(DISPLAY)]
) COMPUTATIONAL (

USAGE IS 'l COMPUTATIONAL-1 ~
COMPUTATIONAL-2

- COMPUTATIONAL-3

The DISPLAY option specifies that the item is stored in character
form, one character per byte.

The COMPUTATIONAL option specifies a binary data item occupying two,
four, or eight character positions corresponding to specified decimal
lengths of 1-4, 5-9, and 10-181 respectively. For example, if

02 FICA PICTURE IS S999V99 COMPUTATIONAL

is specified, the binary data item will occµpy four character positions.
The leftmost bit of the reserved area is the operational sign. computa
tional items are aligned at the next halfword or fullword boundary, as
appropriate.

The COMPUTATIONAL-1 option specifies a data item stored in short
precision floating-point format. The COMPUTATIONAL-2 option specifies a
data item stored in long-precision floating-point format. The
COMPUTATIONAL-3 option specifies that the item .is stored in packed deci
mal formats two digits per character position, with the low-order half
character containing the sign.

If a data hierarchy contains binary or floating-point items inter
mixed with other elementary items, slack bytes may be inserted to assure
necessary byte alignment. See.Appendix B for a detailed discussion of
slack bytes.

52

(I

~'

•

PICTURE Clause

The PICTURE clause specifies a detailed description of an elementary
level data item and may include specification of special report editing.

The general format of the PICTURE clause is:

tICTURE rs)~. :~E~::rm?]
report-form)
f p-f orm i

An example of the use of this format is:

r--1 I COBOL PROGRAM SHEET I
1--------------------------------~-------------------------------------~ ISEQUENCE A B I
1---T---T-T---------------------~------------------------------------i
11 I 61718 12 I
~---+---+-+~--~---------~
I I I I I
1003)008) IDATA DIVISION. I
I I I I I
I I I I • I
I I I I I
I 0031013 I I 02 A PICTURE X(68). I
100310141 102 B PICTURE X(12). I
I I I I I
L---L---~-1.---J

Ref er to Appendix D, Figure 34, for the relationship between the
example above, and the sample program given therein.

The options are described in the following text.

ALPHA-FORM OPTION: This option represents an alphabetic item. The PIC
TURE of an alphabetic item can contain only the character A. An A indi
cates that the character position will always contain one of the 26 let•
ters of the English alphabet or a space.

AN-FORM OPTION: This option applies to alphanumeric items. The PICTURE
of an alphanumeric item can contain only the character x. An X indi
cates that the character position will always contain a character from
the EBCDIC set.

NUMERIC-FORM OPTION: This option refers to a fixed-point numeric item.
The PICTURE of a numeric item may contain a valid combination of the
following characters:

CHARACTER

9

v

MEANING

The character 9 indicates that the actual or con
ceptual .digit position contains a numeric
character.

The character V indicates the position of an
assumed decimal point. Since a numeric item can
not contain an actual decimal point, an assumed
decimal point is used to provide the compiler with
information concerning the decimal alignment of
items involved in computations. storage is never
reserved for the character v.

Section 5: Data Division 53

p The character P represents a numeric digit posi
tion for which storage is never reserved and which
always is treated as if it contained a zero. For
example, an item composed of the digits 123 would
be treated by an arithmetic procedure statement as
123000 if its PICTURE were 999PPPV; or as .000123
if its PICTURE were VPPP999. The character V may
be used or omitted as desired. When used, V must
be placed in the position of the assumed decimal
point, to the left or right of the P or Ps that
have been specified.

s The character s indicates the presence of an
operational sign. If used, it must be the left
most character of the PICTURE. For a binary item
a sign is always present in the item; hence, the
presence of s in a numeric-form PICTURE is
required. For internal and external decimal items
developed by the execution of COBOL statements,
the compiler will develop a sign if and only if an
s is written in the PICTURE. If an s is not writ
ten, the sign position is occupied by a bit
configuration interpreted as positive, but which
does not represent an overpunch.

REPORT~FORM OPTION: This option refers to a report item. The editing
characters that may be combined to describe a report item are: 9 V P •
Z * CR DB , 0 B $ + -. The characters 9, P, and V have the same meaning
as for a numeric item. The meanings of the other allowable editing
characters are described in the following text.

CHARACTER

•

z

*

54

MEANING

The decimal point character (.) specifies that an
actual decimal point is to be inserted in the
indicated position and the source item is to be
aligned accordingly. Numeric character positions
to the right of an actual decimal point in a PIC
TURE must consist of characters of one type (i.e.,
* or Z or 9 or $ or + or ->.

The character z is the zero suppression character.
Each z in a PICTURE represents a digit position.
Leading zeros to be placed in positions defined by
z are suppressed, leaving the position blank.
Zero suppression terminates upon encountering the
decimal point (. or V). z may appear to the
right of the decimal point only if all digit posi
tions are represented by Zs. (A z cannot appear
to the right of a 9 anywhere.) The PICTURE zzz.zz
is equivalent to a combination of the BLANK clause
and the PICTURE ZZZ.99.

The asterisk is the "check protection" replacement
character which is similar to z, except that lead
ing zeros are replaced by asterisks. An * must
not appear anywhere to the right of a 9. The
BLANK WHEN ZERO clause may not be applied to an
item having an * in its PICTURE.

!~\

CR CR and DB are called credit and debit symbols and
DB may appear only at the right end of a picture.

These symbols occupy two character positions and
indicate that the specified symbol is to appear in
the indicated positions if the value of a source
item is negative. If the value is positive or
zero, spaces.will appear instead.

, The comma, zero, and B specify insertion of comma,
0 zero, and space, respectively. Each insertion
B character is counted in the size of the data item,

but does not represent a digit position. The
presence of zero suppression(Z) or check protec
tion (*) indicates that suppression of leading
insertion characters also takes place with asso
ciated space or asterisk replacement. These char
acters may also appear in conjunction with a
floating string, as described in the following
text.

A floating string is defined as a leading, continuous series of eith
er $, + or -, or a string composed of one such character interrupted by
Bs and/or commas and/or V or actual decimal point. For example:

$$,$$$,$$$
++++
--,---,--
$$$B$$$
+(8)V++
$$,$$$.$$

A floating string containing n+1 occurrences of $, + or - defines n
digit positions. When moving a numeric value into a report item, the
appropriate character floats from left to right, so that the developed
report item has exactly one actual $, + or - immediately to the left of
the most significant nonzero digit. Blanks are placed in all character
positions to the left of the single developed $, + or -. If the most
significant digit appears in a position to the right of positions
defined by a floating string, then the developed item contains $, + or ~
in the rightmost position of the floating string, and nonsignificant
zeros may follow. The presence of an actual or implied decimal point in
a floating string is treated as if all digit positions to the right of
the point were indicated by the PICTURE character 9, and a BLANK WHEN
ZERO clause was written for the item. In the following examples, b
represents a blank in the developed items.

PICTURE

$$$999
--,---,999

Numeric Value

14
-456

Developed Item

bb$014
bbbbbb-l.J56

A floating string need not constitute the entire PICTURE of a report
item, as shown in the preceding examples.

When B, comma, or zero appear to the right of a floating string, the
string character floats through these characters in order to be as close
to the leading digit as possible.

The character B in a floating string indicates that an embedded blank
is to appear in the indicated position, unless the position immediately
precedes the nonzero,, leading significant digit. Embedded Bs in a PIC
TURE need not be single characters. Thus, $$BB$$$ is a valid PICTURE
for a report item. The character comma in a floating string operates
similarly, except that the appropriate character appears in the devel
oped item instead of a blank.

Section 5: Data Division 55

The character v in a floating string serves merely to indicate align
ment of the assumed decimal point.

$
+

The character $, + or - may appear in a PICTURE
either singly or in a floating string. As a fixed
sign control character, the + or - must appear as
either the first or last symbol in the PICTURE,
but not both. The plus sign means that the sign
of the item is indicated by either a plus or minus
placed in the character position, depending on the
algebraic sign of the numeric value placed in the
report field. The minus sign means that a blank
is plac~d in the character position if the alge
braic sign of the numeric value placed in the
report field is positive. A minus is placed in
the character position, if the algebraic sign of
the numeric value is negative. As a fixed inser
tion character, the dollar sign may appear only
once in a PICTURE.

Other rules for a report item PICTURE are as follows:

1. The appearance of one type of floating string precludes any other
floating string.

2. There must be at least one digit position character.

3. If there are no 9's, BLANK WHEN ZERO is implied unless all numeric
positions are *·

4. The appearance of a floating sign string or fixed plus or minus
insertion characters precludes the appearance of any other of the
sign control insertion characters, namely, + - CR or DB.

5. The characters in a PICTURE to the left of an actual decimal point
(or in the entire PICTURE if no decimal point is given>, excluding
the characters that comprise a floating string, are subject to the
following restrictions:

a. z may not follow * or 9 or a floating string.

b. * may not follow 9 or z or a floating string.

6. The characters to the right of a decimal point up to the end of a
PICTURE, excluding the fixed insertion characters + - CR DB (if
present), are subject to the following restrictions:

a. only one type of digit position character may appear. That is,
asterisks, z•s, 9's, and floating string digit position charac
ters $ + - are mutually exclusive.

b. If any of the numeric character positions to the right of a
decimal point is represented by + or - $ or Z or *• then all
the numeric character positions must be represented by the same
characters.

7. A floating string must begin with at least two consecutive
appearances of + or - or $ •

8. The PICTURE character 9 can never appear to the left of a floating
or replacement character.

9. Floating or replacement characters + - z $ or * cannot be mixed in
a PICTURE description. They may appear with fixed characters as
follows:

56

/~\
. J

a. • or z with fixed $,

b. $ (fixed or floating) with fixed rightmost + or -,

c. * or Z with fixed leftmost + or -,

d. * or z with fixed rightmost + or -.

FP-FORM OPTION: This option refers to an external floating-point item.
The PICTURE of an external floating-point item consists of all of the
following:

1. + or - (+ indicates that a plus sign represents positive values and
that a minus sign represents negative values; - indicates that a
blank represents positive values and that a minus sign represents
negative values).

2. One to 16 91 5 representing mantissa with a decimal point or v,

3. The letter E,

4. + or - <see note 1 above>,

5. Two 91 8 representing the exponent.

General .Notes: The following considerations pertain to use·. of the PIC
TURE clause.

1. A PICTURE clause must only be used at the elementary level.

2. An integer enclosed in parentheses and following A X 9 z • 0 P - B
$ or + indicates the number of consecutive occurrences of the PIC
TURE character.

3. All characters, except P V and S are counted in the total size of a
data item. CR and DB occupy two character positions.

4. A maximum of 30 character positions is allowed in a PICTURE charac
ter string. For example, PICTURE A(79) consists of five PICTURE
characters.

5. A PICTURE must consist of at least one of the characters A X 9 • Z
or at least a pair of one of the characters + or - or $.

6. The characters • s V CR and DB can appear only once in a picture.
CR and DB may not both appear in the same PICTURE.

7. An item can possess only one sign.

The examples in Figure 7 illustrate the use of PICTURE to edit data.
In each example a movement of data is implied, as indicated by the
column headings.

Section 5: Data Division 57

.----------------y-------------------------1 I Source Area I Receiving Area I
~-------y--------+------------y------------i
IPICTUREI Data IPICTURE IEdited Data I
I I Value I I I
~-------+--------+------------+------------i
IS99999 I -12345 1-zz,zz9.99 -12,345.oo
JS99999VI 00123 l$ZZ,ZZ9.99 $ 123.00
I S9 (5) I 00100 I $ZZ, ZZ9. 99 $ 100. 00
I 9 (5) I 00000 I $ZZ; zzz. 99 $ • 00
19 (5) I 00000 I $ZZ, zzz. zz
l999V99 I 123.45 1$ZZ;ZZ9.99 $ 123.45
IV99999 I .12345 1$ZZ,ZZ9.99 $ 0.12
l9<Sl I 12345 1$**•**9.99 $12,345.oo
f 9<5> I 00123 1$**•**9.99 $***123.00
19 <5> I 00000 I$**•***· 99 $******· oo
19<5> I 00000 1$**•***•** **********
l99V999 I 12.345 1$**i**9~99 $****12.34
9 <5> I 12345 I$$$·, $$9. 99 $12, 345. oo
9 <5> I 00123 I$$$, $$9. 99 $123. oo
9 < 5> I 00000 I$$$, $$9. 99 $0. oo
9(4)V9 I 1234.5 1$$$,$$9.99 $1,234.5Q
V9(5) I .12345 1$$$,$$9.99 $0.12
S99999V -12345 l-ZZZZ9.99 -12345.-00
89(5)V 12345 -ZZZZ9.99 12345.00
89(5) -00123 -ZZZZ.99 - 123.00
S99999 12345 ZZZZ9.99- 12345.00
S9(5) -12345 ZZZZ9.99- 12345.00-
S9(5) 01234 ------.99 1234.00
89(5) -00001 ------.99 -1.00
S9(5) 12345 +ZZZZZ.99 +12345.00
s9<5> -12345 +zzzzz~99 -12345.oo
89(5) 12345 ZZZZZ.99+ 12345.00+
S9(5) -12345 ZZZZZ.99+ 12345.00-
S9(5) 00123 ++++++.99 +123.00
S9(5) OOGOl -~---~~99 1.00
9(5) 00123 ++++++.99 +123.00
9(5) 00123 ------.99 123.00
9(5) 12345 BB999.00 345.00 I
89(5) -12345 l$$$$$$.99CR $12345.00CRI
89(5) I 12345 1$$$$$$.99CR $12345.00 I
L-------i~-----~i ____________ i ____________ . J

Figure 7. Editing Applications of the PICTURE Clause

BLANK Clause

The BLANK WHEN ZERO clause specifies that the item being described is
filled with spaces whenever the value of the item is zero. The BLANK
clause may only be used for report items specified at an elementary
level.

The format of the BLANK clause isi

[~ WHEN ZERO]

VALUE Clause

The VALUE clause defines condition-name values and specifies the ini
tial value of working storage items.

58

The format of this clause is:

CVALU~ IS literal]

The size of a literal given in a VALUE clause must be less than or
equal to the size of the item as given in the PICTURE clause, with the
provision that the literal must also include leading or trailing zeros
to reflect Ps in the PICTURE. The. positioning of the literal within a
data area is the same as.the positioning that would result from specify:...
ing a MOVE of the literal to the data area. The type of literal written
in a VALUE clause depends on the type of data item.

If the literal specified is a figurative constant, the size of the
item generated is the size specified in the PICTURE clause.

When an initial value is not specified, no assumption should be made
regarding the initial contents of an item in Working-Storage.

The VALUE clause can only be specified for elementary items other
than report and external floating point.

In the File Section and Linkage Section the VALUE clause can only
appear in conjunction with a level 88 item.

The VALUE clause must not be written in a Record Description entry
that also has an OCCURS or REDEFINES clause, or in an entry that is sub
ordinate to an entry containing an OCCURS or REDEFINES clause. In the
latter case,an 88 level VALUE clause may be subordinate to the OCCURS or
REDEFINES clause.

REDEFINES Clause

This clause specifies that the same area is to contain different data
items, or provides an alternative grouping or description of the same
data.

The format of the REDEFINES clause is:

level-number data-name-1 [REDEFINES data-name-2)

Data-narne-2 is the· name associated with the previous data description
entry of equal level number. Data-name-1 is an alternate name for the
same area. When written, the REDEFINES clause must be the first clause
following data~name-1.

When an area is redefined, all descriptions of the area remain in
effect. Thus, if B and c are two separate items that share the same
storage area due to redefinition, the procedure statements MOVE X TO B
or MOVE Y TO c could be executed at any point in the program. In the
first case, B would assume the value of X and take the form specified by
the description of B. In the second case, the same physical area would
receive Y according to the description of c. A redefinition does not
cause any data to be erased and does not supersede a previous
description.

Moving a data item to a second data item which redefines the first
one (for example, MOVE B TO c when c redefines B), may produce unex
pected results. The reverse (MOVE B TO C when B redefines C), may also
produce unexpected results.

The REDEFINES clause must not be used for logical records associated
with the same file (i.e., it must not be used at the 01. level in the

Section 5: Data Division 59

File section>, since implied redefinition exists. The level number of
data-name-2 must be identical to that of the item containing the REDE
FINES clause. Redefinition starts at data-name-2, and ends when a level
number less than or equal to that of data-name-2 is encountered. Q_at~
name-1 and data-name-2 must be the same length.

The entries giving the new description of the area must immediately
follow the entries describing the area being redefined, where the
description of an area can mean a group item and all associated elemen
tary items. However, additional entries that redefine the same area may
intervene.

If data-name-1 is described as COMPUTATIONAL, COMPUTATIONAL-1, or
COMPUTATIONAL-2, then data-name-2 must start on a halfword, fullword, or
doubleword boundary, as appropriate.

A REDEFINES clause may be specified for an item within the scope of
an area being redefined; that is, REDEFINES clauses may be specified for
items subordinate to items containing REDEFINES clauses.

Except for condition-name entries, entries containing or subordinate
to a REDEFINES clause must not contain any VALUE clauses.

The description of data-name-1 or of any item subordinate to data
name-1 may not contain an OCCURS clause with a DEPENDING ON option.
Data-name-1 may not be subordinate to an item containing an OCCURS
clause. Data-name-2 may not contain an OCCURS clause in its description
nor may it be subordinate to an item described by an OCCURS clause. No
item subordinate to data-name-2 may be described by an OCCURS clause
with a DEPENDING ON option.

Between data-name-2 and data-name-1 there may be no entries having a
lower level number than the level number of data-name-2 and data-name-1.

The length of data-name-1 1 multiplied by the number of occurrences "of
data-name-1, must be equal to the length of data-name-2.

Data-name-2 .need not be written with qualifiers to ensure uniqueness.

Examples of the REDEFINE$ clause are contained in Figure 4.

OCCURS Clause

The OCCURS clause is used in defining related sets of repeated data,
such as tables, lists, vectors, matrices, etc. It specifies the number
of times that a data item with the same format is repeated. Record
Description clauses associated with an item whose description includes
an OCCURS clause apply to each repetition of the item being described.
When the OCCURS clause is used, the data-name that is the defining name
of the entry must be subscripted whenever it appears in the Procedure
Division. If this data~name is the name of a group item, then all data
names belonging to the group must be subscripted whenever they are used.

The OCCURS clause must not be used in any Record Description entry
having a level number 01 or 88.

The OCCURS clause has the following formats:

60

-'~

•

Option 1

[QCCURS integer TIMES]

In Option 1, integer represents the exact number of occurrences.

QI2tion 2

[OCf!!RS integer TIMES DEPENDINQ ON data-name]

In Option 2, integer refers to the maximum number of occurrences.
The use of Option 2 does not imply that the length of the data item is
variable, but that the number of occurrences of the item may vary.. The
record containing the variable number of occurrences of the item is,
however, of variable length, as is any group containing the variable
number of occurrences.

In Option 2, the actual number of occurrences is equal to the value
at object-time of the elementary item called g~~~-n~m~~ This value must
be a positive integer. Hence, the PICTURE for gata-~~m~ must describe
an integer. Data-name must be an internal decimal, external decimal, or
binary item. If data-name appears within the record in which the cur
rent Record Description entry also appears, then data-name must precede
the variable portion of the record which depends on it. Data-name
should be qualified, when necessary, but subscripting is not permitted.

Option 2 has the following restrictions.

1. Only one such clause per logical record is allowed.

2. The clause must appear in the description Of either a group that
contains the last elementary item of the record, or in the descrip
tion of the last elementary item itself.

3. The item having an OCCURS .clause with a DEPENDING ON option may not
itself be contained in a group having any OCCURS clause.

If the value of data-name changes during the course of program execu
tion, the size of any group described by or containing the related
OCCURS clause will reflect the new value of ~~~~=g~ffi~·

SUQscripting:: Subscripting provides the facility for referring to data
items in a table or list that have not been assigned individual data
names. Subscripting is determined by the appearance or an OCCURS clause
in a data description. If an item has an OCCURS clause or belongs to a
group having an OCCURS clause, it must be subscripted whenever it is
used.

A subscript is a positive nonzero integer whose value determines to
which element a reference is being made within a table or list. The
subscript may be represented either by a literal or a data-name that has
an integral value. Whether the subscript is represented by a literal or
a data-name, the subscript is enclosed in parentheses and appears after
the terminal space of the name of the element. A subscript must be an
internal decimal, external decimal, or binary item. In the case of a
literal, the subscript must be unsigned. ,

Binary subscripting of data-names, in general, results in more effi-·
cient coding.

Tables may be defined so that more than one level of subscripting is
required to locate an element within them. Such a case exists when a

Section 5: Data Division 61

group item described with an OCCURS clause contains one or more items
also described with OCCURS clauses. A maximum of three levels of sub
scripting is permitted by COBOL. Multilevel subscripts are always writ
ten from left to right, in decreasing order of inclusiveness of the
groupings in the table. Subscripts are written within a single pair of
parentheses and are separated by a comma followed by a space. A space
should also separate the data-name from the subscript expression. For
example:

01
02

03

ARRAY.
VECTOR, OCCURS 2 TIMES.

ELEMENT, OCCURS 3, PICTURE S9(9)
USAGE IS COMPUTATIONAL.

