

,[

(i " 'L/

,,
/j

i: ;
\J_,/

(! '
~/

(I I

~,

/[
\~

--------- ----- - -- - ---- - - ---
SC26-4505-1 MVS/ESA ---- ----·- Data Administration Guide

Version 3 Release 1

Second Edition (June 1989)

This edition replaces and makes obsolete the previous edition, SC26-4505-0.

This edition applies to Version 3 Release 1 of MVS/DFP™, Program Number 5665-XA3, and to any sub­
sequent releases until otherwise indicated in new editions or technical newsletters.

The changes for this edition are summarized under "Summary of Changes" following the table of con­
tents. Specific changes are indicated by a vertical bar to the left of the change. A vertical bar to the
left of a figure caption indicates that the figure has changed. Editorial changes that have no technical
significance are not noted.

Changes are made periodically to this publication; before using this publication in connection with the '~
operation of IBM systems, consult the latest IBM System/370, 30xx, 4300, and 9370 Processors Bibli-
ography, GC20-0001, for the editions that are applicable and current.

References in this publication to IBM products, programs, or services do not imply that IBM intends to
make these available in all countries in which IBM operates. Any reference to an IBM licensed
program in this publication is not intended to state or imply that only IBM's program may be used.
Any functionally equivalent program may be used instead.

Requests for IBM publications should be made to your IBM representative or to the IBM branch office
serving your locality. If you request publications from the address given below, your order will be
delayed because publications are not stocked there.

A Reader's Comment Form is provided at the back of this publication. If the form has been removed,
comments may be addressed to IBM Corporation, Department JS?, P. 0. Box 49023, San Jose,
California, U.S.A. 95161-9023. IBM may use or distribute whatever information you supply in any way it _J
believes appropriate without incurring any obligation to you.

©Copyright International Business Machines Corporation 1985, 1986, 1987, 1988, 1989. All rights
reserved.

I

~I

I

\L/

'I
\ i ;
~/

Trademarks

The following names have been adopted by IBM for trademark use and are
used throughout this publication:

ESA/370™

MVS/DFP™

MVS/ESATM

MVS/SP™

MVS/XATM

Trademarks iii

\
I i~

\ ·'
~/

•'I

Contents

Chapter 1. Introduction to Data Administration
Overview of Data Set Processing ..
Identifying Data Sets
Overview of New Data Set Allocation

Allocating Non-SMS Data Sets ..
Allocating SMS-Managed Data Sets
Executing Macros in 24- or 31-Bit Addressing Mode

Chapter 2. Data Set Storage
Direct Access Volumes

Primary and Secondary Space Allocation
Track Characteristics

Magnetic Tape Volumes
Cataloging Data Sets

Entering a Data Set Name in the Catalog

Chapter 3. Record Formats
Introduction
Fixed-Length Records

Fixed-Length Records, Standard Format _
Fixed-Length Records, ISO/ANSl/FIPS Tapes

Variable-Length Records
Variable-Length Records
ISO/ANSl/FIPS Variable-Length Records .. .
ISO/ ANSI/Fl PS Variable-Length Spanned Records

Undefined-Length Records
Record Format-Device Type Considerations

Magnetic Tape
Pap.er Tap1e Reader
Card Reader and Punch
Printer
Direct Access Device

Chapter 4. Selecting an Access Method
Overview of Access Methods

Using VIO with Temporary Data Sets
Basic Direct Access Method (BDAM)
Basic Indexed Sequential Access Method {BISAM)
Basic Partitioned Access Method (BPAM)
Basic Sequential Access Method (BSAM)
Queued Indexed Sequential Access Method (QISAM)
Queued Sequential Access Method (QSAM)

1
2
4
4
5
5
6

7
7
8
9

11
12
12

13
13
14
14
15
16
17
22
23
26
27
27
29
29
30
32

33
33
34
34
35
35
36
36
37

Chapter 5. Specifying a Data Control Block and Initializing Data Sets 39
Selecting Data Set Options . 41

DCB Parameters 41
DD Statement Parameters

Changing the DCB
Opening and Closing a Data Set

Open/Close/EOV Errors
OPEN-Prepare a Data Set for Processing

43
44
45
49
50

Contents V

CLOSE-Terminate Processing of a Data Set
Volume Positioning

End-of-Volume Processing
Achieving Device Independence in Sequential Data Sets

Chapter 6. Accessing Records in Data Sets
Accessing Data with READ/WRITE

READ-Read a Block
WRITE-Write a Block
CHECK-Test Completion of Read or Write Operation
WAIT-Wait for Completion of a Read or Write Operation
Data Event Control Block (DECB)

Accessing Data with GET/PUT
GET-Retrieve a Record
PUT -Write a Record
PUTX-Write an Updated Record
Parallel Input Processing (QSAM Only)

Sharing Data Sets
Analyzing 1/0 Errors

Device Support Facilities (ICKDSF)-Diagnosing 1/0 Problems
SYNADAF-Perform SYNAD Analysis Function
SYNADRLS-Release SYNADAF Message and Save Areas

Chapter 7. Spooling and Scheduling Data Sets

Chapter 8. Processing a Sequential Data Set
Creating a Sequential Data Set
Retrieving a Sequential Data Set
Modifying a Sequential Data Set

Updating a Sequential Data Set in Place
Extending a Sequential Data Set ..
Concatenating Sequential Data Sets

Processing with Chained Scheduling .
Chained Scheduling Functions for DASO

Search Direct for Input Operations
Determining the Length of a Record on Input
Writing a Short Block When Using the BSAM WRITE Macro
Managing SAM Buffer Space

Buffer Pool Construction
Buffer Control
Buffering Techniques and GET/PUT Processing Modes

Chapter 9. Processing a Partitioned Data Set
Partitioned Data Set Directory
Allocating Space for a Partitioned Data Set .
Creating a Partitioned Data Set
Processing a Member of a Partitioned Data Set

BLDL-Construct a Directory Entry List
FIND-Position to a Member
STOW-Update the Directory

Retrieving a Member of a Partitioned Data Set
Modifying a Partitioned Data Set

Updating a Member of a Partitioned Data Set
Processing a Partitioned Data Set Residing on MSS

Concatenating Partitioned Data Sets

Vi MVS/ESA Data Administration Guide

51
53
54
56

59
59
60
61
61
62
62
62
63
63
63
64
66
69
69
69
70

71

75
75
76
78
78
78
79
81
82
83
83
85
85
85
89
93

95
96
98

100
103
103
104
105
106
108
108
110
110

\)
~

I

\~

\._/

\.._,,I

Sequential Concatenation
Partitioned Concatenation

Reading a Partitioned Data Set Directory Sequentially

110
110
111

Chapter 10. Generation Data Groups 113
Absolute Generation and Version Numbers 114
Relative Generation Number 114
Programming Considerations for Multiple Step Jobs 115
Generation Data Group Naming for ISO/ ANSI/Fl PS Version 3 Labels 116
Creating a New Generation 117

Allocating a Generation 117
Passing a Generation 119
Rolling In a Generation 120
Creating an ISAM Data Set as Part of a Generation Data Group 120

Retrieving a Generation 121
Building a Generation Data Group Index 121

Chapter 11. 1/0 Device Control Macros
CNTRL-Control an 1/0 Device ..
PRTOV-Test for Printer Overflow
SETPRT-Printer Setup
BSP-Backspace a Magnetic Tape or Direct Access Volume
NOTE-Return the Relative Address of a Block
POINT-Position to a Block
SYNCDEV-Control Data Synchronization

Chapter 12. Protecting Data
Password Protection for Non-VSAM Data Sets
RACF Protection for Non-VSAM Data Sets

Erasing RACF Protected DASO Data Sets

Appendix A. Direct Access Labels
Volume-Label Group

Initial Volume Label Format
Data Set Control Block (DSCB)
User Label Groups

User Header and Trailer Label Format

Appendix B. Control Characters
Machine Code
Extended American National Standards Institute Code

Appendix C. Allocating Space on Direct Access Volumes

Appendix D. ISO/ANSl/FIPS Record Control Word and Segment Control
Word

Translation of ISO/ ANSI/Fl PS Record Control Word
Translation of ISO/ANSI/Fl PS Segment Control Word

Appendix E. Processing a Direct Data Set
Direct Data Set Organization
Creating a Direct Data Set
Referring to a Record in a Direct Data Set
Adding or Updating Records on a Direct Data Set
Sharing Direct Data Sets

Contents

123
123
123
124
125
125
125
126

127
127
128
129

131
132
132
133
133
134

135
135
136

139

141
141
142

143
143
144
146
148
151

vii

Appendix F. Processing an Indexed Sequential Data Set
Indexed Sequential Data Set Organization

Prime Area
Index Areas
Overflow Areas

Creating ar:i Indexed Sequential Data Set
Allocating Space for an Indexed Sequential Data Set

Retrieving and Updating an Indexed Sequential Data Set
Sequential Retrieval and Update
Direct Retrieval and Update

Adding Records to an Indexed Sequential Data Set .. .
Inserting New Records into an Existing Indexed Sequential Data Set
Adding New Records to the End of an Indexed Sequential Data Set
Maintaining an Indexed Sequential Data Set
Indexed Sequential Buffer and Work Area Requirements
Controlling an Indexed Sequential Data Set Device

Abbreviations

Glossary

Index ..

Viii MVS/ESA Data Administration Guide

153
153
154
155
157
157
160
168
168
169
176
176
176
178
179
183

187

191

199

\ /
~

I

__)

CL:

, I

~!

Summary of Changes

Second Edition, June 1989

New Programming Support for Release 1

Service Changes

DATACLAS and the JCL keyword LIKE can be used for tape data sets.
Chapter 10, "Generation Data Groups" discusses how DATACLAS and LIKE can
be used in place of a model DSCB for allocating non-SMS-managed generation
data sets.

Information on processing a direct data set with BDAM has been moved to
Appendix E, "Processing a Direct Data Set" on page 143.

Information on processing an indexed sequential data set has been moved to
Appendix F, "Processing an Indexed Sequential Data Set" on page 153.

Minor technical and editorial changes have been made.

First Edition, December 1988

New Programming Support for Release 1
The Storage Management Subsystem (SMS) automates many storage adminis­
tration tasks. SMS also supports data class, storage class, and management
class. These classes can be assigned when allocating a new data set. Much of
the information previously provided by the DCB and DD statement can now be
provided through data class and storage class. Information on these classes
has been added throughout this manual.

The system can determine the block size for your data set. Information on
system-determined block size has been added to Chapter 5, "Specifying a Data
Control Block and Initializing Data Sets."

Concatenation of like data sets regardless of block size has been expanded to
include tape data sets. Tape data sets may be concatenated with each other
and with DASO data sets. Information documenting this change has been
added to Chapter 8, "Processing a Sequential Data Set."

Changes to support for generation data sets has been documented in
Chapter 10, "Generation Data Groups."

The new AVGREC keyword enhances the function of the SPACE keyword by
changing an average block request into an average record request and
allowing modification of the scale of the primary and secondary quantities.
Information on the use of AVGREC has been added to Appendix C, "Allocating
Space on Direct Access Volumes."

Summary of Changes ix

Service Changes

Passwords are ignored for SMS-managed data sets. Changes to support of
passwords have been added to Chapter 11, "1/0 Device Control Macros."

Support for IEHATLAS has been removed. Use Device Support Facilities
(ICKDSF), discussed in Chapter 6, "Analyzing 110 Errors," instead to diagnose
1/0 problems and disk drive problems.

MVS/DFP Version 3 publications have new order numbers. Publications listed
in the preface reflect these new order numbers.

Minor technical and service changes have been made.

X MVS/ESA Data Administration Guide

J

".._,,,,,,,,

L1

I
\ ;
'-/

(i
\ I

~

Preface

About This Book
This book is intended to help you use IBM data management access methods

other than the virtual storage access method (VSAM) to process data sets. Use

this book together with Data Administration: Macro Instruction Reference,

SC26-4506, to code the macro instructions for non-VSAM data sets. Unless spe­

cifically stated otherwise, the information in this book must not be used for pro­

gramming purposes. However, this book also provides the following types of

information, which are explicitly identified where they occur:

General-Use Programming Interface

General-use programming interfaces are provided to allow you to write pro­

grams that use the services of MVS/DFP .

...__ ______ End of General-Use Programming Interface ------~

Product-Sensitive Programming Interface

Installation exits and other product-sensitive interfaces are provided to allow
your installation to perform tasks such as product tailoring, monitoring, modifi­

cation, or diagnosis. They are dependent on the detailed design or implemen­

tation of the product. Such interfaces should be used only for these specialized

purposes. Because of their dependencies on detailed design and implementa­

tion, it is to be expected that programs written to such interfaces may need to

be changed in order to run with new product releases or versions, or as a

result of service .

...__ _____ End of Product-Sensitive Programming Interface _____ ____.

The following products are shown in this publication for the sake of compat­

ibility only. Although they are still supported, their use is not recommended,
and where applicable, alternatives are suggested.

• The access methods BDAM and EXCP-we recommend you use VSAM key­

sequenced data sets instead of BDAM. Use BSAM, QSAM, or BPAM

instead of EXCP. BDAM, also called direct organization, is not recom­

mended because it is a device-dependent access method.

• The access methods BISAM and QISAM-we recommend you use VSAM

instead.

• OS CVOLS and VSAM catalogs-Convert all OS CVOLs and VSAM catalogs

to integrated catalog facility catalogs.

• Mass Storage System (MSS).

Preface Xi

• The macros:

DCB (BDAM, BISAM, QISAM)
ESETL
FREEDBUF
GET (QISAM)
PUT (QISAM)
READ (BDAM, BISAM)
RE LEX
SETL
WRITE (BDAM, BISAM)

To learn about VSAM or to write programs that create and process VSAM data
sets, see:

• MVS/ESA Catalog Administration Guide, SC26-4502, which describes how to
create master and user catalogs

• MVS/ESA Integrated Catalog Adminstration: Access Method Services Refer­
ence, SC26-4500, and MVSIESA VSAM Catalog Administration: Access
Method Services Reference, SC26-4501, which describe the access method
services commands used to manipulate VSAM data sets

• MVS/ESA VSAM Administration Guide, SC26-4518, which describes how to
create VSAM data sets

• MVSIESA VSAM Administration: Macro Instruction Reference, SC26-4517,
which describes how to code the macro instructions required with VSAM
data sets.

To learn about storage administration, see:

• Storage Management Library, SBOF-1241

• MVS/ESA Storage Administration Reference, SC26-4514.

Required Product Knowledge
To use this book effectively, you should be familiar with:

• Assembler language

• Job control language.

Xii MVS/ESA Data Administration Guide

I
'.)
\...._,;

Required Publications
You should be familiar with the information presented in the following

publications:

Publication Title

Assembler H Version 2 Application Programming: Guide

Assembler H Version 2 Application Programming: Lan­
guage Reference

MVS/ESA Data Administration: Macro Instruction Refer­
ence

MVSIESA JCL Reference

MVSIESA JCL User's Guide

Order Number

SC26-4036

SC26-4037

SC26-4506

GC28-1829

GC28-1830

~/ Related Publications

I

\. J
""'-"

(j
_,/

Some publications from the MVS/SP Version 3 library are referenced in this

book. The MVS/ESA Library Guide for System Product Version 3, GC28-1563,

contains a complete listing of the MVS/SP Version 3 publications and their

counterparts for the prior version.

The MVS!ESA Data Facility Product Version 3: Master Index, GC26-4512, con­

tains both an index to the MVS/DFP library and a summary of the changes

made to the library. You can use it to:

• Find information in other MVS/DFP publications

• Determine how new programming support changes information in the

MVS/DFP library

• Determine which MVS/DFP publications have been c:hanged.

In addition, the following publications may be helpful:

Publication Title

IBM 3262 Model 5 Printer Product Description

IBM 4245 Printer Model 1 Component Description and

Operator

IBM 4248 Printer Model 1 Description

MVSIESA Message Library: System Codes

MVSIESA Message Library: System Messages Volume 1

MVS/ESA Message Library: System Messages Volume 2

MVS Storage Management Library: Configuring Storage

Subsystems

Order Number

GA24-3936

GA33-1541

GA24-3927

GC28-1815

GC28-1812

GC28-1813

SC26-4409

Preface Xiii

Referenced Publications
Within the text, references are made to the publications listed below:

~ Short Title Publication Title Order Number
Access Method Ser- MVSIESA Integrated Catalog SC26-4500
vices Reference Adminstration: Access Method

Services Reference

MVSIESA VSAM Catalog
SC26-4501 Administration: Access Method

Services Reference

Application Develop- MVSIESA Application Develop- GC28-1821
ment Guide ment Guide

Application Develop- MVSIESA Application Develop- GC28-1822
ment Macro Reference ment Macro Reference

Assembler H V2 Appli- Assembler H Version 2 Applica- SC26-4036
cation Programming: tion Programming: Guide \..._,,,1

Guide

Assembler H V2 Appli- Assembler H Version 2 Applica- SC26-4037
cation Programming: tion Programming: Language
Language Reference Reference

Catalog Administration MVSIESA Catalog Administration SC26-4502
Guide Guide

Data Administration: MVS/ESA Data Administration: SC26-4506
Macro Instruction Ref- Macro Instruction Reference '.__.)
ere nee

DFP: Customization MVS/ESA Data Facility Product SC26-4504
Version 3: Customization

IBM 3800 Printing Sub- IBM 3800 Printing Subsystem GC26-3846
system Programmer's Programmer's Guide
Guide

IBM 3800 Printing Subsystem
SH35-0061 Models 3 and 8 Programmer's

\~) Guide

ICKDSF User's Guide Device Support Facilities User's GC35-0033
and Reference Guide and Reference

JCL Reference MVS/ESA JCL Reference GC28-1829

JCL User's Guide MVS/ESA JCL User's Guide GC28-1830
Magnetic Tape Labels MVSIESA Magnetic Tape Labels SC26-4511
and File Structure and File Structure Administration

MVS Configuration MVS/ESA MVS Configuration GC28-18'17
Program Guide and Program Guide and Reference
Reference

Programming Support Programming Support for the GC21-5097
for the IBM 3505 Card IBM 3505 Card Reader and the
Reader and the IBM IBM 3525 Card Punch I)

3525 Card Punch \~

xiv MVS/ESA Data Administration Guide

Short Title Publication Title Order Number

RACF General lnforma- Resource Access Control Facility GC28-0722
(
\,_)

ti on (RACF) General Information

RACF Security Admin- Resource Access Control Facility SC28-1340

istrator's Guide (RACF) Security Administrator's
Guide

SPL: Application Devel- MVSIESA System Programming GC28-1852
opment Guide Library: Application Development

Guide

Storage Administration MVS/ESA Storage Administration SC26-4514

Reference Reference

System-Data Adminis- MVS/ ESA System-Data Adminis- SC26-4515

tration tration

TSO/E V2 Command For MVS/ESA systems: SC28-1881

/ Reference TSOIE Version 2 Command Ref-

L1 erence

For MVS/XA systems:
MVS/Extended Architecture TSO SC28-1134
Extensions Command Language
Reference

TSO/E V2 User's Guide For MVS/ESA systems: SC28-1880
TSOIE Version 2 User's Guide

For MVS/XA systems:

~,
MVS!Extended Architecture TSO
User's Guide SC28-1333

Utilities MVS/ESA Data Administration: SC26-4516

Utilities

VSAM Administration MVS!ESA VSAM Administration SC26-4518

Guide Guide

Preface XV

\'.._.!'

' l
·~

\ v

I

~I

I I

\.,_/'

(I

~/

Chapter 1. Introduction to Data Administration

Data administration is the process of systematically and effectively organizing,

identifying, storing, cataloging, and retrieving all the information (including pro­

grams) that your installation uses.

Data set storage control, along with an extensive catalog system, makes it pos­

sible to retrieve data by symbolic name alone, without specifying device types

and volume serial numbers. In freeing computer personnel from maintaining

complicated volume serial number inventory lists of stored data and programs,

the catalog reduces manual intervention and the likelihood of human error.

A data set is a collection of logically related data records that are stored on a

volume and that may be classified according to installation needs. For

example, a sales department could classify its data by geographic area, by indi­

vidual salesperson, or by any other logical plan. A user can request data from

a direct access volume or a tape volume.

The cata.loging system makes it possible to classify successive generations or

updates of related data. These generations can be given identical names and

subsequently be referred to relative to the current generation. The system

automatically maintains a list of the most recent generations.

Data administration provides:

• Allocation of space on direct access volumes.

• Automatic retrieval of cataloged data sets by name alone.

Data administration is the management of logical storage. In contrast, storage

administration is the management of physical storage. Data administration

deals with data set names and where they are cataloged. Storage adminis­

tration deals with where the data set is actually stored, on which volume. On

the data set level, storage administration and data administration overlap when

you allocate space for a data set. Data administration uses the values you

provide when you allocate a data set to determine logical record length, data

set name, block size, and other attributes. Storage administration uses the

values you provide at allocation time to determine on which volume to place

your data set, how many tracks to allocate for it, and other attributes. The

Storage Management Subsystem (SMS) automates these storage administration

tasks and provides significant functions for the management of data sets. For

more information on SMS, see Storage Administration Reference.

Your storage administrator can define your storage needs to the system in an

SMS configuration. An SMS configuration is a complete set of definitions,

defaulting mechanisms, and other system information that SMS uses to manage

your data sets. The definitions group data sets according to common charac­

teristics. As you allocate new data sets, a defaulting mechanism, automatic

class selection (ACS) routines, assigns these characteristics. With the informa­

tion contained in the SMS configuration, SMS manages your data sets at an

optimum level with a knowledgeable use of the available hardware.

Chapter 1. Introduction to Data Administration 1

Not all data sets can be managed by SMS. The following data sets do not
qualify:

• Data sets having duplicate names in the catalog
• Data sets not cataloged in integrated catalog facility catalogs
• Data sets with nonstandard data set names
• Unmovable data sets
• Data sets with absolute track allocations
• ISAM data sets
• SYSIN and SYSOUT data sets
• CVOLs
• Tape data sets
• Mass Storage System data sets.

Another restriction is that data sets managed by SMS cannot be referred to by
JOBCAT or STEPCA T.

Overview of Data Set Processing
Input/output routines in the operating system schedule and control all data '~ transfer operations between virtual and auxiliary storage. These routines can:

• Read data

• Write data

• Translate data from ISCll/ ASCII (International Standard Code for Information
Interchange and American National Standard Code for Information Inter­
change) to EBCDIC (Extended Binary Coded Decimal Interchange Code) and
the reverse

• Block and unblock records

• Overlap reading, writing, and processing operations

• Read and verify volume and data set labels

• Write data set labels

• Position and reposition volumes automatically

• Detect 110 errors and correct them when possible

• Provide exits to user-written error and label routines.

Data management programs also provide a variety of methods for gaining
access to a data set. These methods are based on data set organization and
data access method. We recommend you use partitioned or sequential organ­
ization instead of direct organization, and use VSAM instead of indexed sequen­
tial organization.

You can organize your data sets in one of five ways:

• Partitioned: Independent groups of sequentially organized records, called
members, are in direct access storage. Each member has a simple name
stored in a directory that is part of the data set and contains the location of
the member's starting point. Partitioned data sets are generally used to
store programs. As a result, they are often called libraries.

\ • Sequential: Records are organized in physical rather than logical \..._)
sequence. Given one record, the location of the next record is determined

2 MVS/ESA Data Administration Guide

I
\ i "'--'!

by its physical position in the data set. You must use the sequential data
set organization for all magnetic tape devices, but it is optional on direct
access devices. Punched cards and printed output must also be sequen­
tially organized.

• VSAM: The records in a VSAM data set can be organized in logical
sequence by a key field (key sequence), in the physical sequence in which
they are written on the data set (entry sequence), or by relative record
number. This access method is for direct or sequential processing of fixed
and variable-length records on DASO. See VSAM Administration Guide for
how to process VSAM data sets.

• Direct: Records within the data set, which must be on a direct access
volume, may be organized in any manner you choose. All space allocated
to the data set is available for data records. No space is required for
indexes. You specify addresses by which records are stored and retrieved
directly.

• Indexed Sequential: Records are arranged in sequence, according to a key
that is a part of every record, on the tracks of a direct access volume. An
index or set of indexes maintained by the system gives the location of
certain principal records. This permits direct and sequential access to any
record. Indexed sequential data sets cannot be managed by SMS. The
virtual storage access method (VSAM) data sets can be used instead of
indexed sequential, and can be managed by SMS.

Requests for input/output operations on data sets through macro instructions
use two techniques: the technique for queued access and the technique for
basic access. Each technique is identified according to its treatment of buf­
fering and synchronization of input and output with processing. The combina­
tion of an access technique and a given data set organization is called an
access method. In choosing an access method for a data set, therefore, you
must consider not only its organization, but also what you need to specify
through macros. Also, you may choose a data organization according to the
access methods and processing capabilities available.

The code generated by the macros for both techniques is optionally re­
enterable, depending on the form in which parameters are expressed.

An important feature of data administration is that much of the detailed informa­
tion needed to store and retrieve data, such as device type, buffer processing
technique, and length of output records, need not be suppHed until the job is
ready to be executed. This device independence permits changes to those
specifications to be made without changes in the program. Therefore, you may
design and test a program without knowing the exact input/output devices that
will be used when it is executed.

Device independence is a feature of both the queued and basic access methods
for processing sequential data sets. To some extent, you can determine the
degree of device independence. Many useful device-dependent features are
available as part of certain macro instructions; achieving device independence
requires some selectivity in their use.

Chapter 1. Introduction to Data Administration 3

Identifying Data Sets
Any information that is a named, organized collection of logically related
records can be classified as a data set. The information is not restricted to a \.._,,
specific type, purpose, or storage medium. A data set may be, for example, a
source program, a library of macros, or a file of data records used by a proc-
essing program.

Whenever you indicate that a new data set is to be created and placed on auxil­
iary storage, you (or the operating system) must give the data set a name. The
data set name identifies a group of records as a data set. All data sets recog­
nized by name (referred to without volume identification) and all data sets
residing on a given volume must be distinguished from one another by unique
names. To help in this, the system provides a means of qualifying data set
names.

A data set name is -one simple name or a series of simple names joined so that
each represents a level of qualification. For example, the data set name
DEPT58.SMITH.DATA3 is composed of three simple names. Proceeding from '~
the left, each simple name is a category within which the next simple name is a
subcategory. The first name is called the high-level qualifier, the last is the
low-level qualifier.

Each simple name consists of from 1 to 8 alphameric characters, the first of
which must be alphabetic. The special character period (.) separates simple
names from each other. Including all simple names and periods, the length of
the data set name must not exceed 44 characters. Thus, a maximum of 22
simple names can make up a data set name.

To permit different executions of a program to process different data sets
without program reassembly, the data set is not referred to by name in the
processing program. When the program is executed, the data set name and
other pertinent information (such as data set disposition) are specified in a job
control statement called the data definition (DD) statement. To gain access to
the data set during processing, reference is made to a data control block (DCB)
associated with the name of the DD statement. Space for a data control block
that specifies the particular data set to be used is reserved by a DCB macro
when your program is assembled.

Overview of New Data Set Allocation
Allocation is the entire process of obtaining a volume and unit of external
storage, and setting aside space on that storage for a new data set. Allocation
of an existing data set differs from allocation of a new data set in that the
storage already exists. If you use JCL, specify DISP= (Nm, KEEP, DELETE)) to allo­
cate a NEW data set. If the procedure completes normally, the data set is
KEPT, but if the procedure fails, it is DELETED. For existing data sets, the NEW
option is replaced with OLD, SHR, or MOD.

To allocate a new DASO data set, you can use:

• JCL DD statements (see JCL Reference)

\
\) ,......_,,,

• TSO/E ALLOCATE command (see TSO/E V2 Command Reference and TSO/E \.._)
V2 User's Guide)

4 MVS/ESA Data Administration Guide

i

\~)

_,J

• DYNALLOC macro (see Application Development Guide)

Allocating Non-SMS Data Sets
Here are some JCL examples of allocating different types of non-SMS-managed

data sets.

Allocation of a Sequential Data Set:

llNEWDS DD UNIT=SYSDA,VOL=SER=SMSPAC,DISP=(NEW,KEEP),
II DSN=SOME.DATA,SPACE=(CYL,(1,1))

Allocation of a Partitioned Data Set:

llNEWLIB DD UNIT=SYSDA,VOL=SER=SMSPAC,DISP=(NEW,KEEP),
II DSN=SOME.DATA,SPACE=(CYL,(1,1,1))

Allocating SMS-Managed Data Sets
Allocating a new data set under SMS, using the automatic class selection rou­

tines defined by your storage administrator, is much simpler. With SMS it is

unnecessary to specify the UNIT, VOL= SER, or SPACE parameters in the DD

statement. This is an example of allocating an SMS-managed data set:

llNEWDS DD DSN=DATASET.NAME,DISP=(N~W,KEEP)

When you allocate a data set under SMS, you may specify data set and storage

requirements using data class, storage class, and management class. A data

class is a named list of data set allocation attributes, such as record length and

record format. A storage class is a named list of storage attributes used to

specify the logical requirements for accessing your data set, such as an appli­

cation's DASO input/output response time and availability. A management

class is a named list of attributes used for data set management, such as

backup, retention, and migration requirements for your data set. The attributes

of each class are defined by your storage administrator in an SMS configura­

tion. An SMS configuration is a complete set of definitions, defaulting mech­

anisms, and other system information that SMS uses to manage storage.

You can specify the name of the data class, storage class, and management

class in the JCL DD statement. For this data allocation example, the storage

administrator would have to define the classes PDS00001, MANAGE01, and

STOR0001.

llNEWDS DD DSN=DATASET.NAME,DISP=(NEW,KEEP),DATACLAS=PDS08881,
II MGMTCLAS=MANAGE81,STORCLAS=STOR8881

Using Automatic Class Selection Routines
If you do not specify the class names in the DD statement, the classes and their

attributes can be assigned by your storage administrator, using the automatic

class selection (ACS) routines. The automatic class selection routines are used

to determine:

• If the data set is to be managed by SMS

• If the classes specified in the DD statement are to be used

• If other or defaulted classes are to be assigned.

Storage class and management class apply only to those data sets that are to

be managed by SMS. You can use data class with· DASO and tape data sets.

Chapter 1. Introduction to Data Administration 5

Note that tape data sets cannot be SMS-managed. Your storage administr~tor
will define the data classes, storage classes, and management classes to be
used by your installation. Your storage administrator should make available a
description of each named class, including when that class should be used and __.
how to invoke it.

Using data class, you can easily create data sets without specifying all of the
data set attributes normally required.

Your storage administrator can define standard data set attributes and use
them to create data classes, which you can then use as a template when you
allocate your data set. For example, your storage administrator may define a
data class for data sets whose names end in LIST and OUTLIST because they
have similar allocation attributes. The ACS routines can then be used to filter
the data set names and assign this data class, if the data set names end in
LIST or OUTLIST.

You can refer to a data class explicitly, specifying it in the DD statement. You
can refer to a data class implicitly, by not specifying a data class in the DD
statement and letting the ACS routines assign the data class defined by your
storage administrator. Whichever method is used, you will need to know:

• What criteria is used by the installation to choose the data class

• What data classes are defined for your installation

• The allocation attributes associated with each data class

• How to specify data class in the DD statement, if you want to refer to a data
class explicitly.

You can override any of the attributes specified in the assigned data class by
specifying the values you want in the DD statement.

Another way to allocate a data set without specifying all of the data set attri­
butes normally required is to model the data set after an existing data set. You
can do this by referring to the existing data set's name or DD statement in the
DD statement for the new data set, using the new JCL keywords LIKE or
REFDD. For more information on the new JCL keywords, see JCL Reference
and JCL User's Guide.

For a more detailed description of classes and how to use them, see Chapter 5,
"Specifying a Data Control Block and Initializing Data Sets" on page 39.

Executing Macros in 24- or 31-Bit Addressing Mode
Unless otherwise stated, data management macros can be executed only in
24-bit addressing mode. In 24-bit mode, all buffers, parameters, control blocks,
save areas, and exit routines must be below 16 megabytes virtual.

6 MVS/ESA Data Administration Guide

I J

\.._,./

u

/

{ '

\~

Chapter 2. Data Set Storage

The operating system provides a variety of devices for collecting, storing, and

distributing data. Despite the variety, the devices have many common charac­

teristics. The generic term volume is used to refer to a standard unit of auxil­

iary storage. A volume may be a reel of magnetic tape, a disk pack, or a drum.

Each data set stored on a volume has its name, location, organization, and

other control information stored in the data set label or volume table of con­

tents (for direct access volumes only). Thus, when the name of the data set

and the volume where it is stored are made known to the operating system, a

complete description of the data set, including its location on the volume, can

be retrieved. Then, the data itself can be retrieved, or new data added to the

data set.

Various groups of labels are used to identify magnetic tape and direct access

volumes, and the data sets they contain. Magnetic tape volumes can have

standard or nonstandard labels, or they can be unlabeled. Direct access

volumes. must use standard labels. Standard labels include a volume label, a

data set label for each data set, and optional user labels.

Keeping track of the volume where a particular data set resides can be a

burden and a source of error. To alleviate this problem, the system provides

for automatic cataloging of data sets. The system can re:trieve a cataloged data

set if given only the name of the data set. You must ensure that all data sets to

be managed by SMS will be cataloged in an integrated catalog facility catalog.

This requires that a VSAM volume data set (VVDS) be created on the same

volume as the data set. The operating system automatically creates a VVDS if

one does not exist on that volume.

By use of the catalog, collections of data sets related by a common external

name and the time sequence in which they were catalog.ed (their generation)

can be identified; they are called generation data groups. For example, a data

set name LAB.PAYROLL(O) refers to the most recent data set of the group;

LAB.PAYROLL(-1) refers to the second most recent data set; and so forth. The

same data set names can be used repeatedly with no need to keep track of the

volume serial numbers used. For more information, see "Relative Generation

Number" on page 114.

Direct Access Volumes
Regardless of organization, data sets created using the operating system can

be stored on a direct access volume. Each block of data has a distinct location

and a unique address, making it possible to find any record without extensive

searching. Thus, records can be stored and retrieved either directly or sequen­

tially.

Direct access volumes are used to store executable programs, including the

operating system itself. Direct access storage (sometimes called DASO

storage) is also used for data and for temporary working storage. One direct

access storage volume may be used for many different data sets, and space on

Chapter 2. Data Set Storage 7

it may be reallocated and reused. A volume table of contents (VTOC) is used to
account for each data set and available space on the volume.

Each direct access volume is identified by a volume label that is stored at track
0 of cylinder 0. You may specify as many as seven addi:tional labels, located
following the standard volume label, for further identification.

The VTOC is a data set consisting of data set control blocks (DSCBs) that
describe the contents of the direct access volume. The VTOC can contain
seven kinds of DSCBs, each with a different purpose and a different format
number. The format 0 DSCB describes an unused (available) record in the
VTOC. System-Data Administration describes format 1 through format 6
DSCBs and their purposes. System-Data Administration also describes the
structure of the VTOC.

Each direct access volume is initi,alized by a utility program before being' used
on the system. The initialization program generates the volume label and
builds the table of contents. For additional information on direct access labels,
see Appendix A, "Direct Access Labels" on page 131.

When a data set is to be stored on a direct access volume, you can supply the
operating system with the amount of space to be allocated to the data set. You
use the SPACE keyword to allocate space expressed in kilobytes, megabytes,
blocks, tracks, or cylinders. If you specify your request in terms of average
block length, space allocation will be independent of device type. You use the
AVGREC keyword to modify the information supplied in the SPACE .keyword.
AVGREC can be used only when you specify average block length in the SPACE
keyword. The average block length will then be treated as average record
length and the primary and secondary quantities will be multiplied by the scale ·~'
specified in AVGREC. Specifying your request using the AVGREC keyword is
the easiest way to allocate space. For more information on the use of the
SPACE and AVGREC keywords, see Appendix C, "Allocating Space on Direct
Access Volumes" on page 139. If the request is made in tracks or cylinders,
you must be aware of such device considerations as cylinder capacity and track
size.

For SMS-managed data sets, the system selects the volumes. Therefore, you
do not need to specify a volume when you define your data set. 1~

Primary and Secondary Space Allocation
An extent is a continuous area of space on a DASO storage volume, occupied
by or reserved for a specific data set. An extent is also a term used to describe
a portion of the control block called the data extent block (DEB). When a data
set is allocated as NEW, the extent information is specified in the SPACE
parameter (for example, SPACE= (TRK,(2,4))). This initially allocates two
tracks (the primary space allocation amount) for the data set. As records are
written to the data set and these two tracks are used up, the system automat­
ically obtains four more tracks (the amount specified by the secondary allo­
cation amount). When these four tracks are used another four tracks are
obtained. This process is continued until the extent limit for the type of data set
is reached.

• A sequential data set can have up to 16 extents
• A partitioned data set can have up to 16 extents

8 MVS/ESA Data Administration Guide

• A direct data set can have up to 16 extents
• A VSAM data set can have up to 123 extents.

I I
\Jj Track Characteristics

i I
\~)

Track Format

BB
Track Descriptor

Record (RO)

EJB
Track Descriptor

Record (RO)

Although direct access devices differ in physical appearance, capacity, and
speed, they are similar in data recording, data checking, data format, and pro­
gramming. The recording surface of each volume is divided into many concen­
tric tracks. The number of tracks and their capacity vary with the device. Each
device has some type of access mechanism, containing read/write heads that
transfer data as the recording surface rotates past them.

Information is recorded on all direct access volumes in a standard format.
Besides device data, each track contains a track descriptor record (capacity
record or record 0) and data records.

Figure 1 shows that there are two possible data record formats-count data and
count key data-only one of which can be used for a particular data set.

Count-Data Format

I Count I a OD EJB
Data Record (R1) Data Record (Rn)

Count-Key-Data Format

OD EJGB
Cata Record (R1) Data Record (Rn)

Figure 1. Direct Access Volume Track Formats

Track Overflow

Besides device data, the count area contains 8 bytes that identify the location of
the record by cylinder, head, and record numbers, its key length (0 if no keys
are used), and its data length.

If the records are written with keys, the key area (1 to 255 bytes) contains a
record key that specifies the data record by part number, account number,
sequence number, or some other identifier. In some cases, records are written
with keys so that they can be located quickly.

If the record overflow feature is available for the direct access device being
used, you can reduce the amount of unused space on the volume by specifying
the track overflow option in the DCB parameter of the DD statement, or the DCB
macro associated with the data set. If the overflow option is used, a block that
does not fit on the track is partially written on that track and continued on the
next track. (The track where the record is continued must be physically next
and must be part of the same extent as the track that holds the first part of the
record.)

Each segment (the portion written on one track) of an overflow block has a
count area. The data length field in the count area specifies the length of that

Chapter 2 .. Data Set Storage 9

segment only. If the block is written with a key, there is only one key area for
the block. It is written with the first segment. If the track overflow option is not
used, blocks are not split between tracks.

Actual and Relative Addressing
Two types of addresses can be used to store and retrieve data on a direct
access volume: actual addresses and relative addresses. The only advantage
of using actual addresses is the elimination of time required to convert from
relative to actual addresses and vice versa. When sequentially processing a
multiple volume data set, you can refer only to records of the current volume.

Actual Addresses: When the system returns the actual address of a record on
a direct access volume to your program, it is in the form MBBCCHHR, where:

M
is a 1-byte binary number specifying the relative location of an entry in a
data extent block (DEB). The DEB is created by the system when the data
set is opened. Each extent entry describes a set of consecutive tracks allo­
cated for the data set.

BBCCHH

R

is three 2-byte binary numbers specifying the cell (bin), cylinder, and head
number for the record (its track address). The cylinder and head numbers
are recorded in the count area for each record.

is a 1-byte binary number specifying the relative block number on the track.
The block number is also recorded in the count area.

If you use actual addresses in your program, the data set must be treated as \~
unmovable.

Relative Addresses: Two kinds of relative addresses can be used to refer to
records in a direct access data set: relative block addresses and relative track
addresses.

The relative block address is a 3-byte binary number that shows the position of
the block relative to the first block of the data set. Allocation of noncontiguous
sets of blocks does not affect the number. The first block of a data set always J

has a relative block address of 0. '__./

The relative track address has the form TTR, where:

TT

R

is an unsigned 2-byte binary number specifying the position of the track rel­
ative to the first track allocated for the data set. The TT for the first track is
0. Allocation of noncontiguous sets of tracks does not affect the number.

is a 1-byte binary number specifying the number of the block relative to the
first block on the track TT. The R value for the first block of data on a track
is 1.

Note: With the IBM 3380 Model K, a data set can contain more than 32,767
tracks. Therefore, assembly halfword instructions may result in invalid data
being processed.

10 MVS/ESA Data Administration Guide

\)
~

i '
\ f ..._.,,/

f

~/

u

Magnetic Tape Volumes
You may use a data class to specify your tape data set attributes such as

record length and record format. You can either specify the data class in the

DD statement or let the ACS routines assign the data class defined by your
storage administrator.

Because data sets on magnetic tape devices must be organized sequentially,

the operating system does not require space allocation procedures comparable

to those for direct access devices. When a new data set is to be placed on a

magnetic tape volume, you must specify the data set sequence number if it is

not the first data set on the reel. The operating system positions a volume with

IBM standard labels, ISO/ANSl/FIPS labels, or no labels so that the data set can

be read or written. If the data set has nonstandard labels, you must provide for

volume positioning in your nonstandard label processing routines. All data sets
stored on a given magnetic tape volume must be recorded in the same density.

When a data set is to be stored on an unlabeled tape volume and you have not
specified a volume serial number, the system assigns a serial number to that

volume and to any additional volumes required for the data set. Each such
volume is assigned a serial number of the form Lxxxyy, where xxx is the data

set sequence number, and yy is the volume sequence number for the data set.

If you specify volume serial numbers for unlabeled volumes where a data set is
to be stored, the system assigns volume serial numbers to any additional

volumes required. If data sets residing on unlabeled volumes are to be cata­
loged or passed, you should specify the volume serial numbers for the volumes

required. This ensures that data sets residing on different volumes are not cat­

aloged or passed under identical volume serial numbers. Retrieving such data
sets can give unpredictable errors.

Each data set and data set label group must be followed by a tape mark. Tape

marks cannot exist within a data set. When the operating system creates a

tape with standard labels or no labels, all tape marks are automatically written.

Two tape marks follow the last trailer label group on a standard-label volume.

On an unlabeled volume, the two tape marks appear after the last data set.

When the operating system creates data sets with nonstandard labels, no tape

marks are written. If you want the operating system to retrieve a data set, you
must supply the tape marks in your routine that creates the nonstandard-label

volume. Otherwise, tape marks are not required after nonstandard labels,
because positioning of the tape volumes must be handled by installation rou­
tines'.

For more information about magnetic tape volume labels, see Magnetic Tape

Labels and File Structure. For more information about nonstandard labels, see

DFP: Customization.

The data on magnetic tape volumes can be in either EBCDIC or ISCll/ASCll.

ISCll/ ASCII is a 7~bit code consisting of 128 characters. It permits data on mag­

netic tape to be transferred from one computer to another, even though the two

computers may be products of different manufacturers.

Data management support of ISCll/ ASCII and of the International Organization

for Standardization (ISO), American National Standards Institute (ANSI), and

Chapter 2. Data Set Storage 11

Federal Information Processing Standard (FIPS) tape labels lets data manage­
ment translate records on input tapes in ISCll/ ASCII into EBCDIC for internal
processing and translate the EBCDIC into ISCll/ ASCII for output. Records on
such input tapes may be sorted into ISCll/ASCll collating sequence._,

Cataloging Data Sets
Non-VSAM data sets can be cataloged in an integrated catalog facility catalog,
VSAM catalog, or an OS CVOL. VSAM data sets can be cataloged in an inte­
grated catalog facility catalog or VSAM catalog. Data sets can be cataloged,
uncataloged, or recataloged. The use of OS CVOLs and VSAM catalogs is not
recommended; we recommend you use integrated catalog facility catalogs
because they give you superior performance, capability, usability, and maintain­
ability. If the data set is to be managed by SMS, it will be cataloged in an inte­
grated catalog facility catalog. OS CVOLs cannot be managed by SMS. For
more information on using integrated catalog facility catalogs, see Catalog
Administration Guide.

Entering a Data Set Name in the Catalog
A non-VSAM data set can be cataloged through (1) job control language (DISP
parameter), (2) access method services (ALLOCATE or DEFINE commands), or
(3) catalog management macro instructions (CATALOG and CAM LST). An
existing data set can be cataloged through the access method services DEFINE
RECATALOG command.

Access method services is also used to establish aliases for data set names
and to connect user catalogs and OS CVOLs to the master catalog. For infor­
mation on how to use the access method services commands, see Access
Method Services Reference. For information on how to use the catalog man­
agement macro instructions, see Catalog Administration Guide and
System-Data Administration.

Data set names cannot be cataloged in an OS CVOL if a name is already cata­
loged whose levels match the highest or higher levels of the specified name.
For example, the qualified name A.B.C.D cannot be cataloged if the name A.B
or A.B.C is already cataloged, but the name A.B.C.D can be cataloged if AB.C
or A.B.C.E is cataloged. This restriction is not true for data sets cataloged in an
integrated catalog facility or VSAM catalog.

12 MVS/ESA Data Administration Guide

(\

_/

I ,

"-.._,;

(

"'-''

u

Chapter 3. Record Formats

Introduction
The record is the basic unit of information used by a processing program and
can be any1thing from a single character to a mass of information collected by a
particular business transaction, or measurements recorded at a given point in
an experiment. A collection of logically related records makes up a data set.
Most data processing consists of reading, manipulating, and writing individual
records.

Blocking is the process of grouping records before they are written on a
volume. A block consists of one or more logical records written between con­
secutive interrecord gaps (IRGs). Blocking conserves storage space on a
volume by 1reducing the number of IRGs in the data set and increases proc­
essing efficiency by reducing the number of input/output operations required to
process the data set. If you do not specify a block size, the system will deter­
mine a block size that is optimum for the device to which your data set is allo­
cated. By letting the system determine the block size, you no longer need to
calculate block sizes.

Records am stored in one of four formats: fixed-length (format-F), variable­
length for data in EBCDIC (format-V) or for data to be translated to or from
ISCll/ASCll (format-D), or undefined-length (format-LI).

Before selecting a record format, you should consider:

• The data type (for example, EBCDIC) your program will receive and the type
of output it will produce

• The input/output devices that will contain the data set

• The access method you will use to read and write the records.

You identify your record format selection in the data control block using the
options in the DCB macro, the DD statement, or the data set label.

ISO/ANSl/FIPS tape records are written in format-F, format-D, format-Sor
format-Li with the restrictions noted under "Fixed-Length Records,
ISO/ANSl/FIPS Tapes" on page 15, "ISO/ANSl/FIPS Variable-Length Records"
on page 2~~. and "Undefined-Length Records" on page 26.

Data can only be in format-Li for ISO/ANSI Version 1 tapes (ISO 1001-1969 and
ANSI X3.27 .. 1969).

When data management reads records from ISO/ANSl/FIPS tapes, it translates
the records into EBCDIC. When data management writes records onto
ISO/ ANSI/Fl PS tapes, it translates the records into ISCll/ ASCII characters.
Because you use input records after they are translated and because output
records am translated when you ask data management to write them, you work
only with EBCDIC.

Note: Translation routines supplied by the system will convert to ASCII 7-bit
code, as e)(plained in Magnetic Tape Labels and File Structure. When the char-

Chapter 3. Record formats 13

acter to be translated contains a bit in the high order position, the 7-bit trans­
lation does not produce an equivalent character. Instead, it produces a
substitute character to note the loss in translaUon. This means, for example,
that random binary data (such as a dump) cannot be recorded in ISO/ANSl/FIPS _.
7-bit code.

Fixed-Length Records
The size of fixed-length (format-F) records, shown in Figure 2, is constant for all
records in the data set. The number of records within a block is constant for
every block in the data set, unless the data set contains truncated (short)
blocks. If the data set contains unblocked format-F records, one record consti­
tutes one block.

The system automatically performs physical length checking (except for card
readers) on blocked or unblocked format-F records. Allowances are made for
truncated blocks.

Format-F records are shown in Figure 2. The optional control character (a),
used for stacker selection or carriage control, may be included in each record
to be printed or punched.

Block

Blocked Record A Record B Record C Records

Block
~

Unblocked I Rec.ord A I Records

Figure 2. Fixed-Length Records

Block
A

r

Record D Record E

a Data

\ Optional Contro!I /
, , Character: 1 Byte /

\ I \ I \ I

\, /
\ I
\ I
\ /

'I Record C !

"
Record F

Block
~

I Record D I

Fixed-Length Records, Standard Format
During creation of a sequential data set (to be processed by BSAM or QSAM)
with fixed-length records, the RECFM subparameter of the DCB macro instruc­
tion may specify a standard format (RECFM = FS or FBS). A standard-format
data set must conform to the following specifications:

• All records in the data set are format-F records.

• No block except the last block is truncated. (With BSAM, you must ensure
that this specification is met.)

14 MVS/ESA Data Administration Guide

\~

\ v

/I , v

(I ,
~I

• Every track except the last contains the same number of blocks.

• Every track except the last is filled to capacity as determined by the track
capacity formula established for the device. (These formulas are presented
in Appendix C, "Allocating Space on Direct Access Volumes" on page 139.)

• The data set organization is physical sequential. A member of a partitioned
data set cannot be specified.

A sequential data set with fixed-length records having a standard format can be
read more efficiently than a data set that doesn't specify a standard format.
This efficiency is possible because the system is able to determine the address
of each record to be read, because each track contains the same number of
blocks.

Restrictions: You should never extend a standard-format data set (by coding
DISP =MOD) if the last block is truncated, because the extension will cause the
data set to contain a truncated block that isn't the last block. Reading an
extended data set with this condition will result in a premature end of data con­
dition when the truncated block is read, giving the appearance that the blocks
following this truncated block do not exist. This type of data set on magnetic
tape should not be read backward, because the data set would begin with a
truncated block. Therefore, you probably won't want to use this type of data set
with magnetic tape. If you use one of the basic access method with this type of
data set, you should not use the track overflow feature.

Standard format should not be used to read records from a data set that was
created using a RECFM other than standard, because other record formats may
not create the precise format required by standard.

If at any time the characteristics of your data set are altered from the specifica­
tions described above, the data set should no longer be processed with the
standard format specification.

Fixed-Length Records, ISO/ ANSI/Fl PS Tapes
For ISO/ ANSI/Fl PS tapes, format-F records are the same as described above,
with three exceptions:

• Control characters, if present, must be ISO/ ANSI/Fl PS control characters.
For more information about control characters, see Appendix B, "Control
Characters" on page 135.

• Record blocks can contain block prefixes.

The block prefix can vary from 0 to 99 bytes, but the length must be con­
stant for the data set being processed. For blocked records, the block
prefix precedes the first logical record. For unblocked records, the block
prefix precedes each logical record.

Using QSAM and BSAM to read records with block prefixes requires that
you specify the BUFOFF operand in the DCB. When using QSAM, you do
not have access to the block prefix on input. When using BSAM, you must
account for the block prefix on both input and output. When using either
QSAM or BSAM, you must account for the length of the block prefix in the
BLKSIZE and BUFL operands of the DCB.

When using QSAM to output DB or DBS records and BUFOFF =O is speci­
fied, the value of the BUFL operand, if specified, must be increased by 4. If

Chapter 3. Record Formats 15

Blocked
Record•

Unblocked
Records

Optional
Block
Prefix

BUFL is not specified, then the BLKSIZE operand must be increased by 4.
This allows for a 4-byte QSAM internal processing area to be included when
the system acquires the buffers. These 4 bytes will not become part of the
user's block.

When you use BSAM on output records, the operating system does not rec­
ognize a block prefix. Therefore, if you want a block prefix, it must be part
of your record. Note that you cannot include block prefixes in QSAM output
records.

The block prefix, as for all the data records for ISO/ANSl/FIPS tapes, can
only contain EBCDIC characters that correspond to the 128, seven-bit ASCII
characters. Thus, you must avoid using data types such as binary, packed
decimal, and floating point that cannot always be translated into ISCll/ASCll.
(See the note on page 13.)

Figure 3 shows the format of fixed-length records for ISO/ANSI/Fl PS tapes
and where control characters and block prefixes are positioned if they exist.

• The GET routine tests each record (except the first) for all circumflex char­
acters (X 1SE 1

). If a record completely filled with circumflex characters is
detected, the end-of-block (EOB) routine is called to get the next block. A
fixed-length recor~ must not consist of only circumflex characters. This
restriction is necessary because circumflex characters are used to pad out
a block of records when fewer than the maximum number of records are
included in a block, and the block is not truncated.

Block Block

Optional
Record A Record B Record C Block Record D Record E Record F

Prefix

Block Block A A

Optional Optional Optional Optional
Block Record A Block Record B Block Record C Block Record D
Prefix Prefix Prefix Prefix

Figure 3. Fixed-Length Records for ISO/ANSl/FIPS Tapes

Variable-Length Records
The variable-length record formats are format-V and format-D. They can also
be spanned (format-VS or -DS), blocked (format-VB or -DB), or both (format-VBS
and -DBS). Format-D, -DS, and -DBS records are used for ISO/ANSl/FIPS tape
data sets. Figure 4 on page 17 shows blocked and unblocked variable-length

I

\"'-'

'\.J

(format-V) records without spanning. _)

16 MVS/ESA Data Administration Guide

i ' \. __)

/

\._./

Block
LL

Blocked Records LL 00 Record B Record C LL 00 Record D Record E Record F

Reserved: 2 Bytes \ ---------------
.___ __ Block Length: 2 Bytes\ LL-------------------------

'r· --------"-----~--~-~

Record

Block

I
I

i
I
I
I

I
I

LL BOW J

Unblocked Record• LL 00 Record B

Reserved: 2 Bytes
~-- Block Length: 2 Bytes

Figure 4. Nonspanned, Format-V Records

Variable-Length Records

ROW Data

/

Optional Control Character ,/
Reserved: 2 Bytes ,/

.___ ___ Record Length: // Block
2 Bytes /{ BDW Record '

RecordC [" ~

Format-V provides for variable-length records and variable-length record seg­
ments, each of which describes its own characteristics, and for variable-length
blocks of such records or record segments. Except when variable-length track
overflow records are specified for volumes on devices with the rotational posi­
tion sensing feature, the control program performs length checking of the block
and uses the record or segment length information in blocking and unblocking.
The first 4 bytes of each record, record segment, or block make up a descriptor
word containing control information. You must allow for these additional 4
bytes in both your input and output buffers.

Block Descriptor Word: A variable-length block consists of a block descriptor
word (BOW) followed by one or more logical records or re:cord segments. The
block descriptor word is a 4-byte field that describes the block. The first 2 bytes
specify the block length LL-4 bytes for the BOW plus the total length of all
records or segments within the block. This length can be from 8 to 32760 bytes
or, when you are using WRITE with tape, from 18 to 32760. The third and fourth
bytes are reserved for possible future system use and must be 0. If the system
does your blocking-that is, when you use the queued access method-the oper­
ating system automatically provides the BOW when it writes the data set. If you
do your own blocking-that is, when you use the basic access method-you
must supply the BOW.

