
Systems Reference Library

IBM System/360
Disk and Tape Operating Systems
COBOL Programmer's Guide

Program Number 360N-C:B-452
360M-C:B-402

File Number S360-24
GC24-5025-5

This publication describes how to compile, linkage
edit, and execute a Disk and Tape COBOL program. The
text also describes the output from each of these
steps. In addition, it explains options of the compil­
er and many available features of the operating system.

DOS
TOS

Sixth Edition (October 19681

The specifications contained in this publication correspond to Release
19 of the IBM System/360 Disk Operating System.

Thfs is a major revision of, and makes obsolete, C24-5025-4. In
addition to the material in the previous edition, this book contains a
revised section dealing with programming considerations and a comprehen­
sive discussion of calling ann called programs and overlay techniques.
Changes to the text a.re indicated by a vertical line to the left of the
change; revised illustrations are denoted by the symbol • to the left of
the caption.

Specifications contained herein are subject to change from time to
time. Any such chang•e will be reported in subsequent revisions or
Technical Newsletters.

Requests for copies of IBM Publications should be made to your IBM
representative or to the IBM branch office serving your locality.

Address comments conc•erning the contents of this publication to IBM
Corporation, Programming Publications, 1271 Avenue of the Americas, New
York, New York 10020.

© Copyright International Business Machines Corporation 1966, 1968

I

_,,,

The purpose of this publication is to enable programmers to compile,
linkage edit, and execute COBOL programs under control of IBM System/360
Disk and Tape Operating Systems. The Disk and Tape COBOL language is
described in the publication I~~-§Y§i~!!!Ll60_Qi§~_~g£_~~P~-QE~Eat!gg_sys­
t~ill§.!.. __ £Q~Q~_!:~gq£~q~_§.£~£ifi£~:!:ion§_, Form C24-3433, which is a corequi­
site to this publication.

Programmers unfamiliar with the Disk and Tape Operating systems
should read the Introduction and Sections I, II, and III for detailed
information about preparing COBOL programs and deck structures for proc­
essing by the system.

Programmers who are familiar with the Disk and Tape Operating Systems
and wish to know how to run COBOL programs should read Section I. This
section contains the control card parameters and specific options needed
to prepare deck structures for processing.

Sections IV, v, and VI contain information that is intended to aid
programmers in writing efficient programs and in debugging programs that
do not execute properly. The remaining sections discuss optional fea­
tures of the Disk and Tape Operating Systems that are available to COBOL
programmers.

Wider and more detailed discussions of the Disk and Tape Operating
System are given. in the following publications:

Publications closely related to this one are:

I~~-§Y§:!:~mLl£Q_Qi§~QE~E~tigq_§y~t~m1 __ §y§:!:~m_QQrriEQl_~g£_§Y§:!:~m-ser=
Y!.£~-~!.Qq£am§, Form C24-5036.

IBM_§y§t~mLl£Q_T~P~-QE~£~tigq_§y§i~illL __ §y~i~ill-£Qg:!:EQl_~g£_§y§t~lli-§er=
Y!.£~-~EQq£~!!!§• Form C24-5034.

1g~_eyst~mLl£Q_Qi§~_Qeer~tigq_§y§i~illL __ §£P~EYi~QE_~g~_Igp£tLQutp~t
~~.£!.Q§r Form C24-5037.

IBM_§y§t~mLl£Q_T~P~_Qper~:!:igg_§yst~m.!.. __ §£P~fYi~Qf_~gg_IgputLQ£te£:!:
~aC£Q§r Form C24-5035.

I~~-§y§t~mLl£Q_Qi§~_QE~E~tigq_§y§i~illL_-12~i~-~~g~g~m~gt_£Qnc~pt§, Form
C24-3427.

IBM System/360 Tape Operating System: Data Management Concepts, Form
C2:4-3430.

I~~-§yst~mLl£Q_Qi§~_QP~E~iigq_§y~i~illL __ §y~tem_~~g~E~iiQg_~gg_~aig=
t§.!!~g£~, Form C24-5033.

I~~-§y§t~mLl~Q_T~P~_Qp~£~iigq_§y§t~ __ §y§t~ill-~~g~~tiQg_~gg_M~ig=
t~:g~g£~• Form C24-5015.

g~~-§yst~mLl~Q_~Eig£iP!.~§_Qf_Qp~£~tiog, Form A2 4- 6 8 21.

The titles and abstracts of related publications are listed in the
publication IBM System/360 Bibliography, Form A22-6822.

3

(

~·

TABLE OF CONTENTS

INTRODUCTI:ON
Data Organization •
Executing a COBOL Program •

Compilation •
Linkage Editing •
Execution •

Libraries •
Con~ Image Library
Source Statement Library
Relocatable Library •

Multiprog:r:amming

SECTION I: PREPARING COBOL PROGRAMS FOR PROCESSING
Input/Output Device Assignment
Job Control Statements

Sequence of Job Control Statements
Format of Job co'ntrol Statements
continuation of Job control Statement •

The ASSGN Statement •
The EXEC Statement
The JOB Statement
LBLTYP Statement
VOL Statement •
TPLAB Statement •
OPTION Statement
PAUSE Statement •
DI.AB Statement CDOS only)
x~rENT Statement <nos only)
The RESET Statement •
The End-of-Data-File Statement
The End-of-Job Statement
The Comments Statement
CBL Statement (COBOL Option Control Card)
DJC.BL Statement
TJC.BL Statement
EXTENT -- DASD Extent Information •

The Linkage Editor
Linkage Editor Control Statements •

The PHASE Statement •
The INCLUDE Statement •

The Autolink Feature
Librarian Functions •

Cataloging Program Phases--Core Image Library •
Cataloging Object Modules--relocatable Library
Cataloging Books--source Statement Library
Cataloging Books--User Private Library

Checkpointing a Program •

SECTION II: DECK STRUCTURES FOR PROCESSING COBOL PROGRAMS IN A TAPE
OPERA'rING SYSTEM
Assumed Tape Resident System Configuration
Examples of Processing Using Tape Configuration • •

Example 1--compile and Punch •.
Example 2--Cataloging an Object Module in Relocatable Library •
Example 3--COMPILE, LINKAGE EDIT, and EXECUTE •
Example 4--Executing a Program
Example 5--cataloging Source Modules to source Statement Library
Example 6--COMPILE (Using source Statement Library>, LINKAGE
EDIT, and EXECUTE •

SECTION !EI: DECK STRUCTURES FOR PROCESSING COBOL PROGRAMS IN A DISK

11
• 11

12
• 12
• 12

12
• 12
• 13

13
• 13

13

• 15
15
15

• 17
18

• 18
18
20
21
21
21
22
22
24
24

• 25
26
27
21
21
27
28
29
30
32
32
32
33

• 33
34

• 34
35
35
36
37

39
39
41
41
41

• 42
43
44

• 45

OPERATING SYSTEM • 48

Assumed Disk Resident System Configuration
E,xamples of Processing Using Disk Configuration •
Example 1--COMPILE and PUNCH
Example 2--Cataloging an Object Module in Relocatable Library • Example 3--COMPILE, LINKAGE EDIT, and EXECUTE •
Example 4--Executing a Program
Example 5--cataloging Sc>urce Modules in Source Statement Library Example 6--COMPILE (Using source Statement Library), LINKAGE EDIT, and EXECUTE •

SECTION IV: INTERPRETING OUTPUT •
compiler output •

source Listing {LIST)
Data Map (SYM)
Procedu:r:e rnAp CLISTX)
Diagnostic Messages (ERRS)

Working with Diagnostic Messages
How Diagnostic Messages Are Determined
Examples of How Diagnostic Messages Are Generated • Linkage Editor Output •

Execution Time Messages •
Program PHASE Dumps

How to Use a Dump •
object Storage Layout •

SECTION V: THE DEBUGGING LANGUAGE •
TRACE Statement •
EXHIBIT Statement •
ON Statement

The Debug Packet
Job Control Setup For Using Debug Packets

SECTION VI:· PROGRAMMING CONSIDERATIONS
Data Items
Data Usage

Display •
Cornputational-3
Computational •
computational-1 And COMPUTATIONAL-2 •

Mixed Data Formats
Types of Conversions

DISPLAY to COMPUTATIONAL-3
DISPLAY to COMPUTATIONAL
COMPUTATIONAL-3 to COMPUTATIONAL
COMPUTATIONAL to COMPUTA'rIONAL-3
COMPUTATIONAL to DISPLAY
COMPUTATIONAL-3 to DISPLAY
DISPLAY to DISPLAY
conver.sion of COMPUTATIONAL-1 or COMPUTATIONAL-2 Data • Examples Showing Effect Of Data Declarations

General Coding Techniques •
Arithmetic Suggestions

Arithmetic Fields •
Intermediate Results in a Complex Expression
Exponentiation
Decimal Point Alignment •
Sign control

Non-Arithmetic Suggestions
Unequal Length Fields •
Conditional Statements
Subscripting
Alignment And Slack Bytes •
Redundant Coding
Redefinition
Editing •
FILES •
Accept Verb
Paragraph-Names •

48
51
51
52
52
53
53

54

57
57
57
59
60
61
62
62
63
63
63
64
65
65

66
66
66
67
67
68

69
69
70
70
70
72
72
72
73
74
74
74
74
74
75
75
75
75
77
77
77
78
78
80
81
81
81
82
83
83
86
86
88
88
89
89

' \._./

Trailing Characters • • • • 89
Variable Length Records • • • • •

Blocking Variable Length Records • • • • •
• 90

90
Processing Buffers • • • • • • • • • • • • • • •
Variable Record Alignment containing occurs ••• Depending

Input/Output Error Processing Considerations
Sequential Tape File Organization •
Sequential Disk File Organization •

SECTION VI:I: CALLING AND CALLED PROGRAMS AND OVERLAYS
Calling And Called Programs • • • • • • • •
Linkage • • • • •

Linkage in a Calling Program
Linkage in a Called Program •
Entry Points • • • • •
Correspondence of Arguments and Parameters

Linkage Editing Without the Overlay Feature ••
Assembler Language Subrograms •

Register Use
save Area •
Argument List •

In-Line Parameter List
Lowest Level Program

overlays • • • • • •
Special Considerations When Using Overlay Structures

Assembler Language Subroutine For Effecting overlays
Linkage Editing With overlay
Job Control For Effecting overlays
PROGRAMMING CONSIDERATIONS WHEN USING OVERLAY STRUCTURES

• 92
On Clause • 92

93 . . . • 93
• 93

• 95
95

• 95
• 96

96
97

• 97
• .100
• .101

~ 102
.102

• .103
.105
.106
.106
.107
.107
.108
.110
.113

SECTION VJ;II: PROCESSING COBOL FILES ON DIRECT-ACCESS DEVICES • • .114
Indexed Sequential • • • .115

Prime Areas and Overflow Areas • • • • .115
Index Areas • • • • • • • • • • .116

Cobol Statements Used to Specify an Indexed Sequential File • • .119
Creating an Indexed Sequential File • • • • • • • • .119
OPEN Statement .119
WRITE Statement • • • •••• 119
CLOSE Statement • • • • • • • .120
Sequential Retrieval of an Indexed Sequential File • • • • .120
Updating Sequentially • • • • • • • .121
Random Retrieval of an Indexed Sequential File • • • • .121
Updating Randomly • • • • • • .122
Adding Randomly • • • • • • • • 122

Error Recovery Techniques for Indexed Sequential Files ••• 123
INVALID KEY Errors • • • • • • • • • • • • 124
USE AFTER STANDARD ERROR Routines • • • • • • ••••• 125

Modifying the DTF Table for Indexed Sequential Organization Files .127
Example of COBOL Main Program and COBOL Subprogram Modifying DTF 128

Coding Examples Using Itidexed Sequential Files • • • .129
Creating an Indexed Sequential File • .130
Random Retrieval .132
Sequential Retrieval .134

Direct Organization • • • • • •••••••••••• 136
Specifying Keys • • • • .136
A Randomizing Technique • • • • • .138
Randomizing • • • • • • • • .139

Randomizing for the 2311 Disk Pack • • • • • • • 139
Randomizing for the 2321 Data Cell • • • • .140

COBOL Statements Used to Specify Direct Organization Files .142
Creating a Direct Organization F~le • • • • • • • • • • • .142
Sequential Retrieval of a Direct Organization File • 143
Random Retrieval, Updating, and Adding to a Direct File • .144
Random Retrieval • • • • .144
Updating Randomly • • • • • • • • • • • • • • • 144
Adding Randomly • • • • • .144

Multiple Entry Points • • • • .145
Error Recovery Techniques for Direct Files .147

INVALID KEY • • • • • • • • • • •
USE AFTER STANDARD ERROR • • • •

Modifying The DTF For Direct Files
Coding Examples For Direct Organization Files • Creating the File • • • • • • • • • • • • • • Random Retrieval -- Direct Organization • • sequential Retrieval -- Direct Organization

•• 147
• .147
•• 148
• .148
•• 149
•• 153
•• 155

APPENDIX A: REFERENCE FORMATS FOR DISK AND TAPE OPERATING SYSTEMS COBOL • • •

APPENDIX B: STANDARD TAPE FILE LABELS •

APPENDIX C: STANDARD DASD FILE LABELS -- FORMAT 1 •

APPENDIX D: TRACK FORMAT FOR THE 2311, 2314, AND 2321

APPENDIX E: EXAMPLES OF COBOL PROGRAMS

APPENDIX F: SUBROUTINES USED BY COBOL •

APPENDIX G: DIAGNOSTIC MESSAGES • • • • • • Compiler Diagnostic Messages • •
Execution Time Messages • •
Debug Packet Error Messages • • • • • • • •

•• 157

• .166

• .167

•••• 169

.171

.173

• .181
• • 181
•• 208
•• 209

61

ti

~'

•!I

'fl:

ILLUSTRATIONS

FIGURES

Figure 1. Symbolic Names, Their Function, and Permissable Device
Type . 16
Figure 2. Possible Specifications for x•ss• in the ASSGN Statement 19
Figure 3. Input/output Units Used by COBOL Program in a Tape
Syst•=m . 40
Figure 4. Input/Output Units Used by COBOL Program in a Disk
System 49
Figure 5. Example of a COBOL source Listing 58
Figure 6. Example of a Data Map 59
Figure 7. Example of a Procedure Map for a COBOL Program 60
Figure 8. Example of Source Module Diagnostics 61
Figure 9. Example of a Debug Packet 68
Figure 10. Bytes Required for each Class of Elementary Item . . 70
Figure 11. Characteristics of Numeric Data 71
Figure 12. Internal Representation of Numeric Items 73
Figure 13. Called and Calling Programs 95
Figure 14. Example of a Calling Program 98
Figure 15. Example of. Data Flow Logic in a Call Structure.101
Figure 16. Linkage Registers • 102
Figure 17. save Area Layout and Word Contents103
Figure 18. Sample Linkage Routines Used with a Calling Subprogram .104
Figure 19. Sample In-line Parameter List105
Figure 20. Sample Linkage Routines Used with a Lowest Level
Subprogram. .106
Figure
Figure
Figure
Figure
Figure
Figure

TABLES

Table
Table
Table
TablE=
Table
Table

21. Flow Diagram of Overlay Logic.109
22. Indexed Sequential File Without Overflow117
23. Indexed Sequential File With overflow . .118
24. Track Format170
25. Example of a calling Program171
26. Example of a Subprogram • 172

1. Error Functions
Error Indicators

• • • • • .124
2.
3.
4.
5.
6.

•••••••• 126
Contents of Skeleton DTF Table • •
Linkage Editor Diagnostic Output •••••••••••
Error Functions • • • • • • • • • • • • • • • • • •
Skeleton DTF Table for Direct Organization File

• .128
••• 146

• .148
.150

I

~

(

\'-)

~I

INTRODUCTION

A Disk and Tape Operating Systems COBOL program is processed by the IBM
Sysb~m/360 Disk and Tape Operating Systems. The operating system con-
sists of a number of ErO£~§.§.i!!9'.-EEQ9.Eam§_ and a £Q!!!::.EQ!_l2!:.Q9.E~!!!· The
procc~ssing programs include the COBOL compiler, service programs, and
user·-written programs.. The control program supervises the execution of
the processing programs and controls the location, storage, and retriev­
al of data. It also schedules jobs for continuous processing.

A request to the operating system for facilities and scheduling of
program execution is called a job. For example, a job could request
execution of the COBOL compiler to compile a program. A job consists of
one or more iQQ_§.!::.~E§.r each of which specif ie:s execution of a program.
A programmer makes these requests to the operating system by use of job
control statements that may be punched into cards.

Each job is preceded by a JOB statement that identifies the job.
Each job step is preceded by an EXEC statement that names the program to
be executed and calls for execution. Included in each job step and pre­
ceding the EXEC statement are other job control statements (such as
ASSGN and XTENT) that describe data or request allocation of input/
output devices.

The data processed by execution of any processing program must be in
the form of a ~~!::.~_fi!~· A data file is a named, organized collection
of one or more records that are logically related. Information in a
data file may or may not be restricted to a specific type, purpose, or
storage medium. A data file may be a source program, a library of sub­
routines, or a file of data records that is to be processed by a COBOL
program.

A data file resides in one or more volumes. A volume is a unit of
external storage that is accessible to an input/output device. For
example, a volume may be a reel of tape or a disk pack.

In the Disk and Tape Operating Systems, input/output devices are
given standard symbolic names. A programmer can refer to an input/
output device in his program by using the appropriate symbolic name, and
the program is not dependent on an actual device address. The actual
device address is s~pplied by a job control statement when the program
is executed or at system generation time.

DATA ORGANIZATION

A data file used by a COBOL program can have one of three types of
organization: sequential, indexed sequential,, or direct. The first
type (sequential> may be on any input/output device. All other types
must be on direct-access devices.

1. A sequential data file is one in which records are organized solely
on the basis of their successive physical positions, as on tape.

2. An ind~~~~-se~l!l~!!!::.i~! data file is one in which records are
arranged in logical sequence (according to a key that is part of
every record) on the tracks of a direct-access device. A separate
index or set of indexes maintained by thE~ system indicates the
location of each record. This permits random, as well as sequen­
tial, access to any record.

Introduction 11

3. A direct data file in COBOL is one in which records are referred to by-use-of keys. An actual key specifies the actual track address. A symbolic key identifies the record on the track.

EXECUTING A COBOL PROGRAM

Three basic operations are performed to execute a COBOL program: com­pilation, linkage editing, and actual execution.

COMPILATION

Compilatio~ is the process of translating a COBOL source program into a series of instruc.tions comprehensible to the computer, i.e., machine language. In operating system terminology, the input to the compiler, the source program, is called the ~2~~~-~2£~1~· The output from the compiler, the compiled source program, is called an object module.

LINKAGE EDITING

The linkage editor is a service program that prepares object modules for execution. It can also be used to combine two or more separately com­piled object modules into a format suitable for execution as a single program. During the process of linkage editing, external references between different modules are resolved. The executable output of the linkage editor is called a program phase. The output may consist of one or more program phases.

EXECUTION

Actual execution is under supervision of the control program, which obtains a program phase from the core image library, loads it into main storage, and initiates execution of the machine language instructions contained in the program phase.

LIBRARIES

Another service program in the Disk and Tape Operating Systems is called the librarian. The librarian consists of a group of maintenance rou­tines that service the three system libraries. The maintenance routines provide such operations as adding, deleting, or copying portions of a library.

The three system iibraries are: the core image library, the source statement library, and the relocatable library.

12 Disk and Tape Operating Systems COBOL Progranuner's Guide

\~

\~

(

\~

CORE IMAGE LIBRARY

All permanent programs in the Disk and Tape Operating System must be
added to the core image library. The core image library is required,
and the programs are stored in the library in the form of program
phase~s. Unless the program phase has been linkage edited in the pre­
vious job step, the core image library is searched at execution time to
obtain the program phase named in the EXEC statement.

SOURCE STATEMENT LIBRARY

The source statement library is used to store portions of COBOL source
programs that are to be copied into a source program when the COPY or
INCLUDE clauses of the COBOL language are used. The source statement
library is not required. However, use of the source statement library
can reduce the amount of coding needed for each individual program, that
is, if standard file descriptions are added to the source statement
library, they need not be coded again.

RELOCATABLE LIBRARY

The relocatable library is used to store object modules that can be sub­
sequently linkage edited with other object modules. Each object module
may also be a complete program that can be linkage edited and then
executed. The relocatable library contains the COBOL library subrou­
tines and the input/output modules used by the COBOL compiler.

MULTIPROGRAMMING

The Disk Operating System provides the capability of simultaneously
proce~ssing two or three batched job streams for systems with at least
32K of main storage. This support is referred to as fi~~£_pariition~£
multiprogramming because each job stream is assigned a different area or
partition of main storage. The number and size of the partitions are
allocated during system generation and may be altered by the operator.

There are two types of problem programs that can be run in a multi­
programming system: batched job processing and SPI (Single Program
Initiator). Batched job processing is initiated by job control from the
batched-job input stream. This capability is extended to all three pro­
gramrning partitions (BG, F1, and F2> if sufficient storage and separate
input/output devices are available. The batched-job foreground option
is selected when the system is generated by specifying MPS=BJF in the
supervisor macro instructions. Programs run under SPI do not execute
from a stack, but are initiated by the operator from the printer­
keyboard. When an SPI program completes processing, the operator must
explicitly initiate the next program.

The linkage editor determines whether the program to be executed is
eithE=r a background or a foreground program. Both types of programs are
initiated and terminated asynchronously of the other. Neither is aware
of the other's existence.

Introduction 13

COBOL source modules must be compiled as background programs. COBOL program phases can be executed as either background or foreground programs.

In a multiprogramming environment, control always passes to the pro­gram with the highest priority. Priority is assigned according to classification of programs as follows:

1. Supervisor

2. Operator communication routine

3. Foreground-one program

4. Foreground-two program

5. Background program

The background program must be a minimum of 10K. The foreground pro­gram areas must be in increments of 2K. The maximum size of a fore­ground program area is 510K.

14 Disk and Tape Operating systems COBOL Programmer's Guide

(
\ I

~ This section provides information about preparing COBOL source programs
for compilation, linkage editing, and execution. Included are discus­
sions: of frequently used job control statements, linkage editor control
statements, and librarian control statements. Some individual examples
are g;iven, but Sections II and III should be scrutinized for complete
examples of deck setups.

A complete list of job control, linkage editor, and librarian control
statements and other options can be found in the publications !~~
system/360 Disk Operating system: System Control and System Service
Programs, Form C24-5036, and IBM system/360 T~~-QE~rat!!!~L§Y~!:~m.:_ __ §.Y§.::.
tern control and SY§!:~m_§~rvi£~-~~Qg~~m~, Form C24-5034.

INPU'r/OUTPUT DEVICE ASSIGNMENT

The input/output devices used for compilation, iinkage editing, and
execution are ref erred to by a standard set of symbolic names. These
symbolic names are used in COBOL programs and in job control statements
instead of actual physical device addresses. This provides several
advantages for the programmer. For example, a pro~rammer uses the
ASSIGN TO clause to assign a file to the appropriate symbolic name.
Such a program is not dependent on the physical device address and, as
such, does not have to be recompiled unless the device .~ype changes.
The 8ymbolic names and their usage are shown in Figure 1.

The symbolic names are assigned to physical devices at system genera­
tion time.. by the operator,, or by means of the job control ASSGN
statement.

If a programmer wishes to use the assignments made at system genera­
tion time. he need not include any ASSGN statements in his job unless he
is using his own data files in the COBOL program.

JOB CONTROL STATEMENTS

Job control statements are read from the device identified as SYSRDR.
Not all job control statements are needed by COBOL. Those required are
JOB, EXEC, /*, and /&. If disk labels are used, the VOL, XTENT, and
DLAB statements, or the DLBL and EXTENT statements, are required. If
tape labels are used, the VOL and TPLAB statements, or the TLBL state­
ment,, are required. All other statements are optional.

Section I: Preparing COBOL Programs for Processing 15

r--------y------------------------------------T-------------·-----------1 ISymbolicf I I I Name I Function J Permissible DE~vice Types I ~--------+------------------------------------+-------------·-----------~ ISYSRDR !Input unit for control statements jCard reader I I I J Magnetic tape unit I I I !Disk drive I r--------+------------------------------------+-------------------------i ISYSIPT]Input unit for programs jCard reader I I I !Magnetic tape unit I] I f Disk drive I r--------+------------------------------------+--------------·----------i I SYSPCH l Main unit for punched output I Card punch I I I !Magnetic tape I I I I Disk drive I t--------+------------------------------------+------------------------i ISYSLST fMain unit for printed output JPrinter I I I !Magnetic tape I I I !Disk drive I t--------t------------------------------------+------------------------i I SYSLOG 1 OpE~rator messages and to log job I Printer-keyboard I I jcontrol statements !Printer I t--------+------------------------------------+------------------------~ I SYSLNK I Input to the linkage editor I Disk extent I I I ~Magnetic tape unit I r--------+------------------------------------t------------------------i ISYSRES]Contains the operating system, the jTape unit or I I Jcore image library, relocatable JArea of a disk drive I I Jlibrary, and source statement I I I I library J I I I I I r--------+------------------------------------+--------------·----------i JSYSSLB JThe private source statement libraryjMagnetic tape unit I I I jDisk drive I r--------+------------------------------------+--------------·----------i jSYSRLB IPrivate relocatable library IMagnetic tape unit I I I !Disk drive I r--------+------------------------------------+-------------------------~ jSYSIN !Must be used when SYSRDR and SYSIPT !Disk I I fare assigned to the same disk jTape I I f extent. May be used when they are !Card reader I I jassigned to the same card reader or I I I f magnetic tape. This name can only J I I f be specified in a job control I I I]statement. COBOL SELECT statement I I I f must use the other names. I I r--------+------------------------------------+---------------·---------i]SYSOUT !This name must be used when SYSPCH !Tape I I land SYSLST are assigned to the same I I I !magnetic tape unit. It must be I I I !assigned by the operator ASSGN I I I I command. I I r--------+------------------------------------+------------------------i jSYSOOO !These names are available to the fAny unit I I to I pro9rammer as work files or for I I jSYS222 f storing data files. These names aref I I !called gQgr?!11!!!l~~-!29.!£~!_!!nit~ as J I I f opposed to the remaining names whichj I I fare always referred to as system I I I ~ 1 ogJ;£~!.-~!!!~~. I I L--------i------------------------------------i------------------------J Figure 1. Symbolic Names, Their Function, and Permissable Device Type

16 Disk and Tape Operating Systems COBOL Programmer's Guide

I
\._)

\\

\,._)

Statements most likely to be used by the COBOL user are:

Operation
JOB

EXEC

ASSGN

LBLTYP

VOL

(-DLAB (Disk

\ , ,DLBL (Disk

only>

only>

'\.XTENT (Disk only)

\,~-·-EXTENT (Disk only)

TPLAB

TLBL

RESET

OPTION

PAUSE

/*

/&

*

Meani!_!g
Job name

Execute program

Input/output assignments

Reserve storage for label
information

Volume information

Disk file label information

Disk file label information

Disk file extent

Disk file extent

Tape file label information

Tape file label information

Reset input/output assignments

Option

Pause (for message to operator>

End of data file

End of job

Comment

SEQUENCE OF JOB CONTROL STATEMENTS

The job control statements for a specific job always begin with a JOB
statE~ment and end with a /& (end-of-job) statement. A specific job con­
sists of one or more job steps. · Each job step is initiated by an EXEC
statement. Preceding the EXEC statement are any job control statements
necessary to prepare for the execution of the specific job step. The
only limitation on the sequence of statements preceding the EXEC state­
ment is that which is discussed here for the label information state­
ments. The following statements can p~ecede the.EXEC statement for a
job step and will be frequently used by COBOL programmers.

ASSGN
LBLTYP
VOL
DLAB
XTENT
TPLAB

··r5tJ~1:;·

EXTENT
TLBL -OPTION
PAUSE

section I: Preparing COBOL Programs for Processing 17

The label statements must be in the order:

VOL
TPLAB or

or

VOL
DLAB
XTENT Cone for each area or file in volume) TLBL
DLBL
EXTENT Cone for each area or file in a volume)

and must immediately precede the EXEC statement to which they apply.

FORMAT OF JOB CONTROL STATEMENTS

All job control statements are free form, except for a few restrictive rules.

The general.format of the job control statements is, as follows:
1. Name. ~~wo slashes {//) identify the statement as a control state­ment. ~~hey must be in columns 1 and 2. The second slash must be immediately followed by at least one blank. Exceptions to these rules are:

a. The end-of-job statement contains /& in columns 1 and 2. b. The end-of-file statement contains /* in columns 1 and 2. c. The comment statement contains * in column 1 and a blank in column 2.

2. Operation. This field describes the type of control statement. It can be up to eight characters long. At least one blank follows its last character.

3. Operand. This field may be blank or may contain one or more entries separated by commas. The last term must be followed by a blank, unless its last character is in column 71.
4. Comments. Comments are permitted anywhere after the trailing blank of-the-operand field.

CONTINUATION OF JOB CONTROL STATEMENT

Information starts in column 1 and cannot extend past column 71. The exceptions to this are file-label statements (TPLAB and DLAB). Informa­tion for file-label statements can be specified on more than one card, in which case a continuation statement is required. Any non-blank character present in column 72 specifies that information is contained in the card image that follows. Columns 1 through 15 of the continua­tion statement are ignored. Begin continuation statement information in column 16.

The ASSGN Statement

The ASSGN statement is used to assign a logical device address to a physical device. The format of the ASSGN statement is as follows:

18 Disk and Tape Operating Systems COBOL Programmer's Guide

\~

~I

I (_;j

// ASSGN SYSxxx,device-address

~X.§.x:x~?S_ is one of the logical devices listed in Figure 1 Cwi th the excep­
tion of SYSOUT, which cannot be assigned by means of ASSGN state­
ments). The system permits programmer logical units in the range
from SYSOOO to SYS222. The number of units actually permitted in
a specific installation is defined at system generation time and,
normally, is less than 223. Units SYSOOO through SYS009 are the
minimum configuration provided by the system.

Device-address permits three different formats:

x•cuu' where c is the channel number and uu the unit number in
hexadecimal notation. The values of cuu are determined
by each installation.

UA Unassign. The job will be canceled if a file attached
to this logical unit is referred to by one of the input
output statements OPEN, CLOSE, READ, WRITE, or REWRITE.

IGN Indicates the logical unit is to be unassigned, and all
program references to the logical device by anything
other than logical IOCS are to be ignored. Files that
are to be processed by logical IOCS must not be assigned
IGN, or the job will be cancelled when an attempt is
made to open the file. The IGN option is not valid for
SYSRDR, SYSIPT, and SYSIN.

X'ss'. is the device specification. It is used for specifying mode set­
tings for 7-track and dual-density 9-track tapes. If x•ss• is not
specified, the system assumes X'90' for 7-track tapes and x•co•
for 9-track tapes. The possible-specifi6ations for X'ss' are
shown in Figure 2.

r-------T-----------T------------T----------------T--------------------1
I I Bytes I I I I
I I per I I Translate I Convert I
I ss I inch I Parity I Feature I Feature I
~----·---+-----------+------------+----------------+--------------------~

10 I 200 I odd I off I
20 I 200] even 1 off I
28 I 200 I even I on I
30 l 200 I odd] off I
38 I 200 I odd I on I
50 I 556 I odd I off I
60 I 556 I even I off I
68 I 556 I even 1 on I
70 I 556 I odd I off I
78 I 556 l odd I on I
90 I 800 I odd I off I
AO I 800] even I off I
A8 I 800 I even I on I
BO l 800 I odd I off I
B8 I 800 I odd I on I
CO I 800 I single-density 9-track I
CO I 1600 I dual-density 9-track I
CO I 1600 I single-density 9-track I
C8 I 800 I dual-density 9-track I

on
off
off
off
off
on
off
off
off
off
on
off
off
off
off

r-------i ___________ i _____________________________ i--------------------~
INotE~: If SYS001,SYS002, or SYS003 is assigned to a 7-track tape, the I
Jmode setting must be: converter on, translator off, odd parity. J

L----·--J
• Figure 2. Possible Specifications for X'ss' in the ASSGN Statement

Section I: Preparing COBOL Programs for Processing 19

ALT indicatE~s an alternate magnetic tape unit that is used when the capacity of the original assignment is reached. The charac__t,_eristics of the alternate unit must be the same as those of the original unit. Multiple alternates may be assigned to a logical unit.

When an alternate drive assignment is mad.e for a multi-reel file, the primary assignment, as well as the alternate assignment, must be made within the job stack even if the primary assignment is standard. For example,

//ASSIGN SYS014,X '184'

//ASSIGN SYS014,X '185' ,ALT

Note: All device assignments made with ASSGN statements are reset between jobs to the configuration specified at system generation time plus any modifications that may have been made by the operator (see the section "The JOB Statement").

When preparing ASSGN statements for a compilation job step, the pro­grammer uses the system logical units (SYSIPT, etc.) to refer to input/ output devices used in the system configuration. When preparing the ASSGN statement for execution time job steps, the programmer uses the programmer logical units (SYSOOO through SYS222> to assign a symbolic unit to a specified physical device. For example,

// ASSGN SYS004,X'OOC'

This example could be used to assign the symbolic unit SYS004 to a card reader at address x•ooc•. The first digit specifies the multi­plexor channel and the OC specifies the unit number.

To specify this file in a COBOL program, the programmer writes
SELECT filename ASSIGN TO 'SYS004'

Note that only the programmer logical units (SYSOOO through SYS222> can be used in a COBOL program.

The EXEC Statement

The execution of a job step is initiated by the following job control statement:

// EXEC name

Name is th•= name of the first phase of the program to be fetched for execution from the core-image library. Therefore, execution of a COBOL compilation would be initiated by the statement

J / EXEC COBOL

The name must be omitted if a program that was processed by the linkage editor in the previous job step of the same job is to be executed from SYSLNK.

20 Disk and •rape Operating systems COBOL Programmer's Guide

\ '

_,,J
Each job begins with the following job control statement:

// JOB job-name

Job-name is a user-defined name of 1 to 8 characters, the first of
whicttmust-be alphabetic.

Note:_ The JOB statement resets the effect of all previously issued
OPTION and ASSGN statements.

LBLTYP Statement

THE LBLTYP statement is used to define the amount of main storage to be
reserved at linkage edit time for processing tape and nonsequential
disk-file labels in the COBOL program area of main storage. It applies
to both background and foreground programs and is required if the file
contains standard labels. The format of the LBLTYP statement is:

// LBLTYP {TAPE[(nn>J}
NSD(nn)

TAPE(nn) For the Tape Operating System, nn is used to specify the
decimal number of pairs of VOL, TPLAB. statements that appear
immediately before the execution of the linkage edited
program.

TAPE[(nn)] For the Disk Operating System, TAP~ is used only if tape
files requiring label information are to be processed, and
no nonsequential DASD files are to be processed. nn is
optional, and is present only for future expansion Cit is
ignored by job control).

NSD(nn) Used if any nonsequential DASD files are to be processed,
(Disk only) regardless of other file types to be used. nn specifies the

- largest number of extents to be used for a single file.

VOL Statement

The VOL statement is used to check standard labels for tape or disk
files. It is required for ea·ch file on a multiple file volume. The
format of the VOL statement is:

// VOL SYSxxx,filename

SYSxxx (the first operand) is the logical unit referenced.

filename (the second operand) identifies the file for the control
program.

The occurrence of two identical operands is peculiar to COBOL object
modules, because SYS004 is both the file-name by which the file is known
to the control program, and the logical unit which is assigned to a
device.

Note: The file-name (second operand of the VOL card) must be the system
unit number CSYSxxx>. DOS COBOL cannot use the FD name as the file-name

Section I: Preparing COBOL Programs for Processing 21

because the FD in the COBOL program can be up to 30 positions in length; the file-name in the VOL statement cannot exceed 8 positions. The ASSIGN clause~ of the SELECT sentence in the COBOL program must also use­the SYSxxx name.

For example: SELECT INPUT-MASTER-FILE ASSIGN TO 'SYS004' ••••

The TPLAB statement contains file label information for tape label checking and writing and must immediately follow the VOL statement. The formats of the TPLAB statements are:

// TPLAB 'label fields 3-10'
// TPLAB 'label fields 3-13 1

TPLAB identifies the tape-label statement and can be written two ways:

1. Input labels require only one statement, and contain fields 3-10 of the standard tape file label. These are the only fields used for checking· the label of an input file. Refer to Appendix B for an illustration of standard tape file labels.

2. When writing output labels, additional fields 11 through 13 may be included by use of a continuation statement. (These fields are not required for output files.> Refer to the publication!~~
system/360 Disk Operating System: S~:!:~£Q!!:!:!:QLand S~:!;;~m_~~!:=. vice Programs, Form C24-5036, for details about these fields.

This statement specifies one or more of the job control options avail­able. The order in which they appear in the operand field is arbitrary. The format of the option statement is:

//OPTION optionl £,option2, ••• J

where the options are:

LOG

NO LOG

DUMP

NO DUMP

LINK

Causes the listing of columns 1 through 80 of all control
statements on SYSLST. control statements are not listed until a LOG option is encountered. Once a LOG option state­
mE:mt is read, logging continues from job-step to job-step until a NOLOG option is encountered or until either the JOB
or /& control statement is encountered.

suppresses the listing of all control statements on SYSLST
except JOB and /& statements until a LOG option is
encountered.

causes a dump of the registers and main storage to be
printed on SYSLST in the case of an abnormal program end
(such as program check>.

suppresses the DUMP option.

Indicates that the object module is to be linkage edited
after compilation. When the LINK or CATAL option is used., the output of the compiler is writte~ on SYSLNK. The LINK
option must always precede an EXEC LNKEDT statement contain~:--.. ~·-·-­ing a compiler step.

22 Disk and Tape Operating systems COBOL Programmer's Guide

I u

NOLI NIK

DECK

NO DECK

LIST

NOLI ST

LIS TX

NOLI STX

XREF

NOXREF

ERRS

NO ERRS

CATAL

MIN SYS
(TOS only)

GO
(TOS only)

STDLAJBEL
mos only)

USRLABEL
mos only)

SYM

PARS TD

Suppresses the LINK option. The compiler can also suppress
the LINK option if the program contains an error that would
preclude the successful execution of the program. An EXEC
statement with a blank operand also suppresses the LINK
option.

Causes the compiler to punch object modules on SYSPCH. If
LINK is specified, the DECK option is ignored.

Suppresses the DECK option.

Causes the compiler to write source statements on SYSLST.

suppresses the LIST option.

Causes the compiler to write the procedure division map in
hexadecimal on SYSLST.

Suppresses the LISTX option.

Causes the Assembler to write the symbolic cross-reference
list on SYSLST.

Suppresses the XREF option.

causes the compiler to write the diagnostic messages related
to the source program on SYSLST.

Suppresses the ERRS option.

causes the cataloging of a phase or program in the core
image library at the completion of a linkage editor run.
CATAL also causes the LINK option to be set.

causes the linkage editor to generate minimal modules for
later runs on systems when linkage editing on systems
greater than 16K.

Indicates that a linkage edited program exists on
SYSLNK. The program either can be cataloged in the core
image library or executed. To catalog the program, specify
GO, CATAL in the OPTION statement. To execute the program,
specify GO in the OPTION· statement and follow it with an
EXEC statement with a blank operand. When GO is specified,
job control does not open SYSLNK or check the content of
SYSLNK.

Causes all disk labels submitted after this point to be
written on the standard label track. Reset to USRLABEL
option at end-of-job step.

causes all disk labels submitted after this point to be
written at the beginning of the user label track.

Causes the compiler to print the data division map on
SYSLST.

Causes all DASD or tape labels submitted after this point to
be written at the beginning of the partition standard label
track. Reset to USRLABEL option at end-of-job or end-of-job
step. All file definition statements submitted after this
option will be available to any program in the current par­
tition until another set of partition standard file defini­
tion statements is submitted. All file definition state­
ments submitted after OPTION PARSTD will be included in. the
standard file definition set until one of the following
occurs:

Section I: Preparing COBOL Programs for Processing 23:,

1. End-of-job step

2. End-of-job

3. OPTION USRLABEL is specified.

4. OPTION STDLABEL is specified.

For a given file-name, the sequence of search for label
information during an OPEN is the USRLABEL area, followed by
the PARSTD area, followed by the STDLABEL area.

The options specified in the OPTION statement remain in effect until
a contrary option is encountered or until a JOB control statement is
read. In th«~ latter case, the options are reset to the standard that
was established when the system was originally generated.

Any assignment for SYSLNK, after the occurrence of the OPTION state­
ment, cancels the LINK and CATAL options. These two options are also
canceled aftE~r each occurrence of an EXEC statement with a blank
operand.

This statement can be used for operator action between jobs. Any mes­
sages to the operator can appear in the operand of a PAUSE statement.
The format for the PAUSE statement is:

// P_A.USE [comments]

An example of this statement is:

// PAUSE SAVE SYS004, SYS005, MOUNT NEW TAPES

This statement tells the operator to save the output tapes, and mount
two new tapes.

When the PAUSE statement is encountered by job control, the printer­
keyboard CIBM. 1052) is unlocked for operator-message input. The end-of­
communication indicator, B CB= alter code 5>, causes processing to
continue.

DLAB Statement (DOS only>

The disk label statement contains file label information for disk label
checking and creation. This card must immediately follow the VOL card.
The DLAB statement requires Cin the case of card input) two cards for
completion, therefore, column 72 of the first card requires a character
punch other than a blank. The disk label is known as a FORMAT 1 disk
file label. Its format is given in Appendix c. The format of the DLAB
statement is:

// DLAB 'label fields 1-3', c
xxxx,yyddd,yyddd,'systemcode' [,type]

I !~£~Lf!~:1g:L1:.~ I are defined in Appendix D.

!.~!.!. is the volume sequence number in field 4 of the FORMAT 1 label,
and must begin in card column 16.

24 Disk and Tape Operating Systems COBOL Programmer's Guide

. [\

_}

yygg~LYYgg£ is the file creation date followed by the file expiration
date.

'systemcode' is ignored by Disk and Tape Operating Systems but is
required by Operating System. It must be 13 characters long.

[,type] indicates the type of file label:

SD - sequential disk (assumed if no entry is made>.
DA - direct access
ISC - indexed sequential <used when creating a file)
ISE - indexed sequential (used when updating or retrieving a

file> file)

XTENT Statement (DOS only)

This statement is used to define an area in a direct-access storage
device (DASD). Each DASD file requires one or more XTENT statements.
There are three extent types. Each is identified by a code that informs
the control program what the defined area is to be used for. The format
of the XTENT statement is:

// XTENT type,sequence,lower,upper
'serial no.',SYSxxx[,B2]

type

sequence

lower

~~i~gi_!YE~ -- occupies 1 or 3 columns, containing:

1 = data area (no split cylinder)

2 overflow area (for indexed sequential file)

4 index area (for indexed sequential file)

128 data area (split cylinder). If type 128 is spe­
cified, the lower head H1 H2H2 is taken from
!2!!~£, and the upper head H1H2H2 is taken from
upper.

Extent Sequence Number -- indicates the sequence num­
ber of this extent within a multi-extent file. The
sequence number occupies 1 to 3 columns and contains a
decimal number from 0 to 255. Extent sequence O is
used for the master index of an indexed sequential
file. If the master index is not used, the first
extent of an indexed sequential file has sequence num­
ber 1. The extent sequence for all other types of
files begins with O. Direct files can have up to 5
extents. ISAM files can have up to 11 data extents (9
prime, 1 cylinder index, 1 separate overflow).

Lower Limit of Extent -- occupies 9 columns and con­
tains-the-lowest-address of the extent in the form
B1C1C1C2C2C2H1 H2H2

where:

B1 is the initially assigned cell number. It is equal
to:

0 for 2311 and 2314
0 to 9 for 2321

C1 C1 is the subcell number. It is equal to:

section I: Preparing COBOL Programs for Processing 25

upper

00 for 2311 and 2314
00 to 19 for 2321

c2 c 2 c 2 is the cylinder number. It can be:

000 to 199 for 2311 and 2314
2E strip number:

000 to 009 for 2321

H1 is the head block position. It is equal to:

0 for 2311 and 2314
0 to 4 for 2321

H2 H2 is the head number. It can be:

00 to 09 for 2311
00 to 19 for 2321 and 2314

A lower extent of all zeros is invalid.

Note: For 2321, the last five strips of subcell 19
are-reserved for alternate tracks.

gEE~E-~i~i~_Qf_~~~~g~ -- occupies nine columns con­taining the highest address of the extent, in the same
form as the lower limit.

'serial no.• Y2!~~-§~Ei~!-~~Q~E -- This is a 6-byte alphanumeric character string, contained within apostrophes. The
number is the same as in the volume label (volume
serial number> and the format 1 label (file serial
number).

SYSxxx This is the symbolic address of the DASD drive. If
more than one symbolic address is to be specified on
separate XTENT cards for the same file, the symbolic
addresses must be in consecutive order.

Currently assigned cell number. Its value is:

0 for 2311 or 2314
0-9 for 2321

This field is optional. If missing, job control
assigns B2 = B1 •

The RESET statement resets input/output assignments to the standard assignments. The standard ~ssignments are those specified at system generation time plus any modifications made by the operator by means of an ASSGN command (as opposed to using an ASSGN control statement) without the 1~EMP option. The format of the RESET statement is as follows:

// RESET
{

SYS 1 PROG
ALL
SYSxxx

26 Disk and Tape Operating Systems COBOL Programmer's Guide

I

\._J.p

§!§. resets all system logical units to their standard assignments.

PROG resets all programmer logical units to their standard assignments.

ALL resets all programmer and system logical units to their standard
assigrnments.

§!§~~~ resets the specified logical unit to its standard assignment.

The End-of-Data-File Statement

The end-of-data-file statement (/* in columns 1 and 2) serves as a de­
limiter for the input read from the device assigned to SYSIPT. There­
fore, COBOL programs must be terminated by an end-of-data-file state­
ment. This statement is also recognized on the programmer logical units
that are assigned to a card reader.

The End-of-Job Statement

The end-of-job statement C/& in columns 1 and 2) indicates that a job
has been completed. If this statement is omitted, the Job control pro­
gram may skip the next job stacked on the device assigned to SYSRDR and/
or SYSIPT. If SYSRDR and SYSIPT are different units, the end-of-job
statement should appear on both because both units are advanced to a /&
if an abnormal end of job occurs.

The Comments Statement

A special comments statement (* in column 1 and blank in column 2, fol­
lowed by the desired comments) is available for longer messages. The
comments are printed on SYSLOG, but no halt is effected by this
statement.

CBL Statement (COBOL Option Control Card)

Although most options for compilation are specified in the job control
OPTION statement, the COBOL compiler provides an additional option
statement to increase flexibility. The CBL card must be placed between
the EXEC COBOL statement and the first statement in the COBOL program.
The CBL card cannot be continued. However, if specification of options
will continue past column 71, two CBL cards may be used. The format of
this card is:

CBL

CBL

DMAP=h
PMAP=h

[DMAP=h] [, PMAP=h] [, BUFFSIZ=d] [, DISPCHK=YES]
NO

[, INVED] [, NOEXIT= ([E], [C])]

CBL must begin in column 2, be preceded and followed
by at least one blank.

DMAP and PMAP specify that the addresses which appear
in the coding of both the data division map and the
procedure division are to be incremented by the number
h. This is only for the listing not for the object
module. h is a hexadecimal number of from one to

Section I: Preparing COBOL Programs for Processing 27

BUFFSIZ=d

DISPCHK= YES
NO

INVED

eight digits and is assumed to be zero if one of these
options is not specified. If both options are speci­
fied, the value for the last h is the value that is
used. h is called a relocation factor.

BUFFSIZ specifies the size of the compiler buffer. d
is a decimal number from 170 to either 32,760 for mag­
netic tape or the maximum size of a track for disk.
If this option is not specified, 170 is assumed for
16K systems and 1,024 is assumed on 32K or larger
systems.

DISPCHK specifies whether or not a diagnostic check is
to be made at execution time for displayed items. If
YES is specified, the length of all items to be dis­
played is checked before moving them to the buff er.
If an item is too long, it is truncated, but no mes­
sage is printed. If NO is specified, no check is made
and items are moved directly to the buffer. If an
item is too long and thus exceeds the buffer size, it
will destroy the contents of the storage area follow­
ing the buffer. The default value is NO.

INVED specifies that the roles of the characters " "
and"," are to be reversed. This affects report items
in the data division, value clauses in the data divi­
sion, and numeric literals in the procedure division.
If this option is not specified, the character"."
represents a decimal point and the character","
represents an insertion character.

NOEXIT=([CJ, [E])If the NOEXIT option is used, the compiler does not
generate code for handling program checks. E, c, or
both E and c may be specified. If C is specified,
code for handling program checks is suppressed for
CALL coding. Similarly, if E is specified, code for
handling program checks for ENTRY coding is sup­
pressed. Hence, this option increases program effi­
ciency by increasing the speed of control transfer
between calling and called programs. When using this
option, the programmer assumes responsibility for
handling interrupts which occur for an ON SIZE ERROR
condition. If this option is not specified, the com­
piler will handle program checks for arithmetic state­
ments in the program.

This statement replaces the VOL and DLAB statement combination used in previous versions of the system. It contains file label information for DASD label checking and creation. (This release of the system will con­tinue to support the VOL, DLAB, and XTENT combinations currently in
use.> The DLBL statement has the following format.

// DLBL

filename

'file-ID'

filename, ['file-ID'], [date], [codes]

Filename is the symbolic ·name of the program DTF which
identifies the file. For COBOL program data files,
this is SYSxxx as it appears in the SELECT sentence.

The name associated with the file on the volume. This
can be from one to 44 bytes of alphanumeric data, con­
tained within apostrophes~ including file-ID and, if
used, generation number and version number of genera-

28 Disk and Tape Operating Systems COBOL Programmer's Guide

u

date

codes

tion. If fewer than 44 characters are used, the field
will be left-justified and padded with blanks.. If
this operand is omitted, "filename" will be used.

This can be from one to six characters indicating
either the retention period of the file in the format
d-dddd or the absolute expiration date of' the file in
the format yy/ddd. If thia parameter is omitted, a
0-day retention period is- assumed.- If this operand is
present on an input file~ it is ~gnored. -

This is a 2 or 3-character field indicating the type
of file label, as follows:

• SD for Sequential Disk or for DTFPH with
MOUNTED-SINGLE

• DA for Direct Access or for DTFPH with MOUNTED=ALL

• ISC for Indexed Sequential using Load Create

• ISE for Indexed Sequential using Load Extension,
Add, or Retrieve

This statement replaces the VOL and TPLAB statement combination used in
previous versions of the system. (This release will continue to support
the VOL, TPLAB combination currently in use.> The TLBL statement con­
tains file label information for tape label checking and writing. Its
format follows:

// TLBL

filename

'file-ID'

date

file
serial
number

filename, ['file-ID'], [date], [file-serial-number], [volume­
sequence-numberl, Cfile-sequence-numberJ,
[generation-number], [version-number]

This can be from one to seven characters and is identical to
the symbolic name of the program DTF which identifies the
file. For COBOL program data files, this is SYSxxx as it
appears in the SELECT sentence.

One to 17 characters, contained within apostrophes, indicat­
ing the name associated with the file on the volume. This
operand may contain embedded blanks. On output files, if
this operand is omitted, the "filename" will be used. On
input files, if the operand is omitted, no checking will be
done.

Four to six characters, in the format yy/ddd, indicating the
expiration date of the file for output or the creation date
for input. (The day of the year may have from 1 to 3 char­
acters.> For output f~les, a 1 to 4-character retention
period Cd-dddd) may be specified. If this operand is
omitted, a 0 day retention period will be assumed for output
files. For input files, no checking will be done if this
operand is omitted or if a retention period is specified.

One to six characters indicating the volume serial number of
the first Cor only> reel of the file. If less than six
characters are specified, the field will be right-justified
and padded with zeros. If this operand is omitted on out­
put, the volume serial number of the first (or only> reel of
the file will be used. If the operand is omitted on input,
no checking will be done.

Section I: Preparing COBOL Programs for Processing 29

volume
sequence
number

file
sequence
number

generation
number

version
number

One to four characters in ascending order for each volume of
a multiple volume file. This number is incremented auto­
matically by OPEN/CLOSE routines as required. If this
operand is omitted on output, BCD 0001 will be used.

One to four characters in ascending order for each file of a
multiple file volume. This number is incremented auto­
matically by OPEN/CLOSE routines as required. If omitted on
output, BCD 001 will be used. If omitted on input, no
checking will be done.

One to four characters that modify the file-ID. If omitted
on output, BCD 0001 is used. If omitted on input, no check­
ing will be done.

One or two characters that modify the generation number. If
omitted on output, BCD 01 will be used. If omitted on
input, no checking will be done.

For output files, the current date will be used as the creation date
and "DOS/TOS/360" will be used as the system code.

EXTENT -- DASD Extent Information

The EXTENT command or statement defines each area, or extent, of a DASD
file. One or more EXTENT commands or statements must follow each DLBL
command or statement except for single volume input files for Sequential Disk or Direct Access, on either a 2311 or a 2314, for which the DEVADDR
parameter has been specified in the DTF table.

This cormnand or statement replaces the XTENT command or statement
used in previous versions of the system. (Programming support for XTENT
will be continued.)

c,.,Y'

[//] EXTENT, [symbolic-unitf, [serial-number],
[type],, [sequence-number], [relative­
track], [number-of-tracks],, [split­
cylinder-track1, [B=bins]

Acc~pted by SPI

// EXTENT[symbolic-unit], [serial-number],
[type], [sequence-number], [relative­
track], [number-of-tracks], [spl.i t­
cylinder.-track], [B=b-ins]

Accepted by ~re

symbolic
unit

serial
number

A 6-character field indicating the symbolic unit (SYSxxx) of
the volume for which this extent is effective. If this
operand is omitted, the symbolic unit of the preceding EXTENT
will be used. (This operand is not required for an IJSYSxx
filename or for a file defined with the DTF DEVADDR=SYSnnn.)

From one to six characters indicating the volume serial number
o:f the volume for which this extent is effective. If fewer
than six characters are used, the field will be right-justi­
fied and padded with zeros. If this operand is omitted, the
volume serial number of the preceding EXTENT will be used. If
no serial number was provided in the EXTENT command or state­
memt, the serial number will not be checked and it will be

30 Disk and Tape Operating systems COBOL Programmer's Guide

• <

I
i i l
\~

u

type

sequence
numbE!r

relative
track

number of
tracks

split
cylinder
track

the user's responsibility if files are destroyed due to
mounting the wrong volume.

One character indicating the type of the extent, as follows:

1 data ,area (no split.cylinder> '
2 overflow ar·e~ (fo:r: indexed sequential file)
4 - index a~ea Cfor,indexed sequential file>
8 - data. ar·ea Csp~it cylinder) ·

If this operand is omitted, type 1 will be assumed.

One to three characters containing a decimal number from 0 to
255 indicating·the sequence number of this extent within a
multi-extent file. Extent sequence 0 is used for the master
index of an index·ed s~quential f ile~1 ··rf the master index is
not used, the f iist extent of an indexed sequential file has
the sequence numner 1.. The extent sequence number for all
other types of files hegins with. O.· If this operand is
omitted for the first extent of ISFMS files~ the extent will
not be accepted~ For SD or DA files, this operand is not
required. · · -

one to five characters indicating the sequential number of
of track, relative to zero, where the data extent iS·to ·
begin. If this field is omitted on an ISFMS file, the extent
will not be accept~q. Tll.is field is not required for DA
input or for SD' i,nput files (the extents from the 'file labe.ls
will be. used). __...

Formulas for converting actual to relative track CRT) and
relative track to actual for the DASD devices follow.

Actual to Relative

2311
2314
2321

10 x cylinder number .+ track number = RT
20 x cylinder number + track number = RT
1000 x subcell number + 100 x strip number +
20 x block number + track number = RT

Relative to Actual

2311 RT = quotient is cylinder, remainder
10

2314 RT = quotient is cylinder, remainder
20

2321 RT quotient is subcell, remainderl
1000
remainderl = quotient is strip, remainder2

100
remainder2 = quotient is block, remainder is

20

ExamEle: Track 5, cylinder 150 on a 2311 = 1505 in
track.

is track

is track

track

relative

One to five characters indicating the number of tracks to be
allotted to the file. For SD input or DA input, this field
may be omitted. For split cylinders, the number of tracks
must be an even multiple of the.number of tracks per cylinder
specified for the file.

One or two characters, from 0-19, indicating the upper track
number for the split cylinder in SD files.

Section I: Preparing COBOL Programs for Processing 31

bins One or two characters identifying the 2321 bin that the
extent was created for or on which the extent is currently
located. If the field is one character, the creating bin is
assumed to be zero. There is no need to specify a creating
bin for SD or ISFMS files. If this operand is omitted, bin
zero is assumed for both bins. If the operand is included
and positional operands are omitted, only one comma is
required preceding the key-word operand. (One comma for each
omitted positional operand will be acceptable, but not
necessary.)

THE LINKAGE EDITOR

The linkage editor prepares an object module for execution. It can also
be used to combine two or more separately compiled object modules into a
format suitable for execution. The output of the linkage editor con­
sists of one or more program phases.

If linkage editor processing is desired, the job control OPTION
statement specifying the LINK or CATAL option must precede the first
linkage editor control card and the first EXEC statement in the job.
The linkage editor is called for processing by specifying LNKEDT in an
EXEC·statement. Processing by the linkage editor is suppressed if

·severe programming errors are detected during compilation.

Input to the linkage editor may consist of any combination of the
following:

1. object modules compiled in previous job steps (SYSLNK)

2. Object modules from the relocatable library (SYSRES) or (SYSRLB)

3. Object modules in the form of card decks (SYSIPT)

Output from the linkage editor is placed in the core image library a~
a permanent member if the CATAL option has been specified on the job
control OPTION statement. If CATAL has not been specified, the program
phase is placed in the temporary part of the core image library for DOS
or on SYSLNK for TOS.

LINKAGE EDITOR CONTROL STATEMENTS

The execution of the linkage editor is initiated by linkage editor con­
trol statements read from SYSRDR. The general format of linkage editor
control statements is similar to that of the job control statements
except that the linkage editor control statements must have a blank in
column 1 instead of // in columns 1 and 2. The PHASE card and the
INCLUDE card are of special interest in preparing object modules to be
linkage edi te~d.

The PHASE statement must be specified if the output of the linkage edi­
tor is to consist of more than one phase or if the program phase is to
be cataloged in the core image library. Each object module that is to
begin a phase must be preceded by a PHASE statem

1

ent of the fallowing
format:

32 Disk and Tape Operating Systems COBOL Programmer's Guide

1. \

<-J

I v

(

v

u

~J

PHASE phase-name,origin

The phase-name is the name under which the program phase is to be
cataloged. This name does not have to be the program-id name, and in
the case of overlay it should not be the same. It must consist of one
to eight alphanumeric characters, the first of which must be alphabetic.

