
• 

I 

• 



--------- ----- - -- -. --- MVS/ESA SC26-4504-1 - - - ------------·- Data Facility Product Version 3: 
Customization 

Version 3 Release 1 



Second Edition (June 1989) 

This edition replaces and makes obsolete the previous edition, SC26-4504-0. 

This edition applies to Version 3 Release 1 of MVS/DFP™, Program Number 5665-XA3, and to any 
subsequent releases until otherwise indicated in new editions or technical newsletters. 

The changes for this edition are summarized under "Summary of Changes" following the table of 
contents. Specific changes are indicated by a vertical bar to the left of the change. A vertical bar to 
the left of a figure caption indicates that the figure has changed. Editorial changes that have no 
technical significance are not noted. 

Changes are made periodically to this publication; before using this publication in connection with the 
operation of IBM systems, consult the latest IBM System/370, 30xx, 4300, and 9370 Processors 
Bibliography, GC20-0001, for the editions that are applicable and current. 

References in this publication to IBM products, programs, or services do not imply that IBM intends to 
make these available in all countries in which IBM operates. Any reference to an IBM licensed 
program in this publication is not intended to state or imply that only IBM's program may be used. 
Any functionally equivalent program may be used instead. 

Requests for IBM publications should be made to your IBM representative or to the IBM branch office 
serving your locality. If you request publications from the address given below, your order will be 
delayed because publications are not stocked there. 

A Reader's Comment Form is provided at the back of this publication. If the form has been removed, 
comments may be addressed to IBM Corporation, Department J57, P. 0. Box 49023, San Jose, ~1 

California, U.S.A. 95161-9023. IBM may use or distribute whatever information you supply in any way it 
believes appropriate without incurring any obligation to you. 

© Copyright International Business Machines Corporation 1986, 1987, 1988, 1989. All rights reserved. 



I 

~) 
Trademarks 

(~; 

u 

The following names have been adopted by IBM for trademark use and are 
used throughout this publication: 

ESA/370™ 

MVS/DFP™ 

MVS/ESATM 

MVS/SP™ 

MVS/XATM 

Trademarks iii 





/ I v 

( ) 

'~ 

Summary of Changes 

Second Edition, June 1989 

New Programming Support for Release 1 

Service Changes 

A new installation exit has been provided to allow you to customize the 
messages for display on an IBM 3480 tape drive. You can also use this exit to 
request automatic cartridge load. Information on this installation exit is 
provided in Chapter 9, "Data Management Installation Exit Routines." 

This book has been divided into three sections: 

1. "Introduction to Customization" 
2. "MVS/DFP User Exits" 
3. "MVS/DFP Installation Exits" 

The information on testing exits and user interfaces has been moved to 
"Introduction to Customization." The information on status following an 
input/output operation has been moved into Chapter 5, "Data Management 
User-Written Exit Routines." Descriptions of the ISMF command and line 
operator table formats have been moved into Chapter 8, "Interactive Storage 
Management Facility (ISMF)." 

Information on the CREATE command has been added to Chapter 6, "User Exit 
Routines Specified with Utilities." Descriptions of the DADSM SCRATCH and 
RENAME parameter lists, IGGDASCR and IGGDAREN, have been added to 
Chapter 9, "Data Management Installation Exit Routines." Sample 
precalculation and postcalculation exits have been added to Chapter 9, "Data 
Management Installation Exit Routines." 

Other minor technical and editorial changes have been made. 

First Edition, December 1988 

New Programming Support for Release 1 
The DCB OPEN exit and the DCB OPEN installation exit can be used to force 
OPEN to obtain a system-determined block size for DASO data sets. 
Information has been added to Chapter 5, "Data Management User-Written Exit 
Routines" and Chapter 9, "Data Management Installation Exit Routines" that 
describes this support. 

Four new replaceable modules are available as preprocessing and 
postprocessing exits for DADSM Scratch and Rename. Information on these 
modules has been added to Chapter 9, "Data Management Installation Exit 
Routines." 

Summary of Changes V 



Automatic class selection (ACS) installation exits allow you to code exit 
routines that provide capabilities beyond the scope of the ACS routines. ACS 
installation exits exist for data class, storage class, and management class ACS \..._,, 

Service Changes 

routines. Information on these exits is in Chapter 11, "Automatic Class 
Selection (ACS) Installation Exits." 

New indicators for the Storage Management Subsystem (SMS) have been 
added to the format-1 and format-4 data set control blocks (DSCBs) for use with 
DADSM installation exits. Information on these indicators is in Appendix B, 
"SMS Indicators for DADSM Installation Exits." 

Information on the Interactive Storage Management Facility panel IDs, member 
names, panel displays, and formats has been updated to reflect any changes. 

MVS/DFP publications have new order numbers. Publications listed in the 
preface reflect these new order numbers. 

Other minor technical and editorial changes have been made. 

Vi MVS/ESA Data Facility Product Version 3: Customization 

."'-", 



I 

\J 

u 

Preface 

About This Book 
This book is intended to help you customize MVS/DFP and provide exit routines 
and modules that extend or replace IBM-supplied function at your installation. 

This book is divided into three sections: 

1. "Introduction to Customization" 

This section contains guidance information on customization in MVS/DFP. 
Unless specifically stated otherwise, the information in this section must not 
be used for programming purposes. However, this section also provides 
the following type of information, which is explicitly identified where it 
occurs: 

Product-Sensitive Programming Interface 

Installation exits and other product-sensitive interfaces are provided to 
allow your installation to perform tasks such as product tailoring, 
monitoring, modification, or diagnosis. They are dependent on the detailed 
design or implementation of the product. Such interfaces should be used 
only for these specialized purposes. Because of their dependencies on 
detailed design and implementation, it is to be expected that programs 
written to such interfaces may need to be changed in order to run with new 
product releases or versions, or as a result of service . 

....__ _____ End of Product-Sensitive Programming Interface -----~ 

2. "MVS/DFP User Exits" 

This section provides guidance and reference information on user exits in 
MVS/DFP. It contains general-use programming interfaces, which allow you 
to write programs that use the services of MVS/DFP. 

3. "MVS/DFP Installation Exits" 

This section provides guidance and reference information on installation 
exits in MVS/DFP. It contains product-sensitive programming interfaces 
provided by MVS/DFP. Installation exits and other product-sensitive 
interfaces are provided to allow your installation to perform tasks such as 
product tailoring, monitoring, modification, or diagnosis. They are 
dependent on the detailed design or implementation of the product. Such 
interfaces should be used only for these specialized purposes. Because of 
their dependencies on detailed design and implementation, it is to be 
expected that programs written to such interfaces may need to be changed 
in order to run with new product releases or versions, or as a result of 
service. 

The guidance information provided in this manual can be used by 
administrators who wish to centralize customization at their installations. The 
areas where MVS/DFP can be customized include all user exits, exit locations 

Preface Vii 



and replaceable modules, and the Interactive Storage Management Facility · 
(ISMF) display panels. 

Required Product Knowledge 
To use this book effectively, you should be familiar with: 

• Assembler language 

• Job control language 

• Standard program linkage conventions 

• Data management access methods and macro instructions 

• Access method services commands 

• VSAM macro instructions 

• Interactive System Productivity Facility (ISPF) dialog manager 

Required Publications 
You should be familiar with the information presented in the following 
publications: 

Publication Title 

Interactive System Productivity Facility Dialog Management 
Services 

MVS/ESA Catalog Administration Guide 

MVS/ESA Data Administration Guide 

MVS/ESA Data Administration: Macro Instruction Reference 

MVS/ESA Data Administration: Utilities 

MVS/ESA Integrated Catalog Adminstration: Access Method 
Services Reference 

MVS/ESA lnt.eractive Storage Management Facility User's 
Guide 

MVS/ESA JCL Reference 

MVS/ESA JCL User's Guide 

MVS/ESA Magnetic Tape Labels and File Structure 
Administration 

MVS/ESA Message Library: System Messages Volume 1 

MVS/ESA Message Library: System Messages Volume 2 

MVS/ESA Storage Administration Reference 

MVS/ESA System-Data Admini$tration 

MVS/ESA VSAM Administration Guide 

MVS/ESA VSAM Administration: Macro Instruction Reference 

Viii MVS/ESA Data Facility Product Version 3: Customization 

Order Number 

SC34-2137 

SC26-4502 

SC26-4505 

SC26-4506 

SC26-4516 

SC26-4500 

SC26-4508 

GC28-1829 

GC28-1830 

SC26-4511 

GC28-1812 

GC28-1813 

SC26-4514 

SC26-4515 

SC26-4518 

SC26-4517 

\ v 

! ) 

~-



'\_; 

I 

\..__,; 

Publication Title 

MVSJESA VSAM Catalog Administration: Access Method 
Services Reference 

Related Publications 

Order Number 

SC26-4501 

Some publications from the MVS/SP Version 3 library are referenced in this 
book. The MVSIESA Library Guide for System Product Version 3, GC28-1563, 
contains a complete listing of the MVS/SP Version 3 publications and their 
counterparts for the prior version. 

The MVSIESA Data Facility Product Version 3: Master Index, GC26-4512, 
contains both an index to the MVS/DFP library and a summary of the changes 
made to the library. You can use it to: 

• Find information in other MVS/DFP publications 

• Determine how new programming support changes information in the 
MVS/DFP library 

• Determine which MVS/DFP publications have been changed. 

In addition, the following publications may be helpful: 

Publication Title 

MVS/ESA Data Facility Product Version 3: Planning Guide 

_ MVS Storage Management Library: Configuring Storage 
Subsystems 

Referenced Publications 

Order Number 

SC26-4513 

SC26-4409 

Within the text, references are made to the publications listed below: 

Short Title 

Access Method 
Services Reference 

Application 
Development Guide 

Application 
Development Macro 
Reference 

Basics of Problem 
Dete rm in at ion 

Publication Title 

MVSIESA Integrated Catalog 
Adminstration: Access Method 
Services Reference 
MVSIESA VSAM Catalog 
Administration: Access Method 
Services Reference 

MVSIESA Application Development 
Guide 

MVSIESA Application Development 
Macro Reference 

MVSIESA Basics of Problem 
Determination 

Order 
Number 

SC26-4500 

SC26-4501 

GC28-1821 

GC28-1822 

GC28-1839 

Preface ix 



Order 
Short Title Publication Title Number 

\_.p 
Checkpoint/Restart MVS/ESA Checkpoint/Restart SC26-4503 
User's Guide User's Guide 

Data Administration MVS!ESA Data Administration SC26-4505 
Guide Guide 

Data Administration: MVS/ESA Data Administration: SC26-4506 
Macro Instruction Macro Instruction Reference 
Reference 

Using Dumps and MVS!ESA Diagnosis: Using Dumps L Y28-1843 
Traces and Traces 

DFDSS/ISMF: Data Facility Data Set SC26-4129 
Installation Planning Services/Interactive Storage 
Guide Management Facility: Installation 

Planning Guide 
\_.,:/ 

DFHSM: Installation Data Facility Hierarchical Storage~ SH35-0084 
and Customization Manager: Version 2 Release 4 
Guide Installation and Customization 

Guide 

DFP: Diagnosis MVS!ESA Data Facility Product L Y27-9551 
Reference Version 3: Diagnosis Reference 

DFSORT Installation DFSORT Installation and SC33-4034 
and Customization Customization 

'-.._.) 
ICKDSF System Control Device Support Facilities System GC26-3946 
Programming Control Programming 
Specifications Specifications 

Initialization and Tuning MVS!ESA System Programming GC28-1828 
Library: Initialization and Tuning 

ISMF User's Gulde MVSIESA Interactive Storage SC26-4508 
Management Facility User's Guide 

ISPF Dialog Interactive System Productivity SC34-2137 \_) 
Management Services Facility Dialog Management 

Services 

Magnetic Tape Labels MVS!ESA Magnetic Tape Labels SC26-4511 
and File Structure and File Structure Administration 

System Generation MVSIESA System Generation GC28-1825 

Dump and Trace MVSIESA Planning: Dump and GC28-1838 
Services Trace Services 

SPL: RACF Resource Access Control Facility SC28-1343 
(RACF) System Programming 
Library 

Service Aids MVSIESA System Programming LY28-1844 
Library: Service Aids 

MVSCP MVSIESA Component Diagnosis: LY28-1852 0 
MVSCP 

X MVS/ESA Data Facility Product Version 3: Customization 



Order 
Short Title Publication Title Number \ 

~/ SPL: Application MVSIESA System Programming GC28-1857 
Development Macro Library: Application Development 
Reference Macro Reference 

Storage Administration MVSIESA Storage Administration SC26-4514 
Reference Reference 

System-Data MVSI ESA System-Data SC26-4515 
Administration Administration 

System Messages MVSIESA Message Library: System GC28-1812 
Volume 1 Messages Volume 1 

System Messages MVSIESA Message Library: System GC28-1813 
Volume 2 Messages Volume 2 

System Modifications MVSIESA System Programming GC28-1831 

\'---'/ Library: System Modifications 

·TSO/E V2 Command TSOIE VersiOn 2 Command SC28-1881 
Reference Reference 

MVS/XA TSO MVS!Extended Architecture TSO SC28-1134 
Extensions TSO Extensions Command Language 
Command Language Reference 
Reference 

Utilities MVSIESA Data Administration: SC26-4516 
1. I Utilities \.._..) 

User Exits MVSIESA System Programming GC28-1836 
Library: User Exits 

VSAM Administration: MVSIESA VSAM Administration: SC26-4517 
Macro Instruction Macro Instruction Reference 
Reference 

u 

Preface Xi 





< ....... / 

~i 

Introduction to Customization 

About This Section 
This section is intended to help you understand customization in MVS/DFP. It 
discusses the types of customization, and some advice on testing and 
documenting exit routines. Unless specifically stated otherwise, the information 
in this section must not be used for programming purposes. However, this 
section also provides the following type of information, which is explicitly 
identified where it occurs: 

Product-Sensitive Programming Interface 

Installation exits and other product-sensitive interfaces are provided to allow 
your installation to perform tasks such as product tailoring, monitoring, 
modification, or diagnosis. They are de.pendent on the det~iled design or 
implementation of the product. Such interfaces should be used only for these 
specialized purposes. Because of their dependencies on detailed design and 
implementation, it is to be expected that programs written to such interfaces 
may need to be changed in order to run with new product releases or versions, 
or as a result of service. 

~----- End of Product-Sensitive Programming Interface _____ __, 

This section contains: 

• Chapter 1, "Introduction" on page 3 

• Chapter 2, "Exit Testing Techniques" on page 9 

• Chapter 3, "User Interfaces" on page-13 

Introduction to Customization 1 



i~ 



Chapter 1. Introduction 

What is Customization? 
Customization consists of actions to enhance or extend a program to a greater 
extent than is provided by standard system-supplied options. MVS/ESA is an 
operating system that consists of MVS/SP, MVS/DFP, and other products. Both 
MVS/SP and MVS/DFP provide exit facilities for user customization. 

Types of Customization 
There are several types of customization: 

• Your installation takes advantage of customization functions by supplying a 
new module to be installed as part of the system. Such modules fall into 
one of the following categories: 

The module replaces an IBM-supplied module that performs no useful 
function except to give a return code. Such IBM-supplied modules are 
sometimes called dummy modules. Examples are the DADSM exit 
routines. If they are not replaced, no extra function is performed. 
The module replaces an IBM-supplied module that already performs a 
useful function. An example is the data management abend installation 
exit (IFG01991). If such modules are not replaced, they will perform 
certain functions. 
IBM does not supply a module that performs the function. Examples 
are the nonstandard tape label processing modules. If they are not 
supplied, the function cannot be used. 

The modules described above must be reentrant and refreshable. They are 
installed during system installation by using the system modification 
program (SMP/E) or by link-editing the module into the appropriate library. 

This type of customization uses product-sensitive programming interfaces. 
They are dependent on the detailed design and implementation of the 
product. Such interfaces should be used only for product-tailoring, 
monitoring, modification, or diagnosis. Because of their dependencies on 
detailed design and implementation, it is to be expected that programs 
written to such interfaces may need to be changed in order to run with new 
product releases or versions, or as a result of service. 

• The application programmer or system programmer changes certain 
messages and default values within the Interactive Storage Management 
Facility (ISMF). This type of customization uses general-use programming 
interfaces. 

• The application program requests certain functions and supplies the exit 
routines to perform these functions. This type of customization uses 
general-use programming interfaces. Examples are the access method 
functions described in Chapter 4, "VSAM User-Written Exit Routines" on 
page 19 and Chapter 5, "Data Management User-Written Exit Routines" on 
page 41. The installation may supply standard modules to implement these 
functions but the individual application program must request the 
appropriate module. These modules do not have to be reentrant. 

Chapter 1. Introduction 3 



Customization in the MVS/ESA System 
When installing the MVS/ESA system, initialization parameters provide a means 
of tailoring or tuning the system for your particular installation requirements. 
How you tune MVS/ESA may affect your customizing of MVS/SP and MVS/DFP. 
For more information about initialization parameters, see Initialization and 
Tuning. 

User exits provided by MVS/SP are documented in User Exits. 

Customization at a system level is also described in System Modifications. 

Customization in MVS/DFP 
Customization in MVS/DFP can be separated into two levels: one that affects 
the entire installation's processing and another that is limited to individual 
application program processing. 

Installation Level Customization 
Replacing a System-Level Module _ 

By definition, a replaceable module is a system-level module you 
are allowed to change. Replaceable modules are product-sensitive 
programming interfaces, dependent on the detailed design and 
implementation of MVS/DFP. Your modifications can alter 
processing for your entire installation. If you choose to install 
system-wide processing changes, you must consider how processing 
affects all users of the MVS/DFP component affected. 

Customizing ISMF 
You can modify the form and content of the ISMF displays. 
Customizing ISMF can be a system-wide application. Changes you 
make to ISMF libraries affect all users of ISMF. 

Application Program Customization 
User exit locations provide a means of customizing MVS/DFP within an 
application program. User exits are general-use programming interfaces. 
User-written routines can be specific to one application, or can be standardized 
to be used in many of your application programs. To standardize exits used 
frequently, you can maintain a library of proven exits that can be used in 
application programs. 

You can also customize ISMF displays for your own use. Other ISMF users 
would not be affected. Customizing ISMF this way would be limited to your 
individual applications. 

Considerations in Deciding to Customize MVS/DFP 

Why Customize? 
Your installation may decide to customize MVS/DFP to: 

• Enforce your installation standards 
• Intercept errors for analysis and additional processing 
• Add specialized tape label processing 

4 MVS/ESA Data Facility Product Version 3: Customization 

\~ 

\ 

'~ 



I 

I 

~· 

• Tailor 1/0 processing 
• Extend security controls 
• Change or bypass processing. 

When your installation decides what areas need customization to meet the 
requirements of your installation, you must consider the impact of your 
proposed modification. Is it going to be something that will affect all users of a 
component or function, or is it something that should be handled in the 
individual application program? Replacing system-level modules affects your 
entire installation. In conjunction with customizing MVS/DFP, you should 
examine the customization features available at the system level as briefly 
described in "Customization in the MVS/ESA System" on page 4. 

Programming Considerations 
Most requirements for coding vary depending on the part of MVS/DFP you are 
customizing. In general, be aware of the following: 

• 31-bit addressing: You should refer to the individual exit routine 
descriptions. Some exits do not support this function. 

• Use only documented interfaces identified as general-use programming 
interfaces or product-sensitive programming interfaces in the MVS/DFP 
library. 

• Upon entering your exit routine, save all registers and restore them before 
returning to your calling routine. Register 15 is an exception. In many 
cases you must supply a return code in register 15 upon returning to your 
main program or MVS/DFP processing. 

• If you replace a module, make sure you thoroughly test it before making it 
available to your installation. 

• Your routine should be reentrant so that it is able to handle concurrent 
requests. 

• Keep an unmodified copy of any replaceable modules or ISMF libraries you 
choose to modify. 

Programming Languages 
This document assumes you understand assembler language, ISPF dialog 
management language, and JCL. The examples are coded in assembler 
language and your routines may be coded in assembler language. ISMF 
examples use the ISPF dialog management language. 

Restrictions and Limitations 
MVS/DFP is a licensed program and can be modified for your own use only. 
IBM provides support and maintenance only for unmodified IBM-supplied 
modules and unmodified ISMF libraries. 

Chapter 1. Introduction 5 



Where Can You Customize in MVS/DFP? 

User Exit Locations 
In MVS/DFP, user exit locations are provided as part of macros and commands 
where you can specify the name and/or address of your user-written exit 
routine. The DCB macro, VSAM macros, and some access methods services 
commands contain parameters in which you specify the address or name of 
your exit routine. Some data set utility programs also provide user exit 
locations for modifying data set processing. 

User exits are available at various points in data set processing such as: 

• End-of-data 
• 1/0 errors 
• Logical errors 
• Non-VSAM abend conditions 
• Waiting for 1/0 completion 
• At open, close, and end-of-volume. 

The chapters describing user exits are: 

• Chapter 4, "VSAM User-Written Exit Routines" on page 19 
• Chapter 5, "Data Management User-Written Exit Routines" on page 41 
• Chapter 6, "User Exit Routines Specified with Utilities" on page 83 
• Chapter 7, "EXCP Appendages" on page 95 

Available user exits are summarized in the general guidance sections of each \..._,,,,,.; 
chapter. 

Replaceable Modules 
In this manual, replaceable modules refers to IBM supplied modules you can 
modify or replace with your own. This category also applies to EXCP 
appendages, dummy modules and tape label processing modules. 

Replaceable modules are available at various stages of processing such as: 

• Before and after direct access device storage management (DADSM) 
processing 

• At open for VSAM datestamp processing 
• At open of a DCB 
• At open, close, and end-of-volume abend conditions 
• Before and after DASO calculation services 
• 1/0 operations (appendages) 
• At open, close and end-of-volume for additional tape label processing 
• During automatic class selection 

Replaceable modules are described in the following chapters: 

• Chapter 7, "EXCP Appendages" on page 95 
• Chapter 9, "Data Management Installation Exit Routines" on page 135 
• Chapter 10, "Tape Label Processing Installation Exit Routines" on page 173 
• Chapter 11, "Automatic Class Selection (ACS) Installation Exits" on 

page 219 

A list of modules available is included in the guidance section of each chapter. 

6 MVS/ESA Data Facility Product Version 3: Customization 



\ ) "-/ 

Tailoring ISMF 
Because ISMF was partially written using the procedures described in /SPF 
Dialog Management Services, it can be modified using similar techniques. You 
can tailor ISMF panels, messages, job skeletons, command tables, and the 
CLIST. Customizing ISMF is described in Chapter 8, "Interactive Storage 
Management Facility (ISMF)" on page 105. 

Chapter 1. Introduction 7 



\ 

\~ 



Chapter 2. Exit Testing Techniques 

Several techniques can be employed to make your exit testing safer and easier. 
They include methods for protecting the system from errors in the exit, facilities 
for invoking dumps in order to get debugging information or to find out what 
information is available in system data areas, and ways to issue messages 
from the exit. 

Protecting the System From Exit Errors 
Three problems need to be addressed: 

1. How to avoid the need for frequent IPLs during testing, since the exits 
reside in the Link Pack Area (LPA) 

2. How to prevent overwriting of vital storage, since exits run in protect key 
zero 

3. How to limit the scope of the exit so that testing can proceed with minimal 
impact on other work in the system 

You can at least partially resolve these problems by: 

1. Writing a "front end" to the exit and placing the "front end" in a modified 
LPA library 

2. Placing the "real" exit code in another library such as SYS1.LINKLIB 

If these two things are done, the "front end" can be a fairly innocuous bit of 
code which limits the scope of the exit by testing for specific jobnames, for 
example, and then gives control to the "real" exit code outside the LPA. The 
"front end," once coded and tested, is unlikely to need changes very often. The 
"real" exit is now in another library, where it can be changed without the need 
for an IPL in order to effect the change. This technique removes the need for 
reentrant code in the "real" exit during testing, since it will be loaded for each 
invocation. You will have to run additional tests later with the "real" exit in the 
LPA in order to test that exits are truly reentrant. Running an exit from outside 
the LPA is unlikely to be desirable except in a testing environment, since there 
is overhead involved in loading the exit each time it is entered. 

Another safety feature of this way of testing exits is that use of the "front end" 
can be eliminated by an IPL without the MLPA parameter, just in case 
something is wrong with the "front end." 

Chapter 2. Exit Testing Techniques 9 



Once the exit is in production mode, protection against unexpected problems 
can also be implemented by having the exit check the contents of the CVTUSER 
field (CVT + 204 decimal). If the contents are zero (the normal case if 
CVTUSER is not being used by your installation), the exit should proceed. If 
not, it should return to the caller without taking further action (except to set 
register 15 to zero). When the exit is being used and an unexpected error is 
encountered, the contents of CVTUSER should be set to a nonzero value with 
console alter/display. This will cause the exit code to be temporarily disabled. 
Remember that a re-IPL will cause CVTUSER to become zero again, 
reactivating the exit. 

Exit Testing Using Dumps 
While testing your exit you are likely to need to invoke a dump at some time in 
order to debug or to examine data areas to determine where to look for 
information your exit requires. For information on analyzing dumps, see the 
book Basics of Problem Determination. For information on requesting and 
reading dumps, see the book Dump and Trace Services. The items below are ~ 
advice you can follow when invoking dumps. 

Issuing the ABEND Macro in an Exit 
If an ABEND is issued explicitly from a preprocessing exit entered for Allocate, 
you will get message IEF1971 SYSTEM ERROR DURING ALLOCATION. The job 
attempting the allocation will be failed with a JCL error and a dump will not be 
invoked. So. issuing ABEND alone is not a good way of getting the information 
you need. 

Setting CVTSDUMP 
Product-Sensitive Programming Interface 

The CVTSDUMP flag in the CVT can be set on to cause dumps to SYS1.DUMP to 
be invoken when ABEND is issued from a DADSM function (this includes the 
exits). This flag is at offset 272 in the CVT, and can be set on via the console 
alter/display functions. If you are testing under Virtual Machine/370, use the CP 
DISPLAY and STORE commands . 

.__ _____ End of Product-Sensitive Programming Interface _____ _.. 

Issuing the SDUMP Macro 
Dumps can be invoked from exits via the SDUMP macro. As an alternative 
approach to using the CVTSDUMP procedure described above, this method 
eliminates the need to modify storage to cause the dump to be invoked. For 
information on the syntax and coding of the SDUMP macro, see SPL: 
Application Development Macro Reference. For information on the SVC dump 
that is produced by issuing the the SDUMP macro, see Dump and Trace 
Services. 

10 MVS/ESA Data Facility Product Version 3: Customization 



i 

\..._/ 

Using the Console DUMP Command 
By issuing a WTOR from the exit and letting the exit wait for the reply, you can 
suspend the exit's processing at any point and invoke a console dump to 
SYS1.DUMP using the DUMP operator command. 

Issuing Messages 
To check that your exitis functioning correctly, especially during the early 
stages of testing, you may want to issue messages giving the status of 
processing at that point. For example, you can issue a message early in the 
exit giving the reason for entry {Allocate, Extend, Scratch, Partial Release, or 
Rename). If you use WTO with a routecode of 11 (sometimes called 'Write to 
Programmer'), the message will appear on the output of the job that issued the 
DADSM request. Other possible uses for the messages are to indicate that 
certain data areas have been found successfully and to display selected 
contents of data areas. 

Once the exit testing reaches the stage .where large numbers of jobs are being 
handled by the exit, you should remove the code which produces these 
messages. Large numbers of messages will consume system message buffers, 
and the text will add to the user's output unnecessarily. Of course there will 
still be cases where exception messages may be required-these are discussed 
later in the section "Exit Messages" on page 14. 

Chapter 2. Exit Testing Techniques 11 



' I 

'""'-') 

I 

\__.,) 



i 
\ I 

~ 

Chapter 3. User Interfaces 

Messages 

System Messages 

The way you design and implement the interface between your DADSM exits 
and the users of your system will have a big influence on the degree of 
acceptance you get. Remember that users may view the results of your hard 
work as a nuisance! You have probably introduced new restrictions on the way 
they do things, so you will have to "sell" the idea to them by pointing out how, 
for example, controlling space usage will protect them from themselves and 
each other. Once you have sold the users on the idea, you should make things 
as easy as possibl.e for them by providing clear messages and good 
documentation. 

There are three sources of messages associated with DADSM exits: 

1. The system, due to errors or return .codes produced by_ the exits 

2. Programs which use DADSM functions, which may now get new return 
codes from DADSM 

3. The exits themselves, which can issue messages directly 

Here are some of the messages which the system may issue when DADSM 
exits have been implemented; 

• IEF1971 SYSTEM ERROR DURING ALLOCATION-This message may appear 
if the exit abends while entered for an Allocate request. 

• IEC2231 with module IGGPREOO indicated-This message may appear if a 
program check occurs in the exit during an· Allocate request. 

• IEF2741 jjj sss ddn SPACE REQUEST REJECTED BY INSTALLATION EXIT, 
REASON CODE nnnn-This message is produced when the exit has rejected 
an Allocate. request without allowing retry on other non-SMS-managed 
volumes (register 15 = 8, as set by the exit). The reason code is the code 
placed in the installation reject reason code field of the exit parameter list 
(IEXREASN) by the exit before returning to DADSM. 

• IEF2751 jjj sss ddn SPACE REQUEST CANNOT BE SATISFIED, INSTALLATION 
EXIT REASON CODE nnnn-This message is produced when the exit has 
rejected an Allocate· request and allowed retry on other non-SMS-managed 
volumes, but the request could not be satisfied (register 15 = 4, as set by 
the exit). The reason code is the code placed in the installation reject 
reason code field of the exit parameter list (IEXREASN) by the exit before 
returning to DADSM. 

Chapter 3. User Interfaces 13 



Messages from Other Programs 

Exit Messages 

Utility programs may provide in their messages nonzero return codes received 
from DADSM. Here is a summary of the new return codes associated with the 
use of the exits: 

• Allocate 

X' BO' - Installation exit rejected the request; no further volumes 
attempted 

X' 84' - Installation exit rejected the request; try another volume 

• Extend 

- -20 - Installation exit rejected the request (yes, this is a 'minus 20 ') 

• Scratch 

- 4 - Installation exit rejected the request (in addition to the previous 
meanings for this return code) 

• Partial Release 

- 16 - Installation exit rejected the request (in addition to the previous 
meanings for this return code) 

• Rename 

4 - Installation exit rejected the request (in addition to the previous 
meanings for this return code) 

If the main purpose of your exit is to selectively reject Allocate requests, you 
should set installation reject reason codes in the exit parameter list and allow 
the IEF2741 and IEF2751 messages or the corresponding dynamic allocation 
reason codes (X'4780 1 and X'4784') to appear, rather than producing your 
own messages from the exit. The reason is that it may be better to have a 
message or code that is documented in a standard publication and then 
document the reject reason codes locally than to have a totally new message. 
At !east the user can look up the IEF messages in the Messages manual and 
get some idea of why the job failed. If you do produce your own message, try 
to make the contents self-explanatory so that separate documentation is not 
necessary. 

There may be some cases where it is a good idea to provide additional 
information. For example, if you use a RACF scheme that includes running 
space totals, you may want to produce a message containing the current 
running space total value when you reject a job which asked for space which 
would have made its total too high. Then the user has some basis on which to 
make a decision-perhaps to resubmit the job and ask for less space on that 
DD statement. If your installation has someone who monitors 1/0-related 
messages, you may want to produce a warning message when a running space 
total is getting close to being exceeded. There is probably not much point in 
putting this message on the user's listing unless that user is the only one 
whose space is being accumulated against that identifier. A warning message 
sent to the appropriate routing code would alert a space manager that a space 
shortage problem may be imminent. 

14 MVS/ESA Data Facility Product Version 3: Customization 



\._.,,,1 

i 

\'-..... / 

"\._) 

Documenting Your Exit For Users 
The need to provide documentation for your users gives you an opportunity to 
publicize your space control policies. The following list contains some ideas on 
what should be included in a space control plan, and these same planning 
elements can be carried forward as headings for sections of your 
documentation: 

1. The need for space control 

2. Space usage standards 

3. How usage standards will be enforced 

4. Space conservation hints 

In addition, you may want to have a separate section which summarizes the 
new messages and any installation reject reason codes that you have 
implemented. 

Again-clear, convincing documentation ·is important! Without it the users may 
see your exits as an obstacle to getting their work done, instead of an effort to 
provide an equitable space management scheme which wiil ultimately benefit 
them. 

Chapter 3. User Interfaces 15 



' ; 
~/ 

1~) 

; 
~! 



\ 
\.._ ... / 

I 1 

\_11 

L' 

MVS/DFP User Exits 

About This Section 
This section is intended to help you customize MVS/DFP by describing how to 
create user-written exit routines and tailor ISMF. It contains general-use 
programming interfaces, which allow you to write programs that use the 
services of MVS/DFP. 

This section contains: 

• Chapter 4, "VSAM User-Written Exit Routines" on page 19 
• Chapter 5, "Data Management User-Written Exit Routines" on page 41 
• Chapter 6, "User Exit Routines Specified with Utilities" on page 83 
• Chapter 7, "EXCP Appendages" on page 95 

• Chapter 8, "Interactive Storage Management Facility (ISMF)" on page 105 

MVS/OFP User Exits 17 





I , 

\.._,,/ 

Chapter 4. VSAM User-Written Exit Routines 

General Guidance 
VSAM user-written routines may be supplied to: 

• Analyze logical errors 
• Analyze physical errors 
• Perform end-of-data processing 
• Record transactions made against a data set 
• Perform special user processing 
• Perform user-security verification. 

VSAM user-written exit routines are identified by macro parameters in access 
methods services commands and in the EXLST VSAM macro. 

You use the EXLST VSAM macro to create an exit list. EXLST parameters 
EODAD, JRNAD, LERAD, SYNAD and UPAD are used to specify the addresses 
of your user-written routines. Only the exits marked active are executed. For 
more information on the EXLST macro see VSAM Administration: Macro 
Instruction Reference. 

You can use access methods services commands to specify the addresses of 
user-written routines to perform exception processing and user-security 
verification processing. For more information on exits from access methods 
services commands, see Access Method Services Reference. 

The exit locations available from VSAM are outlined in the following table. 

Figure 1 (Page 1 of 2). VSAM User-Written Exit Routines 

Exit Routine When Available Where Specified 

End-of-data-set When no more sequential EODAD parameter of 
records or blocks are EXLST macro 
available 

Exception exit After an uncorrectable EXCEPTIONEXIT 
input/output error parameter on access 

methods services 
commands 

Journalize After an input/output JRNAD parameter of 
transactions completion or error, change EXLST macro 
against a data to buffer contents, shared or 
set nonshared request, program 

issues GET, PUT, ERASE, 
shift in data in a control 
interval 

Analyze logical After an uncorrectable logical LERAD parameter of 
errors error EXLST macro 

Error analysis After an uncorrectable SYNAD parameter of 
input/output error EXLST macro 

I 

Chapter 4. VSAM User-Written Exit Routines 19 



Figure 1 (Page 2 of 2). VSAM User-Written Exit Routines 

Exit Routine When Available Where Specified 

User processing WAIT for 1/0 completion or UPAD parameter of 
for a serially reusable EXLST macro 
request 

User security When opening a VSAM data AUTHORIZATION 
verification set parameter on access 

methods services 
commands 

Programming Considerations 

Information 

Coding Guidance 

To code VSAM user exit routines you should be familiar with the contents and 
have available the following MVS/DFP manuals: 

VSAM Administration Guide 

VSAM Administration: Macro Instruction Reference 

Access Method Services Reference 

In general, you should observe these guidelines in coding your routine: 

• Code your routine reentrant 

·. ) 
\~ 

• Save and restore registers (see individual routines for other requirements) ·J 
· • Be aware of registers used by the VSAM request macros 

• Be aware of the addressing mode (24 bit or 31 bit) your exit routine will 
receive control in 

• Determine if VSAM or your program should load the exit routine. 

If the exit routine is used by a program that is doing asynchronous processing 
with multiple request parameter lists or, if the exit routine is used by more than 
one data set, it must be coded so that it can handle an entry made before the \..._) 
previous entry's processing is completed. Saving and restoring registers in the 
exit routine or by other routines called by the exit routine is best accomplished 
by coding the exit routine reentrant; another way is to develop a technique for 
associating a unique save area with each request parameter list (RPL). 

If the LERAD, EODAD, or SYNAD exit routine reuses the RPL passed to it, you 
should be aware that: 

• Recursion occurs (that is, the exit routine is called again) if the request that 
issues the reused RPL results in the same exception condition that caused 
the exit routine to be entered originally. 

20 MVS/ESA Data Facility Product Version 3: Customization 

I 
\ } 

~ 



I 
I ' 

'~ 

i 
\._/' 

• The original feedback code is replaced with the feedback code that 
indicates the status of the latest request issued against the RPL. If the exit 
routine returns to VSAM, VSAM (when it returns to the user's program) sets 
register 15 to also indicate the status of the latest request. 

A user exit that is loaded by VSAM will be invoked in the addressing mode 
specified when the module was link-edited. A user exit that is not loaded by 
VSAM will receive control in the same addressing mode as the caller of VSAM. 

Your exit routine can be loaded within your program or by using the JOBLIB or 
STEPLIB with the DD statement to point to the library location of your exit 
routine. 

Returning to Your Main Program 
Five exit routines can be entered when your main program issues a VSAM 
request macro (GET, PUT, POINT, and ERASE) and the macro has not 
completed: LERAD, SYNAD, EODAD, UPAD, or the EXCEPTIONEXIT routine. 
Entering the LERAD, SYNAD, EODAD, or EXCEPTIONEXIT indicates that the 
macro failed to complete successfully. When your exit routine completes its 
processing, it can return to your main program in one of two ways: 

1. The exit routine can return to VSAM (via the return address in register 14); 
VSAM then returns to your program at the instruction following the VSAM 
request macro that failed to complete successfully. This is the easier way 
to return to your program. 

2. The exit routine can determine the appropriate return point in your 
program, then branch directly to that point. Note that when VSAM enters 
your exit routine, none of the registers contains the address of the 
instruction following the failing macro. 

You are required to use this method to return to your program if, during the 
error recovery and correction process, your exit routine issued a GET, PUT, 
POINT, or ERASE macro that refers to the RPL referred to by the failing 
VSAM macro. (That is, the RPL parameter list has been reissued by the exit 
routine.) In this case, VSAM has lost track of its reentry point to your main 
program. If the exit routine returns to VSAM, VSAM issues an error return 
code. 

If your error recovery and correction process needs to reissue the failing VSAM 
macro against the RPL in order to retry the failing request or to correct it: 

• ·Your exit routine can correct the RPL (using MODCB), then set a switch to 
indicate to your main program that the RPL is now ready to retry. When 
your exit routine completes processing, it can return to VSAM (via register 
14), which returns to your main program. Your main program can then test 
the switch and ~eissue the VSAM macro and RPL. 

• Your exit routine can issue a GENCB macro to build an RPL, and then copy 
the RPL (for the failing VSAM macro) into the newly built RPL. At this point, 
your exit routine can issue VSAM macros against the newly built RPL. 
When your exit routine completes processing, it can return to VSAM (via 
register 14), which returns to your main program. 

Chapter 4. VSAM User-Written Exit Routines 21 



EODAD Exit Routine to Process End-of-Data 

Description 

Register Contents 

VSAM exits to an EODAD routine when an attempt is made to sequentially 
retrieve or point to a record beyond the last record in the data set (one with the 
highest key for keyed access and the one with the highest RBA for addressed 
access). VSAM doesn't take the exit for direct requests that specify a record 
beyond the end. If the EODAD exit isn't used, the condition is considered a 
logical error (FDBK code X 104 1

) and can be handled by the LE RAD routine, if 
one is supplied (see "LE RAD Exit Routine to Analyze Logical Errors" on 
page 32). 

Figure 2 gives the contents of the registers when VSAM exits to the EODAD 
routine. 

Register Contents 

0 Unpredictable. 

2-13 

Address of the RPL that defines the request that occasioned VSAM's 
reaching the end of the data set. The register must contain this 
address if you return to VSAM. 

Unpredictable. Register 13, by convention, contains the address of 
your processing program's 72-byte save area, which must not be 
used as a save area by the EODAD routine if it returns control to 
VSAM. 

14 Return address to VSAM. 

15 Entry address to the EODAD routine. 

Figure 2. Contents of Registers at Entry to EODAD Exit Routine 

Programming Considerations 
The typical actions of an EODAD routine are to: 

• Examine RPL for information you need, for example, type of data set 
• Issue completion messages 
• Close the data set 
• Terminate processing without returning to VSAM. 

If the routine returns to VSAM and another GET request is issued for access to 
the data set, VSAM exits to the LERAD routine. 

If a processing program retrieves records sequentially with a request defined 
by a chain of RPLs, the EODAD routine must determine whether the end of the 
data set was reached for the first RPL in the chain. If not, then one or more 
records have been retrieved but not yet processed by the processing program. 

22 MVS/ESA Data Facility Product Version 3: Customization 

'\...._,) 



The type of data set whose end was reached can be determined by examining 
the RPL for the address of the access method control block that connects the 
program to the data set and testing its attribute characteristics. 

If the exit routine issues GENCB, MODCB, SHOWCB, or TESTCB and returns to 
VSAM, it must provide a save area and restore registers 13 and 14, which are 
used by these macros. 

When your EODAD routine completes processing, return to your main program 
as described in "Returning to Your Main Program" on page 21. 

EXCEPTIONEXIT Exit Routine 

Description 

Register Contents 

You can provide an exception exit routine to monitor 1/0 errors associated with 
a data set. You specify the name of your routine via the access method 
services DEFINE command using the EXCEPTIONEXIT parameter to specify the 
name of your user-written exit routine. 

Figure 3 gives the contents of the registers when VSAM exits to the 
EXCEPTIONEXIT. 

Register Contents 

O Unpredictable. 

Address of the RPL that contains a feedback return code and the 
address of a message area, if any. 

2-13 Unpredictable. Register 13, by convention, contains the address of 
your processing program's 72-byte save area, which must not be 
used by the routine if it returns control to VSAM. 

14 Return address to VSAM. 

15 Entry address to the exception exit routine. 

Figure 3. Contents of Registers at Entry to EXCEPTION EXIT Routine 

Programming Considerations 
The exception exit is taken for the same errors as a SYNAD exit. If you have 
both an active SYNAD routine and an EXCEPTIONEXIT routine, the exception 
exit routine is processed first. 

The exception exit is associated with the attributes of the data set (specified by 
the DEFINE) and is loaded on every call. Your exit must reside in the LINKLIB 
and the exit cannot be called when VSAM is in cross-memory mode. 

Chapter 4. VSAM User-Written Exit Routines 23 



When your exception exit routine completes processing, return to your main 
program as described in "Returning to Your Main Program" on page 21. 

F,or information about how exception exits are established, changed, or 
nullified, see Access Method Services Reference. 

JRNAD Exit Routine to Journalize Transactions 

Description 

Register Contents 

A JRNAD exit routine can be provided to record transactions against a data set, 
to keep track of changes in the RBAs of records, and to monitor control interval 
splits. It is only available for VSAM shared resource buffering. For shared 
resources, you can use a JRNAD exit routine to deny a request for a control 
interval split. VSAM takes the JRNAD exit each time one of the following 
occurs: 

• The processing program issues a GET, PUT, or ERASE 

• Data is shifted right or left in a control interval or is moved to another. 
control interval to accommodate a record's being deleted, inserted, 
shortened, or lengthened 

• An 1/0 error occurs 

• An 1/0 completion occurs 

• A shared or nonshared request is received 

• The buffer contents are to be changed. 

Figure 4 gives the contents of the registers when VSAM exits to the JRNAD 
routine. 

Register Contents 

0 Unpredictable. 

Address of a parameter list built by VSAM. 

2-13 Unpredictable. 

14 Return address to VSAM. 

15 Entry address to the JRNAD routine. 

Figure 4. Contents of Registers at Entry to JRNAD Exit Routine 

Programming Considerations 
If the JRNAD is taken for 1/0 errors, a journal exit may zero out, or otherwise 
alter, the physical-error return code, so that a series of operations may 
continue to completion, even though one or more of the operations failed. 

24 MVS/ESA Data Facility Product Version 3: Customization 



\ ' '-/ 

/, 

\._ .. / 

The contents of the parameter list built by VSAM, pointed to by register 1, can 
be examined by the JRNAD exit routine which is described in Figure 6 on 
page 28. 

If the exit routine issues GENCB, MODCB, SHOWCB, or TESTCB, it must restore 
register 14, which is used by these macros, before it returns to VSAM. 

If the exit routine uses register 1, it must restore it with the parameter list 
address before returning to VSAM. (The routine must return for completion of 
the request that caused VSAM to exit.) 

The JRNAD exit must be indicated as active before the data set for which the 
exit is to be used is opened, and the exit must not be made inactive during 
processing. If you define more than one access method control block for a data 
set and want to have a JRNAD routine, the first ACB you open for the data set 
must specify the exit list that identifies the routine. 

Journalizing Transactions 
For journalizing transactions (when VSAM exits because of a GET, PUT, or 
ERASE), you can use the SHOWCB macro to display information in the request 
parameter list about the record that was retrieved, stored, or deleted 
(FIELDS= (AREA,KEYLEN,RBA,RECLEN), for example). You can also use the 
TESTCB macro to find out whether a GET or a PUT was for update 
(OPTCD = UPD). 

If your JRNAD routine only journals transactions, it should ignore reason X 10C 1 

and return to VSAM; conversely, it should ignore reasons X'00', X'04', and 
X '08 1 if it records only RBA changes. 

Recording RBA Changes 
For recording RBA changes, you must calculate how many records there are in 
the data being shifted or moved, so you can keep track of the new RBA for 
each. If all the records are the same length, you calculate the number by 
dividing the record length into the number of bytes of data being shifted. If 
record length varies, you can calculate the number by using a table that not 
only identifies the records (by associating a record's key with its RBA), but also 
gives their length. 

You should provide a routine to keep track of RBA changes caused by control 
interval and control area splits. RBA changes that occur by way of keyed 
access to a key-sequenced data set must also be recorded if you intend to 
process the data set later by direct-addressed access. 

Control Interval Splits 
Some control interval splits involve data being moved to two new control 
intervals, and control area splits normally involve many control intervals' 
contents being moved. In these cases, VSAM exits to the JRNAD routine for 
each separate movement of data to a _new control interval. 

You may also want to use the JRNAD exit to maintain shared or exclusive 
control over certain data or index control intervals; and in some cases, in your 
exit routine you may reject the request for certain processing of the control 
intervals. For example, if you used this exit to maintain information about a 
data set in a shared environment, you might reject a request for a control 

Chapter 4. VSAM User-Written Exit Routines 25 



interval or control area split because the split might adversely affect other 
users of the data set. 

Figure 5 is a skeleton program USERPROG with a user exit routine USEREXIT. 
It demonstrates the use of the JRNAD exit routine to cancel a request for a 
control interval or control area split. 

USERPROG CSECT 
SAVE(R14,R12) Standard entry code 

BLDVRP BUFFERS=(512(3)), Build resource pool 
KEYLEN=4, 

x 
x 
x 
x 
x 

STRN0=4, 
TYPE=LSR, 
SHRPOOL=l, 
RMODE3l=ALL 

OPEN (DIRACB) Logically c6nnect KSDSl 

PUT RPL=DIRRPL 

L:TR R15,R15 
BZ NOCANCEL 

This PUT causes the exit routine USEREXIT 
to be taken with an exit code X150 1 if 
there is a CI or CA split 
Check return code from PUT 
Retcode = 0 if USEREXIT did not cancel 

CI/CA split 
= 8 if cancel was issued, assuming 

that we know a CI or CA split 
occurred 

Process the cancel situation 

NOCANCEL . Process the noncancel situation 

DIRACB 

CLOSE (DIRACB) Disconnect KSDSl 
DLVRP TYPE=LSR,SHRPOOL=l Delete the resource pool 

RETURN Return to caller. 

ACB AM=VSAM, 
DDNAME=KSDSl, 
BUFND=3, 
BUFNI=2; 
MACRF=(KEY,DDN,SEQ,DIR,OUT,LSR), 
SHRPOOL=l, 
EXLST=EXITLST 

Figure 5 (Part 1 of 2). Example of a JRNAD Exit 

26 MVS/ESA Data Facility Product Version 3: Customization 

x 
x 
x 
x 
x 
x 



L,) 

\ .. _) 

Parameter List 

* 
DIRRPL RPL AM=VSAM, x 

ACB=DIRACB, x 
AREA=DATAREC, x 
AREALEN=128, x 
ARG=KEYNO, x 
KEYLEN=4, x 
OPTCD=(KEY,DIR,FWD,SYN,NUP,WAITX), x 
RECLEN=l28 

* 
DATAREC DC CL128 1 DATA RECORD TO BE PUT TO KSDSl I 

KEY NO DC F18 1 Search key argument for RPL 
EXITLST EXLST AM=VSAM,JRNAD=(JRNADDR,A,L) 
JRNADDR DC CLB I USEREXIT I Name of user exit routine 

END End of USERPROG 

USEREXIT CSECT On entry to this exit routine, Rl points 
to the JRNAD parameter list and R14 points 
back to V°SAM. 

EXIT 

CU 28(Rl),X'58 1 

BNE EXIT 
MVI 21(Rl),X 1 8C 1 

BR R14 

END 

Nonstandard entry code -- need not save 
the registers at caller's save area and, 
since user exit routines are reentrant for 
most applications, save Rl and R14 at some 
registers only if Rl and R14 are to be 
destroyed 

USEREXIT called because of CI/CA split? 
No. Return to VSAM 
Tell VSAM that user wants to cancel split 

Nonstandard exit code -- restore Rl and 
R14 from save registers 
Return to VSAM which returns to USERPROG 
if cancel is specified 
End of USEREXIT 

Figure 5 (Part 2 of 2). Example of a JRNAD Exit 

The parameter list built by VSAM contains reason codes to indicate why the 
exit was taken, and also locations where you can specify return codes for 
VSAM to take or not take an action upon returning from your routine. The 
information provided in the parameter list varies depending on the reason the 
exit was taken. Figure 6 shows the contents of the parameter list. 

The parameter list will reside in the same area as the VSAM control blocks, 
either above or below the 16M line. For example, if the VSAM data set was 
opened and the ACB stated RMODE31 =CB, the exit parameter list will reside 
above the 16M line. To access a parameter list that resides above the 16M 
line, you will need to use 31-bit addressing. 

Chapter 4. VSAM User-Written Exit Routines 27 



Figure 6 (Page 1 of 4). 

Offset Bytes 

O(X'O I) 4 

4(X 14 1
) 4 

8(X 1 8 1
) 4 

Contents of Parameter List Built by VSAM for the JRNAD Exit 

Description 

Address of the RPL that defines the request that caused 
VSAM to exit to the routine. 

Address of a 5-byte field that identifies the data set being 
processed. This field has the format: 

4 bytes Address of the access method control block 
specified by the RPL that defines the request 
occasioned by the JRNAD exit. 

1 byte Indication of whether the data set is the data 
(X 101 1

) or the index (X 1 02 1
) component. 

Variable, depends on the reason indicator at offset 20: 

Offset 20 Contents at offset 8 

X'OC' The RBA of the first byte of data that is being 
shifted or moved. 

X 120 1 

X 124 1 

X 128 1 

X 12C 1 

X 130 1 

X 134 1 

X 138 1 

X 13C' 

X 140 1 

X 144 1 

X 148 1 

X14C 1 

The RBA of the beginning of the control area 
about to·be split. 

The address of the 1/0 buffer into which data was 
going to be read. 

The address of the 1/0 buffer from which data was 
going to be written. 

The address of the 1/0 buffer that contains the 
control interval contents that are about to be 
written. 

Address of the buffer control block (BUFC) that 
points to the buffer into which data is about to be 
read under exclusive control. 

Address of BUFC that points to the buffer into 
which data is about to be read under shared 
control. 

Address of BUFC that points to the buffer which is 
to be acquired in exclusive control. The buffer is 
already in the buffer pool. 

Address of the BUFC that points to the buffer 
which is to be built in the buffer pool in exclusive 
control. 

Address of BUFC which points to the buffer whose 
exclusive control has just been released. 

Address of BUFC which points to the buffer whose 
contents have been made invalid. 

Address of the BUFC which points to the buffer 
into which the READ operation has just been 
completed. 

Address of the BUFC which points to the buffer 
from which the WRITE operation has just been 
completed. 

28 MVS/ESA Data Facility Product Version 3: Customization 

'"-"" 

\ 

'~ 

\ 
\ u 

I 
'-...../ 



\ .. _ _,./ 

Figure 6 (Page 2 of 4). Contents of Parameter List Built by VSAM for the JRNAD Exit 

Offset Bytes 

12(X 'CI) 4 

Description 

Variable, depends on the reason indicator at offset 20: 

Offset 20 Contents at offset 12 

X' OC' The number of bytes of data that is being shifted 
or moved (this number doesn't include free space, 
if any, or control information-except for a control 
area split, when the whole contents of a control 
interval are moved to a new control interval.) 

X' 20' Unpredictable. 

X' 24' Unpredictable. 

X'28' 

X'2C' 

X'30' 

X'34' 

X'38' 

X'3C' 

X'48' 

X'4C' 

Bits 0 through 31 correspond with transaction IDs 
0 through 31. Bits set to 1 indicate that the buffer 
that was being written when the error occurred 
was modified by the corresponding transactions. 
You can set additional bits to 1 to tell VSAM to 
keep the contents of the buffer until the 
corresponding transactions- have modified the 
buffer. 

The size of the control interval whose contents 
are about to be written. 

Size of the buffer into which data is about to be 
read under exclusive control. 

Size of the buffer which is about to be read into 
shared status. 

Size of the buffer which is to be acquired in 
exclusive control. The buffer is already in the 
buffer pool. 

Size of the buffer which is to be built in the buffer 
pool in exclusive control. 

Size of the buffer into which the READ operation 
has just been completed. 

Size of the buffer from which the WRITE operation 
has just been completed. 

Chapter 4. VSAM User-Written Exit Routines 29 



Figure 6 (Page 3 of 4). Contents of Parameter List Built by VSAM for the JRNAD Exit 
Offset Bytes 

16(X 1 10 1
) 4 

Description 

Variable, depends on the reason indicator at offset 20: 

Off set 20 Contents at offset 16 

X 1 OC 1 The RBA of the first byte to which data is being 
shifted or moved. 

X 120 1 The RBA of the last byte in the control area about 
to be split. 

X 124 1 The fourth byte contains the physical error code 
from the RPL FDBK field. You use this fullword to 
communicate with VSAM. Setting it to 0 indicates 
that VSAM is to ignore the error, bypass error 
processing, and let the processing program 
continue. Leaving it nonzero indicates that VSAM 
is to continue as usual: terminate the request 
that occasioned the error and proceed with error 
processing, including exiting to a physical error 
analysis ~outine. 

X 128 1 

X 1 2C 1 

X 148 1 

X 14C 1 

Same as for X 124 1
• 

The RBA of the control interval whose contents 
are about to be written. 

The RBA of the control interval into which the 
READ operation has just been completed. 

The RBA of the control interval from which the 
WRITE operation has just been completed. 

30 MVS/ESA Data Facility Product Version 3: Customization 

< ... ) 

\ 
•. ) 
~ 



( 

' '-"' 

( . 

~ 

I 
\._,,,, 

Figure 6 (Page 4 of 4). Contents of Parameter List Built by VSAM for the JRNAD Exit 

Offset Bytes 

20(X 1 14 1
) 

21(X 1 15 1
) 

Description 

Indication of the reason VSAM exited to the JRNAD routine: 

X 100 1 GET request. 

X 104 1 PUT request. 

X 108 1 ERASE request. 

X 10C 1 RBA change. 

X 1 10 1 Read spanned record segment. 

X 1 14 1 Write spanned record segment. 

X' 18 1 Reserved. 

X 1 1C 1 Reserved. 

The following codes are for shared resources only: 

X120 1 

X 1 24 1 

X 128 1 

X 12C 1 

X 1 30 1 

X 1 34 1 

X 138 1 

X 1 3C 1 

X'40' 

X 144 1 

X 148 1 

X 14C 1 

X 1 50 1 

Control area split. 

Input error. 

Output error. 

Buffer write. 

A data or index control interval is about 
to be read in exclusive control. 

A data or index control interval is about 
to be read in shared status. 

Acquire exclusive control of a control 
interval already in the buffer pool. 

Build a new control interval for the data 
set and hold it in exclusive control. 

Exclusive control of the indicated control 
interval already has been released. 

Contents of the indicated control interval 
have been made invalid. 

Read completed. 

Write completed. 

X'54' -X 1 FF 1 

Control interval or control area split. 

Reserved. 

JRNAD exit code set by the JRNAD exit routine. Indication 
of action to be taken by VSAM after resuming control from 
JRNAD (for shared resources only): 

X1 80 1 

X 184 1 

X 1 88 1 

X 1 8C 1 

Do not write control interval. 

Treat 1/0 error as no error. 

Do not read control interval. 

Cancel the request for control interval or control 
area split. 

Chapter 4. VSAM User-Written Exit Routines 31 



LERAD Exit Routine to Analyze Logical Errors 
/ 

Description 

Register Contents 

A LERAD exit routine should examine the feedback field in the request 
parameter list to determine what logical error occurred. What the routine does 
after determining the error depends on your knowledge of the kinds of things in 
the processing program that may have caused the error. 

Figure 7 gives the contents of the registers when VSAM exits to the LERAD 
exit routine. 

Note: A LERAD exit is not taken for RPLFDBK 64(40) because a PLH is not 
available for register saving. 

Register Contents 

0 Unpredictable. 

1 Address of the RPL that contains the feedback field the routine 
should examine. The register must contain this address if you return 
to VSAM. 

2-13 Unpredictable. Register 13, by convention, contains the address of 
your processing program's 72-byte save area, which must not be 
used as a save area by the LERAD routine if the routine returns 
control to VSAM. 

14 Return address to VSAM. 

15 Entry address to the LERAD routine. The register doesn't contain 
the logical-error indicator. 

Figure 7. Contents of Registers at Entry to LERAD Exit Routine 

Programming Considerations 
The typical actions of a LERAD routine are: 

1. Examine the feedback field in the RPL to determine what error occurred 
2. Determine what action to take based on error 
3. Close the data set 
4. Issue completion messages 
5. Terminate processing and exit VSAM or return to VSAM. 

If the LERAD exit routine issues GENCB, MODCB, SHOWCB, or TESTCB and 
returns to VSAM, it must restore registers 1, 13, and 14, which are used by 
these macros. It must also provide two save areas; one, whose address should 
be loaded into register 13 before the GENCB, MODCB, SHOWCB, or TESTCB is 
issued, and the second, to separately store registers 1, 13, and 14. 

If the error cannot be corrected, close the data set and either terminate 
processing or return to VSAM. 

32 MVS/ESA Data Facility Product Version 3: Customization 

\ ... _,/ 

\ 

'·~ 



( ' 

\_) 

I 
\_j 

I ' 

\_,/ 

If a logical error occurs and no LERAD exit routine is provided (or the LERAD 
exit is inactive), VSAM returns codes in register 15 and in the feedback field of 
the RPL to identify the error. 

When your LERAD exit routine completes processing, return to your main 
program as described in "Returning to Your Main Program" on page 21. 

SYNAD Exit Routine to Analyze Physical Errors 

Description 

Register Contents 

VSAM exits to a SYNAD routine if a physical error occurs when you request 
access to data. It also exits to a SYNAD routine when you close a data set if a 
physical error occurs while VSAM is writing the contents of a buffer out to 
direct-access storage. 

Figure 8 gives the contents of the registers when VSAM exits to the SYNAD 
routine. 

Register 

0 

2-13 

14 

Contents 

Unpredictable. 

Address of the RPL that contains a feedback return code and the 
address of a message area, if any. If you issued a request macro, 
the RPL is the one pointed to by the macro; if you issued an OPEN, 
CLOSE, or cause an end-of-volume to be done, the RPL was built by 
VSAM to process an internal request. Register 1 must contain this 
address if the SYNAD routine returns to VSAM. 

Unpredictable. Register 13, by convention, contains the address of 
your processing program's 72-byte save area, which must not be 
used by the SYNAD routine if it returns control to VSAM. 

Return address to VSAM. 

15 Entry address to the SYNAD routine. 

Figure 8. Contents of Registers at Entry to SYNAD Exit Routine 

Programming Considerations 
A SYNAD routine should typically: 

• Examine the feedback field in the request parameter list to identify the type 
of physical error that occurred. 

• Get the address of the message area, if any, from the request parameter 
list, to examine the message for detailed information about the error 

• Recover data if possible 
• Print error messages if uncorrectable error 
• Close data set 
• Terminate processing 

Chapter 4. VSAM User-Written· Exit Routines 33 



The main problem with a physical error is the possible loss of data. You should 
try to recover your data before continuing to process. Input operations (ACB 
MACRF =IN) are generally less serious than output or update operations 
(MACRF =OUT), because your request was not attempting to alter the contents 
of the data set. 

If the routine cannot correct an error, it might print the physical-error message, 
close the data set, and terminate the program. If the error occurred while 
VSAM was closing the data set, and if another error occurs after the exit 
routine issues a CLOSE macro, VSAM doesn't exit to the routine a second time. 

If the SYNAD routine returns to VSAM, whether the error was corrected or not, 
VSAM drops the request and returns to your processing program at the 
instruction following the last executed instruction. Register 15 is reset to 
indicate that there was an error, and the feedback field in the RPL identifies it. 

Physical errors affect positioning. If a GET was issued that would have 
positioned VSAM for a subsequent sequential GET and an error occurs, VSAM 
is positioned at the control interval next in. key (RPL OPTCD =:=KEY) or in entry 
(OPTCD = ADR) sequence after the control interval involved in the error. The 
processing program can therefore ignore the error and proceed with sequential 
processing. With direct processing, the likelihood of reencountering the control 
interval involved in the error depends on your application. 

If the exit routine issues GENCB, MODCB, SHOWCB, or TESTCB and returns to 
VSAM, it must provide a save area and restore registers 13 and 14, which are 
used by these macros. 

See "Example of a SYNAD User-Written Exit Routine" for the format of a 
physical-error message that can be written by the SYNAD routine. 

When your SYNAD exit routine completes processing, return to your main 
program as described in "Returning to Your Main Program" on page 21. 

If a physical error occurs and no SYNAD routine is provided (or the SYNAD exit 
is inactive), VSAM returns codes in register 15 and in the feedback field of the 
RPL to identify the error. For a description of these return codes, see VSAM 
Administration: Macro Instruction Reference. 

Example of a SYNAD User-Written Exit Routine 
The example in Figure 9 on page 35 demonstrates a user-written exit routine. 
It is a SYNAD exit routine that examines the FDBK field of the RPL checking for 
the type of physical error that caused the exit. After the checking, special 
processing may be performed as necessary. The routine returns to VSAM after 
printing an appropriate error message on SYSPRINT. 

34 MVS/ESA Data Facility Product Version 3: Customization 



\_) 

( ! 
~,, 

( , 
\._.,/ 

ACBl ACB EXLST =EXITS 

EXITS EXLST SYNAD=PHYERR 

RPLl RPL ACB=ACBl, 
MSGAREA=PERRMSG, 
MSGLEN=128 

PHYERR USING *,15 

* 

* 

LA 13,SAVE 

SHOWCB RPL =RPLl, 
FIELDS=FDBK, 
AREA=ERRCODE, 
LENGTH=4 

PUT PRTDCB,ERRMSG 

BR 14 

ERRCODE DC F10 1 

This routine is nonreentrant. 

Register 15 is entry address. 

Save caller's register 
(1, 13, 14). 

Point to routine's save area. 

If register l=address of RPLl, 
then error did not occur for a 
CLOSE. 

Show type of physical error. 

Examine error, perform special 
processing. 

Print physical error message. 

Restore caller's registers 
(1, 13, 14). 

Return to VSAM. 

RPL reason code from SHOWCB. 

Figure 9 (Part of 2). Example of a SYNAD Exit Routine 

Chapter 4. VSAM User-Written Exit Routines 35 



PERRMSG DS OXL128 

DS XL12 

ERRMSG DS XL116 

PRTDCB DCB 

SAVE DS 18F 

SAVREG DS 3F 

Physical error message. 

Pad for unprintable part. 

Printable format part of 
message. 

QSAM DCB. 

SYNAD routine's save area. 

Save registers 1, 13, 14. 

Figure 9 (Part 2 of 2). Example of a SYNAD Exit Routine 

UPAD Exit Routine for User Processing 

Description 

Register Contents 

You can perform special processing during a VSAM request with the UPAD exit 
routine. For example, VSAM takes the UPAD exit immediately prior to issuing a 
WAIT for 1/0 completion or for a serially reusable resource. VSAM exits to the 
UPAD routine when the request's RPL specifies OPTCD =(SYN, WAITX) and the 
ACS specifies MACRF = LSR or MACRF = GSR, or MACRF = ICI. 

If you are executing in cross-memory mode, you must have a UPAD routine. 
Cross-memory mode is described in VSAM Administration Guide. 

Figure 10 shows the register contents passed by VSAM when the UPAD exit 
routine is entered. 

Register Contents 

0 Unpredictable. 

Address of a parameter list built by VSAM. 

2-12 Unpredictable. 

13 Reserved. 

14 Return address to VSAM. 

15 Entry address of the UPAD routine. 

Figure 10. Contents of Registers at Entry to UPAD Exit Routine 

36 MVS/ESA Data Facility Product Version 3: Customization 

\ ) 
\._./ 

\ 

\__) 



I 
'"'-._./ 

l ; 
~ 

I . 
~ 

Programming Considerations 
The UPAD exit routine must be active before the data set is opened. The exit 
must not be made inactive during processing. If the UPAD exit is desired and 
many ACBs are used for processing the data set, the first ACB that is opened 
must specify the exit list that identifies the U PAD exit routine. 

The contents of the parameter list built by VSAM, pointed to by register 1, can 
be examined by the UPAD exit routine (see Figure 11). 

Figure 11. Parameter List Passed to U PAD Routine 

Offset Bytes 

O(X '0') 4 
4(X'4') 4 

8(X 1 8 1
) 4 

12(X 'OC') 4 

16(X'10') 4 
20(X' 14 ') 1 

Description 

Address of the RPL. 
Address of a 5-byte data set identifier. The first four 
bytes of the identifier are the ACS address; the last byte 
identifies the component; data (X 101 '), or index (X 102 '). 
Address of the request's ECB. 
Post flag or cross-memory action flag (see 
cross-memory niode). 
Reserved. 
Reason code: 

x•oo• 
X104 1 

VSAM is about to wait. 

VSAM ready to resume request 
processing. 

X 108 1 -X 1 FC 1 Reserved. 

If the UPAD exit routine modifies register 14 (for example, by issuing a 
TESTCB), the routine must restore register 14 before returning to VSAM. If 
register 1 is used, the UPAD exit routine must restore it with the parameter list 
address before returning to VSAM. 

The UPAD routine must return to VSAM under the same TCB from which it was 
called for completion of the request that caused VSAM to exit. The UPAD exit 
routine cannot use register 13 as a save area pointer without first obtaining its 
own save area. 

The UPAD exit routine, when taken prior to a WAIT during LSR or GSR 
processing, might issue other VSAM requests to obtain better processing 
overlap (similar to asynchronous processing). However, the UPAD routine must 
not issue any synchronous VSAM requests that do not specify WAITX, because 
a started request might issue a WAIT for a resource owned by a starting 
request. 

If the UPAD routine starts requests that specify WAITX, the UPAD routine must 
be reentrant. After multiple requests have been started, they should be 
synchronized by waiting for one ECB out of a group of ECBs to be posted 
complete rather than waiting for a specific ECB or for many ECBs to be posted 
complete. (Posting of some ECBs in the list might be dependent upon the 
resumption of some of the other requests that entered the UPAD routine.) 

If you are not in cross-memory mode and the UPAD routine returns with a 
nonzero code, VSAM will cause a POST to be issued. 

Chapter 4. VSAM User-Written Exit Routines 37 



Cross-Memory Mode 
If you are executing in cross-memory mode, you must have a UPAD routine. 
When posting of an event is required, the UPAD routine is given control (reason 
code 4). 

When VSAM regains control from a UPAD exit that was taken for reason code 4, 
VSAM tests the return code at dffset 12 in the parameter list. If it is nonzero 
and the request is in cross-memory mode, VSAM indicates a logical error 
rather than attempting to issue a POST. {POST would cause an abend if issued 
in cross-memory mode.) 

Your UPAD routine must resume the request that caused the exit to be taken 
and set the appropriate return code in the parameter list before returning to 
VSAM. . . 

User-Security-Verification Routine (USVR) 
If you use VSAM· password protection, you. may also have you_r own routine to ~1 

check a requester's authority. Your routine is invoked from OPEN, rather than 
via an exit list. VSAM transfers control to your routine, which must reside in 
SYS1. LINKLIB, when a requester gives a correct password other than the 
master password. 

Note: Y6u may use VSAM password protedion, but it is not recommended. 
Protection provided by RACF or an equivalent product is recommended instead. 

Through the access method services DEFINE command with the 
AUTHORIZATION parameter you may identify your user-security-verification 
routine {USVR) and associate as many as 256 bytes of your own security 
information with e·ach data set to be protected. The user security-authorization 
record {USAR) is made available to the USVR when the routine gets control. 
You may restrict access to the data set as you choose; for example, you may 
require that the owner of a data set give ID when defining the data set and then 
allow only the owner to gain access to the data set. 

If the USVR is being used by more than one task at a time, you must code the 
USVR reentrant or develop another method for handling simultaneous entries. 

When your USVR completes processing, it must return {in register 15) to VSAM 
with a return code of 0 for authority granted or not 0 for authority withheld in 
register 15. 

Figure 12 on page 39 gives the contents of the registers when VSAM gives 
control to the USVR. 

38 MVS/ESA Data Fadlity Product Version 3: Customization 

·~· 



( 
\._/ 

( 

~/ 

( 
~ 

/ 
\ ) 
.._/ 

Register Contents 

O Unpredictable. 

1 Address of a parameter list with the following format: 

44 bytes 

8 bytes 

8 bytes 

8 bytes 

2 bytes 

Name of the data set for which authority to process is to 
be verified (the name you specified when you defined it 
with access method services). 

Prompting code (or O's). 

Owner identification (or O's). 

The password that the requester gave (it has been 
verified by VSAM). 