Chapter 3. Record Formats 17

Record Descriptor Word: A variable-length logical record consists of a record
descriptor word (ROW) followed by the data. The record descriptor word is a
4-byte field describing the record. The first 2 bytes contain the length LL of the
logical record (including the 4-byte ROW). The length can be from 4 to 32756.
All bits of the third and fourth bytes must be 0, because other values are used
for spanned records. For output, you must provide the ROW except in data
mode for spanned records (described under "Buffer Control" on page 89). For
output in data mode, you must provide the total data length in the physical
record length field (DCBPRECL) of the DCB. For input, the operating system
provides the ROW except in data mode. In data mode, the system passes the
record length to your program in the logical record length field (DCBLRECL) of
the DCB. The optional control character (a) may be specified as the fifth byte of
each record and must be followed by at least one byte of data (the length in the
ROW, in this case, would be 6). The first byte of data is a table reference char­
acter if OPTCD = J has been specified. The ROW, the optional control char­
acter, and the optional table reference character are not punched or printed.

Spanned Format-VS Records (Sequential Access Method)
Figure 5 on page 19 shows how the spanning feature of the queued and basic
sequential access methods lets you create and process variable-length logical
records that are larger than one physical block and/or to pack blocks with
variable-length records by splitting the records into segments so that they can
be written into more than one block.

When spanning is specified for blocked records, the system tries to fill all
blocks. For unblocked records, a record larger than block size is split and
written in two or more blocks, each block containing only one record or record
segment. Thus the block size may be set to the best block size for a given
device or processing situation. It is not restricted by the maximum record
length of a data set. A record may, therefore, span several blocks, and may
even span volumes. Note that a logical record spanning three or more volumes
cannot be processed in update mode (described under "Buffer Control" on
page 89) by QSAM. For blocked records, a block can contain a combination of
records and record segments, but not multiple segments of the same record.
When records are added to or deleted from a data set, or when the data set is
processed again with different block size or record size parameters, the record
segmenting will change.

18 MVS/ESA Data Administration Guide

l
\.._.)

' I
\._)

LL
Last Segment First Segment

of Logical of Logical
Record A Record B

Reserved:
2 Bytes

Block Length:
2 Bytes

LL

SOW Data

LL

Block

LL

Intermediate Segment
of Logical Record B

\ \
\ \

I I

\, \
\ \ \

\ \
\ LL \, \, ____ __,,,.. ___ ~

Last Segment
LL of Logical

Record B

LL

Last

First Segment

\
\

of Logical
Record C

\

'\
\
\
\
\
\

First
Segment
of Logical
Record

~Inter­
mediate

LL a Segment LL Segment LL
of Logical

Logical Record

of Logical
.__,.__._,..-L-,,,_._,,_...__ __ ___, Record .__---L..__.__.__ ___ _, Record

Optional Control
Character
Reserved: 1 B\'1e

...__ __ Segment Control Code:
1 Byte (See Figure 7)

._____ ___ Segment Length: 2 Bytes
LL

Segment Control
Code

RDW Data Portion of Logical Record B

I ! Data Portion Data Portion I Data Portion I

Segment Control
Code

(In User's Work Area) LL a of ! . of ! of Last
First Segment ! Intermediate Segment ! Segment t t ~Optional Control Character

Reserved: 2 Bytes
Record Length: 2 Bytes

Figure 5. Spanned Format-VS Records (Sequential Access Method)

Considerations for Processing Spanned Record Data Sets
When spanned records span volumes, reading errors may occur when using
QSAM if a volume that begins with a middle or last segment is mounted first or
if an FEOV macro instruction is issued followed by another GET. QSAM cannot
begin reading from the middle of the record. The errors include duplicate
records, program checks in the user's program, and invalid input from the
spanned record data set.

When QSAM opens a spanned record data set in UPDAT mode, it uses logical
record interface {LRI) to assemble all segments of the spanned record into a
single, logical input record and to disassemble a single logical record into mul­
tiple segments for output data blocks. A record area must be provided by using
the BUILDRCD macro instruction or by specifying BFTEK =A in the DCB.

Note: When you specify BFTEK =A, the Open routine provides a record area
equal to the LRECL specific:ation, which should be the maximum length in bytes.
{An LRECL=O is invalid.)

If you issue the FEOV macro when reading a data set that spans volumes, or if
a spanned multivo·lume data set is opened to other than the first volume, make
sure that each volume begins with the first {or only) segment of a logical
record. Input routines cannot begin reading in the middle of a logical record.

Chapter 3. Record Formats 19

Segment Descriptor Word: Each record segment consists of a segment
descriptor word (SOW) followed by the data. The segment descriptor word,
similar to the record descriptor word, is a 4-byte field that describes the
segment. The first 2 bytes contain the length LL of the segment, including the \""'-'
4-byte SOW. The length can be from 5 to 32756 bytes or, when you are using
WRITE with tape, from 18 to 32756 bytes. The third byte of the SOW contains
the segment control code that specifies the relative position of the segment in
the logical record. The segment control code is in the rightmost 2 bits of the
byte. The segment control codes are shown in Figure 6. The remaining bits of
the third byte and all of the fourth byte are reserved for possible future system
use and must be 0.

Binary
Code Relative Position of Segment

00 Complete logical record

01 First segment of a multisegment record

10 Last segment of a multisegment record

11 Segment of a multisegment record other than the first or last segment

Figure 6. Segment Control Codes

The SOW for the first segment replaces the ROW for the record after the record
has been segmented. You or the operating system can build the SOW,
depending on which access method is used. In the basic sequential access
method, you must create and interpret the spanned records yourself. In the
queued sequential access method move mode, complete logical records,
including the ROW, are processed in your work area. GET consolidates seg­
ments into logical records and creates the ROW. PUT forms segments as
required and creates the SOW for each segment. Data mode is similar to move
mode, but allows reference only to the data portion of the logical record (that is,
to one segment) in your work area. The logical record length is passed to you
through the DCBLRECL field of the data control block. In locate mode, both
GET and PUT process one segment at a time. However, in locate mode, if you
provide your own record area using the BUILDRCD macro or if you ask the
system to provide a record area by specifying BFTEK =A, then GET, PUT, and
PUTX process one logical record at a time. (BFTEK=A or the BUILDRCD
macro cannot be specified when logical records exceed 32760 bytes. To
process logical records that exceed 32760 bytes, you must use locate mode and
specify LRECL=X in your DCB macro.)

A logical record spanning three or more volumes cannot be processed when
the data set is opened for update.

When unit record devices are used with spanned records, the system assumes
that unblocked records are being processed and the block size must be equiv­
alent to the length of one print line or one card. Records that span blocks are
written one segment at a time.

Note: Spanned variable-length records cannot be specified for a SYSIN data
set.

20 MVS/ESA Data Administration Guide

.)

~

\
, I ___.;

\._)

(

(/

~

(

\ '

~

Null Segments
A 1 in bit position 0 of the SOW indicates a null segment. A null segment
means that there are no more segments in the block. Bits 1 to 7 of the SOW
and the remainder of the block must be binary zeros. A null segment is not an
end-of-logical-record delimiter. (You do not have to be concerned about null
segments unless you have created a data set using null segments.)

Spanned Variable-Length Records (Basic Direct Access Method)

Track 1

The spanning feature of the basic direct access method (BOAM) lets you create
and process variable-length unblocked logical records that span tracks. The
feature also lets you pack tracks with variabl.e-length records by splitting the
records into segments. Figure 7 shows how these segments can then be
written onto more than one track.

Track 2 Track 3

Block

BDW
~

LL

LU

...
First Segment
of Logical LU
Record A

i \
\

Reserved:
2 Bytes

\
\

\
I

\
I

Intermediate Segment
of Logical Record A

\
\
\
I

\
LL

SOW Data SDW Data
~ lnterme·diate ~~Last

LU

First
Segment Segment Segment

I

f
I
I :

I

I
I
I
I

I
I
I

!

Last Segment
of Logical
Record A

LL

I
I

\

\
\
I

\
\
\
\
\

of Logical LU
Record

of Logical LU of Logical LU
Record Record

l_ Reserved: 1 Byte
Segment Control Code:

Segment Control
Code

1 Byte (See Figure 7)
Segment Length: 2 Bytes

LL

BDW Data Portion of Logical Record A

Logical Record
(in User's Work
Area)

Block Leng .. t2Jh. J 2 Bytes
Reserved:
2 Bytes

1LL = maximum
block size
for track

Data Portion ! Data Portion
of ! of

First Segment ! Intermediate Segment

Data Portion
of

Last Segment

Segment Control
Code

Figure 7. Spanned Format-V Records for Direct Data Sets

When you specify spanned, unblocked record format for the basic direct access
method and when a complete logical record cannot fit on the track, the system
tries to fill the track with a record segment. Thus the maximum record length

Chapter 3. Record Formats 21

of a data set is not restricted by track capacity. Segmenting records allows a
record to span several tracks, with each segment of the record on a different
track. However, because the system does not allow a record to span volumes,
all segments of a logical record in a direct data set are on the same volume.

Note: Use of the basic direct access method (BDAM) is not recommended.

ISO/ ANSI/Fl PS Variable-Length Records
For ISO/ ANSI/Fl PS tapes, nonspanned variable-length records are format-D
records. ISO/ ANSI/Fl PS records are the same as format-V records, with the fol­
lowing exceptions:

• Block prefix-A record block can contain a block prefix. To specify a block
prefix, code the BUFOFF operand in the DCB macro. The block prefix can
vary in length from 0 to 99 bytes but its length must remain constant for all
records in the data set being processed. For blocked records, the block
prefix precedes the RDW for first or only logical record in each block. For
unblocked records, the block prefix precedes the RDW for each logical
record.

To specify that the block prefix is to be treated as a BDW by data manage­
ment for format-D or -DS records on output, code BUFOFF = L as a DCB
operand. Your block prefix must be 4 bytes long, and it must contain the
length of the block, including the block prefix. The maximum length of a
format-D or -DS, BUFOFF = L block is 9999, because the length (stated in
binary by the user) is translated to a 4-byte ASCII character decimal field on
the ISO/ANSI/Fl PS tape when the block is written. It is converted back to a
2-byte length field in binary followed by two bytes of zeros when the block
is read. If you use QSAM to write records, data management fills in the
block prefix for you. If you use BSAM to write records, you must fill in the
block prefix yourself. If you are using chained scheduling to read blocked
DB or DBS records, you cannot code BUFOFF =.absolute expression in the
DCB. Instead, BUFOFF = L is required, because the access method needs
binary RDWs and valid block lengths to unblock the records.

When you use QSAM, you cannot read the block prefix into your record
area on input. When using BSAM, you must account for the block prefix on
both input and output. When using either QSAM or BSAM, you must
account for the length of the block prefix in the BLKSIZE and BUFL oper­
ands.

When you use BSAM on output records, the operating system does not rec­
ognize the block prefix. Therefore, if you want a block prefix, it must be
part of your record.

The block prefix can only contain EBCDIC characters that correspond to the
.1.28, seven-bit ASCII characters. Thus, you must avoid using data types,
such as binary, packed decimal, and floating point, that cannot always be
translated into ISCll/ ASCII. (See the Note in Chapter 3, "Record Formats"
on page 13.) For DB and DBS records, the only time the blo~k prefix can
contain binary data is when you have coded BUFOFF = L, which tells data
management that the prefix is a BDW. Unlike the block prefix, the RDW
must always be in binary.

• Block size-Version 3 tapes have a maximum block size of 2048. This limit
may be overridden by a label validation installation exit.

22 MVS/ESA Data Administration Guide

(

~)

I

_,1

Blocked
Records

Optional

If you create variable-length blocks that are shorter than 18 bytes, data
management pads each one to 18 bytes when the blocks are written onto
an ISO/ ANSI/Fl PS tape. The padding character used is the ISCll/ ASCII
circumflex character.

• Control characters-Control characters, if present, must be ISO/ ANSI control
characters. For more information about control characters, see
Appendix B, "Control Characters" on page 135.

Figure 8 shows the format of nonspanned variable-length records for
ISO/ANSl/FIPS tapes, where the record descriptor word (ROW) is located, and
where block prefixes and control characters must be placed when they are
used ..

Block Block

Optional
Block Record A Record B Record Block Record D Record E Record F
Prefix

Unblocked Optional
Records Block

Prefix

Prefix

E[ll I
// t t '"toptional Control Character __ _,,,-------/ L= Reserved: 2 Bytes ___ / __ _

/ Record Length: _/ ____ _
/' 2 Bytes----------

/ ------ Block
/,,,/ ,,,. -- ----

Optional
Record C Block Record D

Prefix

Optional
Block
Prefix

Block

Record E

Figure 8. Nonspanned Format-D Records for ISO/ANSl/FIPS Tapes

ISO/ ANSI/Fl PS Variable-Length Spanned Records
For ISO/ANSl/FIPS tapes, variable-length spanned records must be specified in
the DCB RECFM parameter as DCB RECFM =OS or DBS. Format-OS and -DBS
records are similar to format-VS or -VBS records with the following exceptions:

• Segment descriptor word (SDW)-There is an additional byte preceding each
SOW for OS/DBS records. This additional byte is required for conversion of
the SOW from IBM to ISO/ANSl/FIPS format, because the ISO/ANSI SOW
(called a segment control word) is five bytes long. Otherwise, the SOW for
OS/DBS records is the same as the SOW for VS/VBS records. The SOW LL
count excludes the additional byte. (See "Processing Considerations for OS
and DBS Records" on page 24.)

• Extended logical record interface (XLRl)-DS!DBS records may be proc­
essed using XLRI. (See "Processing Considerations for OS and DBS
Records" on page 24.)

• The exceptions previously noted ("ISO/ANSl/FIPS Variable-Length Records"
on page 22) for format-D records still apply.

Chapter 3. Record Formats 23

Blocked
Records

First Seg.
of Logical
Record B

Optional
Block·
Prefix

Figure 9 on page 24 shows what spanned variable-length records for
ISO/ANSl/FIPS tapes look like when you are using IBM access methods. The
figure shows the segment descriptor word (SOW), where the record descriptor
word (ROW) is located, and where block prefixes must be ptaced when they are
used. If you are not using IBM access methods, see Appendix D,
"ISO/ANSl/FIPS Record Control Word and Segment Control Word" on page 141,
for a description of ISO/ANSI/Fl PS record control words and segment control
words.

Block

Last Seg. First Seg. of
of Log. Logical
Record A Record B

/

Block

Optional Intermediate Seg.
Block of Logical Record B
Prefix

I I
I

I

I I
LL+ 1

/
!
I
/

Optional
Block
Prefix

I
I

,'
,'
I

!
I
I
I

Block

Last Seg. First Seg.
of Log. of Logical
Record B Record C

' \
\\

\
LL+1 \

SOW DATA SOW DATA
~

Intermediate
LL K; o Seg. of Logical

Record B

Reserved: 1 Byte
Segment Position
Indicator: 1 Byte
Segment Length: 2 Bytes
Field Expansion Byte

~

LL CO
Last Seg.
of Logical
Record B

Reserved
Segment Position
Indicator

.____ __ Segment Length
~--- Field Expansion

Byte

LL

RDW(Binary) Complete Logical Record Data

Logical
Record in LRI
Record Area

First Seg. Intermediate Last Seg.
LL 00 of Logical Segment of of Logical

Record B Logical Record B Record B

T t__. Reserved: 2 B~es (Must Be Zero)
Record Length. 2 Bytes

LLL

RDW(Binary) Complete Logical Record Data

XLRI Format
L ·

1
R d First Seg. Intermediate Last Seg. ogica ecor O LLL f L . I S t f f L I I in XLRI o og1ca egmen o o og ca

Record Area Record B Logical Record B Record B

Record Length (3 Bytes) to 16 776192
.___ __ Reserved Byte (Must Be Zero)

Reserved
Segment Position
Indicator
Segment Length
Field Expansion
Byte

Figure 9. Spanned Variable-Length (Format-OS) Records for ISO/ANSI/Fl PS Tapes

Processing Considerations for OS and DBS Records
When using QSAM, the same application used to process VS/VBS tape files can
be used to process OS/DBS tape files. However, you must ensure that
ISO/A.NSl/FIPS requirements such as block size limitation, tape device, and
restriction to EBCDIC characters that correspond to the 128, seven-bit ASCII
characters are met. The SCW/SDW conversion and buffer positioning is
handled by the GET/PUT routines.

24 MVS/ESA Data Administration Guide

. \
__.)

L)

I

\ J

~

When using BSAM to process a OS/DBS tape file, you must allow for an addi­
tional byte at the beginning of each SOW. The SOW LL must exclude the addi­
tional byte. On input, you must ignore the unused byte preceding each SOW.
On output, you must allocate the additional byte for each SOW.

SOW Conversion: Sequential access method end-of-block (EOB) routines
perform conversion between ISO/ANSl/FIPS segment control word (SCW) format
and IBM segment descriptor word (SOW) format for both QSAM and BSAM
processing. On output, the binary SOW LL value (provided by you when using
BSAM and by the access method when using QSAM), is increased by 1 for the
extra byte and converted to four ISO/ANSl/FIPS numeric characters. Because
the binary SOW LL value will result in four numeric characters, the binary value
must not be greater than 9998. The fifth character is used to designate which
segment type (complete logical record, first segment, last segment, or interme­
diate segment) is being processed.

On input, the four numeric characters designating the segment length are con­
verted to two binary SOW LL bytes and decreased by one for the unused byte.
The ISO/ANSI/Fl PS segment control character maps to the OS/DBS SOW control
flags. This conversion leaves an unused byte at the beginning of each SOW. It
is set to X 100 1

• For more detail on this process, see Appendix D,
"ISO/ANSl/FIPS Record Control Word and Segment Control Word" on page 141.

XLRI Mode: The extended logical record interface (XLRI) may be used with
OS/DBS files to communicate LRECL values over 32760. (XLRI is supported
only in QSAM locate mode for ISO/ANSl/FIPS tapes.) XLRI should be used for
any case where the logical record will exceed 32760 bytes. Using the
LRECL=X for ISO/ANSl/FIPS causes an 013-DC ABEND.

To use XLRI, specify LRECL=OK or LRECL=nK in the DCB macro. Specifying
DCBLRECL with the K suffix sets the DCBBFTK bit that indicates that LRECL is
coded in K units and that the DCB is to be processed in XLRI mode.

LRECL=OK in the DCB macro specifies that the LRECL value will come from
the file label or JCL. When LRECL is from the label, the file must be opened as
an input file. The label (HDR2) value for LRECL will be converted to kilobytes
and rounded up when XLRI is in effect. When the ISO/ANSl/FIPS label value for
LRECL is 00000 to show that the maximum record length may be greater than
99999, the LRECL = nK must be used in the JCL or in the DCB to specify the
maximum record length.

The LRECL from JCL can be expressed in absolute form or with the K notation.
Absolute values, permissible only from 5 to 32760, will be converted to kilobytes
by rounding up to an integral multiple of 1024 when the DCB is for XLRI.

To show the record area size in the DD statement, code LRECL = nK or specify
a data class that has the LRECL attribute you need. The value nK may range
from 1K to 16383K (expressed in 1024-byte multiples). However, depending on
the buffer space available, the value you can specify in most systems will be
much smaller than 16383K bytes. This value is used to determine the size of
the record area required to contain the largest logical record of .the spanned
format file.

Chapter 3. Record Formats 25

When using XLRI, the exact LRECL size is communicated in the three low-order
bytes of the ROW in the record area. This special ROW format exists only in the
record area to communicate the length of the logical record (including the
4-byte ROW) to be written or read. (See the XLRI format of the ROW in Figure 9 '"-'
on page 24.) DCB LRECL shows the 1024-multiple size of the record area
(rounded up to the next nearest kilobyte). The normal OS/DBS SOW format is
used at all other times before conversion.

Undefined-Length Records
Format-Li permits processing of records that do not conform to the F or V
format. Figure 10 shows how each block is treated as a record; therefore, any
unblocking that is required must be performed by your program. The optional
control character may be used in the first byte of each record. Because the
system does not do length checking on format-Li records, your program may be
designed to read less than a complete block into virtual storage.

Record

Block
~

I Record c I

Figure 10. Undefined-Length Records

For format-Li records, the user· must specify the record length when issuing the
WRITE, PUT, or PUTX macro instruction. No length checking is performed by
the system, so no error indication will be given if the specified length does not
match the buffer size or physical record size.

\~

In update mode, you must issue a GET or READ macro before you issue a PUTX
or WRITE macro to a data set on a direct access device. If you change the ·~
record length when you issue the PLITX or WRITE macro, the record will be
padded with zeros or truncated to match the length of the record received when
the GET or READ macro was issued. No error indication will be given.

For Version 3 ISO/ ANSI/Fl PS tapes, format-LI records are not supported. An
attempt to process a format-LI record from a Version 3 tape will result in
entering the label validation installation exit.

ISO/ANSI Version 1 (ISO 1001-1969 and ANSI X3.27-1969) tapes containing
format-LI records can be used for input only. These records are the same as
the format-LI records described .above, except the control characters must be
ISO/ ANSI control characters, and block prefixes can be used.

26 MVS/ESA Data Administration Guide

I

_J

(
~)

Record Format-Device Type Considerations

Magnetic Tape

Before executing your program, you must supply the operating system with the
record format (RECFM) and device-dependent information in data class, a DCB
macro instruction, a DD statement, or a data set labeL The DCB subparame­
ters for the DD statement differ slightly from those described here. A complete
description of the DD statement keywords and a glossary of DCB subparame­
ters are contained in JCL Reference.

The record format (RECFM) parameter of the DCB macro specifies the charac­
teristics of the records in the data set as fixed-length (RECFM = F), variable­
length (RECFM =V or D), variable-spanned (RECFM = DS or -VS), or
undefined-length (RECFM = U). All record formats except U can be blocked.
Fixed-length blocked records (RECFM = FB) can be specified as standard
(RECFM = FBS), meaning that there are no truncated (short) blocks or unfilled
tracks within the data set, with the possible exception of the last block or track.
Data sets with a fixed-length, standard format are described under "Fixed­
Length Records, Standard Format" on page 14.

As an optional feature, a control character can be contained in each record.
This control character will be recognized and processed if the data set is
printed or punched. The control characters are transmitted on both tapes and
direct access volumes. The presence of a control character is indicated by M
or A in the RECFM field of the data control block. M denotes machine code; A
denotes American National Standards Institute (ANSI) code. If either M or A is
specified, the character must be present in every record; the printer space
(PRTSP) or stacker select (STACK) field of the DCB is ignored. The optional
control character must be in the first byte of format-F and format-LI records and
in the fifth byte of format-V records and format-D records where BUFOFF = L.
Control character codes are listed in Appendix B, "Control Characters" on
page 135. The device-dependent (DEVD) parameter of the DCB macro specifies
the type of device where the data set's volume resides:

• TA magnetic tape
• PR printer
• PC card punch
• RD card reader
• DA direct access device or Mass Storage System (MSS) virtual volumes

Note: Because the DEVD option is required only for the DCB macro expansion,
you are guaranteed the maximum device flexibility by letting it default to
DEVD=DA.

Format-F, -V, -D, and -U records are acceptable for magnetic tape. Format-V
records are not acceptable on 7-track tape if the data conversion feature is not
available. ASCII records are not acceptable on 7-track tape.

When you create a tape data set with variab.le-length record format-V or -D, the
control program pads any data block shorter than 18 bytes. For format-V
records, it pads to the right with binary zeros so that the data block length
equals 18 bytes. For format-D (ASCII) records, the padding consists of ASCII
circumflex characters, which are equivalent to X 1SE 1 s.

Chapter 3. Record Formats 27

Note that there is no minimum requirement for block size. However, in
nonreturn-to-zero-inverted mode, if a data check occurs on a magnetic tape
device, any record shorter than 12 bytes in a read operation will be treated as a
noise record and lost. No check for noise will be made unless a data check \'-
occurs.

Figure 11 shows how the tape density (DEN) specifies the recording density in
bits per inch per track. When DEN is not specified, the highest density capable
by the unit will be used.

Recording Density

DEN 7-Track Tape 9-Track Tape 18-Track Tape

1 556 (NRZI) NIA NIA
2 800 (NRZI) 800 (NRZl) 1 NIA
3 NIA 1600 (PE) 2 NIA
4 NIA 6250 (GCR) 3 NIA

Notes:

NRZI is for nonreturn-to-zero-inverted mode.
2 PE is for phase encoded mode.
3 GCR is for group coded recording mode.

Figure 11. Tape Density (DEN) Values

28 MVS/ESA Data Administration Guide

/
i • '

\L /

The track recording technique (TRTCH) for 7-track tape can be specified as:

c

E

T

Paper Tape Reader

Data conversion is to be used. Data conversion makes it possible to write 8
binary bits of data on 7 tracks. Otherwise, only 6 bits of an 8-bit byte are
recorded. The length field of format-V records contains binary data and is
not recorded correctly without data conversion.

Even parity is to be used; if E is omitted, odd parity is assumed.

BCDIC to EBCDIC translation is required.

The paper tape reader accepts format-F and format-LI records. If you use
QSAM, you should not specify the records as blocked. Each format-LI record is
followed by an end-of-record character. Data read from paper tape may

/I optionally be co.nverted into the system's internal representation of one of six
l\l_j standard paper tape codes. Any character found to have a parity error will not

be converted when the record is transferred into the input area. Characters
deleted in the conversion process are not counted in determining the block
size.

I
(i
I

\J_,,./

The following symbols show the code in which the data was punched. If this
information is omitted, I is assumed.

IBM BCD perforated tape and transmission code (8 tracks)

F Friden (8 tracks)

B Burroughs (7 tracks)

c National Cash Register (8 tracks)

A ASCII (8 tracks)

T Teletype1 (5 tracks)

N No conversion

Note that when you are using QSAM, the processing mode must be move
mode.

Card Reader and Punch
Format-F and -LI records are acceptable to both the reader and the punch;
format-V records are acceptable to the punch only. The device control char­
acter, if specified in the RECFM parameter, is used to select the stacker; it is
not punched. The first 4 bytes (record descriptor word or segment descriptor
word) of format-V records or record segments are not punched. For format-V
records, at least 1 byte of data must follow the record or segment descriptor
word or the carriage control character.

1 Trademark of the Teletype Corporation

Chapter 3. Record Formats 29

Printer

Each punched card corresponds to one physical record. Therefore, you should
restrict the maximum record size to 80 {EBCDIC mode) or 160 {column binary
mode) data bytes. When mode {C) is used for the card punch, BLKSIZE must
be 160. unless you are using PUT. Then you can specify BLKSIZE as 160 or a
multiple of 160, and the system handles this as described under "PUT-Write a
Record" on page 63. You can specify the read/punch mode of operation
(MODE) parameter as either card image {column binary) mode (C) or EBCDIC
mode (E). If this information is omitted, Eis assumed .. The stacker selection
parameter {STACK) can be specified as either 1 or 2 to show which bin is to
receive the card. If it is not specified, 1 is assumed.

For all QSAM, RECFM = FB, card punch data sets, the block size in the DCB will
be adjusted by the system to equal the logical record length. This data set will
be treated as RECFM = F. If the system builds the buffers for this data set, the
buffer length will be determined by the BUFL parameter. If the BUFL parameter
was not specified, the adjusted block size is used for the buffer length.

If the DCB is to be reused with a block S·ize larger than the logical record
length, you must reset DCBBLKSI in the DCB and ensure that the buffers are
large enough to contain the largest block size expected. You may ensure the
buffer size by specifying the BUFL parameter before the first time the data set
is opened or by issuing the FREEPOOL macro after each CLOSE macro so the
system will build a new buffer pool of the correct size each time the data set is
opened.

Punch error correction on the IBM 2540 Card Read Punch is not performed.

The IBM 3525 Card Punch accepts only format-F records for print data sets and
for associated data sets. Other record formats are allowed for the read data
set, the punch data set, and the interpret punch data set. For more information
on programming for the 3525 Card Punch, see Programming Support for the
IBM 3505 Card Reader and the IBM 3525 Card Punch.

With the IBM 3SOO Printing Subsystem, the data in the record can contain two
optional bytes-the optional control character used for carriage control, followed
by an optional table reference character used for dynamically selecting a char­
acter arrangement table during printing. These characters are discussed
below.

Carriage Control Character
You may specify in the DD statement, the DCB macro, or the data set label that
an optional control character is part of each record in the data set. The 1-byte
character is used to show a carriage control function when the data set is
printed or a stacker bin when the data set is punched. Although the character
is a part of the record in storage, it is never printed or punched. Note that
buffer areas must be large enough to accommodate the character. If the imme­
diate destination of the record is a device, such as a disk, that does not recog­
nize the control character, the system assumes that the control character is the
first byte of the data portion of the record. If the destination of the record is a
printer or punch and you have not indicated the presence of a control char­
acter, the system regards the control character as the first byte of data. A list

\

~

of the control characters is in Appendix B, "Control Characters" on page 135. ,
\)
\~

30 MVS/ESA Data Administration Guide

•f
'i

\L_,,J

I'.

3800 Table Reference Character
The 3800 table reference character is a numeric character (0, 1, 2, or 3) corre­
sponding to the order in which the character arrangement table names have
been specified with the CHARS keyword. It is used for selection of a character
arrangement table during printing. For more information on the table reference
character, see IBM 3800 Printing Subsystem Programmer's Guide.

A numeric table reference character (such as 0) selects from within the table
that font to which the character corresponds. The characters' number values
represent the order in which the font names have been specified with the
CHARS parameter. In addition to using table reference characters to corre­
spond to font names specified on the CHARS parameter, you can also code
table reference characters that correspond to font names specified in PAGEDEF
control structure. Valid table reference characters vary and range between 0
and 126. Table reference characters with values greater than 126 default to a
value of 0 (zero). For additional information, see IBM 3800 Printing Subsystem
Programmer's Guide.

\L_/ Record Formats

I

~i

I
I

"l_,·

;I

\L)

Records of format-F, -V, and -U are acceptable to the printer. The first 4 bytes
(record descriptor word or segment descriptor word) of format-V records or
record segments are not printed. For format-V records, at least 1 byte of data
must follow the record or segment descriptor word or the carriage control char­
acter. The carriage control character, if specified in the RECFM parameter, is
not printed. The system does not position the printer to channel 1 for the first
record unless specified by a carriage control character.

Because each line of print corresponds to one record, the record length should
not exceed .the length of one line on the printer. For variable-length spanned
records, each line corresponds to one record segment, and block size should
not exceed the length of one line on the printer.

If carriage control characters are not specified, you can show printer spacing
(PRTSP) as 0, 1, 2, or 3. If it is not specified, 1 is assumed.

For all QSAM, RECFM = FB, printer data sets, the block size in the DCB will be
adjusted by the system to equal the logical record length. This data set will be
treated as RECFM = F. If the system builds the buffers for this data set, the
buffer length will be determined by the BUFL parameter. If the BUFL parameter
was not specified, the adjusted block size is used for the buffer length.

If the DCB is to be reused with a block size larger than the logical record
length, you must reset DCBBLKSI in the· DCB and ensure that the buffers are
large enough to contain the largest block size exp:ected. You may ensure the
buffer size by specifying the BUFL parameter before the first time the data set
is opened or by issuing the FREEPOOL macro after each CLOSE macro so the
system will build a new buffer pool of the correct size each time the data set is
opened.

Chapter 3. Record Formats 31

Direct Access Device
Direct access devices accept records of format-F, -V, or -U. If the records are
to be read or written with keys, the key length (KEYLEN) must be specified. In
addition, the operating system has a standard track format for all direct access
volumes. Each track contains data information and certain control information
such as:

• The address of the track

• The address of each record

• The length of each record

• Gaps between areas.

A complete description of track format is contained in "Direct Access Volumes"
on page 7.

32 MVS/ESA Data Administration Guide

(I
_./

(_)

/!

\J __ ../ I

Chapter 4. Selecting an Access Method

The operating system allows you to concentrate most of your efforts on proc­
essing the records read or written by the data management routines. To get
the records read and written, your main responsibility is to describe the data
set to be processed, the buffering techniques to be used, and the access
method. An access method has been defined as the combination of data set
organization and the technique (queued or basic) used to gain access to the
data.

Overview of Access Methods
Access methods are identified primarily by the data set organization to which
they apply. For instance, BDAM is the basic access method for direct organiza­
tion. However, there are times when an access method identified with one
organization can be used to process a data set usually thought of as organized
in a different manner. Thus, a data set created by the basic access method for
sequential organization (BSAM) may be processed by the basic direct access
method (BDAM) and vice versa. If the queued access method is used to
process a sequential data set, the access method is called the queued sequen­
tial access method (QSAM).

Basic access methods are used for all data organizations, while queued access
methods apply only to sequential and indexed sequential data sets as shown in
Figure 12.

Note: Use of BDAM is not recommended; we recommend you VSAM key­
sequenced data sets instead. Use of BISAM and QISAM is not recommended;
we recommend you use VSAM instead.

Data Set Access Method
Organization Basic Queued

Direct BDAM
Indexed Sequential BISAM QISAM
Partitioned SPAM, BSAM QSAM
Sequential BSAM QSAM

Figure 12. Data Management Access Methods

It is possible to control an 1/0 device directly while processing a data set with
any data organization without using a specific access method. The execute
channel program (EXCP) macro instruction uses the system programs that
provide for scheduling and queuing 1/0 requests, efficient use of channels and
devices, data protection, interruption procedures, error recognition, and retry.
Complete details about the EXCP macro are in System-Data Administration.
Use of the EXCP macro instruction is not recommended.

Chapter 4. Selecting an Access Method 33

Using VIO with Temporary Data Sets
Temporary data sets can be handled by a function called virtual 1/0 (VIO). Data
sets for which VIO is specified are located in external page storage. However,
to the access methods (BDAM, SPAM, BSAM, QSAM, and EXCP), the data sets __,
appear to reside on a real direct access storage device. VIO provides these
advantages:

• Elimination of some of the usual 1/0 device allocation and data manage­
ment overhead for temporary DASO data sets

• Generally more efficient use of direct access storage space.

Before anyone can use VIO, the system programmer must specify VIO =YES in
the UNITNAME statement when running the MVS configuration program
(MVSCP). Your system programmer will specify the appropriate unitname or
storage class you need to use to define a VIO data set. You must specify the
appropriate unitname in the DD statement for your VIO data set. The UNIT=
parameter on the DD statement for your data set must specify a device group
or device type that is eligible for VIO. For SMS-managed temporary data sets,
you can use VIO by specifying a storage class, which maps to a VIG-eligible ~
storage group, in your DD statement. For information on storage classes; see
your storage administrator. For information on specifying a unitname or a
storage class in a DD statement, see JCL User's Guide and JCL Reference.
MVS Configuration Program Guide and Reference explains how to use the MVS
configuration program.

Basic Direct Access Method (BDAM)
Before you use BDAM to process a data set, consider these implications:

• You create a BDAM data set with the basic sequential access method
(BSAM). A BDAM data set is also called a direct data set. A special
operand in the BSAM DCB macro (MACRF = Wl) shows that you want to
create a BDAM data set.

• The problem pro.gram must synchronize all 1/0 operations with a CHECK or
a WAIT macro.

• The problem program must block and unblock its own input and output
records. (BDAM only reads and writes data blocks.)

• You can find data blocks within a data set with one of the following
addressing techniques:

Actual device addresses.

Relative track address technique. This locates a track on a direct
access device relative to the beginning of the data set.

Relative block address technique. This locates a fixed-length data block
relative to the beginning of the data set.

For more information about coding the DCB macro to process a BDAM data set,
see Data Administration: Macro Instruction Reference.

Note: Use of BDAM is not recommended.

) u

34 MVS/ESA Data Administration Guide

l
~/

l i j
~,/

l '

\.L..J

Basic Indexed Sequential Access Method (BISAM)
Before you use BISAM to process an ISAM data set, consider these impli­
cations:

• Indexed sequential data sets cannot be managed by SMS.

• BISAM accesses only ISAM data sets.

• BISAM cannot be used to create an indexed sequenti:al access method
(ISAM) data set.

• BISAM directly retrieves logical records by key, updates blocks of records
in-place, and inserts new records in their correct key sequence.

• The problem program must synchronize all 110 operations with a CHECK or
a WAIT macro.

• Other DCB operands are available to reduce input/output operations by
defining work areas that contain the highest level master index and the
records being processed.

For more information about coding the DCB macro to process a BISAM data

set, see Data Administration: Macro Instruction Reference.

Note: Use of BISAM is not recommended.

Basic Partitioned Access Method (BPAM)
BPAM processes the directory of a partitioned data set. BSAM processes the
data set members.

Before you use SPAM to process a data set, consider these implications:

• One complete partitioned data set must be on one direct-access volume,
but you can concatenate multiple input data sets that are on the same or
different volumes.

• When you create a partitioned data set, the SPACE parameter defines the
size of the data set and its directory so that the system can allocate data
set space, and for a partitioned data set, preformat the directory.

• You can use either the basic sequential access method (BSAM) or the
queued sequential access method (QSAM) to add or retrieve a partitioned
data set member without specifying the BLDL, FIND, or the STOW macro by

coding the DSORG =PS operand in the DCB macro. (Data set positioning
and directory maintenance are then handled by the OPEN and CLOSE
macros.) But, be advised that you are really processing the member as if it

were part of a sequential data set, so you are not using the complete capa­

bilities of BPAM.

• You can use the STOW macro to add, delete, change, or replace an element

name or alias in the
directory.

• You can process multiple data set members by passing a list of members to

BLDL. Then you can use the FIND macro to position to a member before

processing it.

For more information about coding the DCB macro to process a BPAM data set

(partitioned data set), see Data Administration: Macro Instruction Reference.

Chapter 4. Sel~cting an Access Method 35

Basic Sequential Access Method (BSAM)
Before you use BSAM to process a data set, consider these implications:

• The problem program must block and unblock its own input and output
records. (BSAM only reads and writes data blocks.)

• The problem program must manage its own input and output buffers. It
must give BSAM a buffer address with the READ macro, and it must fill its
own output buffer before issuing the WRITE macro.

• The problem program must synchronize its own 1/0 operations by issuing a
CHECK macro for each READ and WRITE macro issued.

• BSAM lets you process nonsequential blocks by repositioning with the
NOTE and POINT macros.

• You can read and write direct access device record keys with BSAM.

For more information about coding the DCB macro to process a BSAM data set,
see Data Administration: Macro Instruction Reference.

Queued Indexed Sequential Access Method (QISAM)
Before you use QISAM to process an ISAM data set, cons:ider these impli­
cations:

• Indexed sequential data sets cannot be managed by SMS.

• The characteristics of a QISAM data set are established when the data set
is created. You can't change them without reorganizing the data set. The
DCB operands that establish these characteristics are.: BLKSIZE, CYLOFL,
KEYLEN, LRECL, NTM, OPTCD, RECFM, and RKP.

• A QISAM data set can consist of unblocked fixed-length records (F), blocked
fixed-length records (FB), unblocked variable-length records (V), or blocked
variable-length records (VB).

• QISAM can create an indexed sequential data set (QISAM, load mode), add
additional data records at the end of the existing data set (QISAM, resume
load mode), update a record in place, or retrieve records sequentially
(QISAM, scan mode).

• You can't use track overflow to create or extend an ISAM data set.

• When you create an indexed sequential data set, you can allocate space for
the data set's prime area, overflow area, and its cylinder/master index(es)
on the same or separate volumes. For more information about space allo­
cation, see JCL User's Guide.

• QISAM automatically generates a track index for each cylinder in the data
set and one cylinder index for the entire data set. Specify the DCB oper­
ands NTM and OPTCD to show that the data set requires a master
index(es). QISAM creates and maintains as many as three levels of master
indexes.

• You can purge records by specifying the OPTCD = l DCB option when you
create an ISAM data set. This option flags the records you want to purge
with a X 1 FF 1 in the first data byte of a fixed-length record or the fifth byte of
a variable-length record. QISAM ignores these flagged records during
sequential retrieval.

36 MVS/ESA Data Administration Guide

\'-

'-..._,

' J '....._,/

\~

I '

~/

• You can get reorganization statistics by specifying the OPTCD = R DCB
option when an ISAM data set is created. The problem program uses these
statistics to determine the status of the data set's overflow areas.

• When you create an ISAM data set, you must write the records in ascending
key order.

For more information about coding the DCB macro to process a QISAM data
set, see Data Administration: Macro Instruction Reference.

Note: Use of QISAM is not recommended.

Queued Sequential Access Method (QSAM)
Before you use QSAM to process a data set, consider thes,e implications:

• You can use QSAM to process all record formats except blocks with keys.

• QSAM blocks and unblocks records for you automatically.

• QSAM manages all aspects of 1/0 buffering for you automatically. The GET
macro retrieves the next sequential logical record from the input buffer, and
the PUT macro places the next sequential logical record in the output
buffer.

• QSAM gives you three transmittal modes: move, locate, and data. These
modes give you greater flexibility managing buffers and moving data.

For more information about coding the DCB macro to process a QSAM data set,
see Data Administration: Macro Instruction Reference.

Chapter 4. Selecting an Access Method 37

\~

Chapter 5. Specifying a Data Control Block and Initializing
Data Sets

General-Use Programming Interface

This chapter is intended to help you specify a data control block for a data set.
It contains general-use programming interfaces, which are provided to allow
you to write programs that use the services of MVS/DFP.

Before processing can begin, you must identify the characteristics of a data set,
the volume on which it resides, and its processing requirements. During exe­
cution, this information is made available to the operating system in the data
control block (DCB). A DCB is required for each data set and is created in a
processing program by a DCB macro instruction.

Primary sources of information to be placed in the data control block are a DCB
macro instruction, a data definition (DD) statement, a data class, and a data set
label. A .data class can be used to specify all of your data set's attributes
except data set name and disposition. In addition, you can provide or change
some of the information during execution by storing the pertinent data in the
appropriate field of the data control block. The specifications needed for
input/output operations are supplied during the initialization procedures of the
OPEN macro instruction. Therefore, the pertinent data can be provided when
your job is to be executed rather than when you write your program (see
Figure 13 on page 40).

When the OPEN macro instruction is executed, the OPEN routine:

• Completes the data control block

• Loads all necessary access method routines not already in virtual storage

• Initializes data sets by reading or writing labels and control information

• Builds the necessary system control blocks.

Information from a DD statement is stored in the job file control block {JFCB) by
the operating system. When the job is to be executed, the JFCB is made avail­
able to the open routine. The data control block is filled in with information
from the DCB macro instruction, the JFCB, or an existing data set label. If
more than one source specifies information for a particular field, only one
source is used. A DD statement takes precedence over a data set label, and a
DCB macro instruction over both. However, you can change most data control
block fields either before the data set is opened or when the operating system
returns control to your program (at the data control block open exit). Some
fields can be changed during processing. Do not try to change a data control
biock field, such as data set organization, from one that allowed the data set to
be allocated to an SMS-managed volume, to one that makes the data set ineli­
gible to be SMS managed. For example, do not specify a data set organization
in the DD statement as physical sequential and after the data set has been allo­
cated to an SMS-managed volume, try to open the data set with a data control
block that specifies the data set as physical sequential unmovable. The types
of data sets that cannot be SMS managed are listed on page 2.

Chapter 5. Specifying a Data Control Block and Initializing Data Sets 39

Figure 13 on page 40 illustrates the process and the sequence of filling in the
data control block from various sources. The primary source is your program,
that is, the DCB macro instruction. Usually, you should use only those DCB
parameters that are needed to ensure correct processing. The other parame­
ters can be filled in when your program is to be executed.

When a direct access data set is opened (or a magnetic tape with standard
labels is opened for INPUT, ROBACK, or INOUT), any fiel'd in the JFCB not com­
pleted by a DD statement is filled in from the data set label (if one exists).
When opening a magnetic tape for output, the tape label is assumed not to exist
or to apply to the current data set unless you specify DISP =MOD and a volume
serial number in the volume parameter of the DD statement. Any field not com­
pleted in the DCB is filled in from the JFCB. Fields in the DCB can then be
completed or changed by your own DCB exit routine. Then all DCB fields are
unconditionally merged into corresponding JFCB fields if your data set is
opened for output. This is done by specifying OUTPUT, OUTIN, EXTEND, or
OUTINX in the OPEN macro instruction. The DSORG field is not merged unless
this field contains zeros in the JFCB. If your data set is opened for input
(INPUT, INOUT, ROBACK, or UPDAT is specified in the OPEN macro instruction),
the DCB fields are not merged unless the corresponding JFCB fields contain
zeros.

DCB
Macro

1>----· --~
~---~

Data
Control
Block

DCB
Exit

Routine

DD
Statement ... A.CS

Routines

Job File
Control
Block

Old
Data Set

Label

New
Data Set

Label

Figure 13. Sources and Sequence of Operations for Completing the Data Control Block

When the data set is closed, the data control block is restored to the condition it
had before the data set was opened (the buffer pool is not freed). The open
and close routines also use the updated JFCB to write the data set labels for
output data sets. If the data set is not closed when your program terminates,
the operating system will close it automatically.

The operating system requires several types of processing information to
ensure proper control of your input/output operations. The forms of macros in
the program, buffering requirements, and the addresses of your special proc­
essing routines must be specified during either the assembly or the execution

40 MVS/ESA Data Administration Guide

I ,
\~"

of your program. The DCB parameters specifying buffer requirements are dis­
cussed in "Managing SAM Buffer Space" on page 85.

Because macros are expanded during the assembly of your program, you must
supply the macro forms that are to be used in processing each data set in the
associated DCB macro. You can supply buffering requirements and related
information in the DCB macro, the DD statement, or by storing the pertinent
data in the appropriate field of the data control block before the end of your
DCB exit routine. If the addresses of special processing routines (EODAD,
SYNAD, or user exits) are omitted from the DCB macro, you must complete
them in the DCB before they are required.

Note: A data set label to JFCB merge is not performed for concatenated data
sets at the end-of-volume time. If you want a merge, turn on the unlike attribute
bit (DCBOFPPC) in the DCB. This attribute forces the system through OPEN for
each data set in the concatenation, where a label to JFCB. merge takes place.

Selecting Data Set Options

DCB Parameters

For each data set you want to process, there must be a corresponding DCB and
DD statement. The characteristics of the data set and device-dependent infor­
mation can be supplied by either source. Also, the DD statement must supply
data set identification, device characteristics, space allocation requests, and
related information as specified in JCL User's Guide and JCL Reference. You
establish the logical connection between a DCB and a DD statement by speci­
fying the name of the DD statement in the DDNAME field of the DCB macro, or
by completing the field yourself before opening the data set.

After you have specified the data set characteristics in the DCB macro, you can
change them only by changing the DCB during execution. The fields of the DCB
discussed below are common to most data organizations and access methods.
(For more information about the DCB fields, see Data Administration: Macro
Instruction Reference.)

Block Size (BLKSIZE): Specifies the maximum length, in bytes, of a data block.
If the records are of format F, the block size must be an integral multiple of the
record length, except for SYSOUT data sets. (See Chapter 7, "Spooling and
Scheduling Data Sets" on page 71.) If the records are of format V, the block
size specified must be the maximum block size. If format-V records are
unblocked, the block size must be 4 bytes greater than the record length
(LRECL). When spanned variable~length records are specified, the block size is
independent of the record length. For ISO/ ANSl/FIPS Version 3 records, the
maximum block size is 2048.

If you do not specify a block size, or specify a zero block size when you allocate
the DASO data set, the system will derive an optimum block size for you. You
must specify the LRECL, DSORG as PS or PO, and RECFM. The system does
not derive a block size for VIO, VSAM, or unmovable data sets, or when the
RECFM is U.

When the data set is opened, OPEN will re-derive a block size, subject to the
same exceptions, if:

• A zero block size is specified or set by the open exit.

Chapter 5. Specifying a Data Control Block and Initializing Data Sets 41

• The system determined the block size at allocation, and the LRECL or
RECFM specified via the DCB at open differ from those specified at allo­
cation time.

If you specify a block size other than zero, note that there is no minimum
requirement for block size. However, if a data check occurs on a magnetic tape
device, any block shorter than 12 bytes in a read operation or 18 bytes in a
write operation is treated as a noise record and lost. No check for noise is
made unless a data check occurs. The maximum block size for an
ISO/ANSl/FIPS Version 3 tape is 2048 bytes. This limit may be overridden by a
label validation installation exit. (See DFP: Customization.)

Data Set Organization (DSORG): Specifies the organization of the data set as
physical sequential (PS), indexed sequential (IS), partitioned (PO), or direct
(DA). If the data set is processed using absolute rather than relative
addresses, you must mark it as unmovable by adding a U to the DSORG param­
eter (for example, by coding DSORG = PSU). You must specify the data set
organization in the DCB macro. When creating or processing an indexed
sequential organization data set or creating a direct data set, you must also
specify DSORG in the DD statement. When creating a direct data set, the
DSORG in the DCB macro must specify PS or PSU and the DD statement must
specify DA or DAU.

Note:

1. Unmovable and indexed sequential data sets cannot be SMS-managed.

\._.

Key Length (KEYLEN): Specifies the length (0 to 255) in bytes of an optional
key'that precedes each block on a direct access device. The value of KEYLEN
is not included in BLKSIZE or LRECL but must be included in BUFL if buffer ~
length is specified. Thus, BUFL = KEYLEN + BLKSIZE.

Record Length (LRECL): Specifies the. length, in bytes, of each record in the
data set. If the records are of variable length, the maximum record length must
be specified. For input, the field should be omitted for undefined length
(format-LI) records. For the extended logical record interface for ISO/ ANSI/Fl PS
variable spanned records, LRECL must be specified as LRECL =OK or
LRECL= nK.

Record Format (RECFM): Specifies the characteristics of the records in the
data set as fixed-length (F), variable-length (V), ISCll/ ASCII variable-length (D),
or undefined-length (U). Blocked records are specified as FB, VB, or DB.
Spanned records are specified as VS, VBS, OS, or DBS. (ISCll/ASCll records
are specified as OS or DBS.) You may also specify the records as fixed-length
standard by using FS or FBS. You can request track overflow for records other
than standard format by adding a T to the RECFM parameter (for example, by
coding FBT).

The type of print control can be specified to be in ANSI format-A or in machine
code format-M, as described in Appendix B, "Control Characters" on page 135.

42 MVS/ESA Data Administration Guide

I

_.!

(!

\..._ .•.. /

(.·
~

Write Validity Check Option (OPTCD=W): You can specify the write validity
check option in either the DCB parameter of the DD statement or the DCB
macro. After a record is transferred from main to secondary storage, the
system reads the stored record (without data transfer) and, by testing for a data
check from the 1/0 device, verifies that the record was written correctly. Be
aware that the write validity check process requires. an additional revolution of
the device for each record. If the system detects any errors, it starts its
standard error recovery procedure.

For buffered tape devices, the write validity check option delays the device end
interrupt until the data is physically on tape. When you use the write-validity­
check option, you get none of the performance benefits of buffering.

DD Statement Parameters
Each of the data set description fields of the data control block, except as noted
for data set organization for direct data sets, can be specified when your job is
to be executed. Also, data set identification and disposition, and device charac­
teristics, can be specified at that time. To allocate a data set, you must specify
the data set name and disposition in the DD statement. In the DD statement,
you may specify a data class, storage class, and management class, and other
JCL keywords. You can specify the classes using the JCL keywords
DATACLAS, STORCLAS, and MGMTCLAS. If you do not specify a data class,
storage class, or management class, the ACS routines assign classes based on
the defaults defined by your storage administrator. Storage class and manage­
ment class can be assigned only to data sets that are to be managed by SMS.

Your storage administrator uses the ACS routines to determine which data sets
are to be managed by SMS. The valid classes that can either be specified in
your DD statement or assigned by the ACS routines are defined in the SMS
configuration by your storage administrator. The ACS routines analyze your
JCL, and if you specify a class which you are not authorized to use or a class
which does not exist, your allocation fails. For more information on how to
specify data class, storage class, and management class in your DD statement,
see JCL User's Guide.

Data class can be specified for both SMS and non-SMS data sets. Data class
can be specified for both DASO and tape data sets. You can use data class
together with the JCL keyword LIKE for tape data sets; this will simplify
migration to and from SMS-managed storage. When you allocate a data set,
the ACS routines assign a data class to the data set, either the data class you
specify in your DD statement or the data class defined as the default by your
storage administrator. The data set is allocated using the information con­
tained in the assigned data class. See your storage administrator for informa­
tion on the data classes available to your installation and Storage
Administration Reference for more information on allocating SMS data sets and
using SMS classes.

Chapter 5. Specifying a Data Control Block and Initializing Data Sets 43

You can override any of the information contained in a data class by specifying
the values you want in your DD statement. A data class can contain any of the
following information:

Data Set
Characteristics

data set organization
key length
key offset
record format
record length
record organization
retention period
space allocation

JCL Keywords Used To
Override

DSORG
KEY LEN
KEYOFF
REC FM
LRECL
RECORG
RETPD
SPACE, AVGREC

For more information on the JCL keywords that override data class information,
see JCL User's Guide and JCL Reference.

The simplest data set allocation is one that uses the data class, storage class, ·~
and management class defaults defined by your storage administrator. This
example shows how to allocate an SMS-managed data set:

//name DD DSNAME=NEW.PLI,DISP=(NEW,KEEP)

Changing the DCB
You can complete or change the DCB during execution of your program. You
can also determine data set characteristics from information supplied by the
data set labels. You can make changes or additions before you open a data
set, after you close it, during the DCB open exit routine, or while the data set is
open. Naturally, you must supply the information before it is needed.

You should not attempt to change the data set characteristics of an
SM§)-managed data set to characteristics which make ft ineligible to be SMS
managed. For example, do not specify a data set organization in the DD state­
ment as PS and after the data set has been allocated to an SMS-managed
volume, change the DCB to specify DSORG = PSU. This results in abnormal ter­
mination of your program.

Use the data control block DSECT {DCBD) macro to identify the DCB field
names symbolically. If you load a _base register with the DCB address, you can
refer to any field symbolically.

The DCBD macro generates a dummy control section {DSECT) named IHADCB.
Each field name symbol consists of DCB followed by the first 5 letters of the
keyword operand for the DCB macro. For example, the symbolic name of the
block size operand field is DCBBLKSI. (For other DCB field names, see Data
Administration: Macro Instruction Reference.)

The attributes of each DCB field are defined in the dummy control section. Use
the DCB macro's assembly listing to determine the length attribute and the
alignment of each DCB field.

You can code the DCBD macro once to describe all DCBs.

44 MVS/ESA Data Administration Guide

i_)

I

r I . "GI

I
i I

\GJ

Changing an Address in the Data Control Block: Figure 14 on page 45 shows
you how to change a field in the data control block.

OPEN (TEXTDCB,INOUT),MODE=31

EOFEXIT CLOSE (TEXTDCB,REREAD),MODE=31,TYPE=T
LA 10,TEXTDCB
USING IHADCB,10
HVC DCBSYNAD+1(3),=AL3(0UTERROR)
B OUTPUT

IN ERROR STH 14,12,SYNADSA+l2

OUT ERROR STH 14,12,SYNADSA+12

TEXTDCB DCB DSORG=PS,HACRF=(R,W),DDNAME=TEXTTAPE, c
EODAD=EOFEXIT,SYNAD=INERROR

DCBD DSORG=PS

Figure 14. Changing a Field in the Data Control Block

The data set defined by the data control block TEXTDCB is opened for both
input and output. When the problem program no longer needs it for input, the
EODAD routine closes the data set temporarily to reposition the volume for
output. The EODAD routine then uses the dummy control section IHADCB to
change the error exit address (SYNAD) from INERROR to OUTERROR.

The EODAD routine loads the address TEXTDCB into register 10, the base reg­
ister for IHADCB. Then it moves the address OUTERROR into the DCBSYNAD
field of the DCB. Even though DCBSYNAD is a fullword field and contains
important information in the high-order byte, change only the 3 low-order bytes
in the field.

All unused address fields in the DCB, exce.pt DCBEXLST, are set to 1 when the
DCB macro is expanded. Many system routines interpret a value of 1 in an
address field as meaning no address was specified, so use it to dynamically
reset any field you don't need.