The Q~!g!g indicates to the linkage editor the begin address of this
specific phase. An asterisk may be used as an origin specification to
indicate that this phase is to follow the previous phase or the supervi­
sor at the next doubleword boundary. This simple format of the PHASE
statement covers all applic~tions that do not include setting up overlay
structures. See "Section VII: Subprograms and Overlay" for information
on the PHASE statement for overlay applications.

The INCLUDE Statement

The INCLUDE statement must be specified for each object module deck or
object module in the relocatable library that is to be included in a
program phase. The format of the INCLUDE statement is as follows:

INCLUDE [module-name]

The module-name is not specified when the module to be included is in
the form of a card deck being entered from SYSIPT. If the object module
is being included from the relocatable library, the module-name is the
name under which the module was cataloged in the library.

THE AUTOLINK FEATURE

If any references to external names are still unresolved after all
modules have been read from SYSLNK• SYSIPT, and/or the relocatable
library, the autolink feature of the linkage editor searches the relo­
catable library for module-names identical to the unresolved names and
includes these modules in the program phase. This feature is required
to include COBOL subroutines that are cataloged in the relocatable
library.

Examples:

1. :Linkage edit one object module compiled in a previous job step.

// JOB
/,/ OPTION

PHASE
/,/ EXEC

COBOL
source

/*
// EXEC
/,I EXEC

/*
/&

data

N0123
LINK
EXAMPLE,*
COBOL

module

LNKEDT

2. Linkage edit three object modules and cat~log the phase Cone module
from previous compilation, one from SYSIPT and one named R from the
relocatable library).

Section I: Preparing COBOL Programs for Processing 33

// JOB
// OPTION CATAL

PHASE EXAMPLE,*
// EXEC COBOL

COBOL
source module

/*
Il~CLUDE

(object module>
INCLUDE R

/*
// EXEC LNKEDT
/&

LIBRARIAN FUNCTIONS

The service program called the librarian takes care of all maintenance
functions (such as adding, deleting, and copying or renaming> for the
system libraries. Cataloging (which simply means adding) of frequently
used program phases, object modules, or source language statements in
one of the system libraries greatly reduces the time required for card
reading and linkage editor processing. Object modules are cataloged in
the relocatable library. Program phases are cataloged in the core image
library. source module statements are cataloged in the source statement
library. Each sequence of source statements cataloged in the source
statement library is called a book.

The name of a phase, module, or book must be unique for each library.
When a phase 0 module, or book is cataloged in a library, any module,
phase, or book already contained in the respective library and having
the same name is automatically deleted. This necessitates some naming
conventions for each installation in order to prevent a programmer from
unintentionally deleting programs that are part of the library.

A completE~ description of the library maintenance functions and deck
set ups used to specify them is included in the publications IBM system/
l~Q-~~E~-Q~_Q!~~-QE~~at!~g-~y~~~~~--~ystem Control and System Service
~~Qg~~~~' Forms C24-5036 and C24-5034, respectively. The following dis­cussions show how to catalog.

CATALOGING PROGRAM PHASES--CORE IMAGE LIBRARY

If a program is to be cataloged in the core image library, the job con­
trol statement // OPTION with the CATAL option must be given prior to
linkage editor processing and it must precede the first PHASE card of
the program to be cataloged in the case of compile and link edit runs.
Upon successful completion of the linkage editor job step, the program
phaseCs> are automatically cataloged. The program phase can be executed
in the next job step in the same job by specifying the // EXEC statement
with a blank name field. When it is executed in a subsequent job, the
EXEC statement that calls for execution must specify the name under
which it has been cataloged. Note that the phase is cataloged under the
name specif ie~d in the PHASE statement. The following is an example of
cataloging a single phase in the core image library.

34 Disk and Tape Operating Systems COBOL Programmer's Guide

~

\"-"

(

\.._)

I i

_)

// JOB FOURA // JOB FOURB
// OPTION CATAL // OPTION CATAL

PHASE FOURA,* PHASE FOURB,*
INCLUDE INCLUDE MOD4B

// LBLTYP NSD(nn> or TAPE
// EXEC LNKED'I"

object deck /&
/*
// LBLTYP NSD(nn) or TAPE
// EXEC LNKEDT
/&

CATALOGING OBJECT MODULES--RELOCATABLE LIBRARY

Object modules are cataloged in the relocatable library in a job step
that specifies execution of a library maintenance program. This program
is called by specifying MAINT in the operand field of the EXEC state­
ment. Each object module to be cataloged must be preceded by the CATALR
control statement. The format of this statement is:

CATALR module-name

where:

module-name
must be used in the linkage editor INCLUDE statement. The module
may be preceded but not followed by linkage editor control
statements.

Note that CATALR statements are read from SYSIPT for DOS and SYSRDR
for TOS. Therefore, for TOS the CATALR statements must be put on SYSRDR
in the same sequence as the object modules on SYSIPT. The following is
an example of cataloging two modules in the relocatable library.

// JOB EIGHT
// EXEC MAIN'J'

CATALR MOD8A

/*
/&

object deck

CATALR MOD8B

object deck

CATALOGING BOOKS--SOURCE STATEMENT LIBRARY

Frequently used Data Division, Environment Division, and Procedure Divi­
sion entries can be cataloged in the source statement library. A book
in the source statement library might consist, for example, of a file
description or a paragraph of the Procedure Division. Such source lan­
guage statements are cataloged in the source statement library by using
the library maintenance program MAINT. Each part to be entered must be
preceded by a control statement of the format:

·CATALS c. library-name

Section I: Preparing COBOL Proyrams for Processing 35

In addition, a control statement of the form BK.END C. library-name must precede and follow the book to be cataloged. Note that the CATALS statement is read from SYSIPT for DOS and SYSRDR for TOS but the BKEND statements are entered on SYSIPT before and after the book. The library-name must follow the rules for external-names in the COBOL language.

The following is an example of cataloging a file description in the source statement library.

// JOB ANYNAME
// EXEC MAINT

CATALS C.FILEA
BKEND C.FILEA

/*
/&

DATA RECORD IS RECORD-1,
LABEL RECORDS ARE STANDARD,
BLOCK CONTAINS 13 RECORDS,
RECORD CONTAINS 120 CHARACTERS.

BKEND C.FILEA

This file description can be included in a COBOL source module by writing the following statement:

FD FILEB COPY ' FILEA' •

Note that the library entry does not include FD or the file-name. It begins with the first clause that is actually to follow the file-name. This is true for all options of COPY or INCLUDE. However, data entries in the library may have level numbers (01 or 77) identical to the level number of the~ data-name that precedes the COPY clause. In this case, all information about the library data-name is copied but the library data-name and all references to it are replaced by the data-name in the program. For example, assume the following data entry is cataloged under the library-name DATAR.

01 PAYFILE USAGE IS DISPLAY.
02 CALC PICTURE 99.
02 GRADE PICTURE 9

OCCURS 1 DEPENDING ON CALC OF PAYFILE.

and the following statement is written in a COBOL source module

01 GROSS: COPY 'DATAR'.

The compiler interprets this as:

01 GROSS USAGE IS DISPLAY.
02 CALC PICTURE 99.
02 GRADE PICTURE 9

OCCURS 1 DEPENDING ON CALC OF GROSS.

Note also that the library-name is used to identify the book in the library. It has no other use in the COBOL program.

For both the relocatable library and the source statement library, several library maintenance operations can be performed in one job step. Except in the case of adding, this is also true for the core image library.

CATALOGING BOOKS--USER PRIVATE LIBRARY

The procedure for cataloging books in a private library is the same as the procedure for cataloging books in the source statement library

36 Disk and •rape Operating Systems COBOL Programmer• s Guide

I

\._.,,/

\. I

\~

except that the logical device SYSSLB must be assigned and defined by
DLBL, EXTENT or VOL, DLAB, and XTENT control statements. SYSSLB is the
logical device used for private libraries.

A private library is defined by the CORGZ program. The following
example defines a private library on physical unit 191.

// JOB PRIVLIB
// ASSGN SYSSLB,X'191 1

// DLBL IJSYSSL,'DATA SET ID',date information, SD
// EXTENT extent information
// EXEC CORGZ

NEWVOL SL=cylin(tracks)
/*
I&

where:

cylin = number of cylinders allocated to the library

tracks = number of tracks allocated to the directory

To use this private library for COPY and INCLUDE, the ASSGN, DLBL,
and EXTENT job control statements which define the private library must
be included in the deck structure for compilation. When these cards are
present, a search for the book is made in the private library and in the
system library. If the cards for the private library are not there,
only the system library is searched. A programmer may create several
private libraries, but only one private library can be used in a given
job.

CHECKPOINTING A PROGRAM

When a program is expected to run for an extended period of time, provi­
sion should be made for taking checkpoint information periodically dur­
ing the run. This information describes the status of the job and the
system (main storage, input/output status, general and floating-point
registers> at the time the records are written. Thus, it provides a
means of restarting at a checkpoint position rather than at the begin­
ning of the entire job, if processing is terminated for any reason
before the normal end-of-job. Checkpoints are taken using the COBOL
RERUN statement.

In designing a program for which checkpoints are to be taken, the
user should consider the fact that, upon restarting, the program must be
able to continue as though it had just reached that point in the program
at which termination occurred. Hence, the user should ensure that:

1. File handling is organized to permit easy reconstruction of the
status of the system as it exists at the time of each checkpoint.
For example, when multifile reels are used, the operator should be
informed (by message) as to which file is in use at checkpoint
time. He requires this information at restart time.

2. The contents of files are not significantly altered between the
time of the checkpoint and the time of the restart:

• E2E_~~g~~~i!~!_f!!~~' all records written on the file at check­
point time should be unaltered at restart time.

• For nonseguential files, care must be taken to design the pro­
gram so that a restart will not duplicate work that has been
completed between checkpoint time and restart time. For
example, suppose that Checkpoint 5 is taken. By adding an
amount representing interest due, account XYZ is updated on a

section I: Preparing COBOL Programs for Processing 37

direct-access file that was opened with the input/output clause. If the program is restarted from Checkpoint 5 and if the interest is recalculated and again added to account XYZ, incorrect results will be produced.

If the program is modular in design, RERUN statements must be included in all modules that handle files for which checkpoints are to be taken. (When an entry point of a module containing a RERUN statement is encountered, a COBOL subroutine -- IHD03800 -- is called. IHD03800 enters the files of the module into the list of files to be reposi­tioned.> Repositioning to the proper record will gQl occur for any files that w~re defined in modules other than those containing RERUN statements. Moreover, a restart from any given checkpoint will not reposition other tapes on which checkpoints are storede Note, too, that only one disk checkpoint file can be used.

Re~1~f1!gg_~-~fQgf~~= If the programmer includes checkpoints in his job by means of the COBOL RERUN statement, the message

OCOOI CHKPT nnnn HAS BEEN TAKEN ON SYSxxx

is given each time a checkpoint is taken. (nnnn is the 4-character identification of the checkpoint record.> To restart a job from a. checkpoint, the following actions are required:

1. Replace the // EXEC statement with a // RSTRT statement whose for­mat is:

// RSTRT SYSxxx,nnnn [1 SYSxxx]

where:

SYSxxx is the symbolic name of the device on which the checkpoint
records are stored

gggg is the 4-character identification of the checkpoint record
to be used for restarting

SYSxxx can be any value from SYSOOO through SYS222. (If the
checkpoint records are recorded on a direct-access device, SYSxxx must be repeated following the 4-character identif i­
cation of the checkpoint record.> All other job control statements applicable to the job step should be the same as when the job was originally run. If necessary, the channel
and unit addresses for the // ASSGN statements may be
changed.

2. Rewind all tapes used by the program being restarted and mount them on devices assigned to the symbolic units required by the program. (If multireel files are involved, mount Con the primary unit> the reel in use at the time that the checkpoint was taken and rewind it. If multifile reels are involved, position the reel to the start of the file referred to at the time of the checkpoint.>

3. Reposition any card file so that only cards not yet read when the checkpoint was taken are in the card reader.

4. Execute the job.

Disk and Tape Operating System COBOL provides a linkage to the §_y~tem checkpoint routine and re-entry point to the COBOL program from the sys­tem restart routine. Therefore, any restrictions applying to these sys­tem routines also apply to COBOL's restart procedures except as noted above. These restrictions are outlined in the publications IBM
§y~l~!!V3~Q-~!~~-Opef~tigg_§y21~ID~--2~~fY!sof_~g~~!!E~1/0utput Macros, Form C24-5037, and !~~-2Y~i~m!l~Q__I~pe Operating system: Supervisor and
!gp~t/Q~iP~i-~~£!:2§.1 Form C24-5035.

38 Disk and Tape Operating Systems COBOL Programmer's Guide

I

~!

I :
\._)

SECTION II: DECK STRUCTURES FOR.PROCESSING COBOL PROGRAMS IN A TAPE
QE~8~Ti~~-sx§~E~-----------------------------

For each type of processing, certain combinations of job control cards
are needed. The examples given illustrate typical basic types of pro­
cessing within an all tape system configuration.

The examples assume a given tape system configuration, and that the
COBOL Tape Compiler is used for processing.

Figure 3 is a diagram of the input/output units used by COBOL in a
tape configuration, and should help the user to visualize the logical
structure of a configuration. A list of the types of processing dis­
cussed, in the order they are presented, follows:

1. Compile and punch

2. Cataloging to the relocatable library

3. Compiling, linkage editing, and executing

4. Executing a previously linkage edited program

5. Cataloging to the source statement library

6. Compiling, linkage editing, and executing

Examples 3 and 6 differ in that example 3 illustrates how job control
is used to link with a module cataloged to the relocatable library,
whilE~ example 6 illustrates how COBOL copies source statement modules
cataloged to the source statement library.

ASSUMED TAPE RESIDENT SYSTEM CONFIGURATION

The processing examples given herein assume that the following Tape
Operating System was generated at system generation time:

The system includes:

One IBM 1403 Printer
One IBM 2540 Card/Read/Punch
One IBM 1052 Printer-Keyboard
Four IBM Magnetic Tape Units (excluding the resident tape drive>

Assume physical assignments at system generation time are:

1403
2540R
2540P
1052
2402
2402
2402
2402
2402

Printer assigned to physical unit X'OOE'
Reader assigned to physical unit x•ooc•
Punch assigned to physical unit X'OOD'
Printer-Keyboard assigned to physical unit X'OlF'
Magnetic Tape Unit assigned to physical unit X'180'
Magnetic Tape Unit assigned to physical unit X'181',X'90'
Magnetic Tape Unit assigned to physical unit X'182'
Magnetic Tape Unit assigned to physical unit X'183'
Magnetic Tape Unit assigned to physical unit X'184' (This

unit is the resident tape drive.>

The hexadecimal 90 (X'90') in the tape assigned to X'181' determines
the device specifications for a 7-track tape.

Section II: Deck Structures for Processing COBOL in TOS 39

Figure 3.

// -- -,,
I \

I
I

I
/

SYSPCH
(Optional)

/

' /
I \
I I
I I I I

/ ...

-------"7
I
I

II EXEC COBOL
PHASE

(}- If required 1
1

I
I

II OPTION LINK •••

11 ASSGN SYSRLB

-------"'1

II ASSGN SYSSLB
II ASSGN SYS003

II ASSGN SYS002

ASSGN SYSOOl
11 ASSGN SYSLNK

II ASSGN SYSLST

II ASSGN SYSPCH
11 ASSGN SYSIPT

-7 If libraries on
.J private tapes

I
I

I
I
I
I
I
I

I
I

I
I

I
I
I

If different from /

I ,...."""""' - -
I / ' I I \

I ()

LJ?-I* _ ___,.______, I

J fS=a===========~
Cards
(if required}

II DATE
standard assignments L A_I_* ____ __,

?fc;-BOL II JOB

SY SR DR

Systeml360

-- Optional
Source
Statements

~-- ,
' I

/
/

I
I

....___,.::: __

SYSIPT

Note: Broken lines indicate where
t~e COBOL input would be placed
if SYSI PT were the same unit as SYSRDR.

Input/output Units Used by COBOL Program in a Tape System

40 Disk and Tape Operating Systems COBOL Programmer's Guide

\._.;)

(~

Assume logical assignments at system generation time are:

// ASSGN
// ASSGN
// ASSGN
// ASSGN
// ASSGN
// ASSGN
// ASSGN
// ASSGN
// ASSGN

SYSIPT,X'OOC' }
SYSRDR,X'OOC' IBM
SYSPCH,X'OOD'
SYSLST,X'OOE' IBM
SYSLOG,X'OlF' IBM
SYSLNK, X' 180' t
SYS001,X'181',X'90'
SYS002,X'182' IBM
SYS003,X'183'

2540

1403
1052

2400's

Notice that SYSIPT, SYSRDR, and SYSPCH are assigned to the same phys­
ical unit (they need not be), and that SYS001 is a 7-track tape.
Observe also that four logical tape assignments are made. The COBOL
compiler requires three logical work files to compile. The fourth can
be used for compile-and-execute functions.

The user can change these assignments by the use of ASSGN cards fol­
lowing his JOB card. Examples of overriding assignments are given in
the text that follows. In the examples that follow, whenever an option­
al statement is used, it is identified by the words <optional card).

EXAMPLE 1--COMPILE AND PUNCH

Assuming that source statements are card input (SYSIPT) and job-control
statements are card input CSYSRDR>, the set of job-control cards
required (and some helpful options) to compile and punch are:

// JOB SUBROTNE } // OPTION LOG,DECK,LIST,LISTX,ERRS
// EXEC COBOL

Input from SYSRDR

SUBROTNE

t SOURCE STATEMENTS
Input from SYSIPT

/*

} /&
// PAUSE REMOVE OBJECT DECK FROM HOPPER

(optional card)
Input from SYSRDR

The options selected on the option card specify:

LOG
DECK
LIST
LI STX

ERRS

Requests a listing of all control statements on SYSLST.
Requests that a deck (object module) be punched on ~YSPCH.
causes compiler to write source statements on SYSLST.
causes compiler to write a procedure division map on SYSLST in
hexadecimal.
Causes compiler to write all diagnostics related to the source
program on SYSLST.

EXAMPLE 2--CATALOGING AN OBJECT MODULE IN RELOCATABLE LIBRARY

In this example, an object module generated by the compiler (see Example
1) is cataloged in the relocatable library. It is assumed that the
relocatable library is on SYSRES (similarly for the source statement

Section II: Deck Structures for Processing COBOL in TOS 41

library). Another tape drive may be used as a private library for the relocatable library, in which case the system logical unit SYSRLB is used.

The job-control cards required to catalog an object module to an existing relocatable library are:

// JOB RELOCATE
// EXEC MAINT

CA.TALR SUBROTNE
(Object deck to be
cataloged goes here.)

/*
/&

*
* // PAUSE

(optional card>

OBJECT MODULE 'SUBROTNE' IS NOW
CATALOGED TO NEW SYSRES TAPE ON
SYS002

When an object module is cataloged to the relocatable library resid­ing on SYSRES, the following points must be considered:

1. SYS002 is the device on which the newly updated library is located (SYSRES is now outdated).

2. If SYS002 is to be established as new SYSRES, it must be mounted on the tape drive assigned to "old" SYSRES, and initial program loaded {IPL). '.rhis automatically establishes it as a "new" SYSRES. SYS-002 can then be reassigned.

SYS001 is used as a work file.

EXAMPLE 3--COMPILE, LINKAGE EDIT, AND EXECUTE

This example illustrates how an object module cataloged in the relocat­able library is included in a compilation, linkage edited with the main program, and executed.

The job control statements required to compile, linkage edit, and execute are:

// JOB CALLPROG
// OPTION LINK,LIST,LISTX,ERRS

PHASE MAIN,*
// EXEC COBOL

{COBOL SOURCE STATEMENTS}
/*

INCLUDE SUBROTNE {Retrieves SUBROTNE from relocatable library}
// EXEC LNKEDT
// EXEC

/*
/&

{
DATA DECK}

(if any)

This program consists of one phase that includes the object module SUBROTNE and permits immediate execution of the program. [The name pro­vided in the PHASE statement (main> has no relationship to the external­name given in the COBOL Program-ID statement.]

42 Disk and Tape Operating Systems COBOL Programmer's Guide

\ _,,i

u

It is possible to process this program with only three work files;
however, the procedure requires special instructions to the operator for
making two passes through the system. In this example, such instruc­
tions are conveyed to the operator on comment cards.

The output of the first pass (Pass 1) is a punched object deck, which
is used in the second pass (Pass 2). To accomplish Pass 2 <linkage edit
and E!xecute) , the punched object deck must be positioned in the job
stream to precede the EXEC LNKEDT and EXEC statements. (This is done
when the PAUSE statement is encountered.)

The complete job stream to accomplish both Pass 1 and Pass 2 is, as
follows:

// JOB CALLPROG
// ASSGN SYS001,X'180' } Work
// ASSGN SYS002,X'182' Files
// ASSGN SYS003,X'183'
// OPTION DECK,LISTX,ERRS
// EXEC COBOL

[COBOL SOURCE STATEMENTS]

/*
// ASSGN SYS001,X'180'
// ASSGN SYS002,X'182'
// ASSGN SYSLNK,X 1 183~

// OPTION LINK

Assignments
For Linkage
Edit and Execute

* PLACE THE OUTPUT OF SYSPCH INTO SYSRDR.
* PLACE THE INCLUDE SUBROTNE STATEMENT
* THROUGH THE /& STATEMENT, INCLUSIVE,
* (LABELED PASS 2 IN THIS EXAMPLE)
* BEHIND THE PUNCHED OBJECT DECK JUST
* PUT INTO SYSRDR.
* CONTINUE
// PAUSE

INCLUDE
PHASE MAIN,*

(The punched object deck will be
positioned here in the job stream.>

/*

INCLUDE SUBROTNE

// EXEC LNKEDT
// EXEC

/*
/&

{
DATA DECK}
(if any)

{

Retrieves SUBROTNE}
from RELOCATABLE
LIBRARY

Pass 1

Pass 2

The new option card is needed to accomplish the linkage editing. The
entire set of control statements and source statements from // JOB card
through /& card are submitted as one job.

Note that the SYS001, SYS002, and SYSLNK units are required to
execute the linkage editor.

EXAMPLE 4--EXECUTING A PROGRAM

The job control statements required simply to execute a program, assum­
ing it is in the core image library, are:

Section II: Deck Structures for Processing COBOL in TOS 43

// JOB CALLPROG
// ASSGN SYS006,X'OOC'
// ASSGN SYS004,X'182'
// ASSGN SYS005,X 1 183'
// EXEC MAIN

/*
/&

DATA
DECK

// PAUSE MESSAGE TO OPERATOR IF ANY.
(optional card)

The example can be used for validating data, or making test runs, where many runs might be made with different sets of data decks.

EXAMPLE 5--CATALOGING SOURCE MODULES TO SOURCE STATEMENT LIBRARY

The procedural steps and the job control statements required to catalog two source statement routines in the source statement library follow.

It is assumed that a source statement library is on the syste·m resi­dence volume, SYSRES.

The job control statements are:

// JOB CATLSORC
// EXEC MAINT

CATAI,S C. DATAIN
BKEND C.DATAIN

/*
/&

F'D FILEB, DATA RECORDS ARE CAPACITOR-RECORD1,
INDUCTOR-RECORD1,
LABEL RECORDS ARE STANDARD,
BLOCK CONTAINS 12 RECORDS,
RECORDING MODE IS F.

BKEND C.DATAIN
CATALS C.INOUT
BKEND C.INOUT

BEGIN. OPEN INPUT FILEB, FILED OUTPUT FILEA.
INFO. READ FILEB AT END GO TO CYCLE.
MASTER. READ FILED AT END GO TO LABA.

GO TO PROCESS.
LABA. CLOSE FILEA, FILEB, FILED, STOP RUN.

BKEND C.INOUT

//PAUSE REMOVE NEW SYSRES ESTABLISHED ON X'l82'.

The open and close routine is now cataloged in the source statement library under the name INOUT and the file description under the name DATAIN. Notice that DATAIN is cataloged before II\JOUT. This is because books to be cataloged must be in alphanumeric sequence.

The messagE~ is an interruption in the job stream to inform the opera­tor to perform some task. In this example, he is instructed to remove the tape for protection.

44 Disk and 'I'ape Operating Systems COBOL Programmer's Guide

i~

u

I

_)

(i \._,,;

EXAMPLE 6--COMPILE (USING SOURCE STATEMENT LIBRARY>, LINKAGE EDIT, AND
EXECUTE

This example illustrates:

1. How two previously written routines, that were cataloged in the
source statement library, are utilized. In this example, the
source statement library is on SYSRES.

2. How assignments can be made to process an inventory file with four
tapes (not including SYSRES).

Assume an electronics firm stocks quantities of electrical components
that are to be maintained at a minimum quantity level, and an input data
file is used to check against a master file to determine stock item
reorder points.

For the purposes of illustration, only two of its many components-­
capacitors and inductors--are treated here. They are:

CAPACITORS QUANTITY REORDER
PART NUMBER VALUE ON HAND POINT

C61 .010MFD 47 50
C62 .020MFD 60 50
C65 .050MFD 50 50
C121 .001MMFD 90 50
Cl22 .002MMFD 100 50
C125 .005MMFD 22 50

INDUCTORS QUANTITY REORDER
~~g!_ NU~~~g y~~:Q~- Q!L!!AN!L POINT

L10 .10H 18 35
L20 .20H 15 35
vrn .40H 30 35
L61 10.00MH 60 35
L62 20.00MH 70 35
L64 40.00MH 69 35

Assume further, that an input update file called DATAIN <Example 5,
ROUTINE 1> was created on tape and cataloged in the source statement
li-brary. Assume its records are, as follows:

01 CAPACITOR-RECORD1.
02 CAPACITOR OCCURS 6.

03 PART-NUMBER PICTURE XXXX.
03 VALUE1 PICTURE V999.
03 VALUE2 PICTURE XXXX.
03 QUANTITY-ON-HAND PICTURE IS S999.
03 REORDER-PT PICTURE IS 99.

01 INDUCTOR-RECORDl.
02 INDUCTOR OCCURS 6.

03 PART-NUMBER PICTURE XXXX.
03 VALUEl PICTURE 99V99.
03 VALUE2 PICTURE XX.
03 QUANTITY-ON-HAND PICTURE IS S999.
03 REORDER-PT PICTURE IS 99.

Also assume a program called ORDERPT (to be compiled) was written to
process these records (against the master file) to reorder parts when
their respective QUANTITY-ON-HAND falls below REORDER-PT.

The following source statements portray, in skeleton form, the pro­
gram ORDERPT. Included is the Input-Output Section for the program.

section II: Deck Structures for Processing COBOL in TOS 45

IDENTIFICATION DIVISION.

PROGRAM-ID. 1 0RDERPT'.

ENVIRONMENT DIVISION.

INPUT-OUTPUT SECTION.

FILE-CONTROL.

SELECT FILEB ASSIGN TO 'SYS004 1 UTILITY 2400 UNITS.
SELECT FILEA ASSIGN TO 1 SYS005' UTILITY 2400 UNITS, RESERVE NO ALTERNATE AREA.
SELECT FILEC ASSIGN TO 'SYS006' UNIT-RECORD 1403.
SELECT FILED ASSIGN TO 'SYS007' UTILITY 2400 UNITS.

Notice that FILEC is assigned to an IBM 1403 Printer. This enables printing out the REORDER-PT, PART NUMBER of the component, and its VALUE (in MFD or MF.[) when the QUANTITY-ON-HAND falls below REORDER-PT.

In order to do this, a file description or FD must be written for FILEC in the Data Division:

DATA DIVISION.

FD FILEC ••••

01 REORDER.
02 REORDER-PT PICTURE IS 99 USAGE IS DISPLAY.
02 VALUE-OF-PART PICTURE IS ZZ.999.
02 PART-NUMBER PICTURE IS XXXX.
02 QUANTITY PICTURE IS 999.

Before printing out FILEC, the appropriate values are moved into REORDER-PT (50 or 35), VALUE-OF-PART (.999MFD or ZZ.999H) PART-NUMBER (CXXX or LXXX), and QUANTITY (999).

Specifically, four files are required to process this problem:

FI LEA
FILEB
FILEC
FILED

Updated master file.
Updating input file (DATAIN).
output print file.
Master file.

The control cards to compile, linkage edit, and execute the problem are:

46 Disk and T'ape Operating Systems COBOL Programmer's Guide

L/

I
_..,/

~)

// JOB INVNTORY
// OPTION LINK,LIST,DUMP

PHASE INVNTORY,*
// EXEC COBOL

DATA DIVISION.
FD FILEB COPY 'DATAIN'.

PROCEDURE DIVISION.

(see
Example 5
for expansion)

START. INCLUDE 'INOUT'. (see
Example 5
for expansion>

PROCESS. (Records on FILEB are processed>

/*
// LBLTYP TAPE(03)
// EXEC LNKEDT
// ASSGN SYS0004, X' 181' 1 X' 90' (DATAIN)
// ASSGN SYS005,X'182 1 (OUTPUT FILE, NEW MASTER)
// ASSGN SYS006,X'OOE' (PRINT FILE)
// ASSGN SYS007,X 1 183' (MASTER FILE)
* MOUNT INPUT (SYS004) ON X'181',
* OUTPUT (SYS005) ON X1 182',
//PAUSE MASTER (SYS007) ON X'183'.
// VOL SYS004,SYS004
// TPLAB 'DATAIN,etc ••• •
// VOL SYS007,SYS007,
// TPLAB 'MASTER,etc ••• •
// VOL SYS005,SYS005
// TPLAB 'NEWMASTER,etc ••• •
// EXEC
// PAUSE SAVE SYS007 ON X'183' and SYS005 ON X'182'
/*
/ 6

Note that the program that processes the files takes advantage of two
previously written routines (routine 1 and routine 2) that were cata­
loged in the source statement library.

Note also that the VOL and TPLAB job-control statements were used to
check header records and write trailer labels on input and output files.

Section II: Deck Structures for Processing COBOL in TOS 47

SECTION III: DECK STRUCTURES FOR PROCESSING COBOL PROGRAMS IN A DISK OPERATING SYSTEM

For each type of processing, certain combinations of job control cards are needed. The examples given illustrate basic types of processing within a Disk Operating System.

The examples assume a given Disk Operating System configuration that includes tape, and that the COBOL disk compiler is used for processing.

Because the COBOL disk compiler permits the use of disk or tape work files, some of the examples given in this section use tape work files while others use disk work files. Figure 4 is a diagram of the input/ output units used by COBOL in a disk configuration with tape, and should help the user to visualize the logical structure of such a configuration.

Preceding the types of processing discussed is a procedure for estab­lishing labels for COBOL disk work files and SYSLNK on the Standard. Label Track. A list of the types of processing discussed, in the order they are presented, follows:

1. Compile and punch

2. Cataloging in the relocatable library

3. compiling, linkage editing, and executing

4. Executing a previously linkage edited program

5. Cataloging in the source statement library

6. Compiling, linkage editing, and executing.

Examples 3 and 6 differ in that example 3 illustrates how job control is used to link with a module cataloged in the relocatable library, whereas example 6 illustrates how COBOL copies source statement modules cata­loged in the source statement library.

The processing examples given here assume that the following Disk Operating System configuration with tape was generated at system genera­tion time for the COBOL disk compiler.

The system includes:

• one IBM 2540 Card/Read/Punch

• One IBM 1052 Printer-Keyboard

• One IBM 1403 Printer

• Two IBM 2311 Disk Drives

• Four IBM 2400 Magnetic Tape Units

48 Disk and Tape Operating Systems COBOL Programmer's Guide

I,'
I)

\..J

I' v

u

Note: Broken lines indicate where
the COBOL input would be placed
if SYSIPT were the same unit as SYSRDR.

'/I ASSGN SYSLST

'/ ASSGN SYSPCH

/I ASSGN SYSIPT

II DATE

II JOB

SYSRDR

,,,,.----
" ' -1-.. I

/ i\, "- /I
I : '-\-- l

~------'--~ \ J /
_:~--~

If different
from standard

----,

Cards
(if required)

assignments j

0-----.*
flcoBOL

Source
Statements

,,,,,..--
' , l

,,,,.---........ , ~,,---- 'i,
-k-.. J _...I_ I

I I ... _\, __ ,.I / k '\ ,1

(~ ____ _.__/--ii \' ... :/:::_'-_-_,_)____ Systeml360 r-------1--~-rT)
l._ _______ ~l:v;CH ~

(Optional} ~----=~__,

0
SYSLST (OpHo"°I)

~

Figure 4. .Input/Output Units Used by COBOL Program in a Disk System

Section III: Deck $tructures for Processing COBOL in DOS 49

Assume physical assignments at system generation time are:

• 2540R Reader assigned to physical unit x•ooc•
• 2540P Punch assigned to physical unit X'OOD'

• 1052 Printer-keyboard assigned to physical unit X'01F'

• 1403 Printer assigned to physical unit X'OOE'

• 2311 Disk pack assigned to physical unit X' 190'

• 2311 Disk pack assigned to physical unit X1 191'

• 2402 Magnetic tape unit assigned to physical unit X'281'

• 2402 Magnetic tape unit assigned to physical unit x• 2s2•

• 2402 Magnetic tape unit assigned to physical unit X'283'

• 2402 Magnetic tape unit assigned to physical unit X'284i, X'90'

The hexadE~cimal 90 CX'90'> in the last tape assignment determines the device specifications for a 7-track tape.

Assume logical assignments at system generation time are:

// ASSGN SYSIPT,X'OOC' } // ASSGN SYSRDR,X'OOC' IBM 2540
// ASSGN SYSPCH,X'OOD'
// ASSGN SYSLST,X'OOE' IBM 1403
// ASSGN SYSLOG,X'01F' IBM 1052
// ASSGN SYSLNK,X'190'

1
// ASSGN SYS003,X'190' IBM 2311's
// ASSGN SYS001,X'191'
// ASSGN SYS002,X'191'

When logical assignments are made at system generation time for the disk compiler, the following must be considered:

• SYSLNK must be assigned to disk.

• SYS001, SYS002, and SYS003 (work files) can be assigned to disk or tape, but must all be assigned to the same device type.

• When the linkage editor function is being performed, work file SYS-001 can be assigned to either disk or tape.

When tape work files are to be used instead of the given logical assignments for disk work files (SYS001, SYS002, SYS003>, the user must assign tape work files at system generation time. For example:

// ASSGN SYS001,X'281'
// ASSGN SYS002,X 1 282 1

// ASSGN SYS003,X'283'

Note that SYSIPT, SYSRDR, and SYSPCH are assigned to the same physical unit.

The programmer can change these assignments using ASSGN cards follow­ing his JOB ca.rd. Examples of overriding assignments are given in the text that follows. In the examples that follow, whenever an optional statement is used, it is identified by the words "optional card."

50 Disk and Tape Operating Systems COBOL Programmer's Guide

(

('

'._)

LI

EXAMPLES OF PROCESSING USING DISK CONFIGURATION

When processing programs with the COBOL disk compiler, the information
provided by the VOL, DLAB, and XTENT statements for the work files SYS-
001, SYS002 and SYS003 must be available for each job processed. This
information can be supplied by the programmer with each job processed,
or is provided for the programmer on the Standard Label Track for each
job processed as required. In addition to establishing the labels
required for the disk work files SYS001, SYS002, and SYS003, the labels
required for SYSLNK can also be established on the Standard Label Track,
where they will be available for subsequent use.

The following procedure enables setting up the Standard Label Track
for COBOL disk compiler work files and SYSLNK. Once established, the
labels remain in effect for use with subsequent jobs processed, until
overridden.

//

*
*
*
*
* //
//
//

//
//
//

//
//
//

//
//
//

//

JOB BUILD STANDARD LABELS
ALL VOL, DLAB, AND EXTENT STATEMENTS SUBMITTED IN THIS JOB
WILL BE PERMANENTLY WRITTEN ON TRACK 0 OF THE LABEL STORAGE
CYLINDER OF DOS SYSTEM RESIDENCE FILE SYSRES. THUS THESE
LABELS NEED NOT BE SUBMITTED FOR EVERY JOB THAT REQUIRES
SYSLNK AND SYS001-SYS003

OPTION STDLABEL
VOL SYSLNK,IJSYSLM
Dl,AB 1 SYSTEM WORK FILE SYSLNK 1111111 1

,

0001,66001,66001,'DISK OPER SYS',SD
XTENT 1,0,000190000,000198009,'111111',SYSLNK
VOL SYS001,IJSYS01
DLAB 'SYSTEM WORK FILE NO. 1 1111111',

0001,66001,66001,'DISK OPER SYS',SD
XTENT 128,0,000142000,000189003,'111111',SYS001
VOL SYS002,IJSYS02
DI.AB 1 SYSTEM WORK FILE NO. 2 02. G0000V001111111' 1

0001,66001,66001,'SYSTEM CODE 1•,sn
X'l'ENT 128, o, 000142004, 000189007, '111111' I SYS002
VOL SYS003,IJSYS03
DLAB 'SYSTEM WORK FILE NO. 3 02.GOOOOV001111111',

0001,66001,66001,'SYSTEM CODE 1',SD
X'I'ENT 128, o, 000142008, 000189009, '111111' I SYS003

EXAMPLE 1--COMPILE AND PUNCH

c

c

c

c

Assuming that source statements are card input CSYSIPT) and job control
state~ments are card input CSYSRDR>, the job control cards required (and
some helpful options) to compile and punch are:

// JOB SUBROTNE
//OPTION LOG,DECK,LIST,LISTX,ERRS
// EXEC COBOL

SUBROTNE
SOURCE STATEMENTS

} Input from SYSRDR

} Input from SYSIPT

/* } /&
// PAUSE REMOVE OBJECT DECK FROM HOPPER /

Input from SYSRDR
(Optional card>

The options selected specify:

Section III: Deck Structures for Processing COBOL in DOS 51

LOG Requests a listing of all control statements on SYSLST.

DECK Requests that a deck (object module) be punched on SYSPCH.
LIST

LI STX

ERRS

Causes the compiler to write source statements on SYSLST.

Causes the compiler to write a procedure division map on SYSLST in hexadecimal.

Causes the compiler to write all diagnostics related to the source program on SYSLST.

EXAMPLE 2--CATALOGING AN OBJECT MODULE IN RELOCATABLE LIBRARY

In this example, an object module generated by the compiler (see Example 1) is cataloged to the relocatable library.

~2:£~: The rE~locatable library is on SYSRES.

The job control cards required to catalog an object module to an existing relocatable library are:

/ / JOB REI,OCATE
/ / EXEC MJUNT

CATA.LR SUBROTNE
(Object deck to be
cataloged goes here.)

/*
/&

*
*

OBJECT MODULE 'SUBROTNE' IS
NOW CATALOGED TO THE RELOCATABLE

// PAUSE LIBRARY ON SYSRES (optional card)

EXAMPLE 3--COMPILE, LINKAGE EDIT, AND EXECUTE

This example illustrates how an object module cataloged to the relocat­able library is included in a compilation, linkage edited with the main program, and executed.

// JOB CALLPROG
// OPTION LINK,LIST,LISTX,ERRS

PHASE MAIN,*
// EXEC COBOL

{COBOL SOURCE STATEMENTS}

INCLUDE SUBROTNE
// EXEC LNKEDT
// EXEC

{
DATA DECK}
(if any)

/*
/&

{Retrieves SUBROTNE from relocatable library}

This program consists of one phase that includes the object module SUBROTNE and c:an be executed immediately. [The name provided in the PHASE statement (MAIN> has no relationship to the external-name given in the COBOL Program-ID statement.]

52 Disk and 'I'ape Operating Systems COBOL Programmer's Guide

u

EXAMPLE 4--EXECUTING A PROG~AM

The job control statements required simply to execute a program, assum­
ing it has been cataloged in the core image library, are:

// JOB CALL PROG
// ASSGN SYS006,X'OOC'
// ASSGN SYS004,X 1 191'
// ASSGN SYS005,X'191'
//VOL SYS004,SYS004
// DLAB 'THIS IS THE JOB INPUT FILE etc, •••
// XTENT Enter track specification here •••
// VOL SYS005,SYS005
// DLAB 'THIS IS THE JOB OUTPUT FILE etc, •••
// XTENT Enter track specification here •••
// EXEC MAIN

/*
/&

[DATA DECK]

// PAUSE MESSAGE TO OPERATOR, IF ANY (optional card>

The example can be used for validating data 1 or for making test runs,
when~ many runs might be made with different sets of data. Note that
the VOL, DLAB, and XTENT ·statements specify areas in the disk pack
(assigned to X1 191'l that are used by the job input and output files
SYS004 and SYSOOS, respectively.

EXAMPLE 5--CATALOGING SOURCE MODULES IN SOURCE STATEMENT LIBRARY

The procedural steps and the job-control statements required to catalog
two source statement modules in the source statement library follow.

Note: The source statement library is on the system residence volume
SYSRES.

The job control statements are:

// JOB CAT.LSORC
// EXEC MAINT

CATALS C.INOUT
BKEND C.INOUT

/*
/&

BEGIN. OPEN INPUT FILEB, FILED. OUTPUT FILEA.
INFO. READ FILEB AT END GO TO CYCLE.
MASTER. READ FILED AT END GO TO LABA.

GO TO PROCESS.
LABA. CLOSE FILEA, FILEB, FILED, STOP RUN.

BKEND C.INOUT
CATALS C.DATAIN
BKEND C.DATAIN

FD FILEB, DATA RECORDS ARE CAPACITOR-RECORD1,
INDUCTOR-RECORD1,
LABEL RECORDS ARE STANDARD, BLOCK
CONTAINS 12 RECORDS, RECORDING
MODE IS F.

BKEND C.DATAIN

The open and close routine is now cataloged to the source statement
library under the name INOUT, and the file description under the name
DATAIN.

Section III: Deck structures for Processing COBOL in DOS 53

EXAMPLE 6--COMPILE (USING SOURCE STATEMENT LIBRARY), LINKAGE EDIT, AND EXECUTE

This example illustrates:

1. How two previously written routines, that were cataloged in the source statement library, are utilized. In this example, the source statement library is on SYSRES.

2. How assignments can be made to process an inventory file using direct-access storage.

Assume an electronics firm stocks quantities of electrical components that are to be maintained at a minimum quantity level, and an input data file is used to check against a master file to determine stock item reorder points.

For the purposes of illustration, only two of its many components-­capacitors and inductors--are treated here. They are:

CAPACITORS
PART NUMBER ---c61 ____ _

C62
C65
C121
C122
C125

INDUCTORS
PART NUMBER

LlO
L20
L40
L61
L62
L64

VALUE
:OioMFD--
• o 2 oMFD
.050MFD
.001MMFD
• 00.2MMFD
.005MMFD

VALUE
.lOH
• 20H
.40H

10.00MH
20.00MH
40.00MH

QUANTITY
ON HAND --47 __ _

60
50
90

100
22

QUANTITY
ON HAND

18
15
30
60
70
69

REORDER
POINT --50--

50
so
so
50
so

REORDER
POINT ---35--

35
35
35
35
35

Assume further than an input update file called DATAIN (Example 5, ROUTINE 2), was created on disk and cataloged to the source statement library. Assume that the records are, as follows:

01 CAPACITOR-RECORD1.
02 CAPACITOR OCCURS 6.

03 PART-NUMBER PICTURE XXXX.
03 VALUE1 PICTURE V999.
03 VALUE2 PICTURE XXXX.
03 QUANTITY-ON-HAND PICTURE IS 8999.
03 REORDER-PT PICTURE IS 99.

01 INDUCTOR-RECORD1.
0 2 INDUCTOR OCCURS 6.

03 PART-NUMBER PICTURE XXXX.
03 VALUE1 PICTURE 99V99.
03 VALUE2 PICTURE XX.
03 QUANTITY-ON-HAND PICTURE IS S999.
03 REORDER-PT PICTURE IS 99.

Also assume a program called ORDERPT (to be compiled) was written to process these records (against the master file> to reorder parts when their respective QUANTITY-ON-HAND falls below REORDER-PTe

The following source statements portray, in skeleton form, the pro­gram ORDERPT. Included is the Input-Output Section for the program.

54 Disk and 'I'ape Operating Systems COBOL Programmer's Guide

IDENTIFICATION DIVISION.

PROGRAM-ID. 'ORDERPT'.

ENVIRONMENT DIVISION.

INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT FILEB ASSIGN TO 'SYS004 1 UTILITY 2400 UNITS.
SELECT FILEA ASSIGN TO 1 SYS005' UTILITY 2311 UNITS,

RESERVE NO ALTERNATE AREA.
SELECT FILEC ASSIGN TO 'SYS006' UNIT-RECORD 1403.
SELECT FILED ASSIGN TO 1 SYS007' UTILITY 2311 UNITS.

Notice that FILEC is assigned to an IBM 1403 Printer. This enables
printing out the REORDER-PT, PART NUMBER of the component, and its VALUE
(in MFD or MH) when the QUANTITY-ON-HAND falls below REORDER-PT.

In order to do this, a file description or FD must be written for
FILEC in the data division:

DATA DIVISION.

FD FILEC ••••

01 REORDER.
02 REORDER-PT PICTURE IS 99 USAGE IS DISPLAY.
02 VALUE-OF-PART PICTURE IS ZZ.999.
02 PART-NUMBER PICTURE IS XXXX.
02 QUANTITY PICUTRE IS 999.

BE?fore printing out FILEC, the appropriate values are moved into
REORDER-PT (50 or 35), VALUE-OF-PART (.999 MFD or ZZ.999H) PART-NUMBER
(CXXX or LXXX), and QUANTITY (999).

Specifically, four files are required to process this problem:

FILEA
FILEB
FILEC
FILED

Updated master file.
Updating input file (DATAIN).
Output print file.
Master file.

The control cards to compile, linkage edit, and execute the problem
are:

Section III: Deck Structures for Processing COBOL in DOS 55

// JOB INVNTORY
// OPTION LINK,LIST,DUMP

PHASE INVNTORY,*
// EXEC COBOL

DATA DIVISION.
FD FILEB COPY 'DATAIN'.

PROCEDURE DIVISION.

START. INCLUDE 'INOUT'.

(see
Example 5
for expansion.>

(see
Example 5
for expansion.>

PROCESS. (Records on FILEB are processed)

/*
// LBLTYP TAPE
// EXEC LNKEDT
// ASSGN SYS004,X'284',X'90' (DATAIN)
// ASSGN SYS005 1 X1 190 1 (OUTPUT FILE, NEW MASTER)
// ASSGN SYS006,X'OOE' (PRINT FILE>
// ASSGN SYS007,X 1 191' (MASTER FILE) * MOUNT INPUT (SYS004> ON X1 284',
//PAUSE X1 90 1

•

// TLBL SYS004
// DLBL SYSOOS, 'THIS IS THE NEW JOB MASTER FILE etc.,
// EXTENT Enter the track specification here
// DLBL SYS007, 'THIS IS THE JOB(OLD) MASTER FILE etc., ••• •
// EXTENT Enter the track specification here
// EXEC
/*
/&

Note that the program that processes the files takes advantage of two previously written routines (Routines 1 and 2) that were cataloged in the source statement library.

Note also that the LBLTYP job control statement was used (for SYS004) because it is required when label information for tape files is
processed.

56 Disk and Tape Operating Systems COBOL Programmer's Guide

. I
~

Jt

u

SECTION IV: INTERPRETING OUTPUT

The compiler, linkage editor, COBOL program phases, and other system
components can produce output in the form of printed listings, punched
card decks, diagnostic or informative messages, and data files directed
to tape or direct-access devices. This section describes the output
listings that can be used to document and debug programs. Included are
explanations of compiler· output, a list of conditions that can cause a
dump, a brief discussion of how to use a dump, and an explanation of how
diagnostic messages are determined. A complete list of diagnostic mes­
sages is contained in Appendix G.

COMPILER OUTPUT

The output of the compilation job step may include:

•]A. printed listing of the control statements

• A. printed listing of the statements contained in the source module

• A printed listing of a data map

• A. printed listing of a procedure map

• Compiler diagnostic messages

• An object module

All forms of output must be requested by means of the job control
OPTION statement. For example, DECK specifies that the object module is
to be punched. A complete list of the options for this statement is
given in Section I. All output to be listed is printed on the device
whose symbolic name is SYSLST.

SOURCE LISTING (LIST)

Figure 5 is an example of a source module listing. It
LIST is specified on the job-control OPTION statement.
given on SYSLST. (The heading, GENERATED COBOL SOURCE
appears at the top of the listing is explanatory only.
actually appear on the listing.)

is obtained when
The listing is

LISTING, that
It does not

The source listing consists of:

LINE NO.

SEQ. NO

SOURCE
STATEMENT

A compiler generated line number that is shown in the left­
most column. This line number is used in diagnostic messages
and LISTX references. The generated line numbers for the
sample program are 1 through 39.

The programmer provides the statement sequence numbers. They
appear in the second column.

All COBOL words and punctuation. Words, punctuation, and
other groups of characters on e~ch line are referenced as
elements on the line in LISTX listings so that a specific
entry may be defined.

section IV: Interpreting Output 57

s

D

*

Sequence numbers out of order. If columns 1 through 6 of the
source statement are not blank, they are sequence checked.
The character s is placed beside a number not in logical
ascending order. Example: assume that in the sample listing
statement number 26 Cge,nerated line number> was out of
sequence. The compiler would list the source statement as:

S26 000250 WRITE A AFTER ADVANCING 3 LINES.

Debug packet card inserts. Cards inserted as part of a DEBUG
packet are identified with the character D alongside the
generated sequence number.

Library cards. Cards coming from the library as a result of
a COPY or INCLUDE statement are noted with an asterisk.

r--1 I GENERATED COBOL SOURCE LISTING I
~--~

I
I
I
I
I
I
I
I
I

LINE NO. SEQ. NO.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

S26
27
28
29
30
31
32
33
34
35
36
37
38
39

000010
000020
000030
000040
000050
000060
000070
000080
000090
000100
000110
000120
000130
000140
000150
000160
000170
000180
000190
000200
000210
000220
000230
000240
000260
000250
000270
000280
000290
000300
000310
000320
000330
000340
000350
000360
000370
000380
000390

SOURCE STATEMENT D 12MAR66 04/21/66

IDENTIFICATION DIVISION.
PROGRAM-ID. 'CARRRCTL'.
ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT PRINTO ASSIGN TO 'SYS004'
UNIT-RECORD 1403 UNIT RESERVE
NO ALTERNATE AREAS.

DATA DIVISION.
FILE SECTION.
FD PRINTO RECORDING MODE F LABEL RECORDS

ARE OMITTED DATA RECORD IS A.
01 A.

02 C-C PICTURE X.
02 GARB PICTURE XC20).
02 FULLER PICTURE XC112).

WORKING-STORAGE SECTION.
77 B PICTURE XC20) VALUE 'THIS IS A RECORD'.
01 D PICTURE S99.
01 E REDEFINES D.

02 FILLER PICTURE X.
02 F PICTURE X.

PROCEDURE DIVISION.
START. OPEN OUTPUT PRINTO. MOVE B 'IO GARB.

WRITE A AFTER ADVANCING 1 LINE.
WRITE A AFTER ADVANCING 3 LINES.
WRITE A AFTER ADVANCING 2 LINES.
MOVE 1

' TO C-C. WRITE A AFTER ADVANCING C-C.
MOVE 'O' TO C-C. WRITE A AFTER ADVANCING C-C.
MOVE'-' TO C-C. WRITE A AFTER ADVANCING C-C.
MOVE '+' TO C-C. WRITE A AFTER ADVANCING C-C.
MOVE 1 1 1 TO C-C. WRITE A AFTER ADVANCING C-C.
MOVE 'C 1 TO C-C. WRITE A AFTER ADVANCING C-C.
MOVE 'TRICK COMING UP' TO FULLER.
WRITE A AFTER ADVANCING C-C.
MOVE 'EOJ' TO A.
WRITE A AFTER ADVANCING 3 LINES.
CLOSE PRINTO.
STOP RUN.

l--Figure 5. Example of a COBOL Source Listing

58 Disk and Tape Operating systems COBOL Programmer's Guide

u

..

u

u

DATA MAP (SYM)

Figure 6 is an example of a data map. It is a portion of the data map
generated for the program given in Figure 5, and is obtained when SYM is
specified on the job-control OPTION statement. The data map is printed
on the SYSLIST unit.

The data map shows the name of each nonprocedure name defined in the
program. File-names, record-names, and condition-names are identified
in the column headed TYPE. (In this example, no condition-names were
used; therefore, none are listed.) The relative location of each entry
is shown (column headed LOCATION). Linkage and file entries are rela­
tive to the level 01 or 77. Working storage is relative to o. The
addresses given are 24-bit addresses.

The column headed DATA NAME gives the names of the nonprocedure name
specified in the program.

If the load address is known, it may be used as the hexadecimal off­
set parameter in a CBL option card parameter (DMAP=h). This would
result in adjusted addresses on the listing.

r---1 I DATA DIVISION MAP I
~---~-------------------------1 TYPE LOCATION DATA NAME

FILE
REC

REC
REC

0000000
0000000
0000001
0000021
0000000
0000024
0000024
0000025

Figure 6. Example of a Data Map

PRIN'l'O
A
c-c
GARB
FULLER
B
D
E
F

Section IV: Interpreting Output 59

PROCEDURE MAP (LISTX)

Figure 7 is an example of a. procedure map. It is a portion of the pro­
cedure map generated for the program given in Figure 5 and is obtained
when LISTX is specified on the job-control OPTION card. The listing is
printed on the SYSLST unit. The details of LISTX are given for their
debugging value.

LINE/P0:3

ADDR

I NSTRUC'I'I ON

Contains the generated line number and the position
of the COBOL verb on the line. (These numbers are
decimal numbers.) The actual instruction Cs> used
to accomplish the COBOL statement is identified by
the compiler-generated internal line number(s). If
more than one instruction was generated, the
compiler-generated line number for that COBOL
statement would be repeated for each instruction
listed. A look at source statement 28 shows that
MOVE is the first COBOL verb on the line, hence,
its location is 28 01. counting each element in
the line from left to right (for definition of an
element, see "Error Messages (ERRS)"), it is found
that the COBOL verb WRITE occupies position 6 on
the line, hence, it is location 28 06. The MOVE
verb required only one System/360 machine instruc­
tion to effect its action. However, the WRITE verb
required five System/360 machine instructions to
effect its action. This accounts for the fact that
"28 06" appears five times in the listing. It
should be noted that qualified words count as one
element. The line counter cannot exceed 4095. At
this point, it resets to O.

Contains the relative address of each instruction
in the procedure division in hexadecimal. The
addresses are relative to the program's load point.
The address may be off set by specifying PMAP=h on
the COBOL CBL option statement.

Contains the machine language instruction Cin hexa­
decimal) generated for the COBOL statement.

r--1 t LINE/POS ADDR INSTRUCTION
I
1 00028 01 003270 D2 00 5 000 4 14D

00028 06 003276 D2 00 5 000 5 000
00028 06 003270 41 10 4 088
00028 06 003280 58 FO 1 010
00028 06 003284 45 EO F ooc
00028 06 003288 58 50 4 088
00029 01 00328C D2 00 5 000 4 14E
00029 06 003292 D2 00 5 000 5 000
00029 06 00329B 41 10 4 088
00029 06 00329C 58 FO 1 010
00029 06 0032AO 45 EO F ooc
00029 06 0032A4 58 50 4 088 --Figure 7. Example of a Procedure Map for a COBOL Program

60 Disk and •rape Operating Systems COBOL Programmer's Guide

)
\....._,)

'V

..

DIAGNOSTIC MESSAGES (ERRS)

Figure 8 is an example of a list of error messages that are obtained
when ERRS is specified on the job-control OPTION card. These diagnostic
messages were generated by the compiler for the program shown in Figure
5. The list is generated on SYSLST.

LINE/POS

ER CODE

CLAUSE

MESSAGE

Contains the internal line numbers of the source
statements, and the position of the COBOL verb or
element on the line where the error was detected.
An element is a word, punctuation, picture, name,
literal, or any other similar unit of COBOL syntax •

When the compiler cannot locate the item in error
on the line, it identifies the line at fault by
generating the SEQUENCE NUMBER X-0.

When the compiler generates the line number 0-0, it
is referring to an entire section (the section may
be missing>.

contains a message number and the severity level of
the error:

MESSAGE NUMBER

Severity
Code
W = WARNING

The format of the message number,
and the associated message is
described in Appendix H.

Explanation
This calls attention to a condi­
tion that can cause a problem,
but should permit a successful
run.

c CONDITIONAL The error statement is dropped or
corrective action is taken. The
compilation is continued as it
may have debugging value, but the
statement should not execute as
intended.

E ERROR This condition seriously affects
execution of the job. Execution
is not attempted.

This column identifies either the particular COBOL
clause being .processed at the time the diagnostic
message was discovered or the basic area that was
involved, such as ALIGNMENT, FD, or similar items.

The actual message is given here. These messages
are listed in Appendix G.

r--1 I DIAGNOSTIC MESSAGES I
~--------T-------T---------T---~
I LINE/POS I ER CODE I CLAUSE I MESSAGE . I
~----·----+-------f---------+---~ I 15-1 IIJS063WJALIGNMENTITO ALIGN BLOCKED RECORDS ADD 3 BYTES TO THEI
I I I 101 CONTAINING DATANAME FILLER. I
t----·----+-------+---------+-----------~-------------------------------~
J 1.8-1 IIJS054WIALIGNMENTIFOR PROPER ALIGNMENT, A 4 BYTE LONG FILLER I
I I I IENTRY IS INSERTED PRECEDING D. I l----·----i _______ i _________ i ___ J

Figure 8. Example of Source Module Diagnostics

Section IV: Interpreting Output 61

1. Handle the diagnostic messages in the order in which they appear on
the source listing. It is possible to get compound diagnostic mes­
sages. Frequently, an earlier diagnostic indicates the reason for
a later diagnostic message. For example, a missing quote for an
alphabetic or alphameric literal could involve the inclusion of
some clauses not intended in that particular literal. This could
cause an apparently valid clause to be diagnosed as invalid because
it is not complete, or because it is in conflict with something
that preceded it.

2. Check for missing or extra punctuation, or other errors of this
type.

3. Frequently, a seemingly meaningless message is clarified when the
valid syntax or reference format is referenced. Diagnostic mes­
sages are coded directly from the reference format and are designed
for use in conjunction with the particular type of reference.

Ho~_Q!,~gnostic Messages Are Determined

The compiler scans the statement, element by element, to determine
whether the words are combined in a meaningful manner. Based upon the
elements that have already been scanned, there are only certain words or
elements that can be correctly encountered.