Length of the user-security-authorization routine (in 
binary). 

The user-security-authorization. 

2-13 Unpredictable. 

14 Return address to VSAM. 

15 Entry address to the USVR. When the routine returns to VSAM, it 
indicates by the following codes in register 15 whether the requester 
has been authorized to gain access to the data set: 

0 Authority granted. 

not 0 Authority withheld. 

Figure 12. Communication with User-Security-Verification Routine 

Chapter 4. VSAM User-Written Exit Routines 39 



i ' 
~) 

' ) 
'._.I 



\ I ...._, 

/ 
\__) 

Chapter 5. Data Management User-Written Exit Routines 

General Guidance 
Non-VSAM macros can be used to identify user-written exit routines. These 
user-written exit routines can perform a variety of functions for non-VSAM data 
sets, including error analysis, requesting user totaling, and creating your own 
data set labels. These functions are not for use with VSAM data sets. 

The DCB macro can be used to identify the location of: 

• A routine that performs end-of-data procedures 

• A routine that supplements the operating system's ern)r recovery routine 

• A list that contains addresses of special exit routines. 

The exit addresses can be specified in the DCB macro or you can complete the 
DCB fields before opening the data set. Figure 13 summarizes the exits that 
you can specify either explicitly in the DCB, or implicitly by specifying the 
address of an exit list in the DCB. 

Figure 13 (Page 1 of 2). DCB Exit Routines 

Exit Routine When Available Where Specified 

End-of-data-set When no more sequential EODAD parameter 
records or blocks are 
available 

Error analysis After an uncorrectable SYNAD parameter 
input/output error 

I 

Allocation When issuing an RDJFCB EXLST parameter 
retrieval list macro instruction and exit list 

Block count After unequal block count EXLST param'eter 
comparison by end-of-volume and exit list 
routine 

DCB abend When an abend condition EXLST parameter 
occurs in OPEN, CLOSE, or and exit list 
end-of-volume routine 

DCB open When opening a data set EXLST parameter 
and exit list 

End-of-volume When changing volumes EXLST parameter 
and exit list 

FCB image When opening a data set or EXLST parameter 
issuing a SETPRT macro and exit list 

JFCB When opening a data set with EXLST parameter 
TYPE= J and reading the and exit list 
JFCB 

Chapter 5. Data Management User-Written Exit Routines 41 



Figure 13 (Page 2 of 2). DCB Exit Routines 

Exit Routine When Available Where Specified 

Standard user When opening, closing, or EXLST parameter 
label (physical reaching the end of a data and exit list 
sequential or set, and when changing 
direct volumes 
organization) 

JFCB extension When opening a data set for EXLST parameter 
(JFCBE) the IBM 3800 and exit list 

Open/EOV When a scratch tape is EXLST parameter 
nonspecific tape requested during OPEN or and exit list 
volume mount EOV routines 

Open/EOV When a scratch tape is EXLST parameter 
volume requested during OPEN or and exit list 
security /verifi catio~ EOV routines 

QSAM parallel Opening a data set· EXLST parameter 
processing and exit list 

User totaling (for When creating or processing EXLST parameter 
BSAM and a data set with user labels and exit list 
QSAM) 

Programming Considerations 
Because OPEN/CLOSE/EOV enqueues on SYSZTIOT, functions that require 
SYSZTIOT cannot be executed in the OPEN/CLOSE/EOV exit routines. Some of 
these functions are LOCATE, OBTAIN, SCRATCH, CATALOG, and so forth. 

Status Information Following an Input/Output Operation 
Following an input/output operation with a DCB, the control program makes 
certain status information available to the problem program. This information is 
a 2-byte exception code, or a 16-byte field of standard status indicators, or both. 

\ ) 
~ 

Exception codes are provided in the data control block (QISAM), or in the data \ .. _) 
event control block (BISAM and BDAM). The data event control block is 
described below, and the exception code lies within the block as shown in the 
illustration for the data event control block. If a DCBD macro instruction is 
coded, the exception code in a data control block can be addressed as two 
1-byte fields, DCBEXCD1 and DCBEXCD2. The exception codes can be 
interpreted by referring to Figure 15, Figure 16, and Figure 17. 

Status indicators are available only to the error analysis routine designated by 
the SYNAD entry in the data control block. A pointer to the status indicators is 
provided either in the data event control block (BSAM, BPAM, and BDAM), or in 
register 0 (QISAM and QSAM). The contents of registers on entry to the SYNAD 
exit routine are shown in Figure 18 on page 49, Figure 19 on page 50, and 
Figure 20 on page 51; the status indicators are shown in Figure 21 on page 52. 

42 MVS/ESA Data Facility Product Version 3: Customization 



\ ) 

~ 

Data Event Control Block 
A data event control block is constructed as part of the expansion of READ and 
WRITE macro instructions and is used to pass parameters to the control 
program, help control the read or write operation, and receive indications of the 
success or failure of the operation. The data event control block is named by 
the READ or WRITE macro instruction, begins on a fullword boundary, and 
contains the information shown in Figure 14. 

Figure 14. Data Event Control Block 

Offset from DECB Field Contents 
Address (Bytes) BSAM and BPAM 

0 
+4 
+6 
+8 
+12 
+16 

+20 
+24 

+28 

ECB 
Type 
Length 
DCB address 
Area address 
IOB address 

BISAM 

ECB 
Type 
Length 
DCB address 
Area address 
Logical record 
address 
Key address 
Exception code (2 
bytes) 

BDAM 

ECB 1 

Type 
Length 
DCB address 
Area address 
IOB address 

Key address 
Block address 

Next address 

The control program returns exception codes in bytes + 1 and + 2 of the 
ECB. 

~/ Event Control Block 

I 
[ ,' 

~i 

\. .. J 

The event control block (ECB) is used by the control program to test for 
completion of the read or write operation. The ECB is located in the first word 
of the DECB. 

The type, length, data control block address, area address, key address, block 
address, and next address information is taken from the operands of the macro 
instruction and placed in the DECB for use by the control program. For BISAM, 
exception codes are returned by the control program after the corresponding 
WAIT or CHECK macro instruction is issued, as indicated in Figure 15. For 
BDAM, BSAM, SPAM, and QSAM, the control program provides a pointer to the 
108 containing the status indicators shown in Figure 21 on page 52. 

Figure 15. Exception Code Bits-BISAM 

Exception 
Code Bit 
in DECB READ WRITE Condition if On 

0 x Type K Record not found 
1 x x Record length check 
2 Type KN Space not found 
3 x Type K Invalid request 
4 x x Uncorrectable 1/0 error 
5 x x Unreachable block 
6 x Overflow record 1 

7 Type KN Duplicate record 
8-15 Reserved for control program use 

Chapter 5. Data Management User-Written Exit Routines 43 



The SYNAD exit routine is entered only if the CHECK macro is issued after 
the READ macro, and bit 0, 4, 5, or 7 is also on. 

Notes to Figure 15: 

Record Not Found: This condition is reported if the logical record with the 
specified key is not found in the data set, if the specified key is higher than the 
highest key in the highest level index, or if the record is not in either the prime 
area or the overflow area of the data set. 

Record Length Check: This condition is reported, for READ and update WRITE 
macro instructions, if an overriding length is specified and (1) the record format 
is blocked, (2) the record format is unblocked but the overriding length is 
greater than the length known to the control program, or (3) the record is fixed 
length and the overriding length does not agree with the length known to the 
control program. This condition is reported for the add WRITE macro 
instruction if an overriding length is specified. 

When blocked records are being updated, the control program must find the 
high key in the block in order to write the block. (The high key is not 
necessarily the same as the key supplied by the problem program.) The high 
key is needed for writing because the control unit for direct access devices 
permits writing only if a search on equal is satisfied; this search can be 
satisfied only with the high key in the block. If the user were permitted to 
specify an overriding length shorter than the block length, the high key might 
not be read; then, a subsequent write request could not be satisfied. In 
addition, failure to write a high key during update would make a subsequent 
update impossible. 

Space Not Found for Adding a Record: This condition is reported if no room 
exists in either the appropriate cylinder overflow area or the independent 
overflow area when a new record is to be added to the data set. The data set 
is not changed in any way in this situation. 

Invalid Request: This condition is reported for either of two reasons. First, if 
byte 25 of the data event control block indicates that this request is an update 

\ 
\~ 

WRITE macro instruction corresponding to a READ (for update) macro \..._) 
instruction, but the input/output block (108) for the READ is not found in the 
update queue. This condition could be caused by the problem program altering 
the contents of byte 25 of the data event control block. Second, if a READ or 
WRITE macro instruction specifies dynamic buffering (that is, 'S' in the area 
address operand) but the DCBMACRF field of the data control block does not 
specify dynamic buffering. 

Uncorrectable Input/Output Error: This condition is reported if the control 
program's error recovery procedures encounter an uncorrectable error in 
transferring data. 

Unreachable Block: This condition is reported if an uncorrectable input/output 
error occurs while searching the indexes or following an overflow chain. It is 
also posted if the data field of an index record contains an improper address 
(that is, points to the wrong cylinder or track or is an invalid address). 

44 MVS/ESA Data Facility Product Version 3: Customization 



\ I .._..,, 

'\_) 

Overflow Record: This condition is reported if the record just read is an 
overflow record. (See the section on direct retrieval and update of an indexed 
sequential data set in Data Administration Guide for considerations during 
BISAM updating.) 

Duplicate Record Presented for Inclusion in the Data Set: This condition is 
reported if the new record to be added has the same key as a record in the 
data set. However, if the delete option was specified and the record in the data 
set is marked for deletion, this condition is not reported. Instead, the new 
record replaces the existing record. 

If the record format is blocked and the relative key position is zero, the new 
record cannot replace an existing record that is of equal key and is marked for 
deletion. 

Chapter 5. Data Management User-Written Exit Routines 45 



Figure 16. 

Exception 
Field 

DCBEXCD1 

DCBEXCD2 

Exception Code Bits-QISAM 

Code 
Bit 

0 
1 
2 
3 
4 
5 
6 
7 
0 
1 
2 

3 
4 
5-7 

Code Set by 
CLOSE GET PUT PUTX SETL Condition if On \~ 

x 

x 

x 

x 

Type K Record Not Found 
Type I Invalid actual address for lower limit 

Space not found for adding a record 
x Invalid request 

x Uncorrectable input error 
x x Uncorrectable output error 

x x Block could not be reached (input) 
x Block could not be reached (update) 

x Sequence check 
x Duplicate record 

Data control block closed when error routine 
entered 

x Overflow record 1 

x Incorrect record length 
Reserved for future use 

The SYNAD exit routine is entered only if bit 4, 5, 6, or 7 of DCBEXCD1 is 
also on. 

Notes to Figure 16: 

Record Not Found: This condition is reported if the logical record with the 
specified key is not found in the data set, if the specified key is higher than the 
highest key in the highest level index, or if the record is not in either the prime 
area or the overflow area of the data set. 

Invalid Actual Address for Lower Limit: This condition is reported if the 
specified lower limit address is outside the space allocated to the data set. 

Space Not Found for Adding a Record: This condition is reported if the space 
allocated to the data set is already filled. In locate mode, a buffer segment 
address is not provided. In move mode, data is not moved. 

Invalid Request: This condition is reported if (1) the data set is already being 
referred to sequentially by the problem program, (2) the buffer cannot contain 

i 

'~ 

the key and the data, or (3) the specified type is not also specified in the ·.. J 

DCBMACRF field of the data control block. ~ 

Uncorrectable Input Error: This condition is reported if the control program's 
error recovery procedures encounter an uncorrectable error when transferring 
a block from secondary storage to an input buffer. The buffer address is placed 
in register 1, and the SYNAD exit routine is given control when a GET macro 
instruction is issued for the first logical record. 

Uncorrectable Output Error: This condition is reported if the control program's 
error recovery procedures encounter an uncorrectable error when transferring 
a block from an output buffer to secondary storage. If the error is encountered 
during closing of the data control block, bit 2 of DCBEXCD2 is set to 1 and the 
SYNAD exit routine is given control immediately. Otherwise, control program 
action depends on whether load mode or scan mode is being used. 

If a data set is being created (load mode), the SYNAD exit routine is given 'V 
control when the next PUT or CLOSE macro instruction is issued. In the case of 
a failure to write a data block, register 1 contains the address of the output 

46 MVS/ESA Data Facility Product Version 3: Customization 



( I 

"'-/ 

buffer, and register 0 contains the address of a work area containing the first 16 
bytes of the 108; for other errors, the contents of register 1 are meaningless. 
After appropriate analysis, the SYNAD exit routine should close the data set or 
end the job step. If records are to be subsequently added to the data set using 
the queued indexed sequential access method (QISAM), the job step should be 
terminated by issuing an abend macro instruction. (Abend closes all open data 
sets. However, an ISAM data set is only partially closed, and it can be 
reopened in a later job to add additional records by using QISAM.) Subsequent 
execution of a PUT macro instruction would cause reentry to the SYNAD exit 
routine, because an attempt to continue loading the data set would produce 
unpredictable results. 

If a data set is being processed (scan mode), the address of the output buffer in 
error is placed in register 1, the address of a work area containing the first 16 
bytes of the 108 is placed in register 0, and the SYNAD exit routine is given 
control when the next GET macro instruction is issued. Buffer scheduling is 
suspended until the next GET macro instruction is reissued. 

Block Could Not Be Reached (Input): This condition is reported if the control 
program's error recovery procedures encounter an uncorrectable error in 
searching an index or overflow chain. The SYNAD exit routine is given control 
when a GET macro instruction is issued for the first logical record of the 
unreachable block. 

Block Could Not Be Reached (Update): This condition is reported if the control 
program's error recovery procedures encounter an uncorrectable error in 
searching an index or overflow chain. 

If the error is encountered during closing of the data control block, bit 2 of 
DCBEXCD2 is set to 1 and the SYNAD exit routine is given control immediately. 
Otherwise, the SYNAD exit routine is given control when the next GET macro 
instruction is issued. 

Sequence Check: This condition is reported if a PUT macro instruction refers to 
a record whose key has a smaller numeric value than the key of the record 
previously referred to by a PUT macro instruction. The SYNAD exit routine is 
given control immediately; the record is not transferred to secondary storage. 

Duplicate Record: This condition is reported if a PUT macro instruction refers 
to a record whose key duplicates that of the record previously referred to by a 
PUT macro instruction. The SYNAD exit routine is given control immediately; 
the record is not transferred to secondary storage. 

Data Control Block Closed When Error Routine Entered: This condition is 
reported if the control program's error recovery procedures encounter an 
uncorrectable output error during closing of the data control block. Bit 5 or 7 of 
DCBEXCD1 is set to 1, and the SYNAD exit routine is immediately given 
control. After appropriate analysis, the SYNAD routine must branch to the 
address in return register 14 so that the control program can finish closing the 
data control block. 

Overflow Record: This condition is reported if the input record is an overflow 
record. 

Chapter 5. Data Management User-Written Exit Routines 47 



Incorrect Record Length: This condition is reported if the length of the record 
as specified in the record-descriptor word (ROW) is larger than the value in the 
DCBLRECL field of the data control block. 

Figure 17. Exception Code Bits-BDAM 

Exception 
Code Bit READ WRITE Condition if On 

0 x x Record not found 
1 x x Record length check 
2 x Space not found 
3 x x Invalid request-see bits 9-15 
4 x x Uncorrectable 1/0 error 
5 x x End of data 
6 x x Uncorrectable error 
7 x Not read with exclusive control 
8 Not used 
9 x WRITE to input data set 
10 x x Extended search with DCBLIMCT=O 
11 x x Block or track requested was outside data set 
12 x Tried to write capacity record 
13 x x Specified key as search argument when KEYLEN = 0 

or no key address supplied 
14 x x Request for options not in data control block 
15 x Attempt to add fixed-length record with key beginning 

with hexadecimal FF 

Notes to Figure 17: 

Record Not Found: This condition is reported if the search argument is not 
found in the data set. 

Record Length Check: This condition occurs for READ and WRITE (update) and 
WRITE'( add). For WRITE (update) variable-length records only, the length in the 
BOW does not match the length of the record to be updated. For all remaining 
READ and WRITE (update) conditions, the BLKSIZE, when S is specified in the 
READ or WRITE macro, or the length given with these macros does not agree 
with the actual length of the record. For WRITE (add), fixed-length records, the 
BLKSIZE, when S is specified in the WRITE macro, or the length give with this 
macro does not agree with the actual length of the record. For WRITE (add), all 
other conditions, no error can occur. 

Space Not Found for Adding a Record: This condition occurs if either there is 
no dummy record when adding an F-format record, or there is no space 
available when adding a V- or LI-format record. 

Invalid Request: Occurs whenever one of the following bits is set to one: 

Bit Meaning 

9 A WRITE was attempted for an input data set. 

10 An extended search was requested, but LIMCT was zero. 

11 The relative block or relative track requested was not in the data set. 

12 Writing a capacity record (RO) was attempted. 

48 MVS/ESA Data Facility Product Version 3: Customization 

\,.,_/ 

\~ 



I 

\ .. _/ 

! \_,;I 

13 A READ or WRITE with key was attempted, but either KEYLEN equaled 
zero or the key address was not supplied. 

14 The READ or WRITE macro request options conflict with the OPTCD or 
MACRF parameters. 

15 A WRITE (add) with fixed length was attempted with the key beginning 
with X 1 FF 1

• 

Uncorrectable Input/Output Error: This condition is reported if the control 
program's error recovery procedures encounter an uncorrectable error in 
transferring data between real and secondary storage. 

End of Data: This only occurs as a result of a READ (type DI, DIF, or DIX) when 
the record requested is an end-of-data record. 

Uncorrectable error: Same conditions as for bit 4. 

Not Read with Exclusive Control: A WRITE, type DIX or DKX, has occurred for 
which there is no previous corresponding READ with exclusive control. 

Figure 18. Register Contents on Entry to SYNAD Routine-QISAM 
Register 

0 

2-13 

14 

15 

Bits 

0 

1-7 

Meaning 

Bit 0=1 indicates that bits 8-31 hold the address of the key 
in error (only set for a sequence error). If bit 0=1-address 
of key that is out of sequence. If bit 0 = 0-address of a 
work area. 

Not used. 

8-31 Address of a work area containing the first 16 bytes of the 
108 (after an uncorrectable input/output error caused by a 
GET, PUT, or PUTX macro instruction; original contents 
destroyed in other cases). If the error condition was 
detected before 1/0 was started, register 0 contains all 
zeros. 

0-7 Not used. 

8-31 

0-31 

0-7 

Address of the buffer containing the error record (after an 
uncorrectable input/output error caused by a GET, PUT, or 
PUTX macro instruction while attempting to read or write a 
data record; in other cases, this register contains 0). 

Contents that existed before the macro instruction was 
issued. 

Not used. 

8-31 Return address. This address is either an address in the 
control program's close routine (bit 2 of DCBEXCD2 is on), 
or the address of the instruction following the expansion of 
the macro instruction that caused the SYNAD exit routine to 
be given control (bit 2 of DCBEXCD2 is off). 

0-7 Not used. 

8-31 Address of the SYNAD exit routine. 

Chapter 5. Data Management User-Written Exit Routines 49 



Figure 19. Register Contents on Entry to SYNAD Routine-BISAM 

Register Bits Meaning 

0 0-7 Not used. 

8-31 Address of the first 108 sense byte. (Sense information is 
valid only when associated with a unit check condition.) 

0-7 Not used. 

8-31 Address of the DECB. 

2-13 0-31 Contents that existed before the macro instruction was 
issued. 

14 0-7 Not used. 

8-31 Return address. 

15 0-7 Not used. 

8-31 Address of the SYNAD exit routine. 

50 MVS/ESA Data Facility Product V~rsion 3: Customization 

\ 

~ 

<..,) 

I \\.J 



:\.._,) 

I 

''-./ 

I 

~· I 

v 

Figure 20. Register Contents on Entry to SYNAD Routine-BDAM, BPAM, BSAM, and 
QSAM 

Register 

0 

1 

2-13 

14 

15 

Bits 

0-7 

Meaning 

Value to be added to the status indicator's address to 
provide the address of the first CCW (QSAM only). 

8-31 Address of the associated data event control block for 
BDAM, BPAM, and BSAM; address of the status indicators 
shown in Figure 21 on page 52 for QSAM. 

0 

2 

3 

4 

5 

6 

7 

8-31 

0-31 

0-7 

8-31 

0-7 

8-31 

Bit is on for error caused by input operation. 

Bit is on for error caused by output operation. 

Sit is on for error caused by BSP, CNTRL, or POINT macro 
instruction (BPAM AND BSAM only). 

Bit is on if error occurred during update of existing record 
or if error did not prevent reading of the record. Bit is off if 
error occurred during creation of a new record or if error 
prevented reading of the record. 

Bit is on if the request was invalid. T.he status indicators 
pointed to in the data event control block are not present 
(BDAM, BPAM, and BSAM only). 

Bit is on if an invalid character was found in paper tape 
conversion (BSAM and QSAM only). 

Bit is on for a hardware error (BDAM only). 

Bit is on if no space was found for the record (BDAM only). 

Address of the associated data control block. 

Contents that existed before the macro instruction was 
issued. 

Not used. 

Return address. 

Not used. 

Address of the error analysis routine. 

Chapter 5. Data Management User:-Written-~~it Routines · 51 



Offset From 
IDB Address 

Byte Bit 

+2 0 
1 
2 
3 
4 
5 
6,7 

+3 0-7 

Meaning 

Command reject 
Intervention required 
Bus-out check 
Equipment check 
Data check 
Overrun 
Device-dependent information; 
see the appropriate device 
manual 
Device-dependent information; 
see the appropriate device 
manual 

Name 

Sense byte 1 

Sense byte 2 

The following bytes make up the low-order seven bytes of 
the channel status word: 

+9 

+12 

+13 

0 
1 
2 
3 
4 
5 
6 

Command address 

Attention 
Status modifier 
Control unit end 
Busy 
Channel end 
Device end 
Unit check-must be on for 
sense bytes to be meaningful 

7 Unit exception 

0 
1 
2 
3 
4 
5 
6 
7 

Program-controlled interrupt 
Incorrect length 
Program check 
Protection check 
Channel data check 
Channel control check 
Interface control check 
Chaining check 

+14 Count field (2 bytes) 

Status byte 1 
(Unit) 

Status byte 2 
(Channel) 

Figure 21. Status Indicators for the SYNAD Routine-BDAM, BPAM, BSAM, and QSAM 

Note: If the sense bytes are X 1 10FE ', the control program has set them to this 
invalid combination because sense bytes could not be obtained from the device 
because of recurrence of unit checks. 

52 MVS/ESA Data Facility Product Version 3: Customization 

\ 

·,~! 



The event control block is used for communication between the various 
components of the system and between problem programs and the system. An 
event control block is the subject of WAIT and POST macro instructions (see 
Figure 22). 

Bytes and Hex. 
Offset Alignment Code Bit Dig. Description 

00 1 10xx xxxx 

1 3 

00 01xx xxxx 

0111 1111 7F 

0100 0001 41 

0100 0010 42 

0100 0011 43 

0100 0100 44 

0100 1000 48 

W-~·Jaiting for completion of an event. 

Contains the address of the RB 
issuing the WAIT macro if the ECB 
has the WAIT bit on. Once the event 
has completed and the ECB is posted, 
the C bit is set with other bits in 
byte 0 and these 3 bytes (1-3) are 
zero, for all access methods 
except BDAM. Exception codes are 
returned in bytes 1 and 2 of the 
ECB for BDAM. 

C-The event has completed. 

One of the following completion codes 
will appear at the completion of a 
channel program: 

Access Methods other than BTAM 

Channel program has terminated without 
error. (CS~·J contents useful.) 

Channel program has terminated with 
permanent error. (CSW contents useful.) 

Channel program has terminated because 
a direct access extent address has been 
violated. (CSW contents do not apply.) 

I/O abend condition occurred 
while loading the error recovery 
routine. (CSVJ contents do 
not apply.) 

Channel program has been intercepted 
because of permanent error associated 
with device end for previous request. 
You may reissue the intercepted 
request. (CS~·J contents do not apply.) 

Request element for channel program 
has been made available after it has 
been purged. (CSW contents do not apply.) 

Figure 22 (Part 1 of 2). Status Indicators in the ECB 

Chapter 5. Data Management User-Written Exit Routines 53 
___ ..,,-· 



Bytes and Hex. 
Offset Alignment Code Bit Dig. Description 

0100 1011 48 

0100 1111 4F 

0101 0000 50 

One of the following errors occurred 
during tape error recovery processing: 

• The CSW command address in 
the IOB was zeros. 

• An unexpected load point was 
encountered. (CStv contents do not 
apply in either case.) 

Error recovery routines have been 
entered because of direct access error 
but are unable to read home addresses 
or record 0. (CSW contents do not apply.) 

Channel program terminated with error. 
Input block was a DOS-embedded checkpoint 
record. (CSW contents do not apply.) 

Figure 22 (Part 2 of 2). Status Indicators in the ECB 

EODAD End-of-Data-Set Exit Routine 

Described 
The EODAD parameter of the DCB macro specifies the address of your 
end-of-data-set routine, which may perform any final processing on an input 
data set. This routine is entered when an FEOV macro is issued or when a 
CHECK or GET macro is issued and there are no more records or blocks to be 
retrieved. (This allows you to issue WRITE macros before an FEOV macro is 
issued.) On a READ request, this routine is entered when you issue a CHECK 
macro to check for completion of the read operation. For a BSAM data set that 
is opened for UPDAT, this routine is entered at the end of each volume. 

54 MVS/ESA Data Facility Product Version 3: Customization 

\~ 

' \ 
\~ 



r 

\._/ 

Register Contents 
When control is passed to the EODAD routine, the registers contain the 
following information: 

Register Contents 

0-1 Reserved 

2-13 Contents before execution of CHECK, GET, or FEOV macro 
instruction 

14 Address of the instruction after the last issued GET, CHECK, or FEOV 
macro 

15 Reserved 

Programming Considerations 
The EODAD routine is not a subroutine, but rather a continuation of the routine 
that issued the CHECK, GET, or FEOV macro. After it is in your EODAD routine, 
you can continue normal processing, such as repositioning and resuming 
processing of the data set, closing the data set, or processing another data set. 

For BSAM, you must first reposition the data set that reached end-of-data if you 
want to issue a BSP, READ, or WRITE macro. You can reposition your data set 
by issuing a CLOSE TYPE =T macro instruction. If a READ macro is issued 
before the data set is repositioned, unpredictable results will occur. 

For BPAM, you may reposition the data set by issuing a FIND or POINT macro. 
(CLOSE TYPE= T with BPAM results in no operation performed.) 

For QISAM, you can continue processing the input data set that reached 
end-of-data by first issuing an ESETL macro to end the sequential retrieval, then 
issuing a SETL macro to set the lower limit of sequential retrieval. You can 
then issue GET macros to the data set. 

Your task will be abnormally ended under either of the following conditions: 

• No exit routine is provided. 

• A GET macro is issued in the EODAD routine to the DCB that caused this 
routine to be entered (unless the access method is QISAM). 

Chapter 5. Data Management User-Written Exit Routines 55 



SVNAD Synchronous Error Routine Exit 

Described 

Register Contents 

The SYNAD parameter of the DCB macro specifies the address of an error 
routine that is to be given control when an input/output error occurs. This 
routine can be used to analyze exceptional conditions or uncorrectable errors. 
The block being read or written can be accepted or skipped, or processing can 
be terminated. 

If an input/output error occurs during data transmission, standard error 
recovery procedures that are provided by the operating system try to correct 
the error before returning control to your program. An uncorrectable error 
usually causes an abnormal termination of the task. However, if you specify in 
the DCB macro the address of an error analysis routine (called a SYNAD 
routine), that routine can try to correct the error and prevent an abnormal 
termination. The routine is given control when the application program issues 
the next access method macro after the system has detected _an uncorrectable 
error. 

For a description of the register contents on entry to your SYNAD routine, see 
"Status Information Following an Input/Output Operation" on page 42. 

Programming Considerations 
You can write a SYNAD routine to determine the cause and type of error that 
occurred by examining: 

• The contents of the general registers 

• The data event control block (see "Status Information Following an 
Input/Output Operation" on page 42) 

• The exceptional condition code 

• The standard status and sense indicators 

You can use the SYNADAF macro to perform this analysis automatically. This 
macro produces an error message that can be printed by a later PUT or WRITE 
macro. 

After completing the analysis, you can return control to the operating system or 
close the data set. If you close the data set, note that you may not use the 
temporary close (CLOSE TYPE =T) option in the SYNAD routine. To continue 
processing the same data set, you must first return control to the control 
program by a RETURN macro. The control program then transfers control to 
your processing program, subject to the conditions described below. Never 
attempt to reread or rewrite the record, because the system has already 
attempted to recover from the error. 

56 MVS/ESA Data Facility Product Version 3: Customization 

I 
\._/ 



u 

When you are using GET and PUT to process a sequential data set, the 
operating system provides three automatic error options (EROPT) to be used if 
there is no SYNAD routine or if you want to return control to your program from 
the SYNAD routine: 

• ACC-accept the erroneous block 

• SKP-skip the erroneous block 

• ABE-abnormally terminate the task 

These options are applicable only to data errors, because control errors result 
in abnormal termination of the task. Data errors affect only the validity of a 
block of data. Control errors affect information or operations necessary for 
continued processing of the data set. These options are not applicable to 
output. errors, except output errors on the printer. If the ERO PT and SYNAD 
fields are not completed, ABE is assumed. 

If a control error or a physical 1/0 error is encountered for a SYSIN or SYSOUT 
dataset, the EROPT options will be ignored and the task will be abnormally 
terminated. 

You should not use the FEOV macro against the data set for which the SYNAD 
routine was entered, within the SYNAD routine. 

Because EROPT applies to a physical block of data, and not to a logical record, 
use of SKP or ACC may result in incorrect assembly of spanned records. 

When you use READ and WRITE macros, errors are detected when you issue a 
CHECK macro. If you are processing a direct or sequential data set and you 
return to the control program from your SYNAD routine, the operating system 
assumes that you have accepted the bad record. If you are creating a direct 
data set and you return to the control program from your SYNAD routine, your 
task is abnormally terminated. In the case of processing a direct data set, the 
return should be made to the control program via register 14 to make a control 
block (the IOB) available for reuse in a later READ or WRITE macro. 

Your SYNAD routine can end by branching to another routine in your program, 
such as a routine that closes the data set. It can also end by returning control 
to the control program, which then returns control to the next sequential 
instruction {after the macro) in your program. If your routine returns control, 
the conventions for saving and restoring register contents are as follows: 

• The SYNAD routine must preserve the contents of registers 13 and 14. If 
required by the logic of your program, the routine must also preserve the 
contents of registers 2 through 12. On return to your program, the contents 
of registers 2 through 12 will be the same as on return to the control 
program from the SYNAD routine. 

• The SYNAD routine must not use the save area whose address is in 
register 13, because this area is used by the control program. If the routine 
saves and restores register contents, it must provide its own saye area. 

Chapter 5. Data Management User-Written Exit Routines 57 



EXLST Exit List 

• If the SYNAD routine calls another routine or issues supervisor or data 
management macros, it must provide its own save area or issue a 
SYNADAF macro. The SYNADAF macro provides a save area for its own \~ 
use, and then makes this area available to the SYNAD routine. Such a save 
area must be removed from the save area chain by a SYNADRLS macro 
before control is returned to the control program. 

If the error analysis routine receives control from the close routine when 
indexed sequential data sets are being created (the DCB is opened for QISAM 
load mode), bit 3 of the IOBFLAGS field in the load mode buffer control table 
(IOBBCT) is set to 1. The DCBWKPT6 field in the DCB contains an address of a 
list of work area pointers (ISLVPTRS). The pointer to the IOBBCT is at offset 8 
in this list as shown in the following diagram: 

DCB 
Work Area 
Pointers l 1 /l>O (ISLVPTRS) 

t-----T / : 

IOBBCT 

( ...____,.._~--~ 
248 ,.,_,I~ _o_c_s_w_K_rT_e_~y _/ A (IOBBCT) 

I o 

I OB FLAGS 
~~ 

·~ 

If the error analysis routine receives control from the CLOSE routine when 
indexed sequential data sets are being processed using QISAM scan mode, bit 
2 of the DCB field DCBEXCD2 is set to 1. 

Figure 23 gives the contents of registers 0 and 1 when a SYNAD routine 
specified in a DCB gets control while indexed sequential data sets are being 
processed. 

Figure 23. Register Contents for DCB-Specified ISAM SYNAD Routine 

Register 

0 

BISAM 

Address of the 
DECB 

QISAM. 

0, or, for a sequence check, the address of a 
field containing the higher key involved in the 
check 

Address of the 0 
DECB 

For information on QISAM error conditions and the meaning they have when 
the ISAM interface to VSAM is being used, see VSAM Administration Guide. 

The EXLST parameter of the DCB macro specifies the address of a list that may 
contain the addresses of special processing routines, a forms control buffer 
(FCB) image, a user totaling area, an area for a copy of the JFCB, and an 
allocation retrieval list. An exit list must be created if user label, data control \........) 
block, end-of-volume, block count, JFCBE, or DCB abend exits are used, or if a 
PDAB macro or FCB image is defined in the processing program. 

58 MVS/ESA Data Facility Product Version 3: Customization 



I . 
~/ 

I ' 

'~ 

The exit list is built of 4-byte entries that must be aligned on fullword 
boundaries. Each exit list entry is identified by a code in the high-order byte, 
and the address of the routine, image, or area is specified in the 3 low-order 
bytes. Codes and addresses for the exit list entries are shown in Figure 24. 

Figure 24 (Page 1 of 2). DCB Exit List Format and Contents 

Hex 
Entry Type Code 3-Byte Address-Purpose 

Inactive entry 00 Ignore the entry; it is not active. 

Input header label exit 01 Process a user input header label. 

Output header label exit 02 Create a user output header label. 

Input trailer label exit 03 Process a user input trailer label. 

Output trailer label exit 04 Create a user output trailer label. 

Data control block exit 05 Take a data control block exit. 

End-of-volume exit 06 Take an end-of-volume exit. 

JFCB exit 07 JFCB address for RDJFCB and 
OPEN TYPE= J SVCs. 

08 Reserved. 

09 Reserved. 

User totaling area OA Address of beginning of user's 
totaling area. 

Block count exit OB Take a block-count-unequal exit. 

Defer input trailer label oc Defer processing of a user input 
trailer label from end-of-data until 
closing. 

Defer nonstandard input OD Defer processing a nonstandard 
trailer label input trailer label on magnetic tape 

unit from end-of-data until closing 
(no exit routine address). 

OE-OF Reserved. 

FCB image 10 Define an FCB image. 

DCB abend exit 11 Examine the abend condition and 
select one of several options. 

QSAM parallel input 12 Address of the PDAB for which this 
DCB is a member. 

Allocation retrieval list 13 Retrieve allocation information for 
one or more data sets with the 
RDJFCB macro. 

14 Reserved. 

JFCBE exit 15 Take an exit during OPEN to allow 
user to examine JCL =specified 
setup requirements for a 3800 
printer. 

Chapter 5. Data Management User-Written Exit Routines 59 



Figure 24 (Page 2 of 2). DCB Exit List Format and Contents 

Hex 
Entry Type Code 3-Byte Address-Purpose 

16 Reserved. 

OPEN/EOV nonspecific 17 Option to specify a tape volume 
tape volume mount serial number. 

OPEN/EOV volume 18 Verify a tape volume and some 
security/verification security checks. 

19-?F Reserved. 

Last entry 80 Treat this entry as the last entry in 
the list. This code can be specified 
with any of the above but must 
always be specified with the last 
entry. 

You can activate or deactivate any entry in the list by placing the required code 
in the high-order byte. Care must be taken, however, not to destroy the la.st 
entry indication. The operating system routines scan the list from top to 
bottom, and the first active entry found with the proper code is selected. 

You can shorten the list during execution by setting the high-order bit to 1, and 
extend it by setting the high-order bit to 0. 

Register Contents for Exits from EXLST 
When control is passed to an exit routine, the registers contain the following 
information: 

Register Contents 

0 Variable; see exit routine description. 

The 3 low-order bytes contain the address of the DCB currently 
being processed, except when the user-label exits (X 101 1-X 104 1 

), 

user totaling exit (X 10A 1
), DCB abend exit (X 1 11 1

), nonspecific tape 
volume mount exit {X 1 17 1

), or the tape volume security/verification 
exit (X 1 18 1

) is taken, when register 1 contains the address of a 
parameter list. The contents of the parameter list are described in 
the explanation of each exit routine. 

2-13 Contents before execution of the macro. 

14 Return address (must not be altered by the exit routine). 

15 Address of exit routine entry point. 

60 MVS/ESA Data Facility Product Version 3: Customization 

\~ 



: ' 

\-.._,.,./ 

1 ·' 

~ 

I I 
\.._,; 

The conventions for saving and restoring register contents are as follows: 

• The exit routine must preserve the contents of register 14. It need not 
preserve the contents of other registers. The control program restores the 
contents of registers 2 to 13 before returning control to your program. 

• The exit routine must not use the save area whose address is in register 13, 
because this area is used by the control program. If the exit routine calls 
another routine or issues supervisor or data management macros, it must 
provide the address of a new save area in register 13. 

• The exit routine must not issue an access method macro that refers to the 
DCB for which the exit routine was called, unless otherwise specified in the 
individual exit routine descriptions that follow. 

Allocation Retrieval List 
The RDJFCB macro uses the DCB exit list entry with code X' 13' to retrieve 
allocation information (JFCBs and volume serial numbers). (Note: Although use 
of the RDJFCB macro is still supported,. its use is not recommended.) When 
you issue RDJFCB, the JFCBs for the specified data sets, including 
concatenated data sets, and their volume serial numbers are placed in the area 
located at the address specified in the allocation retrieval list. The DCB exit list 
entry contains the address of the allocation retrieval list. The RDJFCB macro 
passes the following return codes in register 15: 

Return Code 

0(X 100 1
) 

4 (X 1 04 1
) 

8 (XI 08 I) 

Meaning 

RDJFCB has completed the allocation retrieval list 
successfully. 

One or more DCBs had one of the following conditions and 
were skipped: 

• DCB currently being processed by 
Open/Close/End-Of-Volume or similar function. 

• No data set is allocated with the ddname that is in the 
DCB. 

• The DCB is not open and its ddname is blank. 

DCB~ that were not skipped were handled successfully. 

One or more DCBs had an allocation retrieval list which 
could not be handled. Each allocation retrieval list 
contains a reason code to describe its status. One or 
more DCBs may have an error described by return code 4, 
in which case their allocation retrieval lists will not have a 
reason code. 

For more information on RDJFCB see System-Data Administration. 

Chapter 5. Data Management User-Written Exit Routines 61 



Programming conventions 

Restrictions 

The allocation retrieval list must be below the 16M line, but the allocation return 
area can be above the 16M line. \ . ._ •• / 

When you are finished obtaining information from the retrieval areas, free the 
storage with a FREEMAIN macro. 

You can use the IHAARL macro to generate and map the allocation retrieval 
list. For more information on the IHAARL macro see System-Data 
Administration. 

When OPEN TYPE= J is issued, the X 1 13 1 exit cannot be used. The JFCB exit 
at X 107 1 can be used instead (see "JFCB Exit" on page 71). 

DCB Abend Exit 
The DCB abend exit is provided to give you some options regarding the action 
you want the system to take when a condition arises that may result in 
abnormal termination of your task. This exit can be taken any time an abend 
condition arises during the process of opening, closing, or handling an 
end-of-volume condition for a DCB associated with your task. 

When an abend condition arises, a write-to-programmer message about the 
abend is issued and your DCB abend exit is given control, provided there is an 
active DCB abend exit routine address in the DCB being processed. If STOW 
called the end-of-volume routines to get secondary space to write an end-of-file 
mark for a partitioned data set, or if the DCB being processed is for an indexed 
sequential data set, the DCB abend exit routine will not be given control if an 
abend condition occurs. The contents of the registers when your exit routine is 
entered are the same as for other DCB exit list routines, except that the 3 
low-order bytes of register 1 contain the address of the parameter list described 
in Figure 25 on page 63. Your abend exit routine can choose one of four 
options: 

• To immediately terminate your task 

• To delay the abend until all the DCBs in the same OPEN or CLOSE macro 
are opened or closed 

• To ignore the abend condition and continue processing without making 
reference to the DCB on which the abend condition was encountered, or 

• To try to recover from the error. 

Not all of these options are available for each abend condition. Your DCB 
abend exit routine must determine which option is available by examining the 
contents of the option mask byte (byte 3) of the parameter list. The address of 
the parameter list is passed in register 1. Figure 25 shows the contents of the 
parameter list and the possible settings of the option mask when your routine 
receives control. (All information in the parameter list is in binary.) 

62 MVS/ESA Data Facility Product Version 3: Customization 



\ .• _,/ 

! u 

Bit Meaning 

0 Reser·1ed tor System Use 

1-3 Reserved tor Future use 

4 OK to Recover 

5 OK to Ignore 

6 OK to Delay 

7 Reserved for Future Use 

Displacement 

~ 
Fullv.iord Boundary ~ 

System Completion Code1 l Return Code I Option Mask 0 

4 DCB Address 

8 Open/Close/End-of-Volume Work Area Address 

12 00 I 
Recovery Work Area Address 

1 In the first 12 bits. 

Figure 25. Parameter List Passed to DCB Abend Exit Routine 

When your DCB abend exit routine returns control to the system control 
program (this can be done using the RETURN macro), the option mask byte 
must contain the setting that specifies the action you want to take. These 
actions and the corresponding settings of the option mask byte are: 

Decimal 
Value Action 

0 Abnormally terminate the task immediately. 

4 Ignore the abend condition. 

8 Delay the abend until the other DCBs being processed concurrently 
are opened or closed. 

12 Make an attempt to recover. 

You must inspect bits 4, 5, and 6 of the option mask byte (byte 3 of the 
parameter list) to determine which options are available. If a bit is set to 1, the 
corresponding option is available. Indicate your choice by inserting the 
appropriate value in byte 3 of the parameter list, overlaying the bits you 
inspected. If you use a value that specifies an option that is not available, the 
abend is issued immediately. 

Chapter 5. Data Management User-Written Exit Routines 63 



If the contents of bits 4, 5, and 6 ofthe option mask are 0, you must not change 
the option mask. This unchanged option mask will result in a request for an 
immediate abend. 

If bit 5 ofthe option mask is set to 1, you can ignore the abend by placing a 
value of 4 in byte 3 of the parameter list. Processing on the current DCB stops. 
If you subsequently attempt to use this DCB, the results are unpredictable. If 
you ignore an error in end-of-volume, control is returned to your program at the 
point that caused the end-of-volume condition (unless the end-of-volume 
routines were called by the close routines). If the end-of-volume routines were 
called by the close routines, an ABEND macro will be issued even though the 
ignore option was selected. 

If bit 6 of the option mask is set to 1, you can delay the abend by placing a 
value of 8 in byte 3 of the parameter list. All other DCBs waiting for OPEN or 
CLOSE processing will be processed before the abend is issued. For 
end-of-volume, however, you can't delay the abend because the end-of-volume 
routine never has more than one DCB to process. 

If bit 4 of the optioh mask is set to 1, you can attempt to recover. Place a value 
of 12 in byte 3 of the parameter list and provide information for the recovery 
attempt. Figure 26 lists the abend conditions for which recovery can be 
attempted. For abend conditions that can be ignored or delayed, see System 
Messages Volume 1 and System Messages Volume 2. 

Figure 26 (Page 1 of 2). Conditions for Which Recovery Can Be Attempted 

System 
Completion Return 
Code Code Description of Error 

117 X 138 1 An 1/0 error occurred during execution of a read 
block ID command issued to establish tape 
position. 

X 1 3C 1 DCB block count did not agree with the 
calculated block count. 

137 X 124 1 A specific volume serial number was specified 
for the second or subsequent volume of an 
output data set on magnetic tape. During EOV 
processing, it was discovered that the expiration 
date (from the HDR1 label of the first data set 
currently on the specified volume) had not 
passed. When requested to specify whether the 
volume could be used in spite of the expiration 
date, the operator did not reply U. 

214 x•oc• An 1/0 error occurred during execution of a read 
block ID command issued to establish tape 
position. 

64 MVS/ESA Data Facility Product Version 3: Customization 

\.._,,: 

\._) 



I 
i 

\. .. __ / 

Figure 26 (Page 2 of 2). Conditions for Which Recovery Can Be Attempted 

System 
Completion Return 
Code Code Description of Error 

237 X 104 1 Block count in DCB does not agree with block 
count in trailer label. 

x•oc• DCB block count did not agree with the 
calculated block count. 

413 x• 18 1 Data set was opened for input and no volume 
serial number was specified. 

X 1 24 1 LABEL=(n) was specified, where n was greater 
than 1 and vol=ser was not specified for a tape 
data set. 

613 x 108 1 110 error occurred during reading of tape label. 

Invalid tape label was read. 
x•oc• 

110 error occurred during writing of tape label. 
x•10• 

1/0 error occurred during writing of tape label. 

X 1 14 1 

713 X 104 1 A data set on magnetic tape was opened for 
INOUT, but the volume contained a data set 
whose expiration date had not been reached and 
the operator denied permission. 

717 x• 10• 1/0 error occurred during reading of trailer label 
1 to update block count in DCB. 

737 X 1 28 1 The EOV DA module was passed an error return 
code in register 15 after issuing the IEFSSREQ 
macro instruction. This indicates the subsystem 
(JES3) discovered a functional or logical error 
that it could not process. 

813 X 104 1 Data set name on header label does not match 
data set name on DD statement. 

Recovery Requirements 
For most types of recoverable errors, you should supply a recovery work area 
(see Figure 27 on page 66) with a new volume serial number for each volume 
associated with an error. If no new volumes are supplied for such errors, 
recovery will be attempted with the existing volumes, but the likelihood of 
successful recovery is greatly reduced. 

If you request recovery for system completion code 117, return code 3C, or 
system completion code 214, return code OC, or system completion code 237, 
return code OC, you do not need to supply new volumes or a work area. The 
condition that caused the abend is disagreement between the DCB block count 

Chapter 5. Data Management User-Written Exit Routines · 65 



Displacement 

0 

4 

8 

and the calculated count from the hardware. To permit recovery, this 
disagreement is ignored and the value in the DCB will be used. 

If you request recovery for system completion code 237, return code 04, you 
don't need to supply new volumes or a work area. The condition that caused 
the abend is the disagreement between the block count in the DCB and that in 
the trailer label. To permit recovery, this disagreement is ignored. 

If you request recovery for system completion code 717, return code 10, you 
don't need to supply new volumes or a work area. The abend is caused by an 
1/0 error during updating of the DCB block count. To permit recovery, the block 
count is not updated. Consequently, an abnormal termination with system 
completion code 237, return code 04, may result when you try to read from the 
tape after recovery. You may attempt recovery from the abend with system 
completion code 237, return code 04, as explained in the preceding paragraph. 

System completion codes and their associated return codes are described in 
System Codes. 

Bit Meaning 

0 Free Triis Work Area 

1 Volume Serial Numbers Are 
Provided 

2-7 Reserved for Future Use 

/ 

/ 
/ 

/ 
/ 

Halfword Boundary // 

Length of This Work Area Option Byte I Subpool Number 

Number of 

I New Volume Serial Numbers (6 bytes each) New Volumes 

~ ..... 
'l., 

Figure 27. Recovery Work Area 

The work area that you supply for the recovery attempt must begin on a 
halfword boundary and can contain the information described in Figure 27. 
Place a pointer to the work area in the last 3 bytes of the parameter list pointed 
to by register 1 and described in Figure 25 on page 63. 

66 MVS/ESA Data Facility Product Version 3: Customization 

I I 

~ 



I u 

( 

~: 

If you acquire the storage for the work area by using the GETMAIN macro, you 
can request that it be freed by a FREEMAIN macro after all information has 
been extracted from it. Set the high-order bit of the option byte in the work 
area to 1 and place the number of the subpool from which the work area was 
requested in byte 3 of the recovery work area. 

Only one recovery attempt per data set is allowed during OPEN, CLOSE, or 
end-of-volume processing. If a recovery attempt is unsuccessful, you may not 
request another recovery. The second time through the exit routine you may 
request only one of the other options (if allowed): Issue the abend immediately, 
ignore the abend, or delay the abend. If at any time you select an option that is 
not allowed, the abend is issued immediately. 

Note that, if recovery is successful, you still receive an abend message on your 
listing. This message refers to the abend that would have been issued if the 
recovery had not been successful. 

Abend Installation Exit 

DCB Open Exit 

The abend installation exit gives you an additional option for handling error 
situations that result in an abend. This exit is taken any time an abend 
condition occurs during the process of opening, closing, or handling an 
end-of-volume condition for a DCB. An IBM-supplied installation exit will give 
you the option to retry tape positioning when you receive a 613 system 
completion code, return code 08 or OC. For additional information about the 
abend installation exit, see "Data Management Abend Installation Exit" on 
page 157. 

You can specify in an exit list the address of a routine that completes or 
modifies a DCB and does any additional processing required before the data 
set is completely open. The routine is entered during the opening process after 
the JFCB has been used to supply information for the DCB. The routine can 
determine data set characteristics by examining fields completed from the data 
set labels. When your DCB exit routine receives control, the 3 low-order bytes 
of register 1 will contain the address of the DCB currently being processed. 

When opening a data set for output, you can force the system to determine the 
block size for a DASO data set by setting the block size in the DCB to zero 
before returning from this exit. If the zero value you supply is not changed by 
the DCB OPEN installation exit, OPEN will call DASO Calculation Services to 
obtain the system block size when OPEN takes control after return from the 
DCB OPEN installation exit. 

As with label processing routines, the contents of register 14 must be preserved 
and restored if any macros are used in the routine. Control is returned to the 
operating system by a RETURN macro; no return code is required. 

This exit is mutually exclusive with the JFCBE exit. If you need both the JFCBE 
and data control block OPEN exits, you must use the JFCBE exit to pass control 
to your routines. 

Chapter 5. Data Management User-Written Exit Routines 67 



The DCB OPEN exit is intended for modifying or updating the DCB. System 
functions should not be attempted in this exit prior to returning to OPEN 
processing; in particular, dynamic allocation, OPEN, CLOSE, EOV, and DADSM 
functions should not be invoked because of an existing OPEN enqueue on the 
SYSZTIOT resources. 

EOV Defer Nonstandard Input Trailer Label Exit 
In an exit list, you can specify a code that indicates that you want to defer 
nonstandard input trailer label processing from end-of-data until the data set is 
closed. The address portion of the entry is not used by the operating system. 

An end-of-volume condition exists in several situations. Two examples are: (1) 
when the system reads a filemark or a tapemark at the end of a volume of a 
multivolume data set but that volume is not the last, and (2) when the system 
reads a filemark or a tapemark at the end of a data set. The first situation is 
referred to here as an end-of-volume condition, and the second as an 
end-of-data condition, although it, too, can occur at the end of a volume. 

For an end-of-volume (EOV) condition, the EOV routine passes control to ybur 
nonstandard input trailer label routine, whether or not this exit code is 
specified. For an end-of-data condition when this exit code is specified; the 
EOV routine does not pass control to your nonstandard input trailer label 
routine. Instead, the close routine passes control to your end-of-data routine. 

EOV Block Count Exit 
You can specify in an exit list the address of a routine that will allow you to 
abnormally terminate the task or continue processing when the EOV routine 
finds an unequal block count condition. When you are using standard labeled 
input tapes, the block count in the trailer label is compared by the EOV routine 
with the block count in the DCB. The count in the trailer label reflects the 
number of blocks written when the data set was created. The number of blocks 
read when the tape is used as input is contained in the DCBBLKCT field of the 
DCB. 

The routine is entered during EOV processing. The trailer label block count is 
passed in register 0. You may gain access to the count field in the DCB by 
using the address passed in register 1 plu~ the proper displacement, which is 
given in Data Administration: Macro Instruction Reference. If the block count in 
the DCB differs from that in the trailer label when no exit routine is provided, 
the task is abnormally terminated. The routine must terminate with a RETURN 
macro and a return code that indicates what action is to be taken by the 
operating system, as shown in Figure 28 on page 69. As with other exit 
routines, the contents of register 14 must be saved and restored if any macros 
are used. 

68 MVS/ESA Data Facility Product Version 3: Customization 



,\.._,I 

I 

~/ 

I v 

Return Code System Action 

0 (X 100 1
) 

4(X 104 1
) 

The task is to be abnormally terminated. 

Normal processing is to be resumed. 

Figure 28. System Response to Block Count Exit Return Code 

EOV Exit for Physical Sequential Data Sets 

FCB Image Exit 

You can specify in an exit list the address of a routine that is entered when EOV 
is reached in processing of a physical sequential data set. 

When you concatenate data sets with unlike attributes, no EOV exits are taken. 

When the EOV routine is entered, register 0 contains 0 unless user totaling was 
specified. If you specified user totaling in the DCB macro (by coding 
OPTCD =T) or in the DD statement for an output data set, register 0 contains 
the address of the user totaling image area. The routine is entered after a new 
volume has been mounted and all necessary label processing has been 
completed. If the volume is a reel of magnetic tape, the tape is positioned after 
the tapemark that precedes the beginning of the data. 

You can use the EOV exit routine to take a checkpoint by issuing the CHKPT 
macro, which is discussed in Checkpoint/Restart User's Guide. If a 
checkpointed job step terminates abnormally, it can be restarted from the EOV 
checkpoint. When the job step is restarted, the volume is mounted and 
positioned as upon entry to the routine. Restart becomes impossible if changes 
are made to the link pack area (LPA) library between the time the checkpoint is 
taken and the time the job step is restarted. When the step is restarted, 
pointers to EOV modules must be the same as when the checkpoint was taken. 

The EOV exit routine returns control in the same manner as the data control 
block exit routine. The contents of register 14 must be preserved and restored 
if any macros are used in the routine. Control is returned to the operating 
system by a RETURN macro; no return code is required. 

You can specify in an exit list the address of a forms control buffer (FCB) 
image. This FCB image can be loaded into the forms control buffer of the 
printer control unit. The FCB controls the movement of forms in printers that do 
not use a carriage control tape. 

Multiple exit list entries in the exit list can define FCBs. The OPEN and SETPRT 
routines search the exit list for requested FCBs before searching 
SYS1 .IMAGELIB. 

Chapter 5. Data Management User-Written Exit Routines 69 



The first 4 bytes of the FCB image contain the image identifier. To load the 
FCB, this image identifier is specified in the FCB parameter of the DD 
statement, by the SETPRT macro, or by the system operator in response to 
message IEC127D or IEC129D. 

For an IBM 3203, 3211, 3262, 4245, or 4248 Printer, the image identifier is 
followed by the FCB image described in System-Data Administration. For a 
3800 FCB image, see IBM 3800 Printing Subsystem Programmer's Guide. For a 
3800 Model 3 FCB image, see IBM 3800 Model 3 Printing Subsystem 
Programmer's Guide. 

You can use an exit list to define an FCB image only when writing to an online 
printer. Figure 29 illustrates one way the exit list can be used to define an FCB 
image. 

EXLIST 

FCBIMG 

* 16 line 

DCB .. , EXLST =EX LIST 

0F OS 
DC 
DC 
DC 
DC 
DC 
DC 
DC 

x 1 10 1 

AL3(FCBIMG) 
X180000000 1 

CL4 1 IMGl I 

X1 00 1 

All (67) 
X190 1 

character positions 
DC X1 00 1 

DC 5X 100 1 

DC X1 01 1 

DC 6X 100 1 

DC X102 1 

DC 5X 100 1 

DC X103 1 

DC 9X 100 1 

DC X1 04 1 

DC 19X'00 1 

DC X'05' 
DC X106' 
DC X1 07 1 

DC X'08 1 

DC X1 09 1 

DC X1 0A 1 

DC X1 0B 1 

DC X10C' 
DC 8X 100 1 

DC X 1 10 1 

to the 

Flag code for FCB image 
Address of FCB image 
End of EXLST and a null entry 
FCB identifier 
FCB is not a default 
Length of FCB 
Offset print line 

right 
Spacing is 6 lines per inch 
Lines 2-6, no channel codes 
Line 7, ·channel 1 
Lines 8-13, no channel codes 
Line (or Lines) 14, channel 2 
Line (or Lines) 15-19, no channel 
Line (or Lines) 20, channel 3 
Line (or Li~es) 21-29, no channel 
Line (or Lines) 30, channel 4 
Line (or Lines) 31-49, no channel 
Line (or Lines) 50, channel 5 
Line (or Lines) 51, channel 6 
Line (or Lines) 52, channel 7 
Line (or Lines) 53, channel 8 
Line (or Lines) 54, channel 9 
Line (or Lines) 55, channel 10 
Line (or Lines) 56, channel 11 
Line (or Lines) 57, channel 12 
Line (or Lines) 58~65, no channel 
End of FCB image 

//ddname 
/* 

END 
DD UNIT=3211,FCB=(IMG1,VERIFY) 

Figure 29. Defining an FCB Image for a 3211 

70 MVS/ESA Data Facility Product Version 3: Customization 

codes 

codes 

codes 

codes 

\.......,,l' 



JFCB Exit 

( \, __ ,,, 

JFCBE Exit 

; 

\._; 

The JFCB exit is used with the RDJFCB macro and OPEN TYPE= J. The 
RDJFCB macro uses the address specified in the DCB exit list entry at X 107' to 
place a copy of the JFCB for each DCB specified by the RDJFCB macro. 

Note: Although use of the JFCB exit is still supported, its use is not 
recommended. 

The area is 176 bytes and must begin on a fullword boundary. It must be 
located in the user's region. Users running in 31-bit addressing mode must 
ensure that this area is located below 16 megabytes virtual. The DCB may be 
either open or closed when the RDJFCB macro is executed. 

If RDJFCB fails while processing a DCB associated with your RDJFCB request, 
your task is abnormally terminated. You cannot use the DCB abend exit to 
recover from a failure of the RDJFCB macro. For more information about the 
RDJFCB macro see System-Data Administration. 

JCL-specified setup requirements for the IBM 3800 Printing Subsystem cause a 
JFCB extension (JFCBE) to be created to reflect those specifications. A JFCBE 
exists if BURST, MODIFY, CHARS, FLASH, or any copy group is coded on the 
DD statement. The JFCBE exit can be used to examine or modify those 
specifications in the JFCBE. (Note: Although use of the JFCBE exit is still 
supported, its use is not recommended.) The address of the routine should be 
placed in an exit list. (The device allocated does not have to be a 3800.) This 
exit is taken during OPEN processing and is mutually exclusive with the data 
control block exit. If you need both the JFCBE and data control block exits, you 
must use the JFCBE exit to pass control to your routines. 

With a 3800, when you issue the SETPRT macro to a SYSOUT data set, the 
JFCBE is further updated from the information in the SETPRT parameter list. 

When control is passed to your exit routine, the contents of register 1 will be 
the address of the DCB being processed. 

The area pointed to by register 0 will also contain the 4-byte FCB identification 
that is obtained from the JFCB. The FCB identification is placed in the 4 bytes 
following the 176-byte JFCBE. If the FCB operand was not coded on the DD 
statement, this FCB field will be binary zeros. 

If your copy of the JFCBE is modified during an exit routine, you should indicate 
this fact by turning on bit JFCBEOPN (X 1 80 1 in JFCBFLAG) in the JFCBE copy. 
On return to OPEN, this bit indicates whether the system copy is to be updated. 
The 4-byte FCB identification in your area will be used to update the JFCB 
regardless of the bit setting. Checkpoint/restart also interrogates this bit to 
determine which version of the JFCBE will be used at restart time. If this bit is 
not on, the JFCBE generated by the restart JCL will be used. 

Chapter 5. Data Management User-Written Exit Routines 71 



Open/Close/EOV Standard User Label Exit 
When you create a data set with physical sequential or direct organization, you 
can provide routines to create your own data set labels. You can also provide 
routines to verify these labels when you use the data set as input. Each label is 
80 characters long, with the first 4 characters UHL 1,UHL2, ... ,UHL8 for a header 
label or UTL 1,UTL2, ... ,UTL8 for a trailer label. User labels are not allowed on 
indexed sequential data sets. 

The physical location of the labels on the data set depends on the data set 
organization. For direct (BDAM) data sets, user labels are placed on a 
separate user label track in the first volume. User label exits are taken only 
during execution of the OPEN and CLOSE routines. Thus you may create or 
examine as many as eight user header labels only during execution of OPEN 
and as many as eight trailer labels only during execution of CLOSE. Because 
the trailer labels are on the same track as the header labels, the first volume of 
the data set must be mounted when the data set is closed. 

For physical sequential (BSAM or QSAM) data sets, you may -create or examine 
as many as eight header labels and eight trailer labels on each volume of the 
data set. For ASCII tape data sets, you may create an unlimited number of user 
header and trailer labels. The user label exits are taken during OPEN, close, 
and EOV processing. 

To create or verify labels, you must specify the addresses of your label exit 
routines in an exit list as shown in Figure 24 on page 59. Thus you may have 
separate routihes for creating or verifying header and trailer label groups. 
Care must be taken if a magnetic tape is read backward, because the trailer 
label group is processed as header labels and the header label group is 
processed as trailer labels. 

When your routine receives control, the contents of register 0 are unpredictable. 
Register 1 contains the address of a parameter list. The contents of registers 2 
to 13 are the same as when the macro instruction was issued. However, if your 
program does not issue the CLOSE macro, or abnormally ends before issuing 
CLOSE, the CLOSE macro will be issued by the control program, with 
control-program information in these registers. 

The parameter list pointed to by register 1 is a 16-byte area aligned on a 
fullword boundary. Figure 30 shows the contents of the area. 

0 

Address of 80-byte label buffer area 
I I 

4 
EOF flag Address of DCB being processed 

I I 
8 

Error flags Address of status information 
I I 

12 
Address of user totaling image area 

I I 

Figure 30. Parameter List Passed to User Label Exit Routine 

72 MVS/ESA Data Facility Product Version 3: Customization 



I 

\ . .._ ... ) 

The first address in the parameter list points to an 80-byte label buffer area. 

For input, the control program reads a user label into this area before passing 
control to the label routine. For output, the user label exit routine builds labels 

in this area and returns to the control program, which writes the label. When 
an input trailer label routine receives control, the EOF flag (high-order byte of 
the second entry in the parameter list) is set as follows: 

Bit 0 = 0: Entered at EOV 
Bit 0 = 1: Entered at end-of-file 
Bits 1-7: Reserved 

When a user label exit routine receives control after an uncorrectable 1/0 error 
has occurred, the third entry of the parameter list contains the address of the 

standard status information. The error flag (high-order byte of the third entry in 
the parameter list) is set as follows: 

Bit 0 = 1: Uncorrectable I/O erro~ 
Bit 1 = 1: Error occurred during writing of updated label 
Bits 2-7: Reserved 

The fourth entry in the parameter list is the address of the user totaling image 
area. This image area is the entry in the user totaling save area that 
corresponds to the last record physically written on the volume. (The image 
area is discussed further under "User Totaling for BSAM and QSAM" on 
page 80.) 

Each routine must create or verify one label of a header or trailer label group, 
place a return code in register 15, and return control to the operating system. 
The operating system responds to the return code as shown in Figure 31. 

You can create user labels only for data sets on magnetic tape volumes with 
IBM standard labels or ISO/ANSI/Fl PS labels and for data sets on direct access 
volumes. When you specify both user labels and IBM standard labels in a DD 
statement by specifying LABEL= (,SUL) and there is an active entry in the exit 
list, a label exit is always taken. Thus, a label exit is taken even when an input 
data set does not contain user labels, or when no user label track has been 
allocated for writing labels on a direct access volume. In either case, the 
appropriate exit routine is entered with the buffer area address parameter set 
to 0. On return from the exit routine, normal processing is resumed; no return 
code is necessary. 

Figure 31 (Page 1 of 2). System Response to a User Label Exit Routine Return Code 

Routine Type Return Code 

Input header or trailer label 0(X 100 1
) 

4(X 104 ') 

System Response 

Normal processing is 
resumed. If there are any 
remaining labels in the label 
group, they are ignored. 

The next user label is read 
into the label buffer area 
and control is returned to 
the exit routine. If there are 
no more labels in the label 
group, normal processing is 
resumed. 

Chapter 5. Data Management User-Written Exit Routines 73 



Figure 31 (Page 2 of 2). System Response to a User Label Exit Routine Return Code 

Routine Type 

Output header or trailer 
label 

Note to Figure 31: 

Return Code 

81 (X 108 1
) 

121 (X 10C 1
) 

0 (X 100 1
) 

4 (X'04 ') 

8 (X 108 1
) 

System Response 

The label is written from the 
label buffer area and normal 
processing is resumed. 

The label is written from the 
label area, the next label is 
read into the label buffer 
area, and control is returned 
to the label processing 
routine. If there are no more 
labels, processing is 
resumed. 

Normal processing is 
resumed; no label is written 
from the label buffer area. 

User label is written from 
the label buffer area. 
Normal processing is 
resumed. 

User label is written from 
the label buffer area. If 
fewer than eight labels have 
been created, control is 
returned to the exit routine, 
which then creates the next 
label. If eight labels have 
been created, normal 
processing is resumed. 

Your input label routines can return these codes only when you are 
processing a physical sequential data set opened for U POAT or a direct 
data set opened for OUTPUT or UPDAT. These return codes allow you to 
verify the existing labels, update them if necessary, then request that the 
system write the updated labels. 

Label exits are not taken for system output (SYSOUT) data sets, or for data sets 
on volumes that do not have standard labels. For other data sets, exits are 
taken as follows: 

• When an input data set is opened, the input header label exit 01 is taken. If 
the data set is on tape being opened for ROBACK, user trailer labels will be 
processed. 

• When an output data set is opened, the output header label exit 02 is taken. 
However, if the data set already exists and DISP =MOD is coded in the DD 
statement, the input trailer label exit 03 is taken to process any existing 
trailer labels. If the input trailer label exit 03 does not exist, then the 
deferred input trailer label exit OC is taken if it exists; otherwise, no label 
exit is taken. For tape, these trailer labels will be overwritten by the new 

74 MVS/ESA Data Facility Product Version 3: Customization 

\ 

\__} 



\ ' 
~/ 

I ' 
\._-1 

output data or by EOV or close processing when writing new standard 
trailer labels. For direct access devices, these trailer labels will still exist 
unless rewritten by EOV or close processing in an output trailer label exit. 

• When an input data set reaches EOV, the input trailer label exit 03 is taken. 
If the data set is on tape opened for ROBACK, header labels will be 
processed. The input trailer label exit 03 is not taken if you issue an FEOV 
macro. If a defer input trailer label exit OC is present, and an input trailer 
label exit 03 is not present, the OC exit is taken. After switching volumes, 
the input header label exit 01 is taken. If the data set is on tape opened for 
ROBACK, trailer labels will be processed. 

• When an output data set reaches EOV, the output trailer label exit 04 is 
taken. After switching volumes, output header label exit 02 is taken. 

• When an input data set reaches end-of-data, the input trailer label exit 03 is 
taken before the EODAD exit, unless the DCB exit list contains a defer input 
trailer label exit OC. 

• When an input data set is closed, no exit is taken unless the data set was 
previously read to end-of-data and the defer input trailer label exit OC is 
present. If so, the defer input trailer label exit OC is taken to process trailer 
labels, or if the tape is opened for ROBACK, header labels. 

• When an output data set is closed, the output trailer label exit 04 is taken. 

To process records in reverse order, a data set on magnetic tape can be read 
backward. When you read backward, header label exits are taken to process 
trailer labels, and trailer label exits are taken to process header labels. The 
system presents labels from a label group in ascending order by label number, 
which is the order in which the labels were created. If necessary, an exit 
routine can determine label type (UHL or UTL) and number by examining the 
first four characters of each label. Tapes with IBM standard labels and direct 
access devices can have as many as eight user labels. Tapes with 
ISO/ ANSI/Fl PS labels can have an unlimited number of user labels. 

If an uncorrectable error occurs during reading or writing of a user label, the 
system passes control to the appropriate exit routine, with the third word of the 
parameter list flagged and pointing to status information. 

After an input error, the exit routine must return control with an appropriate 
return code (0 or 4). No return code is required after an output error. If an 
output error occurs while the system is opening a data set, the data set is not 
opened (DCB is flagged) and control is returned to your program. If an output 
error occurs at any other time, the system attempts to resume normal 
processing. 

Open/EOV Nonspecific Tape Volume Mount Exit 
This user exit gives you the option of identifying a specific tape volume to be 
requested in place of a nonspecific (scratch) tape volume. An X 1 17 1 in the DCB 
exit list (EXLST) activates this exit. (See "EXLST Exit List" on page 58 for more 
information about EXLST.) This exit, which supports only IBM standard labeled 
tapes, was designed to be used with the Open/EOV volume security and 
verification user exit. However, this exit can be used by itself. 

Chapter 5. Data Management User-Written Exit Routines 75 



Open or EOV calls this exit when either must issue mount message IEC501A or 
EIC501E to request a scratch tape volume. Open issues the mount message if 
you specify the DEFER parameter with the UNIT option, and you either didn't 
specify a volume serial number in the DD statement or you specified 
1VOL=SER=SCRTCH 1

• EOV always calls this exit for a scratch tape volume 
request. 

· This user exit gets control in the key and state of the program that issued the 
OPEN or EOV, and no locks are held. After you are in control, you must provide 
a return code in register 15. 

Return 
Code 

00 (X '00 1
) 

04 (X'04') 

Meaning 

Continue with the scratch tape request as if this exit had not 
been called. 

Replace the scratch tape request with a specific volume 
serial number. Do this by loading the addr~ss of a 6-byte 
volume serial number into register 0. 

Note: A value other than 0 or 4 in register 15 is treated as a 0. 

If OPEN or EOV finds that the volume pointed to by register 0 is being used 
either by this or by another job (an active ENQ on this volume), it takes this exit 
again and continues to do so until you either specify another volume serial 
number or request a scratch volume. If the volume you specify is available but 
is rejected by OPEN or EOV for some reason (1/0 errors, expiration date, 
password check, and so forth), this exit is not taken again. 

When this exit gets control, register 1 points to the parameter list described by 
the IECOENTE macro. Figure 32 shows this parameter list. 