The preceding example would be allocated storage, as shown in Figure 8.

r----------------------------~------~----------------------------------1
Byte number
of element 4 bytes

4

r----------.-------11 I ELEMENT (1, 1) I
~-----------------~
I ELEMENT (1, 2) I
~-----------------~
I ELEMENT (1, 3) I
~-----------------~

~--:~:~~~-~~~-~-.,-~! I ELEMENT <2, 2) I
~-----------------~
I ELEMENT (2, 3) I
L-----------------J

VECTOR (1)

0

8 ARRAY

12

16 VECTOR (2)

20

--~
Figure 8. An Example of Subscripting for a Defined Array

A data-name may not be subscripted when it is being used as:

1. A subscript.

2. A qualifier.

3. The defining name of a record description entry.

4. Data-name-2 in a REDEFINES clause.

5. Data-name in the DEPENDING ON option of the OCCURS clause or GO 'I'O
clause-.-

6. Data-name in a SYMBOLIC KEY, ACTUAL KEY, and RECORD KEY clause.

7. Data-name in a LABEL RECORDS clause.

8. Data-name in an APPLY CORE-INDEX clause.

Subscripting A Qualified Data-Name

Qualification is necessary when the same data-name is used for sever
al different items of data; subscripting is necessary when some of the
elements of a table or list have not been assigned individual names.

In subscripting a qualified data-name the following rules are
significant:

62

•

(!

\ ;_,,

1. A data-name can be qualified even though it does not need qualifi
cation to make it unique.

2. Data-names used as qualifiers are considered part of the data-name
being qualified and cannot be subscripted. In the example below,
the higher level data-name 'VECTOR' is used to qualify the data
name 'ELEMENT', forming the new data-name 'ELEMENT IN VECTOR' fol
lowed by its subscripts. 'VECTOR' cannot be subscripted.

As a result of these rules there are several correct ways of express
ing subscripte~ data-names. For example, referring to Figure 8, the
following expressions are all correct references to the second ELEMENT
in the second VECTOR:

ELEMENT IN VECTOR (2 1 2)
ELEMENT (2, 2)

The first of these examples is unnecessary, although permissible,
qualification, assuming that ELEMENT and VECTOR occur only in this
hierarchy. However, if the name ELEMENT is used elsewhere, the qualifi
cation must be used. Note that the following forms of expression are
incorrect:

ELEMENT (2, 2) IN VECTOR
ELEMENT (2) IN VECTOR (2)

This clause may be written only for an elementary alphabetic or
alphanumeric item. Its format is:

[JUSTIFIED RIGHT]

When non-numeric data is moved to a field for which JUSTIFIED RIGHT
has been specified, the data is so aligned that rightmost source charac
ters are accommodated in the rightmost positions of the receiving field.
If the receiving field is shorter than the source field, an appropriate
number of leftmost source characters are truncated. If the receiving
field is longer than the source field, excess leftmost positions in the
receiving field are filled with spaces.

WORKING-STORAGE SECTION

The Working-Storage Section is used to describe areas of storage
reserved for intermediate processing of data. This section consists of
a series of Record Description entries, each of which describes an item
in a work area.

An independent Working-Storage entry describes a single item that is
not subdivided and is not itself a subdivision of some other item. Each
of these items is defined in a separate Record Description entry, which
begins with the special level number 77. All independent Working
Storage entries must precede any items having any of the level numbers
01 through 49.

Data items in the Working-storage Section that bear a definite rela
tionship to each other must be grouped into records according to the

section 5: Data Division 63

r---,

rules for formation of record descriptions. All clauses that ar.e used
in Record Description entries may be used in Working-storage record
descriptions. Each data-name in the Working-Storage Section that iden
tifies a record (01 or 77 level) must be unique, since it cannot be
qualified by a file-name. subordinate data-names need not be unique, if
they can be made unique by qualification •

. No assumption should be made about the initial values of Working
Storage items when these items have not had their initial values defined
in a VALUE clause.

An example of the use of this format is:

r------------~---1

I COBOL PROGRAM SHEET J

~--~
JSEQUENCE A B l
r---1---T-~--~
11 I 61718 12. I
~---+---+-+------------------------~-----------------------------------i
I I I t I
I003j008J JDATA DIVISION. I
I 003 I 0091 I WORKING-STORAGE SECTION. I
100310101 J77 MODIFICATION PICTURE X(12), VALUE IS 'PUT ANY DATA'. I
I I I I I
l---~---~-L--~-----J

Refer to Appendix D, Figure 34, for the relationship between the
example above, and the sample program given therein.

f EXTI ~l~~~GE_§~CT!ON
l ___ _.

The Linkage Section describes data passed from another program, or
user. label record areas.

Record description entries in the Linkage Section provide names and
descriptions but storage within the program is not reserved, since the
data exists elsewhere. Any Record Description clause may be used to
describe items in the Linkage Section, with one exception: the VALUE
clause may not be specified for other than level 88 items. In the
Linkage Section, level 01 items are assumed to start on a doubleword
boundary. Refer to Appendix B for a discussion of record alignment.

The Linkage Section is required in any program in which a LABEL REC
ORDS clause with a data-name option or an ENTRY statement with a USING
option appears. A complete discussion of ENTRY is contained in section
6.

64

/~
!

An example of the use of this format is:

r--1
I COBOL PROGRAM SHEET I
~---~
ISEQUENCE A B I
l---T---T-T--~
11 I 61718 12 I
I I I I I
I .003 I 008 I I DATA DIVISION. I
I I I I I
I I I I I
I I 1 I • I
100310111 ILINKAGE SECTION. I
100310121 101 PASS FIELD. I
I 003 I 013 I I 02 A PICTURE X(68). I
100310141 I 02 B PICTURE X(12). I
I I I I I
'---.L.--.L.i-----------------------~------------~---------------------J

Refer to Appendix D, Figure 34, for the relationship between the
example above, and the sample program given therein.

Section 5: Data Division 65

SECTION 6: PROCEDURE DIVISION

PURPOSE

The Procedure Division of a source program specifies those procedures
needed to solve a given problem. These steps <computations, logicai
decisions, input/output, etc.) are expressed in meaningful statements,
similar to English, which employ the concept of verbs to denote actions,
statements and sentences to describe procedures. The Procedure Division
must begin in Margin A with the header PROCEDURE DIV!SION followed by a
period.

SYNTAX

The discussion that follows describes the units of expression that
constitute the Procedure Division and the way in which they may be
combined.

Its constituent parts, in order of hierarchy, are:

• Section

• Paragraph

• Sentence

• Expression

• statement

SECTIONS

A section is composed of one or more successive paragraphs and must
begin with a section-header beginning in Margih A. A section-header
consists of a Unique section-name conforming to the rules for procedure
name formation, followed by the word SECTION and a period. A section
header must appear on a line by itself, except in the Declaratives por
tion of the Procedure Division, where it may only be followed immediate
ly by a USE sentence or an INCLUDE statement. The INCLUDE statement is
discussed in Section 7. A section-name.need not immediately follo~ the
words PROCEDURE D!VISION or END DECLARATIVES. A section ends at the
next section-name or at the end of the Procedure Division, or, in the
case of Declaratives, at the next section-name or at END DECLARATIVES.

PARAGRAPHS

A paragraph is a logical entity consisting of one or more sentences.
Each paragraph must, begin with a paragraph-name starting in Margin A.

A paragraph-name must not be duplicated within the same section.
When used as operands in Procedure Division statements, non-unique

66

/'-.,\

paragraph-names may be uniquely qualified by writing IN or OF after the
paragraph-name, followed by the name of the section in which the para
graph is contained. A paragraph ends at the next paragraph-name or
section-name, or at the end of the Procedure Division. In the case of
Declaratives, a paragraph ends at the next paragraph-name, section-name,
or at END DECLARATIVES. .

SENTENCES

A sentence is a single statement or a series of statements terminated
by a period and followed by a space. A single comma or semicolon or the
word THEN may be used as a separator between statements. A sentence
must be contained within Margin B.

EXPRESSIONS

An expression may be defined as a meaningful combination of names,
literals, COBOL words, and/or operators which may be reduced to a single
value. This definition will become clear after the reader has studied
the two types of expressions employed in COBOL, the "arithmetic'' expres-
sion and the "conditional" expression. · ·

STATEMENTS

A statement consists of a COBOL verb or the word IF or ON, followed
by any appropriate operands (data-names, file-nai:nes, or literals) and
other COBOL words that are necessary for the completion of the state
ment. The three types of statements are: compiler-directing, impera
tive, and conditional.

Types of Statements

£Q~~ILEE-DIRECT!~§._§T~!fil1§~!: A compiler-directing statement directs
the compiler to take certain actions at compilation time. A compiler
statement contains one of the compiler-directing verbs and its operands.
Compiler-directing statements (except for NOTE, COPY, and INCLUDE) must
appear as separate single sentences.

1~E§EAT1Y§-2TAT~ME~T: An imperative statement specifies an uncondition
al action to be taken by the object program. An imperative statement
consists of a COBOL verb and its operands, excluding the compiler
directing verbs and the conditional statements. An imperative statement
may also consist of a series of imperative statements.

CONDITIONAL STATEMENT: A conditional statement is a statement contain
ing a condition that is tested to determine which of alternate paths of
program flow to take.

The following are conditional statements:

1. A READ statement,

Section 6: Procedure Division 67

Although IF and ON are not verbs in the grammatical sense, they are
regarded as such in COBOL, inasmuch as they are the key words associated
with a particular statement form. An ON statement with an UN'I'IL or ELSE
option may not be used with an IF statement.

The conditions evaluated in conditional statements are:

1. AT END or INVALID KEY in a READ statement

2. INVALID KEY in a WRITE or REWRITE statement

3. SIZE ERROR in a arithmetic statement

4. The count-condition in an ON statement

5. One of four tests in an IF statement

The conditions in 1 to 4 above are called 'event-conditions.• The
conditions in 5 above are called 'test-conditions.•

The formats for the conditions named in 1 to 4 above are discussed in
the text for their respective statements. The types of conditions eval
uated in an IF statement are discussed in the section "Test-Conditions."

CONDITIONALS

The format of the IF statement is:

IF condition [!~EN] {statement-1 ••• }
~)l!XT §~!!'.!:~!!£~

f.{ELSE } {stq.temen .. t- 2 •• ·}] L Q!H~RWISE . !!~~!_SE!!T~N£~

When statement-1 is used instead of NEXT SENTENCE, then ELSE (or OTHER
WISE) NEXT SENTENCE may be omitted if it immediately precedes the period
for the sentence.

IF SALES IS NOT EQUAL TO SALES-QUOTA COMPUTE STANDARD-RATE = SALES *
BASE.

IF AMOUNT IS LESS THAN 200000 MOVE ' INVENTORY-COUNT' TO PRINTER-AREA.

IF MONTH EQUAL TO lQO GO TO HIT ELSE GO TO LOOP.

EVALUATION OF CONDITIONAL STATEMENTS: When a condition is evaluated the
following action is taken:

68

/~
i

1. If the condition is true, the statements immediately following the
condition are executed.

2. If the condition is false, the next sentence or the statements fol
lowing ELSE or OTHERWISE (or the next sentence) are executed.

The AT END, INVALID KEY, and SIZE ERROR conditions are followed by a
series of imperative statements. In an ON count-conditional statement,
the count-condition is followed by a series of imperative statements (or
NEXT SENTENCE) and may be followed by the words ELSE or OTHERWISE fol
lowed by a series of statements <or NEXT SENTENCE). The formats of the
IF statement describe what may follow the condition in the IF statement.

A series of imperative statements is terminated by one of the
following:

1. A period.

2. ELSE or OTHERWISE associated with a previous IF or ON.

In a series of imperative statements executed if a condition is true,
only the last statement may be an Option 1 GO TO statement or a STOP RUN
statement: otherwise, the series of statements would contain statements
to which control cannot flow. For example, in the following paragraph,
the statement MOVE A TO B could never be executed whether or not the AT
END condition were found to be false.

W. READ PAYROLL-RECORD AT END GO TO Y MOVE A TO B.

Figure 9 is a flowchart showing how an IF or ON conditional statement
is evaluated. Figure 10 is a flowchart showing how a conditional state
ment other than IF or ON is evaluated.

Statement - 1
(or Next
Sentence)

TRUE

Start

FALSE Statement - 2 •••
(or Next
Sentence)

Figure 9. Evaluation of IF or ON Conditional Statement

Section 6: Procedure .Division 69

Imperative
Statement •••

TRUE

Start

FALSE
Next Sentence

Figure 10. Evaluation of Conditional Statement other than IF or ON

,, ~ f ' i , ,

' i
IF1 C1 S1 IF2 C2 IF3 C3 S2 ELSE S3 ELSE S4 IF4 l

IF5 Cs Ss ELSE Ss
\.-.--/ '-..,.I \.-.--/ '-1

cl c2 el e2

J dl
~ _..

bl b2

al

al - Statement-1 for IF1
(If C1 is false, the next sentence is executed, since there is
ELSE for it.)

bl - Statement-1 for IF2
b2 - Statement-2 for IF2
cl - Statement-1 for IF3
c2 - Statement-2 for IF3
dl - Statement-1 for JF4

(If C4 is false, the next sentence is executed, since there is
ELSE for it.}

el statement-1 for IF5
e2 - Statement-2 for IF5

Figure 11. Conditional Statements with Nested IF Statements

70

!~
.)

~ ,

~

,)

no

no

NESTED IF STATEMENTS: Statement-1 and statement-2 in IF statements may
consist of one or more imperative statements and/or a conditional state
ment. If a conditional statement appears as statement-1 or as part of
statement-1, it is said to be nested. Nesting statements is much like
specifying subordinate arithmetic expressions enclosed in parentheses
and combined in larger arithmetic expressions.

IF statements contained within IF statements must be considered as
paired IF and ELSE combinations, proceeding from left to right. Thus,
any ELSE encountered must be considered to apply to the immediately pre
ceding IF that has not already been paired with an ELSE. In the condi
tional statement in Figure 11, c stands for condition; s stands for any
number of imperative statements; and the pairing of IF and ELSE is shown
by the lines connecting them.

Figure 12 is a flowchart indicating the logical flow of the condi
tional statement in Figure 11.

TEST-CONDITIONS: A test-condition is an expression that, taken as a
whole,: ,may be either true or false, depending on the circumstances
existing when the expression is evaluated.

There are five types of simple test-conditions which, when preceded
by the word IF, constitute one of five types of tests: relation test,
sign test, class test, condition-name test, overflow test.

The word NOT may be used in any simple test-condition to make the
relation specify the opposite of what it would express without the word
NOT. For example, AGE NOT GREATER THAN 21 is the opposite of AGE GREAT
ER THAN 21. NOT may also precede an entire condition, as in NOT (AGE .
GREATER THAN 21). AGE NOT GREATER THAN 21 and NOT CAGE GREATER THAN 21)
are identical in meaning.

Relation Test: A relation test involves the comparison of two operands,
either of which can be a data-name, a literal, or an arithmetic expres
sion. Neither the comparison of two literals nor the comparison of an
arithmetic expression to a non-numeric data-name is permitted. A
figurative constant may be used instead of either literal-1 or literal-2
in a relation test.

The format for a relation test is:

{

data-name-1 1
arithmetic-expression-1
figurative-constant-1 IS[NOTl
literal-1

{

data-name-2 1
arithmetic expression-2
figurative constant~2
literal-2

l ~REATER THANl
LESS THAN
EQUAL TO

The symbol > is equivalent to the reserved words GREATER THAN. The
symbol < is equivalent to the reserved words LESS THAN. The equal sign
is equivalent to the reserved words EQUAL TO.

Section 6: Procedure Division 71

Start

FALSE

TRUE

FALSE FALSE

FALSE FALSE

TRUE

Next Sentence

Figure 12. Logical Flow of conditional Statement with Nested IF
Statements

72

i~

COMPARISON OF :NUMERIC ITEMS: For numeric items, a relation test deter
mines that the value of one of the items is less than, equal to, or
greater than the other, regardless of the length. Numeric items are
compared algebraically after alignment of decimal points. zero is con
sidered a unique value, regardless of, length, sign, or implied decimal
point location of an item. In the statement, IF SALES EQUAL TO QUOTA GO
TO A, the relation test SALES EQUAL TO QUOTA would be evaluated as
follows:

r------------T-------------T------------..,..---------;...----------------1
I Data"".'name I PICTURE I Value at time of compare I
~-------------+--------------+--------------..,..-------------------------~ I SALES I 9999V99 I 212. 00 I
I QUOTA I 999 I 212 I
'-------------~-------------i ___ J

The evaluation is TRUE.

COMPARISON OF NON-NUMERIC ITEMS: For non-numeric items, a comparison
results in the determination that one of the items is less than, equal
to, or greater than the other, with respect to the binary collating
sequence of characters in the EBCDIC set.

If the non-numeric items are of the same length, the comparison pro
ceeds by comparing characters in corresponding character positions,
starting from the high-order position and continuing until either a pair
of unequal characters or the low-order position of the item is compared.
The first pair of unequal characters encountered is compared for rela
tive position in the collating sequence. The item containing the char
acter that is positioned higher in the collating sequence is the greater
item. The items are considered equal after the low-order position is
compared.

If the non-numeric items are of unequal length, comparison proceeds
as described for items of the same length. If this process exhausts the
characters of the shorter item, the shorter item is less than the long
er~ unless the remainder of the longer item consists solely of spaces,
in which case, the items are equal. In the statement, IF SALES EQUAL TO
QUOTA GO TO A, the relation test snEs EQUAL TO QUOTA would be evaluated
as follows:

r-------------T----:---. ------T--------------------------------------1
I Data-name I PICTURE I Value at time of compare I
I---~-------+-------~-----+--~
I SALES I X(4) I 0212 I
~-------------+--..,..----------+--~
I QUOTA I X(3) I 212 I l _____________ i ______________ i ___ J

The evaluation is FALSE

Figure 13 indicates the characteristics of the items being compared
and the type of comparison made. NN indicates a comparison as described
for non-numeric items; NU means a comparison as described for numeric
items. A blank box indicates that the test is not permitted.

section 6: Procedure Division 73

r--~,
I SECOND OPERAND I
~---T ___ T ____ T ____ T ____ T ____ T ____ T ____ T ____ T----~

IGR IAL I AN I ED I ID I BI I EF I IF I RP I FC I
r-T--------------------f---f---f----f----f----f----f----f----f----f----J

IGroup Item (GR) INN INN I NN I NN I NN I NN I NN I NN I NN I NN I
~--------------------t---t~--t----t----t----+----t----t----t----t----~
IAlphabetic Item (AL)(NN INN I NN I I I I I I I NN~I
~--------------------+---+---+----t----+----t----t~---t----+----+----~
IAlphanumeric <non- I I I I I I I I I I I

Flreport) Item (AN) INN INN I NN I NN5 I I I I I NN I NN I
I~--------------------t---f---t----t----t----f----t----t----t----t----~
RI External Decimal, <b\ I I I I I I I I I I I
SIItem (ED) cvNJ\:,, INN I I NN5 1 NU I NU I NU I NU I NU I I NU3 1
T~--------------------f---f---t----t----t----t----f----t----t----f----~

IInternal Decimal I I I I I I I I I I I
OIItem <ID) C1't-~~~ INN I I I NU I NU I NU I NU I NU I I NU2 1
P~--------------~-----t---t---t----t----t----t----t----t----t----t----~
EIBinary Item (BI) INN I I I NU I NU I NU I NU I NU I I NU2 1
Rl-------~------------t---t---t----t----t----t----t----t----t----f----~
AIExternal Floating- I I I I I I I I I I I
Nlpoint Item (EF) INN I I I NU I NU I NU I NU I NU I I NU2 1
D~-------------------t---f---t----t----t----t----~----t----t----t----~

IInternal Floating- I I I I I I I I I I I
lpoint Item (IF) INN I I I NU I NU I NU I NU I NU I I NU2 1
~-------------------t---t---t----t----t----t----t----+----t----t----~
IReport Item (RP) INN I I NN I I I I I I NN I NN~I
~--------------------+---+---+----+----t----+----t----t----t----t----~
IFigurative Constant INN INN~I NN I NU3 1 NU2 1 NU2 1 NU2 1 NU2 1 NN~I I
I <Fc> I I I I I I I I I I I

~-i---------~----------i-~_i_~_i ____ i ____ i ____ i ____ _._ ___ i ____ i ____ i ____ ~

l~Permitted with the figurative constants SPACE and ALL 'character I
I where character must be alphabetic. I
l 2 Permitted only if figurative constant is ZERO. I
l 3 Permitted only if fugurative constant is ZERO or ALL 'character' I
I where character must be numeric. I
l~Not permitted with figurative constant QUOTE. I
l 5 External decimal field' must consist of integers. I
L--------------------------------~-------------------------------------J
Figure 13. Permissible Comparisons

Sign Test: This type of condition tests whether or not the value of a
numeric item is less than zero (NEGATIVE), greater than zero (POSITIVE),
or is zero (ZERO). The value zero is considered neither positive nor
negative.

The format for a sign test is:

{
data name }
arithmetic-expression IS [NOT] S POSITIVE }

ZERO t NEGATIVE

The following are examples of the use of the SIGN test:

PERFORM A UNTIL RESULT IS NEGATIVE.
IF A * B - C IS NOT ZERO GO TO D.

Class Test: When a class test is specified, determination is made as to
whether or n'ot an i tern consists solely of the following:

/~
(I

1. The characters 0 through 9 (NUMERIC),

2. The characters A through Z and space (ALPHABETIC).

The ALPHABETIC test may pe performed on elementary alphabetic or
alphanumeric items.

The NUMERIC test may be performed on elementary alphanumeric, intern
al decimal, or external decimal items.