If the anticipated elements are not encountered, a diagnostic message
is produced. Some errors may not be uncovered until information from
various sections of the program are combined and the inconsistency indi­
cated. Errors uncovered in this manner can produce a slightly different
message format than those uncovered when the actual source text is still available. rrhe message that is made unique through that particular
error may not have, for example. the actual source statement that pro­
duced the error. The position and sequence reference, however, indi­
cates the place at which the error was uncovered.

Errors that appear to be identical are diagnosed in a slightly dif­
ferent manner, depending on where they were encountered by the compiler
and how they fit within the context of valid syntax. For example, a
period missing from the end of the Working-Storage Section clause, is
diagnosed spe~cif ically as a period required. There is no other informa­
tion that can occur at that point. However, if at the end of a Record
Description entry, an element is encountered that is not valid at that
point such as the digits 02, they are diagnosed as invalid. Any clauses
associated with the clause at that entry, which conflict with the
entries in the previous entry (the one that had the missing period), are
diagnosed. Thus, a missing period produces a different type of diagnos­
tic message in one case than in another.

If a given compilation produces more than 25 diagnostic messages,
they are presented in a batched sequence. The first 25 messages are
sorted in order, followed by the second series, which is also sorted in
order.

If an error occurs after the 4095 source statement, the line sequence of the source statement in error can usually be determined by adding
4095 to the sequence number given in the diagnostic message. A message
frequently suggests the divison of a COBOL source program in which the
error occurre!d.

62 Disk and Tape Operating Systems COBOL Programmer's Guide

I • I
\._V

u

..

u

(\

v

Examples of How Diagnostic Messages Are Generated

Each message has a general or skeleton form. Unique words for each mes­
sage are inserted to identify the specific error that was encountered.
The following two examples illustrate this form.

COBOL format is ~QY~ data-name
literal

'.!'.Q data-name •••

Error 1
023

Error 2
023

MOVE FIELDA TOO FIELDB

ERROR #178

INSERT1 TO

INSERT2 TOO

Information
passed to
diagnostic
out of phase I19

Skeleton Message #178 CSYNTAX REQUIRES WORD "Insertl".
FOUND "Insert2".

REQUIRES WORD "TO". FOUND "TOO".

NOVE FIELDA TO FIELDB

ERROR #549

INSERT1 NOVE

Skeleton Message #549 E WORD INSERTl WAS EITHER INVALID
OR SKIPPED DUE TO ANOTHER DIAGNOSTIC.

Message appears as: 23-1 IJS549E "NOVE" UNHANDLED.
WORD NOVE WAS EITHER INVALID OR SKIPPED DUE TO ANOTHER
DIAGNOSTIC.

~!~bGE EDITOR OUTPUT

The linkage editor produces diagnostic messages, console messages and a
storage map. For a description of output and error messages from the
linkage editor see the IBM publications !BM §~i~!!!Ll§.Q_DO~§yst~!!L£2!!::.
trol and system Service Program2, Form C24-5036, and IB~_§V2i~!!!L36Q_!OS
syste~m_cont~Q!_~nd_§Y2i~m_§~rvi£~-~~2g~m2, Form c24-5034.

EXECUTION TIME MESSAGES

When an error condition that is recognized by compiler-generated code
occurs during execution, an error message is written on SYSLST or SYS­
LOG. Any messages normally written on SYSLST that result from an error

Section IV: Interpreting Output 63

in the foreground program are written on SYSOOO. Messages that normally
appear on SYSLOG are provided with a code indicating whether the message
originated in a foreground or background program. These messages and
their descriptions are listed in Appendix G.

Execution of a program phase may produce a dump as part of an abort pro­
cedure. A dump is caused by one of many errors. Several of these
errors may occur at the COBOL language level while others can occur at
the job-control level.

Examples of COBOL language errors that can cause a dump follow.

1. A GO TO statement with no procedure name following it may have been
improperly initialized with an ALTER statement. The execution of
this statement will cause an invalid branch.

2. Arithmetic calculations or moves on numeric fields that have not
been properly initialized can cause an interrupt and a dump.

For example, neglecting to initialize an OCCURS ••• DEPENDING ON
clause, or referencing data fields prior to the first read may
cause an interrupt and a dump.

3. Invalid data placed in a numeric field as a result of redefinition.

4. Input/output errors that are nonrecoverable.

s. Subscripts whose values exceed the defined maximum value will, when
moved into the Procedure Division, destroy machine instructions in
the program.

6. Attempting to execute an invalid operation code through a systems
error or invalid program.

7. Generating an invalid address for an area that has address
protection.

a. Subprogram linkage declarations that are not defined exactly as
they are stated in the calling program.

9. Data or instructions can be modified by entering a subprogram and
manipulating data incorrectly. A COBOL subprogram could acquire
invalid information from the main program, e.g., a CALL using a
procedure-name and an ENTRY using a data-name.

10. Incorrect tape record length.
invalid supervisor call SVC32.
ing the job.

causes the compiler to generate an
This inititates the dump terminat-

11. An input file contains invalid data such as a blank numeric field
or data incorrectly specified by its data description.

The compiler does not generate a test to check the sign position
for a valid configuration before the item is used as an operand.
The programmer can test for valid data by means of ~he numeric
class test and, by use of the TRANSFORM statement, convert it,..to
valid data under certain circumstances.

For example, if the units position of a numeric data item describ~d
as USAGE IS DISPLAY contained a blank, the blank could be trans­
formed to a zero, thus forcing a valid sign.

64 Disk and •rape Operating Systems COBOL Programmer's Guide

u

u

HOW 'I'O USE A DUMP

Information regarding the location of the error and the reason for an
interrupt precedes the dump.

The instruction address can be compared to the Procedure Division
map. Such a map is produced in the listing by the LISTX option. The
load address of the module (which can be obtained from the map of main
storage generated by the linkage editor) must be subtracted from the
instruction address to obtain the relative instruction address as shown
in the procedure map. The contents of LISTX provides a relative address
for each statement. By use of the error address and LISTX, the pro­
grammer can locate a specific statement appearing within a line of the
source program, if the interrupt was within the COBOL program. Examina­
tion of the statement and the fields associated with it may produce
infromation as to the specific nature of the error. A more detailed
analysis would involve a deeper knowledge of Disk and Tape Operating
Systems and control programs.

Object Storage Layout

The relative position, in main storage, of all the components of a COBOL
program is, as follows:

• COBOL subroutines

• Working storage data items

• Edit masks

• DTF tables

• Buffers

• Procedure literals

• Work area and global table

• Instructions

• Input/output subroutines

• Subprograms

section IV: Interpreting Output 65

SECTION V: THE DEBUGGING LANGUAGE

The DEBUG option in the COBOL Disk and Tape Operating Systems language allows the programmer to use three new verbs for the purpose of debug­ging COBOL source programs. These verbs are EXHIBIT, TRACE, and ON. They can appear anywhere in the COBOL program or in a compile-time debugging packet. Their formats and a description of their use is con-
tained in the publication !~~-§Y~i~IBLl~Q_Qi~~-~gg_~~E~_QE~~i!ng_§Y§.= i~IB~~--~Q~Q~--~~gg~~g~-§E~cif!~ii2TI~• Form C24-3433. However, this sec­tion is included in the publication to give the programmer an idea of when to use the debugging language, how to construct a debugging packet, and what job control cards are needed to use the debugging packet. A complete list of precompile error messages is included in Appendix F. These messages reflect errors in the debug packet(s) only. They are not associated with compiling.

TRACE STATEMENT

When a job does not execute properly and the diagnostic messages fail to indicate how to correct the error, a READY TRACE statement can be inserted at a point known to be prior to the trouble area. The TRACE displays each paragraph name as control is passed to that paragraph. To reduce the volume of such a trace, it is possible to turn on the trace with a READY TRACE statement and turn it off with a RESET TRACE if the area can be localized. The TRACE function can be used any number of times within the program. It would reduce the volume if RESET were issued upon entering a loop (containing a paragraph name> and READY were issued upon leaving the loop.

It is sometimes difficult to determine what the specific path of pro­gram logic is. This is especially true with a series of PERFORMS or nested conditions. A TRACE statement can be very beneficial as an aid to this problem. Also, if values are inconsistent, a TRACE statement will again aid in determining whether or not a program is actually going through a certain point.

EXHIBIT STATEMENT

To find out what specifically caused the error within the paragraph, additional data can be obtained from the fields within the specific paragraph by use of the EXHIBIT statement. The EXHIBIT statement dis­plays the field and the source name for identification purposes. Its use may be restricted to display the field only if it has changed since the last time the program fell through that point. This permits the programmer to check on the value of the subscript name or other fields that are pertinent to a given field, and to check out logic errors. An example of the various forms of this statement follows.

DATA DIVISION.
77 NO-CHANGE-NAME PICTURE XX VALUE 'AB'.
11 SUB-SCRIPT-NAME PICTURE S999 COMPUTATIONAL VALUE 30.

66 Disk and •rape Operating Systems COBOL Programmer's Guide

I\
: 'I v

I,

'. ')
\~

u

u

PROCEDURE DIVISION.

TEST·-LOOP.
EXHIBIT NAMED NO-CHANGE-NAME.
EXHIBIT CHANGED NAMED SUB-SCRIPT-NAME.
EXHIBIT CHANGED SUB-SCRIPT-NAME.
EXHIBIT CHANGED NO-CHANGE-NAME.

ADD 10 TO SUB-SCRIPT-NAME. IF SUB-SCRIPT-NAME
ELSE GO TO TEST-LOOP.

The printout for this example is:

NO-CHANGE-NAME =AB
SUB-SCRIPT-NAME = 30
30
AB
NO-CHANGE-NAME =AB
SUB-SCRIPT-NAME = 40
40
NO-CHANGE-NAME = AB
SUB-SCRIPT-NAME = 50
so

ON S'rATEMENT

100 NEXT SENTENCE

It is possible, where large volumes of data are involved, to sample spe­
cific portions of a program by use of the ON statement. The ON state­
ment allows the programmer to perform a series of operations at certain
times when a program passes a particular point. For example, a series
of operations could be performed the 110th time through a loop and every
fifth time thereafter until the 275th time. This allows the programmer
to determine whether or not a given loop gets out of the expected range
for a particular program.

There can be any number of these statements, and there is a compiler
counter generated for each one. The counter starts at zero and is
increased by one each time the path of program execution falls through
that specific point. For example, if the programmer knows that the
error occurs on the SOOth record processed, the ON statement can be used
to count records. Then a READY TRACE can be set as the counter
approaches the point where the error occurred. This eliminates tracing
each statement up to that point. This type of example could also have
been done by a counter or a PERFORM statement, but this method is
easic::r.

Note: An ON statement with an UNTIL or ELSE option cannot be used in an
IF statement.

THE DEBUG PACKET

The debug packet can .be used only in background type processing. It is
a tool used for debugging COBOL object modules and is positioned in the
job input stream before the COBOL source module. The packet is combined
with the COBOL source module before compilation begins. The position of

section V: The Debugging Language 67

the packet within the COBOL source module is determined by the Procedure Division name specified in the *DEBUG card of the packet.

JOB CONTROL SE'l'UP FOR USING DEBUG PACKETS

Debug packets for a given compilation are processed as separate job steps immediately preceding the job step that executes the COBOL compil­
er program.

A number of debugging packets are permitted for a program depending
on the size of the machine used. In practice, the number of packets
required by a programmer should not exceed Disk and Tape Operating sys­tems storage facilities.

Each compile-time debugging packet is headed by the control card:

1------~----7"--- l:····~~w~:);·,~·· *DEBV(; location --f ~ ~fJ "

An example of the deck setup for executing a debugging packet, including all the required job control cards, is given in Figure 9.

Note that the deck setup provides for the assignment of SYSIPT (for the COBOL compilation) to the drive currently assigned to SYS004 for the packet. This is required by job control, because SYSIPT is used as the
input for the COBOL program.

If a disastrous error occurs, a message followed by RUN TERMINATED is
displayed and listed. If the job runs to completion, a message saying
that SYSIPT for the COBOL compilation should be assigned to the current SYS004 is displayed and listed.

At the conclusion of a compilation, SYSIPT should be reassigned to the original device if the job stream contains additional job steps.

/&
I/ EX.EC COBOL

// ASSCN SYSIPT

/*

Debug Packets

11 EXEC DEBUG
11 ASSG N SYS004

//JOB

L[Source
Statements
to be Debugged

Figure 9. Example of a Debug Packet

68 Disk and rrape Operating Systems COBOL Programmer's Guide

I. v

u

SECTION VI: PROGRAMMING CONSIDERATIONS

This :section is intended to aid the programmer in his efforts to produce
efficient COBOL code. The suggestions offered here will optimize the
compilation and/or execution of the program by reducing the time and/or
storage which it requires.

The topics given consideration in this section include:

1. The effect of data format and organization on core storage

2. General coding hints, both arithmetic and non-arithmetic, for a
more efficient program

3. .A discussion of processing and aligning variable length records

4. Considerations for input/output error processing.

A primary concern of programmers aiming at more efficient coding is the
conservation of core storage. One means of using storage wisely is
careful declaration and manipulation of data items. The manner in which
data is defined affects the number of instructions generated in the Pro­
cedure Division. saving one byte in the Data Division can cause a sig­
nificant increase in the number of instructions generated in the Proce­
dure Division. Conversely, a meaningful addition of one byte in the
Data Division can result in a savings of 20 or more bytes of generated
instructions for the Procedure Division.

The number of bytes occupied by a data item in main storage depends
on the USAGE clause associated with it. Figure 10 illustrates the num­
ber of bytes required for each type of elementary item. Figure 11 pro­
vides additional information concerning the characteristics of numeric
data.

The following section describes the various kinds of data items and
illustrates machine representations of these data items. Because pro­
grams frequently deal with data in different formats, conversions
between formats often occur. These conversions necessarily increase the
amount of core storage needed. Therefore, this section includes a com­
parison of core storage required when data is in the same and in mixed
formats. Finally, this section analyzes the effect on storage of ADD,
MOVE, and relational statements when the items involved are of mixed
format.

Section VI: Programming Considerations 69

r-----------·--1------, !TYPE OF ITEM CALCULATION OF REQUIRED BYTES FROM PICTURE I
~--~ I DISPLAY I I Alphabetic Bytes = Number of A's in picture I Alphanumeric Bytes = Number of X's in picture I External Decimal Bytes Number of 9's in picture I External Floating Bytes = Number of characters in picture I Point I Report Bytes Number of characters in picture exce!)t I

P, v I
COMPUTATIONAL-3 I

I Internal Decimal Bytes = (Number of 9's + 1 divided by 2, rounded I
up> I

COMPUTATIONAL

Binary Bytes

I
jCOMPUTATIONAL-1 or
I
I Bytes
I
I COMPUTATION.l-\L-2

Size
2-if 1sNs4

= 4 if SsNs9

Where N = Number of

4 if short precision
Ccomputational-1)

~!.!~i!l~~!!i
Halfword Machine

Address
Fullword Machine

Address
Fullword Machine

Address
9's in picture

Fullword Machine
Address

I Internal Floating 8 if long precision Doubleword Machine I Point (COMPUTATIONAL-2> Address L--Figure 10. Bytes Required for each Class of Elementary Item

DISPLAY

DISPLAY is used for non-numeric and external decimal fields. Zeros and blanks are not inserted automatically by the logical instruction set; a move requires coding to insert zeros or blankso On a compare, the smaller item must be moved to a work area where zeros or blanks are inserted before the compare.

Examples of external decimal items (usage DISPLAY) are shown in Figure 12.

COMPUTATIONAL-3

I
I
I
I

COMPUTATIONAL--3 is used for internal decimal fields. The System/360 decimal feature provides for the automatic insertion of high-order zeros on adds, subtracts, and compares.

70 Disk and Tape Operating systems COBOL Programmer's Guide

. I\
<J

h u

u

I ,

~'-)

I i u

r----·----T---------T----------T-----------T---------T------------------1
I I I I Converted I I I
JUsage !No. of I]in !Boundary I t

land DataJByte~ !Typical !Arithmetic IAlignment!Special I
!Type !Required JUse ICalculation!Required !Characteristics I

r----·----+---------+----------+-----------+---------+------------------~
!DISPLAY 11 per !Input from! Yes I No JMay be used for I
I (Exter- I digit I cards I] I numeric fields up J

I nal I I I J Ito 18 digits long. I
ldecimal>I !Output to I I I I
I I I cards I I I Fields over 15 I
I I I I l !digits require I
I I !Listings I I !extra instructionsf
I I I I I I if used in I
I I I I I !computations. I
r--------+---------+----------+-----------+---------+------------------~
l COMPUTA-11 byte I Input to a! Not I No I Requires less I
ITIONAL-31per 2 !report !normally I jspace than I
I (Inter- I digits I i tern I I I DISPLAY. I
lnal !after thel I I I I
ldecimal>jfirst !Arithmetic!] JConvenient form I
I !byte for !fields I I jfor decimal align-I
I !byte for I I I lment. I
I llow-order!Work areas! I I I
I !digit I] J]The natural form J

I I I I I !contains an odd I
I I I I I I number of digits. I
r--------+---------+----------+-----------+---------+------------------~
ICOMPUTA-]2 if ISubscript-)Yes/No J Yes !Rounding and on I
ITIONAL I 1SNS4 ling]for mixed] lsize error tests I
I <Binary> 14 if I I usage I I are cumbersome. I
I I 5SNS91Arithmetic]] I I
I 18 if I I No for I I Fields over 8 I
I I 10SNS181]unmixed] !digits require I
I I I !usage) !more handling. I

I I I I I I I
I I I I I jMust always be I
I I I I l !signed. I
r--------+---------+----------+-----------+---------+------------------~
ICOMPUTA-14 (short JFractionall No I Yes !Less accurate. I

- I TIONAL-1 I preci- I exponenti-1 I I COMPUTATIONAL-2 I
I I sion> I ation, or I I I more accurate than I
J COMPUTA- J 8 (long I very large J I) CQil'.iPUTATIONAL-1 I
I TIONAL-21 prei- I or very I I I I
] (Inter- I sion) I small 1 I I Requires floating- I
I nal I !numbers I I !point feature. I
I floating I I 1 I I I
I point> I I I I I I
L--------i---------~----------i-----------~---------i------------------J
Figure 11. Characteristics of Numeric Data

COMPUTATIONAL-3, or internal decimal usage, is also referred to as
packE=d decimal. To conserve storage packed decimal should be used
whenever the number of digits exceeds nine positions; its picture should
begin with "S" and the field length should be an odd number. In general
most commercial applications are safer with numeric fields in packed
format, and fields which have decimal positions should always be packed.

When arithmetic operations using data fields and literals are per­
form•=d, the literal is generated in the format of the receiving field.
Programming efficiency is increased if the data fields involved are
defined as COMPUTATIONAL-3. For example,

SEND PICTURE 9(5) USAGE COMPUTATIONAL-3.
TARGET PICTURE 9(5) USAGE COMPUTATIONAL.

ADD SEND 200 TO TARGET.

Section VI: Programming considerations 71

This statement will be performed by adding the sending f iE~ld and the literal "200" together, and then adding the result to the target field. Since the literal takes the form of the receiving field, it is binary. This operation will take 32 bytes of core. If both fields had been defined as COMPUTATIONAL-3, execution of the ADD statement would require only 12 bytes.

Examples of internal decimal items (COMPUTATIONAL-3 usage) are shown in Figure 12.

COMPUTATIONAL

COMPUTATIONAI, is used for binary numbers. Binary operations require one of the operands to be in a register where a halfword is automatically expanded to a fullword. Because System/360 contains a large number of halfword and fullword instructions, handling mixed halfword and fullword fields requires no additional operations.

An example of an item with COMPUTATIONAL usage is shown in Figure 12.

COMPUTATIONAL-1 AND COMPUTATIONAL-2

COMPUTATIONAL-1 and COMPUTATIONAL-2 are used for internal floating-point numbers. System/360 provides a full set of short and long·-precision instructions which enables operations involving mixed precision fields to be handled without conversion. For maximum efficiency, floating­point usage should be limited to purely scientific applications.

Examples of items with COMPUTATIONAL-1 and COMPUTATIONAL-2 usage are shown in Figure 12.

MIXED DATA FORMATS

When data fields are used together in move, arithmetic or .relational statements, their formats should be the same whenever possible to con­serve storage and reduce execution time. Operations involving data items of diff€~rent formats require conversion before the operation can be executed. For example, when comparing a LISPLAY field to a COMPUTATIONAL-3 field, the code generated by the COBOL compiler moves the DISPLAY field to an internal work area, and converts it to a COMPUTATIONAL-3 field. It then executes the compare. For maximum effi­ciency, a onetime conversion (using packed or binary modes where poss­ible> is helpful; that is, move the data to a work area, convert it to the matching data format, and reference the work area in procedural statements.

The following example illustrates the conversions that take place when the components of a COMPUTE are defined:

A COMPUTATIONAL-1.
B PICTURE S99V9 COMPUTATIONAL-3.
C PICTURE S9999V9 COMPUTATIONAL-3.

and the following computation is specified:

COMPUTE C = A * B.

72 Disk and Tape Operating Systems COBOL Programmer's Guide

I
\~

r-----------------T---------T---------------T---------------------------1
I ITEM I VALUE I USAGE I INTERNAL REPRESENTATION I

r-----------------+---------+---------------+---------------------------~

I I I I I
!External Decimal! -1234 !DISPLAY I IZ11Z2jZ3jF41 I
I I I PICTURE 9999 I L--.L--.1.--.L--J I
I I I I BYTE I
I I I DISPLAY I IZ1IZ21Z3l-41 I
I I !PICTURE 89999 I L--.1.--.1.--.1.--J I

I I I I BYTE I
r----------------+---------+---------------+---------------------------~
I I I I I
I Intc~rnal Decimal~ +1234 I COMPUTATIONAL-31 I 01J23 J 4F I I
I I I PICTURE 9999 I L __ .L __ .L __ J I

I I I I BYTE I
I I ICOMPUTATIONAL-3J 10112314+1 I
I I !PICTURE 89999 I L--.1.--.L--J I

I I I I BYTE I
r----------------+---------+---------------+---------------------------~

I I I I I
!Binary I +1234 !COMPUTATIONAL I 10000 010011101 00101 I
I I !PICTURE S9999 I L---------.1. _________ J I
I 1 I I s BYTE I
r----------------+---------+---------------+------------~--------------~

I I I I I
JExternal J+12.34E~21DISPLAY PICTURE! 1+1112). l3J41Elbl0121 I
I Floating-Point I 199. 99E-99 I L_.1._.1._.1._.1._.L_.1._.1._.1._.1._J I
I I I I BYTE I
r----------------+---------+---------------+---------------------------~

I I I I I
!Internal I jCOMPUTATIONAL-11 JSICharacteristiclFractionll
I Floating-Point I I I L-.L--------------.1.--------J I
I I I I o 1 7 s 31 I
I I ICOMPUTATIONAL-21 ISICharacteristiclFractionll
I I I I L-.L--------------.1.--------JI
I I I I o 1 7 s 63 I
I I I I I
r----------------.1.---------.1.---------------.1.---------------------------~

]~Qt~: The codes used within the INTERNAL REPRESENTA~'ION column are as I
!follows: I
I Z=zone I
I Hexadecimal F=non-printing plus sign I
I s=the sign position of a numeric field: '1' indicates a negative I
I number •o• indicates a positive number; I
I b=a blank I
L--J

• Figure 12. Internal Representation of Numeric Items

To perform this operation, the internal decimal data (COMPUTATIONAL-
3 l is converted to floating-point format and then the COMPUTE is
executed. The floating-point result is converted to internal decimal.
The conversion routines a~e time consuming and use storage
unnecessarily.

TYPE:S OF CONVERSIONS

The following examples show what must logically be done when working
with mixed data fields before the indicated operations can be performed.

Section VI: Programming C.onsiderations 73

To move data: No additional code is required Cif proper alignment exists) because one instruction can both move and convert the data.
To £Q!!!P~f.~ data: Before a COIY~PARE is executed, DISPLAY data must be converted to COMPUTATIONAL-3 format.

To perform arithmetic operations: Before arithmetics are performed, DISPLAY data is converted to COMPU'I'ATIONAL-3 format.

DISPLAY to COMPUTATIONAL

To move data: Before the MOVE is executed, DISPLAY data is converted to COMPUTATIONAL-3 format, which is then converted to COMPUTATIONAL data f orrnat.

To £Q~P~f.~~ data: Before a COMPARE is executed, both DISPLAY data and COMPUTATIONAI~ data are converted to COMPUTATIONAL-3 data format.
To perforn} arithmetic operations: Before arithmetics are performed, DISPL}\.Y data is converted to COMPUTATIONAL-3 format which is then con­verted to COMPUTATIONAL format.

To ~ data: Before a MOVE is executed, COMPUTATIONAL-3 data is moved to a work area, and then converted to CONPU'rATIONAL data format.
To £Q~P~f.~ data: Before a COMPARE is executed, COMPUTATIONAL data is converted to COMPUTATIONAL-3 format.

To perform arithmetic operations: Before arithmetics are performed, COMPUTATIONAL·-3 data is converted to COMPUTATIONAL data format.

COMPUTATIONAL to COMPUTATIONAL-3

To move data: Before a MOVE is executed1 COMPUTATIONAL data is con­verted-to-COMPUTA'IIONAL-3 data format.

To compare data: Before a COMPARE is executed, COMPUTATIONAL data is converted to COMPUTATIONAL-3 data format.

To P~EfQf.~ ~f.!1h!!!~~ic QE~~1!Qg~: Before arithmetics are performed, COMPUTATIONAL data is converted to COMPUTATIONAL-3 data format.

To move data: Before a MOVE is executed, COMPUTATIONAL data is con­vertedt0COMPUTATIONAL-3 data format, which is then converted to DIS­PLAY data format.

74 Disk and Tape Operating systems COBOL Programmer's Guide

\~

(i

~

To £Q~P~E§ data: Before a COMPARE is executed, both COMPUTATIONAL
and DISPLAY are converted to COMPUTATIONAL-3 data format.

To perform arithmetic operations: Before arithmetics are perforffied,
both COMPUTATIONAL and DISPLAY data are converted to COMPUTATIONAL-3
data format. The result is generated in a COMPUTATIONAL-3 work area,
which is then moved to the DISPLAY result field.

COMPUTATIONAL-3 to DISPLAY

To move data: Before a MOVE is executed, COMPUTATIONAL-3 data is
converted-to DISPLAY data format.

To compare data: Before a COMPARE is executed, DISPLAY data is con­
vertE~d to COMPUTATIONAL-3 data format.

To P§EfQf~ ~~ithr.!!§ii£ £P~~~iiQ~~= Before arithmetics are performed,
DISPLAY data is converted to COMPUTATIONAL-3 data format. The result is
generated in a COMPU'I'ATIONAL-3 work area, which is then converted and
moved to the DISPLAY result field.

To perform arithmetic operations: Before arithmetics are performed,
all DISPLAY data is converted to COMPUTATIONAL-3 data format. The
result is generated in a COMPUTATIONAL-3 work area, which is then con­
verted and moved to the DISPLAY result field.

ConVE~rsion of COMPUTATIONAL-1 or COMPUTATIONAL-2 Data

Because the conversion from internal to external floating-point and
vice-versa is done by subroutine, use of floating-point CCOMPUTATIONAL-1
or COMPUTATIONAL-2) numbers mixed with other usages should be held to a
minimum. Fields used in conjunction with a floating-point number cause
the object program to perform conversions. For example, assume a COM­
PUTE is specified as:

COMPUTE A = B * C + D + E.

Assume B is COMPUTATIONAL-! or COMPUTATIONAL-2 and all other fields are
defined as COMPUTATIONAL-3 data. Fields c, D and E are converted to
COMPUIATIONAL-1 or COMPUTATIONAL-2 data format, the calculation per­
formed, and the result converted back from COMPUTATIONAL-1 or
COMPUTATIONAL-2 data format to COMPUTATIONAL-3 data. If field B is
defined as COMPUTATIONAL-3, no conversion is necessary. If it is neces­
sary to use floating-point data, special care should be taken not to mix
data formats.

EXAMPLES SHOWING EFFECT OF DATA DECLARATIONS

Mixed mode operations involve transferring data between fields defined
in different formats. The following examples illustrate the coding

Section VI: Programming Considerations 75

necessary to perform mixed format operations. In order to isolate the effect of mixed formats the examples are based on the assumption that all fields are the same size, and that all decimals are aligned. If fields are unequal or decimal points are unaligned, time and storage will be wasted to modify field lengths and insure decimal alignment.

The following abbreviations will be used throughout the examples:
DISP: DISPLAY usage (external decimal>.

COMP-3: COMPUTATIONAL-3 usage (internal, or packed decimal).
COMP: COMPUTATIONAL usage (binary).

Arithmetic operations can be performed on data in packed, binary or floating-point format. As a basis for analyzing mixed mode operations, these examples illustrate the core required to add fields of the same mode.

ADD COMP-3 to COMP-3 6 bytes
ADD COMP to COMP 12 bytes
ADD DISP to DISP 24 bytes

Compare the above core requirements with the following examples:

ADD DISP to COMP-3 12 bytes
ADD DISP* to COMP 20 bytes
ADD COMP-3 to COMP 20 bytes
ADD COMP-3 to DISP 18 bytes
ADD COMP to COMP-3 20 bytes
ADD COMP to DISP 32 bytes

*Note: The DISPLAY field must not exceed nine digit positions, or a subroutine would be required to handle the statement.

Mixed mode moves have a similar effect on efficiency. As a basis for analysis, the following examples illustrate moves in the same mode.

MOVE DISP to DISP
MOVE COMP-3 to COMP-3
MOVE COMP to COMP

6 bytes
6 bytes
8 bytes

compare these core requirements with the following examples:

MOVE DISP to COMP-3 6 bytes
MOVE DISP to COMP 14 bytes
MOVE COMP-3 to COMP 14 bytes
MOVE COMP-3 to DISP 6 bytes
MOVE COMP to DISP 20 bytes
MOV:E COMP to COMP-3 14 bytes

The cost in bytes of moving COMPUTATIONAL-3 data to a REPORT field is:

24 bytes for a simple move;
12 bytes for floating insertion character;
24 bytes for non-floating digit postion;
18 bytes for decimal alignment;
24 bytes for trailing characters;
12 bytes for unmatched digit positions.

Mixed format moves with decimals aligned will result in no extra core usage in moves between DISPLAY and COMPUTATIONAL fields. However, other mixed format moves involving binary fields will take from 6 to 14 extra bytes.

Group moves of 256 or fewer bytes cost less than a series of single moves of the E~lementary items within the group item. Any move of more

76 Disk and Tape Operating Systems COBOL Programmer's Guide

\ i
""'--'/

u

than 256 bytes causes a subroutine to be used, if the operands are
unequal in length and one or both of them is greater than 256.

At present, arithmetics in mixed format require 6 to 22 bytes of
extra core for each operation. This is sufficient reason to avoid it.
Data files should have their arithmetic fields converted to packed or
binary format for most efficiency.

For optimum use of storage when using relational statements, first
make all computations1 and then compare the results. Following is a
list of the amount of storage required to perform various kinds of rela­
tional statements:

The cost in bytes to execute an IF statement when data is defined as
DISPLAY and COMPUTATIONAL-3 is:

18 bytes for conversion and for the compare and
branch instruction, and

18 bytes for decimal alignment.

The cost in bytes to execute an IF statement when all data is defined
as COMPUTATIONAL-3 is:

6 bytes for the compare and branch instruction
Cno decimal alignment>.

42 bytes for the compare and branch with decimal
alignment.

The cost in bytes to execute an IF statement when all data is defined
as COMPUTATIONAL is:

18 bytes for the compare and branch instruction,
when the number of decimal digits is 1 to 9.
The number of bytes required to execute the IF
statement is unpredictable when the number of
decimal digits is from 10 to 18.

GENERAL CODING TECHNIQUES

The remaining part of this chapter is devoted to specific programming
techniques which1 when incorporated in a COBOL program, will increase
its efficiency. These techniques are divided into two broad categories:
arithmetic and non-arithmetic. The text will point out suggested
methods for using these techniques and provide examples to illustrate
each suggestion.

Before beginning the specifics of efficient COBOL coding, the pro­
grammer should remember that, as a general rule, time and storage are
reduced whenever §i~t§ill§gt~ ~r~ ~§Et si~l~·

ARITHMETIC SUGGESTIONS

ARITHMETIC FIELDS

Before use, all data fields not containing a value clause should be
initialized with numeric data or zeros by the problem program to insure
accurate results. Using an uninitialized field may produce invalid
results or cause an abnormal job termination.

Section VI: Programming Considerations 77

INTERMEDIATE RESULTS IN A COMPLEX EXPRESSION

The compiler can process complex statements, but not always with the same efficiency of storage utilization that the programmer may obtain by breaking up a complex statement into several simple statements. The compiler handles complicated expressions as a series of simple opera­tions, each producing an intermediate result. It is this result which is used in the next operation to obtain a new intermediate result until the final answer is calculated. Because truncation may occur during computations, unexpected intermediate results may be obtained, thus pro­ducing invalid results.

Intermediate results do not occur in arithmetic statements containing only a singlE= pair of operands. However, intermediate results are pos­sible in the following cases:

1. In an ADD or SUBTRACT statement containing multiple operands immediately following the
verb.

2. In a COMPUTE statement specifying a series of arithmetic operations.

3. In arithmetic expressions contained in IF or
PERFORM statements.

Because of concealed intermediate results, the final result is not always obvious. To avoid unexpected intermediate results make critical computations by assigning maximum (or minimum> values to all fields. Then analyze the results by testing specific computations for expected results. The ~QB0~-~~!!9:~~g~_§£~£!.f!.£~tiQ!!§._Manual, Form C24-3433, pro­vides detailed information on calculating intermediate results.

Splitting up the expression and controlling the intermediate results eliminates the necessity of computing for the worst or best case. Con­sider the following example:

COMPUTE B = (A+ 3) / C + 27.600.

Define adequate intermediate result fields, i.e. :

02 INTERMEDIATE-RESULT-A PICTURE S9(6)V999.
02 INTERMEDIATE-RESULT-B PICTURE S9(6)V999.

Then, split up the expression as follows.

ADD A, 3 GIVING INTERMEDIATE-RESULT-A.

Then write:

DIVIDE C INTO INTERMEDIATE-RESULT-A GIVING
INTERMEDIATE-RESULT-B.

Then, compute the final result by writing:

ADD INTERMEDIATE-RESULT-B, 27.600 GIVING B.

EXPONENTIATION

Exponentiation. to a fractional power requires the use of the floating­point feature. This feature increases both the amount of storage used and the calculation time involved. Floating-point computations can be

78 Disk and Tape Operating Systems COBOL Programmer's Guide

\~

I~

•.

avoided by separating the statements into individual computations. The
first example given requires the use of the floating-point feature. The
second example restates the problem, illustrating how to circumvent use
of floating-point numbers.

Assume data is defined:

DATA DIVISION.
WORKING-STORAGE SECTION.

77 FLD PICTURE S99V9, COMPUTATIONAL-3.
77 EXPO PICTURE S99, COMPUTATIONAL-3.
77 P PICTURE S99.
77 N PICTURE 899.
77 VALUE1 PICTURE S99.

Assume values used in the example were appropriately moved into their
respective symbolic names as follows: VALUE1 = 5, P = 10, and N = 5.

Example 1:

COMPUTE FLD = VALUE1 ** (P / N).

Because (P / N) = 10/5=2.00 (with decimal places), the floating-point
feature is required to solve this statement; it is not known whether
decimal digits are present when the exponent is developed.

The statement in example 1 can be solved by writing:

COMPUTE EXPO= (P / N).

The result is truncated to two significant digits (S99>.

Then. write:

COMPUTE FLD = VALUE1 ** EXPO.

Thus, the statement written in example 1 can be solved by separating it
into two distinct computations, avoiding the need for floating-point
inst.ructions.

Intermediate result truncation can affect final results. For
example:

Example 3:

Assume that VALUE1 = 10, and N 2.

If COMPUTE FLD = (VALUE1 ** N) - 2 is written, by substitution the
result is:

FLD
899V9
S99V9

(VALUEl ** N) - 2
= (899 ** 899) - 2
= (10 ** 2) - 2

By the rule for truncation:

899V9 = 100.0 - 2.

The most significant digit is truncated. The final result is then:

FLD = 00.0 - 2
Hence, FLD = -02.0, could be an unexpected result.

Section VI: Programming Considerations 79

The situation can be corrected by expanding the target field (FLD) as follows:

77 FLD PICTURE S999V9

Then, when the statement is written (assuming VALUEl = 10, and N 2):

COMPUTE FLD = (VALUEl ** N> - 2.

The result is:

FLD = (VALUEl ** N) - 2
S999V9 = (899 ** 899> - 2
S999V9 = (10 ** 2) - 2.

By the rules for truncation:

S999V9 = 100.0 - 2.
The result is,

FLD = 098.0, which is the expected result.

DECIMAL POINT ALIGNMENT

Correction of non-aligned decimals requires compiler generated instruc­tions for padding, sign movement and blanking-out results. Therefore, the programmer should specify identical decimal positions whenever poss­ible. If it is not feasible to declare all items aligned, the item can be moved to a work area to insure alignment, before use in a multiple operation.

As a general rule, two or four additional instructions (12 to 18 bytes) are required in basic arithmetic statements and IF statements when decimal point alignment is necessary to process two COMPUTATIONAL-3 fields. For example,

77 A PICTURE S999V99 COMPUTATIONAL-3.
77 B PICTURE S999V9 COMPUTATIONAL-3.

By defining FIELD B like FIELD A, (PICTURE S999V99), the need for align­ment instructions is eliminated, and no more bytes are required for FIELD B. (Remember, hardware requires an odd number of digits for internal decimal fields. By using an odd number of nines when defining data in COMPU1?ATIONAL-3 format, more efficient object code results without using additional storage for the item defined.)

To illustrate further:

ADD 1 to A.

The literal is compiled in internal decimal form, but decimal point ali­gnment instructions are necessary (four instructions, 18 bytes>. If, instead, the literal is written 1.00, only one byte is added in the lit­eral area. The 18 bytes required for alignment of decimal points are eliminated.

80 Disk and Tape Operating Systems COBOL Programmer's Guide

u

i I

\..,_)

u

SIGN CONTROL

For numeric fields specified as unsigned Cno s in the picture clause of
external or internal decimal items>, the COBOL compiler attempts to
ensure that a special positive sign CF> is present so that the values
are treated as absolute.

The compiler inserts a hexadecimal F whenever the posibility of a
change in sign exists. Examples are: subtracting unsigned fields, mov­
ing a signed field to an unsigned field, or an arithmetic operation on
signed fields where an unsigned result field is specified. (The hexade­
cimal F, while treated as a plus, does not cause the digit to be printed
or punched as a signed digit.> If the PICTURE associated with a data­
name indicates the presence of an operational sign, the character D will
appear when the value is negative, and the character c will appear when
the value is positive.

The sign is not checked on input data nor on group level moves.
Therefore, the programmer must know what type of data is being used
under these circumstances.

The use of unsigned numeric fields increases the possibility of error
Can unintentional negative sign could cause invalid results) and
requires additional generated code to control the sign. The use of
unsigned fields should be limited to fields that are to be treated as
absolute values. The following example illustrates the additional
instructions generated by the compiler each time an unsigned field is
modified:

If data is defined as:

A PICTURE 999.
B PICTURE S999.
c PICTURE S999.

and the following moves are made,

MOVE B TO A.
MOVE B TO c.

moving B to A causes four more bytes of--storage to be useO. _than moving B
to c, because an absolute value is specified for receiving field A.

Note: An s must be specified in the picture clause of a binary item,
since a binary item is always treated as a signed item.

UNEQUAL LENGTH FIELDS

When handling fields of unequal length, an intermediate operation may be
required. For example, zeros may have to be inserted in numeric fields
and blanks in alphabetic or alphanumeric fields in order to pad them out
to the proper length. To avoid these operations,, the number of integer
digits in fields used together should be equal. Any increase in data
field size is compensated for by the savings in generated object code.

Section VI: Programming Considerations 81

For examplea if data is defined as:

SENDFLD PICTURE 8999.
REtEIVEFLD PICTURE 899999.

and SENDFLD is moved to RECEIVEDFLD, the cost of zeroing high-order positions (numeric fields are justified right> is 10 bytes. To elimin­ate these 10 bytes define SENDFLD as:

SENDFLD PICTURE 899999.

The overall length of a field can have a significant bearing on the most efficient format. Binary fields defined as having moE~ than nine digits require a double word for storage. This exceeds the natural hardware limits for binary arithmetic, and results in extra processing steps. By defining fields that exceed nine digits as packed, both core and execution time will be saved.

Field lengths ranging from one to nine digits can usually be stored in fewer bytes in binary format than in packed format; however, it takes 8 bytes to add two aligned binary fields, and only six bytes to add two aligned packed fields.

The choice of which format to choose in this case will depend on con­sidering a multitude of factors. Some of these factors are:
• Do the fields have to be rounded?

• Do the fields require print editing?

• Does your application require extensive calculating? (Binary arith­metic will normally run faster.>

• Have you considered slack bytes?

• Do your data fields require decimals?

CONDITIONAL STATEMENTS

The final result of an expression included in a conditional statement is limited to an accuracy of six decimal places. Therefore, computing ar­ithmetic values separately and then comparing them may produce more accurate results than including arithmetic expressions in conditional statements. 1The following example shows how separating computations from the conditional can improve accuracy.

If data is defined as:

77 A PICTURE S9V9999 COMPUTATIONAL-3. 77 B PICTURE S9V9999 COMPUTATIONAL-3. 77 C PICTURE S999V99999999 COMPUTATIONAL-3.
and the following conditional statement is written,

IF A * B = C GO TO EQUALX.
the final result will be S99V999999. Although the receiving field for the final result Cc> specifies eight decimal positions, the final result actually obtained in this example contains six decimal places. For increased accuracy, define the final result field as desired, perform the computation, and then make the desired comparison as follows.

77 X PICTURE IS S999V99999999 COMPUTATIONAL-3.

COMPUTE X = A * B.
IF X = C GO TO EQUALX.

82 Disk and Tape Operating systems COBOL Programmer's Guide

\ ; '-'/

(

"_./

u

~Q~~: Because COMPUTATIONAL-3 format is the most efficient, numeric
comparisons are usually done in this format. Note also, because
compiler-inserted slack bytes can contain meaningless data, group com­
pares should not be attempted when the group contains slack bytes unless
the programmer knows the contents of these bytes.

SUBSCRIPTING

Using a constant subscript instead of a variable (data-name) subscript
results in less core storage and faster execution time. For example,
NAME (1, 23) is more efficient than NAME CS1, S2) where S1=1 and S2=23.
The address of NAME Cin the former case> is resolved at compile time,
based on the given constant subscripts. However, when variable sub­
scripting is used, the address of the field is computed each time a sub­
scripted field is referenced.

For further efficiency, frequently referenced subscripted fields
should be moved to a work area, manipulated and, if necessary, returned.

Example:

ADD D TO TAB-FIELD CA, B, C).
IF TAB-FIELD CA, B, C) = LIMIT-FLD GO TO ERR.
MOVE TAB-FIELD CA, B, C) TO F.
COMPUTE TAB-FIELD CA, B, C) = TAB-FIELD CA, B, C) + F/G

This. coding could be improved by writing:

MOVE TAB-FIELD (A, B, C) TO WORK-FLD. ADD
D TO WORK-FLD. IF WORK-FLD = LIMIT-FLD GO TO ERR.
MOVE WORK-FLD 'I'O F, COMPUTE TAB-FIELD
CA, B, C) = WORK-FLD + F / G.

Note: Because subscripting is done in the binary mode, data-name sub­
scripts not in binary must be converted. Therefore, use of binary mode
subscripts increases efficiency. If binary is used, the picture must
begin with S and the field length should be four, nine, or 18 places
with no decimal positions.

ALIGNMENT AND SLACK BYTES

If files and working storage are organized so that all halfwords, full­
words and doublewords are grouped together, no additional storage is
wasted in satisfying boundary alignment requirements. However, if these
items are not grouped together properly, the amount of additional wasted
storage required for proper alignment is:

1 byte per halfword
1 to 3 bytes per fullword
1 to 7 bytes per doubleword.

The user need be concerned with slack bytes only when using binary or
floating-point data. The number of bytes of main storage necessary for
the Data Division must include bytes added to produce valid boundary
alignment for binary and floating-point data fields.

The compiler generates both slack bytes to align data and a diagnos­
tic message indicating it has done so.

Section VI: Programming Considerations 83

Example:

01 RECORD.
02 FLD-1 PICTURE IS X(2).
02 FLD-2 PICTURE IS S99999 COMPUTATIONAL.

Because FLD-2 is binary and five digits in length, the compiler sets aside one fullword which must be aligned on a fullword boundary. In this example, two slack bytes are required. The compiler inserts them automatically.

Since COBOL aligns computational fields on output files and expects that input files will contain slack bytes (where required), a problem could exist when reading or writing a file. A file to be read that con­tains computational fields without slack bytes must be coded with the knowledge that this is so. If the file contains computational data without slack bytes, the data will not be properly aligned when read from the filE~; thus it cannot be processed by the compiler.
The following is a technique for manipulating computational data not containing slack bytes so that it may be processed by the compiler.
Assume a grou? record called RECORD-C exists on a file and consists of two bytes of alphanumeric data called GOLD, and a 4-byte binary data item called SILVER. The record on the file would appear as follows:

r----T----T----T----T----T----1
I I I I I I I RECORD-C I I I I I I I l __ . __ ..i. ____ .,L ____ ..i. ____ ..i. ____ ..i. ____ J

GOLD SILVER

If an FD were defined:

01 RECORD-C.
02 GOLD PICTURE XX.
02 SILVER PICTURE S99999 COMPUTATIONAL.

the compiler assumes the following structure:

RECORD-C

GOLD SLACK
BYTES

SILVER

When the record on the file is read, it is placed in the area defined, left justified. The area thus contains the following:

RECORD-C

GOLD SLACK
BYTES

SILVER
(This is the compiler-generated
address of SILVER.)

Thus, the first two bytes of the 02 SILVER are lost because of improper alignment. Hence, when the 02 SILVER is accessed, only the last two bytes are available. To circumvent this problem, define RECORD-C as follows:

84 Disk and Tape Operating Systems COBOL Programmer's Guide

i\._i./

. I w

01 RECORD-C.
02 GOLD PICTURE XX.
02 SILVER PICTURE XXXX.

and a GROUP item such as:

01 LEAD.
02 DIAMOND PICTURE S99999 COMPUTATIONAL.

Now, access RECORD-C. This places it in the buffer, properly aligned.

Then move the 4-byte elementary 02 SILVER (defined as alphanumeric but
is actually binary data) to the record 01 LEAD. Because the 01 LEAD is
a group item, the data moved retains its original form (no data con­
version takes place) and the elementaries 02 SILVER and 02 DIAMOND are
properly aligned. Thus, by accessing DIAMOND, the binary data can be
operated on as desired.

There is an alternate method of obtaining proper alignment when read­
ing the record.

Define a record in an FD as follows:

01 RECORD-C.
02 GOLD PICTURE XX.
02 SILVER PICTURE XXXX.

The area defined would appear:

r----T----T----T----T----T----1
I I I I I I I

RECORD-C I I I I I I 1
L----i----i----i ____ i ____ i ____ J

GOLD SILVER

Then define a record in the Working-Storage Section as:

01 BRASS.
02 LEAD PICTURE XXXX.
02 DIAMOND REDEFINES LEAD PICTURE S99999

COMPUTATIONAL.

As before, when the record is accessed, it is placed in the buffer, pro­
perly aligned. Its structure in the buffer would be:

r----T----T----T----T----T----1
I I I I I I I

RECORD-C I I I I I I I
L----i----i----i----~----i ____ J

GOLD SILVER

Now move the 4-byte elementary 02 SILVER to the elementary 02 LEAD.
Because the 02 SILVER and 02 LEAD elementaries are both defined as dis­
play, the data retains its original form and the elementaries are prop­
erly aligned. By accessing the REDEFINES (DIAMOND) the binary data can
be operated on as desired. The same problem could exist when reading or
writing floating-point data.

For a complete discussion of slack bytes, refer to the publication,
!~~-Qy~~~!!!L1~Q_Qis~-~gg_!~~-QE~r~!!gg_§yste~~~-_£Q~Q~-~~!!9:~~~-§£~£!fi­
£at!~~· Form C24-3433.

Section VI: Programming Considerations 85

REDUNDANT CODING

Using computational designators at the group level helps avoid redundant coding of usage designators. (This does not affect the object program.)
Example:

02 FULLER.
03 A COMPUTATIONAL-3 PICTURE 99V9.
03 B COMPUTATIONAL-3 PICTURE 99V9.
03 C COMPUTATIONAL-3 PICTURE 99V9.

This coding could be improved by writing:

02 FULLER COMPUTATIONAL-3.
03 A PICTURE 99V9.
03 B PICTURE 99V9.
03 C PICTURE 99V9.

REDEFINITION

Main storage can be used more efficiently by writing different data descriptions for the same data area. For example, the following coding shows how the same area can be used as a work area for the records of several input files that are not processed concurrently:

WORKING STORAGE SECTION.
01 WORK-AREA-FILE1.

Largest record description for FILE1.

01 WORK-AREA-FILE2 REDEFINES WORK-AREA-FILEl.
Largest record description for FILE2.

The REDEFINES clause can also be used to manipulate unusual data forms. For example, a technique for isolating one binary byte follows.

02 A PICTURE S99 COMPUTATIONAL.
02 FILLER REDEFINES A.

03 FILLER PICTURE X.
03 B PICTURE X.

Explanation:

COMPUTATIONAL sets up a binary halfword:

S1 78 15_ _____ '-"""~---
Byte 1 Byte 2

02 FILLER REDEFINES A., stating that A is to be redefined as follows:

Ignore first byte (03 FILLER PICTURE X).
Name second byte B-. (03 B PICTURE X).

8 6 Disk and T'ape Operating Systems COBOL Programmer• s Guide

i \
_;,)

/ u

u

u

Now byte B can be moved to a work area, and operated on logically at the
assembler level, or compared logically at the COBOL level. It can be
stored on a file, and later moved back to its point in a similarly
defined field. When using data: in this manner, the programmer must be
careful of signs and numeric values.

Another illustration of REDEFINES to manipulate data concerns the
test IF NUMERIC. Under normal language usage, a field is considered
numeric if all the positions of the field are numeric with the exception
of the sign position. If a field is to be considered numeric only when
it is unsigned, the sign position must be tested. A technique for relo­
cating the sign Car "shifting") so that it can be tested as an unsigned
numeric value follows:

Assume a field is defined:

02 IF-NUM-FIELD PICTURE X(5) VALUE 1 00000'.
02 CHANGE-FIELD REDEFINES IF-NUM-FIELD.

03 REAL-FIELD, PICTURE 89(4).
03 FILLER, PICTURE X • .

IF-NUM-FIELD defines a 5-byte alphanumeric field.
REAL-FIELD redefines this field to be 4 bytes numeric.

The fields appear in storage as follows:

IF-NUM-FIELD

FO FO FO FO p·o
1 2 3 4 5 Byte position

REAL-FIELD FILLER

To make an IF NUMERIC test true for only unsigned fields:

1. Move the 4-byte value to be tested into REAL-FIELD. The value and
its sign occupy bytes 1-4.

Example:

If +1234 is moved to REAL-FIELD, the resultant field appears in
storage as follows:

IF-NUM-FIELD

case .A Fl F2 F3
1 2 3

REAL-FIELD

C4
4

FO
5
~

FILLER

Byte position

Note: the low-order byte (rightmost byte> of IF-NUM-FIELD retains
its initfal value of O.

If 1234 is moved to REAL-FIELD, the resultant field appears in
storage as follows:

IF-NUM-FIELD

case B Fl F2 F3 F4 FO
1 2 3 4 5 Byte position

~

REAL-FIELD FILLER

Section VI: Programming Con~rations
"·-.

87

2. Test IF-NUM-FIELD for NUMERIC.

All four bytes of REAL-FIELD will be tested as an unsigned numeric value because the sign position was "shifted left one position," and is no longer in the units position of IF-NUM-FIELD. If the value is unsigned, a hexadecimal F appears in the sign position or fourth byte on the 4-byte field, and it appears as an unsigned numeric.

Thus in the preceding example, when the fourth byte is tested in case A, the numeric test is not true, but when tested in case B the numeric test is satisfied.

EDITING

Data fields should be in packed format (COMPUTATIONAL-3) prior to edit­ing. If the arithmetic on such fields is done in packed rather than binary mode, a conversion will be saved.

In addition, careful use of editing symbols can increase a program's efficiency. For example, a high-order nonfloating digit position inv9lves more instructions than a floating digit position.

Example:

Furthermore, the blank-when-zero is implied in certain pictures. For example:

\~

I zzz.zz 1

\._i./

If blank-when-zero is not required for low-order characters, more effi­cient coding is gEnerated by pictures such as:

ZZZ.99

FILES

The COBOL OPEN requires a work area that cannot be recovered in a COBOL program. Less storage is used if multiple files are opened with one OPEN statement than when an OPEN is used for each file. A single OPEN for each file requires approximately 100 bytes of additional storage per file-name.

To conserve storage, use: OPEN INPUT FILEA, FILEB ••••

rather than: OPEN INPUT FILEA OPEN INPUT FILEB ••••

After opening the file, efficiency is increased by issuing only one read statement per input file and one write statement per output file.

Data should not be moved from an input file before the file has been opened and the first record has been read; data should not be moved from an input file after the file has been closed. Neither should data be moved to an output file before it has been opened nor after it has been closed. In addition, the contents of input/output buffers must be inserted by the problem program before each WRITE. If blanks or zeros

88 Disk and Tape Operating Systems COBOL Programmer's Guide

('1
_)

are not moved to unused areas of an output buffer, the output file will
contain whatever was previously in the buffer.

ACCEPT VERB

The ACCEPT verb does not provide for recognition of the last card read
from a card reader. When COBOL detects a /* card it drops through to
the next statement. Because no indication of this is given by COBOL, an
end of file detection requires special treatment. Thus, the programmer
must provide his own end card (some card other than /*) which he can
test to detect an end-of-file.

PARAGRAPH-NAMES

Paragraph-names are used to identify the range of a PERFORM verb Ci.e.
the paragraphs or procedures to be performed). To be meaningful a name
should describe the function of the procedure. Since paragraph-names
occupy storage relative to their lengths, long names should be avoided
when the PERFORM verb is used. Instead a NOTE should be placed immedi­
ately preceding the paragraph to identify its function and a shortened
name used as the paragraph-name.

Example: Avoid:

MOVE A TO B.
PERFORM ROUTINE-TO-COMPUTE-VALUE-OF-A.

ROUTINE-TO-COMPUTE-VALUE-OF-A. COMPUTE A

Recommended: MOVE A TO B,
PERFORM ROUTINE.

D + E * F.

NOTE ROUTINE TO COMPUTE VALUE OF A
ROUTINE. COMPUTE A = D + E * F.

A NOTE and/or a blank card can be used to identify in-line procedures
where paragraph-names are not required.

TRAILING CHARACTERS

Pictures with a trailing period or comma require that punctuation fol­
low, or the trailing picture character is treated as punctuation.

Example:

77 A PICTURE IS 999., USAGE IS DISPLAY.

section VI: Programming considerations 89

Variable length records can be specified for standard sequential files only. The OCCURS ••• DEPENDING ON clause describes the part of the record that is to be variable. An example of specifying a variable length record is, as follows:

01 VARIABLE-REC.
05 FIXED.

10 A PICTURE X(46>.
10 CONSTANT PICTURE 99.

05 VARIABLE-PART OCCURS 10 TIMES DEPENDING ON CONSTANT.
10 V-1 PICTURE X(38).
10 V-2 PICTURE 9(10>.

The record consists of a fixed portion and a variable portion. The variable portion must be the last part of the record. The variable por­tion in the example can occur a maximum of 10 times depending on CON­
STANT. In this example, CONSTANT is part of the record but it need not be. However, the programmer is always responsible for initializing and updating the value of CONSTANT before referring to data items that are part of the variable portion of the record (such as V-1 and V-2 in the example). The value of CONSTANT may be O, in which case only the fixed portion of the record exists. However, the value of CONSTANT cannot be negative.

References to the variable portion must always be subscripted. For example, V-1 (1) refers to the first occurrence of the field in the
record. If the subscript is a data-name, for example V-1 CN>, the pro­grammer must be sure that N has the appropriate value. He may wish to
initialize it to 1, increment it to refer to subsequent portions of the record, and check it for maximum size.

If a subscript is represented by a literal, the location of the sub­scripted data item is resolved at compile time. If a subscript is represented by a data name, the location is resolved at execution time
for each occurrence of the data item. Thus, if a data item subscripted by a variable~ is to be used frequently, it is more efficient to move the data item to a work area. It is also more efficient to define sub­
scripts as COMPUTATIONAL with pictures of not more than four integers.

When moving variable length records, the length attribute is deter­mined by the receiving field. If the record to be moved contains an
OCCURS ••• DEPE:NDING ON clause, the field on which the length depends should be moved to the receiving field before moving the entire record at the group or 01 level.

BLOCKING VARIABLE LENGTH RECORDS

When blocking variable length records, the programmer must consider how much the records will vary and the size of the buffer area. A buffer is a designated area in main storage used for input/output transactions. When file processing begins, a block is placed into a buffer where the records are directly addressed. Execution of a READ or WRITE statement
directs a pointer to the appropriate record in the buffer. When writing a fi~~' the buffer is filled and then written out as a block.

When a variable length record is written, it actually contains the record itself and a 4-byte control field indicating the record length. An additional 4-byte control field containing the block size precedes
each block. The following illustration shows the layout of both blocked and unblocked records.

90 Disk and Tape Operating Systems COBOL Programmer's Guide

1,
! \

i ' u

u

u

I l
UNBLOCKED BLOCKSIZEIRECORDSIZEIRECORD IIRGIBLOCKSIZBIRECSIZEIRECORD

---------+----------+-------+---+---------+-------+-------
4- bytes I 4-bytes]x-bytesl l 4-bytes 14-byteslx-bytes

I J I I I
BLOCKED BLOCKSIZEIRECORDSIZEIRECORD IRECORDSIZEIRECORD IRECSIZEIRECORD

---------+----------+-------+----------+-------+-------+-------4- bytes J 4-bytes Jx-bytes] 4-bytes jx-bytesJ4-byteslx-bytes

These control fields are supplied by the system and are not available
to the programmer. However, they are a consideration when determining
the buffer size which is specified by means of the BLOCK CONTAINS
clause. If the BLOCK CONTAINS integer CHARACTERS form of the clause is
used, integer must equal the size of the largest record defined for the
file (RECORD CONTAINS) plus an additional four bytes for each record for
the control field that precedes each record. (The compiler adds the
4-byte block count field. The programmer does not include this field in
his count.) Note that if the file contains records with COMPUTATIONAL,
COMPOTATIONAL-1, or COMPUTATIONAL-2 entries, it is the programmer's
responsibility to add necessary intra-record slack bytes. These slack
bytes are part of the record description and must be included in the
value of the integer.