+ OENTID OS CL4 PLIST ID ('OENT') 
+ OENTFLG OS x FLAG BYTES 
+ OENTOEOV EQU X'88' 8=0PEN, l=EOV 
+ OENTNTRY EQU x '81' 8=1ST ENTRY ,l=SUBSEQUENT ENTRY 
+ OENTOPTN OS x OPEN OPTION (OUTPUT/INPUT/ ... ) 
+ OENTMASK EQU X1 GF 1 TO MASK OFF UNNECESSARY BITS 
+ OENTRSVD OS XL2 RESERVED 
+ OENTDCBA OS A ADDRESS OF USER DCB 
+ OENTVSRA OS A ADDRESS OF VOLSER 
+ OENTJFCB OS A ADDRESS OF O/C/E COPY OF JFCB 
+ OENTLENG EQU *-&L PUST LENGTH 
+ OENTREGS OS 6F REGISTER SAVE AREA 
+ OENTAREA EQU *-&L MACRO LENGTH 

Figure 32. IECOENTE Macro Parameter List 

OENTOEOV 
set to O if OPEN called this exit; set to 1 if EOV called this exit. 

76 MVS/ESA Data Facility Product Version 3: Customization 



OENTNTRY 
set to 1 if this is not the first time this exit was called because the 

requested tape volume is being used by this or any other job. 

OENTOPTN 
contains the OPEN options from the DCB parameter list (OUTPUT, INPUT, 

OUTIN, INOUT, and so forth). For EOV processing, the options byte in the 

DCB parc~meter list indicates how EOV is processing this volume. For 

example, if you open a tape volume for INOUT and EOV is called during an 

input operation on this tape volume, the DCB parameter list and OENTOPTN 

are set to indicate INPUT. 

OENTVSRA 
points to the last volume serial number you requested in this exit but was tn 

use either by this or another job. OENTVSRA is set to O the first time this 

exit is called. 

OENTJFCB 
points to the OPEN or EOV copy of the JFCB. The high order bit is always 

on, indicating that this is the end of the parameter list. 

OENTREGS 
starts the register save area used by OPEN or EOV. Do not use this save 

area in this user exit. 

Convention for Saving and Restoring General Registers 
When this user exit is entered, the general registers contain: 

Register Contents 

0 Variable 

Address of the parameter list for this exit 

2-13 Contents of the registers before the OPEN or EOV was issued 

14 Return address (you must preserve the contents of this register in 

this user exit) 

15 Entry point address to this user exit 

You do not have to preserve the contents of any register other than register 14. 

The operating system restores the contents of registers 2 through 13 before it 

returns to OPEN or EOV and before it returns control to the original calling 

program. 

··-Do not use the save area pointed to by register 13; the operating system uses 

it. If you call another routine, or issue a supervisor or data management macro 

in this user exit, you must provide the address of a new save area in register 

13. 

Open/EOV Volume Security and Verification Exit 
This user exit lets you verify that the volume that is currently mounted is the 

one you want. You can also use it to bypass the OPEN or EOV expiration date, 

password, and data set name security checks. An X 1 18 1 in the DCB exit list 

(EXLST) activates this exit. (See "EXLST Exit List" on page 58 for more 

information about EXLST.) This exit, which supports IBM standard label tapes, 

Chapter 5. Data Management User-Written Exit Routines 77 



was designed to be used with the OPEN/EOV nonspecific tape volume mount 
user exit. (See "Open/EOV Nonspecific Tape Volume Mount Exit" on page 75 
for more information about that user exit.) However, this exit can be used by 
itself. 

Note: This exit is available only for APF-authorized programs. 

This user exit gets control in the key and state of the program that issued the 
OPEN or EOV request, and no locks are held. After you are in control, you must 
provide a return code in register 15. 

Return 
Code 

oo (X •oo 1
) 

04 (X 104 1
) 

08 (X 108 1
) 

12 (X •oc•) 

16(X'10 1
) 

Meaning 

Use this tape volume. Return to OPEN or EOV as if this exit 
had not been called. 

Reject this volume and: 

• Output 

If the data set is the first data set on the volume, 
request a scratch tape. This causes OPEN or EOV to 
issue demount message IEC502E for the rejected 
tape volume, and mount message IEC501A for a 
scratch tape volume. If the nonspecific tape volume 
mount exit is active, it is called. 

If the data set is other than the first one on the 
volume, process this return code as if it were return 
code 08. 

• Input 

- Treat this return code as if it were return code 08. 

Abnormally terminate OPEN or EOV unconditionally; no 
scratch tape request is issued. 

Open abnormally terminates with a 913-34 abend code, and 
EOV terminates with a 937-29 abend code. 

Use this volume wit.hout checking the data set's expiration 
date, but check its password and name. If the expiration 
date of the current data set is in effect, the new data set can 
still write over it. 

Use this volume. A conflict with the password, label 
expiration date, or data set name does not prevent the new 
data set from writing over the current data set if it is the first 
one on the volume. To write over other than the first data 
set, the new data set must have the same level of security 
protection as the current data set. 

When this exit gets control, register 1 points to the parameter list described by 
the IECOEVSE macro. The parameter list is shown in Figure 33 on page 79. 

78 MVS/ESA Data Facility Product.Version 3: Customization 

\__. 

\ ,....._,, 



i ' 
'~ + OEVSID DS CL4 ID FIELD = OEVS 

+ OEVSFLG DS x FLAGS BYTE 
+ OEVSEOV EQU X'80' 0=0PEN, l=EOV 
+ OEVSFI LE EQU X'01' 0=1ST FILE, l=SUBSEQ FILE 

* BITS 1 THROUGH 6 RESERVED 
+ OEVSOPTN DS x OPEN OPTION (OUTPUT/INPUT/ ... ) 
+ OEVSMASK EQU X'0F' MASK 
+ OEVSRSVD DS XL2 RESERVED 
+ OEVSDCBA DS A ADDRESS OF USER DCB 
+ OEVSVSRA DS A ADDRESS OF 6-BYTE VOLSER 
+ OEVSHDRl DS A ADDRESS OF HDRl/EOFl 
+ OEVSJFCB DS A ADDRESS OF O/C/E COPY OF JFCB 
+ OEVSLENG EQU *-&L PUST LENGTH 
+ OEVSREGS DS 6F REGISTER SAVE AREA 
+ OEVSAREA EQU *-&L MACRO LENGTH 

Figure 33. IECOEVSE Macro Parameter List 

OEVSFLG 
a flag field containing two flags. 

OEVSEOV is set to 0 if OPEN called this exit; set to 1 if EOV called this exit. 

OEVSFI LE is set to 0 if the first data set on the volume is to be written; set 
to 1 if this is not the first data set on the volume to be written. This bit is 
always 0 for IN PUT processing. 

OEVSOPTN 
a 1-byte field containing the OPEN options from the DCB parameter list 
(OUTPUT, INPUT, INOUT, and so forth). For EOV processing, this byte 
indicates how EOV is processing this volume. For example, if you opened a 
tape volume for OUTIN and EOV is called during an output operation on the 
tape volume, the DCB parameter list and OEVSOPTN are set to indicate 
OUTPUT. 

OEVSVSRA 
a pointer to the current volume serial number that OPEN or EOV is 
processing. 

OEVSHDR1 
a pointer to a HDR1 label, if one exists; or an EOF1 label, if you are creating 
other than the first data set on this volume. 

OEVSJFCB 
a pointer to the OPEN, CLOSE, or EOV copy of the JFCB. The high-order bit 
is always on, indicating that this is the end of the parameter list. 

OEVSREGS 
a register save area used by OPEN or EOV. Do not use this save area in 
this user exit. 

Chapter 5. Data Management User-Written Exit Routines 79 



Convention for Saving and Restoring General Registers 
When this user exit is entered, the general registers contain: 

Register Contents 

0 Variable 

Address of the parameter list for this exit. 

2-13 Contents of the registers before the OPEN or EOV was issued 

14 Return address (you must preserve the contents of this register in 
this user exit) 

15 Entry point address to this user exit 

You do not have to preserve the contents of any register other than register 14. 
The operating system restores the contents of registers 2 through 13 before it 
returns to OPEN or EOV and before it returns control to the original calling 
program. 

Do not use the save area pointed to by reg'ister 13; the operating system uses 
it. If you call another routine or issue a supervisor or data management macro 
in this user exit, you must provide the address of a new save area in register 
13. 

QSAM Parallel Input Exit 
QSAM parallel input processing may be used to process two or more input data 
sets concurrently, such as sorting or merging several data sets at the same '~ 
time. 

A request for parallel input processing is indicated by including the address of 
a parallel data access block (PDAB) in the DCB exit list. The address must be 
on a fullword boundary with the first byte of the entry containing X 1 12 1 or, if it is 
the last entry, X 192 1

• For more information on parallel input processing, see 
Data Administration Guide. 

User Totaling for BSAM and QSAM 
When creating or processing a data set with user labels, you may develop 
control totals for each volume of the data set and store this information in your 
user labels. 

For example, a control total that was accumulated as the data set was created 
can be stored in your user label and later compared with a total accumulated 
during processing of the volume. User totaling helps you by synchronizing the 
control data you create with records physically written on a volume. For an 
output data set without user labels, you can also develop a control total that will 
be available to your EOV routine. 

80 MVS/ESA Data Facility Product Version 3: Customization 

\ 
\._) 



\ ' 

~ 

I , 
\ I \, __ .. / 

To request user totaling, you must specify OPTCD = T in the DCB macro 
instruction or in the DCB parameter of the DD statement. The area in which 
you collect the control data (the user totaling area) must be identified to the 
control program by an entry of X 1OA 1 in the DCB exit list. OPT CD= T cannot be 
specified for SYSIN or SYSOUT data sets. 

The user totaling area, an area in storage that you provide, must begin on a 
halfword boundary and be large enough to contain your accumulated data plus 
a 2-byte length field. The length field must be the first 2 bytes of the area and 
specify the length of the complete area. A data set for which you have 
specified user totaling (OPTCD =T) will not be opened if either the totaling area 
length or the address in the exit list is 0, or if there is no X 10A 1 entry in the exit 
list. 

The control program establishes a user totaling save area, where the control 
program preserves an image of your totaling area, when an 1/0 operation is 
scheduled. When the output user label exits are taken, the address of the save 
area entry (user totaling image area) corresponding to the last record 
physically written on a volume is passed to you in the fourth entry of the user 
label parameter list. (This parameter list is described in "Open/Close/EOV 
Standard User Label Exit" on page 72.) When an EOV exit is taken for an 
output data set and user totaling has been specified, the address of the user 
totaling image area is in register 0. 

When using user totaling for an output data set, that is, when creating the data 
set, you must update your control data in your totaling area before issuing a 
PUT or a WRITE macro. The control program places an image of your totaling 
area in the user totaling save area when an 1/0 operation is scheduled. A 
pointer to the save area entry (user totaling image area) corresponding to the 
last record physically written on the volume is passed to you in your label 
processing routine. Thus you can include the control total in your user labels. 
When subsequently using this data set for input, you can collect the same 
information as you read each record and compare this total with the one 
previously stored in the user trailer label. If you have stored the total from the 
preceding volume in the user header label of the current volume, you can 
process each volume of a multivolume data set independently and still maintain 
this system of control. 

When variable-length records are specified with the totaling function for user 
labels, special considerations are necessary. Because the control program 
determines whether a variable-length record will fit in a buffer after a PUT or a 
WRITE has been issued, the total you have accumulated may include one more 
record than is really written on the volume. For variable-length spanned 
records, the accumulated total will include the control data from the 
volume-spanning record although only a segment of the record is on that 
volume. However, when you process such a data set, the volume-spanning 
record or the first record on the next volume will not be available to you until 
after the volume switch and user label processing are completed. Thus the 
totali.ng information in the user label may not agree with that developed during 
processing of the volume. 

Chapter 5. Data Management User-Written Exit Routines 81 



One way you can resolve this situation is to maintain, when you are creating a 
data set, control data pertaining to each of the last two records and include 
both totals in your user labels. Then the total related to the last complete 
record on the volume and the volume-spanning record or the first record on the 
next volume would be available to your user label routines. During subsequent 
processing of the data set, your user label routines can determine if there is 
agreement between the generated information and one of the two totals 
previously saved. 

When the totaling function for user labels is selected with DASO devices and 
secondary space is specified, the total accumulated may be one less than the 
actual written. 

82 MVS/ESA Data Facility Product Version 3: Customization 



I 
~i 

I 
I 

~ 

Chapter 6. User Exit Routines Specified with Utilities 

General Guidance 
Exits can be specified with various utilities to: 

• Modify physical records 

• Handle 1/0 errors 

• Process user input/output header and"trailer labels. 

For more information about utilities, see Utilities. 

The exits are specified in a parameter of the EXITS statement in the various 
utilities. The exits available from utility programs are listed in Figure 34 on 
page 84. 

Chapter 6. User Exit Routines Specified with Utilities 83 



Fig,ure 34. User-Exit Routines Specified in Utilities 

Exit Routine When Available Where Specified 

Modify physical After the physical record is DATA parameter of 
records before read and before any editing IEBGENER 
processing by is performed 
IEBGENER 

Input header or When the data set is opened INHDR/INTLR 
trailer label for input (header) or closed parameters of 

(trailer) IEBCOMPR, 
IEBPTPCH, IEBGENER 

Output header or When the data set is opened OUTHDR/OUTLR 
trailer label for output (header) or closed parameters of 

(trailer) IEBCOMPR, 
IEBGENER 

Totaling Prior to IEBGENER writing of TOTAL parameter of 
each physical record IEBGENER 
(sequential data sets only) 

1/0 error When permanent error IOERROR parameter 
occurs in IEBGENER of IEBGENER 

Error detected by After unequal comparison ERROR parameter of 
IEBCOMPR IEBCOMPR 

Build output Prior to IEBGENER writing of KEY of IEBGENER 
record key a record 

Process logical Before input records are PRECOMP parameter 
records of input processed by IEBCOM PR of IEBCOMPR 
data sets before 
compared 

Process Before logical record is INREC/OUTREC 
IEBPTPCH processed (INREC) or before parameter of 
input/output logical record is written IEBPTPCH 
records (OUTREC) 

Analyze or After output record is CREATE parameter of 
modify IEBDG constructed, but before it is IEBDG 
output record placed in the output data set 

Register Contents at Entry to Routines from Utility Programs 

Register Contents 

Address of the parameter list. 

13 Address of the register save area. The save area must not be used 
by user label processing routines. 

14 Return address to utility. 

15 Entry address to the exit routine. 

Figure 35. Register Contents at Entry to Utility Exit Routines 

84 MVS/ESA Data Facility Product Version 3: Customization 



\ : 
\...,._.,) 

! 
( I 

~ 

/ 

I 

\__,,/ 

Programming Considerations 
The exit routine must reside in either the job library or link library. 

Returning from an Exit Routine 
An exit routine returns control to the utitity program by means of the RETURN 
macro instruction in the exit routine. Registers 1 through 14 must be restored 
before control is returned to the utility program. 

The format of the RETURN macro instruction is: 

I [label] RETURN [(r,r)] 

[,RC= nl(15)] 

where: 

(r,r) 
specifies the range of registers, from 0 to 15, to be reloaded by the utility 
program from the register save area. For example, (14, 12) indicates that all 
registers except register 13 are to be restored. If this parameter is omitted, 
the registers are considered properly restored by the exit routine. 

RC= 
specifies a decimal return code in register 15. If RC is omitted, register 15 
is loaded as specified by (r,r). 

RC values can be coded: 

n 

(15) 

specifies a return code to be placed in the 12 low order bits of register 
15. 

specifies that general register 15 already contains a valid return code. 

The user's label processing routine must return a code in register 15 as shown 
in Figure 36 unless: 

• The buffer address was set to zero before entry to the label processing 
routine. In this case, the system resumes normal processing regardless of 
the return code. 

• The user's label processing routine was entered after an uncorrectable 
output error occurred. In this case the system attempts to resume normal 
processing. 

Figure 36 shows the return codes that can be issued to utility programs by user 
exit routines. Slightly different return codes are used for the 
UPDATE=INPLACE option of the IEBUPDTE program. (See Utilities for more 
information). 

Chapter 6. User Exit Routines Specified with Utilities 85 



Figure 36 (Page 1 of 2). Return Codes That Must Be Issued by User Exit Routines 

Type of Exit 

Input Header or 
Trailer Label 

Output Header or 
Trailer Label 

Totaling Exits 

All other exits 
(except 
IEBPTPCH's exit 
OUT REC) 

Return 
Code 

0 

4 

16 

0 

4 

8 

16 

0 

4 

8 

16 

0-11 (Set to 
next 
multiple of 
four) 

12 or 16 

86 MVS/ESA Data Facility Product Version 3: Customization 

Action 

The system resumes normal 
processing. If there are more labels in 
the label group, they are ignored. 

The next user label is read into the 
label buffer area and control is 
returned to the user's routine. If there 
are no more labels, normal processing 
is resumed. 

The utility program is terminated on 
request of the user routine. 

The system resumes normal 
processing. No label is written from 
the label buffer area. 

The user label is written from the label 
buffer area. The system then resumes 
normal processing. 

The user label is written from the label 
buffer area. If fewer than eight labels 
have been created, the user's routine 
again receives control so that it can 
create another user label. If eight 
labels have been created, the system 
resumes normal processing. 

The utility program is terminated on 
request of the user routine. 

Processing continues, but no further 
exits are taken. 

Normal operation continues. 

Processing ceases, except for EOD 
processing on output data set (user 
label processing). 

Utility program is terminated. 

Return code is compared to highest 
previous return code; the higher is 
saved and the other discarded. At the 
normal end of job, the highest return 
code is passed to the calling 
processor. 

Utility program is terminated and this 
return code is passed to the calling 
processor. 

\ 
'...._., 



i 
\..._.,,1 

Figure 36 (Page 2 of 2). Return Codes That Must Be Issued by User Exit Routines 

Return 
Type of Exit Code Action 

ERROR 0 Record is not placed in the error data 
set. Processing continues with the 
next record. 

4 Record is placed in the error data set 
(SYSUT3). 

8 Record is not placed in error data set 
but is processed as a valid record 
(sent to OUTREC and SYSUT2 if 
specified). 

16 Utility program is terminated. 

OUTREC 4 Record is not placed in normal output 
(IEBPTPCH) data set. 

12 or 16 Utility program is terminated. 

Any other Record is placed in normal output data 
number set (SYSUT2). 

Parameters Passed to Label Processing Routines 
The parameters passed to a user's label processing routine are addresses of: 
the 80-byte label buffer, the DCB being processed, the status information if an 
uncorrectable input/output error occurs, and the totaling area. 

The 80-byte label buffer contains an image of the user label when an input label 
is being processed. When an output label is being processed, the buffer 
contains no significant information at entry to the user's label processing 
routine. When the utility program has been requested to generate labels, the 
user's label processing routine must construct a label in the label buffer. 

If standard user labels (SUL) are specified on the DD statement for a data set, 
but the data set has no user labels, the system still takes the specified exits to 
the appropriate user's routine. In such a case, the user's input label 
processing routine is entered with the buffer address parameter set to zero. 

The format and content of the DCB are presented in Data Administration: Macro 
Instruction Reference. 

Bit 0 of flag 1 in the DCB-address parameter is set to a value of 0 except when: 

• Volume trailer or header labels are being processed at volume switch time. 

• The trailer labels of a MOD data set are being processed (when the data 
set is opened). 

If an uncorrectable input/output error occurs while reading or writing a user 
label, the appropriate label processing routine is entered with bit 0 of flag 2 in 
the status information address parameter set on. The three low order bytes of 
this parameter contain the address of standard status information as supplied 
for SYNAD routines. (The SYNAD routine is not entered.) 

Chapter 6. User Exit Routines Specified with Utilities 87 



Parameters Passed to Nonlabel Processing Routines 
Figure 37 shows the programs from which exits can be taken to nonlabel 
processing routines, the names of the exits, and the parameters available for \_. 
each exit routine. 

Figure 37. Parameter Lists for Nonlabel Processing Exit Routines 

Program Exit Parameters 

I EB GENER KEY Address at which key is to be placed (record 
follows key); address of DCB. 

DATA ~ddress of SYSUT1 record; address of DCB. 
Address of DECB; cause of the error and 

IOERROR address of DCB. (Address in lower order 
three bytes and cause of error in high order 
byte.) 

IEBCOMPR ERROR Address of DCB for SYSUT1; address of DCB 
for SYSUT2. 1 

PRECOMP Address of SYSUT1 record; length of SYSUT1 
record, address of SYSUT2 record; length of 
SYSUT2 record. 

IEBPTPCH INREC Address of input record; length of the input 
record. 

OUTREC Address of output record; length of the output 
record. 

Note to Figure 37: 

The IOBAD pointer in the DCB points to a location that contains the 
address of the corresponding data event control block (DECB) for these 
records. The format of the DECB is illustrated in "Status Information 
Following an Input/Output Operation" on page 42. 

Processing User Labels 

\"'-" 

\~ 

User labels can be processed by IEBCOMPR, IEBGENER, IEBPTPCH, IEBUPDTE, \.._.,! 
and IEHMOVE. In some cases, user-label processing is automatically 
performed; in other cases, you must indicate the processing to be performed. 
In general, user label support allows the utility program user to: 

• Process user labels as data set descriptors. 

• Process user labels as data. 

• Total the processed records prior to each WRITE command (IEBGENER and 
IEBUPDTE only). 

For either of the first two options, the user must specify SUL on the DD 
statement that defines each data set for which user-label processing is desired. 
For totaling routines, OPTCD = T must be specified on the DD statement. 

The user cannot update labels by means of the IEBUPDTE program. This 
function must be performed by a user's label processing routines. IEBUPDTE ~ 
will, however, allow you to create labels on the output data set from data 

88 MVS/ESA Data Facility Product Version 3: Customization 



supplied in the input stream. For more information on the IEBUPDTE program, 
see Utilities. 

IEHMOVE does not allow exits to user routines and does not recognize options 
concerning the processing of user labels as data. IEHMOVE always moves or 
copies user labels directly to a new data set. For more information about 
IEHMOVE, see Utilities. 

Volume switch labels of a multivolume data set cannot be processed by 
IEHMOVE, IEBGENER, or IEBUPDTE. Volume switch labels are therefore lost 
when these utilities create output data sets. To ensure that volume switch 
labels are retained, process multivolume data sets one volume at a time. 

Processing User Labels as Data Set Descriptors 
When user labels are to be processed as data set descriptors, one of the user's 
label processing routines receives control for each user label of the specified 
type. The user's routine can include, exclude, or modify the user label. 

\.._.,; Processing of user labels as data set descriptors is indicated on an EXITS 
statement with keyword parameters that name the label processing routine to 
be used. 

The EXIT keyword parameters indicate that a user routine should receive 
control each time the OPEN, EOV, or CLOSE routine encounters a user label of 
the type specified. 

Figure 38 on page 90 illustrates the action of the system at OPEN, EOV, or 
CLOSE. time. When OPEN, EOV, or CLOSE recognizes a user label and when 
SUL has. been specified on the DD statement for the data set, control is passed 
to the utility program. Then, if an exit has been specified for this type of l~bel, 
the utility program passes control to the user routine. The user's routine 
processes the label and returns control, along with a return code, to the utility 
program. The utility program then returns control to OPEN, EOV, or CLOSE. 

This cycle is repeated up to eight times, depending upon the number of user 
labels in the group and the return codes supplied by the user's routine. 

Chapter 6. User Exit Routines Specified with Utilities 89 



OPEN/EOV/CLOSE 

j 

1 4 
1 

UTILITY program 

.. 

2 3 
1 

User's label 
processing 
routine 

Figure 38. System Action at OPEN, EOV, or CLOSE Time 

Exiting to a User's Totaling Routine 
When an exit is taken to a user's totaling routine, an output record is passed to 
the user's routine just before the record is written. The first halfword of the 
totaling area pointed to by the parameter contains the length of the totaling 
area, and should not be used by the user's routine. If the user has specified 
user label exits, this totaling area (or an image of this area) is pointed to by the 
parameter list passed to the appropriate user label routine. 

An output record is defined as a physical record (block), except when 
IEBGENER is used to process and reformat a data set that contains spanned 
records. 

The code returned by the user's totaling routine determines system response 
as shown in Figure 39. 

Codes 

00 (X'OO') 

04 (X'04') 

08 (X '08 ') 

16 (X' 10 ') 

Meaning 

Processing is to continue, but no further exits 
are to be taken. 

Normal processing is to continue. 

Processing is to terminate, except for EOD processing on the 
output data set (user label processing). 

Processing is to be terminated. 

Figure 39. User Totaling Routine Return Codes 

90 MVS/ESA Data Facility Product Version 3: Customization 

\""'-



I 
\._,,) 

( ' 
\.._./ 

Processing User labels as Data 
When user labels are processed as data, the group of user labels, as well as 
the data set, is subject to the normal processing done by the utility program. 
The user can have labels printed or punched by IEBPTPCH, compared by 
IEBCOMPR, or copied by IEBGENER. 

To specify that user labels are to be processed as data, include a LABELS 
statement in the job step that is to process user labels as data. 

There is no direct relationship between the LABELS statement and the EXITS 
statement. Either or both can appear in the control statement stream for an 
execution of a utility program. If there are user label-processing routines, 
however, their return codes may influence the processing of the labels as data. 
In addition, a user's output label-processing routine can override the action of a 
LABELS statement because it receives control before each output label is 
written. At this time, the label created by the utility as a result of the LABELS 
statement is in the label buffer, and the user's routine can modify it. 

Using the CREATE Statement 
IEBDG provides a user exit so you can provide your own routine to analyze or 
further modify a newly constructed record before it is placed in the output data 
set. 

The CREATE statement defines the contents of a record (or records) to be made 
available to a user routine or to be written directly as an output record (or 
records). 

The format of the CREATE statement is: 

Chapter 6. User Exit Routines Specified with Utilities ,91 



[label] CREATE [QUANTITY= number J 

[,FILL= {'character' IX' 2-hex-digits' }] 

[,INPUT= ddname I SYSIN[(cccc)]] 

[,PICTURE= length,startloc{, 'character-string' I 

,P 'decimal-number' I 

[,FILL= {'character' IX' 2-hex-digits'}] 

[,INPUT= ddname I SYSIN[(cccc)]] 

,B 'decimal-number'}] 

[,PICTURE= /ength,start/oc{, 'character-string' I 

[,NAME= name I (name 1,namen ... ) I 

,P 'decimal-number' I 

(name( COPY= number,name 1,namen ... ), ... )] 

[;EXIT= routinename] 

After processing each potential output record, the user routine should provide a 
return code in register 15 to instruct IEBDG how to handle the output record. 
The user codes are listed below. 

Codes 

00 (X '00') 

04 (X'04') 

12 (OC) 

16 (10) 

Meaning 

The record is to be written. 

The record is not to be written. The skipped record is not to be 
counted as a generated output record; processing is to continue 
as though a record were written. If skips are requested through 
user exits and input records are supplied, each skip causes an 
additional input record to be processed in the generation of 
output records. For example, if a CREATE statement specifies 
that 10 output records are to be generated and a user exit 
indicates that two records are to be skipped, 12 input records are 
processed. 

The processing of the remainder of this set of utility control 
statements is to be bypassed. Processing is to continue with the 
next DSD statement. 

All processing is to halt. 

Figure 40. IEBDG User Exit Return Codes 

92 MVS/ESA Data Facility Product Version 3: Customization 



I 

~ 

\'----'/ 

When an exit routine is loaded and you return control to IEBDG, register 1 

contains the address of the first byte of the output record. Each keyword should 
appear no more than once on any CREATE statement. 

Figure 41 shows the addition of field X to two different records. In record 1, 

field Xis the first field referred to by the CREATE statement; therefore, field X 
begins in the first byte of the output record. In record 2, two fields, field A and 
field B, have already been referred to by a CREATE statement; field X, the next 
field referred to, begins immediately after field B. Field X does not have a 
special starting location in this example. 

Record 1 

1 21 88 

Field X 

Record 2 

1 41 61 88 

Field A Field B Field X 

Figure 41. Default Placement of Fields within an Output Record Using IEBDG 

You can also indicate that a numeric field is to be modified after it has been 
referred to n times by a CREATE statement or statements, that is, after n cycles, 
a modification is to be made. A modification will add a user-specified number 
to a field. 

The CREATE statement constructs an output record by referring to previously 
defined fields by name and/or by providing a picture to be placed in the record. 
You can generate multiple records with a single CREATE statement. 

When defining a picture in a CREATE statement, you must specify its length and 

starting location in the output record. The specified length must be equal to the 
number of specified EBCDIC or numeric characters. (When a specified decimal 
number is converted to packed decimal or binary, it is automatically 
right-aligned.) 

Figure 42 on page 94 shows three ways in which output records can be created 

from utility control statements. 

Chapter 6. User Exit Routines Specified with Utilities 93 



1. Fields only 

CREATE 

2. Fie Ids and 
picture 

CREATE 

3. Picture only 

Output record 

3 5 

2 3 Picture 

r-==I .. Output record 

~'~--~--~-Pi_ct_u_re ________ ~ 

4 5 

Figure 42. Creating Output Records with Utility Control Statements 

As an alternative to creating output records from utility control statements 
alone, you can provide input records, which can be modified and written as 
output records. Input records can be provided directly in the input stream, or in 
a separate data set. Only one input data set can be read for each CREATE 
statement. 

As previously mentioned, the CREATE statement is responsible for the 
construction of an output record. An output record is constructed in the 
following order: 

1. A fill character, specified or default (binary zero), is initially loaded into 
each byte of the output record. 

2. If the IN PUT operand is specified on the CREATE statement, and not on an 
FD statement, the input records are left-aligned in the corresponding output 
record. 

3. If the INPUT operand specifies a ddname in any FD statement, only the 
fields described by the FD statement(s) are placed in the output record. 

4. FD fields, if any, are placed in the output record in the order of the 
appearance of their names in the CREATE statement. 

5. A CREATE statement picture, if any, is placed in the output record. 

A set of utility control statements contains one DSD statement, any number of 
FD, CREATE, and REPEAT statements, and one END statement when the INPUT 
parameter is omitted from the FD card. 

When selecting fields from an input record (FD INPUT= ddname), the field must 
be defined by an FD statement within each set of utility control statements. In 
that case, defined fields for field selection are not usable across sets of utility 
control statements; such an FD card may be duplicated and used in more than 
one set of utility control statements within the job step. 

94 MVS/ESA Data Facility Product Version 3: Customization 

\~ 



\..__./ 

I 

~ 

Chapter 7. EXCP Appendages 

General: Guidance 
An appendage is a programmer-written routine that provides additional control 
over 1/0 operations. By using appendages, you can examine the status of 1/0 
operations and determine the actions to be taken for various conditions. An 
appendage may receive control when one of the following occurs: 

• EXCP SVC 

• Program-controlled interrupt 

• End of extent 

• Channel end 

• Abnormal end. 

EXCP appendages are shown in Figure 43. 

Note: EXCP is not recommended for 1/0 operations with data storage devices. 

Figure 43. EXCP Appendages 

Appendage Description When Available 

ABE Abnormal-end Abnormal conditions 

CHE Channel-end Channel-end, unit exception, 
wrong-length record 

EOE End-of-extent Address in 1/0 block outside 
allocated extent limits 

PCI Prag ram-control I ed When one or more PCI bits are on 
interruption in a channel program 

SIO Start-110 EXCP processor right before 
translating channel program 

Chapter 7. EXCP Appendages 95 



Appendages get control in supervisor state, receiving the following pointers 
from the EXCP processor (see Figure 44). 

Register Contents 

1 Points to the request queue element for the channel program 

2 Points to the input/output block (IOB) 

3 Points to the data extent block (DEB) 

4 Points to the data control block (DCB) 

6 Points to the seek address if control is given to 
an end-of-extent (EOE) appendage 

7 Points to the unit control block (UCB) 

13 Points to a 16-word area you can use to save input 
registers or data 

14 Points to the location in the EXCP processor where control 
is to be returned after execution of an appendage. When returning 
control to the EXCP processor, you may use displacements from the 
return address in register 14. Allowable displacements are 
summarized in Figure 45, and described later for each 
appendage. 

15 Points to the entry point of the appendage 

Figure 44. Contents of Registers at Entry to EXCP Appendages 

The processing done by appendages is subject to these requirements and 
restrictions: 

• Register 9, if used, must be set to binary zeros before control is returned to 
the system. All other registers, except those indicated in the descriptions of 
each appendage, must be saved and restored if you use them. Figure 45 
sum·marizes register conventions. 

• No SVC instructions or instructions that change the status of the system (for 
example, WTO, LPSW, or any privileged instructions) can be issued. 

• Loops that test for the completion of 110 operations must not be used. 

• Storage used by the 1/0 supervisor or EXCP processor must not be altered. 

The types of appendages are described in the following sections, with 
explanations of when they are created, how they return control to the system, 
and which registers they may use without saving and restoring their contents. 

Note: All user-specified appendages are given control in 24-bit addressing 
mode and must return in the same mode. 

96 MVS/ESA Data Facility Product Version 3: Customization 

·\.._., 



\..._../ 

( 
\.._,,/ 

"-.../, 

I ' 
~ 

\. __ j 

Figure 45. Entry Points, Returns, and Available Work Registers for Appendages 

Entry Available Work 
Appendage Point Returns Registers 

EOE Reg 15 Reg 14 + 0 Return 
Reg 14 + 4 Skip Reg. 10, 11, 12, and 
Reg 14 + 8 Try Again 13 

SIO Reg 15 Reg 14 + 0 Normal Reg. 10, 11, and 13 
Reg 14 + 4 Skip 

PCI Reg 15 Reg 14 + 0 Normal Reg. 10, 11, 12, and 
13 

CHE Reg 15 Reg 14 + 0 Normal Reg. 10, 11, 12, and 
Reg 14 + 4 Skip 13 
Reg 14 + 8 Re-EXCP 
Reg 14 + By-Pass 
12 

ABE Reg 15 Reg 14 + 0 Normal 
Reg 14 + 4 Skip Reg. 10, 11, 12, and 
Reg 14 + 8 Re-EXCP 13 
Reg 14 + By-Pass 
12 

Note to Figure 45: Certain register conventions for passing parameters from 
appendages to the EXCP processor must be followed. These conventions are 
described in the individual appendage descriptions. 

Making Your Appendages Part of the System 
Before your appendages can be executed-, they must become members of 
either the SYS1 .LPALIB or SYS1 .SVCLIB data set. There are two ways to put 
appendages into SYS1.LPALIB or SYS1.SVCLIB: They can be included at 
system generation using the DATASET macro instruction (a full explanation 
appears in System Generation), or they can be link-edited into SYS1 .LPALIB or 
SYS1 .SVCLIB after the system has been generated. Each appendage must 
have an 8-character member name, the first six characters being IGG019 and 
the last two being anything in the range from WA to Z9. Note, however, if your 
program runs in a V = R address space and uses a PCI appendage, the PCI 
appendage and any appendage that the PCI appendage refers to must be 
placed in either SYS1 .SVCLIB or the fixed link pack area (LPA). For information 
on providing a list of programs to be fixed in storage, see Initialization and 
Tuning. 

The Authorized Appendage List (IEAAPPOO) 
If an "unauthorized" program opens a DCB to be used with an EXCP macro 
instruction, the names of any appendages associated with the DCB must be 
listed in the IEAAPPOO member of SYS1.PARMLIB. (An "unauthorized" program 
is one that runs in a protection key greater than 7 and has not been marked as 
authorized by the Authorized Program Facility.) 

If your appendages were put in SYS1.LPALIB or SYS1.SVCLIB at system 
generation, their names are automatically put in IEAAPPOO. If your appendages 
were added to SYS1.LPALIB or SYS1.SVCLIB after system generation, you can 

Chapter 7. EXCP Appendages 97 



add IEAAPPOO to SYS1.PARMLIB and put the names of the appendages in it in 
one job step with the IEBUPDTE utility. 

Here is an example of JCL statements and IEBUPDTE input that will add 
IEAAPPOO to SYS1.PARMLIB and put the names of one EOE appendage, two SIO 
appendages, two CHE appendages, and one ABE appendage in IEAAPPOO: 

II JOB 
II EXEC 
llSYSPRINT DD 
llSYSUT2 DD 
llSYSIN DD 
·I ADD 
EOEAPP WA, 
SIOAPP Xl ,X2, 
CHEAPP Z3,Z4, 
ABEAPP Z2 
I* 

PGM=I EBUPDTE 
SYSOUT=A 
DSN=SYSl.PARMLIB,DISP=OLD 
* 
NAME=IEAAPP88,LIST=ALL 

Note the following about the IEBUPDTE input: 

• The type of appendage is identified by six characters that begin in coll)mn 
1. EOEAPP identifies an EOE appendage, SIOAPP an SIO appendage, 
CHEAPP a CHE appendage, and ABEAPP an ABE appendage. (The PCI 
appendage identifier, PCIAPP, is not shown, because the example does not 
add a PCI appendage name to IEAAPPOO.) 

• Only the last two characters in an appendage's name are specified, 
beginning in column 8. 

• Each statement that identifies one or more appendage names ends in a 
comma, except the last statement. 

You can also use IEBUPDTE to add appendage names later or to delete 
appendage names. Here is an example of JCL statements and IEBUPDTE input 
that adds the names of a PCI and an ABE appendage to the IEAAPPOO 
appendage list that was created in the preceding example, and deletes the 
name of an SIO appendage from that list: 

II JOB. 
II EXEC 
llSYSPRINT DD 
llSYSUT2 DD 
llSYSIN DD 
·I REPL 
PCIAPP Yl, 
EOEAPP WA, 
SIOAPP Xl ,X2, 
CHEAPP Z3,Z4, 
ABEAPP Z2,Z4 
I* 

PGM=IEBUPDTE 
SYSOUT=A 
DSN=SYSl.PARMLIB,DISP=OLD 
* 
NAME=IEAPP88,LIST=ALL 

Note the following about the IEBUPDTE input: 

• The command to IEBUPDTE in this case is REPL (replace). 
• All the appendage names that are to remain in IEAAPPOO are repeated. 
• IGG019Z4 is both a CHE and an ABE appendage. 

98 MVS/ESA Data Facility Product Version 3: Customization 

I ! 

~ 



Abnormal-End (ABE) Appendage 
This appendage may be entered on abnormal conditions, such as unit check, 
unit exception, wrong-length indication, program check, protection check, 
channel data check, channel control check, interface control check, chaining 
check, out-of-extent error, and intercept condition (that is, device end error). It 
may also be entered when an EXCP is issued for a request queue element that 
has already been purged. 

1. When this appendage is entered because of a unit exception or 
wrong-length record indication or both, IOBECBCC is set to X 141 1

• For 
further information on these conditions, see "Channel-End (CHE) 
Appendage" on page 100. 

2. When the appendage is entered because of an out-of-extent error, the 
IOBECBCC is set to X 142 1

• 

3. When this appendage is entered with IOBECBCC set to X 148 1 , it is because 
of: 

a. The tape error recovery procedure (ERP) encountering an unexpected 
load point, or 

b. The tape ERP finding zeros in the command address field of the CSW. 

4. When the appendage is first entered because of an intercept condition, the 
IOBECBCC is set to X 1 ?E 1

• If it is then determined that the error condition 
is permanent, the appendage will be entered a second time with the 
IOBECBCC set to X 144 1 • The intercept condition signals that an error was 
detected at device 'end after channel end on the previous request. 

5. When the appendage is entered because of an EXCP being issued to an 
already purged request queue element, this request will enter the ABE 
appendage with the IOBECBCC set to X 148 1

• This applies only to related 
requests. 

6. If the appendage is entered with IOBECBCC set to X 1 ?F 1
, it may be because 

of a unit check, program check, protection check, channel data check, 
channel control check, interface control check, or chaining check. If the 
IOBECBCC is X 1 ?F 1 , it is the first detection of an error in the associated 
channel program. If the IOBEX flag (bit 5 of the IOBFLAG1) is on, the 
IOBECBCC field will contain X 141 1

, X 142 1
, X 148 1

, X 148 1 , or X 14F 1
, indicating 

a permanent 1/0 error. 

To determine if an error is permanent, you should check the IOBECBCC field of 
the 108. To determine the type of error, check the channel status word field 
and the sense information in the 108. However, when the IOBECBCC is X 142 1

, 

X 148 1 , or X 14F 1 , these fields are not applicable. For X 144 1
, the CSW is 

applicable, but the sense is valid only if the unit check bit is set. 

Chapter 7. EXCP Appendages 99 



If you use the return address in register 14 to return control to the system, the 
channel program is posted complete, and its request element is made 
available. You may use the following optional return addresses: \~ 

• Contents of register 14 plus 4: The channel program is not posted 
complete, but its request element is made available. You may post the 
channel program by using the calling sequence described under the SIO 
(start-1/0) appendage. 

• Contents of register 14 plus 8: The channel program is not posted 
complete, and its request element is placed back on the request queue so 
that the request can be retried. Reinitialize the IOBFLAG1, IOBFLAG2, and 
IOBFLAG3 fields of the input/output block and set the IOBERRCT field to 
zero. As an added precaution, clear the IOBSENSO, IOBSENS1, and 
IOBCSW fields. 

• Contents of register 14 plus 12: The channel program is not posted 
complete, and its request element is not made available. (This return must 
be used if, and only if, the appendage has passed the RQE to the exit 
effector for use in scheduling an asynchronous routine.) 

You may use registers 10 through 13 in an ABE appendage without saving ·and 
restoring their contents. 

Channel-End (CHE) Appendage 
This appendage is entered when a channel end (CHE), unit exception (UE) with 
or without channel end or when channel end with wrong-length record (WLR) 
occurs without any other abnormal-end conditions. 

l.f you use the return address in register 14 to return control to the EXCP 
processor, the channel program is posted complete, and its request element is 
made available. In the case of unit exception or wrong-length record, the ERP 
is performed before the channel program is posted complete, and the IOBEX 
flag (X 104 1

) in IOBFLAG1 is set on. The CSW status may be obtained from the 
IOBCSW field. 

If the appendage takes care of the wrong-length record or unit exception or 
both, it may turn off the IOBEX (X 104 ') flag in IOBFLAG1 and return normally. 
The event will then be posted complete (completion code X 1?F 1 under normal 
conditions, taken from the high-order byte of the IOBECBCC field). If the 
appendage returns normally without resetting the IOBEX flag to zero, the 
request will be routed to the associated device ERP, and the ABE 
(abnormal-end) appendage will then be entered with the completion code in 
IOBECBCC set to X 1 41 1 if the ERP could not correct the error. (See Step 1 of 
"Abnormal-End (ABE) Appendage" on page 99.) 

You may use the following optional return addresses: 

• Contents of register 14 plus 4: The channel program is not posted 
complete, but its request element is made available. You may post the 
channel program by using the calling sequence described under the SIO 
(start-1/0) appendage. This is especially useful if you want to post an ECB \~ 
other than the ECB in the input/output block. 

100 MVS/ESA Data Facility Product Version 3: Customization 



• Contents of register 14 plus 8: The channel program is not posted 
complete, and its request element is placed back on the request queue so 
that the 110 operation can be retried. For correct reexecution of the channel 
program, you must reinitialize the IOBFLAG1, IOBFLAG2, and IOBFLAG3 
fields of the input/output block and set the "Error Counts" field to zero. As 
an added precaution, the IOBSENSO, IOBSENS1, and IOBCSW fields should 
be cleared. 

• Contents of register 14 plus 12: The channel program is not posted 
complete, and its request element is not made available. (This return must 
be used if, and only if, the appendage has passed the RQE to the exit 
effector for use in scheduling an asynchronous routine. For information on 
the exit effector, see MVSCP.) 

You may use registers 10 through 13 in a CHE appendage without saving and 
restoring their contents. 

\ ' 

~ End-of-Extent {EOE) Appendage 

i 
\_.,/ 

This appendage is entered when the seek address specified in the input/output 
block is outside the allocated extent limits indicated in the data extent block. 

If you use the return address in register 14 to return control to the system, the 
ABE appendage is entered. An end-of-extent error code (X 142 1

) is placed in the 
"ECB code" field of the input/output block for subsequent posting in the ECB. 

You may use the following optional return addresses: 

• Contents of register 14 plus 4: The channel program is posted complete; its 
request element is returned to the available queue. 

• Contents of register 14 plus 8: The request is tried again. 

You may use registers 10 through 13 in an EOE appendage without saving and 
restoring their contents. 

Note: If an end-of-cylinder or file-protect condition occurs, the EXCP processor 
updates the seek address to the next higher cylinder or track address and 
reexecutes the request. If the new seek address is within the data set's extent, 
the request is executed; if the new seek address is not within the data set's 
extent, the EOE appendage is entered. If you want to try the request in the next 
extent, you must move the new seek address to the location pointed to by 
register 6. 

If a file protect is caused by a full seek (command code =07) embedded within 
a channel program, the request is flagged as a permanent error, and the ABE 
appendage is entered. 

Chapter 7. EXCP Appendages 101 



Program-Controlled Interruption (PCI) Appendage 

This appendage is entered at least once if the channel finds one or more PCI 
bits on in a channel program. It may be entered as many times as the channel 
finds PCI bits on. Before the appendage is entered, the contents of the 
subchannel status word are placed in the "channel status word" field of the 
input/output block. 

A PCI appendage is reentered if an ERP is retrying a channel program in which 
a PCI bit is on. The IOB error flag is set when the ERP is in control (IOBFLAG1 
= X 120 1 

). (For special PCI conditions encountered with command retry, see 
"Channel Programming Considerations," System-Data Administration.) 

To post the channel program from a PCI appendage, the procedure described 
for the SIO appendage is used if the step is running ADD RS PC= VIRT or an 
authorized program is running V = R. If the step is running AD DRS PC= REAL 
and an authorized program issued the EXCP request or if SVC 114(EXCPVR) 
was issued, the PCI appendage uses real storage addresses, and the following 
procedure is used to post the .channel program from the PCI appendage. 

1. Put the completion code in register 10 and place X 180 1 in the high-order 
byte to indicate the key is in register 0 (step 5). 

2. Put X 1 80' in the high-order byte of register 11 and the address of the ECB 
in the low-order bytes. 

3. Put X 1 80 1 in the high-order byte of register 12 and the address of a BR 14 
instruction in the low-order bytes. This BR 14 must be in storage 
addressable from any address space (for example, CVTBRET) and must be 
in storage addressable by 24 bits. Note that only registers 9 and 14 are 
restored when you use this option. 

4. Put the address of the ASCB in register 13. 

5. Put the requester's key in register.0. 

6. Put the address of the post routine (found at CVTOPT01 in the 
communications vector table) in register 15. 

7. Go to the post routine using BALR 14,15. Upon return, only registers 9 and 
14 are valid. For more information on the POST routine, see Application 
Development Macro Reference. 

This procedure can be used even if the PCI appendage uses virtual storage 
addresses, but performance may be slightly slower. 

To return control to the EXCP processor for normal interruption processing, use 
the return address in register 14. 

102 MVS/ESA Data Facility Product Version 3: Customization 



( 

\ ; 
..__/ 

Start-110 (SIO) Appendage 

Unless an ERP is in control, the EXCP processor passes control to the SIO 
appendage just before the EXCP processor translates your channel program. 

Optional return vectors give the 1/0 requester the following choices: 

Reg. 14 + 0 
Normal return. Normal channel program translation and initiation of 1/0. 

Reg. 14 + 4 
Skip the 1/0 operation. The channel program is not posted complete, but 
the request queue element is made available. You may post the channel 
program as follows: 

1. Save necessary registers. 

2. Put the address of the post routine (found at CVTOPT01 in the 
communications vector table) in register 15. 

3. Place the ECB address from the 108 in register 11. 

4. Set the completion code in register 10. These are the four bytes of an 

ECB. 

5. Go to the post routine pointed to by the CVT, using BALR 14, 15. 

Chapter 7. EXCP Appendages 103 



\ 
~ 

\ ) 
'..._/ 

\ ... _,) 



\ 

'--"' 

Chapter 8. Interactive Storage Management Facility (ISMF) 

General Guidance 
ISMF helps you manage data and storage interactively. It is designed to use 
the space management, backup/recovery, and sorting functions provided by 
Data Facility Hierarchical Storage Manager (DFHSM), Data Facility Data Set 
Services (DFDSS), Device Services Facility (ICKDSF), and Data Facility Sort 
(DFSORT) to perform a variety of tasks. As an ISPF application, ISMF has a 
structure that is modeled after ISPF. Because ISMF was written using the 
procedures described in /SPF Dialog Management Services, it can be modified 
using the same techniques. DFDSS/ISMF, ICKDSF/ISMF, DFSORT/ISMF, and 
DFHSM/ISMF can be modified with these techniques. 

Restrictions to Customizing _ 
Before we_ talk about what you can change about ISMF, there are three 
guidelines you should keep in mind: 

1. Before you change anything you should make a backup copy of ISMF. Keep 
this unmodified version of the product for diagnostic pul'.'poses. IBM support 
and maintenance is provided for only the unmodified version of ISMF. 

2. Do not delete or rename any of the parts of ISMF. Deleting or renaming a 
part could severely impact processing, or cause ISMF ~o fail. 

3. ISMF is copyrighted. Under the IBM licensing agreement you may modify 
ISMF for your own use. You may not modify it for commercial resale. 

Other restrictions apply to the individual parts. These are presented with the 
detailed descriptions of how to modify each part on pages 108 through 131. 

The Parts of ISMF That You Can Customize 
ISMF allows you to customize the following parts for all ISMF applications: 

Panels 
Messages 
Job skeletons 
Command tables 
CLIST 

They are shipped in individual libraries. The changes you can make to each 
library are discussed on page 106. 

Chapter 8. Interactive Storage Management Facility (ISMF) 105 



The Panel Library 
ISMF allows you to make the following changes to the panel library: 

Change the initial priming values that ISMF ships 
Change the default values for data entry panels 
Provide additional restrictions to values entered for certain fields on panels 
Remove fields from functional panels 
Change highlighting and color 
Change the format of the panel 
Modify existing functional panel text and help text 
Add new fields to panels 
Add new panels 

The Message Library 
In the message library you can modify existing messages and add new 
messages. 

The Skeleton library 

The Table Library 

The Load Library 

The CLIST Library 

In the skeleton library you can modify the job skeletons for ISMF commands 
and line operators. · 

In the table library you can modify the ISPF command tables. 

In the load library you can modify the ISMF command and line operator tables. 
The tables are contained in nonexecutable CSECTs in the load library. 

In the CLIST library you can modify the options on the CLIST CONTROL 
statement. 

Finding the Libraries You Want to Customize 
If you are currently running ISMF, you can use the procedures described in this 
section to find the ISMF libraries you want to customize. If you are not running 
ISMF, and you need information about linking to the correct libraries, these 
books will help you: 

• System Generation 
• DFDSS!ISMF: Installation Planning Guide 
• Data Facility Hierarchical Storage Manager: Version 2 Release 4 Installation 

and Customization Guide 
• DFSORT Installation and Customization 
• ICKDSF System Control Programming Specifications 

Once you are linked to ISMF, the method you use to find the ISMF libraries 
depends on the library you want to modify. 

Panel, Message, Skeleton, and Table Libraries: To find the right libraries for 
panels, messages, skeletons, and tables, use the TSO LISTALC STATUS 
command to determine the data set name associated with the DDNAME for the 
library. The DDNAMEs ISMF uses are listed in Figure 46 on page 107. 

106 MVS/ESA Data Facility Product Version 3: Customization 



\___,,/ 

Figure 46. DDNAMEs for the Panel, 
Message, Skeleton, and Table Libraries 

Library DD NAME 

Panel ISPPLIB 

Message ISPMLIB 

Skeleton ISPSLIB 

Table ISPTLIB1 

ISPTABL2 

Load and CLIST Library: The placement of the load library and the CLIST 

library is determined by the way ISMF is installed. The CLIST library DDNAME 

is SYSPROC or ISPCLIB. The load library may be given a DDNAME ISPLLIB or 

STEPLIB, or it may be made a part of the link pack area or.the system link 

library. Figure 47 lists the DDNAME for the CLIST library and location or 
DDNAME for the load library. 

Figure 47. DDNAMEs or Locations for the Load 
and CLIST Libraries 

Library 

Load 

CLIST 

Location/DD NAME 

ISPLLIB or STEPLIB or 
System link library or 
Link pack area 

SYSPROC or ISPCLIB 

Making Changes and Testing Them 

1 Input table library. 

2 Output table library 

The best way to make and test changes in any of the ISMF libraries is to copy 

the member you want to modify from the ISMF library into a personal library. 

Add your library to the beginning of the existing concatenation that you or your 

installation uses. This ensures that you can safely make changes without 

impacting the other libraries in the concatenation. Once you've tested the 

changes, you can then change the concatenation to make the modified part 

available to a larger group of people, your department for example. If you want 

the change to be used by the entire installation, you can copy the member from 

your personal library back into the ISMF library. For members of the panel, 

message, skeleton, table, and CLIST libraries you can note the changes in the 

comment section at the beginning of the modified member. Remember to keep 

an unmodified copy for service and maintenance. 

Chapter 8. Interactive Storage Management Facility (ISMF) 107 



Note: The load library is an exception. The methods you can use to modify the 
static text and ISMF tables in the load library are discussed in "Customizing the 
ISMF Command and Line Operator Tables" on page 124. 

Customizing Panels 
This chapter describes how to customize panels. It explains the changes you 
can make in the panel library. There are several restrictions to keep in mind 
both as you plan the way you want to customize panels, and as you use the 
procedures described in this chapter. They are listed at the beginning of each 
section. 

Modifying Panel Definition 

Restrictions 
1. If you decide to change the initial priming values or default values on data 

entry or data selection panels, the new values must be set to run through 
the same verification code as the valu·es supplied by ISMF. Otherwise, you 
may pass a value that is invalid .. 

2. If you remove a field from a panel by removing it from the )BODY section of 
the panel, you still need to supply an acceptable value for it in the )PROC 

·section. 

3. You can add new fields to existing panels, or create new panels, but ISMF 
won't have reference to them. 

4. You can't move input fields from one panel to another. 

5. You can change the format of most ISMF panels. However, if you decide to 
modify the FILTER Entry Panel or the SORT Entry Panel, you should look 
carefully at the validity checking in the )PROC section. The checking on 
these panels is done from left to right; changing the order of the input fields 
on these panels might impact the processing of values entered on the 
panels. 

6. ISPF can display screens with a maximum of 24 lines. So, even if you use 
terminals that can display larger panels, you should be careful not to 
increase the number of lines in the )BODY section beyond 24. If the )BODY 
section is larger than 24 lines, the panel display will fail. 

7. ISMF entry panels for data set and volume applications are designed to 
display default values if the user blanks out any of the fields on the panel. 
ISMF entry panels for all other applications display blanks if user blanks out 
any of the fields on the panel. In either case, because of the cursor 
positioning, you should preserve the order of the statements in the )PROC 
section that control the default redisplay. The )PROC section of each entry 
panel contains comments that identify the statements that should be kept in 
order. 

108 MVS/ESA Data Facility Product Version 3: Customization 



Finding the Panel You Want to Change 
Most of the changes you can make to ISMF panels are done in the panel 

\.._.,,/ library. The member name for an individual panel in the library is the panel ID 

that appears in the upper left hand corner of the panel when you use the ISPF 

PANELID command (see Figure 48). 

DGTDDDSl 
COMMAND ===> 

DATA SET SELECTION ENTRY PANEL 

Figure 48. Displaying the Panel ID 

Testing the Changes 
There are three ways to test the customizing you do on panels: 

1. l.nvoke ISPF in test mode 

This will cause ISPF to refetch the panel when you display it after you've 

made changes. 

2. Test your changes using the ISPF Dialog Test option 

This will cause ISPF to refetch the panel when you display it after you've 

made changes. 

3. Make your changes and then exit and reinvoke ISPF 

When you invoke ISMF the modified panel will be displayed. 

Changing Initial Priming Values on Data Entry Panels 
The initial priming values for data entry panels are controlled by the )INIT 

section of each panel, with the exception of the profile entry panels. When you 

invoke a panel, ISPF executes the )INIT section before displaying the panel. 

The statements in the )INIT section look at the value stored in the application 

profile pool (APP) for each field on the panel. If the value in the APP is blank, 

ISPF substitutes the value from the )INIT section of the panel. Because the 

initial priming values for the profile entry panels are already stored in the APP, 

they cannot be changed. 

To change the priming values for a particular panel, you change the statements 

in the )INIT section of that panel. For example, Figure 49 on page 110 is the 

Delete Entry Panel as it is initially displayed. 

Chapter 8. Interactive Storage Management Facility (ISMF) 109 



, 
DGTDDDL2 

DELETE ENTRY PANEL 
COMMAND ===> 

OPTIONALLY SPECIFY ONE OR MORE TO UNCATALOG 
DATA SET: USER2.TEMP.TEMP 

SCRATCH DATA SET ===> Y 

CLEAR DATA SET WITH ZEROES ===> Y 

DELETE EVEN IF UNEXPIRED ===> N 

DATA SET PASSWORD ===> 

USE ENTER TO PERFORM DELETE; 

(Y or N) 

(Y or N) 

(Y or N) 

(if password protected) 

USE HELP COMMAND FOR HELP; USE END COMMAND TO EXIT. 

Figure 49. Entry Panel for Delete 

Figure 50 shows the priming values from the )INIT section of the panel. For 
example, 

IF (&FDDLSCDS = I') &FDDLSCDS = I y I 

states that if the value for SCRATCH DATA SET is blank in the APP, ISMF will 
substitute a Y when the )INIT section is executed before the panel is displayed. 
If you want that field to be primed with an N, you can change the statement to 
read 

IF (&FDDLSCDS = I') 

) INIT 
&ZHINDEX = DGTHIXOO 
.HELP = DGTHDL02 
&DGTMHELP = DGTHDL02 

&FDDLSCDS = 1 N1 

.ZVARS = I (FDDLSCDS FDDLCDWZ FDDLDEIU) I 

IF (&FDDLSCDS = I I ) 

IF (&FDDLCDWZ = '') 
IF (&FDDLDEIU = I I ) 

&FDDLDSP\.I = I I 

.CURSOR = &FDDLFLDP 

.CSRPOS = &FDDLCPOS 

&FOOLS CDS = I y I 
&FDDLCDWZ = I y I 
&FDDLDEIU = 'N' 

Figure 50. Values in the INIT Section of the Delete Entry Panel 

110 MVS/ESA Data Facility Product Version 3: Customization 

\ ) 
"'--' 



Changing Default Values for Data Entry Panels 
When you blank out fields on a data set or volume application data entry panel, 

ISMF will supply the defaults. The defaults come from the statements in the 

)PROC section of each entry panel. Figure 51 shows the default values in the 

)PROC section of the Delete Entry Panel. 

) REIN IT 
REFRESH(*) 

)PROC 

/*********************************************************************/ 
/* */ 
/* Default values for variables left blank */ 
/* */ 
/*********************************************************************/ 

&DDDL2RD = 'N' 
IF (&FDDLCDWZ = I I 

&DDDL2RD = 'Y' 
IF (&FDDLDEIU = I I 

&DDDL2RD = 'Y' 

&FDDLCDWZ = 'Y' 

&FDDLDE IU = IN I 

/* The following two statements MUST remain together to ensure */ 
/* correct cursor positioning on the re-display of the panel. */ 

IF (&FDDLSCDS = I I ) &FDDLSCDS = 'Y' 
&DDDL2RD = 'Y' 

IF (&DDDL2RD = 'Y') 
.MSG = DGTUVC:l91 

Figure 51. ISMF Default Values for the Delete Entry Panel 

If you want to change the value ISMF displays when you blank out a specific 

field, you can change the statement that corresponds to that field in the ) PROC 

section of the panel. To ensure that the cursor is positioned in the correct 

place when the panel is redisplayed, be sure to preserve the order of the 

statements that are identified by the comments in the )PROC section. 

Chapter 8. Interactive Storage Management Facility (ISMF) 111 



Restricting Values for Specific Input Fields 
The )PROC section also checks each value entered on a panel to make sure 
that it is valid. Figure 52 is the first page of the Data Set Selection Entry Panel. \"-' 
Figure 53 on page 113 shows the validity checking that ISMF does for the 
values entered on this panel. 

DGTDDDSl 
DATA SET SELECTION ENTRY PANEL Page 1 of 3 COMMAND ===> 

TO GENERATE A DATA SET LIST, SPECIFY: 

DATA SET NAME ===> ** 

SELECT SOURCE OF GENERATED LIST ===> 2 

GENERATE LIST FROM VTOC 
VOLUME SERIAL NUMBER ===> 

2 GENERATE LIST FROM CATALOG 
CATALOG NAME ===> 

CATALOG PASSWORD ===> 
VOLUME SERIAL NUMBER ===> 
ACQUIRE DATA FROM VOLUME ===> Y 
ACQUIRE DATA IF DFHSM MIGRATED ===> N 

(fully or partially qualified) 

(1 or 2) 

(fully or partially specified) 

(if password protected) 
(fully or partially specified) 
(Y or N) 
(Y or N) 

USE ENTER TO PERFORM SELECTION; USE DOWN COMMAND TO VIEW NEXT SELECTION PANEL; USE HELP COMMAND FOR HELP; USE END COMMAND TO EXIT. 

Figure 52. Page 1 of the Data Set Selection Entry Panel 

112 MVS/ESA Data Facility Product Version 3: Customization 

·,._,,-



l 

\._,,I 

/*********************************************************************/ 
/* . */ 
/* Check input variables for illegal values. */ 
/* */ 
/* If SELECT SOURCE OF GENERATED LIST is 1 then VOLUME SERIAL NUM- */ 
/* BER must be specified. Note that VOLUME SERIAL cannot be *. */ 
/* */ 
/* If SELECT SOURCE OF GENERATED LIST is 2 then the following things*/ 
/* must be checked: */ 
/* *I 
/* 1. If DATA SET NAME IS '*' or '**' then the CATALOG NAME must */ 
/* be specified. */ 
/* 2. ACQUIRE DATA FROM VOLUME must be specified. {Y or N) */ 
/* 3. ACQUIRE DATA IF DFHSM MIGRATED must be specified. (Y or N) */ 
/* 4. Note that CATALOG NAME must be a valid dsn but it cannot */ 
/* be a member of a pds. */ 
/* *I 
/*********************************************************************/ 

VER (&FDDSDSNM NB) 
VER (&FDDSSSGL NB LIST 1 2) 

IF (&FDDSSSGL = '1') 
VER (FDDDSVSNl NB) 
IF (&FDDSVSNl = '*') 

VER (&FDDSVSNl LIST I I MSG=DGTUV819) 

IF (&FDDSSSGL = '2') 

&DSNCKl = TRUNC(&FDDSDSNM,'. I 
IF (&DSNCKl = I I I* I I I I** I I I I* I I I I I I** I I I) 

' ' ' VER (&FDDSCTLN NB) 

IF (&ZPREFIX = I') 
IF (&DSNCKl = '*','**') 

VER (&FDDSCTLN NB) 

VER (&FDDSADFV NB LIST Y N MSG=DGTUV885) 
VER (&FDDSADHM NB LIST Y N MSG=DGTUV885) 

) END 

Figure 53. Validity Checking on the Data Set Selection Entry Panel 

If you want to further restrict valid values for any of the fields on the panel, you 
can add your own statements to the part of the )PROC section that does validity 
checking. For example, to prevent users from accessing the system residence 
volume, you could add a statement that makes '******' an invalid entry for the 
VOLUME SERIAL NUMBER field. The format of the statement would be 

IF (&FDDSVSNl = '******') 
VER (&FDDSVSNl LIST I I MSG=XXXXXXXX) 

The message ID, XXXXXXXX, is a message you have added explaining the 
restriction. In this case the user will not be able to generate a data set list until 
the value in the VOLUME SERIAL NUMBER field is valid. For more information 
on creating messages, see "Customizing Messages" on page 121, and /SPF 
Dialog Management Services. 

Chapter 8. Interactive Storage Management Facility (ISMF) 113 



Removing Fields 
You can remove a field from a panel by deleting it from the )BODY section of 
the coding for the panel. However, you should keep in mind that there may be 
more work involved than simply deleting the field. When you plan to remove a 
field you should look carefully at the )INIT and )PROC sections of the panel to 
see how that field is referenced. To accommodate changes you make to the 
body of the panel, you may need to modify the statements for defaulting in the 
)INIT and )PROC sections, and the verification code in the )PROC section. For 
example, to remove the CATALOG NAME field from the Data Set Selection Entry 
Panel, you would look at the code from the panel that applies to CATALOG 
NAME: 

1. The initial default value supplied by the )INIT section 

2. The default supplied by the )PROC section if the user enters a blank 

3. The verification code that corresponds to the field 

Since ISMF does not ship a default for CATALOG NAME in the APP, and both of 
the default statements supply a blank, 

IF (&FDDSCTLN = I') &FDDSCTLN = I I 

you do not need to modify either of the default statements to remove the field. 

However, you do need to change the verification code. The code that applies to 
the CATALOG NAME field is 

IF (&FDDSSSGL = '2') 

&DSNCKl = TRUNC(&FDDSDSNM,'. I 

I F ( &D s N c K 1 = I I I * I ' I I I * * I ' I I I * I I I ' I I I * * I I I ) 

VER (&FDDSCTLN NB) 

IF (&ZPREFIX = I') 
IF (&DSNCKl = 1* 1

,
1 ** 1

) 

VER (&FDDSCTLN NB) 

If option 2 is specified for SELECT SOURCE OF GENERATED LIST (the variable 
&FDDSSSGL) and the data set name ( the variable &DSNCK1) is either quoted 
with an asterisk as the high level qualifier ('*.LOAD'), or a quoted double 
asterisk ( 1** 1 

), the code checks to ensure that a catalog name has been 
supplied. Thus to remove the CATALOG NAME field from the panel you need to 
change the verification code. The new code should refer to a message that 
explains that for a list that is generated from the catalog, 1 * 1 and 1** 1 are not 
valid ways of specifying the data set name: 

IF ( &D s N c K 1 = I I I * I I I I * * I I I I * I I I I I I * * I I I ) 

' ' ' .MSG = XXXXXXXX 

Highlighting and Color 
The highlighting and color on ISMF panels are controlled by the statements in 
the )ATTR section of the panel. 

114 MVS/ESA Data Facility Product Version 3: Customization 



\"--" 

\~ 

\_..,;) 

For highlighting, the attribute characters are set explicitly by ISMF. For 
example, 

~ TYPE(INPUT) INTENS(NON) 
$ TYPE(INPUT) INTENS(HIGH) JUST(RIGHT) 
+ TYPE(TEXT) INTENS(LOW) SKIP(ON) 
% TYPE(TEXT) INTENS(HIGH) SKIP(ON) 

Color is based on ISPF defaults for the protection and intensity attributes 
specified with the TYPE and INTENS keywords. Color is also dependent on the 
hardware capabilities of the terminals you use. Figure 54 shows the ISPF 
defaults. 

Figure 54. Default Colors 

Color Field Type Intensity 

Green input low 

Blue text/o'utput low 

Red input high 

White text/output high 

If you want to change the color you can add the COLOR keyword to the 
statements in the )ATTR section and remove the INTENS keyword. For 
example, the statement 

$ TYPE(INPUT) COLOR(PINK) 

sets pink as the color for the characters entered in fields with the $ attribute. If 
you code both the INTENS keyword and the COLOR keyword, the COLOR 
keyword is ignored. For more information on specifying color and highlighting, 
and how the two are related, see /SPF Dialog Management Services. 

Changing the Format 

Field length 

You can change the format of a panel by changing the position of the fields. If 
you do there are several things to keep in mind: 

Each field has its own length. When you move a field you need to make sure 
that you don't change the length. This will ensure that none of the fields on the 
panel is truncated. 

Attribute characters 

Autoskip 

Each field starts with an attribute character and ends with another attribute 
character, or the end of the line. When you move a field you need to identify 
the attribute cha'racters and decide whether to modify them to accommodate 
the change. 

The panels are coded to use autoskip to move from one input field to the next. 
If you move a field, you may need to adjust the attribute characters that control 
autoskip. 

Chapter 8. Interactive Storage Management Facility (ISMF) 115 



Input fields 

Validity Checking 

Many of the input fields are grouped together because they supply related 
information, or because they are dependent on each other. If you move a field, \"'-" 
you may need to move some of the fields around it to preserve the structure 
and logic of the panel. 

The logic of the validity checking in the )PROC section generally matches the 
order of the fields on the panel; the checking is done from top to bottom. When 
you move a field, you should make sure the validity checking parallels the new 
order. 

Double lines for input fields 
Whenever you move input fields around on a panel, you need to move all the 
lines associated with that field. For example, for data set application, both the 
FILTER Entry Panel and the Data Set Selection Entry Panel have fields that 
allow input on two lines (DATA SET ORGANIZATION, DEVICE TYPE, and 
RECORD FORMAT). If you move these fields around, you need to move both 
lines. 

Number of lines in the )BODY section 

Modifying Text 

Adding Fields 

ISPF can display screens with a maximum of 24 lines. So, even if you use 
terminals that can display larger panels, you should be careful not to increase 
the number of lines in the )BODY section beyond 24. If the )BODY section is 
larger than 24 lines, panel display will fail. 

You can modify text on any of the functional panels or help panels by editing 
the )BODY section. Remember that the attribute character to the left and right 
of the text you are working with controls the field length, spacing, indentation, 
and centering. 

When you add a field, you need to loo~ at the )ATTR section of the panel and 
pick an attribute character to make the new field consistent with the rest of the 
panel. For example, you could use the ISPF ZTIME and ZDATE system 
variables to display the current time and date on the Data Set List panel. 
Figure 55 on page 117 shows the )ATTR section and the original coding for the 
top of list panel. Figure 56 on page 117 shows the coding for the added fields. 
The next time we invoke the list panel, it will display the current date and time. 
Figure 57 on page 117 is the customized list panel as it is displayed. 