Opening and Closing a Data Set
Although your program has been assembled, the various data management
routines required for 1/0 operations are not a part of the object code. In other
words, your program is not completely assembled until the DCBs are initialized
for execution. You initialize by issuing the OPEN macro instruction to open a
data set. After all DCBs have been completed, the system ensures that all
required access method routines are loaded and ready for use and that all
channel programs and buffer areas are ready.

Chapter 5. Specifying a Data Control Block and Initializing Data Sets 45

Access method routines are selected and loaded according to data control
fields that indicate:

• Data organization
• Buffering technique
• Access method
• 1/0 unit characteristics
• Record format

This information is used by the system to allocate virtual storage space and
load the appropriate routines. These routines, the channel programs and buffer
areas created automatically by the system, remain in virtual storage until the
close routine signals that they are no longer needed by the DCB that was using
them.

When 1/0 operations for a data set are completed, you should issue a CLOSE
macro instruction to return the DCB to its original status, handle volume dispo­
sition, create data set labels, complete writing of queued output buffers, and
free virtual and auxiliary storage.

Letting the System Determine the Block Size for DASO Data Sets
The system can determine the optimum block size for DASO data sets. If you
specify the LRECL and RECFM, but do not specify the block size when the data
set is created, the system will derive the optimum block size for the data set
and write the block size to the data set label. The system will derive an
optimum block size for any physical sequential, or partitioned data set that has
fixed or variable length records. When a DASO data set is opened, Open will
re-derive the optimum block size if:

• The block size is zero, the data set is physical sequential or partitioned,
and the record format and record length are available.

• The block size in the DASO data set label was assigned by the system
when the data set was created, and the record length or format have
changed from what was specified at the time the data set was created.

The system has similar support for determining block size for spooled data
sets. See Chapter 7, "Spooling and Scheduling Data Sets" on page 71.

Open will not re-derive the optimum block size for VSAM or RECFM = U data
sets. The system does not determine the block size for old data sets or BDAM
data sets.

Using a Parameter list with 31-bit Addresses
You can code OPEN and CLOSE with MODE= 31 to specify a long form param­
eter list that can contain 31-bit addresses. To use this long form parameter list,
you must be operating in 31-bit addressing mode. The default, MODE= 24,
specifies a standard form parameter list with 24-bit addresses. If TYPE= J is
specified, you must use the standard form parameter list.

The standard form parameter list must reside bel:ow 16M, but the calling
program may be above 16M.

The long form parameter list can reside above or below 16M. Although you
may code MODE= 31 on the OPEN or CLOSE call for a DCB, the DCB must :\J
reside below 16M. All non-VSAM and non-VTAM ACBs must also reside below

46 MVS/ESA Data Administration Guide

I: ,
\ i J
~i

\1 j \l...._.,,1

16M. Therefore, the leading byte of the 4-byte ACS or DCB address must
contain zeros. If the byte contains something other than zeros, an error
message is issued. If an OPEN was attempted, the data set is not opened. If a
CLOSE was attempted, the data set is not closed.

It is up to you to keep the mode specified in the MF= L and MF= E versions of
the OPEN and CLOSE macros consistent. If MODE=31 is specified in the MF=L
version of the OPEN or CLOSE macro, MODE= 31 must also be coded in the
corresponding MF=E version of the macro. Unpredictable results occur if the
mode specified is not consistent.

Managing Buffer Pools When Closing Data Sets
After closing the data set, you should issue a FREEPOOL macro instruction to
release the virtual storage used for the buffer pool. If you plan to process other
data sets, use FREEPOOL to regain the buffer pool storage space. If you expect
to reopen a data set using the same DCB, use FREEPOOL unless the buffer
pool created the first time the data set was opened will meet your needs when
you reopen the data set. (FREEPOOL is discussed in more detail in "Buffer
Pool Construction" on page 85.)

After the data set has been closed, the DCB can be used for another data set.
If you do not close the data set before a task terminates, the operating system
closes it automatically. If the DCB is not available to the system at that time,
the operating system abnormally ends the task, and data results can be unpre­
dictable. Note, however, that the operating system cannot automatically close
any open data sets after the normal end of a program that was brought into
virtual storage by the loader. Therefore, loaded programs must include CLOSE
macro instructions for all open data sets.

Simultaneous Opening and Closing of Multiple Data Sets
An OPEN or CLOSE macro instruction can be used to begin or end processing
of more than one data set. Simultaneous opening or closing is faster than
issuing separate macro instructions; however, additional storage space is
required for each data set specified. The coding examples in Figure 15 on
page 51 and Figure 17 on page 53 show the macro expansions for simul­
taneous open and close operations.

Opening and Closing Data Sets Shared by More Than One Task
When more than one task is sharing a data set, the following restrictions must
be recognized. Failure to adhere to these restrictions endangers the integrity
of the shared data set.

• All tasks sharing a DCB must be in the job step that opened the DCB (see
"Sharing Data Sets" on page 66).

• Any task that shares a DCB and starts any input or output operations using
that DCB must ensure that all those operations are complete before termi­
nating the task. A CLOSE macro instruction issued for the DCB will ensure
termination of all input and output operations.

• A DCB can be closed only by the task that opened it.

Chapter 5. Specifying a Data Control Block and Initializing Data Sets 47

Opening a VSAM Data Set With a DCB
You can use a DCB to open a VSAM data set if the DCB is for EXCP processing
and the data set is being opened for input or update. Open for output is not
allowed. The following restrictions apply:

• Your program must be APF authorized or in supervisor state if the data set
is being opened for update.

• You must have the password or the RACF authorization needed to access
the VSAM data set.

• You can only specify a single volume.

• The data set disposition must either be DISP = (OLD,KEEP,KEEP) or
DISP = (SHR,KEEP,KEEP).

• The VSAM data set must not be concatenated to any other data sets.

For more information on using EXCP and a DCB to open a VSAM data set, see
System-Data Administration.

Considerations for Allocating Direct Access Data Sets
When you allocate space for a new data set on a direct access volume, the
tracks contain unknown data. A program that tries to access data on these
tracks before known data is written on them may get unpredictable results,
such as program checks or UO errors. The program may even appear to run
correctly!

If you must access a newly allocated data set before you put known data into it,
use one of the following methods to make it appear empty:

1. At allocation time, specify a primary allocation value of zero; such as
SPACE= (TRK,(O, 10)) or SPACE= (CYL,(0,50)). This method prevents proc""
essing certain labels if user labels are requested (LABEL= (,SUL)).

2. After allocation time, run a program that opens the data set for output and
closes it without writing anything. This puts an end-of-file mark at the
beginning of the data set.

Considerations for Opening and Closing Data Sets
• Two or more DCBs should never be concurrently open for output to the

same data set, except with the basic indexed sequential access method
(BISAM).

• If, concurrently, one DCB is open for input or update, and one for output to
the same data set on a direct access device, the input or update DCB may
be unable to read what the output DCB wrote if the output DCB extended
the data set.

• If you want to use the same DD statement for two or more DCBs, you
cannot specify parameters for fields in the first DCB and then be assured of
obtaining the default parameters for the same fields in any other DCB using
the same DD statkment. This is true for both input and output and is espe­
cially important when you are using more than one access method. Any
action on one DCB that alters the JFCB affects the other DCBs and thus can
cause unpredictable results. Therefore, unless the parameters of all DCBs
using one DD statement are the same, you should use separate DD state­
ments.

48 MVS/ESA Data Administration Guide

' I ·~

I

\...,_,/

!

(i)

~·

.(

~_)

1r . u

• Associated data sets for the IBM 3525 Card Punch can be opened in any
order, but all data sets must be opened before any processing can begin.
Associated data sets can be closed in any order, but, after a data set has
been closed, 1/0 operations cannot be performed on any of the associated
data sets. See Programming Support for the IBM 3505 Card Reader and the
IBM 3525 Card Punch for more information.

• The OPEN macro gets user control blocks and user storage in the pro­
tection key in which the OPEN macro is issued. Therefore, any task that
processes the DCB (such as Open, Close, or EOV) must be in the same pro­
tection key.

• Volume disposition specified in the OPEN or CLOSE macro instruction can
be overridden by the system if necessary. However, you need not be con­
cerned; the system automatically requests the mounting and demounting of
volumes, depending on the availability of devices at a particular time. Addi­
tional information on volume disposition is provided in JCL User's Guide.

Open/Close/EOV Errors
There are two classes of errors that can occur during open, close, and end-of­
volume processing: determinate and indeterminate errors. Determinate errors
are errors associated with a system completion code. For example, a condition
associated with the 213 completion code with a return code of 04 might be
detected during open processing, indicating that the data set label could not be
found for a data set being opened. Indeterminate errors are errors that cannot
be anticipated, such as program checks.

If a determinate error occurs during the processing resulting from a concurrent
OPEN or CLOSE macro instruction, an attempt will be made to complete open
or close processing of the DCBs that are not associated with the DCB in error.
Note that you can also immediately end the task abnormally by coding a DCB
ABEND exit routine that shows the "immediate termination" option. For more
information on the DCB ABEND exit, see DFP: Customization. When all open or
close processing is completed, abnormal end processing is begun. Abnormal
end involves forcing all DCBs associated with a given OPEN or CLOSE macro to
close status, thereby freeing all storage devices and other system resources
related to the DCBs.

If an indeterminate error (such as a program check) occurs during open, close,
or EOV processing, no attempt is made by the system control program to com­
plete concurrent open or close processing. The DCBs associated with the
OPEN or CLOSE macro are forced to close status if possible, and the resources
related to each DCB are freed.

To determine the status of any DCB after an error, check the OPEN (CLOSE)
return code in register 15. See Data Administration: Macro Instruction Refer­
ence for the OPEN and CLOSE return codes.

During task termination, the system issues a CLOSE macro for each data set
that is still open. If this is an abnormal termination for QSAM, the close rou­
tines that would normally finish processing buffers are bypassed. Any out­
standing 1/0 requests are purged. Thus, your last data records may be lost for

a QSAM output data set.

Chapter 5. Specifying a Data Control Block and Initializing Data Sets 49

Installation exits

DCB Exits

It is a good procedure to close an ISAM data set before task termination
because, if an 110 error is detected, the ISAM close routines cannot return the
problem program registers to the SYNAD routine, causing unpredictable results.

Four installation exit routines are provided for abnormal end with
ISO/ANSl/FIPS Version 3 tapes.

• The label validation exit is entered during open/EOV if an invalid label con­
dition is detected and label validation has not been suppressed. Invalid
conditions include incorrect alphameric fields, nonstandard values (for
example, RECFM = U, block size greater than 2048, or a zero generation
number), invalid label sequence, nonsymmetrical labels, invalid expiration
date sequence, and duplicate data set names.

• The validation suppression exit is entered during open/EOV if volume secu­
rity checking has been suppressed, if the volume label accessibility field
contains an ISCll/ ASCII space character, or if RACF accepts a volume and
the accessibility field does not contain an uppercase A through Z.

• The volume access exit is entered during open/EOV if a volume is not RACF
protected and the accessibility field in the volume label contains an
ISCll/ ASCII uppercase A through Z.

• The file access exit is entered after positioning to a requested data set if
the accessibility field in the HDR1 label contains an ISCll/ ASCII uppercase A
through Z.

For additional information about ISO/ANSl/FIPS Version 3 installation exits, see
DFP: Customization.

For information on how to use the DCB exit routines, see DFP: Customization.

OPEN-Prepare a Data Set for Processing

Processing Method

The OPEN macro instruction is used to complete a data control block for an
associated data set. The OPEN macro parameters identify the method of proc­
essing and volume positioning if an end-of-volume condition occurs.

You can process a data set as either input or output. This is done by coding
INPUT, OUTPUT, or EXTEND as the processing method operand of the OPEN
macro. For BSAM, code INOUT, OUTIN, or OUTINX. If the data set resides on a
direct access volume, you can code UPDAT in the processing method operand
to show that records can be updated. By coding ROBACK in this operand, you
can specify that a magnetic tape volume containing format-F or format-LI
records is to be read backward. ROBACK is supported for magnetic tape only.
(Variable-length records cannot be read backward.) If the processing method
operand is omitted from the OPEN macro instruction, INPUT is assumed. The
operand is ignored by the basic indexed sequential access method (BISAM); it
must be specified as OUTPUT or EXTEND when you are using the queued
indexed sequential access method (QISAM) to create an indexed sequential
data set. You can override the INOUT, OUTIN, UPDAT, or OUTINX at execution
time by using the LABEL parameter of the DD statement, as discussed in JCL
Reference.

50 MVS/ESA Data Administration Guide

\
I

') '-_YY

~!

~I

Note: Unless label validation has been suppressed, OPEN for MOD (OLD
OUTPUT/OUTIN), INOUT, EXTEND, or OUTINX cannot be processed for
ISO/ ANSI/Fl PS Version 3 tapes, because this k.ind of processing updates only
the closing label of the file, causing a label symmetry conflict. An unmatching
label should not frame the other end of the file.

Processing SYSIN and SYSOUT Data Sets: SYSIN and SYSOUT data sets must
be opened for INPUT and OUTPUT, respectively. INOUT is treated as INPUT;
OUTIN, EXTEND, or OUTINX is treated as OUTPUT. UPDAT and ROBACK
cannot be used.

In Figure 15, the data sets associated with three DCBs are to be opened simul­
taneously.

OPEN (TEXTDCB,,CONVDCB,(OUTPUT),PRINTDCB,
(OUTPUT))

Figure 15. Opening Three Data Sets Simultaneously

x

Because· no processing method operand is specified for TEXTDCB, the system
assumes INPUT. Both CONVDCB and PRINTDCB are opened for output. No
volume positioning options are specified; thus, the disposition indicated by the
DD statement DISP parameter is used.

CLOSE-Terminate Processing of a Data Set
The CLOSE macro instruction is used to terminate processing of a data set and
release it from a DCB. The volume positioning {tapes only) that is to result
from closing the data set can also be specified. Volume positioning options are
the same as those that can be specified for end-of-volume conditions in the
OPEN macro instruction or the DD statement. An additional volume positioning
option, REWIND, is available and can be specified by the CLOSE macro instruc­
tion for magnetic tape volumes. REWIND positions the tape at the load point
regardless of the direction of processing.

You can code CLOSE TYPE= T and perform some close functions for sequential
data sets on magnetic tape and direct access volumes processed with BSAM.
When you use TYPE =T, the DCB used to process the data set maintains its
open status. You don't have to issue another OPEN macro instruction to con­
tinue processing the same data set. This option cannot be used in a SYNAD
routine.

The TYPE =T operand causes the system control program to process labels,
modify some of the fields in the system control blocks for that data set, and
reposition the volume (or current volume for multivolume data sets) in much the
same way that the normal CLOSE macro does. When you code TYPE= T, you
can specify that the volume is either to be positioned at the end of data (the
LEAVE option) or to be repositioned at the beginning of data (the REREAD
option). Magnetic tape volumes are repositioned either immediately before the
first data record or immediately after the last data record; the presence of tape
labels has no effect on repositioning. Figure 16 on page 52, which assumes a
sample data set containing 1000 records, illustrates the relationship between
each positioning option and the point where you resume processing the data
set after issuing the temporary close.

Chapter 5. Specifying a Data Control Block and Initializing Data Sets 51

Begin
processing
data set

Record
1

Record
2

Record
3

If you CLOSE TYPE= T and specify

LEAVE

LEAVE (with tape data set open
for read backward)

REREAD

REREAD (with tape data set open
for read backward)

Begin processing
tape data set
(open for read
backward)~

~

Record
999

Record
1000

After temporary close, you will
resume processing

Immediately after record 1000

Immediately before record 1

Immediately before record 1

Immediately after record 1000

Figure 16. Record Processed When LEAVE or REREAD Is Specified for CLOSE TYPE=T

If you code the release (RLSE) operand on the DD statement for an output data
set, it is ignored by temporary close (CLOSE TYPE =T). However, if the last
operation was a write, then normal close (without TYPE= T) releases any
unused space.

Space is released on a track boundary if the extent containing the last record
was allocated in units of tracks or in units of average block lengths with ROUND
not specified. Space is released on a cylinder boundary if the extent containing
the last record was allocated in units of cylinders or in units of average block
lengths with ROUND specified. However, a cylinder boundary extent may be
released on a track boundary if:

• The DD statement used to access the data set contains a space parameter
specifying units of tracks or units of average block lengths with ROUND not

. specified, or

• No space parameter is supplied in the DD statement and no secondary
space value has been saved in the data set label for the data set. In this
case, the performance benefit of cylinder boundaries is lost.

For data sets processed with BSAM, you can use CLOSE TYPE= T with the fol­
lowing restrictions:

• The DCB for the data set you are processing on a direct access device
must specify either DSORG =PS or DSORG = PSU for input processing, and
either DSORG =PS, DSORG = PSU, DSORG =PO, or DSORG =POU for
output processing.

• The DCB must not be open for input to a member of a partitioned data set.

I

_)

I
__,)

• If you open a data set on a direct access device for output and issue CLOSE
TYPE =T, the volume will be repositioned only if the data set was created _)
with DSORG =PS, DSORG = PSU, DSORG =PO, or DSORG =POU (you

52 MVS/ESA Data Administration Guide

cannot specify the REREAD option if DSORG =PO or DSORG =POU is speci­
fied). (This restriction prohibits the use of temporary close following or
during the building of a BDAM data set that is created by specifying BSAM
MACRF=WL.)

• If you open the data set for input and issue CLOSE TYPE= T with the LEAVE
option,· the volume will be repositioned only if the data set specifies
DSORG =PS or DSORG =PO.

Note: When a data control block is shared among multiple tasks, only the task
that opened the data set can close it unless TYPE= T is specified.

Before issuing the CLOSE macro, a CHECK macro must be issued for all DECBs
that have outstanding 1/0 from WRITE macroinstructions. When CLOSE
TYPE= T is specified, a CHECK macro must be issued for all DECBs that have
outstanding 1/0 from either WRITE or READ macro instructions.

In Figure 17, the data sets associated with three DCBs are to be closed simul­
taneously.

CLOSE (TEXTDCB,,CONVDCB,,PRINTDCB)

Figure 17. Closing Three Data Sets Simultaneously

Because no volume positioning operands are specified, the position indicated
by the DD statement DISP parameter is used.

Volume Positioning

Releasing Data Sets and Volumes
You are offered the option of being able to release data sets and the volumes
the data sets reside on when your task is no longer using them. If you are not
sharing data sets, these data sets would otherwise remain unavailable for use
by other tasks until the job step that opened them is terminated. ·

There are two ways to code the CLOSE macro instruction that can result in
releasing a data set and the volume on which it resides at the time the data set
is closed:

Together with the FREE= CLOSE parameter of the DD statement, you can code:

CLOSE (DCBl,DISP) or
CLOSE (DCBl,REWIND)

If you do not code FREE= CLOSE on the DD statement, you can code:

CLOSE (DCBl, FREE)

See JCL Reference for information about how to use and code the
FREE= CLOSE parameter of the DD statement.

In either case, tape data sets and volumes are freed for use by another job
step. Data sets on direct access devices will be freed and the volumes on

Chapter 5. Specifying a Data Control Block and Initializing Data Sets 53

which they reside will be freed if no other data sets on the volume are open.
Additional information on volume disposition is provided in JCL Users Guide.

Data sets being temporarily closed (using CLOSE TYPE =T) cannot be released
at the time the data set is closed. They will be released at the end of the job
step.

For additional information and coding restrictions on the CLOSE macro, see
Data Administration: Macro Instruction Reference.

End-of-Volume Processing
The access methods pass control to the data management end-of-volume
routine when any of the following conditions is detected:

• Tape mark (input tape volume).

• Filemark or end of last extent (input direct access volume).

• End-of-data indicator (input device other than magnetic tape or direct
access volume). An example of this would be the last card read on a card
reader.

• End of reel (output tape volume).

• End of extent (output direct access volume).

You may issue a force end-of-volume (FEOV) macro instruction before the end­
of-volume condition is detected.

If the LABEL parameter of the associated DD statement shows standard labels,
the end-of-volume routine checks or creates standard trailer labels. If SUL or
AUL is specified, control is passed to the appropriate user label routine if it is
specified in your exit list.

If multiple volume data sets are specified in your DD statement, automatic
volume switching is accomplished by the end-of-volume routine. When an end­
of-volume condition exists on an output data set, additional space is allocated
as indicated in your DD statement. If no more volumes are specified or if more
than specified are required, the storage is obtained from any available volume
on a device of the same type. If no such volume is available, your job is termi­
nated.

If you pe~form multiple opens and closes without writing any user data in the
area of the end-of-tape reflective marker, then header and trailer labels may be
written past the marker. Access methods detect the marker. Because the cre­
ation of empty data sets does not involve access methods, the end-of-tape
marker will not be detected. This may cause the tape to run off the end of the
reel.

Volume Positioning for Tapes
When an end-of-volume condition is detected, the system positions the volume
according to the disposition specified in the DD statement unless the volume
disposition is specified in the OPEN macro instruction. Volume positioning
instructions for a sequential data set on magnetic tape can be specified as
LEAVE or REREAD.

54 MVS/ESA Data Administration Guide

i ,I

\~

:.L·· 'i /

IL·· .. ' i !

LEAVE
positions a labeled tape to the point following the tape mark that follows the
data set trailer label group, and an unlabeled volume to the point following
the tape mark that follows the last block of the data set.

REREAD
positions a labeled tape to the point preceding the data set header label
group, and an unlabeled tape to the point preceding the first block of the
data set.

If the tape was last read backward:

LEAVE
positions a labeled tape to the point preceding the data set header label
group, and an unlabeled tape to the point preced_ing the first block of the
data set.

REREAD
positions a labeled tape to the point following the tape mark that follows the
data set trailer label group, and an unlabeled tape to the point following the
tape mark that follows the last block of the data set.

If, however, you want to position the current volume according to the option
specified in the DISP parameter of the DD statement, you code DISP in the
OPEN macro instruction.

DISP
specifies that a tape volume is to be disposed of in the manner implied by
the DD statement associated with the data set. Direct access volume posi­
tioning and disposition are not affected by this parameter of the OPEN
macro instruction. There are several dispositions that can be specified in
the DISP parameter of the DD statement; DISP can be PASS, DELETE, KEEP,
CATLG, or UNCATLG.

The resultant action at the time an end-of-volume condition arises depends
on (1) how many tape units are allocated to the data set and (2) how many
volumes are specified for the data set in the DD statement. This is deter­
mined by the UNIT and VOLUME parameters of the DD statement associ­
ated with the data set. If the number of volumes is greater than the number
of units allocated, the current volume will be rewound and unloaded. If the
number of volumes is less than or equal to the number of units, the current
volume is merely rewound.

For magnetic tape volumes that are not being unloaded, positioning varies
according to the direction of the last input operation and the existence of
tape labels.

If the tape was last read forward:

LEAVE
positions a labeled tape to the point following the tape mark that follows the
data set trailer label group, and an unlabeled volume to the point following
the tape mark that follows the last block of the data set.

REREAD
positions a labeled tape to the point preceding the data set header label
group, and an unlabeled tape to the point preceding the first block of the
data set.

Chapter 5. Specifying a Data Control Block and Initializing Data Sets 55

If the tape was last read backward:

LEAVE
positions a labeled tape to the point preceding the data set header label
group, and an unlabeled tape to the point preceding the first block of the
data set.

REREAD
positions a labeled tape to the point following the tape mark that follows the
data set trailer label group, and an unlabeled tape to the point following the
tape mark that follows the last block of the data set.

FEOV-Force End of Volume
The FEOV macro instruction directs the operating system to start the end-of­
volume processing before the physical end of the current volume is reached. If
another volume has been specified for the data set, volume switching takes
place automatically. The volume positioning options REWIND and LEAVE are
available.

If an FEOV macro is issued for a spanned multivolume data set that is being
read using QSAM, errors may occur when the next GET macro is issued.
These errors are documented in "Spanned Format-VS Records (Sequential
Access Method)" on page 18.

The FEOV macro instruction can only be used when you are using BSAM or
QSAM. FEOV is ignored if issued for a SYSIN or SYSOUT data set.

Achieving Device Independence in Sequential Data Sets
Device independence is the characteristic of programs that work on any type of
device- direct access device (DASO) or tape, for example. Achieving device
independence is important only for a sequential data set because input or
output can be on DASO, a magnetic tape drive, a card read/punch, a printer, or
a spooled data set. Other data set organizations such as VSAM, partitioned,
indexed sequential, and direct are device-dependent because they require the
use of a DASO.

Programming Considerations for Sequential Data Sets
Device independence may be useful for:

• Accepting data from several recording devices, such as a disk pack, 7- or
9-track magnetic tape, or unit-record equipment. This situation could arise
when several types of data-acquisition devices are feeding a centralized
complex.

• Circumventing constraints imposed by the unavailability of input/output
devices (for example, when devices on order have not been installed).

• Assembling, testing, and debugging on one system configuration and proc­
essing on a different configuration. For example, an IBM 3380 Direct
Access Storage drive can be used as a substitute for several magnetic tape
units.

Your program will be device independent if you do two things:

• Omit all device-dependent macros and macro instruction parameters from
your program.

56 MVS/ESA Data Administration Guide

'"'-'

\~

\ u

I u

(

I

\._.)

') \...;_..//

• Defer specifying any required device-dependent parameters until the
program is ready for execution. That is, supply the parameters on your
data definition (DD) statement or during the open exit routine.

The following list of macros tells you which macros and macro instruction
parameters are device-dependent. Consider only the logical layout of your data
record without regard for the type of device used. Even if your data is on a
direct access volume, treat it as if it were on a magnetic tape. For example,
when updating, you must create a new data set rather than attempt to update
the existing data set.

OPEN
Specify INPUT, OUTPUT, INOUT, OUTIN, OUTINX, or EXTEND. The parame­
ters RD BACK and U POAT are device-dependent and cause an abnormal
termination if directed to a device of the wrong type.

READ
Specify forwarp reading (SF) only.

WRITE
Specify forward writing (SF) only; use only to create new records or modify
existing records.

NOTE/POINT
Tlnese macros are valid for both magnetic tape and direct access volumes.

BSP
This macro is valid for magnetic tape or direct access volumes. However,
its use would be an attempt to perform device-dependent action.

CNTRL/PRTOV
These macros are device-dependent.

DCB Subparameters

MACRF
Specify R/W or G/P. Processing mode can also be indicated.

DEVD
Specify DA if any direct access device may be used. Magnetic tape and
unit-record equipment DCBs will fit in the area provided during assembly.
Specify unit-record devices only if you expect never to change to tape or
direct access devices.

KEY LEN
Can be specified on the DD statement if necessary.

RECFM, LRECL, BLKSIZE
These can be specified in the DD statement. However, you must consider
maximum record size for specific devices, and track overflow cannot be
specified unless supported. Also, you must consider whether you expect to
process XLRI records.

DSORG
Specify sequential organization (PS or PSU) to get the full DCB expansion.

OPTCD
This subparameter is device-dependent; specify it in the DD statement.

Chapter 5. Specifying a Data Control Block and Initializing Data Sets 57

SYN AD
Any device-dependent error checking is automatic. Generalize your routine
so that no device-dependent information is required .

.___ ______ End of General-Use Programming Interface ______ __.

58 MVS/ESA Data Administration Guide

\""

\"-....

I I
'\.._.)

I
_/

Chapter 6. Accessing Records in Data Sets

Accessing Data with READ/WRITE
The basic access method provides the READ and WRITE macro instructions for
transmitting data between virtual and auxiliary storage. This technique is used
when you want to process records other than sequentially or when you do not
want some or all of the automatic functions performed by the queued access
method. Although the system does not provide anticipatory buffering or syn­
chronized scheduling, macro instructions are provided to help you program
these operations.

The READ and WRITE macro instructions process blocks, not records. Thus,
blocking and unblocking of records are your responsibility. Buffers, allocated
by either you or the ope~ating system, are filled or empti.ed individually each
time a READ or WRITE macro instruction is issued. Besides, the READ and
WRITE macro instructions only start input/output operations. To ensure that the
operation is completed successfully, you must issue a CHECK macro instruction
to test the data event control block (DECB). (The only exception to this is that,
when the SYNAD or EODAD routine is entered, a CHECK macro instruction
should not be issued for outstanding READ or WRITE requests.)

Grouping Related Control Blocks in a Paging Environment
Related control blocks (the DCB and DECB) and data areas (buffers and key
areas) should be coded so they assemble in the same area of your program.
This will reduce the number of paging operations required to read from and
write to your data set.

Note: DCB, DECB, and buffers must reside below 16 megabytes.

Using Overlapped 1/0 with BSAM
When using BSAM with overlapped 1/0 (multiple 1/0 requests outstanding at
one time), more than one DECB must be used. A different DECB should be
specified for each channel program. For example, if you specify NCP = 3 in
your DCB for the data set and you are reading records from the data set, you
should code the following macros in your program:

.READ DECBl, .. .

. READ DECB2, .. .

. READ DECB3, ••.

. CHECK DECBl

.CHECK DECB2

.CHECK DECB3

Chapter 6. Accessing Records in Data Sets 59

READ-Read a Block
The READ macro retrieves a data block from an input data set and places it in
a designated area of virtual storage. To allow overlap of the input operation
with processing, the system returns control to your program before the read
operation is completed. The DECB created for the read operation must be
tested for successful completion before the record is processed or the DECB is
reused.

If an indexed sequential data set is being read, the block is brought into virtual
storage and the address of the record is returned to you in the DECB.

When you use the READ macro for BSAM to read a direct data set with
spanned records and keys and you specify BFTEK = R in your DCB, the data
management routines displace record segments after the first in a record by
key length. Thus, you can expect the block descriptor word and the segment
descriptor word at the same locations in your buffer or buffers, regardless of
whether you read the first segment of a record, preceded in the buffer by its
key, or a subsequent segment that does not have a key. This procedure is
called offset reading.

You can specify variations of the READ macro according to the organization of
the data set being processed and the type of processing to be done by the
system as follows:

Sequential

SF Read the data set sequentially.

SB Read the data set backward (magnetic tape, format-F and format-LI only).
When RECFM= FBS, data sets with the last block truncated cannot be
read backward.

Indexed Sequential

K Read the data set.

KU Read for update. The system maintains the device address of the record;
thus, when a WRITE macro returns the record, no index search is
required.

Direct

D Use the direct access method.

Locate the block using a block identification.

K Locate the block using a key.

F Provide device position feedback.

X Maintain exclusive control of the block.

R Provide next address feedback.

U Nextaddress can be a capacity record or logical record, whichever
occurred first.

60 MVS/ESA Data Administration Guide

_

\'-,/

/
\ ',,,

(I

\._,)

WRITE-Write a Block
The WRITE macro places a data block in an output data set from a designated
area of virtual storage. The WRITE macro can also be used to return an
updated record to a data set. To allow overlap of output operations with proc­
essing, the system returns control to your program before the write operation is
completed. The DECB created for the write operation must be tested for suc­
cessful completion before the DECB can be reused. For ISCll/ ASCII tape data
sets, do not issue more than one WRITE on the same record, because the
WRITE macro instruction causes the data in the record area to be translated
from EBCDIC to ISCll/ASCll.

As with the READ macro, you can specify variations of the WRITE macro
according to the organization of the data set and the type of processing to be
done by the system as follows:

Sequential

SF Write the data set sequentially.

Indexed Sequential

K Write a block containing an updated record, or replace a record with a
fixed, unblocked record having the same key. The record to be replaced
need not have been read into virtual storage.

KN Write a new record or change the length of a variable-length record.

Direct

SD Write a dummy fixed-length record. (BDAM load mode)

SZ Write a capacity record (RO). The system supplies the data, writes the
capacity record, and advances to the next track. (BDAM load mode)

SFR Write the data set sequentially with next-address feedback. (BDAM load
mode variable spanned)

D Use the direct access method.

Search argument identifies a block.

K Search argument is a key.

A Add a new block.

F Provide record location data (feedback).

X Release exclusive control.

CHECK-Te~st Completion of Read or Write Operation
When processing a data set, you can test for completion of a READ or WRITE
request by issuing a CHECK macro. The system tests for errors and excep­
tional conditions in the data event control block (DECB). Successive CHECK
macros issued for the same data set must be issued in the same order as the
associated READ and WRITE macros.

The check routine passes control to the appropriate exit routines specified in
the DCB for error analysis (SYNAD) or, for sequential data sets, end-of-data
(EODAD). It also automatically starts the end-of-volume procedures (volume
switching or extending output data sets).

Chapter 6. Accessing Records in Data Sets 61

If you specify OPTCD = Q in the DCB, CHECK causes input data to be translated
from ISCll/ ASCII to EBCDIC.

WAIT-Wait for Completion of a Read or Write Operation
When processing a data set, you can test for completion of any READ or WRITE
request by issuing a WAIT macro. The input/output operation is synchronized
with processing, but the DECB is not checked for errors or exceptional condi­
tions, nor are end-of-volume procedures initiated. Your program must perform
these operations.

For BDAM and BISAM, a WAIT macro must be issued for each READ or WRITE
macro if MACRF = C is not coded in the associated DCB. When MACRF = C is
coded, and always for BSAM and SPAM, a CHECK macro must be issued for
each READ or WRITE macro. Because the CHECK macro incorporates the func­
tion of the WAIT macro, a WAIT is normally redundant for those access
methods. The ECBLIST form of the WAIT macro may be useful, though, in
selecting which of several outstanding events should be checked first.

The WAIT macro can be used to await completion of multiple read and write
operations. Each operation must then be checked or tested separately.
Example: You have opened an input DCB for BSAM with NCP = 2, and an output
DCB for BISAM with NCP = 1 and without specifying MACRF = C. You have
issued two BSAM READ macros and one BISAM WRITE macro. You now issue
the WAIT macro with ECBLIST pointing to the BISAM DECB and the first BSAM
DECB. (Because BSAM requests are serialized, the first request must execute
before the second.) When you regain control, you will inspect the DECBs to see
which has completed (second ~it on). If it was BISAM, you will issue another
WRITE macro. If it was BSAM, you will issue a CHECK macro and then another
READ macro.

Data Event Control Block (DECB)
A data event control block is a 16- to 32-byte area reserved by each READ or
WRITE macro. It contains the ECB, control information, and pointers to control
blocks. The DECB is described in Appendix A of Data Administration: Macro
Instruction Reference.

The DECB is examined by the check routine when the 1/0 operation is com­
pleted to determine if an uncorrectable error or exceptional condition exists. If
it does, control is passed to your SYNAD routine. If you have no SYNAD
routine, the task is abnormally terminated.

Accessing Data with GET/PUT
The queued access method provides GET and PUT macros for transmitting data
within virtual storage. These macro instructions cause automatic blocking and
unblocking of the records stored and retrieved. Anticipatory (look-ahead) buf­
fering and synchronization (overlap) of input and output operations with instruc­
tion stream processing are automatic features of the queued access method.

Because, the operating system controls buffer processing, you can use as many
input/output (1/0) buffers as needed without reissuing GET or PUT macro
instructions to fill or empty buffers. Usually, more than one input block is in
storage at a time, so 1/0 operations do not delay record processing.

62 MVS/ESA Data Administration Guide

\

\....,

i

\...._,!

r

\..._)

I ' v

(i

~

Because the operating system synchronizes input/output with processing, you
need not test for completion, errors, or exceptional conditions. After a GET or
PUT macro is issued, control is not returned to your program until an input area
is filled or an output area is available. Exits to error analysis (SYNAD) and end­
of-volume or end-of-data (EODAD) routines are automatically taken when neces­
sary.

GET-Retrieve a Record
The GET macro is used to obtain a record from an input data set. It operates in
a logical sequential and device-independent manner. As required, the GET
macro schedules the filling of input buffers, unblocks records, and directs input
error recovery procedures. For sequential data sets, it also merges record seg­
ments into logical records. After all records have been processed and the GET
macro detects an end-of-data indication, the system automatically checks labels
on sequential data sets and passes control to your end-of-data (EODAD)
routine. If an end-of-volume condition is detected for a sequential data set, the
system provides automatic volume switching if the data set extends across
several volumes or if concatenated data sets are being processed. If you
specify OPTCD = Q in the DCB, GET causes input data to be translated from
ISCll/ASCll to EBCDIC.

PUT-Write a Record
The PUT macro is used to write a record into an output data set. Like the GET
macro, it operates in a logical sequential and device-independent manner. As
required, the PUT macro blocks records, schedules the emptying of output
buffers, and handles output error correction procedures. For sequential data
sets, it also starts automatic volume switching and label creation, and also seg­
ments records for spanning. If you specify OPTCD = Q in the DCB, PUT causes
output to be translated from EBCDIC to ISCll/ASCll.

If the PUT macro is directed to a card punch or printer, the system automat­
ically adjusts the number of records or record segments per block of format-F
or format-V blocks to 1. Thus, you can specify a record length (LRECL) and
block size (BLKSIZE) to provide an optimum block size if the records are tem­
porarily placed on magnetic tape or a direct access volume.

For spanned variable-length records, the block size must be equivalent to the
length of one card or one print line. Record size may be greater than block
size in this case.

PUTX-Write an Updated Record
The PUTX macro is used to update a data set or to create an output data set
using records from an input data set as a base. PUTX updates, replaces, or
inserts records from existing data sets but does not create records.

When you use the PUTX macro to update, each record is returned to the data
set referred to by a previous locate mode GET macro instruction. The buffer
containing the updated record is flagged and written back to the same location
on the direct access storage device where it was read. The block is not written
until a GET macro instruction is issued for the next buffer, except when a
spanned record is to be updated. In that case, the block is written with the next
GET macro.

Chapter 6. Accessing Records in Data Sets 63

When the PUTX macro is used to create an output data set, you can add new
records by using the PUT macro. As required, the PUTX macro blocks records,
schedules the writing of output buffers, and handles output error correction pro­
cedures.

Parallel Input Processing (QSAM Only)
QSAM parallel input processing may be used to process two or more input data
sets concurrently, such as sorting or merging several data sets at the same
time. This eliminates the need for issuing a separate GET macro to each DCB
processed. The get routine for parallel input processing selects a DCB with a
ready record and then transfers control to the normal get routine. If there is no
DCB with a ready record, a multiple WAIT macro is issued.

Parallel input processing provides a logical input record from a queue of data
sets with equal priority. The function supports QSAM with input processing,
simple buffering, locate or move mode, and fixed-, variable-, or undefined­
length records. Spanned records, track-overflow records, dummy data sets,
and SYSIN data sets are not supported.

Parallel input processing can be interrupted at any time to retrieve records
from a specific data set, or to issue control instructions to a specific data set.
When the retrieval process has been completed, parallel input processing may
be resumed.

Data sets can be added to or deleted from the data set queue at any time. It is
important to note, however, that, as each data set reaches an end-of-data con­
dition, the data set must be removed from the queue with the CLOSE macro
before a subsequent GET macro is issued for the queue; otherwise, the task
may be ended abnormally.

A request for parallel input processing is indicated by including the address of
a parallel data access block (PDAB) in the DCB exit list. For additional informa­
tion on the DCB exit list, see DFP: Customization.

With the use of the PDAB macro, you can create and format a work area that
identifies the maximum number of DCBs that can be processed at any one time.
If you exceed the maximum number of entries indicated in the PDAB macro
when adding a DCB to the queue with the OPEN macro, the data set will not be
available for parallel input processing; however, it may be_ available for sequen­
tial processing.

When issuing a parallel GET macro, register 1 must always point to a PDAB.
You may load the register or let the GET macro do it for you. When control is
returned to you, register 1 contains the address of a logical record from one of
the data sets in the queue; registers 2 through 13 contain their original contents
at the time the GET macro was issued; registers 14, 15, and 0 are changed.

Through the PDAB, you can find the data set from which the record was
retrieved. A fullword address in the PDAB {PDADCBEP) points to the address
of the DCB. It should be noted that this pointer may be invalid from the time a
CLOSE macro is issued to the issuing of the next parallel GET macro.

In Figure 18 on page 65, not more than three data sets {MAXDCB = 3 in the
PDAB operand) will be open for parallel processing at a time. If data definition

64 MVS/ESA Data Administration Guide

\...,

I
i I , \0/

!I
I ; ;

\l.)

I
I \

'\J_j

I
i, I :
\~)

statements and data sets are supplied, DATASET1, DATASET2, and DATASET3
will be opened for parallel input processing as specified in the input processing
OPEN macro. Other attributes of each data set are QSAM (MACRF = G), simple
buffering by default, locate or move mode (MACRF = L or M), fixed-length
records (RECFM = F), and exit list entry for a PDAB (X '92 '). Note that both
locate and move modes may be used in the same data set queue. The
mapping macros, DCBD and PDABD, are used to reference the DCBs and the
PDAB respectively.

OPEN (DATASET1,(INPUT),DATASET2,(INPUT),DATASET3, x
(INPUT),DATASET4,(0UTPUT))

TM DATASETl+DCBQSWS-IHADCB,DCBPOPEN Opened for
parallel processing

BZ SEQRTN Branch on no to
sequential routine

TM DATASET2+DCBQSWS-IHADCB,DCBPOPEN
BZ SEQRTN
TM DATASET3+DCBQSWS-IHADCB,DCBPOPEN
BZ SEQRTN

GETRTN GET DCBQUEUE,BUFFERAD,TYPE=P
LR 10, 1 Save record pointer

Record updated in place

PUT DATASET4, (10)
B GETRTN

EODRTN EQU * Close DCB which just
reached EODAD

L 2,DCBQUEUE+PDADCBEP-IHAPDAB
CLOSE ((2))
CLC ZEROS(2),DCBQUEUE+PDANODCB-IHAPDAB Any DCBs left?
BL GETRTN Branch if yes

DATASET! DCB DDNAME=DDNAMEl,DSORG=PS,MACRF=GL,RECFM=FB, x
LRECL=88,EODAD=EODRTN,EXLST=SET3XLST

DATASET2 DCB DDNAME=DDNAME2,DSORG=PS,MACRF=GL,RECFM=FB, x
LRECL=88,EODAD=EODRTN,EXLST=SET3XLST

DATASET3 DCB DDNAME=DDNAME3,DSORG=PS,MACRF=GMC,RECFM=FB, x
LRECL=88,EODAD=EODRTN,EXLST=SET3XLST

DATASET4 DCB DDNAME=DDNAME4,DSORG=PS,MACRF=PM,RECFM=FB, x
LRECL=88

DCBQUEUE PDAB MAXDCB=3
SET3XLST DC 8F'8',X'92',AL3(DCBQUEUE)
ZEROS DC X18888 1

DCBD DSORG=QS
PDABD

Note: The number of bytes required for PDAB is equal to 24 + Bn, where n is
the value of the keyword, MAXDCB.

Figure 18. Parallel Processing of Three Data Sets

Chapter 6. Accessing Records in Data Sets 65

Following the OPEN macro, tests are made to determine whether the DCBs
were opened for parallel processing. If not, the sequential processing routine is
given control.

When one or more data sets are opened for parallel processing, the get routine
retrieves a record, saves the pointer in register 10, processes the record, and
writes it to DATASET4. This process continues until an end-of-data condition is
detected on one of the input data sets; the end-of-data routine locates the com­
pleted input data set and removes it from the queue with the CLOSE macro. A
test is.then made to determine whether any data sets remain on the queue.
Processing continues in this manner until the queue is empty.

Sharing Data Sets
There are two conditions under which a data set on a direct access device can
be shared by two or more tasks:

• Two or more DCBs are opened and used concurrently by the tasks to refer
to the same, shared data set (multiple DCBs). '-

• Only one DCB is opened and used concurrently by multiple tasks in a single
job step (a single, shared DCB).

Job control language (JCL) statements and macros are provided in the oper­
ating system that help you ensure the integrity of the data sets you want to
share among the tasks that process them. Figure 19 on page 67 and Figure 20
on page 68 show which JCL and macros you should use, depending on the
access method your task is using and mode of access (input, output, or update).

Figure 19 describes the macros, JCL, and processing procedures you should
use if more than one DCB has been opened to the shared data set. The DCBs
can be used by tasks in the same or different job steps.

66 MVS/ESA Data Administration Guide

/ v

/.

(.

\.._.. .. /

(i

~

L1

j

t :_.,;

MULTIPLE DCBs

ACCESS METHOD
ACCESS MODE

BSAM,BPAM QSAM BDAM QI SAM BI SAM

Input DISP = SHR DISP = SHR DISP = SHR DISP = SHR DISP = SHR

No facility No facility DISP = SHR No facility DISP = SHR
Output and ENQ on

Data Set

DISP = SHR DISP = SHR DISP = SHR DISP = SHR DISP = SHR
user must and Guarantee BDAM will and ENQ on and ENQ on
ENQ on discrete ENQ on data set and data set and

Update block blocks block guarantee guarantee
discrete discrete
blocks blocks

DISP=SHR:
Each job step sharing an existing data set must code SHR as the subparameter of the DISP

parameter on the DD statement for the shared data set to allow the steps to execute concur~

rently. For additional information about ensuring data set integrity, see JCL User's Guide. If

the tasks are in the same job step, DISP =SH R is not required.

No facility:
There are no facilities in the operating system for sharing a data set under these conditions.

ENQ on data set:
Besides coding DISP = SHR on the DD statement for the data set that is to be shared, each task

must issue ENQ and DEQ macros naming the data set or block as the resource for which exclu­

sive control is required. The ENQ must be issued before the GET (READ); the DEQ macro

should be issued after the PUTX or CHECK macro that ends the operation. For additional infor­

mation on the use of ENQ and DEQ macros, see Application Development Macro Reference.

Guarantee discrete blocks:
When you are using the access methods that provide blocking and unblocking of records

(QSAM, QISAM, and BISAM), it is necessary that every task updating the data set ensure that it

is not updating a block that contains a record being updated by any other task. There are no

facilities in the operating system for ensuring that discrete blocks are being processed by dif­

ferent tasks.

ENQ on block:
If you are updating a shared data set (specified by coding DISP = SHR on the DD statement)

using BSAM or BPAM, your task and all other tasks must serialize processing of each block of

records by issuing an ENQ macro before the READ macro and a DEQ macro after the CHECK

macro that follows the WRITE macro you issued to update the record. If you are using BDAM, it

provides for enqueuing on a block using the READ exclusive option that is requested by coding

MACRF=X in the DCB and an X in the type operand of the READ and WRITE macros. (For an

example of the use of the BDAM macros, see "Exclusive Control for Updating" on page 147.)

Figure 19. JCL, Macro Instructions, and Procedures Required to Share a Data Set Using

Multiple DCBs

Figure 20 on page 68 describes the macros you can use to serialize processing

of a shared data set when a single DCB is being shared by several tasks in a

job step. The DISP = SHR specification on the DD statement is not required.

Data sets can also be shared both ways at the same time. More than one DCB

can be opened for a shared data set, while more than one task can be sharing

one of the DCBs. Under this condition, the serialization techniques specified for

indexed sequential and direct data sets in Figure 19 satisfy the requirement.

For sequential and partitioned data sets, the techniques specified in Figure 19

and Figure 20 must be used.

Chapter 6. Accessing Records in Data Sets 67

More information on opening and closing data sets by more than one task is in
"Opening and Closing a Data Set" on page 45.

Shared Direct Access Storage Devices: At some installations, a direct access
storage device is shared by two or more independent computing systems.
Tasks executed on these systems can share data sets stored on the device.
Careful planning should be exercised in accessing a shared data set or the
same storage area on shared devices by multiple independent systems. Without
proper intersystem communication, data integrity could be endangered. For
details, see SPL: Application Development Guide.

A SINGLE SHARED DCB

ACCESS METHOD
ACCESS

MODE BSAM, QSAM BDAH QI SAM BISAH
BPAM,
BDAM
Create

Input ENQ ENQ No action ENQ ENQ
required

Output ENQ ENQ Mo action EMQ and key ENQ
required sequence

Update ENQ EMQ No action EMQ ENQ

ENQ:
When a data set is being shared by two or more tasks in the same job step (all that use the
same DCB), each task processing the data set must issue an ENQ macro instruction on a prede­
fined resource name before issuing the macro or macros that begin the input/output operation.
Each task must also release exclusive control by issuing the DEQ macro at the next sequential
instruction following the input/output macro. If, however, you are processing an indexed
sequential data set sequentially using the SETL and ESETL macros, you must issue the ENQ
macro before the SETL macro and the DEQ macro after the ESETL macro. Note also that if two
tasks are writing different members of a partitioned data set, each task should issue the ENQ
macro before the FIND macro and issue the DEQ macro after the STOW macro that completes
processing of the member. Additional reference information on the ENQ and DEQ macros is
presented in Application Development Macro Reference. For an example of the use of ENQ
and DEQ macros with BISAM, see Figure 46 on page 146.

No action required:
See "Sharing Direct Data Sets" on page 151.

ENQ on block:
When updating a shared direct data set, every task must use the BDAM exclusive control option
that is requested by coding MACRF=X in the DCB macro and an X in the type operand of the
READ and WRITE macro instructions. See "Exclusive Control for Updating" on page 147 for an
example of the use of BDAM macros. Note that all tasks sharing a data set must share subpool
O (see the ATTACH macro description in Application Development Macro Reference).

Key sequence:
Tasks sharing a QISAM load mode DCB must ensure that the records to be written are pre­
sented in ascending key sequence; otherwise, a sequence check will result in (1) control being
passed to the SYNAD routine identified by the DCB, or (2) if there is no SYNAD routine, termi­
nation of the task.

Figure 20. Macro Instructions and Procedures Required to Share a Data Set Using a
Single DCB

68 MVS/ESA Data Administration Guide

\..,

\"-

I v

(.
~/

Analyzing 1/0 Errors
The basic and queued access method both provide special macro instructions
for analyzing input/output errors. These macro instructions can be used in
SYNAD routines or in error analysis routines.

Device Support Facilities (ICKDSF)-Diagnosing 1/0 Problems
You can use Device Support facilities (ICKDSF) Release 9.0 or higher to deter­
mine if there are problems with the disk drive or a problem reading or writing
data stored on the volume. Device Support Facilities also performs service
checking of a volume. The INSPECT command for the Device Support Facilities
program can assign alternate tracks. (See ICKDSF User's Guide and
Reference.)

SYNADAF-Perform SYNAD Analysis Function
The SYNADAF macro analyzes the status, sense, and exceptional condition
code data that is available to your error analysis routine. It produces an error
message that your routine can write into any appropriate data set. The
message is in the form of an unblocked variable-length record, but you can
write it as a fixed-length record by omitting the block length and record length
fields that precede the message text.

The message comes in two parts. If the data set being analyzed is not a POSE,
only the first message is displayed. If the data set is a POSE, both messages
are displayed. The text of the first message is 120 characters long, and begins
with a field of either 36 or 42 blanks; you can use the blank field to add your
own remarks to the message. The text of the second message, for PDSEs, is
128 characters long and ends with a field of 79 blanks (reserved for later use).
This second message begins in the 5th byte in the message buffer.

Following is a typical message for a tape data set with the blank field omitted:

,TESTJOBb,STEP2bbb,283,TA,MASTERbb,READb,DATA CHECKbbbbb,
8880815,BSAM

Note: In the above example, 1 b 1 indicates a blank.

This message shows that a data check occurred during reading of the 15th
block of a data set. The data set was identified by a DD statement named
MASTER, and was on a magnetic tape volume on unit 283. The name of the job
was TEST JOB; the name of the job step was STEP2.

Following is a typical message for a POSE with the blank fields omitted:

,PDSEJOBb,STEP2bbb,283,DA,PDSEDDbb,READb,DATA CHECKbbbbb,
80800888188882,BSAMS

,083,8888885,8888800002,08800080,08808008,b ... (79 blanks)

This message shows that a data check occurred during reading of the 100002th
block of the POSE. The data set was identified by a DD statement named
PDSEDD, and was on a DASO on unit 283. The name of the job was PDSEJOB;
the name of the job step was STEP2. The 1 S 1 following BSAM indicates that
the data set is a POSE. The second message identifies the record in which the
error occurred. The concatenation number of the data set is 3, its relative

Chapter 6. Accessing Records in Data Sets 69

record number is 2, and the 5 is a token the system uses to locate the member.
The SMS return and reason codes are zero, meaning that no error occurred in
SMS.

If the error analysis routine is entered because of an input error, the first 6
bytes of the message (bytes 8 to 13) contain binary information. If no data was
transmitted or if the access method is QISAM, the first 6 bytes are blanks or
binary zeros. If the error did not prevent data transmission, the first 6 bytes
contain the address of the input bl,Jffer and the number of bytes read. You can
use this information to process records from the block; for example, you might
print each record after printing the error message. Before printing the
message, however, you should replace this binary information with EBCDIC
characters.

The SYNADAF macro provides its own save area and makes this area available
to your error analysis routine. When used at the entry point of a SYNAD
routine, it fulfil'ls the routine's responsibility for providing a save area. See Data
Administration: Macro Instruction Reference for more information on the
SYNADAF macro.

SYNADRLS-Release SYNADAF Message and Save Areas
The SYNADRLS macro releases the message and save areas provided by the
SYNADAF macro. You must issue this macro instruction before returning from
the error analysis routine.

70 MVS/ESA Data Administration Guid~

(

~)

u

Chapter 7. Spooling and Scheduling Data Sets

The job entry subsystem (JES) is a system function that spools and schedules
input and output data streams.

Spooling includes two basic functions:

• Input streams are read from the input device and stored on an intermediate
storage devi.ce in a format convenient for later processing by the system
and by the user's program.

• Output streams are similarly stored on an intermediate device until a con­
venient time for printing or punching.

Scheduling provides the highest degree of system availability through the
orderly use of system resources that are the objects of contention.

With spooling, unit record devices are used at full rated speed if enough buffers
are available, and they are used only for the time needed to read, print, or
punch the data. Without spooling, the device is occupied for the entire time that
a job is doing other processing. Also, because data is stored instead of being
transmitted directly, output can be queued in any order and scheduled by class
and by priority within each class.·

You enter data into the system input stream by preceding it with a DD *or a DD
DAT A JCL statement. This is a SYSIN data set.

Your output data can be printed or punched from a SYSOUT data set that is
called the output stream. You code the SYSOUT keyword parameter in your DD
statement and designate the appropriate output class. For example,
SYSOUT =A requests output class A. The class-device relationship is estab­
lished for each installation, and a list of devices assigned to each output class
will enable you to select the appropriate one. For further information on SYSIN
and SYSOUT parameters, see JCL User's Guide and JCL Reference.

A SYSIN data set cannot be opened by more than one DCB at the same time,
as it would result in an S013 abend. SYSIN and SYSOUT cannot be managed
by SMS.

SYSIN and SYSOUT must be either BSAM or QSAM data sets and you open and
close them in the same manner as any other data set processed on a unit
record device. The job entry subsystem (JES) allows multiple opens to the
same SYSOUT data set; and the records are interspersed. However, serializa­
tion of the data set is the responsibility of the application or user. For more
information on serialization, see "Sharing Data Sets" on page 66. The DCB
exit routine will be entered in the usual manner if you specify it in an exit list.
See DFP: Customization for the DCB exits.

When you use QSAM with fixed-length blocked records or BSAM, the DCB block
size parameter does not have to be a multiple of logical record length (LRECL)
if the block size is specified through the SYSOUT DD statement. Under these
conditions, if block size is greater than LRECL but not a multiple of LRECL,
block size is reduced to the nearest lower multiple of LRECL when the data set
is opened. This feature allows a cataloged procedure to specify blocking for

Chapter 7. Spooling and Scheduling Data Sets 71

SYSOUT data sets, even though your LRECL is not known to the system until
execution.

Therefore, the SYSOUT DD statement of the go step of a compile-load-go proce- ·"-du re can specify block size without block size being a multiple of LRECL.