Thus, if two types of records are to be written, one of 400 charac­
ters in length and the other 200 characters in length (RECORD CONTAINS
200 •ro 400 CHARACTERS), the minimum integer that can be specified is 404
(BLOCK CONTAINS 404).

However, if a record 200 characters long was placed in the block
spec:if ied, there would not be enough space allocated for another record
even if the next record was also 200 characters long, because the 4-byte
count field preceding each variable length record could not be accommo­
dated. Therefore, given the above facts, the programmer should at least
specify BLOCK CONTAINS 408 ~nd use the APPLY WRITE-ONLY option. This
option is specified to make optimum use of buffer space. When it is
specified, the length of the next record to be written is checked
against the space remaining in the buffer. If the space is sufficient,
the record is written. If APPLY WRITE-ONLY is not specified, the buffer
is truncated and the block is written out whenever the space remaining
in the buffer is not sufficertt for the maximum record (400 characters in
the above example) defined for the file plus its 4-byte count field.

The programmer can use the RECORDS option instead of the CHARACTERS
option in the BLOCK CONTAINS clause to specify how many maximum size
records are to fit into a block. The compiler then computes the buffer
size by multiplying the length of the maximum size record by the number
of records specified and adding four bytes for the block count field and
four bytes for a count field for each record. This option is more effi­
cient if the records do not vary in size considerably. However, if the
following is specified:

RECORD CONTAINS 200 TO 400 CHARACTERS
BLOCK CONTAINS 3 RECORDS

the compiler reserves a buffer area of 1216 characters. Depending on
the actual size of the records, more records could probably be contained
in the buffer area. Given the above facts, it is possible for a block
to contain five 200-character records (5*204+4<1216>.

Section VI: Programming Considerations 91

PROCESSING BUFFERS

Files can be processed using multiple buffers. Logical records are referenced in the proper block by adjusting registers (using them as pointers).

This technique elimates the need for moving a record from the buff er area to a separate record work area, as well as the record work area itself. The record can be operated on directly in the buffer area.

When processing records in a buffer, the next read results in the previous record not being available. Because the previous record is no longer available, the technique of moving a high value to the control field of the last record (to force the processing of records remaining on the other file) cannot be used.

Here are several alternatives:

1. A GO TO statement, prior to the compare, can be altered during the AT END procedure to GO TO the low compare procedure, thus bypassing the compare.

2. A dummy record having a high value in its control field can be pro­vided as the last logical record. This automatically causes the associated files to compare low. However, this can result in the AT END condition never occurring.

3. The control field can be moved to a separate work area following the read, and compared in the work area. The control field is then
availablE~ in the work area following an AT END condition. The AT END procedure can move a high value into the control field.

VARIABLE RECORD ALIGNMENT CONTAINING OCCURS ••• DEPENDING ON CLAUSE

Records are processed in the file's buffer area. The first record starts on a doubleword boundary. If there is no OCCURS ••• DEPENDING ON clause, a diagnostic message is given indicating the padding to be added to the record to assure proper alignment of succeeding records.

To align blocked V-type records containing an OCCURS ••• DEPENDING ON clause in the buffer:

1. Determine the largest alignment factor with the record.

Alignment factor is
2
4
8
0

For
COMPUTATIONAL (1-4 digits)
COMPUTATIONAL-1 or COMPUTATIONAL (5-18 digits)
COMPUTATIONAL-2
OTHER

2. For alignment factors of four or less, pad both the fixed and the variable portions of the record to an even multiple of the align­ment factor.

3. For an alignment factor of eight, move the record, as a group, to 01 in the Working-Storage Section.

92 Disk and ~rape Operating Systems COBOL Programmer's Guide

I

~

u

u

The USE AFTER STANDARD ERROR clause provides the programmer with a means for investigating input/output processing errors. Depending upon the presence or absence of the declarative section, roes provides certain error processing procedures when an input/output error occurs. The fol­lowing points should be considered when the USE AFTER STANDARD ERROR clause is used with the various types of file organization.

SEQUENTIAL TAPE FILE ORGANIZATION

1. If the declarative section is not included in the program and a wrong length record occurs, the program is abnormally terminated and a storage dump is produced.

If the the declarative section is not included in the program and a parity error is detected when a block of tape records is read, the tape is backspaced and reread 100 times. If the parity error per­sists, the tape block within which the error occurred is considered a tape error block, and the block is added to the block count found in the DTF table. IOCS indicates an input/output error Cby a diag­nostic message> and cancels the job.

2. If the declarative section is included in the program and a parity 1error is detected when a block of tape records is read (described in 1 above>, the tape is backspaced and reread 100 times. If the error persists, the tape block is considered a tape error block, and the block is added to the block count found in the DTF table. However, instead of canceling the job (this occurs when a declara­tive section is not included in the program>, IOCS transers control to the declarative section procedures to be followed on an error condition.

3. The address of the tape error block is stored by COBOL in register 3 + 192, and is accessible through an assembler subprogram.

Normal return (to the main program) from the declarative section is through the IOCS subroutine invoked, thus bringing the next sequen­tial block into main storage and permitting continued processing of the file (the bad block is bypassed).

The programmer can interrogate the DTF table further, and display any pertinent data desired (such as block number) by using a CALL statement USING filename.

A return through the use of GO TO does not bring the next block into main storage, therefore continued processing of the file is impossible.

4. In the case of tapes, the error declarative is entered only for
read errors. For write errors, IOCS automatically retries 15 times (including skips and erases) and then cancels the job.

SEQUENTIAL DISK FILE ORGANIZATION

1. If the declarative section is not included in the program and a parity error occurs when a block of records is read, the disk block is reread 10 times. If the read error persists, the disk block, within which the error occurred is considered a disk error block, and the job is terminated. If a parity error occurs when a block
of records is written, IOCS attempts to write the block on an alternate track, and continued processing of the file is permitted.

Section VI: Programming Considerations 93

If the declarative section is not included in the program and a wrong length record occurs, roes issues an invalid supervisor CALL
of 32 which causes a storage dump.

2. If the declarative section is included in the program, and a read
or write error occurs, the declarative section is entered.

If a parity error occurs when a block of records is read (described
in 1 above>, the disk block is reread 10 times. If the read error
persists, the disk block within which the error occurred is consi­dered a disk error block and a READ operation cannot be issued to
the error block. roes transfers control to the declarative section
procedures to be followed on an error condition.

In the case of a READ operation, normal return from the declarative
is to the roes subroutine invoked, thus bringing the next sequen­tial block into storage and permitting continued processing of the
file.

If a parity error occurs when a block of records is written, roes
transfers control to the declarative section procedures to be fol­lowed on an error condition.

In the case of a WRITE operation, normal return from the declara­
tive is to the next instruction in the problem program. The disk block that was to be written is bypassed.

3. In the case of a READ error, a return from the declarative through the use of GO TO does not bring the next block into main storage. Continued processing of the file is impossible and the file must be
closed.

In the case of a WRITE error, a return from the declarative through
the use of GO TO permits continued processing of the file. A nor­mal return from the declarative results in the record to be written
being bypassed.

Refer to "Section VIII: Processing COBOL Files on Direct-Access
Devices" for information on error processing for other direct-access
organizations.

94 Disk and Tape Operating Systems COBOL Programmer's Guide

\ ') ,._v

I
\~

SECTION VII: CALLING AND CALLED PROGRAMS AND OVERLAYS

This section describes the accepted linkage conventions for calling and call12d programs and discusses linkage methods when using an assembler
language program. In addition, this section contains a description of the overlay facility which enables different called programs to occupy the same area in main storage at different times. It also contains a
suggE~sted assembler language program for use in conjunction with the overlay feature.

CALLING AND CALLED PROGRAMS

A COBOL source program which passes control to another program is a
calling program. The program which receives control from the calling program is ref erred to as a called program. Both programs must be com­
piled (or assembled> in separate job steps, but the resulting object
modules must be linkage edited together in the same phase.

A called program can also be a calling program; that is, a called
program can, in turn, call another program. In Figure 13, for instance, program A calls program B: program B calls program c. Therefore:

1. A is considered a calling program by B.

2. B is considered a called program by A.

3. B is considered a calling program by c.
4. c is considered a called program by B.

r--1 I I I A B c I
I r---------------1 r---------------1 r---------------1 I I !Calling ProgramJ !Called Program I I I I I J Of B 1--->I Of A I I I I I I I ~---------------i I I I I I I !Calling Program! !Called Program I I I I I I Of c 1---> I Of B I I I L _______________ J L _______________ J L _______________ J I
I I L----·--J Figure 13. Called and Calling Programs

By convention, a called program may call to an entry point in any other program, except one on a higher level in the path of that program.
That is, A may call to an entry point in B or c, and B may call C;
howeV42r, c should not call A or B. Instead, c transfers control only to B by :issuing the RETURN statement in COBOL (or its equivalent in another
language>. B then returns to A.

LINKAGE

Whenever a program calls another program, a link must be established
between the two. The calling program must state the entry point of the called program, and must specify any arguments to be passed. The called

Section VII: Calling and Called Programs and overlays 95

program must have an entry point and must be able to accept the argu­ments. Further, the called program must establish the linkage for the return of control to the calling program.

LINKAGE IN A CALLING PROGRAM

A calling COBOL program must contain the following statements at the point where another program is to be called:

ENTER LINKAGE.
CALL entry-name [USING argument-list].
ENTER COBOL.

"Entry-name" is the paragraph-name of the entry point in the called program to which control is to be transferred'. The Program-ID should
not be the same as the name in an ENTRY statement within that source module because the Program-ID produces an external reference defining an entry point. The external references.for the entry-point and the
Program-ID must be unique, which would not happen if the entry point and Program-ID are identical.

"Argument-list" is one or more data-names that are to be passed to the called program. If the called program is an assembler language pro­gram, the argument-list may also include file-names and procedure names. A file-name may be used in the argument-list when calling a COBOL pro­gram, for the purpose of modifying the DTF. If no arguments are to be
passed, the USING clause is omitted.

LINKAGE IN A CALLED PROGRAM

A called COBOL program must contain two sets of statements. The follow­ing statements must appear at the point where the program is to be
entered:

ENTER LINKAGE.
ENTRY entry-name [USING parameter-list].
ENTER COBOL.

"Entry-name" is the name of the entry point in the called program.
It is the same name that appears in the CALL statement of the program
that calls this program.

"Parameter-list" is one or more data-names that correspond to the
arguments of the CALL statement of the calling program. Each data-name of the parameiter list must be defined in the Linkage Section of the Data
Division and must have a level number of 01 or 77.

The following statements must be inserted where control is to be returned to the calling program:

ENTER LINKAGE.
RETURN.
ENTER COBOL.

The RETURN statement enables restoration of necessary registers, and it returns control to the point in the calling program immediately fol­lowing the calling sequence.

96 Disk and Tape Operating Systems COBOL Programmer's Guide

I~

i •I

\.._JI

u

u

ENTRY POINTS

Each time an entry point is specified in a called program, an external
name is defined. An external name is a name that can be referenced by
another separately compiled or assembled program. Each time an entry
namE~ is specified in a calling program, an external reference is
defined. An external reference is a symbol that is defined as an
extE~rnal name in another separately compiled or assembled program. The
linkage editor resolves external names and references and combines
calling and called programs into a format suitable for execution togeth­
er, i.e., as a single phase.

~Qi~= Several different entry points may be defined in one COBOL source
module. Different CALL statements in any module of the phase may speci­
fy the same entry point, but each definition of an entry point must be
unique in the same phase.

CORRESPONDENCE OF ARGUMENTS AND PARAMETERS

The number of data-names in the parameter list of the called program
must be the same as the number of data-names in the argument-list of the
calling program. There is a one-for-one correspondence.

Only the address of an argument is passed. Consequently, the data­
name that is an argument and the data-name that is the corresponding
parameter both refer to the same location in main storage. The pair of
data-names need not be identical, but the data descriptions must be
equivalent. For example, if an argument is a level 77 data-name with a
picture size of 30 characters, its corresponding parameter could also be
a level 77 data-name of 30 characters, or it could be a level 01 data­
name with subordinate items whose combined picture sizes are equal to 30
characters.

Although all parameters in the ENTRY statement must be described with
level numbers of 01 or 77, there is no such restriction made for argu­
ments in the CALL statement. An argument may be a qualified name or a
subscripted name. When a group item with a level number other than 01
is specified as an argument, proper word-boundary alignment is required
if subordinate items are described as COMPUTATIONAL, COMPUTATIONAL-1 or
COMPUTATIONAL-2. If the argtJ.ment corresponds to a 01 level parameter,
doubleword alignment is required.

Figure 14 illustrates how a program is called and what data defini­
tions are required to support the CALL.

The calling program 'CALLPROG' calls program 'PAYROLL' at the entry
point 'PAYMSTER' and passes the argument 'JONES-J'. The elementary data
items subordinate to 'JONES-J' (i.e.,'SALARY', 'RATE', 'HOURS'), are
processed by 'PAYMSTER' through its using statement parameter 'PAYOFF'
because, in effect, 'JONES-J' is equated with 'PAYOFF'. Any processing
specified for data items subordinate to 'PAYOFF' is actually performed
on those items subordinate to 'JONES-J'.

Note that the entry-name (ENTRY 'PAYMSTER'> is not the same as the
Program-ID ('PAYROLL').

section VII: Calling and Called Programs and Overlays 97

IB1t1 COBOL PROGRAM SHEET
System IBM SVSTEM'/360 COSOL Punching Instructions

Form No. X28- l 464
Printed in U.S.A.

Sheet of
Program CALLING PROGRAM Graphic J J J J J J Rcard Form# * Identification rP-ro-9r-am-m-.r-J~.~O~O~E~------------~l-oa-te-----+-Pu~nc-h-+-+1-+-1+-111--1rf--lr-ll1___; ________ --I ~~ l I! ~b

SEQUENCE ~ A l B

tAGE~ (~ERIA~ <:; 8 !12 16 20 24 28 32 36 40 44 48
~cp14>~1 lDEN:TlFlCATION 01vl1srloN.

• 414> 2 P RoG:RAM-1 D. 1 c ALL PROG' • ••s REMA~KS. EXAMPLE OF A CALLING PROGRAM;

~

: .
: .
I •
I

I ·I

• 8 DA u: DI v Is I 0 N. I I I
: I I I ! I I
l i I I

WORKlUG-STORAGE! SECITIION. i 11
15 ~I !RECORD!. I I

i I
It

Ii
1 Ii
I I

I

l \
I(, '2! .JONES-J. I I

• 4> I 7 :U SAL ARY, PI C/TURE IS 9(5 J V99 .J i
• ~I 8 :.3 RATE PlCTURE! IS 9V99· i I

I 9 :ta HOURS P!CTURIE IIS1 99V19. I I I . : I
2• PRoclEDURE 01v,1s10N.I ·i l / I! ! . I
• : .. I I . I l i i I i l l I i i .

: l I I 11 \ I i 11 I I
25 !ENTER. L1 N KA.GE • i l I I ' I i I l T '1

!CALL 'PAY!M\s!TERl'i !USI NGI, IJ o"INiE!S -iJ!.:
IHI 27 :EN TE R. c 0 8 0 L • ' I I I I ! I ! ! :,

:
1 I I 1

: I, I I !
! I I. 11 11 i

• A Standard card form, IBM electro C61897, is available for punching so_urce statements &om this form.

I I

I I

I I

I i I
! I I I

Iii : : i 'i
I I I ii I
. 1 I l I
! I I \I'
i, l I i !
I! I I i I

I I
I i I

52 56
I·

I I
. I

. I
I I

I ;

I I \ I
I. I I

Figure 14. Example of a Calling Program (Part 1 of 3)

60

98 Disk and 'l~ape Operating Systems COBOL Programmer's Guide

64 68

. . I
\~

I
I, I

~

~)

IBJ.1 COBOL PROGRAM SHEET Form No: X28-1464
Printed in U.S.A.

System IBM SYSTEM/.36<1> COBOL Punching Instructions Sheet of

Program DATA PASSING SUBROUTINE Graphic I I I I I I II Card Form# *
Programmer J. DOE J Date Punch I I I I I I II
SEQUEPICE ~ A le
l(PAGE~ <:"RIA~ ~ 8 ll2 16 20 24 28 32 36 40 44 48 52 56 60

4>i1114Jlcbl1 1oleN:r!t!FitclAnoN orlv1s10IN. 11 I 111

4>4>12 PRloG:RAMl-xo.! 1 PIAVR10LL 1 1 I 1 I 1 i
1· I : I I 1

1 i ! I 1 I I 11 I I
1· I i • I I ~ i I ! I I ! I I i I I I i
I· 1·i I l I I I I I ! I I ! i I ! I I Ii 11 I
I· ~14>S DATA! 101rv11stk>N1.l I 11 I 1 I 1 I l i i I 1
• I• l I i : T i I I I l ! i

~4'8 77 :sAURYX PII CTURIE IS 9Cl5l)iV9 9 VAILIUIE
·1 I I ! 'I i ! 11 I I I I I I

·I ! ~ i I i ! i i ! I i 1 ! ! PT I I
1· I 2 LINK~AG1Ej SECTIIOIN!. ! i T T 1 ! ! ! 1 I I I

·I ·! ! I I I i I I I I l ! I ! I ! ! I I
1-1 u 5 ~I :P U!O F F 1. I I I I i I I ! ! ! I I I I
I· bH, I 4>2: 11 PAY P11lc1ruRe· 1s11Hls!Jlv9!9i.I 11

~1117 ~2: I I RAITEX Pt crluRE 1\s 19vl9 9[.\ I I I
! ~2: ! I HOURS PJICITUR.E \ts 9\9IV9 .! i 11

125 P)Roc:eouREI Dtvrs10N!. I I I i 11

·I 1.1 I : I I I I I I ! I I i I I

I : l I i I I ! i I ! T I ! i t ! I

I ! ! i I ! I: I I I I' : ! i
! l I I I I I I i': ! ! I

4>4~ 1 :eiNIT ER ,_INK AG e. l 1 I !
HI :EN!TRV 'PAVNSITER 1

. USIIING IP MIC FF .I I

1 EtJ~ER COBOL. l I 1 ! I
• A standard card form, IBM elecuo C61897, is available for punching source statements from this form.

I ! I I I! i I I Ii
I ! I Ii I Ii I ! i !
i I! ! Ii Ii I I I 1 I I
11 i 11 I l 11 ! Ii I I

I I I I I ! 1 1

11 I I
I I I i I ! I l I I I
ltlsl Ul~1Ul$l~i. 1 I
I Ii I I Ii I I I I
I I I I Ii \ I
I I ! i Ii: ! I

1 I! i ii I Ii
11 I ! ! I 111 I:

I! I I I i ! I ! !
! ! I ! I I I
I Ii i I'

l (I 1

! I I
1 I 1 ! 1

! Ii I I I

I I I

i I
! I

ii

Ii
I Ii
'I I
I I I

I !

Iii I

: i ii
i ! I

i [: •

ii:
'

i ~ I

: ! i I

i !
I I 1 I

1 !
i !
t I

!

I

i I

I I

1 I

i I

I I

Figure 14. Example of a Calling Program (Part 2 of 3).

IBJ.1 COBOL PROGRAM SHEET

Identification

73] [80

64 68 72

11 ! I I

I I I I I
I 11 f I I

i I I I I

\I I I I Ii
11 t I

111 I
I Ii I I
! I I Ii
Ii! ! I I

1 i ! I

! l i I! !
i ! i
iii \ :

1 t I i \

ii
I I

I
I I

Ii 1

I i
l I
I ~

l ! l I

i:
11 ! I

'
! I! I t

! ! : I I

Form No. X28-146.t
Printed in U.S.A.

·System :IBM SVSTE.M/360 COBOL Punching Instructions Sheet of

Program DAT~ PASSING .SUBl<OUTIN E Graphic I I I I I Card Farm# * Identification

Pragrarnmer J. DOE Date Punch I I I J I 73] [80

SEQUENCE ~ A le
rGE! ~ERIA~ ¥ 8 !12 16 20 24 28 32 36 40 44 48 52 56 60 64 '68 72

I I 11

• : · I I I 1 I I I I 1 I i i I l
• 4>~7 :MOVE SALARV~ TO PIA~. I! 111 I I I

• i ~ • I 1 I I I I I l i : I i
• • l • I I I I I 1 I T ! l 1 i I ! I I

11 I 11

I 11 11 I 1· 1

I l I 11 11

H~ ~EN TERI Ll NIK!A1GEj. i I i i i I I l I I I j
• ~SI !RETURN. !j 111 \!I ill Ii! ll! ii:

i I I I 1 111

i I 11 ! I! i I _____ ,,,,..

Figm:.-e 14. Example of a Calling Program {Pa:tt 3 of 3).

section VII: Calling and Called Programs and overlays 99

Assume a COBOL main program exists, called COBMAIN, that contains calls at one or more points in its logic to COBOL programs: SUBPRGA, SUBPRGB• SUBPRGC and SUBPRGD. Also assume that the module sizes for the main program and the subprograms given are:

~8Q§8~~
COBMAIN

~QQQ~~-£!£~!g.-12Y~~2L
20,000

SUB PR GA
SUBPRGB
SUBPRGC
SUBPRGD

4,000
s,ooo
6,000
3,000

Through the linkage mechanism (ENTER LINKAGE, CALL SUBPRGA ••• >, all called programs plus COBMAIN must be linkage edited together to form on4= module 38,000 bytes in size. Therefore, COBMAIN would require 38,000 bytes of storage in order to be executed. No overlay structure need be· specified at linkage edit tlme if 38,000 bytes of core storage are available.

Following is an example of the job control statements needed to link­age edit these calling and called programs without specifying an overlay structure. The object decks for COBMAIN and SUBPRGA are included in the job; whereas SUBPRGB, SUBPRGC, and SUBPRGD are included from the relo- · eatable library.

// JOB NOVERLAY
// OPTION LINK,LIST,DUMP

ACTION MAP

/*

PHASE EXAMP1,*
INCLUDE

{Object Module COBMAIN}

INCLUDE SUBPRGB
INCLUDE SUBPRGC
INCLUDE SUBPRGD
INCLUDE

{Object Module SUBPRGA}

ENTRY
// EXEC LNKEDT
// EXEC

/*
/&

{Data for program}

Figure 15 is an example of the data flow logic of this call structure where all the programs fit into main storage.

Note: For the example given, it is assumed that SYSLNK is a standard assignment. The flow diagram illustrates how the various program seg­ments are linkage edited into storage in a sequential arrangement.

100 Disk and Tape Operating Systems COBOL Programmer's Guide

: '

\._1./

~)

u

SUBPRG D

Execute
LNKEDT

Linkage
Editor

SY SI PT

Main Program

SUBPRG A

Job Control

Figure 15. Example of Data Flow Logic in a Call Structur~.

ASS~MBLER LANGUAGE SUBROGRAMS

A main program written in COBOL can call programs written in other lan­
guages. Whenever a COBOL program calls an assembler language program,
certain conventions and techniques must be used.

'There are three basic ways to use assembler-written called programs
with a main program written in COBOL:

1. A COBOL main program or called program calling an assembler­
wri tten program.

2. An assembler-written program calling a COBOL program.

3. An assembler-written program calling another assembler­
wri tten program.

From these combinations, more complicated structures can be formed.

In a COBOL program the expansions of the ENTER LINKAGE statement pro~
vide the save and return coding that is necessary to establish linkage
between the calling and called programs. Assembler language programs
must be prepared in accordance with the basic linkage conventions of the
operating system. These conventions include:

1. Using the proper registers to establish linkage.

Section VII: Calling and Called Programs and overlays 101

2. Reserving, in the calling program, an area that is used by
the called program to ref er to the argument list.

3. Reserving, in the calling program, a save area in which the contents of the registers may be saved.

REGISTER USE

The disk and tape operating systems have assigned functions to certain registers used in linkages. Figure 16 shows the conventions for use of general registers as linkage registers. The calling program must load the address of the return point into register 14, and it must load the address of the entry point of the called program into register 15.

r--------T-----------------------T--------------------------------------1 I Register I I I !Number !Register Name !Function I
r--------+----------------------+--------------------------------------~ l 1 !Argument List Register]Address of the argument list passed tol I l I the called program. I
r--------+----------------------+--------------------------------~-----~ I 13 jSave Area Register !Address of the area reserved by the I I I I calling program in which the con- I I I I tents of certain registers are I I I I stored by the called program. I
r--------+----------------------+--------------------------------------~ I 14 !Return Register !Address of the location in the calling! I 1 I program to which control is returned! I I I after execution of the called I I I I program. I r--------+----------------------+--------------------------------------~ I 15]Entry Point Register !Address of the entry point in the I I I I called program. I L--------i----------------------i--------------------------------------J Figure 16. Linkage Registers

SAVE AREA

A calling assembler language program must reserve a save area of 18 words, beginning on a fullword boundary, to be used by the called pro­gram for saving registers, and it must load the address of this area into register 13. Figure 17 shows the layout of the save area and the contents of each word.

A called COBOL program does not save floating-point registers. The programmer is responsible for saving and restoring the contents of these registers in the calling program.

102 Disk and Tape Operating Systems COBOL Programmer's Guide

I

~)

r---·----------------------~--1

AHEA
(word 1)

AREA+4
(word 2)

AREA+8
(word 3)

AREA+12
(word 4)

AREA+16
(word 5)

AREA+20
(Word 6)

AREA+24
(word 7)

AREA+68
(word 18 >

r--1
]This word is a part of the standard linkage convention!
] established under the disk and tape operating sys- I
I terns. The word must be reserved for proper address-I
I ing of the succeeding entries. However, an assem- I
I bler subprogram may use the word for any desired I
] purpose. I
~--~
JThe address of the previous save area (the save area I
I of the subprogram that called this one>. I
r--~
!The address of the next save area (the save area of I
I the subprogram to which this subprogram refers>. I
r--~
!The contents of register 14 (the return address). I
~-----------------~------------------------------------~
JThe contents of register 15 (the entry address). I
r--~
]The contents of register o. I
r--~
]The contents of register 1. I
I I
I I
I I
1 I
I I
~--~
!The contents of register 12. I
l--J

I
I
I
I
I
I
I
I
I __ J

Figure 17. Save Area Layout and Word Contents

ARGUMENT LIST

The argument list is a group of contiguous fullwords, beginning on a
fullword boundary, each of which is an address of a data item to be
passed to the called program. If the program is to pass arguments, an
argument list must be prepared and its address loaded into register 1.
The high order bit of the last argument, by convention, is set as a flag
of one to indicate the end of the list.

Any assembler-written program must be coded with a detailed knowledge
of the data formats of the arguments being passed. Most coding errors
probably occur because of the data format discrepancies of the
arguments.

If one programmer writes both the calling program and the called pro­
gram, the data formats of the arguments should not present a problem
when passed as parameters. However, when the programs are written by
different programmers, the data format specifications for the arguments
must be clearly defined for the user.

The linkage conventions used by an assembler program that calls
another program are shown in Figure 18. The linkage should include:

1. The calling sequence.

2. The save and return routines.

3. The out-of-line parameter list. (An in-line parameter list
may be used).

4. A save area on a fullword boundary.

Section VII: Calling and Called Programs and overlays 103

r------------·--1 deckname START O initiates program assemblage I
at first available loca- I
tion. Entry point to the I
program. I ENTRY

EXT RN
USING

* Save Routine
name STM
*
*
*

*
*

*

*
*

*
*
*

AREA

*

LR
DROP
USING

LR

LA

ST

ST

BC
DS

name1
name 2
name1 ,15

14,ru12C13)

r3 1 15
15
name1 ,r3

13,AREA

r 2 .,4C0,13)

15,prob1
18F

The contents of registers 14,
15, and 0 through r 1 are
stored in the save area of
the calling program (pre­
vious save area>. r 1 is
any number from 0 through
12.

where r 3 and r 2 have been
saved

Loads register 13, which
points to the save area of
the calling program, into
any general register, r 2 ,
except 0 and 13.

Loads the address of this
program's save area into
register 13.

Stores the address of this
program's save area into
word 3 of the save area of
the calling program.

Stores the address of the
previous save area Ci.e.,
the same area of the call­
ing program> into word 2 of
this program's save area.

Reserves 18 words for the
save area. This is last
statement of save routine. prob1 User-written program statements * Calling Sequence

LR 1,ARGLST First statement in calling
sequence.

L 15,ADCON
BALR 14,15 * Remainder of user-written program statements L--Figure 18. Sample Linkage Routines Used with a Calling subprogram (Part 1 of 2>

104 Disk and Tape Operating Systems COBOL Programmer's Guide

I
I

I

\~

l_V

I u

u

r--1
I * Return Routine ·
I
:I
I
J
:I
I
I

I
I

*
*

*

*
*

*
*

I ADCON
I

L

LM

L

MVI

BCR

DC

I * Parameter List
I ARGLST DC
I
I
I
I
I

DC
DC

DC

13,4(0,13)

2,r1 ,28(13)

14,12(13)

12(13),X'FF'

15,14

A(name2)

AL4(arg1)

AL(arg2)

X'80'

AL3(argn>

First statement in return
routine. Loads the address
of the previous save area
back into regish~r 13.

The contents of registers 2
through r 1 , are restored
from the previous save area

Loads the return address,
which is in word 4 of the
calling program's save
area, into register 14.

Sets flag FF in the save area
of the calling program to
indicate that control has
returned to the calling
program.

Last statement in return
routine.

Contains the address of sub-
program name 2 •

First statement in parameter
area setup.

First byte of last argument
sets bit 0 to 1.

Last statement in parameter
t area ·setup. I
L--------------------~--J
Figure 18. Sample Linkage Routines Used with a Calling Subprogram

(Part 2 of 2)

In-Line Parameter List

The assembler programmer may establish an in-line parameter list instead
of an out-of-line list. In this case, he may substitute the calling
sequence and parameter list shown in Figure 19 for that shown in Figure
18.
r~---1

I ADCON DC A(prob1> I
I I
,. 1

I I
I LA 14,RETURN I
I L 15,ADCON I
1 CNOP 2,4 I
I BALR 1,15 I
I DC AL4 Carg1) I
I DC AL4(arg2> I
I I
I I
I J
I Dc x•so• I
I DC AL3(argn> I
I I
I RETURN BC O,X'isn• I
l--J
Figure 19. Sample In-line Parameter List

Section VII: Calling and Called Programs and overlays 105

LOWEST LEVEL PROGRAM

If an assembler-called program do~s not call any other program Ci.e.,if
it is at the lowest level>, the programmer should omit the save routine,
calling sequence, and parameter list shown in Figure 18. If the assem­
bler called program uses any registers, it must save them. Figure 20
shows the appropriate linkage conventions used by an assembler program
at the lowest level.

r------------·--1 deckname START 0

name

ENTRY name

USING
STM

*,15
14, r 11 12 (13)

User-written program statements

LM 2,r1 ,28(13)
MVI 12(13),X'FF'
BCR 15,14

~--~ 1~21~: If registers 13· and/or 14 are used in the called subprogram, I
!their contents should be saved and restored by the called subprogram. I L--J Figure 20. Sample Linkage Routines Used with a Lowest Level
subprogram.

If a program is too large to fit into the number of bytes available in
main storage, it can still be executed by means of an overlay structure.
An overlay structure permits the reuse of storage locations previously
occupied by another program. In order to use an overlay structure, the
programmer must plan his program so that one or more called programs
need not be in main storage at the same time as the rest of the program
phase.

Following is a diagram of the basic form of a program to be overlaid:

]
I
] ROOT PHASE
I
I

r-----.1.-----,
I I
I I
I I
I I

SUB A SUB B

The root phasE~ consists of the COBOL main program and an assembler lan­
guage subroutine which handles the overlays. SUB A and SUB B are the
called programs which overlay each other in core.

106 Disk and Tape Operating systems COBOL Programmer's Guide

, I

\~

u

u

l :
~

In using the overlay technique the programmer specifies to the link­
age editor which programs are to overlay each other. These programs are
processed by the linkage editor so they can be placed automatically in
main storage for execution when called by the main program. The result­
ing output by the linkage editor is called an overlay structure.

SPECIAL CONSIDERATIONS WHEN USING OVERLAY STRUCTURES

'I'here are three areas of special concern to the programmer who wishs to
use the overlay feature. These problems concern the use of the assem­
bler language subroutine, proper linkage editing and job control
statements.

ASSEMBLER LANGUAGE SUBROUTINE FOR EFFECTING OVERLAYS

'I'he CALL in IBM System/360 COBOL is used for "direct" linkage; that is,
the assistance of the supervisor is not required (as it is when loading
or fetching a phase>. There are no COBOL statements that will generate
the equivalent of the LOAD or FETCH assembler macros. For this reason,
one must call an assembler program to effect an overlay of a COBOL pro­
gram. This routine must be linkage edited as part of either a ROOT or
permanently resident phase.

'I'he following overlay subroutine is an example and is governed by the
following restrictions:

1. The example is a suggested technique, and not the only
technique.

2. It can be used for assembler overlays if the user has a
desired entry point in his end card, and the first statement
at that entry point is 'STM 14.12,12(13)' (90ECDOOC).

3. The subroutine cannot be used for entry points other than at
the first instruction of the Procedure Division. A suggested
technique for diverse entry points is a table lookup employ­
ing V-type constants.

Section VII: calling and Called Programs and overlays 107

STMNT

0001
0002
0003
0004
0005
0006
0001
0008
0009
0010
0011
0012
0013
0014
0015
0016
0017
0018
0019
0020
0021
0022
0023 *
0024 *
0025 *
0026 *
0021 *
0028
0029
0030 ENTRY
0031
0032
0033
0034 SUBIN
0035
0036
0037
0038 ASUB
0039 CORSUB
0040 STMINS
0041

SOURCE STATEMENT

OVRLAY START 0
ENTRY OVRLAY

* AT ENTRY TIME
* Rl= POINTER TO ADCON LIST OF USING ARGUMENTS
* FIRST ARGUMENT
* IS PHASE OR SUBROUTINE NAME, MUST BE 8 BYTES
* R13=ADDRESS OF SAVE AREA
* R14=RETURN POINT OF CALLING PROGRAM
* R15=ENTRY POINT OF OVERLAY PROGRAM
* AT EXIT
* R1= POINTER TO SECOND ARGUMENT OF ADCON LIST * OF USING ARGUMENTS
* R14=RETURN POINT OF CALLING PROGRAM--NOT THIS PROG
* R15=ENTRY POINT OF PHASE OR SUBPROGRAM
*
STM
L
CLC
BE
MVC
SR

SVC
SH
LA
CLC
BNE
ST
LM
LA
L
BR

USING *,15
0,1,20(13)
1,0(1)
0(8,1),CORSUB
SUB IN
CORSUB(8),0(1)
o,o

4
1,=H'2'
1,2(1)
0(4,1),STMINS
ENTRY
1,ASUB
0,1,20(13)
1,4(1}
15,ASUB
15

DS IF
DC 8X' FF'
DC X'90ECDOOC'
END

SAVE REG 0 AND 1
Rl=ADDRESS OF PHASE NAME
IS IT IN CORE
YES
NO,CORSUB = PHASE NAME
RO = 0
LOAD REQUIRES RO = 0 IF LOAD
ADDRESS
ISN'T SPECIFIED, Rl=ADDRESS OF
PHASE NAME. R1=PHASE ENTRY
UPON RETURN.
LOAD PHASE

STEP SEARCH POINTER
IS THIS THE ENTRY POINT
NO, LOOP BACK
YES, SAVE IT
RESTORE REG 0 AND 1
STEP PAST PHASE NAME ADCON
LOAD ENTRY POINT ADDRESS

LINKAGE EDITING WITH OVERLAY

In a linkage editor job step, the programmer specifies the overlay
points in a program by using PHASE statements. In the Working-Storage
Section a 77-level constant must be set up for each phase to be called
at execution time. These constants have a picture of XC8) and a value
clause containing the same name as will be on the PHASE card for that
segment in the linkage edit run.

In addition, each argument to be passed to the called program must
have an entry in the linkage section. Remember, also, the ENTRY state­
ment should not refer to the Program-ID but to the paragraph-name in the
Procedure-nivision where control is to be passed on entering the called
program. (Use of the Program-ID will result in incorrect execution).

When setting up the control cards for the linkage editor, be certain
to include the assembler language subroutine with the main (root> phase.
Also, to achieve maximum overlay, the phase names for the called pro­
grams should be different from the Program-ID names of the called
programs.

108 Disk and Tape operating Systems COBOL Programmer's Guide

I u

u

u

Fi9ure 21 is a flow diagram of the overlay logic.
gin C and D overlays at the same origin as OVERLAYB.
events is:

1. The main program calls the overlay routine.

PHASE cards reori­
The sequence of

2. The overlay routine fetches the particular COBOL subprogram
and places it in the overlay area.

3. Control is then transferred to the first instruction of the
called program.

4. The called program returns to the COBOL calling program CgQ~

to the assembler language overlay routine).

COBOL
Main or Root

Overlay Routine

Overlay Area ©

Subprogram

OVERLAY C
·Subprogram

OVERLAY D
Subprogram

Figure 21. Flow Diagram of overlay Logic.

If OVERLAYB were known to be in storage, the CALL would be:

CALL 'OVERLAYX' USING PARAM-1 PARAM-2.

But when using the assembler language overlay routine, it becomes:

CALL 'OVRLAY' USING PROCESS-LABEL, PARAM-1, PARAM-2.

where PROCESS-LABEL contains the external name 'OVERLAYB' of the called
program.

H~Never, the ENTRY statement of the called program is the same for
both cases, i.e. ENTRY 'OVERLAYX'' USING PARAM-10, PARAM-20, whether it
is called indirectly by the main program through the overlay program or
called directly by the main program.

Note: An ENTRY which is to be called by OVRLAY must precede the first
executable statement in the called program.

Section VII: Calling and Called Programs and overlays 109

JOB CONTROL FOR EFFECTING OVERLAYS

The job control statements required to accomplish overlay follow. 'I'he PHASE statements specify to the linkage editor that the overlay struc­ture to be established is one in which called programs OVERLAYB, OVER­LAYC and OVERLAYD overlay each other when called during execution.

// JOB OVERLAYS
// OPTION LINK

PHASE OVERLAY,ROOT
// EXEC COBOL

{COBOL source for Main Program 'OVERLAY'}

/*
// EXEC ASSEMBLY

{Source deck for Assembler Language Routine OVRLAY}

PHASE OVERLAYB,*
// EXEC COBOL

{COBOL Source for Called Program 'OVERLAYB 1
}

PHASE OVERLAYC,OVERLAYB
// EXEC COBOL

{COBOL Source for Called Program 'OVERLAYC'}

PHASE OVERLAYD,OVERLAYC

{COBOL Source for Called Program 'OVERLAYD'}

/*
// EXEC LNKEDT
// EXEC
/*
/&

Note: The phase name specified in the PHASE card must be the same as the value contained in the first argument for CALL 1 OVRLAY'', i.e. PROCESS-LABEL, COMPUTE-TAX etc. contain OVERLAYB, OVERLAYC respective­ly, which are the names given in the PHASE card.

It is the programmer's responsibility to write the entire overlay procedure i.e., the COBOL main (or calling) program and an assembler language subroutine (although a sample program is give~ in this chapter> that fetches and overlays the called programs. A calling sequence to obtain an overlay structure between two COBOL programs follows.

110 Disk and Tape Operating Systems COBOL Programmer's Guide

u

u

IDENTIFICATION DIVISION.
PROGRAl~-ID. 'OVERLAY'.

ENVIRONMENT DIVISION.

DATA DIVISION.
WORKING-STORAGE SECTION.

77 PROCESS-LABEL PICTURE IS X(8) VALUE IS 'OVERLAYB'.
77 PARAM-1 PICTURE IS X.
77 PARAM-2 PICTURE IS XX.
77 COMPUTE-TAX PICTURE IS X(8) VALUE IS 'OVERLAYC'.

_01 NAMET.
02 EMPLY-NUMB PICTURE IS 9(5).
02 SALARY PICTURE IS 9(4)V99.
02 RATE PICTURE IS 9(3)V99.
02 HOURS-REG PICTURE IS 9(3)V99.
02 HOURS-OT PICTURE IS 9(2)V99.

01 COMPUTE-SALARY PICTURE IS X(8) VALUE IS 'OVERLAYD'.
01 NA!V1ES.

02 RATES PICTURE IS 9(6).
02 HOURS PICTURE IS 9(3)V99.
02 SALARYX PICTURE IS 9(2)V99.

PROCEDURE DIVISION.

ENTER LINKAGE.
CALL 'OVRLAY' USING PROCESS-LABEL, PARAM-1, PARAM-2.
ENTER COBOL.

ENTER LINKAGE.
CALL 'OVRLAY' USING COMPUTE-TAX, NAMET.
ENTER COBOL.

ENTER LINKl' .. CE.
CALL 'OVRLAY' USING COMPUTE-SALARY, NAMES.
ENTER COBOL.

ENTER LINKAGE.
CALL 'OVRLAY' USING COMPUTE-TAX, NAMET.
ENTER COBOL.

section VII: calling and Called Programs and overlays 111

IDENTIFICATION DIVISION.
PROGRA.i\1-ID. 'OVERLAY1'.

ENVIRONMENT DIVISION.

DATA DIVISION.

LINKAGE SECTION.
01 PARAM-10 PICTURE IS X.
01 PARAM-20 PICTURE IS XX.
PROCEDURE DIVISION.

EN'I'ER LINKAGE.
ENTRY 'OVERLAYX' USING PARAM-10, PARAM-20.
ENTER COBOL.

ENTER LINKAGE.
RETURN.
ENTER COBOL.

IDENTIFICATION DIVISION.
PROGRAM-ID 'OVERLAY2'.

ENVIRONMENT DIVISION.

DATA DIVISION.
LINKAGE SECTION.
01 NAMEX.

02 EMPLY-NUMBX PICTURE IS 9(5).
02 SALARYX PICTURE IS 9(4)V99.
02 RATEX PICTURE IS 9(3)V99.
02 HOURS-REGX PICTURE IS 9(3)V99.
02 HOURS-OTX PICTURE IS 9(2)V99.

PROCEDURE DIVISION.

ENTER LINKAGE.
ENTRY 'OVERLAYY' USING NAMEX.
ENTER COBOL.

ENTER LINKAGE.
RETURN.
ENTER COBOL.

112 Disk and Tape Operating Systems COBOL Programmer's Guide

I

, I\ v

'. r.) 1~

(i

~

/

(i
_/

!
_)

IDENTIFICATION DIVISION.
PROGRAM-ID. 'OVERLAY3'.

ENVIRONMENT DIVISION.

DATA DIVISION.
LINKAGE SECTION.
01 NA.MES.

02 RATES PICTURE IS 9(6).
02 HOURS PICTURE IS 9(3)V99.
02 SALARYX PICTURE IS 9(2)V99.

PROCEDURE DIVISION.
ENTER LINKAGE.
ENTRY 'OVERLAYZ' USING NAMES.
ENTER COBOL.

ENTER LINKAGE.
RETURN.
ENTER COBOL.

PROGRAMMING CONSIDERATIONS WHEN USING OVERLAY STRUCTURES

When SYSLST is assigned to disk, and either EXHIBIT or DISPLAY (to
SYSLST) is used in any segment other than the root phase, at least one
DISPLAY must be included in the root phase (or subroutine IHD2800 must
be included in the root phase>.

Section VII: Calling and Called Programs and overlays 113

The data management facilities of the Disk Operating System are provided
by routines that are ref erred to as the input/output control system
{IOCSl. A distinction is made between two types of routines:

1. ~hY~i£~!_fQCS_1E!Q~§l -- Input/output routines that are included in the supervisor.

Physical roes controls the actual transfer between the external
medium and main storage. It performs the functions of initiating
the execution of channel commands and handling associated input/
output interrupts.

2. Log!£~!._1f!IOC§l. -- Input/output routines that are linked with a
COBOL program.

LIOCS performs those functions that a programmer needs to locate
and access a logical record for processing. A !2g!ca!_£~£Qrd is
one unit of information in a file of similar units -- for example,
one employee's record in a master payroll file, one part-number
record in an inventory file, or one customer account record in an
account file. one or more logical records may be included in one
physical record. LIOCS refers to the routines that perform the
following functions:

a. Blocking and deblocking records.

b. Switching between input/output areas when two areas are
specified for a file.

c. Handling end-of-file and end-of-volume conditions.

d. Checking and writing labels.

An understanding of how LIOCS functions may be of help to a COBOL
programmer preparing files. Briefly, certain input/output statements
and file description entries in the Data Division of the COBOL program
such as ACCESS IS, RECORD KEY IS; etc., are used to build a unique DTF
{Define the :F'ile) table for each file. The information in this table
will be different based on what is stated in the COBOL program; or bas­
ically, it will contain the information particular to the file for pro­
cessing input/output and a series of constants that describe the charac­
teristics of a particular file, such as record size, block size, record
format, etc.

One of the constants in the DTF table names a logic module that is to
be used at execution time to process that file. A logic module is a
generalized routine that modifies itself based on the constants stored
in the DTF tables. It contains the coding necessary to perform data
management functions required by the file such as blocking and deblock­
ing, initiating label checking, etc.

Generally, these logic modules are separately assembled and cataloged
in the relocatable library under a standard name. Then, at linkage
editing time, the linkage editor searches the relocatable library using
the name in the DTF table to find the logic module. The logic module is
then included as part of the program phase. Note that the autolink fea­
ture of the linkage editor takes care of including the logic modules.
The COBOL programmer does not specify any INCLUDE statements.

114 Disk and Tape Operating systems COBOL Programmer's Guide

u

\~)

u

I '

_J

The type of DTF table prepared by the compiler depends on the data
organization of the file. COBOL provides two types of data organization
that are used for direct-access files only.

• Indexed sequential

• Direct

The rest of this section provides information on preparing files with
indexed sequential and direct data organizations. Included for both are
general descriptions of the organization, the COBOL statements that must
be specified in order to build the correct DTF tables, error recovery
techniques, how to modify the DTF tables, and coding examples.

Files having indexed sequential organization may be processed randomly
or sequentially. Indexed sequential files may be created, added to,
read from, or updated.

The records of an indexed sequential file are organized on the basis
of a collating sequence determined by control fields called keys. A key
precedes the data portion of a record and is from 1 to 255 bytes in
length.

An indexed sequential file exists in space allocated on direct-access
volumes as prime areas, overflow areas, and index areas.

Prime areas are areas on a cylinder allotted for data records which con­
sist of a key and the actual data. The track format for the 2311 or
2314 Disk Storage Drive and the 2321 Data Cell Drive shown in Appendix D
may be helpful in visualizing the formats of the records for an indexed
sequential file.

A new record added to an indexed sequential file is placed into a
location on a track determined by the value of its key field. If
records were inserted in precise physical sequence, insertion would
require shifting all records of the file with keys higher than that of
the one inserted. However, because an overflow area exists, indexed
sequential file organization allows a record to be inserted into its
proper position with only the records on the track in which the inser­
tion is made being shifted.

overflow areas are areas on the disk reserved to accommodate addi­
tions to-the-file. When a record is to be inserted,, the records already
on the track that are to follow the new record are written back on the
track after the new record. The last record on the track is written
onto an overflow track. Track index entries (see the next discussion>
are adjusted to indicate records in an overflow area. The COBOL pro­
grammer may choose among three options in determining where records will
be placed. They are:

1. ~lind~~-QY~f!QW Area_Only -- When creating an indexed sequential
file, two 2311 tracks or four 2314 or 2321 tracks will automatical­
ly be reserved by the COBOL compiler for cylinder overflow. These
tracks will accommodate overflow records that occur within the
specified cylinder. To decrease or increase the number of tracks
reserved for overflow, the user must modify a DTF table entry Csee

Section VIII: Processing COBOL Files on Direct-Access Devices 115

(PAr.t·t:
t

"Modifying the DTF Table" and the coding examples at the end of this section>.

2. Indepe·ndent Overflow Area -- An additional extent for the exclusive purpose of storing overflow records can be implemented by submit­ting the proper job control EXTENT cards. roes will then create this independent overflow area. No COBOL entry is needed to imple­ment it. If, however, the programmer wishes an independent over­flow area only (that is, no cylinder overflow area>, the DTF table must be modified to specify no cylinder overflow (see "Modifying the DTF Table" and the coding examples at the end of this section>.

3. Both Cylinder and Independent overflow Areas -- In this case, the cylinder overflow will be used until it becomes full. At that time, further additions to the file will result in overflow records being placed in the independent overflow area. This option again can be implemented by specifying job control EXTENT cards.

The advantage of the cylinder overflow area is that of time. Arm motion is minimized during sequential or random retrieval and when mak­ing additions to the file.

The advantage of the independent overflow area is that of space. The number of tracks allocated to an independent overflow area may justi­fiably be less than the total number of tracks allocated by the cylinder overflow option. This alternative would then minimize the total disk pack area obligated for overflow records.

Index Areas

The ability to read and write records from anywhere in a file with indexed-sequential organization is provided by indexes that are part of the file itself. There are always two types of indexes: a cylinder index for the whole file, and a track index for each cylinder. A third type of indE~x, the master index, can be created and used if desired.

fylinder Ind~~= For each cylinder of data, an entry is made to the cylinder index. This entry consists of the address of the track index for that cylinder and the highest key of a record on the entire cylinder.

'

The cylinder index will have its own extents that must be defined by

.

· job control EXTENT cards. These extents must be outside the limits of any data extents. (Note that at least two sets of extent information must be def i.ned. They are a data extent and a cylinder index extent. If the file exceeds one disk pack, additional data extents will be pro-vided and, at the user's option, an independent overflow area extent may be defined.> The cylinder extent must be on-line when the file is proc­essed. It may be on the same pack as the data file, or it may be on a separate pack.

Track Index: A track index exists for each cylinder of the file. The track index always begins on track·O. For each track of data, an entry is made to the track index. The entry consists of two parts: Cl> for the prime area, the entry is the address of the lowest record on that track and the highest key of a record on that track; (2) for the over­flow area, the entry consists of the highest key associated with that track and the address of the lowest record in the overflow area. If no overflow entry has been made, the address is X'FF''.

Master Index: If a file occupies many cylinders, a search of the cylinder index for a key is inefficient. Thus, the user can create a master index (by specification on the EXTENT card) that indexes the cylinder index. An entry for the master index consists of the address

116 Disk and Tape Operating systems COBOL Programmer's Guide

' 1,
' 'J
\~

of the cylinder index track and the highest key of a data record on that
cylinder index track. One entry is made to the master index for each
track of data on the cylinder index. It is advantageous to construct a
mastE~r index if the cylinder index occupies four or more tracks. Refer
to Table 3 for modifying the DTF table for indexed sequential files con­
taining a master index.

Figure 22 shows an indexed sequential file with two levels of index­
ing and no overflow records. The entries for track 1 of the cylinder
are shown. The address of t.he first record on the track is track 1,
record-0 at the beginning of track 1. The highest key on track 1 is 8.
The address of the lowest record in the overflow area is FF because
there are no overflow records. The entry to the cylinder index for
track 1 shows the address of the track index and the highest key on the
cylinder which is 32. The COCR (cylinder overflow control record>,
which is maintained in the data portion of record zero, indicates that
no records' are in the cylinder overflow area after loading. (Note that
if the track index does not occupy all of track O, track 0 will also
contain data records>.

Figure 23 shows what happens when another record, record 7, is added,
and forces record 8 into an overflow area. In this case, the key of the
normal entry is changed to 7 and the address of the overflow entry indi­
cates the location of record 8, which is on track 8, record 1. No other
changes to the indexes are required. The COCR will be updated to indi­
cate that the last record in the cylinder overflow area is on track 8,
record 1.

~inder Index

Only First Entry Shown

Highest Key on Cylinder I
32

Track Index Address

Data
I

NORMAL ENTRY

r Address of First
~ack Index Highest Key on Track Record on Track

Entries for Only 8 Track-1

OVERFLOW ENTRY

Highest Key Associated
with Track

I Address of Lowest Record I
in Overflow Chain

FF

~-k_1_soo_w_n~~~~~~~~~~~~~~~R-ec-or~d--O~~~~~~~~~~-'--~~~~~~~~~--

Prime Data

Cylinder Overflow

Track l

Track 2

7

Figure 22. Indexed Sequential File Without Overflow

Section VIII: Processing COBOL Files on Direct-Access Devices 117

Cylinder Index 32 Track Index Address
Points to Track Index Key Data

l NORMAL ENTRY OVERFLOW ENTRY

G
Track-1 Track-8 Track Index I Record-0 Record-1

Points to Data Tracks Key Data Key Data

Track 1

Track 2

Prime Dat·a

7

Cylinder Overflow

Figure 23. Indexed Sequential File-With Overflow

The indexed sequential organization enables the programmer to:

1. Read or write Cin a manner similar to that for sequential organiza­
tion) logical records whose keys are in ascending collating
sequence.

2. Read or write individual logical records randomly.

3. Add logical records with new keys. The system locates the proper
position in the file for the new record and mak~s all necessary
adjustments to the indexes.

The important advantages are the ability to retrieve records randomly
as well as sequentially, and to make additions to the file without hav­
ing to sort and merge the additions while copying the entire file.

These advantages are possible because overflow areas are available to
provide the additional space required when additions are made to the
file and to the indexes, which are built and maintained by LIOCS.

118 Disk and Tape Operating Syst~ms COBOL Programmer's Guide

I I I
0

\ j
~

COBOL STATEMENTS USED TO SPECIFY AN INDEXED SEQUENTIAL FILE

The following is a list of the COBOL statements required for creating
adding to, or updating an indexed sequential file. In addition, the '
list is followed by a brief explanation of the functions IOCS performs
as a result of executing these statements.

Creating an Indexed Seguential File

To create a sequential, indexed sequential file, the following
clauses are required:

• ORGANIZATION IS INDEXED

• ACCESS IS SEQUENTIAL

• ASSIGN TO DIRECT-ACCESS

• RECORD KEY IS data~name

(The SYMBOLIC KEY may be specified.)

The programmer must then specify:

• OPEN OUTPUT file-name

• WRITE record-name [INVALID KEY]

• CLOSE file-name

The OPEN statement causes the label information for the file to be
recorded in a Volume Table of contents (VTOC>. It then initiates a
checking procedure that prevents writing on an existing file that might
still be active. In addition, the OPEN statement establishes the area
that is to be written on the disk as specified in the EXTENT statement
by th~~ LOWER and UPPER parameters. Finally, the OPEN statement initia­
lizes the cylinder and track index tables, which are eventually filled
with the record keys provided by the programmer when the file is being
created.

The WRITE statement enters the record keyn specified by the programmer
into the track and cylinder index tables and writes the actual data on
the portion of the track defined by the EXTENT parameters. The records
are placed on the track sequentially in the prime data area.

If the programmer specifies INVALID KEY, control is given to the
invalid key routine whenever a duplicate record or a record out of
sequence is detected. The programmer is responsible for writing the
invalid key routine (see the coding examples).

Section VIII: Processing COBOL Files on Direct-Access Devices 119

CLOSE Statement

The CLOSE statement removes the reference to the labels in the VTOC,
updates indexes (track and cylinder>, and writes the end-of-file record.
Once the reference to the labels is removed from the VTOC, the file must
be opened again to be accessed. The index tables are updated each time
a block is written out Cin the case of blocked records) or each time a
record is written Cin the case of unblocked records>. For a short
block, the CLOSE statement results in truncation of the area not used in
the block and in updating of the indexes with the record keys of those
records in the block.

~~y_g~~£!!gg: During the creation of an indexed sequential file, the
programmer can control the RECORD KEY with certain restrictions:

• The RECORD KEY must be provided before execution of the WRITE state­
ment. It is part of the record and identifies the particular record
in the file.

• The RECORD KEY values must be given in ascending collating sequence.

• No two keys can be the same.

To extend a file previously created, the same clauses and control
statements (DLBL, EXTENT) used to create the file are required, with the
following exception: the parameter ISE should be used for the 'type'
code in the DLBL statement instead of ISC used for creating the file.

Note that the record to be added must fit within the limits original­
ly specified for the file by the EXTENT statement. If it does not fit,
the file must be recreated.

The SYMBOLIC KEY is not required when creating an indexed sequential
file.

sequential Retrieval of an Indexed Sequential File

To retrieve an indexed sequential file sequentially, the following
clauses are required:

• ORGANIZA.TION IS INDEXED

• ACCESS IS SEQUENTIAL

• RECORD KEY IS data-name

(The SYMBOLIC KEY may be specified.)

To simply read the file, the programmer must specify:

• OPEN INPUT file-name

• READ file-name AT END

• CLOSE file-name

OPEN Statement: The OPEN statement checks the labels of the files to be
opened-ana-Initializes the VTOC to indicate an active file. It also
establishes the area to be read as specified by the LOWER and UPPER
limit parameters of the EXTENT statement. This initializes processing
of the file, as follows:

120 Disk and Tape Operating Systems COBOL Programmer's Guide

I \

_)

• If the SYMBOLIC KEY is omitted, processing begins with the first
record of the file, and progresses sequentially.

• If the SYMBOLIC KEY is used and binary zeros are specified therein,
processing begins with the first record of the file, and progresses
sequentially.

• If the SYMBOLIC KEY is used and other than binary zeros are
specified, processing begins with the specified key and progresses
sequentially.

g~~-§tat~~~gt: The READ causes sequential retrieval of logical records
from the file until the end-of-file record is detected. At this time,
control is given to the user routine specified by the AT END statement.

£LOS~_§t~t~~~gt: The file is reset for future use.

Updating Sequentially

The same clauses used to create and retrieve a file (ORGANIZATION IS
INDEXED1 ACCESS IS SEQUENTIAL, RECORD KEY IS) are required to update an
existing indexed sequential file.

The programmer must then specify:

• OPEN I-0 file-name

• READ file-name AT END

• REWRITE record-name [INVALID KEY]

• CLOSE file-name

The OPEN and CLOSE statements function in the same manner for updat­
ing as they do for retrieving an indexed sequential file. The READ
statement also functions in the same manner (as for sequential retriev­
al> but must be used in conjunction with the REWRITE statement, as
follows.

8§~E1TE_§t~t~~~gt: The REWRITE statement writes the logical record read
by a preceding READ statement back into the same physical location from
which it was originally retrieved. Thus, the REWRITE statement provides
the facility to update records in a file. Under no circumstances should
the user modify the RECORD KEY of the record being updated. Because the
INVALID KEY check is not exercised for sequential retrieval of an in­
dexed sequential file, results caused by modification of the RECORD KEY
prior to return of the record to the file are unpredictable.