116 MVS/ESA Data Facility Product Version 3: Customization 



\"--._// 

I 

\,_./ 

(~/ 

Creating Panels 

Variables 

( 
* AREA(DYNAHIC) EXTEND(OFF) SCROLL(OFF) 
..., TYPE(INPUT) INTENS (NON) 
$ TYPE(INPUT) INTENS(HIGH) JUST(RIGHT) 
¢ TYPE(OUTPUT) INTENS(LOW) SKIP(ON) JUST(ASIS) 
- TYPE(OUTPUT) INTENS(HIGH) SKIP(ON) JUST(ASIS) 
+ TYPE(TEXT) INTENS (HIGH) SKIP(ON) 
# TYPE(TEXT) INTENS(LOW) SKIP(ON) 

)BODY 
+ DATA ~ET LIST 
+COMMAND ===>_ZCMD 

CAPS (OFF) 

+ 
#ENTER LINE OPERATORS BELOW: 

#&FDDSENTR 
&FDDSDCOL 

+SCROLL ===>_ZAMT+ 

Figure 55. Original Version of the List Panel 

( 
* AREA(DYNAMIC) EXTEND(OFF) SCROLL(OFF) 
..., TYPE(INPUT) INTENS(NON) 
$ TYPE(INPUT) INTENS(HIGH) JUST(RIGHT) . 
¢ TYPE(OUTPUT) INTENS(LOW) SKIP(ON) JUST(ASIS) 
- TYPE(OUTPUT) INTENS(HIGH) SKIP(ON) JUST(ASIS) 
+ TYPE(TEXT) INTENS(HIGH) SKIP(ON) 
# TYPE(TEXT) INTENS(LOW) SKIP(ON) 

)BODY 
+ DATA SET LIST 

CAPS (OFF) 

+COMMAND ===> ZCMD 
#DATE: ¢ZDATE -
#TIME: ¢ZTIME 

#&FDDSENTR 
#&FDDSDCOL 

+ 

+SCROLL ===>_ZAMT+ 

Figure 56. Adding Date and Time to the List Panel 

COMMAND ===> 
Date: 85/11/02 
Time: 12: GS 

DATA SET LIST 
SCROLL ===> HALF 

Entries 1-9 of 9 
Data Columns 3-7 of 21 

Figure 57. List Panel Customized to Show Date and Time 

You can use the panel definition procedures described in /SPF Dialog Manager 
Services to add your own panels to those provided by ISMF. When you add 
panels you should consider: 

Make sure that the variable names you assign do not conflict with existing 
names, unless the function that uses the new panel runs from a different ISPF 
function pool. 

Chapter 8. Interactive Storage Management Facility (ISMF) 117 



Consistency 
For ease-of-use and to prevent errors, make your new panels consistent with 
ISMF style. Use the same format and operational characteristics. For example, 
input fields on ISMF panels are denoted by a white or intensified arrow to the 
left of the field. To avoid confusion, input fields on panels you add should look 
the same. Or, for example, if you add a functional panel, the ENTER key should 
execute the function. 

Modifying Fields on the List Panel 
You may now modify the following fields on ISMF's List Panel: 

• Column Headings. 

• "Entries" line in the fixed area located in the upper right corner of the ISMF 
List Panel. See Figure 58. 

• "Data Columns" line in the fixed area. 

• "BOTTOM OF DATA" line located at the end of the list. 

DGTLDDSl 
COMMAND ===> 

DATA SET LIST 

ENTER LINE OPERATORS BELOW: 

LINE SEC 
OPERATOR DATA SET NAME ALLOC 

. --- (1)---- ------------(2)------------ --(8)--
USER2.CLIST.CLIST 94 
USER2.ISMF.ISPPLIB 94 
USER2. !SPF.PROFILE 94 

---------- ------ ----------- BOTTOM OF DATA 

USE HELP COMMAND FOR HELP; USE END COMMAND TO EXIT. 

Figure 58. ISMF Data Set List Panel 

118 MVS/ESA Data Facility Product Version 3: Customization 

DS 
ORG 
(9) 
PO 
PO 
PO 

SCROLL ===> PAGE 
Entries 1-3 of 3 
Data Columns 8-11 of 26 

REC RECORD 
FMT LENGTH 

(10)- -(11)-
VB 255 
FB 80 
FB 80 

-----------

\~ 



\ __ / 

Where Do You Make the Changes? 
You can modify the following memberrs of the message library to change the 
column headings: 

Application 

Data Set 

Volume 

Data Class 

Member Na~es 
DGTDSOS, DPTDS06, DGTDS07, DGTDS08, DGTDS09, 
DGTDS10, Df3TDS11, DGTDS12, DGTDS13 

DGTVAOS, DpTVA06, DGTVA07, DGTVA08, DGTVA09, 
DGTVA10, opTVA11, DGTVA12, DGTVA13, DGTVA14, 
DGTVA15, Dj3TVA16, DGTVA17 

Storage Class DGTSC01, opTSC02, DGTSC03, DGTSC04 

Management Class DGTMLOO, opTML01, DGTML02, DGTML03, DGTML04, 
DGTMLOS, Df3TML06 

Storage Group ~~~~~~~: ~g~~~~~: ~~~~~~;· DGTGL03, DGTGL04, 

The statements in the fixed area can le modified from the member, DGTFOOO, 
of the message library. 

You can modify one or more of the fo !lowing members of the panel library to 
change the "BOTTOM OF DATA" line: 

Application Member Na~e 
Data Set DGTLDDS1 I 

Volume DGTLWA1 I 

Data Class DGTLCDC1 I 

Storage Class DGTLCSC1 I 

Management Class DGTLCMC1 I 

Storage Group DGTLCSG1 I 

Note: When ISMF is installed, the message library name is SYS1 .DGTM LIB, 
and the panel library is called SYS1 .DGTPLIB. 

Special Considerations 
• You should make a copy of the library you modify because the next time a 

link-edit or maintenance is perforrped on the member you have changed, 
your modification will be lost. I 

• When editing ISMF libraries, do not change the NUM field in the profile and 
do not issue the RENUM editing cbmmand. 

• You can change the wording, but .l,ou can't change the order of the columns 
or the characters to the left or rig1t of the headings. Also, you can't add or 
delete columns. I 

• The widths of the first two columns are fixed, so any textual changes you 
make will not alter the size of the 1fields. 

Chapter 8. lnteracti e Storage Management Facility (ISMF) 119 



• You can modify the lengths as well as the text of the third through the last 
column headings. Be sure to update the lengths associated with the text 
you lengthen. ·~ 

( '\ /************************************************************************ 
/* Column 10: REC FHT 
/* Length : 5 
/************************************************************************ 
DGTDS080 '5' 
I REC I 

DGTDS081 
I FMT I 

DGTDS082 
I (10)- I 

Figure 59. Column 10 of Member DGTDS08. 

If, for example, you would like to change column 10 to say_ RECORD 
FORMAT instead of REC FMT, simply: 

1. Access member DGTDS08 of the MESSAGE library (see Figure 59). 

2. Enter PROFILE on the command line and verify that NUMBER is set OFF. 

3. Replace 1 REC 1 with 1 RECORD 1 and replace 1 FMT 1 with 1 FORMAT 1
• 

4. Replace the decimal length 15 1 with '6 •· (the new length). 

5. Pad the tag with dashes. In other words, 1(10)- 1 would become 1-(10)- 1
• 

6. Compare your results to Figure 60. 

Note: Although you should not shorten the column headings, you can 
expand the headings for the third through the last columns up to 35 
characters. 

• If you change the headings on the List Entry Panel, you should also change 
the corresponding fields and text on the Selection Entry Panel, and the 
SORT Entry Panel. For data set and volume applications, you should also 
change the corresponding fields and text on the FILTER Entry Panel. You 
should also change the help panels and messages that support these entry 
panels and the list panel. 

/************************************************************************ 
/* Column 10: RECORD FORMAT 
/* Length : 6 
/************************************************************************ 
DGTDS080 1 61 

'RECORD' 

DGTDS081 
'FORMAT' 

DGTDS082 
'-(10)-' 

Figure 60. Column 10 of Member DGTDS08 After Customization. 

120 MVS/ESA Data Facility Product Version 3: Customization 

\~ 



( 

\'-/ 

('-._) 

Customizing Messages 
This chapter explains how to modify ISMF messages and how to add your own 
messages. It is divided into two sections, "Modifying ISMF Messages," and 
"Creating New Messages" on page 122. 

Modifying ISMF Messages 

Restrictions 
1. Do not change the names of any of the variables contained in ISMF 

messages. 

2. Do not change the message number. 

3. Short messages cannot exceed 24 characters. 

4. Long messages cannot exceed 78 characters. 

5. Message text can be entered in upper and lower case, but the other fields 
in the message-the message number, variables, keywords, and the help 
panel ID-must be in uppercase. 

6. When you change the text of a message you should change the 
corresponding message help panel. 

Finding the Message You Want to Change 
To find the message you want to change you need to know the message 
number. The message number is listed at the top of each message help panel 
(see Figure 61). 

HELP-----------------------------ISHF MESSAGE------------------------------HELP 
COMMAND ===> 

MESSAGE NUMBER: DGTMD006 

SHORT MESSAGE: DFHSM LEVEL UNKNOWN 

LONG MESSAGE: DFHSM LINE OPERATORS MAY FAIL - DFHSH V2 R2.1 OR LATER 
NEEDED 

Figure 61. Identifying the Message Number 

Related ISMF short and long messages are stored together in members of the 
message library. To determine where the message you want to change is 
stored, truncate the last digit of the message number. This will give you the . 
member name. Thus, the message DGTMD006 is stored in DGTMDOO with 
other messages that begin with DGTMDOO. 

Making the Change 
Once you have identified the member the message is stored in, you are ready 
to make the change. Modify the message and save your changes. Then modify 
the message help panel that is pointed to by .HELP. For example, to change 
message DGTMD006, you would edit the message itself in member DGTMDOO 
and the related text in the message help panel DGTMMD06. Figure 62 on 

Chapter 8. Interactive Storage Management Facility (ISMF) 121 



page 122 shows the entry in the message library for DGTMD006. The .HELP 
field is highlighted. 

DGTMD006 'DFHSH LEVEL UNKNOWN' .HELP= DGTMMD06 .ALARM= YES 
'DFHSM LINE OPERATORS MAY FAIL - OFHSM V2 R2.1 OR LATER NEEDED 

DGTM0007 I OFOSS LEVEL UNKNO~/N I • HELP= OGTMM007 . ALARM= YES 
'OFOSS LIST COMMANDS ANO LINE OPERATORS MAY FAIL - OFDSS V2 R2 OR LATER NEEDED 

DGTMOOOS 'ISMF FAILED' .HELP= OGTMM008 .ALARM= YES 
'UNABLE TO INITIALIZE ISMF CONTROL BLOCKS 

DGTM0009 'ISMF FAILED' .HELP= DGTMM009 .ALARM= YES 
'UNABLE TO DISPLAY ISMF PRIMARY OPTION MENU 

Figure 62. Changing the Short and Long Messages 

Creating New Messages 

Message numbers 

Consistency 

You can use the procedures for message definition described in /SPF Dialog 
Management Services to add your messages to those provided by ISMF. When 
you add messages you should consider: 

Make sure that the message numbers you assign do not duplicate existing 
ones. 

ISMF uses short and long messages, and message help panels to identify 
errors. If you add short messages, you should add the supporting long 
messages and message help panels. The style of the message help panels 
should be consistent with ISMF panels. 

Customizing Job Skeletons 

Restrictions 

This chapter explains how to tailor the job skeletons that ISMF uses to generate '~ 
the job streams used by DFDSS, ICKDSF, IEBPTPCH, and IDCAMS. 

1. You can remove variables from the skeletons, but you should make sure 
that a variable you remove from one part of a skeleton isn't needed by 
some other part. 

2. Do not change any of the variable names in the skeletons. ISMF code is 
dependent on these names. 

3. If you add variables, make sure that the names you use do not duplicate 
existing ones. 

122 MVS/ESA Data Facility Product Version 3: Customization 



\ . 
"-..__../ 

Finding the Skeleton You Want to Change 
The ISMF skeletons for MVS/DFP, DFSORT, and DFDSS line operators and list 
commands are kept in their respective skeleton libraries. MVS/DFP and DFDSS 
members begin with DGTK. The remaining characters in the name identify the 
line operator or command. Thus the member DGTKCY01 contains the job 
skeleton for the COPY line operator. DFSORT members begin with ICEK. The 
member ICEKSRRC contains the job skeleton for the SORTREC line operator. 

Note: When ISMF is installed, the skeleton library name is SYS1 .DGTSLIB. 

Making the Changes 
There are several ways to customize the ISMF skeletons for MVS/DFP and 
DFDSS jobs: 

• You can add statements to imbed skeletons of your own. 

• You can modify the variables in the skeletons to override the input that the 
skeletons get from the values entered on the data entry and job submission 
panels. 

• You can add pre- and postprocessing steps to the job stream. 

For example, if you want to imbed your own skeleton in the ISMF skeleton, you 
begin by creating the skeleton you want to imbed. The new skeleton might 
contain statements that add new steps. Then you imbed the name of this 
skeleton in the original skeleton. The job stream that is generated from the 
tailored skeleton contains the new steps. 

Customizing Tables 
This section describes how to customize command tables. It is divided into two 
sections, "Customizing the ISPF Command Tables" and "Customizing the ISMF 
Command and Line Operator Tables" on page 124. The first explains the 
additions you can make to the ISPF command tables in the table library. The 
second explains the changes and additions you can make to the ISMF 
command and line operator tables in the load library. Restrictions to 
customizing the tables are listed at the beginning of each section. 

Customizing the ISPF Command Tables 

Restrictions 
1. Do not delete any of the entries in the command tables 
2. Do not delete any of the tables 

Finding the Table You Want to Change 
The ISPF command tables are kept in the table library. The tables you can 
change have a name that ends in CMOS. 

Chapter 8. Interactive Storage Management- FacHity (ISMF) 123 



Making the Changes 
You can make changes to the table library using the ISPF command table utility 
(option 3.9). Figure 63 is an example of a table displayed using option 3.9. \.-

VERB T ACTION 
DESCRIPTION 

I I I I CLEAR 0 PASSTHRU 

' I I I COMPRESS 0 PASSTHRU 

'I I I COPY 0 PASSTHRU 

'I I I DO\o/N 0 PASSTHRU 

'I I I DUMP 0 PASSTHRU 

' I I I FILTER 0 PASSTHRU 

I I I I FIND 0 PASSTHRU 

I I I I LEFT 0 PASSTHRU 

""PROFILE 0 PASSTHRU 

I I I I RELEASE 0 PASSTHRU 

I I I I RESHOW 0 PASSTHRU 

Figure 63. Using Command Table Utility to Update IS~F Tables 

The command table utility reads the table from ISPTLIB and writes it out to 
ISPTABL. If you use the utility to update a command table, you should make 
sure that both libraries use the same data set for the table you want to change. 
When you add a command to the ISPF command tables, you should also add it 
to the ISMF tables. The method you use to do this is described in "Customizing 
the ISMF Command and Line Operator Tables." 

Controlling Truncation 
Truncation is determined by the ZCTTRUNC and the ZTACT fields in the 
command table. All ISMF commands in the ISPF table are set with a truncation 
of 0 and an action of PASSTHRU. This passes the entire command to the ISMF 
dialog for resolution. When you add a command, you should coordinate the 
truncation value you specify with the values specified for the existing 
commands in the ISPF tables, the system tables, and the tables for ISMF 
commands. For more information on the structure of ISPF command tables, 
and how to alter them, see /SPF Dialog Management Services. 

Customizing the ISMF Command and Line Operator Tables 

Restrictions 
1. Do not change the name of the command or line operator. You can, 

however, change the name of the routine that gets control. 

2. You can replace one of the empty command or line operator tables that 
ISMF ships with a table of your own, but your table should use the same 
format as the ISMF tables. The control block, DGTMCTAP, in "ISMF 

124 MVS/ESA Data Facility Product Version 3: Customization 

~ 

.\....._,.,.. 



\'-.. ) 

i I 

\\._/ 

Command Table Format" on page 125, contains the format for the 
command tables. The control block, DGTMLPAP, in "ISMF Line Operator 
Table Format" on page 126, contains the format for the line operator tables. 
If new commands are added to the tables, ISMF will recognize them. 

ISMF Command Table Format 

DGTMCTAP 

CTAP 
Offsets Type Length Name Description 
=========================================================================== 

COMMAND TABLE - APPLICATION TABLE (CTAP) 
=========================================================================== 8 (8) CHARACTER * CTAP 

8 (8) CHARACTER 8 CTAPMAIN 
8 (8) CHARACTER. 4 CTAPVID VISUAL ID: 1 CTAP 1 

4 (4) FIXED 2 CTAPLEN LENGTH OF CTAP 
6 (6) FIXED 2 CTAPCNT # OF COMMAND ENTRIES 
8 (8) CHARACTER 28 CTAPENT(*) 
8 (8) CHARACTER 8 CTAPNAME COMMAND NAME 

16 (18) FIXED 1 CTAPTRUN MIN. # OF CHARACTERS USED IN 
TRUNCATION 

17 (11) BITSTRING 1 CTAPFLAG FLAG FIELD 
1 ... CTAPST COMMAND STATUS 
.1 .. CTAPIMED IMMEDIATE COMMAND 
. . 1. CTAPLIST LIST COMMAND 
... 1 CTAPACMD ALTERNATE COMMAND 

1111 CTAPRSVD RESERVED 
18 (12) CHARACTER 8 CTAPRTNM COMMAND ROUTINE NAME 
26 (lA) CHARACTER 8 CTAPTENM CMD TERMINATION ROUTINE 
34 (22) BITSTRING 2 * FILL UP END OF WORD 

Constants 
Length Type Value Name Description 
=========================================================================== 

END OF COMMAND TABLE - APPLICATION TABLE (CTAP) DEFINE 
COMMAND STATUS BITS 

=========================================================================== 
BIT 
BIT 

1 
1 

CMDENABL 
CMDDSABL 

COMMAND STATUS rs ENABLE 
COMMAND STATUS rs DISABL 

Chapter 8. Interactive Storage Management Facility (ISMF) 125 



ISMF Line Operator Table Format 

DGTMLPAP 

LPAP 
Offsets Type Length Name Description 
=========================================================================== 

LINE OPERATOR TABLE - APPLICATION TABLE (LPAP) 
=========================================================================== 

0 (8) CHARACTER * LPAP 
0 (8) CHARACTER 8 LPAPMAIN 
8 (8) CHARACTER 4 LPAPVID VISUAL ID: 'LPAP' 
4 (4) FIXED 2 LPAPLEN LENGTH OF LPAP 
6 (6) FIXED 2 LPAPCNT # OF LINE OPERATORS 
8 (8) CHARACTER 28 LPAPENT (*) 
8 (8) CHARACTER 8 LPAPLONM LINE OPERATOR NAME 

16 (10) FIXED 1 LPAPTRUN MIN. # OF CHARACTERS USED IN 
TRUNCATION 

17 (11) CHARACTER 3 * RESERVED, UNUSED 
28 (14) CHARACTER 8 LPAPRTNM LINE OP ROUTINE NAME 
28 (lC) CHARACTER 8 LPAPTENM TERMINATION ROUTINE 

Finding the Tables 
The ISMF tables for line operators and commands are kept in the load library. 
They are grouped by function. Hgure 64 lists the application member names 

\...._. 

for line operators. Figure 65 on page 128 lists the application member names ·~ 
for commands. 

Figure 64 (Page 1 of 2). Member Names for Line Operator Tables 

Function: MVS/DFP DFHSM DFDSS 

Data Set Member 

Volume Member 

Data Class 
Member 

ISMF 

DGTTLPD1 

DGTTLPV1 

DGTTLPB1 
DGTTLPB2 
DGTTLPB3 
DGTTLPB4 
DGTTLPBS 
DGTTLPB6 
DGTTLPB7 
DGTTLPB8 

ISMF ISMF 

DGTTLPD2 DGTTLPD3 

none DGTTLPV2 

none none 

126 MVS/ESA Data Facility Product Version 3: Customization 

DFSORT 
ISMF 

DGTTLPD4 

none 

none 

blank 

DGTTLPDS 
DGTTLPD6 
DGTTLPD7 
DGTTLPD8 

DGTTLPV3 
DGTTLPV4 
DGTTLPVS 
DGTTLPV6 
DGTTLPV7 
DGTTLPV8 

none 



I\._./ 

~I 

\ : 
~ 

Figure 64 (Page 2 of 2). Member Names for Line Operator Tables 
Function: MVS/DFP DFHSM DFDSS DFSORT blank ISMF ISMF ISMF ISMF 
Storage Class DGTTLPS1 none none none none Member DGTTLPS2 

DGTTLPS3 
DGTTLPS4 
DGTTLPSS 
DGTTLPS6 
DGTTLPS7 
DGTTLPS8 

Management DGTTLPM1 none none none none Class Member DGTTLPM2 
DGTTLPM3 
DGTTLPM4 
DGTTLPMS 
DGTTLPM6 
DGTTLPM7 
DGTTLPM8 

Storage Group DGTTLPG1 none none none none Member DGTTLPG2 
DGTTLPG3 
DGTTLPG4 
DGTTLPGS 
DGTTLPG6 
DGTTLPG7 
DGTTLPG8 

Chapter 8. Interactive Storage Management Facility (ISMF) 127 



Figure 65. Member Names for Command Tables 

Function: MVS/DFP DFDSS blank 
'._.-ISMF ISMF 

Data Set Member DGTTCTD1 DGTTCTD2 DCTTCTD3 
DGTTCTD4 
DGTTCTDS 
DGTTCTD6 
DGTTCTD? 
DGTTCTD8 

Volume Member DGTTCTV1 none DGTTCTV2 
DCTTCTV3 
DGTTCTV4 
DGTTCTVS 
DGTTCTV6 
DGTTCTV7 
DGTTCTV8 

Data Class Member DGTTCTB1 none none 
DGTTCTB2 
DGTTCTB3 
DGTTCTB4 
DGTTCTBS ~ 
DGTTCTB6 
DGTTCTB7 
DGTTCTB8 

Storage Class Member DGTTCTS1 none none 
DGTTCTS2 
DGTTCTS3 
DGTTCTS4 
DGTTCTSS 
DGTTCTS6 
DGTTCTS7 
DGTTCTS8 

~ 
Management Class DGTTCTM1 none none 
Member DGTTCTM2 

DGTTCTM3 
DGTTCTM4 
DGTTCTMS 
DGTTCTM6 
DGTTCTM7 
DGTTCTM8 

Storage Group DGTTCTG1 none none 
Member DGTTCTG2 

'~ 
DGTTCTG3 
DGTTCTG4 
DGTTCTGS 
DGTTCTG6 
DGTTCTG7 
DGTTCTG8 

ACS Member DGTTCTA1 none none 
DGTTCTA2 
DGTTCTA3 
DGTTCTA4 
DGTTCTAS 
DGTTCTA6 
DGTTCTA? 
DGTTCTA8 

CDS Member DGTTCTC1 none none 
DGTTCTC2 
DGTTCTC3 
DGTTCTC4 
DGTTCTCS 
DGTTCTC6 
DGTTCTC7 
DGTTCTC8 

128 MVS/ESA Data Facility Product Version 3: Customization 



( . 
'-"' 

Figure 66 lists the member names for the profile application command tables. 
The tables are used for all applications. 

Figure 66. Member Names for Profile Application Command Tables 

Function Member Name 

MVS/DFP ISMF commands DGTTCTP1 

DFDSS ISMF commands DGTTCTP2 

blank DCTTCTP3 

blank DGTTCTP4 

blank DGTTCTPS 

blank DGTTCTP6 

blank DGTTCTP7 

blank DGTTCTP8 

Making the Changes 
There are two ways to change the ISMF ·tables for line operators and 
commands. You can add new entries to the existing tables or to one of the 
blank tables ISMF ships. If you add entries to the ISMF tables, you should also 
update the ISPF command table. 

Whenever a new command is added to an application in ISMF, it must be added 
to the command table for all applications in ISMF, not only for the application 
affected. 

Modifying the Existing Tables 
Because the tables are stored in the load library, you cannot edit them directly. 

If you want to make extensive changes: 

1. Create your own table following the format that ISMF uses. See "ISMF Line 
Operator Table Format" on page 126 for the format of the line operator 
tables. 

2. Enter the line operators along with the ISMF entries in the new table. 

3. Link-edit the new table under the original member name. This will overlay 
the original table with your new table. 

If you want to make minor changes: you can SU PERZAP the member that 
contains the table you want to change. However, the next time a link-edit or 
maintenance is performed on the member, the change will be lost. For 
information on how to use SUPERZAP, see the publication, Service Aids. 

Using One of the Blank Tables 
ISMF ships 29 blank tables in the load library: 19 overlay command tables and 
10 overlay line operator tables. You can use the line operator tables to add 
your own entries. Figure 64 on page 126 and Figure 66 list the member names 
for the blank tables. To make entries in one of the b1ank tables: 

1. Create a table following the format that ISMF uses. 

2. Enter the new line operators in the table. For new commands, set the 
CT APACMD bit to 1. Also, be sure to update the count value in CTAPCNT 

Chapter 8. Interactive Storage Management Facility (ISMF) 129 



to reflect the number of entries in the table. See "ISMF Command Table 
Format" on page 125. 

3. Link-edit the table using the member name for the blank table that you want 
to overlay. 

Customizing the ISMF CLIST 

Restrictions 

This chapter explains how to change the CONTROL statement on the ISMF 
CLISTs. 

Do not alter the CLISTs themselves. Changes to the logic may create problems 
with job submission. For example, jobs may be submitted incorrectly, or not 
submitted at all. Logging of submission may fail, or it may be incorrect. 
Changing the CLISTs could also cause incorrect feedback for job submission. If 
you wish to modify the job streams, you can do so by tailoring the job 
skeletons. The method you use to do this is described in "Customizing Job 
Skeletons" on page 122. It is easier than ·changing the CLISTs, and less error 
prone. 

Finding the CLIST 
CLISTs are stored in the CLIST library. The member names include DGTQSU01 
for the DFDSS CLIST, DGTQSF01 for the MVS/DFP CLIST, ICESRCFG for the 
DFSORT CLIST, and DGTQCB01 for SETCACHE. 

Note: When ISMF is installed, the CLIST library name is SYS1 .DGTCLIB. 

Making the Changes 
You can change the CONTROL statement that ISMF ships with the CLIST using 
any of the operands for CONTROL listed in TSOIE V2 Command Reference. 
Figure 67 shows the CONTROL statement in the DFDSS ISMF CLIST. It is 
located at the beginning of the data set, immediately after the comment section. 

, 
/* * 
/* * 
/* PROCESSOR: ISPF 
/* * 
/* CHANGE ACTIVITY: LEVEL 0 * 
/* $LO=ISMFREL,JAE2211,,PRGRMA: * 
/* * 

Figure 67. Control Statement in the ISMF CLIST 

130 MVS/ESA Data Facility Product Version 3: Customization 

\..._..,/ 



\._./ 

\ ) 

~ 

To change the CONTROL statement you need to edit the CLIST member in the 
CLIST library. For example, to change the CONTROL statement for DFDSS, you 
need to edit the DGTQSU01 member in the CLIST library. You could add the 
LIST operand as shown in Figure 68. 

/* * 
/* * 
/* PROCESSOR: ISPF * 
/* * 
/* CHANGE ACTIVITY: LEVEL 0 * 
/* $LO=ISHFREL,JAE2211,,PRGRMA: * 
/* * /************************************************************************ CONTROL NOFLUSH PROMPT LIST 
/************************************************************************ /* BEGIN CLIST MAINLINE * /************************************************************************ 

Figure 68. Changing the Control Statement 

Chapter 8. Interactive Storage Management Facility (ISMF) 131 





\'--"') 

\ .. _/ 

MVS/DFP Installation Exits 

About This Section 
This section is intended to help you to customize MVS/DFP by describing how 
to write installation exit routines and replace modules. It contains 
product-sensitive programming interfaces provided by MVS/DFP, Installation 
exits and other product-sensitive interfaces are provided to allow your 
installation to perform tasks such as product tailoring, monitoring, modification, 
or diagnosis. They are dependent on the detailed design or implementation of 
the product. Such interfaces should be used only for these specialized 
purposes. Because of their dependencies on detailed design and 
implementation, it is to be expected that programs written to such interfaces 
may need to be changed in order to run with new product releases or versions, 
or as a result of service. 

This section contains: 

• Chapter 9, "Data Management Installation Exit Routines" on page 135 

• Chapter 10, "Tape Label Processing Installation Exit Routines" on page 173 

• Chapter 11, "Automatic Class Selection (ACS) Installation Exits" on 
page 219 

• Appendix A, "Example of an OPEN Installation Exit Module" on page 229 

• Appendix 8, "SMS Indicators for DADSM Installation Exits" on page 241 

• Appendix C, "Read-Only Variables Referenced by ACS Installation Exits" on 
page 243 

• Appendix D, "Read-Write Variables Set by ACS Installation Exits" on 
page 249 

• Appendix E, "Parameter List for ACS Installation Exits" on page 251 

MVS/DFP Installation Exits 133 



\ J 
~ 



\._ .. / 

\......_ . ./ 

\, __ / 

Chapter 9. Data Management Installation Exit Routines 

General Guidance 
This chapter discusses how installation-written exit modules can: 

• Take control before and after direct access device storage management 
(DADSM) processing. 

• Take control during Open for a DCB. 

• Determine whether a missing data set control block (such as for a data set 
that has been moved to another volume) can be restored to a volume. 

• Recover from errors that may occur during the opening, closing, or handling 
of an end-of-volume condition for a data set associated with the user's task. 

• Bypass, limit, or override system-calculated values that_ assist you in 
selecting optimum DASO data set block size/Cl size. 

• Bypass or change datestamp· processing. for VSAM. 

The data management replaceable modules are listed in Figure 69. 

Figure 69 (Page 1 of 2). Data Management Replaceable Modules 

Module Name Description When Available 

IDATMSTP Datestamp processing in During VSAM OPEN 
VSAM 

IFGOEXOA Open/EOV installation exit Format-1 DSCB not 
found during OPEN or 
end-of-volume 

IFGOEXOB DCB open installation exit At open 

IFG01991 Data management abend open, close, end of 
installation exit volume abnormal 

conditions 

IGBDCSX1 precalculation and DASO calculation 
IGBDCSX2 postcalculation exit services 

IGGDARU2 DADSM RENAME After initialization for 
preprocessing exit module RENAME 

IGGDARU3 DADSM RENAME Before exit from 
postprocessing exit module RENAME 

IGGDASU2 DADSM SCRATCH After initialization for 
preprocessing module SCRATCH 

IGGDASU3 DADSM SCRATCH Before exit from 
postprocessing exit module SCRATCH 

Chapter 9. Data Management Installation Exit Routines 135 



Figure 69 (Page 2 of 2). Data Management Replaceable Modules 

Module Name Description When Available 

IGGPREOO DADSM preprocessing and DADSM functions 
IGGPOSTO postprocessing exit allocate, extend, 

scratch, partial release 
and rename. 

IGG026DU Catalog preinitialization exit Before or after 
module CATALOG 

IGG029DM DADSM SCRATCH failure exit SCRATCH, after error 
module return code of 4 or 8 

IGG029DU DADSM SCRATCH Before or after 
preinitialization exit module SCRATCH 

IGG030DU DADSM RENAME Before or after RENAME 
preinitialization exit module 

IGXMSGEX Message display exit_ module Before _end of message 
display processing 

Programming Considerations 
The data management replaceable modules you decide to replace must be 
named the same as the IBM-supplied modules. 

In general, the data management replaceable module you replace must 

• Handle multiple requests (reentrant) 
• Reside in SYS1. LPALIB (or link-edit into LINKLIB) 
• Save and restore registers 

Limitations and Restrictions 
Be aware of the impact other products have on the modifications you install. 
For example, RACF takes control at the same time as some of the installation 
exit modules. There may b~ contention for resources. 

DADSM Preprocessing and Postprocessing Exit Routines 

The Exit Modules 

DADSM allows an installation-written preprocessing module (exit routine) to 
take control before DADSM processing, and an installation-written 
postprocessing module after DADSM processing. DADSM uses an exit 
parameter list to communicate with these exit routines. This parameter list is 
obtained from storage below the 16M line. The format of the parameter list is 
shown in Figure 70 on page 138. 

All DADSM functions (allocate, extend, scratch, partial release, and rename) 
have a common preprocessing exit routine and a common postprocessing exit 
routine that the installation exit routine can replace. These exit routines enable 
you to gain control before and after DADSM processing. The preprocessing exit 
routine module is IGGPREOO; the postprocessing exit routine module is 
IGGPOSTO. Each is used by all the DADSM functions just mentioned. The 
modules reside in SYS1.LPALIB. You can use System Modification Program 

136 MVS/ESA Data Facility Product Version 3: Customization 

\..._.,,,,; 



I 
I • 

\,.__,-' 

I 

\,._..,, 

\._,,J 

(SMP) to replace the IBM-supplied exit routine modules with an installation exit 
routine you write. 

The Exit Environment 
The exit routines are given control in supervisor state and protect key zero with 
no locks held. The exit routines may execute in either 24-bit or 31-bit 
addressing mode. If they execute in 24-bit mode, it is important to consider the 
following: 

The DADSM caller, usually VSAM, O/C/EOV, or the scheduler, passes a 
JFCB pointer. If this caller's work area resides above the 16M line, the 
IEXPTR1 field, which co_ntains the JFCB address for allocate, extend, 
and partial release, is a 31-bit address. When your exit routine is called 
for allocate, extend, or partial release and the JFCB resides above the 
16M line, it must be in 31-bit addressing mode before using the IEXPTR1 
field in the exit parameter list. 

The exit routines must be reentrant. DADSM or the program that invokes 
DADSM (by issuing enqueue, reserve, a.nd so forth) has acquired the system 
resources needed to serialize system functions. These enqueues may prevent 
other system services from completing successfully. In particular, exit routines 
must not issue dynamic allocation, OPEN, CLOSE, EOV, LOCATE, and other 
DADSM functions because they issue an enqueue on the SYSZTIOT resource. If 
the exit routines require access to an installation data set, the control blocks 
required to access that data set (DCB, DEB) should be built during system 
initialization (IPL/NIP). 

The type and number of resources held by DADSM depend upon the DADSM 
function and the exit taken. For example, on entry to the installation 
preprocessing exit (IGGPREOO), DADSM holds an enqueue on the. VTOC and a 
reserve on the device for the subject volume of a SCRATCH, RENAME, or 
partial release function. DADSM releases these resources before the 
installation postprocessing exit (IGGPOSTO) takes control. 

You must anticipate system resource contention when services are requested 
from an exit routine. For example, RACF services issue an enqueue on the 
RACF data set or a reserve on that data set's volume. This contention can 
cause system performance problems or an interlock condition. 

When IGGPREOO Gets Control 
The preprocessing exit routine, IGGPREOO, is given control before the first 
VTOC update and after the initial validity check is successful. Input to 
IGGPREOO is a parameter list, mapped by macro IECIEXPL, that contains 
addresses of input data and a function code that identifies the DADSM function. 
IGGPREOO is given control once for each volume in the volume list supplied to 
scratch and rename. A field in the parameter list, IEXRSVWD, may be used to 
pass data from the preprocessing exit routine to the postprocessing exit 

routine. 

A zero return code from IGGPREOO indicates the DADSM function may proceed. 

Chapter 9. Data Management Installation Exit Routines 137 



Rejecting a DADSM Request 
A preprocessing exit routine may reject a DADSM request by providing either 
return code 4 or 8 to the calling DADSM function. If this occurs for partial 
release, then partial release provides an 1/0 error return code. If this occurs 
for either scratch or rename, they provide an 1/0 error status code. If a 
preprocessing exit rejects a call from DADSM create (allocate), then create 
(allocate) provides either X 1 B4 1 or X 1 BO 1

, respectively, to its caller. Scheduler 
allocation treats X 1 B4 1 as a conditional rejection of the allocate request only for 
the volume being processed. If the allocate request is not for a specific 
volume, another volume may be chosen and the aJlocate function retried. 
Scheduler allocation treats X 1 BO 1 return code from allocate as an unconditional 
rejection of the allocate request. If the allocate request is rejected, the 
preprocessing exit routine can put a reason code in the parameter list field, 
IEXREASN, and the code is returned by create (allocate) to its caller, together 
with the X 1 BO 1 or X 1 B4 1 return code. The reason code appears as the last 2 
bytes of the diagnostic information displayed as part of the IGD17040I JCL 
message. A nonzero return code from IGGPREOO to extend causes extend to 
return an error return code of X 1 FFFF FFEC 1 to its caller. If the caller is 
end-of-volume, an E37-0C abend is issued.· 

Rejecting a DADSM Scratch Request 
In the integrated catalog facility environment, VSAM deletes the VVR entry first 
and then calls DADSM to continue with the scratch of the format-1 DSCB. If a 
preprocessing exit routine rejects the DADSM request, the format-1 DSCB 
remains while the VVR entry no longer exists. This results in a damaged 
catalog. It is your responsibility to ensure your preprocessing exits do not 
reject a DADSM scratch request for a VSAM data set. 

·Data that DADSM Passes to the Exits 
The format of the parameter list (IEPL) is shown in Figure 70. 

Figure 70 (Page 1 of 3). Format of DADSM Preprocessing and Postprocessing Exit 
Parameter List 

Name Offset 

IEXID OO(X'OO') 

IEXLENG 04(X'04') 

IEXFUNC 05(X I 05') 

IEXALL 

IEXEXT 

IEXSCR 

IEXPR 

IEXREN 

IEXPREL 

IEXVEXT 

Bytes 

4 

Description 

EBCDIC "IEPL" 

Length of parameter list 

DADSM function code 

X '01 '-Allocate 

X' 02 '-Extend 

X' 03 1 -Scratch 

X 104 '-Partial release 

X 1 05 1 -Rename 

X'06 1-PARTREL Partial release 

X' 07 '-Extend (VSAM caller without 
DEB parameter)3 

3 If IEXVEXT is on, you must ensure that your installation exit modules do not attempt to use the IEXPTR2 field 
(DEB address is undefined for this extend function). 

138 MVS/ESA Data Facility Product Version 3: Customization 



I 
\,,_,,! 

( . 

~ 

i 
I . 

~ 

flgure 70 (Page 2 of 3). Format of DADSM Preprocessing and Postprocessing Exit 
Parameter List 

Name 

IEXEXTCD 

IEXFLAG 

IEXENQ 

IEXVIO 

IEXMF1 

IEXFDSCB 

IEXREASN 

IEXUCB 

IEXPTR14 

IEXPTR2 

IEXDSN 

Offset 

06(X'06 ') 

07(X '07 ') 

08(X'08 ') 

12(X'OC ') 

16(X' 10 I) 

20(14) 

24(X' 18 ') 

Bytes 

1 ...... . 

.1 ..... . 

.. 1 . ... . 

... 1 .... 

.... xxxx 

2 

2 

4 

4 

4 

4 

Description 

Extend code 
X '01 ' Extend data set on current 
volume 
X '02 ' Extend an OS catalog on 
current volume 
X '04' Extend data set on new 
volume 
X '81 1 Extend VSAM data space on 
current volume 

Flag byte 

VTOC is enqueued upon entry. 

VIO data set 

I EXFMT1 points to OS 1 FMTI D of a 
partial format-1 DSCB (partial DSCB 
passed as input to allocate, and 
JFCB is not available). 

Full format-1 DSCB (ALLOC=ABS) 

Reserved 

Installation reject reason code 

Reserved 

Address of UCB. The UCB address 
is not available to the pre-exit for 
VIO allocation. 

Address of one of the following: 

• JFCB (allocate, extend, partial 
release) 

• Data set name (PARTREL partial 
release) 

• Scratch/rename input parameter 
list followed by the address of 
parameter lists IGGDASCR or 
IGGDAREN.5 

Address of one of the following: 

• DSAB list (ISAM allocate) 
• DEB (extend on old volume) 
• DCB (partial release) 
• Partial DCB (PARTREL partial 

release) DCBFDAD and 
DCBDEBA are defined, the 
associated DEB has been 
constructed; DEBDSCBA, 
DEBNMEXT, and the DEBDASD 
segment(s) are defined. 
DEBDVMOD is not defined. 

• Current volume list entry 
(scratch/rename) 

Address of the data set name 

Chapter 9. Data Management Installation Exit Routines 139 



Figure 70 (Page 3 of 3). Format of DADSM Preprocessing and Postprocessing Exit 
Parameter List 

Name Offset Bytes Description 
IEXFMT1 28(X 1 1C 1

) 4 Address of the 96-byte data portion 
of format-1 DSCB (preexit for 
scratch; pre- and postexit for partial 
release and rename; postexit for 
allocate). May be supplied by 
preexit of allocate, and extend on 
new volume, to serve as a model if 
IEXMF1 and IEXVIO are zero. 

IEXFMT2 32(X 1 20 1
) 4 Address of format-2 DSCB. (ISAM 

allocate post exit.) 
IEXFMT3 36(X 124 1

) 4 Address of format-3 DSCB 
(ALLOC=ABS) -

IEXEXTBL 40(X 1 28 1
) 4 Address of DADSM table (pre- and 

postexit for scratch and partial 
release; postexit for allocate and 
extend). For VIO allocate postexit, 
this is the address of DS1 EXT1 in 
the virtual FMT1 DSCB. 

IEXDCC 44(X 12C') 4 DADSM return code (postexit). See 
"Setting Return Codes in IGGDASU2 
and IGGDARU2" on page 147 for a 
list of the applicable DADSM return 
codes. 

IEXRSVWD 48(X 130 1
) 4 Reserved word for use by 

installation exit. 

Passing a Model Format-1 DSCB 
The preprocessing exit for allocate and extend on a new volume may return, in 
the parameter list field IEXFMT1, the address of the data portion of a model 
format-1 DSCB, starting with field DS1FMTID. The DSCB is moved to the 
allocate or extend work area before building the format-1 DSCB. The only fields 
that may be nonzero in the area are the DS1 REFD (the data-last-referenced 

\~ 

field) and fields currently unused. Failure to zero out all fields, except for ,~ 
081 REFD and all currently unused fields in the model format-1 DSCB, can result 
in the abnormal termination of the task or lead to unpredictable results. All 
other fields are initialized by allocate or extend. 

IEXFMT1 may not be supplied by IGGPREOO for a VIO allocate request (indicated 
by flag, IEXVIO, set to one), or, if a partial DSCB instead of a JFCB has been 
supplied to allocate (indicated by flag, IEXMF1, set to one). In the latter case, 
IEXFMT1 is passed to IGGPREOO initialized to the address of the DS1 FMTID field 
of the partial format-1 DSCB (supplied to allocate by its caller) in the allocate 
work area, and DS1 REFD may be initialized by IGGPREOO. If extend was 
successful, IEXFMT1 is zeroed out prior to taking the postexit, IGGPOSTO. 

4 When the scheduler work area (SWA) resides above the 16M line, you may have to modify installation exit 
module references to the IEXPTR1 field. See "The Exit Environment" on page 137 for details. 

s These parameter lists are described in Figure 72 on page 146 and Figure 71 on page 145. 

140 MVS/ESA Data Facility Product Version 3: Customization 



When IGGPOSTO Gets Control 
The postprocessing exit module, IGGPOSTO, is given control after a DADSM 
function has been completed or attempted. IGGPOSTO is given control if 
IGGPREOO was given control, whether the DADSM function was successful or 
not. IGGPOSTO is not given control if IGGPREOO was not given control, or if the 
DADSM function terminated abnormally. IGGPREOO may establish a recovery 
routine, if required, to clean up system resources. The DADSM recovery 
routine does not give IGGPOSTO control. Input to IGGPOSTO is the same 
parameter list passed to IGGPREOO. No return codes from IGGPOSTO are 
defined. 

Registers at Entry to DADSM Exits 
At entry to your exit routine, register contents are as follows: 

Register Contents 

\.._ • ./; Address of the exit paramete_r list 

I ' 

"--'' 

13 Address of an 18-word save area 

14 Return address to DADSM 

15 Address of your exit routine 

Registers at Return from DADSM exits 
When you return to DADSM, register contents must be as follows: 

Register Conten.ts 

0-14 Sarne as on entry to your exit routine 

15 A return code from IGGPREOO 

Return Codes from DADSM Exits 
No return codes are defined for IGGPOSTO. The IGGPREOO return codes and 
their meanings are as follows: 

Code Meaning 

OO(X 100 1) Indicates that you want the DADSM request to be processed 

04(X'04 1 ) Indicates that no DADSM request for the current volume is to be 
processed 

08(X 108 1 ) Indicates that you do not want the DADSM request to be processed 

Chapter 9. Data Management Installation Exit Routines 141 



Replacing DADSM Installation Exit Modules 
You may replace these modules in SYS1 .AOSDO prior to system generation, or 
you may replace them in SY~1.LPALIB after system generation. The stage I 
system generation macro SGIEC4DM in SYS1 .AGEN LIB and the appropriate link 
edit step of the ST AGE I system generation output are other sources of 
information about replacing the modules with your own versions. 

Your replacement modules must follow all the characteristics and programming 
conventions for SVC routines. For information on these characteristics and 
conventions, see Application Development Guide. 

You may apply PTFs· to SCRATCH or RENAME with SMP without modifying your 
own versions of IGG029DM, IGG029DU, IGG030DU, IGGDASU2, IGGDASU3, 
IGGDARU2, and IGGDARU3. 

System Control Blocks 
The DADSM installation exit parameter lists contain the addresses of system 
control blocks. The mapping macros of those control blocks are listed below. 

Macro Control Block 

DCBD DCB 
ICVARXNT Extent Table 
IECIEXPL DADSM installation 

exit parameter list 
IECPDSCB Partial DSCB 
IECSDSL 1 DSCB 
IEFJFCBN JFCB 
IEFTIOT1 TIOT 
IEFUCBOB UCB 
IEZDEB DEB 
IHADSAB DSAB 

There is no mapping macro for the SCRATCH/RENAME parameter list or the 
associated volume list that is used when DADSM receives control from an SVC. 

For extend and partial release, the address of the JFCB passed to the user exit 
points to a copy of the real JFCB. Updating the copied JFCB does not result in 
a corresponding change to the real JFCB. 

During catalog processing, a dummy JFCB is built with minimal information and 
passed to DADSM for space allocation. Certain bits that are turned on in the 
real JFCB may not be turned on in this dummy JFCB. If a preprocessing exit 
uses this JFCB, you may need to modify the JFCB. For information on how to 
modify the JFCB, see "Modifying the JFCB" on page 163. 

For PARTREL partial release, the DCB and DEB (see Figure 70 on page 138) 
have been constructed for internal DADSM processing only. 

During the X '02' extend of a VSAM data set, the exit is 1passed the address of a 
dummy DEB. This DEB does not contain any extent information. 

142 MVS/ESA Data Facility Product Version 3: Customization 

'-"" 

\~ 



I 

\_; 

SCRATCH and RENAME Installation Exit Modules 

Modules IGG029DU, IGG029DM, and IGG030DU 
The load modules for DADSM SCRATCH and DADSM RENAME contain modules 
IGG029DU and IGG030DU, respectively. The IBM-provided IGG029DU module 
receives control and immediately passes control to module IGC00021 without 
performing any processing. The IBM-provided IGG030DU module receives 
control and immediately passes control to module IGC00030 without performing 
any processing. 

The load module for DADSM SCRATCH also contains the module !GG029DM. 
The IBM-provided IGG029DM module receives control from IGG0290D through 
IGG029DN when an error return code of either 4 or 8 is indicated, and 
immediately passes control to the location pointed to by register 14 without 
performing any processing. 

If you require speci?I processing either .before or after SC~ATCH or RENAME, 
replace the appropriate IBM-provided module(s) with your own module(s). 
IGG029DU, IGG030DU, and IGG029DM may request control and pass control in 
either 24-bit or 31-bit addressing mode. The modules may reside either above 
or below 16Mb virtual. If you have replaced them, you may wish to change them 
to benefit fully from 31-bit addressing support. For example, if your parameter 
list resides above the 16M line, but your replacement modules are not defined 
as AMODE 31, DADSM copies the parameter list, incurring additional overhead. 
If you are not invoking DADSM SCRATCH or RENAME through an SVC, 
IGG029DU and IGG030DU are not given control. 

Modules IGGDASU2, IGGDASU3, IGGDARU2, and IGGDARU3 
The load module IGGDADSM contains modules IGGDASU2, IGGDASU3, 
IGGDARU2, and IGGDARU3. These four modules perform no processing and 
can be replaced. When DADSM SCRATCH is invoked, IGGDASU2 receives 
control before any SCRATCH processing and IGGDASU3 receives control 
immediately after SCRATCH processing. When DADSM RENAME is invoked, 
IGGDARU2 receives control before any RENAME processing and IGGDARU3 
receives control immediately after RENAME processing. 

When DADSM SCRATCH or RENAME is invoked, and you require special 
processing either before or after DADSM SCRATCH or RENAME, replace the 
appropriate IBM-provided module(s) with your own module(s). Your modules 
must be reentrant, execute in 31-bit addressing mode, and observe standard 
register linkage conventions. The modules receive control in PSW key 5 and 
obtain storage for the parameter lists in key 5. Your modules that replace 
IGGDASU2 and IGGDASU3 receive parameter list IGGDASCR as input, and your 
modules that replace IGGDARU2 and IGGDARU3 receive parameter list 
IGGDAREN as input. For descriptions of IGGDASCR and IGGDAREN, see 
Figure 71 on page 145 and Figure 72 on page 146. The DADSM volume list is 
also passed as input to the installation replaceable modules IGGDARU2, 
IGGDARU3, IGGDASU2, and IGGDASU3. For a description of the volume list, 
see Figure 73 on page 146. 

When DADSM SCRATCH or RENAME is invoked th~ough an SVC, the module 
IGG029DU or IGG030DU receives control first. Either IGGDASU2 and IGGDASU3 
(SCRATCH) or IGGDARU2 and IGGDARU3 (RENAME) will receive control after 

Chapter 9. Data Management Installation Exit Routines 143 



any processing done by IGG029DU or IGG030DU has completed. A flag bit in 
the parameter list (IGGDASCR for SCRATCH or IGGDAREN for RENAME) is set 
whenever DADSM SCRATCH or RENAME is invoked with an SVC. Your 
modules that replace IGGDASU2, IGGDASU3, IGGDARU2, and IGGDARU3 can 
check this bit to determine whether IGG029DU or IGG030DU has already 
received control and completed processing. The flag bit for SCRATCH (in the 
IGGDASCR parameter list) is DASSVCEP. The flag bit for RENAME (in the 
IGGDAREN parameter list) is DARSVCEP. 

144 MVS/ESA Data Facility Product Version 3: Customization 

\ j 

"'-"' 

I 

\~ 



Figure 71. Format of the DADSM SCRATCH Parameter List (IGGDASCR) 

'\._./ 
Offset Bytes Name Description 

0(X 100 I) 44 IGGDASCR DADSM DELETE parameter list 
0 (X 10 1

) 8 DASPLID ID = 1 IGGDASCR I 
8 (X 1 8 1

) 2 DASPVER Version of parameter list 
10(X 1A I) 2 DASPLEN Length of parameter list 
12 (X 1C') 1 DASPKEY Key of parameter list 

xx xx DAS PS KEY Storage key of parameter list 
xx xx Reserved 

13 (XI DI) 1 Reserved 
14 (XIE I) 2 DASHRTCD DADSM SCRATCH return code 
16 (X 1 10 I) 4 DASDIAGI Diagnostic information 
16 (XI 10 I) 1 DASERRCD DADSM SCRATCH error code 
17 (XI 11 I) 1 DASSFNID DADSM SCRATCH subfunction ID 
18 (X 1 12 I) 1 DASS FRET Subfunction return code 
19 (XI 13 I) 1 DASSFREA Subfunction reason code 
20(X 1 14 1

) 1 Reserved 
21 (X 1 15 1

) 1 DASFLAG2 SMS indicator flag 

\._.,; X 1 80 1 DASS MS MG SMS-managed data set 
X 140 1 DASUNCAT Uncataloged SMS-managed data set 
X 120 1 DASCATCL Catalog is the caller 
X 1 10 1 DASGDGRO GOG rolloff in progress 
X 108 1 DASGDGRN GDG rolloff noscratch 
..... xxx Reserved 

22 (X 1 16 I) 1 DASFLAG3 Functionally authorized request flags (Part 1) 
X 180 1 DAS FAUTH Caller guarantees functional authorization of request 
X 140 1 DASSAUTH Caller guarantees security authorization of request 
X 120 1 DASPROFM RACF profile managed by caller 
X 1 10 1 DASBTIOT Bypass SYSZTIOT ENO 

'1.'-·/ X 108 1 DASBDSN Bypass SYSDSN ENO 
X 104 1 DASBDEB Bypass DEB check (DSN not open) 
X 1 02 1 DASNVALL Do not dynamically allocate volumes 
X 1 01 1 DASNERAS Do not erase any extents 

23 (X 1 17 I) 1 DASFLAG4 Functionally authorized request flags (Part 2) 
X 180 1 DASVOLMT Caller guarantees that the volume is already mounted 
.xxx xxxx Reserved 

24(X 1 18 I) 1 DAS FLAGS Auth not required request flags 
X 180 1 DASOVRPD Override purge date 
X 140 1 DASVRFRD Verify last-referenced-date unchanged (DFHSM) 
X 120 1 DAS ERASE Erase all extents 

\ I 
... x xx xx Reserved 

~ 25(X 1 19 I) 1 DASFLAG6 Parameter flag byte 
x ... DASSVCEP 1 = SCRATCH entered at SVC entry point, 0 = 

SCRATCH entered via VOSS branch entry interface 
.xxx xxxx Reserved 

26(X 1 1A I) 2 Reserved 
28 (X 1 1C I) 4 DAS UCB Address of primary mountable UCB 
28(X 1 1C I) 4 DASVDSCB Address of virtual DSCB, VIO data set 
32(X 1 20 1

) 4 DASAVOLL Address of volume list (IGGDAVLL); see Figure 73 on 
page 146 

36 (X 1 24 1
) 4 DASADSN Address of data set name 

40 (X 1 28 1
) 3 DASREFDT Reference date to check (DFHSM) 

43(X 1 2B 1
) 1 Reserved 

Chapter 9. Data Management Installation Exit Routines 145 



Figure 72. Format of the DADSM RENAME Parameter List (IGGDAREN) 

Offset Bytes Name Description 

0(X 100 I) 44 IGGDAREN DADSM RENAME parameter list 
0 (X 10 1

) 8 DARPLID ID = 1 IGGDAREN I 
8 (X 1 8 1

) 2 DARPVER Version of parameter list 
10 (X 1A I) 2 DARPLEN Length of parameter list 
12(X 1C 1

) 1 DARPKEY Key of parameter list 
xx xx DAR PS KEY Storage key of parameter list 

xx xx Reserved 
13 (X 1 D 1

) 1 Reserved 
14 (XIE I) 2 DARHRTCD DADSM RENAME return code 
16 (X 1 10 I) 4 DARDIAGI Diagnostic information 
16(X 1 10 I) 1 DARERRCD DADSM RENAME error code 
17 (XI 11 I) DARSFNID DADSM RENAME subfunction ID 
18 (X 1 12 I) DARSFRET Subfunction return code 
19 (X 1 13 I) DARSFREA Subfunction reason code 
20 (X 1 14 1

) Reserved 
21 (X 1 15 1

) DARFLAG2 SMS indicator flag 
X 180 1 DARSMSMG SMS managed data set 
X 140 1 DARUNCAT Rename uncataloged data sets or:ily ''.....,_:!' 

.. xx xxxx Reserved 
22 (X 1 16 I) 1 DARFLAG3 Functionally authorized request flags (Part 1) 

X 180 1 DARFAUTH Caller guarantees functional authorization of request 
X 140 1 DARSAUTH Caller guarantees security authorization of request 
X 120 1 DARPROFM RACF profile managed by caller 
... x xx xx Reserved 

23 (X 1 17 I) 1 DARFLAG4 Functionally authorized request flags (Part 2) 
x ... DARSVCEP 1 = RENAME entered at SVC entry point, 0 = 

RENAME entered via VDSS branch entry interface 
.x .. DARBPDSC When this bit is on, do not update "data set changed" 

bit in the format-1 DSCB 
.. xx xx xx Reserved 

24(X 1 18 I) 4 Reserved 
28 (X 1 1C 1

) 4 DAR UCB Address of primary mountable UCB 
32 (X 1 20 I) 4 DARAVOLL Address of volume list (IGGDAVLL); see Figure 73. 
36 (X 1 24 1

) 4 DARADSN Address of old data set name 
40 (X 1 28 1

) 4 DARANDSN Address of new data set name 

Figure 73. Format of the DADSM Volume List (IGGDAVLL) \~ 
Offset Bytes Name Description 

0 (X 100 1
) 16 IGGDAVLL DADSM volume list 

0(X 100 1
) 16 DAVLLHDR Volume list header 

0 (X 100 1
) 8 DAVLLID ID = 1 IGGDAVLL I 

8 (X 108 1
) 2 DAVLVER Version of volume list 

10(X 10A 1
) 2 DAVLLEN Length of volume list header 

12 (X 10C 1
) 1 DAVLKEY Key of volume list 

xxxx DAVLSKEY Storage key of parameter list 
xx xx Reserved 

13 (X 1 0D 1
) 1 Reserved 

14 (X 10E 1
) 2 DAVCOUNT Number of volumes 

16 (XI 10 I) 12 DAVLVOLE Volume entries; number = DAVCOUNT 
16 (X 1 10 I) 4 DAVLUCBT Device type 
20 (X 1 14 1

) 6 DAVLVOLS Volume serial number 
26 (X 1 1A 1

) 1 DAVLSSTC Secondary status byte 
27 (X 1 1 BI) 1 DAVLSTAT SCRATCH/RENAME status byte 

\__.,/ 

146 MVS/ESA Data Facility Product Version 3: Customization 



'\_) 

I , 

\._.,./ 

Setting Return Codes in IGGDASU2 and IGGDARU2 
The preprocessing modules, IGGDASU2 and IGGDARU2, return to DADSM with 
a return code in register 15. If the return code is nonzero, the DADSM function 
terminates. For a return code of 4, the DADSM function passes back a return 
code of zero to its caller. If the return code is greater than 4, the DADSM 
function passes back a return code of 4 to its caller. 

DADSM SVC Return Code Meaning 

OO(X 100 1
) Indicates successful data set rename. 

04(X 104 1
) Indicates that no volume containing any part of the data set was 

mounted, nor was a unit available for mounting. 

08(X 108 1
) Indicates that an unusual condition was encountered on one or more 

volumes. 

12(X 1OC 1
) Indicates that either the DADSM RENAME parameter list or the 

volume list is invalid. 

Figure 74. DADSM RENAME Return Codes 

DADSM SVC Return Code Meaning 

OO(X 100 1
) Indicates successful data set deletion. 

04(X 104 1
) Indicates that no volume containing any part of the data set was 

mounted, nor was a unit available for mounting. 

08(X 108 1
) Indicates that an unusual condition was encountered on one or more 

volumes. 

12(X 10C 1
) Indicates that either the DADSM SCRATCH parameter list or the 

volume list is invalid. 

Figure 75. DADSM SCRATCH Return Codes 

The postprocessing modules, IGGDASU3 and IGGDARU3, do not set return 
codes. 

CATALOG Installation Exit Module 
The load module for CATALOG contains module IGG026DU. The IBM-provided 
IGG026DU module receives control from CATALOG and immediately passes 
control to module IGC0002F without performing any processing. 

If you require special processing either before or after system catalog routines 
receive control, replace the IBM-provided module with your own module. You 
may replace this module in SYS1.AOSDO prior to system generation, or you 
may replace it in SYS1.LPALIB after system generation. The stage I system 
generation macro SGIEC4DM in SYS1.AGENLIB and the appropriate link edit 
step of the STAGE I system generation output are other sources of information 
about replacing the modules with your own versions. 

Chapter 9. Data Management Installation Exit Routines 147 



Your replacement module must receive control in 31-bit addressing mode and 
pass control to IGC0002F in 31-bit addressing mode. If the your module needs 
to save registers, it must provide a re-entrant save area to save and restore 
registers. The SVRB save area should not be used because it is used by the 
catalog routines. 

This module must be compiled and executed on a machine with an EBCDIC 
character set. Your replacement module must be re-entrant and read-only. It 
must follow all the characteristics and programming conventions for SVC 
routines. For information on these characteristics and conventions, see 
Application Development Guide. 

You may apply PTFs to CATALOG with SMP without modifying your own version 
of IGG026DU. 

The Exit Environment 
The input to IGG026DU is in the form of a catalog request parameter list pointed 
to by register 1. The list may be in the form of an OS/VS CAM LST or a VSAM \"-"" 
request list. 

The register contents on entry to IGG026DU are as follows: 

Register Contents 

0 Not Used. 

Catalog parameter list address. 

2 Not used. 

3 Pointer to the CVT. 

4 Pointer to the TCB. 

5 Pointer to the SVRB. 

6 - 13 Not used. 

14 Address of exit pro log 

15 Not used. 

Figure 76. Register Contents on Entry to Catalog Installation Exit 

The output from module IGG026DU is the entry point address of of catalog 
module IGC0002F, stored in register 15. Registers 1 through 14 should be the 
same as they were on entry to IGG026DU. 

DASO Calculation Services (DCS) Installation Exits 
DASO calculation services (DCS) retrieves DASO data set information, performs 
calculations, and returns statistics to the caller of DCS. DCS provides data set 
information primarily for display by ISMF (Interactive Storage Management 
Facility). The values returned are designated in kilobytes (Kb) or bytes rather 
than cylinders or tracks, to eliminate device dependency. 

148 MVS/ESA Data Facility Product Version 3: Customization 



DCS allows for two installation-written exit modules, the precalculation exit 
(IGBDCSX1) and the postcalculation exit (IGBDCSX2), to provide flexibility in 
selecting the optimum block size/Cl size. Because the access methods restrict 
maximum block size to 32760, if an exit module returns an override or limit 
greater than this, DCS sets the block size to 32760. DCS also verifies that 
exit-supplied Cl size override values do not violate VSAM restrictions. 

The DCS installation exit routines receive control and execute in the calling 
program's key and system state (problem/supervisor). The exit CSECTs are 
linked together with the Common Filter Services, Device Information Services, 
and DCS CSECTs into a single load module. They must be programmed to run 
in 31-bit mode and must reside above the 16Mb line. DCS provides 1K bytes of 
working storage for each of the exits. Figure 78 on page 151 and Figure 79 on 
page 155 contain sample precalculation and postcalculation exit routines to 
document usage and provide models for you. 

Data That DCS Passes to the Exits 
The IGBDCSIE macro maps the DCS pre/postcalculation exit parameter list. At 
entry to the exits, register 1 points to a field containing the· address of the 
parameter list. Figure 77 shows the format of the DCS Precalculation and 
Postcalculation Exit parameter list. 

Figure 77. Format of the DCS Precalculation and Postcalculation Exit Parameter List 

Name Offset Bytes Description 

DCSIEPL DCS exit parameter list 
DCSIEDSN OO(X '00') 44 Data set name 
DCSIEDSO 44(X '2C ') 4 Data set organization 
DCSIEKP 48(X '30') 4 Key position 
DCSIELRL 52(X '34 ') 4 Logical record length (average 

record length if VSAM) 
DCSIETC 56(X' 38 ') 4 Track capacity 
DCSIEBUF 60(X '3C') 4 Buffer space 
DCSIESTG 64(X'40') 4 Exit workspace address 
DCSIEKL 68(X '44 ') 2 Key length 
DCSIEBS 70(X '46 ') 2 Block size (current physical block 

size if VSAM) 
DCSIECOB 72(X '48 ') 2 Calculated optimum block size 
DCSIEVSN 74(X'4A ') 6 Volume serial number 

Registers at Entry to the DCS Exits 
At entry to your exit routine, register contents are as follows: 

Register Contents 

Pointer to the address of the exit parameter list 

13 Address of an 18-word save area 

14 Return address to DCS 

15 Address of your exit routine 

Chapter 9. Data Management Installation Exit Routines 149 



Registers at Return from the DCS Exits 
When you return to DCS, register contents must be as follows: 

Register Contents 

0 Dependent upon which exit is returning and the return code in 
register 15. 

1-14 Same as on entry to your exit routine 

15 A return code from the exit routine 

IGBDCSX1 (DCS Precalculation Installation Exit) 
This installation exit routine gains control before DCS calculates the statistics 
you requested. You can use it to either bypass or limit the DCS-calculated 
optimum block size/Cl size. See "Register_s at Entry to the DCS Exits" on 
page 149 and "Data That DCS Passes to the Exits" on page 149. 

Return Codes from the Precalculation Exit 
The precalculation installation exit must pass a return code back to DCS in 
register 15. The return codes and their meanings are as follows: 

Code Meaning 

OO(X 100 1
) Indicates that DCS can proceed normally 

04(X 104 1
) Indicates that DCS can proceed, using the unsigned value in register 

O as the maximum possible value. 

08(X 108 1
) Indicates that DCS should bypass calculating statistics and use the 

block size/Cl size provided in register 0. 

Sample Precalculation Exit 
Figure 78 on page 151 contains a sample exit for you to use as a model. 

150 MVS/ESA Data Facility Product Version 3: Customization 

\--



\ __ ,/ 

\~ 

*********************************************************************** 
* 
* $MOD(IGBDCSX1): DASO CALCULATION SERVICES PRE-CALCULATION EXIT 
* 
* DESCRIPTIVE NAME = DCS PRE-CALCULATION EXIT 
* 
* COPYRIGHT = NONE 
* 
* FUNCTION = THIS MODULE IS AN EXAMPLE OF THE PRE-CALCULATION EXIT 
* CALLED BY DASO CALCULATION SERVICES. THE EXIT IS PROVIDED BY 
* THE INSTALLATION AND, IN GENERAL, IS THE MEANS BY WHICH THE 
* INSTALLATION TELLS OCS THAT IT WISHES TO LIMIT THE OPTIMAL CI 
* SIZE OR THE OPTIMAL BLOCKSIZE OR BYPASS THE DCS CALCULATION 
* ENTIRELY IN LIEU OF AN INSTALLATION-SUPPLIED VALUE. 
* 
* 
* 
* 
* 
* 
* 
* 

THIS IS A SAMPLE EXIT WHICH RETURNS THE INSTALLATION-DEFINED 
MAXIMUM BLOCKSIZE FOR NON-VSAM DATASETS WHOSE FIRST LEVEL 
QUALIFIER IS SYS2 OR SYS3. FOR NON-VSAM DATASETS WHOSE FIRST 
LEVEL QUALIFIER IS SYS4 OR SYS5, THIS EXIT RETURNS THE ONLY 
BLOCKSIZE ALLOWED. FOR ALL OTHER DATASETS, NO 
RESTRICTIONS APPLY. 

* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

* NOTE: THIS SAMPLE EXIT IS INTENDED TO BE USED AS A LEARNING * 
* AID FOR THE INSTALLATION SYSTEM PROGRAMMER AND IS NOT * 
* GUARANTEED TO RUN ON A PARTICULAR SYSTEM WITHOUT SOME * 
* MODIFICATION. * 

Figure 78 (Part 1 of 4). Sample DASD Precalculation Exit 

Chapter 9. Data Management Installation Exit Routines 151 



* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

REGISTER CONVENTIONS = 
ON ENTRY: 

REGISTER 1 = PARAMETER LIST ADDRESS 
REGISTER 13 = CALLER SAVE AREA ADDRESS 
REGISTER 14 = RETURN ADDRESS 
REGISTER 15 = RETURN CODE 

ON EXIT: 
REGISTER 0 = BLOCK/CI SIZE IF INDICATED BY RETURN CODE 
REGISTER 15 = RETURN CODE 

* PROCESSOR = ASSEMBLER 
* 
* 
* 
* 

ATTRIBUTES= CALLER KEY, CALLER STATE, ENABLED, 
AMODE(31),RMODE(ANY) 

* ENTRY POINT = IGBDCSXl 
* 
* OUTPUT = RETURN CODE IN REGISTER 15, BLOCKSIZE IN REGISTER O 
* 
* 0 = PROCEED WITHOUT RESTRAINT 
* 4 = PROCEED WITH CALCULATION BUT USE THE UNSIGNED VALUE IN 
* REGISTER 0 AS THE MAXIMUM POSSIBLE VALUE 
* 8 = BYPASS CALCULATION AND USE BLOCKSIZE PROVIDED IN 
* REGISTER 0 

* 

* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

*********************************************************************** 
EJECT 

IGBDCSXl CSECT 
IGBDCSXl AMODE 31 
IGBDCSXl RMODE ANY 
* 
* SET UP ADDRESSABILITY 
* 

STM REG14,REG12,12(REG13) SAVE CALLER'S REGS 
LR REG12,REG15 LOAD IGBDCSXl ADDR INTO BASE REG 
USING IGBDCSX1,REG12 
L REGl,O(,REGl) SET UP PARM LIST ADDRESSABILITY 
USING DCSIEPL,REGl 

* 
* CHECK FOR VSAM DATA SET 
* 

* 
* 
* 

* 

TM 
BO 

DCSIEDSO+l,DCSIEAM TEST DATA SET ORGANIZATION 
·EXIT BRANCH IF VSAM DATA SET 

CHECK FIRST-LEVEL QUALIFIER OF DATA SET NAME FOR SYS2 

CLC DCSIEDSN(4),SYS2 IS DSN SYS2? 
BNE SYS3CHK NO - CHECK FOR SYS3 
L REGO,MAXSYS2 SET MAX BLOCKSIZE FOR SYS2 OS 
LA REG15,4 SET RETURN CODE INDICATING A 

LIMIT WAS SET 
B EXIT 

Figure 78 (Part 2 of 4). Sample DASO Precalculation Exit 

152 MVS/ESA Data Facility Product Version 3: Customization 

.'-" 



* I 

* CHECK FIRST-LEVEL QUALIFIER OF DATA SET NAME FOR SYS3 \_) 
* 
SYS3CHK CLC DCSIEDSN(4),SYS3 IS DSN SYS3? 

BNE SYS4CHK NO - CHECK FOR SYS4 
L REG8,MAXSYS3 SET MAX BLOCKSIZE FOR SYS3 OS 
LA REG15,4 SET RETURN CODE INDICATING A 

* LIMIT WAS SET 
B EXIT 

* 
* CHECK FIRST-LEVEL QUALIFIER OF DATA SET NAME FOR SYS4 
* 
SYS4CHK CLC DCSIEDSN(4),SYS4 IS DSN SYS4? 

BNE SYS5CHK NO - CHECK FOR SYS5 
L REG8,SYS4BSZ SET ONLY BLOCKSIZE FOR SYS4 OS 
LA REG15,8 SET RETURN CODE INDICATING TO 

* BYPASS CALCULATION 
B EXIT 

* 
* CHECK FIRST-LEVEL QUALIFIER OF DATA SET NAME FOR SYS5 

"'---'/ * 
SYS5CHK CLC DCSIEDSN(4),SYS5 IS DSN SYS5? 