Because a SYSOUT data set is written on a direct access device, you should
omit the DEVD operand in the DCB macro, or you shoul·d code DEVD =DA.
Because SYSIN and SYSOUT data sets are spooled on intermediate devices,
you should also avoid using device-dependent macros (such as FEOV, CNTRL,
PRTOV, or BSP)q in processing these data sets. (See "Achieving Device Inde­
pendence in Sequential Data Sets" on page 56.) With a 3800, you can use
SETPRT when processing spooled data sets. For further information, refer to
IBM 3800 Printing Subsystem Programmer's Guide.

The job entry subsystem controls all blocking and deblocking of your data to
optimize system operation and ignores the number of channel programs (NCP)
you specify. The block size (BLKSIZE) and number of buffers (BU.FNO) specified
in your program have no correlation with what is actually used by the job entry \..,. subsystem. Therefore, you can select the blocking factor that best fits your
application program with no effect on the spooling efficiency of the system. For
QSAM applications, move mode is as efficient as locate mode.

All record formats are allowed, except that spanned records (RECFM =VS or
VBS) cannot be specified for SYSIN. A record format of FIXED is supplied if it is
not specified for SYSIN.

The minimum record length for SYSIN is 80 bytes. For undefined records, the
entire 80-byte image is treated as a record. Therefore, a read of less than 80 ''-bytes results in the transfer of the entire 80-byte image to the record area spec-
ified in the READ macro. For fixed and variable length records, an ABEND
results if the LRECL is less than 80 bytes.

The logical record length value (JFCLRECL field in the JFCB) is filled in with the
logical record length value of the input data set. This value is increased by 4 if
the record format is variable (RECFM = V or VB). The logical record length may
be a size other than the size of the input device, if the SYSIN input stream is
supplied by an internal reader. The job entry subsystem will supply a value in
the JFCLRECL field of the JFCB if that field is found to be zero.

The block size value (JFCBLKSI field in the JFCB) is filled in with the block size
value of the input data set. This value is increased by 4 greater than the value
calculated for the logical record value (that is, input data set logical record
length + 4) if the record format is variable (RECFM =V or VB). The job entry
subsystem will supply a value in the JFCBLKSI field of the JFCB if that field is
found to be 0,

Your program is responsible for printing format, pagination, header control, and
stacker select. You can supply control characters for SYSOUT data sets in the
normal manner by specifying ANSI or machine characters in the DCB.
Standard controls are provided by default if they are not specified. The length
of output records must not exceed the allowable maximum length for the ulti­
mate device. Cards can be punched in EBCDIC mode only.

72 MVS/ESA Data Administration Guide

\ i

'>._-/

(I

\~

Your SYNAD routine will be entered if an error occurs during data transmission

to or from an intermediate storage device. Again, because the specific device

is indeterminate, your SYNAD routine code should be device independent.

Chapter 7. Spooling and Scheduling Data Sets 73

\

(.
""-·/

I
\

'-./

i.

_,,.

{ '

\,_/

Chapter 8. Processing a Sequential Data Set

General-Use Programming Interface

This chapter is intended to help you process sequential data sets. It contains
general-use programming interfaces, which are provided to allow you to write
programs that use the services of MVS/DFP.

Data sets residing on any volume other than direct access volumes must be
processed sequentially. In addition, a data set residing on a direct access
volume, regardless of organization, can be processed sequentially. This
includes data sets created using ISAM or a similar access method. Because
the entire data set (prime, index, and overflow areas) will be processed, care
should be taken to determine the type of records being processed~

See Data Administration: Macro Instruction Reference for the macros used with
sequential data sets. For a non-DASO sequential data set, a technique called
chained scheduling can be used to accelerate the input/output operations.

Creating a Sequential Data Set
Either the queued or the basic access method may be used to store and
retrieve the records of a sequential data set.

As discussed earlier, a processing program should be developed using, as
much as possible, factors that are constant, with variable factors specified at
execution. For that reason, the following examples are generalized as much as
possible. They are neither exhaustive nor intended as complete examples.
Rather, they are presented as introductory sequences.

In creating a sequential data set on a magnetic tape or direct access device,
you must do the following:

• Code DSORG =PS or PSU in the DCB macro.

• Code a DD statement to describe the data set (see JCL Reference). For
SMS-managed DASO data sets, either specify a data class in the DD state­
ment or allow the ACS routines to assign a data class.
or .
Create the data set using the TSO or access method services ALLOCATE
command (see Access Method Services Reference).

• Process the data set with an OPEN macro (data set is opened for output or
OUTIN), a series of PUT or WRITE and CHECK macros, and then a CLOSE
macro.

Tape-to-Print, Move Mode-Simple Buffering: The example in Figure 21 on
page 76 shows that the GET-move and PUT-move require two movements of
the data records. If the record length (LRECL) does not change during proc­
essing, only one move is necessary; you can process the record in the input
buffer segment. A GET-locate provides a pointer to the c:urrent segment.

Chapter 8. Processing a Sequential Data Set 75

OPEN
NEXTREC GET

AP
UNPK
PUT
B

TAPERROR SYNADAF
LA

*
ST
PUT
SYNADRLS
L
RETURN

ENDJOB CLOSE

COUNT D~

l•JORKAREA DS
NUMBER DC
SAVE14 DS
INDATA DCB

(INDATA,,OUTDATA,(OUTPUT))
I NDATA, l•JORKAREA Move mode
NUMBER,=P 1 l 1

COUNT,NUMBER Record count adds 6
OUTDATA,COUNT bytes to each record
NEXTREC
ACSMETH=QSAM Contra~ program returns
0,68(0,l) message address in regis-

ter 1.
14,SAVE14 SYNAD routine prints part
OUTDATA, (0) of the message (beginning

with the unit number) as
14,SAVE14 a 56-byte fixed-length

record. It then returns
(INDATA,,OUTDATA) to the control program.

CL6
CL50
PL4 101

F
DDNAME=INPUTDD,DSORG=PS,MACRF=(GM),EROPT=ACC,

OUTDATA DCB
SYNAD=TAPERROR,EODAD=ENDJOB

DDNAME=OUTPUTDD,DSORG=PS,MACRF=(PM),EROPT=ACC

Figure 21. Creating a Sequential Data Set-Move Mode, Simple Buffering

Retrieving a Sequential Data Set
In retrieving a sequential data set on a magnetic tape or a direct access device,
you must do the following:

• Code DSORG =PS or PSU in the DCB macro.

• Tell the system where your data set is located (by coding a DD statement;
see JCL Reference).

• Process the data set with an OPEN macro (data set is opened for input,
INOUT, ROBACK, or UPDAT), a series of GET or READ macros, and then a
CLOSE macro.

Tape-to-Print, Locate Mode-Simple Buffering: The example in Figure 22 on
page 77 is similar to that in Figure 21. However, because there is no change
in the record length, the records can be processed in the input buffer. Only one
move of each data record is required.

76 MVS/ESA Data Administration Guide

I

"'

\""

\ ,._

CL) OPEN (INDATA,,OUTDATA,(OUTPUT),ERRORDCB,(OUTPUT))
NEXTREC GET INDATA Locate mode

LR 2,1 Save pointer
AP NUMBER,=P 1 l 1

UNPK 0(6,2),NUMBER Process in input area
PUT OUTDATA Locate mode
MVC 0(50,1) ,0(2) Move record to output buffer
B NEXTREC

TAPERROR SYNADAF ACSMETH=QSAM Message address in register 1
ST 2,SAVE2 Save register 2 contents
L 2,8(0,1) Load pointer to input buffer
MVC 8(70,1) ,50(1) Shift nonblank message fields
MVI 78(1),C' I Blank end of message
MVC 79 (49, 1) , 78 (1)
ST 2,128(1) Save address for debugging
CH 0,=H 141 Test SYNADAF return code

rLI BE MOVERCD Branch if data read
\ I BL PRINT IT Branch if data not read

cu 128(1),C' I See if data read anyway
BE PRINTIT Branch if no data

MOVERCD MVC 78(50,1),0(2) Add input record to message
PRINT IT LA 0,4(1) Load address of message

LR 2,14 Save return address
PUT ERRORDCB, (0) Print message (move mode)
SYNADRLS Release message and save area
LR 14,2 Restore return address

'.L' L 2,SAVE2 Restore register 2 contents
RETURN Return to control program

I

END JOB CLOSE (INDATA,,OUTDATA,,ERRORDCB)

NUMBER DC PL4 101

INDATA DCB DDNAME=INPUTDD,DSORG=PS,MACRF=(GL),EROPT=ACC, c
SYNAD=TAPERROR,EODAD=ENDJOB

OUTDATA DCB DDNAME=OUTPUTDD,DSORG=PS,MACRF=(PL)
ERRORDCB DCB DDNAME=SYSOUTDD,DSORG=PS,MACRF=(PM),RECFM=V, c

BLKSIZE=l28,LRECL=i24
SAVE2 DS F

~)
Figure 22. Creating a Sequential Data Set-Locate Mode, Simple Buffering

Chapter 8. Processing a Sequential Data Set 77

Modifying a Sequential Data Set
You can modify a sequential data set in two ways:

• Changing the data in existing records {update in place)

• Adding new records to the end of a data set {extending the data set).

Updating a Sequential Data Set in Place
When you update in place, you read records, process them, and write them
back to their original positions without destroying the remaining records on the
track. The following rules apply:

• You must specify the update option {UPDAT) in the OPEN macro instruction.
To perform the update, you can use only the READ, WRITE, CHECK, NOTE,
POINT, GET, and PUTX macros.

• You cannot delete any record or change its length; you cannot add new
records. ·

• The data set must be on a direct access device.

A record must be retrieved by a READ or GET macro before it can be updated
by a WRITE or PUTX macro. A WRITE or PUTX macro does not need to be
issued after each READ or GET macro. The READ and WRITE macros must be
execute forms that refer to the same DECB; the DECB must be provided by the
list forms of the READ or WRITE macros. (The execute and list forms of the
READ and WRITE macros are described in Data Administration: Macro Instruc­
tion Reference.)

Updating with Overlapped Operations
To overlap input/output and processor activity, you can start several read or
write operations before checking the first for completion. You cannot overlap
read with write operations, however, as operations of one type must be
checked for completion before operations of the other type are started or
resumed. Note that each pending read or write operation requires a separate
channel program and a separate DECB. If a single DECB were used for succes­
sive read operations, only the last record read could be updated.

In Figure 40 on page 109, overlap is achieved by having a read or write request
outstanding while each. record is being processed. Note the use of the execute
and list forms of the READ and WRITE macros, identified by the operands
MF=E and MF=L.

Extending a Sequential Data Set
If you want to add records at the end of your data set, you must open the data
set for output with DISP =MOD specified in the DD statement or specify the
EXTEND option of the OPEN macro. You can then issue PUT or WRITE macros
to the data set.

78 · MVS/ESA Data Administration Guide

~:

I
\ '_,;

I

~)

Concatenating Sequential Data Sets
Two or more sequential data sets can be retrieved by the system and proc­
essed successively as a single data set. This is called sequential concat­
enation, and allows the application program to treat a collection of sequential
data sets as one data set. You can concatenate up to 255 sequential data sets.

Concatenation can be thought of as the processing of a sequence of "like" and
"unlike" data sets. The "like" data sets in the sequence are those that can be
processed correctly without notifying the system. A "like'' data set either uses
the same data control block (DCB), input/output block (IOB), and channel
program as the data set preceding it, or meets certain requirementS' that make
the data set eligible to be treated as "like" by the system. All other data sets
are treated as "unlike" data sets.

The "unlike" data sets in the sequence cannot be processed correctly unless
the DCBOFLGS field in the DCB is turned on, notifying the system that the next
data set in the sequence is "unlike." For example, you must concatenate as
"unlike" data sets with different record formats.

Rules for Concatenating Like Data Sets: To be a "like" data set, a data set
must either be able to process correctly using the same channel program as
the preceding data set in the- sequence, or meet the following eligibility rules:

• The record format is either fixed or variable, and is th·e same as the record
format of the preceding data set.

• LRECL is same as the LRECL of the. preceding data set.

• The access method is QSAM or BSAM.

• If the access method is QSAM, then OPEN got the buffer pool.

• Block size was not coded in the DCB macro.

• The device is either a DASO device or a tape device and the device of the
preceding data set is either DASO or tape.

• Tape labels are standard or ANSI.

• If mixed tape and DASO, the POINT or CONTROL macros are not
used-neither P nor C was coded in the DCB MACRF parameter.

Concatenating Unlike Data Sets: When sequential data sets are concatenated,
the system is open to only one of the data sets at a time. If spool data sets or
any of the "like" data sets described above are concatenated, the system auto­
matically handles them correctly. You do not need to inform the system that
they are being concatenated. However, if "unlike" sequential data sets are
concatenated, you must modify the DCBOFLGS field of the DCB to inform the
system that you are concatenating data sets. The indication must be made
before the end of the current data set is reached. OCBOFPPC is bit 4 of the
DCBOFLGS field. You must set bit 4, DCBOFPPC, to 1 by using the instruction
01 DCBOFLGS, X 108 1 as described in Chapter 5, "Specifying a Data Control
Block and Initializing Data Sets." If DCBOFPPC is 1, end-of-volume processing
for each data set will issue a close for the data set just read and an open for
the next concatenated data set. This opening and closing procedure updates
the fields in the DCB and, if necessary, builds a new IOB and a new channel
program. If the buffer pool was obtained automatically by the open routine, the
procedure also frees the buffer pool and obtains a new one for the next concat-

Chapter 8. Processing a Sequential Data Set 79

enated data set. The procedure does not issue a FREEPOOL for the last con­
catenated data set. Unless you have some way of determining the
characteristics of the next data set before it is opened, you should not reset the
DCBOFLGS field to indicate "like" attributes during processing. When you con­
catenate data sets with unlike attributes (that is, turn on the DCBOFPPC bitof
the DCBOFLGS field), the EOV exit is not taken. However, the OPEN exit is
taken.

When a new data set is reached and DCBOFPPC is on, the GET or READ macro
instruction that detected the end of data set must be reissued. Figure 23 illus­
trates a possible routine for determining when a GET or READ must be reis­
sued. Also, you should not issue multiple input requests (that is, a series of
READ macro instructions) in your program. If you do, you will have to arrange
some way to determine which requests have been completed and which must
be reissued. These restrictions do not apply to "like" data sets, because no
OPEN or CLOSE operation is necessary between data sets.

DCBEXIT

Reread Switch
On

Return to
\Check via Open•

Set First­
Time-In

Switcn Off

Set Bit 4
of OFLGS

to 1

Return
to Opem

Set
>--O_n ---:·Reread Switch •Returns are to control

program address in register 14
Off

I Off

---1 Pro:ess I

Figure 23. Reissuing a READ or GET for Unlike Concatenated Data Sets

When the change from one data set to another is made, label exits are taken as
required; automatic volume switching is also performed for multiple volume
data sets. Your end-of-data-set (EODAD) routine is not entered until the last
data set has been processed.

To save time when processing two consecutive sequential data sets on a single
tape volume, you specify LEAVE in your OPEN macro instruction. Concatenated
data sets cannot be read backward.

80 MVS/ESA Data Administration Guide

I
I

\....._.,,/

/ u

Processing with Chained Scheduling
To. accelerate the input/output operations required for a data set, the operating
system provides a technique called chained scheduling. When requested, the
system bypasses the normal 1/0 routines and dynamically chains several
input/output operations together. A series of separate read or write operations,
functioning with chained scheduling, is issued to the computing system as one
continuous operation. In a nonpageable (V = R) address space, the program­
controlled interruption (PCI) flag in the CCWs cause the PCI appendage to get
control and dynamically chain the next 1/0 request to the currently executing
channel program.

The 1/0 performance is improved by reduction in both the processor time and
the channel start/stop time required to transfer data within virtual storage.
Some factors that affect performance improvement are:

• Address space type (real or virtual)

• BUFNO for QSAM

• The number of overlapped requests for BSAM (NCP)

• Other activity on the processor and channel

Chained scheduling can be used only with simple buffering. Each data set for
which chained scheduling is specified must be assigned at least two and prefer­
ably more buffers with QSAM, or must have a value of at least two and prefer­
ably more for NCP with BSAM or SPAM.

The system defaults to chained scheduling for nondirect access devices (other
than printers and format-LI records), except for those cases in which it is not
allowed.

A request for exchange buffering in MVS/DFP is not honored, but compatibly
defaults to move mode and therefore has no effect on either a request for
chained scheduling or a default to chained scheduling.

A request for chained scheduling is ignored and normal scheduling used if any
of the following are encountered when the data set is opened:

• CNTRL macro to be used.

• Bypassing of embedded DOS checkpoint records on tape input.

• Spooled data sets (SYSIN or SYSOUT).

• NCP=1 or BUFN0=1

• A print data set or any associated data set for the 3525 Card Punch. (For
more information about programming the 3525, see Programming Support
for the IBM 3505 Card Reader and the IBM 3525 Card Punch.)

The number of channel program segments that can be chained is limited to the
value specified in the NCP operand of BSAM DCBs, and to the value specified
in the BUFNO operand of QSAM DCBs.

When the data set is a printer, chained scheduling is not supported
(DCB= OPTCD = C) when channel 9 or channel 12 is in the carriage control tape
or FCB.

Chapter 8. Processing a Sequential Data Set 81

When chained scheduling is being used, the automatic skip feature of the
PRTOV macro for the printer will not function. Format control must be achieved
by ANSI or machine control characters. (Control characters are discussed in
more detail under "Carriage Control Character" on page 30, under "Record \~
Format-Device Type Considerations" on page 27, and under Appendix B,
"Control Characters" on page 135.) When you are using QSAM under chained
scheduling to read variable-length, blocked, ASCII tape records (format-DB),
you must code BUFOFF = L in the DCB for that data set.

Note also that, if you are using BSAM with the chained scheduling option to
read format-DB records and have coded a value for the BUFOFF operand other
than BUFOFF = L, the input buffers will be converted from ASCII to EBCDIC as
usual, but the record length returned to the DCBLRECL field will equal the block
size, not the actual length of the record read in; the record descriptor word
(ROW), if present, will not have been converted from ASCII to binary.

Chained scheduling is most valuable for programs that require extensive input
and output operations. Because a data set using chained scheduling may
monopolize available time on a channel in a V=H region, separate channels
should be assigned, if possible, when more than one data set is to be proc­
essed.

Notes:

1. Chained scheduling is not a DASO option; it is built into the access method
for DASO.

Chained Scheduling Functions for DASO
For direct access storage devices (DASO), chained scheduling is not supported.
(If the chained scheduling option is specified for DASO, it is ignored.) Instead,
the functions of chained scheduling are performed directly by the sequential
access method (either BSAM or QSAM).

In QSAM, the value of BUFNO determines how many channel programs or 110
reques_ts will be chained together before 1/0 is initiated. The default value of
BUFNO is 5; when five buffers are full (that is, five 1/0 requests have been
issued), QSAM reads or writes all five records in a single revolution of the disk.

In BSAM, the first READ or WRITE instruction initiates 1/0. Subsequent 1/0
requests (without an associated CHECK or WAIT instruction) will be put in a
queue, and the channel program associated with the request will be chained to
the previous request in the queue. During channel end processing for the first
110 request, the queue is checked for pending 1/0 requests and the next request
in the queue is started using the channel end appendage. The number of 1/0
requests that may be chained together is limited to the number of requests that
can be handled in one 1/0 event (and one revolution of the disk) before channel
end processing is complete.

82 MVS/ESA Data Administration Guide

'"'-

I

~!

l I _/!

l ' "-"}

I,

\.._,/

I I
\._.,;

Search Direct for Input Operations
To accelerate the input operations required for a data set on DASO, the oper­
ating system uses a technique called search direct. Search direct reads in the
requested record and the count field of the next record. This allows the opera­
tion to get the next record directly, along with the count field of the following
record.

You may receive unpredictable results when your application has a dependency
that is incompatible with the use of search direct. For example, you may
receive unpredictable results when multiple DCBs are open for a file and one of
the applications is adding records.

Determining the Length of a Record on Input
When you read a sequential data set, you can determine the length of the
record in one of the following five ways, depending on the record format of the
data set:

1. For fixed-length, unblocked records, the length of all records is the value in
the DCBBLKSI field of the DCB.

2. For variable-length records, the block descriptor word in the record con­
tains the length of. the record.

3. For fixed-length blocked or undefined-length records, the following method
can be used to calculate the block length. This method can be used with
BSAM, BDAM, or SPAM. (This method should not be used when reading
track overflow records or when using chained scheduling with format-LI
records. In these cases, the length of a record cannot be determined.)
After checking the DECB for the READ request but before issuing any sub­
sequent data management macros that specify the DCB for the READ
request, obtain the 108 address from the DECB. The 108 address can be
loaded from the location 16 bytes from the start of the DECB.

Obtain the residual count from the channel status word (CSW) that has been
stored in the input/output block (108). The residual count is in the halfword,
14 bytes from the start of the 108. For SYSIN or SYSOUT data sets, the
residual count can also be found in bytes 2 and 3 of the first word of the
DECB. Subtract this residual count from the number of data bytes
requested to be read by the READ macro instruction. If 1S 1 was coded as
the length parameter of the READ macro, the number of bytes requested is
the value of DCBBLKSI at the time the READ was issued. If the length was
coded in the READ macro, this value is the number of data bytes and it is
contained in the halfword 6 bytes from the beginning of the DECB. The
result of the subtraction is the length of the block read. See Figure 24 on
page 84.

Chapter 8. Processing a Sequential Data Set 83

OPEN
LA
USING

READ
READ

CHECK
LH
L
SH

CHECK
LH
L
SH

MVC
READ

CHECK
LH
L
SH

DCB DCB
DCBD

(DCB, (INPUT))
DCBR,DCB
IHADCB,DCBR

DECBl~SF,DCB,AREAl, 1 S 1

DECB2,SF,DCB,AREA2,50

DECBl
WORKl ,DCBBLKSI
WORK2,DECB1+16
WORK1,14(WORK2)

DECB2
WORK1,DECB2+6
WORK2,DECB2+16
WORK1,14(WORK2)

DCBBLKSI,LENGTH3
DECB3,SF,DCB,AREA3

DECB3
WORK1,LENGTH3
WORK2,DECB+l6
WORK1,14(WORK2)

•.. RECFM=U,NCP=2, ...

Block size at time of READ
!OB address
WORKl has block length

Length requested
!OB address
WORKl has block length

Length to be read

Block size at time of READ
IOB address
WORKl has block length

Figure 24. One Method of Determining the Length of the Record When Using BSAM to
Read Undefined-Length Records

4. When an undefined-length record is read, the actual length of the record is
returned in the DCBLRECL field of the data control block. Because of this
use of DCBLRECL, the LRECL operand should be omitted. This method can
only be used with QSAM and BSAM.

5. The length to be read or written can be supplied dynamically in a

\..,

READ/WRITE macro using BSAM. This method cannot be used when using · \.....,
chained scheduling on any nondirect access device.

84 MVS/ESA Data Administration Guide

(,
\...._.!

\._.,;)

Writing a Short Block When Using the BSAM WRITE M:acro
If you have fixed-blocked record format, you can change the length of a block
when you are writing blocks for a sequential data set. The DCB block size field
(DCBBLKSI) can be changed to specify a block size that is shorter than what
was originally specified for the data set. The DCBBLKSI field must be changed
before issuing the WRITE macro instruction and must be a multiple of the
LRECL parameter in the DCB. Any subsequent WRITE macros issued will write
records with the new block length until the block size is changed again. The
DCB block size field should not be changed to specify a block size that is
greater than what was originally specified for the data set.

Managing SAM Buffer Space
The operating system provides several methods of buffer acquisition and
control. Each buffer (virtual storage area used for intermediate storage of
input/output data) usually corresponds in length to the size of a block in the
data set being processed. When you use the queued access method, any refer­
ence to a buffer actually refers to the next record (buffer segment).

You can assign more than one buffer to a data set by associating the buffer
with a buffer pool. A buffer pool must be constructed in a virtual storage area
allocated for a given number of buffers of a given length.

The number of buffers you assign to a data set should be a trade-off against the
frequency with which you refer to each buffer. A buffer that is not referred to
for a fairly long period may be paged out. If this were allowed to happen to any
considerable degree, it could decrease throughput.

Buffer segments and buffers within the buffer pool are controlled automatically
by the system when the queued access method is used. However, you can tell
the system you are finished processing the data in a buffer by issuing a release
(RELSE) macro for input or a truncate (TRUNC) macro instruction for output.
The simple buffering technique can be used to process a sequential data set or
an indexed sequential data set.

If you use the basic access methods, you can use buffers as work areas rather
than as intermediate storage areas. You can control them directly, by using the
GETBUF and FREEBUF macros, or dynamically for BDAM and BISAM, by
requesting dynamic buffering in your DCB macro instruction and your READ or
WRITE macro. If you request dynamic buffering, the system will automatically
provide a buffer each time a READ macro is issued. That buffer will be freed
when you issue a WRITE or FREEDBUF macro instruction.

Buffer Pool Construction
Buffer pool construction can be accomplished in any of three ways:

• Statically, using the BUILD macro

• Explicitly, using the GETPOOL macro

• Automatically, by the system, when the data set is opened

Chapter 8. Processing a Sequential Data Set 85

If QSAM simple buffering is used, the buffers are automatically returned to the
pool when the data set is closed. If the buffer pool is constructed explicitly or
automatically, the virtual storage area must be returned to the system by the
FREEPOOL macro.

In many applications, fullword or doubleword alignment of a block within a
buffer is important. You can specify in the DCB that buffers are to start on
either a doubleword boundary or a fullword boundary that is not also a
doubleword boundary (by coding BFALN = D o:r F). If doubleword alignment is
specified for format-V records, the fifth byte of the first record in the block is so
aligned. For that reason, fullword alignment must be requested to align the first
byte of the variable-length record on a doubleword boundary. The alignment of
the records following the first in the block depends on the length of the previous
records.

Note that buffer alignment provides alignment only for the buffer. If records
from ISCll/ ASCII magnetic tape are read and the records use the block prefix,
the boundary alignment of logical records within the buffer depends on the
length of the block prefix. If the length is 4, logical records are on fullword
boundaries. If the length is 8, logical records are on doubleword boundaries.

If the BUILD macro is used to construct the buffer pool, alignment depends on
the alignment of the first byte of the reserved storage area.

When you process multiple QISAM data sets, you can use a common buffer
pool. To do this, however, you must use the BUILD macro instruction to
reformat the buffer pool before opening each data set.

BUILD-Construct a Buffer Pool
When you know, before program assembly, both the number and the siZE! of the
buffers required for a given data set, you can reserve an area of appropriate
size to be used as a buffer pool. Any type of area can be used-for example, a
predefined storage area or an area of coding no longer needed.

A BUILD macro, issued during execution of your program, structures the
reserved storage area into a buffer pool. The address of the buffer pool must
be the same as that specified for the buffer pool control block (BUFCB) in your
DCB. The buffer pool control block is an 8-byte field preceding the buffers in
the buffer pool. The number (BUFNO) and length (BUFL) of the buffers must
also be specified. The length of BUFL must be at least the block size.

When the data set using the buffer pool is closed, you can reuse the area as
required. You can also reissue the BUILD macro to reconstruct the area into a
new buffer pool to be used by another data set..

You can assign the buffer pool to two or more data sets that require buffors of
the same length. To do this, you must construct an area large enough to
accommodate the total number of buffers required at any one time durin~i exe­
cution. That is, if each of two data sets requires 5 buffers (BUFNO = 5), the
BUILD macro should specify 10 buffers. The area must also be large enough to
contain the 8-byte buffer pool control block.

86 MVS/ESA Data Administration Guide

I
\ '
""-../'

BUILDRCD-Build a Buffer Pool and a Record Area
The BUILDRCD macro, like the BUILD macro, causes a buffer pool to be con­
structed in an area of virtual storage you provide. In addition, BUILDRCD
makes it possible for you to access variable-length, spanned records as com­
plete logical records, rather than as segments.

You must be processing with QSAM in the locate mode and you must be proc­
essing either VS/VBS or OS/DBS records, if you want to access the variable­
length, spanned records as logical records. If you issue the BUILDRCD macro
before the data set is opened, or during your DCB exit routine, you automat­
ically get logical records rather than segments of spanned records.

Only one logical record storage area is built, no matter how many buffers are
specified; therefore, you can't share the buffer pool with other data sets that
may be open at the same time.

GETPOOL-Get a Buffer Pool
If a specified area is not reserved for use as a buffer pool, or if you want to
defer specifying the number and length of the buffers until execution of your
program, you should use the GETPOOL macro instruction. It allows you to vary
the size and number of buffers according to the needs of the data set being
processed.

The GETPOOL macro causes the system to allocate a virtual storage area to a
buffer pool. The system builds a buffer pool control block and stores its
address in the data set's DCB. The GETPOOL macro should be issued either
before opening of the data set or during your DCB's OPEN exit routine.

When using GETPOOL with QSAM, specify a buffer length (BUFL) at least as
large as the block size.

Automatic Buffer Pool Construction
If you have requested a buffer pool and have not used an appropriate macro by
the end of your DCB exit routine, the system automatically allocates virtual
storage space for a buffer pool. The buffer pool control block is also assigned
and the pool is associated with a specific DCB. For BSAM, a buffer pool is
requested by specifying BUFNO. For QSAM, BUFNO can be specified or
allowed to default to 5. If you are using the basic access method to process an
indexed sequential or direct data set, you must indicate dynamic buffer control.
Otherwise, the system does not construct the buffer pool automatically.

Because a buffer pool obtained automatically is not freed automatically when
you issue a CLOSE macro, you should also issue a FREEPOOL or FREEMAIN
macro (discussed in the next section).

FREEPOOL-Free a Buffer Pool
Any buffer pool assigned to a DCB either automatically by the OPEN macro
(except when dynamic buffer control is used) or explicitly by the GETPOOL
macro should be released before your program is terminated. The FREEPOOL
macro should be issued to release the virtual storage area as soon as the
buffers are no longer needed. When you are using the queued access tech­
nique, you must close the data set first. If you are not using the queued access
method, it is still advisable to close the data set first.

Chapter 8. Processing a Sequential Data Set 87

If the OPEN macro was issued while running under a protect key of zero, a
buffer pool that was obtained by OPEN should be released by issuing the
FREEMAIN macro instead of the FREE POOL macro. This is necessary because
the buffer pool acquired under these conditions will be in storage assigned to
subpool 252.

Constructing a Buffer Pool
Figure 25 and Figure 26 on page 89 show several possible methods of con­
structing a buffer pool. They do not consider the method of processing or con­
trolling the buffers in the pool.

In Figure 25, a static storage area named INPOOL is allocated during program
assembly. The BUILD macro, issued during execution, arranges the buffer pool
into 10 buffers, each 52 bytes long. Five buffers are assigned to INDCB and 5 to
OUTDCB, as specified in the DCB macro for each. The two data sets share the
buffer pool because both specify INPOOL as the buffer pool control block.
Notice that an additional 8 bytes have been allocated for the buffer pool to
contain the buffer pool control block. The 4-byte chain pointer that occupies the
first 4 bytes of the buffer is included in the buffer, so no allowance need be
made for this field. \....,

Processing
BUILD INPOOL, 10,52 Structure a buffer pool
OPEN (INDCB,,OUTDCB,(OUTPUT))

Processing
END JOB CLOSE (I NDCB,, OUTDCB)

Processing
RETURN Return to system control

INDCB DCB BUFNO=S,BUFCB=INPOOL,EODAD=ENDJOB,---
OUTDCB DCB BUFNO=S,BUFCB=INPOOL,---
CNOP 0,8 Force boundary alignment
INPOOL OS CL528 Buffer pool

Figure 25. Constructing a Buffer Pool from a Static Storage Area

In Figure 26 on page 89, two buffer pools are constructed explicitly by the
GETPOOL macros. Ten input buffers are provided, each 52 bytes long, to
contain one fixed-length record; 5 output buffers are provided, each 112 bytes
long, to contain 2 blocked records plus an 8-byte count field (required by ISAM).
Notice that both data sets are closed before the buffer pools are re-leased by
the FREEPOOL macros. The same procedure should be used if the buffer pools
were constructed automatically by the OPEN macro.

88 MVS/ESA Data Administration Guide

\'-

I I

\.._,/

('
~I

\ ;
~

Buff er Control

ENDJOB

INDCB
OUTDCB

GET POOL
GET POOL
OPEN

CLOSE
FREE POOL

FREEPOOL

RETURN
DCB
DCB.

INDCB,10,52 Construct a 10-buffer pool
OUTDCB,5,112 Construct a 5-buffer pool
(INDCB,,OUTDCB,(OUTPUT))

(INDCB,, OUTDCB)
INDCB

OUTDCB

Release buffer pools after all
I/O is complete

Return to system control
DSQRG=PS,BFALN=F,LRECL=52,RECFM=F,EODAD=ENDJOB,--­
DSORG=IS,BFALN=D,LRECL=52,KEYLEN=10,BLKSIZE=104,

RKP=G,RECFM=FB,---

Figure 26. Constructing a Buffer Pool Using GETPOOL and FREEPOOL

Your program can use ariy of four techniques to control the buffers used by
your program. The advantage~ of each depend to a great extent on the type of
job you are doing. Simple buffering is provided for the queued access method.
The· basic; access method provides for either direct or dynamic buffer control.

Although only simple buffering can be used to process an indexed sequential
data set, buffer segments and buffers within a buffer pool are controlled auto­
matically by th.e operating system.

In addition, the queued access method provides three processing modes that
determine the extent of data movement in virtual storage. Move, data, and
locate mode processing can be specified for either the GET or PUT macro.
(Substitute mode is no longer supported; the system defaults to move mode.)
The movement of a record is.determined as foll.ows:

• Move mode-The record is moved from a system input buffer to your work
area, or from your work area to an output buffer.

• Data mode (QSAM format-V spanned records only)-The same as the move
mode, except that only the data portion of the record is moved.

• Locate mode-The record is not moved. Instead, the address of the next
input or output buffer is placed in register 1. For QSAM format-V spanned
records, ff you have specified logical records by specifying BFTEK =A or by
issuing the BUILDRCD macro, the address returned in register 1 points to a
record area where the spanned record is assembled or segmented.

c

The PUT-locate routine uses the value in the DCBLRECL field to determine
whether another record will fit into your buffer. Therefore, when you write a
short record, you can maximize the number of records per block by modi­
fying the DCBLRECL field before you issue a PUT-locate to get a buffer
segment for the. short record. The processing sequence follows:

1. Register 1 is returned to you with·the address of the next buffer
seg_ment.

2. Move the record into the output buffer segment.

Chapter 8. Processing a Sequential Data Set 89

Simple Buffering

3. Put the length of the next (short) record into DCBLRECL.

4. Issue PUT-locate.

5. Move the short record into the buffer segment.

Two processing modes of the PUTX macro can be used with a GET-locate
macro. The update mode returns an updated record to the data set from which
it was read; the output mode transfers an updated record to an output data set.
There is no actual movement of data in virtual storage. The processing mode
is specified by the operand of the PUTX macro, as explained in Data
Administration: Macro Instruction Reference.

If you use the basic access method, you can control buffers in one of two ways:

• Directly, using the GETBUF macro to retrieve a buffer constructed as
described above. A buffer can then be returned to the pool by the FREEBUF
macro.

• Dynamically, by requesting a dynamic buffer in your READ or WRITE macro.
This technique can be used only when you are using BISAM or BDAM. If
you request dynamic buffering, the system automatically provides a buffer
each time a READ macro is issued. The buffer is supplied from a buffer
pool that is created by the system when the data set is opened. The buffer
is released (returned to the pool) upon completion of a WRITE macro
instruction when you are updating. If you do not update the record in the
buffer and thus release the buffer without writing the record, the FREEDBUF
macro may be used. If you are processing an indexed sequential data set,
the buffer is automatically released upon the next issuance of the READ
macro instruction if there has been no intervening WRITE or FREEDBUF
macro.

The term simple buffering refers to the relationship of segments within the
buffer. All segments in a simple buffer are together in storage and are always
associated with the same data set. When the buffer pool is constructed, the
system creates a channel command word (CCW) for each buffer in the buffer
pool. So, each record must be physically moved from an input buffer segment
to an output buffer segment. It can be processed within either segment or in a

\\,,,,

\

work area. \,,_

If you use simple buffering, records of any format can be processed. New
records can be inserted and old records deleted as required to create a new
data set. A record can be moved and processed as follows:

• Processed in an input buffer and then moved to an output buffer
(GET-locate, PUT-move/ PUTX-outp ut)

• Moved from an input buffer to an output buffer where it can be processed
(GET-move, PUT-locate)

• Moved from an input buffer to a work area where it can be processed and
then moved to an output buffer (GET-move, PUT-move)

• Processed in an input buffer and returned to the same data set (GET-locate,
PUTX-update)

90 MVS/ESA Data Administration Guide

(j ' \JI

The following examples show the control of simple buffers and the processing
modes that can be used. The buffer pools may have been constructed in any
way previously described.

Simple Buffering-GET-locate, PUT-move/PUTX-output: The GET macro (step A,
Figure 27) locates the next input record to be processed. Its address is
returned in register 1 by the system. The address is passed to the PUT macro
in register 0.

The PUT macro (step B, Figure 27) specifies the address of the record in reg­
ister 0. The systam then moves the record to the next output buffer.

Note: The PUTX-output macro can be used in place of the PUT-move macro.
However, processing will be as described under "Exchange Buffering" (see
PUT-substitute).

Simple Buffering-GET-move, PUT-locate: The PUT macro locates the address
of the next available output buffer. Its address is returned in register 1 and is
passed to the GET macro in register 0.

The GET macro specifies the address of the output buffer into which the system
moves the next input record.

A filled output buffer is not written until the next PUT macro instruction is
issued.

Simple Buffering-GET-move, PUT-move: The GET macro (step A, Figure 28 on
page 92) specifies the address of a work area into which the system moves the
next record from the input buffer.

A I INPUT

PUT

./
a

INPUT OUTPUT OUTPUT

OUTPUT OUTPUT

Figure 27. Simple Buffering with MACRF = GL and MAC RF= PM

Chapter 8. Processing a Sequential Data Set 91

GET

~
A INPUT INPUT WORK OUTPUT OUTPUT

\ System

el INPUT INPUT

~p~
OUTPUT

System

Figure 28. Simple Buffering with MACRF =GM and MACRF =PM

The PUT macro (step B, Figure 28) specifies the address of a work area from
which the system moves the record into the next output buffer.

Simple Buffering-GET-locate, PUT-locate: The GET macro (step A, Figure 29)
locates the address of the next available input buffer. The address is returned
in register 1.

GET

/ ..
A I INP~ INPUT OUTPUT OUTPUT

B I INPUT INPUT I OUTPUT OUTPUT

c OUTPUT OUTPUT

Figure 29. Simple Buffering with MAC RF= GL and MAC RF= PL

The PUT macro (step B, Figure 29) locates the address of the next available
output buffer. Its address is returned in register 1. You must then move the
record from the input buffer to the output buffer (step C, Figure 29). Processing
can be done either before or after the move operation.

A filled output buffer is not written until the next PUT macro instruction is
issued. The CLOSE and FEOV macros write the last record of your data set by
issuing TRUNC and PUT macro instructions. Be careful not to issue an extra
PUT before issuing CLOSE or FEOV. Otherwise, when the CLOSE or FEOV
macro tries to write your last record, the extra PUT will write a meaningless
record or produce a sequence error.

92 MVS/ESA Data Administration Guide

\...

\ !

~

Exchange Buffering

Simple Buffering-UPDAT Mode:· When a data set is opened with UPDAT speci­
fied (Figure 30), only GET-locate and PUTX-update are supported. The GET
macro locates the next input record to be processed and its address is returned
in register 1 by the system. The user may update the record and issue a PUTX
macro that will cause the block to be written back in its original location in the
data set after all the logical records in that block have been processed.

GET

INPUT /OUTPUT INPUT /OUTPUT

PUTX

{No movement of data takes place)

Figure 30. Simple Buffering with MACRF = GL and MACRF = PM-UPDAT Mode

Exchange buffering is not supported in MVS/DFP. Its request is ignored by the
system and move mode is used instead.

Buffering Techniques and GET/PUT Processing Modes
As you can see from the previous examples, the most efficient code is achieved
by use of automatic buffer pool construction, and GET-locate and PUTX-output
with simple buffering. Figure 31 summarizes the combinations of buffering
techniques and processing modes that can be used.

Q) <D
~ Qi <D "'«I

> 0 0 0 0 0 E 0
Simple ;:::: ~ ~ ~

~ Input => 5 => =>
D... D... 0 Buffering-• Q D...

af ~-
a) af <D 0 Q)

"'«I Qi, Ql.....,
> a;I ...__<.ti
0 0 0 0 0- 0
E E 0 0 0 a;I 0

~ ~ -o-
Actions ~ ~ ~-·

+ UJ UJ UJ UJ UJ gi!:)
0 (.'.J 0 (.'.J 0.::::;0...

Program must move x x
record

System moves record x x x

System moves record x
segment

Work area required x

PUTX - output can x
be used

Figure 31. Buffering Technique and GET/PUT Processing Modes

Chapter 8. Processing a Sequential Data Set 93

RELSE-Release an Input Buffer
When using the queued access method to process a sequential or an indexed
sequential data set, you can direct the system to ignore the remaining records
in the input buffer being processed. The next GET macro retrieves a record
from another buffer. If format-V spanned records are being used, the next
logical record obtained may begin on any segment in any subsequent block.

If you are using move mode, the buffer is made available for refilling as soon as
the RELSE macro is issued. When you are using locate mode, the system does
not refill the buffer until the next GET macro is issued. If a PUTX macro has
been used, the block is written before the buffer is refilled.

TRUNC-Truncate an Output Buffer
When using the queued access method to process a sequential data set, you
can direct the system to write a short block. The first record in the next buffer
is the next record processed by a PUT-output or PUTX-output mode. If locate
mode is being used, the system assumes that a record has been placed in the
buffer segment pointed to by the last PUT macro. The last block of a data set is

\

truncated by the close routine. Note that a data set containing format-F records '""
with truncated blocks cannot be read from direct access storage as efficiently
as a standard format-F data set.

GETBUF-Get a Buffer from a Pool
The GETBUF macro can be used with the basic access techni·que to request a
buffer from a buffer pool constructed by the BUILD, GETPOOL, or OPEN macro.
The address of the buffer is returned by the system in a register you specify
when you issue the macro. If no buffer is available, the register contains a 0
instead of an address.

FREEBUF-Return a Buffer to a Pool
The FREEBUF macro is used with the basic access method to return a buffer to
the buffer pool from which it yvas obtained by a GETBUF macro. Although the
buffers need not be returned in the order in which they were obtained, they
must be returned when they are no longer needed.

FREEDBUF-Return a Dynamic Buffer to a Pool
Any buffer obtained through the dynamic buffer option must be released before
it can be used again. When you are processing a direct data set, if you do not
update the block in the buffer and thus need to free the buffer instead of writing
the block, you must use the FREEDBUF macro. If an uncorrectable input/output
error occurs while writing a data set, the control program releases the buffer. If
an uncorrectable input/output error occurs while reading a data set and a
SYNAD routine is present, issue the FREEDBUF macro to release the buffer
before continuing further input/output operations.

When you are processing an indexed sequential data set, if you do not update
the block in the buffer or, if there is an uncorrectable input' error, the control
program releases the buffer when the next READ macro is issued on the same
DECB, unless you use the FREEDBUF macro. To effect the release, you must
specify the address of the DECB that was used when the block was read using
the dynamic buffering option and the address of the DCB associated with the
data set being processed .

.....__ ______ End of General-Use Programming Interface ______

94 MVS/ESA Data Administration Guide

\...,.

{
\..._,,.../

~I

Chapter 9. Processing a Partitioned Data Set

Directory
Records

I
I

Entry for !
Member A I

I

:

A partitioned data set is stored only on a direct access device. It is divided into
sequentially organized members, each composed of one or more records (see
Figure 32). Each member has a unique name, 1 to 8 characters long, stored in
a directory that is part of the data set. The records of a given member are ..
written or retrieved sequentially. See Data Administration: Macro Instruction
Reference for the macros used with partitioned data sets.

Entry for Entry for
Member B Member C

I
I
I
I
I
I
I

:

I I I 1
I I I J

Entry for ! Entry for l Entry for i Entry for l
Member A : Member C : Member D : Member E :

I I I I
I I t I

Member A Member B Member A

Member B Member C Member C

Member C
·~

Member C

4---

i
I

Available Area Available Area

Figure 32. A Partitioned Data Set

The main advantage of using a partitioned data set is that, without searching
the entire data set, you can retrieve any individual member after the data set is
opened. For example, in a program library that is always a partitioned data set,
each member is a separate program or subroutine. The individual members
can be added or deleted as required. When a member is deleted, the member
name is removed from the directory, but the space used by the member cannot
be reused until the data set is reorganized; that is, compressed using the
IEBCOPY utility.

The directory, a series of 256-byte records at the beginni:ng of the data set, con­
tains an entry for each member. Each directory entry contains the member
name and the starting location of the member within the data set, as shown in
Figure 32. Also, you can specify as many as 62 bytes of information in the
entry. The directory entries are arranged by name in alphanumeric collating
sequence.

The starting location of each member is recorded by the system as a relative
track address (from the beginning of the data set) rather than as an absolute
track address. Thus, an entire data set that has been compressed, can be
moved without changing the relative track addresses in the directory. The data
set can be considered as one continuous set of tracks regardless of where the
space was actually allocated.

If there is not sufficient space available in the directory for an additional entry,
or not enough space available within the data set for an additional member, or
no room on the volume for additional extents, no new members can be stored.

Chapter 9. Processing a Partitioned Data Set 95

A directory cannot be extended and a partitioned data set may not cross a
volume boundary.

Partitioned Data Set Directory

Count l<ey

The directory of a partitioned data set occupies the beginning of the area allo­
cated to the data set on a direct access volume. It is searched and maintained
by the BLDL, FIND, and STOW macros. The directory consists of member
entries arranged in ascending order according to the binary value of the
member name or alias.

Partitioned data set member entrjes vary in length and are blocked into
256-byte blocks. Each block contains as many complete entries as will fit in a
maximum of 254 bytes; any remaining bytes are left unused and are ignored.
Each directory block contains a 2-byte count field that specifies the number of
active bytes in a block (including the count field). As shown in Figure 33, each
block is preceded by a hardware-defined key field containing the name of the
last member entry in the block, that is, the member name with the highest
binary value. Figure 33 shows the format of the block returned when using
BSAM to read the directory.

Data .. Name of
Last
Entry in
Block

Number of
Bytes Used
(Maximum

256)

Member
Entry A

Member
Entry B

Member
Entry N

'---v------1 '----v----'---~--~~~~--~~--~------~~~--------------~~ 8)1es 8 2 254

Figure 33. A Partitioned Data Set Directory Block

Each member entry contains a member name or an alias. Each entry also con­
tains the relative track address of the member and a count field, as shown in
Figure 34. Also, it may contain a user data field. The last entry in the last
directory block has a name field of maximum binary value-all 1's.

Member TIR c Optional User Data

Name
TIRN I TTRN I TTRN

'----------------8 3 ,,
' ',

}J
........................ 0-31 halfwords

.................. (Maximum 62 bytes) ,,
'',

........................
Pointer to

''-...,' First Record
of Member

'-.,
..................

....................

...................
..........

..........................

1 If Number of Number of User Name is an User Data
Data Halfwords Alias TTRNs

Bits 0 1-2 3-7

Figure 34. A Partitioned Data Set Directory Entry

96 MVS/ESA Data Administration Guide

\.

\..,

{
\,;_)

NAME
specifies the member name or alias. It contains as many as 8 alphameric
characters, left-justified, and padded with blanks if necessary.

TIR

c

is a pointer to the first block of the member. TT is the number of the track,
relative to the beginning of the data set, and R is the number of the block,
relative to the beginning of that track.

specifies the number of halfwords contained in the user data field. It may
also contain additional information about the user data field, as shown
below:

Bits 0 1-2 3-7

I I

0 when set to 1, indicates that the NAME field contains an alias.

1-2 specifies the number of pointers to locations within the member.

The operating system supports a maximum of three pointers in the
user data field. Additional pointers may be contained in a record
called a "note list," discussed below. The pointers can be updated
automatically if the data set is moved or copied by a utility program
such as IEHMOVE. The data set must be marked unmovable under
the following conditions:

• More than three pointers are used in the user data field.

• The pointers in the user data field or note list do not conform to
the standard format.

Note: A note list for a partitioned data set containing variable
length records does not conform to standard format. Variable­
length records contain BDWs and RDWs that are treated as TTRXs
by IEHMOVE.

• The pointers are not placed first in the user data field.

• Any direct access address (absolute or re!ative) is embedded in
any data blocks or in another data set that refers to this data set.

3-7 contains a binary value indicating the number of halfwords of user
data. This number must include the space used by pointers in the
user data field.

You can use the user data field to provide variable data as input to the STOW
macro. If pointers to locations within the member are provided, they must be 4
bytes long and placed first in the user data field. The user data field format is
as follows:

User Data

TTRN TTRN TTRN Optional

Chapter 9. Processing a Partitioned Data Set 97

TT is the relative track address of the note list or area to which you are
pointing.

R is the relative block number on that track.

N is a binary value that indicates the number of additional pointers contained
in a note list pointed to by the TTR. If the pointer is not to a note list, N =O.

A note list consists of additional pointers to blocks within the same member of
a partitioned data set. You can divide a member into subgroups and store a
pointer to the beginning of each subgroup in the note list. The member may be
a load module containing many control sections (CSECTs), each CSECT being a
subgroup pointed to by an entry in the note list. You get the pointer to the
beginning of the subgroup by using the NOTE macro after you write the first
record of the subgroup. Remember that the pointer to the first record of the
member is stored in the directory entry by the system.

If the existence of a note list was indicated as shown above, the list can be
updated automatically when the data set is moved or copied by a utility
program such as IEHMOVE. Each 4-byte entry in the note list has the following \..,
format:

TT is the relative track address of the area to which you are pointing.

R is the relative block number on that track.

X is available for any use.

To place the note list in the partitioned data set, you must use the WRITE
macro. After checking the write operation, use the NOTE macro to determine
the address of the list and place that address in the user data field of the direc­
tory entry.

Note: The linkage editor builds a note list for the load modules in overlay
format. The addresses in the note list point to the overlay segments that are
read into the system separately.

Allocating Space for a Partitioned Data Set
Use the SMS ACS routines to calculate the space requirements for your data
set. See Storage Administration Reference for how to code the ACS routines.
You can have the system determine an optimum block size for you. This elimi­
nates the need for you to perform calculations based on track length. If you do
not specify a block size, OPEN will determine an optimum block size for you.
When you allocate space for your data set, you can specify the average record
length in kilobytes or megabytes by using the SPACE and AVGREC parameters,
and have the system use the block size it calculated for your data set.

If your data set will be large, or if you expect to update it extensively, it might
be best to allocate a full volume. A partitioned data set cannot extend beyond
one volume. If it will be small or seldom change, let the system calculate the

98 MVS/ESA Data Administration Guide

\._

(I

~

(_)

space requirements to avoid wasted space or wasted time used for re-creating
the data set.

If you wish to estimate the space requirements yourself, you need to answer
the following questions to estimate your space requirements accurately and use
the space efficiently.

• What is the average size of the members to be stored on your direct access
volume?

• How many members will fit on the volume?

• Will you need directory entries for the member names only or will aliases
be used? How many?

• Will members be added or replaced frequently?

You can calculate the block size yourself and specify it in the BLKSIZE param­
eter of the DCB. For example, if the average record length is close to or less
than the track length or if the track length exceeds 32760 bytes, the most effi­
cient use of the direct access storage space may be made with a block size of
1/3 or 1/2 the track length. You might then ask for either 75 tracks, or 5 cylin­
ders, thus allowing for 3 480 000 bytes of data.

Each member in a data set and each alias need one dfrectory entry apiece. If
you expect to have 10 members (10 directory entries) and an average of 3
aliases for each member (30 directory entries), allocate space for at least 40
directory entries.

Assuming an average length of 70000 bytes for each member, you need space
for at least 50 directory entries. If each member also has an average of three
aliases, space for an additional 150 directory entries is required.

Space for the directory is expressed in 256-byte blocks. Each block contains
from 3 to 21 entries, depending on the length of the us,er data field. If you
expect 200 directory entries, request at least 40 blocks. Any unused space on
the last track of the directory is wasted unless there is enough space left to
contain a block of the first member.

Either of the following space specifications would cause the same size allo­
cation for a 3380 Model AD4 disk:

SPACE=(CYL,(5,,10))

SPACE=(TRK,(75,,10))

SPACE=(23200,(150,,10))

The third example above would result in allocation of 75 tracks for data, plus 1
track for directory space. Ten blocks have been allocated for the directory.

You can also allocate space by using both the SPACE and AVGREC JCL
keywords together. In the following examples, the average length is 70000
bytes for each member, and each record in the member is 80 bytes long. Using
the AVGREC keyword changes the first value specified in SPACE from the
average block length to average record length. These examples are device
independent because they request space in bytes, rather than tracks or cylin-

Chapter 9. Processing a Partitioned Data Set 99

ders. They would allocate approximately the same amount of space as the pre-
vious examples (about 75 tracks if the device were a 3380 Model AD4 disk). ·
SPACE(88,(44,,10)),AVGREC=K

SPACE(B0,(43580,,10)),AVGREC=U

For more information on using the SPACE and AVGREC parameters, see
Appendix C, "Allocating Space on Direct Access Volumes" on page 139 in this
manual, and also see JCL User's Guide and JCL Reference. See "Appendix C.
Device Capacities" in Data Administration: Macro Instruction Reference for how
to calculate the track capacity for various DASO models.

Although a secondary allocation increment has been omitted in these exam­
ples, it could have been supplied to provide for extension of the member area.
The directory size, however, cannot be extended. The directory cannot be on
secondary space.

Note: The SPACE parameter may be specified in either the data class, or the
DD statement, or the LIKE keyword. You may specify the SPACE param-
eter in the DD statement if you do not want to use the space allocation amount
defined in the data class.

Creating a Partitioned Data Set
If you have no need to add entries to the directory, you can create a new data
set and write the first member as follows (see Figure 35 on page 101) without
needing to use the STOW macro.

• Code D~ORG =PS or DSORG = PSU in the DCB macro.

• Indicate in the DD statement that the data is to be stored as a member of a
new partitioned data set, that is, OS NAME= name (membername) and
DISP=NEW.

• Either specify a data class in the DD statement or, for SMS-managed DASO
data sets, allow the ACS routines to assign a data class.

• Request space for the member and the directory in the DD statement, or
obtain from data class.

• Process the member with an OPEN macro, a series of PUT or WRITE
macros, and then a CLOSE macro instruction. A STOW macro is issued
automatically when the data set is closed.

As a result of these steps, the data set and its directory are created, the
records of the member are written, and a 12-byte entry is made in the directory.

100 MVS/ESA Data Administration Guide

\.

I u

//PDSDD DD ---,DSNAME=MASTFILE(MEMBERK),SPACE=(TRK,(100,5,7)),
DISP=(NEW,CATLG),DCB=(RECFM=FB,LRECL=88,BLKSIZE=88)---

OPEN (OUTDCB,(OUTPUT))

PUT OUTDCB,OUTAREA Write record to member

CLOSE (OUTDCB) Automatic STOW

OUTAREA DS
OUTDCB DCB

CL80 Area to write from
---,DSORG=PS,DDNAME=PDSDD,MACRF=PM

Figure 35. Creating One Member of a Partitioned Data Set

Adding Several Members at a Time
To add additional members to the data set, follow the same procedure.