~~Y-~~g~!ing: During sequential retrieval of a file, limited control of
the SYMBOLIC KEY and RECORD KEY is permitted. Thus, the SYMBOLIC KEY
can be set before the OPEN statement is executed, allowing processing to
begin with any record within the file. Once the OPEN statement is com­
pleted, the SYMBOLIC KEY is not needed. The RECORD KEY, which must not
be modified when updating a file, can be ref erred to when retrieving a
record for the purpose of recognizing a particular record in the file.

Random Retrieval of an Indexed Seg~~nti~!_Fi1~

To retrieve, update, or add to an indexed sequential file randomly, the
following clauses are required.

section VIII: Processing COBOL Files on Direct-Access Devices 121

• ORGANIZA'I1ION IS INDEXED

• ACCESS IS RANDOM

• SYMBOLIC KEY IS data-name

• RECORD KEY IS data-name

To retrieve an indexed sequential file randomly, the following
clauses must be specified:

• OPEN INPUT file-name

• READ file-name INVALID KEY

• CLOSE file-name

The OPEN and CLOSE statements function in the same mann~r for updat­
ing as they do for retrieving an indexed sequential file. The clauses
specified allow random retrieval only. Before retrieval of each record,
the SYMBOLIC KEY must be provided.

Updating Randomly

To update an indexed sequential file randomly, the following clauses
must be specified.:

• OPEN I-0 file-name

• READ file-name INVALID KEY

• REWRITE r•=cord-name

• CLOSE file-name

The OPEN and CLOSE statements function in the same manner as for
sequential retrieval of an indexed sequential file. The READ statement
retrieves the record identified by the SYMBOLIC KEY. This key must be
specified for every READ statement and must be within the limits of the
file; otherwise, a 'NO RECORD FOUND' condition results. If this occurs,
control is given to the user's INVALID KEY routine.

The REWRITE clause permits random updating of records in a file. It
must be preceded by a READ, and the SYMBOLIC KEY and RECORD KEY must not
be modified before the REWRITE is executed. NO INVALID KEY check is
availa:ble for the update function.

To add to an indexed sequential file randomly, the following clauses are
required.

• OPiN I-0 file-name

• WRITE record-name [INVALID KEY]

• CLOSE file-name

The OPEN and CLOSE statements function in the same manner as for
sequential retrieval of an indexed sequential file. Records can be
added to an existing file by means of the WRITE statement. The WRITE
requires that the RECORD KEY be initialized before the operation.

122 Disk and Tape Operating systems COBOL Programmer's Guide

)
\~

l r1
\.J

u

u

A duplicate key error results when a record that is being added has
the same RECORD KEY value as a record already in the file. This condi­
tion causes control to be given to the programmer's INVALID KEY routine.

Key Handling: The programmer must initialize the SYMBOLIC KEY with a
key value prior to every READ statement. The value must be equal to the
record key within the record to be retrieved. This key must be within
the file limits; otherwise, a 'NO RECORD FOUND' error condition results.
The RECORD KEY can be used only for record reference during the retrieve
and update functions. When adding to the file, this key must be
initialized before each write.

ERROR RECOVERY TECHNIQUES FOR INDEXED SEQUENTIAL FILES

Recovery from input/output error conditions raised for an indexed
sequential file may be attempted in three ways. They are:

1. The INVALID KEY clause in the COBOL program.

2. A COBOL library subroutine (IHD03500l.

3. The USE AFTER STANDARD ERROR clause in the COBOL program.

The relationship among these three types of recovery attempts is
shown in the flowchart that follows. If the user has specified INVALID
KEY and an INVALID KEY error is raised, the INVALID KEY routine is
executed. If the user does not have an INVALID KEY routine, the COBOL
subroutine will analyze.the error indicators. If no USE AFTER STANDARD
ERROR is specified, the job is terminated after printing a messa'ge that
identifies the type of error. If a user declarative section does exist,
control .is given to that routine. The COBOL programmer can prepare such
a routine to make a further analysis of the DTF table to determine
further .information about the'error status. Note that program execution
can continue only if an INVALID KEY or USE AFTER STANDARD ERROR clause
exists.

jNO
I
I
11

I
I
l
I

-------->

L---------------->

Branch to
USER ERROR <----------­
ROUTINE

JNO
I
I
.I
I
v

Execute COBOL
subroutine
IHD03500

I
I
I
1
v

Execute
Statements
following
INVALID KEY

Print Message ()
--------->on SYSLST ------>ABORT

Pr SYSxxx -------

•Does program have "USE AFTER STANDARD ERROR"?

section VIII: Processing COBOL Files on Direct-Access Devices 123

Table 1 summarizes the error conditions by function and indicates
which errors will raise an INVALID KEY, which will be analyzed by the
subroutine, IHD03500, and which errors could be profitably analyzed by a
USE AFTErt STANDARD ERROR routine (see the publications IBM System/360
~is~_QE_T~E~_QE~E~i!gg_§yst~~l--£~2ervisor and Input/Output Macro
Ig~~E~ct!on~, Forms C24-5037 and C24-5035, respectively, for a complete
list of error conditions>.

Table 1. Error Functions
r------------------T-----------T------------T-----------T--------------1 1 I I I Random I Sequential I
!Error Function !Create !Add !Retrieval)Retrieval I
t------------------+-----------+------------+---~------+--------------~ !Duplicate Record !INVALID KEYIINVALID KEY I I I
t------------------+-----------+------------+-----------+--------------~] Sequence Check I INVALID KEY I I I I t------------------+-----------i ____________ i ___________ i ______________ ~
IDASD error I USE AFTER STANDARD ERROR I
t------------------+---~ !Wrong length I USE AFTER STANDARD ERROR I
I Record I I
t------------------f-----------T------------T-----------T--------------~
I Prime data I USE AFTER I I I I
I Area Full I STANDARD I I I I I I ERROR I I I I
t---------------~--+-----------+------------+-----------+--------------~
J Cylinder Index I USE AFTER I I I I I Full I STANDARD I I I I
I I ERROR I I I I
t------------------+-~---------+------------+-----------+--------------~ I Master Index I USE AFTER I I I I I Full I STANDARD I I I I
I I ERROR I I I I t------------------+-----------+------------ ---------- ' ;;:~.,.r . ---~ I No Record I I I INVALID KE - USE AFTER I
I Found I I ~,,, \STANDARD ERRO I t------------------+-----------+------------ :_...:. ___ +~-- ,_,.. _ .. _ ~ I Overflow I I USE AFTER I I I I Area Full I I STANDARD I 1 I I I I ERROR I I I I Area Full I I I I I
l------------------i-----------~------------~-----------~--------------J

The INVALID KEY is raised when:

1. A duplicate record exists (duplicate key) (WRITE).

2. When building a file, a record is out of sequence (sequence check)
(WRITE).

3. No record is found during retrieval (READ).

These are the conditions from which the programmer can most logically
recover. In almost all other cases, the only choice is to abort the
job; thereforE=, most programmers should be able to handle

1
almost all of

their error recovery procedures within the INVALID KEY rortines.

When creating the file, the program will execute the imperative sta­
tements following the INVALID KEY clause for either a duplicate record
or sequence check. In either case the record is not added to the file.
The INVALID KEY routine could identify the error record', and either
close the files, or continue with the next transaction.

124 Disk and Tape Operating Systems COBOL Programmer;• s Guide

u

When adding to the file, the INVALID KEY is raised for a duplicate
record. In this case, the record will not be added. The user could
identify the error record and continue with the next transaction in his
INVALID KEY routine.

For random retrieval, the INVALID KEY is raised if the record cannot
be found on the file. The INVALID KEY routine could identify the mis­
sing record and continue with the next transaction.

During sequential retrieval no INVALID KEY IS raised. The user must
specify the AT END option to branch to end-of-job steps when the end of
file is encountered.

When creating a file, ?rime Data Area Full would be indicated if the
user did not reserve a large enough extent for all data records. In
this case, the user could close the file in his USE AFTER STANDARD ERROR
routine. He could then submit new job control EXTENT cards reserving
more room for prime.data, and extend the file with the remaining data
cards by resubmitting the same program.

DASD errors and wrong-length records could be bypassed, if feasible,
in the USE AFTER STANDARD ERROR routine. However, in most cases, the
job must be terminated.

When adding to the file, if the cylinder overflow area cannot contain
the overflow record, an overflow Area Full error will be indicated. The
record will not be added. The usP.r could continue with the next trans­
action in his STANDARD ERROR routine by going to a routine to read the
next input transaction, since it may be possible to add records that
will be located on a different cylinder. However, the best procedure
would be to close the file and stop the run.

Note that a programmer may elect to start sequential retrieval at a
specified key rather than at the beginning of the file. If the key
specified is not in the file, and if there is no error declarative sec­
tion, the COBOL subroutine will print a message indicating this and
abort the job.

In general, a declarative section may be .included in a program in
order to find out more information about an error condition that occurs.
Such a routine can interrogate byte 30 of the DTF table to determine the
type of error that exists. (For more information and a coding example,
see "Modifying the DTF Table.") The error indicator can be passed to a
subprogram by specifying the CALL statement including USING file-name.
The programmer is responsible for writing the error checking subprogram.
The error indicators are shown in Table 2. Normal return from the
declarative is to the next sequential instruction in the program follow­
ing the input/output operation. Return by means of a GO TO statement
may be made to any location. Note that the programmer must realize that
the record of the last input/output operation was not located.

Section VIII: Processing COBOL Files on Direct-Access Devices 125

Table 2. Error Indicators
r---------T---------------------------T--------------------------------1 i BYTE 30 I Add, Retrieve, or Both I Create I
r---------+---------------------------+--------------------------------~ I x•so• I Direct Access Device Error) Direct Access Device Error I
r---------+-----------------------~---+--------------------------------~ I X'40' I Wrong Length Record] Wrong Length Record I
r---:-------+---------------------------+--------------------------------~ I X'20 1 I End of File I Prime Data Area Full I
r---------+---------------------------+--------------------------------~ I x•10• J No Record Found I Cylinder Index Area Full I
r---------+---------------------------t--------------------------------~ I x•os• I J Master Index Area Full I
r---------+---------------------------+--------------------------------~ l x•o2• i Overflow Area Full l I L---------i---------------------------i--------------------------------J

The following example illustrates a declarative routine when combin­ing random retrieval and additions. Assuming that INVALID KEY clauses were written, control will be given to the declarative section in this example only when DASD, wrong-length record, or overflow Area Full error indicators are raised. The purpose of the routine is to continue processing in the case of an overflow Area Full indicator and to close
the file and end the job for DASD and wrong-length record indicators.

WORKING-STORAGE SECTION.
01 INDICATOR PICTURE 9.

PROCEDURE DIVISION.
DECLARATIVES.
ERR-TEST SECTION. USE AFTER STANDARD ERROR PROCEDURE

ON IS-FILE.
ENTER LINKAGE.
CALL 'ERRSUB' USING IS-FILE, INDICATOR.
ENTER COBOL.

IF INDICATOR IS EQUAL TO 1 GO TO READ-ROUTINE.
GO TO END-JOB.

END DECLARATIVES.

SUBPROGRAM

WORKING-STORAGE SECTION.
77 FULL PICTURE 9 USAGE COMPUTATIONAL VALUE 2.

LINKAGE SECTION.
01 DTF-FOR-DISK.

02 BYTE PICTURE 9 OCCURS 31 TIMES.
01 INDICATOR PICTURE 9.

PROCEDURE DIVISION.

EXT.

ENTER LINKAGE.
ENTRY 'ERRSUB' USING DTF-FOR-DISK, INDICATOR.
ENTER COBOL.
MOVE LOW-VALUE TO INDICATOR.
IF BYTE (31) IS NOT EQUAL TO FULL GO TO EXT.
MOVE l TO INDICATOR.

ENTER LINKAGE.
RETURN.
ENTER COBOL.

126 Disk and Tape Operating Systems COBOL Programmer's Guide

l u

~}

•

I I

_.)

(I

~

When a DASD error, wrong-length record, or Overflow Area Full error
occurs on the IS-FILE, control is given to the first instruction after
the USE AFTER STANDARD ERROR clause. The subprogram is called. The
address of the IS-FILE DTF table and the working storage indicator are
passed to the subprogram.

The subprogram sets the indicator in working storage to zeros. If
byte 30 contains an X'02' indicating an Overflow Area Full error, a 1 is
moved to the working storage indicator. Return is made to the main pro­
gram. The main program checks to see if the indicator is a 1. If it
is, a branch is made to read the next transaction. If the indicator is
not a 1, a DASD error or wrong-length record error has occurred, and the
program branches to the end-of-job routine to close the files and stop
the run.

Note that the COBOL subroutine will also print out an error message
that provides another source of information about the type of error that
has occurred. (See "Modifying the DTF Table" for more information about
using COBOL and assembler language subprograms to modify the DTF table.>

MODIFYING THE DTF TABLE FOR INDEXED SEQUENTIAL ORGANIZATION FILES

The Disk Operating System COBOL compiler builds a skeleton DTF table.
At execution time when the file is opened, a transient routine is called
to construct the complete table. The programmer may wish to change the
contents of the skeleton DTF table prior to execution of the OPEN state­
ment in order to change the overflow tracks, suppress the verify option,
etc. The contents of the skeleton DTF table are shown in Table 3.

The COBOL programmer can change the contents of a certain byte in the
DTF table in one of two ways, as follow:

1. By writing statements in the main COBOL program to refer to the DTF
table and by writing a COBOL subprogram to change the DTF table.

2. By writing statements in the COBOL main program to refer to the DTF
table and by writing an assembler language subprogram to change the
DTF table.

The following are examples of the options in the DTF table that can
be changed. (Note that the byte count of a DTF table begins with zero;
thus, for example, byte 22 actually is the 23rd byte of the table.)

1. Byte 3 (the fourth byte> of the DTF table controls the verify
option. Changing the value of the fourth byte to x•oo• suppresses
record written out is correct. Suppression of the verify option
can result in improved program performance.

2. The presence of a master index can be indicated by changing the
value of byte 20 (the 21st byte) to X' F2' for the 2311, x·• 82' for
the 2314, and x•o2• for the 2321.

3. Byte 21 (the 22nd byte> of the DTF can be altered to change the
number of overflow tracks assumed per cylinder. The number of
overflow tracks assumed by the compiler is 2 for the 2311 or 4 for
the 2321 or the 2314. The programmer may change this to a maximum
of 8 for the 2311, 16 for the 2314, or 18 for the 2321. If the
value is changed to LOW VALUE, cylinder overflow is suppressed.

4. By replacing the contents of byte 20 (the 21st byte> with X'FO' the
user can locate his indexes on the 2311 or the 2314 when the prime
data is on the 2321.

Section VIII: Processing COBOL Files on Direct-Access Devices 127

Table 3. Contents of Skeleton DTF Table r-----------·---1 r-----------·---~ I I I COBOL TRANSIENT PREPHASE TO OPEN. THIS ROUTINE WILL I I BUILD THE DTFIS TABLES AT OPEN-TIME I I I ~---~ ~--~ I
I INPUT TO THIS ROUTINE IS AS FOLLOWS
I SPACE MUST BE RESERVED FOR THE BIGGEST POSSIBLE TABLE I THIS IS DEPENDING ONLY ON THE KEYSIZE, THE TOTAL NUMBER OF I BYTES USED BY T-B:E TABLE IS 600&KEYSIZE. THE CONTENTS OF I THIS TABLE IS BEFORE THIS ROUTINE
I
I
I
I

BYTE 0 X'OO'=RANDOM
BYTE 1 X'00'=2311 and 2314
BYTE 2 X'OO'=UNBLOCKED
BY~~l X'OO'=NO VERIFY
BYTE 4-5 RECORD SIZE

X'FO'=SEQUENTIAL
X'F0'=2321
X'FO'=BLOCKED
X'FO'=VERIFY

BYTE 6-7 NUMBER OF RECORDS IN BLOCK
BYTE 8-9 KEYLOCATION %FIRST BYTE IN RECORD 31
BYTE 10-11 RECORD KEY-LENGTH
BYTE 12-15 ADDRESS OF IOAREAL
BYTE 16-19 ADDRESS OF WORKL

(PRIME DATA)

BYTE 20 X'OO'=INDEX ON 2321 or 2314 X'FO'=INDEX ON 2311 BYTE21 NUMBER OF OVERFLOW-TRACKS IN CYLINDER
BYT~22-29 FILENAME
BYTE 3 0- 31 DUIV'..MY
BYTE 32-35 ADDRESS OF KEYARG (SYMBOLIC KEY)
BYTE 36-37 TRACK-AREA ~ENGTH (OPTION)
BYTE 38-39 CORE-INDEX LENGTH (OPTION)
BYTE 40-43 CORE-INDEX ADDRESS (OPTION)
THE REST OF THE TABLE MUST BE SET TO x•oo•
NOTICE THAT BYTES 3,20,21 MAY BE CHANGED BY THE USER BEFORE THE OPEN STATEMENT IS EXECUTED

I
I
I
I
I
I
I
I
I
I L--J

Example of COBOL Main Program and COBOL Subprogram Modifying DTF

In the COBOL main program, define and call the subprogram, as follows:

1. Data Division

FD ISFILE

2. Procedure Division

ENTER LINKAGE.
CALL 'CHGDTF' USING ISFILE.
ENTER COBOL.
OPEN OUTPUT ISFILE.

When the call is executed, the address of the skeleton DTF is passed to the subprogram. Note that COBOL permits only data-names to be passed to a COBOL subprogram. In this case, a file-name is passed, but only to ·use the address of the DTF for the file. No input/output operations can be performed on the file in the subprogram.

The~subprogram could move an appropriate value into one or more bytes that the programmer wishes to modify. For example, the following sub­program will eliminate the verify option.

128 Disk and Tape operating Systems COBOL Programmer's Guide

/
\ '
'_)

\0

u

DATA DIVISION.
LINKAGE SECTION.
01 DTF-FOR-DISK.

02 BYTE PICTURE X OCCURS 35 TIMES.

PROCEDURE DIVISION.
ENTER LINKAGE.
ENTRY 'CHGDTF' USING DTF-F'OR-DISK.
ENTER COBOL
MOVE LOW-VALUE TO BYTE (4).
ENTER LINKAGE.
RETURN.
ENTER COBOL.

DUMMY DTF TABLE

The LINKAGE SECTION in the subprogram defines a DTF table. Control
is passed to byte 3 to eliminate the verify option and then control is
returned to the main program at the OPEN statement.

Note that an assembler language subprogram can be called by using the
same coding in the main COBOL program.

CODING EXAMPLES USING INDEXED SEQUENTIAL FILES

The following examples illustrate how a COBOL program can be prepared in
order to create and retrieve an indexed sequential file. The job con­
trol cards specifying label inf rmation for these examples follow. They
define a cylinder index located on cylinder 196, and a small prime data
extent located on cylinders 197 and 198.

// ASSGN SYS004,X'192'

// DLBL SYS004,'INDEXED SEQ FI E' I 67/365,ISC

// EXTENT SYS004,111111,4,1,01 60,00010

// EXTENT SYS004,111111,1,2,01 70,00020

// EXEC

section VIII: Processing OBOL Files on Direct-Access Devices 129

This program example shows how to create an indexed sequential file from the card reader. The file consists of records of 100 characters, five records in a block.

When the file is opened, the labels are checked, the track indexes are formed, and the extents are reserved for the cylinder index.

After the files are opened, cards are read and data is moved to the print file and disk file. Movement of the KEY-ID in the cards to the REC-ID of disk is mandatory since the REC-ID is the data name specified by the RECORD KEY clause.

A branch to the INVALID KEY routine will occur on sequence errors or duplicate records. This routine identifies the error type and error record, and then gets the next transaction.

The COBOL E=rror subroutine identifies all other errors and aborts the job. If the INVALID KEY routine were not present, it would also identi­fy and abort 1ihe job for sequence errors. It would identify the error and continue with the next sequential instruction for duplicate records.
At end-of-job, the files are closed and the job terminated.

01 001001 IDENTIFICATION DIVISION.
02 1 PROGRAM-ID. 'LOADIS'.
03 3 AUTHOR.
04 4 INSTALLATION.
05 5 DATE WRITTEN.
06 6 REM.ll .. RKS. ILLUSTRATE CREATING OF INDEXED SEQUENTIAL FILE. 07 8 ENVIRONMENT DIVISION.
08 9 CONFIGURATION SECTION.
09 10 SOURCE-COMPUTER. IBM-360.
10 11 OBJECT-COMPUTER. IBM-360.
11 002001 INPUT-OUTPUT SECTION.
12 2 FILE-CONTROL.
13 3 SELECT IS-FILE ASSIGN TO 'SYS004' DIRECT-ACCESS 2311 14 4 ACCESS IS SEQUENTIAL ORGANIZATION IS INDEXED 15 5 RESERVE NO ALTERNATE AREA
16 1 RECORD KEY IS REC-ID.
17 10 SELECT CARD-FILE ASSIGN TO 'SYS005' UNIT-RECORD 2540R 18 11 RESERVE NO ALTERNATE AREA.
19 12 SELECT PRINT-FILE ASSIGN TO 'SYS006' UNIT-RECORD 1403 20 13 RESERVE NO ALTERNATE AREA.
21 003001 DATA DIVISION.
22 002 FILE SECTION.
23 4 FD IS-FILE DATA RECORD IS DISK
24 5 RECORDING MODE IS F
25 6 LABEL RECORDS ARE STANDARD 26 1 BLOCK CONTAINS 5 RECORDS.
21 10 01 DISK.
28 11 02 DISK-FLD1 PICTURE X(10).
29 12 02 REC-ID PICTURE XC10).
30 13 02 DISK-NAME PICTURE X(20>.
31 14 02 DISK-BAL PICTURE 99999V99. 32 15 02 FILLER PICTURE X(53).
33 004001 FD CARD-FILE DATA RECORD IS CARDS
34 2 RECORDING MODE IS F 35 3 LABEL RECORDS ARE OMITTED.
36 5 01 CA.RDS.
37 6 02 KEY-ID PICTURE X(10). 38 7 02 CD-NAME PICTURE X(20).
39 8 02 CD-BAL PICTURE 99999V99.
40 005001 FD PRINT-FILE DATA RECORD IS PRINTER

130 Disk and Tape Operating Systems COBOL Programmer's Guide

u

u

41
42
43
44
45
46
47
48

2
3

RECORDING MODE IS F
LABEL RECORDS ARE OMITTED.

6 01 PRINTER.
7 02 PRINT-ID PICTURE
8 02 FILLER PICTURE
9 02 PRINT-NAME PICTURE

10 02 FILLER PICTURE

XC10).
X(10l.
X(20).
X(10).
ZZZ,ZZZ.99-.

49 006001
02 PRINT~BAL PICTURE

PROCEDURE DIVISION.
50 3
51 4
52 6
53 7
54 9
55 10
56 11
57
58
59
60
61
62
63

13
17

START.

RD.
OPEN INPUT CARD-FILE OUTPUT PRINT-FILE IS-FILE.

READ CARD-FILE AT END GO TO END-JOB.
MOVE KEY-ID TO PRINT-ID REC-ID.
MOVE CD-NAME TO PRINT-NAME DISK-NAME.
MOVE CD-BAL TO PRINT-BAL DISK-BAL.
WRITE DISK INVALID KEY GO TO ERR.
WRITE PRINTER.
GO TO RD.

ERR.
DISPLAY 'DUPLICATE OR SEQ-ERR' UPON CONSOLE.
DISPLAY KEY-ID UPON CONSOLE.
GO TO RD.

64
65
66
61

19 END-JOB.
20 CLOSE CARD-FILE PRINT-FILE IS-FILE.
21 DISPLAY 'END JOB' UPON CONSOLE.
22 STOP RUN.

section VIII: Processing COBOL Files on Direct-Access Devices 131

This program illustrates random retrieval and updating for the IS-FILE created in the previous example.

The Data Division is basically the same as in loading the file except for the ACCESS IS RANDOM clause. Both the SYMBOLIC KEY and the RECORD KEY clause are required.

The IS-FILE is opened as I-0. This allows both retrieval and updat­ing. The OPEN verb does label checking, and it also stores statistic fields from the format 2 label into the DTF table.

The SYMBOLIC KEY clause data-name (KEY-ID) is defined in the Working­Storage Section. Reading the IS-FILE causes a search of the indexes for a record matching the KEY-ID. If the record is found, data is moved to the print-file and printed, the IS-FILE is updated, and a branch is made to the next transaction.

If a matching record is not found, the COBOL subroutine turns control to the INVALID KEY routine (NO-RECORD). This routine identifies the error and branches to the next transaction.

The end-of-job routine closes the files and terminates the job. The CLOSE verb also returns the updated statistics in the DTF table back to the format 2 label.

01 IDENTIFICATION DIVISION.
02 001002 PROGRAM-ID. 'RANDOMIS'.
03 3 AUTHOR.
04 4 INS~rALLATION. 360 PROGRAMMING CENTER. 05 5 DATE WRITTEN.
06 001006 REMARKS. ILLUSTRATE RANDOM RETRIEVAL FROM IS-FILE. 07 8 ENVIRONMENT DIVISION.
08 9 CONFIGURATION SECTION.
09 10 SOURCE-COMPUTER. IBM-360.
10 11 OBJECT-COMPUTER. IBM-360.
11 002001 INPUT-OUTPUT SECTION.
12 2 FILE-CONTROL.
13 3 SELECT IS-FILE ASSIGN TO 'SYS004' DIRECT-ACCESS 2311 14 002004 ACCESS IS RANDOM ORGANIZATION IS INDEXED 15 5 RESERVE NO ALTERNATE AREA
16 6 SYMBOLIC KEY IS KEY-ID
17 7 RECORD KEY IS REC-ID.
18 10 SELECT CARD-FILE ASSIGN TO 'SYS005' UNIT-RECORD 2540R 19 11 RESERVE NO ALTERNATE AREA.
20 12 SELECT PRINT-FILE ASSIGN TO 'SYS006' UNIT-RECORD 1403 21 13 RESERVE NO ALTERNATE AREA.
22 003 001 DAT.A, DIVISION.
23 002 FILE SECTION.
24 4 FD IS-FILE DATA RECORD IS DISK
25 5 RECORDING MODE IS F 26 6 LABEL RECORDS ARE STANDARD 27 7 BLOCK CONTAINS 5 RECORDS.
28 10 01 DISK.
29 11 02 DISK-FLD1 PICTURE XC10).
30 12 02 REC-ID PICTURE XC10).
31 13 02 DISK-NAME PICTURE X(20>.
32 14 02 DISK-BAL PICTURE 99999V99.
33 15 02 FILLER PICTURE X(53).
34 004001 FD CARD-FILE DATA RECORD IS CARDS 35 2 RECORDING MODE IS F
36 3 LABEL RECORDS ARE OMITTED.
37 5 01 CARDS.
38 6 02 KEY-ID1 PICTURE XC10).

132 Disk and Tape Operating Systems COBOL Programmer's Guide

39 7 02 CD-NAME PICTURE XC20).
40 8 02 CD-AMT PICTURE 99999V99.
41 004009 02 CD-CODE PICTURE x.
42 FD PRINT-FILE DATA RECORD IS PRINTER
43 RECORDING MODE IS F
44 LABEL RECORDS ARE OMITTED.

(: 45 005006 01 PRINTER.
~ 46 005007 02 PRINT-ID PIC'I'URE X(10,).

47 005008 02 FILLER PICTURE X(10).
48 005009 02 PRINT-NAME PICTURE X(20).
49 002010 02 FILLER PICTURE X(10).
50 005011 02 PRINT-BAL PICTURE $ZZZ, 999~ 99~ .•
51 005012 02 FILLER PICTURE X(10).
52 005013 02 PRINT-AMT PICTURE $ZZ~,~~Z.~9~.
53 005014 02 FILLER PICTURE X(10). .,
54 005015 02 PRINT-NEW-BAL PCITURE $ZZZ,ZZZ~99-.
55 005016 WORKING-STORAGE SECTION. . "' '

56 005017 77 KEY-ID PICTURE X(10).
57 006001 PROCEDURE DIVISION.
58 006003 START.
59 006004 MOVE 4 8 TO NEW-AREA.
60 006004 OPEN INPUT CARD-FILE I-0 IS-FILE
61 006006 RD.
62 006007 READ CARD-FILE AT END GO TO END-JOB.
63 006008 MOVE KEY-ID1 TO KEY-ID.
64 006009 READ IS-FILE INVALID KEY GO TO NO-RECORD.
65 006010 MOVE REC-ID TO PRINT-ID.
66 006011 MOVE DISK-NAME TO PRINT-NAME.
67 006012 MOVE DISK-BAL TO PRINT-BAL.
68 006013 MOVE CD-AMT TO PRINT-AMT.
69 006014 ADD CD-AMT TO DISK-BAL.
70 006015 MOVE DISK-BAL TO PRINT-NEW-BAL.
71 006017 WRITE PRINTER.
72 006019 REWRITE DISK.
73 006021 GO TO RD.
74 007001 NO-RECORD. u 75 007002 DISPLAY 'NO RECORD FOUND' UPON CONSOLE.
76 007003 DISPLAY KEY-ID UPON CONSOLE.
77 007004 GO TO RD.
78 007017 END-JOB.
79 007018 CLOSE CARD-FILE PRINT-FILE IS-FILE.
80 007019 DISPLAY 'END JOB' UPON CONSOLE.
81 007020 STOP RUN.

Section VIII: Processing COBOL Files on Direct-Access Devices 133

•",<v,,

This program illustrates a sequential retrieval of the IS-FILE in order to print its contents.

The Data Division is basically the same as before. The file is opened as input. To update, it would have been opened as an INPUT­OUTPUT file.

Prior to opening the file, the program requests the operator to enter the starting key. The information he types will enter the KEY-ID data name specified by the SYMBOLIC KEY clause.

The OPEN verb will then open the file and start sequential retrieval based on the entered key. If the operator enters blanks or zeros, retrieval will start at the beginning of the file. If he enters a key that is not on the file, the COBOL error subroutine will identify the error and abort the job.

During execution of the job, the COBOL error subroutine will identify any DASO error or WLR indication and abort the job.

When the end-of-file indicator is detected, a branch is made to the END-JOB procedures.

01 001001 IDENTIFICATION DIVISION.
02 001002 PROGRAM-ID. 'SEQIS'.
03 3 AUTHOR.
04 4 INSTALLATION. 360 PROGRAMMING CENTER.
05 5 DATE WRITTEN.
06 001006 REMARKS. ILLUSTRATE SEQUENTIAL RETRIEVAL FROM IS-FILE. 07 8 ENVIRONMENT DIVISION.
08 9 CONFIGURATION SECTION.
09 10 SOURCE-COMPUTER. IBM-360.
10 11 OBJECT-COMPUTER. IBM-360.
11 002001 INPUT-OUTPUT SECTION.
12 2 FILE-CONTROL.
13 3 SELECT IS-FILE ASSIGN TO 0 SYS004' DIRECT-ACCESS 2311 14 002004 ACCESS IS SEQUENTIAL ORGANIZATION IS INDEXED 15 5 RESERVE NO ALTERNATE AREA
16 6 SYMBOLIC KEY IS KEY-ID
17 7 RECORD KEY IS REC-ID.
18 12 SELECT PRINT-FILE ASSIGN TO 1 SYS006' UNIT-RECORD 1403 19 13 RESERVE NO ALTERNATE AREA.
20 003001 DAT.A. DIVISION.
21 002 FILE SECTION.
22 4 FD IS-FILE DATA RECORD IS DISK
23 5 RECORDING MODE IS F
24 6 LABEL RECORDS ARE STANDARD 25 7 BLOCK CONTAINS 5 RECORDS.
26 10 01 DISK.
27 11 ·02 DISK-FLD1 PICTURE X(10).
28 12 02 REC-ID PICTURE X(10).
29 13 02 DISK-NAME PICTURE X(20).
30 14 02 DISK-BAL PICTURE 99999V99.
31 15 02 FILLER PICTURE X(53).
32 005001 FD PRINT-FILE DATA RECORD IS PRINTER
33 2 RECORDING MODE IS F
34 3 LABEL RECORDS ARE OMITTED.
35 6 01 PRINTER.
36 7 02 PRINT-ID PICTURE X(10).
31 8 02 FILLER PICTURE X(10).
38 9 02 PRINT-NAME PICTURE XC20).
39 10 02 FILLER PICTURE X(10).
40 11 02 PRINT-BAL PICTURE $ZZZ,ZZZ.99-.

134 Disk and •rape operating Systems COBOL Programmer• s Guide

I]I ___}

u

41 WORKING-STORAGE SECTION.
42 6 77 KEY-ID PICTURE XC10).
43 PROCEDURE DIVISION.
44 001000 START.
45 DISPLAY 'ENTER STARTING KEY' UPON CONSOLE.
46 ACCEPT KEY-ID FROM CONSOLE.

~/ 47 001002
48 001003 OPEN OUTPUT PRINT-FILE
49 001004 INPUT IS-FILE.
50 001006 RD.
51 001007 READ IS-FILE AT END GO TO END-JOB.
52 001008
53 001009 MOVE REC-ID TO PRINT-ID.
54 001010 MOVE DISK-NAME TO PRINT-NAME.
55 001011 MOVE DISK-BAL TO PRINT-BAL.
56 001013 WRITE PRINTER.
57 001015 GO TO RD.
58 001017 END-JOB.
59 001018 CLOSE PRINT-FILE IS-FILE.
60 001019 DISPLAY 'END JOB' UPON CONSOLE.
61 001020 STOP RUN.

u
section VIII: Processing COBOL Files on Direct-Access Devices 135

When files are created using direct organization, the positioning of the logical records in a file is determined by keys.

The two important characteristics of direct files are:

1. Records are stored at a physical address on disk that has some mathematical relationship to the record key Cin COBOL this is supplied by the SYMBOLIC KEY clause).

2. The records are not arranged in any logical sequence by key.

Some tracks may be only partially filled, or they may have no records at all.

SPECIFYING KEYS

Both the SYMBOLIC KEY clause and the ACTUAL KEY clause must be specified for files having direct organization.

The SYMBOLIC KEY must be specified for every record and actually becomes part of that record. The ACTUAL KEY specifies the physical track address. It must be specified as an eight-byte field, and it must be defined before a record can be processed. The structure and examples of code for the 8-byte ACTUAL KEY field for both the 2311 and 2321 direct access devices follow.

The elements of the field for the 2311 are:

M

BB

M indicates the relative number of a disk pack.
It will be O for the first disk pack, 1 for the
second disk pack, etc.

It corresponds to the symbolic address CSYSOOO­
SYSxxx>, which is specified on the EXTENT card
for the file. Thus, if three EXTENT cards with
SYS011, SYS012, and SYS013, respectively, are
specified, M can range from O to 2.

This 16-bit field will always be zero for the
2311 or 2314. It refers to the cell number when
addressing the data cell (2321>.

CC=0-199 This 16-bit field must contain the cylinder num­
ber in binary notation.

HH=0-9 fo:t 2311
=0-19 for 2314

This 16-bit field must contain the head number in
binary notation.

R=O R refers to the record number or sector number.
When using COBOL, this field will always be zero.

An example of a method of coding the 8-byte ACTUAL KEY in binary using COBOL for the 2311 disk pack is, as follows:

01 BINARY-KEY-RECORD.
02 MM USAGE IS COMPUTATIONAL PICTURE IS 8999 VALUE IS o.
02 BB USAGE IS COMPUTATIONAL PICTURE IS 89 VALUE IS o.
02 CC USAGE IS COMPUTATIONAL PICTURE IS S999 VALUE IS 10.
02 HH USAGE IS COMPUTATIONAL PICTURE IS S9 VALUE IS o.
02 REC-R PICTURE IS X VALUE IS LOW-VALUE.

01 KEY-AS-ACTUAL REDEFINES BINARY-KEY-RECORD.
02 FILLER PICTURE IS X.
02 THE-ACTUAL-KEY PICTURE IS X(8).

136 Disk and Tape Operating Systems COBOL Programmer's Guide

\~

J

L)

Although the ACTUAL KEY field really consists of eight bytes, nine
bytes are defined by the given code for BINARY-KEY-RECORD. The 02 MM
defines 2 bytes, the first byte of which is then disposed of by the 02
FILLER PICTURE IS X in the redefinition statement. Thus, the code
defines an 8-byte binary field named THE-ACTUAL-KEY, which is used by
IOCS to access records. A pictorial structure of the THE-ACTUAL-KEY
field defined by the co~e is, as follows:

r-------T---------T-----------T-------T---------1
)Pack I Cell I Cylinder I Head I Record I
I Number I CBB> I (CC> I CHH> I (R) I
I CM> I I I I I
r-------+---------+-----------+-------+---------~

Byte 10 I 1 2 I 3 4 I 5 6 I 7 I
r-------+---------+-----------+-------+---------~
Jo I o o I o 10 I o o I o J

L-------i---------i-----------i-------i---------J

The elements of the field are the same for the 2311 Data Cell except
that CC (bytes 3 and 4) is divided into subcell and strip, and HH (bytes
5 and 6) is divided into headbar and head element.

An example of a method of coding the 8-byte ACTUAL KEY in binary
using COBOL for the 2321 Data cell is, as follows:

01 BINARY-KEY-RECORD.
02 MM USAGE IS COMPUTATIONAL PICTURE IS S999 VALUE IS o.
02 BB USAGE IS COMPUTATIONAL PICTURE IS S9 VALUE IS o.
02 CC USAGE IS COMPUTATIONAL PICTURE IS S999 VALUE IS 1.
02 HH USAGE IS COMPUTATIONAL PICTURE IS S999 VALUE IS o.
02 REC-R PICTURE IS X VALUE IS LOW-VALUE.

01 KEY-AS-ACTUAL REDEFINES BINARY-KEY-RECORD.
02 FILLER PICTURE IS X.
02 THE-ACTUAL-KEY PICTURE IS X(8).

Notice that just as for the 2311, nine bytes are defined and then
redefined to eliminate the first byte, leaving eight bytes. Thus, the
code defines the ACTUAL KEY that is used by IOCS to access records. A
pictorial structure of THE-ACTUAL-KEY field as defined by the code is,
as follows:

r-------T-----T------------T-------------T------1
!Pack !Cell I Cylinder I Head IRecordl
I Number 1 (BB) I CCC) I CHH) I CR)]

I CM> I I I I I
r-------+-----f----T-------f-----T-------f------~
I I !Sub !Strip I HeadlHead I]
I I !Celli I Bar !Element! I

Byte I o 11 2 I 3 I 4 I 5 I 6 17 J

r-------+-----+----+-------+-----+-------+------~
10 ·10 o 10 11 Io 10 10 I
L-------i-----i----i-------i-----i-------i ______ J

As records are processed, roes automatically updates Record CR> Cin
the example, it is defined by REC-R). When the desired number of
records is processed within the defined area of a strip, or no more room
is available in a strip area, the next head element must be accessed in
order to continue processing on that strip. When all head elements have
been used, the next head bar must be accessed, thus making 20 new head
elements available.

section VIII: Processing COBOL Files on D~rect-Access Devices 137

Space is allocated on the 2321, as follows:

• 256 records per head element

• 20 head elements per head bar

• 5 head bars per strip

• 10 strips per subcell

• 10 subcells per pack

• 255 packs are available

The examples in the foregoing discussion may be used to specify the fields of the actual key. Another point of consideration is how to determine what the value of the ACTUAL KEY should be and then how to update it. One method is to prepare what is called a directly addressed file. With direct addressing, every symbolic key must convert to a unique address that is used as the value of the actual key. To use this method, records must be of. fixed length and the symbolic key must be a numeric character.

Direct addressing saves disk time when processing is random. It is also convenient when processing is sequential because the records are written in key sequence. A possible disadvantage is that there may be a large amount of unused direct-access storage, because a location must be reserved for every key in the file's range even though many of the possible keys may not be used.

Another method of determining the value of the ACTUAL KEY is called indirect addrE~ssing. Indirect addressing generally is used when the range of keys for a file includes a high percentage of unused ones so that direct addressing is not feasible. For example, employee numbers may range from 0001 to 9999, but only 3000 of the possible 9999 numbers are actually assigned. Indirect addressing is also used for nonnumeric keys.

Indirect addressing means that the symbolic key is converted to a value for the actual key by use of some algorithm intended to compress the range of addresses. Such an algorithm is usually called a randomiz­ing technique. Randomizing techniques need not produce a unique address for every record and, in fact, such techniques usually produce synonyms. Synonyms are records whose symbolic keys randomize to the same addres~.

Two objectives must be considered in selecting a randomizing technique:

1. Every possible key in the file must randomize to an address in the allotted range.

2. The addresses should be distributed evenly across the range so that there are as few synonyms as possible.

Note that one way to minimize synonyms is to allot more space for the file than is actually required to hold all the records. For example, the percentage of locations that are actually used might be 80%-853 of the allotted space.

A RANDOMIZING TECHNIQUE

This randomizing technique is sometimes referred to as the division/ remainder method. For examples of other randomizing techniques, refer to the publication !gtrog££~i2!!-~2-!~~§yst~~~l£Q_~~r~£~ AC£~~~-§~oraqe Q~Y!~~-~g_Qrg~gi~~tiQ~_Me~gQg~, Form C20-1649.

138 Disk and •rape Operating Systems COBOL Programmer's Guide

~)

RANDOMIZING

The 1\.CTUAL KEY field can be thought of as a "discontinuous binary
address." This is important to the programmer because it describes two
conditions of which he must be aware. First, the cylinder and head num­
ber must be in binary notation, so the results of the randomizing formu­
la must be in binary format. Second, the address is "discontinuous"
because a mathematical overflow from one element (e.g., head number)
does not increment the adjacent element (e.g., cylinder number).

When randomizing to a 2311, it is possible to circumvent the discon­
tinuous binary address, by coding the randomizing formula in decimal
arithmetic, and then converting the results to binary. This can be done
by setting aside a decimal field with the low-order byte reserved for
head number, and the high-order bytes reserved for cylinder number. A
mathematical overflow from the head number will now increment the
cylinder number and produce a valid address. The low-order byte should
then be converted to binary and stored in the HH field, and the high­
order bytes converted to binary and stored in the cc field of the ACTUAL
KEY field.

Randomizing to the 2311 should present no significant problems if the
programmer using direct organization is completely aware that the
cylinder and head number gives him a unique track number. To illus­
tratE~, the 2311 could be thought of as consisting of tracks numbered as
follows:

Cylinder 0 Cylinder 1 Cylinder 2

--, --, --,
Track 10 110 120
numbers --·~ --~ --~

I I l
--~ --~ --~

I I I
--~ --~ --~

1 I ·I

--~ --~ --~
I I I

--~ --~ --~
J I 1

--~ --~ --~
I I I

--~ --~ --~
I I 1

--~ --~ --~
I I I

--~ --~ --~
19 119]29
1 1 I

Now if the randomizing formula resulted in an address of
Cylinder 001, Head 9:

0 0 1 9

Cylinder

Head

Section VIII: Processing COBOL Files on Direct-Access Devices 139

this would be a reference to track 19. This fact allows the programmer to ignore the discontinuous cylinder and head number. If his formula
resulted in an address of 0 0 2 O, this would result in accessing
cylinder 2, head o, and this is where track 20 is located.

The programmer can make another use of this decimal track address. He may wish to reserve the bottom track of each cylinder for synonyms.
If this is the case, he is, in effect, redefining th~ cylinder to con­
sist of nine tracks rather than 10 tracks. The 2311 cylinder could then be thought of as consisting of tracks numbered, as follows:

Cylinder 0 Cylinder 1 Cylinder 2

--, --, --,
10 19 118

--~ ---1 ---1
I I 119

--'f ---1 --i
I l J20

---1 ---1 ---1
I I I ---1 ---1 --~
I I i

--~ ---1 ---1
I I I ---1 ---1 --~
I I I ---1 ---1 ---1
I I I ---1 ---1 --~
18 117]26
I I I

If he randomizes to relative track number 20, he can access it by dividing the track address by the number of tracks in a cylinder.

2=Cylinder number
r----

910020
18

2=Head number

The quotient now becomes the cylinder number, and the remainder
becomes the head number. As can be seen from the illustration, relative track number 20 is on cylinder 2, head 2.

To simplify randomizing, an algorithm must be developed to generate a decimal track address. This track address can then be converted to a binary cylinder number and head number. In addition, tracks can be reserved by dividing the track address by the number of tracks in a
cylinder. The same concepts will hold true for devices such as the
2314. For example, an algorithm can be developed using 20 tracks per
cylinder and dividing by an approximate prime number.

The track'reference field for the data cell is composed of the following discontinuous binary address:

140 Disk and Tape Operating Systems COBOL Programmer's Guide

(. u

i :
\._..,-)

0-9
I

0-19 0-9
l

0-4 0-19
I

M l B I B I c I c l H I H I R I
______ i ____ i ____ i ______ i _____ i _____ i _____ i ______ J

cell sub strip cyl. Head Record
cell

At first glance, this presents an almost impossible randomizing task,
but since each strip comprises 100 tracks that are accessible through
cylinder and head number, the 2321 can be considered to be composed of
consecutively numbered tracks.

Tracks
0 99

100 7199

900~ 999

100071099

1900~ 1999

10000 710099

19900~ 19999
/

199900~ 199999

Strip
0

1

etc.

On inspection, it can be seen that relative track 20 is located on
cylinder 1, head 0 of some particular strip. Its address can be calcu­
lated by dividing by 20.

1=Cylinder #
r--

20120
20

O=Head #.

Thus, relative track number 120 will be located on strip 1, cylinder
1, hE~ad 0 of some subcell. Note that the strip number is given by the
hundreds digit, and the cylinder and head number is derived by dividing
the low-order two digits by 20.

The same relationship holds true for relative track number 900. It
is located on strip 9, cylinder o, track o. Again the hundreds digit
gives the strip number, and dividing the low-order two digits by 20
results in a quotient and remainder of zero.

This relationship holds true through a relative track number of
19999, which is the number of tracks that can be contained on one cell
of a data cell array. By applying the foregoing rules, an address of
subcell 19, strip 9, cylinder 4, Head 19 is derived.

19
subcell

9
strip

99
4=Cylinder #

r--
20] 99

80

19=Head #

Thus, by randomizing to a 5-digit decimal track number, the program­
mer will be able to access the 20,000 tracks (40,000,000 characters>
contained in a cell.

Section VIII: Processing COBOL Files on Direct-Access Devices 141

The thousands digits would represent the subcell number, the hundreds digit, the strip number, and the quotient and remainder of the two low­order digits divided by 20 would represent the cylinder and head number. Each one of these resulting decimal digits would then be converted to binary and placed in the appropriate place in the track reference field.

There is a total of 200,000 tracks per data cell array. To derive valid addresses that cross cell boundaries, the user should randomize to a 6-digit decimal track address. The highest address possible should be 199,999. To convert this to a data cell address, similar rules apply. In this case, the user must·divide the three high-order digits by 20:

9=Cell
r-·--

201199
1.80

19=Subcell

The quotiemt becomes the cell number and the remainder becomes the subcell number. The hundreds digit is still the strip number, and the cylinder and head number can be derived as before. The resulting address would be:

I I o J o I 9 I 19 I 9 I 4 I 19 I o l
L----i----L---~----~------~----~-----~----J

M B B C C H H R
------------T----T----T-----T----T---------

1 I I I I
I J I I 1
cell sub strip cyl. Head

cell

Randomizing to the data cell can be accomplished by developing an algorithm to generate decimal track addresses. The use of the foregoing rules makes it possible to convert these generated track addresses to the appropriate discontinuous binary address.

COBOL STATEMENTS USED TO SPECIFY DIRECT ORGANIZATION FILES

The following discussions show the COBOL statements required to create, retrieve, or update a direct organization file. Also included are dis­cussions of what functions the operating system performs when each statement is executed.

To create a direct file, the following clauses are required:

• ORGANIZATION IS DIRECT

• [ACCESS IS SEQUENTIAL]

• SYMBOLIC KEY IS data-name

• ACTUAL KEY IS data-name

The programmer must then specify:

142 Disk and Tape Operating Systems COBOL Programmer's Guide

11

u

u

• OPEN OUTPUT file-name

• WRITE record-name [INVALID KEY]

• CLOSE file-name

OPEN Statement: The OPEN statement initializes the VTOC to indicate the
presence of the labels and checks the label area for a valid output
file. It also establishes the limits of the file as defined in the
EXTENT statement. It checks to be sure that the file limits specified
do not overlap with an existing file and completes the DTF (Define the
File) table for the file that was opened. Thus, it enters the system
logical unit specified for the file into the table. In addition, the
OPEN statement initializes the capacity records (RO> over the entire
area of the EXTENT for the output file.

WRITE Statement: The WRITE statement transfers the record to the DASD
address-specified in the ACTUAL KEY. The specified SYMBOLIC KEY becomes
a part of the record in the file.

Key_~~g~l!gg: When handling keys, the following restrictions are
imposed:

1. The programmer must provide the SYMBOLIC KEY for every record
loaded.

2. When creating a file, no provision is made to prevent the addition
of a duplicate record.

CLOSE Statement: The CLOSE statement returns the track address of the
end=ot=file-record to the ACTUAL KEY.

To retrieve a direct file sequentially, the following clauses are
required:

• ORGANIZATION IS DIRECT

• ACCESS IS SEQUENTIAL

• SYMBOLIC KEY IS data-name

• ACTUAL KEY IS data-name

The programmer must then specify:

• OPEN INPUT file-name

• READ file-name AT END

• CLOSE file-name

READ statement: The READ statement retrieves the file sequentially
beginning with the lower EXTENT.