BNE NO LIMIT NO - NO LIMITS SET 
L REG8,SYS5BSZ SET ONLY BLOCKSIZE FOR SYS5 OS 
LA REG15,8 SET RETURN CODE INDICATING TO 

* BYPASS CALCULATION 
B EXIT 
EJECT 

* 
* INDICATE NO LIMITS SET 
* I 

NO LIMIT LA REG15,8 ~ 
* 
* RETURN TO DCS 
* 
EXIT EQU * 

L REG14,12(,REG13) RESTORE CALLER'S REG 14 
LM REG1,REG12,24(REG13) RESTORE REST OF CALLER'S REGS 
BR REG14 BRANCH BACK TO CALLER 
EJECT 

* 
* DEFINE VARIABLES 
* u SYS2 DC C1 SYS2 1 

SYS3 DC C1 SYS3 1 

SYS4 DC C1 SYS4 1 

SYS5 DC C1 SYS5 1 

* 
REGS EQU 8 
REGl EQU 1 
REG12 EQU 12 
REG13 EQU 13 
REG14 EQU 14 
REG15 EQU 15 

Figure 78 (Part 3 of 4). Sample DASD Precalculation Exit 

Chapter 9. Data Management Installation Exit Routines 153 



* 
MAXSYS2 DC F1 s12e 1 

MAXSYS3 DC F1 rn24e 1 

SYS4BSZ DC F1 4096 1 

SYS5BSZ DC F1 8192 1 

* 
* 

!GBDCSIE 
* 

END IGBDCSXl 

Figure 78 (Part 4 of 4). Sample DASO Precalculation Exit 

IGBDCSX2 (DCS Postcalculation Installation Exit) 
Thi$ installation exit routine gains control after DCS calculates the statistics you 
requested. You can use it to override the DCS-calculated optimum block 
size/Cl size with a value of your own. See "Registers at Entry to the DCS Exits" 
on page 149 and "Data That DCS Passes to the Exits" on page 149. ~ 

Return Codes from the Postcalculation Exit 
The postcalculation installation exit must pass a return code back to DCS in 
register 15. The return codes and their meanings are as follows: 

Code Meaning 

OO(X 100 1
) Indicates that the exit accepts the calculated block size/Cl size. 

08(X 108 1
) Indicates that the exit wants to override the DCS-calculated block 

size/Cl size with the value specified in register 0. 

Sample Postcalculation Exit 
Figure 79 on page 155 contains a sample exit for you to use as a model. 

154 MVS/ESA Data Facility Product Version 3: Customization 

\\..J 



i ) 
~-, 

*********************************************************************** 
* * * $MOD(IGBDCSX2): DASO CALCULATION SERVICES POST-CALCULATION EXIT * 
* 
* DESCRIPTIVE NAME = DCS POST-CALCULATION EXIT 
* 
* COPYRIGHT = NONE 
* 

* 
* 
* 
* 
* * FUNCTION= THIS MODULE IS AN EXAMPLE OF THE POST-CALCULATTION EXIT* 

* CALLED BY DASO CALCULATION SERVICES. THE EXIT IS PROVIDED * 
* BY THE INSTALLATION AND, IN GENERAL, IS THE MEANS BY WHICH THE * 
* INSTALLATION TELLS DCS THAT IT WISHES TO OVERRIDE THE DCS * 
* CALCULATION ENTIRELY IN LIEU OF AN INSTALLATION-SUPPLIED VALUE. * 
* * * THIS IS A SAMPLE EXIT WHICH RETURNS A BLOCKSIZE TO OVER- * 
* RIDE THE CALCULATED OPTIMAL BLOCKSIZE OF A NON-VSAM DATA SET * 
* IF THE CALCULATED BLOCKSIZE EXCEEDS AN INSTALLATION LIMIT AND * 
* THE DATA SET RESIDES ON A PARTICULAR VOLUME. * 
* 
* NOTE: THIS SAMPLE EXIT IS INTENDED TO BE USED AS A LEARNING 
* AID FOR THE INSTALLATION SYSTEM PROGRAMMER AND IS NOT 
* GUARANTEED TO RUN ON A PARTICULAR SYSTEM WITHOUT SOME 
* MODIFICATION. 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

REGISTER CONVENTIONS 
ON ENTRY: 

REGISTER 1 = PARAMETER LIST ADDRESS 
REGISTER 13 = CALLER SAVE AREA ADDRESS 
REGISTER 14 = RETURN ADDRESS 
REGISTER 15 RETURN CODE 

ON EXIT: 
REGISTER 0 BLOCK/CI SIZE IF INDICATED BY RETURN CODE 
REGISTER 15 RETURN CODE 

PROCESSOR = ASSEMBLER 

ATTRIBUTES= CALLER KEY, CALLER STATE, ENABLED, 
AMODE(31),RMODE(ANY) 

* ENTRY POINT = IGBDCSX2 
* 
* OUTPUT = RETURN CODE IN REGISTER 15, BLOCKSIZE IN REGISTER 0 
* 
* 
* 
* 
* 

0 THE CALCULATED BLOCKSIZE IS ACCEPTED 
8 THE CALCULATED BLOCKSIZE IS TO BE OVERRIDDEN WITH THE 

VALUE SPECIFIED IN REGISTER 0 

* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

*********************************************************************** 
EJECT 

IGBDCSX2 CSECT 
IGBDCSX2 AMODE 31 
IGBDCSX2 RMODE ANY 

Figure 79 (Part 1 of 2). Sample DASO Postcalculation Exit 

Chapter 9. Data Management Installation Exit Routines 155 



* 
* SET UP ADDRESSABILITY 
* \""-"' 

STM REG14,REG12,12(REG13) STORE CALLER'S REGS 
LR REG12,REG15 LOAD IGBDCSXl ADDR INTO BASE REG 
USING IGBDCSX2,REG12 
L REGl,O(,REGl) SET UP PARM LIST ADDRESSABILITY 
USING DCSIEPL,REGl 

* 
* CHECK FOR BLOCKSIZE GREATER THAN INSTALLATION LIMIT IF THE DATA 
* SET IS NON-VSAM AND RESIDES ON THE SPECIFIED VOLUME 
* 

* 

* 

TM DCSIEDSO+l,DCSIEAM CHECK FOR VSAM DATA SET 
BO EXIT BRANCH IF VSAM DATA SET 
SPACE 
CLC DCSIEVSN(6),VOLSER DOES OS RESIDE ON THIS VOLUME? 
BNE BLKSZOK NO - BLOCK SIZE IS OK 
SPACE 
CLC MAXBLKSZ(2),DCSIECOB IS CALCULATED BIGGER? 
BNH BLKSZOK NO - BLOCK SIZE IS ACCEPTABLE 
SPACE 
LH REGO,MAXBLKSZ 
LA REG15,8 

B EXIT 

SET MAX BLOCKSIZE 
SET RETURN CODE INDICATING AN 
OVERRIDE VALUE 

* CALCULATED BLOCK SIZE IS OK 
* 
BLKSZOK EQU 

SR 
* 
* RETURN TO DCS 
* 
EXIT EQU 

* 

L 
LM 
BR 
EJECT 

* 
REG15,REG15 

* 
REG14,12(,REG13) RESTORE CALLER'S REG14 
REG1,REG12,24(REG13) RESTORE REST OF CALLER'S REGS 
REG14 BRANCH BACK TO CALLER 

* DEFINE VARIABLES 
* 
REGO EQU 0 
REGl EQU 1 
REG12 EQU 12 
REG13 EQU 13 
REG14 EQU 14 
REG15 EQU 15 
* 
MAXBLKSZ DC H1 31744 1 

VOLS ER DC C'SPECIL 1 

* 
* 

IGBDCSIE 
* 

END IGBDCSX2 

Figure 79 (Part 2 of 2). Sample DASO Postcalculation Exit 

156 MVS/ESA Data Facility Product Version 3: Customization 

\ 

''-" 

\~ 



\ ; 
~ 

\~; 

u 

Data Management Abend Installation Exit 
The abend installation exit provides the ability to recover from abnormal 
conditions that may occur during the opening, closing, or handling of an 
end-of-volume condition for a non-VSAM data set associated with the user's 
task. 

When an abnormal condition occurs, control passes to the DCB abend user exit 
routine if one is provided, and processing continues as specified in the DCB 
abend user exit routine. (The DCB abend user exit routine gives you some 
options regarding the actions you want the system to take when a condition 
arises that may result in abnormal termination of your task. For additional 
information about the DCB abend user exit routine, see "DCB Abend Exit" on 
page 62.) However, if the DCB abend user exit routine is not specified, or if it 
specifies immediate abnormal termination of the task, the system passes 
control to the abend installation exit. If a DCB abend user exit routine is not 
provided, control immediately passes to the abend installation exit. 

IBM supplies an installation exit module, IFG01991, in SYS1.LPALIB, that handles 
abend situations caused by tape positioning errors. IFG01991 allows you to 
retry tape positioning when you receive a system completion code 613 with 
return code 08 or OC. To perform recovery actions for data management abend 
situations (other than those caused by tape positioning errors), you can replace 
installation exit module IFG01991 by modifying the source code supplied in 
member OPENEXIT of SYS1.SAMPLIB. IFG01991 receives control in protection 
key zero, supervisor state. IFG01991 checks the system completion code and 
the return code to determine whether the abend situation is the result of a tape 
positioning error. If the system completion code is other than 613 with return 
code 08 or OC, control returns to the calling module with return code 0, 
indicating that the abend should continue. Otherwise, IFG01991 checks the 
counter in the 4-byte work area to determine whether one attempt to reposition 
the tape has been made. If no attempt to reposition the tape has been made, 
IFG01991 issues a return code of 4, indicating that positioning should be retried. 
If one attempt to reposition the tape has been made, IFG01991 issues message 
IEC613A to the operator to determine whether to attempt repositioning. If the 
operator specifies that tape positioning is to be attempted again, a return code 
of 4 is set, indicating that OPEN is to rewind the tape and attempt positioning. If 
the operator specifies that tape posiUoning is not to be retried, control is 
returned to the calling module with a 0 return code. 

Data That OPEN/EOV Passes to the Exit 
The format of the parameter list (OAIXL) is shown in Figure 80 on page 158. 

Chapter 9. Data Management Installation Exit Routines 157 



Word Boundary 

User Prat Key I Option Flags \ Reserved I Reserved 

Address of the protected copy of the DCB 

+0(00) 

+4(04) 

+8(08) 

+12(0C) 

+16(10) 

+20(14) 

+24 ( 18) 

+28(1C) 

Address of the user's DCB related to the abend 

Address of the UCB related to the abend 

Address of the JFCB related to the abend 

Address of the TIOT entry related 

Abend code - Example '6130000C' 

4-byte installation work area 

1(01) Option flags: 

0 indicates whether the DCB abend 
user exit was taken 

On exit was taken 
Off exit was not taken 

1 indicates whether to rewind the 
tape volume 

On rewind the tape volume 

to the 

Off do not rewind the tape volume 

Figure 80. Format of the Parameter List OAIXL 

Registers at Entry to the Data Management ABEND Exit 

abend 

At entry to the exit routine, register contents are as follows: 

Register Contents 

Address of the parameter list (OAIXL) 

13 Address of an 18-word save area 

14 Return address to OPEN/EOV 

15 Address of the entry point to IFG01991 

158 MVS/ESA Data Facility Product Version 3: Customization 



\. 
~' 

I I 

~I 

Registers at Return from the Data Management ABEND Exit 
When you return to OPEN/EOV, register contents must be as follows: 

Register Contents 

2-12 Same as on entry to the exit 

15 A return code from the exit 

Return Codes from the Data Management ABEND Exit 
The data management ABEND exit must pass a return code back to OPEN/EOV 
as follows: 

Code Meaning 

OO(X '00 ') Continue with the abend in process. 

04(X'04') If the bit 1 option flag is on, rewind the tape volume, set the 
UCBFSCT and UCBFSEQ fields in the UCB to zero, and try to recover 
from the abend. 

If the bit 1 option flag is off, try to recover from the abend. 

For abend codes for which the installation is allowed to try to recover, see 
''DCB Abend Exit" on page 62 

Modifying the IBM-Supplied Installation Exit Module: Because the IBM-supplied 
installation exit module handles only a particular abend situation, you may want 
to modify the source code of that module to perform corrective actions for other 
abend situations. 

You can obtain a copy of the source code from member OPENEXIT of 
SYS1.SAMPLIB for modification, using the editing function that is available to 
you. After you have modified the source code, link-edit it into SYS1. LPALIB. 
The source program is written in Assembler language. If you replace the 
supplied installation module, the exit module you supply must have the entry 
point name IFG01991 and it must be reenterable. 

DCB OPEN Installation Exit (IFGOEXOB) 
The OPEN exit enables an installation-written module to gain control during 
Open for a DCB. OPEN uses an exit parameter list to communicate with exit 
module. The format of the parameter list is shown in Figure 81 on page 161. 

Chapter 9. Data Management Installation Exit Routines 159 



The Exit Module 
OPEN has an exit module that the installation can replace. The module name is 
IFGOEXOB and it is part of load module IGC00011. IGC00011 resides in 
SYS1.LPALIB. You can use System Modification Program (SMP) to replace the 
IBM-supplied exit module with an installation exit you write. 

The Exit Environment 
IFGOEXOB is given control in supervisor state and protect key zero with no locks 
held. System enqueues are issued to serialize system functions. These 
enqueues may prevent other system services from being invoked. In particular, 
dynamic allocation, OPEN, CLOSE, EOV, and DADSM functions should not be 
invoked because of an enqueue on the SYSZTIOT resource. If the exit requires 
access to an installation data set, the control blocks required to access that 
data set (DCB, DEB) should be built during system initialization (IPL/NIP). 
RACF macros may be invoked from the exit. 

Open Processing before the DCB OPEN Exit Gets Control 
The exit module, IFGOEXOB, is given control whenever OPEN processes a DCB. 
The exit is taken after the following functions have been performed for the. DCB. 

• DASO data sets 

Volume mounted 
Format-1, -2, and -3 DSCBs read 
Forward merge from format-1 DSCB to JFCB 

• Tape data sets 

Volume mounted 
Header labels verified 
Forward merge from header labels to JFCB 

• All data sets 

Forward merge from JFCB to DCB 
User DCB OPEN installation exit (if any) taken 
RACF or password verification processing 

Open Processing after the DCB OPEN Exit Gets Control 
The following functions have not yet been performed at the time the exit is 
given control for the DCB. 

• Reverse merge from DCB to JFCB (not all fields are merged) 

• Reverse merge from JFCB to format-1 DSCB for DASO data sets (not all 
fields are merged) 

• Header labels written (for output tape data set) 

• Access-method-dependent processing (obtain buffers, GETMAIN, and build 
IOBs and DEB) 

• Write JFCB 

• Write format-1 DSCB 

• Obtain system block size if block size in DCB is zero. 

160 MVS/ESA Data Facility Product Version 3: Customization 



~/ 

L,/ 

\ .. _) 

Getting Control from Open 
The exit is given control for each DCB being opened, even when two or more 
DCBs are being opened in parallel with one invocation of OPEN. 

The exit is given control from OPEN and OPEN TYPE= J. The exit is given 
control from end-of-volume (EOV) and from force-end-of-volume (FEOV) when a 
concatenation of two unlike sequential data sets is being processed. (Unlike 
meaning that the user program considers the data sets to have unlike 
attributes.) The exit is not given control when a concatenation of two like 
sequential data sets is being processed. (Like meaning that the user program 
considers the data sets to have like attributes.) Such data sets might be a 
combination of disk, tape, and sysin data sets. A request by the user program 
for concatenation with unlike attributes is shown in the DCB by flag DCBOFPPC 
(bit 4; mask X 108 1

) in field DCBOFLGS being set to one. 

Data That Open Passes to the Exit 
The parameter list mapped by macro IECOIEXL is supplied to the installation 
exit. It contains data and the addresse~ of control blocks that may be of 
interest to the exit. 

The format of the parameter list is shown in Figure 81. 

Name Offset Bytes Description 

OIEXL 88(X'88') 8 DCB Open installation exit 
parameter list 

OIEXOOPT 88(X'88') 1 Open option (last 4 bits) 
OIEXRSVD 1111 X'F8' first 4 bits reserved 
OIEXOOUT 1111 15 output 
OIEXOOIN 8111 7 outin 
OIEXOUPD 8188 4 update 
OIEXOINO 8811 3 inout 
OIEXORDB 8881 1 read backward 
OIEXOINP 8888 e input 
OIEXUKEY 01(X'01') 1 User protect key-key of 

user DCB 
OIEXLTH 82(X'02') 2 Length of OIEXL 
OIEXUDCB 04(X'04') 4 Address of user DCB in user 

protect key (OIEXUKEY) 
OIEXPDCB 08(X'08') 4 Address of protected copy of 

DCB used by OPEN 
OIEXJFCB 12(X'12') 4 Address of JFCB 
OIEXDSCB 16(X'16') 4 Address of data portion of 

format-1 DSCB 
OIEXTIOT 20(X'20') 4 Address of TIOT entry 
OIEXUCB 24(X'24') 4 Address of UCB 

Figure 81. Format of DCB OPEN Installation Exit Parameter List (OIEXL) 

Chapter 9. Data Management Installation Exit Routines 161 



Note that two DCB addresses are supplied. OPEN maintains a protected copy 
of the user DCB. You can use OPEN's copy of the DCB to test the DCB fields. 
If you modify your copy of the DCB, OPEN updates its protected copy when it 
regains control from the exit. The protect key of the user DCB is supplied in 
the exit parameter list. You must use this key to either get information from or 
modify the user DCB. 

When using this exit to change values in the DCB for a data set that has been 
allocated to an SMS-managed volume, do not specify values that would change 
the data set to a type which cannot be SMS managed, such as unmovable. 
Changing an SMS-managed data set to a type such as unmovable results in 
abnormal termination of the task. 

Be sure you determine the type of DCB and device passed to the exit before 
testing access-method or device-dependent fields in the DCB. The sample exit 
shown in Appendix A, "Example of an OPEN Installation Exit Module" on 
page 229 gives an example of isolating a QSAM DCB being opened to a DASO 
or tape device. 

The JFCB address supplied to the exit points to a copy of the JFCB that is _in the 
OPEN work area. There may be other JFCBs associated with the OPEN if ISAM 
or concatenated partitioned data sets are being opened. 

In the case of BDAM, ISAM, and concatenated partitioned data sets, the UCB, 
whose address is supplied to the exit, may not be the only UCB associated with 
the DCB being opened. The UCB should not be modified. 

The TIOT address supplied is of a TIOT entry (TIOENTRY Jabel in the IEFTIOT1 \"-"" 
macro). In the cases of ISAM and concatenated partitioned data sets, other 
TIOT entries may be associated with the DCB being opened. If concatenation of 
unlike attributes is being processed, the TIOT entry may have a blank DDNAME 
field. 

The format-1 DSCB passed to the exit is in the OPEN work area. The address 
is that of the field 081 FMTID. There may be format-2 and -3 DSCBs associated 
with the format-1 DSCB. There may be other format-1 through -3 DSCBs 
associated with the DCB being opened in the cases of ISAM, BDAM, and 
concatenated partitioned data sets. If the OPEN is to the VTOC, a format-4 \~ 
DSCB address is passed to the exit; this can be determined by testing field 
081 FMTID for a value of X 1 F4 1

, or the data set name in the JFCBDSNM field of 
44X 104 1

• 

Defaulting the DCB Buffer Number 
If a value has not yet been supplied, the exit may be used to supply an 
installation-determined value for DCBBUFNO (number of buffers) for QSAM 
DCBs. 

A sample exit program that does this is shown in Appendix A, "Example of an 
OPEN Installation Exit Module" on page 229. 

162 MVS/ESA Data Facility Product Version 3: Customization 



l 
\.,_..,I 

I , v 

You should not override a nonzero value in DCBBUFNO for QSAM DCBs 
without knowing what dependency the user program has on that value. When a 
buffer pool control block address is in the DCB field DCBBUFCA, you cannot 
override DCBBUFNO; this indicates that buffers have been acquired before 
OPEN. If no buffer pool control block address exists, DCBBUFCA is set to one 
(not zero) 

You should not override a zero value in DCBBUFNO for BSAM DCBs when 
DCBBUFCA is set to one without knowing what dependency the user program 
has on these values. If the user program does not want OPEN to acquire buffer 
storage space, it indicates this by setting DCBBUFNO to zero and DCBBUFCA 
to one. If the user program wants OPEN to acquire buffer storage space, it can 
override DCBBUFNO with a nonzero value. The user program is then 
responsible for freeing that space after closing the DCB. 

Forcing the System to Determine Block Size 
OPEN calls DASO Calculation Services to obtain a system-determined block 
size if the block size in the DCB (DCBBLKSI) is zero upon return from this exit. 
If you want the system to determine the block size for a data set, set DCBBLKSI 
to zero before returning from this exit. 

Note: If a system-determined block size is used, OPEN turns on the 
reblockable indicator in the format-1 DSCB (bit 2 of the DS1 SMSFG field). When 
the data set is opened, and the merging of the block size occurs, OPEN checks 
the indicator. If the block size is a system-determined block size, and the 
LRECL or RECFM have changed from those specified in the data set label, 
OPEN will rederive the block size. 

Modifying the JFCB 
Whenever the JFCB is modified, code 4 should be returned to OPEN. This 
causes OPEN to rewrite the JFCB. The JFCB should not be modified if the user 
program has set JFCNWRIT (bit 4) in byte JFCBTSDM because it indicates the 
JFCB should not be written. 

A sample exit program that modifies the JFCB is shown in Appendix A, 
"Example of an OPEN Installation Exit Module" on page 229. 

Requesting Partial Release 
An example of modifying the JFCB in OPEN's work area to request partial 
release is shown in Appendix A, "Example of an OPEN Installation Exit Module" 
on page 229. It sets the following bits to 1, indicating a partial release request: 
JFCRLSE (bits o-and 1; mask X 1 CO 1

) in byte JFCBIND1. This should be done 
only for DASO physical-sequential or partitioned data sets opened for OUTPUT 
or OUTIN and processed by either (1) EXCP with a 5-word device-dependent 
section present in the DCB, (2) BSAM, or (3) QSAM. 

Care should be taken in modifying the JFCB release bits. For example, a data 
set that is opened for output many times, writing varying amounts of data each 
time, may have to extend after each OPEN, resulting in many small extents and, 
perhaps, reaching the 16-extent limit. This could result in a B37 abend. 

Chapter 9. Data Management Installation Exit Routines 163 



Care should also be taken in setting the JFCBSPAC bits to define the space 
quantity units when the partial release flag, JFCBRLSE, is also set on. A 
cylinder allocated extent may be released on a track boundary when 
JFCBSPAC does not indicate cylinder units or average block length units with 
ROUND specified. This causes the cylinder boundary extent to become a track 
boundary extent, thereby losing the performance advantage of cylinder 
boundary extents. Zeroing the release indicator and increasing secondary 
allocation quantity (for example, when the data set has extended a large 
number of times) may prevent such a B37 abend. Setting the release indicator 
could result in more space being made available to other users sharing the 
volume. 

Updating the Secondary Space Data 
The JFCB may also be modified by updating the secondary space data. Byte 
JFCBCTRI contains the space request type coded in the DD statement or 
merged from the format-1 DSCB. Field JFCBSQTY contains the amount of 
secondary space (in either tracks, cylinders, or average block units). Field 
JFCBPQTY contains the amount of primary space (in either tracks, cylinders, or 
average block units). 

Setting the contiguous bit (JFCONTIG) to zero may preve.nt an out-of-space 
abend where there is enough space, but not enough contiguous space, to 
satisfy a request to extend the data set. 

Registers at Entry to the DCB OPEN Exit 
At entry to the exit, register contents are as follows: 

Register Contents 

Address of the DCB OPEN installation exit parameter list 

13 Address of an 18-word save area 

14 Return address to OPEN 

15 Address of the entry point to IFGOEXOB 

Registers at Return from the DCB OPEN Exit 
When you return to OPEN, register contents must be as follows: 

Register Contents 

0-14 Same as on entry to the exit 

15 A return code from IFGOEXOB 

164 MVS/ESA Data Facility Product Version 3: Customization 

\~ 



Return Codes From the DCB OPEN Exit 
The DCB OPEN exit must pass a return code back to OPEN in register 15. The 
return codes and their meanings are as follows: 

Code Meaning 

OO(X 100 1
) Indicates that the JFCB has not been modified 

04(X 104 1
) Indicates that the JFCB has been modified 

Open/EOV Installation Exit for Format-1 DSCB Not Found 
The function of the format-1 DSCB-not-found installation exit in OPEN and EOV 
is to determine whether a missing DSCB (such as a data set that has been 
migrated to another volume) can be restored to the volume. If your exit module 
restores the DSCB, it indicates this when it returns control to the control 
program. The exit module, IFGOEXOA, is given control whenever OPEN or EOV 
fails to find a format-1 DSCB on a volume. There is an IBM-supplied exit 
module, IFGOEXOA, in SYS1. LPALIB. If you want to use your own exit module, 
you must replace IFGOEXOA. Your exit module must have an entry point name 
of IFGOEXOA. If you do not write your own exit module, processing continues 
normally because the IBM-supplied exit returns a zero return code. 

The exit is taken even under conditions under which abnormal termination 
ordinarily would not occur. Two examples of these conditions follow: 

1. When you have specified DISP= MOD and error recovery processing is 
taking place because the last volume specified in the JFCB does not contain 
the DSCB, but an earlier volume does. For this case, if your return code 
from IFGOEXOA is 0 or if your return code is 4 and the DSCB has not been 
restored, OPEN and EOV search the other volumes for the DSCB after the 
exit is taken. 

2. Another condition occurs during EOV output when space has not yet been 
allocated on the new volume. Space is allocated after the exit is taken if 
your return code from IFGOEXOA is 0 or if your return code is 4 and the 
DSCB has not been restored. 

When a DSCB is not found, IFGOEXOA is given control as follows: 

• In system protect key 5 (data management key). 

• In supervisor state. 

• The system resource represented by the SYSZTIOT major name is 
enqueued for shared control. (This ENQ prevents the exit from invoking 
system functions such as SCRATCH, ·RENAME, dynamic allocation, or 
LOCATE.) 

Chapter 9. Data Management Installation Exit Routines 165 



Data That OPEN/EOV Passes to the Exit 
The parameter list pointed to by register 1 consists of two fullwords. The first 
fullword contains the address of the UCB of the volume for which the format-1 
DSCB was not found. The second fullword contains the address of the 44-byte 
data set name, left justified, and padded with blanks. Bit zero of the second 
fullword is set to one, indicating the last word in the parameter list. 

The data set name must not be modified by the exit. The parameter list, save 
area, and data set name are in protect key 5 virtual storage, which is not fetch 
protected. IFGOEXOA must be reenterable. All work areas obtained through 
GETMAIN must be released through FREEMAIN. 

Registers at Entry to the Format-1 DSCB Not Found Exit 
At entry to your exit routine, register contents are as follows: 

Register Contents 

O If X 100 1
, entry was from OPEN (single volume data set). 

If X 10C 1
, entry was from OPEN (multivolume data set). 

If X 'OF 1
, entry was from EOV. 

Address of the parameter list 

2-12 Unpredictable 

13 Address of an 18-word save area 

14 Return address to OPEN/EOV 

15 Address of entry point to IFGOEXOA 

Registers at Return from the Format-1 DSCB Not Found Exit 
When you return to OPEN/EOV, register contents must be as follows: 

Register Contents 

2-12 Same as on entry to the exit 

15 A return code from the exit 

166 MVS/ESA Data Facility Product Version 3: Customization 



\~' 

Return Codes from the Format-1 DSCB Not Found Exit 
The format-1 DSCB not found exit must pass a return code back to OPEN/EOV 
as follows: 

Code 

OO(X 100 1
) 

04(X 104 1
) 

08(X 108 1
) 

Meaning 

Processing continues normally. This return code is given if the 
exit does not restore the DSCB. The IBM-supplied exit module 
always gives return code 0. 

The volume is searched one more time by OPEN or EOV for the 
DSCB. This return code is given if IFGOEXOA restores the DSCB to 
the volume. If the DSCB is again not found, IFGOEXOA is not given 
control and processing continues normally. 

The task is abnormally terminated without attempting to determine 
if DISP =MOD error recovery or allocation on the new volume 
should occur. This return code is given if IFGOEXOA encounters an 
error and you do not want 'to continue processing. 

You should have IFGOEXOA establish its own error recovery environment (for 
example, through an ESTAE), intercept any indeterminate errors, and return to 
the control program with return code 8. Problem determination is the 
responsibility of your exit module. A write-to-programmer (WTO with routing 
code 11) or a TPUT (if a TSO region) may be used to issue an informative 
message. 

During a parallel OPEN when two or more DCBs are being opened at the same 
time and two of the DCBs are opening the same data set, the DSCB may be 
missing. If IFGOEXOA is called for the first of the two DCBs and restores the 
DSCB, the channel program attempting to read the DSCB for the second DCB 
may have been executed before the restoration of the DSCB was complete. 
IFGOEXOA is then called for the second DCB, even though the DSCB has 
already been restored. Return from IFGOEXOA with a return code 4 is 
appropriate in this case. 

IFGOEXOA is not given control when you are processing a VSAM data set with 
an ACB; however, it is given control when you are processing a VSAM data 
space with a DCB. IFGOEXOA is bypassed if the format-4 DSCB is not found on 
a volume, even if the OPEN is to the VTOC data set name (data set name of 44 
bytes of X 104 1

). 

IDATMSTP Datestamp Routine 
The datestamp control module (IDATMSTP) is provided as a module that you 
can use to cause datestamp processing to be skipped. It sets a return code of 
4 that causes VSAM to process the last-referenced date (DS1 REFD) in the 
format-1 DSCB for VSAM data sets cataloged under the integrated catalog 
facility. 

The datestamp control module cannot be used to change the date last 
referenced in the DSCB. The DSCB can be modified using the DCB OPEN 

Chapter 9. Data Management Installation Exit Routines 167 



installation exit, IFGOEXOB. It is described in "DCB OPEN Installation Exit 
(IFGOEXOB)" on page 159. 

Register Contents at Entry to IDATMSTP 
Figure 82 shows the contents of the registers when VSAM gives control to 
IDATMSTP. 

Register Contents 

0 Unpredictable. 

1 Address of a parameter list that contains the following addresses of 
the offset: 

0 Data set name. 

4 List of five volume serial numbers that contain the data set. 

8 Address of a 1-byte indicator set to X 1 D 1 to indicate the data set 
is a base data component. 

2-12 Unpredictable. 

13 Save area address. 

14 Return address in VSAM OPEN. 

15 Entry address to IDATMSTP. 

When IDATMSTP returns to VSAM OPEN, the desired datestamp option is 
indicated in register 15: 

0 No datestamp processing. 

4 Datestamp processing desired; updated indicator (081 IND02) 
maintained. 

Figure 82. Communication with the Datestamp Routine 

Programming Considerations 
IDATMSTP is packaged as a single load module. 

It is entered in 31-bit addressing mode and must return in 31-bit addressing 
mode. IDATMSTP may be replaced with another module you select that sets a 
return code of 0 and causes datestamp processing to be skipped on all 
specified data sets. 

Products or installations which repl.ace the VSAM version of IDATMSTP with 
their own module must link-edit their version into LPALIB as a separate load 
module named IDATMSTP. 

Your module can include code to cause checking of some or all the base 
cluster data components of VSAM data sets cataloged in an integrated catalog 
facility catalog for periodic migration to other storage media and maintenance 
of the updated indicator. 

168 MVS/ESA Data Facility Product Version 3: Customization 



\.._./ 

Parameters Passed to IDATMSTP 
Parameters passed to the IDATMSTP module may reside above 16 megabytes. 

IDATMSTP is passed the addresses of the data set name, first 5 volume serial 
numbers, and a character 1D 1 which indicates that the object is a data 
component of a data set cataloged in an integrated catalog facility catalog. 
This information is available to your module and can be used to further qualify 
which data sets should have datestamp processing. 

Requesting Datestamp Processing 

Returning to VSAM 

If you don't modify the IDATMSTP module to skip datestamp checking (return 
code 0 in register 15), VSAM datestamp processing is performed if the following 
conditions are met: 

• The data-set is the data component of a base cluster or alternate index. 

• The field DS1 REFD in the format-1 DSCB is earlier than today's date. 

When IDATMSTP returns to VSAM OPEN, your routine must indicate the 
datestamp option in register 15 (see Figure 82 on page 168). 

IGXMSGEX M.essage Display Exit 
The message display installation exit (IGXMSGEX) is provided as a module that 
you can use to customize messages for display on an IBM 3480 tape drive. The 
exit is optional, and is not invoked if it does not exist. You can use the exit to 
modify either the parameter list (EXITPLST, shown in Figure 84 on page 170) or 
the message text pointed to by the parameter list, based on jobnam~. step 
name, or some other means. You can also use the exit to specify no automatic 
cartridge load. 

Register Contents at Entry to IGXMSGEX 
Figure 83 shows the contents of the registers when the message display 
execution module gives control to IGXMSGEX. 

Register Contents 

0 Unpredictable. 

Address of a two word parameter list (EXITPLST) 

2-12 Unpredictable. 

13 Save area 

14 Return address 

15 Base register. 

Figure 83. Registers on Entry to IGXMSGEX 

Chapter 9. Data Management Installation Exit Routines 169 



Parameters Passed to IGXMSGEX 
Figure 84 shows the contents of the parameter list when the message display 
execution module gives control to IGXMSGEX. 

Field 

EXITPLST 

UCBADDR 

Description 

CHAR(8) Eye-catcher 

PTR(31) 

• CHAR(1) which is reserved 
• PTR(24) address of the UCB 

MSGTXADR PTR(31) Address of MSGTEXT 

Figure 84. IGXMSGEX Parameter List 

MSGTEXT, which is pointed to by MSGTXADR, consists of a format control byte 
followed by two 8-byte display data fields. You can modify the messages in 
these display data fields to meet your requirements. You can· modify bit 7 in 
the format control byte to request no automatic cartridge load. Changes to any 
other bits in the format control byte are ignored. The format control byte is 
described below in Figure 85: 

Bit Contents· 

0-2 New message overlay 

3 Alternate messages 

4 Blink message 

5 Display Low/High message 

6 Reserved 

7 Automatic cartridge load (ACL) request 

Figure 85. MSGTEXT Format Control Byte 

Programming Considerations 
If you want to use the exit, IGXMSGEX must be link-edited with the message 
display execution module (IGX00030). If it is not link-edited with IGX00030, the 
exit will not be called. 

If IGXMSGEX is link-edited with IGX00030, then IGXMSGEX is called for 
MSGDISP requests of MOUNT, DEMOUNT, VERIFY, and GEN. 

The PSA points to the ASCB, which points to the CSCB. The CSCB contains the 
jobname and the stepname. 

On entry to the exit, IGXMSGEX is given control as follows: 

• In system protect key 5 (data management key) 

• In supervisor state 

170 MVS/ESA Data Facility Product Version 3: Customization 

\......_,,,, 



\\...._.../ 

':~; 

\ i 

~ 

• AMODE 31 

• RMODE any 

The exit routine you code for IGXMSGEX must be re-entrant. 

On return from the exit, the message display execution module (IGX00030) uses 
any modifications of the two display data fields and bit 7 in MSGTEXT when 
issuing the load display channel command. 

Controlling the Automatic Cartridge Load 
If you want to request that no automatic cartridge load be performed, you can 
set bit 7 in the format control byte to zero. On return from the exit, the 
message display execution module unconditionally accepts the new zero value 
of bit 7. If you set bit 7 to a value of one, the message display execution 
module verifies that the device supports automatic cartridge load and is active. 
If the device does not support automatic cartridge load, and your exit set bit 7 
on, then the message display execution module resets bit 7 to zero before 
issuing the load display channel command. 

If the exit is not called (IGXMSGEX is not link-edited with IGX00030), MSGDISP 
enables automatic cartridge load only when: 

• the device supports automatic cartridge load, 

• the automatic cartridge load is ready, 

• and the VOLSER is either SCRTCH or PRIVATE. 

Chapter 9. Data Management Installation Exit Routines 171 



\._ 



u 

\ "--'/ 

Chapter 10. Tape Label Processing Installation Exit Routines 

General Guidance 
This chapter discusses installation-written replaceable modules for specialized 

tape processing. With replaceable modules you can: 

• Create and process nonstandard tape labels. 

• Edit labels when versions, label types, density, or volume serial number 

conflicts are detected. 

• Control volume access, file access and label validation for ISO/ANSl/FIPS 

Version 3 volumes. 

• Selectively convert non-Version 3 volumes to Version 3 volumes. 

The replaceable modules available for tape label processing are listed in 

Figure 86. 

Figure 86 (Page 1 of 2). Tape Label Processing Modules 

Module Name Description When Available 

NSLOHDRI Nonstandard label At open/EOV 

NSLEHDRI processing routines for input 
headers 

NSLOHDRO Nonstandard label At open/EOV 

NSLEHDRO processing routines for 
output headers 

NSLETRLI Nonstandard label At open 

processing routine for input 
trailers 

NSLETRLO Nonstandard label At EOV/close 

NSLCTRLO processing routines for 

output trailers 

NSLRHDRI Nonstandard label At restart from a 

processing routine for checkpoint 

restarting after a checkpoint 

IEFXVNSL Automatic volume When AVR cannot 

recognition (AVR) identify the first record 

nonstandard label processing on a magnetic tape 
volume as a standard 
label 

NSLREPOS Volume verification using the When DOR is used for 

dynamic device nonstandard labels 

reconfiguration (DOR) option 

for nonstandard label 
processing 

Chapter 10. Tape Label Processing Installation Exit Routines 173 



Figure 86 (Page 2 of 2). Tape Label Processing Modules 

Module Name Description When Available 

OMODVOL1 Volume label editor routines At open/EOV 
EMODVOL1 for open and EOV 

IFG0193G ISO/ANSl/FIPS Version 3 At open/EOV; file 
label installation exits for access: after 
volume access, file access, positioning to a 
label validation, and label requested data set 
validation suppression 

IEECVXIT ISO/ANSl/FIPS Version 3 Label version conflict 
label WTOR installation exit 

Programming Considerations 
In general, your replaceable module must: 

• Follow the naming conventions for the particular module you are replacing 
• Save and restore registers 
• Reside in SYS1 .LPALIB. 

Nonstandard Labels 
Nonstandard labels do not conform to the IBM or ISO/ANSl/FIPS standard label 
formats. They are labels which you design, and you provide routines to write 
and process them. There are no requirements as to the length, format, 
contents, and number of nonstandard labels, except that the first record on a 
BCD, EBCDIC, or ISCll/ASCll tape cannot be a standard volume label. 

Figure 87 on page 175 shows some examples of how you can organize tape 
volumes with nonstandard labels. Other variations are possible. Because your 
routines do the positioning, there are no special requirements for multivolume 
or multiple data set organizations. All labels and tapemarks are written by your 
routines. If an operating system access method is used to retrieve the data, 
tapemarks should precede and follow the data set to indicate the 
end-of-data-set condition for forward and backward read operations. 

174 MVS/ESA Data Facility Product Version 3: Customization 



\. j ..._,,/ 

L/ 

Example 1 - No Tapemarks 

Nonstandard 
Label Data Set Nonstandard 

Label 

Example 2 -- Tapemarks Delimiting the Data Set 
r-~~~~-'---~~--.~~..---~~~~~~---,1~(;--~~~~~~~..---~--.---~~~~~~~~..,.-~~~ 

Nonstandard 
TM Data Set TM Nonstandard 

l 
< 

Label 

-'--~--~~~~~----'-~~'--~~~~~~---,I~\~\~~~~~~~-'-~--'-~~~~~~~~---'-~~----'~ 
Label 

Example 3 -- Tapemarks Delimiting the Labels and the Data Set 
\ \ 

I. 

TM Nonstandard 
TM Data Label 

' 

( 

{ Set TM Nonstandard 
TM Label 

\ <' T 

1. No Tapemarks: This type of organization can be created by your nonstandard label processing routines, and read with the EXCP technique. It should not be used with an operating system access method because there is no tapemark to signal end-of-data. 

2. Tapemarks Delimiting the Data Set: This is the recommended organization. The tape marks are written by your nonstandard label processing routines. When the tape is read by an operating system access method. the tapemark following the data set signals end-of-data for forward read operations, and the tapemark preceding the data set signals end-of-data for backward read 
operations. 

3. Tapemarks Delimiting the Labels and the Data Set: This is an expansion of the preceding organization. The additional tapemarks that precede and follow the labels are not handled by the operating system. They are written and used by your nonstandard label processing routines. · 

Figure 87. Examples of Tape Organizations with Nonstandard Labels 

If you want to use nonstandard labels for tape volumes you must: 

1. Create nonstandard label processing routines for input header trailer labels, 
input trailer labels, output header labels, and output trailer labels. 

2. Insert your routines into the link pack area {LPA) library {SYS1.LPALIB). 

3. Code NSL in the LABEL parameter of the DD statement at execution time. 

This section explains how your nonstandard label processing routines work with 
the operating system control program, how to write your routines, and how to 
insert your routines into the operating system. 

Processing Tapes with Nonstandard Labels 
Your appropriate nonstandard label processing routine is selected, brought into 
virtual storage, and executed when a data set is opened or closed, when an 
end-of-volume or end-of-data-set condition occurs, or for repositioning a volume 
when a job step is restarted from a checkpoint. When your routine has 
completed its processing, it must return control to data management's open, 
close, EOV, or restart routine, which then continues its normal processing. For 
input, the EOV routine handles both end-of-volume and end-of-data-set 
conditions. For output, the EOV routine handles the end-of-volume condition, 
and the close routine handles the end-of-data-set conditia,n. 

Your routines must provide for reading labels, processing labels, writing labels, 
writing tapemarks, identifying volumes, and positioning volumes. Your 

Chapter 10. Tape Label Processing Installation Exit Routines 175 



nonstandard label processing routines are responsible for setting the UCB file 
sequence (UCBFSEQ) and UCB file count (UCBFSCT) fields, based upon the 
user's processing. The control program assumes that a tape with nonstandard 
labels is properly positioned upon completion of a nonstandard label 
processing routine. 

If you want the control program to maintain a block count, your header label 
routines that receive control from open or EOV must properly initialize the block 
count field of the DCB. During EOV processing in BSAM and QSAM, the 
DCBIOBA field of the DCB points to an IOB. The DCBBLKCT field must be 
decreased by the value in the IOBINCAM field of that IOB. If chained 
scheduling is being used, the block count in the DCB is correct and need not be 
decreased. 

When processing is completed, the control program handles volume disposition 
in accordance with the parameters of the DD statement. Your nonstandard 
label processing routines are responsible for any positioning specified by the 
OPEN or CLOSE macro instructions. If you need to process a data set more 
than once in a job, or if you want to handle multiple data set yolumes, your 
routines must control the positioning. If you handle volume disposition in your 
nonstandard label processing routines, you must issue volume disposition 
messages to the console operator. Data management checks to see if your 
routine has handled disposition, and it bypasses disposition and message 
handling if volume disposition is verified. Be extremely careful when verifying a 
tape under one processing technique and then accessing the tape under a 
second technique (for example, changing from NSL to NL with a verified tape). 

Following paragraphs explain the flow of control between the control program 
and each type of nonstandard label processing routine. Information on tape 
positioning and volume identification is also provided. 

Support for RACF protection of tape volumes may be a part of nonstandard 
label processing routines. 

Input Header Label Routines . 
When nonstandard labels are specified, the control ·program checks the input 
tape to make sure that the first record is not a standard volume label. If the \~ 
first record contains the identifier VOL 1 in the first 4 bytes, is recorded in 
EBCDIC, and is 80 bytes long, or it is recorded in ISCll/ ASCII and is 80 bytes or 
more in length, the tape is rejected by a message from the control program 
directing the operator to demount the current volume· and mount the correct 
volume. The various error conditions that can occur during verification of the 
first record are explained under "Volume Label Verification and Volume Label 
Editor Routines" on page 196. 

When it is determined that the tape does not contain a standard volume label, 
the open or EOV routine gives control to your routine for processing input 
header labels. Control comes from the open routine for the first or only volume 
of a data set, or for a concatenated data set with unlike characteristics. (Data 
sets with like characteristics can be processed correctly using the same DCB, 
IOB, and channel program. Any exception in processing makes the data sets 
unlike.) Control comes from the EOV routine for the second and subsequent 
volumes of a data set, or for a concatenated data set with like characteristics. '~ 

176 MVS/ESA Data Facility Product Version 3: Customization 



( ' 

\_/ 

When your routine receives control, the tape has been rewound; the tape is 
positioned at the interrecord gap preceding the nonstandard label. 

Note: If the control program finds that the tape volume has been previously 
verified in the job, the tape has not been rewound. 

If your routine determines that the wrong volume is mounted, you must place a 
1 in the high-order bit position of the UCBDMCT field of the UCB, and return 
control to the control program. The control program then issues a message 
directing the operator to mount the correct volume. When the volume is 
mounted, the control program again checks the initial label on the tape before 
giving control to your routine. 

Before returning control to the control program, your input header label routine 
must position the tape at the appropriate data set: 

• For forward read operations, position the tape at the interrecord gap that 
precedes the initial record of the data set. 

• For backward read operations, position the tape after the last record of the 
data set. 

Input Trailer Label Routines 
When a tapemark is encountered on an input tape, data management's EOV 
routine gives control to your routine for processing input trailer labels, with two 
exceptions. The EOV routine does not give control to your input trailer label 
routine when: 

• The FEOV macro instruction is used to force an end-of-volume condition. 

• At the end of the data set, the DCB exit list indicates deferred nonstandard 
input trailer label processing. 

When your routine receives control, the tape is already positioned for label 
processing: 

• For forward read operations, the tape has been positioned immediately 
after the tapemark at the end of the data set. 

• For backward read operations, the tape has been positioned immediately 
before the tapemark at the beginning of the data set. 

Your routine need not reposition the tape before returning control to the control 
program. 

If additional volumes are specified in the JFCB the control program uses the 
next-specified volume serial number and performs volume switching. (You 
specify the volume serial numbers in forward sequence, regardless of whether 
the tapes are to be read forward or backward.) If the new volume is not 
already mounted, the control program issues a mount message to the operator. 
The new volume is then processed by the EOV routine and your input header 
label processing routine. 

If another volume is not specified in the JFCB, the control program gives control 
to your end-of-data-set (EODAD) routine that is specified in the DCB. 
Subsequently, the processing program or the operating system closes the data 
set. When an input data set is closed, your outpuftrailer label routine is given 
control. This allows you to position the tape if necessary. When an 

Chapter 10. Tape Label Processing Installation Exit Routines 177 



end-of-data-set condition occurs and the DCB exit list (EXLST) indicates 
deferred nonstandard input trailer label processing, the close routine passes 
control to your input trailer label routine before passing control to your output 
trailer label routine. The DCB exit list is described in "EXLST Exit List" on 
page 58. 

Output Header Label Routines 

When nonstandard labels are specified for output, the control program checks 
the tape to make sure that the existing first record is not a standard volume 
label. If the first record is 80 bytes in length and contains the identifier VOL 1 in 
the first 4 bytes, the tape is not accepted, as is. If an IBM standard label exists, 
it is overwritten with an IBM tapemark, if possible. If an ISO/ANSI/Fl PS 
standard label exists, the console operator must confirm that it can be 
destroyed. The various error conditions that can occur during verification of the 
first record are explained under "Volume Label Verification and Volume Label 
Editor Routines" on page 196. 

When the control program ensures that the first record on the tape is not a 
standard volume label, the open or EOV routine gives control to your routine for 
processing output header labels. Control comes from the open routine for the 
first or only volume of a data set. Control comes from the EOV routine for the 
second and subsequent volumes of a data set. When your routine receives 
control, the tape has been positioned at the interrecord gap preceding the 
nonstandard label (the tape has been rewound). However, the tape has not 
been rewound if the control program found that this volume has been 
previously verified during the job. 

If your routine determines that the wrong volume is mounted, you must place a 
1 in the high-order bit position of the UCBDMCT field of the UCB and return 
control to the control program. The control program then issues a message 
directing the operator to mount the correct volume. When the new volume is 
mounted, the control program again checks the initial label on the tape before 
giving control to your routine. 

The volume serial number in the UCBVOLI field of the UCB and the volume 
serial number in the JFCB must be the same as on entry unless a request is 
being made for a nonspecific volume. The control program recognizes a 
nonspecific request by the volume serial number requested in the JFCB being 
blank or SCRTCH. In this case, UCBVOLI will be set to Lxxxxx, where xxxxx is 
a 5-digit decimal number. This volume serial number is generated by the 
control program. It may be replaced in your NSL routine by the volume serial 
number present in the volume label read from the tape, or the volume serial 
number of the volume label written on the tape. 

When control is returned to the control program from NSLOHDRO or 
NSLEHDRO for a nonspecific request (as defined in the preceding paragraph) 
and the UCBVOLI field of the UCB has been modified, the control program will 
ENQ on the volume serial number to effect volume integrity and will place the 
volume serial number in the JFCB or JFCB extension. If some other technique 
than that just described is used to support nonspecific requests, the NSL 

\"'-' 

\~ 

\~ 

routine must update the JFCB and ENQ on the volume serial number (system \~ 
ENQ; major name; SYSZVOLS; minor name: 6-byte volume serial number; 

178 MVS/ESA Data Facility Product Version 3: Customization 



I 
I 

\_; 

exclusive ENQ). If the result of the control program's ENQ is that the resource 
is unavailable (either the current task previously obtained the resource or some 
other task holds the resource), the volume will be rejected. 

Your routine need not reposition the tape before returning control to the control 
program. 

When tapes are first received at your installation, they should be initialized with 
a tapemark or other record. If a blank tape is mounted for an output data set, it 
is read through and removed from its reel when the control program looks for 
an existing standard volume label. 

Restart Label Processing Routine 
If you restart at checkpoints and use tapes with nonstandard labels, you must 
provide a routine to process nonstandard labels at restart time. You need only 
a routine to check existing header labels. You do not need separate routines 
for input and output, because output tapes will contain the header labels that 
were written when the data sets were opened (before checkpoint). 

At restart time, the control program checks the tape to make sure that the first 
record is not a standard volume label. If the first record is 80 bytes long and 
contains the identifier VOL 1 in the first 4 bytes, the tape is rejected by a 
message from the control program directing the operator to mount the correct 
tape. 

When it is determined that the tape does not contain a standard volume label, 
the control program's restart routine gives control to your routine for 
processing nonstandard labels. When your routine receives control, the tape 
has been positioned at the interrecord gap preceding the nonstandard label 
(the tape has been rewound). 

If your routine determines that the wrong volume is mounted, you must place a 
1 in the high-order bit position of the UCBDMCT field of the UCB, and return 
control to the control program. The control program then issues a message 
directing the operator to mount the correct volume. When the new volume is 
mounted, the control program again checks the initial label on the tape before 
giving control to your routine. 

Before returning control to the control program, your routine must position the 
tape at the interrecord gap that precedes the initial record of the appropriate 
data set. This applies to both forward and backward read operations. The 
control program then uses the block count shown in the DCB to reposition the 
tape at the appropriate record within the data set. This positioning is always 
performed in a forward direction. If the block count is zero or a negative 
number, the control program does no positioning. (If you want the control 
program to reposition the tape, your normal header label routines-open and 
EOV-must properly initialize the block count field of the DCB. The block count 
field of the DCB must not be altered at restart time.) 

Chapter 10. Tape Label Processing Installation Exit Routines 179 



Output Trailer Label Routines 

Data Recovery 

Your routine for writing output trailer labels receives control from data 
management's EOV or close routines. The EOV routine handles end-of-volume 
conditions (reflective strip or FEOV macro instruction). The close routine 
handles end-of-data-set conditions (CLOSE macro instruction). When your 
routine receives control, the tape has been positioned at the interrecord gap 
following the last data set record that was written. 

Your routine need not reposition the tape before returning control to the control 
program. 

Your output trailer label routine is also given control when input data sets are 
closed. This allows you to position the tapes if necessary. 

Recovery routines are given control when an error occurs during open, close, 
and end-of-volume processing. One of the purposes of these routines is to 
provide data recoverability in case of an error that results in abnormal 
termination of your task. Data recoverability is provided in conjunction with 
your output trailer label routines by writing a tapemark after the last data 
written to the tape. The tapemark serves to indicate the end of the output data 
set, so that you can save the records written before the error occurred. The 
tapemark will only be written if an unrecoverable error occurs before your 
output trailer label routines have received control. If the error occurs during or 
after the execution of your trailer label routines, no tape mark will be written. 

Writing Nonstandard Label Processing Routines 
The following paragraphs describe conventions, requirements, and techniques 
for writing your nonstandard label processing routines. 

Programming Conventions 
The programming conventions to be observed when .writing your routines are: 

• Size of the routine: Nonstandard label processing routines are not limited 
in size. 

• Design of the routine: Nonstandard label processing routines must be 
read-only. You cannot store into the routine, nor can you use macro 
instructions that store into the routine. 

• Register usage: When your routine receives control, it must save the 
contents of registers 2 through 14 (in your own work area). Before 
returning control, your routine must restore the contents of these registers. 

• Entry point of the routine: The entry point of the routine must be the first 
byte of the load module and must be on a doubleword boundary. 

• Exit from the routine: You must use the XCTL macro instruction (E-form) to 
exit from your routine and return control to a specific control program 
module. These modules differ depending on the control program routine 
from which control was received and the type of label processing being 
performed. Module names are shown below for each control program 
routine and for each type of label processing routine. ,~ 

180 MVS/ESA Data Facility Product Version 3: Customization 



·~ 

\..._/ 

Program Functions 

Label Processing Control Program Control Program 
Routine Routine Module Name 

Input Header Open IGG0190B 
EOV IGG0550D 

Input Trailer EOV IGG0550B 
Output Header Open IGG0190R 

EOV IGG0550H 
Output Trailer EOV IGG0550F 

Close IGG0200B 
Restart Header Restart IGCOKOSB 

• Work areas: You must use the GETMAIN macro instruction to obtain virtual 
storage for all your work areas, including areas used to read in or create a 
label. You must use the FREEMAIN macro instruction to release this virtual 
storage. 

In processing nonstandard labels, you must perform many of the functions that 
the control program performs in processing standard labels. All input/output 
operations, such as reading labels, writing labels, and positioning volumes, 
must be performed by using the EXCP (execute channel program) macro 
instruction. The use of EXCP normally requires that you build several control 
blocks in your work area. However, you can save coding effort and virtual 
storage space by using control blocks already established by the control 
program. 

• When your routine receives control from the open or close routine, the 
status of control information and pointers is as shown in Figure 88 on 
page 182. 

• When your routine receives control from the EOV rov~ine, register 2 
contains the address of a DCB, and register 4 contains the address of a 
combined work and control block area. The format of this area is shown in 
Figure 89 on page 183. 

• When your routine receives control from the restart routine, register 9 
contains the address of a restart table entry. The table entry contains the 
address of a control block area. This status is as shown in Figure 90 on 
page 184. 

• The nonstandard label routines receive control in protect key zero. 

• The DCB is copied into protected storage during open/close/EOV 
processing. During open and close processing, register 5 points to a 
parameter list that contains the address of the DCB in protected storage. 
During EOV processing, register 2 points to the DCB in protected storage. 
The address of the user's DCB is in the combined work and control block 
area at the label DXUDCBAD. If you want to change the DCB, both copies, 
the user's DCB and the DCB in protected storage, must receive the same 
change. 

Chapter 10. Tape Label Processing Installation Exit Routines 181 



Register 5 
Data Control Block' 

Data Control Block• 

,J ... ,,. 

Data Control Blocki 

. .. 
Data Control Block• 

... . 

I 

.. .. 
Work and Control 

Register 6 Block Area 

DXUDCBADu I 
. 

I 
,... 

Work and Control 
Block Area 

.J .J 
DXUDCBAOH I 

.J ,J ... .. 
Work and Control 
Block Area 

DXUDCBADH I 
. .. 

1 This copy of the DCB is in protected storage. Work and Control 
Block Area 

1 1 DXUOCBAD is the address of the user's DCB. DXUDCBADH I 

Register 5 contains the starting address of a list of DCB addresses. Each DCB specified in the OPEN or CLOSE macro 
instruction has a 4-byte entry in the list. The DCBs to which the entries point are in the problem program. The list may also 
include one or more ACB addresses. The list, the DCBs, and any ACBs will reside below the 16 M line. 

For each DCB specified in the OPEN or CLOSE macro instruction, a combined work and control block area is built. Register 6 
contains the starting address of a table that contains an address for each work and control block area. The addresses of the 
areas are contained in the low-order 3 bytes of 8-byte entries. The list of 8-byte entries begins 32 bytes from the starting 
address of the table. The format of the combined work and control block area is shown in Figure 89 on page 183. 

Fi.gure 88. Status of Control Information and Pointers 

182 MVS/ESA Data Facility Product Version 3: Customization 



\ , 
\._.; 

Work Area 
(100 bytes) 

Job me Control Block (JFCB) 
(176 b;tes) 

Event Control Biock (ECB) - (4 bytes) 

Input Output Block (IOB) 
(40 bytes) 

Abbreviated Data Extent Block (DEB) 
(44 bytes) 

Abbreviated DCB - (4 bytes) 

Channel Command Words (CCW) 
(48 bytes} 

Open/C!ose/EOV 
Internal Fields 

Each of the fields within the work and control block area can be addressed by your nonstandard 
label processing routines. The IECDSECT macro instruction defines the symbolic names of all these 
fields. Code this macro instruction (with a null operand field and immediately preceded by a DSECT 
statement) in the list of constants for each of your nonstandard label processing routines. Using 
the starting address of the work area as a base, you are able to address any field symbolically. 

When your nonstandard label processing routine receives control from the close or EOV routine, 
some of the information shown in the work area DEB is not the same as contained in the actual 
DEB. If you need actual DEB information at these times, you can get the address of the DEB from 
the DCBDEBAD field in the DCB. 

Figure 89. Format of Combined Work and Control Block Area 

Chapter 10. Tape Label Processing Installation Exit Routines 183 



~I Table Entry 

~----~ 

Reg 9 
Work and 
Control Block 
Area 

Register 9 contains the starting address of a 48-byte table entry. Five bytes from the starting 
address of this table entry, a 3-byte field (TABSEGAD) contains the starting address of a work and 
control block area that is associated with the data set. 

Figure 90. Status of Control Information and Pointers from the Control Program's 
Restart Routine 

Mapping the Common O/C/EOV Workarea 
The IECDSECT macro maps most of the main work area that is used by OPEN, 
CLOSE, EOV, access methods, and related components of the system. The 
general format of this area is described in Figure 89 on page 183. ~ 

The IECDSECT macro does not generate a DSECT statement. You should code 
a DSECT statement before calling IECDSECT. The format of the macro 
instruction is as follows: 

l [symbol] I IECDSECT j [IOB ={NO I YES}] 

IOB = {NOIYES} 

NO 

YES 

specifies that you do not want symbols for a 32-byte basic 108 
generated in the work area. NO is recommended. 

specifies that you want symbols for a 32-byte basic 108 generated in the 
work area. 

Flowcharts for Sample Routines 
General flowcharts of nonstandard label processing routines are shown in ~ 
Figure 91 on page 185, Figure 92 on page 186, Figure 93 on page 187, and 
Figure 94 on page 191. These flowcharts suggest the logic that you could use 
in your routines. The logic is shown separately for routines receiving control 
from the open, close, EOV, or restart routines of the control program. Each 
block in the flowcharts is numbered, and the number corresponds to an item in 
the list of explanations that follows. 

184 MVS/ESA Data Facility Product Version 3: Customization 



I ) 

\._,! 

Entry from 
Control Program 

Obtain 
Virtual 
Storage 

Save 
Registers 

01------1 

0 

e 

e 

Yes ~ 
>-----1\_~) 

Yes 

Adjust 
for Next 
DCB 

Set Bit 
in UCB 
too 

Determine 
Type of 1/0 
Operation 

Set Up 
ccw 

No 

Restore 
Registers 

Release 
Virtual 
Storage 

Return to 
Control Program 

Yes Process 
Label 

Write 

I %' 

Figure 91. General Flow of a Nonstandard Label Processing Routine After Receiving Control from the Open 
Routine 

Chapter 10. Tape Label Processing Installation Exit Routines 185 



No 
No '8 _.\A 

e e No 0 Setup Setup 
ccw ccw 

e G a> Adjust 
for Next Create 

DCB Label 

CD 0 

Figure 92. General Flow of a Nonstandard Label Processing Routine After Receiving Control from the Close 
Routine 

186 MVS/ESA Data Facility Product Version 3: Customization 

,._., 

I 

"'-'' 



\._ .. ./ 

( 

\_,,i 

\ ' 

-~ 

Entry from 
Control Program 

0 
.-------i.-- A 

Obtain V 
Virtual 
Storage 

Save 
Registers 

Set Bit 
in UCB 
to O 

Determine 
Type of 1/0 
Operation 

Set Up 
ccw 

0 

(A) 

G> 

No 
,-------;--- CE> 

Set Bit 
in UCB 
to 1 

Process 
Label 

Restore 
Registers 

Release 
Virtual 

Storage 

Return to 
Control Program 

,-------;--,/ G> 
Write I 
Label 

0 
Figure 93. General Flow of a Nonstandard Label Processing Routine After Receiving 

Control from the EOV Routine 

Explanation of Logic Blocks-Figures 91, 92, and 93 

1 The entry is in the form of an XCTL macro instruction issued by the control 
program. 

2 Use the GETMAIN macro instruction to obtain virtual storage. 

3 Use the store multiple (STM) instruction. 

Chapter 10. Tape Label Processing Installation Exit Routines 187 



4 To locate the address of the DCB, use the contents of register 5. To 
determine if the DCB is to be processed, test bits 6 and 7 of the DCBOFLGS 
field of the DCB; if these bits are 1, the DCB is to be processed. (The '-.._ 
symbolic names of all fields in the DCB are defined by the DCBD macro 
instruction.) The user's DCB is pointed to by the DXUDCBAD field on the 
combined work and control block area. 

If a DCB in the CLOSE parameter list is not open at entry to CLOSE, it will 
not be processed, and its entry in the where-to-go table will be all zeros. 

5 To determine if a tape data set is being processed, test the UCB3TAPE field 
of the UCB; this bit is 1 for a tape data set. The symbolic names of all 
fields in the UCB are defined by the IEFUCBOB macro instruction. The 
address of the UCB is contained in the DXDEBUCB field of the DEB as 
defined by the IECDSECT macro instruction. (The IEFUCBOB macro 
definition and how to add it to the macro library is described in 
System-Data Administration. The IECDSECT macro is described in 
"Mapping the Common O/C/EOV Workarea" on page 184.) 

6 To determine if nonstandard labels have been specified, test the JFCBL TYP '"'-"'"' 
field of the JFCB; this field contains a· hexadecimal 04 when nonstandard 
labels have been specified. 

7 The final DCB entry in the list of DCB addresses contains a 1 in its 
high-order bit position. 

8 Add 4 to the contents of register 5; add 8 to the contents of register 6. 

9 Set the high-order bit to 0 in the UCBDMCT field of the UCB. 

10 To determine the type of 1/0 operation specified in the OPEN macro 
instruction, check the bit configuration of the high-order byte of the DCB 
entry in the list of DCB addresses. The bit configuration for each type of 
1/0 operation is shown below. (The high-order 4 bits correspond to the 
disposition of the data set; the low-order 4 bits correspond to the 1/0 
operation itself. For example, the bit configuration x0110000 indicates a 
data set opened for input whose disposition is LEAVE.) 

0 1 2 3 

x 0 0 
x 0 1 1 
x 0 0 0 

x x x x 
x x x x 
x x x x 
x x x x 
x x x x 
x x x x 
x x x x 
x x x x 

4 5 6 7 

x x x x 
x x x x 
x x x x 

0 0 0 0 
1 1 1 
1 1 0 
0 1 1 1 
0 1 1 0 
0 1 0 0 
0 0 1 1 
0 0 0 1 

·Bits 

REREAD 
LEAVE 
Neither REREAD nor LEAVE 

INPUT 
OUTPUT 
EXTEND 
OUTIN 
OUTINX 
UPDAT 
INOUT 
RD BACK 

11 To determine the mode of the data set, test the high-order bit of the 
DCBOFLGS field of the DCB. If this bit is 1, the data set mode is output; if 
this bit is 0, the data set mode is input. (The symbolic names of all fields in 
the DCB are defined by the DCBD macro instruction.) '~ 

188 MVS/ESA Data Facility Product Version 3: Customization 



('-/ 

12 You may want to position the tape if you have closed an input data set 
before all data has been read. 

13 Move your CCW into the channel program area of the control program's 
work area. (The symbolic name of the first entry in the channel program 
area is DXCCW.) You can use the first six entries. 

14 Issue an EXCP macro instruction specifying the address of the control 
program's IOB. (The symbolic name of the IOB is DXIOB.) 

15 Techniques used to check for correct volume differ depending on the label 
formats used in the installation. 

16 Label processing routines differ by label format. 

17 If a write operation is required, this block can be used. 

1'8 Issue an EXCP macro instruction specifying the address of the control 
program's IOB. (The symbolic name of the IOB is DXIOB.) 

If the command is a rewind, set the rewind-issued bit in the UCB (UCBWGT 
field, bit 3) before issuing the EXCP. 

If the command is a rewind-unload, set the unit-not-ready bit in the UCB 
(UCBFL 1 field, bit 1) and zero out the UCB volume serial number field 
(UCBVOLI) after the channel program is complete. 

19 Set the high-order bit to 1 in the UCBDMCT field of the UCB. 

20 Use the load multiple (LM) instruction. 

21 Use the FREEMAIN macro instruction to free the work area obtained in step 
2. 

22 Use the XCTL macro instruction, specifying the appropriate operand. 

The following coding sequence illustrates an exit from your routine during 
open or close operations. Register 4 contains the address of the control 
program's open/close work area. 

USING IECDSECT,4 
LR 1,SAVEBASE put work area pointer in 

register 1 for FREEMAIN 
LM 2,14,REGSAVE restore.caller registers 
FREEMAIN R,LV=size,A=(l) 
BALR 15,8 use 15 as temporary base 
USING *, 15 
MVC 8(8,6),MODNAME module name to 

open/close area 
LA 15,DXCCW12 use open work area 
XCTL EPLOC=(6),SF=(E,(15)) 

MOD NAME DC C 1 IGGxxxxx 1 

Chapter 10. Tape Label Processing Installation Exit Routines 189 



The following coding sequence illustrates an exit from your routine during 
end-of-volume operations. Register 4 contains the address of the control 
program's EOV work area. 

USING. IECDSECT,4 
LR 1,SAVEBASE put work area pointer in 

register 1 for FREEMAIN 
LM 2,14,REGSAVE restore caller registers 
FREEMAIN R,LV=size,A=(l) 
BALR 15,El use 15 as temporary base 
USING *, 15 
MVC DXXMODNM,MODNAME module name to EOV area 
LA 15 ,DXCCvJ12 use EOV work area 
LA 5,DXXMODNM address of .module name 
XCTL EPLOC=(5),SF=(E,(15)) 

MOD NAME DC C 1 I GGEl55xx 1 

190 MVS/ESA Data Facility Product Version 3: Customization 



\,_, 

( 
'•-._/ 

Entry from 
Control Program 

Obtain 
Virtual 
Storage 

Save 
Registers 

Set Up CCW 
and DEB Mode 
Set Byte 

Set Bit in 
UCB to 1 

0 

e 

e 

0 

e 

Yes 

Yes 

Set Bit in 
Table Entry 
to 1 

>------------' Process Label 

CD 
Restore 

Registers 

Release 
e 

Virtual 
Storage 

Return to e 
Control Program 

~-0 

Figure 94. General Flow of a Nonstandard Label Processing Routine After Receiving 
Control from the Restart Routine 

Chapter 10. Tape Label Processing Installation Exit Routines 191 



Explanation of Logic Blocks-Figure 94 

1 The entry is in the form of an XCTL macro instruction issued by the control 
program. 

2 Use the GETMAIN macro instruction to obtain virtual storage. 

3 Use the store multiple (STM) instruction. 

4 Move your CCW into the channel program area of the control program's 
work area. (The symbolic. name of the first entry in the channel program 
area is RSCCW1 .) 

The device modifier byte, RSDEBMOD, in the DEB portion of the restart 
work area, is provided by the control program and will contain the 
mode-set command for the data portion of the tape. If the nonstandard 
labels at your installation are recorded in a mode different than the data, 
your NSL routine must set the device modifier byte (RSDEBMOD) to the 
density and recording technique of the labels. (See "Tape Characteristics" 
in Magnetic Tape Labels and File Structure.) 

5 Issue an EXCP macro instruction specifying the address of the control 
program's IOB. (The symbolic name of the IOB is RSIOB.) 

6 Determine if an uncorrectable 1/0 error occurred. This can be any type of 
error that you do not want to accept. 

7 Set the high-order bit to 1 in the TABTPLBL field of the table entry. 

8 Techniques used to check for correct volume differ depending on the label 
formats used in the installation. The volume serial number for the mounted 
volume is shown in the UCB. 

9 Perform any necessary label processing and tape positioning. 

10 Set the high-order bit to 1 in the UCBDMCT field of the UCB. 

11 Use the load multiple (LM) instruction. 

12 Use the FREEMAIN macro instruction to free the work area obtained in step 
2. 

13 Use the XCTL macro instruction. The following coding sequence illustrates 
an exit from your routine. 

LR 1,SAVEBASE put work area pointer in 
register 1 for FREEMAIN 

LM 2,14,REGSAVE restore caller registers 
FREEMAIN R,LV=size,A=(l) 
BALR 15,0" use 15 as temporary base 
USING *' 15 
L 1,4(,9) put pointer to restart 

work area into register 1 
(see Figure 12) 

MVC 128(8,1),MODNAME put module name in 
restart work area 

LA 15, 120 (, 1) set up XCTL 
parameter pointers 

LA 5,128(,1) set up XCTL 
parameter pointers 

XCTL EPLOC=(5),SF=(E,(15)) 
MOD NAME DC c I IGC0K05B I 

192 MVS/ESA Data Facility Product Version 3: Customization 

\\~ 



\._..; 

Inserting Nonstandard Label Routines Into the Control Program 
Because they are type 4 SVC routines, nonstandard label processing routines 
must be included in the control program as part of LPALIB. This is done during 
the system generation process. {The routines may also be inserted after 
system generation by link-editing them into LPALIB. This procedure is similar 
to replacing volume label editor routines, which is described in "Volume Label 
Verification and Volume Label Editor Routines" on page 196. The routines may 
also be added after system generation by using the SVCUPDTE macro. For 
information on the SVCUPDTE macro, see SPL: Application Development Macro 
Ref ere nee.) 