The format for the class test is:

data-name IS [NOT] {
NUMERIC }
ALPHABETIC

If the last character of an otherwise numeric field contains a digit
with a sign over punch, the field is considered numeric. For a single
character alphanumeric field· containing a digit with a sign overpunch,
the tests IF NUMERIC and IF ALPHABETIC will both be considered true
while the NOT ''form of the· tests will both be false. For example, if a
1-character ~lphanumeric field called FIELD is being tested and contains
the hexadec:i,.mal configuration Cl, both of the following will be true
because the hexadecimal Cl could be interpreted either as an 'A' or a
•+1•:

IF FIELD IS ALPHABETIC MOVE 'A' TO CODE-A.
IF FIELD IS NUMERIC MOVE 'A' TO CODE-A.

Hence, a numeric class test·will always be true for an alphanumeric
item containing numeric data if the low-order byte is any of the letters
A through R. because these letters are treated as signed numbers.

condition-name Test: The format for a condition-name test is:

[NOT] condition-name

A condition-name test is one in which a conditional variable is
tested to see whether or not its value is equal to the value specified
for ~ condition-name associated with it. For example, in a program
proc~ssing a payroll, the data item MARITAL-STATUS (the conditional
variable) might be a code indicating whether an employee is married,
divorced, or single. Assume that if MARITAL-STATUS has the value of 1,
the employee is single; if it has the value of 2 1 he is married; and if
it has the value of 3, he is divorced. To determine whether or not an
employee is married, the programmer could test this condition by using a
simple ~elational condition in a conditional statement such as IF
MARlTAL-STATUS = 2 SUBTRACT MARRIED-DEDUCTION FROM GROSS. Alternative
ly, he can associate a condition-name with each value that MARITAL
STATUS might assume. Thus, in the Data Division, the condition-names
SINGLE, MARRIED, and DIVORCED might be associated with values 1, 2 1 and
3, respectively. For example:

02 MARITAL-STATUS PICTURE 9.
88 SINGLE VALUE IS 1.
88 MARRIED VALUE IS 2.
88 DIVORCED VALUE IS 3.

Then, as a shorthand· form of the simple relational condition MARITAL
STATUS = 1, the programmer could write the single condition-name SINGLE.
Therefore, the following two statements would produce identical results:

IF MARITAL-STATUS = 1 GO TO Z.
IF SINGLE GO TO z.

section 6: Procedure Division 75

r---,

The condition-name test, then, is an alternative way of expressing
certain conditions which could be expressed by a simple relational
condition.

f EXTI overflow Test: This type of condition tests for form overflow of a
L---J printer to which a file named in an option 1 APPLY clause is assigned.

The format for the overflow test is:

CNOTl overflow-name

overflow-name is true if a •form-overflow• situation exists. Form
overflow exists when an end of page is sensed by an on-line printer.
overflow-name follows the rules for data-name formation.

The following statement could be written (with a programmer-supplied
overflow-name):

IF OVERFLOW-NAME-ONE WRITE X AFTER
ADVANCING 0 LINES ELSE WRITE X AFTER
ADVANCING 2 LINES.

The form-overflow condition should not be tested unless the asso
ciated, file has been opened.

COMPOUND CONDITIONS: Simple test-conditions can be combined with logi
cal operators according to specified rules to form compound conditions.
The logical operators are AND, OR, and NOT. Two or more simple condi
tions combined by AND and/or OR make up a compound condition.

The word OR is used to mean either or both. Thus, the expression A
OR B is true if: A is true, B is true, or both A and B are true. The
word AND is used to mean both. Thus, the expression A AND B is true
only if both A and B are true. The word NOT is used in the manner
described in the subsection •Test-conditions.• Thus, the expression NOi'
(A OR B) is true if A and B are false; and the expression NOT (A AND B)
is true if A is false, B is false, or if both A and B are false.

The logical operators and truth values are shown in Figure 141 where
A and B represent simple test-conditions.

r----------------T--1
I condition I Related Conditions I
1--------y-------f-------T------~T-------T--~~---------~-T--------------~
I A I B I NOT A IA AND BIA OR B I NOT (A AND B) I NOT (A OR B) I
~--------+------t·-·-----+-------+-------+------------+--------------~
I True I True I False I True I True I False I False I
I False I True I True I False I True I True I False I
I True I False I False I False I True I True I False I
I False I False I True I False I False I True I True I L--------i-------i.-______ .J._ ______ .1-; ______ .J._ ______________ .J._ _____________ J

Figure 14. Truth Table

Parentheses may be used to specify the order in which conditions are
evaluated. Parentheses must always be paired. Logical evaluation
begins with the inne:nnost pair of parentheses and proceeds to the outer
most. If the order of evaluation is not specified by parentheses, the
expression is evaluated in the following way:

76

1. AND and its surrounding conditions are evaluated first, starting at
the left of the expression and proceeding to the right.

I~

2. OR and its surrounding conditions are then evaluated. also working
from left to right.

Thus, the expression: A IS GREATER THAN B OR A IS EQUAL TO C AND D
IS POSITIVE would be evaluated as if it were parenthesized as follows:

(A IS GREATER THAN B) OR ((A IS EQUAL TO C) AND (D IS POSITIVE)).

The rules for formation of symbol pairs are shown in Figure 15. The
letter C stands for conditional expression. P means that the combina
tion is permissible. A dash means that the combination is. not
permissible.

r---------------------------1
I Second Symbol I
1---T---T---T---T---T---T---~
I I c IOR IANDINOTI (I) I

r---+---+---+---+---+---+---+---i
I F IC I - IP IP 1- I - I p I
I i ~---+---+---+---+---+---+---~
I r IOR I P I- 1- IP I P I - I
I s ~---+---+-~+---+---+---+---~
I t IANDI p 1- 1- JP I p I - I
I 1---+---+---+-~+---+---+---~
I s INOTI p 1- 1- I- I p I - I
I Y ~---+---+---+---+---+---+---i
I m I < I P I- I- IP I P I - I
I b ~---+---+---+---+---+---+---~
I o I >I - IP IP I- I - I P I
I 1 I I I I I I I I
l---L---L---L---L----'---L----'---J

Figure 15. Formation of Symbol Pairs

COMPILER-DIRECTING DECLARATIVES

Declarative sections are identified by compiler-directing statements
that specify the circumstances under which a procedure is to be executed
in the object program. A declarative section consists of a section
name1 followed by the word SECTION and a period1 and a USE sentence fol
lowed by procedural statements. The USE sentence must begin immediately
after the section header. on the same line. Declarative sections must
be grouped together at the beginning of the Procedure Division, preceded
by the key word DECLARATIVES in Margin A1 and followed by the key words
END DECLARATIVES, where END must also appear in Margin A. DECLARATIVES
and END DECLARATIVES must be followed by a period. A declarative sec
tion is terminated by the occurrence of another section or the words END
DECLARATIVES.

Although declarative sections are located at the beginning of the
Procedure Division, execution of the object program starts with the
first procedure following the termination of the declarative section.

The general form for declaratives is:

PROCEDURE DIVISION.
DECLARATIVES.
{section-name SECTION. USE-:-sentence.
{paragraph-name. sentence... .} ••• }
END DECLARATIVES.

Section 6: Procedure Division 77

.--,

A declarative section may not be referred to by any PERFORM or GO TO
statement outside the declarative. Within a given declarative section,
there may be no reference to a point outside the declarative, except as
stated below.

If there are two or more logical paths within a declarative proce
.dure, these paths must lead to a common path within the section contain
ing them. For options 1 and 2, an ALTER, PERFORM, or GO TO statement
within a declarative section must not refer to paragraph-names or
section-names outside that declarative section, except that a GO TO
statement in an Option 1 or Option 2 USE section may refer to the
reserved word MORE-LABELS. For option 3, a GO TO statement within a
declarative section can refer to paragraph-names or section-names out
side that declarative section.

USE Statement

The USE statement identifies the type of declarative.

There are three options of the USE statement. Each is associated
with the following types of procedures.

1. Label-writing procedures

2. Label-checking procedures

3. Error-checking procedures

The formats of the USE statements are:

I EXT I Option 1
L. __ J

r--1

USE FOR CREATING [BEGINNING] LABELS ON OUTPUT file-name •••
ENDING

I EXT I Option 2
L--J

USE FOR CHECKING [BEGINNING] LABELS ON INPUT file-name •••
ENDING

Options 1 and 2 are used to provide user label processing procedures.
CHECKING refers to an input file; CREATING refers to an output file. In
this context, "input" means all files opened as INPUT or I-0.

The file can be either an input or output file but not both.

The word BEGINNING refers to user header labels; the word ENDING
refers to user trailer labels. If neither word is specified, the
declarative section will process both header and trailer labels.

ENDING is not supported for direct~access files since they do not
have trailer labels.

When using Option 1 or 2, the programmer must specify LABEL RECORDS
ARE data-name in the File Description entry for the file. Data-.,.name
must be described as a level 01 or 77 data item in the Linkage Section
of the Data Division. (See the LABEL RECORDS clause in Section 5.)

An OPEN statement encountered in the in-line portion of the Procedure
Division causes execution of the statements associated with the USE sen
tence for the file in which BEGINNING !ABELS is specified. A CLOSE
statement encountered in the in-line portion of the Procedure Division

78

/~
r)

causes execution of the statements associated with the USE sentence for
the file in which ENDING LABELS is specified.

In a declarative section containing Option 1 of the USE sentence,
there must be a path of program flow through the last statements of the
section, so that writing of user labels can be terminated.

For options 1 and 2, records associated with the file being opened or
closed cannot be referenced within the declarative section. conversely.
the label records can be referenced only while the declarative is being
executed.

The exit from an option 1 or option 2 declarative section is inserted
by the compiler following the last statement in the section. All logi
cal program paths within the section must lead to this point, with one
exception: a special exit may be specified by the statement GO TO MORE
LABELS. When an exit is made from a label processing declarative sec
tion by means of this statement, IOCS will do one of the following:

1. Read an additional user header label or user trailer label and then
re-enter the declarative section for further checking of labels.
In this case, IOCS will only re-enter the declarative section if
there exists another user label to check. Hence. there need not
exist a program path that flows through the last statement in the
section. The point of return to the declarative section.. after
exit by means of a GO TO MORE-LABELS statement, is the beginning of
the section.

2. Write the current user header label or user trailer label and then
re-enter the declarative section for further creation of labels. A
label, created in an IOCS area, is written each time an exit from
the declarative section takes place.

If no GO TO MORE-LABELS statement is executed, then the declarative
section is not re-entered to check or create any immediately succeeding
user labels.

Option 3

Option 3 is used to provide user input/output error-processing proce
dures in addition to the procedures supplied by IOCS for tape or disk.
The format of this option of the USE declarative is:

USE AFTER STANDARD ERROR PROCEDURE ON file-name.

Within the section, the file associated with the USE sentence cannot
be referred to by an OPEN, READ, WRITE, or REWRITE statement. Only a
CLOSE statement can be given for the file.

An exit from this type of declarative section can be effected by
executing the last statement in the section (normal return), or by means
of a GO TO statement. Figure 16 summarizes the facilities and limita
tions associated with each file-processing technique when an error
occurs.

Section 6: Procedure Division 79

Fi le- Processing Technique No Error- Processing
Type of 1/0

Error- Processing Declarative Section Written
Declarative Section

Statement
ACCESS ORGANIZATION Written Norma I Return GO TO Exit

SEQUENTIAL Standard sequential End of job READ Continue Processing User limited to CLOSE
{or not speci - tape of file permitted for file- name
fled)

Standard sequential Diagnostic error READ
disk message is printed,

job is terminated WRITE Not applicable

REWRITE

INDEXED READ

DIRECT WRITE
REWRITE

RANDOM INDEXED READ

DIRECT WRITE
REWRITE

Figure 16. Error-Processing summary

CONTINUED PROCESSING OF FILE

Ref er to Figure 16 normal return. Continued processing of a file is
permitted under the following conditions.

1. An error processing procedure exists in the declarative section.

2. Detection of a standard error results in an automatic transfer to
the error processing procedure, which enables the user to examine
the error condition before continuing to process.

3. At the conclusion of processing an error, it is the programmer's
responsibility to update the parameters normally returned by IOCS
to the programmer (such as the ACTUAL KEY, in the case of sequen
tial retrieval of a direct file).

COBOL VERBS

The COBOL verbs are the basis of the Procedure Division of a source
program.

The organization of the remainder of this section is based on the
classifications used in the following list:

Input/Output Verbs
OPEN

80

READ
WRITE
REWRITE
CLOSE
ACCEPT
DISPLAY

Data Manipulation Verbs
MOVE
EXAMINE
TRANSFORM

Arithmetic Verbs
ADD
SUBTRACT
MULTIPLY
DIVIDE
COMPUTE

Procedure-Branching Verbs
STOP
GO TO
ALTER
PERFORM

Compiler-Directing Verbs
ENTER
EXIT
NOTE

INPUT/OUTPUT STATEMENTS

The COBOL input/output verbs provide the means of storing data on an
external device (such as magnetic tape, disk units, etc.> and obtaining
such data from external devices. The following is a discussion of the
verbs associated with these functions.

The OPEN statement initiates the processing of files.

The format of an OPEN statement is:

INPUT {file-name [WITH NO REWIND] [REVERSED]} •••
-----COUTPUT {file-name {WITH NO REWINDl'l":~::1

-rr=o-{file-name} ••• l ---------
OUTPUT-{file-name [WITH NO REWIND]} •••
---(INPUT {file-name [WITH-NO-REWIND] [REVERSED]} •••]

-11=0 {file-name} ••• l -r----~- --------
I-o {file-name} ••• [OUTPUT {file-name [WITH NO REWIND]} •••]
---CINPQ! {file-name-CWITH ~Q_RE~!~Ql csgy~g§~Q]};;;1

An example of the use of this format is:

r--1
I COBOL PROGRAM SHEET I
~--~
ISEQUENCE A B I
t---T---T-T--~
11 I 61718 12 I
t---:t---+-+--~
I J I 1 1
1001J0201 !PROCEDURE DIVISION. I
)00110211 !START. OPEN INPUT FILEB OUTPUT FILEA. I
I I I I I
L---~---~-~---------------~--------------·------------------------------J

Section 6: Procedure Division 81

Refer to Appendix D, Figure 33, for the relationship between the
example above and the sample program ven therein.

The OPEN statement for a file must be executed prior to any. other
input/output statement for the file~ The OPEN statement, by itself,
does not make an input record or area available for processing; a RE.AD
statement must be executed to obtain the first data record. For an out·
put file, an OPEN statement makes available~ an area for development of
the first output record. A second OPEN statement for a given file can
not be executed prior to the execution of a CLOSE statement for that
file. Moreover, the following additional restriction must be observed
for indexed sequential files1

The physical position in the source program of each CLOSE statement
must be:

1. After its associated OPEN statement.

2. t3~fore any other OPEN statement for that file.

~ote, however, that an indexed sequential file opened as OUTPUT
(i.e., created> may not be opened using the same FD in any other OPEN
statement ~P the program.

For a direct organization file, an FD description is required for
each option applied to the file. Thus, the same file opened as OUTPUT,
INPUT, and I-0 must be described by three FD's.

The INPUT option initiates IOCS label checking, when applicable, and
permits reading th~ file.

The OUTPUT option initiates IOCS label creation, when applicable, and
permits creating a file.

The I/O option permits the opening of a direct-access file when
access is random for reading, updating, or adding records. When access
is sequential, reading or updating can be done.

The NO REWIND option should orily be written for files assigned to
UTILITY device-numbers for which rewinding is possible, e.g., 2400.
This option suppresses the rewinding normally associated with opening a
file.

The REVERSED option can only be applied to files assigned to specific
devices for which the reverse-read feature is available. The REVERSED
optiqn may only be use_d for a file containing type F records.

An example of the OPEN statement is:

OPEN OUTPUT X-FILE, INPUT Y-FILE REVERSED, Z-FILE.

Note: Z-FILE is !!.Q~ opened REVERSED.

READ Statement

The functions of the READ statement are:

1. For sequential file processing, to make available the next logical
record from an input file and to allow performance of specified
imperative statements when end-of-file is detected.

82

~\

2. For nonsequential file processing, to make available a specific
record from a direct-access file and to allow execution of state
ments if the contents of the associated symbolic and/or actual key
is found to be invalid.

The formqt of the READ statement is:

READ file-name RECORD [INTO data-name]

{
AT END }
INVALID KEY

imperative statement •••

An example of the use of this format is:

r-----------------------'---1
I COBOL PROGRAM SHEET)
r--~-----------------~
!SEQUENCE A B I
r---T---T-T-----------~--~
11 1 61718 12 1
r---+----+-+-------------'---------------...,.---·----------------------------~

I l I I 1
f001j0201 }PROCEDURE DIVISION. I
I I l I I
I I I 1 I
!001J0221 ISTART2. READ FILEB AT END GO TO LABA. I
I I I 1 1
L ___ i ___ i_i--J

Refer to Appendix D, Figure 33, for the relationship between the
example above and the sample program given therein.

When a READ statement is executed, the next logical record in the
named file become~ accessible in the input area defined by the asso
ciated Record Description entry. The file-name must be defined by a
File Description entry in the Data Division.

The record remains available in the input area until the next READ
statement (or a CLOSE statement> for that file i~ executed. No
r,eference can be made by any statement in the Procedure Di vision to
information that is not actually present in the current record. Thus,
it is not permissible to ref er to the nth occurrence of data that
appears fewer than !! times. If such a-reference is made, no assumption
should be made about results in the object program.

If more than one logical record is described for the file, implicit
redefinition of the area exists. It is the programmer's responsibility
to identify which record is present in the area at any given time.

The INTO data-name option is equi val.ent to a READ statement and a
MOVE statement:---The-data-name specified must be an 01 level entry in
the Data Division. If it is not, the compiler, after listing the Data
Division map, will abort the job and dump core. There will be !!2 !!!~§=
sage printed on the console typewriter. When this option is used, the
current record becomes available in the input area, as well a~ in the
area specified by 9:9:!:9:::.!!~!!!~· Data is moved into the data-name area in
accordance with the COBOL rules for moving an item into the first record
specified for that file description. If the INTO option is specified,
there should be only one record description associated with the file;
otherwise, reference is made only to the first description for that
file.

section 6: Procedure Division 83

The AT END option is required for files for which access is sequen
tial. The AT END portion of the READ statement is executed when an end
of-file condition is detected.

Logical records in a data file are no longer available to the program
once the end-of-file condition for that file is detected. Thus, impera
tive statements in the AT END portion of a READ command may not refer to
the I/O area described in the related FD unless subsequent CLOSE and
OPEN statements have been executed.

If the INVALID KEY option is specified, the statements following
INVALID KEY are executed when the contents of actual key and/or symbolic
key are invalid. See the publication, !.~~L§Y§.:!:~!!!!.':2.§.Q_Q!§.lL~!!~L!~Eg
0Eerating Systems: COBOL ProgE~ill!!!~f~§.-~~!de, Form C24-5025, for a
detailed discussion of the invalid key condition.

If ACCESS IS RANDOM is specified for the file, the symbolic key and/
or the actual key of the file must be set to the desired values prior to
the execution of the READ statement.

If the file being read is an unlabeled tape file (described as LABEL
RECORD IS OMITTED>, an end-of-volume condition is considered to be end
of-file. Thus, for multivolume unlabeled tape files, the user's AT END
routine must be designed to determine true end-of-file and to continue
processing.of any succeeding volumes of the file.

If the file being read is an unlabeled tape file (described as LABEL
RECORD IS OMITTED), an end-of-volume condition is considered to be end
of-fiie. Thus, for multivolume unlabeled tape files, the user's AT END
routine must be desig.ned to determine true end-of-file and to continue
processing of any succeeding volumes of the file.

Each time an end-of-volume condition occurs on a file other than an
unlabeled tape file; the READ statement causes the following operations
to take place:

1. The volume trailer label checking procedure of roes is executed.
The user trailer label checking procedures specified in a USE
Option 2 sentence are executed, if such labels exist.

2. A volume switch occurs.

3. The volume header label checking procedure subroutine of IOCS is
executed. The user header label checking procedures specified in a
USE Option 2 sentence declarative are executed, if such labels
exist.

4. The next logical record in the file is made available for
processing.

If the end-of-volume is also the logical end of file, only the opera
tions specified in item 1 are done and then the statements following AT
END are executed.

84

The following are examples of READ statements:

READ INVENTORY AT END GO TO FINISH.
READ PAYROLL-FILE INTO AREA-1 AT END GO TO CALC-2.
READ PERSONNEL-FILE INVALID KEY GO TO ERR.

/~

/~
i I

WRITE Statement

The function of Option 1 of the WRITE statement is to release a logi
cal record for a file specified as OUTPUT or I/O in an OPEN statement
and to allow performance of specified imperative statements if the con
tents of the associated actual key and/or symbolic key are found to be
invalid.

Option 1 of the WRITE\ statement has the following format:

WRITE record-name [FROM data-name-1] C!~Y~~ID KEY imperative
statement •••]

Option 2 of the WRITE statement is used for output destined to be
printed or punched. (This option may not be used for files assigned to
direct-access devices.>

~ot~: If the Option 1 form of the WRITE statement is used in conjunc
tion with the debugging language statements "EXHIBIT", "TRACE", or
"DISPLAY", overprinting of lines may occur.

Section 6: Procedure Division 84.1

Option 2 of the WRITE statement has the following format:

WRITE record-name [~ data-name-1]

[AFTER ADVANCING { ?ata-name-2} LINES]
integer

An OPEN statement must be executed prior to executing.the first WRITE
statement for a file. After the WRITE statement is executed, the logi
cal record named by record-name is no longer available.