OPEN and CLOSE Statements: The OPEN statement checks labels on the
i~bel track-and-initializes the VToc. The limits of the extents are
established at this time. The CLOSE statement is a no-operation.

~~~~l!gg: For sequential retrieval of a direct file, the actual key 
must be initialized to binary zeros. After each READ, COBOL will return 
the symbolic key to the data-name specified in the SYMBOLIC KEY clause. 

Section VIII: Processing COBOL Files on Direct-Access Devices 143 



Random Retrieval, Updating, and Adding to a Direct File 

To retrieve a direct file randomly, the following clauses are required: 

• ORGANIZATION IS DIRECT 

• ACCESS IS RANDOM 

• SYMBOLIC KEY IS data-name 

• ACTUAL KEY IS data-name 

The programmer must then specify: 

• OPEN INPUT file-name 

• READ file-name INVALID KEY 

• CLOSE f ile-narne 

The READ statement retrieves a record from the information given in the 
SYMBOLIC KEY. The search begins at the DASD address specified in the 
ACTUAL KEY. 

Updating Randomly 

To update randomly, the programmer must specify: 

• OPEN I-0 file-name 

• READ file-name INVALID KEY 

• REWRITE record-name [INVALID KEY] 

• CLOSE file-name 

When updating a file, the keys must not be modified. 

Adding Randomly 

The WRITE statement allows new records to be added to the file. When 
adding records to an existing file, both the ACTUAL KEY and SYMBOLIC KEY 
must be supplied. The record is written into the specified location. 
When adding randomly to a direct file, no provision is made to prevent 
the addition of a duplicate record. 

OPEN, CLOSE Statements: For random retrieval, the OPEN and CLOSE func­
tions are the same as for sequential ret~ieval of a direct file. 

~~-!_!an£!.!.!!ff: When a file is accessed randomly., both the ACTUAL KEY and 
SYMBOLIC KEY must be initialized by the user before the READ or WRITE 
statement is specified. The ACTUAL KEY contains the DASD address and 
the SYMBOLIC KEY identifies the record within the file. 

144 Disk and Tape Operating systems COBOL Programmer's Guide 



i ' \ __ ) 

MULTIPLE ENTRY POINTS 

When more than one type of retrieval is specified for direct-access 
files in a program, an indication of duplicate entry points may be given 
at linkage edit time. If duplicate entry points occur, the programmer 
must construct and include a supersetted LIOCS module that contains the 
individual modules. 

Table 4 shows how ( 1> the module containing the duplicate entry point 
can be identified and (2) the supersetted module is built and included 
in the COBOL object module in place of the individual modules. 

If a number of direct files are defined to be used by the same pro­
gram, the linkage editor diagnostic messages shown in Table 4 might be 
obtained. (They are included in the DISK LINKAGE EDITOR DIAGNOSTIC OF INPUT.) 

Note that the LIOCS modules are separately included in the program 
(see AUTOLINK IJ ••• entries near the top of the listing>. When the 
modules are linkage edited with the COBOL program, an indication of a 
duplicate entry point may be given. The duplicate entry point is 
included in the line of print identified by the message number 21431 and 
belongs to the module IJHZRBZZ. This message number is listed in the 
operating guide for the system and indicates an invalid duplication of 
an entry point label. 

The programmer can identify the module containing the duplicate entry 
point and build a supersetted module, as follows: 

Compare the IJH... (entry points> given in the line next to the 
message number the ENTRY points given in the LABEL column part of 
the listing. 

In this example, the duplicate ENTRY point is ENTRY IJHZRRZZ (the 
second one in the 2143! line of print, and the third one from the 
bottom in the LABEL column listing>. Thus, this duplicate entry 
point is in the module CSECT IJHUARZZ (see the entry just above 
IJHZRRZZ in the LABEL column listing>. The module should also be 
among those given in the AUTOLIST list. 

From this module CIJHUARZZ) and module IJHZRBZZ, a supersetted module 
must be formed, as follows: 

Use the first three characters of the module name for the functions 
used. In this case, they would be IJH. Then use the lowest let­
ter, between the two modules, for each of the next five character 
positions, as follows: 

I J H ¥ t R Z Z 

I J H U A B Z Z 

I J H Z ! B Z Z 

Supersetted module 

Thus, the name of the supersetted LIOCS module that contains the 
individual modules (IJHUARZZ and IJHZRBZZ) is IJHUABZZ. 

The supersetted module can then be included with the COBOL object 
module at linkage edit time instead of the individual modules 
{IJHUARZZ and IJHZRBZZ) by inserting an INCLUDE card before the 
linkage edit function, as follows: 

INCLUDE IJHUABZZ 

// EXEC LNKEDT 

Section VIII: Processing COBOL Files on Direct-Access Devices 145 



Table 4. Linkage Editor Diagnostic output 
r---------------------------------------------------------------------------------------1 JOB CEFI1002 10/27/66 DISK LINKAGE EDITOR DIAGNOSTIC OF INPUT J 

ACTION 
LIST 
LIST 
LIST 
LIST 
LIST 
LIST 
LIST 
LINK 
LINK 

21431 

LIST 
LIST 

TAKEN MAP 
PHASE COMPLDGO,*) 

INCLUDE IHD02800 { 
INCLUDE IJJCPDl (Information supplied by COBOL compiler 
INCLUDE IHD03500 ' 
INCLUDE IHD03700 / 
AUTOLINK IJFFBCZZ1 
AUTOLINK IJHUARZZ Information supplied by Linkage Editor 
AUTOLINK IJHZLZZZ 
AUTOLINK IJHZRBZZ 

CEFI0001 

CEFI0002 
CEFI0003 

IS050021 ESD 404040 0010 0001 IJHZRBZZ 0 000000 0095DO IJHZRRZZ 1 000000 000010 IJHZRSZZ 1 000000 000001 ~-·~ 

AUTO LINK 
ENTRY 

IJHZRSZZ Duplicate entry point 

~ 
~ 

I~ 
ii 
!1 

1 
'I 
!I 
!1 

11 

11 

:1 
!I 
ii 
I 

!I 
:1 
:1 
,I 

10/27/66 PHASE XFR-AD LOCORE HICORE DSK-AD ESD TYPE LABEL LOADED REL-FR 

COMPLDGO 007000 005080 OOA07F ~A 7 2 CSECT 
ENTRY 

* ENTRY 

CSECT 
ENTRY 
ENTRY 

CSE CT 
ENTRY 
ENTRY 

CSECT 
ENTRY 

ENTRY 

CSECT 

CSECT 
* ENTRY 
* ENTRY 
* ENTRY 

CSECT 

CSECT 
Module containing duplicate· entry point--.__ 

~CSECT 

~ENTRY 
Duplicate entry point.-----* ENTRY 

IJJCPD1 005080 005080 
IJJCPD1N 005080 
IJJCPD3 005080 

IH002800 005240 005240 
IH002801 005240 
IHD02802 005270 

')J 
IHD03500 0053A8 0053A8 I 
IHD03501 0053A8 I 
IHD03502 00538C I 

I 
IHD03700 005680 005680 I 
IHD03701 005680 
IHD03702 005690 

00 
CEFI1002 0057AO 0057AO 

IJFFBCZZ 0084FO 0084FO 
IJFFBZZZ 0084FO 
IJFFZCZZ 0084FO 
IJFFZZZZ 0084FO 

IJHZRSZZ 009C70 009C70 

IJHZRBZZ 009500 009500 I 
I 

IJHUARZZ 008820 008820 I 
IJHZRRZZ 008820 I 
IJHUIZZZ 008820 I 

I 
CSECT IJHZLZZZ 0092AO 0092AO I l---------------------------------------------------------------------------------------J 

146 Disk and Tape Operating Systems COBOL Programmer's Guide 



I 
\ I 
~ 

ERROR RECOVERY TECHNIQUES FOR DIRECT FILES 

As with indexed sequential files, error recovery may be attempted in one 
of three ways, as follows: 

1. The INVALID KEY clause 

2. COBOL error subroutine (IHD03400) 

3. The USE AFTER STANDARD ERROR clause 

Table 5 summarizes, by function, the conditions that cause control to 
be passed to the INVALID KEY, which error conditions are analyzed by the 
COBOL subroutine, and, optionally, those error conditions for which a 
USE AFTER STANDARD ERROR routine can be useful. 

When creating or adding to a file, the INVALID KEY is raised if the 
track does not contain room enough for the record to be written. A user 
routine could contain coding to place the synonym on some other track 
based on the randomizing technique being used. 

During random retrieval, an INVALID KEY error is raised if the record 
is not found. Depending upon how the file was created, this condition 
could mean that the record may be located on some other track or cylin­
der, or it could mean that the record is truly missing. The INVALID KEY 
routine could determine this. 

During sequential :retrieval, there is no INVALID KEY. The AT END 
option after the READ statement is used to determine when the end-of­
f ile condition is reached. 

USE AFTER STANDARD ERROR 

For data check and wrong-length record error conditions, the user may 
wish to have control passed to him by writing a USE AFTER STANDARD ERROR 
routine in the declarative section of his program. This routine can 
interrogate bytes 244 and 255 of the DTF in a subprogram to determine 
the type of error that has 0ccurred. These error indicators are: 

X'40' 
X'08' 

x• 80'' 
x• 10• 
x•os• 

wrong-length record 
no room found 

data check in count 
data check in key or data 
no record found 

Note that the "no :room found" and the "no record found" conditions 
should normally be handled by INVALID KEY routines. 

Normal return from the declarative section is to the next sequential 
instruction following the input/output operation (which caused the 
interrupt). Return by means of a GO TO statement may be made to any 
location within the program. It is important to remember that the last 
input/output operation was not completed. 

Section VIII: Processing COBOL Files on Direct-Access Devices 147 



Table 5. Error Functions 
r--------------------T----------------T----------------T---------------1 I I Create I I I I I or ) Random I Sequential J I Error Function I Add I Retrieve I Retrieve I 
~-~------------------+----------------+----------------+---------------~ I No Room Found I INVALID KEY I I I 
I I I I I 
~----------------~---+----------------+----------------+---------------~ ! No Record Found I I INVALID KEY I I 
I I I I I 
~--------------------+----------------i----------------i---------------~ I Wrong Length I I I Record I USE AFTER STANDARD ERROR I 
I I I 
~--------------------+-------------------------------------------------~ I Data Check I USE AFTER STANDARD ERROR I 
I I I 
~-----------·---------f----------------T----------------T---------------~ I End of File I I I AT END I 
I I I I I 
L--------------------i----------------i-----~----------i---------------J 

Refer to the "Use After Standard Error" discussion under indexed 
sequential for an example showing how to interrogate the DTF table. 
Also, see the following discussion "Modifying the DTF Table for Drect 
Files." 

MODIFYING THE DTF FOR DIRECT FILES 

The COBOL compiler builds a skeleton DTF table for files having direct 
organization. When the OPEN statement is executed, a transient routine 
uses this information to build a complete DTF table. The contents of 
the skeleton DTF table are illustrated in Table 6. 

The programmer may modify the skeleton DTF table prior to execution 
of the OPEN statement in one of two ways. 

1. By writing statements in the main COBOL program to access the DTF 
table and by writing a COBOL subprogram to modify the DTF table. 

2. By writing statements in the COBOL main program to access the DTF 
table and by writing an assembler language subprogram to change the 
DTF table. 

See the discussion "Modifying the DTF Table" under indexed sequential 
for an example of a COBOL main program and COBOL subprogram that modi­
fies the DTF table. 

Byte 3 (the fourth byte) can be changed to x•oo• to suppress the 
verify option. Verification consists of IOCS checking to be sure that a 
record written out is correct. Suppression of the verify option could 
result in improved program performance. 

CODING EXAMPLES FOR DIRECT ORGANIZATION FILES 

The following examples illustrate how to create and retrieve, sequen­
tially or randomly, a file with direct data organization. 

The following job control cards can be used for the examples: 

148 Disk and Tape Operating Systems COBOL Programmer's Guide 

. I 
\~ 



I // DLBL SYS004,'DIRECT ACCESS FILE',67/365,DA 

//EXTENT SYS004,111111,1,1,00001,00030 

// EXEC 

~reatinq the File 

This example illustrates how to create a direct organization file from 
cards. The DA-FILE is composed of unblocked 100 character records that 
are preceded by a 10-byte key. The key contains the customer identifi­
cation, and the data portion contains customer name balance. 

The file control section defines the DA-FILE. The SYMBOLIC KEY 
clause defines the data-name KEY-ID, which is a field in the CARD-FILE. 
This field will become the record key used by LIOCS to create the key 
portion of the disk record. 

The ACTUAL KEY clause defines the data-name address that is in work­
ing storage. This field will contain the binary disk address used by 
LIOCS for its track reference field. 

To properly align the binary cc and HH portions of this track 
reference field on a halfword boundary, the data-name address is pre­
ceded by a 01 FILLER. This forces FILLER to begin on a doubleword boun­
dary. The M portion of the address is not aligned, but the BB, cc, and 
HH portions of the address are all on halfword or fullword boundaries. 

The M, BB, and R portions of the address are assigned a picture of X 
with a value of LOW-VALUE to cause a binary zero to be inserted in these 
portions of the address. The BB and R portions should always be binary 
z·eros in 2311 applications. The M portion is always zero in this 
example, since the data file is contained on one disk pack. 

If the data file extends over several disk packs, the M portion of 
the address would have to be changed to access the correct disk pack. 
For e~xample, if the file required 250 cylinders, it could be contained 
on two disk packs. The first 199 cylinders could be located on the 
first pack (assuming that cylinder zero contains the VTOC). A cylinder 
address in excess of 199 would indicate that the record is to be located 
on the second disk pack. To illustrate, a cylinder address of 229 
should be locate·d on cylinder 30 of pack 2. This can be accomplished by 
subtracting 199 from the cylinder address. If the results are positive, 
move a binary one to the M portion of the address, and the results of 
the subtraction to the cc portion of the address. This results in an 
address, as follows: 

I 
lllOIOf31010fOIO I 
L---i---i---i---i---i---i---i----J 

M B B C C H H R 

section VIII: Processing COBOL Files on Direct-Access Devices 149 



Table 6. Skeleton DTF Table for Direct Organization File 
r----------------------~-----------~-----------------------------------1 BYTE 0 -X'OO'=RANDOM ACCESS 

1 

2 

3 

4-7 
8-11 

12-15 
16-19 
20-21 
22-29 
30 
31 

32-35 
36 

37 

X'FO'=SEQUENTIAL ACCESS 
-X'00'=2311 

X'F0'=2321 
-X'OO'=RESTRICTED SEARCH 

X'FO'=SEARCH MULTIPLE 
-X'OO'=NO VERIFY 

X'FO'=VERIFY 
-I/O AREA ADDRESS 
-SYMBOLIC KEY ADDRESS 
-ACTUAL KEY ADDRESS 
-USER LABEL 
-LENGTH OF DATA FIELD 
-SYMBOLIC FILE-NAME 
-SYMBOLIC KEY LENGTH 
-X'OO'=INPUT 

X'FO'=OUTPUT 
X'FF'=I/O 

-GLOBAL TABLE ADDRESS 
-X'OO'=FIXED LENGTH 

RECORDS 
X'FF'=UNDEFINED LENGTH 

RECORDS 
-X'FF'=USER LABELS 

X'OO'=NO USER LABELS 
------------·----------------------------------------------------------

To assure that a binary one is moved to the M field, the following 
procedure may be used. 

WORKING-STORAGE SECTION. 
01 M-FLD PICTURE99USAGE COMPUTATIONAL. 
01 M-FLD-2 REDEFINES M-FLD. 

02 FILLER PICTURE X. 
02 M-2 PICTURE. 

M-FLD defines a halfword binary field. Move 1 to M-FLD. Then move 
M-2 to M. This will move the eight low-order bits of M-FLD to M. 

If the literal 1 were moved directly to M, it would be stored there 
as a display item with a hexadecimal notation of 'Fl'. This will pro­
duce an invalid address. The recommended procedure will cause a X'Ol' 
to be stored in M field, yielding the desired result. 

The Procedure Division starts by opening the files. This will cause 
the transient open routine to construct the complete DTF table. In 
addition to the open functions of checking labels and creating VTOC 
entries, COBOL subroutine IHD03600 is entered at this time. The purpose 
of this subroutine is to issue the WRITE RECORD ZERO macro instruction 
to all the tracks specified by the EXTENT cards for the DA-FILE. This 
will assure that the track is cleared and that record zero is initial­
ized with the correct information. 

This subroutine relieves the user of the responsibility of running 
clear disk utilities or of rerunning the Initialize Disk program. 

After the card is read, the randomizing routine is entered. This 
routine uses division by prime number. It is assumed that this small 
file fits on two cylinders, and a prime number of 19 is used as a divi­
sor. The results of the routine (the remainder> are stored in TRACK, 
giving a decimal track address. Ten is added to the track address to 
avoid any references to cylinder zero. 

The low-order byte must now be moved to the binary HH field of the 
ACTUAL KEY, and the three high-order bytes to the binary cc field. This 
is done by redefining the 4-digit track address into a 3-byte cylinder 

150 Disk and Tape Operating Systems COBOL Programmer's Guide 

• 



I I 

~ 

I , 

\._) 

number and a 1-byte head number. The move is then accomplished by 
accessing the appropriate data-names. 

If there is room for the record on the accessed track, the record is 
written, an audit trail is printed, and a branch is made to get the next 
transaction. 

If there is no room on the track, a branch to the synonym routine is 
made. This synonym routine uses the "spilling" technique. It checks 
the HH field for 9 to determine whether or not the end of cylinder has 
been reached. If it has not been reached, 1 is added to the head number 
and the write is repeated;-this time attempting to write the synonym on 
the following track. 

If the end of cylinder is reached without successfully writing the 
record, a branch is made to the end-of-cylinder routine. This routine 
will write synonyms on an overflow track located on cylinder 3, head o. 
If the overflow track becomes full, the job is terminated. Abnormal 
termination, for this reason, would indicate the need for a better ran­
domizing formula or more track reserved for overflow. 

The END-JOB routine closes the file and terminates the run. It will 
also use information obtained by COBOL subroutine IHD03100 to write an 
end-of-file record. This subroutine has kept track of the last record 
location. It will write the EOF record on either the last track of the 
extent, or after the last record, whichever is greater. 

01 
02 
03 
04 
05 
06 
01 
08 
09 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 

134 
35 
36 
31 
38 
39 
40 

0010 01 IDEWrIFICATION DIVISION. 
PROG1<AM- ID. I LOADDA I • 

REMARKS. ILLUSTRATE CREATION OF DIRECT ACCESS FILE. 
3 AUTHOR. 
4 INSTALLATION. 360 PROGRAMMING CENTER. 

ENVIRONMENT DIVISION. 
CONFIGURATION SECTION. 
SOURCE-COMPUTER. IBM-360. 
OBJECT-COMPUTER. IBM-360c 

002001 INPUT-OUTPUT SECTION. 
FILE-· CONTROL. 

SELECT DA-FILE ASSIGN TO 1 SYS004' DIRECT-ACCESS 2311 
ACCESS IS SEQUENTIAL ORGANIZATION IS DIRECT 
RESERVE NO ALTERNATE AREA 
SYMBOLIC KEY IS KEY-ID 
ACTUAL KEY IS ADDRESS. 

SELECT CARD-FILE ASSIGN TO 'SYSOOS' UNIT-RECORD 2540R 
RESERVE NO ALTERNATE AREA. 

SELECT PRINT-FILE ASSIGN TO 'SYS006' UNIT-RECORD 1403 
RESERVE NO ALTERNATE AREA. 

003002 DATA DIVISION. 
FILE SECTION. 
FD DA-FILE DATA RECORD IS DISK 

RECORDING MODE IS F 
LABEL RECORDS ARE STANDARD. 

01 DISK. 
02 DISK-NAME PICTURE X(20). 
02 DISK-BAL PICTURE 99999V99. 
02 FILLER PICTURE X(73). 

004001 FD CARD-FILE DATA RECORD IS CARDS 
RECORDING MODE IS F 

01 

005001 FD 

CARDS. 
02 KEY-IDl 
02 CD-NAME 
02 CD-BAL 
PRINT-FILE 

01 PRINTER. 

LABEL RECORDS ARE OMITTED. 

PICTURE 9(10). 
PICTURE X(20>. 
PICTURE 99999V99. 
DATA RECORD IS PRINTER 
RECORDING MODE IS F 
LABEL RECORDS ARE OMITTED. 

section VIII: Processing COBOL Files on Direct-Access Devices 151 



41 02 PRINT-ID PICTURE XC10). 
42 02 FILLER PICTURE XC10). 
43 02 PRINT-NAME PICTURE X(20>. 
44 02 FILLER PICTURE XC10). 
45 02 PRINT-BAL PICTURE $ZZ,ZZ9.99-. 
46 WORKING-STORAGE SECTION. 
47 77 KEY-ID PICTURE XC10>. 
4 8 77 NINE PICTURE 9 9 USAGE COMPUTATIONAL VALUE 0 9. 
49 77 SAVE PICTURE S9(10) USAGE COMPUTATIONAL-3. 
50 77 QUOTIENT PICTURE S9999 USAGE COMPUTATIONAL-3. 
51 77 PRODUCT PICTURE S9999 USAGE COMPUTATIONAL-3. 
52 01 TRACK PICTURE S9999. 
53 01 TRACK2 REDEFINES TRACK. 
54 02 CYL PICTURE 999. 
55 02 HEAD PICTURE 9. 
56 01 FILLER. 
57 02 FILLER PICTURE X. 
58 02 ADDRESS. 
59 03 M PICTURE X VALUE LOW-VALUE. 
60 03 BB PICTURE XX VALUE LOW-VALUE. 
61 03 CC PICTURE 999 USAGE COMPUTATIONAL. 
62 03 HH PICTURE 99 USAGE COMPUTATIONAL. 
63 03 R PICTURE X VALUE LOW-VALUE. 
64 006001 PROCEDURE DIVISION. 
65 START. 
66 OPEN INPUT CARD-FILE 
67 OUTPUT PRINT-FILE DA-FILE. 
68 RD. 
69 READ CARD-FILE AT END GO TO END-JOB. 
70 MOVE KEY-ID1 TO KEY-ID. 
71 MOVE KEY-ID TO SAVE. 
72 DIVIDE 19 INTO SAVE GIVING QUOTIENT. 
73 MULTIPLY QUOTIENT BY 19 GIVING PRODUCT. 
74 SUBTRACT PRODUCT FROM SAVE GIVING TRACK. 
75 ADD 10 TO TRACK. 
76 MOVE HEAD TO HH. 
77 MOVE CYL TO CC. 
78 MOVE CD-NAME TO DISK-NAME. 
79 MOVE CD-BAL TO DISK-BAL. 
80 WR. 
81 WRITE DISK INVALID KEY GO TO SYNONYMN-ROUTINE. 
82 PRT. 
83 MOVE CD-NAME TO PRINT-NAME. 
84 MOVE CD-BAL TO PRINT-BAL. 
85 MOVE KEY-ID TO PRINT-ID. 
86 WRITE PRINTER. 
87 GO TO RD. 
88 007001 SYNONYMN-ROUTINE. 
89 IF HH IS EQUAL TO NINE GO TO END-OF-CYLINDER. 
90 ADD 1 TO HH. 
91 GO TO WR. 
92 END-OF-CYLINDER. 
93 MOVE 3 TO CC. 
94 MOVE ZERO TO HH. 
95 WRITE DISK INVALID KEY GO TO NO-ROOM. 
96 GO TO PRT. 
97 NO-ROOM. 
98 DISPLAY 'CYLINDER OVERFLOW FULL' UPON CONSOLE. 
99 END-JOB. 
00 CLOSE CARD-FILE PRINT-FILE DA-FILE 
01 DISPLAY 'END JOB' UPON CONSOLE. 
02 STOP RUN. 

152 Disk and Tape Operating Systems COBOL Programmer's Guide 



( 

\~) 

i \ 
I I 

~ 

u 

This coding example illustrates random retrieval from the file created in the previous example. 

The Data Division contains basically the same information as that in the previous example. The DA-FILE is opened as input, which permits updating. By opening the file as Input-output, additions to the file could be made in the same run, or in a separate processing program. 
The same randomizing formula is used as in loading the file. The SYMBOLIC KEY data-name (KEY-ID) specifies the key of the record to be found. The READ verb starts a search for an equal key on the track specified by the ACTUAL KEY address. 

If the record is found, data is printed, the disk record is updated, and the next transaction is read. 

Since the search was not restricted, the record will be found if it is either on the track specified or on any following tracks of the same cylinder. Only if the record is not located prior to reaching the end of the cylinder does a "no record found" condition occur. This will cause a branch to the END-OF-CYLINDER routine. 

The END-OF-CYLINDER routine initiates a search for the record on the overflow cylinder. If the record is located, a branch is made to the processing routine. If another "no record found" condition occurs, the error and error record are identified, and processing continues with the next transaction. 

The END-JOB routine terminates the run. 

01 001001 IDENTIFICATION DIVISION. 
02 PROGRAM-ID. 'RANDA'. 
03 REMJ.l~RKS. ILLUSTRATE RANDOM RETRIEVAL FROM DA FILE. 04 3 AUTHOR. 
05 4 INSTALLATION. 360 PROGRAMMING CENTER. 06 ENVIRONMENT DIVISION. 
07 CONFIGURATION SECTION. 
08 SOURCE-COMPUTER. IBM-360. 
09 OBJECT-COMPUTER. IBM-360. 
10 002001 INPUT-OUTPUT SECTION. 
11 FILE-CONTROL. 
12 SELECT DA-FILE ASSIGN TO 'SYS004' DIRECT-ACCESS 2311 13 ACCESS IS RANDOM ORGANIZATION IS DIRECT 14 RESERVE NO ALTERNATE AREA 15 SYMBOLIC KEY IS KEY-ID 
16 ACTUAL KEY IS ADDRESS. 17 SELECT CARD-FILE ASSIGN TO 'SYS005' UNIT-RECORD 2540R 18 RESERVE NO ALTERNATE AREA. 19 SELECT PRINT-FILE ASSIGN TO 'SYS006' UNIT-RECORD 1403 20 RESERVE NO ALTERNATE AREA. 21 003002 DATA DIVISION. 
22 FILE SECTION. 
23 FD DA-FILE DATA RECORD IS DISK 24 RECORDING MODE IS F 25 LABEL RECORDS ARE STANDARD. 26 01 DISK. 
27 02 DISK-NAME PICTURE XC20). 28 02 DISK-BAL PICTURE 99999V99. 29 02 FILLER PICTURE X(73). 30 004001 FD CARD-FILE DATA RECORD IS CARDS 31 RECORDING MODE IS F 32 LABEL RECORDS ARE OMITTED. 

Section VIII: Processing COBOL Files on Direct-Access Devices 153 



33 01 CARDS. 
34 02 KEY-IDl PICTURE 9(10). 
35 02 CD-NAME PICTURE X(20). 
36 02 CD-AMT PICTURE S99999V99. 
37 005001 FD PRINT-FILE DATA RECORD IS PRINTER 
38 RECORDING MODE IS F 
39 LABEL RECORDS ARE OMITTED. 
40 01 PRINTER. 
41 02 PRINT-ID PICTURE X(10). 
42 02 FILLER PICTURE XC10). 
43 02 PRINT-NAME PICTURE X(20). 
44 02 FILLER PICTURE X(10). 
45 02 PRINT-BAL PICTURE $ZZ,ZZ9.99-. 
46 02 FILLER PICTURE X(lO>. 
47 02 PRINT-AMT PICTURE ZZ,ZZ9.99-. 
48 02 FILLER PICTURE X(10). 
49 02 PRINT-NEW-BAL PICTURE ZZ,ZZ9.99-. 
50 WORKING-STORAGE SECTION. 
51 77 KEY-ID PICTURE X(10). 
52 77 NINE PICTURE 99 USAGE COMPUTATIONAL VALUE 09. 
53 77 SAVE PICTURE S9(10) USAGE COMPUTATIONAL-3. 
54 77 QUOTIENT PICTURE S9999 USAGE COMPUTATIONAL-3. 
55 77 PRODUCT PICTURE S9999 USAGE COMPUTATIONAL-3. 
56 01 TRACK PICTURE S9999. 
57 01 TRACK2 REDEFINES TRACK. 
58 02 CYL PICTURE 999. 
59 02 HEAD PICTURE 9. 
60 01 FILLER. 
61 02 FILLER PICTURE X. 
62 02 ADDRESS. 
63 03 M PICTURE X VALUE LOW-VALUE. 
64 03 BB PICTURE XX VALUE LOW-VALUE. 
65 03 CC PICTURE 999 USAGE COMPUTATIONAL. 
66 03 HH PICTURE 99 USAGE COMPUTATIONAL. 
67 03 R PICTURE X VALUE LOW-VALUE. 
68 006001 PROCEDURE DIVISION. 
69 START. 
70 OPEN INPUT CARD-FILE 
71 OUTPUT PRINT-FILE 
72 INPUT DA-FILE. 
73 RD. 
74 READ CARD-FILE AT END GO TO END-JOB. 
75 MOVE KEY-IDl TO KEY-ID 
76 MOVE KEY-ID TO SAVE. 
77 DIVIDE 19 INTO SAVE GIVING QUOTIENT. 
78 MULTIPLY QUOTIENT BY 19 GIVING PRODUCT. 
79 SUBTRACT PRODUCT FROM SAVE GIVING TRACK. 
80 ADD 10 TO TRACK. 
81 MOVE HEAD TO HH. 
82 MOVE CYL TO CC. 
83 READ DA-FILE INVALID KEY GO TO END-OF-CYLINDER. 
84 ADD. 
85 MOVE DISK-BAL TO PRINT-BAL. 
86 ADD CD-AMT TO DISK-BAL. 
87 MOVE CD-AMT TO PRINT-AMT. 
88 MOVE DISK-NAME TO PRINT-NAME. 
89 MOVE DISK-BAL TO PRINT-NEW-BAL. 
90 MOVE KEY-ID TO PRINT-ID. 
91 WRITE PRINTER. 
92 REWRITE DISK. 
93 GO TO RD. 
94 END-OF-CYLINDER. 
95 MOVE 3 TO CC. 
96 MOVE ZERO TO HH. 
97 READ DA-FILE INVALID KEY GO TO NO-RECORD. 
98 GO TO ADD. 
99 NO-RECORD. 
00 DISPLAY 'NO RECORD FOUND' UPON CONSOLE. 

154 Disk and Tape Operating Systems COBOL Programmer's Guide 



01 
02 
03 
04 
05 
06 

DISPLAY KEY-ID UPON CONSOLEe 
GO TO RD. 

END-JOB. 
CLOSE CARD-FILE PRINT-FILE DA-FILE 
DISPLAY 'END JOB' UPON CONSOLE. 
STOP RUN. 

This program illustrates sequential retrieval of the direct-access records in their physical sequence. 

The starting disk address, Cylinder 1, Head O, is moved to the ACTUAL KEY address. 

The READ statement fetches the first record and locates the address of the next record. Both the key and data portion of the DASD record are read since the SYMBOLIC KEY clause is specified. 

A listing is made of the DA-FILE. Each READ statement issued to the DA-FILE retrieves another record and locates the following record. This continues until the end-of-file record is reached, at which time the program branches to the END-JOB routine. 

01 
02 
03 
04 
05 
06 
07 
08 
09 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 

001001 IDENTIFICATION DIVISION. 
PROGRAM- ID. ' SEQ DA'' • 
REMARKS. ILLUSTRATE SEQ. RETRIEVAL OF DIRECT ACCESS FILE. 3 AUTHOR. 

4 INSTALLATION. 360 PROGRAMMING CENTER. 
ENVIRONMENT DIVISION. 
CONFIGURATION SECTION. 
SOURCE-COMPUTER. IBM-360. 
OBJECT-COMPUTER. IBM-360. 

002001 INPUT-OUTPUT SECTION. 
FILE-CONTROL. 

SELECT CA-FILE ASSIGN TO 'SYS004' DIRECT-ACCESS 2311 ACCESS IS SEQUENTIAL ORGANIZATION IS DIRECT 
RESERVE NO ALTERNATE AREA 
SYMBOLIC KEY IS KEY-ID 
ACTUAL KEY IS ADDRESS. 

SELECT PRINT-FILE ASSIGN TO 1 SYS006'' UNIT-RECORD 1403 
RESERVE NO ALTERNATE AREA. 

003002 DATA DIVISION. 
FILE SECTION. 
FD DA-FILE DATA RECORD IS DISK 

RECORDING MODE IS F 
LABEL RECORDS ARE STANDARD. 

01 DISK. 
02 DISK-NAME PICTURE X(20). 
02 DISK-BAL PICTURE 99999V99. 
02 FILLER PICTURE X(73>. 

005001 FD PRINT-FILE DATA RECORD IS PRINTER 
RECORDING MODE IS F 
LABEL RECORDS ARE OMITTED. 

01 PRINTER. 
02 PRINT-ID PICTURE 

02 FILLER PICTURE 
02 PRINT-NAME PICTURE 
02 FILLER PICTURE 
02 PRINT-BAL PICTURE 

WORKING-STORAGE SECTION. 
77 KEY-ID PICTURE 

01 FILLER. 
02 FILLER PICTURE X. 
02 ADDRESS. 

X(10). 
X(10). 
X(20). 
X(10). 
$ZZ., ZZ9. 99-. 

X(10). 

section VIII: Processing COBOL Files on Direct-Access Devices 155 



42 
43 
44 
45 
46 
47 006001 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

03 
03 
03 
03 
03 

M 
BB 
cc 
HH 
R 

PICTURE 
PICTURE 
PICTURE 
PICTURE 
PICTURE 

X VALUE LOW-VALUE. 
x I VALUE LOW-VALUE. 
999 USAGE COMPUTATIONAL. 
99 USAGE COMPUTATIONAL. 

PROCEDURE 
START. 

DIVISION. 
X VALUE LOW-VALUE. 

RD. 

PR'r. 

MOVE 
MOVE 
OPEN 

ZERO TO HH. 
1 TO CC. 
INPUT DA-FILE 

OUTPUT PRINT-FILE. 

READ DA-FILE AT END GO TO E -JOB. 
MOVE DISK-NAME TO PRINT-NA~E. 
MOVE DISK-BAL TO PRINT-BAt. 
MOVE KEY-ID TO PRINT-IDl 

WRITE PRINTER. 

GO TO RD. 
END-JOB. 

DISPLAY 'END OF JOB' UPON C1NSOLE. 
CLOSE DA-FILE PRINT-FILE. 
STOP RUN. 

156 Disk and Tape Operating Systems COBOL Programmer's Guide 

'\._J) 

I 

:~ 



u 

APPENDIX A: REFERENCE FORMATS FOR DISK AND TAPE OPERATING SYSTEMS COBOL 

IDENTIFICATION DIVISION. 
PROGRAM-ID. 'program-name'. 

[AUTHOR. sentence ••• ] 
[INSTALLATION. sentence ••• ] 
[DATE-WRITTEN. sentence ••• ] 
[DATE-COMPILED. sentence ••• ] 
[SECURITY. sentence ••• ] 
[REMARKS. sentence ••• ] 

ENVIRONMENT DIVISION. 

[

CONFIGURATION SECTION. J [SOURCE-COMPUTER. IBM-360 [model-number].] 
[OBJECT-COMPUTER. IBM-360 [model-number].] 

INPUT-OUTPUT SECTION. 
FILE-CONTROL. [COPY library-name.] 

SELECT file-name [COPY library-name.] 

{
DIRECT-ACCESS} 

F..SSIGN TO external-name UTILITY 
UNIT-RECORD 

lE~§ERy~{~0}ALTERNATE AREA[S]] 

[~QQ~§§ IS{§EQ~~~TIAL}] 
RANDOM 

[QRG~NI£~~1Q~-rs{-INQ.~~~Q.}] 
Qig~Q~ 

[~!~~OL!Q KEY IS data-name] 
[ACTUAL KEY IS data-name] 
Cg~£QEQ KEY IS data-name]. 

1-0::.QONTROI:!. 

device-number UNIT [S] 

cs~~ AREA FOR file-name-1 file-name-2 [file-name-3 ••• ].] 

L
g~gQ~_Q~ 'external-name'{Dig~cT::.~QQ~§§}Cdevice-number UNIT[S]]J 

Q'."£ILI~X 

EVERY integer g~QQBDS OF file-name 

[~~~!:!!overflow-name TO FOB_ti::.QY~RFI:!Q~ ON file-name.] 

[~~PL!_WRI~~::.Q~~X_Q~ file-name ••••• ] 

[~PP~!_BES'."£B_IC~ED_§~Cg OF integer TRACKS ON file-name ••••• ]. 

Q~TA :!;gVISIQ~. 

_!'.IL~~~QTIO!!• 

fQ file-name [QQEX library-name.] 

[BLQQ~ CONTAINS integer{CHARACTERS}] 
B_ECOB_Q.§ 

!RECO:fil!±_NG MODE IS {~} l 

Appendix A: DOS/TOS Reference Formats 157 



[RE£QB~ CONTAINS [integer-1 ~QJ integer-2 CHARACTERS] 

{ RECORD IS } {STANDARD } 
LABEL RECORDS ARE OMITTED 

data-name 

DATA { RE£QBJ2§ ARE} record-name ••• 
E~£QBJ2 IS 

Record Description Entry. 

WORKING-STORAGE SECTION. 

Record Description entries 

LINKAGE SECTION. 

Record Description entries 

level-number 
{

data-name}[REDEFINES data-name-2] [COPY library-name.] 
!:~ 

[PICTURE IS l
alpha-form lJ an-form 
numeric-form 
report-form 
f p-form 

[OCCURS integer TIMES [DEPENDING ON data-name]] 

[JUSTIFIED RIGHT] 

[BLANK WHEN ZERO] 

[VALUE IS literal] 

[USAGE IS lDISPLAY l] COMPUTATIONAL 
COMPUTATIONAL-1 
COMPUTATIONAL-2 
COMPUTATIONAL-3 

DECLARATIVES. 
{section=name SECTION. USE-SENTENCE. 
{paragraph-name~-~sentence •••• } ••• } 

END DECLARATIVES. 

USE FOR CREATING 

USE FOR CHECKING 

[
BEGINNING] 
ENDING 

[
BEGINNING] 
ENDING 

LABELS ON OUTPUT file-name ••• 

LABELS ON INPUT file-name ••• 

USE AFTER STANDARD ERROR PROCEDURE ON file-name. 

Conditionals. 

IF Statement. 

158 Disk and Tape operating Systems COBOL Programmer's Guide 



I M 

I • 

IF condition C!g~~] 

Relation Test. 

a7ithme~ic-expression-1 
{

data-name-1 } 

figurative-constant-1 
literal-1 

Sign Test. 

{
data-name } 
arithmetic-expression IS 

Class Test. 

{

POSITIVE} 
[NOT] ZERO 

NEGATIVE 

data-name IS [NOT] 
{

NUMERIC } 
ALPHABETIC 

Condition Name Test. 

[NOT] condition-name 

Overflow Test. 

{NO~?] overflow-name 

Open and Close Statements. 

{
statement-2 •• ·}l 
NEXT SENTENCE j 

data-name-2 

arithmetic 
expression-2 

figurative 
constant-2 

literal-2 

INPUT {file-name [WITH NO REWIND [REVERSED]]} 
~~-[OUTPUT{file-name [WITH NO REWIND]} •••• ] 

CI-0 {file-name} ••• ] 

OUTPUT {file-name [WITH NO REWIND]} ••• 
[INPUT {file-name [WITH NO REWIND [REVERSED]]} ••• ] 
[I-0 {file-name} ••• ] 

I-0 {file-name} ••• [OUTPUT{file-name [WITH NO REWIND]} ••• ] 
[INPUT {file-name [WITH NO REWIND[REVERSED]]} ••• ] 

[ { NO REWIND }l } 
WITH LOCK j ... 

Input/Output Verbs 

READ file-name RECORD [INTO data-name] AT END 
imperative statement ••• 

E~~Q file-name RECORD [IN!Q data-name] 

{~~~~~Q KEY} 
imperative statement ••• 

~RI!~:. record-name [FROM data-:-name-1] 
l!~A1IQ KEY imperative statement ••• ] 

Appendix A: DOS/TOS Reference Formats 159 



~ record-name[FROM data-name-1] 

{AFTER ADVANCING {?ata-name-2} LINES] 
integer 

perrnissable values for data-name-2 

b (blank> 
0 

+ 

Interpretation 

single spacing 
double spacing 
triple spacing 
suppress spacing 

1 through 9 
A, B, C 
v, w 

skip to channels 1 through 9, respectively 
skip to channels 10, 11, 12, respectively 
pocket select 1 or 2, respectively on 
the IBM 1442, or 2540 and Pl or P2 on 
the IBM 2540 

Permissible integer 

0 - skip to next-page 
1 - skip 1 line 
2 - skip 2 lines 
3 - skip 3 lines 

REWRITE record-name [FROM data-name] 
[INVALID KEY imperative-statement ••• ] 

{
data-name} 
literal 

[UPON CONSOLE J 
~UPON SYSPUNCH. 

ACCEPT data-name [FROM CONSOLE] 

Data Manipulation Verbs 

{
data-name-1} 
literal !Q data-name-2 ••• 

Option 1 

EXAMINE data-name TALLYING {~iinING } 'character-1' 
UNTIL FIRST 

[REPLACING BY 'character-2'] 

Option 2 

{ ~DING ~ ~XAMINE data-name REPLACING UNTIL FIRST 'character-1' 
FIRST 

BY 'character-2' 

TRANSFORM data-name-3 CHARACTERS 

{

figurative-constant-1} 
non-numeric-literal-1 
data-name-1 {

figurative-constant-2} 
non-numeric literal-2 
data-name-2 

160 Disk and Tape Operating Systems COBOL Programmer's Guide 

\ ) 
\._¥ 

'\..._,./ 

i~ 



,, 

u 

~!ith~~t.i2-Y~!Q~ 

{

numeric-literal } 
floating point literal 
data-name-1 {~VING} data-name-n 

[ROUNDED] [ON SIZE ERROR imperative-statement ••• ] 

{

data-name-1 } 
SUB'I'RACT numeric-li teral-1 

floating-point-literal-1 

{

data-name-m [GIVING data-name-n] } 
;[RO~ numeric-literal-m--GIVING data-name-n 

floating-point-literaI=m- §!VIN§ data-name-n 

[ON §!~~~BBQE imperative statement ••• ] 

MULTIPLY numeric-literal-1 
{

data-name-1 } 

floating-point-literal-1 

{

data-name-2 [GIVING data-name-3] } 
B~ numeric-literal-2 GIVING data-name-3 

floating-point-litera1=2-§!YIN§ data-name-3 

[ON §!ZE EggQg imperative statement ••• ] 

{

data-name-1 } 
DIVIDE numeric-literal-1 

floating-point-literal-1 

{

data-name-2 [GIVING data-name-3] } 
numeric-literal=~GIVING data-name-3 
floating-point-litera1=2 ~!YIN§ data-name-3 

[ON ~!ZE ~RRQg imperative statement ••• ] 

COMPUTE data-name-1 [ROUNDED] = numeric-literal 

1
data-name-2 1 
floating-point-literal 
arithmetic-expression 

[ON SIZE ERROR imperative-statement ••• ] 

Procedure Branching Statements. 

STOP {RUN } 
literal 

[procedure-name] 

Q~ion l 

GO !Q procedure-name-1 [procedure-name-2 ••• J DE~~~Q!NG ON data-name 

ALT~g {procedure-name-1 ±0 PROQ~~Q !Q procedure-name-2} 

QEt.ion !. 

~ERFO~ procedure-name-1 [THRU procedure-name-2] 

Appendix A: DOS/TOS Reference Formats 161 



Option 2 

PERFORM proc•=dure-name-1 [THRO procedure-name-2] {integer } TIMES 
data-name 

Option 3 

PERFORM procE~dure-name-1 C!!!E.Q procedure-name-2] 
UNT!~ test-condition 

fER;[Q~ proce~dure-name-1 [THRO procedure-name-2] 
VARYING data-name-1 FROM Jnumeric-literal-2} 

l data-name-2 

BY 
{
numeric-literal-3} 

data-name-3 
UNTIL test-condition-1 

[~~!§8 dat.a-name-4 FROM {numeric-literal-4} 
data-name-5 

BY {numeric-literal-6} 
data-name-6 

UNTIL test-condition-2] 

[~~TEg data-name-7 KBQ~ {numeric-literal-8} 
data-name-8 

BY 
{
numeric-literal-9} 

data-name-9 

!d~!ER L!~KA§~. 

UNTIL test-condition-3] 

CAL1 entry-name [Q§!~§ argument ••• ] 
!dNT~!L£0BQ1• 

~~!~B_1INKA§~. 
~NTR! entry-name CQ§!NG data-name ••• ] 
!dNT!dR CQ~OL. 

!d~!~R L!~KA§~ .. 
RETURN. 
~NT!dR COBOL. 

~~!T S~at~!!~::· 

paragraph-name. EX!!• 

~Q!~ comment •• , • 

INC1UD!d statement. 

QptiQ!L.1· 

paragraph-name. !~£1UDE library-name. 

Q~ion ~· '~ 
section-name SE£TIO~. INCLQQ!d library-name. 

162 Disk and Tape Operating Systems COBOL Programmer's Guide 



u 

COPY Statement. 

(within the Input-Output Section>: 

{
FILE-CONTROL.} COPY library-name. 
I-0-CONTROL. 

(within the File-Control Paragraph>: 

SELECT file-name COPY library-name. 

(within the File Section): 

FD file-name COPY library-name. 

(within a file, Working-Storage or Linkage Section>: 

01 data-name COPY library-name. 

<within Working Storage or Linkage Section): 

77 data-name COPY library-name. 

COBOL Debugging Statements. 

TRACE Statement. 

{
READY} 
RESET TRACE 

EXHIBIT Statement. 

EXHIBIT {~:!~ED NAMED}{data-name } 
CHANGED non-numeric-literal 

ON (Count-Conditional> Statement 

ON integer-1 [~li!L~Y~B! integer-2] [UNT!_!! Integer-3] 

{
imperative-statement}••• 
~EX~-~~li!~~£~ 

1 8 
*DEBUG location 

Appendix A: DOS/TOS Reference Formats 163 



r------------------------------------------------1 SECOND OPERAND . ~---T ____ T ____ T ____ T ____ T ____ T ____ T ____ T ____ T __ _ 
I GRI AL I AN I ED I ID I BI I EF I IF I RP I FC r-T---------------------f---f----f----f----f----f----f----f----f----f--­J !Group Item (GR> I NNI NN I NN I NN I NN I NN I NN I NN I NN I NN I ~---------------------t---t----+----+----+----+----+----+----+----+---1 I Alphabetic Item CAL). I NN I NN I NN I I I I I I I NN I ~---------------------t---t----t----t----+----+----t----t----+----t--- . I !Alphanumeric (non- I I ] I l I I l I I ~Fjreport> Item (AN) I NNI NN I NN I NN5 I I I I I NN I NN Ir---------------------f---f----f----f----f----f----f----f----f----f---Rl External Decimal I I I l I I I I I I SIItem (ED) I NNI I NN 5 I NU I NU I NU I NU I NU I I NU Tt---------------------f---f----f----f----f----f----f----f----f----f---J Internal Decimal I I 1 I I I I I I I O·I Item CID) I NN I I I NU I NU I NU I NU I NU I I NU Pt---------------------f---f----f----f----f----f----f----f----f----f---E I Binary ItE~m (BI) I NNI I J NU I NU I NU I NU I NU I I NU R~---------------------t---f----f----t----f----f----f----t----f----f---Al Ext~rnal Floating- I I I I I I I I I I Njpoint Item (EF) I NNI I I NU I NU I NU ] NU I NU I I NU D~---------------------t---f----f----f----f----f----f----f----f----t---1 Internal :noating- I I I I I I I I I I I point Item (IF) I NN I l I NU I NU I NU I NU I NU I I NU ~---------------------+---+----+----+----+----+----+----+----+----+---1 Report Item CRP) I NNI I NN I I I I I I NN I NN t---------------------+---+----+----+----+----+----+----+----t----+---J Figurative constant I I I I I I l I I I I I CFC) I NNI NN1 1 NN I NU3 1 NU2 1 NU2 1 NU 2 I NU2 1 NN4 1 

~-.1. _____________________ .1, ___ .1, ____ J. ____ .J._ ___ .1, ____ .1, ____ .J. ____ .J. ____ .1, ____ .J. ___ _ 
JAbbreviation.s for Types of comparison 
INN - Comparison as described for non-numeric items INU - Comparison as described for numeric items 11Permitted with the figurative constants SPACE and ALL 'character' I where ch~I~£~~~ must be alphabetic. 
f 2Permitted only if figurative constant is ZERO. l 3 Permitted only if figurative constant is ZERO or ALL 'character' I where character must be numeric. 
J 4 Not permitted with figurative constant QUOTE. 
J 5 External decimal field must consist of integers. l------------------------------------------------------------------------

164 Disk and Tape Operating Systems COBOL Programmer's Guide 

I 
~ 

I 

I v 



r---------------------------------------------1 
I Receiving Field I 

r------------------------f----T ____ T ____ T ____ T ____ T ____ T ____ T ____ T _____ J 

!Source Field I GR I AL I AN I ED I ID I BI I EF I IF I RP I 

r------------------------+----+----+----+----+----+----+----+----+-----~ 
!Group (GR) I Y I Y I Y I N I N I N I N I N I ~ I 

r------------------------+----+----+----+----+----+----+----+----+-----~ 
!Alphabetic CAL) I Y I Y I Y I N I N I N I N I N I N I 

r------------------------+----+----+----+----+----+----+----+----+-----~ 
!Alphanumeric CAN) I Y I Y I Y I N I N I N I N l N I N I 

r------------------------+----+----+----+----+----+----+----+----+-----~ 
!External Decimal CED) I Y I N I Y1 I Y I Y I Y I Y I Y I Y I 

r---·---------------------+----+----+----+----+----+----+----+----+-----~ 
!Internal Decimal CID) I Y 1 N I Y1 I Y I Y I Y I Y I Y I Y I 

r------------------------+----+----+----+----+----+----+----+----+-----~ 
!Binary (BI) I Y I N I Y1 I Y 1 Y I Y I Y I Y I Y I 

r------------------------+----+----+----+----+----+----+----+----+-----~ 
]External Floating- I I I I 1 I I I I I 
!Point (EF) I Y I N I N I Y I Y I Y I Y I Y I Y I 

r------------------------+----+----+----+----+----+----+----+----+-----~ 
)Internal Floating- I I I I J I I I I I 

!Point CIF) I Y 1 N I N I Y I Y I Y I Y I Y I Y I 

r------------------------+----+----+----+----+----+----+----+----+-----~ 
!Report CRP) 1 Y I N I Y I N 1 N l N I N l N I N I 

r------------------------+----+----+----+----+----+----+----+----+-----~ 
!Zeros I Y I N I Y I Y I Y I Y I Y I Y I Y I 

r~----------------------+----+----+----+----+----+----+-,--+----+-----~ 
!Spaces I Y I Y I Y I N I N 1 N I N I N I N I 

r---·---------------------+----+----+----+----+----+----+----+----+-----~ 
I ALI. ' character• , I I I I I I I I I I 
1 HIGH-VALUES, I I I I 1 I I I J I 
I LOW-VALUES, I I I I I I I I I I 

u I QUOTES I y I N I y I N I N I N I N I N I N I 

r------------------------L----L----L----L----L----L----~----~----L-----~ 
j1For integers only. I 
L----------------------------------------------------------------------J 

Appendix A: DOS/'I'OS Reference Forrna ts 16 5 



APPENDIX B: STANDARD TAPE FILE LABELS 

File 
Label 
Number 

Label 
Identifier 

File Identifier 
Fi le Volume File 
Serial Sequence Sequence 
Number Number Number 

Version 
Number of 
Generation 

The standard tape file label format and contents ore as follows: 

I. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

LABEL IDENTIFIER 
3 bytes, EBCDIC 

FILE LABEL NUMBER 
I byte, EBCDIC 

FILE IDENTIFIER 
17 bytes, EBCDIC 

FILE SERIAL NUMBER 
6 bytes, EBCDIC 

VOLUME SEQUENCE 
NUMBER 4 bytes 

FILE SEQUENCE NUMBER 
4 bytes 

GENERATION NUMBER 
4 bytes 

VERSION NUMBER OF 
GENERATION 2 byres 

p.liSCRIPTION 

identifies the type of label 
HOR= Header -- beginning of o data 

file 
EOF = End of File -- end of a set af 

data 
EOV = End of Volume -- end of the 

physical reel 

Always a I 

uniquely identifies the entire file, 
may contain only printable characters. 

uniquely identifies a file/volume 
relationship. This field is identical 
to the Volume Serial Number in the 
volume label of the first ar only 
volume of a multi-volume file or a 
multi-file set. This field will 
normally be numeric (000001 to 
999999) but may contain any six 

· alphameric characters. 

indicates the order of a volume in a 
given file or multi-file set. The 
first must be numbered 0001 and 
subsequent numbers must be in proper 
numeric sequence. 

assigns numeric sequence to a file 
within a multi-file set. The first 
must be numbered 0001. 

uniquely identifies the various 
editions of the file. May be from 
0001 to 9999 in proper numeric 
sequence. 

indicates the version of a generation 
of a file. 

Creation 
Date 

9. 

10. 

11. 

12. 

13. 

14. 

Expi:ration 
Date 

File 
Security 

Block 
Count 

NAME AND LENGTH 

CREATION DATE 
6 bytes 

EXPIRATION DATE 
6 bytes 

FILE SECURITY 
1 byt.e 

BLOCK COUNT 
6 bytes 

SYSTEM CODE 
13 bytes 

RESERVED 
~ 

166 Disk and Tape Operating Systems COBOL Programmer's Guide 

System Code Reserved 
For A.S.A. 

DESCRIPTION 

indicates the year ond the day of 
the year that the file was created: 

Position Code 

2-3 
4-6 

blank 
00-99 
001-366 

none 
Year 
Day of Year 

(e.g., January 31, 1965 would 
be entered as 65031) 

i n6i cotes the year and the day of 
the year when the file may become 
a scratch tape. The format af this 
field is identical to Field 9. On a 
multifile reel, processed sequentially, 
all files are considered to expire on 
the same day. 

indicates security status af the file. 
O = no security protecti an 
1 =security protection. Addit­

ional identification of the 
file is required before it 
can be processed. 

indicates the number of data blocks 
written on the file from the last 
header label to the first trailer label 
exclusive of tape marks. Count does 
not include checkpoint record(, 
This field is used in Trailer Labels. 

uniquely identifies the programming 
system. 

Reserved for American Standards 
Association (A.S.A.). At present 
should be recorded as blanks. 

'\ 

'J 

I' v 



u 

u 

~i 

APPENDIX C: STANDARD DASD FILE LABELS -- FORMAT 1 

Reserved 
For Future 
Use 

Use 

Option Record Key 
Codes Length Location 

File 
Type 

Block Key 
Format Length Length 

Last Used 
Secondary Track & 
Allocation 

Indicators 

Space 
Remaining 

First Extent 

Format l: This format is common to all data files on disk. 

NAME AND LENGTH 

FILE NAME 
44 bytes, alphameric 
EBCDIC 

DESCRIPTION 

This field serves as the key portion of 
the file label. It can consist of 
three sections: 

1. File ID is an alphameric assigned 
by the user and identifies the 
file. Con be l - 35 bytes if 
generation and version numbers 
are used, or l - 44 bytes if they 
are not used. 

2. Generation Number. If used, 
this field is separated from File 
ID by a period. It has the format 
Gnnnn, where G identifies the 
fie Id as the generation number 
and nnnn (in decimal) identifies 
the generation of the file. 

3. Version Number of Generation. 
If used, this section immediately 
follows the generation number 
and has the format Vnn, where 
V identifies the field as the 
version of generation number an.d 
nn (in decimal) identifies the 
version of generation of the file. 

Note: IBM System/360 Disk and Tape 
Operating Systems compares 
the entire field against the 
fife name given in the DLAB 
card. The generation and 
version numbers are treated 
differently by Operating 
System/360. 

The remaining fields comprise the DATA portion of the file label: 

2. 

3. 

7A 

FORMAT IDENTIFIER 
l byte, EBCDIC numeric 

FILE SERIAL NUMBER 
6 bytes, alphameric EBCDIC 

VOLUME SEQUENCE NUMBER 
2 bytes, binary 

CREATION DATE 
3 bytes, discontinuous binary 

EXPIRATION DATE 
3 bytes, discontinuous binary 

EXTENT COUNT 
1 byte, binary 

1 =Format 1 

Uniquely identifies a file/volume 
relationship. It is identical to the 
Volume Serial Number of the first 
or only volume of a multi-volume 
file. It is the disk pack number 
identification. 

Identifies each volume in a multi­
volume fife. Each volume is 
relative to the first volume on which 
the data file resides. 

Indicates the year an~ the day of the 
year the file was created. It is of 
the form YDD, where Y signifies the 
year (0- 99) and DD the day of the 
year (1- 366). 

Indicates the year and the day of the 
year the file may be deleted. The 
form of this field is identical to that 
of Field 5. 

Contains a count of the number of 
extents for this file on this volume. 

7B 

7C 

10 

11 

Creation Date Expiration Spare 
Date 

Extents 

Additional Extent Additional Extent 

NAME AND LENGTH 

BYTES USED IN LAST BLOCK 
OF DIRECTORY 
l byte, binary 

SPARE 
l byte 

SYSTEM CODE 
13 bytes 

RESERVED 
7 bytes 

FILE TYPE 
2 bytes 

RECORD FORMAT 
1 byte 

System Code 

of directory 

DESCRIPTION 

If user labels are used, the count 
includes the user label track as a 
separate extent. This field is 
maintained by the Disk and Tape 
Operating Systems programs. 

Used by Operating System/360 only 
for partitioned (I ibrary structure) data 
sets. Not used by Disk and Tape 
Operating Systems. 

Reserved for future use. 

Uniquely identifies the programming 
system. 

This field is reserved for future use. 

The contents of this field uniquely 
identify the type of data file: 

Hex 4000 = Consecutive organiza­
tion 

Hex 2000 = Direct- access organiza­
tion 

Hex 8000 =Indexed- sequential 
organization 

Hex 0200 = Library organization 

Hex 0000 =Organization not 
defined in the file 
label. 

The contents of this field indicate 
the type of records contained in the 
file: 

Bit 
Position Content Meaning 

0 and l 01 

10 

11 

Variable- length 
records 

Fixed- length 
records 

Undefined format 

No track 
overflow 

Fi le is organized 
using track overflow 
(Operating System/ 
360 only) 

Unblocked record' 

Blocked records 

Appendix c: Standard DASD File Labels -- Format 1 167 



~ 

12 

13. 

14. 

15. 

16. 

17. 

168 

~ 

OPTION CODES 
1 byte 

BLOCK LENGTH 
2 bytes, binary 

RECORD LENGTH 
2 bytes, binary 

KEY LENGTH 
l byte, binary 

KEY LOCATION 
2 bytes, binary 

DATA SET INDICATORS 
1 byte 

DESCRIPTION 

Bit 
Position ~ Meaning 

No truncated 
records 

Truncated 
records in file 

5 and 6 01 ControJ character 

10 

00 

ASA code 

Control Character 
machine code 

Control Character 
not stated 

Records have no 
keys 

Records are 
written with keys 

Bits within this field are used to 
indicate various options us~d in 
building the file. 

BIT 

0 ; If on, indicates data file was 
created using Write Validity 
Check. 

1- 7; unused 

Indicates the block length for fixed 
length records or maximum block 
size for variable length blocks, 

Indicates the record length· for fixed 
length records or the maximum record 
length for variable length records. 

Indicates the length of the key portion 
of the data records in the file. 

Indicates the high order position of 
the data record. 

Bits within this field are used to 
indicate the following: 

If on, indicates that th is is the 
last volume on which this file 
normally resides. This bit is 
used by the Disk and Tape 
Operating Systems DTFSR 
routine only. None of the 
other bits in this byte are used 
by Disk and Tape Operating 
Systems. 

If on, indicates that the data 
set described by th is file must 

·remain in the same absolute 
location on the direct access 
device. 

If on, indicates that Block 
Length must always be a multiple 
of 8 bytes. 

If on, indicates that th is data 
file is security protected; a 
password must be provided in 
order to access it. 

4- 7 Spare. Reserved for future use. 

18. 

19. 

20. 

21. 

22. 

23. 

24. 

25-28 

29- 32 

33 

NAME 

SECONDARY ALLOCATION 
4 bytes, binary 

LAST USED TRACK AND 
RECORD ON THAT TRACK 
5 bytes discontinuous binary 

AMOUNT OF SPACE 
REMAINING ON LAST TRACK 
~ 2 bytes, binary 

EXTENT TYPE INDICATOR 
1 byte 

EXTENT SEQUENCE NUMBER 
l byte, binary 

LOWER LIMIT 
4 bytes, discontinuous binary 

UPPER LIMIT 
~ 

ADDITIONAL EXTENT 
10 bytes 

ADDITIONAL EXTENT 
10 bytes 

POINTER TO NEXT FILE LABEL 
WITHIN THIS LABEL SET 
5 bytes, discontinuous binary 

DESCRIPTION 

Indicates the amount of storage to be 
requested for th is data file at End of 
Extent. This field is used by Operating 
System/360 only. It is not used by 
Disk and Tape Operating Systems routines. 
The first byte of this field is an indication 
of the type of allocation request. Hex 
code "C2" (EBCDIC "B") indicates bytes, 
hex code "E3" (EBCDIC "T") indicates 
tracks, and hex code "C3" (EBCDIC "C") 
indicates cylinders, The next three bytes 
of this field is a binary number indicating 
how many bytes, tracks or cylinders are 
requested. 

Indicates the last occupied track in a 
consecutive file organization data file. 
This field has the format CCHHR. It 
is all binary zeros if the last track in a 
consecutive data file is not on this 
volume or if it is not consecutive 
organization. 

A count of the number of bytes of 
available space remaining on the last 
track used by th is data file on th is 
volume. 

Indicates the type of extent with which 
the following fields are associated: 

HEX CODE 

00 Next three fields do not indicate 
any extent. 

01 Prime area (indexed Sequential); 
or Consecutive area, etc., {i.e., 
the extent containing the user's 
data records. ) · 

02 Overflow area of an indexed 
Sequential file. 

04 Cylinder index or master index area 
of an Indexed Sequential file. 

40 User label track area 

80 Shared cylinder indicator. 

Indicates the extent sequence in a 
multi- extent file. 

The cylinder and the track address 
specifying the starting point (lower 
limit) of this extent component. This 
field has the format CCHH. 

The cylinder and the track address 
specifying the ending point (upper 
limit) of this extent component. 
This field has the format CCHH. 

These fields have the same format as 
the fields 21- 24 above. 

These fields have the same format as 
fields 21- 24 above. 

The disk address (format CCHHR) of a 
continuation label if needed to further 
describe the file. If field 9 indicates 
Indexed Sequential organization, this 
field wi II point to a Format 2 file label 
within this label set. Otherwise, it 
points to a Format 3 file label, and then 
only if the file contains more than three 
extent segments. This field contains all 
binary zeros if no additional file label 
is pointed to. 

Disk and Tape Operating Systems COBOL Programmer's Guide 

l\_vi 

1j) 



/ 
i . \...._./; 

u 

u 

The track format for the 2311, 2314, and 2321 is illustrated in Figure 
25. The names of the fields are described in the following discussion. 

Index Marker: All tracks start with an index marker. It is a signal to 
thellardware indicating the beginning of the track. 

Home Address: The home address, preceded by a gap, follows the index 
marker. The home address uniquely identifies each track by specifying 
the cylinder and head number. 

Track Descriptor Record (Record Zero): Record zero consists of two 
parts: a count portion and a data portion. The count portion is the 
same as it is for any other record (see the following description of 
count for record one). The 8-byte data portion is used to record infor­
mation used by LIOCS. The information in the data portion depends on 
the data organization (direct or indexed sequential) that is being used. 

For direct organization, this portion in the form of CCHHR contains 
t~e address of the last record on the track and the number of bytes 
remaining on the track. This information is used to determine if there 
is room for another record on the track. For indexed sequential, the 
data portion contains the address of the last record in the cylinder 
overflow area and the number of tracks remaining in the cylinder over­
flow area. Record zero is then used as the cylinder overflow control 
record. 

Address Marker: All records after record zero will be preceded by a 
2::bytead~ress marker. The address marker is a signal to the hardware 
that a record is starting. 

Data Records: Data records (see R1 in Figure 25) can consist of a count 
and-data-portion for sequential organization, or a count, key, and data 
portion for direct and indexed sequential organizations. 

1. count Portion. The count portion contains the identification of 
each-recora;-the key length, and the data length. 

Identification. Each record is identified with its cylinder num­
ber, head number, or record number. The cylinder and head numbers 
will be the same as those of the home address. The record number 
will indicate which record this is on the track. That is, the 
first record after record zero will be record 1~ followed by record 
2, etc. This 5-byte binary field in the form of CCHHR is often 
referred to as the record ID. 

~~-Le!!gih!... The key length is specified in an 8-bit byte; its 
length can range from zero to 255. This field will contain a zero 
if there is no key. 

Dat~ Le!!gth!... The data length is specified in the 16 bits of the 
next two bytes. 

Note: It is the count portion that identifies the presence or 
absence of a key, as well as indicating the data length. In this 
way, each record is unique and self-formatting. 

2. Key Portion. The key portion of the record is normally used to 
store the control field of the data record, such as a man number. 
Direct and indexed sequential files must have a key portion. 

3. Data Portion. The data portion of the record contains the data 
record. 

Appendix D: Track Format for the 2311, 2314., and 2321 169 



Note that all records, including the data record, end with a 2-byte cyclic check. The hardware uses this cyclic check to assure that it correctly reread what it had written. The cyclic check is cumulative and is appended to each record when it is written. Upon reading the record, the cyclic check is again accumulated and then compared with the appended cyclic check. If they do not agree, a data check is initiated. 
The first byte of the count portion of each record and the home address is reserved for a flag byte. If a track becomes defective, a utility may be used to transfer the data to an alternate track. (Cylin­ders 200 through 202 are reserved for alternate tracks on the 2321. Strips 6 through 9 of subcell 19 of each cell are reserved for alternate tracks on the 2321.) In this case, a flag bit within the byte is set Qg to indicate that this is a defective track and the address of an alternate track will be placed in the record ID of record zero. Subse­quent references to this defective track will result in the supervisor accessing record zero for the address of the alternate track. 

G~G~G,0G~G~GJ RI-Count IGI Rl-Key 

I I Count Data I 1 
Index Home Address First Data 
Marker Addlress Track Marker 

Descriptor 
G= Gap Record 

,F,c,c 1H ,H,c ~. ,F,c ,c, H, H1R1KL1DL1DL1c,c, 

l
Fla~ '--..-II N~uem~bder -.-II Fla~'-!'~ IKeJ '--..-II ~ I Number Length Check 

Cylinder Cyclic Cylinder Record Data Number Check Number Number Length 

a;1.,010 ,o ,o I Ot:i] 
0 Good Track) 
l Defective 

0 Original ) 
l Alternate 

1' 

Record 

l 
G 
A 
p 

I GI Rl - Data 

~~ ~ 
Key 

8 Optional 

0 Variable 
Length 

'1Y''T~9 
G 
A 
p 

I C I C I H I H I R I BR I BR 1 1 C IC 1 
~~ I By;es Remaining 

Flag Record Key Data Cyclic After "Initialize Disk" 
ID Length Length Check 

Figure 24. Track Format 

G 

~cy_Jc 1 c 1 

Data 

(0 Variable 
Length 

170 Disk and Tape Operating Systems COBOL Programmer's Guide 



u 

( I 

~ 

APPENDIX E: EXAMPLES OF COBOL PROGRAMS 

This appendix contains two sample COBOL programs. Figure 25 is a 
calling program, the other. Figure 26, is a subprogram which is linked 
by the calling program. The linkage subprogram illustrated need not be 
a COBOL program. However, COBOL assumes option 2 of the standard CALL, 
SAVE., and RETURN macros. 

IB~ COBOL PROGRAM SHEET Form No. X28-1464 
Printed in U.S.A. 

System IBM SVSTE 60 Punching Instructions Sheet of 

Program EXAMPLE OF A CALLING PR06RAM Graphic Card Form# * Identification 

Proorammer Date Punch 73] · [80 

SEQUENCE ~ ! B 
(PAGE) (SERIAL) 8 A I 
I 3 4 6 7 8 112 16 20 24 28 32 36 40 44 48 52 56 60 64 68 7~ 

4>4H4>4>1 Ii>ENlTrFltcATIONl 01v1s1oll'll. ! I 111 11 I 1 i·i i 111 I I 11 I 11 
'1'4>2 PRoG:RAM-10. 1 lclA:LLlP-RGM'l.I I 111 ! I f ! 11 Ii l I! I \I I I! 

4>4 ENVI~RON~MENT DIVISI.O.N. II i I !ii I 11! !II !l·! Iii II 1111 
~5. CONFIIGURATION SEC!Tit!ON.I I i ! I i I I j i I! i I! ! Ii 11 11 ! I 

~<l>fJ SOUR~CE-COMPUTER. !IIBIM-13161~ 1D3id>. ! ! I I I I i 'i I i I! I ii I ! I I 11 
4><1>1 a&IJE!cr-lcoMP.·ur.:c.,R. lrTsM- 3T~,T<P 031cb •. f i ' i ! '1 \ l ! I l ii 1 : I ! ! I 
~4>8 INPu:r-ourPulT ls!E!CT[tiolN.T 11 1 I I 1 I ii! r l i I I I l I! I: I l 1 ! 

.4> 9 F 1 L E !- c o N r Ro ,L • 1 1 1 1 T T ! 1 1 1 r ! 1 : 1 , , · 1 1 1 1 1 1 . i i 1 1 i : 

dil I 'SELECT !FI!LIE!B .Ais1S(GlNi T!O\ i' SiYIS!4>4>'.5 11 i UiNiiiT-:RiEico:RiDt 2l5[4[~Rt ~ESiEiRVEI NIQ:'. __ 
!A1L TERN ATE IAiR EIA!.: I ! ! i ! i ! ! i I i : i ! i ! I I i l i I ! ! i i i ; , 1 I i 

d I 2 DA T Al D l v I s I 'O N • I i i i I : ! ! I I ! I i I I ! i I ! I ! i ' I : ! I : i ' 

14 1 3 F 1 L e: ~s Et Tlr o N • 1 I ! I ! . 1 I i 1 : i i 1 i ; ! i ! i i I : , 1 , 

4> 1 s •<t 1 :Rec o R Di- 1 • i ; I i l ! I ! ! I l ! ! i j : I I : i , 1 , 

1 
: ' 1 

14 1 1 :~2 J81Js -Fr e LD & P!I c!riu[R el rls lx!C11 2;). : i i. t 
1 i 11 

1 

• ' : 
1 1 : i 

4>19 lctt !Q1ec0Ro-2 PII1c.Tlu!R!E lxl<ls~i)I.! :1: 111 I ii 1

'; 

11
11 

2 IP P R 01c~e D u R e D r v xis r o N!. . I I I 1 ! i 1 : i · ! 1 ! 1 ! 1 
1 

: : : , ! 

I• 421 STAR:r. opi:\N 11N,Por! IFILiEls! oiulr!Pu:Ti ln!deiA .l 1 1 i ii '' 1 , , I 11 
1cbl$1 ~2'2. STAR:T2. REIAD !FtlLEB !AT !EINO .s!o i:rr~ L!ABiA.i i l i: ! ! • I. 
I i I I 1 ' I \ T I I I I l ! . I : : ' i i : \ I 

•A standard card form, IBM electro C61897, is available for punching source statements from this form. 

Figure 25. Example of a Calling Program (Part 1 of 2) 

IBJt1 COBOL PROGRAM SHEET Form No. X28- I 404 
Printed in U.S.A. 

System :IBM SVSTEM/360 Punching Instruction& Sheet of 

Praoram EXAMPLE OFA C~LLING PROGRAM Graphic T I I I II card Form# * Identification 

I Date T I I I I II I I I Praorammer Punch 73] [80 

SEQUENCE I-' 
; B ~A 

(PAGE) (SERIAL) 0 112 I 3 4 6 7 8 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 
I I : I l l I I 1 I ! \ I i \I I Ii I l ! I i 

I I! I 
4> H <P I :EIM TIER L.I NIKIAiG El. 1 ! I 11 I i I I I! I I I I 

I I l l I 
I 4'<1>2 :c!A LIL Is UB PiRiG Ml' ·u sit ING RIE!c OR ol- 2\.I I I I! I' 

! i I 

P4>3 ~El~ T!ER Cp B.O!LI. I i I 11 
I 

11 11 I ! 1 ! I I I 
11 I I I I I I 

~4'4 I iNblTIE slu!s PRloiG RlAMI Miolott F!1!els !IIN!F oiRIMiA rf11o!N 'IIN RIEC, ::>R 01- 2. i I I 

$c1> 5' I !wRl1Jr E Rle ciolRID -it I FRoiMi Rieldo Rio:-:2 • 
1 iG!o !riol sf'riA1R rizl. ! 

~ I I I I I I I I I 1 i I I ! : T T! 
! i j 

I 

! I l I 11 11 I I 
4>4' 2 Ul6 LA SA:.\ CJL osiEI FiIIL!E A\,! IF 1 )LiE!B \slr!o p: \Riu Ni· f I 111 i ! J. ,,--L__ I I y----..i_J_L/ • ~ l 

i ! 111 _LU 
11 1 I LJ- i I ! i ! ·1 ~~/ ~· 'r -..~-· 

~- ~ ---.L. / -::::::;:::;7° d,../" 

• Figure 25. Example of a Calling Program (Part 2 of 2) 

Appendix E: Examples of COBOL Programs 171 



IB:t.1 COBOL PROGRAM SHEET FOrm No. X28-1464 , 
Printed 'n U.S.A. System 116M SVSTEM/360 Punching Instructions Sheet 3 of 4 

Proorommer 

t-P-ro_or_am_f:-...X_A_M...;..P_LE_O_F_A_S_U_B_P_R_O_G_R,A_M ____ ...;.._t-G-ra_p_hic--t~l--+l--+l~l-+l-+1--11-llc_ar_d_Fo_rm_# __ ---I* Identification I Date Punch I I I I J l lf ~3] 1 
' [aO 

S_EQUENCE ~ A I B 

l(PAG~ ~ERIA~ 'f 8 !12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 <I> 4> 3 ¢ 4> 1 r D E N:1 t F I c AT r o N o r v 1 s r iolNI ~ I I I / i i I I I l I I I . I I i ! ! I I I I I U2 PRoG:ru~M-ID. 'SUIBPROIG'. II Iii Iii \1[ ii[ II !I Iii !\1 4>4>3 REMAIRKS. IEXli\MPLE OF A SUBP/RloGIRiAiM.I I I ! ii i I Ii ! I: I I I <1>4>4 Et~vr:RoNMENT. orvl1s1/0N. 11 111. 1 i 1j
1 1 1 

1 ! ! : 1 I ¢1,4>5 CONFitGURATI ON S!ECITICNi.I I ii 11 i l i i I ! 1

1 i I i '; ; I I I i tll4>6 souR:ce-coMPIUT,£R. I BM-:i3bl4 D13ld> .J \ ! ! ! I 1

1 ! i i 1 i : ' 1 I I I "'4>7 oBJE:cr-coMPUTER. IIBM-36~ ol3l4>.IT1 1TT T1T 1 11 11 111 I I I I : 11 \ ! ! i I !p \ T ! : I ! i I i ! i ! i I 11 Us DATA~ 1n Vts1 N. 1 : ! I ! i ! i , , , , ; : 1 , : : 
1 ! 1 : i I I <I> <I> 9 w o R K~l N1G- s To R A s E' s .E cln oiN!. i : 1 ! ' ' 1 1 i : i : ! , 1 : I ! I I JI I T \ j : ! + ! ; i • i : 4> I ~ 77 !MODI FI CA rl10IN PlliC TlU/RiE iXICi I zb1,l VIAlLIUE'.' :rls :· :PiUTI iA:l\Vi D~ iiN 1

.:. i i ! ~' 1 LINK:AGE, si:cnlojij. I 11 1 
111 1T1 ·1, ' , i .. : • : ', 4' I 2 ~ I :PA s s - Fl E LID .1 I I I I I l ~ i I I ; i l T i I • i i 

4>14 42: B PIC/TURfE! .X(!llZI} .j i: : i '. ·. • T 
: I l I 1 j \I II '1 l [ l ; j :I I '. 

PRoc:eDURE DI VI.Sil ONl.i : ; t : i \ ' ' ~15 ; i 
i 

4> I 6 STA!l:-t. ENTEiR \Lll)NKA!Gie.·1 ! ! . ! ' : i ' 
! ' ~ I 7 !ENT~l't 'su!BPRGM!'i uJsl1:NGi IP'1Asls:-!i:-rie,LD. : i dl I S !ENTER CKJ BIOIL. i I i i ! l I I i 

'i 
! i : ~19 

:RE TU R'N I : i I I f i I I I i: 
·, '· 

\ i I; ii! 
I l ii •A standard card form, IBM electro C61897, is available for punching source statements from this form. 

Figure 26. Example of a Subprogram (Part 1 of 2> 

-. 

IBJ4 COBOL PROGRAM SHEET rorrh No. A.~d-1464-1 
Printed in U.S.A. system IBM SYSTEM/360 Punching Instructions Sheet 4 of 4 Program EXAMPLE OF A SUBPROGRAM Graphic I I I I II card Form# * Identification Praorammer I I I I I I I I I Date Punch 

73] [80 
SEQUENCE 

,_. 
I B ti A 

(PAGE) (SERIAL) 0 
!12 I 3 4 6 7 8 16 20 24 28 32 ,i 36 40 44 48 52 56 60 64 68 72 ~<b 14 ~ <I>, I 

TER 1EN Ch RO L • I I 11 I .1..1.. •A lA 2 :No TE TH AT PA SS -F I£ LD IN TI-III S PR 0 GIRIAM IS THE t olEIN T l1ie, All IAR EA DE Fl NED AS RE co RD -2 IN THE dAIL LT NG PR 06 R AIMi. I I 
I If I I 11 I I 

I 
I ! I I I i 

I i,..L ... ' I ~,,,... --.L...-U_LV 
............... __ 

i,..-I --- .J/ - .............. ~ti/ ........ ....i___,,..,,. -....i.___ I ,/' ,,,...~----- -....\...~ 
,,.. ..... '------= 

__ _,, 
-

Figure 26. Example of a Subprogram (Part 2 of 2) 

172 Disk and Tape Operating Systems COBOL Programmer's Guide 

;..-



A table of subroutines used by COBOL to accomplish the statements or 
actions specified follows. The table should guide the programmer in his 
efforts to conserve storage and to isolate a troublespot (debugging). 

r-----------------------------------T-----------------------------------1 
I SUBROUTINE I I I NAME I ACTION I 
~----------------------------------+-----------------------------------~ IIHDOOOOO !Required for manipulation of I I converts an external !external floating-point data in: I 
I floating-point number I MOVE - When send field is I 
I to an internal floating- I external floating point in MOVEI I point number I statement. I 
I I COMPUTATIONAL - When one field isl 
I I external, ~nd one field is I I I internal floating ~oint in I 
I I computational statement. I 
~----------------------------------+-------------------------------~---~ IIHD00100 !Required for exponentiation to non-I 
I Floating-point !integer power. I 
I exponential subroutine. I I 
~----------------------------------+-----------------------------------~ jIHD00200 !Required for complex computations, I 
I Packed divides subroutine. !COMPUTATIONAL fields of I 
I It divides a 16-byte 30-char- lover 9 digits, and COMPUTATIONAL-3 I 
I acter dividend by a !fields of over 16 digits. I 
I 16-byte 30-character I I I divisor, producing a 16-byte I I 
I 30-character quotient. I I 
I No registers are used. I I 
~----------------------------------+-----------------------------------~ IIHD00300 !Required for complex computations, I 
I Packed multiply subroutine. !COMPUTATIONAL fields of over 9, or I 
I It multiplies two 30-char- ICOMPUTATIONAL-3 fields of over 16 I 
I acter packed fields and !digits. I I produces a 60-character packed I I 
I product. I J 
~----------------------------------+-----------------------------------~ IIHD00400 !Required with floating-point and I I Error message subroutine. !non-integer exponentiation. I 
I It generates execution time I I 
I messages. I I 
~----------------------------------+-----------------------------------~ IIHD00500 !Required for exponentiation to an I 
I Packed exponentiation !integer power. [Used with IEP00700 I 
I subroutine. I (floating-point exponentiation> I 
I I subroutine. J I 
~----------------------------------+----------~------------------------~ jIHD00600 !Required whenever floating-point I I Floating-point !conversion is needed. Used with I 
I logarithm subroutine. jIEP00700 (floating-point I I !exponentiation) subroutine. I 
~----------------------------------+-----------------------------------~ IIHD00700 !Required to set up floating-point I I Floating-point exponen- jconversion routines for nonfloatingJ 
I tiation subroutine. jpoint exponentiation. I 
L----------------------------------i-----------------------------------J 

Appendix F: subroutines used by COBOL 173 



r----------------------------------T-----------------------------------1 I SUBROUTINE I I I NAME I ACTION I 
~----------------------------------+-----------------------------------~ IIHD00800 May be required when floating-point I Converts packed decimal to and/or non-integer exponentiation I floating point. Conversion is used. 
I is accomplished by calling ARITHMETIC - Required when packed I two other subroutines and floating-point operation I IHD01600 (TOBIN), which are in the same statement. I converts the number from MOVE - Required if the sending I packed de~cimal to binary., field is packed and the I and IHD01500 CBINFL>, which receiving field is floating I converts the binary number point in a move statement. 
J to floating point and then COMPUTATIONAL - Required if one I returns. field is packed, and one I field is floating point in I a computational statement. 
r----------------------------------+-----------------------------------~ IIHD00900 ARITHMETIC - Required when there I Converts floating-point is a floating-point operand, I numbers to zoned decimal and the receiving field is I numbers. conversion is zoned in an arithmetic ) accomplished by calling statement. 
J two other subroutines; MOVE - Required if the sending I IHD01100 CFRFLP'r>, which field is floating point, ] converts t~e number from and the receiving field is 
I floating point to binary, zoned in a move statement. I and IHD01800 (BINZN), which 
I converts the binary number 
I to zoned decimal and returns. 
~----------------------------------+-----------------------------------~ jIHD01000 Required for: I converts a binary number to ARITHMETIC - Required when I a packed decimal number. multiplying a binary field I Used with IHD01300 (floating by a packed field or visa I point to packed decimal> versa. 
) subroutine. - Required if multiplication is 

done in binary. 
MOVE - (Special Class) - If send­

ing field is internal 
floating point, and receiving 
field is binary. The 
binary number must fall 
within the limits speci-
fied. (9 decimal digits 
<binary number <18 decimal 
digits.> 
- If sending field is binary 
and receiving field is binary. 
- If sending field is less than 
9 and Receiving field is less 
than or equal to 9, or both are 
greater than 9 decimal digits. 
- If sending field is binary 
and receiving field is packed, 
and sending field is greater 
than 9 decimal digits. 

COMPUTATIONAL - If one field is 
binary and the other is zoned. 
- If one field is binary and 
the other is packed. 
- If both fields are binary and 
A is less than 10, and B is 
less than 10 and the scales of 
both fields are equ~l. J 

----------------------------------~-----------------------------------J 

174 Disk and Tape Operating Systems COBOL Programmer's Guide 

f, u 



I u 

/ \ u 

.. 

u 

r,~---------------------------------T-----------------------------------1 I SUBROUTINE I I 
I NAME I ACTION I 
~----------------------------------t-----------------------------------~ 

- If the scale of the sending I 
field is greater than the scale! 
of the receiving field, and the] 
real or implied integer posi- I 
tions of the receiving field I 
plus the scale of the sending I 
field is less than 10. I 
- If the scale of the sending I 
field is less than the scale of I 
the receiving field, and the I 
real or implied decimal posi- I 
tions plus the scale of the I 
receiving field is less I 
than 10. I 

~----------------------------------+-----------------------------------i IHD01100 MOVE - Required when sending 
Converts an external field is external or internal 
floating-point number floating point, and 
to a binary number. receiving field is external 
Used with IHD00900 (floating- floating point. 
point to zoned decimal) 
~ubroutine, IEP01300 
{floating-point to packed 
decimal) subroutine, 
IHD01400 (floating-point 
to binary) subroutine and 
IHD01900 (miscellaneous 

J fields to external floating-
1 point> subroutine. I 
r----------------------------------+-----------------------------------i 
IIHD01200 I MOVE - Required when sending I 
I Converts a zoned decimal I field is zoned and receiving I 
I number to a floating-point I field is floating point. I 
I numbero Conversion is I COMPUTATIONAL - Required when I 
I accomplished by calling I one field is zoned and the I 
I the same subroutine used I other field internal floating I 
I by FLPZND (IHD00900). I point. I 
~----------------------------------t-----------.------------------------~ 
IIHD01300 MOVE - Required when sending 
I Converts a floating-point field is external or internal 
I number to packed decimal floating point and receiving 
I formatu Conversion is field is packed. 
J accomplished by calling 
I IHD01100 (FRFLP'I')., which 
I converts a floating-point 
I number to binary, and 
I IHD0100 (BINPK), which 
I converts the binary number 
I to packed decimal and then 
I returns. 
~----------------------------------t-----------------------------------i jIHD01400 I MOVE - Required when sending 
I converts an internal floating- I field is external or internal 
I point number to a binary I floating point and receiving 
I form~t. Conversion is I field is binary. 
I accomplished by calling I 
I subroutine IHD01100 (FRFLPT), I 
I which does the actual I 
I converting of the floating- I 
I point number to a binary I 
I number format. I 
L----------------------------------~-----------------------------------

Appendix F: Subroutines Used by COBOL 175 



r----------------------------------T-----------------------------------1 I SUBROUTINE I I I NAME I ACTION I 
~----------------------------------+-----------------------------------~ IIHD01500 MOVE - Required when sending I 
J Converts a binary number field is binary and receiving J I into double precision field is floating point. I I floating point. May be ARITHMETIC - Required when one I I required when floating- operand is binary and one I I point and/or non-integer operand is floating point. I I exponentiation are used. COMPUTATIONAL - Required when onel I Used with IHD00800 (packed to field is binary and one is I I floating-point) subroutine, internal floating point. I I IHDOOOOO (external floating- I I point) subroutine, IHD01200 I I (zoned decimal to floating- I I point> subroutine, IHD01900 I I Cmiscella.neous field type I I to external floating-point> I 1 subroutine. I 
~----------------------------------+-----------------------------------~ jIHD01600 Required for: I I Converts either a packed MOVE - Required if the sending I I decimal or a zoned decimal field is external decimal, and I I number to a binary receiving field is packed; I I number when receiving receiving field must be 9 I 
J field is greater than decimal digits. I I 9 digits. COMPUTATIONAL - If one field is I 
J binary or zoned and one field I 

is packed. I 
- If both fields are binary and 
the following conditions are 
not met: 
• the length of the fields are 

unequal 
• A and B are both less than 10 

and the scales of the fields 
are equal 

- If the scale of the sending 
field is greater than the scale 
of the receiving field and the 
real or implied integer posi­
tions of the receiving field 
plus the scale of the sending 
field is less than 10. 
- If the scale of the sending 
field is less than the scale of I 
the receiving field and the I 
real or implied decimal posi- I 
tions plus the scale of the I 
receiving field is less I I I than 10. I L----------------------------------i-----------------------------------J 

176 Disk and Tape Operating Systems COBOL Programmer's Guide 



~) 

u 

r----------------------------------T-----------------------------------1 I SUBROUTINE I I I NAME I ACTION I 
t----------------------------------+-----------------------------------~ IIHD01700 I COMPUTATIONAL - Required when I 
I compares two alphabetic I either or both fields are I 
J fields of different lengths, I 255 bytes. I ] no restriction on maximum I I I length, when either or both I I 
I fields are grP~ter than 255 I I 
I bytes. I I 
~-----------------------------------+-----------------------------------~ IIHD01800 I ARITHMETICS - Required when I 
J Converts a binary number I operations are performed in I l to a zoned decimal number. I binary and the receiving I 
I Used with IHD00900 I field is zoned. I 
J (floating-point zonea I MOVE - Required when sending I I decimal) subroutine. I field is binary and receiving I l I field is zoned; zoned I I I field is 9. I I I MISCELLANY - Required if user I I I displays binary item. I 
r----------------------------------t-----------------------------------~ JIHD01900 MOVE - Required when receiving 
I Converts a field of any of field is external floating I the following formats to point. 
I external floating point: MISCELLANY - Required if user I external decimal, internal displays internal floating J decimal, binary, internal point. 
I floating point, figurative 
J constant of zero. Conversion 
I is accomplished in same cases 
] by calling IHD01100 FRFLPT) 
I which converts internal 
J floating point to binary, and 
I IHD01500 CBINFL) which converts 
I binary to external floating 
I point. 
~---·-------------------------------+-----------------------------------~ IIHD02000 !Used to move group items longer I I !than 256 bytes. I 
r----------------------------------+-----------------------------------~ IIHD02100 !Performs the class test on alpha- I I lmeric fields, as specified in the I I !IBM publication IBM system/360 Diskl 
1 land Tape Operating Systems: COBOL I I !Language Specifications, Form I I I c 2 4- 3 4 3 3 • I 
L----------------------------------~-----------------------------------J 

Appendix F: subroutines Used by COBOL 177 



r----------------------------------T-----------------------------------1 
I SUBROUTINE I I 
I NAME I ACTION I 
~----------------------------------+-----------------------------------~ IIHD02200 I ARITHMETIC - Required when the J I Converts a packed decimal I operations are performed in I 
J number to a zoned I packed decimal and the I 
) decimal number. I receiving field is zoned. I 
I I MISCELLANY - Required if user I 
I I displays packed decimal format. I 
1----------------------------------t-----------------------------------~ IHD02300 !This subroutine consists of three 

I parts: 
I 
I 1. The first part builds a table 

of the beginning and end 
addresses of the PERFORM or 
nested PERFORM statements and 
the return address. It checks 
the validity of addresses. 

1 

2. The second part checks to see 
if the PERFORM is complete by 
comparing return addresses. 

3. The third part deletes or 
eliminates the table entries 
by resetting pointers and 
counters. 

Required when linkage editing a 
version I object deck with a ver­
sion II system. 

~------------·----------------------t-----------------------------------~ IIHD02400 !Used to move fields when either or I I !both fields are variable groups. I 
I I Requirements: I I I Rl points to 'sending' field I 
I I R2 points to 'receiving' fieldl 
I I WORKA is length of 'sending' I 
I I field I 
I I WORKA+2 is length of 'receiv- I 
I I ing' field I I I WORKA+4 is '01' if 'receiving' I 
I I field is right justified. I 
~---------------------------------+-----------------------------------~ IIHD02500 !Used to compare two fields either I I lor both of which are group vari- I 
I !able. Used with fields defined I 
J !with OCCURS ••• DEPENDING ON clauses.] 
I I Requirements: I 
I I Rl points to FIELD1. I I I R2 points to FIELD2. I 
I I WORKA is the same length as I 
I I FIELD1. I I I WORKA+2 is the same length as J 
I I FIELD2. I L----------------------------------i-----------------------------------J 

178 Disk and Tape Operating systems COBOL Programmer's Guide 



r-----------------------~----------y-----------------------------------1 
I SUBROUTINE I I 
INAME I ACTION I 
t----------------------------------+-----------------------------------~ IIHD02600 !Checks length of field to be dis- I 
] jplayed to be sure it fits into I 
I defined field, and moves DISPLAY I 
I data to an output buffer. Used if I 
I a display data fit check is I 
J specified at execution time. I 
I Requirements: I 
I WORKW - must be address of I 
I byte after buffer. I 
I WORKA+4 - must be number of I 
I bytes to move minus 1. I 
I Rl - points to next available I 
I buff er byte. I 
I R2 - points to data to be I 
I moved. I 
t-----------------------------------1-----------------------------------~ 
IIHD02700 !Writes out display data on SYSPCH. I 
I !Used when display on SYSPCH is I 
I I specified. I 
t----------------------------------+----------------------------------·-~ 
IIHD02800 !Writes out display data on SYSLST. I 
I I I I !Required when EXHIBIT, TRACE, or I 
I !standard DISPLAY statements are I 
I jused Ci.e., not UPON CONSOLE or I 
I I UPON SYSPCH) • I 
t-----------------------------------+-----------------------------------~ 
IIHD02900 !Reads a record from SYSIPT and I 
I !moves data to the field specified I 
I I by data-name. I 

( 

\_) 
I I I I !Required when ACCEPT is specified I 
I I (not ACCEPT FROM CONSOLE). I 
t----------------------------------+-----------------------------------~ I IHD03000 I Used for display on console. I 
t-------------·----------------------+-----------------------------------~ IIHD03100 !Used for execution of direct-access) 
I I statements. I 
I I I I !Required when any direct-access I 
I jstatement is used. I 
t---·-------------------------------+-----------------------------------~ IIHD03200 IIf problem program has user labels, I 
J jthis subroutine is the linkage withl 
I lthe declaratives section. I 
L----------------------------------i-----------------------------------J 

u 

Appendix F: Subroutines Used by COBOL 179 



r----------------------------------T-----------------------------------1 I SUBROUTINE I I 
!NAME I ACTION I 
t----------------------------------+-----------------------------------~ IIHD03300 IIf one field is divided by another I 
I land the divisor is zero, this sub- I 
I !routine links to the ON SIZE error I 
I I routine. I 
t----------------------------------+-----------------------------------~ 
IIHD03400 !Prints out object time diagnostic I I !messages when errors are encoun- I 
I Jtered in direct-access processing. I 
I I I I !Required when IHD03100 is used. I 
~----------------------------------+-----------------------------------~ IIHD03500 !Produces object time diagnostic I 
I !messages for indexed sequential I 
I !organization of files. I 
I I I I !Required when indexed sequential I 
I ldata organization is indicated. I 
~----------------------------------+-----------------------------------~ IIHD03600 !Required to write record number I 
I jzero on all tracks for an output I 
I !operation when using direct-access I 
I I method. I 
r------------------------------~---+-----------------------------------~ 
IIHD03700 !Used for initializing tape or disk I 
I !when using read and write I 
I I operations. I 
r------~---------------------------+-----------------------------------~ IIHD03800 !Used for maintaining a list of ] 
I !tapes to be repositioned, linking I 
I Ito the system's checkpoint routine, I 
I land providing a restart entry I 
I I point. I 
r----------------------------------+-----------------------------------~ IIHD03900 !Converts internal decimal to ster- I 
I !ling non-report. I 
~----------------------------------+-----------------------------------~ IIHD04000 !Converts sterling non-report to I 
I !internal decimal. I 
r----------------------------------+-------------,----------------------~ IIHD04100 !Edits internal decimal into ster- I 
I lling report. I 
L----------------------------------~-----------------------------------J 

180 Disk and Tape Operating systems COBOL Programmer's Guide 



I I 

\.._.;/ 

APPENDIX G: DIAGNOSTIC MESSAGES 

This appendix contains a detailed description of the diagnostic messages 
that are generated during processing. They consist of: 

• Compiler diagnostic messages 

• Execution time messages 

• Debug packet error messages 

Certain conditions that may occur when a module is being processed 
will generate linkage editor diagnostic messages. For a complete 
description of these messages, see the publications IB!L§.y§.:!:_emLl§.Q._~i~!s 
Operating System, system Control and Sy§.t~m__§~Eyic~-~EQqram§., Form C24-
5036, and !~~§Y§.~~mL}60_!~~-Q2~£~ti!!9:_§yst~mL_syst~m_£Qnt£Q1_~nd_~ys­
t~m_§~£Y!~-~E29£~ffi§., Form C24-5034. 

COMPILER DIAGNOSTIC MESSAGES 

IJS001I C 

IJS002I W 

IJS003I C 

IJS004I 

LITERAL EXCEEDS 120 CHARACTERS. 

System Action: The element count begins following the next 
quote on the line if there is one, or following the element 
beginning after the 120th character. 

User Response: Change the length of the literal so it does 
not exceed the allowed maximum, or insert the missing 
quote, or define the literal with two statements; execute 
the compilation again. 

LITERAL CONTINUATION QUOTE INVALID IN MARGIN A. 

~~plan~tiQg~ The literal continuation quote should appear 
in margin B. 

System Action: The continuation is allowed. 

LITERAL IMPLY CONTINUED OR CONTINUATION QUOTE IS MISSING. 

~~lan~tiog~ This may be the result of a missing quote 
sign on the preceding line. 

System Action: The non-numeric literal is truncated at the 
end of the preceding line. The syntax scan resumes with 
the first element of the next line. 

User Response: Check for missing quote, column 7 continua­
tion hyphen, or improper formation of the non-numeric 
literal. 

SYNTAX REQUIRES A BLANK AFTER A PERIOD OR THIS PERIOD IS 
INVALID DECIMAL POINT. 

system Action: The inverted print/edit word with the inva­
lid decimal point is dropped,, and processing continues with 
the next word. 

User Response: Check syntax of statement in error, and try 
again. 

Appendix G: Diagnostic Messages 181 



IJSOOSI C 

IJS006I C 

IJS007I C 

IJS008I C 

IJS009I E 

IJS010I W 

IJS011I B 

IJS012I C 

XXX EXCEEDS 30 CHARACTERS. 

~~plag~ti2g1 Any element that is not a non-numeric literal 
is truncated after 30 characters. 

System Action: Normal processing continues with a literal 
made up of the first 30 characters. 