However, a separate DD statement (with the space request omitted) is required

for each member. The disposition should be specified as modify, DISP =MOD.

The data set must be closed and reopened each time a new member is speci­

fied on the DD statement.

To take full advantage of the STOW macro, and thus the BLDL and FIND

macros, in future processing, you can provide addition.al information with each

directory entry. You do this by using the basic partitioned access methods,

which also allows you to process more than one member without closing and

reopening the data set, as follows (see Figure 36 on page 102).

• Request space in the DD statement for the entire data set and the directory.

• Define DSORG =PO or DSORG =POU in the DCB macro.

• Use WRITE and CHECK to write and check the member records.

• Use NOTE to note the location of any note list written within the member, if

there is a note list, or to note the location of subgroups if there are any.

• When all the member records have been written, issue a STOW macro

instruction to enter the member name, its location pointer, and any addi­

tional data in the directory. The STOW macro writes an end-of-file mark

after the member.

• Continue to use the WRITE, CHECK, NOTE, and STOW macros until all the

members of the data set arid the directory entries have been written.

Chapter 9. Processing a Partitioned Data Set 101

//PDSDD DD ---,DSN=MASTFILE,DISP=MOD,SPACE=(TRK,(lee,5,7))

OPEN (OUTDCB,(OUTPUT))
LA STOWREG,STOWLIST Load add~ess of STOW 1 i st

** WRITE MEMBER RECORDS AND NOTE LIST

MEMBER WRITE DECBX,SF,OUTDCB,OUTAREA WRITE. first record of member CHECK DECBX

*

*

*
*

LA NOTEREG,NOTELIST Load address of NOTE list

WRITE DECBY,SF,OUTDCB,OUTAREA WRITE and CHECK next record CHECK DECBY

NOTE OUTDCB
ST Rl,0(NOTEREG)

To divide the member into subgroups,
NOTE the TTRN of the first record in
the subgroup, storing it in the
NOTE list.

LA NOTEREG,4(NOTEREG) Increment to next NOTE list entry

WRITE DECBZ,SF,OUTDCB,NOTELIST WRITE NOTE list record at the * end of the member CHECK DECBZ
NOTE OUTDCB NOTE TTRN of NOTE list record ST Rl,12(STOWREG) Store TTRN in STOW list STOW OUTOCB,(STOWREG),A Enter the information .in directory * for this member after all records * and NOTE lists are written. LA STOWREG,16(STOWREG) Increment to the next STOW list entry

*
Repeat from label "MEMBER" for each additional member, changing the member name in the "STOWLIST" for each member

*

CLOSE (OUTDCB) (NO automatic STOW)

OUTAREA OS
OUTDCB DCB
Rl EQU
NOTEREG EQU
NOTELIST OS

OS
OS

STOWREG EQU
STOWLIST OS

DC
OS
DC
OS

CL80 Area to write from
---,DSORG=PO,DDNAME=PDSDD,MACRF=W
1 Register one, return re,gi ster from NOTE 4 Register to address NOTE list
0F NOTE list
F NOTE list entry (4 byte TTRN)
19F one entry per subgroup
5 Register to address STOW list
eF List of member names for STOW
CLB'MEMBERA' Name of member
CL3 TTR of first record (created by STOW) X'23' C byte, 1 user TTRN, 4 bytes of user data CL4 TTRN of NOTE·list

one list entry per member (16 bytes each)

Figure 36. Creating Members of a Partitioned Data Set Using STOW

102 MVS/ESA Data Administration Guide

\ ·-

(

I I

\ I
-.._/

Processing a Member of a Partitioned Data Set
Because a member of a partitioned data set is sequentially organized, it is
processed in the same manner as a sequential data set. Either the basic or
queued ,access method can be used. However, you cannot alter the directory.

To locate a member or to process the directory, several macros are provided
by the operating system. The BLDL macro can be used to read one or more
directory entries into virtual storage; the FIND macro locates a member of the
data set and positions the DCB for subsequent processing; the STOW macro
adds, deletes, replaces, or changes a member name in the directory. To use
these macros, you must specify DSORG =PO or POU in the DCB macro. Before
issuing FIND, BLDL, or STOW macro, you must check all preceding input/output
operations for completion.

BLDL-Construct a Directory Entry List
The BLDL macro reads one or more directory entries into virtual storage. The
member names are placed in a BLDL list that is constructed before the BLDL
macro is issued. For each member name in the list, the system supplies the
address of the member and any additional information contained in the direc­
tory entry. Note that, if there is more than one member name in the list, the
member names must be in collating sequence, regardless of whether the
members are from the same partitioned data set or from different partitioned
data sets.

You can improve retrieval time by directing a subsequent FIND macro instruc­
tion to the BLDL list rather than to the directory to locate the member to be
processed.

The BLDL list, as shown in Figure 37 on page 104, must be preceded by a
4-byte list description that indicates the number of entries in the list and the
length of each entry (12 to 76 bytes). The first 8 bytes of each entry contain the
member name or alias. The next 6 bytes contain the TTR, K, Z, and C fields. If
there is no user data entry, only the TTR and C fields are required. If additional
information is to be supplied from the directory, as many as 62 bytes can be
reserved.

Chapter 9. Processing a Partitioned Data Set 103

List
Description FFLL l

Member
Name (C)

(Each entry starts on halfword boundary)

Filled in by BLDL

TIR K z c
(3) (1) (1) (1)

- L---"
-

I
User Data

words)·· (C Half
\

\
(
\

_,) -

Programmer Supplies:
FF Number of member entries In list.
LL Even number giving byte length of each entry (minimum of 12). Member name Eight bytes, left-justified.

BLDL Supplies:
TTR Member starting location.

K If single data set = 0. If concatenation = number.
Not required if no user data.

Z Source of directory entry. Private library = 0.
Link library = 1. Job or step library = 2.
Not required if no user data.

C Same C field from directory. Gives number of user data halfwords. User data As much as will fit in entry.

Figure 37. BLDL List Format

FIND-Position to a Member
To determine the starting address of a specific member, you must issue a FIND macro. The system places the correct address in the data control block so that a subsequent input or output operation begins processing at that point.

There are two ways you can direct the system to the right member when you use the FIND macro. Specify the address of an area containing the name of the member or specify the address of the TTRfield ofthe entry in a .BLDL list you have created by using the BLDL macro.· In the first case, the system searches the directory of the data set for the relative track address; in the second case, no search is required, because the relative track address is in the BLDL list
entry.

The system will also search a concatenated series of directorie~ when (1) a DCB is supplied that is opened for a concatenated partitioned data set or (2) a DCB is not supplied, in which case either JOBLIB or STEPLIB {themselves
perhaps concatenated) followed by LINKLIB is searched.

If you want to process only one member, you can process it as a sequential
data set {DSORG =PS) using either BSAM or QSAM. You indicate the name of the' member you want to process and the name of the part.itioned data set in the DSNAME parameter of the DD statement. When you open the data set, the
system places the starting address in the data control block so that a subse­
quent GET or READ macro begins processing at that point. You cannot use the

104 MVS/ESA Data Administration Guide

\\....,

/'

(1

\. !

'--'1

1! c/

11 i

\._ . ./

I .

~

[I

~'

FIND, BLDL, or STOW macro when you are processing one member as a

sequential data set.

Because the DCBRELAD address in the data control block is updated when the

FIND macro is used, you should not issue the FIND macro after WRITE and

STOW processing without first closing the data set and reopening it for INPUT

processing.

STOW-Update the Directory
When you add more than one member to a partitioned data set, you must issue

a STOW macro after writing each member. so that an entry for each one will be

added to the directory. To use the STOW macro, DSORG =PO or POU must be

specified in the DCB macro.

You can also use the STOW macro to delete, replace, or change a member

name in the directory and store additional information with the directory entry.

Because an alias can also be stored in the directory the same way, you should

be consistent in altering all names associated with a given member. For

example, if you replace a member, you must delete related alias entries or

change them so that they point to the new member. An alias cannot be stored

in the directory unless the member is present.

Although you can use any type of DCB with STOW, it is best to use a SPAM

DCB. If you use a SPAM DCB, you can issue several writes to create a

member followed by a STOW to write the directory entry for the member. Fol­

lowing this STOW, your application may write and STOW another member, or

follow the write with a CLOSE (which issues the stow automatically).

If you add only one member to a partitioned data set and indicate the member

name in the DSNAME parameter of the DD statement, it is not necessary for

you to use SPAM and a STOW macro in your program. If you want to do so,

you may use SPAM and STOW, or BSAM or QSAM. If you use a sequential

access method, or if you use SPAM and issue a CLOSE macro without issuing a

STOW macro, the system will issue a STOW macro instruction using the

member name you have specified on the DD statement. Note that no checks

are made in STOW to ensure that a stow with a BSAM or QSAM DCB came

from CLOSE. When the system issues the STOW, the directory entry that is

added is the minimum length (12 bytes). This automatic STOW macro will not

be issued if the CLOSE macro is a TYPE =Tor if the TCB indicates the task is

being abnormally terminated when the DCB is being closed. The DISP param­

eter on the DD statement determines what directory action parameter will be

chosen by the system for the STOW macro.

If DISP =NEW or MOD was specified, a STOW macro with the add option will be

issued. If the member name on the DD statement is not present in the data set

directory, it will be added. If the member name is already present in the direc­

tory, the task will be abnormally terminated.

If DISP =OLD was specified, a STOW macro with the replace option will be

issued. The member name will be inserted into the directory, either as an addi­

tion, if the name is not already present, or as a replacement, if the name is

present.

Chapter 9. Processing a Partitioned Data Set 105

Thus, with an existing data set, you should use DISP =OLD to force a member
into the data set; you should use DISP =MOD to add members with protection
against the accidental destruction of an existing member.

Retrieving a Member of a Partitioned Data Set
To retrieve a specific member from a partitioned data set, either the basic or the queued access method can be used as follows (see Figure 38):

• Code DSORG =PS or DSORG = PSU in the DCB macro.
• Indicate in the DD statement that the data is a member of an existing parti­

tioned data set by coding DSNAME = name(membername) and DISP =OLD.
• Process the member with an OPEN macro, a series of GET or READ

macros, and then a CLOSE macro instruction.

//PDSDD DD ---,DSN=MASTFILE(MEMBERK),DISP=OLD

OPEN (INDCB) Open for input, automatic FIND

GET IN DCB, I NAREA Read member record

CLOSE (INDCB)

INAREA OS CL88 Area to read into
INDCB DCB ---,DSORG=PS,DONAME=POSDD,MACRF=GM

Figure 38. Retrieving One Member of a Partitioned Data Set

When your program is executed, the directory is searched automatically and the location of the member is placed in the DCB.

To process several members without closing and reopening, or to take advan­
tage of additional data in the directory, this technique should be used (see Figure 39):

• Code DSORG =PO or POU in the DCB macro.

• Indicate in the DD statement the data set name of the partitioned data set
by coding DSNAME =name and DISP =OLD.

• Issue the BLDL macro to get the list of member entries you need from the
directory.

• Use the FIND or POINT macro to prepare for reading the member records.
• The records may be read from the beginning of the member, or a note list

may be read first, to obtain additional locations that point to subcategories
within the member.

• Read (and check) the records until all those required have been processed.
• Point to additional categories, if required, and read the records.

106 MVS/ESA Data Administration Guide

I
I I

~

! '
~

•I

l '
\ .. :_.,/

• Your end-of-data-set (EODAD) routine receives control at the end of each
member. At that time, you can process the next member or close the data
set.

• Repeat this procedure for each member to be retrieved.

//PDSDD DD ---,DSN=MASTFILE,DISP=OLD

OPEN (INOCB) Open for input, no automatic FIND

LA BLDLREG,BLDLLIST Load address of BLDL list
BLDL INDCB, BLDLLIST Build a list of selected member

* names in virtual storage
LA BLDLREG,4(BLDLREG) Point to the first entry

Read the NOTE list

MEMBER LA NOTEREG,NOTELIST Load address of NOTE list
MVC TTRN(4),14(BLDLREG) Move NOTE list TTRN

* to fullword boundary
POINT INDCB,TTRN Point.to the NOTE list record
READ DECBX,SF,INDCB,(NOTEREG) Read the NOTE list
CHECK DECBX

Read data from a subgroup

SUBGROUP POINT INDCB,(NOTEREG) Point to subgroup
READ DECBY,SF,INDCB,INAREA Read record in subgroup
CHECK DECBY
LA NOTEREG,4(NOTEREG) Increment to next subgroup TTRN

Repeat from label "SUBGROUP" for each additional subgroup
Repeat from label "MEMBER" for each additional member

CLOSE (INDCB)

INAREA OS
INDCB DCB
TTRN OS
NOTEREG EQU
NOTELIST OS

OS
OS

BLDLREG EQU
BLDLLIST OS

DC
DC
DC
OS
OS
OS
OS
OS

CL80
---,DSORG=PO,DDNA~E=PDSDD,MACRF=R
F
4
OF
F
19F
5
OF
H' 10'
H' 18'
CL8 I MEMBERA I

CL3
x
x
x
CL4

TTRN of the NOTE list to point at
Register to address NOTE list entries
NOTE list
NOTE list entry (4 byte TTRN)
one entry per subgroup
Register to address BLDL list entries
List of member names for BLDL
Number of entries (10 for example)
Number of bytes per entry
Name of member
TTR of first record (created by BLDL)
K byte, concatenation number
Z byte, location code
C byte, flag and user data length
TTRN of NOTE list
one list entry per member (18 bytes each)

Figure 39. Retrieving Several Members and Subgroups of a Partitioned Data Set

Chapter 9. Processing a Partitioned Data Set 107

Modifying a Partitioned Data Set

Updating a Member of a Partitioned Data Set

Updating in Place

A member of a partitioned data set can be updated in place, or it can be
deleted and rewritten as a new member.

When you update in place, you read records, process them, and write them
back to their original positions without destroying the re·maining records on the
track. The following rules apply:

• You must specify the update option (UPDAT) in the OPEN macro instruction.
To perform the update, you can use only the READ, WRITE, CHECK, NOTE,
POINT, FIND, and BLDL macros.

• You cannot update concatenated partitioned data sets.

• You cannot use chained scheduling.

• You cannot delete any record or change its length; you cannot add new
records.

Updating with BSAM: A record must be retrieved by a READ macro before it
can be updated by a WRITE macro. Both macros must be execute forms that
refer to the same DECB; the DECB must be provided by a list form. (The
execute and list forms of the READ and WRITE macros are described in Data
Administration: Macro Instruction Reference.)

Updating with QSAM: You can update a member of a partitioned data set using ·\.....
the locate mode of QSAM (DCB specifies MACRF =PL) and using the PUTX
macro. The DD statement must specify the data set and member name in the
DSNAME parameter. This method allows only the updating of the member
specified in the DD statement.

Updating with Overlapped Operations: To overlap input/output and processor
activity, you can start several read or write operations before checking the first
for completion. You cannot overlap read and write operations, however, as
operations of one type must be checked for completion before operations of the
other type are started or resumed. Note that each outstanding read or write
operation requires a separate channel program and a separate DECB. If a
single DECB were used for successive read operations, only the last record
read could be updated.

In Figure 40 on page 109, overlap is achieved by having a read or write request
outstanding while each record is being processed. Note the use of the execute
and list forms of the READ and WRITE macros, identified by the operands
MF=E and MF=L.

108 MVS/ESA Data Administration Guide

\..._

/I

\~.)

' ('! i

I '-./)

11 '

11.' \ _ ..)

//PDSDD DD DSNAME=MASTFILE(MEMBERK),DISP=OLD,---

UPDATDCB DCB
READ
READ

DSORG=PS,DDNAME=PDSDD,MACRF=(R,W),NCP=2,EODAD=FINISH
DECBA,SF,UPDATDCB,AREAA,MF=L Define DECBA

AREAA DS
DECBB,SF,UPDATDCB,AREAB,MF=L Define DECBB

Define buffers
AREAB DS

OPEN
LA
LA

READRECD READ
NEXTRECD READ

CHECK

(UPDATDCB,UPDAT)
2,DECBA
3,DECBB
(2) ,SF ,MF=E
(3),SF,MF=E
(2)

(If update is required, branch to R2UPDATE)

LR 4,3
LR 3,2
LR 2,4
B NEXTRECD

Open for update
Load DECB addresses

Read a record
Read the next record
Check previous read operation

If no update is required,
switch DECB addresses in
registers 2 and 3
and loop

In the following statements, 1 R2 1 and 1 R3 1 refer to the records that were read using the DECBs whose

addresses are in registers 2 and 3, respectively. Either register may point to either DECBA or DECBB.

R2UPDATE CALL
CHECK
~·JRITE

UPDATE,((2))
(3)
(2), SF ,MF=E

(If R3 requires an update, branch to R3UPDATE)

CHECK (2)
B READ RECD

R3UPDATE CALL UPDATE,((3))
WRITE (3),SF,MF=E
CHECK (2)
CHECK (3)
B READ RECD

FINISH CLOSE (UPDATDCB)

Figure 40. Updating a Member of a Partitioned Data Set

Rewriting a Partitioned Data Set Member

Call routine to update R2
Check read for next record
(R3) Write updated R2

If R3 requires no update,
check write for R2 and loop
Call routine to update R3
Write updated R3
Check write for R2
Check write for R3
Loop
End-of-Data exit routine

There is no actual update option that can be used to add or extend records in a

partitioned data set. If you want to extend or add a record within a member,

you must rewrite the complete member in another area of the data set.

Because space is allocated when the data set is created, there is no need to

request additional space. Note, however, that a partitioned data set must be

contained on one volume. If sufficient space has not been allocated, the data

set must be reorganized by the IEBCOPY utility program.

When you rewrite the member, you must provide two DCBs, one for input and

one for output. Both DCB macros can refer to the same data set, that is, only

one DD statement is required.

Chapter 9. Processing a Partitioned Data Set 109

If an out-of-space condition occurs when updating a PDS member, the error
recovery procedure will STOW the PDS member as 'TEMPNAME'. The original
member will remain intact.

Processing a Partitioned Data Set Residing on MSS
If OPTCD = H is specified in the DCB subparameter of a DD statement, it speci­
fies that, if a partitioned data set is being opened for input and resides on an
MSS device, then at OPEN time the data set is staged to EOF on the virtual
DASO device. If the option is not specified, only the directory is staged at OPEN
time and cylinder faults occur during processing. This option might be used
with the IEBCOPY utility program opening the PDS to reorganize and compress
the data space. This SPAM option, OPTCD = H, may be coded only on the DD
statement.

Note: Use of MSS is not recommended.

Concatenating Partitioned Data Sets
Two or more partitioned data sets can be automatically retrieved by the system
and processed successively as a single data set. This technique is known as
concatenation. There are two types of concatenation: se,quential and parti­
tioned.

Sequential Concatenation
Sequential concatenated data sets are processed like a sequential data set
(with a DSORG =PS). Data sets which are sequentially concatenated may be
sequential data sets, or may be members of partitioned data sets.

Data sets with "like" characteristics are those that may be processed correctly
using the same data control block (DCB), input/output block (108), and channel
program. Any exception ma.kes them "unlike." You need to turn on the
DCBOFLGS field in the DCB to process a concatenation of "unlike" data sets.
See "Concatenating Unlike Data Sets" on page 79 for more information.

Partitioned Concatenation
Partitioned concatenated data sets are processed with a OSORG =PO. When

\'-

partitioned data sets are concatenated, the system treats the group as a single \~ data set and only one data extent block (DEB) is constructed. Each partitioned
data set may hold up to 16 extents. The maximum number of partitioned data
sets that can be concatenated is governed by the limit of 123 extents (input data
sets only). For example, 123 single extent data sets can be concatenated but 8
data sets each with 16 extents cannot be concatenated. Because 8 times 16 is
128, these 128 extents cannot be represented in a DEB at one time. The DEB
can hold up to 123 extents.

Concatenated partitioned data sets are always treated as having like attributes,
except for block size, and use the attributes of the first data set only. SPAM
OPEN causes the largest block size among the concatenated data sets to be
used.

You process a concatenation of partitioned data sets the same way you process
a single partitioned data set with one exception: you must use the FIND macro \._) to begin processing a member; you cannot use the POINT (or NOTE) macro

110 MVS/ESA Data Administration Guide

I, v

A u

until after the FIND macro has been issued. Figure 39 on page 107 shows how

to process a single partitioned data set using FIND. If two members of different

data sets in the concatenation have the same name, the FIND macro deter­

mines the address of the first one in the concatenation. You would not be able

to process the second one in the concatenation. The BLDL macro provides the

concatenation number of the data set to which the member belongs in the K

field of the BLDL list. (See "BLDL-Construct a Directory Entry List" on

page 103.)

Reading a Partitioned Data Set Directory Sequentially
You can read a PDS directory sequentially just by opening the data set to its

beginning (without using positioning macros) and reading it.

• The DD statement should identify the DSNAME without a member name.

You should specify a disposition option of either OLD or SHR.

• You can use either BSAM or QSAM with MACRF = R or G.

• Specify BLKSIZE = 256 and RECFM = F.

• You must test for the last directory entry (X 1 FFFFFFFF ').

• If you also want to read the keys (the name of the last member in that

block), use BSAM and specify KEY LEN= 8.

Chapter 9. Processing a Partitioned Data Set 111

[I

~

/I
l'
~

(()
~I

u

Chapter 10. Generation Data Groups

A generation data group is a group of related cataloged data sets. The way

these data sets are cataloged is what makes them a generation data group.

Within a generation data group, the generations can have like or unlike DCB
attributes and data set organizations. If the attributes and organizations of all
generations in a group are identical, the generations can be retrieved together
as a single data set. Each data set within a generation data group is called a
generation data set. Generation data sets are sometimes called generations.

There are advantages to grouping related data sets. Because the catalog man­

agement routines can refer to the information in a special index-called a gen­
eration index-in the catalog:

• All of the data sets in the group can be referred to by a common name.

• The operating system is able to keep the generations in chronological
order.

• Outdated or obsolete generations can be automatically deleted by the oper­
ating system.

The management of a generation data group depends upon the fact that gener­
ation data sets have sequentially ordered names-absolute and relative
names-that represent their age. The absolute generation name is the repre­
sentation used by the catalog management routines in the catalog. Older data

sets have smaller absolute numbers. The relative name is a signed integer
used to refer to the latest (0), the next to the latest (-1), and so forth, generation.
The relative number can also be used to catalog a new generation (+ 1).

A generation data group base is created in an integrated catalog facility or
VSAM catalog before the generation data sets are cataloged. A generation
data group is represented in the integrated catalog facility or VSAM catalog by
a generation data group base entry. The access method services DEFINE
command is used to create the generation data group base. See Access
Method Services Reference (VSAM) for information on how to define and/or
catalog generation data sets in an integrated catalog facility or VSAM catalog.
See Utilities for information on how to define and/or catalog generation data

sets in an OS CVOL.

Note: OS CVOLs and VSAM catalogs are not recommended.

A generation data group base that is to be managed by SMS must be created
in an integrated catalog facility catalog. Generation data sets that are to be

managed by SMS must also be cataloged in an integrated catalog facility
catalog. Both SMS- and non-SMS-managed generation data sets can be con­
tained in the same generation data group. However, if the catalog of a gener­

ation data group is on a volume that is managed by SMS, the pattern DSCB

cannot be defined. You can add new non-SMS managed generation data sets

to the generation data group by using cataloged data sets as models without

needing a model DSCB on the catalog volume.

Chapter 10. Generation Data Groups 113

Absolute Generation anet Version Numbers
An absolute generation and version number is used to identify a specific gener- \._
ation of a generation data group. The generation and version numbers are in
the form GxxxxVyy, where xxxx is an unsigned 4-digit decimal generation
number (0001 through 9999) and yy is an unsigned 2-digit decimal version
number (00 through 99).
For example:

• A.B.C.G0001VOO is generation data set 1, version 0, in generation data
group A.B.C.

• A.B.C.G0009V01 is generation data set 9, version 1, in generation data
group A.B.C.

The number of generations and versions is limited by the number of digits in
the absolute generation name, that is, there can be 9999 generations and 100
versions.

The generation number is automatically maintained by the system. The number
of generations kept depends on the size of the generation index. For example,
if the size of the generation index allows ten entries, the ten latest generations
may be maintained in the generation data group.

The version number allows you to perform normal data set operations without
disrupting the management of the generation data group. For example, if you
want to update the second generation in a 3-generation group, replace gener­
ation 2, version 0, with generation 2, version 1. Only one version is kept for
each generation.

A generation can be cataloged using either absolute or relative numbers.
When a generation is cataloged, a generation and version number is placed as
a low level entry in the generation data group. To catalog a version number
other than VOO, you must use an absolute generation and version number.

A new version of a specific generation can be cataloged automatically by speci­
fying the old generation number along with a new version number. For
example, if generation A.B.C.GOOOSVOO is cataloged and you now create and
catalog A.B.C.G0005V01, the new entry is cataloged in the location previously
occupied by A.B.C.GOOOSVOO. This process removes the old entry from the
catalog but does not scratch the old version. To scratch the old version and
make its space available for reallocation, a DD card, describing the data set to
be deleted, with DISP = (OLD,DELETE) should be included at the time the data
set is to be replaced by the new version.

Relative Generation Number
As an alternative to using absolute generation and version numbers when cata­
loging or referring to a generation, you can use a relative generation number.
To specify a relative number, use the generation data group name followed by
a negative integer, a positive integer, or a 0, enclosed in parentheses. For
example, A.B.C(-1). A.B.C(+ 1), or A.B.C(O).

114 MVS/ESA Data Administration Guide

I

~

I I

\._.)

The value of the specified integer tells the operating system what generation
number to assign to a new generation, or it tells the system the location of an
entry representing a previously cataloged generation.

When you use a relative generation number to catalog a generation, the oper­
ating system assigns an absolute generation number and a version number of
VOO to represent that generation. The absolute generation number assigned
depends on the number last assigned and the value of the relative generation
number that you are now specifying. For example if, in a previous job gener­
ation, A.B.C.GOOOSVOO was the last generation cataloged, and you specify
A.B.C(+ 1), the generation now cataloged is assigned the number G0006VOO.
Though any positive relative generation number can be used, a number greater
than 1 may cause absolute generation numbers to be skipped. For example, if
you have a single step job, and the generation being cataloged is a + 2, one
generation number is skipped. However, in a multiple step job, one step may
have a + 1 and a second step a + 2, and no numbers are skipped in this case.

Note: when a volume is not specified in the JCL, and the non-SMS-managed
generation data set (GDS) is not opened, that data set is not cataloged.
SMS-managed data sets are always cataloged when allocated, with the volume
assigned from a storage group.

Programming Considerations for Multiple Step Jobs
One reason for using generation data groups is to allow the system to maintain
a given number of related cataloged data sets. If you attempt to delete or
uncatalog any but the oldest of the data sets of a generation data group in a
multiple step job, catalog management can lose orientation within the data
group. This can cause the deletion, uncataloging, or retrieval of the wrong data
set when referring to a specified generation. The rule is, if you delete a gener­
ation data set in a multiple step job, do not refer to any older generation in
subsequent job steps.

Also, it is recommended that, in a multiple step job, you catalog or uncatalog
data sets using JCL instead of IEHPROGM or a user program. Because
ALLOCATION/UNALLOCATION monitors data sets during job execution and is
not aware of the functions performed by these programs, data set orientation
may be lost or conflicting functions may be performed in subsequent job steps.

When you use a relative generation number to refer to a generation that was
cataloged in a previous job, the relative number has the following meaning:

• A.B.C(O) refers to the latest existing cataloged entry.

• A.B.C(-1) refers to the next-to-the-latest entry, and so forth.

When cataloging is requested via JCL, all actual cataloging occurs at step ter­
mination, but the relative generation number remains the same throughout the
job. Because this is so:

• A relative number used in the JCL refers to the same generation throughout
a job.

• A job step that terminates abnormally may be deferred for a later step
restart. If the step cataloged a generation data set successfully in its gen-

Chapter 10. Generation Data Groups 115

eration data group via JCL, you must change all relative generation
numbers in the succeeding steps via JCL before resubmitting the job.

For example, if the succeeding steps contained the relative generation
numbers:

• A.B.C(+ 1), that refers to the entry cataloged in the terminated job step, or

• A.B.C(O), that refers to the next to the latest entry, or

• A.B.C(-1), that refers to the latest entry, before A.B.C(O),

you must change them as follows before the step can be restarted: A.B.C(O),
A.B.C(-1), A.B.C(-2), and so forth.

Generation Data Group Naming for ISO/ANSl/FIPS Version 3 Labels
In a Version 3 ISO/ ANSI/Fl PS label (LABEL= (,AL)), the generation number and
version number are maintained separately from the file identifier. During label
processing, the generation number and version number are removed from the
generation data set name. The generation number is placed in the generation
number field (file label 1 positions 36 through 39), and the version number is
placed in its position on the same label (position 40 and 41). The file identifier
portion of a Version 3 HOR1/EOF1/EOV1 label contains the generation data set
name without the generation number and version number.

For Version 3 labels, you must observe the following specifications created by
the generation data group naming convention.

'"-

• Data set names whose last 9 characters are of the form .GnnnnVnn (n is 0 \_,;
through 9) can only be used to specify GOG data sets. When a name
ending in .GnnnnVnn is encountered, it is automatically processed as a
GOG. The generation number Gnnnn and the version number Vnn are sep-
arated from the rest of the data set name and placed in the generation
number and version number fields.

• Tape data set names for GOG files are expanded from a maximum of 8
user-specified characters to 17 user-specified characters. (The tape label
file identifier field has space for 9 additional user-specified characters
because the generation number and version number are no longer con- \~
tained in this field.)

• A generation number of all zeros is not valid, and wrn be treated as an
error during label validation. The error appears as a "RANG" error in
message IEC5121 (IECIEUNK) during the label validation installation exit.

• In an MVS system-created GOG name, the version number will always be 0.
(MVS will not increase the version number by 1 for subsequent versions.)
To obtain a version number other than 0, you must explicitly specify the
version number (for example, A.B.C.G0004V03) when the data set is
created. You must also explicitly specify the version number to retrieve a
GOG with a version number other than 0.

• Because the generation number and version number are not contained on
the identifier of HDRt, generations of the same GOG will have the same
name. Therefore, an attempt to place more than one generation of a GOG
on the same volume will result in an ISO/ANSl/FIPS standards violation in a

116 MVS/ESA Data Administration Guide

I~

I
~ I

\J_)

system supporting Version 3, and MVS will enter the validation installation
exit.

Creating a New Generation
To create a new generation data set, you must first allocate space for the gen­
eration, then catalog the generation.

Allocating a Generation
To take full advantage of the facilities of the system, the allocation can be pat­
terned after a previously allocated generation in the same group. This is
accomplished by the specification of DCB attributes for the new generation,
described as follows.

If you are using absolute generation and version numbers, DCB attributes for a
generation can be supplied directly in the DD statement defining the generation
to be created and cataloged.

If you are using relative generation numbers to catalog generations, DCB attri­
butes can be supplied either: (1) by referring to a cataloged data set for the
use of its attributes or (2) by creating a model DSCB on the volume on which
the index resides (the volume containing the catalog). Attributes can be sup­
plied before you catalog a generation, when you catalog it, or at both times.
You can supply the DCB attributes through the use of the DATACLAS keyword
in the DD statement or through the ACS routines. You may use the DATACLAS
and LIKE keywords in place of a model DSCB for non-SMS-managed generation
data sets. The generation data sets may be on either tape or DASO. The cata­
loged data set referred to in LIKE =dsname must be on DASO. The method of
creating a model DSCB cannot be used for SMS-managed generation data sets.

1. You do not need to create a model DSCB if you can refer to a cataloged
data set whose attributes are identical to those you desire. You can refer
to the cataloged data set's DCB attributes by referring to its DCB or to the
DD statement that allocated it. To refer to a cataloged data set for the use
of its attributes, you can specify one of the following on the DD statement
that creates and catalogs your generation:

• DCB= (dsname), where dsname is the name of the cataloged data set
• LIKE= dsname, where dsname is the name of the cataloged data set
• REF DD= ddname, where ddname is the name of a DD statement that

allocated the cataloged data set.

An example of allocating a generation data set by supplying its DCB attri­
butes through the use of DATACLAS is as follows:

//DDl DD DSN=GDG(+l),DISP=(Nrn,CATLG),DATACLAS=ALLOCL01
The DCB attributes allocated to the new data set depend on the attributes
defined in data class ALLOCL01. Your storage administrator will provide
information on the attributes specified by the data classes available to your
installation.

An example of referring to a cataloged data set by referring to its DD state­
ment is as follows:

//DD2 DD DSN=GDG(+l),DISP=(NEW,CATLG),REFDD=DDl

Chapter 10. Generation Data Groups 117

The new generation data set will have the same attributes as the data set
defined in the first example.

You can also refer to an existing model DSCB for which you can supply \ ..
overriding attributes. This cannot be used for SMS-managed generation
data sets. To refer to an existing model, specify DCB= (modeldscbname,
your attributes) on the DD statement that creates and catalogs your gener-
ation. Assume that you have a generation data group base name
ICFUCAT8.GDGBASE and its model DSCB name is ICFUCAT8.GDGBASE.

You can specify:

//DDl DD DSN=ICFUCATB.GDGBASE(+l),DISP=(NEW,CATLG),
UNIT=3380,SPACE=(TRK,(5)),VOL=SER=338001

2. You can use the _DATACLAS and LIKE keywords in the DD statement for
both SMS-managed and non-SMS-managed generation data sets. For
non-SMS-managed generation data sets, DAT AC LAS and LIKE can be used
in place of a model DSCB. The data sets may be on either tape or DASO.
(See Magnetic Tape Labels and File Structure for more information on using
data class with tape data sets.) "-

The LIKE keyword specifies the allocation attributes of a new data set by
copying the attributes of a cataloged model data set. Note that model
DSCBs are still used if present on the volume, even if LIKE and DATACLAS
are also used for a non-SMS-managed generation data set. This method is
recommended, because you would not need to change the JCL (to scratch
the model DSCB) when migrating the data to SMS-managed storage or vice
versa. If you do not specify DATACLAS and LIKE in the JCL for a
non-SMS-managed generation data set, and there is no model DSCB, the
allocation will fail. \._

An example of allocating a non-SMS-managed generation data set by sup-
plying its DCB attributes through the use of DATACLAS and LIKE is as
follows. This example would also work for SMS-managed generation data
sets.

//DDNAME DSN=HLQ.----.LLQ(+l),DISP=(NEW,CATLG),DATACLAS=dc_name

//DDNAME OSN=HLQ. ----. LLQ (+ 1), DISP= (NHJ, CAT LG), LI KE=dsn
3. (This method is not used for SMS-managed generation data sets.) Create a

model DSCB on the volume on which your index resides. You can provide
initial DCB attributes when you create your model; however, you need not
provide any attributes at this time. Because only the attributes in the data
set label are used, the model data set should be allocated with
SPACE= (TRK,O) to conserve direct access space. Initial or overriding attri­
butes can be supplied when you create and catalog a generation.2 To create
a model DSCB, include the following DD statement in the job step that
builds the index or in any other job step that precedes the step where you
create and catalog your generation.

2 Only one model DSCB is necessary for any number of generations. If you plan to use only one model, do not
supply DCB attributes when you create the model. When you subsequently create and catalog a generation,
include necessary DCB attributes in the DD statement referring to the generation.· In this manner, any number
of generation data groups can refer to the same model. Note that the catalog and model data set label are
always located on a direct access volume, even for a magnetic tape generation data group.

118 MVS/ESA Data Administration Guide

'"-'

(
\ ,
\.,_.-!

//name DD DSNAME=datagrpname,DISP=(,KEEP),SPACE=(TRK,(0)),
// UNIT=yyyy,VOLUME=SER=xxxxxx,
// DCB=(applicable subparameters)

The DSNAME is the common name by which each generation is identified;
xxxxxx is the serial number of the volume containing the catalog. If no DCB
subparameters are wanted initially, you need not code the DCB parameter.

Notes:

a. The model DSCB must reside on the catalog volume. If you move a
catalog to a new volume, you also will need to move or create a new
model DSCB on this new volume.

b: If you split or merge an integrated catalog facility catalog and the
catalog remains on the same volume as the existing model DSCB, you
will not have to move or create a new model DSCB.

For more information on the JCL keywords used to allocate a generation data
set, see JCL Reference.

The new generation data set is cataloged at allocation time, and rolled into the
generation data group at end of job step. If your job terminates after allocation
but before end of job step, the generation data set is cata:loged in a deferred
roll-in state. You can re-submit your job to roll the new generation data set into
the generation data group. For more information on rolling in generation data
sets, see "Rolling In a Generation" on page 120.

Passing a Generation
A new generation may be passed when created. That generation may then be
cataloged in a succeeding job step or deleted at the end of the job as in normal
disposition processing when DISP={,PASS) is specified on the DD statement.

However, after a generation has been created with DISP=(NEW,PASS) speci­
fied on the DD statement, another new generation for that data group must not
be cataloged until the passed version has been deleted or cataloged. To do so
would cause the wrong generation to be used when referencing the passed
generation data set. If that data set was later cataloged, a bad generation
would be cataloged and a good one lost.

For example, if A.B.C(+ 1) was created with DISP = (NEW,PASS) specified on the
DD statement, then A.B.C.(+ 2) must not be created with DISP = (NEW,CA TLG)
until A.B.C(+ 1) has been cataloged or deleted.

By using the proper JCL, the advantages to this support are:

• JCL will not have to be changed to rerun the job.

• The lowest generation version will not be deleted from the index until a
valid version is cataloged.

Chapter 10. Generation Data Groups 119

Rolling In a Generation
For SMS-managed generation data groups, a new generation is cataloged at
allocation time in a deferred roll-in state when the generation data set is allo­
cated as DISP = (NEW,CATLG). At end of job step, the deferred generation data
set will be rolled into the generation data group. It becomes an active gener­
ation data set. Generation data sets may be in a deferred roll-in state if the job
never reached end of step or if they were allocated as DISP =(NEW, KEEP).
Generation data sets in a deferred roll-in state can be referred to by their abso­
lute generation numbers. You can use the access method services command
ALTER ROLLIN to roll in these generation data sets.

What happens to the older generations when a new generation is rolled in is
determined by the attributes specified for the generation data group. The
access method services command DEFINE GENERATIONDATAGROUP creates a
generation data group and specifies the limit (the maximum number of active
generation data sets) for a generation data group and whether all or only the
oldest generation data sets should be rolled off when the limit is reached.
When a generation data group is full (contains its maximum number of active
generation data sets), and a new generation data set is rolled in at end of job
step, the oldest generation data set is rolled off and no longer active. If a gen­
eration data group is defined using DEFINE GENERATIONDATAGROUP EMPTY,
and is at its limit, then when a new generation data set is rolled in, all the cur­
rently active generation data sets are rolled off. What happens to rolled off
generation data sets depends on the parameters you specify on the DEFINE
GENERATIONDATAGROUP command. For example, if you specify the
SCRATCH parameter, the generation data set is scratched when it is rolled off.
If you specify the NOSCRATCH parameter, the rolled off generation data set is
recataloged as rolled off and is disassociated with its generation data group.

The access method services command ALTER LIMIT can increase or reduce the
limit for an existing generation data group. If a limit is reduced, the oldest
active generation data sets are automatically rolled off as needed to meet the
decreased limit. If a change in the limit causes generations to be rolled off,
then the rolled off data sets are listed with their disposition (uncataloged, recat­
aloged, or deleted). If a limit is increased, and there are generation data sets
in a deferred roll-in state, these generation data sets are not rolled into the
generation data group. The access method services command ALTER ROLLIN
can be used to roll the generation data sets into the generation data group in ·~
active status.

For more information on how to use the access method services commands
DEFINE GENERATION DAT AGROU P and ALTER, see Access Method Services
Reference (VSAM).

Creating an ISAM Data Set as Part of a Generation Data Group
To create an indexed-sequential data set as part of a generation data group,
you must: (1) create the indexed-sequential data set separately from the gener­
ation group and (2) use IEHPROGM to put the indexed-sequential data set into
the generation group. An ISAM generation data set cannot be SMS managed.

In an integrated catalog facility and VSAM catalogs, use access method ser­
vices commands to catalog the data set. In an OS CVOL, use the RENAME
function to rename the data set. Then use the CA TLG function to catalog the

120 MVS/ESA Data Administration Guide

i I

\~

(! :

~

(
\.._,!

i . '
~

I

\~

data set. For instance, if MASTER is the name of the generation data group,
and GggggVvv is the absolute generation name, you would code the following:

RENAME DSNAME=ISAM, VOL=3380=SCRTCH, NHJNAME=MASTER. GggggVvv
CATLG DSNAME=MASTER.GggggVvv,VOL=3380=SCRTCH

Retrieving a Generation
A generation may be retrieved through the use of job control language proce­
dures. Any operation that can be applied to a nongeneration data set can be
ap·plied to a generation. For example, a generation can be updated and reen­
tered in the catalog, or it can be copied, printed, punched, or used in the cre­
ation -of new generation or nongeneration data sets.

You can retrieve a generation by using either relative generation numbers or
absolute generation and version numbers.

Note: Refer to generation data sets that are in a deferred roll-in state by their
relative number, such as (+ 1), within the job that creates it. Refer to gener­
ation data sets that are in a deferred roll-in state by their absolute generation
number (GxxxxVyy) in subsequent jobs.

Because two or more jobs can compete for the same resource, generation data
groups should be updated with care, as follows:

• No two jobs running concurrently should refer to the same generation data
group. As a partial safeguard against this situation, use absolute gener­
ation and version numbers when cataloging or retrieving a generation in a
multiprogramming environment. If you use relative numbers, a job running
concurrently may update the generation data group index, perhaps cata­
loging a new generation which you will then retrieve in place of the one you
wanted.

• Even when using absolute generation and version numbers, a job running
concurrently might catalog a new version of a generation or perhaps delete
the generation you wanted to retrieve. For this reason, some degree of
control should be maintained over the execution of job steps referring to
generation data groups.

Building a Generation Data Group Index
A generation data group contained on an integrated catalog facility catalog or
VSAM catalog is managed through access method services. The access
method services DEFINE command can be used to create a generation data
group and specify how to handle older and obsolete generations.

A generation data group contained on an OS CVOL is managed via the informa­
tion found in a generation index. (Note that an alias name cannot be assigned
to the highest level of a generation index.) The BLDG function-of IEHPROGM
builds the index. The BLDG function also indicates how older or obsolete gen­
erations are to be handled when the index is full.. For example, when the index
is full, you may want to empty it, scratch existing generations, and begin cata­
loging a new series of generations. After the index is built, a generation can be
cataloged by its generation data group name and either an absolute generation
and version number or a relative generation number:

Chapter 10. Generation Data Groups 121

Examples of how to build a g,eneration data group index are found in Access
Method Services Reference (VSAM) under DEFINE GENERATION DAT AGROU P,
and in Utilities, under IEHPROGM.

Note: OS CVOLs and VSAM catalogs are not recommended.

122 MVS/ESA Data Administration Guide

\._

I

i\;._)

i) \,, __ ,/

! '

\ •.. _/

Chapter 11. 110 Device Control Macros

The operating system provides you with several macros for controlling
input/output devices. Each is, to varying degrees, device dependent. There­
fore, you must exercise care if you want to achieve device independence.

When you use the queued access method, only unit record equipment can be
controlled directly. When using the basic access method, limited device inde­
pendence can be achieved between magnetic tape and direct access devices.
You must check all read or write operations before issuing a device control
macro.

CNTRL-Control an 1/0 Device
The CNTRL macro performs these device-dependent control functions:

• Card reader stacker selection (SS)

• Printer line spacing (SP)

• Printer carriage control (SK)

• Magnetic tape backspace (BSR) over a specified number of blocks

• Magnetic tape backspace (BSM) past a tape mark and forward space over
the tape mark

• Magnetic tape forward space (FSR) over a specified number of blocks

• Magnetic tape forward space (FSM) past a tape mark and a backspace over
the tape mark

Backspacing moves the tape toward the load poi.nt; forward spacing moves the
tape away from the load point.

Note that the CNTRL macro cannot be used with an input data set containing
variable-length records on the card reader.

If you specify OPTCD = H in the DCB parameter field of the DD statement, you
can use the CNTRL macro to position DOS tapes that contain embedded DOS
checkpoint records. The CNTRL macro cannot be used to backspace DOS
7-track tapes that are written in data convert mode and contain embedded
checkpoint records.

PRTOV-Test for Printer Overflow
The PRTOV macro tests for channel 9 or 12 of the printer carriage control tape
or the forms control buffer (FCB). An overflow condition causes either an auto­
matic skip to channel 1 or, if specified, transfer of control to your routine for
overflow processing. If you specify an overflow exit routine, set DCBIFLGS to
X 100 1 before issuing another PRTOV.

If the data set specified in the DCB is not for a printer, no action is taken.

Chapter 11. 1/0 Device Control Macros 123

SETPRT-Printer Setup
The SETPRT macro instruction controls how information is printed. It is used
with the IBM 3800 Printing Subsystem and with various other universal char­
acter set (UCS) printers.

For the IBM 3800 Printing Subsystem, the SETPRT macro instruction is used to
initially set or dynamically change the printer control information. For addi­
tional information on how to use the SETPRT macro with the 3800 printer, see
IBM 3800 Printing Subsystem Programmer's Guide.

For printers that have a universal character set (UCS) buffer and optionally, a
forms control buffer (FCB), the SETPRT macro instruction is used to specify the
UCS and/or FCB images to be used. Note that universal character sets for the
various printers are not compatible. The three formats of FCB images (the FCB
image for the 3800 Printing Subsystem, the 4248 format FCB and the 3211
format FCB) are incompatible. The 3211' format FCB is used by the 3203, 3211,
4248, 3262 Model 5, and 4245 printers.

IBM-supplied UCS images, UCS image tables, FCB images, and character
arrangement table modules are included in the SYS1 .IMAGELIB at system gen­
eration time. For 1403, 3203, 3211, 3262 Model 5, 4245, and 4248 printers, user­
defined character sets can be added to SYS1 .IMAGELIB. For a description of
how images are added to SYS1 .IMAGELIB and how band names/aliases are
added to image tables, see System-Data Administration. For the 3800, user­
defined character arrangement table modules, FCB modul,es, GRAPHIC
modules, copy modification modules, and library character sets can be added
to SYS1 .IMAGELIB as describe·d in Utilities. For information on building a 4248
format FCB (which can also be used for the IBM 3262 Model 5 printer), see Utili­
ties.

The FCB contents can be selected from the system library (or an alternate
library if you are using a 3809), or defined in your program through the exit list
of the DCB macro instruction. For information on the DCB exit list, see DFP:
Customization.

For a non-3800 printer, the specified UCS or FCB image should be found in one
of the following:

• SYS1 .IMAGELIB

• Image table (UCS Image only)

• DCB exit list for an FCB

If the image is not found, the operator is asked to specify an alternate image
name or cancel the request.

For a printer that has no carriage control tape, you can use the SETPRT macro
instruction to select the FCB, to request operator verification of the contents of
the buffer, or to allow the operator to align the paper in the printer.

124 MVS/ESA Data Administration Guide

\-_

u
BSP-Backspace a Magnetic Tape or Direct Access Volume

The BSP macro backspaces one block on the magnetic tape or direct access
volume being processed. The block can then be reread or rewritten. An
attempt to rewrite the block destroys the contents of the remainder of the tape
or track.

The direction of movement is toward the load point or beginning of the extent.
You may not use the BSP macro if the track overflow option was specified or if
the CNTRL, NOTE, or POINT macro instruction is used. The BSP macro should
be used only when other device control macros could not be used for back­
spacing.

Any attempt to backspace across a file mark will result in a return code of
X 104 1 in register 15 and your tape or direct access volume will be positioned
after the file mark. This means you cannot issue a successful backspace
command after your EODAD routine is entered unless you first reposition the
tape or direct access volume into your data set. (CLOSE TYPE =T can position
you at the end of your data set.)

You can use the BSP macro to backspace DOS tapes containing embedded
DOS checkpoint records. If you use this means of backspacing, you must test
for and bypass the embedded checkpoint records. You cannot use the BSP
macro for DOS 7-track tapes written in translate mode.

NOTE-Return the Relative Address of a Block
The NOTE macro requests the relative address of the block just read or written.
In a multivolume data set, the address is relative to the beginning of the data
set on the volume currently being processed.

For magneti.c tape, the address is in the form of a 4-byte relative block address.
If TYPE= REL is specified or defaults, the address provided by the operating
system is returned in register 1. If TYPE =ABS is specified, the physical block
identifier of a data block on tape is returned in register 0. The relative block
address or the block identifier can later be used as a search argument for the
POINT macro.

If a NOTE macro is issued after an automatic volume switch occurs and before
a READ or WRITE macro is issued to the next volume, NOTE returns a relative
block address of zero.

For a direct access device, the address is in the form of a 4-byte relative track
record address {TTR). The address provided by the operating system is
returned in .register 1, and the amount of unused space available on the track of
the direct access device is returned in register 0.

POINT-Position to a Block
The POINT macro repositions a magnetic tape or direct access volume to a
specified block. The next read or write operation begins at this block.

In a multivolume data set, you must ensure that the volume referred to is the
volume currently being processed. For disk, if a write operation follows the
POINT macro, all of the track following the write operation is erased, unless the
data set is opened for UPDAT. POINT is not meant to be used before a WRITE

Chapter 11. 1/0 Device Control Macros 125

macro when a data set is opened for UPDAT. If you specify OPTCD = H in the
DCB parameter field of the DD statement, you can use the POINT macro to
position DOS tapes that contain embedded checkpoint records. The POINT
macro cannot be used to backspace DOS 7-track tapes that are written in data
convert mode and contain embedded checkpoint records.

If you specify TYPE= ABS, you can use the physical block identifier as a search
argument to locate a data block on tape. The identifier may be provided from
the output of a prior execution of the NOTE macro.

When using the POINT macro for a direct access device that is opened for
OUTPUT, OUTIN, or INOUT, and the record format is not standard, the number
of blocks per track may vary slightly.

SYNCDEV-Control Data Synchronization
The SYNCDEV macro controls data synchronization for devices supporting buf­
fered write mode. Data still in the buffer may not yet reside on the final
recording medium. This is called data that is not synchronized. You can do the
following: \"-

• Request information regarding synchronization, or

• Demand that synchronization occur based on a specified number of data
blocks that are allowed to be buffered. If zero is specified, synchronization
will always occur.

When SYNCDEV completes successfully (return code 0), a value will be returned
that indicates the number of data blocks remaining in the control unit buffer.

126 MVS/ESA Data Administration Guide

(i

~)

u

Chapter 12. Protecting Data

Control of confidential data in a data set is provided through password pro­
tection or RACF protection. You can prevent unauthorized access to payroll
data, sales forecast data, and all other data sets that require special security
attention. An individual can use a security-protected data set only after sup­
plying a predefined password or receiving RACF authorization.

Password Protection for Non-VSAM Data Sets
Passwords are ignored for all data sets, new and existing, that are managed by
SMS. However, passwords can still be defined for SMS data sets and can be
used to protect those data sets when SMS is inactive or when you are sharing
the data sets with systems that do not have SMS. For information on protecting
SMS-managed data sets when SMS is active, see "RACF Protection for
Non-VSAM Data Sets" on page 128.

Password protection as described here applies to non-VSAM data sets only.
For information on password protection for VSAM data sets, see Access Method
Services Reference (VSAM).

In addition to the usual label protection that prevents op!ening of a data set
without the correct data set name, the operating system provides data set secu­
rity options that prevent unauthorized access to confidential data. Two levels of
protection options are available. You specify these options in the LABEL field
of a DD statement with the parameter PASSWORD or NOPWREAD.

• Password protection (specified by the PASSWORD parameter) makes a data
set unavailable for all types of processing until a correct password is
entered by the system operator, or for a TSO job by the TSO user.

• No-password-read protection (specified by the NOPWREAD parameter)
makes a data set available for input without a password, but requires that
the password be entered for output or delete operations.

If an incorrect password is entered twice when a job is being requested by the
open or EOV routine, the job is terminated by the system. For a SCRATCH or
RENAME request, a return code is given.

You can request password protection when you create the data set, by using
the LABEL field of the DD statement in your JCL. The system sets the data set
security byte either in the standard header label 1 as shown in Magnetic Tape
Labels and File Structure or in the identifier data set control block (DSCB).
After you have requested security protection for magnetic tapes, you cannot
remove it with JCL unless you re-create the data set and scratch the protected
data set.

In addition to requesting password protection in your JCL, you must enter at
least one record for each protected data set in a data set named PASSWORD,
which must be created on the system-residence volume. You should also
request password protection for the PASSWORD data set itself to prevent both
reading and writing without knowledge of the password.

Chapter 12. Protecting Data 127

For a data set on a direct access device, you can place the data set under pro­
tection when you enter its password in the PASSWORD data set. You can use
the PROTECT macro or the IEHPROGM utility program to add, change, or delete
an entry in the PASSWORD data set; with either of these methods, the system \._
updates the DSCB of the data set to reflect its protected status. This provision
eliminates the need for you to use JCL whenever you add, change, or remove
security protection for a data set on a direct access device. System-Data
Administration describes how to maintain the PASSWORD data set, including
the PROTECT macro instruction; Utilities describes the IEHPROGM utility
program.

RACF Protection for Non-VSAM Data Sets
Resource Access Control Facility (RACF) protection as described here applies
to non-VSAM data sets, tape data sets, and tape volumes. For information on
RACF protection for VSAM data sets, see VSAM Administration Guide. For
detailed information on RACF protection for data sets, see RACF General Infor­
mation and RACF Security Administrator's Guide.

RACF is an IBM licensed program that provides access control by identifying
and verifying users and authorizing access to DASO and tape data sets and
volumes. RACF, or an equivalent product, is the only means of protecting data
sets managed by SMS. A generic profile can protect both DASO data sets and
tape data sets. You may use RACF to provide access control to tape volumes
that have no labels (NL), standard labels (SL), ISO/ANSI/Fl PS labels (AL), or to
tape volumes that are referenced with bypass label processing (BLP).

You may define a data set to RACF automatically or explicitly. The automatic \,,_.
definition occurs when space is allocated for the DASO data set, if you have the
automatic data set protection attribute or if you code PROTECT= YES or
SECMODEL = (,) in the DD statement. SECMODEL = (,) allows you to specify the
name of the model profile that RACF should use in creating a discrete profile
for your data set. The explicit definition of a data set to RACF is by use of the
RACF command language.

RACF protection of tape data sets is provided on a volume basis or on a data
set basis. A tape volume is defined to RACF explicitly by use of the RACF
command language or automatically. A tape data set is defined to RACF when- .""-'
ever a data set is opened for OUTPUT, OUTIN, or OUTINX and RACF tape data
set protection is active, whether the data set is the first file in a sequence. All
data sets on a tape volume are RACF protected if the volume is RACF pro-
tected.

Six levels of access authority are possible in a RACF-defined data set or tape
volume.

ALTER
You have total control over the data set. If you define the data set or tape
volume to RACF, you have ALTER access authority. With ALTER authority,
you can read and write the data set or tape volume, rename the data set,
and scratch the data set, and you may authorize other users access to the
tape volume or data set.

128 MVS/ESA Data Administration Guide

I

{ '.

'\J._J

1!

\GI

I v

CONTROL
For non-VSAM data sets, CONTROL authority is equivalent to UPDATE
authority.

UPDATE
You are authorized to open the data set or tape volume for OUTPUT and all
other open options. ·

READ
You are authorized to open the data set or tape volume for INPUT only.

EXECUTE
You are authorized to execute from the data set or tape volume (open for
SPAM inpu.t only).