The WRITE verb must not be used to add new records to an existing
sequential disk file.

When the FROM option is used, ~~~~=~~m~=! must not be the name of an
item in the file containing record-name. This form of the WRITE
statement is equivalent to the statement MOVE data-name-1 to record~name
followed by the statement WRITE record-name. Moving takes place accord
ing to the rules specified for the MOVE statement.

After execution of a WRITE statement with the FROM option, the infor
mation in record-name is no longer available, but the information in
data-name-1 is available.

When the end-of-volume condition occurs, the WRITE statement causes
the following operations to take place:

1. The trailer-label writing procedure of IOCS is executed. The user
trailer-label creating procedure is executed if specified in a
declarative section with Option 1 of the USE sentence.

2. A volume switch occurs.

3. The header-label writing procedure of IOCS is executed. The user
header-label writing procedure is executed if specified in a
declarative section containing Option 1 of the USE sentence.

4. The next logical record area in the output file is made available.

If ACCESS IS RANDOM is specified, the symbolic key and/or actual key
must be set to the desired values prior to the execution of the WRITE.

If the INVALID KEY option is written, the statements following
INVALID KEY are executed when the contents of the actual key and/or sym
bolic key are invalid. See the publication, IBM system/360 Disk and
Ta~_operating_Systems: COBOL Programmer's Guide, Form C24-5025, for a
detailed discussion of invalid key conditions.

When Option 2 on the WRITE statement is used, the first character in
each logical record for the file must be reserved for the control char
acter. Therefore, a printed line of 132 positions must be expressed as
133 positions. It is the user's responsibility to see that the appro
priate channels are punched in the carriage control tape. If a WRITE
statement with an ADVANCING option is written for a record in a file,
every WRITE statement for records in the same file must contain an
ADVANCING option. When the AFTER ADVANCING option is used and ~~~~g~~
is specified, integer must be unsigned and have the value O, 1, 2, or 3.
The value 0 designates a carriage-control "eject" <i.e., skip to next
page>. The value 1 designates single spacing; the value 2, double spac
ing; and the value 3, triple spacing. If 0 is used, COBOL will skip to
a 1 punch in the carriage tape.

Data-name-2 must be an alphanumeric item of length one (i.e., must
have PICTURE X). The following chart shows the values that data-name-2
may assume and its interpretations.

Section 6: Procedure Division 85

r---,

b (blank)
0

+
1 t.hrough 9
A,B,C
v,w

Interpretation

single spacing
double spacing
triple spacing
suppress spacing
skip to channel 1 through 9, respectively
skip to channel 10, 11, 12, respectively
pocket select 1 or 2, respectively, on the IBM

1442 or 2520, and Pl or P2 on the IBM 2540

The following are examples of the WRITE statement:

WRITE SALARY-RECORD FROM OLD-RECORD AFTER ADVANCING 0 LINES.

WRITE NEW-RECORD FROM OLD-CARD INVALID KEY GO TO END.

IEXTIRE~E!TE Stat~ment
L ___ J

The function of the REWRITE statement is to replace a logical record
on· a direct-access device with a specified record, if the contents of
the associated actual key and/or symbolic key are found to be valid.

The format of the REWRITE statement is:

REWRITE record-name [FROM data-name]
~~-[!NVALID KEY imperative-statement •••]

The READ statement for a file must be executed before a REWRI'I'E
statement for a file can be executed. A REWRITE statement can only be
written for files opened as I-0. Issuing a REWRITE for a file opened as
other than I-0 can produce unpredictable results.

When the FROM option is used, data-name must not be the name of an
item in a file containing ~~co~~~~ame. This form of the REWRITE
statement is equivalent to the statement MOVE data-name TO record-name
followed by the statement REWRITE record-name. Moving takes place
according to COBOL rules for moving.

After the REWRITE statement is executed, the logical record named by
record-name is no longer available. This also applies to the use of the
FROM option.

For direct-access files, the INVALID KEY procedure is executed when
the contents of the actual key and/or the symbolic key are invalid for
the file.

If ACCESS IS RANDOM is specified for the file, the actual key and/or
the symbolic key must be set to the desired values prior to the execu
tion of the REWRITE statement. Since a REWRITE statement must always
apply to the most recent record read, the values associated with the
symbolic and/or actual keys must be the same for the REWRITE statement
as they were for the READ statement.

CLOSE Statement

The CLOSE statement is used to terminate the processing of one or
more units or files. The format of the CLOSE statement is:

86

An example of the use of this format is:

r--1
J COBOL PROGRAM SHEET I
t--~
!SEQUENCE A B I
t---T---T-T--~
11 I 61718 12 I
t---+---+-i--~
I I I l I
10011020! !PROCEDURE DIVISION. I
j00110211 !START. OPEN INPUT FILEB OUTPUT FILEA. j
100110221 IS'I'ART2. READ FILEB AT END GO TO LABA. I
I I I I I
I I l l I
I I I I I
100210061 jLABA. CLOSE FILEA, FILEB STOP RUN. I
I I I I 1
l---L---i-i--J

Refer to Appendix D, Figure 33, for the relationship between the
example above an1 the sareple program given therein.

When a CLOSE statement is specified, roes closing procedures are
executed for the current unit of the file. The CLOSE statement may only
be specified for a file that is open. After a CLOSE statement has been
executed for a file, an OPEN statement must be executed before any other
reference can be made to that file.

The following restriction must be observed for indexed sequential
files:

The physical position in the source program of each CLOSE must be:

1. After its associated OPEN.

2. Before any other OPEN for that file.

If the UNIT or HEEL option is specified, the roes volume switching
procedures are instituted.

A CLOSE statement with the UNIT or REEL option or with the UNIT or
REEL.WITH LOCK option.J?hould ..pnly beewritte.n.,tor Ules.J;.,ssiqned to t.g,~.
A REEL or UNIT option is not a true CLOSE; therefore, an OPEN statement
must not be executed before processing the next reel. The LOCK option
causes the current reel of the tape file to be rewound and unloaded.

The NO REWIND option should be written only for files assigned to
UTILITY device-numbers for which rewinding is possible, e.g., 2400.
This option suppresses rewinding normally associated with closing a
file.

The function of the DISPLAY statement is to write data on a low
volume device. The format of the DISPLAY statement is:

{
data-name}
literal ••• [

UPON CONSOLE J
UPON SYSPUNCB

When UPON SYSPUNCH or U?ON CONSOLE is omitted~ the system logical
printing device (SYSLST) is assumed. When UPON SYSPUNCH is written, the
system logical punch device is assumed.

section 6: Procedure Division 87

If the input/output device specified by a DISPLAY statement is the
same one designated by a WRITE statement, the output resulting from the
statements may not be in the order in which the statements were encoun
tered. For example, suppose the system logical output device was desig
nated and the.statements

WRITE WEEKS-PAY.
DISPLAY 'ABC'.

were encountered (where the contents of WEEKS-PAY is 123.00). The out
put on SYSLST might be:

ABC
123.00

When UPON SYSPUNCH or UPON CONSOLE is written, the s~um of the sizes
of the operands may not exceed 72 character positions. When UPON SYS
PUNCH and UPON CONSOLE are omitted, the s~m of the si~e§ of the operands
may not exceed the maximum logical record length for the system logical
printing device (SYSLST). However, in no.case may the number of
operands in th~ DISPLAY statem~nt exceed 19, even if the sum of the
sizes of the operands does not exceed the specified maximum.

Any spaces desired between displayed multipie operands must be expli
citly specified.

When SYSPUNCH is written, an 80-character output record is produced,
with positions 73 through 80 of the record containing the idEntif ication
of the originating program (PROGRAM-ID). If the message size exceeds 72
characters, it is truncated; if less than 72, the remaining positions
are filled with spaces.

Data-names described as USAGE COMPUTATIONAL, COMPUTATIONAL-1,
COMPUTATIONAL-2, or COMPUT~TIONAL-3 are converted automatically to ex
ternal format as follows:

1. Internal decimal and binary items are converted to external deci
mal. Only negative values cause a low-order sign overpunch to be
developed.

2. Internal floating-point items are converted to external floating
point. No other data items reqhire conversion.

For example; if two binary items hpve values -32 and 32, then they
will be displayed as 3K and 32, respectively.

ACCEPT Statement

The function of the ACCEPT statement is to obtain data from the sys
tem logical input device (SYSIPT), or from the console.

The format of the ACCEPT statement is:

~~ta-,!g!~ may be either a fixed-length group item or an elementary
alphabetic, alphanumeric, external decimal or external floating-point
item. One logical record is read and the appropriate number of charac
ters is transferred f rorn left to right into the area reserved for data
~ No editing or error-checking of the incoming data is done. -----

88

~ ! \
. I

..

If the input/output device specified by an ACCEPT statement is the
same one as designated for a READ statement, the results may be
unpredictable.

When FROM CONSOLE is specified, data-name may not exceed 72 character
positions in length.

When an ACCEPT statement with the FROM CONSOLE option is executed,
the following action is taken: "'

1. A system-generated message AWAITING REPLY is automatically
displayed.

2. Execution is suspended. When a console input message is identified
by the Control Program, execution of the ACCEPT statement is
resumed and the message is transferred to the specified data-name.

When the.FROM CONSOLE option is not written, one logical record is
read from the system logical input device (SYSIPT).

If the system logical input device used in an ACCEPT statement is
also used for a file, the results are unpredictable.

Figure 17 states restrictions of input/output statements. ! means
that the statement may appear; g indicates it may appear with
restrictions.

The following are examples of ACCEPT statements:

ACCEPT CONTROL-CARD-AREA.
ACCEPT IN-REC FROM CONSOLE.

,-------------T--1 I I Appearing In: I
I ~-----------y----~-----~-----------~-------~~-------~
I I Label I Label I Main Body of I I
I I Checking I creating I Procedure I Debug
I statement I Declarative I Declarative I Di vision I Packet I
1-------------+-----------+--~--------+------------t------~------------i I OPEN I R1 I R1 I y I y I
I CLOSE I I I I I
~-------------+-----------+-----------t------------t-------------------i I READ I R:1. I R:1. I y I y I
I WRITE I I I I I
I REWRITE I I I I I
~-------------+-----------+-----------+------------+~-----------------i
IDIS~LAY I Y2 I Y2 I y I y I
I EXHIBIT I I I I I
I TRACE I I I I I
~---~---------+-----------+---·--------+-----------t-------------------i
I ACCEPT I I I I I
I FROM I y I y I y I y I
I CONSOLE I I I I I
~-------------+-----------+--~--------+---~-------+-------------------i
I ACCEPT I I I I I
I (from I Y3 I Y3 I Y I Y I
I SYSIPT) I I I I I
·--~----------i-----------i~----------.J.....-------~---J.__-----------------~
1:1.oniy permitted for files other than the one for which entry into the I
I declarative was made. I
12Except for the first execution of any of DISPLAY, EXHIBIT, or I
I procedure-name affected by READY TRACE in the program. I
13Except for the first execution in the program. I
L---~-----------· ---------'
Figure 17. Restrictions for Input/Output Statements

section 6: Procedure Division 89

DATA MANIPULATION STATEMENTS

MOVE State.ment

The MOVE statement is used to transfer data from one area of main
storage to another and to perform conversions and/or editing on the data
that is moved. The MOVE statement has the following format:

{
data-name-1}
literal TO data-name-2 •••

An example of the use of this format is:
r-----------------------------------"----------------------------1
I COBOL PROGRAM SHEET I
1-----------------------------'--------------------------------------~
ISEQUENCE A B I
1--..... -T---T-T--~
11 I 61718 12 I
1---+---+-+----~---" --~
100310151 IPROCEDURE DIVISION. I
I I I I I
I I I I I
I I I I • I
l003f 019f IMODIFY. MOVE MODIFICATION TO B. I
I I I I I
L---..L---.L-.l---------------~--~----------------------~--------------J

Refer to Appendix D, Figure 34, for the relationship between the
example above, and the sample program given therein.

The data represented by data-name-1 or the specified literal is moved
to the area designated by data~name-2. The same information is also
moved to any additional receiving areas mentioned in the statement.

When a group item is involved in a simple move, the data is moved as
a group without regard to descriptions of items subordinate to the group
(i.e. without editing, data conversion etc.).

The following considerations pertain to moving items:

1. Numeric (external decimal, internal decimal, binary, external
floating, internal floating, numeric literals, and ZERO) to numeric
or report:

a. The items are aligned by decimal points, with insertion of
zeros or truncation on either end, as required.

b. When the USAGE of the source field and receiving field differs,
conversion to the USAGE of the receiving field takes place.

c. The items may have special editing performed on them with
suppression of zeros, insertion of a dollar sign, commas, etc.,
and decimal point alignment, as specified by the receiving
area.

2. All other permissible combinations:

90

a. The characters are placed in the receiving ar~a from left to
right, unless the receiving field is specified as JUSTIFIED
RIGHT.

b. If the receiving field is not completely filled by the data
being moved, the remaining positions are filled with spaces.

!~
l

\.~ .. /

c. If the source field is longer than the receiving field, the
move is terminated as soon as the receiving field is filled.

Figure 18 contains several examples illustrating MOVE •

.---~----~-------T-~-----------~----------------------1
I Source Fieldl Receiving Field I
~--------------f---------~------~---T------------i I I I Value I Value I
I PICTURE Value I PICTUREI before MOVEI after MOVE I
~----------------+---------+-------------+------------i
J99V99 1234 I 99V99 I 9876 11234 I
l99V99 1234 I 99V9 I 987 1123 I
19V9 12 I 99V999 I 98765 101200 I
I xxx A2B I xxxxx I Y9X8W I A2Bbb I
19V99 123 I 99.99 I 87.65 101.23 I
I AAAAAA REPORT I AAA I JKL I REP I
L--------------~-i---------i _____________ i_ ___________ J

Figure 18. Examples of Data Movement

Note that, in the fourth example, the information in any excess posi
tions of a non-numeric receiving area is replaced by spaces at the
right.

Figure 19 illustrates all permissible moves for the various data
classifications. Y means the move is permitted; N means the move is not
permitted.

EXAMINE St~tement

The EXAMINE statement is used to replace certain occurrences of a
given character and/o~ to count the number of such occurrences in a data
item.

section 6: Procedure Division 91

r---------------------------~----------------1 I Receiving Field I
r-----------------------f----T---~----T ____ T ____ T ____ T ____ T ____ T ____ J

1source Field I GR I AL I AN I ED I ID I BI I EF I IF I RP I
~-----------------------+----+----+----+----+----+----+---~+----+----i
I I I I I I I I I I I
I I I I I I I I I I I
IGroup (GR) I y I y I y I N I N I N I N I N I N I
r----------------------+----+-----+---. +----+---+---~+----+----+----~
I I I I I I I I I I I
I I I I I I I I I I I
f Alphabetic (AL) I Y I Y I Y I N I N I N I N I N I N I
t--------------t{i~ ___ _.. __ t ____ t ____ t ___ i ___ t----1----t----1----t----1

t\ I I I I I I I I I I I
v f Alphanumeric (AN) I y I y I y I N I N I N I N I N I N I

~---------------------+----+----+----+----+---+----+----+----+----i

I ~·; 11 v" t I I I I I I · I I :
IExternal Decimal CED) I y I N I Y1 I y I y I y I Y I y I y I
~-----------------------+----+----+----+----+----+----+----+----+----~

I C~- ~ I l I I l l I ' l l
!Internal Decimal CID) I y I N fy1 , 2 l y I y I y I y I y I y I
~-------------------...;;---+---+-,---f----+-----+----+---+----+----+----i
I I I I I I I I I I I
I I I I I I I I I I I
f Binary (BI) I Y I N IY1

1
2 I Y I Y I Y I Y I Y I Y I

~----------------------+-_;--+---+----+----t---+----+----+---+----i·
I External Floating- I I I I I I I I I I
JPoint (EF) I Y I N I N I Y I Y I Y I Y I Y I Y I
~-----------------------+----+~--+----+----+----+----+----+----+----i I Internal Floating- I I I I I I I I I I
I Point C IF) .. I Y I N I N I Y I Y I Y I Y I Y I Y I
I yt1\ I I I I I I I I I I

~-----!:~-~2~-------+----+----+----+----+----+----+----+----+----~
I I I I I I I I I I I
I I I I I I I I I I I
f Report (RP) I y I N I y I N I N I N I N I N I N I
~-----------------------+----+----+----+---~+----+----+----+----+----~
1· I I I I I I I I I I
I I I I I I I I I I I
I ZEROS I y I N I y I y I y I y I y I y I y I
r----------------------+----+----+----+----+----+----+----+----+----i
I I I I I I I I I I I
I I I I I I I I I I I
ISPACES I y I y I y I N I N I N I N I N I N I
~-----------------------+----+----+----+----+----+----+----+----+----~
IA11 'character'• HIGH- I I I I I I I I I I
IVALUES, LOW-VALUES, I y I N I y I N I N I N I N I N I N I
I QUOTES I I I I I I I I I I
~-----------------------i ___ i ___ i ___ _,.1. ____ i ____ i ____ J._ ___ i~--.l.----i

11 For integers only. I
12 Data is converted to external decimal. I
L-----------------:-0---J Figure 19. Permissible Moves

92

'

The EXAMINE statement has the following two formats:

Option 1

EXAMINE data-name TALLYING LEADING ~ALL }

l gNTIL_FIRST
•-character-1'

[REPLACING BY 'character-2']

Option 2

EXAMINE data-name

BY 'character-2'
_.A----"""''"•••<1w~ ~-.-.:w~~

Data-name in each option must refer to a data item whose USAGE
DISPLAY. -·- ~·"

....,.....,..,..,...._,~.._ ... , ""'--·1··~-« . ..,,.-,, .• , _ _,..,,A<~"·"""""'

--Cha;;cter-1 and character- 2 must be sing le-character non- numeric
literals (i.e., enclosed in quotation marks) and members of the set of
allowable characters for the data item. For example, a "2" cannot
replace an "A" in an alphabetic item, but may do so in an alphanumeric
item.

The use of figurative constants instead of 'ch~~acter=!' or
'character~2 1 is permitted.

When Option 1 is used, a count is made at object time of the number
of occurrences of the specified character in ~ata-~~~L and this count
replaces the value of the special binary data item TALLY, whose length
is five decimal digits. TALLY is a compiler-established counter; there
fore, it should not be defined by the user program. TALLY may also be
used as a data-name in other pro,cedural statements.

The count at object time depends on which of the following three
TALLYING options is employed:

1. If ALL is specified, all occurrences of character-1 in the data
item are counted.

2. If LEADING is specified, the count represents the number of occur
rences of character-1 prior to encountering a character other than
character-1. Examination proceeds from left to right.

3. If UNTIL FIRST is specified, the count represents the number of
characters other than character-1 encountered prior to the first
occurrence of character=I~--Exaffiination proceeds from left to
right~ If the-end of~he data item is encountered prior to
encountering character-1, TALLY will contain a number equal to
field-size.

When the REPLACING option is used (either in Option 1 or Option 2),
the replacement of characters depends on which of the following four
REPLACING options is employed:

1. If ALL is specified, character-2 is substituted for each occurrence
of ch~ra£_'£er-1.

Section 6: Procedure Division 93

r---1

2. If LEADING is specified, the substitution of character-2 for
character-1 terminates when a character other than character-1 is
encountered, or when the righthand boundary of the data item is
reached. Examination proceeds from left to right.

3. If UNTIL FIRST is specified, the substitution of character-2 ter
minates as soon as the first character-1 is encountered, or when
the righthand boundary is reached.~Examination proceeds from left
tq right.

4. If FIRST is specified, only the first occurrence of character-1 is
replaced by character-2. Examination proceeds from left to ri9ht.

Sample EXAMINE statements showing the effect of each statement on the
associated data item and the TALLY are shown in Figure 20.

r--------------------------T----------T---------T----------------------1
I I I I I
I I ITEM-1 I Data I Resulting Value of I
I EXAMINE Statement I Before I After I TALLY I
i--------------------------+----------t---------t----------------------~
I . I I I I
I EXAMINE ITEM-1 TALLYING I 101010 I 101010 I 3 I
I ALL • 0 • I I I I
r--------------------------+----------+---------+----------------------~
I EXAMINE ITEM-1 TALLYING I 101010 I 000000 I 3 I
I ALL • 1 I REPLACING BY I 0. I I I I
r--------------------------+----------+---------+----------------------~
I EXAMINE ITEM-1 REPLACING I **7000 I 7000 I unchanged I
I LEADING '*' BY SPACE I I I I
r--------------------------+----------+-------~-+----------------------~
I EXAMINE ITEM-1 REPLACING I **1.94 I $*1.94 I unchanged I
I FIRST • *. BY I $ ' I I I I
L--------------------------i----------i---------i----------------------J
Figure 20. Examples of Data Examination

IEXTI TRANSFORM Statement
L ___ J

The TRANSFORM statement is U$ed to alter characters according to a
transformation rule. For example, it may be used to change the charac
ters in an item to a different collating sequence.

The format of the TRANSFORM statement is:

TRANSFORM data-name-3 CHARACTERS

{

figurative-constant-1}
~goM non-numeric-literal-1

data-name-1
TO

{

figurative-constant-2}
non-numeric-literal-2
data-name-2

Da!::.a-na!!!g:.l must be an elementary alphabetic, alphanumeric, or report
item, or a group item.