Before your routines can be inserted into the control program, each load 
module must be a member of a cataloged, partitioned data set. You must 
name this data set with the SYS1 prefix (for example, SYS1 .name). 

To insert your load modules into the SVC library during system generation, you 
use the SVCLIB macro instruction. With this macro instruction, you must 
specify the name of the partitioned data set and the names of members to be 
included in the SVC library. Member names for the first load module of each 
type of label processing routine are listed below. Member names for additional 
load modules must begin with the letters NSL or IGC. The format and 
specifications of the SVCLIB macro instruction are in System Generation. 

Nonstandard Label Control Program Member 
Processing Routine Routine Name 

Input Header Open NSLOHDRI 
EOV NSLEHDRI 

Output Header Open NSLOHDRO 
EOV NSLEHDRO 

Input Trailer EOV NSLETRLI 
Output Trailer EOV NSLETRLO 

Close NSLCTRLO 
Restart Header Restart NSLRHDRI 

Automatic Volume Recognition (AVR) Nonstandard Label Processing 
Routine 

To enable the AVR option to process nonstandard magnetic tape labels, you 
must write a routine to supply AVR with information concerning the 
nonstandard labels. This routine is inserted in the control program in place of 
an IBM-supplied routine that causes AVR to reject tape volumes that do not 
have standard labels. The information returned to AVR by your routine consists 
of a validity indication {for example, the label read is valid) and the location 
within the nonstandard label of the volume serial number field. Specifically, 
your routine must: 

1. Determine if the label under consideration is a valid, nonstandard label as 
defined by your installation. 

2. Set general register 15 to zero if a valid label is detected, or to nonzero if 
the label is not recognizable. {A nonzero return causes AVR to unload the 
tape volume and issue an error message.) 

Chapter 10. Tape Label Processing Installation Exit Routines , 193 



Entry Conditions 

Conventions 

3. When a valid label is detected, place the location of the volume serial 
number field within the label in an area provided by AVR. (The label, or the 
first part of it, is read into an 80-byte work area by AVR before your routine 
receives control; the location is defined within this work area. Also before 
your routine receives control, AVR positions the tape at the interrecord gap 
after the nonstandard label.) 

4. Return control to AVR. Register 14 contains the return address. {The SAVE 
and RETURN macro instructions may be used in your routine.) 

Your label processing routine receives control when the AVR routine cannot 
identify the first record on a magnetic tape volume as a standard label. The 
various error conditions that can occur during verification of the first record are 
explained under "Volume Label Verification and Volume Label Editor Routines" 
on page 196. 

When your routine receives control, the AVR routine has placed the 
nonstandard label in an 80-byte work area,. and general register 1 contains the 
address of a 2-word area whose contents are as follows: 

Word 1 The address of the beginning byte of the 80-byte work area 

Word 2 The address of a 1-word area where your routine stores the beginning 
address of the volume serial number field within the nonstandard label 

The format of your installatioA's nonstandard label(s) must provide for a 6-byte 
volume serial number field within the first 80 bytes of the label. Otherwise, the 
volume serial number will not be read into the 80-byte internal work area. This 
does not restrict the overall nonstandard label format from being more, or less, 
than 80 bytes in length. 

The name of your routine must be IEFXVNSL. 

Inserting AVR Nonstandard Label Routines into the Control Program 
You may replace the IBM-supplied routine IEFXVNSL with your routine by link 
editing your assembled routine into the SYS1 .AOSB3 data set prior to system 
generation, or you may replace the IBM-supplied routine after system 
generation by link editing your assembled routine into the control program 
module. The module is IEFXVAVR and the object deck step is as follows: 

INCLUDE 
ALIAS 
ENTRY 
NAME 

Object Deck 

SYSLMOD(IEFXVAVR) 
IEFXV001 
IEFXV001 
IEFXVAVR(R) 

194 MVS/ESA Data Facility Product Version 3: Customization 



Volume Verification and Dynamic Device Reconfiguration 
If you use nonstandard tape labels and you want to use the dynamic device 
reconfiguration (DOR) option, you must perform your own volume verification. 
Note that you must be able to perform your verification within the first 48 bytes 
of any record in your nonstandard label. 

Before system generation time, code a routine named NSLREPOS and link-edit 
it into a cataloged partitioned data set. Then, identify the member of the 
partitioned data set that contains NSLREPOS in the LPALIB system generation 
macro instruction. Link-edit NSLREPOS into the LPALIB after system 
generation. 

When your NSLREPOS routine receives control from the DOR tape reposition 
routine, register 2 contains a pointer to an XCTL list (built by DOR) in 
IORMSCOM. This list contains the module name to which you transfer control 
when you return control to DOR. Register 5 points to a buffer (SVRBEXSA) 
containing the first 48 bytes of a record of your label. The serial number of the 
volume against which verification is made is in the STREVOL 1 field of the UCB. 
Register 7 contains the UCB address. 

Before returning control, your routine should put one of the following 
hexadecimal codes into register 0: 

Code Explanation 

o (X •oo 1
) 

8 (X 108 I) 

Volume verification is complete. Because a tapemark follows this 
label, the tape reposition routine must position the tape to that 
tapemark and clear the block count it has accumulated before it 
begins repositioning. 

The NSLREPOS routine needs more information for volume 
verification. When the tape reposition routine receives this code, 
it reads the first 48 characters of the next record into the buffer 
and returns control to NSLREPOS. 

The wrong volume has been mounted. When th.e tape reposition 
routine receives this code, it sends a message to the operator 
explaining that the wrong volume has been mounted. 

12 (X 10C 1
) Volume verificatio.n is complete. Since no tapemark follows this 

label, the tape reposition routine repositions the volume, using the 
block count it has accumulated. 

16 (X 1 10 1
) Volume verification is complete. Because the tape mark following 

the label has already been reached, the tape reposition routine 
clears the block count it has accumulated and repositions the 
volume. 

If NSLREPOS uses any registers other than register 0 or 14, the routine must 
save the registers in subpool 245 (using a GETMAIN macro) and store them in 
its own area before returning control to the tape reposition routine. When your 
NSLREPOS routine returns control to DOR, the following sequence should be 
used: 

LR 15,2 
XCTL SF=(E,(15)) 

Chapter 10. Tape Label Processing Installation Exit Routines 195 



Volume Label Verification and Volume Label Editor Routines 
If you specify that an input or output tape has a standard label, the operating 
system checks for the standard volume label at the beginning of the tape. For 
ISO/ ANSI/Fl PS tapes, the system checks for the correct version. If you specify 
that the tape has nonstandard labels or no labels, the system attempts to verify 
that the first record is not a standard volume label. 

Because of conflicting label types or conflicting tape characteristics, various 
error conditions can occur during this verification of the first record. Under 
some error conditions, the tape is accepted for use. Under other error 
conditions, the tape is not accepted and the system issues another mount 
message. For certain other error conditions, the system gives control to a 
volume label editor routine; your installation can use routines supplied by IBM 
or it can supply its own routines. The IBM-supplied volume label editor 
routines determine the discrepancies between the requested tape and the 
mounted tape and, if necessary, pass control to the appropriate data 
management routine to create or destroy labels, as required. 
Installation-supplied routines can perform other functions. 

Verification of First Record 
The system mads the first record on the tape in accordance with the following 
criteria: 

• If a single-density 9-track tap,e unit is used, the record is read in the density 
(800 bpi, 1600 bpi, or 6250 bp,i) of the unit. If the record cannot be read, a 
unit check occurs. 

• If a dual-density 9-track tape unit is used, the record is read in its existing 
density, provided that density is available on the unit. If the density is not 
available, a unit check occurs. If the record is a 7-track record, a unit check 
occurs. 

• If a 7-track tape unit is used, the first record is read in the density specified 
by the user and in the translate on, even parity mode. If the record is in 
another density or mode, or is a 9-track record, a unit check occurs. ISO 
and ANSI do not specify support of 7-track tape for information interchange. 

• If an 18-track tape unit is used, the record is read in the density of the unit. \"'-' 
If the record cannot be read, a unit check occurs. ISO and ANSI standards 
do not include a specification of 18-track magnetic tape for information 
interchange. 

As previously explained, various error conditions can occur during the system's 
verification of the initial record on a tape. The system actions resulting from 
these error conditions are shown in Figures 95, 96, and 97. Figure 95 on 
page 197 shows the actions when standard labels are specified; Figure 96 on 
page 198 shows the actions when nonstandard labels are specified; Figure 97 
on page 199 shows the actions when no labels are specified. 

196 MVS/ESA Data Facility Product Version 3: Customization 



\ ......... / 

\ 
~; 

NO 

SL, SUL. AL, OR 
AUL SPECIFIED 

(3 

'/

/ READ FIRST 
RECORD 

~ 
UNIT CHECK? 

YES 

NO ~PUT, 
~ OUTIN, OR 
~ INOUT? 

.ACCEPT TAPE 

YES 

NO 

NOTE 1 

VOL LABEL 
EDITOR RTN 
{DENSITY CHECK) 

YES 

NOTE 1 

VOL LABEL 
EDITOR RTN 
(LABEL CHECK) 

NO 

ISSUE MOUNT ~~ 
MESSAGE ·~ 

YES I CREATE x I 
I WRffE A VOL-
/ UME LA.BEL 

NOTE 1: OMODVOL 1 OR EMODVOL 1. 

Figure 95. Verification of First Record When Standard Labels Are Specified 

Chapter 10. Tape Label Processing Installation Exit Routines 197 



NO 

NO 

NSL SPECIFIED 

(~)-· 

I RE. AD FIRST ,// 
RECORD 

I I 
I I 

+ 

NO 

NO 

( TO USER'S NSL 
\, ROUTINE _/ 

YES 

VOL LABEL 
EDITOR RTN 
(LABEL CHECK) 

YES 

NOTE"I 

VOL LABEL 
EDITOR RTN 
(DENSITY CHECK) 

YES / ISSUE MOUNT - ... ~ 7 MESSAGE / \______,/) 

YES I DESTROY LBL 4iJ' 7 X WRITE / 81 
TAPE MARK I 

TO USER'S NSL 
ROUTINE 

NOTE 1: OMODVOL 1 OR EMODVOL 1. 

Figure 96. Verification of First Record When Nonstandard Labels Are Specified 

198 MVS/ESA Data Facility Product Version 3: Customization 



i\......-/) 

NC OR BLP 
SPECIFIED 

READ FIRST 
RECORD 

UNIT CHECK? 
YES 

~ 

YES 
NOTE 1 

VOL LABEL 
EDITOR RTN 
(LABEL CHECK) 

~-Y_ES---1~~1 ISSUE MOUNT 
MESSAGE 

I 

YES /DESTROY 148 
~ LABEL X WRITE C1 I TAPE MARK I 

ACCEPT TAPE ) 

NOTE 1: OMODVOL 1 OR EMODVOL 1. 

Figure 97. Verification of First Record When Unlabeled Tape Is Specified 

Volume Label Editor Routines 
When data sets are written on tape, data management's open or EOV routine 
may detect conflicts between: 

• The label type specified by the user and the actual label type on the 
mounted output volume (OUTPUT or OUTIN). 

• The recording density specified by the user and the actual density of the 
output volume (OUTPUT, OUTIN, or INOUT) mounted on a dual-density tape 
unit. 

• The volume serial number specified by the user and the actual volume 
serial number on the mounted output volume (OUTPUT or OUTIN). 

• The existing label version on the mounted output volume and 
ISO/ANSl/FIPS Version 3. 

Chapter 10. Tape Label Processing Installation Exit Routines 199 



When such conflicts occur, control is given to the volume label editor routines. 
The IBM-supplied editor routines determine whether the data management 
routines can resolve the conflict. 

If the volume la.be! editor routines accept a conflict wt.lile opening to the first 
data set on an ISO/ANSl/FIPS Version 3 volume, the system will enter RACF, 
check the expiration date, and enter the file access exit before requesting 
permission from the operator to create a new VOL 1 label (the volume access 
exit is entered prior to label conflict processing). 

If a nonspecific volume request is made for a standard labeled tape, but the 
mounted volume does not have a standard label, data management issues c. 
message to the operator requesting that the volume serial number and owner 
information be supplied or, optionally, that the use of this tape volume be 
rnfused. 

N1ote: If a specific volume request is made and the label format of the mounted 
volume does not match the format specified in the processing program, data 
management will reject the tape and issue a message to mount another 
volume. However, if a specific volume req:uest is made for an SL tape and the 
mounted tape is unlabeled, data management gives the operator the option of 
labeling or rejecting the tape. 

If a nonspecific volume request is made for a nonstandard labeled or unlabeled 
tape, but the mounted volume has a standard label, data management gives the 
operator the option to allow or refuse the use of the tape under the following 
conditions: 

•· The file sequence number is not greater than 1. 

•· The expiration date has passed, or the operator has allowed the use of the 
tape. 

• The volume is not password ~- .tected nor is it RACF protected and the 
accessor is ALTER authorized. 

If 1the preceding conditions are not met, data management rejects the tape and 
is~rnes a mount message. Data management follows the same procedure if the 
conditions are met, but the operator refuses the use of the tape. 

If 1the operator accepts the tape, data management destroys the volume label 
by overlaying it with a tapemark and deletes the RACF definition of the volume 
if it was found to be RACF defined and the user is ALTER authorized. 

Nette: Even if the password is known, a password-protected tape that is not 
RACF defined is not converted to NL or NSL. 

For dual-density tapes with standard labels, data management rewrites the 
labels in the density specified when an output request is made to the first data 
set on a volume. When an output request is made to other than the first data 
set, the labels are rewritten in the density specified in the existing labels. 

For tapes with ISO/ANSI/Fl PS labels, data management rewrites the VOL 1 label 
only in the case of a density conflict. 

If the existing ISO/ ANSI/Fl PS label is not Version 3 during an output request to 
th~~ first data set on the volume, the volume label editor routines offer an option 

200 MVS/ESA Data Facility Product Version 3: Customization 



\.._,1 

( . 

~· 

that allows the label to be rewritten to conform to Version 3 standards. The 

WTOR installation exit may be used to provide label information for the new 

Version 3 label instead of requiring the operator to supply it via a WTOR 

message (see "Appendix D. Version 3 Installation Exits"). If a version conflict 

is detected for an output request to other than the first data set, the volume is 

unconditionally rejected by open/EOV after issuing an IEC5121 LBL STD "VRSN" 

error message. 

You can replace the IBM-supplied editor routines with installation routines that 

resolve the conflict to your own specifications. Your editor routines can resolve 

label and density conflicts by writing labels, by overwriting labels with a 
tapemark, and by performing write operations to set the correct density on a 

dual-density tape device. Or, your editor routines can reset the appropriate 

system control blocks (in effect, change the program specifications) to agree 

with the label type and/or density of the currently mounted volume. Or, you 

may desire a combination of these actions, including demounting of the volume 

under certain conditions. You may include all of these possible actions in the 

design of your editor routines. 

There are two IBM-supplied editor routines. One gets control from the open 

routine for handling the first or only volume of a data set. The other gets 

control from the EOV routine for handling the second and subsequent volumes 

of a multivolume data set. You can replace either or both of these routines. 

The remainder of this section provides the information necessary for writing 

editor routines and inserting them into the control program. 

Programming Conventions 
Your editor routines must conform to the same general programming 

conventions as the nonstandard label processing routines discussed under_ 

"Programming Conventions" on page· 180, for size, design, register usage, 

entry points, and work areas. As discussed under "Nonstandard Labels" on 

page 174, you must use the EXCP macro instruction to perform needed 

input/output operations. 

You must name the first (or only) module of your routines as follows: 

OMODVOL1 

EMODVOL1 

The editor routine associated with open 

The editor routine associated with EOV 

If your editqr routines consist of more than one load module, names for the 

additional modules must begin with the prefix OMODVOL for the open routine, 

or EMODVOL for the EOV routine. Transfer between the modules must be by 

name. 

Note: With an IBM 3480 Magnetic Tape Subsystem, the open and EOV routines 

normally use EXCP appendages when processing labels. For the duration of 

the open or EOV, they normally save labels in virtual storage buffers to improve 

performance by avoiding an unnecessary change of direction on the tape. The 

EXCP appendages simulate most types of channel programs that read. For 

channel programs t.hat they do not simulate, they move the tape to the point 

where your routine expects the tape to be and then allow the channel program 

to execute. They are designed to do simulation so as to appear to have no 

effect except to improve performance. 

Chapter 10. Tape Label Processing Installation Exit Routines 201 



If your routine does 1/0, it should use the DCB that is in the work area. The 
DEB appendage vector table should not be substituted or modified. 

Program Functions 
Figure 98 on page 203 presents the five conditions under which the open or 
EOV routines transfer control to_ your editor routines. Each condition suggests a 
general action that your routine could take to permit processing of the current 
volume to _continue. The first two conditions (density checks) arise only when 
the tape volume is mounted on a dual-density tape device. 

General flowcharts of editor routines are shown in Figure 99 on page 205 and 
Figure 100 on page 206. These flowcharts suggest the logic that you could use 
in your routines. The logic is shown separately for routines that receive control 
from the open or EOV routine of the control program. Each block in the 
flowcharts is numbered, and the number corresponds to an item in the list of 
explanations that follows. Other items to note are: 

• The logic in the flowcharts is oriented toward resolving the label and 
density conflicts by altering the charaGteristics of the mo4nted volume. 

• Figure 100 on page 206 (the EOV editor routine) does not contain logic 
blocks corresponding to blocks 5, 18, and 19 in Figure 99 on page 205 (the 
open editor routine). These blocks represent functions that you must 
program only when receiving control from the open routine. You must test 
all the DCBs defined by the OPEN macro instruction before returning control 
to the open routine. When you receive control from the EOV routine, there 
is only one DCB to process. 

• If your installation does not support expiration date and protection checking 
on nonstandard label volumes, and does not desire to maintain such 
checking on standard label volumes, you need not implement the functions 
of logic blocks 6 through 14 in the flowcharts. 

• · The DCB is copied into protected storage during Open/Close/EOV 
processing. During open and close processing, register 7 points to a 
parameter list that contains the addresses of the DCB in protected storage. 
During EOV processing, register 2 points to the DCB in protected storage. 
The address of the user's DCB is in the Open/Close/EOV work area at the 
label DXUDCBAD. If the DCB is to be changed, both copies must receive 
the same change. 

202 MVS/ESA Data Facility Product Version 3: Customization 



Figure 98 (Page 1 of 2). Editor Routine Entry Conditions from the EOV Routine 

Program 
Specification 

AL or SL-
9-track tape 

NSL3 -800 bpi 

SL or AL 

NL or NSL 

AL 

SL 

Mounted 
Volume 
Character-
istics 

AL1 or 
SL 

NSL or 
NL or 
1600 bpi 
density 

NSL or 
NL5 

SL4 or 
AL 1 

SL 

AL 1 

Transfer 
Conditions 

Density 
Check2 

fit= 8. 
Density 
Check2 

Label 
Check6 

Label 
Check 

Label 
Check 

Label 
Check 

Possible Editor 
Routine Action 

Overwrite the standard label 
with a standard label. The 
first write from load point sets 
the recording density on a 
dual-density device. (See 
Figure 99 or 100-blocks 158, 
16, and explanation.) 

Write a tapemark to set 
density. The program 
specification NSL will cause 
control to be given to your 
nonstandard label routines 
after return to Open or EOV. 
(See Figure 99-blocks 15, 
158, and 16. If your 
installation supports 
protection and retention date 
checking on NSL volumes, 
see block 6.) 

Write a standard volume 
label. (See Figure 99-blocks 
15, 15A, and 16. If your 
installation supports 
protection and retention date 
checking on NSL volumes, 
see block 6.) 

Overwrite standard label with 
tapemark, for example, 
cancel. (See 
Figure 99-blocks 15, 15A, 
and 16.) Depending on 
whether NL or NSL is 
specified by the program, 
open or EOV will either 
position tape (NL) or transfer 
control to your non- standard 
label routines (NSL). 

Overwrite an IBM standard 
label with a Version 3 VOL 1 
label. 

Overwrite ISO/ ANSI/Fl PS 
label with an IBM standard 
label. 

Chapter 10. Tape Label Processing Installation Exit Routines 203 



Figure 98 (Page 2 of 2). Editor Routine Entry Conditions from the EOV Routine 

Mounted 
Volume 

Program Character- Transfer Possible Editor 
Specification istics Conditions Routine Action 

AL AL1 Compatibility Overwrite an ISCll/ ASCII label 
Conflict with a Version 3 label (first 

file output only). 

Legend: 

AL ISO/ANSl/FIPS standard volume label 
SL IBM standard volume label 
NSL Nonstandard volume label 
NL No volume label 

Notes: 

2 

4 

s 

6 

The open and EOV routines position the tape at load point before 
transferring control to the editor routines. 

ISO/ ANSI/Fl PS standard labeled tape cannot be overwritten without the 
permission of the console operator. 

Dual-density devices only. 

If NL is specified, no density check is performed. For NL volumes, tape is 
positioned at load point and recording density is set by the first write 
command. 

If the volume is mounted on a dual-density device, a density condition may 
also exist. It will be corrected by the write operation. 

When SL is specified, a label check may also indicate that the system could 
not recognize the first record because of a unit check condition. 

204 MVS/ESA Data Facility Product Version 3: Customization 

\--



(Entry From """\ 
Control Program 

Obtain 
Virtual 
Storage 

Save 
Registers 

Establish 
Addressability 
of Control 
Information 

0 

0 

Use This Tape 
Yes 

No e 
Rewind and 
Unload 
Current 
Volume 

Issue G> 
Mount 

Message 

Test Bits 1-2 
in 
JFCBMASK+5 

Rewind 
Volume 

Write a 
Standard 
Volume Label 
or Tapemark 

Zero UCB 
Vol Ser No. and 
Set Mount 
Switch "ON" 

0--91 

G> 
Increment 
the Pointer to 
the Next DCB 

Get Label Type 
From 
JFCBLTYP 
Field 

Restore 
Registers 

Release 
Virtual 
Storage 

Return to 
\__Control Program/ 

~ 

9 

e 

Figure 99. General Flow of an Editor Routine after Receiving Control from the Open Routine 

Chapter 10. Tape Label Processing Installation Exit Routines 205 



Entry From 
Controi Program 

Obtain 
Virtua~ 
Storage 

Save 
Registers 

Establish 
Addressability 
of Control 
Information 

Security 
Protected 

Yes 

0 

0 

Has 
Retention Yes 

Date 
Expired/ 

No 

! Write Message / / Write tv'essage 
/ to the ; I to the 1 

/ Operator / / Operator / 

~---_J 

No 

Rewind and 
Unload Current 
Volume 

Issue 
Mount 

Message 

A 

Test Bits 1-2 
in 
JFCBMASK+5 

Label 

Rewind 
Volume 

Label or Density 
Density Check 

Write a 
Standard 
Volume Label 
or Tapemark 

Zero UCB Vol 
Ser No. and Set 
Mount Switch 
"ON" 

Restore 
Registers 
Insert X'03' 
in Reg 8 

Release 
Virtual 
Storage 

1 Return to ) 
~Control Program_, 

Figure 100. General Flow of an Editor Routine after Receiving Control from the EOV Routine 

206 MVS/ESA Data Facility Product Version 3: Customization 

Get Label Type 
From 
JFCBLTYP 
Field 



( 
~I 

\ 
\ ' "-_../ 

~0 

"-..._../ 

Explanation of Logic Blocks-Figures 99 and 100 

1 Your exception routine receives control from the open or EOV routines of 
the control program. 

2 Use the GETMAIN macro instruction. The virtual storage you obtain must 
contain all your work areas, including those used to read in a label or write 
a label. 

3 Use the store multiple (STM) instruction. 

4 Figure 88 on page 182 provides the information you need to establish 
addressability of the DCB address list and work and control block area for 
each DCB defined by the OPEN macro instruction. 

When you receive control from the EOV routine, general register 2 contains 
the address of the DCB for the data set, and general register 4 contains the 
address of the work and control block area associated with the DCB. 

The IECDSECT macro instruction (described in "Mapping the Common 
O/C/EOV Workarea" on page 184) symbolically defines the fields of the 
work and control block area (see Fi.gure 89 on page 183). 

You will also need to address the UCB for the device on which the tape 
volume is mounted. The address of the UCB may be obtained from the 
DXDEBUCB field of the DEB defined by the IECDSECT macro instruction. 
The IEFUCBOB macro instruction (described in System-Data 
Administration) defines the fields of the unit control block. 

5 Bit configurations in the byte addressed by JFCBMASK + 5 indicate whether 
label checks or density checks have occurred, and, in the case of a label 
check, the condition that caused the check. At this point, you test bits 0 
and 3. If either bit is set to 1, processing is required. However, if bits 6 
and 7 of DCBOFLGS are set to 0, you should discontinue processing. When 
bit 6 (lock bit) is 0, the control program cannot open the DCB. When bit 7 
(busy bit) is 0, the DCB is already being processed or is already open. 

The field JFCBMASK is defined by the IECDSECT macro instruction. Bit 
settings in fhe byte at JFCBMASK + 5 are defined as: 

Bits Setting Meaning 

0 1 Label check has occurred. 

1 Standard label (SL or AL) specified; no 
label/nonstandard label on mounted volume. 

Note: If JFCBAL (AL label requested) is set and 
UCCBBSTR is set in the UCB (ISCll/ ASCII tape is 
mounted), an ISO/ANSl/FIPS version conflict has 
occurred, and a valid Version 3 volume label must be 
created. 

2 No label (NL) or nonstandard label (NSL) specified; 
standard label (AL or SL) on mounted volume. 

3 1 Density check has occurred. 

4-7 Reserved for possible future use. 

Chapter 10. Tape Label Processing Installation Exit Routines 207 



6 If your installation supports a protection and retention date scheme 
involving nonstandard labels, and/or you want to maintain retention date 
and protection checking on standard labels, you must incorporate code in 
your editor routines to check for protection and retention date expiration. 

If checking is desired, you must, at this point, read the first record and 
determine the label type. 

To perform the 1/0 operation, move your CCWs into the channel program 
field of the work and control block area. The symbolic name for the first 
entry in this field is DXCCW. Then issue an EXCP macro instruction 
specifying the address of the control program's IOB. The symbolic name 
for the IOB is DXIOB. These fields (DXCCW, DXIOB) are defined by the 
IECDSECT macro instruction. 

Note: There are 12 CCW locations in the DXCCW field. You can only use 
the first six locations. 

7 To check the retention date and/or protection fields in a standard label, you 
must read the data set header 1 record into a work area. The format of the 
nonstandard label defined by your installation determines how you access 
the protection and retention date fields in the nonstandard label. Step 6 
provides directions for handling the 1/0 operation. 

8 Write a message to the operator that the volume is protected and to 
determine if it is to be used. 

9 Repeat step 7 above. 

10 Write a message to the operator that the expiration date for the mounted 
volume has not elapsed and to determine if it is to be used. 

11 If the volume is to be used, continue processing to resolve label or density 
conditions. 

12 Rewind and unload the currently mounted volume. Step 6 provides 
directions for handling the 1/0 operation. When you issue the rewind and 
unload command, you must turn on the UCB not-ready bit (UCBFL2) after 
the ECB has been posted. If you want the open/EOV mount verification 
routines to handle the mounting/demounting on volume verification, set bit 
4 (X 108 1

) of JFCBMASK+5 in the open/EOV work area and go to block 22 
to return to open/EOV. Subsequent volume level errors will cause the label \._,11 
editor routines to be reentered. 

13 Write a message to the operator requesting demounting of the current 
volume and mounting of a new volume. The device name (in EBCDIC) may 
be obtained from the UCBNAME field of the UCB. Step 6 provides 
directions for handling the 1/0 operation. 

14 If a new volume is to be mounted, repeat step 6. 

15 Test bit 3 of the byte at JFCBMASK + 5. If set to 1, control was received as 
a result of a density check. 

Test bit 0 of the byte at JFCBMASK + 5. If set to 1, control was received as 
the result of a label check. 

a If control was received as the result of a label check, test bits 1 and 2 
of the byte at JFCBMASK + 5. See step 5. 

208 MVS/ESA Data Facility Product Version 3: Customization 



\ j 

"--"' 

b If control is received as the result of a density check, use the 
JFCBL TYP field in the JFCB to ascertain the type of label specified in 
the program. A hexadecimal 04 indicates a nonstandard label (NSL) 
has been specified; a hexadecimal 02 indicates that a standard label 
has been specified. 

16 When correcting a density check or label check condition, and an NSL or 
NL is specified by the program, you must write some kind of record on the 
tape that will be interpreted by the open or EOV routines as a nonstandard 
label or no label; for example, it does not contain VOL 1 in the first four 
bytes of the record. The easiest way to do this is to write a tapemark. 
Upon return to open or EOV and reverification of the label, the specification 
for label type and density will have been met. Open or EOV will transfer 
control to your nonstandard label routines if NSL is specified, or position 
the tape for writing if NL has been specified. 

You must supply information for the label identifier, the label number, and 
the volume serial number Helds, and record the balance of the label as 
blanks. 

You enter VOL in the label identifie·r field, a 1 in the label number field, and 
a 6-character serial number in the volume serial number field. 

Note: To ensure that two or more tape volumes carrying the same serial 
number are not produced, write to the operator at this point for assignment 
of a serial number. 

Data set header labels 1 and 2 are constructed by the open or EOV routine 
after control is returned to them. 

Note: At this point, you can change the control block settings to conform to 
the characteristics of the tape volume mounted (that is, reset the label type 
field in the JFCB to conform with the type of label on the volume mounted 
and change the density field in .the DCB to the density of the tape 
mounted). 

17 The symbolic name for the volume serial number field in the UCB is 
UCBVOLI. The mount switch is the high-order bit of the field named 
UCBDMCT in the UCB. These fields are defined by the IEFUCBOB macro 
instruction. Perform an exclusive OR (XC) operation on the UCBVOLI field 
with itself and perform an OR (01) operation on the UCBDMCT field with 
X' 80'. This will cause the mount verification routines to bypass further 
label processing and reverify the tape without an intervening demount. 

18 When receiving control from the open routine, you must process the entire 
DCB list. The last entry in the list can be recognized by a 1 in bit 0 of the 
first byte in the entry. 

19 You increase the pointer to the DCB address list by 4 bytes. You must also 
increase the pointer to the work and control block area for each DCB. You 
increase this pointer by 8 bytes. 

20 Use the load multiple (LM) instruction. 

21 Use the FREEMAIN macro instruction. 

Chapter 10. Tape Label Processing Installation Exit Routines 209 



22 Return control to the open or EOV routine by means of an IECRES macro 
instruction, specifying the module to be given control as follows: 

Return From To Module 

OMODVOL 1 IGG0190A (Open) 

EMODVOL 1 IGG0550P (EOV) 

Note: Open and EOV will rewind the volume upon receiving control from 
OMODVOL 1 or EMODVOL 1. 

Return is via the XCTL macro instruction (E-form). See Figure 94 on 
page 191 and its accompanying "Explanation of Logic Blocks-Figure 94 ." 

Inserting Your Label Editor Routines into the Control Program 
You will be replacing the IBM-supplied modules OMODVOL 1 and/or EMODVOL 1 
with your routines. Use the replace function of SMP or link-edit your editor 
routines into SYS1 .LPALIB after system generation. 

\~ 

Note: When using SMP, specify DLIB member name IFG0193C or IFG0553C in '"-
the + +MOD statement. 

The setup for making the linkage editor run is shown below. 

//jobname 
//stepname 
//SYSPRINT 
//SYSUTl 
//SYSLMOD 
//SYSLIN 

JOB 
EXEC 
DD 
DD 
DD 
DD 

[parameters J 
PGM=HEWLH096[,PARM='LET,RENT, ... 1

] 

SYSOUT=A . 
UNIT=SYSDA,SPACE=(parameters) 
DSNAME=SYSl.LPALIB,DISP=OLD 
* 

Object Deck for Open 

ENTRY OMODVOLl 
ALIAS IFG0193C 
NAME OMODVOLl(R) 

Object Deck for EOV 

ENTRY EMODVOLl 
ALIAS IFG0553C 
NAME EMODVOLl (R) 
/* 
Note: Your modules will be placed into the LPA the next time an IPL with a 
CLPA is done. You must have requested space for the LPALIB directory entries 
for the additional modules when the library was allocated. 

210 MVS/ESA Data Facility Product Version 3: Customization 



\...._./ 

I .' 

\ .. _./ 

150/ANSl/FIPS Version 3 Installation Exits 
Four installation exits are provided, as defaults, for ISO/ANSl/FIPS Version 3 
volumes: 

• Volume access, 
• File access, 
• Label validation, and 
• Label validation suppression. 

A fifth installation exit, WTOR, can be written (or modified, if one has already 
been written) by your installation to convert ISO/ ANSI/Fl PS non-Version 3 to 
Version 3 labels (see "WTOR Installation Exit"). 

All the default installation exit routines are supplied in a module containing a 
single CSECT (IFG0193G, alias IFG0553G), in SYS1.LPALIB. A copy of the 
source code for the module is contained in member ANSIEXIT of 
SYS1 .SAM PLIB. 

The default routines, except the validation suppression exit, reject the volume. 
They execute in a privileged (supervisor) state and can be modified or replaced 
to perform 1/0 (such as overwriting a label), change system control blocks, and 
mount or demount volumes. The return code from the exits may be modified to 
request continued processing. However, results are unpredictable in cases in 
which the label validation exit is entered and it has not been modified to also 
correct certain errors. The prolog of the source code for the exits, in 
SYS1 .SAMPLIB, gives additional details on modifying the exits. 

A parameter list, mapped by the macro IECIEPRM, is passed to the exit 
routines. The same parameter list is passed to the RACF installation exits if a 
volume is RACF protected and the VOL 1 access code is A through Z. However, 
whereas return codes from the Version 3 exits are returned in the IECIEXRC 
field of the parameter list, return codes from the RACF exits are returned in 
register 15 (return codes from the Version 3 and RACF exits are not the same). 
Neither the Version 3 nor RACF installation exits should alter any of the 
parameter list fields, except IECIEXRC or IECIEUSR. For information about 
RACF installation exits, see SPL: RACF. 

An important extension to the parameter list is the UCB tape class extension. It 
contains such items as the volume access code (UCBCXACC), owner 
identification (UCBCXOWN), and ISO/ANSl/FIPS version (UCBCXVER). The 
address of the appropriate UCB tape class extension is maintained in the 
parameter list. 

WTOR Installation Exit 
For ISO/ANSI/Fl PS tape volumes, MVS/DFP supports output only to 
ISO/ANSl/FIPS Version 3 and input from either ISO/ANSl/FIPS Version 1 or 
Version 3. If a label version conflict is detected during an output request to the 
first data set on a volume, the WTOR message "IEC704A C" is issued to the 
installation operator to obtain information for rewriting the volume label as a 
Version 3 label. If your installation does not want the operator to have to 
provide the necessary label information (volume serial number, owner 
identification, and volume access code), it may use the WTOR installation exit 
to intercept message "IEC704A C" and provide this information. 

Chapter 10. Tape Label Processing Installation Exit Routines 211 



The name of the WTOR installation exit routine is IEECVXIT. For information on 
how to use the linkage editor to include module IEECVXIT in the control 
program, see System Modifications. WTOR message "IEC704A C" described in 
System Messages Volume 1 and System Messages Volume 2. 

Label Validation Exit 
The label validation exit is entered during open/EOV if an invalid label condition 
is detected, and label validation has not been suppressed. Invalid conditions 
include unsupported characters, incorrect field alignment, unsupported values 
(for example, RECFM = U, block size greater than 2048, or a zero generation 
number), invalid label sequence, asymmetrical labels, invalid expiration-date 
sequence, and duplicate data set names. 

Input to the exit will be the address of the exit parameter list containing the 
type of exit being executed, the type of error detected, location of the error, and 
an address for the label in error. 

Except for duplicate data set name checking, label validation occurs only at 
tape load point (beginn~ng-of-volume label ·group) and at the requested data set 
position (beginning-of-data-set label group); only duplicate name checking 
occurs during positioning to the requested data set. 

Trailer labels produced by the system are not validated during close or EOV for 
the old volume. Thus, an input data set read in a forward direction is 
processed during close/EOV even if it is followed by an invalid trailer label; 
however, later, if the same data set is read backward, the invalid label will be 
detected during open or EOV for the new volume and cause the label validation 
exit to be entered. 

Because modifications to an existing data set can result in nonsymmetrical 
trailer labels, the following open options will cause the label validation exit to 
be entered: 

• Open for MOD (OLD OUTPUT/OUTIN), INOUT, EXTEND, or OUTINX. 

• Open for an EXCP DCB (OUTPUT/OUTIN) that does not contain at least a 
4-word device dependent area for maintaining a block count. 

Note: If you have generalized library subroutine programs that specify the 
INOUT option, but you are using a tape for input only, you can avoid entering 
the exit by coding LABEL= (,AL,,IN) on the JCL DD statement. 

The label validation exit can either continue processing a volume or reject it, 
issuing one of the following return codes: 

Return 
Code Meaning 

x•oo• Continue processing volume 

X104 1 Reject volume (set by the IBM-supplied exit) 

To identify the invalid condition, an IEC5121 LBL STD message is issued to the 
operator. For a rejected volume, an abend code message is also issued. 

212 MVS/ESA Data Facility Product Version 3: Customization 



\ . 
~ 

Entry to the label validation exit is tracked in the UCB. This serves as an audit 
trail if the exit forces continuation for an invalid condition but the condition 
causes an abend in subsequent processing. 

Note: The system does not rewrite labels after return from the label validation 
exit. Therefore, if a label is to be corrected, it must be done by an 
installation-written label validation exit. If certain errors are not corrected, they 
will cause unpredictable results when the volume is processed by a return code 
of zero from the label validation exit. These errors include: 

• Incorrect sequencing 

• Unsupported characters 

• Incorrect field alignment 

• Certain unsupported values (RECFM = U, block size greater than 2048, and a 
zero generation number will be processed as expected by the system) 

If an error is correctefJ by a return code of zero from the label validation exit, 
the resulting volume may not meet the specifications of Version 3 standards, 
and will therefore require agreements between interchange parties. 

Label Validation Suppression Exit 
The validation suppression exit allows the option of suppressing label 
validation. It is entered during open/EOV if volume security checking has been 
suppressed (JSCBPASS is on), if the volume label accessibility field contains an 
ASCII space character, or if RACF accepts a volume and the accessibility field 
does not contain an uppercase letter from A through Z. 

Label validation can also be suppressed by the volume access exit. 

Note that if you suppress label validation, the resulting volume may not meet 
the specifications of Version 3 standards, and therefore would require 
agreements between interchange parties. 

Volume Access Exit 
The volume access exit is entered during open/EOV if a volume is not RACF 
protected and the accessibility field in the volume label contains an ASCII 
uppercase letter from A through Z. The exit is bypassed if volume security 
checking has been suppressed (as indicated in the Program Properties Table). 

The exit can accept or reject the volume and can suppress label validation, 
issuing one of the following return codes: 

Return 
Code Meaning 

x•oo• Use volume 

x•o4• Reject volume (set by IBM-supplied exit) 

Label validation is suppressed by setting the high-order bit of the return code in 
the field named CONTROL in the source module ANSIEXIT (for example, a 
return code of 80 would indicate to use the volume and suppress validation). 
This bit is acted on every time the exit returns to the system. 

Chapter 10. Tape Label Processing Installation Exit Routines 213 



File Access Exit 

Note that fhe volume access exit is complementary to the label validation 
suppression exit, in that it is entered only when the latter exit is not. 

The file access exit is entered after positioning to a requested data set if the 
accessibility field in the HDR1 label contains an ASCII uppercase letter from A 
through Z and the volume is not RACF protected. Likewise, the exit is entered 
when a data set will be written to an output volume if the first character of the 
JCL ACCODE keyword is A through Z. 

The exit can either accept the data set or reject the volume, issuing one of the 
following return codes: 

Return 
Code Meaning 

x•oo• Use data set 

x•o4• Reject volume (set by IBM-supplied exit) 

The file access exit can reject a volume that was accepted earlier by the 
volume access exit. 

Installation-Written Exit Routines 
If you replace any of the IBM-supplied exit routines with your own routines, 
observe the programming conventions described under "Programming 
Conventions" on page 180, except that return must be via a BR 14 instruction. 

Your routines should not alter any fields in the exit parameter list, except the 
return code (IECIEXRC) and the field reserved for user data (IECIEUSR). 

In addition, your routines cannot use the DCB parameter list to process any 
DCB other than the current entry, because the DCBs are not synchronized 
during Version 3 exit processing. 

It is necessary to MODESET to key 0 in order to alter protected control blocks 
(such as the UCB). The original key at entry should always be restored 
immediately after any alterations to key 0 storage are complete; this will 
minimize risk of inadvertent data destruction. 

Exit Parameter List-IECIEPRM 
The parameters passed to a Version 3 installation exit during label processing 
will vary slightly between different types of exits. These differences, when they 
exist, are noted in the "Exit Type" column in Figure 101 on page 215. The 
parameter list is passed to the exit as an address in general purpose register 1; 
it is 32 bytes in length and is mapped by macro IECIEPRM beginning at DSECT 
IECIEPRM. This macro is available only in assembler language. Parameter 
fields not available to a particular exit will be set to zero(s). The only fields 
allowed to be altered by an exit are the return code (IECIEXRC) and the user 
area (IECIEUSR); changing any other field will have an unpredictable effect on 
system processing. A flag in the parameter list indicates which type of exit was 
entered. 

214 MVS/ESA Data Facility Product Version 3: Customization 



\ . ..__) 

Exit Field 
Off set Name length Contents Type Comments 

+0 
+4 

+8 
+12 

+13 

+14 

+15 

+16 

+17 
+19 

+28 

+24 

+28 

+32 

I EC I EID 
IECIESIZ 
IECIESZ 

I ECI EFLl 
IECIEVAL 
IECIEVAE 
IECIEFAE 
IECIEVSP 
IECIHJRT 

IECIEEOV 
I ECI EERR 
IECIEVRS 

IECIEUNK 
IECIEADJ 
IECIESEQ 
IECIEDUP 
IECIECHR 
IECIEXPR 
IECIESYM 
IECIEPOS 

IECIEXRC 

IECIESUP 

I EC I ERCEl 
I ECI ERC4 

IECIEJAC 

rsvd 
I ECI EDCB 

IECIEOUT 
IECIEIN 
IECIELBL 

I ECI EUCB 

IECIEUSR 

I EC I END 

4 
4 

4 
1 

1 

1 

1 

1 

2 
1 

4 

4 

4 

0 

FAE= File Access Exit 

C 'APRM' all 
X'20' all 
32 all 
X'08' all 
flags a 11 
X'88' VAL 
X'40' VAE 
X'28' FAE 
X'18' VSP 
XI 88 1 all 

X'84' all 
flags VAL 
X'80' N/A 

X'40' VAL 
X'28' VAL 
X'lEl' VAL 
X1 88 1 VAL 
X'84' VAL 
X'82' VAL 
X'81' VAL 
X'offset' VAL 

X'84' all 

X'88' VAE, 
VSP 

X'88' all 
XI 84 1 all 

C'access code' FAE 

0 all 
flags all 

XI 82 1 all 
X'8E' all 
A(address) all 

A(address) all 

0 all 

0 

VAE =Volume Access Exit 
VAL= Label Validation Exit 
VSP =Validation Suppression Exit 

Parameter list identifier 
Length of IECIEPRM 
Comparand for size 
Reserved 
Exit flags 
Entry is Validity Check 
Entry is Volume Access 
Entry is File Access 
Entry is Validation Suppression 
Label will be written 
("WRITE MODE") 
EOV in process 
Validation error type 
Version compatibility conflict 
(Note 1) 
Unsupported/unknown value 
Invalid field alignment 
Label sequence error 
Duplicate file name 
Invalid character type 
Invalid expiration date 
Symmetry conflict (Note 5) 
Starting character position in 
in label examined (Note 2) 
Return code from exit processing 
(Note 3) 
Suppress label validation 
(Note 8) 
Accept volume 
Reject volume (ignored for VSP 
Exit) 
User-requested file 
accessibility code (Note 7) 
Reserved for future use 
Copy of open parmlist options 
(4 low-order bits) 
Bit on for OUTPUT,OUTIN 
Bits off for INPUT,RDBK 
Address of label being processed 
(Note 4) 
Address of UCB for volume from 
VOLl label (Note 6) 
User area (maintained across 
exits) 
End of exit parameter list 

Figure 101. ISO/ANSI/Fl PS Version 3 Exit Parameter List 

Chapter 10. Tape Label Processing Installation Exit Routines 215 



Notes to Figure 101: 

1. "Version" error is set for the O/C/E message routine for internal use, and 
the volume is unconditionally rejected. '~ 

2. The first character position is offset 0, the second position is offset 1, and so 
forth. 

3. A return code of 4 is set by the IBM-supplied exits. This will cause a volume 
to be rejected. The exception is the validation suppression exit, which 
always sets a return code of zero in the IBM-supplied exits (although the 
system will a/ways unconditionally accept a volume after execution of the 
validation suppression exit). IECIEXRC is ignored by open/EOV when 
control is returning from RACF. 

4. For volume access exit and file access exit, the label area contains the 
accessibility code from tape. When the label area is not available to the 
exit, IECIELBL will be zero. Data in the label that is not available to an exit 
will be indicated by binary zeros. The volume accessibility code is a/ways 
available in the UCB tape class extension at UCBCXACC (for 
ISO/ANSI/Fl PS) when an ISO/ANSl/FIP.S volume has been_ opened and not 
demounted. 

5. A symmetry conflict results from a condition that will produce nonmatching 
or asymmetrical labels framing a file, and/or inconsistent file structure. 

6. The UCB tape class extension for ISO/ANSl/FIPS volumes will contain the 
VOL 1 label standard version number, the VOL 1 owner identification, and the 
VOL 1 accessibility code. The extension can be addressed by the following 
sequence: 

L Rx,UCBEXTPT(,UCBREG) 
L Rx,UCBCLEXT(,Rx) 
USING IECUCBCX,Rx 

COMMON EXTENSION 
CLASS EXTENSION 
IECUCBCX MAPPING 

The base UCB may be useful to access the serial number for the mounted 
volume (in UCBVOLI). 

7. The file accessibility code in IECIEJAC is only valid when "Write Mode" 
(IECIEWRT) is set during the file access exit. This code comes from 
ACCODE (A-Z) or LABEL (password, "1" or "3") parameters from the user 
job step (blank, if none). The value in IECIEJAC, when IECIEWRT is set, will 
be written (if valid) as the accessibility code in the file label when the exit 
returns. 

8. IECIESUP will be recognized any time the volume access exit returns to the 
system, when RACF returns to the system after it was passed the 
parameter list, or when the validation suppression exit returns to the 
system. 

216 MVS/ESA Data Facility Product Version 3: Customization 



\ .. _) 

UCB Tape Class Extension-IECUCBCX 
The tape class extension area generated for a UCB is addressed by UCBCLEXT 
in the UCB common ext.ension (created at system generation time). The pointer 
will be zero when no class extension exists. The tape class extension will 
contain zeros at IPL, and will be set to zeros whenever the volume label is 
about to be verified and processed for accessibility (as in open, or as in "next 
volume" for EOV). The main purpose of the class extension is to hold volume 
label data across opens when there is no intervening volume label 
reverification (as would be the case after CLOSE LEAVE and another OPEN in 
the same job step). The tape class extension area is mapped by the UCBCX 
DSECT in the IECUCBCX macro. 

Chapter 10. Tape Label Processing Installation Exit Routines 217 



UCB Tape Class Extension Data Area 

OFFSETS TYPE 

0 

0 

4 
6 

( 0) STRUCTURE 

(0) CHARACTER 

(0) CHARACTER 

(4) UNSIGNED 
(6) UNSIGNED 

ANSI SECTION 

8 (8) CHARACTER 

8 (8) CHARACTER 

LENGTH NAME 

56 UCBCX 

8 UCBCXPRE 

4 UCBCXID 

2 UCBCXTLN 
2 UCBCXCLR 

20 UCBCXANS 

1 UCBCXACC 

DESCRIPTION 

UCB TAPE CLASS EXTENSION 

TAPE CLASS EXT PFIX 

ID = UCBT 

TOTAL LENGTH OF EXTENSION 
LENGTH TO CLEAR 

ANSI PORTION OF EXTENSION 

VOLl ACCESS CODE FROM LABEL 

THE UCB EXIT FLAGS (UCBCXFLl) ARE SET WITH AN AUDIT TRAIL 
FOR ANSI EXIT ACTIVITY DURING VOLUME VERIFICATION. 

9 (9) BITSTRING 1 UCBCXFU FLAG BYTE 
1. . . . . . . UCBCXVAL VALi DA TI ON EX IT ENTERED 
.1. . .. .. UCBCXSUP SUPPRESS LBL VALi DA TI ON CHECK 

10 (A) CHARACTER UCBCXVER VDU LABEL-STANDARD VERSION 
11 (B) CHARACTER UCBCXV3 VERSION 3 
12 (C) UNSIGNED UCBCXRSl RESERVED FDR FUTURE USE 

13 (D) CHARACTER 14 UCBCXOWN 
27 (lB) CHARACTER 2 UCBCXRS2 

3480 SECTION 

29 (lD) CHARACTER 28 UCBCXl 

29 (lD) CHARACTER 16 UCBCXENV 

29 (lD) UNSIGNED 2 UCBCXERG 
31 (lF) UNSIGNED 2 UCBCXCLN 

33 (21) UNSIGNED 2 UCBCXRD 
35 (23) UNSIGNED 2 UCBCXRDB 

37 (25) UNSIGNED 2 UCBCXWR 
39 (27) UNSIGNED 3 UCBCXMBR 
42 (2A) UNSIGNED 3 UCBCXMBW 

VDU OWNER IDENTIFICATION 
RESERVED FOR FUTURE USE 

3480 PORTION OF EXTENSION 

3480 ENVIRONMENTAL DATA 

NO. OF ERASE GAPS 
NO. OF CLEANER ACTIONS 

READ FWD DATA CHECKS 
READ BKWD DATA CHECKS 

WRITE DATA CHECKS 
# OF BYTES READ/4K 
# OF BYTES WRITTEN/4K 

-------------------------------------------------------------------------------
45 (2D) UNSIGNED 2 UCBCXSEQ TRAILER FILE SEQUENCE NUMBER 
47 (2F) UNSIGNED 1 UCBCXFL2 3480 FLAG BYTE 
48 (30) UNSIGNED 1 UCBCXCKP CHKPNT (I c I ) IN EDF2 
49 (31) UNSIGNED 1 UCBCXSCl PASSWD REQ I 0 R/W (EOFl) 
50 (32) UNSIGNED 1 UCBCXSC3 PASSWD REQ'D WR ONLY (EOFl) 
51 (33) UNSIGNED 1 UCBCXWRT EDF LABEL WAS WRITTEN 

-------------------------------------------------------------------------------
52 (34) UNSIGNED 
53 (35) UNSIGNED 

56 (3A) CHARACTER 
60 (3E) CHARACTER 
60 (3E) CHARACTER 
66 (44) UNSIGNED 
76 (4E) * 

1 UCBCXRS3 
4 UCBCXTUS 

4 UCBCXRS4 
16 UCBCX2 
6 UCBCXVID 

10 UCBCXRS5 
UCBCXEND 

RESERVED 
SERIAL NO. OF TAPE DRIVE 

RESERVED 

VOL ID SAVE AREA 
RESERVED 
END OF TAPE CLASS EXTENSION 

Note: The UCB exit flags (UCBCXFL 1) are set with an audit trail for Version 3 
exit activity during volume verification. 

218 MVS/ESA Data Facility Product Version 3: Customization 

\ . ......_.,,, 

\~ 



I ' . 
\....._./ 

\ 
''._./ 

Chapter 11. Automatic Class Selection (ACS) Installation Exits 

General Guidance 
There are four Storage Management Subsystem (SMS) constructs-data class, 
storage class, management class, and storage group. One ACS routine exists 
for each of these constructs. Each ACS routine, except the one for storage 
group, has an ACS installation exit. The ACS installation exits allow you to 
code exit routines that provide capabilities beyond the scope of the ACS 
routines. The ACS installation exit routines you code are processed when the 
corresponding ACS installation exit is invoked. The ACS installation exits are 
Assembler H programs. The exit routines you code must also be Assembler H 
programs. 

This chapter is intended for the storage administrator. It explains how to write 
ACS installation exit routines and provides a sample for purposes of illustration. 
For more information on defining SMS classes and storage groups, and writing 
ACS routines, see the Storage Administration Reference. 

Choosing Between ACS Routines and ACS Installation Exits 
ACS routines and ACS installation exit routines can perform many of the same 
functions. Wherever possible, ACS routines should be used, rather than exit 
routines. Compared with ACS installation exit routines, ACS routines are 
relatively easy to write, maintain, and modify. However, only the ACS 
installation exit routines can be used to 

• Call. other programs 
• Call other subsystems 
• Write SMF records 
• Write GTF trace records 
• Invoke SVC dumps 
• Maintain large, easily searched tables of information in storage. 

Note that you must re-IPL the system after modifying or creating any ACS 
installation exit routines, because they reside in SYS1. LPALIB. 

The Exit Environment 
Execution of ACS installation exits is the second of four steps during automatic 
class selection. The system processes which cause automatic class selection 
are: 

• Allocation of new data sets that are eligible to be SMS managed 
• Conversion of SMS volumes and data sets 
• DFHSM RECALL and RECOVER 
• DFDSS COPY/RESTORE and CONVERTV 
• Access method services ALLOCATE, DEFINE, ALTER and IMPORT 

Figure 102 on page 220 summarizes the process that occurs for each of the 
SMS constructs whenever automatic class selection takes place. This process 
occurs first for the data class ACS routine, then for the storage class ACS 
routine. If no storage class was assigned, automatic class selection ends here. 

Chapter 11. Automatic Class Selection (ACS) Installation Exits 219 



If a storage class was assigned, the process occurs again for the management 
class ACS routine and then for the storage group ACS routine. 

Automatic Class Selection Services 

Invoke Invoke Validate Check 
ACS SMS 

ACS Routine Installation Construct User's 
Exit Name Authority 

Step 1 Step 2 Step 3 Step 4 

Figure 102. Automatic Class Selection Process for Each Construct 

During automatic class selection, ACS Services performs the following four 
steps. In step 1, ACS Services invokes the ACS routine for an SMS construct, 
which assigns a value for that construct to a data set, if that ACS routine exists. 
This assigned value can be overridden and replaced by a value determined by 
the ACS installation exit routine. In step 2, ACS Services invokes the 
corresponding ACS installation exit. If an ACS installation exit routine exists, 
then it executes. ACS installation exit routine assignments override ACS 
routine assignments if the two differ. Also, ACS installation exit routines can 
alter the input to ACS routines and re-invoke them one time. In step 3, ACS 
Services verifies that a valid value for the construct name has been assigned. 
Finally, in step 4, ACS Services checks the user's authority to determine if an 
end user is allowed to use a given storage class or management class. 

Note: For storage groups, only step 1 is performed, because there is no 
storage group ACS installation exit. 

Finding the ACS Installation Exits 
The ACS installation exits reside in SYS1.LPALIB and have the following names: 

IGDACSDC Data class exit 
IGDACSSC Storage class exit 
IGDACSMC Management class exit 

You can code routines for any, all, or none of the ACS installation exits. You 
will receive a CSV0031 message for each ACS installation exit routine that does 
not exist in SYS1.LPALIB. The message does not represent an error unless you 
have coded a routine for that ACS installation exit and ensured that it resides in 
SYS1 .LPALIB. 

Programming Considerations 
In general, the routines you code for the ACS installation exits must: 

• Handle multiple requests (reentrant) 
• Reside in SYS1.LPALIB 
• Have AMODE 31 
• Have RMODE ANY 

220 MVS/ESA Data Facility Product Version 3: Customization 



\\._,! 

The exit routines are given control in task mode and protect key zero with no 

locks held and 31-bit addressing mode. They must not be operating in 
cross-memory mode. 

Linkage is via standard MVS linkage conventions. Figure 103 illustrates the 

parameter structure for the ACS installation exits. A 4K byte work area exists 

on a doubleword boundary for each ACS installation exit. You can use this 

work area to satisfy the reentrant requirement. The following macros map the 

parameters that are passed to each ACS installation exit: 

IGDACERO Maps the read-only variables that the ACS installation exit can 
reference when selecting an SMS class. 

IGDACERW Maps the read-write variables that the ACS installation exit can 

set when selecting an SMS class. 

IGDACSPM Describes the parameter list for an ACS installation exit. 

See Appendix C, "Read-Only Variables Referenced by ACS Installation Exits" 

on page 243, Appendix D, "Read-Write Variables Set by ACS Installation Exits" 

on page 249, and Appendix E, "Parameter List for ACS Installation Exits" on 

page 251 for the individual macro mappings. 

REGISTER 1 

FULLWORD 

I 
IGDACSPM 

I 

14 ACSPWORK 

I 

lC ACS PERO 

20 ACSPERW 

24 ACSPACS 

28 ACSPAERO 

2C ACSPAERW 

I 
I 

I 
I 

ACS 
interface 
routine 

4k byte 
work area 
for use 
by the 
exit 

IGDACERO 

read 
only 
variables 

IGDACERW 

read/ 
write 
variables 

Figure 103. Parameter Structure for the ACS Installation Exits. This figure shows the 
control block structure upon entry into the exit. All offsets are in 
hexadecimal. 

Chapter 11. Automatic Class Selection (ACS) Installation Exits 221 



The ACS Installation Exit Routines 
ACS Services allows an installation-written exit routine to take control after the ,"-
ACS routine has processed. An ACS installation exit routine can override any 
values assigned by the ACS rqutine and can return messages to the batch job, 
started task, or TSO/E user. 

An ACS installation exit routine can invoke an ACS routine one time, to 
determine a new value for a construct. This new value can be assigned to a 
data set or used for comparison with the original value assigned in step 1, 
Figure 102 on page 220. Your exit routine uses the ACS interface routine to 
invoke an ACS routine. The parameter list that is passed to your exit routine, 
as shown in Figure 103 on page 221, contains a field (ACSPACS) which points 
to the ACS interface routine. For more information on how to invoke the ACS 
interface routine, see "Invoking ACS Interface Routines" on page 223. 

Assigning SMS Classes 
Upon entry to an ACS installation exit, ACSPERW points to a list of read-write 
variables, which are mapped by IGDACERW. To assign an SMS class, you 
must code an installation exit routine for the corresponding ACS installation exit 
that sets the following fields in IGDACERW: 

• Set the ACERWNCS field to one. This field specifies the number of SMS 
classes to be assigned. The valid values for this field are zero and one. 
Initially, it contains zero, indicating no SMS classes are to be assigned. If 
more than one SMS class is returned, only the first is accepted. 

• Set the ACERWVLN field to the length of the SMS class name. This field 
has an initial value of zero. 

• Set the ACERWVAL field to the name of the SMS class being assigned. 
This field has an initial value of zero. 

To assign a null value (zero) to an SMS class, you must set the ACERWNCS 
field to one and the ACERWVLN field to zero. The ACERWVAL is then ignored. 
If you do not want to assign a class, leave the ACERWNCS field as zero. 

Returning Messages 
An ACS installation exit routine can return a series of messages to the batch 
job, started task, or TSO/E user. To return messages, set the value in 
ACERWNMG equal to the number of messages you want returned. Place the 
text of the messages in ACERWMSG. ACERWMSG can hold up to six 
messages. Messages must be 110 bytes long. Pad messages with blanks if 
needed. 

222 MVS/ESA Data Facility Product Version 3: Customization 

( 

\-....._.. 



I 

\_.,,! 

I 

~/ 

Registers at Return from an ACS Installation Exit Routine 

Return Codes 

Reason Codes 

When you return to ACS Services from your ACS installation exit routine, 

register contents must be as follows: 

Register Contents 

0 Contains a reason code, if any 

1-14 Same as on entry to your exit routine 

15 A return code 

The ACS installation exit routine must terminate with a return code in register 

15 that indicates what action is to be taken upon return from the exit. The 

return codes and their meanings are as. follows: 

Code 

OO(X 100 1
) 

04(X 1 04 1
) 

16(X'10') 

Meaning 

Indicates processing completed normally, and that you want the 

SMS class that the ACS installation exit returns to be used. 

Indicates that you want the job or the dynamic allocation request 

to be failed, and that register 0 contains the relevant reason code. 

Indicates that the ACS installation exit contains at least one error. 

You want it to be placed in disabled wait until the SMS address 

space has restarted. 

Any other return code represents an error. 

Your ACS installation exit routine can put a reason code in register 0. You 

determine the reason codes and their meanings. When your exit routine 

passes back a return code of X'04' in register 15, the reason code your exit 

routine placed in register 0 appears in the text of message IGD1001 I. 

Invoking ACS Interface Routines 
The ACS interface routine is used to invoke an ACS routine from your ACS 

installation exit routine. The ACSPACS field shown in Figure 103 on page 221 

contains the address of an ACS interface routine that invokes the corresponding 

ACS routine for the SMS construct being selected. If the ACSPACS field 

contains a zero, then no ACS routine exists for the SMS class. The IGDACERC 

macro defines the ACS interface routine return codes, which appear in register 

15. The IGDACERC macro also defines the reason codes which appear in 

register 0 if the return code is nonzero. 

Chapter 11. Automatic Class Selection (ACS) Installation Exits 223 



Linkage is via standard MVS linkage conventions. Figure 104 on page 225 
illustrates the parameter structure for the ACS interface routine. The 
parameter list for the ACS interface routine, ACSPACSP, is imbedded within the 
parameter list that is passed to the exit. ACSPACSP contains the following 
fields: 

ACSPAERO Points to a list of variables mapped by IGDACERO that .are 
read-only variables used by the ACS interface routine. Initially, 
ACSPAERO points to the same list of read-only variables as 
ACSPERO. You can modify the passed variables pointed to by 
ACSPAERO and invoke the ACS routine. Alternatively, you can code 
the ACS installation exit routine to create an entirely new list of 
read-only variables for the ACS interface routine and point to them 
with ACSPAERO before invoking the ACS routine. 

ACSPAERW Points to a list of read-write variables mapped by IGDACERW and 
used by the ACS interface routine. Initially, ACSPAERW contains the 
same value as ACSPERW, which is a pointer to a list of read-write 
variables that contain the original value for the SMS class that was 
derived in step 1 of Figure 102 .on page 220. You can invoke the 
ACS routine without changing the value in ACSPAERW. When the 
ACS routine executes, it replaces the values in the list pointed to by 
ACSPAERW with new values for the SMS class derived by the ACS 
routine and any messages generated by the ACS routine. When 
your ACS installation exit routine returns control to ACS Services, 
the SMS class contained in the list pointed to by ACSPERW is 
assigned to the data set. Because ACSPERW and ACSPAERW are 
pointing to the same list, the class that is assigned to the data set 
will be the new class that was created when your exit routine 
invoked the ACS routine. 

Alternatively, you can code your ACS installation exit routine to 
create an entirely new list of read-write variables and point to them 
with ACSPAERW before invoking the ACS routine. After the ACS 
routine executes, the read-write variable list pointed to by 
ACSPAERW contains the new values derived by the ACS routine. 
The read-write variable list pointed to by ACSPERW contains the 
original values that were created in step 1 of Figure 102 on 
page 220. By creating a new read-write variable list in your exit 
routine, and then invoking the ACS routine, you can compare the 
original values, pointed to by ACSPERW, with the new values, 
pointed to by ACSPAERW. 

Note: If you have created a new list of read/write variables and 
invoked the ACS routine, and you wish to have the new values that 
are pointed to by ACSPAERW used to assign a class, you must copy 
the new values into the o~iginal list of variables, pointed to by 
ACSPERW. If you omit this copying step, the new values will not be 
used to assign a class. 

A value of zero in the ACERWNCS field upon return from the ACS routine 
indicates that a null value was derived for the SMS class. To assign a null 
value to the SMS class, you must set the ACERWNCS field to one and leave the 
ACERWVLN and ACERWVAL fields zero. 

224 MVS/ESA Data Facility Product Version 3: Customization 

\ ,.__., 



I 

~, 

\~ 

REGISTER 1 

FULLWORD 

ACSPACSP 

ACSPAERO 1-------1 

ACSPAERW 

IGDACERO 

read 
only 
variables 

IGDACERW 

read/ 
write 
variables 

Figure 104. Parameter Structure for the ACS Interface Routine. This figure shows the 

control block structure for invoking the ACS interface routine from the 
installation exit. 

Reference Restrictions 
When coding an ACS installation exit routine, you should only reference data 

that is explicitly passed, because too many different environments can invoke 

an ACS installation exit. For example, an ACS installation exit routine should 

not reference the name of the current system, the ASCB for the current address 

space, or the CPUID of the current processor. Also, an ACS installation exit 

routine should not issue a Dynamic Allocation Request, because a Dynamic 

Allocation Request can invoke an ACS installation exit. 

ACS Installation Exit Errors 
SMS establishes a recovery environment for the ACS installation exits by 

issuing an ESTAE before invoking them. The following represent ACS 

installation exit errors: 

• The SMS ESTAE covering the exit is entered. 
• The ACS installation exit returns an invalid return code. 

• The ACS installation exit returns return code 16. 

If any of the above errors occur, the following results: 

1. An output message describes the error. 

2. An SVC dump is taken, SYS1.LOGREC error recording is performed, and the 

failing ACS installation exit is marked invalid. 

3. The failed ACS installation exit is not reinvoked until the SMS address 

space is restarted. 

Chapter 11. Automatic Class Selection (ACS) Installation Exits 225 



Sample ACS Installation Exit Routine 
The ACS installation exit routine in Figure 105 re-invokes the storage class ACS 
routine and writes two messages. 

TITLE ' SAMPLE STORAGE CLASS INSTALLATION EXIT' 
I GOACSSC CSE CT , 
IGOACSSC AMOOE 31 
IGOACSSC RHODE ANY 

OS 0H 
USING *,15 
B PROLOG 
DC AL1(16) 
DC C'IGDACSSC 85.078' 
DROP 15 

PROLOG STM 14, 12, 12( 13) 
USING ACSPMO, PARM LI ST 
L PARMLIST,0(1) 
USING·WORKAREA,WORKBASE 
L WORKBASE,ACSPWORK 
LA 11,SAVEAREA 
ST 13,4(11) 
ST 11,8(13) 
LR 13, ll 
LR 12, 15 

PSTART EQU IGOACSSC 
USING. PSTART, 12 
LA TOAODR,STARTWK 
L TOLEN,ACSPWLEN 
SH TOLEN, =AL2(L' SAVEAREA) 
LA FROMLEN, 0 
MVCL TOADOR,FROMADDR 

* 
* SETUP ACCESS TO READ-ONLY VARIABLES 
* 

USING ACERO,ERO 
L ERO,ACSPAERO 

* 
* SETUP ACCESS TO READ-WRITE VARIABLES 
* 

USING ACERW,ERW 
L ERW,ACSPERW 
MVC ACERWVAL(8) ,BLANKS 

* 
* INVOKE ACS ROUTINE 
* 

LA SERVI CEP, ACSPACSP 
ST SERVICEP,ACSPARM 
LA 1, ACS PARM 
L 15, ACSPACS 
BALR 14,15 

* 

MUST RUN IN 31-BIT MOOE 
SHOULD HAVE AN RMODE OF ANY 

STANDARD ENTRY LINKAGE 
ESTABLISH ADDRESSABILITY TO 

EXIT PARAMETER LIST 
ESTABLISH ADDRESSABILITY 

TO WORK AREA 
STANDARD SAVE AREA 

LOAD BASE REGISTER 

SET UP TO CLEAR THE WORK AREA 
FOLLOWING THE SAVE AREA 

DON'T OVERLAY THE SAVE AREA 
INITIALIZE TO ZEROES 
CLEAR WORK AREA 

ANCHOR READ-ONLY VARIABLES 

ANCHOR READ-WRITE VARIABLES 

PARAMETER LI ST FOR ACS RTN 
USE STANDARD MVS LINKAGE 
CONVENTIONS 
LOAD ADDR OF ACS INTERFACE RTN 
CALL STORCLAS SELECTION ROUTINE 

* RETURN MESSAGE INDICATING EXIT WAS ENTERED 
* 

LA WORKREG,l ONE MESSAGE 
STH WORKREG,ACERWNMG 
MVC ACERWMSG(ll0) ,MESSAGE! 