NONE
You are not authorized to open the data set or tape volume.

If a data set is defined to RACF and is password protected, access to the data
set is authorized only through RACF authorization checking. If a tape volume is
defined to RACF and the data set(s) on the tape volume is password protected,
access to any of the data sets is authorized only through RACF authorization
checking of the volume. Data set password protection is bypassed.

To protect multivolume non-VSAM DASO and tape data sets, you must define
each volume of the data set to RACF as part of the same volume set. When a
RACF-protected data set is opened for output and extended to a new volume,
the new volume is automatically defined to RACF as part of the same volume
set. When a multivolume physical-sequential data set is opened for output and
any of the data set's volumes are defined to RACF, either each subsequent
volume must be RACF protected as part of the same volume set, or the data set
must not yet exist on the volume. When a RACF protected multivolume tape
data set is opened for output, either each subsequent volume must be RACF
protected as part of the same volume set, or the tape volume must not yet be
defined to RACF. If the first volume opened is not RACF protected, no subse­
quent volume may be RACF protected. If a multivolume data set is opened for
input (or a nonphysical-sequential data set is opened for output), no suc,h con­
sistency check is performed when subsequent volumes are accessed.

ISO/ANSl/FIPS Version 3 installation exits that execute under RACF will receive
control during ANSI volume label processing. Control will go to the RACHECK
preprocessing and postprocessing installation exits. The same IECIEPRM exit
parameter list passed to ANSI installation exits will be passed to the RACF
installation exits if the accessibility code is any alphabetic character from A
through Z. For more information, see DFP: Customization.

Erasing RACF Protected DASO Data Sets
You can create or alter RACF profiles to include an ERA.SE option for DASO
data sets. MVS/DFP tests for this option, and, if you have specified ERASE, it
overwrites the DASO space with zeros before making it available for reallo­
cation.

Chapter 12. Protecting Data 129

If you have specified ERASE, the entire data set area is overwritten when you
use any of the following:

• The DELETE subparameter in the JCL DISP parameter on a DD statement

• The TSO DELETE command (for non-VSAM objects)

• The SCRATCH macro instruction

• The SCRATCH control statement for the IEHPROGM utility program

If the data set is sequential or partitioned and you have specified ERASE, the
released area is overwritten when you use any of the following:

• The RLSE subparameter in the JCL SPACE parameter on a DD statement

• The PARTREL macro instruction

See the RACF General Information manual and associated publications for more
information about specifying and using the ERASE option.

130 MVS/ESA Data Administration Guide

\

'"""'

."-

\"-

/ i

\ '

\J_,I

.!
'I (I ,

\(_.,;'

(~

\ i ,/
~

,I ·. v

Appendix A. Direct Access Labels

Product-Sensitive Programming Interface

This appendix discusses the standard formats of direct access labels. It con­
tains product-sensitive programming interfaces provided by MVS/DFP. Installa­
tion exits and other product-sensitive interfaces are provided to allow your
installation to perform tasks such as product tailoring, monitoring, modification,
or diagnosis. They are dependent on the detailed design or implementation of
the product. Such interfaces should be used only for these specialized pur­
poses. Because of their dependencies on detailed design and implementation,
it is to be expected that programs written to such interfaces may need to be
changed in order to run with new product releases or versions, or as a result of
service.

Only standard label formats are used on direct access volumes. Volume, data
set, and optional user labels are used (see Figure 41). In the case of direct
access volumes, the data set label is the data set control block (DSCB).

Cylinder

Cylinder 0

Tracks

f t--~v_l:_.~_:_:_c~-~-:s_el~--t
~--P\ Add~tional Labels

Track 0

All Remaining
Tracks of Volume

Figure 41. Direct Access Labeling

(Optio_n_a_O ___ _J

VTOC DSCB

Free Space DSCB

OSCB

Un used Storage
Area for Data Sets

VTOC

Appendix A. Direct Access Labels 131

Volume-Label Group
The volume-label group immediately follows the first two initial program loading
(IPL) records on track 0 of cylinder 0 of the volume. It consists of the initial '"'-
volume label at record 3 plus a maximum of seven additional volume labels.
The initial volume label identifies a volume and its owner, and is used to verify
that the correct volume is mounted. It can also be used to prevent use of the
volume by unauthorized programs. The additional labels can be processed by
an installation routine that is incorporated into the system.

The format of the direct access volume label group is shown in Figure 42.

Field 1

2

3

4

5

6

7

8

(As many as Seven Additional Volume Labels)
80-Byte Physical Record

(3) Volume Label Identifier (VOL)

(1) Volume Label Number (1)

(6) Volume Serial Number

(1) Volume Security

(5) VTOC Pointer

(21) Reserved (Blank)

(15) Owner Identification

(29) Blank

Figure 42. Initial Volume Label

Initial Volume Label Format
The 80-byte initial volume label is preceded by a 4-byte key containing VOL 1.

Volume Label Identifier (VOL): Field 1 identifies a volume label.

Volume Label Number (1): Field 2 identifies the relative position of the volume
label in a volume label group. It must be written as X' F1 1

•

The operating system identifies an initial volume label when, in reading the
initial record, it finds that the first 4 characters of the record are VOL1.

132 MVS/ESA Data Administration Guide

\""'-"'

\.._,)

(I

'-.._./

I
_..,)

Volume Serial Number: Field 3 contains a unique identification code assigned
when the volume enters the system. You can place the code on the external
surface of the volume for visual identification. The code is normally numeric
(000001 through 999999), but may be any 1 to 6 alphameric or national (#, $, @)
characters, or a hyphen (X 1 60 1

). If this field is less than 6 characters, it is
padded on the right with blanks.

Volume Security: Field 4 is reserved for use by installations that want to
provide security for volumes. Make this field a X 1 CO' unless you have your
own security processing routines.

VTOC Pointer: Field 5 of direct access volume label 1 contains the address of
the VTOC in the form of CCHHR.

Reserved: Field 6 is reserved for possible future use. Leave it blank.

Owner Name and Address Code: Field 7 contains a unique identification of the
owner of the volume.

All the bytes in Field 8 are left blank.

Data Set Control Block (DSCB)
The system automatically constructs a DSCB when space is requested for a
data set on a direct access volume. Each data set on a direct access volume
has one or more DSCBs to describe its characteristics. The DSCB appears in
the VTOC and, in addition to space allocation and other control information,
contains operating system data, device-dependent information, and data set
characteristics. There are seven kinds of DSCBs, each with a different purpose
and a different format number. For an explanation of Format-1 through
Format-6 DSCBs, see System-Data Administration. Format 0 DSCBs are used
to indicate empty space in the VTOC.

User Label Groups
User header and trailer label groups can be included with data sets of phys­
ically sequential or direct organization. The labels in each group have the
format shown in Figure 43 on page 134.

Appendix A. Direct Access Labels 133

80-Byte Physical Record (Maximum of 8)

Fie 1 d 1 (3) Label Identifier (UHL if Header, UTL if Trailer)

2 (1) Label Number (1 - 8)

3 (76) User-Specified

Figure 43. User Header and Trailer Labels

Each group can include as many as eight labels, but the space required for
both groups must not be more than one track on a direct access device. The
current minimum track size allows a maximum of eight labels, including both
header and trailer labels. So, a program becomes device dependent (among
direct access devices) when it creates more than eight labels.

If user labels are specified in the DD statement (LABEL=SUL), an additional
track is normally allocated when the data set is created. No additional track is
allocated when specific tracks are requested (SPACE= (ABSTR, ...)), or when
tracks allocated to another data set are requested (SUBALLOC = ...). In either
case, labels are written on the first track that is allocated.

User Header Label Group: The operating system writes these labels as
directed by the processing program recording the data set. The first 4 charac­
ters of the user header label must be. UHL 1, ... , UHL8; you can specify the
remaining 76 characters. When the data set is read, the operating system
makes the user header labels available to the problem program for processing.

User Trailer Label Group: These labels are recorded {and processed) as
explained in the preceding text for user header labels, except that the first 4
characters must be UTL 1, ... ,UTL8.

User Header and Trailer Label Format
Label Identifier: Field 1 indicates the kind of user header label. UHL indicates
a user header label; UTL indicates a user trailer label.

Label Number: Field 2 identifies the rel,ptive position (1 to 8) of the label within
the user label group.

User-Specified: Field 3 (76 bytes) .

.__ _____ End of Product-Sensitive Programming Interface _____

134 MVS/ESA Data Administration Guide

\ -...._..

Appendix B.

1

\LJ Machine Code

(: i

~

\..L_/

Control Characters

As an optional feature, each logical record, in any record format, may include a
control character. This control character is recognized and processed if a data
set is being written to a printer or punch.

For format-F and format-LI records, this character is the first byte of the logical
record.

For format-V records, it must be the fifth byte of the logical record, immediately
following the record descriptor word.

Two options are available. If either option is specified in the DCB, the char­
acter must appear in every record and other line spacing or stacker selection
options also specified in the DCB are ignored.

You can specify in the DCB that the machine code control character has been
placed in each logical record. If the record is to be written, the appropriate
byte must contain the command code bit configuration specifying both the write
and the desired carriage or stacker select operation.

The machine code control characters for a printer are:

Print-Then Act Immediately
Act Action without Printing
x•o1 • Print only (no space)

X 109 1 Space 1 line x•oB•

X' 11 1 Space 2 lines X 1 13'

X' 19' Space 3 lines X 1 1B 1

X 1 89' Skip to channel 1 x•aB•

X 1 91 1 Skip to channel 2 X 193 1

X 1 99 1 Skip to channel 3 X 198 1

X'A1 I Skip to channel 4 X 1A3'

X 1A9 1 Skip to channel 5 X 1AB 1

X 1 B1 I Skip to channel 6 X 1 B3 1

X 1 B9 1 Skip to channel 7 X 1 BB 1

x•c1' Skip to channel 8 X 1C3 1

x•cg• Skip to channel 9 X 1CB 1

X'D1 I Skip to channel 10 X 1 D3 1

X 1 D9 1 Skip to channel 11 X 1 DB 1

X'E1 I Skip to channel 12 X 1 E3 1

Appendix B. Control Characters 135

The machine code control characters for a card read punch device are as
follows:

Control Code
X'01'

Action
Select stacker 1

X'41'

X 'SA 11

X'81'

Select stacker 2

Change from line mode
to page mode

Select stacker 3

1 The IBM 3800 Model 3 all-point-addressable mode uses this code to change
from compatibility to page mode.

Other command codes for specific devices are contained in publications
describing the control units and devices.

Extended American National Standards Institute Code
In place of machine code, you can specify control characters defined by the
American National Standards Institute {ANSI). Whenever IBM publications refer
to ANSI control characters, they are coded as follows:

Code Action before Printing a Line

b Space one line (blank code)

0 Space two lines

Space three lines

+ Suppress space

1 Skip to channel 1

2 Skip to channel 2

3 Skip to channel 3

4 Skip to channel 4

5 Skip to channel 5

6 Skip to channel 6

7 Skip to channel 7

8 Skip to channel 8

9 Skip to channel 9

A Skip to channel 10

B Skip to channel 11

c Skip to channel 12

136 MVS/ESA Data Administration Guide

~

u

u

Code Action after Punching a Card

V Select punch pocket 1

w Select punch pocket 2

X 1SA 11 Change from line to page mode.
1 The IBM 3800 Model 3 all-point-addressable mode uses this code.

These control characters include those defined by ANSI FORTRAN. If any other
character is specified, it is interpreted as 'b' or 'V', depending on whether it is
for a printer or a punch; no error indication is returned.

Appendix B. Control Characters 137

\._.;

Appendix C. Allocating Space on Direct Access Volumes
(\
~ When direct access storage space is required for a data set, you can specify

the amount of space needed explicitly, using the SPACE parameter. The oper­
ating system selects the device and allocates the space accordingly. You can
specify the amount of space implicitly by using the space specified in the data
class assigned to your data set by the ACS routines. The data class will not be
used if SMS is inactive at the time of your allocation.

The amount of space required can be specified in blocks, tracks, or cylinders. If
you want to maintain device independence, specify your space requirements in
blocks. Device independence is especially important to system-managed
storage. If you want to specify your request as record length, you must specify
your space requirements in blocks and use the average record {AVGREC)
keyword. If your request is in tracks or cylinders, you must be aware of such
device considerations as cylinder and track capacity.

Allocation by Blocks: When the amount of space required is expressed in
blocks, you must specify the number and average length of the blocks within
the data· set, as in this example:

II DD SPACE=(300,(5000,100)), ..•

300 = average block length in bytes
5000 = primary quantity (number of blocks)

100 = secondary quantity, to be a 11 ocated if the primary
quantity is not enough (in blocks)

From this information, the operating system estimates and allocates the number
of tracks required. Space is always in complete tracks. You may also request
that the space allocated for a specific number of blocks begin and end on cyl­
inder boundaries.

You must be certain that both the quantity and the increment are large enough
to contain the largest block to be written. Otherwise, all the space requested is
allocated but erased as the system tries to find a space large enough for the
record.

Allocation by Average Record Length: When the amount of space required is
expressed in average record length, you must specify the number of records
within the data set and their average length, and use the AVGREC keyword to
modify the scale of your request. When AVGREC is specified, the average
block length becomes average record length. The system determines the
appropriate block size. The system applies the scale value to the primary and
secondary quantities specified in the SPACE keyword. Possible values for the
AVGREC keyword are:

• U-use a scale of 1
• K-use a scale of 1024
• M-use a scale of 1,048,576

Appendix C. Allocating Space on Direct Access Volumes 139

When the AVGREC keyword is specified, the values specified for primary and
secondary quantities in the SPACE keyword are multiplied by the scale and
those new values will be used in the space allocation. For example, the fol­
lowing request will result in the primary and secondary quantities being multi­
plied by 1024:

II DD SPACE=(80,(20,2)),AVGREC=K, ...

80 = average record length in bytes
80 * 20 * 1024 = 1.6 MB = primary space
80 * 2 * 1024 = 160 KB =secondary space, to be allocated if the

primary space is not enough

Allocation by Tracks or Cylinders: The amount of space required can be
expressed in tracks or cylinders, as in these examples:

II DD SPACE=(TRK,(100,5)), .. .
II DD SPACE=(CYL,(3,1)), .. .

Allocation by Absolute Address: If the data set contains location-dependent
information in the form of an absolute track address (MBBCCHHR), space
should be requested about the number of tracks and the beginning address, as
in this example:

II DD SPACE=(ABSTR,(500,15)),UNIT=3380, ...

where 500 tracks are required, beginning at relative track 15, which is cylinder
1, track 0.

Note: Data sets to be managed by SMS cannot use absolute address allo­
cation.

Allocation of Mass Storage System (MSS) Virtual Volumes: When the data set
is to be stored on an MSS virtual volume, a volume group (MSVGP) parameter
may be specified instead of using the SPACE parameter on the DD card.
Before the MSVGP parameter can be used, the volume group must be identified
to MSS by the utility program IDCAMS.

Allocation of MSS virtual volume space should be in multiples of cylinders, with
secondary allocation a multiple of the primary to ensure maximum space usage
and minimum fragmentation.

Note: SMS cannot manage MSS data sets. Use of MSS is not recommended.

Additional Space Allocation Options: The DD statement provides you with
much flexibility in specifying space requirements. The options are described in
detail in JCL Reference.

Note: The section on estimating tracks has been moved to Appendix C,
"Device Capabilities" in Data Administration: Macro Instruction Reference.

140 MVS/ESA Data Administration Guide

\"-

Appendix D. 150/ANSl/FIPS Record Control Word and
U Segment Control Word

~ I i

~/

11

~u

ii
\G)

Translation of ISO/ANSl/FIPS Record Control Word

D/DB RDW

L

L

0

0

a

LL

Data

The ISO/ANSl/FIPS record control word (RCW) is expressed in ISCll/ASCll char­
acters and is 4 bytes long. See Figure 44. Note that the RCW is different from
the code in the IBM record descriptor word {ROW). The ROW, expressed in
binary, is the internal data management equivalent of the ISO/ANSl/FIPS RCW.

Out ut Translation

Binary Value

Optional Control
Character

nnn

Input Translation

ISO/ANSI RCW

n

n

n

n

a

Data

)

Length in
ISCll/ASCll
Numeric
Characters

Optional Control
Character

Figure 44. Translation of ISO/ANSl/FIPS Record Control Word to D/DB Record Descriptor Word

Appendix D. ISO/ANSl/FIPS Record Control Word and Segment Control Word 141

Translation of ISO/ANSl/FIPS Segment Control Word
The ISO/ANSl/FIPS segment control word (SeW) is expressed in ISell/ASell
characters and is 5 bytes in length. (See Figure 45.) Note that the sew is dif- \._
ferent from the code in the IBM segment descriptor word (SOW). The SOW is
the internal data management equivalent of the ISO/ ANS:l/FI PS sew. Only 4
bytes are used by data management, but the user buffer area must accommo-
date an extra byte to allow for translation from the ISO/ANSI/Fl PS sew. The
SOW is expressed in binary.

DS/DBS SDW

Reserved

L

L
c1

0

Out ut Translation

} Binary Value

Segment Position
Indicator

LL
LL+1

nnn

Data

1 C values for SDW {2 low order bits)

00 = only segment of record
01 = first segment of record
11 = intermediate segment of record
10 = last segment of record

2 s va I ues for sew (ASCII characters)

O = only segment of record
1 = first segment of record
2 = intermediate segment of record
3 = last segment of record

Input Translation

ISO/ANSI sew
s2
n

n

n

n

Data

Spanning Indicator

)

Length in
ISCll/ASCll
Numeric
Characters

Figure 45. Translation of ISO/ANSl/FIPS Segment Control Word to OS/DBS Segment Descriptor Word

142 MVS/ESA Data Administration Guide

\._

i
I '

_;

(:

~

Appendix E. Processing a Direct Data Set

General-Use Programming Interface

This appendix is intended to help you process direct data sets. It contains
general-use programming interfaces, which are provided to allow you to write
programs that use the services of MVS/DFP.

Use of BDAM is not recommended. We recommend you use VSAM key­
sequenced data sets instead.

In a direct data set, there is a relationship between a control number or identifi­
cation of each record and its location on the direct access volume. This
relationship allows you to gain access to a record without an index search.
You determine the actual organization of the data set. If the data set has been
carefully organized, location of a particular record takes less time than with an
indexed sequential data set.

The DSORG parameter of the DCB macro specifies the type of processing to be
performed; DSORG in the DD statement specifies the organization of the data
set when it is created.

Although you can process a direct data set sequentially using either the queued
access method or the basic access method, you cannot read record keys using
the queued access method. When you use the basic access method, each unit
of data transmitted between virtual storage and an 1/0 device is regarded by
the system as a record. If, in fact, it is a block, you must perform any blocking
or deblocking required. For that reason, the LRECL field is not used when proc­
essing a direct data set. Only BLKSIZE must be specified when you read, add,
or update records on a direct data set.

If dynamic buffering is specified for your direct data set, the system will provide
a buffer for your records. If dynariic buffering is not specified, you must
provide a buffer for the system to use.

As indicated in the discussion of direct access devices, record keys are
optional. If they are specified, they must be used for every record and must be
of a fixed length.

Direct Data Set Organization
In developing the organization of your data set, you can use direct addressing.
When direct addresses are used, the location of each record in the data set is
known.

If format-F records with keys are being written, the key of each record can be
used to identify the record. For example, a data set with keys ranging from 0 to
4999 should be allocated space for 5000 records. Each key relates directly to a
location that you can refer to as a relative record number. Therefore, each
record should be assigned a unique key. If identical keys are used, it is pos­
sible, during periods of high processor and channel activity, to skip the desired
record and retrieve the next record on the track. The main disadvantage of this

Appendix E. Processing a Direct Data Set 143

type of organization is that records may not exist for many of the keys even
though space has been reserved for them.

Space could be allocated based on the number of records in the data set rather
than on the range of keys. This type of organization requires the use of a
cross-reference table. When a record is written in the data set, you must note
the physical location as a relative block number, an actual address, or as a rel­
ative track and record number. The addresses must then be stored in a table
that is searched when a record is to be retrieved. Disadvantages _are that
cross-referencing can be used efficiently only with a small data set, storage is
required for the table, and processing time is required for searching and
updating the table.

A more common, but somewhat complex, technique for organizing the data set
involves the use of indirect addressing. In indirect addressing, the address of
each record in the data set is determined by a mathematical manipulation of
the key. This manipulation is called "randomizing" or "conversion." Because
several randomizing procedures could be used, no attempt is made here to
describe or explain those that might be most appropriate for your data set. ,___.,

Creating a Direct Data Set
After the organization of a direct data set has been determined, the process of
creating it is almost identical to creating a sequential data set. The BSAM DCB
macro should be used with the WRITE macro instruction (the form used to
create a direct data set). The following parameters must be specified in the
DCB macro instruction:

• DSORG =PS or PSU

• DEVD =DA or omitted

• MACRF=WL

The DD statement must indicate direct access (DSORG =DA or DAU). If keys
are used, a key length (KEYLEN) must also be specified. DSORG and KEYLEN
may be specified through data class. For more information on data class, see
Chapter 5, "Specifying a Data Control Block and Initializing Data Sets" on
page 39. Record length (LRECL) need not be specified but may be used to
provide compatibility with sequential access method processing of this data set.

It is possible to create a direct data set using QSAM (no keys allowed) or
BSAM (with or without keys and the DCB specifies MACRF =W). However, this
method is not recommended because, when you access this direct data set,
you cannot request a function that requires the information in the capacity
record (RO) data field. For example, the following restrictions would apply:

• Variable-length, undefined-length, or variable-length spanned record proc­
essing is not allowed.

• The WRITE add function with extended search for fixed-length records (with
or without track overflow) is not allowed.

If a VIO data set is opened for processing with the extended search option, the
DEBENDCC and DEBENDHH fields of the DEB will reflect the real address of the
last record written during the BDAM create step. This prevents BDAM from

144 MVS/ESA Data Administration Guide

'~

I~)

~)

I

~)

searching unused tracks. The information needed to determine the data set
size is written in the DSCB during the close of the DCB used in the create step.
Therefore, if this data set is being created and processed by the same program,
and the DCB used for creating the data set has not been closed before opening
the DCB. to be used for processing, the resultant beginning and ending CCHH
will be equal.

If a direct data set is created and updated or read within the same job step, and
the OPTCD parameter is used in the creation, updating, or reading of the data
set, different DCBs and DD statements should be used.

If you are using direct addressing with keys, you can reserve space for future
format-F records by writing a dummy record. To reserve or truncate a track for
format-LI, format-V, or format-VS records, write a capacity record. The capacity
record (RO) contains a 7-byte data field (CCHHRLL), where CCHHR is the ID of
the last record on the track, and LL is the number of unused bytes on the track.
If a WRITE SZ macro is issued for a track with no records, R is zero and LL is
the entire length of the track.

Format-F records are written sequentially as they are presented. When a track
is filled, the system automatically writes the capacity record and advances to
the next track. Because of the form in which relative track addresses are
recorded, direct data sets whose records are to be identified by means other
than actual address must be limited in size to no more than 65,536 tracks for
the entire data set.

Tape-to-Disk-Direct Data Set: In the example problem in Figure 46 on
page 146, a tape containing 204-byte records arranged in key sequence is used
to create a d~rect data set. A 4-byte binary key for each record ranges from
1000 to 8999, so space for 8000 records is reque~ted.

Appendix E. Processing a Direct Data Set 145

llDAOUTPUT DD DSNAME=SLATE.INDEX.WORDS,DCB=(DSORG=DA,
II BLKSIZE=200,KEYLEN=4,RECFM=F),SPACE=(204,8000),---
llTAPINPUT DD

DIRECT START

NEXTREC

COMPARE
*

DUMMY

INPUTEND

ENDJOB

DUMAR EA
DA LOAD

TAPEDCB

L
OPEN
LA
GET
LR
c

BNE
WRITE
CHECK
AH
B
c
BH
t~RITE

CHECK
AH
BR
LA
BR
CLOSE

OS
DCB

DCB

9,=F 1 1000 1

(DALOAD,(OUTPUT),TAPEDCB)
10,COMPARE
TAPEDCB
2,1
9, 0 (2) Compare key of input against

control number
DUMMY
DECBl,SF,DALOAD,(2)
DECBl
9,=H'l'
NEXTREC

Write data record

9,=F'8999'
ENDJOB

Have 8000 records been written?

DECB2,SD,DALOAD,DUMAREA
DECB2
9,=H'l'
10
10,DUMMY
10
(TAPEDCB,,DALOAD)

Write dummy

BF
DSORG=PS,MACRF=(WL),DDNAME=DAOUTPUT,
DEVD=DA,SYNAD=CHECKER,--­
EODAD=INPUTEND,MACRF=(GL), ---

Figure 46. Creating a Direct Data Set

Referring to a Record in a Direct Data Set

c

c

After you have determined how your data set is to be organized, you must con­
sider how the individual records will be referred to when the data set is
updated or new records are added. The record identification can be repres­
ented in any of the following forms:

Relative Block Address: You specify the relative location of the record (block)
within the data set as a 3-byte binary number. This type of reference can be
used only with format-F records. The system computes the actual track and
record number. The relative block address of the first block is 0.

Relative Track Address: You specify the relative track as a 2-byte binary
number and the actual record number on th.at track as a 1-byte binary number.
The relative track address of the first track is 0.

146 MVS/ESA Data Administration Guide

i "--/

(

\.._)

Relative Track or Block Address and Actual Key: In addition to the relative
track or block address, you specify the address of a virtual storage location
containing the record key. The system computes the actual track address and
searches for the record with the correct key.

Actual Address: You supply the actual address in the standard 8-byte
form-MBBCCHHR. Remember that the use of an actual address maiy force you
to indicate that the data set is unmovable.

Extended Search: You request that the system begin its search with a specified
starting location and continue for a certain number of records or tracks. This
same option can be used to request a search for unused space where a record
can be added.

To use the extended search option, you must indicate in the DCB (DCBLIMCT)
the number of tracks (including the starting track) or records (including the
starting record) that are to be searched. If you indicate a number of records,
the system may actually examine more than this number. In searching a track,
the system searches the whole track (starting with the first record); it therefore
may examine records that precede the starting record or follow the ending
record.

If the DCB specifies a number equal to or greater than the number of tracks
allocated to the data set or the number of records within the data set, the entire
data set is searched in the attempt to satisfy your request.

Exclusive Control for Updating: When more than one task is referring to the
same data set, exclusive control of the block being updated is required to
prevent simultaneous reference to the same record. Rather than issuing an
ENQ macro each time you update a block, you can request exclusive control
through the MACRF field of the DCB and the type operand of the READ macro.
The coding example in Figure 48 on page 150 illustrates the use of exclusive
control. After the READ macro is executed, your task has exclusive control of
the block being updated. No other task in the system requesting access to the
block is given access until the operation started by your WRITE macro is com­
plete. If, however, the block is not to be written, you can release exclusive
control using the RELEX macro.

Feedback Option: This option specifies that the system is to provide the
address of the record requested by a READ or WRITE macro. This address may
be in the same form that was presented to the system in the READ or WRITE
macro, or as an 8-byte actual address. This option can be specified in the
OPTCD parameter of the DCB and in the READ or WRITE macro. If this option
is omitted from the DCB but is requested in a READ or WRITE macro, an 8-byte
actual address is returned to the user.

The feedback option is automatically provided for a READ macro instruction
requesting exclusive control for updating. This feedback will be in the form of
an actual address (MBBCCHHR) unless feedback was specified in the OPTCD
field of the DCB. In this case, feedback is returned in the format of the
addressing scheme used in the problem program (an actual or a relative
address). When a WRITE or RELEX macro is issued (which releases the exclu­
sive control that was gotten for the READ request), the system will assume that
the addressing scheme used for the WRITE or RELEX macro is in the same
format as the addressing scheme used for feedback in the READ macro.

Appendix E. Processing a Direct Data Set 147

Add.ing or Updating Records on a Direct Data Set
The techniques for adding records to a direct data set depend on the format of
the records and the organization used.

Format-F With Keys: Adding a record amounts to essentially an update by
record identification. The reference to the record can be made by either a rela­
tive block address or a relative track address.

If you want to add a record passing a relative block address, the system con­
verts the address to an actual track address. That track is searched for a
dummy record. If a dummy record is found, the new record is written in place
of it. lfthere is no dummy record on the track, you are informed that the write
operation did not take place. If you request the extended search option, the
new record will be written in place of the first dummy record found within the
search limits you specify. If none is found, you are notified that the write opera­
tion could not take place. In the same way, a reference by relative track
address causes the record to be written in place of a dummy record on the ref­
erenced track or the first within the search limits, if requested. If extended
search is used, the search begins with the first record on the track. Without
extended search, the search may start at any record on the track. Therefore,
records that were added to a track are not necessarily located on the track in
the same sequence they were written in.

Format-F Without Keys: Here too, adding a record is really updating a dummy
record already in the data set. The main difference is that dummy records
cannot be written automatically when the data set is created. You will have to
use your own method for flagging dummy records. The update form of the
WRITE macro (MACRF =W) must be used rather than the add form
(MACRF=WA).

You will have to retrieve the record first (using a READ macro instruction), test
for a dummy record, update, and write.

Format-V or Format-LI With Keys: The technique used to add records in this
case depends on whether records are located by indirect addressing or a
cross-reference table. If indirect addressing is used, you must at least initialize
each track (write a capacity record) even if no data is actually written. That \~
way the capacity record indicates how much space is avaHable on the track. If
a cross-reference table is used, you should exhaust the input and then initialize
enough succeeding tracks to contain any additions that might be required.

To add a new record, use a relative track address. The system examines the
capacity record to see if there is room on the track. If there is, the new record
is written. Under the extended search option, the record is written in the first
available area within the search limit.

Format-V or Format-U Without Keys: Because a record of this type does not
have a key, you can access the record only by its relative track or actual
address {direct addressing only). When you add a record to this data set, you
must retain the relative track or actual address data (for example, by updating
your cross-reference table). The extended search option is not allowed
because it requires keys. \,___)

148 MVS/ESA Data Administration Guide

\ I
\._./

i
\.._,.)

Tape-to-Disk Add-Direct Data Set: The example in Figure 47 on page 149
involves adding records to the data set created in the last example. Notice that
the write operation adds the key and the data record to the data set. If the
existing record is not a dummy record, an indication is returned in the excep­
tion code of the DECB. For that reason, it is better to use the WAIT macro
instead of the CHECK macro to test for errors or exceptional conditions.

//DIRADO DD
//TAPEDD DD

DIRECT AD START

OPEN
NEXTREC GET

L
SH
ST
WRITE
WAIT
CLC
BE

DSNAME=SLATE.INDEX.WORDS,---

(DIRECT,(OUTPUT),TAPEIN)
TAPEIN,KEY
4,KEY Set up relative record number
4,=H 1 1000 I

4,REF
DECB,DA,DIRECT,DATA, 1S1 ,KEY,REF+l
ECB=DECB
DECB+1(2),=X'0000' Check for any errors
NEXTREC

Check error bits and take required action

DIRECT DCB DDNAME=DIRADD,DSORG=DA,RECFM=F,KEYLEN=4,BLKSIZE=200,
MACRF=(WA)

TAPE IN DCB
KEY OS F
DATA OS CL200
REF OS F

Figure 47. Adding Records to a Direct Data Set

c

Tape-to-Disk Update-Direct Data Set: The example in Figure 48 is similar to
that in Figure 47, but involves updating rather than adding. There is no check
for dummy records. The existing direct data set contains 25000 records whose
5-byte keys range from 00001 to 25000. Each data record is 100 bytes long. The
first 30 characters are to be updated. Each input tape record consists of a
5-byte key and a 30-byte data area. Notice that only data is brought into virtual
storage for updating.

When you are updating variable-length records, you should use the same
length to read and write a record.

Appendix E. Processing a Direct Data Set 149

//DIRECTDD DD DSNAME=SLATE.INDEX.WORDS,---
//TAPINPUT DD

DIRUPDAT START

OPEN (DIRECT,(UPDAT),TAPEDCB)
NEXTREC GET TAPEDCB,KEY

PACK KEY,KEY
CVB 3,KEYFIELD
SH 3,=H'l'
ST 3,REF
READ DECBRD,DIX,DIRECT,'S','S',0,REF+l
CHECK DECBRD
L 3,DECBRD+12
MVC 0(30,3),DATA
ST 3,DECBWR+12
WRITE DECBWR,DIX,DIRECT, 'S','S',0,REF+l
CHECK DECBWR
B NEXTREC

KEYFIELD DS 0D
DC XL3'0'

KEY DS CL5
DATA DS CL30
REF DS F
DIRECT DCB DSORG=D~,DDNAME=DIRECTDD,MACRF=(RISXC,WIC), c

OPTCD=RF,BUFNO=l,BUFL=l00
TAPEDCB DCB

Figure 48. Updating a Direct Data Set

Consideration for User labels: User labels, if wanted, must be created when
the data set is created. They may be updated, but not added or deleted, during
processing of a direct data set. When creating a multivolume direct data set
using BSAM, you should turn off the header exit entry after OPEN and turn on
the trailer label exit entry just before issuing the CLOSE. This eliminates the
end-of-volume exits. The first volume, containing the user label track, must be
mounted when the data set is closed. If you have requested exclusive control,
OPEN and CLOSE will ENQ and DEQ to prevent simultaneous reference to user
labels.

Consideration for using the 2305-2 Fixed Head Storage: When a data set on a
2305-2 device is to be used by several tasks simultaneously, or when overlap­
ping 1/0 (successive writes issued without an intervening CHECK or WAIT) is
used, the following combination may produce overlaying of records:

• WRITE-add processing

• Fixed records with or without track overflow

150 MVS/ESA Data Administration Guide

\

\.._,;

''-/

Sharing Direct Data Sets
BDAM permits several tasks to share the same DCB and several jobs to share
the same data set. It synchronizes 1/0 requests at both levels by maintaining a
read-exclusive list.

When several tasks share the same DCB and each asks for exclusive control of
the same block, BDAM issues a system ENQ for the block (or in some cases the
whole track). It reads in the block and passes it to the first caller while putting
all subsequent requests for that block on a wait queue. When the first task
releases the block, BDAM moves it into the next caller's buffer and posts it
complete. The block is passed to subsequent callers in the order the request
was received.

BDAM not only synchronizes the 1/0 requests, but also issues only one ENQ
and one 1/0 request for several read requests for the same block.

Note: Because BDAM processing is not sequential and 1/0 requests are not
related, a caller can continue processing other blocks while waiting for exclu­
sive control of the shared block.

Because BDAM issues a system ENQ for each record held exclusively, it allows
a data set to be shared between jobs, so long as all callers use BDAM.
BDAM's commonly understood argument is what is enqueued on.

BDAM supports multiple task users. of a single DCB when working with existing
data sets. When operating in load mode, however, only one task may use the
DCB at a time. The following restrictions and comments apply when more than
one task shares the same DCB, or when using multiple DCBs for the same data
set.

• Subpool 0 must be shared.

• The user should ensure that a WAIT or CHECK macro has been issued for
all outstanding BDAM requests before the task issuing the READ or WRITE
macro terminates. In case of abnormal termination, this can be done
through a STAE/STAI or EST AE exit.

• FREEDBUF and/or RELEX macros should be issued to free any resources
that could still be held by the terminating task. This can be done during or
after task termination.

Note: Open, close, and all 1/0 must be performed in the same key and state
(problem state or supervisor state).

L------- End of General-Use Programming Interface ______ __.

Appendix E. Processing a Direct Data Set 151

I I
~'

Appendix F. Processing an Indexed Sequential Data Set

General-Use Programming Interface

This appendix is intended to help you process indexed sequential data sets. It
contains general-use programming interfaces, which are provided to allow you
to write programs that use the services of MVS/DFP.

Use of BISAM or QISAM to process indexed sequential data sets is not recom­
mended; we recommend you use VSAM data sets instead.

The organization of an indexed sequential data set allows you a great deal of
flexibility in the operations you can perform. The data set can be read or
written sequentially, individual records can be processed in any order, records
can be deleted, and new records can be added. The system automatically
locates the proper position in the data set for new records and makes any nec­
essary adjustments when records are deleted. However, be aware that indexed
sequential data ~ets cannot be managed by SMS, which means you cannot take
advantage of SMS storage management functions to manage ISAM data sets.

The queued access method must be used to create an indexed sequential data
set. It can also be used to sequentially process or update the data set and to
add records to the end of the data set. The basic access method can be used
to insert new records between records already in the data set and to update the
data set directly.

Because ISAM data sets cannot take advantage of system-managed ,storage,
you should consider converting ISAM data sets to VSAM data sets. You can
use access method services to allocate a VSAM data set and copy the ISAM
data set into it. For information on converting to VSAM data sets, see VSAM
Administration Guide.

Indexed Sequential Data Set Organization
The records in an indexed sequential data set are arranged according to col­
lating sequence by a key field in each record. Each block of recorqs is pre­
ceded by a key field that corresponds to the key of the last record in the block.

An indexed sequential data set resides on direct access storage devices and
can occupy as many as three different areas:

• Prime Area-This area, also called the prime data area, contains data
records and related track indexes. It exists for all indexed sequential data
sets.

• Overflow Area-This area contains records that overflow from the prime
area when new data records are added. It is optional.

• Index Area-This area contains master and cylinder indexes associated with
the data set. It exists for a data set that has a prime area occupying more
than one cylinder.

Appendix F. Processing an Indexed Sequential Data Set 153

The indexes of an indexed sequential data set are analogous to the card
catalog in a library. For example, if you know the name of the book or the
author, you can look in the card catalog and obtain a catalog number that will
enable you to locate the book in the book files. You then go to the shelves and \"'-'

Prime Area

proceed through rows until you find the shelf containing the book. Usually each
row contains a sign to indicate the beginning and ending numbers of all books
in that particular row. Thus, as you proceed through the rows, you compare the
catalog number obtained from the index with the numbers posted on each row.
Upon locating the proper row, you search that row for the shelf that contains
the book. Then you look at the individual book numbers on that shelf until you
find the particular book.

ISAM uses the indexes in much the same way to locate records in an indexed
sequential data set.

As the records are written in the prime area of the data set, the system
accounts for the records contained on each track in a track index area. Each
entry in the track index identifies the key of the last record on each track.
There is a track index for each cylinder in the data set. If more than one cyl­
inder is used, the system develops a higher-level index caUed a cylinder index.
Each entry in the cylinder index identifies the key of the last record in the cyl­
inder. To increase the speed of searching the cylinder index, you can request
that a master index be developed for a specified number of cylinders, as shown
in Figure 49 on page 155.

Rather than reorganize the whole data set when records are added, you can
request that space be allocated for additional records in an overflow area.

Records are written in the prime area when the data set is created or updated.
The last track of prime data is reserve,d for an end-of-file mark. The portion of
Figure 49 on page 155 labeled Cylinder 1 illustrates the initial structure of the
prime area. Although the prime area can extend across several noncontiguous
areas of the volume, all the records are written in key sequence. Each record
must contain a key; the system automatically writes the key of the highest
record before each block.

154 MVS/ESA Data Administration Guide

\~

{ '

\. .·_,/

I

\ ' ~/

(
\._)

Master Index

I
450

I
900 12~~0 I I 0

\

,,

Cylinder Index

- 200 300 375 450

500 600 700 900

1000 1200 1500 2000 ,

Cylinder 1 Cylinder 11 Cylinder 12

~ 100 100 200 200 Track
j 1soo j 1soo ___..

/ 2000 I 2000 Index
Data Data Data Data Prime
10 20 40 100 Data

Data Data Data Data Prime
150 175 190 200 Data

Overflow

Figure 49. Indexed Sequential Data Set Organization

Index Areas

Track Index

When the ABSTR option of the SPACE parameter of the DD statement is used to
generate a multivolume prime area, the VTOC of the second volume and on all
succeeding volumes must be contained within cylinder 0 of the volume.

The operating system generates track and cylinder indexes automatically. As
many as three levels of master index are created if requested.

This is the lowest level of index and is always present. There is one track
inqex for each cylinder in the prime area; it is written on the first track{s) of the
cylinder that it indexes.

The index consists of a series of paired entries, that is, of a normal entry and
an overflow entry for each prime track. For fixed-length records, each normal
entry {and also DCBFIRSH) points to either record 0 or the first prime record on
a shared track {a track shared by index and data). For variable-length records,
the normal entry contains the key of the highest record on the track and the
address of the last record on the track. The overflow entry is originally the
same as the normal entry. (This is why 100 appears twice on the track index
for cylinder 1 in Figure 49.) The overflow entry is changed when records are
added to the data set. Then the overflow entry contains the key of the highest
overflow record and the address of the lowest overflow record logically associ­
ated with the track. Figure 50 on page 156 shows the format of a track index.

If all the tracks allocated for the prime data area are not used, the index entries
for the unused ones ~re flagged as inactive. The last entry of each track index
is a dummy entry indicating the end of the index. When fixed-length record

Appendix F. Processing an Indexed Sequential Data Set 155

Normal
Entry

format has been specified, the remainder of the last track of each cylinder used
for a track index contains prime data records if there is room for them.

Normal/Overflow
Pair

Overflow
Entry

Normal
Entry

Norma I/Overflow
Pair

Overflow
Entry

Key 1 Data 2 Key3 Data4 Key 1 Data2 Key3 Data4 1
1 Normal key

2 Normal data

3 Overflow key

key of the highest record on the prime data track

address of the prime data track

key of the highest overflow record logically associated with the prime data track

4 Overflow data = address of the lowest overflow record logically associated with the prime data track

Notes:

• If there are no overflow records, overflow key and data entries are the same as normal key and data entries.
• This figure is a logical representation only; that is, it makes no attempt to show the physical size of track index entries.

Figure 50. Format of Track Index Entries

Cylinder Index

Master Index

Each index entry has the same format as the others. It is an unblocked, fixed­
length record consisting of a count, a key, and a data area. The length of the
key corresponds to the length of the key area in the record to which it points.
The data area is always 10 bytes long. It contains the full address of the track
or record to which the index points, the level of the index, and the entry type.

For every track index created, the system generates a cylinder index entry.
There is one cylinder index for a data set that points to a track index. Because
there is one track index per cylinder, there is one cylinder index entry for each
cylinder in the prime data area, except in the case of a 1-cylinder prime area.
As with track indexes, inactive entries are created for any unused cylinders in
the prime data area.

As an optional feature, the operating system creates, at your request, a master
index. The presence of this index makes long, serial searches through a large,
cylinder index unnecessary.

You can specify the conditions under which you want a master index created.
For example, if you have specified NTM = 3 and OPTCD = M in your DCB macro,
a master index is created when the cylinder index exceeds 3 tracks. The
master index consists of one entry for each track of cylinder index. If your data
set is extremely large, a higher-level master index is created when the first­
level master index exceeds three tracks. This higher-level master index con­
sists of one entry for each track of the first-level master index. This procedure
can be repeated for as many as three levels of master index.

156 MVS/ESA Data Administration Guide

/I
'''l_)

ti :
\I J
~

I I
\L,J

/I

~)

Overflow Areas
As records are added to an indexed sequential data s;et, space is required to
contain those records that will not fit on the prime data track on which they
belong. You can request that a number of tracks be set aside as a cylinder
overflow area to contain overflows from prime tracks in each cylinder. An
advantage of using cylinder overflow areas is a reduction of search time
required to locate overflow records. A disadvantage is that there will be
unused space if the additions are unevenly distributed throughout the data set.

Instead of, or in addition to, cylinder overflow areas, you can request an inde­
pendent overflow area. Overflow from anywhere in the prime data area is
placed in a specified number of cylinders reserved solely for overflow records.
An advantage of having an independent overflow area is a reduction in unused
space reserved for overflow. A disadvantage is the increased search time
required to locate overflow records in an independent area.

If you request both cylinder overflow and independent overflow, the cylinder
overflow area is used first. It is a good practice to request cylinder overflow
areas large enough to contain a reasonable number of additional records and
an independent overflow area to be used as the cylinder overflow areas are
filled.

Creating an Indexed Sequential Data Set
You can create an indexed sequential data set in one step or in several steps.
You can create the data set either by writing all records in a single step or by
writing one group of records in one step and writing additional groups of
records in subsequent steps. Writing records in subsequent steps is called
resume loading. When using either one step or several steps, you must
present the records for writing in ascending order by key.

To create an indexed sequential data set by the one-step method, you should
proceed as follows:

• Code DSORG =IS or DSORG = ISU and MACRF =PM or MACRF =PL in the
DCB macro.

• Specify in the DD statement the DCB attributes DSORG =IS or
DSORG = ISU, record length {LRECL), block size {BLKSIZE), record format
{RECFM), key length {KEYLEN), relative key position {RKP), options required
(OPTCD), cylinder overflow (CYLOFL), and the number of tracks for a
master index (NTM). Specify space requirements with the SPACE param­
eter. To reuse previously allocated space, omit the SPACE parameter and
code DISP =(OLD, KEEP).

• Open the data set for output.

• Use the PUT macro to place all the records or blocks on the direct access
volume.

• Close the data set.

The records that comprise a newly created data set must be presented for
writing in ascending order by key. You can merge two or more input data sets.
If you want a data set with no records (a null data set), you must write at least

Appendix F. Processing an Indexed Sequential Data Set 157

one record when you create the data set. You can subsequently delete this
record to achieve the null data set.

If an unload is done that deletes all existing records in an ISAM data set, at
least one record must be written on the subsequent load. If no record is
written, the data set will be unusable.

If the records are blocked, you should not write a record with a hexadecimal
value of FF and a key of hexadecimal value FF. This value is used for padding.
If it occurs as the last record of a block, the record cannot be retrieved. If the
record is moved to the overflow area, it is lost.

When creating an indexed sequential data set, a procedure called loading, you
can improve performance by using the full-track-index write option. You do this
by specifying OPTCD = U in the DCB. This causes the operating system to
accumulate track index entries in virtual storage. Note that the full-track-index
write option can be used only for fixed-length records.

· If you do not specify full-track-index write, the operating system writes each
normal overflow pair of entries for the track index after the associated prime
data track has been written. If you do specify full-track-index write, the oper­
ating system accumulates track index entries in virtual storage until either (a)
there are enough entries to fill a track or (b) end-of-data or end-of-cylinder is
reached. Then the operating system writes these entries as a group, writing
one group for each track of track index. This option requires allocation of more
storage space (the space in which the track index entries are gathered), but the
number of 1/0 operations required to write the index can be significantly
decreased.

When you specify the full-track-index write option, the track index entries are
written as fixed-length unblocked records. If the area of virtual storage avail­
able is not large enough the entries are written as they are created, that is, in
normal overflow pairs.

After an indexed sequential data set has been created, its ems characteristics
cannot be changed. However, for added flexibility, the system allows you to
retrieve records by using either the queued access technique with simple buf­
fering or the basic access method with dynamic buffering.

Tape-to-Disk-Indexed Sequential Data Set: The example in Figure 51 on
page 159 shows the creation of an indexed sequential data set from an input
tape containing 60-character records. The key by which the data set is organ­
ized is in positions 20 through 29. The output records will be an exact image of
the input, except that the records will be blocked. One track per cylinder is to
be reserved for cylinder overflow. Master indexes are to be built when the cyl­
inder index exceeds 6 tracks. Reorganization information about the status of
the cylinder overflow areas is to be maintained by the system. The delete
option will be used during any future updating.

158 MVS/ESA Data Administration Guide

\._

I :
\._)

I u

llINDEXDD DD
II

llINPUTDD DD

DSNAME=SLATE.DICT(PRIME),DCB=(BLKSIZE=240,CYLOFL=l,
DSORG=IS,OPTCD=MYLR,RECFM=FB,LRECL=60,NTM=6,RKP=19,
KEYLEN=10),UNIT=3330,SPACE=(CYL,25,,CONTIG),---

IS LOAD START 0

DCBD DSORG=IS
IS LOAD CSE CT

OPEN (IPDATA,,ISDATA,(OUTPUT))
NEXTREC GET IPDATA

LR 0,1
PUT ISDATA, (0)
B NEXTREC

CH EC KERR L 3,=A(ISDATA)
USING IHADCB,3
TM DCBEXCDl ,X 104 1

BO OPERR
TM DCBEXCD1,X'20'
BO NOS PACE
TM DCBEXCD2,X 188 1

BO SEQCHK

Rest of error checking
Error routine
End of job routine (EODAD FOR IPDATA)

IPDATA DCB

Locate mode
Address of record in register 1
Move mode

Initialize base for errors

Uncorrectable error

Space not found

Record out of sequence

ISDATA DCB DDNAME=INDEXDD,DSORG=IS,MACRF=(PM),SYNAD=CHECKERR

Figure 51. Creating an Indexed Sequential Data Set

c
c

To create an indexed sequential data set in more· than one step, create the first
group of records using the one-step method described above. This first section
must contain at least one data record. The remaining records can then be
added to the end of the data set in subsequent steps, using resume load. Each
group to be added must contain records with successively higher keys. This
method allows you to create the indexed sequential data set in several short
time periods rather than in a single long one.

This method also allows you to provide limited recovery from uncorrectable
output errors. When an uncorrectable output error is detected, do not attempt
to continue processing or to close the data set. If you have provided a SYNAD
routine, it should issue the ABEND macro to terminate processing. If no SYNAD
routine is provided, the control program will terminate your processing. If the
error shows that space in which to add the record was not found, you must
close the data set; issuing subsequent PUT macros can cause unpredictable
results. You should begin recovery at the record following the end of the data
as of the last successful close. The rerun time is limited to that necessary to
add the new records, rather than to that necessary to re-create the whole data
set.

When you extend an indexed sequential data set with resume load, the disposi­
tion parameter of the DD statement must specify MOD. To ensure that the nee-

Appendix F. Processing an Indexed Sequential Data Set 159

essary control information is in the DSCB before attempting to add records, you
should at least open and close the data set successfully on a system that
includes resume load. This is necessary only if the data set was created on a
previous version of the system. Records may be added to the data set by 1

"'-"

resume load until the space allocated for prime data in the first step has been
filled.

During resume load on a data set with a partially filled track and/or a partially
filled cylinder, the track index entry and/or the cylinder index entry is· overlaid
when the track or cylinder is filled. Resume load for variable-length records
begins at the next sequential track of the prime data set. If resume load abnor­
mally terminates after these index entries have been overlaid, a subsequent
resume load will result in a sequence check when it adds a key that is higher
than the highest at the last successful CLOSE but lower than the key in the
overlaid index entry. When the SYNAD exit is taken for a sequence check, reg­
ister 0 contains the address of the high key of the data set. However, if the
SYNAD exit is taken during CLOSE, register 0 will contain the 108 address.

Allocating Space for an Indexed Sequential Data Set
An indexed sequential data set has three areas: prime, index, and overflow.
Space for these areas can be subdivided and allocated as follows:

• Prime area-If you request a prime area only, the system automatically uses
a portion of that space for indexes, taking one cylinder at a time as needed.
Any unused space in the last cylinder used for index will be allocated as an
independent overflow area. More than one volume can be used in most
cases, but all volumes must be for devices of the same device type.

• Index area-You can request that a separate area be allocated to contain
your cylinder and master indexes. The index area must be contained within
one volume, but this volume can be on a device of a different type than the
one that contains the prime area volume. If a separate index area is
requested, you cannot catalog the data set with a DD statement.

If the total space occupied by the prime area and index area does not
exceed one volume, you can request that the separate index area be
embedded in the prime area (to reduce access arm movement) by indi­
cating an index size in the SPACE parameter of the DD statement defining
the prime area.

If you request space for prime and index areas only, the system automat­
ically uses any space remaining on the last cylinder used for master and
cylinder indexes for overflow, provided the index area is on a device of the
same type as the prime area.

• Overflow area-Although you can request an independent overflow area, it
must be contained within one volume and must be of the same device type
as the prime area. If no specific request for index area is made, then it will
be allocated from the specified independent overflow area.

160 MVS/ESA Data Administration Guide

:~

:)
\....-ii

(

~)

[:

~

To request that a designated number of tracks on each cylinder be used for
cylinder overflow records, you must use the CYLOFL parameter of the DCB
macro. The number of tracks that you can use on each cylinder equals the
total number of tracks on the cylinder minus the number of tracks needed
for track index and for prime data, that is:

Overflow tracks = total tracks
- (track index tracks + prime data tracks)

Note that, when you create a 1-cylinder data set, ISAM reserves 1 track on the
cylinder for the end-of-file filemark. You may not request an independent index
for an ISAM data set that has only 1 cylinder of prime data.

When you request space for an indexed sequential data set, the DD statement
must follow a number of conventions, as shown below and summarized in
Figure 52.

• Space can be requested only in cylinders, SPACE= (CYL,(...)), or absolute
tracks, SPACE= (ABSTR,(...)). If the absolute track technique is used, the
designated tracks must make up a whole number of cylinders.

• Data set organization (DSORG) must be specified as indexed sequential (IS
or ISU) in both the DCB macro and the DCB parameter of the DD statement.

• All required volumes must be mounted when the data set is opened; that is,
volume mounting cannot be deferred.

• If your prime area extends beyond one volume, you must indicate the
number of units and volumes to be spanned; for example,
UNIT= (3380,3),VOLUME = (,,,3).

• You can catalog the data set using the DD statement parameter
DISP = (,CATLG) only if the entire data set is defined by one DD statement;
that is, if you did not request a separate index or independent overflow
area.

As your data set is created, the operating system builds the track indexes in the
prime data area. Unless you request a separate index area or an embedded
index area, the cylinder and master indexes are built in the independent over­
flow area. If you did not request an independent overflow area, the cylinder
and master indexes are built in the prime area.

If an error is encountered during allocation of a multivolume data set, the
IEHPROGM utility program should be used to scratch the DSCBs of the data
sets that were successfully allocated. The IEHLIST utility program can be used
to determine whether part of the data set has been allocated. The IEHLIST
utility program is also useful to determine whether space is available or
whether identically named data sets exist before space allocation is attempted
for indexed sequential data sets. These utility programs are described in Utili­
ties.

Appendix F. Processing an Indexed Sequential Data Set 161

Figure 52. Requests for Indexed Sequential Data Sets

Criteria
Restrictions on

1. Number 2. Types 3. Index Unit Types and
of DD of DD Size Number of Units
Statements Statements Coded? Requested Resulting Arrangement of Areas

3 INDEX - None Separate index, prime, and overflow
PRIME areas.
OVFLOW

2 INDEX - None Separate index and prime areas.
PRIME Any partially used index cylinder is

used for independent overflow if the
index and prime areas are on the
same type of device.

2 PRIME No None Prime area and overflow area with an
OVFLOW index at its end.

2 PRIME Yes The statement Prime area and embedded index, and
OVFLOW defining the overflow area.

prime area
cannot request
more than one
unit.

1 -- PRIME No None Prime area with index at its end. Any
partially used index cylinder is used
for indep:endent overflow.

1 PRIME Yes Statement Prime area with embedded index
cannot request area; independent overflow in
more than one remainder of partially used index cyl-
unit. ind er.

Specifying a Prime Data Area
To request that the system allocate space and subdivide it as required, you
should code:

llddname DD DSNAME=dsname,DCB=DSORG=IS,
II SPACE=(CYL,quantity,,CONTIG),UNIT=unitname,
II DISP=(,KEEP),---

You can accomplish the same type of allocation by qualifying your dsname with
the element indication {PRIME). This element is assumed if omitted. It is
required only if you request an independent index or overflow area. To request
an embedded index area when an independent overflow area is specified, you
must indicate DSNAME = dsname (PRIME). To indicate the size of the
embedded index, you specify SPACE= (CYL,{quantity,,index size)).