The combination of the FROM and TO options determines what the trans
formation rule is. These combinations are:

94

f\

Option
FROM
figurative-constant-1
TO
figurative-constant-2

FROM
figurative-constant-1
TO
non-numeric-literal-2

FROM
figurative-constant-1
TO
data-name-2

FROM
non-nurneric-literal-1
TO
figurative-constant-2

FROM
non-numeric-literal-1
TO
non-numeric-literal-2

FROM
non-ntimeric-literal-1
TO
data-name-2

FROM
data-name-1
TO
figurative-constant-2

FROM
data-name-1
TO
non-numeric-literal-2

Transformation Bule
All characters in
single character
replaced by the
constant-2.

data-name-3 equal to the
figurative-constant-1 are

single character figurative-

All characters in data-name-3 equal to the
single character figurative-constant-1 are
replaced by the single character non-numeric
li teral-2.

All characters in data-name-3 equal to the
single character figurative-constant-1 are
replaced by the single character in data
name- 2.

All characters in data-name-3 that are equal
to any character in non-numeric-literal-1 are
replaced by the single character figurative
constant-2.

Non-numeric-literal-1 and non-numeric-literal-2
must be equal in length or non-numeric-literal
2 must be a single character. If equal in
length, any character in data-name-3 equal to a
character in non-numeric-literal-1 is replaced
by the character in the corresponding position
of non-numeric-literal-2.

If the length of non-numeric-literal-2 is one,
all characters in data-name-3 that are equal to
any character appearing in non-numeric-literal-
1 are replaced by the single character given in
non-numeric-literal-2.

Non-numeric-literal-1 and data-name-2 must be
equal in length or data-name-2 must be a
single-character item.

If equal in length, any charac~er in data-name-
3 equal to a character in non-numeric-literal-1
is replaced by the character in the correspond
ing position of data-name-2.

If the length of data-name-2 is one, all char
acters in data-name-3 that are equal to any
character appearing in non-numeric-literal-1
are replaced by the single character given in
data-name-2.

All characters in data-name-3 that are equal
to any character in data-name-1 are replaced by
the single character figurative-constant-2.

Data-name-1 and non-numeric-literal-2 must be
of equal length or non-numeric-literal-2 must
be one character.

If equal in length, any character in data-name-
3 equal to a character in data-name-1 is
replaced by the character in the corresponding
position of non-numeric-literal-2.

Section 6: Procedure Division 95

FROM
data-name-1
TO
data-name-2

Transformation Rule
If the length of non-numeric-literal-2 is one,
all characters in data-name-3 that are equal to
any character appearing in data-name-1 are
repla~ed by the single character given in
non-numeric-literal-2.

Any character in data~name-3 equal to a charac
ter in data-name-1 is replaced by the character
in the corresponding position of data-name~2.
These items can be one or more characters, but
must be equal in length.

The following rules pertain to the operands of the FROM and TO
options:

1. Non-numeric-literals require enclosing quotation marks, as speci
fied in the section, "Literals."

2. Data-:name-:1 and data-name-2 must be elementary alphabetic, or
alphanumeric items, or fixed length group items less than 257 char
acters in length.

3. A character may not be repeated in non~numeric-literal-1 or in the
area defined by data-na,me--1. If a character is repeated the
results will be unpredictable.

4. The allowable figurative-constants are: ZERO, ZEROS, ZEROES,
SPACE, SPACES, QUOTE, QUOTES, HIGH-VALUE, HIGH-VALUES, LOW-VALUE,
and LOW~ VALUES.

When either data-name-1 or data-name-2 appears as a determinant of
the transformation rule, the user can change the transformation rule
during object time.

Figure 21 contains examples of data-na.me-3 results, using the
figurative-constant-1 to fiqurative-constant-2, non-numeric-Ii tera·1-1 to
non-numeri~-literal-2, and data-name-1 to data-name-2 combinations,
respectively~ (The lower case 'o' represents a blank.)

r-----------T-----------T-----------T--'---------1
fData-name-31 I fData-name-31
I Before I FROM I TO I After I
~-----------+--'---------+----------+---.-------~
f 1b7bbABC I 'SPACE I QUOTE 11•1 • 'ABC I
11b7bbABC 1'17CB1 1'QRST' IQbRbbATS I
I 1b7bbABC I b17ABC I CBA 71b I BCACC71b I
l1234WXY89 198YXW4321 IABCDEFGHI IIHGFEDCBA I
L-----------~--------~--~-----------..1--~~------J
Figure 21. Examples of Data Transformation

ARITHMETIC STATEMENTS

The following rules apply to the arithmetic statements:

1. All data-names used in arithmetic statements must represent elemen
tary numeric data items that are defined in the Data Division,of
the program, except that operands of the GIVING option can be eith
er elementary numeric or report.

2. The maximum size of any data-name or literal is 18 decimal digits.

3. Intermediate result fields generated for the evaluation of fixed
point arithmetic expressions assure the accuracy of the result
field, except where high order truncation is necessary.

96

'~ . i

...

4. Decimal point alignment is supplied automatically throughout
computations.

The ROUNDED and SIZE ERROR options apply to all the arithmetic state
ments. The GIVING option applies to all arithmetic statements but
COMPUTE.

GIVING Option: If the GIVING option is written, the value. of the data
name that follQws the word GIVING will be made equal to the calculated
result of the arithmetic operation. The data-name that follows GIVING
~s not used in the computation and may contain editing symbols.

If the GIVING option is not written, the operand following the words
TO, FROM, BY, and INTO in the ADD, SUBTRACT, MULTIPLY, and DIVIDE state
ments must be a data-name. This data-name is used in the computation
and is made equal to the result.

ROUNDED 0Rtion: If, after decimal-point alignment, the number of places
in the calculated result are greater than the number of places asso
ciated with the data-name whose value is to be set equal to the calcu
lated result, truncation occurs unless the ROUNDED option has been
specified.

When the ROUNDED option is specified, the least significant digit of
the resultant data-name has its value increased by 1 whenever the most
significant digit of the excess is greater than or equal to 5.

Rounding of a computed negative result is performed by rounding the
absolute value of the computed result and then making the final result
negative (unless the final result is zero).

Figure 22 illustrates the relationship between a calculated result
and the value stored in an it~ that is to receive the calculated
resµlt.

r---------------------------------1 I Item to Receive Calculated Resultl
r----------T-------T-----------T------------i
ICalculatedl IValue AfterlValue After I
I Result I PICTURE I ~ounding I Truncating I
~-------+..,...------+---.------+-------------i
112. 36 I 99V9 I 12. 4 I 12. 3 I
1e.432 I 9V9 I s. 4 I e. 4 I
I 35, 6 I 99V9 I 35. 6 I 35. 6 I
165.6 I 99V I 66 I 65 I
I • 00 55 I V9 9 9 I • 00 6 I • 0 0 5 I
L----------i-------i-----------i-------------J
Figure 22. Relationship Between Calculated Value and Value Stored

SIZE ERROB Option: Whenever the number of integral places in the calcu
lated result exceeds the number of integral places specified for the
resultant data-name, a size error condition arises.

If the SIZE ERROR option has .been specified and a size error condi
tion arises, the value of the resultant data-name is not altered and the
series of imperative statements specified for the condition is executed.

If the SIZE ERROR option has not been specified and a size error con
dition arises, no assumption should be made about the final result;
however, the program flow is not interrupted.

Section 6: Procedure Division 97

It should be noted that t~e SIZE ERROR option applies only to final
calculated results. When a size error occurs in the handling of inter
mediate results, no assumption should be made about the final result.

An arithmetic statement, if written with a SIZE ERROR option, is not
an imperative statement. Rather, it is a conditional statement and is
prohibited in contexts where only imperative statements are allowed.

Ref er to Appendix c for a discussion on significant positions
retained in arithmetics.

ADD Statement

The ADD statement adds two or more numeric values and substitutes the
resulting sum for the current value of an item. The ADD statement has
the following format:

{
numeric-literal }

ADD floating-point-literal •••{TO }
data-name-1 GIVING data-name-n

[ROUNDED] [ON SIZE ERROR imperative-statement •••]

When the TO option is used, the values of all the data-names (includ
ing data-name-n> and literals in the statement are added, and the
resulting sum replaces the value of data-name-n. At least two data
names and/or numeric literals must follow the word ADD when the GIVING
option is written.

The maximum number of operands that may be specified in an ADD
statement is 23.

The following are examples of the ADD statement:

ADD INTEREST DEPOSIT TO BALANCE.
ADD REGULAR-TIME OVERTIME GIVING NEW-WEEKLY.

The first example would result in the total sum of INTEREST, DEPOSIT and
BALANCE being placed at BALANCE. The second example would result in the
sum of REGULAR-TIME and OVERTIME being placed at the location
NEW-WEEKLY.

SUBTRACT Statement

The SUBTRACT statement subtracts one or a sum of two or more numeric
data items from a specified item and sets the value of a data item e~al
to the difference.

The SUBTRACT statement has the following format:

{
data-name-1 }

SUBTRACT numeric-literal-1 •••
· floating-point-literal-1

98

/~

\._.,/

{

data-name-m [GIVING data-name-nl }
FROM numeric-literal-m GIVING data-name-n
~~ floating-point-literal-m GIVING data-name-n

[ROUNDED] [ON SIZE ERROR imperative statement •••]

The effect of the SUBTRACT statement is to add the values of all the
operands that precede FROM and then to subtract the sum from the value
of the item following FROM. A literal can follow FROM only when the
GIVING option is specified.

The maximum number of operands that may be specified in a SUBTRACT
statement is 23.

MULTIPLY Statement

The MULTIPLY statement multiplies two numeric data items and sets the
value of data-name-2 (unless data-name-3 is specified) equal to the
product.

The format of the MULTIPLY statement is:

{

data-name-1 }
MULTIPLY numeric-literal-1

floating-point-literal-1

{
data-name-2 [GIVING data-name-31 }

BY numeric-literal-2 GIVING data-name-3
- floating-point-litera1:-2 GIVING data-name-3

[ROUJIDED] [ON SIZE ERROR imperative statement •••]

When the GIVING option is omitted, the second operand must be a data
name1 and the product replaces the value of the data-name. For example,
the following would result in the product being placed at BALANCE:

MULTIPLY INTEREST-RATE BY BALANCE.

DIVIDE Statement

The DIVIDE statement divides one numeric data item into another and
sets the value of data-name-2 (unless data-name-j is specified) equal to
the quotient.

The format of a DIVIDE statement is:

DIVIDE {~=:~~~~i!er.al-1 }
floating-point-literal-1

{

data-name-2 [GIVING data-name-31 }
INTO numeric-literal-2 GIVING data-name-3

. floating-point-literal-2 GIVING data-name-3

[ROUNDED](ON SIZE ERROR imperative statement •••]

section 6: Procedure Division 99

Division by zero results in a SIZE ERROR condition.

If the GIVING option is not used, the second operand must not be a
literal.

When the GIVING option is omitted and the second operand is a data
name, division results in this data-name being set equal to the quo
tient. For example, the following would result in the quotient being
placed at HOURS:

DIVIDE COUNT INTO ,HOURS.

COMPUTE Statement

The COMPUTE statement assigns to a data item the value of a numeric
data item, literal, or arithmetic expression. The format of a COMPUTE
statement is:

COMPUTE data-name-1 C ROUNDED 1 = numeric-literal ,

1
data-name-2 ~

floating-point-literal
arithmetic-expression

[ON SIZE ERROR imperative statement •••]

The data-name, specified to the left of the equal sign, must be an
elementary report, binary, internal, decimal, external decimal, internal
floating-point, or external floating-point item.

The ON SIZE ERROR option applies only to the final result and not to
any of the intermediate results.

Example: COMPUTE ANNUAL-PREMIUM = AGE * RATE * YEAR + BASE.

The following are examples of the COMPUTE verb:

COMPUTE OVER-TIME-PAY= REGULAR-PAY * 1.5.
COMPUTE TOTAL-WAGE = A.

~: The second statement gives the same result as MOVE A TO
TOTAL-WAGE.

Ar.ithmetic Expressions

An arithmetic expression consists of arithmetic operators, data
names, and/or literals representing items on which arithmetic may be
performed.

The following five arithmetic operators may be used in arithmetic
expression's:

100

~I

Operatpr
+

* /

**

Oger a ti on
Addition
Subtraction
Multiplication
Division
Exponentiation

Parentheses may be used to indicate the hierarchy of operations on
elements in an arithmetic expression.

When the hierarchy of operations in an expression is not completely
specified by parentheses, the order of operations is assumed to be
exponentiation, then multiplication and division, and finally add1tion
and subtraction. Thus, the expression A + B / c + D ** E * F - G is
taken to mean A+ (B / C) + ((D ** E) * F) - G.

When the order of a sequence of consecutive operations on the same
hierarchical level <i.e., consecutive multiplications and divisions or
consecutive additons and subtractions) is not completely specified by
parentheses, the order of operation is assumed to be from left to right.
Thus, certain expressions ordinarily considered ambiguous are permitted
in COBOL. For example, A / B * c and A / B / c are taken to mean (A /
B) * c and CA / B) / c, respectively. The expression A * B / c * D is
taken to mean ((A* B) / C) * D. The expression A** B ** c is taken to
mean (A ** B) ** c.

Exponentiation of a negative value is allowed only if the exponent is
a literal or data-name having an integral value.

Exponentiation is performed in floating-point when an exponent is a
fractional literal or is a data-name whose PICTURE describes a fraction
al number.

Plus and minus are allowable unary operators (having only one
operand). The unary sign must be the first character of an arithptetic
expression or must be immediately preceded by a left parenthesis. Two
operators may not be adjacent to each other.

PROCEDURE BRANCHING STATEMENTS

In the GO TO, ALTER, and PERFORM statements, procedure-name signifies
paragraph-name or section-name.

STOP Stat§l!\ent

The STOP statement is used to terminate or delay execution of the
object program. The format of this statement is:

STOP {RUN }
literal

The STOP RUN statement terminates execution of the object program and
returns control to the operating system or, if the program containing
the STOP RUN has been invoked by another program, to the invoking
program.·

The STOP literal statement causes the specified literal to be dis
played on the console, and the object program to pause. The program may
be resumed only by operator intervention. End of block must be keyed on
the console to resume execution. The size of the literal is restricted
to 72 characters.

Section 6: Procedure Division 101

GO TO Stat.ement

The GO TO statement transfers control from one portion of the program
to another. The GO TO statement has the following formats:

Option 1

GO TO [procedure-name]

Option 1 of the GO TO statement provides a means of transferring the
path of flow of a program to a designated paragraph or section.

When Option 1 (unconditional GO TO) is used and a procedure-name is
not specified, the GO TO statement must be preceded by a paragraph-name,
must be the only statement in the paragraph, and must be modified by an
ALTER statement prior to the first execution of the GO TO statement.
The paragraph-name assigned to the GO TO statement is ref erred to by the
ALTER statement in order to modify the sequence of the program. If
12rocedure--name is omitted and the GO TO statement has not been preset by
an ALTER statement prior to the first execution of the GO TO statement,
execution of the program will lead to unexpected results.

012tion 2

GO TO procedure-name-1 Cprocedure-name-2 ••• l DEPENDING ON data-name

In Option 2, data-name must be an elementary integral numeric item
whose length does not exceed four digits and whose usage is either DIS
PLAY, COMPUTATIONAL, or COMPUTATIONAL-3. Data-name may not be
subscripted.

Option 2 specifies alternative branch points; control is transferred
to the point specified by the value of data-name. control goes to the
1st, 2nd, ••• ,nth procedure-name as the value of data-name is 1, 2, ••• ,n.
If data-name has a value outside the range 1 to n, no transfer takes
place, and control passes to the next statement after the GO TO
statement.

ALTER Statement

The ALTER statement is used to modify an unconditional GO TO
statement elsewhere in the Procedure Division, thus changing the
sequence in which program steps are to be executed.

The format of the ALTER statement is:

ALTER {procedure-name-1 TO PROCEED TO procedure-name-2} •••

Procedure-name-1 designates a paragraph containing a single sentence
consisting only of an Option 1 GO TO statement. The effect of an ALTER
statement is to replace the p:r::ocedure-name specified in Option 1 of the
GO TO statement with procedure~name-2 of the ALTER statement, where the
paragraph-name containing the GO TO statement is procedure-name-1 in the
ALTER statement.

The following are examples of the ALTER statement:

102

u

I

\..._,)

•

Example 1:
ALTER STEP-1 TO PROCEED
TO PROCESS-2.

STEP-1 •. GO TO PROCESS-1.

Example 2-:
ALTER STEP-1 TO
PROCEED TO PROCESS-2.

STEP-1. GO TO.

In both cases, when STEP-1 is executed, an unconditional branch is taken
to PROCESS-2.

PERFORM Statem~nt

The PERFORM statement specifies a transfer of control from one por
tion of a program to another, in order to execute some procedure a spe
cified number of times, or until a condition is satisfied. It directs
that control is to be returned to the statement immediately following
the point from which the transfer was made.

The PERFORM statement has the following four formats:

Option 1

PERFORM procedure-name-1 [~ procedure-name-21

Option 1 is the simple PERFORM statement. A procedure referred to by
this type of PERFORM statement is executed once, and then control passes
to the next statement after the PERFORM statement. All statements in
the paragraphs or sections named by procedure-name-1 (through Brocedure
na.me-2) constitute the range of the PERFORM statement.

Option 2

PERFORM procedure-name-1 [THRU procedure-name-21

{
integer }
data-name TIMES

Option 2 is the TIMES option of the PERFORM statement. When the
TIMES option is used, the procedure is performed the number of times
specified by data-name or integer. control is then transferred to the
statement following the PERFORM statement. Data-name must have an
integral value and data~name or integer must have a positive non
floating point value, less than 32,768. If the value of the da.;ta-name
is negative, zero, or greater than 32,767, control is passed inunediately
to the statement following the PERFORM statement.

Section 6: Procedure Division 103

PERFO~ procedure-name-1

UNTI~ test-condition

[THRU procedure-name-21

Option 3 is the UNTIL option of the PERFORM statement. Test
condition may be simple or compound. The procedures specified by the
procedure-names are performed until the condition specified by the UNTIL
option is true. At this time, control is transferred to the statement
following the PERFORM statement. If the condition specified by the
UNTIL option is true at the time the PERFORM statement is encountered,
the specified procedure is not executed.

The following is an example of an Option 3 PERFORM statement:

PERFORM ROUTINE-1 UNTIL ITEM-1 IS LESS THAN ITEM-2

Option 4

PERFORM procedure-name-1 [THRU procedure-name-21

VARYING data-name-1

~X{numeric-literal-3}
data-name-3

[AFTER data-name-4

BY{numeric-literal-6}
data-name-6

[AFTER data-name-7

BY{numeric-literal-9}
data-name-9

FROM{numeric-literal-2}
data-name-2

UNTIL test-condition-1

FROM{numeric-literal-4}
data-name-5

UNTIL test-condition-2 1

FROM{numeric-literal-8}
data-name-8

UNTlL test-condition-3 1

Option 4 is the VARYING option of the PERFORM statement. Test
condi t ion may be simple or compound. The VARYING option may be used to
increment or decrement the value of one or more data-names depending on
whether the BY value is positive or negative.

When one data-name is varied, data-name-1 is set equal to its start
ing value (FROM) when commencing the PERFORM statement. Then, test
condition-~ is evaluated. If it is true, control passes to the next
statement following the PERFORM statement; if false, procedure~name-1
through procedyre-name-:2 is executed once. The value of the increment
(BY) is added to data-name-1, and the condition (UNTIL) is evaluated
again. The cycle continues until test-copdition-1 is true, at which
point control is passed to the statement following the PERFORM
statement.

1\l.l data-names and literals used must represent non-floating-point
numeric values; they may be positive, negative, or zero.

Data-name-1, data-name-4, and data-narne~7 must not be alternate names
for the same data items. For all options,, the first statement of
procedure-name-1 is the point to which sequence control is transferred
by the PERFORM statement.

When two data-names are varied, the value of data-name-4 goes through
a complete cycle (FROM, BY, UNTIL) each time that data-name-1 is aug-

104

•

I

_,)

mented with its BY value. For three data-names, the value of data-name
I goes through a complete cycle (FROM, BY, UNTIL) each time that data
name-4 is augmented with its BY value, which in turn goes through a com
plete cycle each time data-name-1 is varied.

Regardless of the number of data-names being varied, as soon as test
condi tion-~ is found to be true, control is transferred to the next~~
statement after the PERFORM statement.

The return of control is from a point determined as follows:

1. If procedure~name-1 is a paragraph-name and procedure-name-2 is not
specified, the return is made after the last statement of the
procedure-name-1 paragraph.

2. If procedure-name--1 is a section-name and procedure-name-2 is not
specified, the return is made after the last statement of the last
paragraph of the procedure-name-1 section.

3. If procedure-name-2 is specified and is a paragraph-name, the
return is made after the last statement of the procedure-name-2
paragraph.

4. If procedqre-name-2 is specified and is a section-name, the return
is made.after the last statement of the last paragraph of the
procedure-name-2 section.

GO TO statements and other PERFORM statements are permitted between
procedure-pame-1 and the last statement of procedure-name-2. Further
more, the time sequence of execution of exits established by PERFORM
statements must be in the inverse order in which' they were established.

A procedure ref erred to by one PERFORM statement can be referred to
by other PERFORM statements. Moreover, a procedure referred to by one
or more PERFORM statements can also be executed by "dropping through,•
that is, by entering the procedure through the normal passage of control
from one statement to the next, in sequence. Accordingly, if procedure
name-1 were the next statement following the PERFORM statement, the pro
cedure wo~ld be executed once more than specified by the PERFORM
statement because, after execution of the PERFORM statement, control
would pass to procedure-name-1 in the normal continuation of the
sequence.