Figure 105 (Part 1 of 2). Sample ACS Installation Exit Routine 

226 MVS/ESA Data Facility Product Version 3: Customization 

\ 

~ 



* IF THE ACS ROUTINE RETURNED A NULL VALUE, WE NEED TO DO SOME RESETS 
* 

MVC SCNAME,BLANK8 
MVC SCNAME(8) ,ACERWVAL 
CLC ACERWNCS, =XI 00000000' 
BNE CONTINUE 
MVC ACERWN cs. =XI 00000001' 
MVC ACERWVLN,=X'0000' 
MVC SC NAME, NULL SC 

* 

PRIME AREA FOR MESSAGE 2 
IS NUMBER OF CONSTRUCTS = 0? 
IF ACS RTN SET IT, NO CHANGE 
SET NUMBER OF CONSTRUCTS = 1 

UPDATE AREA FOR MESSAGE 2 

* BUILD A MESSAGE INDICATING A STORAGE CLASS WAS ASSIGNED 

CONTINUE EQU 
LA 
STH 
MVC 
MVC 
MVC 
MVC 

RETURN EQU 
L 
LM 
LA 
BR 

DATA DS 
MESSAGEl DC 
MSG2A DC 
MSG2B DC 
NULLSC DC 
BLANK8 DC 
BLANK75 DC 

WORKREG,2 WE NOW HAVE 2 MESSAGES 
WORKREG, ACERWNMG 
MSG2AOUT,MSG2A 
MSG2BOUT ,MSG2B 
PAD, BLANK75 
ACERWMSG+l10(110) ,MESSAGE2 MOVE IN SECOND MESSAGE 

* 
13. 4 ( 13) 
14, 12, 12(13) 
15,B 
14 

SET RETURN CODE 

0F START OF DATA AREA 
CL110' STORAGE CLASS INSTALLATION EXIT ENTERED' 
CL14'STORAGE CLASS I 
CL13' WAS ASSIGNED' 
CL8' *NULL* I 
CL8' I 

CL75' I 

INDICATE NO STORAGE CLASS 
FOR CLEARING MESSAGE INSERT 

WORKAREA DSECT , 
SAVEAREA DS CL72 
STARTWK EQU 
ACSPARM DS 

MESSAGE2 DS 
MSG2AOUT DS 
SCNAME DS 
MSG2BOUT DS 
PAD DS 

WORKREG EQU 
TO.ADDR EQU 
TOLEN EQU 
ERO EQU 
FROMADDR EQU 
ERW EQU 
FROM LEN EQU 
SERVICEP EQU 
WORKBASE EQU 
PA.RMLIST EQU 

0CL11B 
CL14 
CL8 
CL13 
CL75 

2 
2 
3 
3 
4 
4 
5 
6 
7 
8 

I GDACSPM I GDACSPM 
IGDACERO IGDACERO 
IGDACERW IGDACERW 

END IGDACSSC 

STANDARD SAVE AREA 
START OF NON-SAVE AREA STUFF 
POINTER TO ACS PARAMETERS 

MESSAGE TO ISSUE SO THAT 
USER KNOWS WE ASSIGNED A 
STORAGE CLASS 

WORK REGISTER 
REGISTER FOR MVCL DESTINATION 
REGISTER FOR MVCL DEST LENGTH 
ADDRESS OF IGDACERO 
REGISTER FOR MVCL SOURCE 
ADDRESS OF I GDACERW 
REGISTER FOR MVCL SOURCE LENGTH 
ADDRESS OF PARMLIST FOR SERVICE 
ADDRESS OF WORKAREA 
ADDRESS OF EX IT PARAMETER LI ST 

MAP EXIT PARAMETER LIST(ACSPMD) 
MAP READ ONLY VARIABLES(ACERO) 
MAP READ-WRITE VARIABLES(ACERW) 

Figure 105 (Part 2 of 2). Sample ACS Installation Exit Routine 

Chapter 11. Automatic Class Selection (ACS) Installation Exits 227 



\ 

'-



Appendix A. Example of an OPEN Installation Exit Module 

Processing in IFGOEXOB 
The following program listing is a sample of IFGOEXOB. The four subroutines 

(BUFNO, SCREEN, RLSE, and SQTY) show examples of the kind of processing 

that can be done in your installation's version of IFGOEXOB. 

The BUFNO subroutine defaults the number of buffers for QSAM DCBs 

(DCBBUFNO) if the value is zero when the exit is given control. The block size 

in the DCB (DCBBLKSI) is used, together with a fixed amount of storage (64K 

bytes in the example) to determine a buffer number. A buffer number is limited 

to a fixed value (32 in the example). Storage quantity and maximum buffer 

number are contained in two tables, DAMAX and TPMAX, that are used for 

DASO devices and tape devices, respectively. Storage quantity is expressed in 

units of 1024 (1K) bytes. The values in the DAMAX and TPMAX tables can be 

altered by your installation. 

The SCREEN subroutine determines those cases in which the succeeding 

subroutines, RLSE and SQTY, should be executed. DASO sequential and 
partitioned data sets being processed by BSAM or QSAM and opened for 

OUTPUT or OUTIN are selected. The VTOC data set and data sets starting with 
1SYS1. 1 (system data sets) are excluded. An installation may want to make 

further selection tests. 

Requesting Partial Release 
The RLSE subroutine sets on the partial release indicators in the JFCB if the 

number of extents in the data set is less than a fixed value (8 in the example). 

It sets off the partial release indicators in the JFCB if the number of extents in 

the data set is equal or greater than a fixed value (8 in the example). 

Partitioned data sets are not processed, because they may be opened many 

times to write one new member for each OPEN/CLOSE. 

Updating the Secondary Space Data 
The SQTY subroutine provides a default secondary space quantity if none is 

specified. The default is one half of the primary space quantity if it is greater 

than one. If the primary quantity is zero, secondary is set to a fixed default 

number of tracks (5 in the example). If the primary quantity is one, secondary 

is set to the same fixed default (5); note that, in this case, the secondary 

quantity is in units of tracks, cylinders, or average blocks, depending on the unit 

of the primary quantity. 

If the secondary space quantity is not zero, the SQTY subroutine tests the 

number of extents in the data set. If the number of extents is equal to or 

greater than a fixed value (10 in the example), then the secondary quantity is 

increased by 50% if it is greater than 1. It is set to a default quantity (5 in the 
example) if the secondary quantity is one; note that, in this case, the secondary 

Appendix A. Example of an OPEN Installation Exit Module 229 



quantity is in units of tracks, cylinders, or average blocks, depending on that of 
the primary quantity. 

IFG0EX0B CSECT 
*********************************************************************** * * * FUNCTION = * * FOUR SAMPLE ROUTINES ARE SUPPLIED. * * * * BUFNO - DEFAULT DCBBUFNO * * DCBBUFNO (NUMBER OF BUFFERS) IS DEFAULTED FOR * * OPENS TO PHYSICAL SEQUENTIAL AND PARTITIONED DATA SETS * * ON DASO AND TAPE USING QSAM, FOR WHICH DCBBUFNO rs ZERO. * * DCBBUFNO FOR SYSIN, SYSOUT, TERMINAL, AND DUMMY DATA SETS * * IS SET TO THE EQUATE, INOUTBNO, OR THE VALUE IN THE * * FULLWORD, INOUTBN. * * * * DCBBUFNO IS SET TO THE NUMBER OF DCBBLKSZ BUFFERS WHICH * * FIT IN A GIVEN AMOUNT OF STORAGE. THE AMOUNT OF STORAGE rs * * DEFINED BY THE EQUATES, DAMXK AND TPMXK (OR THE FULLWORDS * * AT LABELS, DAMAXK AND TPMAXK), FOR DASO AND * * TAPE, RESPECTIVELY. THE EQUATES DEFINE THE AMOUNT OF * * STORAGE FOR BUFFERS IN UNITS OF 1024 (IF DAMXK IS 32, THEN * * THE AMOUNT OF STORAGE IS 32K, -OR 32768). * * DAMXK OR TPMXK TIMES 1024 IS DIVIDED BY DCBBLKSI TO * * DETERMINE THE NUMBER OF BUFFERS TO DEFAULT. * * * * THE EQUATES, DAMXBNO AND TPMXBNO, OR THE FULLWORDS * * AT LABELS, DAMAXBNO AND TPMAXBNO, * * DEFINE THE MAXIMUM NUMBER OF BUFFERS TO BE * * DEFAULTED FOR DASO AND TAPE IF THE CALCULATION, ABOVE, * * RESULTS IN A LARGER NUMBER. * * * * SCREEN - SCREEN OUT CASES FOR RLSE, SQTY * * * * RLSE - SET OR ZERO PARTIAL RELEASE * * THIS ROUTINE SETS PARTIAL RELEASE FOR DASO PS (NOT PO) DATA * * SETS BEING OPENED FOR OUTPUT OR OUTIN. * * * * PARTIAL RELEASE IS SET ON IF THE NUMBER OF EXTENTS rs LESS * * THAN A QUANTITY DEFINED BY THE EQUATE, RLSEl, OR THE BYTE, * * EXTRLSEl. * * * * PARTIAL RELEASE IS SET OFF IF THE NUMBER OF EXTENTS IS NOT * * LESS THAN A QUANTITY DEFINED BY THE EQUATE, RLSE8, OR THE * * BYTE, EXTRLSE0. * * * * SQTY - SET OR UPDATE SECONDARY SPACE QUANTITY * * THIS ROUTINE UPDATES THE SECONDARY SPACE * * QUANTITY FOR DASO PS OR PO DATA SETS BEING * * OPENED FOR OUTPUT OR OUTIN. * 

230 MVS/ESA Data Facility Product Version 3: Customization 

~ 

~ 



:~ 

l 
\._ .. / 

G; 

u 

i "-') 

* IF THE SECONDARY QUANTITY IS NOT ZERO, * 
* AND IF THE NUMBER OF EXTENTS IN THE DATA SET IS * 
* AT LEAST EQUAL TO THE QUANTITY IN THE EQUATE, EXTSQT (OR * 
* THE BYTE AT LABEL, EXTSQTY), THEN: * 
* 1. IF THE SECONDARY QUANTITY IS GREATER THAN ONE, * 
* SECONDARY QUANTITY IS INCREASED BY ONE HALF * 
* (50%). * 
* * 
* 2. IF THE SECONDARY QUANTITY IS ONE, * 
* SECONDARY QUANTITY IS SET TO THE VALUE IN THE FULLWORD * 
* AT LABEL, SQTYDFLT (EQUAL TO THE EQUATE, SQTYDFL). * 
* * 
* IF THE SECONDARY QUANTITY IS NOT ZERO, * 
* AND IF THE NUMBER OF EXTENTS IN THE DATA SET IS * 
* LESS THAN THE QUANTITY IN THE EQUATE, EXTSQT (OR * 
* THE BYTE AT LABEL, EXTSQTY), SECONDARY QUANTITY * 
* IS LEFT UNCHANGED. * 
* * 
* IF SECONDARY QUANTITY IS ZERO, IT IS SET TO ONE HALF * 
* OF PRIMARY QUANTITY IF PRIMARY IS NOT ZERO OR ONE. * 
* IF PRIMARY QUANTITY IS ZERO, THE SPACE TYPE IS SET TO TRACKS,* 
* AND SECONDARY QUANTITY IS SET TO THE VALUE IN THE FULLWORD * 

* AT LABEL SQTYDFLT (EQUAL TO THE EQUATE, SQTYDFL). * 

* IF PRIMARY QUANTITY IS ONE, SECONDARY QUANTITY IS SET TO * 
* VALUE IN THE FULLWORD AT LABEL SQTYDFLT (EQUAL TO THE * 
* EQUATE, SQTYDFL). * 

* * 
* NOTES = SEE BELOW * 
* * 

* DEPENDENCIES = * 
* CLASS ONE CHARACTER CODE. THE EBCDIC CHARACTER CODE * 
* WAS USED FOR ASSEMBLY. THE MODULE MUST BE REASSEMBLED * 
* IF A DIFFERENT CHARACTER SET IS USED FOR EXECUTION. * 
* * 
* RESTRICTIONS = NONE * 
* * 
* REGISTER CONVENTIONS = * 
* Rl OIEXL ADDRESS * 

* R2 DCB ADDRESS * 
* R3 UCB ADDRESS * 
* R4 DCB BLOCK SIZE * 
* R5 ADDRESS OF TPMAX OR DAMAX TABLES * 
* R6 EVEN REGISTER OF EVEN/ODD PAIR * 
* R7 ODD REGISTER OF EVEN/ODD PAIR * 
* RS TIOT ENTRY ADDRESS * 
* RS JFCB ADDRESS * 
* R10 FORMAT 1 DSCB ADDRESS * 

* Rll SAVE RETURN CODE * 
* R13 SAVE AREA ADDRESS * 
* R14 RETURN ADDRESS * 

* R15 BASE REGISTER * 

Appendix A. Example of an OPEN Installation Exit Module 231 



* 
* 
* 

PATCH LABEL = PATCH 

* MODULE TYPE = CONTROL (OPEN, CLOSE, EOV DATA MANAGEMENT) 
* 
* 
* 
* 
* 
* 
* 
* 
* 

PROCESSOR = ASSEMBLER XF 

MODULE SIZE = SEE EXTERNAL SYMBOL DICTIONARY 

ATTRIBUTES = REENTRANT, REFRESHABLE,READ-ONLY, ENABLED, 
PRIVILEGED, SUPERVISOR STATE, KEY ZERO, 
LINK PACK AREA RESIDENT/PAGEABLE 

* ENTRY POINT = IFG0EX0B 
* 
* 
* 
* 
* 
* 
* 

PURPOSE = SEE FUNCTION 

LINKAGE = 
FROM IFG0196L: 

BALR 14,15 

* INPUT = STANDARD LINKAGE CONVENTIONS 
* 
* OUTPUT = DCBBUFNO DEFAULTED 
* PARTIAL RELEASE SET OR RESET 
* CONTIGUOUS FLAG SET TO ZERO 
* SECONDARY SPACE REQUEST MODIFIED 
* RETURN CODE IN REGISTER 15 
* 0 IF JFCB NOT MODIFIED 
* 4 IF JFCB MODIFIED 
* 
* EXIT -NORMAL = 
* BR 14 
* 
* EXIT-ERROR = 
* NONE 
* 
* EXTERNAL REFERENCES = SEE BELOW 
* 
* 
* 
* 
* 
* 
* 

ROUT! NES = NONE 

DATA AREAS = NONE 

CONTROL BLOCK = NONE 

* TABLES = NONE 
* 
*MACROS= MODESET, IECOIEXL, DCBD, IEFUCBOB, IEFTIOTl, IEFJFCBN, * IECSDSLl 
* 

* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* *********************************************************************** 

232 MVS/ESA Data Facility Product Version 3: Customization 

, I 

\~ 



'-/ 

\~' 

:\.._.,,· 

*********************************************************************** 
* 
* REGISTER EQUATES 
* 
*********************************************************************** 
Rl EQU 1 OIEXL PARAMETER LIST ADDRESS 
RDCB EQU 2 DCB ADDRESS 
RUCB EQU 3 UCB ADDRESS 
RBKSIZ EQU 4 DCB BLOCK SIZE 
RMAX EQU 5 ADDRESS OF TPMAX OR DAMAX 
REVEN EQU 6 EVEN REGISTER OF EVEN/ODD PAIR 
RODD EQU 7 ODO REGISTER OF EVEN/ODD PAIR. HAS 

DCBBUFNO DEFAULT 
RT I OT EQU 8 TIOT ENTRY ADDRESS 
RJFCB EQU 9 JFCB ADDRESS 
RDS CB EQU HI FORMAT 1 DSCB ADDRESS 
RINCODE EQU 11 INTERNAL RETURN CODE 
R12 EQU 12 
RSAVE EQU 13 SAVE AREA ADDRESS 
RET EQU 14 RETURN.ADDRESS 
RCODE EQU 15 BASE REGISTER/RETURN CODE ON EXIT 
*********************************************************************** 
* 
* RETURN CODE 
* 
*********************************************************************** 
MOOJFCB EQU 4 RETURN CODE IF JFCB MODIFIED 

USING IFG8EX8B,RCOOE 
*********************************************************************** 

* 
* START OF SAMPLE PROGRAM 
* 
*********************************************************************** 

B AFTRIDl 
DC C'IFG8EX8B JDM1137 &SYSOATE' 

+ 
AFTRIDl 

+AFTRIDl 
+ 

DC C'IFG8EX8B JDM1137 85/81/81' 
SAVE (14,12) SAVE REGISTERS 
OS 8H 
STM 14,12,12(13) SAVE REGISTERS 

ZERO RETURN CODE 

+ 
+ 
+ 

EXIT 

XR RINCOOE,RINCODE 
USING OIEXL,Rl 
BAL RET,BUFNO 
BAL RET,SCREEN 

BAL 
BAL 
EQU 

RET,RLSE 
RET,SQTY 
* 

PARAMETER LIST 
DEFAULT BUFNO 
SCREEN OUT CASES WHERE RLSE, * 
AND SQTY SHOULD NOT BE CALLED 
SET PARTIAL RELEASE 
SET SECONDARY QUANTITY 
RETURN TO CALLER 

*********************************************************************** 
* RETURN TO CALLER 
*********************************************************************** 

LR RCOOE,RINCODE 
RETURN (14,12),RC=(15) 
L 14,12(13,8) 
LM 8,12,28(13) 
BR 14 

BUFNO EQU * 

RESTORE REGISTER 
RESTORE REGISTER 14 
RESTORE THE REGISTERS 
RETURN 

DEFAULT DCB BUFNO 

* 

Appendix A. Example of an OPEN Installation Exit Module 233 



*********************************************************************** 
* 
* 
* 
* 
* 
* 
* 

DEFINE DEFAULT VALUES 
DAMXK NUMBER OF K (1024) OF BUFFERS FOR DASO 
TPMXK NUMBER OF K (1024) OF BUFFERS FOR TAPE 
DAMXBNO MAXIMUM NUMBER OF BUFFERS FOR DASO 
TPMXBNO MAXIMUM NUMBER OF BUFFERS FOR TAPE 

NOTE THAT DAMXBNO AND TPMXBNO MUST NOT BE GREATER THAN 255 
* 
*********************************************************************** DAMXK EQU 64 64K BUFFERS FOR DASO 
TPMXK EQU 64 &4K BUFFERS FOR TAPE 
DAMXBNO EQU 32 32 BUFFERS MAXIMUM FOR DASO 
TPMXBNO EQU 32 32 BUFFERS MAXIMUM FOR TAPE 
INOUTBNO EQU 1 DCBBUFNO DEFAULT FOR SYSIN, SYSOUT, 

AND DD DUMMY 
ONEK EQU 10 SHIFT ARGUMENT TO MULTIPLY BY 1024 

B AFTRID2 
DC CL8'BUFNO' BUFNO ROUTINE ID 

AFTRID2 BCR O,RET NOP RETURN 
L RDCB,OIEXPDCB PROTECTED COPY OF DCB 
USING DCBD,RDCB 

******************************************~**************************** 
* 
* 

DO NOT PROCESS EXCP, BSAM, DSORG NOT PS OR PO, 
DCBBUFNO SPECIFIED 

*********************************************************************** 
TM DCBMACFl,DCBMRECP EXCP DCB? 
BO RETBUFNO RETURN IF EXCP 
TM DCBMACFl,DCBMRRD READ MACRO 
BO RETBUFNO RETURN IF READ-NOT QSAM 
TM DCBMACF2,DCBMRWRT WRITE MACRO 
BO RETBUFNO RETURN IF WRITE-NOT QSAM 
TM DCBDSRGl,DCBDSGPS+DCBOSGPO PS OR PO 
Bl RETBUFNO EXIT IF NOT PS OR PO 
CLI DCBBUFN0,0 IS DCBBUFNO SPECIFIED 
BNE RETBUFNO RETURN IF DCBBUFNO SPECIFIED 

*********************************************************************** 
* DEFAULT DCBBUFNO TO 1 FOR SYSIN, SYSOUT, TERMINAL, DUMMY 
*********************************************************************** 

L RTIOT,OIEXTIOT 
USING TIOENTRY,RTIOT 
L RODD,INOUTBN 

TIOT ENTRY ADDRESS 

BUFNO DEFAULT FOR SYSIN/SYSOUT/ 
DD DUMMY 

TM TIOELINK,TIOESSDS+TIOTTERM SYSIN/SYSOUT OR TERMINAL 
BNZ STORE BRANCH IF SYSIN OR SYSOUT OR TERMINAL 
L RJFCB,OIEXJFCB JFCB ADDRESS 
USING INFMJFCB,RJFCB 
CLC JFCBDSNM(L'NULLFILE),NULLFILE DUMMY DATA SET 
BE STORE BRANCH IF DUMMY 

*********************************************************************** * EXIT IF NO UCB ADDRESS OR BLOCK SIZE NOT POSITIVE 
*********************************************************************** 

L RUCB,OIEXUCB 
LTR RUCB,RUCB 
BZ RETBUFNO 
LH RBKSIZ,DCBBLKSI 
LTR RBKSIZ,RBKSIZ 
BNP RETBUFNO 

UCB ADDRESS 
ANY UCB? 
EXIT IF NO UCB 
DCB BLOCK SIZE 
ANY BLOCK SIZE? 
RETURN IF NO BLOCK SIZE 

234 MVS/ESA Data Facility Product Version 3: Customization 

* 

* 



\._ •. .J 

~) 

\_/ 

*********************************************************************** 
* GET TAPE OR DASO MAX TABLE 
*********************************************************************** 

USING UCBOB,RUCB 
TM UCBTBYT3,UCB30ACC 
LA RMAX,DAMAX 
BO CALC 
TM UCBTBYT3,UCB3TAPE 
LA RMAX,TPMAX 
BZ RETBUFNO 

GALC EQU * 

DASO UCB? 
MAX TABLE FOR DASO 
BRANCH IF DASO 
TAPE UCB? 
MAX TABLE FOR TAPE 
RETURN IF NOT DASO OR TAPE 
DEFAULT DCBBUFNO 

*********************************************************************** 
* CALCULATE DEFAULT BUFFER NUMBER 
*********************************************************************** 

USING MAX,RMAX 
XR REVEN,REVEN ZERO EVEN REG 
L RODD,MAXBUF MAXIMUM STORAGE FOR BUFFERS 
SLL RODD,ONEK SHIFT TO MULTIPLY BY 1024 
DR REVEN,RBKSIZ DIVIDE MAS BUFFER SPACE BY BKSI 
C RODD,MAXBNO ARE THERE TOO MANY BUFFERS? 
BNH STORE USE CALCULATION IF NOT TOO LARGE 
L RODD,MAXBNO USE MAXIMUM NUMBER OF BUFFERS 

STORE EQU * DEFAULT DCBBUFNO FOR USER/COPY DCB 
STC RODD,DCBBUFNO PUT IN PROTECTED COPY OF DCB 
L RDCB,OIEXUDCB USER DCB 
XR REVEN,REVEN MODESET USES REG 6 = REVEN 
MODESET KEYADDR=OIEXUKEY,WORKREG=6 GET IN USER KEY 

+* /* MACDATE Y-3 77277 @ZA26071*/ 
+* 
+ 
+ 

+* 
+* 

/* 
IC 6,0IEXUKEY 
SPKA 0(6) 
STC RODD,DCBBUFNO 
MODESET EXTKEY=ZERO 

/* MACDATE Y-3 77277 
/* 

+ SPKA 8(8) 
RETBUFNO EQU * 

BR RET 
INOUTBN DC A(INOUTBNO) 

GET KEY FROM SAVE LOCATION 
SET PSW KEY 

PUT IN USER DCB 
BACK TO KEY ZERO 

SET PSW KEY 
RETURN FROM BUFNO 
RETURN 

@ZA26871*/ 

SYSIN/SYSOUT/DUMMY BUFNO DEFAULT 
*********************************************************************** 

* 
* MAX TABLE FOR TAPE 
* 
*********************************************************************** 

OS 8F 
DC CLB'TPMAX' TPMAX ID 

TPMAX OS 0F 
TPMAXK DC A(TPMXK) MAXIMUM SIZE FOR BUFFERS IN UNITS 

OF 1024 
TPMAXBNO DC A(TPMXBNO) MAXIMUM NUMBER OF BUFFERS 

* 

Appendix A. Example of an OPEN Installation Exit Module 235 



*********************************************************************** 
* 
* MAX TABLE FOR DASO 
* 
*****************~***************************************************** 

OS GF 
DC CL8 1 DAMAX 1 DAMAX ID 

DAMAX OS GF 
DAMAXK DC A(DAMXK) MAXIMUM SIZE FOR BUFFERS IN UNITS 

OF 1824 
DAMAXBNO DC A(DAMXBNO) MAXIMUM NUMBER OF BUFFERS 
SCREEN EQU * SCREEN OUT CASES WHERE RLSE, 

AND SQTY SHOULD NOT EXECUTE 
*********************************************************************** 
* DO NOT PROCESS IF 
* SYSIN/SYSOUT/TERMINAL 
* DD DUMMY 
* USER ASKS JFCB NOT BE RE~WRITTEN 
* SYSTEM DATA SET ( 1 SYSl.XXX 1

) 

* NON-DASO UCB 
* NOT A FORMAT 1 DSCB 
* EXCP DCB 
* DSORG IN DCB IS NEITHER PS NOR PO 
* OSORG IN DSCB IS NEITHER PS NOR PO 
* NEITHER PUT NOR WRITE MACRO CODED IN DCB 
* OPEN FOR OTHER THAN OUTPUT OR OUTIN 
*********************************************************************** 

B AFTRID3 
DC CL8 1 SCREEN 1 SCREEN ROUTINE ID 

AFTRID3 L RTIOT,OIEXTIOT TIOT ENTRY ADDRESS 
TM TIOELINK,TIOESSDS+TIOTTERM SYSIN/SYSOUT OR TERMINAL 
BNZ EXIT EXIT IF SYSIN OR SYSOUT OR TERMINAL 
L RJFCB,OIEXJFCB JFCB ADDRESS 
CLC JFCBDSNM(L 1 NULLFILE),NULLFILE DUMMY DATA SET 
BE EXIT EXIT IF DUMMY 
CLC SYSl,JFCBDSNM SYSl.XXX DATA SET 
BE EXIT EXIT IF SYSTEM DATA SET 
TM JFCBTSDM,JFCNWRIT DON 1T MODIFY JFCB 
BO EXIT EXIT IF YES 
L RUCB,OIEXUCB UCB ADDRESS 
LTR RUCB,RUCB ANY UCB? 
BZ EXIT EXIT IF NO UCB 
TM UCBTBYT3,UCB3DACC DASO UCB? 
BNO EXIT EXIT IF NOT DASO 
L RDSCB,OIEXDSCB FORMAT 1 DSCB ADDRESS 
USING DSlFMTID,RDSCB 
CLI DSlFMTID,C 1 l 1 IS THIS A FORMAT 1 OSCB 
BNE EXIT EXIT IF NOT 
L RDCB,OIEXPDCB PROTECTED DCB ADDRESS 
TM DCBMACFl,DCBMRECP EXCP DCB? 
BO EXIT EXIT IF EXCP 
TM DCBDSRGl,DCBDSGPS+DCBDSGPO PS OR PO DCB 
BZ EXIT EXIT IF NOT PS OR PO 
NC DSlOSORG,OSlDSORG IS DSORG SPECIFIED 
BZ TSTMACRF TRUST DCB IF NOT SPECIFIED 
TM DSlDSORG,OSlOSGPS+DSlDSGPO IS DATA SET PS OR PO 
BZ EXIT EXIT IF NOT PS OR PO 

236 MVS/ESA Data Facility Product Version 3: Customization 

* 

* 

"-" 

I 

'~ 



TSTMACRF EQU * TEST MACRF IN DCB 
TM DCBMACF2,DCBMRPUT PUT MACRO 

( BO TSTOOPT TEST OPEN OPTION 
~ TM DCBMACF2,DCBMRWRT WRITE MACRO 

BZ EXIT EXIT IF NOT WRITE 
TS TO OPT EQU * TEST OPEN OPTION 

TM OIEXOOPT,OIEXOOUT OPEN FOR OUTPUT 
BO SCREENOK BRANCH IF YES 
TM OIEXOOPT,OIEXOOIN OPEN FOR OUTI N 
BNO EXIT EXIT IF NO 

SCREENOK EQU * 
BR RET RETURN TO CALL RLSE, SQTY 

RLSE EQU * SET PARTIAL RELEASE 
*********************************************************************** 
* 
* DEFINE DEFAULT VALUES 
* RLSEe = NUMBER OF EXTENTS. IF THE DATA SET HAS THIS 
* NUMBER OF EXTENTS OR MORE, THEN PARTIAL RELEASE 
* WILL NOT BE ALLOWED. 
* RLSEl = NUMBER OF EXTENTS. IF THE DATA SET HAS LESS THAN 
* THIS NUMBER OF EXTENTS, PARTIAL RELEASE IS 

I 

\.__/ * REQUIRED. 
* 
* NOTE THAT RLSEe ~UST NOT BE GREATER THAN RLSEl 
* 
* SETTING RLSEe TO 17 OR GREATER WILL CAUSE THIS ROUTINE TO 
* NEVER PREVENT A REQUEST FOR PARTIAL RELEASE 
* 
* SETTING RLSEl TO e WILL CAUSE THIS ROUTINE TO 
* NEVER FORCE A REQUEST FOR PARTIAL RELEASE 
* 
*********************************************************************** 

\'-",; 
RLSEe EQU 8 SET RELEASE BIT TO ZERO IF NUMBER OF * 

EXTENTS EQUAL OR GREATER THAN THIS 
RLSEl EQU 8 SET RELEASE BIT TO ONE IF NUMBER OF * 

EXTENTS LESS THAN THIS 
B AFTRID4 
DC CL8'RLSE' RLSE ROUTINE ID 

AFTRID4 BCR e,RET NOP RETURN 
L RDSCB,OIEXDSCB FORMAT 1 DSCB ADDRESS 
TM DSlDSORG,DSlDSGPO IS DATA SET PARTITIONED 
BO TSTRLSE DO NOT SET RELEASE FOR PARTITIONED 
CLC DSlNOEPV,EXTRLSEl FEW ENOUGH TO SET RELEASE 
BNL TSTRLSE BRANCH IF NOT 

('-/ L RJFCB,OIEXJFCB 
OI JFCBINDl,JFCRLSE SET RELEASE 
LA RINCODE,MODJFCB JFCB MODIFIED 
B RETRLSE RETURN 

TSTRLSE CLC DSlNOEPV,EXTRLSEe ENOUGH TO ZERO RELEASE 
BL RETRLSE BRANCH IF NO 
NI JFCBINDl,255-JFCRLSE ZERO RELEASE 
LA RINCODE,MODJFCB JFCB MODIFIED 

RETRLSE EQU * RETURN FROM RLSE 
BR RET RETURN 
DC CL8'RLSECONS' RLSE CONSTANTS ID 
OS BH 

Appendix A. Example of an OPEN Installation Exit Module 237 



EXTRLSEl DC 

EXTRLSE8 DC 

SQTY EQU 

ALl(RLSEl) 

All (RLSEEl) 

* 

IF FEWER THAN THIS NUMBER OF EXTENTS,* 
PARTIAL RELEASE WILL BE SET 
IF THIS NUMBER OR MORE EXTENTS, * 
PARTIAL RELEASE WILL BE ZEROED 
SET SECONDARY QUANTITY 

*********************************************************************** 

DEFINE DEFAULT VALUES 
* 
* 
* 
* 
* 
* 
* 

SQTYDFL = DEFAULT SECONDARY QUANTITY. THIS QUANTITY IS 
SET IF THE SECONDARY QUANTITY IS ZERO AND THE 
PRIMARY QUANTITY IS ZERO OR ONE. IT IS USED 
IF SECONDARY QUANTITY IS ONE, AND THE NUMBER OF 
EXTENTS IS EQUAL OR GREATER TO EXTSQT. 

* 
* 
* 

EXTSQT = NUMBER OF EXTENTS. IF THE DATA SET HAS THIS MANY 
EXTENTS OR MORE, THEN INCREASE SECONDARY QUANTITY. 

*********************************************************************** SQTYDFL EQU 5 
EXTSQT EQU 18 

B 
DC 

AFTRID6 BCR 
L 
NC 
BZ 
L 
CLC 
BL 
XR 
ICM 
LR 
SRL 
LTR 
BZ 
AR 
B 

TSTPRIM EQU 
NC 
BZ 
XR 
ICM 
SRL 
LTR 
BNZ 

SETDFLT EQU 
L 
B 

AFTRID6 
CL8 1 SQTY 1 

8,RET 
RJFCB, OIEXJFCB 
JFCBSQTY,JFCBSQTY 
TSTPRIM 
RDSCB,OIEXDSCB 
DSlNOEPV,EXTSQTY 
RETSQTY 
RODD,RODD 
RODD,7,JFCBSQTY 
REVEN,RODD 
REVEN,l 
REVEN,REVEN 
SETO FLT 
RODD,REVEN 
STSQTY 
* 
JFCBPQTY,JFCBPQTY 
DFLTSQTY 
RODD,RODD 
RODD,7,JFCBPQTY 
RODD,l 
RODD,RODD 
STSQTY 
* 
RODD,SQTYDFLT 
STSQTY 

DEFAULT SECONDARY QUANTITY 
IF DATA SET HAS THIS MANY EXTENTS, * 
THEN INCREASE SECONDARY QUANTITY 

SQTY ROUT! NE ID 
NOP RETURN 
JFCB ADDRESS 
ANY SECONDARY QUANTITY 
TEST PRIMARY IF NOT 
FORMAT 1 DSCB ADDRESS 
ENOUGH TO ADD TO SECONDARY QTY 
BRANCH IF NOT 

GET SECONDARY QUANTITY 
SAVE IN REVEN 
HALVE SECONDARY QUANTITY 
IS SECONDARY ONE 
DEFAULT SECONDARY IF ONE 
158% OF SECONDARY 

SECONDARY QUANTITY IS ZERO 
IS PRIMARY QUANTITY ZERO 
DEFAULT SECONDARY 

HALVE PRIMARY 
IS PRIMARY ONE 
BRANCH IF NOT 
USE QUANTITY IN SQTYDFLT 
DEFAULT SECONDARY 
STORE SECONDARY 

238 MVS/ESA Data Facility Product Version 3: Customization 



DFLTSQTY EQU * PRIMARY AND SECONDARY ZERO 
L RODD,SQTYDFLT GET DEFAULT SECONDARY 

I TM JFCBCTRI,JFCBSPAC \._,i 
BNZ STSQTY 
CLI DSlEXTl,X'Ell' TRACK EXTENT 
BE DFLTTRK YES -- SET TRACKS 
CLI DSlEXT1,X 1 8l 1 CYL EXTENT 
BNE RETSQTY NO -- RETURN 
or JFCBCTRI ,JFCBCYL SET CYLINDER UNITS 
B STSQTY 

DFLTTRK EQU * SET TRACK UNITS 
or JFCBCTRI ,JFCBTRK MAKE TRACK REQUEST 

STSQTY EQU * STORE SECONDARY QTY 
STCM RODD,7,JFCBSQTY 
LA RINCODE,MODJFCB JFCB MODIFIED 

RETSQTY EQU * RETURN FROM SQTY 
BR RET RETURN 
DS ElF 
DC CL8 1 SQTYCONS 1 SQTY ROUTINE CONSTANTS ID 

SQTYDFLT DC A(SQTYDFL) DEFAULT SECONDARY QUANTITY 

~i 
DC All (El) NOTE ONE BYTE OF ZERO BEFORE EXTSQTY 

EXTSQTY DC All (EXTSQT) IF DATA SET HAS THIS MANY EXTENTS, * 
THEN ADD TO SECONDARY QUANTITY 

*********************************************************************** 
* 
* CONSTANTS / PATCH AREA 
* 
*********************************************************************** 
NULLFILE DC C'NULLFILE I DD DUMMY DATA SET NAME 
SYSl DC C'SYSl.' START OF SYSTEM DATA SET NAMES 

DS ElF 
PATCH DC C'IFGGEXElB PATCH AREA I 

\,._,,; DC XL58'00' 
*********************************************************************** 
* 
* MAX TABLE MAPPING DSECT (MAPS TPMAX QR DAMAX) 
* 
*********************************************************************** 
MAX DSECT 
MAXBUF DS A MAXIMUM SIZE FOR BUFFERS 
MAXBNO DS A MAXIMUM NUMBER OF BUFFERS 
*********************************************************************** 
* 
* DCB OPEN INSTALLATION EXIT PARAMETER LIST 

I~ * --THE IECOIEXL MACRO 
* 
*********************************************************************** 

IECOIEXL 
******** THE MACRO EXPANSION IS NOT SHOWN 

I , 

\,...__,,/ 

Appendix A. Example of an OPEN Installation Exit Module 239 



240 

*********************************************************************** 
* 
* DCB - THE DCBD MACRO 
* 
*********************************************************************** 

DCBD DSORG=PS,DEVD=DA 
******** THE MACRO EXPANSION IS NOT SHOWN 
*********************************************************************** 
* 
* UCB - THE IEFUCBOB MACRO 
* 
*********************************************************************** 
UCB DSECT 

IEFUCBOB LIST=YES 
******** THE MACRO EXPANSION IS NOT SHOWN 
*********************************************************************** 
* 
* TIOT - THE IEFTIOTI MACRO 
* 
*********************************************************************** 
TIOT DSECT 

IEFTIOTI 
******** THE MACRO EXPANSION IS NOT SHOWN 
*********************************************************************** 
* 
* JFCB - THE IEFJFCBN MACRO 
* 
*********************************************************************** 
JFCB DSECT 

IEFJFCBN LIST=YES 
******** THE MACRO EXPANSION IS NOT SHOWN 
*********************************************************************** 
* 
* FORMAT 1 DSCB - THE IECSDSLl MACRO 
* 
*********************************************************************** 
FlDSCB DSECT 

IECSDSLl (1) 
******** THE MACRO EXPANSION IS NOT SHOWN 

END 

MVS/ESA Data Facility Product Version 3: Customization 

\ I 

~I 



Appendix B. SMS Indicators for DADSM Installation Exits 

The format-1 and format-4 DSCBs have indicators that show the status of 
SMS-managed data sets. 

In the format-1 DSCB, a 3-bit pattern at offset X '4E 1 from the beginning of the 
DSCB is used to show data set status: 

Code Bit 
1 ...... . 

.1 ..... . 

.. 1 ..... 

Meaning 
SMS-managed data set 

Uncataloged SMS-managed data set (The VTOC index is 
an uncataloged SMS-managed data set, as are all 
temporary data sets on SMS-managed volumes.) 

Data set might be reblocked (That means the data set 
might be reblocked to a system-determined block size.) 

A 3-byte field (secondary space extension) has been added at offset X '4F 1 from 
the beginning of the format-1 DSCB to reflect the AVGREC specification on the 
original allocation. The existence of this field is indicated by a flag at offset 
X 1 SE 1 from the beginning of the DSCB. 

In the format-4 DSCB, a 2-bit pattern at offset X 13C 1 from the beginning of the 
format-4 DSCB is used to show the SMS-managed volume state: 

Code Bit 
00 ..... . 

01 ..... . 

11 ..... . 

Meaning 
Non-SMS-managed volume 

Initial SMS-managed volume 

Converted SMS-managed volume 

This field was previously the last byte, unused, of a 5-byte pointer to a format-6 
DSCB. 

Appendix B. SMS Indicators for DADSM Installation Exits 241 



\ I 

,_ 



\-_./ 

\_/ 

\~ 

i 

\'--", 

Appendix C. Read-Only Variables Referenced by ACS 
Installation Exits 

IGDACERO 

+--------------------------------------------------------------------+ 
OFFSETS TYPE LENGTH NAME DESCRIPTION 

+--------------------------------------------------------------------+ 
0 (O) STRUCTURE 1472 ACERO 

+--------------------------------------------------------------------+ 
READ/ONLY VARIABLES PARAMETER LIST. 
CALLER SUPPLIES THESE VALUES. 
NOTE!!!!!!!! 

FIELDS NOT USED SHOULD BE SET TO BINARY ZEROES (X'OO) 

+--------------------------------------------------------------------+ 
+--------------------------------------------·----------------------~-+ 

CONTROL BLOCK HEADER 

+--------~-----------------------------------------------------------+ 
0 (0) CHARACTER 8 ACERO ID CONTROL BLOCK 

ID= ACERO 
8 (8) SIGNED 2 ACERO LEN LENGTH OF CONTROL 

BLOCK 
HJ (A) SIGNED 2 ACEROVER CONTROL BLOCK 

VERSION 
+--------------------------------------------------------------------+ 

READ/ONLY VARIABLES FOLLOW 

+--------------------------------------------------------------------+ 
12 (C) SIGNED 4 ACEROSIZ PRIMARY/ACTUAL SIZE 

OF DATA SET IN KB 
16 (10) SIGNED 4 ACEROMSZ MAXIMUM SIZE OF DATA 

SET IN KB 
20 (14) CHARACTER 8 ACEROUNT UNIT NAME 
28 (lC) CHARACTER 8 ACEROMVG MSS VOLUME GROUP 

NAME 
36 (24) CHARACTER 8 ACEROAPP APPLICATION ID 

(RACF) 
44 (2C) CHARACTER 8 ACERODSO DATA SET OWNER 

(RACF) 
52 (34) CHARACTER 8 ACEROUSR USER ID 
60 (3C) CHARACTER 8 ACEROGRP GROUP ID 
68 (44) SIGNED 4 ACERODSG DATA SET 

ORGANIZATION (MAY 
BE ACEROPS, 
ACEROPO, ACEROVS, 
ACERODA, ACERONUL) 

72 (48) SIGNED 4 ACERORCG DATA SET RECORD 
ORGANIZATION (MAY 
BE ACEROKS, 
ACEROES, ACERORR, 
ACEROLS, ACERONUL) 

76 (4C) SIGNED 4 ACERODST DATA SET TYPE (MAY 
BE ACEROGDS, 
ACEROPRM, 
ACEROTMP, 
ACERONUL) 

Appendix C. Read-Only Variables Referenced by ACS Installation Exits 243 



80 

84 
92 
HlO 

(50) 

(54) 
(5C) 
(64) 

SIGNED 4 

CHARACTER 8 
CHARACTER 8 
CHARACTER 8 

ACEROXMD 

ACEROJOB 
ACERODD 
ACEROPGM 

EXECUTION MODE (MAY 
BE ACEROBCH, 
ACEROTSO, 
ACEROTSK, 
ACERONUL) 

JOB NAME 
DD NAME 
PROGRAM NAME 

+----------------·---------------------------------------------------+ 
I 

THE ACEROEXP AND ACERORTP FIELDS MAY BE SET IN THE FOLLOWING! 
WAYS: 1) THE ACEROEXP AND ACERORTP FIELDS MAY BOTH BE NULL, I 
2) EITHER THE ACEROEXP OR ACERORTP FIELD MAY BE FILLED IN I 
THE EXECUTOR WILL CALCULATE THE VALUE OF THE FIELD THAT WAS I 
NOT PROVIDED, 3) THE ACEROEXP AND ACERORTP FIELDS MAY BOTH I 
BE FILLED IN THE EXECUTOR WILL NOT CHECK THAT THE VALUES I 
EXPIRATION DATE AND RETENTION PERIOD ARE CORRECTLY I 
CALCULATED. I 

I +--------------------------------------------------------------------+ 108 

112 

116 

(6C) 

(70) 

(74) 

CHARACTER 4 

SIGNED 4 

CHARACTER 128 

ACEROEXP EXPIRATION DATE 
(YYYYDDD) IN 
PACKED DECIMAL 

ACERORTP RETENTION PERIOD 
DAYS 

* RESERVED 
+--------------------------------------------------------------------+ 

I 
ENVIRONMENT WHERE INVOKED - MUST BE ACERORCL FOR RECALL, I 
ACERORCV FOR RECOVER, ACEROCNV FOR CONVERT, ACEROALC FOR NEWI 
ALLOCATIONS OR INSTALLATION EXIT MAY SET OWN VALUE. I 

I +--------------------------------------------------------------------+ 
244 (F4) CHARACTER 8 ACEROENV 

+--------------------------------------------------------------------+ 
DEFAULT VALUES OF READ/WRITE VARIABLES 

+--------------------------------------------------------------------+ 
252 

252 

254 

284 

284 

286 

316 

316 

318 

348 

(FC) CHARACTER 32 

(FC) SIGNED 2 

(FE) CHARACTER 30 

(llC) CHARACTER 32 

(llC) SIGNED 2 

(llE) CHARACTER 30 

(13C) CHARACTER 32 

(13C) SIGNED 2 

(13E) CHARACTER 30 

(15C) CHARACTER 80 

ACERODDC DEFAULT DATA CLASS 
(FROM RACF) 

ACERODDL LENGTH OF DEFAULT 
DAT AC LAS 

ACERODDV VALUE OF DEFAULT 
DAT AC LAS 

ACERODSC DEFAULT STORAGE 
CLASS (FROM RACF) 

ACERODSL LENGTH OF DEFAULT 
STORCLAS 

ACERODSV VALUE OF DEFAULT 
STORCLAS 

ACERODMC DEFAULT MANAGEMENT 
CLASS (FROM RACF) 

ACERODML LENGTH OF DEFAULT 
MGMT CLAS 

ACERODMV VALUE OF DEFAULT 
MGMT CLAS 

* RESERVED 

244 MVS/ESA Data Facility Product Version 3: Customization 



\.._./' 

r , 

\_..,;' 

+--------------------------------------------------------------------+ 
I I 
I IMPUT VALUES OF READ/WRITE VARIABLES I 
I I 
+--------------------------------------------------------------------+ 
428 (lAC) CHARACTER 32 ACERODC DATA CLASS INPUT 

ONLY. OUTPUT 
RETURMED IN 
IGDACERW 

428 (lAC) SIGNED 2 ACERODCL LENGTH OF DATACLAS 
430 (lAE) CHARACTER 30 ACERODCV VALUE OF DATACLAS 
460 (lCC) CHARACTER 32 ACERO SC STORAGE CLASS INPUT 

ONLY. OUTPUT 
RETURMED IN 
IGDACERW 

460 (lCC) SIGNED 2 AC EROS CL LENGTH OF STORCLAS 
462 (lCE) CHARACTER 30 AC EROS CV VALUE OF STORCLAS 
492 (lEC) CHARACTER 32 ACEROMC MANAGMENT CLASS 

INPUT ONLY. OUTPUT 
RETURNED IN 
IGDACERW 

492 (lEC) SIGNED 2 ACEROMCL LENGTH OF MGMTCLAS 
494 (lEE) CHARACTER 30 ACEROMCV VALUE OF MGMTCLAS 

+--------------------------------------------------------------------+ 
DATA SET NAME 

I 
.1 
I 

+--------------------------------------------------------------------+ 
524 
568 
576 

(20C) CHARACTER 44 
(238) CHARACTER 8 
(240) CHARACTER 4 

ACERODSN DATA SET NAME 
* RESERVED 
* RESERVED 

+--------------------------------------------------------------------+ 
I 

ACCT JOB FIELD - JOB ACCOUNT INFORMATION IS IN THE FOLLOWIMGI 
FORM~T: FIRST BYTE CONTAINS THE NUMBER OF FIELDS. ALL I 
SUBSEQUENT ENTRIES CONTAIN THE LENGTH OF THE FIELD FOLLOWED I 
BY FIELD, ETC. I 

I 
+--------------------------------------------------------------------+ 
580 
580 
581 
837 

(244) CHARACTER 257 
(244) UNSIGNED 1 
(245) CHARACTER 256 
(345) CHARACTER 7 

ACEROJAC 
ACEROJNM 
ACEROJFL 

* RESERVED 
+--------------------------------------------------------------------+ 

ACCT STEP FIELD - STEP ACCOUNT INFORMATION IS IN THE 
FOLLOWING FORMAT: FIRST BYTE CONTAINS THE NUMBER OF FIELDS~ 
ALL SUBSEQUENT ENTRIES CONTAIN THE LENGTH OF THE FIELD 
FOLLOWED BY FIELD, ETC. 

+--------------------------------------------------------------------+ 
844 (34C) 
844 (34C) 
845 (34D) 
1101 (44D) 

CHARACTER 257 
UNSIGNED 1 
CHARACTER 256 
CHARACTER 7 

ACEROSAC 
AC EROS NM 
AC EROS FL 

* RESERVED 
+--------------------------------------------------------------------+ 

VOLSER INFORMATION 

+----------------------------------------~------~--------------------+ 
1108 (454) SIGNED 2 ACERONVL NUMBER OF VOLSERS 
1110 (456) CHARACTER 6 ACEROVOL (59) ARRAY OF 6 BYTE 

1464 (5B8) CHARACTER 8 * 
VOLSERS 

RESERVED FOR FUTURE 
EXTENSIONS 

Appendix C. Read-Only Variables Referenced by ACS Installation Exits 245 



+--------------------------------------------------------------------+ 
I CONSTANTS I 
I LENGTH TYPE VALUE NAME DESCRIPTION I 
+--------------------------------------------------------------------+ 
8 
2 

CHARACTER 'ACERO' 
DECIMAL 0 

ACERO I 
ACEROV 

CONTROL BLOCK ID 
VERSION NUMB ER 

+--------------------------------------------------------------------+ 
CONSTANTS FOR THE FOLLOWING FIELDS IN ACERO: 
ACERODSG, ACERORCG, ACERODST, ACEROXMD, AND 
ACEROENV. 
NULL 

+--------------------------------------------------------------------+ 
HEX 00 ACERONUL NULL 

+--------------------------------------------------------------------+ 
ACERODSG - DATA SET ORGANIZATION 

+--------------------------------------------------------------------+ 
4 

4 
4 

DECIMAL 

DECIMAL 
DECIMAL 

2 
3 

ACERO PS 

ACERO PO 
ACEROVS 

PS PHYSICAL 
SEQUENTIAL 
PO PARTITION ED 
VS VSAM 
ORGAMIZATION 

+--------------------------------------------------------------------+ 
I C 0 N S T A N T S 
I LENGTH TYPE VALUE NAME DESCRIPTION 
+--------------------------------------------------------------------+ 
4 DECIMAL 4 ACERODA DA BDAM 

ORGANIZATION 
+--------------------------------------------------------------------+ 

ACERORCG - DATA SET RECORD ORGANIZATION 

+--------------------------------------------------------------------+ 
4 DECIMAL 1 ACEROKS KSDS VSAM CLUSTER 
4 DECIMAL 2 ACERO ES ESDS VSAl·1 ENTRY 

SEQUENCED 
4 DECIMAL 3 ACERORR RRDS VSAM RELATIVE 

RECORD 
4 DECIMAL 4 ACERO LS LINEAR SPACE 

+--------------------------------------------------------------------+ 
ACERODST - DATA SET TYPE 

+--------------------------------------------------------------------+ 
4 DECIMAL ACEROGDS ONE GENERATION 

DATA SET OF A 
GENERATION DATA 
GROUP 

4 DECIMAL 2 ACEROPRM STANDARD PERMANENT 
DATA SETS 

4 DECIMAL 3 ACEROTMP TEMPORARY DATA 
SETS 

+--------------------------------------------------------------------+ 
ACEROXMD - EXECUTION MODE 

+--------------------------------------------------------------------+ 
4 

4 
4 

DECIMAL 

DECIMAL 
DECIMAL 

2 
3 

ACEROBCH 

ACEROTSO 
ACEROTSK 

246 MVS/ESA Data Facility Product Version 3: Customization 

BATCH EXECUTION 
NODE 
TSO EXECUTION MODE 
STARTED TASK 

\ . ._.; 



\ I 
~./ 

\\,,..._/ 

+--------------------------------------------------------------------+ I I I ACEROENV - ENVIRONMENT WHERE INVOKED I 
I I 
+--------------------------------------------------------------------+ 8 CHARACTER 'RECALL' ACERORCL DATA SET RECALL 

OPERATIONS 
8 CHARACTER 'RECOVER' ACERORCV DATA SET RECOVER 

OPERATIONS 
8 CHARACTER 'CONVERT' ACEROCNV DATA SET CONVERT 

IN PLACE 
OPERATIONS 

8 CHARACTER 'ALLOC' ACEROALC NEW DATA SET 
ALLOCATIONS 
(DEFAULT) 

Appendix C. Read-Only Variables Referenced by ACS Installation Exits 247 





\_., 

\_,,; 

\-../ 

Appendix D. Read-Write Variables Set by ACS Installation 
Exits 

IGDACERW 

+--------------------------------------------------------------------+ 
OFFSETS TYPE LENGTH NAME DESCRIPTION 

+--------------------------------------------------------------------+ 
0 (O) STRUCTURE 1172 ACERW 

+--------------------------------------------------------------------+ 
HEADER 

+--------------------------------------------------------------------+ 
0 (0) CHARACTER 8 ACERWID CONTROL BLOCK 

ID=ACERW 
8 (8) SIGNED 2 ACER\1LEN LENGTH OF CONTROL 

BLOCK 
10 (A) SIGNED 2 ACERWVER CONTROL BLOCK 

VERSION 
+--------------------------------------------------------------------+ 

EXECUTOR FILLS IN THE FOLLOWING FIELDS 

+--------------------------------------------------------------------+ 
+--------------------------------------------------------------------+ 

RETURN READ/WRITE VARIABLE (S) 

+--------------------------------------------------------------------+ 
12 (C) SIGNED 4 ACERWNCS NUMBER OF CLASS 

SELECTION RETURN 
VARIABLES 

16 (10) CHARACTER 32 ACERWCSV (15) CLASS SELECTION 
VARIABLE RETURNED 

16 (10) SIGNED 2 ACERWVLN LENGTH OF VALUE 
18 (12) CHARACTER 30 ACERWVAL VALUE RETURN 

VARIABLES 
496 (lFO) CHARACTER 2 * RESERVED 

+--------------------------------------------------------------------+ 
MESSAGE AREA 

+--------------------------------------------------------------------+ 
498 (1F2) SIGNED 2 ACERWNMG NUMBER OF MESSAGES 
500 (1F4) CHARACTER 110 ACER\1MSG (6) MESSAGES GENERATED 

BY EXECUTION OF 
ACS ROUTINE WRITE 
STATEMENTS 

500 (1F4) CHARACTER 110 ACERWTXT TEXT OF MESSAGES 
1160 (488) CHARACTER 12 * RESERVED 

+--------------------------------------------------------------------+ 
I C 0 N S T A N T S 
I 
I LENGTH TYPE VALUE NAME DES CR I PTI ON 
+--------------------------------------------------------------------+ 
8 
2 

CHARACTER 'ACERW' 
DECIMAL 0 

ACERWI 
ACERWV 

CONTROL BLOCK ID 
VERSION NUMBER 

Appendix D. Read-Write Variables Set by ACS Installation Exits 249 



','--' 

250 MVS/ESA Data Facility Product Version 3: Customization 



;\..._../ 
Appendix E. Parameter List for ACS Installation Exits 

IGDACSPM 

+--------------------------------------------------------------------+ 
OFFSETS TYPE LENGTH NAME DESCRIPTION 

+--------------------------------------------------------------------+ 
0 (O) STRUCTURE 52 ACS PM ACSPB IS THE BASING 

EXPR 
0 (0) CHARACTER 8 ACSPID CONTROL BLOCK 

ID= I IGDACSPM' 
8 (8) S IGMED 2 ACSPLEM ACSP CONTROL BLOCK 

LENGTH 
10 (A) SIGNED 2 ACSPVER CONTROL BLOCK 

VERSION 
12 (C) CHARACTER 8 * RESERVED 

I 20 (14) ADDRESS 4 ACSPWORK POINTER TO A WORK \_/ AREA FOR THE EXIT 
24 (18) SIGNED 4 ACSPWLEN LENGTH OF WORK AREA 
28 (lC) ADDRESS 4 ACS PERO POINTER TO READ ONLY 

VARIABLES MAPPED 
BY IGDACERO 

32 (20) ADDRESS 4 ACSPERW POINTER TO 
READ/WRITE 
VARIABLES MAPPED 
BY IGDACERW 

36 (24) ADDRESS 4 ACSPACS POINTER TO INTERFACE 
ROUTINE FOR 
INVOKING THE ACS 

I ROUTINES LINKAGE ~,' 
IS VIA STANDARD 
MVS LINKAGE 
CONVENTIONS IF 
THIS FIELD IS 
ZERO, THEN NO ACS 
ROUTINE EXISTS FOR 
THE CURRENT 
CONSTRUCT. 

40 (28) CHARACTER 12 ACSPACSP PARAMETERS FOR ACS 
ROUTINES 

40 (28) ADDRESS 4 ACSPAERO POINTER TO READ ONLY 
VARIABLES 

u INITIALLY SET TO 
ACS PERO. 

44 (2C) ADDRESS 4 ACSPAERW POINTER TO 
READ/WRITE VARS, 
INITIALLY SET TO 
ACSPERW. 

48 (30) CHARACTER 4 ACS PA TOK TOKEN FOR USE BY ACS 
INTERFACE ROUTINE 
(DO NOT MODIFY) 

Appendix E. Parameter List for ACS Installation Exits 251 



+--------------------------------------------------------------------+ 
I CONSTANTS I 
I I I LENGTH TYPE VALUE NAME DES CR I PT ION I 
+--------------------------------------------------------------------+ 
2 
8 

DECIMAL 0 
CHARACTER 'IGDACSPM' 

ACS VER 
ACS ID 

VERSION NUMBER 
CONTROL BLOCK ID 

+--------------------------------------------------------------------+ 
RETURN CODES FROM SMS INSTALLATION EXIT 

+--------------------------------------------------------------------+ 
4 DECIMAL 0 ACSPCOMP EXIT COMPLETED 

SUCCESSFULLY 
4 DECIMAL 4 ACSJERR ERROR, FAIL THE 

JOB 
4 DECIMAL 16 ACSEXERR AN ERROR OCCURRED 

IN THE EXIT I DO 
NOT REINVOKE IT 

252 MVS/ESA Data Facility Product Version 3: Customization 

\.~ 



u 

Abbreviations 

The following acronyms and abbreviations are defined 
as they are used in the MVS/DFP library. If you do 
not find the term or abbreviation you are looking for, 
see Dictionary of Computing, SC20-1699 (formerly 
published as IBM Vocabulary for Data Processing, 
Telecommunications, and Office Systems, GC20-1699). 

This glossary includes acronyms and abbreviations 
developed by the American National Standards 
Institute {ANSI) and the International Organization for 
Standardization (ISO). This material is reproduced 
from the American National Dictionary for Information 
Processing, copyright 1977 by the Computer and 
Business Equipment Manufacturers American National 
Standards Institute, 1430 Broadway, New York, New 
York 10018. 

A 

A. ANSI control code, in RECFM. 

ABE. Abnormal end, in EROPT. 

ABE. Abnormal-end appendage, an appendage of 
EXCP. 

ABEND. Abnormal end, macro instruction. 

ACB. Access method control block. 

ACC. Accept erroneous block, in EROPT. 

ACS. Automatic class selection. 

adcon. Address constant. 

ADDR. Addressed processing or addressed. 

ADR. Same as ADDR. 

AIX. Alternate index. 

AL. American National Standard Labels. 

ANSI. American National Standards Institute. 

APAR. Authorized program analysis report. A report 
of a problem caused by a suspected defect in a 
current unaftered release of a program. 

ASCB. Address space control block. 

ASCII. American National Standard Code for 
Information Interchange. 

ASI. Asynchronous interrupt. 

AUL. American National Standard user labels, in 
LABEL. 

B 

B. Blocked records, in RECFM. 

BDAM. Basic direct access method. 

BDW. Block descrjptor word. 

BISAM. Basic indexed sequential access method. 

BLKSIZE. Block size, operand of DCB. 

BPAM. Basic partitioned access method. 

BPI. Bytes per inch. 

BSAM. Basic sequential access method. 

BSP. Backspace one block, macro instruction. 

BUFC. Buffer control block. 

BUFCB. Buffer pool control block, operand of DCB. 

BUFL. Buffer length, operand of DCB. 

BUFNO. Buffer number, operand of DCB. 

BUFOFF. Buffer offset, operand of DCB. 

c 
C. Close. 

CA. Control area. 

CCW. Channel command word. 

CDS. Control data set. 

Cl. Control interval. Also compatibility interface. 

CNTRL. Control, macro instruction. 

CONTIG. Contiguous space allocation, in SPACE. 

CSECT. Control section. 

CSW. Channel status word. 

CTAP. ISMF Command Table-Application Table. 

CVAF .. Common VTOC access facility. 

Abbreviations 253 



CVOL. Control volume. 

CVT. Communication vector table. 

D 

D. Format-D, (ISCll/ASCll variable-length) records, in 
RECFM. 

DA. Direct access, in DEVD or DSORG. 

DADSM. Direct access device space management. 

DASO. Direct access storage device. 

DB. ISCll/ASCll variable-length, blocked records, in 
RECFM. 

DBS. ISCll/ASCll variable-length, blocked spanned 
records, in RECFM. 

DCB. Data control block. 

DCBD. Data control block dummy section, macro 
instruction. 

DCS. DASD calculation services. 

DD. Data definition (statement). 

DDNAME. Data definition name. 

DEB. Data extent block. 

DECB. Data event control block 

DFDSS. Data Facility Data Set Services. 

DFHSM. Data Facility Hierarchical Storage Manager. 

DFSORT. Data Facility Sort. 

DIR. Direct processing. 

DISP. Data set disposition, parameter of DD 
statement. 

OS. ISCll/ASCll variable-length, spanned records, in 
RECFM. 

DSAB. Data set association block. 

DSCB. Data set control block. 

DSDR. Data set descriptor record. 

DSECT. Dummy control section. 

DSL. DEB save list. 

DSNAME. Data set name. 

DSORG. Data set organization, operand of DCB. 

E 

EBCDIC. Extended binary-coded decimal interchange 
code. 

ECB. Event control block. 

EOB. End-of-block. 

EOD. End-of-data. 

EODAD. End of data set exit routine address, 
operand of DCB; 

EOF. End-of-file. 

EOM. End-of-module. 

EOV. End-of-volume. 

EP. External procedure entry point. 

EROPT. Error options, operand of DCB. 

ERP. Error recovery procedure. 

ESETL. End sequential retrieval, QISAM macro 
instruction. 

ESTAE. Extended specify task abnormal exit. 

EXCD. Exceptional conditions. 

EXCP. Execute channel program, macro instruction. 

EXLST. Exit list, operand of DCB. 

Ext Proc. External procedure. 

F 

F. Fixed-length records, in RECFM. 

FB. Fixed-length, blocked records, in RECFM. 

FBS. Fixed-length, blocked, standard records, in 
RECFM. 

FBT. Fixed-length, blocked records with track 
overflow option, in RECFM. 

FCB. Forms control buffer. 

FEOV. Force end-of-volume, macro instruction. 

FIPS. Federal Information Processing Standard. 

FS. Fixed-length, standard records, in RECFM. 

254 MVS/ESA Data Facility Product Version 3: Customization 



G 

GEN. Generic key search. 

GL. GET macro, locate mode, in MACRF. 

GM. GET macro, move mode, in MACRF. 

GSR. Global shared resources. 

GTF. Generalized trace facility. 

H 

H. DOS tapes with embedded checkpoint records, 
parameter of OPTCD. 

HA. Home address. 

ID. Identifier or identification. 

II. ISAM Interface. 

llCB. ISAM interface control block. 

INOUT. Input then output, operand of OPEN. 

1/0. Input/output. 

IOB. Input/output block. 

IOS. 1/0 supervisor. 

IPL. Initial program load. 

IS. Indexed sequential, in DSORG. 

ISAM. Indexed sequential access method. 

JSCB. Job step control block. 

K 

K. Kilobyte (equals two to the tenth power bytes, or 
1024). 

KEYLEN. Key length, operand of DCB. 

L 

LPA. Link pack area. 

LPALIB. Link pack area library. 

LPAP. ISMF Line Operator Table-Application Table. 

LRECL. Logical record length, operand of DCB. 

LRI. Logical record interface. _ 

LSR. Local shared resources. 

M 

M. Machine control code, in RECFM. 

_MACR. Macro reference. 

MACRF. Macro instruction form, operand of DCB. 

MBBCCHHR. Absolute disk address. (Module#, bin#, 
cylinder#, head#, record#). 

MOD. Modify data set, in DISP. 

MOD. Module. 

MSS. Mass Storage System. 

ISCll. International Standard Code for Information N 
Interchange. 

ISMF. Interactive Storage Management Facility. 

ISO. International Organization for Standardization. 

ISU. Indexed sequential unmovable, in DSORG. 

J 

JCL. Job control language. 

JFCB. Job file control block. 

JFCBE. Job file control block extension for 3800 
printer. 

n. Integer number. 

NCP. Number of channel programs, operand of DCB. 

NIP. Nucleus initialization program. 

NL. No label, in LABEL. 

NSI. Next sequential instruction. 

NSL. Nonstandard label, in LABEL. 

NUP. No update. 

Abbreviations 255 



0 
0. Open. 

O/C/EOV. Open/close/end-of-volume. 

OFLG. Open flags. 

OPTCD. Optional services code, operand of DCB. 

OS CVOL. Operating system control volume. 

OSNS. Operating system/virtual storage. 

OUTIN. Output then input, operand of OPEN. 

p 

PCI. Program-controlled interruption. 

PDAB. Parallel data access block. 

PDS. Partitioned data set. 

PDSCB. Partial data set control block. 

PL. PUT macro, locate mode, in MACRF. 

PLH. Placeholder list. 

PM. PUT macro, move mode, in MACRF. 

PO. Partitioned organ~zation, in DSORG. 

POU. Partitioned organization unmovable, in DSORG. 

PR. Pseudo register. 

PROC. Procedure. 

PS. Physical sequential, in DSORG. 

PSL. Page save list. 

PSU. Physical sequential unmovable, in DSORG. 

PSW. Program status word. 

PTF. Program temporary fix. 

Q 
QISAM. Queued indexed sequential access method. 

QSAM. Queued sequential access method. 

R 

RACF. Resource Access Control Facility. 

RB. Request block. 

RBA. Relative byte address. 

ROBACK. Read backward, operand of OPEN. 

ROW. Record descriptor word. 

RECFM. Record format, operand of DCB. 

RLSE. Release unused space, DD statement. 

Rn. General purpose register n. 

RPL. Request parameter list. 

RPLE. Request parameter list extension. 

RPS. Rotational position sensing. 

RROS. Relative record data set. 

RTN. Routine. 

RO. Record zero. 

s 
S. Standard format records, in RECFM. 

SAM. Sequential access method. 

SAMB. Sequential access method block. 

SCRA. Catalog recovery area in system storage. 

SEQ. Sequential or sequential processing. 

SER. Volume serial number, in VOLUME. 

SETL. Set lower limit of sequential retrieval 

SF. Sequential forward, operand of READ or WRITE. 

SIO. Start 110. 

SIO appendage. Start 110 appendage~ 

SK. Skip to a printer channel, operand of CNTRL. 

SKP. Skip erroneous block, in EROPT. 

SKP. Skip sequential or skip sequential processing. 

SL. IBM standard labels, in LABEL. 

SMF. System management facilities. 

256 MVS/ESA Data Facility Product Version 3: Customization 



SMP. System Modification Program. 

SMP/E. System Modification Program Extended. 

SMS. Storage Management Subsystem. 

SP. Space lines on a printer, operand of CNTRL. 

SRA. Sphere· record area. 

SRB. Service request block. 

SS. Select stacker on card reader, operand of 
CNTRL. 

STRNO. Number ·of RPL strings. 

SUL. IBM standard and user labels, in LABEL. 

SVC. Supervisor call instruction. 

SVCLIB. Supervisor call library. 

SVRB. Supervisor request block. 

SVT. Supervisor vector table. 

SWA. Scheduler work area. 

SYNAD. Synchronous error routine address, operand 
of DCB. 

SYSCTLG. The data set name of the CVOL catalog. 

SYSDUMP. System dump. 

SYSIN. System input stream. 

SYSOUT. System output stream. 

T 

T. Track overflow option, in RECFM; user-totaling, in 
OPTCD. 

TCB. Task control block. 

TIOT. Task 1/0 table. 

TSO. Time sharing option. 

TTR. Relative track record address. 

u 
U. Undefined length records, in RECFM. 

UCB. Unit control block. 

UHL. User header label. 

UPD. Update mode, or data modify. 

USVR. User security-verification routine. 

UTL. User trailer label. 

v 
V. Format-V, variable-length) records, in RECFM. 

VB. Variable-length~ blocked records, in RECFM. 

VBS. Variable-length, blocked, spanned records, in 
RECFM. 

VICE. Volume index control entry. 

VIO. Virtual input/output. 

VIR. VTOC index record. 

VIXM. VTOC index map. 

VMDS. VTOC map of DSCBs. 

VRP. VSAM resource pool. 

VS. Variable-length, spanned records. 

VSAM. Virtual storage access method. 

VSI. VSAM shared information. 

VSL. Virtual subarea list, same as PFL or PFPL. 

VSM. Virtual storage manager. 

VSRT. VSAM shared resource table. 

VTAM. Virtual telecommunications access method. 

VTOC. Volume table of contents. 

WDS. VSAM volume data set. 

WR. VSAM volume record. 

w 
WTO. Write to operator. 

WTOR. Write to operator with reply. 

x 
XCTL. Transfer control. 

Abbreviations 257 



258 MVS/ESA Data Facility Product Version 3: Customization 



\\......_/i 

"~./ 

\ ,: 
\.. ........ ./ 

Glossary 

The following terms and phrases are defined as they 
are used in the MVS/DFP library. If you do not find 
the term or abbreviation you are looking for, see 
Dictionary of Computing, SC20-1699 (formerly 
published as IBM Vocabulary for Data Processing, 
Telecommunications, and Office Systems, GC20-1699). 

This glossary includes acronyms and abbreviations 
developed by the American National Standards 
Institute (ANSI) and the International Organization for 
Standardization (ISO). This material is reproduced 
from the American National Dictionary for Information 
Processing, copyright 1977 by the Computer and 
Business Equipment Manufacturers American National 
Standards Institute, 1430 Broadway, New York, New 
York 10018. 

A 

absolute address. An address that, without further 
modification, identifies a unique DASO storage 
location. The format is MBBCCHHR 

access method control block (ACB). A control block 
that links an application program to VSAM or 
ACF/VTAM. 

access method services. A multifunction service 
program that is used to manage both VSAM and 
non-VSAM data sets and integrated catalog facility or 
VSAM catalogs. It is used to define data sets and 
allocate space for them, convert indexed-sequential 
data sets to key-sequenced data sets, modify data set 
attributes in the catalog, reorganize data sets, 
facilitate data portability between operating systems, 
create backup copies of data sets, help make 
inaccessible data sets accessible, list the records of 
data sets and catalogs, define and build alternate 
indexes, and convert OS CVOLs and VSAM catalogs 
to integrated catalog facility catalogs. 

acquire. In Mass Storage System, to allocate space 
on a staging drive, and to stage the volume table of 
contents (VTOC) from a cartridge to the staging drive. 

ACS installation exit. User-written code, executed 
after an ACS routine, that provides capabilities 
beyond the scope of the ACS routine. 

ACS interface routine. The routine that is used to 
invoke an ACS routine from an ACS installation exit 
routine. 

ACS routine. A procedural set of ACS language 
statements. Based on a set of input variables, the 
ACS language statements generate the name of a 

predefined SMS class, or a list of names of predefined 
storage groups, for a data set. 

actual extent. An area in the DEB containing data 
that describes the space occupied by an extent of a 
data set. BDAM module IGG0193A builds one actual 
extent for each extent in the data set. 

addressed-direct access. In systems with VSAM, the 
retrieval or storage of a data record identified by its 
relative byte address, independent of the record's 
location relative to the previously retrieved or stored 
record. See also keyed-direct access, 
addressed-sequential access, and keyed-sequential 
access. 

addressed-sequential address. In systems with 
VSAM, the retrieval or storage· of a data record in its 
entry sequence relative to the previously retrieved or 
stored record. See also keyed-sequential access, 
addressed-direct access, and keyed-direct access. 

alias. An alternative name an entry or for a member 
of a partitioned data set (PDS). In a CVOL catalog, 
only the high-level name of a fully qualified data set 
name may have an alias. 

allocated space. All space allocated (on a device) to 
a data set. 

allocated used space. The amount of allocated space 
that is in use. 

alternate index (AIX). In systems with VSAM, a 
key-sequenced data set containing index entries 
organized by the alternate keys of its associated base 
data records. It provides an alternate means of 
locating records in the data component of a cluster on 
which the alternate index is based. 

alternate index cluster. The data and index 
components of an alternate index. 

alternate key. One or more characters within a data 
record used to identify the data record and control its 
use. Unlike the prime key, the alternate key can 
identify more than one data record. It is used to build 
an alternate index or to locate one or more base data 
records via an alternate index. See also generic key, 
key, and key field. 

application. The use to which an access method is 
put or the end result that it serves; contrasted to the 
internal operation of the access method. 

authorized program facility (APF). A facility that 
permits the identification of programs that are 
authorized to use restricted functions. 