~~~f_E~~Qg~e: Alter the length of the literal to conform 
with the specifications for this class of literal.

XXX REQUIRES QUALIFICATION.

~~plag~tion1 This indicates that the name is defined in
more than one location, and requires qualification in order
to be unique.

§y~tem_~£ti2g1 The first name defined is used and the com­
pilation continues. If it is the name desired, the run
compiles as desired. For further system action, see mes­
sage IJS013I. It explains the handling for the Procedure
Division statement.

~~~r_g~~EQg~~l correct the procedural statements in error, 
or change the duplicate data-names so they are unique. 
Execute the job again. 

XXX HAS UNDEFINED QUALIFICATION. 

Exp~~g~~i2g1 One or more of the names in the qualification 
hierarchy are not defined as a group containing the data­
name. This may have resulted from the dropping of a data­
name because of an error at its point of declaration, or 
because of a misspelling. 

§y~tem_~£ii2~ The first name defined is used. If it is 
the name desired, the run compiles as desired. 

User Response: Check for misspelling of the data-name, or 
the data-name's qualifier in the hierarchy order. 

XXX REQUIRES MORE QUALIFICATION. 

Explanation: The number of qualifiers or the names are not 
sufficient to make the subject name unique. Another name 
could have the same qualification. 

system Action: The first name defined is used and the com­
pilation continues. If it is the name desired, the run 
compiles as desired. For further system action, see mes­
sage IJS01JI. It explains the handling for the procedure 
division statement. 

SUBSCRIPTED 88 MUST HAVE A RIGHT PARENTHESIS. WILL BE 
TREATED AS A DATA NAME. 

SYNTAX REQUIRES A BLANK AFTER A RIGHT PAREN, SEMICOLON AND 
OR COMMA. 

system_~£ii2g1 Normal processing continues. 

XXX IS UNDEFINED. 

XXX HAS MORE SUBSCRIPTS THAN DECLARED IN THE DATA DIVISION. 

Explanation: The Procedure Division reference to the data­
name has too many subscripts. The number of subscripts 

182 Disk and. Tape Operating systems COBOL Programmer's Guide 

h u 

u 



I 

\_) IJS013I C 

IJS023I C 

IJS024I C 

IJS025I C 

·IJS026I C 

IJS027I W 

IJS028I C 

u 

must match the number of OCCURS ••• DEPENDING ON clauses in 
the definition hierarchy in the Data Division. 

§y2tem_~£i!2!!..!. Normal processing continues with the next 
word. 

RECORD NAME •xxx• IS ASSOCIATED WITH INVALID FD ENTRY. 

~~P!~~i!Q~l The FD associated with the SELECT clause is 
invalid. 

System Action: The error attribute for the record is 
generated, and normal processing continues with the next 
word. 

User Response: Check FD entries for proper device labels, 
required clauses, missing period terminator, etc. 

COPY AND INCLUDE MUST NOT BE USED WITHIN LIBRARY ENTRIES. 

§y~i~~-~£t!2!!.!. Words following the library name are diag­
nosed according to the clause being processed, up to the 
next required clause. 

PERIOD MISSING FOLLOWING XXX. THE NEXT CARD MAY BE 
SKIPPED. 

§y~t~~-~£tiQ!!..!. For the Data Division COPY statement -- Any 
other entry following the name is diagnosed as the missing 
period and the return is made to the phase. The phase dia­
gnoses all entries up to the next period according to the 
current clause string. Normal processing continues. 

For the Procedure Division INCLUDE statement -- Interroga­
tion of the library name continues to determine its validi­
ty and whether or not it is in the library. If the library 
name is valid and it is found, normal processing continues. 

User Response: A period should be inserted following 
library book name. 

XXX IS AN INVALID LIBRARY NAME OR NOT FOUND ON LIBRARY. 

Explanation: The library name may have been misspelled, 
not previously cataloged, or not properly terminated with a 
quote. 

system Action: Any word other than period immediately fol­
lowing the library name is diagnosed according to the cur­
rent clause string up to the next period. This includes 
the current card and the next card if read. 

Q2~L-B~spog2~1 Check for the possible causes given in the 
explanation. 

FLOATING-POINTING NUMBER XXX IS BELOW OR ABOVE VALID RANGE. 

syste~-~£tion: The value zero is assumed. 

NUMBER OF DECIMALS IN LITERAL XXX AND DATA ENTRY DISAGREE. 

system Action: Truncation or padding is performed accord­
ing to the rules governing the MOVE verb. 

LITERAL XXX IS INVALID AND IS DROPPED. 

~!£Ela!!atiog_;_ The value clause conflicts with the descrip­
tion of the entry. 

Appendix G: Diagnostic Messages 183 



IJS029I W 

IJS030I W 

IJS031I W 

IJS032I C 

IJS041I C 

/ 

IJS042I C 

IJS043I C 

IJS044I C 

IJS045I C 

IJS046I C 

system Action: The value clause is dropped. 

LITERAL XXX AND PICTURE SIZE DISAGREE. 

~~lag~iion1 This message indicates a literal that is 
larger than its picture. 

System Action: The literal is truncated to picture size 
from left to right, unless right justification is 
specified. The scan is continued as though no error 
occurred. 

LITERAL XXX WAS SIGNED, ENTRIES PICTURE WAS UNSIGNED. 

~~Elag~iionl The literal encountered in this entry con­
tains a sign; it does not appear as part of the entry 
because the picture is unsigned. 

NUMBER OF INTEGERS IN LITERAL XXX AND DATA ENTRY DISAGREE. 

~~tem_~£i!Qgl Same as for message IJS027I. 

LIBRARY NAME IS AN INVALID EXTERNAL NAME OR NOT IN THE 
LIBRARY. 

~~lag~iiog1 The library name may have been misspelled, 
not cataloged, or not properly terminated with a quote. 

System Action: The invalid or not found library name is 
dropped and the next card is read. 

THIS CLAUSE IGNORED AT THE 01 LEVEL IN XXX ENTRY. 

EXElanation: The OCCURS ••• DEPENDING ON clause not valid as 
a level 01 or level 88 entry. 

§y~tem_~£iion: The clause is dropped. 

gseL_g~~EQ~2~ Alter the clause level number to one that 
is valid or remove the OCCURS ••• DEPENDING ON clause from 
the statement in error. 

THIS CLAUSE IGNORED IN XXX ENTRY AS IT PROVIDES MORE THAN 3 
LEVELS OF SUBSCRIPTING. 

DEPENDING ON OPTION IN XXX ENTRY IS IGNORED DUE TO PRIOR 
USE. 

DEPENDING ON OPTION IN XXX ENTRY IS IGNORED BECAUSE IT IS 
SUBORDINATE TO A PREVIOUS CLAUSE. 

THE LEVEL OF XXX ENTRY INVALIDATES THE DEPENDING OPTION AT 
THE PRECEDING XXX ENTRY. THE DEPENDING OPTION IS DROPPED. 

~~El~~i!on: The level number just encountered indicates 
that there was an OCCURS ••• DEPENDING ON clause that did not 
include the last entry within the level 01. 

System Action: The OCCURS ••• DEPENDING ON option is 
dropped. 

XXX ENTRY CONTAINS AN ILLEGAL LEVEL NUMBER OR REDEFINES 
CLAUSE WHICH IS IGNORED. 

~XEl~g~tion: A redefines clause must redefine an entry at 
the same level number. 

184 Disk and Tape Operating systems COBOL Programmer's Guide 

'I 

\~ 



( I 

~; 
IJS047I E 

IJS048I W 

IJS049I W 

IJS050I W 

IJS051I E 

IJS052I C 

IJS053I W 

§y~~em_~£~iog: The level number or the redefines clause is 
ignored. 

User Response: Alter the level number or relocate the 
redefines clause to conform with the specification. 

INTERNAL QUALIFIER TABLE OVERFLOWED WHEN HANDLING XXX. 
RESTARTED QUALIFIERS WITH XXX. 

~~lag~~iog: The sum of all the characters in the data­
name and all its qualifiers + 4 times Cthe number of quali­
fiers + 1) must not exceed 300. 

ENTRY PRECEDING XXX IS OF VARIABLE LENGTH. 

XXX IS LARGER THAN ENTRY REDEFINED. 

Explanation: The current entry is larger than the area 
redefined. 

§y~~§!!-~ctiQg: The area is assumed to be expanded. 

Q2~E_g~~on2~: The redefined area may be expanded. 

XXX ENTRY PRECEDING XXX IS LARGER THAN ENTRY REDEFINED. 

Explanation: Same as for message IJS049I, only for a group 
entry. 

§y~te~-~£~iog: Same as for message IJS049I. 

THIS CLAUSE INVALID IN XXX ENTRY AS REDEFINED AREA IS 
SUBSCRIPTED. 

~~plag~~ion: It is invalid to redefine an item containing 
an OCCURS clause, or to redefine an item subordinate to an 
item containing an OCCURS clause. 

§y~!~m-~ctiQg: The redefinition clause is dropped. 

THIS CLAUSE IGNORED IN XXX ENTRY DUE TO REDEFINES OR OCCURS 
CLAUSE IN PRECEDING XXX LEVEL. 

Explanation: A value clause cannot appear in an entry sub­
ordinate to a redefines clause. 

§y~tem_~£~!Qg: The value clause is dropped. 

FOR PROPER ALIGNMENT, A XXX BYTE LONG FILLER ENTRY IS 
INSERTED PRECEDING XXX. 

~~lan~~iog: Binary or floating-point data improperly 
aligned for computations. 

system Action: Binary and floating-point data are aligned 
on an appropriate boundary by the compiler. The alignment 
is performed by inserting an assumed filler entry preceding 
the item requiring alignment. 

Q2~r R~2pon2~: The number of slack bytes required can be 
reduced by the use of a different data format such as: 
internal decimal, grouping aligned items to the beginning 
of a record, or otherwise positioning them so that they 
will have the proper alignment within the record. A dis­
cussion of slack bytes can be found in the publication !BM 
system/360 Disk and T~~~rat!gg_Sys~em~ __ COBOL_~ang~age 
Specif!£~!ion2, Form C24-3433. 

Appendix G: Diagnostic Messages 185 



IJS054I W 

IJSOSSI E 

IJS056I W 

IJS057I E 

IJS058I E 

IJS060I W 

IJS061I C 

FOR PROPER ALIGNMENT, A XXX BYTE LONG XXX FILLER ENTRY IS 
INSERTED PRECEDING XXX. 

Explanation: Binary or floating-point data is improperly 
aligned for computations. 

§y~te~-~£tiQg: Groups are aligned according to the align­
ment requirements of the first elementary entry within that 
group. The level number indicated in the diagnostic mes­
sage reflects the group in which the filler was added. The 
filler will occur the number indicated by the OCCURS clause 
on the group level. For further explanation, see message 
IJS053I. 

XXX ENTRY PRECEDING XXX EXCEEDS MAXIMUM SIZE OF 4092 BYTES. 

~~plag~iiog: The group defined at the indicated level pre­
ceding the point where this message was generated exceeded 
the maximum size permitted in the file or linkage section. 

§y~i~~-~£iiog: The compilation is continued, but execution 
is not attempted. 

User Response: Reduce the record size to the allowable 
maximum size. 

XXX ENTRY PRECEDING XXX EXCEEDS MAXIMUM LENGTH OF 32,768 
BYTES. 

~~P!~g~iion: See message IJSOSSI. It applies to Working­
Storage Section. 

system Action: See message IJSOSSI. It applies to 
Working-Storage Section. 

PROGRAM EXCEEDS 240 BASE LOCATORS MAXIMUM AT XXX. 

Explanation: A base locator is assigned for each file for 
E~ach level 01 or level 77 in the linkage section, and for 
every 4,096 bytes in the Working-Storage Section. 

system Action: The base locator counter wraps around and 
the results are unpredictable. 

~~~~g~~~= Reduce the number of ·base locators. 

ERRONEOUS OR MISSING DATA DIVISION.

E~xplanation: No data di vision entries were present.

System Action: All data division entries were dropped
because of errors.

XXX LEVEL PRECEDING XXX IS OF VARIABLE LENGTH.

Explanation: The entry, defined at the level indicated,
that preceded this clause contained an OCCURS ••• DEPENDING
ON clause.

system Action: The redefined clause is dropped because it
is invalid to redefine a variable-length entry.

XXX ENTRY EXCEEDS MAXIMUM LENGTH FOR ITS DATA TYPE.

~~lag~tion: The maximum permitted length of an entry
depends on the type of data defined for that entry. Numer­
ic data cannot exceed 18 digit positions, report entries
cannot exceed 127 character positions.

186 Disk and Tape Operating Systems COBOL Programmer's Guide

u

I

l I
~

IJS062I W

u
IJS063I W

IJS064I W

IJS076I W

IJS078'I C

IJS079I C

IJS080I C

IJS081I W

~~i~~~~£ii2g: The maximum size is used.

XXX REQUIRED ALIGNMENT AND STARTS XXX BYTES PAST THE START
OF THE ENTRY IT REDEFINED.

~~E!~g~ii2g: The entry containing the REDEFINES clause
requires alignment that differs from the alignment of the
clause redefined. If alignment is required, insert a fill­
er the size of the number of bytes indicated in the message
before the item being redefined.

TO ALIGN BLOCKED RECORDS ADD XXX BYTES TO THE 01 CONTAINING
DATANAME XXX.

ExElanation: The first record in a buffer is aligned on a
doubleword boundary. All level 01 records are assumed to
start on a doubleword boundary. If binary or floating­
point numbers are used in the record and if the records are
blocked in a buffer, the succeeding records may not be
properly aligned. Alignment can be obtained by padding
each record by the indicated number of bytes and processing
in the buffer, or by moving each record, as a group, to a
level 01 record in the Working-Storage Section before
processing the COMPUTATIONAL field. The pointer to this
diagnostic message indicates the last element within a
record. The padding must go into the preceding level 01
record, not the level 01 record that may immediately follow
the indicated data-name.

IF THE PRECEDING RECORD IS BLOCKED, IT MAY BE ALIGNED BY
MOVING TO AN 01 IN THE WORKING-STORAGE SECTION.

~~Elag~iiog: When records are variable and blocked, only
the first record can be aligned.

INTEGER OPTION IS NOT PERMITTED.

~~tem_~£ii2g: The clause is dropped.

INTERNAL FILE-NAME AND DESCRIPTION TABLE OVERFLOWED. XXX
NOT PROCESSED.

ExElanation: There is a fixed number of files that can be
handled by a given COBOL compilation (25). If additional
files must be handled, they can be processed in a subpro­
gram and accessed via the linkage facility.

system Action: Any files encountered after the maximum
permitted are dropped. The maximum permitted is 25.

RESTRICTED SEARCH INTEGER TOO LARGE ON XXX. CLAUSE
DROPPED.

MORE THAN THREE FORMS OVERFLOW CLAUSES. OVERLOW-NAME XXX
ENTRY IS DROPPED.

XXX APPEARED PREVIOUSLY IN A ''SAME' CLAUSE. REMAINDER OF
'SAME~ CLAUSE DROPPED.

~~E!~gat!on: A given file-name can appear .in only one
SAME-AREA clause. Any duplication encountered is dropped.

System Action: The entire SAME-AREA clause is dropped.

Appendix G: Diagnostic Messages 187

IJS082I W

IJS083I W

IJS084I W

IJS085I W

IJS086I E

IJS087I C

IJS088I C

IJS089I C

IJS090I C

IJS091I E

Q~~r_g~~pon~~= Eliminate the duplicate statement.

INTERNAL 'SAME' TABLE OVERFLOW. ENTRIES AFTER XXX DROPPED.

Explanation: A fixed number of file-names and combinations
of filenames are allowed in an internal same-area table.
If reducing the number of file-names or the number of SAME­
AREA clauses does not relieve the situation, it may require
an entry to a subprogram to permit a large number of files
to be referenced in this manner.

RECORD LENGTH SPECIFIED DISAGREES WITH CALCULATED MAX.
RECORD LENGTH OF XXX ON XXX. CALCULATED RECORD LENGTH
ASSUMED.

~~!~g~~iog: The actual length of each record is calcu­
lated during compilation time by totaling all its com­
ponents. If the length disagrees with the specified maxi­
mum, this warning message is given to indicate that the
specified record size is ignored.

BLOCK SIZE FOR XXX TOO BIG. 32K ASSUMED.

~~!an~~ion: The integer specifying block size of the
referenced files is too large.

system Action: The maximum size allowed is used.

SYMBOLIC KEY MUST BE SPECIFIED FOR XXX IF INPUT.

~Q~~: This message is used only for a direct-access
storage device.

ACTUAL KEY MUST BE SPECIFIED FOR XXX.

~2~~: This message is used only for a direct-access
storage device.

THE XXX FILE MUST BE DESCRIBED IN A SELECT CLAUSE. CURRENT
ENTRY IGNORED.

Explanation: The subject file was referenced in the
Environment Division or in an FD clause. There is no
select clause to define this file. The file-name
referenced may be an invalid entry encountered at the point
that a file-name was expected.

LABEL RECORD DATA-NAME MUST BE DEFINED IN LINKAGE SECTION.

§ystem Action: Label records are assumed standard.

UNIT IS MISSING FOR XXX FILE. 2400 IS ASSUMED.

THE DESCRIPTION OF XXX FILE CONFLICTS ON THE FOLLOWING
POINTS -- XXX.

Explanation: The description of the file referenced con­
tains factors that conflict with each other. The factors
can be in the description of the file in the Environment
Division, in the FD of the file section, or in other areas
such as the record description for that file.

system Action: The points in conflict are defined by the
trailing clauses of the diagnostic message.

INDEXED ORGANIZATION ON XXX NOT VALID FOR THIS LEVEL
COMPILER.

188 Disk and Tape Operating Systems COBOL Programmer'' s Guide

I

',1 v

IJS092I E

IJS093I E

u IJS094I E

IJS096I w

IJS097I E

IJS098I c

IJS099I c
..

IJS100I E

IJS101I C

IJS102I C

IJS103I E

_;

IJS104I E

IJS105I c

IJS106I w

IJS107I c

IJS108I E

IJS109I E

IJSllOI E
"'/'

IJS1l11 w

IJS112I c

IJS1l3I E

IJS1l4I E

IJS117I E

IJS118I w
L/

IJS120I E

DIRECT ORGANIZATION ON XXX NOT VALID FOR THIS LEVEL
COMPILER.

XXX NOT HANDLED WITH PRESENT RELEASE.

XXX FILE WAS NOT DEFINED BY AN FD ENTRY.

Explanation: No DTF table is built for this file, there­
fore, it cannot be used.

ONLY ONE CHECKPOINT FILE MAY BE SPECIFIED.

STANDARD LABELS ARE REQUIRED ON XXX FILE.

XXX FILE ASSUMED TO BE UTILITY.

XXX FILE UNIT MISSING AND ASSUMED TO BE 1403 PRINTER.

DIRECT-ACCESS ASSIGNED TO XXX NOT SUPPORTED IN THIS
VERSION.

XXX FILE IS ASSIGNED TO UNIT RECORD AND MUST BE RECORDING
MODE IS F.

~~P!~g~~ion: Unit record must be fixed length.

~~i~~-&£ii2g: The largest described length is assumed.

A MAXIMUM OF 1 ALTERNATE AREA IS ALLOWED FOR XXX FILE.

System Action: One alternate area is reserved.

XXX IS NOT A VALID SYSTEM ASSIGNMENT.

Explanation: Must be SYSOOO to SYS244.

system Action: SYSOOO is assumed.

RECORD/BLOCK SIZE ON XXX GREATER THAN 3625.

INVALID DEVICE NUMBER SPECIFIED. DISK 2311 ASSUMED.

ONLY ONE AREA SUPPORTED FOR INDEXED OR DIRECT ORGANIZATION.
ONE AREA ASSIGNED FOR XXX.

RECORD KEY REQUIRED FOR INDEX ORGANIZATION FILE XXX.

LENGTH OF SYMBOLIC/RECORD KEY GREATER THAN 255.

LENGTH OF ACTUAL KEY IS GREATER/LESS THAN 8.

INCORRECT DATA ITEM TYPE SPECIFIED FOR KEY.

TRACK AREA INTEGER EXCEEDS MAXIMUM. 32,767 IS ASSUMED.

SYMBOLIC AND RECORD KEY LENGTH FOR XXX DISAGREE.

RELATIVE ORGANIZATION ASSIGNED TO XXX NOT SUPPORTED IN THIS
VERSION. COMPLETE SELECT STATEMENT DROPPED.

RECORD/BLOCK ON XXX IS GREATER THAN 2000.

SYMBOLIC KEY MUST BE SPECIFIED FOR XXX.

DIRECT ACTUAL KEY MUST BE SPECIFIED FOR OUTPUT FILES.

BLOCK SIZE IS NOT A MULTIPLE OF RECORD SIZE.

Appendix G: Diagnostic Messages 189

IJS121I E

IJS176I C

IJS177I W

IJS179I W

IJS180I E

IJS181I W

IJS183I C

IJS184I W

IJS185I W

IJS186I W

IJS187I C

IJS190I W

IJS191I W

IJS192I W

IJS194I C

MULTIPLE CORE-INDEX AREAS ARE REFERENCED BY •xxx•. ONLY ONE DATA-NAME PER FILE-NAME IS ALLOWED.

WORD RECORD OR RECORDS IS REQUIRED. FOUND •xxx•.

~~plag~i!2g: Syntax skips until the next clause, level number, or period at the end of the file description is encountered.

PERIOD REQUIRED AFTER WORD 'SECTION'.

•xxx• IS AN INVALID FILE-NAME FORMAT.

~~P!~g~i!2g: A file-name must follow the format rules for data-names.

system Action: Invalid names are truncated to 30 charac­
ters and treated as valid names.

XXX EXCEEDS 30 CHARACTERS AND IS DROPPED.

system Action: The picture is too long and is dropped.

THE OPTION WORD IS MISSPELLED OR OMITTED. FOUND XXX.

§.y~t~~-&£t!Q!!.: The usage assumed is DISPLAY.

•xxx• IS AN INVALID OR EXCESSIVE INTEGER.

~~P!~g~t!2g: The integer indicated in this clause is determined to be invalid.

system Action: The integer is not used.

XXX IS AN INVALID LEVEL NUMBER.

LABEL RECORDS IS OMITTED. LABELS ASSUMED STANDARD.

SYNTAX REQUIRES DATA RECORD CLAUSE •

. system Action: Syntax scanning proceeds.

MODE MUST BE 1 V'', 'F', OR 'U'. FOUND XXX.

User Response: If v, F, or u was specified, check the ele­ment number on this line for a misspelled optional word.

•xxx• IS AN INVALID DATA-NAME FORMAT.

System Action: The invalid data-nameCs> are truncated to
30 characters and used.

SD OR SA ENTRY REQUIRES F LEVEL COMPILER.

§y~te~_&ct!Qg: Syntax skips to next margin A entry.

•xxx• IS AN INVALID RECORD-NAME FORMAT.

System Action: Invalid record names are truncated to 30
characters and treated as valid names.

•xxx• IS INVALID AT THIS POINT. CHECK FOR SYNTAX ERROR ON
CURRENT/PREVIOUS STATEMENT.

Explanation: While processing a given clause or sentence,
an unexpected element was encountered. The clause may be valid but misplaced. This message is also given for

190 Disk and Tape Operating Systems COBOL Programmer's Guide

IJS196I W

IJS197I W

IJS201I C

IJS202I C

IJS203I C

IJS204I C

IJS205I W

IJS206I W

IJS207I W

IJS210I'C

IJS211I C

IJS212I C

IJS213I C

clauses that are not valid source input to this level
compiler.

User Response: Check for prior diagnostic messages, an
extra or missing period, invalid continuation of non­
numeric literals, or a misspelled word.

SYNTAX REQUIRES AN 01 LEVEL ENTRY. FOUND XXX.

NOT VALID FOR THIS LEVEL COMPILER.

XXX IS AN INVALID DATA-NAME FORMAT BUT ASSUMED VALID.

§y~tem_~£tiQg: Invalid data-names are truncated to 30
characters and treated as valid names.

Same as diagnostic message IJS194I.

THIS USAGE XXX CONFLICTS WITH THE GROUP USAGE AND IS
IGNORED.

XXX IS AN INVALID OR EXCESSIVE INTEGER.

§y~tem_~ct!2g: The invalid integer is dropped.

XXX IS AN INVALID DATA-NAME FORMAT, BUT ASSUMED VALID.

WORD ZERO IS REQUIRED. FOUND XXX.

System Action: The clause is ignored.

WORD RIGHT IS REQUIRED. FOUND XXX.

System Action: The clause is ignored.

THIS ENTRY CONFLICTS WITH THE FOLLOWING
DESCRIPTIONS ~--- XXX.

Explanation: Various clauses specified for a data entry
are compared with previous specifications for the entry.
If there is any factor that conflicts with the subject
clause, it is listed as a trailer to this entry. Factors
included that are not themselves clauses would be elemen­
tary or group item usage, specified at a group level in
previous clauses. 1 This message can appear if a period is
missing at the end of a data entry, or (for example> when
the PICTURE,clause for the second entry is encountered and
automatically conflicts with the PICTURE clause for the
previous entry.,/

XXX EXCEEDS 30 CHARACTERS AND IS TRUNCATED.

ONLY LEVELS 77 OR 01 ARE PERMITTED AT THIS POINT. FOUND
xxx.

§y~:tem_~£tiQg: Syntax skips until a section name or level
number is found.

THE FOLLOWING DESCRIPTIONS INVALID AT GROUP LEVEL --- XXX.

Expla~~:t!on: The data entry described is determined to be
a group, although the entries specified as trailers to this
message are invalid at the group level. This diagnostic
message can be produced by an invalid level number that was
changed to a level 01, or because of a misunderstanding as
to how a group is defined and what clauses are valid at the
group level. A missing period can also produce this diag­
nostic message.

Appendix G: Diagnostic Messages 191

IJS214I C

IJS215I W

IJS216I W

IJS217I W

IJS218I W

IJS221I C

IJS222I C

IJS277I W

IJS228I E

XXX DATA ENTRY REQUIRES A PICTURE, COMPUTATIONAL-1 OR COMPUTATIONAL-2.

Explanation: This diagnostic message can be produced by an error in the following level number that caused its level
to be changed to a level 01, thereby making this an elemen­tary entry •

. system Action: Any statement in the Procedure Division
containing a reference to this entry is diagnosed and
dropped.

User Response: Check for missing periods or other diagnos­tic messages.

SYNTAX REQUIRES AN ENTRY IN MARGIN A. FOUND XXX IN MARGIN
B.

§Y~i~~-~£ii2g: Following certain entries in a source pro­qram, a specific clause must be encountered in margin A. If it is found in margin B, it is diagnosed but handled by the compiler.

SYNTAX REQUIRES AN ENTRY IN MARGIN B. FOUND XXX IN MARGIN A CHECK FOR MISSING PERIOD.

Explanation: All entries in margin A must be preceded by a
period.

§y~i~ill-~£iiog: The compiler was in the middle of pro­
cessing a clause or sentence and encountered the indicated word in margin A. Thus, a diagnostic message is issued and the word is processed as though it were valid.

LEVEL 77 ENTRIES MUST PRECEDE OTHER LEVELS AND ARE ASSUMED 'I'O BE 01 LEVEL.

SYNTAX PERMITS ONLY LEVELS 77, 88, OR 01 AFTER A 77 LEVEL. CHANGED XXX TO 01.

SYNTAX FOR 'ALL' REQUIRES •xxx• BE A SINGLE CHARACTER IN QUOTES.

system Action: The value clause is dropped.

PICTURE XXX WAS FOUND INVALID WHILE PROCESSING XXX. THE
PICTURE IS DROPPED.

Explanation: Any element that follows the word PICTURE in a data description, other than the word that is dropped, is assumed to be a PICTURE and is passed to a later phase for analysis. The analysis proceeds from left to right on a
character-by-character basis. The character identified in the message is the one processed at the time the PICTURE is determined to be invalid. The specific character itself
may be invalid or may have indicated that a previous
character or condition is invalid. For example, an E
encountered in an external floating-point PICTURE .may indi­
cate that a preceding decimal was omitted in the mantissa.

§y~te~-~£i~2g: The PICTURE is dropped and the entry iden­
tified as an error.

FILE SECTION OUT OF SEQUENCE.

SYNTAX PERMITS ONLY ONE XXX IN SOURCE PROGRAM.

192 Disk and Tape operating systems COBOL Programmer's Guide

IJS229I E

IJS2:31I E

u IJS233I C

IJS234I W

IJS235I W

IJS237I E

IJS238I W

IJS239I W

IJS240I C

IJS241I C

u

IJS242I W

IJS301I W

IJS302I C

IJS303I W

u IJS304I E

WORKING STORAGE SECTION OUT OF SEQUENCE.

ENVIRONMENT DIVISION MISSING.

REPORT SECTION REQUIRES F LEVEL COMPILER.

WORD 'SECTION' MISSING.

'PERIOD' MUST FOLLOW WORD SECTION.

•xxx• IS MISPLACED.

Explanation: The statement is probably out of place in the
source deck; that is, FD is working-storage.

§y§.te!!L~£!:.i2!!= The statement is processed as it is; howev­
er, execution may not be as desired.

User Response: Properly locate the misplaced statement.