Note, however, a routine which is being performed should not be left
without returning to its normal end. Failure to do so leaves the RETURN
statement at the end of the performed routine, and sets up the possibil
ity of a return to an undesired location at a later time •

Figures 23, 24, and 25 illustrate the logical flow of Option 4 PER
FORM statements, varying one, two, and three data-names, respectively.

Figure 26 states restrictions on the appearance of procedure
branching statements. ! means that the stauement may ~ppear; ~ indi
cates that it must not; text indicates the outcome if the statement does
appear.

section 6: Procedure Division 105

Entrance

Set Data - Name -
1 Equal to its
From Value

FALSE

Execute
Procedure - Name -
1 Thru
Procedure - Name -
2

Augment Data -
Name-1 With
Its By Value

TRUE
Exit

Figure 23. Logical Flow of Option 4 PERFORM Statement Varying One
Data-name

106

Entrance

Set Data-Name-1
And Data-Name-
4 To Initial From
Value

Execute Procedure -
Name- 1 Thru
Procedure - Name -
2.

Augment
Data - Name -4
With Its
By Value

Exit

Set Data - Name - 4
To Its Initial
From Value

Augment
Data - Name - 1
With Its
By Value

Figure 24. Logical Flow of Option 4 PERFORM Statement Varying Two
Data-names

Section 6: Procedure Division 107

C2

Entrance

Set Data - Name - 1,
Data - Name -4,
Data - Name -7 To
Initial From Value

Execute
Procedure - Name -
1 Thru
Procedure - Name -
2

Augment
Data - Name - 7
With Its
By Value

TRUE

TRUE

TRUE

Exit

Set Data - Name - 7
To Its lnitia I
From Value

Augment
Data- Name -4
With Its
By Value

D2

Set Data - Name - 4
To Its Initial
From Value

Augment
Data - Name - 1
With Its
By Value

C2

Figure 25. Logical Flow of Option 4 PERFORM Statement Varying Three
Data-names

108

'"

I

\~

r--1 I Appearing In: I
r----------f-------------T------------.,---------~~----T-~-------------J
I I Label I Label I Main Body I I
I I Checking I creating I of Procedure I Debug I
IStatement I Declarative I Declarative I Division IPacket I
t----------+-------------+-------------+---------------+---------------~
IGO TO I I I I I
IPERFORM I ,;y:J.. I y1 I y2 I y3 I
I ALTER I I I i I
~----------+-------------+-------------+----~---------+---------------1
ISTOP RUN I N I N I end of labnormal I
I I I I execution I end of I
I I I I I execution I
t----------+-------------+-------------+-------------:--+---------------i
I STOP I I I I 1
I Literal I Y I Y I Y I Y I t----------i _____________ i ______________ ______________ .J.._ ___________ ~--i

l 1 0perands of these statements must be procedure-names appearing in thel
I declarative containing the statement. I
12operands of these statements must be procedure-names appearing in thel
I main body of the Procedure Division. I
f 30perands of these statements may be procedure-names appearing either I
1 in the main body of in any debug packet. I ._ ___ J

Figure 26. Restrictions for Procedure-Branching Statements

COMPILER-DIRECTING STATEMENTS

compiler-directing statements must be separate sentences.

ENTER Statement

The ENTER statement, used in conjuction with CALL or ENTRY state
ments, permits communication between a COBOL object program and COBOL
called programs or called subprograms in other languages.

The ENTER statement has the following two fonnats:

Option 1 (Used in calling program)

ENTER LINK}\GE.
CALL entry~name (USING argument •••].
ENTER COBO,L.

Option 2 (Used in a COBOL subprogram)

ENT;ER .LINRJ\.GE.
~entry-name (USING data-name •••].
ENTER COBO,L.

called program statements

ENTER LINRJ\.GE.
RETURN.
ENTER COBO.L

Section 6: Procedure Division 109

An example of the use of this format is:

r-------------~--1 I COBOL PROGRAM SHEET I
1---i
ISEQUENCE A B I
1---T---T-T-----------------------------· ----------------------------i
11 I 61718 12 I
~--+---+-+---. --i
I I I I I
100110201 f PROCEDURE DIVISION. I
I I I I I
I I I I • I
I I I I I
I 00210011 I ENTER LINKAGE. I
I 0021002 I I CALL • SUBPRGM' USING RECORD-2. I
I 0021003 I I ENTER COBOL. I
I I I I I L_ __ J_ __ ~_J_ __ _,

Refer to Appendix D. Figure 33• for the relationship between the
example above, and the sample program given taerein.

Entry~name is an external name and must follow the rules for exter
nal name formation. It must not be the same as the program-name speci
fied in the Program-ID clause.

Option 1 is used to effect transfer of control to a called program.
Entry-name represents the name of the called program's entry point.

In the USING option. an argument may be one of the following:

1. A data-name when calling a COBOL program;

2. A data-name, file-name, or a procedure-name when calling a program
written in a language other than COBOL.

Note: When calling a COBOL program, it is permissible to use a file
name as an argument in order to pass the DTF address of the file. See
the publication. IBM System/360 Disk and Tape Operating systems: COBOL
Progrannner•s Guide 1 Form C24-5025. for further information on this
usage.

Option 2 is used to establish an entry point in a COBOL called pro
gram. Control is transferred to the entry point by a CALL statement in
another program. Entr;:y-name defines the entry point where parameters
are saved for eventuai return and address parameters are obtained.

Each data-name in the USING portion of the ENTRY statement must be
defined in the Linkage Section of the Data Division, and must have
level number 01 or 77.

Computer base addresses of data items named in the USING list of an
ENTRY statement are obtained from the USING list of the associated CALL
statement. Names in the two USING lists (that of the CALL in the main
program. and that of the ENTRY in the called program) are paired in
one-to-one correspondence.

There is no necessary relationship between the actual names used for
such paired names, but the data descriptions must be equivalent. When
a group data item is named in the USING list of an ENTRY statement,
names subordinate to it in the called program's Linkage section may be
employed in subsequent called program procedural statements.

110

RETURN enables restoration of the. necessary registers saved at an
entry point. The return from a subprogram is always to the first
instruction following the last instruction ·in the calling sequence of
the main program.

Called programs may, in turn, call other programs. However, a
called program may riot contain a CALL statement that directly or
indirectly calls the calling program.

There must be no pa:th of program flow to an ENTRY statement within
the. program containing the ENTRY statement. Hence, the statement
should not have a paragraph-name.

The EXIT statement may be used when it is necessary to provide an
end point for a procedure that is to be executed by means of a PERFORM
statement or for a procedure that is a declarative.

The format for the EXIT statement is:

paragraph-name. ~XIT.

EXIT must appear in the source program as a one-word paragraph
preceded by a paragraph~name.

When the PERFORM statement is used, an EXIT paragraph-name may be
the procedure-name given as the object of the THRO option. In this
case, a statement in the range of a PERFORM being executed may transfer
to an EXIT paragraph, bypassing the remainder of the statements in the
PERFORM range. In all other cases, EXIT paragraphs have no function
and control passes sequentially through them to the first sentence of
the next paragraph.

NOTE Statement

The NOTE statement permits the programmer to write explanatory com
ments.1 in the Procedure Division of a source program, which will be pro
duced on the listing but serve no other purpose. The format of the
NOTE statement is:

NOTE comment •••

There are two methods of specifying NOTE statements:

1. ~OTE may be the first w9rd of a paragraph, in which case any
remaining sentences within the paragraph are also considered
notes. Rules for proper paragraph structure· must be observed.

2. A single sentence beginning with the word NOTE may appear within a
paragraph. In this case a period terminates the note.

In both cases, any combination of the characters from the COBOL charac
ter set may appear following the word NOTE.

C-level diagnostic messages are generated for words in a NOTE
statement longer than 30 characters.

Section 6: Procedure Division 111

SECTION 7: SOURCE PROGRAM LIBRARY FACILITY

Prewritten source program entries can be included in a COBOL program
at compile time~ Thus, &n in~ta~lation can utilize standard file
descriptions, record descriptions, or procedures without having to
recode th~m. These entries and p+ocedures are c;:ontained in a user
created library. They are included in a source program by means of a
COPY clause or an INCLUDE statement.

COPY CLAUSE

The CO:PY clause permits the user to include prew~itten Data Division
entries or Environment Division clauses in his source program. The
COPY clause is written in one of the following forms:

OptiQn 1
(Within the Input-Output Section)

{
FILE ... COljTRpL.} COPY library-name.
I-0-CONTROL• · ··

Option 2
(Within the File-control Paragraph)
.§ELEC± file-name COPY lib~ary-name.

QpE_ion 3
<Within a file area. description entry or within the working-Storage or
Linkage section)
01 data-riame COPY library-name.

Qption 4
<Within the Working-Storage or Linkage Section)
77 data-name COPY library-name.

Option 5
(Within the File Section)
FD file-name COPY library-name.

Library-name is contained in the user's library and identifies the
entries to be copied. It is an external-name and must follow the rules
to~ external-name formation; that is, a library-name consists of .quotation marks
enclosing no more than eight alphabetic and numeric characters, the .
f~Fsf, of which must be alphabetic.

Information copied' from the library must not contain a COPY clause.

When Options 1, 2, or 5 are written, the words COPY !!Q!:!!!:.Y=n~~ are
~eplaced within the compiler by the information identi!ied by library
name. This information comprises the sentences or clauses needed to
complete the paragraph, sentence, or.entry containing the. COPY clause.

When Options 3 and. 4 are written, the entire entry is replaced by
the information iQ.e11tified by librarv-name, except that the data-name
replaces the corresponding d~ta-name in the library. This information
cpmprises a 01 or 77 level entry a.nd any immediately subsequent entries
with level numbers higher than 01 or 77.

112

The data-name replacement is for the compilation, but is not §howh
on the listing.

The words preceding COPY library-name must conform to COBOL margin
restrictions. A COPY clause may be preceded by other information on a
source program card, and may.be written on more than one card; hewever
on a given card, containing the completion of a COPY clause, there ril.ust
be no information beyonq the clause-terminating period. The material
introduced into the source program by the COPY statement will follow
the COPY statement on the listing, beginning on .the next line.

The INCLUDE statement permits the user to include prewritten pr,oce
dures in the Procedure Division of his source program. The INCLUDE
statement has the following formats:

Opt!Qn 1 <For insertion·of a paragr~ph):
paragraph-name. INC~UDE library-name.

Option 2 (For insertion of a sectiohl:
section-name SE£!ION. INCLgDE library~name.

Library-name is contained in the user's libra~y. It identifies the
entries to be copied. !t is an external name and must follow the rules
for external name formation. The library~name must be enclosed in quo
tation marks.

The words preceding INCLUDE !!.Q!:~!:Y:.!lame must conform to COBOL mar
gin restrictions. On a given source program card containing the com
pletion of an INCLUDE statement, there must be no information beyond
the clause-terminating period. The material from the library will fol~
low the INCLUDE statement on the listing.

When the INCLUDE statement is written, the words INCLUDE librarv
name are replaced by the information identified by !!.2£~£y-n~~~· This
information comprises the paragraphs or sentences needed to complet€
the section or paragraph containing the INCLUDE statement.

The library entries for paragraphs and sections must not contain
INCLUDE statements•

Refer to IBM system/360 Disk and Tape Operating Systems: System
Control and System Service Programs, Form C24-5034, for a description
of library facilities.

section 7: Source Program Library Facility 113

.--,
IEXTI SECTION 8: STERLING CURRENCY FEATURE AND INTERNATIONAL CONSIDERATIONS
L_ __ J

STERLING CURRE~CY FEATURE

System/360 COBOL provides facilities for handling sterling currency
items by means of an extension of the PICTURE clause. Additional
options arid formats, necessitated by the non-decimal nature of ster
ling and by the conventions by which sterling amounts are represented
in punched cards, are also.available.

Note: Sterling currency statements can be compiled on the disk system
only.

system/360 COBOL provides a means to express sterling currency in
pounds, shillings, and· pence, in that order. There are 20 shillings in
a pound, and 12 pence in a shilling. Althoµgh sterling amounts are
sometimes expresse.d in shillings and pence only (in which. case the num
ber of shillings may exceed 99), withi~ machine systems shil+ings will
always be expressed as a 2-digit field• Pence, when in the form of
integers, likewise will be expressed as a 2-:digit field. H<>Wever, pro
vision must be made for pence· to be expressed as decimal fractions as
well, as in the form 17s.10. ·237d.

The IBM method for representing sterling amounts in puncned cards
uses two columns for shillings and one for pence. Tenpence <10d.) is
represented by an '11' punch and elevenpence (lld.) by a 1 12' punch.
The British Standards Institution CB.s.I.)' representation uses single
columns forboth shillings and pence. The B.s.I. representation for
shillings consists of a •i2• punch for ten shillings, and the alphabetic
punches A through I for 11 to 19 shillings, respectively.

Note: The B.S.I. representation for shillings precludes the use of
more than 19 shillings in a sterling expression; therefore, 22/10 (that
is, 22 shillings 10 pence) must be expanded~ by the user, to £1/2/10.
Similarly, the guinea (21 shillings) or any multiple thereof, must be
expanded to pounds and shillings.

The indicated representations may be used separately or in combina
tion, resulting in four possible conventions.

1. IBM shillings and IBM pence

2. IBM shillings and B.s.I. pence

3. B.s.I. shillings and IBM pence

4. B.S.I. shillings and B.S.I. pence

Any of these conventions may be associated with any number of digits
<or none) in the pound field and any number of decimal places (or none)
in tpe pence field. In addition, sign representation may be present as
an overpunch in one of several allowable positions in the amount, or
may be separately entered from another field.

Two formats are proviqed by System/360 COBOL in the PICTURE clause
for the representation of sterling amounts: sterling report format
(used for editing) and sterling non-report format <used for arithmet
tic). In COBOL D, neither a sterling report format nor a' sterling non
report format can co~tain more than 15 digits in the pound and pence
decimal-fraction fields combined.

114

~.
\

In the formats that follow, ~ stands for a positive integer other
than zero. This integer enclosed in parentheses and following the sym
bols 9,B, etc., indicates the number of consecutive occurrences of the
preceding symbol. For example, 9(6) and 999999 are equivalent.

The characters 6 7 8 9 C D * , / B Z V • £ s d CR DB + - are the
PICTURE characters used to describe sterling items. (The character £
is the sterling equivalent of the character $.)

Note: The lower case letters "s" and 0 d 0 are represented by an 11-0-2
punch and a 12-0-4 punch, respectively.

STERLING NON-REPORT

The format of the PICTURE clause for a sterling non-report data item
is:

r--1
I PICTURE IS 9[(n)]D(8]8D {6(6]} I
I 7£71 I
I [[V] 9 [Cn)]] DISPLAY-ST I
L--J
Note: For a sterling non-report picture to be valid, it must contain a
pound field, a shilling field, and a pence field.

The representation for pounds is 9[(n)JD where:

a. The character 9 indicates that a character position will always
contain a numeric character, and may extend to g positions.

b. The character D indicates the position of an assumed pound
separator.

The representation for shillings is [8]8D where:

a. The characters (818 indicate the position of the shilling field,
and the convention by which shillings are represented in punched
cards. 88 indicates IBM shilling representation occupying a two
column field. 8 indicates B.s.r. single-column shilling
representation.

b. The character D indicates the position of an assumed shilling
separator.

The representation for pence is
{

6 [6)} [[V] 9 (n)]
7 [7]

a. The character 6 indicates IBM single-column pence representation
wherein 10d. is represented by an 1 11' punch and 11d. by a 1 12'
punch. The characters 66 indicate 2-column representation of
pence, usually from some external medium other than punched cards.

b. The character 7 indicates B.S.I. single-column pence representa
tion wherein 10d. is represented by a '12' punch and 11d. by an
'11' punch. The characters 77 indicate 2-column representation of
pence. Consequently, 66 and 77 serve the same purpose and are
interchangeable.

c. The character V indicates the position of an assumed decimal point
in the pence field. Its properties and use are identical with
that of V in dollar amounts. Decimal positions in the pence field
may extend to g positions.

Section 8: Sterling Currency Feature 115

d. The character 9 indicates that a character position will always
contain a numeric character, and may extend to ~ positions.

Example: Assume that a sterling currency data item used in arithmetic
expressions is to be represented in IBM shillings and IBM pence, and
that this data item will never exceed £99/19s/11d. Its picture should
be:

PICTURE 9(2)D88D6 DISPLAY-ST.

Sterling Sign Bepresentation

Signs for sterling amounts may be entered as overpunches in one of
several allowable positions of the amount. A sign is indicated by an
embedded s in the non-report PICTURE immediately to the left of the
position containing the overpunch. Allowable overpunch positions are
the high-order and low-order positions of the pound field, the high
order shilling digit in 2-column shilling representation, the low-order
pence digit in 2-column pence representation, or the least significant
decimal position of pence.

The following are examples of sterling currency non-report data
items showing sign representation in each of the allowable positions:

PICTURE S99D88D6V9(3) DISPLAY-ST

PICTURE 9S9D88D6V9(3) DISPLAY-ST

PICTURE 9(2)DS88D6V9(3) DISPLAY-ST

PICTURE 9(2)D88D6S6V9(3) DISPLAY-ST

PICTURE 9(2)D88D6V99S9 DISPLAY-ST

STERLING REPORT

The format for the PICTURE clause for a sterling currency report
data item is shown in Figure 27.

The sterling currency report data item is composed of four portionsa
pounds, shillings, pence, and pence decimal fractions.

The delimiter characters c and D primarily serve to indicate the end
of the pounds and shillings portions of the picture. In addition, they
serve to indicate the type of editing to be applied to separator char
acters to the right of the low~order digit (of the pounds and shillings
integer portions of the item>.

The delimiter character D indicates that separator character(s) to
the right of the low-order digit position Cof the field delimited) are
always to appear1 that is, no.editing is performed on the separator
character(s).

The delimiter character c indicates that if the low-order digit
position (of the field delimited) is represented by other than the edit
character 9, then editing continues through the separator character(s.).
For example, a value of zero moved to a sterling report item repre
sented by the picture

116

\.__/

I

~

•

**/CZ9s/D99d

would result in

***bOs/OOd

whereas if the picture were

**/DZ9s/D99d

the result would be

**/bOs/OOd.

The delimiter c is equivalent to D when the low-order digit position
is represented by a 9. That is, the following two pictures are
equivalent:

ZZ9/CZ9/C99
ZZ9/DZ9/D99

The delimiters used for the pounds and shillings portion of the
picture need not be the same.

Editing applications are shown in Figure 28.

Note: Although the pound-report-string and the pound-separator-string
are optional, a delimiter character <either c or D) must be present:
thus, when programming for shillings and pence only, the PICTURE clause
must begin PICTURE IS c (Or D) •••

The separator characters <those characters required to distinguish
one portion of the data item from the next) that may be used in a ster
ling currency report picture are B : / s <for shillings) d (for pence>
and a period. Any of these characters may be used in any position in
which a separator character is permitted.

The pound-report-string is subject to the same rules as a normal
report picture with the following exceptions:

1. The allowable characters are 9 Z * + - 0 <zero) B and a comma.

2. The character is the sterling equivalent of $.

3. Termination is explicitly specified by the character c or D.

4. Editing of separator characters to the right of the low-order
digit varies (depending on the use of c or D as a delimiter>.

The representation of digits positions in both the shillings and
pence integers portion of the picture is identical. The edit character
8 is treated as a 9 if any digit to the left is nonzero; but, if the
digits to the left of the edit character 8 are zeros, the 8 is treated
as the character that precedes it <either Z or *).

PROCF.DURE DIVISION CONSIDERATIONS

Only the MOVE, ADD, and SUBTRACT statements may contain data-names
described as sterling items.

Sterling items are not considered as integral items and should not
be used where an integer is required.

Section 8: Sterling currency Feature 117

INTERNATIONAL CONSIDERATIONS

1. The functions of the period and the comma may be exchanged in the
PICTURE character string and in numeric literals by specifying the
INVED option of the COBOL Control Card (see the publication IBM
System/360 Disk and Tape Operating systems: COBOL· Programmer's
Guide, Form C24-5025).

2. The PICTURE clause of report items may terminate with the currency
symbol in cases where the graphic $ is replaced by a particular
national currency symbol.

r--1
1
I {en} I PICTURE IS [pound-report-string] [pound-separator-string]
I
I
I
I
I
I
I
I
I

99
Z9
zz
ZS
*9
**
*8

[shilling-separator-string] {~}

I 99
I Z9
I zz
I ZS
I *9
I **
I *S

[
[d] [.] l
• 9 (n) [dl [. lj ~(n) {~~1J USAGE IS DISPLAY-ST.

l-------------------------~----------------~--------------------------
Figure 27. Format of Sterling Report PICTURE Clause

r-----------------T~-------------T--------------------T----------------1

I !Numeric Value !Sterling Equivalent I I
I Picture I (in pence) I £ s d I Result I
~-----------------+--------------+--------------------+----------------i

£££ /D99s/D99d I 306S 112 15 08 I £12/lSs/OSd
£££ /D99s/D99d 0668 I 2 15 08 b£2/1Ss/0Sd
£££ /D99s/D99d OlSS I 0 15 OS bbb/15s/0Sd
£££ /C99s/D99d OlSS I O 15 08 bbbbl5s/08d
ZZZ/DZZs/DZZd 0000 I 0 00 00 bbb/bbs/bbd
ZZZ/CZZs/DZZd 0000 I 0 00 00 bbbbbbs/bbd
ZZZ/CZZs/CZZd 0000 I O 00 00 bbbbbbbbbbd
***/C**D/C**.99d 1040.12 I 4 06 08.12 **4/*6s/*8.12d
/C**s/C**.99d OS0.12 I 0 06 08.12 **6s/*8.12d
***/D**s/D**.99d 00001.23 I O 00 01.23 ***/**s/*l.23d
£££ /D* 9s/D**· 99d 00961. 23 I 4 00 01. 23 b£4/*0s/*l. 23d
£**/D*9s/D**.99d 00961.23 I 4 00 01.23 £*4/*0s/*l.23d

1£**/D*9s/D**.99d 00001.23 I 0 00 01.23 £**/*Os/*l.23d
l-----------------~--------------i ____________________ ..._ ______________ _
Figure 28. Sterling currency Editing Applications

118

•

.---,
SECTION 9: COBOL DEBUGGING . LANGUAGE I EXT I

L_ __ J

The following statements are provided for program debugging. They
may appear anywhere in a COBOL Disk or Tape Operating Systems program
or in a compile-time debugging packet.