Glossary 259 



automatic class selection (ACS). A mechanism for 
assigning SMS classes and storage groups. 

B 

base cluster. A key-sequenced or entry-sequenced 
data set over which one or more alternate indexes 
are built. 

base RBA. In VSAM, the relative byte address (RBA) 
stored in the header of an index record that is used to 
cal.curate the RBAs of data or index control intervals 
governed by the index record. 

blkref field. A field the user specifies in a program 
and that contains either the relative or the actual 
address of the record the user wants access to. If it is 
the relative address, the BDAM address conversion 
routines convert it to an actual address (MBBCCHHR). 
The actual address is then placed in the IOBSEEK 
field of the IOB so that the channel program can use 
the address to find a block. The address of the blkref 
field is in the block address operand of the READ or 
WRITE macro. 

block position feedback. A user-specified option that 
causes the system to put the actual or relative 
address of the block just read or written into the area 
specified in the block address operand of the READ or 
WRITE macro. The format of the address wilt be 
MBBCCHHR if feedback was not specified in the DCB 
macro; otherwise, the format will be the same as the 
addressing scheme in the DCB macro. 

block unused. For non-VSAM data sets, block unused 
represents the amount of space (returned in 
kilobytes} that would be saved if the optimal block 
size were used instead _of the the current block size. 
For VSAM data set, block unused represents the 
amount of space (returned in kilobytes) that would be 
saved if the optimal Cl (control interval) size were 
used instead of the current Cf size. 

buffer pool. A continuous area of storage divided 
into buffers. 

c 
candidate volume. A direct-access storage votume 
that has been defined in a VSAM catalog as a VSAM 
volume; V$AM can automatically allocate space on 
this volume, as needed. 

capacity record. The first block {block 0) on each 
track of a data set. It contains them of the last block 
on the track and the number of usable bytes 
remaining on the track. 

catalog. A data set that contains extensive 
information required to locate other data sets, to 
allocate and deallocate storage space, to verify the 

access authority of a program or operator, and to 
accumulate data set usage statistics. See master 
catalog and user catalog. 

catalog recovery area (CRA). An entry-sequenced 
data set that exists on each volume owned by a 
recoverable catalog, including the volume on which 
the catalog resides. The CRA contains copies of the 
catalog's records, and can be used to recover a 
damaged catalog. 

cataloged data set. In a CVOL Catalog, a data set 
that is represented in an index or hierarchy of indexes 
that provides the means for locating the data set. 

chained RPL. See RPL string. 

class. See SMS class. 

cluster. In VSAM, a named structure consisting of a 
group of related components. For example, when the 
data is key-sequenced, the cluster- contains both the 
data and the index components; for data that is. 
entry-sequenced, the cluster contains only a data 
component. See also base cluster and alternate index 
cluster. 

collating sequence. An ordering assigned to a set of 
items, such that any two sets in that assigned order 
can be collated. As used in this publication. the order 
defined by the System/370 8-bit code for alphabetic, 
numeric, and special characters. 

compendium. A compendium gathers together and 
presents in concise form alt the essential facts and 
details about a VSAM functional unit. 

component. A named, cataloged collection of stored 
records. A component, the lowest member of the 
hierarchy of data structures that can be cataloged, 
contains no named subsets. 

control area (CA). A group of control intervals used 
as a unit for formatting a data set before adding 
records to it. Also, in a key-sequenced data set, the 
set of control intervals pointed to by a sequence-set 
index record; used by VSAM for distributing free 
space and for placing a sequence-set index record 
adjacent to its data. 

control area split. The movement of the contents of 
some of the control intervals in a control area to a 
newly created control area, to facilitate the insertion 
or lengthening of a data record when there are no 
remaining free control intervals in the original control 
area. 

control data set (CDS). With respect to SMS, a VSAM 
linear data set containing configurational, operational, 
or communication information. SMS introduces three 
types of control data sets: source control data set, 
active control data set, and communications data set. 

260 MVS/ESA Data Facility Product Version 3: Customization 



i 
\_,,/ 

control interval (Cl). A fixed-length area of auxiliary 
storage space in which VSAM stores records. It is the 
unit of information transmitted to or from auxiliary 
storage by VSAM. 

control interval access. The retrieval or storage of 
the contents of a control interval. 

control interval definition field (CIDF). In VSAM, the 
four bytes at the end of a control interval that 
contains the displacement from the beginning of the 
control interval to the start of the free space and the 
length of the free space. If the length is 0, the 
displacement is to the beginning of the control 
information. 

control interval split. The movement of some of the 
stored records in a control interval to a free control 
interval, to facilitate the insertion or lengthening of a 
record that won~t fit in the original control interval. 

control volume (CVOL). A volume that contains one 
or more indexes of the catalog. 

cross memory. A synchronous method of 
communication between address spaces. 

CVOL catalog. The collection of all data set indexes 
maintained by CVOL catalog management. 

D 

data class. A list of data set allocation parameters 
and their values, used when allocating a new 
SMS-managed data set. 

data record. A collection of items of information from 
the standpoint of its use in an application, as a user 
supplies it to VSAM for storage. 

data set. The major unit of data storage and retrieval 
in the operating system, consisting of data in a 
prescribed arrangement and described by control 
information to which the system has access. As used 
in this publication. a collection of fixed- or 
variable-length records in auxiliary storage, arranged 
by VSAM in key sequence or in entry sequence. See 
also key-sequenced data ·set and entry-sequenced 
data set. 

data set application. ISMF is used to construct a list 
of data sets. Using this list, you can perform tasks 
against an individual data set or a group of data sets. 
These tasks include editing, browsing, recovering 
unused space, copying, migrating, deleting, backing 
up, and restoring data sets. 

data set name. An identifier that dearly names a 
data set. 

DASD calculation services (DCS). A subcomponent of 
MVS/DFP common services. DCS retrieves and 

calculates data set information for both VSAM and 
non-VSAM data sets based on the user's input 
request. 

DEQ. An Assembler language macro instruction used 
to remove control of one or more serially reusable 
resources from the active task. It can also be used to 
determine whether control of the resource is currently 
assigned to or requested for the active task. 

dequeue. To remove a request for a resource from a 
list of requests. 

direct access. The retrieval or storage of data by a 
reference to its location in a data set rather than 
relative to the previously retrieved or stored data. 

· See also addressed-direct access and keyed-direct 
access. 

direct access storage device (DASO). A device in 
which the access time is effectively independent of 
the location of the data. 

distributed free space. Space reserved within the 
control intervals of a key-sequenced data set for 
inserting new records into the data set in key 
sequence; also, whole control intervals reserved in a 
control area for the same purpose. 

dummy record. A record, created when BSAM builds 
a BDAM data set containing format F records, whose 
purpose is to provide space in which new records can 
be added to the data set after it is created. The first 
byte in the key field of the dummy record contains 
X •FF', and the first byte in the data field has a value 
indicating the position of the dummy record on the 
track (the R in MBBCCHHR). 

dynamic buffering. A user-specified option that 
requests that the system handle acquisition, 
assignment, and release of buffers. 

E 
ENQ. An Assembler language macro instruction that 
requests the control program to assign control of one 
or more serially reusable resources to the active task. 
It is also used to determine the status of a resource; 
that is, whether it is immediately available or in use. 
and whether control has been previously requested 
for the active task in another ENO macro instruction. 

enqueue. To build a list of requests for a named 
resource. 

entry. A collection of information about a cataloged 
object in a master or user catalog. Each entry 
resides in one or more 512-byte records. 

entry sequence. The order in which data records are 
physically arranged (according to ascending RSA) in 

Glossary 261 



auxiliary storage, without respect to their contents. 
(Contrast with key sequence.) 

entry-sequenced data set (ESDS). In VSAM, a data 
set whose records are loaded without respect to their 
contents, and whose RBAs cannot change. Records 
are retrieved and stored by addressed access, and 
new records are added at the end of the data set. 

exclusive control. Preventing multiple WRITE-add 
requests from updating the same dummy record or 
writing over the same available space on a track. 
When specified by the user, exclusive control 
requests that the system prevent the data block about 
to be read from being modified by other requests; it is 
specified in a READ macro and released in a WRITE 
or RELEX macro. When a WRITE-add request is about 
to be processed, the system automatically gets 
exclusive control of either the data set or the track. 

exclusive control list. An area of storage containing 
the UCB address and actual address of resources 
under exclusive control, and the addresses of the first 
and last IOBs for requests waiting to get exclusive 
control of that resource. 

extended search. A user-specified option that 
requests that the system search for the specified 
block or a place in which to add a new block, starting 
with the first block on the track containing the block 
address operand specified in the request macro, and 
continuing either for as many tracks or blocks 
(rounded up to a complete track) as are specified in 
the request macro, or until the search ends 
successfully. 

Extended search is only applicable if relative 
addressing is being used. 

extended specify task abnormal exit (ESTAE). A task 
recovery routine that provides recovery for those 
programs that run enabled, unlocked, and in task 
mode. 

extent. A continuous space on a DASO volume 
occupied by a data set or portion of a data set. An 
extent of a data set contains a whole number of 
control areas. 

external procedure. A procedure that can be called 
by any other VSAM procedure; a procedure whose 
name is in the module's (assembler listing) "external 
symbol dictionary." 

F 
field. In a record or a control block, a specified area 
used for a particular category of data or control 
information. 

free control interval pointer list. In a sequence-set 
index record, a vertical pointer that gives the location 

of a free control interval in the control area governed 
by the record. 

FREEMAIN. An Assembler language macro 
instruction that releases one area of main storage 
that had previously been allocated to the job step as 
a result of a GETMAIN macro instruction. 

free space. Space reserved within the control 
intervals of a key-sequenced data set for inserting 
new records into the data set in key sequence; also, 
whole control intervals reserved in a control area for 
the same purpose. 

G 
generation. One member of a generation data group. 

generation data group (GOG). A collection of 
historically related non-VSAM data sets that are 
arranged in chronological order; each data set is 
known as a generation data set. 

generation index. An index of the CVOL catalog that 
identifies the generations of a generation data group. 

generic key. A high-order portion of a key, 
containing characters that identify those records that 
are significant for a certain application. For example, 
it might be desirable to retrieve all records whose 
keys begin with the generic key AB, regardless of the 
full key values. 

GETMAIN. An Assembler language macro instruction 
that is used to allocate an area of main storage for 
use by the job step task. 

global shared resources (GSR). An option for sharing 
1/0 buffers, 1/0-related control blocks, and channel 
programs among VSAM data sets in a resource pool 
that serves all address spaces in the system. 

global storage. Virtual storage that is not part of a 
user's private address space. 

H 

header, index record. In an index record, the 24-byte 
field at the beginning of the record that contains 
control information about the record. 

header entry. In a parameter list of GENCB, MODCB, 
SHOWCB, or TESTCB, the entry that identifies the 
type of request and control block and gives other 
general information about the request. 

high-level name. The first component of a qualified 
data set name. This name is found in a volume index 
of the CVOL catalog. 

262 MVS/ESA Data Facility Product Version 3: Customization 



\ I 

\._,/ 

i 
~/ 

I 

\ J 

"--'' 

horizontal extension. An extension record pointed to 
by a catalog record's extension field. See also 
vertical extension. 

horizontal pointer. A pointer in an index record that 
contains the RBA of another index record in the same 
level that contains the next key in collating sequence; 
used for keyed-sequential access. 

index. As used in this publication, an ordered 
collection of pairs, each consisting of a key and a 
pointer, used by VSAM to sequence and locate the 
records of a key-sequenced data set; organized in 
levels of index records. See also index level, index 
set, and sequence set. 

index entry. A catalog entry that describes the index 
component of a key-sequenced cluster, alternate 
index, or catalog. An index entry contains the index 
component's attributes, passwords and protection 
attributes, allocation and extent information, and 
statistics. 

application programs interactively. ISPF is the 
interactive interface for all storage management 
functions. 

internal procedure. A procedure that can be called 
only by other procedures within the module. See also 
external procedure. 

ISAM interface. A set of routines that allow a 
processing program coded to use ISAM (indexed 
sequential access method) to gain access to a VSAM 
key-sequenced data set. 

J 

job catalog. A catalog made available for a job by 
means of the JOBCAT DD statement. 

job control language (JCL). A problem-oriented 
language used to identify the job or describe its 
requirements to an operating system. 

job step catalog. A catalog made available for a job 
by means of the STEPCAT DD statement. 

index level. A set of index records that order and 
give the location of all the control intervals in the next K 
lower level or in the data set that it controls. 

index record. A collection of index entries that are 
retrieved and stored as a group. Contrast to data 
record. 

index record header. In an index record, the 24-byte 
field at the beginning of the record that contains 
control information about the record. 

index replication. The use of an entire track of direct 
access storage to contain as many copies of a single 
index record as possible; this reduces rotational 
delay. 

index set. The set of index levels above the 
sequence set. The index set and the sequence set 
together comprise the index. 

index upgrade. The process of reflecting changes 
made to a base cluster in its associated alternate 
indexes. 

integrated catalog facility. The name of the catalog 
associated with the Data Facility Product program 
product. 

Interactive Storage Management Facility (ISMF). An 
interactive DFP facility for defining and viewing the 
policy of how the Storage Management Subsystem 
manages storage. 

Interactive System Productivity Facility (ISPF). An 
IBM licensed program used to develop, test, and run 

key. One or more characters within an item of data 
that are used to identify it or control its use. As used 
in this publication, one or more consecutive 
characters taken from a data record, used to identify 
the record and establish its order with respect to 
other records. 

key field. A field located in the same position in each 
record of a data set, whose contents are used for the 
key of a record. 

key sequence. The collating sequence of data 
records, determined by the value of the key field in 
each of the data records. May be the same as, or 
different from, the entry sequence of the records. 

key-sequenced data set (KSDS). A VSAM data set 
whose records are loaded in ascending key sequence 
and controlled by an index. Records are retrieved 
and stored by keyed access or by addressed access, 
and new records can be inserted in key sequence 
because of free space allocated in the data set. 
Relative byte addresses can change, because of 
control interval or control area splits. 

keyed-direct access. The retrieval or storage of a 
data record by use of either an index that relates the 
record's key to its relative location in the data set br 
a relative record number, independent of the record's 
location relative to the previously retrieved or stored 
record. See also addressed-direct access, 
keyed-sequential access, and addressed-sequential 
access. 

Glossary 263 



keyed-sequential access. The retrieval or storage of 
a data record in its key or relative record sequence 
relative to the previously retrieved or stored record, 
as defined by the sequence set of an index. See also 
addressed-sequential access, keyed-direct access, and 
addressed-direct access. 

L 
level. A conceptual relationship between indexes of 
the CVOL catalog. The index corresponding to the 
simple name of a data set is said to be the lowest 
level; the first component of a qualifier name is said 
to correspond to the highest-level index. 

level number. For the index of a key-sequenced data 
set, a binary number in the header of an index record 
that indicates the index level to which the record 
belongs. 

linear data set (LOS). A VSAM data set that contains 
data but no control information. A linear data set can 

to locate data sets, to allocate and deallocate storage 
space, to verify the authorization of a program or 
operator to gain access to a data set, and to 
accumulate usage statistics for data sets. 

memory. As used in this book, a synonym for the 
private address space in virtual storage. 

module. The unit of code that is link-edited. A 
program module has at least one procedure, and may 
have many. 

must-complete. An indication to the operating 
system that the event must be performed without 
interruption or waiting. 

MVS/DFP. An IBM licensed program which is the 
base for the Storage Management Subsystem. 

MVS/ESA. An MVS operating system environment 
which supports ESA/370. 

be accessed as a byte-addressable string in virtual N 
storage. 

LINK. An Assembler language macro instruction that 
causes control to be passed to a specified entry point. 
The linkage relationship established is the same as 
that created by a BAL instruction. 

local shared resources (LSR). An option for sharing 
1/0 buffers, 1/0-related control blocks, and channel 
programs among VSAM data sets in a resource pool 
that serves one partition or address space. 

local storage. Virtual storage in a user's private 
address space. 

locate. Pertains to functions that do not change the 
status of a catalog; that is, read-only operations are 
performed. 

M 
management class. A list of the migration, backup, 
and retention parameters .and their values, for an 
SMS-managed data set. 

mass sequential insertion. A technique VSAM uses 
for keyed sequential insertion of two or more records 
in sequence into a collating position in a data set: 
more efficient than inserting each record directly. 

mass storage volume. Two data cartridges in the 
IBM 3850 Mass Storage System that contain 
information equivalent to what could be stored on a 
direct-access storage volume. 

master catalog. A catalog that contains extensive 
data set and volume information that VSAM requires 

next address feedback. A user-specified option that 
causes the system to put the relative address (TIR) 
of the next data or capacity record into the area 
specified in the next address operand of the READ or 
WRITE macro .. (If the type operand in the READ or 
WRITE macro terminated with an R, the address of 
the next data record is returned; if it terminated with 
an RU, the address of the next data or capacity 
record is returned, whichever occurs first.) 

Next address feedback is only applicable for 
operations involving format VS records. 

nonlocate. Pertains to functions that change the 
status of a catalog; that is, write operations are 
performed. 

0 

operating system. Software that controls the 
execution of programs; an operating system may 
provide services such as resource allocation, 
scheduling, input/output control, and data 
management. 

optimal block size. For non-VSAM data sets, optimal 
block size represents the block size that would result 
in the greatest space utilization on a device, taking 
into consideration record length and device 
characteristics. 

optimal Cl size. For VSAM data sets, optimal Cl size 
represents the control interval size that would result 
in the greatest space utilization on a device. 

264 MVS/ESA Data Facility Product Version 3: Customization 



\'-. ./ 

i 
\_) 

p 

password. A unique string of characters stored in a 
catalog that a program, a computer operator, or a 
terminal user must supply to meet security 
requirements before a program gains access to a 
data set. 

path. A named, logical entity composed of one or 
more clusters (an alternate index and its base cluster, 
for example). 

PDS directory. The portion of a partitioned data set 
that provides a means of locating any of the members 
of the data set. 

period. A group of tracks in which the first track 
does not begin with an overflow block, and the last 
track does not contain a block that overflows to 
another track. 

physical record. A record whose characteristics 
depend on the manner or form in which it is stored, 
retrieved, or moved. A physical record may contain 
all or part of one or more logical records. 

pointer. An address or other indication of location. 
For example, an RBA is a pointer that gives the 
relative location of a data record or a control interval 
in the data set to which it belongs. 

preformat channel program. A channel program that 
writes a new format F record to an already existing 
data set. 

prime index. The index component of a 
key-sequenced data set. 

prime key. One or more characters within a data 
record used to identify the data record or control its 
use. A prime key must be unique. 

procedure. A functional unit of VSAM code that is 
entered only at one entry point and exits at the end of 
the procedure (the last line of the procedure's code). 
The procedure can call (transfer control, with a return 
to the procedure expected) other procedures within 
the module (internal calls) and can call other 
procedures in other VSAM modules (external calls). 
See also internal procedure and external procedure. 

processing program. Any program that is not a 
control program; synonymous with problem program. 

program status word (PSW). An area in storage used 
to indicate the order in which instructions are 
executed, and to hold and indicate the status of the 
system. 

program temporary fix (PTF). A temporary solution 
or bypass of a problem diagnosed by IBM Support 

Center as the result of a defect in a current unaltered 
release of the program. 

Q 

qualified name. A data set name consisting of a 
string of names separated by periods; for example, 
"TREE.FRUIT.APPLE" is a qualified name. 

qualifier. Each component name in a qualified name 
other than' the rightmost name. For example, "TREE" 
and "FRUIT" are qualifiers in "TREE.FRUIT.APPLE.." 

queued sequential access method (QSAM). An 
extended version of the basic sequential access 
method (BSAM). Input data blocks awaiting 
processing or output data blocks awaiting transfer to 
auxiliary storage are queued on the system to 
minimize delays in 1/0 operations. 

R 

random access. See direct access. 

read-only variable. An ACS language variable that 
contains data set or system-derived information. It 
can be referenced but not altered in an ACS routine. 

read-write variable. An ACS language variable that 
is assigned a value within an ACS routine. It c;an be 
referenced, and each ACS routine assigns a value to 
its own unique read-write variable. 

record. A set of data treated as a unit. 

record definition field (RDF). A field stored as part of 
a stored record segment; it contains the control 
information required to manage stored record 
segments within a control interval. 

record zero (RO). Track capacity record on a DASO 
device. 

relative address. The position of a block in a data set 
relative to the first block of a data set. The relative 
address can be a relative track number or relative 
block number. See "relative track address" and 
"relative block address." 

relative block address. A 3-byte binary number that 
indicates the position of a block in relation to the first 
block of a data set. The first block of a data set 
always has a relative block address of 0. 

relative byte address (RBA). The displacement 
(expressed as a fullword binary integer) of a data 
record or a control interval from the beginning of the 
data set to which it belongs; independent of the 
manner in which the data set is stored. 

Glossary 265 



relative extent. An area in the DEB containing the 
number of blocks in each extent and the number of 
blocks in each track (if track overflow is not in effect) 
of a data set. Module IGG0193A builds the relative 
extent area when relative block addressing is 
specified in the processing program. 

relative record data set (RRDS). A data set whose 
records are loaded into fixed-length slots. 

relative record number (RRN). A number that 
identifies not only the slot, or data space, in a relative 
record data set but also the record occupying the slot. 
Used as the key for keyed access to a relative record 
data set. 

relative track and record address (TTR). Relative 
track and record address on a direct-access device 
where TT represents two hexadecimal digits ' 
specifying the track relative to the beginning of the 
data set, and R is one hexadecimal digit specifying 
the record on that track. 

replication. See index replication. 

request parameter list (RPL). In VSAM, a control 
block that contains the information needed to process 
an 1/0 request. 

resource. Any facility of the computing system or 
operating system required by a job or task, including 
main storage, input/output devices, the central 
processing unit, data sets, and control processing 
systems. 

resource pool, VSAM. See VSAM resource pool. 

RETURN. An Assembler language macro instruction 
that is used to return control to the calling CSECT, 
and to signal normal termination of the returning 
CSECT. 

reusable data set. A VSAM data set that can be 
reused as a work file, regardless of its old contents. 
It must not be a base cluster of an alternate index. 

ripple. Moving data from one block of a chain to the 
next, due to modification of data in a preceding block. 

RPL string. A set of chained RPLs (the set may 
contain one or more RPLs) used to gain access to a 
VSAM data set by action macros (GET, PUT, etc). 
Two or more RPL strings may be used for concurrent 
direct or sequential requests made from a processing 
program or its subtasks. 

s 
SAVE. An Assembler language macro instruction that 
causes the contents of the specified registers to be 
stored in the save area at the address contained in 
register 13. 

SCRATCH. An Assembler language macro 
instruction that points to the CAMLST macro 
instruction. SCRATCH, the first operand of CAMLST, 
specifies that a data set be deleted. 

search argument. The field of a data block that 
contains information identifying the block as unique 
from any other block in the data set. Can be either 
the key field or the block ID in the count field. This 
term is also used to describe the string of keywords 
containing software failure symptom keywords. 

search limit. The track following the last track that 
should actually be searched in a data set. The search 
limit is calculated and put in the IOBUPUM field of the 
IOB when the DCB specifies the extended search 
option. 

security. See data security. 

segment. The portion of a spanned record contained 
within a control interval. See also spanned record. 

sequence checking. The process of verifying the 
order of a set of records relative to some field's 
collating sequence. 

sequence set. The lowest level of the index of a 
key-sequenced data set; it gives the locations of the 
control intervals in the data set and orders them by 
the key sequence of the data records they contain. 
The sequence set and the index set together comprise 
the index. 

sequential access. The retrieval or storage of a data 
record in either its entry sequence, its key sequence, 
or its relative record number sequence, relative to 
the previously retrieved or stored record. See also 
addressed-sequential access and keyed-sequential 
access. 

sequential access method (SAM). An access method 
for storing or retrieving data blocks in a continuous 
sequence, using either a sequential access or a direct 
access device. 

shared resources. A set of functions that permit the 
sharing of a pool of 1/0-related control blocks, channel 
programs, and buffers among several VSAM data sets 
open at the same time. 

simple name. The rightmost component of a qualified 
name. For example, "APPLE" is the simple name in 
"TREE.FRUIT.APPLE." The simple name corresponds 

266 MVS/ESA Data Facility Product Version 3: Customization 



( 

\"-.._.,,; 

to the lowest index level in the CVOL catalog for the 
data set name. 

skip-sequential access. Keyed-sequential retrieval or 
storage of records here and there throughout a data 
set, skipping automatically to the desired record or 
collating position for insertion: VSAM scans the 
sequence set to find a record or a collating position. 
Valid for processing in ascending sequences only. 

slot. For a relative record data set, the data area 
addressed by a relative record number which may 
contain a record or be empty. 

SMS class. A list of attributes that SMS applies to 
data sets having similar allocation (data class), 
performance (storage class), or backup and retention 
(management class) needs. 

SMS configuration. A configuration base, SMS class 
and storage group definitions, and ACS routines that 
SMS uses to manage storage. 

SMS-managed data set. A data set that has been 
assigned a storage class. 

spanned record. A logical record whose length 
exceeds control interval length, and as a result, 
crosses, or spans, one or more control interval 
boundaries within a single control area. 

sphere. The collection of base cluster, alternate 
indexes, and upgrade alternate indexes opened to 
process one or more paths related to the same Base 
Information Block (BIB). 

step catalog. A catalog made available for a step by 
means of the STEPCAT DD statement. See also job 
step catalog. 

storage administrator. A person in the data 
processing installation who is responsible for defining, 
implementing, and maintaining storage management 
policies. 

storage class. A list of DASO storage performance, 
security, and availability service level requirements 
for an SMS-managed data set. 

storage group. A list of traits and characteristics that 
SMS applies to groups of storage volumes having 
similar migration, backup, and dump needs. Only the 
storage administrator can access storage group 
definitions. 

Storage Management Subsystem (SMS). An 
operating environment that helps automate and 
centralize the management of storage. To manage 
storage, SMS provides the storage administrator with 
control over data class, storage class, management 
class, storage group, and ACS routine definitions. 

stored record. A data record, together with its 
control information, as stored in auxiliary storage. 

string. The part of a control block structure built 
around a placeholder (PLH) that enables VSAM to 
keep track of one position in the data set that the 
control block structure describes. 

supervisor request block (SRB). A system control 
block containing program status information and 
general register contents. 

system-managed storage. An approach to storage 
management in which the system determines data 
placement and an automatic data manager handles 
data backup, movement, space, and security. 

T 

terminal monitor program (TMP). In TSO, a program 
that accepts and interprets commands from the 
terminal, and causes the appropriate command 
processors to be scheduled and executed. 

time sharing option (TSO). An optional configuration 
of the operating system that provides conversational 
time sharing from remote stations. 

track overflow. A user-specified option that will allow 
a format F record whose space requirements exceed 
the space remaining on the track to be partially 
written on that track and completed on the next track. 

tracks unused. For data sets specifying cylinder 
allocation, tracks unused represents the number of 
unused tracks (returned in kilobytes) over all 
cylinders allocated. 

transaction ID. A number associated with each of 
several request parameter lists that define requests 
belonging to the same data transaction. 

transfer control (XCTL). An Assembler language 
macro that causes control to be passed to a specified 
entry point. 

true name. In a CVOL catalog, the high-level qualifier 
to which an alias is related. 

u 
uncatalog. To remove the catalog· entry of a data set 
from a catalog. 

unit control block (UCB). A data area used by 
MVS/ESA for device allocation and for controlling 
input/output, 1/0) operations. 

update channel program. A channel program that 
reads or writes data for purposes other than adding a 
new block to an existing data set. 

Glossary 267 



update number. For a spanned record, a binary 
number in the second RDF of a record segment that 
indicates how many times the segments of a spanned 
record should be equal. An inequality indicates a 
possible error. 

upgrade set. All the alternate indexes that VSAM has 
been instructed to update whenever there is a change 
to the.data component of the base cluster. 

user· buffering. The use of a work area in the 
processing program's address space for an 1/0 buffer; 
VSAM transmits the contents of a control interval 
between the work area and direct access storage 
without intermediary buffering. 

user catalog. An optional catalog used in the same 
way as the master catalog and pointed to by the 
master catalog. It also lessens the contention for the 
master catalog and facilitates volume portability. 

v 
vertical extension. An extension record pointed to by 
a set-of-fields pointer in the object's base catalog 
record or its horizontal extension. See also base 
catalog record and horizontal extension. 

vertical pointer. A pointer in an index record of a 
given level that gives the location of an index record 
in the next lower level or the location of a control 
interval in the data set controlled by the index. 

virtual storage access method (VSAM). An access 
method for direct or sequential processing of fixed
and variable-length records on direct access devices. 
The records in a VSAM data set or fiJe can be 
organized in logical sequence by a key field (key 
sequence), in the physical sequence in which they are 
written on the data set or file {entry sequence}, or by 
relative record number. 

virtual telecommunications access method (VT AM). A 
set of programs that control communication between 
terminals and application programs running under 
VSE, OSNSI, and OSNS2. 

volume application. Using a list of volumes 
constructed by ISMF, you can perform tasks against 
an individual volume. These tasks include 

consolidating or recovering unused space, copying, 
backing up, and restoring volumes. 

volume index. The highest level of index in the CVOL 
catalog structure. Entries in the volume index point to 
an lower indexes and simple names. 

volume index control entry· (VICE). The first entry in 
the volume index. The VICE describes the volume 
index and controls space allocation in SYSCTLG. 

VSAM catalog. A key-sequenced data set or file with 
an index containing extensive data set and votume 
information that VSAM requires to locate data sets or 
files, allocate and deallocate storage space, verify the 
authorization of a program or operator to gain access 
to a file, and accumulate usage statistics for data sets 
or files. VSAM catalogs have been functionally 
replaced by integrated catalog facility catalogs. 
VSAM catalogs are not supported by the Storage 
Management Subsystem. 

VSAM resource pool. A virtual storage area that is 
used to share 110 buffers, 1/0-related control blocks, 
and channel programs among VSAM data sets. A 
resource pool is local or global; it serves tasks in one 
partition or address space or tasks in an address 
spaces in the system. 

VSAM shared ipformation (VSI). Blocks that are used 
for cross-system sharing. 

w 
WAIT. An Assembler language macro instruction that 
informs the control program that the issuing program 
cannot continue untit a specific event, represented by 
an event control block, has occurred. 

WRITE-add request. A request to write a new block 
to the data set 

WRITE-release request. A WRITE-update request that 
specifies exclusive control should be released for the 
record about to be written. 

WRITE-update request. A request to write an already 
existing block to the data set 

WRITE-validity check. A user-specified option that 
causes the system to verify the accuracy of any 
information written by the channel program. 

268 MVS/ESA Data Facility Product Version 3: Customization 



I 

\.._) 

\ ; 
~ 

Index 

A 
abbreviations 

list 253 
ABE (abnormal end) 

appendages 
conditions 99 
described 99-100 

error option 57 
ABEND 

exit routine 62, 67 
installation exit 

DCS 157 
parameter list (OAIXL) 157 
register contents 158 
return codes 159 

ACC error option 57 
ACERWNCS 222, 224 
ACERWVAL 222, 224 
ACERWVLN 222, 224 
acronyms 253, 257 
ACS installation exit 

assigning classes 222 
assigning null value 222 
choosing between routines 219 
control block structure 221, 224 
errors 225 
example 226 
general information 219 
JGDACERC macro 223 
invocation ordeF 220 
invoking ACS interface routines 223 
linkage conventions 221 
location 220 
parameter list 

fGDACSPM 220, 251 
parameter structure 221, 224 
programming considerations 220 
read-only variables 

IGOACERO 243 
read-write variables 

IGOACERW 249 
reason codes 223 
refer.ence restrictions 225 
registers 222 
return codes 223 
returning job messages 222 
setting fields in IGDACERW 222 
system processes invoking ACS 219 
work area 220 
writing messages 226 

ACS (automatic class selection) 
constructs 220 
interface routines 

fields 224 

ACS (automatic class selection) (continued) 
interface routines (continued) 

how to invoke 223 
IGDACERC macro 223 
parameter list 224 

re-invoking an ACS routine 226 
ACSPACS 223 
ACSPAERO 224 
ACSPAERW 224 
adding 

fields to ISMF panels 116 
allocation retrieval fist 59, 61 
altering 

DADSM processing 136-141 
ANSI standard labels 

version 3 
installation exit 211 

volume label 
verification 196-210 

appendages 
ABE (abnormal end) 99-100 
available work areas 97 
CHE (channel end) 100-101 
entry points 96, 97 
EOE (end of extent) 101 
naming convention 98 
PCI {program controlled interruption) 102 
programming restrictions 96 
returns 96, 97 
SIO (start 1/0) 103 
SYS1.PARMUB listing 97 

assigning 
classes 

null values 222 
using ACS installation exits 219, 222 

volume serial numbers 
system assignments 177-179 

authorized appendage list 97-98 
automatic cartridge load exit 169 
automatic error options 

See EROPT 
autoskip 

panels 115 
AVR (automatic volume recognition) 

nonstandard labels 193-194 

B 
BDAM {basic direct access method) 

data set 
user labels 60 

ECB (event control block) 
conditions 48-49 

exception code bits 49 

Index 269 



BDAM (basic direct access method) (continued) 
input/output operation 

status information 42 
BISAM (basic indexed sequential access method) 

ECB (event control block) 
conditions 44-45 
exception code bits 43, 44 

input/output operation 
status information 42 

SYNAD routine 
register contents 50 

blank tape 
nonstandard labels, output 178-180 

block 
event control 43, 53 

block count 
EOV exit 68 
exit routine 68-69 
nonstandard labels 176, 179-180 
programming conventions 180 

block size 
system-determined 163 

BPAM (basic partitioned access method) 
data set 

EODAD routine 55 
data set restriction 

DCB abend exit routine 62 
input/output operation 

status information 42 
BSAM (basic sequential access method) 

data set 
EODAD routine 55 
user labels 72 
user totaling 80-82 

defaulting buffer number 163 
input/output operation 

status information 42 
user totaling 82 

BSP macro 
restriction in EODAD routine 55 

BUFNO operand (DCB macro) 
QSAM, defaulting in OPEN 

defaulting in OPEN installation exit 229 

c 
CATALOG module 

installation exit 148 
cataloged data sets 

nonstandard labels 193 
catalogs 

dummy module 136 
installation exit module 

description 147 
input 148 
output 148 
register conventions 148 
replacing 147 

CCW (channel command word) 
locations 

nonstandard labels 189 
volume label editor 208 

chained scheduling 
restriction 

SKP option 57 
channel programs 

appendages 95 
nonstandard labels 189 
volume label editor 208 

CHE (channel end) 
appendage 100-101 

CHECK macro 
EODAD routine 54 
return of exception codes 43-51 
SYNAD routine 57 

checking volume I abel s 196-210 
checkpoint/restart 

check of JFCBFLAG 71 
LPALIB, restriction 69 

CHKPT macro 
end-of-volume exit routine use 69 

CLIST library 
ISMF customizing 106 
what you can customize 106 
where it is stored 106 
where they are stored 106 

CLOSE macro 
EODAD routine 55 
nonstandard labels 

handling end-of-data-set conditions 180 
handling positioning 176 
passing control 178 
register contents 181 

restriction with SYNAD 56 
user labels 

system action 90 
close routine 

nonstandard labels 
described 180-190 
passing control 178 
returning control 175 

closing input data set 
nonstandard labels 180-192 

closing output data set 
nonstandard labels 180-193 

codes 
exception 43-51 

coior 114 
common O/C/EOV mapping macro 184 
concatenation 

data sets 
nonstandard labels 176 

condition, exception 42-51 
construct 

DECB (data event control block) 43 

270 MVS/ESA Data Facility Product Version 3: Customization 



\-.._.,; 

I 

~/ 

control blocks 
data event 43 
event 53 

control interval splits 
JRNAD routine 25 

CREATE parameter 
user exit routines 84 

CREATE statement 
IEBDG program 91 

creating panels 117 
creating volume label 

nonstandard volume labels 174 
customization 

D 

application program 4 
customizing ISMF 4 
initialization parameters 4 
installation level 4 
link-editing 3 
MVS/ESA operating system products 3 
reasons for customizing 4 
replacing system-level module 4 
restrictions and limitations 5 
SMP/E 3 
using exit locations 6 

DADSM (direct access device space management) 
installation exit 

module description 142 
SMS indicators 241 

installation exit module 
RENAME 143 
SCRATCH 143 

pre/postprocessing exits 
data passed from DADSM 138 
exit environment 137 
format-1 DSCB passed by IGGPREOO 140 
general description 136 
operating environment 137 
parameter list (IEPL) 138 
parameter list (IGGDAREN) 146 
parameter list (IGGDASCR) 144 
register contents 141 
rejecting DADSM request 138 
rejecting scratch request 138 
return codes 141 
system control block addresses 142 
when given control 137, 141 

replaceable module$ 6 
DASD (direct access storage device) 

calculation services 
replaceable modules 6 

data area 
UCB tape class extension 218 

data class 
overriding with installation exits 220 
using ACS installation exits to assign 219 

data control block 
See DCB 

data management 
abend 157 
ABEND installation exit 

described 157 
modifying 159 
parameter list (OAIXL) 157 
register contents 158 
return codes 159 

general information 135 
limitations and restrictions 136 
parameter list 157 
programming considerations 136 
replaceable modules 135 

DATA parameter 
user exit routines 84 

data set protection 
volume label editor 207-210 

datestamp routine 
See I DATMSTP 

DCB abend exit 
availability 41 
described 62-64 
restrictions 62 
specifying 41 

DCB OPEN 
installation exit 

described 160 
example 229 
IFGOEXOB 159 
operating environment 160 
parameter list (OIEXL) 161 
QSAM defaulting buffer number 229-240 
register contents 164 
requesting partial release 229-240 
return codes 165 
updating secondary space data 229-240 
when executed 160-161 

DCB (data control block) 
abend installation exit 

described 157 
note 67 

allocation retrieval list 
described 61 

attempted recovery conditions 64 
DCBEXCD1 field 42 
DCBEXCD2 field 42 
end-of-data routine 

nonstandard labels 176-178, 180 
exit 

availability 41 
routines 41 
specifying 41 

exit routine 
parameter list passed to abend 63 

EXLST exit list 
format and contents 58 

Index 271 



DCB (data control block) (continued) 
open exit 

described 67 
replaceable modules 6 

DCS (DASO calculation services) 
exit routine 

overview 148 
parameter list (DCSIEPL) 149 
register contents 149 

installation exit 148 
postcalculation exit 

overview, IGBDCSX2 154 
return codes 154 

postcalculation installation exit 
sample 154 

precalculation exit 
return codes 150 

precalculation installation exit 
overview, IGBDCSX1 150 
sample 150 

DCSIEPL (DCS pre/postcalculation exit parameter 
list) 149 

DOR (dynamic device reconfiguration) 
option 195 

DECB (data event control block) 
described 43 
exception code 42-51 

default values on panels 110 
defaulting buffer number 

BSAM 163 
QSAM 162 
QSAM, defaulting in OPEN 

OPEN installation exit 229 
defer nonstandard input trailer label 68 
deferred user trailer label processing 

nonstandard labels 177 
defining 

FCB image 69, 70 
density 

volume label verification 196-210 
device 

name 208 
DGTMCTAP 

customizing command tables 124 
table format 125 

DGTMLPAP 
line operator tables 124 
table format 126 

DISP operand 
tape 75 

DSCB (data set control block) 
format-1 not found user exit 165 
format-1 passed by IGGPREOO 140 

dummy module 
I DATMSTP datestamp 167 

E 
ECB (event control block) 

described 43, 53 
exception code bits, BISAM 43 

editor, volume label 
entry conditions 196-201, 202 
explained 196-210 
flowcharts 205 
module names 201 

EMODVOL1 201-210 
end of data set 

nonstandard labels 175-178, 180 
end-of-sequential retrieval 

See ESETL 
entry 

SYNAD exit routine 42 
EODAD (end-of-data exit routine address) 

described 54 
exit routine 

EXCEPTION EXIT 23 
JRNAD, journalizing transactions 24 

nonstandard labels 175-178, 180 
programming considerations 22, 55 
register contents 22, 55 
specifications 55 

EOE (end-of-extent) 
appendage 

ABE 101 
EOV routine 

nonstandard labels 178 
EOV (end-of-volume) 

block count exit 
system response and return codes 68 

defer nonstandard input trailer label exit 68 
exit routine 69 
macro 

format-1 DSCB not found 165 
nonstandard labels 175-178, 180 
physical sequential data sets 

exit 69 
routines, relationship with DCB abend exit 62, 64 
user labels 

system action 90 
volume label editor routine 196-21 O 
when EODAD routine entered 55 

EROPT (automatic error options) 
DCB macro 57 

error analysis, 1/0 
analyzing 

logical 32 
physical 33 

exception codes 
BDAM 48 
BISAM 43 
QISAM 46 

options, automatic 57 
register contents 

BDAM 51 
BISAM 50 

272 MVS/ESA Data Facility Product Version 3: Customization 

\..._r' 



I • 

\_,,' 

\._./ 

error analysis, 1/0 (continued) 
register contents (continued) 

BPAM 51 
BSAM 51 
QISAM 49 
QSAM 51 

resulting from ACS installation exits 225 
status indicators 

BDAM 52 
BPAM 52 
BSAM 52 
QISAM 42 
QSAM 52 

uncorrectable 56 
error conditions 196-199 
ERROR parameter 

user exit routines 84 
ESETL (end-of-sequential retrieval) macro 

EODAD routine 55, 56 
example 

ACS installation exit 226 
installation exit 

OPEN module 229-240 
exception code 42-51 
exception exit routine 23 
EXCEPTIONEXIT exit routine 

contents of registers 23 
EXCP appendages 

register contents at entry 96 
EXCP (execute channel program) 

ABE appendage 99-100 
channel programs 

appendage entry points 96 
appendage programming restrictions 96 
appendage register usage 95 
appendage returns 96 
appendages 95 
authorized appendage list 97 
system-included appenqages 97 

CHE appendage 100-101 
EOE appendage 101 
general information 95 
PCI appendage 102 
SIO appendage 103 

exit list 
allocation retrieval list 61 
described 58-60 
FCB Image Exit 69 
programming conventions 61 
recovery requirements 65 
restrictions 62 

exit routine. 
allocation retrieval list 61 
block count 68-69 
conventions 61 
DA DSM 

IGGPREOO 137 
DCB abend 62-67 

exit routine (continued) 
DCB (data control block) 67 
defer nonstandard input trailer label 68 
end-of-data 55 
end-of-volume 69 
EODAD 22 
example 34 
exception exit 23 
FCB image 69 
identified by DCB 41 
ISO/ANSl/FIPS Version 3 211 
JFCBE 71 
JRNAD 24 
LERAD 32 
list 58-60 
QSAM parallel input 80 
reentrant 136 
register contents on entry 61 
replaceable module 

IDATMSTP 167 
IFGOEXOA 165 
IFGOEXOB 159 
IFG01991 157 
IGBDCSX1 148 
IGBDCSX2 148 
IGGPOSTO 136 
IGGPREOO 136 
IGG026DU 147 
IGG029DM 143 
IGG029DU 143 
IGG030DU 143 
IGXMSGEX 169 

return codes 85 
returning to main program 21 
returning to utility program 85 
standard user label 72-75 
SYNAD 

analyzing physical errors 33 
synchronous error 56-58 

totaling 90 
UPAD 36 
user totaling 
user written 

exit testing 
issuing 

80 
19, 36 

ABEND macro 10 
messages 11 
SDUMP macro 10 
setting CVTSDUMP 10 

taking dumps 10 
techniques 9 
using console DUMP command 

EXLST exit list 
DCB format and contents 58 
register contents 60 

EXLST macro 
performing exception processing 

10 

19 

Index 273 



EXLST operand 
DCB macro 

described 55, 58 
expiration date 

volume label editor 207-21 O 
expressions 

described 259, 268 

F 
FCB (forms control buffer) 

defining image for 3211 69 
image 

exit 69 
identification in JFCBE 71 

FEOV macro 
EODAD routine 54 
nonstandard labels 177, 180 
restriction with trailer label exit 75 

file access exit 
ISO/ANSl/FIPS version 3 installation exits 214 

FIND macro 
EODAD routine 55 

first record, verification 
nonstandard labels 176-179, 193-195 
volume label editor 196-210 

format 
control block 

ACS installation exit entry 221 
invoking ACS interface routine 225 

DADSM pre/postprocessing exit parameter 
list 138 

DCS pre/postcalculation exit parameter list 149 
ISM F command table 124 
ISMF line operator table 124 
OIEXL (OPEN installation exit parameter list) 161 

format of panels, changing 115 
format-1 DSCB 

SMS indicators 241 
format-1 DSCB not found 

installation exit 
IFGOEXOA 165-167 
parameter list 166 
register contents 166 
return codes 167 

format-4 DSCB 
SMS indicators 241 

forms control buffer 
See FCB 

G 
GENCB macro 

correcting RPL 21 
rebuilding RPL 21 

general registers 
saving and restoring conventions 77 

GET macro 
EODAD routine 54 

GET macro (continued) 
restriction with spanned records to enter EODAD 

routine 54 
GTF trace records 

ACS installation exits 219 

H 
header label 

user 72, 75 
highlighting 114 

IDATMSTP datestamp routine 
described 167 
dummy module 167 
programming considerations 
register contents 168 
returning to VSAM 169 

IEAAPPOO 
EXCP 97. 

IEBCOMPR utility 
user exit routines 84 

IEBDG program 
exits 

CREATE 91 
IEBDG utility 

user exit routines 84 
IEBGENER utility 

user exit routines 84 
IEBPTPCH utility 

user exit routines 84 
IEBUPDTE program 

SYS1 .PARM LIB 

168 

appendage listing usage 97-98 
IECDSECT macro 

nonstandard labels 188 
volume label editor 207-210 

IECIEPRM parameter list 214 
I ECOENTE macro 

nonspecific tape volume mount exit 76 
IECOEVSE macro 

open/eov volume security/verification exit 78 
parameter list 79 

IECUCBCX macro 217 
IEC704A C message 211 
I EFUCBOB ·macro 

nonstandard labels 188 
volume label editor 207 

IEFXVAVR module 194 
IEFXVNSL routine 194 
IEPL (parameter list) 

DA DSM 
format 138 

IFGOEXOA 
format-1 DSCB not found 165 
installation exit 

parameter list 166 

274 MVS/ESA Data Facility Product Version 3: Customization 

\~ 

·~ 

\._,I 



( I 

\..J 

\ . 
~-

IFGOEXOB 
installation exit 

DCB OPEN 159 
IFG01991 

data management abend installation exit 157 
IGBDCSX1 150 
IGBDCSX2 

postcalculation installation exit 154 
IGDACERC macro 223 
IGDACERO 

control block structure 221, 225 
function 221 
read-only variables 243 

IGDACERW 
control block structure 221 
fields 222 
function 221 
read-write variables 249 

IGDACSDC 220 
IGDACSMC 220 
IGDACSPM 

control block structure 221 
function 221 
parameter list 251 

IGDACSSC 220 
IGGDAREN 

DADSM RENAME parameter list 
format 146 

IGGDARU2 143 
IGGDARU3 143 
IGGDASCR 

DADSM SCRATCH parameter list 
format 144 

IGGDASU2 143 
1GGDASU3 143 
IGGDAVLL 

DADSM volume list 
format 146 

iGGPOSTO 
DADSM 141 

IGGPREOO 
exit routine 

DADSM 137 
passing format-1 DSCB 140 

IGGOK05B 181 
IGG0190A 210 
IGG0190B 181 
IGG0190R 181 
IGG0200B 181 
IGG029DM 143 
1GG029DU 143 
IGG030DU . 143 
IGG0550B 181 
IGG0550D 181 
IGG0550F 181 
IGG0550H 181 
IGG0550P 210 

IGXMSGEX message display 
described 169 
format control byte structure 170 
parameter list 170 
programming considerations 170 
register contents 169 

indexed sequential data set 
SYNAD routine 58 

indicator 
SMS data set 

format-1 DSCB 241 
SMS volume 

format-4 DSCB 241 
SYNAD routine, status 52 

INHDR/INTLR parameter 
user exit routines 84 

input data set 
nonstandard labels 175-178 

input header label routine 176 
input trailer label routine 177 
input/output operations 

status indicators 52 
INREC/OUTREC parameter 

user exit routines 84 
installation exit 

ACS 219 
automatic cartridge load 169 
AVR nonstandard tape label 193 
CATALOG 148 
DA DSM 

coding 142 
postprocessi ng 136 
preprocessing 136 
RENAME 143 
SCRATCH 143 

DASO calculation services 148 
data management 

general information 135 
DCB OPEN 159 
dynamic device reconfiguration 195 
format-1 DSCB not found 165 
IDATMSTP datestamp 167 
IGXMSGEX message display 169 
ISO/ANSl/FIPS version 3 

file access 214 
label validation 212 
label validation suppression 213 
volume access 213 
writing your routines 214 
WTOR 211 

nonstandard tape I abel s 17 4, 180 
tape label processing 

general information 173 
volume label editor 199 
volume label verification 196 
volume verification 195 
WTOR 211 
3480 tape drive messages 169 

Index 275 



invoking ACS interface routines 223 
invoking SVC dumps 
IOB operand 

IECDSECT macro 184 
IOB (input/output block) 

SYNAD routine for BDAM 57 
IOERROR parameter 

user exit routines 84 
ISMF messages 

command tables 
described 123, 124 
ISPF table update utility 123 
member names 126, 127 
profile application member names 129 

customizing 
blank tables 129 
changing control statement 130 
changing short and long messages 122 
CLIST control statement 130 
existing tables 129 
finding tables 126 
identifying message number 121 
restrictions 121 
skeletons 122 
SUPERZAP 129 

line operator table 
member names 126 

ISMF (Interactive Storage Management Facility) 
command 

DGTMCTAP 125 
table format 125 

customizing 
described 105 
libraries 106 
making and testing changes 107 

default values 3 
line operator 

DGTMLPAP 126 
table format 126 

tailoring 7 
ISO/ANSI/Fl PS 

label conversion on output 211 
ISO/ANSl/FIPS version 3 installation exits 

described 211 
exit parameter list-IECIEPRM 214 
file access exit 214 
installation-written exit routines 214 
label validation exit 212 
label validation suppression exit 213 
UCB tape class extension data area 218 
UCB tape class extension-IECUCBCX 217 
volume access exit 213 
WTOR 211 

ISPF (Interactive System Productivity Facility) 
command tables 

update utility 123 

J 
JFCB (job file control block) 

installation exit 
OPEN 240 
partial release, OPEN 229 

modifying 
OPEN installation exit 163 

read 71 
requesting partial release 163 

JFCBE (job file control block extension) 
exit routine 71 

JFCBFLAG 71 
job skeletons 

tailoring ISMF 7 
journalizing transactions 24 
JRNAD exit routine 

K 

building parameter list 27 
control interval splits 25 
example 27 
exit, register contents 24 
journalizing transactions 25 
recording RSA changes 25 

KEY parameter 
user exit routines 84 

L 
label editor routines 196-21 O 
label exits 72-75 
LABEL parameter in DD statement 

specifying standard labels 73 
label processing 

parameters 87 
label validation exit 

ISO/ANSl/FIPS Version 3 212 
label validation suppression exit 213 
label version conflict on output 211 
LEA VE parameter 

nonstandard labels 188 
LERAD exit routine 

analyzing logical errors 32 
programming considerations 32 
register contents 32 

library 
CLIST 106 
load 106 
message 106 
panel 106 
skeleton 106 
table 106 

link pack area 
library 

restriction for checkpoint 69 
link-editing 3 

276 MVS/ESA Data Facility Product Version 3: Customization 

\~ 

\~ 



!\._/, 

\ .... _,/ 

load library 
ISMF customizing 106 
what you can customize 106 
where it is stored 106 

load mode 
QISAM 

SYNAD routine 58 
logic block explanation 

nonstandard label processing routines 187, 192 
logical errors 32 
LPAUB 

automatic class selection 
installation exit routines 220 

label editor routines 210 
nonstandard label routines 175, 193 
restriction for checkpoint 69 
volume verification routines 195 

M 
macros, data management 

EOV 
format-1 DSCB not found 165 

IECDSECT 184 
OPEN 

format-1 DSCB not found 165 
magnetic tape volumes 

labels 
user 72-75 

management class 
overriding with installation exits 220 
using ACS installation exits to assign 219 

mapping macros 
tECDSECT 184 
I GD ACERO 

described 221 
listing 243 

IGDACERW 
described 221 
listing 249 

IGDACSPM 
described 221 
listing 251 

parameter list 
ACS installation exit 221 

read-only variables 221 
read-write variables 221 

message display exit 169 
message IEC704A C 211 
message library 

ISMF customizing 106 
what you can customize 106 
where it is stored 106 

messages 
ACS installation exits 

returning messages to user 222 
modifying 

data set list panel fields 
special considerations 119 

modifying (continued) 
JFCB 

OPEN installation exit 163 
list field modification 118 
list panel fields 

where to make changes 119 
module names 

nonstandard label routines 181, 193-194 
volume label editor 201, 210 

mount switch (UCBDMCT) 
nonstandard labels 

bit value for incorrect volume 177-179 
use in label processing routines 188-192 

volume label editor 209 
MSGDISP exit 169 
multiple data sets 

nonstandard labels 174 
multiple volumes 

nonstandard labels 174, 177 
MVS/DFP operating system 

programming considerations 5 
reasons for customizing 4 -
restrictions and limitations 5 
using exit locations 6 

MVS/ESA operating system 
customization 4 
initialization parameters 4 

N 
nonlabel processing routine 

parameter lists 88 
nonspecific tape volume mount exit 

general register rules 77 
IECOENTE macro parameter list 76 
return codes 

defined 76 
specifying 76 

saving and restoring conventions 77 
nonstandard label processing routines 

AVR 193-194 
control program 193 
flowcharts 185-187 
flowcharts, close 191 
format 

combined work and control block area 183 
logic block explanation 187, 192 
open routine flow 187 
types 175-180 
user DCB address 

control information status 182 
DXUDCBAD 182 
pointer status 182 

writing 180-195 
nonstandard labels component support 

processing 175-180 
NSL subparameter 175 

Jndex 277 



NSLCTRLO member 193 
NSLEHDRI member 193 
NSLEHDRO member 193 
NSLETRLI member 193 
NSLETRLO member 193 
NSLOHDRlmember 193 
NSLOHDRO member 193 
NSLREPOS routine 195 
NSLRHDRI member 193 

0 
OAIXL (data management ABEND installation exit 

parameter list) 157 
OMODVOL1 201, 210 
OPEN 

user labels 
system action 90 

OPEN macro 
format-1 DSCB not found 165 
getting control from OPEN 161 

open processing 
after IFGOEXOB control 160 
before IFGOEXOB control 160 
OPEN installation exit 159 
system-determined block size 163 

OPEN routine 
nonstandard labels 175-178 
volume label editor routine 199-202 

opening input data set 
nonstandard labels 176-178 

opening output data set 
nonstandard labels 178 

OPEN/CLOSE/EOV 
exit routine 

parameter list passed to user label 73 
return code, user I abel 73 

standard user label exit 72 
OPEN/EOV 

nonspecific tape volume mount exit 76 
passes to exit 157 
volume security/verification exit 

described 77-80 
general register rules 80 
IECOEVSE 78 
return codes 78 

OPTCD operand (DCB macro) 
request user totaling (OPTCD=T) 81 

OPTCD=T (user totaling) 81 
out-of-extent error 

ABE appendage 99 
OUTHDR/OUTLR parameter 

user exit routines 84 
output data set 

nonstandard labels 178-180 
output header label routine 178-179 
output trailer label routines 180 

overriding classes 
using ACS installation exits 220 

p 
panel library 

ISMF customizing 106 
what you can customize 106 
where it is stored 106 

panels 
changing format 115 
creating 117 
customizing 

changing and testing 109 
date and time 117 
restrictions 108 

data entry 
changing default values 111 
changing initial priming values 109 

data set 
modification 119 
selection 112 
special considerations 119 
validity checking 113 

default colors 115 
delete entry panel 110 
displaying ID 109 
field length and attribute characters 115 
highlighting and color 114 
IN IT sections values 110 
input field restriction values 111 
input fields 116 
ISMF data set list 118 
ISMF default values 111 
list field modification 118, 119 
list panel original version 117 
modifying 

members 120 
message library members 119 
text 116 

removing fields 114 
validity checking 116 
where to make changes 119 

parallel input processing 80 
parameter list 

ACS installation exits 220, 251 
ACS interface routine 224 
allocation retrieval list 61 
DADSM RENAME 

format 146 
DADSM SCRATCH 

format 144 
DCB abend exit routine 63, 64 
IGDACSPM 251 

partial release via JFCB modification 
installation exit 

OPEN module 229 
OPEN installation exit 

example 240 

278 MVS/ESA Data Facility Product Version 3: Customization 



\"'-",I 

( 
\_.,/ 

\ ) 

\.._.,/ 

partial release via JFCB modification (continued) 
requesting 163 

PCI (program-controlled interruption) 
appendage 

EXCP (execute channel program) 102 
PDAB (parallel data access block) 

described 80 
physical errors 

analyzing 33 
physical sequential data sets 

EOV exit 69 
POINT macro 

EODAD routine 55 
positioning tapes 

nonstandard labels 175-180 
PRECOMP parameter 

user exit routines 84 
priming values on panels 109 
program, describing the processing 67 

Q 
QISAM (queued indexed sequential access method) 

data set 
EODAD routine 55 
SYNAD routine 56-58 

ECB (event control block) 
conditions 46-48 
exception code bits 46 

error conditions 58 
input/output operation 

status information 42 
SYNAD routine 

register contents 50 
QSAM (queued sequential access method) 

defaulting buffer number 162 
input/output operation 

status information 42 
parallel input exit 80 
user totaling 80 

R 
RACF (Resource Access Control Facility) 

ANSI standard labels 
first record verification 197, 200 

IBM standard labels 
first record verification 197, 200 

nonstandard labels 
first record verification 198, 200 
processing tapes 176 

unlabeled tape 
first record verification 199, 200 

volume label editor routines 200 
RBA (relative byte address) 

JRNAD, recording changes 25 
ROBACK operand (OPEN macro) 

label exit routine 74 

ROBACK parameter 
nonstandard labels 177, 188 

RDJFCB 
JFCB exit 71 

RDJFCB macro 
return codes 61 

re-invoking ACS routine 
example 226 

READ macro 
EODAD routine 54 
EODAD routine restriction 55 
SYNAD routine 57 

read-only variable 
ACS installation exits 

IGDACERO 243 
referenced 243 

read-write variable 
ACS installation exits 

IGDACERW 249 
setting 249 

reason codes 
ACS in·stallation exits 223 · 

record 
defining contents 91 

recovery 
data, label routines 
DCB 64 
work area 66 

register contents 
appendage conventions 96 
DCB OPEN exit return 164 
entry to IGG026DU 148 
format-1 DSCB not found 166 
SYNAD exit routine 49-51 
usage by 1/0 supervisor 96 

removing fields from panels 113 
RENAME macro 

dummy module 136 
installation exit module 142 

replaceable module 
CATALOG 148 
DA DSM 

postprocessing 136 
preprocessing 136 
RENAME 143 
SCRATCH 143 

DASD calculation services 148 
data management 

ABEND 157 
general information 135 

DCB OPEN 159 
format-1 DSCB not found 165 
I DATMSTP datestamp 167 

replacing system-level module 4 
restart routine 

end-of-volume exit 69 
nonstandard label processing routine 

control information status 184 
nonstandard labels 179-180, 191 

Index 279 



restart routine (continued) 
nonstandard label processing routine (continued) 

pointers, control program 184 
restricting values for input fields on panels 111 
restrictions 

chained scheduling with SKP option 57 
user label exit routines 72-75 

return codes 
ACS installation exits 223 
block count exit 68, 69 
DADSM exits 141 
DADSM RENAME 147 
DADSM SCRATCH 147 
data management ABEND exit 159 
DCB OPEN exit 165 
DCS exits 150, 154 
format-1 DSCB not found exit 167 
IEBDG user exit routine 92 
RDJFCB macro 61 
totaling routine 90 
user exit routine 85 
user labels 73 

RETURN macro 
format 85 
relationship in SYNAD routine 56 

RPL (request parameter list) 
coding guidance 20 
issuing GENCB 21 
using MODCB 21 

s 
sample ACS installation exit 226 
save area 

user totaling 81 
secondary space data 

installation exit 
updating, OPEN 164, 229-240 

security of data 38 
SETL macro 

EODAD routine 55, 56 
SETPRT routine 69 
seven-track feature 

lack of ANSI support 196 
SIO (start-1/0) 

appendage 
EXCP (execute channel program 103 

skeleton library 
ISMF customizing 106 
what you can customize 106 
where it is stored 106 

SKP option 57 
SMF records 

ACS installation exits 219 
SMP/E (system modification program) 

installing reentrant modules 3 
SMS (Storage Management Subsystem) 

ACS installation exits 219 
assigning classes 

null value 222 

SMS (Storage Management Subsystem) (continued) 
assigning classes (continued) 

using ACS installation exits 222 
indicators for DADSM 241 
overriding classes assigned by ACS routines 220 
writing messages 

ACS installation routine 226 
standard user label exit 

open/close/EOV 72 
status 

following an 1/0 operation 42 
indicators 52 

status indicators 53 
storage cl ass 

overriding with installation exits 220 
re-invoking the ACS routine 226 
using ACS installation exits to assign 219 

STOW macro 
DCB abend exit, restriction 62 

SUPERZAP 
modify ISMF tables 129 

SVC dumps · 
ACS installation exits 219 

SVC library 
nonstandard labels 193 
volume label editor 210 

SYNAD exit routine 
analyzing physical errors 33 
BISAM 

register contents 50 
described 58 
example 34 
exception codes 

BDAM 47 
BISAM 43 
QISAM 46 

programming considerations 33 
register contents 

BDAM 51 
BISAM 50 
BPAM 51 
BSAM 51 
DCB-specified ISAM 58 
entry 33 
QISAM 49, 50 
QSAM 51 

status indicators 
BDAM 52 
BPAM 52 
BSAM 52 
QSAM 52 

synchronous 
described 56 
error analysis routine 56-58 
programming considerations 56-58 

user written 36 
SYNADAF macro 

SYNAD routine, use 58 

280 MVS/ESA Data Facility Product Version 3: Customization 



' ~ 

i 1 

\..._; 

SYNADRLS macro 
SYNAD routine, use 58 

SYSIN data set 
restriction 

user totaling 81 
SYSOUT data set 

restriction 
label exits 74 
user totaling 81 

system control block addresses 
DADSM pre/post processing exits 142 

system control blocks 
mapping macros 142 

IECDSECT 184 
system generation 

nonstandard label routines 193-194 
SYS1 .IMAGELIB data set 

searching 69 

T 
table library 

ISM F customizing 106 
what you can customize 106 
where it is stored 106 

tables 
tape label processing 

installation exit modules 173 
writing nonstandard label processing routines 180 

tape marks 
nonstandard I abel s 1 l5, 177-180 
tape organization examples 175 

tape reposition routine 195 
testing changes 107 
text on panels, modifying 116 
TOTAL parameter 

user exit routines 84 
totaling area 

user exit routine 80-82 
totaling routine 

return codes 90 
trailer labels 

user 72, 75 
transactions, journalizing 24 
truncation of commands and line operators 124 

u 
UCB tape class extension 217 
UCB tape class extension data area 218 
UCBCX DSECT 217 
UCBDMCT (mount switch) 
UHL (user header label) 72-75 
unit check 196 
unlabeled tapes 

RACF processing 200 
UPAD 

exit routine 
cross-memory mode 38 
parameter list 37 

UPAD (continued) 
exit routine (continued) 

programming considerations 37 
register contents at entry 36 
user processing 36 

U PDAT option 
See also update mode 
EODAD routine entered for BSAM 54 

USAR (user-security-authorization record) 38 
user exit routines 

specifying parameters in utilities 83 
user header label (UHL) 72-75 
user interfaces 

documenting exits for users 15 
system messages 13-14 

user label exit routine 
described 72-7 5 
exit list entry 72 
parameter list 73 
read backward 72, 74 
restrictions 

data sets on volumes without standard 
labels 74 

SYSOUT data sets 7 4 
system response 73 

user labels 
processing 

data 91 
data set descriptors 89 
described 88 

system action 
OPEN, EOV, CLOSE 90 

user totaling exit routine 
described 80-82 
exit list entry 81 
image area address 81 
relationship with end-of-volume exit 69 
requesting 81 
restricted to BSAM, QSAM 80 
save area 81 
specifying 81 
totaling area 80-82 
variable-length and spanned records 81 

user trailer label (UTL) 72-75 
user-written exit routines 19, 34 
USVR (user-security-verification routine) 38 
utilities 

exit routine 
register contents 84 
return codes 85, 90 
returning 85 
specifying parameters 83 
totaling 90 

programming considerations 85 
utility control statements (IEBDG) 

CREATE 91 
UTL (user trailer label) 72-75 

Index 281 



v 
validation suppression exit 213 
variable-length record (forrnat-V) 

special considerations, with user totaling 81 
volume access exit 

ISO/ANSl/FIPS version 3 installation exits 213 
volume label 

ANSI standard 
verification 196-210 

editor routine 
control program inserting 210 
described 196 
EOV entry conditions 202 
flow for open 205 
logic blocks explanation 207 
receiving control from EOV 205 

entry conditions 196 
IBM standard 

verification 196-210 
program functions 202 
programming conventions 201 

volume label verification 
installation exit module 196 
nonstandard labels 198 
standard label 197 
unlabeled tape 199 

volume list 
DADSM 

format 146 
volume organization 

nonstandard labels 175 
volume serial number 

nonstandard labels 177-179, 193-195 
verified by system .. 196-199 
verified by user 199-210 
volume label editor 199, 209 

volume switching 
nonstandard labels 177 

volume verification 
performed by system 196-199 
performed by user 199-210 

VSAM (virtual storage access method) 
programming considerations 19 
user-written exit routines 19 

w 
work area 

ACS installation exits 220 
nonstandard label routines 181-194 

WRITE macro 
EODAD routine 55 
SYNAD routine 57 

writing 
ACS installation exit messages 226 
GTF trace records 219 
SMF records 219 

WTOR installation exit 
described 211 
ISO/ANSl/FIPS Version 3 211 

WTOR message IEC704A C 211 

Numerics 
3480 tape drive exit 169 
3800 Printer 

JFCBE exit 71 

282 MVS/ESA Data Facility Product Version 3: Customization 

j ..._.,, 



I I 

'<,_,/ 

.§ 
...... 0 c 4-

m en 
E·-

\~/ 
c._..C: 
·- ...... 
::J-
0'"0 
(!) (!) 

a>(/) 

.~ .8 
t'. (!) 
0 0.. 
cn a 
I..._, 

==-o 
am 
EE 
u E 
·- ::J 
~ a> 
E ._ 
0 Cl) ..._,..c: 
::J-1-' 

0 ~ 
\ ::5 0 
\ ,., ·- (!) 
.... _ 

3:: > 
(/):;:::; 
E"iii 
(!) c 

:0 ~ 
21 o..e 
(!) ::J 
en cn 
::J (/) 
am u .... 

a.. 
c (!) 
o rn 
u ::J 

en Cl) 

~ (/) 
o..a 
a Cl) 

en o:: 
\ I 

\._...,/ © 
0 
z 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

MVS/ESA 
Data Facility Product Version 3: 
Customization 

SC26-4504-1 

Reader's 
Comment 
Form 

This manual is part of a library that serves as a reference source for system analysts, programmers, and operators of IBM systems. 
You may use this form to communicate your comments about this publication, its organization, or subject matter, with the under
standing that IBM may use or distribute whatever information you supply in any way it believes appropriate without incurring any 
obligation to you. Your comments will be sent to the author's department for whatever review and action, if any, are deemed appropriate. 

Note: Do not use this form to request IBM publications. If you do, your order will be delayed because publications are not stocked at 
the address printed on the reverse side. Instead, you should direct any requests for copies of publications, or for assistance in using 
your IBM system, to your IBM representative or to the IBM branch office serving your locality. 

If you have applied any technical newsletters (TNLs) to this book, please list them here: 

Comments (please include specific chapter and page references) : 

If you want a reply, please complete the following information: 

Name-------------------------~ Date --------------------

Company~-----------------------~ 

Address ------------------------------------------------

Thank you for your cooperation. No postage is necessary if mailed in the U.S.A. (Elsewhere, an IBM office or representative will be happy to forward your comments or you may mail them directly to the address in the Edition Notice on the back of the title page.) 



SC26-4504-1 

Reader's Comment Form 

Fold and tape Please do not staple Fold and tape 

I 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
! 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

..... •· .......................................................... ·11· · 1· ·1· ·11· ............ ~ ~~~~~ ..... · : 

NECESSARY I 
IF MAILED I 

INTHE I 

BUSINESS REPLY MAIL 
FIRST CLASS MAIL PERMIT NO. 40 ARMONK, NY 

POSTAGE WILL BE PAID BY ADDRESSEE 

International Business Machines Corporation 
Department J57 · 
P.O. Box 49023 
San Jose, CA 95161-9945 

ll.ln1l1l11nll1Hu111Hl1luf.1111l11l1l1l1111HI 

UNITED STATES I 

I 
I 
I 
i 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

.................................................................................................. I 

Fold and tape 

--------- ----- -- - ---- - - --------___ .. _ 
® 

Please do not staple Fold and tape I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
! 
I 
I 
I 
I 



• 

• 

• 
• 

SC26-4504-1 

• 


	Cover page