•xxx• IS AN INVALID SECTION NAME, A MISSING FD OR AN
INVALID/MISPLACED LEVEL INDICATOR.

system Action: Syntax skips until a valid section-name or
level number is found.

SYNTAX REQUIRES WORD 'DIVISION'.

'UNIT' OR ., REEL' CANNOT BE SPECIFIED FOR UNIT-RECORD FILE.

LEVEL PRECEDING 88 MUST BE AN ELEMENTARY.

~~plag~!:.!2!!= Any level number preceding a level 88 entry
must be an elementary level number.

system Action: If the level number preceding the level 88
entry is not an elementary level number, it is assumed to
be one and is processed as such.

THE 88 ENTRY DOES NOT HAVE A VALUE, THEREFORE, IT IS
DROPPED.

SYNTAX REQUIRES •xxx• IN MARGIN A. FOUND •xxx•. RESTART
WITH • xxx•.

~~P!~!!~!:.!2!!= Syntax requires the specific entry indicated
to be in margin A. If. the entry is found in margin B., com­
pilation resumes.

SYNTAX REQUIRES •xxx•. FOUND •xxx•. RESTART WITH •xxx•.
IF WORDS REQUIRED AND FOUND ARE THE SAME, THE ENTRY IS IN
THE WRONG MARGIN.

§y§.tem_Acti2g: Syntax scan skips to the RESTART clause.

•xxx• IS AN INVALID CONDITION-NAME FORMAT.

Explanation: The name shown is an invalid condition-name.

system Action: The name is truncated to 30 characters and
processed as though it were valid.

,, xxx• IS AN INVALID EXTERNAL-NAME FORMAT. RESTART WITH
• xxx•.

Appendix G: Diagnostic Messages 193

IJS305I C

IJS306I W

IJS307I E

IJS308I W

IJS309I C

IJS310I W

IJS311I E

IJS312I C

IJS313I W

IJS314I E

Explanation: An external-name was expected at this point in the scan of the subject clause. An external-name must be enclosed in quotes. It must start with an alphabetic character, cannot contain more than eight characters, and letters and numerals are the only valid characters. A dash is not permitted.

SYNTAX REQUIRES SAME, RERUN, APPLY, OR •xxx• DIVISION. FOUND 'XXX'. RESTART WITH 'XXX'.

User Response: Check for invalid sequence of source pro­gram cards ~r extra periods.

SYNTAX REQUIRES ENVIRONMENT OR 'XXX' DIVISION IN MARGIN A. FOUND •xxx•. RESTART WITH •xxx•.

User Response: Same as for message IJS305I.

SYNTAX REQUIRES I-0-CONTROL, INPUT-OUTPU~r, OR ,, xxx• DIVI­SION IN MARGIN A. FOUND •xxx•. RESTART WITH •xxx•.

!!2~LB~~PQ~~: Same as for message IJS30SI.

•xxx• IS AN INVALID DATA-NAME FORMAT. RESTART WITH •xxx•.
Explanation: A data-name was expected at this point in the scan of the subject clause.

§y~te!!!_~£!:io!!: Invalid format is truncated to 30 charac­ters and processed as though it were valid.

ENVIRONMENT PARAGRAPHS OUT OF ORDER.

§y~te!!!_~cti2g: Statements are handled anyway.

•xxx• IS AN INVALID 360 MODEL-NUMBER. RESTART WITH 'XXX'.
~ .§>ystem Action: Syntax scan skips to the restart clause.

SYNTAX REQUIRES • FILE-CONTROL'' ,, xxx• OR I DATA DIVISION' IN MARGIN A. FOUND •xxx•. RESTART WITH •xxx•.
Q~~LB~§.E~~: Same as for message IJS305I.

•xxx• IS AN INVALID OR EXCESSIVE INTEGER. RESTART WITH • xxx•.

~:!Elag~tiQg: The syntax at this point of scan of the specified clause requires an integer.

system Action: The element found was invalid and is dropped.

•xxx• IS AN INVALID FILE-NAME FORMAT. RESTART WITH •xxx•.
Explanation: The syntax scan of the subject clause requires a file name at this point.

§ystem Action: The element found was invalid. It was truncated to 30 characters and processed as though it were valid.

•xxx• IS AN INVALID LIBRARY-NAME FORMAT. RESTART WITH • xxx•.
E~plan~tion: A library name is required at this point.

194 Disk and Tape operating Systems COBOL Programmer's Guide

I

\._;)

IJS315I W

IJS316I C

IJS317I C

IJS318I W

IJS319I C

IJS320I W

IJS321I E

IJS322I W

IJS323I W

IJS324I E

IJS401I C

l.)

System Action: The format is invalid. It is dropped.

MORE THAN THREE OVERFLOW OPTION CLAUSES ARE USED.

~~P!~g~ii2g: An internal table permits a maximum of three
form overflow names to be assigned in any compilation.

System Action: All form overflow names in excess of the
maximum allowed (three) are dropped.

SYNTAX REQUIRES 'INDEXED' OR •xxx•. FOUND •xxx•. RESTART
WITH • xxx•.

~~plag~i!2g: This message applies to a direct-access
storage device only.

SYNTAX REQUIRES 'SEQUENTIAL' OR •xxx•. FOUND •xxx•.
RESTART WITH 'XXX'.

Explanation: This message applies to a direct-access
storage device only.

SYNTAX REQUIRES •xxx• OR DATA DIVISION IN MARGIN A, OR
SELECT IN MARGIN B. FOUND •xxx•. RESTART WITH •xxx•.

~~plag~t!2g: The syntax for the specific clause requires
specific entries at this point.

User Response: Check for misspelled words, or excessive
periods.

SYNTAX REQUIRES 'UTILITY', 'DIRECT-ACCESS' OR •xxx•. FOUND
•xxx•. RESTART WITH 'XXX'.

~~P!~g~tiog: Same as for message IJS316I.

•xxx• IS AN INVALID I-0-DEVICE-NUMBER. RESTART WITH •xxx•.

Explanation: Same as for message IJS316I.

NO PROCESSING OF THIS MULTIPLE SPECIFIED DIVISION OR SEC­
TION. RESTART WITH •xxx•.

~~plag~ii2g: A section or division was encountered more
than once.

system Action: The additional section or division is
dropped, rather than disturb the internal sequence of the
compilation.

FILE-NAME OR DATA-NAME EXCEEDS 30 CHARACTERS. TREATED AS
30-CHARACTER NAME.

SYNTAX REQUIRES •xxx• OR CLAUSE-NAME. FOUND •xxx•.
RESTART WITH •xxx•.

§y~tem_~ct!2g: Syntax scan skips to the restart clause.

SYNTAX REQUIRES 'REEL' OR •xxx•. FOUND •xxx•. RESTART
WITH • xxx•.

§y~i~ffi-~£ti2g: Syntax scan skips to restart clause.

SYNTAX REQUIRES A DATA-NAME. FOUND •xxx•.

Explanation: The syntax of the indicated clause requires a
data-name. The element found was not defined as a valid
data-name. The element may be indicated here, or an indi-

Appendix G: Diagnostic Messages 195

IJS402I C

IJS403I C

IJS404I C

IJS405I C

IJS406I C

IJS407I C

IJS408I C

IJS409I C

IJS410I C

IJS411I C

cation given that it was an invalid name such as, file name, condition-name, figure configuration, or overflow name.

§Y~i~m-~ctiQg: The compilation continues at the next verb or paragraph label.

User Response: Check for misspelled data-name in diagnos­tic messages, which would nullify the definition of a valid data-name, or the use of a COBOL word as a data-name.

SYNTAX REQUIRES NEXT ITEM BE •xxx•.
Explanation: The syntax for this clause requires a spe­cific word that was not found. The item encountered was probably a data-name. The next item indicates that the syntax requires a specific word or words. None were found.

gy~te~-~£~~Qg: The element found is displayed unless it was a name, in which case the word invalid name or data name is indicated. compilation continues-at the next-verb or paragraph label •

. Q~~!:-8~~pQg~~: The reference format for the clause specified should be consulted if the meaning of the message is not immediately clear. Also check for: missing periods, preceding diagnostic messages, invalid non-numeric literals, COBOL words used as data-names, or a section name beginning in an incorrect margin.

SYNTAX REQUIRES A DATA-NAME OR NUMERIC-LITERAL. FOUND ~ xxx•.

!~~lag~ii2g: See message IJS402I.

SYNTAX REQUIRES EITHER WORD 'TO', OR 'GIVING'. FOUND 'xxx•.

~~plag~tiQg: See message IJS402I.

SYNTAX REQUIRES A SINGLE CHARACTER IN QUOTES OR A FIGCON. FOUND ., xxx•.

E~E!.§.!!~!i2~: See message IJS402I.

SYNTAX REQUIRES A FILE-NAME. FOUND •xxx•.
~~P!~g~iion: See message IJS402I.

SYNTAX REQUIRES DATA-NAME OR INTEGER. FOUND •xxx•.
Explanation: See message IJS402I.

SYNTAX REQUIRES WORD 'INPUT', 'OUTPUT', OR 'I-3 1
• FOUND 'XXX'.

~~plan~iiQg: See message IJS402I.

SYNTAX REQUIRES A PROCEDURE-NAME. FOUND •xxx•.
Explanation: See message IJS402I.

SYNTAX REQUIRES A DATA-NAME OR LITERAL. FOUND •xxx•.
Explanation: See message IJS402I.

SYNTAX REQUIRES WORD 'CALL', 'ENTRY', OR 'RETURN'. FOUND
I XXX'.

196 Disk and '.rape Operating Systems COBOL Programmer's Guide

IJS412I E

u
IJS413I C

IJS414I C

--

IJS415I C

IJS416I C

IJS4l7I C

IJS418I C

IJS419I C

IJS420I C

IJS421I C

/

~I
IJS422I C

Explanation: See message IJS402I.

SYNTAX REQUIRES AN EXTERNAL-NAME. FOUND •xxx•.

Explanation: See message IJS402I.

SYNTAX REQUIRES • =·· . FOUND 'xxx• •

~~planation: See message IJS402I.

SYNTAX REQUIRES EXPRESSION TO BEGIN WITH EITHER A DATA­
NAME, NUMERIC-LITERAL, •+•, •-•, OR.('. FOUND •xxx•. TWO
OPERATORS MAY NOT APPEAR ADJACENT TO ONE ANOTHER.

~~Pl~g~tion: See message IJS402I.

SYNTAX REQUIRES CALL PARAMETERS TO BE EITHER DATA-NAME,
PROCEDURE-NAME OR FILE-NAME. FOUND •xxx•.

Explanation: See message IJS402I.

SYNTAX REQUIRES DATA-NAME, LITERAL, FIGCON, '+', '-' 'C'
OR 'NOT'. FOUND •xxx•.

Explanation: See message IJS402I.

SYNTAX REQUIRES ARITHMETIC OPERATOR OR RELATIONAL. FOUND
• xxx•.

~~Pl~g~~i2g: See message IJS402I.

SYNTAX REQUIRES A DATA-NAME, NUMERIC-LITERAL, OR '(' AFTER
AN OPERATOR. FOUND •xxx•.

Explanation: See message IJS402I.

SYNTAX REQUIRES A DATA-NAME, LITERAL, FIGCON, 'C', '+' OR
·-· AFTER A RELATIONAL. FOUND •xxx•.

Explanation: See message IJS402I.

SYNTAX REQUIRES A VERB, PERIOD, 'ELSE' OR 'OTHERWISE'.
FOUND • xxx•.

~~plag~!:ion: The end of a valid clause was encountered.
The element that followed the valid termination of this
clause is not valid.

§y~!:~~-~£ti2g: Compilation continues at the next verb or
paragraph label.

User Response: If the preceding clause had some options,
check the reference format to determine whether or not the
options were specified correctly. A COBOL word used as a
data-name or an extra period can also produce this diagnos­
tic message.

ENTRY PARAMETER MUST BE A DATA-NAME. FOUND ,, xxx• •

Explanation: The only parameters that can be passed to a
COBOL subprogram are data-names. The data-names must be
defined in the linkage section of the subprogram.

system Action: Compilation continues at the next verb or
paragraph label.

SYNTAX REQUIRES A RELATIONAL. FOUND XXX.

Appendix G: Diagnostic Messages 197

IJS423I C

IJS424I C

IJS425I C

IJS426I E

IJS427I C

IJS428I C

IJS429I C

IJS430I C

IJS431I C

IJS432I C

IJS433I C

IJS434I C

~~Elag~!:i£!!: Syntax requires that the next element be a relational •

. system Action: Compilation continues at the next verb or paragraph label.

Q~~~g~spog~~= Check for invalid punching or a preceding error.

:SYNTAX REQUIRES WORD 'INPUT' OR 'OUTPUT'. FOUND XXX.

)~~E!~!!~!:iog: See message IJS402I.

SYNTAX REQUIRES WORDS 'TO PROCEED TO'. FOUND XXX.

~~E!~!!~!:ion: See message IJS402I.

SYNTAX REQUIRES WORD 'CONSOLE' OR 'SYSPCH'. FOUND XXX.

~xElanation: See message IJS402I.

SYNTAX REQUIRES 'AT END' OR • INVALID KEY' , FOUND '1 xxx• •
SYNTAX REQUIRES A DATA-NAME, FIGCON OR NON-NUMERIC LITERAL.
:E~OUND XXX.

Explanation: See message IJS402I.

SYNTAX REQUIRES A PROCEDURE-NAME AFTER ·•GO TO' NOT PRECEDED
BY A PARAGRAPH-NAME. FOUND XXX.

Explanation: See message IJS402I.

SYNTAX REQUIRES 'ALL' , 'LEADING', 'UNTIL', OR 'FIRST''.
FOUND XXX.

~~P!~!!~!:ion: See message IJS402I.

SYNTAX REQUIRES WORD 'TALLYING' OR 'REPLACING'. FOUND XXX.

Explanation: See message IJS402I.

SYNTAX REQUIRES WORD 'DEPENDING ON'. FOUND XXX.

Explanation: See message IJS402I.

DATA TYPE MUST BE ED, ID OR BI.

~~E!~!!~!:ion: Valid syntax for the subject verb permits
only specific data types. The data type as determined by the definition in the Data Division is invalid for its use here.

System Action: The statement is dropped from the point of
error.

SYNTAX REQUIRES WORD 1 TRACE'' • FOUND XXX.

Explanation: see message IJS402I.*

SYNTAX REQUIRES THAT A PERIOD OR SECTION FOLLOWS PARAGRAPH­
NAME. FOUND XXX.

*Also, the entire statement from the point of error is dropped and is not compiled.

198 Disk and Tape Operating systems COBOL Programmer's Guide

I v

~}

(1

\._,;I

IJS435I E

IJS436I C

IJS437I C

IJS438I C

IJS439I C

IJS440I C

IJS441I C

IJS442I C

IJS443I E

Explanation: See message IJS402I.*

DATA NM!iE AND ANY QUALIFIER MUST APPEAR WITHIN THE FIRST
SEVEN OPERANDS OF STATEMENT FOR CHANGED OPTION.

~!plag~tiog: See message IJS402I.

SYNTAX REQUIRES A DATA-NAME, FIGCON OR LITERAL. FOUND XXX.

Explanation: See message IJS402I.*

SYNTAX REQUIRES A FIGCON. FOUND XXX.

Explanation: See message IJS402I.*

SYNTAX REQUIRES DATA-ITEM TO BE NO LONGER THAN FOUR.

~!Plan~!iog: see message IJS402I.*

WRONG SUBSCRIPT SPECIFICATION.

Explanation: Data-names and condition-names can be sub­
scripted to a depth of three. A subscript is required for
each OCCURS ••• DEPENDING ON clause specified at the
specified data-name or in groups containing that data-name.

§y~tem_~£ti2g: The compilation continues at the next verb
or paragraph label.

User Response: Check for fewer or more subscripts than
OCCURS ••• DEPENDING ON clauses in the hierarchy. Subscripts
must be enclosed in parentheses and separated from each
other by a comma or a blank.

INCORRECT SPECIFICATION IN DECLARATIVE-SECTION. FOUND XXX.

~~plan~!!on: See message IJS402I.

SYNTAX REQUIRES AN INTEGER NOT LONGER THAN 5. FOUND XXX.

Explanation: The integer exceeds the size permitted by
language specifications.

§y~te~_~cti2g: The compilation continues at the next verb
or paragraph label.

THE DECLARATION OF THIS DATA-NAME CAUSED IT TO BE FLAGGED
AS AN ERROR.

Explanation: The data-name encountered was flagged by the
Data Division as containing an error in its declaration.

§y~tem_Actiog: compilation continues at the next verb or
paragraph label.

User Response: Correct the declaration as indicated by the
Data Division diagnostics and recompile.

SYNTAX REQUIRES A VERB. FOUND XXX.

Explanat!_on: A point was reached where a verb was required
and was missing. For example, 'IF= B.' requires a verb
between the B and the period.

*Also, the entire statement from the point of error is dropped and is
not compiled.

Appendix G: Diagnostic Messages 199

IJS444I E

IJS500I W

IJS501I W

IJS502I W

IJS503I W

IJS504I W

IJS505I C

IJS506I C

IJS507I W

IJS508I E

IJS509I C

IJS510I C

§y~1~~-~£tiog: The statement is skipped from the point of the error.

SYNTAX REQUIRES A RECORD NAME. FOUND XXX.

~~Elanation: See message IJS402I.

AN OPERAND'S LENGTH EXCEEDS AND IS TRUNCATED TO 256 BYTES.

~~El~~~tiog: The maximum number of bytes that can be dis­played is 256.

§y~l~~-Act!2g: The operand is truncated to 256 bytes and displayed.

IF THIS VARIABLE-LENGTH ENTRY EXCEEDS 256, RESULTS WILL BE UNPREDICTABLE.

~~Elan~tion: A maximum of 256 bytes can be displayed.

§y~1~~-~£tiog: The entry is truncated to 256 bytes and .displayed.

LITERAL EXCEEDS AND IS TRUNCATED TO 72 BYTES.

§y~te~-~£tiog: In a stop-literal statement only the first 72 bytes of a longer field are typed on the console.

DATA EXCEEDS AND IS TRUNCATED TO 72 BYTES.

ExElanation: A maximum of one line (72 bytes) can be
retrieved using the ACCEPT FROM CONSOLE statement.

DATA EXCEEDS AND IS TRUNCATED TO 256 BYTES.

~~Elag~l!2g: A maximum of 256 bytes can be accepted from SYSIPT.

FILENAMES OR STERLING-DATA TYPE NOT ALLOWED IN COMPARE.

EXE!~~~l!2g: See message IJS506I.

USAGE OF DATA-TYPES CONFLICT. THE TEST DROPPED.

ExElanation: Only certain data types can be compared to
each other. The types specified are invalid. Reference can be made to the compared table to determine the valid
combinations. Logical comparisons of fields that are
classified as invalid comparisons can often be made through a redefinition and a description of one or both of the
fields as alphameric.

EXIT MUST BE ONLY STATEMENT IN PARAGRAPH.

system Action: compilation continues normally.

T'HE STATEMENT CONTAINS AN UNDEFINED DATA NAME.

~.~Elan~tion: See message IJS402I.

A.N ALPHABETIC DATA-NAME CAN BE TESTED ONLY FOR ALPHABETIC OR NOT ALPHABETIC, AND NUMERIC DATA-NAME ONLY FOR NUMERIC
OR NOT NUMERIC. THE TEST IS DROPPED.

COMPARISON OF TWO LITERALS OR FIGCONS IS INVALID.

200 Disk and Tape Operating Systems COBOL Programmer's Guide

Iv

IJS511I C

IJS512I C

IJS513I C

If

IJS514I W

IJS515I W

IJS516I C

IJS517I C

I

~ IJS518I E

IJS519I C

IJS520I C

IJS521I C

IJS522I C

IJS523I C

~~lan~i!on: See message IJS506I.

DATA-TYPE IN ARITHMETIC STATEMENT IS NOT NUMERIC OR RECEIV­
ING FIELD IS NOT NUMERIC OR REPORT.

~~planation: See message IJS506I.

DATA-NAME IN CLASS-TEST MUST BE AN, ED, OR ID.

~~plan~iiog: see message IJS506I.

DATA-NAME IN SIGN-TEST MUST BE NUMERIC.

Explanation: See message IJS506I.

DATA EXCEEDS AND IS TRUNCATED TO 72 BYTES.

system Action: If the data is longer than 72 bytes, only
the first 72 bytes are printed for a DISPLAY ON CONSOLE
statement.

DATA EXCEEDS AND IS TRUNCATED TO 120 BYTES.

§y~tem_~£tiQg: If the data is longer than 120 bytes, only
the first 120 bytes are printed for a DISPLAY statement.

OPEN 'NO REWIND' OR 'REVERSED' CANNOT BE SPECIFIED FOR A
UNIT RECORD, DIRECT-ACCESS OR DISK/DATA CELL UTILITY FILE.

§v~i~~-~£iiog: The options are ignored.

'NO REWIND' OR 'LOCK' CANNOT BE SPECIFIED FOR A UNIT
RECORD, DIRECT-ACCESS OR DISK/DATA CELL UTILITY FILE.

§v~iem_~£iiog: The options are ignored.

MORE THAN FORTY PARAMETERS ARE NOT ALLOWED WITH THE
STATEMENT.

SYNTAX ALLOWS ZERO AS ONLY VALID FIGCON IN A COMPARISON
WITH BI, ID, EF, AND IF.

Explanation: See message IJSS_Q_§.I..

SYNTAX ALLOWS SPACE OR ALL AS ONLY VALID FIGCONS IN COM­
PARISON WITH AN ALPHABETIC FIELD.

Explanation: See message IJS50 6;_•

DATATYPE MUST BE ED, EF, AL, AN OR GF. FOUND XXX.

~~p~~at!Q!!: The data types indicated are the only valid
ones that can be used in the clause indicated.

system Action: compilation continues at the next verb or
paragraph label.

SYNTAX REQUIRES WORD RUN OR LITERAL. FOUND XXX.

system Action: The syntax scan skips the rest of the
statement.

RECEIVING FIELDS IN PRECEDING STATEMENT IS A LITERAL.

Explanation: A Procedure Division literal cannot be
changed as the result of arithmetic or a move. The state­
ment, SUBTRACT data-name FROM literal, would specify inva­
lid action of this type.

Appendix G: Diagnostic Messages 201

IJS524I C

IJS525I C

IJS526I C

IJS527I C

IJS528I C

IJS529I C

IJS530I C

IJS531I E

IJS532I E

system Action: Compilation continues at the next verb or paragraph label.

SYNTAX REQUIRES AT LEAST TWO OPERANDS BEFORE GIVING OPTION.

Explanation: For example, ADD A GIVING B.

§yste~-~cti2g: The statement is skipped.

THE EXPRESSION HAS MORE RIGHT PARENS THAN LEFT PARENS TO THIS POINT. FOUND XXX.

Explanation: The number of right parentheses and left
parentheses in a statement must agree. At no point in time can there be more right parentheses than left parentheses.

System Action: The statement is skipped from the point of the error.

Q2er g~.§Eon2~: Check for extra periods or missing periods, an error in a non-numeric literal, mispunched operators, or subscripted fields that are invalidly packed together
without an ·intervening blank.

THE EXPRESSION HAS UNEQUAL NUMBER OF RIGHT AND LEFT PARENS.

Explanation: See message IJS525I.

DATA-TYPE MUST BE ED, ID, OR BI. FOUND XXX.

§y~te~-~£ti2g: The statement is skipped from the point of error.

VARYING ·OPTION EXCEEDS THREE LEVELS.

~~P!~g~ii2g: A maximum of three levels is permitted with the varying option of the PERFORM verb.

system Action: The statement is dropped from the point of
E~rror.

DATA-TYPE MUST BE ED, ID, BI, EE, OR IF.

Explanation: The data types shown are the only valid ones. The data-name found is not one of these types.

§y~tem_~ction: The statement is skipped from the point of error.

NUMBER OF ELSES EXCEEDS NUMBER OF IFS.

~~plan~iion: Number of ELSE clauses must balance out with the appropriate number of ELSE or OTHERWISE clauses.

syst~m Action: Statement is skipped from the point of
error.

:Q'.2~r Rg~pon2~: Recount and make corrections.

INTERNAL OCCURS-DEPENDING-ON TABLE OVERFLOWED AVAILABLE
CORE.

STATEMENT HAS TOO MANY OPERANDS.

Explanation: The statement referenced is too large or com­plex for the internal tables needed for compilation.

202 Disk and Tape Operating systems COBOL Programmer's Guide

\J

IJS533I E

IJS534I E

IJS535I E

IJS536I E

IJS538I W

IJS539I C

IJS540I W

IJS549I E

IJS550I C

IJS551I C

IJS552I C

IJS553I E

IJS554I C

system Action: The statement is skipped from the occur­
rence of this condition.

g~~:r_g~~pQg~~: The statement should be divided into more
than one statement.

PARENTHESIZING REQUIRES SAVING TOO MANY OPERANDS.

~~plag~li2g: See message IJS532I.

PARENTHESIZING REQUIRES SAVING TOO MANY INTERNALLY
GENERATED LABELS.

Explanation: See message IJS532I.

PARENTHESIZING REQUIRES SAVING TOO MUCH OF STATEMENT.

~~!an~li2g: See message IJS532I.

ARITHMETIC EXPRESSION REQUIRES MORE THAN 9 INTERMEDIATE
RESULT FIELDS.

Explanation: See message IJS532I.

'OUTPUT' CANNOT BE SPECIFIED FOR INDEX/DIRECT ORGANIZATION
WITH RANDOM ACCESS. 'I-0' IS ASSUMED.

'I-01 IS AN INVALID SPECIFICATION FOR DIRECT ORGANIZATION
WITH SEQUENTIAL ACCESS.

'NO REWIND' CANNOT BE SPECIFIED WITH 'REVERSED' OPTION.
'REVERSED' IS ASSUMED.

WORD XXX WAS EITHER INVALID OR SKIPPED DUE TO ANOTHER
DIAGNOSTIC.

Explanation: The majority of these messages will probably
be caused by words skipped because of another diagnostic
message that occurred earlier in the statement. This diag­
nostic message also occurs because of misspelled words.

Us~r R~~Qg~~: In the case of words skipped, correct the
previous error, or correct the current misspellings.

A FIGURATIVE CONSTANT IS NOT ALLOWED AS A CALL OR ENTRY
PARAMETER.

§v~l~-~cti2g: The statement is skipped from the point of
error.

SYNTAX REQUIRES WORD 'TO'. FOUND XXX.

Syste~-~£1ion: Syntax scan skips the rest of the
statement.

RECEIVING FIELD MUST BE A DATA-NAME. FOUND XXX.

~~tem_~cti2g: The statement is skipped from the point of
error.

FIGURATIVE CONSTANT IS NOT ALLOWED AS A RECEIVING FIELD.

§~tem_~£1iog: The statement is skipped from the point of
the error.

THE •xxx• DATA-TYPE IS NOT LEGAL RECEIVING FIELD.

Appendix G: Diagnostic Messages 203

IJS555I C

IJS556I E

IJS557I W

IJS558I E

IJS559I E

IJS560I C

IJS561I C

IJS562I C

IJS563I C

IJS564I C

System Action: The statement is skipped from the point of the error.

!l~~LE~~E2!!~~: Check the table of permissible moves in the COBOL specification.

OVERFLOW NAME IS NOT A VALID SENDING FIELD.

~~te~-~£!:iog: The statement is skipped from the point of the error.

END DECLARATIVES IS MISSING FROM PROGRAM.

~~2!~!!~!:!2!!= The entire Procedure Division is treated as a declarative section.

FLOATING-POINT CONVERSION MAY RESULT IN TRUNCATION.

~~lag~t~Q!!= Conversion of floating-point numbers can result in truncation of low-order digits.

I-0 OPTION FOR FILE CONFLICTS WITH NO REWIND.

£Y~t~~-~cti2g: The statement is skipped from the point of the error.

OUTPUT OPTION FOR FILE CONFLICTS WITH REVERSED.

~~2!~!!~!:i2!!= The OUTPUT option conflicts with an opening of a file that has a reversed option specified.

System Action: The statement is skipped from the point of
the error.

SYNTAX REQUIRES WORD 'NAMED', 'CHANGED', OR 'CHANGED
NAMED'. FOUND XXX.

~~te~-~£ti2!!= The statement is skipped from the point of error.

DATA TYPE MUST BE ED, ID, BI, EF, IF, RP, AL,, AN, OR GF.
FOUND XXX.

Explanation: A file-name, condition name, figure config­
uration, or variable-length group is not valid at this
point.

System Action: The statement is skipped from the point of
the error.

DATA ENTRY MUST NOT EXCEED 120 CHARACTERS.

Ex2lanation: The data entry specified exceeds the maximum
permitted for this type of output.

§y~!;,em_~£!;,iog: The statement is skipped from the point of
the error.

DATA ENTRY MUST BE DISPLAY.

.§y~tem_ActiQg: The statement is skipped from the point of
the error.

SYNTAX REQUIRES ONE OF THE ALLOWABLE CHARACTERS. FOUND xxx.

system Action: The statement is skipped from the point of
the error.

204 Disk and Tape Operating Systems COBOL Programmer's Guide

IJS565I C

u

IJS566I C

IJS567I C

IJS568I C

IJS569I C

IJS570I C

IJS571I E

IJS572I C

IJS573I C

IJS601I W

i ',

~ IJS602I W

IF STATEMENT MUST BE TERMINATED BY A PERIOD.

~~21~g~ii2g: This message is obtained when the IF state­
ment is the last statement of a paragraph and a label is
detected instead of a period.

system Action: The statement is skipped from the point of
error.

DATA TYPE MUST BE AL, AN, RP, OR GROUP.

System Action: The statement is skipped from the point of
error.

DATA TYPE MUST BE AL, AN, FIGCON OR FIXED-LENGTH GROUP.

System Action: The statement is skipped from the point of
the error.

DATA ITEM MUST NOT EXCEED 256 CHARACTERS.

system Action: The statement is skipped from the point of
the error.

DATA ENTRIES MUST BE OF EQUAL LENGTH.

system Action: The statement is skipped from the point of
the error.

THE LENGTH OF THE SECOND OPERAND MUST BE EQUAL TO THE FIRST
OR A SINGLE CHARACTER.

§y~te~_&ctiQg: The statement is skipped from the point of
the error.

A RECORD NAME MUST BE ASSOCIATED WITH THIS FILE. FOUND
xxx.

system Action: The statement is skipped from the point of
the error.

ONLY ONE DATA-NAME MAY BE ASSOCIATED WITH THE CHANGED
OPTION.

§y~te~_&ctiog: The statement is skipped from the point of
the error.

DATA TYPE MUST BE ED, ID, BI, EF, IF, SN, SR, RP, AL, AN,
FC, OR GROUP.

System Action: The statement is skipped from the point of
error.

NO SIGNIFICANT POSITION MATCHES BETWEEN SENDING AND RECEIV­
ING FIELDS IN MOVE. RECEIVING FIELD IS SET TO ZERO.

Ex2lan~tion: There are no digit positions in common
between the sending and receiving fields. This can be
illustrated by moving a field with PICTURE 99 to a receiv­
ing field with PICTURE V99.

System Action: The receiving field is set to zero.

DESTINATION FIELD DOES NOT ACCEPT THE WHOLE SENDING FIELD
IN MOVE.

Appendix G: Diagnostic Messages 205

IJS603I C

IJS604I E

IJS605I E

IJS606I E

IJS607I E

IJS608I E

IJS609I E

IJS610I E

IJS611I E

IJS612I W

IJS613I W

IJS614I E

IJS615I E

~~plan~:!::!2g: The sending field is larger than the receiv­ing field in either its integer or decimal positions, or both.

§y~te~-~£ti2g: The sending field is truncated.

AFTER ADVANCING OPTION NOT ALLOWED WITH REWRITE.

System Action: The statement is skipped from the point of the error.

SOURCE PROGRAM EXCEEDS INTERNAL LIMITS.

Explanation: The program is too large.

User Response: The user should do one of the following,
then retry:

• Divide the program into two or more parts

• Simplify compound conditional statements.

PROCEDURE NAME MULTIPLY DEFINED.

~~P!~~:!:;iog: Procedure-name indicated was multiply defined
and was not qualified properly by the appropriate section­
name when used.

PROCEDURE-NAME XXX NOT DEFINED.

~~P!~g~:!::!.2!!.= The name indicated was incorporated into a GO 'I'O or a PERFORM statement, and was never defined. Proce­
dure names must begin in columns 8 through 11 at the point
where they are defined.

INVALID LITERAL XXX.

user Response: Check for multiple decimal points, non­
numeric characters that have not been enclosed in quotes.

XXX IS NOT ALLOWED TO HANDLE MORE THAN 25 FILES IN ONE
STATEMENT.

System Action: The rest of the statement is skipped. Only
25 files are handled.

PROCEDURE-NAME XXX HAS ILLEGAL CONTENT AND IS DROPPED.

'CONDITION NAME' WAS EITHER NOT ALLOWED IN THIS STATEMENT
OR SKIPPED DUE TO ANOTHER DIAGNOSTIC.

TOO MANY PARAGRAPH NAMES HAVE BEEN USED IN CALL STATEMENTS.

OPEN STATEMENT CONTAINS MORE THAN 9 FILENAMES. OPEN WILL
SPLIT.

~y~te~-~£ti2g: Handles multiple OPEN statements each con­
taining nine file-names.

USING STATEMENT HAS BEEN INCORRECTLY SPECIFIED.

THIS CONDITIONAL HAS A MISSING RELATIONAL OPERATOR.

~~tem_~ctiog: The statement is skipped from the point of
the error.

READ 'AT END' REQUIRED FOR FILES WITH ACCESS SEQUENTIAL.

206 Disk and Tape Operating Systems COBOL Programmer's Guide

IJS617I E

IJS618I E

IJS621I E

u IJS622I E

IJS623I E

IJS625I E

IJS626I E

IJS627I E

TJS628I E

IJS629I E

IJS700I E

IJS701I E

IJS702I E

IJS703I E

IJS704I E

IJS705I

IJS706I E

IJS707I E

~! IJS708I E

WRITE 'FROM' REQUIRED WITH APPLY WRITE ONLY.

REWRITE INVALID ON DIRECT OR RELATIVE SEQUENTIAL FILES.

OPEN 'I-0' INVALID FOR DIRECT OR RELATIVE SEQUENTIAL FILES.

OPEN 'OUTPUT' INVALID FOR FILES WITH ACCESS RANDOM, I-0
ASSUMED.

OPEN 'REVERSED' VALID ONLY ON STANDARD SEQUENTIAL FILES.

OPEN 'REVERSED' INVALID FOR FILES WITH FORMAT V RECORDS.

CLOSE ·•UNIT' OR 'REEL' VALID ONLY FOR STANDARD SEQUENTIAL
FILES.

'INVALID KEY' INVALID FOR STANDARD, DIRECT, OR RELATIVE
SEQUENTIAL FILES, OR FOR REWRITE ON INDEXED SEQUENTIAL
FILES.

OPEN 'ACTUAL KEY' REQUIRED FOR DIRECT SEQUE~IAL OUTPUT
FILES.

'APPLY WRITE-ONLY' OPTION MUST BE SPECIFIED FOR OUTPUT
FILES ONLY.

SOURCE PROGRAM NOT FOUND. COMPILATION CANCELED.

DATA DIVISION NOT FOUND. COMPILATION CANCELED.

PROCEDURE DIVISION NOT FOUND. COMPILATION CANCELED.

SOURCE PROGRAM EXCEEDS INTERNAL LIMITS. COMPILATION
CANCELED.

~~plag~iiog: The size of the assembler phase tables
exceeds the core storage available for these tables.

user Response: Modify the source program to allow compila­
tion on the source computer. There are essentially three
variables that can be modified:

• The length and number of source labels could be reduced
as the table for source labels must reserve 3 + L bytes
per source label.

• The number of literals could be reduced as 3 bytes are
reserved for each literal.

• The size of the buff er can be reduced in machines above
16K storage size.

DATA-NAME TABLE OVERFLOW. COMPILATION CANCELED.

NO DIAGNOSTICS IN THIS COMPILATION.

EXECUTION CANCELED DUE TO E LEVEL DIAGNOSTIC.

CONFLICTING I/O ASSIGNMENTS.

Explanation: SYS001, SYS002, and SYS003 are not assigned
to the same type of device.

§y~te~-~£tiog: compilation is canceled.

STORAGE ALLOCATED TO THE COMPILER IS LESS THAN 10K. compi­
lation canceled.

Appendix G: Diagnostic Messages 207

IJS708I E

IJS709I' W

IJS710I W

IJS711I W

IJS712I W

IJS713I W

STORAGE ALLOCATED TO THE COMPILER IS LESS THAN 14K. COMPI­
LATION CANCELED.

INCORRECT COBOL OPTION •xxx•.

BUFFSIZ CANNOT BE LESS THAN 170. ASSUMED 170.

BUFFSIZ CANNOT BE GREATER THAN 32000. ASSUMED 32000.

BUFFSIZ CANNOT BE GREATER THAN 3625 (7294) FOR WORK FILES
ON DISK. ASSUMED 3625 (7294>.

Explanation: 3625 for 2311
7294 for 2314

BUFFSIZ IS TOO LARGE FOR SIZE OF STORAGE ALLOCATED TO THE
COMPILER. ASSUMED XXX.

A list of execution time messages follows. Most of them are self­
explanatory. Where deemed necessary, examples are included to explain
the message.

#IHD901I* AN UNCORRECTABLE DASD ERROR HAS OCCURRED.

#IHD902I* WRONG LENGTH RECORD.

#IHD903I* NO RECORD FOUND.

#IHD904I* ILLEGAL ID SPECIFIED.

#IHD905I* DUPLICATE RECORD.

#IHD906I* CYLINDER OVERFLOW AREA FULL.

#IHD907I* PRIME DATA AREA FULL.

#IHD908I* CYLINDER INDEX AREA FULL.

#IHD909I* MA.STER INDEX AREA FULL.

#IHD910I* RECORD OUT OF SEQUENCE.

#IHD911I WRONG LENGTH RECORD.

#IHD912I NO MORE ROOM FOUND ON TRACK.

#IHD913I DATA CHECK IN COUNT AREA.

#IHD914I DATA CHECK WHEN READING KEY OR DATA.

#IHD915I

#IHD993I

#IHD996I

#IHD997I

NO RECORD FOUND.

ZERO BASE-MINUS EXPONENT-PACKED RESULT MADE ALL NINES.

RESULT TOO BIG-FLOATING POINT RESULT MADE MAX FP NUMBER.

ZERO BASE-MINUS EXPONENT-FLOATING POINT RESULT IS MAX FP
NUMBER.

*These messages pertain to indexed sequential data organization only.

208 Disk and Tape Operating Systems COBOL Programmer's Guide

\\..._/

I\._//

#IHD998I

#IHD999I

ZERO BASE-PLUS EXPONENT-FLOATING POINT RESULT MADE ZERO.

MINUS BASE MADE PLUS AND FLOATING POINT EXPONENTIATION
CONTINUED.

AWAITING REPLY.

DEBUG PACKET ERROR MESSAGES

The following is a complete list of precornpile error messages. They
apply to errors in the debugging packet only.

IJS850I

IJS851I

IJS852I

IJS853I

IJS85·4I

IJS855I

TABLE OF DEBUG REQUESTS OVERFLOWED. RUN TERMINATED.

THE FOLLOWING CARD DUPLICATES A PREVIOUS *DEBUG CARD. THIS
PACKET WILL BE IGNORED.

THE FOLLOWING PROCEDURE DIVISION NAMES WERE NOT FOUND.
INCOMPLETE DEBUG EDIT IS NOT TERMINATED.

THE FOLLOWING *DEBUG CARD DOES NOT CONTAIN A VALID LOCATION
FIELD. THIS PACKET WILL BE IGNORED.

IDENTIFICATION DIVISION NOT FOUND. RUN TERMINATED.

DEBUG EDIT RUN COMPLETE. INPUT OR COBOL COMPILATION ON
SYS004.

Appendix G: Diagnostic Messages 209

l
~

.)
\~

\ '

\._..}ACCEPT Statement 89
Access Devices, Direct 116
ACTUAL KEY 136, 138, 139, 143, 144
Adding Mixed Data Fields 74-77
Adding Randomly

Direct Organization Files
Indexed Sequential Files

ADDR (LISTX) 60
Address Marker 169
Addressing 138
Alignment and Slack Bytes 83

144
122

Alignment of Decimal Points 80
Alignment of Variable Records 92
ALT (Alternate Magnetic Tape) 20
Alternate Method of Solution (Intermediate

Results) 78
Argument List 103
Arguments 97, 108
A:r:eas

Overflow 115
Prime 115

Arithmetic Coding Techniques
Arithmetic Fields 77

77

A:r:ithmetic Operations 74-76
Arithmetic Statement, Data Fields in
Assembler Language Subroutine

103
fo:r: overlays 107
Linkage Conventions

ASSGN Statement 18
~/Assumed configuration

Disk Resident System 48
Tape Resident System 39

Assumed Logical Assignments at system
Generation Time

Disk Resident system 50
Tape Resident System 41

Assumed Physical Assignments at System
Generation Time

Disk Resident System
Tape Resident system

AT END 92
AUTOLINK

Background Progra~ 14

49
39

Batched Job Processing 13
Binary Numbers 72, 81, 82, 84
BLOCK CCNTAINS Clause 91
Blocked Records 91
Blocking Variable Length Records 90
Buffers 89, 91

Multiple 92
BUFFSIZ (COBOL Option) 28

Calling Programs 95
Linkage 96

Called Programs 95
Linkage 96

CATAL 23
cataloging

l / Books 35-36
'-"" Object Modules 35

Program Phases 34

74

Cataloging an Object Module in the
Relocatable Library

Disk 52
Tape 41

Cataloging Source Modules to the source
Statement Library

Disk 53
Tape 44

CBL Statement (COBOL Option control Card)
27

Checkpointing a Program 37
CLOSE Statement 120, 121, 122, 143, 144
COBOL Control Card 27
COBOL Options {COBOL Control Card)
COBOL Statements Specifying Direct
Organization Files 142

COBOL Statements Specifying Indexed
Sequential Files 119

COBOL Subroutines 173
Coding, Redundant 86

27

Coding Examples for Direct Organization
Files (see Sample Programs>

Coding Examples for Indexed Sequential
Files (see Sample Programs)

Coding Techniques
Arithmetic 77
Non-arithmetic 81, 78

Comments Statement 27
Comparing Data Fields
Comparisons, Permissible
Compilation 12, 69
Compile and Punch

Disk 51
Tape 41

74-75
167·

Compile Linkage Edit and Execute
Disk 52
Tape 42

Compile (Using source Statements), Linkage
Edit and Execute

Disk 54
Tape 45

compiler Diagnostic Messages
Compiler Output 57
COMPUTATIONAL 72, 74-78, 91
COMPUTATIONAL-1 72, 76
COMPUTATIONAL-2 72, 76

181

61
82

COMPUTATIONAL-3 70, 74-78, 83
CONDITIONAL {C) Severity Code
conditional Statements CIF)
Configuration, Assumed

Disk Resident System 48
Tape Resident System 39

Conservation of Core Storage
Constant Subscript 83

69-70 I 74

continuation of Job Control Statements
Control Cards Required for Overlay 110
control Fields 91
Control Program 11
control statements for Linkage Editor
Conversion of Data Formats in

Arithmetic Operations 74-76
comparisons 74-75

18

32

Index 211

Moves 74-75
COPY (Data Division) 36
Core Image Library 13, 34
core Storage, Conservation of
correspondence of Arguments and

69-70, 74

ParameteI:s 97
CI:eating a Direct Organization

Example 149
File 142

CI:eating an Indexed Sequential
Example 129

File 119

Cylinder Index 116
Cylinder Overflow Area 115

DASD File Label, Format 167
Data

Conversion 73
in Move, Arithroetic and Relational
Statements 74

Items 69
Mixed 72
Numeric 71, 73
Organization 11, 115
Panameters 97
Usage 70

Data Area (XTENT Statement) 25
Data Cell Randomizing 140
Data File 11
Data Management Facilities 114
Data Map (SYM) 59
DEBUG Option 66
DEBUG Packet 66
DEBUG Packet Error Messages 209
Debugging Language 66
Decimal Point, Alignment 80
DECK 23
Deck Structures for Processing COBOL

Programs
Disk Resident System 48
Tape Resident System 39

Declarative section 93, 94
Device Address (ASSGN Statement) 19
Device Specification (ASSGN Statement)
Diagnostic Messages

Compile Time 181
DEBUG Packet 209
Execution Time 208

Direct-Access Devices 114
Direct-Access File Processing 114
Direct-Access Storage Device Extent

Information 30
Direct Addressing
Direct Organization

Adding Randomly

138
12, 115

143
Creating a Direct Organization File

142

212

Example 150
Error Recovery Techniques
INVALID KEY 147

147

Modifying DTF for Direct Files
Multiple Entry Points 144
Random Retrieval of Direct
Organization 144

Example 153
Randomizing Techniques 138

for 2321 Data Cell 140
for 2311 Disk Pack 139

Sequential Retrieval of Direct
Organization File 143

148

19

Example 155
Specifying Keys 136
Updating Randomly 144

Disk Operating System, Processing 48
Disk Pack Randomizing 139
DISPCHK (COBOL Option) 27
DISPLAY 70, 74-78, 113
DLAB Statement 24
DLBL Statement 28
DMAP (COBOL Option) 27
DTF Table

Modifying
Direct Files 148
Indexed sequential Files 126

Options 128
Skeleton 126, 147

DUMP 22
Dumps 64-65

Editing 88
75 Effects of Data Declaration

Elementary Items 70
End-of-Data-File Statement (/*)
End-of-Job Statement (/&) 27
Entry Points 97, 107

Multiple 145
Error Declarative Section
Error Messages {ERRS) 59

Compile Time 181
DEBUG Packet Error
Execution 208

209

61

147

27

Error Processing 93-94
Direct Organization Files
Duplicate Key 123
Indexed Sequential Files
Input/Output 93

123-125

Error Recovery
Direct Organization Files
Indexed Sequential Files

Error Recovery Subroutine
ERROR CE) severity code 61
ERRS 23, 59

147
123

123

Examples of COBOL Programs (see Sample
Programs>

Examples of Processing
Disk 51
Tape 41

Examples Showing Effective Use of Data
Declaration 75

Examples Updating Actual Key
EXEC Statement 20
Executing a COBOL Program
Executing a Program

Disk 53
Tape 43

Execution 12, 69
Execution Time Messages
EXHIBIT Statement 66
Exponentiation 78
Expression, Complex 78

63

138

12

EXTENT Statement 30, 116, 120, 125
External Decimal 70

Fields, Arithmetic 78
Unequal Length 82

Filename (in VOL Statement) 21
File Sequence Number 29
File Serial Number 29

\
~/

.... ,

<-·'

Files 88, 92
Processing 114
Sample Programs (see Sample Programs)

Floating-Point Computation 79
Foreground Program 14
Formats

COBOL Language 157
Data 69
Job control Statements 18
Mixed 72
Track 171

Generated COBOL Source Listing 57
/GO (TOS Only) 23

GO TO Statement 92
Group Moves 77

Home Address 169

IF
Conditional 83
NUMERIC Test 87
Relationals 74

INCLUDE (Procedure Division) 36
INCLUDE Statement 33
Independent Overflow Area 116
Indirect Addressing 138
Index Areas

Cylinder 116
Master 116
Track 115-116

Index Marker 169
Indexed Sequential Organization

Adding Randomly 123
Creating 119

Ex.ample 129
Error Recovery Techniques 123
Modifying the DTF 127
Random Retrieval 121

Example 131
Random Update 122
Sequential Retrieval 120

Example 133
Sequential Update 121
with overflow 118
without overflow 117

In-line Parameter List 105
Input/Output Device Assignment 15
Input/Output Error Recovery Processing

Direct (DAM) 148
Indexed Sequential 123
Sequential Disk 93
Sequential Tape 93

Insertion of Slack Bytes 84
INSTRUCTION (LISTX) 60
Internal Decimal 72
Interpreting Output 57
INVALID KEY Clause 121-124

Direct Organization Files 147
Indexed Sequential Files· 124

INVED (COBOL Option) 28

Job 11, 17
Job Control

DEBUG Packet 68
Effecting overlays 110

93

1 Linkage Edit Calling and Called Programs \,__., without Overlay 100

Job Control Statements
Continuation 18
Format 18
Sequence 17

JOB Statement 21
Job Steps 11, 17

DEBUG Packet 68
Job-name 20

Key 115
Key Handling

Adding Randomly
Direct Files 144

15, 11

Indexed Sequential Files 123
Creating

Direct Files 143
Indexed Sequential Files 120

Sequential Retrieval
Direct Files 143
Indexed Sequential Files 121

Specifying Keys for Direct-Access 136
Updating Sequential Files 121

Label Fields Cin DLAB Statement) 24
Label Statements, Order of 17
Labels

Standard DASD File, Format 1 167
Standard Tape File 166

Language Formats 157
LBLTYP Statement 21
Librarian 12

Function 34
Libraries 12

Core Image 13
Relocatable 13
source Statement 13

LINK 22
LINE/POS

(ERRS) 61
(LI STX) 60

Linkage
Conventions Used by Assembler Language

Programs 105
in a Calling Program 96
in a Called Program 96
Registers (Conventions) 102
with overlay 108
without overlay 100

Linkage Editor 12
Control Statements 32

LIST 57, 22
output 63

LIS TX 23
Literals 72, 81, 91
LOG 22
Logic Module 114
Logical roes 114
Logical Record 114, 136
Lower Limit of Extent 26
Lowest Level Program 106

Master Index 116
Messages, Diagnostic (Error> 181
MINSYS (TOS Only) 23
Mixed Data Formats 72

Arithmetic Operations 74-76
comparisons 74-75
Moves 74-75

Index 213

Modifying DTF
Direct Files 148
Indexed Sequential Files 127

Module, Logic 114
Module-name <in INCLUDE Statement) 33
Move Mixed Data Fields 76
Moves, Permissible 165
Multiple Buffers 92
Multiple Entry Points 145
Multiprogramming 13

Name (Job control Statement) 18
NODECK 23
NODUMP 22
NOERRS 23
NOEXIT 28
NOLINK 23
NOLI ST 23
NOLI STX 23
NOLOG 22
Non-Arithmetic Coding Techniques 82, 78
Non-Sequential Files, Checkpointing 37
NOXREF 23
NSD(nn) (LBLTYP) 21
Numeric comparisons 77
Numeric Data Items 71, 73

Object Module 12
Object Storage Layout 65
OCCURS ••• DEPENDING ON Clause 90, 93
ON Statement 67
OPEN Statement 119, 120, 121, 122, 143,

144
Operand (Job Control Statement) 18
Operating System 11
Operation (Job Control Statement) 18
OPTION Statement 22, 57, 61
Options in the DTF 128
Order of Label Statements 17
Organization of Data 11
Origin, of Phase 33
Output

Compiler 57
Linkage Editor 63

Overflow Area 115 CXTEN~ Statement 25)
Cylinder only 115
Cylinder and Independent 117
Independent only 117

Overlay Structure and Technique 106
Assembler Language Subroutine Effecting
overlays 107

Job control 110
Linkage Editor with Overlay 108

Packed Decimal 72
Paragraph-name 89
Parameters 97

In-line 105
Parity Error 93-94
PARSTD 23
Partitions 13
PAUSE Statement 24, 108
Permissible Comparisons
Permissible Moves 165
Phase

Name 32
Root 106

PHASE Statement 32

214

164

Physicat roes 114
PMAP (COBOL Option) 27
Prime Area 115
Priority 14
Private Library 36-37
PROCEDURE MAP CLISTX) 60 . 1 1

Processing Buffers 95 .\~
Processing COBOL Files on Direct-Access

Devices 114
Processing Direct Organization and Indexed

Sequential Files 114
Processing Program 11
Programs

Background 13
Calling 95
Called 95
Foreground 13
Lowest Level 106
Modifying the DTF 129

Program Phase 12
Program Phase Dumps 64-65
Programming Considerations 69
Programs for File Processing (see Sample

Programs)

Random Addition
Direct Files 144
Indexed Sequential Files 122

Random Retrieval
Direct Organization Files 144

Example 153
Indexed Sequential Files 121

Example 132
Random Update of an Indexed Sequential
File 122

Randomizing Technique 138
for 2321 Data Cell 140 ~
for 2311 Disk Pack 139

READ Statement 121, 143, 144
Record Alignment 93
Record Blocking 91
RECORD CONTAINS Clause 91
RECORD KEY 120, 121, 143, 144
Records

Logical 114
Variable Length 90

Redefinition 86
Redundant Coding 86
Reference Formats for Disk and Tape
Operating Systems COBOL 157

Register Use 102
Relational Statements, Data Fields in 74,

77-78
Relocatable Library 13, 35
REPORT 77
RERUN Statement 38
RESET Statement 26, 66
Restarting a Program 38
Results, Intermediate in Complex
Expressions 78

Retrieval of Direct Organization Files
Random 144
Sequential 143

Retrieval of an Indexed sequential File
Random 121
Sequential 120

REWRITE Statement 121, 122
Root Phase 108

i J
~,

Sample Programs
Assembler Language for Effecting
overlays 107

Calling Sequence to Obtain an overlay Structure 111
COBOL Calling 98-99 1 171
COBOL Called 172
Files

Creating
Direct Organization Files
Indexed Sequential File~

Random Retrieval
Direct Organization Files
Indexed Sequential Files

Sequential Retrieval
Direct Organization Files
Indexed Sequential Files save Area 102

Word contents 103
Sequence of Job Control Statements
Sequential Files

Checkpointing
Error Handling
Organization

Disk 115
Tape 114

Records 90

57
93

11

Sequential Retrieval
Direct Organization Files

Example 155
Indexed Sequential Files

Example 134

142

120

149
129

153
132

155
134

17

Sequential Update of Indexed Sequential Files 121
Service Programs
severity Code 61
Sign Control 81

11

Singl~ Program Initiator < SPI)
Skeleton DTF Table 125, 147
Slack Bytes and Alignment 83
Source Module 12

Listing (LIST) 59
Source Statement Library
Specifying Keys 135

13, 35

Split Cylinder (XTENT Statement)
Standard File Labels

DASD 167
Tape 166

STDLABEL (DOS Only) 23
Storage, Conservation of
Storage Layout 65
subprogram

69, 70

13, 30

25

Assembler Language Conventions 101
Assembler Language used in overlays 107
Calling Sequence 96

Subroutines Used in COBOL
subscripting 83, 90
SYM 23, 59

174

Symbolic Input/output Assignment
SYSIN 16
SYSIPT 16
SYSLNK 16
SYSLOG 16
SYSLST 16

SYSOUT 16
SYSPCH 16
SYSRDR 16
SYSRES 16
SYSRLB 16
SYSSLB 16
SYSOOO to SYS222 16

SYMBOLIC KEY 120# 121, 122, 142, 143, 144 Symbolic-names 16, 11, 15
System Libraries 12
System Service Programs 11
SYSxxx

(VOL Statement> 21
(ASSGN Statement) 19
{XTENT Statement) 26

Tape File Label 166
TAPE(nn) (LBLTYP Statement) 21
Tape Operating System Processing 136 Techniques for Coding 69, 78, 82 TLBL Statement 29
TPLAB Statement 22
TRACE Statement 66
Track Descriptor Record 169
Track Format for 2311, 2314, and 2321 169 Track Index 117-118
Trailing Characters 89

Unblocked Records 91
Unequal Length Fields 81
Unexpected Intermediate Results 79 Updating ACTUAL KEY 138
Updating

Direct Organization Files 144
Indexed Sequential Files

Randomly 122
Sequentially 121

Upper Limit of Extent 26
USAGE Clause 69
USE AFTER STANDARD ERROR 93, 123

Subroutine for Direct Organization Files 143
Subroutine for Indexed Sequential
Files 125

User Private Library 36

Variable Length Records 90
Alignment 92
Blocking of 90

Variable Record Alignment Containing
OCCURS ••• DEPENDING ON Clause 92 Variable Subscript 83

VOL Statement 21
Volume Sequence Number 29
Volume Serial Number 26
Volumes 11

WARNING (W} Severity Code 61
Working with Diagnostic Mess~ges 62 WRITE Statement 119, 143, 144

XREF 23
XTENT Statement 25
X'ss' (ASSIGN Statement) 18

Index 215

GC24-5025-5

International Business Machines Corporation
Data Proces,si.ng Division
1133 Westchester Avenue, White Plains, New York 10604
[U.S.A. only]

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
[International)

~

s·
(D
c:i.

er
c::
~

~

0
Cl
N
~

°' 0
N
VI

°'

...
j

'•

i

1
I'

	final001
	final002
	final003
	final004
	final005
	final006
	final007
	final008
	final009
	final010
	final011
	final012
	final013
	final014
	final015
	final016
	final017
	final018
	final019
	final020
	final021
	final022
	final023
	final024
	final025
	final026
	final027
	final028
	final029
	final030
	final031
	final032
	final033
	final034
	final035
	final036
	final037
	final038
	final039
	final040
	final041
	final042
	final043
	final044
	final045
	final046
	final047
	final048
	final049
	final050
	final051
	final052
	final053
	final054
	final055
	final056
	final057
	final058
	final059
	final060
	final061
	final062
	final063
	final064
	final065
	final066
	final067
	final068
	final069
	final070
	final071
	final072
	final073
	final074
	final075
	final076
	final077
	final078
	final079
	final080
	final081
	final082
	final083
	final084
	final085
	final086
	final087
	final088
	final089
	final090
	final091
	final092
	final093
	final094
	final095
	final096
	final097
	final098
	final099
	final100
	final101
	final102
	final103
	final104
	final105
	final106
	final107
	final108
	final109
	final110
	final111
	final112
	final113
	final114
	final115
	final116
	final117
	final118
	final119
	final120
	final121
	final122
	final123
	final124
	final125
	final126
	final127
	final128
	final129
	final130
	final131
	final132
	final133
	final134
	final135
	final136
	final137
	final138
	final139
	final140
	final141
	final142
	final143
	final144
	final145
	final146
	final147
	final148
	final149
	final150
	final151
	final152
	final153
	final154
	final155
	final156
	final157
	final158
	final159
	final160
	final161
	final162
	final163
	final164
	final165
	final166
	final167
	final168
	final169
	final170
	final171
	final172
	final173
	final174
	final175
	final176
	final177
	final178
	final179
	final180
	final181
	final182
	final183
	final184
	final185
	final186
	final187
	final188
	final189
	final190
	final191
	final192
	final193
	final194
	final195
	final196
	final197
	final198
	final199
	final200
	final201
	final202
	final203
	final204
	final205
	final206
	final207
	final208
	final209
	final210
	final211
	final212
	final213
	final214
	final215
	final216