For the TRACE and EXHIBIT statements the output is written oh the
system logical printing device (SYSLST).

TRACE

The format of the TRACE statement is:

{READY}
RESET TRACE

After a READY TRACE statement is encountered, each time execution of
a paragraph or section begins, the paragraph-name or section-name is
written on SYSLST, thus providing a trace of the path followed during
program execution.

The execution of a RESET TRACE statement terminates the functions of
a previous READY TRACE statement.

EXHIBIT

The format of the EXHIBIT statement is:

EXHIBIT {~~~ED NAME~} {~~~:~!!roa.:~ic-literal}
CHANGED

•••

Data-name may refer to an elementary or group item. However, if
data-name is a group item, subfields specified as other than USAGE IS
DISPLAY are not converted to a printable format.

The execution of an EXHIBIT NAMED statement causes a formatted dis
play of the data-names {or non-numeric literals) listed in the
statement. The f otmat of the output for each data-name listed in the
NAMED or CHANGED NAMED form of an EXHIBIT statement is:

blank
original data-name (including qualifiers, if written)
blank
equal sigm
blank
value of data-name
blank

Literals listed in the statement are preceded by a blank, when
displayed.

The sum of the sizes of the operands of an EXHIBIT statement may not
exceed the maximum logical record length for the system logical print
ing device (SYSLST).

Section 9: COBOL Debugging Language 119

The EXHIBIT, NAMED option statement is exhibited with ~P to four
data-names ahd their data per print line. The sum of the size of the
operands of each group of data names cannot exceed the maximum logical
record length for the system logical !>rinting device (SYSLST).

Each EXHIBIT statement must be the last statement in a sentence.

The CHANGED form of the EXHlBIT statement provides for a display of
items when they change value, compared to the value at the previous
time the EXHIBIT CHANGED statement was executed. The iriitial time such
a statement is ~xecuted, all values are considered changed; they are
displayed and saved for purposes of comparison.

Note that, if two distinct EXHIBIT CHANGED data-nam~ statements
appear in a program, changes in data-name are associated with the two
separate statements. Depending on the path of program flow, the values
of data-napie saved for comparison may differ for the two statements.

Only one data-name may be listed in an EXHIBIT CHANGED statement.

The CHANGED NAMED form bf the EXHIBIT statement causes a printout of
each changed value for items listed in the statement. Only those
values representing changes and their identifying names are printed. A
fixed columnar format for the data to be displayed cannot be created
with EXHIBIT CHANGED NAMED.

ON (COUNT--CONDlTIONAL STATEMENT)

The format of the ON statement is:

ON integer-1 CA.ND EVERY integer-2] [UNTIL integer-3]

{
imperative-statement ••• }
NEXT SENTENCE

f,{ELSE } { statement ••• }]
LOTiiERWlSE NEXT SENTENCE

The ON statement is a conditional statement. It specifies when the
statements it contains are to be executed. ELSE (OR OTHERWISE) NEXT
SENTENCE may be omitted if it immediately precedes the period for the
sentence.

The count-condition (int;eger-1 AND EVERY integer-2 UNTIL integer-3)
is evaluated as follows:

Each ON statement has a compiler-generated counter associated with
it. The counter is initialized in the object program with a value of
zero.

Each time the path of program flow reaches the ON statement, the
counter is advanced by 1. Where K is any positive integer, if the
value of the counter is equal to integer-1 +(K•inteqer-2) 1 but is less
than inteqer-3 if specified, the imperative statements (or NEXT SEN
TENCE) are executed. otherwise, the statements after ELSE (or NEXT
SENTENCE) are executed. If the ELSE option does not appear, the next
sentence is executed.

If int!.¥/er-2 is not given, it is assumed that integer~2 has a value
of 1. If integer-3 is not given, no upper limit is assumed for it.

120

_,I

If neither integer-2 nor inteqer-3 is specified, the imperative
statements are executed only once.

Examples:

ON 2 AND EVERY 2 UNTIL 10 DISPLAY A ELSE DISPLAY B.

On th~ second, fourth, sixth, and eighth times, A is dis
played. B is displayed at all other times.

ON 3 DISPLAY A.

On the third time through the count-conditional statement, A
is displayed. No action is taken at any other time.

~Qte: An ON statement with an UNTIL or ELSE option may not be used in
an IF statement.

Debugging statements for a given paragraph or section in a program
may be grouped together into a debugging packet. These statements will
be compiled with the source language program, and will be executed at
object time. Each packet refers to a specified paragraph-name or
section-name in the Procedure Division. compile-time debugging packets
are grouped together and are placed immediately preceding the source
program.

Each compile-time debug packet is headed by the control card *DEBUG.
The general form of this card is

1 8
*oEBuGiocation

where the parameters are described as follows:

Location is the COBOL section-name or paragraph•name (qualified, if
necessary> indicating the point in the program at which the packet is
to be executed. The statements in the packet are executed as if they
were physically placed in the source program following the section-name
or paragraph-name, but prec~ding the text associated with the name.
The same location must not be used in more than one *DEBUG contz:ol
card. Lo2at!Qn cannot be a paragraph-name within any debug packet.

~Qte: ~2~!on can start anywhere within Margin A.

A debug packet may consist of any procedural statement conforming to
the requirements of COBOL Disk and Tape Operating Systems. A GO TO,
PERFORM, or ALTER statement in a debug packet may ref er to a
procedure-name in any debug packet or in the main body of the Procedure
Division.

Section 9: COBOL Debugging Language 121

APPENDIX A: DISK AND TAPE OPERA1.rING SYSTEMS COBOL WORD LIST

The words listed below constitute the Disk and Tape Operating Sys
tems COBOL vocabulary of reserved words, <Included in the list are
reserved words used by other IBM COBOL compilers. These words are
placed in the list to ,aid in conversion from either Disk or Tape
operating System/360 COBOL to another IBM COBOL compiler. These words
are enclosed in parentheses to help identify them. They have no sp~
cial status in DOS/TOS COBOL.)

The programmer is reminded that reserved words have preassigned
meanings in the COBOL language and cannot legally be used for any other
purpose. Use of a reserved word as a data item, although illegal, will
not cause diagnostic messages or program failure when the reserved word
is not also used in its main function within the program. The reserved
word NOTE, however, may not be used as a data item under any
circumstances.

ACCEPT (CONTROL) FOR
ACCESS (CONTROLS) FORM-OVERFLOW
ACTUAL COPY FROM
ADD (CORRESPONDING)
ADVANCING COUNT (GENERATE)
AFTER CREATING GIVING
ALL (CYCLES) GO
ALPHABETIC GREATER
A~TER DATA (GROUP)
ALTERNATE DATE-COMPILED
AND DATE-WRITTEN <HEADING)
APPLY (DE) HIGH-VALUE
ARE (DECIMAL POINT) HIGH-VALUES
AREA DECLARA'l.'IVES (HOLD)
AREAS DEPENDING
(ASCENDING) (DESCENDING) IBM-360
ASSIGN (DETAIL) (ID)
AT DIRECT IDENTIFICATION
A'I' END DIRECT-ACCESS IF
AUTHOR DISPLAY IN

DISPLAY-ST INCLUDE
(BEFORE) DIVIDE INDEXED
BEGINNING DIVISION (INDICATE)
BLANK (INITIATE)
BLOCK ELSE INPUT
BY END INPUT-OUTPUT

ENDING INSTALLATION
CALL ENTER INTO
(CF) ENTRY INVALID
(CH) ENVIRONMENT I-0
CHANGED EQUAL I-0-CONTROL
CHARACTER ERROR IS
CHECKING EVERY
(CLOCK-UNITS) EXAMINE JUSTIFIED
CLOSE EXHIBIT
COBOL EXIT KEY
(CODE)
(COLUMN) FD LABEL
(COMMA) FILE LABELS
COMPUTATIONAL FILE-CONTROL (LAST)
COMPUTATIONAL-1 FILE-ID LEADING
COMPUTATIONAL-2 (FILE-LIMIT) LEFT
COMPUTATIONAL-3 FILES LESS
COMPUTE FILLER LIBRARY
CONFIGURATION (FINAL) <LIMIT)
CONSOLE FIRST (LIMITS)
CONTAINS (FOOTING) (LINE-COUN'"I'ER)

122

(LINE) QUOTE (SPECIAL-NAMES)
LINES QUOTES STANDA.RD
LINKAGE STOP

~)
LOCK RANDOM SUBTRA.CT
LOW-VALUE (RD) (SU~'!)
LOW-VALUES READ SYMBOLIC

READY (SYSIN)
MODE RECORD (SYSOUT)
MORE-LABELS RECORDING SYSPUNCH
MOVE .RECORDS
MULTIPLY 'REDEFINES TALLY

REEL TALLYING
NAMED (RELATIVE) (TERMINATE)
NEGATIVE (RELEASE) THAN

>I NEXT REMARKS THEN
NO REPLACING THRU
NOT (REPORT) TIMES
NOTE <REPORTING> TO
NUMERIC (REPORTS) TRACE

RERUN TRACK-AREA
OBJECT-COMPUTER RESERVE TRACKS
O.CCURS RESET TRANSFORM
OF RESTRICTED ('!'RY)
OMITTED RETURN (TYPE>
ON ttEVERSED
OPEN REWIND UNIT
OR REWRITE U'NIT-RECORD
ORGANIZATION (RF) (UNITS a
OTHERWISE (RH) UNTIL
OUTPUT RIGHT UPON
(OVERFLOW) ROUNDED USAGE

RUN USE
(PAGE) USING
(PAGE-COUNTER) (SA) UTILITY

\~ PERFORM SAME
(PF) (SD) VALUE
(PH) SEARCH VARYING
PICTURE SECTION
(PLUS) SECURITY WnEN
POSITIVE SELECT WITH
(PRINT-SWITCH) SENTENCE WITHOUT
PROCEDURE SEQUENTIAL WORKING-STORAGE
PROCEED SIZE WRITE
(PROCESS) (SORT> WRITE-ONLY
PROCESSING (SOURCE)
PROGRAM-ID SOURCE· COMPUTER ZERO
PROTECTION SPACE ZEROES

SPACES ZEROS

\~

Appendix A 123

APPENDIX B: INTRARECORD SLACK BYTES AND RECORD ALIGNMENT IN BLOCK
FILE§.

In IBM System/360, storage is organized into bytes. Four bytes com
prise a word of storage. Two bytes comprise a halfword; eight bytes
comprise a doubleword. Certain types of processing operations require
that data be aligned on a certain type of boundary--halfword, fullword,
or doubleword. In order to insure correct alignment in such cases, it
is sometimes necessary to insert bytes containing no meaningful data
between data-items or between records. These are called slack bytes.
In certain cases, they are inserted by the compiler; in other cases, it
is the responsibility of the user to insert them.

INTRARECORp SLACK BYTES

For ease of programing and efficient object code, the COBOL
compilier:

• Provides automatic field alignment within Working-Storage section,
and unblocked files.

• Provides the facility of working with input and output records
directly in a buffer.

• Provides efficient use of file space by packing succeeding blocked
records without regard to alignment.

Whenever the USAGE is defined as COMPUTATIONAL, COMPUTATIONAL-1, or
COMPUTATIONAL-2 within an 01 record description, slack bytes, if
required, are automatically added to the record by the compiler in order
to ensure proper synchronization of these computational data items.
These slack bytes are added on the assumption that all 01 levels are
aligned on a double word boundary. It is the user's responsibility to
ensure that the data item is aligned on a double word boundary when:

• The argument of a C.ALL statement corresponds to a data-name defined
with an 01 level in the LINKAGE SECTION of the subprogram.

• The record names are associated with a file where logical records
are blocked.

The user can ensure this double word boundary alignment by moving the
data item to an 01 level defined in working storage, or by adding inter
record slack bytes to force proper alignment of succeeding records in
the block. (See Record Alignment Within Block Files.)

To determine the interrecord slack bytes required, the compiler:

• Sums the size of all elementary data items preceding a COMPUTATION
AL, COMPUTATIONAL-1 or COMPUTATIONAL-2 field including any slack
bytes previously added.

• Divides this sum by K where:
K = 8 for COMPUTATIONAL-2
K = 4 for COMPUTATIONAL-1, or COMPUTATIONAL (5 digits or greater)
K = 2 for COMPUTATIONAL (4 digits or smaller)

• If the remainder (R) = o, no slack bytes are required.

124

•·

..

If R * o, K-R slack bytes are added, these slack bytes are inserted
after the last elementary data item (B in Figure 29) preceding the com
putational entry. Following the· last elementary item is a filler
with a level number equivalent to the next entry (E).

Note: The filler is shown in the coding to illustrate the point. In
reality, the filler is not listed as shown, but is generated by the
compiler internally.

Fiqure 29 is an illustration of how slack bytes are inserted as ~
filler when USAGE is defined as COMPUTATIONAL, COMPUTATIONAL-1 or
COMPUTATIONAL-2.

(

I
I
I
I

f
DWB

Bytes= 5
K =4

B
A

Q =Quotient
R = Remainder

I

i
FWB

3
Slack
Bytes F G
)~~~
I I I I I
I I I I I
I I I I I I I

I t I I t
DWB DWB

Bytes/K = Q + R
5/4 = 1 + 1 Therefore, Q=l, R=l then
K-R =Slack Bytes Required

DWB =Double Word Boundary
FWB =Full Word Boundary

The filler implied would be:
02 FILLER PICTURE X{3);

\.._..,/ as i 11 ustroted above

Figure 29. Use of Implied Filler as Slack Bytes

CODING FOR A USAGE CLAUSE

Implied Filler

01 A.

02 B PICTURE X{5).

02 FILLER PICTURE X(3).

02 E COMPUTATIONAL.

03 F PICTURE 9(6).

03 G PICTURE 9(4).

Appendix B 125

Slack bytes may also be added <automatically) whenever a group field
is defined with an OCCURS clause and contains a data item whose usage is
COMPUTATIONAL, COMPUTATIONAL-1, and COMPUTATIONAL-2.

To determine if slack bytes are required:

• Calculate the size of the group up to the point where adjustment is
required including all necessary intrarecord slack bytes.

• Divide this sum by the largest K required by an elementary item
within the group.

• If R=O, no slack bytes are required. If R*O, K-R slack bytes are
added.

The slack bytes are added at a level number equal to that of the
group + 1 at the end of the group with the OCCURS.

See Figure 30 and the discussion that follows for an illustration of
the use of slack bytes with an OCCURS clause.

i
DWB

i
DWB

DWB = Double Word Boundary
FWB = Ful I Word Boundary

I
c3 I l.-(--02 Level
-~ r I I

I I I

A~Ol Level

A~·Ol Level

i
DWB

r
FWB I

DWB

Figure 30. Use of SlacK. Bytes as a Filler When a Group Field Is Defined

1.26

. ..

CODING OF AN OCCURS CLAUSE

01 A.

02 B PICTURE IS X(7).

02 C OCCURS 3 TI.MES.

03 D.

04 E PICTURE IS X.

04 F USAGE COMPUTATIONAL-2.

03 G.

04. H PICTURE IS XX.

Implied Filler 03 FILLER PICTURE IS X(S).

02 I PICTURE IS X.

Fields A, B, and c can be represented as shown in.Figure 30.

To compute the number of slack bytes, calculate the size of the
group<Cs.>:

BYTES = 11
K = 8

11 = 1 + 3,
8

BYTES = Q + R -K'--

K - R = NUMBER OF SLACK BYTES

8 - 3 = s slack bytes1 therefore, the filler is implied as:

03 FILLER PICTURE IS XtS>.

Because the processing is done in a buffer, and not deblocked to a work
area, the user must follow record alignment procedures within blocked
files. When working with blocked files, slack bytes are not automati
cally added as when working with data. However, diagnostics will inform
the user of the number of slack bytes required for fixed-length record
alignment.

Appendix B 127

For purposes of adding intrarecord slack bytes to assure proper
alignment of COMPUTATIONAL, COMPUTATIONAL-1, and COMPUTATIONAL-2 fields,
all 01 levels are assumed to start on a double-word boundary.

Valid alignment of records can be accomplished by:

• Moving to an 01 in working-storage

• Adding the necessary slack bytes.

The compiler assures the user that all 01 levels in Working-Storage
sections and all I/O buffers <not including any control bytes required
by data management> will be aligned on a doubleword boundary.

When processing records in the buff er or on a file where the logical
records are blocked and contain COMPUTATIONAL, COMPUTATIONAL-1 and
COMPUTATIONAL-2 fields, the user must add the necessary slack bytes to
ensure proper alignment of the logical records within the buffer.

To determine if interrecord slack bytes are required:

• sum up the size of the record <include all intrarecord slack bytes>.

• Divide this sum by maximum K required in any one of the elementary
items.

• If R = o, no slack bytes are required.
If R ':f7, K-R slack bytes are required.

For alignment, the record should be expanded by the required number
of slack bytes. Figure 31 <parts A and B) and the following text,
illustrate invalidly aligned, and appropriately aligned, blocked files
respectively.

Blocked V-type records containing COMPUTATIONAL-2 entries must be
moved for proper alignment.

BLOCK FILES EXAMPLE CODING

FD A BLOCK CONTAINS 3 RECORDS LABEL RECORDS ARE OMITTED, DATA RECORDS
IS B.

01 B.

02 C COMPUTATIONAL-1.

02 D PICTURE X.

Note the invalid alignment for a COMPUTATIONAL-1 field in Figure 31,
Part A.

To rectify this condition, (invalid alignment>, move field B to an 01
in WORKING-STORAGE where automatic alignment will be provided, or com
pute and add the required filler as shown in the following.

128

BLOCK FILE EXAMPLE CODING SHOWING THE FILLER FOR ALIGNMENT (REPEATED
HERE FOR CLARITY).

FD "A BLOCK CONTAINS 3 RECORDS LABEL RECORDS ARE OMITTED, DATA RECORDS IS B~

01 B.

02 C COMPUTATIONAL-1.

02 D PICTURE X.

02 FILLER PICTURE X(3).

Note how fillers pad records to provide alignment of all Ol's in the
buffer, Figure 31, Part B.

A

I

I
B B B I

~' 1 c o1 c o1 c 0
1

~'""""'~~ t I
I I
I

I I I
I I I
I I I

i I
DWB FWB DWB FWB

Part A Invalid alignment for a COMPUTA TIONAL-1 field

A

B B B

I B Byte I B Byte I B Byte I
I C D Filler I C D Filler : C D Filler I
,----"'----..,.,.._-1~~,.......~
I j I I~
I I I I
1.11111~1·.

rJ r Jr Jr
DWB DWB DWB

Part B Fillers pad records to provide alignment of
01 'sin the buffer.

DWB

DWB = Double Word Boundary FWB = Ful I Word Boundary

U Figure 31. Invalidly Aligned and Appropriately Aligned File A Buffer

Appendix B 129

SOME ROLES TO REMEMBER

Linkage section

In Linka.ge section all 01·• s are assumed to be on a doubleword bound
ary. It is the user•a responsibility to ensure proper alignment between
an argument in CALL, and the corresponding data name in an ENTRY
statement.

In File section

INPUT FI~: It is the user's responsibility to ensure that the logical
records contain the necessary intrarecord slack bytes. If the file is
blocked, and processing is done in the buffer, he must have added the
necessary interrecord slack bytes when the file was created,,

OUTPUT FIItES1 The compiler adds the necessary intrarecord slack bytes.
The user defines the necessary interrecord slack bytes as required by
input.

130

r

APPENDIX C: INTERMEDIATE RESULTS IN ARI'DHMETIC OPERATIONS

In the case of an arithmetic statement containing only a single pair
of operands, no intermediate results are generated. Intermediate
results are possible in the following cases:

1. In an ADD or SUBTRACT statement containing multiple operands immedi~
ately following the verb ·

2. In a COMPUTE statement specifying a series of arithmetic operations

3. In arithmetic expressions contained in IF or PERFORM statements

In concept the compiler treats a statement as a.succession of opera
tions. For example, the following statement:

COMPUTE Y = A
MULTIPLY B
ADD A
DIVIDE E
SUBTRACT ir3
•• F
ADD ir4

+ B. * C -
BY C
TO irl
INTO D
FROM ir2
BY G
TO irS

D / E + F **
GI.YING ir1
G·IVING ir2
G:I'.VING ir3
GIVING ir4
GIVING irS
GIVING Y

G is replaced by

This appendix contains a discussion of the compiler algorithms for
determining the number of integer and decimal places reserved for inter
mediate results.