162 MVS/ESA Data Administration Guide

\._

\""-'

\~

Specifying a Separate Index Area
To request a separate index area, other than an embedded area as described
above, you must use a separate DD statement. The element name is specified
as (INDEX). The space and unit designations are as required. Notice that only
the first DD statement can have a data definition name. The data set name
(dsname) must be the same.

//ddname DD DSNAME=dsname(INDEX),---
// DD DSNAME=dsname(PRIME),---

Specifying an Independent Overflow Area
A request for an independent overflow area is essentially the same as for a
separate index area. Only the element name, OVFLOW, is changed. If you do
not request a separate index area, only two DD statements are required.

//ddname DD DSNAME=dsname(INDEX),---
// DD DSNAME=dsname(PRIME),---
// DD DSNAME=dsname(OVFLOW),---

Calculating Space Requirements for an Indexed Sequential Data Set
To determine the number of cylinders required for an indexed sequential data
set, you must consider the number of blocks that will fit on a cylinder, the
number of blocks that will be processed, and the amount of space required for
indexes and overflow areas. When you make the computations, consider how
much additional space is required for device overhead. The IBM publications
for storage devices contain device-specific information on device capacities and
overhead formulas. Refer to the publication written for your device. In the for­
mulas that follow, the length of the last (or only) block, shown below as Bn,
must include device overhead.

Blocks = Track capacity/ Length of blocks

The following eight steps summarize calculation of space requirements for an
indexed sequential data set.

Note: Use modulo-32 arithmetic when calculating key length and data length
terms in your equations. Compute these terms first, then round up to the
nearest increment of 32 bytes before completing the equation.

Step 1: After you know how many records wiH fit on a track and the maximum
number of records you expect to create, you can determine how many tracks
you will need for your data.

Number of tracks required= (Maximum number of blocks /Blocks per track) + 1

ISAM load mode reserves the last prime data track for the file mark.

Example: Assume that a 200000 record parts-of-speech dictionary is stored on
an IBM 3380 Disk Storage as an indexed sequential data set. Each record in
the dictionary has a 12-byte key (the word itself) and an 8-byte data area con­
taining a parts-of-speech code and control information. Each block contains 50
records; LRECL = 20 and BLKSIZE = 1000. Using the formula as shown below,
we find that each track will contain 26 blocks or 1300 records. A total of 155
tracks will be required for the dictionary.

Appendix F. Processing an Indexed Sequential Data Set 163

Blocks= 47968/(256+((12+267)/32)(32)+((1000+267)/32)(32))
= 47968/1824 = 26

Records per track = (26 blocks) (50 records per block) 1300

Prime data
tracks
required

(200000 records / 1300 records per track) + 1 = 155

Step 2: You will want to anticipate the number of tracks required for cylinder
overflow areas. The computation is the same as for prime data tracks, but you
must remember that overflow records are unblocked and a 10-byte link field is
added. Remember also that, if you exceed the space allocated for any cylinder
overflow area, an independent overflow area is required. Those records are
not placed in another cylinder overflow area.

Overflow records = Track capacity / Length of overflow records
per track

Example: Approximately 5000 overflow records are expected for the data set
described in step 1. Because 55 overflow records will fit on a track, 91 overflow
tracks are required. These are 91 overflow tracks for 155 prime data tracks, or
approximately 1 overflow track for every 2 prime data tracks. Because the 3380
disk pack for a 3380 Model AD4 has 15 tracks per cylinder, it would probably be
best to allocate 5 tracks per cylinder for overflow.

Overflow = 47968/(256+((12+267)/32)(32)+((38+267)/32)(32))
records = 47968/864
per track = 55

Overflow = 5888 records I 55 records per track
tracks = 91
required

Overflow tracks per cylinder= 5

Step 3: You will have to set aside space in the prime area for track index
entries. There will be two entries (normal and overflow) for each track on a
cylinder that contains prime data records. The data field of each index entry is
always 10 bytes long. The key length corresponds to the key length for the
prime data records. How many index entries will fit on a track?

Index entries = Track capacity / Length of index entries
per track

Example: Again assuming a 3380 Model AD4 disk pack and records with
12-byte keys,·we find that 59 index entries fit on a track.

Index = 47968/(256+((12+267)/32)(32)+((10+267)/32)(32))
entries = 47968/832
per track = 57

Step 4: Unused space on the last track of the track index is a function of the
number of tracks required for track index entries, which in turn depends upon
the number of tracks per cylinder and the number of track index entries per
track. You can use any unused space for any prime data records that will fit.

164 MVS/ESA Data Administration Guide

'""-'

(
"-/

(~

Unused
space

= (Number of index entries per track)
- (2 (Number of tracks per cylinder
- Number of overflow tracks per cylinder) + 1)

(Number of bytes per index)

Note that, for variable-length records, or when a prime data record will not fit
on the last track of the track index, the last track of the track index is not
shared with prime data records. In this case, if the remainder of the division is
less than or equal to 2, drop the remainder. In all other cases, round the quo­
tient up to the next integer.

Example: The 3380 disk pack from the 3380 Model AD4 has 15 tracks per cyl­
inder. You can fit 57 track index entries into one track. Therefore, you need
less than 1 track for each cylinder.

Number of
trk index = (2 (15 - 5) + 1) / (57 + 2)
trks per = 21 / 59
cylinder

The space remaining on the track is 47968 - (21 (832)) = 30496 bytes.

This is enough space for 16 blocks of prime data records. Because the normal
number of blocks per track is 26, the blocks use 16/26ths of the track, and the
effective number of track index tracks per cylinder is therefore 1 - 16/26 or
0.385.

Note that space is required on the last track of the track index for a dummy
entry to indicate the end of the track index. The dummy entry consists of an
8-byte count field, a key field the same size as the key field in the preceding
entries, and a 10-byte data field.

Step 5: Next you have to calculate the number of tracks available on each cyl­
inder for prime data records. You cannot include tracks set aside for cylinder
overflow records.

Prime data =Tracks per cylinder
tracks per - Overflow tracks per cylinder
cylinder - Index tracks per cylinder

Example: If you set aside 5 cylinder overflow tracks, and you need 0.3~5ths of a
track for the track index, 9.615 tracks are available on each cylinder for prime
data records.

Prime data tracks = 15 - 5 - (B.385) = 9.615
per cylinder

Step 6: The number of cylinders required to allocate prime space is deter­
mined by the number of prime data tracks required divided by the number of
prime data tracks available on each cylinder. This area includes space for the
prime data records, track indexes, and cylinder overflow records.

Number of = Prime data tracks needed
cylinders /Prime data tracks per cylinder needed
needed

Appendix F. Processing an Indexed Sequential Data Set 165

Example: You need 155 tracks for prime data records. You can use 9.615
tracks per cylinder. Therefore, you need 17 cylinders for your prime area and
cylinder overflow areas.

Number of = (155) / (9.615) = 16.121 (round up to 17)
cylinders
required

Step 7: You will need space for a cylinder index and track indexes. There is a
cylinder index entry for each track index {for each cylinder aJlocated for the
data set). The size of each entry is the same as the size of the track index
entries; therefore, the number of entries that will fit on a track is the same as
the number of track index- entries. Unused space on a cylinder index track is
not shared.

Number of tracks (Track indexes + 1)
required for / (Index entries per track cylinder index)

Example: You have 17 track indexes {from Step 6). Because 57 index entries fit
on a track (from Step 3), you need 1 track for your cylinder index. The
remaining space on the track is unused. '~

Number of tracks required = (17 + 1) / 57 = 18 / 57 = 0.316 < 1
for cylinder index

Note that, every time a cylinder index crosses a cylinder boundary, ISAM writes
a dummy index entry that lets ISAM chain the index levels together. The addi­
tion of dummy entries can increase the number of tracks required for a given
index level. To determine how many dummy entries will be required, divide the
total number of tracks required by the number of tracks on a cylinder. If the
remainder is 0, subtract 1 from the quotient. If the corrected quotient is not 0, \..,_)
calculate the number of tracks these dummy entries require. Also consider any
additional cylinder boundaries crossed by the addition of these tracks and by
any track indexes. starting and stopping within a cylinder.

Step 8: If you have a data set large enough to require master indexes, you will
want to calculate the space required according to the number of tracks for
master indexes {NTM parameter) you specified in the DCB macro or the DD
statement.

If the cylinder index exceeds the NTM specification, an entry is made in the
master index for each track of the cylinder index. If the master index itself
exceeds the NTM specification, a second-level master index is started. As
many as three levels of master indexes are created if required.

The space requirements for the master index are computed in the same way as
those for the cylinder index.

Calculate the number of tracks for master indexes as follows:

Tracks for master indexes =
(#Cylinder index tracks + 1) / Index entries per track

If the number of cylinder indexes is greater than NTM, calculate the number of
tracks for a first level master index as follows:

Tracks for first level master index=
(Cylinder track indexes + 1) / Index entries per track

166 MVS/ESA Data Administration Guide

\ , "'-"/

(i

""-'/

If the number of first level master indexes is greater than NTM, calculate the
number of tracks for a second level master index as follows:

Tracks for second level master index =
(First level master index + 1) / Index entries per track

If the number of second level master indexes is greater than NTM, calculate the
number of tracks for a third level master index as follows:

Tracks for second level master index =
(Second level master index + 1) / Index entries per track

Example: Assume that your cylinder index will require 22 tracks. Because
large keys are used, only 10 entries will fit on a track. If NTM was specified as
2, 3 tracks will be required for a master index, and two levels of master index
wi 11 be created.

Number of tracks required = (22 + 1) / 10 = 2.3
for master indexes

Note that, every time a master index crosses a cylinder boundary, ISAM writes
a dummy index entry that lets ISAM chain the index levels together. The addi­
tion of dummy entries can increase the number of tracks required for a given
index level. To determine how many dummy entries will be required, divide the
total number of tracks required by the number of tracks on a cylinder. If the
remainder is 0, subtract 1 from the quotient. If the corrected quotient is not 0,
calculate the number of tracks these dummy entries require. Also consider any
additional cylinder boundaries crossed by the addition of these tracks and by
any track indexes starting and stopping within a cylinder.

Summary: Indexed Sequential Space Requirement Calculations

1. How many blocks will fit on a track?

Blocks = Track capacity / Length of blocks

2. How many overflow records will fit on a track?

Overflow records = Track capacity
/ Length of overflow records per track

3. How many index entries will fit on a track?

Index entries = Track capacity / Length of index entries
per track

4. How much space is left on the last track of the track index?

Unused
space

(Number of index entries per track)
- (2 (Number of tracks per cylinder
- Number of overflow tracks per cylinder) + 1)

(Number of bytes per index)

5. How many tracks on each cylinder can you use for prime data records?

Prime data =Tracks per cylinder
tracks per - Overflow tracks per cylinder
cylinder - Index tracks per cylinder

6. How many cylinders do you need for the prime data area?

Number of cylinders =Prime data tracks needed /Prime data tracks per cylinder
needed

Appendix F. Proc~ssing an Indexed Sequential Data Set 167

7. How many tracks do you need for the cylinder index?
Number of tracks required = (Track indexes + 1) / Index entries per track
for cylinder index

8. How many tracks do you need for master indexes?
Number of tracks
required for
master indexes

=·(Number of cylinder index tracks+ 1)
/ Index entries per track

Retrieving and Updating an Indexed Sequential Data Set

Sequential Retrieval and Update
To sequentially retrieve and update records in an indexed sequential data set:

• Code DSORG =IS or DSORG = ISU to agree with what you specified when
you created the data set, and MACRF.= GL, MACRF =SK, or MACRF =PU in
the DCB macro.

• Code a DD statement for retrieving the data set. The data set character-
istics and options are as defined when the data set was created.

• Open the data set.

• Set the beginning of sequential retrieval (SETL).·

• Retrieve records and process as required, marking records for deletion as
required.

• Return records to the data set.

• Use ESETL to end sequential retrieval as required and reset the starting
point.

• Close the data set to end all retrieval.

Sequential Updates-Indexed Sequential Data Set: Assume that, using the data
set created in the previous example, you are to retrieve all records whose keys
begin with 915. Those records with a date (positions 13 through 16) before
today's date are to be deleted. The date is in the standard form as returned by
the system in response to the TIME macro instruction, that is, packed decimal \,_...
OOyyddds. Overflow records can be logically deleted even though they cannot
be physically deleted from the data set.

One way to solve this problem is shown in Figure 53 on page 169.

I

~

168 MVS/ESA Data Administration Guide

Direct Retrieval and Update
By using the basic indexed sequential access method (BISAM) to process an
indexed sequential data set, you can directly access the records in the data set
for:

• Direct retrieval of a record by its key

• Direct update of a record

• Direct insertion of new records

Because the operations are direct, there can be no anticipatory buffering.
However, if 'S' is specified on the READ macro, the system provides dynamic
buffering each time a read request is made. (See Figure 54 on page 172.)

Appendix F. Processing an Indexed Sequential Data Set 169

To ensure that the requested record is in virtual storage before you start proc­
essing, you must issue a WAIT or CHECK macro. If you issue a WAIT macro,
you must test the exception code field of the DECB. If you issue a CHECK
macro, the system tests the exception code field in the DECB. If an error anal­
ysis routine has not been specified and a CHECK is issued, and an error situ­
ation exists, the program is abnormally terminated with a system completion
code of XX '01' For both WAIT and CHECK, if you want to determine whether
the record is an overflow record, you should test the exception code field of the
DECB.

After you test the exception code field of the DECB, you need not set it to 0. If
you have used a READ KU macro and if you plan to use the same DECB again
to rewrite the updated record using a WRITE K macro, you should not set the
field to 0. If you do, your record may not be rewritten properly.

To update existing records, you must use the READ KU and WRITE K combina­
tion. Because READ KU implies that the record will be rewritten in the data set,
the system retains the DECB and the buffer used in the READ KU and uses
them when the record is written. If you decide not to write the record, you
should use the same DECB in another read or write macro or issue a
FREEDBUF macro if dynamic buffering was used. If you issue several READ KU
or WRITE K macros before checking the first one, you may destroy some of
your updated records unless the records are from different blocks.

When you are using scan mode with QISAM and you want to issue PUTX, issue
an ENQ on the data set before processing it and a DEQ after processing is com­
plete. ENQ must be issued before the SETL macro, and DEQ must be issued
after the ESETL macro. When you are using BISAM to update the data set, do
not modify any DCB fields or issue a DEQ until you have issued CHECK or
WAIT.

Sharing a BISAM DCB between Related Tasks: If there is the possibility that
your task and another task will be simultaneously accessing the same data set,
or the same task has two or more DCBs opened for the same data set, you
should use the DCB integrity feature. You specify the DCB integrity feature by
coding DISP=SHR in your DD statement. In this way you ensure that the DCB
fields are maintained for your program to process the data set correctly. If you
do not use DISP = SHR and more than one DCB is open for updating the data
set, the results are unpredictable.

170 MVS/ESA Data Administration Guide

I

_)

\

~./

l) -.._/

If you specify DISP = SHR, you must also issue an ENQ for the data set before
each input/output request and a DEQ upon completion of the request. All users
of the data set must use the same qname and rname operands for ENQ. For
example, the users might use the data set name as the qname operand. For
more information about using ENQ and DEQ, see Application Development
Guide and Application Development Macro Reference.

For subtasking, 110 requests should be issued by the task that owns the DCB or
a task that will remain active as long as the DCB is open. If the task that
issued the 1/0 request terminates, the storage used by its data areas (such as
IOBs) may be freed or queuing switches in the DCB work area may be left set
on, causing another task issuing an 110 request to the DCB to program check or
to enter the wait state. For example, if a subtask issues and completes a READ
KU 1/0 request, the IOB created by the subtask is attached to the DCB update
queue. If that subtask terminates, and subpool Zero is not shared with the
subtask owning the DCB, the IOB storage area is freed and the integrity of the
ISAM update queue is destroyed. A request from another subtask, attempting
to use that queue, may cause unpredictable ABENDs. As another example, if a
WRITE KEY NEW is in process when the subtask terminates,
'WRITE-KEY-NEW-IN-PROCESS 1 bit is left set on. If another 1/0 request is
issued to the DCB, the request is queued but cannot proceed.

Direct Update with Exclusive Control-Indexed Sequential Data Set: In the
example shown in Figure 54 on page 172, the previously described data set is
to be updated directly with transaction records on tape. The input tape records
are 30 characters long, the key is in positions 1 through 10, and the update
information is in positions 11 through 30. The update information replaces data
in positions 31 through 50 of the indexed sequential data record.

Appendix F. Processing an Indexed Sequential Data Set 171

//INDEXDD DD
//TAPEDD DD

ISUPDATE

NEXTREC

*

*

RDCHECK

*

START

GET
ENQ
READ

WAIT
TM
BM
L

MVC

WRITE
WAIT
TM
BM
DEQ
B
TM
BZ

DSNAME=SLATE.DICT,DCB=(DSORG=IS,BUFNO=l, ...),---

e

TPDATA,TPRECORD
(RESOURCE,ELEMENT,E,,SYSTEM)
DECBRW,KU,,'S',MF=E Read into dynamically

obtained buffer
ECB=DECBRW
DECBRW+24,X'FD'
RD CHECK
3,DECBRW+l6

ISUPDATE-ISRECORD
(L'UPDATE,3),UPDATE
DECBRW,K,MF=E
ECB=DECBRW
DECBRW+24,X'FD'

Test for any condition
but overflow
Pick up pointer to
record
Update record

Any errors?
WRCHECK
(RESOURCE,ELEMENT,,SYSTEM)
NEXTREC
DECBRW+24,X'80'
ERROR

No record found
If not, go to error
routine

FREEDBUF DECBRW,K,ISDATA Otherwise, free buffer
Key placed in ISRECORD
Updated information
placed in ISRECORD *

*

*

WKNAREA
*
ISRECORD
*

*

MVC ISKEY,KEY
MVC ISUPDATE,UPDATE

WRITE

WAIT
TM
BM
DEQ

B
OS

OS

DS

DECBRW,KN,,WKNAREA, 1S1 ,MF=E Add record to data
set

E_CB=DECBRW
DECBRW+24,X' FD' Test for errors
ERROR
(RESOURCE,ELEMENT,,SYSTEM) Release exclusive

contra l
NEXTREC
4F

BCLSB

CL19

BISAM WRITE KN work
field

50-byte record from
ISDATA

DCB First part of
IS RECORD

Figure 54 (Part 1 of 2). Directly Updating an Indexed Sequential Data Set

172 MVS/ESA Data Administration Guide

'"'-"'

(
\.__./

i .
\._,!

IS KEY OS CU0 Key field of ISRECORD
OS cu Part of ISRECORD

ISUPDATE OS CL20 Update area of ISRECORD
*

ORG ISUPDATE Overlay ISUPDATE with
TPRECORD OS 0CL30 TPRECORD 30-byte record
KEY OS cue from TPDATA DCB Key
* for 1 ocat i ng
UPDATE OS CL20 ISDATA record update
RESOURCE DC CL8 1SLATE 1 information or new data
ELEMENT DC C1DICT 1

READ DECBRW,KU,ISDATA, 1S1
,

1S1 ,KEY,MF=L
ISDATA DCB DDNAME=INDEXDD,DSORG=IS,MACRF=(RUS,WUA), c

MSHI=INDEX,SMSI=2000
TPDATA DCB
INDEX DS 2000C

Figure 54 (Part 2 of 2). Directly Updating an Indexed Sequential Data Set

Exclusiv~ control of the data set is requested, because more than one task may
be referring to the data set at the same time. Notice that, to avoid tying up the
data set until the update is completed, exclusive control is released after each
block is written.

Note the use of the FREEDBUF macro instruction in Figure 54. Usually, the
FREEDBUF macro has two functions:

• To indicate to the ISAM routines that a record that has been read for update
will not be written back

• To free a dynamically obtained buffer

In Figure 54, because the read operation was unsuccessful, the FREEDBUF
macro frees only the dynamically obtained buffer.

The first function of FREEDBUF allows you to read a record for update and then
decide not to update it without performing a WRITE for update. You can use
this function even when your READ macro does not specify dynamic buffering, if
you have included S {for dynamic buffering) in the MACRF field of your READ
DCB.

You can effect an automatic FREEDBUF merely by reusing the DECB, that is, by
issuing another READ or a WRITE KN to the same DECB. You should use this
feature whenever possible, because it is more efficient than FREEDBUF. For
example, in Figure 54, the FREEDBUF macro could be eliminated, because the
WRITE KN addressed the same DECB as the READ KU.

For an indexed sequential data set with variable-length records, you may make
three types of updates by using the basic access method. You may read a
record and write it back with no change in its length, simply updating some part
of the record. You do this with a READ KU followed by a WRITE K, the same
way you update fixed-length records.

Appendix F. Processing an Indexed Sequential Data Set 173

Two other methods for updating variable-length records use the WRITE KN
macro and allow you to change the record length. In one method, a record
read for update (by a READ KU) may be updated in a manner that will change
the record length and then be written back with its new length by a WRITE KN. \\...._.
In the second method, you may replace a record with another record having the
same key and possibly a different length using the WRITE KN macro. To
replace a record, it is not necessary to have first read the record.

In either metho~. when changing the record length, you must place the new
length in the DECBLGTH field of the DECB before issuing the WRITE KN macro.
If you use a WRITE KN macro to update a variable-length record that has been
marked for deletion, the first bit (no record found) of the exceptional condition
code field (DECBEXC1) of the DECB is set on. If this condition is found, the
record must be written using a WRITE KN with nothing specified in the
DECBLGTH field.

Do not try to use the DECBLGTH field to determine the length of a record read,
because DECBLGTH is for use with writing records, not reading them. If you
are reading fixed-length records, the length of the record read is in DCBLRECL,
and if you are reading variable-length records, the length is in the record
descriptor word (ROW).

Direct Update-Indexed Sequential Data Set with Variable-Length Records: In
Figure 55, an indexed sequential data set with variable-length records is
updated directly with transaction records on tape. The transaction records are
of variable length and each contains a code identifying the type of transaction.
Transaction code 1 indicates that an existing record is to be replaced by one
with the same key; 2 indicates that the record is to be updated by appending
additional information, thus changing the record length; 3 or greater indicates '\..-.
that the record is to be updated with no change to its length. For this example,
the maximum record length of both data sets is 256 bytes. The key is in posi-
tions 6 through 15 of the records in both data sets. The transaction code is in
position 5 of records on the transaction tape. The work area (REPLAREA) size
is equal to the maximum record length plus 16 bytes.

174 MVS/ESA Data Administration Guide

{
\.._/.

I ; .

_.,,I

//INDEXDD DD DSNAME=SLATE.DICT,DCB=(DSORG=IS,BUFNO=l, ...),---
//TAPEDD DD

ISUPDVLR START e

NEXTREC GET TPDATA,TRANAREA
CLI TRANCODE,2 Determine if replacement or

* other transaction
BL REPLACE Branch if replacement
READ DECBRW,KU,, 1S1

,
1S1 ,MF=E Read record for update

CHECK DECBRW,DSORG=IS Check exceptional conditions
CLI TRANCODE,2 Determine if change or append
BH CHANGE Branch if change

* CODE TO MOVE RECORD INTO REPLACEA+16 AND APPEND DATA FROM TRANSACTION
* RECORD

MVC DECBRW+6(2),REPLAREA+16 Move new length from ROW
* into DECBLGTH (DECB+6)

WRITE DECBRW,KN,,REPLAREA,MF=E Rewrite record with
* changed length

CHECK DECBR~J, DSORG=IS
B NEXTREC

CHANGE

* CODE TO CHANGE FIELDS OR UPDATE FIELDS OF THE RECORD

*

REPLACE
*

*
*

CH EC KERR

REPLAREA
TRANA REA
TRANCODE
KEY
TRANDATA

ISDATA
TPDATA

WRITE DECBRW,K,MF=E

CHECK DECBRW,DSORG=IS
B NEXTREC

Rewrite record with no
change of length

MVC DECBRW+6(2),TRANAREA Move new length from ROW
into DECBLGTH (DECB+6)

DECBRW,KN,,TRANAREA-16,MF=E Write transaction record ~JRITE

CHECK DECBRW,DSORG=IS
B NEXTREC

SYNAD routine

OS CL272
OS CL4
OS Cll
os cue
OS CL241

as replacement for record
with the same key

READ DECBRW,KU,ISDATA, 1S1
,

1S1 ,KEY,MF=L
DCB DDNAME=INDEXDD,DSORG=IS,MACRF=(RUSC,WUAC),SYNAD=CHECkERR
DCB

Figure 55. Directly Updating an Indexed Sequential Data Set with Variable-Length
Records

Appendix F. Processing an Indexed Sequential Data Set 175

Adding Records to an Indexed Sequential Data Set
Either the queued access method or the basic access method may be used to
add records to an indexed sequential data set. A record to be inserted
between records already in the data set must be inserted by the basic access
method using WRITE KN (key new). Records added to the end of a data set,
that is, records with successively higher keys, may be added to the prime data
area or the overflow area by the basic access method using WRITE KN, or they
may be added to the prime data area by the queued access method using the
PUT macro.

Inserting New Records into an Existing Indexed Sequential Data Set
As you add records to an indexed sequential data set, the system inserts each
record in its proper sequence according to the record key. The remaining
records on the track are then moved up one position each. If the last record
does not fit on the track, it is written in the first available location in the over­
flow area. A 10-byte link field is added to the record put in the overflow area to
connect it logically to the correct track. The proper adjustments are made to "-
the track index entries. This procedure is illustrated in Figure 56 on page 177.

Subsequent additions are written either on the prime track or as part of the
overflow chain from that track. If the addition belongs after the last prime
record on a track but before a previous overflow record from that track, it is
written in the first available location in the overflow area. Its link field contains
the address of the next record in the chain.

For BISAM, if you add a record that has the same key as a record in the data
set, a "duplicate record" condition is indicated in the exception code. However, '"'--"'
if you specified the delete option and the record in the data set is marked for
deletion, the condition is not reported and the new record replaces the existing
record. For more information about exception codes, see Data Administration:
Macro Instruction Reference.

Adding New Records to the End of an Indexed Sequential Data Set
Records added to the end of a data set, that is, records with successively
higher keys, may be added by the basic access method using WRITE KN (key
new), or by the queued access method using the PUT macro instruction ,~
(resume load). In either case, records may be added to the prime data area.

When you use the WRITE KN macro, the record being added is placed in the
prime data area only if there is room for it on the prime data track containing
the record with the highest key currently in the data set. If there is not suffi­
cient room on that track, the record is placed in the overflow area and linked to
that prime track even though additional prime data tracks originally allocated
have not been filled.

When you use the PUT macro (resume load), records are added to the prime
data area until the space originally allocated is filled. After this allocated prime
area is filled, you can add records to the data set using WRITE KN, in which
case they will be placed in the overflow area. Resume load is discussed in
more detail under "Creating an Indexed Sequential Data Set" on page 157.

176 MVS/ESA Data Administration Guide

I

~/

\,_;

"'-'/

\ i

"'--'/

Initial Format

Add Records
25 and 101

Add Records
28 and 199

Normal Entry

100

10

150

40

10

101

100

26

10

101

100

Track
1

Track
1

Track
1

Track
1

Track
1

Overflow Entry

100

20

175

100

20

150

200

100

20

150

200

Track
1

Track 3
Record 1

Track
2

Track 3
Record 3

Track
2

200

190

190

40

Track 200 Track Track
2 2 Index

40
I

100
Prime

I

Data

190 200

Overflow

Track 200 Track 3 Track
2 Record 2 Index

25 40
Prime
Data

175 190

Overflow

Track Track3 Track
2

200 Record 4 Index

25 26

Prime
Data

175 190

Track 3
199

Track 3
Overflow Record 1 Record 2

Figure 56. Adding Records to an Indexed Sequential Data Set

In order to add records with successively higher keys using the PUT macro
(resume load):

• The key of any record to be added must be higher than the highest key cur­
rently in the data set.

• The DD statement must specify DISP =MOD or the EXTEND option is speci­
fied in the OPEN macro.

• The data set must have been successfully closed whe·n it was created or
when records were previously added using the PUT macro.

You may continue to add fixed-length records in this manner until the original
space allocated for prime data is exhausted.

When you add records to an indexed sequential data set using the PUT macro
(resume load), new entries are also made in the indexes. During resume load
on a data set with a partially filled track and/or a partially filled cylinder, the
track index entry and/or the cylinder index entry is overlaid when the track or

Appendix F. Processing an Indexed Sequential Data Set 177

cylinder is filled. If resume load abnormally terminates after these index
entries have been overlaid, a subsequent resume load wilil get a sequence
check when adding a key that is higher than the highest key at the last suc­
cessful CLOSE but lower than the key in the overlaid index entry. When the
SYNAD exit is taken for a sequence check, register 0 contains the address of
the highest key of the data set.

Maintaining an Indexed Sequential Data Set
An indexed sequential data set must be reorganized occasionally for two
reasons:

• The overflow area will eventually be filled.

• Additions increase the time required to locate records directly.

The frequency of reorganization depends on the activity of the data set and on
your timing and storage requirements. There are two ways you can accomplish
reorganization: · ·

• You can reorganize the data set in two passes by writing it sequentially into ~
another area of direct access storage or magnetic tape and then re-creating
it in the original area.

• You can reorganize the data set in one pass by writing it directly into
another area of direct access storage. In this case, the area occupied by
the original data set cannot be used by the reorganized data set.

The operating system maintains statistics that are pertinent to reorganization.
The statistics, written on the direct access volume and available in the DCB for
checking, include the number of cylinder overflow areas, the number of unused \..._.,.
tracks in the independent overflow area, and the number of references to over-
flow records other than the first. They appear in the RORG1, RORG2, and
RORG3 fields of the DCB.

If you indicate when creating or updating the data set that you want to be able
to flag records for deletion during updating, you can set the delete code (the
first byte of a fixed-length record or the fifth byte of a variable-length record) to
X 1 FF 1

• If a flagged record is forced off its prime track during a subsequent
update, it will not be rewritten in the overflow area, as shown in Figure 57 on
page 179, unless it has the .highest key on that cylinder. Similarly, when you \.._...
process sequentially, flagged records are not retrieved for processing. During
direct processing, flagged records are retrieved the same as any other records,
and you should check them for the delete code.

Note that a WRITE KN (key new) to a data set containing variable-length
records removes all the deleted records from that prime data track.

Note that, to use the delete option, RKP must be greater than 0 for fixed-length
records and greater than 4 for variable-length records.

178 MVS/ESA Data Administration Guide

\.._)

~/

Fixed Length

Variable
Length

Initial Format

Record 100 is
marked for deletion
and record 25 is
added to the
data set

100

40

Key

Key

Track 1

10

150

Track 1

10

150

I
X'FF'

)"
Delete Code

BDW ROW
~

LLOO LLOO \ X'FF'
l
I

/
Delete Code

100 Track 1 200

20

175

40 Track 1 200

20

175

Data

Data

LLOO

Track 2 200 Track 2

40 100

190 200

Track 2 200 Track 2

25 40

190 200

Figure 57. Deleting Records from an Indexed Sequential Data Set

Indexed Sequential Buffer and Work Area Requirements
The only case in which you will ever have to compute the buffer length (BUFL)
requirements for your program occurs when you use the BUILD or GETPOOL
macro to construct the buffer area. If you are creating an indexed sequential
data set (using the PUT macro), each buffer must be 8 bytes longer than the
block size to allow for the hardware cou_nt field, that is:

Buffer length = 8 + Block size

(8) Data
(BLKSIZE)

!

Appendix F. Processing an Indexed Sequential Data Set 179

One exception to this formula arises when you are dealing with an unblocked
format-F record whose key field precedes the data field; its relative key position
is 0 (RKP=O). In that case, the key length must also be added, that is:

Buffer length = 8 + Key length + Record length

(8) Key
(KEY LEN)

Data
(LRECL)

4---------Buffer--------

The buffer requirements for using the queued access method to read or update
(using the GET or PUTX macro) an indexed sequential data set are discussed
below.

For fixed-length unblocked records when both the key and data are to be read
and for variable-length unblocked records, padding is added so that the data

\...._,.;1

will be on a doubleword boundary, that is: \...-)

Buffer length = Key length + Padding + 10 + Block size

Key I SAM Li n k Fi e 1 d Data
(KEY LEN) Padding (10) (BLKSIZE)

4---------BuffeY'---------

For fixed-length unblocked records when only data is to be read:

Buffer length = 16 + LRECL

Padding I SAM Link Fi e 1 d Data
(6) (10) (LRECL)

---------,Buffer--------

180 MVS/ESA Data Administration Guide

\
I

\...-)

. \

\.J

For fixed-length blocked records:

Buffer length = 16 + Block size

Padding I SAM Li n k Fi e 1 d Data
(6) (10) (BLKSIZE)

For variable-length blocked records, padding is 2 if the buffer starts on a
fullword boundary that is not also a doubleword boundary or 6 if the buffer
starts on a doubleword boundary, that is:

Buffer length = 12 or 16 + Block size

Padding I SAM Li n k Fi e 1 d Data
(6) (10) (BLKSIZE)

If you are using the input data set with fixed-length, unblocked records as a
basis for creating a new data set, a work area is required.

The size of the work area is given by:

Work area = Key length + Record length

Key Data
(LRECL)

---------Work Area-------...

If you are reading only the data portion of fixed-length lJnblocked records or
variable-length records, the work area is the same size as the record, that is:

Work area = Record length

Data
(LRECL)

,.._ ________ W,ork Area------,...-...

When you use the basic access method to update records in an indexed
sequential data set, the key length field need not be considered in determining
your buffer requirements. The area for fixed-length records must be:

Buffer length = 16 + Block size

Padding I SAM Li n k Fi el d Data
(6) (10) (BLKSIZE)

..__-------~Buffer----------

Appendix F. Processing an Indexed Sequential Data Set 181

For variable-length records, padding is 2 if the buffer starts on a fullword
boundary that is not also a doubleword boundary or 6 if a buffer starts on a
doubleword boundary. Thus, the area must be:

Buffer length = 12 or 16 + Blocksize

Padding ISAM Link Field Data
(6) (10) (BLKSIZE)

---------Buffer,--------.

You can save processing time by adding fixed-length or variable-length records
to a data set by using the MSWA parameter of the DCB macro to provide a
special work area for the operating system. The size of the work area (SMSW
parameter in the DCB) must be large enough to contain a full track of data, the
count fields of each block, and the work space for inserting the new record.

The size of the work area needed varies according to the record format and the ,~
device type. You can calculate it during execution using device-dependent
information obtained with ,the DEVTYPE macro and data set information from
the DSCB obtained with the OBTAIN macro. (The DEVTYPE and OBTAIN
macros are discussed in System-Data Administration.)

Note that you can use the DEVTYPE macro only if the index and prime areas
are on devices of the same type or if the index area is on a device with a larger
track capacity than the device containing the prime area. If you are not trying
to maintain device independence, you may precalculate the size of the work
area needed and specify it in the SMSW field of the DCB macro. The maximum \"-"'
value for SMSW is 65535.

For calculating the size of the work area, see the IBM storage device publica­
tion specific to your device.

For fixed-length blocked records, SMSW is calculated as follows:

SMSW = (DS2HIRPR) (BLKSIZE + 8) + LRECL + KEYLEN

The formula for fixed-length unblocked records is

SMSW = (DS2HIRPR) (KEYLEN + LRECL + 8) + 2

The value for DS2HIRPR is in the index (format-2) DSCB. If you don't use the
MSWA and SMSW parameters, the control program supplies a work area using
the formula BLKSIZE + LRECL + KEYLEN.

For variable-length records, SMSW may be calculated by one of two methods.
The first method may lead to faster processing, although it may require more
storage than the second method.

The first method is as follows:

SMSW = DS2HIRPR (BLKSIZE + 8) + LRECL + KEYLEN + 10

182 MVS/ESA Data Administration Guide

\~

I ',

\..._)

The second method is as follows:

SMSW = ((Trk Cap - Bn + 1) /Block length) (BLKSIZE)
+ 8 (DS2HIRPR) + LRECL + KEYLEN
+ 10 + (REM - N - KEYLEN)

In all the above formulas, the terms BLKSIZE, LRECL, KEYLEN, and SMSW are
the same as the parameters in the DCB macro (Trk Cap =track capacity). REM
is the remainder of the division operation in the formula and N is the first con­
stant in the block length formulas. (REM-N-KEYLEN) is added only if it is posi­
tive.

The second method yields a minimum value for SMSW. Therefore, the first
method is valid only if its application results in a value higher than the value
that would be derived from the second method. If neither MSWA nor SMSW is
specified, the control program supplies the work area for variable-length
records, using the second method to calculate the size.

Another technique to increase the speed of processing is to provide space in
virtual storage for the highest-level index. To specify the address of this area,
use the MSHI operand of the DCB. When the address of this area is specified,
you must also specify its size, which you can do by using the SMSI operand of
the DCB. The maximum value for SMSI is 65535. If you do not use this tech­
nique, the index on the volume must be searched. If the high-level index is
greater than 65535 bytes in length, your request for the high-level index in
storage is ignored.

The size of the storage area (SMSI parameter) varies. To allocate that space
during execution, you can find the size of the high-level index in the DCBNCRHI
field of the DCB during your DCB exit routine or after .the data set is open. Use
the DCBD macro to gain access to the DCBNCRHI field (see Chapter 5, "Speci­
fying a Data Control Block and Initializing Data Sets" on page 39). You can
also find the size of the high-level index in the DS2NOBYT field of the index
(format 2) DSCB, but you must use the utility program IEHLIST to print the infor­
mation in the DSCB. You can calculate the size of the storage area required for
the high-level index by using the formula

SMSI = (Number of Tracks in High-Level Index)
(Number of Entries per Track)
(Key Length + 10)

The formula for calculating the number of tracks i,n the high-level index is in
"Calculating Space Requirements for an Indexed Sequential Data Set" on
page 163. When a data set is shared and has the DCB integrity feature
(DISP = SHR), the high-level index in storage is not updated when DCB fields
are changed.

Controlling an Indexed Sequential Data Set Device
An indexed sequential data set is processed sequentially or directly. Direct
processing is accomplished by the basic access method. Because you provide
the key for the record you want read or written, all device control is handled
automatically by the system. If you are processing the data set sequentially,
using the queued access method, the device is automatically positioned at the
beginning of the data set.

Appendix F. Pro~essing an Indexed Sequential Data Set 183

In some cases, you may want to process only a section or several separate
sections of the data set. You do this by using the SETL macro instruction,
which directs the system to begin sequential retrieval at the record having a
specific key. The processing of succeeding records is the same as for normal \.._)
sequential processing, except that you must recognize when the last desired
record has been processed. At this point, issue the ESETL macro to terminate
sequential processing. You can then begin processing at another point in the
data set. If you do n9t spetify a SETL macro before retrieving the data, the
system assumes default SETL values. (See the GET and SETL macros in Data
Administration: Macro Instruction Reference.)

SETL-Specify Start of Sequential Retrieval
The SETL macro allows you to retrieve records starting at the beginning of an
indexed sequential data set or at any point in the data set. Processing that is
to start at a poirit other than the beginning can be requested in the form of a
record key; a key class (key prefix), or an actual address of a prime data
record.

The key class concept is useful because you do not have to know the whole key \.._)
of the first record to be processed. A key class consists of all the keys that
begin with identical characters. The key class is defined by specifying the
desired characters of the key class at the address specified in the lower-limit
operand of the SETL macro and setting the remaining characters to the right of
the key class to binary zeros.

To use actual addresses, you must keep a record of where the records were
written when the data set was created. The device address of the block con­
taining the record just processed by a PUT-move macro instruction is available
in the 8-byte data control block field DCBLPDA. For blocked records, the

. address is the same for each record in the block.

Normally, when a data set is created with the delete option specified, deleted
records cannot be retrieved using the QISAM retrieval mode. When the delete
option is not specified in the DCB, the SETL macro options function as follows:

SETL B

SETL K

SETL KH

SETL KC

SETL I

Start at the first record in the data set.

Start with the record having the specified key.

Start with the record whose key is equal to or higher than the
specified key.

Start with the first record having a key that falls into the speci­
fied key class.

Start with the record found at the specified direct access
address in the prime area of the data set.

Because the DCBOPTCD field in the DCB can be changed after the data set is
created (by respecifying the OPTCD in the DCB or DD card), it is possible to
retrieve deleted records. In this case, SETL functions as noted above.

184 MVS/ESA Data Administration Guide

\...._.,;

l ,
~

When. the delete option is specified in the DCB, the SETL macro options function
as follows:

SETL B

SETL K

SETL KH

SETL KC

SETL I

Start retrieval at the first undeleted record in the data set.

Start retrieval at the record matching the specified key, if that
record is not deleted. If the record is deleted, an NRF (no
record found) indication is set in the DCBEXCD field of the
DCB, and SYNAD is given control.

Start with the first undeleted record whose key is equal to or
higher than the specified key.

Start with the first undeleted record having a key that falls into
the specified key class or follows the specified key class.

Start with the first undeleted record following the specified
direct access address.

With the delete option not specified, QISAM retrieves and handles records
marked for deletion as nondeleted records.

Note: Regardless of the SETL or delete option specified, the NRF condition will
be posted in the DCBEXCD field of the DCB, and SYNAD is given control if the
key or key class:

• Is higher than any key or key class in the data set

• Does not have a matching key or key class in the data set

ESETL-End Sequential Retrieval
The ESETL macro directs the system to stop retrieving records from an indexed
sequential data set. A new scan limit can then be set, or processing termi­
nated. An end-of-data-set indication automatically terminates retrieval. An
ESETL macro must be executed before another SETL macro (described above)
using the same DCB is executed.

Note: If the previous SETL macro completed with an error, an ESETL macro
should be executed before another SETL macro .

.___ ______ End of General-Use Programming Interface ______ __.

Appendix F. Processing an Indexed Sequential Data Set 185

\ . ._

\)

\ /
~

Abbreviations

The following abbreviations are defined as they are
used in the MVS/DFP library. If you do not find the
abbreviation you are looking for, see Dictionary of
Computing, SC20-1699.

This list includes acronyms and abbreviations devel­
oped by the American National Standards Institute
(ANSI) and the International Organization for Stand­
ardization (ISO). This material is reproduced from the
American National Dictionary for Information Proc­
essing, copyright 1977 by the Computer and Business
Equipment Manufacturers American National Stand­
ards Institute, 1430 Broadway, New York, New York
10018.

A. ANSI control code (value of RECFM).

ABE. Abnormal end (value of EROPT).

ABEND. Abnormal end.

ABSTR. Absolute track (value of SPACE).

ACC. Accept erroneous block (value of EROPT).

ACS. Automatic class selection.

AFF. Affinity.

AL. American National Standard Labels.

ANSI. American National Standards Institute.

ASCII. American National Standard Code for Infor­
mation Interchange.

AUL. American National Standard user labels (value
of LABEL).

AVGREC. Average record scale (JCL keyword).

B. Blocked records (value of RECFM).

BCDIC. Binary coded decimal interchange code.

BDAM. Basic direct access method.

BOW. Block descriptor word.

BFALN. Buffer alignment (operand of DCB).

BFTEK. Buffer technique (operand of DCB).

BISAM. Basic indexed sequential access method. ·

BLDL. Build list (macro instruction).

BLKSIZE. Block size (operand of DCB).

BPAM. Basic partitioned access method.

BPI. Bytes per inch.

BSAM. Basic sequential access method.

BSM. Backspace past tape mark and forward space
over tape mark. (operand of CNTRL)

BSP. Backspace one block (macro instruction).

BSR. Backspace over a specified number of blocks
(records) (operand of CNTRL).

BUFCB. Buffer pool control block (operand of DCB).

BUFL. Buffer length (operand of DCB).

BUFNO. Buffer number (operand of DCB).

BUFOFF. Buffer offset (length of ASCII block prefix
by which the buffer is offset; operand of DCB).

CCHHR. Cylinder/head record address.

CCW. Channel command word.

CNTRL. Control (macro instruction).

CONTIG. Contiguous space allocation (value of
SPACE).

CSECT. Control section.

CSW. Channel status word.

CYLOFL. Number of tracks for cylinder overflow
records (operand of DCB).

D. Format-D (ISCll/ASCll variable-length) records
(value of RECFM).

DA. Direct access (value of DEVD or DSORG).

DADSM. Direct access device space management.

DASO. Direct access storage device.

DATACLAS. Data class (JCL keyword).

DAU. Direct access unmovable data set (value of
DSORG).

DB. ISCll/ASCll variable-length, blocked records
(value of RECFM).

Abbreviations 187

DBS. ISCll/ASCll variable-length, blocked spanned
records (value of RECFM).

DCB. Data control block (control block name or
macro instruction or parameter on DD statement).

DCBD. Data control block dummy section.

DD. Data definition.

DDNAME. Data definition name.

DEB. Data extent block.

DECB. Data event control block.

DEN. Magnetic tape density (operand of DCB).

DEVD. Device-dependent (operand of DCB).

DFDSS. Data Facility Data Set Services.

DFHSM. Data Facility Hierarchical Storage Manager.

DISP. Device-dependent (operand of DCB).

OS. ISCll/ASCll variable-length, spanned records
(value of RECFM).

DSCB. Data set control block.

DSECT. Dummy control section.

DSNAME. Data set name.

DSORG. Data set organization (operand of DCB).

EBCDIC. Extended binary-coded decimal interchange
code.

EODAD. End-of-data set exit routine address
(operand of DCB).

EOF. End-of-file.

EOV. End-of-volume.

EROPT. Error options (operand of DCB).

ESETL. End sequential retrieval (QISAM macro
instruction).

ESTAE. Extended specify task abnormal exit.

EXCP. Execute channel program.

EXLST. Exit list (operand of DCB).

EXPDT. Expiration date for a data set (JCL keyword).

F. Fixed-length records (value of RECFM).

188 MVS/ESA Data Administration Guide

FB. Fixed-length, blocked records (value of RECFM).

FBS. Fixed-length, blocked, standard records (value
of RECFM).

FBT. Fixed-length, blocked records with track over­
flow option (value of RECFM).

FCB. Forms control buffer.

FEOV. Force end-of-volume (macro instruction).

FIPS. Federal Information Processing Standard.

FS. Fixed-length, standard records (value of RECFM).

FSM. Forward space past tape mark and backspace
over tape mark (operand of CNTRL).

FSR. Forward space over a specified number of
blocks (records) (operand of CNTRL).

GCR. Group coded recording.

GOG. Generation data group.

GOS. Generation data set.

GL. GET macro, locate mode (value of MACRF).

GM. GET macro, move mode (value of MACRF).

H. DOS tapes with embedded checkpoint records
(parameter of OPTCD).

HA. Home address.

INOUT. Input then output (operand of OPEN).

1/0. Input/output.

IOB. Input/output block.

IPL. Initial program load.

IRG. lnterrecord gap.

IS. Indexed sequential (value of DSORG).

ISAM. Indexed sequential access method.

ISCll. International Standard Code for Information
Interchange.

ISO. International Organization for Standardization.

ISU. Indexed sequential unmovable (value of
DSORG).

JCL. Job control I anguage.

JFCB. Job file control block.

_)

\
_)

\..;_/

JFCBE. Job file control block extension.

K. Kilobyte.

KEYLEN. Key length (JCL keyword).

KSDS. Key-sequenced data set.

LPA. Link pack area.

LPALIB. Link pack area library.

LRECL. Logical record length (JCL keyword).

LRI. Logical record interface.

M. Machine control code (value of RECFM).

MACRF. Macro instruction form (operand of DCB).

MBBCCHHR. Module#, bin#, cylinder#, head#,
record#.

MGMTCLAS. Management class (JCL keyword).

MOD. Modify data set (value of DISP).

MSHI. Main storage for highest-level index (operand
of DCB).

MSS. Mass Storage System.

MSVC. Mass Storage Volume Control.

MSWA. Main storage for work area (operand of
DCB).·

MVSCP. MVS configuration program.

NCP. Number of channel programs (operand of DCB).

NOPWREAD. No password required to read a data
set (value of LABEL).

NRZI. Nonreturn-to-zero-inverted.

NSL. Nonstandard label (value of LABEL).

NTM. Number of tracks in cylinder index for each
entry in lowest level of master index (operand of
DCB).

OPTCD. Nptional services code (operand of DCB).

OS CVOL. Operating system control volume.

OSNS. Operating system/virtual storage.

OUTIN. Output then input (operand of OPEN).

PCI. Program-controlled interruption.

PDAB. Parallel data access block.

PDS. Partitioned data set

PE. Phase encoding (tape recording mode).

PL. PUT macro, locate mode (value of MACRF).

PM. PUT macro, move mode (value of MACRF).

PO. Partitioned organization (value of DSORG).

POU. Partitioned organization unmovable (value of
DSORG).

PRTSP. Printer line spacing (operand of DCB).

PS. Physical sequential (value of DSORG).

PSU. Physical sequential unmovable (value of
DSORG).

QISAM. Queued indexed sequential access method.

QSAM. Queued sequential access method.

RO. Record zero.

RACF. Resource Access Control Facility.

RCW. Record control word.

ROBACK. Read backward (operand of OPEN).

ROW. Record descriptor word.

RECFM. Record format (JCL keyword).

REFDD. Refer to previous DD statement (JCL
keyword).

RETPD. Retention period (JCL keyword).

RKP. Relative key position (operand of DCBk

RLSE. Release unused space (DD statement).

RPS. Rotational position sensing.

S. Standard format records (value of RECFM).

SAM. Sequential access method.

SCW. Segment control word.

SOW. Segment descriptor word.

SER. Volume serial number (value of VOLUME).

SETL. Set lower limit of sequential retrieval. (QISAM
macro instruction)

Abbreviations 189

SF. Sequential forward (operand of READ or WRITE).

SK. Skip to a printer channel (operand of CNTRL).

SKP. Skip erroneous block (value of EROPT).

SL. IBM standard labels (value of LABEL).

SMS. Storage Management Subsystem.

SMSI. Size of main-storage area for highest-level
index (operand of DCB).

SMSW. Size of main-storage work area (operand of
DCB).

SP. Space lines on a printer (operand of CNTRL).

SS. Select stacker on card reader (operand of.
CNTRL).

STORCLAS. Storage class (JCL keyword).

SUL. IBM standard and user labels (value of LABEL).

SVC. Supervisor call.

SVCLIB. Supervisor call library.

SYNAD. Synchronous error routine address (operand
of DCB).

SYSIN. System input stream.

SYSOUT. System output stream.

190 MVS/ESA Data Administration Guide

T. Track overflow option (value of RECFM); user­
totaling(value of OPTCD).

TIOT. Task 1/0 table.

TRC. Table reference character.

TRTCH. Track recording technique (operand of DCB).

TIR. Track record address.

U. Undefined length records (value of RECFM).

UCS. Universal character set.

UHL. User header I abel.

UTL. User trailer label.

V. Format-V (variable-length) records (value of
RECFM).

VB. Variable-length, blocked records (value of
REC FM).

VBS. Variable-length, blocked, spanned records
(value of RECFM).

VS. Variable-length, spanned records.

VSAM. Virtual storage access method.

VTOC. Volume table of contents.

WDS. VSAM volume data set.

XLRI. Extended logical record interface.

\

~

I

~

Glossary

The following terms and abbreviations are defined as
they are used in the MVS/DFP library. If you do not
find the term or abbreviation you are looking for, see
Dictionary of Computing, SC20-1699.

This glossary includes acronyms and abbreviations
developed by the American National Standards Insti­
tute (ANSI) and the International Organization for
Standardization (ISO). This material is reproduced
from the American National Dictionary for Information
Processing, copyright 1977 by the Computer and Busi­
ness Equipment Manufacturers American National
Standards Institute, 1430 Broadway, New York, New
York 10018.

A

abnormal end (ABEND). Termination of a task prior
to its completion as a result of an error condition that
could not be resolved by error recovery facilities
during task execution.

absolute address. An address that, without further
modification, identifies a unique DASD storage
location ..

access method. A technique for organizing and
moving data between main storage and input/output
devices.

access method services. A multifunction service
program that is used to manage both VSAM and
non-VSAM data sets and integrated catalog facility or
VSAM catalogs. Access method services is used to
define data sets and allocate space for them, convert
indexed-sequential (ISAM) data sets to key-sequenced
data sets, modify data set attributes in the catalog,
reorganize data sets, facilitate data portability
between operating systems, create backup copies of
data sets and indexes, help make inaccessible data
sets accessible, list the records of data sets and cata­
logs, define and build alternate indexes, and convert
OS CVOLs and VSAM catalogs to integrated catalog
facility catalogs.

ACS routine. A procedural set of ACS language
statements. Based on a set of input variables, the
ACS language statements generate the name of a
predefined SMS class, or a list of names of predefined
storage groups, for a data set.

address marker. A byte of data on a disk or diskette,
used to identify the data field and ID field in the
record.

alias. An alternative name for an entry or for a
member of a partitioned data set (PDS).

alias entry. An entry that relates an alias to the real
entry name of a user catalog or non-VSAM data set.

allocation. Generically, the entire process of
obtaining a volume and unit of external storage, and
setting aside space on that storage for a data set.

alternate track. On a direct access storage device, a
track designated to contain data in place of a defec­
tive primary track.

application. The use to which an access method is
put or the end result that it serves; contrasted to the
internal operation of the access method.

automatic class selection (ACS). A mechanism for
assigning SMS classes and storage groups to data
sets.

auxiliary storage. All addressable storage, other than
the memory of a processing unit, that can be
accessed using an input/output channel; for example,
storage on DASD, tape, or mass storage system
volumes.

B

backup. The process of copying data and storing it
for use in case the original data is somehow damaged
or destroyed.

backup data set. A copy that can be used to replace
or reconstruct a damaged data set.

base configuration information. The base information
for a configuration which includes default device
geometry, default unit, system names for the
complex, SMS resource status token, default manage­
ment class, and data set status.

basic direct access method (BDAM). An access
method used to directly retrieve or update particular
blocks of a data set on a DASD.

basic partitioned access method (BPAM). An access
method used to create program libraries on DASO for
convenient storage and retrieval of programs.

basic sequential access method (BSAM). An access
method for storing or retrieving data blocks in a con­
tinuous sequence, using either a sequential access or
direct access device.

block prefix. An optional variable length field that
may precede unblocked records or blocks of records
in ASCII on magnetic tapes.

Glossary 191

block size. The number of records, words, or charac­
ters in a block; usually specified in bytes.

blocking. The process of combining two or more
records into one block.

buffer. A routine or storage used to compensate for
a difference in the rate of flow of data, or time of
occurrence of events, when transferring data from
one device to another.

buffer pool. A continuous area of storage divided
into buffers.

c
channel program. One or more channel command
words that control a specific sequence of data
channel operations. Execution of the specific
sequence is initiated by a single start 1/0 (SIO)
instruction.

class. See SMS class.

collating sequence. An ordering assigned to a set of
items, such that any two sets in that assigned order
can be collated. As used in this publication, the order
defined by the System/370 8-bit code for alphabetic,
numeric, and special characters.

configuration. (1) The arrangement of a computer
system as defined by the characteristics of its func­
tional units. (2) See SMS configuration.

control character. A character whose occurrence in
a particular context initiates, modifies, or stops a
control operation. It may be recorded for use in a
later action, and may have a graphic representation
in some circumstances.

control program. A routine, usually part of an oper­
ating system, that aids in controlling the operations
and managing the resources of a computer system.

control section (CSECT). The part of a program spec­
ified by the programmer to be a relocatable unit, all
elements of which are to be loaded into adjoining
storage locations for execution.

control unit. A hardware device that controls the
reading, writing, or displaying of data at one or more
input/output devices. See also storage control.

control volume (CVOL). A volume that contains one
or more indexes of the catalog.

cylinder. The tracks of a disk storage device that can
be accessed without repositioning the access mech­
anism.