The following abbreviations will be used in this discussion and in
Figure 32.

i--number of integer places carried for an intermediate result

g--number of decimal places carried for an intermediate result

d1,d2--number of decimal places defined for op1 or op2, respectively.

df--number of decimal places in final result field

ir--intermediate result field obtained from the execution of a generated
arithmetic statement or operation. irl, ~' etc., represent suc
cessive intermediate results. These intermediate results are
generated either in registers or in storage locations. successive
intermediate results may have the same location.

fr--number of integer and decimal places in final result field.

INTERMEDIATE RESULTS

The number of integer and decimal places contained in an ir is calcu
lated as sho~ in Figure 32.

Appendix C 131

r--·-------------------y----------~------------T--------------1

I I Statement I I I
IOp~ration I Type IDecimal Places IInteger Places I ~

; \

)--------·-·-------------+----------+----------. -----+---------------i
I+ or - Arithmetic d1 or d2, which- li1 + 1 or I
I (internal ever is greater li2 + 1, which- I
!decimal) 1 fever is greater
I I
I+ or - d1 or d2, which- li1 + 1 or
!<binary) 1 ever is greater fi2 + 1
I whichever is
I greater
J
I * d1 + d2 i1 + i2
I
I/ df+1 or d2, i2+d1
)if (i2+max(d.f+1,d2) lwhichever is
)+d1)~30 I greater
I I
I/ 1a2-a1 i2+d1
lif (i2+max(df+1,d2) I
1+a1>>3o I
I I
I ** I df tr - at
~---------------------+----------+-~--~--------+--------~-------i
I+ or - IIF or ld1 or d2, which- 130 - d I·
I IPERFORM lever is greater I I
I I I I I
I* I I d1+d2 130-a I
I I I I I
I/ I 1a2 130-d I
I I I I I
I** I 112 11s I
~---------------------.l-----------L-----~-----------i----------------i
11 The user should assume that ! will increase by one in all + or -
I operations if either field is binary or packed. I
L---------------------------~---------------------------------------J
Figure 32. Calculating Intermediate Results

132

'"---/

COMPILER TREATMENT OF INTERMEDIATE RESULTS

The following indicates the action of the compiler when handling
intermediate results.

If Value of
i + d
is

<30

=30

>30

The Action Taken
is

i integer and d

decimal places are
carried for ir. (If
operation is / or ••,
i + d never exceeds 30)

30 - df integer and df
decimal places are carried

Note: If ROUNDED is specified, the value of df is df + 1.

· Appendix C 133

APPENDIX D: COBOJ;, . PROGRAMS

This appendix contains two sample COBOL programs, Figures 33 and 34.
one is a calling prog~am, the other is a subprogram which is linked by
the calling program. The individual statements comprising th~ programs
were extracted and interspersed throughout the main body of the manual
for illustrative purposes. The linkage subprogram illustrated need not
be a COBOL program. However, COBOL assumes option 2 of the standard
CALL, SAVE, and RETURN macros.

ooeoL PROGRAM SHEET
Punching ln1truot1on1

PAOGRAM· Graphlo C::ard Form*

Date Flunoh

!" A stal;ldard card form, IBM electro C618!l7, is available for pu11cblng source stacemenu froin this form.

Figure 33. Example of a Calling Program (Part 1 of 2)

134

Form Ne, l<H· l 46.t
Printed In U.S.I\,

ShHt 1 of Z
* Identification

7

r

IB
Sy•ltm

Program E

1 Figure 33.

_./!

coeo~ PROGRAM SHEET
Punohlng ln1truct1on1

ROG RAM Graph lo Card Form#

Dote Punoh

Example of a Calling Program (Part 2 of 2)

Form No, X2B·l•6•
Printed In U,S,A,

* ldenllflootlon

Appendix D 135

COBOL PROGRAM SHEET
Punching ln1truct1on1

Graphic Cord Form#

Proarommer Dote Punch

•ill standard card form, IBM electro C61897, is available for punching source sraremencs from chis form.

Figure 34. Example of a Subprogram (Part 1 of 2)

136

*

Form No. X28- l 464
,tinted In U.S.A.

Sheet 1 of Z
ldentlflcotlon

80

/~.

r

IBJ.41 COBOL PROGRAM SHEET
System IBM 605/360 Punching lnstructlona

Program EXAM Pl E OF A SUB PROGRAM Graphic I I I I I I llccird Form#

Programmer l0o11 Punch I I I I I I II

1

•A standard card form, IBM electro C61897, is available for punching source statements from this form.

Figure 34. Example of a Subprogram (Part 2 of 2)

*
Sheet 1

Form No. x2a~ 146<f
Printed in U S A ...
of z

ldentificotion
I I I

7'3] [80

Appendix D 137

"l-

r

ACCEPT Statement 88
ACCESS Clause 26
Access Methods

Direct 18
Random 18
sequential 18

Accessing a Direct File
Randomly 19
Sequentially 19

Accessing an Indexed sequential File
Randomly 19
Sequentially 19

ACTUAL KEY 27,18,19,80,82,84,86
ADD Statement 98,131
AFTER ADVANCING 85
Alignment

Blocked Files 128
Data Fields 41

ALL 93
ALL 'character' 37
Alphabetic Class Test 75
Alphabetic Data Item 39,49,74
ALPHA-FORM (PICTURE> 53
Alphanumeric Data Item 39,50,74
ALTER statement 102
AND 76
AN-FORM <PICTURE> 53
APPLY Clause 30-31
Arguments 111,124
Arithmetic Expression 67

Characters in 11
Hierarchy 101
Operators 101

Arithmetic Statement
Intermediate Results 131
Options 97
Rules 96

ASSIGN Clause 25
Asterisk (PICTURE Character) 54

AT END 68,69,83
AWAITING REPLY 89

B (PICTURE Character) 55
BEGINNING 78
Binary Item 40,41,51,74
BLANK Clause 58
Block 42
BLOCK CONTAINS Clause 44
Blocked Files, sample Coding 128
Braces 16
Brackets 16
Buffers 42~26,128

Calculating Intermediate Results 132
CALL Statement 109,130
Calling atid Called Programs 110-111

Linkage 109
Sample 134

Character Set
Arithmetic Expressions 11
Punctuation 10,11
Relation Tests 11
Words 10

CHECKING 78
Checkpoint Records 29
Class Test 74

Alphabetic 75
Numeric 75

Classes of Records 42
CLOSE Statement 86,80
COBOL Program Sheet 14
COBOL Verbs 8 0
Coding for Intrarecord Slack Bytes 125
Combinations of FROM and TO

(TRANSFORM) 95-96
COMMA

(PICTURE Character> 55
Punctuation 11

Comparisons
Non-numeric 73
Numeric 73
Permissible 74

compile Time DEBUG Packet 121
compiler Directing Declaratives 77
Compiler Directing Statements 109, 67
Compiler Treatement of Intermediate
Results 131

Compound Conditions 76
COMPUTATIONAL 51,41,124,126
COMPUTATIONAL-1 52,41,124,126
COMPUTATIONAL-2 52,41,124,126
COMPUTATIONAL-3 52,41
COMPUTE Statement 100,131
Concepts of Data Description 53
Conditional Expression 67

Compound 76
Nested 71

conditional Statement
Evaluation of 68
Event 68
Test 68
Types 67

Condition-name Test 75,38
Condition-names 37,13,33
CONSOLE 87-88
Constants, Figurative 36
Continuation Indicator 14
continuation of Non-numeric Literals 15
Conversions 92
COPY Clause 112,67
CORE-INDEX 31
count Condition 68
CREATING 78
creating Files 20
credit Symbol (CR PIC'rURE Character) 55
Currency, Sterling 114

Index 139

Data Division
Entry 32
Organization 32
Sections

File 42
Linkage 64
Working-Storage 63

Data Fields, Alignment of 41
Data Items

Condition-names 37
Data-names 34
Figurative Constants 36
Levels of 33
Literals 35
Types of 38

Data-Manipulation Statements 90
Data-Manipulation Verbs 81
Data-names 34,12

Qualifying 35
Data Organization

Direct 18
Indexed 17
Standard Sequential 17

DATA RECORDS Clause 47
Data-Compiled 22
Data-Written 22
Debit Symbol (DB PICTURE Character) 55
Debugging Language 119
Decimal Point (. PICTURE Character> 54
Declarative Sections 77,79,80
DECLARATIVES 77,66
Device Assignment and Labels 47
Device Numbers 25

DIRECT-ACCESS 26
DIFFERING 42
Direct-Access Files

Accessing Randomly 19
Accessing Sequentially 19
Creating 20

Direct Organization 26
DISPLAY 52,41
DISPLAY Statement 87
DISPLAY-ST 115
DIVIDE Statement 99
Division Arithmetic Operator 101
Division-names (Margins) 14
Divisions

Data 32
Environment 23
Procedure 66

Dollar Sign <$ PICTURE Character) 55

E (Floating-Point Literal) 36
Editipg 91

MOVE 90
PICTURE 53,58
Sterling currency 118

Elementary Data Items 239,34,49
Ellipses in Format 16
ELSE 68
END DECLARATIVES 66-67
ENDING 78
End-of-File 82

140

End-of-Volume 84-85
ENTER Statement 109
ENTRY 64,109,130
Entry-name 110
Entry-point 110
ENVIRONMENT DIVISION 23
EQUAL 42,73
Error Checking Procedures 78
Error Processing Summary 80
Evaluation of Conditional Statements 68-70
Event Conditions 68
EXAMINE Statement 91-94
EXHIBIT Statement 119
EXIT Statement 111
Exponent 36
Exponentiation 101

Arithmetic Operator 101
Expressions

Arithmetic 67,100
Conditional 67

External Decimal Item 39,41,50,74
External Floating-Point 40,41,51,74
External-names 12,112

F (Fixed Record Format) 43,47
on Output Files 45

FD 25,44
FD (COPY) 112
Figurative Constants 36,71
File Description 32,25

Format 43
File and Record Handling 42
File Section 42,32

Entries 44
File-control Paragraph 25
File-names 13
Files 42
FIRST 93
Fixed-Length Records 42
Fixed-Point Data Items 39

Binary 40-41
External Decimal 39,41
Internal Decimal 40,41

Floating-Point Data Items 40
External Floating-Point 40-41
Internal Floating-Point 40-41

Floating-Point Literal 36
Floating-String 55
Format Notation 15
Formats, Record

Fixed (F) 43
Undefined (U) 43
Variable (V) 43

Formats, Sterling PICTURE Items
Non-report 115
Report 118

FORM-OVERFLOW (APPLY Clause) 30
FP-FORM (PICTURE Clause) 57
FROM

ACCEPT 88
SUBTRACT 98
TRANSFOR!'t: 94
WRITE 84

,, ,,

GIVING 97
ADD 98
DIVIDE 99
MULTIPLY 99
SUBTRACT 98

GO TO Statement 102
GREATER THAN 71
Group Data Item 38,34,49,74

Moves 91

Header Label Checking Procedures
LABEL RECORDS 46
USE 77

Header Label Writing Procedures
Hierarchy of Arithmetic Operators
HIGH-VALUE(S) 37
Hyphens 15

Identification Division 22

84

85
101

IF Conditional Statement 68,69,131
Evaluation 68
Nested 71
Test-condition 71

Imperative statement 67,82,83
Implicit Synchronization 41
IN 13
INCLUDE Statement 113,67
Indexed Data Organization 17
Indexed Files

Accessing Randomly 19
Accessing Sequentially 19
Creating 20

INDEXED Organization 26
INPUT 82
Input/Output

Processing 17
Restrictions 89
Statements 81
Verbs 80

Input-output Section 24
Intermediate Results in Arithmetic

Expressions 131
Internal Decimal Item 40,41,51,74
Internal Floating-Point Item 40,41,52,74
International Considerations 118,114
INTO

DIVIDE 99
READ 82

Intrarecord Slack Bytes 124
Coding 125

INVALID KEY 31,68,69
READ 82
REWRITE 86
WRITE 84

I-0 82
I-0-CONTROL 112,25
IOCS 18,79,82,87

JUSTIFIED RIGHT 63

Key words 15
Keys

Actual 18,19
Record 18,19
Symbolic 17,18,19

LABEL RECORDS Clause 46,64,78
Label-Checking Procedures 78

Volume Header 84
Volume Trailer 84

Label-Writing Procedures 78
Volume Header 85
Volume Trailer 85

Labels
Device Assignment 47
User 47

LEADING 93
LESS THAN 71
Level Numbers 33

Record Description 47
Levels of Data Items 33-34
Library, in Source Program 112
Library-name 112-113
Linkage, Calling and called Programs 109
Linkage Section 64,33,130
Literals

Floating-Point 36
in a MOVE Statement 90
in a VALUE Statement 59
Non-numeric 35,15
Numeric 35

LOCK 87
Logical Flow of PERFORM Statement 106-108
Logical Operators 76
Logical Record 42,43,82,84,85,124
Long-precision 43
Lower-case Words 16
LOW-VALUE(S) 37

Machine Requirements 9
Object Program 10
system 9

Mantissa 36
Margin A 14,32,66,77
Margin B 14,25,67
Margin Restrictions 14
Minus Sign

Arithmetic Operator 101
PICTURE Character 56

Mode 43
MOVE Statement 90
Moves, Permissible 92
Multiple-Record Files 42
Multiplication Arithmetic Operator 101
MULTIPLY Statement 99

NAMED (EXHIBIT) 119
Names 12

Qualification of 13
NEGATIVE 74
Nested IF Statements 71
No Labels <Records> 46
NO (RESERVE) 26
NO REWIND 82,81._
Non-numeric Literals 35

Comparison 73
Continuation of 15
Moves 92
Relation Test 71

Index 141

Non-report, Sterling Format 115
Non-standard, Label Records 46
NOT 76
Notation Format 15
NOTE 67

Statement 111
Numeric Class Test 74-75
Numeric Literals 35

Class Test 75
comparison 73
Moves 92
Relation Test 73-75

NUMERIC-FORM (PICTURE) 53

0 (PICTURE Character) 55
Object Program Requirements 10
OBJEC'l'-COMPUTER 23

Paragraph 23
OCCURS Clause 60

Coding Intrarecord Slack Bytes 125-126
OCCURS ••• DEPENDING ON 61
O~JTTED Labels (Records) 46
ON Conditional Statement 68,69,120
ON SIZE ERROR 97,40
OPEN statement 81
Operators (see Arithmetic Operators,
Logical Operators>

Optional words 15
Options of Arithmetic Statements 81,97
Options of LABEL Statement 46
Options of PICTURE Statement 53
Options of USE Sentence 78
OR 76
ORGANIZATION Clause 26
OTHERWISE

IF' 68
ON 120

OUTPUT 82
output Files, Record Formats 45
Output Format (EXHIBIT) 119
Overflow Test 76
overflow-names 13,30,76

p (PICTURE Character> 54
Packed Decimal

COMPUTATIONAL-3 52
Paragraph-names 12,15,66,101,111
Paragraphs 66

File Control 25
I-0-Control 28.1,25
Object-Computer 23
source-computer 23

Parentheses
Arithmetic Expressions 101
Compound Conditions 76

Pence, Terminators 114
PERFORM Statement 103,111,131

Logical Flow of 106-108
Permissible Comparisons 74
Permissible Moves 92
Physical Record 42

142

PICTURE Clause 53
Characters in 53-55
Editing Applications 58
Sterling Non-report 116
Sterling Report 115

Plus Sign Arithmetic Operator 101
Pocket Select 86
POSITIVE 74
Pound-report-string 117
Pounds (Sterling>, Separators 114
Printer Spacing 86
Procedure Division 66

considerations with Sterling
currency 118

Procedure-Branching Statements 101
Restrictions 109

Procedure-Branching Verbs <Statements>
Procedure-names 12,101,104,105,111
Processing, Input-Output 17
Program Identification code 14
Program Sheet 14
PROGRAM-ID 22
Program-name 22

Qualification of Data-names 35
Subscripting 62

QUOTE(S) 37

Random Access
Direct Files 19
Indexed Sequential

Random Access Method
READ Statement 82,67
READY 119

Files
18,27

19

Record Alignment in Blocked Files 128
RECORD CONTAINS Clause 46
Record Description 32,33,64,65,83

Format 48
RECORD KEY 18

Clause 28
Record-names 13,85,86
RECORDING MODE 47
Records

Checkpoint 29
Classes 42
Formats 43

REDEFINES Clause 59
REEL 86
Relation Test

Characters in 11
Non-numeric 73
Numeric 73

Relationship Between Labels and Device
Assignment 47

REPLACING (BY) 93
Report Data Item 39,50,74
Report Format, Sterling 115
REPORT-FORM

PICTURE 54
Rules 56

101

/~ . l

'--/

,
Requirements

Machine 9
Object Program 10
System 9

RERUN Clause 29
RESERVE Clause 26
Reserved Words 122,12,15
RESET (TRACE> 119
RESTRICTED SEARCH (APPLY Clausel 30
Restrictions

Input/Output statements 89
Procedure-Branc~ing Statements 109

Results, Intermed~ate in Arithmetic
Expressions 131

RETURN Statement 111
REVERSED 82
REWRITE Statement 86,68
ROUNDED Option of Arithmetic
Statements 97,98,99,100,133

Rules
Arithmetic Statements 96
Notation 15
Operands of FROM and TO Options in

TRANSFORM Statement 95,96
Report Item PICTURE 56

RUN (STOP) 101

S (PICTURE Character) 54
SAME Clause 28
Section Header 66
section-name 15,32,66,101
Sections 66

Configuration 23
Declarative 77
File 42,32
Input-Output 24
Linkage 33
working-Storage 33

Security 23
SELECT (COPY> 112

Sentence 25
Sentences 67
separators 11
Sequence-number 14
Sequential Access

Direct 19
Indexed 19

SEQUENTIAL ACCESS Method 18
Shillings Separator (Sterling> 114
Short-precision 52 1 41

COMPUTATIONAL-1 52
S!gn Representation <sterling> 116 , ~\
~ Test ? 4. ------------ S \ (,; tJ \ t/ S
Simple condition 72
Single-Record Files 42
SIZE ERROR 68,69,98-100
Skip to Channel 86
Slack Bytes 129,41,42,52
Source Program Library Facility 112
source Program Statement 14
SOURCE-COMPUTER Paragraph 23
SPACE(S) 37
Special Characters 10
STANDARD Label Records 46

Standard Sequential Data Organization 17
Statements

Arithmetic 96
compiler-Directing 67,109
conditional 67
Data Manipulation 90
Imperative 67
Procedure-Branching 101

Sterling Currency 114
Considerations, Procedure Division 118
Editing 118
Sign Representation 116
Sterling Non-report 115

Format 115
Sterling Report 116

Format 118
Sterling Sign Representation 116
STOP 101
Structure of COBOL Source Program 14
Subcripting 61,37

Qualified Data-names 62
SUBTRACT Statement 98,131
Subtraction Arithmetic Operator 101
Symbol Pairs 77
SYMBOL KEY 18,17,19,82,84,86

Clause 27
SYSPUNCH 87
System Requirements 9

Tables 61
TALLYING 93
Test Conditions 71

Class 74
Condition-name 75
overflow 76
Relation 71
Sign 74

THEN (IF) 68
THRU (PERFORM) 103
TIMES (PERFORM> 103
TO

ADD 98
ALTER 102
GO 101

- MOVE 90
TRANSFER 95

TRACE Statement 119
TRACK-AREA clause 28
Trailer Label-Checking Procedures 84
Trailer Label-Writing Procedures 85
Transfer (GO TO> 101
TRANSFORM Statement 94-96
Types of Conditional Statements 67-68
Types of Data Items 38-39
Types of Names 12
Types of Records 42
Types of Statements

Arithmetic 96
Compiler-Directing 67
conditional 67
Data-Manipulation 90
Imperative 67
Procedure-Branching 101

Index 143

U (Unspecified Record Format> 43,48
Unary Sign 101
UNIT 86
UNIT-RECORD Device Numbers 25
UNTIL FIRST 93
UPON

CONSOLE 87
DISPLAY 87
SYSPUNCH 87

USAGE Clause 52
Coding Intrarecord Slack Bytes 125

USE AFTER STANDARD ERROR 79
Use of PICTURE Clause 57
USE Sentence 77-79
User Label 47
USING 110
UTILITY Device Numbers 26

v
PICTU~E Character 53
Variable Record Format 43,48,124

on Output Files 45
VALUE Clause 58
VARIABLE 42
variable Length Records 42
VARYING 104
Verbs 80

144

Arithmetic 96
Compiler-Directing 81
Data-Manipulation 81
Input/Output 80
Procedure-Branching 81

Volume 42
Label-Checking Procedures 84
Label-Writing Procedures 85
Switch 84,85

Word Formation 11
Word,s

Characters in 10
Key 15
Names 12
Optional 15
Reserved 122,12

Working-Storage section 63,33
WRITE Statement 84.1,68
WRITE-ONLY (APPLY Clause> 30

x (PICTURE Character> 53

Z (PICTURE Character) 54
Zero Suppression 54
ZERO(S) 36,75
Zoned Format 41

r

GC24-3433-6

International Business Machines Corporation
Data Processing Division
1133 Westchester Avenue, White Plains, New York 10604
[U.S.A. only]

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
[International]

00
...........
w
(j)

0

0
0
to
0
t"f

t"f
PJ
::J

lQ

00
tO
CD
()

'U
Ii
I-'·
::J
rt
CD
p,.

I-'·
::J

c:
00

:i:=i

(j")
0
I\.)

~
I

w
~
w
w
I

(j)

J

,,-\

If
¥

~l
~-

,-,,,