192 MVS/ESA Data Administration Guide

D

data class. A list of the data set allocation parame­
ters and their values, used when allocating a new
SMS-managed data set.

data control block (DCB). A control block used by
access method routines in storing and retrieving data.

data conversion. The process of changing data from
one form of representation to another.

data definition (DD) statement. A job control state­
ment that describes a data set associated with a par­
ticular job step.

data extent block (DEB). A control block that
describes the physical attributes of the data set.

Data Facility Data Set Services (DFDSS). An IBM
licensed program used to copy, move, dump, and
restore data sets and volumes.

Data Facility Hierarchical Storage Manager (DFHSM).
An I BM licensed program used to back up, recover,
and manage volumes.

Data Facility Product (DFP). An IBM licensed
program used to manage programs, devices, and data
in an MVS operating environment.

data integrity. Preservation of data or programs for
their intended purpose. As used in this publication,
the safety of data from inadvertent destruction or
alteration.

data management. The task of systematically identi­
fying, organizing, storing, and cataloging data in an
operating system.

data set. The major unit of data storage and retrieval
in the operating system, consisting of data in a pre­
scribed arrangement and described by control infor­
mation to which the system has access. As used in
this publication, a collectiort of fixed-, variable-, or
undefined-length records in auxiliary storage.

data set control block (DSCB). A control block in the
VTOC that describes data set characteristics.

data set label. A collection of information that
describes the attributes of a data set and is normally
stored on the same volume as the data set.

dequeue. To remove items from a queue. Contrast·
with enqueue.

device address. .Three or four hexadecimal digits that
uniquely define a physical 1/0 device on a channel
path in System/370 mode. The one or two leftmost
digits are the address of the channel to which the

~!

GI

device is attached. The two rightmost digits repre­
sent the unit address.

direct access. The retrieval or storage of data by a
reference to its location in a data set rather than rela­
tive to the previously retrieved or stored data. See
also addressed-direct access and keyed-direct access.

direct access device space management (DADSM). A
DFP component used to control space allocation and
deallocation on DASO.

direct access storage device (DASO). A device in
which the access time is effectively independent of
the location of the data.

direct data set. A data set whose records are in
random order on a direct access volume. Each
record is stored or retrieved according to its actual
address or its address according to the beginning of
the data set. Contrast with sequential data set.

directory. (1) A table of identifiers and references to
the corresponding items of data. (2) An index that is
used by a control program to locate one or more
blocks of data that are stored in separate areas of
data set in direct access storage.

discrete profile. A RACF profile that contains secu­
rity information about a single data set, user, or
resource. Contrast with generic profile.

doubleword. A contiguous sequence of bits or char­
acters that comprises two computer words and is
capable of being addressed as a unit.

dummy control section (DSECT). A control section
that an assembler can use to format an area of
storage without producing any object code.

dynamic allocation. The allocation of a data set or
volume using the data set name or volume serial
number rather than using information contained in a
JCL statement.

dynamic buffering. A user-specified opti_on that
requests that the system handle acquisition, assign­
ment, and release of buffers.

E

enqueue. To place items on a queue. Contrast with
dequeue.

entry point. (1) The address or the level of the first
instruction executed on entering a computer program,
a routine, or a suqroutine. A computer program, a
routine, or a subroutine may have several different
entry points, each perhaps corresponding to a dif­
ferent function or purpose. (2) In a routine, any place
to which control can be passed.

ESA/370. A hardware architecture unique to the IBM
3090 Enhanced model processors and the 4381 Model
Groups 91 E and 92E. It reduces the effort required for
managing data sets, removes certain MVS/XA con­
straints that limit applications, extends addressability
for system, subsystem, and application functions, and
helps exploit the full capabilities of DFSMS.

exception. An abnormal condition such as an 1/0
error encountered in processing a data set or file.

exclusive control. Preventing multiple WRITE-add
requests from updating the same dummy record or
writing over the same avai.lable space on a track.
When specified by the user, exclusive control
requests that the system prevent the data block about
to be read from being modified by other requests; it is
specified in a READ macro and released in a WRITE
or RELEX macro. When a WRITE-add request is about
to be processed, the system automatically gets exclu­
sive control of either the data set or the track.

exit list. A control block that contains the addresses
of routines that receive control when specified events
occur during execution; for example, routines that
handle session establishment request processing or
1/0 errors.

extent. A continuous space on a DASO volume occu­
pied by a data set or portion of a data set. An extent
of a data set contains a whole number of control
areas.

F

field. In a record or control block, a specified area
used for a particular category of data or control infor­
mation.

flag. (1) Any of various types of indicators used for
identification, for example, a wordmark. (2) A char­
acter that signals the occurrence of some condition,
such as the end of a word.

format-D. ISCll/ASCll or ISO/ANSl/FIPS variable­
length records.

format-F. Fixed-length records.

format-U. Undefined-length records.

format-V. Variable-length records.

G

generation data group (GOG). A collection of histor­
ically related non-VSAM data sets that are arranged
in chronological order; each data set is called a gen­
eration data set.

generation data group base entry. An entry that

Glossary 193

permits a non-VSAM data set to be associated with
other non-VSAM data sets as generation data sets.

generation data set (GOS). One of the data sets in a
generation data group; it is historically related to the
others in the group.

generic profile. A RACF profile that contains security
information about multiple data sets, users, or
resources that may have similar characteristics and
require a similar level of protection. Contrast with
discrete profile.

gigabyte. 1,073,741,824 bytes.

H

halfword. A contiguous sequence of bits or charac­
ters that comprise half a computer word and is
capable of being addressed as a unit.

head. A device that reads, writes, or erases data on
a storage medium, for example, a small
electromagnet used to read, write, or erase data on
magnetic drum or magnetic tape, or the set of perfo­
rating, reading, or marking devices used for punching,
reading, or printing on pe.rforated tape.

header entry. In a parameter list of GENCB, MODCB,
SHOWCB, or TESTCB, the entry that identifies the
type of request and control block and gives other
general information about the request.

header labeL (1) An internal label, immediately pre­
ceding the first record of a file, that identifies the file
and contains data used in file control. (2) The label
or data set label that precedes the data records on a
unit of recording media.

home address. An address written on a direct access
volume, denoting a track's address relative to the
beginning of the volume. The home address is
written after the index point on each track.

indexed sequential access method (ISAM). An access
method that retrieves or updates blocks of data using
an index to locate the data set.

initial program load (IPL). (1) The initialization proce­
dure that causes an operating system to commence
operation. (2) The process by which a configuration
image is loaded into storage at the beginning of a
work day or after a system malfunction.

194 MVS/ESA Data Administration Guide

integrated catalog facility. The name of the catalog in
MVS/DFP that replaces OS CVOLs and VSAM cata­
logs.

integrated catalog facility catal:og. Consists of two
types of components: the basic catalog structure
(BCS) and at least one VSAM volume data set
(WDS). The integrated catalog facility catalog is a
functional replacement for VSAM catalogs and OS
CVOLs; integrated catalog facility catalogs feature
improvements over VSAM catalogs in reliability,
recoverability, performance, usability, and DASO
space management. It is also the only catalog that is
supported by the Storage Management Subsystem
(SMS).

integrity. See data integrity.

internal storage. Storage that is accessible by a
computer without the use of input/output channels.

1/0 device. An addressable input/output unit, such as
a direct access storage device, magnetic tape device,
or printer.

J

job control language (JCL). A problem-oriented lan­
guage used to identify the job or describe its require­
ments to an operating system.

job entry subsystem (JES). A system facility for
spooling, job queueing, and managing input and
output. The two types of job entry subsystems in
MVS are JES2 and JES3.

job step catalog. A catalog made available for a job
by means of the STEPCAT DD statement.

K

key. One or more characters within an item of data
that are used to identify it or control its use. As used
in this publication, one or more consecutive charac­
ters taken from a data record, used to identify the
record and establish its order with respect to other
records.

key-sequenced data set (KSDS). A VSAM data set
whose records are loaded in ascending key sequence
and controlled by an index. Records are retrieved
and stored by keyed access or by addressed access,
and new records can be inserted in key sequence
because of free space allocated in the data set. Rela­
tive byte addresses can change, because of control
interval or control area splits.

kilobyte. 1024 bytes.

\\._...

I

v

I

\,._/

\ /

L

library. A partitioned data set containing a related
collection of named members. See partitioned data
set.

load module. The output of the linkage editor; a
program in a format ready to load into virtual storage
for execution.

locate mode. A way of providing data by pointing to
its location instead of moving it.

logical record. (1) A record from the standpoint of its
content, function, and use rather than Hs physical
attributes; that is, defined in terms of the information
it contains. (2) A unit of information normally per­
taining to a single subject; a logical record is that
user record requested of or given to the data man­
agement function.

M

management class. A list of the migration, backup,
and retention parameters and their values, for an
SMS-managed data set.

Mas.s Storage System. The name for the entire
storage system, consisting of the Mass Storage
Facility and all devices that are defined to the Mass
Storage Control.

mass storage volume. Two data cartridges in the
IBM 3850 Mass Storage System that contain informa­
tion equivalent to what would be stored on a direct­
access storage volume.

master catalog. A catalog that contains extensive
data set and volume information that VSAM requires
to locate data sets, to allocate and deallocate storage
space, to verify the authorization of a program or
operator to gain access to a data set, and accumulate
usage statistics for data sets.

media. The disk surface on which data is stored.

megabyte (Mb). 106 bytes.

member. A partition of a partitioned data set.

move mode. A transmittal mode in which the record
to be processed is moved into a user work area.

migration. In DFHSM, the process of moving a cata­
loged data set from a primary volume to a level 1
volume or level 2 volume, from a level 1 volume to a
level 2 volume, or from a volume not managed by
DFHSM to a level 1 or level 2 volume.

MVS/DFP. An IBM licensed program which is the
base for the Storage Management Subsystem.

MVS/ESA. An MVS operating system environment
which supports ESA/370.

MVS/SP. An IBM licensed program used to control
the MVS operating system and establish a base for an
MVS/XA or MVS/ESA environment.

N

non-VSAM data set. A data set created and accessed
using one of the following methods: BDAM, BPAM,
BSAM, QSAM, QISAM.

0

online. Pertaining to equipment, devices, or data
under the direct control of the processor.

operand. Information entered with a command name
to define the data on which a command operates and
to control the execution of the command.

operating system. Software that controls the exe­
cution of programs; an operating system may provide
services such as resource allocation, scheduling,
input/output control, and data management.

optimum block size. For non-VSAM data sets,
optimum block size represents the block size that
would result in the greatest space utilization on a
device, taking into consideration record length and
device characteristics.

OS control volume (OS CVOL). A volume that con­
tains one or more indexes of the catalog.

p

page. (1) A fixed-length block of instructions, data,
or both, that can be transferred between real storage
and external page storage. (2) To transfer
instructions, data, or both between real storage and
external page storage.

page space. A system data set that contains pages
of virtual storage. The pages are stored into and
retrieved from the page space by the auxiliary
storage manager.

paging. A technique in which blocks of data, or
pages, are moved back and forth between main
storage and auxiliary storage. Paging is the imple­
mentation of the virtual storage concept.

partitioned data set (PDS). A data set in DASO
storage that is divided into partitions, called
members, each of which can contain a program, part
of a program, or data. See also library.

Glossary 195

password. A unique string of characters stored in a
catalog that a program, a computer operator, or a ter­
minal user must supply to meet security requirements
before a program gains access to a data set.

PDS directory. A set of records in a partitioned data
set (PDS) used to relate member names to their
locations on a DASO volume.

physical record. A record whose characteristics
depend on the manner or form in which it is stored,
retrieved, or moved. A physical record may contain
all or part of one or more logical records.

pointer. An address or other indication of location.

primary space allocation. Initially allocated space on
a direct access storage device, occupied by or
reserved for a particular data set. See also sec­
ondary space allocation.

problem program. Any program that is executed
when the processing unit is in the problem state; that
is, any program that does not contain privileged
instructions. This includes IBM-distributed programs,
such as language translators and service programs,
and programs written by a user.

Q
queued sequential access method (QSAM). An
extended version of the basic sequential access
method (BSAM). Input data blocks awaiting proc­
essing or output data blocks awaiting transfer to aux­
iliary storage are queued on the system to minimize
delays in 1/0 operations.

R

record. A set of data treated as a unit.

register. An internal computer component capable of
storing a specified amount of data and accepting or
transferring this data rapidly.

relative address. An address expressed as a differ­
ence with respect to a base address.

Resource Access Control Facility (RACF). An IBM
licensed program that provides access control by
identifying and verifying users to the system. RACF
authorizes access to DASO data sets, logs unauthor­
ized access attempts, and logs accesses to protected
data sets.

rotational position sensing (RPS). A function that
permits a DASO to reconnect to a block multiplexer
channel when a specified sector has been reached.
This allows the channel to service other devices on
the channel during positional delay.

196 MVS/ESA Data Administration Guide

s
save area. An area of main storage in which the con­
tents of registers are saved.

scheduling. The ability to request that a task set
should be started at a particular interval or on occur­
rence of a specified program interrupt.

secondary space allocation. A predefined contiguous
space on a DASO volume reserved for additions to a
particular data set, and allocated. only after the
primary allocation space is full. See also primary
space a/location.

sequence checking. The process of verifying the
order of a set of records relative to some field's col­
lating sequence.

sequential access. The retrieval or storage of a data
record in: its entry sequence, its key sequence, or its
relative record number sequence, relative to the pre­
viously retrieved or stored record .. See also
addressed-sequential access and keyed-sequential
access.

sequential access method (SAM). An access method
for storing or retrieving data blocks in a continuous
sequence, using either a sequential access or a direct
access device.

sequential data set. A data set whose records are
organized on the basis of their successive physical
positions, such as on magnetic tape. Contrast with
direct data set.

serialization. In MVS, the prevention of a program
from using a resource that is already being used by
an interrupted program until the interrupted program
is finished using the resource.

SMS class. A list of attributes that SMS applies to
data sets having similar allocation (data class), per­
formance (storage class), or backup and retention
(management class) needs.

SMS configuration. A configuration base, SMS class
and storage group definitions, and ACS routines that
SMS uses to manage storage.

SMS-managed data set. A data set that has been
assigned a storage class.

spanned record. A logical record whose length
exceeds control interval length, and as a result,
crosses, or spans, one or more control interval
boundaries within a single control area.

spooling. (1) The use of auxiliary storage as a buffer
to reduce processing delays when transferring data
between peripheral equipment and the processors of

I

\~

(;
~I

(

l I

\..o._.,1

a computer. (2) The reading of input data streams
and the output of data streams on auxiliary storage
devices, concurrently with job execution, in a format
convenient for later processing or output operations.

step catalog. See job step catalog

storage administrator. A person in the data proc­
essing installation who is responsible for defining,
implementing, and maintaining storage management
policies.

storage class. A list of DASO storage performance,
security, and availability service level requirements
for an SMS-managed data set.

storage group. A list of traits and characteristics that
SMS applies to groups of storage volumes having
similar migration, backup, and dump needs. Only the
storage administrator can access storage group defi­
nitions.

Storage Management Subsystem (SMS). An oper­
ating environment that helps auto"!'ate and centralize
the management of storage. To manage storage,
SMS provides the storage administrator with control
over data class, storage class, management class,
storage group, and ACS routine definitions.

substitute mode. A transmittal mode used with
exchange buffering on which segments are pointed to.,
and exchanged with, user work areas.

subtask. (1) A task that is initiated and terminated
by a higher order task. (2) A task that is restricted
from communication with an operator device.

system-managed storage. An approach to storage
management in which the system determines data
placement and an automatic data manager handles
data backup, movement, space, and security.

system residence volume (SYSRES). The volume on
which the nucleus of the operating system and the
master catalog are stored.

T

trailer label. A file or data set label that follows the
data records on a unit of recording media.

u
universal character set (UCS). A printer feature that
permits the use of a variety of character arrays.
Character sets used for these printers are called UCS
images.

user catalog. An optional catalog used in the same
way as the master catalog and pointed to by the
master catalog. It also lessens the contention for the
master catalog and facilitates volume portability.

v
virtual 1/0 (VIO). A facility that pages data into and
out of external page storage; to the problem program,
the data to be read from or written to direct access
storage devices.

virtual storage access method (VSAM). An access
method for direct or sequential processing of fixed
and variable-length records on direct access storage
devices. The records in a VSAM data set or file can
be organized in logical sequence by a key field (key
sequence), in the physical sequence in which they are
written on the data set or file (entry sequence), or by
relative record number.

volume. A certain portion of data, together with its
data carrier, that can be mounted on the system as a
unit; for example, a tape reel or a disk pack. For
DASO, a volume refers to the amount of space acces­
sible by a single actuator.

volume table of contents (VTOC). A table on a direct
access storage device (DASO) that describes each
data set on the volume.

Glossary 197

i
\._./

Index

A
abbreviations 187-190
abnormal termination

during open, close, or EOV processing 49
ESTAE exit 151
STAE exit 151
STAI exit 151

ISO/ANSl/FIPS Version 3 tapes 50
absolute actual address

defined 10
absolute generation name 113
access method services

ALLOCATE command 4
ALTER LIM IT command 120
ALTER ROLLIN command 120
DEFINE command 12, 113
program use 12

access methods
basic 3, 59-70
defined 2
not recommended xi
queued 3, 33-66
selecting 33, 34

acronyms 187-190
ACS (automatic class selection) routines

DASO data sets 5
tape data sets 11

actual device addressing
BDAM 34

actual track address
(MBBCCHHR)

description 10
use with direct data sets 147
using feedback option 147

adding members
partitioned data set 101, 105

adding records
direct data set 148
indexed sequential data set 176-178

addresses, 31-bit 46
addressing, types of (BDAM) 34
address, direct access storage device

absolute actual
description 10

direct 143
indirect 144
relative

description 10
in directories 96-98
use with direct data sets 146

alias names in a directory
effect of changing directory entry 105
specifying 97

alignment of buffers 86
ALLOCATE command 4
allocation

data set
classes 4
definition 4
examples 44

generation data set 117-119
allocation, space

See space allocation
ALTER LIMIT command 120
ALTER ROLLIN command 120
American National Standard Code for Information

Interchange
See ASCII block prefix

American National Standard Institute
See ANSI control characters

American National Standard labels 12
ANSI control characters

description 136
device type considerations 27
used with chained scheduling 82

anticipatory buffering
omitted with basic access method 59
queued access method 62

ASCII format
restriction for 7-track tape 27
translating data from 82

associated data sets
restriction with chained scheduling 81

automatic blocking/deblocking
using queued access methods 62

automatic cataloging of data sets 7
automatic class selection routines 5
automatic volume switching

FEOV macro 56, 63, 80
A VG REC keyword 139

B
backspacing

BSP macro 125
CNTRL macro 123

basic access method
See also BDAM, BISAM, BPAM, and BSAM
blocking 59
deblocking 59
definition of 59-70
overlapped 1/0 59
using BOW 17

basic direct access method
See basic access method
See BDAM

Index 199

basic indexed sequential access method
See BISAM

basic partitioned access method
See BPAM

basic sequential access method
See BSAM

BCDIC translation to EBCDIC 29
BDAM (basic direct access method)

access method 143
adding records 148-150
CHECK macro 61, 62
creating direct data set 144
defined 3
description 34
dynamic buffering 90, 143
exclusive control for updating 147
extended search option 147
feedback option 147
finding the block or track address 146
not recommended xi
organization 143
processing a direct data set 143-151
READ macro 60
record format 146-148
selecting an access method 33, 34
sharing a data set 66-68, 151
spanned variable-length records 18-22
updating records 148-150
user labels 150
WAIT macro 62
WRITE macro 61

BOW (block descriptor word) 17
BFTEK operand (DCB macro)

BFTEK=A 19, 89
BFTEK = R spanned records 60

BISAM (basic indexed sequential access method)
See also indexed sequential data set
description 35
dynamic buffering 90
not recommended xi
retrieving indexed sequential data sets 168-174
sharing a data set 66-68
sharing a DCB 68
updating indexed sequential data sets 168-175

BLDL macro
build list format 103
coding example 107
description

partitioned data set 103-104
BLKSIZE operand (DCB macro)

card reader and punch 30
description 41
effect of data check on 42
including block prefix 22
requirement for direct data set 143
specifying 57, 139
when ignored 72
writing a short block 85

200 MVS/ESA Data Administration Guide

block prefix
records

buffer alignment 86
format-D 22-23
format-F 13-16
format-U 26
ISCll/ASCll 86
ISO/ANSI 16, 23
ISO/ANSl/FIPS 22

block size
limitations

ISO/ANSI spanned records 22
ISO/ANSI Version 3 tapes 42

system-determined 41, 46
blocking

automatic 62
basic access method 59
defined 13
fixed-length records 14-16
records

BSAM 36
QISAM 36
QSAM 37

spanned records 18
undefined-length records 26
variable-length records 16-18

block, data 13
boundary alignment

buffer 86
data control block 44

BPAM (basic partitioned access method)
See also partitioned data set
creating

partitioned data set 101
defined 2
description 35
processing partitioned data sets 95-110
retrieving members

partitioned data set 106-107
sharing a data set 68

BSAM (basic sequential access method)
creating

direct data set 144-146
partitioned data set 100-102
sequential data set 75-76

description 36
extending

sequential data set 78
overlap of 1/0 59, 81
reading PDS directory
retrieving a specific

partitioned data set member 106
sequential data set 76

sharing a data set 66-68
SYSIN/SYSOUT data sets 71
updating

partitioned data set member 108
PDS directory 105
sequential data set 78

\

~

'
\-._/

BSAM (basic sequential access method) (continued)
writing a short block 85

BSP macro
description 125

BUFCB operand (DCB macro) 86
buffer

See also FREEBUF, FREEDBUF, GETBUF, RELSE
acquisition and control 85
alignment 86
automatic for ISAM

direct 85, 90
dynamic 85, 90

basic access method 85, 87
control 89-94
length

BUFL operand 86, 179
number

BUFNO operand of DCB macro 81, 86, 87
releasing 94
segment 85, 89
truncating 94

buffer pool
See also BUILD, GETPOOL, FREEPOOL
automatic construction 85, 87
building 86
coding examples 88
creating 87
description 85-86
explicit 85
freeing 87-89
getting a buffer from 94
returning a buffer to 94
returning a dynamic buffer to 94
static 85

buffering
anticipatory

omitted for basic access method 59
queued access method 62

direct control of 90
dynamic 85
exchange 93
look-ahead 62
problem program controlled

BDAM 34
BPAM 35

simple 85, 90-93
BUFL operand (DCB macro)

card punch 30
constructing a buffer pool 86
ISAM 179
printer 31

BUFNO operand (DCB macro)
affecting chained scheduling 81
affecting performance .81
constructing a buffer pool 87
when constructing a buffer pool 86
when ignored 72

BUFOFF operand (DCB macro)
format-DB records 82
QSAM or BSAM 15
variable-length records 22-23

BUILD macro
description 86
ISAM data set 179

BUILDRCD macro
description 87
restriction 20
usage 19, 20

c
CAMLST macro 12
capacity for direct access

cylinder 8
record 9, 144

card punch
record format 29, 30

card reader
CNTRL macro 123
record format with 29-30
restriction with CNTRL macro 123

carriage control characters
defined 30, 135
specification of in RECFM field 27

CATALOG macro 12
cataloging data sets

automatic · 7
defined 1
generation data group 113-115
integrated catalog facility catalog

recommended xi
selecting type of catalog 12

catalog, system
entering data set name 12
integrated catalog facility catalog 12

CCW (channel command word)
creation by OPEN 46
PCI flag in 81
use in simple buffering 90

chained scheduling
BSAM 82
DASO 82
description 75, 81
QSAM 82
restriction

calculating record leng:th 83
CNTRL macro 81
DOS checkpoint records, e;y,bedded on tape 81
format-D records · 22
partitioned data sets 108
spooled data sets 81
3525 Card Punch 81

changing
data control block 45
data control block address 45
member name using STOW macro 105

Index 201

channel command word (CCW)
See CCW

channel programs
execute (EXCP) 33
number of (NCP) 59, 72, 81

CHECK macro
basic access method 59
description 61, 62
sharing a data set 67, 151
updating

partitioned data set 108
sequential data set 78

use with BDAM 151
use with SYNAD routine 59
using WAIT instead

See WAIT macro
check routine, examining DECB 61
classes

data 4
examples 44
JCL keyword for 43
management 4
restrictions 2
specifying through JCL 4
storage 4
using 6, 43

CLOSE macro
considerations 48
description 51-54
MODE 46
multiple data sets 53
parallel input processing 64-66
partitioned data set 105-106
restriction with SYNAD 51
STOW macro 105
temporary close option 51-54
TYPE=T 51-54
volume positioning 46, 51, 54

closing a data set 51-54
CNTRL macro

device dependence 123
restrictions

BSP macro 125
chained scheduling 81
DOS checkpoint records 123

compress, I EBCOPY
partitioned data set 95, 109-110

concatenation
data sets

BPAM 35
tape 79
tape and DASO 79
unlike 79

defined 79, 110
partitioned 110-111
sequential 79, 110

control buffer
See forms control buffer

202 MVS/ESA Data Administration Guide

control characters
See also CNTRL, PRTOV
ANSI 22, 27, 82
carriage 30, 135, 137
code 135, 136
explained 30
fixed-length records 15
format-D 22
format-F 15
format-U 26
format-V 18
ISO/ANSl/FIPS 15
machine 27, 82, 135, 136
specifying 27, 135
undefined-length records 26
variable-length records 18

control section, dummy (DSECT) 44
count area

count data format 10
count key data format 9
ISAM index entry format 156

creating
direct data set 144
partitioned data set 100-102

cross reference table with direct data sets 144
CS ECT statement

DCBD macro 44
cylinder

allocation 140
capacity 8
index

calculating space requirements 160
definition 154, 156

overflow
calculating space 160, 164
defined 157
specifying size via CYLOFL parameter 161

CYLOFL operand (DCB macro)
allocating ISAM data set 161
creating ISAM data set 157

D
0-format records

See format-0 records
DASO data sets

ACS routines 5
using data class 5

data access methods
See access methods

data checks
effect on BLKSIZE 42

data class
DATACLAS keyword 43
description 5
examples 44
JCL keywords 43
using 6, 43

\"-"

'\)

I •

\ '.) "-"/

data definition statement
See DD statement

data event control block
See DECB

data management
introduction 1, 68

data mode processing
relationship with buffers 89

data set
allocation 5
characteristics
description 41
disposition (DISP) operand

overridden by OPEN macro 55
identification 4
like characteristics 79, 110
name 4

' organization
DSORG operand (DCB macro) 42

RECFM (record format) 13-26, 30
routing through the input/output stream 71-73
security 127, 128
SMS managed 1
space allocation

direct access volumes 100
direct data set 144
indexed sequential data set 160-168
partitioned data set 98-100
specifying 139-140

storage
direct access 7
magnetic tape 11

SYSIN 71-73
SYSOUT 71-73
that cannot be managed by SMS 2
unlike characteristics 79, 110
unmovable

resulting from use of MMBBCCHHR 10
data set control block

See DSCB
DATACLAS 43
DCB macro

QISAM 36
DCB (data control block)

attributes of, determining 39
changing 45
changing an address in 45
creation by DCB macro 4, 39
description 39-40
dummy control section 44
exit

when used by SYSIN/SYSOUT 71
exits 50
fields 41
modifying 39
primary sources of information 39
sequence of completion 40
sharing a data set 66

DCB (data control block) (continued)
use 4

DCBBLKSI field in DCB 31, 85
DCBD macro 44

restriction 44
use 45

DCBLPDA field of DCB 184
DCBNCRHI field of DCB 183
DCBPRECL field of DCB 18
DCBSYNAD field of DCB 45
DD statement

fields 41
relationship to DCB 39
relationship to JFCB 39
use of 4

DDNAME operand
See data definition name field

deblocking, automatic 62
DECB (data event control block)

description 62
use of 78

DEFINE command 12, 113
creating a generation data group 121

DEFINE GENERATIONDATAGROUP command 120
delete option

restriction when updating a sequential data
set 78

restriction with RKP 178
SETL 185

deleting
indexed sequential data set records 178
member name using STOW macro 105

DEN (tape density) 28
density, tape 28
DEQ macro 67, 68, 171
descriptor word

See block descriptor word, record descriptor word,
segment descriptor

determinate errors 49
DEVD operand (DCB macro)

BDAM 144
device-class independence considerations 57
restriction with SYSOUT data sets 72
specifying 27
SYSOUT data sets 72

device control for sequential data sets 123-126
device independence

sequential data set 56-58
Device Support Facilities

See ICKDSF
device type

data format considerations
sequential organization 27, 32

device-dependent macros 123
DEVTYPE macro 182
direct access device

characteristics 43

Index 203

direct access volume
access mechanism 9
description 7
device characteristics 9-43
labels 8
RECFM (record format) 26, 30
record format 7, 27, 32
track addressing 10
track format 9
track overflow 9
track, defined 9
write validity check 43

direct addressing 143
direct data set

See BDAM data set
direct organization

See BDAM data set
directory, partitioned data set

See partitioned data set directory
DISP operand

action 55
description 55
extending sequential data set 78
indexed sequential data set 177
partitioned data set 105
passing a generation 119
tape 40
updating directory 105
when DISP=SHR for sharing data sets

description 67
indexed sequential data set 170

DOS (disk operating system)
embedded checkpoint records

restriction with BSP 125
restriction with chained scheduling 81
restriction with POI NT 126

DSCB (data set control block)
contents 133
data set label 131-134
data set security byte 127
description 8, 133
index (format-2) DS2HTRPR field 183
model 118-,-119

DS ECT statement 44
DSNAME operand

DD statement 104, 106
DSORG operand (DCB macro)

CLOSE TYPE=T 52
description 42
direct data set 144
indexed sequential data set 157
partitioned data set 100, 104, 106
sequential data set 75, 76

dummy control section
DCB 44, 45 ·

dummy data set
restriction with parallel input processing 64

204 MVS/ESA Data Administration Guide

dummy records
direct data set 145, 148

dynamic buffering
buffer control 87, 143
direct data set 143
ISAM data set 158, 169
specifying 87

E
EBCDIC (extended binary coded decimal interchange

code)
magnetic tape volumes 11
record format dependencies 13-30
translation to and from ASCII 82
translation to and from ISCll/ASCll 2, 11, 61, 63

embedded index area 160, 161
end-of-block

See EOB
end-of-data indicator 54
end-of-data routine

See EODAD routine
end-of-file mark

partitioned data set
writing (STOW macro)

end-of-volume
forcing 56
processing 54-56

ENO macro

97
101

sharing a data set 67, 68
EOB (end-of-block)

fixed-length records 16
EODAD (end-of-data) routine

basic access method 59
BSP macro 125
changing address (DCB) 45
concatenated data sets 80
GET macro 63
queued access method 63

error
determinate 49
handling 69
indeterminate 49

error routine
See SYNAD routine

ESETL (end-of-sequential retrieval) macro
description 185
sharing a data set 68

ESTAE exit, abnormal termination 151
exchange buffering 93
exclusive control

sharing a direct data set 68
updating direct data set 147

EXCP macro 33
not recommended xi

exits, DCB 50
EXTEND operand (OPEN macro)

device independence 57
extending sequential data set 78

\~

\ ' .
~I

EXTEND operand (OPEN macro) (continued)
indexed sequential data set 177
QISAM use 50
specifying 40
use with SYSIN/SYSOUT 51

extended binary coded decimal interchange code
See EBCDIC

extended search option
direct data set 147

extents

F

concatenation limit 110
defined 8

F-format records
See format-F records

FCB (forms control buffer)
image

formats 124
relationship with SETPRT 124

feedback
BDAM READ macro 60
BDAM WRITE macro 61
option 147

FEOV macro
description 56
ignored for SYSIN/SYSOUT data sets 56
restriction with spanned records 19, 56

file access exit 50
file mark, restriction 125
FIND macro

description
partitioned data set 104-105

sharing a data set 68
updating

partitioned data set 108
fixed-length records

description 14-16
parallel input processing 64

force end-of-volume
See FEOV macro

format-D records 22
restriction

chained scheduling 22
format-F records

card reader and punch 29-30
description 13-16
ISO/ANSI tapes 16
ISO/ANSl/FIPS tapes 15
parallel input processing 64
standard format 14-15

format-S records
extended logical record i~terface 25
segment descriptor word 23

format-U records
calculating record length 83
card reader and punch 29
description 26

format-U records (continued)
parallel input processing 64
restriction for ISO/ANSI tapes 26

format-V records
block descriptor word 17
card punch 29-30
description 17-22
parallel input processing 64
record descriptor word 18
segment control codes 20
segment descriptor word 20
spanned 18

FREE operand 53
FREEBUF macro

controls buffers 85
description 94
example 172
ISAM 170

FREEDBUF macro
description 94
sharing a data set 151

FREEPOOL macro
when issued for card punch data set 30
when issued for printer data set 31
when used 87

full-track-index write option 158

G
generation data group

absolute generation name 113
allocating non-SMS-managed 118
allocating SMS-managed 117-118
building an index 121
creating a new 117, 121
defined 7,113
entering in the catalog 113, 114, 115
naming conventions

Version 3 labels 116
relative generation name 113
retrieving 121
SMS-managed 120

generation data set 113
activating 120
roll in 120

generation index 113
generation number field

Version 3 labels 116
generation numbers

relative 113, 117
GET macro

description 63
format-U records 26
parallel input processing 64
sharing a data set 67
updating a sequential data set 78

GETBUF macro
controls buffers 85
description 94

Index 205

GETPOOL macro
ISAM data set 179

glossary 191, 197
grouping related control blocks 59

H
header label

user 134

ICKDSF (Device Support Facilities)
diagnosing 1/0 problems 69

IDCAMS program 140
IEBCOPY program

compressing partitioned data sets 95, 109
IEHLIST program 161, 183
IEHMOVE program 97, 98
IEHPROGM program 120
IHADCB DSECT

label 45
independent overflow area

description 157
specifying 163

indeterminate errors 49
index

area
cal cul ati ng space 160-161
creation 153

cylinder
calculating space 160
overflow area 157

master
calculating space 160
using 154

space allocation for 36
track

calculating space 161
indexed sequential data set

adding records 176
areas 153-156; 157, 160-168, 179-183

allocating space 160-168, 179-183
index 155-156
overflow 157
prime 154

buffer requirements 179
cannot be managed by SMS 42
creation 157-160
defined 3
deleting records 178
device control 183-185
full-track-index write option 158
inserting new records 176
new records at the end 176
retrieving 168-171
updating 168-175

indirect addressing 144

206 MVS/ESA Data Administration Guide

INOUT operand (OPEN macro) 40, 50, 126
INPUT operand (OPEN macro) 40, 50
input/output devices

magnetic tape 27
sequential data sets

card reader and punch 29, 30
direct access 32
magnetic tape 29
printer 31

input/output errors
recovering from 69

installation exit
ISO/ANSl/FIPS Version 3 tapes 50
RACF 129

integrated catalog facility catalog
cataloging data sets 12
recommended xi

interrecord gaps (IRGs) 13
IRG (interrecord gap) 13
ISAM

See indexed sequential data set, BISAM, QISAM
ISCll/ASCll block prefix

format-D records 22
format-F records 13-16
format-U records 26
restriction 13, 15, 22

ISCll/ASCll format
translating data from 2, 13, 63
translating data to 2, 13, 61, 63

ISCll/ASCll tape
buffer alignment 86

ISO/ ANSI· tape
Version 3

block size limitation 42
ISO/ANSl/FIPS control characters

format-D records 22
format-F ISO/ANSl/FIPS tape records 15

ISO/ANSl/FIPS tape

J

fixed-length records 15
undefined-length records 26
variable-length records 22

JES (job entry subsystem) 71-73
JFCB (job file control block) 39, 48

K
key

adding an indexed sequential data set 178
adding indexed sequential data set records 176
class 184
direct access devices 9
indexed sequential data set 153-156
retrieving indexed sequential data set

records 169-175
RKP (relative key position)

indexed sequential data set 157, 178, 180

I

'-""

(:

~0

KEYLEN operand (DCB macro)
description 42
direct access device 32
direct data set 144
specifying 57

KN
See WRITE with KN

KU
See READ with KU

L
LABEL parameter, DD statement_

specifying password protection 127
label symmetry conflict

ISO/ANSI Version 3 tapes 51
label validation exit 50
labels

direct access
data set control block 131-134
format 131
user label groups 134
volume label group 132-133

LEA VE option
close processing 51, 53
concatenated data sets 80
end-of-volume processing 55
forced end-of-volume processing 56

length checking 14
LIKE 117
link field 180, 181
load mode

BDAM
sharing a data set 151

QISAM
description 36
sharing a DCB 68

load module
attribute assignment

fields 39
loading an indexed sequential data set 158
locate mode

defined for buffering 89
example with simple buffering 91, 92, 93
GET macro

creating a sequential data set, coding
example 77

simple buffering 75, 77, 90-93
parallel input processing

example 65
simple buffering 90-93

processing records exceeding 32760 bytes 20
relationship with buffers 89
updating member with Q~AM 108

logical record interface (LRI) 19
look-ahead buffering 62
LRECL operand (DCB macro)

BDAM 144
BSAM 85

LRECL operand (DCB macro) (continued)
coding in K units 25
description 42
device dependence 57
ISAM

buffer requirements 182
data set creation 157

processing records exceeding 32760 bytes 20
PUT macro 63
SYSOUT data set 71

LRI (logical record interface)
spanned records 19

M
machine control characters 27, 82
MACRF operand (DCB macro)

BDAM 144
device independence 57
dynamic buffering 173
relationship with WAIT macro 62
sharing a data set 67, 68
updating member using QSAM 108

macros
not recommended xii

magnetic tape volumes
defined 11
density 28
labels

American National Standard 12
none 7
nonstandard 7
standard 7

organization 11
positioning

during close processing 51-54
during end-of-volume processing 54, 55

RECFM (record format) 11-26, 27, 30
serial number 11
tape marks 11

management class
description 5
examples 44
JCL keywords 43
MGMTCLAS keyword 43
restrictions 2
using 43

Mass Storage System 110
master index 156
MGMTCLAS 43
mode

See also MACRF operand
load (QISAM) 36
resume load mode 36
scan (QISAM) 36

model DSCBs for GDSs 118-119
modifying

data control .block 39
partitioned data set 108-110

Index 207

modifying (continued)
sequential data set 78

move mode processing
GET macro

creating a sequential data set 75
simple buffering 75, 90-93

parallel input processing 64
PUT macro

creating a sequential data set 75
simple buffering 75, 90-93

relationship with buffers 89
use instead of exchange buffering 93

MSS (Mass Storage System)
staging 110

MSVGP parameter on JCL statement 140
MSWA operand (DCB macro) 182
multiple data sets

closing 47
opening 47
processing for QISAM 86

multitasking mode, sharing data sets 47, 50, 68
multivolume data set

NOTE macro 125
MVS configuration program

defining VIO data sets 34

N
names

data set 4
generation data group 7, 113, 114, 115

NCP operand (DCB macro) 59, 72, 81
non-SMS-managed data set

allocating GDSs 118
allocation examples 5
generation data group 113

nonsequential processing of sequential data 36
nonstandard tape labels 7, 11
note list 98
NOTE macro

ABS parameter 125
description 125
restriction 125

BSP macro 125
multivolume data sets 125

updating
partitioned data set 108
sequential data set 78

NTM operand (DCB macro) 156
null segment

description 21
POSE restriction 21

0
offset reading 60
OPEN macro

considerations 48, 49
description 50-52

208 MVS/ESA Data Administration Guide

OPEN macro (continued)
functions 40, 50-52
MODE 46
parallel input processing 64
simultaneous opening of multiple data sets 47
updating a sequential data set 78
used for more than one data set 47
volume positioning for EOV 55

opening a data set 45-50
OPTCD operand (DCB macro)

BDAM 145
device dependence 81
ISAM 158
ISCll/ASCll tapes (OPTCD=Q) 63

OPTCD=H
embedded checkpoints, DOS tapes

positioning DOS tapes 123
MSS staging 110

OPTCD = M (master index) 156
OS CVOLs

not recommended xi
OUTIN operand (OPEN macro) 40, 50, 126
OUTINX operand (OPEN macro) 40, 50, 57
output mode, defined 90
OUTPUT operand (OPEN macro) 40, 50, 126

when using POINT macro 126
output stream 71-73
overflow

area 153, 157
chain 176
cylinder

See cylinder overflow
independent area 157
PRTOV macro 123
records 157
track

BSP macro restriction 125
description 9
restriction with parallel input processing 64
restriction with RPS feature 83

overflow, track
restrictions

ISAM 36
overlap of input/output

partitioned data set 108
performance improvement 81
queued access method 62
sequential data set 78

p
padded record

end-of-block condition 16
variable-length blocks 22

paging environment, related control block group 59
paper tape reader 29
parallel data access block (PDAB) 64, 65

\ 10

~,'

\._./

parallel input processing 64-66
partitioned data set

See also BPAM data set
adding members 101
chained scheduling 108
concatenation 110-111
creating 100-102
defined 95-97
general description 35
locating members 103
macros used 103-106
processing 95-110
processing the directory 103
restrictions

fixed-length records, standard format 15
retrieving member 106-107
rewriting 109-110
space allocation 98-100
updating member 108-109

partitioned data set directory
creation 35
description 96-98
macros used to process 103
reading 111
size limit 95
updating 105

partitioned organization
See also partitioned data set
See also PDS E
defined 2

PASSWORD data set 127
password protection 127, 128
PC (card punch) record format 29-30
PCI flag 81
PDAB (parallel data access block) 64, 65
PDS directory

See partitioned data set directory
performance improvement 81
POINT macro

description 125
relationship

BSAM 36
restriction

BSP macro 125
multivolume data sets 125

updating
partitioned data set 108
sequential data set 78

position to a block-POINT macro 125
prefix, block

See block prefix
prefix, key 184
primary space allocation

general description 8
prime data area

description 153, 154
space allocation 160, 162

printer
overflow (PRTOV macro) 123
record format with 31

program, describing the processing 2
PRTOV macro

description 123
device-dependent 57
when macro nonfunctional 123

PUT macro
description 63
format-U records 26
indexed sequential data set 176-178
locate mode 89-93
processing mode 89
simple buffering 90-93
used to create a sequential data set, coding

example 76
PUTX macro

Q

description 63
format-U records 26
sharing a data set 67
simple buffering 90-93
U POAT mode 92
updating a sequential data set 78

QISAM (queued indexed sequential access method)
See also ISAM
description 36-37
not recommended xi
scan mode 170
sharing 67, 68
using common buffer pool 86

QSAM (queued sequential access method)
See also queued access method
card punch 30
creating direct data set 144
defined 33, 62
description 37
introduced 3
parallel input processing 64-66
performance improvement 81
printer 31
processing modes

See data mode processing
reading PDS directory 111
restriction with spanned records 19
sharing a data set 67, 68
spanned variable-length records 19
SYSIN/SYSOUT data sets 71
updating

partitioned data set member 108
PDS directory 105

queued access method
See also QSAM
buffer control 85, 89

Index 209

R
RACF (resource access control facility)

installation exit 129
protection 128, 129

RD (card reader) 29-30
ROBACK operand (OPEN macro)

opening magnetic tape volume 40
restriction

SYSIN/SYSOUT data sets 51
variable-length records 50

RDW (record descriptor word)
data mode exception for spanned records 18
extended logical record interface 26
variable-length records format-D 22, 23, 24
when replaced by segment-descriptor word 20

read backward
SB operand of READ macro 60

READ macro
basic access method 60
description 60
device independence 57
format-U records 26
KU (key, update) coding example 172
sharing a data set 67, 151
updating

existing records (ISAM data sets) 170
partitioned data set 108
sequential data set 78

reading
partitioned data set directory 111

RECFM operand (DCB macro)
card punch 29-30
card reader 29-30
control character 27
description 42
direct access storage device 32
magnetic tape 27-29
printer 31
selecting 14
sequential data sets 27
sequential organization 27

RECFM (record format)
fixed-length 16
ISO/ ANS I/Fl PS 16
spanned variable-length 18
undefined-length 26
variable-length 16-23

record blocking
See blocking

record descriptor word
See RDW

record format (RECFM)
See also RECFM
fixed-length 14
fixed-length standard 14
ISO/ANSl/FIPS 15

record length (LRECL) operand (DCB macro) 42, 57

, 210 MVS/ESA Data Administration Guide

REFDD 117.
relative addressing

BDAM 34
relative block address

direct data set 146
feedback option 147

relative generation name 113-117
relative key position (RKP) operand (DCB

macro) 157, 178, 180
relative track address

defined 10
direct access 146
feedback option 147

releasing data sets and volumes 53
RELEX macro

exclusive control 151
sharing a data set 151

RELSE macro
defined 94
to terminate buffer processing 85

reorganization
ISAM data set 178
ISAM statistics 36

replacing
member name using STOW macro 105

REREAD option 55
restrictions

ASCII records
7-track tape 27

chained scheduling
calculating record length 83
CNTRL macro 81
DOS checkpoint records 81
format-D records 22
partitioned data sets 108
spooled data sets 81
track overflow 83
3525 Card Punch 81

classes 2
CNTRL macro

BSP macro 125
chained scheduling 81
DOS checkpoint records 123

DCB usage 47-49
DCBD macro usage 44
DOS checkpoint records 81, 123-126
format-D records with chained scheduling 22
ISO/ANSI records

block prefix 22
ISO/ANSl/FIPS records

block prefix 15, 22
NOTE macro

BSP macro 125
multivolume data sets 125

POINT macro
BSP macro 125
multivolume data sets 125

reading concatenated data sets backward 80

\~./

\..._,.,,/

restrictions (continued)
Storage Management Subsystem (SMS) 2, 42
2540 Card Read Punch 30

resume load 36, 157, 160, 178
retrieving

partitioned data set 106-107
sequential data set 76

retrieving a generation 121
REWIND option

CLOSE macro 51
FEOV macro 56

rewriting
partitioned data set 109-110

RKP (relative key position) operand (DCB
macro) 157, 178, 180

RLSE parameter
DD statement 52

roll in 120
RORG1, RORG2, RORG3 fields of the DCB 178
routing data sets through the input/output

stream 71-73
RPS (rotational position sensing)

restriction with track overflow records
variable-length records 17
when calculating record length 83

RO record 9, 144

s
scan mode 36

QISAM
issuing PUTX 170

scheduling of input/output streams 71
SDW (segment descriptor word)

format-S records 23
search option, extended 147
secondary space allocation

general description 8
security 127, 128
segment

buffer 85, 89
control code 20
descriptor word

indicating a null segment 21
spanned records 20

null 21
selecting an access method 33, 34
sequential data set

See a/so BPAM, BSAM, and QSAM data sets
concatenation 79, 110
creation 75-76
defined 2, 75
device control 123-126
device independence 56-58
extending 78
modifying 78
retrieving 76
updating 78

sequential organization
See also sequential data set
defined 2

SETL macro
sharing a data set 68

SETPRT macro
changing printer control information 124
3800 printing subsystem 124

sharing data sets
description 66-68
direct data set 151

short blocks, writing 85
simple buffering

description 90-93
parallel input processing 64, 65

size limit
PDS directory 95

SMS (Storage Management Subsystem)
allocating data sets 5
data sets that do not qualify 2
description 1
restrictions 2, 42
using ACS routines 5

SMSI operand (DCB macro) 183
SMSW operand (DCB macro) 182
space allocation

by average record length 139
direct data set 144
indexed sequential data set 160-168
partitioned data set 35, 98-100
PDSE 35
QISAM data set 36
specifying 139-140

SPACE parameter, use of
partitioned data set 99

spanned records
basic direct access method 21
considerations 19
logical record interface 19
restriction with parallel input processing 64
restriction with SYSIN data sets 20, 72
sequential access method 18
variable-length 18

spooling of SYSIN and SYSOUT data sets
how to 71-73
restriction 81

stacker selection
control characters 14, 30, 136
STACK operand 30
using CNTRL macro 123

STAE exit 151
STAI exit 151
standard format for fixed-length records 14
standard labels

direct access volumes 8, 131
magnetic tape volumes 7, 11

storage administration 1

Index 211

storage class
description 5
examples 44
JCL keywords 43
restrictions 2
STORCLAS keyword 43
using 43

STORCLAS 43
STOW macro

description
partitioned data set 105-106

sharing a data set 68
subpool 0, when shared 151
switching, volume

automatic
end-of-volume 54
FEOV macro 56
GET macro 63
restriction with concatenated data sets 80

initiated by CHECK 61
SYNAD field, programming consideration 58
SYNAD routine

adding records to ISAM data set 178
basic access method 59
changing address in DCB 45
macros used in 69, 70
programming consideration 58
queued access method 63
relationship with DECB 62
relationship with SYSIN/SYSOUT data sets 73
SETL option 185
sharing a data set 68
temporary close restriction 51

SYNADAF macro
description 69, 70
examples 77

SYNADRLS macro
description 70
examples 77

SYNCDEV macro
tape data sets 126

synchronous error routine exit
See SYNAD routine

SYSIN data set
FEOV macro ignored for 56
restriction

chained scheduling 81
parallel input processing 64
spanned variable-length records 20

routing data through input stream 71-73
SYSOUT data set

FEOV macro ignored for 56
restriction

chained scheduling 81
spanned variable-length records 20

routing data through output stream 71-73
system input stream 71-73

' 212 MVS/ESA Data Administration Guide

system output stream 71-73
system output writer 71-73
system-determined block size

description 41, 46
SYS1.IMAGELIB

T

adding band names/aliases 124
character arrangement table modules 124
FCB images 124
UCS images and image tables 124

table reference character
See TRC

table reference character (3800) 30, 31
tape data sets

using data class 5, 11
tape marks 11
temporary close 51-54
temporary data set 34
track

addressing 10
defined 9
format

count data format 9
count key data format 9

index 153-156, 160
overflow option

BSP macro restriction 125
description 9
restriction with parallel input processing 64
restriction with RPS feature 83
restriction with variable-length records 17

track addressing, relative
BDAM 34

track overflow
restrictions

ISAM 36
TRC (table reference character 3800) 18
TRTCH operand (DCB macro) 29
TRUNC macro

description 94
terminates buffer processing 85

truncated blocks, format-F records 14
truncated format-U record 26
TTR (relative·track record address)

partitioned data set 97
TYPE=T operand 51-54

u
U-format records

See format-U records
UCS (universal character set) image

relationship with SETPRT 124
unblocking records

BPAM 35
BSAM 36
QISAM 36

' ! J~j

unblocking records (continued)
QSAM 37

undefined length records
See format-U records

unlabeled magnetic tape 7-11, 12
unmovable data sets

cannot be managed by SMS 42
U PDAT option

See also update mode
direct data set 147
opening a data set 40
restriction

SYSIN/SYSOUT data sets 51
spanned records 19
updating

partitioned data set 108-109
sequential data set 78

update mode
See also U PDAT option
format-U records 26
PUTX 90
simple buffering 92

utility programs
IDCAMS 140
IEBCOPY 110
IEHLIST 183
IEHMOVE 98
IEHPROGM 120, 161
initializing direct access volume 8

v
V-format records

See format-V records
validation suppression exit 50
variable-length record (format-D) 22-23
variable-length record (format-S) 22-23
variable-length record (format-V)

description 17
parallel input processing 64
segments 17, 18
spanned

description 18-22
restrictions with SYSIN and SYSOUT data

sets 20
version increment of generation data group 114
version number field

Version 3 labels 116
VIO data set 34
virtual storage access method

See also VSAM data set
defined 3

volume
defined 7
initializing 8
positioning 51-56
switching 56, 63~ 80

volume access exit 50
VSAM catalog

creating generation data grnup base 113
not recommended xi

VSAM data set
defined 3

VSAM data set, opening 48
VTOC (volume table of contents)

description 7
DSCB 133
ISAM data set 155
pointer 133

w
WAIT macro

basic access method
BDAM 62, 149, 151
BISAM 62

description 62
example 172
QSAM parallel input processing 64
sharing a data set 151

WRITE macro
add form 144, 150
basic access method 59
description 61
format-U records 26
K (key) 170, 173
KN (key, new) 174, 176
PDSE restriction 85
programming consideration 57
sharing a data set 67, 151
update form 148
updating

concatenated partitioned data sets 108
partitioned data set 108
sequential data set 78

used with BDAM 144
used with note list 98
with KN (key, new) 178
writing a short block 85

write validity checking 43
writing a short block 85

x
XLRI (extended logical record interface) 25

Numerics
1600 BPI 28
2305-2 Fixed Head Storage

programming considerations 150
2540 Card Read Punch

punch error correction 30
3211 printer

SETPRT macro 124

Index 213

3262 model 5 printer
SETPRT macro 124

3525 Card Punch
chained scheduling ignored 81
record format 30

3800 Printer
table reference character 18, 31

4245 printer
SETPRT macro 124

4248 printer
SETPRT macro 124

7-track tapes 29
800 BPI 28
9-track tapes 28

214 MVS/ESA Data Administration Guide

\~

l<;~J

.§
....... 0 c 4-

\....._./
Q.> en
E·-
a_..C
·-
::J-
0- 0
Q.) Q.)

O'
en

.~ .8
t'. Q.)
0 Q_
en o
I_,_,

=-o
0 Q.)

EE
o E
·- ::J c; O'

E '-
0 Q.),..c
::i-+-'

i_;;
0 ~
:5 0
·- Q.)
3:: >
en:;:;
E"rn
Q.) c

:ci ~ e1
Q_ ~
Q.) ::J
en en
::i en
0 Q.)
(.)I...

Q_

c Q.)
o en
(.) ::J
(/) Q.)

~en
a_ 0
0 Q.)

\~ t> o::
(I)

-a
z

I ··._,;

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

MVS/ESA
Data Administration Guide

SC26-4505-1

Reader's
Comment
Form

This manual is part of a library that serves· as a reference source for system analysts, programmers, and operators of IBM systems.
You may use this form to communicate your comments about this publication, its organization, or subject matter, with the under­
standing that IBM may use or distribute whatever information you supply in any way it believes appropriate without incurring any
obligation to you. Your comments will be sent to the author's department for w.hatever review and action, if any, are deemed appro­priate.

Note: Do not use this form to request IBM publications. If you do, your order will be delayed because publications are not stocked at
the address printed on the reverse side. Instead, you should direct any requests for copies of publications, or for assistance in using
your IBM system, to your IBM representative or to the IBM branch office serving your locality.

If you have applied any technical newsletters (TNLs) to this book, please list them here:

Comments (please include specific chapter and page references) :

If you want a reply, please complete the following information:

Thank you for your cooperation. No postage is necessary if mailed in the U.S.A. (Elsewhere, an IBM office or representative will be happy to forward your comments or you may mail them directly to the address in the Edition Notice on the back of the title page.)

SC26-4505-1

Reader's Comment Form

Fold and tape Please do not staple Fold and tape

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

... ·11· · 1· ·1· ·1·1 · ~~ ~~~~~~ i

NECESSARY I
IF MAILED I

INTHE I

Fold and tape

--------- ----- - -- ---- -- ------ -----y-(R)

BUSINESS REPLY MAIL
flRST CLASS MAIL PERMIT NO. 40 ARMONK, NY

POSTAGE WILL BE PAID BY ADDRESSEE

International Business Machines Corporation
Department J57
P.O. Box 49023
San Jose, CA 95161-9945

11.1 ... 1.1 11.11 111.1 .. 1.1 ... 1 •• 1.1.1 111

Please do not staple

UNITED ST ATES I

Fold and tape

I
I
I
I
I

'-._

I

\.._

\

'_.

\.._

•

SC26-4505-1

